-
Notifications
You must be signed in to change notification settings - Fork 6
/
pretrain_gpt_core.py
148 lines (116 loc) · 4.56 KB
/
pretrain_gpt_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Pretrain GPT"""
from functools import partial
import torch
from megatron import get_args, get_timers, get_tokenizer, print_rank_0
from megatron.arguments import core_transformer_config_from_args
from megatron.core import tensor_parallel
from megatron.core.enums import ModelType
from megatron.core.models.gpt import GPTModel
from megatron.core.models.gpt.gpt_layer_specs import (
gpt_layer_with_transformer_engine_spec,
gpt_layer_with_transformer_engine_spec_moe
)
from megatron.core.transformer.spec_utils import import_module
from megatron.data.gpt_dataset import build_train_valid_test_datasets
from megatron.training import pretrain
from megatron.utils import (
average_losses_across_data_parallel_group,
get_ltor_masks_and_position_ids,
)
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
args = get_args()
config = core_transformer_config_from_args(args)
# NOTE: Experimental customization feature
if args.model_spec is not None:
transformer_layer_spec = import_module(args.model_spec)
else:
if args.num_experts is None:
transformer_layer_spec = gpt_layer_with_transformer_engine_spec
else:
transformer_layer_spec = gpt_layer_with_transformer_engine_spec_moe
print_rank_0('building GPT model ...')
model = GPTModel(
config=config,
transformer_layer_spec=transformer_layer_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=True,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent,
)
return model
def get_batch(data_iterator):
"""Generate a batch"""
args = get_args()
tokenizer = get_tokenizer()
# Items and their type.
keys = ['text']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
labels = tokens_[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss,
)
return tokens, labels, loss_mask, attention_mask, position_ids
def loss_func(loss_mask, output_tensor):
losses = output_tensor.float()
loss_mask = loss_mask.view(-1).float()
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss, {'lm loss': averaged_loss[0]}
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
tokens, labels, loss_mask, attention_mask, position_ids = get_batch(data_iterator)
timers('batch-generator').stop()
output_tensor = model(tokens, position_ids, attention_mask, labels=labels)
return output_tensor, partial(loss_func, loss_mask)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
print_rank_0('> building train, validation, and test datasets ' 'for GPT ...')
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
data_prefix=args.data_path,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
seq_length=args.seq_length,
seed=args.seed,
skip_warmup=(not args.mmap_warmup),
train_data_prefix=args.train_data_path,
valid_data_prefix=args.valid_data_path,
test_data_prefix=args.test_data_path,
data_cache_path=args.data_cache_path,
)
print_rank_0("> finished creating GPT datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'},
)