Skip to content

Latest commit

 

History

History
 
 

gesvdaStridedBatched

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

cuSOLVER Approximate Singular Value Decomposition example

Description

This code demonstrates a usage of cuSOLVER gesvdaStridedBatched function to approximate singular value decomposition by gesvdaStridedBatched.

A = U * Σ * VH

A0 and A1 are a 3x2 dense matrices,

A0 = | 1.0 | 2.0 |
     | 4.0 | 5.0 |
     | 2.0 | 1.0 |

A1 = | 10.0 | 9.0 |
     |  8.0 | 7.0 |
     |  6.0 | 5.0 |

Supported SM Architectures

All GPUs supported by CUDA Toolkit (https://developer.nvidia.com/cuda-gpus)

Supported OSes

Linux
Windows

Supported CPU Architecture

x86_64
ppc64le
arm64-sbsa

CUDA APIs involved

Building (make)

Prerequisites

  • A Linux/Windows system with recent NVIDIA drivers.
  • CMake version 3.18 minimum
  • Minimum CUDA 10.1 toolkit is required.

Build command on Linux

$ mkdir build
$ cd build
$ cmake ..
$ make

Make sure that CMake finds expected CUDA Toolkit. If that is not the case you can add argument -DCMAKE_CUDA_COMPILER=/path/to/cuda/bin/nvcc to cmake command.

Build command on Windows

$ mkdir build
$ cd build
$ cmake -DCMAKE_GENERATOR_PLATFORM=x64 ..
$ Open cusolver_examples.sln project in Visual Studio and build

Usage

$  ./cusolver_gesvdaStridedBatched_example

Sample example output:

A0 = (matlab base-1)
1.00 2.00
4.00 5.00
2.00 1.00
=====
A1 = (matlab base-1)
10.00 9.00
8.00 7.00
6.00 5.00
=====
0-th matrix, gesvda converges
1-th matrix, gesvda converges
S0 = (matlab base-1)
7.07
1.04
=====
U0 = (matlab base-1)
0.31 -0.49
0.91 -0.11
0.29 0.87
=====
V) = (matlab base-1)
0.64 0.77
0.77 -0.64
=====
|S0 - S0_exact|_sup = 0.000000E+00
residual |A0 - U0*S0*V0**H|_F = 4.768372E-07
S1 = (matlab base-1)
18.84
0.26
=====
U1 = (matlab base-1)
0.71 0.57
0.56 -0.12
0.41 -0.81
=====
V1 = (matlab base-1)
0.75 -0.66
0.66 0.75
=====
|S1 - S1_exact|_sup = 0.000000E+00
residual |A1 - U1*S1*V1**H|_F = 0.000000E+00