diff --git a/include/superviseddescent/regressors.hpp b/include/superviseddescent/regressors.hpp index 7240298..dc325fe 100644 --- a/include/superviseddescent/regressors.hpp +++ b/include/superviseddescent/regressors.hpp @@ -172,6 +172,59 @@ class Regulariser } }; +/** + * A solver that the LinearRegressor uses to solve its system of linear + * equations. It needs a solve function with the following signature: + * \c cv::Mat solve(cv::Mat data, cv::Mat labels, Regulariser regulariser) + * + * The \c PartialPivLUSolver is a fast solver but it can't check for invertibility. + * It supports parallel solving if compiled with openmp enabled. + * Uses PartialPivLU::solve() instead of inverting the matrix. + */ +class PartialPivLUSolver +{ +public: + // Note: we should leave the choice of inverting A or AtA to the solver. + // But this also means we need to pass through the regularisation params. + // We can't just pass a cv::Mat regularisation because the dimensions for + // regularising A and AtA are different. + cv::Mat solve(cv::Mat data, cv::Mat labels, Regulariser regulariser) + { + using cv::Mat; + using RowMajorMatrixXf = Eigen::Matrix; + + // Map the cv::Mat data and labels to Eigen matrices: + Eigen::Map A_Eigen(data.ptr(), data.rows, data.cols); + Eigen::Map labels_Eigen(labels.ptr(), labels.rows, labels.cols); + + RowMajorMatrixXf AtA_Eigen = A_Eigen.transpose() * A_Eigen; + + // Note: This is a bit of unnecessary back-and-forth mapping, just for the regularisation: + Mat AtA_Map(static_cast(AtA_Eigen.rows()), static_cast(AtA_Eigen.cols()), CV_32FC1, AtA_Eigen.data()); + Mat regularisationMatrix = regulariser.getMatrix(AtA_Map, data.rows); + Eigen::Map reg_Eigen(regularisationMatrix.ptr(), regularisationMatrix.rows, regularisationMatrix.cols); + + Eigen::DiagonalMatrix reg_Eigen_diag(regularisationMatrix.rows); + Eigen::VectorXf diagVec(regularisationMatrix.rows); + for (int i = 0; i < diagVec.size(); ++i) { + diagVec(i) = regularisationMatrix.at(i, i); + } + reg_Eigen_diag.diagonal() = diagVec; + AtA_Eigen = AtA_Eigen + reg_Eigen_diag.toDenseMatrix(); + + // Perform a fast PartialPivLU and use luOfAtA.solve() (better than inverting): + Eigen::PartialPivLU luOfAtA(AtA_Eigen); + RowMajorMatrixXf x_Eigen = luOfAtA.solve(A_Eigen.transpose() * labels_Eigen); + //RowMajorMatrixXf x_Eigen = AtA_Eigen.partialPivLu.solve(A_Eigen.transpose() * labels_Eigen); + + // Map the resulting x back to a cv::Mat by creating a Mat header: + Mat x(static_cast(x_Eigen.rows()), static_cast(x_Eigen.cols()), CV_32FC1, x_Eigen.data()); + + // We have to copy the data because the underlying data is managed by Eigen::Matrix x_Eigen, which will go out of scope after we leave this function: + return x.clone(); + //return qrOfAtA.isInvertible(); + }; +}; /** * A solver that the LinearRegressor uses to solve its system of linear