-
Notifications
You must be signed in to change notification settings - Fork 0
/
NetworkCNNLayer.py
executable file
·538 lines (448 loc) · 20.4 KB
/
NetworkCNNLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# general library
import numpy
from math import ceil, sqrt
# theano library
import theano
from theano import tensor as T
from theano.tensor.nnet import conv2d
try:
from theano.tensor.signal import pool
except ImportError:
pool = None
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
# others
from NetworkHiddenLayer import _NoOpLayer
from ActivationFunctions import strtoact
from cuda_implementation.FractionalMaxPoolingOp import fmp
from theano.sandbox.cuda import dnn
class CNN(_NoOpLayer):
recurrent = True
def __init__(self, n_features=1, filter=1, d_row=-1, border_mode="valid",
conv_stride=(1,1), pool_size=(1,1), filter_dilation=(1,1), ignore_border=1,
pool_stride=0, pool_padding=(0,0), mode="max",
activation="tanh", dropout=0.0, factor=1.0, base = None, transpose=False,
force_sample=False, **kwargs):
"""
:param int n_features: integer
the number of feature map(s), e.g. 32, 64, or so on.
the input will be interpret as (width|time, batch, height * n_in_features) and
the output will be (width|time, batch, height * n_features).
:param int|(int,int) filter: integer or tuple of length 2
the filter size/shape, i.e. the number of row(s) and/or columns(s) from the filter shape.
when this filter type is integer, it means the number of rows the same as the number of columns.
e.g. 3, 5, (1,3), or so on.
:param int d_row: integer
the number of row(s) from the input
the default value is -1, which the dimension comes from the n_out of the input.
otherwise, this has to be filled only for the first convolutional layer and
the rest layer will use the number of rows from the previous layer.
:param str border_mode: string
"valid" -- only apply filter to complete patches of the image.
Generates output of shape: (image_shape - filter_shape + 1).
"full" -- zero-pads image to multiple of filter shape to generate output of shape: (image_shape + filter_shape - 1).
"same" -- keep the dimension of convolutional layer output the same as the input dimension.
:param (int,int) conv_stride: tuple of length 2
factor by which to subsample the convolutional layer output.
this stride is writen in (rows,columns).
:param (int,int) pool_size: tuple of length 2
factor by which to downscale in pooling layer.
this is written in (rows,columns).
the default value is (2,2), it will halve the input in each dimension.
:param (int,int) filter_dilation: tuple of length 2
factor by which to subsample (stride) the convolutional layer input.
:param int|bool ignore_border: integer or boolean
1 or True -- (5, 5) input with pool_size = (2, 2), will generate a (2, 2) pooling layer output.
0 or False -- (5, 5) input with pool_size = (2, 2), will generate a (3, 3) pooling layer output.
:param (int,int) pool_stride: tuple of length 2
stride size, which is the number of shifts over rows/cols to get the next pool region.
the default value is 0, it will set equal to pool_size, which means no overlap on pooling regions.
:param (int,int) pool_padding: tuple of length 2
pad zeros to extend beyond four borders of the images.
this is writen in (pad_h,pad_w), where pad_h is the size of the top and bottom margins, and pad_w is the size of the left and right margins.
:param str mode: string
pooling layer mode that excludes the padding in the computation.
"max" -- max pooling
"sum" -- sum pooling
"avg" -- average pooling
"fmp" -- fractional max pooling
:param str activation: string
activation function, e.g. "tanh", "sigmoid", "relu", "elu", "maxout", and so on.
:param float factor: float
factor by which scale the initial weights
"""
super(CNN, self).__init__(**kwargs)
self.base = base
src = self.sources
self.transpose = transpose
self.status = self.get_status(src) # [is_conv_layer, n_sources]
self.is_1d = self.layer_class == "conv_1d"
is_resnet = self.layer_class == "resnet"
dimension = src[0].attrs["n_out"] # input dimension
if self.status[0]: # if the previous layer is convolution layer
stack_size = src[0].attrs["n_features"] # set stack size from the number of feature maps of previous layer
d_row = src[0].attrs["d_row"]
dimension /= stack_size
# check whether the number of inputs is more than 1 and not resnet for inception
if self.status[1] != 1 and (not is_resnet):
# check the spatial dimension of all inputs
assert all((s.attrs["n_out"] // s.attrs["n_features"]) == dimension
for s in src), \
"The spatial dimension of all inputs have to be the same!"
stack_size = sum([s.attrs["n_features"] for s in src]) # set the stack_size by concatenating feature maps
else: # not convolution layer
stack_size = 1 # set stack_size of first convolution layer as channel of the image (gray scale image)
if self.is_1d: # for processing entire image at once
if d_row == -1:
d_row = dimension
else:
stack_size = dimension // d_row
elif d_row == -1:
d_row = int(sqrt(dimension))
assert self.status[1] == 1, "Except CNN, the input is only one!"
# calculate the width of input
d_col = dimension//d_row
# set filter size to tuple
if type(filter) == int:
filter = [filter, filter]
if filter == [1, 1]:
border_mode = "valid"
# set attributes for resnet
if is_resnet:
n_features = src[1].attrs['n_features']
border_mode = "same"
pool_size = [1, 1]
assert ignore_border == 0 or ignore_border == 1, "Ignore border only accept true (1) or false (0)"
# use no-overlap pooling
if pool_stride == 0:
pool_stride = pool_size
# calculate the dimension of CNN output
_, new_d_row = self.get_dim(d_row, filter[0], pool_size[0],
border_mode, conv_stride[0],
pool_stride[0], ignore_border,
pool_padding[0])
border_mode, new_d_col = self.get_dim(d_col, filter[1], pool_size[1],
border_mode, conv_stride[1],
pool_stride[1], ignore_border,
pool_padding[1])
assert (mode == "max" or mode == "sum" or
mode == "avg" or mode == "fmp"), "invalid pooling mode!"
if mode == "fmp":
new_d_row = int(ceil(new_d_row))
new_d_col = int(ceil(new_d_col))
assert (new_d_row > 0), "invalid spatial rows dimensions!"
n_out = new_d_row * n_features
if not self.is_1d:
assert (new_d_col > 0), "invalid spatial columns dimensions!"
n_out *= new_d_col
# filter shape is tuple/list of length 4 which is (nb feature maps, stack size, filter row, filter col)
self.filter_shape = (n_features, stack_size, filter[0], filter[1])
self.filter_dilation = filter_dilation
self.input_shape = [d_row, d_col]
self.modes = [border_mode, ignore_border, mode, activation]
self.pool_params = [pool_size, pool_stride, pool_padding, conv_stride]
self.other_params = [dropout, factor]
self.force_sample = force_sample
# set attributes
self.set_attr("n_features", n_features)
self.set_attr("d_row", new_d_row) # number of output row
self.set_attr("n_out", n_out) # number of output dimension
def get_status(self, sources):
n_sources = len(sources)
is_conv_layer = all(s.layer_class in ("conv", "frac_conv", "conv_1d", "resnet")
for s in sources)
return [is_conv_layer, n_sources]
def get_dim(self, input, filters, pools, border_mode, stride, pool_stride, ignore_border, pad):
if border_mode == "valid":
result = (input - filters + 1)
elif border_mode == "full":
result = (input + filters - 1)
elif border_mode == "same":
border_mode = "half"
result = input
else:
assert False, "Invalid border_mode"
if stride != 1:
result = int(ceil(result/float(stride)))
result = (result - (pools - pool_stride)) / float(pool_stride)
result = int(result) if ignore_border else int(ceil(result))
result += (2 * pad)
return border_mode, result
def calculate_index(self, inputs):
if inputs.ndim == 3: # TBD
return T.set_subtensor(
inputs[((numpy.int8(1) - self.index.flatten()) > 0).nonzero()],
T.zeros_like(inputs[0])
)
else: # assume BFHW
B = inputs.shape[0]
inputs = inputs.dimshuffle(3, 0, 1, 2) # WBFH
inputs = self.calculate_index(
inputs.reshape(
(inputs.shape[0] * inputs.shape[1],
inputs.shape[2],
inputs.shape[3])
)
)
return inputs.reshape((inputs.shape[0] // B, B, inputs.shape[1],
inputs.shape[2])).dimshuffle(1, 2, 3, 0)
def calculate_dropout(self, dropout, inputs):
assert dropout < 1.0, "Dropout have to be less than 1.0"
mass = T.constant(1.0 / (1.0 - dropout), dtype="float32")
random = RandomStreams(self.rng.randint(1234) + 1)
if self.train_flag:
inputs = inputs * T.cast(
random.binomial(n=1, p=1 - dropout, size=inputs.shape),
theano.config.floatX
)
else:
inputs = inputs * mass
return inputs
def convolution(self, inputs, filter_shape, stride, border_mode, factor, pool_size, filter_dilation):
fan_in = numpy.prod(filter_shape[1:]) # stack_size * filter_row * filter_col
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) // numpy.prod(pool_size))
# (n_features * (filter_row * filter_col)) / (pool_size[0] * pool_size[1])
W_bound = numpy.sqrt(6. / (fan_in + fan_out)) * factor
if self.base:
#W = self.base[0].W
W = self.add_param(self.base[0].W)
else:
W = self.add_param(
self.shared(
value=numpy.asarray(
self.rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype='float32'
),
borrow=True,
name="W_conv_" + self.name
)
)
self.W = W
if self.transpose:
op = T.nnet.abstract_conv.AbstractConv2d_gradInputs(
imshp=inputs.shape,
kshp=W.shape,
subsample=stride, border_mode=border_mode,
filter_flip=False)
conv_out = op(W, inputs, inputs[2:])
else:
conv_out = conv2d(
input=inputs,
filters=W,
filter_shape=filter_shape,
filter_dilation=filter_dilation,
subsample=stride,
border_mode=border_mode
)
conv_out.name = "conv_out_" + self.name
conv_out = self.calculate_index(conv_out)
return conv_out
def pooling(self, inputs, pool_size, ignore_border, stride, pad, mode):
if pool_size == [1, 1]:
return inputs
if mode == "avg":
mode = "average_exc_pad"
if mode == "fmp":
height = inputs.shape[2]
width = inputs.shape[3]
batch = inputs.shape[0]
X = inputs.dimshuffle(2, 3, 0, 1) # (row, col, batches, filters)
sizes = T.zeros((batch, 2))
sizes = T.set_subtensor(sizes[:, 0], height)
sizes = T.set_subtensor(sizes[:, 1], width)
pooled_out, _ = fmp(X, sizes, pool_size[0])
return pooled_out.dimshuffle(2, 3, 0, 1)
pool_out = pool.pool_2d(
input=inputs,
ws=pool_size, # TODO(theano 0.9): change to ws
ignore_border=ignore_border,
stride=stride, # TODO(theano 0.9): change to stride
pad=pad, # TODO(theano 0.9): change to pad
mode=mode
)
pool_out.name = "pool_out_"+self.name
return pool_out
def bias_term(self, inputs, n_features, activation):
if self.base:
#b = self.base[0].b
b = self.add_param(self.base[0].b)
else:
b = self.add_param(
self.shared(
value=numpy.zeros((n_features,), dtype='float32'),
borrow=True,
name="b_conv_" + self.name
)
)
self.b = b
act = strtoact('identity') if activation == 'maxout' else strtoact(activation)
output = act(inputs + b.dimshuffle("x", 0, "x", "x")) # (time*batch, filter, out-row, out-col)
output.name = "output_bias_term_"+self.name
output = self.calculate_index(output)
return output
def run_cnn(self, inputs, filter_shape, filter_dilation, params, modes, others):
# dropout
if others[0] > 0.0:
inputs = self.calculate_dropout(others[0], inputs)
conv_out = self.convolution(inputs, filter_shape, params[3], modes[0], others[1], params[0], filter_dilation)
pool_out = self.pooling(conv_out, params[0], modes[1], params[1], params[2], modes[2])
if self.is_1d:
self.index = self.pooling(self.index.dimshuffle(1, 'x', 0),
[1, params[0][1]],
modes[1],
params[1],
params[2],
modes[2]).dimshuffle(2, 0, 1).flatten(2)
output = self.bias_term(pool_out, filter_shape[0], modes[3])
return output
class NewConv(CNN):
layer_class = "conv"
'''
this class is for standard CNN and inception
'''
def __init__(self, **kwargs):
super(NewConv, self).__init__(**kwargs)
# our CRNN input is 3D tensor that consists of (time, batch, dim)
# however, the convolution function only accept 4D tensor which is (batch size, stack size, nb row, nb col)
# therefore, we should convert our input into 4D tensor
inputs = self.sources[0].output # (time, batch, input-dim = row * col * stack_size)
time = inputs.shape[0]
batch = inputs.shape[1]
if self.status[0]: # the previous layer is convolutional layer
self.input = T.concatenate([s.Output for s in self.sources], axis=1) # (batch, stack size, row, col)
else:
# In case of spliced data, the last dim in inputs contains stacked frames (e.g. ASR).
# Since Theano reshape will read _and_ write elements row-wise, we need to transpose the target matrix.
# This is done by swapping target dimensions (reshape(.., input_shape[1], input_shape[0]) and subsequent
# dimshuffle that puts row and col dim where Theano expects them.
inputs2 = inputs.reshape((time * batch, self.input_shape[1],
self.input_shape[0], self.filter_shape[1])) # (time*batch, row, col, stack)
self.input = inputs2.dimshuffle(0, 3, 2, 1) # (batch, stack_size, row, col)
self.input.name = "conv_layer_input_final"
if self.modes[3] != "tanh":
act = strtoact(self.modes[3])
self.modes[3] = "identity"
self.Output = self.run_cnn(
inputs=self.input,
filter_shape=self.filter_shape,
filter_dilation=self.filter_dilation,
params=self.pool_params,
modes=self.modes,
others=self.other_params
) # (batch, nb feature maps, out-row, out-col)
# our CRNN only accept 3D tensor (time, batch, dim)
# so, we have to convert back the output to 3D tensor
# self.make_output(self.Output2)
if self.attrs['batch_norm']:
self.Output = self.batch_norm(
h=self.Output.reshape(
(self.Output.shape[0],
self.Output.shape[1] * self.Output.shape[2] * self.Output.shape[3])
),
dim=self.attrs['n_out'],
force_sample=self.force_sample
).reshape(self.Output.shape)
if self.modes[3] != "tanh":
self.Output = act(self.Output)
if self.modes[3] == 'maxout':
self.Output = T.max(self.Output, axis=1).dimshuffle(0, 'x', 1, 2)
self.attrs['n_out'] //= self.attrs['n_features']
self.attrs['n_features'] = 1
output2 = self.Output.dimshuffle(0, 2, 3, 1) # (batch, out-row, out-col, nb feature maps)
self.output = output2.reshape((time, batch, output2.shape[1] * output2.shape[2] * output2.shape[3])) # (time, batch, out-dim)
class ConcatConv(CNN):
layer_class = "conv_1d"
'''
this class is for the CNN that processes an entire line image as the input by concatenated several frames by time axis.
'''
def __init__(self, padding=False, **kwargs):
super(ConcatConv, self).__init__(**kwargs)
inputs = T.concatenate([s.output for s in self.sources], axis=2) # (time, batch, input-dim = row * features)
time = inputs.shape[0]
batch = inputs.shape[1]
if self.status[0]: # the previous layer is convolutional layer
self.input = T.concatenate([s.Output for s in self.sources], axis=3) # (batch, stack_size, row, time)
else:
d_row = kwargs['d_row'] if 'd_row' in kwargs else -1
if d_row == -1:
inputs2 = inputs.reshape((time, batch, inputs.shape[2], self.filter_shape[1])) # (time, batch, row, stack)
else:
inputs2 = inputs.reshape((time, batch, d_row, self.filter_shape[1])) # (time, batch, row, stack)
self.input = inputs2.dimshuffle(1, 3, 2, 0) # (batch, stack_size, row, time)
self.input.name = "conv_layer_input_final"
if self.pool_params[0][1] > 1 and padding:
xp = T.constant(self.pool_params[0][1], 'int32')
self.input = T.concatenate([self.input, T.zeros((batch, self.filter_shape[1], self.input.shape[2],
xp - T.mod(self.input.shape[3], xp)), 'float32')], axis=3)
self.index = T.concatenate([self.index, T.zeros((xp - T.mod(self.index.shape[0], xp), batch), 'int8')], axis=0)
if self.modes[0] == "valid":
if self.filter_shape[3] > 1:
idx = int(self.filter_shape[3] / 2)
self.index = self.index[idx:-idx]
self.Output = self.run_cnn(
inputs=self.input,
filter_shape=self.filter_shape,
filter_dilation=self.filter_dilation,
params=self.pool_params,
modes=self.modes,
others=self.other_params
) # (batch, nb feature maps, out-row, time)
self.Output = self.Output #/ T.cast(self.Output.shape[1],'float32')
if self.attrs['batch_norm']:
if self.base is None:
self.Output = self.batch_norm(
h=self.Output.dimshuffle(0, 2, 3, 1).reshape(
(self.Output.shape[0] * self.Output.shape[2] * self.Output.shape[3],
self.Output.shape[1])
),
dim=self.attrs['n_features'],
force_sample=self.force_sample
).reshape((self.Output.shape[0],
self.Output.shape[2],
self.Output.shape[3],
self.Output.shape[1])).dimshuffle(0, 3, 1, 2)
else:
self.Output = self.batch_norm(
h=self.Output.dimshuffle(0, 2, 3, 1).reshape(
(self.Output.shape[0] * self.Output.shape[2] * self.Output.shape[3],
self.Output.shape[1])
),
dim=self.attrs['n_features'],
force_sample=self.force_sample,
sample_mean=self.base[0].sample_mean,
gamma=self.base[0].gamma,
beta=self.base[0].beta
).reshape((self.Output.shape[0],
self.Output.shape[2],
self.Output.shape[3],
self.Output.shape[1])).dimshuffle(0, 3, 1, 2)
# our CRNN only accept 3D tensor (time, batch, dim)
# so, we have to convert back the output to 3D tensor
output2 = self.Output.dimshuffle(3, 0, 1, 2) # (time, batch, nb feature maps, out-row)
self.output = output2.reshape((output2.shape[0], output2.shape[1],
output2.shape[2] * output2.shape[3])) # (time, batch, out-dim)
class ResNet(CNN):
layer_class = "resnet"
'''
this class is for resnet connection.
'''
def __init__(self, **kwargs):
super(ResNet, self).__init__(**kwargs)
assert self.status[1] == 2, "Only accept 2 sources!"
assert self.status[0], "Only accept cnn layers!"
x = self.sources[0]
f_x = self.sources[1]
time = x.output.shape[0]
batch = x.output.shape[1]
self.input = T.add(x.Output, f_x.Output)
self.Output = T.nnet.relu(self.input)
if self.attrs['batch_norm']:
self.Output = self.batch_norm(
h=self.Output.reshape(
(self.Output.shape[0],
self.Output.shape[1] * self.Output.shape[2] * self.Output.shape[3])
),
dim=self.attrs['n_out'],
force_sample=self.force_sample
).reshape(self.Output.shape)
output2 = self.Output.dimshuffle(0, 2, 3, 1) # (time*batch, out-row, out-col, nb feature maps)
self.output = output2.reshape((time, batch, output2.shape[1] * output2.shape[2] * output2.shape[3])) # (time, batch, out-dim)