forked from aarchiba/kuiper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_anderson_darling.py
117 lines (97 loc) · 3.25 KB
/
test_anderson_darling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import scipy.stats
from test_kuiper import seed, double_check, check_uniform, check_fpp, check_fpp_kuiper
import anderson_darling
def F(x):
return anderson_darling.anderson_darling(x)[-1]
def test_fpp_values():
for (f, p) in [(1.9329578, 0.9),
(2.492367, 0.95),
(3.878125, 0.99),
(9, 0.999960466)]:
assert np.abs(anderson_darling.anderson_darling_fpp(f)-(1-p))<0.0001
def test_uniform():
for N in 20, 100, 1000:
yield check_uniform, F, N
@seed()
@double_check
def test_non_null():
A2, fpp = anderson_darling.anderson_darling(np.random.random(1000)/2)
assert fpp<0.01
def test_fpp():
for N in 10, 50, 100:
yield check_fpp, F, N, 1000, 0.05
yield check_fpp_kuiper, F, N, 1000
@seed()
@double_check
def check_fpp_ad_nonuniform(N, M, cdf, cdfinv):
r = []
for i in range(M):
s = cdfinv(np.random.random(N))
A2, fpp = anderson_darling.anderson_darling(s,cdf)
r.append(fpp)
assert anderson_darling.anderson_darling(r)>0.01
def test_fpp_nonuniform():
for N in 10, 50, 100:
yield check_fpp_ad_nonuniform, N, 1000, np.exp, np.log
yield check_fpp_ad_nonuniform, N, 1000, lambda x: x**3, lambda x: x**(1./3)
yield check_fpp_kuiper, F, N, 1000
@seed()
@double_check
def check_k_sample_fpp(ip, p, k, m):
N = 1000
r = 0
for i in range(N):
samples = np.random.random_sample((k,m))
A2, TkN, (tkm1, ps), pv = anderson_darling.anderson_darling_k(samples)
if pv<=p:
r += 1
assert scipy.stats.binom(N,p).cdf(r) > 0.01
assert scipy.stats.binom(N,p).sf(r) > 0.01
def test_k_sample_fpp():
for ip, p in enumerate([0.25, 0.10, 0.05, 0.025, 0.01]):
yield check_k_sample_fpp, ip, p, 2, 10
yield check_k_sample_fpp, ip, p, 10, 10
@seed()
@double_check
def test_k_sample_simple_pass():
samples = np.random.random_sample((2,10))
A2, TkN, (tkm1, ps), pv = anderson_darling.anderson_darling_k(samples)
assert pv>0.01 # 0.01 is the smallest possible p
@seed()
@double_check
def test_k_sample_simple_fail():
samples = np.random.random_sample((2,100))
samples[1,:] *= 2
A2, TkN, (tkm1, ps), pv = anderson_darling.anderson_darling_k(samples)
assert pv<=0.01 # 0.01 is the smallest possible p
@seed()
@double_check
def check_normal_fpp(n, mu, sigma, p):
if mu is None:
m = 0
else:
m = mu
if sigma is None:
s = 1
else:
s = sigma
N = 1000
r = 0
for i in range(N):
d = np.random.standard_normal(n) * s + m
A2, (mu_, sigma_), (ps, ths), pi = anderson_darling.anderson_darling_normal(d, mu=mu, sigma=sigma)
if pi<=p:
r+=1
assert scipy.stats.binom(N,p).cdf(r) > 0.01
assert scipy.stats.binom(N,p).sf(r) > 0.01
def test_normal_fpp():
for n in [10, 100, 1000]:
yield check_normal_fpp, n, 0, 1, 0.1
yield check_normal_fpp, n, None, 1, 0.1
yield check_normal_fpp, n, 0, None, 0.1
yield check_normal_fpp, n, None, None, 0.1
yield check_normal_fpp, n, 0, 1, 0.01
yield check_normal_fpp, n, None, 1, 0.01
yield check_normal_fpp, n, 0, None, 0.01
yield check_normal_fpp, n, None, None, 0.01