forked from dennybritz/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker.py
209 lines (172 loc) · 7.37 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gym
import sys
import os
import itertools
import collections
import numpy as np
import tensorflow as tf
from inspect import getsourcefile
current_path = os.path.dirname(os.path.abspath(getsourcefile(lambda:0)))
import_path = os.path.abspath(os.path.join(current_path, "../.."))
if import_path not in sys.path:
sys.path.append(import_path)
# from lib import plotting
from lib.atari.state_processor import StateProcessor
from lib.atari import helpers as atari_helpers
from estimators import ValueEstimator, PolicyEstimator
Transition = collections.namedtuple("Transition", ["state", "action", "reward", "next_state", "done"])
def make_copy_params_op(v1_list, v2_list):
"""
Creates an operation that copies parameters from variable in v1_list to variables in v2_list.
The ordering of the variables in the lists must be identical.
"""
v1_list = list(sorted(v1_list, key=lambda v: v.name))
v2_list = list(sorted(v2_list, key=lambda v: v.name))
update_ops = []
for v1, v2 in zip(v1_list, v2_list):
op = v2.assign(v1)
update_ops.append(op)
return update_ops
def make_train_op(local_estimator, global_estimator):
"""
Creates an op that applies local estimator gradients
to the global estimator.
"""
local_grads, _ = zip(*local_estimator.grads_and_vars)
# Clip gradients
local_grads, _ = tf.clip_by_global_norm(local_grads, 5.0)
_, global_vars = zip(*global_estimator.grads_and_vars)
local_global_grads_and_vars = list(zip(local_grads, global_vars))
return global_estimator.optimizer.apply_gradients(local_global_grads_and_vars,
global_step=tf.contrib.framework.get_global_step())
class Worker(object):
"""
An A3C worker thread. Runs episodes locally and updates global shared value and policy nets.
Args:
name: A unique name for this worker
env: The Gym environment used by this worker
policy_net: Instance of the globally shared policy net
value_net: Instance of the globally shared value net
global_counter: Iterator that holds the global step
discount_factor: Reward discount factor
summary_writer: A tf.train.SummaryWriter for Tensorboard summaries
max_global_steps: If set, stop coordinator when global_counter > max_global_steps
"""
def __init__(self, name, env, policy_net, value_net, global_counter, discount_factor=0.99, summary_writer=None, max_global_steps=None):
self.name = name
self.discount_factor = discount_factor
self.max_global_steps = max_global_steps
self.global_step = tf.contrib.framework.get_global_step()
self.global_policy_net = policy_net
self.global_value_net = value_net
self.global_counter = global_counter
self.local_counter = itertools.count()
self.sp = StateProcessor()
self.summary_writer = summary_writer
self.env = env
# Create local policy/value nets that are not updated asynchronously
with tf.variable_scope(name):
self.policy_net = PolicyEstimator(policy_net.num_outputs)
self.value_net = ValueEstimator(reuse=True)
# Op to copy params from global policy/valuenets
self.copy_params_op = make_copy_params_op(
tf.contrib.slim.get_variables(scope="global", collection=tf.GraphKeys.TRAINABLE_VARIABLES),
tf.contrib.slim.get_variables(scope=self.name+'/', collection=tf.GraphKeys.TRAINABLE_VARIABLES))
self.vnet_train_op = make_train_op(self.value_net, self.global_value_net)
self.pnet_train_op = make_train_op(self.policy_net, self.global_policy_net)
self.state = None
def run(self, sess, coord, t_max):
with sess.as_default(), sess.graph.as_default():
# Initial state
self.state = atari_helpers.atari_make_initial_state(self.sp.process(self.env.reset()))
try:
while not coord.should_stop():
# Copy Parameters from the global networks
sess.run(self.copy_params_op)
# Collect some experience
transitions, local_t, global_t = self.run_n_steps(t_max, sess)
if self.max_global_steps is not None and global_t >= self.max_global_steps:
tf.logging.info("Reached global step {}. Stopping.".format(global_t))
coord.request_stop()
return
# Update the global networks
self.update(transitions, sess)
except tf.errors.CancelledError:
return
def _policy_net_predict(self, state, sess):
feed_dict = { self.policy_net.states: [state] }
preds = sess.run(self.policy_net.predictions, feed_dict)
return preds["probs"][0]
def _value_net_predict(self, state, sess):
feed_dict = { self.value_net.states: [state] }
preds = sess.run(self.value_net.predictions, feed_dict)
return preds["logits"][0]
def run_n_steps(self, n, sess):
transitions = []
for _ in range(n):
# Take a step
action_probs = self._policy_net_predict(self.state, sess)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
next_state, reward, done, _ = self.env.step(action)
next_state = atari_helpers.atari_make_next_state(self.state, self.sp.process(next_state))
# Store transition
transitions.append(Transition(
state=self.state, action=action, reward=reward, next_state=next_state, done=done))
# Increase local and global counters
local_t = next(self.local_counter)
global_t = next(self.global_counter)
if local_t % 100 == 0:
tf.logging.info("{}: local Step {}, global step {}".format(self.name, local_t, global_t))
if done:
self.state = atari_helpers.atari_make_initial_state(self.sp.process(self.env.reset()))
break
else:
self.state = next_state
return transitions, local_t, global_t
def update(self, transitions, sess):
"""
Updates global policy and value networks based on collected experience
Args:
transitions: A list of experience transitions
sess: A Tensorflow session
"""
# If we episode was not done we bootstrap the value from the last state
reward = 0.0
if not transitions[-1].done:
reward = self._value_net_predict(transitions[-1].next_state, sess)
# Accumulate minibatch exmaples
states = []
policy_targets = []
value_targets = []
actions = []
for transition in transitions[::-1]:
reward = transition.reward + self.discount_factor * reward
policy_target = (reward - self._value_net_predict(transition.state, sess))
# Accumulate updates
states.append(transition.state)
actions.append(transition.action)
policy_targets.append(policy_target)
value_targets.append(reward)
feed_dict = {
self.policy_net.states: np.array(states),
self.policy_net.targets: policy_targets,
self.policy_net.actions: actions,
self.value_net.states: np.array(states),
self.value_net.targets: value_targets,
}
# Train the global estimators using local gradients
global_step, pnet_loss, vnet_loss, _, _, pnet_summaries, vnet_summaries = sess.run([
self.global_step,
self.policy_net.loss,
self.value_net.loss,
self.pnet_train_op,
self.vnet_train_op,
self.policy_net.summaries,
self.value_net.summaries
], feed_dict)
# Write summaries
if self.summary_writer is not None:
self.summary_writer.add_summary(pnet_summaries, global_step)
self.summary_writer.add_summary(vnet_summaries, global_step)
self.summary_writer.flush()
return pnet_loss, vnet_loss, pnet_summaries, vnet_summaries