-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathl_fit.py
388 lines (319 loc) · 15.6 KB
/
l_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import copy
import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf
import pandas.util.testing as tm
import matplotlib.pyplot as plt
from exotic.api.plotting import corner
from ultranest import ReactiveNestedSampler
from astropy.timeseries import LombScargle
class linear_fitter(object):
def __init__(self, data, dataerr, bounds=None, prior=None):
self.data = data
self.dataerr = dataerr
self.bounds = bounds
self.prior = prior # dict {'m':(0.1,0.5), 'b':(0,1)}
if bounds is None:
# use +- 3 sigma prior as bounds
self.bounds = {
'm':[prior['m'][0]-3*prior['m'][1],prior['m'][0]+3*prior['m'][1]],
'b':[prior['b'][0]-3*prior['b'][1],prior['b'][0]+3*prior['b'][1]]
}
self.fit_nested()
def fit_nested(self):
freekeys = list(self.bounds.keys())
boundarray = np.array([self.bounds[k] for k in freekeys])
bounddiff = np.diff(boundarray,1).reshape(-1)
self.epochs = np.round((self.data - np.mean(self.bounds['b']))/np.mean(self.bounds['m']))
def loglike(pars):
# chi-squared
model = pars[0]*self.epochs + pars[1]
return -0.5 * np.sum( ((self.data-model)/self.dataerr)**2 )
def prior_transform(upars):
# transform unit cube to prior volume
return (boundarray[:,0] + bounddiff*upars)
# estimate slope and intercept
self.results = ReactiveNestedSampler(freekeys, loglike, prior_transform).run(max_ncalls=4e5,min_num_live_points=420, show_status=False)
# alloc data for best fit + error
self.errors = {}
self.quantiles = {}
self.parameters = {}
for i, key in enumerate(freekeys):
self.parameters[key] = self.results['maximum_likelihood']['point'][i]
self.errors[key] = self.results['posterior']['stdev'][i]
self.quantiles[key] = [
self.results['posterior']['errlo'][i],
self.results['posterior']['errup'][i]]
# final model
self.model = self.epochs * self.parameters['m'] + self.parameters['b']
self.residuals = self.data - self.model
def plot_oc(self, savefile=None, ylim='none', show_2sigma=False):
# O-C plot
fig,ax = plt.subplots(1, figsize=(9,6))
ax.errorbar(self.epochs, self.residuals*24*60, yerr=self.dataerr*24*60, ls='none', marker='o',color='black')
ylower = (self.residuals.mean()-3*np.std(self.residuals))*24*60
yupper = (self.residuals.mean()+3*np.std(self.residuals))*24*60
# upsample data
epochs = (np.linspace(self.data.min()-7, self.data.max()+7, 1000) - self.parameters['b'])/self.parameters['m']
depoch = self.epochs.max() - self.epochs.min()
ax.set_xlim([self.epochs.min()-depoch*0.01, self.epochs.max()+depoch*0.01])
# best fit solution
model = epochs*self.parameters['m'] + self.parameters['b']
# MonteCarlo the new ephemeris for uncertainty
mc_m = np.random.normal(self.parameters['m'], self.errors['m'], size=10000)
mc_b = np.random.normal(self.parameters['b'], self.errors['b'], size=10000)
mc_model = np.expand_dims(epochs,-1) * mc_m + mc_b
# create a fill between area for uncertainty of new ephemeris
diff = mc_model.T - model
if show_2sigma:
ax.fill_between(epochs, np.percentile(diff,2,axis=0)*24*60, np.percentile(diff,98,axis=0)*24*60, alpha=0.2, color='k', label=r'Uncertainty ($\pm$ 2$\sigma$)')
else:
# show 1 sigma
ax.fill_between(epochs, np.percentile(diff,36,axis=0)*24*60, np.percentile(diff,64,axis=0)*24*60, alpha=0.2, color='k', label=r'Uncertainty ($\pm$ 1$\sigma$)')
# duplicate axis and plot days since mid-transit
ax2 = ax.twiny()
ax2.set_xlabel(f"Time [BJD - {self.parameters['b']:.1f}]",fontsize=14)
ax2.set_xlim(ax.get_xlim())
xticks = ax.get_xticks()
dt = np.round(xticks*self.parameters['m'],1)
#ax2.set_xticks(dt)
ax2.set_xticklabels(dt)
if ylim == 'diff':
ax.set_ylim([ min(np.percentile(diff,1,axis=0)*24*60),
max(np.percentile(diff,99,axis=0)*24*60)])
if self.prior is not None:
# create fill between area for uncertainty of old/prior ephemeris
epochs_p = (np.linspace(self.data.min()-7, self.data.max()+7, 1000) - self.prior['b'][0])/self.prior['m'][0]
prior = epochs_p*self.prior['m'][0] + self.prior['b'][0]
mc_m_p = np.random.normal(self.prior['m'][0], self.prior['m'][1], size=10000)
mc_b_p = np.random.normal(self.prior['b'][0], self.prior['b'][1], size=10000)
mc_model_p = np.expand_dims(epochs_p,-1) * mc_m_p + mc_b_p
diff_p = mc_model_p.T - model
# plot an invisible line so the 2nd axes are happy
ax2.plot(epochs, (model-prior)*24*60, ls='--', color='r', alpha=0)
# why is this so small!?!?!?
#ax.plot(epochs, (model-prior)*24*60, ls='--', color='r')
if show_2sigma:
ax.fill_between(epochs, np.percentile(diff_p,2,axis=0)*24*60, np.percentile(diff_p,98,axis=0)*24*60, alpha=0.1, color='r', label=r'Prior ($\pm$ 2$\sigma$)')
else:
# show ~1 sigma
ax.fill_between(epochs, np.percentile(diff_p,36,axis=0)*24*60, np.percentile(diff_p,64,axis=0)*24*60, alpha=0.1, color='r', label=r'Prior ($\pm$ 1$\sigma$)')
if ylim == 'prior':
ax.set_ylim([ min(np.percentile(diff_p,1,axis=0)*24*60),
max(np.percentile(diff_p,99,axis=0)*24*60)])
elif ylim == 'average':
ax.set_ylim([ 0.5*(min(np.percentile(diff,1,axis=0)*24*60) + min(np.percentile(diff_p,1,axis=0)*24*60)),
0.5*(max(np.percentile(diff,99,axis=0)*24*60) + max(np.percentile(diff_p,99,axis=0)*24*60))])
ax.axhline(0,color='black',alpha=0.5,ls='--',
label="Period: {:.7f}+-{:.7f} days\nT_mid: {:.7f}+-{:.7f} BJD".format(self.parameters['m'], self.errors['m'], self.parameters['b'], self.errors['b']))
# TODO sig figs
#lclabel2 = r"$T_{mid}$ = %s $\pm$ %s BJD$_{TDB}$" %(
# str(round_to_2(self.parameters['tmid'], self.errors.get('tmid',0))),
# str(round_to_2(self.errors.get('tmid',0)))
#)
ax.legend(loc='best')
ax.set_xlabel("Epoch [number]",fontsize=14)
ax.set_ylabel("Residuals [min]",fontsize=14)
ax.grid(True, ls='--')
return fig, ax
def plot_triangle(self):
ranges = []
mask1 = np.ones(len(self.results['weighted_samples']['logl']),dtype=bool)
mask2 = np.ones(len(self.results['weighted_samples']['logl']),dtype=bool)
mask3 = np.ones(len(self.results['weighted_samples']['logl']),dtype=bool)
titles = []
labels= []
flabels = {
'm':'Period [day]',
'b':'T_mid [JD]',
}
for i, key in enumerate(self.quantiles):
labels.append(flabels.get(key, key))
titles.append(f"{self.parameters[key]:.7f} +-\n {self.errors[key]:.7f}")
ranges.append([
self.parameters[key] - 5*self.errors[key],
self.parameters[key] + 5*self.errors[key]
])
if key == 'a2' or key == 'a1':
continue
mask3 = mask3 & (self.results['weighted_samples']['points'][:,i] > (self.parameters[key] - 3*self.errors[key]) ) & \
(self.results['weighted_samples']['points'][:,i] < (self.parameters[key] + 3*self.errors[key]) )
mask1 = mask1 & (self.results['weighted_samples']['points'][:,i] > (self.parameters[key] - self.errors[key]) ) & \
(self.results['weighted_samples']['points'][:,i] < (self.parameters[key] + self.errors[key]) )
mask2 = mask2 & (self.results['weighted_samples']['points'][:,i] > (self.parameters[key] - 2*self.errors[key]) ) & \
(self.results['weighted_samples']['points'][:,i] < (self.parameters[key] + 2*self.errors[key]) )
chi2 = self.results['weighted_samples']['logl']*-2
fig = corner(self.results['weighted_samples']['points'],
labels= labels,
bins=int(np.sqrt(self.results['samples'].shape[0])),
range= ranges,
figsize=(10,10),
#quantiles=(0.1, 0.84),
plot_contours=True,
levels=[ np.percentile(chi2[mask1],95), np.percentile(chi2[mask2],95), np.percentile(chi2[mask3],95)],
plot_density=False,
titles=titles,
data_kwargs={
'c':chi2,
'vmin':np.percentile(chi2[mask3],1),
'vmax':np.percentile(chi2[mask3],95),
'cmap':'viridis'
},
label_kwargs={
'labelpad':50,
},
hist_kwargs={
'color':'black',
}
)
return fig
def plot_periodogram(self):
# Search for periodic signals in residuals after linear fit
freq,power = LombScargle(self.epochs, self.residuals).autopower(nyquist_factor=2)
# change up the frequency grid a little
maxper = np.max(self.epochs) - np.min(self.epochs)
minper = (1./freq).min()
# recompute on new grid
freq,power = LombScargle(self.epochs, self.residuals).autopower(minimum_frequency=1./maxper, maximum_frequency=1./minper, nyquist_factor=2)
# Phase fold data at max peak
mi = np.argmax(power)
per = 1./freq[mi]
newphase = self.epochs/per % 1
self.periods = 1./freq
self.power = power
# find best fit signal with 1 period
# construct basis vectors with sin and cos
basis = np.ones((3, len(self.epochs)))
basis[0] = np.sin(2*np.pi*self.epochs/per)
basis[1] = np.cos(2*np.pi*self.epochs/per)
# fit for the coefficients
coeffs = np.linalg.lstsq(basis.T, self.residuals, rcond=None)[0]
# reconstruct signal
y_bestfit = np.dot(basis.T, coeffs)
# super sample fourier solution
xnew = np.linspace(self.epochs.min(), self.epochs.max(), 1000)
basis_new = np.ones((3, len(xnew)))
basis_new[0] = np.sin(2*np.pi*xnew/per)
basis_new[1] = np.cos(2*np.pi*xnew/per)
y_bestfit_new = np.dot(basis_new.T, coeffs)
# create plot
fig, ax = plt.subplots(3, figsize=(10,12))
# periodogram plot
ax[0].semilogx(self.periods,self.power,'k-')
ax[0].semilogx(self.periods,self.power,'k.')
ax[0].set_xlabel("Period [epoch]",fontsize=14)
ax[0].set_xlim([min(self.periods),max(self.periods)])
ax[0].set_ylabel('Power',fontsize=14)
ax[0].axvline(per,color='red')
ax[0].set_title("Lomb-Scargle Periodogram")
# o-c time series with fourier solution
ax[1].errorbar(self.epochs,self.residuals*24*60,
yerr=self.dataerr*24*60,ls='none',
marker='o',color='black',
label=f'Data')
ax[1].plot(xnew, y_bestfit_new*24*60, 'r-', label=f'Best fit (Period: {per:.2f})')
ax[1].set_xlabel(f"Epochs",fontsize=14)
ax[1].set_ylabel("O-C [min]",fontsize=14)
ax[1].legend(loc='best')
ax[1].grid(True,ls='--')
# phase folded time series with fourier solution
ax[2].errorbar(newphase,self.residuals*24*60,
yerr=self.dataerr*24*60,ls='none',
marker='o',color='black',
label=f'Data')
xnewphase = xnew/per % 1
ax[2].plot(xnewphase, y_bestfit_new*24*60, 'r.', ms=4, label=f'Best fit')
# sort data in phase
si = np.argsort(newphase)
# bin data into 8 bins
bins = np.linspace(0,1,8)
binned = np.zeros(len(bins))
binned_std = np.zeros(len(bins))
for i in range(0,len(bins)):
mask = np.digitize(newphase[si], bins)==i
if mask.sum() > 1:
binned[i] = np.mean(self.residuals[si][mask])
binned_std[i] = np.std(self.residuals[si][mask])
elif mask.sum() == 1:
binned[i] = self.residuals[si][mask]
binned_std[i] = self.dataerr[si][mask]
else:
binned[i] = np.nan
binned_std[i] = np.nan
ax[2].errorbar(bins-0.5/len(bins),binned*24*60,
yerr=binned_std*24*60,ls='none',
marker='o',color='limegreen',
label=f'Binned Data')
ax[2].set_xlabel(f"Phase (Period: {per:.2f} epochs)",fontsize=14)
ax[2].set_ylabel("O-C [min]",fontsize=14)
ax[2].legend(loc='best')
ax[2].grid(True,ls='--')
return fig,ax
def main():
Tc = np.array([ # measured mid-transit times
2456666.0885, 2456820.3127, 2456675.9249, 2456646.3907,
2456643.1046, 2456748.1087, 2456892.4882, 2456882.6523,
2456754.6769, 2456928.5953, 2456941.7105, 2456751.3949,
2456862.9673, 2456918.7523, 2456777.6495, 2456721.8694,
2456669.3677, 2456833.4292, 2456859.6809, 2456849.8310,
2456866.2488, 2456807.1814
])
Tc_error = np.array([
0.0016, 0.0029, 0.004, 0.0025,
0.0027, 0.0022, 0.0018, 0.0033,
0.0022, 0.0027, 0.0029, 0.0025,
0.0019, 0.0037, 0.0022, 0.0022,
0.0032, 0.0031, 0.0045, 0.0032,
0.003, 0.0022
])
P = 3.2888 # orbital period for your target
Tc_norm = Tc - Tc.min() #normalize the data to the first observation
#print(Tc_norm)
orbit = np.rint(Tc_norm / P) #number of orbits since first observation (rounded to nearest integer)
#print(orbit)
A = np.vstack([np.ones(len(Tc)), orbit]).T
#make a n x 2 matrix with 1's in the first column and values of orbit in the second
res = sm.WLS(Tc, A, weights=1.0/Tc_error**2).fit() #perform the weighted least squares regression
#pass in the T_c's, the new orbit matrix A, and the weights
#use sm.WLS for weighted LS, sm.OLS for ordinary LS, or sm.GLS for general LS
params = res.params #retrieve the slope and intercept of the fit from res
std_dev = np.sqrt(np.diagonal(res.normalized_cov_params))
slope = params[1]
slope_std_dev = std_dev[1]
intercept = params[0]
intercept_std_dev = std_dev[0]
#print(res.summary())
#print("Params =",params)
#print("Error matrix =",res.normalized_cov_params)
#print("Standard Deviations =",std_dev)
print("Weighted Linear Least Squares Solution")
print("T0 =",intercept,"+-",intercept_std_dev)
print("P =",slope,"+-",slope_std_dev)
# min and max values to search between for fitting
bounds = {
'm':[P-0.1, P+0.1], # orbital period
'b':[intercept-0.1, intercept+0.1] # mid-transit time
}
# used to plot red overlay in O-C figure
prior = {
'm':[slope, slope_std_dev], # value from WLS (replace with literature value)
'b':[intercept, intercept_std_dev] # value from WLS (replace with literature value)
}
lf = linear_fitter( Tc, Tc_error, bounds, prior=prior )
lf.plot_triangle()
plt.subplots_adjust(top=0.9,hspace=0.2,wspace=0.2)
plt.savefig("posterior.png")
plt.close()
print("image saved to: posterior.png")
fig,ax = lf.plot_oc()
plt.tight_layout()
plt.savefig("oc.png")
plt.close()
print("image saved to: oc.png")
fig,ax = lf.plot_periodogram()
plt.tight_layout()
plt.savefig("periodogram.png")
plt.close()
print("image saved to: periodogram.png")
if __name__ == "__main__":
main()