-
Notifications
You must be signed in to change notification settings - Fork 0
/
ActivationFunctions.py
executable file
·162 lines (131 loc) · 3.76 KB
/
ActivationFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import theano.tensor as T
from TheanoUtil import complex_bound
import numpy
def relu(z):
# Use fastest implementation.
# https://github.com/Theano/Theano/issues/2698
# https://github.com/Lasagne/Lasagne/pull/163#issuecomment-81806482
return (z + abs(z)) / 2.0
def clipped01lu(z):
"""
0 for x <= 0
x for 0 <= x <= 1
1 for 1 <= x
"""
# Not sure about the fastest implementation...
return relu(z) - relu(z - numpy.float32(1))
def clippedlu(z):
"""
-1 for x <= -1
x for -1 <= x <= 1
1 for 1 <= x
"""
# Not sure about the fastest implementation...
return relu(z + numpy.float32(1)) - relu(z - numpy.float32(1)) - numpy.float32(1)
def elu(z): # http://arxiv.org/pdf/1511.07289v1.pdf
return T.switch(T.ge(z,0), z, T.exp(z) - 1)
def identity(z):
return z
def softsign(z):
return z / (1.0 + abs(z))
def softsquare(z):
return 1 / (1.0 + z * z)
def maxout(z):
return T.max(z, axis=0)
def softmax(z):
assert z.ndim >= 1
if z.ndim <= 2:
return T.nnet.softmax(z)
else:
from TheanoUtil import time_batch_make_flat
z_flat = time_batch_make_flat(z)
assert z_flat.ndim == 2
return T.reshape(T.nnet.softmax(z_flat), z.shape)
def gauss(z):
return T.exp(-T.sqr(z))
def cdf(z):
"""Cumulative distribution function via erf (Error function)"""
return (numpy.float32(1) + T.erf(z)) / numpy.float32(2)
def constant_one():
return 1
def constant_zero():
return 0
# from https://github.com/MatthieuCourbariaux/BinaryNet/blob/master/Train-time/binary_net.py
from theano.scalar.basic import UnaryScalarOp, same_out_nocomplex
from theano.tensor.elemwise import Elemwise
class Round3(UnaryScalarOp):
def c_code(self, node, name, x, z, sub):
x, = x
z, = z
return "%(z)s = round(%(x)s);" % locals()
def grad(self, inputs, gout):
(gz,) = gout
return gz,
round3_scalar = Round3(same_out_nocomplex, name='round3')
round3 = Elemwise(round3_scalar)
def hard_sigmoid(x):
return T.clip((x + 1.) / 2., 0, 1)
# The neurons' activations binarization function
# It behaves like the sign function during forward propagation
# And like:
# hard_tanh(x) = 2*hard_sigmoid(x)-1
# during back propagation
def binary_tanh(x):
return 2. * round3(hard_sigmoid(x)) - 1.
def binary_sigmoid(x):
return round3(hard_sigmoid(x))
ActivationFunctions = {
'logistic': T.nnet.sigmoid,
'sigmoid': T.nnet.sigmoid, # alias
'tanh': T.tanh,
'relu': relu,
'clipped01lu': clipped01lu,
'clippedlu': clippedlu,
'elu': elu,
'identity': identity,
'one': constant_one,
'zero': constant_zero,
'softsign': softsign,
'softsquare': softsquare,
'maxout': maxout,
'sin': T.sin,
'cos': T.cos,
'complex_bound': complex_bound,
'softmax': softmax,
'gauss': gauss,
"erf": T.erf,
"exp": T.exp,
"abs": T.abs_,
"sqr": T.sqr,
"sqrt": T.sqrt,
"binary_sigmoid" : binary_sigmoid,
"binary_tanh" : binary_tanh,
"cdf": cdf
}
def strtoact(act):
"""
:type act: str | list[str]
:param act: activation function name, or multiple such as a list or separated by ":"
:rtype: theano.Op | list[theano.Op]
"""
if isinstance(act, (list, tuple)):
return [strtoact(a) for a in act]
if ":" in act:
return [strtoact(a) for a in act.split(":")]
assert act in ActivationFunctions, "invalid activation function: %s" % act
return ActivationFunctions[act]
def strtoact_single_joined(act):
"""
:type act: str | None
:param act: activation function name, or multiple such as a list or separated by ":"
:rtype: theano.Op
"""
if not act:
return identity
if ":" in act:
joined = identity
for f in [strtoact_single_joined(a) for a in act.split(":")]:
joined = lambda x: f(joined(x))
return joined
assert act in ActivationFunctions, "invalid activation function: %s" % act
return ActivationFunctions[act]