-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
540 lines (474 loc) · 28.1 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{mathtools}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{tcolorbox}
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage{subcaption}
\usepackage{bm}
\newcommand{\vect}[1]{\boldsymbol{\mathbf{#1}}}
% units
\newcommand{\unitLength}{{\mathcal L}}
\newcommand{\unitTime}{{\mathcal T}}
\usepackage{geometry}
\newgeometry{
left=1.5cm, right=1cm, top=1cm, bottom=1cm,
includefoot, heightrounded
}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan,
}
\let\pa\partial
\let\ep\varepsilon
\newcommand{\R}{\mathbb R}
\newcommand{\bA}{\mathbf A}
\newcommand{\bB}{\mathbf B}
\newcommand{\bC}{\mathbf C}
\newcommand{\bD}{\mathbf D}
\newcommand{\bE}{\mathbf E}
\newcommand{\bH}{\mathbf H}
\newcommand{\bI}{\mathbf I}
\newcommand{\bJ}{\mathbf J}
\newcommand{\bP}{\mathbf P}
\newcommand{\bK}{\mathbf K}
\newcommand{\bM}{\mathbf M}
\newcommand{\bQ}{\mathbf Q}
\newcommand{\bS}{\mathbf S}
\newcommand{\cV}{\mathcal{V}_{\rm div}}
\newcommand{\bV}{\mathbf V}
\newcommand{\ga}{\gamma}
\newcommand{\ba}{\mathbf a}
\newcommand{\bb}{\mathbf b}
\newcommand{\bg}{\mathbf g}
\newcommand{\bj}{\mathbf j}
\newcommand{\blf}{\mathbf f}
\newcommand{\bn}{\mathbf n}
\newcommand{\be}{\mathbf e}
\newcommand{\bp}{\mathbf p}
\newcommand{\br}{\mathbf r}
\newcommand{\bs}{\mathbf s}
\newcommand{\bT}{\mathbf T}
\newcommand{\bu}{\mathbf u}
\newcommand{\bU}{\mathbf U}
\newcommand{\bv}{\mathbf v}
\newcommand{\bw}{\mathbf w}
\newcommand{\bW}{\mathbf W}
\newcommand{\bx}{\mathbf x}
\newcommand{\by}{\mathbf y}
\newcommand{\bz}{\mathbf z}
\newcommand{\bbf}{\mathbf f}
\newcommand{\A}{\mathcal A}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\I}{\mathcal I}
\newcommand{\K}{\mathcal K}
\newcommand{\M}{\mathcal M}
\newcommand{\N}{\mathcal N}
\newcommand{\Q}{\mathcal Q}
\newcommand{\J}{\mathcal J}
\newcommand{\T}{\mathcal T}
\newcommand{\V}{\mathcal V}
\newcommand{\Div}{\mathop{\rm div}}
\newcommand{\divG}{{\mathop{\,\rm div}}_{\Gamma}}
\newcommand{\gradG}{\nabla_{\Gamma}}
\newcommand{\nablaG}{\nabla_{\Gamma}}
\newcommand{\laplG}{\Delta_{\Gamma}}
\newcommand{\cH}{\mathcal H}
\newcommand{\cD}{\mathcal D}
\newcommand{\cF}{\mathcal F}
\newcommand{\cE}{\mathcal E}
\newcommand{\cO}{\mathcal O}
\newcommand{\cT}{\mathcal T}
\newcommand{\cP}{\mathcal P}
\newcommand{\cR}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cL}{\mathcal L}
\newcommand{\rr}{\mathbb{R}}
\newcommand{\cc}{\mathbb{C}}
\newcommand{\kk}{\mathbb{K}}
\newcommand{\nn}{\mathbb{N}}
\newcommand{\dd}{\,d}
\newcommand{\zz}{\mathbb{Z}}
\newcommand{\Gs}{\mathcal{S}} %{\Gamma_\ast}
\newcommand{\OGamma}{\Omega^\Gamma_h}
\newcommand{\tA}{\widetilde{\mathcal A}}
%\newcommand{\Gsn}{{\Gamma_\ast^n}}
%\newcommand{\normal}{n}
\newcommand{\wn}{w_{\!\perp}}
\newcommand{\ddp}{\partial}
\newcommand{\ati}{\tilde{a}}
\newcommand{\wtang}{\bw_\parallel}
%\newcommand{\grad}{\nabla}
\newcommand{\jumpleft}{[\![}
\newcommand{\jumpright}{]\!]}
\newcommand{\averageleft}{\{\!\!\{}
\newcommand{\averageright}{\}\!\!\}}
\newcommand{\divergence}{\textrm{div}\ \!}
\renewcommand{\div}{\textrm{div}\ \!}
\newcommand{\HSobolev}{H}
\newcommand{\Lzwei}{L^2}
\newcommand{\Rn}{\mathbb{R}^n}
\newcommand{\Rm}{\mathbb{R}^m}
\newcommand{\tr}{{\rm tr}}
%\newcommand{\alert}[1]{{\bf #1}}
\DeclareGraphicsExtensions{.pdf,.eps,.ps,.eps.gz,.ps.gz,.eps.Y}
\def\Fh{\mathcal{F}_h}
\def\Eh{\mathcal{E}_h}
\newcommand{\la}{\left\langle}
\newcommand{\ra}{\right\rangle}
\newcommand{\Yo}{\overset{\circ}{Y}}
\newcommand{\deriv}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\bsigma}{\boldsymbol{\sigma}}
\newcommand{\DG}{D_\Gamma}
\newcommand{\DGh}{D_{\Gamma_h}}
\newcommand{\bxi}{\mbox{\boldmath$\xi$\unboldmath}}
\def\cl {\nonumber \\}
\def\el {\nonumber }
% differentials
\newcommand*\diff{\mathop{}\!\mathrm{d}}
\newcommand*\Diff[1]{\mathop{}\!\mathrm{d^#1}}
\newcommand{\anna}[2][cyan]{\emph{\textcolor{#1}{#2}}}
\newcommand{\MO}[1]{{\color{blue}#1}}
\newcommand{\VY}[1]{{\color{black!50!green}#1}}
\newcommand{\rev}[1]{{\color{red}#1}}
\newtheorem{mydef}{Definition}[section]
\newtheorem{mybem}{Bemerkung}[section]
\newtheorem{assumption}{Assumption}[section]
\newtheorem{mybsp}{Testbeispiel}[section]
\newtheorem{remark}{Remark}[section]
%\newtheorem{proposition}{Proposition}[section
%\newtheorem{corollary}{Corollary}
\def\enorm#1{|\!|\!| #1 |\!|\!|}
%\numberwithin{equation}{section}
%\numberwithin{figure}{section}
\begin{document}
\tableofcontents
\newpage
\section{NSCH system on surfaces with kinematic viscosity}
\begin{align}
\vect P\,\frac{\partial\vect u_T}{\partial t} + \vect P\,(\vect u\cdot\nabla)\vect u_T - \nu\,\vect P\divG(E_s(\vect u_T)) + u_N\,\vect H\,\vect u_T + \nabla_\Gamma p &= - \frac{\sigma_\gamma \mu \nablaG c}{\epsilon} \quad &\text{on}~\Gamma, \label{strongform-1} \\
\divG \bu & =0 \quad &\text{on}~\Gamma, \label{strongform-2}\\
\frac{\partial c}{\partial t} +\bu\cdot\nablaG c- \frac{1}{\epsilon}\divG \left(M \gradG \mu \right) &= 0 \quad &\text{on}~\Gamma \label{eq:sys_CH1}, \\
\mu &= f_0' - \epsilon^2 \laplG c \quad &\text{on}~\Gamma. \label{eq:sys_CH2}
\end{align}
System needs to be supplemented with the
definitions of mobility $M$ and free energy per unit surface $f_0$. A possible choice for $M$
is given by $M = M(c) = c(1 - c).$
This mobility is referred to as a degenerate mobility, since it is not strictly positive.
Again, a common choice for $f_0$ is given by $f_0(c) = \frac{\xi}{4} c^2(1 - c)^2,$
where $\xi$ defines the barrier height, i.e. the local maximum at $c = 1/2$ . We set $\xi = 1$ in our experiments.
\section{Tests for the paper}
\subsection{Convergence test with rotational velocity field}
Run the simulation as shown in the Figure 1.\\
{\color{red}\textbf{Parameters:}}\\
\begin{itemize}
\item Set $\rho_0=\rho_1.$
\item Set initital $\bu = (-y,x,0).$
\item Set $\textbf{f} = 0$, no external forces acting.
\item $\epsilon=10^{-2}$ for running on level 6?
\item On coarser mesh, check when it makes at least $180^\circ$ turn, then choose time interval.
\item $\eta_0=\eta_1 = 10^{-2}$
\end{itemize}
\begin{figure}[h]
\centering
\includegraphics[scale=0.5]{images/rotation.pdf}
\caption{Sphere with rotation field}
\label{fig:rotation}
\end{figure}
\subsection{Kelvin-Helmhotz instability on a sphere}
Kelvin-Helmholtz instability simulation \textbf{below} is on mesh level $l=5$ with $\epsilon = 10^{-2};$ line tension $\sigma_\gamma = 10^{-3};$ time interval $t\in [0,20]$ with 640 steps;\\
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/c0.png}
\caption{$t=0$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/c4375.png}
\caption{$t=4.375$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/c5.png}
\caption{$t=5$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/c625.png}
\caption{$t=6.25$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/c75.png}
\caption{$t=7.5$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/c20.png}
\caption{$t=20$}
\end{subfigure}
\caption{Snapshots of concentration at given $t$}
\end{figure}
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/w0.png}
\caption{$t=0$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/w4375.png}
\caption{$t=4.375$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/w5.png}
\caption{$t=5$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/w625.png}
\caption{$t=6.25$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/w75.png}
\caption{$t=7.5$}
\end{subfigure}
\begin{subfigure}[b]{0.15\textwidth}
\includegraphics[scale=0.1]{images/w20.png}
\caption{$t=20$}
\end{subfigure}
\caption{Snapshots of concentration at given $t$}
\end{figure}
Click for the animation of \href{https://www.dropbox.com/s/efymgjo6drifeoj/KH-concentration-l5-lt1e3-lmyes-ltyes.avi?dl=0}{concentration} and \href{https://www.dropbox.com/s/mtjzgtt2ec7nuzj/KH-vorticity-l5-lt1e3-lmyes-ltyes.avi?dl=0}{vorticity}.
\subsection{Rayleigh-Taylor instability on a torus }
\section{Rayleigh-Taylor instability on a torus}
To simulate RT instability we write the NS equation with dynamic viscosity: $\rho(c)=c\rho_0+(1-c)\rho_1$ and viscosity $\eta(c)=c\eta_0+(1-c)\eta_1$
\begin{align}
\rho(c)\vect P\,\frac{\partial\vect u_T}{\partial t} + \rho(c)\vect P\,(\vect u\cdot\nabla)\vect u_T - {\color{red}\frac{1}{Re}}\eta(c)\,\vect P\divG(E_s(\vect u_T)) + u_N\,\vect H\,\vect u_T + \nabla_\Gamma p &= - \frac{\sigma_\gamma \mu \nablaG c}{\epsilon} + \frac{\rho(c)\textbf{g}}{Fr^2} \quad &\text{on}~\Gamma, \label{strongform-1} \\
\divG \bu & =0 \quad &\text{on}~\Gamma, \label{strongform-2}\\
\frac{\partial c}{\partial t} +\bu\cdot\nablaG c- \frac{1}{\epsilon}\divG \left(M \gradG \mu \right) &= 0 \quad &\text{on}~\Gamma \label{eq:sys_CH1}, \\
\mu &= f_0' - \epsilon^2 \laplG c \quad &\text{on}~\Gamma. \label{eq:sys_CH2}
\end{align}
Parameter used in Kim's \cite{YANG2020113382} paper are: $Re=3000,$ $\rho_0:\rho_1=3:1,$ $\eta_0:\eta_1=1:1$ The surface tension is ignored. $Fr=0.58$
{\color{red} \textbf{Note:}We need , as we discussed in emails, $(\frac{1}{\epsilon}, \epsilon)$ scaling of chemical potential in order, and to fix that we added $\frac{1}{\epsilon}$ scaling to $\divG \left(M \gradG \mu \right)$. However, Kim takes $Pe=\frac{1}{\epsilon}$, which $\epsilon$ scaling instead of $\frac{1}{\epsilon}$.}
\subsection{NSCH for RT from Kim2020\cite{YANG2020113382}}
\begin{align}
\rho(c) \frac{\partial\vect u}{\partial t} + \rho(c)(\vect u\cdot\nabla)\vect u_T - {\color{red}\frac{1}{Re}}\eta(c)\,\divG(E_s(\vect u_T)) + \nabla_\Gamma p &= \frac{\rho(c)\textbf{g}}{Fr^2} \quad &\text{on}~\Gamma, \\
\divG \bu & =0 \quad &\text{on}~\Gamma, \\
\frac{\partial c}{\partial t} +\bu\cdot\nablaG c- \epsilon \divG \left(M \gradG \mu \right) &= 0 \quad &\text{on}~\Gamma , \\
\mu &= f_0' - \epsilon^2 \laplG c \quad &\text{on}~\Gamma.
\end{align}
\section{Testing DROPS solver}
\begin{itemize}
\item Setting line tension $\sigma_\gamma=0$ makes removes effect of CH on NS, and the solver gives exactly same result as original code.
\item Eliminating convection term from CH removes effect of CH, and solver gives same results as original phase separation codes.
\item Please see the \href{https://www.dropbox.com/sh/bun3sdmbkw9bgax/AAD5kkeIuiPMgwdWsmpdHpFFa?dl=0}{folder} This is test on level 3, the error is getting bigger in each step.
\item Tests with mesh level 6 compute nodes broke two times due write error, probably location run out of memory.\\ \textbf{\textit{ToDo:}} Set output folder to \verb|/scratch/yerbol|.
\end{itemize}
\newpage
The weak (variational) formulation of the surface Cahn--Hilliard problem \eqref{eq:sys_CH1}--\eqref{eq:sys_CH2}: Find $(c,\mu) \in H^1(\Gamma) \times H^1(\Gamma)$ %(for $\alpha>0$)
such that
\begin{align}
&\int_\Gamma \rho \frac{\partial c}{\partial t} \,v \, ds +{\color{red} \int_\Gamma (\bu\cdot\nablaG c)\, v\, ds} + \int_\Gamma M \gradG \mu \, \gradG v \, ds = 0, \label{eq:sys_CH1_weak} \\
&\int_\Gamma \mu \,q \, ds - \int_\Gamma \frac{1}{\epsilon}f_0'(c) \,q \, ds - \int_\Gamma \epsilon \gradG c \, \gradG q \, ds = 0, \label{eq:sys_CH2_weak}
\end{align}
for all $ (v,q) \in H^1(\Gamma) \times H^1(\Gamma)$.
%%%%%%%%%%%%%%%%%%%%%%%
At time instance $t^k=k\Delta t$, with time step $\Delta t=\frac{T}{N}$, $c^k$ denotes the approximation of the order parameter $c(t^k, \bx)$; similar notation is used for other quantities of interest. Further, we need second order approximation of first and second time derivatives :
\begin{equation}\label{BDF2}
\left[c\right]_t^{k} =\frac{3c^{k}-4c^{k-1}+c^{k-2}}{2\Delta t},\quad
\left[c\right]_{tt}^{k} =\frac{c^{k+1}-2c^{k}+c^{k-1}}{|\Delta t|^2},
\end{equation}
and linear extrapolation for $f_0'$ at time $t^k$: $\widetilde f_0'(c)^k=2f_0'(c^{k-1})- f_0'(c^{k-2})$. Same notations for differences and extrapolation will be used with other variables.
The semi-implicit stabilized TraceFEM for the Cahn--Hilliard equations
reads: Given $c^{k-1}_h,c^{k-2}_h\in V_h$ and $\mu^{k-1}_h,\mu^{k-2}_h\in V_h$, find $c_h^k, \mu^k \in V_h$ solving
\begin{equation}\label{eq:CH_FE}
\begin{split}
\int_{\Gamma_h} \rho \left[c_h\right]_t^{k}v_h\,ds + {\color{red} \int_{\Gamma_h} (\bu_h^k\cdot\nabla_{\Gamma_h}c_h^k )v_h\,ds }+ \int_{\Gamma_h} M(\widetilde c^k) \nabla_{\Gamma_h}\mu_h^k\cdot\nabla_{\Gamma_h}v_h\,ds + h \int_{\OGamma} (\bn_h\cdot\nabla \mu_h^k) (\bn_h\cdot\nabla v_h) \, dx\\
%
+\int_{\Gamma_h}\left\{ \mu_h^k - \beta_s|\Delta t|^2\left[{c}_h\right]_{tt}^{k-1} - \widetilde f'_0( c_h)^{k}\right\}q_h\,ds
- \int_{\Gamma_h} \epsilon^2 \gradG c_h^k \, \gradG q_h \, ds \\ -\epsilon^2 h \int_{\OGamma} ( \bn_h\cdot\nabla c_h^k) (\bn_h\cdot\nabla q_h) \, dx = 0
\end{split}
\end{equation}
for all $v_h\in V_h$ and $q_h \in V_h$, $k=2,3,\dots,N$. Again, for $k=1$ an obvious first order modification is used and we set $\beta_s=1$.
\begin{equation}\label{eq:CH_FE}
\begin{split}
\int_{\Gamma_h} \rho \frac{3c_h^k}{2\Delta t}v_h\,ds + {\color{red} \int_{\Gamma_h} (\bu_h^k\cdot\nabla_{\Gamma_h}c_h^k )v_h\,ds }+ \int_{\Gamma_h} M(\widetilde c^k) \nabla_{\Gamma_h}\mu_h^k\cdot\nabla_{\Gamma_h}v_h\,ds + h \int_{\OGamma} (\bn_h\cdot\nabla \mu_h^k) (\bn_h\cdot\nabla v_h) \, dx\\
%
+\int_{\Gamma_h}\left\{ \mu_h^k - \beta_s c_h^k - \widetilde f'_0( c_h)^{k}\right\}q_h\,ds
- \int_{\Gamma_h} \epsilon^2 \gradG c_h^k \, \gradG q_h \, ds -\epsilon^2 h \int_{\OGamma} ( \bn_h\cdot\nabla c_h^k) (\bn_h\cdot\nabla q_h) \, dx \\= \int_{\Gamma_h} \rho \frac{4c_h^{k-1}-c_h^{k-2}}{2\Delta t}v_h\,ds - \int_{\Gamma_h}\left\{\beta_s(2c_h^{k-1}-c_h^{k-2})\right\}q_h\,ds
\end{split}
\end{equation}
{\color{blue} Expend finite differences $[c_h]_t^{k}$ and $\left[{c}_h\right]_{tt}^{k-1}$ according to \eqref{BDF2} or use implicit Euler for $[c_h]_t^{k}$. Then you will see what terms go to the right-hand side and what constitutes bilinear form on each time step. Find where these bilinear forms are assembled in the code.
This will also help you to understand for to handle time derivative in the NSE below.}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Navier-Stokes equation}
The surface Stokes problem reads: For a given tangential force vector $\mathbf{f} \in L^2(\Gamma)^3$, i.e. $\mathbf{f}\cdot\bn=0$ holds, and
source term $g\in L^2(\Gamma)$, with $\int_\Gamma g\, ds=0$, find a tangential fluid vector field $\bu:\, \Gamma \to \R^3$, $\bu\cdot\bn =0$, and a surface fluid pressure $p:\, \Gamma \to \R$ such that
\begin{align} %\label{strongform}
- 2\,\bP \divG (E_s(\bu))+{\color{red}\partial_t\mathbf{u}+ (\nabla_\Gamma \mathbf{u})\mathbf{u}} +\nabla_\Gamma p &= \blf \quad \text{on}~\Gamma, \label{strongform-1} \\
\divG \bu & =0 \quad \text{on}~\Gamma, \label{strongform-2}
\end{align}
{\color{blue} For formal definition of all operators you can see \cite{jankuhn2018incompressible}, where in particular you can find the integration by part identity you are looking for (second equation from he bottom of page 4). It may be helpful to remember that a convolution from a skew-symmetric matrix is zero, that is $A:B=\mbox{tr}(AB^T)=0$, if $B=-B^T$, which implies $E_s(\bu):\nabla_\Gamma(\bu)= E_s(\bu):E_s(\bu)$, since $\nabla_\Gamma(\bu)=E_s(\bu)+\text{Scew Symmetric part}$.\\}
%As for $\mathbf{u}\cdot\nabla_\Gamma \mathbf{u}$, this notation is a bit odd. In the usual planar case, people often write $(\mathbf{u}\cdot\nabla) \mathbf{u}$, which means componentwise derivative of $\mathbf{u}$ along $\mathbf{u}$, this can be equivalently written as $(\nabla \mathbf{u})\mathbf{u}$ as a multiplication of matrix $(\nabla \mathbf{u})$ with a vector. In the surface case, I would prefer to write $(\nabla_\Gamma \mathbf{u})\mathbf{u}$, where $(\nabla_\Gamma \mathbf{u})=\mathbf{P}\nabla \mathbf{u}\mathbf{P}$ is a matrix.
We use the decomposition of a general vector field into tangential and normal components:
\begin{equation}\label{u_T_N}
\bu = \bu_T + u_N\bn,\quad \bu_T\cdot\bn=0.
\end{equation}
%We remark that further in the text we use both $u_N$ and $\bn\cdot\bu$ to denote the normal component of the velocity $\bu$.
For the weak formulation of the surface Stokes problem \eqref{strongform-1}--\eqref{strongform-2},
we need the vector Sobolev space $\bV\coloneqq H^1(\Gamma)^3$ equipped with the norm
\begin{equation} \label{H1norm}
\|\bv\|_{1}\coloneqq \left(\|\bv\|^2_{L^2(\Gamma)} + \|(\nabla\bv^e)\bP\|^2_{L^2(\Gamma)}\right)^{\frac12}
\end{equation}
and its subspace of tangential vector fields
\begin{equation} \label{defVT}
\bV_T\coloneqq \{\, \bv \in \bV\::\: \bv\cdot \bn =0\,\}.
\end{equation}
%Note that $E$ is a closed subspace of $\bV_T$ and $\mbox{dim}(E)\le 3$.
%We define the Hilbert space $\bV_T^0$ as an orthogonal complement of $E$ in $\bV_T$
%(hence $\bV_T^0 \sim \bV_T/E$).
For $\bv \in \bV$ we will use the orthogonal decomposition into tangential and normal parts
as in \eqref{u_T_N}.
%In what follows, we will need both general and tangential vector fields on $\Gamma$.
%To make the presentation clear, from now on we shall use subscript ${\,}_T$ to label tangential fields.
We define $L_0^2(\Gamma)\coloneqq \{\,p \in L^2(\Gamma)\::\:\int_\Gamma p \diff{s} = 0\,\}$.
Consider the continuous bilinear forms (with $\vect A : \vect B \coloneqq {\rm tr}\big(\vect A \vect B^T\big)$ for $\vect A, \vect B\in\mathbb{R}^{3\times3}$)
\begin{align}
a(\bu,\bv) &\coloneqq \int_\Gamma (2\,E_s(\bu):E_s(\bv)+{\color{red}\partial_t\mathbf{u}\cdot \bv+ ((\nabla_\Gamma \mathbf{u})\mathbf{u})\cdot \bv}) \diff{s}, \quad \bu,\bv \in \bV, \label{defblfa} \\
b_T(\bv,p) &\coloneqq -\int_\Gamma p\,\divG \bv_T \diff{s}, \quad \bv \in \bV, ~p \in L^2(\Gamma). \label{defblfb}
\end{align}
{\color{blue}
Time derivative should not be in the bilinear form in a finite element method. You first apply finite difference method to $\partial_t\mathbf{u}$ and then keep in the FE bilinear form only terms with $\mathbf{u}^k$. Other terms go to the ``known'' write hand side.
}
Note that in the definition of $b_T(\bv,p)$ only the {tangential} component of $\bv$ is used, i.e., $b_T(\bv,p)=b_T(\bv_T,p)$ for all $\bv \in \bV$, $p\in L^2(\Gamma)$. This property motivates the notation $b_T(\cdot,\cdot)$ instead of $b(\cdot,\cdot)$.
If $p$ is from $H^1(\Gamma)$, then integration by parts yields
\begin{equation}\label{Bform}
b_T(\bv,p)=\int_\Gamma \bv_T\cdot \gradG p \diff{s} = \int_\Gamma \bv \cdot \gradG p \diff{s}.
\end{equation}
The weak formulation of the surface Stokes problem \eqref{strongform-1}--\eqref{strongform-2}
reads: Find %$(\bv_T,p) \in \bV_T^0 \times L_0^2(\Gamma)$ (for $\alpha=0$) or
$(\bu_T,p) \in \bV_T \times L_0^2(\Gamma)$ %(for $\alpha>0$)
such that
\begin{align}
a(\bu_T,\bv_T) +b_T(\bv_T,p) &=(\blf,\bv_T) \quad \text{for all}~~\bv_T \in \bV_T, \label{Stokesweak1_1} \\
b_T(\bu_T,q) & = (-g,q) \quad \text{for all}~~q \in L^2(\Gamma). \label{Stokesweak1_2}
\end{align}
%\AZ{Here and further I replaced $g \rightarrow -g$, so everything is consistent with~\eqref{strongform-2} and~\eqref{spsystem}.}
%For $\alpha=0$, the test space $\bV_T$ can be replaced by $\bV_T^0$.
Here $(\cdot,\cdot)$ denotes the $L^2$ scalar product on $\Gamma$.
The bilinear forms that we use in the discretization method contain terms related to algebraic stability and a penalty term. We introduce the following bilinear forms:
\begin{align}\begin{split}\label{forms}
A_h(\bu^k, \bv) &\coloneqq
\int_{\Gamma} (2E_s(\bu^k) : E_s(\bv) + {\color{red}\frac{3}{2\Delta t}\bu^k\cdot \bv+ ((\nabla_\Gamma \mathbf{u}^k)\mathbf{u}^k)\cdot \bv} + \tau\,u_N^k\,v_N) \diff{s} \\ & ~~~+
\rho_u \int_{\Omega_h^{\Gamma}} ([\nabla\bu^k]\,\bn)\cdot([\nabla\bv]\,\bn) \diff{\vect x},\\
s_h(p^k,q)& \coloneqq \rho_p \int_{\OGamma} (\bn \cdot \nabla p^k) (\bn \cdot\nabla q) \, \diff{\vect x},
%b(\bu, q ) &= -\int_{\Gamma} q\,\divG \bu \diff{s},
\end{split}\end{align}
with the penalty parameter $\tau \geq 0$ and two stabilization parameters $\rho_p \geq 0$ and $\rho_u \geq 0$. In practice the (exact) normal $\bn$ used in the bilinear forms $A_h(\cdot,\cdot)$ and $s_h(\cdot,\cdot)$ is replaced by a sufficiently accurate approximation. %In the setting of parametric trace finite element methods, cf. Remark~\ref{Rem1}, such an approximation can easily be computed.
The trace finite element method reads as follows:
Given $ \bu_h^{k-2}, \bu_h^{k-2} \in \bU_h$ find $(\bu_h^k, p_h^k) \in \bU_h \times Q_h$ such that
\begin{equation} \label{discrete}
\begin{aligned}
A_h(\bu_h^k,\bv_h) + b_T(\bv_h,p_h^k) & =(\blf+\frac{4\bu^{k-1}-\bu^{k-2}}{2\Delta t},\bv_h) &\quad &\text{for all } \bv_h \in \bU_h, \\
b_T(\bu_h^k,q_h)-s_h(p_h^k,q_h) & = (-g,q_h) &\quad &\text{for all }q_h \in Q_h.
\end{aligned}
\end{equation}
We allow the following ranges of parameters:
\begin{equation} \label{parameters}
\tau= c_\tau h^{-2},\quad \rho_p= c_p h, \quad \rho_u\in [c_u h,C_u h^{-1}].
\end{equation}
Here $h$ is the characteristic mesh size of the background tetrahedral mesh, while
$c_\tau$, $c_p$, $c_u$, $C_u$ are strictly positive constants independent of $h$ and of how $\Gamma$ cuts through the background mesh. %The optimal value of those constants may depend on problem data such as $\Gamma$, but is independent of $h$ and of how $\Gamma$ cuts through the background mesh.
\newpage
\section{Coupled problem}
\subsection{Strong form}
\begin{align} %\label{strongform}
- 2\,\bP \divG (E_s(\bu))+{\color{red}\partial_t\mathbf{u}+ (\nabla_\Gamma \mathbf{u})\mathbf{u}} +\nabla_\Gamma p &= - \sigma_\gamma \mu \nablaG c \quad \text{on}~\Gamma, \label{strongform-1} \\
\divG \bu & =0 \quad \text{on}~\Gamma, \label{strongform-2}\\
\rho \frac{\partial c}{\partial t} +\bu\cdot\nablaG c- \divG \left(M \gradG \mu \right) &= 0 \quad \text{on}~\Gamma \label{eq:sys_CH1}, \\
\mu &= f_0' - \epsilon^2 \laplG c \quad \text{on}~\Gamma. \label{eq:sys_CH2}
\end{align}
\subsection{Trace FEM}
The trace finite element method reads as follows:
Given $ \bu_h^{k-2}, \bu_h^{k-2} \in \bU_h$ find $(\bu_h^k, p_h^k) \in \bU_h \times Q_h$ such that
\begin{equation} \label{discrete}
\begin{aligned}
A_h(\bu_h^k,\bv_h) + b_T(\bv_h,p_h^k) & =(\blf+\frac{4\bu^{k-1}-\bu^{k-2}}{2\Delta t},\bv_h) &\quad &\text{for all } \bv_h \in \bU_h, \\
b_T(\bu_h^k,q_h)-s_h(p_h^k,q_h) & = (-g,q_h) &\quad &\text{for all }q_h \in Q_h.
\end{aligned}
\end{equation}
The semi-implicit stabilized TraceFEM for the Cahn--Hilliard equations
reads: Given $c^{k-1}_h,c^{k-2}_h\in V_h$ and $\mu^{k-1}_h,\mu^{k-2}_h\in V_h$, find $c_h^k, \mu^k \in V_h$ solving
\begin{equation}\label{eq:CH_FE}
\begin{split}
\int_{\Gamma_h} \rho \left[c_h\right]_t^{k}v_h\,ds + {\color{red} \int_{\Gamma_h} (\bu_h^k\cdot\nabla_{\Gamma_h}c_h^k )v_h\,ds }+ \int_{\Gamma_h} M(\widetilde c^k) \nabla_{\Gamma_h}\mu_h^k\cdot\nabla_{\Gamma_h}v_h\,ds + h \int_{\OGamma} (\bn_h\cdot\nabla \mu_h^k) (\bn_h\cdot\nabla v_h) \, dx\\
%
+\int_{\Gamma_h}\left\{ \mu_h^k - \beta_s|\Delta t|^2\left[{c}_h\right]_{tt}^{k-1} - \widetilde f'_0( c_h)^{k}\right\}q_h\,ds
- \int_{\Gamma_h} \epsilon^2 \gradG c_h^k \, \gradG q_h \, ds \\ -\epsilon^2 h \int_{\OGamma} ( \bn_h\cdot\nabla c_h^k) (\bn_h\cdot\nabla q_h) \, dx = 0
\end{split}
\end{equation}
for all $v_h\in V_h$ and $q_h \in V_h$, $k=2,3,\dots,N$. Again, for $k=1$ an obvious first order modification is used and we set $\beta_s=1$.
\begin{equation}\label{eq:CH_FE}
\begin{split}
\int_{\Gamma_h} \rho \frac{3c_h^k}{2\Delta t}v_h\,ds + {\color{red} \int_{\Gamma_h} (\bu_h^k\cdot\nabla_{\Gamma_h}c_h^k )v_h\,ds }+ \int_{\Gamma_h} M(\widetilde c^k) \nabla_{\Gamma_h}\mu_h^k\cdot\nabla_{\Gamma_h}v_h\,ds + h \int_{\OGamma} (\bn_h\cdot\nabla \mu_h^k) (\bn_h\cdot\nabla v_h) \, dx\\
%
+\int_{\Gamma_h}\left\{ \mu_h^k - \beta_s c_h^k - \widetilde f'_0( c_h)^{k}\right\}q_h\,ds
- \int_{\Gamma_h} \epsilon^2 \gradG c_h^k \, \gradG q_h \, ds -\epsilon^2 h \int_{\OGamma} ( \bn_h\cdot\nabla c_h^k) (\bn_h\cdot\nabla q_h) \, dx \\= \int_{\Gamma_h} \rho \frac{4c_h^{k-1}-c_h^{k-2}}{2\Delta t}v_h\,ds - \int_{\Gamma_h}\left\{\beta_s(2c_h^{k-1}-c_h^{k-2})\right\}q_h\,ds
\end{split}
\end{equation}
\subsection{Matrices - DROPS}
\textbf{MatDescCL}\\
Velocity stiffness matrix - \verb|A| \\
Volume stabilization matrix - \verb|A_stab|\\
Convection matrix - \verb|N|\\
Mass matrix - \verb|M|\\
Normal penalty matrix - \verb|S|\\
Laplace-Beltrami matrix - \verb|LB| \\
Laplace-Beltrami stabilization matrix - \verb|LB_stab|\\
Grad-div stabilization matrix - \verb|AL| \\
Accumulated from above \verb|sumA|\\
Pressure stiffness matrix (laplace-beltrami) - \verb|A_p|\\
Pressure mass matrix - \verb|M_p|
Volume stabilization matrix - \verb|C|\\
Divergence matrix - \verb|B|\\
Rhs-curl-projection matrix - \verb|Q|\\
\textbf{VecDescCL}\\
Moment RHS - \verb|fRHS|\\
Continuity RHS - \verb|gRHS|
Grad-div stabilization RHS - \verb|alRHS|\\
Wind - \verb|w|\\
\\
Vector stiffness, divergence, pressure mass, normal stabilization, and full stabilization matrices resulting from Trace\,FEM discretization of the surface Stokes problem~\cite{surfstokes} are defined via
\begin{align}\begin{split}\label{mtx}
\langle \vect A\,\vec{\vect u}, \vec{\vect v} \rangle &\approx
\int_{\Gamma} \big( 2\,E_{s,\,\Gamma}(\vect u) : E_{s,\,\Gamma}(\vect v) + \vect u\cdot\vect v + \tau\,(\vect u\cdot\vect n_\Gamma)\,(\vect v\cdot\vect n_\Gamma) \big) \diff{s} \\
&+
\rho_u \int_{\Omega_h^{\Gamma}} \frac{\partial \vect u}{\partial\vect n_\Gamma}\cdot\frac{\partial \vect v}{\partial\vect n_\Gamma} \diff{\vect x}, \quad \vect A \in \mathbb R^{n_{\vect A} \times n_{\vect A}},\\
\langle \vect B\,\vec{\vect u}, \vec{\vect q} \rangle &\approx
\int_{\Gamma} \nabla_\Gamma q \cdot \vect u \diff{s}, \quad \vect B \in \mathbb R^{n_{\vect S} \times n_{\vect A}},\\
\langle \vect M_0\,\vec{\vect p}, \vec{\vect q} \rangle &\approx
\int_{\Gamma} p\,q \diff{s}, \quad \vect M_0 \in \mathbb R^{n_{\vect S} \times n_{\vect S}},\\
\langle \vect C_n\,\vec{\vect p}, \vec{\vect q} \rangle &\approx
\rho_p \int_{\Omega^{\Gamma}_h} \frac{\partial p}{\partial\vect n_\Gamma} \frac{\partial q}{\partial\vect n_\Gamma} \diff{\vect x}, \quad \vect C_n \in \mathbb R^{n_{\vect S} \times n_{\vect S}},\\
\langle \vect C_{\text{full}}\,\vec{\vect p}, \vec{\vect q} \rangle &\approx
\rho_p \int_{\Omega^{\Gamma}_h} \nabla p \cdot \nabla q \diff{\vect x}, \quad \vect C_{\text{full}} \in \mathbb R^{n_{\vect S} \times n_{\vect S}},
\end{split}\end{align}\\
\begin{equation}\label{mtx_cons}
\langle \vect A_s\,\vec{\vect u}, \vec{\vect v} \rangle \approx \int_{\Gamma} 2\,\big( E_{s,\,\Gamma}(\vect u) - (\vect u\cdot\vect n_{\Gamma})\,\vect H_{\Gamma} \big) : \big( E_{s,\,\Gamma}(\vect v) - (\vect v\cdot\vect n_\Gamma)\,\vect H_{\Gamma} \big) \diff{s},
\end{equation}
where the shape operator is defined as~$\vect H_\Gamma \coloneqq \nabla_\Gamma \vect n_\Gamma \coloneqq \vect P_{\Gamma}\,\nabla \vect n^e_\Gamma\,\vect P_{\Gamma}$, $\vect H_\Gamma : \mathcal{O}(\Gamma) \rightarrow \mathbb{R}^3$. We refer to~\eqref{mtx_cons} as \textbf{consistent formulation}.
\newpage
\section{Coupled problem with dynamic viscosity}
\subsection{Strong form}
%\begin{align} %\label{strongform}
%- 2\,\bP \divG (E_s(\bu))+{\color{red}\partial_t\mathbf{u}+ (\nabla_\Gamma \mathbf{u})\mathbf{u}} +\nabla_\Gamma p &= - \sigma_\gamma \mu \nablaG c \quad \text{on}~\Gamma, \label{strongform-1} \\
%\divG \bu & =0 \quad \text{on}~\Gamma, \label{strongform-2}\\
%\rho \frac{\partial c}{\partial t} +\bu\cdot\nablaG c- \divG \left(M \gradG \mu \right) &= 0 \quad \text{on}~\Gamma \label{eq:sys_CH1}, \\
%\mu &= f_0' - \epsilon^2 \laplG c \quad \text{on}~\Gamma. \label{eq:sys_CH2}
%\end{align}
\newpage
\bibliographystyle{unsrt}%Used BibTeX style is unsrt
\bibliography{references}
\end{document}