-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcli_thermal_segmentation.py
86 lines (76 loc) · 2.54 KB
/
cli_thermal_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""
@title A Deep Semi-supervised Segmentation Approach for Thermographic Analysis of Industrial Components
@organization Laval University
@professor Professor Xavier Maldague
@author Parham Nooralishahi
@email [email protected]
@email [email protected]
"""
import argparse
import sys
import logging
import torch
from torch.utils.data import DataLoader
from ignite.utils import setup_logger
from gimp_labeling_converter import XCFDataset
from lemanchot.core import get_profile, get_profile_names
from lemanchot.pipeline import load_segmentation
from lemanchot.transform import FilterOutAlphaChannel, ImageResize, ImageResizeByCoefficient, NumpyImageToTensor
parser = argparse.ArgumentParser(description="A Deep Semi-supervised Segmentation Approach for Thermographic Analysis of Industrial Components")
parser.add_argument('--profile', required=True, choices=get_profile_names(), help="Select the name of profiles.")
def main():
args = parser.parse_args()
parser.print_help()
profile_name = args.profile
######### Settings ##########
profile = get_profile(profile_name)
dataset_name = profile.dataset_name
dataset_path = profile.dataset_path
categories = profile.categories
######### Transformation ##########
# Initialize Transformation
transform = torch.nn.Sequential(
# ImageResize(100),
ImageResizeByCoefficient(32),
NumpyImageToTensor(),
FilterOutAlphaChannel()
)
target_transform = torch.nn.Sequential(
# ImageResize(100),
ImageResizeByCoefficient(32),
NumpyImageToTensor(),
FilterOutAlphaChannel()
)
# Load segmentation
run_record = load_segmentation(
profile_name=profile_name,
database_name=dataset_name
)
engine = run_record['engine']
engine.logger = setup_logger('trainer')
######### Dataset & Dataloader ##########
dataset = XCFDataset(
root_dir=dataset_path,
category=categories,
transform=transform,
target_transform=target_transform
)
data_loader = DataLoader(
dataset,
batch_size=engine.state.batch_size,
shuffle=True
)
# Run the pipeline
state = engine.run(
data_loader,
max_epochs=engine.state.max_epoch
)
print(state)
return 0
if __name__ == '__main__':
print('The experiment is started ...')
try:
sys.exit(main())
except Exception as ex:
logging.exception(ex)
print('The experiment is finished ...')