-
Notifications
You must be signed in to change notification settings - Fork 0
/
TFNativeOp.py
executable file
·933 lines (843 loc) · 36.3 KB
/
TFNativeOp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
from __future__ import print_function
import os
import tensorflow as tf
from threading import RLock
import NativeOp
import TFUtil
from Util import camel_case_to_snake_case
class OpDescription(NativeOp.NativeOpBaseMixin):
@classmethod
def from_gen_base(cls, gen_base):
"""
:param NativeOp.NativeOpGenBase|Type[NativeOp.NativeOpGenBase] gen_base:
:rtype: OpDescription
"""
name = gen_base.__name__
assert gen_base.in_info is not None
assert gen_base.out_info is not None
assert gen_base.c_fw_code is not None
assert gen_base.custom_grad is None # not supported for TF currently
return OpDescription(
in_info=gen_base.in_info, out_info=gen_base.out_info,
c_fw_code=gen_base.c_fw_code, c_bw_code=gen_base.c_bw_code,
c_extra_support_code=gen_base.c_extra_support_code,
cpu_support=gen_base.cpu_support,
grad_input_map=gen_base.grad_input_map,
name=name)
@property
def is_grad_defined(self):
return bool(self.c_bw_code)
def grad(self):
"""
:rtype: OpDescription|None
"""
if not self.is_grad_defined:
return None
kwargs = self.kwargs_for_grad_op()
return OpDescription(**kwargs)
class OpMaker(object):
"""
https://www.tensorflow.org/versions/master/how_tos/adding_an_op/
"""
with_cuda = None # type: None|bool
# https://github.com/tensorflow/tensorflow/issues/6602
tf_blas_gemm_workaround = TFUtil.tf_version_tuple() < (1, 5, 0)
global_lock = RLock()
mod_cache = {} # cache_key -> mod
op_cache = {} # cache_key -> op
def __init__(self, description, compiler_opts=None,
search_for_runtime_blas=True, search_for_numpy_blas=True, search_for_system_blas=True):
"""
:param OpDescription description:
:param dict[str]|None compiler_opts: passed on to OpCodeCompiler as kwargs
"""
self._cls_init()
self.description = description
self.name = description.name
self.compiler_opts = compiler_opts or {}
self.search_for_runtime_blas = search_for_runtime_blas
self.search_for_numpy_blas = search_for_numpy_blas
self.search_for_system_blas = search_for_system_blas
@classmethod
def _cls_init(cls):
if cls.with_cuda is None:
cls.with_cuda = TFUtil.CudaEnv.get_instance().is_available()
if cls.with_cuda and cls.tf_blas_gemm_workaround:
cls._load_cuda_blas_gemm()
@classmethod
def cuda_blas_gemm_so_filename(cls):
from tensorflow.contrib.rnn.python.ops import lstm_ops
lstm_ops_so = "%s/_lstm_ops.so" % os.path.dirname(lstm_ops.__file__)
assert os.path.exists(lstm_ops_so)
return lstm_ops_so
@classmethod
def _load_cuda_blas_gemm(cls):
"""
https://github.com/tensorflow/tensorflow/issues/6602
As a workaround for TF issue 6602, we link to some functions which are implemented in contrib.rnn.kernels.blas_gemm.
See NativeOp.cpp.
To make the symbols available in the namespace, load the library now.
This issue if fixed with tensorflow 1.5
"""
if TFUtil.CudaEnv.verbose_find_cuda:
print("Load tf.contrib lstm_ops...")
lstm_ops_so = cls.cuda_blas_gemm_so_filename()
if TFUtil.CudaEnv.verbose_find_cuda:
print("Load tf.contrib lstm_ops lib:", lstm_ops_so)
# Maybe a bit hacky: Just load all symbols into the global namespace.
from ctypes import RTLD_GLOBAL, CDLL
CDLL(lstm_ops_so, mode=RTLD_GLOBAL)
if TFUtil.CudaEnv.verbose_find_cuda:
print("tf.contrib lstm_ops lib loaded.")
@property
def op_name(self):
return self.name
@property
def cache_key(self):
return self.name
@property
def support_native_op_cpp_filename(self):
my_dir = os.path.abspath(os.path.dirname(__file__) or os.getcwd())
my_dir = os.path.realpath(my_dir) # Make canonical path-name.
support_native_op_cpp_filename = "%s/NativeOp.cpp" % my_dir
assert os.path.exists(support_native_op_cpp_filename)
return support_native_op_cpp_filename
def _make_code(self):
# In the user code, we assume that we have the following variables:
# int n_inputs; int n_outputs;
# Ndarray* inputs[n_inputs]; Ndarray** outputs[n_outputs];
# Reference:
# https://www.tensorflow.org/extend/adding_an_op
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/how_tos/adding_an_op/
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/op_kernel.h
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/op_def_builder.h
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/pad_op.cc
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/debug_ops.h CopyOp...
# http://stackoverflow.com/questions/37565367/designing-an-accumulating-tensorflow-gpu-operator
# We also include NativeOp.cpp.
in_info, out_info, _ = NativeOp.NativeOp._resolve_want_inplace_dummy(
in_info=self.description.in_info, out_info=self.description.out_info)
out_is_ref = dict() # output vars which are inplace, out_name -> in_idx
# want_inplace: output-index which this input should operate on
# Unlike the Theano variant, we always do it inplace,
# so the user has to make a copy if this is not the intention.
for in_idx, v in enumerate(in_info):
out_idx = v.get("want_inplace", -1)
if out_idx >= 0:
out_name = out_info[out_idx]["name"]
assert out_name not in out_is_ref
out_is_ref[out_name] = in_idx
def map_name(v, is_out=False):
name = v["name"].lower()
if is_out:
# Maybe it clashes with some input name. TF doesn't allow the same name.
if any([v["name"].lower() == name for v in in_info]):
name = "out_%s" % name
return name
def map_type(v, is_out=False):
t = v.get("dtype", "float32")
return t
code_register_op_io = ""
for v in in_info:
code_register_op_io += ".Input(\"%s: %s\")\n" % (map_name(v), map_type(v))
for v in out_info:
code_register_op_io += ".Output(\"%s: %s\")\n" % (map_name(v, is_out=True), map_type(v, is_out=True))
code_set_out_shape = ""
def make_dim_str(c):
if isinstance(c, tuple):
in_idx, in_dim = c
return "c->Dim(c->input(%i), %i)" % (in_idx, in_dim)
elif isinstance(c, int):
return str(c)
else:
raise Exception("type: %s" % type(c))
for i, v in enumerate(in_info):
code_set_out_shape += """
if(c->Rank(c->input(%(idx)i)) != tensorflow::shape_inference::InferenceContext::kUnknownRank && c->Rank(c->input(%(idx)i)) != %(rank)i)
return errors::InvalidArgument(
"wrong rank for input (%(idx)i) '%(name)s'. required %(rank)i but got ", c->Rank(c->input(%(idx)i)));
""" % {"idx": i, "rank": v["ndim"], "name": v["name"]}
for i, v in enumerate(out_info):
code_set_out_shape += "c->set_output(%i, c->MakeShape({%s}));\n" % (
i, ", ".join([make_dim_str(c) for c in v["shape"]]))
code_register_op_io += """
.SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
if(c->num_inputs() != %(num_inputs)i)
return errors::InvalidArgument("wrong number of inputs. required %(num_inputs)i but got ", c->num_inputs());
if(c->num_outputs() != %(num_outputs)i)
return errors::InvalidArgument("wrong number of outputs. required %(num_outputs)i but got ", c->num_outputs());
%(code_set_out_shape)s
return Status::OK();
})
""" % {
"num_inputs": len(in_info),
"num_outputs": len(out_info),
"code_set_out_shape": code_set_out_shape
}
code_forward_io = ""
for in_idx, v in enumerate(in_info):
out_idx = v.get("want_inplace", -1)
if out_idx >= 0:
code_forward_io += "context->forward_ref_input_to_ref_output(%i, %i);\n" % (in_idx, out_idx)
code_set_io = ""
for in_idx, v in enumerate(in_info):
ndim = len(v["shape"])
code_set_io += """
OP_REQUIRES(
context, context->input(%i).dims() == %i,
errors::InvalidArgument("shape ndim is not %i, got shape ",
context->input(%i).shape().DebugString()));
""" % (in_idx, ndim, ndim, in_idx)
for axis, d in enumerate(v["shape"]):
if isinstance(d, int):
code_set_io += """
OP_REQUIRES(
context, context->input(%i).dim_size(%i) == %i,
errors::InvalidArgument("shape[%i] != %i, got shape ",
context->input(%i).shape().DebugString()));
""" % (in_idx, axis, d, axis, d, in_idx)
code_set_io += """
Ndarray* inputs[n_inputs];
Ndarray** outputs[n_outputs];
"""
for in_idx, v in enumerate(in_info):
out_idx = v.get("want_inplace", -1)
if out_idx >= 0: # is ref
# mutable_input if it is a ref-type, i.e. a Variable.
#code_set_io += "Ndarray mutable_input_%i = context->mutable_input(%i, false);\n" % (in_idx, in_idx)
#code_set_io += "inputs[%i] = &mutable_input_%i;\n" % (in_idx, in_idx)
# Maybe we could use a TemporaryVariable or so but not sure if the gradient will flow through tf.assign().
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/state_ops.cc
# but a normal tensor is never mutable, thus create a copy of the input now.
code_set_io += "Ndarray* output_%i = NULL;\n" % (out_idx,)
cshape = "TensorShape({%s})" % ", ".join(["context->input(%i).dim_size(%i)" % (in_idx, in_dim)
for in_dim in range(len(v["shape"]))])
code_set_io += "OP_REQUIRES_OK(context, context->allocate_output(%i, %s, &output_%i));\n" % (out_idx, cshape, out_idx)
code_set_io += "inputs[%i] = output_%i;\n" % (in_idx, out_idx)
# We always make a copy for now.
# I'm not sure if inplace is an option for TF because we don't know if any other operation in the graph
# wants to access it. Maybe we can check the reference count or so?
# Some references for inplace operations:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/inplace_ops.cc
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/strided_slice_op.cc
code_set_io += "make_copy(context, inputs[%i], &context->input(%i));\n" % (in_idx, in_idx)
else: # no ref
# TODO: if not on GPU but GPU requested, move to GPU first, maybe via allocate_temp?
code_set_io += "inputs[%i] = const_cast<Ndarray*>(&context->input(%i));\n" % (in_idx, in_idx)
for out_idx, v in enumerate(out_info):
out_name = out_info[out_idx]["name"]
if out_name in out_is_ref: # is ref on input
in_idx = out_is_ref[out_name]
code_set_io += "outputs[%i] = &inputs[%i];\n" % (out_idx, in_idx)
else: # no ref
code_set_io += "Ndarray* output_%i = NULL;\n" % (out_idx,)
code_set_io += "outputs[%i] = &output_%i;\n" % (out_idx, out_idx)
cshape = "TensorShape({%s})" % ", ".join(["inputs[%i]->dim_size(%i)" % (in_idx, in_dim)
for (in_idx, in_dim) in v["shape"]])
code_set_io += "OP_REQUIRES_OK(context, context->allocate_output(%i, %s, &output_%i));\n" % (out_idx, cshape, out_idx)
code_set_io += "Ndarray_set_zero(*outputs[%i]);\n" % out_idx
code_user = self.description.c_fw_code % {"fail": "assert(false);"}
code_compute = "\n".join([
code_forward_io,
code_set_io,
code_user])
register_gpu_kernel_opts = ".Device(DEVICE_GPU)\n"
for v in in_info:
if v.get("host_memory", False):
register_gpu_kernel_opts += """.HostMemory("%s")\n""" % map_name(v)
format_args = {
"op_name": self.op_name,
"code_register_op_io": code_register_op_io,
"code_forward_io": code_forward_io,
"code_set_io": code_set_io,
"code_compute": code_compute,
"user_code_kernels": self.description._reduce_c_extra_support_code(self.description.c_extra_support_code),
"native_op_cpp_filename": self.support_native_op_cpp_filename,
"register_gpu_kernel_opts": register_gpu_kernel_opts,
"n_inputs": len(in_info),
"n_outputs": len(out_info)
}
code_header = ""
if self.with_cuda:
code_header += """
// For Eigen::GpuDevice.
#define EIGEN_USE_GPU 1
"""
code_header += """
// For Eigen::ThreadPoolDevice.
#define EIGEN_USE_THREADS 1
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/common_runtime/device.h"
"""
if self.with_cuda:
# http://docs.nvidia.com/cuda/cublas
code_header += """
#include <cuda.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <math_constants.h>
"""
if not self.tf_blas_gemm_workaround:
# https://github.com/tensorflow/tensorflow/issues/6602 ?
code_header += '#include "tensorflow/core/platform/stream_executor.h"\n'
# sgemm
code_header += """
typedef float real;
typedef int integer;
extern "C" {
extern int sgemm_(char *transa, char *transb,
integer *m, integer *n, integer *k,
const real *alpha,
const real *a, integer *lda,
const real *b, integer *ldb,
const real *beta,
real *c, integer *ldc);
}
"""
code_header += """
using namespace tensorflow;
#define _ns // so _ns::something will use the root namespace
#define TENSORFLOW 1
#define CUDA 0
#include "%(native_op_cpp_filename)s"
static const int n_inputs = %(n_inputs)i, n_outputs = %(n_outputs)i;
REGISTER_OP("%(op_name)s")
%(code_register_op_io)s;
""" % format_args
if self.description.cpu_support:
code_cpu_op = """
%(user_code_kernels)s
class %(op_name)sOp : public OpKernel {
public:
explicit %(op_name)sOp(OpKernelConstruction* context) : OpKernel(context) {}
void Compute(OpKernelContext* context) override {
%(code_compute)s
}
};
REGISTER_KERNEL_BUILDER(Name("%(op_name)s").Device(DEVICE_CPU), %(op_name)sOp);
""" % format_args
else:
code_cpu_op = ""
if self.with_cuda:
code_gpu_op = """
namespace _gpu {
#ifdef _ns
#undef _ns
#endif
namespace _ns = ::_gpu;
#undef CUDA
#define CUDA 1
#undef Ndarray_memcpy
#undef Ndarray_memset
#undef Ndarray_sgemm
#undef DEF_KERNEL
#undef start_dev_kernel
#undef assert_cmp
#undef threadIdx
#undef blockIdx
#undef blockDim
#undef gridDim
#include "%(native_op_cpp_filename)s"
%(user_code_kernels)s
class %(op_name)sGpuOp : public OpKernel {
public:
explicit %(op_name)sGpuOp(OpKernelConstruction* context) : OpKernel(context) {}
void Compute(OpKernelContext* context) override {
%(code_compute)s
}
};
REGISTER_KERNEL_BUILDER(
Name("%(op_name)s")
%(register_gpu_kernel_opts)s,
%(op_name)sGpuOp);
}
""" % format_args
else:
code_gpu_op = ""
return code_header + code_cpu_op + code_gpu_op
def _make_mod(self):
if self.cache_key in self.mod_cache:
return self.mod_cache[self.cache_key]
from Util import find_lib
# Note about BLAS linkage:
# TensorFlow (or its Eigen lib) likely has linked against some BLAS lib itself.
# For our CPU code, we directly call some BLAS functions such as `sgemm_`.
# On platforms where there is a flat namespace (e.g. Mac),
# it probably is not needed to explicitly link it again for this module.
# In other cases, it's probably needed, but it's not so clear which lib has the
# right symbols (e.g. the `sgemm_` symbol).
ld_flags = []
have_blas_lib = False
if self.search_for_runtime_blas:
import Util
libs = Util.find_sgemm_libs_from_runtime()
if libs:
numpy_libs = [fn for fn in libs if "/numpy/.libs/" in fn]
if numpy_libs:
# Prefer Numpy; move to front.
libs = numpy_libs + [fn for fn in libs if fn not in numpy_libs]
for fn in libs:
ld_flags += ["-L%s" % os.path.dirname(fn), "-l:%s" % os.path.basename(fn)]
have_blas_lib = True
if not have_blas_lib and self.search_for_numpy_blas:
# Find related Numpy libs.
# Numpy usually comes with OpenBlas, and Numpy is probably loaded anyway.
# Even do this before the other libs below, as it is likely
# that this OpenBlas lib is correctly initialized already.
import numpy
numpy_dir = os.path.dirname(numpy.__file__)
if os.path.exists("%s/.libs" % numpy_dir):
ld_flags += ["-L%s/.libs" % numpy_dir]
from glob import glob
for f in glob("%s/.libs/*.so" % numpy_dir):
f = os.path.basename(f)
if f.startswith("lib"):
f = f[3:]
if f.endswith(".so"):
f = f[:-3]
ld_flags += ["-l%s" % f]
have_blas_lib = True
if not have_blas_lib and self.search_for_system_blas:
# Try to just link against blas/f77blas
# (both can potentially have the symbol) if it finds the lib.
if find_lib("blas"):
ld_flags += ["-lblas"]
have_blas_lib = True
if find_lib("f77blas"):
ld_flags += ["-lf77blas"]
have_blas_lib = True
if not have_blas_lib:
print("WARNING: OpMaker: no BLAS lib found")
comp = TFUtil.OpCodeCompiler(
base_name=self.name, code_version=self.description.code_version,
code=self._make_code(),
include_deps=[self.support_native_op_cpp_filename],
ld_flags=ld_flags,
use_cuda_if_available=self.with_cuda,
**dict(self.compiler_opts))
mod = comp.load_tf_module()
mod._op_compiler = comp
self.mod_cache[self.cache_key] = mod
return mod
def make_op(self):
with self.global_lock:
if self.cache_key in self.op_cache:
return self.op_cache[self.cache_key]
mod = self._make_mod()
op = getattr(mod, camel_case_to_snake_case(self.op_name))
op._op_maker = self
op._op_module = mod
self.op_cache[self.cache_key] = op
if self.description.is_grad_defined:
grad_description = self.description.grad()
grad_op_maker = OpMaker(description=grad_description, compiler_opts=self.compiler_opts,
search_for_numpy_blas=self.search_for_numpy_blas)
grad_op = grad_op_maker.make_op()
from tensorflow.python.framework import ops
def grad_wrapper(fwd_op, *bwd_grads):
"""
:param tf.Operation fwd_op: for fwd_op.inputs and fwd_op.outputs
:param list[tf.Tensor] bwd_grads:
:return: list of tensors of gradients for each input
:rtype: list[tf.Tensor]
"""
assert len(bwd_grads) == len(fwd_op.outputs)
grad_inputs = list(fwd_op.inputs) + list(fwd_op.outputs) + list(bwd_grads)
grad_inputs = self.description._filter_grad_inputs(grad_inputs)
grad_outputs = TFUtil.make_var_tuple(grad_op(*grad_inputs))
if grad_description.num_dummy_outs > 0:
grad_outputs = grad_outputs[:-grad_description.num_dummy_outs]
grad_outputs = self.description.make_results_of_gradient(grad_outputs)
return grad_outputs
grad_wrapper.__name__ = grad_description.name
grad_wrapper.grad_op = grad_op
ops.RegisterGradient(self.name)(grad_wrapper)
op.grad_wrapper = grad_wrapper
op.grad_op = grad_op
return op
def load_dump_file(filename):
"""
See dump_to_file() in NativeOp.cpp.
:param str filename:
:rtype: numpy.ndarray
"""
import numpy
from struct import unpack
with open(filename, "rb") as f:
def _read_uint64():
return int(unpack("Q", f.read(8))[0])
def _read_bytes():
size = _read_uint64()
return f.read(size)
def _read_str():
return _read_bytes().decode("utf8")
header = _read_str()
assert header == "NativeOp_dump"
dtype_name = _read_str()
if dtype_name == "float":
dtype_name = "float32"
dtype = numpy.dtype(dtype_name)
dtype_size = _read_uint64()
assert dtype.itemsize == dtype_size, "dtype %r %r: %r != %r" % (dtype_name, dtype, dtype.itemsize, dtype_size)
ndim = _read_uint64()
dims = [_read_uint64() for i in range(ndim)]
data = _read_bytes()
assert len(data) == numpy.prod(dims) * dtype.itemsize
v_flat = numpy.fromstring(data, dtype=dtype)
v = v_flat.reshape(dims)
return v
def make_op(cls, **kwargs):
"""
:param Type[NativeOp.NativeOpGenBase] cls:
:param kwargs: passed to OpMaker
:return: op
:rtype: (tf.Tensor) -> tuple[tf.Tensor]
"""
maker = OpMaker(OpDescription.from_gen_base(cls), **kwargs)
return maker.make_op()
def make_lstm_op(**kwargs):
"""
See :class:`NativeLstmCell` for usage.
:return: op
:rtype: (tf.Tensor) -> tuple[tf.Tensor]
"""
return make_op(NativeOp.LstmGenericBase, **kwargs)
class RecSeqCellOp(object):
does_input_projection = False
does_direction_handling = False
def __init__(self, n_hidden, n_input_dim=None, n_input_dim_parts=None, input_is_sparse=False, step=None):
"""
:param int n_hidden:
:param int n_input_dim:
:param int|list[int] n_input_dim_parts:
:param bool input_is_sparse:
:param int step: what direction and step to use
"""
if n_input_dim is None:
n_input_dim = n_hidden
if n_input_dim_parts is None:
n_input_dim_parts = [n_input_dim]
assert n_input_dim == sum(n_input_dim_parts)
self.n_hidden = n_hidden # hidden-dim and output-dim
self.n_input_dim_parts = n_input_dim_parts
self.n_input_dim = n_input_dim # input dim for the inputs in __call__
self.input_is_sparse = input_is_sparse
self.step = step if self.does_direction_handling else None
@property
def state_size(self):
return self.n_hidden
def __call__(self, inputs, index, initial_state=None, recurrent_weights_initializer=None):
"""
:param tf.Tensor inputs: shape (time,batch,n_input_dim)
:param tf.Tensor index: shape (time,batch)
:param tf.Tensor|None initial_state: optional initial state of shape (batch,n_hidden)
:param ()->tf.Tensor recurrent_weights_initializer:
:returns: output fused tensor shape (time,batch,n_hidden), last hidden state (batch,n_hidden)
:rtype: (tf.Tensor, tf.Tensor)
"""
raise NotImplementedError
class NativeLstmCell(RecSeqCellOp):
def __init__(self, **kwargs):
super(NativeLstmCell, self).__init__(**kwargs)
self.n_input_dim_parts = [self.n_hidden] * 4
self.n_input_dim = self.n_hidden * 4
self.op = make_lstm_op()
@classmethod
def map_layer_inputs_to_op(cls, Z, V_h, i, initial_state=None):
"""
Just like NativeOp.LstmGenericBase.map_layer_inputs_to_op().
:param tf.Tensor Z: inputs: shape (time,batch,n_hidden*4)
:param tf.Tensor V_h: W_re: shape (n_hidden,n_hidden*4)
:param tf.Tensor i: index: shape (time,batch)
:param tf.Tensor|None initial_state: shape (batch,n_hidden)
:rtype: (tf.Tensor,tf.Tensor,tf.Tensor,tf.Tensor)
"""
assert Z.get_shape().ndims == 3
assert V_h.get_shape().ndims == 2
assert i.get_shape().ndims == 2
if i.dtype != tf.float32:
if not hasattr(i, "cast_float32"):
from TFUtil import reuse_name_scope_of_tensor
with reuse_name_scope_of_tensor(i):
i_cast_float32 = tf.cast(i, dtype=tf.float32, name="index_cast_float32")
i.cast_float32 = i_cast_float32
i = i.cast_float32
n_batch = tf.shape(Z)[1]
n_out = tf.shape(V_h)[0]
if initial_state is not None:
from tensorflow.python.ops.nn import rnn_cell
if isinstance(initial_state, rnn_cell.LSTMStateTuple):
initial_state = initial_state.c
c = initial_state
else:
c = tf.zeros((n_batch, n_out), dtype=tf.float32)
return Z, V_h, c, i
def __call__(self, inputs, index, initial_state=None, recurrent_weights_initializer=None):
"""
:param tf.Tensor inputs: shape (time,batch,n_hidden*4)
:param tf.Tensor index: shape (time,batch)
:param tf.Tensor|None initial_state: shape (batch,n_hidden)
:param ()->tf.Tensor recurrent_weights_initializer:
:returns: shape (time,batch,n_hidden), shape (batch,n_hidden)
:rtype: (tf.Tensor, tf.Tensor)
"""
W_re = tf.get_variable(
name="W_re", shape=(self.n_hidden, self.n_hidden * 4), initializer=recurrent_weights_initializer)
TFUtil.set_param_axes_split_info(W_re, [[self.n_hidden], [self.n_hidden] * 4])
out, _, final_state = self.op(
*self.map_layer_inputs_to_op(Z=inputs, V_h=W_re, i=index, initial_state=initial_state))
return out, final_state
class NativeLstmLowMemCell(RecSeqCellOp):
does_input_projection = True
does_direction_handling = True
def __init__(self, **kwargs):
super(NativeLstmLowMemCell, self).__init__(**kwargs)
self.op = make_op(NativeOp.LstmLowMem)
assert not self.input_is_sparse, "not supported"
def map_layer_inputs_to_op(self, X, W, b, i, initial_state=None):
"""
Just like NativeOp.LstmGenericBase.map_layer_inputs_to_op().
:param tf.Tensor X: inputs: shape (time,batch,n_input_dim)
:param tf.Tensor W: shape (n_input_dim+n_hidden,n_hidden*4)
:param tf.Tensor b: shape (n_hidden*4,)
:param tf.Tensor i: index: shape (time,batch)
:param tf.Tensor|None initial_state: shape (batch,n_hidden)
:rtype: tuple[tf.Tensor]
"""
X.set_shape(tf.TensorShape([None, None, self.n_input_dim]))
W.set_shape(tf.TensorShape([self.n_input_dim + self.n_hidden, self.n_hidden * 4]))
i.set_shape(tf.TensorShape([None, None]))
if i.dtype != tf.float32:
if not hasattr(i, "cast_float32"):
from TFUtil import reuse_name_scope_of_tensor
with reuse_name_scope_of_tensor(i):
i_cast_float32 = tf.cast(i, dtype=tf.float32, name="index_cast_float32")
i.cast_float32 = i_cast_float32
i = i.cast_float32
n_batch = tf.shape(X)[1]
if initial_state is not None:
c0 = initial_state
else:
c0 = tf.zeros((n_batch, self.n_hidden), dtype=tf.float32, name="initial_c")
# We could make `h` a variable exactly if `c` is a trainable variable.
y0 = tf.zeros((n_batch, self.n_hidden), dtype=tf.float32, name="initial_h")
start = tf.constant(0, name="start")
step = tf.constant(self.step or 1, name="step")
return X, W, b, y0, c0, i, start, step
def __call__(self, inputs, index, initial_state=None, recurrent_weights_initializer=None):
"""
:param tf.Tensor inputs: shape (time,batch,n_input_dim)
:param tf.Tensor index: shape (time,batch)
:param tf.Tensor|None initial_state: shape (batch,n_hidden)
:param ()->tf.Tensor recurrent_weights_initializer:
:returns: shape (time,batch,n_hidden), shape (batch,n_hidden)
:rtype: (tf.Tensor, tf.Tensor)
"""
W = tf.get_variable(
name="W", shape=(self.n_input_dim + self.n_hidden, self.n_hidden * 4), initializer=recurrent_weights_initializer)
b = tf.get_variable(name="b", shape=(self.n_hidden * 4,), initializer=tf.zeros_initializer())
TFUtil.set_param_axes_split_info(W, [[self.n_input_dim, self.n_hidden], [self.n_hidden] * 4])
TFUtil.set_param_axes_split_info(b, [[self.n_hidden] * 4])
out, _, final_state = self.op(
*self.map_layer_inputs_to_op(X=inputs, W=W, b=b, i=index, initial_state=initial_state))
return out, final_state
class NativeLstm2(RecSeqCellOp):
does_input_projection = False
does_direction_handling = True
def __init__(self, rec_weight_dropout=0.0, **kwargs):
"""
:param float rec_weight_dropout: weight dropout in the recurrent matrix, https://openreview.net/pdf?id=SyyGPP0TZ
"""
super(NativeLstm2, self).__init__(**kwargs)
self.n_input_dim_parts = [self.n_hidden] * 4
self.n_input_dim = self.n_hidden * 4
self.rec_weight_dropout = rec_weight_dropout
self.op = make_op(NativeOp.NativeLstm2)
@property
def state_size(self):
from tensorflow.python.ops.nn import rnn_cell
return rnn_cell.LSTMStateTuple(c=self.n_hidden, h=self.n_hidden)
def __call__(self, inputs, index, initial_state=None, recurrent_weights_initializer=None):
"""
:param tf.Tensor inputs: shape (time,batch,n_hidden)
:param tf.Tensor index: shape (time,batch)
:param tf.Tensor|None initial_state: shape (batch,n_hidden)
:param ()->tf.Tensor recurrent_weights_initializer:
:returns: shape (time,batch,n_hidden), shape (batch,n_hidden)
:rtype: (tf.Tensor, tf.Tensor)
"""
from tensorflow.python.ops.nn import rnn_cell
W = tf.get_variable(
name="W_re", shape=(self.n_hidden, self.n_hidden * 4), initializer=recurrent_weights_initializer)
TFUtil.set_param_axes_split_info(W, [[self.n_hidden], [self.n_hidden] * 4])
if self.rec_weight_dropout:
from TFUtil import dropout
W = dropout(W, keep_prob=1.0 - self.rec_weight_dropout, cond_on_train=True,
seed=TFUtil.get_random_seed())
inputs.set_shape(tf.TensorShape([None, None, self.n_hidden * 4]))
W.set_shape(tf.TensorShape([self.n_hidden, self.n_hidden * 4]))
index.set_shape(tf.TensorShape([None, None]))
from TFUtil import to_float32
index = to_float32(index)
n_batch = tf.shape(inputs)[1]
if initial_state is None:
c0 = tf.zeros((n_batch, self.n_hidden), dtype=tf.float32, name="initial_c")
y0 = tf.zeros((n_batch, self.n_hidden), dtype=tf.float32, name="initial_h")
elif isinstance(initial_state, rnn_cell.LSTMStateTuple):
c0 = initial_state.c
y0 = initial_state.h
else:
c0 = initial_state
y0 = tf.zeros((n_batch, self.n_hidden), dtype=tf.float32, name="initial_h")
start = tf.constant(0, name="start")
step = tf.constant(self.step or 1, name="step")
out, _, _, final_cell_state = self.op(inputs, W, y0, c0, index, start, step)
if out.get_shape().as_list()[0] is None or out.get_shape().as_list()[0] > 0:
final_output = out[-1]
else:
final_output = y0
return out, rnn_cell.LSTMStateTuple(h=final_output, c=final_cell_state)
def make_fast_baum_welch_op(**kwargs):
"""
:return: op
:rtype: (tf.Tensor) -> tuple[tf.Tensor]
"""
maker = OpMaker(OpDescription.from_gen_base(NativeOp.FastBaumWelchOp), **kwargs)
return maker.make_op()
def fast_baum_welch(am_scores, edges, weights, start_end_states, float_idx, state_buffer=None):
"""
:param tf.Tensor am_scores: (time, batch, dim), in -log space
:param tf.Tensor edges: (4,num_edges), edges of the graph (from,to,emission_idx,sequence_idx)
:param tf.Tensor weights: (num_edges,), weights of the edges
:param tf.Tensor start_end_states: (2, batch), (start,end) state idx in automaton. there is only one single automaton.
:param tf.Tensor float_idx: (time, batch) -> 0 or 1 (index mask, via seq lens)
:param tf.Tensor state_buffer: (2, num_states)
:return: (fwdbwd, obs_scores), fwdbwd is (time, batch, dim), obs_scores is (time, batch), in -log space
:rtype: (tf.Tensor, tf.Tensor)
"""
# edges, weights, start_end_states, state_buffer = SprintAlignmentAutomataOp(self.sprint_opts)(self.network.tags)
op = make_fast_baum_welch_op()
float_idx = tf.cast(float_idx, tf.float32)
if state_buffer is None:
last_state_idx = tf.reduce_max(start_end_states[1]) # see get_automata_for_batch
state_buffer = tf.zeros((2, last_state_idx + 1))
fwdbwd, obs_scores = op(am_scores, edges, weights, start_end_states, float_idx, state_buffer)
return fwdbwd, obs_scores
def fast_baum_welch_by_sprint_automata(am_scores, float_idx, tags, sprint_opts, tdp_scale=1.0):
"""
:param tf.Tensor am_scores: (time, batch, dim), in -log space
:param tf.Tensor float_idx: (time, batch) -> 0 or 1 (index mask, via seq lens)
:param tf.Tensor tags: (batch,) -> seq name (str)
:param float tdp_scale: weights are multiplied by this
:param dict[str] sprint_opts:
:return: (fwdbwd, obs_scores), fwdbwd is (time, batch, dim), obs_scores is (time, batch), in -log space
:rtype: (tf.Tensor, tf.Tensor)
"""
from TFSprint import get_sprint_automata_for_batch_op
edges, weights, start_end_states = get_sprint_automata_for_batch_op(sprint_opts=sprint_opts, tags=tags)
if tdp_scale != 1:
if tdp_scale == 0:
weights = tf.zeros_like(weights)
else:
weights *= tdp_scale
return fast_baum_welch(
am_scores=am_scores, float_idx=float_idx,
edges=edges, weights=weights, start_end_states=start_end_states)
def tf_fast_bw_fsa_staircase(seq_lens, **opts):
"""
:param tf.Tensor seq_lens: shape (batch,)
:param opts: passed to :func:`Fsa.fast_bw_fsa_staircase`
:return: edges, weights, start_end_states
:rtype: (tf.Tensor, tf.Tensor, tf.Tensor)
"""
from Fsa import fast_bw_fsa_staircase
def tf_fast_bw_fsa_staircase_wrapper(seq_lens):
fsa = fast_bw_fsa_staircase(seq_lens, **opts)
assert fsa.start_end_states.shape == (2, len(seq_lens)), "shape missmatch %r, n_batch %r, seq lens %r" % (
fsa.start_end_states.shape, len(seq_lens), seq_lens)
return fsa.edges.astype("int32"), fsa.weights.astype("float32"), fsa.start_end_states.astype("int32")
edges, weights, start_end_states = tf.py_func(
tf_fast_bw_fsa_staircase_wrapper,
[seq_lens],
[tf.int32, tf.float32, tf.int32],
stateful=False)
# edges: (4, num_edges), edges of the graph (from,to,emission_idx,sequence_idx)
# weights: (num_edges,), weights of the edges
# start_end_states: (2, batch), (start,end) state idx in automaton.
edges.set_shape((4, None))
weights.set_shape((None,))
start_end_states.set_shape((2, None))
return edges, weights, start_end_states
def fast_baum_welch_staircase(am_scores, seq_lens, **opts):
"""
:param tf.Tensor am_scores: (time, batch, dim), in -log space
:param tf.Tensor seq_lens: (batch,) -> values in [1, ..., dim-1]
:param opts: passed to :func:`Fsa.fast_bw_fsa_staircase`
:return: (fwdbwd, obs_scores), fwdbwd is (time, batch, dim), obs_scores is (time, batch), in -log space
:rtype: (tf.Tensor, tf.Tensor)
"""
from TFUtil import sequence_mask_time_major
edges, weights, start_end_states = tf_fast_bw_fsa_staircase(seq_lens, **opts)
float_idx = sequence_mask_time_major(seq_lens)
return fast_baum_welch(
am_scores=am_scores, edges=edges, weights=weights, start_end_states=start_end_states, float_idx=float_idx)
def _debug_dumped_fast_baum_welch(prefix, postfix=".dump"):
"""
If you uncomment the debug_print statements in FastBaumWelchOp, as well as dump_to_file inside debug_print,
you will get some dump files in the current directory. These can be loaded here and evald again.
:param str prefix: filename prefix, e.g. "ff_out_bw__FastBaumWelchOp_"
:param str postfix: filename postfix
:return: output from fast_baum_welch(), evald
:rtype: (numpy.ndarray. numpy.ndarray)
"""
with tf.Graph().as_default() as graph:
with tf.Session(graph=graph) as session:
arg_names = {
"am_scores": None, "edges": None, "weights": None, "start_end_states": None, "float_idx": "index",
"state_buffer": None}
args = {}
for name, file_postfix in list(arg_names.items()):
if file_postfix is None:
file_postfix = name
filename = prefix + file_postfix + postfix
print("load", filename)
args[name] = tf.constant(load_dump_file(filename))
print("run...")
out_list = fast_baum_welch(**args)
return session.run(out_list)
def have_blocksparse_requirements():
import TFUtil
if not TFUtil.is_gpu_available():
return False
min_compute_capability = TFUtil.get_available_gpu_min_compute_capability()
if min_compute_capability < 3.5:
return False
return True
def init_blocksparse(with_native_module=True):
import TFUtil
if with_native_module:
assert TFUtil.is_gpu_available(), "we currently need a GPU"
min_compute_capability = TFUtil.get_available_gpu_min_compute_capability()
assert min_compute_capability and min_compute_capability >= 3.5, "we need at least compute capability 3.5"
path = os.path.dirname(__file__) + "/extern/blocksparse"
assert os.path.exists(path), "maybe submodule not checked out?"
import sys
if path not in sys.path:
# At the beginning, to make sure we find it firs.t
sys.path.insert(0, path)
# test it
if with_native_module:
from blocksparse import op_module
op_module.get_module()
def demo():
print("TFNativeOp demo")
TFUtil.CudaEnv.verbose_find_cuda = True
print("CUDA path: %s" % TFUtil.CudaEnv.get_instance().cuda_path)
op = make_op(NativeOp.LstmLowMem, compiler_opts={"static_version_name": "demo"})
print(op)
if __name__ == '__main__':
import better_exchook
better_exchook.install()
demo()