Skip to content

Latest commit

 

History

History
101 lines (69 loc) · 3.86 KB

README.md

File metadata and controls

101 lines (69 loc) · 3.86 KB

TradingView Scraper

Python Selenium Pydantic JSON Virtual Environment

This scraper is designed to fetch financial data, specifically technical indicators and pivot points, from TradingView in a performant way. The scraper efficiently extracts this data for multiple asset pairs across various time intervals, using Selenium for web automation and Pydantic for data validation.

PT-BR: Scraper projetado para buscar dados financeiros, especificamente indicadores técnicos e pontos pivôs, do TradingView de forma eficiente. O scraper extrai esses dados de maneira eficiente para múltiplos pares de ativos em vários intervalos de tempo, utilizando Selenium para automação web e Pydantic para validação de dados.

Features

  • Performance-Oriented: The scraper uses WebDriverWait to minimize unnecessary waits, ensuring efficient scraping.
  • Technical Indicators: Fetches oscillators and moving averages for specified asset pairs.
  • Pivot Points: Retrieves pivot points in different formats (Classic, Fibonacci, Camarilla, Woodie, DM).
  • Customizable Intervals: Scrapes data for a variety of time intervals (1m, 5m, 15m, 30m, 1h, 2h, 4h, 1D, 1W, 1M).
  • Structured Data: The extracted data is validated using Pydantic models, making it easier to integrate into other systems or databases.

Project Structure

.
├── README.md
├── pairs.json           # List of asset pairs to scrape
├── pyproject.toml       # Python project configuration
├── requirements.txt     # Python dependencies
├── src/
│   ├── chrome_config.py # ChromeDriver setup and configuration
│   ├── main.py          # Main script to run the scraper
│   └── models.py        # Pydantic models for structured data
└── uv.lock              # Lockfile for dependencies

Installation

Follow the steps below to set up the project and run the scraper.

1. Clone the Repository

git clone https://github.com/pedrohcleal/TradingViewScraper.git
cd TradingViewScraper

2. Create a Virtual Environment

Make sure you have Python installed. Create a virtual environment to isolate the project dependencies:

python -m venv venv

3. Activate the Virtual Environment

  • On Windows:

    venv\Scripts\activate
  • On macOS/Linux:

    source venv/bin/activate

4. Install Dependencies

With the virtual environment activated, install the required dependencies from requirements.txt:

pip install -r requirements.txt

5. Configure WebDriver

Ensure you have ChromeDriver installed and available in your system's PATH. Alternatively, modify chrome_config.py to point to your ChromeDriver executable.

6. Run the Scraper

The scraper uses a JSON file (pairs.json) that contains a list of asset pairs to scrape. Once everything is set up, run the scraper:

python src/main.py

The script will scrape the financial data for the pairs and intervals specified in the code, outputting the results to the console.

Notes

  • The scraper is optimized for performance with WebDriver waits to ensure it only interacts with the page when elements are ready.
  • Make sure your internet connection is stable, as the scraper fetches data from TradingView.
  • You can customize the time intervals and pairs by editing the intervals list and the pairs.json file.

Log snapshot

In Action

YoutubeTestVideo