diff --git a/src/utils/gauss_quad.hpp b/src/utils/gauss_quad.hpp new file mode 100644 index 000000000000..43f65020eafb --- /dev/null +++ b/src/utils/gauss_quad.hpp @@ -0,0 +1,656 @@ +// Copyright John Maddock 2015. +// Use, modification and distribution are subject to the: +// Boost Software License - Version 1.0 - August 17th, 2003 + +// Permission is hereby granted, free of charge, to any person or organization +// obtaining a copy of the software and accompanying documentation covered by +// this license (the "Software") to use, reproduce, display, distribute, +// execute, and transmit the Software, and to prepare derivative works of the +// Software, and to permit third-parties to whom the Software is furnished to +// do so, all subject to the following: + +// The copyright notices in the Software and this entire statement, including +// the above license grant, this restriction and the following disclaimer, +// must be included in all copies of the Software, in whole or in part, and +// all derivative works of the Software, unless such copies or derivative +// works are solely in the form of machine-executable object code generated by +// a source language processor. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT +// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE +// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +// DEALINGS IN THE SOFTWARE. + +//======================================================================================== +// Parthenon performance portable AMR framework +// Copyright(C) 2020 The Parthenon collaboration +// Licensed under the 3-clause BSD License, see LICENSE file for details +//======================================================================================== +// (C) (or copyright) 2021. Triad National Security, LLC. All rights reserved. +// +// This program was produced under U.S. Government contract 89233218CNA000001 for Los +// Alamos National Laboratory (LANL), which is operated by Triad National Security, LLC +// for the U.S. Department of Energy/National Nuclear Security Administration. All rights +// in the program are reserved by Triad National Security, LLC, and the U.S. Department +// of Energy/National Nuclear Security Administration. The Government is granted for +// itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide +// license in this material to reproduce, prepare derivative works, distribute copies to +// the public, perform publicly and display publicly, and to permit others to do so. +//======================================================================================== + +#ifndef PARTHENON_UTILS_GAUSS_QUAD_HPP_ +#define PARTHENON_UTILS_GAUSS_QUAD_HPP_ + +#include +#include +#include + +#include "../kokkos_abstraction.hpp" + +namespace parthenon::math::quadrature { +namespace detail { + +enum class precision { Invalid, Float, Double, LongDouble }; + +template +struct gauss_constant_category { + static constexpr auto value = + (std::numeric_limits::is_specialized == 0) ? precision::Invalid + : (std::numeric_limits::radix == 2) + ? ((std::numeric_limits::digits <= std::numeric_limits::digits) && + std::is_convertible::value + ? precision::Float + : (std::numeric_limits::digits <= std::numeric_limits::digits) && + std::is_convertible::value + ? precision::Double + : (std::numeric_limits::digits <= + std::numeric_limits::digits) && + std::is_convertible::value + ? precision::LongDouble + : precision::Invalid) + : precision::Invalid; +}; + +template +class gauss_detail; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.000000000e+00F, + 4.058451514e-01F, + 7.415311856e-01F, + 9.491079123e-01F, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 4.179591837e-01F, + 3.818300505e-01F, + 2.797053915e-01F, + 1.294849662e-01F, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.00000000000000000e+00, + 4.05845151377397167e-01, + 7.41531185599394440e-01, + 9.49107912342758525e-01, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 4.17959183673469388e-01, + 3.81830050505118945e-01, + 2.79705391489276668e-01, + 1.29484966168869693e-01, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.00000000000000000000000000000000000e+00L, + 4.05845151377397166906606412076961463e-01L, + 7.41531185599394439863864773280788407e-01L, + 9.49107912342758524526189684047851262e-01L, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 4.17959183673469387755102040816326531e-01L, + 3.81830050505118944950369775488975134e-01L, + 2.79705391489276667901467771423779582e-01L, + 1.29484966168869693270611432679082018e-01L, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 1.488743390e-01F, 4.333953941e-01F, 6.794095683e-01F, + 8.650633667e-01F, 9.739065285e-01F, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 2.955242247e-01F, 2.692667193e-01F, 2.190863625e-01F, + 1.494513492e-01F, 6.667134431e-02F, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 1.48874338981631211e-01, 4.33395394129247191e-01, 6.79409568299024406e-01, + 8.65063366688984511e-01, 9.73906528517171720e-01, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 2.95524224714752870e-01, 2.69266719309996355e-01, 2.19086362515982044e-01, + 1.49451349150580593e-01, 6.66713443086881376e-02, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 1.48874338981631210884826001129719985e-01L, + 4.33395394129247190799265943165784162e-01L, + 6.79409568299024406234327365114873576e-01L, + 8.65063366688984510732096688423493049e-01L, + 9.73906528517171720077964012084452053e-01L, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 2.95524224714752870173892994651338329e-01L, + 2.69266719309996355091226921569469353e-01L, + 2.19086362515982043995534934228163192e-01L, + 1.49451349150580593145776339657697332e-01L, + 6.66713443086881375935688098933317929e-02L, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.000000000e+00F, 2.011940940e-01F, 3.941513471e-01F, 5.709721726e-01F, + 7.244177314e-01F, 8.482065834e-01F, 9.372733924e-01F, 9.879925180e-01F, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 2.025782419e-01F, 1.984314853e-01F, 1.861610000e-01F, 1.662692058e-01F, + 1.395706779e-01F, 1.071592205e-01F, 7.036604749e-02F, 3.075324200e-02F, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.00000000000000000e+00, 2.01194093997434522e-01, 3.94151347077563370e-01, + 5.70972172608538848e-01, 7.24417731360170047e-01, 8.48206583410427216e-01, + 9.37273392400705904e-01, 9.87992518020485428e-01, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 2.02578241925561273e-01, 1.98431485327111576e-01, 1.86161000015562211e-01, + 1.66269205816993934e-01, 1.39570677926154314e-01, 1.07159220467171935e-01, + 7.03660474881081247e-02, 3.07532419961172684e-02, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.00000000000000000000000000000000000e+00L, + 2.01194093997434522300628303394596208e-01L, + 3.94151347077563369897207370981045468e-01L, + 5.70972172608538847537226737253910641e-01L, + 7.24417731360170047416186054613938010e-01L, + 8.48206583410427216200648320774216851e-01L, + 9.37273392400705904307758947710209471e-01L, + 9.87992518020485428489565718586612581e-01L, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 2.02578241925561272880620199967519315e-01L, + 1.98431485327111576456118326443839325e-01L, + 1.86161000015562211026800561866422825e-01L, + 1.66269205816993933553200860481208811e-01L, + 1.39570677926154314447804794511028323e-01L, + 1.07159220467171935011869546685869303e-01L, + 7.03660474881081247092674164506673385e-02L, + 3.07532419961172683546283935772044177e-02L, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 7.652652113e-02F, 2.277858511e-01F, 3.737060887e-01F, 5.108670020e-01F, + 6.360536807e-01F, 7.463319065e-01F, 8.391169718e-01F, 9.122344283e-01F, + 9.639719273e-01F, 9.931285992e-01F, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.527533871e-01F, 1.491729865e-01F, 1.420961093e-01F, 1.316886384e-01F, + 1.181945320e-01F, 1.019301198e-01F, 8.327674158e-02F, 6.267204833e-02F, + 4.060142980e-02F, 1.761400714e-02F, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 7.65265211334973338e-02, 2.27785851141645078e-01, 3.73706088715419561e-01, + 5.10867001950827098e-01, 6.36053680726515025e-01, 7.46331906460150793e-01, + 8.39116971822218823e-01, 9.12234428251325906e-01, 9.63971927277913791e-01, + 9.93128599185094925e-01, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.52753387130725851e-01, 1.49172986472603747e-01, 1.42096109318382051e-01, + 1.31688638449176627e-01, 1.18194531961518417e-01, 1.01930119817240435e-01, + 8.32767415767047487e-02, 6.26720483341090636e-02, 4.06014298003869413e-02, + 1.76140071391521183e-02, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 7.65265211334973337546404093988382110e-02L, + 2.27785851141645078080496195368574625e-01L, + 3.73706088715419560672548177024927237e-01L, + 5.10867001950827098004364050955250998e-01L, + 6.36053680726515025452836696226285937e-01L, + 7.46331906460150792614305070355641590e-01L, + 8.39116971822218823394529061701520685e-01L, + 9.12234428251325905867752441203298113e-01L, + 9.63971927277913791267666131197277222e-01L, + 9.93128599185094924786122388471320278e-01L, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.52753387130725850698084331955097593e-01L, + 1.49172986472603746787828737001969437e-01L, + 1.42096109318382051329298325067164933e-01L, + 1.31688638449176626898494499748163135e-01L, + 1.18194531961518417312377377711382287e-01L, + 1.01930119817240435036750135480349876e-01L, + 8.32767415767047487247581432220462061e-02L, + 6.26720483341090635695065351870416064e-02L, + 4.06014298003869413310399522749321099e-02L, + 1.76140071391521183118619623518528164e-02L, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.000000000e+00F, 1.228646926e-01F, 2.438668837e-01F, 3.611723058e-01F, + 4.730027314e-01F, 5.776629302e-01F, 6.735663685e-01F, 7.592592630e-01F, + 8.334426288e-01F, 8.949919979e-01F, 9.429745712e-01F, 9.766639215e-01F, + 9.955569698e-01F, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.231760537e-01F, 1.222424430e-01F, 1.194557635e-01F, 1.148582591e-01F, + 1.085196245e-01F, 1.005359491e-01F, 9.102826198e-02F, 8.014070034e-02F, + 6.803833381e-02F, 5.490469598e-02F, 4.093915670e-02F, 2.635498662e-02F, + 1.139379850e-02F, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.00000000000000000e+00, 1.22864692610710396e-01, 2.43866883720988432e-01, + 3.61172305809387838e-01, 4.73002731445714961e-01, 5.77662930241222968e-01, + 6.73566368473468364e-01, 7.59259263037357631e-01, 8.33442628760834001e-01, + 8.94991997878275369e-01, 9.42974571228974339e-01, 9.76663921459517511e-01, + 9.95556969790498098e-01, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.23176053726715451e-01, 1.22242442990310042e-01, 1.19455763535784772e-01, + 1.14858259145711648e-01, 1.08519624474263653e-01, 1.00535949067050644e-01, + 9.10282619829636498e-02, 8.01407003350010180e-02, 6.80383338123569172e-02, + 5.49046959758351919e-02, 4.09391567013063127e-02, 2.63549866150321373e-02, + 1.13937985010262879e-02, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 0.00000000000000000000000000000000000e+00L, + 1.22864692610710396387359818808036806e-01L, + 2.43866883720988432045190362797451586e-01L, + 3.61172305809387837735821730127640667e-01L, + 4.73002731445714960522182115009192041e-01L, + 5.77662930241222967723689841612654067e-01L, + 6.73566368473468364485120633247622176e-01L, + 7.59259263037357630577282865204360976e-01L, + 8.33442628760834001421021108693569569e-01L, + 8.94991997878275368851042006782804954e-01L, + 9.42974571228974339414011169658470532e-01L, + 9.76663921459517511498315386479594068e-01L, + 9.95556969790498097908784946893901617e-01L, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.23176053726715451203902873079050142e-01L, + 1.22242442990310041688959518945851506e-01L, + 1.19455763535784772228178126512901047e-01L, + 1.14858259145711648339325545869555809e-01L, + 1.08519624474263653116093957050116619e-01L, + 1.00535949067050644202206890392685827e-01L, + 9.10282619829636498114972207028916534e-02L, + 8.01407003350010180132349596691113023e-02L, + 6.80383338123569172071871856567079686e-02L, + 5.49046959758351919259368915404733242e-02L, + 4.09391567013063126556234877116459537e-02L, + 2.63549866150321372619018152952991449e-02L, + 1.13937985010262879479029641132347736e-02L, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 5.147184256e-02F, 1.538699136e-01F, 2.546369262e-01F, 3.527047255e-01F, + 4.470337695e-01F, 5.366241481e-01F, 6.205261830e-01F, 6.978504948e-01F, + 7.677774321e-01F, 8.295657624e-01F, 8.825605358e-01F, 9.262000474e-01F, + 9.600218650e-01F, 9.836681233e-01F, 9.968934841e-01F, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.028526529e-01F, 1.017623897e-01F, 9.959342059e-02F, 9.636873717e-02F, + 9.212252224e-02F, 8.689978720e-02F, 8.075589523e-02F, 7.375597474e-02F, + 6.597422988e-02F, 5.749315622e-02F, 4.840267283e-02F, 3.879919257e-02F, + 2.878470788e-02F, 1.846646831e-02F, 7.968192496e-03F, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 5.14718425553176958e-02, 1.53869913608583547e-01, 2.54636926167889846e-01, + 3.52704725530878113e-01, 4.47033769538089177e-01, 5.36624148142019899e-01, + 6.20526182989242861e-01, 6.97850494793315797e-01, 7.67777432104826195e-01, + 8.29565762382768397e-01, 8.82560535792052682e-01, 9.26200047429274326e-01, + 9.60021864968307512e-01, 9.83668123279747210e-01, 9.96893484074649540e-01, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.02852652893558840e-01, 1.01762389748405505e-01, 9.95934205867952671e-02, + 9.63687371746442596e-02, 9.21225222377861287e-02, 8.68997872010829798e-02, + 8.07558952294202154e-02, 7.37559747377052063e-02, 6.59742298821804951e-02, + 5.74931562176190665e-02, 4.84026728305940529e-02, 3.87991925696270496e-02, + 2.87847078833233693e-02, 1.84664683110909591e-02, 7.96819249616660562e-03, + }; + return data; + } +}; + +template +class gauss_detail { + public: + KOKKOS_FORCEINLINE_FUNCTION static auto abscissa() -> std::array const & { + static constexpr std::array data = { + 5.14718425553176958330252131667225737e-02L, + 1.53869913608583546963794672743255920e-01L, + 2.54636926167889846439805129817805108e-01L, + 3.52704725530878113471037207089373861e-01L, + 4.47033769538089176780609900322854000e-01L, + 5.36624148142019899264169793311072794e-01L, + 6.20526182989242861140477556431189299e-01L, + 6.97850494793315796932292388026640068e-01L, + 7.67777432104826194917977340974503132e-01L, + 8.29565762382768397442898119732501916e-01L, + 8.82560535792052681543116462530225590e-01L, + 9.26200047429274325879324277080474004e-01L, + 9.60021864968307512216871025581797663e-01L, + 9.83668123279747209970032581605662802e-01L, + 9.96893484074649540271630050918695283e-01L, + }; + return data; + } + KOKKOS_FORCEINLINE_FUNCTION static auto weights() -> std::array const & { + static constexpr std::array data = { + 1.02852652893558840341285636705415044e-01L, + 1.01762389748405504596428952168554045e-01L, + 9.95934205867952670627802821035694765e-02L, + 9.63687371746442596394686263518098651e-02L, + 9.21225222377861287176327070876187672e-02L, + 8.68997872010829798023875307151257026e-02L, + 8.07558952294202153546949384605297309e-02L, + 7.37559747377052062682438500221907342e-02L, + 6.59742298821804951281285151159623612e-02L, + 5.74931562176190664817216894020561288e-02L, + 4.84026728305940529029381404228075178e-02L, + 3.87991925696270495968019364463476920e-02L, + 2.87847078833233693497191796112920436e-02L, + 1.84664683110909591423021319120472691e-02L, + 7.96819249616660561546588347467362245e-03L, + }; + return data; + } +}; + +} // namespace detail + +template +class gauss + : public detail::gauss_detail::value> { + using base = + detail::gauss_detail::value>; + + public: + template + KOKKOS_FORCEINLINE_FUNCTION static auto integrate(F f, Real *pL1 = nullptr) + -> decltype(std::declval()(std::declval())) { + // In many math texts, K represents the field of real or complex numbers. + // Too bad we can't put blackboard bold into C++ source! + using K = decltype(f(Real(0))); + static_assert(!std::is_integral::value, + "The return type cannot be integral, it must be either a real or " + "complex floating point type."); + using std::abs; + unsigned non_zero_start = 1; + K result = Real(0); + if (N & 1) { + result = f(Real(0)) * base::weights()[0]; + } else { + result = 0; + non_zero_start = 0; + } + Real L1 = abs(result); + for (unsigned i = non_zero_start; i < base::abscissa().size(); ++i) { + K fp = f(base::abscissa()[i]); + K fm = f(-base::abscissa()[i]); + result += (fp + fm) * base::weights()[i]; + L1 += (abs(fp) + abs(fm)) * base::weights()[i]; + } + if (pL1) { + *pL1 = L1; + } + return result; + } + + template + KOKKOS_FORCEINLINE_FUNCTION static auto integrate(F f, Real a, Real b, Real *pL1 = nullptr) + -> decltype(std::declval()(std::declval())) { + using K = decltype(f(a)); + static const char *function = + "boost::math::quadrature::gauss<%1%>::integrate(f, %1%, %1%)"; + if (!(std::isnan)(a) && !(std::isnan)(b)) { + // Infinite limits: + Real min_inf = -std::numeric_limits::max(); + if ((a <= min_inf) && (b >= std::numeric_limits::max())) { + auto u = [&](const Real &t) -> K { + Real t_sq = t * t; + Real inv = 1 / (1 - t_sq); + K res = f(t * inv) * (1 + t_sq) * inv * inv; + return res; + }; + return integrate(u, pL1); + } + + // Right limit is infinite: + if ((std::isfinite(a)) && (b >= std::numeric_limits::max())) { + auto u = [&](const Real &t) -> K { + Real z = 1 / (t + 1); + Real arg = 2 * z + a - 1; + K res = f(arg) * z * z; + return res; + }; + K Q = Real(2) * integrate(u, pL1); + if (pL1) { + *pL1 *= 2; + } + return Q; + } + + if ((std::isfinite(b)) && (a <= -std::numeric_limits::max())) { + auto v = [&](const Real &t) -> K { + Real z = 1 / (t + 1); + Real arg = 2 * z - 1; + K res = f(b - arg) * z * z; + return res; + }; + K Q = Real(2) * integrate(v, pL1); + if (pL1) { + *pL1 *= 2; + } + return Q; + } + + if ((std::isfinite(a)) && (std::isfinite(b))) { + if (a == b) { + return K(0); + } + PARTHENON_DEBUG_REQUIRE(b >= a, "integration requires b >= a!"); + + Real avg = 0.5 * (a + b); + Real scale = 0.5 * (b - a); + + auto u = [&](Real z) -> K { return f(avg + scale * z); }; + K Q = scale * integrate(u, pL1); + + if (pL1) { + *pL1 *= scale; + } + return Q; + } + } + return std::numeric_limits::signaling_NaN(); + } +}; + +} // namespace parthenon::math::quadrature + +#endif // PARTHENON_UTILS_GAUSS_QUAD_HPP_