forked from foamliu/Deep-Image-Matting
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
150 lines (116 loc) · 5.29 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import multiprocessing
import cv2 as cv
import keras.backend as K
import numpy as np
import math
from tensorflow.python.client import device_lib
from config import epsilon, epsilon_sqr
from config import img_cols
from config import img_rows
from config import unknown_code
# overall loss: weighted summation of the two individual losses.
#
def overall_loss(y_true, y_pred):
w_l = 0.5
return w_l * alpha_prediction_loss(y_true, y_pred) + (1 - w_l) * compositional_loss(y_true, y_pred)
# alpha prediction loss: the abosolute difference between the ground truth alpha values and the
# predicted alpha values at each pixel. However, due to the non-differentiable property of
# absolute values, we use the following loss function to approximate it.
def alpha_prediction_loss(y_true, y_pred):
mask = y_true[:, :, :, 1]
diff = y_pred[:, :, :, 0] - y_true[:, :, :, 0]
diff = diff * mask
num_pixels = K.sum(mask)
return K.sum(K.sqrt(K.square(diff) + epsilon_sqr)) / (num_pixels + epsilon)
# compositional loss: the aboslute difference between the ground truth RGB colors and the predicted
# RGB colors composited by the ground truth foreground, the ground truth background and the predicted
# alpha mattes.
def compositional_loss(y_true, y_pred):
mask = y_true[:, :, :, 1]
mask = K.reshape(mask, (-1, img_rows, img_cols, 1))
image = y_true[:, :, :, 2:5]
fg = y_true[:, :, :, 5:8]
bg = y_true[:, :, :, 8:11]
c_g = image
c_p = y_pred * fg + (1.0 - y_pred) * bg
diff = c_p - c_g
diff = diff * mask
num_pixels = K.sum(mask)
return K.sum(K.sqrt(K.square(diff) + epsilon_sqr)) / (num_pixels + epsilon)
# compute the MSE error given a prediction, a ground truth and a trimap.
# pred: the predicted alpha matte
# target: the ground truth alpha matte
# trimap: the given trimap
#
def compute_mse_loss(pred, target, trimap):
error_map = (pred - target) / 255.
mask = np.equal(trimap, unknown_code).astype(np.float32)
# print('unknown: ' + str(unknown))
loss = np.sum(np.square(error_map) * mask) / np.sum(mask)
# print('mse_loss: ' + str(loss))
return loss
# compute the SAD error given a prediction, a ground truth and a trimap.
#
def compute_sad_loss(pred, target, trimap):
error_map = np.abs(pred - target) / 255.
mask = np.equal(trimap, unknown_code).astype(np.float32)
loss = np.sum(error_map * mask)
# the loss is scaled by 1000 due to the large images used in our experiment.
loss = loss / 1000
# print('sad_loss: ' + str(loss))
return loss
# getting the number of GPUs
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
# getting the number of CPUs
def get_available_cpus():
return multiprocessing.cpu_count()
def get_final_output(out, trimap):
mask = np.equal(trimap, unknown_code).astype(np.float32)
return (1 - mask) * trimap + mask * out
def safe_crop(mat, x, y, crop_size=(img_rows, img_cols)):
crop_height, crop_width = crop_size
if len(mat.shape) == 2:
ret = np.zeros((crop_height, crop_width), np.float32)
else:
ret = np.zeros((crop_height, crop_width, 3), np.float32)
crop = mat[y:y + crop_height, x:x + crop_width]
h, w = crop.shape[:2]
ret[0:h, 0:w] = crop
if crop_size != (img_rows, img_cols):
ret = cv.resize(ret, dsize=(img_rows, img_cols), interpolation=cv.INTER_NEAREST)
return ret
def draw_str(dst, target, s):
x, y = target
cv.putText(dst, s, (x + 1, y + 1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness=2, lineType=cv.LINE_AA)
cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA)
def patch_dims(mat_size, patch_size):
return np.ceil(np.array(mat_size) / patch_size).astype(int)
def create_patches(mat, patch_size):
mat_size = mat.shape
assert len(mat_size) == 3, "Input mat need to have 4 channels (R, G, B, trimap)"
assert mat_size[-1] == 4 , "Input mat need to have 4 channels (R, G, B, trimap)"
patches_dim = patch_dims(mat_size=mat_size[:2], patch_size=patch_size)
patches_count = np.product(patches_dim)
patches = np.zeros(shape=(patches_count, patch_size, patch_size, 4), dtype=np.float32)
for y in range(patches_dim[0]):
y_start = y * patch_size
for x in range(patches_dim[1]):
x_start = x * patch_size
# extract patch from input mat
single_patch = mat[y_start: y_start + patch_size, x_start: x_start + patch_size, :]
# zero pad patch in bottom and right side if real patch size is smaller than patch size
real_patch_h, real_patch_w = single_patch.shape[:2]
patch_id = y + x * patches_dim[0]
patches[patch_id, :real_patch_h, :real_patch_w, :] = single_patch
return patches
def assemble_patches(pred_patches, mat_size, patch_size):
patch_dim_h, patch_dim_w = patch_dims(mat_size=mat_size, patch_size=patch_size)
result = np.zeros(shape=(patch_size * patch_dim_h, patch_size * patch_dim_w), dtype=np.uint8)
patches_count = pred_patches.shape[0]
for i in range(patches_count):
y = (i % patch_dim_h) * patch_size
x = int(math.floor(i / patch_dim_h)) * patch_size
result[y:y+patch_size, x:x+patch_size] = pred_patches[i]
return result