-
Notifications
You must be signed in to change notification settings - Fork 0
/
CachedDataset2.py
executable file
·199 lines (171 loc) · 6.29 KB
/
CachedDataset2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from Dataset import Dataset, DatasetSeq
import math
class CachedDataset2(Dataset):
"""
Somewhat like CachedDataset, but different.
Simpler in some sense. And more generic. Caching might be worse.
If you derive from this class:
- you must override `_collect_single_seq`
- you must set `num_inputs` (dense-dim of "data" key) and `num_outputs` (dict key -> dim, ndim-1)
- you should set `labels`
- handle seq ordering by overriding `init_seq_order`
- you can set `_estimated_num_seqs`
- you can set `_num_seqs` or `_num_timesteps` if you know them in advance
"""
def __init__(self, **kwargs):
super(CachedDataset2, self).__init__(**kwargs)
self._num_timesteps = None
self.epoch = None
def init_seq_order(self, epoch=None, seq_list=None):
"""
:param int|None epoch:
:param list[str] | None seq_list: In case we want to set a predefined order.
:rtype: bool
:returns whether the order changed (True is always safe to return)
This is called when we start a new epoch, or at initialization.
Call this when you reset the seq list.
"""
super(CachedDataset2, self).init_seq_order(epoch=epoch, seq_list=seq_list)
if not epoch:
epoch = 1
self.expected_load_seq_start = 0
self.reached_final_seq = False
self.added_data = []; " :type: list[DatasetSeq] "
self._num_timesteps_accumulated = 0
self._num_seqs = None
self.epoch = epoch
return True
def _cleanup_old_seqs(self, seq_idx_end):
i = 0
while i < len(self.added_data):
if self.added_data[i].seq_idx >= seq_idx_end:
break
i += 1
del self.added_data[:i]
def _get_seq(self, seq_idx):
for data in self.added_data:
if data.seq_idx == seq_idx:
return data
return None
def is_cached(self, start, end):
# Always False, to force that we call self._load_seqs().
# This is important for our buffer management.
return False
@property
def num_seqs(self):
if self._num_seqs is not None:
return self._num_seqs
raise NotImplementedError
def _load_seqs(self, start, end):
"""
:param int start: inclusive seq idx start
:param int end: exclusive seq idx end. can be more than num_seqs
If end > num_seqs, will not load them.
"""
# We expect that start increase monotonic on each call
# for not-yet-loaded data.
# This will already be called with _load_seqs_superset indices.
assert start >= self.expected_load_seq_start
if start > self.expected_load_seq_start:
# Cleanup old data.
self._cleanup_old_seqs(start)
self.expected_load_seq_start = start
if self.added_data:
start = max(self.added_data[-1].seq_idx + 1, start)
seqs = [self._collect_single_seq(seq_idx=seq_idx) for seq_idx in range(start, end)]
seqs = list(filter(None, seqs)) # We might not know the num seqs in advance.
self._num_timesteps_accumulated += sum([seq.num_frames for seq in seqs])
self.added_data += seqs
def is_less_than_num_seqs(self, n):
if n < self.expected_load_seq_start:
return True
try:
return super(CachedDataset2, self).is_less_than_num_seqs(n)
except Exception: # can fail, e.g. if self.num_seqs is not defined
assert n >= self.expected_load_seq_start
self._load_seqs(self.expected_load_seq_start, n + 1)
if self._get_seq(n) is not None:
return True
# We reached the end.
assert self.added_data, "Not a single seq was loaded?"
self._num_seqs = self.added_data[-1].seq_idx + 1
assert n >= self._num_seqs
self.reached_final_seq = True
return False
def _collect_single_seq(self, seq_idx):
"""
:type seq_idx: int
:rtype: DatasetSeq | None
:returns DatasetSeq or None if seq_idx >= num_seqs.
"""
raise NotImplementedError
def get_num_timesteps(self):
if self._num_timesteps is not None:
return self._num_timesteps
else:
assert self.reached_final_seq
return self._num_timesteps_accumulated
def _load_something(self):
if self.added_data:
return
self.load_seqs(self.expected_load_seq_start, self.expected_load_seq_start + 1)
def get_seq_length(self, sorted_seq_idx):
"""
:type sorted_seq_idx: int
:rtype: int
"""
# get_seq_length() can be called before the seq is loaded via load_seqs().
# Thus, we just call load_seqs() ourselves here.
assert sorted_seq_idx >= self.expected_load_seq_start
self.load_seqs(self.expected_load_seq_start, sorted_seq_idx + 1)
return self._get_seq(sorted_seq_idx).num_frames
def get_data(self, seq_idx, key):
return self._get_seq(seq_idx).features[key]
def get_input_data(self, seq_idx):
return self.get_data(seq_idx, "data")
def get_targets(self, target, seq_idx):
return self.get_data(seq_idx, target)
def get_ctc_targets(self, sorted_seq_idx):
return self._get_seq(sorted_seq_idx).ctc_targets
def get_tag(self, sorted_seq_idx):
return self._get_seq(sorted_seq_idx).seq_tag
def get_data_keys(self):
self._load_something()
return sorted(self.added_data[0].get_data_keys())
def get_target_list(self):
"""
Target data keys are usually not available during inference.
Overwrite this if your dataset is more custom.
"""
keys = list(self.get_data_keys())
if "data" in keys:
keys.remove("data")
return keys
def is_data_sparse(self, key):
"""
:param str key: e.g. "data" or "classes"
:rtype: bool
"""
if key in self.num_outputs:
return self.num_outputs[key][1] == 1
self._load_something()
return len(self.added_data[0].features[key].shape) == 1
def get_data_dim(self, key):
"""
:param str key: e.g. "data" or "classes"
:rtype: int
:return: number of classes, no matter if sparse or not
"""
if key in self.num_outputs:
d = self.num_outputs[key][0]
if self.added_data and not self.is_data_sparse(key):
assert self.added_data[0].get_data(key).shape[1] == d
return d
self._load_something()
if len(self.added_data[0].get_data(key).shape) == 1:
return super(CachedDataset2, self).get_data_dim(key) # unknown
assert len(self.added_data[0].get_data(key).shape) == 2
return self.added_data[0].get_data(key).shape[1]
def get_data_dtype(self, key):
self._load_something()
return self.added_data[0].get_data(key).dtype