diff --git a/.gitignore b/.gitignore index b6e4761..f596516 100644 --- a/.gitignore +++ b/.gitignore @@ -69,7 +69,7 @@ instance/ .scrapy # Sphinx documentation -docs/_build/ +# docs/_build/ # PyBuilder target/ @@ -127,3 +127,7 @@ dmypy.json # Pyre type checker .pyre/ + +# Example resulting files +examples/tutorials-jupyter/*/*.csv +examples/tutorials-jupyter/*/*.png diff --git a/.readthedocs.yaml b/.readthedocs.yaml new file mode 100644 index 0000000..1c601e8 --- /dev/null +++ b/.readthedocs.yaml @@ -0,0 +1,34 @@ +# .readthedocs.yaml +# Read the Docs configuration file +# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details + +# Required +version: 2 + +# Set the OS, Python version and other tools you might need +build: + os: ubuntu-22.04 + tools: + python: "3.9" + # You can also specify other tool versions: + # nodejs: "19" + # rust: "1.64" + # golang: "1.19" + +# Build documentation in the "docs/" directory with Sphinx +sphinx: + configuration: docs/conf.py + +# Optionally build your docs in additional formats such as PDF and ePub +# formats: +# - pdf +# - epub + +# Optional but recommended, declare the Python requirements required +# to build your documentation +# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html +python: + install: + - method: pip + path: . + - requirements: docs/requirements.txt \ No newline at end of file diff --git a/docs/API.rst b/docs/API.rst new file mode 100644 index 0000000..4079efc --- /dev/null +++ b/docs/API.rst @@ -0,0 +1,7 @@ +API +===== + +.. toctree:: + :maxdepth: 4 + + opqua diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 0000000..d4bb2cb --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,20 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line, and also +# from the environment for the first two. +SPHINXOPTS ?= +SPHINXBUILD ?= sphinx-build +SOURCEDIR = . +BUILDDIR = _build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/docs/_build/doctrees/API.doctree b/docs/_build/doctrees/API.doctree new file mode 100644 index 0000000..ab33f67 Binary files /dev/null and b/docs/_build/doctrees/API.doctree differ diff --git a/docs/_build/doctrees/about.doctree b/docs/_build/doctrees/about.doctree new file mode 100644 index 0000000..481e8e9 Binary files /dev/null and b/docs/_build/doctrees/about.doctree differ diff --git a/docs/_build/doctrees/basic_usage.doctree b/docs/_build/doctrees/basic_usage.doctree new file mode 100644 index 0000000..001bf51 Binary files /dev/null and b/docs/_build/doctrees/basic_usage.doctree differ diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle new file mode 100644 index 0000000..ed0f9d1 Binary files /dev/null and b/docs/_build/doctrees/environment.pickle differ diff --git a/docs/_build/doctrees/evolution.doctree b/docs/_build/doctrees/evolution.doctree new file mode 100644 index 0000000..f23a600 Binary files /dev/null and b/docs/_build/doctrees/evolution.doctree differ diff --git a/docs/_build/doctrees/index.doctree b/docs/_build/doctrees/index.doctree new file mode 100644 index 0000000..72b872b Binary files /dev/null and b/docs/_build/doctrees/index.doctree differ diff --git a/docs/_build/doctrees/intervention.doctree b/docs/_build/doctrees/intervention.doctree new file mode 100644 index 0000000..b7f817f Binary files /dev/null and b/docs/_build/doctrees/intervention.doctree differ diff --git a/docs/_build/doctrees/metapopulation.doctree b/docs/_build/doctrees/metapopulation.doctree new file mode 100644 index 0000000..3fcd025 Binary files /dev/null and b/docs/_build/doctrees/metapopulation.doctree differ diff --git a/docs/_build/doctrees/model_documentation.doctree b/docs/_build/doctrees/model_documentation.doctree new file mode 100644 index 0000000..f371bd7 Binary files /dev/null and b/docs/_build/doctrees/model_documentation.doctree differ diff --git a/docs/_build/doctrees/nbsphinx/basic_usage.ipynb b/docs/_build/doctrees/nbsphinx/basic_usage.ipynb new file mode 100644 index 0000000..2511ea8 --- /dev/null +++ b/docs/_build/doctrees/nbsphinx/basic_usage.ipynb @@ -0,0 +1,407 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basic usage" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make a new model object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. \n", + "\n", + "Here, we will use the default parameter set for a host-host transmission model" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup('my_setup', preset='host-host')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation('my_population', 'my_setup', num_hosts=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the simulation for 200 time units" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 71.89423840111455, event: CONTACT_HOST_HOST\n", + "Simulating time: 136.14665780191842, event: RECOVER_HOST\n", + "Simulating time: 200.15737579926133 END\n" + ] + } + ], + "source": [ + "my_model.run(0,200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Save the model results to a table" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19414451599121096s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01929759979248047s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.013352155685424805s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01486515998840332s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 124 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02699422836303711s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.05492806434631348s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08415079116821289s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1292 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1495 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1956 out of 1956 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2AAAAAAAAAANaNTrue
30.0my_populationHostmy_population_3AAAAAAAAAANaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
195595200.0my_populationHostmy_population_95AAAAAAAAAANaNTrue
195596200.0my_populationHostmy_population_96NaNNaNTrue
195597200.0my_populationHostmy_population_97AAAAAAAAAANaNTrue
195598200.0my_populationHostmy_population_98AAAAAAAAAANaNTrue
195599200.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

195600 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 AAAAAAAAAA \n", + "3 0.0 my_population Host my_population_3 AAAAAAAAAA \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "195595 200.0 my_population Host my_population_95 AAAAAAAAAA \n", + "195596 200.0 my_population Host my_population_96 NaN \n", + "195597 200.0 my_population Host my_population_97 AAAAAAAAAA \n", + "195598 200.0 my_population Host my_population_98 AAAAAAAAAA \n", + "195599 200.0 my_population Host my_population_99 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "195595 NaN True \n", + "195596 NaN True \n", + "195597 NaN True \n", + "195598 NaN True \n", + "195599 NaN True \n", + "\n", + "[195600 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame('Basic_example.csv')\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wU9fkH8M/M9tvrhXKANEFALCBgwYK9S0yMJppoLDExicYUTYzGmKi/aExijdFE1KiJGnsUUbEjSlNEqiCduwOu320vM78/lt3bnbYze3u3Vz7v18uX7Mzs7ve2zM4883yfR5BlWQYRERERERERERERFYRY6AEQERERERERERERDWYM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRAdkLPQDqnlAohNWrVwMAampqYLfzLSUiIiIiIiLKt1gshsbGRgDAQQcdBLfbXeAREdFAwoheP7d69WrMmjWr0MMgIiIiIiIiGjSWLVuGmTNnFnoYRDSAsNwBERERERERERERUQExk7afq6mpSf172bJlGD58eAFHQ0RERERERDQwNTQ0pGaypp+LExHlA4O0/Vx6Ddrhw4dj5MiRBRwNERERERER0cDHfjBElG8sd0BERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBDfogbSQSwSOPPIJTTz0Vw4cPh8vlQnFxMQ444ABceuml+Pjjj009zoIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCgh/8CIiIiIiIiIiIi6s8EWZblQg+iULZv344zzzwTa9euNdzu6quvxr333gtBEFTrJEnClVdeiXnz5une/4orrsDDDz8MUcx/THzXrl0YNWoUAGDnzp0YOXJk3p+DiIiIiIiIaLDj+TcR9aRBm0kbjUYzArQHH3wwHn/8cXzyySd46623cPPNN8Pr9QIA7r//ftx5552aj3PjjTemArTTpk3D008/jWXLluHpp5/GtGnTAACPPPIIbrrppl74q4iIiIiIiIiIiKi/GbSZtM8//zy++c1vAgCOPPJILFq0CDabLWObTz/9FEceeSSi0SjKy8vR2NgIu92eWr9x40YceOCBiMVimDFjBj788EN4PJ7U+kAggOOOOw4rVqyA3W7H+vXrsf/+++f17+CVPCIiIiIiIqKex/NvIupJgzaTNr3W7A033KAK0ALAYYcdhrPOOgsA0NbWhvXr12esv+eeexCLxQAksm3TA7QAUFRUhPvvvx8AEIvFcPfdd+f1byAiIiIiIiIiIqL+b9AGaSORSOrf48aN091u/PjxmveRZRmvvPIKAGDSpEk44ogjNO9/xBFH4IADDgAAvPLKKxikictERERERERERESkY9AGaZOBUwDYsmWL7nabN28GAAiCgAkTJqSWb926FfX19QCA4447zvC5kuvr6uqwbdu2XIdMREREREREREREA5A9+yYD07e//W3cdNNN6OjowJ133okzzjhDVfJg5cqVmD9/PgDgwgsvRGlpaWrdunXrUv+eNGmS4XOlr1+/fj3Gjh1repy7du0yXN/Q0GD6sfoCKdKBwIa/IR7Yhbh/J+L+Xag+42MIdnehh0ZERERERERERFQQgzZIW11djSeffBLf/va3sXjxYsycORPXXnstJk6cCJ/Ph8WLF+Mvf/kLIpEIpk+fjr/85S8Z908PnmYrFp4sLA4kiotbkX7fgaLzs99k3I4H6mAvHa+zNRERERERERER0cA2aIO0AHDOOefg008/xV/+8hfMmzcPl1xyScb6oUOH4tZbb8X3v/99FBUVZazr7OxM/bu4uNjwebxeb+rfPp8vDyPvv0RnKQRHCeRo1+sX9+9kkJaIiIiIiIiIiAatQR2kjUQieOKJJ3Qbeu3ZswdPPfUUxo4di3POOSdjXSgUSv3b6XQaPo/L5Ur9OxgMWhpjtszbhoYGzJo1y9JjFpqtaCRi7etTt+MB45IOREREREREREREA9mgDdL6/X6cfvrpWLRoEWw2G66//npceumlGDduHEKhEJYuXYo//OEP+Oijj/C1r30Nf/7zn/Hzn/88dX+3u6uGaiQSMXyucDic+rfH47E0zmylFPoj0TsKSAvSSn4GaYmIiIiIiIiIaPASCz2AQrnllluwaNEiAMC8efNw5513YtKkSXA6nSgtLcXJJ5+M9957D8cffzxkWcZ1112HVatWpe5fUlKS+ne2EgZ+vz/172ylEQYDmzcz8BwPWKvTS0RERERERERENJAMyiCtLMt49NFHAQATJ05U1aJNstvtuPXWWwEAkiTh8ccfT61Lz3BNbyKmJb1kwUBsBGaVrUgRpGUmLRERERERERERDWKDMki7Z88etLS0AACmTZtmuO1hhx2W+veGDRtS/54yZYrmci3p6ydPnmxprAORzZsZqI77mUlLRERERERERESD16AM0trtXaV4Y7GY4bbRaFTzfmPHjkVtbS0A4IMPPjB8jA8//BAAMGLECIwZM8bqcAccUZFJK7FxGBERERERERERDWKDMkhbWVmJ0tJSAMAnn3xiGKhND8COHTs29W9BEDB37lwAiUzZJUuWaN5/yZIlqUzauXPnQhCEbo+/v1Nm0kqhRsRDjQUaDRERERERERERUWENyiCtKIo488wzAQD19fW4/fbbNbdrbW3Fr371q9Tts846K2P9tddeC5vNBgC4+uqrEQwGM9YHg0FcffXVABJZuNdee22+/oR+zV42EYK9KGNZdM/iAo2GiIiIiIiIiIiosAZlkBYAbr75ZhQVJQKFt9xyC8455xy88MILWLlyJT755BPcfffdOPTQQ7Fu3ToAwIknnohTTjkl4zEmTpyI6667DgCwYsUKzJ49G88++yxWrFiBZ599FrNnz8aKFSsAANdddx0mTJjQi39h3yWIDjhqjsxYFtm7qECjISIiIiIiIiIiKixBlmW50IMolLfffhvf/va30dTUZLjdCSecgOeffx4VFRWqdZIk4fvf/z4effRR3ftffvnl+Mc//gFRzH9MfNeuXRg1KlE+YOfOnRg5cmSWe/QNnStvgW/V71O3HdWzUH3W0gKOiIiIiIiIiEhffz3/JqL+YdBm0gLASSedhA0bNuDOO+/EnDlzUFNTA4fDAY/Hg7Fjx+L888/Hyy+/jLffflszQAskSifMmzcP8+fPx9y5c1FbWwun04na2lrMnTsXr7/+Oh555JEeCdD2Z86hx2TcjjZ/BinqL9BoiIiIiIiIiIiICmdQZ9IOBP31Sp4U9WHPf8oBOZ5aVnnqO3ANP6FwgyIiIiIiIiLS0V/Pv4mof2B6JxWE6CiGo2p6xrLIHtalJSIiIiIiIiKiwYdBWioYR81RGbdj7RsKNBIiIiIiIiIiIqLCYZCWCkZ0lmUuSCt9QERERERERERENFgwSEsFJGTelKXCDIOIiIiIiIiIiKiAGKSlwhEUQVqwhx0REREREREREQ0+DNJS4QiZHz9ZZpCWiIiIiIiIiIgGHwZpqYAUmbRSuDDDICIiIiIiIiIiKiAGaalg5Ghnxu3wrtcLNBIiIiIiIiIiIqLCYZCWCibc8Hahh0BERERERERERFRwDNJSwUi+Hapl8UBDAUZCRERERERERERUOAzSUsHYy6eolkWbPyvASIiIiIiIiIiIiAqHQVoqHJtLtSjawiAtERERERERERENLgzSUsEIokO1jJm0REREREREREQ02DBIS4UjqIO0seaVBRgIERERERERERFR4TBISwUj2JyqZXH/dkih5gKMhoiIiIiIiIiIqDAYpKWCcQ49VnN5rHNzL4+EiIiIiIiIiIiocBikpYIpmnAFxKJa9Qo53vuDISIiIiIiIiIiKhAGaalgBLsb1ed8rl4hS70+FiIiIiIiIiIiokJhkJYKyuaugeAsVyyVCzEUIiIiIiIiIiKigmCQlgpPyPwYysykJSIiIiIiIiKiQYRBWuoDBMVtZtISEREREREREdHgwSAtFZygyKRlTVoiIiIiIiIiIhpMGKSlwhNdGTfjvm2FGQcREREREREREVEBMEhLBeeonplxO7TjlQKNhIiIiIiIiIiIqPcxSEsF597vaxm3w/VvQY4FCjMYIiIiIiIiIiKiXsYgLRWce9RZgGDrWhAPIlz3VuEGRERERERERERE1IsYpKWCE12VcA47LmNZaMdLBRoNERERERERERFR72KQlvoEZcmD0M5XIUuxwgyGiIiIiIiIiIioFzFIS32Ce9TcjNtypBWRPYsKNBoiIiIiIiIiIqLewyAt9Qm24v1gr5yWsSza/FmBRkNERERERERERNR7GKSlPsNeMj7jthxtL9BIiIiIiIiIiIiIeg+DtNRnCM7SjNtSpKNAIyEiIiIiIiIiIuo9DNJSnyHYSzJuy7HOAo2EiIiIiIiIiIio9zBIS32G6FAEaaMM0hIRERERERER0cDHIC31GcpyBwzSEhERERERERHRYMAgLfUZynIHUpQ1aYmIiIiIiIiIaOBjkJb6DNFZnnFbCtQXZiBERERERERERES9iEFa6jPs5ZMzbsd92yCFmgs0GiIiIiIiIiIiot7BIC31GfbyKYDNnbEs2vJZgUZDRERERERERETUOxikpT5DEB1wVBySsSzatKJAoyEiIiIiIiIiIuodDNJSn+KonpFxO9r8aYFGQkRERERERERE1DsYpKU+xVF1WMbt0PYX0LHsZwhue6FAIyIiIiIiIiIiIupZDNJSn6LMpAUA/7p70Pb+eQhue64AIyIiIiIiIiIiIupZDNJSn2Ivm6xqHpYU+PKhXh4NERERERERERFRz2OQlvoUQbTDXjpRc12k4d1eHg0REREREREREVHPY5CW+hx76f6FHgIREREREREREVGvYZCW+hxbiXaQVvQM7+WREBERERERERER9TwGaanP0c2kFWy9OxAiIiIiIiIiIqJeMCiDtHPmzIEgCJb+e//993Ufb8GCBTj33HMxcuRIuFwujBw5Eueeey4WLFjQe3/UAKKXSStH23t5JERERERERERERD3PXugB9AeiKGLChAmq5ZIk4corr8S8efMyltfV1aGurg4vv/wyrrjiCjz88MMQxUEZD8+JXiatHO2ELMUhiMyoJSIiIiIiIiKigWNQBmkfe+wx+P1+w23WrVuHCy64AABw4oknYsSIEaptbrzxxlSAdtq0abj++usxfvx4bN68GX/605+wcuVKPPLII6ipqcH//d//5f8PGaDEohGAIAKypFonRVpgc9cUYFREREREREREREQ9Y1AGaceOHZt1myeffDL174svvli1fuPGjfjzn/8MAJgxYwY+/PBDeDweAMDMmTNxzjnn4LjjjsOKFStw11134bLLLsP+++vUWqUMgiCi6IAfIbDhAdW6eOdWBmmJiIiIiIiIiGhA4Rx8DZIk4d///jcAoLi4GF//+tdV29xzzz2IxWIAgPvvvz8VoE0qKirC/fffDwCIxWK4++67e3jUA0vp4fei/Nh/q5bHO7cUYDREREREREREREQ9h0FaDe+88w7q6uoAAOeddx6Kiooy1suyjFdeeQUAMGnSJBxxxBGaj3PEEUfggAMOAAC88sorkGW5B0c9sAiCCM+4C+GsPTljedzHIC0REREREREREQ0sDNJqeOKJJ1L/1ip1sHXrVtTX1wMAjjvuOMPHSq6vq6vDtm3b8jfIQcJenFmaIsZMWiIiIiIiIiIiGmAGZU1aIz6fDy+99BIAYPTo0ZgzZ45qm3Xr1qX+PWnSJMPHS1+/fv16U/Vw0+3atctwfUNDg6XH629sJeMybrPcARERERERERERDTQM0iq88MIL8Pv9AIDvfOc7EARBtU164HTkyJGGjzdq1KjUv3fu3Gl5POn3H4wYpCUiIiIiIiIiooGO5Q4UspU6AIDOzs7Uv4uLiw0fz+v1pv7t8/m6ObrBx16sCNIGdkKWogUaDRERERERERERUf4xkzbNrl278P777wNINP2aOHGi5nahUCj1b6fTafiYLpcr9e9gMGh5TNmybxsaGjBr1izLj9tfKDNpIUuI+3bAXjq+MAMiIiIiIiIiIiLKMwZp0zz11FOQJAkAcMkll+hu53a7U/+ORCKGjxkOh1P/9ng8lseUrZzCQCe6KiA4yyFH2lLL4r4tDNISEREREREREdGAwXIHaZ588kkAiezXCy64QHe7kpKS1L+zlTBI1rcFspdGIG3KbNoY69ISEREREREREdEAwiDtPitWrMC6desAAGeddRYqKip0t03Pbk1vIqYlvVzBYG8ClitVXVoGaYmIiIiIiIiIaABhkHaf9IZhRqUOAGDKlCmpf2/YsMFw2/T1kydPznF0g5syk5ZBWiIiIiIiIiIiGkgYpAUQjUbxzDPPAABqampw+umnG24/duxY1NbWAgA++OADw20//PBDAMCIESMwZsyY7g92EFKVO/AxSEtERERERERERAMHg7QAFixYgMbGRgDAhRdeCLvduJ+aIAiYO3cugESm7JIlSzS3W7JkSSqTdu7cuRAEIY+jHjzsxWMybkv+ndobEhERERERERER9UMM0iKz1MHFF19s6j7XXnstbDYbAODqq69GMBjMWB8MBnH11VcDAOx2O6699tr8DHYQEpyZ9YGlaGeBRkJERERERERERJR/gz5I29raitdeew0AMHXqVEyfPt3U/SZOnIjrrrsOQKLp2OzZs/Hss89ixYoVePbZZzF79mysWLECAHDddddhwoQJPfMHDAKCoyRzQTwEWYoWZjBERERERERERER5ZjyvfxB49tlnEQ6HAZjPok26/fbbsXfvXjz66KNYuXIlvvWtb6m2ufzyy3HbbbflZayDlagM0gKQo50QXJUFGA0REREREREREVF+DfpM2ieffBIAYLPZcNFFF1m6ryiKmDdvHubPn4+5c+eitrYWTqcTtbW1mDt3Ll5//XU88sgjEMVB/zJ3iyqTFix5QEREREREREREA8egz6RdvHhxtx/jjDPOwBlnnJGH0ZAWwV6sWtb4/BgAgGfC5bB5R8E7+acQXeW9OzAiIiIiIiIiIqI8GPRBWur7BNEGwV4EORZQrQtumgcACNe/heozuh9wJyIiIiIiIiIi6m2ch0/9guAoM1wf3fsxYp1be2k0RERERERERERE+cMgLfULtqIRWbeRQnt7YSRERERERERERET5xSAt9Qu24v2ybyRFe34gREREREREREREecYgLfULNm/2IK3MIC0REREREREREfVDDNJSvyCaCNIyk5aIiIiIiIiIiPojBmmpX2AmLRERERERERERDVQM0lK/wJq0REREREREREQ0UDFIS/2CvXhs1m1kmUFaIiIiIiIiIiLqfxikpX5BdFfDNeoc440EW+8MhoiIiIiIiIiIKI8YpKV+o2LOf1F21D/h2f97muvlmL93B0RERERERERERJQHDNJSvyHYXCiaeAXKj35Mc70c6ejlEREREREREREREXUfg7Q0YMhRBmmJiIiIiIiIiKj/sRd6AET5IjFIS0RE/Ywky3h0jQ8LdwThsQs4aT8PThjlRm0xD9GIekNnRMKCrQE4bAJOH1MEt10o9JDIQEsojje3BeF1JN4vh43vFxERDRw8A6ABg5m0RETU3zz8RSfe3xUCAARjMl7dEsA7O4J48MQqeOyc8ETUk2RZxq1L27C9IwYA2NQaxfUzyws7KNIlyTJ++3ErmoISAGCXL44fHVJa4FERERHlD4/+qV8SPcNVy1iTloiI+ptkgDZdICbj872RAoyGaHDZ3hFLBWgB4NO9EUTicgFHREa+aIykArQA8IHG/pOIiKg/Y5CW+qXSGXeplknRzgKMhIiIKP/q/PFCD4FowGsNS6plMYlB2r6qKcT3i4iIBjYGaalf8oy/CK5R52QsY7kDIiIaKMpdPEQj6mla1UwZ8uu7nBq7xVCM7xgREQ0cPAOgfsu937kZtxmkJSKigSLMKddEPU8jSsuvXt/l0mgSFmCQloiIBhAGaanfEpyZjQIkBmmJiGiACDPwQFQQEqfP91l2UStIqy6BQERE1F/ZCz0AolyJjswgbbxjEzqW/wKRPR/BOeQouMddCGf1zAKNjoiISN+uzphm07CkZzf6cWStCzUeG/60oh2rGiO48qASFNkFbGqLYtYwFyZVOg2foyUUx5vbgih2ijh9jEczwEE0mGl9I7p7feSrtigW14cwptSOY0e4IQj83uWLVvw8uO8N80Ul/HFZG75qi+GaaaU4ariLrz0REfU7DNJSvyUogrQA4F/7VwBAtGkZ/BseRM25G2AvGdvbQyMiItLli0r4zeLWrCUNbv64FTZBSDU3+sfqrgaZ87cG8adjKjG6VPtQLi7JuGlxK5r3Ndqp64zhh4eofzeJBjNBI0zbnUTa3f4Ybv64NVUyIRIHTh7tyf0BKUNMVr85wWhi2eVvNaWW3beyA8WOMhxS4+q1sREREeUDyx1QvyU4Sow3kCIIbn6idwZDRERk0uK6kKmasx0RWbP7fNIzX/p0161sjKQCtADwnkHWLtFgpZVoGepGUdon1/syatrO3xrI+bFILRmQTeeLSqj3xVTL//Jpe28MiYiIKK8YpKV+S1nuQEtkz6JeGAkREZF5X7ZG8/I4n+2N6K7bE4irlskaWWhEg5nWZPjWkPq7Y9aKPZnfyQZ/7o9FalqvZ2tYQkdEfTErzJeeiIj6IQZpqd9SNg7TYise0/MDISIisqDI3vOHXxpN0BFlfx2iDFqXLVpC/KL0VfV+dcZsa0jSLFsBAJFuZEUTEREVAoO01G8Jdm/WbURXdS+MhIiIyLxYL3SPt2nM4zZTYoFoMNFKLm8K5hakDfAqSI+r96nTY1tCkmbZCgDYpVEGgYiIqC9jkJb6LUHI/vGV46zBR0REfUu7xtTcXEk6JQy0MmkZpCXKpPX9acmx3MH2TnVAsMrNU618iUmyZhmX1rCkGWwHgG3tDNISEVH/ot0SmGigYJCWiIj6GK36iblqD0uocNsylsmyjA/q1L9/wZi1IK0sy1hcH8bW9igOH+7GxApHt8ZK1NdoJb8alTvY1hHFR3VhjCqxYXatGy9u8uOFrwI4pMaJVY36NaKp+/YG4tC6zrSxNYrF9drH+1qBcyIior6MQVoa0OR4sNBDICIiytAezl+QtimoDtK+tjWIDS3q5mT/Xu/Dr2eVm37s93aG8PDqTgDAgm1B/PnYStQW89CRBo5/b/CpljXrZNK2hOK4cXErYvu+vg+u6kyt0wvQRnuhtMlg8e5O/cSLN7drH+9v62CQloiI+hfOwaEBTQruKfQQiIiIMvii+QvctGkEfJ9arw48AcBKi5l+yQAtAMRl4I1tvPBJA0uDX6PGqU5N2v9u9KcCtGaxTG3+vLolYPk+ezTeXyIior6MQVrq18pmzzNcH2leAVmvUBUREVEB5DO5Tq8mbU9Y28zp3DRwRHVqNPtjMkIa0diNrers9Gx4CFpYvdGkkYiIKJ8YpKV+rWjCZYbr5XAz4r5tvTMYIiIiE/J58bA3QxClTh420sChV9YgsU4dpM0l3if36jeUlCyW4SYiIio4Hm1Tv+eonmW4Ptq8opdGQkRElF0+4wY9lamnlUlY6uJhIw0cjTplDQDtIG0uWZnMpC0sZtISEVF/w6Nt6v9E427T0ablvTQQIiKi3mW15KXZLF6tDvclDh420sDRFNTPpG3RWJdbJi0VktUawkRERIXGFr3U7wmC8cfYv+YuACKKJl0Fe/Ho3hkUERGRQlMwjre2B/PbTMhiFOjPn7ZjVLEdNhEIx4ETRrlRW6z+HdUK0i7cEcT5B3hZ9oAGhEaDIK1WJq3WsmwYpDWvKRjHK5sD+Lg+hBP38+CscUXd3tfISNTtFgUhP4MkIiLqYTzKpv4vSyYtAPjX3Inm12ZBjrPpCRER9b6YJOPGxa14ZbP1DuVGrIaNVuyJ4KXNATy/KYBXtwTwm8WtCGhEjVt1AlLfX9jEhpw0IDQZljvIDOBGdJqMZcOvijnJ/eNb24PwRWW8sjmA25e25emx8/IwREREvYJBWur3XLUnm9pOCu1FeNfrPTwaIiIitWW7w2gL5z9a0N2AaTAmY+GOoGp5S1g/y3Bze6xbz0nUF7QaNA5rU1yk+KgulNNzSHIik5OMfdKg3j9u64hht7/7+5pwjgF2IiKiQmCQlvq9okk/guiuSd0uPeJvEItqNbeN+3f01rCIiIhSdnUaBxtsOc7GVYYfcmmUs7lNPTa9TFrAeJo4UX8Riul/V4KKdTt9uQULZQABg+ehBL39YygtwFpkz20n2RlhKi0REfUfrElL/Z7oKEb1OV8gtP052Er2h3vk6QjXvYVw4BX1tp5hBRghERGRvuNHuXHG2CJUu0UsqguhxCliUqUDy3aHIcnAv9b5dO+rTNLTqiWbjVZg1+hxcp36TdSXGCTSqoK0ZpJhv75/Edx2Af/Z4M9Y7otIKGbTPUN6uxQBXYFZj13ICHifOtqDN7erZwEotYUl1BZ3e4hERES9gkFaGhBsRcPgnXx16rajeibCO9VBWsHBozQiIupbzhxbhFEliUOyU8cUpZaftu/fH+wKYVuHdqaZMrZh1LFej1ain9FU8AgTaWkAMJoGH8rhQsQpoz2ocNvw3EZ/RnPAzoiMYd5cRjh4xHWi4OnLfdHMbYZ5baYeu4OZtERE1I/wsi4NSM7qGdorZJ5ZEhFR7zOa8ZxtEq9RKQRlEmyzQTMkPXGtTFqD+rmRHEoqEPU1RkFaZSatGa59X1Rl1qxPozEfZYrrvETJpl/RuKx6v0pMZie390AtcCIiop7CIC0NSI4q7SBtaMfLvTsQIiIa1Da2RvHEuk4sNJiWG8syl9pMvdqYJGPh9iAeWNVhdYiqALIky4Y1aVnugPqzmCTj1S0Bw0Z+bWEJa5sjqdt6mezp3PtqppY4M7+wvgi/L9noXfdJZtJ2agS6la+zHmbSEhFRf8IgLQ1IortKc3lw06MI7Zzfy6MhIqLBaFdnDDd/3Ir5W4OGzYMCUeMgjijqByOSwY3/bQ7gkTWdOY1TWZO2MyLr1ogEgDAbIVE/9siaTjy1Xr/Oc9IflrRhS3sUzcE41rdEs24vCtqZtFoBRsqkW+5g30v31jb1RS6v6Uxa7q+IiKj/YJCWBixH9SzN5YEND/TySIiIaDD69wafqmaslgq38eGYUSwiJsmQZRnPbvTrb5SFchpxtswzxmipP3tvZ8j0tv9a58PTX1r7bimDh34GabPSy86P7ruA9NLmgGqd3eRZLMtNEBFRf8IgLQ1YJTPu0lwernujl0dCRESD0Wd7I1m3mVLpwHCvcR/XSrd+g5xATMZOX/fqrbcpShtk62Tv5NEjDTB6ueobWqL4bG/Y0mM5FV/XGGOEWSmbgiUZlVZxGMwwSMfqLERE1J/wMJsGLNewYzWXi+6aXh4JERGRthtmlWfdpsajf7jmi0pY1agfDD5upBs3H1GOWq8NQ4u0H6czKrPOLA1qEyoc8Ni1g37+LOVIlOyK4KGynAip6WW7RgyuP7nMFOtGosY2ERFRf8EgLQ1ogktdm9ZeNqUAIyEiIlJzmgg01Hj0M2l9ERlfNOpn+h1d68aBVU7cPacK9x1fjaNrXZrbtYTMZ+My5EEDzfgyO8rylCKunIbP2fbZdeo0VwsbBLjNB2lzGhIREVFBMEhLA5ocblYtE70jCjASIiKi3NQU6QdpW0LGTY28jsxAhl68ojlkPpLEmAf1V7JOVuW4MjvKXHkK0gqKTFpmcmbl06mDbdSk0MwFLoDlDoiIqH8xLoI2iOzYsQPz5s3D/PnzsX37dnR2dqKmpgZjxozB8ccfj/PPPx9Tp07Vvf+CBQvwj3/8A8uXL0djYyNqamowc+ZMXHnllTj99NN78S+hbMJ1bxZ6CDSAyPEI/OvvQ3jnqxA9w+Ee/XW4R50N/7p7Icd8KJp8DWyeIYUeJhH1spUW61gaMcqkXdNs3HW+WJEdqJdV9vdVHThxPw9m17rx3CbjRknKRmN9jSzL+GBXCH//ojO17PbZFdi/3FHAUVG+rdgTxr/WdqLYKeKSKcWYVOnU3VaSZbz4VQDP6TTYG1fmQKkzP99ZZaM/1qTVt7QhhPUtUfh1grFPrPchorPTUtb+1RNnKi0REfUjDNICuP/++3HDDTfA7888cNu1axd27dqFjz76CB0dHbjnnntU95UkCVdeeSXmzZuXsbyurg51dXV4+eWXccUVV+Dhhx+GKDJxuS+Qw80I7/5Qt2YtkRXtn/wQwa8eS90ObXs2Y31w2/OoOXc9BMFcxgcR9X+7/THcsbw963Zm9wpV7tyPH5SZtHrxisaghGe+9OMZE53sX98axCVTSnIeU09bsSeSEaAFgBsXt+Kp02rgMJl9R33bp3vCuGtF4ju2Nyjhd5+04c5jKjCmVDsQ/7JBgBYAaottpjMzs2FNWnOWNIRw92cdWbfT2yeJOsdVNiEze5YvPxER9SeDPmp422234ZprroHf78fEiRNx11134f3338fKlSvx9ttv46677sJRRx2lG2C98cYbUwHaadOm4emnn8ayZcvw9NNPY9q0aQCARx55BDfddFOv/U3UxV55qObyjuU/692B0ICVHqDVEu/4EtHGT3ppNETUF/xxWfYALQAcpVMfVslmsou5liJFM6TJlfnJJu3Lgac/f6r9+j+6tlNzOfU/89ao38sn1vl0t3/WIEALJAJ+zm58z9Ipa9Iyk1bboxrvYT4o93l9eFdFRESkMqgzad955x389re/BQBcfPHFeOSRR+BwZJ68nHjiifjlL3+JSETdOXnjxo3485//DACYMWMGPvzwQ3g8HgDAzJkzcc455+C4447DihUrcNddd+Gyyy7D/vvv38N/FaXzTrkW7R99T7U81vxZ7w+GBq14oL7QQyCiXrQ7YK4J17cOKDb9mN86wGsqyzXdCaPcqmyzE/bz4OXNAbSFuxc56quBD6NO7iv3qo/lqH/SqqG8NkvpDz0/OaQUAOCymw/S1nhENAa7xnDu/kVpa83VgR7s2nWahZlxaI1+aQu3XUBntOuxjfYJREREfc2gzaSVJAlXXXUVAOCQQw7BvHnzVAHadE6n+mDgnnvuQSwWA5AomZAM0CYVFRXh/vvvBwDEYjHcfffd+Ro+mVS0/yVwjTit0MOgQU4QBvX1MCLS8MejKzDEoCGY0tfGF+GXh5Xh5P08htvNHOrE7FoXfnxICb5/kLokgcsm4M5jKrvdJKmvBml3deoHyPt6LV0qjGNGugEkvhtm/e6ICnz7AC8mltvx02mluGCiN7VOOQufMcL8O22M/n5QWW6CX3siIupPBm2Q9q233sKmTZsAAL/61a9gt1sLosiyjFdeeQUAMGnSJBxxxBGa2x1xxBE44IADAACvvPKKbldZ6jmuUWcXegg02InmAzFENPBVukWMK7NWdkAQBMwc5sLXMjL21C6bWoJrppXh2JEe3ZqN5S4R38jyONnIfTQ/cEOrfrZswKBTPA1cRsfeU9LKfzgslDvw2AV8bX8vbp1diaNq3Rl159WPws9dvhUru7OlUZZiYZCWiIj6k0EbpH3uuecAJE56zjrrrNTylpYWbNq0CS0tLYb337p1K+rrE1OYjzvuOMNtk+vr6uqwbdu2boyaciGI5mr+ERER9YaRxblfuHEbTMm2CYkArBlegyCHGX31mvOGltymvNPAFTaoPpKeze6y8rW0UL62j35V+rUSp/4boAzK9tWsfyIiIi2Ddg7ukiVLAABjxoxBSUkJ/vOf/+CPf/wj1qxZk9pm4sSJ+P73v4+rr74aLldmoG/dunWpf0+aNMnwudLXr1+/HmPHjjU9zl27dhmub2hoMP1Yg5ZNO0jbvvRaeMZ+C84h2lnQ1LsaA3G8uT2IFXvCmDbEiZP386C2uO/uomRZRvsnPzC3bTzcw6Mh6l9CMQnztwYRics4dYwHle7+lW0eict4fWsAobiM08cUZZQOMNNQa0Q39m0egynZFW5RN3tWyevoXpMkSQbe2RFEnS+Go2rd+LIlitawhJNHezDUQhmHfMsWpJVlOSPrkQaWC+bvBQBcP6MMhw1NHP8FDDp3ZQZp8xN5zfYor2z24z8bEvWl/3ZCFao9/Wv/1xcYZdLGFfvgvlyTVpZldH76K/jX3JVaVjT5GpTOuAuCTb/uLhERDVx9NwLSgyRJwoYNGwAA1dXV+OlPf4r77rtPtd3GjRtx3XXX4aWXXsL8+fNRXl6eWpcePB05cqTh840aNSr17507d1oaa/p9KTeCza25PLD+XgS+fBA1X1sHeykbuhVSTJJx4+KWVBOJhq1BvLsjhL+fWIWibmZ79ZT2T36A4MZ/mtpWjod6eDRE/cu9Kzvw2b4mTiv2hPGnYyphy1Nn9d7wt1UdWNKQuPiytCGMvx5XmQr8PbI6e8fy7gRpjV6nKgvB7iJlC3qLXt4cwKtbAgCA+VuDqeXv7wziwROr4bQS8MqTxkBcs6FUund3hnBilrq+1LcFotmb3v1pRTt+PbMM04a4EIjqB+mGpAVIrXxmja7FGNWk/bg+lArQAsCP323G02fUmL64QokgeJHBRSZlVZO+XO7At+rWjAAtAATW3wc50oryY54o0KiIiKiQ+mb0o4e1t7dDkhIHeKtXr8Z9992H4cOH46mnnkJLSwsCgQA++OCDVJ3Zjz/+GJdddlnGY3R2dp2EFRcbd2f2eruaCfh8vnz9GWSSoJNJCwCQogjXLei9wZCmpbvDqi6/obiMhTuCOvcoPLMBWgCQo/zeEyWFYnIqQAsAu3xxrGnWryPaFyUDtABQ749jTVpX+fd2Zb8oM7KkZzLnzJY6ALqfSZsM0Cp1RmV80VSY93OXL5Z1m0fXZg+iU9/2xDpzv6n/3HfBpNMgqFvl6frOjCoxf/HEaeErnH50c+/KDtX6T/f0r/1fPnSnR0exQ0gFtWu96jcivc4w0LfLHfg+/53m8uDmJ3t5JERE1FcMyiCt3991BTsUCqGoqAjvvfceLrroIlRUVMDj8eDYY4/Fu+++i0MOOQQA8NJLL2Hp0qUZ90tyOo2no6SXSggGrQWddu7cafjfsmXLLD3eYKSXSZsUbVreSyMhPbv92gXjtndkP+HuD6TQ3kIPgajP2BNQf9+/aOzfQYp6E8HBdCN7qJSLleRYKwFdo07qWgq17w6ZSJkzmPlO/cSyPeZKCCWzqpuD+m96erOw/csdmFiRvaHfUbUuuLuZiZ6uwT8wjnWs6E52a7Gz67X/3oHqRJljRmQe9/flcgdERERKg7Lcgdud+eN9xRVX4IADDlBt5/F4cPvtt6caiz377LM4/PDDVY8RiRifXIbDXQeTHo+1E51spRTIhCyNwwRnRS8NhPS4daYY9qPZz4ak0J5CD4Goz9AK0n7Z2r+bPfkNplMreewCSpw9c43cyi7TSibt/uUOAOYvMitrQvaWSF+e10x5Y+X7BgDNIYPOYQo3HV6Oi99oVC1/+KRqfLonDLsIHF1rfPHf6qHLYPzY6l0smVTpwI2zynHrklZsbNMOXhen7bsOqXHh1qMq8N+NPtR67fjGBC+2dmT+nvTV11eW+vfvHhER9YxBmUlbUlKScfuUU07R3fbEE0+E3Z6IZS9f3pVxmf4Y2UoYpGfuZiuNQPlnWO4AgBxp652BkC6XTrdywfKpTt8kBRmkJUrarZE19lVbDH4TdSb7qoCyCKKB4RrTc/PFSllLK82zih2CpWZg2erC9pSQ4n2ocg/Kw1xSaDLIpFV+DVw2AQdXq7Npy10iTtzPg+NGerLWzzaqSavFTLPBgSau86IcXeuG0ybg1tmV0CsRrLzINbHCgZsOr8BlU0tQ5hJhU7wBffXljfu2F3oIRETUBw3Ko1eXy4WamprUbaPmXG63G9XV1QCAxsauK+vpGa7pTcS0pDcLYyOwAhCMP+YSg7QF59I54RkofTTiDNISpezWyKSVAaxr7r9ZRb59AWYz02q1aijmT8/sNIsdIkqc5h+7xULmYj5FFE/r1rkASINLU9Da59HKBQwzknsFvTqs8f57fSpnepm0pWn7Gb1GbsVZGsoqDyn1AsKFFu/cbLi+O3V7iYio/xqUQVoAOPDAA1P/jseND96S65MZtQAwZcqU1L83bNhgeP/09ZMnT7Y0TsoH44NtOdKal2eRZRmLdoXw1Hofvmrrv8GGXMU6t6Jjxa/hX3cv5Li1+pJ6UxH76tRVKdJuafvo3o/QufJmSOGWHhoRUf+xR6cG9eo8NJsKRCX8cVkbLpi/F29rNB7c2RnDU+t9WLg9iJgkQ5ZlvLcziB++3YTbl7blvO/27Wt8aCZjq7aH6tECPRWiBUqcAkotlGgoWCat4jfDMwCCtLIsIbDpMXQsvw7R5s8LPZx+Kb1RoZLWcUZ3T470PnVBnYz7cF9N9bRoY2sUT6zrxOL6kGGAUZb1G8OWptXK1ovFFme5YKSM7Urd2B1FW1ejfcnV2Pv8OHSsuB5xf13uD6YQyxKkhdz3o/fbOxK/qe/sCLL2LxFRngzKmrQAcOyxx+L9998HAGzZsgXTpk3T3K6jowNNTU0AgBEjRqSWjx07FrW1taivr8cHH3xg+Fwffvhh6v5jxozp/uDJkmxT5vOVSfv2jhAeWZPoJPz61gD+elwlhnkHx1dMjoXQ9NpMyOFmAECscwvKDr/X1H3jkoynv/RrrvukIYxr8zXIPGp9Z67l+/hW3YrwrgWoPpuN6mhw06pJCwBf5CFI+9P3m9GxL2D6z9WdcIjAcSMTteB9EQk3Lm5FeF9Qpi0swW0X8NT6RMmi1nAEXzRFcO8c6/vu5fsaGZm5rlRb3DfKHQCJYJKZ0+pEJq2FIG1QgizLec9IzCaseAPsA6CwuX/dvehc/vPEv9ffhyHf2AKbd0SWe1FSa5as7vaIOhDW3Y+N8rgz+ans0HguQF2moz+q88Vw88et+/7WIGJSSWrfq/TuzhCe26h93FeWtp9J7suVsmfSKsodGG6tLx7ci+b5R0COBQAA/jV3IbTjFdR8bS0EsfvH99kyaSHHAfTkzIvuaQ9LuGlxC5If646IhHP39xZ2UEREA8CgzaT9xje+kfr3Sy+9pLvdSy+9lLoafMwxx6SWC4KAuXMTgZoNGzZgyZIlmvdfsmRJKpN27ty5vX7CQoBYNNxwvWwxK1JPMkALJE7U394Rysvj9gehnf9LBWgBILD+PtP3/TxLV/doH8umjYcaEdljfGFGT7R5BaItq/I8IqL+Q5Zl3fqQDf54t2oztoUl1Un9g6u69stLd4czgnjPb/KnArTpXt9q3CDLKFvITMOs8WXZu8fnyuoRxkn7mWtmWuQQMpr1ZBOKywgXoOKBMiuyTCOwrFfnsq9KBmgBAFIE/i8fLNxg+qGXNwcM19d41EGwKVXObj2nMsib3GfoNTxT1lDtj57e4Mu44PPYWv1+Hf9Y3am7rsJEHels+yJVuYMcf1dC259PBWhTj9WxEeGdr+b0eEqxjizlDuJ9+zzi4/oQ0q87PKOTcEFERNYM2iDtwQcfjNNPPx0A8PTTT+Odd95RbbN7927cdNNNAACn04lLL700Y/21114Lmy1xcHf11VcjGMw8sQsGg7j66qsBJEolXHvttfn+M8gEW1EtnMNP1F0vxXrmoOLLlu5nhfUX8c6vVMvkeNjUfbPVitPLPCmU7jYByzq9jWgAC8eNMze7c00mW4B3a7t2p3Cltc3G++6AQWf5bLGAGUOdGGKhAZeeX88s01xudXr/2eOLsm5zwig3REGwHEhSlh7oDTFFAL3SLaLak3moG5eBzj72u2JFdM/iQg+h4Mx+EitcIr5s0S9hMqbUjvFl6ozIk/bzoCxt2v33plhr+qtshhrelymr942wD4CzseV7MvebeqUdjBw53AWPiRcj235OuTbXPVFM56J6ePd7OT5ipmyZtFJob16ep6ds71D/prLkARFR9w2Aw4Lc3XPPPSgvL4ckSTjrrLNwww03YNGiRVixYgUefPBBzJw5M9UU7NZbb80odwAAEydOxHXXXQcAWLFiBWbPno1nn30WK1aswLPPPovZs2djxYoVAIDrrrsOEyZM6N0/kFIqT3odxdNuhb3yUHinXpexTs5DkFbrKn2lRnbGQCW6h6iWxQPm6na5sqQ1aU1FLCQp1Jh9IwMyG9XRIBbS6xazT64ZTwCQLT5Z5TF3yOPNMpU22SRMi15c8oqpJfjBQSW4dpp2cNWqQ2u0M/2KLGS7AsDQIhvuPq4SZ471YFSJ+jdrxlAnvn9QCQDrU8Czvdc9QfmUdlHAX46tUm2nFVzoi7TqegrO0gKMpO+QZNl00M0uapcA+c6kYlwxtQS3HFmuOcPNbRdw1zGVuPTAYvx6ZhlOH5v9YkbG/RXHNdkuWBTigkZf9KNDzH22sx035isx2Vaqfd4Wa1vf7ceWZRlx3xbDbaTg7m4/T08aqtEEs1FnpgwREZk3OApm6pg4cSJeffVVnHfeedizZw/uuOMO3HHHHRnbCIKAG2+8Eddff73mY9x+++3Yu3cvHn30UaxcuRLf+ta3VNtcfvnluO2223rkbyBzBJsTJYfchJJDbkK0dS38a+7qWhkPQZYlCELu1yy0mqRUmZiyNVAINvWU2bh/F+wl47LeN9vBdke4bx3wdTezIV81kIn6o2CWYER3vu3ZwhxmY4bZptLqTVkG9LuIHz/Kndf6qIIg4KBqB1Y3ZWYJFuWQkldbbMfFU0rQEorjqneaM9bNHOpK1Xe0HKQtRCatIshvFxIBt3FldmxJy6Te2hHD1OruTWnvDbJGs0nRkZ9Af38Vt7CTiEnan9tjRrpR7jL+rpS5RJw2xlpwNsmtuGKUrDmrl2SorKU8kBllWprdxygzlbPJ9dXVOrYFgFh794O0UnC3qpSCUryPB2m1agPX+2IYmofZIkREg9ngiSLpOProo7F27Vr87ne/wyGHHILS0lK43W6MHTsWl156KT799FPceuutuvcXRRHz5s3D/PnzMXfuXNTW1sLpdKK2thZz587F66+/jkceeQSiOOhf6j5DsKuL2mc7UMpGa8p+tmysgUSW1NODJf9OU/d19LtM2u4FaeVwa55GQtT/ZGuQ050u3NlOxM0GQrLtu/06f0M0LuuWO+iJipNjStW1bb0WM2nTaU0hTn/NrGfSFiJIm3nbtm/QY0ozcxK2tetPge9L4sEG1TLBYW3q/UCjLGlhJCLJmt+9nq5LbDWTNjwAGoeZZXSRy+zbonx9sz1OzjPwJe39hBSog6yzzqysTcPQ9zNptdT7C1CMnIhogBnUmbRJVVVVuOWWW3DLLbfk/BhnnHEGzjjjjPwNinqMYFdnRsixAGDxxGdrexS//kg/4DaQ6jKF6xci+NUTiLatgXv0efBOuRaCzY3AxocR920HZHVkJR7YZeqxs71MT6734cjhbjj7SLeX7takjQfr8zSSnhMPNSKw7j4Idg+KJv8UooPdevNJkmU8usaHhTuCOHOsBxdNKk4Fkwa6bHUKc91vtoWlrE1LzAYNP6wL4YyxHozVafC1rkm7Zu3yPWGML9e+T0/0BRpdoj6EK7KYYZZOa1ZDenCpRWPGiJFCZAeqMmn3xdtVQVqL5Q4+3RPGI2s64XUIuHxqCSZX9k4WrqQRpJWl/lGqQUmSZby/M4R6fxzHjHBjdGlupyBWMmn9URmb2tSvV48HaRXfw46IjGc2+LCfzt88mDJp2/MwOypruQPF7bgMPLXehxNGuVFbbO5zJ4Wa0PHZDbrrY+1fwlEx1fAx5FgI/vX3QQq3wDv5x7B5R3Xd30SQtmPFdZBCjSia+H1E9ixCtPkzuMd8E+H6hfCtvAme8d9F2dH/KlhTaq3f6wYfg7RERN3FIC0NOtqZtNbq0vqikmGAFsjeQKa/iOxZhJa3Tknd9rV8jmjTctjLp8C/+o+694ubzKTVmx6c1BmR8dAXHbgmT7UcuyvezUza4KZHUT57Xp5Gk3+yLKPljRMQa1sDAIg0LkPliS8XdlADzONrEwFaAJi/NQhREPCdyYMjOy5bMCKXWIUsy/j9J626GTxftkRxQKUDIQvRnRsXt+L+46tQpagt3hyM4yWdbvH3ruzATw7tvXqhozUaHnXnd0fUONFPz/CzGtgsSCat4intqUzazOB5vT+OSFw2dfHvsz1h/GlFOwCgJQTc8kkb/nRMZc5BRiu0pjvL8e7N/CmU17YE8O8NiWOtN7YF8MDxVSh3W58Wna1BoBlan/V80sr01NtvAP2/Jq2Vi2v5mB2V9e3TWP/qlgDe2h7EgydWaU7TTyfLMprfPAGIh3S3ibZ8njVI2/7JDxDc/AQAILTtWdR8fSMEMbEvMpNJi3gIvlV/gG/VH1KL/Gv/nPp3cPOTkOMRVMx5Jvtj9QCtr2KDv39eRCIi6ksGz3xson0Eu7rGlNVyB68ZHGwnGU3p6k/al/xEtSy88xXDAC1gfpqWmbjJ4vqwqcfqDVJQP0hrK51o6jH6ciZUtGlZKkALJN7rvjze/ujN7cGM269u6Z9Bl1x0ZDlBzyX+sr0jZjjF8pE1HQCs7ZPjMvDvDT7V8g/r9E/aAeCBzzs0l/dESKhWo2nLMI1l3ZEeiJxd67Z030IEngKKpm7OfUe5o0szXxdJBvYEzGV8/W2V+j39x2rt9znftH5vujubo1CSAVoAiErAwh3G3yU9+Yj951C62RJlJm02nZH+fbyo1ztAK3jbajEjX0up0/gNdOjMTAnHZSzYmv33Nta2DrHW1cbbtK4xXA8gFaAFgLhvG0LbXui6bTKRIZvQtmfz8ji50PrU7jW5XyUiIn0M0tKgIwgiYMs82bSaSbuhNXstqp2dAyOwFWv9Iqf7yXFzgdWIyahMtI9kmhjVpK0+8xOI7iFZH0OOqoM/fUW8c6tqmRwPamxJ+dQaGhwnNg1Z6tXlcvqebRr+js64qe2UljSo92Gb26zXIZxa5eiR6ah2UcBpY7ouOu5XYldN67fqvAldM02GFomYMdSVuj1rmEuzbq0es43a8mm3IkBQvS8T2m0XVWP3Rc0N0KcR3P9KYwp9T5A1Gk3GWlZBHgDllL7K4bsEaGfS7qdR+sNIPpv4aclWM1VpbyCR2d1ftegGadXLjC6OKHeTF01Sz3w7uNqJyiwZ2EOLbLr1uc3MCJCj7Vm3iXd+ZfwYGhe3I3s+SP1b2UTWO/VXWZ+zr9F6fzsHSIIKEVEhsdwBDUqC3Qs5bRqT1UxaM9M4d3bGIMtywWpFFZosmQzSmjwxCcblrE3GeoNWkNZeeSgqT34DoqsS1eesQmjrM4iH9sC/+g7Nx5CjHYCrvIdHmhutJnCJms0lBRjN4LGhJYojawd+R+T6LPXq4jmk0poNtrVYDIRr7ZpqLHatnj7Eietm9FyplkumFGNiuQO+qIRjRri7/Xtz3oQi7FdiQ1tYwuxad0at5CFFNvzf7Ao8urYTq5vUAbbhXltGED4f09Kt8EclVUbi8LTM4mKHkFETubuzXXxRKeu06e6SouqMXSncBClQD5t3RI8+dz5pZVRaCfin0/pe3nJkOT6uDyMYkzIydrXcPrsip+e1wmomrYzEBQarwea+Qu8CmNUgrdI5472o9thw78rE9+DCSV6cMUbdV0LJLgqYPsSFRVlmPugRnOVZt4l1ZAnSalyMj/u2d61XBGltRbUomf5HdBrUwe1rtK4VBWMyYpLc4xdCiIgGMmbS0qCkbB5mNZPWzDTOzqiMtjw0SOi3TGfSmnu4QtQ31KIM0ladvgg156yEzTMUAGArGgbvgdfCM+5C/ccwkaVRMBrBdTnGTNqetr6lf3Sb766smbQ5fM3N7GcjcRkdeZhSXGWhhubMoS78amZ5j9a/FAUBs0e4ceqYIhTlIWAoCAIOH554vGKNKcW1xXbN+sljSu2o8WRubzJ2njfKz5aARGA5SRlQ9XWzNuaGXvjOyhHt34poy+c9/tz5pDUdvkgn0zEbZYa2AMDrEHHyaA9O2E9dzipdmVPAOI1azvlmFwXLzcnqfP139pXeBTCt4PyeLL8BSkfVuvHsmUPw7JlDMHe81/TF+lnDXNk30iEI2T8j8c6vDDPa5Vin+j7+riCtpPhuC84y2ErGWRhl4UmaBQ+0Zx8QEZF5DNLSoKRsHma1EYfZTrzbB0jJg1yYLXdgtoxBoBBzZxXkWBByNPPAW6+8gWDTr98oR3qnnmEutN43ljvoeWZKqPR3kixjd5amIrkEac10C2/N8YKZMhvUbOBFAHDBAeqpugNBtUcdqNbKnIr2cibtbkXwZ0iRmDEm5fTn7mbSrmtWzzrIN61MWqD/BWm1psNbLQmQpGw2ml5fVq8WadKhQ1w93jQsyWo2bV2WWQZ9WUvQfCatsiRJTzm42gmt61b5evflmN+wPrQU1QjS+ranArvKkgqiowyCo381ENXbxXf3AhgR0WDXP+fVEHWTKpM2qp9J2xaW8OtFLWgNS7jx8HJsbI2arm34x2XtmD7EieFeGw6qdmLakNyv7GcjhZrgX38fINjgnXItRGfPTbE1w3S5A5Mn8sE+kEkb1yh1oB+k1c/o0Tvx7guUQWgAQDeDtBtbo1jSEMK4Mgdm17oGbAmQaFzGG9uC6IxKOGW0RxXM2u2PYeF27ddyR0cM/qiENU0RbGqLYcZQJyZVOntj2D2qwR/DvZ91YEdnDBdNKs6aOf+/LX784KBSS6VNzGTSNgdzCwzsDcRRW9x1qGQ27nj0CBdG9dOpy9l4NYJP4bisCpA986Ufp43xwNPTXZr2UWbSDvNmvv7KzOAn1vtQ5BAwZ6R+mQijTLn5W4M4b4I3LxnMSeH6dxDc/CSiLZ/DPepsxDs2am7nW3kTXLUnw1kzK2/P3ZO0ypxEcvhK+iISnlY09LOlvXfZ3opDa3pvn+q2CZYuBDy30Y+3tgXw61nlGFfm6MGR5YcvKuH1fU24dupkAfujMl7e7MMrJprt5pvbLuCQGidW7FFeTMnf8UfLO2eieOqv4Bl7PmKdWxD48mHYvCNRdMBVCG1/SbW9HPNDCuyCzTtKVZNWcJYBQv8qeaS3ezRbgoiIiLQNzDMIoixEk5m0sizjB283pW7fvrTN8nN9tjdxgDh/axA3HV6Og6rzf5IgyzJa3jkb0cYlAIDI7vdRddp7eX8eS8yWOzBbk7YPTJ9S1aMVnYkDay02/YC83IeDtMoTB8B6zeZ09b4Ybv64dd+kuCCiUgmOH2U8JbW/emRNJ97flaiB91FdCPcdX5XK5AvFZPzmo1b4dS42yAD+tc6HD/bd/7UtAdxxdAXG9IOTdT3BmIRr329J3X5ifWZwxW0TEJfljGnxi+rCsIud+OHBpaafx0yQ1mrTsKQ9yiCtyfulN+AaaLQCmpG4DK1Y7F8+bcdNh/d8DVAAqiztYYr6wVqNhB76ohP+qIyzxmnXucx2UeH3S9pw5zGV1gaqI7J3CVreOil129e6ynD75tdno+brX8LeD6ZI3/+5+jfP7AXadLcva8OW9sz3Of1zly1L9uBeDNK6csgUbo/IuOGjVtx/fFVGqY6+6E/L2/Fllhkgf1rRjh0FnFE2a5hLFaTVKsGQq1jzZ2j74ALI0U50rLgOcqQVABDc8jSijZ9o3ifaugZi0UhVKRPRWQ7I/Su4qTdaZW1wIiKyhuUOaHBSZDnqBaHyXSfyfz2UTRBrW5MK0AKJIK0Uau6R5zJLqwGVFrO1ZvtCJq0cbsm4LbqqdDOwRLv+tDWt5mN9hVYAuTvlDl7eHMioWvbkenUzjYEiGaAFgOaQlNG05N2dQd0AbdIHafeX0f9fq/d3GjdtGea1aU5Pfi/L/ZTMBGnNlETQ0qSYxmum1M3sWpcqi3OgqXRnHj7OGeXRrNG6uima82tvlTIQP1QR5CrRSbM0+p5lm7a7rSOGzjxN7fWt+r21O8gxBDc/lZfn7kl677/ZslFJDf6YKkALwFKDop5u9Jau3mLt1XRvbuv9zFMrGgPxrAFaAJYDtPmeY3OYxuw1M7M0ZNnauNs/viIVoAWgG6AFgFj7+kSAVlbU0HaWQ3TXWHreQpN0LrT4mUlLRNQtDNLSoCQIyo++9oFGtiY3Vn3R1DM17GItX6iWaU3Nz4Wyfq955k7AlLUijx/l1uz6HOgLQVplloOoH4gR7B64x35bc122rsCFJEvqE6/uNA77uD4z4NbdOpD9yeq07/uODuvZRGua+3ed2mwn8W6boFsSwGytagBozxIkc9mEnOujKmvS7s1ST7HKLWo21hpovjel62902QScMtqjm62cryBmNsr3yqX4HSl3WT/kNdMAx2qwUfdx6t6wfp/6N/Py3D1JWUM2tdzid9Knk52njLmdMVZ7psZ5E7Szpfuivl6jfE8P1JU9fpR+2ZFcaTU/9JgJ0mrMKMqXeOdWxP07VMttRbWwFe8H59BjUsvc4y6EYHDBv9D0du194HCdiKhfG9ipHkR6lEFanSlG+Tr56mmx9vWqZVKoEcDkPDx6jq+ByWlbrYoT+wnlDswdX5QxTRown3HbszLHIGTJ+yg/5gkEa09Bx7JrMmq96tUZ7BMkdTCxO5m0vdw7qGC0aldmXOQZmGV4DWXr9WcTgf3LHZrB3M6ohEpb9um+MUlWTa0sc4kZ2XulTgG5JvYo/wZlc6oqt4gzxxYhLstw2wVMH+JCpbtvT1POh8OHu/G7I0Rs7YjhsCFOVHtscIjaJ+25TGvPhfLnWhmLqdJoeJaNmYwwsyV7eoKteEzBntssvV2f1V6gNp0YuzKT9ruTi7GuOYptigtjRw7Xb+bZ13h7MeM3F4051vjWMrXKgeNGunH0iJ55f86b4MXzm7r6Tmg1sVPSKvuUL3HfVsT92zOWiZ5hEPaVyKo4aQGCW56CILrgGfstNDYehHinwYV9sed6XWSjd45k5SIrERGpMUhLg5TitEEn06O/BGm1Oj0ngrTdI8tS7vVIzQZpFQfMlW4Rw712HDHchSUNXXVtg1bP6HqCxVpmgmhH0YTvQbC50PbhhanlsT4cpJVlrUza3Kdear1ikbgMZ46dvfsqrY9nekBvYP215uhl0CXZRQEHVGjX3O2MyKg0cc7eoREVvGRKMe5b2VW2IyJZz9pLUmbgKjuTXz61BIcNLdxJciFNqXJiSlVXjU+HKGgGZKO91LQ+W5BWWaLBDDOZtIUM0gr9oNGQ3quTbf+gpPc5Ur7PoiDg+FFuPLY2s4xFL/Wvywut+sl9yZ48zTI7f6IX3+jh+t1DizLfeDNNJOVwa9ZtchXv3IK4LzNIa/OOTv1bdHjhPeAHXbc9Q42DtLkmUuSB3jlSn8ipICLqx/rRIQtRPikPgLWPKHoiezPUA8HGHgvSdmOau2ziwDEuyap6dRX7pqQqSx70hXIHauZOpOylEzNux33bIJtsrNbreiGTVhmYHwi0ptMHYnKqSUkup9x9+zQ9u2z7T5sATNQN0pr7jCjr0YqCOhgXics5nzTG0gJJwZik2l8p654OZnadCy+9l0mb+Tw2RYalUZBWr5mQqUzaPOzOpHBbjvfruWBST7N6KKT3OdKqSevW+CxaqV1baN4+HlFWXqzKlbK5X09QZtA3m2giKUV0vleqUmnWxXxb1UHa4tE6WwOie4jxA0oRzZk8vUHvApWy9AwREVnDTFoanEzWpO2JTNp7PuvAkbUuHDsiP/W3pFATpECdannwq8fgnfRD3fuF6xcitPM1xNrWwVE9A95JP4LNOypjGznm17m3CSYyaVtCkuqVT04VLlIEaQvZOCzc8B7CO/+H4Jb/ZK4w+f7ZSidkLpAlxDq3wFFuvRyFFPUjsP5+SLFOeCddjWjTUkT2fAjXyDMBWUa4bgGcQ4+Fe79zTD+mLEsIbvkPYu3rEW1aplof+PIf6Fjy44xl1XNXw1Ex1fBxW0LaJ3ItobhhcEuOR+Bffz+kcDO8k34Mm3eEib+iZ+0NxPH8Jj+W7Q7jnHFFOGtcUSobWJZlvLVdO5Dd4I9jXXMU71hshgUk9kqf7Qljej/L1IxJMv63OYB1WRov2gQBJRo1AwHzQVplHdQyp6jqqh6MyYbZjk6dafoA8MKmACJx4LChTlUtQwHo8x3Ye5PeDO3emPoqyTJ2dmbub5RxOqOatIGYjGKN7EW9OqjpXtsSwLXTSyF24/c87tuW0/2UwaSYbzsCXz4E0VkOR9UMhOteh6PqMIR2vY7Qln+jeNptKD74N6ljj9CuBYg0vAMIdvjX3AkA8Ox/KVy1pyCy5wNEdn8A1+hz4T3gRwjteBFxfx2KDvgB7CVjc/5bU2PVeWnXNUfw2d4IJlY4MGtY175P7zusFc9U1iMGAI1FfdaW9u7VpG0JxXH1e82IScD9x1eh3CViwbYAgjEZp40pyqk+c7p81aQd6u2FIK3i4kwwJiMQlVBkUFJCN0hrcoaYoXgI/rV/zlhkFKS1eYZmf0wpCtic2bfLM91MWgZpiYi6hUFaGqQyj9ZVDaH26YkmRysbI1jZGEkdLHdXtGWV9vKmZYj7dsBWvJ9qXXj3h2h565TU7UjD2wh+9TiGfHMHBLErs02Odae7fPbX7r7PO1TLip2J90aZSVuoIG2kaQVa3jxBZ625sz7RWQrRMwxScHdqWbxjY05B2vbFlyK07TkAgP+L/0st96/9a9q//4KKE/8H96izTT1mYP0D6Fj2U931sVb1Z6zplYMw9CIfRIf+VMWr3mnWXK6sQ6zUvuRHCG6aBwAIbn4SQ87bBkEsXDAsEpfx60Ut8O/7DD670Y/tnTH8bHoZAOC1LUE8/aX2BY0/LW/vVtbRnSvaccPMMhyq0aW6r/rH6k58sCt7UDoZXCl1CuhQBMO0yhhoPtcXmfsQt12AUyNj7k2dIDoAeBwiIgbZ3a9uCeC1LQF8bXzm/rrKIw64sh3dofdS9EYm7bsaF0FsiqCpURA1EJVRrJHUbSaTdunuMF78KoDzujFtO+7bmtP90jvKy7EQWt48yXBqtG/lTRCdpfBOvhrh+oVoffsM1TbBrx5D8KvHUrdjX6zP+K0JbPwHhp5fB8Gu3aBLNUadt18rkLOlPYo/LGlLHT38fHopDt9XS1av+Z9W8FUrk1bsR5m0m9tj2NUZw0idxopGZFnO+O29+r1mHDnchU/2lY9a0hDGX4+r7NZFhbwFaXvhIpdWjfCWkHGQticbh2mxedXH6UlZM2kByFIYQgGCtHoXTnKtAU9ERAl9ez4NUQ9JD0QC+tO5rdZMs0JZLy1Xcd8W3XV7Xxivubzz01+rlknB3QhteyFjWbcyaTWmzStt1GgYlDxxcNvV2Q+F0L74Cv2VFk5ylCUPYh2bLI9FjodTAdps2hZdYvpxg9uetTwWAAhu/KfuOqPpd8op6qrH3RegBQApsAuhna9YH1wefbArlArQJi1pCKf+xvSmJEpGAdoZQ82dVD24Sn0xoy8zE6AFuoK0p4xWX6wye4GsXRHcbfDHLQdOZ9dmD4DLAF7anFmbmaUOMs3QyfjujZq0/1zdqVpmZca4XjBW+b3X89zGbvxWAogH6nO7n28b5HgEABDYNC9L7cqEjqXXAMjy22ZAjrQisOlR09vrxei1svCeWOfLuLx7T1ptab2sPYfG9324Roam1sWbvmzeGvVn2ozN7epjr0/S6vs3+ONY05R7pm4oJhvun6s95r94Wtnr+ea0CSh1Zj5PtiCzFNH+zXUMOSpv40pnFKR1Dj0m+wPs2wf0Nr3j8r7R6JeIqP9ikJYGJZt3ZMZtvamGuRxmlDh790TAsKmTrB0ojTZ+orlc2dBKjuZ+4tmtAC+0yh0U5tK8VhZpLpQlD3JpHhbvNJ9tJetN19MQ3fux5bEAQLT1C/11Bm+X1YC7lb+7J9T5dL5H+/7GUI7TuUcWm8uSUgYiB4pkpuPZ49QZed2ZIW+lMbrXIeAb++eWAZlLI6qB7Oxx2jNDejqTVq8pXIXG+/PDg0s0t1XWGk7qrWCDHM+tOaMcCyDatBRAIkhrRdy/I6fnBIBY+3rT2+oFVzs0XvP1ihIp6W9tQCcwqHWxZJjXjoOruy6CHTncBXcv1zv48SHan7V0RiPKVi5GT7aLoADQ4M9+EV1PIMux2IFV5i4+njOuKC8lv8yoVfzW7ujM9vdr/43u0ecBNhMdLS0S3dW665zDT4S9cprh/WWpMD0OfDoHenqlroiIyByeYdCgZCvOrKemFwTSOykw0tvZGnLceq1LXYpavd0JtMqxgG4ZCTP6QrmD7M0Ycs+kjbdbD9LGOjdbvk+hGNVzDlidC5eHZh09IdfgLJA4ge/jvWF6XPLvd9tFTKnMnN2g18jJzDYOE/vgMaV2fG9KMe46phLFOnVxsynL8X4DVYXGtGJAf0psvtTpdJqv1hjP8aM8uGFWmWp5u055DeV3fHyZ/oUVM59ZPUZNOsuPeQplRz+OoRf5UHbUI6r14fq3IcsSYi0rc35+yyzsk/WC9J1R2VLtSr3moXoXu66fUYYrDyrBVQeX4OpDS00/T74cO9KD62eUYWSxDSOLtb8bw3qgJquZo5LuHE9lm+Wwf7n+dyR5Ae2n00rx7Um5lwexar8Si0Favd+WykNRfeYSuEd/I19DAwAIzgr9dYKAqtM/RMlhd8JeeSjslYeqtpELlEmrLFOUZKY5GxER6WNNWhqUbCXjMm7HO7VLBhgFk44d4caHdeoAaW93EM4pSCvYNbNshTwGaQEZciwIwaBmqZG+EKRNryGrrTvlDnLJpM0+ldUqWYoj8Xfk9/U1CtJafS+Vn8vepveVDsVklOZYBm5ihcPSiUwwJsEzwKK66TURlVmpZuJ6WhfRbIK5ae6H1Dhx+tju1QQvd7HcgRk9nUm7VafJkldnKvWhNS4cVO3A6rQp32YzaY+sdWNzu3apIl9UVk2rNstoRoxn/EWpfxdNvByx9g0ZjYfCDW/DZbL+eP6Y/zuNspHbwxKqPOa+R3q/GyNKtO/vsAk4cT9zdXN7ymFDXThsqAuRuIzvvtGoWr9fiR0NOhcZgMSF4p7INu1Ohni25IWxpRrFnQFcOMmLueN7LzCbThWk7ciWSavzNwoiHJWHoHTWPQhtf0F7G8372QBZ/30WDYK0ACA6ilF80PUoPuh6yFIUu59QHHgUIJM2Gpd1v5PNQWbSmhWJRODz+eD3+xGJRCBJDHAT9QeiKMLpdMLr9aK4uBhOZ37rgjNIS4OSMpNWCu2BHAtAsGeetOtlbgD6J4BWptrmQy5BWsFRojMdPp9B2n331wnSZss6UgZpjd6LnhJrXW28gYWTJ1tZZpBWCjZAinZCdGSfEpkaT4e1IK0sxSCIxrt5OdqO3AO0+vczOgm0/F4WOEir9y4bBaKNFNkFDC2ywW7h87PHH8eYsoEVpE1vDmZTRMLNxPW0plpWe0RTF8qUr2QulynKXP2rxmWh9HQTma0aNTgBGAa3lFnQukFaxXdcqyFVUkdYQmmO2dV6dfG1uGpPygjSRhuXIrTlPzk9b66sXDgz2k+2KYK0Rt9DvYvmo0yWjSkkvTrZo0vtWLpbP8DWEZEt72fM7Du7MwskW7kDrTIjAHL+buTDKEUgv8EfR0yS9X8rdI9PE9uLnmGWnl90VUEK7TVYbxykzRyC+vMuS72fSdtpsGNvj8iIxGU21jQgyzKamprQ1NRU6KEQUY6SF1n27NmDmpoaVFVV5e3Cat8/siHqAfaSsaplsc6tcFQcmLq9oSWCXT79q8HKmqlJZqbaJikPYuL+Ovg3PADRVQXv5GtMdWvNFkiUIu0QnZnTO0VHKeIaQdpw3RsoPrirqVh3g7Txjo3wr7sboqsa3slXZ/w9yw1OTACgSKNxmOFBdQ+IZgvSWsmkLRkP5SlovOMriFXqWmNx/y74N/wNonsIvJN/AkF0INK0HIEND5h+PgCQQk0QPUPQvvhyBL96HMWH/h4lh96M0M75iOx+D64Rp6ouWORCkmW8syOE3f4Yjh/lwcgSu2EgNj37Ilz/NoKbn0K05XO4x3wT7hGnadyj67OwYk8Y65ojOHSIK6PmYD50hCXctqwN2ztiuH5GGQ7b1whJ7wf3kdWduGhyseXnGea1QRAES+UOdgfiGFOmnaHUl2QvEdIlPdtG+bU207TRp5HRVeoUYea8UPmWumyC5cAFM2nNeW6jH2eO9fRYJvgWnSCtkTKXIkirV+5AsR8zqmvaofMYZlgJ0jqGHA2ITiAZmJHj8K+729LzBQyaPpphVI883Wd7wnh0rX4DrJaQhPT2plrfwAvm74VdBMaVap+y9Jfa0NUeEU3BzM+IMsNTqcEfQ5nL2u+cmb3Ygm1BHDHchUmV1n9Ds2XSFutkKhQySKt8neMy8J8NPnx3crHO77v23yjHEln02S5+K4nuasMgrWDL3rwyta0gAKIrI3u26ZWDAQAVJ/4P7l7IqpdkGS9uMq6j3RKKY5iXYQY9DQ0NaG9vz1gmCAJsNh5XEPUH8Xg845ynsbERkUgEtbW1eXl87j1pUBLsRRDdQyGF9qSWxX1dQdqdnTH87pM2w8co0jkQtZJJe//nHfjFYYkAqizF0PT6kZD8OwEAsbZ1KD/auIOyFO1EeNd8w23inVshVh2asUzQyd6M7PkA4bo34RpxamJMloO0mUHI5gVdXWlj7etQPjvR2GR1UwR//cy4Y73WyfA/VnfiR4f0Xm25rJm0Fgg2F2zFozOa1MU6NsKhCNLKUhRNr82CFGwAkAh0ew/8OVreOMHyc0qhPehY/nOEtj4NAPB9/jtEm5alPjP+tX9ByYw/Gz2EKS9/FcCz+7qbv7U9iAdPrMZvP9ZvXJYM4Eb2foKWt05B8jPja10F38qb1HcQEgetK/eGcdeKxEHt/K1B/P7I8pxOMrXIsozvv92V0fCnFe249agKTKxw6DbH2NAaNfw79SQv8Fi54JCtG3VfYSXMmV7uQRlYjZuId2m9Lx67YOoqtnILlw2w2utEGegjfX/9tB03Hm4hW8wkSZaxLevUZTVVkFYnkzas+CAaZtJ2J0hr1ABUQXR44RxyFCK738/5+do/vjLn+wJApOFdxP07YfOO0t3m88Yw7lzRrrseAO7/vB1PnDYEgPHsmpgEbGyznjHdl+xXYkdTMDPjcbRO4Dlptz+OSZXWnsfshbJbPmnDncdUZh2DUraZMHrXrgpZrafIIaqC5PO3BlHjsemUvdH+G6WgfqDViOiqyul+VrW+cw4qT3sfrmHH9ejzvLApgIU7jC8sNQUlDCtMdYs+LxQKZQRoq6qqUFpaCpfL1W/2Z0SDnSzLCIfD6OjoQHNzMwCgvb0dVVVVcLnMX3jTwzMMGrRsxWMybsf9u1L/fvmr7MFJj13ApIrMzLYxpXZMH2r+i7lsdzh1QB3a8VIqQAsAwa8ey3r/oIkpjvFgvWqZXpAWyDx5M2pmokVw6GcVBjd1BZwf/kI7QDtjaFfATVnuAAA+2JXHJmkmZK0ba3Eavq10QsZtrYZ1oW3PpwK0ABD48iH4Vt2ayuCwIh6oSwVok5RB/c4Vv7T8uEnJOmrJAC0ARCTghU3G35/ktNXAl3+HqbCenKgd+dzGzMd9ar3110TPVo1Az99XJT6nlXkOxh09ItEd2spJa3Owf9Qps9Ik6ujari7ZyoC1mccJamR0HWQyu1pUPF/yPbGiLMf6o4PRF01RdHYjiKmnLSxpTqefPsT4c1Cu+E63hbU/b8psba3fJb1tLbFYtsg5/MTcnytPfKtuM1z/2Jrs++dw2oWRDS3atYWN1PZA462ecviwzGNDp5jIrjXSmENtT9FkkEdGbr+hfoNp7ieOcusGmYYWFfa90iqL8fg67b9f1qkfay/dP/Vv0V1j+rkFu/UZN4YMatB2Lv9Ffp9Lw/NZjvEAoNnqVc9BpK2tLfXvIUOGYMiQIXC79b87RNT3CIIAt9ud+g4ntbZaT97RwiAtDVrKGlDpQbC1zdlPFpw2ARdPKU4FWmwCcPnUEpw62oMSCyfvyfPLWOsa0/dJirWtz76RRlaF0cFl3L8j7Zb5k+rSmXdDLBphattGnYDTd9KmjveFUlbZGocJorUsTuXrLkXaVNvEOjaplgU3P2npeZLivu053c8svTponzca10dLljsIbnve1PMks1c2K6Y1b9LJrMqFVhZc/b6GLiOyTEm1osIl4qjaZJDWQmmUHm6+lC/K6bxJymCKyybghP26AqPKGqGtOpmN6aIar8mpYxJZUV6DYBoAVYOnueO9hgE4LY6+sJPqR4yCO7nSqn0tALhkinFQRFWTVuP7H4hKqk72VR4Rv55ZptoWAOLd+I7q7UvLjnxYc7ldccGvECJ7PzJcv9ti9n9LDh3he3NmTXcdPcKN4Wn7wTPGFkEUBJwzTr+BofLzZ4aViyFfNFmvZaqXSesUga9P0E+dLPTU92qTDeoA7QQFe/lUOIYclbpdfux/YKbkVdHka2Dz7qe7vnTWPabHZUa0+dO8Pp5Stn4SSXrHAgQEAl0zJ8rLyws3ECLKi/Tvcfr3uztY7oAGLcGeeTApR7uCtMVOAa1ZmqXaRWB8uQO3z67A+uYoDqh0YNy+mpF3HVOJJQ1htEckFDtEPGmQrRCTEo+VS6ak6DYzhUrjgMpkBqhy2pytZDy8k6+Bo+YI2IrHwL/+XkSbVsA7+Wq4R52FcN0biLdvMPXYWoanHcTrXVCWZNl0pkh3yLKMeFpGqxbLQVpFB1/t5m35E/epM3WzKZ72B0TqFyKyZ1HWbaMtn2suz9bZN3mSZy/d31RJiXhaWZKeYjSNOee+avt8c6IXo0vs2BuM4+haN1y2ZLkD848R7Uajl96klfn12CnVAIBFdSHsDsRR7bHh0BpnxvddWVfSXJA28/bQIjH12s47pRrfel3dTT2pQjEnt8wl4s/HVmLp7jBGl9gRisv43+YAvmzVv2BnY9aLJT2QSKuZcX33nMqsASFluYOOsKT6bdEKMlS7bRjuteO6GWWp0itJ3bqOImV+zsSikSg76p9wj9Sq0Q2I7qHdeDJjrpFnZi2j1BOsNhn69gFeTKjo+3W6k+yigNtnV2BRXQhlLhFH7Mus/fYkL8aW2XHvSvUMI71SO0aacsi+tUJZk3ZksQ0njPJgxjCXbiC0og+UhinXqV0sy7I6g1FRfsRWMg5VZyzOaJjnqj0JVWd+gmjjUthKxiLu24aOpdeoHr901t3wr9WuGe0YMhveKT+1+JcUVpuJ32aAmbRG4vHEa2O321mDlmgAsNlssNlsiMfjqe93dzFIS4OWcvpRepA00fjA+EuWbBA2ptSBMaWZJwoV7sw6V4vrQ7rNTRINcgTIUfX0Ic2DxzSi00yxMo0zRym3DER7+VR4p3QdhJZOvz1zPMX62QLZeB2Zf6deIDYSB9y9sOeSox3Zp6CaaOyWThmklTSDtPkLxqXXvzXLOWQ2bEWjTAVpYy2rIMvqA/ZswZhQTIYky7CVmAvSSgHjYHk+GAX+u/uOlDgEzBymLoNitxDk64EkxB6hDGyNK7On6ncns1y1KDuCt5g4wYspomKV7rQu8VleW616stUeG85M22+XOETc/In+hZRC1ljsj8JZalnm9JiKj4nHLmQE//Uo338ZgC8io9TV9blRXnCocImp7OkZQxONC9MzEbvz58mKIG3xgb/QDdACgOjpuSCtZ9x3zAVpDTLqrDQQTLJ6yWNynuqR9yavQ8Rpiv2gKAg4qtatGaTNJZN2bw9nMAZimY9/2FAXzjTIBgaMG+71FmWJkyR/VEaxYmaFHM8M0noP/AVEpzpr21lzOJw1h6duawVpBUHUzXwvURxD9wd7TWbI95cSTURE+ZDvciU8xaBBS1k/Nb1JVrEj+xfNygn6GIPGDMnjXUkrk1YyLrugzAY2TafelsaGiic0fl1s3tG5jQfqWn96z2S1A3uuzAQGBdFaYXBBUWJDCmsEgDSCnrnSqnlrSBDhqJ5lutaaHPMh3vGV5XHJAMJxGYLNXB3QeFqtZqVAnqKXyoBfuhziDRmKdbpaW8qk7SflDpSBrRqTU0zTA6wA0BmRs2YPK2IFlpo2msnsqspSL5LVDqwJ9sC+O6z4XrhMvilanebbFFeXlMGIGkVNTeVTmZ0GrEn5Wy8aZ4jaejBIKzjLTW0nG1y+yqU+r5V61gBQZOI4rb/z5ZB+nksdWyuUgeMiEwHYvrCv1AvStmhkhiob+Qk24yB0Nsp+BEmOykO79biFYDpIy0xaIqKcMUhLg5ZRuQOvibN9h4V6kkZB2mTwJf35k/a+MA7h+rdVy2O+7ej49Aa0L74063N3LL8OUUW2ol5ThNR9lv0M4YZ3YTWH0FacPUir1eQFUE8313t59e4vhVvRufJ36Fx5M+Ih/WnOZsWz1KMFkPVEWrW54uS3p8sdRJtXWNreXnEIREcxRJf5dtJ6JQ+yCURlw+YX6eL+HZq1JwHg3pUdmL8lkBFkXdccwY2LW3DB/L34ybtNWLg9qBtA+aIxgifXdWL5Hv2xSN3MpVVmiSdZqUlrFETuK75ojOCVzZknt9ka4yQpM2kB4O9fdOB3n7TiH6s78Ple9fujDFxbeT21MmlVY3KJuheLRKH/dJXvK4I9kA7+UV3mbAed6yEqdlFQXYxtVwRr1jRn1uusUXyWbYrniufw50WaVqB9yU8Q2fNhxnIhy2+L4CwHhJ6ZJqv8ndKlU0cXyF7yJt3bOxL7Z6t1t80EB/u7ZLBbkmW8tzOIp9b7sKXd+OJ9T5Q7kGMh+NbejY4Vv4Y/nFmv1UywvDdKVGWjF6Rt1QgmxhQXnwV794K09uKxmstFp3Z962xE9xDD9R0rfoVY55acHtvIV21R/G1Vp6ltzWTSylIcnStvQcPjAtoWXaIKjhMRDVYsd0CDljKTNj2TVS+oks5KkHZsmf4J1xPrfPj5YWUZmbypMQXq0PLWyag6/SM4h84GkJgW2fz6UZAC9aaeO97xJZrnH4Ga87bBlsyQlI3LHfjX3QP/untUy7M1JDBqjpD0t8/VU/oA9XQ4vZdXL1jX8s7ZiO5dDAAI1y9E1RkfdyuIImWpRwsAgmhtF9rb5Q6scu5riiE4SkzfJ9qyEi7bHNW042yCMRlFcXNBWjnSqtnYC0g0Kfu8MYIGfxxXHFSCre1R/H5JW2p9Y1DCI2s64YtKOHf/zAsz61si+L9lbT3+iuuVNbCWSZunwfSQtc0R3L6sTbXcbCat1y7AKWaWylhcn/h8bGiJ4p0dIdx4eDkOru6a4qzcFVgJ0pqpf2kTBVS4Rc2GRoMgPpR3+Z4F8UlDCB/sygzSWpnqXeYS4Yt27bjSg7ThuIwVezKDkEMUn2Vl4Mnqnxfr2Izm+Udq/x5nC9IKooUZMdYIGtO6tRjNcGi20ATsn6s70RGWLGfGDoZM2mSzvTe2BfGvdb59/w7gnjlVmvVfY5LcI9PMO1b8EoENfwMA+CrPBmxdmaFeEz9kfTmTVlljVZbikKOZ9aa7G6QV7OZmDZklFo2AFNqru96/5k8IbnoUQ765M2/Pvdsfw42LzScWBGIyAlEpVe5Ii2/VrfCt+j0AILj5CcSDu1F1ypvdHisRUX/HTFoatER7ZiBKCjV1rTMR3LMSYNmvRD9QsXR3IhAhhZt0t2n76OLUv6NNy00HaJPkWADh7S+lbhudXBmRstwvW5A2Foum/l4lZSat3juglUkb9+9KBWgBINq4BLGWVYZjySYe2JV9I4uZTIIqSNtm6f49zVlzJADAVjTC9H3inVtQ7rKe0RWMyao6jEaydYZfuCOR3fOfDdoN+J75Un0R5OWvAqYCtN0NkA4p0n59jC70eBVRQL0M8r5C7+KL2Y7agiBoZtOme/iLzOdQXrBRngtOH9L9mpXVOmOyEhCmBL0LbLm6X6OGpxXKkhcN/q5g6fs71d3dqzzG5Q6sZrt3fvYb/QumFmdp5JPNPQS2knHZtysaqbtO68KGkWc3+hG0+PkwbPY4QHRGE/XbkwFaIPF7tKhOu15+W7i78z7UZFlOBWgBIIDMi51mguXT8rAv7i6zQdrQjpdU25gN0torDs647Rx+Qte/hx6Tsc479TpTj6nFM+a8rNtI4SaEd7+f83Mo/Xej+hgqm2wXa5IB2qRI/VuQ4/oZ+kREgwWDtDRo2Uoypx/FOzal/m2mNpqVk3S3XcTxI42vZsf9O/TXpU1bkoL6V8+BRFdoLdHmzwAAsc4tGX9rPonuasP1HR362anKTFq9LFitaeux9g2qZeHd7xqOJZt4x2YTW1nbhYqKmrRypE3VeMsoi9VRPcvS81llr0ycYIiuCtgrDjF3Jzmum/VsJC7LpuvvCvYi01lqXzTpB36VzWw+bzR3MqCcBp3NUbVdtYoPrnboBmmNggzDizPvky1IXWh6J2Pjy81nmxdnKTOjbErWpkjfVp6Enz9Ru2b3xVOKNZdrGV+uHSwzUy5hMPr6/vrBjHxX7OjudQtlGaINLV37jrXN6v2IU/E1Vv5mWc0UjjTo/0YJQmEmurlGngnRXY3Swx9AtlZeymOodJ051FK1up8daOVGvnWAen8lyeogIgBsatX+nfPl8DuR7eKCclZRQMw8jtEqD/bDg0vS1gtZG4v1Brso4DiN43BlQ8NY6xrVNmZr0pbOurfr4r3oQumse1LriiZf3bWhzQPvZHWTMbO8U35mart4x5c5P4fS6qbsx0uligZsVsqeJMX92y3fh4hooGG5Axq0bKUTM25LoT2QIu0QnWWmaqNZaVIDAN8/qARTqhya9ZykcAvkcIupxxHsHt11nvEXQ46HENr2X9W6ZGZMeNcCkyO2TrB7ExlAOhmSLe0NALRP7JSNw/RovTWxdvWBaKThHeDAn5t6TC2xThMNsQSLQVpFJi1kCXK0E0JGXTLtx7R590PVae8juPlJxAP1iLWthhwLwl4xFYKtCIKjGI6Kg9Cx/OeIta2zNK4ke8n+qX9Xn70cu59QZ78IjlLI0fQMNtlUYy2vQ8hoOJJ4H9UnlDVf3wTfqj8guPnJrmeQpbwEeDqjcsZJRIlDQKdBg5vkZ9JK8OCACgd+ckgpDqkOIS4Dx4zQvzhjlIE0otiOr9q6sux8kb6dSatlaJGoaghmxEwt8HStisBwheK5xpY5cNcxlXhlsx8f7Sud8PPppTh8uPnpnwdVO7Fgmzqr0kzjscHo/IlejC61oy0s4Y1tQTT4u07S+1pZ5UmVTry2teu93dgaRUySYRcFU0FGZU1Uq5mghjMJ8plJK7o06387qg8HIKFk+u2I+3YAkOEZ/10AgHvk6ag64yNEm1bANeJUxAN16FxxfUbJo7jBjJ7OHIKFWsHIweRr44swotiOv3yaOdU+/XcgaahXe7+qbOplRiAmq4Jr6WJt61P/jsCNqJB5DFqicd/jR3lQ5bahzhfD4cNdWS/A9ZYfHFSCj+pCGRd4lA0N5Zj6GF1wmGvS6xo+B1VnfoJo4xI4h58IR/mU1DrPmG9CPPVdRJs/g3u/r8Hm1c9Ez0aweyA4K7L2NVAmAXSHmf13lduGjkjX59Uok1aKaM+EiHVshl2n0RrlVyQSwQsvvIAFCxZg2bJlaGxsREdHB8rKyjB69GjMmjUL3/jGN3DCCSdAFPvGd5hosGCQlgYte8n4RJAt7SAm1rERzuqZqkxat01QZclYqUkLJOobHjvSoxmkDTarr9wrSZEOiM5SyJJ+PVnXiNMQbVquszYx/nDdGxlLRc8wSGaaZJkgCAJEZ4Vuray2jkboBWnNNpbQDNJ2bFQti+z+AHI8AsGW2zQ7ZbZx+TFPoW3RdzKWCRaDtFpds6Vwa0bzCCncrHlfe/mBEOweFB1wpeFziGuGAzkEaQVXZcYFAEF0wFY8FnHf1oztvAf+Ar7Pf5e6LcsyZMH46H1okQ2BWObBuiQDyuhu6eH3wV66P7xTrs0I0kKWutc5fZ/GQDyjq3u5W0RnVD/TI/mc7RaywgQh8V2fM0r/YkqSUeObEcpM2lhi2mtfaMBi1qRKa989M7XA0ymnVFdqBE73K7Xj6mlluHqapYdOmVzpgCio9zvZSjMMVoIg4Ih9QfCVeyN9PEibGQiNSMCW9hgmVjg0g4wRxa5ClUlrtZyDrB+kzdY4TPtONs06tWVHPIDg5idVzcmqz1pi+HDOIUel6pTbyw4AZv4VLW8cl1ov+fVLAuWSSds6yIO0giBg1jAXhhbZsCfQ9T5qZTDqTd335fC6+6NSxu+iUqy9K0irzKIF9GdAHFzjxME1hS9zkM4mCjhltCfjwpvye5te+izJbCYtADirZ8JZPVNznWv48XANP970YxlxVByMyJ4PDLeR8tBEN8nMIVi1R8TWtNirURO7eKBOe3mnmVls1F0vvvgifvGLX2Dbtm2qdc3NzWhubsZnn32Ghx56CBMnTsRf//pXnHnmmb0/0EFuzJgx2L59Oy655BI8/vjjhR5On/P+++/j+OMT+9T33nsPc+bMKeyA8ohnGTRoCTYnbIqOq/H2RLBPWf9RK3iQz5qEvhb1dH2lVCDSIPvGVjIeok49UTkWhBwLIaIoA+AZ9x3N7XMluCp117X723XXmT3B1ToFiWtk0soxPyKNxieheuRYSFW3156WEZFiNUjrKFHVsVVmQujVJtZ8fg02z3BLYzK6n2DXyB5RBQmzZ9J6HYIquCgBGuUOktsoXtc8ZdLuVZwwZMuGTO4GlJm01R79+1nZK7hsgu72tV71NdRcsqQKaXKltUCT1WwrZVCnJwKnRQ4R+5ep3wtm0man/Gznv1pm95Q4RYxUXAzZ0JIIiGllrisv1HoUhemDMWsBMsPaizkEabUuAgKAs/ZkyHHtGqZWKGuVyzGfbjZcZw6Z/1bLHQxUVYr9mFaQVu83N5ffiGz3SS8nFRAyg7QCrF9cKzRlmSHl9zqukbTQ3cZhPUEsyn6sl88grZlvp7Jut2EmLYO0BXPrrbfiG9/4RipAe/LJJ+P+++/HO++8g08//RQLFy7EAw88gFNPPRWiKGLjxo248cYbCztookGGZxk0qNkVJQ9i++o3KTNptabhWmkcls1fd83ABsdxhtskD5Rjnfr1ZO2l+8NWVKu5To4HEdm7CHIskLZUgGfcty2P14hqSn+a9qB62nCS2cZImjVpdepuRRreBpA48b5iYSMumL8Xv/u4FYEsUzFjvq2AIqBgKxmvsaW1kxNBEFQn0pIySKtzUG0vP9DUc4ieYZbG1HU/rSCt1omJ4m+W5ayhl86IpGqyIyVSaRUPLWb+P/UcMcTi2U8RXvrKuLHFPZ914OkNvlR2R1mWhmeSnBj7+pbMCyPDdGrMAtY+EYIg6GbTKjNpgdzqDSaFYjJ+/0krLpi/N/XfuubEyX9o1wJ0LPs5QjqlUGJtG9Cx/Dr4NzwEWZYQ3PY82pdei3DDe4bPaT1Im/3VS06JDsYk1fTyyh7Kbj2oWp0NVm6hjMNgpbyOGZMSNdE7VvwK/vUPQJaM6xUmP2dtiy9Hx/LrEG3qmmqfryZkkxXZ3htaopBkGR0aGYnK4wJliR6r5Q50m4YBEETrE93EjLI5XezFoyHH9X97zdJqKKlXP9Jsve906VnXg5ky0KX1utTrvFY5lTvYd59w/UJ0LP8FQjtfy1ifnknrV2TSFmlcgO3rXBoZ8Cv2hPHUeh/WNEU0Z4L1xSCtmQvywU2PoGPFrxDzaX9PY51b0fbRZdj9VDE6P/+D4vwgIRST8eImc439lBcYPtgV0p0FpZdJG2OQtkc99thjuPnmmwEAQ4YMwfvvv4+33noLP/nJT3DCCSdg+vTpOOmkk/DjH/8Yb7zxBlatWoWTTjqpwKMmGnwYpKVBzV52QMbtWCqTNnM7reCB1XIHRrbFR+Kh8v9ik+Mo3W3i7V9CjoXQueJ63W1EVyVE9xDNdXI8qCp14KieparN212iQSZtR1g/C9jsSbfyeE+OhRDXOQAN1y/Ezs4YfvdJWyqzZ0NrFJe9pZ2tmhRX1KMV3UMgOks1trT+GVAGsaWwMkjbvUxaM9kVWmwa9zMVpEX2IG1jUFIFbCRZq17avo00MpQD257P8izAM19m7z788uYA/risDTFJzlpXWpKB336srvmmVw8wF3p1aas9NihnoHanLu2P3mnCOkWw+fdL2rBtyyK0vn0G/OvuRuvbZyBc/07GNlK4FU2vHQb/2j+jY8lVaHrlILS9/00E1t+LljdPRES3vEqizIUVZmrS/u7jVkiyrKpHC6hr0ubLVI0gbZb4PkGd6bxgqx9Nr86Af82f0LH0anR+doPufYNb/5v6nAU3PQr/2j+jaf4RiHVuAwDc/Zn+rAwrlCUPNrRE0RyUNJuSKS8kemzdDNIayNYgVItWJq29ajqAxEya7hLs6lrOTa8crFq2fLe6/m26PB46DUjVJi42fbArhJBG5nYuF/L8UQnh3R+i5a1T4F/7V7S+czZCu7qOFdNr0gaE8oz7lvSRWrNWKC+ufLY3grtWtOPVLQHcurQNW8I1qvv0xSCt2WM9/5o/ofn1oyDHM7+XciyEptdmIvjVY5Bjfvg+/x3aFl2suv/9n7fj2Y3Zj60A9QUGAHhtizrwCzCTthDq6urwk5/8BADg9XrxwQcf4LjjjBOEpk6dijfffBO//OUve2OIRLRP//t1JcojW1qjJACI+3cAUNdT0+rw3RPHpi8W/5/uurh/O0LbX8j6GNoZn4Ac9SHa/FnGMteIU/c1+3Jp3kfJzIGq6KrSXeeL6Z+dHTZUHQhRXpUH1HUN44FdUGVk7hNtWo6/f96mWi4DaAnpZ+2kn5QAgK10f83tnDnUFhMVJ9LpTbhkWdY9QDVf7iC3TFrXiDPUy0aepVqmyvCKh7OWOzh9jEd1UaMlLKnrJ6YyadUH+v6vHjN+Egt2+eJYXB8ylb2tlcU0XKMUQa60GuZ57AKcNgHFiihtrpm0kbgMv04A6ak1ezKfY82dGbf9a/+SkV2T2ZRORtsHFyKq8zpa7b5ebNC8Jml3II71LVFVk6EiuwCXMl07TyZWqPf/+5WwpH82W9ozM0U7o5nlXfxr7tK9b2Djw+qFcgz+NX9CTJJ1MzVrDEqRaDlA8d76YzK2dWhnuI5VlL1Q1aQ1ORsEyNI0DPq/40bcI8+C6B2VsaxoYqKGuXvU2ZYfL1fz1qjr7ifVeMQe+54OFFqBLi0Ld6hLWOTaOKxj6dUZy3yr/gAgUZJDCjaklgfFzGxto+aXfZWy3IHSs57fq5blVCO6h1mZNSUF6hHa8UrGstDO/0FW9EAIbX8howxLTJKxYo/5rPhqjQul/96gHeDVrUmrs5y67+6770YgkDie+8Mf/oBJkyaZup8oivjOd7RL43300Uf47ne/izFjxsDtdqO8vBzTpk3DTTfdhMZG/XIb77//fmJ2oSDg/fffhyzLmDdvHo4++mhUVVWhtLQUs2bNwpNPPplxv0gkgoceeghHHHEEKisrUVJSgtmzZ+O//1U3zE7atm1b6rmSdV2fe+45nHTSSRgyZAg8Hg8mTZqEG264AW1tbYavxZo1a3Dbbbfh1FNPxciRI+FyuVBcXIwJEybgkksuwZIlxmX2brnlltRYAKC9vR233norpk2bhvLy8tQY58yZA0EQsH17IgnpX//6V+p+yf/S669q/Y0vvvgiTjnlFAwZMgRerxeHHHII7r//fkSjXccfsizjP//5D+bMmYMhQ4agqKgI06dPx0MPPQTZRCHq9vZ2/PGPf8Ts2bNRU1MDp9OJ4cOH4+yzz8bzzz9v+BjJ8d5yyy0AgOXLl+Pb3/526nUdMWIEvvvd72L9+vWq+yb/3mQ9WgA4/vjjVa9Rf67jyyAtDWqCIjtSjocQjcvYHcgMzBw+zIVJaSdzc0a6c57idcFE/S6xDfbJuuvkeAjRNv0GY8nasvaSMXAOUwcPpXCTahqXvXQiBEEw3WW24vgXs25jKx6juy4c13/NjtdotHTVIers1agiSqs1PatrZRybO7QDW0YBumjLyozbjvKDAAAlM7qCCmJRLYrGX6L/3HoUjcxkqesAOO7blnFClOQedyFER4mph9erS5iNe8x5qmVFB/wgIzO79PD7VJna8eBuxAwKxtoE4MjhbowpzQxwrG6KQI75MpaJ9uLE/zWm7caR3wYk7+4MZTRnsWLKvmZSWqyWQSnSuEPtvkxdZY3WXDNpjcp7rLYdm3E7Ur8w43Z4t3FjknjnV4holKK4dppW5rkxs5m3TcG46kJaWQ/WiLWLAs4e13WBarjXphm4peziMPceRxre1V6+5wPDQNSVB1v73GkFmSIa+7Maj4iZQzMvZjoVwR4r11CM6tHayw+Eo2ZW1scoO7IrkC24quA98BfwjL0wtcxWNglF+18KINHwUXB0vTblc/RPaLvLqAHYdyYXGzapSmcUzP3a+L6X2ZgvJSYuVgHAzk71xQTlhbwZQ52qUkNKMUlGrPWLjGXRxk8AZF5EBoAYMvd7yu9Af6C8uKJUJ1i/QFIIgi17c9J0UUWPhliHduk0KdR14dbKhafvTSnWrdevVfIgrtd4MMsFLMqNLMv417/+BSCRRfv973+/W48nSRJ+8pOf4JhjjsFTTz2F7du3IxwOo729HZ9//jluv/12TJgwAQsXLsz6WNFoFHPnzsUVV1yBxYsXo6WlBZ2dnVi+fDkuvvhi/PSnPwUAtLa24uSTT8ZVV12FpUuXorW1FT6fDx9//DEuuOAC/N//6Sc6pbv88stx/vnn45133kFjYyNCoRC+/PJL3HHHHTjwwAOxYYN2n5j3338fBx10EH7729/irbfeQl1dHSKRCPx+P7766is88cQTOPLII3HDDfqzhNJt2rQJhx56KG6++WZ8/vnnaG/PzwwhAPjRj36Eb3zjG1i4cCEaGxsRCATwxRdf4JprrsG3vvUtxONxhMNhnH/++bjooovwwQcfoLGxEcFgECtXrsRVV12FH/zgB4bP8c4772D8+PH4zW9+g48//hhNTU2IRqPYvXs3XnvtNXzzm9/EWWedBZ/PZ/g4APDggw/iqKOOwjPPPJN6Xevr6/HUU09hxowZ+PDDD7M+xkDDVBAa1ASbYvpePIR6f1yVrTmyxIbfHF6OD3eF4LIBR49QT/sz69z9i0xPHUonx0MQdDJei6f9ASWH/DZ1u/Kk+WhacDRiaZmzUnCvaiq96E5M67J59zM1xcg14tSs29hKJ+iui8jaB3C/PbwcJRonblq1IJUnwka19owCAjaDIHu05fOM2/aqRGt474G/gL10IuL+7XCP/Zbm9M9sBEER3Ek7II3s/Ui1fdnsR+EZb765m+iwFqRwVM9E5clvadZAFB3FqJ77BUJbn4WtZDzco85EuO7NjG2kYAOiOi/DdyYVY0qVA+PLHaj3O/FJQ9d0uzVNEcSjmd8DYV8gWquucRz5DYptaInmnA1f7hIxtcqBL5rUJxNGnystWpm0o/ZlaSrLrOSaSauXRWuGHNXPiksKtn4JoDpj2YEa391saovNHZKIgoAORcDaTD3b7rhwkhfjyuzoiEg4ekTuF+kGu722/TE8rl1D3BTRBb/O9+DWoyryEjzXuuZ0x9GVqmahyv2HXka59pNoByJKZ94Nz4RLIZhoSll0wJUQvfsh3vEl3GPOh+gsRclhf4Sjajqk0B54xl0EYd9FQZt3BKrPWYnwrvmwVxwM1zDjKa75dvJ+HhxZ68KBVU7M3xrMeoGs1Cng90dW4PPGCMaU2tEckvDyV35E4jLOm+jFsd04BuvrzDZQ1LpQqPxuTKp04lsHFOPzvREcUOlArdeGyxdmHgca/axIiv1/XMjcr2eJd/ZJ2TJplUoOuzP7RgUg2MzNgEtSvpeiu1pzu3igHrZ9Gflhg2OHo2td2L/cgTe3B/GNCV4cM8KtW3+2JSShWpEhrlfuQJb0a3VT7tauXYumpsR3/5hjjkFJibnEDz2//vWv8be//Q0AMHbsWPzqV7/C9OnT4ff78b///Q8PPPAA2tvbcdZZZ2HZsmU45JBDdB/rt7/9LZYuXYqLLroIF154IYYNG4aNGzfilltuwZdffon77rsPZ599Nu6//358/PHHuOqqq3DuueeiqqoKn3/+OX7729+ivr4eN998M+bOnYsDD9Tv4fHggw9i+fLlmDVrFn72s59hwoQJ2Lt3Lx5//HH897//RX19PU499VSsWbNG9RrFYjF4vV6ceeaZOOGEEzBp0iSUlpZi7969WLt2Le677z5s374dd9xxByZOnIhLL73U8DU877zzUFdXh6uvvhrnnHMOKioqsGnTJowePRqPPfYY/H4/Tj31VNTX12Pu3Lm47bbbMu7v9WonfT300ENYunQpzjjjDFxxxRUYPXo0du7ciT/+8Y9YunQpXnzxRTz22GP44osv8Pzzz+PCCy/EhRdeiOHDh2PTpk245ZZbsGHDBvzzn//E17/+dZx22mmq51i8eDFOP/10RKNRDB06FFdffTUOOeQQ1NbWor6+Hs8++yyeeuopvP7667jkkkvwwgv6M4HffPNNLFu2DAcddBB++tOf4qCDDkIwGMRLL72Ee++9F4FAAN/97nexadMmOJ2J36ARI0Zg9erVWL58OS677DIAwKOPPoqZM2dmPPbIkeaS0PoiBmlpUFMGaeV4CLsU2QnVHjHVxfnk0dauXGs+pyDg2BFufFhnrduyHA+lTriU0gO0ACDYPSg5+Ca0vvf11DIpuBuSYmpT8iDN5t0v6/NrZedqsRsFaaGd/TLMoMbn+DI7NqdNm1VmbRp1rW6w6U/l0TuYlKJ+xNszgwiOykMBJN47937n6D6mKYppc+nTXqN7Fmesc42ai6IJxj/ySoLFIG3F8S9AdJXrrrd5hsI75ZrUbVHRmE4K7dXNpD07LdtJGXD3RWXsiI/EKGxJLUsGaQW7+nsWU5wc7ldiR4M/Zil7TSnX+9pFAUcMd2sHaa1m0moEF0cmg7R5KndgZQps8sJNkhzLHqT1N3wA4BsZy0wmy2UoM5lBJkJdkkbrIk8+iYKAo2oHbmCoJzhFQNl/q94+xVSQVnQPzcjoShJEB3w6n+d8ZTcrfxvKXKLquwio69IrZ3kYkWXtIG3RlGtMBWiT3CNPA9B1AiUIAjxjz9fc1l4yDvbJV2uu62nn7l+UmsZfYuKCissmoLbYnnHh5pgBHJhNZ/aCk1aQVvndKHYIGFViT134A4DpQ5z4bG/mlHY9yot0youlygsX/UG2TFolZYmqvkP773CNPAPhXa+rlisTMfQu6EuBrtlcRjPOzhnvxehSO04f23Wcp3fxssEfVwVpdcsaGDRUpNytWrUq9e/DDjusW4+1evVq/OUvfwGQqFm7aNEilJeXp9bPmTMHp5xyCs4880xEIhFceeWVWLp0qe7jLV26FPfcc08qYxYApk+fjjlz5mDixIno7OzEhRdeiKamJrz44ov42te+lrHdjBkzMG3aNMTjcfzjH//Avffeq/tcy5cvxxlnnIFXXnkFdnvXfvH000/H1KlTcfPNN2PHjh249dZb8ac//Snjvoceeih27dqV8bcmnXrqqfjJT36Cs846CwsXLsTvf/97XHzxxbDZ9M9v16xZgwULFuCUU05JLVO+Nw5HYp9bXl6OqVOn6j5WuqVLl+Laa6/F3XffnVo2ffp0nHzyyZgyZQq2b9+OX//612hpadF83Y877rjU6/73v/9dFaSNRqP4zne+g2g0itNOOw0vvPACioqKMh7jrLPOwrHHHosrr7wSL774IhYuXIiTTz5Zc7xLlizBGWecgZdeeikVhAUSFxOqqqpw0003YceOHZg/fz7OPffc1OsyderU1IUHIHGxwOxr1B+w3AENalpB2p2+zAOEkSazu6woNRmMyBAPQYqZz8BVTUv3b1fVAE1l0haPzvp4ZgK5gHGQNipoB7mNEhuynQgbNUTZ7piuu07v2DMx7S9tpSDCUXGQ/gAtUtU2y8ikzQzSOofOtv74FoO0VuqaAYDNU6taZiY4Ue2xpabxJ20QMg9GBIOSDsqTQ4cI09Nm880mAjOHuTRPkq1m0mqdMI4qSZY7UGbS5r/cgZJyvyFHOnS27OLf/bFqWS4n74IgmAruxmQZndHeDdKSdVrT1evt5mpr6xKdupm0+aLcnel9shwa5Q7M1HBLPIl2kNZKgLY/caXt58xkoee6rxsItC4IaBE1gnTK74ZWVq5y3xyJqI8rk/0HlEFa5cVSq+V9+gKrQVqrx1S9Rifj1FFzhObyWEfmxTFZJxgaD9an/m1U7kBrFpCeesV5lSxFIQXVF+ESK+Pm96NkWnNzV5LOkCHaDabN+vvf/w5JSuxrHnnkEc2g5WmnnZbKcFy2bBmWL9dvMnv44YdnBAqThg0blgrKNTY24vzzz88I0CYdfPDBOProowEAixYtMhy7y+XCP//5z4wAbdKNN96YCvLNmzcPkUhmWaLq6mrNvzXJ6XTirrsSZfG2b9+Ozz//3HAs3/ve9zICtPkyatQoVYAZAIqKinDJJYkyfc3NzaZed63X85lnnsG2bdvgdrvxxBNPZARo033/+9/HrFmJ0k1GtWHdbjcee+yxjABt0jXXXJNanu29HWj64c8rUf4og7RSsEGVSTuyOP9tvEst1k/0CxX4X/w8vNZ2MMI62ahKoif7j7DoMp9JayaQm3jMSt112x3TtB/b4KRNeRLQHlZ2DssM0iYCzwJicOK5kj/rPu78rQH8e70PewNxrG2O4Il1nVjaEEJwx6uZz182Kb+dfXUyaaVwK2KKmsPOIUfn8PDWpjBZbYghuCoB0QkZwArXN/Ci91bIOhkdSsps2o2OzL8vWZNWS0xQZ/AUKjBnFwSUOkUcWKV+7axm0gY0ghH7pcodZD5Ygy8G39q/ouFxAa3vn4/QrgXoWP5LBDY9DlmWEdz2AjqW/RzhhncR2bsEHct/ieCWpy0FtWJtayFLiYs5OzpjeMlxDZa4L9RpzZewpi3zfRVgfOHFiJmmOaGYjNVNmQfPhQrYkz6tepUNtkTd9RgceN/zAzy13oedWz9Ex7KfY+maD/Hkuk6sagxDimrXZovu/Qgtu3r2QD0aasm4rfed1vrIrW2O4ol1nfioLmQYaIi2rNJd198oGxJpSZ9ibmYfGexGiZb+zmy5g3RS1IfOVbehM5hZo9+rkZWrPKaKBNTNfQS7d9/jZl6kU14stXpRsi+wWu5A0KiR3xfoBVmdOkFaKVCPaNOn6FhxPfwb/q6auQUA7eJQPL97NF7Z7EeDP2bYBNBKkPaxtT7E065+ScHd0Gv4C0DdVJa6rbOz673UmyZv1ttvvw0AOPDAA3H44Yfrbpde9zZ5Hy3f+ta3dNell0kws92WLVt0twGAU045BbW16mQTINEgLRnEbGlpwWeffaa5XVI4HMaOHTuwbt06rFmzBmvWrMn43U/PXtZy0UUXGa7P1de//vVUBq5S+ut5wQUX6D5GcrvW1lZVM7X//e9/AIDjjjsONTU1yrtmOPbYRN+LTz75RHebk08+WffCQUlJCSZMSCR/ZXtvBxqWO6DBTVmTFsDOzswMl5E90MXbSkBBBvC38udRL0wFgsCm0n/gyo7sNUqVGXFKgt2bmlYuuqqyPp7ZTFo9nUINIoL2gYHRcb7yRP/5TX58M635mrImregeCrFoJP4TNW7q9c6+zsj/29J1UjN/axDfa1+NQ9O2s1ceinzSy6SNNCp+wEQXHFX6mcC6j68RpLWV7I9451eWH0vz8QUBNs9wfBg/1jAIruXgGife3N71fm1xzEQYRXAh8R4YZ9KqM3gK1SU8eZJ7xHA3VitKHmj00DLUHFSfjFTsu4hTrMi4X9UURcf6X0AAENr2HELbnkutC371GCJ7EoX1/evuzrhf24ELARysO4aNjqMxMdpVD7nz85shHXgrfvNRC6KeROOAgFCGE4J/V913l+1AvFDyx4xlThtSnWutqnKLaPAbn6DV++PY2Zm5jdlmO9R7tIK0yUzaV4p/j0Wey4EtAbwrVeNbnesxr+zXAIJ4bWsQPxGnYf+49kF988b/ACX6n+fu6lx7D+C4LnVbbzejnOUBALcubdv3ryCiUolmQ0wp1ITWt8/o/kD7iNZ3v4aKE16Be79zdMsIpWdv9sMZ8r3KZTIvID3Lse2DCxDc9QaC1VdkzILXCvgqP7e+rc+ptpGiiUYvqnIHqoul5sbal7hNDLpZHIUqaScA63X+e41eJm21ftPBptdm6D8cRNxX/iqa/aOBDX78Z4PxzD29IG2FS1Q1D5QB/HuDDxdPSRzjxf06pQ5Sg4kBGn0SKHfp9VX9fut9UZLC4TA2bUo0nTMK0ALAtGnT4HA4EI1GsWaNfuPriRMn6q5Lz1w1s116MFqLsmapUjLzE0iUdTjiiMyLHn6/H/fddx+eeeYZrF27FvG4/vFq+lR8LQcf3DPHMfl8PYHEa5p+e8WKFQAStWTNHuvv3r1bd92kSfqlCQGgsrIyNY7BpB/+vBLljzKTNg479gQyDy5G9UCQdmyZ/mMqm13tsU1Avb2rxso618kICfoZh0mCo1SVtZkuPYhrKzsg6+MlGwmYoRXY/KBIv5OoUbCtXaNTdFvaMkkxHVuwF8E59Ggsc3/bxEjV/ltyV8ZtR0Wef0TFzGCjLCUyAmPtmd1EHVXTLTeGAKBZt9g5xHrZBCNiUS3+573FcJsyjWzxKZWOjIBHXHBhu6Or5EF6kFZ0D824r/rkUDA9LTTfkn/DrKHq96dJI+hq5AhFnVNR6Apwan0vdtm1S28kA7RaWre8bDiGB8szC/r7v/g/PLfRl1Gz93/Ft2jed6H3Z6plzm5EYQ4fnv0z/8Y2dYmTXLLPqGcdNkS9L2qzjUAE7kSAdh+/WI15Zf/K2O6pkgd0HzckqC/mJEuEWKX1SY2GM7N49abnawVp0z30hfYJhW/1HabG1p+0L7kKAPBFYyTLlsAhJpoKDpb6s1rMnvQmy2bJ8QjCu15HSCiGrCiXoVXzXLl/1jyejAchS3FVXeiBUJPWTAbowqJrU/8WnH0zSKtVWsw95psQnWU5zf7a5DgazTZzM+YA/fder7Hy/K1dv9uJTFp9elnClLuqqq5knD17dEpNmNDa2pr6d7ayCQ6HI/W8LS0tutvpTZcHEtmtVrZLlmHQk23MQ4d2nXsox7xt2zYcdNBB+M1vfoMvvvjCMEALAMGgfjk+AKioUDdJzod8vp4AVH/n3r17LY/J6LUwGkf6WLK93gMNz2poUFMGadvEWtXU7aFF+S93MKZUP3gaFTLHpHVC2il0dWUtnXm3aj2QONA3qqWVfrXdUT4ZzqHH6G4LAIKF5gmls+6F8vR3h1271MExI1yaGVdJWo0LImnL4oGdGevEohGqAJ8VATGzXIPgyO9Ut+Q0wiQ5WWc4nnlya1Q2wvJzOkvhmXB59g1NshXVIiwaXyj4wUHqz22RQ8SY0swLFFscXVe104O0ZUf9I2O7mCKT1iZkn2ppE7SDxd1x4ih36iRaq2yJsk5lNkcNd2WcNP7okK7vrNZJULs43NLjA0BUsB7s/6Ipe7AFAFa5zlYt607w/PiRHlS5rd9fa1ovFdbX9teeOdFuy/4ZbrPpd+SNC+qLnN+ZlP3CpRatQGtQ8ZurG//P8SMX2f2B5nL32NwuLPamstnzNJdLgUQdy8ag+gRZ+fodVetGZZbv+Gljut+ktT/7xv7Zg2zJRkzJ5qnKY0dA+0JfheK1bxO1p/4CEqItX2QsUf4O98dMWjMzcLY4ujIEbUXmExR6k11jplXJoX9I/H+GtVlOALDbrp9Vp2QU6D7XxGdXivmybWB6LGRO+jT3bNP4zcp1xlQhdWfM3/3ud7F161YIgoDLLrsMb731Fnbu3IlQKARJkiDLckYgMVttZaOmYn1Z8m88/fTTsXr1atP/kTWcS0CDmjJI26I4MXTbBNOddq06d/8ivPRVQLU8Cg+GHH4nYm1rEfjy77BDHSzpFIegRtoG57A58B54re5ziI5SxMPNmutcI0/PuF158hsIfPUEBNGB9o+vUG1vNBVd9djDjkXVWcsQ3fMROlb8ApAlOOSQartjRrhx1cHGj6t1Ep1+YiD5M4O0Nu+oVBmHXMlIP//Ob2080ZEZTJD3HazKyhpcGoGI3AkoO/IhBDdpn2BbJRbVAuqPbsqvZ5Zh2hDtwOABlQ5sbu86AN+WHqRNO3hy73cOqk5fhGjzp/BveBDxmDqDJ9sBUKlTxG8OL8d1H+pfwU86f6IXTpuAp9YbnzxcoRF8Tme13l2F24Y7j6nEZ3vCGFVix9S0LDOth4rn8LMd0zh5z6ZTI4PdrO7UCnbYBNxxTCU+qgvhk4YwNrZqN1hSKuqP0YIBrsQp4m8nVOHH72b+BtXZDuzW40qK70CVW8ShOvubbOxiYl+fvicJCpkX5rJlzBoJRCUUKaKUsk4D0PJj/53z8/SWogmXoX2x/gU/p8Y5Z3p5osQ2Au7c9x3/1zr1/vZ7U4qxf7m1WukDzTcnejG61I7WsITpQ1xYuTeMR9dmvlapa9X7ZuNEoT7u0boAXu3J/Dy26l0QkWXEWjNrKqpmtPTDII0ZIhLHY4KjDKKrvLCD0SEIAoZ9x4/2JT9GrG09ymbPg708MW246IAfwlY8xlJZFWWWtJEyg994r0PEDw8u0Z1JAGjvA71TrwdEOwTBrjkjjLrnwAMPRHV1NZqamrBo0SJ0dHSgtNR6lnh69me2jNxYLJZqWJacsl5o2cacvj59zBs2bMBHHyXKgv3mN7/Bbbfdpnl/o4zhgaKqqgr19fWIRCKpRmuUfzyrocFNGaQVM6+YV3vEHrtSqHc1P+4eAe/kH8Mz/rsAgBjUJ58dYmK6hneKeqpxOqPAqqs2s6OkYC+Cd9IPUTTxcs1MVGVwMRtn9Qx4D7wWjspEBq0dYdU2J4xyw5blBFgriyn9xCDu25GxzubdD4Kte0Fav5B2MCGZyyg0S1A0x5L31X6DYnqXkNd6XAIE0W4p0G7E5tHLvEmYWqV/gH1AReaJwDb7DEg6P0XOoUfDO+WncI04TbMmbXvEOJBY6hJRbjKTtsot4vQs2VuXTCnO2pncaudoIJGtf/rYoowALaAdpJVyCN5HNfYh2Zit2iDK6iBqaTfrw5Y6RZwxtghH15oft9a0Xiq8ao9N9Xmos3fvoF75HZhUmXtATxAE1W9MUFQEabtR+1qrvrIcU1/hKpr0o36TleQapc6eBxLT7rVKnUQ0ZsMkv+Na9Vcnd+P9HCgEQcDhw904bUwRhhTZcOqYIkyryfx9SNb/TZVM0pgxoXX8VK1oztgqjtS+FC3HEG3NrCM5EDJpzRCROB4z2zC3UAR7EcqPfgzVZy2Bo6Lr4pcgCHArEjGy6RSzNxtOytb8ONsMRGWQ1ll7Mkpn3InS6bejZNrv89uslwAkPhPJplh+vx+PPPJITo/jcrlSjZyWLl1quO3KlSsRjSaOEftKMG/58uWm16ePee3atal/GzXcStZrzZe+eFwwbVrivH7FihWIRPJ7jmxVX3x98mWA/rwSmaPOpM0M0g7pgVIH2URtiRPE5NiUmQsA0CEmgqjZShDolTuwVxwCW5H+lFNRY51gzzHAt++E2i6rg7Rm6pll20ZZ7sDmHQXZ1r0DvPS6XHJcPe7uEFSZtP7kEyk27LvTYLQ+H+mMuncrg7QhsRS7bcZF4+0l41RTnO2CgNaQcZC2zGk+E97rELM2tFGWatBiNZPWiNYFDGUWoRlxoeeyUmxQT0vM1ytgpTFcUQ7BceodyszqbgdpFXXbu9thXpltGBDKM253p9xxvU8rSKvOIrOXmp9qXGj2cu1M6Lh/p+bvddjggo+kER3M5ULXYKD8XU02qZT3lUpSljtwiNr1lGsUQdqwWKz6zANArH0joGjMqrxA0h9r0pphk5NB2jGFHUgv0i97oWaUSQtkn32g3Acqy4BRz/jZz36Wqv958803Y8OGDVnukSBJEv79766ZHieddBKAROBy2bJluvdLDwQn71Nob731FhoaGjTXSZKEf/0rUR+/oqIC06d3lRSJxbqOdY0arz300EN5GmmC253Yr4fD+T0X7Y5zzjkHANDe3o7HHnusoGNJvj5A33qN8mHQBmkFQTD135w5c7I+1oIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCg5/8Q6hZlkHaT4+iM28qD2d4Qte/L4tk3NmXmAgCscJ8HABCdxvVSRUcJ4rDjfc+VeNV7E1rExLQ214jTDO9n82gEaR05HkSJiddQq9xBTOsMTUEri2nPM0PQ/ulvsXCbHy/Kl6DB1tX4zObdr9tB2idLHoSEZFMO9bi7Q7AXwy9U4PWi67Gw6Kf4fI8ff3/u95i3uRQveX+PNc59Gc55zKTN95VGW5H+wbxN0G+0AySm9w9RTLdMr0ur+Zgl4zQzeJQdhJVKnGLWzNckr0PIGlw0FaTNY4BB66GU5Q4abAfglsrP8OuqTdhmPwyfuebif97fYpu9qyGbXzDfnKBTqMb8ohtMbx8V1NnHGolzOcmWZZ9OOaWc+o4SxXuzznWyqfuFob0fVwdpcxtXkjJIGxQyL27qBRziJn6/HljVgYdXteOxRe/i46dm4rG3nsKbtotUzZps/SpIO0Vzedy3DZva1Jn1WnXlk2Iau3D3QE3P7Cblb9kbX+3B60tfx3++ktFgOwBRqIO0Wirdouq37t8lD8AnJBr8SBCx2H0xHl9Vhxe9t+F/3t9ity3x+VT9Dg/MGG3qovBACdKudZ6EV7y/w5eOY3W3aTNRKzypzJVlBpzOqdMF8/figvl7ccWuH2Bj2vkWg7S9Y8SIEXjggURTTr/fj+OOOw4ffKBdIz1p3bp1OO2003DXXV1Nla+66qpUM6crr7wSHR0dqvu99dZbmDcvUWJt1qxZmDnT+Di/t4TDYfzgBz/QbEJ1xx13pGqnXnbZZXC5umYnJLOHAeDxxx/XfOy///3veOWVV/I63uHDE9/LzZs35/Vxu+OSSy7BqFGJpLZf/vKX+PBD/cbFAPDRRx9l/ZzlKvn6AH3rNcoH1qTtBkmScOWVV6Z2Qkl1dXWoq6vDyy+/jCuuuAIPP/xwRpc86kPSsgIi8GCL88iM1craXXl9ap3lykzaevtk1TY7HNOx2XE4arI0tRIcpXjZ+3ssKkrUmF3q/jZuaZ6WNUirmUkr5jYFUdiXEapV7iBqJkir8RZ0iEPx8WYfXt/tBzw/xEfuS/C75sNQLDfDVrwfpKB2HV6zmuzj8K7nxzgp+EDeyx3A5sXfyl9AvV07G+kD/BBXtl+Iw/Jckzbz/90jemrhlZrhF6tU68zUbzyg0oG9dV2fh62OWTg69C/d7W0l4xEX1mUuQwz+qPHnx0rTMLc9cWFOFLSzu4YWiaYCgZ48ZtJqZSmlZ9b7hErcWdl1cHRPxeupf7/v+SGub52DYfFNWOk+19TzyQD+Vv4CdtuNM5uTkifuqjHmKUjry1LOIh0zafuukhzLX6xwn4fZoSdUy5XZ5N1N5nMKmZ8zVbkDnSeImvx4vrsrDGAq3qiYD0QBeE/BLvtBuLSjq/a7Vqf2vsqhk0kb6tiBVzYfpFquVe4gSWtNPmcjDCTKl6VdKsa/mmYAAN6qeBPf6vx5xnqHoJ3CbBcFVLpFNKfNRFnnOhl/sz2P61uPx8Kin2KB99dAEEBRIrDykecy/K55umpml9Gsmf4sGYzu6+UOzFjvmIN/liWyIN8r+hGubpuL8dElqu3aLDQlzZZJa8aD5S/ghpajMDS+GaI9t8aPZN2ll16KXbt24eabb8bevXsxZ84cnHLKKZg7dy4mT56M8vJytLS0YOPGjZg/fz7eeOMNxOPxjMZjBx10EH7xi1/grrvuwqpVqzB9+nT86le/wrRp0+D3+/Hqq6/ivvvuQzweh9PpxMMPP1zAvzjTjBkz8Oqrr2L27Nn42c9+hgkTJmDv3r3417/+hWeeeQYAMHLkSPz2t7/NuN+0adMwdepUrFmzBg8//DBaW1vx3e9+F8OHD8euXbvw1FNP4fnnn8fs2bOxePHivI33qKOOwnvvvYfly5fjjjvuwOmnnw6vN3FRw+PxYMSIEXl7LrNcLhf++9//Ys6cOfD5fDjhhBPw/+yddZgcVdrFT1W1d49LMpLMTFwIcU8IkiBBQtBgS1hskUDwD3eWxXYhyC4aHIJLkGBx4kLcPZOZjEt7VX1/9HRPV9UtaxnJ1O95AtOld3q6q26de+55p02bhnPPPRclJSXgOA6lpaVYvXo1vvrqK2zYsAGzZs3ChAkTEt6Wrl27orCwEAcPHsRzzz2HwsJC9O7dO1KUrVOnTkhJSUzUX0vT4UXaG264ATfeeKPs+vAXgcT9998fEWgHDx6Mu+++G927d8euXbvwzDPPYO3atXjzzTeRk5ODp556KuFtN4ifaIfhcpu0snJWEp20JWnkr1+QDl1MKCY0gveN6zHidl+4/okxFuXQd8rsigi0ANBAZ+Mv+1RMzh2juJ+14HR4drytuI1WgrWh6TQML50WLc5GI9E304JVZUKh9AfnPdhobRaaA5Qdi+xX4QzPf0DbOoGn468M/b3rQUz0vAxz1lD1jXVwgO0kK9CG+db5EIbS8qKlXszZoQctW9dz4dnVLHrEmvvF2DvBwu9FI6QiLalwjJie6WYsihJpyxhlgYJxFklcQgzbiBMK0rDwkLzTObXpQUJcGGhyiR0/7BFO48xoEnTlxg2KUrUNUnRPYMEbUq5bA50d+flP+xWy+3KUCd85H8JVdfJFfsQcYXprFmgBYE7Ks8TlQ3ITE6/QJUV7F4VUIMegbeBEA0CYEaLGZynPEkXagCh7U4/jmoSJqwfQ3ImXFg4j76dU4VyN9daz4abS4OBrAbQvx54pjXyNeHtPOnF5rwz5a+KEQhsWHBRew7XcQzoiSh/zAGXHT447BcsslHzRxSw7IxBpAaDU1A+HmX74WXQcAPBTDix1XicpLkV7jwDood74NkavDLNiUcoUrgJAKD6rvfOdSyg2feF6EndXnyLZroHO0XzMXiq50akaRdxvnI/iurrLjQzaFubBBx9E//79cccdd2Dv3r2YN28e5s2bJ7t9//798cwzzwiWPf3002hsbMSrr76KXbt24brrrpPsl5aWhjlz5mDQoEGJ/hVi5qabbsKCBQswe/ZsTJs2TbI+Ly8PP//8M9LShP0AiqLw/vvv4+STT0Z1dTXmzJmDOXPmCLYZMGAAPvvsM+Tna48OUeOGG27Aa6+9hqqqKtx77724997mmW4TJkzA/PnzE3YuPYwaNQrz58/HRRddhAMHDuDDDz8URGKIiaVInVbuu+8+3HjjjdizZw+mTJkiWPfOO+9g+vTpSTt3MjlGx0C1k5ubi+OOO072X0lJCXG/7du347nnngMQGpVZsmQJpk2bhuHDh2PatGlYvHgxhg0LjXA/++yz2LlzZ4v9Tgaxsd56lmRZMs1ZA7ItKHRJn0YCdHhEWfnredjUX3WKEE/Ioiy3DVStnGrrOhVManOEgHPA/ylurwTnC7laxXlpAFDgUhdhTiiQ7hct0IbZZjkRjLMQFM1IpoQDoXzSWJArkhIrtZz6tK4jpj6gZfKEteAa9GjkZ8ZVAlvxhaHlgx+LKlxGIf2Ej2I7AW0BJ1MJON+p/jfNsAk/914qBaDli0RRJjv8lLATb6VZTC6xK+ZFhoXXawc0CzAuM4ULejoxOq/5fMdlmSVtEkP6rgLAOd2a21XgYjC0U+LyXwsJImV0jMFBlWzPnebRaKTTVc+TEwzdn6oZfSPyu82jJMusTEh4SQT9sszId6orNqcVxT8oY5A8rApikRYsnYRTdN2iz7TW3Gk5TGyD4LVEpKWkA4yANGtXL3vMIwAAtDU7wYUikwtlcsDe/UrJ8mXcWOL24wn38DB/7y91uGiNqDEQctTUXfDaQZM/twCQIzNLrIbJly1OecjUD0FRn5IO1utsZdvgwp7K/bAU7igAgKKTl+feEti6XYbDon6C+HUYUrQaiaJUEwZmK2+baWMk9QdIRKJvmMT0GQy0c95552Hbtm348MMPcfnll6N3797IyMiAyWRCZmYmhgwZghtvvBG///47NmzYgFNPFRabpmkar7zyChYuXIjLLrsMXbt2hdVqRWpqKgYNGoT77rsPO3bskOzXFnjnnXfw0Ucf4cQTT0RWVhasVit69eqFu+++G5s2bUK/fuRIn0GDBmHdunX4xz/+gaKiIpjNZmRmZmLEiBF47rnnsGLFCsH0+0RQUFCAFStW4Oqrr0aPHj0EGaytzahRo7Bjxw7897//xZlnnon8/HxYLBbYbDZ06dIFp556Kp588kls3boVf/vb35LWjhtuuAFffPEFTj31VOTm5sJkaj/9KSWOjd+iFfjPf/4TCZGeNWsW7HbhQ6LD4cCsWbMwevRoBINB/Pvf/8Yrr7zSGk01UCFlyJOoX3M/Sk29JetIeWmJgqYoPD4mA1fNqxCek2kS0SiaKDYKD6LcUWqkpEKflVKfi0zRJmSfuQye3R+AtuVGRL6Y4ENvopcSPoydUaxNWNHqkGNhirgeOEKxtSv7peClddLcJCVMuScm/OGZ1lgQjFKJslDCNfBBmDMGgHUfhr3bpZHfweQqQvY5a+E79CPMmYNg6TQ+thNQNLGgHRDqwKshzm310imwdJbPSqMomijSlqSZ8cTYDGyuDGD5ER+2VgnFoMwm4fWUrnZk2WkcbmAxKs8Kp5nGzYNSMSjHiyBPHggQkycjFl7ax4luaSbU+TmML7AlXGC4fkAK/reh+UF4t3kkONCgwcHKyxcvCNNISd3OVoYS5ESGq4LXU8pOmiDMMEFZcPvPiVmwJyhTkqYoPDE2A3ctrJK4vqKZ3t+YKtmWsTLx5F9QyJz0M2oW/w3evZ8BkH6mXXGKpRYTg+j6d15aeN808fKRNw+PSsejy2piOu9u80j09/+ClOHPxbR/a5I29k2Yc0aibpn8TDQgFBmldA+3mSjMOikL/1pZg6JUE24elDy3TXtH753Fxchfq+VmMVU31S0gYeXqUS/qx5naad6BWgRLkJIfNG5POHv/A9BQbJ4HwKv0Tc/u5kCOncaEQpumOgcPjEzHFT8d1dZQLr6BPIPYsFgsuPTSS3HppZfGfIzx48dj/Hj9zxInnngieF69bzB9+nRNTshHHnkEjzzyiObzX3LJJbjkEukMWjW6du2K1157TXEbpd9LbzsBoHv37oIibCSKi4s1vZ+Jft+tViuuv/56XH/99arbitHSDgCa3MLnnXcezjvvPN1taMu0z7trK8PzfCQYuk+fPhg1SuomAkIjDL17h4S/b775RvOH0aBlYVzF8MOGxqhpxGHcweT+zRxmGl1N5YJl/qaCIhRF45DKtHi1jlI9L33gkQv0F0Nb0+HsezPsJRclpPCUWKRN15gXqlXvYSkLaGdXANLMQiC26dD1NqlwHy+0RtGXUikKp7gvRcFWNBXOvjeBtgqLRplSe8DZd0bsAi1Cn025AQQtxbXEua0+yikp4ifGTwudLzaabTqfGZNLHCghnDfT1vzhGZRjxeQSR0S4NdEUTuxix8Sudk2fjXwZ1zdFURidb8NpxY6kFK8amCMciPHQ6ShlQtONrZwGkZaWFg2Lfl9C22SBMrlQx3RWPFYd3Un1fJkqjmS9OM00pvaQH9AZX2A1nHdtnHictKytAJTJBkefmyLLxJ/p1Di/d2bIOw4BctHLMPEUF91tHhn6gVM+f1uEok1w9rkBzuPuVtxOy30+18Hg+QlZuGVwmvFdTiBORn5wQa7ewj7zYNl9rFw9WEpcwLN9PkaqfczCkSqJLhzb0lBmbVmM4mKMYkroPbi8rwunFTs0F/azMBT6qMQiAICbSgXPelS3MzAwMOhItM+7ayuzZ88eHD58GABUQ5DD6w8dOoS9e/cmu2kGMcA4i3DAPJC4zptkkRYALJSwoFYwLEZRNPaoVL1XowHSDhpLt04VVY/IneTQOEVVq7bqhz3KSSsV1GJ5jq+mcvXvpALNaBRp43DSJh95J22xTNZyNOIsxwDlAEcrZ5L5KOHn1koLi6LUEYpMicXIeOisYdp9MsiyM+jkEP4eOy2hTGkb30DaJQoKjVSmZKm4oJqfcoDPHI1aWlmkVVufLJSm7WZYjQDLtk48Im21PXRvji5c6aaEIq0rxiibMGZCUctoTLy8gJARxzVmv2kQ/LCB55TP35Zx9r0ZoBg0UunE9cZDRuKoUphNQMJJy3/v5AYX9pmGyO5j5WolmbQmKonTzZKIWs3a8NR/zl+T/MYkEUpjbBbHKIu5NGL7O2dpuD6WmvqCD7pjOr6BgYHBsUqHjzv47LPPMGfOHOzduxcMw6Bz584YM2YMpk+fjpNOOom4z+bNzVXG+/RRLrISvX7Lli2yGbdyHDx4UHF9aWmpruMZSGFcRdhjGkFc50lm3kETZtFUykBkWjeNvab4RNo6TjoN2E+3fJXD9ZYzsSfsGmpC7KaUQ6uLt5bpDNoh76Q1x+CkraKk7up40Rp34GMy0TpyugYUnLSFGnKGSQV3fIyyKC2JOxDlRNYTRNp4CvuIcSXBJauVvpkWlLmbHT0L7Nejhi7AHw7lqcY+2oW1timS5aTKzL7MsajxKmdpHTQNwGbLJJjgxQTPGxpbHz92Wt4RptWRb9B6xCPSVlmbsuEoE+qpHCy0X41aRvg5jTcb1gz5zxegLNKa4ihaxlIWbLBOxols+xVpGWcX2IovxPaDh4jrEzELxyDE/np9jmuHopOW3A8pN/WS3cfKN+CIaD2j4kJvq0TH/ZDYZRmLCroIKb7qFmpRcqDNKQBBYP3c9U94KRdSuAoM985BpxTlQXIasRlWtBQQW2Odiv7supiOb2BgYHCs0uFF2mjBFQB27tyJnTt34r333sO5556L2bNnSyr8RQunhYXy+U0A0KVLc2XQAwcO6G5f9P4GyYG252GPZSRxXaNf+eEtEVggnE4VoJum9lI09piHxXXsBpBE2pbNb1xnORuz06RZOja2GkDiCv4EKAc8thK4QHbS+mIQ3Gt4aZ5nvGiNO2ikMyH1QLYRKFq2cJiW6ADSjHhxsR4xEietSKSt9XgB0ZS9Y0Ug6JtpxvyoCuhVTFdVgTbMeus5kmUuEweaZ8FFDRh4XMejTsXN/EXK05Gf90UVMEs2dsoDgByHwfMscblB28FKxX4frTKHiiHxrB+z0r9CuamnZJt4C4eZeRUnrYZYkVh5P/U1jAu+k7TjtwTOfrfhwJH3iOso3siaTBQNAX1CmVNhcEsu7kAJHnSUiSAE007/vj4Ns+ReyPgZz/jeI/Si2w+huINayfLF9r9H/Twd9wWvVTxOrGJ8qoZaZEvsV+HcwO2QBjMZGBgYdFw6rAXF4XBg2rRpeOONN7Bo0SKsXbsW8+bNw/3334+srJAw8/XXX2PKlCkIBISdkPr65iIuLpfy7dvpbBYWGhrUpqYatAYUzeCwaQBxXRffn0k/vzjvzt8kXPp5E2oY5UEANRp5qejip1rWn/ll6r+Iy60BsvMmHmpMISctS8jXSvdt0328Wj493iZJoFVcW2HqVUTL1oQDBZ6S3j7y2e2a9rcxUsF8nek0xX0CIkHfIhJ+BvJLNZ1bjUJ2i2RZMbcxIceOlV5m/QN8ShT7FsPJCx1CDaY81DIFmo8RqcrcAth5+amQhYF1LdYOg9hQc6oqUUWHBqoP8/lEgRYAXNBXEFKMGcq5kyY2eSItAPzFyBdNbA+Ys4djtYtcubl/cFELt+bYZSS9WNf2Dsg7wGMp7rjceZVkmSmO73Zrku5X7w+66QysYZT7JW0e2gJKZSAzQDmwNvse5cOoDGTJ0U2jQ3apfXpMxzcwMDA4VumwIu2hQ4fw8ccf45prrsG4ceMwaNAgTJo0CU888QQ2bdqEwYND4fkLFiyQVPHzeps79BaL8jCh1dpcIdTj0R+MfuDAAcV/K1as0H1MAyFBjkcNLc0eTWcPYjA7P+nnN4s60gEq5BjjaOVCSilcueJ6AOAY6SCCj1J2yyWaOkJ1eQDozFRoPsZJ7lc0bVeNUGYmJ4oUoHgOeVQpugbWaj4nALCmxFea1uo88VJt11fAy9w6Lqi7Q9sBAvWSRRXhac0yiN3RNCf83oxs+B9sXLNj5G9112lri4jJDY9Jlk2pVX6ASTZpNfNh52oSdryh/u+Rwh0RLKvhM1FHx+ccz2D3x7W/HBaOLMJ1Cm5D9+DqpJzTIHGYuNjzBuua7s1+K3nA0srVwxqsivn4gHJhMACwU8kVaats5EHi9sLGygAOo5i4bkzj6y3bmGOY4VXPgeK1zwiiWXljCOerwSnuWbrOX0HlS8/RTp20edQRdPOrmzAqbeR6Fe2FAAfwGiK21gaPU1xvVRnIkqObdwHygtKBbzEHzINiOr6BgRaKi4vB8zx4nsf06dNbuzkGBprosCJtenq67LpOnTrh888/h9kcms47a5awI2OzNYtnfpXp8D5f8+ij3a5/andhYaHiv7w85QxBA3WqvJxEdDq98RncWT0JFkvyXadmTizSNlWVVdlPi9jHM9L2+xIYMRArLu4oXFyl5u3PaZQKZyQqg00CtyjJhUYQtMmKm2rOw4X1d+HSuhm4pO5W1eMFmcSLtCyvbcqil267TloSf6u7Ht2CK8AFNMwYCEq3CcjEJ4QRVx+mRNWAM6007qyehKkN9+OmmvMwxPcNeI3vdTT9/L/j1uozMdz7CcZ63sEd1RNRElwV07EShb98ATqxOxJyrDGed0H5jyKVKxMsP+BLAa9S4VmNk92vxrW/HBa2hrh8Zs2ZoGDEHbR14okLqGuaBMvIZL9mcgfB+7QP+JEwK2TOAoAdyS1qY2bad1f8hz3S96drYC0eqRwIG5IrcHckejG7MbNmsubtKcJ9NgzbuA9nNT6BkZ6P4mpTe3XSUiYH/lE7TdVl6rS271RArcWPxf0rMQwfW9wB7yvHzOrJOL3xGaSz8rPnrGbl/p+BgYFBR6N99wyTSLdu3TBpUmg6586dO3H48OHIupSU5sJLahEGjY3NHVS1aASD1qHCI+ykWXg3TnM/Dxdf1ZTnlFzMoqm8ATSJtCp9q7DjVgmWKNKq75ds8oNbwPulOVkkeJ4HhZCwq0ZlU/VjcYeTRhA864UVboz1vocRvjkY6ftE9XisSsXbWAiqlRVuwsNrCPNqJUi/QtilHKzeoL4/wUkb4JUfhiR/U5E7j7blIJvbhwmeN9EzsAQAwPtjK/pRElyFy+pvxYUN/4cuwdDvw8UpBMUKz/PwH1mAzkFtURJqZLAHwXnLkMoKnfi7G4WfN5oP4MzGp3QdW23aeKyYg9K/4wDfD7Dz9eA8RvHMtg7DxuGk5UIzP+SumxnsQXA+7QN+JJQKgwGAA9LrVRg+GP9nvhVrEsbN4YYg1pQLhboL6u/B7TWnI507AhiZ0QnDlDEARcG1KA6s1LQ9xcp/btnG/aAADPJ9o/n8FKEAFcO1V5HWCQu8GOMlZymHac2CoYnArbEWwxG3cr801m8x5ymDFW6c7n4ej1QNwX+OdsKldTdLtrPEUYDRwMDA4Fikfd99kky/fs3Tbw8dah4BjC4WFl1EjER0sTCjCFjbRCzSZrAHEO4u0C0h0opcRn6ExBK1rpWfUnfE8jRBpG0D4l9ecAv4gDaRFlzIMWzi1R8GKr2hv6VE0ONZIIYK2iyT+GgIrfXL3BodEK0BqWVU09JA1Tr1/Ukircr7woqm7NFB4feGtmVL93EnLveYrU2MSKr7vPW7wbkPoZPGvF81aLDgPGVI5YUi7Z464XUwlSuDg9MncqsVYIoVJiCdzh6eScAaIm2bh47DSVsbCA3eyBVjT+cOxS3Siu/BYhy8fOYt6zksu07z+duxQPHjXqHA7eCqMdw7p3mBjun5Bsow9lCcUzqr8TNHuM+GYRv2AWi+b2vBRJTqYnNYtjpNmfpqv78jzqKErY1WJ63c9TUMz8f2PrCN0jx9ksFES8FZAwMDg46EIdIqIFcZPFq83bp1q+Ixotf37ds3MQ0zSCiljSKRlmsW3pPtpGUbD4Fx7xEs8zeJqOpOWofqFGyOkQq5Pk7b177czeKDLQ34brdbs/tTK3nsVgTrd2valm9yajBQj3eo8IQeCMWCHoMguID+4jJHvImfgqXWGQ7jUVMtlc7B8fhxjxsfbW1AuVv4+d5RHcAHWxqw9HDsDjDS5y7ssglqEWmDJJFW+Y0RR5JQTe483+FfULfyDngPfCfZh2081NReDu7tb6Ju5V0IVIedsdWoX/cY6tc8CM6rLvIE68giKc/60bDpBdStvhdso/KgXSx4938JAAkTaQOUFWz9LqSywrgD8eBBGlcGGy//kE/CzHsi72+iYBv2o375jZLl4euBd/dHCXEzGiQPJo7CW/UBHg1+DrM3kT+LGeyhuF3ujFomLSc/oBisVe4DakHrPaEt4QlyeH9zPebtE4q0o70fwBoVD6Hl/fGXLULpbArln5eACxjxCHLwTYKiOKpGlqDC4EIMIi1DEGmDbDt1SkcGD5R/f5PMc2B7IVGD/UF/LSq+HxXq57i1DRJwvioEjkpzfwOEuhiGSGtgYGAgpH2H7SSZzZs3R37Oz28OzC8pKUF+fj4OHz6MBQsWKB5j4cKFAICCggIUFxcnpZ0G8fHlTuFUzHQ2ypnFWJEseC6IirkjYcaZguWBpq+llgzMAAdYFKKkONoKiKYgezn13MkAy+OhpdWo9oU6sqWNQVw3ILZ8VgrSbnBecAs8O9YibcwbsoMhYfgmcZXR4qRtckXzPIPoCVo0WNQuuVpPswEAe+tYBFge5gR2ILUK3vF0rt/f0hBxOP2+34NXT8mGhaFwqCGIh/6sjsQVBDgeEwr1ZxSTfoWwSKvFSUuKO9hQIS/CczxPEGkb4C9bjKp5p0HuQYtrctI2bnwO9atDxb8at8xC7oX7ULPob/AfngcA8B76ATlnKxegkhNpa5ffDM/2NwAAnl3vIfeCfaDoxNxaeZ5H/aq7ASBhcQeBJge+2oN+GlcKO6/R7d6ECT5UfHM8Ok07SnQ264XnAqiYO5K4LnrQpmbp1cg44cO4z2eQHFg2PhH94T+rcbCBLAaZ4YvbSVvBZQEKl3il70H1r2cCORpFMxne3liPiV1bPyteDy+vq8OqMuE9meaDGOd5W7CMD9SB89eBtpD7D5yvGpU/ngAAYBv2ouxDF/Kmt0PVukUIvS9+SlutBEphYJpt3Kf77AzBNRvk2qdIy7oTP6DaFvlmV2LytHkwCFQsR6BiObx7PkXOeTtA0crPEhVzRxOXk2YBtuPJBAYGBgZJwXDSyrBnzx788ssvAIDu3bujoKAgso6iKEyZMgVAyCm7bNky4jGWLVsWcdJOmTJFVYwyaBuUmXo1vwgqZ9XFg/fAt+DchyRFS8LZnFp8lD4VCw5LOEgtl6K63+LD3ohACwC/7Y/9ITvTJr3MdA5uAwAEq9ar7u9uEsAG+aROSTFVXg4sxyMourTRfBAgFD7o5/tF9Zh/libWpcdaO2nazhOHSBs9BbU+wGPhodDv8MGWBoHA+up6fU7JMCSTL90kigfrd6ruzxGmwClB+rwyXCMaNjwNJSdMeCpyWKANndyHupW3RwRaAAhWrkGwQfmhNVizibg8LNACAOc+DO+eTxWPo4doV3I6l5johqLAGgBaRNoy2Dl97nNzkyOxcdv/YmucCN+heeA8R4jrukdV5vbu/qhVC7sZKONk1fPEw7i4CsmAnJxAC4SysHlfbNnTYXqw8gM0FM/CLJPtyXpC36E0rdPPZWB57YN3bQFPkJMItAAw1LYTGZz0vXDveEv2WDULLpEs442IBDJN17i+/l81bU4H5QcX2Ib9APQ5aYOU1LSQTddo3r8tUdc0+NktsEJxO387+l6SWHc0MZnBvQLNhiS2YQ+8B5SzjIP1e8DKDGwXBDdKlqnNpDIwMDDoaHRIkfa7775DMCifo1RWVobzzz8ffn/o5nbjjdKpljNnzgTDhEYRZ8yYAY9HKLR5PB7MmDEDAGAymTBz5swEtd4gkZAe7Bup9MjPpDylRBHOuLSIRFo/H/pcaZntrua29BDErQBPY0ulcsdtS5V6tIBWchzS0fbwdEjOp/7wHqgMPUBP8LwhWXduw4OC1zyAah+HAC88pxnkrMyzG5+IiOQ0H8Rg71eSbQ43JtYpErTmq2+ExE6BPdwQut4l6u9a45N+OF1ck5tNQ/avv3yJrvOVu6XnS0clfAfnKu7HecmfL+9uaUVr3ts0ZZoi3xa1OIQBIFAjfQCJlejrD63jYVqOLHYv+vtD4nQqV664bRpbCiuvz4UTnhYeKFsUWwNFsA3NUTBnNjwZ+TmdPYihvi9FGydvQM0gPtIDu9HTr+0zYeUbkKFxQKJzcCuKgyvBx1h5PEyv4J9Ikfk+0GBBceSBOr5pEPfS+ltlj93f97OmAnxl7vbjSDxYT27rsF5DicuDCtdE3+GfJcv4oBF5QKTpc97X/wdS2ebBq2HRGcBRZAflB0zDTlqTStRHND5eGv/UiWmdgprxwjbFcAz0fY8sVn6AttLTfr6XyYLiOYzyCPtMwco1ivvwQfmi2n39v0uW+dpwDQYDAwOD1qBDirQzZsxAUVERbrnlFnz88cf4888/sW7dOvz666944IEHcNxxx2Ht2lCl8nHjxuGmm26SHKNXr1646667AACrVq3C2LFj8emnn2LVqlX49NNPMXbsWKxatQoAcNddd6Fnz54t9wsaaIYkhFn55gcEtmFvEs8eOrlZ1En2N8URBAiNo0QOE7eKkitXNEBtdL3aKz1urE4fTrTfBfVRrkZaPU6CbxL9nHw1Hq4cjAw25AC5bUgqzh0zBWZK+IBe4WHhF+Xuit3KYfLYrbi9+jScV38fbq05C70D0viSRBd1If1NCsw1kmVcAp2Bie7+VnuFDy4u7mhkKiSvItLyPK9bpBULGGnsYZg4D2ir8pR6OZGWuG2gLjRoI+Pi4hoPaMqu5QPyDyd64bnEDZYM9n6F26tPi+QKqjlpU7kjsPD6xBJHeFo4nZgsZ9qSEfl5oucl/L12Os6rvw93VU+ESZRRzfn1RTMYtBycrwLX1l4euXYrYea9yNSwHQDcWnNWaPCCi0+ktbKVuKP6VPTyL5Ss40GDl4lroJhQAZzegYW4tfpMpLOHQPNBXFX7d1xSdyum1c/E3z2347wBvXBTpyXomcphaibZkS/Oxm/LHGwgv9+5TjNSR74sWU4pFuCU3l8TeQ09puBDnxELPLireiIu4F/HrSW7MbWHi7h5VmAH+TBBb2SGghnyIu0FGWsVm5MX3AKwiXFqthYMgrijehLOr78XV9Vehb4+oUv5qKdjurq7+5cCAE50v4ZHK48X5EwDzbMIZJHpR1EmB2hwGMcJZ8Z522Mwt4GBgUES6bCZtIcPH8asWbMwa9Ys2W3OP/98vPnmm7BayULSk08+ifLycrz99ttYu3Ytpk2bJtnm6quvxhNPPJGwdhskFtIUm2j3WCy5XXoRd5L9fEhgFE+zYngfrLwbbqpZuFBz0sqtX68i0tb4pA+M3iAPl0W/YCnuqpnQfG5Ki5gTJfplcIfxcNVw5E4rB2OzAZiM7F2VggfcSg8XeQ/DiIXwaPLYbchjQ/ELB03HSdabEjyUJe6MDsm14J7hvTBnWwO+iMpHbsuzv6pFTtq0KFcP+CB4ngMl40hlG/aBcx8GtMXqAZCKtNnsXoDzg3bkKRYN4rzlmoVO3l+jWok8ULUW1vyJysdRcJDoJoEi7VmNT8HJ10ReW+CFjauFl04jbp/OHdHtpHWEj5+oTF4u6loB4Hj/j/Lb+msBR15CzmuQWDhvBSzwYqT3Y/zkvEdxWzeVjhJ2pabj2sOF7eJ00vJBD9K5alxedyMeyha6PjnKJDvwFJ09XRJchUeqhki2SZ/wCewlF+MEAKHk1c747ZejqPMLL/DtSqStJ7/f2XYGjKNAspwyKYi0jBUQieAJvYYeQ/BRgxEp/FGc0ZWGq98olLuHAweFA4iZ7H7QLPl9jM5jFc/kimbUgFPw+cIq2fUW3p3QgcTWwsHXYrw3lKVcauqLLdbme/zRduRwTyQ31l5IzCAOw3mVZ+LIDWx1vjw08Ju/oxHY3jwIrBbBZmBgYNDR6JBO2nfffRePPvooTj/9dPTq1QuZmZkwmUxIT0/HgAEDcP3112Pp0qX4/PPPkZ6eLnscmqbx1ltvYe7cuZgyZQry8/NhsViQn5+PKVOm4IcffsCbb74Jmu6Qb3O7IEDof0U7aYOt4KQNNLlAxW0z8z5JtXV3QLlj4xWXbG/icCOLcoXOJ8lJG+tIt1hspPjm82rp4POcsjMzS5R5W+Fl4Ze8d9qmQnOQisaJdtKKO6M2U+j4tOg8ieyzJjquU/z5SONEuaEK7prA0aW6zyf+rGZx+8BzftB2ZVGO8x4FpzGvkvPXqIo9WiIPEuqk5RP3AExyziq5aWNx0ka2j9PZGEbPtGcuYDhp2yrhwl7i4n8k6ukcZHL6Yob4OD9vfFNURipPdt7LCQ5aMKX2liyzEgpRljYm5jvTEshlBGfaaOL9WlGkNZy02hHfn6jQIIGZ8LXKYXcDnB88obAXG5W/rjSA3cnBwG6S7/9Q4ACufTtpxWSywmvP0Q4Yd2DnahQFWiB2kTaMTXQNNERaAwMDAyEd0kk7YcIETJgwIWHHmzx5MiZPnpyw4xm0HKSiABZB3ME+8DyflKJv4elCYidDXYDCR1sbcEDkVjHBF8p8jIpbfXV9Hd7pnCN7DqXiU+uP+jGpqLnKap2Pww973aARKjal51gkVpX5sLnSj921wt8jXGAKABrWPQzzKd+DNsvbKnnSQ0CUuJtlZ4Coqc+VHk6Sg6s0pS8alkq+SCuOOwh3VsXPWYmMOwBCxV7iKUYWjdhJKxb7PLvfh73nNcTvjdaoA57n8WepD7tqAlh0SPj3y2L3AZwfjC1X8Ricp1yQa6pEsGYj6lYpu/zqV90FZ5+bQJnkK7HzAf3F2PwVK+Hd8ylMGQNg735Fsws5gS4lUi5zGleOcvQibA1kMB6Ydea8hnNzldzNWgjW7YB72+vw7PlE8z68vyaucxokh0DlWvA6RFqeYjTHHYTx7p0DTJDmTGuB53mBkzOL3YtKpli4UTwibZr0+0USaX/b78Xf+6fA1A7KnMvFJZloCn7Se0VJHzWCdTvQuOVlYpa0Z9/nMGcNjrud7RmeC8C95RWwnlJYC86A79BP8B38QbgRFernkD4zOezu0HFYLyha2L+KniGmJNLSFNAlxYTt1eT7EAWO3D9rx4gHiI56uKQ9AySCWh+Hx5ZV42ADi3tHpGFQTmjmJ8vx+ONgbNctJyfvng7DqcQdBCqUZ0NYReL/hooAXlpbC5qiwFDAVf1dsCV6GpuBgYFBO6JDirQGBmHIcQdR7i3WA857FIxdWQzSC8/zcG95CQDZ5fnNLuk0YzPvhY0XVlt3B3l8uKUBl/UlZ5IpiXLrjvoiIi3P83h8eTX2yxQEAeTzbUmsLvPh2VVkZxsdFYDgPzIfNQsuQuZEhQJQhKmm0aP02XZhR67SyyLNqj3uIJogwUmbaMSO5PADOyPqjyYy7oAH8Op6/eKhHOJMWrFIW7v0OoCxw9H9csm+/jJ5kZbjedBND0OLDnnxikybs9j94Fk/KJNyZgLnq0DlD2MVtwnTuOkFTdvVLLocGSd9IX9OnVN1g/V7Qm1sEmT5QD2cfW8O/ZzkvD+5YkkAYLfZwfljdM/ryAKW7BuoR8XcUeB96g+Kgv2MTNo2B9t4CBXfNUcA8JAWkSSRpVOkBc/Cs2cO7CUX6dsPkNxfigJrJCJtPE5akovUJuNOfHJ5DR4enUFc11b4coeyuz1cTC2ahrUPIGXg/ZHXXKAeFd8NBy/jfm/86ylY806BNe/k+BrbjqlbcRvcW18BADRufIa4DRURaaXrstmmwUnWA4gGwQVOWsgPxFEAipREWr59irSkgsFhxE5aH8ujPsAjNYaor2TD8zyu+7V5QPSfK2rxz3EZ6JZmxre73fhkW2wF+Jy8BpFWwUnLespQv+ouxf3FTloAWHK4+Vr8t37kZxoDAwODjoIxTGXQoSHFHXQPrhC8ZuvIxRfiOu/R5ZGftbo8TbyvOYMvim93k3MjOZ5XFGn3RDlc99YFFQVaAGhQKVIWzRsb5AVBWjSNynfwB3AB+c4kZU6VHsPcnKOZZRM++Fd7OVSJRESrxmnbBUFpFep6f2ILR0jiDpo6q2LHbo0vceet93NYcUQ5NkIPkkxacdwBgNpFV0iWcd5KBKv/kj1u9ECAnEALhDJpec6vWqQMPBsptpIovPu+jDzksY0HpRvodL96dr0n2Kdu+YzmlQmKO7BT5Adp0t8tsk/X82I+H6dTYI3GvfVV3QItYDhp2yL16x4SvOZkcqqj6e/7WZOTVlyErG6ZtMCrFsTT8wf6hAVtGN4vG7nDq2RYk+5dADAkl1znYHNV28/3/HQ7+V5anBryfJjS+6kew7PjHVmBNkzjxuf0N+4YIizQKhGsD/VNSbN9ugVCfUyOEBkTLhoGKA9gUxTQNVV+YIUC1y4LhynF6KRxpYJILgCS/mRbYRtBPP9gS2iQOFaBFgBcGpy0Su9h/Zr7ZdeFkRuoCkPQcA0MDAw6FIZIa9ChIcUdjLBtFrwO1m6WbBMvwZrmCs9aXZ5m+GDntbvF3AFeMde0zs9FxCYtFWwrCTm1cohFvGgcXI10oYJTibZKnUW0LSvys3hE3s/x2Cp62C0IkitqR2hypPQOLJCs2idTJCVWxDHBTNMDVpcU4cSGfXXBmHK6AoR9xO9HvEgzaVUq/TbhK/0N4SzmK+r+IVmvJY7BxtWiMLgB4PyRrMsWp0lU9e79XLKKcZXoOpTv8C+SZWHxR5zNeE7DI7LHmVBok113dSdylW6xayjM5X1dcA34P1AW7a6+Qd5vIj/H4zz0HfpJdRvncdJYilb7LBjI4i9bJHhNiju4q+ok0E1ZmzQfxMmeV+GAuhv97EZhQdaYIzZErroB/h/R1dKcYz3a+758xrJKXnrauHeIy88olo9LaY9QaHa+WTqNJ24T7V70l6vnkvsOyRcJPNZRcnoKtguGBuhNNIVx+c3Cfw//EnQJrg9tQxi8ir4+M2Bhp6SfYytDgaYopFrkHxNp8AnNTW8plDKPGbCS2g+JiolKNFWEPvmmygDq4jQWKGXVRyM3SO478B1xuWvw45Gf063K8gPdRuMlDAwSyfTp00FRFIqLi1u7KQZtECPuwKBDQ4w7SO8Db82G5m2qVQS+GIieKqRUXVfQLmc+0uwuoEbbOWpVOmoBDvCxgM0UyrVSo0JjlVu1BwxHVIX55n3kjy3uCKYME079s4hE2koPB7eoU90tsExyXNfgJ0Bb0mDvdilYzxH4D82DOWcUrmhw4f0tzZ34vbWJFWlZ0WcuPFWxZ7oJNNUcc8DywM6aAPpnWXQd30MQafUI7GpwPC9x+aYqODKjiRYkB/m+xfv4r2C9loeh430/wAR/yEmr4MBOJjznB8VY4Nn3mXSlzocLxtkVAQgjINiG/TClFEscqZM7VaBXnzR8u9uNQTkWjOxsxYYKPwpTTBiQbcGkrnZsrw5gQI4FFhpYW+5HUaoJJXUe4mUji9tLbNNZJXZQlAM5526EZX4Qfl69q3B5/c1Rv4A35hw/tlG9aBTjKoIl72T4S3+PLIs3B9cg8YinvnOEuIO+w/6Bp3Ot2FhrR3dmF7o0ToOl8/9gWQ7I3cLu6boGeau/Ia+MExo8/q9wCX5fvwh2vg6DfV8Bzi7EbUmDEdlTNsBf+htMmYNg7UyufeAw03hybAbuX6KtqGFb54mxGeiRHooKkv3Oc36ACQuJiZ2dcqzBa4zMiY7SuHFgKo7P8aJy2W0Y2vBupBwbaVaDOKLgtsyv8VTlxYJl4QlKSo5HHlQ7ddIqv782vh4epEdee1QK9LYWcm7TnTLxFADw8klZWFXmQ66Dwc6aAL7cKZ2Jl5M/FOmdPoC1cDJql8+Ad/eHxGPxgXpQjHRWACkKgUnpBtfxzQ7bTJuySGs4aQ0Szfz583HSSSdFXl900UX49NNPFfeZPn063n33XQDaB88MDBKFIdIadGjEcQcZVhqm9P4AmsWXaNdroojObNTqpLU6c5GaWQDUkOMNxGgZTa/zc7CZGFRqqGBboXHKV51KjiXRSSuuWhy9SvQgTJmEWVVm0XO/WKC18I3oEpROsbcXXwBTWqjyNm3NhLlpmmY/q7CDe8TNwhPkYE9QEQOxhhrujNpMNIpSTNhT1/xebKuKQaTV6foIsDzMOnrE9X6pQztNpip6NDzPwx8l0jJgYaaCCEQJgOK8XhJDfV+GfmD94HyxZ5/GBRcA23gQAZIjTGfcAWWWZq8FazaGRFq/8AGbtudjeGcrhndufjAqjHJg98wwo2dGc67yGSWhdT5vOvHc2exeybICFxMRWhhHPuzmo/CrfKcHZwZgEhQT4kPfaUIhPjW0iLSUyQlz5iChSOs1RNq2Bs8K71UkJ62z7ww4ARRlAcCApn+A01wBP2HwsE+GGf0zKcQeqKGO3QSM886OvOZl7k8kkdaU3h/mjONUz5ElI1K05SJFcoQFWiX4YGOzoKMhgkaPi/9Yg/NqnBUQFbfB0BQmFNpRTv0GNipCi/NLBwLEA9+5ZmmfMtyPsIvD8qOoYfLbZyatSnFPGy8Ucduqk1bObbqjhtwHybbTyHEwOKMkJO43ykSY5RaMhL2pXoWr/52yIi0XqANty9bUVtdx9wiua+lWWmBKENMO6icatHM+++wzPPDAAxgwYEBrN8XAgIgRd2DQoRE7ac00mkTaZpIt0po0ZtJaaHL2mBx1ogfcTg5GMjodzlvVIsBqiUQAgNJGZeepgyc8NCgJW6IHCooRTuu2qLwnJYGVYEBoE6HiNAAUukySDuK+usS5aYOizxwTdbI+mcKHXVLmmBoeHdnBgHI0BXF70WeFApBCqRclY+t3CqpKA9IHwPDDkNyIdQpXjh6BkOuU53ytJszxnB/efeTiYYqfZdL2/jrJsvA1R+yCoq2Zuo4dhrKkE5eT4g7E1w0tFZYHEpoVS+QBz/Mhx50KFG0GbRU+HBpO2rZHeDp25LWOLqf4OhlZzvPJF/DE9waZuAPJdF/GpllgZWTuW21TDoqf6AxLLQURaUua6jbHKrxf2xAEaQaSOB6K9xHc2qJrrIugsYfH+O0KTtoKpkTT9bqtocVJG4144L+tINf1lRNp853C65qcyBvtcqVEReeiIfVd5GCaDBHR55aLPKApBUe+gUGC4HkeDz/8cKu2Yfbs2eB5Hnv37m3Vdhi0TQyR1qBDI86kNTOURKTlPKXgfNVgvUdRv+YBNPz1T8nDpx54LgjP7g8ir2nwMGlw05ppCqyMePXsqhpwUevq/JykeFeahUKKKF8s7Lat0CDAas01PdIoL/jShLwvAAhUrJTdJ1C5SvBaPL1KHHcgpjsh6qDpQMTFFoZCoUu4LlxkjeN5/LzXjQ+2NKiK0XKIzaLRz0C9M4RPS+uO+vHZ9ka4dQiveh8oZvxRiXKFKIuD9UF8sKUBv+zzgON5adEwKw2GJr+XtctvhffA9wCk2au0vTNsZuFDQ7hwmJwJfJD3WzAItTVYvSHuB0TKHKMQwAXgIeTRhtfpgVRAJ1gdKmAnLqAVq0hLy4i0JkjbWi+a2qn0kB5mYLb0KT8WkZZzH9K0Hc+zEgdPsgV7PuhGw8bnULfqHgTr9yb1XMcMos+AlsJhYcSfwzBBjpxTDgDefV9pb5sClOjewHnLEazfI91QPMuDkc+FFiP3tfpgS4OmmS1A6CHzt/0efLClAQebstODHI/vdofuUUdE96hdNQF8sKUBiw55W3zqZu2fN8C96wPwPC8YpJaDC9TDX74UdSvvhHvHO6hf+zBKZ1MonU2hbvV9ugfD2hOaCy+SRFqL8B7B+avgO/wrapfPhHffVwjW74bv4FzBNhQjP1tHrcBTe3TScgqZtABgFfVR4814TRZy3+ANFeTvRq5DeP11iwskNBEtnlImeZG2ZsnfUb3g0tB3ctX/gec52e+lKbWXZJlc5IERdWCQbLKzQ/3Hr776CmvXkms2GBi0NkbcgUGHRlxkyUxTMKX2AGizQGwJ1mxC7Z//iDjc/BUrkHlybA+E9av/T7LMwnsQpJQf8MwMBTmtblWZH48tq8EjozPA8zyeXF4jechNtdLwsjxqosw/ESetxofCPw97MTpfuZ1KIq2T8oDU/6qZfyEsFx0C48gXLCc+dNMikVbFSds98Cd5hcLDRXGqGfvrm3+PsJN2zrZGfLUrJND/ut+D107J0h2DIM6kjXZU9c6Uil2f72jEzpoA7h2Rrun4sUzNm/FHJd4/PUcieDcEONy3pAq+prei1s8hQ+R+yLDSoGgr8YHBveUluLe8hMxJP0lEWmv+JNh4GtH5hJ6mh4YGmYeiIb7EiDAAYMmfBD7YSI4sUIFt2IdA+RLiOrmp0XJwAakbJVATEmmT7aTVghaRtnOKDeJSI959X8LZ+3pd5wrWbtO2Ic+2uJO2dvmt8Ox4EwDg2fkuci/cR8zjM5BHj5NWjiDHg5Zx0lb/cR7ST/wc9uLz4zsJLe0aV3w/DJ0uPAjK1Fz0SxLFQ2v/PMg5aefu8eDPUh9ePilLdpsw3+5246OtIYfqT3vdePWUbHyytQG/HQi1a+lhL16YkAmbicaRxiAeXFodGST0syk4pWvLFTDzHZwbEgdZDzivemEi3leJyh/HC6b0h2nc8E/wviqkjfkvYc/2j3aRVvreUKIBDN+BuahfdTcAwL3lReJhlK5jatd/La7otoaqk5YTrp+zvRHn95QXK1sLudkGclhF/bt6mRijDJs2kTZYtRbBqpDA1bjxX6BoM+y9riFuS9s7S89jZQDCLDejaJhBsrnlllvw5JNPwufz4aGHHsJ335GL3RkYtCaGk9agQ9MoEjKtDAWKNsOU2lOw3LP7I0HsgW//1+DlKj6rnXPT85JlFl7dmWtlKPRUyH7b0uR0LW1ksZcwPT/FQksq9R5sYMHzPLFKLIn/rFWf3nRUQfB1UPLuusYtL0uWVc+/SLJM7PqwKjxEmGigZ24n4jol4ao4VfiQfqAh9H6GBVogJIb+uk+/W1AstEc3P9PGINsuvSyvO+qXFS7FuGMscrHokPR3+WG3OyLQAsBn2xsjwn6YNCsNKDhxAMCz97OIOzSMpfPJEpdO+FxyQnNxcBVxeSw4e98Ik6tbTPv6yxdD1seSgLgDtm5H6FA+YTYhZUmskxYAShhhBMXYfOED+5Bc5b9t7wyzQLgKU/fnP7Q3sAm2geBWJGBK6yN10nqkxUoSBR90RwRaAOC8ZfDLiPQG8hQFVmvedkw+WTga3smqeO2uWXSFrjaRcq1JwgTvq4JnzyfCZaywMFoinLRAqGr7Fg0zV8ICLRC6r3y5oxGLDzePwlZ6Ofy8L9TGr3a6BbM4Xt+gHlETK6bMwbLrapfdrN31ThAhw7i3/09vs9oNWpzGAGDJHSNZJh7I85ctUD0ORVtxXJawbzmsU+i6ryTSdgssA1hthW/bEmqZtIdtw6X7tMGiQT4NGf7RHCeqb1CSSvZppVm0ibRiGv56AlzjfuI6UnyBnJPWbCgTBkmmS5cuuO666wAA33//PVasWKH7GBzH4ffff8edd96JsWPHIjs7G2azGenp6Rg0aBDuvPNO7N9P/j6EmT59OiiKQnFxsWD5Y489BoqiQFEUduzYodqW0047DRRFIS8vDyxLfgb/+uuvceGFF6Jr166w2WxIT0/HsGHD8Oijj6K6+tgoYnqsYVwKDTo0pSLXZ06TQCYWQ4I1QoEJQEKzuEgFfMTk2BlVwYTneVTKCK42gsi77qgfnqC0EFQ8NCiIhFlm+Q59oHyxdCHJlSjKC8yy0bLZXL3SzcgaLXWPMM4iMPZc2bbki+IO5NzBu+v0T7kUTzFziHqkOXZydMDBBm2DAtU+ba5oMZsrpZ/nzQShQGzeMNEApXIr8ex4S/J9oe25kr8b3yR8kgwif++yn+jCjgVz7hhYu5wNaBBVzLnjJMuCddvld9D5MMcR4g74YCO4QKPUSWvL0nXsMBRjgSmDXBzhquM7R95XhgImlzgE608tciDN0vzOD8m1RLY30cD1x6eAosmDR3ofbLU4yMxZw2DOHgHanic8V7ABnMrDd6z4y6TXpmDt1qSc61jCLBKRhls2CAahpvWWFwAmFNok33e7icLpxXZQtAm2bpeRd9QpGon/trQtF+asIcRtxd97sdhDmVM0n1fNJRvLFOstVQGJcLPwYGjwLZZ8cy1YCber1OHPye/A+SUF5QyEaCmeCAD2btIBCTmXuRKUJQ2X93VF7scMBZzdLXQfMNEUceAYAE50/5dYmKytw4vjDii6Of6KtiJgkQ7sJ7KPnCiqNZorACDfyWBgjvD5YWCOBZ1EEQgnd7EJrk0UbYK9x3TN52EbpKJU2pg3iNtmyXyusmT6wAYGieTee++F3R4yGDz44IO693/sscdwyimn4Pnnn8fSpUtRWVmJYDCI2tparF+/Hs8//zz69u2Lr77SPwPw0ksvjfz80UcfKW5bVlaG3377DQAwbdo0MIzw+1NdXY1TTjkFU6dOxeeff44DBw7A5/OhtrYWq1evxiOPPII+ffpg2TKZaECDVsOIOzDo0IhzRfNcoa8EZRIKFRyh+ALP+iTbxUoXF4WdKppvgYsBQ1O4bkCKrAumzs+jRqbjZmEoDMy1CNyg++qCOFAfm6gnR4NCfmq2Rf5BUesDrjgv0ERT6ORgJII7AByfY4HJVYSc83agfvW98O77HM5+M5Ey9F+K5+jsFJ6jIcATnayxmCvEIrbTLHxYF7udwxxsYNFHg5GyRmchMKX9SE4N4q+sMj2NSe0pKBwT2oWRiDDh95N0jgnZdVB7HEwb/z5qFZx0tK0TXIMehr3bpaBoRuKEk0AxyDr1Fxz5QOgUZet2Kuyk70MhV3yDbdgLcMLCROK8QT1kn70W9avvgXfvZ6Fj2Tsj/YQPkZfaBU87A9hUFUDfTDO6pQkFV5uJwjMnZOHPw150djIYnGvF1io/dlQHMTjXggKXfDciWLsF5vR+mtuo5YE/8/T5oChKEo0CAJz7MGhRgZJE4Cv9TbJM8qBvIIG2CgcVUnv+DU/3ycSSw15k2ZiIW4/EoBwrHh2dge01AViZUBbtsE5WpNtC1+b0ce/iiEzVcT34yxYJXls6jQ8NANBWyfdP7CoTDwroEWnVcMncB5QgZZeHZ8skwp3mJcxw+Oc46TXJmncyQiUlZa6FCg5ZA4B1q4u0jr63gjJJBxljKapHW9JRkmbG0+MysbHSjz4ZZnSPGtDPd5pQ4RF2UMe738Tx/h/B8e2vwJs47sBaeCZcxz+AwNFlsOSdgrSNVlT7hc8GPpaHSUfh3pZAa19vej8XTii0SQaGGJrCU2Mz8dsBDzZW+DG+wIZxBdLPVNqYN2DpfBJqF1+pei7SAINDJgIhkzTCg1CRYwODZJOXl4cbbrgBL7zwAubNm4fFixdj3DipKUOOYDCIvLw8TJ06FaNHj0a3bt1gs9lw4MABLF26FK+++ioaGhpw6aWXYs2aNejbt6/mY/fo0QMjR47E8uXL8dFHHykWOPv0008j7tnLLhMOXvt8PkycOBFr1qwBwzC49NJLMXnyZJSUlCAQCGDhwoV44YUXUF5ejsmTJ2Pt2rUoKirS3E6D5GKItAYdGrGwl98kzklEWoJ4IKnsHAfdu43HH1uVxdJw2+REPCDk+KyScVKaaQq90s1wmChBcanFh/VP2VdCHCERTY5dvpOreVoVofhMnpMs0g7IDokAptQeyDjpM23HR8jNSlNCR+cRQnEtnZFg4HheEkcgFmlTLOT3KFwYRo1YRVpS5IVfg32Eivqv7DbmFKkYSRJpw/8Xqd8MBVAyxcmicXS/XFGkTRv9GmxFUyOvOU+p8gEpBpTJBkvnE+E/Mj+yOFivJNJqh+c58IRMWoDs1Iw1kxYIvX+pw58jutyK08woTpOPUkm30jgjymHbJ9OCPpnKrn4A8B9ZqEukJVYiF0E3VZumTA5QlnTw/prIOtZ9GKakiLS/SpapfnYMpIWNKAYpFhqnF2sb3OydaSbmdAPargdakIq0J4CiKNC2bEkhO/E9Svzdpc2pus7NUPIOPXF2uRYaZWJiShtZ1QKbWqjySu+BWTJTlq2FkyUFqtRg0vqANRzqEjeiKeN4BKv/EixjCBmfQGz3iLD7tijVhCLCFPgCF4O/RAkVPQMhBzofqAXPBUERcpzbKuLCYZTJBUvOCFhyRgAA0q01kn18LA+n/C2yVRAXcSUxsatNcO8W47LQmNLdiSnd5fvfFG2Co8ffULd8hmx/JYx4gMHe8++y22bIXDsMkTYEz3OSyKtjHdqaBUpHgdF4ueeee/C///0PjY2NeOihh/D7779r3veaa67Bww8/DLNZeGEYMmQIpkyZghkzZmDUqFE4dOgQnnrqKbz//vu62nbZZZdh+fLl2L59O1atWoVhw4YRtws7bXv16iXZ5rHHHsOaNWuQnp6OX3/9FUOHDhWsHzduHC677DKMHj0apaWluO+++/Dhh/EPfhskhvZzVzUwSDB+lkeFR9jJyZMTaQnTcHkucSJt13QHAOWpumGXr9KzVpk7KDsFysKERs4HZFuw/Ehz20lZpPGg5KTNccj3crWLtNIOXJ5TusxhotAtLbZLnImmkGOnUeZu/l20iqRKeIK8xFvkElmcUmSdtBrjDnRMgYuGJO6SRFrpEooonAv28VUTBRuxATeszYpbQlFSB3UsMK5iwWvOrSy0hR88aZtw+iPnPqywl3ZxJeQulqliX7tF3BpQlvblWvKXLYSzj/ZsWr1TZxlHPoICkfaQ/MYxwnkrEayUVv9lFT8DBgAATvydb1sJW6z7CFjRgIul03gAoYdFsUhLS0Ta+Jy0JhqQiY+LaXq1XB75XxV+1QKbWhAP5DlMFGwyhTPFhf20wNg7GyItAE7kRrTmT5SItHLEFneQrrieNFuCRvMHl/NXg7Hl6D5vayH+3tKi722aVfqZ1jJg3dLIzZqLRsnUoRsN12+xk5ZxdpXdVi6T1hBpQ3C+SpR/Ih/LdiySO628Ra8lubm5uPnmm/Gvf/0Lf/zxB/744w+cdNJJmvYV58iKKSwsxF133YWZM2fi22+/Bc/zxGxmOS6++GLcdtttYFkWH374IVGk3bVrF5YvXw5A6qJtaGjAK6+8AgB4/PHHJQJtmKKiIjz44IO48cYb8dlnn+H111+H09n2CiV2RAyR1qDDcqSRlcgjEZGWEY08k6ZF63TScv46NG6ZRVzXJdUKNZE2XJmVUegnLTrkky30EBbABucKRVq5Ik2xwPO8opM2N8Ulv6/WjF+CWJdPeIjon2WJq0psZ6cJZe7mNr32l/Tvo9fsRHpvJE5amXmpB+tZ1Po4/LzXjX31QWytCsAT5NEvywwrQyHNQqNHullzETgx7iAPb5CLPHS7AxzKPdJjfbZdHFsAqDlp2YY9oMxCgZGiTZK9Zm9uQNdUEz7eKnK6AMS/u14YV4mwXRqctAC5MrEcPOsDF6hH4+b/AFwAzn4zZd1NvF+aRxtG7KSlrBkt6jBIBP6yhbo6ppqrmjdBOwqAms3N+xOEU9/hX1Cz+O/g3AcBAClDnoTzuHs0OzF9R/4ASUg3nLRkeC6Axi0vg/MckTqQE/AdTiT+cqGLljKnwpRxPABICtMBkGRYc6LZAXpFWoaSjwSIxUkrt8c7m8jRHBfPDRXbu6Kvq6kfwOOMEkdk4HBZqRc7qgMY2smKox5Wchw5kQWILT9bnDPd0eC5INxbXwHbKCzmaMmbiMZNLwiWyQ1IUbE4aa3Kwm6BS/l7y/uqAJGwwvM8PDvfQbBmC+w9/gazTCZ6S8MFGuHeKixSS5mF/VKSsOnVIdKuLvNhS1UAg3IsOC67ecYJz/NYdMiL3bVBjMm3oVdGfNbcrRpypltcpBW5wBlnF9ltM21G3IFB63PXXXfh1VdfRX19PR588EEsXkyoj6KBuro6VFZWwu12R2YDOhyOyLo9e/agWzftxYpzc3MxadIk/PTTT/j000/x/PPPg6aF38HovNroHFsAWLBgAWprQ88YF1xwgeK5TjjhBABAIBDA6tWrI68NWhdDpDXosIjzaDNtdESg0pI1q1lUbKJm8XT49pMDxB1mGqkWCnV+9Y4gKRcuzF8VfonoFyY8XV9cPCCReIK8onDZKS0dct1KrRmPJKGK5KQ9Lju+DnBnB4P1KttIfbHKNIpcxjQVKugWTVAm6Lbax+GBJVUS4XRDRfM7+tuB+FzRpY0sStJC7+8tf2ibZhUSUNVFOF5cIIvgpAWAx5bVSJbRFIAETKekrenCNkW5MEmEHTeMXVpIRI5AxQpU/3EB/IfnAQB8B39E9tkridtyClMHxY6yePJoWwvOfQhswx6YUrR1THm9Tlq7MJdW7G71ly1C1bxTBcvq19wPnvUiZfBjms7hPyyNOiCdyyBE3YqZcG99lbguEW74ROI/slDw2pI7NiLeE52goixVPih20uqMO1DQPBI4dqrK+1ua771/HfXj8bGZWHrYixfXhq5P3+8hZ3enExyHYWJ10nZk6lffi8ZN0jgac+ZgyTK2YTfxGGqCKwm1zy3JSVtDN197SVOyGze9gPpVd4Z+3jILuRfsBeNo/b9vzUJpwUHKJBRpbQSjg19j6YbVZT48syrU1/lutxuPj8mIiLG/H/BG6kn8tNeDFyZkEg0GWiDlT5NIZPozRTGqPV5x3IGSSEt6nwGgE6E/b2CQLLKysjBz5kw8/vjjWLJkCX7++Wecdtppmvbdt28fnnvuOXz33XfYt2+f4rYVFRW6RFog5I796aefUFpait9//x0TJ04UrA+LtCNHjkSPHj0E61atWhX5OS9P+wDokSNHdLXRIHm0L1uOgUECOSoSuzpHjd5SGqq+63HScr4aWYE2TLZCRdMe6c0duRyVUWY5J+uArJA4m2lj0CUlOZ0gtYrUGS55oUk8BU22MjxFykyTLhuQHZ8YrWU0X2/hMPHfxmmiJC5Dn8LTOcnZmkj21oUGLup8HOoVHNHR0BQALoYoCMoESsWBG8bHAhSlLLqHp2zaSqYR15PcsPbu8vm1gn11Tr8KC7QAEKhchUCNOLoghPgzH02wdpuwDTE8fLck5izyVKpA1TrNx1DLXzNnCad7if+mnLdc8Lpu5Z3E4zSsf1xzmwJVa4jLOe9RzcfoSMgJtAASMtASjdJUWi0EqzcIXls6NRcNsRaeKdleXPyQD4hmFZj1TREc1Vm+nxGLkzYRbK8JotrL4r9/KWdPAsChBnnliuhEVoHWMRgGhDIbjyVIAi1oM2i7dMqztWAy8RjiYn1aUMuTTSXk5Hdmm+9PpBkQYYG2aQM0/PWk7nYlGj7ohe/AN5LlYgd8d0JMFqmIKglxUd83ol5/G1W0lwfw7W43YuXLndr2LSFkDMeKrfhi1W140WeBcciLtHJkKzj0DQySwe2334709HQAUCzSFc2PP/6Ifv364eWXX1YVaAHA41EpVEzg3HPPjbhxxVmxa9aswdatITOHOOoAAMrLyyXLtOB2x35dMkgshpPWoMMinr7kjJ5mrsElqyeTNlAt78m097q26fzygtV1A5qdDsWpJhS4GMUHJDGpFgqDc5tFyzQLjQNQ3p+hAIeZQn2UuzdfZYRbnPErOSZjgqPXdXBvf12yTlxxV64CNOlBON1KY0iuBWvKQ3+3QTkW1baqoTSVM4z+uAPh7+RMRMntBLKjOoCTuth1FR/LdzExZYFS5hTIxBkSUZs+6+xzEwAgZdCj8O75RLLeNfAh6T79boNnzxxJFXfpyeNzZXOeUiBdWtlVqfig+PtAMfa42pBsUkf/F5VzRwO8ULBnG9Q7r0BoUEbRnUqbkTpKNE1VNOOBZ4VO8kDFCk3nVoJUrRrQP5PCQOpYi5e0MW+g6hex40V7xA3rETpGmJTukZ/tJdMk1czZRuFUXvDCeSEUrW9g8LyeDiw+7CVGDrVmBGZDgIdM/VEB4vtZNLSjQNc5U0e9KnvPl4MP1Le7nG69hAvppI2bjdrF0wEAlCUDtuILydvbOoUGsvn4M/TDUBSF83o4IsJgDn8QJYHma6tSbE8Y/9GlCWtPrIi/72HEgwODCLPNtGbSivtO+6NqGYiLz/5xwIt/HK/PfR/mrwr1+08nB43ecUYqROMa8H+hvruOex+t4KQFgOn9XJi9ubmvM77ACiYB+dnHArQ1C7nTYhPa2iuxDDIlgvT0dNx+++146KGHsHz5cnz//fc466yzZLevqKjApZdeCrfbDZfLhTvvvBOnnXYaunfvjrS0NFgsoWvI77//jlNOOQWAgvFIAZfLhSlTpuDjjz/Gl19+iddeew02W2hwN+yiZRgGF18sHUBhowLv16xZIylwJkdhYaHudhokB0OkNeiwiGMDoqfecBqqjCsJLGJIhWfCpAwMjdqJp70DwPBOVlzc24kuKc1fVZqi8NiYDCw55MXP+zyqYu2AbDNuOD4VjihBUC2r9Yq+LgzKCWXXzonKIFXLJqvwqD/ZpY56lSzSSuIOZERamQf924ekYWFTEbTxBTZdAe0k0jWItKzOm26D2ElLEuZbsX+6rSnjzB3U/rBcnGrW1WkPQ1vSYNbYGU+xUKCtZDero/c/YMk7GbaiUOaSKa0Xcs7dgsatsxCs3gDangd7jythK5Q6j8xZg5F91nL4j8wHz/lRv+pucgPizILlWZn3R8/7psXd34pYsoch++xVqPh2kGC5ZpHWVyl5P5zH3wcEPaCdhbB2PgnmLOG0X4qxCg+i4/3kg27VWBue9YPzlJFXcup5gAZCaJ1xAGpYC06Fc8C9aNzwz8gyxlWkeX/OK/zb0rZmxyLFWGDveTU8O96KLGMb9gq250UzCCidgzmZNgbPjM/EyjIf3tssvP+pXYI5ngdN6R8o1IJcATIxcpmSgPI0ZzEZE3+ArfAMuHe8o3kfoEkcPNZF2qZCYI4eV4JxFCBYsxnWLmeDIbhrAYCiGTDOLmAb9iS0HRf1cqIo1YRaH4c+m+4HIygcVqN+gFhm2yQYTkakFcfmUBSFLBuNyqh8f61OWjni3V9MpUpfe3o/F8YV2BIqeDLOAuRM3YqjX/bSNAhAWTNBq8wuOKPEgXQrjc92NOKkLnacWdK2B6NbEoqi21VBvvbOzJkz8eKLL6KyshIPP/ywokj7+eefo6amBgDw1VdfSWIIwlRV6auzQOKyyy7Dxx9/jLq6Onz//fe44IILwHEcPvkkZEaZNGkScnOl94OsrGbBOycnxxBf2yFty8ZlYNCCSETaKJGU86tfWPWItIpTfpnQiBspn2nmkFSBQBvGZaZxWrED53RTz849o9iBLFGUglq/7axuDhQSzqvWzazQULRKrmAPJ576La4MHt7fTBZpzQyFU7racUpXOywEwVsvSnl7YXRomQCkD78kJ20iNdqe6frG4Q42sGgMcBIxWYniGKfTUeZUzU7abBsDykQWKVOGPQt78YUCUd6U3gdpo15B1hkLkXHip0SBNow5cyCc/W6FOXukUmu1NVQGXuZ6oseNKREk2yDmzIFwHX+/YJm4CI4cUhcthZRBjyB1xAtw9b9dItACAETORT3XZDlXlbBNhyB71ePZmJwRHRm9hbW0YM07RfCaD2qbqsezPkkmtdhRZ84aIngtFmklQgUhikeNXAeDM0sc6JcpFHjVBgAb/Mr57/GgdZBOKVNXzzRnW+EZAPTPFuDEOefHINGFwKz5E+HsdwtMKSUKewCMqzjx7aAojMqz4bRiB1Kswj6cJG+eRBsY1JIr9kg78iXL0kT9v3hF1rJGcn9WLSJMDrU+2hklDqQksmhYE6aUEqSPf0/TtlqvAaPzbXhhQhbO7uaIq9ivgUE8pKSk4K677gIQcp5+9ZV8ROGmTZsAAJmZmbICLSDMhY2V0047DdnZofigsHt2wYIFOHQoNIORFHUAAIMHN/eZlyxZEnc7DFoeQ6Q16LCIO116nbR6XFuBKnknbThr00oQFtW0Rj0VZ/UcN4ze7lKFW3sEgxhJ3IGMk5ZO8JRZOTSJtHHHHZDe4cR1UtXyi0nsqA6gXuODg9NEIccew22EokGZnIpF8KLJUjgHLSPa62+SvAuOVKxOD7JZq3IOW1Ib2riTNozYyajVSSuOzKBtuarORKmTVkdOuJv8wC5ok0zUQfNBWl94aE8kQ6SVRF5oFGnF+cUAwNiEIq1Y7FJz0saTuSsWPFmVS3BNjOKOFuRy7fUQSwwBZdIn0mqZZt/eoa3yOf5yJEOkjSac/x6G0/B34BMYvxArcgNzjF1aVEfcH9cadyCHuFBxmL21rf++6IVxKQ8SRLbT4aY3MGgL3HzzzRFX6sMPPyw7EB8Mhr63Xq8XHEe+F7vdbrz//vtxt8lkMuGiiy4CAPzwww+oqamJiLUOhwPnnnsucb+JEydG8mxfeuklw1TQDjFEWoMOi1jgjO6UyTnfogln0voO/4K6VXfDe/DHyLpA9SbUrbwTlT+fgtplMxCs/kv2OFTYSUtQTtWm7EfnxepB6wwo8ek3VQbw/uZ6rDziw+GGIP61sgZX/nQUP+91g+N5HNUQdyAH768R3ER4XuZYLSRW2U00UTiPJqjTyiR2P7hITtoEGglyFYrRybG5KoDPtjeqbwigKNVE/IyqZU9S5lRQFCXJaJNDi2AeN3KfNwDx3io5Txkat8xC3co7EKzZ2nxKPU5auu07aQGAcQpF2mDVWrAN+8E2HkDd6ntRMXc0apffAn/ZIsF2nMhJSzvVMy3F70kgqhCUbMREE6QH9kDFatStvAPuHe+gccsrqFmgXCjFyKXVB2XSV1hL2zHFIm0D/GWLVfdjxTEWlAmUqDifWOzivOUREbjhr6cFBQIBgIrBSRs5l+g6+t6WBvy23yP7YFWrIzdcL+9vEQ+YklG6VcUSNyR7z5fBs+fjdvfgGazfg7pVd6Nh4/PgmwZ5+KAHDRsJRcPQHHegBz2RH7FAiwR499ZXUbfidvjLl8nuIxsb04LIxR2QBhTEfb93Nzegyiv8fPI8jxVHfHh/cz2+2dWID2S+N36Wl+3rvLCmFlw7+wwzKk7uyHaGSGvQznA6nbjnnnsAABs2bMAPP/xA3K5nz54AQkLsnDlzJOtZlsU111yDw4cV6izoIOyW9fl8+Oijj/DFF18AAKZMmQKXi/y8lZ6ejptvvhkAsHTpUtx2222ygjIAlJWV4c0330xIew0Sg5FJa9BhSUQmra90PqrmnQoAaNz4LDIn/Qxz1hBUfD8MaCpi4y/9XflATW4xUtyBGg0KhTvCkI4aqynAE+Tx/R4Pvt8jrFL59qYG1Po5QYZXLASr1sOcNSj0Qi7uoAWnQ6VbaZQpCIl6RdpG0TRSh0KxuEQQi5P2m13aK3sWE6ogAwDtLARbu5W4DmjOplR6b6NpCZFWXLk9kURXtnZvfwu5F+wBbc3QJ/K1UyctAJR/XgTamg3OVwEACBxdBvfWV5F99mqYMwcCkDppxTmB5JOJ4g78NeB8NaCt6TjyvrKoLX5gDzbsQ8XckSpivfgghpNWD8lwg5NyhSt/HI/sc9bDnHm87H5i0Yi250oc8+IBByD0OQlUrET9mnulB43DSUuKfnl9Qz3q/RzO7SEVt5Mp0uopHJlQgvqqX7u3vgpb13NhzZ+UpAYlFj7oQeWP4yIDUmzdDqSN+S9qV9wKz/Y3iPu0ByctH2xA4+Z/o3Hzf5AzdQtMab0l+/CBOvA836L9NzGsTNwBqU3iyCyWBx5YUo2XT86KTMlfccSHF9bUqZ739Q11MMk4IzxBHl/saMSFvVpmhlgiiM7uVoJxdk1ySwwMEs8NN9yA5557DqWlpaioqCBuc9FFF+G+++6Dz+fDVVddhXXr1mHSpElIS0vDpk2bMGvWLKxevRpjx45NSNTAmDFjUFJSgj179uD++++P5OHKRR2Eeeyxx7BgwQIsX74cL774IubPn49rr70WgwYNgtPpRHV1NTZt2oRff/0VP/74IwYMGIBrrrkm7vYaJAbDSWvQYRFPPbdHiaS24gvUD8B6UPvnPwSLapb8HQ0bn40ItJpoct/0SNdfhbWXhn1IfUOl6ezd0qKLlGlvyxc73KjSKNKas0cQl9cuv7n5RRuYHpehUjxMbyat+MHaRRBpSRmvsRZTiCmKQAdhjZoyC50o9uKLFPcLO1dOLdL2e6U2ZatZRdmy1i5na9pfCzThgcLSaTwAIFC1JmHn4QO18Ox8N/RCj5NW51Tg1kLOPRMWaCPwLBq3vtK83ntUsJq2d1Y9F0n0a9xEdqSptadh3SP6BFoAPKtPVOro0LbshB9TzrVf++f1ivtJi4Z1kmxDm52grcI2c+5DqF18JbktOguHRSN20ob5eBt58OhQQ+vfH4fkKg+EmHPH6Doek9ZLdxuq5yvfa9oS7u1vCGYMuLf/DzzHygq0gDCTViu0WXvUhK1kWgKPz6N+zf0y64BgzWbd50okpOgdcd8lDCnOtdLLYWNF88CcFoEWABYd8in2jT/foX1gXAsDcyzqG8WBVqHdcNIatEfsdjvuu+8+xW0KCwvx2muvgaZpeL1e/Otf/8LEiRMxfPhwTJ8+HatXr8bFF1+MRx99NGHtuvTSSwEgItBmZ2fjtNNOU9zHarXil19+wXnnnQcAWL9+PW6++WaMGzcOgwcPxsknn4wZM2bgm2++gd/vR2pqYou7GsSHIdIadFjKRVPzs6IEOWe/mar7c/5asHXbhMvchyTTeJWw97wm0uEZmGNBl5Rm5+NZGoS54Z3Vp0BnEqa8exSyQKf3a84NtOisDKtUXCH690kdOYu4TaC8ecRRUkgMgLP/7braEy/5TmUnql5D8hFR8YhOBKfrkFyL4LzndnfgrG4OpFn0O1AyrIzkc3R6sT2SScxQwHUDYs+JDH+OUoY2V1enrdlwHneX4n5Uk5P2xEI7CIkP0u2b2usa8H8A1fTeUCakDHpMf6NlMKf3lSxLHfkygMRnH3oPfBM6ro5MWpKrr02iwy3pP/Rz8wuRK1WL65IWOboAwH9UfsqtAJEg6zs4V9t+UXAeaa6pARlb8cWSadKJgLZ3JgotAZXPgfhvx9ilIi1AcA0G5KMAxIKuHiw6Jz1sqGj9qI2zVQqXpg57DlDJ846+rpmzhulug7j4W1vGe/B7yTK2fpfiPlrzP6PRHBvB2JEy+HHdx1fKG/bu+0I2goJzH9R9rkQSjIrDCZM68iXitnJCZI0vtkgvpT53LFgVrhfTeic+VkZM6ogXVbehDZHWoJ1y7bXXoksX5c/vVVddhUWLFuHcc89FTk4OzGYz8vLycPrpp+PTTz/FJ598AobRP5tRDrFr9qKLLoLJpD57JyUlBV988QUWLVqEa665Br1790ZKSgpMJhMyMzMxfPhw3HTTTfjhhx/wyy+/JKy9BvHTZuMOdu3ahYqKChQXF6NTJ3Ln2cAgVjxBTpLnGi2YmVK6IWfqNhz9SjptK4yccMPrcNGmjf5v5GeaovD4mAwsPOhFioXG6Dx1AdbCUBhfYMWiQ/IFc0i5pHIdxtF5VvSOqjKtlsmqxjPjM7Gt2g+XWfj7WHJGIGvyElT+MFZ2Xz4gdSmkDNPmkksUXVMSd4n0sbwkDiLPKT0+TVF4cmwGFh3yItVKY1RnKyiKwuNjM3HLHzIFqGRIt9K4ol8Ksu0Mft7nwSW9nRiZZ8OEQhu2VgVwXJYF1hhiNsQ4+9wAxlUMtm57SIwxu5B91qpQ7AeBsFhTlGrCk2Mzsbbch3IPi94ZZgzItuCG34S/Z/iZz9JpPLLOXIZA2WJY8k+BOWNA3G2PpvPljahdfiuCVeuQNvatyHTpsKgsxtbtUqQMfFjxOkEiUmhFh5PWlNJd1zlaD+2fp+iHOHFhGUrD1HHaInWZ8YF6bTmVvPC7qLXgVDSs5whi9052HGh7HtJP+CApx6YoCuasIfAf+UPXflInLXkKLyUqTMhJClxGHyNHVxuiEU+vVsId4LCzJj4n7ZNjM3D/Eg0FUmUY2dmKVJUYGkvuaGSftRJ1K26Dv2whcZvU0a9GfpYTxsy540DRJlAmF3wEoZPnubiLO7YEweqNkmUBhXoFAGBK7an7PFrfi5xz1sGU2kP38UmDY9HwhAF2QF/fONFw3kpworiD1JEvwdHjb8Tt5b6Nap95ORoSXOhP7IfolmaCiQKuPi4FxWnJvys5+s4Az3pQv/r/ZLcxnLQGbYkTTzxRc4a51WrF/v37VbcbM2YMvvrqq5jPOXv2bMyePVtTm/r27RtXBvu4ceMwbty4mPc3aHlaXKQtLy/H559/DiA0KpCWJhyR3blzJy6++GKsW7cOQKjTNmXKFLz55pvIyNAfoG9gQKLcLe0wZYvETFNaL5jSj0OwRtqxBgBOzsGho8I4RQvPaTfROK1Y2Z0iJsumPFJHyroV5/GGKRJNtY9XwMuw0ji1iPz7mHNGKe4rFmkpS3qL55l1SaBIK3bRAkBnGaeuwyz9HHRyMJhcYscPe7RPsXY1uW/PKHHgjJLm43VLM6NbU0deHPsRK7bCMwCcEXmtVCQoWvQsSjVJPndioqN/LdnDYMnW77jSAmVyIH0saeop+fviOv5+mGKYosvWbQfPsboyaZkYHqZbAz3fUcFDHCcSnTQUYRIXegKaskY1ZMXyor9pLJnEYqHPgIyjzw2aRPdYiUWkFRcOo+WctKLrmKKTNh6RVseslU2VAcGn10wD53R34Asd06ZjiVeKJlMlCiiMOWsInAPulRVpGXuecAFFSwZQsieHZifVLhXGS4VhG/bBpLGYUWsiFgkBKBaVBWITadXcywDg6HtLTPcuQD4iIAznIxfe5bzkfMeWICB20dJWOHrfILu93G0s/D3VW4+gXqWf5Wd5zQM1PM9LorZuOD4VXVX6UYmEoijYu1+pINJSYBzqxT8NDAwMDMi0+NDzl19+iZtvvhkvvviiRKD1+Xw444wzsG7dOvA8D57nwXEcvv76a0yZMqWlm2pwDFMuKliUaaOJHSSlaV1y0+xa2i1gjsHt6pGJJRAP0tnidNIqibxqbg/OLxRpaRk3YzJR6/TqGdQsbRSKUFkynzklOussBEZrEMzsJkqH91E73X6n4QAApIhJREFUlFlepNWTmQfoj5VIODz5AYuWycNUPVywEWzdDvCs9gEdU0q3mM7VlokuiiN20mopwkRy0rKN+8FrGSiT+ZvqQa5auIGQZBQMi8acNZS4XMl1oiWTFpB+x3lFJ622gjok9NwLxFEHvTPMGJ3XsoUF9VyTaaV7gTh7WuF7Kdcfa+2sUy1wMuJ+oEpZpI2lcJiW2Qy0OfaYIzUnLScqAhlZ7m29eJhgjVCkNaX3jWngKPy511p/IYx45p4YLUWAw5C676TCg8mGtmXJr7N3BsUkNxvXwMDA4FimxS/r8+bNA0VRmDp1qmTd7NmzsWtXKJ/pnHPOwYsvvoizzz4bPM9jyZIl+PTTT1u6uQbHKOKq8qRIAACKGXqe3eTpmy0u0sbwLZYzAYgXxxN3QIFcfEEr4ilzVBwPFbGSqvIL6HlQLRU5afNU8m5JdIphHzVoiopZBFX6dCg6aS36BPc4ZvgkBF5GOFD6HdXwHZ6ns3CYPod9uyDKPSt2lFFanLTEzxEPaMj69ex4C3Ur71IVSZQwRFptUExyi96Zs4YQl4uL0QGh73Lj1lfhL/1dsFzWSSuKO2jc8C/Zdojza/WgdK/9emcjvtjRiAoPi8+2N+DnfcLZFMdlW1DoSvy9QQk912T56ySly30s1x8L1mwiLud81ahf+zDq1z9OzLhPNjzPo2HTCyidTaHsQ3L/Rc1Jmyzi6U8pmRcAIFC5iri8fs19KJ1NoXQ2hfr1T+oapIwXsZNWLSpJ7tvI88BfR/3495rE5tQ3BpS/UFVeFq+ur8PFc8tx2Y/S65pJZ/2IREDRZtlrnhF1YGBgYBAfLR53sG1bqNDSqFHSqc4fffQRAODkk0/G119/DQCYMWMGTj31VPz666/45JNPcPHFF7dYWw2OXcRO2lwZh6LatC4SLdnxBPQX91JC3E0kRSVoxWai4oonkMQdtIKTVh3tT6pSkVb/5Vevk7Y10Rp3oIXEprnFQuJF2roVt8J53D0x738swDfFEnDeSmlRFw0uJzk3vhYnLec9isZNz6Fxy0vIvWCPemMJiKfMd3SC9eT3MdlOWkZmSjjnPgjGLnS3Nm7+D+pX3iE9hmzcgSiT1ic/ZTue+53SffzjbaEojjnbyZEcA7ItoCgKvTLM2F6tHvXR0lAMeYCJtuXocjPK9cfknLRVv5yGQMVKAIC/bBGyTp2n+VyJwL3lJeJnLRq2IbZrjzLq/ZJ4RFq1AoD+ihWqx2hY+wDYhr0y8UKJR3x/McUo0m6rDuCz7Y0Jn92jFDvF8TweWlqNox75bWIxayQC2poNljCr0BBpDQwMDOKjxS/rR4+GRgALCwsFyz0eD5YtWwaKonDdddcJ1v39738HAKxZs6ZlGmlwzFPtE2We2eW+Cvq7YrxPW3EnypKYjGUlB06uzO81NJc8DalEnEkbh5NW71R+MVyg9eMOAGBAdmKKMJQ2CKdz58XgfBLnJiuRr8N12y8ztt+xd4bCfrT8VDe9Vd67pLSuOG3OHkFewYSK4cmJRGoEqrTd00wZx8d0/LZOOJO3fr20wjhFx/690zVQxvlRv/q+mM7T2tXK2xoNhL8jkHwnrZxYzxKcznKimdbCYXLEk0cLANYYLRN2E4VuaaGdT+2q730O7xcL3dN1iKsyswBI75m1q3CWHe3Ibz6OzAwMtmGvZFmgemNEoAUA/+FfJBFKyaZuxcy49rcVnR/TfoyGIpPmjIExHRsAaJW+q/+wtgrhnh1vxlUIRw/B2m2C16b04xS3lxszWVXmS0r8Up1CHMLqMr+iQAu0jpMWAGgrOfKANvJoDQwMDOKixUXampqa0Ilp4amXLVuGQCAAiqIwceJEwbqSklBBgPLy1sszMji24EQdQ7kOTjIdQKkjX0rIceSKTwHAU+PIeWYX9HJKMqzynQwGi8TbeERaLRcXa5dzJMt4LuQ4lRYOax2R9qr+KZB7G3Rl0orc23pE1DAmmsLErsLPJKlpFIBrB2h3ypzYJbbP+fgC+f2UXGW0uFiMiLO7NT/UF7oYDMxu3Wwze8nFYFzFgmWOXtdHfkeXgiPW0mm87DpND7MUjbTR/9XUzraCs99t2jZsctJ6dr4jWUUR8mZJmNL7C14zqb3Bs9qL6wGA79CP6hsxdqQMfVqwKFi/S9d5jnX8ZQvIK5LspAWA9AmEOCwNsRdh5IQnNUEqjGvgg5rPRUKtAKgc2XY6kj0+Jt8qGWglMWNQ6F56Vf8UWTFKiRw7jbH5Ov6mMiI6SbxNHfIUEBb1KRrp42Y3by/jyCU559mGfdINNRQUbEukDH8+pv3MGVIB0tG7ueiaOXsEzLljYm4XZbIrDkqQYkbkt03+cx0XaATvrxYsU8t4d8hYU3fXBonL46XCIy0s23xO9c9tazlp5Qax4pllZGBgYGDQCnEHLpcLtbW1OHJE6HCYP38+AKBfv37IyBB2is3mkKPGZGrx5hoco4jFNbkHFbUCCbHg6HMjbF3PgzX/lIQcr1jmoWxcvhUpMpmq3dLMeHJsBjZXBlDr45BpozG+wCYpNBVP4TAtMz/TRv8X5Qe+FSzjvEfBODpLXC+tFXdQ4DLh2RMysbbcj78q/Fh/tPnBX6tG2+DnJIUjlMR1Ja4+LgV9MizwsBxOKLDhQD2L7dUBHJ9jAc8Dmyr96JVhRncd1bsnFNqRY2dwqIHFr/s92FsnfBAZmmvBztogan0cGCrkwLprWLpq0bpOl9UTs/iYKHcUicv6ONE9zYQ6P4fxBba4phEnAoo2I/vs1XBvfxO+0t9g734F7CWXRNY7el0NymRHzcLLJPumjXsPwZqNqP7t7JjOnX3WStnMzbZKyvDnYc4egZqFlyhuF447EA/IAABty9Z2rmHPofrXM5qP6a8BglKR1tH3Fri3kAfGxK59YUOsSB3+LKx5k8DzQUE1a859GFygUbEwUkeClxHBKFNynbQAYC+5CDULhHFY4mJ0cu0D5O8vlFVdpHX2vwPOvjM0tFKeHB2zJATnjlJnGJrCg6PSsfiQFw4zje5pJqw96kf3NBN2VAfx2wEPLu3jwojOoRkAvTLMeGpsBrZUBZBhpfH1LjcONQRxUS8njsu2YFNlAAfrg+iRbsb4Ahs2VPhR5WUxNt+m07kn18GS3qNM6X2QffZq+Et/hTlrOCy5zdFosoPmhL8rH5RGQyj9/dsa1sIzYXIVxbx/58sbUfXrmeA5PzIn/gjK7IIldxy4QD3s3a+I+57KpHTXJcbKwdbvko0aSRSkGQ+0o5CwZTMOmagvmpKv6RAPSiJtrU898Km1nLRyLnmqaZaRgYGBgUFstLjq2adPHyxfvhw//fQTJk+eHFn+xRdfgKIoTJgwQbJPWNDt1Cm5N3KDjoPWPlYyRoNThz2b0CJADjONXDuNctF0qH5Zyu7D4lQzilOVhTxrHJm0WvakbbkAxQB8cweV8xwG4+gsEW5aK+4ACAm1BS4T8p2MQKTVijiPlqFifyinKQrjC5sfVntm0OgZFTvQVYOTikS/LAv6ZYVEXrFIOyjXgruHp+tvq9mF0CdB+I1TmwpHURRG63FqtQC0NROuAXfDNeBu4nprF7IIy7iKYEophr3XtfBs15u/R7U7gRYI/f3s3abBvf11+I/8Ib8h5wfrJhffoq3aRFpGVB2e8x0FFxRWUqfMaaAU4jegUOzRNeCeiADHB93SXRt2g1bJN+wwyMRMJDuTNowp/TgEazY2LxCJckqF3uQyOmkNjm5b0QXaGqiAfOSSMi6z8E7rNNM4rbi5f5HvCt0P+mRacHZ3ab+jJM2MkrTQ/UN8ze2WJuwfDO8co/AiIwjKfSfN6X1hTu8r3V5G7OcJBRh50TUAgK5Cja0NoyIiqkGZHMg6XXjttXeXDiLGCpPSHYGjy+I+TrB+FyxxuHq1wDYeELymLBmqA2tOM/kzm4h0BitD4fRiO77Z1Xw/UYozqPWri7RxpovFjJy7XfF+a2BgYGCgSotPkDjzzDPB8zxef/11vPbaa9i4cSPuvPNObN4cCv4/77zzJPuEs2gLCoyMG4PkINe/SYZIm4wq7UUEYS5VxkWrBwutTWwloWVgn6IZ0CKRhXUfBkAqHBZ7oYtkobW/XtooFD1zHUyrOR/UIHX24ypOR5jqyqjEHbRHKFoqYFDWrGbHUkxPdy2T15cs1K6fPBeAv3wJcZ1WJ634+gGekz6Um+wxO3ui96NMDskAA1u3M6bjHovIZQEnO5M2gsiZKXbSso3yGcIUTR40ozU4aRNxT5ebXq26nzi3qE2i3UmreBSZzxHJIUt20rYfkZYTTc9va6jFBWilJa6f4u8941QXwF0y38dE3JE7OWjJIH08TloTHV/RwniQvfYZTloDAwODuGhxJ+3NN9+MV199FaWlpbj55psF60aPHo2TTjpJss93330HiqIwfPjwlmqmwTGOWC+R69+0l1ylolQzVpYJH0BSLPF32iiKgoWh4GOTJxYxjnxw7kOR16z7EPzly+Dd94WwLa3opI20Qedb6gly+GGPR1KVOy/GqIOWgCEIsvFkE4ud0qFFx6DLgjR1N7VX1Kv2LbjGhJoIwwUQKF9M3lWjk5a25YQGAvjmB9naRVcItqEYu2IhO+UTCPczpfSAP+p6Vf3HeXD0vQWc+zCY1J6wd7sE5g7grOV5Ht49HyNQuRq2ogtgyR1NzAYFWs5JS9GiLq1IvGOj/m5aoa3qTtqWiHOQI5CMudcthF63nexAi0h85Vkf6tc9ItlMV0HBVqati7RaipNpoWH9Y2jY+AxcA/4PruPuTsp3KVi7WfCacXZR3cch46RNBLkORuKcjxZpa3wcftrrhpmmcFqRXVWkbaHaa0Rk4w4MJ62BgYFBXLT4EHxaWhp+/fVXDBkyBDzPR/6NHz8ec+bMkWy/fv16rFwZqtA6adKklm6uwTGKuE/Tkk7aZEAqQpUIJy0gLbKmFa3mS9ouzCf1l/6Byp9OkG7XSoXDlFB7a/69pk4i0AJtXKQlOWnjEmnbg9MrfkhOFlNqz6hX7VdMiRVKRaTlOT/8ZXIirbbCYRTNqAq6bOOBmB8axcIQk9pDso17y0vw7vscjRv+icofT0CwA7hrPTvfQc3Cy9C46QVU/jguVD29jTlpwQmdtJyCk1YOSkPhsJYSoUkcVXDgtRl4mWJLOr+TcpmyvKhAXO3S68D7qiTbube/rut8rQnvr2ntJijCuEoSdzDWi4Z1j6CakOmeCBo3Pit4Le5zknAmsRJXSKQV9gHr/Dx8bOh5+PFl1fhqpxtztjdi1ro61KiItEn0UKhiiLQGBgYGyaFVnp779u2LVatWYdeuXViyZAl2796NBQsWID+ffON855138Pbbb+Pkk09u4ZYaHKuIhUe5qUKmzOMTel5bt0sTerww3dKlpvg0a2K+3gH1OCwilMagBHGmpHfvp8RCIG3BScuIPidBhc6xN8jL5td2crRlkVb6d1MrEKaEs/cNgtem9H4xH6u9Ye1yVuRnS+5Y3fvbii9MZHNaHGvBGYrreX8tgnXbiOv0uK0lkQeSEwVjdmiJBTg1cYL316B26XUxnas9Ubv02uYXPIeGTc8TBWwAoO25LdImceSIuCAc6ykl72ciVygHNDppE3RvGl+gf4rwuDaW3U1CbrBbbRBHjGxMjqi/4Nn1HnEzucKBbRG5jPO2gnAAMjH49n8Fno+xwykD65Z+53kNLmW5wmFy6Nk61y510gJAtZdFuYfDwYbmgZd1R/3QEEnbasgOwLXiwJWBgYHBsUCrWpxKSkowevRoFBcXy24zcOBAXHnllbjyyithNuvr0BkYyOEXmU+sMpqZJTuBERuUCc6+tybueFHkOU0YlNMsaozobE2qE0ALWqPyKLP8A7Jwu9YXaV2iCIkGPyfrNPYr2BsS5XJOBqRpfvE019lvJhDVkU8Z/ETsB2vjOPvfEfnZlN4Ptq7NGev2bpepVpR2HndXxHlMmRzt/r2yl0xTXB+s30Wcguzsf6eu86iKtBq3IcE4hRXWtbgm/Uf+QKBqfUznazeIxBTfge9gzhom2cxWfKFmV3S8MM6ugtds/S7Ba47grgSA1JHy4h2t4qS15p8G2pKmsYXKnNPdqasAkN1EYWRe289+lPv7683yZVxdYck/VbJcT9Ys6ynTdc54YFJ7x7yvo+e16hu1IowjD9bCs1S3s3Q+MfmNUcC7/xvJMi2fFz0x/BSAO4amCYTX0Qrfy4IUE2wMJfmuu4M86tuyIktCHDETXqwhy9vAwMDAQJ4Wz6R97LHHAAA33ngjsrO1Zc5VV1dj1qxZAICHHnooaW0z6Dh4RQKaUuZm58sbUb3wcnDug0if8An8RxagdsnfNZ8rdcSL4HkW1s4nwpw1OOY2q3HH0DQsOuQFTQHjC1p/FFtrYSytU2HpNlA4LE2kVrI84A7wEvEWAPwKWYH2JOadxQupqnE8mbSMqytypmyA98C3MGcNgbXzhHia16ZJGfYMzFnDwPkqYe9+uaAYEcVYkXPOWnj2fIy65bdId6ZMcA18GLauUxGoXAVr/qkwpfWSbteOoEw25E4rR/3q+8DW74Sz30xU/35u8wasR7KPc8C9SBnypK7ziN34xG1irJYudodSlDYXfP3aB5F5yrcxnbOtwxMGpiiTAxBl0jLOIqSf8GFLNQuMyN0XrNsheE1y0GWeOg/WfPkoLTUHdsbE73S0UJmuKSY8PT4Ta8p8KPew6J5mxu8HPNhZQ44LeHpcBjJtbXdWRjQZp3yL6t/OESyLJU4q85RvUbvsJnh2vNW8MMpJy3My0QpN+A79BEePK3WfNxb4YIPufaxdpiB1xL/BOGIbVGpJMk76HJ5d7wMA/EcWwLP7A8k26SfOgW//t/Dseh/B+l3g3PojR+LBu/8r6UKN13AtjOxsxeQSO/pkWtAn04wlh73IsjEY1smCAdlevL6hXrJPVxcDiqLgMFOo9zdfS90BXpc43DYgj+DT1qwWboeBgYHBsUWLi7SPPPIIKIrCBRdcoFmkraqqiuxniLQGiUDsclQSoSiTA5knfxl5bUrphvq1D2nqbGae9huseS0T02FhKJzStfUKmIjRbOTVOC2qLThpSQ7YWj8HF2G5kpO2LVfkthG+C3Fl0gIwpXaHq/9tcR2jPUBRNOzd5N2jtC0bzr4ziCKtOWsIaLMTltzRsOSOTmYzWxTGloP0sW8ACIl7lMmlKF7Yu12qu1I1be+kvo2Git4kxO5MrRnLvgPfwV++DJbcUTGdty3D+yolyyjGLnFFO3r/Q/eU9ngQT8FmRSKt2EmbOuI/igKtGs4B9yb89+uaYkLXlOau+bqjfgBS4fHSPk50drZ4Fz5mJN8jxJZbSTFWOHvfIBBpo52RasXBfAd/bDmRNqBPpE0Z8iRcx9+XpNYkHoqxwtHrGgAA27ifvA1thaPX1XD0ujqyrGxOF/n+M8/ryw5QgPPVwF/6e2IOJsM1A1Ii/cIUC43Ti5vd4b0zpNcGh4mKRJE5TDTqo6b1NQY4mNuZSkvJ3A8NkdbAwMAgPtquUmBgkER8OkRaElqn6Js6QJVvObR2NrVmRbYFkdbMUJKsMrnKu0pZvnadeWctCckBbWlnDw7tEUun8a3dhKRDURQYNXdwDC4nLVEGoTxL/Z9jSjSdU8/U6vq19+s+X3uAKMjQFul7w7TsVHyJSNt4AHzQG3nNiZy0WoqCKdESswLksjGLU9uPQAsAtENac4ILSF2GmhDnVXOBZnc3pyLSHv5Z1W2bCHie1+2kNaX1TVJrko/sTAXC9dwkk12daHwH58oXrUsADhOFFIVZUaR+XradiQxCimctuYO8ZJZfm0fmfk21UMSNgYGBwbFKuxBpA4HQVCYjk9YgUcQr0tIapunR9s5gbDm6jnsskfC4A0vri7SAtCDbo8tqcPHccuytC12nDtQH8d7menyxo1H2GG1bpJUui9dJa6BORxBpAcCkktMoFkW1oCXugGIsmhy3arAN+zRv6y/9HUc+SAEflMY6JAou0IiGDc+gbvW9YBsPxX08ngugcfOLqFv1fwjW75Gs95cvRfX8iyTLg1VrEaxcK1jW0hW+xXEHAI9gVC4tL3LSxpuVa46hGKBeSBnhAFCc2r76wyRnHR+ojelYFCX+3Xlw7kOoW3M/6tc+rLgv76+B/8gfMZ1XF6wP4Fn17aJozyIt7SggLifFwzAp3TUfl+dY1K95AKWzKZTOplA9fxo4n3rhLwDw7v9a5qDqQqgWrbSzk1Gc9UHq5+VE5daKB2DcQR67a5M/gJBQ5Jy0cQ6AGRgYGHR02sVQ/Lp16wAAOTkdV/AySCxikVavCKVUDTpMR3bRAtrjDrSKtFQbyKQFQpEHpY3Sh697FlXjlZOz8MCSalU3hN7KwS0JSVyXK6xnkDgsueNauwktgik18U5arS57xlEIznNE+3EJhY3Yhr2a9wdCuZQV3w1FztTNuvbTSt2f/4hkQXp3f4yc83cJspB1H2/lXXBveREA4N7xJjpdeBCUKRRJE6jZgsofJ8i60zhfheA11cJOWtrsAm3PA+dprujO1u2AOaN/U/tEIm2cQgKtcUZNPJCEngwrLRksbOuQpkVz/thEWomTFkDF3NGa806r5p2KvOnJdSzqzqOlTGBStYuXbQ1GRqQF4Vpk0iHS1q99AI0bno689u79FMG67cg5Z43ifnzQC9+hH+XWqp63UWkqVBOdHMrXWZuMkzaMQ9RJrvCw+GFP8gb0kgLhfk1Z0mMabDUwMDAwaCbpV9H33nuPuPybb77BqlWrFPf1+XzYtWsX3n77bVAUheHDhyejiQYdDI7nJVPRSTmcSli7nAl/2QLFbczp/fU2rU1yXJYZGysD6huKMGt8T7VUSwfQotmGSig9HM+cX6kYcxCG1HlvKxS6pLcFw0mbfGhbx8hwE09JlxCDSGtKUZ4+a+l8EoCmKdfSOFVZ7D2kBSKtBafDd/B7Xe0L1m4J5fHqzNpVg2d9gmI9bOM+BCqWw5I7JuZjhgVaIJQ969k7B44efwMAePd8rG/6cAuLtEDIpScQad0HAITyKcXCmdbcRFNaXwRrtwiWWQsnx9lSbTgJUxu6trOoAzlsBWfEtB+pL6C3IBXP+pI6iMDpzKNlUrq3mT5OLNBOGZFWt5NWKKBGC7RhglVrEazfC1NKsexRgg27wQfJs5ksnU9UOH+IdA2DIJ2dyvcqmnC9H5jTPMDgFPUD251AC/LgC23VVm/GwMDAwECepPf0pk+fLnkw4XkeDzzwgOZj8DwPmqZx6623Jrp5Bh0QsYsW0B934Oh9I+pX3a24jRa3bXvgsr4uPLCkWjD9a0KhDV1cJnywVf5BJEOr00fDg4mjz83ajtUCpBGKhIXRItAC5M57W6Eo1YQ+mWZsrQoJ8ycW2tp0e9sjrsGPo2Htg5HXKcOea8XWtCxqWXUUFUPcQVpvmHNGIXB0GXF96oh/AwBoS5rmY1LmFKQMkk6dtpVchLrl8tejjJO/RvXv5xLW8EhYRZwmgjVSdy7rLiVsGTts/c7Iz77S33TtS7fCPVDsbuXZUE5uoHq9eEMwKd00HTNtzP9Q+eMJgmWpI1+OvZE6SCXcR5VyMNsyaWPeQO3SawGErgP2WAt4JSBGg+eCSRVp9TppaWv7nh4uN+BBEvEYR17c51ONyuDIxgLa1gmOXtepHr+z04R+mWZsrpI3KEQX+JPjjGI7ftzriWw/OLf5s5ut4sTVytndpDM+WgzS31fjddXA4Fhl48aNePrpp7FgwQKUlZVFYjvXrl2LQYMGtW7j2jDTp0/Hu+++i6KiIuzdu7e1m9PqtMhwPE/I/yEtI2GxWDB8+HDce++9mDAh+UUaDI59fISYMN2ZtGYnci86jPI5oWIYtL2zdBptDI6wtki3NDP+OS4Ta8p9KHez6JNpxviCkHCX52Jw1M3CE+Tx6XahayHLpu33V5sWZc4ahtSRLypu05KkWuN7QD6tSFu8Q2ty/4h0LDjohZUBxhVoczobaCdl4AOgrdlo3PQcXMc/ELtY0Q6h1WJLYok7oChknvorGjc8jYa/npCsN2cODG2nQzTMOXcTaJvUEcTYcpAy/AXUr7xdsi7z9PnEKvYAElq1PEygah1hqcaRIgI8J705Rr9n5sxBCJQv1Xw8rQU2E4pYwGsqJCXOyzWl9wdFmDZPwtJpPLLOWonGDU+DMjnhGvgATCklCWmuGqTBTr39lbaCo9c1YJxdEKzdBlvReTELkwlxnCaxoBQA8AQnbeqo12BK7Y6qeadK1lEa6hy0ZUhirBy0LTf+E6rl/RKeMVNHvgRb8UWgzdre63tHpOPuRVXEeCtAW/G+v/VzoWe6GQ0BLtJvDqMWlwAA+U4GZ3dzYFSeFXvrgthXF8TgXAsO1LP4cGsDJhXZcWZJa4q0hDiLNOXceQOD1mD+/Pk46aTQrKqHH34YjzzySFLOs3r1aowfPx4eT/tzxhu0LZIu0u7Z01x4gud5dOvWDRRF4eeff0bPnvLTHimKgs1mQ1ZWFhjm2BC7DNoGRCdtDNPPGUdeJNfMX7YYlT+KCv/o6LS2dYpSTSgidEiHdQo5Uf44IL0ZZdq1/v7K772z30xdDwDJRslJqwWXpe0/YFsYCpPagZjcnnH2+Qecff7R2s1ocdSE0liz7GizE44+NxBF2sixNYqG9m6Xg3F2kV0fFn3FWHJGg/OWyeyV+AxMkkjLx5rzCbL7L1o8oq366gK0xmwScbGyiJO2SijSmjMH6zquJXsYLCd9Hl/jYoA07bo9z2ywFpwGa8Fp8R1Eh5OWsmbClNpL6rLnkizSiqM1bJ3g7PMP+I8uJ27f3kVaPSiLtNquk3JRBrLHoc1w9p2h6dhhLAyFU4vseHcz2RWtFncAhL6rY2UGurWItGeU2HFy11BfrF+WBf2yLE3nNmF455aPk5EivT6p5s4bGBzD3HvvvfB4PEhNTcXTTz+NYcOGwW4PfYd79FCO5mopHnnkETz66KMAtJsmDVqepIu0RUVFxOX5+fmy6wwMkglJpNVa5EoOxlUsWSYuUnIsQyo2lWXT9qbyrPJoI21PgOsigZCmn+qBlDFoYNBRUC0AGNcMBGXxSmvxQc6vXD2ctqSTj89YANm4hsR3hINV6yXLYi7GBIAP1EuWCYRtndXqW8VJK3LH8lxYpF0nWG7O0ifSthYZhPuoOxi7W/pYQI+TlqKtAC99v/gWdtKqfRc6kkhLyVw/9cAFdIq0MU5jkDOt59jpuAdLOmsQadPbeNVWkoHCcNIadFQCgQAWLAjVq7nuuutwww03tHKLDNozLa4WcBwHlmXRr1+/lj61Zu655x5QFBX5N3/+fNV9fvzxR0ydOhWFhYWwWq0oLCzE1KlT8eOPctVFDVqSxgCH/6ypxcVzy/HpNmHn2crE70yh7dKMLb2FLNozJOFba9yBmiMiIVPjEki8TlpnO80TNDBIBKrCXRJFWq1dHrUBNsqiME1bxglcv+4R1K99JGGDdzzPE4tXqmY1EvCXLUHlz6eg/DOpe7hxy0vgg+6mc+oUaVtBeBI7acH5wXrKEKz+S7DYnDmo5RoVBw7CLB9PsIM7X/SItIyNKNI2/PUU6tbcr5jhHKzdhrpVd6Nx2//AE46hBCdy0ja7ysnXqA4l0ir0t0kDRcTt1Jy0EndYbP0uue9aAaHAql5SLBTsKrP44u1vJhuWMHPElGqItAYdk4qKCvj9oYHhXr0MR7lBfBwbJWITyLp16/DCCy9o3p7jOFx33XV46623BMsPHTqEQ4cO4euvv8Y111yD//3vf6Dptn2zPZZ55M9q7K8PPWCuKvML1iWicj1FS4UFtrHjiLS1PukDDMkBRCIsAMjR1kTa1LhFWuM6YNBxUcukjTXuAADA+RVXsw17NR2G99corpdz0gLyhc8a/3oKAOA/8geyzpCKq3rx7P6QuJxTabuYQPVGVP44TnZ9sHINahZdgYyTvtDvpG0LcQecH+WfF0u2M2WQIyvaGiRBy93BRVqKokNxUhqEUz5QD57wfXVveQkA4N39EXLO3yVxBHK+GlR8NzQiBnKeI8RCgvLnlXHSygiUx4ZISyHeGQPVCy5B1qk/q26nVpiNF7cjRiOGXB5tgSt+hytFUejkYLC3Tt7Vna6xH91asHU7JctoZ2ErtMTAoPXx+XyRn83mBGSnG3RoWuXq73a74XbLCzOzZs3C+PHj0bdvX0yePBnfffddi7QrLLgGg0Hk5moThu6///6IQDt48GB8/PHHWLFiBT7++GMMHhyaTvfmm2/igQceSFq7DZQ56mYjAi0JW5KKcNi6npOU47ZFSgh5taQIBBKm9P6K60nFe1qTeDvNiejcGxi0Wxi7QiQAdLnkxKi5dK35EzUdx1Z8gfJ5LGnyK1VEZn/ZQgRqtmhqhxK1i64gLicVLFKiYf1jqtt4930JnguCZ32q20ajWiQuGTDCnEa2YS/AeoXbUAxoS2rLtSnBDMnVnsl6zKLR2cr5KmDrcpbserZhL/xliyXLGzf/R+DWbFj3iL7mscJnHMoUKu5EyT12qcQ+tQfsPa8SvGYUsknlIg/8h+eB89WonkvdcZsYJ+1xWeTv2sCcxHwH1XJpU9t4DQNL55Mky9pSDQkDAy3Mnz9fMnt6zpw5OOWUU5CTkwO73Y7evXvj7rvvRlWVdDbUI488AoqiUFLSXFD0qquuEszKJhUq83q9ePnll3HKKaegc+fOsFgsyM3NxcSJE/HWW28hGFSP5fH5fHj99ddx5plnoqCgAFarFU6nE/3798c111yDn3/+OZI7O3v2bFAUFcmjBSBoY/jf3r17JedhWRbvvvsuzjrrLOTn58NqtSIrKwvjxo3DCy+8oKlQ2pYtWzB9+nR06dIFNpsNXbp0waWXXoqVK1eq7tsRafEr6XfffYeUlBTk5eWhvl56k/373/+OmTNnYunSpdi2bRt+/vlnnHvuufjnP/+Z9La99NJLWLlyJfr06YOrr75adfvt27fjueeeAwAMGzYMS5YswbRp0zB8+HBMmzYNixcvxrBhwwAAzz77LHbulI44GiSf+oByZ96RIGdj+oRPIj9T5jTYu/8tIcdtDxyfY0EnR/P7eEFP7a4QS+cJiusTUsk5gbjMNIZ3iq1gw/HZZuQnYJqcgUF7haIoMC5yHr0p4/i4vu+0NRMm0TT2jJO/jvxsLZwscOanjngRaWPelBzH0es6xfMoPYTKOWmjCYqKWCUUndOyvXs/03ZYfw14v/aoBsqSDsrU8sUHKUZY6ZzzEfKFdTqCW5sbBzaL3U4ThZO6GEUd9eDsN1NxPeerkCwLVK2J76Si72FYnKWsmeTNk5BZ3dK4Bj4UGoRrInXov2S3JV13w7Ae+QiKMKqxMaLCcLHO0BjaySIRSrulmXB8dsuItGaNZofWwtb1XNC25oKSqaNebcXWGBjED8dxuOKKK3DxxRfj999/R0VFBbxeL7Zv345nn30WI0eOxJEjR+I+z/r169GnTx/MmDEDv//+O8rKyhAIBHD06FH89ttvuOaaazBmzBiUlckVow3N/u7bty+uv/56/PDDDzh8+DD8fj/cbjc2b96Mt956C6effjr27dsXV1v379+PoUOHYvr06Zg7dy5KS0vh9/tRVVWFJUuW4I477sDxxx+P7du3yx5jzpw5GDx4MN59910cPHgQPp8PBw8exMcff4wxY8ZIZqQbtELcQVjRP+ecc5CSInRZLF68OKLyOxwO9OrVC1u3boXH48FDDz2Es88+G8cdd1xS2rV//348+OCDAID//ve/+OOPP1T3+c9//hMZ5Zg1a1akel8Yh8OBWbNmYfTo0QgGg/j3v/+NV155JfGNN1BErXChUyUTSiv2kotB2zohWP0XrIVngulAU35MNIWnxmZi8WEvMqw0RuioOktRNFJHvYK6ZTdJ1tm7X5nIZiaMmUNScdmPR3Xtc92AFJwgU+XXwKAjYUrpAbZ+l2S5VqerEtlnLkf9+kfhOzAXqSP+DWtes9OHNqcg+5y18O79HExKd1gLJ4dEY2cXNG77L0ypPeHodV1M125b8YVNJ9Eg0tZu03187SRH7OF8VeC8UjFLDsbROve/sGMxgthF2w6ZUGhHho3Bofoghne2xh2509GgrZmgbbngvOXE9QwpUiluIZ883T5a0IqmVVznCcbkKkLOlA3wHfgOpqwhsHY+QXZbe/H5wAkfombhZZJ1ob9TXwAAbc0miuicr1K5MeK/n4bBMxIOM42nx2Vi+REfdtUE0CvDjBMKbYq5unro5FQWadu4Rgvamo7ss9fAu/9rMCk9YCs8vbWbZGAQFw8++CCWLl2Kc889F3/7299QVFSEsrIyvPLKK5g7dy527tyJ2267DR9//HFknxtvvBEXXHABDh8+jNNOOw0A8MQTT2DKlCmRbaJnaO/cuRMTJkxAbW0tUlNTcdNNN2HEiBHo0qULKisr8e233+J///sfVq5ciSlTpmDRokWS+IQtW7Zg/PjxaGgIzZ6aOnUqpk2bhm7duoFlWWzfvh3z5s3DV199Fdnn3HPPxbBhw/Dqq6/itddeAwBs2LBB8h4UFBREfq6srMS4ceNw4MABWK1WXHvttZgwYQKKi4vR0NCAefPm4cUXX8TOnTtxxhlnYM2aNUhLE842W7lyJS677DIEg0FYrVbcdtttmDx5MqxWK5YvX46nnnoKN9xwQ5uuV9UatLhIu2zZMlAUhZNOkk6ReP311wEA+fn5+PPPP1FYWIgDBw5g3LhxOHjwIP73v/9h1qxZSWnXTTfdhIaGBlx55ZWYMGGCqkjL8zy++eYbAECfPn0watQo4najRo1C7969sW3bNnzzzTd4+eWXE3ZzN9CG2iNrIgs5WfNOhDXvxIQdrz3hstA4vdihviEByiwz9bSNfle0RjmE6ZtpxildDfeTgQEAMKndgcPS5Za8+EVairEgdciTwJAnyed25MPZ7xbBMmvBqbAWnBrfecPTdzUUPmufIm0lUSyRo7UGKcXZnpzGQkRtneOzLQlz73VEzDmj4TvwDXmluNgcoNuRLt2fPN1eLnuWYo6N/oEptTtM/Wdq2taSP4m4nPM2D4DzMoMsvIqTlhc7aeMoSJllZzC5JLa+rRpqTtp4ixq3BIyzEM6+N7d2M445OJ5Hg7/9O+z14LJQrf6ZX7p0KZ544gncf//9guWnn346Tj/9dMybNw+ff/45XnrpJeTkhAbdcnNzkZubC5erOXKroKBA1lh45ZVXora2FoMHD8a8efOQnS2M9Tv11FNx1lln4cwzz8Ty5csxe/ZsXHvttYJtLr/8cjQ0NICmaXz44YeYNm2aYP3IkSNxxRVXoLKyEg5H6PqVnp6O9PR0gWCsZn685ZZbcODAARQVFeGPP/4QRDoAwIknnogLL7wQ48ePx+7du/HMM8/gySeF/e8bb7wRwWAQZrMZ8+bNwwknNA/gjRgxAueddx5GjRqF9evXK7alo9HiIm15eWgku3dvafXHn376CRRFYcaMGSgsDHXwu3TpghkzZuDuu+/GggXxF9sgMWfOHHz//ffIzMyMxBeosWfPHhw+HHrKnDBBebr2hAkTsG3bNhw6dAh79+6VfMANkgunco9LVNyBQezIVuqN90GpjZBmNT5jBgZhmJQe0oW0GZZO8s6rtg5tyQCgLY8vWLs1eQ1RmzoSI3qdtHQbcdLywWNDpDWID8bVVdf2fJKctLImDZJQfIxDUeRom2jHs5xIq+6kFWU5xlOQMomoibQGHZcGP49rf9V+zz0WeGNiNlKtrSvSDh06FPfdd59kOUVRuP322zFv3jwEg0H8+eefOOcc/bVnFi1ahKVLlwIA3n33XYlAG+b000/HBRdcgDlz5khE2nnz5mHNmlAkzy233CIRaKPJysrS3cYwe/fuxaeffgoAePnll2X1q8GDB+Omm27CM888g9mzZwtE2pUrV2LVqlUAgOuvv14g0IYpKCjA888/j4svvjjmth6LtLhycPRoaIRUHHWwadMmVFSELkbR9nAAkVzXeDM1SNTU1ODWW28FAPzrX/+S/bKI2bx5c+TnPn36KG4bvX7LFn0FQw4ePKj4r7RUPbupoxNUUWkT6aQ1iA3ZYjfHikhrTE81MIhgSpWKtJacMaDN7bfCOS1TCIdEsG5bpJBDotGTbcnruL5y/iqwDXs0b99mnLRugmXboP2jszgR41QSaYXfGdZ7FP7Dv0i2ClSuQf3ah1G//glwagX6ZJy0crS17P2WgGLIwnTjhmfANh5C6WxKKrY2IRZpPXs/Q+n7DlTMHY1g7faExR0km2y70Tc0MGhLXHrppbKDaUOHDo38vHv37piO/+233wIImRUHDBiguG1Y0Fy5cqWgiNj3338f+XnmzJkxtUMLc+fOBcuycDgcOOOMMxS3Dbf18OHD2L9/f2T5r7/+Gvn5qquukuwXZurUqUhPT4+vwccYLX7XYpjQqKG4Ot7ixaHqqjk5ORKXbUZGyKHi9SY+W+zuu+/GkSNHMHbsWE3FwsIcPHgw8nPY9StHly5dIj8fOHBAV/ui9zWIjYCKSNsY6FjTSdoick5aHseISGs4aQ0MIjAp3SXLzLmjW6EliYNqctJqgvWC85SBcXROQku0389U3WhR+Et/19mO1hn8lGTSGhyTUJYM8Do+v8oibTM8z6PqR/LsuIrvmh/QA2WLkXnqT0pHEr1W+T50QCctZIRptnEfyj9Tfq6KvnZ59n6GmvkXAQACR5fh6Fe9kX7Cx4Lt44k7SCatPbXbwMBAiJLxLjOzufBjfX1ss3TCrtJt27Zpjr8MBAKoqqqKxBSsXRsqPtu1a1cUFZEL8SaCcFvdbjdMJu2S4ZEjR9C1a+ieG868tVgsGDhwoOw+ZrMZgwcP1lQTqqPQ4spBOIx43bp1guVz584FRVEYP368ZJ/a2loA0Oxy1cqiRYvw5ptvwmQy4b///a+urNjoL2d0BgkJp7PZ2REOeDZoOQIqOl/P9I7nYGhrmLMGE5dbcse1cEuSgyHSGhg0Y3J1k2S32grPbKXWJAZzpnznk0SwdrP6RrGgo1AW5yEXUiLh2TlbulDBnWbJHav52ImElss3j4JxJu+hxqBlcPTUZqowZ4Vm4jFOecMDH/REfvaXLUSwVn3Gm+/wz+D8tQpbkOMOZNup8/pxTBCHu5WLyqStXXqdZL17xxvCBW007sDAwKBtEc5vJUHTzc9yLBtbJE449lMvbrc78nN45nleXl5Mx9JKItoaNmVmZmZGjJpydOrUKabzHau0+F1r/Pjx2LFjB15++WVcfvnlyM7OxsqVK/HTT6ER6XBVvGjCEQGdOyfOdeL3+3HdddeB53ncdtttqsHJYqJdvRaL8gi41dpc6d7j8ShsKUXNeVtaWooRI0boOmZHQ8lJazdRGJLbAR0MbQxrwRlgUnqArd8ZWUbb8+DoMb31GqXCBT0d+HyHW31DAFbGcEsYGIShTDbYu10Gz673AISK+phzx7Ryq/Th6HUd3NtDxU7NOaNgzmkuHursfwcaNz2vuH+wZjOseScnvF2sjun9vL86rnOlDH4c9WvulSxnXCWwKFR2TyamjONVt0kZrq32gEHbJWXQI2jc+Izqdqkj/gOgOTOaBNvYHKXG1u/S3Aae82veNprMU+ehap6wUKEl75SYjtWeiaeIMu+vAc+xoGgGvL9Gsj5QuVZ0srYr0l47IAVvbJC68s4sOTaKyRnEhstC4Y2JiTWntXVclmP/WSks7g4cOBAffPCB5v3CJseWJNzW7OxsXQ5XUnZtPNf7jkqL37VuvPFGzJ49G3v27EG3bt3Qq1cvbN68GcFgEJmZmcTQ4N9//x0URaFfv34Ja8dTTz2FrVu3omvXrnj44Yd172+z2SI/+/3KHTWfzxf52W7Xd9NVi1IwUCcoM9h1eV8XhnWyIMveNqdBdSQo2oTss1bAs/sjBCpWwpw9FLbii0GZ2m4n9cJeLqRZaby1Ud0db0TSGhgISRv7Fix5J4MPumHvfrmmglttidTRr8HS6QRwgXo4evxN0AFNGfasukirwa0nB8/K9znYRu2RShxB3NCDo/f1MGUOAlu7FbaSi+AvXwrOUwp7yaWtlrHJODpLBvzE2IsvaMEWGSQDtb4Bk9oTGSd8DHN2KKKAsqTJbsvWN2ct80FtA6+A8hR6aeZ08/XBmj8JGRN/QPWvk0E7CpAzdYvxAKsbHry/GpSNLGJRtFngZabottvPn9jVDitDYc62BrgsNAIcj9OKHJjY1aa+s8ExC01RrV5EyyDxhAt5NTQ06DYIhgnPLE92XaJwW+vr69G3b19VJyyJcGRpZWUlWJZVPEZZWVlsDT1GaXGRdsiQIXj22Wdx1113oaGhIVKdzmw244033pAUFKutrcXcuXMBACeeeGJC2rB161b885//BADMmjVLEEegleh2qkUYNDY2522qRSMYJB6/jJP27G5Gdl1bgrZmwNn3ptZuhi5OLXJoEmlNtNHRMjCIhqJNcPS4srWbETMURcPe/TKZderf92BN7HEHfEA+C43zlILngqA0TO+NV6QFRcNWeDpQeDqAtiN+WjqNg0dBpDU4tsmbLu3zKRX2iy6Ip0ekVc6ZVc6ktRWeQWyngXY4XyVoGZFWkvHbhp20ADC+wIbxBYYoa2BwrDN48GAsXboUu3fvxpEjR2KaJT5kyBAsXrwY+/fvx759+3Tn0modFBw8eDA++ugj+Hw+rFq1CiNHjtTd1gEDBuCTTz6B3+/H+vXrMWTIEOJ2wWBQEoXa0WkV68ptt92GtWvX4sEHH8S1116Lhx56CH/99RemTp0q2Xb+/PkYPnw4TjjhBJx11lkJOf+///1v+P1+dOvWDW63G5988onk38aNGyPb//7775HlYcE12uEaXUSMRHRkgVEIrOUJqhQOMzAwMDAwaEniEWm5oMLAEM+B82hzV8QbdyDOFW4rWDpJaxsYdHAYeQFMINKyeiLJlPqW+jJpDfQTnUsrRuLkNzJpDQwM2gDnnHMOgNBsixdffDGmY5x99tmRn//973/r3j96Nnj0bG/SecKC7n/+8x/d5wGAiRMnRn5+9913Zbf76quvUF0dZ5/0GKPV7loDBgzAgAEDVLebMmUKpkyZktBzhz+Qu3fvxiWXXKK6/eOPPx75ec+ePXA6nYLoha1btyruH72+b9++eptrEAc8z2PePn05wAYGiYY1xgkMDAyi4Lzl8B6YC1sX7QXTeC4A97b/wnfwR8XtKn86CeBZOHpdB2e/W0GZpLNGgrXbULf8Ft3tjqatRlQoFZykFLJJDY5dlJxD/rJF4HkOFEWDDzbKbieGdZeibsVMeHa9D9fgJ+AacHezOKgQd2CQGDhfpfxKkSirFE1hYGBg0FKceuqpGDFiBFasWIFnn30WgwcPxkUXXSS7/YYNG7B3716BMDtx4kQMHToUq1evxqxZszBq1ChMmzaNuH9lZSUcDocgbjO64NiuXbtk40R79+6NCy+8EHPmzMEnn3yC4cOH4/bbb5dt6549e7Bs2TKBtjZixAgMGTIEa9aswWuvvYYLL7wQ48YJ+2ilpaW48847ZY/bUWmbPex2QElJCfLz8wEACxYsUNx24cKFAEKhz8XFxclumkEUP+z14GBDbBUYDQwSBSt5YDMwMOjoVP92FgLVmzRvX7/mftQtvwW+Q8oiLVu/C2zDXtSvuQ81i/4mWc/5alDx3TDd7ZXSNoUnJrWn7DpKwVFp0HFxb5kFQF/cQeUPo+HZ9T4AoGHtA6hbfmvUWuE938icTTwN6x+TX8mK3GFtPO7AwMCg4/DRRx8hMzMTLMvi4osvxjnnnIMPP/wQK1aswOrVq/Hjjz/iqaeewujRo3H88ccTdab3338fLpcLHMfhkksuwfnnn4/PPvsMq1evxooVK/DRRx9h+vTpKCoqkmS9jhnTXKj3tttuw8KFC7Fjxw7s3LkTO3fuRDAYjKx/7bXX0K1bNwDAHXfcgQkTJuCtt97CsmXLsHbtWvz66694/vnnMWnSJPTo0QNffPGFpK2vvvoqTCYTAoEAJk2ahPvuuw+LFy/GypUr8fLLL2Po0KEoLS3FwIEDE/UWHxO0ibsWz/PYvXs3qqpCU1cyMzPRrVu3pHVqZs+ejdmzZytu88gjj+DRRx8FAPzxxx+SPFyKojBlyhS89tpr2Lp1K5YtW4ZRo0ZJjrNs2bKIk3bKlClGR62F+XYXucM9MMdCXG5gkAw6OwwXh4FBR8LS6QT4yxaqble/6k5kTlIWXcM0bnxWdzu8+76IVEGPHGfrK+CVIhO00kanEIf6WRRI09HtPaa3dHMMkoQpawiClWsEy2xFseUi162YCWe/W3WJtOJsaPe215A2+tWmlZxoa8MTQ8KUcTyC1X/FtG+gYqXsOnEkjJaMbgMDA4OWoHv37vjzzz9x/vnnY+PGjfjuu+/w3XffyW6fmpoqWda3b1/Mnz8fU6dOxYEDB/Dll1/iyy+/1HT+Hj164KKLLsKcOXMwb948zJs3T7B+z549EVNhZmYmlixZgosuugiLFi3CwoULI+ZDrW0dOXIk3nvvPUyfPh1erxf//Oc/I7WhAMBkMuHVV1/FkiVLsH79ek2/Q0egVXsNP//8M84++2ykpqaiV69eGDVqFEaNGoVevXohNTUV55xzjuSD05aYOXNmpErdjBkz4PEIp9V7PB7MmDEDQOgDOHPmzJZuYoenxifuKIeY1lt/sTgDAxJnlUirTGfami+tPdNNKElrnUrnBgYGrUP6hI81bec7rK2Pw7P+mNvCiwqEBavWxXysaCS5j22IzNP/IC5PGfw4cblB+yN1+AuSZSlDn5LffvR/FY/HcwHwnHw+nx54TvR9ZQxjAInU4c8B8camEPbn/bWibYyBcgMDg7ZDr169sG7dOnz00Uc4//zz0bVrV9jtdlgsFuTl5eHEE0/EAw88gNWrV+Ohhx4iHmPo0KHYtm0bXnrpJZx88snIzc2FyWSCy+XCgAEDcN111+G3334jzuL+4IMP8Mwzz2DEiBFIS0sDTctfhzt37oyFCxfi+++/x2WXXYZu3brB4XDAbDYjJycHY8aMwR133IEFCxbg7bffJh7jkksuwdq1a3HFFVcgPz8fFosFBQUFuOiii7B48WJce+21Mb2PxzKtMrTo9/sxffp0fPrppwBCTloxjY2NmDt3LubOnYuLL74Ys2fPhsXStjo5vXr1wl133YWnn34aq1atwtixY3HPPfege/fu2LVrF/71r39h7dq1AIC77roLPXvKT8EzaDkKXQy6GaKZQYK4vK8L3dPN2FkTgMtMo1+WGb0yzFhy2AdvkMcJhcb0WgODjgbjyEf2lI2o+OY45Q0ljjsybOMB9Y1k4PzVoG1ZzQtkRBFLpxNg73UNbF2non7N/XBveUn2mM7j7om5PS2BtfMEZE1egpolV4Ot3QomtTeyTv9d4Cg2aN9YO09A1lkr0LjpBdDmVDj73w6TQtSFs/f1oK3ZqF9zH9i67ZL1wZrN4AMJcJgDgEikpei29fzSVrDmT0LWGUvgP/on6leSsw4pkwOpo/+H2kVXSNbxHEu+hvKimDMj7sDAoENz4oknEvUmtXVilLYrLi7WfBwAYBgGl1xyiab6SHLY7XbMmDEjYgrUitlsxl133YW77rpL8z5nnnkmzjxTex0FMf369cN7770nu17LTPeORKvctS699FJ89dVX4HkeJpMJkyZNwsiRI9G5c2cAwJEjR7BixQr88ssvCAQC+PTTTxEMBjFnzpzWaK4iTz75JMrLy/H2229j7dq1xODmq6++Gk888UQrtM6ARFGq0VkzSBwURWFMvg1j8oVi7PgCQ5w1MOjImDP6J+xYbMNe2XXWgtPhL1ssG2EgqYIuI9KmDHkClk7jAQCOXtcoirTtYfqwJXcMcqduae1mGCQRS/ZwWDS61gHAXnw+bEXn4ci70u9AoGIVOG95Qtoldr5TtDUhxz0WseSOgiV3FBr+egK8+FoFIGXwk3B0v5ws0rLaCgO3h+uVgYGBgYFBmBa/a82dOxdffvklKIrCSSedhLfffhtFRUXEbffv34+///3v+P333/HFF1/ghx9+wOTJk1u4xcrQNI233noL559/Pl5//XWsXLkSFRUVyM7OxvDhw3H99dfjjDPOaO1mdljSrbQk8uCoR5tzycDAwMDAoC2gJNLS9s6w5J0M34Fviet5f7VwgYxISzsKdbTIyNc3aJ/I1YYIVCZQpBXHJhhxB6rQ1iywBJGWMsvHk2nOEDbiDgwMDAwM2hEtLtKGbcwDBw7ETz/9BLNZftp5165d8eOPP2LkyJFYv3493nnnnRYTaR955BE88sgjmrefPHlymxOQOzo8zxMzaQ/VBwlbGxgYGBgYtDyctwK0LVtxG0WR1poJc/ZwWZG2YcO/EGzYi7o//6F4DsaRr9rWCEYRVINjjEDlanCexIi0kDhpDZFWDdqaBRY7JMspxiG7j3aR1nDSGhgYGBi0H1q8cNiyZctAURTuuOMORYE2jNlsxp133gme57Fs2bIWaKHBscLqcnKhlcag9rwYAwMDAwODZFL588mqOWZKIi1lyYQ1/zTZ9f4jf6gKtLQtFxRjTMk26LgEKlbKRoZQ1izicjmkhcOM75YatMx7TJkURFpWm0hrZFEbGBgYGLQnWlykPXr0KIBQeLBW+vTpAwCoqKhISpsMjk1mb6onLjeyQg0MDAwMWgJ797+pbhOs3oBgzUbFbVjPYdl1tCUNptTuutsmOIa9s3CByvRgPqgtC9LAoL1jKzoP9m6X69pHnJVqZNKqQ1szySsYu/xOrFfbwSmjWLCBgYGBQfuhxUVapzOULVRZWal5n+rqUJ6awyE/mmpgIEYue/bkLoZIa2BgYGCQfFyDH1MWGZrg/TXKG3AB+XV0SIBIHfWKjpYJoURtZGydVLY3RCeD9ouz/53aNqQYpAx5CikDH9B1fHEBLNqaoWv/DomMkE015fmmDHtWsk5coE320CpxMgYGBgYGBm2JFhdpe/fuDQD49NNPNe8T3ja8r4GBGjVelrh8ag8H+mUZ2WAGBgYGBsnH5CpCzpQNSB3+b5jSj5PdjjKnKR6H5+Sz1KmmQmCO3jcgY+IPMbWTEhU2oqyZsqIJAFAm+WI+BgZtnZRhzyB9wieq2+VM2QhTWm/QtmzYis5T3T78PeV8QiOK3FR+g2YompwbSzUNQtm7XyFZx/mlhcZI0HblQScDAwMDA4O2RIuLtOeccw54nsc777wTKSKmxPvvv4+3334bFEXh3HPPTXr7DI4NdtWSH2h7phtTngwMDAwMWg5Tanc4+8+EtcvZ8hvJCBQReKWCl6EiXhRFwVZ4BtJP+Eh/I0WFjSiKUiwkJnbeGhi0JyiKgr3kYtD2PNltaHseTOl9ml87uqgel///9u47PKoqceP4O5NeCKFDSKQ3BQUJCCICotgoG0TsFAFZLIu7LrI/3bUX1LWt69KLWEAp0gIriBIloCGAihQpghIIHSnpk8zvDzbXDFPSZnKTzPfzPHmeO/eee+bMTM5M5s2559gyJBHSlonVzd/n/3tvsgY7j0YuyC7ZNHjW0PplbhYAABWtwkPaRx55RI0aNZLdbteoUaPUv39/LV68WIcOHVJeXp5sNpsOHTqkxYsXq3///hoxYoQKCgoUExOjhx9+uKKbiypq3xnXl4ZaWZAaAGACdyPFJEnFLBxm9zTdgcXxT7mAiEtK06z/VeEckFg9hLQKJKRF1edpRLglKKrU9dltGbLb7Sq4aLoDi7v5VmGwWDyPpLUEBMsSVMPh2MVhuDsBhLQAgCqkmKEb3hcREaEVK1bo+uuv1+nTp7Vq1SqtWrXKbXm73a5atWppxYoVzEkLt9LO2bQuLVsNIwJ0XVyo9v3metRRps3zF2EAACra2U1/UWSHiQqMaq2MXe/KGlJXIY36Kmv/PBVkpct26jsPZ18U0kaWPqR1NYotILyx3EXDnlZcB6oKS1Ck22PWiwLBkjiz8Y8KCGskFTjOlcpI2hJw90+sIu9N1uDays/7fVHgvBObSlY1IS0AoAqp8JBWkjp16qRt27Zp/PjxWrJkifLzXc8fGhAQoISEBL355ptq3LhxBbcSVcX53AI9kXxKOf/7NTqTU+B2JO2ZHNeLiQEAYJbcw6t16vBqh33n3JR1ctFIWk+XcLuvwnmu9oBw9393Md0BqgPPI2lLH9LmHFzucj8hbQm4GUmrgt+/I+ZnHXE4lL1/XomqtoYR0gIAqg5TQlpJiomJ0YIFC5Senq5169bpxx9/1KlTFy4Pql27ttq3b6/evXurUaPSf9mAf1nxc6YR0ErSJ7sz3JaNjTTtVx4A4MeC6l7lm4otjvP4eJxWwY3gRtc77fM03UFgTRZyRdVnDXQ/kvbi6Q6C63dX5s63y3AvljJNneBvgutdJVd/vVuLThVRkFOmuq0hdcvWKAAATGB6YtWoUSPdddddZjcDVdheN6NmL9YoIkDt67JwGACg4oU0vkkBUW2Uf/Ynr9ZrKefyAtawRgpvOdxpv6eRtEG1OpTrPoHKwBrh/nf84oXzQpvcVsY7CZTFwoIIxQmJ7e/0/hjcsE/Zpm+5CCP/AQBViekhLVBe+SWYweD+yyLVo3GorPyhDAAwgcUaoLr9v1XWvg909lsvLoRqKV1IG9npOQWENZQlOFoFWUcU2uxOWVwsBGZ1E9I2vDerTM0EKpuAiCYejsU53LZYAyVrsNN8s8Xj786SMN4f985RzuHPFRo3QGEt7vNO5S7m3AYAoLLyaUj766+/er3OSy4p/39UUb0UtxZYQstw3diURU4AAOayBtdURLuHdHbTY2W+dNdJaUPay/9eopF9F48klKTwNn+UJTC0VPcHVFYBke5DWmtErPO+0PoqyEwr5b0Q0paUNbimIi4dr4hLx3uvUotVFmuA9+oDAMDHfBrSNm3a1KuX+FgsFtlsNq/Vh+ohv8BzStuiJv9BBwBUIl69qqN0dZX07zJX0x0UZB8v1X0BlZnHkbThziGtpSwjMkv5TxR4mYtFEQEAqMx8Pt2B3V7MMEegHOx2u/ad8Rzct4hmVg8AQOVhsVjltb+OfBQCuZoCgZAW1YmnkbQBLkbSqgyL8jEfrbkshLQAgCrGp+nV8OHOC1EU9dtvv2np0qWyWCwaNmyYL5uCamrFfs9z49UKsap2KJc5AQAqEy8GNxU4Uo+QFtWJyyC28JiLkeQWS1m+NjGS1kyEtACAqsanIe3s2bM9Ht++fbuWLl1aorKAKx/sPO/xeLOajKIFAFQyZQp73FTlxbqcXLRQUmiTwb67L6CCuZu+wBJSR5ZA57UMQmJvle3MztLeSVmaBm8JYA5tAEDVwl8OqNZqBPMrDgCoXKyhdbxXl4sFvmpePcNl2bDm95aq7uhrPzK2LUE1FN76gdI1Dqjkgupe5bTP1Xy0khTZYaIswdHGbauL0bYXswSElLltcBTZ6YVSnxNYs7UPWgIAqG4sFossFoueeeYZs5tCSIvqLdjKXGAAgMrFGlrfa3UFRFzitC+89SiFNr/baX/k5U+Wqu6wprep9k1Jiur6tuoO2KKASOf7AqqyyI5POe1zNw2CNbSu6g36QVFd31btfmtU//aDiu75gQLrXKnIjs8oIKqN80mM5PSasOZ3uT1W48qXXO4Pqt3RR60BUFWsW7fOCOAu/gkPD1dcXJz69++vWbNmKScnx+zmAr5fOAwwUxDT0QIAKhlvhrTW0Hou94c07KPsnz9y2GcJiih1/SENr1VIw2vL1DagsrNYnP9QdDeSVpICIuIUcemfjNthLe5RWIt7JEkhjW/SycRujifYC7zTUCggoolkDZEKHEOU4AY9Fdywt8tzAglpAXiQlZWltLQ0paWlKTExUW+88YZWrFihpk2bmt00+DFG0qLKKrAXvzZ2ECNpAQCVjDdDWnerx9sLbM5lA0sf0gLVmos5Y60RcWWqKqhWB6d9BZmHylQXnFmsAQqMauW03xoWI3eLMQbVusLHrQJQlYwbN07btm0zftauXau3335bsbEX/jm3fft2DRw4UPn5+Sa3FP6MkBZVVrat+JD2txxGMAAAKhdXo/e8zk5ICxTP+auQu+kOiuNqsTF4V2BN5yklAsJjJLn+ez+wZlsftwhAVVK/fn21b9/e+Lnuuuv0pz/9STt27DBGz27btk2ffvqpuQ2FXyOkRZWVVYKQ9ngm/wUDAFQuBXlnfH4f9oI8553WYJ/fL1CluBhJ62m6A5grwEVIaw2PcTuthCWA9zwAxatRo4b+/ve/G7c///xzE1sDf0dIiyqrJCFtl4asqgsAqFxCYm/xSj1hLYa5PRZU63Knfe6mRgD8lotwzxreqMzVhbUc6XA7uAHzOXtTYA3n6Q4CwhrJ6iJYD6jRoiKaBKCa6NDh9ylrDh486Lbcl19+qeHDh6t58+YKDw9XVFSUOnTooAkTJujw4cMluq/k5GSNHj1abdq0UVRUlIKDgxUbG6v+/fvr3Xff1W+//eb23OXLl2vIkCGKjY1VSEiI6tSpo+7du2vSpEk6f/68y3NatGghi8WiHj16FNu2Q4cOKSAgQBaLRY8//rjLMmfOnNHLL7+sHj16qF69egoODlajRo00YMAALVy4UHYP01IWLtr2zDPPSJK++OIL3X777YqLi1NQUJDL+YCPHDmiJ598UvHx8apdu7ZCQkIUFxenoUOHljhQ/+ijj9S7d2/VqlVLkZGRat++vZ5++mmPz7VZWDgMVVZmMSFteKBF3RsR0gIAKpfQSwbrXOgEFWQf9VguIKKJAiIvUe7Rr50PWkMUeYXzyvSFghtdp8Do9rL99qMkKeKyx8rVZqBasjtfcWUJCCtzdTWufFHZBz6R3ZYhSQpvM67MdcGZq8UPLSG1FFijqSwhtWXPOWXsj+75QUU2DUAVFxz8+8j7oKAgp+PZ2dkaOXKk5s+f73Tsxx9/1I8//qjJkydr3rx5GjBggMv7yMrK0qhRozRv3jynY4cOHdKhQ4eUmJio48ePGyFm0fu/++67naZiOHXqlL755ht98803euedd5SYmKiOHTs6lLn77rv1wgsvaOPGjTpw4IDHhdHmzZungoIL/8C85557nI6vXbtWd9xxh06ePOmw/8iRI1qxYoVWrFihW265RR9//LEiIyPd3o8kPfnkk3rppZc8lvnwww81duxYZWRkOOxPS0vTggULtGDBAo0aNUpTpkxRYKBzvGmz2XT33XdrwYIFDvu3b9+u7du364MPPqh0I6d9GtI+99xzHo8fO3asxGULPfWU+y8k8C9ZNufRD8MvjdSxzHzVDw9Q5wYhqhVaAfP+AQBQCtagCNUd+J2yD3yisynjXZaxBEaq7oBUWULq6PzWfyjrwELV7D5FFmuQck+kKDT2VgVGuR8pZrFYVOeWZGX9/IGsIXUV2vR2Xz0coFqxWJ2/nJdUQHgj1R30o7J/Xayg2h0V0ug6L7YMFovza2MNipIkNRh6WGc3/UW5R9erZo8ZCq7bpaKbB6AK27lzp7F9cYhpt9s1ZMgQJSYmSpIGDBigoUOHqnnz5rJarUpJSdHrr7+uX3/9VUOGDFFycrLi4+Md6igoKNCgQYO0Zs0aSVKrVq304IMPKj4+XuHh4UpPT9eGDRv0ySefuGzf8OHDjYD2iiuu0GOPPaZ27drp1KlTmj9/vubMmaPDhw+rb9+++uGHH9S4cWPj3HvuuUcvvPCC7Ha7PvroIz3xxBNun4ePPvpIknTZZZfpiiscF19MTk7WzTffrLy8PDVo0ECPPPKIrrjiCsXExOjw4cP6+OOP9cEHH2jlypUaPny4Fi1a5PZ+Fi9erG3btqlDhw7685//rPbt2ysrK0vfffedUeaTTz7RfffdJ7vdrubNm+vhhx/WpZdeqnr16unAgQOaOXOmVq5cqZkzZyoqKkpvvPGG0/389a9/NQLaNm3a6PHHH9fll1+uM2fOaMGCBZo+fbruuOMOt+00g8XuaSxyOVmtVq9fWsdKe47S0tIUF3dhFdqDBw8aKxP6g2/Ss/XmlrPG7UYRAXqrdx0TWwQAQOmkz3H9d1KNK19U5OXu/4gGUH45h1br1JobHfbVH5qugPCGJrUInmQfXK7Tawc67Ks76AcF1erg5gzA+8rz/XvPnj2y2WwKDAxUq1bO03dIUoG9QCdzMr3S1qqiTki4rC7mCPeGdevWqU+fPpKkp59+2mmEqnQhY+rSpYu2bt0qSfr66691zTXXGMenT5+uBx54QEFBQVq2bJluuukmpzpOnz6tnj17avv27erRo4fWr1/vcPxf//qXxo+/8I/5hIQEzZs3TyEhzlf9FhQUKD093SFkTUxMVP/+/SVJffv21cqVKx1G/hZtoyQNHTpUH3/8scPxzp07a8uWLbrsssv0448/unyudu3apXbt2kmSXnrpJf3f//2fcSwvL0+tW7fWgQMHdNNNN2nRokUKD3deMLNoO1avXq0bbrjB4XjRfLBv375KTEx0+TycOHFCLVu21JkzZ3T//fdr6tSpLkfKFo7GtVqt2rFjh9q0+X3u8m3btqljx44qKCjQlVdeqaSkJKfRvXPnztXw4cON2+5+RzwpSb8uDZ9Pd+DNDJi51FDUxXPShgXy+wEAqB4sgc6X9QLwNufvKeUZSQvfsufnOO2z/G8kLVBdnMzJVP15z5jdjAp17K5nVC/U86XxvnD8+HFt27ZNTz31lBHQDhkyxCGgtdvteuWVVyRJf/rTn1wGtJJUq1Ytvfbaa7rllluUnJysPXv2GIFdQUGBXnvtNUlSbGys5s6d6zKYlC4MdCwa0ErSu+++K+nCNAyzZ892CmglacyYMfrkk0/0+eefa/HixUpPT1ejRr/PsX7PPfdoy5Yt2r59u77//nunUbLShakFpAu529133+1wbP78+Tpw4IBCQ0M1d+5clwFtYTtmzJihlJQUzZkzxymkLfo4Z8yY4fZ5mDx5ss6cOaPGjRvrP//5j8uAVpKeffZZvffeezp06JDmzp2rF1980Tg2ZcoUY+qGadOmuZx+YdiwYZo/f75WrVrlsn4z+DSk/fLLL31ZPfyY3W7XZweyHPaFE9ICAKqLgFCzWwBUey4Hk1hZsqOysudnOe2zBtU0oSUAqqJnn31Wzz77rMtj4eHh+uMf/6hJkyY57N+xY4f27dsn6UKA68m11/6+WOTGjRuNkPa7775TWlqapAshZnFztRZls9mUlJQkSerXr58xituVMWPG6PPPP5fNZtO6det01113GcfuvPNOTZgwQQUFBfroo49chrSFc+X26NFDTZo0cTi2bNkySVKvXr1Ur149j22+9tprlZKSoo0bN7ot06NHD49z4xbeX//+/d0GuZIUGBio7t27a+HChU73VzjXbIcOHdS5c2e3ddx///3+E9L26tXLl9XDj63+JUv7z9oc9jGSFgBQXRRkHjK7CYAfcBHS+uiSW5Sf3eZ8CbglqIYJLQFQ3XTs2FF/+tOfnBYNS01NNba7d+9e4vqOHDlibBeO0pWknj17lqpdP//8szIzL7z3XXXVVR7LFj1+8ZQGMTEx6tOnj9auXat58+Zp0qRJDleqf/vtt0YY7WrBsMLn4bPPPivxFe5Fn4OLXX755W6P5efnG3PTTp06VVOnTi31/eXk5GjPnj2SpC5dPM9R3rVr1xLVX1H4KwRV0qzt5532hQXy6wwAqB6C6nUzuwlAtRcY2cxpn8XqfBkpKofAmu2c9lmsLBIMoGTGjRunbdu2adu2bdq6dauWL1+u4cOHy2q1asOGDerdu7eOHz/ucE7Rxe5LozBYlS7Mr1qo6BQEJXHq1Clju379+h7LNmz4+3zqRc8rVBi+Hjx4UF999ZXDscKpDoKCgnT77c6LzZblecjKcr76oVCtWrXcHjt16pRsNpvb4+4Ufc5Pnz5tXC1T3PPWoEGDUt+XL3E9D6oNRtICAKqaiMufUMYPLznss4bHKqQhq8IDvhYY3VbBDXsr98g6SVJYi+GyBLi/rBLmCm7QU4G1Lpft9A+SpIhL/2xyiwDvqxMSrmN3PWN2MypUnRDX85t6W/369dW+fXvjdseOHdW/f3/16dNHI0aM0IEDBzR69GgtXbrUKFN04frly5d7vET/4vvytvKu0XTbbbfpwQcfVHZ2tj766CPjyvf8/Hx98sknkqSbbrpJdeo4L8Ze+DzcfPPNevXVV8vVDkkKCHD/D7aiz/no0aONBdeK42quXqnqrW1FSItqgzlpAQBVTdSVLyogPE4Z219XUJ0rFdzgGoU2vUOWQOakBSpC7etXKuvnDyRriMKaO1/iicrDYrGozi3rlbXvA1lDaiu06VCzmwR4ndViNWURLX82fPhwLV++XIsWLdKyZcv0xRdf6LrrLvyzvGhgGR0d7RDyllTdunWN7fT0dLVt27bE59auXdvYPnr0qMeyRS/3L3peoaioKPXv318LFy7UwoUL9e9//1tBQUFau3atUberqQ6kC8/D4cOHlZubW6bnoDSKtt1ut5fp/qKjo43t4p634o5XNK4PR7URFkRICwCoeiLa/lH1b9ujWr0/VkS7RxQQ5v3RFwBcswSGKbz1GIW3HMal81WANaiGItqOU1izO6rc6CgAlddLL71kjO584oknjP2dOnUytpOTk8tU95VXXmlsXzzNQHGaN2+u8PALI42//fZbj2VTUlKMbXfBZmEIe+rUKWOxrMKpDmrUqKGBAwe6PK/weUhNTVVubm4pHkHpBQcH67LLLpNU9uc8NDTUWLht06ZNHssWd7yiEdKi2ggN4A81AAAAAABQcq1bt9bQoRdG53/77bdas2aNpAsBa2xsrCRp2rRpys7OLnXdV1xxheLi4iRJM2bM0PnzzuvruBMYGGhMS7BmzRqlpaW5LTtjxgzjnN69e7ssc8sttxjzwX744YfKzs7Wp59+KklKSEhQWFiYy/MKw9szZ85o9uzZJW5/WRXe365du/TZZ5+VqY7rr79ekow5iN2ZNWtWmer3FUJaVBkZeQVasPu8/vTlCZfHw1k4DAAAAAAAlNITTzxhjNB/4YUXJElWq9UYWfvzzz9r2LBhysnJcVvH2bNn9e9//9thn9Vq1YQJEyRJaWlpGjZsmNvRqAUFBTp8+LDDvoceekiSlJubq1GjRikvL8/pvFmzZmn16tWSpMGDB7tdoCw4OFhDhgyRdGGO3Y8++kjnzp2T5H6qA+nClBCFQfNf//rXYkcEr1+/XklJSR7LeDJ+/HhFRl6Y9mPkyJHavn27x/KJiYn64YcfHPaNHTvWeD0feOABZWRkOJ334YcfauXKlWVupy+QaqHKeHXTGS3ck6mjmQUuj4cwJy0AAAAAACil9u3bGyM4v/rqK61fv16S9Mc//lEJCQmSpAULFuiyyy7Ta6+9pqSkJH333Xf66quvNG3aNN19992KiYnRM88841T3Qw89pBtuuEGS9Omnn6pDhw56++23lZycrK1bt2rVqlV6+umn1bZtW02bNs3h3FtvvVW33367JGn16tXq1q2bPvzwQ23evFmff/65Ro8erdGjR0u6MJ/rG2+84fFxFoaxWVlZeuyxxyRJDRo0UN++fd2eExISok8++UQhISE6f/68rrvuOt17771auHChNm/erE2bNmnZsmV6+umndfnll6tnz57atm2bx3Z40qBBA7333nuyWCxKT09XfHy8xo0bp2XLlmnLli369ttvtWjRIk2cOFEtWrRQ//799euvvzrUccUVVxgBd2pqquLj4zVnzhxt3rxZX3zxhcaNG6dhw4YpPj6+zO30BRYOQ5VwKjtfu047/8eoqHy7vYJaAwAAAAAAqpMnn3xSS5culSQ9//zz+uyzz2SxWPTxxx9r/PjxmjJlivbt26fHH3/cbR316zuvLWC1WrVkyRINHz5cCxcu1O7du/Xoo4+WuF1z586VzWbTp59+qi1btujee+91KhMTE6PExEQ1btzYY13XXnut4uLidPDgQf3222+SpDvvvNOYk9edbt26ad26dRo6dKgOHjyoDz/80JjP1pWoqKjiH5gHgwcP1tKlSzVixAidOnVKU6ZM0ZQpU1yWtVqtioiIcNr/xhtv6PDhw1q8eLF27dqlkSNHOhxv1qyZPv74Y7Vo0aJcbfUmRtKiSjiR5Xr0bFGBLB4AAAAAAADKoEuXLsaI19WrVxuLSgUFBek///mPvv/+ez3yyCPq0KGDatasqYCAANWsWVMdO3bUqFGjtHDhQu3cudNl3eHh4VqwYIG++OIL3XfffWrWrJnCwsIUHBysuLg4DRgwQFOnTjVGtxYVGhqqxYsXa9myZRo8eLBiYmIUHBysWrVq6aqrrtLLL7+sn376SR07diz2MVosFt11110O+zxNdVBUt27dtGfPHk2ZMkW33nqr0Y7Q0FDFxcWpX79+evHFF7Vr1y4NGzasRHV6MmDAAO3fv1///Oc/dd1116lBgwYKCgpSWFiYmjVrpv79++uNN97QgQMH1KdPH6fzg4KCtGjRIr3//vvq2bOnatasqfDwcLVr105PPPGENm/erObNm5e7nd5ksdsZfliVpaWlGXODHDx40JjUurrZeDhbb20967HM37rUVKf6IRXUIgAAAACAPynP9+89e/bIZrMpMDDQWHkeQNXm7X7NSFpUCSUZSWtlIC0AAAAAAACqIEJaVAknsvOLLRNISgsAAAAAAIAqiJAWVcKJrOJD2gAyWgAAAAAAAFRBhLSoEkq0cBgjaQEAAAAAAFAFEdKiSjidU3xIWzuUX2cAAAAAAABUPaRaqBKy8jyHtFfWD1bt0IAKag0AAAAAAADgPYFmNwAoTn6BXbkuMtp2tYPUpWGIwgIsujY2tOIbBgAAAAAAAHgBIS0qvex8u9O+d6+ro7phjJwFAAAAAABA1cd0B6j0smzOIW1YIIuEAQAAAAAAoHrwy5D27Nmzmj9/vh577DH16tVLLVu2VM2aNRUcHKz69eurd+/eevXVV3Xy5MkS1bdhwwbde++9atKkiUJDQ9WwYUPdeOONmjdvno8fiX/IdhHShgYQ0gIAAAAAAKB68MvpDlJSUnTXXXe5PHb8+HElJSUpKSlJr732mj744APdeOONbut65pln9Pzzz6ug4PdJU48eParVq1dr9erV+vDDD7Vw4UKFhjJnalldPJI22CoFWAlpAQAAAAAAUD345UhaSYqLi9OwYcP09ttva/Hixdq4caOSk5P18ccf6/bbb1dAQIBOnDihgQMH6vvvv3dZx9SpU/Xss8+qoKBALVq00MyZM5WSkqIlS5aoT58+kqTExETdf//9FfnQqp3zeY6rhoUF+e2vLQAAAAAAAKohvxxJ26dPH/36669ujw8dOlRLlixRQkKCcnNz9eyzz2rx4sUOZU6dOqWJEydKki655BJ98803qlu3rnG8f//+SkhI0PLlyzVv3jw98MAD6t27t08eT3V3LDPf4Xa9MEJaAAAAAAAAVB9+mXYFBAQUW+YPf/iD2rRpI0n6+uuvnY7PmDFDZ86ckSS98sorDgFt4X385z//Me7rtddeK2+z/dbRi0La+uHFv34AAAAAAABAVeGXIW1J1ahRQ5KUnZ3tdGzJkiWSpKioKA0ePNjl+bGxsbr++uslSWvXrtW5c+d809Bq7uKRtA3CCGkBAAAAAABQfRDSuvHTTz/pu+++kyS1bdvW4Vhubq5SUlIkSd27d1dwcLDbenr16iVJysnJUWpqqm8aW80dzXSck5aRtAAAAAAAAKhO/HJOWncyMzN16NAhLV++XK+++qpsNpsk6dFHH3Uot3v3buXnXxjdeXGAe7Gix3fu3GksKFZSaWlpHo+np6eXqr6qxm63O42kJaQFAAAAAABAdeL3Ie2cOXM0cuRIt8f/9re/6e6773bYVzQ4jY2N9Vh/XFycsX3w4MFSt6/o+f7oXK5d2fl2h32EtAAAAAAAAKhO/D6kdadjx46aNm2aunTp4nSs6NyykZGRHuuJiIgwts+fP++9BvqJixcNC7BIdUKZpQMAAAAAAADVh9+HtH/4wx8UHx8vScrKytK+ffv0ySef6NNPP9Vdd92lt956S/3793c4p+hCYp7mo5WkkJAQYzsrK6vU7Stu9G16erq6du1a6nqrimNZjiFt3bAABVgtJrUGAAAAAACgarBYLuQnTz/9tJ555hlzG4Ni+X1IGx0drejoaON2ly5ddOedd+r999/X8OHDNWjQIM2cOVMjRowwyoSGhhrbubm5HuvPyckxtsPCwkrdvuKmU6juLp6PtkE4o2gBAAAAAIBn69atc7kuUEBAgKKiolSzZk3FxcWpc+fOuuaaazRgwIBiB+IBvkTi5cZ9992n22+/XQUFBXr44Yd16tQp41iNGjWM7eKmMMjIyDC2i5saAc4unu6A+WgBAAAAAEBZ5efn6/Tp0zpw4IC+/vprvfXWWxoyZIhiY2P1wgsvGIvIAxWNkNaDQYMGSboQtP73v/819hcd3Vp0ETFXik5X4O+LgJXFxSNpCWkBAAAAAEBpjBs3Ttu2bTN+Nm7cqJUrV2rSpEm64YYbZLFYdPz4cf3jH/9Qjx49dPz4cbObDD/k99MdeFKvXj1j+5dffjG2W7durYCAAOXn52vXrl0e6yh6vF27dt5vZDWVm2/Xyv2Z2n4yz2F/A0JaAAAAAABQCvXr11f79u2d9t98882aOHGiduzYoXvvvVdbt25VSkqKEhIS9MUXXzD9ASoUI2k9OHTokLFddKqC4OBgY7GujRs3epyXNikpSdKFBcQKFyhD8ab8cFbzfspw2s9IWgAAAAAA4E2XXnqpkpOT1alTJ0lScnKy3n33XZNbBX9DSOvBggULjO0OHTo4HPvDH/4gSTp79qwWL17s8vy0tDR9/vnnkqS+ffs6zGUL9/IL7Eo+nOPyWP0wQloAAAAAAOBdYWFhev/992WxWCRJ//znP5WXl+ey7JEjR/Tkk08qPj5etWvXVkhIiOLi4jR06FAjB3Ln9OnTmj17tu69915deumlioyMVHBwsBo2bKgbb7xR06ZNK3aR+kIfffSRevfurVq1aikyMlLt27fX008/rd9++61Ujx2Vg1+GtHPmzFF2drbHMm+++aZWrlwpSWrWrJl69uzpcHz06NGqWbOmJOlvf/ubTp486XA8Pz9fDz74oPLzL8ypOmHCBG81v9o7mV3gcr9FUniQpWIbAwAAAAAA/MJll12mG264QZJ0+PBhbdq0yanMhx9+qJYtW+qll17S5s2bdfr0aeXm5iotLU0LFizQDTfcoNGjR7tdgKxTp066//779eGHH2rnzp3KyMhQXl6ejh49qtWrV2vs2LHq1q2bjhw54radNptNQ4cO1T333KOkpCT99ttvysjI0Pbt2/Xcc8+pc+fO2r9/v3eeFFQYvwxpn3nmGTVu3FgPPPCA5s6dq+TkZH3//fdav369Jk+erGuuuUZ/+ctfJF2Y2mDatGkKCHAcwVm7dm298sorki7MV3vVVVdp9uzZSk1N1bJly3TDDTdo+fLlkqS77rpLvXv3rtDHWJUdych3uT8s0CKrhZAWAAAAAAD4xvXXX29sf/311w7HPvnkE913333KyMhQ8+bN9cYbb+i///2vNm/erEWLFumWW26RJM2cOVOPP/64y/rz8/N11VVX6fnnn9eKFSu0adMmJScn64MPPtBNN90kSdq6davuvPNOt23861//alz93aZNG82cOVObNm3S559/rrFjx+rAgQO64447yvU8oOL57cJhp06d0vTp0zV9+nS3ZWJjYzVr1iyHDlrU2LFjdfjwYT3//PPat2+f7r//fqcyt9xyi2bNmuW1dvuDI5mu/9sUFkhACwAAAAConuz2AtkLzprdjAplsUbJYqlc4wevvPJKY3v37t3G9okTJ/TAAw/Ibrfr/vvv19SpUxUYGOhw3uDBg/Xkk0/qpZde0ttvv62xY8eqTZs2DvV/8cUXatWqldP9Xn311brnnns0e/Zs3X///UpKStLatWvVt29fh3Lbtm3TO++8Y9xnUlKSwzpKffv21dVXX63hw4eX74lAhfPLkPazzz5TYmKikpOTtXfvXh09elQnT55UWFiY6tevr44dO6p///4aOnSowsPDPdb17LPP6sYbb9S7776rr7/+WkePHlV0dLSuuOIKjRw5UnfddVcFParqw91I2rwCewW3BAAAAACAimEvOKtzR24zuxkVqkbDRbIERJvdDAd16tQxtk+fPm1sT548WWfOnFHjxo31n//8xyGgLerZZ5/Ve++9p0OHDmnu3Ll68cUXHY67CmiLGjlypP71r3/pu+++05IlS5xC2ilTpqig4MI0kdOmTXMIaAsNGzZM8+fP16pVqzw/WFQqfhnStmnTRm3atDGmNCivq6++WldffbVX6oJ0NNN1SHs2l5AWAAAAAAD4TtHQ89y5c8b2smXLJEn9+/dXSEiI2/MDAwPVvXt3LVy4UBs3bvR4X3a7XUePHtXZs2cdFgtr3LixvvvuO33//fdO5xQuTNahQwd17tzZbd33338/IW0V45chLSo3dyNpAQAAAAAAfKloMBsVFSXpwjyy3333nSRp6tSpmjp1aonqcrf4V2JioiZPnqyvvvrK4f4uduLECYfbOTk52rNnjySpS5cuHu+7a9euJWojKg9CWlQqefl2pbsJaa+Ocf+fKgAAAAAAgPIqGozWrl1b0oV1jWw21+vneJKZmelw2263a8yYMZo5c2aJzs/KynK4ffr0adntF64yrl+/vsdzGzRoUIqWojIgpEWlcvC8TfkuZjWwSOodG1rh7QEAAAAAoCJYrFGq0XCR2c2oUBZrlNlNcLJ161Zju3DRr/z83weTjR49WuPHjy9RXcHBwQ63Z82aZQS0HTt21KOPPqqrrrpKjRs3Vnh4uAICAiRdmFP2/fffNwJZVywWFlevbghpUans+835P1P3totU6+ggtakdZEKLAAAAAADwPYvFWukW0fJHa9asMbavueYaSb+PqJUujIZt3759meqePn26JKlly5basGGDwsLCXJY7deqUy/3R0dHG9tGjRz3eV3HHUflYzW4AUNT+M3kOt3vEhGhA83ACWgAAAAAA4FM//vij1q5dK0mKi4tTfHy8pAsjYi+77DJJUnJycpnr3759uyRp4MCBbgNau92uLVu2uDwWGhqqVq1aSZI2bdrk8b6KO47Kh5AWlcrPZxxH0jarSTgLAAAAAAB8KysrS8OGDTOmGPjrX/+qwMDfL0AfOHCgJGnXrl367LPPynQfhfPaZmRkuC2zdOlSpaenuz1+/fXXS5K2bdvmMDXDxWbNmlWmNsI8hLSoNPLy7fr1nGNI26ImM3IAAAAAAADf2bFjh6655hoj9OzVq5fGjRvnUGb8+PGKjIyUJI0cOdIYFetOYmKifvjhB4d9haNgly9f7nJKg3379umhhx7yWO/YsWON+WgfeOABl4Hvhx9+qJUrV3qsB5UPCRgqjV/POS8a1jSKX1EAAAAAAFB2x44d048//mjczsjI0OnTp/XDDz9o7dq1WrNmjTGCtlu3blq4cKGCghyv7G3QoIHee+89DRkyROnp6YqPj9eIESN08803KzY2Vnl5eUpLS1NKSooWLlyon3/+WcuXL9fll19u1DFs2DBNmDBBhw8fVvfu3TVx4kS1b99e2dnZ+uKLL/TWW28pJydHV155pdspD6644go99NBD+ve//63U1FTFx8dr4sSJ6tChg86cOaMFCxZo2rRpio+PV2pqqg+eTfgKCRgqjcMZ+Q63G4YHKDyIwd4AAAAAAKDsJk+erMmTJ3ssU69ePT366KN6/PHHHaY5KGrw4MFaunSpRowYoVOnTmnKlCmaMmWKy7JWq1UREREO+8aPH681a9Zo9erV2r17t0aNGuVwPCwsTHPnzlViYqLbkFaS3njjDR0+fFiLFy/Wrl27NHLkSIfjzZo108cff6wWLVp4fMyoXAhpUWlk2QocbkeHENACAAAAAADvsVqtqlGjhmrWrKkmTZqoc+fO6tmzp/r376/g4OBizx8wYID279+v6dOna+XKldq+fbtOnTqlwMBANWzYUJdddpmuu+46DRkyRHFxcQ7nBgUFKTExUZMnT9bcuXO1Y8cO2e12NW7cWNdff73Gjx+vtm3bKjEx0WMbgoKCtGjRIn3wwQeaNm2afvjhB+Xl5alJkyZKSEjQX//6V9WqVatczxMqnsVeOJ4bVVJaWprR6Q8ePKjY2FiTW1R2S/dl6KNdv8+l0rFesP6va7R5DQIAAAAA4H/K8/17z549stlsCgwMNOYlBVC1ebtfM1QRlUaWzfH/BWGBFpNaAgAAAAAAAFQcQlpUGtmEtAAAAAAAAPBDhLSoNDIJaQEAAAAAAOCHCGlRaVw8kjaUkBYAAAAAAAB+gJAWlUbaeZvD7YhAfj0BAAAAAABQ/ZGCoVI4fN6mQ+fzHfa1qhVkUmsAAAAAAACAikNIi0ph09Ech9vRIVa1jA40qTUAAAAAAABAxSGkRaWQesQxpI1vECyrhTlpAQAAAAAAUP0R0sJ0p7Pztfs3x/louzQMMak1AAAAAAAAQMUipIXpUo/mOtwOC7SofZ1gk1oDAAAAAAAAVCxCWpgu9aL5aDvVD1aglakOAAAAAAAAUDnZ7Xav1kdIC9P9ctZxqoPO9ZnqAAAAAABQfQQEBEiSbDab8vPzTW4NgPLKz883+nJh/y4vQlqYLv+i/zxEh/BrCQAAAACoPsLDw43t3377zbyGAPCKov24aP8uj0Cv1AKUw8Wjw5npAAAAAABQnURHR+v06dOSpGPHjik/P19RUVEKCQmRxcKXYKAqsNvtysnJ0dmzZ3Xy5Eljf61atbxSPyEtTFdgdgMAAAAAAPCh0NBQ1axZU2fOnJEknTx5UidPnpTFYvHapdIAfCs/P99pHtqaNWsqJMQ703YS0sJ8jKQFAAAAAFRzjRo1UnBwsI4fP27ss9vtstlsHs4CUFnVq1dPderU8Vp9hLQwVXqGTRk2766GBwAAAABAZWOxWFS3bl1FRUXp/PnzysjIUG5urgoKuL4UqAqsVquCg4MVERGhyMhIBQcHe7V+QlqYJstWoP9bf9ppv5X5eAAAAAAA1VRwcLBq166t2rVrm90UAJWI1ewGwH/990CWslyMog0gowUAAAAAAIAfIaSFafafcT3vTqMIJk0HAAAAAACA/yCkhWny7c6jaBuGByg8iF9LAAAAAAAA+A/SMJjG5mJu9GY1mSYZAAAAAAAA/oWQFqZxNZKWkBYAAAAAAAD+hpAWpsnNd97XLCqo4hsCAAAAAAAAmIiQFqb59ZzzwmFNGUkLAAAAAAAAP0NIC9M0iXIOZKOC+ZUEAAAAAACAfyERg2na1WZqAwAAAAAAAICQFqYJslocbsc3CDapJQAAAAAAAIB5CGlhGvtFty2yuCwHAAAAAAAAVGeEtDCN/aKU1kJGCwAAAAAAAD9ESAsTOaa0ZLQAAAAAAADwR4S0MI3TdAektAAAAAAAAPBDhLQwzblcx5g2gJAWAAAAAAAAfoiQFqbZdSrP4fYlNQJNagkAAAAAAABgHkJamCIjr0AHz9kc9rWtHWRSawAAAAAAAADzENLCFLtP5znMSRtklVrUJKQFAAAAAACA/yGkhSkunuqgRXSQgpiUFgAAAAAAAH7Ib0Pa1NRUPffcc+rXr59iY2MVEhKiyMhItW7dWiNHjtT69etLVd+qVauUkJBg1BUbG6uEhAStWrXKR4+gars4pG1bi1G0AAAAAAAA8E9+uVLTtddeq6+//tppf25urvbs2aM9e/Zozpw5GjZsmKZPn67g4GC3dRUUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIOcvPt2nvmopCW+WgBAAAAAADgp/wyNTx8+LAkKSYmRuPHj9fChQuVkpKijRs36o033lDjxo0lSXPnztWIESM81vXkk08aAW2nTp00b948paSkaN68eerUqZMkacaMGfr73//uuwdUxRzOsMlW4LivNSNpAQAAAAAA4KcsdrvdXnyx6qV///4aNmyYbrvtNgUEBDgdP3HihHr06KHdu3dLkpKSknTttdc6ldu9e7cuu+wy2Ww2xcfH66uvvlJYWJhxPDMzU7169VJqaqoCAwO1c+dOtWzZ0quPJS0tTXFxcZKkgwcPKjY21qv1+8KWozl6JfWMcTs6xKqp19c1sUUAAAAAAHhWFb9/A6g6/HIk7YoVKzR06FCXAa0k1a1bV6+//rpxe+HChS7LvfXWW7LZbJKkd955xyGglaTw8HC98847kiSbzaY333zTG82v8k5mOw6jrRPql7+GAAAAAAAAgCQ/DWlLok+fPsb2vn37nI7b7XYtXbpUktS2bVt169bNZT3dunVTmzZtJElLly6VHw5cdnIyO9/hdu1Q12E5AAAAAAAA4A8Iad3Iyckxtl2NuN2/f78xt22vXr081lV4/NChQzpw4ID3GllFnbp4JG0Yv4YAAAAAAADwX4FmN6CySkpKMrbbtWvndHzHjh3Gdtu2bT3WVfT4zp071axZsxK3Iy0tzePx9PT0EtdVWZzMchxJy3QHAAAAAAAA8GeEtC4UFBRo0qRJxu2hQ4c6lSkanhY3WXjhxOLShcnFS6PoudWF85y0THcAAAAAAAAA/8UQRhfefPNNpaSkSJIGDx6szp07O5U5d+6csR0ZGemxvoiICGP7/PnzXmpl1WS323Xqojlpme4AAAAAAAAA/oyRtBdJSkrS3/72N0lS/fr1NXnyZJflsrOzje3g4GCPdYaEhBjbWVlZpWpPcSNv09PT1bVr11LVaaYMm105jhktC4cBAAAAAADArxHSFrF9+3YlJCTIZrMpNDRUCxYsUP369V2WDQ0NNbZzc3M91lt0EbKwsLBStam4qRSqmkCLRQ93jNLJrHydyi7Qyex81WZOWgAAAAAAAPgxQtr/2b9/v/r166fTp08rICBA8+fP17XXXuu2fI0aNYzt4qYwyMjIMLaLmxqhugsNtKhn49DiCwIAAAAAAAB+giGMkg4fPqzrr79ehw8flsVi0axZszRo0CCP5xQd4Vp0ETFXik5ZUB0XAgMAAAAAAABQdn4f0p44cUI33HCDfv75Z0nSO++8o2HDhhV73qWXXmps79q1y2PZosfbtWtXxpYCAAAAAAAAqI78OqQ9c+aMbrzxRu3YsUOSNGnSJD300EMlOrdZs2aKiYmRdGGxMU+++uorSVLjxo3VtGnTsjcYAAAAAAAAQLXjtyFtZmambr31Vm3ZskWS9OSTT2rixIklPt9isRhTIuzatUvffPONy3LffPONMZJ20KBBslgs5Ww5AAAAAAAAgOrEL0Pa3NxcJSQkKDk5WZI0fvx4vfDCC6Wu59FHH1VAQIAk6ZFHHlFWVpbD8aysLD3yyCOSpMDAQD366KPlazgAAAAAAACAaifQ7AaY4a677tLq1aslSdddd51GjRqlH3/80W354OBgtW7d2ml/69atNWHCBE2aNEmpqanq0aOHJk6cqBYtWmjfvn165ZVXtHXrVknShAkT1KpVK988IAAAAAAAAABVlsVut9vNbkRFK+2UA02aNNGBAwdcHisoKNCYMWM0a9Yst+ePGjVK06ZNk9Xq/YHLaWlpiouLkyQdPHhQsbGxXr8PAAAAAAD8Hd+/AfiSX0534E1Wq1UzZ85UYmKiBg0apJiYGAUHBysmJkaDBg3SypUrNWPGDJ8EtAAAAAAAAACqPr+c7sAXg4dvueUW3XLLLV6vFwAAAAAAAED1xvBOAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIr8NaY8dO6YVK1boqaee0s0336y6devKYrHIYrFoxIgRpa5v1apVSkhIUGxsrEJCQhQbG6uEhAStWrXK+40HAAAAAAAAUG0Emt0AszRo0MAr9RQUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIAAAAAAAAA3CA1lHTJJZeoX79+ZTr3ySefNALaTp06ad68eUpJSdG8efPUqVMnSdKMGTP097//3WvtBQAAAAAAAFB9+O1I2qeeekpdunRRly5d1KBBAx04cEDNmjUrVR27d+/WP//5T0lSfHy8vvrqK4WFhUmSunTpooEDB6pXr15KTU3Va6+9pvvvv18tW7b0+mMBAAAAAAAAUHX57UjaZ599Vv379y/XtAdvvfWWbDabJOmdd94xAtpC4eHheueddyRJNptNb775ZtkbDAAAAAAAAKBa8tuQtrzsdruWLl0qSWrbtq26devmsly3bt3Upk0bSdLSpUtlt9srrI0AAAAAAAAAKj9C2jLav3+/Dh8+LEnq1auXx7KFxw8dOqQDBw74umkAAAAAAAAAqhC/nZO2vHbs2GFst23b1mPZosd37txZqrlv09LSPB5PT08vcV0AAAAAAAAAKh9C2jIqGp7GxsZ6LBsXF2dsHzx4sFT3U/RcAAAAAAAAANUP0x2U0blz54ztyMhIj2UjIiKM7fPnz/usTQAAAAAAAACqHkbSllF2draxHRwc7LFsSEiIsZ2VlVWq+ylu5G16erq6du1aqjoBAAAAAAAAVB6EtGUUGhpqbOfm5nosm5OTY2yHhYWV6n6Km0oBAAAAAAAAQNXGdAdlVKNGDWO7uCkMMjIyjO3ipkYAAAAAAAAA4F8Iacuo6AjXoouIuVJ0ygIWAgMAAAAAAABQFCFtGV166aXG9q5duzyWLXq8Xbt2PmsTAAAAAAAAgKqHkLaMmjVrppiYGElSUlKSx7JfffWVJKlx48Zq2rSpr5sGAAAAAAAAoAohpC0ji8WiQYMGSbowUvabb75xWe6bb74xRtIOGjRIFoulwtoIAAAAAAAAoPIjpC2HRx99VAEBAZKkRx55RFlZWQ7Hs7Ky9Mgjj0iSAgMD9eijj1Z0EwEAAAAAAABUcoFmN8As69ev1969e43bJ06cMLb37t2rOXPmOJQfMWKEUx2tW7fWhAkTNGnSJKWmpqpHjx6aOHGiWrRooX379umVV17R1q1bJUkTJkxQq1atfPJYAAAAAAAAAFRdFrvdbje7EWYYMWKE3nvvvRKXd/c0FRQUaMyYMZo1a5bbc0eNGqVp06bJavX+wOW0tDTFxcVJkg4ePKjY2Fiv3wcAAAAAAP6O798AfInpDsrJarVq5syZSkxM1KBBgxQTE6Pg4GDFxMRo0KBBWrlypWbMmOGTgBYAAAAAAABA1ee3I2mrC/6TBwAAAACA7/H9G4AvMbwTAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJDWi3755Rc99thjatu2rSIiIlS7dm116dJFr732mjIzM81uHgAAAAAAAIBKKNDsBlQXy5cv17333quzZ88a+zIzM5WamqrU1FTNmDFDiYmJatmypYmtBAAAAAAAAFDZMJLWC7Zu3ao77rhDZ8+eVWRkpF588UVt2LBBa9eu1ZgxYyRJu3fv1q233qpz586Z3FoAAAAAAAAAlQkjab1g/PjxysrKUmBgoFavXq3u3bsbx6677jq1atVKjz/+uHbv3q3XX39dzzzzjHmNBQAAAAAAAFCpMJK2nFJSUvT1119LkkaNGuUQ0BZ67LHH1K5dO0nS22+/rby8vAptIwAAAAAAAIDKi5C2nJYsWWJsjxw50mUZq9WqYcOGSZJ+++03ffnllxXRNAAAAAAAAABVACFtOa1fv16SFBERoc6dO7st16tXL2M7OTnZ5+0CAAAAAAAAUDUwJ2057dy5U5LUsmVLBQa6fzrbtm3rdE5JpKWleTyenp5e4roqi892PSyrcs1uBgAAAACgkrimxZsKC4owuxkAYBpC2nLIzs7WiRMnJEmxsbEey9aqVUsRERHKyMjQwYMHS3wfcXFx5WpjZdQubLdqBuab3QwAAAAAQCVhK2DtFgD+jekOyuHcuXPGdmRkZLHlIyIu/Ffw/PnzPmsTAAAAAAAAgKqFkbTlkJ2dbWwHBwcXWz4kJESSlJWVVeL7KG7UbXp6urp27Vri+gAAAAAAAABULoS05RAaGmps5+YWP8dqTk6OJCksLKzE91HcNApV0Y7sbpK4lAUAAAAAcEHvBsUPfAKA6oyQthxq1KhhbJdkCoOMjAxJJZsaoTq7qc1zZjcBAAAAAAAAqDSYk7YcQkNDVadOHUlSWlqax7KnT582QtrquBgYAAAAAAAAgLIhpC2nSy+9VJK0d+9e2Ww2t+V27dplbLdr187n7QIAAAAAAABQNRDSltM111wj6cJUBps3b3ZbLikpydju0aOHz9sFAAAAAAAAoGogpC2nP/zhD8b27NmzXZYpKCjQ3LlzJUnR0dHq06dPRTQNAAAAAAAAQBVASFtOXbt2Vc+ePSVJM2fO1MaNG53KvP7669q5c6ckafz48QoKCqrQNgIAAAAAAACovALNbkB18Pbbb6tHjx7KyspSv3799MQTT6hPnz7KysrS/PnzNW3aNElS69at9dhjj5ncWgAAAAAAAACVCSGtF3Tq1Ekff/yx7r33Xp09e1ZPPPGEU5nWrVsrMTFRNWrUMKGFAAAAAAAAACorpjvwkgEDBuiHH37Qn//8Z7Vu3Vrh4eGKjo5WfHy8XnnlFW3dulUtW7Y0u5kAAAAAAAAAKhmL3W63m90IlF1aWpri4uIkSQcPHlRsbKzJLQIAAAAAoPrh+zcAX2IkLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkCzW4Aysdmsxnb6enpJrYEAAAAAIDqq+h37qLfxQHAGwhpq7jjx48b2127djWxJQAAAAAA+Ifjx4+radOmZjcDQDXCdAcAAAAAAAAAYCKL3W63m90IlF12dra2bdsmSapXr54CAyv/4Oj09HRj1G9KSooaNWpkcotQWryGVR+vYdXG61f18RpWfbyGVR+vYdXG61f1VcXX0GazGVezdujQQaGhoSa3CEB1UvkTPXgUGhqqLl26mN2MMmvUqJFiY2PNbgbKgdew6uM1rNp4/ao+XsOqj9ew6uM1rNp4/aq+qvQaMsUBAF9hugMAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARBa73W43uxEAAAAAAAAA4K8YSQsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdKiQv3yyy967LHH1LZtW0VERKh27drq0qWLXnvtNWVmZprdPL+Umpqq5557Tv369VNsbKxCQkIUGRmp1q1ba+TIkVq/fn2xdcyZM0cWi6VEP3PmzPH9g/IzJX3ue/fuXWxdq1atUkJCgvG7EBsbq4SEBK1atcr3D8RP9e7du8SvYeHPunXrHOqgD/rOsWPHtGLFCj311FO6+eabVbduXeO5HDFiRKnr80Yfs9lsmjJlinr27Kl69eopLCxMLVq00NixY7V9+/ZSt6m688ZrmJmZqcWLF2vcuHHq0qWLatWqpaCgINWpU0fdu3fXM888oyNHjhRbT2n6O37njdfQ2++TmZmZevXVV9WlSxfVrl1bERERatu2rR577DH98ssv5XvA1VB5X8MDBw6U+rOyadOmLuuiH5aeN74vFMVnIQC4YQcqyLJly+xRUVF2SS5/Wrdubd+zZ4/ZzfQrPXv2dPt6FP0ZNmyYPScnx209s2fPLlE9kuyzZ8+uuAfoJ0r63Pfq1cttHfn5+fZRo0Z5PH/06NH2/Pz8intgfqJXr14lfg0l2a1Wqz0tLc2hDvqg73h6LocPH17ierzVx44fP27v0qWL2zpCQkLs06dPL+ejrl7K+xp+//339sjIyGL7VlRUlH3+/Pke6ypNf8fvvNEPvfk+uWfPHnurVq08/i4sX768/A+8Ginva7h///5SfVZKsvfr189lXfTD0vHW9wW7nc9CAChOoIAKsHXrVt1xxx3KyspSZGSk/u///k99+vRRVlaW5s+fr+nTp2v37t269dZblZqaqho1apjdZL9w+PBhSVJMTIxuv/129ezZU5dccony8/O1ceNGvf766zp06JDmzp2rvLw8ffTRR8XW+dlnnykmJsbt8djYWK+1H47GjRunBx980O3xiIgIt8eefPJJzZw5U5LUqVMnPf7442rRooX27dunV199VVu3btWMGTNUr149vfTSS15vuz+bPXu2MjIyPJbZsWOH7rjjDklS37591bhxY7dl6YO+c8kll6ht27ZavXp1qc/1Rh/Lz89XQkKCNm3aJEkaPHiwxowZo9q1a+vbb7/VCy+8oGPHjmns2LFq3Lixbr755rI/2GqqLK/h2bNndf78eUlSjx491L9/f8XHx6tOnTo6fvy4Fi9erOnTp+vs2bO65557FBUVVexzHx8fr9mzZ5frsfir8vTDQuV5nzx37pxuvfVW7dmzR5I0ZswY3XnnnQoLC9OXX36pl19+WWfPntUdd9yh5ORkdezYscztrK7K8ho2btxY27ZtK7bcyy+/bPy9Onz4cI9l6Ycl483vC3wWAkAxzE6J4R8K/wMbGBho37Bhg9PxV1991fjP59NPP13xDfRTt956q/3jjz+222w2l8ePHz9ub926tfHaJCUluSxXdHTK/v37fdhiuFLevvPTTz/ZAwMD7ZLs8fHx9szMTIfjGRkZ9vj4eKMPM+K94j3++OPG6/z+++87HacP+s5TTz1lX758uf3IkSN2u91xNFdJR/B5q4/NnDnTuO8HH3zQ6fiePXuMK1Zatmxpz8vLK92DrabK+xomJyfbhw4dat++fbvbMkuWLLFbLBa7JHuLFi3sBQUFLssVjuDzdGUDnHmjH3rrffIf//iHUc+rr77qdDw5Odno77zOv/PGa1gcm81mj4mJsUuy16hRw+m9thD9sHS89X2Bz0IAKB4hLXzu22+/NT5Ix44d67JMfn6+vV27dnZJ9ujoaHtubm4FtxLuLF++3Hj9HnnkEZdlCIjMVd6Qdty4cUYdGzdudFlm48aNHv8ghu/k5+fbGzdubJdkj4yMtGdkZDiVoQ9WnLIEC97qY4Wfk7Vr13b5e2C32+0vv/yyUc8nn3xSovb5G1+EQ3a73X7bbbcZ9W7evNllGcIh7zArpM3NzbXXrFnTLsnerl07t5dkjx071rivlJSUMt1XdeeLfvjf//7XqHPkyJFuy9EPva8k3xf4LASA4rFwGHxuyZIlxvbIkSNdlrFarRo2bJgk6bffftOXX35ZEU1DCfTp08fY3rdvn4ktgS/Y7XYtXbpUktS2bVt169bNZblu3bqpTZs2kqSlS5fKbrdXWBv93dq1a3Xo0CFJ0pAhQxQeHm5yi1Aa3upju3fv1s6dOyVJQ4cOdft7UHQBnk8//bS8zUcp8HlZ/X355Zc6c+aMpAuX0lutrr9K0Q/NMXfuXGO7uKkO4F3Fvf/xWQgAJUNIC58rXO0zIiJCnTt3dluuV69exnZycrLP24WSycnJMbYDAgJMbAl8Yf/+/cZcY0X7oCuFxw8dOqQDBw74umn4n6JfOgv/mYWqw1t9rOjK2Z7qadiwoVq3bi2Jz9KKxudl9VfSfhgfH2+ER/TDinHu3DljYEjTpk117bXXmtsgP1Pc+x+fhQBQMoS08LnC/3a2bNlSgYHu16pr27at0zkwX1JSkrHdrl27YsuPHDlSMTExCg4OVt26ddWtWzf9/e9/N0YCwncWLFigSy+9VOHh4apRo4ZatWql4cOHexyZvmPHDmO7aB90hT5a8c6fP2+MAGnSpIl69+5d7Dn0wcrFW32sLPUcPHiw2EXp4D2l+bzctWuXrrrqKkVHRys0NFSxsbEaNGiQsfAOfKus75Ml7YeBgYFq2bKlJD4vK8rChQuVmZkpSbrvvvtksViKPYd+6D3Fvf/xWQgAJUNIC5/Kzs7WiRMnJBW/onitWrWM1ecPHjzo87aheAUFBZo0aZJxe+jQocWes27dOqWnpysvL08nT57Ut99+qxdffFEtW7bU1KlTfdlcv7djxw7t3LlTWVlZOn/+vPbu3au5c+fquuuuU0JCgnGJZlFpaWnGdnF9NC4uztimj1aMRYsWGV8s7r333hJ96aQPVi7e6mNlqcdutzucB9/5/vvvlZiYKEnq0KFDsSHt0aNHlZKSojNnzignJ0eHDh3SsmXLNHz4cHXs2JFgz8fK+j5Z2J8iIiIUHR3t8T4K++Hx48cdRhnCN8py1Qn90DtK8n2Bz0IAKBn3wxoBLzh37pyxHRkZWWz5iIgIZWRk6Pz5875sFkrozTffVEpKiiRp8ODBHqeraN68uQYPHqzu3bsbfxT9/PPPWrRokRYuXKjs7Gz98Y9/lMVi0QMPPFAh7fcX4eHhGjhwoPr27au2bdsqMjJSx48fV1JSkqZMmaKTJ09qyZIlGjRokNasWaOgoCDj3NL00cJ/okiij1aQ0nzppA9WTt7qY/TVyisnJ0ejR49Wfn6+JOnFF190W9Zqtapv37665ZZbdMUVV6hOnTo6d+6ctmzZoqlTp2rnzp3asWOH+vTpo5SUFF1yySUV9TD8QnnfJwv7YUn/pi10/vx5hYSEeOlR4GK//vqrMZLz6quvNkYxu0M/9K6SfF/gsxAASoaQFj6VnZ1tbAcHBxdbvvAP2KysLJ+1CSWTlJSkv/3tb5Kk+vXra/LkyW7LJiQkaPjw4U6j/Lp06aI77rhDK1as0ODBg5WXl6c///nPGjhwoBo2bOjT9vuTQ4cOuRzRc8MNN+iRRx7RzTffrK1btyopKUmTJ0/Wn/70J6NMafpo0S+Y9FHfS0tL07p16yRdWEijcG41V+iDlZe3+hh9tfJ6+OGHlZqaKunCYkUDBgxwW3bx4sUu36979uypBx98UGPGjNF7772no0eP6tFHH9XixYt91Wy/4433ycJ+WJq/aSX6oa998MEHxgJTJRlFSz/0npJ+X+CzEABKhukO4FOhoaHGdm5ubrHlCy8HCwsL81mbULzt27crISFBNptNoaGhWrBggerXr++2fM2aNT1eht2/f3899dRTkqTMzEzNnDnT6232Z54uuWzQoIEWLlxojJ595513HI6Xpo8WvVyTPup7H3zwgQoKCiQVv0o1fbDy8lYfo69WTi+//LJmzJgh6ULY9+6773os7+n9OigoSDNmzDBWNv/000+ZS9qLvPE+WdgPS/M3rUQ/9LX3339f0oVQ7o477ii2PP3QO0rzfYHPQgAoGUJa+FSNGjWM7ZJcZlI492JJLiODb+zfv1/9+vXT6dOnFRAQoPnz53tlhdwHHnjA+HJUdHEB+F7z5s11ww03SJL27t1rrK4rla6PFl10gT7qe6X90lkc+qA5vNXH6KuVz9SpU/XEE09IurBAzcqVKx0ury2LwMBAjRo1yrhNX61Yxb1PFvbD0vxNK9EPfSklJUW7du2SJA0cOLDYuYJLgn5YvNJ+X+CzEABKhpAWPhUaGqo6depIUrETtp8+fdr4MC06YTwqzuHDh3X99dfr8OHDslgsmjVrlgYNGuSVuuvXr2/8LjAioeJdeumlxnbR57/oogvF9dGiizfQR30rNTXVWMG4f//+qlWrVrnrpA+aw1t9rCz1WCyWYhdWQdnMmzdPDz74oCSpSZMmWrNmjerWreuVut29X8P3inufLOxPGRkZ+u233zzWVdgP69Wrx3y0PlSWBcNKgn7oXlm+L/BZCAAlQ0gLnyv8I2fv3r2y2WxuyxX+F1xSsasiw/tOnDihG264QT///LOkC5fFe/OPXUklWpkevuHuuS/6JaRoH3SFPlpxin7pLG6qg9KgD1Y8b/WxstQTFxdX7pGdcLZs2TINGzZMBQUFatSokdauXevVAIB+ai5Pz39J+6HNZtO+ffsk8XnpS3l5eZo/f76kCwH7TTfd5LW66YeulfX7Ap+FAFAyhLTwuWuuuUbShVEHmzdvdluu6KVEPXr08Hm78LszZ87oxhtvNEbuTZo0SQ899JBX7+P48eM6ceKEJCkmJsardaN4ha+t5Pj8N2vWzLhd3OV8X331lSSpcePGatq0qfcbCUmOXzrr1aunm2++2Sv10gfN4a0+VvhZWlw9R44c0e7duyXxWeoLa9eu1dChQ2Wz2VSnTh2tWbNGLVq08Op9uHu/hu8V9z5Z0n6YmppqXB1GP/SdxMREnTx5UpJ09913KzDQe2ti0w+dlef7Ap+FAFAyhLTwuT/84Q/G9uzZs12WKSgoMEaORUdHq0+fPhXRNOjC4hi33nqrtmzZIkl68sknNXHiRK/fz7Rp04yVd3v16uX1+uHe/v37tWbNGklSixYt1LhxY+OYxWIxLlHbtWuXvvnmG5d1fPPNN8aIhEGDBjHCxIdWrVql48ePS/Lul076oDm81cdat25tjCj65JNPlJmZ6bKeOXPmGNsJCQnlbT6K2LBhgwYNGqScnBzVrFlTn332mS677DKv3ofNZtOsWbOM296YEx4lV9z7ZO/evVWzZk1J0nvvvWeUvRj9sGL46qoT+qGz8n5f4LMQAErIDlSAnj172iXZAwMD7Rs2bHA6/uqrr9ol2SXZn3766YpvoJ/Kycmx9+vXz3jux48fX+o69u/fb9+yZYvHMsuXL7cHBwfbJdnDwsLsaWlpZWwxLrZs2TJ7Xl6e2+NHjhyxd+rUyXiNX3/9dacyP/30kz0gIMAuyR4fH2/PzMx0OJ6ZmWmPj483+vDu3bu9/jjwu9tuu814vTZv3lxsefpgxdq/f7/x+gwfPrxE53irj82cOdO474ceesjp+N69e+1RUVF2SfaWLVt6fG/wZ2V5Dbdu3WqPjo62S7JHRETY169fX+r7/eKLL+ynT592ezw3N9c+fPhwo20DBgwo9X34i9K+ht58n/zHP/5h3Perr77qdHzDhg32wMBAuyR7r169SvJw/FJZ+mFRJ0+eNF6vDh06lPg8+mHpeeP7gt3OZyEAlIT3rgkBPHj77bfVo0cPZWVlqV+/fnriiSfUp08fZWVlaf78+Zo2bZqkC/8dfeyxx0xurf+46667tHr1aknSddddp1GjRunHH390Wz44OFitW7d22HfgwAH16dNH3bt314ABA3TFFVeofv36kqSff/5ZCxcu1MKFC43RJv/85z8dRnKifB555BHl5eXptttuU/fu3dW0aVOFhYXpxIkTWrdunaZOnWpcunnNNde4vCytdevWmjBhgiZNmqTU1FT16NFDEydOVIsWLbRv3z698sor2rp1qyRpwoQJatWqVYU+Rn9y+vRprVixQpLUvn17XXnllcWeQx/0rfXr12vv3r3G7cL+JF2Ya73oaB1JGjFihFMd3upjw4cP16xZs5ScnKx3331XR44c0ZgxY1SrVi2lpKTo+eef19mzZ2W1WvWvf/3Lq5f+VmXlfQ337dunG2+80Vgo6oUXXlDNmjU9fl7Wr1/f6IeF3nvvPQ0cOFADBw5U79691aZNG0VFRen8+fPavHmzpk2bZlxGXL9+fb399ttleLTVU3lfQ2++T06YMEEff/yxdu/erccff1x79+7VnXfeqbCwMH355Zd66aWXZLPZFBYWprfeeqv8D76a8MZ7aVHz589Xbm6upNKNoqUflp43vi9IfBYCQImYHBLDjyxbtsz4r6arn9atW9v37NljdjP9irvXwt1PkyZNnOr48ssvS3RueHi4ferUqRX/IKu5Jk2alOj5v+222zyOHMnPz7fff//9HusYNWqUPT8/v+IenB+aPHmyxxFartAHfavoiKqS/LjjrT52/Phxe5cuXdzWERISYp8+fbq3n4Yqrbyv4ezZs0v9eenqqqCStqNDhw727du3V8AzU3WU9zX09vvknj177K1atXJbT1RUlH358uW+eCqqLG+9lxa66qqr7JLsAQEB9vT0dK+3g374u9K+/7n6vlCIz0IA8Ix/K6HCDBgwQD/88IPefvttJSYmKi0tTcHBwWrZsqVuv/12PfzwwwoPDze7mSilzp0764MPPtDGjRuVmpqq9PR0nThxQjabTbVq1dJll12mvn37avTo0U6jilB+7733npKSkrRx40b9/PPPOnHihM6ePavIyEjFxcXp6quv1vDhw9W9e3eP9VitVs2cOVO33Xabpk2bpk2bNunEiROqW7euunTporFjx3ptASu49/7770uSAgICdM8995ToHPpg1eCtPla3bl1t2LBB06dP10cffaSdO3cqIyNDMTEx6tu3r8aPH+/1eVLhHRMnTlTHjh21ceNG7dixQ8ePH9epU6cUEhKiBg0aKD4+XkOGDFFCQoICAgLMbm614u33yZYtW2rr1q169913tWDBAu3du1e5ubmKi4vTLbfcovHjx6tJkyYV8Mj80549e/Ttt99Kkm644QY1bNiwxOfSD83FZyEAeGax293MeA8AAAAAAAAA8Dmr2Q0AAAAAAAAAAH9GSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAFBGc+bMkcVikcVi0YEDB8xuDgAAAIAqipAWAAD4nQMHDhjhanl+AAAAAMAbCGkBAAAAAAAAwEQWu91uN7sRAAAAFSkvL08//fST2+MdOnSQJMXHx2v27Nluy7Vv397rbQMAAADgfwLNbgAAAEBFCwoKKlHAGhERQRALAAAAwOeY7gAAAAAAAAAATERICwAAUEZz5swxFhE7cOCA0/HevXvLYrGod+/ekqS9e/fqj3/8o5o3b66wsDA1bdpUo0aN0i+//OJw3o8//qiRI0eqefPmCg0NVVxcnMaNG6djx46VqF1LlizR7bffrksuuUShoaGKjo5WfHy8nn32WZ0+fbq8DxsAAACAlzHdAQAAQAX4/PPPNXjwYJ07d87Y98svv2jWrFlasWKFkpKS1LZtW82bN08jRoxQbm6uUS4tLU1TpkzRqlWrtGHDBsXExLi8j9OnT2vIkCH64osvHPbn5ORo8+bN2rx5s/7zn/9o6dKl6tatm28eKAAAAIBSYyQtAACAjx0+fFhDhw5VdHS03nnnHX377bf6+uuv9eijj8pisejYsWMaPXq0Nm3apGHDhqlFixaaMWOGUlJS9OWXX+q+++6TdCHU/ctf/uLyPnJycnT99dfriy++UEBAgO677z7NmzdP33zzjb7++mu9+OKLqlOnjo4dO6ZbbrnFafQuAAAAAPMwkhYAAMDH9uzZo1atWik5OVn16tUz9l9zzTUKDAzUP//5TyUnJ+vWW29V165dtWbNGoWHhxvlevfurezsbC1YsECLFi3S8ePHHeqRpOeee05btmxRdHS0Pv/8c3Xu3Nnh+DXXXKN77rlH3bt3V3p6up544gl9+OGHvn3gAAAAAEqEkbQAAAAV4F//+pdTsCpJDz74oLF94sQJzZgxwyGgLTRu3DhJks1m08aNGx2OnT9/Xu+++64k6fnnn3cKaAs1adJE//jHPyRJCxYsUEZGRtkeDAAAAACvIqQFAADwsejoaN14440ujzVr1kw1atSQJF1++eVq166dy3JXXHGFsf3zzz87HEtKStKZM2ckSUOGDPHYlmuvvVaSlJeXp82bN5fsAQAAAADwKaY7AAAA8LFWrVrJYrG4PR4dHa1z586pdevWHssUKrr4mCSlpqYa240aNSpxu44cOVLisgAAAAB8h5G0AAAAPuZq+oKirFZrseUKy0hSfn6+w7Fjx46VqV2ZmZllOg8AAACAdzGSFgAAoIorGtpu2bJFQUFBJTovNjbWV00CAAAAUAqEtAAAAFVcnTp1jO169eoRvgIAAABVDNMdAAAAVHGdOnUytpOTk01sCQAAAICyIKQFAACo4q6//npjPtt//etfstvtJrcIAAAAQGkQ0gIAAFRx0dHRevjhhyVJGzZs0J///GcVFBS4LX/06FHNmDGjopoHAAAAoBjMSQsAAFANPPfcc0pKStK3336rt99+W+vWrdOYMWPUsWNHRURE6PTp09q+fbs+//xzrVq1Sh06dNDo0aPNbjYAAAAAEdICAABUCyEhIVqzZo1GjBihxYsX6/vvvzdG17oSFRVVga0DAAAA4AkhLQAAQDVRo0YNLVq0SOvXr9d7772nr7/+WocPH1ZWVpaioqLUokULde3aVbfeeqv69etndnMBAAAA/I/FzsoSAAAAAAAAAGAaFg4DAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAm+n+hmsAdrAogIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "graph = my_model.compartmentPlot('Basic_example_compartment.png', data)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/doctrees/nbsphinx/basic_usage_15_0.png b/docs/_build/doctrees/nbsphinx/basic_usage_15_0.png new file mode 100644 index 0000000..063bc81 Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/basic_usage_15_0.png differ diff --git a/docs/_build/doctrees/nbsphinx/evolution.ipynb b/docs/_build/doctrees/nbsphinx/evolution.ipynb new file mode 100644 index 0000000..77f59f5 --- /dev/null +++ b/docs/_build/doctrees/nbsphinx/evolution.ipynb @@ -0,0 +1,1423 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evolution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Fitness function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single population scenario, illustrating pathogen evolution through _de novo_ mutations and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector), the pathogen with the most fit genome has a higher probability of being transmitted to another host (or vector). In this case, the transmission rate does NOT vary according to genome. Once an event occurs, however, the pathogen with higher fitness has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal genome and every other genome is less fit, but fitness functions can be defined in any arbitrary way (accounting for multiple peaks, for instance, or special cases for a specific genome sequence)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define an optimal genome" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # The genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # Minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='host-host',\n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function).\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " mutate_in_host=5e-2\n", + " # Modify de novo mutation rate of pathogens when in host to get some\n", + " # evolution!\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a suboptimal pathogen genome, _BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, _BEST_, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 84.9205322047209, event: CONTACT_HOST_HOST\n", + "Simulating time: 139.4831216243728, event: CONTACT_HOST_HOST\n", + "Simulating time: 199.83533163204655, event: RECOVER_HOST\n", + "Simulating time: 200.0243380253218 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19662265031018072s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019941329956054688s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020781755447387695s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016440391540527344s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02756667137145996s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.051561594009399414s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 560 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Done 1024 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0886225700378418s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1822 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2156 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2270 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2384 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2560 out of 2560 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1BADDNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
255995200.0my_populationHostmy_population_95NaNNaNTrue
255996200.0my_populationHostmy_population_96NaNNaNTrue
255997200.0my_populationHostmy_population_97NaNNaNTrue
255998200.0my_populationHostmy_population_98BESTNaNTrue
255999200.0my_populationHostmy_population_99BESTNaNTrue
\n", + "

256000 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 BADD NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + "... ... ... ... ... ... ... \n", + "255995 200.0 my_population Host my_population_95 NaN NaN \n", + "255996 200.0 my_population Host my_population_96 NaN NaN \n", + "255997 200.0 my_population Host my_population_97 NaN NaN \n", + "255998 200.0 my_population Host my_population_98 BEST NaN \n", + "255999 200.0 my_population Host my_population_99 BEST NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + "... ... \n", + "255995 True \n", + "255996 True \n", + "255997 True \n", + "255998 True \n", + "255999 True \n", + "\n", + "[256000 rows x 7 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame( \n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'fitness_function_mutation_example.csv' \n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 103 genotypes processed.\n", + "2 / 103 genotypes processed.\n", + "3 / 103 genotypes processed.\n", + "4 / 103 genotypes processed.\n", + "5 / 103 genotypes processed.\n", + "6 / 103 genotypes processed.\n", + "7 / 103 genotypes processed.\n", + "8 / 103 genotypes processed.\n", + "9 / 103 genotypes processed.\n", + "10 / 103 genotypes processed.\n", + "11 / 103 genotypes processed.\n", + "12 / 103 genotypes processed.\n", + "13 / 103 genotypes processed.\n", + "14 / 103 genotypes processed.\n", + "15 / 103 genotypes processed.\n", + "16 / 103 genotypes processed.\n", + "17 / 103 genotypes processed.\n", + "18 / 103 genotypes processed.\n", + "19 / 103 genotypes processed.\n", + "20 / 103 genotypes processed.\n", + "21 / 103 genotypes processed.\n", + "22 / 103 genotypes processed.\n", + "23 / 103 genotypes processed.\n", + "24 / 103 genotypes processed.\n", + "25 / 103 genotypes processed.\n", + "26 / 103 genotypes processed.\n", + "27 / 103 genotypes processed.\n", + "28 / 103 genotypes processed.\n", + "29 / 103 genotypes processed.\n", + "30 / 103 genotypes processed.\n", + "31 / 103 genotypes processed.\n", + "32 / 103 genotypes processed.\n", + "33 / 103 genotypes processed.\n", + "34 / 103 genotypes processed.\n", + "35 / 103 genotypes processed.\n", + "36 / 103 genotypes processed.\n", + "37 / 103 genotypes processed.\n", + "38 / 103 genotypes processed.\n", + "39 / 103 genotypes processed.\n", + "40 / 103 genotypes processed.\n", + "41 / 103 genotypes processed.\n", + "42 / 103 genotypes processed.\n", + "43 / 103 genotypes processed.\n", + "44 / 103 genotypes processed.\n", + "45 / 103 genotypes processed.\n", + "46 / 103 genotypes processed.\n", + "47 / 103 genotypes processed.\n", + "48 / 103 genotypes processed.\n", + "49 / 103 genotypes processed.\n", + "50 / 103 genotypes processed.\n", + "51 / 103 genotypes processed.\n", + "52 / 103 genotypes processed.\n", + "53 / 103 genotypes processed.\n", + "54 / 103 genotypes processed.\n", + "55 / 103 genotypes processed.\n", + "56 / 103 genotypes processed.\n", + "57 / 103 genotypes processed.\n", + "58 / 103 genotypes processed.\n", + "59 / 103 genotypes processed.\n", + "60 / 103 genotypes processed.\n", + "61 / 103 genotypes processed.\n", + "62 / 103 genotypes processed.\n", + "63 / 103 genotypes processed.\n", + "64 / 103 genotypes processed.\n", + "65 / 103 genotypes processed.\n", + "66 / 103 genotypes processed.\n", + "67 / 103 genotypes processed.\n", + "68 / 103 genotypes processed.\n", + "69 / 103 genotypes processed.\n", + "70 / 103 genotypes processed.\n", + "71 / 103 genotypes processed.\n", + "72 / 103 genotypes processed.\n", + "73 / 103 genotypes processed.\n", + "74 / 103 genotypes processed.\n", + "75 / 103 genotypes processed.\n", + "76 / 103 genotypes processed.\n", + "77 / 103 genotypes processed.\n", + "78 / 103 genotypes processed.\n", + "79 / 103 genotypes processed.\n", + "80 / 103 genotypes processed.\n", + "81 / 103 genotypes processed.\n", + "82 / 103 genotypes processed.\n", + "83 / 103 genotypes processed.\n", + "84 / 103 genotypes processed.\n", + "85 / 103 genotypes processed.\n", + "86 / 103 genotypes processed.\n", + "87 / 103 genotypes processed.\n", + "88 / 103 genotypes processed.\n", + "89 / 103 genotypes processed.\n", + "90 / 103 genotypes processed.\n", + "91 / 103 genotypes processed.\n", + "92 / 103 genotypes processed.\n", + "93 / 103 genotypes processed.\n", + "94 / 103 genotypes processed.\n", + "95 / 103 genotypes processed.\n", + "96 / 103 genotypes processed.\n", + "97 / 103 genotypes processed.\n", + "98 / 103 genotypes processed.\n", + "99 / 103 genotypes processed.\n", + "100 / 103 genotypes processed.\n", + "101 / 103 genotypes processed.\n", + "102 / 103 genotypes processed.\n", + "103 / 103 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABToAAALmCAYAAABijysXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5iU5bk/8O/swtKriIBgixKxxoIRG9iPiBpMRBOPCFGJxiTGYzDxZ2KM7Xg0iUYTSVARsSucxIg1OXZEEYOFAFJXYNll68xOe9vzPL8/3nnfnd52dtp+P9fF5ezMO+88s8yO7Hfu5749SikFIiIiIiIiIiIiogpWU+oFEBEREREREREREXUXg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKK16fUC6DyoGkavvjiCwDAnnvuiT59+NIgIiIiIiIiKjTLstDS0gIAOPzww9G/f/8Sr4ioejDNIgDAF198geOOO67UyyAiIiIiIiLqNVatWoXJkyeXehlEVYNb14mIiIiIiIiIiKjisaKTANjb1R2rVq3C2LFjS7gaIiIiIiIiourU2Njo7qiM/l2ciLqPQScBQExPzrFjx2L8+PElXA0RERERERFR9eN8DKLC4tZ1IiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIKAvSEqVeAhEREREREaXBoJOIiCgLikEnERERERFRWWPQSURElAVpSkjTKvUyiIiIiIiIKAUGnURERFmQlgUrqJd6GURERERERJQCg04iIqIsSFPAChulXgYRERERERGl0KfUCyAiIqoEyhSQQpZ6GURERERERJQCKzqJiIiyIIWENNijk4iIiIiIqFwx6CQiIsqGVBA6g04iIiIiIqJyxaCTiIgoC0oqCI09OomIiIiIiMoVg04iIqIsSEtAaGapl0FEREREREQpMOgkIiLKgmLQSUREREREVNYYdBIREWVBGlZC0CktUaLVEBERERERUTwGnURERFmQloDQY4NOVngSERERERGVDwadREREWZCWRGhnW9fXhgVpcgo7ERERERFRuehT6gUQERFVBKkg9K5gU/cGAVXC9RAREREREVEMVnQSERFlQSkFJaT7teENJWxlJyIiIiIiotJh0ElERJQFJaT7BwCMjiCsgFbiVREREREREZGDW9eJiIiyoRSUVFBSwlNbA8MXKvWKiIiIiIiIKAqDTiIioiwoYYecSgHCsGCFdNT04cYIIiIiIiKictFrf0NbvXo1brvtNpx11lkYP348+vXrh8GDB2PixImYO3cu3n///YznWLx4MTweT1Z/Fi9enPF8oVAI99xzDyZPnoyRI0di0KBBOPjgg3HDDTfgq6++KsCzJiKifCmlAGlPHzI7QzA7w5CmKPGqiIiIiIiIyNErKzpPOeUUvPfeewnXG4aBTZs2YdOmTVi8eDFmz56Nhx9+GHV1dT2+ps2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjB5fCxERJVKWgJIKUAqdm5ogNBPSYtBJRERERERULnpl0Llr1y4AwLhx43DRRRfh5JNPxj777AMhBFauXInf/e53aGhowJIlS2CaJp5++umM53z99dcxbty4lLePHz8+5W1+vx/nnnuuG3JeddVVuOSSSzBgwAC89dZb+O///m90dnbi4osvxooVK/CNb3wjtydMRETdJp2gE4C07KFE0rBKvCoiIiIiIiJy9Mqg8+CDD8Zdd92Fb3/726itrY257fjjj8dll12GE088ERs3bsQzzzyDq6++Gqecckrac06cOBH77bdfXuu59957sXHjRgDAPffcg/nz57u3TZkyBdOmTcPUqVMRCoXw05/+FG+//XZej0NERPmTpgSUHXQqU0BG/hAREREREVF56JU9OpcvX45Zs2YlhJyOUaNG4Xe/+5379dKlS3tsLaZp4oEHHgAATJo0CTfccEPCMSeccAKuuOIKAMA777yDjz/+uMfWQ0REyUnTrt5UUkFaAtKwWNFJRERERERURnpl0JmNU0891b28ZcuWHnuct956Cz6fDwBw+eWXo6Ym+V/JnDlz3Mt//etfe2w9RESUnFO9qSwBZQkIw4Jg0ElERERERFQ2GHSmoOu6ezlV5WchRE93nzp1asrjjj32WAwcOBAAsGLFih5bDxERJacig4eskAFp2f05uXWdiIiIiIiofDDoTOGdd95xL0+aNCnj8XPnzsW4ceNQV1eHUaNG4fjjj8cvf/lLNDQ0pL3funXr3MsHH3xwyuP69OmDAw88EACwfv36jOshIqLCcgYRWUHd3rpuFn7ruhKyoOcjIiIiIiLqTXrlMKJMpJS4++673a9nzZqV8T7RA4La2trQ1taGjz76CL/73e9w//334wc/+EHS++3cuRMAMGjQIAwfPjztY0yYMAGff/45WlpaoOs6+vXrl/nJxD1OKo2NjVmfi4ioV1JO0KnZ1Z0KkEZhKzq1lk4MGDO8oOckIiIiIiLqLRh0JnHfffdh1apVAIALL7wQxxxzTMpjDzjgAFx44YWYMmUKJkyYAADYunUrli1bhqVLl0LTNFx99dXweDyYN29ewv39fj8AYPDgwRnXNWjQIPdyIBDIKeh01kZERPlRkaDTDOjulnVnQFGhhBq9DDqJiIiIiIjyxKAzzjvvvINf/OIXAIDRo0djwYIFKY+dOXMmLr/8cng8npjrJ0+ejIsvvhjLly/HhRdeCNM0cf311+P888/HmDFjYo7VNA0AUFdXl3Ft0cFmOBzO+jkREVH3WEHd3aZuBTUYvhAAFHzrunNeIiIiIiIiyh17dEb597//jZkzZ8KyLPTv3x8vvPACRo8enfL4YcOGJYSc0WbMmIFbbrkFABAKhfDoo48mHNO/f38AgGEYGdcXPSBpwIABGY+PtmPHjrR/nApWIiJKZPhCEJoJwA499bYAABR8GJEI6ZkPIiIiIiIioqQYdEZs27YNZ511Fjo6OlBbW4tnn30Wp5xySrfPO2/ePDcMjR5w5BgyZAgAeyt6JsFg0L2czVb3aOPHj0/7Z+zYsTmdj4io2inZNRjI8IUgdDvoNIM6RNj+cEoJWbCwU28PwIqEqURERERERJQ7Bp0Adu3ahTPOOAO7du2Cx+PBokWLcMEFFxTk3KNHj8Yee+wBAEknsI8fPx6AHWJ6vd6059qxYwcAYM8998ypPycREeVOWVFBpzeqojOgxRxnhTNX5GfDv63ZfQwiIiIiIiLKXa8POltbW3HmmWdi69atAIAHH3wQs2fPLuhjpNvefsghh7iXN2zYkPI4y7KwZcsWAMCkSZMKtzgiIkpKiq6g0wrpkLrTozN2e7koUNAZqG+B1M2YSlIiIiIiIiLKXq8OOn0+H84++2ysW7cOAHD33Xfj2muvLehjtLS0oLW1FQAwbty4hNtPOukk93Kyre2O1atXu1vXTzzxxIKukYiIEqmooBORietAYtBpFaivZuCrVgjNhNALO+CIiIiIiIiot+i1QWcoFMK5556Lf/3rXwCAm2++GT//+c8L/jgLFy6EivyCPHXq1ITbp02bhmHDhgEAHn/8cffYeIsXL3Yvz5w5s+DrJCKiWMrq6r0Z/d4cv1VdaCak1b0+nUI3obf57XMVeJI7ERERERFRb9Erg07DMDBz5kysWLECAHDdddfhjjvuyOkc9fX1WLNmTdpjli9fjttuuw2APSV97ty5CcfU1dXhJz/5CQBg/fr1+O1vf5twzMqVK92J7VOnTsXkyZNzWisREeXOCkf1y5RRH0LFfSAVbuxIqPLMlekPA8oOUQs9yZ2IiIiIiKi36FPqBZTCd7/7XbzxxhsAgNNOOw1XXHEF1q5dm/L4uro6TJw4Mea6+vp6nHrqqZgyZQrOO+88HHnkkRg9ejQAYOvWrVi6dCmWLl3qVgH99re/xd577530/PPnz8dzzz2HjRs34sYbb8TmzZtxySWXYMCAAXjrrbdw1113wbIsDBgwAPfff38BvgNERJSJCHeFlymK7QEA/q3NGHnU/t16LCcotUJ6TCUpERERERERZa9XBp3/+7//615+8803ccQRR6Q9ft9990V9fX3S21auXImVK1emvO/AgQNx3333Yd68eSmPGTJkCF5++WVMnz4dmzZtwsKFC7Fw4cKYY4YOHYqnnnoK3/jGN9KulYiICsMKRW1RT5N06u2Bbg8Qcqs4pYI0BaQlUNOntlvnJCIiIiIi6m16ZdBZCMcccwyefPJJrFy5EqtXr0ZjYyNaW1thWRZGjBiBQw89FKeffjquvPJKt9IznQMPPBBr1qzBn/70J7zwwgvYvHkzDMPAhAkTMH36dFx33XXYd999i/DMiIgIiOvFmSboNIM6INKUfGZBRW2NF4YFZUmAQScREREREVFOemXQmWrgTy6GDBmCSy+9FJdeemkBVmQbNGgQbrzxRtx4440FOycREeVHRFV0pvv/hjJFtys6o4NUaVqQlkAt+nbvnERERERERL1MrxxGRERElIkV1aMTGXLM6IrMfETfXxqCfTqJiIiIiIjywKCTiIgoCalb7mWttTPtsUp0s0en3jXhXWgGJINOIiIiIiKinDHoJCIiSsKpstRaOtG5uSmrY/Ole0PuZcMbgjS7uRWeiIiIiIioF2LQSURElITTd7NtTT2QIccUutmtsNPoCHZd9ga5dZ2IiIiIiCgPDDqJiIiSiQwI0tsDGQ8N7WyHNMyMx6WitXRtjQ/v9nHrOhERERERUR4YdBIRESWhpIKSCoYvlPHYYEM79KiqzFxpbf6uyy1+VnQSERERERHlgUEnERFREkoqGN4gzCyCTsMXgm/9rvweRymIsNH1tSWgRPd6fhIREREREfVGDDqJiIiSUFJBa/XD6AxnPNb0hhDc2Zbf41giYWq70x+UiIiIiIiIssegk4iIKAnTF7K3rWcxZMgK6bCCel6PE27uTBh25FSTEhERERERUfYYdBIRESVhBXVI3cr6eKHlN4woUN+ScJ2SCuEmX17nIyIiIiIi6q0YdBIREcWRloAUMqeqSmlmH4pGSx50SoR3+6AUe3USERERERFli0EnERFRPKUAKRHckX3fTWnl3ldTSYng9tYkJ1MwA2FYgfy2wxMREREREfVGDDqJiIjiKKEgTQGtpTP7+1gi58cxvCGYAS3xXFJCaKbdI5SIiIiIiIiywqCTiIgojhU2IC0JaWYfXkqRe0Wn3uZPGEQERIJWQ3AgERERERERUQ4YdBIRUa+Urv+l0AwoIaByCC9VHlvX9fbkQaaSCtK0YPhCUFlMfSciIiIiIiIGnURE1Eulm6guwmbSSsu0lII0chtIJPTkk9qVlJCGHXRaIfbpJCIiIiIiygaDTiIi6pVShYyAXdGZD8Mfzun4lFvjpYIwLJjeEKwgg04iIiIiIqJsMOgkIqJeRwmZsvrS7AzDCucXdAa2Nud0vEjxOEoqiLBhV3QGE4cVERERERERUaI+pV4AERFRsUnTStl/U+8IQGipqz3TMXOsvkw2cR0AlJKwgjqEZsIK57cWIiIiIiKi3oYVnURE1OtIQ6QMGfX2YMpKy4znTbMdPhkrVdApFKQpYAX1nAYiERERERER9WYMOomIqNeRpoXwbl/S28zOEKxQnkFnjpPXzUDyClBlCXcqPINOIiIiIiKi7DDoJCKiXkeaAnpbIOltQjOhtye/LRNlJR8upHcEk16faqK6EhJwgk7JoJOIiIiIiCgbDDqJiKjXEYaVcuu6MCzorf68ziuTVF+Gm7wIbEscUqSUShl0Ct0CVOQ4VnQSERERERFlhUEnERH1OtKwIELJ+19Kw4LuTV6BmUl8RadSCrs/2OhuQwfs4LLh9c9gdAQBqeJPAQAxU9+VSH4MERERERERxWLQSUREvY7QTBi+UNJt4dKwUgaQmai4Hp1acyfa19THnC+0qwNN76xPuXUeAPS2ropSZ42s7CQiIiIiIkqPQScREfU6QneCzsRAUxrJ+2xmI3rrupISTe+sgxIypqIz8FULAMAMJt86DwBaa3TQyV6dRERERERE2WDQSUREvY7QTChLJq2SFIaZ93mjt67HDDyKClQD9XbQaaWYuA4Ayuw6j7NGbmEnIiIiIiJKj0EnERH1OkKzw8zkFZ1W3ueVUVvXpSkgI8FnVEEnAl+1AgCsNBWd0dygkxWdREREREREaTHoJCKiXsXwBmH4QgCS973sztZ1JaIqMS0B6VRmRpJOaVqwgnYlpxXOrnLUCTiFnn8AS0RERERE1Bsw6CQiol5Fa/UjtLMNQPKKzu5tXY+q6LQEpGnFPE5MxWeWj+NsWReh1FvdiYiIiIiIiEEnERH1MlZQR7jJBwDQo4b+OITWva3rziAhaYio6tDIQKGo3pvO9vlMnKpTK8vjiYiIiIiIeisGnURE1KuYga7emK2rt8bcJi0BqecfKErLQuuqzQAAK6RHbV3vOr8j263ozoCj7qyLiIiIiIioN2DQSUREvYrTIxMAvOt3xgz5ybbKMhXDG4J/WwuUVJHJ7l3BphnQYnqCOtvaM3HCUScYVYrT14mIiIiIiJJh0ElERL2KFVXRqSwZG24m6dmZE6kgdBNKyITp7S0fbooJKZMNQkp6ykhVqHO+bO9HRERERETU2zDoJCKiXsWKG+pjhY2Cnl9ZAtISEFFBZ2hXBwLbW2OPyzKwdAYcMegkIiIiIiJKj0EnERH1Ks4Uc4cId1V0FmJTuDQFtN2+mIpOwxtMeIBkE9+Tns/p0WkKKKWyvh8REREREVFvw6CTiIh6NRFd0VmA/pfSFAg2tMcEndKSCSlqzlvXhYAS0q3wJCIiIiIiolgMOomIqFezCh10WgKhhnaYga4t8tIUgLL7d7oPJbPduh4ZRhQ2AamghMhwDyIiIiIiot6JQScREfVqQitsj05IhcD2VpidIfcqJ5yM7g+a69Z1M6BBScmt60RERERERCn0KfUCiIiISkkaXRWSqgAVnQBgtAdR27+u6zEi282tYFTQme3W9cgWeCugQUnFretEREREREQpsKKTiIh6t+hws4DFkqYvqqLTElAqPujM7sGskF1xagY0KCEhOXWdiIiIiIgoKQadRETUq6i4NLNQVZzxorep2xWdClZA63rcLHt0Cs2EUgoiZEBJVfit9kTUK/TUex0RERFROWHQSUREvUrC1u+oX/4LGgREF4oKASjAzGPrOpSC0ExIy566Hm70Fm6NRNRrZP2eQ0RERFTBGHQSEVGvEv/Lfsxwnx6qeHIeM3rrOnIYKiRCOqQloLcHYs9BRJSC88GN+18GnURERNQLMOgkIqJeRehmzNdWuGsrePRgooKKZJqmP5zX3c2gDsiuyk4iokykbg8ycwaaMegkIiKi3oBBJxER9SpCiws6oyok40PQQpKWcAcL5cr0a+45pJl70MnefES9j/N+5gSeDDqJiIioN2DQSUREvUp80BkdHMbfVkhSt6DyrMY02gMAAGWKvCo6DW8o80FEVFWcYFMYZszXRERERNWMQScREfUqzjZOR/Qv/yLccxPNhW5Gpq/nTmvzA7BDWZVHRafW7MvrcYmogkUquaVuQSnFoJOIiIh6BQadRETUayghE3/ZjxoK1KMVnYYFyPyCBr3VDjr19kBk+7qV4R6xjM78eoMSUeVy3tmkJQCpoIR9jeENlm5RRERERD2MQScREfUaKknQGH2d1YMVndIUyLdTphYJOv1bmyFNkfPkddmDvUeJqEw5FZ2GgJLKfa8LfNVaylURERER9SgGnURE1GsomRg1Rld4xm9rL+hjC4l8k05nWnt4txfStHIeatSTz4uIypSyP8iRloCSEmZAgxIS4d1drSy4nZ2IiIiqDYNOIiLqNZIGnVHXJbu9sAvI8/yq67/KkrBC2Vd0SlO4W1aJqBdRgNCtyHuAhH9bsxt2Onqyip2IiIioFBh0EhFRr5Gseikm3Mw3iMz28QtwfmmKnCo6pWkPIslnWjsRVS6lFKRu2u8BQiK4vQ1WQIt5nzPZv5eIiIiqDINOIiLqPZJWdMqoyz1d0dn9U9hBZw4VnYYFKAWtxd/9ByeiiiFNuzenU9EpNANmUHc/cAnt6uBgIiIiIqo6DDqJiKjXSDaMCJWwdT2KtHIbRiRNAaMzDBHObYAREVU2p5JTmgLSkhCaBRE23Pc534aGnn/PIyIiIioyBp1ERNRrZOrRqbeXf9WjsgREyMi6t540BbSWzp7elU9EZUSawq3kNDqCkIYFoRmRCm/7GL0jyKCTiIiIqg6DTiIi6jWS9ciMrvLUmjuLuZy8KCFhhfWsqzqlaUFv9fd4/1EiKg9KSCgh3K3reps/EnSa7nUAIDQTSFblTkRERFTBGHQSEVHVk4YFwJ5YHs/9pV83YfrLfzCHtCSskJH1EBEn4HCquALbW3twdURUak6YaXiDUFJC7whC6GZkG7sFKPt9UOgmP/8gIiKiqsOgk4iIqp6zzTvZ1HWnR6fhDRVkWFBPU0JAGha01uyqT6VpT1t3qllbP97SY2sjotKTpgAUEG7yQgkFK6BB6PaHPdIQbrgpI9cRERERVRMGnUREVPWEZgJIHnQqKd3qp4qgAGFYWU9Rj+7laQV1dG5u6qmVEVEZkJYFaVro3NwUmbZuQhr2e6DhD7sf7pgBDRXx6Q4RERFRDhh0EhFR1bNCdj9LaYmE25RUUELYFZ0VwvSFYAW0rI41OiIBrlLQOwIwO8OQhpV8Aj0RVTxpCrR8tBmmL+z+nDsVnaGd7VBKwQob9nsDc04iIiKqMgw6iYio6rkVnSl6dCph97GrFFZId8PbTNwAV0WGLSlAawsk38ZPRBVPmgLNH2wE0FXFLnX7PTDc7AOkgm99Q8nWR0RERNSTGHQSEVHVE5q9fTtZRSekgjQF9LbstoKXBZWi32gSZqTyUykFbyTc0Fv9WQ8zIqLKokzh9uZ1/mtFPuyBVJCWsANPdPXuJSIiIqoWDDqJiKjqORWdzi/90ZSUkIYFvT1Q7GV1izMt3r6cOvR0gk5pCnRusvtzam2dMBh0UgYMwSpT9Puciny4I6J69SpLuu+JRERERNWGQScREVU9oTtb15P36LQ0M+uel+UiuqIz3ORLeZzltwNN/9bdkEZUn75k1a1EUaxgdu0RqLxIs2uauoiEntHBprRE19dFyLKd918iIiKiYuhT6gUQERH1NLeiM0XQKcIGrJCRcFs5i67iDG5vxcBxIxKPUQpmJKzyfbnLvT7wVStGHXdgzy+SKprpD6Pv4P6lXgblSBhdQafz4UZ0RafQDMCt1u35pFNoJmr79e3xxyEi6m2UUggGg+js7ISmaRCCH2JTZaitrUX//v0xdOhQDBo0CB6Pp6DnZ9BJRERVT2j2L/tKJPmlXikIzay44TzRz0X3xg5S0lr96D9qiB1yRLa4m76ureqs1KNsiDAr8SpRsq3rZlTFeqiho+vgHs45hW7Cu24nRh37NXhqPPDUcjMZEVEhSCmxfft2hMNsRUSVx7Is6LoOn8+HAQMGYJ999kFNTeH+jcCgk4iIqp4zjAhJeg4qWZn96qKD2fhAKrijNRJ0pvlkn/0XKYPoLdBUOWR0Radlv0+kGj7W0+8C4SYf2j/9CiOP2BeevrWoZdBJRNRtSqmEkNPj8aC2traEqyLKnhDC7QUfDoexfft27LvvvgWr7GTQSUREVcsMaKjpWwsRNqCkihng41KAFaq8Ckdn67rQTVhBHcKwUFtn/2891OjFiMMEg6peKtzsw4DRw7p1DiWkG6Y77R36DOpXiOWVPaFX9lbr6KDT+TtM+WFOD1eyd25ugtAtGJ0h1A0bCNTxVw8iou4KBoNuyFlbW4sxY8Zg8ODBBa2II+pJUkoEAgE0NTVBCIFwOIxgMIjBgwcX5Pz8SSAioqrl+3IXlJAw/RpU1CeH8SpxK7cTYOitfhi+IERUWKssidCujpjAg3qPtk+2dfscwrDcDwYMXwiGL9Ttc1YKw1vZzzVZ0Jny2CIMJVNCINTQ4VaXEhFR93R2drqXx4wZg6FDhzLkpIpSU1ODoUOHYsyYMe51fr+/cOcv2JmIiIjKjH/Lbnuqeki3f8lOVtEJILizvcgr6z4nhNI7gtDbApBxgUa4yRszlCTh/ty6XrV8XzZ2+xzSsNxej4Y3CL0jmPy4IgRlxWZ4kz/XbEUPCisFoUdvXU//9xPdz7OnSEsivNvn9gslIqLu0TS777LH4ylYBRxRKQwePNjdrl7IfrMMOomIqGoZvrDdhE4pKEumrG4y/ZXXyN15LqZfg7QEVFy1VHRQlfz+DDqrlbS6X8krTQG9PQAAsAIa/Ft2Jz0uVe/HSmakCHWzVeqev9ET1jOFiz0edEoFZQmYnaGqDMWJiErBma5eW1vLSk6qaDU1NW5vWed1XZDzFuxMREREZcYKalBKQQppb11PEXRW2sR1ICroDITtforRVWRKQRhW2q3rlficKTtOiN2dYEkallvZaHSGEahvTnqc4QtVXXVwd7fpW1FBYylE9xzOFGT2dNCppIS0Iu1Dsty6nrSXMhEREVGWGHQSEVHVUpaEFdAgQgakJVMOHarELZVOGGAFNEAlVmhKU6QNOkUFDmCiLEVC7+D2tvxPYXZVBAe3t8IKJ69SNHwhqCJsfy6m7vbsFSm+V8USHbRmqrjtyaBTSQWhW5GKznDWH65U4nA4IiIiKh8MOomIqGoppRBq7ABg/0KfKsCoxCEZTgWn6bf7NMWHCNJMX9HJMKF6OaG3f2vy7ebZkIaAkgpKSAS2t6bsO2n6qm9LcncrMoVW4orOqPe5TNWpqgBtDlKfXEEaJpSQMPxhSFNkrNZUSrnvaURERET5YNBJRERVS0nl/tJvBbWU1UuVWtEpDAv+rfaW4uig0/Tbz1VrTT29sNTba6lnmH67XYNSCv5tybebZ0OaFiAltDY/hGamrMYzfOGS96QsJLsKsXvPp5QVnW3/2hbTY9QKpf85t4Jdt0uzsKGnOwQOgDIFlBAI7kxfZRxu8iK4vbWg6yAiIqLehUEnERFVL6XcqkYroKWsPIufWF4RpELHF9vd5xddcad7g5CG5VazJiMYdFYlwxcElILe5u9Wr0lpWFBSQWvutAfKpBheZfhCVRV0Ct3s9qCuUlV0Gp1h7Fj+r5jr0lV1A7GD2KKntReC6deAqApOaUn4N+9OGyTvfm8DrDCrzYmIiCh/DDqJiKhqKaXcKk4zqKfeYluhwy+iK5+iK+6MjmDM1OxkpFF5VayUmRXUoRSgtwchwiZEhqArFRHZZqy1dNpb2KVMun3d7Ax1e3hPOZG66fY4zVepqqU7NzYmhM6Z+mJGh45OZfvOVz/t9lpCDe12FX3U41tBDVbYgOFN/noRmomOL3ZAmd3/4Km7fVaJiIiocjHoJCKi6iWjKjpDetZTfytFdAWWE2gIzYAIG5CmBZFm22q1Tcommx1gK1ghHUI3YfnTD6NJfR4LSsquoFPIpD8/QrMybkeuJEIzu/2zUaoK13xacET3zHSet+ENpjo8a7vf/xJKKjs4jtDbAml7A3duaoISsiA9X8PNvm6fg4iIYlmWhWXLlmHevHk4/PDDMXr0aPTt2xfDhg3DgQceiJkzZ+Lee+/Ftm3bSr1U6uUYdBIRUVWJrmBSUrm/NIuwmXEbZ6WJfj7O8/Z92QjADlvSBi4MOquS1uaHNAT8m5sAqWBkmLqdijQFEKnohFL2hwZJAihpWvb29iohdCvjwJzM5yhR0JnPuiPvA8KwgMjd9Y7uBZ1KKXSs3QGlVMx7UOsn2+D7clfssVHv14EddoV6ISbBay3V85okIioHf//73zFp0iR85zvfwcMPP4y1a9eipaUFlmWhs7MTW7Zswd/+9jfceOONOOCAAzBjxgysXbu21MvuUbfeeis8Hg88Hk+pl0Jx+pR6AURERIUkdBN9Bvazv1DK3aItdLPqtjMmq+h0BhCZGQIuJRSUVPDU8B9n1UTqpt2js90Oq/IN95XlbF3vGmglDQtwfrac60yRcXt0JRG62e1WFoUI6vKRTyWqcx9licjE8zCsQPemnrvDqxRgRp0r2XmtsIG+g/vb94tUoBdiOFw1he9ERKV2xx134JZbbnH/nzFt2jTMmDEDRxxxBPbYYw+EQiE0Njbi3XffxfLly1FfX4+XX34Z48ePx5///OcSr556IwadRERUNZSQMAOaG3RGV3RKw6q6SePRIZZ3XQNGfmM/d7iImSGsUFJGqrkYdFYT55cQZ4twvkGntASMzlDM/ZMNq6m2oFN2s6JTSQVlCgjdRG2/vlBCwlNbpA1U+VRpR56rknbVrt4R7Hb/Xue157wfpyO0rqDT6fVaiK3rrOgkIiqMRYsW4Ve/+hUAYK+99sKzzz6LadOmJT32oosuwv33349nn30W/+///b8irpIoFreuExFR1Qhsb4URt+1SmnY4Iw2r6rZrR4dQHf/eAWlY9qRjIGNVmhKSfTqrkBPSOdXL+Q4jUkIlBF7xW7KVVG7lZ7VQonvPx/CFIAwLHWt3uF8XSz4/zu5zVQrCsCBNETNAKB9OZaYV0NK+DymlIMJdrymnCr0gW9db/ZkPIiKitHbs2IFrr70WADB06FC8//77KUNOR21tLS699FJ89tlnOPfcc4uwSqJEDDqJiKhq+LfsTpjoq8yurevVRhhRz0nZ/RnNLIfPOFtLqco4QWekerk71XnxW4jjq0OdDxGqqaLTmTCfL73ND73Vj+D2ViipEj546VF5JZ12dbeSCiJs2B+AdHPqvBm0P2zJ1B9WGlZM9abQIq/ZblZ0SkuknOxORETZ+/3vfw9Ns9/T77zzThx44IFZ33f48OE477zzUt7e1NSEm2++GcceeyxGjhyJfv36YcKECZg1axb++c9/prxffX292xdz8eLFAIB//OMfOO+88zBmzBj069cP+++/P6655hrs3Lkz4zoNw8BDDz2EU089FXvuuSfq6uowZswYTJ8+HU8++SRkkv8nLl68GB6PB7/5zW/c65w1Rf+pr6/H559/7n599913Z1zPgw8+6B6/atWqhMd0zqvrOn7729/i6KOPxrBhwzB06FB885vfxEMPPQQhMv9/VAiBxx9/HDNmzMC4cePQr18/7LHHHjjppJPw+9//HuFwfj3eywWDTiIiqhpWUI+toFKxW9erTXyIpbcGsu6vZwZ1MOmsPu7rPBJ4OmFk7lRCZZ+0REwI5bz+uhuMlZOulg75CTd6YQY0BBs67NCzzINOpRT8W5shNBNai98OOrsZXAe3twHI3CdYaLH9UJ3WCN19fGkKQKmqqjQmIio2pRSeeOIJAMCQIUMwd+7cgp37qaeewoEHHoi77roLn3zyCTo6OmAYBnbu3IkXXngBZ555Jq688kpYVuZ/w9x0000466yzsHz5cuzevRuGYaC+vh5//vOfcfTRR2P9+vUp71tfX48jjzwS1157Ld5++220trbCNE3s3r0br776Ki677DJMnToV7e3teT/XI444ApMnTwYAPP744xmPf+yxxwAAhx56KI477rikx3R0dODEE0/E/PnzsWbNGnR2dsLv92PVqlW49tprcdpppyEQCKR8jO3bt+OYY47BnDlz8PLLL6OxsRGGYaC9vR0rVqzADTfcgCOOOAIbN27M4xmXBwadRERUNZRUCVtFpVvRWY1BZ+xz0lo7u7auZ5AphKDKFP86707Ar6zYwEmEzZgwrauis3oCJWdIV76CDe2QhgVttw/BHW1FrejMqxWFUghsa4Fvwy5I07JDRqm61dbCv2U3AGSsLrf7ocrIMlTBhji5QSlbcxAR5W3t2rVoa7M/uDr55JMxaNCggpz3+eefx2WXXYZgMIgDDjgAv//97/Haa6/hk08+wbJlyzB9+nQAwKOPPoobb7wx7bkefvhh3H333Zg6dSqefvpprF69Gv/85z8xe/ZsAEBLSwu+//3vJ71vIBDA6aefjg0bNgAAvvWtb+Hvf/87Vq9ejRdeeAFTp04FALz//vs477zzYqokv/Wtb+GLL77ANddc4173xRdfJPzZe++9AQBXXnklAGDDhg1YuXJlyufz2WefYc2aNQCQct0A8IMf/ACffPIJLr74YrzyyitYvXo1nn76aTdQfffdd3HZZZclvW9bWxtOOukkfPbZZ+jXrx9+9KMf4YUXXsDHH3+Mt956CzfddBMGDhyIzZs345xzzoHP50u5jnLGYURERFQ1lFII7+76H7KSXb88yyoMOuMrn/T2QNbVUNVY4VotpClQ07c2/TGWQE2fxGPiKzhzCY+kYaGmLvJPQ4WEoEhohr3VOTJgx3kNVVNbCCUkrKAOpRQ8ntwHdYUaOtyfwVBDB0TeFbW5Czfl/suIkgpGZwiGL4QhB+zlrl0JCU+S11c29Ha7iiTl1vXI60oYphuSKyt5Ja0z1CkXQjMjD6M4ao2IKE+ff/65e/noo48uyDlbW1sxb948KKXw/e9/H3/5y1/Qp09XJHX00UfjwgsvxM0334y77roLf/jDH/CDH/wAX//615Oe74MPPsBVV12Fv/zlLzH/zz799NNRV1eHRx55BB9++CHWrFmDo446Kua+v/nNb7B161YAwC9/+Uvcfvvt7m3HHHMMvv3tb+Oyyy7DU089hQ8++AALFy50g83hw4dj+PDhGD16tHufww47LOXz/u53v4v/+q//QjAYxGOPPYYpU6YkPW7RokUAgL59+6YMKgHg448/xl133YWbbropZs0XXXQRZsyYgddffx1/+9vf8Morr7jBseMnP/kJduzYgX333RdvvfUW9t9//5jbp02bhosuuggnn3wytm7dinvuuQd33nlnyrWUK1Z0EhFR9ZAKelsAQjOhlLK3YUa22uY7lKWSZFvNSeXNCWrSSRVUx/c3zCXQdqZlp1xXOLaHohOiOoOPqoGS0h7qlUfFs9BM6O1dQ3CssA6rSD+TSip0bmrK/X5KQeoWtOZOAF39Sbs1eT4Slqb6Hjp5ptDMrsdL8QFNPu9pbiUpt64TEeWttbXVvbznnnumPE5KibVr16b8Y5pd/6ZZsGABfD4f9t57bzz00EMxIWe03/zmN9h7770hpcSSJUtSPvbYsWPdnpbxfvazn7mX33vvvZjbdF3HI488AsDeIn7rrbcm3N/j8eChhx7CHnvsAQD44x//mHIdmQwZMgSzZs0CADz33HNJ+18ahoGnnnoKADBjxoy03/MjjjgCv/jFLxKu79OnDx555BH07Wt/QPjQQw/F3F5fX4/nnnsOgP184kNOx1FHHeUOoXL6oFYaBp1ERFQ1lJSQugmzM+z+4uyEMfGDVapRtoOIqLxl01czVSuG+MAol4DfikzLTnl7OPIBguX8bEUqOjWj230VM4WsxeIEfHoeU7tDDe0xbW+tkAFLS/89LRS9I+AG0TlRCiLynmkPJopUWHbj79O5b8r1RJLO0K6OrorOlEFn7u9pTjjane33RES9nd/f9f/BdNvWOzs7cfjhh6f809DQ4B7797//HYAd5PXr1y/lOfv06eNWPabb6v2d73wn5Xm+/vWvY/DgwQDgVm46PvnkE3i9XgDAnDlzUFubfAfD0KFD3YBy3bp1aGxsTLmWTJzt652dnVi2bFnC7S+99JLbKiDdtnUAuPzyy1PuOhk/fjzOOussAMDbb78ds+X+5ZdfhhACAwcOxDnnnJP2MU455RQAwK5du7B9+/a0x5YjBp1ERFQ1nF/SDX+4K4zpBQGng303q0M21XSpKjXj+2XmVNEZHUwlWYK9dT16wJdwj+1uUBnc0dat+xeKE7hpeQSdwYbYYQVWUC/aRHoRzq99gJKqK+BWiNm6nq9Mr1+lFIRhoXnlRreiM37wlSOfik53IBuDTiKivA0ZMsS9HAx2v9+0EAKffvopALhbzdP9Wbp0KQB7OnsqBx98cNrHHDFiBIDY0Baw+486vvnNb6Y9R/Tt0ffL1QknnIBDDjkEQNfAoWjOdWPHjs0YQjq9OFNxhhgFg8GYkHf16tUAgFAohD59+qT9/s+YMcO9X7q/g3LVa4PO1atX47bbbsNZZ52F8ePHo1+/fhg8eDAmTpyIuXPn4v3338/pfK+++ipmzpzpnmv8+PGYOXMmXn311azPYVkW/vznP+Pkk0/GnnvuiQEDBuBrX/safvCDH+Df//53rk+RiKj3ifyCbXaG3TAmfqBKNSuXqjjqpiwCGifATAik4u6bS4/OTBWBVlCHksqtjo6uPO3u9vVQY0dZfCjhfD8Nb+wvddl8H+3t312skF60yd9mZyjzQckoFfP3nqnCMuPpspnarhQ6v2y0K+/drevJv79WQLPP6fT1zKIfrFMFypyTiCh/zpZtwB7qk8rw4cPt3R5Rfy6//PKE49rb27Oaoh4vFEr9/7eBAwemvW9NjR13ibj/x0RPUY/us5nMmDFjkt4vH1dccQUA4K233kJ9fb17fWNjI1577TUAwOzZs1NWmDoyrXmvvfZyL0evubm5OdclA0j/d1CueuUwolNOOSWhTwNg90XYtGkTNm3ahMWLF2P27Nl4+OGHUVdXl/JcUkrMmzcPjz76aMz1DQ0NaGhowN/+9jdceeWV+Mtf/uL+oCXT2tqK6dOn4+OPP465fuvWrVi4cCEef/xx/PGPf3RLnomIKJHzy3D01vVehb/YV4Vsttw6gY/hDaLfHl1VF05w5MilojP6WJXkxaS3BaCEgox8eBC9Ld4M6hiQ9SMl0lr8sAIa6oYXZqprvpxgUsZ9QBLe7cOg8SPtYyLDmOLFtxwQmonafsX5p3bH2h353VEhant9dI/O/N4/9WymzCvADGqRCtIMW9cDGqQlIA0LfYcMgH9rM4ZP2jvt6U2nopM9OomI8nbkkUe6l51J4N0RHTZeeeWVuO6667K6X7osphDyGTyYr9mzZ+Omm26CYRh4/PHH8etf/xoAsGTJEvf7k2nbOpD/mp3HGDVqFN56662s75eql2c565VB565duwAA48aNcydK7bPPPhBCYOXKlfjd736HhoYGLFmyBKZp4umnn055rptvvtkNOY866ijceOON+NrXvoYtW7bgnnvuwZo1a/DII49gzz33xF133ZX0HEIIzJw50w05L7zwQlx11VUYOXIkPvroI9xxxx1obm7GD37wA+y9994ZS5mJiHorJXt50EnVIcut68KwYAb1uKAzvqIzNnxTUsFTk/wfyDF9P5MsQe8I2MNrnGrpqCrH7lZ0Gu0BmP5yCDqTb90O7/Z2BZ0yRdAZF44K3YQS/XtopV2UkPCub8h8YApdU8q7v3XdmbiejlLKboOA6MdLfMEppdzQ0vCGEoJOaQl4amvcX/iUUoBSsAJ619dERJSXww47DHvssQfa2trw3nvvIRQKZaygTGfkyJHuZaVU2inlPS16Lbt378bEiRNTHhu9bTv6fvkYNWoULrjgArzwwgt4/PHHccstt8Dj8bgDf0488cS0a8l2zbt37066ZqdK1+/3Y9KkSRkrRytZr9y6fvDBB+O5557D9u3bcf/99+Pb3/42Jk+ejOOPPx7XX389Pv30U/eF88wzz+Ddd99Nep6NGzfit7/9LQDg2GOPxYoVK3DJJZdg8uTJuOSSS/D+++/j2GOPBQDce++92Lx5c9LzPP744+5W+R/+8IdYtmwZ/uM//gPHHXccfvzjH2PFihUYOnQopJT4yU9+klfJNxFRr6C6enSWwzZYonxkk88Iw4Le6k/Ybp7YozP25yB+S3a08G5f2uOUJQEpu7auW9FBZ/emi0tLlMUwrfgKQ+c5OmEgkLoHZUI4KFXelZG5MLxByBTDqbIS9XzcnplGfu+foV1ZbOtTyt3m7wTk8cPilFQQIcO93ak2toKaW83c/ml9zNr1Vj+skAHpVA2xopOIKG8ejwf/+Z//CcAeoPP4449363x1dXU49NBDAQArVqzo9vq6Izpk/eijj9Ieu2rVqqT3A/KrrHR26G7btg1vv/02PvjgA2zYsAFAdtWcABJ2Aae6feDAgTjggAPc64866igA9tR5p19nteqVQefy5csxa9aslAn2qFGj8Lvf/c792mmEG+/+++93Q8cHH3wQAwbEbtoaOHAgHnzwQQB2/8377rsv6XmcsHTkyJG49957E24/8MADcdNNNwEANm/ejL/+9a/pnh4RUa9ndoZ7VW9OqjLZ9OjULWit/oRKyvhgLX7qut6WeshOdEiVahiPkl1b12ODzu5VdCoVteW4hOK3brsVh9FhYIpqx/iwLv5+PUVv7/6QCIcT9GbTCzOZ0M6OzI8hlRuqa5HXY/wwImlasIJ61wAsZ5K7brmVx7vf+9LtBwfYU9xFyHCrkVnRSUTUPf/1X/+F/v3tnQk33XQTtm3b1q3znX/++QCADRs24PXXX+/2+vJ1zDHHYPjw4QDsojOZ4kNJv9+P559/HgBwyCGHYOzYsTG3O98bwA4Ps3HGGWdg3333BWAPIHKGEA0ePNid8J7JE088kfL/cQ0NDXjjjTcAANOmTYvJvM477zw3nL3//vuzeqxK1SuDzmyceuqp7uUtW7Yk3K6UwosvvgjArhA9/vjjk57n+OOPx9e//nUAwIsvvpjwgty4cSPWr18PAJg1a1bKcvA5c+a4lxl0EhHFcodPOP31DItb16lixW83dzjhozSFXfEWNhIDxvhhRHFBZ7pp4obPbjavpISRoteiEtKdah39YUK3K6iVyqmfaE+Jr+h0vydRvcWSbrMWEqFdiSFfMd6HChYQK9VVyZrDEKto4WZfxmO05k5oLXZFZ/ua+pgBVw7vugZ0btkNoZnwb2tx1xXa1QGhGZCmcM/h32oPVzADGqyw0fVaZNBJRNQt++yzDx544AEAgM/nw0knnZRxaLNSCl6vN+lt1113HQYPHgwAmDt3bsaByy+//DI+//zz3BeeQb9+/dzKyrVr1+L2229POEYphR/96EdobW0FAPzoRz9KOCY6+EyWGSVTU1PjVm4uW7YMzz33HADgoosucr83mXz66adJC+Qsy8JVV10Fw7B3+1xzzTUxt3/961/HRRddBAB49tln8fvf/z7t42zbtg3PPPNMVmsqN72yR2c2ohP5ZJWf27Ztc3t9Tp06Ne25pk6dii+//BINDQ2or6+PaeYa/UaR7jxjxozBxIkTsXHjxpKXehMRlRut1Y++Qwa4vywrKbl1nSqWCCevpgtub0X/UUMiQaiKDHWJr+hM36MzXdDpbIM3OoIpAzrDG0rY1m0/cMrTZkepok0oT0vG9ozUW/0YMHpYTLiZbDu6E8rFK8ZzSva4+XL+TvPZCq+kShmQR2tbUx9bca9UTH9TZUm0fLjJ7uUZNtD+aT1GHL4PtOZOmL4QrKCOPgP7AbArib3/3omhX9sLSipYYd0NzMvi9UREVOGuuuoqNDQ04De/+Q127dqFk08+GaeddhrOO+88HH744Rg5ciSEEGhqasK//vUvPP/8826AWVtbGzNMaK+99sLjjz+O73znO2hsbMSxxx6LOXPm4JxzzsH48eNhmiZ27tyJVatWYenSpdi6dSteeuklHHHEEQV/Xrfccgv+93//F1u3bsWtt96KL774AnPnzsXYsWOxbds2/PGPf8Tbb78NAJgyZQrmzZuXcI4TTjjBvXz99dfj5ptvxtixY92qyf322w99+iRGbt///vfxm9/8Jmaaebbb1gG7beLPf/5zfPrpp5g9ezZGjx6NTZs24fe//7271f68887DjBkzEu67YMECrF69Glu3bsUNN9yAF198EbNnz8ahhx6Kfv36oa2tDZ999hlee+01vPnmm5g5cya++93vZr22csGgM4V33nnHvTxp0qSE29etW+dePvjgg9OeK/r29evXxwSduZ5n48aN2LFjB4LBIAYNyr5h/86dO9Pe3tjYmPW5iIjKjem3K5qcyiYlFCs6s8AgoPxYId0d1BItsL0Vge1t2OPo/buCHKUSemPGh3DKku6UcKEZMFJsc1ZC2sdKCcOXulem3uZHTV2fyGMV7vWjRHH6WaYjdDNhy3pXRWdUEJfkeYcbvUnPWYz3oYJ9qKO6qnTzqRIVmpHV8w1ub419WBn7fm0GNOhRgXxNXR8MP0QivNtrP07YwM5XPwUABOpbII1I0CslRMjoqkZlRScRUUHceuutOPLII/Gzn/0MW7duxZtvvok333wz5fEejwdnn3027r33XowbNy7mtgsvvBAvvvgi5syZg/b2dvz5z3/Gn//856TnqampySnzyMWQIUPwf//3fzjnnHOwYcMGLFu2DMuWLUs47sQTT8Tf//73pMVvBx54IGbNmoXnn38eb7zxhrtl3LFt2zbst99+CfcbP348zj77bLz66qsAgIkTJ+Kkk07Keu0LFy7EFVdcgWeeeSZpxeWJJ56Ip556Kul9R44ciRUrVmDWrFl477338O6776acSQMAQ4cOzXpd5YRBZxJSStx9993u18l6JUQHh+PHj097vgkTJriXd+zY0e3zKKWwc+dOd0t8NqLXQERUbZQlIA0LWov9y7GSkiFeFqRhobZf31Ivg6KEGr2wklTo7frHF7BCul3lZlh2KKVUkh6dia97YVjoM6AO/q3NXYNa4jjhkLIkrFDqPlNaWwADxw6PPFjUY3UzVJKWSLolvJiMjqD7/VPSDoid6trYoDMxzFMqRd/OYrwPFegxFLq2kDvbwnO6f559kVXUgCsgsd+rGdCghIQ0VWRtfvgiU+YNX8itBlVC2cOInNcyg04iooKZOXMmzjvvPPz1r3/F66+/jpUrV6K5uRlerxcDBw7EHnvsgcMPPxxTpkzBxRdfHFPcFe+8887Dtm3b8PDDD+OVV17Bv//9b7S3t6NPnz4YM2YMDj30UJx22mn4zne+06M5xn777YfPPvsMDz/8MF544QWsXbsWnZ2dGDlyJI466ihceuml+N73voeamtQdH5988kkce+yxWLp0Kb788kv4/f6UPT+jXXbZZW7QOXfu3JzWPWLECHzwwQe4//778dxzz2HLli1QSmHSpEmYPXs2rrnmmrQT1ceMGYN3330XL7/8Mp555hmsXLkSTU1NME0Tw4cPx0EHHYQpU6bg/PPPxymnnJLT2soFg84k7rvvPrfk98ILL8QxxxyTcIzf3/VJc6ZeCtGfQgQCgR45DxFRbyZNgWBDuxu2KKlYzZOFfPvwUc/Rmn0QuuVWYZqdYSil4N+yG6jxwOwMdwVBqisUkpZATZ9aIElYKA0LGFCHwFetCbe5x0S2uEshEya5R9Nb/RgwZphdRZhlzuk8l3SUkCWv6DR8oZgenckqPIHEvqf2lSm+AVHPKZvvQz4KGeg5Ibve5oeSEp40v9zFix8olDUVW9EZX9Eswgak6ApDvet2dlXcRrVSUNIO6d3XL4v6iYgKqk+fPrjooovcPo/dMXToUNxwww244YYbcrrffvvtl/X/9+rr6zMeU1dXh2uvvRbXXnttTutw9O3bF/Pnz8f8+fNzut/atWsB2Nv7L7/88pwft3///vjFL36BX/ziFznf13Huuefi3HPPzfv+5YxBZ5x33nnHfbGMHj0aCxYsSHqcpnVt6YnuO5FMv3793MvhcOx2sEKdJ5P4StJ4jY2NOO6443I6JxFRuZCmQOfGqBYcrOjMSjkMf6FYemsAtf37wgrqqB1Yh7Y129B/9DD7RqmgtwcQ2tkO1Hjsis6wASUlTL+GfiMGJf3HvzNBW28LpAzknNBbGhasNEGnMyXb9GtxfTlT/7yZ/jDqhmex9azEP7NCiw02pSnc7110EGf4Qhg4dkTMfVO930RfbwY01A1LPnSyWwoVdCog3OQFAOjtAUhDoLZ/9kGnSlEtnPF+Mq4/a/zTUZG/j0jlphU23Kccamh3+3UqqRDc2RbT2oGIiKjcCCGwZMkSAMA555yTMM2duo9BZ5R///vfmDlzJizLQv/+/fHCCy9g9OjRSY/t37+/e9mZapVK9GCjAQMGpD1P9Ne5nCeTTNviiYgqmbQsd/IukOQXZ0qqWBWdbrUhZaS3B9B/r6EwgzoMfxiB7W0xOVbLR5uhtwcw8sh93Unl0hR2mDhsQNIeiU7wo3cEUNs/+YeqzjHSErBCqf9d4wybMTvDUEgTTjlXSwkzoKcNOq2QblexlkXQ2VXRKS3hXmcFdSip4KnxwPSFE17TqUK16CpVK6gXPOiUkTYGhaAsYYfhsCslpWGhtn/2rS3y37quMoaSSkg3SLVfq/bxocYODN5vz8h5ZEzVcqlfT0RERMk89dRTbgvDq6++usSrqU6F3z9TobZt24azzjoLHR0dqK2txbPPPpu2H8GQIUPcy5m2kQeDXY3/47enF+o8RES9mTRFTBWaErLk1WGVoFhBZzDNlmmKZfrDkT6DFqRuItzkjelf2PH5druiMzI4RuiRoLMzDK3Fn7RKV0QmaBsdwZTVf+4WeENAhFP36HSCVLMzHBuwpQo6hUrb8xMA9I4gZNQ28VKJ2aouFZQpIHQLzSs3Qmv1u1uilVQI7miLvXOq9xvVFXY61aGFoncEEdzRVrDKRaGZXe0/hLR7weZA5hl0QqmM79fOsCwg8nqOHK6sruuVsP/Ouu7D1hxERFQeNm/ejPXr1+OJJ57A9ddfDwA48sgjMX369BKvrDqxohPArl27cMYZZ2DXrl3weDxYtGgRLrjggrT3ia6QzDTRPHrbeHwz3fjzjBo1KuN5PB4PKzSJiKIoU8SEdtlUCFEBpzVn0LllN4Z8ba+iPFalMwMa+kRN+ja8QTeojKUghbADUVNAa+1MWcEmDQtmQIsMMUp+jBkJOlWGik77GAlLxh6jUiSdSsqE4TLJ1geUtmesUsoOOiNBroxsXdeafejc2Ii6YQPtv5tB/QAoBOpbMGT/0VBKwePxpK0etCtB8694TKXj868wYK/hBTtf/Oss19YWBdu6nuwYq6sdidNPtutxu3p0RmMPYiIiKhcHHXRQzNd9+/bFggUL4PF4SrSi6tbrKzpbW1tx5plnYuvWrQCABx98ELNnz854v0MOOcS9vGHDhrTHRt8+adKkbp9nwoQJMYOJiIh6O70jGFP1pqRKO1CFbMWqoAs3eovyOJXOmaJu+EKA6uqDGd7tTXJwV+WyMgWCO9qht/sTj4NdSSh0MzKpPfljWwG7Z7g0rYw/O4YvBAgZN3U9xXMS6ae4A12BWqaAtadYQR1mZxhSs6C32t9D5QadnZCG1fU9hF31qkd6lYYa2gHYlbipiMiAn0J+sCBNy66EtUTBfo6FEVtxGh8oZqI15z6pHYA9jCibik7neUoV83pzhiCpuGBTFemDHCIiomyNGDECp59+Ot5++21MmTKl1MupWr066PT5fDj77LOxbt06AMDdd9+d9bSt/fffH+PGjQNgDzBK59133wUA7L333thvv/1ibjvppJPcy+nO09TUhI0bNwIATjzxxKzWSETUG7i/8MdUdGauIiMUrLdfJoY/7IY9lJoIG3YVp88OzfR2u6VNuMmXcKxCV4WgtARCDe1uf8V4Ure6qglTVnQ6QadIO4wIAAxvMLFiOlWPyiy2rruVgyWqwg41dsAK6dDbAzC8XdW00cGkFTbcIE3oph1CA+jc2ATA/rAlFXfLewGDN6Fbkb6VhWvTIeMqOpNXEqeWsJ0/S0qmSeAjpJBQInmvBOf7Gr/VnhWdRERULpSyd5u1t7fjn//8J0444YSc7j9nzhz3HPGZEiXqtUFnKBTCueeei3/9618AgJtvvhk///nPs76/x+Nxt7dv2LABH374YdLjPvzwQ7cS84ILLkgoTZ44caJb5fn8888jFAolPc/ixYvdyzNnzsx6nURE1U6aAiJsxFZLSYVd//yidIuiGFIzYXQm//8bdTGdqkrdBKBgeO3wzKm2jKGUu2XXChswO8Mpg04R6fVp3y15oBTaaVcmSlNk/JDADGhQUmVVoaikhAgZaftTOhV5xQre49kTxi1oLV0VifaHJV3fd2V2bekXmulWcGqt9n2cgDQZJzi2Mnwfsl5vmx+B+hb376BQQ3fig0IjTXibdF05Hu/erz2QXUVn9KCtqMP1tgD0Nn9CoJ53z1AiIiKqaL0y6DQMAzNnzsSKFSsAANdddx3uuOOOnM/z05/+FLW19sTNH//4xwiHY7cthcNh/PjHPwYA9OnTBz/96U+TnudnP/sZAKC9vR033nhjwu1btmzBf//3fwMADjzwQAadRERRpGFx+FC+ilRBJzQzbRBEtphAUwF6e5rgSHVthXbu51SAxuvc3ORutU4WJlohHZ1bdgOwf54yBZ0iZABKxVTppnopKSFhdGao6HXvXJqfYWnYQ4eiQ0glZEJwrHfYXwvdhNmpufdVUqXfuh4JOvX2QMbq1kyUlNj2wkewQro7oKdQQaeMC2GDkW352co3xPVv2Z1x+33M1vUktzX84wsYcT8v3LpORETUO/XKYUTf/e538cYbbwAATjvtNFxxxRVYu3ZtyuPr6uowceLEhOsnTpyI+fPn4+6778bq1atx4okn4uc//zm+9rWvYcuWLfif//kfrFmzBgAwf/78hAa0jssvvxyLFi3CihUr8Kc//QlNTU246qqrMGLECKxatQq33347Ojs7UVNTgwceeAB9+vTKvzYioqSkIbhFMU/F2iksdNOtTqTUrGDXlnGhmdDakvfctHVVdBqddshmdiYP2/xbmjFgzHCkatLp39rsflBgdIZjK+eSrTNs2H1wY4KtVMOIFMzOcPoQzJmgXaLPKqSVWBWuhEoIjo2OIIRuQuomrLAO069BWsIOmtOEjc4W8PgWG/no3NiE4PZWjDxyHyhLQmgmAvUt3TqnI/7DiPCujpzun++wpXCTDwPGDk9/bpG+crXji+1A3K6pfCtMiYiIqLL1ysTsf//3f93Lb775Jo444oi0x++7776or69Petudd96J5uZmLFq0CGvWrMEll1yScMwVV1yRtmK0trYWf/vb3zB9+nR8/PHHWLZsGZYtWxZzTL9+/fDHP/4R55xzTtq1EhH1NsIwGXTmqwjJkjRFZHo4KzoziR4G412/E5Y/yZb1CKW6gqVUW9ajDzZ9YTvnTHJzdKCXzXZl4QSd0VWaka30ntq4zUJKwewMJfR/jD2ktEmnEtKu1lRx18VVCOodQWjNnfbzVoB33U5I03KD5tQPoNxzxg/MyZURqRxVQsIKG/Bv3Z22mjQX8QG33h6AtARq+tRmd/88K0uVlG5rhXRri+3RGX8AEl4/3nU7MfbUQ+Gp4URbIiKi3qRXbl0vpJqaGjz66KN4+eWXccEFF2DcuHGoq6vDuHHjcMEFF+CVV17BI488gpqa9N/qUaNG4YMPPsBDDz2Ek046CXvssQf69++PAw44AFdddRU++eQTXHnllUV6VkRElUNoJrcoljEnDMu1319v40xcd7R/tj3TPdzelqmmrUdze6RGhUFOMBUdQmdTeSt0E0gIOpP3/1RSwQzoWQ2jctZTqCniWZMKhjc2LLTD+bigsz2A8G6vW6HpXd8AZUmYWfafjR9wlM3x8VW6IrL1XVoSQjPg39acsQI3X0I3k/eHTSnPoFMpaC3pX8PSkjlPgQ/v9mX1s0FERETVpVdWdKZqxN8d06dPx/Tp07t1jj59+uCaa67BNddcU6BVERFVP2dACOWhCAV0Tk/CcEsnlFSsrkpBGlbMFmRpZAh1VFcFXjYhshuYRf0bSIQN9BnULybQy2q7byTUjO7pqICk27etkG7380yzdd2dHh85xgoZ6DOwDp4MHxIXipISiAtXlZQJ4aze5kdge5vbczO0sx19hw3IulpZCZlT9fn2v6/G8EPGY9jQAe51zoAdJWTkQx4J1aeHgmEFmAEddcMHZX18XqRyv6cpTy0kDF+OVeFSIdzoQ/9RQ/NcGBEREVUiVnQSEVFFi56MTLnpiQ/+4jlVinpLZ+maMFYAqVu59VpUyq1kziYAcoLO6O3FZuRnJzrozLqXarKt60n+fqMnlafiBLZOGKqEjOlX2h3OmtJtq3Zvi652FSoxlFSAb12DWx1rhXTo7YHMW9fdc2YfdLau3oLWj7cmHi+7tsE74WChhhElk0tFZ77vJ0qqmLYNSY8REkZH7u0vwru9ea2JiIiIKheDTiIiqmhWoHtTjHuzjFWDBeBUdEoz/TCR3s4KG1lt73ZIU7hb17MZAuOGiVGVc6GGdiilYnp8ZjtQxvSHE0K4ZH+/zlbrtBWdkWpK5/mLsNHt6eRd69QgdLNr6nwS0hR2i8eYRSUf3GSF9JjvkdQt9zlmYleJZhfgBnfag4Dit7o7YaLQTPf71ZNb/c1ctq7nG3RGpsenY4Xye02IIrzHERERUXlh0ElERBXNDDLozFe2oUt3RPedLEYFaaXK9e9C6FZevRnNoO7+Pfi3tcDsTAwssxFu9sVeoVTqretIX9HpBO7OMfmGWskY3iBE2ECo0Zvx8fOVbUCthIIIZx9mA0gYXuSEydHBbdohPd2US9CZ7893Nt8/raUzr3MXoz0HERERlRcGnUREVNFkhi2PlJoVqe5LV22XSab7xgRWrOhMSaSZSp6MNMz8htBIBRGyq0fDTd60lY7pBLe3xXytVGL1IdAVdMs0rxNn8JJTfWeF9IL03hWGBSukwwxoCO3qSHscgLxDsay3rkvp/sxlcTQAQIuqtgW6vo+dm5qiDu3Brev+XCo683uMbEL+TD08U+KHK0RERL0Og04iIqpo3A6dP6e6LKftqXEy3Tc6sGJFZ2q5VhXaFZ35fT/NgAbTH4bRHoTWWqCp1EolnYrt9uhME3S6fUGlPbTICuoFqegUIR3KlNDbgwg3eVMe1xXC5vf91NsD6Q9w+oQKlVN7AgAI7YwNlAtV6ZqtYmxdt3L8nuSEbzlERES9DoNOIiKqaAw68+dUUuXb51RaIuOwkuhqrbyrsnqB3INOM+/ejFZAg+ELwQobXdPYCyBZiOcEnKkCPitsxGydl6aA6Q9DFKCiU28LQFoCwe2taYNWaQpAqryD40w/A1JIBHe02T06w0bSytdUtLiK21yD0u6ywpnfG4RuwvAG8y6ejN+eX0iKSScREVGvw6CTiIgqWw8O4qh23a3otII6zAxbW2XUluy8++z1ArkGnVK38g46TefvTamct8ynoqRKGph3TVRP/jgJW6OlPRypEJWLnZuboCyB4M72tJV9Sil7An0PVRz71u9C6ydb7UnpmpFdiOsMgo8b0iOzHBZVKDKL14cIG2j9eGt5bhMvwyURERFRz2LQSUREFY0VnfkTumn3Mcwz6BRZVASKqO3MWjODzlRyHQgkdCvvnqd2Rae9XbxgA6lU8m3VbtCpJa/sNDpDsccrBa3Nn9O6UgW+ge2tsMIGtPjBSUnWmFMvyhz5vtyFzk1NdhicxUT56BYP8e9vSvRc9WMy2UwtF5qJjrU7yjToLMM1ERERUY9i0ElERBWNQWf+pGlv6823olOaAuEM4WV0RViYFZ0pyRwDLGmYeb/29Y4gAttaABRyK3Ty/pNdFZ1JhugAib0zlV3RmW0+JY3k0+eVkLBCBvzbmiMhcuoTCs3sVp/aTJSQbqsBs1PLGB4qq2u98SFuXgOouiOLvwhpRZ5fD05/JyIiKpW3334bHo8n5Z/Bgwdj4sSJuOyyy/Dmm2/mdO76+nrU1NS453r66aezvl+ytdTU1GD48OHYd999cfzxx+Paa6/FE088gUAgQz/xiGnTpiU978CBAzF27FgceuihuPjii3Hvvfdi48aNOT3XYupT6gUQERF1R77bd8kOKkMN7Qnbz5VS8Hg8XV8LCU9t4mejVthAuDH1NGsgtiKMFZ2pxW9RzkToFjw1nswHJmF0BBD4qjVynsIEnUolrw6VkWDOGfjj+3IXRhw+wb09fhq6GdDtXq4ZAjbnNSp0EzV1if+cFboJoyMIKJVxCJbQzB4f8qNMAQ889uClDAG1NLpC7/jwsNhb17OhhLT7jpbhh04s6CQiAhoX5/fvhUowdk7p3+iDwSA2bdqETZs24cknn8Ts2bOxaNEi1NbWZrzvkiVLYv6dsmTJEnzve9/Ley1KKfh8Pvh8Pmzfvh0fffQRHnroIQwZMgRXXnklbr/9dgwaNCjn84bDYYTDYTQ1NWHdunV4/vnn8fOf/xynnnoqfv/73+PII4/Me809gUEnERFVNFYR5U9ZAmZAS5iWLTQTfQbUuV8Hd7Zj8L6jEu5vBfWuidkp6G1dnyCzR2dquVbqCd1Ebb++eT2W3h5we4IWrKIzRb/P6K3rhjfovgaUVPDUeBDa5Y05PrijLf4USTmvUaFb8PRJ/EVCaKZd7WlJO4BL8TahlLJDzh4O6aQl4amVUEJm/HBG7wh09egsdUVnFpQl7HWV5VtxWS6KiIgq1DXXXIMf/vCH7tdKKbS3t2PlypW477770NzcjCVLlmDChAm44447Mp7viSeeAAAMHjwYgUAA//znP9HY2IixY8dmvaYLLrgg5rFCoRC8Xi/WrVuHd955B8uXL4ff78d9992Hl19+GcuXL8dBBx2U8bxffPGFe9myLHi9XjQ0NODDDz/E0qVL0dTUhDfffBPHHXccHnzwQcybNy/rNfc0bl0nIqLKxpKdvElLwAomVrLFV7f5t+xOen+7kit18GJ0ht1KPiDS07MHeyFWspwDLKlyHmDk0Nu7wunCBZ3JKzqd7fVCtxDc0d5VQaoUpCmgtcaG38EdrZkfSimIyGtU6GbSkNL53sSH+PFE2ChOJaJSbnVzppYDemvUpHUZW5GqcpjYXixSSDtQLsf34nJcExERVazRo0fjsMMOc/8cfvjhmDp1Kn7xi1/grbfeQv/+/QEADzzwAAwjfb/xDz74AJs3bwYA3HfffaitrYUQAk899VROaxo+fHjMmo477jicddZZ+OlPf4q//vWv2LJlC84880wAwMaNGzFjxgx0dKTfkQUg5pzf+MY3MG3aNFx66aV48MEHUV9fj//5n/9Bnz59YBgGrrnmGixfvjyndfckBp1ERFTRCrX1tjeSlkg6TCg+/PRvTR10pgvokg2BEXqBht9UGZlHpV6+1X3RAWmhgk6lunp0Rp/f3ZKvFPxbd7vHKKVgBsIJIaPhi7we0+RTLR9thhWZXC41M2mFpHCDzq5gUG/zJxyXLOjvMc5zzWIrffQRzt+zErL4HxRkkRM6VarlGCmy4p+IiIrlkEMOwbnnngsA8Pv92LBhQ9rjlyxZAgAYNWoULr/8cpx++ukAuqo8C2WfffbBq6++6q5t48aNuPXWW7t1zn79+uHGG2901yqlxJVXXglNK4+CBgadRERU0Xq6t141U5aEkSToFKGuMFIphWBDe9JA2e3NlwJ7cmavVFuSCzeMKPlk9egQsnPL7pjbol9njq4KzOQBldBMNLz+OfSOyNR4PflQJmcIlhN0KqUQ3NmecFxRg86ITEWG8Tc7zy/c3FmmW9ftbetlubYyXBMREVWv/fff372s66n/jaHrOp5//nkAwKxZs9C3b19cdtllAIDPP/8cn376aUHXVVtbi8WLF2PgwIEAgIcffhitrZl30WRyySWX4KKLLgIA7N69G4sWLer2OQuBQScREVU0maQvIGVHWsIOm5RyAyatzR8THhveIKRuuYFQTLWekGm3ULMnZ/ZKtSW5UI/bubERVtiA4QvFhOfRQZPe6oc0LSipYAU0mElCRmcQT6owMLC9FVI3EWqwQ0uhW0mDTieYj378pEFnKT4oyVTRGdJhRU2BtwIarKCetEK6GKxw+ipsaUV+/stwGFG6D2KIiIgK7auvvnIv77PPPimPe+mll9zt4//5n/8JAJg5c6Y7KMip9iykUaNGuY8VDofxxhtvFOS8119/vXv5b3/7W0HO2V0MOomIqKJFb02lHEk74FSWhAjbwVDrR5tjegKGm+xwxQk6TX9XiOVstzb8iVWhgF2BRtlJNsinkighIXULgfqWmEAuoaJO2SFksKEDZmco4TxuRWeKMNAdZqSc3p9m0mPjw3ehmQn9QIHSBJ2ZJqeHmnwxQ5mskA7fl7ugtSZuve9pVkiHFUy/DU1o5fvaZUUnEREVy4YNG9w+lccffzz22muvlMc6QebXvvY1TJkyBQAwaNAgfOtb3wIAPP300xCi8L/jnHHGGe7l9957ryDn/OY3v4khQ4YAAFauXAnLKv2/Cxh0EhFRxVJK8RfZbpKmgBXSoSLDYVo/2RZzuxOuOFVd0T0CnTApWZ9PaQmEGzM3OidbvoOFyonW5ocZ0KBF9cJMVlGnt/kR2tXe1Y8zSqbvg1slHAk3rYCW9DFE3Hn0tkDS9woryfb5npbpPSu4vTVmS70IG/DXtyQNhnuaFdIzhvCGL5j29lLi/x+IiKiQmpubsXbtWvfPF198gffeew/33HMPTj31VITDYQwbNgz33XdfynO0tLTgtddeAwBceumlMbc5FZe7d+/G66+/XvD1H3300e7ljRs3FuScNTU1OPLIIwEAgUAAjY2NBTlvd/Qp9QKIiIjyVY4TiCuRpdlVcR1fbLenUEcVyDkVnE5gYGkGhGaitn9f6O0B+5gkQadvw67k/R/Lb3drWaiKymRpDySyImG4ksqtFI7WunobtBYf+u8xJPEUTk/NFNug3b6vkfwqtKsDQyeOTTxPfGCqVNKt1SXp0SkklFTw1HiS3i7itopbYRPSsFDTt7YYy4ulAJlm4Js0LPi3JB9WVg4yVc8SERHlYsGCBViwYEHS22pqanD11Vfj+uuvx8SJE1Oe45lnnoFp2v9vdYJNx5lnnokxY8agqakJS5YswfTp0wu3eAB77LGHezmbyev5nnfChAkFO3c+WNFJREQVi7/EFobQDCil0Prxlsg1diCkpIoJrQBAmRJmUIOSEkZkIEyygUZtcZWhlUJlmhTTE48p0w91qiQibLi9N4VmJN1W3v7ZVwjuaE86QbxrGFFyTrju/D2Fd/sSgkEAMAOJ51ZSJXyfk923xymVcmt+qjWWsjIxXUWn0RlGeHdpeodmQ/XAtj8iIqJkpJR49tlnsWDBgrSDiJxt68cddxwOOuigmNtqa2txySWXAAD+/ve/o7OzsG2gBg8e7F72+wvXEqenzpsvBp1ERFSxqqIKrgwIzYQV0BHYHukLqCKDijSjKzCKTM8WmgFpCBi+kBs6xQ9JMf1h+DaVfttKPkox3MrsDFdNdbLZGXarKVNVS0rdhLJE8nDXyf9SBIFulXBUj874ymGhmUmDdiUVAvUtsWspwfddSZkyUI+vqAYiH0SUMOhM105AWcKeul6mynltRERUeX7961/brbOi/oRCIXz++eeYP38+AoEA7r//fpxxxhkIhRJbzvz73//GJ598AiCxmtMRPTDohRdeKOj6o0PIoUOHlv1588Wgk4iIKlam6i/KjtBM+L7c5YZHSimYfg3Skm7Q6VR0WmEDyhII7/a5QVZ8RVfbp1+V5QTmVKJDJ6EVv8LP8IYgzeoIZLRI+A1kHvSjZJrnnOLl4wSTzl+ZEjKhKrPlo01JKzWVlOjc3BTz961ECSp4RfKKTqVU0kpUq+QVnam3rpegADonkj06iYiohw0YMACHH3447rnnHjz00EMAgPfffx933XVXwrFONWefPn3cys14xxxzDCZNmhRzfKG0tra6l0eOHFn2580Xg04iIqpYihWdhSEVtJauT2INXwhWQIPe5nf787lb1y0JoZsw2rsGkIi4gS5pt62XYTCiRU2HT9pXtIcZ3iBkGUyoLAS7IjESimcY9JOqDycQGz47gagSsitAd0J5IWHFhdPuwKLEk0Jr7oQWFcynDVt7SGhXe9KA0L9ld9IJ51pzp92mo0SpYroqZxEufo/TXLCik4iIiumKK65wg75FixbF3CalxFNPPQUAsCwLo0ePhsfjSfpn/fr1AOzJ6PX19QVb35o1a9zLX//61wtyTiklPv/8cwB2NeeYMWMKct7uYNBJREQVi1vXC8cMdPXZ1Fr8MP1hhBu9kIYzHCYSNkWms0dXnsmoPnjBnW0JW9nLXWhXu1spmK56racYvhBUlVR0RlceZhz0k67qN+omp+oy5ufdDToTBx6lClCVVJCGBe/6hqTrLZbOzbuThpYtH21O2nc41NAOJUTJqifT/Uwk67NaTtijk4iIiqmmpsbtu9nY2Ii2tjb3tv/7v/9DQ0NDqrsmpZTCE088UbD1/eMf/3Avn3TSSQU558qVKxEI2Dt6pkyZgtraEgxPjMOp60REVLFKMTG5WlmBru+l1twJ068htKujqz2AEx5JO+jUWrsqQKOrpgLbYnsgVgK9NQDTr6HfiEElqei0gnrVDCOKCTozbF1PF6B1bmpEsKEdg/YeCbMzhH57DIk5XimFT29bBiiV0G4gZdAZCUxDDe0Zj+1JRkcwadAZ2NaCPY7eP+F606+h79ABGb+fPSU6fJWWQE2frl9gyj3olEJCaAZq+9eVeilERNRLWFG7dKIvO9vQ+/Xrh0WLFqGmJn3d4T333IM1a9bgiSeewK9+9atur6ulpQVPP/00AGDQoEE466yzun1OALj//vvdyzNnzizIObuLQScREVUsvSOQ+SDKiunvqujU2/wwOkMI7mzr6onobF1Xyu7RuavDPT46CDF8iY3Xy53eHoDhDZYs6BSG1SuDznQfVKioyeShRi/67TEk5nipW+7flRVX0ZmyUlQpKBU7RbwUW9cjS4n9WipYYSNllboSEnpbid7vohYrDSsu6Awnu0fZkIYF068x6CQioqIIhUJYt24dALt356hRowAAgUAAf/3rXwEAZ555Jr73ve9lPFdTUxPWrFmDTZs2YeXKlZgyZUre65JSYs6cOe6ApHnz5hWkl+azzz6LpUuXAgDGjh2LOXPmdPuchcCt60REVLH0dgadhRId8Ckh0bpqi93r0GmJGAmPOjc3QZoiJmSO3h6aKegsx2DE9Ift7eNKQe8IZr5DgYmQUVHDm9LJZet6ulBZSWX/ERLhJm/C+aJfZzKuMjTVRHMlJZSUbmWoUqp07yFxa7RCul2dmqLKVVoSZmdpfnac76cVNmLWp7f5y/LnOZrULVhJBlMRERH1hFtvvRXhsP3/xrPPPtvdxr1s2TIEg/a/Mb/zne9kda5vf/vb8Hg8ALo3lGj79u34j//4D7zyyisAgIMPPhi//vWv8z4fABiGgXvvvReXXXYZAKC2thaPPvoo+vXr163zFgorOomIqCIppRKmfVPhxIdUSkooIe3t7EdYcT0Uu8KtTGFMx793YsjX9iroWrtLSQXTF4LpCyG0sy3zHQrM6Ky8KthUlFRuhpdxGFG6ppMKgFIwvEH3NRU9qCc66Izvs5muR6cV1OGJbBXr3NgYM1SrmOLX6Py8md7krwUlZOkmr0fWGtzeirphAwHYwWzrv7YlnRJfbuKHpREREeWrubkZa9eujblO0zRs2rQJS5YswWuvvQYA6N+/P2677Tb3GCeo7Nu3L84///ysHmvChAmYPHkyVq1aheeeew5/+MMfUFeXuEPB6/XGrCkcDsPr9WLdunV455138NJLL7lb6L/+9a9j+fLlGDZsWMbHjz6nEAJerxcNDQ1YuXIlli5diqamJgD2Vvw//elPOOecc7J6XsXAoJOIiCpScHtrySqceiWpoHuDdo9OI257rerq3Wdk+DvxfbkLwDE9t848KKlgeEPo3LLb7eNYzMeuptdxdBgnutNTUin378UJ06KD0+jekDI+AEw3jEg3UNPP/udv25r6/NfXXXEhr4hUHaYKvZUlShZ0OqFs4KtWDDt4HACgY+0OWH4tprdvuWJFJxERFcqCBQuwYMGCtMfsueeeePLJJ3H44YcDAHbs2IG3334bAHDaaadhxIgRWT/ed77zHaxatQodHR146aWX8O1vfzvhmBdffBEvvvhi2vMMHToUV111FW677TYMHDgwq8d21p+Kx+PB6aefjt///vcZjy02Bp1ERFSRwk2+jBVjVDhKKmjNnQDQNaAo+nYhgT61bmCTSlkOkFJ2oNZ/z6Hpqwx7gNBNmOX4PSmAjAFTpu91pG+lE3SaURWd0fdNqOhMs3Xd0gz0sXeBlaQfq7uWJD06gdQ/H8JI/JkrGrdXagcG7m3389Ja/Gl7ipaTTO9JRERE3VFXV4eRI0fi0EMPxfTp0zF37tyYMPPJJ5+EjPQETxZUpvPtb38bN954IwC7KjTT/T0eD4YMGYKhQ4di7733xtFHH40TTjgBM2fOxKBBg3J8Zl369++PYcOGYeTIkTj88MMxefJkXHDBBe6E+XLDoJOIiCqSkqpkU4h7IyVlV9AZX9EJQJp2RafMEMgoIe1j+9amPa6YlLKrVaWQmcO3AjM7w1AVEBblxv4eZgwSM3yrlVKQhgXLqehMEQIqK37revLKR6cXqjSFO1SrZBKSzkjQmeI9LdnPXLHY/VIlRNhEcEcrRhw6HoY3CBE2SjbMKRdWSIdSyu1zRkTU24ydUx19wEtl2rRp3fog/KabbsJNN92U130POOCApI+933779ciH807laaXjMCIiIqpISsqqGeBSCZRUCDfbPVGTVXQa3mBWW0SVUknvX1JKQW/1w+gIFr2iU2/zF/XxisEJHrtbMamkgtBMt2pQa0n+vUrY0p1q63rkOGkKGN4QQrs6urW+bokfRhT52Un5PSvy6zL2oRVCjV4IzURoZzuUkBBhA5Zmlq5vaA5E2GRVJxERUS/CoJOIiCpSqoEj1EOksqewA0m3q2qt/uzCBKXKbrurUnYI5tu4q+jhudZWoqnfPUialt0Ps7vbrSNTyJ3wWUsxfEyK2NdTxvcGpdD+aX1pt66nGEaUaup6SUmFwLZmSMNEqMkLYViQpohUdJb/+7AZCDPoJCIi6kUYdBIRUUWqhEqiaiJ0E+FGL4DkA1NEyMguOFJdFaHFrp5MxdnCbLQXv6LT6CjN1O+eJDSz+yEnIhWdugkou+Ix1bbubHt0Ruvc1NTt9XVLXGWzf1szgOQfIpSaUgrh3T4I3YIIGTA6gu4HG5XwPqyX4OeaiIiISoc9OomIqDJVQG+4auLf2uyGGlpr4hZiKWTW041L2W8wmZhwqYh5iDRFeVbwdZMVMgrzvJSC0Cx3+nrKw+J6dGazzVsrccsApZyfAw+UEPCua7CvF+UXyCkhYfp1N5ht+7TerpD0ADV9y/9XCaMjWBGVp0RERFQYrOgkIqKKxF9ciyvc5HUvW34t4XY7DAlndS5pCjsULZMqKxk1lKaYlV9W2EgM6aqANKyCbAu3t7+bgFIwfKkrXxMqOrN4b0j2Gi6qSEWntAS8G3a5VcVlOdxHKlhB3X2t+tbvsq9XKEjlbk+zQjr7ORMREfUiDDqJiKgy8ffWsqJE11T2TKRh2f0Wy+TvMGbqeREDERHSK2Lrbz5SbTPPibKHESmlYHSkqeiM+x6W4/bveCrSq1aZAv4tu7uuL8PXg1IqpsdlQf5ui4xb14mIiHoPBp1ERFSRZBkGAr2ZEhJ6e3aDdaRpIRTp91kOooOxolZ0VnXQ2f3hL+5AI6mgd6R+bcW/F6gKCDoh7aBTGBYCX7XGXF9ulFQxf59Cq8DBPmX4fSUiIqKewaCTiIgqkplkIA6VjpLSnRydiTQFQg3tZVF5p6SMDRuLGnQaEEb19egE7GrV7nKrHpVCaEdb6gOlitmuHt2KoFwpISFNC+Emb9lPBDe8wdgt6hWYGbKik4iIqPdg0ElERBXF8IVgBrS0w0mo+JSQWW9plaaF0K7yCDrj11DMPESEjbIbzFQoZrAAPTClvXUdSiG4qyPtodFhdSUEnVJIN/Av96peraW0g5sKIb5vq1KK4ScREVGVKv9RiURERFFCDe2oHVAHw8egs5woobKu6LRCBsLNnWURNCSErUWu6KyEYS75CO1s7/Y5tDY/tBa772um7ehKSKBvrX25AgY8KSEBBQQb2su+DYeqgOA4o7ifa6GZUKZA36EDSrQgIiIi6ims6CQioooiTWFP+O7MbsI3FYcSkUnqWQjuaCubnnkJFZ1FXJcV1iGqNOiM6TuZp/ZPv8r62Eqr6HTWG2roqIhgttLF/1wLzeSHZURERFWKFZ1ERFRRpClghYyy3+7Z21hBI+vw0qnSy1Q9qaSCp8aT8XxCN1Hbr29Wjx0voQq1SBWdQjcjW9erM+jMtro3HaMjmPWxTlWkErJsQvR0nIrOcu/PWTWkguELQUn79aGUgtCrsz8uERFRb8eKTiIiqijStLLuBUnFY/qzr7DNthpXyezC7O6ERfHrLlZFpxXSq3rrerEpYVdxVkI1J+AMI6qMtVYDpRQ6NzXBCuoI7mwHJIrbkJeIiIiKhkEnERFVFGkKiBCroMpNttvWAXvbaFayDB2tbrwetv99dczXSsiiVAtbQQNWSGdlcoE438dKCQ+lJWGF+YFNsSipEKhvARTQtqYeQjeZcxIREVUpBp1ERFRRpCkYEJShvCoTM21dzyKJUEJ2a5t0/H1F2Mi6krQ7hGawR2ABOX0uK2U7shIChpd//0WjFKyQjvZPv4J/627o7QFWdBIREVUpBp1ERFRR7K3rrOgsN93dgp3s/tlsIxe66Q70ybU6UkmVMAhGaGbRtq8bHQy6CsV5Dchsq4VLTAkJK6CVehm9hpIKWqsfLas2Q1kS4WYfwJyTiIioKjHoJCKiimIPI2JFZ7mReUyOji6oCjf7kpw0cxJheEOAUnZwlGOvTpWin2PRJq+zoqxgnMFFQq+MnqfKkllVLFNh+Lfsht7qj512z+8/ERFRVWLQSUREFUWxR2dZcobB5Etr7kw8ZxZbyA1fCEpICN3MuT9jqsE17JtZefT2AIDK2bouhWTQXURt/9oW83W4ycvvPxERUZVi0ElERBVFClkxVVu9Sl6ZQdedkvXZzGaCtuENItzktbeh5xh0pqzcLFZFJxWMHqnolBUSdCohmbMVUfwANKFxGBEREVG16lPqBRAREeVEKkijMsIMyiAqaEg2iT2bCk3DG7Krs5BdMJrVsoowjIgKy3ArOivjQxDFis6Skqbg95+IiKhKsaKTiIgqhhU2ItuUKyPMoOwJw4Tpjx3O4vTdlKb99236wwn3s4IatDY/pGHlvHU9VRVqMXp05rxWSkv32hWdRuS/5U4J6fYVpRJQikEnERFl5e2334bH40n5Z/DgwZg4cSIuu+wyvPnmmynPU19fn/Y8yf5861vfSnm+nTt34tZbb8XJJ5+MPffcE3379sWAAQMwfvx4nHLKKbjuuuuwdOlS+HxdffCnTZuW8xri/yxevLiA392ewYpOIiKqGFZQg5Ky2xO+qfxIw4LhDaLvkP7udUoqWEEdtf36oqZvH+gdQfQdMiDmflbYhOXXYIX0PCo6kwcdRQk6+RouKMuvQRoWtLZAqZeSFSUkwkn60lLxMOckot7i4pebS72EHvPcuaNLvQQEg0Fs2rQJmzZtwpNPPonZs2dj0aJFqK2t7bHHfPjhh/HTn/4UoVAo5nrLstDQ0ICGhga89957eOCBB3DxxRfj2Wef7bG1lCMGnUREVDFMvwYlFIfFVItI0iAtAaFZEPHhn1QIN3kxYOxw9FH90PT2Ohw4+5SYQ0TYgDQFzIAGDzw5Pbzvy8bkyyrC64tBZ2FJU0DoFqyAlvngMqC3ByHCHKpWUkw6iYgoR9dccw1++MMful8rpdDe3o6VK1fivvvuQ3NzM5YsWYIJEybgjjvuSHmeCy64IO3tjqFDhyZc98wzz2DevHkAgP79+2Pu3Lk4++yzMX78eCilsGvXLqxevRrLly/HmjVrYu772GOPIRhMvqPkl7/8JV588UUAwOuvv45x48YlPW78+PEZ111qDDqJiKhimH6N/ROriIIdKkrDsv9e44IHJSQ6NzWi38jB8G3YhfBuX8I5rEhYZAU01Pary3EByYOOQvX6TCch1KVuE4ZZMQFyaFd7qZdADDqJiChHo0ePxmGHHZZw/dSpU3H++efjmGOOgaZpeOCBB3DLLbegri75v02HDx+e9DyZCCHwX//1XwCAIUOG4P3338cRRxyRcNz555+P2267DevXr8cXX3zhXr///vunPPfw4cPdyxMnTsR+++2X8/rKBXt0EhFRxTD94aRDa6hCqUgfzqAeGc4Sd7OU6NzUBKGZ6Ph8e9JKS+f1YAUNKJHj1PUUQYcqQtBZKdPBK4nUk1QFlym9vTK22Fcz5pxERFRIhxxyCM4991wAgN/vx4YNGwr+GB999BGampoAAD/4wQ+ShpzRJk2ahFmzZhV8HeWOQScREVUMszOMcHNiVR9VKKWgpES4yQslZELwGGr0wvCG7EFFAS1p0OlU8AndTDVbKM3jJ7+6GIOCrDCDzkITulk5Q54YspUek04iIiqw6IpJXdcLfv7t27e7lw888MCCn79aMOgkIqKKEdrVAcmJ61VDSQUlFMK7fXZAFRc8dG62P7EWYbOr6jOOE3RK3co9PEpV0VmEHp1CY3/GQpOGBWny/YGyk6qim4iIKF9fffWVe3mfffYp+Pmjt8KvX7++4OevFgw6iYioIlghHWZnuNTLoAISugklJIzOMPQ2f0JQ6QyWMf1hWMHEik4lpHudMEzkmnSmyjmKMoyIgX3BCd2CNCqkopNKjzknEREV0IYNG7B8+XIAwPHHH4+99tqr4I9x1FFHuZf/8pe/4M033yz4Y1QDDiMiIqKKYHhDkDn2YKTyprV0os+gftBb/fagqbjk0em/afrCsEKJFZDR/RiTVXQqpeDxpJnEnqqiU/Z8AiJYeVhwImwUpb8qVQlWdBIRUY6am5uxdu1a92ulFLxerzt1PRwOY9iwYbjvvvvSnsfr9cacJ5X9998fgwYNivl6xowZWL58OTRNw+mnn47JkyfjnHPOwfHHH4/Jkydj1KhR+T/BKsGgk4iIKoIV1KEsTlyvJsGvWhFq6IAZqdyMDx6cfovhFl/abetA8inmVkBH3yH9Uz6+M7E9XjGCTlZ0Fh7791IuuHWdiIhytWDBAixYsCDpbTU1Nbj66qtx/fXXY+LEiWnP8+KLL+LFF1/M+HhvvfUWpk2bFnPdY489hunTp+Pjjz8GAHz88cfuZcCemH7WWWdh7ty5OProozM+RjXi1nUiIqoIQjMhWa1VVcLNPrSs2py0r6ISsivo3OWNud4hYyo6zYTgwugMpX18kaRKFLCnvfc09pIsvPCujlIvgSoJc04iIiogKSWeffZZLFiwoEcGETlGjRqFFStWYOHChUmDzI0bN+KPf/wjjjnmGFx22WUIBoM9tpZyxaCTiIhKrvnDTRmDH6EbrOisMsHtbYBUbl/F6EpK7/oGiEjFpRXq+seijAo6rWDX9ckqOvW2QFe1aBJmMMVtxajoZC/JgtO9ve8f8pS/EINxIiLK0a9//WsopWL+hEIhfP7555g/fz4CgQDuv/9+nHHGGQiFUn/gfvnllyecJ9mf+GpOR9++fXHVVVfhk08+QUNDA5599ln87Gc/w8knn4y+ffu6xz355JM4//zzIXpZ+y8GnUREVFKhRi92vvIpRIatvCLMis5q5VZmRuWLQjeTHhtd0WlEDadKthVcb+2E1tKZ8nGjA9SYxyhCRac9PIkKSYT5PaXsef+9syg/60REVN0GDBiAww8/HPfccw8eeughAMD777+Pu+66qyiPP27cOFx88cW499578e6776KpqQk33XQTamrsuO/NN9/EM888U5S1lIuyDTp1Xcfu3bsh+Q8QIqKqtvvd9VCWiNmGHE/opj2YpgiVdlR8TngZvfU8VQ/L6KDTjNqaLnQzJiiVlkCwoQOmL/Wn6akfo+tE0VWjheQMWqLCSfceQhTPCukIN7GvKxERFc4VV1yBkSNHAgAWLVpUkjWMHDkSd911F2688Ub3uhdeeKEkaymVogedgUAAr7zyCl555RUEAoGE21tbW/Htb38bQ4cOxbhx4zBixAjccMMNPdrjgIiISsfZPpwupNBa/LC05P0UqYpEBZ2pKh6jp2rHVHQaFqKTzuCONoSbvG6fz6TnSvFhavT1gR2tGZedK2lYHEZEVAb0tsTfRYiIiPJVU1ODgw46CADQ2NiItra2kq3lqquuci9v3ry5ZOsohaJPXV+2bBnmzp2L8ePHo76+PuY2KSXOOecc/Otf/3KrOvx+P+6//37U19dj2bJlxV4uERH1IKWUW9kmdAvSFKjpWwslJDy1Ne4xemun26+RqlgWFZ3RPToNb1e1pjSFe3fTryHU0AHDG0oIOpVS8Hg89uUUFcLR14d2tmP4wXvn9jwySDXtnYiKS+9g0ElERIVlWVbSy8U2btw497Lzb9/eougVna+//joAYObMmW7PAMdzzz2HTz75BABw9NFH4/rrr8fRRx8NpRT+9re/4bXXXiv2comIqAcpS7rb0aVhuv0Urahp2MoUCLd0xoRaVJ2iY8dUPVujB1LF999UloThDaJj7Q6Y/jCgVEJf1+it71CZg04zoBV8S3SqgJWIiktvZ9BJRESFEwqFsG7dOgB2785Ro0YV9Pwqxb9dk1m9erV7+YADDijoOspd0YPOtWvXwuPx4IQTTki4bcmSJQCAY445Bh9++CF+97vfYeXKlTjuuOMAAI8//nhR10pERD1LWsINt7S2gDscRlqWO4xGWgJacye0Vn+JVklFEwkmlVKphxFFgkslJPS22NeENC20ramH2Rlyp607FZ3OdnQnKFVSpQ4co7auC82E4Q3Z0y8ZUBJVFQadRERUSLfeeivCYbu10tlnn43a2tqCnv/VV1/FrFmzsGbNmrTHtbe34yc/+Yn79QUXXFDQdZS7om9db25uBgDsv//+Mdebpol3330XHo8H1157Lfr0sZfWt29fXH311Vi1ahVWrVpV7OUSEVEPiu63qLcFUDdsoH29VBBhA7X9+kKaAlZQhxUJrqh6SVPAt74BQw7YK+UQIeeD7NCujpjqTgDQ2/z27VK6Q4Sc15jW4seAvYa5FZ1mZyj11nUVO4yo/bOvMPqEiZCmhbrhg7rzFImojBgdwVIvgYiIKkhzczPWrl0bc52madi0aROWLFni7kLu378/brvttpTn8Xq9CedJpra2FpMmTXK/llLihRdewAsvvIAjjzwS5557LiZPnoyxY8eirq4Ozc3NeP/997Fw4UI3ezvmmGNw+eWX5/N0K1bRg8729nYAQF1dXcz1H3/8McLhMDweD/7jP/4j5raJEycCAJqamoqzSCIiKgppSTe5MjqCMdV6lm6HStJMP5Gdqod3XQOGHjQGZkCD4QunOCrSw7u+JeEWrcWPumEDYQY1t6erU9Fp+sPoM7CfW9kpdAtmZ4rHiOSnSilYQR1tn9ZjxOETYIUMBp1EVcTw2h94eGp6V+8yIiLKz4IFC7BgwYK0x+y555548skncfjhh6c85sUXX8SLL76Y8fGGDRsGr9frfj1ixAgMGjQIwWAQn332GT777LO09z/zzDPxzDPPuIWEvUXRn+3AgQPh9/vddNnx7rvvAgAOPPBA7LXXXjG3DRgwoGjrIyKi4lGWcIfO6N6g209R6hZEJNyUpnAHFlF1Czd5MWT/PWEFNBidKXqyKkDoJsJN3oSbDF8IfQbWwfRr7mtGmgJmQIOyJLQWH/pGqobNznDKAN2p6BSaCSuk28dGKouJqHooIWH4Qug3gh9gEBFRfurq6jBy5EgceuihmD59OubOnYsRI0b0yGOdeOKJaGlpwT//+U+8/fbb+OSTT7Bp0ya0tbVBCIGhQ4div/32w+TJk3HJJZdg2rRpPbKOclf0oPNrX/saPv30U7z99ts466yz3Ov/+te/wuPx4JRTTkm4T0uLXbUxevTooq2TiIh6nrSk25fT6Ai61XdWSIc0ItWdluCU6l7CChuQpkC4uRMqblp6NK25063YjLl/ULeDzUgwCdg9Xo0OO0TXO4Ko7V8HJWX63nyRoNMK6u7jKKkgjEIF7uz1SVQujPYAg04iqmrPncscpTumTZuW0xCgVPbbb7+CnGfAgAE477zzcN5553X7XNEWL16MxYsXF/ScpVL0YURnnnkmlFJ46KGH8OqrryIQCODBBx/Exx9/DABJ/7I+//xzAMC4ceOKulYiIupZVlBzh86IsOH2XJSGBWna1XZCN1MOpqHqokwBaQp0bmpMfYxS0NsDSasx7deNiLyWhHtOrc0PaVowA2EI3bSruLxpevMpe9q6E5wCgOENpuwbSkSVy/SnapNBRERElajoFZ3XXXcd/vznP8Pv92PGjBkxt02aNClp0Pnyyy/D4/HgqKOOKtYyiYioCMKN3pjiNndCdtR1ZmcY4LTrXkNr7kTn1t1pj7FChtvaIJ4TkLtfWwJaSyf6DOgHSAWhmZCWvV01FaUUQg3t7uAiAPBv2Q0rxMpiomojdPaAJiIiqiZFr+gcO3YsXnrpJYwZMwZKKffPAQccgKVLl8LjiW0GvmXLFrz33nsAgDPOOKPYyyUioh4UiuuzKK3Y7cpWSE/dq5Gqkm9TY9pt61CA0Ay3t2s8p+VB19cW9BY/rJAOpSKVw0LC8KZ5XSmF8G5fTMuE8G4fQo0dOT0XIip/3DFARERUXUoyeunkk0/Gtm3bsGLFCjQ1NWHs2LE46aSTkk6CamxsxK9+9SsAiOnpSURElU9v9cd8LeMCLt+GXRxE1NtkrN5V7pCgpHePq+g0fCEoBdQOrENtv76wQkbGretK2SF7nwF1XdcJmTJcJaLKxaCTiIioupRsxnxdXR1OPfXUjMeddNJJOOmkk4qwIiIiKjYtLuiMDzW963aiz+D+xVwSlTvlTENPvo08Piw3vCE34Kzt1xdWUIOyBIzONH35lB2mqqjQVUmVUHFMRJWPH2AQERFVl6JvXSciInLEB5v+SG9GJSSkYaFz826IMKttqItSyq7ASjG1Mj7oVEJC6BZE2IDQTIR2dUAKmbZy1L5PfNApY4JOYVgxt+f0HKJ6fxJRacVXgRMREVFlY9BJREQlkSys0lv90NsDUEIg3NwJaVgIx/XxJEq31TRZ1aXQTYiwgcBXrZCmyBg0KqkiQWfXcUooQCr3OqmZiJmklQNlMegkKhfxH44QERFRZSvZ1nUA+Oyzz/Dee+9h69at8Pv9ECL9PzQ8Hg8effTRIq2OiIh6UqpJt74vG+HxAFqzDwCgtXQWc1lU7lRiJXCMJFWWUjdhabUQIQO1/frATLdtHfbAIqnFBvHCsB9TSQVPjf11H9Uvr6dgBZP3FyWi4mPQSUREVF1KEnR++eWX+P73v48PP/ww6/sopRh0EhFVEZmiKs+3cReGHjgG4d2+Iq+IKoJSKV87qUhTwAoaUJaAtAT0tkDa482gBqHHbk0XzgT2SPiZKqjPhulPH7QSUfGw9y4REVF1KXrQ2dDQgFNOOQWtra1QkV8WBg8ejBEjRqCmhjvpiYh6C2kkD4r8W5sxaPwerHqjpISeehBROk44qoREKEM7BCuoI9zkRcNrXcc5282dIs/wrg4M2GsYPDmuQ2gmTL+W472IqKcoVnQSERFVlaIHnXfeeSdaWlrg8Xhw5ZVX4mc/+xkmTpxY7GUQEVGJpaqiUaZA56amIq+GKoXhDXUrBFdCIvhVa9pj0p4/knR2rN2BkUftl/PjG74QKzqJygi3rhMREVWXogedr732GjweD2bPno2FCxcW++GJiKgM+Lc1Y/vfP0l5e3BHWxFXQ5Uk3OTt1tRyaQqY/vRb191t6slEgk7/1ua8ZhFZIR2GN5T7HYmoR3DrOhERUXUpetC5a9cuAMDs2bOL/dBERFQGzM4wtj77Aax023dVftOsqfoFd3V06/5CMzMGlDJNkKqUvX3eDltzf50qIdl/lqiMsKKTiIiouhS9KeaIESMAAMOHDy/2QxMRURnY/tIn6UNOojS0boaE0sxiiFCSye0upbp6hOaRxyshobX5c78jEfUIxYpOIiKiqlL0oPPYY48FAGzcuLHYD01ERGVAb0+/bZgone5sW7dP0M27S+Vubc/nVEqq9EEqERWV4g4CIiKiqlL0oPMnP/kJlFLsz0lE1EsJzSz1Eojyp6J6eOYRkHQ7qCWigmPYSUREVD2KHnSeeeaZ+PnPf4633noL11xzDUyTv/ASEfUmJretUyVTKm0Pz0w4+ISozChA6lm0tCAiIqKKUPRhREuWLMGkSZNwwgknYOHChXjppZfwne98BwcffDAGDhyY8f6FGmLU3NyMVatWYdWqVfj444/x8ccfo63NnvJ7+eWXY/HixRnPsXjxYsydOzerx3vssccwZ86ctMeEQiH88Y9/xAsvvIAtW7ZA13VMmDAB5557Ln7yk59g3333zeqxiIjKlRXS2Q+NKppSqlvDspTFik6icmKFDFZ0EhERVZGiB51z5syBx+Nxv25sbMSDDz6Y1X09Hk/Bgs699tqrIOcplM2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjBKtkIio+wxfqNRLIOo25fTYzCMbkQYrx4jKCT98IyIiqi5FDzqB8uuDs88+++Dggw/GG2+8kfc5Xn/9dYwbNy7l7ePHj095m9/vx7nnnuuGnFdddRUuueQSDBgwAG+99Rb++7//G52dnbj44ouxYsUKfOMb38h7nUREpWT6wqVeAlH3xFR05v7vGcGgk6j8lNnvJkRERJS/oged27ZtK/ZDJnXLLbdg8uTJmDx5Mvbaay/U19dj//33z/t8EydOxH777ZfXfe+99153Cv0999yD+fPnu7dNmTIF06ZNw9SpUxEKhfDTn/4Ub7/9dt7rJCIqJaOTFZ1U2ZRSbkVnPtmIFWCPWiIiIqJK8fbbb+PUU09NefugQYMwbtw4fPOb38TcuXNx2mmnJT0un8zpggsuwN/+9reY62699Vb85je/STi2rq4Ow4YNw7Bhw3DQQQfh2GOPxRlnnIFTTjkl4+OkWpvH48HQoUMxbNgwjB07FscccwyOP/54zJw5E4MHD87puRRT0YPOcukzmeyFUQqmaeKBBx4AAEyaNAk33HBDwjEnnHACrrjiCvzlL3/BO++8g48//hiTJ08u9lKJiLqNFZ1U8VT01vXck85wk7ew6yEiIiJKw/PYz0q9hB6j5v621EtAMBjEpk2bsGnTJjz55JOYPXs2Fi1ahNra2qKuwzAMtLS0oKWlBZs3b8arr76K22+/HZMmTcJvfvMbXHTRRTmfUykFn88Hn8+H7du346OPPsJDDz2EIUOG4Morr8Ttt9+OQYMG9cCz6Z6SbF2nLm+99RZ8Ph8AewhSTU1N0uPmzJmDv/zlLwCAv/71rww6iagiGb5gqZdA1C3SFF0BZx4VneEmX2EXRERERERFcc011+CHP/yh+7VSCu3t7Vi5ciXuu+8+NDc3Y8mSJZgwYQLuuOOOlOe54IIL0t7uGDp0aNrbFy1a5GZDTijZ0tKC1atXY/ny5fj888+xfv16zJo1C1dccQUWLlyYMnNKtbZQKASv14t169bhnXfewfLly+H3+3Hffffh5ZdfxvLly3HQQQdlfC7FxKCzxN5//3338tSpU1Med+yxx2LgwIEIhUJYsWJFMZZGRFRwWqu/1Esg6hat1e/2Gs+157jZGYYV0ntiWURERETUw0aPHo3DDjss4fqpU6fi/PPPxzHHHANN0/DAAw/glltuQV1dXdLzDB8+POl5crX//vsnPc/MmTNx55134qWXXsL3v/99tLa24tFHH8XIkSNxzz33pD1nqrWdddZZ+OlPf4rt27fjyiuvxD/+8Q9s3LgRM2bMwIcffogRI0Z0+/kUSvoot4cJIbBs2TJcc801OPnkk3HooYfi0EMPxcknn4xrrrkGy5YtgxCVMQlx7ty5GDduHOrq6jBq1Cgcf/zx+OUvf4mGhoa091u3bp17+eCDD055XJ8+fXDggQcCANavX1+YRRMRFZGSCnoHKzqpsumtfiDPqevh3d6Cr4eIiIiISu+QQw7BueeeC8AeOL1hw4YSrwg477zz8MEHH2DIkCEA7Pkw//rXv7p1zn322Qevvvqq+1w3btyIW2+9tbtLLaiSBZ2vvfYa9t9/f8yaNQsLFy7EBx98gPXr12P9+vX44IMPsHDhQsyaNQsHHHAAXn/99VItM2tvv/02GhsbYZom2tra8NFHH+HOO+/EgQce6G45T2bnzp0A7Aa2w4cPT/sYEyZMAAC0tLRA13OrCNm5c2faP42NjTmdj4goV9K0oMzK+PCKKBXDF4qq5Mwt6dRaA4VfEBERERGVheiBPrlmNj3loIMOwt133+1+HX05X7W1tVi8eDEGDhwIAHj44YfR2tra7fMWSkm2rj/xxBOYO3euPbk08svCfvvthzFjxgAAmpqa8NVXX0EphR07duDcc8/F448/jksvvbQUy03rgAMOwIUXXogpU6a4QeTWrVuxbNkyLF26FJqm4eqrr4bH48G8efMS7u/329s4s5lYFd3kNRAIoF+/flmv01kbEVGpSFPkvNWXqNyY/jAghwPIfRaR3sGgk6gs8X9NRERUAF999ZV7eZ999inhSmLNmTMHN998M7xeL15++WWYpom+fft265yjRo3Cf/7nf2LhwoUIh8N444038L3vfa9AK+6eold0fvXVV5g3bx6klBg4cCDuuOMONDU1YevWrfjggw/wwQcfYOvWrWhqasKdd96JwYMHQ0qJq666Ctu3by/2ctOaOXMmNm/ejHvvvRcXXnghJk+ejMmTJ+Piiy/G888/j7///e/ui+f6669HU1NTwjk0TQOAlL0bokUHm+EwJxcTUeUQuglpWF1bfokqlBnQoLVFAssck06jnUEnERERUTXasGEDli9fDgA4/vjjsddee5V4RV0GDhyIE044AYA9XKi729cdZ5xxhnv5vffeK8g5C6HoFZ1/+MMfoOs6Bg8ejHfffRff+MY3kh6355574qabbsL06dNx8sknIxgM4g9/+AN+97vfFXfBaQwbNizt7TNmzMAtt9yCX/3qVwiFQnj00Udx8803xxzTv39/AIBhGBkfL7r0ecCAATmtdceOHWlvb2xsxHHHHZfTOYmIsmWFDFZ0UlUwvCGE6zryuq/OoJOIiIioYjU3N2Pt2rXu10opeL1ed+p6OBzGsGHDcN9996U9j9frjTlPKvvvv3/Mzt7uOProo/HKK68AsPtqfvOb3yzIOR0bN27s9vkKpehB5xtvvAGPx4P58+enDDmjHXnkkfjZz36GW2+9Fa+//npZBZ3ZmDdvHm655RYopfDOO+8kBJ1OU9hAIPMvP8Fg1xCPbLa6Rxs/fnxOxxMRFZII6Xa7ElZ0UoUzfSH0GRDZhZFDcG8FdYR3d/bQqoioO/ghHBERZWPBggVYsGBB0ttqampw9dVX4/rrr8fEiRPTnufFF1/Eiy++mPHx3nrrLUybNi2fpSbYY4893MsdHfl9aF+McxZC0beuO9vPo0tcMznzzDNj7ltJRo8e7f7lJ5vA7gSQwWAQXq837bmcqsw999wzp/6cRESlZoUMSEPk3tSQqAyZnXb7mFxezsIw+fonIiIiqlJSSjz77LNYsGBB2QwiihZdLOfMiinHcxZC0YNOIeyJu7W1tVnfp08fu/BUStkja+ppHo8n5W2HHHKIe3nDhg0pj7MsC1u2bAEATJo0qXCLIyIqAiukwwrpHPhAVcEKO/94zf4FLQ3RM4shIiIioqL49a9/7Q7Vdv6EQiF8/vnnmD9/PgKBAO6//36cccYZCIVCKc9z+eWXJ5wn2Z9CVXMCsUHk0KFDy/achVD0oHPvvfcGAHzwwQdZ38c5dty4cT2ypp7U0tKC1tZWAMnXf9JJJ7mX33nnnZTnWb16tbt1/cQTTyzwKomIeo6SEkIzEd7tK/VSiApDxf03C9KwemQpRERERFQ6AwYMwOGHH4577rkHDz30EADg/fffx1133VXilcVycikAGDlyZNmesxCKHnSeeuqpUErh7rvvxq5duzIev2vXLtx9993weDw47bTTirDCwlq4cKHb92fq1KkJt0+bNs0davT444+n7BG0ePFi9/LMmTMLv1Aioh4iLQlpWtAYdFK1yWErumDQSURERFTVrrjiCjfwW7RoUYlXE2vNmjXu5a9//etle85CKHrQ+eMf/xg1NTVoaWnBN7/5TSxdutTdzh5NSomlS5diypQp2L17N2pqavCjH/2o2MtNqb6+PuYvNZnly5fjtttuA2Cn/HPnzk04pq6uDj/5yU8AAOvXr8dvf/vbhGNWrlyJRx99FIAdlk6ePLm7yyciKhplCSihoHcEMx9MVEGklX1LHVZ0EhEREVW3mpoaHHTQQQCAxsZGtLW1lXhFtlAo5O6UHjx4cFaDwbPxj3/8w70cvVu51Io+df2www7D7bffjptvvhm7du3CxRdfjOHDh+Poo4/G6NGj4fF4sHv3bvzrX/+C1+t1Kxxvv/12HHbYYQVbx/vvv4/Nmze7X0eX3G7evDmmghIA5syZE/N1fX09Tj31VEyZMgXnnXcejjzySIwePRoAsHXrVixduhRLly511//b3/7W3bYfb/78+XjuueewceNG3Hjjjdi8eTMuueQSDBgwAG+99RbuuusuWJaFAQMG4P777+/+kyciKiJpCigpYfhS96khqkTSyr7vJoNOIiIioupnWVbSy6X02GOPweezd9fNmDHDnYPTHS0tLXj66acBAIMGDcJZZ53V7XMWStGDTgC46aabMGzYMNx4440IhULo6OjAm2++GXOMExAOHDgQ9957L6655pqCruGRRx7B448/nvS2FStWYMWKFTHXxQedjpUrV2LlypUpH2fgwIG47777MG/evJTHDBkyBC+//DKmT5+OTZs2YeHChVi4cGHMMUOHDsVTTz1VsOSdiKhYTL8GaQpYQa3USyEqKGUy6CSqChyUR0REBRAKhbBu3ToA9q7eUaNGlXhFwKZNm3DTTTe5X//iF7/o9jmllJgzZ447cGnevHll1aOzJEEnAPzwhz/ErFmz8Nhjj+Gf//wn1q5di/b2dgB2E9PDDjsMZ5xxBubOnVsWL454xxxzDJ588kmsXLkSq1evRmNjI1pbW2FZFkaMGIFDDz0Up59+Oq688kq30jOdAw88EGvWrMGf/vQnvPDCC9i8eTMMw8CECRMwffp0XHfdddh3332L8MyIiArL6AjA6AjyF0mqOtLMPrxkj04iIiKi6nbrrbciHA4DAM4++2zU1taWdD3Lly/H3Llz3enoN910E4488shunXP79u248sor3W3rBx98MH796193e62FVLKgEwBGjRqF+fPnY/78+UV/7MWLFydsT8/FkCFDcOmll+LSSy8t2JoGDRqEG2+8ETfeeGPBzklEVGqGLwy9I1DqZRAVnExT0amkRGhXBwaN3yNyLINOIiIiokrW3NyMtWvXxlynaRo2bdqEJUuW4LXXXgMA9O/f353XkozX6004TzK1tbWYNGlSytu3bdvmFgYqpdDZ2YmWlhasXr0aL730Ej7//HP32Hnz5uHOO+/M+JjxawuHw/B6vfj/7N15fFvllT/+z3Pv1erdcfaFJJAACSmQAKUshZmyFFqglBnaoZSllNJ2vp3CTJfh1w6kdBm6AQOdZtpSWiBtoawpaSn7koQkJCFkIZsdx/siL9qluz+/P64tWbYkS7ZW+7xfr7wiS/c+97FsS7rnnuecAwcO4K233sILL7wQW5J/4oknYuPGjbEG26WiqIFOQgghU58WkqEMUiMiMvWkC3QGjvRAj6qxQCfPonERIaTQaMkBIYSQ8a1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NDXw+X8rHv/CFL4w7xooVK/D9738fn/70p8fdNtO5VVdX49Zbb8U999wDt9ud0biFRIFOQggheaWHZOghqs9Jpp50WZr+w11wzY5f3aYanYQQQgghU4/dbkd9fT1WrlyJyy+/HDfffDPq6uoKPg+bzYbq6mrU1NTgxBNPxBlnnIFLLrlkUt3QGWOoqqpCdXU15s+fj9WrV+Occ87B1VdfjYqKihzOPrco0EkIISSvNApykikqXUanHlZidTlNzaAanYQQQggpCn7zz4o9hbJ24YUXxpplT8bixYtzMs7atWuxdu3aSY8zUq7mViryFuhcunQpACsCfPTo0TH3T8TosQghhJQ+LRgt9hQIyQsjqqV8TI+qMBTrcUPRaOk6ISXM1FNftCCEEEJIeclboLOlpQWAFZxMdv9EjB6LEEJIaeMmh9wfLPY0CMmLSLc35WN6VIWpWsETU9EokEJICYv2+OGoqyz2NAghhBCSA3kLdN54441Z3U8IIWTqUX1h8DTLewkpZ5HOQQBWNpggiQmPGREFpjqU0SlrUH2Rgs+PEJKZaLcXtSfPL/Y0CCGEEJIDeQt0/u53v8vqfkIIIVMPNWAhU5nqi0ALyejb1oh5FyV21hzO6OScI9oXQLitv0izJISMRwspxZ4CIYQQQnKEmhERQgghhExQ+192QQsnBkm4YcJUdBiqDm6YiPb4ijM5QkhG6KIcIYQQMnUIhT5gW1sb2traYBiZL2U0DCO2HyGEEEJIqfDubwcfVX9Tj1iBTzMW6PQXY2qEkAwZiga5L1DsaRBCCCEkBwoe6Fy8eDGWLl2Kw4cPZ7xPS0tLbD9CCCGEkFJiGokd1YeXwcYCnb0U6CSklGmBKMIdA8WeBiGEEEJyoOCBTgDgnBd0P0IIIcWhR9ViT4GQvBvdcMu731qBYqg6tKAMzU+NiAgpZVFPAHqE3q8IIYSQqaAogc5sDQc4BaEspksIIWRItNtX7CkQknfmqKXr4XYrM8xUdcoSI6QMcN2AIWvFngYhhBBCcqAsIofd3d0AgKqqqiLPhBBCSCZMzWrsQDXPyHTAh5auc5NDjyiIdAwCsAKd1IiIkNLHDROGTBmdhBBCyFRQtEAnY2zcbTRNw6FDh/DDH/4QAHDiiSfme1qEEEImiZs8VpPQoE62ZBowNQOcc5iqhpZn3o1lhhmqDn1UR3ZCSGkyopTRSQghhEwFUr4PIIrimPs45zjllFOyGocxhn/6p3/K1bQIIYTkGDc5mMCgBSLQAlEAVgCIkKmOGya4bqJvRzP8Bzvj92sGBToJKRO0dJ0QQgiZGvIe6EzVQCjbxkLXXnstbr/99hzMiBBCSD7oIRm2aheCzR5wc2gpLwU6yTRg6ga4YSDa5R3zmOqjRkSElIPRtXYJIYQQUp7yHui8++67E77+3ve+B8YYvvzlL2PWrFkp92OMwel0Yu7cuTjnnHNw/PHH53uqhBBCJkH1R2CrdsF/pBvuuXUA4rU6CZnSTA5DTd7MRPWFizAhQki2hmvtEkIIIaS8FSXQCQD/+q//ihUrVuT78IQQQgpE9UXgnl+PQFMP7DVuAJQhQ6YPPaxAT9LMhMo3EFIeKNBJCCGETA15D3SO9rvf/Q4AsGDBgkIfmhBCSB6p/jDCHQMwImqsLiEFech0oYdlamZCSBmjC3OEEELI1FDwQOeNN95Y6EMSQggpANUXgSF3AwD0iALOOdUnJNOG6o/AUMZmdBJCygNldBJCCCFTQ8EDnQDQ1tYGAJg9ezYcDkfabWVZhsfjAQAsWrQo73MjhBAyMaovAjVgBTb1iIJojw9GlAI/ZHqQ+4KU0UlIGaNAJyGEEDI1CIU+4Msvv4wlS5Zg1apViETGz/SJRCJYuXIlli5dijfffDP/EySEEDIhaiCCSKfVdVqPqAi3DxR5RoQUjtwXgKlS8y1CyhXXKdBJCCGETAUFD3Q+9dRT4JzjU5/6FOrq6sbdvr6+Htdccw1M08STTz5ZgBkSQgiZCEPWAM6t24oG1Uvdpsn0ofQHiz0FQsgkmJTRSQghhEwJBQ90bt26FYwxXHLJJRnvc+mll8b2JYQQUpr4iEYOpqxRfU4yrSiDoWJPgRAyCbR0nRBCSDJvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/61Jhx1q5dm3Rbh8OBWbNmYdmyZbj88stx11134e233077vWU7n2T/WlpaJvkM517Ba3QOPwnLly/PeJ8TTjgBAHDs2LF8TIkQQkgOcJPHbpuaQYEfMq1QkISQ8kZ/w4SQqcrf+bFiTyFvaua/VuwpIBwOo7GxEY2NjVi/fj1uuOEGPPLIIxBFsaDzUFUVfX196OvrQ1NTE1588UV8//vfx8knn4zvfe97+Od//ueCzqeYCh7o1HWrflU2P/ThbWVZzsucCCGE5F7U4y/2FAghhJCMjFyVQAghhCTzla98BV/96ldjX3POMTg4iK1bt+L++++Hx+PBY489hoULF+IHP/hBynGuuuqqtI8Pq66uTvv4I488gjPPPDM2F7/fj76+PuzcuRMbN27E3r17cfDgQVx77bW45ZZb8Otf/xqCEF/YvW/fvpRjX3rppejq6sK8efPw0ksvpdxu/vz5434fhVbwQGdDQwO6u7vR3NyM1atXZ7RPc3MzAKteJyGEkPJgKtSYhRBCSHngnI+/ESGEkGlt1qxZOOWUU8bcf8EFF+DKK6/EmjVrIMsyHnzwQdx1112w2+1Jx6mtrU06TraWLFmSdJyrr74aP/zhD/HCCy/gC1/4Avr7+/Hb3/4W9fX1+MlPfhLbLt0cbDZb7P9czLWQCl6j87TTTgOArBoLPfHEEwDS/xAIIYQQQgghZCJGll8hhBBCsrVixQp84hOfAAAEg0EcOnSoyDMCrrjiCrzzzjuoqqoCAPz0pz/Fe++9V+RZ5V/BA51XXXUVOOd49tln8dRTT427/Z///Gc8++yzKQuxEkIIKT6ZOk4TQggpZ5TRSQghZJKWLFkSu60oShFnErds2TLce++9sa9H3p6qCh7ovPHGG7F48WJwznHdddfhG9/4Btrb28ds197ejn//93/H5z73OTDGsHDhQnzxi18s9HQJIYSMg5smAk09xZ4GIYQQMnEU5ySEEDJJra2tsduLFi0q4kwS3XTTTaitrQUA/PWvf4WmacWdUJ4VPNBpt9vx7LPPorKyEoZh4P7778fixYuxZMkSnHPOOTjnnHOwZMkSLF68GP/zP/8DwzBQUVGB5557Dg6Ho9DTJYQQMg7VG4YeomZxhBBCyhs3qfM6IYSQiTl06BA2btwIADj77LMxe/bsIs8ozu1245xzzgEARCKRKb98veDNiACrTuf27dtx/fXXY/fu3QCsyHdbWxuAxGLga9asweOPP46TTjqpGFMlhBAyDm5ymBp1qyWEEFLeuMnBCp4GQgghpFx4PB7s378/9jXnHD6fL9Z1PRqNoqamBvfff3/acXw+X8I4qSxZsgQVFRWTnjcArF69Gn/7298AAEeOHMGHP/zhnIxbiooS6ASAk08+Gbt27cIrr7yCjRs3Yvfu3ejv7wdgdWZfvXo1rrjiCnzsYx8r1hQJIYRkgJscpm5QIwdCCCHljd7GCCGEpLFu3TqsW7cu6WOCIODLX/4y7rjjDixfvjztOBs2bMCGDRvGPd4bb7yBCy+8cCJTHWPGjBmx216vNydjlqqiBTqHXXzxxbj44ouLPQ1CCCETxTkMWYMepuXrhBBCyhenhkSEEEImyDRNPPHEE3A6nbj33ntLrvRiZWVl7HYwOLUbydLiDEIIIZPCOYfSH6RMGEIIIeWNViYQQghJ4+677wbnPOFfJBLB3r178c1vfhOhUAgPPPAALrroIkQikZTj3HjjjWPGSfYvV9mcQGJws7q6OmfjlqKSCHSapon+/n60tbXBMKjOGyGElBWTQw1Eiz0LQgghZFIoo5MQQki2XC4XVq1ahZ/85Cf45S9/CQDYvHkzfvSjHxV5ZomGS0UCQH19fRFnkn9FC3QahoHf/va3OP/88+F2uzF79mwsXboUhw8fTthu48aN+Na3voUf/vCHRZopIYSQdDgH9LBS7GkQQgghk0OBTkIIIZNwyy23xIKIjzzySJFnk2i4ETgAnHjiiUWcSf4VpUanx+PBpz71KWzfvn3cK6eLFy/GlVdeCcYYPvGJT+C0004rzCQJIYSMSxkIApyD65SNTwghpLxpQRmSu7RqqhFCCCkfgiBg2bJl2L59O7q7uzEwMJDQBKhYIpEI3nnnHQBWrc6pHlcreEanYRi44oorsG3bNjDGcO211+IXv/hFyu1POeWUWNv75557rlDTJIQQkoFQW//4GxFCCCFlQO6f2s0ZCCGE5J+u60lvF9Pvfvc7+P1+AMAnP/lJSFLR+5LnVcEDnY8++ih27NgBm82Gv/71r3jiiSfw1a9+Ne0+V155JTjn2Lx5c4FmSQghJBVTN6D6reLaelhFpNtb5BkRQgghk6cOhmK3uWFS4JMQQkhWIpEIDhw4AMCq3dnQ0FDkGQGNjY248847Y1//53/+ZxFnUxgFD3T+6U9/AmMMt912Gy699NKM9jn99NMBYEz9TkIIIYXnO9AJI6oOfcXh+6CjqPMhhBBCckENxDvkBhp7EO31F3E2hBBCys3atWsRjVpNWi+99FKIoljU+WzcuBHnnHNOrOP6nXfeiVNPPbWocyqEguer7t27F4CVpZmpWbNmAQAGBgbyMidCCCGZ833QAdesFTB1A5wDwWZPsadECCGETJrmj8Zu+w51wT2vtniTIYQQUnI8Hg/279+fcJ8sy2hsbMRjjz2Gv//97wAAp9OJe+65J+U4Pp9vzDjJiKKIk08+OeXjx44di2WNcs4RCATQ19eHnTt34oUXXojF3wDgS1/60rRp8l3wQKfP5wOArAqyGobV5KLY0XBCCCGAFoqCc0D1hq1GRIZZ7CkRQgghk6YG4oFOQ1ZhKqVRW40QQkhpWLduHdatW5d2m5kzZ2L9+vVYtWpVym02bNiADRs2jHu8mpqaWAwtmS984QvjjrFixQp8//vfx6c//elxt50qCh7orK+vh8fjQXt7e2xJ+ngaGxsBWL8whBBCikuPWMvW5YEguElBTkIIIVODNmLpuqkZMBStiLMhhJDcqJn/WrGnMKXZ7XbU19dj5cqVuPzyy3HzzTejrq6u4POw2Wyorq5GTU0NTjzxRJxxxhm45JJLcN555xV8LsVW8EDnypUr4fF4sGPHjoyXrz/55JNgjOHMM8/M8+wIIYSkww0TyoBV4yV4tBeqLzLOHoQQQkh50IIyOOdgjEH1R+CYUVnsKRFCCCmyCy+8EJzzSY+zePHinIyzdu1arF27dtLjjKelpSXvx8iXgjcj+tSnPgXOOX7xi1/A6x2/U+/TTz+NF154AQBwzTXX5Ht6hBBC0pD7AuC6lcXpP9SNUEtfkWdUWExkxZ4CIYSQPOGGCT2kALDKs9DSdUIIIaT8FDzQeeutt2LRokUIBAK45JJLcODAgaTbeTwefOc738F1110HxhhOOeUUXHvttQWeLSGEkJGCx6zGQ3KvD8pAEHpYKfKMCkdwSHDU2cHEgr91EkIIKRAtEIGhaDBklZauE0IIIWWo4EvXHQ4HNmzYgAsvvBC7du3CqlWrcOKJJ8Yev/766xEKhdDc3AzOOTjnmDFjBp555hkwRpk0hBBSTIEjPQCAwX3tRZ5J4UkuEaJNBxMYAAZuTH7pCSGEkNKiBqIQXXaAA6ZKGZ2EEEJIuSlKWsqpp56KHTt24CMf+Qg45zh06FDssT179qCpqQmmaYJzjrPOOgvbt2/HCSecUIypEkIIGSHS47P+7xq/9MhUI9gAQbDqkzJJhFRph+iyFXlWhBBCckn1RxBuHwAAGIqOSLevuBMihBBCSFYKntE57IQTTsCWLVuwefNm/OUvf8HOnTvh8XhgGAZmzJiB008/HVdeeSUuvvjiYk2REELIKObQMj5uTL9u64xxCFobwFZCkAQ4q1WoEQeMaLFnRgghJFc0fwT+g53W7WAUA7uPwT339CLPihBCCCGZylugc+/evQCAk046CXa7PeV255133rRsd08IIeVGj6owhhozcHP6BTpFmwyjeQNYzSlw1QYhRPbAXnEmVB+VVSGEkKlCGQwhcLTXuj0QQrhtAIaqQ7QXLT+EEEIIIVnI29L10047DatXr0ZTU1PC/ffccw/uuece9Pf35+vQhBBC8sB/qAvgVl3K6VifUoAMw98EwS5AUJtgRjsgIFDsaRFCCMmhaG8AMIfe4ziHoWiQPf7iTooQQgghGcvrpUnOx54Ir127Fowx/NM//RMaGhryeXhCCCE5FDjSHf9iGmZ0AhxcD0O0MRiet8CkCjAzBPecGZAHOEzNKPYECSGETJIyEBzz9fBqBkIIIYSUvrxldNpsVoOGaJSKlxFCyFSgheXYbW5Ov4xOQAfjHILNhNG1CWa4A1D7IJkfQHTRkkZCCJkKRteg5roZW81ACCGEkNKXt0Dn7NmzAQC7du3K1yEIIYQUkKnGMxanY41OcKsRkyAqAADTfxRc7gTjBgRqvk4IIYQQQgghRZe3FJSPfvSj+OMf/4hvf/vbOHr0KJYvXx7L8gSADRs2YOfOnVmPe8MNN+RymoQQQjJkaiOW7k3H5JbhQCf8MABAj8IMHoPoWgiH0wvNVkXL1wkhZCqaju95hBBCSJnKW6DzzjvvxHPPPQe/34+f/exnCY9xzvHd73436zEZYxToJISQIhmZ0TkdMa5aN5SO2H2m9zDEmeeCD/wdgv2zFOgkhBBCCCGEkCLK29L1lStX4u2338ZFF10Em80GznlCc6Lhr7P9RwghpDi4Mc2DeLIV4OShxthdXO4HNyLQjz6FCvfuYs2MEEJIXtE5CCGEEFIu8to9Yc2aNXj55Zeh6zr6+/shyzKWLl0KxhheeuklLFu2LJ+HJ4QQkkPT/VoTN62l6+bgnsQHNP/Q40qhp0QIIaQApvv7HyGEEFJOCtImVpIkzJkzJ+G+efPm4bjjjivE4QkhhOTE9D3TE102QPUCAEzvkYTHuNxn3dBDkzqGvcYBQzVhRLVJjUMIIUkxRhE7MiWZqg7Bbp3WmroBQRKLPCNCCCHFVJBA50h33303AGDWrFmFPjQhhJDJmMbnx85aE+axQ0kfMwNHrRvRrkkdw+XYC6PyRIQ6JzUMIYQkxSQBnOoITwwFiEua4g3DNbsGAKAFo3DUVRZ5RoQQQoqpaIFOQggh5WXa1UlmiAV3RdYL1XcILMlmhr8ZDIAZagfsEzuUvcYBdf/PYF/5dUBYBZjT7LkmhOQdk8RpE+hkogBumMWeBikAUzOgDgU6uWlC6Q9SoJMQQqa5vDUjIoQQMsVMs9ibYItfC2RcBjPUpNsxbgUOeNQz4WNJLgPQQjC970Ny2yY8DiGEpDSNlvPy2oocD5jb4UhumJqOaI8PUY9VK7t/RzMUb7jIsyKEEFJsBc/oHGlgYABbt25Fc3MzgsEgjAw6+t51110FmBkhhJDRuDnFsmMEljZz0lErINrH4Kizg4ebxh3OiPYDNRObiiT2QQOgd2+BeOIt0Cc2DCGEpMRtQ4HOaVCr01/hRM1AsNjTKAvcMK0MWJODCcnWLZQuQ9YQ6fEh2uODoeroenUf5l28qtjTIoQQUmRFCXR6PB7ccccdePrpp6Hr2Z3OUaCTEEIKTwtGYUSSZzSWK1eDHVFP6k7pdnYARs1KOLS/Qjv023HHY4Zs1cDTsw8IG4d+Yt1QfRDEqR2AIIQUR1+lG7PCMswqF9BvBQEFhw2mMvUaoLUzETXjXMzKBs9RSqep6QmrBUqBHlYQ6faiYuEMSG5HsaeTlUBjD5SBIAJHe+E/2Ak9rFDJAkIIIYVfuu71enHeeefhiSeegKZp4Jxn9Y8QQkjhhdoGij2F3BIYbLY+MCnJ2yAbymjRQ7BXyNA7Xsx4WMmV/QksExmMUEd8ahKdpBFCcowBb2oMcNjQU+GO3++cmqUyjmhWnc6cydEpiKGUXr4+5xxdr+2HIZdfwNu7vx2+A53QgzIG97YBwIQuNhJCSDpvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/6VMrxOjo6sHbtWpx//vmYOXMmbDYbXC4XFixYgI9+9KP4+te/jqeffhp+vz/p/osXL075/cyfPx+nnnoqbrjhBjz00EPo7CyvbqkFv6R47733oqnJWgJ4ySWX4N///d+xZs0a1NfXg7HyWi5BCCHTRbitv9hTyCnRLoLpfRDtM6CPOilyz5aghRmMvi0QZwJGKPNu6s7qALSgM6u5uGaK4G3xk1/GVDBRBDfo4h4hJEcYwzsBDde4bfBwhjkABKcNkUoXnP6ItckEM9JzTXDaYE4y6PZ+SMc/Fan5kqkbEFLUQ9UjCmyV2b1H5JseVhDpGIQeVuCoz20TH/+RbtQsn5vTMUeS+4JQhkoUyJ4AAMDMoBQaIdMN+48Xij2FvOE/v6LYU0A4HEZjYyMaGxuxfv163HDDDXjkkUcgivmrjf2b3/wGt99+OyKRSML9uq6js7MTnZ2d2LRpEx588EF85jOfwRNPPJHx2OFwGOFwGF1dXdi7dy8ef/xx3HHHHbjyyitx3333YfHixTn+bnKv4IHODRs2gDGGT3ziE/jLX/5S6MMTQgiZgKkW6BTsIqANQrCNzfiRhB6wytmAV4XR+0ZW47IJVNe0yW9hZFEAxqIQbDUwjNLL/CGElCcmMDSFdSi1NuhDeQXeWbUQOMdw2I3ZJXC9+CVKzAonMMlA51a/AlTlMqMz8wtPppYm0BmUgVkTLOacJ8pACACg+iOoWDgjZ+MGmnoQau3La6BzZO1wzq3bpRCsJ4RMXV/5ylfw1a9+NfY15xyDg4PYunUr7r//fng8Hjz22GNYuHAhfvCDH6Qc56qrrkr7+LDq6uox9/3pT3/Cl770JQCA0+nEzTffjEsvvRQLFiywsvS7urBz505s3LgRu3fvHvcY8+bNw0svvRT7WtM0eL1etLa24p133sFTTz0Fv9+P5557Dq+99hrWr1+PK64ofoA5nYIHOtvarGUF//qv/1roQxNCCJkAQ9UR7hws9jRyRnLbINgAHumEPXI/VPFfE+u4hfZDrBJhaGGYgx9kOXriyXnNzEMwul8CX3QHwl1jT76YJEI59DBGrmcwD94DYd79oJwUQkiuMFFEV9hAWHRC49Yrzgdcwgo24oKK3QZEVQg2CaZanAstgsuO/goX6geS1xANL2hAZfdg+jqMDVXwdpqAkN8KXXpESVrT0lR1wGVPuo8WjOZ1ThMR7fUBALSgnNNxA009MNX8vJOZmoEDD/4dqj+eyTQc4DQp0EkIyaNZs2bhlFNOGXP/BRdcgCuvvBJr1qyBLMt48MEHcdddd8FuT/5+UFtbm3Sc8RiGgX//938HAFRVVWHz5s340Ic+NGa7K6+8Evfccw8OHjyIffv2pR3TZrOlnMvNN9+M+++/H3fffTfuu+8+BAIBfOYzn8Hbb7+NM844I+v5F0rBa3RWVlpLImbPnl3oQxNCCJmAwJHuKZUh4agxIUochvcDGF2b4JyR+AGEBxsB3zvgkZ6sx2ZmOHEs//swerdBYJGk2zvrRTAj8eTSDLaBSVTKhRCSQ3YrwzDEGPShgpNek8MccZnFsEsQKpyAvXjNco7NqkPbiNMTvdad8HiLKIGNM7/migoAABdz9zqaLKEz0uVNum26ILEWym0wMRcCR3sBAHo4x3PjgCHnJ0PY1A1ryfqIi5TDNUY5LV0nhBTJihUr8IlPfAIAEAwGcejQoZwfY/v27ejpsc5RbrvttqRBzpFOPvlkXHvttZM6ZmVlJX7+85/j3nvvBQBEo1F88YtfnNSY+VbwQOeqVasAAK2trYU+NCGEkAkIDp0ETRWCEIQU+DOMwYMAALs9sdGS6W+EduxZcHkCDZj0YOwmkwSYipUJm2pJu83WnXyO+SvpQwiZZphdAh/q9N3HGfSh2JDX4NBG1MeP2iXoFQ68U19bhFkCYAzf6VIQHBFUHHQkZkzuUzngsCGyoAGCyw4IzPofVvMhJgl4R7EG4LlsRoTEZdIAoAWiUH3hMduZaeqCaoHSyug0VB2RDut9Sg8rabflnMPUMw8ictOEEbWCj5nsZ2SRRZwso9fUrP25biaMNRxc5ibVvSaE5N+SJUtitxUl/evqRAyvkAaAE044Iefjp/Otb30LH/7whwEAe/bswd/+9reCHj8bBQ903nbbbeCc4/HHHy/0oQkhhEyAkuRErpwJRh+0pifBuHXixfS+EQ8yGKF2QJvY98z1eFdDJgoww8MdClOcYAX3J72biXRCRgjJDW1GFfShLMgtYRPa0MuLXzcRHsroFCqd6BMlmIKAB7uKE4wzZ1bjUEiDfzgmxoBWxK/6MJuIR7sj0B02rIswHJpVDyYwNM+qBwDw+kowtxPyUEBLl3KYmcr5mK7k3DTh/aBj7PeRJqineEvr/TTc1h8LGmrjBDpVbzirzux6RIUetTI6lf7gOFtnVws8aemCod9rUzdiY5mqjsHdLUO3y6+rPCGk/IxM6Fu0aFHOxx+5FP7gwYM5Hz8dxhi+/vWvx75+/vnnC3r8bBQ80Hnttdfic5/7HJ577rlY6ishhJDSleu6XcXG5c7Er5V4VqXokMCyaDoxhuoFk6y3VkESYAbjV12H7x/J7H836TBMmDqlAgghxfW+zYHA0InRxv6oFehsqML+sA7vUL3OQF0VFDCYjKFNLk59ziaXC4C1pJ5JAgSXA206B7NZwc7IrFr0KSa2Opw4ENZwV2cUwbkzcGBougMuJ3SnDf6hlNWILbdL8Ee/F3KDw7u3bej2UCMck6ft9K76IzAUbUx2aKGMzmoMNntit8dbui73BdLXRh3FiKixpeuKN5w2Y1QZDEHuC2Q8Nk8TTJY9AfgPdQEABve1QQ1EYeoGDIUa/BFC8uvQoUPYuHEjAODss8/OS7nG008/PXb7V7/6FV5//fWcHyOdiy66KHZ706ZNBT12NgpehOftt9/GLbfcgmPHjuE73/kOnn32WVx33XU46aST4Ha7x93/ox/9aAFmSQghZFixmlLkjTnqZGvkcnNhcjXduNyPyjkygp12CDYGZsafu8rZUQQ748swmSRC79qDZEdkjAKdhJDceNij4N9mW689XtWEzIEPKiqwozOIf6ixYw2Ag0xEJQCDMcgGILgL35CoZ+hlTzU5Buc1IMgEtIQM9M+dgZkeLwaGMjQPyCaORXQEdI5nVAcczArehZkAl92GYyErCPZnheFLLjvM6OTrROphBd7edrhmxzumc9NEuH0A/iPdkFx2VCycAdnjh5kiGMgNE9EePwbfb0XFoga459ZOel7Z0oJR2Gus8y1ucgy+3xJ7bLyl66ZmZBXo1CMKjKHnXu4LwF7tglQxtnkTN0wce2obKhc1ZD52NHV2Zrh9AMJQcDzU0gfZE4DvQCcqF+WuozwhZPryeDzYvz++IotzDp/PF+u6Ho1GUVNTg/vvvz/tOD6fL2GcVJYsWYKKodrTw19/8pOfxMaNGyHLMj72sY/hzDPPxGWXXYazzz4bZ555JhoaMn89zdbMmTOxYMECdHR0oKmpKW/HmayCBzovvPBCsBH1gHbt2oVdu3ZltC9jDLo+xU64CSGkxGVzYlNsUoUdekRL3jlimDYqa0RP3ihoIkzfQQjC0wCug2iL38+0TiDcAuDjsfscdRJYa/KsFAp0EkJy5UhYQ5MeDzBFTY7AUCbnnoiOaxmwM2Li/AoB3uHl3k47UOBAZ//Qy6FX53g4BHQoKryaiRrRgS9UOqENXRbqVs1YndG/9Mm4tMEJAFAABAURgaFzhRf6ZHxyUR3mtE6+zrRn6xFUL58LwDqpZYyBG9YkOl/agxmnL0HFwhkIdwzAVp08cSPS7QPXDXi2NWKOTcx7oJObfMzFO9UXga3KBSYwBI50Q/XF3//GC3RaY6Z/bxp5TD2sQB9a6q6HZCi+CNzz68fs0/nSHoRb+2Gvco17/NhcI+PXEwWshlHRHj88Ww6jYuFHMh6fEEJSWbduHdatW5f0MUEQ8OUvfxl33HEHli9fnnacDRs2YMOGDeMe74033sCFF16YcN/vfvc7XH755dixYwcAYMeOHbHbALB8+XJccskluPnmm7F69epxj5GtGTNmoKOjA7quIxAIoLq6OufHmKyCL10HrDefif4jhBBSWOVUwL+iYj8kty3l40wUoDU9kXAf1+M109gkm/SagWMw+q2Ld6ItfiJmdLwAmIkZKHa7Bykx6hpLCMmNgM6xPxwPWkZNDt/QS0yPYsCcWYNO1UC/AVx5JAQAMBy5yYUY7pDOJCFp+Y6Rdoes18gW2cCT3RFsGVRwIKhhb1iDZrNhOC+zPapDHzonaI0aCAxFPVUAHRBwOGRt2Skb6OS5OdWRPQGYQ0ufh5v3KIPWcxXt9iHa67Me6/albEakeq3t5V4/DCX/9SL9hzqh+hMv5Kn+CDpf3gPOOfp2HE14bLyl3VogCq6nD3R697Yi1NaPUFs/lMEQuGZYHdIHw2MaN2khGVpQRu87R6zjJwmspyqdY4wT6AQfGj8QBThHuH0gZalsQgjJFdM08cQTT2DdunV5aUQ0rKGhAVu2bMGvf/3rpIHMI0eO4Be/+AXWrFmDz3/+8wiHc1sfurKyMnY7GBy/BnMxFDyj84033ij0IQkhhExGOV1k4ipEB4Oe4v086Ym2HhqxweSnYIa7ITSIEJgPw6e7ZrAVQs2yxA0N/5h949MwAFDrdUJIbuwKxJdvR0wO31A2YtTgaHa50OKV0V8RPy1Q7DY4c3Bc5rSBqzrYUL1MrqdeRu5RrSDa0UhiEPBIWIdaZ48FOltkYyjQab1g+4eCbzJn+LNXhcHjL+S5vGQ0vAzbu78dFQtnINrtjT2mDAwFMT0BVCTJWgQSMyYLcQFRCyto/+tuHH/dubH7lP4APO8cgeSyw3+4K2F7bqR/tqKeACqPS78c0rO9CZLbAXNEINeIapD7A7DXxZdecs6h+SMINPUCw8/FqM8anHMo3hBsVWN/E/VI+nIEnHOreRLV5SSE5Njdd9+NtWvXJtwXjUbR1NSExx9/HPfffz8eeOAB7Ny5Ey+99FLK8ow33ngjfv/73094HjabDbfeeituvfVWdHV1YdOmTdi5cye2b9+Obdu2QdOs1+H169ejq6sLL7/8MkQxN+cWI4ObpZjNCRQh0HnBBRcU+pCEEEKmONFlgxHVwE0VNqeKVNdQBWlsJJOrYYg1NitTZbIpnQAY53D2fR2s7kvxY8gD4NyErdoBLWDNjhnplszrqJpvItiZi1ADIWTaGnpJa43Gg1hPdMdfe6IGR4cJHApp6K6JZ8OHRDEngc7Guhp8UFWDK5UwBFUHUjR0Z5KA9wIKAIY+JTFr0KMYkAUB6lAA06uaGHlVaotXgVDrxF7FxGv9iRmARg7T+PShxjq+g52Yd/EqRLrigU4tJIMbJiKdg6hdMT/p/glBtwJcQDRVHb797dCCcixY6P2gA1w30fnS3rE7cMCQNYjO5KsiNH8EpmHCUDQYshar9QlYz0nNifMQbh3bOV3uD0DuD8I5sxrhjkFULKhH37ZGuGbVoG97Y/zwo56TcNsA/Ic6E2p3yv1BOBuqxu/+zjmiPb7EpkXldNGWEFJWXC4XVq1ahZ/85CdYtmwZvvSlL2Hz5s340Y9+hB/84Ad5P/68efPwmc98Bp/5zGcAAIODg/jZz36GH//4xzBNE6+//jr+9Kc/4frrr8/J8fr7rdd6SZJQVVWVkzFzrShL1wkhhJSPcigbYq8aOuk1VQhmW8rtmJgk0KmHIDoESG4pF3FOa8xwN0zP24nHNjU4q0bWB02dacKgg/nfSrsMnxBCxsOEsR/1FdP6BwAy5wgM3e4cEWD0sdycIigA2hUDA24XuJQ6k4RJIjhP/QIcYQxKireigM7xak0t9obGBr+MHL59GVEVeliB0h9E8Ghv4hJ1zhFs9sCQtZRZhOaIoFshMjpNbWip/VDmqeINI9rtS7uPFkgRiYZVn5MbJgJNvQnbhdr60f36/pQZoX3bGgGTQ/VF0P3GB/Dua0f7xt0YeL8loUYoRj0nvZsOonfLESje+KqL4S73hpo+0GkoOkLtA4nzT7sHIYTkxi233IL6eiuz/5FHHinKHOrr6/GjH/0I3/rWt2L3PfXUUzkZ2+PxoKvLWhFw4okn5mTMfKBAJyGEkPTK4OxAtA1l8Rgy+MCmMY8Pd2AVkgU6tQBEO4fo4HDqz+ZsTlpXYqBT63gVjPtGHDj1MkGm90HveAnOOjk2d0IIyYrArH9pRA0O31CNyx3+eC78I14Ngn3yC788ptVc6BgEGJIIwWVPnOLwsuQ0QVAACCN1oBMAvnMsiHd9Y3P5gzns66ZHVYTarSwW3wcdCY9xzuE/ZJ34maPqbxpDmaCTyS7UJ9A53lSt4ykD1hLDUEvfuPuogdQrDTjn4LqBUEsftHA8c7bzpT0wNRPKYPKaMd6h5yra44P/cBeOPbUV4ByD77eOGj9+O3C0F76DXeC6gfYX3rPm5gsjeMwDPaxA9aZvIqj6ItBG1SflKWqnEkJILgmCgGXLrHJV3d3dGBgYGGeP/Ln11ltjt3PVIf2VV16J3T7vvPNyMmY+5HXp+j333JPzMe+6666cj0kIISSNMsjoZJABuK1AZ7R3zLubvUaC3G+AJXnX40oAok0Fgw7tyPrczWl0IFMLgRnxk0OeJtBpDmwHD3dDjL4He815kPvpBI0Qkp1MApVRw0SvZkUD/Vr8tf7lPhnfOb4WFR1jlyJnI2AAA5qJTh04VRQRmFmD2jYr4Ca47DBcDrCgDIjpcy9C3Mo+TUVLEdDcEzFw2YRnn8iIarGMwvCIZesAAA4EmnoAxAOMwyJdXrjn10OPxgOg2WR0cpMj1NKH2pOTL4lPZTij0xyqYTrucm+Mk9FpmDBkDao3BD1UE7tf9YYBxuDZcjjFRHhsfyD+vQ9/HT/AUKf0bi+Ort8c+9p/qAt97zYh2uOHqRnwHeiA/1Bn2u+D68aY4LDiDcM1pzbtfoQQkgu6rie9XWjz5s2L3WY5WLbGOceDDz4Y+/rqq6+e9Jj5ktdA59q1a3PyhI5EgU5CCCkMQ9EgOmyxk6RSJqgtqJq/DOax/TBVL1CZ+LjkiAIQINnUsc0ptBAEBAGzAF0DzSiYJKJq9iAQGEy5md71ujW1pvWQVp2Z/3kRQqYeuw3Q018kMTjDDn/ybMFNkHCZTZxUJpzGOQY0E22qCdUpoJ2JqK9xw/RHoFe7YAoCJABcEpBu+YDfBMITWO79llfGnZP8HoYZsgbfASvAJvcmNpPTQnLsGIaWeFKrR1REe3yxzE4gu0Cn3BeAHk7efTzlXBUttrSe6wa4aWbU6V1NEeg0dQNcN6HLGlR/NDYfLSRb37vJMbgvddmYjHAOQ1bR9Pu3xmTFdvx1NwS7BFPV0flyMGVn+9hQpjkmsKt6c9t1mBBCkolEIjhw4AAAq3ZnQ0P6Jm7Z4pxnHGPbuXNn7PbSpUsnfewf//jHePfddwEAq1evxqWXXjrpMfMl70vXOec5+0cIIaRw+t49Crk/OOaEoxSZ3vfBj/4MRt8ucH8zpIpRyyO5lUHEWPITHWYMAvIkT9IywI0wqmaHoL37ZfDgsdQbatY8edQDhtJ//gkhJSiDpesA0BxJnm2yI6SD1yTvFpvp8YMGR59q4EhEx4Aowm8C5tAy9acFF/ShGqLmOJ1gfQZHk5z9Rbc+xQQqXdnPPRnOYarWczU6G3FkIHV4m2F6REGky5cYeMvivMbUjKwXVvTvaB4R6DRhagYinakvrg1LldEZbuuH4g0P1SmVoYUUGKqOpsfethr5mRzmJDucc9Na/q8FxwZ1Tc2AHlZi/48/mFVTdaSRgWZCCMmXtWvXIhq1XksvvfTSnHU6H/biiy/i2muvxe7du9NuNzg4iH/7t3+LfX3VVVdN+JihUAjf+MY3cOeddwIA3G43Hn744QmPVwh5zeh844038jk8IYSQPBrY2VzsKWROD8AMd8W+dFQb0MOAs8EBeVAFQgcAzAYbm88JAOCRZvBIR9LHcjvPIMzm/7GOqXjH2XiYCoCaEhFCsmPYJIiTSBTY7FUQXOhAFSaQ7c4YmCjAZ3D0qwZUk2NHjQ0DholzBQY+uxb/1xHCZYudcAIwkjRNGumwbOD9wMQu+iguO+yZvtzmQLJApzoYTgi8ZZPRaWr6mEY94wm3DyDU4rH2NwxwkyN4zDPufqMDndwwrZ/jwU7oIRl6RLX+hWUc+9M7iHSMHzzNlGmY8B/uztl4o5eup2oSRQgh2fB4PNi/f3/CfbIso7GxEY899hj+/ve/AwCcTmfaUo4+n2/MOMmIooiTTz459rVpmnjqqafw1FNP4dRTT8UnPvEJnHnmmZg7dy7sdjs8Hg82b96MX//61/B4rNf9NWvW4MYbb0x5DE3TEuaiaRp8Ph9aWlrwzjvv4Omnn4bP5wMA1NTU4A9/+ANOP/30cedeTHkNdF5wwQX5HJ4QQkgecNOEEdUg9wUQyuDEqNiYKMAM9oLL8VpyIusF0ACx426IdXfD6N0MVnURrKDhWEbH3wFbVd7nyuU+GP17rNtKZsXJGVQAFXmcFSFkKhpwO1AjCUj1ujfu/qqJHlHCRF4Zo/PqURGMYJtfBecMfo3jv1us7tlfXChh0GFHQNfgF0RUAdDHyTx9tid17cjxBCQJuV04mN7oQKfmjyLS40vMeMwiAC33+rPuCWioWiwzkusmot1eGJHxfw9GNiNSfWF4P+iAc0YVAo29AKyGQqaqQ/VFMmpulA1umFByubx8VHBY9dHSdULI5K1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NTSzICAB1dXWoqKhAOBzGnj17sGfPnrT7X3zxxfjTn/4ESUod+uvq6ko7VwCQJAlXXnkl7rvvPhx33HHjzrvY8hroJIQQUn64wRHpttJfMlnqVmySS4LZPSobM7QPwD8AihdMAMB1iA4BMJOf6JnRPkDx5Xuq4Er8xNCMZniSaGZXm40QQgArlhaVJEw00AkATTqwLNudBIY/6yI+XVOJpr6x3bE5Y4gO1Rfr5QIWigL0cZoRTUY/Ewob6BxVP1LxhRHt9UMc0Rwqm4xOPapCdE48q9/UTQSPZfZ+MzKjs297E4LNHnDDhDrUwXz4s4HsCUx4PqlwwxwTJM4lua8AdbgJKVH851cUewpTmt1uR319PVauXInLL78cN998M+rq6vJyrHPPPRd9fX149dVX8eabb2LXrl1obGzEwMAADMNAdXU1Fi9ejDPPPBOf/exnceGFF2Z9DLfbjZqaGjQ0NODUU0/FWWedhWuuuSahuVGpo0AnIYSQBHpEQbTbBwBJa2WVGsHOAC2UcB8PNAH4B5haBIIkwAy2Q5wvgCkpOrXqUQATzxjKmDri5FDP7HhsKNDJJMGqhUYIIRngDOhlk6sN1qpm/5ojVDjwUFsYs5cmzwUN2W3o4lZg87bGAN6rEqDnuHnpSDsVjhVDDZAKwRgRrOOGiXD7ALhmQB8RAE3Ve0D1hWGvTczg1yMqBHt2p2wJy+QNA4EjmS0J10JyrAamZ1vTmBrd+tBnAj2SQZ3MLFkNk/L3Hqdl2dCJEEKGXXjhhTnpGbN48eKcjONyuXDFFVfgiismF8BuaWmZ9FxKVd6bERFCCCkvqj8Sy9ooB0KS83huDAcROWwVGqBHYXNHwZXiLsXnfAIncUOBTtGe22LmhJCpjYPhg0n2MhucwMUV3eUAALziS55Jup+JeC8yIutRFKAjf4HOzT4VPIOmTLkyMisxeMyTfMl4koxOLRCF6hsbjDWiSrqG9Ekpg+ERt0MId2RWKgUmR6itH12v7y94I0JujO2UntPx6UIhIYRMG5TRSQghJIHqi0Duy/2ytHyxiY1j+5LrEcDGwPUwRDYIE4Cot8JUirwUP+MGRHHcsE58RYcAvTAJSYSQMsdEATKA90KTWwocMrKLsPUtmoXHQhyAjre9MpAkgPnjtghCI7qWmxUO5LNNzK6AAlQULrdjONCp+lPXsUy2dD3S5QWTxs5Tj6hZ1fT0HeiAHopnL4Za+rMKlIbb+tG/42jmO+QIN3hel65zgwKdhBAyXVCgkxBCSALVF4YaKMAy7lxRusbcxfUIbJV2MEMFDCtoy5UemIHCn7yNZGoTiFQaVmaO6KCTNELI+JhNBBMEtJkMjZHJZchlu8LuLY3h5YHo0L7Jsyi7lMQalq0VbuQzX51zBs4KGOgcWqLu3ddmBSmTT2rMXZEeL5wzxi731yNqxksdvfvacezPW8c9Vjqhlr6iZD+amp7XYCQFOgkhZPqYtkvXPR4PNm7ciLvuuguXXXYZGhoawBgDYww33XRT1uO9+OKLuPrqq7FgwQI4HA4sWLAAV199NV588cWMx9B1Hf/3f/+H888/HzNnzoTL5cLxxx+P2267DR988EHWcyKEkGyZugEtGIUeyn39rbwxxtbd4noYNpd1csc0K4uSR9ph+BoLOrXRuB4af6PRhvYRxShYHht2EEKmBuayAwLDppCO5skGOoGMX3cEu4SDUQODo5rxjOcdBdg88X5JGTEFBiYKSTMmc34sTQfnHAO7W1LWsgx3DMDU48+TqeqI9viT1sXWI0pGwcpAYzean3xn0gG9cEdxVj7kM5sTsGqAEkIImR6mbUbn7NmzczKOaZr40pe+hN/+9rcJ93d2dqKzsxPPP/88vvjFL+JXv/oVBCH1h6v+/n5cfvnl2LFjR8L9zc3N+PWvf41HH30Uv/jFL/DFL34xJ/MmhJBkor1+mJqZfRpPMRljs0+5GoEgGOAAuNpv3Rc4CsazOwHPNWZkfzbPhxotMUQgOlzQI3SyRghJzbRL8NVW4tnGCJItHc9GUOdAtQvwhsff2C6hOaqnzORMxW9w/KUvv41iuMDA6yqt97aBPHff5oB3b5vV1C9Fk6VIpxeDe1rRsGYpACDQ3AvVF4ExZ2xg2oiOn9HJTRPtG3cnrf2Z9fSLlfmY748d3Pre6IIhIYRMffRKD2DRokW45JJLJrTvd77znViQ8/TTT8ef/vQnvPvuu/jTn/6E008/HQDw8MMP47vf/W7KMQzDwNVXXx0Lcn7605/Giy++iO3bt+PBBx/ErFmzoCgKbrvttqwyRAkhJFvRbh8wkYY5RcSjY7vJcj0ECa0AANNnZcQb/uJmc06Y6gMAMDMKwSYABWyqQQgpP5pNwp19ucmO2xdUYdoyzIsQBTSGs88gDRkcHiW/F6FMJmCr2w2eJukglzpf3gsAaetde7Ycid2OtA9C9vjBR9VE5YYJPaom3M9NDlM3EjIU+3c0l1Vt7WIxafk6IYRMC9M20HnXXXfhhRdeQE9PD1pbW/GrX/0q6zGOHDmCn/3sZwCAM844A1u2bMFnP/tZnHnmmfjsZz+LzZs344wzzgAA/PSnP0VTU1PScR599FFs3rwZAPDVr34VzzzzDD7+8Y/jrLPOwte+9jVs2bIF1dXVME0T//Zv/wZdz+/SDkLI9KUFo0mbJJQyrWvTmPuYqUPd+U0AgNEzVK9ML6O6oyPovdvARAFcPgYmAa6ZtmJPiRBSwoI2G3ak6HierYjBoUmZVdA0JRHyBOKVx6L5z7T32iX8+9Eg8p82aFGHMmB5mmX8cn88s1SPqlbH8VHvv9797YDJE7qRR3v98O5vjzU6Un1hdL60J5fTn7KMFKUECCGETC3TNtD5ve99D5/85CcntYT9gQceiAUdH3roIbhcroTH3W43HnroIQBW/c37778/6TjDwdL6+nr89Kc/HfP4CSecgDvvvBMA0NTUhOeee27CcyaEkHSMqFpWgU7BJoIlqdE5pehROOptMAd2QLLrsEmeYs+IEFLCPDluvCOLGQY6J7gk+Mgk64hm4hdeE5ppZbsKjtK4WMR1I1an01Cs52B0HUnPVivrc2Stz2iPD33bGjHwfis452h55t2EQChJTQtToJMQQqaDaRvonCzOOTZs2AAAOOmkk3D22Wcn3e7ss8/GiSeeCADYsGHDmBo7R44cwcGDBwEA1157Ldxud9JxRjZIokAnISQf9KiKSI+vrDqTiq7pUWrabu+DMXgQghAGMybQ0IgQMm0053jhT3Sc5d6C0wY+sxpBp31C43vV/L/n/K3Pyug/55iCn1bU5v14mTIVHYasQhnK7hx5oVHxhhBuGwCQGOhUBq375b4AvPvaETzaW9hJl7HQMQ/CnYMpm0QByLjDPSGEkNJFgc4JOnbsGLq6ugAAF1xwQdpthx/v7OxES0tLwmPDS9bHG2fOnDlYvnw5AGDLli0TmTIhhKTl298OU9Fz0sygUERHsWdQIINvAIoXDDKAPLcnJoSUtX05XgoeGq+hkcOGt5xuHOSZZX4W2+FI6ZSAMhQNymAYkS4vgMQgm/9QV3y7SPx1P7atYaLrlb0FmunUMLC7Bb1vH0p/Qbd8PgIRQghJYXqkwuTBgQMHYrdPOumktNuOfPzgwYNYsmTJhMc5cuQI2tvbEQ6HUVFRkfF8Ozo60j7e3T22mQchZHoJHO0FN8yyKtZvt/dgOizYU48+BQbAOPBDSCfcWOzpEEJKFKurwIt9ua1HHB6ni7ppE/HHPgUfri6NJeHjORBSgdlVYIFI2hqahWDIGnwHO+OBNyN5oFP1R2DIGiLdXqheK6s/0jlIQbksRbt9iPb4seDy09JsxRHp8sE9r65Q0yKEEJJjFOicoJGBwwULFqTdduHChbHb7e3tkx6Hc46Ojo7YkvhMjJwDIYQko/kjMA0TplY62S5pMYD3/rXYsygIxq2TcTPUAajeIs+GEFKSGMPPmBshPZLTYY1xommmIMCnmfDp5RF1kw2gp9KNuaYJDDUNKhZD1jC4pzX29XCNTkPVETwWr8esBaLwvHMYodZ+mMPB2fJ4uksP52NqoY6kh1X0vH0QSz97TgEnRQghJJdo6foEBYPxTomVlZVptx2ZeRkKJdZWy9U4hBAyWao/YmV0quUR6HTPtkFrf6nY0yg4U+kDm2DTD0LI1OVf2IA/dec2yAkA6d4RhEononYbfLqJ3cHyya/fpTNoE6wpmkvhjoFYfU4gXosz2NQDricG43reOohAYw9Uf24zdqcjPaLGGkAN46YJxRuG/0gXoj2+4kyMEEJITlBG5wTJcrzLr92e/oOSwxEvIheNJn44ydU44xmdSTpad3c3zjrrrKzGJIRMHYaiQfVH4KivLJtApygGwc3ymGtORT2w1dqg+ql7LCEkLpjjbuvD0i3u5nYJYVGAVzNglFETl21BDRdVsqKfCEU6BxO+9h/phqnpCcvWhw1ncnK9uMvtp4LBPa2oWTYX1cvmxO7zH+5G8JgHktM+JshMCCGkvBT7/b1sOZ3O2G1VTd8YQlHiJ6MulyvtOCO/zmac8Yy3LJ4QMr1wk4MJ8bprcl8A4Nb9RpkEOlna0++py4x0QZprQPUXeyaEkGIyZ9dCCkVhRhSAA+Z4TYMmyOAABGY1qmNIWDLNBYZtugDOGQK6CeRpDrm2yavArCp+N7toT+ILuanoCDT1wn+Eaufn08B7xyC57LFAJzdMDOxqRrClDw1rllLn9SLgnIOx8nj9IISUPlr7NkFVVVWx2+MtIw+H4/V/Ri9Pz9U4hBCSDdWXWJcs2mudbHGTw1TLJYBYHgHZXDNDHRDF4taVI4QU32a7E0p1BQS3FbDLVw6aDsBsqAYACPbEhkNRpx33NFtLr/k4TYtKSUjnMEsgqKKF5TH3yR4/tAAtT88nI6Ii2ByvgRrp9iLqCcCIqIj2+MBNCnQWmhFNnzhECCHZoEDnBI3MkByvo/nIZeOjmwJNZBzGGGVoEkImRe4LJH7tGfqa85Jfui7YRDBJBHj51IPLKT0KQW0u9iwIIUWmcEAXGLRKF1hdBfrzFJvRONDmcgGMAc4RgU4G9Inl0Wk9GaMEAp2mMvb9NtLtK/xEpqFI5yD0qArFG4LvYGcsuBzuGAQoo7Pg9BCV4yGE5A4FOidoxYoVsduHDh1Ku+3Ix08++eRJj7Nw4cKExkSEEJIteVTzg/5dVuCMG2a8o2uJcs804ZohgEWPFnsqRaO3PgmpsviNNAghxdOrc2iCgG6nA2t6gC83BsffaQI0DhwxgPZFs2DY41WvIvMb0FLGpQxLIdDJjbFP4MjmRCR/DFlDuK0fh375CnreOBC7yGtEVcroLDAtGEXwmGf8DQkhJEMU6JygJUuWYN68eQCAt956K+22b7/9NgBg/vz5WLx4ccJj5513Xux2unF6enpw5MgRAMC55547kSkTQkiM3Bc/ker8+x4YEWvJkKHoJZ/JwJgCJnDoXdOv4/oww3cEjqoyjjAQQiatTzOhMYZ8v2KrHGhWTDziM/CW023dObMaO5iEA3L5vg6V6iU9xUulSQrFs7URejhJJiEFOgsq1NqPYHNvsadBCJlCKNA5QYwxXHXVVQCsTMtt27Yl3W7btm2xTMyrrrpqTJHl5cuXx7I8//znPyMSiSQd5/e//33s9tVXXz3Z6RNCprnhGp1aSEb/rmOx+8uhmytDBIIQhTl4sNhTKRrGOUTWU+xpEEKKqFc14WMCXozmNyijco4dARUb+yJY22LVkz/qdqNb52iRS/89I5W2PHWpnyyqVVg4gRRNnwxFo4ZEBRRuH4g15jLkaVqWiBCSU6X5Dl8mbr/9doiiCAD42te+hmg0sXB4NBrF1772NQCAJEm4/fbbk47zjW98AwAwODiIb33rW2MeP3r0KP77v/8bAHDCCSdQoJMQMmnDGQz+w10ln8E5hhEAM2mJE1O7ij0FQkgRdSsGNoZM+PT8voYrHAgbHJwzhHQOJgnoMIF22UTEKLP3jxH+r1cplybxpMC4YVLNyAKKdA5Cl60AvzKYvjkvIcXw5ptvgjGW8l9lZSWWL1+Oz3/+83j99dfH7J9u30z/tbS0pJ2LJEmor6/HkiVL8NGPfhR33HEHnnnmGahqZhfPFi9enPJ7mz9/Pk499VTccMMNeOihh9DZ2ZnLpzcvpPE3mZo2b96Mpqam2Nf9/f2x201NTQkZlABw0003jRlj+fLl+OY3v4l7770XO3fuxLnnnotvf/vbOP7443H06FH8+Mc/xu7duwEA3/zmN7Fs2bKkc7nxxhvxyCOPYMuWLfjf//1f9PT04NZbb0VdXR3effddfP/730cgEIAgCHjwwQchSdP2x0YIyQE9osAcytwMtfQVeTbZY0YQ0OmDMI+2A/hQ1vs5GxyQ+xUwSSyLDF5CSJw5uwZPMCc+AwXtnTqOhDV8cqYrr8fc2C+jQ443zWE2CW2alc2plduFshHe86vAgmpgVHM+QgAg1NaPupXjN3/lpgk9rEByO8BEyiHKluoLI9w+EMugjXR74Z5XV+RZTT0Hbpy6V3VWPFr896FwOIzGxkY0NjZi/fr1uOGGG/DII4/EkuIKwTAMeL1eeL1etLS0YNOmTXjggQcwc+ZM/Nu//Rv+8z//c0JxpHA4jHA4jK6uLuzduxePP/447rjjDlx55ZW47777xpRmLBXTNmL28MMP49FHH0362JYtW7Bly5aE+5IFOgHghz/8ITweDx555BHs3r0bn/3sZ8dsc8stt+AHP/hByrmIoojnn38el19+OXbs2IFnnnkGzzzzTMI2DocDv/jFL3DZZZeN850RQkh6I+tz6pHyWyLHTQU80lHsaRQdV/wT2s8eeAxs5g0wNED1UaCTkHIy6HDgvsYQPrS8CgHdei3X8nyO1xQe1RmcAX7dxJGIhrmOwp3E5cMxtwtLQIFOMlbnS3tQe9K8cYOXhqyhf9cxNKxeAlt1fi86TEV6WIk1wTQ1Hf5DXWhYs7TIsyIkta985Sv46le/Gvuac47BwUFs3boV999/PzweDx577DEsXLgwFgPat29fyvEuvfRSdHV1Yd68eXjppdT9B+bPnz/uXEKhELxeL/bu3YvXXnsNr776Kvr6+vBf//VfeOGFF7Bx40bMnDkz7fc3eh6apsHr9aK1tRXvvPMOnnrqKfj9fjz33HN47bXXsH79elxxxRVpxyyGaRvozBVBEPDb3/4W11xzDX79619jx44d6O/vR0NDA84880zcdtttGQUnGxoa8M477+A3v/kN/vjHP+LgwYMIh8OYN28ePvaxj+HrX/86Vq5cWYDviBAy1SmDwVih/bKsBWYoMPt3FXsWxaf5M1526Z5jgxZm0CM6tPaXIKkBsNlfRRn+9AmZ1oJDdSUfHYjXsZML3ThFFOFRObyqCaPMm7a8FuX4YrEnQUqS0h9E/85mzPzwCWMeM1Qdot06jdZCMgbfb0HN8rkU6JwAQ41fSNEjKsIdAzBkFaLTXsRZEZLarFmzcMopp4y5/4ILLsCVV16JNWvWQJZlPPjgg7jrrrtgt9uTbj/MZrPF/k+3XTZzueyyy/Dtb38bBw4cwPXXX4/du3fj3XffxdVXX43XX38ddnvqv69087j55ptx//334+6778Z9992HQCCAz3zmM3j77bdxxhlnZDX3fJu2+fW///3vwTnP+N94Lr/8cjz//PPo7OyEoijo7OzE888/n1UGpiRJ+MpXvoJNmzahv78f0WgUR48exa9//WsKchJCcobrJgzFOknWyzHQaSowA8fG326K44ovo+0EuwRx8I+wuQEmMECPQu98HUykbE5Cys1w1cA3BuTYfZ0FbgjUV1eFVwasuvSBPNcHzbc/dkfApGl7OkTG4d3XNuY+UzfgOxBfVeLd2wY9rCB4jGqHT4TcG1+dokcUcM2EFpDT7EFI6VqxYgU+8YlPAACCwWCsKXUx57NlyxacfvrpABArlTgZlZWV+PnPf457770XgNWX5otfLL1LhvTOTggh09BwJme5ZXQySQCPlH4B7ELgqi+j7ezVIozutwHGASGeAsqYnmYvQkgp8vOxadzHooXtUnzPgA7NLOgh8yagc2gza4o9DVKigi19Yy4Ia/4IAo094KYJzjkG3m+BoegINnvAzcwSZMoR5xw8DxnckW5v7LYeVsA5hxaMptmDkNK2ZMmS2G1FKX5TM5fLhccffxyMWZ8ffvazn0HTJv+54Vvf+hY+/OEPAwD27NmDv/3tb5MeM5co0EkIIdOQqRnghgmul9fZqqPWBr11Y7GnURLMETU6RZcNUkXyZSiCZIDL/QA4KhriH7gETKzGJyGkeHZHx2ZvFjihE1sGi3/ilkuDdluxp0BKlcnh29+ecJcWlKH6wvDua4d3XzvUwTC4bkALRBE65oHqCxdpsvkVbu1HpHMwp2OamoFob7xGbrhjEEZUhRaijE5SvlpbW2O3Fy1aVMSZxK1cuRIXX3wxAKCrqws7duyY9JiMMXz961+Pff38889PesxcokAnIYRMU3pULY3MA4aMa01Kjql1gj0ZXIufHNirGER78ieRCVYwmzEAPY/HH1CooRMh5SZY5kvFS1EfnQ6RNAZ2tyR8rYVk6CEFvZsPo+uVeIMRU9PRv6sZykCowDMsjME9rQgc7cnpmKamQ+6Lf5YZ3GMFiCijk5SrQ4cOYeNGKyHj7LPPxuzZs4s8o7iLLroodnvTpk0lO2auUDMiQgiZZgzZWq6gBaJACQQ6a2q3Q93/ANTjn4Ihp19OLZidoMqSFsY5mCRAkARg9zVgpz4be8w1045on7XcTgy9ChOAyPqhtY3o5qj0AmwVUPxfAUJIhoIG/cHmmre8FjaQAot0e9Hz1gHMuWAFAOsz1Mjg3DBT1RFo7EHtigWFnmJembqB3s2HEe4chNuozenYvg86EkooDdfr1IKU0UlKl8fjwf79+2Nfc87h8/liXdej0Shqampw//33F3GWY61evTp2+8iRIzkZc+bMmViwYAE6OjrQ1NSUkzFzhQKdhBAyzaiBCABAGQyVREYnV/oAALYKcdxAJx/YWogplQ0mCrBVikO34z9Lu3gEeuVyaCEVRu871p39LyXurIfBBAZOgRNCykbAoKhcrgXpKSVpcIOjb3sTDFnD/EtPBU/xN2goOgxFK88mj2l0vPg+Bve0QnI7cj724N6xzZ4AyugkpW3dunVYt25d0scEQcCXv/xl3HHHHVi+fHmBZ5bejBkzYre9Xm+aLbMft6OjA7quIxAIoLq6OmdjTwat1SCEkGnEUHXoIWv5txaUi57Nx0QBXLXebO3OATjqU3+QdjY4oLX9tVBTKwuCJEByWCcEgjDi5EvxwFkTgGATYQ5+AABQWzYk7Kt3vDK0np0QUi6ORaiJWK5RlixJhxsmuMnR89ZB+A52wlCSN/EwoipgchiRqRPoVH1h9G1thBFRoQyEEj4yTraOpqkbKTvVU41OUq5M08QTTzyBdevWlUQjopEqKytjt4PBYMmPO1kU6CSEkGlE6Q/C1IcWf/PidwcVnRLAh+bjewuiPXVqjWRXwAz68DsSExlEs8u6zeKL+rWOv4AhDNEVX7jBRv2suTxQmEkSQnJCqHKis9Cdh6YBfx46SZMphPNYFmf36/vHrcGZKhBajuT+EUELzhPKHYXb+mFqE7/wogyEgBR/e7TShJSyu+++G3zoHGr4XyQSwd69e/HNb34ToVAIDzzwAC666CJEIpFiTzdmZBAyl1mX+Rp3sijQSQgh00i01x/7wG5qetFrdDqqDXDNOmnQjj0HJqT+0Cyw0vmwUCrcjl0w2p8GAIjhtwEAFXMlcN9RwAhDzP1KM0JIkbTV1xR7CmXDIWV+iuPTKKhC0hv+3BTp9MK7L/ly62GmMjWyrrlhjq1FOuIzozIQguqb+OeytN3pS6CsEiHZcLlcWLVqFX7yk5/gl7/8JQBg8+bN+NGPflTkmcX19/fHbtfX1+d8XEmSUFVVlbNxJ4sCnYQQMo0Ej3liGZ2hln7wImeySOYR6D3brC+0MAQ2lAmRZEU1M0tnOUSpUN//IYze7dbtA7+Ec4YDkvYeAIAZAYjS1DjhIoQARwwqNZGplbNsGW/rpbqnZBymHv8dGW7omIqhTo2MTrkvgEBTb8J9xoggrtwfSFmvNBPp9p3MuIQU2y233BILJD7yyCNFnk3c7t27Y7dPPPHEnIzp8XjQ1dWV0zFzhQKdhBAyjUQ6BmMdLoMtnuLW6GSA3vRbMD5yKaY1NyaMOqEXGKAPFm5uZcru7IXR9bL1heqDxDrH2YMCJ4SMxsQS+HjcUIXIghkQ3PbYXXTZInMrZmkY/TaSilcz6aWQpMWNzEtGlGNGZ7KL3tFeP0Kjamia6ohAZ18wYb9sgpPDdU9TMSnQScqYIAhYtmwZAKC7uxsDA6VRKuqVV16J3T7vvPNKdsxcKYFPcoQQQgrFUDRoQ82ITKW4S9dFhwQzcCzhPsatxjpShT3hxNM5ww4ebS/k9MoSizbB6NsFAODqALR9P0y7vWinjwGEjDY4v6HYU8BmVwU+elRGpC6+DKyR6nNmbFmdHy6bmNG2UQMQ7NL4G5LpK4uPSoZaXoFOznnSZeSGrI3JXh3+mpsmIl1ecM5h6gaiPb7Eep7jiHT7EO5IffFaHUxfB5WQUqfretLbxbJ//3689tprAICFCxfijDPOmPSYnHM8+OCDsa+vvvrqSY+ZS3SGQwgh04weLoEugAywVY09CR0OdIo2QHLFlx7a7b0w/YcKNr1ypXfEu9Lrfe+Cy/1ptgYECnQSkmhmNbabOfy7mGCmIB/aURXic9kZnBpLYgvh+DoPXLbMnvy2qAYI9FpIcqPcmhFpgWjS5fjJMi4NRbcCm70BK7vT5OAmh+9AZ/qam6NEe33w7U998dqQtazGI6SURCIRHDhwAIBVu7OhobgXT6PRKG644YZYA9pvfOMbkKTJX9z78Y9/jHfffRcAsHr1alx66aWTHjOX6F2dEEKmEVM3wPXiZwVVz/OBvf/pMfebPX8HAEiOKCS39RbFRAEschhGz9aCzrEcmd54MJj7m8fdXqAkJkIS9LmcaFVyt2xSqKmY4J7WCYnCGIRKJ4RqF1ojxc8KKRdLq9vgtmV2mhPQqfEJyR0tEIUeURBq64fvQEexp5OWoWgINsdrt4c7B2PBkGTL9U1VQ9er+xBusy6i6mEFAzubEWrtgxaUE8eW1ZTH9R/shDJO1mY2GaKElJK1a9ciGrUSNy699FKIYmarC/LhwIEDOO+882L1OS+44AJ85StfmdSYoVAI3/jGN3DnnXcCANxuNx5++OFJzzXX6BSHEEKmkVKoHeWeY4O682tJE530jtfgWv0VMBaGaLPmKjpE8GhXYSc5TQgi1cEiZKR+JqAjhxlZstsB+wQyk4ZDb1HGwO0SuqsqEB2g5ZyZWlx9NOOMTgBUo5PkjOqPwH+kGx0bd2PepR8q9nTS0kIyfB90YNY5ywEAvv3tcM2uAZNEmNrYQKcha/Af6oKzwSqpEWzuRd+7RyE6bag6Xhk1tgLBbhtTc10LRuE7NP5nuvECoYQUi8fjwf79+xPuk2UZjY2NeOyxx/D3v1tJG06nE/fcc09B5xIOh+H1erF371689tpreOWVV2IXL84++2w8/fTTsNnSN+vTNC1hTE3T4PP50NLSgnfeeQdPP/00fD4fAKCmpgZ/+MMfcPrpp+f+m5skCnQSQsg0wU0Tplb8QKfoexLcTD0Pu/ImTOk0MEEEIEKwCzAHx2uqQyaCCRToJASMAZyD1Vfir0ED7/pVMJsArptgkvX/hIYVBQQlCTMmsO9woPM3Xh1r3RK2qIBGf64ZOW2uA24phPOOU3C4L7N9WmfW4bgBP8yQPP7GhKRjcrQ8vR0weUlcXE5H6Qsi3N4PLbgQ4fYBhFr6rKZCkpg00GioOoSoCt9B6zNZ75YjAOcwVR2qLwJT1WP1bg1ZhdwXADiHrcYN2ROA6JAQ9QSANI2IhsmeQG6/WUJyZN26dVi3bl3abWbOnIn169dj1apVJTGX22+/Hd/61rcyWrLe1dU17rwlScKVV16J++67D8cdd1xWcy4UCnQSQsg0YchacbusD5M9aR9WDqyD47TvwrBZHQsFCTCjPYWY2TRUCr8QhBQXkwRwzUDY7cTzLRHIBqDMr4W9axDMaQefYPCLSQJ8TJhUoHO7X4VaZccWX3nV/Sumi4+3AiTXnbQNBzwXYGvb+HWp9+kMlfXVqKNAJ8mFoUCeWeKNifyN3TAUHd797QDn0EIyuG6C20z4DybJujS51Wxp+AVqREPLcFs/tJAMR30lAECPqAi3diHcOYjqZXMQbhuAVOFAxcLMXhHTNSsi2VvxKH3eyye73Y76+nqsXLkSl19+OW6++WbU1dUVdA6CIKCqqgo1NTU47rjjsGbNGpx//vn45Cc/CbvdPuFx3W43ampq0NDQgFNPPRVnnXUWrrnmGsybNy+Hs889CnQSQsg0kazYfDGYwba0jzNuQN3/c0in/x9s1Q6Idg1GsJ1WFuYDPamEgNklgHP8b4RhuLH5YZsdqwCEaivgzjL4FV7QgCp/GBAY+jnD8RnuJzgkwCbBDMsID2VvDqomBiQJW320jDNTH55r1Sc+tWEnLjthJba2VY2zB/BMv4xlc5wo7GkpmepKvQN7sKkXpqbDf6gL3ORgAoNpmIi29EOPJL9AkCp4G+nxJQQ6jagKz9YjMGQNoZY+OGdWw3+kG476zOoWR7q94IYJJsZr7Q7PkZBCu/DCC2NLwHOtpaWlJOaS7TxKHTUjIoSQaWJ0ofhisFU7YAaOjb+hFgJDEG7bdggsCGakLmpPJo5RRichiNRWAlUuvDwQf43sNxjAgCNC+lpWyexhNrxUUwNPTSV6smh00zlnBgyXHUwU8aov/pr3lkzL1rPhEK2LepKgo8Ke2XtHl2Kgj55jkmOlnNFpKBrk/gDAYS1X5xzcMMF1w8rwTCXVS5rJoY+4KGTqRuwCu6nqMDUdpqIheDT9qp7YYTQDUY8/8RAl/HwSQkoLBToJIWSa0ILRYk8BjsrxlxAO04/8DObgLjCT6jTlDRvbbICQ6WYTs8GURChG/Ax+wDAhOO1oy/ZPhAGbwjp+2BrCqxpDRxYRynVeA6YogFU4sGkw/lq5vjeS5STKW7YJW05JiO0nCQwuW/y9ziVmtpJhUDXQTd3XSY6VQl30VKK9/qRBS1Mz4PsgTaAzDS0QjTUxGr2KaLjWcfBYZoFOAAi39id8beSwURwhZGqjQCchhEwTWgnUHhPN1oy35b6j0Pt2genePM5oehPM3mJPgZCie92vQbbbEBkR6OzTOAYaahAysgt+CRVO7AtqCOkcm3waepXMAp3MJuKl/ggMQUC40pXwWF+GY0wVC2uzqyX2Lx+ynp/lDQ4sqbdjpjPegWhRVWb1nQ3O4M/yZ03IeEq5GVGqpen+w10TXgEU7hyEd59Vnsi7LzFYOjK7M1OerY3gIxoXlUoJJkJI6aNAJyGETAOcc+glsHTdHHw3ux0UL8yBbfmZDAGCeyHYxWLPgpCi6lENDIzqRNqjmvirJqBXM8HqKiFUODIaS6t0oi1qncgfDKnoVTNLCeU1bhicQRMEeDLoijqVnVCf+rFqp/V6Ve+WwBhw6lwHLlp8FABw2lwdJ9RzOMX4e93yuiMZZ4gGKNBJcswo4YzOVEHY/nePTnjM4NFe9O86hmivH+G2yWdjyn0B+D7oiI8RpTJGhJDMUKCTEEKmgXDbACLdxc+MNAbfz3ofvf2V3E+EAADMwb1wNUyvbDFCRjsW0bHfSIyGdSo63g9q+ENXBGt6OJ6rqQObUQWhypl2rGaHM5YZGtA5uuXMAp1Rh5XFKAsCDhvTt9nGybMc+IfF8QDJqXMTA8zXfUhDlUPETy8+hkuX2XHHh4+g1hEEAMyviuLU2QHMcnXGtp/l6sJJMzMLUvtp6TrJsVLO6EyVtakMTrzxmeqLQPWF4TvYOeYxbkzss0bgqJWV3fbCLii+8ITnRgiZXijQSQgh08DgnlaE2weKOgfBIYHLvqLOgSQyvAchMMqQINOXYJcQ0jleGEj8O2iXjYQMv9f9KvoqXYhWudOO90wgMbDZq+pABnHLsGhlKnIGbAuVbnAk3/7fma04rsZ6rxIFhn9ckhh0WVrrx0eXCDi14SD+3+p3sXrWHlQ7rDrOdU4Znzz+XTCWGLBcMSuzYHNAp4s+JLdKuUanmqegITdMBI/mriyO3BdE6/M70be1ccLBUkLI9EOBTkIImQa8H7RDD2feCCjXbFV2SE4RMIs3B5KEHoUg74etKrEmnuic3ktnydTCpPjH3f5FsxIfdFm/+9t9ia9NA6qJ3YH4fVsGFWzXBfTYbMCMqqTHESqdeKY3MXhgcAbBHc8oFOzxvy1mEwGBoW/RLHymxWo4JINhb2B6XnyosIv4p+OfQ7UtjFVzHDh/sR0nz+jFytnx5++sOQfxD8f1Yn5FC86b9yYWVTZjWfVBLKyx45SGdpxS/96Ycc9b2I3FdePX/fRRoJPkmFFiGZ0j62Oqgfw0qDSTdEufjNAxD/rfbbLGpq7rhJAMUaCTEEKmOC0YLWp9TiYyOKpUCHaA68WvE0oSGd2vw1md2NXZXkV1O8nUIY6oQ9s16qOv4bCl3I/zxFTMvwwo+HuEw+9OvnzdU189Zh8A0IeaCzFRAEYEPZnDBsFpx5MRDr9mZSEOcIbBLDq1TyX/eLwAh6RAEnTceno7vnjaASyrbce/nGI1F5pXbcNpDe+ixhGBXYgHoZ1SFP/f+a1YWNmWdNyzZn8Al238tFqvOj2fd5I/pZbRqQXjwU09mJ9AJ9eNvNXSLIWmmoSQ8kApG4QQMsWFWvvH3yiPKuaYEBCCgx2CyjNbQkgKx+jbCfv8I2DiKeCGCccMB0R7FCOvhTpnOCAPUDYuKU+iU4QesRphdBjAaQ4bzKHGGIpNApBZMOK9gIK9QRWNtQ78XBLAdRO9x83G7NZevLpgDp72JP8b+W9FwncaqiA7bLCrOhhjAOfgNhH+Sjfe7Y036dgpmwhM01qRH5lvvVfNcA7i1BN2wSlagRgOBsbOxiUnWD+nuRUDEIXE95LPLHsKJk+ev3FS3V44pUvhtgkQBIaQkvx9yKebAF3jITlUajU6VX8UjqGMdC1Pq3xM3QDy9BKmU6CTEJIhyugkhJApbuC9Y0U9vqgeAKBDb32qqPMgqXEjCsklQXTZYOu6BwzxQAATBUi990KwUQSAlKkRvWg6NBPhhurY11Ex899rzhk0E3hzUAGGsjT3GwxMEvCd5gB2+pNnMT3XG8VudwW8kg2GJFpL6Rlg2iS8ZojoG9GZ/d1A9p2Jp4o6p5VZ3uD0oNIWhCTokAQd8ys6MLfKhjqn9fwurGwfs6/ATEhC8qCSwEw4JOD0eTYsm5E6xyNC9f9IjplaaV3cVQaC4NyKQuatg3ker9MUswQTIaS8UKCTEEKmMEPR4D/SXZiDCWOXBoouG4zOv4EZfpiDBwozjzLFnFVgjgpAKEJAUfHAUSPDbfwBRv/7ADSAMQh2EZVzFBi978JZb82LifGfs+iyJf25E1IqHHUOmHYDgkMCkwSoJsc2Fq/XGGYT+/0NDQU6IybAaypgJFmyPtIfBzV0gUEVRTBRABME6KKI/+sMo39EoHN/cGrW52TM+pfOvAqrCVGdoy/h/gZnNxbVCrCLViByfkVL1sd3SsCX1xyCmObMR+cZTJKQLHDDLJkGOqo/Au/+dhgRFdzk0PMV6Mwj1Z+f5faEkKmHAp2EEDKFmYoOmIVZBmmvHtvsQXIJMPreA/e/X5A5lLOjp1yG7pMvAqudV/Bjm4FGsIHnoR97DgDAgtvhnGGHs56BKYes+0Qr08xeE/852yoEOGrGb/JBSLE4HUcQYTZU1h2Dc4aEXtVE54imM/5MWqIn8bRmfYSOmBzBEXU3U2mL6jikcHhFEdxlBwQGXWAYUM2Eup5KacREcs5tE1EzTpOzeZXWRbnRy9JFwUCD20SV3crmSpW5mc6ps8O4YvGGcbcbeSGHkFwwSqSBTs9bBxFo7MHA7mPQI0rBPhvmUqTba82dEELGQYFOQgiZorjJY0uU8o4x2FzWh3nBJoJJQ1mJQ+eMeucbhZlHmWLuWvxX1UL8uP4EaFUzC358Y2AfjK63Yl9rTX+Ag+2BjTeCe60uxoxZwQfJqUGqtIKbgmTC7vaOO75UQcFQUni2Sjt0pQ0BbT+4fxdsYjfaZRMDWvx1cdCcWGDrl+0hCDVuBE2OdmH8kvcBw0TU5OjiDJrTDiYK0KdRNnSVQ8AMt5iQAC4KDE7JOhVhDKh3pK4n3eDWUeWYeIDjllUvAgBOnaNg1ZzUgWmWLuWTkAkohU7hekRB/65mAIBna2NCU6KyYnIEGnuKPQtCSBmgd3NCCJmiAk09QIECnc4GG0TBCnhVzArCUWcFOiW7lQXIo56CzKNcReetxPsceNkEIhX1YHZ3YSeghRJ/RloY6vvfg37sURiBRgAAg/WzFOGB5LSiFYIoA52PjTt8hY0C3eVIdKXuSF4ObBXAzsrVMMJNONRwHgLcg5aohv4RdfMGjYm9RhqcYVtNDdplE73G+AFLn2YiYgKHVI7DdgcgCAgUo0xFgVU5rO9xeYOAOhfw4YXxIOMX15hYOdv6Hat1Spjh7E05zgyXAqc48UDnosqjAICff/QBrL/i6ZTb6bWVEz4GIcmUQqAz0u0DH3rdU71hBI6Ub7CQOq8TQjJBgU5CCJmiBt47VpA4p2ATYbd7wJQWgAG89dcQbUNBMZb6xHXKyEFNN0OMB5S8rjrAXTvpMXPBjHhgBjsBDAU6GcCgQ5CMofsMcMWfdgwmMiiHHqaszjIkucr7YyKXOLbJtXgTK/FkcCbe0SsQ0jl6lMkHOgHgv9vDGNBNDGRQg08zgUHNxEsDCp726YDI0JOiS/hUMrNCBGPA6XPCmOHiuOA4P6ocIpY3OHD76mdR57Ke/3p3+qBvnVOGU8pNwOi4qqOYWZE8iN/uHL8MASHZKIVAp+aPJHw98H5LcSZCCCEFMvU/YRFCyDTEDRP+Q13QApHxN54kqUICM0Pg4RZUzJFg9G6HyMLWg3Jb3o9faExKPBF+49wvTrqu5i3z18RuX161CKazalLj5YziBTOGsid4GK7eW6HuuAOiKA+VJdDB1fRL1x11djBDhrOWsjDKjWizglDuORJsleUXqA7ZOLyajp/0LgfTvfiDfy4AoEsxIThtYDYRG/smvoSzXTawzavg3pZQRtu/4IniUEjDC54oIAjwlWCNPFFgqHONvxQ/U9et8uG5a/fj+NpBzKtSUe+K4vh6CWcvVDG3oh0LqjVr2bor/Tj1rjDqnYGczevUuckvUL0/ouk9s4lAQ3XOjjkdaXPriz2FojNLoBnR6CxIuTf9BUpCCCl3FOgkhJApKNTWD1PVEekcv37iZDEGwIiCR3shhl+27jR91v/R9rwfv+BEyeqOPkQXBPDJLDVnDEdHnQfpzhJcPtn/JqBZAR2GCARJBIMGMzqYdje7w3pcjL6X7xmSHGNDTV8EQYXoKL96kqrejH7V+uNq19zYHqwFAHhUHUa1G/1zZ6A1aqQZIX+4wFB6YU5gYY0NFfbcnR6IAkedw4/ZFT4sqQ2i1hGGXQKqHdbv1nE1IbgkATMr0j8bM5wBLKjoyNm8Tm5IfhFwcyCefeefU4+Qs/wC/KXCmF2L92yUIVsKDEUbfyNCCJlCKNBJCCFThDpiaVK02wcAiHTlP9AJBsCMwJQ9UA89Yt2lelA5j0Freyn/xy8Q5qoG5iwHJAfgrAKrqAerqIcGhmjtXECcWD1DfdFqjD7l1hylF+hUW16I3WZmAJWOv4Hpg4AWhK06TXMPxaqNpx7+DTCNmq+UO9EpQUQrAEBgEQi2/AYEK+cBTMrtx9JgtA19Q4HOTYHa2P2cM/iddvwmWLxQIxeFggc6bUMdxUdmbDpGPOdOScD8aob7LtmXs2POqQigxuHFbHc/PnfSRly88A3MrjQxy2296l1/0kYcV2dDnTP98t6PzNmKhZXNOZvXhQsbY42QRtrslcEkAYLThl1cQlCc+nVUh43biElgVpZrhj5wuNCuFT+bsegK1RQyDSOiFnsKucOBSGf8Aqvqj5REeQBCSGmhQCchhEwR4fYByP1BANbSdQCIdBcmo5PrEYCbYNwKhnC5EyLvAFRf3o9fKHrDYnTOWwk4q8AdlQgsOh16/UIYADbNPhlsAnU1masGPzn+o2PuV6XSy4IZ/tkCANQ+GN1vwey1Mnhd7saU+3F5qE6rGoCQ40AWyR9HLYPGhrKAzACESTSCyYSovA9bZe6aHzFRwNvGcejWnAAAjsQgexcT8UxvOGfHy5YuiQUPdNY4rSDVRxbFn4u5VfGg54IaGxwScMbMnTk7ptumoM7Rj9muLsxw9qLOOYAPzxvAihlWduZMVzc+fkIIVY70gYpquw+SkLtgxrK6JiysHfv7ppkAr61EdEYVQibHAKbPxRnmTP/3x2rcYPbMyxqY4DiqUKCzFFK3FW/xXutyTQtF0fHSntjXvVsOw9SKk5lPCClddMZBCCFThB5REDjSDUPRwIcyCGRP7mqaDauar8cay4hOCRAA07MZPBJvPGQGmwGlK+fHLqZQ1Ww8WLsEhrMSL5x0Md6YtRzNc06GxgTcL1WhbfnYgOV4mldeiqeNsW/FquSAuvTDAMbWBC0FRverMCM90DvfBADoh/8n+YYMML3x7DDJnbvafyS/JNELWbD+zhVRANMO5vV4QQRgr8xdTeHKOSqe8h+HXjV58Oa+HhmcFy+IpYoi5AIHQBZUi3DZBKyeE6/Pt7gu/hwsm8FhFzlq7IO56LEGxgCJGaix+zDL1R27/4qlb2PNrHgpi48uOIKPHXdk8gfMwnx3C+alKIXc53bib9yOt/wqegxY9Vyn8EUaZhPBRAGmO/17TdTtBMbL+hzBAMOhsHWxJJNandlki6Y1auWAMBTALdbPkJdARqfcn/vPgsUSPOpBsNkDLShDDyvof/co9OgUylglJInFixeDMYabbrqp2FMpG1P3XZsQQqYZPazAf6Qb/sPdsaVSPA9F8Nngi7F6fe4ZEYiSDqPvPXB5ILaN6T0MM3Qs58cupoCzCi+aDLqjEv8puLFbdGJj1RxEmIg2DqyvXpj1mO9UzoKSJKAgS3b8adFZkJedC33uSTmYfW4Zfe8BeryJCw91QbCPPUmtmCPC8OyIfe1yHCjI/EgOcAXKUDbbgDQDaiR11m4uvCWtgM6CORlLdNlg7PsPNMvOMZmcw94PFLdmnSKI2BUs3HJLgQFXnzSAsxfaUGm3ggKnzXVgYbV1e2aFDStnhiAJHKJgoMY5+YsSdlFAhc16nRCFeMbVcVVNqHP0xb6e4RrExxa8POnjZUMUDFTYkwegNukCnuuX8eagghbVRPPsGeC1pVdOJFeYw4beBQ0YcDnTbmcyBp5FoHPQ5DgU0gCB4Y+mNG7pEm1GbprwCSMCtkwS0DHbCrIaORo/a0WOc0Z7fFAHp05GpyGrgMnh/aAd3W8egKnqCDb1FHtaZJrx+/343//9X1x++eVYvHgx3G43ampqsHz5cnzuc5/Dk08+CcOgTONiotQKQgiZIvSwgmCzB9w0UbmoIS/HkNw2mL7DgAsAY2BQIfr+htHhVC4PwOjelJc5FIvJBBgAApXWc3sUAtpMhn9hHODALjY20GcsOg2RinpU9xwG93aOeXyz4MCYJw9AwObCLsGOXQvPxn/1H8bM9j1jNyox9moJcr8xVMuAg4kChL5HE749dd+9EBf9DoZM9bRKnwaPUIkFAIIQUSUmD4IwUbAylibRQdxW7cCW6Ayc7gwg23CSvdYB1a8m1MGrqOtCVFkMHi3dZcdBQcAbg7nLYE1HEhjsIsO/nPQ3BNVPwS5af3/XrOhHq78KksBw7nFAjVPBRxZYgckGtwhfNPu/0+UNDhzpV2AXGZySgGr7+B3pT6g5DIEVfomzQ0p+zEe7I+hXrRPUv3hkbHUI+L96CWNygwWW/e89Q9EDX2MIDN/t1XDLLCdmpNmMA+CCFehkojDuhdQ+nUMzrcDja14VN9W4wVMsoRYqneh3ODAny6kzm2jNY8TPQa9wQBjqMu6fOwO9nGGewNDhdGERitFtvLg/cO/+qdUU0tSt37u+7U1QBqyLY75DXZh59jJowShsVa5iTq9k7fr/nij2FPJmzY8+W9Dj/eY3v8Gdd96JgYGBhPuj0SgCgQAaGxvxoorWFQABAABJREFUxz/+EStWrMCvfvUrnHfeeUnHuemmm/Doo4/iuOOOQ0tLSwFmPr1QRichhEwRelgB1w0Em3qhBaLj7zAB7rp+GH27AACOWjsADq3pyaTbcrk/L3MoFk2wApnv1cwHAOwygT5wNMK6/4gJgCW+rf7y+Atw9uzT0bNo9ZjxmOTA1hTnidtd9XjNBF4zgeBkOroXkM1hnUDaq+0QHBKqnC9Ab/1r4kZaCKJz+jT3KGdhWxX26g1wzXQgHNqLqJi8+3TlHBk29+RqazqrgjgcZmjWsg+sOaWdEB2jfqfkFtwofH1Sc8q3XRoQMQoTADl1rh0nzrRhlqsLq+e0wj6UXXnarGasaOjHBUtsOG9hL46v7cW/fuh3AIDlDRMLPP6/M9tgFxluXM2xZr6IU2fsGHcftzR+MDQfXCkCnZ2ygeHSkl2KgT0BDcmqHKhz6rJeDi2UYBd33WXHe34VO6Pps48GRAlcFCDUVoDXVow7bvdQI7De+mocCGqIVKTIGGUMv62ogWcCpSS8c+vBRsxFnVePXmf8OO9DxNthE9F59XhXLU7Asdgr1wNNveNvVEaGGw/JvX7woaBnoLEb0V4/Bve0FnNqZBr4xje+gS996UsYGBiAJEm4/vrr8ec//xnbt2/Hpk2b8PDDD+Mf//EfAQAHDhzARRddhKeffrrIs56eKNBJCCFThB6JNwtR8xToxOBbAABB4rC5oyh2pkIhqYK1COIxW3XC/e8NLY01ALDq2fEHmIDuoSxPRRp7cmvMPgGpFs/+hcUDR0Fb+uWEpYLByqBxVnpRoayDdmR9kWdEJoqJDD1CDSK6BqnvIQyaNgwKyZd98vZfQRo/5pEWZ4AGhvZoKOvAEQ/sHVM24XDlyXg/XKRlqhl6rl8u2LHWzJNx/nFWJt2Zs96DXdRQ5RBRYw/gjNmHcN4iL/5x4XYsr413NT9zni/r40gCw4n1bTj3ODuuWb4L3/zw1oQl66XGmSLQmUyyd7qwKCE0Z/zakwnjuEsv0NnvtJZ6vzrO72STAZgCQ2tNJeQMAradivWzf9Bn/d8jJl9IeGTRbPxvWwgtE/hV+ZsqwFfhsl43BIa1IRYruQEAm0M6/twTxqOKiDf9RSpXUcRIp6npCR3Kp4KkHdY50PHi+1AGinPRhEwPv/zlL/Hzn/8cALBgwQLs2LEDjz/+OP75n/8ZZ511Fs477zzccssteO211/CHP/wBdrsdiqLg+uuvx/vvv1/cyU9DFOgkhJApQgvGT1K0QO6XRNprHTB6rOXoQut3IYbeAdP7xtlr6lCGMjp3j1qq2Dviy/bjz47dZnYXhqtGGUyAfMK5Cfsdm7sy5bGaRpx/+4Yy6ViVtWR+It3dC8KMQHBIMJsfgt75erFnQyahco6KiO816Eon9M43EIGE+0NnjNlOctsQcjkhsL2TOl6zNA+HIm68r9RDdEgQsujs/ErtP0CsTPyb3K7NmtR8CuFAsHBBl9s+9DLOmNMGwOpyXmFTcN+lrfjQjF2Y6+7E7IoAllYfxgk18Rq6//qhx/ChOdk1QptVKaHaHsTjn/glzp69CR+Z83ZOv49cWz0780w3ztiYZjmaALxiZlcFLOIsreZyQo0blx+xguDtsgGhKvWFtQ6NIypJ+J9+DX4p8fvuPs66yBde0AA0VAMNVdjktT6TvNhn/d9kMKjz4oFhwWWH4LLjS81WcMqrZ59FvCOooVcQ8eqcWVBn1+LlPhkjw7UfhHQoJvBwRxj7g0VqWFPE68FaUM5LrfZiSvX9BI50Fz17lkxdra2t+I//+A8AQEVFBV577TWcdtppKbe/7rrr8MgjjwAAFEXB5z//+ZJoTDadUKCTEEKmCC0Yz+JU/bnP6HRW9MMMdQwdLAy953WYnjdyfpxSpQjjn9DqbMQ2kgPHTCuzJCw58MyC0xO2HcxwSbpXtLI7tfrjAABmTbZVzAqDGWE4qkWYoalVD2w6YpFd0JgNYVhBdhMMPm3sB3R7Dcf/Oq6BIk5u6fpwItcbwRlgAoNgFyBk2IF5izwTED0J9w3qpZc1V0wznD04tSEexKx2hFFlty6G2QQFVfaxmXx2UcE1Jw+g3p15IG9mhYCZTg8qbblpKpVvly9+DdI4DXKGcQDMlfh7pYPFlmdnqlea3N9KrvXXJKZjR6tSvy8ZAAZFCa1RHZ4RWZORBTPwwKCVZfcHVcALdjfWS27wUUvRd4UN/EqN/z6ZFQ60z6pDSLdeW8wJLF1XTeDFkIlHemVslawgsjzipapXiWf/hXQ+bkOk/ChecINPIHhMCBnrgQcegCxb75V33XUXli9fPu4+n/vc5/Dxj38cALB//35s3LgRALB27VowxvDoo48CsIKojLEx/9I5fPgwbr31VixevBgOhwOzZ8/G1VdfjW3btmX0/TQ1NeGOO+7AqlWrUFNTA5fLhaVLl+Kmm27Czp07U+735ptvxub35ptvwjRNPPLII/iHf/gHzJ49G4IglExneAp0EkLIFMANM2HpuhHNQ+ZCcFf8eFoY5uBB6B2v5f44JapdGr/AfXTEEnXursFw+OVR92z0Mgmsbn7scZ+UWWbPwFDw1FO/EGACBhuWZj7pQjJCsCl/B5cHxt+WlCTRZQVhjM6XEIUDIVMCc1TgtehC+A0JbETHZcEmgkkRPNY3H6+wVZM6rmYcBQD4dBtMQYCz1gtblfV7z0QhaYbn8BL3XeFKRI14ZrnktiGkjG38NV0xBtQ6vDiuqil235kzt+Kj86xsS4coo8qWfAXAKQ3t+PCCzE8VFtWaaHCVT/fjeqcHV6/ILKDOGcPgUOd1odp6L/CC4eUBGWzU7ydL05m8y0Ta8gyCK79BesFlhzzfajnEJAH/F0wMwvXY4oFYJgoQauKBT4NzHDCANllHx4jVww+GBWzxylDn1eM3HSH8oCWAB1rHLiF+pjeMx7pCuL2iHv/mrochifh5v5YwfqaYJOD2inq8H1DweFcYh0MaXhi0PvfIsBogCW77mAs0gqPwgeZiJnHJA+Vx0YGQUsY5x2OPPQYAcLlcuO222zLe9/bbb4/d/t3vfpeT+Tz33HNYvXo1Hn74YbS2tkJVVXg8Hjz//PM477zz8OSTyXsnDPvZz36GFStW4IEHHsD+/fsRCAQgyzKOHTuGRx99FGeddRbuuuuucechyzIuvfRS3HLLLXjzzTfh8XhKKmuVAp2EEDIFaMFo/pMGtPgHZq4XpltwKYmw8d8yPbb4SaFcMy92+wAHVMbQtuTD8cczfAvuG8okDdrcYFUz8cqMJZlOuaC40gft6NTt6jkdOGo4mCTC8B2GDhEhQ8LW5V/F24FaDBq2hACNrVKCX6yCAQEebXINppgcrw0JgcE0uoZqAAO2Khsk19jxJZf1dxExTBwRGmL3i04BplmkJaolKFnGolOKxhoAOUQZdQ5f0n1PqD2KD8/PvL7fmXPLrxbgf569MaOszj2ChHcM6/ewrc6q07xb4WiXDbTMTexVzpypg2ltOgeQ/HiC0wa9Or/N5yL1VbipVwdmVuOVObPwbE/i6o9Denxu3nkzoI2oxalw4O2ABoMzHFXiBTWPRDTIBrARdnDOYKTIzOScgXOGzYMK3vEq2GF34u3B+AXabHIPmShi86ASaxoFAMO9hiImEKyvQrC+esx+PM3PJm+KeOI/uLulaMcmZKr44IMPMDhovb+df/75qKmpyXjfiy66CC6XdXFs8+bNAICvfvWr2LdvH6666ioAwLx587Bv374x/5LZt28frrvuOsyePRu/+MUvsG3bNmzduhVr166F0+mEYRj40pe+hL6+5KXFfvrTn+Kb3/wmNE3Dhz70Iaxbtw6vvvoqdu7ciT/84Q/4yEc+As45vv/97+PBBx9M+719+9vfxquvvoorr7wSzz77LHbt2oW//e1vuOyyyzJ+fvIpu8IyhBBCStLI+pz5YkZGLEnW89TsqEQxZxW8TBw3mNwp2sFq5oD7e9BbMzd2f6sJBAUBH3XVYVFFPf665locFR0ZBaePDgVEfTYnwnNOxDuCE/9id4GrpfUz0Fv/AqiBcbdzOT6AihMKMKPMiS4bjGiRGlUUmOiUYMjJu5uLYhiuGZUw1FV4MnoS9keqsNF3LjQuIGoCkluHqhmAySE6TfShCoCCkB6e8HycMxzYoccDRVxg6BbsmCUEANRCchkwjfjHVUedA3Z3BJrC4K5oRrjzJGyTa3Di8AZ2hm2+7BrETGW2cYJ4AjOxpLox6WMLK5vxoZlLAaxIuf+8ahtmVQg45jWwYkbHZKZaFMdXH8LlJ16BvxxM//f/nWMh3DTPWub9ZNDEfwD4+4AVpPuP9iieEYVY7UDusAFhJek4H4R18Fo3mD8CriV231HqqsDAk14CE+xS8iYsaQjVbpij6nVvE2xoCsu4ntlwKDQ2229bSMfHRQHcNPE/AY7ra504HgCzSwjoJt4YsD5rvNyv4MQFVhmVw8escR5oy64RzP93LHF7I8n7IRvxvCYQx/5eR4a2e3ZQRbjWjnkSA5D4Phl1O+EOK+Ccj3n+pxrOOXyHu4o9DULK3p49e2K3V69endW+oiji1FNPxbZt29DX14euri7MmzcPs2bNQm1tLQDAZrPhlFNOyWi89957D2vWrMHrr7+O6ur4xZyzzz4bJ5xwAq6//noEAgGsX78ed9xxR8K+Bw4cwHe+8x0AwN1334277747YYn8mjVr8NnPfhY33ngj1q9fj+985zv4/Oc/j7q6uqRz2bt3L7773e/i+9//fjZPScFQRichhEwBI+tz5gtXvHk/RqkKLzodH7Dxs9ZaRDveXHUFwAS8VB3P6OQMGODAoGjD/lMuwzeFCuxEZllwWw2Aueuw21YJv7sOe00Gbe7JE/5e8iXTJevawYfiCU1FqZc2lrt++izvc89I/VrBoMJm7sV7DRfhVd8M9Kh2aHxEFmdFCGzoZ6bZeKy7cVTth6N+Yk1W7M5+POdfFL9DYNilOtAv1gIATFsQxohMUrs7BN76EEwHg/LeXYgaAjpH1OHTJQFN0fxmxZUTewZd7KvtvqT3C8xEtSP930adS8DKWRr+5UMqquzl2fF4ae34KxQCOodHM8FsIp7ujUCdW49DISs42hI1Eup3mmLy13Zml/DqgIx33RXQZlSNebzHboOSbF8GRGZmnkE0rLe2EsGFMxO/j6GY4fDcR3tjUAZq3PAvnIkXPFH8PWLtIDdUY6dfhTa0f5di4M6jQdx5NBjLqowki1SmEdATtzeTXfmrTlEyJkl5AM/QRLZ5FRyRDWyLjg1kvgEbWufOACvgEvZiLeU0ZG3KB3MJKYT+/v7Y7Tlzsq+TP3v27NjtgYHJl3d65JFHEoKcw6677jrMm2ede2zatGnM4z//+c+haRrOOOOMMUHOYYIg4KGHHoLD4UAoFMLTTz+dch7Lly/H2rVrJ/6N5BkFOgkhpIyFOwfRv+NoQTI6YWaXTVL2hj4A6MetxlPzTsX7Gayre9kU8V+2arSvvhp/5GNrrXkEO77ttj4kHchwnR5nQGT+Srwl2PFa7SL0gWP3/FMBYXLLhYvFlPsguWxw1DnGLbZeKCy43apPWSKB13xivleT3i+6bEB4L7TG3+A5OXkgnYfeBsDgqHMgIooYXiDuMZxwuDLvYD2SxvtxaGRg0q3hoGxDs2lleYbNQWgj1h8Z+mEoNgOG0Arv8ishcxHdCovVRVRprVIMY4A9SeZbNiqkcNql3U4JuHjJMVx38hbMcU/sd6DY5lZmFqDtUQyYdZXQTOBBJfH1N1Q71NSHMRgpanTq9da+93VF0etIvDDARAEHDYZQkkCnOasGASn71/sIY/har55QMzQ8TjAypHN0VVXgP/us9/tX+2X0L5qFtwU7WpMEDnNJH7XkXbBLiLhTdIEXxj7HvSMyXncHNXQqY+d7X0cYd/UoSQOleTPqKedmYRoE6Smyigkh2QkG4xf8Kisrs95/5D6BwPgrn9JZtWoVPvShDyV9jDGG00+3Gp82NzePefyFF14AAFxzzTVpP3/X1tZi1Sqr9vrWrVtTbveZz3wGYooLe6WAAp2EEFLGPFsOo/W5HYX5QMunV/dO5rQybn699Dz8BHZkUpW0DxwDHPh41WL0JclO6WQCjg3drWQRf9g3cxmaOcd/D3XBftRZD8xYNM5epYlxDsktwKFuiAWTi43LvXDXRyFMIJhQThz1DmitLyQtEWivZlAH3gCP9ODNYPKl3wO6ldXgcHXBDwfUocDEi94GaIJV3zNbLQD4iAkx+V3siNQjZA7VQ2RVUEZkU3vUDtxbcQsUpRWXem+wtlGcEJ1WhDPKqD7nsGqHNOlAp1OUsawhdYOccxaG8amlz2FR5THMdHVP6ljFUufMrPRCt2pin9PKMHyiO/EdYRO3MgRZfQXMFK9r4aFGP01hHZFRf4TazBo0ygZCSf44m50uGCnqeqYTAsP+oApeNxSEFRie6B1/9ce7GsMOn/V31C4b+HhjGH/35v/vSh6V+dg+dwZ+ERWSvl4ZSRqUjawN2qsaaEsSmPWqJvYFtKT754s5ukSBd+KlPrIR7fEV5DiETHVVVfEM/FAo+5ULI/dJlomZjZNOOint4/X11ue3kcFZwOrsPly3884770za5X3kv+HO6z09qRsMpgq4lgoKdBJCSJninMc+yGqh/Gd0cj69MjqN+kVgdjeeRu6WuLVnsPw9md866xEacQ642QR8s5ZNbBLDTZWKGGS0OwagHXkUoqNEAotGFMz/GiS3CKkyv12Pi8nu8gKqD7aKsd+jKGoYrDkRrG4RfHry3/lXbGeD2QSYagv83ITCreAHB0OTtBCCLbuPlYJDQpOSeJFGjrZhf6QSOgwwScB7Wj0iLD6fQ8JCPDEwDx/wKkSGgqFdqgOiwzp2mBcmiFAOFtSIcNkm93c+292FeVXJswAZAy467hAAoMbuhY2VZ53bunGW5w9rj+r4hSf5RcV9Q0G1/gp3ql5DCI7IQhwdNjzmcOAdv4Zk77LNBpB1LiUDAkM/tn63C2AM+uxadMrjj/SEZ2wwdG+Kpe65FDE4hBo3WF0lWH0lvter4snuCPzDy+8ZYu9bEUf61+mAZqAtmvozi2Iv3NJ1U9WsmqAmhxaMwojmJmicbkk85xyR7ulbboiQXGpoiDc8TBf4S6W3N77aYcaMGWm2HJ/bnb40jzD0PmMYia/1Ho9nQseLRFKneaSq3VkqaIEPIYSUIVM3EGz2QO6zTtDyXaNTdEowu45NIKekMFj9QvDB9vE3HGnmEmCwHTCSnwy9dvy5OHn2MvTmsLxW2wTH2jwqmVYD0FgzH2dOYKy6T1wF30svQqyaAX2wc2ITmiyfVTuIjcg2s9c4oPpHBREEBpj5r29mBBrBe7bBuWoFoPUhEMqu2Hy5ENRj0OefAVsFhzYqKYGxCMJiJYJz/xFIsQL5np4V+OxSGQcNN5j/RQisCsC5AACP4cYSl55VUydXPcc7wbkJ9/2ZnQEA4GojKmbNQEdgELKjdugbYLin/1RwMGyMLIztw8EgVgaAQTt6DbqGP+zshQq80cl91HdLIcytSv4aee0pIuZXWs1OGOOwieWZTVvrzGwpYcTgeM+f/HvsGype2QQRqwQTycJw7Wb89U4Z9bI2yBkOhzToGLtUe1/EwIlV2f1eR+Y3QB463iATUD+rBr12O8aGWMdqDI/9eXvV/K/oiBgcX9QdI55j6/9bOhQ8W+lEsLYSYVHArFYPfjJObNrgLG3N0H2iDWfNqAQfyH9dWS2kwHegE9FuL6qWzoLcF4RU4YRjONN2gkLNHlQdP9u60M0BW5X1uxPp8kJwSNACpdWwkJByNTJzcffu3VntaxgG9u7dCwCYOXNmrIZmoY0MfN51113453/+54z2q6hI/TpVysvWAQp0EkJIWVIHw+jddCjWjTTfGZ2OuuIV1M9EcNYJqMwy0BmtnQ+3roJ7kwf7wkzEhtpFQA7P7zJZ/p6pD+wV2Qc6GYNjlY4a7RKo7Z6iBToNz7bh6cTYK2Wo/lE12kQBppnfunCCXQLvPAoA4D1/h1CbusN0ueOhRmyr+xgulEIARtUI5EFEBRf+oK5JO4aAPhzUqrGIBaCNaKhlAGCO7F4jBEHGS/7EZimvhqzAJ+ccgvd5hISPwRj6RREkET7F+ui6K5TYnMXwvQywK9CspWheMg0J4Dhlpn/S48yukIFRobvV8xy4ctkHkITyDG6OVOeY/HOkDV2Q2RM1sNzJkCznpnvES9noQGdgaH8tyZ/Qdr+KT1Vl93u9DRI2Ba2LDlEAx5xO9JZ49ZmIwdGTJOO0JWrg4YYaqApHyOD41HFz8Ncjk2sg99SghuPr3agvQKDT90EHXLNrMLi3DVFPANwwYa9xTyrQyTlH/3vHUHX8bITbB+CcWR0LdPbvOIq6UxbCkMszw5qQUnPKKaegvr4eg4ODePvtt+H3+1FTk1mDuFdffTWWFXn++efnc5ppjcwkzabLezmjy96EEFKG5IEggkfjaVd6ngOdEuvK6/iT9dwc6w1727lfgDl/ZUb7dNfMx6dP/xdATFzCFjz5Y8Cc5dgouvEsz+3ytoEcxooPCdl3uWY2J4RqwH1+GPZ5M4u2fN30HbHmM+JisGiODbqyDOsLiq6J/5xsVfFJ6J2vg+u5DEcXhzS0NN1Rl/g7YkRa8H+BU8DkD1A5H6iYawUNK+cxyD1P4Ka+S/HMYPqOogMixwvBWfiy5wJ8ozceatcBmPYkkRTGEjqyu2bZ4ahzwNngwKDdPWaZ/L6IdfL/Z/8ChLV2bA3VQYUViKqs3hlbrt6mJma+ec0obFV2tKmFW5Ja6mqdKpbW9o+/4TjqnDIW1NjxiZNsqBwqN3HR8QEcV90Jm1D+JU3cthBcWZZdGE3nVkOhjX0y5FGNclh9JYRKJ9qV+N/H2rYwhKEGRvrcOjTJ1mMjn01WV4GrWTWaIzqyzc3bFzXxwtAS9IgJ/C1s4lvHJhcczLewwdGXokv4L9tDeLgjjCe6I/hslkHO0+dZrz9zquKvDa8PyGhCYbKRIp2D8B/qAtcN+Pa3I9rjQ7Rv4g1JQq39iPb4EOn0InC0F9EeH8LtA4j2+KCFZAzsbkGk21eQkka5xGylnR1Gpi/GGG64waoJHo1G8Zvf/CbjfR966KHY7ZtuumnMuIWydOnSWHB2y5YtBTtuMVGgkxBCypAykPhBP+/NiPy78jv+JLUKVsCmW3Li/UVnjLs9c9fhmLMGh0wOfWFiMe0/zDkFO5aeCw8Heko4i3VCoWcmQMZsMIFDmuMseud20Tbi+VX7xjyeSaCTiQy2yol/WBTto06sjfKv8eiotr4npzPedZNJAvzuGdgdrobpfQ8MMthQNp7ABqHY3AgY4y/06dDCaFFcCBliLOgIAAYHIsLYvxfJJcHh7Ix1tLdF/wansxmSIwp/msqDYV3DX6suQ49qh2lYvxvGwPaU2/+e/SNsbgMBvcTT1gpoae0g5lZMrC7XSDbBwEcX67j9jC349Arr+V1U5cOiymOwTYGMTrc4+UCnxjnUWbXoUgxERxV5UR12vFxbi2Y5HsYcUE38vbIKYMAz3I7n+6yg5MgcvM2VVWgfynAcyPLX+r1g/OdyRDWxviuEDMpzFpVHNaDl+M/3uDo7rlg+CAA4c0HiY/sK+ISYevxYpqJDmUSgc2BX8//P3nnHx3HW+f89ZXvRrnqXbLn3HsfpvRBSCYRywNFCuQB3v+O4O7jCUe6O0HNHOwiEEJJACAnpjXQ7cZzYce+yepdW2r475ffHSFqtd1fNkiw58369/LJ25pmZZ3dnZ+b5PJ/v90vHK4dQYwnan99H8FgHXa8fpWv7Mdqe34eWUOg/2EK8e3YL2ycj2M/c/Ngmc58vfOEL2GzGpMnXvvY1jh49OuY29913H4899hhguEKvueaatPV2uzFhG49Pf0FZSZK4+uqrAXj66ac5cODAtB/zdGMKnSYmJiZzkKHcnENMZ4iStyJM8sRD07b/U0XwV3ACiWfOv5V7JAdftxchWHMn6xa8xWjeYhotxgNLfVF6UZ9Hkfm8NZ/jM5Ab8lRoHtk92YpgzR7aaKtaiu+yd2OtWITsL+PJbmO0Z5mfRBBPbwYbqedXeL3PIzstaKFjac4/AItTxFlqGa7mLWZxfHhKB5Ask3OViTYZqfMXacv0k5NXzkGkAePBWm15EHuh8ZnKTgsHHUsBSKjd6M13Ig46JYVkByFr9krrJ3M4ptKWyHQTK2gMoA5XPx9CtIgoHX/E7reCKJAMbCd57H9IyAl6R0lLENc0vt5hOLVbEjqCJLLXlzvU6q7uSjSLRkCZ5WrODCAK4LSIbCrZzfL83ae8P4ukclFNIyvyd/H3G/8MQJmrF681QL7t1IXU043P1ot4is6aw+Ek/xw09nGyvPQ7TeYrxwfYcVIO4q/VB1FLfPygKUTPYA7MlsHYddFh5d8bU5MuXUrqgi96Rw9jV8r87A+lhM6fN4fTKpLPVjrjU//bvXl5iGJniFKPhfOq0s/VV3LkWwWG3bZTxVCaIQAlGid5CpPTgf0t9O1uJBmKEazvJHiii3BTD91vHKN7u5GGJXiia/onwKcQQRKJu43zWpBNecJk9lFbW8vtt98OGFXUL7nkEt5+++2c7X//+9/zkY98BACr1crdd9+d4eAsKzNS9XR2dmZUSZ8O/umf/glJktA0jfe85z00NzfnbKuqKvfcc8+obWY75pXExMTEZA4yVG19RujfConJuw+mG8VdQFTX+ark5oAGh3WdjqWX5GzfuPA8FLuHHYLhHjjm8KVWSjInNBgAZvu4sFNjOPRc8JVhKajI2k7y+bEtl5E9Plxb1vGxN4NEhDoSjvEJW9OJ0vAoyQM/x+6PoXW9gXRS6LNkjSC2/RBbniGeWfOyCLOBlxCYnCgtSgJK41MndWruC51q1+uIVhmlfRs2wXgQF0Q4qJUAEHJVoba+DP3bAdAjjfRLvnHte1u8JOtyRdfpVpPY89O/Q00QafDUYLH3Y/dbebLoJhrKL6BX7aZdze3g6VVk4rrxmLo77sHitnBXbE3u94xISHQykCP09Z1Etc/Kx9Ynqcs7gNty6oMnq6gyz9uMQ45Q7mxAEMBpMRyI8hkQug45C6WPm/6kzvM9Rqhw94hTUPC7uaPREBpPNhDGNThms6e5GH/SEka0yhwpzk8rANQ5InnnPn/u3HDJsnyuaEmij7iBxd/BJuc1xU2cV/EGH1gZYXPZnrR1B0PJrOlbRKvMYy7PlPZDHzlxqjPpyuvJUAwlEjeEU00HncH/dXRVSwmqs3yi9mTUAg97rYMTaBPMR2tiMlPcdtttfOELXwCgsbGRDRs28OEPf5gHHniAN954g61bt3LnnXdy6aWX8r73vY9EIoHNZuOee+5hzZo1GfvbsmULAJqm8elPf5rXXnuNo0ePDv+balauXMl3vvMdAPbv38+KFSv4h3/4B5588kl27tzJtm3buPfee/n85z9PVVUVH/rQhwgEAlPej5nCLEZkYmJiMsfQNX1GhU4teGTGjjUZWooXckCD+Ijxyt35dfy/bI0FkZ/m1bDeXcLrg+OBfZKdK4dWO32zXuAcQhdAsLrQ/eW8uORiLm1MhfWKdjdazBDs1NIKev3l6LZ+PKsF9OfhM3vK+PqSCLIwO+Y7xeBLJIONiIKGaJXQEipWnw2avova9ipy5Wdwl4tIyZ3ESC8WpPXtR3LOB5ZO+LjZQt61/mPgn5lq79OCKKDHOnEWJdBaHCQP/QSh6A4kC+wMFQJw3L6ANSVLSQ68DeIVxIUYj2rnjGv3L/RnF8gTaied8VZEWyGMKMUi5CX5VfcW/oUurHaJH7cuRRKW8J/SNhqFSk4ucjNEQEk9ou6POpB8Oi/0FGRtO0S/YKMveeo5Vj02ieA0uMtmApss8sXNLVw3/+kp26dVSlLiNHJCy6JCiduCzxaYsv3PBjZUCLx0QiKcOPXvvW3QfSlYJBq8bmjPLTa/Ek2/zvQndQ7OK+Q/WtPzKzbEVRBAdNh4eEBlYZkfua0vrY1W4uOK5gQDyhy9dk0Dy/IPU+M5ymdWh/FZe3BaLiQyqCwnNRA9drp8HpKCQGlDB6LDykChl9+2x7hqKjtyUhqcbFE4SjSB7Bg9fHuuhaOPlxaHnacGFNYCIZcDV9/cTyFjcmbygx/8gCVLlvCVr3yF3t5e7r77bu6+++6sbZcuXcrPfvaznEWILr74YjZv3sxrr73G7373O373u9+lrZ+OIrBf/OIXcblcfPGLX6S/v5/bb7992Kl6MlardTi8fi5iCp0mJiYmc4x4TxBtBl1Leqxnxo41GV70lHFygFa9kD33pODI4yFN4CEh5RhoH9k2x3azFrubAzUb+Qwu9tvdw4s9Z51P/0tPgK4TXVDGd4/7+eL8ebydLAOiPNwa5gOVblbZ3OiJ0198R+t+CwBBTOIq0gm2SNhdPST3GQnTRbUJreE+EoGDUHJnakNRQOnZjdp3IH35OJEtIU72o2mhZqRSGTU6NyvWWlwWFK0We/+zdM67koJDD+IsFpCEVrYPVjR/LrmA8vx27GoIe0KiWXbxi/bqce1/ZF7OkeixBpp0B71uP5YRv0gx9AK/772CW90NFFutHIvNB+A1bxVhPQBkDxHVR3js+pM6mhVC6ui/z6QwQK9yao+2ogAfXZvgjtfm2LVgkK9e0M9Hl94zpfu0ywnsUkp4u3KhwqK8fVN6jNPN9YvrKXJV8pudp76vpkGRfKDUT9cY49S3w5nXmV/1Jg234Qhe6o0Rr8lnv2yluyfB721WPiiJKQefAN+Iywwoc/O6NV34rUYxriJHGwDFbpkTfSk3ZYfPw/vqI7glkT+V+Dhst2MBDoWiCG4JfZqetdRYuqMz2tlP8HgnxZsX5tjCIBE4MwXA3YrAq33GfeMvmsy1lun77N+prP/WLae7C2cMn/70p7nlllv47W9/y2OPPca+ffvo6upClmVKSkrYuHEj1113HTfffDOSlPtZQhRFnn76ab797W/zyCOPcOzYMcLh8LQInCP55Cc/ybXXXsvPfvYznn76aQ4dOkQgEMBms1FRUcHKlSu57LLLuOmmmygsLJzWvkwns8PKYWJiYmIybiJtgZk9oD67Hzbrxcwqy32DzwhKzXqj4M6gc1H1Z4Z3dwNIg+LIaapCPll6qtbwnLMIALUs9d6kYhfOZZtBEInm23m8PYp9iYt/2JuKYXysAzR77hDImUQNGEnRxYG/IBAEAYRkKi+Q1ng/avdOUKJp+busHiuCpoASRXZahgvejBeB7FVpJevcfTySHXAgfwtK85PcL52PYHMjtN6BqjTTN1jh/ImBUo7ItURkL9Y8mQ7h1M+DetXHs6FS2nR32vKIbgxeDyYFemINw8vvD1TTnCXXZzbCmk5M7B2znR4/TL96alXXt9TY2FDWdEr7mCkWFNjIG5ETdUOljc+u/PWUH6fc3YVNStX9/vy6x5HE2X1fmCgXVGzj/KrGKdnXiajx2TyelOgbI2x8z0BmCPP2/szcikkN/i0o8C+NEZrjKn/oiKLnp35r/VVF/LljorXZz3xOTt1QMujilwbvFd/qURhQdNoSCvcLNr7dHmNYSpzGEGrlpIm0njfribSMfY2Lzyahc4oelwSLxBN9CdriKqLDyrP9CdT8qU0dYGIy1fh8Pv7mb/6GJ554gsbGRqLRKMFgkKNHj3Lvvfdyyy23jCpyDuHxePj617/Orl27CAaDaJqGrusZYueJEyfQdZ1f//rXo+7v17/+Nbquc+LEiVHblZSU8K//+q+88sordHV1kUwmCYVCHDp0iAceeIBbb701q8h54YUXDvfvwgsvHPP9nU7m7pO8iYmJyTuUmZ7R12e50PmIlnkrGxouXDz/QgRHHkr1WgCaSxdntO3SgYIaBFf+aa9CPlHOK1zOT3Sjz55LCpF9pQA0+8qxVhRhKa7hrnYnnXGF/bqPNwOpAfRvGkJgn9qCC5MmaZzTatd20KLYfDa0nteGV6tdbw3/LY8Qdqyu1Pux+xRkx8RELiFyMOvyLNr5nEGUVL4fOgs90s4DfZU01t2I2voyWtMfhtu0J6zc2raFvVIdFtsA9fqpz9j/qquK3WE38RF1o+0FNv5PWQPAs7Eajo2o6t4Yt/PSgH9c+46qIonux8Zs1xo79VzCy4tiFDvGFhxmA5/f1MRZVSLFbuOE3VIZnhYBckPRNrzWwPDr+d5DU36M002ps5liZ9/YDcfB0UgSId/N9xqDHBijsne2MPP+ZHY3z7PdMdrjKkfDCk0xlRdsRooI0Wnjky2Ty/l4JpLvNK4zBU4Zi5T+uVw2v49LF1gpHGzzcq9xD9F1ge81hNg1kGR/3Pj8X3ClT9pMJVoimZa3M94byigyeTLJUIzOVw9PW58mijAFBZsEWUT3Onlt0M2pO6y0xVQ67eObBDMxMTHJhSl0mpiYmMwxkgMz69oQRqmMfLoRrA6yBV73AggiGoAks6tiJQBKltD0dh2ieWVo3hJ0ee4+XEdUG87lqxHtbva5fQw4/FjLq3i83XAt/qQ+y+DZNkuEzkG0YAOCGsLmDJBsfi5rG9E2aCMRQNJTrk9Rb0WyTsxioie6sh9DnrvVOwRxsCp64QI6klZ+khzMDZVFvf1DaCFisp6DyfEJjuMhqaeKOdnk/RyMewF4PFDMI7FFaW1j2vi+r7Aq0WXNXgRpJK8mqibQ0+xUeEIUOmZ3uo4hZEnFa9Oo9omIAtjk2XutngvkWacm/2F/Uuc3VheqLvBy3/QJkI2Dgui9Xh/HI2dGUaipoMxj3Ocr8zLv9zcv+gtf2LADhyX3tefxXuM7+4djA1A4Tc5CHdR4alJI13TiPaOffw0Pbp9VldTjDhui+9Ty9wkWGU1KyRGKVUbTdfarcyu6xsTEZPZhCp0mJiYmc4xkcJqFzsGQLkeJFdEqoYZmbxhnx5Ls1dVDOiy/4G+NEHbJwv/YCxCcPhocmSG6UaDZX8Wb885i+fIbprfD08j6FwSEwjz8N1zJgYjIYSEP57uqqB/MAfdMR6YkLFhGL3ww4yQGSOz8V5LbP2aEpGdBFHXcFTre8gCJHV9KrQjtR7Ski7nSCIen1WdDkFMDX2epBT2e3bknCLNf6LTm5RDlhT4a4naeLPkAAA/3lSDk19CVvzKj6atBH4ldX2dHeOqEzn5VHU4vkIwdYduAIXTGdZGH+tLFSnWcj6FxXeT69mvGbPebnlMTOteV27iy9nVq3Efx2Ga/u7vS3UVNXoRvXfgKvX/7A76y6Senu0tzGq+1f8r29cMGQ/CfTgGyV9GIVRRwe0No7ManiXctGb89vto38fvRxXVWKvJS283Pt3J2lSEGLizIFP5rPEc5r/wveGy5hbS9QUPoVHWBFxxjTwYKsghFXiiYmCg6lKdT13UirX0okTihxu60NsFjRhGwWPcA/QdbJ7T/qUKQRY7VlCL4XQj+1OcxYJHR7Lm/X9E6dr7kziIfm5oU/A6Z8+fZ6LVaaYopHInP/nuwiYnJ7MYUOk1MTEzmGMlg9ryCU4U4OLtujT+Po4CcgtNpR5S4s3D0xP0ASBbiCPTXbuC4lN19sMuRz0Hr3M4JFVV1mu2F2JYF+dWJCL1eJxHn6AKWNBdLEopGbk1BSXfdaV3bEaX0ga3FlXrMkWw6g+lMQRCQg39GDzWTjdkudAqyhM2dvYhUZPAcfyJWO7zs2Yq/4qilNmt7wVfBsdjU5aJrTFqRbMaJtcu1Ytxi5mxgUaHCgrz9WKU4l9TN/n5Xulu4ct6utEJBJpNnZHj+XCCpw9dncRHuc2ps3Lzk6LjaSqLA5qqJO5JvXNzE6tLUBNd/XHiAAofxe1hVnDsVgX+cl7xftMfGzEUpWGVesjvZ655YhMRQwbvg8U6S/RHQoePlVDqVgSNthJoM4TPcePpc5tvKivlyU4S9Xg9tntR7bNFFNHGU66TTNmbe8z8NXro2V4ksKYzxQMQQmLXprcViYmLyDmD2P8WZmJiYvEPRlOwP/dMdui47ZSSHhcShXyIrs6+ybrxuM1rlSgaWXMRv1bFvY7pkoU2DNwrm05Aj+eL/Cg72irPM3TgJmmsK2ZXYQGdcodtr52uHRs+9KEpz7zFAkpLQeg9aIL08stqzG0FMF+UlaxKLx/heRVFDphVBFhEtIokj96D07gEMsS8N4TSHAOcoqmT1GS5OR4EIZK+uHBk8j58L5A8v+3/tG/ivwPqs7YMFy0+ho5m0RPtxOrbjrtB5dMA3pfueLjw2Ca9d4h83/RlxUOQ+q6J7jK1ODxfMs/Hch17jioVWKpwn2FC0DZecXfQ2mRhueeocnTPBgx0RnuqaOZFbFgXcE3A6X7mgm4X+EwD8zebRr6nXL5Oo9k782WZz2dssLQxz60adZcU2rql9BI81QYFTZlVR7uJS68tCFLnGdpseDCXRin0Zy8U8J+Jgjsqk18lvOmM8E5rYfSPeazhx+w+2DC8L7G8Zzt3Zu6cJXdGItPYRasieZmWqELK4LwWLhF7k5W+OBjkRVfniiTCH9dQzwwkFeh250/1oFgnRkvt8EWSRO1uM/NybKvpY6A/w69YQTovILJ1eNzExmUPMvRGOiYmJyTsEJZI9t9d0h65bXVGc+UFQomg926b1WJOhMb+WqCufbmc++jjSOIV9FXSh87zs5qCe/bbXhc7hM8BB0KtIfORNY7C1Lwi/aRyjuEGWnKWzHTGxG6X5ObS+bCJ8+pcoCkkEaSinp4aOgsVtQbJJCLqKMFjV8kjl1WnbCZxeR+eQI/JkHNbdiFYJWe7i5Pc6RFI3hoj6CBtSUhc5GnVmbV/vGIcregKEFA018BZS6BVak3OjqtOmSom6fJliZyo01GebRdWNR1CXH2d98WtcUNOFTY4jCDr5tukVQd4pGJ/n6e7F+EnO8GVqQYEVv3389wxR0KjzHEQU4PqFO5iXn30ycUGBje9f+AsqvRMXmmUhwcqiNj61+iluXGo4OD3WGJfU6aws2J1zu4urD7BpnJkutlnTI0FEm8w+n5cXPEYUyF9kOwOKTiBLYanRGApFTytCpOvDk9xaXCEZjNLyzG6C9dP3GxcsEmTJtan53exwpO4bfQkNdcRb7FE0BkaREhIWGUYLX/c6h8/h1UUNVHm7UHWBefkWYuoZ8EBmYmJyWjGFThMTE5NZSnIg3aWT6I+gxhJoyelzmwmyiKg1o5/4sdGH1pem7ViTQpJpsHuJ2tz0WrMLNyfTOOjWe1IXOKjnfng+egY8V391X4TGiOH0+0NziLHGCr2uSihekrlCTh+QKlWboNioWC+MKNgkeErSXs8EyQPGuakGjmSsEwbFP9ltHXwdQbIaywRBRUBHtmvYvem/rWe15YarcziWP+UncRRbjVyfOVyW04FkTT2eDTlSLW4revgYHudL6C33kUvo7BvlHM/G/0WyOz0ny9uRPN4uvJBQ9CB7InMjHcR1i5opdetYxVShD7/dcFtZpFP73n2Oqc0PsaG0HYB3zXt5eFmebW5UiZ8LFDjTxXn/FH9/c5m6Ag2XVUAQIM8+9uciCxp2Ocq8fBsL8w5wTrUyXBEdDIcowC/f9Re81gDl7szzONfvTxYF/vOyAPn2bq6ofop5nsNcXvsmAGeX7eYza17BnzEBkDr2puJXWVuSW1gd+f5+0h4bdm8C6C47/9IU4bvNEd6qLuWHzRGaYgoDioZolYdzFI9F/6FWdE0n1pneDy2hoCkqse4Bet9uJHS8k3j39OUo0HyutIJAQ/TZbXy3NX1ifWQcQVNc409BlZ01ZSAKGa7QuCTS73cj2i0Zn4lolYk6bAgClLgtrCvaQbXbEH5XligE1NmdPsbExGT2YwqdJiYmJrOU0IlU6GRiIErz47tIDkxvmJo93wJaFLXzDQAEdXblfhM8xfRIVurdxbxk841rmyN2oxhKFBhNIj4T6hV3xlMCXXgcjohXbOsJ+BZnLNcL6lIvBIGv2G5lIM9YphalKmer7hKU4qWn0ONJkAgY3dIzvzEdHdllxeUwwtqFyAEkiyFeiXovuq4hSRGEwFNp2/WqNhoqLkWwGOK5MOJssOq7ceYHkR0z504czrAgCNhjv0Z2WXFYXkIPt5DY9z8oLS/mdJ32JCfm+H6uP3/sRhOgIW7nfwKLed59Hj3K3HB0Vnm6uKquGXlE6gOfzRAW5vknn9JCFGB58dS6ppcVHAeMoiqp45iiwFTxrkWpc2BVqY3NVeZQaQhZBJfVKNq1oWLszyXPbkwo3bIiQJ41wNkVrXxu08Dw+so8C5urbawuNJ43rGJmwHJNjgJFDovIZ1b+Gq81gEOOIAoaHovxm13k28si/76M34Umlg3/bZPjLC7oyLpviyTw3pWpvpyIJvk6DoTBYkMJm4UTUZWWmMqnjgRpj6skNehKaPSW+tH845vgUcJx+vY0kgikT7xp8ST1920l2hYwRM9pnNwGOOh0omfJtZkU4Gg4/TvpHnStChaJZ3qi3NsW4ZOHB1CL89C9zpO2F3lNl3mzpBDBle4YTea7aZUtOGSRcq+Iz9ZLlacegGsWHGZPRJnRyUUTE5MzD/PubWJiYjJL0BQVfdCNpasawfrO4RCmxofeQAnHSPRPby42i6UPQc+e+29aEATUqlUEl16C4MhDGKN4Tjy/mt2ilcftfh5kfALC89L4nJ/vRN4Wq4m40vN4ChZ7SvyUrQwsuJq39QokqzHgDHmqEfxGzJ/myGNPwQUz2ufREIni9HWiHL8bV7mA0vokAlHDbRJvhMhxxMhOkg2PpW0X0mR+p56FUrAArXwNw45OAfRoE/qx72NxztCgSxQQZWOAbi+wopx4BGfyNyQP/QI1cGBEQx1BEtMqy0t2GTV5+t19ETXJHb3LTnc3xo1djnPNvGfTlvmsAbx2icVFkxcRfQ6Zcs/UihT59tNXlOSdwLUL9gOGxvKeZd0Uu2bwfniaGHJWjhW2Lwk6Hhu8b3k7y4rSn0UclswhZYHdEB4/vNS43l5Y+RofW/4nrltm4YblMqUegY+urh+x//TfitMisqAg+4SdLYtrUhJT2zukkf0znIZBrSat/WLfsaz7vmCehU1lqUJ1MRX2hxU+GpIQ3XaicnY3a2tM4X8GdCK28U/wtDydGV5f/4fXCexvydJ66hGtMvcFFFRRRJBF1BLf8LpoFpmgLaEheh2o+R4SIy6Nb9vshO1WBElEGHSHxgWBh3oS/O3xIEd9XqNquywiuu28ZrXz55BKmdfCJfOM88Rj6afQZWFlwQHqiiSEPPPZzcTEZPKYQqeJiYnJLEEJxejd1QBA/+E2om199B9sJRmKEWnrQ9d0et9umNY+CFovaDM3sBPyyvhd3QVsLlnD8eWXEyvLEkY9gh1ly3hIE/i9JtA3zgjdp02zU0621HTSXbIgbdnDS77CXt8G9OIlJCo2sMO+lu9d9jZ+j/FBRvIqieXVgiih+Yq5Xzr3NPQ8B/1bIbANbaAB7Y1b0HoPIOhBnMUSevAwyQM/I7H3+xBPr8a7M5LHA71lvJp/JX/Mfy/ohpNZslvQBg6h9uzGIo2vevCp4iyWEUXjN2gZzBOZrH8YkmH0cNuIljpWnwVXfkr4svkhqp5+YaYvKVIfn7pK7tON39ZHvr0zbZnP1sd1S3TOKp+8sOixiSwpHBi74ThxWkQqXfVjNzSZNGeXvYpNFllZaqPcHaDEPbuiGqaDIpfMihIb+WOE6dfkRSn3JLmi5lWWFqTCwkUBvnVpZ0Z7vy0AQInTEA0rXCfw27q468rb+dUV36HKq3Lj/IdH7Cdd6PzAao3b1m/P2hdrlnlOt5z6raXcnAIBjHvU3oF1ae2r3Mez7rs6L8GG4nQBciCpsWcgydZ8H4kcivCAovNQR5ToBIr8JfoycwGHG2euEFp3aT57gwkarVYaK4r4RkwedlI+HMp8eGqKqzzjzaPZbmNZsW1YHH81rLJHlOkvLyBYZkQJvKjpvB6IE1J03ns4yOseL33lBQT8Hr5wJMhvWyPcsiLAV8/68fD+S90iHssAq0sjRJ2ZeUNNTExMxospdJqYmJjMEjRVo/WZ3WhJlZ636lHjCr27Ggge70RXNJKhGL27c1cRPVVEq4we75hRoTNcspAG0Rhc/cBbRdThzd1YkvmDbXTHp8nEOKvsOLulGgS7F8Hq5MiKT/FPbavZalvOvpJLOepdS9BfxmXVT6FbZARXARa3lZi7FMFXhWpzUlkytrNWsMzMgEVtexG1/cX0Yyv9WJI7UHqzF6YQXAU0xu1ENYm7Qkvp1RwIquEGku0iaq/h8FLr70LMUSRoKhgqmmTR9iMIRri9oI/uzrTY4tD1+PBrSQwR0E//4LA9Oflw79OB15aZq89n7eEDy95kcX4rRS7LhKpNOwfdbS6LwPLC5jFaZ8djkyhyWdJyFK4tt5hh6tOMUw6xpdrC+TURvLYIJa7Q6e7StCOJAjcv66HcO/o5vjC/m5q8CD5bNysKj1HkslDksvDl82JcWLEdSRQoHFHJ3G8PjLq/29a/gFVK5cWVRI18p0yRy0Kx28Jn1zzBOWUvcN2yTIekNUvuTo8l83ccFdbQHjciEJ5tXw4jIkEccoQ8u4zfIVMwIneo15rEbUnPiRkbjLb55/oQrWNEk4TmyPBakEQeTwh0JFR+0p3gW50JDkcUBFlCdNr4XVvmuV8fUXi4N8G9QY3KPJ1yr3Gtf6E3zq874/w8DL9PSIg+F4/3J9OuX7tjKr8OgzJCKL5+wStp+y90gSDorCpqoyeHc9bExMRkPMyNK7GJiYnJOwBd0UgEIvS+fYJoWwBd0wi39BI83oGuasS7g+jK1IRB2vIzC8h4nC+idb2KrkydA2ks3l+xgXs141b0rCYQtLmNFVkcEwOLLzTdmVOMxxphRUU7jy78fzy5+Etc334NXzhbYU11H38bfhcPOc6ntsoYiCoONxtcv+BPeRej5eVzo/u/CftL+JuNfyZRs2XU4/x04X8ieIqn/f1oA/VoA+muZz3WRnzPt9H7s7t31LzK4b9fC+bRo9pBT2DxWBEt+rD7U+vdh9v1+rT13VksYfHaUJseRCCBNc+GEG/N2T4iexC1RpLNzw0vE+OH2ZsomLI+jRz8T4SoNrV5KacTqyRQYs8ME7XLUc4ufZHLqp7kyK23c8dV9ZR5xheS+o/n9fOeFTIbKhLM905ucupbl7Ry5NbbuWpR6jv44IoTk9qXycS4vK6TT6x8gssqn6TEGeDiOiuVeZni/Tk1tjlVpT0XRS6BL6z9BZfMG13ULXH0saqoiTxrgFUFOzhy6+0cufV2vrzhp8zzHuZDq+HorbezttzGmjIb8z2HRt3fqoIdaa9tYoIXP/RHjtx6O4c/dTvzvcb2/3XefeQ75bRCRl5b5gdvkRIZy45G1lIfqiAhLqUl4kUX0idTN1SIvPaR+3j9I7+l3GuE1K8qbsNv60pLEdk3GKc9oOh87Mjoz0jTVzZoaomV+PhBQ4iYagiVbwQSHAolESSRjsI8ClxWFhbacNskvn5JkFWlNgp9Mj1JjT+0Raj0JigcTOnSEFXZ0Z/gvrYIO0NJTuS58ToEXCOst00xjd+2Rjg2KD/4HTIL8/al9WlJYRS/rYtydw9PRM+ACpHTiCQZn62qqmia+XBsMnfRNA1VNca3Q+f1VGAKnSYmJiazBH2wymTPWydIBqPoqo4aTRA81ommTO1DjM3enrFMCzWAmoT4zOSAE9wFHD3pbQUGi8EgZgosDd7SGejVOwsNkfXFuwjpNv4QquPyhVb+9ayfcHXtC1yxQKGqSKPAHwBgl2slEU0iqkuEPPnYLBI7rEvJs/byB891uQ8iiPy6p4a3aj+AYJ35cGatcyvCKJXIo46StNddihV0DasniSif5G6exkkAQVBxeDpRu3chxI4j2XS0UPYccoLNTbvoh8gxSIYQrRKCJKA0P8KxuCvrNpNhXv7cESwny6JCa1puv1ysKDhErX98j83z8jr50qanePeCA1S4T0yqX0MaS7knnrnQZFq5sPJN/LZuBEFnif8Yt67dy6LCzA9/eXGMs6szJw3nGvP8xvl//cI3Rm0niTorCvbnXP/+ZYZw+YVNh/jqubsQhIkJVQ45ktWVWeZq4kdXHqLWl7oe5Y8zfePBgRqea1/Cjv5LAdAEX9r6v159gBJnM3nWXj66ZoCPrXqT9cW7kUWFMu/knOkBbW78UJNZChABIEs8HIVVpQIbK5J89/IGPrz0j9yyopPzaiN0Jozzpc4fwJ5lLiyoaLwQg3yHhseaOkZ48Bn3TwHjvrqgIPP+ctMi4xwS0PhZcwjBP3X3szMNu92I3tB1nVDozHeem5y5hEKh4RoVDsfUjRNModPExMRkljBUeCjU0IWWVNEVFS2hEO+ZOifnMKFdaS8FWUTt2AZ6Ei3WlX2bKSSy+AL+atNHM5bf5SxGsHuILNgCYuohWPCWcMCeN+39eqextc+Dw+nm0pUDXLjWzl1X/Q+SqFLq6uM/zrmTG5dvo9zbwsH4Jp5JLGXrR1/g8kV7edq6nh9dt4MBhxunReBRbVXOShbbVv49/3xxiC/0XkS8bF3WNtOJ2pM9ZB1AcPr5cPJjzM9PDWhfHChAOf5rJL0FUUh3COnRtpN3MSWINhkEheSufwAgefhniLKC1p0uPOhlKwCIlq8nISTRB44AIDtkZKeFpN3CnvDUDAwLXRaKXWe+S6TWP773uDBvH/P8Y6f1sMsiKwoOsdi3h0srn8IlhyhyTaz6/MJCG4VOQ/D5yPIXKPVY8Dlk/DZzMDsTLPXvxmsNALAgbz+XVz2BRdSHw6WrByuBl7sjfHjVxHKm2rMU0TmdFLks3H7B3QCsKdxOxQjnqlUS0q6NkqBS5c79fjeXvAzAtfP+zKVVT024Lw45ituSfTLpmtpH+MJZh9g8KCx/fM3Bce3zSLCYgaSNu46dDUC/WosuFoFgRI+8q+ZRwHCD3rbmbs4tfYEaj5GP+YoFmQ7R8dCrzl4nojDi/IuMyCWaN0KxTLps/Ko1THVegm+dexfvW/gAedYAn1x+D0vyu4fdrZWePlaXZuawDSoaz/bF8do0blkZZEWJDZ9DJjA4Yf90V4yKPCu1vhHPtYIdRVzAxuKtgJHGQNcFXvGkV7AXJpD/9EzH6025k9vb2xkYGDCdnSZzCk3TGBgYoL09Zb7xnPSbPxXM5BcmJiYmswR9yLU5A8/IeiQ9JNZZJKA1dKM7i9GjmW7PKaWwlhvKN9KsZb7RJzRYePbHuCzYzrzSRQitRpXpnuq1HBIsM/LZvJO4v1lls89J0i3z7orXcMhGbsoIJXgsx1EdMhZJ5trX4bOlXSzL30Vf6Bxkp0aFu411ZQUE9XL+en0bQkM+ejjTDfy2Us7/W/RnjgU+zG+abuYTvDrTbzM3kpWDESf/tGGA/3rZjq5DXBfRSUD4MHh8ac3Vvv3gnvpuWD0SAklIDA7yZQk5/iaJk8Lwny68iSv7mznhWoYldgBt8LcqWg2duVevRY1PzUBwQ4WATT7zB00FDmXcbc+pbOV3b4/uLJ+fb8FvMyaLhhxt8/NFujJrjuTkfcv7WFe0C4Bqz3EWFYqUuRXmTTIM3uTUEAQdSTRSObQFk1y/NMKPtsmsKGzEJiWB8nHvq9Qjc6JvcgLadHBODRTYO4ZfX1ircM/bxt/vWSHQEBA4PpgqWB6H8xmYdB7ZPGsvspj793hJ5XPYpQT/I67kqurHxrXPQGLQ9TZoh365+xzq3LUsdz6CQCjNdTp0/xviHzf9nj/sfT/B+MQmmrunOAJnKhFcdvR+4312Dvqd3DaJap/Ennbjs39GthPXksiijs+WuqdbpETad5tnDZJnSwDpruagqtOXVNgkw6qiZs4uj/MvL66lNZD6bleX6qwpTe07xmJCSgmFoiEyWwRjUukr9SFeyrOjhQxBVbDK6NHZ8/s5nbhcLhwOB9FoFFVVaWlpQRCEKQ39NTGZTlRVHXZyguHmdLmmzsVtCp0mJiYmswQtOf4B96kg2mT0SA9Ixuy+178brW0rmtEJ9PA0Cp2ylb9ddVNWkXOIH+kyD3kquadggPxBoXOnv5rndBlT6Zxanu2McCjsxmXXWePbA4AilHIiVsQyWyNeW4T9sdXUh+OcVXaMh3rP50+tGjeXNvBcsI4a5wC/bCrlEwseoa10Ha5jzzCw8F28Yts4fIyieQX4bL38w4b7ua7hw3zSV4kemFyBllwIVid6IjJ2w5OIFC6DIGwpP0yNbwMtA0mSqo5u96I0PYJU0JTWXu8/hpAnoKs69kIbsZ74qZ+SooBsiyLEUiGhuj2PxIH/NV4ULYCuo1Awn0NKAYdr/oM9YR9f1Z9HT/aila1ClhVk7SjN1qpT7EyKpYVhfLY4f9rnZkWJjbagSk9keq9RFkkgOcNuqOVFoxd8GsmWsrfwO67F5xCp780+2N5cFSdv0A04xL+e+zp//9xZHOiMZ91mCK9dIs8m8d7Fj1DsMCajXHKIVSURVha1UznJMHiTU0cUdFaUCLQF4doFb/KjbWexqnAPCc2KJK5GHXFPG+08rvULnOjLfRynRSSSnD6hzGkRqfFbhs/FmxanOyPPr27iD3srSWo6n137An8+dhavNhh5Gh1ydNr6BZBnHeWDAdyWIOeXv8BZ73ptVEE0hUR/Il2Ee6JlKS55AbeveoaxIuuLHa18emOE218ZPT2BKBj5JjUd+qIKzfHZJ3SKXidPeb0MqDo3DQqdzSrMz7dS5BIYqc3+V4PhHK/2ZmYbtUgp0bfY0c31C/uo8y/k849XYLeIDMRU+pIqui5Q6opxUeULuC1BhAt0fr1nNdubLVTmifz9phcpcaaeNdsTiwirLgrtABY8VqMPIUXnUIGPhaHBtlYZTKETAEEQqK6uprGxkWjU+G3quo6izMxYwsRkKnE4HFRXVyNMYeJrU+g0MTExmSUkAhMXaiaD1SuhtR8HPzgKRRJvfnN4nZ4MQXIC1qMJ0r300nEVFGrUQRuRkO64ZKPLFDmnhT+2wj9Wtht5CgUHH357AbUukX+qq8Ml9PB6wAbEeWvAwhd3G47DG8pFvncoxka/jW09Uf62qp+97jpcspWvajfzXHv+8P4fOM8Qq4scbfzNphPoj01xVXBRQsufh9C+b+y2JxFwlEEQnHKEG5aGufMtB/2qgmL1InceRgllFgMSJAldVbCJbxMTlsIo+T/Hg2STEfUO1KaHh5eptjyk5DGQZP4u75/5vvLv/LL0czTG3TwRKARAc0LSV8Pzviu5SoySPHAHj1T+2yn1ZSQOWWG+vwtwc15NlAPdDl44Pr0DqAqvZcbdblWe7nG3nec9zMfXReiK2GgbEImd5NzKs8v806Z7MnITnlP2Arcsr+PfOkcPyfrgqiT7umTybR1pyy+oPEyRsw+XbIauny6WFoZYUdTGKw3zWVuwncsWnDcsRt+0XOT3e1ICULnXQkOO8/iCml5eOJ7dseKwiCwvsfBG8+iC+KmwttzCdy5+gpv+eAU3Lovx7nmPpK0/r+J1avzz2ViRZEX+WwQTHr7NWs6tkahxZ88ZPFWMJ6enQ45kOC9zoYv5w07OITREgooNBTfjycD5rvlvcvsroxfb89plPrg6RjBu4Vdvwev9s0+Ii3gc/NOxIIKgc9PgG29KaNy4LITXGufJY4XDbUOK8T1cM+/ljP34bYb46bZJLMzbhySqLPfv5IF5/0BvVOCtFkPkFAR43+K/DFevv6jyGdojfpYW5tPQ72Jd0Wtp+z0SnIcoaCy3gyYWM89zGIt0GUlV50ASFg62U62ymap4BKIoUlNTQzgcJhgMDrs7TUzmApIk4XA48Hg8uFyuKRU5wRQ6TUxMTGYN8d4ZGMSKArI1ihrpQCiSsOhHGPlIrkW7puchUrKAmuRnRYthvGYHQUCwe9DjYU6IlvFvZzIhHmoN841FVuJCDbfX1/J4+wAWQcBvKeXGMg8vdBkPzd85EhmxjUZnTOP+piFR3IrV46B50fsIyiV8bEEql+FC3zFiQi12vYGb6/7E/rLNFHYdheJF0Hk41RFJBnXiQlq8eguqZMPJxIXOXtEPgN0S5/oF23mj9WJEQSLZ4835gCRaRLQEJI/fDd5vTfiYJ2P3aeidT6H1DX4WspWk1YsEqGWreSpQyN8W/DsvdfnJk1MDGFWQ6PIs4Ns9K7m6YCvoMf4cKMl+kBFYJYHEOFyTdlnBPSgorCttpc7v5IXj+WNsNXmuW2YhnGBUt9tkkURh2HG3tNjG0Z7EsOOu0DGxA3529QNsbT+L9tBSnjqSYEuNja0NcW5ZJfGuBUcocmTP43rlvO281HgVWxsVYoqWVR//q2Uvccdbl+A8Scg5u2wrkqBOuLiLydRx68o/cTxYx4qSxUiiyj9ufml43T9seoIH9l6OphvuvgqvQEOO02pL+X5kcRPKSVENFklgbbmF6U7hec2iTpb6d/Praz2sK3w9Y325s5GL5sX4m7VG7sql/r18bP1aziqvx2+fmUKFU0WSwpzrIloJVo4Co99zVhe8Qbn3AloH0vPz2mURQYBoUqPYJfG+Ja/SHirmV28tpTOuQrkHeoKIDivaLHAg9svGHU3XBUS7BS2WJCLpfHzRS9jlKK803YTbJnF+rcTjhxKsLLVR6z2SsZ98e4AlRTZK3DAyXeZVde281lLMgU4RXYdNVRbmeQ+nbbvE38B5Fdv54VvXp+9UcLOtu44qVx/4IazV4JFaWFhgZX9nnKf6EmypLgbAqWmMsw7VOwZBEHC73bjd05BXx8RkDmNm9DUxMTGZBei6Tt/eprEbniJWjxUBQyyxuGT0UHrYmqBNj2NLqVyJ4PTzlD7+205csrJ93XsQvMW0mHP400ZU1Xm8u4gfNdTyncOGYzOp63zz4ABfPWDj4OAArzmaOjceag3Tl1RJ6jpJXac+uQpfvsZXI1fwjYu38r0LfjD8r8ZzlI/sqiAuVGGRknyNG0Gy8OPCzxri5iBa8dKMvgnWsYc097muQxEnVx13D9UAVLrqWZ6/k/cubeKTaw6QlHK7Tm1eFdlpQe8/fsqzzxa3FWngUZSGx4eXRavPJWYxigx0ewwfy1OBQqKaRHsi9T41RPZL82lN2EjGm9G85YTUsXNzXb5wfHPcdlnBZY1wcZ2Nq2qe4vKa6c2t+p/n30+df3qcbIsLU5/bx9e2cW6N8Xp+vpX1JzmLxiLf3sk1tY/w0VWGsP7Xq49R47fy00u/y7trH865XZmzkc9veIt5fgsuq5RRu8thEVni382G8o6MHIduS3DcLjaT6aHQ0U6Jo4NrFxv5V9cXp86bBXn7KXAaBaeWFdtwyNkFaYsksLrgLWQx87qxpdrKpfN68dqmd0avzBUAYFPxqznDv8+tbKB60L3ps/XwvQt+wIbiPdPar+lA0XPnetsfXEVCXJhz/RCCoHPz8vTfnkUSuHkFfHiN8fldv3SAYnsbRc6UOzzgstNYU0pzsX+SvZ9aRk6j9wz2yZ+nsMi3l2r3Mc6qCPC5TRG+cvbT2GWR6xZnV+rzbT18+ZwjbKwYQBFrGJISVhYd5fzqFm5eoXPTcrhsfmZRyzJXC5WuE2wuH/msa0URSmiOeDkaNITpnf2bUMQ65ucbv4XXA3GuPBLmyiNhOiXTo2ViYjI+TKHTxMTE5DSjazqh+i4SfdMXMj6ExZka2Mh2Da1v4i64iSL4K+nKryZcuZLABAxJP/DP5ym7j6SvgkbTyDStdCXgd02Z+dd2BhKciIxdafrrhx20usrIKy1kdf6OtHWaUMSznRHuaJyHLjhxOy2E5l3MbwcWITh8w+06/Cszd+zwIVgdox67VS6g31poiKbCBB5rBIE21UWRy0KeNYAsKlxa8wpea5iEmFvolGnF4h48zinq7zZvEqX1WWNXg6Luy67ziMhGiHObnNuhqSKxRzHWx9QB+r114zrme5YcHbON0yKSbw9RaO/mexc9iFMO47VMg9VyEJ9DxibGWV/aMuX79tgkVpYoCIJRsGlJfhPvWWoUebp1faaoOF4uq3qKijwr+bYg1ywaO3eh19pPibOTCq+O0yJiO6l68OJCC6KgsaVs96T6YzL9FDtauWHBX7Kuqyswvs+NFYkMEXuIVaVW7HIUhyXzOrWlqp/r6l6hyDl1k41Z9NRx5bbcUpop/pe5pjav8kyQ1HPfO/7Svpzu5IJRtk59eDcv3oY04sOs8Fr48IrX+MSq51habON9i17AZQnhkGPD3/0TCZGbjgzQPksmacMjJpl/M/ioGRJSEQLvWfgXPrb8EcqcrXhsEtfWbR1cM9R/Y/t8ew/rinZz08JXiesF6KIhTi727eey6pe5dc0LfHDZm5xXsTejD/mDRdrOL986vEwX3IS1CgC6Yi4Q3LzdV8ue0CXU+TOvq+PPqGxiYvJOxxQ6TUxMTE4jmqLS9doRQo3jzxN3Ksj6cQQMd4IkB9FjmbPuU82uxRcRsLr4aMUmJpI56HENtuoSDUV1dJhC57RyYECjPpwpaLbHFJLjyEH5YEuIJlsx3zjvSWxyuivv5y3LUHX4xoEB6hNLuf3SP/Cc4zz++7JGsKQGov2ezMrF0cKlbFv8Nwheo9K1kF+b0ebGTR38P+W96IUL4aT1gie3UNi38Fp6FCvVvtSjULmzEbclTELKPUDWI4cQpaHPavKDWNltRaQLfTAPaKRyMxTWcWf/EmKCA4oXUa8X5dx+P5UcjRuCaFSy8039uuF1dQXZi2dU5lm5vPqZrI4yMNxoAB9co/GeBX9kvvcQtd4jiIKG1xrIKeCcKjcvT1Jg72BFwdgi7ET53KYwhc4EH1krcONymTJnG1vK3qKuwMYNC56Z9H5lUeEzG7opdXWwqGB8w+8l/t1U5SU4r0bHdlKMcmWeIbgu9ZtC52zFIUeodJ3Iuu5DKxoBWFHUk/OqUOs37oA3LldYXJT+Gy10RKjLO0CxK5Z129VloxfEycYHVotU5aW73dcUje3MLHRkFiR0zsH8sN2JipzrGsN5NEcrc66PCmuG/67zHuR7V3ZilYxvtswjsLF4Kwvz9rHtQ/9NXd4BnHIIpxxmc5WNeflWvtsQQtcFTow9TzgjtA6m6vA5ZO5uDSPaLLgdqXt1jecoJc5m8u2dnFurs8i3F13IRxWrQPDwZvhTJMVFOGyFOOUwS/27CSrFqBj3oDxrgFJnM8v9O6nxnqDaXQ+Cj5FSg1UyjjcyvUdL8jy+tOszw69VIZ+uuJPjoTKunr8z4310mHV2TExMxokpdJqYmJicRuLdQbp3HCewb2bcEmrLwwhJ4yFTQEdXsw+qppJddh9/dBWzbxJFWxp0nZfdxdPQK5ORvNF36udBlbeXRb5MF0dDJPW9/+0eKy5LkHrXPG6c/zCClAq1dvszw88b8lZwW8cWYvlGiGF/wbK09YK3lEJvLwVeC13+lcS81Wnrk77a7J0VJX4gXM2BmIdyb7qjz2sLEhdyiwpaYC/CoCvqVIQ/ixOINaT6KjnYU3YVeyIu3hbmodh8HEzmzon5u/75NCcN52m9bT6P96VE0Y0V2UeDF81TcMohVpVmD/U/tyaGKMAlNYcz1omChts6dmj8ZHBbjf7WeQ/kFGEng8sqcW7lITaVN/HJ1S/wdxufo9p9nApXAx9a1TtcTGay3LLocRxydLhAx3iozQtyy9I92OT091nsmiWKiMmkqPMZbuRF+U05rwv5duM7fu/iNzinOn1CyGU13Gs2KfO363fIbKyYeFqHRfn9fOviVHqaNWW2nELtmciBgdFd7sdC2YVQTayiMbZi+LVDjnBZ9cv837X1CAKUuLO7wF1yPx9c0cjSotQ973B0dhSGOTJYCb7MY1zDdaeVSk/269anVhu5W6PMp09dxDM9n+HeE5vZE7qQ9uQK3HIAgM54KVqWkk5eawCvtQ9NcKMLeaP26y8dZ6W9VnQv6EYu0bNKXmVlafq9uC1pznqbmJiMD1PoNDExMTmNxHtDRNsDRFqmNyDHU5EAUUBt34YeNEQMQetBV6YoSX5hLYIv05FHyUK+j5V7tcnfbr7HxJ0sJhPjROTUbRJl+b2IgsYz/eex6pVNw/9+UZ9yAr3YHcVudbJiUQyrFEccDEsX3EVI+RaS1WejlRkh7IFF1/ITy5X81XqRvrw67lr+HT6i3Yogp86HWP5Cqt315Ds03rIsI2JNz4cWsRdCwXzjGPm1IBuDMsHm5oGeMrpFHz+77Cdp29R5D5CU7YPtXOxa+QX0shXDIfRK2ytI8UFX1CkoncLxL5HY9wPjb6ePhOTgI+2XAvC1juVE7IW8FMpdTONA1MWRqBHu/kRicdq6L643nIrnz0v/7awr6wTg3Yt7uXmFzBULU4PULTU2/uPsn7O8xMY5Zdnzca4qlTOciBsrbRS5LGO93VG5YaExsLbJcYpcMs4sob2TYWWpTKG9h+vmPcRy/06W+3dikRJYpTifX33nKe+/0NHOfO8hrq55fOzGg9Tk9XBhxfPYZQGfQ8ZllbjrhhN885yfn3J/TE4fxc5OLJLAqoKdWKV0MWZZsY2KPCvLi4zIjbNKXqXKm0pVc9F8G9Vu47dpkzOvxR9fH8EhT0ww21BpI98e4d3z/kxFnpVlxTY2Vk5fNfdZhWBcv3f1VY3abH+O4m0BdSHPd65OW+aUwlw37yE+ulYgz5b9fumz9fGBxfdT7Eqt3xM6/RMYgizSaVU48bnf8Nh7fgVAwO2kzJU9HcnZpUa19bBawNf3fpg/NK5lIGnj54cvoC1WhsNiiPJPta3JGv7vsfQjiwoqLo7GriIpLgLBm6VjDl7pmpe2KKSV0hV3oeiGIPu5jfVp67eHTn9hJxMTk7mBKXSamJiYnEYSgekvMCG7LAh9TyHZjCTuWv8h4//O56bG0SmI1Nduoq8yM8eiLkqc6mP+7PBDmIxFT9KCLnj56v4EjZHk8L9soe8bi43csJrDcHuES1bR4/BwzLuGxvwNADTYallUGOPLG++lJW8BP++ZR22xDbxlw/tp9y3FZ+tBFHSeilShnRQ0GpOcIBoDpoS7lFjV2cYKhyGISkJmSKYoaGiWwRydrkJ+GV7D84XXgdsYFAu6jhYyCnVMNnJdtEhGMaPB4l9Kfh1x0U58MI9aUhd53HY+jfHcuUJHsjOS7popsHdhkQS+cf5zacvne42Q1Asrd5PvSFA4Ih/gyuIodjnKZ9Y34LH0Zz3ORbV9GW/57zfvocJ7ao+TNZ5UyLpNFvA5pAxBdTLkO3RKnNmroEvi1F1ZxpP3cIjl+YexSAlsskB1nsRtZ4W5uPIvZrGhOY4kKFwwz8j367Gmn1vlXp1/Of8EKwuODS9zWVKCza3r9rC66E0A7FLmeXlF7U5sWZaPxvtXtFKT1wHAWZUaF9RGme8LTGgfcxVN8IPgoDE8upuwI+YGMidp4pqT3nh6ITxZNL6vL6x7FIcl93chCholrlRuycPhBMIUXMtOhUiJH5dLxWfrJd/eiSjAQwmBYmfPqNupukhUTX0+GiK6btwBdKGAI8FC4lrue1RS91AfruRPbR9CFQoy1itC5uT41p7NqLpIUjPu2++pe5DaEdEenTpQmEU0NTExMTkJU+g0MTGZEnRdR1fHV9RB13R6324Yu+E7gERg+gsQ2fMUkicexu4fFFV6jfDiZNMzCJMQOg+c9UEE/4jcVgXVNNrz2JdnLIssOh8KawFQLaMXkjE5c+iMS9zfuZZDwdEdF79tW8SSwTyEdxZ+jF8t+w77vRvwe/p50b0R0W5HsHtQCkr40obfkW/vZJtzGbedm+Rr5z6J4iwgWb2Z4MKreMBxEQCfWvM6e9UyrIPhwHqJUcG9Ty4g7jLyeyqykyPuVQh2L0fLDefkhhwp2nSr1eiDo4AXB/z8Q8eGtLB5tcUoSCJOcgAr2UeEgEsyfe5aXhbTJwq+3bFk3Ps7GE0Nym2yiN/WxRc2x1lVsIN15SlXZ43HuO6uLnyDT6x6jkqvMSC/dIGVz6x+AoCbFzyY8zgfXvZomonVJotcXPEsH1kz+SJCF9fZyLMGhl/bZYFrl8SpyjMG2JIo4LVPLmS+0hvHZ52Z/MfjZb7XCCV2W+H6Jb387dpf4bEMnOZenYEIM3vvKXG08l8XPAqAx5YuhH1u3U7eu+ABVhakcg5eXr2VYreF5SU2Lqt8CtfghEuZOxXdsbrMxh9uPsi6wu04LRObMlzka2FLyYsArCru54Lqo9xQ9+yk3ttsRhMrQBghSgp2gtpCEkLNuLZXxTJ2hD/NqwOfB2Q0sZLeRCE9sXSh0ykbz2q13iPctvbPo+6z1J2aPNN1AcE5vgmr6UAvyuMfAzpl7hH5OP1Wft4cptAxQugUMvvYlSjLWBZVbQTZQkg3ogj+3HIuT/b8I2AFwZPWNqG7eKxlBc+2LeS+lo8T4EJ0cdBFK3iJapmO2idbjPteIGF8/rKo8OHVKedpmUfgPouDnupUSiPRaUWwTE9aFRMTk7mLKXSamJhMCVpSRYmMHRalJRWO/+4V2l/cPwO9mv3Ee6df6BRDz0MyjBQxwlEF1RCiBH1yjqbHnUVodvfwa93ioFeysMfiQqtYztXlmxgoNsKZuvKrc+3G5AyjOSbyjYNju9K+fTiCOFjV/FWlhu90LqLFW8vCvMP4CyxUF0WJla6hv7AQn80YiK0s6eZjy//EUv9uZItIt2seB+zLsOcb+9lc8jLLS0XcNgUK67i/6KMAvK7X0e00BryqaCGBhWjZWu5PrgegzJ1dPLDKEC9eQdzuR0Ukqkk8artgeL0eM/olSJO0dI5QCwWHnyZLJff1pw/M4/r4H9H0ET7Lap8FWVS4Yt4uAP56jVEkRRIFKlyG0CkKGgvz9nFhleGsvXZhM7XeIwBYpNxC9ck5LVeWWrBICRb5Jp9j+Na16cVR7DK8f8k21pYZ16eqPAtLi+RJ7fvcynoEYXbldBuq8l7s0in3BDKKd5lMDSG9klMpFjZRHHKEBXnGc43HmrquLC22cVHlM4iCNlyMBQzB7EtbOllSpKa5iy+q+Asem0SN38rvr7uHy6qeRBJV/I7MCtSjUeVpHN5vpaeXC8pfoNQ59yqnj0V97DzizB9+fSx+Pa3xWppia8a1/Yn4Fn559DwebFpHP5vZFbqat/oWEVRsIKSec4Z+twAVY+Q5LXGmh4TrU5SKYzK8aHfwam8cjzV1Xb9lxQBxDXzWIVHdiipk5kJ/vHV9xrJjoVKe7LiChqghdO4LFPNg02rCwmqSJzk0Fd0y7Ah9saOOfQOrOBI1Jhmj1NEer83Yf3IwZP1gfyFDbtuF/lRxrFqfwvaBJDfXRxD8LgD2FuUjyKbQaWJiko4pdJqYmEwJyWB0XI7Oo3e9RGB/C0rEzLMDkOifXqFTtMokDhs5mZJHf3vqOyyaxxuCBAggWRDsHjTZwvOSgydEC3+16Eq60Gl1F6NVrOCe/Hlj7tLkzODXDTGao2OH8PYlVaKUEBNq+ciq4/z9uXH0Ijd+WxcXLDrACU8dv3LfjDMvta+ra5/Gb+sCQLZZOeZbQdxXzHsWvTHcZktVH3i97Cq7hj9EF3N4xaf4c2Qe7VIxStVZKKIdDZEj7lX8qa8Ur11iVVFn1j4etlTR7FlOxOIbXvbDrkWE6y5PaydOQn8TpPRHr77ys7k7uno43+apUjEY1bcq3wiFvW7+E1glgYUF1gwRc13h69hlkXPKM6vb5kIUBCRRwCoJrCoZqqI7OddkXYGNSyqfTlu2pTrKqoIdrCk1xOS6fFhcmPt+cU6NLWcBo7NL38i6fDZQ4k7iMkXOaaMjmWeEMJ8G8mzG9+q0iFy5IHe18vctepgLqtInDxxyhNvOCvHHGx+lZIQwWWBP7SfPPvqFpyrPmlZ06IqaZ8/Y1Agvda2hT6khKS4BIY//PXwlr3Uv47HWzePa/pdHL0XVRYJJG/c3Xc99Jzazo8ew+ieEyU3Ulru60l5r0ukT4b7fbHzvebZU9M4Hlz6JKECetRdd8KOIlegn5UJXxIUcC2YWwzvQX8yxYCH3NZyTtvxgaD1hrcxw1w66Q6OqO63NoYEK7ms4H0VcyMs9l/Fc57qc/U7qEqpofA/rS97m78+N8/fnxllW2M+AojGg6HxNd3C8ppSvNEaM2UkTExOTEZhCp4mJyZSQ7I+ga2M7ZyKtxky3EjWFTgAtMb0ZKEWrOOzgJJ498fxE2F13LnsG9WytZCFtSy4maffwnAZHNdg1eAocsudxoHI1v9LMWfZ3CmOFrA8RVXW6kn7+9Ug171v4IF/d9BNWlRlOwwpXEzvFeWyTF7OuKOX089lS4ZxdBcvZ7lmOr0JiXdFrw8vXlxxjj3MFb0iLuXVLLze0X0NtmZudaiV3ed9Lu7UMFYFuvEQ0ic+fFWRjaWaVeICtyjz2idXExVT4a0iVeHQwVH4IYRJPUfZ8C9JgyjEhv4a7pEt5KpC76NBEcVuNH+iQU9BrDXD5QplrFmdW2LXJcdZXWKjLOzDu/TstIhVeC2vKrRQ6jWMs8u2lxp+9knsurJLAVQsjGfktr1+4A0HQh3MYrisLkmfLHbb7ibVHyMsS2i4KUGhvz7LF7KDaG+b8ipdOdzfOWI5HHLwVXoImZIo1002FJwDAuxaLlLhyC51ea4AVhccyll+34NVhd+gQPlsqvcH7V+W+1tb6rTz63j+m/a5y5dw9EwgknHTEy3iw7QN0qmcTUmxs66phb45CQyfTHXcN/72jp4JAwjHsQny0/eZJ9anGfTzttX4KRetOBdEq0xIznjErPKl7aKXrBIUuw/nfrpxDU3w92km5So9GswvFA0kbYcVKZ8yVtnx/fzUHgitpVy6gUzWiH55tT99Hc8RHc8TLa4GreaBxLW/1ZK96P0REM0Lny52NfHXTT/jqpp8w399FV8K4x/25I8p7Dwdpiql05rlH25WJick7EFPoNDExmRISA9ExhU5d09EU46FLT6poyVOv9DzXGW9e0/FwchitxWM9laLQWQ4g8pDTEGT6CmpoK1lMyOLgtxWZ4U1vyXaabJ6M5SYmAHc1efj58SD6YGjgqoK3AMi3dbHA386HVjYzz3s467b3SBeyoCCI4Ek/uVcXvsVBuZK8Gi9X17zAubU2bl56lEfCNdzdW8NWfRGNegENWj4WSeBDSx+nyl1/0t6NfTotGn+JVHJUSnf09Ggp4VNw+iYVGStZEtgsjSAI9BWu4dH+zDxop0KBI/O6+m/nPM66ksas7W9dd2hC+y/1iGypVllbGsNrTTkSr12cO7RWGuG4lETDEZpnl7m4OvPYS/1GOL00GCq6tqSJPFtK2PHaJeblp65tKwsO4nNkCp0rS22zLmx9JO9d/FxablKTqWXPgMgTHRZ2RxbP+LGrPUYBrJuW7MdnHz3kfJEvM41P9UlCGUC+PQAYEwTXLXib+fmZEws1fiuPvvf31HgyxdO5wUQuqAJxYQVhxcpjret5rbOGrT2bprQ3T7YuISycNeHt/Pbu4QI6NlnktF2FHKlzpNqT7hwu84gguHm+azPPtJ+FqtsACVU0onCebN2Yc7e98cz8t2/3lfNk60r+0HQFz3WehyLWsa07PR1Lx2DUwjNty8fV/T6lNGNZob0P0SpS6kkJs4IAf0ka507SzNVpYmIyiCl0mpiYTAlKOA6jCJ1qLEG4qQddSQl7Zvg6aFModDqLRexFRviRaJVxxH+DkCOkczJoFct5cTB/0keLVvCIr5pjDh/fz1K1dKcucUSyZSw3MQH47hHDnaQPnjtDgo9FSnBl9eN8dOk9ObcVvQ7+eul9zM8/kbY8zxpgdUUTayqaKHE28+iN/82NdQ8iOtx0Ja08Jy7nx8HVPKavIM8uUepsxm05yeU4GHLnkFWe7i/ks23pjpQj8VS110Pz34cgTnwIKwhhEju+iJBXQZOtmtbE1P5O6vyZhW0W5u3j6ppHs7a/dt5DE9r/+1d08tm1L+K1JbBJKVG13BPCnqU4k00WuXmFOCxMfngNnF9r5a9Wh9lc+mpG+yH3mTQoUhY5eqnNSxXNuLRO4IeX76AqzxjEF9rbWVOW7oyXRYG73pW7qNJsoNo9V8WoucHrvQrfPTLA450TcxpPBdXuRpYW27i86klqBkXPXGRcgyBrmPl872FWldr49KYkhY5u/unc45x8e/+vi/emhazPNVSxNmOZnsuRK9i4bedXaAzncSLkI6xaaQhnVvY+Vbb1XjB2oyycW6Nw43KZz2yMo0/hc9hEiLqN+1mx28Jy/660dZfODxJhKS+017Gjp4LuZC0d2uXc1fhpIsIG9vcX5dzvUB7NkQwkbbRFPewJlFAfyqchnimUJnUjvLwtOr5J8Oc6MoXr1YVvce3SGPff8MJwypKrFln4dWcMMc/J8+LM/95NTExmJ6bQeYoIgjCufxdeeOGY+3riiSe44YYbqKysxGazUVlZyQ033MATTzwx/W/ExOQUUaMJdC23aDdwtIN4T/oDvSl0Tq2jUxKDWPp/C6KAo0AnceLPSLap8xLsq1xDu27sr03XeRwLf5Czhwsd03Vew8yZZDI6OhN3X7x38VbscjRrYY2VhXtZUZAejj40xvQ54JrFCpur4hS5sh9XxwoIuCwpAW+kK/qNcN7w379JbECQJv77FTBckHFfLQf08jFaTxyrNL3pMK6o3Ua1+zgeawLLiGNZRBWXNfOxstAlc1ZFB5urDEH3E6tf4DPrd3Pz4lewibGM9kMMFVKxyzG8tpTws6QgyJbSl9hSrSIK4LYMcF5Vupj0gdUMF1cyeSci8Uq34aR8pXvmnzOKHS38+/l7EAWNxb6JOaZz4ZRDfO38t/jUqkdxymG2lO2gwJmaZNxSY+Oqmsen5FinByt96oKTlgkkhUxXn0HmBKuiTf2w9snWZVmPNRaby9v48SX/y/KijrRicTNJs2yIftcvTaQVvAK4edErJPVUpfUn2s7h/sYraI16ebjt+lM6bk/MyZu9y05pHwDbumpIiumObKcc4tKag6wufIMvnRtFFOCLG7ciiAIPurzsCk/v/c/ExGTuYI5CZwGapvGpT32KX/7yl2nLW1paaGlp4aGHHuITn/gEP/vZzxBFU5s2mZ2o0STJUIzMgBaDgSNtWDzpa4PHO3CW+aa9b7OVZCiGlpjC8H21G6X+QVz5B5DEv0PTdSxyM7mz202M1+2pwg4RDDHz2Cg66q7ZGzVqMkvQx5xvtcBJZ/CqAqPITra8cydXBQdYVqxysAscss6igj5sksL3LkgvzNXPUiQUdg4UcyQs47IqlHudqBp8+dw27t1bwf5Ohb4ECFYHIPCn3hK+5Zt4MTEhZIRmXxT7WwKhiQ+gh6grsHGsJ7OYjVOeXmGnznsQgM+vSX9msUgqVXkSPZH0a5rLIvDXS39LUv0IvdFSlvl2sdw/9sXh8uoXuGLhX1PnPYxLDgPGgPezq+9BFhXOr2rhhxf+CVlUWFZwAkg5kC6qOXEqb9FkjnPjrrMIq4bQubUnRpe2Er/UhUQUHRFRP/V81aMhCDpXVBuiY749e8GzyXBR5TNpr//5/Db+9olCrJLAdy+e26aIY4kbQYDCEZfEmLCaQ6ENrHZmhvfrWcTHsDL1br6BpI0Q63HzWtpyXSxF0IZyAGfepz605F4AluUfRRfqprRPos+JFhi7uFSTCu9fJfLt876XsW6Jfzdt6jXDr3eMyJfZGPadUv+Cio1n2xae0j6GeLX3XVw4crJAsLO8wLiHfnnDT/nyBmPx0uJz+cbxIJ8unfmcvCYmJrMTUzWbIj7zmc+wZ8+enP9+9atf5dz2K1/5yrDIuXbtWu699162b9/Ovffey9q1awH4xS9+wVe/+tUZeS8mJpNBicaJduROeD9wtIN4X7oo0PNW/Tu6KFG0rW9qhc5YCwBq30HQjYdgvfPp0baYEEFzosVkihnL6aILpx7WXe01BA+LpCOiYxEzHR/b+wt5pqeM+ohMbwLc1jjrymFpscjFla/zqXXHKPUMzg1LNjR/rfG3MLHrl2SXSRy+E8HuIaBMXuR0WES2VGWfwnBbc7skpxOLoLKqNPPzGHLEvnveX/jUurZx5810SCE+smo/TjmEXTa+Q6sk4LYYxV3WFe8fLrhU6kx3dOZZcxeAMTnz6U+kO63vbMpHxUq7UksC3+np1DRQ5jIKzHz1ggGW+nef5t5Mnqiwjtv3v5uuWHro+dOd1/DzIxeiiVWZGwmZXp3AFKcBGeL1vvNOOraPiD4i/6SQXphnJAvzDkwql/NotOSNL/Q7oMF7l+zJub43OXVF8KaL+06sRxusvg6gCz7clsz0LFfUTd2EgomJyZmBOWqdIoqLi1mxYkXOf/Pmzcu63eHDh/nOd74DwIYNG3j11Ve55ZZb2LhxI7fccguvvPIKGzYY01W33347R48enbH3ZGIyEbSEQrwn++BSCcdJ9IVJ9qfPQEfbA8RGEUfnEpMRbMNNvWM3mgB60CjeIug6RIz8b8nGqQtlOziJMGMTk9F4I5i6NwbIDHWL6qV0aStBGHSDZxlQvh7eMlzUKBvVef18ZpOGz65ww4JnuLr2LxltXuwW+Ps9Yb5zJEpXQuc9C55iQ1mAWl+CGs9Rbpz/JzZWGJMSqr+WmMsIpxTU8Vf1tritOKI/AiUK9rxR28ojcrqdU2MM3jdV2VhZavx9VpUFhyV7iF65u2vcfZpKrFKS5YW9FLnSBdzPbjRSDJS5mvjI0t+Ne392OcqVg644hxTF75B55oOvDK9f7EsN4MsczcOCapnHwsaS7ZN9GyZzEEUYTAEh2NGEQk5E0icBvn14gKRu40v73XxydwVfOHQeijC1RcBOB35bP6tKbXxu1a9Pd1dykhCN63qjcpPx/YgjK20bBXC+e/iTaIh0x3081/cl7m77Jne3fotHW5aT1CUebPs4xpA1JWRq2DmZkDI9QuczbUuJCKmii4pQwIHQWjTROO/iVPFC4O/QxeKMba1SHItNR8hP3aNEa5aASkFAKBhf5fBvdCYRbRZEr3FfFGQRClPip2i3IBS4aU9qnFf+/EnHSX1u3fHZ737UEDkcvWj4dZJ8nHLmWOPd85/HIglcOv/MGFOYmJicOqbQeZr5wQ9+gKIYg6c77rgDhyM9tNfpdHLHHXcAoCgK3//+92e8jyYm40HXQYlkhlHCYKEiQImd5EDSIdadmYh/LhJpmbhoGWkPTGkf1M4dw39rvUZ4r6BPXfy4+fhoMtW0xFLi+fFopvjXkfTx0Z0eYhgDyKBekdHmkXaZOLmLUKwpOsJ7F7/OAv8AxY5WCuwdGW0GFJ2ehEZjJElnTKPI0cbi/BacFgVB0JFElfcsNnJ/vlZwBfHB3LT6sV8gjrPKq9Wjora+bLwQRn/88tqNfdplkTuvuof1FTa+ccEr/Ot5b+O2SWwoDyLmcEaWOsYvvk4lVinJAl87F89Pd9OtKz4w/LcsTszBLg5WXrdJUc6uFlhd+MbwupHOUIuUoHhQYF1WLGRNa2BypiJyX4cRJhvWK3kusJSekxydqg4vB8p4tC3CI21h7moIkcyZaGfuIAo6/3bezoz8i7MFTSzn1w0fA+DlrrW0KJezvf/6EeuLCbJpOFQ6ocm81LmQlzvm83JnahLs6bbFNCnXoY4QElXG52qcCgIJGz89/hEGOMfop+6nOVLMmwPXAfDmwIVs615AffyirNsftssc9Bj3DEES0fKcGW0SZX6OuscWOkWXjdcDcdpK8znoN+6Zar6Hh6ypScDmknxedro5mlQzrrnqiJynXTEvc4GmcGpSIqxmiskAla4T/NUanfMqD85Ut0xMTGY5ptB5GtF1nYcffhiAJUuWsHnz5qztNm/ezOLFRm6qhx9+GH0KhQsTk6lEzeJqjPeGUKLx3Ot7zhShc+I5v2JdmeE3k0V2WdFj3cOvlc43Rmk9cQTZRrt2ehLqm5y5/LlN4+n+80gKFRwJWVGFkuF1CaGaz+y28GpPlK5kAfXJDfzwRBknP7ps700S0nIPelfm72RVwQ6unrctZ5veEcLIm4EEILGx+C3eXff28PILyp/nfSslvtW7jgabMQjXlX7crpfxVGQPI5fsKeeOJAaAwRyfYm5x1G2TKHAa68+qslDibObea+9mY9FWtpS9ws+vOcTNi15GEnQ8NomlxSkX08pSW9YiTTPBqoIDnFW6lYX5qWu6LApUTUEVaIcU5vMbXhu1zcJC47xYVHB6QvdNTg/1yXX834k4IPFyoIzP7TK+f6dswW9NCUq37UqPKAmrucON5wqLffu5pGrq0tNMNfWx89nRU4EulrCnr5yfHb2Ge09sYm/0o+yJfgwFD893XzLcPqpaCCQynZoA3z5wIyfi56ALRq7wxtiqGXkPYLgKAwk7/7LnVhSxjpjmYWvXPB5s3MDe6Ed5qGktzWEvz7RvBMHJycWLft2n8dPuBH3VxeB18LbTOezGHOJl0cruLLcR0ZGed/R4ofH+/60jwYMDKqLLRofDzg+aQoSqCkEQ+GGvwjebwnTrqfuaLhayN/pRXuq9afgz7JgjQufW7jr2Rj/K3uhHaY/X5Gz3r5vvxmOdeN5sExOTMxNT6DyN1NfX09pqFE644IILRm07tL6lpYUTJ05Md9dMTCbFyeHbuqZz9DcvEe81wkzUkx2dnDmOznBzz4S30ZWpc2FYTjICCOrU5j7tWHYZXZiTLCZTyyNtYd77eoiX+ufRFod+LZUz7ECknNd6DNHi7aCbT+yU+c7hAXRh5ODMwpuBGKqe+3HGIhkVZxfkZRa0MBDY1pMSxxojSXTBSaGjnbNLX0rbz7sXHqY+7mC7OjjYku0k990BXQ9lHtdrw5E/4jeuBgBIlqxCsfty9veqhQJVecZvbXGh0a9iRyuCoOOSQ1xd8yiLfXuQRJ2lxTKfWGfk5s13yvzd5iPD+SxnmlrvEdyWIAv8qVxpVy2W8dlOPUWHIOhsLnl51DbvW9YIwAJ/4JSPZzJ3+GObi7cDcQ4n1vFgK3TGDQfbIk8p5xetosppiDrdifT77c6gb6a7OuV4rYHT3YVRiWvGJMzx2EX0Jhy0Rz1EVSs/OnQFdxy6jO5kHY82Lx9u3xHzElWz5y6OqzJ/aDiPt0LvBcHHr49fkrXddBFTZaKqhee634OqG4JsT8LJjw5dQSDhIKlLdEQ99GpnkRTT05VFdJ2Xe+N8oDFKn8fJr7sT9OWlP7QFVJ1doXT3peiy0VycKgKplfh4/1HjmXlHf4KmmMrWAj/7VYGQovOHuESgqpDnumN0xTWWl6TO+Yg+jx8duoJ7T2ygTTkXgO743BD7WyJefnToCn506Apao0U52/lsE38ONzExOXMxhc4p4g9/+APLli3D6XTi8XhYuHAhH/nIR3j++edzbrN/f2rQtWTJklH3P3L9gQMHRmlpYnL6GApRH2LgaDuxzgHanjMqJKrxTKFzZF5PXdPQVS2jzVwg0tqHruto4xAvh97jqb5XQRZxlcm4ykVkefpmsbWKFfxn4eJp2/9UUO4wHthXef1YRnHLmcxOvntEZXe/xpFIHppQBIgcCKWcircfSfBmwLi+JEiFuCtCEaoOh8JewApkyX02Bprgzwx1JfsAMM9m/M62RosocVvQLYYrR4+dFC4uCjisOxCEBIiC8S9o5JQMOUrYmn/lcFOfQ0YSBYrdFiRR4JqFR6nJSyKJAjV5uV3fkqCzvCjBjXVPIQpw3RKViypenPD7n2rWFO5jy2Be0VuWzlwY4bXzn8Bllaj1ZqYmMJlr5B6eaIKRpkIRSlGEch5oMSYDPvqWxNYRExYl9kJ84gLOKkg5/0RBQBxM5vrbJp0prxLzjmDouzm5wnlmfkxdNz7fexsuzLqnu+qvSnvdEPKNeuTjoXyeaF3DXc1fpjM2syJdXDXuLQ82rmZ3/+qsbXridh5quZKIVpK2fCi7SVdc46vdKkfCCgdPKqYU1mD7QBxBSp37+wv9hBAQZBFBEvl8UCSpgTSYw/l4NMk3GiP8pNVwK/+hM8o/dqbE0pXFqUijkJqaRHy45UJAoDueGUI/2+mM+9DFEjRxZI5dEVPSMDExORnzqjBF7N+/nwMHDhCNRgmFQhw9epTf/OY3XHzxxdxwww3092fmi2puToWXVVZWZqwfSVVVquJgU1PThPvX3Nw86r+2traxd2JiMgaJQJhkyBhohBq6qL9vK8CwoxMt0xEY7wkOp2PoePlQzjyfsxktoZAIhNESCj1v1o/ZPni8E13VSAxM3nll9dlwlSiob96C9sb7ENTp+w3fv/BCnp7l+vMVXmMk8Ul7E4vdcyMcyyTF1p4YD7aE+Od9GnsidSSEch5vT00avB1IXRcUPeX46VSMfF03vx4hLpSRFNIHmOMhhj9jmZKl0AVAmdMQNLcH8/jE+gE0izFQ1MMtae0sLgvJt7+FQAJHgQV3mUry8N0A9Fvy+XTb2QCUeixcWgdry62cW6OzvNjK+WUv47cnWF5spcqT26EiiTqrSzrx27oo91r54vpHZoWjpdZ7hH8828gXPM878eeVyZJnDbCgQKbYdXqKMZlMHQkhMxfvEPujCwD4fsNiftW6kINBI3ph/0Cc5mhK5MmT/UTj5biGChUB1a585rkNwefh1jC6MHpRMJOTEHzoYjGaWE6vfu6IFSJvRT6S0TykGtfHxnD2z7k+lH7tzeXmHElj2MerXbXj7vJUMdQ3HYH7G9blaGPlte5quhLpYzqLmHr2fa0vTntc5f86Us9/glXmnvYIXXGN7oqUIFmvQBI4WFGMWuDhtT7jPnhWlSEyd8U12uMqJ6LGvbIzrrKjPxXNU+RMRUxFR6Rq2NlbDoJ7WLydS7zWVU1L4mx+Wv8lhlIE9LMla6FCExOTdzam0HmKOJ1ObrnlFv7v//6Pl19+mZ07d/L000/zla98hYICY9b5oYce4rrrriOZTHezBYOpG5B7jATULlfqAh4KZa9sPRpVVVWj/tu0adOE92likoEOofpOBo62c+TOF7KGqp+MllRJDkSJdQdpfW4vWnJ2JtUfjVhPEHRQQjE6XjmEnkXQHUnf3iZD/B2j3WjYXT0I7b9B0Ac/r+C+Se9rLI6IYw8+Tidei40FQj/5Vgf5Wj+r7WaI/VzlaDjJ0bCN3eFqHmvP7lLWENEFDwgutvcbonZc06mPlTCgZYqWoyPQmfRlLI3r2YXOSlf9cHXva+u2DhvC1FBLmjlMdgy9iGGVmxDa7hpeFx1R9XZjJdT5w1wyb4AKT5xPrmvEb+9hS8VR3Dao8eSewJAEnQU+I/3NRfMUajxHx367M4SAjl0W8c+w8LqwQKXA3j12Q5NZTWN8qGCKwMku7WMRGxEW8HxXgrsbck+MOkSjorSm+IednGt9Syix+yiyu5EFkRizv+r0bCImVJPET2tiEy93n4Mu+NAFH8eS7+WljhWABIJvuH1P/J0pJB8OpoeuZ6tXt2sgiThYlKizNH84quB7AXW4KntY0/l9QOFn3QnqRxSrvWrB+K5xXmsqL21MS88JqgoTvVfODqKqhe29q9nVV8be6IfQBR9/bH43OrP7OdXExGTmmXtTObOMlpYWfD5fxvLLLruM2267jauuuoqdO3fy4osv8pOf/ITPf/7zw21isVSIjdV6cghIOjZbKiQkGj09+bdMTMZD8Hgn0c7+CQmWSihG/6E2dEWdk0JnMmj8lgeOdxLvCRJq6MJe6MHiyV7VNdzSy8CxUwyv7HoMpfGp4Zd66MSp7W8UDo6S/3A28H1fCyuDb/AuKU5xzzHy8y7lHrKHlg0hIFDtdNMQOTNyxJ4p9Cc1Pv7W6EW6OpNeNm7L4wNVDr53JPX9vdLr4IoihYIJPNnogpc1f8m0Kyc0S9apYLscxS6LSKLAYt8eGiXj3ixoCqIsDV+/rOwmARA5gq5GUJpSBUNe0RYBUOK2sLwwyEXVe8i3B4irVlbk7wTg0qqn+NPh5Sz05U5Vs8DfRanTuI5cOu/4+N/0DOC3B/i7LWHKXDPn6ATIsytmxfU5jiqU8Gy3k9LyhUQ0BwOKlQJLBL9gpHu684RCnlzK1p4x0rWohsgWV9xcVLKC3kQ/9uQmKgULlV7YF/8tES2Ow4xeHzdJzYWOyIPNF7I3UMJjLT9JW9+tX8Q/7/o4P173VQAeblp5Orp52tnfX8bVBanXxa4kVy2y8sRhw21Z5rHQFkzystfLueEYN9dH8NgkzqsVefxQjP8skIkXevlRY5iIakzcvtRriPqSKPCp5b/lN29/kQInvNYYJ98pc9F8+ONew9G8tNjGggKNshHu9r6EL62P3cpy5ip7AoZL+0eHLgcuB+CWqlqcnHo+aBMTkzOH2T16nQNkEzmHKCkp4YEHHsBiMWaZ7rjjjrT1dnvK1ZFIjF44JB5PzVo7HNnFk9Foamoa9d/27dsnvE8Tk2wEj3cSn2CBITWhEG0PAIwrx+VsQxssftD7lhG23reniVhnbrEm2R+hd1fDpI9n9dlI1j+UtkxPTN/gPi7M7pGgVxvAoYYoihpiT54ytousyOagymY6AOYidzU6aY8pHAunC5QPtyVRJ5xzL3v7hJ5bLbXLInX5xnrVmoq2EOTUI5UWMKq1qyf+iD6QcloKnmJ+3DUfgLoCkTp/N/O9x/Fa+lngTc9necuyXTjl3BEcW8p2kGc1crCtKdybs93pwGPp57KaXTN+XAFwyebkxVzm8d7FNER07m0r539O+HmgzcUP640CJIpQyovdUV7pHTsPc0JJpTCptK5ilWcT6oi0FxZRIqKObjIwyaRfKaYrR37M5zrPB+CV3ut4qvN96O/QHKjHgvmMrLx+0+JdXDrPSHvisUlU+Yx7xd8dG+BERREhRed9K1W2VBrPLp0FXq5uTgyLnCOZ57dik+N8dE0nf7XSeI7cVCly27qXsEjG5/2R1R18bOUuaj3HhrdriRSk7ee5znOm7g3PMIF4ZsTF4XD2dAImJibvXExH5zQzf/58LrvsMh5//HGOHj1Ka2sr5eXGTJTH4xluN1Y4ejicmrkeK8w9G2PlADUxmSpiXaO7sbKhxRUig0LnwKE27EVeJOvcuTypCSNEP9RghBMF9jXhKM3DVVVArCeIs2xE1UxFRYnEMwo3ZUOQRXQl021md3VzclIApXff1A0pBBF0DbVqNXLHYRpPIcR+Jlge2oYv0T6sWZVFDpJvfRe9iezu9/V5+fw8+RuI62zgWvRxVpP3W+1U2x0cDAVRdQ1Fn+WJS89Q7jhmCFlPtkfSlr/cHWVAsaU92ehCHoJuTAJoQiGiHgBSefzalPQQwyHimgQ5tJTFRRL+wfQII4VOq0fA4mtDa7yXZPvbCIAWakYLGfm4BX8V7/N8m3hEpNxr4c6r7sFn7clZJf3c0tzFDAEqXCeG/55NYesADjnK2qLXZ/y4xc4oomD+LucuNr74dpiEBglNJ64ZUplVFPj3+RLH49VAkv89NrqY/dHqDxCJpYSmaHQwT+eIm2SZo4ijkV6qzJTO4yauu2iIVOcsBPRc20IA7juxHu0d7KVRdZEBNuERDtKvr+Tc0hdYX+TCa7uSn75Zxz9veYtvbV3H9qY47z0SBATOrzqBxxIGlvOuIyHUwUJOq0pt7G43nhcFAf7r4l0AfHL57zg2sJjN1TWsLB5gTeF2/vn81fzwtTxuWfQIedZeBGHo2Ubmrd70ceAL7XUz82FMA+EsExR/bt7ImkW/4Xj0LJb7Zr5PJiYms4937l1oBlm2bNnw3y0tqYIFI8XHkYWJsjGyANHIwkQmJrMFXZv84DIZjg0XLOrb10Tbs3umqlszwsm5SJPBGAOH2+jZeYKBw20Z68apqyHbs4u9QjSzkrGgKVlaTg7BYoTjPjnvbFqWX05kjPanE1kQDZFzBDY9ygf9uW9vFzkilEUPURY9TKFt/A75OqeTcx0JZFGg1D73qpWeKQz9fOJZBPiDwfQB0ICeKkQS0f0MsCBtfThHMYaYltsx9v4VzXhshvNcsaTOH6v6OnrHE6idbyComVEa4fzF7IkYAoFFEih1NucUOYERg9S5h8sy8QmvqWBV8cyGyptMLb36AnoSGkFFG/596xi/dVXIJ6oav8toFqfbSFT1pNyQggAnRSYUyBX84Kgpik+EzngFewLVYzo138ki5xBh1c8vm77MA81XIwg6TjnEe+r+yFUL+pifd4w1pUbKoyFB0yImqfU2pC1bX2HjigWpa+lnN6lcWmWkLLJKcbzWfv7+rF1sKTcmui6u2sX/29KHz9aTdv+ICKvpjp/ZxXqaI15a1St5u2/h6e6KiYnJLMG8E80AQo6wz5EC6MGDmcLFSEauX7p06dR0zMTkFFETI8S1U3D9RVsDw9tHO/rp2HqYRP9sltfS0ZKZImP/IUPoDJ1ITxqfHBj/+5IdArLLEG68pU14KwwXi9r5yin0dhw4/QhWJ9+VXPydf8HY7U8T5+cXcHF+9oT618ZeAuAHJTFcspVSu/GQLwsi7w0+NNzuW3ktGdsu9/ootDn4cmlKNLuqsIB/kHfywfAj2EWZ/3Yd4sYis5DFbON/6xMcS25kgMUA3NlUTFyoAUDBws5gIQh2wIomFPJiT3bBOqLmFjpvmP8Yq0uMXGADzlSV98SB/yXZktuF2WGvBsBllZDO8IhO1ygh99PJ5pLXTstxTSbHyVXPdwVzF0iJ6n5a49nTjZQ6jAgpqyjhtzpRVFvWdmnHTtaytTfBz1ovIMLsvc/NJpojJezuKx27oQk/PHQj27ur2N5dhS4aldQFQeezq39HqaOF86vS8yoXOvqodJ2gxJ06xz+0qgWbpFLjt+J3yPzLWb9I26bY3sbFlc9wbtmLAKzIf4tPLL83rY0qzuO3je+fjrc46/jewRuJjOO3b2Ji8s7AFDpngP379w//PRS2DjBv3rzh1y+++OKo+3jpJWPQXlFRQW1t7dR30sRkEkSaU7kQdX3yQmdipPin6aDpBE+1WM8Mki28XFc1EoEwoYautM8m3jdGAYURWKxd2H0RrD4b6vE7IfAKok1G6XxjSvqdi4GypXQvvoAOHfbMYsPLSkuMW6Tsk0TFCcMZ8e6e35JnsXBlnuHc81ltVEZSFerf1XUni9zpg+3P2Zu43mfhsmhKUF4v93NuzwNUh9+m2mHnop772CzOnXP0ncLbgTjfO2bn923GYPyRtjhN8WIAFF0kpgkE9Ro0wc2jPct4tjO7Ezqk5H488loDrChoBOBX6rkgDbpCk+FRndXdoiHirCuXKXCe4UrnacJnM4tRzB1E3o4sS1vSFc89wdCnuOmIZf/dXFS0BYDF3lIuKlmPqo2dezOpOih1ePny3gGOxgon0O93LnHNijrLixPOFnoTKbe/RspN6ZRDWKU4F1S8hCQa53Ot38qGom1YpASf29TL4GJ8tjA+e4x/v+AoZ1WJGREAFimBKGhYJCOCQBJVHHL6ZPru0GXs6KmYjrc46xhImiKniYlJCvNuNc3U19fzzDPPAFBXV0dFRepmIwgC1113HWA4Nl97LbsT4bXXXht2dF533XU5HaImJjNNuDk1qNTHCCUbjWQwM3wzWN856f3NNLqaXQ1MhmKosSSxjlShoMQoQqcgiww94QqyCL1/QQxvx+bqBzUKuoLdLyCcgqg8JpKFw/4qflS0ZPqOMUX4hTjn9j2WdZ0v3spfl+QhaXGWO+28L/ESoiCwwZPp4LvGbQwSPBYrTsnCeQNP8ZngPVj1BB8o9vPXJXmsTR4CQERjmc34/JcnDlLpmHjOZJPp5dG2CD86FuVYcgOtMZWWuI24UE1Sk9nWI/K71lK2h5by1f0xXu2JZd3Hc10iupDbXbbIdxiAo/E8ti/7ItH5F2dtJ1hSRRNeGcwHWu5R+OTaY1nbm5ic2YgMFWkJsITft1oGXZ3GZEH9KAEPHQk7oSy1Cs8vXoJFNX5biz0LcShrxt2bOncZAK0xszCdQbZhYUo01nRz/DEZNDKL53gs/WyuMj7bf9jSOBxq/ldL/0zeYNqiMlc3N9Y9yfnlr/JXKw5M6tgPNW2YZK9NTExM5jam0HkKPPLIIyhKbvdGR0cHN91003BF9c9+9rMZbb74xS8iScYM9m233UY0mi74RKNRbrvtNgBkWeaLX/ziFPXexOTUSQ6kzlddnXy19GQwU2wIHp87QqeWQ+gcCscPnugaXjSa0Ck7LXjKjM/CVayjdO9AaXkCIbwTPREGTcGS2Dp1Hc+CUrmKbsnGA9rsvz2sSh7FnaPCukWP883Of8Wqx7habmF14FkWuLx8kMzq1KvUegBWu90U2uwUxBsoix7GpoX5z+6v883Of+Xs3oeG25+L4eZbG3ia8zxzp2jWO4X+pEZjJMn651XaYwpvBiR+1jSPtoSTHxwd4Mt7B7jy1QiNkSTBLG5sMAoedam582GXuYxckG4r/HXb+fyv7aaMNoK7iGDNBcOvH+gzRJViV5z3LnzgVN6iickcxIYqFBDAyKHXk3Tx42NBWpX5dOvGxNru/tzPEQ0RmcOhzN9rrX05saSXi0qW46KGpDr+vMs1tpUA7A/O/vvdTKCJ5WmvVbGGhJgK61f0savdm2Si6dkdxv9+3suUuC18YPF9w8v8ti7cVpH/vqyPzSUvk2/vpMDewbtqH5n4gQU7bVHP2O1MTExMzkDMO/spcNttt1FTU8PnP/957r33XrZt28auXbt49tln+epXv8qKFSvYuXMnAOeeey6f+9znMvaxaNEivvSlLwGwY8cOzjnnHO6//3527NjB/fffzznnnMOOHTsA+NKXvsTChWaSZZPZgxJJVQ7XcggG4yGb0JnoC5MIjD/M+3SSy9E5RHiwGruu6cRHeU+iBNrhbyJaZcTwiwhKHD3Ugtr4ELoSRhs4Snz/j6e07ydzrGQxQXF2i3du2YrPYmf1wOgpP4ZYGjcc8Ze5FGoSmU46vxpAFkTOtYVY4kgNSApjjVj0eEb7c4LPDP9dLc6dXLLvVO5pjPLz+ghbeyfm2upKONAFF5rgJylkD/3z2IzffkviJHFFEHl73vuJyIMlnQVh2A3ltk5d4TATk7mCLjgI6YXsD/nRBT8hxbjPvNrn5c6mApJCBY2R3L+NHQHY3pvAO+iS9ludFNhc6KqRmqLKci6KMrES6tFYJSt8FewLvtMFPBFVrKYzuZqRQ8O3gleT1FNRC8lRirSZ5EbFDlkKOG0s3sr/XDWy+Kbx2X/9oiPcuvKuUfY4PmetkuO+ZWJiYvJOYHaPZucAra2t3HHHHdxxxx0529x000384he/wGbLnjvkm9/8Jp2dndx5553s3LmTW265JaPNxz/+cb7xjW9MWb9NTKYCJZwSgXRl8o7OXNsGj3dSsG7epPc7U4wldCbDMcJNPSiR+Bih66AFjuBaFEKrfx1diYESRQsaDkK1661xPt5OnhM2D/WSBWZxbs7r851UiWE8Hd1jNwZW9T8HwEbtGAuCr2esz092sDZvC5/v+EracoeavXJ0YezE8N9L1GageHwdNzktHAsnAfjqvolVAj8asWETl/HnDif/cWCAwBV9oKcL297B6uuNyfSUCIKnmPe3XcoTJX9EL11BzFnEwIDxyHVOxaHJvhUTkzlLRC+iI+GhNylRn6jjaNgCxPjUW8bv8lsHi4HMiaUhfnLcKMb37opNPNKynWvKLkdHIz7oWIsl8nJumxuJZdYPUup4HoRtoGem0XknoAs+PvPWfwPw36vD+IUX0MQyfnN8C9dXurnEvx1VrKE1OjEh2cQgpBagimfjwYjI0cVCBM14frms6kmjkeBhQF+Fl1e5fv6fRt2fIs5H1sZOf7Kj/6pT67iJiYnJHMZ0dJ4Cd911F1/72te48sorWbRoEfn5+ciyjM/nY+XKldx6661s3bqVBx54AJ/Pl3M/oijyy1/+kscee4zrrruO8vJyrFYr5eXlXHfddTz++OP84he/QBTNr8tkdqFEEsN/a6cgdOZiruTpHEvo1JIq9X94DSUcJxHI7QAUxMH9dDyIGjiMrmbPHziddEsW3prlc2DzxQE2JveP3fAkVoazF3EqidWzwZbIum4sVoW3T2o7k9nP630Q00QebTPEFwVfRhuvzXCgNcTSJzJVl1HcJCI4OFJ4Dv9nuwGAijwrW0rH50Q2MTmTaIjncyJqozsusLXPxSvZs46MiVvys8hbgqCWICrlY28wDsKKC513cJ5OITW++NWJGwGZl3rfT1yVOdBvfMatibUcGTCLNk2GZzvP5XDYSJOA4EIh83NsVS6iMbpoXPtrjq8ZV7uQkpmT3MTExOSdwuwezc5yLrjgAi644IKxG46Tq6++mquvvnrK9mdiMp1oSTUtdP1UihHlYjrzdAaPd+CZXzIl+xpv6Hq8N5TZVhBwlYqIYhjlbSOPr9IwiVxME0QorEXvPpG27LHzP80Top1Dqj7eyKhT5r3Ffn7f2Tehbcq0AJt6H53wscqih7Mudys93BR/fsL7M/Z5CIt4HUlt6oV+k9PLz44HuadRpD9p/GbjujPjoWldSQtQRVSTEKxO9IQxkfFG4VUI7ZDIK+btgJufddUyP9/Kyx/6MaIwi+3SJiZTjhVIcDhs4zM7QwCoOqijFNUrsXvoiAWz702vYHVenFjMC1NUnDOh5jFjN71ZiEYqPP1gfxEDnMX9DesB2BMo4Z/2/5Klvg6z4vokeaG9jlc7ammvKODy4j/yQOuHuLHsPmx6Kmf4weAigkkHK8ZMMSvwsyNX863lz6MJHiStAQQHMRZh198GDMdoglK64qYD18TE5J2LeccyMTGZFMlgFDWacsHp2tQP3qcrT2cyFKPthYk7AnOhjzM/abb3YvVakfofQuh/BeITE/xOhRM1mZU498gOWnWd+AyN97wWG2cJHRPezq2FEKc4tr4sOvkq2G75HewEOoNRdYZFToBEloIS7659lALnoPw5osL6tmQVF8+3ss+9kENJo3r7smIdlxya3k6bmMwyNMEQ0RojAlFVJ6rqJDSd0eZGl+ZlLwRW6vASjRfiFIunTOQEEPU89HfwkCiqlaa93tpz3rCoqSPQk3BSH8w/HV07Y0jqEg83r+Rw5Gwaw356ldq09YomciQ4dhocXSyiJ+GkIXEJB8IXAxBjEU92XsfQsP54/FK29V7O4X7TgWtiYvLO5Z17VzcxMRkXWiJVHCARCJMMGeHUyWAMNa6QDMXQFHXcYt9ECTf1THlYfLixm+DxTpRo7nBlXRvboTrkzhxv/+JZ8nNanCqJY78ncWS0xPNTz8uesvQFosRWXaJj6o25WVmXl8/dnre5bOAR7i1s4t7CJnwjhKJcXFZQwLrgS1PeH1+8ddLb/tKzlyKbGSJ2pnMw7M9YZpPj/OnmF/iPi4No3nKal/0Vv1z+XZ6KVPOdix6iQ8zj8b4iABbmZ0tbIdKhrR71uHGhBoCEkLsKvInJbKU+UcdLwXM5Gh7fM4JbtlJuq6bU4aXOU8S6/BqqnMZvb63fqACejE9NyPoQmuZiW3AFDcr6k9YIaEIWgU+YTD7QIXJMjAkeQAZhmu8lgpOkOFTYVGBX5BPc0/SetCaPNK/I2MzMzzk1/PTIJTSG8tgZWJm2vC3q51gwH10sGl7Wol5LkC1p7XaGrgfg50ev4LWepWhiJV3JeTzVupg29WrAyv0NF/CHhrW0RE/lPDUxMTGZ25hCp4mJyahEu4xCAbqqcfzerSjDQmcUdJ3gsQ4irX2oseS0HD/eFyY5MLUFAuK9IdB0+g/mFrfGU1xpSCgdEn/HIlt+TlEMI2gKgjazlZhPnFRZPVG7kWOjhBJOJQVWBz9P/paNfY9RGDvBBT2/54Ke37PZO/YA7ybpGP5Ey5T3SRAm/9439z5MhT17sTmTM4ffNWd/ZFpVsIPr6l7g1cJruEs9h+91LMTmdDDPexiPJUl80BlV4sqc6EgIFRyLuDOWp7DwnjcrSAoVfOvY/Cl4FyYmM0t73Mp3j2js7x/fM8J5xSuwkM95hes4y7+Bpe4VnFu4CQC7aMT1Klqmu/pU0DSZ57ud/PfR9HtQiAX0apmiapd61qSPpYvZxad+fS2aWEJCqJ70vsdDjIXccew2dLGUo4lb+PHhS3izJ706d1LPrK6uv4ND+6eSuCqT1CWebVvMUAY5Tazk1a5aVF1kT+hahobnR4IL6E2mJqUHOIefHr4IgO64i764k1f7buJIaAGqLvJS9yaalKs5EfKR1M3sdCYmJu9sTKHTxMRkVGJdA+i6Ttvz+wg39aAOOjyTQUN8DDV0M3CkHaZJJEsEIsMCoRKOkwzG0EccS1e1tNe5GNkm3msIDv0HDcFMU9S0CvIAakJBS44udva8VW/0a7xCZ38WoVMLjGvbqUSwuWgZuvyLEkc23sLPaiY/cJsIoiDwC/fblEcPZKz7OG9R6TBEn/mulHtEEkQKrA5qnB7O739sRvo5UT5mb+Gi/ILT3Q2TaeT3zWE6tVVZ11W56/lG3wb+HDDy/m6qMEQdvyOG0yLitIhsKd970lYSLYkSmqIy7epIV6cNXXADFsLU8nJ3lOt31PC/x4L0s3REOzNlgsnspzcpsbUnxp6B8RV8KxI3oik+bOpy9MRiSNQhJJcAYBOnx+2YVOzURyvpSBShC67h5S8HyhhQ3CA4MEQp4765tce4Xw5wzoSP1Zw4L+vy9ngNByKXoTG1Iu7JHAxv5GB/Ef/X8Pfcvv/d03osk9yEFBtRwXB1vtT73uHlvz1xDghuQKQpUoiiWwy3r2Dn9oMfTdtHa8TDA43reWzQgbu1s5afH33XTL0FExMTk1mNKXSamJiMSrzHKKDTt7cJSIWyJ4OGuBdp7SPU0DVtx4929KPGEmhJlaN3v0TDn7ajxVPux3hfGCUUH2UPBiMdp4nBEPJQYw+6plF//zaiHYG09ko4TqixO2dYeqihm5anjMTvyfDYxwcgSzi8Hm8e37ZTiFpYyzYNBKuDZPVarndV8NMZmv2/qiCfs/qyF1s6p/ePnOsxxJs1TplyhzHgLLU7ucZn5WKPiC/RPiP9nCjv6fwJN8kNp7sbJtNIXNP510PZ3ViioNGPg5BqOKGumG/kfN1cdoD3rND5yFqFVQU70rZRhGKOR+080aHyvydS++3SFhGlhJhQQVvCB8CrPVGSus5HduYzVDRlgLopfocmJlNPe0wgqevEx5EOZom3lFgij7jiJqG4UDUrSc2OotrItzmxTFdYtyDgEZZQZT2bR3tT4esxzUtbvIJ90VXEhXIQXIDMs+2LSIqL+Jc9n5pgqLmFnxzJLkSFFCevdS9D0aY3dD2QMCYRd/RUmC7N08w9Te9HF4v43YmNw8sCCQe64GBb8HO83DmPhGZjZ/j9xIRFdMTS3f9h1UpUtRBUjIiSqGrJaGNiYmLyTsX0tZuYmIxKvDdEsj9CrNMIYR8WOgcMd2K0I4AwhUUBTibS2oeWVDnxx9cJN/YA0PnaEcouXIauafQfasVdW4TFk5nfUdc0BNGYz1HCcWSHdfg9AST7Ixy/dyuBfc0Ubqwb3EZHEAWSoRhqNEGooRtvXUnGPluf2wM6KJE4+hjOz9HQQ5MvgjNZBnwVJIFExQr2lC6b0WP/tf7GqOuXi0ZBJgFY57LTFY8xz27jBmUrPdLsdkwWaz2AOcg4k3mqPQpLRUBDF1wIeioc3WURKXBKVHgFVhfuA2Bt4Xbca0I45ZPd3BYORat5qlPk5e4wV5Q6SQhVWPVmnujKx2vxc2l+GzsHHECq+vQLXREOJzbil6P0K3a8OcxfuuBB0LNXrTYxmU40oRBR7x5+rYyib0qCiKqncncu9dZBDuNnhcOPMI0TcslkAToin98V5ZKL63Dqx1G0Wh7tiHFooINfrnEjSwIIInFV5rmuG4mqVjrV8ykWnxxj7xKgkhDr6I67MHwmI3OWWokodvYHiomW5+GeRhtKUjOHfrOF7d1VeC23ZSx/rPMT/HnQpfloywajMNTUpqU1MTExOeMxHZ0mJiajEuscINGfypGpRBPoqkb/YcNZp8WVacvPaew/iZZQhh2lAKEThoM03hum+bGdJLOEhPcfbkvLidk+WGU9GYoR6x4YXh7YZzgqh3Jyhuo7jeMmFOJ9YQYOt6Xtt3d3IwCR5l4A+vadoiMz3ntq20/mkLIx+9/hr+Qt28wlq3fJVlYPvDhqmw91/phz/AV4RJUCUeGbRTE2WiNs6nuUq7pntmDTRKmN7j/dXTCZZvqSKkMh42+FVzMyfPyKhQrfvGg/j97439R4jgIgiwpL/buHXw+hCT7OeSnBz48H6UlodMU1PryrmqRQzo+Px/jojiCtCT9ffDuzSvumF5IsfFZGG8WN1ZhcdOpv1sRkEtzfOXLyzEZwFKXznKLFaa+dOfJXAlQ7yxF1V871p0pSdaAoVs4v3sD2/jKSQgUv9xTSl8xHkOahkcfr/dfSGN8AwINNRrqJtwPZ01mMJCEuIi6uIKoNFZpJFxu7tAs5MFBJULHRr0xndXOB13vMXL+ziWfbFmYs+/OIYlBHgoUcD+Xzk8HcnCYmJiYm48MUOk1MTHKi6zqxrgG0ZCpUXAnH6T/cNu68lFNBrDuYFvY91J94j+FYSmQpVtTx0oHhIkEDR9vp2Wnk0wwebYcs4y5tsGp88HgnyYEouqoRbQ8Y+UdH0P7CAbRkStztfv1oxr4mgq5ObaGlcTHowNUFkV3izOX5W+JyY1cGRm1j06P8PPI/rKeVG5XXubnr/1ij1c9QD0+NivABXPL05lczOf3ogvEd//yEBEJKsPjYypdZV7RrfPs46XVjROHF7igvBuZzMGhY2r53zEZYzS0SqXpuobMjbhbHMjkdiDzcqjI0vNAEJ305HJrz3YVU2eelLZOE3OdtvlyBqk6zY14QcGlnsaM/j2OxcgQsWLUaqizreLbjSv7Svpwn2zanbdKT8Iy526Tu5r6mDxJRB4VcYeTwy8aDLZezs9ew7IWVaRRzxUU0hs1K3CYmJiYmZz6m0GliYpKTRCCCllDQEqnQbCUSp+fNmRWeoh39aa+HigQFjxvuy2R/xMi1+fttJAJhIq19BI93EjrRha5qND3yFugQbu4h1pPpkIKUozPaNUCkrQ81niTWOUCsKyXMBes7iXX2E25KuTAjrX2n9uaUmROMAShZSFg2wvyb7D6OzUyhdf6q2Mf/qr9HYuzq8v5EKzd1/pSNfY9h06Nc1n3PDPTw1BEEnX8uHGe+VpM5i44FsHF/cwiNVD69VQU7KHWO7fDWhMLBfaQ4FEwQVXXe83rq+nRfU/Zr1fB+cvx2dcHF3+/Vsq80MRmDEAvRBd+42yeFCjTBcCG2qqt4siOC7+nVtKpr+PS+FfzkeHoKhQUew9W40FNFMraCLUULWeQdTA+j5XYzxmOLiCvTnxpEUW0cCNXxnjdcRCPziCXyicRLea7dEAmHBMkhXu+qhhGfly74SYojXXoS/3XgU7za9f/bu+84ucq6//+vM322903vnQSCJJBAAglVidIFFWk3ooJ64y0/8VZvUVHQm1u/ipUqTaXX0BNKICEkJCQQ0nuy2WR73+nn/P6YZHY322Y3s2V238/HI4/MnHOd61wzs9fMnM9c1/UZw883XAlAtXUypi1aT9A2lrUVw6PTk4GNNWPabJdpG9mlxxEwprM18PXDiW0gbBtPRUjr+oqIyOCgQKeItMtfGg0wNh/R6S+tpWZrcZ+04wgrHMEyTSrX7wGiIzr3Pv8Rlev3UvTaJ5Su3AZAxcd7KFm+NRasLF/TfoDWjEQDA6FaH3W7ywjV+AhWN2BFzFhCokPLopnCGw8eY3Cz+WOJ9G6gc/uokzjkjl74POfKpLoXAp1um4MvmZ8wquGTnj9ZH5sW3N7XTZAeZuEkaOQfvm3v8vE1ZgF1ZtYxtyPSztT1ELnUHsO6wTK4RbB36e+6eUKbT+uaRje+WprJ1vrWy9pMz5yI02bHY4uO3ix0F/K5rBmHT957Mww6kmoMZVrm6Njsh440RFxs9l3QdJ/JmDSNTPUbM1oliPmgYh4loc8B0GgOabFvWck4LFthi20YHkpCJ3TpMXxWP49PqiexvuGrAJQEj6M0OKSTo0RERAYGBTpFpF3Bw2tfBputgVmz9SBWpHdHCzVfaxPADEao3X4olvm96tN9sVGmVRv2Ubk+mv3aX1pD8dINseOqNuxrdxjUkYRCodpGfAerCFTWEz6cTb1hbznBmsbYep2+BAU6HWkurFDvJAxpmLwADBu3pY/g0OERna+bBh1PJG/tibx9vJb1CeNSM1rty3F5W20bl5rBKxkrObXiuW60OvnMrF7KnwpbrxkrA0dpeCgNZvTvP2C17gedqQyn8NWPj336qGkZbA/OppYpLbZvbhzOfl+Y9b65LKmZf8znkcHEQcSy88d90zsvetjf9o/nxo3HYRrZ3LmlKbD5qy31fFbTNMLdbtg4LX8SHlsqp+SOx2OPTtFOMU/EFpzONSOvIdCD07a7IhgYQYExL+7y920/C4guaXEoMBbTagrYHghOaVV+cdFxPLR7EaZtJPXhrBb7LAzerfw6jx28I/bvvn2/pi7ctfeMPQ1DePvgeO7dvgDLyGF99XSe3ju3S3WIiIgkKwU6RaR9h4OCR7KUA2D10lznDpjhCGWrm7KVHx14bX6/+e2IL0j9/nLaYkZMLMsiVOcn7Au2GLV5aPkWKtbuit1vLK4+1ocAQEpmFWZjaULq6oiRks2TQ4/H8GbwqWnxmT062qSDJf7aZDdsnFbxPCfULMVrb/3xcWpGSqttXruNaTXvYWNwTKV1Wz4W1rza182QHvRaWSY+MxrUqIp0vj7f0erDTj6sOPaR3BHL4N2KFP5d3HL0V3nQQcSC+/c6+MsujeyU+FlGKhHLxr/3xb929LtlYZ4sqmdt/VSKfE2BzpqQSfMlZtMcLoZ6huHEwwjvKDzkARAKewmbLnyBwm6NkO4JpuUg2IWga0PEhXU4kdLehhEt9oXM1qNUI5aNPfVZrK65kC11rROHrakYw/sl42L/1lQMp66L0/Z31eVhYiNi2SgOzef1g1NbjSwVEREZqBToFJF2HYlpHj2isq+FGwPdnj5/JGP70axwJJaEKOIL4i9ttjbnzhIOvb8ldt931FR6AJurGxdoZS9jWD0fiGgcPp1/Gk78Q6MjS14zu/fW/5NCW2yNzatTypmS1jTCJMPpZrYjunbpzMxsxqSkMz8nl+969h1j65NPbmAvdxaajPCmkabkRAPOH3f42NkYDRjs8bUO7nemNOjovFAc6iM21tWY3LGlHnCyMzQLy8hmc320fz93oIH3ynxEjMKOKxI5bIt/Co8dyGFvYxjaWRqhOdPIpvFwIr9bNpgdJs/KcHlJtSZgmENxhScQDg2sv8uKyEwAPqkeiXlkDV4jpc1A5xFP7Z3F4qLjWm3fVd96rdLq5kmPjI5Hd5q2Eeyqz47d//O2CwlEEvO+IyIikgwU6BSRDkQvWoLVDX3cjpassNl+Jo54jm1ne+326NT0sC/YclRo2MQMNEui08a5U/I7T7JzNNNX0uVjuuPNYTMosWDJ8JkAXZ6ufsQlNc/Gbl9Q+TgzU5o+Qi7LcTMhvJ8R3jQeCT7IxelhvubYzYVl9x9Dy5PXtaV/4NR0J167Li4Hmn2NIVZURv/2f7XVpGtfpQz+sKPr7xVteaPUxp6GMHVhk7CRx1dW2wmQyfvl0fp9EQsLeKd6YscViRz2zEEPt2+uJWRZWEZnQXwn9x84Hv/hz8NPawMEOvhcHps6BF8wB38wC384g1DEk8CW97311Sdi2kawpSafxkgWAJXmKdSG2h9FWR9244u0/jHsSGKi5mpCTa/H/tDCduuM2Ebzqy0/a1FHZbD1sjIiIiIDmQKdItKKGYxeKFuHL1qar9E5UJmRCDVboqNEI/7WCRQ6Y2tYCQYYbUzpble4559Xw+XlLiN6kfM3+7FNW3ObTUsYpIUqmWMcxGWzU+BO4bLgcqY0rudR51Ly/bu5wPc2p9S9e0znS3ZfsLbx+UwXF+TnsCAnl1Ozc3DaWo/8nZqexQX5OVyQn8PolK5PhZbe91559D3iwwo/axrn0MiEo0rYKTWPxzKym21zstF/Mh8kYNo6wGN7G9hWF23HS+UT2d4QZEPDMDbUBFuUu21zmJZf9/rH9GDpf7bVNc0w2BOcCrQ/GvFgZBp3bq2nPNDxrATj8MjQQvfAGsF5tLWVo1lb9yUAasK5ACyvOI1tdcM6Oixu5YHD6wEbHpaXzyJiG9uqjGkbye2bf8qBxq6vHSwiIjKQaKiJiLRSsW4Pnvx0/CXRKdrtjYIcSCL+MLU7Do+w7MZo0ci+F3EMXYA3q466A+7OD7AZhKu2xDE58Bh5M6k+fHPvMayvek5uLlmVh2L37YS5qOxBVub9D9sCMLN6CQBD2QrA5LoPun2ugeK88kc57/DtAynT2O8ez0M5c1hcXtmi3F9sbzC1fDkADxd8n580KhDV3zUPVp693MfFw4bw0PQdsW2mkc2kpXY+PXMsoxzR9X79xghOey/Yqq7uqgubHEll9h9ro7fOWd56bcVNtQECxkjcVjRJW5U1mWxjU8LaIQOE4eX1Q00/vs16N8KnZ05nqGMvNquyVfGtDenUhBqoCXX8/SDD6aYm5MdjyyTQYcnktrMuh511pwPwWc0ExhRO4OU2pqV318bqAkKjJ1MUOJ4KfwrvV17Mgqw/QrP1r18quY6DPv1YJiIiohGdItJKw4FK9r20lvp9FX3dlF5Tu+NgbCRrV7my3Jh1+3BnRLD2/h2MzsOXrgwXRqRnL/sMVwrYjv33rDy3l2+zutV2l+XneFsl13kOHPM5Broc/z7ywqVcYNtBgTuFAncKWU4P5+flMrV2eazcGQ3vxUZASfJ4r9xHdEi3B8vIpM6KJlopDzVNzy0NZbdzdM/b0DAccIDhZXFpfp+1Q/qvOmskoWY/hkUsWFebzns10w5vsWEZmWBEk/TsjPMHmUJvBplODzar6+vZJqtlhybwaulXElqnL+LkuYNX8tjus6kOeVleNgnL1tSXfcbnePXA1ISeU0REJFlpRKeItBKqaWyRjCcuNqPb62b2B8HK7q9D6vBEsABzzeUAeE90EvZBqK7t0VupQ21AOOF5yGumnUNm2Q4o243hcHPTvBv5y+ZXulzPpLRMttU3JVx60/YEQyp3tFn2upL/1+32DiZes54JdavwRupYH3wIgPVZ5zCzYkmLcmMbPmZS2kVsrW+d8Er6r4qgiWWk8tDBk/jBp03vnauqnHzO66SesWxvSAXq26+kB5293MfucybxWFE+d2yp4+tDcrFZg+eHLOlYwBjNXl820PIz68PK6HqRp2aOIGh5GfFGGlePSuNPU96nOM7E7MdnTiM1azSWOXguORoiroSO5jzirYMt19v9uO4iTkq9FwwP9+66NuHnExERSVYa0SkirUS6MbLRsA3eUWg2W8s1ylzGZlzp7T+HDv+HOIJrEt6Oj3LH8thxiwDwj/4c75rwysQFXa5nXmrLgLXT6vqapdI2u9n0XBb697RZZopXU9eTUYhsXixu2Vfu2+3DNNL5274hHAz07VeuuoiHB/b4CJgWy2o08kuabGwczgeVrZMDLSsL8GFliP3BIWxqiI4efPWQD7BRHYrvh00bBuFQBuFwaiKbLECZPzpK/OOGq9lUo5HaIiIiRwyen1dFBrlgdQOurPguNMxA1wNb0SQ8Bla448QEA5FhtHy+wrsfxTbxx2TmfEbINZfGQy33Ww27CO556ZgmKBvuNMzs4fz3tEVUY3Dfint5wpnBStNiy5k/4Pra6HTy/za6fnF5HOV8mLYMvy2VLzScQXqwd7LDDwb5/t2x20N8O2jrj+DO2r+x1HE1DeHErecoPW9PYCjLylsOc9vdEOKsVZNZX11HrqtvA9gXfGhnX2P0vejqNT42nDmNLLRW52AXNoaws8HBzzfXtdq3oTb6HrSnMY1NdTbAR3kwwrbgLNZXx/f+5DYyCESU9bsnVIXSCNmmcO+2BX3dFBERkX5FIzpFBomqz4riLhtu7HqAxe604Ri0I9FaPl9m1TZs9WsIF7+JM7y2VelIzQ6MY0gMBFA3djbvTDyDl02D5SaUTF7AysNLB7xgGrydFs1wa3Ujmppi+RnV8CmT6lby1TwvLisxWaIlmsTpCMNo+28gO3iA0d7Bs57dQPH4gbaDOeuq/VhAebBvfwTa09j0t1cXNvFH2s+oLYNHZaSAmpCBL9L+Z1JdxGBLfdNiKy+XeFlbHd8a04YxWL8X9DwLeP7g17C0rrOIiEgLCnSKDBK12w8SiXOkZrix60ly3BmhQTt93Wgjl2xw2z+IVG4itPV+DEezCz3DIFKz/ZjP+UH+JH5qb8qu+kBey7W77qFlEGNOVg4Amc6OM8KfmZtLhtk0suc/ax891qZKN4xyKziQbO7Z1XpEXH929+5MAsbovm6G9CmDB/dnU9nJV4OH90ZYUtL0g9fvt7X/t76wsGltSpthgKX3sp7yUdlIlh61bqeIiIgo0CkyaJjBMLXbDnZaLhIIYYW7nibHbhW1OQ13UDDbGPEY9mFYESx/OakFTSO5HClOjMixTUk2XF7+15FO83RR+496O28+gTbV4eIG5zYAzs3qeKTgfGcVw4N7Y/cL/DuPqa3SPfm2wbcERLLraERcf/T3XXXsCRT2dTOkD/mMsfx9Vz0HfR3/7b5b1khpoGlEcEMHf+uj3NNjt9MdbgytktVjGiKuvm6CiIhIv6RAp8ggEar3U735QOfl6ro5Tdl/ANtgHbhhdpx+1u5bFbvtSGkdDTa8GdH/XV7ieRIrJp3BoaOmvu/qYI76ienpzKldysS0TL5irmFBTi4X5ue0Kve1gmymh3YxzLet0zZIzzrL2saX8lq/RiKJtKSso7UT7ZhGXq+1RXpT9HPm3aoR1IZMPqrq/o9vWS4vKY7oDIKRKdmEg4WcP2wWQ7zpzMmbghXJSEiLRUREROKlQKfIIBGoqKduV2mn5ao+3dtpmTaZARzurk95HxAiDR3utoKVsdtOV8uyhiedVSdeiuFJx8oewcHjv9jp6R7Nn9xqW1EHa35e5DpIdvAA30wtY07Fi3zHWMvNgVdblJmclsnvyv6H8Y2fkhau6LQN0rPOLX+Mv1f8jBMzs/u6KTKA/XJTHe3lpQwYw6mIDO3dBkmv8BujAFh5+K3+s9ruf3YXeDLIcEYD5idmTyJkekgLn8nc3OMptM3GH8o85vaKiIiIdIUCnSKDgHU4SU2o1oe/ov21tSzTonzNrm6fx0ZZ3GUNRxK8/RjxzcU3Io0dFwjV4s52Y3PasYX3tdgVzh/L3e4cDk1eQEXBRL6XMwHDlQLGUc9P/jiM7BGQP477rfimAua7U3DbHCyqegqAs2tfwzAsJjeuxdEsKc6U9CyuSqsBIDsQf9Iq6Vk2TG63LSfVoemJ0jNClkWVNYmQMZyQMbzFCM59gULqI0fW9E2C92uJj+Flp68A08hhr6/ry9QcLd+dyaiU6N9Nln1UbHuGMZFwREnVREREpPdp4RyRwaDZaL/63WV4ctPbLFa77SDB6k6Cdh0wQuVAfqflPHluXL7nqA0v6va5ekNKoYNQg0GoruNpfVawvMP9od0vYOMFvLOfwKr8pMW+uowhrLfgzOxJ0Q0mhAsnUFwwkVE7V2JVFwNw1YyLOcUKc1IwvoQnKXYnr9uf5HrP1WTWlgBQ6N8BQJ5/DymhamzGfManZvB2/c+gPnqc2+p4Gr70rpOqX+e8vPk8V1bZeWGRbhi7xA0UAHDZ8FQeOG45ADsbPexssPGtEUOpM7PJNjb1YSslUbYHprPf7+Kj6hm8WFzb+QGdGO9agD+URSTnSYKBEbHtvkDBMdctIiIi0h36iV5kELDMplEb9Xvan75etnrHsZ0nVNVpmdShdowt1xPa/UK/T15kGBFSXKs6LWc1xDcK0m40Ei5+t8W2Cm9Wq3Kvjj2V5zJG4M8bE9vWiMFBw85trvimMs/LymCobxv/5drS5v6USDUTUzM4NzXc5n7pP0bbFHyW3vFWqZ8jXw1NC7bWm9y2YyIB09m3DZOEWVebQk3I1mmm9XhZVvTvZVrazMRUKCIiInKMNKJTZBA4MnUdwF9R32aZUL2fmjiysjeXPjxI3YHotFoLCwIdrO1oM/Bku7A2fhsC0YBo6hAHDQebAm3eAjcOZz2NFV4i/r4PwBm2MMFNf4bCf8S2efLd+Mui65kZDhtW2MSsi29dUyO4C8vXMtBc7GmdqOG/bamcaVgUZ41gxJhZuGoOUW/BCx0kHAL4Yl4uv6v5Aw3OHP7p/DIA55T/s93y81ItZpl74mq79J3RVAEeclxeKoMKekrPqQpFCBtDqIjkc8PHDTRGLCzgyf0O5uXN45Hpy/u6idINESOfme+P4c/Hu/ne+jpsRjSQ3ZYTc0ZT1FhBmb/t7wrNzcufxJHAeMA3Ke7lXkRERER6kkZ0igwCzQOdtJO0pvqz/e1f+bTDFmkWGLVCWP72R4t685y4PMUtAn322pewuaO/txgOG/aSP0DZ86Rl9I8pkjbqIezDsDe9VboCb8ZuO7wOsBlE6va1dXgrZtn7rbZtdbS9htkmy8ba1DzWDZvBmzMWUd9BsqEjTrOXkhEuY6hvK/NDGzot78BiZHB35w2XPjU8HF2+YIzXi8eu3yelZxWFhrK0PIuGw0FOgIqgyeuHGtHXxuRUGRnC/sYw/y4yCJgWvohFoJ3Pe7fNiePoNaLbMCIli3Hu07GO/E0oyCkiIiL9hL6xigwCEV/TGpOWabHj0fc4+G5TMNGKmJR9tLPTepzpLhypTYlRrMY9TTvNCGb1lnano7sc+6Dqgxbbgjsex50VfRtKK/QTKX6f0N7FBNb/Ak+uu61qWrE57d1KbOTN76R+m4ERjgZlbS47EH38wS334kh1kZGzFm/4adxZLgwrEtc5Q8WtR0PtsLU9JfSQZfF3Wwq3u3P4kZFGzVHXpC6bnVEp6fyjoIzH8/bjsTuY62uaZj+78pVO25NtBBgSUKCzvzuh9j0ez9vPr2zLGJOShtumYKf0nJs/dXPHltZrNQdMi6AxjKMnA5lG5+syS996qCgHgGcPdD5K02HYOCf/bABGpea0W+6k7Cn4gzmEwvF9VouIiIj0FgU6RQaB+r1NyXLC9X5qthRT9WnTdOtD72/Bd7C6wzoMu4E38BjO1KZtZs3GpjtWGLO+CHd22xc9ZulbmFUtR2oaZhinI9o2I7Q7ts2wLNzhpfE8NJzpDlyZXVs/zua0Y9v1Xy2Ctm2VMavWHr4dfatMSdmCYVk40yD42e8J7XgCt3Nz3OdtKyDaQPsjNQ9ZFrstCBhw9Kz107KyuDajkc+XPcoZFU9xTnYGk+pWxvbb6Xzq/ynBz/CG40tuJH0nLVzBGRVPcWL1mxQ67QzzKpOx9Jxl5T6K21k6ZJtvOGBvsW1xxdReaJUci8XFfgAicUzasBl2Av5xOAwb0zLGMDt3bJvlUu3R9aKto/4eRERERPqaAp0ig0DzBETB2ugaf/6yOqyIib+0loNvf9busYYjehGTXlgazR7uOHwBbBhEytZhcx6+yDGjmQ1c3pYJiRypLmwuB6F9rxGuamNKekP03FZ1y2zkgU1/azWq05HijAYnD0+RMxx23LY1ON3RNTPdOe7Y9ozh1U1tO4on14ZZu5fUlI/bfdx2t53wgXcB8KYfwuZyEPzsfwFwOkoxDk8lD2++u9064tHYwbqbHU0fPNdZytcqH47d/2HwpS6fe2b1UtwRBTqTyZWOHcxLtZFiV3IY6X2/2+EEw0bT10cbP9zgo8Ka3pfNkk5sqYsv89AZhVMZ7Z2MhY1LRi7AY/cwNe1EvHYn2a4ULhk5n7OGzADAaaT3ZJNFREREuk2BTpFBoHZHSdOdw+tyWRETX2kte55bhRU22zkSUgosMMA68AwANiM6MsSZ7sIK1ePNM7B7HFjBaIDTVt8seGiAN/AQ7mwbhhXBiARb1R8pXgIGRA62XL/SgBajOg2HjZTwP0mxL8GREg3yuDIchD65ExtleHLd2HfeSNrw6DT40OobcaS2PcXXbo8G98L7X2z3cbtSwxCsBiC49vuk5IchWBvdWdf0GI9OLtRVHaWWmZDa9oWkw7DxxZrnyQg1nXtCXefZ4Y/mtnzYaP+1l/7ni2X/4NLQKi7KTevrpsgg9EJxAxHSMI1cAELGEEoDYZ49mNvHLZP22QjFscYzwFj3zGhSIQD/LDLs+djMTE7IHs3ncsbhCMxluP3U6H5TP7aIiIhI/6RAp8gAF6ioI1jV0Oa+/S+toWFfB5nSAUd4E64MN+Hi9wAwiNblTIlgAHb240yzYzVGg6mhfc/jLXThLXSRPixMeO/LOMrva7d+s2oL3nwXlr+81b7gpr/hznWDARkZqwntfoHQ5ntISd+Jze3A7T0cwC1/G9u+H2I1lmDt+DUceCjadnfTxd2RpEcARqQseu6Kz0gdasdb6Irtd2ZER4XajUPNygdh/59j98P7Xu7wOYubYcOHgdMWHXnafASn02ZnkteO6/C+2Vk5TM+IThU8Jzeb3EB8md5l4Dmh5i2+HlrGtPSsvm6KDEJ7gqPZ5h+LZWSyPzgMgM/q9INJ/xX/mr6W1XJZjEhwFIFgFsM8QxjiGgmAP5jByNRsQIFOERER6Z8U6BQZ4FqM5jxK87U722QYhHb/C4e32dqSh6c6O+yHRzfWrsflLiNSswMAq74YPr4UPr6U8OqrAAjve6PD0zid7QdbXZ5anOluApuaAo3WoddJyy0ntPpGAEK7X8CqjiZTMis3Ej7wTrRe2y4APPluUvx/aqrUvz9201xzOXx8KZ7s6BTyFNvbuLLcUPdpi3ZEDjYlUrIaDpIIgXGnUGuzc3OBE7fNwbjUdC7Iz8FmGPy8IMIMey0X5WVwek4uDwbu53bnRwB81Wh/qQEZ+NyWj5nVS/i1a01fN0UGoZPeiTBnWYgdgUlsqfcC8HRRA5ahUcb9khHfGppeuxN/IKvFtlDES8Ry4ral4ODwPsPg1JwTCYayE9tOERERkQRRoFNkgKvdcajzQkc7vGykt8CJVb0Dm71pyrkRqjyckTwa7AuXLMc6+AyEOs/m2u7pQgfa3Wczq/Ck17eY9m427Mfc80Cn9YZ23EPacBNj49VEit+Prdlp1W1r3QZbdO1Rs3433pS9RA4t6+rD6LJXR5xIfmo6FzW8zpysTAqcDv7b9wzXFGRwSdW/mBnazpns4VZrGamhKlymnxHeNBaUP93jbZP+b6R/e183QQaxsqCL4OE1hn0Ri32hyX3cImmLFefIy2mZw9pNLGQ33FhmUyDbbY0joqnrIiIi0k/FP59FRJJO48FqarYUd/m4jKwP8YVPx+GoJQzYw7s4MqYz+On/4gWChwdFWjW7CNfsOqZ2thV4jAnsx0ZRi01mdXwBHqt6J5HVV8bupxYEaCh1Ez6wvFVZmxECHJi1O8Dmivsc3eGfcCreA59xp+HlbLfBuPK1PM7a2P47GtYBcFrlcy2O+1z1G6ym49GxMngUNm7H4Hws4lt/TySRzv+gscX9LQ0pjM50AG1nbJfeV8tk6sPeTstNyihkuHcItJOzKOib2uK+P5iTiOaJiIiI9AgFOkUGKCtisueZD7EiXV87zfIVk+J9H4vjATBL3k5081qIVKxrf19p66Bkd9kaP8abdyrmntZrlhoEwOYkUrMTy4q0cXTivDZ8JpNzx9IIjLC1TtAkEg8HIfLdXkoDjZ0XFulhDWEDy3BjWAp09hchy8mKqgygrsNyx2VMIN2ehz++5OwiIiIi/ZqmrosMUMVvf4bvYHXsvifPHf/BgUqCn/2RyM7/B0Co+N3Oj7HZMVydjxxpi1m1pd194dKPCJd+1K16jxba82SLJEMt+XFnujDMMFb1ji7XHRkZDQpTMAEAI6OQ9XOvoWbaOa3KrrF7+LpnCAAjqO3yuUSOeNL9Fq9nref1rPWM8Eanln6nMJXXs9bz9YIssl0eXs9az1UFWX3bUBnw6sIGFZFxfd2MQWW9by6Nxvh29tr55bZsfrrR12k9KfYsgn69diIiIjIwKNApMgA1FFVwaNnmFttcoSWxjOKdMRuj093NimjSG8PqfGqs4c3EyijsYks7Z1hWXOePh1VfDDVtJ3AxzDDulLJu1/3ziWdjpGTx6pSzAagdPp03vDlcVng8Rs7IpvM4PbwWMQgcXgd1ZKQba6iKHDa57gOOr3mL42veYpzXRYbTzfeq7uH4mrdYYO3kuNRUjq95i9G27q+hKxKPxgi8U6kENb1pW4OLkmDbz/mO4Ik8uree0kDnI2ztuDAtrbkpIiIiA4MCnSID0P5X1oF5VHAwWE2KY0Vcx5t1+zsvdJS6kSdgetK7fFxvC+1+pu0dVggquzdFPzJqJs+bBk/NvpKf21IxckfT4E7jGdNGsQVPz7ggVjYw8oRYkDPd6WJYqKidWkW65ibbeu7N3EFGqBSAU+re5j/tHwNwhm8V41MzcNrs3FFockehycS0zL5srgwwrx8K8YcdQbYGT2ZHcHaLfRGjIM5a4ssQPpgFjRG8UTOfN2rm89LBMH/fm0I9k5oKGF6W1sznPz6Ob3Uqp82OYbl6qLUiIiIivU9rdIoMQOF6f6ttlhUmsvtJyJpFR7lLbE57tzKob88exWinh5yiDV0+tleFWq/PGd1eTnD380cSzndJTeZQAH5heAD44/EXcVHtAY6snFhqa7p4f3f4CbHbF2SnkNZY3Y0zirR2esXTLe7nBvYxL7APgONq32Vczrkc9Nu4rvQPALybcyfbNdBTEmRZeXSK9E82eTkh08FtYw/vMLysrp/AKM8whtvXd1hHxMjDbpX0bEOT3MFQIVesatlxT80ZwkU50aR+L1TM5to1Ha/J2dzwlCywurC0jYiIiEg/pxGdIgNQWwmIrMZizPoi3NkdX9A4Urr3+8duVyp70zoZteNoGjViZMQ7wqd3hHf9CyPSvcRAVZ6MFvfvsxz8MWsMs7NyyHensNdwUDv1LIzsEfyvI4PRKdGRr1eEV5IZ1EW99I7TnFVckJsWuz/SocwjknirKwNEmv2YVmGOZ2mpky9+6OJg5AT8xtjYvkrrOErN42P/9gVHtlGjNLemOq3VtmcPmJSax7M5cDLXdSHICTA9cxxmpHWdIiIiIslKgU6RAaitQGfkYHTaustb3eGxnrTurVPZYNgocXra3W+k5VI/cR4AtdPO5kezrurWeXqKWd/9KeTlrtRW2xoycvhPx0b+lraRV0wbcwtnsmLauRyyLO51vc+41AxmVb0am2Ys0tO+WfJ//L+y/4ndP9Xc3YetkYGqLmy2CHTetTOH32+vZXdDiKlv2fiPT4Yf3uPkzBUpTFpqj/17pbT1e6k05+ab61onsFt8sIFJS+3MXRbqaMJGm3Jt0wiEFegUERGRgUOBTpEByIocdaljNE3ItjV+2v6BBph7H+zmWQ3KbO0nM6gcM5vdmcPZe9JlzCs4gaUmYB8Yq2cccjQFePPdKRgYjHSazGhYxWmVz3HjkOjF+/3ubMamZnB8zVvc4d3YV80VASDbrO7rJsgA5W/2W9um2pbJcF491EDAGIVpZFESiLTYF2z9G10f6QeJeYwULCMTy0jnSHvqGcXRH+/HytL6nCIiIjLAKNApMsBE/EHCvkCLbYa9KdBpNrafaCil0EmkZHW3zmszDEqM9gOXK3PGUO708LX00UQAH1A57ZwWZeqnnomRO7pb5++q9XOvSVhdn9pcXFsYTezyUej/uKkwlXQjQoF/JwBnBj8BYLUJX0iLXsmfUfFUws4v0h1zK1/AM0B+bJD+5fkD0bWQI0Yhyw+v3dlc4Ru55LwxAt9RUbstdf0j0vl27Sl93AI3P985i+w3xjHjvSmsaZyNaeRx956hCT1LlstLIKikZCIiIjKwKNApMsA0FFW2SjZk2Jt1dav9C0lnYHm3z2u32zhotP+W8pgjjQqbk+pm2/6SPwUjLTfaxpQs/mPI5wim53e7DfEyckZypTsP38T5CajM4AObhx9W38vY1Axclp8flP+eqbS9BMCl/reO/ZwiIv1YRdDEMjJZUTuxS1Opl5T46OuvphEjn0f29WkTMI00niyKBoiLfGEeL3KwzT+O1ZXhTo7smpNzJ2HpUkBEREQGGH27ERlgGg9UttqWnr42dtug7UCn3eMguOXebp/3JFcjO5wpGBmFLbbXTT0LI3s4n5oWfzC8LfY9adqoGHsyAJ8e/yU2WhY/Gnc6hjv+ddoMbyZG1jAANp9yJUZKNkbeGL515i0Y7QRNS0bOBOCekSe1X29qDtawqRhHrTtqDZ3aVMblJTLiBCZnZZAdPMAL5sMAeM16rij5a6zciTVL+TBtCVcVZDG1tvvBZJFES3do2qr0jPNWT+OaNf4uHVMVimAaWUdtdXLbrjMS1q62LKmZT9gYQj0TORAayeuHGvmw4bQePWdHrtswlUP+pqDmg3vquGSVxfKK1qNjuyPv8GfsUOfkhNQnIiIi0p8o0CkywDTsbxnoNOwGoa33x+5bZtuBTm+uH8Ldv4gaZpaBw8mKGYuazu1JZ9GQmewbG50GWN3GcX/JnwLA3SnRAOkbpsGqky6P+7yR3FHsGz+XLad8jcu8Q1h+4iV8OPlMlptgthPo/CBrBAAvmg5oZxRqJGsoDRlD2Dbzohbbn510ZtOd9HyWjp3DMHv0gjTf35TcxTCaxjF5zXpGNXzKhZGP435cIr1hhMfd102QAWp1lZ+qUKTzgkeJkNLiftjI5cXixAT42rO7wUatmUttJJWSgIeAafFxdd8t6/BeWesAcbE/nLD1OY/LGhW9YbWfQFBEREQkWWlxLpEBxlda0+K+J9eJta8idt+s/ITMcdOx3GOpPZAOgCPVhVH8wDGdN9OsJMvj4BZnNj89/dsYQJHdTYUFV2aOBQsKPSmU+BtbHPekaeM/p5/HSrPpCu7bzhxWjp+De+eHLU9SMB4wMKqKiBSM57Xx89lt97DEsLPjcPz2e44ssmyABbVZw8ks3gRA/ZSFpG15B4B/21LBsijD4skzbiLNDLNo61tQsp2SmRdQuOFV/Gl5NLpT+W7aCN44fHojPZ9fGx6+nDWMpTO+SLHdzV8MFzfZ4hu1NLvq1S4+qyI9a4hTv3dK//KHveMZ5hnH6Tn1jHJ8TK2Zy77GEP8sPT1W5si+RPGbcMf2XEwLDvqjwdnt9RaWkc77tSewz2fjtOxGxjrXJOyc7bN1K0Acr+OzR1DoHsoXhqUQDmX12HlERERE+ooCnSIDjBlquYaX01FEqPn+un0EP/kNuLKwDbsPT44Ndt1KuHrnMZ3XZ3cwyWWyBviR7fDU88OxywoLJqdlMjvF4J9HBToBXsub0OJ+wICzRp3G2xa4dkWDnUZaLjdMv4gRmPx0+1u8PvZUbrWlRs9htTy25PD9lwqmcNWWt1k59xr+05nNR1vewRo2lY1W0wG34wabm1Pzx5Fdsp3bcybyu3FzCDrcvJ81iiLLwkjJxmqsYu308wkBmycv5D/t6bHHmG/Vx/UcOa1A54VEepHHSHAKZ5FjdOeWWgDu/1w6o/JgS0MWFo18d31drMyZBV6em5m4c9ZHotPDm9tYG6LOGsZPN4bYUBvkBxPTuW1s4s7ZHsvI6NH6J6dNwGl4yHdm4fdpRKeIiIgMPAp0igwwVrhparrNaccqfrHtgsFq0jxvEFz/CIbZfoID38R5eLcvJzjuFCozhjB06ztYvuiFKIUTMaqKsCIhqp1epthq2q3nrLQIw6njqwU5eAyT8oidxeXRafb3G55WCZSqLDhz9Gm8F6jHdmgr/3fyVawwAWz4J57NMtNodY6j/cFyUbvgu/zNjL7VWUMms2/o9DbLlnuzyckoYFkE3hh2PHNrinjA5gULiiYvYMTGN/ihJx8six+lDqH5UqcFZut1UUWSwZm2/WQVDmNHyMH7lRWdHyDSSwKH3+NXVLb+qvp2qY9qppLF5oScqybUOuC/oTbA8yVD2FYfDYC+XhLktnGpYDUQNoZhYeC0DlBuTSfP+KzNei0jnV3BlutgjnYVUREppND2SZvHNFqJT8i3oHAaKfYU9jYWk8JYDDOCZTkTfh4RERGR/kCBTpEBxopEI3DuXDfOst8TPrii3bKhLQ/SYbjQ4eKCEaewdO/H3DZmHotN2JC7C1vRBgCWTFrI/IOfEXCnUeFwMSZcDAxts6r54c2U2PP437Jf4iCEz57BEvuN+CPh2AjMo1VZsH7USQzNH89Dpj22/cU4gpwQHd15JMgJ8Jepn+fMxraDOXUON2+ccBGWAcsND56MYew73K6LMsfxzrhTOHR4JOiOo5Y5He/fEld7RPqbS0vv4VLgxfwbeJ+eHUkm0hWNh39/K/a1/QHxYXUen89KzLmKfK2nivsiFjd/Uhu7v6k2QL01jDS2szc4nMUlKXx/xAH+e1MWDxzXdr0B8jjpnZZ1P3PKBO7aFuHN2Xag9XnLQhnQTtLA7hrpOJ1AKIOTMnbi8yc+kCoiIiLSn2hxLpEBxoqYpA8PYtt8NZHmQc52ku60xciMBit9407B8KQRHDaNj12pTE3PIpiSHSv3gjeX7Xnj+XXhDAwjzNjgjjbrc9rszK5+k1HhIhyHJ9J7I7VckJveaVvu8ebx85wJnZaLxz2Wg8dTC9rc96o3hx/You1ZjcE/7GmxfY3Ar4d9DgDjqNCwx+5gVH3bI3NEkkWmWYu9C+8RIj1tn88CXNSE2w50bq+3ETKGEzKGQ8c/2XXM8LK7Ib41Mbf78ggZwzkYcPObLXU0MoGygEnAGB1rS8gYjmVkEzEKKQ9nt6rjn/uhyBcGo+1p43v93u4/lnaEwtEET2ao7R8iRURERAYSXdWIDCCWZWGGTazdf4ZQy3Uj937ukrjrueqkr2ENnUJlah4vGk+xauSJ/C1lLW/V/4xIRvTCzRo2jTNzQqz2ZPGqCamResbXrWZ2Vk6r+sanppMSqWZO5Usttv+s9v5WZY+2wuTwlPXEeL6d0aCPmzasw7sqLFqs4wmw+HAbLshvunDNdnk4PycjFrwVSVYLKp5kmDel84IiveQvO+soMafy2qGGNvf/bFMt+W8UkP9GARjdDw4eikxiU2186ycvfN9P/hsFfPGDBgKmxbA301lW7qPwjZxYW/LfKOCp0uM5eflopr/VOkj7QnEDxf4wJu5W+xqYwIUr23683WUzDEwrOrMhGFEfFxERkYFPgU6RAcQMRcCyMENVrfY9mTmS2qlndVqH4U5jrQn/b8rnybOHGebbzKqMQk6ofguAmvQsALaNOIH5jStYYnMBkBaOnvOH9taZcCe47a22AeQG9lLoSa4Lr++F3oiN6sx1urgm8kEft0gkMVJtbfdTkb5y9+5MfJHOE2aZdP9zpD7s6vax7VldZbGzoeMfwExan/eJQ8MT3haHRmqLiIjIIKNvPyL90MG3N7baFvYFAQhUNdBQ1Dr5TfWmIsxgGJvTjlm3v9X+quxcbh46E+wdL827eeYFLM7eyGJXOg+NOxGA4ekhXJYfgGfyx3Luwlv4cd4kJtV+yIbDIx3zA/sAmFf5LFudj7DF+Wjs391Vd7Z7vs9nRBMi/M8QB1ucjzLCm9Zu2bbkuLyMTc3AwOC3hZG4AqdXF2bx6yFdOg0AJ2XmMK3mPU7MzGaD5xleC97N7KpXul6RSD+0OPDHWJ+9LL/1yGyR3va3nXWdFwLqrdxun2NlVeJ/bPvHns7b7bMyW9yvYSq3bqhtp3T3OfUDhoiIiAwyCnSK9COWZbHvxTUUv/UZltlyvra/LHoBVLx0A/V7y1rsC/uC7H3uI8INAdzZdoxIsGXFhsF11ipC6dmUHff5ds/fOPkMvp46gpnVS/l5ZimBwyNB5vk/ipUZaavjgAXz020YhoXNMHDa7KSFm5L8pIfLyQiXxf55zfpW5zriOv9r2AyDS2qeIyNcxnB310bXjPV6+GJahDsKI1xd+kf+J7Os02POMHdwTcndfC6za8Gc77k2AfAN9x5yA3tJDSvbugwcqeHKpj5rJDYZikhP2lCf1+1jS4Kdl+mqzsegwl5/Vov7NWEvcQxe7TKXTXlHRUREZHDRtx+RfqRizS7KVkUT+oTq/ASrG0gbHc2QGiivw+5yULl+L+F6P4WnTQbADIXZ9/xHhBsD1O8tw+msar1ipM3O1PpV3JHq51+5x/H9Ns5tuFK4eNhszsvNxF4e5uLS+5iZHk3Ac1zNu7FyX6x5gfF5JzGpbj0A/8rdxy/906Gby4pNqlvJ1wvOZ0jpdgB+xVIq8vL5FzN5ubztDOkpdicz0tP5vuMTcsMfM7byk1jQ8ZKSeynIvQzTMHjImsmbFdE6rirI4rHSamyGwZzapdgJc6tzPV9hVLttm5WVw385NnBl+XCGeFI5p+zfYMCi8ke792BFksT1/lc5P29ki21/jpzAB1UK7kv/8/IhO6d1krOuzJzBTl8Gc1KjSfperDydrfXw5H5fL7SwtVs32liQf3rs/qc1EaKp7xIr25Vcy8OIiIiIHCsFOkX6EV9pTex2+eqdVH6yl2k3fx6b04G/rJaqz/aDZVG7/RD1e8pwZnrZ+a8V+Iqj62PWbCkG35ZW9RoONxmhUmZWL2Fj6gltnrt6wqmkpWZwV/X/ix5jWIyrXwuAjabRXQX+nRT4d8bun1HxFFcXDO92oBPgvMhnsdvTa94B4FTjRYy821hc3jqwMjUtnRuc2zmj/KlW+wzDYn7l0wDYcyIss03gj3mVnF/+F/7J9zgxI5vs2gMAHF/3PnBlu+0a4oCFFU+Q6/ofZqe5MQLR4TZOK77EFSLJalLdSiaxssW2ZYXT0Iq00h89VdTAbybYgPZGIrv5yppUJqbbmDM1uuWvO0OsrvL3VhNb+aDCzwcVPX/+XHd6j59DREREpD9RoFOkF5jhCLXbDpI5eRiGve0VI8INAer3lsful67cRsQfovitjYz4/AlUbzoQm74OsPeFNYTqfUQam+bd1e0sITW4ulXdqVNOBJYDcLJtM1tP/ipD68vI2LQUAMPl5dEhM3jAeLHFFPR4XVr5WJePaW5O9WuttjmtAH+pvJ3y7NtYV1vLN/NdOA9fxE6NbOfsiic6rffUyud5OeN0jit7F4DPZWZzqicAh5/GrOAhbhtipwEnT9c62ddYx7m5uSytrGSkN41h9ujY2FuyG5gUbr1uqshg8vngGlKHRH8o+Xe1nYP+BqalZzHda/BUaesEaCK9pSJo0miMJcVq+hGuwprOHl8GIzz1lAZTWFsdoCQQYW3jqQBsr++BOeu97NT8iexvLGd/Q9v9b0RKFlPSTiDQN4NWRURERPqEAp0ivWDvc6upXL8XZ4aX/JMnkHfyeJxpHgCsiEnpyu0cfPszIv6mSedHbpcs30LOCaPxV7RMbuBvNvrzCDMUwQy0vOBxFozBkd00MqvBHuSSlGGMTh3Oq1uXQc5Ibp1xEbVZuYyrWtutx5ceLu+8UAe8kbYTMDitAIvclZyUn8p/l9ze5XptmBxX+27s/h3G2ywzTm5R5tsldwGwO+8O9jXCj0MvU5+1iBNdAeZFoqNjry39Q5fPLTLQnFz1MifzMgAl+b/in36Ym2Jyte9VnmJeH7dOBrtHDozgxuHFYPnASGXh8hT2Nfq4bnQWC/MBAhT5wpy1PNzXTU2YsSmTSLF72w10jkzNI+Cb1MutEhEREelbCnSK9LBD722mcv1eAEK1PoqXbuDguxvJnj6S9PGFHFq2mUB5yyCm4bBhhQ9PwTMt9jy7CsymLAWG3cBqJ2uBFWk2dMMwSD2uAIM9sU0Z4UrmZedQHjZZNvdafunMoMSEvzj2JeYBJ9gXahcnrK7ja94iLdI6QAww3BYgzeFiQt1qbsibQE6ogsn1H7VZVmSwO8/czJ7s45hOMSMaN3Ni5pdYVxMNtgz1pDLe625RviZisaFWoz6l59yzy8dlQyaQb9vAmoYT2NcY/SxcWRmg0OPp49YlTrYrhfHpBQA4rHQKXSPIce+gMtB6fc98Vx6tF+0WERERGdgU6BTpYTWbD7TaZoVNKtfvjQVAm7N7naTyDLXhC2PbjqzBCZAyxIlhmDQcjLR9wnD0YseekU/6rJEYVsup7OPq1/IUaylKOY6THZ/Ha3Pyl9wqLim7tzsPr8cN9W1LaH3j6te0uT3L8PP9PLCXhDlPyYZEOnRWxb85q9n9h4MPcAKXAnBJJvy09KctyvvsmZzi/h7lmkMrPWRvY4iasId8F6ypdgLRv7UtdUF+uzX5p6kfMStnAtnm5wHwHV7ic0bWbpaVbG5RbkxaLt7QvLgywIuIiIgMJG0vFigiCROqjz9xjSPFSYrvb4R2PIHhaLt72ssfxm4carcOK+TDO+FzZMyyMKyP2y03onEjVxZk8Vrqsn4b5OxNM8K7uL70z33dDJGklO/fQ47LC0CW0Tqo5I3UcFN2ELuhrx3Sc8KWAdgoGcD54lLsqa22OQx7i/t2w8b8nPlY+povIiIig5BGdIr0sFB9/COYUrLKCG1/GwB3lhOXu5LaA9GLGne2G6c3SPijl7H7S8H1gxbT2QGwGVjBajyjysHqfN3M/yv7WfwPZICbV/FMXzdBJKldlWNw9yGYE1jf5v5vl9zFt4EFabezrb7tJSREjsWcZSHgBGIZ5wYYu2HDG57TKrf8MPcE4DMATsoZzXj75QT8Rq+3T0RERKQ/0E+9Ij3IDIUxA/EnPjDCTSM13eZyQuv/P1yZ0bXu3CmHYP/dAERKVpM+tPWQFUeKE8OyAP+xNVxEpIsmmyUM9aTyuao3Oiyn8ItI94xJy8W0nK2226wUAFIcTo7zfh4M9TIREREZvDSiU6SHVG8+QPFb0REWrkw3HucaQsYsfGVtz6lLHWYQ3v7v2P3AZ3djWBE8kZcIch6RTXdi1hfF9kc+u5X0glNi9w3vEIKuz2NPy8WyKhVMEJFedXbVs5zgHo1hdLwq4J8d73C+MYuwZWIzDExLqwiKdOSsIdNZXbGdOTknE2pjkkggUMg1I6/Bstz4g5m930ARERGRfkSBTpEeEqisx1dchc3twFX1e0IHVwCQPnoRVuFXaShxYoVNPLluXI1PE/ro8RbHG1Y02VBo68OknXwO4eIDLYKXVmMJ4T0vtTjGPWsinmnTMVjWo49NRORoaeEK0sIVnZabXvMOp+ecw9sVFXhsDhojSgst0pGhrjHMyrFwRIa0mUTdtJz4AoW93i4RERGR/kiBThlUwo0BaneUkHP8qNi2hgOVuLNScaS6E3ouMxidsp6etobgrhVNbdj7Cux9hZSMsThGfIHAhnsJWe1kUD9S16YfYnelYgbqsWcUgGEQqSlpVS702W9JPS2bVgt4iYj0I/+f+Q5nFU7HTQMBHPy63I1PAU+RmPOGnkiOMx8AIzKSUc4CAqGMPm6ViIiISP+nQKcMChF/iJLlWyhZsRUzEMYMhck7aRxVn+1n99MfkjVlGOO+elpCz3kk0Bkuernt/bW7CW76W1xTzK36YrxTTyFYeoD0mTaCpSNo2NA60Gn5K8DSpHUR6d9mVi9hJkti91/KvINV1ZV92CKR/qXQPgu/PxuA6E+h6X3ZHBEREZGkoUCnDGhWxKTkg20cencTEV8QiK6Xue/FNTQWVVK2egdYULVhP9UnHiBryvDEnNeyiDTWkDbcIrJ6Y5ePt3kzMH212NPziNRFs6e7hoZwDQuDeQhH1pgOjm7oXqNFRPrI5e5DDMkfwopaH+WBNhYhFBlE0p1u/IEsZe4SERER6QZlXZcBy1dSw5a/L+HAa+uJ+IKkDHGQ7vgX9u1X4c52UrYqGuQ8orEoMaOJGour2HrvW/iLdxFZ/bUuH+/IGkLmqXl4Rk8nY7aFd/yJ0R3WBgwzmpXd5liLPT2v1bGGKwUsBQlEJLl8tfTP/L38p5yYltJie5rD1UctEuk7ee50ZU4XERER6SaN6JQBxzItSpZvoXjpBqywibfAhbPuaUJrnyAMYLNj3/sT3MPvJBI0AYNwQ5BI4NjWh4v4gxx4c0N0lKhpkTE82LKAzQ5mx2txOgvGkDYjAuYuvBOmg1mBe1QVztwzjkow1EDazJOo/2Rz0+OOhLF70oDGY3ocIiJ9ZbgjTKGnKdg51O3mYKDpq0rYtKgI6sccGdgKPVl93QQRERGRpKVApyS9xu0PkTLxOgDq95azb/HaaLZzp52Mgm0E1/2cEGBPzyPt+GnYPLuoW1ON7bNLYkOaPbP/RcTXvUCnZVlUrttD0WvrCTcEmu3wx26mTJuDe8h2Iv7pNG7eQbjqQIs6HJlDSJs5HowVTYmEzM8AMDCxp7bOom5zvEfGSc1ORwaB/fnA/m49DhGRvnZn6W3c2XxDoOX+Es8ETuTC3mySSK8b51xEuOPfRUVERESkHQp0SlKzwn7q1tyKPefzFL+9l8r1e8ACb4ELe9GdBPesxZaSSdoJM7F7PwLrPTAh/aTjqH6vCiscvYq2Nv8ICv7V5fM3Hqxi30tradhb3nqnGQ10ukdMxT3kE7B82N3LSJtpA07BvzdAoGgr6SeejD31I7BWtK6jCwxqcY+0H1MdIiL9WaF/B9kuD1VBf+eFRZJUxNRnuYiIiEh3KdApSS1UuQ4zUE7F62fiNtIYehyABeEyjBwLGAlmJbCsxXqcWBvJOr0ADDdg0Lg9HbN6PWboVGzOzruFFTEpXrqBQ+9vAdNqtT91mI3IzkcBSJnkarFupoEJrMI7GjyjPdEp6a2r6B7rIyUvEJEBbbTXq0CnDFinF0zBsvT1XERERKS79E1KkpsVnedthLZ049jSWIAxZeI4GqoqKHl/K0PPPK7Dw3wlNex++kN8xVWt9rky3XjMVwh99GDTaazd7cYeDRJ7sa7cBSIy0Hn0RicDWLojneiC4iIiIiLSHQp0igCYu3BnHOTQ+1vInDqclKFZbRZrKKpk631vYR21eJbhsJNeUExo/U8JhRoA8IybiWekF4OVPd16EZFB4xb7WsoLcltsCxkObi5JxUrY8HgZTBYNm8Wayq2U+Ov6tB2ZTg959un4FOgUERER6TYFOkUOs0W2kJK7gO0PvsPE6xe2Geys3X6wVZAzdagNY8+dhD5a32K7My8Tw9Y6iZCIiHTfaZXPtbn9wYxf80lt65H2Ip3JdY5kTFpVnwc6zyg4AV8gv0/bICIiIpLsbJ0XERkcbM5a2PW/WGaE7Q++Q/2+1gmGanccit12prvIyHgLc80VRMrXtyjnyB2BI62hp5ssIiKH3ejZg8eu32+l6wzsTEqdzsjU7ITWm+NO4fxhs1r8G5eWx5lDprcqO9SbQZYxM6HnFxERERmMdEUgcoT1Cc60GRihB2l0Xs/We9+i4NSJDD/neGwuB+Uf7aR+dxkAacMjmBtuJOQrjR5r2PCMOg7X8Bzs3iIwd4JV1IcPRkRkcLmg7AH+nP4rNtZW93VTJNlYDgL+cUzJ2MP+hsSNCh6RkkNa+MwW207OWYczMoF053bqQoHY9ikZI/EHMxN2bhEREZHBSoFOkWa8E0yq3n6TlJHQ6PkGpSu2Ub3pAEMXTGP/yx/jynLj4V1Cq/8Edicp0+bgyrNjOLaAtSFaidm3j0FEZLA6zRvBsrJabNvna6Q+HOybBklyOJzlPNuRw6SMQgBqgo3HNJV9bFouQzy50HK1G9zmKIIRNzOyRlEeqI1tz3PlQwAREREROUYKdIo0Z24k6/TTqH7vTdyZ27FNvIP64gb2Pv8R3gIX1ieXEzLDuIZMIPU4G5gfRo9T/gsRkT73i9JftNp2e8HPuadEgU5pn2W5ozcCs5npmQ2AJ2snj+57ttt1npp2JaGIp9V2XzCaSGuEcTEjmu9WkFNEREQkIbRGp8hRDNsKsk6fi1Wzm8hHXyEj6wPcOW5s+36OYUVIn3U6KVP3gbmtr5sqIiKdOMXc1ddNkH7Oslytt0UKul3fEG8GIbN1kFNEREREep5GdIq0wbCtIHvhTOo/rSS08c/Y+DO2nOFknpkH5nt93TwREYnTOeX/Yqsz/iQzb2dfwo2lGT3YIulP5hdMJhBMA6Pl9kAona8O+X73KrUMIprpISIiItInFOgUaY+1nrTjvYRrz6B+/UrST8wG87O+bpWIiHSBDZP0cEXc5ceEdgMn9FyDpF9Jc6RB2GhzX8RsPdJTRERERPo3BTpFOmL5cKQvI+uMfAU5RUQGgUl1q5mTtZAPqysB+GZhOgsjm2L7r6saiz8S7qvmSYJcOfp8HFY6mBn4+roxIiIiIpIwCnSKxMMs6+sWiIhIL/BGapnsinA41Rznhdcxt/LF2P4s920cUqAz6dnCo/GF0vu6GSIiIiKSYAp09jN79+7lT3/6E6+88gr79+/H7XYzfvx4Lr/8cr7zne+QkpLS100UEREZ0M6PbCBvyCQAplatarFvgtfDIX9Dj537yoIshtj8nZZb0ujl09qqHmvHQHJK3jiGe4e32BYKKlmQiIiIyECkQGc/snjxYr7+9a9TW1sb29bY2MiaNWtYs2YNDzzwAK+88goTJkzow1aKiIgMbPMrn2Z+O/vOd5WxHFuPnNdls3N75e/wRmo6LVtV8Es+re20mADjUyYT9s9osc3so7aIiIiISM9SoLOfWLduHVdccQU+n4+0tDR+/OMfs3DhQnw+H0888QT3338/27ZtY9GiRaxZs4b0dE23EhER6W1nNrzNvOzLe6Tuya4w3tLOg5wALmPwpPWelTumxf1Sfy37Gio7PGZMWi557uh3JSeZaLEBERERkcFBgc5+4uabb8bn8+FwOHjzzTeZO3dubN+ZZ57JxIkTufXWW9m2bRu///3v+cUvftF3jRURERmkRjV8wlN80tfNwGENjjGJ2S4v4+wtA8vH5RbxSMO/2z3GYdg4PfPL+EMZAPg6XwlARERERAaInpl7JV2yevVq3n//fQCuv/76FkHOI2655RamTp0KwN13300oFOrVNoqIiEj/4TEi2A0bNsPo66b0qBEpOa22+f3DyHOnYjdsbf47Z+jMWJBTRERERAYXjejsB1544YXY7euuu67NMjabjauvvpof//jHVFdX884773Duuef2UgtFRESkP/lByR38ANifOoNT6gfu94GT0s+iMdBym4WNMzO/0/5BmqcuIiIiMmhpRGc/sHz5cgBSU1M56aST2i13xhlnxG6vWLGix9slIiIi/dvIhg2MTEnr62b0IHtfN0BEREREkohGdPYDmzdvBmDChAk4HO2/JFOmTGl1TLyKioo63L9///7Y7YMHD3ap7r4ULCulquN8BCIiIgPa3anP0WDrP1O1N3km85vSY/+KaTNs1DjqCJlarkdERDpW6fJQlJ08P/w1v+YOhzUVQSSRDMuyBk/azn7I7/fj9XoBWLRoES+//HKH5dPS0mhoaGDOnDmsXLky7vMYA3wNLxEREREREZFks3r1ambPnt3XzRAZMDR1vY/V1dXFbqeldf4LVGpqKgD19fU91iYREREREREREZFko6nrfczv98duu1yuTsu73W4AfD5fl87TfGp6e+3YsmULhYWF5OfndziFvr84ePAgJ598MhD9FWzo0KF93CLpCr1+yU+vYfLTa5j89BomN71+yU+vYfLTa5j8kvE1DIfDlJWVATBjxow+bo3IwNL/o1kDnMfjid0OBoOdlg8EoqlHj0x3j9eIESM6LTNhwoQu1dmfDB06NK7HKP2TXr/kp9cw+ek1TH56DZObXr/kp9cw+ek1TH7J9BqOGTOmr5sgMiBp6nofS09Pj92OZzp6Q0MDEN80dxERERERERERkcFCgc4+5vF4yM3NBTrPjF5VVRULdI4cObLH2yYiIiIiIiIiIpIsFOjsB6ZNmwbAjh07CIfD7ZbbsmVL7PbUqVN7vF0iIiIiIiIiIiLJQoHOfmDevHlAdFr62rVr2y23bNmy2O3TTjutx9slIiIiIiIiIiKSLBTo7Acuuuii2O2HHnqozTKmafLoo48CkJWVxcKFC3ujaSIiIiIiIiIiIklBgc5+4OSTT2b+/PkAPPjgg6xcubJVmd///vds3rwZgJtvvhmn09mrbRQREREREREREenPHH3dAIm6++67Oe200/D5fJx77rn85Cc/YeHChfh8Pp544gnuu+8+ACZNmsQtt9zSx60VERERERERERHpXwzLsqy+boRELV68mK9//evU1ta2uX/SpEm88sorTJgwoZdbJiIiIiIiIiIi0r8p0NnP7N27l7vvvptXXnmFoqIiXC4XEyZM4Mtf/jLf/e53SUlJ6esmioiIiIiIiIiI9DsKdIqIiIiIiIiIiEjSUzIiERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU5JSnv37uWWW25hypQppKamkpOTw+zZs/m///s/Ghsb+7p5g9KaNWu4/fbbOffccxkxYgRut5u0tDQmTZrEddddx/Llyzut4+GHH8YwjLj+Pfzwwz3/oAaZeJ/7BQsWdFrXa6+9xsUXXxz7WxgxYgQXX3wxr732Ws8/kEFqwYIFcb+GR/69++67LepQH+w5paWlvPzyy9x222184QtfIC8vL/ZcXnvttV2uLxF9LBwOc8899zB//nzy8/Pxer2MHz+eb33rW2zcuLHLbRroEvEaNjY28txzz3HjjTcye/ZssrOzcTqd5ObmMnfuXH7xi19w6NChTuvpSn+XJol4DRP9PtnY2Mhdd93F7NmzycnJITU1lSlTpnDLLbewd+/eY3vAA8yxvn579uzp8ufkmDFj2qxLfbB7EnG90Jw+C0WkTZZIknnppZesjIwMC2jz36RJk6zt27f3dTMHlfnz57f7ejT/d/XVV1uBQKDdeh566KG46gGshx56qPce4CAR73N/xhlntFtHJBKxrr/++g6P/8Y3vmFFIpHee2CDxBlnnBH3awhYNpvNKioqalGH+mDP6ei5vOaaa+KuJ1F9rKyszJo9e3a7dbjdbuv+++8/xkc9sBzra/jJJ59YaWlpnfatjIwM64knnuiwrq70d2mSiH6YyPfJ7du3WxMnTuzwb2Hx4sXH/sAHiGN9/Xbv3t2lz0nAOvfcc9usS32w6xJ1vWBZ+iwUkY45EEki69at44orrsDn85GWlsaPf/xjFi5ciM/n44knnuD+++9n27ZtLFq0iDVr1pCent7XTR4UiouLARg2bBhf/vKXmT9/PqNGjSISibBy5Up+//vfc+DAAR599FFCoRD//ve/O63zjTfeYNiwYe3uHzFiRMLaLy3deOON3HTTTe3uT01NbXffT3/6Ux588EEATjzxRG699VbGjx/Pzp07ueuuu1i3bh0PPPAA+fn53HnnnQlv+2D20EMP0dDQ0GGZTZs2ccUVVwBw1llnMXz48HbLqg/2nFGjRjFlyhTefPPNLh+biD4WiUS4+OKL+eijjwC45JJLuOGGG8jJyWHVqlX8+te/prS0lG9961sMHz6cL3zhC91/sANUd17D2tpa6uvrATjttNP44he/yKxZs8jNzaWsrIznnnuO+++/n9raWq688koyMjI6fe5nzZrFQw89dEyPZbA6ln54xLG8T9bV1bFo0SK2b98OwA033MBXvvIVvF4v77zzDr/5zW+ora3liiuuYMWKFcycObPb7RyIuvP6DR8+nA0bNnRa7je/+U3su+o111zTYVn1wfgl8npBn4Ui0qG+jrSKdMWRXwIdDof1wQcftNp/1113xX6B+/nPf977DRykFi1aZD355JNWOBxuc39ZWZk1adKk2GuzbNmyNss1HyWxe/fuHmyxtOVY+87WrVsth8NhAdasWbOsxsbGFvsbGhqsWbNmxfqwRl73vltvvTX2Oj/22GOt9qsP9pzbbrvNWrx4sXXo0CHLslqOLIp3JFmi+tiDDz4YO/dNN93Uav/27dtjMycmTJhghUKhrj3YAepYX8MVK1ZYl19+ubVx48Z2y7zwwguWYRgWYI0fP94yTbPNckdGk3U0wl5aS0Q/TNT75M9+9rNYPXfddVer/StWrIj1d73OUYl4/ToTDoetYcOGWYCVnp7e6n32CPXBrkvU9YI+C0WkMwp0StJYtWpV7MPoW9/6VptlIpGINXXqVAuwsrKyrGAw2MutlPYsXrw49vp973vfa7OMgix961gDnTfeeGOsjpUrV7ZZZuXKlR1+qZSeE4lErOHDh1uAlZaWZjU0NLQqoz7Ye7pzgZ6oPnbkczInJ6fNvwPLsqzf/OY3sXqeeuqpuNo32PREkMWyLOvSSy+N1bt27do2yyjIkhh9FegMBoNWZmamBVhTp05td3rtt771rdi5Vq9e3a1zDWQ90Qdff/31WJ3XXXddu+XUB3tGPNcL+iwUkc4oGZEkjRdeeCF2+7rrrmuzjM1m4+qrrwagurqad955pzeaJnFYuHBh7PbOnTv7sCXSEyzL4sUXXwRgypQpzJkzp81yc+bMYfLkyQC8+OKLWJbVa20c7N566y0OHDgAwGWXXUZKSkoft0i6IlF9bNu2bWzevBmAyy+/vN2/g+aJPZ5//vljbb50gT4vB7533nmHmpoaIDo12mZr+5JM/bD3Pfroo7HbnU1bl8Tr7P1Pn4UiEg8FOiVpHMnCl5qaykknndRuuTPOOCN2e8WKFT3eLolPIBCI3bbb7X3YEukJu3fvjq291LwPtuXI/gMHDrBnz56ebpoc1vzi7cgPQpI8EtXHmme07aieIUOGMGnSJECfpb1Nn5cDX7z9cNasWbEAjPphz6urq4sNrBgzZgynn3563zZoEOrs/U+fhSISDwU6JWkc+dVtwoQJOBzt59GaMmVKq2Ok7y1btix2e+rUqZ2Wv+666xg2bBgul4u8vDzmzJnD//zP/8RGpEnPefrpp5k2bRopKSmkp6czceJErrnmmg5HSG/atCl2u3kfbIv6aO+rr6+PjUQYPXo0CxYs6PQY9cH+JVF9rDv17N+/v9NEV5I4Xfm83LJlC6eccgpZWVl4PB5GjBjBhRdeGEvmIT2ru++T8fZDh8PBhAkTAH1e9oZnnnmGxsZGAK666ioMw+j0GPXBxOrs/U+fhSISDwU6JSn4/X7Ky8uBzjP9Zmdnx7JC79+/v8fbJp0zTZPf/va3sfuXX355p8e8++67HDx4kFAoREVFBatWreKOO+5gwoQJ3HvvvT3Z3EFv06ZNbN68GZ/PR319PTt27ODRRx/lzDPP5OKLL45Nt2uuqKgodruzPjpy5MjYbfXR3vHss8/Gvpx//etfj+viTX2wf0lUH+tOPZZltThOes4nn3zCK6+8AsCMGTM6DXSWlJSwevVqampqCAQCHDhwgJdeeolrrrmGmTNnKjjWw7r7PnmkP6WmppKVldXhOY70w7Kyshaj3STxujPzQX0wceK5XtBnoYjEo/1hcSL9SF1dXex2Wlpap+VTU1NpaGigvr6+J5slcfrDH/7A6tWrAbjkkks6XHpg3LhxXHLJJcydOzf2xWLXrl08++yzPPPMM/j9fr797W9jGAbf/OY3e6X9g0VKSgoXXHABZ511FlOmTCEtLY2ysjKWLVvGPffcQ0VFBS+88AIXXnghS5Yswel0xo7tSh898kMEoD7aS7py8aY+2D8lqo+pr/ZfgUCAb3zjG0QiEQDuuOOOdsvabDbOOusszj//fE444QRyc3Opq6vj448/5t5772Xz5s1s2rSJhQsXsnr1akaNGtVbD2NQONb3ySP9MN7vtEfU19fjdrsT9CikuX379sVGE5566qmxkbTtUR9MvHiuF/RZKCLxUKBTkoLf74/ddrlcnZY/8iXQ5/P1WJskPsuWLeO///u/ASgoKODvf/97u2UvvvhirrnmmlajzWbPns0VV1zByy+/zCWXXEIoFOK//uu/uOCCCxgyZEiPtn8wOXDgQJsjS8455xy+973v8YUvfIF169axbNky/v73v/Of//mfsTJd6aPNL9LUR3teUVER7777LhBdnP/IWlNtUR/svxLVx9RX+6/vfve7rFmzBogmQfnSl77Ubtnnnnuuzffr+fPnc9NNN3HDDTfwyCOPUFJSwve//32ee+65nmr2oJOI98kj/bAr32lB/bAn/fOf/4wlrIlnNKf6YGLFe72gz0IRiYemrktS8Hg8sdvBYLDT8kem9ni93h5rk3Ru48aNXHzxxYTDYTweD08//TQFBQXtls/MzOxwSu0Xv/hFbrvtNgAaGxt58MEHE97mwayj6XOFhYU888wzsVGcf/7zn1vs70ofbT71Tn205/3zn//ENE2g8wyy6oP9V6L6mPpq//Sb3/yGBx54AIgGzP761792WL6j92un08kDDzwQyzj8/PPPa23dBErE++SRftiV77SgftiTHnvsMSAa1Lriiis6La8+mDhduV7QZ6GIxEOBTkkK6enpsdvxTBk4shZdPFOCpGfs3r2bc889l6qqKux2O0888URCsld+85vfjF1gNF+wXHreuHHjOOeccwDYsWNHLOsldK2PNl/IXX2053X14q0z6oN9I1F9TH21/7n33nv5yU9+AkSTXrz66qstpkp2h8Ph4Prrr4/dV1/tXZ29Tx7ph135Tgvqhz1l9erVbNmyBYALLrig03VT46E+GJ+uXi/os1BE4qFApyQFj8dDbm4uQKeLQFdVVcU+kJovQi29p7i4mLPPPpvi4mIMw+Af//gHF154YULqLigoiP0t6Nfx3jdt2rTY7ebPf/OF3Dvro80XhFcf7Vlr1qyJZRb94he/SHZ29jHXqT7YNxLVx7pTj2EYnSZrkO55/PHHuemmmwAYPXo0S5YsIS8vLyF1t/d+LT2vs/fJI/2poaGB6urqDus60g/z8/O1PmcP6U4SonioD3asO9cL+iwUkXgo0ClJ48iXhR07dhAOh9std+QXWaDTbKWSeOXl5Zxzzjns2rULiE5xTuSXRiCujNHSM9p77pt/mW/eB9uiPtp7ml+8dTZtvSvUB3tfovpYd+oZOXLkMY8wlNZeeuklrr76akzTZOjQobz11lsJvYhWP+1bHT3/8fbDcDjMzp07AX1e9pRQKMQTTzwBRAPUn//85xNWt/pg+7p7vaDPQhGJhwKdkjTmzZsHRH/9Xrt2bbvlmk8NOe2003q8XdKkpqaG8847LzaC7Le//S3f+c53EnqOsrIyysvLARg2bFhC65bOHXltoeXzP3bs2Nj9zqZnvffeewAMHz6cMWPGJL6RArS8eMvPz+cLX/hCQupVH+wbiepjRz5LO6vn0KFDbNu2DdBnaU946623uPzyywmHw+Tm5rJkyRLGjx+f0HO0934tPa+z98l4++GaNWtis5TUD3vGK6+8QkVFBQBf+9rXcDgSl6tXfbBtx3K9oM9CEYmHAp2SNC666KLY7YceeqjNMqZpxkYwZWVlsXDhwt5omhBdcH/RokV8/PHHAPz0pz/lRz/6UcLPc99998WyYp5xxhkJr1/at3v3bpYsWQLA+PHjGT58eGyfYRix6UZbtmzhww8/bLOODz/8MPbL+IUXXqjRDj3otddeo6ysDEjsxZv6YN9IVB+bNGlSbGTLU089RWNjY5v1PPzww7HbF1988bE2X5r54IMPuPDCCwkEAmRmZvLGG29w3HHHJfQc4XCYf/zjH7H7iVgjW+LX2fvkggULyMzMBOCRRx6JlT2a+mHP66mZD+qDbTvW6wV9FopIXCyRJDJ//nwLsBwOh/XBBx+02n/XXXdZgAVYP//5z3u/gYNUIBCwzj333Nhzf/PNN3e5jt27d1sff/xxh2UWL15suVwuC7C8Xq9VVFTUzRbL0V566SUrFAq1u//QoUPWiSeeGHuNf//737cqs3XrVstut1uANWvWLKuxsbHF/sbGRmvWrFmxPrxt27aEPw5pcumll8Zer7Vr13ZaXn2wd+3evTv2+lxzzTVxHZOoPvbggw/Gzv2d73yn1f4dO3ZYGRkZFmBNmDChw/eGwaw7r+G6deusrKwsC7BSU1Ot5cuXd/m8b7/9tlVVVdXu/mAwaF1zzTWxtn3pS1/q8jkGi66+hol8n/zZz34WO/ddd93Vav8HH3xgORwOC7DOOOOMeB7OoNOdPthcRUVF7LWaMWNG3MepD3ZPIq4XLEufhSLSucSNzRfpBXfffTennXYaPp+Pc889l5/85CcsXLgQn8/HE088wX333QdEf6W75ZZb+ri1g8dXv/pV3nzzTQDOPPNMrr/+ej777LN2y7tcLiZNmtRi2549e1i4cCFz587lS1/6EieccAIFBQUA7Nq1i2eeeYZnnnkmNurhd7/7XYsRhXJsvve97xEKhbj00kuZO3cuY8aMwev1Ul5ezrvvvsu9994bm4Y3b968NqcYTZo0iR/+8If89re/Zc2aNZx22mn86Ec/Yvz48ezcuZP//d//Zd26dQD88Ic/ZOLEib36GAeTqqoqXn75ZQCmT5/O5z73uU6PUR/sWcuXL2fHjh2x+0f6E0TXnm4+agTg2muvbVVHovrYNddcwz/+8Q9WrFjBX//6Vw4dOsQNN9xAdnY2q1ev5le/+hW1tbXYbDb+9Kc/JXQqZzI71tdw586dnHfeebHkM7/+9a/JzMzs8POyoKAg1g+PeOSRR7jgggu44IILWLBgAZMnTyYjI4P6+nrWrl3LfffdF5sSWlBQwN13392NRzswHetrmMj3yR/+8Ic8+eSTbNu2jVtvvZUdO3bwla98Ba/XyzvvvMOdd95JOBzG6/Xyxz/+8dgf/ACQiPfR5p544gmCwSDQtdGc6oPdk4jrBdBnoYjEoY8DrSJd9tJLL8V+XWvr36RJk6zt27f3dTMHlfZei/b+jR49ulUd77zzTlzHpqSkWPfee2/vP8gBbvTo0XE9/5deemmHoxgikYj1H//xHx3Wcf3111uRSKT3Htwg9Pe//73DkUJtUR/sWc1H98Tzrz2J6mNlZWXW7Nmz263D7XZb999/f6KfhqR2rK/hQw891OXPy7Zmp8TbjhkzZlgbN27shWcmeRzra5jo98nt27dbEydObLeejIwMa/HixT3xVCSlRL2PHnHKKadYgGW3262DBw8mvB3qgy119f2vreuFI/RZKCId0c8SknS+9KUv8emnn3L33XfzyiuvUFRUhMvlYsKECXz5y1/mu9/9LikpKX3dTOmik046iX/+85+sXLmSNWvWcPDgQcrLywmHw2RnZ3Pcccdx1lln8Y1vfKPV6BY5do888gjLli1j5cqV7Nq1i/Lycmpra0lLS2PkyJGceuqpXHPNNcydO7fDemw2Gw8++CCXXnop9913Hx999BHl5eXk5eUxe/ZsvvWtbyUsKY6077HHHgPAbrdz5ZVXxnWM+mBySFQfy8vL44MPPuD+++/n3//+N5s3b6ahoYFhw4Zx1llncfPNNyd83UhJjB/96EfMnDmTlStXsmnTJsrKyqisrMTtdlNYWMisWZjyAVUAAAeQSURBVLO47LLLuPjii7Hb7X3d3AEl0e+TEyZMYN26dfz1r3/l6aefZseOHQSDQUaOHMn555/PzTffzOjRo3vhkQ0+27dvZ9WqVQCcc845DBkyJO5j1Qf7nj4LRaQjhmW1s/q1iIiIiIiIiIiISJJQ1nURERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvQU6BQREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIj0sYcffhjDMDAMgz179vR1c0REREREkpICnSIiIiLdtGfPnliA8lj+iYiIiIjIsVOgU0RERERERERERJKeYVmW1deNEBEREUlGoVCIrVu3trt/xowZAMyaNYuHHnqo3XLTp09PeNtERERERAYbR183QERERCRZOZ3OuIKUqampCmaKiIiIiPQwTV0XERERERERERGRpKdAp4iIiEgf6yzr+oIFCzAMgwULFgCwY8cOvv3tbzNu3Di8Xi9jxozh+uuvZ+/evS2O++yzz7juuusYN24cHo+HkSNHcuONN1JaWhpXu1544QW+/OUvM2rUKDweD1lZWcyaNYtf/vKXVFVVHevDFhERERFJKE1dFxEREUkiS5cu5ZJLLqGuri62be/evfzjH//g5ZdfZtmyZUyZMoXHH3+ca6+9lmAwGCtXVFTEPffcw2uvvcYHH3zAsGHD2jxHVVUVl112GW+//XaL7YFAgLVr17J27Vr+9re/8eKLLzJnzpyeeaAiIiIiIl2kEZ0iIiIiSaK4uJjLL7+crKws/vznP7Nq1Sref/99vv/972MYBqWlpXzjG9/go48+4uqrr2b8+PE88MADrF69mnfeeYerrroKiAZGf/CDH7R5jkAgwNlnn83bb7+N3W7nqquu4vHHH+fDDz/k/fff54477iA3N5fS0lLOP//8VqNIRURERET6ikZ0ioiIiCSJ7du3M3HiRFasWEF+fn5s+7x583A4HPzud79jxYoVLFq0iJNPPpklS5aQkpISK7dgwQL8fj9PP/00zz77LGVlZS3qAbj99tv5+OOPycrKYunSpZx00kkt9s+bN48rr7ySuXPncvDgQX7yk5/wr3/9q2cfuIiIiIhIHDSiU0RERCSJ/OlPf2oVnAS46aabYrfLy8t54IEHWgQ5j7jxxhsBCIfDrFy5ssW++vp6/vrXvwLwq1/9qlWQ84jRo0fzs5/9DICnn36ahoaG7j0YEREREZEEUqBTREREJElkZWVx3nnntblv7NixpKenA3D88cczderUNsudcMIJsdu7du1qsW/ZsmXU1NQAcNlll3XYltNPPx2AUCjE2rVr43sAIiIiIiI9SFPXRURERJLExIkTMQyj3f1ZWVnU1dUxadKkDssc0TyhEcCaNWtit4cOHRp3uw4dOhR3WRERERGRnqIRnSIiIiJJoq2p6M3ZbLZOyx0pAxCJRFrsKy0t7Va7Ghsbu3WciIiIiEgiaUSniIiIiAAtA58ff/wxTqczruNGjBjRU00SEREREYmbAp0iIiIiAkBubm7sdn5+vgKYIiIiIpJUNHVdRERERAA48cQTY7dXrFjRhy0REREREek6BTpFREREBICzzz47tr7nn/70JyzL6uMWiYiIiIjET4FOEREREQGiGdm/+93vAvDBBx/wX//1X5im2W75kpISHnjggd5qnoiIiIhIh7RGp4iIiIjE3H777SxbtoxVq1Zx99138+6773LDDTcwc+ZMUlNTqaqqYuPGjSxdupTXXnuNGTNm8I1vfKOvmy0iIiIiokCniIiIiDRxu90sWbKEa6+9lueee45PPvkkNsqzLRkZGb3YOhERERGR9inQKSIiIiItpKen8+yzz7J8+XIeeeQR3n//fYqLi/H5fGRkZDB+/HhOPvlkFi1axLnnntvXzRURERERAcCwtMq8iIiIiIiIiIiIJDklIxIREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU4RERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvT+f+WvZVe2hlgcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'fitness_function_mutation_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_sequences=6,\n", + " # Track the 6 most represented genomes overall (remaining genotypes are\n", + " # lumped into the \"Other\" category).\n", + " track_specific_sequences=['BADD']\n", + " # Include the initial genome in the graph if it isn't in the top 6.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a heatmap and dendrogram for pathogen genomes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate a heatmap and dendrogram for the top 15 genomes, include the ancestral genome _BADD_ in the phylogeny. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPeCAYAAAARWnkoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6v0lEQVR4nOzdfZxXdZ03/tcMo0MyCAXiDKagSzqChmabN/tDYUUdSswyK6/chFo3UfcGNpUpVwajZvXaDbvWwEtuxL2sxWjZXZdcciOxLF1brbx32/byZmtG1CAZZMaU+f3hxTdH7hkO35nh+fRxHg+/57zP+b7P3DGv+XzOORWdnZ2dAQAAAPa4ynI3AAAAAH2V0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCq7uz85NP37Kk+yqp+5GnlbgEAAIA+qFuhe1Pnpj3VBwAAAPQ53QrdnZ2de6oPAAAA6HO6N9IdoRsAAAC2pZsj3aaXA5RbY2Nj2tvby90GAL1M//7909zcXO42oM/r5jXdRroByq29vT1z584tdxsA9DLTp08vdwuwT+jeSHeMdAMAAMC2GOkGAACAgnRzpFvoBgAAgG0x0g0AAAAF6Wbodk03AAAAbIvp5QAAAFAQ08sBAACgIEI3AAAAFMRzugEAAKAgRroBAACgIEI3AAAAFMTdywEAAKAgRroBAACgIN0L3Ua6AQAAYJu6N73cSDcAAABsk+nlAADs8xobG9Pe3l7uNvaqNWvWZPr06eVuY6/r379/mpuby90G+xDTywEA2Oe1t7dn7ty55W6DvWBf/EMD5WWkGwAAAArimm4AAAAoiOnlAAAAUBDTywEAAKAgppcDAABAQUwvBwAAgIJ0c3r5nmoDAAAA+h7XdAMAAEBBKruzc2cf+W93fPWrX83IkSPTv3//nHjiiXnggQe2W79u3bpcdtllqaurS3V1dY488sjceeedu/XeAAAA9A5GunfD7bffnhkzZuSmm27KiSeemBtuuCFnnXVWnnrqqQwbNmyL+ldffTVnnHFGhg0blm9+85s55JBD8swzz2Tw4MF7v3kAAAD2GqF7N3z5y1/OxRdfnKlTpyZJbrrppnzrW9/K4sWLM3PmzC3qFy9enF/96lf54Q9/mP322y9JMnLkyL3ZMgAAAGXQzenlfWPZFa+++moefPDBTJw4sbSusrIyEydOzH333bfVfe64446cfPLJueyyy3LwwQfnmGOOyZe+9KW8/vrru/juAAAA9CZGupN0dHSko6Ojy7rq6upUV1dvUfviiy/m9ddfz8EHH9xl/cEHH5wnn3xyq8f/r//6r3z3u9/NJz7xidx55535z//8z1x66aX5zW9+k1mzZu25EwEAAKBH6dZI96bOzj6xNDc3Z9CgQV2W5ubmPfUxzqZNmzJs2LDcfPPNOeGEE/Kxj30sn//853PTTTftsfcAAACg5+neSPee6qLMGhsbM2PGjC7rtjbKnSRDhw5Nv3798vzzz3dZ//zzz6e2tnar+9TV1WW//fZLv379SuuOPvrotLa25tVXX83+++/fzTMAAACgJ+reNd2dnX1iqa6uzoEHHthl2Vbo3n///XPCCSdk1apVpXWbNm3KqlWrcvLJJ291n9/7vd/Lf/7nf2bTpt/+meI//uM/UldXJ3ADAAD0Yd2cXt43ll01Y8aMLFiwILfeemueeOKJTJs2LRs2bCjdzfyTn/xkGhsbS/XTpk3Lr371q/zpn/5p/uM//iPf+ta38qUvfSmXXXZZdz78AAAA9HBupLYbPvaxj+WFF17INddck9bW1hx33HFZuXJl6eZqzz77bCorf/v3jEMPPTTf/va3M3369Lz73e/OIYcckj/90z/NVVddVa5TAAAAYC/oVuju3OUHbvUdl19+eS6//PKtblu9evUW604++eTcf//9BXcFAABAT9LNke491QYAAAD0PaaXA1tobGxMe3t7udtgJ61ZsybTp08vdxvsgv79++/RR1MCAD1X96aXy9zQJ7W3t2fu3LnlbgP6LH8kAYB9h+d0AwAAQEFMLwcAAICCmF4OAAAABTHSDQAAAAVxTTcAAAAUpJvTy410AwAAwLZ0c3r5nmoDgH3Jvv4seM9W96xyAPYdbqQGwF7nWfDs6390AGDf4UZqAAAAUBAj3QAAAFAQ13QDAABAQbo30r2nugAAAIA+yDXdAAAAUBDXdAMAAEBBXNMNAAAABTHSDQAAAAVxTTcAAAAUxEh3L9Te3p7+/fuXuw0AAAB2oLI7O2/q7BtLb7Bp06Z84QtfyCGHHJKampr813/9V5LkL/7iL7Jo0aIydwcAAMDWdCt0d3b2jaU3mDNnTpYsWZLrr78++++/f2n9Mccck4ULF5axMwAAALbF9PJe4m//9m9z88035/TTT88ll1xSWj927Ng8+eSTZewMgCI0Njamvb293G0UZs2aNZk+fXq52yhE//7909zcXO42AOghPDKsl/jFL36RUaNGbbF+06ZN+c1vflOGjgAoUnt7e+bOnVvuNtgNffWPCQDsHiPdvcTo0aPz/e9/PyNGjOiy/pvf/GaOP/74MnUFAADA9nQzdEvde8s111yTiy66KL/4xS+yadOmLF++PE899VT+9m//NitWrCh3ewAAAGyF6eW9xAc/+MH88z//c6699toMGDAg11xzTd7znvfkn//5n3PGGWeUuz0AAPYBfeF+E33hnhLuHdG7mF7ei4wbNy7/+q//Wu42AADYR7nfRM/Q2/9osK8RunuJH/3oR9m0aVNOPPHELuv/7d/+Lf369ct73/veMnUGAADAtnhOdy/5w8Fll12W5557bov1v/jFL3LZZZeVoSMAAAB2xEh3L/H444/nPe95zxbrjz/++Dz++ONl6AgAAIAdcSO1XqK6ujrPP/98jjjiiC7rW1paUlXVrU8jAAAABTG9vJf84eDMM89MY2Njfv3rX5fWrVu3Lp/73OfcvRwAAKCHMr28l/irv/qrnHrqqRkxYkSOP/74JMlPfvKTHHzwwfk//+f/lLk7AAAAtkbo7iUOOeSQPPzww/na176Wn/70p3nb296WqVOn5oILLsh+++1X7vYAAADYim6Gbql7bxowYED+6I/+qNxtAAAAsJO6F7o37ak2ep+vfvWr+Z//83+mtbU1Y8eOzd/8zd/kfe973w73W7p0aS644IJ88IMfzD/+4z/u0nv+7Gc/y9133501a9Zk06auH/xrrrlml44FAABA8Uwv3w233357ZsyYkZtuuiknnnhibrjhhpx11ll56qmnMmzYsG3u9/TTT+ezn/1sxo0bt8vvuWDBgkybNi1Dhw5NbW1tKioqStsqKiqEbgD2SY2NjWlvby93G12sWbMm06dPL3cbJf37909zc3O52wDYZwndu+HLX/5yLr744kydOjVJctNNN+Vb3/pWFi9enJkzZ251n9dffz2f+MQnMnv27Hz/+9/PunXrduk958yZky9+8Yu56qqruts+APQZ7e3tmTt3brnb6NF60h8AAPZFHhm2i384ePXVV/Pggw9m4sSJv/0gVlZm4sSJue+++7a537XXXpthw4bl05/+9G59rNeuXZvzzz9/t/YFAACgPIx0J+no6EhHR0eXddXV1amurt6i9sUXX8zrr7+egw8+uMv6gw8+OE8++eRWj3/vvfdm0aJF+clPfrLbPZ5//vm56667cskll+z2MQAAANi7hO4kzc3NmT17dpd1s2bNSlNTU7ePvX79+vzBH/xBFixYkKFDh+72cUaNGpW/+Iu/yP33359jjz12i8eE/cmf/El3W6VgPfG6w23padcjbovrFAEA6OncvTxvhKEZM2Z0Wbe1Ue4kGTp0aPr165fnn3++y/rnn38+tbW1W9T//Oc/z9NPP53JkyeX1m2+83hVVVWeeuqp/M7v/M4Oe7z55ptTU1OTe+65J/fcc0+XbRUVFUJ3L+C6wz2vN/xhAACAfZuR7mx7KvnW7L///jnhhBOyatWqnHvuuUneCNGrVq3K5ZdfvkV9fX19HnnkkS7rrr766qxfvz5f+cpXcuihh+7U+/7f//t/d6oOAACAnkPo3g0zZszIRRddlPe+97153/velxtuuCEbNmwo3c38k5/8ZA455JA0Nzenf//+OeaYY7rsP3jw4CTZYj0AAAB9i9C9Gz72sY/lhRdeyDXXXJPW1tYcd9xxWblyZenmas8++2wqK7t1Y/it+u///u/ccccdefbZZ/Pqq6922fblL395j78fAAAA3SN076bLL798q9PJk2T16tXb3XfJkiW7/H6rVq3KOeeckyOOOCJPPvlkjjnmmDz99NPp7OzMe97znl0+HgAAAMXr3nO6N3X2iaU3aGxszGc/+9k88sgj6d+/f/7+7/8+zz33XE477TTP7wYAAOihuhe6O/vG0hs88cQT+eQnP5nkjbueb9y4MTU1Nbn22mtz3XXXlbk7AAAAtqZ7Fx539pGlFxgwYEDpOu66urr8/Oc/L2178cUXy9UWAAAA2+E53b3ESSedlHvvvTdHH3103v/+9+fP//zP88gjj2T58uU56aSTyt0eAAAAW+FGar3El7/85bS1tSVJZs+enba2ttx+++1517ve5c7lAAAAPZTQ3UscccQRpf8fMGBAbrrppjJ2AwAAwM5wTXcv+cPBEUcckZdeemmL9evWresSyAEAAOg5XNPdSzz99NN5/fXXt1jf0dGRX/ziF2XoiH1RY2Nj2tvby91GyZo1azJ9+vRyt9FF//7909zcXO42AADoIbo5vbyXDBP3YnfccUfp/7/97W9n0KBBpdevv/56Vq1alZEjR5ahM/ZF7e3tmTt3brnb6NF62h8BAAAoL9d093DnnntukqSioiIXXXRRl2377bdfRo4cmb/+678uQ2cAAADsSLdCd0wvL9ymTW98kA8//PD86Ec/ytChQ8vcEQAAADvLSHcv8X//7//dYt26desyePDgvd8MAAAAO8Xdy3vJHw6uu+663H777aXX559/ft7xjnfkkEMOyU9/+tMydgYAAMC2dCt0d27q7BNLb3DTTTfl0EMPTZL867/+a77zne9k5cqVmTRpUq644ooydwcAAMDWmF7eS7S2tpZC94oVK/LRj340Z555ZkaOHJkTTzyxzN0B7HuKfoTe3ngknkfcQd+yNx7tWfTPpr7wc8nngbfq3o3UhO695u1vf3uee+65HHrooVm5cmXmzJmT5I3Htm3t+d0AFKsvPELPI+6gb/FzqWfweeCtujfS7e7le82HP/zh/I//8T/yrne9Ky+99FImTZqUJPnxj3+cUaNGlbk7AAAAtqabI92GuveWuXPnZuTIkXnuuedy/fXXp6amJknS0tKSSy+9tMzdAQAAsDVGunuJ/fbbL5/97Ge3WG/qBwAAQM/lmu4e7I477sikSZOy33775Y477thu7TnnnLOXugIAAGBndfPu5VJ3kc4999y0trZm2LBhOffcc7dZV1FR4WZqAAAAPVD3RrpNLy/Upk2btvr/AAAA9A6e090LbNq0KUuWLMny5cvz9NNPp6KiIkcccUTOO++8/MEf/EEqKirK3SL0Gp6tDPQ0fi4B9G3uXt7DdXZ25pxzzsmdd96ZsWPH5thjj01nZ2eeeOKJTJkyJcuXL88//uM/lrtN6DU8OxPoafxcAujbTC/v4ZYsWZLvfe97WbVqVSZMmNBl23e/+92ce+65+du//dt88pOfLFOHAAAAbEtld3bu7OzsE0tP9nd/93f53Oc+t0XgTpLf//3fz8yZM/O1r32tDJ0BAACwI90K3dnUR5Ye7OGHH05DQ8M2t0+aNCk//elP92JHAAAA7CyPDOvhfvWrX+Xggw/e5vaDDz44a9eu3YsdAQAAsLNc093Dvf7666mq2vanqV+/fnnttdf2YkcAAADsLHcv7+E6OzszZcqUVFdXb3V7R0fHXu4IAACAneU53T3cRRddtMMady4HAADombo5vVzqLtott9xS7hYAAADYTd2cXr6HugAAAIA+qHvTy410AwAAwDYZ6QYAAICCuKYbAAAACtLNu5cL3QAAALAtld3au7OPLLvhq1/9akaOHJn+/fvnxBNPzAMPPLDN2gULFmTcuHF5+9vfnre//e2ZOHHidusBAADoG7oXujd19o1lF91+++2ZMWNGZs2alYceeihjx47NWWedlTVr1my1fvXq1bngggty991357777suhhx6aM888M7/4xS+69eEHAACgZ+vmSHdn31h20Ze//OVcfPHFmTp1akaPHp2bbropBxxwQBYvXrzV+q997Wu59NJLc9xxx6W+vj4LFy7Mpk2bsmrVqm59+AEAAOjZPDJsF7366qt58MEH09jYWFpXWVmZiRMn5r777tupY7zyyiv5zW9+k3e84x1FtQkAAEAP4JFhSTo6OtLR0dFlXXV1daqrq7eoffHFF/P666/n4IMP7rL+4IMPzpNPPrlT73fVVVdl+PDhmThx4u43DQAAQI9nenlnZ5qbmzNo0KAuS3Nz8x76EHf1l3/5l1m6dGn+4R/+If379y/kPQAAAOgZPKc7SWNjY2bMmNFl3dZGuZNk6NCh6devX55//vku659//vnU1tZu933+6q/+Kn/5l3+Z73znO3n3u9/dvaYBAADo8bo10t3Z2dknlurq6hx44IFdlm2F7v333z8nnHBCl5ugbb4p2sknn7zNj9X111+fL3zhC1m5cmXe+973dufDDgAAQC9hpHs3zJgxIxdddFHe+9735n3ve19uuOGGbNiwIVOnTk2SfPKTn8whhxxSmqJ+3XXX5ZprrsnXv/71jBw5Mq2trUmSmpqa1NTUlO08AAAAKFY3b6S2b4buj33sY3nhhRdyzTXXpLW1Nccdd1xWrlxZurnas88+m8rK304imD9/fl599dV85CMf6XKcWbNmpampaW+2DgAAwF5kpHs3XX755bn88su3um316tVdXj/99NPFNwQAAECP073ndO+jI90AAACwM0wvBwAAgIKYXg4AAAAFMdINAAAABXFNNwAAABTE9HIAAAAoiOnlAAAAUBAj3QAAAFAQ13QDAABAQUwvBwAAgIKYXg4AAAAF6eZI96Y91AYAAAD0Pa7pBgAAgIKYXg4AAAAFcSM1AAAAKIhrugEAAKAgrukGAACAgrimGwAAAArimm4AAAAoSDenl7umGwAAALbF9HIAAAAoiLuXAwAAQEHcvRwAAAAKYqQbAAAACtK9kW7XdAMAAMA2eWQYAAAAFMT0cgAAACiIG6kBAABAQYx0AwAAQEG6OdItdAMAAMC2dG+k293LAQAAYJuMdAMAAEBBPDIMAAAACmKkGwAAAApipBsAAAAKYqQbAAAACiJ0AwAAQEEqu7V3Z2ffWHbDV7/61YwcOTL9+/fPiSeemAceeGC79cuWLUt9fX369++fY489NnfeeeduvS8AAAC9R7dCd2fnpj6x7Krbb789M2bMyKxZs/LQQw9l7NixOeuss7JmzZqt1v/whz/MBRdckE9/+tP58Y9/nHPPPTfnnntuHn300e58+AEAAOjhhO7dCN1f/vKXc/HFF2fq1KkZPXp0brrpphxwwAFZvHjxVuu/8pWvpKGhIVdccUWOPvrofOELX8h73vOe3Hjjjd358AMAANDDmV6+i9PLX3311Tz44IOZOHHibz+IlZWZOHFi7rvvvq3uc99993WpT5Kzzjprm/UAAAD0DRWdnbv/3K9jR5y2J3spm3//j7vS0dHRZV11dXWqq6u3qP3lL3+ZQw45JD/84Q9z8sknl9ZfeeWVueeee/Jv//ZvW+yz//7759Zbb80FF1xQWjdv3rzMnj07zz///B48E3ZXX/haHnbOmeVugT7ihIaacrfQbQ+ubCt3C6RvfC3RM3xqzHHlbmGPuOyv7y13C8TPpp7i+g/8ablb2Gu6dffyR565Z0/1UVZNTU2ZPXt2l3WzZs1KU1NTeRoCAACgT+hW6O4rGhsbM2PGjC7rtjbKnSRDhw5Nv379thihfv7551NbW7vVfWpra3epHgAAgL6he9d09xHV1dU58MADuyzbCt37779/TjjhhKxataq0btOmTVm1alWX6eZvdvLJJ3epT5J//dd/3WY9AAAAfYOR7t0wY8aMXHTRRXnve9+b973vfbnhhhuyYcOGTJ06NUnyyU9+Moccckiam5uTJH/6p3+a0047LX/913+dD3zgA1m6dGn+/d//PTfffHM5TwMAAICCCd274WMf+1heeOGFXHPNNWltbc1xxx2XlStX5uCDD06SPPvss6ms/O0kglNOOSVf//rXc/XVV+dzn/tc3vWud+Uf//Efc8wxx5TrFAAAANgLhO7ddPnll+fyyy/f6rbVq1dvse7888/P+eefX3BXAAAA9CSu6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAQI81ZcqUVFRUlJYhQ4akoaEhDz/8cKnmzdvfvCxdujRJsnr16tK6ysrKDBo0KMcff3yuvPLKtLS0dHm/pqamUm1VVVWGDh2aU089NTfccEM6Ojp2uX+hGwAAgB6toaEhLS0taWlpyapVq1JVVZWzzz67S80tt9xSqtm8nHvuuV1qnnrqqfzyl7/Mj370o1x11VX5zne+k2OOOSaPPPJIl7oxY8akpaUlzz77bO6+++6cf/75aW5uzimnnJL169fvUu9Vu3XGAAAAsJdUV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyq2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLdVVVVWVjjV8+PAce+yxOeOMMzJ27Nhcd911mTNnzk73bqQbAACAXqOtrS233XZbRo0alSFDhnTrWG9729tyySWX5Ac/+EHWrFmz3dr6+vpMmjQpy5cv36X3MNINAADAXtXR0bHF9dHV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7bbi/19fVJkqeffjrDhg3bYe1dd9213Zq3Erp7kMbGxrS3t5e7DQAAgEI1Nzdn9uzZXdbNmjUrTU1NW62fMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjkiRz587NxIkTu+w3fPjwHfbS2dmZ5I2bse1M7c7UvZnQ3YO0t7dn7ty55W5jn3Ts8tPK3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBaXrq2tra7vU7KwnnngiSTJy5Midqj388MN36fhCNwAAAHvV9qaS74zNj/7auHFjt/rYuHFjbr755px66qmlG7Jty5NPPpmVK1emsbFxl95D6AYAAKBH6+joSGtra5I3ppffeOONaWtry+TJk0s169atK9VsNnDgwAwYMKD0es2aNWlvb8/69evz4IMP5vrrr8+LL764xc3RXnvttbS2tmbTpk156aWXsnr16syZMyfHHXdcrrjiil3qXegGAACgR1u5cmXq6uqSvBGk6+vrs2zZsowfP75UM3Xq1C32a25uzsyZM0uvjzrqqFRUVKSmpiZHHHFEzjzzzMyYMWOLR4099thjqaurS79+/TJo0KCMHj06jY2NmTZt2i6P0AvdAAAA9FhLlizJkiVLtluz+WZo2zJ+/Pgd1mzW1NS0zRu67Q7P6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCqcjcAPcGwc84sdwvdtuaOu8rdQrf1hc8DPcMJDTXlboE+4sGVbeVugSTJT8rdwB7hZxPsm4x0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9hbGhsb097eXu42tmvNmjXlbgEAAIA9aJ8J3e3t7Zk7d26529iu6dOnl7sFAACAHmXKlCm59dZbS6/f8Y535Hd/93dz/fXX593vfneSpKKiYqv7/t3f/V0+/vGPZ/Xq1ZkwYUKpduDAgTniiCNyxhlnZPr06amrq0uSjBw5Ms8888w2e7nooouyZMmSXep/nwndAAAA9E4NDQ255ZZbkiStra25+uqrc/bZZ+fZZ58t1dxyyy1paGjost/gwYO7vH7qqady4IEH5uWXX85DDz2U66+/PosWLcrq1atz7LHH5kc/+lFef/31JMkPf/jDnHfeeaV9kuRtb3vbLvcudAMAANCjVVdXp7a2NklSW1ubmTNnZty4cXnhhRdy0EEHJXkjYG+u2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLR0reWNE/c377C43UgMAAKDXaGtry2233ZZRo0ZlyJAh3TrW2972tlxyySX5wQ9+UNg9tox0AwAAsFd1dHSko6Ojy7rq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYdtt5f6+vokydNPP51hw4bt8rnsiNDdy/WGu7L3DkPL3QAAAOwzmpubM3v27C7rZs2alaampq3WT5gwIfPnz0+SrF27NvPmzcukSZPywAMPZMSIEUmSuXPnZuLEiV32Gz58+A576ezsTLLtm7F1l9Ddy/WGu7L3Bqf/8RfL3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBZkzZ06SN671fnPNznriiSeSvHHn8iII3QAAAOxV25tKvjMqKipSWVmZjRs3dquPjRs35uabb86pp57a5SZqe5LQDQAAQI/W0dGR1tbWJG9ML7/xxhvT1taWyZMnl2rWrVtXqtls4MCBGTBgQOn1mjVr0t7envXr1+fBBx/M9ddfnxdffDHLly8vrHehGwAAgB5t5cqVqaurS/JGkK6vr8+yZcsyfvz4Us3UqVO32K+5uTkzZ84svT7qqKNSUVGRmpqaHHHEETnzzDMzY8aMHT5qrDuEbgAAAHqsJUuWZMmSJdut2XwztG0ZP378Dmv2xD5b4zndAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKUlXuBoA9Y9g5Z5a7hW5bc8dd5W6h2/rC5+HBlW3lbqHbTmioKXcL9BG+lnqGT405rtwt7BGLH/tJuVsg/p1j7zPSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwN8Fv9+/fP9OnTd2mfNWvWFNQNAAAA3SV09yDNzc27vM+uhnQAAAD2HtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAAHqsKVOmpKKiorQMGTIkDQ0Nefjhh0s1b97+5mXp0qVJktWrV5fWVVZWZtCgQTn++ONz5ZVXpqWlpcv7NTU1dTnGoEGDMm7cuNxzzz271b/QDQAAQI/W0NCQlpaWtLS0ZNWqVamqqsrZZ5/dpeaWW24p1Wxezj333C41Tz31VH75y1/mRz/6Ua666qp85zvfyTHHHJNHHnmkS92YMWNKx7jvvvvyrne9K2effXZ+/etf73LvQjcAAAA9WnV1dWpra1NbW5vjjjsuM2fOzHPPPZcXXnihVDN48OBSzealf//+XY4zbNiw1NbW5sgjj8zHP/7x/OAHP8hBBx2UadOmdamrqqoqHWP06NG59tpr09bWlv/4j//Y5d6FbgAAAHqNtra23HbbbRk1alSGDBnSrWO97W1vyyWXXJIf/OAHWbNmzVZrOjo6csstt2Tw4ME56qijdvk9qrrVIQAAAOyijo6OdHR0dFlXXV2d6urqrdavWLEiNTU1SZINGzakrq4uK1asSGXlb8eRL7jggvTr16/Lfo8//ngOO+yw7fZSX1+fJHn66aczbNiwJMkjjzxSer9XXnklAwcOzO23354DDzxwF87yDUL3PqyxsTHt7e3lbqOHGFruBgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDd9hLZ2dnkjduxrbZUUcdlTvuuCNJsn79+tx+++05//zzc/fdd+e9733vzp3k/yN078Pa29szd+7ccrfRI5z+x18sdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJktra2i41O+uJJ55IkowcObK0bv/99+9yrOOPPz7/+I//mBtuuCG33XbbLh1f6AYAAGCv2t5U8p2x+dFfGzdu7FYfGzduzM0335xTTz01Bx100HZr+/Xrt1vvJ3QDAADQo3V0dKS1tTXJG9PLb7zxxrS1tWXy5MmlmnXr1pVqNhs4cGAGDBhQer1mzZq0t7dn/fr1efDBB3P99dfnxRdfzPLly7vs99prr5WOtXl6+eOPP56rrrpql3sXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bM0uujjjoqFRUVqampyRFHHJEzzzwzM2bMSG1tbZf9HnvssdL7HXDAAfmd3/mdzJ8/P5/85Cd3uXehGwAAgB5ryZIlWbJkyXZrNt8MbVvGjx+/w5rNmpqatnlDt93hOd0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAApSVe4G6J7+/ftn+vTpu7XvmjVr9nA30D3Dzjmz3C1025o77ip3C902ad6Hy90CABTmhIaacrfAPkbo7uWam5t3e9/dDesAAADsHNPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACgx5oyZUoqKipKy5AhQ9LQ0JCHH364VPPm7W9eli5dmiRZvXp1aV1lZWUGDRqU448/PldeeWVaWlq6vN8rr7ySxsbG/M7v/E769++fgw46KKeddlr+6Z/+abf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vU3HLLLaWazcu5557bpeapp57KL3/5y/zoRz/KVVddle985zs55phj8sgjj5RqLrnkkixfvjx/8zd/kyeffDIrV67MRz7ykbz00ku71XvVbu0FAAAAe0l1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZPDgwaWabRk2bFip7sgjj8wHP/jBHH/88Zk2bVruvffeJMkdd9yRr3zlK3n/+9+fJBk5cmROOOGE3e7dSDcAAAC9RltbW2677baMGjUqQ4YM6dax3va2t+WSSy7JD37wg6xZsybJG6H+zjvvzPr16/dEu0a6AQAA2Ls6OjrS0dHRZV11dXWqq6u3Wr9ixYrU1NQkSTZs2JC6urqsWLEilZW/HUe+4IIL0q9fvy77Pf744znssMO220t9fX2S5Omnn86wYcNy88035xOf+ESGDBmSsWPH5v/7//6/fOQjH8nv/d7v7fJ5JkL3Pq1///6ZPn16udvoIYaWuwEAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48B320tnZmeSNm7Elyamnnpr/+q//yv33358f/vCHWbVqVb7yla9k9uzZ+Yu/+ItdOs9E6N6nNTc3l7uFHuP0P/5iuVsAAIB9RmNjY2bMmNFl3bZGuZNkwIABGTVqVOn1woULM2jQoCxYsCBz5sxJ8sa08DfX7KwnnngiyRvXbm+23377Zdy4cRk3blyuuuqqzJkzJ9dee22uuuqq7L///rt0fKEbAACAvWp7U8l3xuZHf23cuLFbfWzcuDE333xzTj311NIN2bZm9OjRee2119Le3i50AwAA0Ld0dHSktbU1yRvTy2+88ca0tbVl8uTJpZp169aVajYbOHBgBgwYUHq9Zs2atLe3Z/369XnwwQdz/fXX58UXX8zy5ctLNePHj88FF1yQ9773vRkyZEgef/zxfO5zn8uECRNy4IEH7nLvezR0NzY2pr29fU8eco/ZfCc6AAAAepeVK1emrq4uyRtBur6+PsuWLcv48eNLNVOnTt1iv+bm5sycObP0+qijjkpFRUVqampyxBFH5Mwzz8yMGTO6PGrsrLPOyq233prPfe5zeeWVVzJ8+PCcffbZueaaa3ar9z0autvb2zN37tw9ecg9xg3DAAAAep8lS5ZkyZIl263ZfDO0bRk/fvwOazZrbGxMY2Pjzra3Q57TDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIFXlbgB6ghMaasrdAkkeXNlW7ha6bdK8D5e7hW77l0uXl7uFbusLnweg7/nUmOPK3QJJFj/2k3K30G2+lnoXI90AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlWxyvvr4+1dXVaW1t3WLb+PHju+x/8MEH5/zzz88zzzyz2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1Sc++992bjxo35yEc+kltvvXWr73XxxRenpaUlv/zlL/NP//RPee6553LhhRfudu9CNwAAAD1adXV1amtrU1tbm+OOOy4zZ87Mc889lxdeeKFUM3jw4FLN5qV///5djrNo0aL8j//xP/IHf/AHWbx48Vbf64ADDkhtbW3q6upy0kkn5fLLL89DDz20271X7faeAAAAsJe1tbXltttuy6hRozJkyJCd3m/9+vVZtmxZ/u3f/i319fX59a9/ne9///sZN27cNvf51a9+lW984xs58cQTd7tfoRsAAIC9qqOjIx0dHV3WVVdXp7q6eqv1K1asSE1NTZJkw4YNqaury4oVK1JZ+dvJ2xdccEH69evXZb/HH388hx12WJJk6dKlede73pUxY8YkST7+8Y9n0aJFW4TuefPmZeHChens7Mwrr7ySI488Mt/+9rd3+1yF7v+nsbEx7e3t5W6DMtlv4shytwAAAPuM5ubmzJ49u8u6WbNmpampaav1EyZMyPz585Mka9euzbx58zJp0qQ88MADGTFiRJJk7ty5mThxYpf9hg8fXvr/xYsXd7k2+8ILL8xpp52Wv/mbv8nAgQNL6z/xiU/k85//fJLk+eefz5e+9KWceeaZefDBB7vU7Syh+/9pb2/P3Llzy90GZXLlt75S7hYAAGCf0djYmBkzZnRZt61R7iQZMGBARo0aVXq9cOHCDBo0KAsWLMicOXOSJLW1tV1q3uzxxx/P/fffnwceeCBXXXVVaf3rr7+epUuX5uKLLy6tGzRoUOk4o0aNyqJFi1JXV5fbb789f/iHf7jL5yp0AwAAsFdtbyr5zqioqEhlZWU2bty4U/WLFi3Kqaeemq9+9atd1t9yyy1ZtGhRl9D9VpunrO/se72V0A0AAECP1tHRUXqu9tq1a3PjjTemra0tkydPLtWsW7dui2dvDxw4MPvvv3/+z//5P7n22mtzzDHHdNn+h3/4h/nyl7+cxx57rHSt9yuvvFI6zvPPP58vfOEL6d+/f84888zd6l3oBgAAoEdbuXJl6urqkrwRpOvr67Ns2bKMHz++VDN16tQt9mtubs673vWuvPTSS/nQhz60xfajjz46Rx99dBYtWpQvf/nLSZIFCxZkwYIFSZK3v/3tefe7350777wzRx111G71LnQDAADQYy1ZsiRLlizZbk1nZ+d2t7/++uvb3Pb444+X/n/16tW70tpOqdxxCQAAALA7hG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRuAnuDBlW3lbqHbTmioKXcL3dYXzqEvmDTvw+Vuodv+5dLl5W6h24adc2a5W6CP8LO151j82E/K3QJJPjXmuHK3wD7GSDcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAIAea8qUKamoqCgtQ4YMSUNDQx5++OFSzZu3v3lZunRpqWbBggUZO3ZsampqMnjw4Bx//PFpbm4ubW9qairtV1VVlaFDh+bUU0/NDTfckI6Ojt3uX+gGAACgR2toaEhLS0taWlqyatWqVFVV5eyzz+5Sc8stt5RqNi/nnntukmTx4sX5sz/7s/zJn/xJfvKTn+QHP/hBrrzyyrS1tXU5xpgxY9LS0pJnn302d999d84///w0NzfnlFNOyfr163er96rd2gsAAAD2kurq6tTW1iZJamtrM3PmzIwbNy4vvPBCDjrooCTJ4MGDSzVvdccdd+SjH/1oPv3pT5fWjRkzZou6qqqq0jGGDx+eY489NmeccUbGjh2b6667LnPmzNnl3o10AwAA0Gu0tbXltttuy6hRozJkyJCd2qe2tjb3339/nnnmmV1+v/r6+kyaNCnLly/f5X0ToRsAAIC9rKOjIy+//HKXZXvXTa9YsSI1NTWpqanJwIEDc8cdd+T2229PZeVvI+0FF1xQqtm8PPvss0mSWbNmZfDgwRk5cmSOOuqoTJkyJd/4xjeyadOmneq3vr4+Tz/99G6dq+nlfVhjY2Pa29vL3UYvMbTcDQAAwD6jubk5s2fP7rJu1qxZaWpq2mr9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkSSZO3duJk6c2GW/4cOHJ0nq6upy33335dFHH833vve9/PCHP8xFF12UhQsXZuXKlV3C+9Z0dnamoqJid05V6O7L2tvbM3fu3HK30Suc/sdfLHcLAACwz2hsbMyMGTO6rKuurt5m/YABAzJq1KjS64ULF2bQoEFZsGBB6Trr2traLjVbc8wxx+SYY47JpZdemksuuSTjxo3LPffckwkTJmx3vyeeeCKHH374jk5rq4RuAAAA9qrq6urthuwdqaioSGVlZTZu3Ljbxxg9enSSZMOGDdute/LJJ7Ny5co0Njbu1vsI3QAAAPRoHR0daW1tTfLG9PIbb7wxbW1tmTx5cqlm3bp1pZrNBg4cmAEDBmTatGkZPnx4fv/3fz/vfOc709LSkjlz5uSggw7KySefXKp/7bXX0tramk2bNuWll17K6tWrM2fOnBx33HG54oordqt3oRsAAIAebeXKlamrq0vyRpCur6/PsmXLMn78+FLN1KlTt9ivubk5M2fOzMSJE7N48eLMnz8/L730UoYOHZqTTz45q1at6nIH9Mceeyx1dXXp169fBg0alNGjR6exsTHTpk3b7ZF5oRsAAIAea8mSJVmyZMl2azo7O7e7/bzzzst555233ZqmpqZt3sitOzwyDAAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gb2lv79+2f69Onb3L5mzZq92A0AAAD7gn0mdDc3N293+/YCOQAAAOwO08sBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKMg+85zuojQ2Nqa9vb3cbWzVmjVryt0CQFkMO+fMcrfQbWvuuKvcLXTbpHkfLncL9BGLH/tJuVsA2G1Cdze1t7dn7ty55W5jq6ZPn17uFgAAAPZpppcDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAECPNWXKlFRUVJSWIUOGpKGhIQ8//HCp5s3b37wsXbo0SbJ69ept1rS2tiZJmpqaSuuqqqoydOjQnHrqqbnhhhvS0dGx2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1S89RTT21RM2zYsNL2MWPGpKWlJc8++2zuvvvunH/++Wlubs4pp5yS9evX71bvVbu1FwAAAOwl1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSZLBgweXarZl2LBhGTx48Da3V1VVlY4xfPjwHHvssTnjjDMyduzYXHfddZkzZ84u926kGwAAgF6jra0tt912W0aNGpUhQ4YU/n719fWZNGlSli9fvlv7G+kGAABgr+ro6NjiOunq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYeVXr/zne/ssn3EiBF57LHHdthvfX197rrrrh3WbY3Q3Yf1798/06dPL3cbvcTQcjcAAAD7jObm5syePbvLulmzZqWpqWmr9RMmTMj8+fOTJGvXrs28efMyadKkPPDAAxkxYkSSZO7cuZk4cWKX/YYPH97l9fe///0MHDiw9Hq//fbbqX47OztTUVGxU7VvJXT3Yc3NzeVuodc4/Y+/WO4WAABgn9HY2JgZM2Z0WbetUe4kGTBgQEaNGlV6vXDhwgwaNCgLFiwoXWddW1vbpWZrDj/88O1e070tTzzxRA4//PBd3i8RugEAANjLtjeVfGdUVFSksrIyGzdu3INdbd2TTz6ZlStXprGxcbf2F7oBAADo0To6OkrP0167dm1uvPHGtLW1ZfLkyaWadevWlWo2GzhwYAYMGFB6vWbNmrS3t3epGTJkSGma+WuvvZbW1tZs2rQpL730UlavXp05c+bkuOOOyxVXXLFbvQvdAAAA9GgrV65MXV1dkjeCdH19fZYtW5bx48eXaqZOnbrFfs3NzZk5c2bp9VFHHbVFzX333ZeTTjopSfLYY4+lrq4u/fr1y6BBgzJ69Og0NjZm2rRpuz0yL3QDAADQYy1ZsiRLlizZbk1nZ+d2t48fP36HNU1NTdu8kVt3eE43AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCVJW7AegJTmioKXcLAF1MmvfhcrfQbf9y6fJyt9Btw845s9wtdFtf+DfuU2OOK3cL0KMsfuwn5W6h264feVq5W9hrjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgnhk2P/Tv3//TJ8+fZf3W7NmTQHdAAAA0BcI3f9Pc3Pzbu23O0EdAACAfYPp5QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlpZoFCxZk7NixqampyeDBg3P88cenubm5tL2pqWmrx6ivr+9W/1Xd2hsAAAAK1tDQkFtuuSVJ0tramquvvjpnn312nn322VLNLbfckoaGhi77DR48OEmyePHi/Nmf/Vn+1//6XznttNPS0dGRhx9+OI8++miX+jFjxuQ73/lOl3VVVd2LzUI3AAAAPVp1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSNwL25pq3uuOOO/LRj340n/70p0vrxowZs0VdVVXVNo+xu0wvBwAAoNdoa2vLbbfdllGjRmXIkCE7tU9tbW3uv//+PPPMMwV3tyWhGwAAgL2qo6MjL7/8cpelo6Njm/UrVqxITU1NampqMnDgwNxxxx25/fbbU1n520h7wQUXlGo2L5unn8+aNSuDBw/OyJEjc9RRR2XKlCn5xje+kU2bNnV5n0ceeWSLY1xyySXdOlfTy8uosbEx7e3t5W6DJPtNHFnuFgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDkyR1dXW577778uijj+Z73/tefvjDH+aiiy7KwoULs3LlylJ4P+qoo3LHHXd0OcaBBx7YrXMVusuovb09c+fOLXcbJLnyW18pdwsAALDPaGxszIwZM7qsq66u3mb9gAEDMmrUqNLrhQsXZtCgQVmwYEHmzJmT5I0p5G+u2ZpjjjkmxxxzTC699NJccsklGTduXO65555MmDAhSbL//vvv8Bi7SugGAABgr6qurt5uyN6RioqKVFZWZuPGjbt9jNGjRydJNmzYsNvH2BlCNwAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+eXKpZt25dqWazgQMHZsCAAZk2bVqGDx+e3//938873/nOtLS0ZM6cOTnooINy8sknl+pfe+21LY5RUVGRgw8+eLd7F7oBAADo0VauXJm6urokbwTp+vr6LFu2LOPHjy/VTJ06dYv9mpubM3PmzEycODGLFy/O/Pnz89JLL2Xo0KE5+eSTs2rVqi53QH/sscdK77NZdXV1t+7FJXQDAADQYy1ZsiRLlizZbk1nZ+d2t5933nk577zztlvT1NS0zRu5dYdHhgEAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRsA9owHV7aVu4VuO6GhptwtAHvQsHPOLHcL3bbmjrvK3UK3PZje/3lIflLuBvaIT405rtwt0Ef4WupdjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBV5W6gt+vfv3+mT5++W/uuWbNmD3cDAABATyJ0d1Nzc/Nu77u7YR0AAIDewfRyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPl2revP3Ny9KlS0s1CxYsyNixY1NTU5PBgwfn+OOPLz2NauTIkds8RkVFRaZMmbLb/XtkGAAAAD1aQ0NDbrnlliRJa2trrr766px99tl59tlnSzW33HJLGhoauuw3ePDgJMnixYvzZ3/2Z/lf/+t/5bTTTktHR0cefvjhPProo0mSH/3oR3n99deTJD/84Q9z3nnn5amnnsqBBx6YJHnb2962270L3QAAAPRo1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSd4I2Jtr3uqOO+7IRz/60Xz6058urRszZkzp/zcfI0ne8Y53JEmGDRtWCu3dYXo5AAAAvUZbW1tuu+22jBo1KkOGDNmpfWpra3P//ffnmWeeKbi7LRnpBgAAYK/q6OhIR0dHl3XV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7LrFmz8uEPfzgjR47MkUcemZNPPjnvf//785GPfKTLMYogdO/DGhsb097eXu42eoT9Jo4sdwsAALDPaG5uzuzZs7usmzVrVpqamrZaP2HChMyfPz9Jsnbt2sybNy+TJk3KAw88kBEjRiRJ5s6dm4kTJ3bZb/jw4UmSurq63HfffXn00Ufzve99Lz/84Q9z0UUXZeHChVm5cmWhwVvo3oe1t7dn7ty55W6jR7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3phC/uaarTnmmGNyzDHH5NJLL80ll1yScePG5Z577smECRO6cTbbJ3QDAACwV21vKvnOqKioSGVlZTZu3Ljbxxg9enSSN6arF0noBgAAoEfr6OhIa2trkjeml994441pa2vL5MmTSzXr1q0r1Ww2cODADBgwINOmTcvw4cPz+7//+3nnO9+ZlpaWzJkzJwcddFBOPvnkQnsXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bMTJw4MYsXL878+fPz0ksvZejQoTn55JOzatWqnb4D+u4SugEAAOixlixZkiVLlmy3prOzc7vbzzvvvJx33nk79X7jx4/f4fF2hed0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9iX9e/fP9OnTy/b+69Zs6Zs7w1QpBMaasrdAukbn4cHc2a5W+i2NXfcVe4Wuq/hw+XuAGC3Cd1l1NzcXNb3L2fgBwAA2BeYXg4AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAAD3WlClTUlFRUVqGDBmShoaGPPzww6WaN29/87J06dIt9n/rMnLkyO1ur6ioyNNPP73b/QvdAAAA9GgNDQ1paWlJS0tLVq1alaqqqpx99tldam655ZZSzebl3HPPzVe+8pUu695a+/3vf7/L9pNPPjkXX3xxl3WHHnrobvde1a0zBwAAgIJVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyqebP+/ftn0KBBXdZtqzZJ9t9//xxwwAHb3L6rjHQDAADQa7S1teW2227LqFGjMmTIkHK3s0NGugEAANirOjo60tHR0WVddXV1qqurt1q/YsWK1NTUJEk2bNiQurq6rFixIpWVvx1HvuCCC9KvX78u+z3++OM57LDD9nD3u0bo3of1798/06dPL3cbPcJ+E0eWuwUAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48D3f/C4Suvdhzc3N5W6hx7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3rjW+801PYXQDQAAwF61vankO6OioiKVlZXZuHHjHuyqGEI3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT55cqlm3bl2pZrOBAwdmwIABe7XXtxK6AQAA6NFWrlyZurq6JG8E6fr6+ixbtizjx48v1UydOnWL/ZqbmzNz5sy91eZWCd0AAAD0WEuWLMmSJUu2W9PZ2bnTx9tR7erVq3f6WDvDc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwNQE/wqTHHlbuFPeAn5W6g2/rG5wH2jMWP/aTcLXRb3/ie/km5G+i+hg+Xu4Nu+5dLl5e7hT1jXrkb6L6+8H3dF36+9gXXjzyt3C3sNUa6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAgB5rypQpqaioKC1DhgxJQ0NDHn744S1qP/OZz6Rfv35ZtmzZFtuampq6HGfzUl9fn6effnqr2968LFmyZLf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vUvPLKK1m6dGmuvPLKLF68eKvHGTNmTOk4m5d77703hx56aJd1f/7nf75F7cc+9rHd6r1qt/YCAACAvaS6ujq1tbVJktra2sycOTPjxo3LCy+8kIMOOihJsmzZsowePTozZ87M8OHD89xzz+XQQw/tcpyqqqrScd7qzetramq2W7srjHQDAACwV3V0dOTll1/usnR0dOzUvm1tbbntttsyatSoDBkypLR+0aJFufDCCzNo0KBMmjRpt6eD72k9bqS7sbEx7e3t5W6Dfcxn/vTccrcAAAD7jObm5syePbvLulmzZqWpqWmr9StWrEhNTU2SZMOGDamrq8uKFStSWfnGOPLPfvaz3H///Vm+fHmS5MILL8yMGTNy9dVXp6KionScRx55pHSczS688MLcdNNNe+rUttDjQnd7e3vmzp1b7jbYxzz59D3lbgEAAPYZjY2NmTFjRpd11dXV26yfMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjsnjx4px11lkZOnRokuT9739/Pv3pT+e73/1uTj/99NJxjjrqqNxxxx1djn3ggQfuqdPaqh4XugEAAOjbqqurtxuy32rAgAEZNWpU6fXChQszaNCgLFiwILNnz86tt96a1tbWVFX9NuK+/vrrWbx4cZfQvf/++3c5zt4gdAMAANCrVFRUpLKyMhs3bsydd96Z9evX58c//nH69etXqnn00UczderUrFu3LoMHDy5br0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnutdJzNKioqcvDBBxfWu9ANAABAj7Zy5crU1dUlSQYOHJj6+vosW7YsRx99dL71rW/l61//+hb7VFZW5kMf+lAWLVpUCt2PPfZY6TibVVdXF3ozb6EbAACAHmvJkiXbffzXb37zm21umzdvXun/m5qatnl39Lfaldod8ZxuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFqSp3A9ATXPbX95a7hW47oaGm3C102+LHflLuFkjyqTHHlbuFbvO1xJ7SF74f+oR55W5gz/iXS5eXu4Vue/CctnK3QF/xgXI3sPcY6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAANBjTZkyJRUVFaVlyJAhaWhoyMMPP7xF7Wc+85n069cvy5Yt22JbU1NT6RhVVVUZOnRoTj311Nxwww3p6OjoUjt+/PhSbXV1dQ455JBMnjw5y5cv3+X+hW4AAAB6tIaGhrS0tKSlpSWrVq1KVVVVzj777C41r7zySpYuXZorr7wyixcv3upxxowZk5aWljz77LO5++67c/7556e5uTmnnHJK1q9f36X24osvTktLS37+85/n7//+7zN69Oh8/OMfzx/90R/tUu9Vu3aqAAAAsHdVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSZYtW5bRo0dn5syZGT58eJ577rkceuihXY5TVVVVOs7w4cNz7LHH5owzzsjYsWNz3XXXZc6cOaXaAw44oFT7zne+MyeddFLq6+vzqU99Kh/96EczceLEnerdSDcAAAB7VUdHR15++eUuy1uneG9LW1tbbrvttowaNSpDhgwprV+0aFEuvPDCDBo0KJMmTcqSJUt26nj19fWZNGnSTk0dv+iii/L2t799l6aZG+nuwxobG9Pe3l7uNnqJoeVuAAAA9hnNzc2ZPXt2l3WzZs1KU1PTVutXrFiRmpqaJMmGDRtSV1eXFStWpLLyjXHkn/3sZ7n//vtLYfjCCy/MjBkzcvXVV6eiomKH/dTX1+euu+7aYV1lZWWOPPLIPP300zus3Uzo7sPa29szd+7ccrfRK5z+x18sdwsAALDPaGxszIwZM7qsq66u3mb9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkcWLF+ess87K0KFvDKa9//3vz6c//el897vfzemnn77Dfjo7O3cqnO9qbSJ0AwAAsJdVV1dvN2S/1YABAzJq1KjS64ULF2bQoEFZsGBBZs+enVtvvTWtra2pqvptxH399dezePHinQrdTzzxRA4//PAd1r3++uv52c9+lt/93d/d6d6FbgAAAHqVioqKVFZWZuPGjbnzzjuzfv36/PjHP06/fv1KNY8++mimTp2adevWZfDgwds81pNPPpmVK1emsbFxh+976623Zu3atTnvvPN2ulehGwAAgB6to6Mjra2tSd6YXn7jjTemra0tkydPzg033JAPfOADGTt2bJd9Ro8enenTp+drX/taLrvssiTJa6+9ltbW1mzatCkvvfRSVq9enTlz5uS4447LFVdc0WX/V155Ja2trXnttdfy3//93/mHf/iHzJ07N9OmTcuECRN2unehGwAAgB5t5cqVqaurS5IMHDgw9fX1WbZsWY4++uh861vfyte//vUt9qmsrMyHPvShLFq0qBS6H3vssdTV1aVfv34ZNGhQRo8encbGxkybNm2L6e4LFizIggULsv/++2fIkCE54YQTcvvtt+dDH/rQLvUudAMAANBjLVmyZLuP//rNb36zzW3z5s0r/X9TU9M2747+VqtXr97J7nbMc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKskfvXt6/f/9Mnz69W8dYs2bNHuoGAAAAymuPhu7m5uZuH6O7oR0AAAB6CtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIJUlbuBvqaxsTHt7e3lbiNJsmbNmnK3AADQbZ8ac1y5W9gjHjynrdwtdNuaO+4qdwvdNmneh8vdAvsYoXsPa29vz9y5c8vdRpJk+vTp5W4BAABgn2Z6OQAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPZ8mSJV22bW15+umn09TUVHpdVVWVoUOH5tRTT80NN9yQjo6OLu83fvz4Um11dXUOOeSQTJ48OcuXL9+t/oVuAAAAerSGhoa0tLSkpaUlq1atSlVVVc4+++x87GMfK61vaWnJySefnIsvvrjLukMPPTRJMmbMmLS0tOTZZ5/N3XffnfPPPz/Nzc055ZRTsn79+i7vt/kYP//5z/P3f//3GT16dD7+8Y/nj/7oj3a596o98hEAAACAglRXV6e2tjZJUltbm5kzZ2bcuHFpa2srrU+S/fffPwcccECXdZtVVVWV1g8fPjzHHntszjjjjIwdOzbXXXdd5syZU6p98zHe+c535qSTTkp9fX0+9alP5aMf/WgmTpy4070b6QYAAGCv6ujoyMsvv9xlees0721pa2vLbbfdllGjRmXIkCHd6qO+vj6TJk3aqanjF110Ud7+9rfv8jRzI919WP/+/TN9+vRyt9FLDC13AwAAsM9obm7O7Nmzu6ybNWtWmpqatlq/YsWK1NTUJEk2bNiQurq6rFixIpWV3R9Hrq+vz1133bXDusrKyhx55JF5+umnd+n4Qncf1tzcXO4Weo3T//iL5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7rVS2dnZyoqKvZ47WamlwMAALBXVVdX58ADD+yybC90DxgwIKNGjcqoUaPyu7/7u1m4cGE2bNiQBQsWdLuXJ554IocffvgO615//fX87Gc/26naNxO6AQAA6FUqKipSWVmZjRs3dus4Tz75ZFauXJnzzjtvh7W33npr1q5du1O1b2Z6OQAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+evNPHeO2119La2ppNmzblpZdeyurVqzNnzpwcd9xxueKKK7rUvvLKK2ltbc1rr72W//7v/84//MM/ZO7cuZk2bVomTJiwS70L3QAAAPRoK1euTF1dXZJk4MCBqa+vz7JlyzJ+/PidPsZjjz2Wurq69OvXL4MGDcro0aPT2NiYadOmbTG1fcGCBVmwYEH233//DBkyJCeccEJuv/32fOhDH9rl3oVuAAAAeqwlS5ZkyZIlO1W7evXqra5vamra5p3Rd/YYu8s13QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gbeqn///pk+fXq529hta9asKXcL7IYTGmrK3QJJHlzZVu4Wuq0vfC0tfuwn5W6h2z415rhytwDsQX3h51JfMWneh8vdQrf9y6XLy91Ctw0758xyt9B9Hyh3A3tPjwvdzc3N5W6hW3rzHwwAAADYs0wvBwAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAACAHmvKlCmpqKgoLUOGDElDQ0MefvjhLWo/85nPpF+/flm2bNkW25qamkrHqKqqytChQ3PqqafmhhtuSEdHR5fa8ePHd3nPgw8+OOeff36eeeaZXe5f6AYAAKBHa2hoSEtLS1paWrJq1apUVVXl7LPP7lLzyiuvZOnSpbnyyiuzePHirR5nzJgxaWlpybPPPpu77747559/fpqbm3PKKadk/fr1XWovvvjitLS05Je//GX+6Z/+Kc8991wuvPDCXe5d6AYAAKBHq66uTm1tbWpra3Pcccdl5syZee655/LCCy+UapYtW5bRo0dn5syZ+d73vpfnnntui+NUVVWltrY2w4cPz7HHHps//uM/zj333JNHH3001113XZfaAw44ILW1tamrq8tJJ52Uyy+/PA899NAu9y50AwAAsFd1dHTk5Zdf7rK8dYr3trS1teW2227LqFGjMmTIkNL6RYsW5cILL8ygQYMyadKkLFmyZKeOV19fn0mTJmX58uXbrPnVr36Vb3zjGznxxBN36phvVrXLe9BrNDY2pr29vdxt9Ar7TRxZ7hYAAGCf0dzcnNmzZ3dZN2vWrDQ1NW21fsWKFampqUmSbNiwIXV1dVmxYkUqK98YR/7Zz36W+++/vxScL7zwwsyYMSNXX311KioqdthPfX197rrrri7r5s2bl4ULF6azszOvvPJKjjzyyHz729/e1VMVuvuy9vb2zJ07t9xt9ApXfusr5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7J48eKcddZZGTp0aJLk/e9/fz796U/nu9/9bk4//fQd9tPZ2blFOP/EJz6Rz3/+80mS559/Pl/60pdy5pln5sEHH8zAgQN3+lyFbgAAAPaq6urq7YbstxowYEBGjRpVer1w4cIMGjQoCxYsyOzZs3PrrbemtbU1VVW/jbivv/56Fi9evFOh+4knnsjhhx/eZd2gQYNK7zlq1KgsWrQodXV1uf322/OHf/iHO9270A0AAECvUlFRkcrKymzcuDF33nln1q9fnx//+Mfp169fqebRRx/N1KlTs27dugwePHibx3ryySezcuXKNDY2bvc9Nx9748aNu9Sr0A0AAECP1tHRkdbW1iRvTC+/8cYb09bWlsmTJ+eGG27IBz7wgYwdO7bLPqNHj8706dPzta99LZdddlmS5LXXXktra2s2bdqUl156KatXr86cOXNy3HHH5Yorruiy/yuvvFJ6z+effz5f+MIX0r9//5x55pm71LvQDQAAQI+2cuXK1NXVJUkGDhyY+vr6LFu2LEcffXS+9a1v5etf//oW+1RWVuZDH/pQFi1aVArdjz32WOrq6tKvX78MGjQoo0ePTmNjY6ZNm7bFdPcFCxZkwYIFSZK3v/3tefe7350777wzRx111C71LnQDAADQYy1ZsmS7j//6zW9+s81t8+bNK/1/U1PTNu+O/larV6/eye52zHO6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUpKrcDfQ1/fv3z/Tp08vdRpJkzZo15W4BdskJDTXlboEknxpzXLlboI9Y/NhPyt1Ct/l+gL5n2DlnlruFbltzx13lbqH7/ubz5e5grxG697Dm5uZyt1DSU8I/AADAvsr0cgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAA6LGmTJmSioqK0jJkyJA0NDTk4Ycf3qL2M5/5TPr165dly5Ztsa2pqal0jKqqqgwdOjSnnnpqbrjhhnR0dHSpHT9+fJf33Lxccsklu9y/0A0AAECP1tDQkJaWlrS0tGTVqlWpqqrK2Wef3aXmlVdeydKlS3PllVdm8eLFWz3OmDFj0tLSkmeffTZ33313zj///DQ3N+eUU07J+vXru9RefPHFpffcvFx//fW73HvVLu8BAAAAe1F1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZNmyZRk9enRmzpyZ4cOH57nnnsuhhx7a5ThVVVWl4wwfPjzHHntszjjjjIwdOzbXXXdd5syZU6o94IADSrXdYaQbAACAvaqjoyMvv/xyl+WtU7y3pa2tLbfddltGjRqVIUOGlNYvWrQoF154YQYNGpRJkyZlyZIlO3W8+vr6TJo0KcuXL9+dU9khI919WP/+/TN9+vRyt9Er7DdxZLlbAACAfUZzc3Nmz57dZd2sWbPS1NS01foVK1akpqYmSbJhw4bU1dVlxYoVqax8Yxz5Zz/7We6///5ScL7wwgszY8aMXH311amoqNhhP/X19bnrrru6rJs3b14WLlzYZd3//t//O5/4xCd26hw3E7r7sObm5nK30Gtc+a2vlLsFAADYZzQ2NmbGjBld1lVXV2+zfsKECZk/f36SZO3atZk3b14mTZqUBx54ICNGjMjixYtz1llnZejQoUmS97///fn0pz+d7373uzn99NN32E9nZ+cW4fwTn/hEPv/5z3dZd/DBB+/U+b2Z0A0AAMBeVV1dvd2Q/VYDBgzIqFGjSq8XLlyYQYMGZcGCBZk9e3ZuvfXWtLa2pqrqtxH39ddfz+LFi3cqdD/xxBM5/PDDu6wbNGhQl/fcXUI3AAAAvUpFRUUqKyuzcePG3HnnnVm/fn1+/OMfp1+/fqWaRx99NFOnTs26desyePDgbR7rySefzMqVK9PY2FhIr0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnstra2t2bRpU1566aWsXr06c+bMyXHHHZcrrriiy/6vvPJK6T03q66uztvf/vZd6t3dywEAAOjRVq5cmbq6utTV1eXEE0/Mj370oyxbtixHH310vvWtb+W8887bYp/Kysp86EMfyqJFi0rrHnvssdTV1eWwww7L+PHj841vfCONjY35/ve/X7pR22YLFiwovefm5YILLtjl3is6Ozs7d/2UoW9xIzX4rU+NOa7cLdBHLH7sJ+Vuodt8P/QMfeFrKUkeXNlW7ha67YSGmh0X9XB94fOw5o67dlzUwz3yzD3lbmGvMdINAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAonUDh2tvbO2fNmtXZ3t5e7lZ2m3PoGZxDz+Acegbn0DM4h57BOfQMzoGtqejs7Owsd/CHvu7ll1/OoEGD8utf/zoHHnhgudvZLc6hZ3AOPYNz6BmcQ8/gHHoG59AzOAe2xvRyAAAAKIjQDQAAAAURugEAAKAgQjfsBdXV1Zk1a1aqq6vL3cpucw49g3PoGZxDz+Acegbn0DM4h57BObA1bqQGAAAABTHSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAADslGeffTbuwQuwa4RuYAuf+tSnsn79+nK3wTa89tpraWtrK3cbwC7qCz9bDz/88LzwwgvlbqNb/vZv/zYdHR3lbgPYhwjdUIANGzbkmmuuyTHHHJOampoMHDgw7373u3PttdfmlVdeKXd7O3Trrbdm48aN5W6j29avX58HH3ywFFAfeuihfPKTn8z555+fr33ta2Xubsf++Z//OUuWLOmy7otf/GJqamoyePDgnHnmmVm7dm15muuGDRs2ZPHixfnqV7+an/3sZ+VuZ6f09u/ppPefw+jRo/OrX/2q9PrSSy/Niy++WHq9Zs2aHHDAAeVobaf1hZ+tfWGUe+rUqfn1r39d7jb2iO9+97u5/PLLc/bZZ2fy5Mn5kz/5k3zve98rd1u7pC+cw5v1xn/jLr300i5/zP+7v/u7bNiwofR63bp1ef/731+O1vqOTmCP6ujo6DzhhBM6q6urO88999zOmTNndl511VWd55xzTuf+++/fedJJJ3W++uqr5W5zuyoqKjqff/75crfRLffcc0/nwIEDOysqKjrf8Y53dH7729/uHDhwYGd9fX3nmDFjOisrKztvvvnmcre5XePHj++88cYbS69/8IMfdFZWVnbOmTOn8+///u876+vrO6dPn17GDnfsmWee6Tz11FM7a2pqOidOnNj5zDPPdB555JGdFRUVnRUVFZ0HHHBA5z333FPuNrerL3xP94VzeOvPpYEDB3b+/Oc/L71ubW3trKioKEdrO60v/GytqKjoXLNmTbnb6Ja+8Hno7Ozs/MxnPlP6N+6kk07qPPHEEzvf8Y53dFZWVnZefvnl5W5vp/T2c+gL/8Z1dnZ2VlZW7vDna2VlZTla6zOqyh36oa+ZP39+/vu//zs//elPc9RRR3XZ9uSTT2b8+PG56aab8sd//Mdl6nDnrF+/Pv37999uzYEHHriXutl1V199dc4///xce+21Wbx4cT72sY/l8ssvz5e+9KUkyZw5c/LVr341F198cZk73bbHHnssX/7yl0uvv/nNb+aMM87I5z//+SRJ//7986d/+qddanqaz372s3n11Vdz00035Rvf+EbOOuusvOtd78r3vve9VFZWZtq0aWlqasp3v/vdcre6TX3he7ovnMNbdW5lxLWioqIMneya3v6zNUn+4i/+YoezCnryz6Wkd3ytbM8//MM/5JZbbsnixYtz0UUXlc5n06ZNWbJkSaZNm5Yzzjgj55xzTpk73ba+cA594d+4ZMufp1v7+Ur3VHT6qMIeddppp+WjH/1oLrvssq1u/5u/+Zt885vfzD333LOXO9t5lZWV2/2FpLOzMxUVFXn99df3Yle7ZvDgwbn//vtTX1+fV199NW9729vy0EMPZezYsUmS//zP/8zxxx/fo6+vfNvb3pannnoqhx12WJLkfe97X84///xcccUVSZJnnnkmo0eP7jIFrKepra3NHXfckfe973351a9+laFDh+YHP/hBTj755CTJT3/605x++uldpgn3NH3he7ovnENlZWVaW1szbNiwJMnAgQPz05/+NEcccUSS5Pnnn8/w4cN79M+lvvCztbKyMieffHL233//bdZUVFT06JBRWVmZY445JlVV2x97euihh/ZSR7vunHPOyZgxY9Lc3LzV7VdddVWefPLJ/NM//dNe7mzn9YVz6Av/xiV94+drT2ekG/awxx9/POPHj9/m9gkTJuTaa6/dew3tpm9+85t5xzveUe42dtvLL79c6n///ffPAQcckIEDB5a2Dxw4sMdfx3rIIYfkiSeeyGGHHZa2trb89Kc/zdy5c0vbX3rppR5/DeuaNWsyYsSIJMk73vGOHHDAATn44INL22tra3v8del94Xu6L5xDRUXFFoG1N45W9vafrckbI5Sbfznvrc4666zU1NSUu43d9tBDD+Xqq6/e5vYPf/jDOe+88/ZiR7uuL5xDX/g3jr1D6IY9bN26dRkyZMg2tw8ZMqRX3MDl937v93r1L1Vv/QV9a7+w93Tnn39+/uzP/iyf+9zncuedd6a2tjYnnXRSafu///u/bzFVuCd66+eht+kL39N94Rw6Oztz+umnl0YnN27cmMmTJ5dGXF977bVytrfTevvP1r7iiiuu6NWfhxdffDHvfOc7t7n9ne98Z1566aW92NGu6wvnkPT+f+M2u+aaa0p/yH/11VfzxS9+MYMGDUqSHj9I0RsI3bCHbdq0Kf369dvm9srKStNz9oK3/oL+yiuv9Lpf0K+55pr84he/yJ/8yZ+ktrY2t912W5evrb/7u7/L5MmTy9jhzunt/5D3he/pvnAOs2bN6vL6gx/84BY1PX1UjJ6hNwejzV599dXst99+29xeVVWVV199dS92tOv6wjkkvf/fuCQ59dRT89RTT5Ven3LKKfmv//qvLWrYfa7phj1sR9eKvfbaa3nsscd69C+4hx9+eP793/99uyNjPd3s2bN3qu6tv8izZ40fP36nfsG9++6790I3u6cvfE/3hXPoC/rCz9bDDz889957bw455JByt7Lb3nr9am9UWVmZP/qjP9rmJUavvPJKFixY0KO/p/vCOfSFf+PYO4Ru2MP6Wth78cUX8/TTT6eioiIjR47s1b8s9mY+D+XTF76n+8I5bMs999yTDRs25OSTT87b3/72crezW3rTOfTr1y8tLS29OrA+88wzOeyww3r1iHdfCHt94RxgZwndwFY99thjmTZtWn7wgx90WX/aaadl/vz5veJa4s16c2Dd3udh3rx5qa+vL1Nne8YTTzyRRYsW5a/+6q/K3Qo93HXXXZe2trZ84QtfSPLGJSSTJk3KXXfdlSQZNmxYVq1alTFjxpSzze3qC+fQF0aJR48enXvvvbd0Q7tLL7001157bYYOHZrkjZtjjRw5stdMDYY9YcOGDbnuuuuyfPny0u9Mhx9+eD7ykY/ks5/9bI+/cWtPJ3RDgXpr2Gttbc0xxxyTgw46KJdccknq6+vT2dmZxx9/PAsWLMhLL72URx99tMf/0tXb/3DQVz4Pb7Vhw4YsXbo0ixYtyv3335/Ro0fn0UcfLXdbu6w3jU6uWbNmu18nr732Wh566KG8733v24td7Zr3vOc9ueqqq/Kxj30sSbJs2bJcdNFF+dd//dccffTR+eQnP5kDDjgg3/jGN8rc6bb1hXOorKzMrbfeWrpmdVt68rOV3/qHgwMPPDA/+clPujweqa6uLps2bSpnm/QSfSGsvvrqqznllFPy6KOPZtKkSaXfN5544omsXLky73nPe/K9731vu9fgswOdwB736KOPdo4bN66zsrKyyzJhwoTOJ598stzt7dCVV17Z+Z73vKdz48aNW2x75ZVXOt/znvd0zpw5swyd7byWlpbOIUOGdNbX13fecMMNnStXruz8l3/5l86//uu/7qyvr+886KCDOp9//vlyt7ldfeHz8Gb33ntv59SpUzsHDBjQWVlZ2fnnf/7nnU888US529qhv/zLv+y8+uqrS683bdrUedZZZ3VWVFR0VlRUdB588MGdjz76aBk73LHKysouX+/HHHNM57PPPlt63dra2llZWVmO1nba4MGDOx9//PHS6ylTpnT+wR/8Qen1fffd9/+3d+8xVdZ/HMDf5xzkIrccOBDamN1gKDnAJtbC7nhEAkpjNIzINRrlllsKrbFmly3basxprgiwmBcIrUEXWQuS4cJBKzQvg2IpkuHUEA5yCfj+/nCc/Q5yOdLhPM/z8f3aWn57zh+fT99zjt/3c57n+arbb79di9KcJqGH8ff9dP/o/b1kMpkcPg9+fn7qjz/+sI+N8HlQSimbzaYKCwvVkiVLlK+vr/Lz81MxMTFq27Ztqr+/X+vynGL0HoaGhlR8fLzy8vJSaWlpqqCgQOXn56snn3xSeXp6qoSEBDU8PKx1mTMqKipSISEhk65RT58+rUJCQtSOHTs0qEwOhm4iF5MQ9mJjY1VFRcWUx/fv369iY2PdWNHNkxBYJcxDd3e32r59u4qMjFShoaFq8+bNqrm5WXl4eKiTJ09qXZ5TYmNj1YEDB+zjyspK5ePjoxobG9Xly5dVcnKyWr9+vYYVzsyZkGEymbQozWkTa46MjFS7d++2j8+ePau8vb21KM1pEnqY+F4yIgmhW0LYk9CDlLCamJiodu7cOeXxHTt2qMTERDdWJA9DN5GLSQh7gYGBqr29fcrj7e3tKjAw0H0FzYKEwCphHry9vVVWVpY6fPiwGh0dtf93I4VuKb9OGj1kLFu2TJWVlSmlrodTk8nk8B46evSoCg8P16g650joYeJVE0ZkNpvVxYsX7WM/Pz/V0dFhHxvh8yAh7EnoQUpYDQ4OnvaKrRMnTqjg4GA3ViSPWevL24mk+f7775Gfnw9vb+8bjvn4+GDLli2ora3VoDLn9fX1ISAgYMrj/v7+sNlsbqzo5nV0dCAuLm7K48uXL79hD0q9kTAPERERaGxsRENDA9ra2rQuZ1ZGRkbg5eVlH//000+4//777eOwsDBcunRJi9JuKS+//DJeeeUVbNy4EVarFStXrkR0dLT9eF1dHWJjYzWscGYSelACHgWklMKjjz6KuLg4xMXFYWBgACkpKfbx448/rnWJMzp06BAKCwsnfTZJVFQU3njjDVRVVWlQmfMk9HDq1Ck89NBDUx5/+OGHcerUKfcVNEs9PT3TPncoKCgIV69edWNF8ky+YScRzZqEsAdcD3yTnTgAgN7eXt0vvCQEVsD483DmzBkcPXoUJSUluO+++3DPPfcgKysLAAyzXc+dd96JhoYG3HHHHTh37hza2tqQmJhoP37+/HndPyTRZDLZ30tKKZhMJthsNvT29gKA/d969uKLL8JisaCmpgaJiYk3bG/2119/IScnR6PqnCOhh+zsbPj4+Ghdxn8y8f97amrqDa95+umn3VXOrDgT9t566y33FTQLEnqQElbHxsZgsVimPG42m3W9X7oR8OnlRC420x6m3d3dCA8Px8jIiJsrc57ZbJ42EI0v2vX8BWyxWNDW1oaFCxdOery7uxtRUVG67kHCPPw/m82G/fv3o6ysDE1NTVi1ahWeffZZpKWlTTlPelBcXIzNmzcjIyMDTU1NuO222xyeiP/OO+/g2LFjqKmp0bDK6U18L42/dyaOjfJeIu1UVlYiLS0Nnp6eAK6fdAoLC4PZfP3iyWvXrmHnzp3YunWrlmWKN2/ePHR2diI0NHTS4xcuXEBERASGh4fdXJnzJPRgsVjw999/T7vWCAsL0/13q9lsxtKlS+HhMfnvsSMjIzh58qTu+9Azhm4iF5MQ9o4cOeLU61atWjXHlcyehMAqYR6mMr4/d3l5Oa5cuYJ///1X65KmVVpaipqaGoSGhuLNN990WCTm5eXhsccew1NPPaVhhdOT8F6SEPYk9DDxxPJk220ZIWRMpbe3F3v37kVJSQlaWlq0LmdKEsKehB6khNVt27Y59bqJV4mQ8xi6iVxMQtiTQELIuBWMjIygurpa14GV9EFC2JPQw8Q9rv39/dHa2mqoHiZTX1+P0tJSHDp0CIGBgUhPT8euXbu0LmtKEsKehB4YVslZvKebyMXq6+u1LuE/k/BrjIQwLWEeZupheHgYv//+u5YlzuhWmAcj9DDxNwIj/mYgoQdJurq6sGfPHpSVlaGnpwf//PMP9u3bh2eeeUb3z5xwJsTp/b70W6UHozPK1R+659ZnpRORIUzcEsbf399w2wtVVFSooaEh+7izs9Nhy6r+/n61fft2LUpzmoR5YA/6IKEHCduesQd9qKqqUlarVfn6+qp169apr776Sg0NDRlqK0MJzp496/D3sjRXr15VH330kYqPj9e6lFmpq6tTWVlZav78+WrRokUqLy9P65IMjVuGEblYZWWlw0M/zp8/j7GxMfv42rVreP/997UozWlKwK8xmZmZ6OnpsY+jo6Px559/2sd9fX14/fXX3V/YTZAwD+xBHyT0QPpRW1uL6upqVFdXY2xsDD/88IN9rPctMQEgIyMDsbGxuHDhAr744gukpqbarwKRoLe3F7t378by5cu1LmVaixcvFrndYn19PTZs2IBFixbh7bffxooVK7QuyWldXV149913cdddd2H9+vXYt28fSktL0dXVpevbLYyAl5cTuVhmZqbDPXvR0dEO9+yNhz09X8YpAUMGkTy1tbUIDAwEAHvY++233wDA4SSbnknoITs722Gcm5vrMNb7pdkbN27Erl278OOPP2LDhg3IyMjAggULtC7rP5vsvnQ9k/T3spFvVQCAgwcPoqSkBA0NDbBarfjggw9gtVrh6+uLmJgYQ/SgdwzdRC7GsEdENDeMHvYA4/fw/1duGdXHH3+MoqIiVFZWorS0FK+++iqSkpKglDJcf0YPe0aocTpSwmpGRgby8/NRUVEBf39/rcsRiaGbiCYl4dcYCSTMA3vQB6P3YLQwNBkJPYy7fPkygoKCAACdnZ0oLi7G4OAgUlJS8OCDD2pc3cx8fHyQnZ2N7OxstLe3o7S0FC0tLXjggQeQnJyMdevW6XpXBSlhr7CwEPPnz5/2NR9++KGbqrl5UsKq1Ks/9IRbhhG5mITtVMafaDwdvW97Zjab8dlnn9lDRmZmJoqKihASEgLgesjIycnRfQ8zMcI8zIQ9zD0JPYwzetgDjN3DiRMnkJKSgs7OTtx99904cOAAVq9ejf7+fpjNZvT396OqqgppaWlal3rTxsbG8O233+LTTz/Fd999h6GhIa1LmpKHhwfy8/NRUFDgEPbmzZuH1tZWREdHa1idc8xmM1auXDnt/fQmkwl1dXVurOrm5ObmoqKiAkuWLHEIq0aah3EDAwP2qz+OHTuGpKQkfPPNN/j111+xdOlSrcszPIZuIheTEPYkkBQyiEhG2JPQg9VqhYeHBwoKClBeXo6vv/4aSUlJKC4uBgBs2rQJP//8M5qamjSudGaTnfwYGBhASkoKoqKi7CfP9UhC2Jv4I4VRSQyr41d/fP7557DZbIa4+kPvGLqJXExS2DPyrzGSSJgH9qAPRu5BQtiT0ENwcDDq6upw7733wmazISAgAM3NzYiPjwcAnDlzBgkJCbq+ZUHCyQ/A+GHPYrE4PHhWAmlh1UhXf+ieO/cnIyJjOH78uIqIiFBms1lFRkaqX375RYWEhCg/Pz8VEBCgLBaL+vLLL7Uu0ymXLl2y//ncuXOqsLBQbdmyRTU0NGhYlXMkzAN70AcJPQQFBanW1lallFJ9fX3KZDKplpYW+/HTp0+rwMBAjapzjoQeJOzTvXr1arV27VrV2NiocnNzVXh4uHrhhRfU6OioGh0dVXl5eWrFihVal3lT2traVEFBgQoLC1MBAQEqMzNTHTx4UOuypjXxvSTJ6OioqqmpUampqcrT01Prcpw22ZrptddeU0eOHBE7V+7C0E00R4wc9iQsSCSEDAnzwB70QUIPEsKelB4uXrxoH/v5+amOjg772Ag9SDj5MRUjhb09e/aowcHBKYOeEdZL44weViWsmfSOoZvIxSR8cUlYkEgIGRLmgT3og4QeJIQ9KT2sWbNGpaenq/T0dOXh4aGeeOIJ+3jNmjWG6MHoJz/GGTnsSVgvSehBKRlrJr3jPd1ELibhnj0JT2CXcN+hhHlgD/ogpQer1QovLy8AQE1NDR555BH4+voCAIaGhnD48GH2MMdycnKcel1ZWdkcVzJ7ZrMZ3d3dWLhwIYDrn4fjx49j8eLFAIzxeZBwX7qE9ZKEHgAZaya94z7dRC7W3Nxs/+JatmwZPvnkE+Tl5dkfsLZp0yYkJCRoXOXMJu7xaZQ9P8dduXIFoaGhAAA/Pz/4+vo67Dm5YMEC9PX1aVWe04w+DwB70Auj95Cdne0wzsrKuuE1zz33nLvKmRUJPeg5TN+M559/3n7yY3BwEC+99JLDyQ+927p1K2JiYrB3716Ul5dj7dq1SE5Odgh77733nq5Dt4T1koQeADlrJj1j6CZyMSlfXEZfkADGDxmAjHlgD/pg9B4khD0JPUgg4eSHhLAnYb0koYdxEtZMesbQTTQHjP7FJWFBAhg/ZEiYB/agDxJ6IHIVCSc/pIQ9o6+XABk9AMZfM+kd7+kmcjEJ9+xJIOG+QyIioslIuC9dwnpJQg8A10zuwNBN5GL84iIiIqK5JCHsSVgvSeiB3IOhm4iIiIjIQBj2iIyFoZuIiIiIiIhojpi1LoCIiIiIiIhIKoZuIiIiIiIiojnC0E1EREREREQ0Rxi6iYiIiIiIiOYIQzcRERERERHRHGHoJiIiIiIiIpojDN1EREREREREc4Shm4iIiIiIiGiO/A8/R108Dj/1CgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap( \n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'fitness_function_mutation_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='fitness_function_mutation_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=15,\n", + " # How many sequences to include in matrix.\n", + " track_specific_sequences=['BADD']\n", + " # Specific sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wTZf4H8M+kJ9sbvUoVAemioGIB64meHvZe7uedeHqn3tk9y6mnnu3OjmLF3gALoDRReu+9LbC9piczvz/CZjOZSTLJZjfZ3c/79eLF5plnZp5kk8nOd77zfQRJkiQQERERERERERERUUroUj0AIiIiIiIiIiIiovaMQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiFDqgdATeNyubBhwwYAQFFREQwG/kqJiIiIiIiIks3n86GsrAwAMGTIEFgslhSPiIjaEkb0WrkNGzZgzJgxqR4GERERERERUbuxfPlyjB49OtXDIKI2hOUOiIiIiIiIiIiIiFKImbStXFFRUfDn5cuXo3PnzikcDREREREREVHbdPjw4eCdrKHn4kREycAgbSsXWoO2c+fO6NatWwpHQ0RERERERNT2cT4YIko2ljsgIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFDKkegBEzcVvPwDHttchGLNhG/B/0JmyUz0kIiIiIiIiIiIiBQZpqU0S3dWo+G48/Pb9AABv5VrknfpRikdFRERERERERESkxHIH1CbVrX0kGKAFANeejyG6KlI4IiIiIiIiIiIiInUM0lKb463eDMfW/4a1SnAfnpeS8RAREREREREREUXDIC21KZIkoXb5HYDkVyxzF//Y8gMiIiIiIiIiIiKKgUFaalPcB76F59Bc9WWHfoQkSS08IiIiIiIiIiIiougYpKU2Q/K5ULvirxGXi45DcO//pgVHREREREREREREFBuDtNRmOLa9Bn/dbnmjzih7WDX/IoheewuOioiIiIiIiIiIKDoGaalNkCQJ9u2vy9qMHcbB2vc6RV/75v+00KiIiIiIiIiIiIhiY5CW2gRv2TL4a7bK2rJGPIHMIfcq+to3/Bt+Z2lLDY2IiIiIiIiIiCgqBmmpTXDufEf2WJ/VF6aOp8CQ1Rv5E3+ULZN89ahf92hLDo+IiIiIiIiIiCgiBmmp1ZN8Djj3fCxrs/a9DoIgAADMXSfB2uda2XLHttfhq9neYmMkIiIiIiIiIiKKhEFaavVc+76C5K0NaRFg63uNrE/WiMcAnbmxQfKhdtU/IElSywySiIiIiIiIiIgoAgZpqdVz7HpP9tjUZSL0Gd1lbfqM7sgY9BdZm3v/V6hefDUkn6PZx0hERERERERERBQJg7TUqkmiD97SX2Rttr7XqfbNHHIvBHO+rM21+0OUfzcOvrq9zTRCIiIiIiIiIiKi6BikpVbNV71ZkQlr6nKmal+dORc5Y15SbqNyLcpnjYT70NxmGSMREREREREREVE0DNJSq+YtXy57rM/sDb2lKGJ/a58rkXfaVxCMWbJ2yV2Jyrlno37Dv1mnloiIiIiIiIiIWhSDtNSqecKCtMbCMTHXsfS8EIXnLYc+e4B8gSSibtXfUb3wUoje+mQOk4iIiIiIiIiIKCIGaalV85aFB2lHa1rPkDsQhecvh7nHhYplrr2foWL2WPidpckYIhERERERERERUVQM0lKrJfmc8FVvlLWZimJn0jbQmbKRd9oXyBz+OABBtsxXvQn1ax5MxjCJiIiIiIiIiIiiYpCWWi2/swSQ/LI2Q97QuLYhCDpkHX8/8s6cDcGUK1vmrd7U1CESERERERERERHFxCAttVqSL7xurKCYEEwrS7dzkD3qWfn2/c4ER0ZERERERERERKQdg7TUakneOtljwZABQUj8La0I8PoYpCUiIiIiIiIioubHIC21WuGZtIIxs0nbEwxW2WMxLAhMRERERERERETUHBikpVZL8oYFaQ1NDNLqw4K0joOoX/9Uk7ZJREREREREREQUC4O01GqJ3lrZ46Zn0toUbXWr74XfXtyk7RIREREREREREUXDIC21Wt7ylbLHemunJm1Pn3mMaruvZnOTtktERERERERERBQNg7TUanmOzJc9NnU8pUnb09s6IXP4Y4p20V3ZpO0SERERERERERFFwyAttUp+Zyl81ZtkbaZOE5q83azjH4Ahf7isTXRXNXm7REREREREREREkRhSPQBqfyRJgugohrdqI3xV62Du/jvVfoLODH3WMRAEQdbutx+AY8fb8r6GDBgLRyVlfHpbV/gq1zSO16PMpBVd5RBMuRB0yfkIie5KCHorBIM1dmciIiIiIiIiImpTGKSlFuU+/DOqfr4Qkrcu2Fa36h8R+xtyByN/0o/Q27pA8rlQOfcseEoWKfqZOoyHoDMmZYw6c77scWi5A9FTi+pFV8J9cBZ0Gd2Rf8YsGPOHNml/tSv+Bvum/0AwZiNvwqcwdz2rSdsjIiIiIiIiIqLWheUOqEXprJ1lAdpYfNUbUb3wCkiiH/YtL6kGaAHA1Pm0ZA0RgilP9tjvOAQAkPweVM2/GO6DswAAov0AqhZcAsnnSHhfvuqtsG/6T2D73lrUrX4g4W0REREREREREVHrxCAttShDdl9AiC+B21OyEPUbnoRr3xfqHQR9xJIJiTBk95Hv/9BcSKIX1UtugOfwPNkyf+0O1K15KOF92be8KHvsrViZ8LaIiIiIiIiIiKh1YpCWWpSgM8KQ0z/u9erXPgJv+XJFu87WBdljXoAxd1AyhgcAMHc7X/ZYdJejat7v4Nr9oWp/++bn4SldmtC+GrJ0iYiIiIiIiIio/WJNWmpxhpxB8FVvlrXlnvoxrL0vDT72lP6Kiu9PASR/oKHh/6MEYzY6XlYGQW9K/viyesOQdzx8VeuCbe5DP0ZeQRJRveR6FP1uDQSDJa59ic7DKpvzJq2+LhERERERERERpT9m0lKLM6hkveosRbLHpg4nIXPYIxG3Ye56TrMEaBtYel4UeaGgh6XnJbImf81W1Cy7DaK3Dt6KtcE6taKrAt7qLZAkKdjXV7Md7kNz4T40F76a7YrNSz5ncp4EERERERERERG1CsykpRZnyBmgaNOZCxVtmUPuhefQPHhKFiqWWXpc0Cxja9z+hahf+4jqspyT3oS1z9WomL1XVkPWuWManDumAQD0GT2RefwDqFn6Z0D0wNLzEuRO+BT16x6NuN0Gkt8JIDtJz4SIiIiIiIiIiNIdM2mpxekzj1G06cz5ijZBp0fuKR9ACF8m6GHuek5zDQ8AYMgbCn1mb0V75vBHYet3PQSdATnj3wEilCXw2/eh5tebAdEDAHDt+xze0l9Rv/5fMffdkIVLRERERERERETtA4O01OKMhSOhz+gRfKzP6gOdratqX31GN+SeNE3WZu7+O+jMec06RkEQYO1zjazN1v8WZA59IPjYmDdY9jgW1/4vg0HbaBikJSIiIiIiIiJqXxikpRYn6IzIPfVjmDqeDFPHU5B76scQBCFif0vPC5Fz8nswFoyEuceFyDnhvy0yzswhf4e1300w5A1B5tAHkD32f4pxZg69X/P2vOUr5Q06E3S2Lop+kp9BWiIiIiIiIiKi9oQ1aSklTB1ORME5izT3t/W5GrY+VzfjiJQEgxW5496M3kenR+4pM1C96PKY2/OULZM9tva5CrnjpuHIjAJI7spgOzNpiYiIiIiIiIjaF2bSEjWRpceFyrq5akS37KExfwQAQNDbZO2Sz5m0sRERERERERERUfpjkJaoiQSDBdZjrop7PWPByKPrhwVpWe6AiIiIiIiIiKhdYZCWKAls/W6MbwVBB2P+0MCP4UFaljsgIiIiIiIiImpXGKQlSgJj/lCYOp+hub/O1jUYnBV0JvlC0ZPMoRERERERERERUZpjkJYoSXJPfi9Y9kBnLozaV7ZcFzZ/n+hL9tCIiIiIiIiIiCiNMUhLlCR6WxfknvI+Ol8noePlZVH76iyNQVpBkAdpJdHbLOMjIiIiIiIiIqL0xCAtUQrIM2mN8oUSM2mJiIiIiIiIiNoTBmmJUkDy1gZ/ZiYtEREREREREVH7xiAtUTMRjFkRlxmLTmx8oJdPHCb57M01JCIiIiIiIiIiSkMM0hI1k+zRz0VcZu11SfBnfUZ32TJ/7c5mGxMREREREREREaUfQ+wuRJQIa7+bAAjwlq+Apfel8Nfvg7dsGSzHXAFDzoBgP0POsbL1fDVbWnikRERERERERESUSgzSEjUTQRBg638T0P+mxsZ+1yv6GXIGyh77arZCkiQIgtDcQyQiIiIiIiIiojTAcgdEKRYepJV8doiO4hSNhoiIiIiIiIiIWhqDtEQpprN1hWDIlLWx5AERERERERERUfvBIC1RigmCAH1Of1mbv35vagZDREREREREREQtjkFaojSgM2TJHkt+T4pGQkRERERERERELY1BWqJ0oAubw0/ypWYcRERERERERETU4hikJUoDgs4oeyyJ3hSNhIiIiIiIiIiIWhqDtETpQAjLpBUjZ9K6jyxE9ZKbYd/6GiRJauaBERERERERERFRczPE7kJEzS6s3IEkqtek9dXuQOWPpwOSCOeOtyB5qpE59B8tMUIiIiIiIiIiImomzKQlSgM6Y7bssWv/V5AkUdHPtfczIKS9bvW9EF0VzT4+IiIiIiIiIiJqPgzSEqUBc7dzZY99lWvh2velop+3Yo2izb75+WYbFxERERERERERNT8GaYnSgKXnJTDkDpK11a99GJLol7WJbmXWrH3LS8ymJSIiIiIiIiJqxRikJUoDgk6PzGGPyNp81Zvh2vOxrM1ft1uxruStYzYtEREREREREVErxiAtUZqw9LwYhrzjZW116/4JSfTBV7sLVfMvgd++T3Vd+5aXILorW2KYRERERERERESUZAzSEqUJQdAha/ijsjZ/7Q649n6OqgV/gGvfFxHXlbx1cGx7vbmHSEREREREREREzYBBWqI0Yu7+OxgLR8vaXAdnwVepnDAsnKd0SXMNi4iIiIiIiIiImhGDtERpRBAEWHtfIWvzli1V7WvIPU722F+/t7mGRUREREREREREzYhBWqI0E55J66/bpeiTe9oXyB77P3m/+j2QJKlZx0ZERERERERERMlnSPUAiEjOkD8MEHSAJEbsYyoco1gu+RwQXWXQWzs08wiJiIiIiIiIiCiZmElLlGZ0xgwYcgbF6CVAZ+sKCPLrLCx5QERERERERETU+jBIS5SGjIWjoncQBAg6PfSZPWTNaqURiIiIiIiIiIgovTFIS5SGTEUnRl0uGDIAAIasfrJ295H5zTYmIiIiIiIiIiJqHgzSEqUhyzGXR1yms3WFzpQDADB1mShb5j4wC1KUWrZERERERERERJR+GKQlSkM6YxZ01s6qy4z5xwd/tnT/nWyZ6DwMb8WqZh0bERERERERERElF4O0RGmqoaRBOEP+sMafc/pDnz1Atty9/1tIkqRYT5IkSJLITFsiIiIiIiIiojRjiN2FiFJC0Ks2G/OOlz229LgA9o3PBB/Xr38c9RueAiQfAECfdQyMRSfCc/gniM4jsnUzhz+KrOMfTPLAiYiIiIiIiIgoHsykJUpTgk79GkpouQMAsHS/QNnpaIAWAPx1u+Ha/aEiQAsA9WsegrdyXdMGSkRERERERERETcIgLVGa8lVvUrQJhgzos/rK2oxFJ0YsjaBF3ap/JLwuERERERERERE1HYO0RGkqtPZsA2PRiRB08jIIgk4PnaVDwvvxO0sSXpeIiIiIiIiIiJqu3QdpPR4P3nrrLZx11lno3LkzzGYzMjMzMWDAAFx//fX49ddfNW3n+++/x0UXXYRu3brBbDajW7duuOiii/D999838zOgtspUdKKyreN41b46c0HC+5E81QmvS0RERERERERETdeuJw7bt28fzjvvPGzaJL+t3OPxYPv27di+fTumT5+OqVOn4sUXX4QgCIptiKKIW265BdOmTZO1FxcXo7i4GF9//TVuuukmvP7669Dp2n1MnOIg+Z2KNlPHk1X7NiVIK7rKEl43Gkn0AaIP0BkV2b8Jbc/nBPQWxedQEn2AJELQmwI/QwIgBGv6Sn53YAwCP39ERERERERElJ7abdTC6/XKArRDhw7F9OnT8dtvv2HOnDl46KGHkJERqPP58ssv4+mnn1bdzv333x8M0A4fPhwzZszA8uXLMWPGDAwfPhwA8NZbb+GBBx5ogWdFbYm3fKWizVh4gmpfwdKETFpfPSrnnpPw+mpcB2biyHtGHPnAiiPvGeCtWNOk7dUsvQ1HPshA6ec9ZduqW/sojrxvRunnPVH58+8D+3zPhCPvGeEunoPqJTfhyPsWlH3RF96qDU19WkREREREREREzUKQJElK9SBS4fPPP8cf/vAHAMCJJ56IxYsXQ6+XZ/utWrUKJ554IrxeL3Jzc1FWVgaDoTH5ePv27TjuuOPg8/kwatQoLFq0CFarNbjc4XDg1FNPxcqVK2EwGLBlyxb07Suf9KmpDh48iO7duwMADhw4gG7duiV1+5Q65bPGwlu+TNbW+Tr1j2vNstvh2PJyk/ZXdPEeGLJ6NWkbACBJEo68K7/+Y+wwDoXn/pLQ9jwli1Hx/SnBx+buk5F/xtfwOw6h9NOumrdj6XkJ8k77LKExEBERERER8fybiJpTu82kDa01e++99yoCtAAwcuRInH/++QCA6upqbNmyRbb8hRdegM/nAxDItg0N0AKAzWbDyy8HAmc+nw/PP/98Up8DtW22/jfKHmce/3DEvsa8IU3en2Pba03eBhDIzA3nLV2S8PZqfv2j7LH7wDeBbZYtU+sekWvf5wmPgYiIiIiIiIioObXbIK3H4wn+fMwxx0Ts16dPH9V1JEnCN98EgkUDBw7E2LFjVdcfO3YsBgwYAAD45ptv0E4TlykBlt6Xw9zjIkBngrnLWcg47q8R+1qPuTLQtykkb9PWP0p0lqhvXvQntD1fzRbVdsGQkdD2iIiIiIiIiIjSTbsN0jYETgFg9+7dEfvt2rULACAIAvr16xds37NnDw4dOgQAOPXUU6Puq2F5cXEx9u7dm+iQqZ3RGTORf/qX6HS1C/mTfoDOlB2xr2CwBfpe5YRgyExof5JXmQGbiEhBWtGl3h5NtIsakhR/0FcSkxOIJiIiIiIiIiJKpnYbpL388suRnR0Iej399NPw+5UBnzVr1mD27NkAgCuuuCLYHwA2b94c/HngwIFR9xW6PLxkAlEsgiBo72uwQJ8VOTM8Gl/dbnjKlsFTuhSe0qXwO0vhtx+A6K6MuI7fXqxY7o8QjPU7DsFbsVbTBF6SzwV//X7463YqlgkGW+CHBAKu3sq1UZ8PEREREREREVEqGGJ3aZsKCwvx/vvv4/LLL8eSJUswevRo3HHHHejfvz/q6+uxZMkSPPfcc/B4PBgxYgSee+452foHDx4M/hyrWHhDYXEgUFw8HqH7UXP48OG4tkdtnz6zF3xV6+Nez3N4Hipmz1Mu0JmRe/J7sPaeImsOTlamtwaW97oEACA6S1W3XzFrdOMmLR3Q8TL1YK63ahMq554F0VGsulyX0QNAYlmxFbPGQDBkIvfUGbB0Pz/u9YmIiIiIiIiImkO7DdICwAUXXIBVq1bhueeew7Rp03DttdfKlnfs2BGPPfYYbr75ZthsNtmyurq64M+ZmdFvL8/IaKydWV8f3y3loQFeIi30mb2Su0HRjbo1D8qCtL7anYEALQD4nahf+3AwSOuv2xF7k65SeCtWw1gwQrGsfsOTEQO0AABJPLqRxEoXSL561K99hEFaIiIiIiIiIkob7bbcARCYCOy9996LOKFXSUkJPvjgA8ybp8wudLlcwZ9NJlPU/ZjN5uDPTqezCSMmis3U4aSkb9Nfu132GXHu+Vi23FcdKP8hiX7FskjsDUHeMK4Y60tHyxVIfoem/ajxVqziJH5ERERERERElDbabZDWbrfjzDPPxJNPPonKykrcc8892LJlC9xuN2pqajBnzhyMHz8eK1euxIUXXoj//Oc/svUtFkvwZ4/HE3Vfbrc7+LPVao1rnAcOHIj6b/ny5XFtj9o+S8+LYTv2L9BZioJtgiETOmtnWPvfDHO3cxPbsL/xAoPkUwZIJUmE+9AciI5DmjYnOo8otyH6gRgTgonuckh+DySfXdN+IpG8tU1an4iIiIiIiIgoWdptuYNHHnkEixcvBgBFqQOTyYSJEyfitNNOw6RJkzB//nzcfffdOOOMM3D88ccDALKysoL9Y5UwsNsbg0mxSiOEi1XvliicoDMg54QXkHPCC1H7Vcw5C55DczRvV/TUQt8waZdfJSPc74Jz5zuat+d3KOsp++37tY3FeQSSN77SIWrb0JlymrQNIiIiIiIiIqJkaJeZtJIk4e233wYA9O/fX1GLtoHBYMBjjz0GABBFEdOnTw8uCw2exprcK3SyMNaYpXQh6Ixx9Xcf+hGS6AMAiCpZrH5HMVz7v9G8PV/VOjh2fQBf7U5IkgS/vRjOHW9rWtdbsRrOPTM070tN7cq7IfndsTsSERERERERETWzdplJW1JSgsrKQF3L4cOHR+07cuTI4M9bt24N/jxo0CDVdjWhy4899ti4xkrUbHTRaymHq/nlOrgPzETeaZ+rljtw7HgbEENKf+hMyBn7P9T8enPkbS6+GgBg6jIRnpLFgN8VsW+oqvkXxTV2Ne4DM3HkfQs6Xe2CoDfHXoGIiIiIiIiIqJm0y0xag6ExNu3z+aL29XobZ5APXa93797o0qULAGDhwoVRt7Fo0SIAQNeuXdGrV694h0vULIQIQVp9Vt+I67j2fQFf3R7VerDOne/KHlt6XAjrMVdoGovn0FzNAdpkq1/3WEr2S0RERERERETUoF0GafPz85GdnQ0A+O2336IGakMDsL179w7+LAgCJk+eDCCQKbt06VLV9ZcuXRrMpJ08eTIEQWjy+ImSIVK5g6zh0YOWovMw/HW7VdtDWXtfDsFgg63/LYkPsgXUr38i1UMgIiIiIiIionauXQZpdTodzjvvPADAoUOH8MQT6kGaqqoq/P3vfw8+Pv/882XL77jjDuj1egDA1KlT4XTKJ1NyOp2YOnUqgEAW7h133JGsp0DUdHr1TFpTx/HIGT894mqipxa+mm0xN2/qeDIAIGv0c7ANuBUQ4j/cWPtcDUvvy2P201k7R80AJiIiIiIiIiJKZ+0ySAsADz30EGy2wEz1jzzyCC644AJ88cUXWLNmDX777Tc8//zzGDZsGDZv3gwAOOOMMzBp0iTZNvr374+7774bALBy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eCz5AoOkFQz6QVTDmw9b0W1j7qE+r5qjcCYvQJtwy5g6CzFAAAdMZM5Jz4Cjpf60fn6yR0usYbdd1Q+sxeyDv1I2SNfCpin/xJc9Dx0kPocPEOFP1+u+ZtExERERERERGli3Y5cRgADBw4EN988w0uv/xylJeXY+bMmZg5c6Zq39NPPx2fffaZ6rInnngCpaWlePvtt7FmzRpcdtllij433ngjHn/88aSOn6jJ1DJpBR0EQyYAQJfRVXU1d/GPMTdt7DAu4jJBp/2wI+itgbHYukTsozMXhT7SvO1QkiRCSCDTl4iIiIiIiIgoGdp1VOLMM8/E1q1b8fTTT2PChAkoKiqC0WiE1WpF7969MWXKFHz99deYN28e8vLyVLeh0+kwbdo0zJ49G5MnT0aXLl1gMpnQpUsXTJ48Gd999x3eeust6HTt+qWmNKQ2cZhgzAnWTdZb1QOjnsPzYm7b1GF80wbXMJ6jQdpIYwEAnaWwyfsRHcVN3gYRERERERERUaLabSZtg4KCAtxzzz245557mrSdc889F+eee26SRkXUAlQmDtOZcoI/623qmbRamDomKUhrCJQkiZ5JWxDyILFDmq92F/QZ3RNal4iIiIiIiIioqZjeSdReqdzeLxgbg7SRyh1ooc/sHXW5beBtsTci6GA8OvmYPkKQVp/RE4LBGvK4B/TZjbWfjUUnIufk9+TrZPVRbEd0V8QeDxERERERERFRM2n3mbRE1EiWSRulxEA0lp6/D5ZMiCR71L8hmLLhr98LS48L4S39FaKnBpLfCdFVDsGYBVv/m2DMPRYAIBizAb0V8Dtl2zEdDeI2EAQB+RPnoH79ExB0RmQOvRc6WzdI3jp4jiyCpcdkmLtfgJIPM2XrSZ6qhJ4rEREREREREVEyMEhLREFCSJBWZ+2Y0Db02QNi78dgRfaIJ4KPrb3+EL2/IEBv6wJ/3S5Zu1GlrIIhqxdyx70pa8sY+CdkDPxT8LGpyyR4Ds0JPhY91THHTERERERERETUXBikJaIgXUi5AyHB+q6C3pys4ciJPkVTeCatVjpTrnzTUTJpJZ8Djp3vQTBYYT3myoRfFyIiIiIiIiKiSBhtIKKg0EzaRPlqtydhJEp++z5FmyFnYELb0pnyZI8ld+QgbeXcs+EpWQwA8Byej9yTpye0TyIiIiIiIiKiSDhxGFE7JUBZN1YwZssfh2WcamHqoCxBkAy2Af8ne6yzdYOgMvmZFoJZHqSNVO7AW7UhGKAFAOeudyGJ3oT2SUREREREREQUCYO0RO2UYMhQtoWVKsg58TV5B71V9tBYMApZo/8TstwCS/fzkzbGUNY+V8vHNvZ/CW8r/LlLPodqP1/NVkWb5LUnvF8iIiIiIiIiIjUsd0DUTgnGLJVG+SHB0msKcgUDvOXLYOl+AQy5g2Df9B/YNz8PW/9bkHn8QxCM2dCZ8uCr2Qxr78ugz+jeLOM1dTgJ+ZPmwn3wO5g6nQpz998lvC3BYJM9lvxO1X6S361s89UD5tyE901EREREREREFI5BWqJ2Si1IGz4pliAIsPa6GNZeFwfbskY8jqwRj8v62fpd1yxjDGfucibMXc5s8naEsIzgSJm0UA3SMpOWiIiIiIiIiJKLQVqidkpLJm1bFZ5Ji6OZtL7qrXDseAv6jO6w9PoDapf/RbGu5K1viSESERERERERUTvSPiIyRKSg05BJ21YpMmn9TojualT8cApEVxkAoHb5Harrij4GaYmIiIiIiIgouThxGFE7JXrrlI06U8sPJAUEg7LcQf2Gp4IB2mhEd0VzDYuIiIiIiIiI2ikGaYnaK9GnaDJ3Pj0FA2l5gj5s4jCfE86db2ta11+3qzmGRERERERERETtWPu4t5mIlARB0aTP6JGCgbQ8RSat3wFJLbNYhb92Z3MMiYiIiIiIiIjaMWbSErVbKh9/oX0cEhSZtBoDtADgq2OQloiIiIiIiIiSq31EZIhISSWTFlBra3vCM2njwUxaIiIiIiIiIko2BmmJ2ilBNZO2vQRpbbE7ReC3H4DkcyVxNERERERERETU3jFIS9ROGfIGKxsFfcsPJAUEQ1YT1pbgdxxM2liIiIiIiIiIiBikJWqnDNl9Ye5xUfBxxuC7IbSTmrQ6cy50lqKE1xdd5UkcDRERERERERG1d4ZUD4CIUidvwmdwF/8AwWCDqdOEVA+nRRlyB8NzZH5C64puBmmJiIiIiIiIKHkYpCVqxwSdHpbu56V6GClhyBuSeJDWVZbk0RARERERERFRe9Y+7m0mIgpjVKvJq0ZnhLHDOFlTzZIbILqrkz8oIiIiIiIiImqXGKQlonZJnz1AUz9T0UnQZ/ZUtNevfyzZQyIiIiIiIiKidopBWiJql4z5wzT1M3edBJ25QNFu3/SfJI+IiIiIiIiIiNorBmmJqF3SmbKROfSBqH30WcfAduxUCMasFhoVEREREREREbVHnDiMiNqtrBGPwdJ7Cvz2A9AZc2AsOgHeitXwlCyEsWAkTB1PhqAzQmdQD9KKnlroTNktPGoiIiIiIiIiamsYpCWids2YNwTGvCHBx6aiMTAVjZH1EYyZquv67QegMx3XrOMjIiIiIiIioraP5Q6IiGKQRI9qe/26f7bwSIiIiIiIiIioLWKQlogoBslbp9ru2vsZ/I4jLTwaIiIiIiIiImprGKQlIorB0n1yxGWufZ+14EiIiIiIiIiIqC1ikJaIKAZD/vGwHHOl+kJJatnBEBEREREREVGbwyAtEVEMgiAg9+T3AUE516LO0iEFIyIiIiIiIiKitoRBWiIiDQRBAARBZQkzaYmIiIiIiIioaRikJSLSSvQqmiSVNiIiIiIiIiKieDBIS0TUFAzSEhEREREREVETMUhLRKRR1ognFW2S6EnBSIiIiIiIiIioLWGQlohII2v/G5WNzKQlIiIiIiIioiZikJaISCO9pQjmLmfJ2liTloiIiIiIiIiaikFaIqJ46Izyxyx3QERERERERERNxCAtEVE8woK0zKQlIiIiIiIioqZikJaIKA6CziRvYCYtERERERERETURg7RERHEQDFbZY8nnSNFIiIiIiIiIiKitYJCWiCgOgjFL9lj01qVoJERERERERETUVjBIS0QUh/AgrcQgLRERERERERE1kSHVAyAiak10hrAgrU8ZpBW9dfAcWQRBZ4TO1gWCzgS/fR/0mb1gyO7XUkMlIiIiIiIiolaCQVoiojjEyqT11e1G2Rd9Iq6fOewRZA17uFnGRkREREREREStE8sdEBHFIVZNWvvmF6KuX7/+CU42RkREREREREQyDNISEcVBFyOT1rHl5egbEL3w1e5M9rCIiIiIiIiIqBVjkJaIKA7JmDjMV7sjWcMhIiIiIiIiojaAQVoiojjEKneghZ9BWiIiIiIiIiIKwSAtEVEcwoO08DvhKVkC0VUB14HZmrbhq90OAJBEL9yH5sJbtSHZwyQiIiIiIiKiVsSQ6gEQEbUm4TVpAaDi+/FxbcNXuwOSJKHih9PgLV0CQEDOSW/C1v/GJI2SiIiIiIiIiFoTZtISEcVBMCiDtPHy1+6Au/j7owFaAJBQ8+tNTd4uEREREREREbVODNISEcVBMGY2eRuiqwSuPR8nYTRERERERERE1BYwSEtEFAdBF3+VGEPeUEWbt2pjMoZDRERERERERG0Aa9ISETWjTtf4IOj0KP38GPjr9wTbfdUM0hIRERERERFRADNpiYiakaDTAwD02f3kC0Svoq/oroRj+1twH1nUEkMjIiIiIiIiojTBTFoiohZgyO4Hz6E5UfuUfTMEouMQACBn3DTY+t3QEkMjIiIiIiIiohRjJi0RUQswhGfSqmgI0AJA3er7m3M4RERERERERJRGGKQlIopT1ujn4l5Hn9krrv6i80jc+yAiIiIiIiKi1olBWiKiOGUMugNZI/4V1zp6W7dmGg0RERERERERtXYM0hIRxUkQdMgcei86XaOc/CsSna1rM46IiIiIiIiIiFozBmmJiBIk6LTPvaizdoh7+/Ub/g3RXRX3ekRERERERETUujBIS0TUAgQh/sNt3aq/o+LH0yFJUjOMiIiIiIiIiIjSBYO0REQtRDBkxr2Or3It/PV7mmE0RERERERERJQuGKQlImoC27FTgz8L5nxAbwk+zh7zgqxv9ujnEtqH5KlNaD0iIiIiIiIiah20F1QkIiKF7NHPw5g3FKKrFNZ+N0LyOeHc/QEMOQNg6XmJrK+1/83QWYpQt+4x6K0d4S7+QdtO4qh9S0REREREREStD8/8iYiaQNDpYet/k6wt6/gH1PsKAiw9L4Kl50UAAOfez1G94A+xdyKJTR4nEREREREREaUvljsgIkoRvbWTto4hQVrJ70H9xmdQ89ut8FasbqaREREREREREVFLYiYtEVGK6LQGadEYpK1b90/Y1/8LAODY8Q46TjkInaWwGUZHRERERERERC2FQVoiohTRWTsDgh6Q/FH7SSGZtA0BWgCA6IZj5zvIHHx3cw2RiIiIiIiSSJIk2O121NbWwuVywe+Pfi5AROlDp9PBZDIhIyMDmZmZMJlMSd0+g7RERCmiM2bAesxVcO5692iDGZC8yhq0UWrS+mp3NOMIiYiIiIgoWURRxP79++F0OlM9FCJKkMfjQX19PUpKSlBUVISCggIIgpCUbTNIS0SUQjnjpsHc/XeA6IWl18XwVa5H+axR8k5Hg7Si165YX2/p0BLDJCIiIiKiJpAkSRGgFQQBer0+haMionj4/X5IkhR8XFZWBo/Hgy5duiRl+wzSEhGlkKDTw9rr4uBjY+FICMZsSN7akF5Hg7TOw4r1dZai5h4iERERERE1kd1uDwZo9Xo9OnXqhMzMTOh0nM+dqLWQJAlutxu1tbWoqKgAANTU1KCgoABms7nJ22eQlogo3QjyP9Qq556LrGGPwFAwXKUvr7xHs7nCg38urQYAdMnQ48Gxuci38DUjIiJKd4ftPnyyzQ5BAC7tn4FOGTx1pdattrYxCaNTp07Izs5O4WiIKBGCIMBiscBisUCv16O0tBQAUFVVhU6dtE4MHhkv2RARpZuwIK3krUHtijvh2PqKomt96ERiJOPwisEALQAcsvvxwurayCsQERFRWpAkCc+urMFvh9349ZAbz6ysSfWQiJrM5XIBCAR5MjMzUzwaImqq3Nzc4M8OhyMp22SQlogozQg69dskXHs/VbTpbcmpfdMW7avzKdq2VXllNYSIiIgo/Ry2+3GwvnHG+4P1fpQ7/VHWIEp/fn/gPazX61nigKgN0Ov1wZrSDZ/vpuKRgYgozeizemvuK7ormnEkrZtfVG/3RmgnIiKi9ODwKS+o+kReZCUiovQiCEJSt8cgLRFRmjFk9dXc1+8ohiQx6qgm0qviVDnxIyIiovTBgCwREbVHDNISEaUZfXY/7Z1FL0RnSfMNphUTI5Q1cPoY1CYiIkpnal/V/PomIqK2jlNkEhGlGUM8QVoApZ8G6tIaC0Yic+j9sPS8qDmGlVRev4R3NtdhfZkHZU4RGUYBOSYdJvW04pzeNnj8Eu5fUon9dYHaPv8+OR89s2N/Ze2t8eLdzfXwS8DgAqNqHxczaYmIiNLW/ANOvLa+TtHO7FoiImrrmElLRJRm4il3EMpbsQpVC6ZAdFcmeUTJ98NeJ37a70KZM5AWY/dKOGT3Y/rmeuyp8WLOPmcwQAsA9yyO/ZwkScJLa2uxudKLbVVefLFTfYZNp58neUREROmouN6H11UCtABryhMRUdvHIC0RUZqJZ+IwBckHx/Y3kzeYZvLTAWfEZTurfXh/S72i3R8jg6bGLaK4Pvasmm4GaYmIiNLSh1vqEelb2hehjBEREVFbwSAtEVGaEUy5TVpf9NQkZyDN6Ig9cjC1zqOeKhOrSoHWKgZ+ZuIQERGlpe3V3ojLmElLlBwejwczZszANddcg4EDB6KgoABGoxGFhYUYOXIkbr31VsybNw+iyA8dUUtjkJaIKM0IQtMOzU1dvyVEi6fWRTgLS1YtOta0IyIiSk91nsjf0bHuqCGi2L788ksMGDAAV1xxBd5//31s27YNlZWV8Pl8qKiowOrVq/Haa69h4sSJOPbYYzF79uxUD7ld6tWrFwRBwHXXXZfqoaSlBQsWQBAECIKABQsWpHo4ScWJw4iIWimduRCiu1xlidDiY0mmiJm0R5ulo7c7CoL8eWo9d/NLgW2Er09ERKkV6fhOBDT+HUBEiXnsscfw0EMPBR9PnDgRF1xwAQYNGoTc3FxUVlZi27ZtmDlzJubOnYvt27fj/vvvx3nnnZfCURO1LwzSEhG1UrqM7upB2laQSRvN4mK3artXlDD/gBMzttkhihIu7JuB84+xAQC+3WXHh1vtmrb/4ppavLgG6JGlx2Mn5cFiaN2vFxFRa+f2S3h1XS1WlLhh1Quy4zu1H44Y9Qy8zKQlStg777wTDNB26NABn376KU499VRFvzPPPBN//vOfsXHjRtx5550oKytr6aEStWs8MyUiSkd6S+wuGT3UF7TyIG0kmyo8eGNDHWrcIuq8Et7fUo9Shx+VLr/mAG2o/XV+/HTA1QwjJSKieMw/4MRvh93wiQge38scsSeCpLblUJR69QDLFRElqri4GLfddhsAICMjAwsXLlQN0IYaPHgwfvzxR9x1110tMUQiOqptnskTEbVyGQNujdnHmD9UfYHU+k9srQblra77an2KkgYH63zYWhl5kpFYVh5Rz9olIqKWs7/Op2g7WK9so7atyhUrk7aFBkLUxjz//PNwOBwAgEcffRQDBw7UtJ5Op8NVV12luuyXX37B1VdfjV69esFisSA3NxfDhw/HAw88EDX7NryWqCRJmDZtGsaPH4+CggJkZ2djzJgxeP/992XreTwevPbaaxg7dizy8/ORlZWFcePG4dNPP424r7179wb3NX36dADAZ599hjPPPBMdOnSA1WrFwIEDce+996K6ujrqa7Fx40Y8/vjjOOuss9CtWzeYzWZkZmaiX79+uPbaa7F06dKo6z/yyCPBsQBATU0NHnvsMQwfPhy5ubnBMU6YMAGCIGDfvn0AgHfffTe4XsO/CRMmRH2OX375JSZNmoQOHTogIyMDxx9/PF5++WV4vY3nTJIk4aOPPsKECRPQoUMH2Gw2jBgxAq+99lqw9FA0NTU1ePLJJzFu3DgUFRXBZDKhc+fO+N3vfofPP/886jYaxvvII48AAFasWIHLL788+Lp27doVV199NbZs2aJYt+H5nnbaacG20047TfEaNbwWrRHLHRARpSHbsbfDdeBb+Ot2Rexj6T4Z9eseU7RL/vQOPIoavvg72PTYVys/QXd4leu5RQkuX+KZNfUq2yQiopblVDmOu/w8Prc3kWrSN/DwPUEUN0mS8O677wIIZNHefPPNTdqeKIq4/fbb8b///U/W7na7sXbtWqxduxb//e9/8dlnn2HixIlRt+X1ejF58mTMnDlT1r5ixQpcc801WLlyJV588UVUVVXhwgsvxKJFi2T9fv31V/z666/YuXMn7rvvvphjv/HGG/H222/L2rZt24annnoK7733Hn766SfVAPaCBQtkQcEGHo8HO3fuxM6dO/Hee+/hH//4B5588smY49ixYwcmTZqEvXv3xuwbrz/96U949dVXZW3r16/H7bffjgULFuDTTz+Fz+fDVVddhc8//1zWb82aNbj11luxevVqvPHGGxH38dNPP+HSSy9FRUWFrP3IkSOYNWsWZs2ahXPPPReffPIJMjMzo473lVdewV/+8hf4fI3nfYcOHcIHH3yAL7/8Et9//z1OOeUUrU+/TWAmLRFRGjJk9ULR77dH7SMYMmDueraiPd2DtH4NmTBelRMxu8pJvMcvoa4JqTU84SMiSj21i21NuQBHrVOs73PWpCWK36ZNm1BeHpjD4uSTT0ZWVlaTtvePf/wjGKDt3bs3XnvtNSxfvhzz58/HnXfeCaPRiJqaGpx//vlYt25d1G09+OCDmDlzJq688krMnj0bq1atwowZMzBgwAAAwEsvvYR58+bhuuuuw6+//opbb70Vc+bMwapVqzBt2jR06dIFAPDQQw9h06ZNUff1yiuv4O2338aYMWMwY8YMrFy5Et999x2mTJkCIBAYPOuss1BXV6dY1+fzISMjA1OmTMFrr72GBQsWYPXq1fjhhx/w3HPPoWfPngCAp556Cu+8807M1/CSSy5BcXExpk6dirlz52LlypXB5/3OO+9gw4YNwec2efJkbNiwQfYv0j5ee+01vPrqqzj33HPx5ZdfYtWqVfj6669xwgknAAhk2L7zzju4++678fnnn+OKK67ArFmzsGrVKnz88cfBAPWbb76JH374QXUfS5YswTnnnIOKigp07NgRjz/+OGbOnIlVq1Zh5syZwczr7777Dtdee23U1+HHH3/E1KlTcdxxx+Htt9/GihUrsGjRItx5553Q6XRwOBy4+uqr4fF4gut07doVGzZskAXb3377bcVrdOGFF8b8PaQrZtISEaUpIVZtWUEA1LJSxTQP0mrIpC11Kks2qGXYuHxSzNsjo2GmFlHb4fVLMOgQvJWQWo5PlKAXEn/tHQzSEoB6T/TfOd8T6UWUJNi9EjKNAo+7aSw0UDpy5MgmbWvDhg147rnnAARq1i5evBi5ubnB5RMmTMCkSZNw3nnnwePx4JZbbsGyZcsibm/ZsmV44YUX8Je//CXYNmLECEyYMAH9+/dHXV0drrjiCpSXl+PLL7+UBd5GjBiBUaNGYfjw4fD7/XjjjTfw4osvRtzXihUrcO655+Kbb76BwdAYBjvnnHMwePBgPPTQQ9i/fz8ee+wx/Pvf/5atO2zYMBw8eFD2XBucddZZuO2223D++edj7ty5+Oc//4lrrrkGer0+4lg2btyI77//HpMmTQq2hf9ujEYjACA3NxeDBw+OuK1Qy5Ytwx133IHnn38+2DZixAhMnDgRgwYNwr59+/CPf/wDlZWVqq/7qaeeGnzdX331VZx9tjwZyOv14qqrroLX68XZZ5+NL774AjabTbaN888/H6eccgpuueUWfPnll5g7d27EjOqlS5fi3HPPxVdffQWTyRRsP/nkk1FQUIAHHngA+/fvx+zZs3HRRRcFX5fBgwcHLzwAgYsFWl+j1oCZtERErZUkQYIyQJnumbRaTrJ8KnHXLSq1Z9/eVI/v9zoTHku1W8Qh1j0katVEScILq2tw1Q9l+NuiShyx8zPdUvyihJfW1ODK78twV4KvvcMrqtYWn7c/8WM7tU71MTJpv9jpwH/X1sDPjNqU21XtxeXfleGmueW47Lsy7K1JfH4Aal6ht6R36NChSdt69dVXIYqBz+lbb72lGrQ8++yzccMNNwAAli9fjhUrVkTc3gknnCALFDbo1KlTMChXVlaGKVOmqGZGDh06FOPHjwcALF68OOrYzWYz3nzzTVmAtsH9998fDPJNmzZNlrkJAIWFharPtYHJZMIzzzwDANi3bx/Wrl0bdSzXXXedLECbLN27d1cEmAHAZrMFs1orKio0ve5qr+fHH3+MvXv3wmKx4L333pMFaEPdfPPNGDNmDABErQ1rsVjwzjvvyAK0DW6//fZge6zfbVvDIC0RUSsl+uog6JRfapLflYLRaLe8JL2CyN/ucqR6CETUBKtKPPjtcOC4Ulzvx8zd/Ey3lPXlHiw5FHjtD9b7MWt3/IHVBQfVv7MO1vtVS99Q21UXI5MWABYXu7G5CROGUnLct6RK9vjx5dWpGQjFFHr7fkZGRpO2NW/ePADAcccdF7yFXk1o3duGddRcdtllEZcdf/zxcfXbvXt3xD4AMGnSpGAJgXA6nS4YxKysrMTq1aujbsvtdmP//v3YvHkzNm7ciI0bN8omyopV5uHKK6+MujxRv//974MZuOFCX89LL7004jYa+lVVVSkmU/v2228BAKeeeiqKioqijqWhjuxvv/0Wsc/EiRMjXjjIyspCv379AMT+3bY1DNISEaWxzKH3q7YLhkwYc4fA3PUc5ULRo2xLI/Y0m6xrfoQAARG1DtM2yuvHzdvPz3RLeTvstZ+bQPZrmUp5mwb76pgV3Z64NQblF/J7O+1oCbBTaoTWoLXb7Qlvx+12Y8eOHQAQNUALAMOHDw8GCzdu3BixX//+/SMuC81c1dJPrZZsqNGjR0dd3pD5CQTKOoSz2+148skncfzxxyMjIwM9e/bEcccdhyFDhmDIkCEYPnx4sG/orfhqhg4dGnV5opL5egLK13TlypUAArVkBUGI+u/ZZ58FEJhMLBK1SdpC5efnq46jrWNNWiKiNGY7dio8pUvgKf0NOmMWIOggSX7kjHkRgsECa99rUbvsNtk6kpjeJ7U+3qZIRElU5U68LjU1jUqp8LhFK1PelJrj1Ppo/fvAFLnUIxGFKSgoCP5cUlKS8Haqqhqzp2OVTTAajSgoKMCRI0dQWVkZsV+k2+WBQHZrPP0ayjBEEmvMHTt2DP4cPua9e/fi9NNPx549e6Juo4HTGf2CZV5enqbtxCuZrycA+P3yi6ilpaVxjynaaxFtHKFjCR9HW8cg7VH79+/HtGnTMHv2bOzbtw91dXUoKipCr169cNppp2HKlClRixF///33eOONN7BixQqUlZWhqKgIo0ePxi233IJzzlHJdCMi0kBv7YiCs+dHXK4zZiJr5FOoW/WPxkYpvW8DDK83O66LGZlGHX7c1zz1B0/pasGfh2XD45dQ6vDjb4si/7FIRETaNfdFN7VJJKntCn8/je1sxtLDyhJJRVZGaVNJ1DABLKWP0NvcY93Gr1VrnCiuKWO++uqrsWfPHgiCgOuvvx6XXXYZjj32WBQVFcFkMkEQBIiiGJwsTIrxGYk2qVg6awiWnnPOOaq1byk5GKQF8PLLL+Pee+9VpP8fPHgQBw8exC+//ILa2lq88MILinVFUcQtt9yCadOmydqLi4tRXFyMr7/+GjfddBNef/112VUJIqKk0clrD7W2TFqDTkCXzOb7Y6XIGjj2mvQCOtiSv58at4jdNV4UWfXomqlvlX+4kjrJ54SvZisMOcdCMFhSPRyitKM2yaNW5U4/rAYBjiiTSZbYGaRtT8LnDevWjH8bUOIila2qcYvIMfN8N90cd9xxKCwsRHl5ORYvXoza2lpkZ2fHvZ3Q7M9YGbk+ny84YVnDLeupFmvMoctDx7x161b88ssvAID77rsPjz/+uOr60TKG24qCggIcOnQIHo8nagIjNU27P4o+/vjjuP3222G329G/f38888wzWLBgAdasWYN58+bhmWeewUknnRQxwHr//fcHA7TDhw/HjBkzsHz5csyYMSNYl+Stt97CAw880GLPiYjaF0EIu94mpXeQdluVPNPXoAO6ZDbfNcPskBMGk149gOqKEiSIZnGxC7fMK8dTK2rwt0WVuH1+BWedbiM85StQ8klnlM8cgZLPusJbsTbVQyIVnFgqdbx+CS6V1/+ghjqyr6yrxZ9/rsANc8qj1hctcTBI2554w74/O2Wo/23Aj31q1Uaoc/LHeeWYzYkb044gCMFJsex2O956662EtmM2m4MTOS1btixq3zVr1sDrDfy9ny7BvBUrVmheHjrmTZs2BX+ONuFWQ73WZEnHpI+G+NbKlSvh8aR2DpR0fH2SpV0HaX/66Sc8+OCDAIBrrrkGGzduxF133YVTTz0Vw4YNwxlnnIG77roLS5YswVNPPaVYf/v27cGCyKNGjcKSJUtw2WWXYfTo0bjsssvwyy+/YNSoUQCAZ555Bjt37my5J0dE7Ycu7CRGTO9yB3tr5SfwBkFAl4zmy5bRMhHJmlLl7ZRa/HdtrexxqVPEipLEtkXpxb7xGUjeGgCA5K5E/aZnUzwiUlPhUg/i8WJJ89tYoX6C9t3e6EGa3TVezRM/MUjbvoR/XZsjXFjl5zu16iIEaSUA722ph4dR9LRz5513But/PvTQQ9i6daum9URRxIcffhh8fOaZZwIIBC6XL18ecb3QQHDDOqk2Z84cHD58WHWZKIp49913AQQyhkeMGBFc5vM1nrdEm3jttddeS9JIAyyWwB1cbnf6nFdccMEFAICamhq88847KR1Lw+sDpNdrlAztNkgriiJuvfVWAIE6LdOmTQvOQKjGZDIp2l544YXgh/bll1+G1WqVLbfZbHj55ZcBBD7czz//fLKGT0QUJBgyZY9FT02KRqJNr2x5ULm43od8S/N9HTk1ZMmWJzA5TaTs2y92JD5zLqUP197P5I93fxihJ6VSpM93eEYeJV9FhONmWYzA6nd7tGfaMdjTvoR/bo064LTuylIzfFukVq0n+i+gjLWk007Xrl3x3//+F0Ag0Hjqqadi4cKFUdfZvHkzzj77bDzzzDPBtltvvTV4h/Ett9yC2tpaxXpz5swJ3mk8ZswYjB49OllPo0ncbjf++Mc/qk5C9dRTT2HDhg0AgBtuuAFmszm4rCF7GACmT5+uuu1XX30V33zzTVLH27lzZwDArl27krrdprj22mvRvXt3AMBdd92FRYsWRe3/yy+/xHyfJarh9QHS6zVKhnZbk3bOnDnYsWMHAODvf/87DIb4XgpJkoIfxIEDB2Ls2LGq/caOHYsBAwZg27Zt+Oabb/Df//63TadmE1HL05kLZI9Fd0WKRqKNcuIwC3SCAL3QTCdeGraZyC3TxfXqt/QmWjqBiOIXXsOygUcEWEW4eUXKZoxUr7JBtVv7RTHG2tuX8M+zXidgSv8MzD8gz7xu7gnrKLpI5Q4aREiAphS7/vrrcfDgQTz00EMoLS3FhAkTMGnSJEyePBnHHnsscnNzUVlZie3bt2P27Nn44Ycf4Pf7ZROPDRkyBH/729/wzDPPYN26dRgxYgT+/ve/Y/jw4bDb7Zg5cyZeeukl+P1+mEwmvP766yl8xnKjRo3CzJkzMW7cONx5553o168fSktL8e677+Ljjz8GAHTr1i14p3WD4cOHY/Dgwdi4cSNef/11VFVV4eqrr0bnzp1x8OBBfPDBB/j8888xbtw4LFmyJGnjPemkkzB//nysWLECTz31FM455xxkZGQAAKxWK7p27Zq0fWllNpvx6aefYsKECaivr8fpp5+Oyy67DBdeeCF69+4NURRx+PBhrFq1Cl999RU2bNiAl19+GaeeemrSx9KjRw9069YNBw8exLPPPotu3bphwIABwUnZOnbsiKysrKTvtyW02yDtZ58FMmQEQcD5558fbK+srERFRQUKCgqiFrnes2cPDh06BAAx33Snnnoqtm3bhuLiYuzduxe9e/dOwjMgIgpodUHasBlPzYbAX/NGnQB/M0RptYQDEsm6OxgpSMsUH6IWEynTkrVqm1+kScNiBWlr4gnSxjMgavXCg69GHZBv0eOMHhb8tN8V0q+lR0ahamN8hnVMSEpbDz74II477jj87W9/w969ezFnzhzMmTMnYv/jjjsO//73v2VtTz31FOx2O1555RXs2rULt9xyi2K9nJwcfPrppxg2bFiyn0LC/vznP2PhwoWYPn06LrvsMsXyzp0748cff0ROTo6sXRAEvP/++zj99NNRVVWFTz/9FJ9++qmsz5AhQ/DZZ5+hS5cuSRvvrbfeildffRWVlZW49957ce+99waXnXrqqViwYEHS9hWPsWPHYsGCBZgyZQoOHDiADz/8UFYSI1wik9Rpdd999+FPf/oT9uzZg8mTJ8uWvfPOO7juuuuabd/Nqd2WO1i6dCkAoFevXsjKysJHH32EIUOGoKCgAP3790dBQQEGDBiAZ599VrXGxebNm4M/Dxw4MOq+Qpdv2bIlSc+AiChAZ5EHaeF3QfKl78QNFU75H/dHY7QwaixLG++f/pKGWM2vh+KvZbSuTL0eY6zbACm9OLZPQ/WSGyG6ylM9FErAYbv6bbUbKzywR0qzbQXqPCJWlbjx2yEXZu52YFd1+tUaD7/g1uCIwx8x01GUJOyv034rtF+UsLrEjcUHXa369xnKW7UB3oo1qR5GWlIGaQPf+IawoB/LYCSuuN6HXdVeSFr+OIpgR4zjkb8J26bm9/vf/x7btm3Dhx9+iKuuugoDBgxAXl4eDAYD8vPzMWLECPzpT3/Czz//jA0bNmDSpEmy9XU6Hf73v/9h0aJFuPLKK9GjRw+YzWZkZ2dj2LBhuO+++7Bjxw7FeungnXfewUcffYQJEyagoKAAZrMZ/fv3xz333INNmzZh0KBBqusNGzYMa9euxf/93/+hZ8+eMBqNyM/Px5gxY/Dss89i+fLlstvvk6Fr165Yvnw5brzxRvTt21dWgzXVxo4dix07duC1117Deeedhy5dusBkMsFisaB79+6YNGkSnnjiCWzduhXXXHNNs43j1ltvxRdffIFJkyahQ4cOcd8dn64EqSlH6FZKFEUYjUaIoojRo0fjxBNPxEsvvRSx/0knnYTZs2cjNzc32Pbaa68Fa9p+9tlnuOSSSyKu//nnn+MPf/hDcL0//vGPmsd68ODBqMsPHz6MMWPGAAAOHDiAbt26ad42EbUNorsSJTPkgdr8sxfA3Cn5t5Y01c5qL+5fUiVru2dUDkZ2NOPmuWWaApxWg6CpzmyD3x1jw1XHNtbtvXR2qWq/IqsO/z29UNM2t1R68Mhv1RGXf3B2EYy83y/tHZ4u/x0VXrgJxtxBsG9+EbXL71D073xdu/uTKa2tLXPjyeWRa3AXWHT454l5KLI138SEzeFAnQ8P/1oFe9hxbnIfG64YmBlhrZb34pqaqBe4PjynCAZd42dMkiRc9l1Zk/b5v9MLUGhtXb/PUHWrH0T9+scBALZj/4KcE15I7YDSzBXflcrKHj09Pg+9cox4d3MdvtvjlPUNf39RbN/vceDdzfWQAJzc1YzbhuXEXCfcT/udeGNDXdQ+z52Sj25ZbSNYoubgwYPBupzxnn/v2LEDPp8PBoNBVuuUmkfoXcytObOS0luyP9ftMpO2pqYGohi4Gr9hwwa89NJL6Ny5Mz744ANUVlbC4XBg4cKFwTqzv/76K2644QbZNurqGr+cMjOj/8HcUDsEAOrr6+Maa/fu3aP+awjQElH7JZhyFW329U+2/EA0+HGvU9Fm0DX8r+1kq0tGfCfoWSZt2y1ziqjXmKn1+vroJyhbqtIv643kRK/yd1i94FIAUA3QUvoJD9qEq3CJmLMvep90NP+AUxGgBYBvdjkgplFuRawJwn47LA/grilVv/sgHvMPtL7fZwNJ9MK+uXESYceWF+Gr35fCEaUXUZIUdekNETJpAWDJIZeijaKbfjRACwCLi904FKFsUzSxArQAJ24kImqKdhmktdsbZ952uVyw2WyYP38+rrzySuTl5cFqteKUU07Bzz//HCyU/dVXX2HZsmWy9RqYTKao+wudHdDpbL1/XBJRehIE5aHcfejHFIwktkXFypMq69Eo7XEF0Y+lDW4fHrm2kUUvYFTHxu3oBWBiD6usz5T+GeGrBRVrvA030i3WDapcnNk43fmqN6u0bYQk8nfXWkQqORLq293pW/olkqoo9R49afT27BAjQ3lBWEBV7fgfzmqIflHt8x2t7/fZQPLaIfnssjb3wdkpGk36Uasz23BHSpVb+cZXu+hLkandPLuponkuKJc520ZpEiKiVGi79yFEEV7P46abbsKAAQMU/axWK5544ongxGKffPIJTjjhBMU2PJ7oJwmhNW2tVmuUnkoHDhyIujy03AERUWuUaQychF03KHBXws5qLw7b/cg0CqhXmYCmU4b6V9fgAiMu7peBrpkGWA31qHL5MblvBmxGeRD7/GNsWF/mwVaVbNdk1TxMp0AKqfPb96u2S/7IQSBJ9EHQtcs/nagFRau36fZLsMQIZLaUWIfL8GQ6LROG/WN0Dh6OUkrG3HorHajylq9M9RDShlod44a3+rguFiwulmdmu1mXNi5qL1dzZbwGMnTNMfsREZFSuzzTyMrKkj2OVtT6jDPOgMFggM/nw4oVK1S3EauEQWjmbqzSCOFYY5aIEiVJEoRWMMNupkkX/P+2YfIs2Uj1Y8P1yjbgwbF5wcfh2wll1gv487BsTJ1foVimtdxBLC6ePKY9f/1e1XbJa1dtDyyrhWDOb6YRUXMwtsJ7xqJd5EmnwFSsyZvCa4eXOaNfvZrYw4o+OcaofTJb4y80Cm/FqlQPIW2off02TByWZVK5YyiNPgutgVqmcnMFaWPdbURERJG1rb90NDKbzSgqKgo+bij8rcZisaCwMDCRTFlZ42QHocHTWJN7hWbDRtsXEVEyufbMSPUQNMlIQlZYvCcaGUb1fapl7oZy+UT8tD/2LZaceTr9+SPUgnRG+dyIbmVgn1JDa23WdMk61covSlhfHvkOrZY+tuys9mLhQScWHXRie9jdB7GOu3tqA/Uuy51+/LDXEfMWaItBgFEvwBJl0sUKl5hWdXnjoxy3r2q96m3o7ZHa+6mhZn22SpC2Oiwzu94rYskhF/bXxl9ntS3ZVe3Fb4dcqHaLmLvPiX/+VoWPt9WrXoRWuyC0rdKLZYdd8DbhWHOIQVoiooS1y0xaADjuuOOwYMECAIDfH/2LpGG5wdD4cg0aNCj489atW6OuH7r82GOPjXeoREQJqV50JfyOYmQOvjvVQwGgXg8NAPRJmJ1Z7TbJaCLVPfxpvxPn9rapLhMlCY/8Vh0MPETDDJ/0FylIW7firxHXqV54BQp/tyLicmo5N80t19SvztO6Pov/XlkTdXmZ099is6YvOODEq2GTJN5wXCbO6hU4RmoJ4qwqceO/a2vhUJkILVzl0VreWSYBLmfk/m9sqMP/DY18t0Rr47fvhyGzZ6qHkXJ1HmUQ0RDMpFV+Z4fGHO1eEX9bWIlqtwi9APxtZA5Gdmx/t9svLnbhf2trFZcDNld68dVOZSmf8L+dvtvjwLubA3eIHpNjwBPj8qBL4I6sw/b2HSin9NGrVy9eCKNWp11m0gLAKaecEvx59+7dEfvV1taivDxwItC1a9dge+/evdGlSxcAwMKFC6Pua9GiRcH1e/XqleiQiYjiZt/ycqqHEFRcH39mRfidrQUW9a+teGvARjrpiBZI2Ffr0xSgBQCXhoAEpZbo1hbkC+WtWAnJ13onLmorKl1+2GNkvbdG+2p9WBtjMrS9LZgl+OZG5Szub29qLPGlElNT+PfKGk0BWgDocTT4rHZre6hFB12t9EKY+pi9pb+18DjS0yyVSf4aMmmjZVcDwLe7HMHMWr8EzGyFEwYmw8fb6iO8y9SFZy83BGgBYHeNTzE5o0utZoKKOo8Ep8a+REQk126DtBdffHHw56+++ipiv6+++ip49eXkk08OtguCgMmTJwMIZMouXbpUdf2lS5cGM2knT57cKupDElHrY+4+WbVdtB9ImyvIarfandzVotKz0Z+Ol2dLRcqeijeTFgBO6qLMsukUZbbyeDLyWO4g/Qn66O+9SHx1e5I8EorXkThupTXHCO6kk721sWdajxWsSqZIMZaGcgPJPM4JAE7qEvhM5ke4GNfAL2mbhCzdSH6XarvnyPwWHkl6+uWQW9HWcEFVEASEv/MLrY3vk9l75EHZLZWxP0ttUXmMkiLhYh1NNoaVXilxaN8+Y7RERIlpt0HaoUOH4pxzzgEAzJgxAz/99JOiz5EjR/DAAw8AAEwmE66//nrZ8jvuuAN6feCEfurUqXA65XUKnU4npk6dCiBQKuGOO+5I9tMgIgIA5I6fHnGZ5KlquYFEofYH+81DspSNIU7sbMYtQ7Jwclczpg7LxtAik2o/TwJB2psHK/cdbSvR6i/2yZHffsyJw1oBKbGaef66XUkeCDWnGEmZaUXL9bR0SNKvPXrBqqmTDg0tNGFK/wyM72LG/SfkosPRi2Qdolwsa6B2a3y6i5SF7z78cwuPpHX628gc2ePQiemSNOdnuxOrlEH4nzKlDu3fm2lwqCIiapVa0Z+uyffCCy8gNzcXoiji/PPPx7333ovFixdj5cqVeOWVVzB69OjgpGCPPfaYrNwBAPTv3x933x2o9bhy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eyT5CI2g2dORfZY19RXSY6S1t4NOp8YRGIPLMuZpabIAg4o4cVtw3LwfgoWbfxljsAAJtRh5vCArXRgiTRssaOCZuRnJm06U/SGKQVTHmyx/66yCWSqGXE8+kytqJMWi3SYdKshtqx4XHS+0/IxT2jclTWUDe2sxkX98vA1OE5GFLYeAGug7V9BWn9dTvhr9/fwqNpfTqGBe8dXiktPg/pIpE7imKt0aQgLX81REQJabcThwGBIOvMmTNxySWXoKSkBE899RSeeuopWR9BEHD//ffjnnvuUd3GE088gdLSUrz99ttYs2YNLrvsMkWfG2+8EY8//nizPAciogaG7L6q7X5XKQwY2MKjkXP6RHy/R363gSGJlwkTPRcITyIREbjleGWJB26fBL0OGFxgwuBCU9Rs3fDbc1eVevDNLjsG5Zuwvy5QQ/LUbpbgJCiUBkRtJ5umjifDfeDb4GMfM2lTLp6T/0qXiPt+qcRtw7LRJbP1/9m7ucKLyX2adx+1HhFLitVvzQeAj7bW4/TuVsXFKJMOyDHFDrDGoi2TtvVFgCSvssZvA/eR+bD1vbYFR5NetAT/MsMmD5MQCNSGtzc30V0J5673obN0gKX3pRAEHdxHFsJbtgzmbudBZymCa/dH8JQuhj67P0xFY2HufkGzl7xLpE53rCD3nH1OTO5jQ+HRCyelTmbSEhE1t9b/12oTjR8/Hps2bcLLL7+Mr7/+Gnv27IHH40Hnzp0xYcIETJ06FcOHD4+4vk6nw7Rp03DxxRfjjTfewIoVK1BeXo7CwkKMHj0af/zjH4NlFYiImpM+Sz1IK7pKWngkSs+urMHGCnmNuERmDE628Djx/lofHlhSJbt18qudDvx1RHbU2ylzzMqI80db7QDswcerS924e1Ruk8ZLSSRpmIBJb4WxYIQsSOuvZyZtqpXFESgAgF01Pty5sBL/O70gGGxordaWebC+zBOx9EtT+UQJ/1hciQpX5APehnIvNpQra36a9IKsTmiiijQEaWtbYSZtxffjIy7zHP653QZpq1x+3LO4Mma/zPCZRAHUeUUsjHBBQZKkpAdGJb8H5bNPhL92OwAgo3INTB1PQdVPFwCQULf6XkCSvzftALLHvIiMQbcndSzh1Or+x/LzAReuGRS4oyjS/AX/WFyJF04rQKZRF2cmLcO0RESJaPdBWgAoKCjAI488gkceeSThbZx77rk499xzkzcoIqI46TO6q7aLrvhnsU+mGreoCNACQEkcf+yHsxoEWT26/nnGKL0jC09sjVRL9rfDbgyIsg8tkxOtLPGg1i0iWyWgSy1PEmMHafW2ztBnHSNr423JqTdja33sTiq+3GnHLUPUJx9MB1pDGj8dcDZbkHbJIVfUAG00Rp0AmyEwwZOW5xIpoNtBQ6A3kYBUOvOULE71EFLm8x122fd5JCa9AKNOXn/W7pXw3mb140GZU9SUlR0P174vggFaAHDueAeiswTBd7yk/r50bH+j2YO0iWTSZocU7Y50s1CdV8LaUg/Gd7UoJibLMAoR98sQLRFRYnimSETURgg6A6zHXKVcIKZ2luPmyHi6fVhjoEUAcPWxmQltx6aSmaPG7ZcinsCc1dMKjZtpc4GF1kzyRb71uIFgzIbOEFa3OMIM7dRyahK81f03ldnj00mWxlnOVpU03/PYWa0hwzwCoy5QJqxTRuzAWEebTlaHNpTFoENRWKA2/Bjb2g6lUozyKv76PSm/oJoqK0o8qu02g/LipyXsgqg7Sv335pjA07nnY9lj0V0O5673Yq7nq96U9LGES6Q+b+hdQNFervXlgd+RM2wG2Jwoxywm0hIRJYZBWiKiNiTnpDcUbZKW27qbkZYMmXiN6GjG30flYHIfGx44ITfhTNpMo7ZbISUpUK823LWDMnHNoEzNtWb1rEmbNkRPjbxBUN5cJBhsgN4sa5PE9A70tVeT+9jw5sRCjO5ojtjH30aiBs15GGnKPGsNx8Hbh8fOVn70pPyoJW+ePaUAw45mC98yJAvju8gnjmx1v0sNxw1P+coWGEj6iTTR5jWDlBdfTWFv0GiTdPoTmEgrFr9KTXLBXKBp3ea+/V9t6yM7RM+4Dw3sRpt4rPPRCy+OsL/not1F1Mo+oUREaYNBWiKiNkQwWGHuFlZ6RcNt3c3JESHlKUtjgDSSER3NuGJgJgZHyMbSIlNj5poE5QnW8CITzu1tg0EnaJ4EjV+66UGSJEjeWlmbPks5G5Ogt0EIC9LCzyBtOrpiYCayTTpM6Z8RsY878QorLUJrDCdQUKB5JCNIm6ehpEtujD4Wg4B7x+Tik/M64IweVsWFMF9ry6T1q2eLhvJWrGiBkaSfSIFWtUza8KBg1CBtkqOEkuiFr3ancoHGv7GiTRyXDOHHjyyjgAv7Rj4eAoA/5HMU7fWSpMD3ZvhF92jZyq3tOgoRUbpgTVoiorYmLCPQU7IQGHJPigajzLxoUJAGE/hoDRSvLfNgbZn8JDs0CUxrwOD7vQ5cMVB75i1F5vFL+H6vAw6vhLN7WZFn0f5+chf/qCgDYsg6Bv7abbI2wWCDoJNfBBBdpfBWbYQxb3DcY5YkEc4d78BXsxXmrmfBc2QBPCWLYcgbDEv3C2Duelbc2wQAX90eOLa9Cr21C2zH/hmCTp5Z7tr3NWpX/T1YS9HU+XRkjXwaelsX2Lf8F6KrDKKjGO7i72EbcCuyRj4JnSknobGkmtYLJpFIkoTfDruxu8aHMZ3MCWfpx0uUJPx8wKmpr8sv4YMt9TiuwIjhHcyQJAmLil04UOfHSV3MOCYn8TE3Jdu/4bXP0Fr/JYFtN9hd0/QyPu7DC1D542mAYED26OcgGDPhq9oAfdYx8Nfvg7FwDKy9pzRtH4fmwn3wO3gr18bs6z2aSStJIurX/wv1ax6Etc/VyB77KnTG6MG21sQvSvj5gAslDj8mdLNEDA5aVIK04Zm0/1ldq+jTuJ8mDVPBW7FGNSNa8tao9FYSXaUQDDY4tvwXzt0fQJ/ZE9Y+18BvPwh/3S5Y+90IY95xmraldpxSvIwaPsp7an341/JqXDEgI+qFk0+22zEw36go+xTpIjzATFoiokQxSEtE1MYIOvmh3X3wO/hqtsGQMyAl44lU7iDfkvq8UrXZorU6VN+YlhctmyfU7D1OePzATUOyYnemqF5fX4tfjtYYXXLIhZdOK4h6+3QDb+U6VM07R9EePkEYAAh6q6LcAQCUfzMEna71QxDie//YNz2HupX3HP352WC7p2QRHFtfQf5ZP8Hc+fS4tin5nKiYNQaiO1DP0le/GzknvBRc7jowC1XzL5Kt4zn8MypmjYZgyoPkqZItc2x7Fd6qDSg8t3VOZBTrAkisGd8XF7vwv3WBjLdZux149pR8dMtq/j+XZ+52YHVp7GzL0P4zdwP3jcnBEbsfb28KTJ70/V4HXji1AEUJTph0sC7xOy8MR19Xk16ASQcksxx5eIbvzmofaj2ibOKjePhqtgcCtAAg+VC7/C+q/STRA1sflVrvGnhKfkHlnEmROwgGIKQckbd8OSRJQv36J1G/5kEAgHPX+/DbD6Dg7PkJjSEdfbnTgc932AEAc/Y5Ivaz6JW/2/AgbTTJLonhKV3SpPVFVynsW16CY8vLAABvxSq49n0ZXO7Y8RY6XLwHOkvs8gmhx6nZexx45uR8Reaq1k/GujIP1pV58PhJeVH7/XNptaLNHqWcFYO0RESJSf0ZMhERJZVgUAYAXfu/bvmBHBUpSDusmWYnj4exCff2HnE0Bmk7apgop8Hc/dqy5SgyUZKCAVogMIv31kptmXWqnwXBAEPOsYpmnTlPkUkb3M6+LzTtL1RDgDaS6sXXxr1N574vggFaAMEAQAP3we8irhseoG3gLf0FfvuBuMeSDmwxsuPDZycP1xD4AAJBho+32ZMxrJg+2prYft7cUBcM0AKBrP6ZuyMHvmJpSpZ/6DWvaNm0sepkqm9bOa5lhxMvPVK3+j5N/WqW3JDwPuo3PhN1eUbYHS6i8wi8ZUtRv+YBWbvnyAJIvrYzYWFDgBaIXoJEUgnzxXHDRNJLYviqNzZx/S2K43MoyVsH+5aXIi4PFXqcEqXAaxp+sVgnCHHVr/5hb/zHjTO6WyMua46awERE7QGDtEREbYxF5fbMlphZOJJIk1GcHuWP+9amd7YBfXN5c0pLqfUo31NVbm1n5L6arYo2S8+LYelxIQRTbmOjoIOl1x8g6NQnovLXKieQaSrRcTDudXyVaxRtUkgph0TrIIruyoTWawnhZUpyTI2PM406HB/lApA3zsDBhnLt2a2pUKYSdN5RnXgpgG5ZiZehCQ0IZZrUo0NGHTBlQPy37mepZMwesiee9es+/LO2jmLir6X7wLdRl2cNewT6rL6yNseOaap9/Y7WedEkXLTJqcKp9cwxx1HWJslFaUXnkSat7z78U8w+zr2fJrTtzRUelDnlEe8Cqw5WlZIRkWyqiP+9PrGnNeLkYc0xaSxRW3DddddBEAT06tUr1UOhNMUgLRFRG2Ppdi4sveSBWm8Kg7Rq50lvnFnYpCzWZLosgYBBOEEQ8OAJebhpcBbO6912gs/pqtKlTL9Sm2RGja9GXnfWWDASuSe/C31GVxSevxxZI/6FzOMfRsE5vwRKD6iUOwAA6OILZkliM81aJSjrj4qOw4379SeYgSel78xM5rDf9f8NzZY9/uuIbNw8pO18Fif1jO95WJpwbG1KHc/QMhKRSsn8a1w+emXHXzM3W6VeZpOCcCl+f+szekDQGWHrJ8/Ude35RLW/v35fSwyr2YUHEqNRq1ZQEEeZpGQHaf1NDNJ6NFwYEBO8g8GsF1DikL+2HWx6zd+LQHylJBp0ztDjyfF5uG5QpmJZpPkIiFrSggULIAhC8N+ll14ac52GIGq00khEzYlBWiKiNsg24I+yx77qzc0XJIohPHPmxM5m5GiY/bulZGicPCwWi0HAxJ5WnNmjbQSG0lmVSxlg0XJrqySJisnBskb9G8LRQKwhux8yh96LrOGPwNThRACIWO4gfIK+WER3RVz9NZOU2YR+x6HGxYkGadO4oqDdKx9beIkDi0GHM3tYceVAZeAg3meVDudogwriC2qqTbikVbLiWmrH1QyDgB7Zid1xkK2Smau1Frgqqfm/DwVj5Mn3dLauAABr32uBkNrWkq9etX9bCdIesccRpFVpi6eWfbpl0oqukph9JJ8dkj/+Mh5mg4DSsCBtR6setjjq7psSTKLvmmnAOb1t6BhWBzvapGJEqfLZZ59hw4YNqR4GUVTpc5ZMRERJY8gNmyHY74K/fg+8letweLqAw9MFOHd/3CJjWVQsDxI1dfb1ZLOqTE7SFFoCJGKSJzRpbypVgrTvbKqDM0akVrQfhOST190z5AyMuo4QIZM2fII+APDV7kD1L9ejZumf4XeWyvet8QRfipHh561YHfwMl88cBfum5xR9/I7i4M/ug7M07TfecTQnvyjhsaVVuHR2Ka75oVQWjPOLkuI22mj1T7VaVeLGpbNLY3dsBrGOB/FkwwHxZSuGjuH7PY4m1bMNpZZJa2hChq/aBGGuJmTqSSoXN5rCdfAHVC26EvXrnwqWGxGMUe7SOBqY1du6wNz13Jjbr/n1Johe9QBuqkiShIUHnXhxTQ3m7nNC0vC9djieIK3K5vLjKErblPdHKE/JL6icey7EkItfzenI+xa4D0UujXBYpcxHIJNWfszuYNMjnnn1DtTFf9wI/USHH6eYSUvpSJIkPPzwwykdw/Tp0yFJEvbu3ZvScVD6SrNTZSIiSgadpQMEs3yGYG/lGpR/Oyz4uHrR5Ypbv5PtiN2nmKhHnw6paSGaknWmRksNuN8OJT7hDQHzVCZfq3CJmLYxehDDF5ZFKxgyobN2jr4zjZm0kuhH5Y9nwrlzOhxbX0H1oitky0XnYWjhLVsWcZnotaN85sjGvhWr1Ps5A8EEX+0OTftUHUcTZzJvimmb6rDxaH1Etx+4aW7jxGhqdQ4jZcOrHWrUAj8un4R/r6xR34aG8TZVrGCSNc4rWwfq/HFP2rPwoAvTNycvCKj2O4knYBROrSZthcrFGs2aUGs2nK96K6rmnQPX7o9Qt/pe2Dc9DwCQPOrvKQAQQrJnbf1v0rSf2mW3N22gSbauzINX1tXh10NuvLWxDks1TOQWT5BW7bcbqdaxGlcSMmn9jiOomDMR7uLvm7yteFTOOVO1LrgoSXhyufJ9ZdYrM2k72PTNfrt26ObD72hgkJbSTWFhIQDgq6++wpo1ynr+ROmCQVoiojZIEARFhqBj6yuKfrWr/tGs4/hVJRjpSbMZf8PrW2o1OMItyGa9EDOw89La2oT2SQGdM9SzqRYXR7+13x9W70+f3TfmSaxgUC9foc/oLnvsLfsVfvv+4GPP4Z9kM7JrnYjLVxX5Njznrvc1bcNvD2TSug8mHlho7mNDND/tl/8eQ29bVgvSRrowIkAZZFWbuCjarOYtcbiKNcFOpIl5oimOIxgGAB9ubVqANvwzqZZJqzbJmVa5KiVycpoQ9RWMWQmvG65u3aPyx6v+Dkn0QfLZI64jhgRwzd1iZ9ICgHPnO4kNsJm8tl4+KeG0TbEnKazWOMEjAHS2KY/zXTK0l8uoSCCjPJx983+AhEvGNHXfLyjaSh1+Re1ZIFD6Izwo3UHl9Uum8I+4IpPWm15/6xHdfvvtMJsDd0c99NBDKR4NUWQM0hIRtVGCQX6rZWgAqYG35JdmHYNa1syQgsgzr6fCMTnx10g06wVcrlLvEgB0goDMJNW5JXWJ1hqUwm4X1plyY64j6IzIGHSHol1n6SB7HF7eAABEd2MGqNaJisLLMcj2Ub9H0zYaMmlFT7Wm/uo7S01gIhavStTUqIuUSSsoMu9qVQIHe2oj3/qe7LqWamIFaROpEmCPsx5knadpz/PsXvKLGfFkPGphUPkdq00mppWp8ISmDEfGV71Z0RarrmjoRVRBZ4Q+e0DSxtNSqsICrlreQ1pL/fTI0qNIJciYY9bhlK4WTdvYUd30khbuw5HLDsQmIGf8uwmv7aveomiLFOT2hDXrBaDQ2ryn+Wf2sEIXcpEzvP5trPJDRC2te/fuuOWWWwAAs2bNwvLly+PehiiK+Pnnn3HXXXdh3LhxKCwshNFoRG5uLoYNG4a77roL+/crz7dCNUxM1qtXL1n7o48+GpywbMeO2HdCnXXWWRAEAZ07d4bfr35R6uuvv8Yf/vAH9OjRAxaLBbm5uRg1ahT++c9/oqqqSvPzppbFIC0RURulmPBI5eRIFkRqBmrBhz658c/s3Zyi1Xs8s4fyZPCkLmb8++Q89I3yPNRuzaXkSbTWYHhmm2CwaVova/R/NGxc+Qey6CprXKxxoiIxwsRB8QjWpG2ByZFaWnjsUUD0IGZ4LdNalSBHXXiEI0RL5ILFCtImUsc7WVlsE3tYccVA9dqq2SYBk/vY8NhJeTi7l/yzpFYneESHpl2gu7CPfB9qWdGaCck7Rqtm24vRg7S2fjfIHmccOzVp42nNxnY246bBWXj65PyIfW49Pgv/GJ2De8fk4F/j8vB/Q7Nw2YAMRTb3gTofXE0MFIr24tidQuRO+Bw5499F9thXUPi71bD1vSbhfUt+ZVmfmghB2iqX/FhfZNXLAqih8pIwcev9Y3JxzSD5hWrWpKXW4N5774XVGjhmP/jgg3Gv/+ijj+KMM87Ac889h19//RUVFRXw+XyoqanBunXr8Nxzz+HYY4/FV199Ffe2r7iisUzWRx99FLVvSUkJfvopcBHpsssug14vP/5VVVXhjDPOwEUXXYTPP/8cBw4cgNvtRk1NDVatWoVHHnkEAwcOxNKlS+MeJzU/nkUSEbVVuvAgYsv/wayWzZVmJWmhE4SIt0tP7Kk8+T6pswWdYtxyqTbJTbj6KIEhii7RWoPKIG2UiX1C+wlCzICu6FFmJIQGabVn0ka+RVprhVT/0QluJG/s249bm/BMWoMOUUtWKIK0Kp+7aEHalhA7SBv/QTPeTNpILuyrnLUdAMZ1MePNiUW4YmAm+ucpL1ip3U2QwNOQCX8dmhJ/k5KYKa52bJD8nqjr6MyF8m2YcpI2nnQWK65+54gcTOxpjRhgBALf2cM7mDGsyIw+uUac1t2Ki/pm4OmT82UXbCQAu2ualk0rukri6m/MGwJb32uQMfBWGAuGBcYbq+55pH2rfKdEyqSt9WgvdaBWOkRNtPkYhxaZFL8jljug1qBz58649dZbAQBz5szBL7/Ed0ehz+dD586d8ac//Qnvv/8+lixZglWrVuHrr7/GPffcg8zMTDgcDlxxxRXYskWZDR9N3759ccIJgbs8YgVpP/nkk2D27JVXXilb5na7ceaZZ+Lnn3+GXq/H1VdfjRkzZmDp0qVYvHgxnnjiCRQUFKC0tBTnnnsu9u3bF9c4qfnFf48nERG1CuGZtP76var9PGXLYSoa0yxj2FypnJwlzWK0AAInF2qBEptKCpuWQEOWhlt9jzj86MuM24REy6Qtc/gVt8lKkgT75hdQv/4JWbvWIK0WavVfK+eeFfd2RGcgKOA6MBNVP10QbNdn9tZc7sBfsxXl341LaZBWdFeidtlf4K1cDWPBSGSPeRE6c17C27t0trKcBBC51EGD8CDtu5vrcUInMwqsje+R8ABHOEmSmnUCnli3BSdSNtuuMUBS7fIraouGyrfokKMS1FGrORtKLZM2drXu6MI3qVb6QitfjfaT55KPOyFr5L9g63cDXAdmoeqn3wEATF0mIveUDyHolUHa0s97Rd1m+MSeOoN6+ZxwkuiFoLgAmz5cPgkzttVjX60Pp3S14LTuluBnp9YjYnVp9OB1U5j1AnpkGWTlS3ZUezEogRJLzn1fonr+xXGvJxizlW2mHEDjxJGhRFeFom1dmbbXT+3CSgO/xpITnTL0OFCn/W6M8AkOWe4gcZIkQnQrf/9tlc5cIJtMsbn9/e9/x+uvvw673Y6HHnoIP//8s+Z1b7rpJjz88MMwGuXH4REjRmDy5MmYOnUqxo4di+LiYvzrX//C++9rm0ugwZVXXolly5Zh+/btWLlyJUaNGqXaryGI279/f0WfRx99FKtXr0Zubi7mzZuHkSNHypaPHz8eV155JU488UQcPnwY9913Hz788MO4xknNi0FaIqI2StBrOzGp+ukCdLj0UNL/QJIinAikY5A2UiatReU+ai31IbWUO5i33xm1ZAJFFi2T9pV1tXj4RHkw0HNoLupW/FXRN1lBWkn0wX3gm6Rsy7nzHWSNfFIWoAW016Nt4C39NSnjSVTt8jvg3P0BgKM1O3VG5I6bFnO9XdXKCzvRxIgVqma1v7q+Fg+c0PgeiZVJ6/JLEY8RyRArM1yfQAqq1luN39pYhzVRAj86QVCdoCvW666WSduk8gRIbiat6Dyiva+rBDVLboQ+o3swQAsEjiu1S6eqZ9nHKHegs8gzaSV/5FrUoeybX0Tm4Ls09U2Fmbvt+GFv4Db9LZVe9M4xoHdO4HvuHQ0TizVV31yjPEhbFX8mrd9+MKEALaA+IZ3OkIlECs+El6OSJAmrNAa5owVptX5uOtriC9Lawj7zLHeQONFdgdKPO8Tu2EZ0uKwUektRy+2vQwfcdtttePrppzF//nzMnz8fp512mqZ1w+vIhuvWrRvuvvtu3HHHHfj222/jvsh76aWX4s4774Tf78eHH36oGqTdtWsXli1bBkCZRVtfX4///e9/AIDHHntMEaBt0LNnTzz44IP405/+hM8++wxvvPEGMjKSl7hATcMUHiKitkpjto3oKoFoP5j03ddHyORq7sksEpFvUT+hUYuNaPlbS8us46am3vvbjkXLpN2hEuRzbH9Tta+gV6klGYkQ9h4RG/fjLUteTS9j0Ylw7novadtrikgXWrRw7vlY/njH25rWW10aPbgVLtYI1Y43G8rl75ECS/TPq9as1ETFui3YahAQb9K9Q2O5Ay2ZjfkWveLiVJfM6HkeuWblMbXQ2rTZ5i1hgfL6BEs6iN5oJUUiq5wzSdHm2vtJ/Bd7BINiHVOH8ZpW9ZavjG9fzaTSpQzemfXA5zvkweb3tzTW2N4VYyKvZFwI6ZMrf18etscfpHXsfCexnQt61YC96FK/CyAWY+5g2eNI9WjVdLA1HjB6ZMk/d2f3smJ8F3PMbZzTS73ET1GEv+HCL8xUOJlJS+nr7rvvRlZW4KJKIrVpG9TW1mLPnj3YtGkTNm7ciI0bN8Jms8mWxaNDhw6YOHEigEBJA1FUfo5CSyGE1rEFgIULF6KmpgYAcMkll0Td1ymnnAIA8Hq9WLVqVVzjpOaVfmfKRESUFIKg/WYJrZMaxUPtBPrMHhZYEpkFp5md21sZrLtuUKZqkFZLuCZfQyDa0wKzxrdFkiRFreHpFZUziEe8tTk88BpF+C3NoZlvyf38SBFLk4Qz5A+D7djbk7jvsJF4ahJfWYwvI7aBO86XslOUjDEAOKVb7JngY9V8TXSiOq0iZdLqBOD/hmbBoBNwTm9tk9w1sGscc7TD0CMn5gIIBEfP6dV4jOxk02NMp+hBHotBwHkhx1WrQcAZKhMxxqMwLJhe5kzsc+er3tikcYSLr76tgOxRzygyq/SZPWDu/jtZm1EtcCs1rcZqsqxRCe53UanVXupo/B2FH5fDJSNIG16LtcIVf6BQclfG7qRTvv8Dt2wrn0NDjfBo1H7XOpu8lm08pbNDM2lvHJwVfG17ZBlwSjcLLuqboVrGJNRxBUbFZH86AZjSX/2iROewCzdVbpElDyhtFRQU4I477gAALFmyBD/++KPmdfft24epU6eiV69eyMnJwTHHHIPBgwdjyJAhGDJkCG655ZZg3/Ly+CdobsiOPXz4sGophoYg7QknnIC+ffvKlq1c2Xghr3PnzoE5FSL8Gzy48ULQkSPa7y6h5sdyB0REbZUunkN88oMQ9Sp1Hm8eoqzXlg6GdzDjldMLsL7cgxKHH+O6WNA9y6B6gqElubAgQmZuKHcTb/1tr7xi7HeryyfJb72MNGlXHCU+BGMGEBKLkUKy8QSVE3Yt8ifNg3PPx3DueCtkw35N2xOMOSj83WoIggBbvxvg3PUe7Jv+E3UdS8/fw7XvS83jE91l0JlzNfePRfK5IBiiB+rizRi9fGD0Wp6RsuRDb0GMdVtuohPVaRV+0WFcFzPO621DhlEITlJ4+YAMjOtiwfd7HJh/MHZQsCmT9tgMAp45JV+W+XrVsZk4uasFtR4J/fMMmi62XX1sJk7pakGlS0TfPKOmCRWjCa81XeeR4PKJcV/481Wua9I4wvnrdsfsIxizUHDWfAjGTBhyBqj2yTv9G3hLl8BbtR7mbufBkNkT1YuvlWXWSxonIGxuakFatXdc6NdcrK+8JiTuB4VnxTt9EhxeEbZY9TlCaJnoq/D85Sj/9nhZm6CPcGxTCax3vLwCks8J18FZMBWOgbFgOGp+/SMc299o7CTKX+N4LuyGBqsH5pvw/Kn5KHeK6JltgEkvoFuWDs+dko/Ddj98ooR/Lq1WbEMQBNw9Kgd7anzIMAqo90rIMukillLoZNNDgPx9cKjejz656XdhnggA/vrXv+Lll19GdXU1Hn74YZx1Vux5BL7//ntccsklcDi0lahxOp1xj+vCCy+EzWaDw+HAhx9+iDPPPDO4bPXq1di6dSsAZakDACgtTSxzX+vzoZbBIC0RUVsVRyat1pnn4xE+u3iexhmFU6XAqsdp3eUZtYnm9ajdPt0tU4+D9Y1ZRcykTYyWrEaPX4ItpNpHpMBGPHWYw29PlnyNQVpJjH8yHFOn02Ducgb8jmJZkFaS/BA1TPhl7jopGGQ05h8Pb8WQmOvoLPHVuBNd5UB2v7jWib69Uugze0TtY9JS9DlE1xi33Ufilxon5Ao/VoWLlrmdDOHbtxl06BNWr1oQBPTMNmBCd4umIG2s5wRELmcxuY9NUZpAEAT0yomvhnbDOr1y4lotoiKVcgllThHds+L7bvFWRQ/S6qydIcYx0VN4vWhj4Qnwli+TtQk6M4yF6rUBg30EAaaO42Hq2JhVqc/uL++UBkFanyhhQ7nymKdWczi0JVaQNhnPTO0CablLRI84grRqk3+F0pkLYVA5LopaMnCD28gHzEDGgD8G2/SZvWR9JL/8NY5norzwoHSeRY+8sNcmy6SLWT9fJwiKY1EkJr2ADjY9SkKypwNBWtbej5fOXIAOlyUWbGuNdGETKbaU3Nxc/PWvf8VDDz2EZcuWYdasWTj//PMj9i8vL8cVV1wBh8OBzMxM3HXXXTjrrLPQp08f5OTkwGQKZJ7//PPPOOOMMwAkVjYqMzMTkydPxowZM/Dll1/i1VdfhcUSuAjUkEWr1+tx6aWXKtb1+xs/f6tXr1ZMcBZJt27d4h4nNR8GaYmI2ighzkxav7MUNb/eAl/Velj7XY/MoQ+o3ronShJmbLVjYbFLViOtyKqDQScgwyjgxsFZ+GyHvO5fhspEMulO/fnHXi9fJZjgDgvKhj9uKatK3PhgSz0kAJcNyMDYzsrsH58oYfqmeszd35gBcOvQLEzoriwLYd/2Omp/+z9ZW864t2Hrd33Sxw4Au2ti30Yfmvkoemrgr92m3jGecgdhQdrqxVehevFVAABT59M1byfoaIkEIWwMvorV8FWs1jKisIexgxCCOV/r6AAoJ64J5fFLeG19LZYcaqwhO21SITIbggN6CxB2G7i3erMsSCtJEurXPQrH9jehz+yJ3HHvYG9tR83jyzQKyDYldlzxiYBBB3j9EmLFMxsuDDh3fYi6dY9CZylCzomvw5h3XEL7BoBfil34Yocdh+zKW/bDa6+G0poRuLHCi80Vnqgz20e6fTpdLx+Z9AJyzDrZ906pw4/uWZG/63z1+1Dzy/XwlP2meD9GIvniyygKrzlq6nSKIkgLjRN5hgu/kOQ+8A0qvj8F2WNegLFgBIDAxIVV8y8JTl6YfcJ/Yet3PWqW3wHP4fkwd52E7FHPxcxiBwKfyc932LHwoAtlThE6ofE7r3NGIFNS7T0LQPVzFPp9Get91ZQa2A2MegE5JgE1IXfyVDj9yDHpcMu8xuPZvWNy8Nl2O1w+CVcdm4nhHULuXpCif8eI3loIBuV3oeSrV+kdB538PeI+OEv2OMESzC2qa6Y8SLu31ovtG71YV+bB4AIjrj0uC+Y4L8S1R4Kga9GJtNqzO+64Ay+++CIqKirw8MMPRw3Sfv7556iurgYAfPXVV7IM11CVldov2ERy5ZVXYsaMGaitrcWsWbNwySWXQBRFfPxxoN7/xIkT0aGD8sJ7QUFjwLuoqIjB11YqvdOaiIgocXFm0to3PAn3gW/gr9+D+jUPwVv2m2rXtaUefLvboZjEoswp4rDdj53VPjzyWxV2hk0SkhlHJku6SPRUIkt1ZnP5Y3cKZj72iRJeWlOLQ3Y/Dtv9eHltrWpm6i/FLlmAFgBeW1+H6rDJYnz1+xQBWgCoWXIDRE9tcgd/1KvrY2eZ7qppfO85tv4vcscmZNKG8hxW1gyLRfTWxj2GsBGFPYy9HZ0pziCtK3KQ9se9TlmAFgA+3x5yYUYlu7h+7UOyx56Sxahf+whERzG8pb+i+rc/47fD2icO65ppiGvW5FC+owEhtdqtuWFZ/y6fBNFVjuol18Nfux3e0iWoXTY1of0CQL1HxCvraiMGu6LV5syIo27nE8uro9YB/Xl//Ldhplr4pEWhNU/V1K34GzxH5msO0ALyetOJUJ0ELNEApMrn2lOyGFULLw/eIeAu/iEYoAWA2mW3oX7T83BufxP+up1wbH0Fzn2fadrd5kovPt/hQNnRSZ9Cg6yH7f6I71lAPZM29P0XKwibrG/EAquyLu2/V1bL2p5cXoOd1T4crPfjpTW1srGHZ7AqJHDnhEyEsgiCSiBf9DYGflvD3TddMuSv/aw9TszZ50SJw4+fDriwuDie+s1EzS8rKwt33303gEDm6VdffRWx76ZNmwAA+fn5EQO0gLwubKLOOussFBYWAmjMnl24cCGKi4sBqJc6AIDhw4cHf16yZEmTx0Gp0frOmImISJO4ZpyWJNg3vyBrql1xl2rXfXWxJy5Rm/zH1gozadVKHfbPi33rkCAIipOV8AmM4pioOWnKnX5ZlqlPBA7WK3+f26qUmUQSgNl75EEd155PIu7LFRI0SKZYk88E+jT+XLf6/sgdkxSkTYQxf1hgu8boNVUjCZ9FPDwjV40hp3/MPqEkb+RAu9px4Pu9gfeHJHrVb8vWyT877v1fyx7XlKyIa3ydM7RlQodPfgM01mw9EPY89IJKXUu/CNf+b2SToXmOzIckJjZx1cKDrqgTdnVQycRvkBHHxS6fiGCwTU1phIm3TuycWI3llhBeDzP89xfOU7Ys6nJVok9TXVI1gjk/+NmWbTKO8gmhpAgT8Plrt8NbHvi81K36h2J5/ZoHZI9rFl+jaX9fht0BEw+12/FrQzJaW6ImLQBFqY5Sh19x0TiUwydhY2j5hhiTHmaPDVz4yxgif92zRj6t2t/a7ybZ45wxL6r209uUGW/+msa7QLSWO7g0wsReLSFW+Zk3N8S+yErU0m677bZgVurDDz8c8YKSzxc4jrhcLoii+nerw+HA+++/3+QxGQwGTJkyBQDw3Xffobq6OhistdlsuPDCC1XXO/PMM2GzBf4+fOmll5JyhwK1PAZpiYjaKL21k+a+kko1OH/dLtW+atkyWkS7hTdd6QQB/zc0Cw13513SLyNmDbcG1wzKDGbEndzVgj458pOXVGTFqP3q1P5+i3QyqKjNGWWmcdFVFs/QNNPyqvk1v0dTE6QVzAXIGHQnAMDU4eSEtpEx6C9hG439XAxZkevLCsYc6MPqLEarteuP8od/pNvFRWdJWD95QMiH+G4JL7Bq+/39QSVoUXV01vftYRckemUbkGlSZtKqZVf6HQe1DlXGE+X92TfXgFGdIr8OZu0VOgBED2KqDeOsntbgZGXpqHe2PNC/uyZ6kFby1iSwFwlZIx5PYD1A0Nti1l2OaySeyON3H5gJQPm5aopdMV7PaGpVJgsFGi+sxboumaxYQnggvyRGtjUg/16JdtwzFoyEtVegDmTGwNuCNYMNeUNg7Xut6joZg26HztYFAGDqeErEfuauykmLJLHxzgIt5Q66ZOgxsaeyFEMs94ySF45+9MS8uLcBAD2y0/fYQRRJRkYG/v73vwMANmzYgO+++061X79+gb+RHA4HPv30U8Vyv9+Pm266CYcOHUrKuBqyZd1uNz766CN88cUXAIDJkycjM1P9An9ubi5uu+02AMCvv/6KO++8M2JAGQBKSkrw1ltvRVxOqcEjKRFRG6WzxZEJpHJ2FGnyokTrohkSvC051U7rbsWojmb4JeVt0NEM72DG/04vgNsvIc+sw7qwiVZSVZM2nNoo7BFmhhfDeuuiXAiIt66jZmFDu39MLl5bX4sKV+MbU2slCS3Zp8G+cQZpC3+3BoacAfA7DwOiN3CS7nfDb98PQ+5xEPSBbEXBFH2SGjX6zN4w5stnFo8VpLUecxUES+TJOTpcshvVv9wAf+2OYFu02379UY4DkYO0R2SPBZM8EOAX4ptgJk9jxPKYHCNyzTpUh6SvV7n9AIyKrPEB+UZUhGWfBkqCKI9f/rrdMGT2jGvMAKCLcih87KQ86KIcK9XKO3S06XD78Bzcv6RKsexAnQ+jOqpnxob/Dkd3NOGGwVmRB5cGjsmVn7rsr/PB65dgVKlzKfk9kDRMwqfG1u8G6KydUDXvvLjWa/hcJ4voqY64zHXgW2SNeByCMQuIUj86Hs3xvXSw3o8eWYaYQdhk3VwSHqQ9EqVEQwN96IcyLJPW1PEU5E/8EaK7DDprJwhH7wjQZ3RF0eT18DsOQ2/rolquAACMeUPQ4fc74HeVQZ/RI2KJFsFgg85cKKsFLoWU6fCG/W66Z+nxwAl58PgliJIEQRBQaNHJn4tGIzua8c6kQuyq8aFfrgEWtduINOiRZYCA9K1rTRTJrbfeimeffRaHDx9Gebn68XTKlCm477774Ha7cf3112Pt2rWYOHEicnJysGnTJrz88stYtWoVxo0bl5RSAyeddBJ69+6NPXv24P777w/Ww41U6qDBo48+ioULF2LZsmV48cUXsWDBAtx8880YNmwYMjIyUFVVhU2bNmHevHn4/vvvMWTIENx0001Rt0kti0FaIqI2Sm/tor2zWkakX71eYTwzDIeKlj2W7rRmz4bLMOqQcTTuFD5ZRiqCtFp/BY5IQdrws+goM42HZ0kmS/jIDLrASXlokFZzJm0zljswFgwDABiyjglpzILOUijfrqCDYMiI6/UyFo5SGWD0gKVgzoPOFCk7SoBgylMGGUQ3pKMn/w0k0Q/J74yaSSt6lMFCIPCeEL126IyB11JnDgvSIr4gbb5F+++vk00vD9K6RIiShK2V8kB0/zwj1nrlbU6/BNGrfE7+ut1A59PiGjMQOWMwz6yLGqCNRICAvrlGZJsERTZjpExaSZJkpU8A5W3i6ah3WKaeXwoEakNnkJd8LggGC0R30yZv0SdQ8kCIUG80UdEygX1VG+Cr2xMI0iZIlKTge84nSpq/I+Kxo8qLHlmGFit30DEj/kza0Bt9wjNp9Rk9IBgs0Bu6K9YT9GYYsnrF3L5gsGm7oBP2/pH8jZm04X9DGXVCXBeOY7EZdRhSmNgEdw1MegFdMvUork+sFAxRqlitVtx3332YOjVyvflu3brh1VdfxU033QSXy4Wnn34aTz8tL3Ny6aWX4uabb45aszYeV1xxBZ544olggLawsBBnnaXMug9lNpsxd+5cXHfddfjyyy+xbt26YHatmuzs+JMFqHkxSEtE1EbFk0lb/u0w1XZf/T7ZiYUoSfhuT2KTzbSGSS+aU3iQtimvh69mO8q+GhB8nH/WfJg7T4jYf/kRN55bpX6yv7LELauz6xMlbFWpSQs0ZjpJkoS6FX+DffPzEffp2vcFnDvfheRzwNTxZHjLl0GSROSc+Cqsvf4Q+cnFUK8SQNaHnadqnpMtriCtLXanBAmGzLiCtIa84xVtQozSDYIxC4LOAMGUCyksO08w2CAIAgSdPAvQX78PFd+dBG/5Slh6T4E+sxfs6/8FAFhbuA8QlAGpw9OjBxlFVwl0xkDgOjyg5Y9nskPEF6TNC+tb5Rbx3KoaRf3sAXlGbK2Uv/9dHp9i0jMA8Nfv0T5YBC4evLWxDj8fUJ88J/x9rFXDBZ9csw61HvkTOlCnDJasK3PjX8uVx4MEEvBanM2oQ+cMPQ6HZEfurvGhm/MXVP54enJ3lkhWbNIzaaOXayj74pjoy3W98G72mzhoHArMLoVeACZ0s+CmIVlYU+rBGxvq4PVLuPa4TPTNje8iiVZvbKjD/ANOxUWBcMn6C6FTWCatokyPin8urca9o3MwrINZWZNW1zyvixpFkN/vxuYKD/63rhblYRn+pjT9wPbMNjBIS63SzTffjH//+984cOBAxD7XX389BgwYgGeeeQZLlixBdXU1CgsLcfzxx+P666/HlClTsGDBgqSN6corr8QTTzwRfDxlyhQYDLH/VsrKysIXX3yBX375Be+++y4WL16MQ4cOwel0Ijs7G3369MGYMWNw3nnnYdKkSUkbLyVH2gZpd+3ahfLycvTq1QsdO3ZM9XCIiFodnaVDk7dRv+5x5I57M/h4c0X0CTWiCQ9StjfhJ1ReUZ7FFI/aFX+TPa788TR0vi5yPcC3Nka+5febXQ5cNiAjOI61ZZFvcW/IovaWLY0aoAUgu23efXBW8Oea326FpfvkiLeGRlOjMtuaIChLaWium5zCicNk2zZmAi7tdSUVpQ6AmM9FOFpKQGcugF8RpD363MJ+J85d7wV/du3+SLbMpxKg1UJ0HgEasovDUufEuDNptWd+hmecbarwKCYTKrLqkG/Rwxp2rKqv3ae6TV/dbs37B4CNFZ6IAVoA0CdYEqbh0JJr1mF/WFC2uN4HvyjJboGetrEeahLdf0s7JscgC9LuqfVi2K7bE9uYzgyE1P0MFX7RQotgkE1vAfxJmMk+St1vLeZm3BEI0B7ll4CfDrgwoqMZb6yvRc3RzOtpG+vxx6HNV+piR5SJuxoka4Kb8In/tHpyRQ0+PrdIkUkr6JqWXRqP8HIZkt+FdzfXKwK0AGBM08T3nlkG/Ar1zxRRS5swYYLmY4vZbMb+/ftj9jvppJPw1VdfJbzP6dOnY/r06ZrGdOyxxzbp2Dh+/HiMHz8+4fUpNVp84rDS0lK88soreOWVV1BTo7w6vHPnTowcORL9+/fHSSedhK5du+Liiy9GVZX6rXNERKRO0DX9OpyveqPs8SfbE7+FfWwazxjeEtSC1Ilm04YGPRtE+iOuwimqBjdDhWYaHaqPfDLd8AxqV/w19iAjkNwV8IUEcOOhdttqB6tekYEYrV5qqFjZp6F0ppzYnRIUbx1LfVYflbboGXXGorEAAkHacA11LyOXQ5BrSigltEZoeFkEhy6+1zjLpD2oWBB2K7/abO/HFwWCMYawz6rXo15jV/LWat4/ELs2Zgebtvfjeb3lEwNdPSgwgchlA5QTifglZWmVSLd/t5braOEzyNe4fIrvKs1ENzKHPSJryhn3DgAkVEagIUibO/5dWXvDRIHxyhz6QELrNVhuuVy1/ZmVNcEALRB4jxyobVpAOF5DC+UXZf40LDm33CZSk7WBR0RqM2nD63Q7D2FvhN+LMU0zaTtnpGn0mIiolWjxIO2XX36J2267DS+++CJycuR/jLvdbpxzzjlYu3YtJEmCJEkQRRFff/01Jk+e3NJDJSJq9RpONkOZu56jef3wmn5NuZo7skM7D9IalCdU4bdaN0mErC21CXXChQZpPVECnA0TijV5NvEImWuxqL39Cqx6RQagL6SjYIxy4q/TfjJp7hbfBEJxiVJPVi2DV63upSH3uIjbMHU+HeYuZwBQD9JmHBfIzNZn9Y05VAAQkfhJeGiNRb/joGxZjS7yRHTh7hieHVcWehcNgYMp/QNBzvCtRj7qxXc8jJbgnWfWqQZZ1Zzb2xaszTqmkzl4bO2Ta1S9GBb6kY52DNe1+FlBYqxhx1KnJ3L2fyw6WxfY+v8RxqITAQQ+55ZelwSWmQugNmFcNA3Zt5YeF8LSM7AdQ97xsA36S0LjM3U8GdY+18jHbClKaFvp5nfHZOCYHOX7OJX8oqTMpE3gro9EGbLlx2Bf9faIfdM1SJthbCUHEiKiNNXi5Q7mzJkDQRBw0UUXKZZNnz4du3btgiAIuOCCC3DGGWdg3rx5mDlzJpYsWYJPPvkEl156aUsPmYio1bL1uw7WPldBdFcAou/o7MF5ODxdBy0BBiksSGtKMNVqYL5RU7CwLVPLpE1k8jBJjDARkN8JwWBVXRaLKyRIGz6DdKh9RzN6RHdFQvtpEG3G8miksPdsxtFgTfhE1LJM2qhlAOIod5DkCYG0jsOQNxTest/CxqIMZqjOGC7o0fHyClkWsKCSEWztNSWwr+x+mkYbbYIvEQJ00cKaIQF6v11e961WJy9vNSjfiIfG5sIvNd7S7/JJMOuFuLPlumZGD9J2ydAjJ9IkPJECm3FetIrW+9UzCiLO+h6u0KrHv8YHMu7CA9XXD8rE0sPyiyChw4w2htZS7sASdix1+RLPALUNuBV6WycUnLsEgVdHCP4eBJ0egjkfUjzHu6OfTUFvQt5pn0ESfU26q0XQGZB78rvIGf8OIPoAQQ+/fX/MWrSJiHYDwrRJhXhxdS3Wl0cPiJ/azYIbjsvEy2trsbIket9OGXr8a1xj5qjW939z8omAFJ5JK7RcJq0hu7/ssTtKSRVTmiashl9EISKi+LT4pa5t27YBAMaOHatY9tFHgXpnp59+Or7++mtMnToV33zzDc4880xIkoSPP/64RcdKRNQWCDoD9NaO0Gd0Dc6mLhi1ZWyJ7nKI3sYSB2qBxtBJpyIJP6luj9SSS7ZUelDrESF6aoKvs+i1KyaL8YkS6r2B2eira8tRo1PWG5Z8jpCfXRDd1ZrH5vRJqPWI8ImSYgbpUFVuEQfrfKjzNe0ar99RDK9fQr1HhCRJ8NXtlpVAcPlEuHzi0edRGcz+C8/ybYjTGcICdg1xZkmSIHnV628CiKsmbbOKMg61wKnWGomCwaYs0yAqAyf6jG6BfeX0VyxTI0bJ/PUhejDbV7MVoqcWHr+EOnuVLGi4zzBC1jfPooMgCDDoBOiEwD+bUZfQ7cxFVr0imB8q+iYjfSYa20WvHaK3DhVOPw7W+VDi8Afft5IkodThx4G6KKVE4gxQNbweau3hGj7SoqcWYpTPQ5om5ilYwoJALm/iQVrD0TIhgiBAEHSK34Nq1mqUCe6EsGXJKDsU2K4Ogt4EQaeHTmMZBjHO07xomd6ZRh0cvth1ZAotOlgMOgwpjH2MMugaXnchLQK0AOB0lCvuSmnJTFp92PG+rrY4Yt90zaS1GeMbl+itizlBHhFRe9LimbRlZWUAgG7dusnanU4nli5dCkEQcMstt8iW3XDDDZg3bx5Wr17dYuMkImrLBEOmrDZkNCUf5SJ/0o8wdz4dtSr3wg/IM2J7VfQJxdr7pGFAIHgiQB7ueWVdHYA6DPT8jFtdt8Ha6w9w7nofks+BzOH/RNbxD+KI3YenVtSETJSjAwo2IEMsx+MVxwVvxhWdJdBndIOn5BdUzb8YoqsU1n43wT/i1Zhje+DXQG3QIqtOUbsz3N8WVQKFWzDeOQ2X1N8X78sAANj42zN4e9dpqPKaMMz1Da6p+2Mw+3LtqfV4f4sdOkj4g+ufGFP7Kiy9pqBy2Pt4Ylm1bDsN5/Xhby9fY1QqxsQ7cbwvw7OrkilKgCL8pB0AoHUiG0lZT0PyOZW7P1oCQWfrqmnCo2iZtB7BCpOk3EeD+jUPYfOGL/F24deoNs3GyKwvMKXuLryV8x52mE6W9c2LlNmaAL1OQCebHgcjzDoeGtwM/22s9fSHS8iERZIHON3FPwAAnLs+RNmvf8a0zNew1XR6cHn3LD3uGJ6D/66txZ4WqvepFrfxihLq1j6K+rWPQDRkA3nqt1BrnW8v1cIv+jkc5QlvS58ZPSNVb+kAf81WWZshpz981ZsT3mdTaa2V6xLiq6kbekeFmmgXGRo0BFu1BGnTMch41xIHHq74GbIiMy1YkzY0k3al+WJ8kPFKxL7p+PoBgDXa1bAwzj2fombJjZB8dmQOewRZwx5qxpEREbUOLZ5CUl1dHdhxWOGrpUuXwuv1QhAEnHnmmbJlvXv3BhCYdIyIiJpOn9lLe2fJh7qV9wBQn2xHJwAdbdEDe+Ezq7dXkU6Bt5pOh9tth2Pba5B8dgAS6tc+CtFVjtl7nLKZzBvYdYXYZxgZfOzY/gYAoG7NgxBdge9L5463sOfQTs3jK3OK2FqpLRj5i/VGlOt6at52qJ+sU1HlDZzEr7VMxg5jIDjngQUzttbCLwFeScCXxr/CDz1cez/FV5uUM+7WHp34JjyTtiHhK2oWLeKb+EnyRw48NpWvcn3EZYacAYo2zZm0KvV4dZZCZb+G27sFHQwa6tKKUYK0XiF2WYjvMu5BtT9QmmOV5WLMyrhfEaAFgFxLcu/n7ZIZOTchVrxjtVlZpgsIZMnWrrwbW/QnyQK0AHCgzo9Hlla1WIAWUI/3ry6uQP26RwFIR48v6iqcySyS3XzCM2k9grJus1b6rN5Rl6tl0hpyjo2yRvNHurVONOgQcuPa7roy9VrhDTG3bFPs7/GGz5GWGtDpWLrUI9iw0nKxrE1o0XIHgeOvBODbjOgBy0TLTzU3m8ZyB5Ikonb5HZB89QAk1K97FH4nz/WJiFr86zEzM3CL7ZEjR2TtCxYsAAAMGjQIeXnymS2NxsCXo8HQ4om/RERtUtbIp+Lq761YBUkSMbhAebLSNVOPPx8ffVbm8V2bs55n23DEMFDeIPngPjQPc/ZFDg4usP4x+HNDkNZzZIGsT93+WUkbY7hKffeE1ltrkU8G+n1G4CJAsWEw3GLjyb1Ll43ao5NJraiO/B4LP1f1N9xmHiP7VWs2ORAhozWCnHFva+4bGEiE2bsLRsHc9f/ZO+8wKaqsjb9V1TlMTsAMOeeco2AgKogJAxgx5/Ctri6ucXXX1cWVYEKMBHUVxwCiKCIISM45D2ly6Fz1/dF0T1dX6OqenpkeOL/n4aH73lu37nRXVVe999z3jAGjr7Ys4JLbB30vw7F1+5t4HAPflrSxdhAnMApPSqTPGhBxuD4VuwMtIu0uw0jR+5WW22TbBZJjxQs14SjUs1bOv7ZAJyfMMRC8VeAdBShhG8v2W+6OLNpd3TZ2kTEcObH5gz18MKq6kkmVNjiHMwaP7PogXKR1xSjSckltwZqk1jGhyIm0xtwxiu1DbWfqG5+KLYNse4Wv/6Ge/uvPhFYWUfk1MsdtIBqbYZiIImyirrD50vaC6D1rTKuzfTM6/2fshRFlnHoixUQUuQH/uHIiTNwDgK/iEHhHQXWB4IOncH0tjowgCKJhUOeX9/bt/Q+h33//vaj8888/B8MwGDZsmGSbgKCbnZ0tqSMIgiCix5AtjVoD4F/qrABfdQJyqyEHNTahXZo+mMRJjjYpNMkWCR4yDzURPFMZLcnf5PqNArXgKV+cXJO88IuOOkj9Ur2MFm9D+UjaSFFtQoRl/aEwDIvkgXNV27DmHJhbTYW5Rc2TnOpSOiOp/3/B6q1IHvQOOGszcMntkTLwbUX/RmuHe2HMGw/WnANL+3thbHKptN/0nrB1nwHWlA1D9hDYuj8rqreHCb1yqNodILbkdeGMa2FGR5lJoZrQWCV52JT21T7dvbOlIngRKzchIQDnEqEJMXpq5to4XNIsPp8ZIO9J6xWqT+ISTl5MBkLPm8Qm3O7Ay5iiuhYxOgu45PZIVjmXAsiJtIwhBfqsQbLteVfs1gv1TamMndHo5mb0zPJfg4c2MWNQYyPsBgaDGhtxWXPpcSuEZKn7xxBlcTPFKPX/TVQ4e6s63V9Sn39rmnhIVLsDhmEwvasdjWQmxUJPXW/RZunGPvloboIgiAuJOn9qHjt2LNasWYO5c+eiQ4cOGDJkCObNm4cdO3aAYRhMmjRJsk3Ai7ZJkyZ1PVyCIIjzEoZhoEvrDm/RJlF5zvUVODlf/qfBV3EQVZ6OorJ7uycFBbLLW1vwyS7pUlo9mxhZmxMd2SQvcUhsJUQZTRVO82Rlz2E+bBkoa8yISaTwMH5RjJWJKPWoiH6BZbhKkbSRiNbCwNzyBpT+LvbNNzS+BOmX/BBVP1rIvGJr9X6bT4a5+eSI27CmDKSN/Fq1DcMwsHf/G+zd5cVYzhr5XotXOaY8TPX31WiaAFfBChT9MCJY5lUReAMMbGzEjR2j89PUQmOr8rgzQryYOZbBnV3tmL2lOtJaKWq82uM3+mvc//VJRo8sbUvXtRJpFEoRvwDAazxv6pvwSFoAcDEWWASpfYkhZzjSL/s55n3JRdoyrAHmZpPhOb1KUse7CmPeV10xpb0Vl7eyYt72cnx3qPoaGC7Sd880YFqn6vPQpGNwf4/qqH5B5ngJ9TVWi1wf1TR+ExPRomOBj0f7v9dr8iMvr69rkdbU4hq4//xXxHb6BI1EBoCO6Qa8PjwdR8u9ePTXomC5T/AfNwzDwCMj0jaE84cgCKK2qfNI2nvvvReNGjWC2+3Gvffei27duuHf//43AGDAgAEYMWKEZJslS5aAYRj06dOnrodLEARx3sLoZCI1FMTUKiYZWwsKcaRc7FkY6j3mUEg64mkg0Vn1jRAiyAoAzrDNsfKsulDFhyw790KPg2fOooqptgU4w7XAyarYfSaTDIxq8qbw6DXGkKzQUp1TunbwgYNPJmq2QNcemwzj5Pd/7tgKz1NyrLgEPx04hS1n3dhgvBylrPyS5mgiaQGA0UmFBd55Jqo+zgfUImlDRVoAYA0poveVrPJy+wC6WprUUYukDSczLIFega6DbFy28+jXqGDScVAX/T1qbSz3VgquO6jrjUK2KXYYRsk3gPJy90QjPJIWAMpY+dV2vqrjNdqXbCQta1BMJsU7E19kMpw7SCJ5h0ZaTi83+Rp6DKlNzspZitQV0UaMc9bYbH1ihTVnw82lRGynwSK43pE7hgL3ikWnt6KAay+6j3AeWlxXQyMIgkhY6jySNjk5GT/++CNuvPHGYIQsAAwZMgSffvqppP3mzZuxbt06MAyDiy++uC6HShAEcV4T8D6LxGFdD8xKXgjncaknqFVf/RB2uA6T45yPOEKSvHxr+QuWWR8ETqlvE3i4cTB2zEz5CifW8rCnrcJdJddgo3ECllkfqlEem6Z2HU6piLy+sEhaLSLtEV032fI3Ur5BD9dXkvIPk2Yp9hX407gwMeCww4w5OwHADCT5LQqml1yLDh5xRF20Iq0ccRFpGS7oGdoQ4FVuH8M9acOPiUomPWL/USQHjwprFCaOWTKeih/bZ+KG8vtEZev+/Ayz07dCUPHpVaI2Ev8oibRvpOZH3LahiLRy4vbLab/h6cI+SOfFCQb5qhM12pecSAvWAEZBpBU8pTXaX10QWP1iiXA+hNvIaEFrNLaWxGKJAsPW7VgZhoXHEjl6N1HtDkKRu8bdtvQMpnfw4V33K3Cl2dHSswZ3lVwNPVxwnYj/qhSCIIiGRr3MwXXo0AHr16/H/v37sWrVKhw4cAC//PILGjeWX4L1/vvv47333sNFF10kW08QBEFED2dtpqndz+a74GTlkzZZQtQUpczPLZPJj1YLB/X+SDw3TFhuuVfTNgFP2lWmaTih6wQAKGez8LXtac19qNEsSYdDKuJ7eEQlX3k0Yp8rzbfKlh/R98RXtmdl65RIMvgfABlPccS2c1I+k5SxhshRnZHQJbeP3CgC0SQlSwTUEhJ5IBZppZG0kZPwhIvutU2KTLR4mklatt50tShSHQCWWh6MSaAFaieStiY92vSJL/oAfjsKOVaZp0rbJrWt0b5kRVqGVYykZS3KdhJ1j/znFNBmrRG+71gmESIJvwFyVKxHEgldapd62a/P3CJim0S2OwhgkDlXfWDw1k4dXKx/pdABfX/sNQyu66ERBEEkLPW6UKJFixYYMGAAmjdvrtimW7dumDp1KqZOnQq9Pr4JJAiCIC5kbF2fQuhDnLnNLWAYFrpUcaTjMZ38Q4pZx4gSQwzLlU86NrRJ5GzvFwo3hCQnCsfC+4VGB5uk6vkZSjOPf0XKN7a/isp3GS6S+MXGQpcM9aRd4XYHWqJKi9ncGo0plAfO+SMy5btj2t7a+dGot7F0uF/03tzy+pj2HUpy//+K3tt7vljjPmuCPkN56b6h0Uj1xGFhdgeMIQWcvXXwfSUTWaSV8xyNFy2SpOeWXOIupSjCSrY6ElgAsN8gn0AqEmYdoykDerTUxP97cpvIyYoSmZ9kJqZs3f4q01I7crZADMOA4eQ9VZP6/LtG+9OKMXeMpEyX1h1J/d8Kvncz8qtlzOfOr1bJNf+N6JdT7anMMsDFYefS3d2klj3tUvW1eo4DwMRWyiuFuob8rvXNkXpCN/VsDL62tJGfVKxtfMaMiG0agt2BRePEz0bj5QAAxhh5pQVBEMT5Tp1f3v/+97/j73//O86e1Z5YpLi4OLgdQRAEER909uZIHvIB9Om9YGp+VVAYShn6cbCNGyYUctKI29YpOjzcK1kUydEhTY8b2tuCyxhTjCwua26WPLRdyFzczIxLmpllo4sD2ZzVlpKHk8RH8ENQwazwkJxqZNHIyuHqtlZ0y1QXacOFYE4mqtTc9nbRey1Zq7XQv5ERHdP9++c4bWIXDwam5ldDn94byUPmQ2fTFk0eir37szC1nAIuqR2snR6FudWNUfcRjiFnOOy9/gFdek9Y2t4BS4f7Im9Ui6QMng9Do1HQpXRCUv+3kDpyCfQZfWFsMhrJA2aDh/LnHbA7MDS+BIBf0EodvgCG7CEAgAoNkbRKx2Y8eLp/iuj9kCZGjG+pzfoFALyoPicqmMhCihxy1894cmPL6Gw8WibrML2LHY1tDSO6UQu6lI6wdXsaprwJNexJLqGjDoxeeh3jktrB1EyaALk2SOr/Foy51V7dhkYjkTL4A1ja3AJrp4ehS+sOByNvPxOIdm2apMNtnZV9z8e0iPzbPbWjDX2yDWiVrMODPZIkK2oGNTbh8hDBtGOaHtO7xj8pYDgTWlkwLNeElsk63NTBhrEtzMi2cOieacAdXar3f3Mn6cRpYPLR2vEhWNreIamvC3g28u9kQ7A7YDVOGqX4CsCassGZc2p5RARBEIlPnd+NzZgxAwzDYPLkycjI0HZzW1RUFNzumWeeqeUREgRBXDhYWt0IS5jIpE/tFHx9hmspWcr7waUZMMmYRjIMg/GtLBivEsFyoWPSMbj13EPx7M1l+PlYtZjiYvwPi2oCWDjGvHFgT0gzjCuRZvBh1sWNAABbz7rx/B8lovqbOtowtoX27y88kpbV2xHurJoycC4srW5E4XdDAQBORjmaWCuDGhtFWcZ1Gj0DPY0mInX4ghrtmzWmIDVkIiMeMAwLW5fHYevyeFz7jRVdSnukX7pMVGbKqxaEmLTeil7HgcRhupBl5vr0nkgf/SsAwLkkctby2oyys+pZLBgrn0hOC6E+zKd10Wd9f7JvMrplSqP34kmu2Q1A2wqGMS3MmNqx9kWzuiLj8i3Qx3WJusyBzurA6KTXseT+b4Jh6+bRSmdrhrRRS2Trkvr4zzH+t7cBGYvcUJuDi5uZUeHh8dnuSlEbI+f3JI9EupnDo71TlMfJMpjS3oYpKqtIagOLnsXd3cTWJDd1lLZLM3F4vHcyXllf/UFVsmlIHblEdM2ra3hOg0jbAOwOtJLMFyD72pP1PQyCIIiEoAEslCAIgiDqg2K2CVZY7hSVpfqOygq0RPSEC1FFXB526kfgNBeF8MOZYGp6uebmGfpqUdguswwxKYrESgBQzmZgs2EMjnF+YZ/hTHDBgp364TjNtaxuyBrhgw579ENwRtdaobfY0WmMpC2PMfKREMPLCFQBthsuAQ8WDCcvElawKRH7Nyew+OCFAQVcO2wxjMYyywNRbx9N8rJYYSVTJcqUuKJMdZ/gyImnNULwQgBwQNcHB3R9IABgGA6Mzuq3u9D3w0Fdb/++w/yX6xuHIH8Ohh+DcmJssyS95ijIho49LPq3kk0Fo5f34a8rfGzkyVK94K6DkdQcK8ojthFIkiAIggjSINY1eTweACBPWoIgiDrikK4XZiUvhIsVP/Cm8AX1NKLzD4NQhVBP4K3GMdhqlPoMqsGwRphyLwcKtbVP56qjhcIfTAGAi/I56QfrY8HXV5U/ioH8cbyW+j1O6dqBE1y4pexWNALAcEZ8aH8Lm0zaBWU1wjOIc0phnWFsEnqjftLAnF8cg3Kis72GwZiT/CkeZbfK1lciJWL/Zk7b91kfrDDfWaPjuC6Sc3FQTvYXTomjYQg9WmH0cRZpeR++sL0YTHg4pOodTGd0AOPDQts/sdrsX4kyouot3FbPwl44VUoibdgEoZxIm6zudHNeEZ7DzMNY4OWSULvx7ur4uMgiLcdXAqjbCOVYSGJKUSmoR+vvNFBycIIgiAANYtpq06ZNAIDMTJkMqwRBEETc+db6fxKBFgCO6zrJtCZiQVe+vcZ9CKwRhpzhmtun4XTwtU0nFcKsvtg9bn+y3Iv1psk4pWsHAPAxRnxifx0AUOozx02gBYBs3wHRe62i1AFBWVwktLOfV4/23m0Yjv1sV9m6SiaykKWv2hfTuOqCmh7HVtYTp5Eow0Qh0mb4DtfiSOoeXkMEYjRUCsagQAsAKy23oYqxoYK3BgVaAPjZcncwW32i4FQQac1homSGWfo42JI9WBtDSkhsrEtSVoH6Fdx5NrIfsM5XVgcjqTnJcp4bYewwXlwHIyEIgmgY1Hok7fz582XLv/rqK6xfv151W5fLhf379+O9994DwzDo00c52zBBEAQRP/YYhsqWu+OU9IkAWjN7AHSuUR9e6HHSqX2+NcV7NPha7ytBS/dqHDAMAAAk+06glWcvAHEyrevKHsCnSW9E7LuQa471hjwgJGdRJeu3F6gyNIOsOWKMDCh/C8A7wfcctEUDGviquI3hQsaMyoht9povRg+Zcg9jVvSzDdCcPQJAXuStS4ZWvY1fLbdHbhgFFr4QQG5c+wyHE7SLtENKXwGwsPYGU8e4YEI8192V6/IAFInKSrmmcIIHUCIqr+CykEi/kDwjFWnbuVeA8Y0FQhJTCZ5y9HYuxHrT1QAAvVCFniWzALxdV0OtVyx8EcI9nF0abFlqE7cGT2kToksQWF/o+MrQRUMEQRBEBGpdpJ02bRqYME8jQRDw17/+VXMfgiCAZVk88ED03l8EQRAEkYi05qKLFmzvXo5dhpGiMhfPYf1J7cuVk9z7g69551ncVH4X8q3/BzdjwaWVr4GDNDlnH9dCVFak4UfLfahi01T7Z3UmANJIQW+cF+4kc2KRkNUqSiV1iOs4LlQ81jZAhCAur8ItJs9EXkRsQXEsw4o74ypfiEmkTfadQBf39/jNfIuofETVW+DdV4Kz1q5Iq/V8mFZ6K3KztScqTCT+frYznsnYJil3+eK7AJyVEZd8ggCdTIXLm1g2HQInPdemlN8PwT0I0FeLtN6SbZhY8QyMQiVK2CYY5piLJGPiL6OPG+5CGIQU0SS0s54npF1CZL8JC9MwJh19Pk8DMVgkiJqxbds2vPzyy/jll19w6tSpoGXnxo0b0b179/odXAIzbdo0fPDBB2jWrBkOHTpU38NJCOrE7kAQhOA/uTK1f3q9HoMGDcLXX3+NYcOG1cVwCYIgCBUEXntSGkIZwVOBHs4vI7YbWTUTr5/Jxp2lU9DNJc7m7RJ0WHdKulRTCZtzZ/A17ypECl+A68sfwM1lt6Oxbyd4jzTalQWPixxv4cXCDujqylft38fLixSeOB4ybd2/AIz49sXr0yaO8Ky2jPeEOi4h8hO3W+E74Vl1kbaF5w8I7sRYxmuAQ9M5Gs4A54cYU/mSpDyJPwXeVSSzRXzRYv8x2PEeuru/AWfOrvXx1AZJwhn860wTSblT47VAK3IiLS/IH98VngRLwhaWvK+3cyGS+VPg3eJJEE/xVliFYlxV8X+4vexGtPWshKdEKoCfr/CuQph4cXIrRz3f5jiFyPHgBsFRByOpOT66ZyTqkRUrVoBhGDAMgxkzZtTafv7880/07dsXH3/8MY4dOxYUaAkiFmp9XuvgwWpPI0EQ0LJlSzAMgx9++AFt2ih7wzEMA5PJhPT0dHAaszYTBEEQ0VHp4fFHgQtZFg6dM/yRG0pCW4DS32+HIWcYTM2uBBuWpMVbcRjuEz9C4N0A74YhZzj0ad1qbfwNEU/hRngKN8BTtBEpfGSBxMyXBF/7k41V81VhG8hFriphK12Nop8mwZA1CKwpQ1JftuZe8M6zYHVWGJtOgM7eUlTPQF2EkEsUX+T04ZPdFZrHGAkGApwHPoG3x/PQ2VsAADy8NnHEJRiwvdCN01U+9Mk2wiaTPE0LO4vcOFjqRdcMA3Jlku7EwlmHD5vPuNEiWYeWyfWbKJUXBKw76UKJi0efHCMsOhZrCpywG1j0zDKg0hd5fJ6Q64iXF/DHSRcOlXpx0JOjup2JL4fgiZwNvCY4Dn2OkhWTYcgZDnvvV2HI6K3YNhYhxCA4YBKkx7ybMaNy2yvwVRySvX7GC1aIfE1gBb9w4i3bg6q978GUN0H2mpDIcPBCJzjhDVnW/91BBzql61HlFdAxXY9G4VmhooRlpCqtTwCcMlGz+0u86JheNxm3BEHApjNuFDl5MACsegZ9coxgGQbHyr3YXezBCU+KaBvmnM+I4C4JlvmqTqBs9V2S/vnKo/A5z4AzRc4H4jq+FL6qEzA1vxKsXurL6y3dA9fx7+GrOgZD1iAY8yZIVlnWBu4zf8BbsgPGJpeBdxXCdfwH6JLbwZg7Nrh/QRDgOPAxTMJtKEP1tSn/oAOZZg6NbfUTAqolkpbhG4bdgaAxJuzzvZUwcgzGtYyvrzRB1AV/+ctf4HA4kJSUhJdffhm9e/eG2ez3lm7dunU9j87PjBkz8OyzzwKAKHiSSDxq/ZenWbNmsuWNGzdWrCMIgiBqH7dPwOMri3DW4Re4butsx8XNzHhvu7JAYhCq4Nj3/rl/85B+2c/BOl/lMZxd0guCq7B6A1aP9Et/hiF7UK39HQ0J14kfUbTsMuCcQJJijuy7aRGqo1t1Qs0ysdv4s3Ad+RKuIwrRgYIXFRv9dkTMpr8h4/It4Q1U+z9cJo3gu2t5oUzLmuAfw5nPWyLrqiPgrHkiQVCN3SU+/H1NCQBgsbkS/x6WDgMXnViw6rgT/9nkj/TUs8DfB6bWWFQtdPjw2K9FqPIKYBngid7J6J5Vf7nFP9hRge8P+cXJL/dVQccCZ85dJya1tuBQVeSI5B+POHF7F3/yndlbyrDyuLaIb5NQAd5beyJt5c6ZKPvjfgCA++QKFH7TB6mjvoMp9zLZ9uETI1owCA6wMhMabsYC17Fv4Tr2reT6GU+qNv8NMC5SbcOei7Z1n1wB98kVKLc0RubEXbIiWyLjDfNdXXbEgWVH/MeukWPw4qDUuE2kBOAFAS6ZSNqPdlWgW6YBTZNqX9hbvLcKi/eKbV9G5plwUVMznv69GP5LYoqoPjDJxp8TaXlXMc5+0wdK1/WqXW/B3v1vquOo2PYqytc/7n+99WVkXrENDFv993uKNvv3wfsnDirxKqydHkVSn1e1/aEx4jj8BUp+ngy5v83W7RnYe/iFisrt/4Rj3zyYUq4Vtdl8xo2HfynC3wemom1q3U+aaVmtAF/ii7SCIIDXaEi7cE8l7HoSaYmGh8fjwS+//AIAuOOOO3DXXdKJL4KIhjqxOwiF53n4fD507NixrndNEARBhLDimCMo0ALAO9vKIQgCVh5XvvFv414ZfO0+uQLeiurM4M6jS8QCLQDwHjj2fxi/QTdwytY+GBRoASDFdyLiNla+enn0Pv2AGu2fg/Zlh4KnDM4Dn4rKPIiccbq20YVECZZv9HvoJrPRR+qedfCqx7oSXx+oFu08vF+0rSlf7qtC1bnIPF7wi6T1ybLD1dGjxS4+KNACwBf7ohMt3T4Bv2kUaAHAKFTUaiRtQKANpWrXfyVlgSgTA6KPpNUL8sdEuu9I8LX75Ar4Ko7ItqspbMWuyG3CLBH4qhOo2vOOQuuGicsn4KejNVsS7pWZAOIFZVuF0OtDbRIu0ALA8qNOvL6hFEpzVsy5Yzog0roKfgRfpfwbpFYXICDQAoCvbDecR74S1ZetfTAo0Aao2j0LglC71hAlv1wLJfE59J6kcsfrAAAe0lWbAoDvD9WP72uVL3IkrdAQRFpvBRr7pNcjCy9v++JOMMcQgtDC2bNn4Xb7gyjatm1bz6MhzgfqXKQlCIIgEoM/T0mjMgX4E68ocWXFk6L3vONU8LVj/3zZbar2zIlpfOcj3pLtovd6RBavWnlWB1+f0cW+ZGqw472ot/EUbUJoWuYk/rRq+2Z1EEHW1vNr8LVj3zwAQCfDYSRrELzD2VYYfWTyobBo4ViE3nDChaQTlfXr4RdPW88KDx8h/lqMHi7AV7OI8WhxHftGUhaYcLLxZ6PujztnQTLY8W6wzMSXobdzsagdHz6pFQcEQUASfxqNvDtV29lkRBLX8e/iPp7aIJplmvkHaybSVnjk9+VVEJPicT2oCaETKuEE7WrOiXuhv99y8N7oJ4s8Z34XvXefXCFpI3gra22CIgivbPnhq6i24gsI0SVcI9m2q05on2CKJ4Ue8UqKyypfAReykubSylcbiEhbhVFVr4vGPqbyZdwq/EO2vVyEOkEkOi5X9XVCr69fuyri/KBeRNqqqipUVSnPTM6cORNDhgxBhw4dMGbMGCxZskSxLUEQBBEbSol9lOjA7kQaf0xUJoQkmtKn9YjLuIhq+js+gk3Qnmhosvl72fKxlS/i8ooZUe/fU7wZpmaTgu/7Oj9TbR/Jz1gr4yv+Llt+Zfn/YajjbUk5I7jxQMl49HEuAAC0c6/AmMqXcVX5o6r70ctlBYqSWH1tQ2noz6WPFF+sWFelIHIpwQluCHztCCOCinATjrfiEIDIExONrNLvPyCGXVExA2MrXsBgx7t4qGS0JCpX8NZClJ7gAwPgjtIpGFo1F72di9DX8amkmV3m72LYBvJw6dMuvKaZanZ+lsmE9nkFwKcgFOsTOPwlcFwKPv/5xbuliSJF+GI4DxlteUR8Zbuj77sWGV6VWJPJZ93ic7GZZwMeLBmLgY55uKLiGVxS9e+GIdL6nEjmT+OBknEY5HgfEyv+iiu7tsegsYn1eRMXJqFJxVasWAEAWLhwIUaOHInMzEyYzWa0a9cOjz/+OIqKpPfiM2bMAMMwaNGiRbDs5ptvDvaplKzM6XTizTffxMiRI5GTkwODwYCsrCyMGjUK7777LrzeyMk/XS4X5s6di7Fjx6JJkyYwGo2wWq3o1KkTbrvtNvzwww/BCc158+aBYZigHy0A0RgD/w4dOiTZj8/nwwcffIBx48ahcePGMBqNSE9Px+DBg/Haa6/B4Yj8e7xz505MmzYNeXl5MJlMyMvLw5QpU7Bu3bqI216o1Lkb+pIlS3DFFVfAZrPh2LFjsNvF3le33HILPvjgAwD+mfI9e/bghx9+wPPPP4+//OUvdT1cgiCI85ZoIxYm9OwPblU70cMVH5KAhLMp+Iwz9ZN4o2Gg/h30HXg3sPSR4HsTXwonm6zY/qqLbsLifLH4Mjz1OC4+80ZMo/OV7YHO1iKkRH28lVEKckr0cn2OJbZnRGWDHO9jiPN9ccPAscV7kMYfw/Xl9+P68vthan4NUod/hmKnD4tUPHENUYq0vIwwkxQHkbYh09G1DHnecO/iaqpkEiypwcHjTzxYC/jKD0ZuFGgbFGnVow2f6puKe38WH2Oc4H/A0sGNix3/UdxW8NWOSAsAqfwJTKp8GgCwzXAJ1pqvEzWTFZ+ZhiHS8h7tEZ6pxhqKtDLZEH28AJ9CwKotgVXaapHWL+6FJhCTIyYRUKNI6y3dDWOTS6Pvv5ZQS4pZ4ebjMhmnFaeXR7lX/Dmm8UeR7duHvIqQa20DEGnh9Qs4Tb2b0bRiMwDA2vYtMKwOlzYz44fDYoHn5k61k0yRICLB8zxuvPFGfPTRR6LyPXv24NVXX8WXX36JlStXIidHPflpJDZv3ozLL78chw8fFpWfOXMGy5cvx/LlyzFnzhwsWbIE2dnyyYU3bdqESZMm4eBB8T2N2+3Gjh07sGPHDrz77rs4ePAgmjdvHvNYjxw5ggkTJmDz5s2i8qKiIqxatQqrVq3CrFmzkJ+fr2jzsHDhQtx0002iaONjx47h008/xaJFizB79uyYx3c+U+dPzgFVf8KECRKB9rfffgsq/RaLBW3btsWuXbvgcDjwzDPPYPz48ejcuXNdD5kgCOK8JHzZNgB8tFP54TfLwoE1JItcTV3HvoW5+VUAAG/ZPvkNhcgzwhcu6iJheE4rPVyI9rGMF2rwcCnwEosGNYplBA01THwZnGySpNzOn5GUORnlhEbhop7WiEC9Nj0hSKHMUuKdRR7M216OPLsOJS4eXTIMcUk0s/RwFS7KM0PHMqjy8Fh2xAEDy2BUUzP0KsnONp12YX+pF72yDGiukNDsZKUXv51woZGVw8BGRlGm9Wgz/mb6DgCQn0CY8u1pdEqP7rPQCW44D3wCT5f/gz61S1TbRsJbquzVKgiC6HNwHvJbEyTxJ1X7NMp8F+F+r0oULb1ENWlZTMh4fXKCNIJY7hwLTfiUyAhRLMPfX+rFX34rQvs0PSw6Fo2tHM46fZrOJQAolYuk5f02HnLYDTWPzq8tAsnsytc/Cl/5flTtnqXa3nUsH57ibdCnVj97uU7+AnfBTzA2vhj6TKlHOhMyKSt4lSOsPIV/Rjv8uFL8yxR4zq4NvhdUFpeeqvLVqUgrZ3eT6jsmKUvkSFrBW4Wq3XPhOLRQXMFwweuMnD2S/QKf9CTqj6effhq///47rrjiCtx0001o1qwZTp06hf/+97/Iz8/Hvn378NBDD+HTT6tXptx9992YPHkyTpw4gUsv9U86Pf/887j88suDbbKysoKv9+3bh2HDhqG0tBRJSUm455570LdvX+Tl5aGwsBBff/015syZg3Xr1uHyyy/HypUrJfYJO3fuxJAhQ1BR4f8dnDhxIq699lq0bNkSPp8Pe/bswdKlS/Hll9UJgq+44gr07t0bb731FmbN8l/3t27dKvkMmjRpEnxdWFiIwYMH4+jRozAajbj99tsxbNgwNG/eHBUVFVi6dCneeOMN7Nu3D6NHj8aGDRuQnCy+B1y3bh2uv/56eL1eGI1GPPTQQxgzZgyMRiP++OMPvPjii7jrrrsoV5UMdX43tmbNGjAMgxEjRkjq5s6dCwBo3LgxVq9ejdzcXBw9ehSDBw/GsWPHMGfOHMycObOuh0wQBHHeUeL0yS6xVvPvy7RwqDCIf4Ad++bB0v5ucLbmcOxVTjrjqzoJzlKz2efzkSI2T7U+PFpLLrlJJNQePrXgq6z2DmSicheNjFGogBNikVYvVMkmOJMVaQMTAOHL2M+JtJHkkmjtDp7+vVi2/LtD1efNoj2VcckI/u62Chwo8WJ6Vzue+6MEB0r9f+uuYg8e6ikfTf1HgROvbSgDAHyxrxKvDElDE5v4Vq/czeOJlcXBxEclThvGhmTTXnYkOg/PDJ8/ksPGF0pEWp8AbDmr3WIAqPZzLcwfgMyJu8BZc6PaXg2vyhLryu3/hK3zYwAAT/F2OA/5rTOSI0TSygn9rEpUXjjFP45G6ogvYGo2UfM2agiC9NxxsdLoNPlI2gYi0kYRSQsAB0q9wfMnlN3FHjyocC4FKJcRaT28gMV75aOgEzmSNnQlhJxAyxozwLvEHsxnv+6BzEl7oLO3gOvkLyj64SJA4FGx+e9Iu2SpdBchkbSlq5UznDv2z0fKkA9i+Bvig/Og2AKkQNdBse2pKh9apdRdlPnLa0tE75N8p2CQmZ5NZJG2ZOVUOA8vllaEXJ/kRNpoV7ecr/CCgAp3A/dBigKbgQHL1O93//vvv+P555/HU089JSq/7LLLcNlll2Hp0qVYvHgx/vOf/yAzMxOAX4DNysqCzVb9G9ukSRPFoMKpU6eitLQUPXr0wNKlS5GRkSGqv+SSSzBu3DiMHTsWf/zxB+bNm4fbb79d1OaGG25ARUUFWJbFxx9/jGuvvVZU369fP9x4440oLCyExeK/t0tJSUFKSopIMI4U+Hj//ffj6NGjaNasGX7++WeRpQMADB8+HFdddRWGDBmCAwcO4JVXXsELL7wganP33XfD6/VCr9dj6dKlGDp0aLCub9++mDRpEvr37y+J1CXqQaQ9fdp/U9iuXTtJ3ffffw+GYXDfffchN9d/U56Xl4f77rsPjz/+OH755Zc6HStBEMT5yv/2R7/M1sgxKCnZISl3Hc0H71QXMpyHFsDa8YGo93m+ExC4lMiycABnCi5r7OBejvWmq2XbWnXyN7gtzOU1G2QIeqFmSXjC6er6Fistt4nKurvkfehb+5S9q8K9Rhn2XGbsCDf9hghRdKGUOH2aIoUFAG9vLcOrQ9M1963Ez8ecGNnULBKY1hS44OMFcDIPszM3lQVfe3lgwe5KPNxLLEL9fNQhykw/f2eFSKSNNlFOGn8UANDYtxNndS2j2lYO3bkEM4K3Eq5j38LS7o4a9xlALZLWeeR/QZHWdeKHYLlRUBcE5YT+NN/RqMZV/Mt1aHRTnAQXGZE2O7M1wnMUWmS8rhuKJ200kbRqrC5w4U6vAJPCtROQ96TdV6I88WBNYJGWlYmyFsGZpGWCF2Vr7kbaxd/BsecdUaR28U9XSNsz1X+/Y7+6CCv4XGA4o2qbuqK5Zx3+NF0pW1fojG6FSE3gBQFlYeJcMi+fFDNRRVqB98F55H8R2+XZpTJEpjlxz5+6pMIt4PYfo09a2VB5e1QGkoz1K9L26tULTz75pKScYRg8/PDDWLp0KbxeL1avXo0JEyZE3f/KlSvx++/+xIoffPCBRKANcNlll2Hy5MlYuHChRKRdunQpNmzYAMAvooYLtKGkp8d+D3ro0CEsWOCfqH7zzTclAm2AHj164J577sErr7yCefPmiUTadevWYf369QCA6dOniwTaAE2aNMG//vUvXHPNNTGP9Xylzq+EZ874l1eFWx1s374dZ8/6L0ahIeIA0Lt3bwCQeHcQBEEQsbHuVHRCzBWt/CIO75I+2Au8C1W71T2F3Gf+iGp/FwqtPauR7CuQrWtq16F1ig4pg6sfdC+t/JdiX7d38f+uXtXWGixLMjAY0Vz+RlARFU/BRr5dSPcdiq4/BQY73sPYqhcl5deY/Rnmr6h4Olhm1jEY2V4a6cQaz/1t4R6m58QmU4TAY7te+0OBMwoP5yPlUqFMjcZW5YHKCUIKK60l5ZvOSM/zrWfV/V4LZJbaqtHC4xfPezk/j2q7HO8usDJWKIFIWgDwVUmX+NYEb6lyJG1oEq/QZdqRjhAdy2BAo2qhqZnnTzT2BSazGNh7vhjZpzOeidJkhLjO3W9Anr16DH2dn4KViYpn4xi1XJuERtJOKbu3Rn2ddagf7+GCGQDsLVYWaesiEFDOG1sLRqFStV6fLp/803Xcn5DScUDs1aiW+C5iUjKo2yHUNe09K6AX5P8eb5wSYmqh0MFLzsz27hWybRNWpPWUabK5MnIMhjSpnhjIs3Oy0bUEURdMmTJFZHkUSq9evYKvDxw4EFP/X3/9NQB/oGKXLupWTgFBc926daIkYt98803w9YMPPhjTOLSQn58Pn88Hi8WC0aNHq7YNjPXEiRM4cqR65d2PP/4YfH3zzTcrbj9x4kSkpKTUbMDnIXV+JeQ4/01ieIa83377DQCQmZkpibJNTU0F4M+ERxAEQdQcZxTJfO7oYseIPP+NtLHJpXCFRUj4KiNHjcUr8qkhIwiCX6wJiXTTwY1HvfdgW7uvkGaxYGBjE3455oTDy2NkUzMYhoG5xdVg9HZ4CjcgLXswpq99BnO4v0v6DyzHvLK1Bdlmv+/isFwTjJGipwAk9fsPeFcx9Gnd4DrxI6p2vSnbjoMPj9rfx1+qnpWt10qndD1uyW4Nvuz/8M+cKjy63j8J8K+haWhsWoSqPXMwHjo0SzajwMFicBMTssx3oqx8M6r2VGeFFs49zkojaf2fRaRI2WiW10UTdRstcr6mAU5WSUUkv2gQeTyMTBu5v8PtE2Dg/N63pVH6ClsEvxijj8IteVgTI25MOoXH9uSi2Cdeis8J1SKyr0p+AiNW1CJpwYeKCuLr41D3p/jVIE68BSDot3tv9yR0SHPAUXECAx1rYMy5GwxngjF3HIyNRsCQPQTOI/9D5XblSZa4IRNJy1mbYMaAVCw/4oCZAzqueFR2U1avvvQ/UeBDfk/6uhbhoO8yrObGxdTXqSofcmUi+gLInQ8FMudkXRLN73cokaLCdUnt4IL8SgYA4JLawFe2V30n544/d8HPEccjxHNyooZk+g7igZLx2Nv2XXxb2Fw04VWXIq3csTWm6mX5xgkq0vKessiNzjG9ix1tUnRw+oTgPQ9B1Aft27dXrEtLSwu+Li+PbXVaIKp09+7dmo9zj8eDoqKioE3Bxo0bAQBNmzZFs2YKyZrjQGCsVVVV0Om0y4UnT55E06ZNAVR73hoMBnTr1k1xG71ejx49euDnnyP/ZlxI1LlI26RJE+zbtw+bNm3C8OHDg+X5+flgGAZDhgyRbFNa6n8AUAoLJwiCIKJDa1SgiWMwsqk5+F7wSiNxnIe/iNhPtB6C5yW8RyKgZE7ag0ZJbRCaE/XiZmaEY8odDVOufzZ74JihmPODNOlPQOhjGAZDcqujU3wagpUM2UOhT/PfRLlPr1JuyJnRYtib0P9QqBjNqYXxLS2wZk0GANgBLBgbWquDrdPDAICBYduZW10vEmmDUYMST1q/3QHLMDByDFwKx3s0EWm1+eioNoqTMpGtWkUDuag+ueX5RU4fcqw6WUFYK4yMOCjH/T2SMKixCcBVyCwoQnGJOOJKh2qRlnfIL/ONBd55FoKrULmByvgNlnTI5QILfJY6lsGlzS0AWgOQTmAYsgfDkD0YnDUPZWsfjG7gUSLnScswHGx6Fpe3skIQeJxUSGwmNJAkj+G/JwOYn7AasYm0pyMc83KetOUqXpF1IedFE9UfSsSEdozyAkuB90Gf2kWDSOv/vFwFP6q3AwBf4oi0AJDr3YaeXZrh7C6jyPYl3Bu+NimoEH9HLZJYMNKfewAJHEmrIYo6gJ4LXDsJon4J+LfKwbLV10afL7b7pIDlZ7RUVVVH+AdWnTdq1CimvrQSj7EGAjLT0tKCQZpKZGdnx7S/85k6F2mHDBmCvXv34s0338QNN9yAjIwMrFu3Dt9/719KE8iMF8rOnTsBADk5lHSGIAgiGhxeHvf9XIhyt4Bcm38p2YBGJng1PnSEZ6qWXd6oQQV0n6QZUrnPjtFZZVqqo+SfaFC8B9IQcamvtiBiOKlIHECf2hkM6xd8tPizKhG7b6N4O8HtT+QlhNkdhHprmnVqIm2Mw4gzauMoqJQKK1oD6aq8Aq7JP42n+6Wgc4ZfuJY79wsq/SJttFYHoWhNlhUqEqebOSBcpA2JpHUd/x6lf9yPqp0zYcwdC95xEp7CP6HPGoS0i/4H1qR98l7N6sBfvxOCIJyLcBF/wHLWAEAMwr2KCFa++TnYOj+uyaNTEAQ49r4Lz9l1MDWfDGPji4N1nsI/o9qvCL6BiLRhKzOSOE/M6uihMi8EQcDK407sKvagd5YRPbP934EgCLKetGqETqBsPevG6hNOtEzRY2SeKeYowd1FHry9rQxHy324ob0N5ihsWkLxIYLnsIotx8n52h4ZK7Y8D1/VcTj2vR+xreBzompP4Di+UnQc1xcMawAX9j3FGLgcE+ETZY2syp97woq0UUTSEvLYDAzeHnXhBKfZDOd/BHVA3O3WrRs++uijCK2radKkSW0NSZHAWDMyMqKKcJXzrqXo+Nioc5H27rvvxrx583Dw4EG0bNkSbdu2xY4dO+D1epGWliZrHPzTTz+BYRh07NixrodLEATRoJn2Q3XigWMVPhyr8EWVGChcTBO0hGUq4CnaHIzWvBARfDIiLRe/CBLFrMjhfq0yiEVameQx5+CS/DG/dgOD4hoEQSkLyhGQEZsEr1NidwDOEHxZoiImR/Psfais9gQstYjeU1XS8ctF0laoiEnP/VGC14enoZFVhwqZEOj/bCzD+5dm1kikZTSLtNWv00zS7zPUkxYCj6qdMwEArmP5wWLP6VU4++1AZE3ao3l8qlYH53DsmwdLG6l3mtLfFv2zh7JYWrHxGfCO00juPzNiL46976L0d38ykao9c5ExfiP06d3BOwtR/ONY6QYi8U1l0A00ktau9wGRL3OyrDjmRNdMA/672b+EdfkRJ/4+IBXt0vRw+oSoVwwEzs0j5V48/0eJv8+jTgiC/CqJSJyp8uGZ1cXB9x/tin1Vio+pm8c+LQItAFTtmYPK7a8FXweO43qFNUDHiq+DdWp3UNHwRdpo7A4IeViGqfdEWkR8CSTyqqioQOfOnWPqI7CqvKAgvlZQ4QTGWl5ejg4dOkSMhJUjYFdaWFgIn8+n2sepU+rJpy9E6jxxWM+ePfHqq6+CYRhUVFRgw4YNcDqd0Ov1ePvttyUJxUpLS5Gf778xD7VHIAiCINQRYkwuEkqKUfwzYWo6Mea+HAcX1HQ4DRr5SNr4ibScgkgbKsAqEepFyRpVMsKeE3wHNFIWcrWQaoxNpZX7WzzFmyV2BwyjLUt9NKfIwdLaFGmjay+XzEgt4zwAbDjl/+7klm8HrDKKnNGJtBa+WjzK0JhQLjSSNlUms1toJK0avrK94D3qiZBC8VaIk30whlRJm6o9c/0vePHnYGHkxZBok0RFOhc1LREHggJtgPLNfouFiq0vye+XrZ60UItqERpIJK2v6rjovUWv7XyXw8gxmLlRLCp9sMMv2Fao2BooETi9Ptgu9i0M9Bkt+QeVk3NFSwvP+uBrS3tpwjXWlBm3fWkhINAGKFv3cJ3uXw6GM0ojaevQ7qAobFIxy6LyW5moIm3Y+UkQBNCjhz8x44EDB3Dy5MmY+ujZsycA4MiRIzh8+HDU22uNag2M1eVyBf1poyWQHM3tdmPz5s2K7bxeLzZt2hTTPs5n6lykBYCHHnoIGzduxNNPP43bb78dzzzzDLZs2YKJE6UP/ytWrECfPn0wdOhQjBsXm98UQRDEhYgjDmv0hueJxThruztj7stbuKGmw2nQSPx8GQ5gYxMX7u4mFnsubqococUakmFqIU16FIBLagMmJPLUmDtGsW0gynZMCzNSjbHdQvRvZERyjNvqUmRW1PBuid2B1s81mmdvbxwmPZRQsmNQ4rBMVG+kiL/ycw0qPNJ9uc/tP1yMyLVVCwRmGZuNG8rvCb5O448hz7NRfRAAkkK+e7l8aRahJGIfAaIRA/gqsb+tuflVkjaewj8heB2S5fTdDftk+8wwRzfZYGx8CVhTlnKDGEUXz+nfAQDuUysldawlF4xOfH2wtL9bvqMGEkkbbumgT+2E8S1jm/By+wRJRP3+cxMynhgiKANRl9sKxZMmsXp4y53rsdLG4z8+GGMa7N1nwNzmlmCdscloGDL7xW1fEjRYbnjO/hGXXfGuosiNZDC1nAKG1UEXNlRfLV77w/GE/RaYdQysnR+XbZuokbSeImVBhiAuVCZMmADAH0DzxhtvxNTH+PHjg6///e9/R729yVT9TOdyKS+HGz9+fFDQff3116PeDwCMGjUq+PqDDz5QbPfll1+iuLhYsf5CpV5EWsCvrj/77LOYM2cOZsyYgXbt2sm2u/zyy/Hzzz/j559/JlNhgiCIKChyan8q7JNtkC0Pj5hkTRkwyYgbmohj1GhDJDySltFZYvZqGpZrxtP9UtAlQ4+7u9lxa2ebavuUIR8iZfgiGHKGS+qSB74jes9Zc5WFpHPLZU06Fv8cmobWKcpLMce2MOPRXsm4v3sSPrwsEw/2TMKDPZLwQI8k9T9OBYZhJQ/7giBII2k5+eM5nGiizV21aEwYbbZ2OeEmUhI0L+//e+UiaQOJiMJFqT45Rrw0OBV3dLHj1SFpmH9ZJi5uakaujcP9+n+io3u5qP2DJWNxfXurrI1BgBRDdZ3ckC18ierfEUp4RKUafJV4eSBna4HMKw+ENfL4hVqPOOqxkcmBAY2kXrFZUYq0nCUHGePXg0tqI1svse3QSCAin3dIlwzqUzpJypL6/gcpwxfJ7D/xRVqB98FbJJ4M0Kf3wvXtrXi8dzIuyjPh2nZWzaKt2lkTi7Dqjt0xRBZLBP/ZS6OwUEgf+TWSB76DzCt2gDWlI3nAXKSM+BwpQz9F6kVfQpfcoabDlYWzt0L62DUaPNjjs7zbWyY/qaKGselEpAz5EIA/EaCovzqMpA2/ButYBvZeLyN15BLJ7zeJtATRcLjkkkvQt29fAMCrr76KhQsXqrbfunUrlixZIiobNWoUevXqBQCYOXMmPvvsM8XtCwsL4XCILepCE47t379fcdt27drhqqv8z3qfffYZXnvtNcW2AHDw4EF8+umnorK+ffsGI39nzZqF3377TbJdQUEBHn30UdW+L1TqTaQlCIIgahc1L85wrm4nFfnkotwAgLM2i2k88Vza3xCRiLQ19KPtnGHAX/ulYliuOaLYy7AczM0nI7n/LJk6adSpTsk7OMTb0mZgMUolgtekY9Anx4hBTUwwcAwGNDJhQGMT2BomEWAMKWElglTc0mh3EE2gnCvO4ksAQRCiztZ+uEwq5kXqocLDw+kTILcrn+CPAAwXI3Qsg5bJeoxsakamhYORY3BbFzv+NSwdHfXSG3wOPkxoZcVzA6VWAoDfHiA0QUiljPphEbRHwYVHx6rhc4jbspbG0NlbQJcqPtbdp1eBDxNpGb0drVKkx5TqUmQFOGseLG3vkK+MUSQNiF8+h3QJpS5V6n0XuB5Y2k4XVzSASFpv6S7JtVSf3gsMw6BXthHTuyZhYmsrbuhgw7xLa5Z4J5ZI2li2UcMSHtYZglXH4KaONjS2ajsOTXnjYGl7KzizP+iFYTmYm02CueW1YDgjWKP8eVtTkgfMhiGjj2pisnMDisv+fOXiaxNnbxVxG2uHe/2TgADCFw3UaSRt2CVRzzJgGAamvHEwt7lVVJeIIq0gCPAWb6nvYRBEQvLJJ58gLS0NPp8P11xzDSZMmICPP/4Ya9euxZ9//onvvvsOL774IgYMGICuXbvil19+kfTx4Ycfwmazged5XHfddbjyyiuxaNEi/Pnnn1i7di0++eQTTJs2Dc2aNZN4vQ4cODD4+qGHHsKvv/6KvXv3Yt++fdi3bx+83up7gFmzZqFly5YAgEceeQTDhg3Du+++izVr1mDjxo348ccf8a9//QsXX3wxWrdujc8//1wy1rfeegs6nQ4ejwcXX3wxnnzySfz2229Yt24d3nzzTfTq1QsFBQXo1u3CzVeiRJ0nDpNDEAQcOHAARUX+G/O0tDS0bNmSssERBEHUgOIoRFq5q61JQaXVkn1cfh8N85ruqzyO8g1/geB1wNbjWejlltzLwDsLUb7xr/BVHYe10yOSxGH1IlrLPgRLvxdWxq8TAJiwh2y1CFCjkspfY8T9lm94Cp7Tq8QtNNodRPPoHa2Q+tdVRShx8Tjj8J+HPTINEOAXSzulG3B1Wyt0LAMvD1nhVI09JV74eEHkQxxJR9h+1o1yFY/NBbsrg7YHAWQcDqpRSUKk9N0nG1iRSF8pY71grYVIWsHrhLd4q6iMs/gjSgxZA+Etro78cp/+HeFHBqOzQc5GOTsGkRaAJPI7WOw8haq982BpMy2q7rwl23F2SR+Aly5f1KWoJChhxd9h1a7/wtzqxtpd9l5Dwq0OWEsuOLN85L+JY8Ax0Z9fAFDo8OH1DaVRbxfvJFNqkbTdswzQsUxcrI2CcGagBglC5dBn9PG/iCTCRhJxNeKVEWnDhVsJIeckFzbMVSdcsOnLccbhQ69sI0bmmcAwDHy8gPyDVdhe6EH3TAMubW6WnYT08gIW763EwVIvhuaaMKixsqd7+OS6PuQjCU/q6S3ejKJlo+E6/n2wLKnfm7C0vysoOGuFd5fh9OLmENzFYK15yJq0N6Z7PV/FIQiUOIwgZGnVqhVWr16NK6+8Etu2bcOSJUsk0bKhJCVJV5516NABK1aswMSJE3H06FF88cUX+OKLLzTtv3Xr1rj66quxcOFCLF26FEuXLhXVHzx4EM2bNwfg1+NWrVqFq6++GitXrsSvv/6KX3/9Naqx9uvXD/Pnz8e0adPgdDrx0ksv4aWXqr3zdTod3nrrLaxatUrVt/ZCpF5F2h9++AFvvvkmVqxYgaoq8cOrxWLBiBEjcO+99+KSSy6ppxESBEE0XIqjSAIkK9IqKTRcbEmj+HBP1gZCya/XBb0e3WdWI+uqI5oegMrWPQzH/vkAANfxH5DU7z+i+voRaWW+U5kyxYezMFHnrEP5GKstkZYBI5LQwgVaAIBGu4PoImmjE0L2loijEjeeqfbN3VfihYFjMLmNFUcrYoteXLinEte1r46AjzQlc9rBo1Rl4ubrA9IERXq1zFgqQriiSBvmRSwn0uqgLXEYoF2kLd/ynKSMNTcGABiyBqFqd3WEufv0KuhTu4jb6u2yQliWJbbIP0ElYrV01c3QJbeFIWugbL2SJYKnUD65h1wkbRAZob3oh1HIvvZUwq58CP879Rm9FdsyDAOrnpFNtKcGA+CNjWXBCZZocPOQTHbUBKvKTEnvbP91Op4iLaOzQIhRpGV0FtkEmazhXGLKiL+b8fnNCBdkdfZWEa8qob7m4YnDAOCHw/7PZMNpNzLNLLplGrHqhBMf7/Lf12w640aGmUOfHOlv55IDVfhyX1WwXRMrh+bJ0uvnoVLpuR16DQ4XaQGIBFoAKPvjXnC2ZjDlRZfHpfD7YRDcfl9IvvIoildcjbSRX0XVBwB4yeqAIFRp27YtNm3ahIULF+Lzzz/HunXrcObMGfh8PqSnp6Ndu3YYPHgwJk6cGLQLCKdXr17YvXs33nnnHfzvf//Dtm3bUFRUBJPJhBYtWmDAgAG45pprgoJrKB999BF69+6NxYsXY/fu3SgvLwfPy//W5eTk4Ndff0V+fj4+/fRTrF69GidPnoTH40FKSgratGmDAQMGYMKECRg6dKhsH9dddx26deuGl19+GcuXL8fZs2eRmZmJQYMG4eGHH0a/fv2wapXMffwFTr2ItG63G9OmTcOCBf5M33KecJWVlcjPz0d+fj6uueYazJs3DwaDtocugiAIQj5BkBIsA7RP02NXUfVDwtgW8g/pnFriGxUaYnSF4HOLkvHwVcfhPrUSxpxhEbcNCLT+Dd1w7H1PVF8fIohchCxrkvq9K3lmGnPHit73zjHim4PyD/Qd02vnN1uSJEyOECGrfaoeu4rlha1opI14Ci8AsOWMG5PbWFFQGZuPwpkwgVyL4HxARgRQQ68S2MbJZYLn/PYXegUtJlzz7ZZpwMrj1Ut2003RiTS+8gORGwGo3PKidCznoi/1mX1F5YKrEL7Ko6IyRm9HtwwDPoF4osmkshRdDWOjUajY+IxivfvUSkWRlneXRLUvNZ9RRi/1CBW8FXAc+BSWtrfKbFH/eEt3id7r03qots8wcyhzRz8RslvhmhGJSg8ve54prUyJhFFBpOUYoHum/xp7RWsLPtstPjbtBkYUOT88V9vkqr3H8yhbc1dMY2UMKVJbH311dBXDcOrX3LjZHRwUvefsLSNuo0upnpiJdFp/uLMC3TKNeGuz2Bbli32VsiJt+Hczd2s5XhycJmm3p0R63CSFeHjLibRylKy8CTlTokue5i3aJHrvOvp1VNsH8JRsV603NpUmCSeI2mT48OGK+QfU6sJRa9e8efOochxwHIfrrrsO112nnNQ3EmazGffddx/uu+++qLbT6/V47LHH8Nhjj2neZuzYsRg7dmzkhgp07NgR8+fPV6yfN28e5s2bF3P/5yP14kk7ZcoULFiwAIIggOM4jB49GjNmzMDs2bMxe/ZszJgxA2PGjIFOp4MgCFiwYAFuuOGG+hgqQRBEgyXaVZdXtrYGxZVsC4uRTeUfCIx5E8Ba81T7snV7WjoedwPM3ikT8SZ4KmQahm8mFS7Do/5q6kkbC6wpA6YW1TeFxrzx0NmbS9qZW0wBaxT7OeqzBsPY5DJRWbtUvWzyMLueQVN77cwDm1vdFLGNPq178PUNHZSTqkVzUx2t3UEkAom+YrU7DD+/tfwt5VFM3ACA3aB8m2huNVVSln7JMgD+CEY5oaNHpkHyPifEMuCK1laA1b7E1lu6U3PbcAKCB2vOkdT5Ko+J2+ptaJakQ5eM6ui3WzqpJ+tTQ5/ZH4ZGoxTreZUJLSEKkdbS4QGwMkJsAHOLa+X375QmIEsUfBWHRO91ChNKAcY0j/46a6jBqnsvD+wvkf5uWCMkAFNC6bSe3MYKy7kf7HAB1sgxmNE/FbZz+0w2MJjYWtvnYG51PThb85jGysicuwwX6luu/tgZ7RJ9JXxV4kkWztYMKcMXi8p06dURaqaW14t+Bzm1FQQAjpX7J8jCv5oDpdomA/YrtPPIzNeF+l5rFWmFerzX8oVNohgaXxJMRMoY02Hv+UJ9DIsgCKJBUeeRtPn5+fjiiy/AMAxGjBiB9957D82aySehOXLkCG655Rb89NNP+Pzzz/Htt99izJgxdTxigiCIhkk0yS5YBuiaacA/h6bhZJUP7VMNinYHnCUHmRM2w3XyZwiecvjKD4CztYAxdzS8pbvB6qzQZ/SCLrkjSn6tFgQFV8MTaWWFLw1+6XLLsBm9Xfy+npYTpwyZD3fb2wHBB0O2/PIkXVIrZFyxHe5Tv0BwFYOzt4IhZ6jEK55l/GLA1rNuFFT5UOjwIc+uwzCNUVuxYOv6F1TtelO1DRsS5dkmVQ8D61+GHE5UdgdhS4qHNjGha4YBKSYWAoAX/ijR3hkAw7nIOl7mGOucrse2QvVIvvCttPwplVGmq7crhcQC0Kd3R9ZVx+A89g18ZftgaTcduqTW1eORGdCgJuLjwmZg8dLgVGwv9CDTwqJ5kh4VPZ9D+frHNY3PV3EQgtcJRhf98cacSy7H6Gz+CD4h5LMJ83ZldHYwDIO/9EnBjiIP7AYGzZO0+R7L75tB2sXfwX3qVzD6JJT8PBm+ysPBeiEscVko0UTSJvX9t2q9LqWT0gg176MuEQQevorDorJIguKQXBOaJ+twsNQD3Tnx7fO9lThWoRzBbuCYqOxN9Kw44dPOImm0f6yOBOGb2fUMnhmQijxbtXiXauLw7sUZ+PmYE0kGBoMbm8CxDP41NA1Hyn1olqSTWI0owertyLh8G9ynfgVnzoav4og/4prRg+FM4GzN4Cr4EaUrZSbLWJnVEywn/1p+75rGqIYg8JJJFs6SB0NWf+gmbIZj/4cwt74J+tQucJ9dB/ic0GcNFrVX9eKG3wpK7rpdU4cfb1ifoZNC/h3U3u9qvAiPdDfljYNpyIfwFm+GLqULOIt0UowgCIIQU+cibSCUuVu3bvj++++h1yvf5DZt2hTfffcd+vXrh82bN+P9998nkZYgCEIjvujt9JBj1SHHGvmngTWmwtxskqQ8kDUa8GdPD4V3Rbf8LjGQe7LWINKGLZf2dyUWBQIZ2esahtXB2GhExHacOQvm5ldFbKfnGPTMji2ZXCwwusgRjOGfbYaZwwkZW4FooljDRZue2QYMaOR/aN5dFP3S6MC+w4Xilsk65Nl1kUXasO20CM4VUXpzJqlE0gIAZ20Ca7vpsnVyGpecUGTRs6IlwnJR6IoIPLxle6BP66p9mwDnPHUZhvEv01a5PrHnJlg4lkGXjPjYePjPw4sAAKbmV6Jy+2vBOjWRVmskrTF3XMQEvMqRi4kp0vJVBUCY3QlnaxFxuzy7/5wKcKrKJ1mCHoqJY1AehRlKloXD8RDRd6fM9cAbYyR++HndPk0vu0rBZmAxvqV44i/FxCHFFH1YMKu3wpQ7GgCgD4k4DWBpdSMqd7wOb+EGUTkj5wUuSgYWKXFYzUVa3nlGeoycW/mjT+sKfdqrwXJDIKFZeB8RviqLjkGRU3qDpbbyQAvesC7DLTK0RtICgMB7wbB1+5gvCIJEpNUltwdnzgJnvrhOx0IQBNGQqXORds2aNWAYBo888oiqQBtAr9fj0UcfxQ033IA1a9bUwQgJgiDOD6KJEpTLSFxTWKPY/1TwlMJ95o+EzBzOOwtRsupmuI5WZ1nNnLRH1q9Vy5JMX9UxaVnZXnE/CZqYJ9HRIm6Ht1FavRrNPEa4SBv6AB3L6bOjyINr8k9LyllGW1TsHyddWHfSBbuBwce7KrFHg4fmryH+r1qwG+J7XVBLghQg2qRFrhM/qIq0Ai8fMcmERPWx+mT4VERaRh+7tYEWGJ04yt5x4GN4i7eBNWUiqf9/obO3gPvsOpStfUg+UZ4MrCEl5vGUb/gLyjf8BdlTSsEa/J6i7tOrUbbuYfDOszC3ngZb1ycjisD+bR6Br+oYjI0vRXK/mTFFPQcItzoAZwJrll6jI9EsghVLtAnDssNEWjk/+EqvgKdWFcHEMbi5kx25MmPYfMaFF9eWAgCyzCxu7WzHwj1iMTnSZ15XmJqMQUW4SCtndxAizEb87YzD3yaZIGU4WUsTNdQSLAJAoZPHbzLX0mgsqv+zsRRbz7qDSe2e6pci+a7DbReiEWl9lUehs/snMHhXCcrWPghP8RZYWk+FpcP9gM+Fsj//D1U731Dtx3n4S1RseRGewvVgTZnQZ/T1X5Ns0lWwfNUJCF6xHZQuub3mMRMEQRB+6tyT9syZMwD8BsJaad/ef4E/e/ZsrYyJIAjifCQau4PagDVIE2MU5vePyge0rij78/9EAi0AFC0bLYl+9RP5QZKXi6QN74VE2phgWC6YoEq+ASdZdqtTUGmjORTDPWmNISJtVZQ2Amqw0D6uf/5ZipfWlmoSaGOhppFh4WgRmOSyw6tR/udfVOudhxZG7CPciiTa+prCGJLEBbwHnsL1cB3/DmV/3AtBEFCy4mrNAq2/z5Qaj6t01c0A/EvIi1dcDc+ZNfCV70PFxr/CfWKZ6rb+ba6C58xq8JVH4dj7Dip3qNsvRCJcpOWszWISLZslxTdGJVWjlcC+Ei+2FXowZ4vUc9jlE4ICLQCcdvB4aV2ppF0Eu9Q6IzyJJAD45LyMQy0OmNq3Owj/7WUtjUUTMloo03A9/1QmErtcYaWC3GTXqhOuoEALyNvlhP8ORCXSlu8Pvq7Y/ioc+z+At2ijX6w9uw5V+96PKNDyzkL/eV+4/tz7M3Ady0fZH/fLtg+PomV0VrCWJprHTBAEQfipc5HWavVHtxQWFmreprjY72NosdADLUEQhFa0rq5kmfhHzAFiX9BQQh8eEoXAQ0govvL9Yp/KcwgyZZJtHScjthH42hHWLgRYFdGMs+RKhJtRTeVF3XAPQDW8YaHp+hC1pFVK7P6k4Ryr8GFIE+0P4/FOaBaKkrithQ5petX3Shiyh0S1n0iRlJ6z6yRljFE8gRQpARmrT1Ktrylqx7Pr2LcQ3KXSKNJIfWoUaXWpylHIzsNfAAD4quPgw1YHuE/9qtovX3UCfJg3t/v075rGpNinSxyswYVZ6mglzRTb48+YFtLrSOsUHRxRnoN7SryS68n2s1IfWzmS4zxxEit6GasAvvIoDI0vEZXZujwZfB0pojX8GIsFT/EW0XtdDEnQhkZx/Q3F5RMk3ysApMVgOQEAu8Im31hjuuZtfeUHgq8rt7woqitf/xjK1twdsY/yzX+XTZ7qOvq1/D7DznfO3jJuyeAIgiAuJOr8ytmuXTsAwIIFCzRvE2gb2JYgCIKIjNzDghyjm5thjmadnkZk/ekACLy2h9G6RFDIpi6EJRDyFyonnAnAOyOv/DCEJSshtKO2/NzW7WlJWf9GRuTapA/K4cnAohpDiH4Zz4jTNBOL1ik6dEqPn/BbH0xoaQkm0tGzwBUas8sbm1wW1X4En7qFA+88IylL6iOO6IxkoRGPqFTV/nXqkbqxXDO1jtnW7a8R2/gc0gjJSBHPvFyG+Rp6ZAq+8IRuKhH1KsQSfds6RYfr2tnQJ1v8u3ZFKys8MUyUVIRlMtR6Kbq4WWx/c7xRik6193wezDkxUZ/RD+aW1clDbV2eqPVxec78IXovJyZHom2qHl3Dk3ZpxCHzRca6eCg8b2M0x7s3RKQNJ3yyQwm5yWs1BI848ps1pCq0JAiCINSoc0/aCRMmYM2aNXj//fcxaNAgTJs2TbX9hx9+iPfeew8Mw+CKK66okzESBEGcD4QnobDrGZTLeOXd2KH2/Bb1GX3hObtWXKghErWuEdzyIi3vli431SbSSoWhcAw5wyO2IeRRSx5maXurpMxuYPGPIWl4aW2JKCFXPKNQp3a04YMdYj++a9tZ0SfbCDcvYOlhB34+GtkTtnumAQzD4Ol+KThc7sWZKh5eQUCnNAP+t78S+Qe1eba+MTwN3x504IfD0Xm8xoue2UbMHpWBo+Ve5Nl1EZOQBWAVBPj00b9B8FVB8Fah+Kcrqit8MhMpIYSfi5YO98HSWpyZnjVmwKeSkKu2E/BI7A7CiUGk1RpJa25+FQzXnMTpBfJRjry7FLxT6p3MR0hgJpsosoZWNxKxmo09iVv7ND12aUz49+rQNDS2ctCxDB7plYzjFT6UuHjk2nVIMbJYKnOO3d3Njrc2KyeAK/cISAkJ2NRqT5QXwU+3vjFk9EHWpD3wVRVAl9wWDFstdpqaXg59Rj94zv6h0kPsCIIA99lwkTZ6D3yWYfCXvik4XuHDo79Gl/DU4RVgN4SXxXbPYwtXaQHYe7+K8vWPRdxWdcWSxvPGVxbdqqfw+yXGkBzV9gRBEISfOo+kve+++9CoUSMIgoBbb70V48aNwxdffIHjx4/D4/HA6/Xi+PHj+OKLLzBu3DhMmzYNPM+jcePGuPfee+t6uARBEA2W8Ic+k0LSntpMRCK7PC8BRVpeKZJWRojQYlOgJVKFs+ZGbEPIE0siJx3LoGO6+OE0PBlYTbDLPFB3Sjcg165Dy2S95uX+xnPnKcMwaJ6kR58cIwY0MiHJyILTeK62TtEhx6qDWUOirtokycCiU7pBs0CrhiF7EIyNLwZnbSoqD4+uDMfnEou0+rTukjZK1ix1hZrdARCbNUo00b+cimWEt2wveJlIWt5VCEEQFO1fBFmRNvIElyrhkbQ1EGmjOSSb2nVB6w+GYZBr16FzhgEp57xo3TKrVnpkSZNohVIeFklbJTOB2lBhjWnQp3YSCbTBOnOW6rZa7ISk2/g/O1/5Pslxp48xUSnLMMiz60QJIrXg8AoQBAF8yP1XrN9tkowNlaK9S9i54K1QjqSV+17k4OU8hlUQwkRaVk8iLUEQRCzU+XSs1WrFN998g1GjRqG4uBjfffcdvvvuO8X2giAgNTUV33zzDXnSEgRBREF48Ibco4YxNqs0zcgJBYJHObqoPhB8LsVItcJvB0rKSlZMhrPZJCQPfBesMUV2Oy12B7UdnXc+oxZJq4Yx7IFbq0i7o9ANVwR9ySBzLoU+ZLMaEs4BUBUFtD7qBzwQa+Ipm7BwYeKX4IUg8Ireh+GRtHKCLGvKiNvwYoGJ5HkbUyRtfASSwm/6yI7PdfRrnPzA/5nrUjohZfgi6FM6BOvl7A4ief9GwhWWrIwJPxaiIJ7nhlvmOhJpfuRouVc0aXS4TOr9eX6iro6f/MB/7UoZ+onIKiEU59FvUPbHffBVHIbaVZE1ZUsmdaIlzcTiRKX2yYXHVxbByDFw+wS0TdXjgR5JqIzRVsfIST8rTsHXl7O3hC8kcZdPxe5Azqc7WgrmMUi7bAWMOcOCZbyHImkJgiDiQb24effo0QNbt27FlVdeCZZlz83ES/+xLIvJkydjy5Yt6NatW30MlSAIosES7kkrFzErt5wunsgJBVW7Z9fqPqPFW7Ij6m2ch79A1d53ZesEQdBkd0DEjtKS+EhIRFoND8+CIGDOFunEQnjwnNz5FepVqzVgXSniHdCe2T2Qbf581GgZVkaYU/ClFQQBvEO8VJ81yoi0RhWRNoqM6rHC1HMkbSSUPLsDeEu2o3ztQ6IyObuDmiSNFAQhrsvkT0YhvEVCTqTVRzj5lhwQe/rWly1JnaPxQljy6xTZ417wuVG66tZzifTUr9/6zP41XimUYY5+JtvlEyAA2F3swXN/lMS8b7mJP9YkH0nL6MSBTIK7RN5yJI6UrhJbC4VH0pJISxAEERv1lnKxcePGWLRoEY4cOYKPP/4Yf/nLXzB9+nRMnz4df/nLX/Dxxx/jyJEjWLhwIZo0aVJfwyQIgmiwFDrFobQj8qRiwy2d1cWBmmJqNklaWIPop9rA5yiIabvy9Y8qdOgC5BKOhWDtpLAtoQmf46RsuS6lo+p29rDlo+HniBwun4CTVVJBJzzyrWOaHqEacLqJhSVEcDVoXDZrVZk4kTuH5Qhkr2+dEnu09sVN6y9BEWtupFgnl+SL91YqtBYk56Kc/6u1s7LHY02W1GslkkgbSyStztYiqvbWzjVL6uQqEEe5ykXSclGOSdSfjIWMp3hrzP0VxFGkvb69eNJoYGMjdCygdsqHin8nKrRF0bZPTaxkgvY+/xK9t/V4PuI2bBSrINynfpOUeYu3ynoky6FP7aJ5X0pMbqOeVDASNTnOxrWUriDl7C1kPWVZfTIQtprAV34w5n1rwVe+HwJf/feR3QFBEER8qPe1lo0aNcJ118kvZyEIgiBiw+0TJJFCXTIMOFDqxdqTftGCAdAjs3YFCNnkWDFEhdUm8bZfELwVEdtYOz0c131eaOjT+8Bz+ndJeVLf11W3a2QV3/YUOnk4vYJq9KpSzpdwz2ebgcU17az4dFclDBxwQwebKIor4F8ZiV5ZyudkI6sO/RsZsaZAfRIg9ZxI2yk99vN7QOP6m0xJu+QHnP2qa/B9yvBFwddyCbEEdwkg5ysrm4xJ+l3rUzqAMabJ+6jWAWwEuwNeIbGhap8mGT9wFawd7oFj37yofSiDhHmJyn2WQoTJKzXkLGRYk7q/qRosA8TLkrpLhgF9sg1Yd8qNbAuHK1tbwTAMbHoGpW75nYQemj9pSCgIAFe3q5lgGG8srafBeWgxPGdWQ5feE5Y2t0TchktqrX0HMv60vFv7ORoxIZ8G2qbqMCLXhJ+PafuO4kWOhUOLJOljOqu3w97zBUnyMIF3g7M2PRdh7MdbcQD6jF61PNLqA5nsDgiCIOJDvYu0BEEQRPw5UeGVLATMtXF4pFcyKtw83LyAVCNbq0nDAH+CCmvXJ1G55cVgWSxLd2uTeIu0vIb+OItypCARGUNmf1TtfENUljL0YxgbX6y6XSMrBwbiRbIFlV60SFaOUAu3DQkgJ/Bc3sqKS5qZwYCRCL9aRVqTTr3dQz2TUeXhUejkwQB4f3s5thWKz6lQT9rumQZsOhN9JGZ9Jh3Tp3ZBzk1eeEu2Q5fUFoyuOoKY0ZkA1iiKkA3PKl6N9EtiFLyBc64rhK+qAKcXNo7YR7yJ5K0qeJT+PnmMTa+IegycNQ9ZVx9D6apb4Nj/YdTbhyO31DpSkjc1BJlIWtaYFnN/OhbwxSmYVs8xeKRXMhxeAQaO0eR3G5AfvbyAX49Ftjq4vr21RpMutQFrTEP66JUQPOVg9HYwbGRrAF1SG+07kPGZ9lWd0L65TNR9tDAMgzu7JeGGjjbctvRsHVwNgH8OTUOeXfkR3db5UalI6630+9KGiLS+8gNR3W8xxnQIrsIoR1v9iYTbolAkLUEQRGzUqkh75MiRuPfZtGnNDOAJgiAuBI5WiJ8+M81sUPyxxSHTejQwjFgAi+RvWNcInsiRr5r74n3+qD6iVuGsUhskLR6cBo5BhpnFGUd1hNaRcrFIW+nh4eWB5HOiqkchkpZXKDcriKxaRVotWPQsLOdsEVql6CUibWrIvmK1na5vO1uG5aBP6ypbxxpSRBGfcuec4HPBV3VcpmPlvyxRJ0/4KK+ZgqL9gzoMqwNrDhepY0PO7kDwVEAQhJgmB30yPt/hPpzRwDLh0zU1g2EYWPTiv0stYRR/LpR242m3YrRtKDnWxIyrYVgOjEICTTm4pLbRdC4p8lUe0755HETaADY9i0ZWLqokYuFwGqO31QRaJQRvJbj03gB+Cpb5yg9AiCIKnzVmwBe1SHtu/7wHvEt8zlMkLUEQRGzU6i9+8+bN4xqlxTAMvN4LJfspQRBEbBQ5fXhzk/jGPJab/njBcOLoH9exfJz5X2dkXrGtnkYkxnF4UeRGGqjc/jrK1j8GCPQ7VduwFhmveo0RQ01sOpxxVEeWvrW5HHqWQd8cI97cVIbV56wEWibr8ESfFHhll8wDfJQCj1ZP2miRC/QNeNLWZL+1HGRfI8LFOdeJH2FsPCr4vmrP2yj94wHAJxehGOUfpvD91yWlK2+Kqn1NJp7Cr9exImsdwbtQtOxSpA5fJJtUUo3wBHAAwHCx+ybXxeGtZJUCAPtK/L8TPx0VH6NtU/XYUyy9lmWY6y2NSFyJJpKWkRFpebmJF6Xt4yjSAv6JtpqItG1T9dhZpP47FXrtjgbBWwWdvaWozFt+QGJBoNqHrypyo/BtPJUo/u0muI4ukdRFe44TBEEQfmr9F18QhLj+IwiCINT59qBUmMi11WMUDitdSu4t2Q5P0ZZ6GIwUOW/TaOFdJSj783ESaOsITibaT+tS6kZW6ZLceTsqsOmMOyjQAsCBUi+WHa5SjKRNlFsSOT/dUKuCSFnmlVCyBUgEfBXihDiV2/4RfC343Chb+5CCQIuo1WdGrz3RUcIgI25pRfBGL9QEtw3xEJWLpAUA94llcBz8LOq+5ZJFyfkTa0XNhzpe2PTq+9hf4pFYkVykkBwwyxzZSqAhEI1wJ8h40vqq6ieSFgBSYhRQA3TOiDwB0lzGh1YLDKsHFybS+ioOSJJ5qRGLPYHz6FeyAi0AMGR3QBAEERO1+tQ+depU1fqSkhJ89dVXYBgGN90UXZQAQRAEIc9pmUz0besxKzTDyS9Jrdj8HFJHxCeKNVb8D4E1X/bqKlimOZJTNpkaERWMzgRdald4i88J/axeFEmpRptUPb47JBbwSl089spEr52s9Cl60o5qGn0U35AmJqw8rpyAZlrH6AXBoU1MWLSnenl7xzS9aBVTY1v04o6OBfLsDVMU4p2nVJf7c5Zc1e2tXf4PlVtfDr5P7v9W3MamhrnVTXDsnx/1dkl934C3dCeqds8Oltl7PB/zONwnf4l5W/jcwDn/YDlP2gBlq++Etd30qLqW+05NzSZFN74QbutsxyvrIwtYE1vFbqlwbTsb3tmm7FH+7w2lokh4PQsMaGTE+lMurD8lFm+tEQTfhoSx6US4jnwZsZ1cpHQ0oiPDyQvesZJZQ6G8TYoOndOl9jShXNlGm7Bs7fyEaHIqqe/rYPR2URvBUwGB1+5Hbu3yBEpX3qi5PQCUb3hKsS7enz9BEMSFQq2KtO+//75q/fbt2/HVV19paksQBEFoIzzrPAD0VMkYX9soZViOOYt4HPF7WcYm0BqbXBZ8zTAaf05ZI+y9X4lpf4SYpH4zUbryJvDuEth7vaw5iVC/HCN6Zhmw4bT44fWUzOSGm5dfstwlQx+Tt/PkNhYcK/fiRKUPOgao8grBo693tgHDcqN/qM2ycJjS3oov9lYh1cTixjCh9+KmZmw545YIA5c1N6N5kg4f7qxApUd8DtzfPemcZ2fDI1JENaNTF9etHe6H5/Tv8BSuh6n51TDmjo3n8BSxdftrVCIto7PC0OgimFvdBN5TCk/RJniLt8LceioM2UNiHochZxg8hetj2lbg3WBgOufNHV2ys4jIiE26tB4xd9ct04DGYR6jRo6B65xpqIEFWqfocVnz2C0VhjQxYvMZN9adkj8mQ72xAX8UpUnH4vr2Nqw/VS1yP9UvpdaTfNYl9p4vwFe+D77y/bC0v08kNoYiJ8xHE+nNyKziqQk1nexONXK4voMNr64vRZHT/91nmFn4eKDCw2NsCwtap2jbh7XjA/CcWQ1P4Z/+61ST0XCfXhXWStC85MPS/l4Yc0aoN+JMgE88yajqf12DiH6CIIgLmcR0oScIgiBiJjzwb0p7K7gYlzzHA6UldL7Ko3U8Eilq0V6hGBtfCkOji1D+5xPVhUxIVI1Gb8SsK/eCs+ZFM0RCAWPOUGRddSjq7XQsg8d6J+O6b8WJiGRFWp8AT9gJZdMz+Gu/1Kj3C/iT/7w8JPaM9Epc3sqKy1vJR2BZ9Cye7p8Kt0+ATxDAMQxYBsEM9MNyTeAFaMpI3xCIJnJMDs7SCOmjaxBNGiO6pDZIHfElin+eGLEto7cj5/pq33HWmIKMsavjM5CaWCXwfjFS8JQinkm5/H2LJxks7e6skXCpYxn8e3g6BEGAyycEE2vGE5OOxaO9/b9/5W4ety07q9q+5bkEho1tOiwYmxX38SQK+pQOyLy82u5IUaT1SKOQhTAbk+SBc1H6+x3yO4q3SKsgoLKMvDd4OElGFilGFrNGZtR4LLLXqbBz179SSH1gupTOyLxiKwD55HwBbN1nwNb1rzg5XywdsPpk+JSSpZJISxBEAyFwP/G3v/0NM2bMqN/BoA48aQmCIIi6pcQljs6p74g4pQy/vorDNepX8DrhrTgMwRe7KMNrzWTMsJIHDm/prhCRV5sgIfCxJx0h4gfLMCLfVkDeJsTlEyR2B7F6vNY3Bo6BWcfCwDEiQZZlmPNCoPVVFQAABLVzOs6iTdzReq2W8eqMGxptW2Q5dy3WOvkVsbvK43Cf/h2C1yEV3+P0XTIMUysCbTh6DbtolXKBxs4oTHIKXmkCvPBIWtaco9it5hUuGkkyskiX8aVNMWo7fuy1blkh7l9wFUZeWRBiScAwyucUw5nBsJzE55dR8YVOZF9z4sJhxYoVYBhG9p/FYkFeXh7GjRuH9957Dy6XttwGBFHbkEhLEARxHvHbcScOlIqTV9VSUnnNsHp5u4OaRFp5Kw7jzNfdcGZxc5zN7wefTOZvLWgWE2REWl/5fpz6NB3OI18DGpNWUWKxxMESJtJWeKTHo1+kFZdpEVuIuuf0wsYoWn4FCr8bqthGzuMyodAYeSaXUClehEesRretX0it2j0nYtuydY+q1lds+ydOL8pF4beDcPIjC7wlO0X1DFt/Fj6xoGUipFVygk8i1BKMTt7313nkK0lZuEirek7XwqRMtkXqSxuwLohEba9oYmSuH0U/RLAwYEOEbJXPK2BPxSjez8kNiH4sicTG4XDg2LFjyM/Px6233opevXrh0KFD9T0sgiCRliAI4nxBEAR8sksaeVLfQXJKkbQ1oXLry/CV7QEAeIs2wbFvXkz9CFGItAwjnzSk9Pc7gst8iYZDeCStHC6fAHdYJO35EHV6vuI6KhV1QuGs6knD6hu55d1y6GzNa20M4ZFyUXFusqpy+z8jNq3c/i9FyxuB96F8/WOiMs/p38SNEj0qOoxIk6VmHRNTkr/zAc7cSLbceWihpCzc7kBdpI1/ZHIbGV/athoioOtkci8WUTRkGzUP30AC2PD7Od6tdg9Fv5VEYnHXXXdh69atwX/Lly/HG2+8gdxc/73B9u3bMWHCBPh8tOqNqF9IpCUIgjhPqPAIKJSJ6NAiRtUmnLUpGJmkTqylccx9hmYyByD2io0CreKqLrWLoijgzybvkK0LhbM2A2dvFdX4iNpDi21BmZuXREnZY0gYRsQXa5f/i2m7pL7/ifNI4kukpckBzK2n1doYrB0fiHlbwefU/DcAgOv497LlvqpjEbdVXqGRmETyz22VrKt3a6L6InnALE3tBN4HwVMmKmMMyTA2lfdx1tla1nhs4VzSzIxQd4zO6Xp0zzJG3K5/o8htakpASI0Gz+nfq9+oiLSm5lcBADiT2CuZV8stQJG0RIKRlZWFzp07B/9ddNFFuP/++7Fjxw40b94cALB161Z8+eWX9TtQ4oKHrp4EQRDnCXKJjwAguZ5FJYbVIXXopzLltf/QEhFB/JnpM/rC2vEhsKZsMDobGEMqTM0mw9bl/1QjdgSFxBm6lM7QJXeALq0HUoZ+eF5l6G7oaAmILXcLOF4htqiQW+5K1C3GRqOi3sbU4joYGkVY+lvvaLs+WDvcW2sj4CyNkTzoPXBJ7VTbGbKHScoEnxO+quNR7E3+7/VVHIq4JWuqefKluuaatspRyp3SG5Z9QzzRZw2CrcdzEdvJ/c6yxjQk9/+vbHtGZ5ItrwkZZg53dklCYyuH9ml63NzJjjEtzBjU2IhMM4vxLS2Y3sUuOrK7Zhgwpb0t7mMJh5WZDI+EudWNwddK9yf23q/6J6oBcLYWUfRO9ztEw8But+Ovf/1r8P2PP/5Yj6MhCBJpJTzxxBMiQ+kVK1ZE3Oa7777DxIkTkZubC6PRiNzcXEycOBHfffdd7Q+YIAjiHCcrFURajUktahNjk0uQOupbUVlNvA/jhcTbkdUjqe9ryL72JHJuKEfOlCKkjlgEVm8XJdgIJ1yYMDa5DI2mCci8YisyJ+5A5oQNMGQPqY0/gYgRra4Fu4vEx2kWibT1j4L1iByctSkaTROQOuwTWc/Ghoa954uKHp7xwtLmZmRN2qVYnz76V6SPXgHGmC4qF3xORQsDeRRE2vKDEbdkjQ1PpO2epSzEds64cEVahmFg7/bXiO3kEn2yhlRwFnm7hNpiSK4J/x6ejmcHpCLXroNZx+L+Hsl486IM3NDBhouamvHZ2CwsOPfvqX4pSDPV/u+G3IqlSLCmbNV6S7s7Yev8aFDA5exRRCfTpDTRgOjSpUvw9dGjyr9jP//8M6ZOnYqWLVvCYrEgKSkJXbp0wWOPPYYTJ05o2teqVatw2223oV27dkhKSoLBYEBubi7GjRuH//73vygpKVHcdsmSJZg8eXJQd0pPT8eAAQPw8ssvo6JCankHAK1atQLDMBg0aFDEsR0/fhwcx4FhGDz++OOybUpLS/HSSy9h0KBByMzMhMFgQKNGjTB+/HgsXrwYgqCccySgsc2YMQMA8NNPP+Gqq65CXl4e9Hp9MKI5lJMnT+Kpp55C7969kZaWBqPRiLy8PFx99dWaBfVPPvkEw4cPR2pqKmw2Gzp37oy//e1vqp91fXKBphGVZ9OmTXjttdc0t+d5HnfccQfeffddUfnx48dx/Phx/O9//8Ntt92GOXPmgGUb/oMBQRCJzcbT8stME0GkBaR+Z7yGJa0AwDvPwlu2B7qUTmCV/G1jjMr1lYqFCDURJxqRtka+jkSdwGl8gDxWIZ78yCGRtv6J4uFf8DlrcSBxRsvflQBerKylCQC/H2joo5jr2Deo3P4vzf0IvAe+ymPwVRyGPr1XMPLRV6FBpDVlRjXmRMCoYExr4hi0TKZHskhIEn1yZjC6BE8GWIfEdN8RaeKKER+XnD2KSNrzYFKMuHAwGKonyvR66e+s0+nEzTffjM8++0xSt23bNmzbtg2zZs3Cp59+ivHjx8vuw+Fw4NZbb8Wnn0pXFwb0o/z8fJw5cyYoYobuf8qUKRIrhqKiIqxZswZr1qzBzJkzkZ+fj+7du4vaTJkyBc8//zxWr16NQ4cOyQqhAT799FPwvD+A5frrr5fUL1++HNdccw0KC8WTZidPnsQ333yDb775BmPGjMGCBQtgs6mvIHjqqafw4osvqrb5+OOPMX36dFRWVorKjx07hkWLFmHRokW49dZbMXv2bOh00t9Rr9eLKVOmYNGiRaLy7du3Y/v27fjoo48SMnK6Vu8I/v73v6vWnz5dnY07UtsAzzzzTI3GpERAcPV6vcjKyhKNTYmnnnoqKND26NEDjz/+OFq1aoX9+/fjlVdewcaNG/HOO+8gMzMz4gFIEARRE74/VIXfTsiLtEmJ4qEpIy44Di6EucXVipt4S3ah8Pvh4J2nwFmbIn3Mb+CseZJ2agKqElV73kHljtfDO1LeQGUfzoPiGy4SaROfWPN/USRtw6JBibQq0ScBGKb+xTzO7PcTD7/uRiPQAkDZmrtQtuZuAAJ0ad2RMWY1GJ1Jm0jbACNplUTaDml6SkiogYqt4mcpNiyS+0InNjsl9WtO+OS6Lgq7A4bsDogGxM6dO4Ovw0VMQRAwefJk5OfnAwDGjx+Pq6++Gi1btgTLsli7di3+9a9/4ciRI5g8eTJWrVqF3r17i/rgeR6XX345li1bBgBo06YN7r77bvTu3RsWiwUFBQX4/fffsXChNGEiAEydOjUo0Hbr1g2PPPIIOnTogKKiInz22WeYN28eTpw4gZEjR2LLli1o0qRJcNvrr78ezz//vD/B9Cef4Mknn1T8HD755BMAQKdOndCtWzdR3apVqzB69Gh4PB5kZ2fjvvvuQ7du3dC4cWOcOHECCxYswEcffYRvv/0WU6dOxeeff664ny+++AJbt25Fly5d8NBDD6Fz585wOBzYtGlTsM3ChQtx4403QhAEtGzZEvfeey86qIf7TAAAceRJREFUduyIzMxMHDp0CO+++y6+/fZbvPvuu0hKSpINtnz00UeDAm27du3w+OOPo2vXrigtLcWiRYvw9ttv45prrlEcZ31Rq3d6M2bMiPiDEah/9tlnNfVZWyLtf/7zH6xbtw7t27fHxIkT8dJLL6m237NnD/75T3/22t69e+PXX3+F2eyfze3Tpw8mTJiAYcOGYf369Xj11Vdxyy23oHXr1rUydoIgiPe3yy9xARInG72cB23JL9eoirTlW54D7zwFAPBVHkHF1pdl/ecYLvpI2rJ1j0jKBN6t2D6aJca1vRyZqDnSFHvayLaSSFvfsDrt/o6Cp7wWRxJfFFcKhJIA0WmBiNf4RDH6RSJv0Sa4jn8PU7MrNHnSMqaGJ9AZFH6LO13AVgehsJZcyQobQRCCz4quo0tEdbzrbPC1PnMAPGdW1/4gzzcE9Sz2rDlH9D46u4P6v1Y1VHiBR6Grqr6HUWekGy1g6/F48fl8ePXVV4PvJ0+eLKp/5513kJ+fD71ej6+//hqXXXaZqL5///648cYbMWTIEGzfvh0PPvggfvvtN1GbN998MyjQTpw4EZ9++imMRvGzy9ixY/Hcc8+hoKBAVJ6fnx8Ub0eOHIlvv/1WFPl7ySWXYMCAAbjjjjtQVFSEhx9+GAsWLAjWt2/fHj179sSGDRtURdpdu3Zh48aNAKRRtB6PBzfccAM8Hg8uu+wyfP7557BYqp91evbsiXHjxmHo0KG444478MUXX2DZsmW4+OKLZfe1detWjBw5Evn5+aLPYejQoQCAs2fP4o477oAgCLjlllswZ84cUaRsz549MWnSpGA07htvvIHp06ejXbt2on3MnDkz2P6XX34RRfeOHDkSAwcOxNSpU2XHWJ/U+nS8midFtNRWwpUjR47g6aefBgDMnj0bP//8c8RtXn/9dXi9/mQiM2fODAq0ASwWC2bOnIkBAwbA6/Xi3//+N/77X3lje4IgiNqil4oHXl2jS+0c9TbOA5+I3lftektBpI0+kjY8SzQQluk4DH1qN8U6yXgokjbhifVxINmQGJMeFzK69B5RtI7ffWhtY8wbB8aYBiF8WXc9YWl7B6r2zBWVmVpOCb7Wct01tbhOstJACcehBX6R1nlGtR2X1LZBRtIqOZ91SKt/C4tEILnff1D88yRxoeAFGL28h31IlHxyv5k4+0115Jqt29O1NcyExtL+HlTtiuJ5Mywy39T8KjgPnVsWzBphaTddVM+aNfr/sgYweg2TToQsha4qZH06o76HUWecvm4GMk21n1wvnDNnzmDr1q145plnguLk5MmTMXjw4GAbQRDwj3/8AwBw//33SwTaAKmpqXj11VcxZswYrFq1Cnv37kWbNm0A+KNoAyJwbm4u5s+fLxFoA7AsK4qCBRDUkPR6Pd5//32RQBvg9ttvx8KFC/Hjjz/iiy++QEFBARo1qj5fr7/+emzYsAHbt2/H5s2bJVGygN9aAPBrblOmTBHVffbZZzh06BBMJhPmz58vEmjDx/HOO+9g7dq1mDdvnqJIy7Is3nnnHcXPYdasWSgtLUWTJk3w1ltvyVoZAP5Azw8++ADHjx/H/Pnz8cILLwTrZs+eHbRumDt3rqz9wk033YTPPvss4XJJ1apIq0XsTATuueceVFRUYOrUqRg2bFjEcQuCgK+++gqAf2aif//+su369++Pdu3aYffu3fjqq6/w5ptvUmZvgiDqjKZ2Drd3sdf3MIKwevkbsNBImZiJUqQVvA7Zcls35dUarDEFqaO+Q/GPoyP2T5G0iU+GmQMgffBPMbIoccnH2T7cM4l+xxMAhmGRPmY1Cr8dELltAxIKGFaPtFHfojBf/r4SAAw5w+psPPZe/4Ag+ODY67f2Mre6EfZerwTrtYi0KUM/QmV6L5SvfzRi24DPrOA8q9oudcQX59V52Mxe/xYWiYAuvaekTPC5wLB68E5p0rBQ9Bm9kDzoXTj2fQBdWjfYuvxfbQ0zobH3eA6CzwVf2V6wlsaiCRJ7r3+g/M8nRO3Dz+Gkfm+CYY3wOQpg6/J/kuh+reedLqk1GJZWnRCJxbPPPqu4ettiseDOO+/Eyy+/LCrfsWMH9u/fD0AaYRtOIAoUAFavXh0UaTdt2oRjx/yrBG6//faIXq2heL1e/PLLLwD8EbN5eVLLtwC33347fvzxR3i9XqxYsQLXXXddsO7aa6/FY489Bp7n8cknn8iKtAGv3EGDBqFZs2aiuq+//hoAMGzYMGRmqnvCDx06FGvXrsXq1cqrGwYNGqTqjRvY37hx4xSFXADQ6XQYMGAAFi9eLNlfwGu2S5cu6NWrl2Ift9xyy4Ul0g4bVnc3krGycOFCfPPNN0hLSwvaF0Ti4MGDwex9kf7GYcOGYffu3Th+/DgOHTqEFi2iMFwnCIKoAS8MSoNBwQMvkRC8FWD0NROTo42k5d3FsuVyfrehmHIvQ6NpAgrmRbDyoUjahCfTLB/W9uKgVNz9k7wg0DaVIt4SBUOWspApIsJy3kTDkNkPhkYXwV3wk2x9XV5bWGMKUga9g5RB78g34NTtDnTJHcAwLGydH4Gt8yM4+UkqBHeJYnuG4SAIPHi3ciQxZ28FfWonLcNPOOR+NVKMLPQN4He6LmBYmZU/5yyIeJc0upo1ZYveW9rcAkubW2plbA0F1piKlEFvVxcMq16NxLvLZERasfjBmbOQMvTDGo+DS2oXuRFBJBDdu3fH/fffL0katn79+uDrAQMiTwwHOHnyZPB1IEoXAIYMGRLVuA4cOICqKr/1Rb9+/VTbhtZv27ZNVNe4cWOMGDECy5cvx6effoqXX35ZNOnyxx9/BMVouYRhgc/hhx9+0DxZE/oZhNO1a1fFOp/PF/SmnTNnDubMmRP1/lwuF/bu3QvAb0WqRt++fTX1X5dc0GYxJSUleOCBBwAA//jHP5CRoW3p1I4dO4Kv27dvr9o2tD7UkJogCKK2aQgCLSDO2Ow+vRqVO2eicscbcBzQtkQWALzFW+A49DkEb1WwH+fhLyF45ZMGuU+tlC1nDKlRjFwZiqRNfDIVEoApJfcBAKv+gr5tapAIXmW/7kSFURE/E+naEmlyjAlL7KRLaqPa3nFoMQRXMSAoO0YrTbA1VFomUxRtADlvecHnT4jKy0RXM1o8nIkgsiJ4DFZRWtAlta2VfgmiJtx1113YunUrtm7dio0bN2LJkiWYOnUqWJbF77//juHDh+PMGfGEkJZk8nIEhFXA768aINSCQAtFRdXPSFlZWaptc3KqPaRDtwsQEF+PHj2KX3/9VVQXsDrQ6/W46qqrJNvG8jk4HPKrFgG/PYQSRUVFQVvRaAj9zIuLi4O2q5E+t+zsbNX6+uCCvjN4/PHHcfLkSQwaNAi33nqr5u0C4eqA31dEjdCQ9KNHj0Y9xtB9yRFuLE0QBNHQEFxFgK0ZKnfPQdnqOyO3P/fQFk7Jiskw5IyAqekVKFvrn4DTp/dC+ri1YEISEjiPfY+SX66V7YM1psXwF0ihSNrEJ90cvUhLGi1RF6iLtIlzbVEbJyDNDB8e+RgOX3UMpavvUG2TKH69sSB3ZSGRNgQZETHwe+8+vUpSl0jnQoOAla4EkUvoGg90yRRJWxPSjRacvm5GfQ+jzkg31s3kY1ZWFjp3rs6P0b17d4wbNw4jRozAtGnTcOjQIdx2221BW0vAH9UZYMmSJapL9MP3FW9qavNz5ZVX4u6774bT6cQnn3wSXBHu8/mCickuu+wypKdLE3MGPofRo0fjlVdekdRHC8cp26GEfua33XZbMKgyEnJevUDt5bWqTS7YO4OVK1finXfegU6nw+zZs6P68srLqzMFR/IUsVqrbyAqKqKP5lDzHSEIglDCrEvMHyQuqR18ZbtFZYHIqKrdszX1Ub5phmKd++TPcJ+s9hX3FP4J17HvYMobGywrW3OX8vgsjTWNIRI1tW8gap8chUhanYoQ2xBv9M5nGH2SbALAUHQpDW9pPKPg3w0kViRtJHQpHUTv9em94Dr2jeo2zsNfqNbrMxJvWaJWWJnrR4e0xEnuWd/IRdIG7Q4qpUEr+ozekjJCGTmP2EgWT7FCkbQ1g2XYekmkdaEydepULFmyBJ9//jm+/vpr/PTTT7jooosAQCRYpqSkiERerYSu1i4oKIi4EjuUtLTq4JFTp06ptg1d7h+6XYCkpCSMGzcOixcvxuLFi/Hmm29Cr9dj+fLlwb7lrA4A/+dw4sQJuN3umD6DaAgduyAIMe0vJSUl+DrS5xapvj64IGNC3G437rjjDgiCgIceeijqL97prF4+q6TYBwg1OlYL+SYIgogVl0+avfzK1okZYWJtf7ekLBAp46vUttogPNt4JNynfhG991UcUmzLaXywsPf6h2q9IXOgpn6I+iNLRqS9t5s/MVh7yrbeILB0uDdim6Q+/6qDkcQXQ84I2XLWmCGJTq1PvCVbVettXf8qem/t9FCN92nv+WKN+6gvTDoGrVOq42NybRw6pifO91nvMDqExxsLvP/+gNFL72nsKok+CXmMueOCr1lzIxhzx0Tdh6mF/EqkUBhDStT9EkR98uKLLwajO5988slgeY8ePYKvV62SRvRroWfP6qSI4TYDkWjZsiUsFv/k7B9//KHadu3atcHXSvpWQIQtKioKJssKWB3Y7XZMmDBBdrvA57B+/Xq43e4o/oLoMRgM6NTJP8Ee62duMpmCidvWrVun2jZSfX1wQYq0L774Inbt2oWmTZvib3/7W9Tbm0zV/j2RDlKXq3pZrtmsvixMjqNHj6r+Cz0ZCYK4MCl3S/37RuTVjs9YTZEVVc5FyjCMtkzAgifaVQnaoh8zJ+3RHClp7fSwaj1nbaKpH6J+eXVI9Wz9oMZGDG7in1h9rDd5HTYE7N1nQJfWQ7ZOn94bKUM+grHJpXU8qppjbnUjkvrNhKHxJcEyztYCmRMTK7eBuaV8xA0ApF2yDJxF7L3HGpKRPlreD1wLyYPehbHxyJi3TwQe65WMi5uacVGeCY/1TpaNrr1QYRhGYnkQmMQVeI+onLO3BGdVt5wjpKQMmQ9Lhwdgbn0z0i9bAYaNflFt8sDIE+WJNJlEEFpo27Ytrr76agB+MXTZsmUA/AJrwN5y7ty5omA9rXTr1i24Ovqdd96JanW1TqcL2hIsW7ZM1QrznXfeCW4zfPhw2TZjxowJ+sF+/PHHcDqd+PLLLwEAEydOVNSrAuJtaWkp3n//fc3jj5XA/nbt2oUffvghpj5GjRoFAEEPYiXee++9mPqvTS44kXbXrl146aWXAAAzZ84U2RFoxW6vXsYa6SSrrKwMvo5kjSBHbm6u6r9ozacJgjj/qAgTaRkAFn1iPvgxDAtdsngJrHBOpA38HxGt7ar3GrGFtcv/RUxqI+qR1cHe5zX5OrI6aDA0TdJhwdgsLBibhft7JAdFehuZzzYIGFaPpF4vy9aljFgMcytlETGRYRgG1g73Iv2SH9BomoBG0wRkTT4A1qQtwW2doeBnyVmbwth4lGydIXswOHsr7bswZQU/A0ubW2IaZiKRYuJwWxc7pndNQo71gnWdU0RieRD4vQ8TaY1NLqujEZ1fsMZUJPd7HSmD34MuOTZLAlZvl0TJSxvRsU00PJ588sngfeDzzz8PAGBZNhhZe+DAAdx0002iILxwysrK8Oabb4rKWJbFY489BsCfb+imm25SDPTjeR4nTpwQld1zzz0A/MGBt956Kzwej2S79957D0uXLgUATJo0SVEjMhgMmDx5MgC/x+4nn3wStPJUsjoA/JYQAaH50UcfjRgR/Ntvv+GXX35RbaPGAw88ENTObr75Zmzfvl21fX5+PrZs2SIqmz59evD7vOOOO0S6XICPP/4Y3377bczjrC0uuCvov//9b7jdbrRs2RJVVVX47LPPJG22bdsWfP3TTz8F/T3Gjx8Pq9UqShYWKbFXaLIw8pclCKI2KPeI7Q5seiaxo3PCH8J850RaX/Sz05pgIgtukRLgyKFX8Lpk9BSFSRB1BaOTP3eZWspaTlSjFC0Xaakza86Br3y/1p1EOSqiIcNwRggh+kMgktZ55KuwhhSpWZ8k3IQRQcSBzp07Y8KECfjqq6/w66+/4rfffsPgwYNx5513YtmyZfjyyy+xaNEibNiwAdOnT0ffvn2RnJyMsrIy7Nq1CytWrMDXX38Nk8mEe+8Vrxy85557sGTJkmA/Xbp0wd13343evXvDYrHg5MmTWLNmDT799FNMmTIFM2bMCG47duxYXHXVVVi0aBGWLl2K/v374+GHH0b79u1RXFyMzz77LBgNmpaWhtdekw8iCXD99dfj7bffhsPhwCOPPAIAyM7OxsiRyitVjEYjFi5ciOHDh6OiogIXXXQRrr32WlxxxRVo0aIFeJ5HQUEB/vzzT3z55ZfYunUrZs6cGYwCjpbs7Gx88MEHmDx5MgoKCtC7d29MmzYNo0ePRm5uLjweD44dO4a1a9di8eLFOHDgAJYsWYKuXbsG++jWrRvuuecevPnmm1i/fj169+6NJ554Al26dEFpaSkWLVqEuXPnonfv3li/fn1M46wtLjiRNjDzceDAAVx33XUR2z/33HPB1wcPHoTVakXHjh2DZbt27VLdPrS+Q4cOKi0JgiBiIzyS1mZI7IdaJmw5o/vUSphaTgFqTaSNLFjHIugoJSRSS/pDEEScUZhgIZG2DmDl8zKwEURazpwNaRyQAhptcIjzhPBjinejcvcc8I4CUTEtp69fWFOmegPBp15PEAnKU089ha++8k8KPffcc/jhhx/AMAwWLFiABx54ALNnz8b+/fvx+OOPK/aRlZUlKWNZFv/73/8wdepULF68GHv27MGDDz6oeVzz58+H1+vFl19+iQ0bNuCGG26QtGncuDHy8/PRpIm65drQoUORl5eHo0ePoqSkBABw7bXXBj15lejfvz9WrFiBq6++GkePHsXHH38c9LOVIykpKfIfpsKkSZPw1VdfYdq0aSgqKsLs2bMxe7Z8kmmWZWVXyL/22ms4ceIEvvjiC+zatQs333yzqL5FixZYsGABWrXSvsKnLkjsJ/kEpUWLFmjc2J8BPFIYdyAUvEmTJmjevHltD40giAuQSq80kjaREbxVove8pzRihvaawGj4qYtFWGUtjWXLjY0uirovIvFoZOVU3xOJgVIUPKOwFJ+IH3LJnACAMabLlgcw5Gi/Rmr1KifOD8LtDgSfC5XbXpE25NQTNxO1SySRltHRZDXRMOnTpw8uvvhiAMDSpUuDSaX0ej3eeustbN68Gffddx+6dOmC5ORkcByH5ORkdO/eHbfeeisWL16MnTvl/eMtFgsWLVqEn376CTfeeCNatGgBs9kMg8GAvLw8jB8/HnPmzAlGt4ZiMpnwxRdf4Ouvv8akSZPQuHFjGAwGpKamol+/fnjppZewe/dudO/ePeLfyDCMJFhRzeoglP79+2Pv3r2YPXs2xo4dGxyHyWRCXl4eLrnkErzwwgvYtWsXbrrpJk19qjF+/HgcPHgQ//znP3HRRRchOzsber0eZrMZLVq0wLhx4/Daa6/h0KFDGDFCmnRVr9fj888/x4cffoghQ4YgOTkZFosFHTp0wJNPPok///wTLVu2rPE44w0jCII0LfgFzowZM/Dss88CAH7++WdZ4+W7774bs2bNAgCsXr0a/fv3l7RZs2YNBgwYEGz/3//+N+5jPXbsWNBG4ejRoyIrBoIgLgy+P1SF97dX+2N3TNPjbwNS63FE6hTME4vIlnZ3wtzmVhR+06dW9pfUfxas7e9U3D/gTxoWjSdtgMLvR8B9coWoLOvqAnCWnKj7IhKLbw5U4cOd1efVLZ1suLS5pR5HRMjBu4px6tM0SXnOVF5zIkAiNnyVR3F6UVNJefKg92FpM01xO8HrwOnFzcE7T0fchz5rIDLGxJbdmWh4nPmyI7yl1QJHyvCFKFlxtaSdrdvfYO8xow5HRoTiKdyEs0vkkzYasochffSKuh1QHVOT5++9e/fC6/VCp9MFs88TBNGwifd5TZG0MfLggw8GQ8Lvu+8+OBwOUb3D4cB9990HwJ9hL5pwdoIgiGjwid0OwCX4ld3a8UHRe4F3w1e6u9b2J7iLQ/YlvwQvFoEWANIu/h6m5lf53zAsMi7fSgLtecLYFmbc2dWOi/JMuLubHZc0i963mKh9lPxPSaCtfTirfK4FNYEW8PsIp4/9A9bOTyCp7+uAytJ1XRRJxojzgDC7A77qhEI7sjuoT5QiaW09/o7UkV/X8WgIgiDOLy44T9p40bZtWzz22GN4+eWXsX79egwaNAhPPPEEWrVqhf379+Mf//gHNm7cCAB47LHHaKaMIIhawxe2IIJLdHEifBmyzw1vqbq/d00IjdYS3CVx7ZvhjEgdvjCufRKJAcMwGJFnxog8EmcTGRJj6xfGkBLTdVVnb46k3i8DALzlB1C18z+y7TgSaS8owu0OvCXyy4bJk7Z+UUocZu/2dB2PhCAI4vyDRNoa8MILL+D06dN47733sHHjRlx77bWSNrfeeiuef/75ehgdQRDnC6tPOLG3xINumQbsL/HCywu4rIUFSecShP15yi1qzyW4ZsGEeck5DnwEfdbAWttf5Y7X4as6DlfBcgiuolrbD0EQxIUGwxpQc9805R8tEmkvLMJF2qo9c2Tb8a7CuhgOoUD490QQBEHEDxJpawDLsnj33Xdx5ZVXYu7cuVi3bh3Onj2LjIwM9OnTB9OnT8fo0aPre5gEQTRgfjvuxMxN/qRa+QerbVXWn3bjlSFp2HbWjV3F4jzZbKJHlslkBPec/r1Wd+k8tKhW+ycIoh7hzIDPEbkdEX9krufRohYNzVko18IFhcbjyVuLFkkEQRAEUZ+QSCvDjBkzMGPGDM3tx4wZgzFjxtTegAiCuGBZvLdStvxwmRcFlV6sOuGU1OkS3JOWYeinhyCI+GFpexuqds4MvueS2tXjaC4szM0no3LH68H3jN4edR+MzqpYp0um7/JCguFMmtoZcykIhiAIgjg/SfBHeYIgiAubgkr5RFcA4PEBZx3Sej2b2JG0hkYX1fcQRCQPmV/fQyAIogbYujwpEvrs3WfU32AuMKxd/k8kzCYPmBt1H8amlyvWcZZGMY2LaJiwhtSIbRhjGkxNJ9bBaAg1rJ0fF723dX+2nkZCEARxfkHhTARBEA0Uf8SsVJDVJ/j0my65fdz6MuQMh/vkihr1YWl1Y3wGQxBEvcBZcpBxxXa4Dn8JXVpXGBNsIuh8hjNnI+PyrXAd+Qq61C4wNhoRdR+GjD7+Ze682F/d3uvleA2TaCAwxnT1ekMqMsb9Cc6cVUcjIpRI6v0PcOZGqNj+Kmxd/wpLuzvre0gEQRDnBQn+KE8QBEGoIWflp0vwSFotWZnlksUYc8dKyswtb4CtBlFznK15zNsSBJE46GzNYO30IAm09YDO1gzWjvfHJNAGMOQMk5Rpiaokzi9YY5pqva3z49DZm9fNYIiIWDs9iOyrj8Pa/i5Vb2mCIAhCOxRJSxAEkYDwgiBKFCaHAGDzGbekPNE9aaFBpGU4s7TMkCIt01nAmjJjHgqjs8S8LUEQBBEfWH2SpIzR2+phJER9wkaKpNXoWUsQBEEQDRUSaQmCIBKQ5Uec+GhnhWqb/SUe2fJE96QFw0VsIgheSRmrINIyPlfsQ1FJWEMQBEHUDXIJx+j6fOERSaQFibQEQRDEeQ6JtARBEAnIL8fUo2gBYMtZaRQtAHAJHkmrZUmcr3SXpIw1ZkjLTJlgTdkxj0Wf0SfmbQmCIIj4wJpzpGUm8h290Ii0MobhjHU0EoIgCIKoHxL8UZ4gCOLCZG+JNJI0nDMOvg5GkjiYWlwNQ06156EurTv0GX2hz+wrK+BqwdLm9ngNjyAIgogRc8spYHTV9ga6tB40iXYBoktqo1pPIi1BEARxvkORtARBEA2UQodPvkKo23HEG2PTK+A68j9JOWtIRdqofLiOfw+B98CYOxoM6/8Zy5x8EBUbn0bljtcj74A1wtJ6GqxdHofO3jK+gycIgiCiRp/aBRmXb4W7YDkYvQ3G3DHB6ztx4cBacyM0IJGWIAiCOL+hux+CIIgGSqFTPpK2ocfXcjLLXgGAYQ1gdGaYmk2U1LF6G6wdH9Ik0qYM/Qjm5pNrOkyCIAgijujszaGz31rfwyDqEYZRX+TJcIY6GglBEARB1A9kd0AQBNFA4ZUiZhtCJK3Kg5iidUGkZY4avG79u9ZrakcQBEEQRB3DKMcQMRRJSxAEQZznkEhLEASRYLh9NVNZG4JGC4ZTrGJN8iItw0aKoNEm0iJiPwRBEARB1Ae65HbKlfT7TRAEQZznkEhLEASRYBQ5FbxmNdIzK/EjTSxtblOs46zNYGg0UloRIQJWa/KwyGIvQRAEQRD1gbXz44p1lDiMIAiCON8hkZYgCCLBOFkZu0jbM8uAtqmJbzduaX8XGH2ypFyX1h3GJpcgqe/ronJrp0fBRLAzYHQm2Lo/G3zPJbeXb6e3Rz9ggiAIgiBqHXPL66HP7C9bR5OsBEEQxPlO4j/JEwRBXGAURCnS3trZhvapBrh5AS2TdRHFzERAn9oFWVfuh/vsWujsLeGrOg6AgSGzPxidGfrUzsi+9gwchxbDkNEH+oxemvq1d38GpmZXAoIPvqoTKP5xtKQNibQEQRAEkZgwLIf00b+hYssLqNj0N3ElRdISBEEQ5zkUSUsQBJFgnKqKTqQdnmtG0yQdWqfowTYAgTYAa0qHKXc0dMntYGx0EYyNRoDRmUPqM2Btf6dmgTaAPrUT9GldwbDyvrcsibQEQRAEkbAwLAdjoxEy5RRJSxAEEQ0Mw4BhGMyYMaO+h0JohCJpCYIgEoxoImntBgYGruEIs3WL/DwkRdISBEEQRIIjJ8iy9OhKEIR2VqxYgREjpBM+HMchKSkJycnJyMvLQ69evTB48GCMHz8eBgNNBhH1C0XSEgRBJBjRRNKmm+SjRQkAjPxnw+hsdTwQgiAIgiCiQTZqlvfW/UAIgjjv8Pl8KC4uxqFDh7By5Uq8/vrrmDx5MnJzc/H888/D66VrDVF/0HQkQRBEglHh5mXLkwwMytyCqKzYJd+WADhrE2kha1C0QSAIgiAIIjHQJbcTF7B6cLZm9TMYgiAaPHfddRfuvvvu4PuKigoUFxdjy5YtWL58OX788UecOXMGTz/9NJYsWYJvvvkGmZmZ9Thi4kKFImkJgiASDDnZNdfG4fr20gjQvtmUREMJzt4a5lY3isqSB75dT6MhCIIgCEIrjM4Ce5/X/KtiGBZJvV4BQ4nDCIKIkaysLHTu3Dn4r3///hg9ejSeeOIJLF26FNu2bUOPHj0AAGvXrsXEiRPhdrvredTEhQhF0hIEQSQYgjhYFvf3SEK/HCOOVUiX3jRLosu4EgzDIGXIfNh6PAdfxWHoU7uANabW97AIgiAIgtCArdNDMLe6AQDAmSiijSCI2qNjx45YtWoVBg0ahI0bN2LVqlX473//i4ceeqi+h0ZcYFAkLUEQRAIghCizTp9Ypc00c9CxDNKM0mX65QrWCEQ1OlszGHOGkkBLEARBEA0MzpRJAi1BEHWC2WzGhx9+CIbxJ2X+5z//CY/HI9v25MmTeOqpp9C7d2+kpaXBaDQiLy8PV199NX788UfV/RQXF+P999/HDTfcgI4dO8Jms8FgMCAnJweXXnop5s6dqzmK95NPPsHw4cORmpoKm82Gzp07429/+xtKSkqi+tuJxIFCsAiCIOqR9adcmLOlDD4emNjGirUnXeDDImmZc//bDIxk+zISaQmCIAiCIAiCIGpMp06dcPHFF2Pp0qU4ceIE1q1bh4EDB4rafPzxx5g+fToqKytF5ceOHcOiRYuwaNEi3HrrrZg9ezZ0Oqnk1qNHDxw+fFhSfurUKSxduhRLly7F7Nmz8e233yInJ0d2nF6vF1OmTMGiRYtE5du3b8f27dvx0UcfRRSLicSEImkJgiDqCV4Q8M7WcpS5BVR6BXy0swJ7iqWztecmc8EyUpHWE67oEgRBEARBEARBEDExatSo4OuVK1eK6hYuXIgbb7wRlZWVaNmyJV577TV8//33+PPPP/H5559jzJgxAIB3330Xjz/+uGz/Pp8P/fr1w3PPPYdvvvkG69atw6pVq/DRRx/hsssuAwBs3LgR1157reIYH3300aBA265dO7z77rtYt24dfvzxR0yfPh2HDh3CNddcU6PPgagfKJKWIAiinihx8Sh2RY6EZUO02d7ZBqw/Vb38ZWRTc20MjSAIgiAIgiCIOkYQeAh8WX0Po85g2CQwTGLFDvbs2TP4es+ePcHXZ8+exR133AFBEHDLLbdgzpw5okjZnj17YtKkSXjqqafw4osv4o033sD06dPRrl07Uf8//fQT2rRpI9nvwIEDcf311+P999/HLbfcgl9++QXLly/HyJEjRe22bt2KmTNnBvf5yy+/wGarTjA9cuRIDBw4EFOnTq3ZB0HUCyTSEgRB1BMlGgRaoNruAACuamvF0XIfTlX5cGkzM1pQ4jCCIAiCIAiCOC8Q+DKUn7yyvodRZ9hzPgfDpdT3MESkp6cHXxcXFwdfz5o1C6WlpWjSpAneeustWSsDAHj22WfxwQcf4Pjx45g/fz5eeOEFUb2cQBvKzTffjP/85z/YtGkT/ve//0lE2tmzZ4Pn/c+Rc+fOFQm0AW666SZ89tln+O6779T/WCLhoKd7giCIeqJUq0gbotI2T9Lj9eFpAOTtDwiCIAiCIAiCIIjYCBU9y8vLg6+//vprAMC4ceNgNBoVt9fpdBgwYAAWL16M1atXq+5LEAScOnUKZWVlomRhTZo0waZNm7B582bJNgGv2S5duqBXr16Kfd9yyy0k0jZASKQlCIKoIW6fALdPgM3gX6pT4eZh5BjoORkPWZ/ff7bKw2N7oXy20HBYiPshcZYgCIIgCIIgCCL+hAqzSUlJAPw+sps2bQIAzJkzB3PmzNHU18mTJ2XL8/PzMWvWLPz666+i/YVz9uxZ0XuXy4W9e/cCAPr06aO67759+2oaI5FYkEhLEARRAzaeduH1DWVw+QSMbWFGoZPH6gIXUo0sHu+TjJbJ+mDbI2VePLayKPqdkCZLEARBEARBEARR64QKo2lp/hWMRUVF8Hq9UfdVVVUlei8IAm6//Xa8++67mrZ3OByi98XFxRAEf+LorKws1W2zs7OjGCmRKJBISxAEUQM+210Jp8//Q/nNweof0WIXj6/2V+GhnsnBsv/tr4xpH15eqNkgCYIgCIIgCIJIeBg2Cfacz+t7GHUGwybV9xAkbNy4Mfg6kPTL5/MFy2677TY88MADmvoyGAyi9++9915QoO3evTsefPBB9OvXD02aNIHFYgHHcQD8nrIffvhhUJCVg6HVleclJNISBEHUgENlyjOqawpcoverTrgUWipj5Bjk2uhSTRAEQRAEQRDnOwzDJlwirQuNZcuWBV8PHjwYQHVELeCPhu3cuXNMfb/99tsAgNatW+P333+H2WyWbVdUJL/6MiUlJfj61KlTqvuKVE8kJmx9D4AgCIKQJ9PM4q5udhhkvG0JgiAIgiAIgiCI+LFt2zYsX74cAJCXl4fevXsD8EfEdurUCQCwatWqmPvfvn07AGDChAmKAq0gCNiwYYNsnclkQps2bQAA69atU91XpHoiMSGRliAIIkZ4leUn4Ti8fNT9v3lRBgY0MkW9HUEQBEEQBEEQBKEdh8OBm266KWgx8Oijj0Knq17ROGHCBADArl278MMPP8S0j4CvbWWlsg3eV199hYKCAsX6UaNGAQC2bt0qsmYI57333otpjET9QiItQRBEDJS7efxxUrt9QZEzepGWIAiCIAiCIAiCqF127NiBwYMHB0XPYcOG4a677hK1eeCBB2Cz2QAAN998czAqVon8/Hxs2bJFVBaIgl2yZImspcH+/ftxzz33qPY7ffr0oB/tHXfcISv4fvzxx/j2229V+yESEzI6JAiCiJI9xR48/XtxVNsUkkhLEARBEARBEARR55w+fRrbtm0Lvq+srERxcTG2bNmC5cuXY9myZcEI2v79+2Px4sXQ6/WiPrKzs/HBBx9g8uTJKCgoQO/evTFt2jSMHj0aubm58Hg8OHbsGNauXYvFixfjwIEDWLJkCbp27Rrs46abbsJjjz2GEydOYMCAAXjiiSfQuXNnOJ1O/PTTT3j99dfhcrnQs2dPRcuDbt264Z577sGbb76J9evXo3fv3njiiSfQpUsXlJaWYtGiRZg7dy569+6N9evX18KnSdQmJNISBEFEyYLdFVFvU+TwRW5EEARBEARBEARBxJVZs2Zh1qxZqm0yMzPx4IMP4vHHHxfZHIQyadIkfPXVV5g2bRqKioowe/ZszJ49W7Yty7KwWq2isgceeADLli3D0qVLsWfPHtx6662ierPZjPnz5yM/P19RpAWA1157DSdOnMAXX3yBXbt24eabbxbVt2jRAgsWLECrVq1U/2Yi8SCRliAIIkq2FXqi3uZkVXQi7aim5EVLEARBEARBEAQRT1iWhd1uR3JyMpo1a4ZevXphyJAhGDduHAwGQ8Ttx48fj4MHD+Ltt9/Gt99+i+3bt6OoqAg6nQ45OTno1KkTLrroIkyePBl5eXmibfV6PfLz8zFr1izMnz8fO3bsgCAIaNKkCUaNGoUHHngA7du3R35+vuoY9Ho9Pv/8c3z00UeYO3cutmzZAo/Hg2bNmmHixIl49NFHkZqaWqPPiagfGEGIIvMNkXAcO3YseOIfPXoUubm59Twigjj/uSb/tOa2C8ZmAQD+vaEUawrUPWzv7GrHD4ccaGTjcHMnO5IMZBtOEARBEARBEIlCTZ6/9+7dC6/XC51OF/QmJQiiYRPv85oiaQmCIGoRQRDAMAxOVkaOpB2RZ8aIPHMdjIogCIIgCIIgCIIgiESCRFqCIIha5McjTuhY4FCZV1SeaWZxxkHJxAiCIAiCIAiCIAiCIJGWIAgiKqJ1iHlnW7lsea5NhzMOdzyGRBAEQRAEQRAEQRBEA4cMDwmCIKLAFV3+L1n0LNA2VV/zjgiCIAiCIAiCIAiCOC8gkZYgCCIKnN6aWxQ0snK4rLkZ+pAr8JAmphr3SxAEQRAEQRAEQRBEw4TsDgiCIKLA4ZPaHfTJNqJNqg6bTruxo8gTsY8cqw4WPYu/9kvBNweqkGricF07a20MlyAIgiAIgiAIgiCIBgCJtARBEFHg8IpFWo4BHumVBIZhcHkrK67JPx2xj0ZWDgDQPs2A9mmGWhknQRAEQRAEQRAEQRANB7I7IAiCiAJnmEhr0jFgGCaqPgIiLUEQBEEQBEEQBEEQBEAiLUEQRFSER9KaddEJtACQQyItQRAEQRAEQRAEQRAhkEhLEAQRBZJIWk4s0iYbI19WG1lIpCUIgiAIgiAIgiAIohoSaQmCIKIgPHFYeCTt7Z3tqtu3TtEhxUQiLUEQBEEQBEEQBEE0ZARBmli8JlDiMIIgiCiIZHfQO9uAO7rYMXdrOQC/KGtgGVj0DLIsHC5vZa2zsRIEQRAEQRAEkRhwHAev1wufzwee58GyFDNHEA0Zn88Hn88HwH9+xwMSaQmCIKLA6eVF70068c0VwzAY2dSMkU3NdTksgiAIgiAIgiASGJPJBJfLBUEQUFFRgaSkpPoeEkEQNaCkpCT42mKxxKVPmrohCIKIgngkDiMIgiAIgiAI4sIiVJQ9efIkysrKwPO8yhYEQSQagiDA6XTi9OnTOH36dLA8NTU1Lv1TJC1BEEQUREocRhAEQRAEQRAEEY7VaoXZbIbD4YDP58Px48fBMEzclkkTBFH7+Hw+iQ9tcnIyjEZjXPonkZYgCCIKnGGJw0wUSUsQBEEQBEEQRAQYhkHTpk1x5MgROBwOAP6oPK/XW88jIwgiVjIzM5Ge/v/t3Xl8lOW9///3LJksk40tQgiLBCKgqJSgILK5YBWVIop2EeSgtdrF9vhVe/R0OVarpfXXqg+PG4hLW7GidedUq4gKCAapVhbZkbAmELJNktnu3x8xQyYzk5kkM7mTzOv5ePhwZu7rvuaaTK4Z5p1rPlefuPVHSAsAbdCiJK1SKBoDAAAAIAZWq1VDhgxRbW2tqqurA6tqAXQPVqtVDodDTqdTmZmZcjgcce2fkBYA2sDX4qsNNgsraQEAAADExmKxKDMzU5mZmWYPBUAXwxowAGiDlitp7byKAgAAAACADiJeAIA2+FeZO+i6zcpKWgAAAAAA0DGEtAAQo/WHGkJuY98wAAAAAADQUYS0ABCj5dtrQ25jJS0AAAAAAOgoQloAiNHeKm/IbaykBQAAAAAAHUVICwAdwEpaAAAAAADQUYS0ABCjbEdoIMtKWgAAAAAA0FGEtAAQg01H3apyGyG3u7yhtwEAAAAAALQFIS0ARFHj9uvedcfDHqto8HfuYAAAAAAAQI9DSAsAUXx8qEG+CAtmz+jr6NzBAAAAAACAHoeQFgCiqGxltWxhrr0TRwIAAAAAAHoiQloAiCIzJfzuYL+emCurhZ3DAAAAAABAxxDSAkAU7ggLaftn2Dp3IAAAAAAAoEfie7oAktaO4x49+lmVSmt8kqTzB6Xp3X31gePfPsWpbw13qt4bPqXNSeXvXAAAAAAAoOMIaQEkJb9h6KGNVTrs8gVuax7QStLzX9ZqcJZd9d7wu4ZR6gAAAAAAAMQDIS2ApLS/xhcU0Eay+kC9UmyhYew38hyJGBYAAAAAAEhCfFcXQFI6UOONqd2/j3pU1RBa7mBWYUa8hwQAAAAAAJIUIS2ApPRVdfRVtJJU2eDX5mOeoNvmFjk1sjcraQEAAAAAQHwQ0gJISvuqY1tJK0l1LWrS5mfa4j0cAAAAAACQxKhJCySxjw/W67ktNXJYLbrx9KykWh3alpC2pWwHf98CAAAAAADxQ9IAJCm3z9Bjn1ervM6vA7U+Lf6i2uwhdRqPz9DB2tjKHYSTRUgLAAAAAADiiKQBSFL/LncHfY1/X7VPXr/Ryhk9R43Hr4480txUXjoBAAAAAED8kDQAScqXHHlsWA0dePAZdouyUixxHA0AAAAAAEh2hLRAkjKM5E1p3f72n9vfaZPFQkgLAAAAAADih5AWSFLhItokqXYgd4uVtNY2ZK4nZdjiPBoAAAAAAJDsCGmBJBUuj/UkSUrbMqR12mNPafs7CWkBAAAAAEB8EdICSSpctYPPytydPxATtKxJ67BZNKp3Skzn9mclLQAAAAAAiDNCWiBJOcNsflXZ0IFird1Iy5W0DptF143OjOnc3mmEtAAAAAAAIL4IaYEk5Q2Tx/qSo9qB3L7g6w6bRUNzUjS3yKlUm5TvtGlWYUbYc9PaUBoBAAAAAAAgFnazBwDAHHXe0ETWF64GQg/kblF7N/XrP1fNGeHUFcMzZLE0BrF9061a8kVNUFtCWgAAAAAAEG+spAWSVLiQNty+YQ0+Q0dcPnm/Pujy+PVVtVfH608sR633+nXE5ZM/wSGv12/oUK1Xng4u+Q1X7qBJU0ArSam20EA2LcxtAAAAAAAAHcFKWiBJ1ccQ0h6s9eredcdVVufXsBy7vpHn0PLtrsDxq4ucOqOfQ/d9clzVbkOn9UnRz8fnKiUBQWZVg1+/WVehr6p9yku36lcTe6lvevvqw4bbOCwcu5WQFgAAAAAAJB4raYEkVecLLUrra5HSrthdp7K6xna7Kr1BAa0kvbCtVk9tqla1u/G8L4569Hm5OyHjXbW/Xl9VN67ePVLn12s7XVHOiKxluYOUMGGsJDnDlDZIpdwBAAAAAACIM0JaIEn5w2wcVt9ihek/9tZF7WfHcW/Q9Q2HGzo0rkje2h0cysYytkhcnuDHmREheB3dx6HMlBPHBmfZwpZAAAAAAAAA6AhCWgABLcPL9nCmJOZlpWWJAkmqdodJmmNQ0+JxOlPCB68Om0U/OjNbg7NsKsyx6wenZ7fr/gAAAAAAAFpDTVoAAa5mdWqNdm4ClqCMVjkOq2o9vqDbvqzwqPik1Db35fIEh7utBctj81I1Nq/t9wEAAAAAABArVtICCHB5/c0uty+kDbfiNZwjLp+2HnPLbxg6UOPVV1VeHXH5tP5Qgz4vd8vdop9qT+iq2a3HPCG3GYah3ZUefVV1ogxDZYNfm4+6Ve89UV+3uUgraQEAAAAAADoDK2kBBDQvd1BR375SAm/srtO1o7NabbPuYL0e3Fil1vLcQVk23T2xlzJSrPL4jMDmZM1tPRa6SdnSTTWBerVXjsjQ2QPSdPfHFap2G+qdZtXMkzNU0RD7SloAAAAAAIBEI5kAklS4fLT56tlj7QxpJanO2/q5b+xytRrQStK+ap8+K28MYY83hO9vV6VX/mZlGVwev9756sSGYsu3u/TmLlcg4D1W79dzW2pC+mElLQAAAAAAMBMhLZCkwoWkwSGtL7RBjLZXeFs9vu1468ebHP86KG658rWJzwjeBKzS7Ze/xeN6v7Q+6v30SbPFNB4AAAAAAIBEIKQFkpS3ZZqp4A21IgWjsdhaEVqGoD08X4+xopXAuNp9YpxWS/tWxPZ3EtICAAAAAADzJG1IW1JSorvvvlszZsxQQUGBUlNTlZmZqaKiIi1YsEAfffRRm/pbsWKFZs+eHeiroKBAs2fP1ooVKxL0CICOCbeS1uM/Ed5GKndw2bCMqH1/GWZDryaGEfuGZE35a2uBcfOQti19N+ewUe4AAAAAAACYJyk3DpsyZYo+/PDDkNvdbre2b9+u7du36+mnn9a8efP05JNPyuFwROzL7/fr+9//vpYsWRJ0+/79+7V//3698soruv766/X444/Lak3aTBxdULiVtFLj5mFWq6G399aFPV6YE/1lY/txr7x+Q3ZrY/j5VbVXe6sa68furoyt1IEkuX2Gthxz650IY5GkV3a4dMUIi/bXeFVyuCHmvgEAAAAAALqKpAxpDxw4IEnKz8/XVVddpcmTJ2vw4MHy+Xxau3atHnjgAe3fv1/PPvusPB6P/vrXv0bs66677goEtGPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W875fEBsYi0cVd5vU9/KKmMeF5OqlV90qw62srGYg0+Q3urvCrMTdG6g/X6/z6tatcYX93p0qs7Xa222Vjm1say+JRXAAAAAAAAMIPFaO/3g7uxSy+9VPPmzdOcOXNks4XWoiwvL9ekSZO0bds2SdKqVas0ZcqUkHbbtm3TqaeeKq/Xq+LiYn3wwQdKT08PHHe5XJo6dapKSkpkt9u1ZcsWDR8+PK6PpbS0VIMGDZIk7du3TwUFBXHtHz3XQxsrtfpA6MrT8wen6d2vIm+2dd+5vfT81hp9Xh65pIEkzRmRoatGOHXL+8d02NX+TcgSrSDTpgem9jF7GAAAAAC6OD5/A0ikpPz+/RtvvKG5c+eGDWglqW/fvnrggQcC15cvXx623Z/+9Cd5vY1f3X744YeDAlpJysjI0MMPPyxJ8nq9+uMf/xiP4QNx4Y2wELa1gDYrxaLBWXZlOkJfOsblBZcF+aC0XrurvF06oJWk24pzzB4CAAAAAABIckkZ0sZi+vTpgcs7d+4MOW4Yhl599VVJ0siRIzVhwoSw/UyYMEGnnHKKJOnVV19t98ZGQLz52vi7ODTbrv+ekCu71aJUa+hGWxcOCf4jRVmdX0u/qI7a76T8VD08vY/mFjkVptuwzugXuU50W1w3OlP9nUlZ9QUAAAAAAHQhhLQRNDSc+Bp4uBW3u3fvDtS2nTp1aqt9NR3fv3+/9uzZE79BAh0QaSVtJLcV52hodookyWELTVNP6ZWiwVnBc2Xb8cibhA1w2vTCzDz9ZGyO8jJsmjPCqfsm9YppLPNGZWpukbMNow9137m9dPHJGR3qAwAAAAAAIB5YQhbBqlWrApdHjRoVcnzz5s2ByyNHjmy1r+bHt2zZopNPPjkOIwQi21Pl0SeH3DpW75PdalGazaI0u0Vn909VWZ1P2yo8+lcbN9tKt58IZsOFtA6bRdMK0vXslpqY+stJDf0bUX9n+BIkLfVOsyo1zBjaoleY+wcAAAAAADADIW0Yfr9f999/f+D63LlzQ9qUlpYGLkcrFt5UWFxqLC7eFs3vJ5yDBw+2qT/0fF9Ve/XfqyvkCbNS9m/batvdb/OQNjVMlmq3WjR5YJr+srVGvhgqKeSGCUnT7NGD01Rb41g6GtJmh6mrCwAAAAAAYAZC2jD++Mc/av369ZKkK664QuPGjQtpU119otZmZmZmq/05nSe+ll1TE9sqwybNA14gFh8frA8b0HaU1XIiFB2cFf6lIzvVqm/kOfTJ4eirdE/rE76u7KjeKdpyzBPxvByHVRZL4+rgjrDFWgAXAAAAAAAgwVhK1sKqVav085//XJKUl5enRx99NGy7+vr6wGWHo/VNjFJTUwOX6+rq4jBKILIjLl/c+5xakBZ0vfikVPVNP/HyMb3Z8ZG9Y9vUq2Wf0W5vYv86XLXHVhkhrIuHpkdvBAAAAAAA0ElYSdvMpk2bNHv2bHm9XqWlpenFF19UXl5e2LZpaSeCJLe79VWDzTchS09vWzgUrTzCwYMHddZZZ7WpT/RsZa72L6OdWpAm/9elClKsUorVon7pNn2zRahps1r0m3N66e09dcp0WIOOh6s1K0kLT8vUs5trZJH0+ym9w9a1bRpDut2iXZVeZTuseq5FjduGr2sp2C1tXwl7Tn6qinJTdOEQQloAAAAAANB1ENJ+bffu3ZoxY4YqKipks9m0bNkyTZkyJWL7rKyswOVoJQxqa0/UAY1WGqGlaPVugZbK6tq3knbKwDTdfEZ2zO17p9l0zcjQ3+dIIe2Yvg79+eLwf/RozmqxaMKANE0YILl9RkhIe7S+MYRuT7WDG8dkK81OmQMAAAAAANC1ENJKOnDggC644AIdOHBAFotFTz31lGbNmtXqOc3D02ibezVfDUuNWbTFZ2UN+leZW6f2cWhcnkOWVlaP/qusQWsONARCzLbKdMQnvMyNsCFXr3C7jUURabWtJNnaUaylHUMAAAAAAABIuKQPacvLy3XhhRdq165dkqSHH35Y8+bNi3re6NGjA5e3bt3aatvmx0eNGtXOkSLZbDnm1n3rK2VIemt3nW4vztG4k1LDtt16zK37v27bXrZ2lA8IJzvCStr2rmDNSrGo2hP6yOq8bX+0rYXcAAAAAAAAZknqjcMqKyt10UUXafPmzZKk+++/Xz/84Q9jOvfkk09Wfn6+pMbNxlrzwQcfSJIGDhyooUOHtn/ASCprDzQEha6LSiojtv30iLtDAa0kFebG52822XFakdukZf3YwVmNy2FPymjbslhnCgEtAAAAAADompI2pHW5XJo5c6Y+/fRTSdJdd92lO+64I+bzLRZLoCTC1q1b9fHHH4dt9/HHHwdW0s6aNYuVfIjZmoP1Ibf5jfBRbFVD+zcLa3J2//CrdNvKarHo3PzgvuaPblst5uZmFWYot9nq3GkFjaHtkGy7BmZGDmqnFaQps1kw++1T2j8GAAAAAACARLIYRoTUpwdzu9267LLL9Pbbb0uSbrnlFv3pT39qcz/btm3T6NGj5fP5VFxcrA8++EDp6SdW/dXV1WnKlCkqKSmR3W7X5s2bNWLEiHg9DEmN9XCb6tzu27ePjcZ6kN+XHFfJYXfQbQ9M6a2CrNAVr+HatsVTM/rKmRK/v9n4DUNv7q7T+/vqdOUIpybmp3Wov+MNfq0+UK/+Gbagkg81Hr9W769XlsOqb+Q59M5X9frkUINmDEnXOfmpqmzwa+3BBg1w2jQ2Lz4hNAAAAIDkxOdvAImUlDVpv/3tbwcC2vPOO08LFy7UF198EbG9w+FQUVFRyO1FRUW67bbbdP/996ukpESTJk3SHXfcocLCQu3cuVO/+93vtHHjRknSbbfdFveAFj1b77TQVaJbKzxhQ9oad/v/1tI7zRrXgFZqXE172bAMXTYsIy795aZaNfPk0L4yU6y6aOiJ21veZ680my4Jcx4AAAAAAEBXkpQh7csvvxy4/N577+n0009vtf2QIUO0Z8+esMfuvfdeHTlyRE899ZQ2btyoa665JqTNwoULdc8993RozEg+Db7Q4HXrMY8uGJwecnu1p/3lDjLauaEXAAAAAAAA4iNpa9LGi9Vq1ZIlS/Tmm29q1qxZys/Pl8PhUH5+vmbNmqW33npLixcvltXKjxpts6o0tCbt1mPhSxrUuDsQ0sZ5FS0AAAAAAADaJilX0iaiDO8ll1yiSy65JO79InmdlGHTYZcv6LayOr+q3H5lO04Eq+V1PlV2oNzBOQOo1QoAAAAAAGAmltABXZQ9wuzcW+UNur7hcEO776N/hk3nhymfAAAAAAAAgM6TlCtpge7AH2Fx7N4qr8b0dQSubzgSXAKhqFeKphakaWCmTQ1eQ7JIo3s79FmZW0frfbJZLEqzW+SwSmf0S5XDRk1aAAAAAAAAMxHSAl2UL0JK23wlbZ3Xr01Hg0PaS4ama2J+Wsh54/tT1gAAAAAAAKArotwB0AUZhqEjdeE3A9tbfSKk/bzMLW+zZjaLdEY/R5izAAAAAAAA0FUR0gJd0OZjnojHSqu98n69yrZlqYNT+6QoI4VpDQAAAAAA0J2Q5gBd0L9ahK/N+Qyp2t24fLblJmJj8yhpAAAAAAAA0N0Q0gJd0K7KyCtpJampWu0Rly/o9oIsykwDAAAAAAB0N4S0QBfjNwztrPS22sYwpFqPXy5v8OZieelMaQAAAAAAgO6GRAfoYg7V+lTXInxtyVDoKlqLpL7ptsQNDAAAAAAAAAlBSAt0MbtarKJNt1tC2tz50TGVHG4Iuq13mlV2a2hbAAAAAAAAdG2EtEAXs+lo8KZhhTmhdWYr3YaWb3cF3ZaXwSpaAAAAAACA7oiQFuhCyut8+mB/fdBto/s45EyJvkI2P5OQFgAAAAAAoDsipAW6kJe318rrP3HdbpWmFqRpbpEz6rnTCtITODIAAAAAAAAkCiEt0EUcqvVqZWnwKtoLB6erb7pN3xyaocUX9o147ul9HSrqlZLoIQIAAAAAACABCGmBLuKl7S75jRPXHVbpW4UZgetZDquGhalPK0lXjoi+0hYAAAAAAABdEyEt0AXsr/Hqwxa1aC8amqHctOA6s7mpoVP29L4pOqU3q2gBAAAAAAC6K0JaoAtYua9ezRbRKs1m0eXNVtE26e8M3RxsDqtoAQAAAAAAujVCWqALOOzyBV2fPihN2Y7Q6TmqtyPo+pi+KRrZ4jYAAAAAAAB0L4S0QBfgN4yg6zlhyhpIUvFJDk3KT5VF0uAsm24+I7sTRgcAAAAAAIBECr8LEYBO5fUHX7dZwrezWiz6ydgc3XS6oZRIjQAAAAAAANCtsJIW6AJarqS1WVoPYAloAQAAAAAAeg5CWqAL8AVntLKSwQIAAAAAACQNQlqgCwgpd8DMBAAAAAAASBpEQUAXUF7nC7qe5WBqAgAAAAAAJAuSIMBk9V6/jtYHL6Ud6GRPPwAAAAAAgGRBSAuY7EBt8Cpai6T+Tps5gwEAAAAAAECnI6QFEqjG49eeKo+8fkMNPkN7q7zyG8G7hO2vCQ5p8zJsctjYOQwAAAAAACBZ8J1qIEH2VHl077rjqnIbslslw5B8hjQ4y657JvVS6tdB7P4ab9B5AzNZRQsAAAAAAJBMWEkLJMjbe+tU5W5cNev1Nwa0kvRVtVdrDtQH2h1sUe4gn1IHAAAAAAAASYWQFkiQd7+qj3jsi3J34HK9N7j8QU4q0xIAAAAAACCZkAYBJmgey7asUWuzUI8WAAAAAAAgmRDSAiZo8J0IZr3+4GM2ZiUAAAAAAEBSYeMwII52VXq0r9qrzJTWk9aqhhPJrD94IS0raQEAAAAAAJIMIS0QJ6/trNVfttbG1Lba02wlbUi5g7gOCwAAAAAAAF0cX6wG4sDl8ccc0EpSRb0/UIvWR7kDAAAAAACApEYcBMTB6gMNbWpf7zN0xOWTJHla1DtwWFlKCwAAAAAAkEwIaYE4eG9fXZvP2V3plRS8iZgkOah3AAAAAAAAkFQIaYEO2lPp0a6vA9e22F3VeI6bkBYAAAAAACCpsXEYTOHzG/r4YIMsFuns/qmyRfmKf7Xbr08ONahvuk1j+qbIYumcIHN3pUfbj3t0el+H+jvDT5e/bK2Jqa98p00Han2B6yWHG5Rms6jSHRzSphLSAgAAAAAAJBVCWpjiwY1VWneosY7rpPxU/WRsTsS2x+t9+u81FSqra9xh69pRmbp0WEbCx/h5uVv3rjsuSXJYpTvG5+q0vo6gNtsqPPq83BNTf8Ny7EEh7f4an17YFrrZmMPW/jEDAAAAAACg+6HcATpdeZ0vENBKjZtuuTz+sG39hqFHPqsKBLSS9OrOWvkNI2z7eHp1x4kA1e2X/rChUnurTpQ1cPsMPfpZVcz9je7jiN5IrKQFAAAAAABINoS06HR7qkLrtx5vCB/SvrHLFbJStcptaHtF22vAtkWN26/Nx4Lvt85r6L71x1Ve17gadvn22qCVsS31STsxvTLsFk0emKZhOdEXrxPSAgAAAAAAJBfKHaDTHXGFBpvV7tCVsTuOe7Tsy9ByAJK04UiDTumdEvexNe/fH2axbkWDX/etP655ozP12k5XyPEbxmRpV6VHZ/R1aNxJqXpzt0tH6/z65tB0OWwW3VGco1d2ulT2ddBbctgd0ocjSn1eAAAAAAAA9CyEtOh0pTWhq2CrW5Q7cHn8emhjlXwRqhqUHG7Qd0ZmJmJ4kqRPDoWGp01Ka3z67frKoNtsFun+yb01OMsuKT1w+6xCZ1C73DSbrjs1K3D91lVHVVoTHFo7WEkLAAAAAACQVAhp0en2V4eupF2x26V/HTkRjO6r9upwmBW3gT5qfHrs8yrlpds0eWCa+mXEb7etBp+hz8oagm5LtUkNkYejK0c4vw5o2yY31RoS0qZQhAQAAAAAACCpENKiUxmGoX1hVtJ+cdSjL456wpzRqCjXrsN1flU2q127cl/91/+v0++n9FaaPT7p5udlbrmbLey1SPqfib30u08qVRGmdu7QbLsuL8xo1331SrNJCn7cFgsraQEAAAAAAJIJa/bQqSrdhmo9EWoYRJBht+jHY3M0Ls8R9viROn+r5Qnaasfx4NB0VO8UnZyTov86K1fp9uAA1WaRbjojS/Z21pEd0zdxdXUBAAAAAADQPRDSolOVVoeuom2NRdL3T89SXoZNF5+cEbEUwKaj8Qtpq93Bq2UHfV3GYEi2Xf9vXI6aL9i9+hSnhma3P2idlJ+mfuknOrzk5PRWWgMAAAAAAKAnotwBOlVBll0/OjNb+6u9emuPSw0+acaQ8MFkilUad1KqTu3TuIJ2cJZdd5/TSx8fbNCrO11BbTcfi19IW9NipW9myolVsqf1degPU3przYEGDc6ya3z/1A7dl91q0T2TemvlvjrlOKyaNiitQ/0BAAAAAACg+yGkRafKTbVq8sDGIPKakZltPn9YToqG5aTonPxU3fFhReD2wy6/yut86pve8Q3EajzBK2mdjuDluwOcds0ZEb+pk5tq1ezhzrj1BwAAAAAAgO6FcgfolgZn2YNWuErxKXlQWu3VphYbmLW8HwAAAAAAACCeCGnRLVktFo3qHbyRWMtwta28fkN3rzsecntmpEK4AAAAAAAAQByQPqHbGt0neMOutm5K1tJX1V5VNvhDbs9NZZoAAAAAAAAgcUif0G31ahGe1vuMCC1jU+cNPX9Itl0n51C6GQAAAAAAAIlDSItuK80eXCu2PkzI2hbuMCHvrybkymqhJi0AAAAAAAASh5AW3VaqrUVI28GVtC1D2gFOm5zUowUAAAAAAECCkUCh20qP90raFuVoU6ysoAUAAAAAAEDiEdKi22pZ7sBnSF5/+4Laeq+hjw/WB93msLV7aAAAAAAAAEDM2BEJ3ZbTHvo3hiMun/Iz2/ZrfajWqwc2VOqral/Q7dkO/oYBAAAAAACAxCOFQreV5bCoV2rwr/DO49429fGvIw2686OKkIDWIumCwekdHSIAAAAAAAAQFSEtui2LxaLC3OBVszsqPTGdaxiG/r6jVvd/UqnaFrVsM+wW3V6co3EnpcZtrAAAAAAAAEAklDtAtzY8N0Ulh92B6zuORw9pXR6//vezan1yuCHkWEGmTf+vOEcDnEwNAAAAAAAAdA6SKHRrhbkpQdf3VHnl9RuyWy1h25fX+XTvuuM6UOsLOXZ2/1TdfEaW0sLUugUAAAAAAAAShZAW3VphTvCvsNcv7ar0qqhXSkhbwzD08L+qQgJai6Rvj3Tq8mEZsljCh7sAAAAAAABAorBkEN2aM8WqfKct6LY1B+rDti057NbWY8HlEDJTLLrzrFzNKnQS0AIAAAAAAMAUhLTo9s4eELzB10f76+X1B28G5vMb+uvWmqDb+qRZdd+5vXV6P0fCxwgAAAAAAABEQkiLbm9aQVrQ9WqPoQ0tNgVbWVofUubgOyMzlZcRvAoXAAAAAAAA6GyEtOj2+jvtGtU7uAbt+6UnSh7Ue/3627baoOMnZ9t1Tn7wClwAAAAAAADADIS06BFarqbdeMStinqffH5DC94uV2WDP+j490ZlykoNWgAAAAAAAHQBhLToESYMSFWq7UToakh6a3ed/rG3Ti3K0+rMfg6d1pc6tAAAAAAAAOgaCGnRI6TZrZrYYgOxt/a49PbeupC23xmZ2VnDAgAAAAAAAKIipEWPMaswQ80W08rrlw622Czs9L4pGpJt7+SRAQAAAAAAAJER0qLHyM+065tD01ttc+u43M4ZDAAAAAAAABAjQlr0KFeOcCrHEX5DsNP6pCjNzmZhAAAAAAAA6FoIadGjZKRYdc0p4WvOntGPzcIAAAAAAADQ9RDSoseZNihNw3JC686e0S81TGsAAAAAAADAXIS06HGsFouuG50VdNtJGTYNzrKZNCIAAAAAAAAgMkJa9Ein9E7RwtMy5UyxKC/dqh+cniWLhXq0AAAAAAAA6HpCvxMO9BAzhmTowsHpMtS4uhYAAAAAAADoighp0aNZLBYRzwIAAAAAAKAro9wBAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESFtHO3du1e33nqrRo4cKafTqd69e2v8+PH6/e9/L5fLZfbwAAAAAAAAAHRBdrMH0FO8/vrr+t73vqeqqqrAbS6XSyUlJSopKdHixYv15ptvavjw4SaOEgAAAAAAAEBXw0raONi4caOuvvpqVVVVKTMzU/fee6/WrFmjd999VzfccIMkadu2bZo5c6aqq6tNHi0AAAAAAACAroSVtHFwyy23qK6uTna7XW+//bYmTpwYOHbeeedpxIgRuv3227Vt2zY98MAD+vWvf23eYAEAAAAAAAB0Kayk7aD169frww8/lCQtXLgwKKBtcuutt2rUqFGSpAcffFAej6dTxwgAAAAAAACg6yKk7aBXXnklcHnBggVh21itVs2bN0+SdPz4ca1cubIzhgYAAAAAAACgGyCk7aCPPvpIkuR0OjVu3LiI7aZOnRq4vHr16oSPCwAAAAAAAED3QE3aDtqyZYskafjw4bLbI/84R44cGXJOLEpLS1s9fvDgwZj76gpq3JVau+s2s4cBAAAAAOgi/ErVRSMfNnsYAGAqQtoOqK+vV3l5uSSpoKCg1ba9evWS0+lUbW2t9u3bF/N9DBo0qENj7Gq8PrfOytpp9jAAAAAAAF3EMQ/RBABQ7qADqqurA5czMzOjtnc6nZKkmpqahI0JAAAAAAAAQPfCn6s6oL6+PnDZ4XBEbZ+amipJqquri/k+oq26PXjwoM4666yY+wMAAAAAAADQtRDSdkBaWlrgstvtjtq+oaFBkpSenh7zfUQro9DdOOzp+qCGUBkAAAAA8DVLqk42ewwAYDJC2g7IysoKXI6lhEFtba2k2Eoj9FQZKZn65in3mT0MAAAAAAAAoMugJm0HpKWlqU+fPpKk0tLSVttWVFQEQtqethkYAAAAAAAAgPYjpO2g0aNHS5J27Nghr9cbsd3WrVsDl0eNGpXwcQEAAAAAAADoHghpO+jcc8+V1FjKYMOGDRHbrVq1KnB50qRJCR8XAAAAAAAAgO6BkLaDvvWtbwUuL126NGwbv9+vZ599VpKUm5ur6dOnd8bQAAAAAAAAAHQDhLQddNZZZ2ny5MmSpCVLlmjt2rUhbR544AFt2bJFknTLLbcoJSWlU8cIAAAAAAAAoOuymz2AnuDBBx/UpEmTVFdXpxkzZujOO+/U9OnTVVdXp2XLlumJJ56QJBUVFenWW281ebQAAAAAAAAAuhJC2jgYO3asXnjhBX3ve99TVVWV7rzzzpA2RUVFevPNN5WVlWXCCAEAAAAAAAB0VZQ7iJPLLrtMn3/+uX72s5+pqKhIGRkZys3NVXFxsX73u99p48aNGj58uNnDBAAAAAAAANDFWAzDMMweBNqvtLRUgwYNkiTt27dPBQUFJo8IAAAAAICeh8/fABKJlbQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmsps9AHSM1+sNXD548KCJIwEAAAAAoOdq/pm7+WdxAIgHQtpurqysLHD5rLPOMnEkAAAAAAAkh7KyMg0dOtTsYQDoQSh3AAAAAAAAAAAmshiGYZg9CLRffX29/v3vf0uS+vXrJ7u96y+OPnjwYGDV7/r16zVgwACTR4S24jns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz6HXq838G3WMWPGKC0tzeQRAehJun6ih1alpaVp/PjxZg+j3QYMGKCCggKzh4EO4Dns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz2HlDgAkCiUOwAAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMZDEMwzB7EAAAAAAAAACQrFhJCwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0qJT7d27V7feeqtGjhwpp9Op3r17a/z48fr9738vl8tl9vCSUklJie6++27NmDFDBQUFSk1NVWZmpoqKirRgwQJ99NFHUft4+umnZbFYYvrv6aefTvyDSjKx/uynTZsWta8VK1Zo9uzZgd+FgoICzZ49WytWrEj8A0lS06ZNi/k5bPrv/fffD+qDOZg4R44c0RtvvKFf/vKXuvjii9W3b9/Az/K6665rc3/xmGNer1ePPfaYJk+erH79+ik9PV2FhYW68cYbtWnTpjaPqaeLx3Pocrn08ssv66abbtL48ePVq1cvpaSkqE+fPpo4caJ+/etf69ChQ1H7act8xwnxeA7j/Trpcrm0aNEijR8/Xr1795bT6dTIkSN16623au/evR17wD1QR5/DPXv2tPm9cujQoWH7Yh62XTw+LzTHeyEARGAAneS1114zsrOzDUlh/ysqKjK2b99u9jCTyuTJkyM+H83/mzdvntHQ0BCxn6VLl8bUjyRj6dKlnfcAk0SsP/upU6dG7MPn8xkLFy5s9fzrr7/e8Pl8nffAksTUqVNjfg4lGVar1SgtLQ3qgzmYOK39LOfPnx9zP/GaY2VlZcb48eMj9pGammo8+eSTHXzUPUtHn8PPPvvMyMzMjDq3srOzjWXLlrXaV1vmO06IxzyM5+vk9u3bjREjRrT6u/D66693/IH3IB19Dnfv3t2m90pJxowZM8L2xTxsm3h9XjAM3gsBIBq7gE6wceNGXX311aqrq1NmZqb+67/+S9OnT1ddXZ2WLVumJ598Utu2bdPMmTNVUlKirKwss4ecFA4cOCBJys/P11VXXaXJkydr8ODB8vl8Wrt2rR544AHt379fzz77rDwej/76179G7fMf//iH8vPzIx4vKCiI2/gR7KabbtLNN98c8bjT6Yx47K677tKSJUskSWPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W/jPvZktnTpUtXW1rbaZvPmzbr66qslSeeff74GDhwYsS1zMHEGDx6skSNH6u23327zufGYYz6fT7Nnz9Ynn3wiSbriiit0ww03qHfv3lq3bp3uueceHTlyRDfeeKMGDhyoiy++uP0Ptodqz3NYVVWlmpoaSdKkSZN06aWXqri4WH369FFZWZlefvllPfnkk6qqqtJ3v/tdZWdnR/3ZFxcXa+nSpR16LMmqI/OwSUdeJ6urqzVz5kxt375dknTDDTfommuuUXp6ulauXKn77rtPVVVVuvrqq7V69WqdeeaZ7R5nT9We53DgwIH697//HbXdfffdF/j36vz581ttyzyMTTw/L/BeCABRmJ0SIzk0/QXWbrcba9asCTm+aNGiwF8+f/WrX3X+AJPUzJkzjRdeeMHwer1hj5eVlRlFRUWB52bVqlVh2zVfnbJ79+4EjhjhdHTufPnll4bdbjckGcXFxYbL5Qo6XltbaxQXFwfmMCveO9/tt98eeJ6fe+65kOPMwcT55S9/abz++uvGoUOHDMMIXs0V6wq+eM2xJUuWBO775ptvDjm+ffv2wDdWhg8fbng8nrY92B6qo8/h6tWrjblz5xqbNm2K2OaVV14xLBaLIckoLCw0/H5/2HZNK/ha+2YDQsVjHsbrdfIXv/hFoJ9FixaFHF+9enVgvvM8nxCP5zAar9dr5OfnG5KMrKyskNfaJszDtonX5wXeCwEgOkJaJNy6desCb6Q33nhj2DY+n88YNWqUIcnIzc013G53J48Skbz++uuB5+/HP/5x2DYERObqaEh70003BfpYu3Zt2DZr165t9R/ESByfz2cMHDjQkGRkZmYatbW1IW2Yg52nPcFCvOZY0/tk7969w/4eGIZh3HfffYF+/va3v8U0vmSTiHDIMAxjzpw5gX43bNgQtg3hUHyYFdK63W4jJyfHkGSMGjUq4leyb7zxxsB9rV+/vl331dMlYh7+3//9X6DPBQsWRGzHPIy/WD4v8F4IANGxcRgS7pVXXglcXrBgQdg2VqtV8+bNkyQdP35cK1eu7IyhIQbTp08PXN65c6eJI0EiGIahV199VZI0cuRITZgwIWy7CRMm6JRTTpEkvfrqqzIMo9PGmOzeffdd7d+/X5J05ZVXKiMjw+QRoS3iNce2bdumLVu2SJLmzp0b8feg+QY8f//73zs6fLQB75c938qVK1VZWSmp8av0Vmv4j1LMQ3M8++yzgcvRSh0gvqK9/vFeCACxIaRFwjXt9ul0OjVu3LiI7aZOnRq4vHr16oSPC7FpaGgIXLbZbCaOBImwe/fuQK2x5nMwnKbj+/fv1549exI9NHyt+YfOpj9mofuI1xxrvnN2a/30799fRUVFkngv7Wy8X/Z8sc7D4uLiQHjEPOwc1dXVgYUhQ4cO1ZQpU8wdUJKJ9vrHeyEAxIaQFgnX9NfO4cOHy26PvFfdyJEjQ86B+VatWhW4PGrUqKjtFyxYoPz8fDkcDvXt21cTJkzQf//3fwdWAiJxXnzxRY0ePVoZGRnKysrSiBEjNH/+/FZXpm/evDlwufkcDIc52vlqamoCK0CGDBmiadOmRT2HOdi1xGuOtaefffv2Rd2UDvHTlvfLrVu36uyzz1Zubq7S0tJUUFCgWbNmBTbeQWK193Uy1nlot9s1fPhwSbxfdpbly5fL5XJJkq699lpZLJao5zAP4yfa6x/vhQAQG0JaJFR9fb3Ky8slRd9RvFevXoHd5/ft25fwsSE6v9+v+++/P3B97ty5Uc95//33dfDgQXk8Hh09elTr1q3Tvffeq+HDh+vxxx9P5HCT3ubNm7VlyxbV1dWppqZGO3bs0LPPPqvzzjtPs2fPDnxFs7nS0tLA5WhzdNCgQYHLzNHO8dJLLwU+WHzve9+L6UMnc7Bridcca08/hmEEnYfE+eyzz/Tmm29KksaMGRM1pD18+LDWr1+vyspKNTQ0aP/+/Xrttdc0f/58nXnmmQR7Cdbe18mm+eR0OpWbm9vqfTTNw7KysqBVhkiM9nzrhHkYH7F8XuC9EABiE3lZIxAH1dXVgcuZmZlR2zudTtXW1qqmpiaRw0KM/vjHP2r9+vWSpCuuuKLVchXDhg3TFVdcoYkTJwb+UbRr1y699NJLWr58uerr6/WDH/xAFotF3//+9ztl/MkiIyNDl19+uc4//3yNHDlSmZmZKisr06pVq/TYY4/p6NGjeuWVVzRr1iy98847SklJCZzbljna9EcUSczRTtKWD53Mwa4pXnOMudp1NTQ06Prrr5fP55Mk3XvvvRHbWq1WnX/++brkkkt0xhlnqE+fPqqurtann36qxx9/XFu2bNHmzZs1ffp0rV+/XoMHD+6sh5EUOvo62TQPY/03bZOamhqlpqbG6VGgpa+++iqwkvOcc84JrGKOhHkYX7F8XuC9EABiQ0iLhKqvrw9cdjgcUds3/QO2rq4uYWNCbFatWqWf//znkqS8vDw9+uijEdvOnj1b8+fPD1nlN378eF199dV64403dMUVV8jj8ehnP/uZLr/8cvXv3z+h408m+/fvD7ui58ILL9SPf/xjXXzxxdq4caNWrVqlRx99VD/5yU8CbdoyR5t/wGSOJl5paanef/99SY0baTTVVguHOdh1xWuOMVe7rh/96EcqKSmR1LhZ0WWXXRax7csvvxz29Xry5Mm6+eabdcMNN+iZZ57R4cOH9dOf/lQvv/xyooaddOLxOtk0D9vyb1qJeZhof/7znwMbTMWyipZ5GD+xfl7gvRAAYkO5AyRUWlpa4LLb7Y7avunrYOnp6QkbE6LbtGmTZs+eLa/Xq7S0NL344ovKy8uL2D4nJ6fVr2Ffeuml+uUvfylJcrlcWrJkSdzHnMxa+8rlSSedpOXLlwdWzz788MNBx9syR5t/XZM5mnh//vOf5ff7JUXfpZo52HXFa44xV7um++67T4sXL5bUGPY98sgjrbZv7fU6JSVFixcvDuxs/ve//51a0nEUj9fJpnnYln/TSszDRHvuueckNYZyV199ddT2zMP4aMvnBd4LASA2hLRIqKysrMDlWL5m0lR7MZavkSExdu/erRkzZqiiokI2m03Lli2Lyw653//+9wMfjppvLoDEGzZsmC688EJJ0o4dOwK760ptm6PNN11gjiZeWz90RsMcNEe85hhztet5/PHHdeedd0pq3KDmrbfeCvp6bXvY7XYtXLgwcJ252rmivU42zcO2/JtWYh4m0vr167V161ZJ0uWXXx61VnAsmIfRtfXzAu+FABAbQlokVFpamvr06SNJUQu2V1RUBN5MmxeMR+c5cOCALrjgAh04cEAWi0VPPfWUZs2aFZe+8/LyAr8LrEjofKNHjw5cbv7zb77pQrQ52nzzBuZoYpWUlAR2ML700kvVq1evDvfJHDRHvOZYe/qxWCxRN1ZB+zz//PO6+eabJUlDhgzRO++8o759+8al70iv10i8aK+TTfOptrZWx48fb7WvpnnYr18/6tEmUHs2DIsF8zCy9nxe4L0QAGJDSIuEa/pHzo4dO+T1eiO2a/oruKSouyIj/srLy3XhhRdq165dkhq/Fh/Pf+xKimlneiRGpJ998w8hzedgOMzRztP8Q2e0UgdtwRzsfPGaY+3pZ9CgQR1e2YlQr732mubNmye/368BAwbo3XffjWsAwDw1V2s//1jnodfr1c6dOyXxfplIHo9Hy5Ytk9QYsH/zm9+MW9/Mw/Da+3mB90IAiA0hLRLu3HPPldS46mDDhg0R2zX/KtGkSZMSPi6cUFlZqYsuuiiwcu/+++/XD3/4w7jeR1lZmcrLyyVJ+fn5ce0b0TU9t1Lwz//kk08OXI/2db4PPvhAkjRw4EANHTo0/oOEpOAPnf369dPFF18cl36Zg+aI1xxrei+N1s+hQ4e0bds2SbyXJsK7776ruXPnyuv1qk+fPnrnnXdUWFgY1/uI9HqNxIv2OhnrPCwpKQl8O4x5mDhvvvmmjh49Kkn6zne+I7s9fntiMw9DdeTzAu+FABAbQlok3Le+9a3A5aVLl4Zt4/f7AyvHcnNzNX369M4YGtS4OcbMmTP16aefSpLuuusu3XHHHXG/nyeeeCKw8+7UqVPj3j8i2717t9555x1JUmFhoQYOHBg4ZrFYAl9R27p1qz7++OOwfXz88ceBFQmzZs1ihUkCrVixQmVlZZLi+6GTOWiOeM2xoqKiwIqiv/3tb3K5XGH7efrppwOXZ8+e3dHho5k1a9Zo1qxZamhoUE5Ojv7xj3/o1FNPjet9eL1ePfXUU4Hr8agJj9hFe52cNm2acnJyJEnPPPNMoG1LzMPOkahvnTAPQ3X08wLvhQAQIwPoBJMnTzYkGXa73VizZk3I8UWLFhmSDEnGr371q84fYJJqaGgwZsyYEfjZ33LLLW3uY/fu3cann37aapvXX3/dcDgchiQjPT3dKC0tbeeI0dJrr71meDyeiMcPHTpkjB07NvAcP/DAAyFtvvzyS8NmsxmSjOLiYsPlcgUdd7lcRnFxcWAOb9u2Le6PAyfMmTMn8Hxt2LAhanvmYOfavXt34PmZP39+TOfEa44tWbIkcN8//OEPQ47v2LHDyM7ONiQZw4cPb/W1IZm15zncuHGjkZuba0gynE6n8dFHH7X5ft977z2joqIi4nG3223Mnz8/MLbLLruszfeRLNr6HMbzdfIXv/hF4L4XLVoUcnzNmjWG3W43JBlTp06N5eEkpfbMw+aOHj0aeL7GjBkT83nMw7aLx+cFw+C9EABiEb/vhACtePDBBzVp0iTV1dVpxowZuvPOOzV9+nTV1dVp2bJleuKJJyQ1/nX01ltvNXm0yePb3/623n77bUnSeeedp4ULF+qLL76I2N7hcKioqCjotj179mj69OmaOHGiLrvsMp1xxhnKy8uTJO3atUvLly/X8uXLA6tN/vCHPwSt5ETH/PjHP5bH49GcOXM0ceJEDR06VOnp6SovL9f777+vxx9/PPDVzXPPPTfs19KKiop022236f7771dJSYkmTZqkO+64Q4WFhdq5c6d+97vfaePGjZKk2267TSNGjOjUx5hMKioq9MYbb0iSTjvtNH3jG9+Ieg5zMLE++ugj7dixI3C9aT5JjbXWm6/WkaTrrrsupI94zbH58+frqaee0urVq/XII4/o0KFDuuGGG9SrVy+tX79ev/nNb1RVVSWr1aqHHnoorl/97c46+hzu3LlTF110UWCjqHvuuUc5OTmtvl/m5eUF5mGTZ555Rpdffrkuv/xyTZs2Taeccoqys7NVU1OjDRs26Iknngh8jTgvL08PPvhgOx5tz9TR5zCer5O33XabXnjhBW3btk233367duzYoWuuuUbp6elauXKlfvvb38rr9So9PV1/+tOfOv7ge4h4vJY2t2zZMrndbkltW0XLPGy7eHxekHgvBICYmBwSI4m89tprgb9qhvuvqKjI2L59u9nDTCqRnotI/w0ZMiSkj5UrV8Z0bkZGhvH44493/oPs4YYMGRLTz3/OnDmtrhzx+XzGf/zHf7Tax8KFCw2fz9d5Dy4JPfroo62u0AqHOZhYzVdUxfJfJPGaY2VlZcb48eMj9pGammo8+eST8f4xdGsdfQ6XLl3a5vfLcN8KinUcY8aMMTZt2tQJP5nuo6PPYbxfJ7dv326MGDEiYj/Z2dnG66+/nogfRbcVr9fSJmeffbYhybDZbMbBgwfjPg7m4Qltff0L93mhCe+FANA6/qyETnPZZZfp888/14MPPqg333xTpaWlcjgcGj58uK666ir96Ec/UkZGhtnDRBuNGzdOf/7zn7V27VqVlJTo4MGDKi8vl9frVa9evXTqqafq/PPP1/XXXx+yqggd98wzz2jVqlVau3atdu3apfLyclVVVSkzM1ODBg3SOeeco/nz52vixImt9mO1WrVkyRLNmTNHTzzxhD755BOVl5erb9++Gj9+vG688ca4bWCFyJ577jlJks1m03e/+92YzmEOdg/xmmN9+/bVmjVr9OSTT+qvf/2rtmzZotraWuXn5+v888/XLbfcEvc6qYiPO+64Q2eeeabWrl2rzZs3q6ysTMeOHVNqaqpOOukkFRcX68orr9Ts2bNls9nMHm6PEu/XyeHDh2vjxo165JFH9OKLL2rHjh1yu90aNGiQLrnkEt1yyy0aMmRIJzyy5LR9+3atW7dOknThhReqf//+MZ/LPDQX74UA0DqLYUSoeA8AAAAAAAAASDir2QMAAAAAAAAAgGRGSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAANBOTz/9tCwWiywWi/bs2WP2cAAAAAB0U4S0AAAg6ezZsycQrnbkPwAAAACIB0JaAAAAAAAAADCRxTAMw+xBAAAAdCaPx6Mvv/wy4vExY8ZIkoqLi7V06dKI7U477bS4jw0AAABA8rGbPQAAAIDOlpKSElPA6nQ6CWIBAAAAJBzlDgAAAAAAAADARIS0AAAA7fT0008HNhHbs2dPyPFp06bJYrFo2rRpkqQdO3boBz/4gYYNG6b09HQNHTpUCxcu1N69e4PO++KLL7RgwQINGzZMaWlpGjRokG666SYdOXIkpnG98soruuqqqzR48GClpaUpNzdXxcXF+p//+R9VVFR09GEDAAAAiDPKHQAAAHSCf/7zn7riiitUXV0duG3v3r166qmn9MYbb2jVqlUaOXKknn/+eV133XVyu92BdqWlpXrssce0YsUKrVmzRvn5+WHvo6KiQldeeaXee++9oNsbGhq0YcMGbdiwQf/7v/+rV199VRMmTEjMAwUAAADQZqykBQAASLADBw5o7ty5ys3N1cMPP6x169bpww8/1E9/+lNZLBYdOXJE119/vT755BPNmzdPhYWFWrx4sdavX6+VK1fq2muvldQY6v7nf/5n2PtoaGjQBRdcoPfee082m03XXnutnn/+eX388cf68MMPde+996pPnz46cuSILrnkkpDVuwAAAADMw0paAACABNu+fbtGjBih1atXq1+/foHbzz33XNntdv3hD3/Q6tWrNXPmTJ111ll65513lJGREWg3bdo01dfX68UXX9RLL72ksrKyoH4k6e6779ann36q3Nxc/fOf/9S4ceOCjp977rn67ne/q4kTJ+rgwYO688479Ze//CWxDxwAAABATFhJCwAA0AkeeuihkGBVkm6++ebA5fLyci1evDgooG1y0003SZK8Xq/Wrl0bdKympkaPPPKIJOk3v/lNSEDbZMiQIfrFL34hSXrxxRdVW1vbvgcDAAAAIK4IaQEAABIsNzdXF110UdhjJ598srKysiRJp59+ukaNGhW23RlnnBG4vGvXrqBjq1atUmVlpSTpyiuvbHUsU6ZMkSR5PB5t2LAhtgcAAAAAIKEodwAAAJBgI0aMkMViiXg8NzdX1dXVKioqarVNk+abj0lSSUlJ4PKAAQNiHtehQ4dibgsAAAAgcVhJCwAAkGDhyhc0Z7Vao7ZraiNJPp8v6NiRI0faNS6Xy9Wu8wAAAADEFytpAQAAurnmoe2nn36qlJSUmM4rKChI1JAAAAAAtAEhLQAAQDfXp0+fwOV+/foRvgIAAADdDOUOAAAAurmxY8cGLq9evdrEkQAAAABoD0JaAACAbu6CCy4I1LN96KGHZBiGySMCAAAA0BaEtAAAAN1cbm6ufvSjH0mS1qxZo5/97Gfy+/0R2x8+fFiLFy/urOEBAAAAiIKatAAAAD3A3XffrVWrVmndunV68MEH9f777+uGG27QmWeeKafTqYqKCm3atEn//Oc/tWLFCo0ZM0bXX3+92cMGAAAAIEJaAACAHiE1NVXvvPOOrrvuOr388sv67LPPAqtrw8nOzu7E0QEAAABoDSEtAABAD5GVlaWXXnpJH330kZ555hl9+OGHOnDggOrq6pSdna3CwkKdddZZmjlzpmbMmGH2cAEAAAB8zWKwswQAAAAAAAAAmIaNwwAAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIn+f55wLxEAZEGGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'fitness_function_example_reassortment_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## B. Transmissibility function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single\n", + "population scenario, illustrating pathogen evolution through independent\n", + "reassortment/segregation of chromosomes, increased transmissibility,\n", + "and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector),\n", + "the pathogen with the most fit genome has a higher probability of being\n", + "transmitted to another host (or vector). In this case, the transmission rate\n", + "**DOES** vary according to genome, with more fit genomes having a higher\n", + "transmission rate. Once an event occurs, the pathogen with higher fitness also\n", + "has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal\n", + "genome and every other genome is less fit, but fitness functions can be defined\n", + "in any arbitrary way (accounting for multiple peaks, for instance, or special\n", + "cases for a specific genome sequence)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define an optimal genome\n", + "`/` denotes separators between different chromosomes, which are segregated and recombined independently of each other (this model has no recombination)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST/BEST/BEST/BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # the genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom transmission function for the host\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence gets 1/20 of the fitness of the optimal genome. There is no middle ground between the optimal and the rest, in this case." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostContact(genome):\n", + " return 1 if genome == my_optimal_genome else 0.05" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='host-host', \n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " contact_rate_host_host = 2e0,\n", + " # Rate of host-host contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " contactHost=myHostContact,\n", + " # Assign the contact function we created (could be a lambda function)\n", + " # In general, a function that returns coefficient modifying probability of a \n", + " # given host being chosen to be the infector in a contact event, based on genome \n", + " # sequence of pathogen. It should be a functions that recieves a String as \n", + " # an argument and returns a number.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function)\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " recombine_in_host=1e-3,\n", + " # Modify \"recombination\" rate of pathogens when in host to get some\n", + " # evolution! This can either be independent segregation of chromosomes\n", + " # (equivalent to reassortment), recombination of homologous chromosomes,\n", + " # or a combination of both.\n", + " num_crossover_host=0\n", + " # By specifying the average number of crossover events that happen\n", + " # during recombination to be zero, we ensure that \"recombination\" is\n", + " # restricted to independent segregation of chromosomes (separated by\n", + " # \"/\").\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population\n", + "We will start off the simulation with a suboptimal pathogen genome, _BEST/BADD/BEST/BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add pathogens to hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BEST/BADD/BEST/BADD':10}\n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a second suboptimal pathogen genome. _BADD/BEST/BADD/BEST_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts(\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD/BEST/BADD/BEST':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 500 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 500, # Final time point.\n", + " time_sampling=100 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 out of 8 | elapsed: 0.3s remaining: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 3 out of 8 | elapsed: 0.3s remaining: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 4 out of 8 | elapsed: 0.3s remaining: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 5 out of 8 | elapsed: 0.3s remaining: 0.2s\n", + "[Parallel(n_jobs=8)]: Done 6 out of 8 | elapsed: 0.3s remaining: 0.1s\n", + "[Parallel(n_jobs=8)]: Done 8 out of 8 | elapsed: 0.3s finished\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
795500.0my_populationHostmy_population_95NaNNaNTrue
796500.0my_populationHostmy_population_96NaNNaNTrue
797500.0my_populationHostmy_population_97NaNNaNTrue
798500.0my_populationHostmy_population_98NaNNaNTrue
799500.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

800 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 NaN NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + ".. ... ... ... ... ... ... \n", + "795 500.0 my_population Host my_population_95 NaN NaN \n", + "796 500.0 my_population Host my_population_96 NaN NaN \n", + "797 500.0 my_population Host my_population_97 NaN NaN \n", + "798 500.0 my_population Host my_population_98 NaN NaN \n", + "799 500.0 my_population Host my_population_99 NaN NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + ".. ... \n", + "795 True \n", + "796 True \n", + "797 True \n", + "798 True \n", + "799 True \n", + "\n", + "[800 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'transmissibility_function_reassortment_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 2 genotypes processed.\n", + "2 / 2 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiQAAALmCAYAAADCCvxNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADO8UlEQVR4nOzdd3hUddrG8XtCD6E3gaDAIorY6EUFXERFKSLYFUUR69rWuroqtte2gmV1bUgREUFUOohIC4TQBCFSJISS3uv0Oe8fbGYJ6cnMnCTz/VwX105mzvzOnclElvPM73kshmEYAgAAAAAAAAAA8KMQswMAAAAAAAAAAIDaj4IEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6trdgBUjc1m0++//y5JatOmjerW5UcKAAAAAICvuVwupaSkSJIuuOACNWzY0OREAADUPFy9ruF+//139e/f3+wYAAAAAAAEjaioKPXr18/sGAAA1Di0bAIAAAAAAAAAAH7HDokark2bNt7bUVFRat++vYlpAAAAAAConRISErwdCk79tzgAACg/ChI13KkzI9q3b6/w8HAT0wAAAAAAUPsxvxEAgMqhZRMAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAOADhtthdgQAAAAAAIBqjYIEAABV5Ezfrdw9r5kdAwAAAAAAoFqjIAEAQBUYhqGsyAdlPTxHhmGYHQcAAAAAAKDaoiABAEAVWP+cKWfyZrlzY+VM3mx2HAAAAAAAgGqLggQAAJXksWcqZ8cz3q+tMXNNTAMAAAAAAFC9UZAAAKCScnY9L48txfu1LXaBDI/LxEQAAAAAAADVFwUJAAAqwZm2U/kH/lPoPo89Vfa4VSYlAgAAAAAAqN4oSAAAUEGGYShry4OS4SnyGG2bAAAAAAAAikdBAgCACrIe+kLO1K3FPmY//pM8ztwAJwIAAAAAAKj+KEgAAFABHnu6snc8V+LjhitftmM/Bi4QAAAAAABADUFBAgCACsjZ8ZwMe1qpx9ho2wQAAAAAAFAEBQkAAMrJkRKl/ENflHmcPf5nua3JAUgEAAAAAABQc1CQAACgHAzDo+zI4gdZFz3YLVvsfP+HAgAAAAAAqEEoSAAAUA75Bz6VM21HuY+3HqZtEwAAAAAAwKkoSAAAUAaPLVU5O5+v0HOcqVvlyv7TT4kAAAAAAABqHgoSAACUIXvHMzIcGRV+njXmGz+kAQAAAAAAqJkoSAAAUApH8hZZD31VqedSkAAAAAAAAPgfChIAAJTA8LiVFfmQJKNSz3dnH5AztfxzJwAAAAAAAGozChIAAJQg/8AncqXvqtIa1hiGWwMAAAAAAEgUJAAAKJbbmqycnS9UeR3rkW9lGB4fJAIAAAAAAKjZKEgAAFCMnO1PyXBmVXkdjzVBjoS1PkgEAAAAAABQs1GQAADgNI6kjbIenu2z9WjbBAAAAAAAQEECAIBCDI/rv4Osfcd2dJEMl82nawIAAAAAANQ0FCQAADhF/h8fyZXxu0/XNJzZsp1Y4tM1AQAAAAAAahoKEgAA/Jc7P0E5v73kl7Wth2nbBAAAAAAAghsFCQAA/it7+5MynNl+Wdset0Iee4Zf1gYAAAAAAKgJKEgAACDJnrBOtphv/HcCj0O22AX+Wx8AAAAAAKCaoyABAAh6hsel7K2+HWRdHGsMbZsAAAAAAEDwoiABAAh6edHT5cqM9vt5HEkb5c495vfzAAAAAAAAVEcUJAAAQc2dF6fc36YG6GyGrEfmBehcAAAAAAAA1QsFCQBAUMve9oQMV27Azmf155wKAAAAAACAaoyCBAAgaNnj18gW+11Az+nK2CNnxt6AnhMAAAAAAKA6oCABAAhKhtuhrMiHTTk3w60BAAAAAEAwoiABAAhKefvekzv7gCnntsV8I8MwTDk3AAAAAACAWShIAACCjjv3mHL3vGre+fOOyZm8ybTzAwAAAAAAmIGCBAAg6GRve1yGK9/UDNbDtG0CAAAAAADBhYIEACCo2ONWyXZ0kdkxZD26QIbHaXYMAAAAAACAgKEgAQAIGobbbtog69MZ9nTZT6wwOwYAAAAAAEDAUJAAAASN3L3vyJ3zp9kxvKwxtG0CAAAAAADBg4IEACAouHJilbvnDbNjFGI7vkQeZ47ZMQAAAAAAAAKCggQAIChkRz0qua1mxyjMba0W8ywAAAAAAAACgYIEAKDWsx1fJvvxxWbHKBZtmwAAAAAAQLCgIAEAqNUMl03ZUY+YHaNEjoS1cluTzI4BAAAAAADgdxQkAAC1Wu7vb8qdE2N2jJIZbtmOfGt2CgAAAAAAAL+jIAEAqLVc2YeVu/cts2OUibZNAAAAAAAgGARtQWL79u165ZVXdOWVVyo8PFwNGjRQWFiYunfvrkmTJmnTpk0VWm/FihUaN26cd63w8HCNGzdOK1as8NN3AAAoS3bUI5LbZnaMMjlTt8mVfcjsGAAAAAAAAH5lMQzDMDtEoA0ZMkQbN24s87iJEyfq888/V/369Us8xuPxaMqUKfryyy9LPGby5Mn69NNPFRLi+/rPiRMn1KlTJ0nS8ePHFR4e7vNzAEBNZDv2kzLWXmd2jHILu+glNen1stkxAAAAUAL+/Q0AQNUF5Q6J+Ph4SVKHDh306KOPauHChYqKitKWLVv03nvvqWPHjpKk2bNn66677ip1reeff95bjOjVq5fmzZunqKgozZs3T7169ZIkffHFF3rhhRf89w0BAAoxXFZlb33U7BgVQtsmAAAAAABQ2wXlDolRo0Zp4sSJGj9+vOrUqVPk8dTUVF1yySU6ePCgJGn9+vUaMmRIkeMOHjyonj17yuVyqW/fvtqwYYMaNWrkfTw/P19Dhw7V9u3bVbduXf3xxx/q1q2bT78XPqEBAEXl7HxBuXteNztGhbW6dqvqt+lvdgwAAAAUg39/AwBQdUG5Q2Lp0qW68cYbiy1GSFLr1q31r3/9y/v1woULiz1u+vTpcrlckqQPP/ywUDFCkkJDQ/Xhhx9Kklwul6ZNm+aL+ACAUriyDyl377tmx6gUdkkAAAAAAIDaLCgLEuVx+eWXe28fPny4yOOGYeinn36SJJ177rkaOHBgsesMHDhQ55xzjiTpp59+UhBuSAGAgMqO/JvksZsdo1JsR+bL8LjNjgEAAAAAAOAXFCRKYLf/72JWcTspjhw54p1FMXTo0FLXKng8Li5OsbGxvgsJACjEGvu97PGrzI5RaR5bkhwJa8yOAQAAAAAA4Bd1zQ5QXa1fv957u0ePHkUej46O9t4+99xzS13r1Mf/+OMPdenSpdw5Tpw4UerjCQkJ5V4LAGozjzNP2dseNztGlVlj5qpBx6vMjgEAAAAAAOBzFCSK4fF49Oabb3q/vvHGG4scc2qhoKxBVgVDr6STg68q4tTnAgBKlrv7VXnyKvbf2OrIdvQHGYPyZakbanYUAAAAAAAAn6JlUzGmTZumqKgoSdL111+vPn36FDkmJyfHezssLKzU9Ro3buy9nZub66OUNV9insvsCEC15c5PVMa6G+VIjjQ7So3gytyvvOj3zI7hE4YrV7Zji82OAQAAAAAA4HPskDjN+vXr9eyzz0qS2rZtq08++aTY42w2m/d2/fr1S12zQYMG3ttWq7VCecraUZGQkKD+/ftXaM3qIiLervFn8xYEiuNMiZQtdoFssQtUr81ANe75hBqeeb0sIUVn2kDK2vqw5HGaHcNnrEe+UaOuN5sdAwAAAAAAwKe4GnyKffv2ady4cXK5XGrYsKEWLFigtm3bFntsw4YNvbcdDkep6546ILtRo0YVylRWO6iabHO8TePPblz2gUAQcqT8b2eEMyVSmetuVJ2wzgrt8YhCu09WSL0mJqarXqxH5suR8IvZMXzKHrdSHluaQhq2MjsKAAAAAACAz9Cy6b+OHDmiK6+8UhkZGapTp46+/fZbDRkypMTjmzT538XAstow5eXleW+X1d4pmCTkufVnZu35RDPgS87UrUXuc+fGKmfbE0r+LlzZUU/IlXvUhGTVi8eZq+xtT5gdw/c8TlljF5idAgAAAAAAwKcoSEiKj4/XFVdcofj4eFksFs2YMUNjx44t9Tmn7lw4dcB1cU5tu8SQ6sIi4m1lHwQEGcPjljN1e8mPO7OVFz1NKd//RRm/3hDUcyZyf3tZnvx4s2P4hTVmrtkRAAAAAAAAfCroCxKpqakaMWKEYmJiJEkffvihJk6cWObzzjvvPO/t/fv3l3rsqY/36NGjkklrpy3xdnkMw+wYQLXiytwnw1X6zitJkuGW7ehCpS0fpNRlg2SNXSDD4/Z/wGrCmbFPedHvmx3Db5zJEeyCAQAAAAAAtUpQFySysrJ01VVXKTo6WpL05ptv6qGHHirXc7t06aIOHTpIOjkIuzQbNmyQJHXs2FGdO3eufOBaKMPuUXQabZuAUxXXrqnM5/x3zkTKom7K3feePI5sPySrXrIjH5IMl9kx/MiQLeYbs0MAAAAAAAD4TNAWJPLz83Xttddq586dkqTnn39ezzzzTLmfb7FYvG2d9u/fr8jI4lumREZGendIjB07VhaLpYrJa59NtG0CCjl1oHVFnZwz8XclL+h0cs5ETqzvglUj1sNz5UgqvRhcG9C2CQAAAAAA1CZBWZBwOBwaN26cIiIiJEmPPvqoXnvttQqv89hjj6lOnTqSpL/97W+yWq2FHrdarfrb3/4mSapbt64ee+yxqgWvpaIS7HJ5aNsEFHCmVHyHxOm8cyYWdfvvnIktPkhWPXgc2cre/qTZMQLClblPzvTdZscAAAAAAADwibpmBzDDLbfcotWrV0uS/vrXv+qee+7R3r17Szy+fv366t69e5H7u3fvrqeeekpvvvmmtm/frksuuUTPPPOM/vKXv+jw4cN66623tGvXLknSU089pbPPPts/31ANl+cytCvZoX5nNDA7CmA6jyNbrqw/fLfgf+dM2I4uVL02A9X4vMfV8KzxsoTU8d05Aixn14vyWBPNjhEw1pi5qtfyIrNjAAAAAAAAVJnFMIJvonBF2yadddZZio2NLfYxj8eje++9VzNmzCjx+ffcc48+++wzhYT4fkPKiRMn1KlTJ0nS8ePHFR4e7vNz+Muty5Pl/u+7b1D7BnqsdzNzAwHVgD3+F6WvvsKv56jT+CyFnveIQs+erJD6Tf16Ll9zpu9R6pLekhE8w7tDQsPV9oajsliCclMjAABAtVGT//0NAEB1wdWNKgoJCdGXX36pZcuWaezYserQoYPq16+vDh06aOzYsVq+fLm++OILvxQjapMdSXbZXB6zYwCmq8xA64py5x3975yJcGVHPV5j5kwYhqGsyIeCqhghSZ78E3IkbjA7BgAAAAAAQJUFZcsmf2wKueaaa3TNNdf4fN1g4fBIUYl2DQlvZHYUwFRVGWhdUYYzR3nR05X3x4dqeOY4Ne75uOq3HRyw81eU9fBsOZM3mR3DFNaYuWrQfpjZMQAAAAAAAKqEj+2j2oiIt5sdATCdLwZaV9h/50ykLb9EqcsGyXrkOxme6rULwWPPVM72p82OYRrb0YUy3A6zYwAAAAAAAFQJBQlUG7+nOpRtp20Tgpcr54g8tmRTMzhTIpW5/ialfP8X5e79lzyObFPzFMjZ9YLpr42ZDEem7CeWmx0DAAAAAACgSihIoNpwG9KWBJvZMQDTmLI7ogTuvKPK2f5ktZgz4UzbpfwD/zHt/NWFNWau2REAAAAAAACqhIIEqhXaNiGYBWKgdUUVzJlIWdRNGb9OkCN5c2DPbxjKinww6AZZF8d2Ymm12bECAAAAAABQGRQkUK0czHAqJZ8LjwhOgRxoXWGGW7aj35+cM7F0oKxH5gdkzoT10Aw5q/PrEkhum2xHvzc7BQAAAAAAQKVRkEC1YkiKiKdtE4KP4XbImbbL7Bjl4kzdqsz1N58yZyLLL+fx2NOVs+NZv6xdU9G2CQAAAAAA1GQUJFDtUJBAMHKm/yZ5albLsv/NmeikrK2PyZVzxKfr5+z4hzz2VJ+uWdM5En+VOz/e7BgAAAAAAACVQkEC1c6xHLeO57jMjgEEVHWcH1FehjNH+X+8r5RFZ5+cM5EUUeU1HanblH/ocx+kq2UMj6xHvjU7BQAAAAAAQKVQkEC1FBHHLgkEl2o9P6K8CuZMrLi0SnMmDMOj7C0PSobHDyFrPto2AQAAAACAmoqCBKol2jYh2DhTau4OieL8b85EV+XufbdCcybyD34uZ9p2P6ar2VxpO+XK3G92DAAAAAAAgAqjIIFqKdnq0cEMp9kxgIDw2FLlzjlsdgy/cOcdU872p8o9Z8JjS1XOzn8EKF3NxS4JAAAAAABQE1GQQLW1ibZNCBKOWrY7ojiF50yML3HORPaOZ2XY0wOcruaxHvnG7AgAAAAAAAAVRkEC1VZkgk0ewzA7BuB3NXmgdYUZbtmOLvrvnIkBssZ8K8Nzcoi9I2WrrIdmmBywZnDnxMiRvMXsGAAAAAAAABVCQQLVVpbD0O+pDrNjAH5XKwZaV4IzNUqZG25Ryvd/Ue7ed5UV+aAkipDlZY1hlwQAAAAAAKhZKEigWouIt5sdAfArwzDkTIkyO4apCuZMuNJ2mh2lRrHFzvfuLgEAAAAAAKgJKEigWotKtMvh5hPTqL3cWQdkOLPMjoEayGNLkT3+Z7NjAAAAAAAAlBsFCVRrVpehncnskkDtFaztmuAb1pi5ZkcAAAAAAAAoNwoSqPY2xVGQQO0VVAOt4XP2Yz/K48wzOwYAAAAAAEC5UJBAtfdbil35To/ZMQC/YIcEqsJw5cl+/CezYwAAAAAAAJQLBQlUe06PtDWRXRKofQxXvlwZv5sdAzUcbZsAAAAAAEBNQUECNUJEvM3sCIDPOVK3S4bb7Bio4exxq+W2pZgdAwAAAAAAoEwUJFAj7EtzKtPGhVvULsyPgE8YLtmOfGd2CgAAAAAAgDJRkECN4DGkzQm0bULt4kyhIAHfoG0TAAAAAACoCShIoMagbRNqGwZaw1ecKVvkyokxOwYAAAAAAECpKEigxvgz06WkfNo2oXZw58XJkx9ndgzUItaYb8yOAAAAAAAAUCoKEqhRNsWxSwK1A7sj4Gu0bQIAAAAAANUdBQnUKLRtQm3BQGv4mjtrv5xpu8yOAQAAAAAAUCIKEqhR4nLdis1ymh0DqDIGWsMf2CUBAAAAAACqMwoSqHEi4u1mRwCqxPC45UzbbnYM1ELWI/NkGB6zYwAAAAAAABSLggRqnM0JNhmGYXYMoNJcGb/LcOWbHQO1kCc/Xo7EdWbHAAAAAAAAKBYFCdQ4qVaP9mfQtgk1FwOt4U+0bQIAAAAAANUVBQnUSBFxtG1CzcVAa/iTLfZ7GW7+GwkAAAAAAKofChKokSITbHJ5aNuEmomB1vAnw5kl2/GlZscAAAAAAAAogoIEaqQcp6HfUx1mxwAqzOPIkitrv9kxUMvRtgkAAAAAAFRHFCRQY22Ks5kdAagwZ2qUJHb3wL/sJ5bLY880OwYAAAAAAEAhFCRQY21Pcsju5sIuahYGWiMgPHbZji40OwUAAAAAAEAhFCRQY9nchrYnMbgVNQvzIxAotG0CAAAAAADVDQUJ1GgRtG1CDUNBAoHiSFwvd94Js2MAAAAAAAB4UZBAjbY71aFcp8fsGEC5uLIPy2NPNTsGgoYh65F5ZocAAAAAAADwoiCBGs3lkbYm0LYJNYMzld0RCCxrzDdmRwAAAAAAAPCiIIEabxNtm1BDMNAageZK/03OzGizYwAAAAAAAEiiIIFa4I90p9JtbrNjAGVifgTMwHBrAAAAAABQXVCQQI1nSIqIp20TqjfDbZcz/TezYyAI2WK+kWEYZscAAAAAAACgIIHaYXM8bZtQvTnTdkkeh9kxEITcubFyJm82OwYAAAAAAAAFCdQOMVkuxee6zI4BlIiB1jATbZsAAAAAAEB1QEECtUYEuyRQjTHQGmayxn4nw+M0OwYAAAAAAAhyFCRQazBHAtUZA61hJsOeJnvcKrNjAAAAAACAIEdBArVGQp5bhzP5BDCqH7c1We7cI2bHQJCjbRMAAAAAADAbBQnUKrRtQnXE/AhUB/bji+Vx5podAwAAAAAABDEKEqhVtiTY5TEMs2MAhTA/AtWB4cqX7dgPZscAAAAAAABBjIIEapV0m0fRabRtQvXC/AhUF7bDtG0CAAAAAADmoSCBWoe2TahODMMjZ+o2s2MAkiR7whq5rclmxwAAAAAAAEGKggRqna2Jdrk8tG1C9eDK/EOGM9vsGMBJhlu22PlmpwAAAAAAAEGKggRqnTynod9SHGbHACQx0BrVj5W2TQAAAAAAwCQUJFArbYqjbROqBwZao7pxpm6VK/tPs2MAAAAAAIAgREECtdLOZLtsLo/ZMQAGWqNassZ8Y3YEAAAAAAAQhChIoFayu6VtibRtgrk8zjy5MveZHQMowhpD2yYAAAAAABB4FCRQa22Kp20TzOVM3SYZbrNjAEW4sw/Kkbrd7BgAAAAAACDIUJBArfV7qkPZDto2wTwMtEZ1ZmOXBAAAAAAACDAKEqi13IYUmcAuCZiHgdaozqxHvpXhYQcPAAAAAAAIHAoSqNUi4uxmR0AQY6A1qjOPNVGOxLVmxwAAAAAAAEGEggRqtQMZTqVa+QQwAs+dd1wea4LZMYBSWQ/TtgkAAAAAAAQOBQnUaoakCIZbwwS0a0JNYDu2SIbLanYMAAAAAAAQJChIoNaLiKdtEwKPdk2oCQxnjmzHl5gdAwAAAAAABAkKEqj1jma7dCLHZXYMBBl2SKCmsMZ8Y3YEAAAAAAAQJChIIChsom0TAsjwuORM22l2DKBc7HEr5LFnmB0DAAAAAAAEAQoSCAqbKUgggFzpuyU3fflRQ3gcssUuMDsFAAAAAAAIAhQkEBSS8j06mOE0OwaChCOV+RGoWawxc82OAAAAAAAAggAFCQQNdkkgUBhojZrGkbRR7txjZscAAAAAAAC1HAUJBI0tCXZ5DMPsGAgCDLRGzWPIemSe2SEAAAAAAEAtR0ECQSPT7tHeVNo2wb889gy5sw+ZHQOoMNo2AQAAAAAAf6MggaCyibZN8DNHylZJ7MRBzePK+F3OjN/NjgEAAAAAAGoxChIIKlGJdjncXCyG/zgZaI0azHqYXRIAAAAAAMB/KEggqFhdhnYl282OgVqMgdaoyWxH5slg1g4AAAAAAPATChIIOhHxFCTgPw52SKAGc+cdkyNpo9kxAAAAAABALUVBAkFnZ7Jd+U6P2TFQC7myD8mwp5sdA6gSG8OtAQAAAACAn1CQQNBxek7OkgB8zZESaXYEoMqsRxfK8DjNjgEAAAAAAGohChIIShHxNrMjoBZifgRqA8OeLvuJFWbHAAAAAAAAtRAFCQSlvWlOZdpp2wTfcrJDArWElbZNAAAAAADADyhIICh5DGkLuyTgQ4bLJmfGHrNjAD5hO75EHmeO2TEAAAAAAEAtQ0ECQYu2TfAlZ/pOib77qC3cVtmOLjI7BQAAAAAAqGUoSCBoHcp0KTnfbXYM1BIMtEZtQ9smAAAAAADgaxQkENQ2xbFLAr7BQGvUNo6EtXLnJ5odAwAAAAAA1CIUJBDUaNsEX2GgNWodwy3bkW/NTgEAAAAAAGoRChIIaidy3Tqa7TI7Bmo4d36i3HnHzI4B+BxtmwAAAAAAgC9RkEDQY5cEqsqZSrsm1E7OtO1yZR00OwYAAAAAAKglKEgg6G2Ot8kwDLNjoAZjoDVqM3ZJAAAAAAAAX6EggaCXYvXoQIbT7BiowRhojdqMggQAAAAAAPAVChKApIh4u9kRUEMZhkfO1G1mxwD8xp1zWA6KbgAAAAAAwAcoSACSIhNscnto24SKc2Xuk+HKNTsG4FfWmG/MjgAAAAAAAGoBChKApGyHoT2pDrNjoAaiXROCge3IfBket9kxAAAAAABADUdBAviviHib2RFQAzHQGsHAY0uSI2GN2TEAAAAAAEANR0EC+K9tiQ453LRtQsWwQwLBguHWAAAAAACgqihIAP9lcxvakcRwa5Sfx5kjV1a02TGAgLAd/UGGK9/sGAAAAAAAoAajIAGcYhNtm1ABztRtkuExOwYQEIYrV7Zji82OAQAAAAAAajAKEsApfktxKM/JBWaUj5P5EQgytG0CAAAAAABVQUECOIXLI0Um0LYJ5eNgfgSCjD1+lTy2NLNjAAAAAACAGoqCBHCaCNo2oZwYaI2g43HKGvud2SkAAAAAAEANRUECOE10mlPpNrfZMVDNuXJi5bElmR0DCDjaNgEAAAAAgMqiIAGcxpC0JZ62TSidM5XdEQhOzuTNcuXEmh0DAAAAAADUQBQkgGJsom0TysBAawQvQ7Yj35gdAgAAAAAA1EAUJIBixGS5lJDnMjsGqjEGWiOY0bYJAAAAAABUBgUJoASb4mjbhOIZHqec6bvMjgGYxpUZLWf6brNjAAAAAACAGoaCBFCCzbRtQgmc6b9Jbt4fCG7skgAAAAAAABVFQQIoQXyeWzFZTrNjoBpy0q4JkDVmngzDY3YMAAAAAABQg1CQAEoREcen4FGUg4HWgDz5J+RI3GB2DAAAAAAAUINQkABKsTnBLo9hmB0D1Qw7JICTaNsEAAAAAAAqgoIEUIp0m0d/pNO2Cf/jsaXJnfOn2TGAasF2dKEMt93sGAAAAAAAoIagIAGUIYLh1jiFI5XdEUABw5Ep+4nlZscAAAAAAAA1BAUJoAxbE+xyeWjbhJNo1wQURtsmAAAAAABQXhQkgDLkOg3tTnGYHQPVBAOtgcJsx5fK48gyOwYAAAAAAKgBgrYgkZycrKVLl+rFF1/UyJEj1bp1a1ksFlksFt11113lWmPmzJne55T1Z+bMmX79fuBfm2jbBEmGYciZGmV2DKB68dhlO/q92SkAAAAAAEANUNfsAGZp166d2RFQg+xIssvmMtSwrsXsKDCRO+uADEem2TGAascaM1ehZ99tdgwAAAAAAFDNBW1B4lRnnnmmzj33XK1evbrSa6xatUodOnQo8fHw8PBKrw3z2d3S9iS7Lu3Y0OwoMBEDrYHiORLXyZ0frzqhJf89CAAAAAAAELQFiRdffFH9+vVTv3791K5dO8XGxqpLly6VXq979+7q3Lmz7wKi2omIt1GQCHIMtAZKYHhkPfKtwno+YXYSAAAAAABQjQVtQWLq1KlmR0ANszvFoRyHR03qB+3olaDHQGugZNaYuRQkAAAAAABAqbiyCpST25AiE+xmx4BJDJdVrozfzY4BVFuutJ1yZe43OwYAAAAAAKjGKEgAFbAp3mZ2BJjEmbZdMlxmxwCqNWvMXLMjAAAAAACAaixoWzb52qRJk3TgwAGlpqaqadOm6tatm6644go98MAD6tixY6XXPXHiRKmPJyQkVHptVNyBdKdSrW61blTH7CgIMAfzI4AyWY98oya9XzU7BgAAAAAAqKYoSPjIunXrvLfT0tKUlpamrVu36l//+pemT5+u++67r1LrdurUyUcJ4QuGpM3xNo35S2OzoyDAGGgNlM2dEyNH8hbVbzvI7CgAAAAAAKAaoiBRRV27dtX111+vQYMGeYsHMTEx+v7777Vw4ULZbDbdf//9slgsmjJlislp4QsR8XYKEkGIgdZA+eT+/n9qMfQ7Weo2NDsKAAAAAACoZihIVMG4ceN05513ymKxFLq/X79+uummm7R06VJdf/31cjqdevzxxzVmzBidccYZFTrH8ePHS308ISFB/fv3r3B2VF5stksnclwKb8KvT7Bw58fLk196+zQAJ9mPL1Hq8sFqMWyB6jb9i9lxAAAAAABANcJQ6ypo1qxZkWLEqUaNGqUXX3xRkpSfn68vv/yywucIDw8v9U/79u0rnR+VF8Fw66DC7gigYlzpu5S6pLesRxeZHQUAAAAAAFQjFCT8bMqUKd6ixfr1601OA1+JiLebHQEBxPwIoOIMZ7Yyfx2vrK2PyfA4zY4DAAAAAACqAQoSfta2bVu1atVKkhQXF2dyGvhKUr5bf2ZygS1YONkhAVRa/h/vK23FELnzSm9BCAAAAAAAaj8KEgFQWlsn1Fyb4mjbFAwMj1vOtB1mxwBqNGdKpFIW95LtxAqzowAAAAAAABNRkPCzlJQUpaamSpI6dOhgchr40pYEuzyGYXYM+Jkrc68MV57ZMYAaz7CnKWPNtcre+bwMj9vsOAAAAAAAwAQUJPzss88+k/Hfi9ZDhw41OQ18KdPu0d402jbVdgy0BnzJUN6eN5S++gq58xPNDgMAAAAAAAKMgkQlxcbGateuXaUes3TpUr3yyiuSpEaNGmnSpEmBiIYA2kzbplqPgdaA7zkS1yl1SS/ZE9aZHQUAAAAAAARQXbMDmGXTpk36888/vV8XtFWSpD///FMzZ84sdPxdd91V6OvY2FhdfvnlGjRokEaPHq2LLrpIbdu2lSTFxMRo4cKFWrhwoXd3xLvvvquOHTv655uBaaIS7brnfEP16jAnpLZioDXgHx5rotJXX6Gwi6cq7MJ/MG8JAAAAAIAgELQFiS+++EKzZs0q9rGIiAhFREQUuu/0gkSBLVu2aMuWLSWeJzQ0VNOmTdOUKVMqnRXVV57L0K4Uh/qf0cDsKPADjyNLrqz9ZscAai/DrdxdL8iZvEnNL/taIQ1bmZ0IAAAAAAD4UdAWJKqqT58++vrrr7VlyxZt375dCQkJSk1NlcvlUosWLdSzZ08NHz5ckydP9u6cQO20Kc5GQaKWcqZuk8TgcsDf7HErlbKkl1oM/U712w40Ow4AAAAAAPATi1HQUwg10okTJ9SpUydJ0vHjxxUeHm5yovK7dXmy3LXg3VcvRPp8RGs1qstIltomZ/dryt31T7NjAMEjpJ6a9HlLYT0fNzsJAABAETX5398AAFQXXEEFqsjpOTlLArUPA62BAPM4lbPtCWX8Ol4eR5bZaQAAAAAAgI9RkAB8ICKegkRt5EylIAGYwXZ0kVKX9JEzbZfZUQAAAAAAgA9RkAB8YG+qQ1l2j9kx4EOunBh5bClmxwCCljvnsFKXD1begU/NjgIAAAAAAHyEggTgA25D2pJgMzsGfMiZEml2BABum7K33K+MDbfL48wzOw0AAAAAAKgiChKAj0TEUZCoTRzMjwCqDVvMXKUt6y9nZrTZUQAAAAAAQBVQkAB85GCmS8n5brNjwEcYaA1UL67MaKUt7a/8w1+bHQUAAAAAAFQSBQnAhyLi2SVRGxhuu5zpDNMFqhvDlaesjXcoc/MUGS7+ewsAAAAAQE1DQQLwIQoStYMz/TfJ4zA7BoASWA9+rtTlg+XKPmx2FAAAAAAAUAEUJAAfOp7j1rFsl9kxUEUMtAaqP1f6LqUu6S3r0UVmRwEAAAAAAOVEQQLwsU3skqjxGGgN1AyGM1uZv45XdtTjMjxOs+MAAAAAAIAyUJAAfGwzBYkaz5lKQQKoSfKipyttxRC5846bHQUAAAAAAJSirtkBgNomxerRgXSnzmlZz+woqAS3LUXunBizYwCoIGdKpFIW91Lzy+aoYfhIs+MAAACUyGazKTMzU/n5+XK73WbHAQCgkDp16ig0NFTNmzdXw4YNfb4+BQnADyLibRQkaign7ZqAGsuwpyljzbVqfOFzanLxK7KE1DE7EgAAgJdhGEpISFBWVpbZUQAAKJHL5ZLdbldGRoaaNWum9u3by2Kx+Gx9ChKAH0Qm2HTneWGqE+K7X1YEBgOtgZrOUN6eN+RM3qzmQ+apTugZZgcCAACQJKWlpRUpRtSty2UZAED14nK5vLezsrJUv359tW7d2mfr8zcf4AdZDkO/pzp0cdsGZkdBBTHQGqgdHInrlLqkl5oPmacG7YeZHQcAAAQ5h8OhlJQU79dt27ZV8+bNVacOOzoBANWL2+1WZmamkpOTJUkpKSlq2rSp6tev75P1GWoN+ElEvN3sCKggwzDkTN1mdgwAPuKxJip99RXK2f26DMMwOw4AAAhiubm53tutWrVSq1atKEYAAKqlOnXqeP+uKnDq32NVRUEC8JNtSXY53FwAq0lcWX/IcNLPFahVDLdyd72gjDXXymNLMzsNAAAIUnl5ed7bTZs2NTEJAADlc+rfV6f+PVZV1bYgYbfblZSUJI/HY3YUoFKsLkM7ktklUZMw0BqovexxK5SypJccycyJAQAAgedwOCRJFotFDRrQ2hcAUP01aNDAO8y64O8xXwh4QSI3N1fLly/X8uXLi93qkZqaqvHjx6tp06bq0KGDWrRoob///e+y27mwi5onIs5mdgRUAAOtgdrNk3dcaSuHKHffNLOjAACAIFPwYcs6dep4L+4AAFCdWSwWb3tBX24aCPhQ6++//16TJk1SeHi4YmNjCz3m8Xg0cuRI7dy509vrOScnR9OnT1dsbKy+//77QMcFquS3FIfynB41rldtNyPhFAy0BoKAx6mcbU/ImbxJzS6ZoZD6zcxOBAAAAABA0Aj4VdJVq1ZJksaNG6eQkMKnnz9/vnbs2CFJ6t27tx5//HH17t1bhmHoxx9/1MqVKwMdF6gSp0eKSmR3T03gcebJlbnX7BgAAsR2dJFSl/SRM+03s6MAAAAAABA0Al6Q2Lt3rywWiwYPHlzksdmzZ0uS+vTpo8jISP3rX//Sli1b1L9/f0nSrFmzApoV8IVNtG2qEZxp2yXDbXYMAAHkzjms1OWDlH/gM7OjAAAAAAAQFAJekEhOTpYkdenSpdD9TqdTGzZskMVi0UMPPaS6dU92k6pXr57uv/9+GYahqKioQMcFqmxfmlOZNi50V3cMtAaClNumrC33KXPDHfI488xOAwAAAABArRbwgkR6erokqX79+oXu37Ztm6xWqyTp6quvLvRY9+7dJUmJiYkBSAj4liEpIoG2TdWdg4HWQFCzxnyttGX95cyMNjsKAAAAAAC1VsALEqGhoZL+t1OiwIYNGyRJ3bp1U7t27Qo91qhRo8CEA/wkgrZN1Z4zlR0SQLBzZUYrbWl/5R/+2uwoAAAAAADUSgEvSPzlL3+RJK1bt67Q/T/88IMsFouGDBlS5DkpKSmSpLZt2/o9H+APh7NcSsxzmR0DJXDnHZcnP97sGACqAcOVp6yNdyhr830y3OxuAwAAQM3jcrn0/fffa8qUKbrgggvUtm1b1atXT82aNVO3bt00btw4vfPOOzpy5IjZUQEEoYAXJEaMGCHDMPTxxx9rxYoVys3N1Ycffqht27ZJkkaPHl3kOXv27JEkdejQIaBZAV+KiOfCVnXlYH4EgNPkH/xMqcsGyZV92OwoAAAAQLktXrxYPXr00IQJE/T5559r7969SklJkcvlUnZ2tg4fPqwff/xRTz/9tLp27apRo0Zp7969Zsf2q5dfflkWi0UWi8XsKAAk1Q30CR999FH95z//UU5OjkaNGlXosR49ehRbkFi2bJksFot69eoVqJiAz22Ks2n82Y3NjoFiMNAaQHFc6buUuqSPml06Q43Out7sOAAAAECpXnvtNb344osyDEOSNGzYMI0aNUoXXnihWrVqpfz8fCUkJGjDhg1aunSpYmNjtWzZMoWHh+s///mPyekBBIuAFyTat2+vJUuW6Oabb1ZCQoL3/q5du2rhwoVFqpWHDx/Wxo0bJUlXXHFFQLMCvhSf59aRLKe6NKtndhSchoHWAEpiOLOU+et4Oc97TE36vi1LCP8NBwAAQPUzY8YM/fOf/5QktWvXTt9++62GDRtW7LE33HCDpk+frm+//Vb/+Mc/ApgSAEwoSEjSZZddpiNHjigiIkKJiYlq3769Lr30UtWtWzROQkKC9z+oV155ZaCjAj4VEW+nIFHNGB6XnGk7zI4BoJrLi54uR0qkWgz7TnUadzI7DgAAAOB1/PhxPfTQQ5Kkpk2batOmTerWrVupz6lTp45uu+02XXvttd4PAgNAIAR8hkSB+vXr6/LLL9ctt9yiYcOGFVuMkKRLL71UL730kl566SWFhoYGOCXgW5vjbd6tk6geXBl7JLfV7BgAagBnSqRSFveS7cRKs6MAAAAAXu+9955sNpsk6fXXXy+zGHGq5s2bF9s+vUBiYqKef/559e3bVy1btlSDBg3UqVMn3XjjjVqzZk2Jz4uNjfXObZg5c6Yk6eeff9bo0aN1xhlnqEGDBurSpYseeOABnThxosycDodDH3/8sS6//HK1adNG9evX1xlnnKFrrrlGX3/9tTweT5HnzJw5UxaLRVOnTvXeV5Dp1D+xsbHas2eP9+s333yzzDwffvih9/ioqKgi5yxY1263691331Xv3r3VrFkzNW3aVAMGDNDHH38st9td5nncbrdmzZqlUaNGqUOHDmrQoIFatWqlSy+9VO+9956sVq5noOaxGFwdrdFOnDihTp1OflLz+PHjCg8PNzlR+d26PFnuIHz3vTSwuc5rVd/sGPivvP2fKDvyQbNjAKhRLAq78B8Ku3iqLCF1zA4DAAACpCr//j506JBcLpfq1q2rs88+218REYQMw1CbNm2UlpamJk2aKCEhQY0b+2Z+5dy5c3XfffcpLy+vxGPuuece/ec//ynyQePY2Fh16dJFkvTVV1/pwIEDJV7ob9OmjdavX68ePXoU+3hsbKxGjhyp/fv3l5jj0ksv1U8//aSWLVt675s5c6YmTZpU4nMKHDlyRJ07d1b//v21bds2nXvuufrjjz9KfU7v3r21a9cu9ezZs9BQ8FPPuXPnTt17773asaP4rgxDhgzRsmXLFBYWVuzjx44d05gxY7R79+4Sc3Tr1k3Lli1T9+7dy/o2gUrxx99fpu2QAIJVRLzN7Ag4hZP5EQAqzFDunteVvnqE3PmJZocBAABAENu7d6/S0tIknWyR7qtixHfffac77rhDeXl56tq1q9577z2tXLlSO3bs0Pfff69rrrlGkvTll1/q6aefLnWtzz//XG+++aaGDh2qb775Rtu3b9eaNWs0ceJESVJKSoruvvvuYp+bm5ur4cOHe4sR1113nRYvXqzt27drwYIFGjp0qCRp06ZNGj16dKFdB9ddd51+//13PfDAA977fv/99yJ/OnbsKEmaPHmyJGn//v3asmVLid/P7t27tWvXLkkqMbck3XfffdqxY4duuukmLV++XNu3b9c333yjfv36SZI2bNigO+64o9jnpqWl6dJLL9Xu3bvVoEEDPfzww1qwYIG2bdumX3/9Vc8995xCQ0P1559/auTIkcrKyioxB1DdmDJDosDu3bu1ceNGxcTEKCcnp8ytShaLRV9++WWA0gH+sTXBrkk9DdUNsZR9MPzOkbLV7AgAaihH4q9KXdJLzYfMU4P2w8yOAwAAgCC0Z88e7+3evXv7ZM3U1FRNmTJFhmHo7rvv1qefflpoB0Tv3r11/fXX6/nnn9cbb7yh999/X/fdd5/OOeecYtfbvHmz7r33Xn366aeyWP53LWT48OGqX7++vvjiC0VGRmrXrl3q1atXoedOnTpVMTExkqQXXnhBr776qvexPn36aPz48brjjjs0d+5cbd68WZ999pm3ANG8eXM1b95cbdu29T7n/PPPL/H7vuWWW/TEE08oLy9PX331lQYNGlTscTNmzJAk1atXr8SCgiRt27ZNb7zxhp577rlCmW+44QaNGjVKq1at0o8//qjly5d7CzwFHnnkER0/flxnnXWWfv31V+9ukwLDhg3TDTfcoMsuu0wxMTF6++239frrr5eYBahOTClIHDhwQHfffbciI8v/yWTDMChIoFbIcRraneJQn3YNzI4S9Dz2TLmzD5odA0AN5rEmKn31FQq7eKrCLvxHoX9gAQAAAP6Wmprqvd2mTZsSj/N4PIqOji7x8XPOOUf16tWTJH3yySfKyspSx44d9fHHH5c493Xq1KmaNWuW4uLiNHv27BIviLdv3947c+F0Tz75pL744gtJ0saNGwsVJOx2u/exnj176uWXXy7yfIvFoo8//lgrV65UWlqaPvroo0I7IiqiSZMmuvHGG/XVV19p/vz5ev/999WoUaNCxzgcDs2dO1eSNGrUqFJf8wsvvFDPPvtskfvr1q2rL774Ql27dpXT6dTHH39cqCARGxur+fPnS5I++uijIsWIAr169dJDDz2kt99+WzNnzqQggRoj4C2b4uLiNGTIEEVGRsowDBmGocaNGys8PFxnnnlmiX/OOussnXnmmYGOC/gFbZuqB2fqVklBOMgEgG8ZbuXuekEZa66Vx5ZmdhoAAAAEkZycHO/t0to1ZWdn64ILLijxT1xcnPfYxYsXSzp5wb1Bg5I/TFm3bl3vLoLSWhxNmDChxHXOOecc7wyFgp0QBXbs2KHMzExJ0l133aU6dYqf39a0aVPdeOONkqTo6GglJCSUmKUsBW2bsrOz9f333xd5fMmSJd4WWaW1a5KkO++8s8QPLIWHh+vKK6+UJK1bt65Q15hly5bJ7XYrNDRUI0eOLPUcQ4YMkSTFx8fr2LFjpR4LVBcBL0i8/vrrSklJkXTyl3z//v3Kzs7W0aNHdeTIkTL/ALXB9iSH7ME40buaoV0TAF+yx61QypJeciQzmwYAAACB0aRJE+/t0oZPl5fb7dZvv/0mSd4WS6X9WbhwoSQpMbHk2Wrnnntuqeds0aKFpMLFFUmFhkUPGDCg1DVOffzU51XU4MGDdd5550k6OYz7dAX3tW/fvsxiQcGsiJL0799f0smf26nFmO3bt0uS8vPzVbdu3VJf/1GjRnmfV9rPAKhOAl6QWLlypSwWiyZOnKjPPvuMKfAISna3oe2JdrNjBD0GWgPwNU/ecaWtHKK8fdPNjgIAAIAg0KpVK+/tgg8AF6d58+beTiUFf+68884ix6Wnp8vlclU4R35+fomPhYaGlvrckJCTlydPny2bnp7uvX3qHIjinHHGGcU+rzLuueceSdKvv/6q2NhY7/0JCQlauXKlJGnixIkl7tgoUFbmdu3aeW+fmjk5ObmikSWV/jMAqpOAz5CIj4+XdPIXFwhmm+JtuqRjQ7NjBDVHapTZEQDURh6nsrc9LkfyJjW7ZIZC6jc1OxEAAABqqYsuush7e9euXVVe79SiwOTJk/Xoo4+W63n169ev8rlLE8hZbRMnTtRzzz0nh8OhWbNm6aWXXpIkzZ492/v6lNWuSap85oJztG7dWr/++mu5n1fSrAmgugl4QaJFixZKTk5W8+bNA31qoFrZneJQrsOjsPoB36gESa7sP2XY6fUOwH9sR7+XM/03tRi2UPVaXWx2HAAAANRC559/vlq1aqW0tDRt3LhR+fn5Ze5IKE3Lli29tw3D0Pnnn++LmFXOkpSUVGqXlVPbFZ36vMpo3bq1xo4dqwULFmjWrFl68cUXZbFYNHPmTEnSJZdcUq6OL2VlTkpKKjZzwa6XnJwc9ejRo8ydGEBNE/AroX379pUkHTx4MNCnBqoVtyFF0rbJNI7kCLMjAAgC7pzDSl0+SPkHPjM7CgAAAGohi8Wi22+/XdLJQcyzZs2q0nr169dXz549JUkREeb+u/nUYsjWraXPgIyK+l8HhNOLKJXZqVAw3PrIkSNat26dNm/erP3790sq3+4ISdq2bVu5Hg8NDVXXrl299/fq1UuSZLfbvfMkgNok4AWJRx55RIZh6LPP+Ic5EBFnMztCUHLnHlPO9mfMjgEgWLhtytpynzI33CGPs+qDBgEAAIBTPfHEE2rY8GRL6Oeee05Hjhyp0npjxoyRJO3fv1+rVq2qcr7K6tOnj7fDyqxZs+TxeIo9LicnR999950k6bzzzlP79u0LPV7w2kgnL/KXxxVXXKGzzjpL0slB1gXDrMPCwnTjjTeWa405c+bIMIxiH4uLi9Pq1aslScOGDSu0C2L06NHeIsr06dPLdS6gJgl4QWLEiBF65pln9Ouvv+qBBx6Q0+kMdASg2vgj3ak0q7vsA+EzHmeu0n8ZLY8tqeyDAcCHrDFfK21Zfzkz/zA7CgAAAGqRM888Ux988IEkKSsrS5deeqk2bdpU6nMMw1BmZmaxjz366KMKCwuTJE2aNEn79u0rda1ly5Zpz549FQ9ehgYNGnh3Kuzdu1evvvpqkWMMw9DDDz+s1NRUSdLDDz9c5JhTCxSHDx8u17lDQkK8OyG+//57zZ8/X5J0ww03eF+bsvz222965513itzvcrl07733yuFwSJIeeOCBQo+fc845uuGGGyRJ3377rd57771Sz3PkyBHNmzevXJmA6iDgMyRmz56tHj16aPDgwfrss8+0ZMkSTZgwQeeee265etwxDBu1iSFpc7xdo/9S+f6OKD/D8Chzw21yZfj+/ygBQHm4MqOVtrSfmg36VI3+cpvZcQAAAFBL3HvvvYqLi9PUqVMVHx+vyy67TH/96181evRoXXDBBWrZsqXcbrcSExO1c+dOfffdd95CQ506dQoNpW7Xrp1mzZqlCRMmKCEhQX379tVdd92lkSNHKjw8XE6nUydOnFBUVJQWLlyomJgYLVmyRBdeeKHPv68XX3xRixYtUkxMjF5++WX9/vvvmjRpktq3b68jR47oo48+0rp16yRJgwYN0pQpU4qsMXjwYO/txx9/XM8//7zat2/v3YXQuXNn1a1b9BLp3XffralTpyo/P7/QfeXVt29fPfPMM/rtt980ceJEtW3bVocOHdJ7773nbTE1evRojRo1qshzP/nkE23fvl0xMTH6+9//rp9++kkTJ05Uz5491aBBA6WlpWn37t1auXKl1q5dq3HjxumWW24pdzbATBajpL1DfhISElLpKfMWi0Uul8vHiWq2EydOqFOnTpKk48ePKzw83ORE5Xfr8mS5A/ruq546N62rty6r2sAllE/29qeVt7fopxMAwAyh3aeo6YAPZKnTwOwoAACgHKry7+9Dhw7J5XKpbt26Ovvss/0VEdAPP/ygJ598UjExMWUea7FYdNVVV+mdd94pdnj1kiVLdNdddyk9Pb3UdUJCQrRmzRpdfvnl3vtiY2PVpUsXSSdbHt11110lPr9z5846evSo7rzzTu/g6FPFxsZq5MiR3hkOxbnkkku0ePHiEgda33TTTd62Tqc7cuSIOnfuXOxj11xzjVasWCFJ6t69uw4cOFBiBkmaOXOmJk2aJEnauXOn7rnnHu3atavEzCtWrFCTJk2KfTwxMVE33nijNm7cWOo5pZM7WWbMmFHmcUBF+ePvr4DvkJBUYv80IBjFZrsUn+tShzBTfh2DRv6hmRQjAFQr+Qc/kyN1m1oMW6C6Tf9idhwAAADUAuPGjdPo0aP1ww8/aNWqVdqyZYuSk5OVmZmp0NBQtWrVShdccIEGDRqkm266yVs0KM7o0aN15MgRff7551q+fLn27dun9PR01a1bV2eccYZ69uypv/71r5owYYK3WOcPnTt31u7du/X5559rwYIF2rt3r7Kzs9WyZUv16tVLt912m2699VaFhJTcmf7rr79W3759tXDhQh04cEA5OTklzqQ41R133OEtSBQUGsqrRYsW2rx5s6ZPn6758+fr8OHDMgxDPXr00MSJE/XAAw8Umh1xujPOOEMbNmzQsmXLNG/ePG3ZskWJiYlyOp1q3ry5zj77bA0aNEhjxozRkCFDKpQNMFPAd0gcPXq0Ss8vGCiDk9ghUTuMPztUN3YvXw9CVJwjaaPSVl0heRxmRwGAIiz1mqnZpTPU6KzrzY4CAABKwQ4JIPg8//zzeuONN1SnTh0dP368yMDs0526Q6K0nRdATVErdkhQUACK2hxvpyDhJ66cI8pYez3FCADVluHMUuav4+U873E16fuWLCH1zI4EAAAABD23263Zs2dLkkaOHFlmMQJA+ZS8lwlAwCTkufVnptPsGLWOx5GtjF9GyWNPNTsKAJQpL3qa0lYMlTvvuNlRAAAAgKA3d+5cnThxQpJ0//33m5wGqD1oWg9UExHxNnVrzqdifcXwuJW5/ia5MqPNjgIA5eZM2aKUxb3U/LKv1TD8arPjAAAAAEHlzz//lNPp1Pbt2/X4449Lki666CJdc801JicDag9TCxJut1s//vij1qxZo7179yo9PV2S1LJlS51//vm64oordN1115U64AWoLbbE23VHjzCFWCxmR6kVsrf9Xfa4lWbHAIAKM+xpylhzjcIu/IfCLp4qSwj/PwgAAAAIhNN75NerV0+ffPKJLFyrAXzGtILEypUrNWXKFMXFxXnvK5ivbbFYtHnzZn322WcKDw/XZ599pquuusqsqEBAZNg9ik5z6vzW9c2OUuPlHfhU+X+8b3YMAKgCQ7l7XpcjebOaD/lGdULPMDsQAAAAEDRatGih3r1765VXXtGgQYPMjgPUKqbMkJgzZ45GjRqluLg4GYYhwzB01llnaeDAgRo4cKB38LVhGDp+/LiuvfZazZ0714yoQEBtireZHaHGsyesVXbkw2bHAACfcCT+qtQlvWRPXG92FAAAAKDWK7hOmZ6erjVr1mjw4MEVev5dd93lXaNz587+CQnUcAEvSBw9elRTpkyRx+NRaGioXnvtNSUmJiomJkabN2/W5s2bFRMTo8TERL3++usKCwuTx+PRvffeq2PHjgU6LhBQUQl2uTyG2TFqLFf2IWX8OkEyXGZHAQCf8VgTlb5quHL3vOHdTQoAAAAAQE0U8ILE+++/L7vdrrCwMG3cuFH/+Mc/1LZt2yLHtWnTRs8995w2btyosLAw2e12vf8+LVhQu+W5DO1Kdpgdo0by2DOUvmaUDEeG2VEAwPcMt3J2Pq+MX0bJY083Ow0AAAAAAJUS8ILE6tWrZbFY9NRTT+niiy8u8/iLLrpITz75pAzD0KpVq/wfEDBZBG2bKszwuJSx7ga5sw+aHQUA/Mp+YrlSF/eSIznS7CgAAAAAAFRYwAsSBW2XrrjiinI/Z8SIEYWeC9RmO5Lssrk8ZseoUbK3/k2OhF/MjgEAAeHOO6a0lUOUt2+62VEAAAAAAKiQgBck3G63JKlOnTrlfk7dunUlSR4PF2lR+zk8UlSi3ewYNUZe9AfKP/Afs2MAQGB5nMre9rgyfp0gjyPb7DQAAAAAAJRLwAsSHTt2lCRt3ry53M8pOLZDhw5+yQRUNxHxFCTKw3ZipbK3PWF2DAAwje3o90pd0lvOtN/MjgIAAAAAQJkCXpC4/PLLZRiG3nzzTcXHx5d5fHx8vN58801ZLBb99a9/DUBCwHy/pzqUbWdHUGmcmdHKXH+TZLjNjgIApnLnHFbq8kHKP/i52VEAAAAAAChVwAsSf/vb3xQSEqKUlBQNGDBACxcu9LZxOpXH49HChQs1aNAgJSUlKSQkRA8//HCg4wKmcBvSlgSGW5fEY0tVxi+jZThpUwIAkiS3TVmbpyhz40R5nHlmpwEAAAAAoFh1A33C888/X6+++qqef/55xcfH66abblLz5s3Vu3dvtW3bVhaLRUlJSdq5c6cyMzNlGIYk6dVXX9X5558f6LiAaSLi7bqqc6jZMaodw+1Qxq/Xy50TY3YUAKh2rIfnyJm2Q82HLVS95j3MjgMAAAAAQCEBL0hI0nPPPadmzZrp6aefVn5+vjIyMrR27dpCxxQUIkJDQ/XOO+/ogQceMCMqYJqDGU6l5LvVJrT8A+CDQVbkA3IkbTQ7BgBUW67MaKUt7admgz5Vo7/cZnYcAAAAAAC8At6yqcCDDz6o2NhYvfXWWxoxYoTOOOMM1a9fX/Xr19cZZ5yhESNG6K233lJsbCzFCAQlQ1JEPG2bTpW7911ZD80wOwYAVHuGK0+ZG29X1ub7ZbjtZscBAAAAAECSSTskCrRu3VpPPfWUnnrqKTNjANVWRLxN13VrbHaMasF2fIlydjxjdgwAqFHyD34qR2qUWly+UHWbdDU7DgAAAAAgyJm2QwJA2Y7luHU8x2V2DNM50/coc/2tkuExOwoA1Diu9F1KXdxbtqM/mB0FAAAAABDkKEgA1VxEXHC3bXJbk5Txy2gZrlyzowBAjWU4s5Tx6/XKjnpChsdpdhwAAAAAQJCiIAFUc8E8R8Jw25WxdpzcecfMjgIAtUJe9DSlrRgqd95xs6MAAAAAAIKQ32ZIdO16sk+xxWLR4cOHi9xfGaevBQSDZKtHBzOc6t6intlRAi4z4h45U7aYHQMAahVnyhalLO6l5pd9rYbhV5sdBwAAFCNhpsXsCH7T/i7D7+dYt26dLr/88hIfb9y4sTp06KABAwZo0qRJ+utf/1rutWNjY9W1a1cZxsnvY+7cubr11lvL9bwuXboUud9isahp06Zq1qyZ2rdvrz59+mjgwIEaN26cwsLCylx32LBhWr9+fZH7GzVqpGbNmqlly5Y6//zz1bdvX40dO1bdu3cvx3dZ2ObNm3XJJZcoJCRESUlJat26tTd7SRo2bKjWrVvr4osv1g033KBbb71VdeuWfBmyc+fOOnr0aLkzNWvWTJmZmcU+lpeXpzlz5mjx4sXavXu30tLSZBiGmjZtqs6dO+uCCy7QoEGDdPXVV6tTp06SpJdffllTp04t9/mLc+edd2rmzJnFPjZlyhR9/vnnGjNmjH766SdJ0syZMzVp0qRij7dYLAoLC9OZZ56pSy65RFOmTFGfPn0qlGf9+vUaNmyY9+uIiAgNHjy4zOeV9PtTp04d73u1U6dO6tOnjy699FKNHj1a9evXL3Pdkn7GjRs3VrNmzdS6dWtddNFF6tevn66//np17NixzDVP98033+i2225Ty5YtlZycrDp16pT4u1cgNDRUbdu2Vd++fXXbbbfpuuuuK/Ucpb3vi3PRRRfpt99+K/axtLQ0ffXVV1q5cqX27t2rjIwMWSwWtWjRQp07d9bFF1+swYMH66qrrlLbtm0lSXfddZdmzZpVoQyne+mll/Tyyy9XaY2q8FtBIjY2VlLRH1LB/ZVR0R84UFtsirMFXUEiZ/frssXMNTsGANRKhj1NGWuuUdiF/1DYxVNlCaljdiQAAICAycvL06FDh3To0CF9/fXXmjhxombMmKE6dcr+/0SzZ8/2FiMKvi5PQaIkhmEoKytLWVlZOnbsmLZu3aqPP/5YTZo00eTJk/Xqq6+qcePGFV7XarXKarUqMTFR0dHR+u677/TMM8/o8ssv13vvvaeLLrqo3GstWbJEkjRo0CBvMaIsNptNJ06c0IkTJ7R06VK9//77Wr58udq1a1fh76UitmzZoptvvlnHjhXttJCamqrU1FRt375dX331ldq1a6fExES/5pFO/oyXLl0qSRo9enS5n5OTk6N9+/Zp3759+vzzz/Xss8/qjTfeKPd5T79oPXv27HIVJEridruVkZGhjIwMxcbGauPGjZo+fbratGmjRx55RM8++2ypRaeS5OXlKS8vT/Hx8dqzZ4/mzJmjxx9/XGPGjNF7772nzp07l3utgvfqyJEjy/X7LEn5+fmKjY1VbGysFi5cqCuvvFKLFi2q1O9dRSxevFh333230tLSijyWmJioxMRERUZG6j//+Y8GDBigyMhIv+YJJL8VJO68884K3Q+gZJEJNt3VM0whQVKUs8Z+r9xd/zQ7BgDUcoZy97wuR/JmNR86T3Ua+fcfhwAAAGZ44IEH9OCDD3q/NgxD6enp2rJli6ZNm6bk5GTNnj1bnTp10muvvVbmenPmzJEkhYWFKTc3V2vWrFFCQoLat29f7kxjx44tdK78/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wy1/3999+9t10ulzIzMxUXF6fIyEgtXLhQiYmJWrt2rfr3768PP/xQU6ZMKVfegou8JV1M79u3r7766qtC9+Xm5mrv3r366KOPtHv3bu3cuVMTJkzQxo0bSz1Xhw4dtGrVqjIzFXex+eDBg7rqqquUk5MjSRozZowmTJig7t27q379+kpNTdXu3bv1888/69dffy303AcffFATJkwo9lw//fSTXnjhBUnSa6+9prFjxxZ7XIsWLYq9f8eOHUpISJDFYtG1115b7DGnr+vxeJSSkqJ169Zp+vTpys3N1f/93/+pa9eumjx5crFrnMpqtWrhwoWS/vde/e677/T++++rQYMGZT6/wOm/P7m5ucrIyNCePXv0yy+/aM2aNUpJSdE///lPLVmyREuXLlWbNm1KXfP0n7HT6VRGRoaOHj2qzZs3a8GCBcrKytIPP/ygX375RV9//XW5Cjkul0srV66UVPJ79fTfPUnKysrSjh07NH36dB05ckSrV6/Wfffdp6+//rrU8xX3vi9Oo0aNity3ceNGTZgwQU6nU3Xq1NEtt9yi0aNHq0uXLqpTp46SkpK0c+dOrVy5Ups3by703Ndff11PPvlksef6+OOP9cknn0iSZsyYoX79+hV7XMFuC7P4rSBR0g+kPD8oAIVlOQz9nurQRW3K/5dGTeVM3aGsTRMl+X8bLwBAciT+qtTFF6v50G/V4IyhZscBAADwqbZt2+r8888vcv/QoUM1ZswY9enTRzabTR988IFefPHFUlvPbN68WX/++ackadq0abr//vvldrs1d+7cEi8QFqd58+bFZrryyiv12GOP6dixY5o8ebJ+/vlnHTx4UKNGjVJkZGSJF7wLFLemJN12221699139f777+v555+Xw+HQAw88oA4dOmjUqFGlrnnkyBHt27dPUskXeRs3blzsuQcOHKjbbrtNvXv31v79+7Vp0yZt2bJFgwYNKvF89erVK/H7KMvzzz/vLUZ89dVXuuuuu4ocM2LECD355JNKSUnRd999572/bdu2JV6k3b59u/d2x44dK5yvoKDTt2/fEgtXJa07fPhwDRs2TCNGjJBhGHrnnXfKVZD44YcfvK/FBx98oLvvvlsZGRlasmRJiYWX4pT0+zNy5Eg988wzio6O1u23365du3YpKipK48aN09q1a0v9PSrtZzxp0iRNmzZNL730kt577z1lZ2frpptu0oYNG9S3b99Ss27cuFGZmZmqV6+err66+Na0Jf3uXXLJJbrpppt0wQUXKCUlRd98843efvttdejQocTzlfS+L48nnnjCW4xYuXKlrrjiiiLHjBw5Us8//7yOHj2qX375xXt/x44dS2xndep7uEuXLpXO528MtQZqiIh4u9kR/M6dH6/0tWNluPLNjgIAQcVjTVT6quHK3fNGoRYEAAAAtdl5553n/cR6Tk6O9u/fX+rxs2fPliS1bt1ad955p4YPHy7pf7smfOXMM8/UihUrvNkOHjxY5X7vDRo00NNPP+3N6vF4NHnyZNlstlKfV3AxvWvXrjrvvPMqfN5GjRrpoYce8n69bdu2Cq9RHm63W8uWLZN08sJ/ccWIU7Vp06ZQLn8qeA3LKv6UZPjw4erdu7ekk++F7OzsMp9T8F698MILNWnSJJ1zzjmF7veV8847TxEREerVq5ekk3Mq/v3vf1dpzbCwMP3rX//Sm2++Kenkbo/yFGEKXudLL71UzZo1q/B527Vrp4kTJ0o6uZPq1EKUL8XHx3vXHjduXLHFiFOdddZZuvvuu/2SxSwBL0gcO3ZMx44dk9vtLvdz3G6393lAsIpKtMvhrr0XiQyXVRm/jJUnP87sKAAQnAy3cnY+r4xfRsljTzc7DQAAQECcOuzWbi/5g4B2u937ifobb7xR9erV0x133CFJ2rNnT4lDayurTp06mjlzpkJDQyVJn3/+uVJTU6u87s0336wbbrhBkpSUlKQZM2aUenzB7IPKXkyXyv8aV0VKSoqsVqskqVu3bn45R2XExcVp165dkso/P6I4FXkNExIStGbNGknS7bffXuh/V65cqZSUlErnKE6jRo00Z84c7+zfd999V06ns8rrPv300xowYIAkaffu3Vq+fHmpx1d0TkdxAvFePfX6dnV6rwZSwAsSnTt3VteuXXXgwIFyPyc2Ntb7PCBYWV2GdibXzl0ShmEoc9Odcqb5p/oMACg/+4nlSl3cS46UrWZHAQAA8LujR496b5955pklHrdkyRJlZGRI+t/F3XHjxnkH3/r6k+fSyZ0YBeeyWq1avXq1T9Z9/PHHvbd//PHHEo/LycnR+vXrJVXtIm95X+OqOLVF0B9//OGXc1RGwUXy8PBw7y6Cyih4DRs1alTmjIa5c+fK7XYrJCTEO3D9tttuk8VikdPp1Lx58yqdoyQ9e/bUiBEjJJ3cAeCLnTAWi0WPPvqo9+vS3qsHDhzQoUOHJPFerQlMadlU2VYAtBBAsKutbZtyf3tJttgFZscAAPyXO++Y0lZcprzo982OAgAA4Df79+/3XjAeOHCg2rVrV+KxBQWHv/zlL94ZCI0bN9Z1110nSfrmm28q1A2kvE5t51LWQOjyGjBggJo0aSJJ2rJli1wuV7HHrVq1Sg6HQ02bNtXQoZWbNWa1Wr0tfBo3blxme5rKatmypc466yxJJz9N/9Zbb8nj8fjlXBVR1XZNkrRu3Trt2LFD0slB3WUpaMs1bNgw76yBLl26aPDgwZL8UzyT/PNeLe+aBa/zueeeW+ldBwUD7iWpU6dO3jZZvtajRw81bNhQkrR48WLNnTvXL+epzvw21NqXCgoRISGMvEBw25VsV77To9B6ted3wRozT7m7XzU7BgDgdB6nsqMekyNpo5pdMkMh9ZuanQgAAKDCkpOTtXfvXu/XhmEoMzNTW7Zs0bRp02S1WtWsWTNNmzatxDVSUlK0cuVKSSc/aX6q22+/XXPnzlVSUpJWrVqla665xqf5T70oevDgQZ+sGRISoosuukibNm1Sbm6uEhIS1KlTpyLHFVzkvfLKK1WvXr0S18vLyyv0GktSfn6+fv/9d/373/9WdHS0LBaL3n77bbVq1arUbE6ns8haxSluCPXf/vY373DxZ599Vv/5z380ZswYDR48WP379y/UjicQrFar1q5dK6nsgkRcXFyh79vj8Sg1NVXr16/X9OnT5fF41LFjR7322mulrvPbb79pz549kv63k6fA7bffroiICO3YsUPR0dGVmglSGn+8V9u0aaPw8HCdOHHCO1C+OOUt/GRmZhZ5f2VnZ2vnzp16//33lZSUpPr16+vDDz8s9T0vFf++L054eLiaN2/u/bpRo0aaPHmyPvroIxmGodtvv11vvPGGRo0apUGDBql///6lDtOuDWpEQSIhIUGSvNVbIFg5PdLWRLsu79TI7Cg+4UjZqsyI2jWYBwBqG9vR7+VM360WwxaoXquLzY4DAABQIZ988ok++eSTYh8LCQnR/fffr8cff1zdu3cvcY158+Z5e+KffpF3xIgROuOMM5SYmKjZs2f7vCBx6gX8gpZR/lj39IKEx+PRihUrJJXdAmf79u264IILSnz8yiuv1LPPPqvLL7+8zFzx8fGlrlXgpZdeKjLo+/HHH1d0dLR3LkZsbKw++OADffDBB5JODi0eNmyYbrvtNo0aNco788Bf1qxZI6vVqtDQUO8A9JK88MILeuGFF4p9rEGDBnrmmWf0yCOPlHmhuuAT/o0aNdL48eMLPXbjjTfq0UcflcPh0OzZs71Do33Fn+/VEydOyOVyKTs7W02bFv6gVEZGhjZv3iyp7PfqTz/9pJ9++qnEx2+66SY99dRT6tOnT5m5ynrfF/jqq6+KDFl/++23dfjwYe/vWHR0tKKjo72Pn3nmmRo+fLgmTpyoYcOGlXmOmsa0j1mX55fe6XRq//79ev311yXJOxEeCGYR8TazI/iEO++4MtZeJ7lrx/cDALWZO+dPpS4fpPyDn5sdBQAAwGc8Ho++/fZbffLJJ6UOsC24yNu/f3+dffbZhR6rU6eObr75Zkkn269kZ2f7NGNYWJj3dk5OTsDWjYyMVEpKikJCQqpcZPn111/14Ycf6vjx41VapywhISH68ssvtXr1al199dWqW7fw57CTkpI0f/58jRkzRv3799fhw4f9mqfgU/tXXHGFt0VPZdjtds2aNUszZswotQ2Vy+XSN998I+nkhfnTL9y3bNnS+7OcO3euz1tamfVeXbFihVwul1q2bKlLLrmkSudasmSJPvroI2VmZlZpnbI0atRIy5Yt0/z583XZZZcVuU5+7NgxffXVV7r88st19dVX+3wQudn8XpCoU6dOoT/Sye1x559/fpHHTv/TsGFD9ezZUz///LMsFosmTJjg77hAtbcvzalMm+/7UgaSx5mn9DWj5bEmmh0FAFBebpuyNk9R5saJ8jjzzE4DAABQLi+99JIMwyj0Jz8/X3v27NFTTz2l3NxcTZ8+XVdccYXy8/OLPH/fvn3e/v2n744ocOrg6QULfDsf8dQLsKdfYPbnugUX0wcNGqTWrVuXutbQoUOLvMYOh0NHjhzRv//9bzVr1kw//PCDBg4cqP3795e61llnnVVkreL+nL474lQjRozQihUrlJaWpuXLl2vq1KkaPXq0mjVr5j1m+/btuuyyy7xdWXzNMAzvfJLyDFn+6quvinyPOTk5ioqK0uTJk5WYmKh//vOfuummm0osJKxatUpJSUmSyn6vnjhxQr/++mtlvrUSmf1eHTlypPfac0nuvPPOIq+zzWbTgQMH9MYbb8hisWjmzJm65JJLvK9lSYp73xf35/TdEQUsFotuvPFGbdiwQcnJyfrxxx/1/PPPa8SIEWrU6H+dUVatWqXLL79cubm5peapSfxekDj9h1DS/WX9ueGGG/TYY4/5Oy5Q7XkMaUtCzR1ubRgeZW64Ta6M3WZHAQBUgvXwHKUt6y9n5h9mRwEAAKiURo0a6YILLtDbb7+tjz/+WJK0adMmvfHGG0WOLdgdUbduXe9OiNP16dNHPXr0KHS8r6Smpnpvt2zZMmDrVnUYc7169dS5c2c9+OCDWrdunerVq6f4+HhNnjy5coEroWnTpho5cqRefPFFLV68WElJSZoxY4ZatGgh6WSL+H/+859+OfeOHTuUkJAgi8Wia6+9tlJrhIWFqV+/fvr888/1j3/8Q5K0cOFCb0uq0xW891q1aqWrr7662GNGjRrlnWdQ096rdevWLdLO3+Vyeee7VPa92qBBA3Xv3l3PPfecFi1aJOlkC6W///3vVUhdMa1bt9bYsWP12muvafXq1UpOTta7777r3Vmzb98+TZ8+PWB5/M3vMyReeumlQl9PnTpVFotF999/f5HhM6eyWCxq2LCh2rdvr8GDB+svf/mLv6MCNcameJtGdgk1O0al5Ox4TvbjJffrAwBUf67MaKUt7admgz9To663mh0HAACg0u655x49++yzSk9P14wZMwoNDfZ4PJo7d66kkxc+S7uOVWDjxo2KjY1V586dfZJv165d3tu+amXu8Xi8g4+bNm2qM844o9DjsbGx2rdvn6Tyfbq/LD179tQ111yjn376SRERETp48GCpMzv8pUGDBpo0aZI6dOjgvWC/aNEiffbZZwoJ8e1ntgt2R/Tp00ft27ev8np///vf9eabb8rj8WjGjBlFCjtZWVlavHixJCktLU3169cvc81Fixbp448/VuPGjaucT/LPezU5OVnx8fElrrlp0yZlZmaqbt26JRZhKuLKK6/URRddpN27d+u7777Tp59+6rPXpyLCwsL097//XWFhYbr//vslSQsWLChxzkhNY0pBQpIeeughn09zB4LFn5kuJeW71S609K1o1U3+n7OUt/dts2MAAHzAcOUpc8NtciRuUNMB78tSp4HZkQAAACosJCREZ599trZu3aqEhASlpaV5h/P+8ssviouLq9B6hmFozpw5Pvvk/c8//+y9femll/pkzS1btnjbvwwaNKhIm5uC3RFdunRRz549fXLOc8891ztM+PfffzelIFHgqquuUqdOnXT8+HFlZGQoLS1Nbdq08ek5Cl5DXxR0pJM7Dtq0aaOkpCT9/vvvRR7/7rvvZLNVbEZnbm6uFi1apDvuuMMnGf3xXi1rzYLX+bLLLvPu/Kiqc889V7t37/bONi7PgGt/mTRpkh5++GG5XC79+eefpuXwNb8XJE731VdfSZLCw8MDfWqgVtkUZ9P4swNfpa0sR9ImZW2eYnYMAICP5R/8VI7UKLW4fKHqNulqdhwAAIAKc7lcxd4uaGnToEEDzZgxo8xP0b/99tvatWuXzwoSKSkp3iHFjRs31pVXXlnlNSUVav0ybty4Io/7+mK6VPJrbJYOHTp4h2yfPlC4quLi4rRz505J/nkNi3v9Ct6r7du313vvvVfmWk899ZROnDih2bNn+6QgsXfvXv3yyy+SpE6dOqlv375VXtMwDH3wwQfer4PxvVq/fn21atVKSUlJPn+fmingBYk777wz0KcEaqWI+JpTkHDlHFHG2nGSx2F2FACAH7jSdyl1cW81v/QrNTyr6D8UAAAAqqv8/HxFR0dLOjlbomCAc25urn744QdJJ4ck33pr2W0qExMTtWvXLh06dEhbtmzRoEGDKp3L4/Horrvu8g7anjJlik/68n/77bdauHChpJMXr08fuJuTk6P169dL8u1F3u3bt3tvd+rUyWfrVsapP/OmTZt6d8T4SkG7pvDwcPXq1csna8bGxiotLU1S0dfvyJEjioiIkCSNHz++xFknp4qMjNT777+vtWvXKi4uTh07dqx0NqvVqokTJ3pnBz/55JOqW7fql5zfeustRUVFSZJ69+6tq666qtDjBw4c0KFDhyT57r1qGIZ3iL3kn/eqYRjlLi4cP35cycnJkqSuXWvPh7/8PtS6OMeOHdOxY8dkt5c9mNdms3mPB/A/cbluxWY7zY5RJo8jWxm/jJbHnlr2wQCAGstwZinj1+uVHfWEDE/1//sJAABAkl5++WVZrVZJJ1v5FLQv+v7775WXlydJmjBhQrnWGj9+vPdCY1UGBh87dkxXX321li9fLulkC5nTW6JXlMPh0DvvvOP9NHydOnX05ZdfqkGDwm03V61aJYfDoSZNmmjo0KFVOmeBZcuWeYscrVu3Vv/+/X2y7qlyc3M1YMAALV26VB6Pp8TjPB6P/va3vyknJ0eSNGbMGJ9/8rzgU/uVHWZ9Oo/Ho2effdb79enrzp4921sMKO97teA4j8ejr7/+utLZoqOjdemll3rnRwwdOlQPPPBApdeTTv4sn3zyST333HOSpNDQUH3xxRdFjit4nc855xx169atSucs8PHHHys2NlaSdPHFF6tDhw4+WfdU0dHRuvLKK7Vhw4ZSj7PZbJoyZYr3Zzt27FifZzFLwHdIrF69WiNHjlRYWJhiY2OL/IfvdPn5+erZs6esVqvWrFmjYcOGBSYoUANExNnVuWk9s2OUyPC4lbn+Zrky95kdBQAQIHnR0+RI3aoWQ+erTmNadAIAAHMlJydr7969he6z2Ww6dOiQZs+erZUrV0qSGjZsqFdeecV7TEFBoV69ehozZky5ztWpUyf169dPUVFRmj9/vt5///1ihwtnZmYWymS1WpWZmano6GitX79eS5Ys8baKOeecc7R06VI1a9aszPOfuqbb7VZmZqbi4uK0ZcsWLVy4UImJiZJOtqD697//rZEjRxZZo+DT/VdddZXq1Svf9Ya8vLwir7HT6VRcXJyWLVtW6GLy//3f/5X66Xmn01lkrZJ069ZNDRs29H4dFRWl0aNHq2PHjrruuus0aNAgnXXWWWrSpIkyMzO1a9cuzZgxwzuDoVmzZnr11VfLda7yslqtWrt2raSKfWo/Li6uyPedl5en6Ohoff7559qyZYskqVWrVnrmmWcKHTdnzhxJUtu2bXXZZZeV63yDBw9W+/btlZCQoDlz5hRZs8Dpvz95eXnKyMjQnj179Msvv+jnn3/2XjAfOHCgFi5cWOb75vSfsdPpVGZmpmJjY7V582YtXLhQmZmZkk7+jObOnVvsTpOC92pFXufTf/ekk8W62NhYLVy4UPPmzZN0crbMW2+9Vepaxb3vS3Leeed5W74ZhqGff/5ZP//8s7p166axY8dqwIABCg8PV2hoqFJTUxUVFaXPP/9cR44ckSSdeeaZevLJJ8v9fVZ3AS9ILFiwQIZh6LrrrlOLFi3KPL5ly5YaP368Zs+erfnz51OQAE6xOcGmW89tXG37yGVv+7vscSvMjgEACDBn8malLu6lZpfNUcPwq82OAwBAjdP+LsPsCLXGJ598ok8++aTUY9q0aaOvv/5aF1xwgaSTbVLWrVsnSfrrX/9arutXBSZMmKCoqChlZGRoyZIlGj9+fJFjfvrpJ++A55I0bdpU9957r1555RWFhoaW69wF+UtisVg0fPhwvffee8Ue6/F4vLsyKnKRd/v27WWeu169enrttdc0efLkUo+Lj48vc60Cu3bt0sUXXyxJqlu3rs444wwlJiYqLi5O//73v/Xvf/+7xOeeffbZmjdvnjp37lyuc5XXmjVrZLVaFRoaquHDh5f7eS+88IJeeOGFUo/p0qWLFi5cqDPOOMN7X0REhA4fPizp5IyFsuacFAgJCdG4ceP08ccfa9++fdqxY0exw5vL+/vz2GOP6emnny5Xq6by/Izr1q2rMWPG6L333tNZZ51V5PGMjAxvm6qKvFfL87sXFhamTz75pMyZLeV53xfIyMjwDt1u3LixWrRooYyMDP3555/617/+Vepz+/btq/nz55erKFlTBLwgsWXLFlkslgoN4rnqqqs0e/ZsbzUQwEmpVo/2ZzjVo2XRT1yYLf/AZ8r/432zYwAATOKxpypjzTUKu/AfCrt4qiwhdcyOBAAAIOnkoNiWLVuqZ8+euuaaazRp0qRCRYevv/7a2/anuIJCacaPH6+nn35a0sldFmU932KxqEmTJmratKk6duyo3r17a/DgwRo3bpwaN6783MiGDRuqWbNmatmypS644AL169dPY8eO1dlnn13icyIjI5WSkqKQkBBdc801lT63dLIlVLNmzdStWzddfvnlmjx5ss/a6hSnYcOGiouLU2RkpNasWaPIyEgdOHBASUlJstlsaty4sTp06KCLLrpIY8eO1fjx44vdvVJVBW2ErrjiikK7NyqjYcOGat26tS666CKNGTNGt99+e5Hi1KmtwSrzXv3444+96xRXkDhVSEiImjRpombNmumss85Snz59dNlll2nUqFFVei1DQ0PVrFkz7/fav39/jR8/vtR2SStWrJDL5VLLli11ySWXVPrc0sliWbNmzdSjRw+NGDFC99xzj19aNRXo0qWLkpKStGHDBq1du1ZRUVE6ePCgUlJS5HQ6FRYWpk6dOql3794aP368rr322nIXmmoKi1GwryZAwsLCZLVaFRkZqX79+pXrOdu2bdOAAQPUpEkTZWVl+TlhzXLixAnvgJXjx48rPLzmtEa4dXmy3Hzoo8pGnNlIky9oYnaMQuwJvyr956skeogDACTVP+NyNR86T3UatTM7CgAAlVaVf38fOnRILpdLdevWLfWCMGCm5557Tm+++aYGDx7s/fQ5ys8wDIWHhys+Pl6fffaZ7r33XrMj1Vq33HKLvv32W916662aO3eu2XFqNX/8/RXw8kpBD7yCIUHlUXCszWbzSyagJotMtMntqT6VHVf2IWWsm0AxAgDg5Uj8VamLL5Y9cb3ZUQAAAFCCyvTkx//s3LlT8fHxslgsGjVqlNlxai2Xy+Wd/cJ7tWYKeMum1q1bKyEhQTExMerdu3e5nhMTEyPp5DwJAIXlOAztSXWoV9vSB8QHgseeqfQ1o2XY082OAgCoZjzWRKWvGq4mvV5V4wuerbbzjwAAAIKRw+HQhAkTNH78eN1yyy1mx6mR3G63XnrpJbVo0ULt27c3O06tlZ6erkcffVSSih3Mjuov4AWJiy++WAkJCZo/f74mTJhQrud8++23kqTzzz/fn9GAGmtTnM30goThcSlj3Q1yZx8wNQcAoBoz3MrZ+Q85kjep+WVzFNKAD5sAAABUB/Xr19dLL71kdowarX///urfv7/ZMWq9tm3b6uWXXzY7Bqog4C2bxo4dK8MwtGjRIi1YsKDM47/77jstWrRIFotF1113nf8DAjXQ9iSH7CYP5Mje+ogcCWtMzQAAqBnsJ5YrdXEvOVK2mh0FAAAAABBAAS9I3HnnnercubMMw9Ctt96qJ598UsePHy9y3PHjx/XEE0/otttuk8ViUadOnTR58uRAxwVqBJvb0PYku2nnz/vjQ+Uf+MS08wMAah533jGlrbhMedHvmx0FAAAAABAgAW/ZVL9+fS1atEhDhgxRbm6upk2bpmnTpunMM8/09ldLSEjQsWPHJJ2cUB8WFqYffvhBDRqY3yMfqK42x9t0SYeGAT+vPW6VsqMeD/h5AQC1gMep7KjH5EjaqGaXzFBI/aZmJwIAAAAA+FHAd0hIJ+dIbN26Vb169ZJhGDIMQ0ePHtXWrVu1detWHT161Ht/nz59FBUVpV69epkRFagxfktxKNfpCeg5nZl/KGPdTZLhDuh5AQC1i+3o90pd0kfO9N1mRwEAAAAA+FHAd0gU6NGjh3bs2KGff/5ZS5cu1a5du5SamipJat26tXr37q3Ro0dr+PDhZkUEahSXR9qaYNfwMxsF5HweW5oyfhktw5kVkPMBAGo3d86fSl02UM0GfKDQ7veaHQcAAAAA4AemFSQKjBgxQiNGjDA7BlArbIqzBaQgYXicyvj1erlzDvv9XACAIOK2KWvzFDmSNqnZoE9kqRtqdiIAAAAAgA+Z0rIJgH/8ke5Uus3/7ZOyttwvR9IGv58HABCcrIdnK3Vpfzkz/zA7CgAAAADAh6pFQcLj8Sg1NVXHjh2T200veqCyDEmb4+1+PUfu3ndlPTTDr+cAAMCVuU9pS/vJGvON2VEAAAAAAD5iWkHC7Xbryy+/1GWXXabQ0FC1a9dOXbt21YEDBwodt3TpUj399NN6/fXXTUoK1CwR8Ta/rW07vlQ5O57x2/oAAJzKcOUpc8Ntytp8vwy3fwvuAAAAAAD/M2WGRHJysq677jpt3bpVhmGUemznzp01ZswYWSwWXXvttbr44osDExKooWKyXIrPdalDmG9/vZ0Zvytzw62S4fHpugAAlCX/4KdypG1Ti2ELVLdJV7PjAAAAAAAqKeA7JNxut0aPHq3IyEhZLBbdeOON+uijj0o8/vzzz9eAAQMkST/88EOgYgI1mq93SbitycpYM1qGM8en6wIAUF6utJ1KXdJHtqM/mh0FAAAAAFBJAS9IzJo1S9u2bVO9evW0bNkyffvtt3rwwQdLfc6YMWNkGIY2bdoUoJRAzRbhwzkShtuujF/HyZ131GdrAgBQGYYjUxm/jlN21BMyPE6z4wAAAAAAKijgBYl58+bJYrHovvvu01VXXVWu5/Tq1UuSisyXAFC8hDy3YrJ8c6EmK2KynMmbfbIWAAC+kBc9TWkrh8mdd8LsKAAAAACACgh4QWLPnj2STu56KK+2bdtKktLS0vySCaiNNsVVvW1T7p43ZI352gdpAADwLWfyZqUu7iXbiZVmRwEAAAAAlFPACxKZmZmSpFatWpX7OW63W5JUp04df0QCaqUtCXZ5yhgaXxrr0UXK2fmCDxMBAOBbHnuqMtZco5yd/5RheMyOAwAAAAAoQ8ALEi1btpQkHT9+vNzPOXTokCSpTZs2fskE1EbpNo+i0yrXtsmZtlNZG++QVPmCBgAAgWEod89rSl89Qm5rktlhAAAAAAClCHhBomfPnpKkbdu2lfs58+fPl8ViUb9+/fwVC6iVIuIr3rbJnZ+g9F/GyHDl+yERAAD+4UhYq9TFvWRPXG92FAAAYLJ169bJYrGU+CcsLEzdu3fXHXfcobVr15a4TmxsbKnrFPfnuuuuK3G9EydO6OWXX9Zll12mNm3aqF69emrUqJHCw8M1ZMgQPfroo1q4cKGysrK8zxk2bFiFM5z+Z+bMmSVm6t69uywWi6ZNm+a976677ipxrbp166ply5YaOHCg/vnPf+rEiYrP9Jo6dap3vWbNmslmK9+1i5dffrnYTA0aNFDbtm119tln65prrtGLL76oDRs2lGvNkn7GISEhat68uc466ywNHDhQDz30kObMmaPc3NwKf7+SNGXKFFksFo0dO9Z738yZM0t8nUNCQtS0aVOdf/75uu+++7Rjx45S1y/rPV/cn8cee6zE9Q4ePKinnnpK/fv3V8uWLVWvXj01btxYnTt31vDhw/X0009r2bJlys//37Wjzp07V/m9um7dumLz2O12NWnSRBaLRT/88IP3/tJ+P+rVq6c2bdpoyJAhevPNN5Wenl6+H9YpJk2a5F3vnHPOKffzSvodatiwodq1a6dzzjlH48aN0+uvv66dO3eWa82SfsYFv5NdunTRkCFD9Pjjj+v777+Xw+Go8PcbKHUDfcLrrrtOa9eu1UcffaQnnnhCLVq0KPX4hQsXasmSJbJYLBo/fnyAUgK1w9ZEu+4531DdEEu5jjdcVmX8Mkae/Dg/JwMAwPc81gSlrxquJr1eVeMLnpXFUr6//wAAqG5uWpZsdgS/mX9tW7MjKC8vT4cOHdKhQ4f09ddfa+LEiZoxY4ZfW4V//vnneuyxxwpdwJUkl8uluLg4xcXFaePGjfrggw9000036dtvv/VblgIHDhzwdiUZPXp0uZ7jdruVkZGhrVu3auvWrZo+fbpmzZql66+/vtznnT17tvd2dna2fvzxR918880VC38Kh8OhlJQUpaSk6M8//9SKFSv06quvqkePHpo6dapuuOGGCq9pGIaysrKUlZWlY8eOaevWrfr444/VpEkTTZ48Wa+++qoaN25c7rWWLl0qqfyvs2EYysnJ0b59+7Rv3z59/vnnevbZZ/XGG29U+HupqKlTp+q1116Ty+UqdL/L5dLRo0d19OhRrV27Vu+8846eeeYZvfnmm37PtG7dOuXm5qpBgwYaMWJEuZ7jcrmUmpqqjRs3auPGjZo2bZoWLVqkSy65pFzPz8/P18KFC71fHzx4UJGRkRo4cGClvgfpZGElOTlZycnJOnjwoH788Ue98MIL6tevn9566y1dfvnlFV6z4HcyIyNDsbGx2rhxo6ZPn642bdrokUce0bPPPqu6dQNeAihVwNPce++9evfdd3X8+HFdeeWVmjVrls4777wixyUnJ+v999/XO++8I4vFovPPP1833nijz3IkJycrKipKUVFR2rZtm7Zt2+Ydmn3nnXeWWj0uzooVK/TZZ59p27ZtSklJUZs2bdSvXz9NmTJFI0eO9FluoCLynIZ+S3Gob7sGZR5rGIYyN90pZ9r2ACQDAMBPDLdydv5DjuRNan7ZHIU0aGl2IgAAYKIHHnhADz74oPdrwzCUnp6uLVu2aNq0aUpOTtbs2bPVqVMnvfbaayWuM3bs2FIfL9C0adMi982bN09TpkyRJDVs2FCTJk3SVVddpfDwcBmGofj4eG3fvl1Lly7Vrl27Cj33q6++Ul5eXrHneuGFF/TTTz9JklatWqUOHToUe1x4eHix9y9ZskSSdO6556pbt27FHnP6uk6nUydOnNDChQu9OwZuvvlm7d69Wz169Ch2jVNt2rRJMTExkqSwsDDl5uZq9uzZFS5IzJgxw9tJpaB4kJKS4n0d9+zZoz/++EM33nij7rnnHn322WcKCSm9UczpP+P8/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wys+7YsUMJCQmyWCy69tpriz3mtddeK7R7wuPxKCUlRevWrdP06dOVm5ur//u//1PXrl01efLkUs93+nu+JK1bty5y35tvvqmXX35ZktSsWTPdd999Gjp0qNq3by+Hw6ETJ05o69atWrJkifbv31/ouatXry7xU/mTJk3S9u0nrzf9/vvvJWbq0qVLsfcXvFcvv/xyhYWFFXvM6es6HA7FxMRozpw5Wrx4sZKTkzV69GgdOHCgXGMBFi1a5N0R07hxY+Xl5Wn27NkVLkic+jvk8XiUmZmppKQkRUZG6scff1RMTIy2bdumK664Qi+88IKmTp1a5pqn/4xzc3OVkZGhPXv26JdfftGaNWuUkpKif/7zn1qyZImWLl1arUYhBLwg0aBBA/30008aNmyYduzYoQsuuKDQlpfbb79dubm5iomJkWEYMgxDrVq10vfff+/TT7m1a9fOJ+t4PB5NmTJFX375ZaH7C6rbP/74oyZPnqxPP/20zP/wAf6wKc5WroJE7m8vyxa7IACJAADwP/uJ5Upd3EvNh32n+m0GmB0HAACYpG3btjr//POL3D906FCNGTNGffr0kc1m0wcffKAXX3xR9evXL3ad5s2bF7tOWdxut5544glJUpMmTbRp0yZdeOGFRY4bM2aMXnnlFf3xxx+FLqyWdIG2IFOB7t27q3PnzhXKVnCRt7RP7Re3bq9evTR69Gh17txZr7zyipxOp6ZPn65PP/20zHMW7I5o166dHnvsMT333HNavXq1kpKSKnStrkuXLsX+PAra4CxZskR33323UlNT9eWXX6ply5Z6++23S12zpJ/xlVdeqccee0zHjh3T5MmT9fPPP+vgwYMaNWqUIiMjy+z+UvA69+3bV+3bty/2mI4dOxZ77uHDh2vYsGEaMWKEDMPQO++8U2ZBoqT3fFlSU1O9F8PDw8O1efNmderUqdAxAwYM0Pjx4/X2228rKirK++Fu6eR7pSSn7iapTLbyvFeLW7d3796aMGGC7rzzTs2ePVsZGRn64osv9Nxzz5V5zoL3ap8+fTRgwAB9/PHHmj9/vqZPn17ifyeKU9Lv5g033KB33nlHs2bN0sMPP6z8/Hy98sorateuXZkFpZJ+xiNHjtQzzzyj6Oho3X777dq1a5eioqI0btw4rV27tkK5/cmUK+QXXXSRtm3bpkGDBskwjEIVtd27d+vPP/+Ux+ORYRjq37+/tm7dWmKl1hfOPPNMXXnllZV67vPPP+8tRvTq1Uvz5s1TVFSU5s2bp169ekmSvvjiC73wwgs+ywtUxM5ku2wuT6nHWGPmKXf3KwFKBABAYLjzjiltxWXKi/7A7CgAAKAaOu+887yfWM/JySnyiW9f2Lp1qxITEyVJ9913X7HFiFP16NHDpx1CSpKRkaGIiAhJ0qhRoyq1xpNPPum9XZ5ZsTabTQsWnPwg5E033aQ77rhDISEhcrvdmjt3bqUylGT06NHavHmzmjRpIkl65513yt2rvyRnnnmmVqxY4X3PHDx40LuboDQFF9Mr+zoPHz5cvXv39p4zOzu7UuuUZfXq1d55Hs8++2yRYsTp+vfvH5CuMHv27NGxY8ckVf41fOqpp7y3y/NejY+P1y+//CJJuu2223T77bdLktLT073tt3whJCREkyZN0qpVq7xtlZ544gklJCRUad3zzjtPERER3mvTERER+ve//13lvL5i2kf2u3XrpoiICG3YsEFPPvmkhg0bph49eqh79+4aPHiwHnroIa1atUqRkZHq2rWrz8//4osvasmSJUpMTNTRo0fLVcU93cGDB/Xuu+9KOlnljIiI0M0336x+/frp5ptv1qZNm9S3b19JJ//D9+eff/r0ewDKw+6WtiWWPMjGkRKlzIi7A5gIAIAA8jiVHfWoMn69QR6Hf/7xBgAAaq5TdyDY7Xafr19wIVWSXz9sW1ErVqyQ2+1Wy5Yty91T/3RNmjTxtv0pz2u3ePFiZWZmSjrZIaVjx47envmnzpXwlbPPPrvQfANfzDqoU6eOZs6cqdDQUEknZ4OkpqaWeHxcXJy3DVd550cUx9/vU6n6vlcLCgAXXnihzjzzzEqtUdHX7+uvv5bH41GdOnV0yy23aNCgQd7XxB/v1UsvvVSPP/64N9+pQ+Yrq1GjRpozZ46349C7774rp9NZ5XV9wW8FiT179mjPnj1lTvS+9NJL9fbbb2vt2rXau3ev/vjjD23atEkffvhhuYeUVMbUqVM1atSoKrVumj59unfAy4cffqhGjRoVejw0NFQffvihpJODVHzxZgIqIyLeVuz97rzjylg7VnIX/zgAALWF7ehCpS7tK2f6brOjAACAauTo0aPe25W92FmaU1uk/PHHHz5fv7IKPrU/cuTISg/zzsvL87bsKc9rV3Ah95xzzvHOfyj45Pnu3btLnS1QWXfddZe3tdWyZct8ckG2devW3txWq1WrV68u8diCi+nh4eHeT6tXRsH7tFGjRn6bBVDd36tVKehU9Pd8zpw5kk7uTjnjjDMkndwpIUnLly8v1KrKVx555BFvu/8ff/zRJ2v27NnTe309Pj6+XLtDAsFvBYmLL75YvXv3LrIr4JVXXtErr7xSavWwJjAMwzs46Nxzzy1xoMnAgQO9MzJ++uknGYYRsIxAgT2pDmU7Crdt8jjzlP7LGHmsiSalAgAgsNzZh5S6bKDyD35udhQAAFAN7N+/33vBeODAgT6bN3qqUy9Cf/rpp1q7dq3Pz1FRLpdLK1eulFS1i7zvvvuu9zrXqQOZi5OcnKxVq1ZJ+t+FXUkaP3689wO+s2bNqnSWkoSGhmrw4MGSTg6prmrbpgJXXHGF9/bGjRtLPK6q7Zokad26ddqxY4ekk7NG/KWgLZQkvfHGG9q92/wP8iQnJysqKkpS1d6r77zzjvd2We/VnTt3au/evZL+VzA79bbT6dS8efMqnaUk4eHhOvfccyVJhw4d8rZ6q6ryvlcDya9DrYu7+P7yyy/LYrFowoQJxU5zrymOHDmi+Ph4SScHIZVm6NChOnDggOLi4hQbG1vqQCLAH9yGFJlg05VnndxSaBiGMjfeLlf6b+YGAwAg0Nw2ZW2eIkfSJjUb9IksdUPNTgQAAPwoOTnZe3FR+u+/hzMztWXLFk2bNk1Wq1XNmjUrs6tFZmZmoXVK0qVLl0IDfLt06aJRo0Zp6dKlstlsGj58uPr166eRI0dq4MCB6tevX8Cvj23cuFGZmZmqW7eurr766lKPPXjwoHJzc71fu1wunThxQj/88INmzpwpSRoyZIgmTZpU6jrffPONt8vIqRd5mzRpojFjxmj+/Pn65ptv9NZbb1V6x0ZJevfureXLl3u/nwEDBvhkzQIHDx4s9hir1eotQJVVkIiLiyv0/vJ4PEpNTdX69es1ffp0eTwedezYUa+99lqZ2U5/z5fknHPOUb169bxfDxkyRBdeeKH27NmjlJQU9erVS0OHDtWIESM0cOBA9enTR82aNStzXV9atmyZPB6P2rZtq/79+5d67Onfs8PhUGxsrL7++mv98MMPkk7OLinrPV+wkyc0NFTjxo3z3t+tWzcNGDBAW7du1ezZs/Xwww9X5lsqVe/evRUdHS3pZFGiYHdGVdcsUNJ7NdD8VpCoV6+eXC6XrFarv05hqoI3hyRv9er/27vz8Cirg/3j94Q1JEBERUUQlUWkUkUILoCAIgi0IlJxK5uIvu62VNHXVix9axWtVq3VsqO+gkIVSFgkbIGwL4oga2QRCEImC1lmksnMnN8fvJlfQvZkJs/M5Pu5rlzXkOeZM3fiyZjMPc85ZSl6fN++fRQSsMSGk/m+QiJ7x8vK/2mhtYEAALCQ88dPVJC2Qxf0XaD6MeX/LgcAAELXRx99pI8++qjUYxEREfqv//ov/e53v1PHjh3LHWfRokW+lTLKs2bNGvXt27fY52bNmqXBgwf7lkvZtm1bsaVTOnbsqAEDBmjs2LHFXjwMlMKrQnr37l3hC8wDBw4s81irVq00ceJEPf7442rUqFG54xS+yHvrrbeWeF1s5MiR+uKLL3Tq1CklJCRU+IJxVV144YW+2xkZGbU25sqVK+V0OtWkSRPdcccd5Y73xz/+UX/84x9LPdaoUSNNnDhRzz77rFq1alVhtvLmfFFHjhzRlVde6ft3RESE/vOf/2jQoEFKTk6WMUZr167V2rVrJUk2m03XXXedBg0apHHjxlX4M+MPhXN1yJAhvr0QytKlS5cyj11zzTV66aWXNHr06HLHcLvdvqsf7rnnHkVHRxc7PnLkSG3ZskXbtm3T/v37K3xNuKqsmqu1LWBLNhVe5lZ4SVG4OXHihO9269atyz236K70x48fr/LjlPdR013XUXccyCiQ3emRI3mOcve8aXUcAAAs5878Qfb4WDkP+/+SawAAEPy8Xq/mzZunjz76KGAbBUvn9hzYsGGDpk6dWmrhcPDgQf3zn/9Ut27dNHLkSOXm5gYsi+SfNfmlc2vST5s2zfeicVn27Nnj29i56NURhQYOHOjbF6Fw7X5/KvqicnZ2dq2NWfh97t+/vxo3blztx8rPz9ecOXM0c+ZMeb3eiu9QA+3bt9euXbs0ZcqUEoWDMUa7d+/WlClT1LlzZ02YMMF31Usg5Ofn+/bnqOlcPXDggP79739r3bp15Z63fPlynTlzRlLpc/X+++/3XVUSTnO1tgXsConbbrtNn3/+uSZOnKgff/xRHTt2LHYZ0KJFi7R9+/Yqjztq1Ch/xqy2ov8Bz2/Lzlf0Ur2il7lVRtEyI9y0i8qTly01atXeg+vUYddjVscAACBoGHeOMtc9JNfpdWrW4x+y1Sv/3X0AACC0TJo0Sa+99lqxzzmdTiUnJ+vTTz/Vu+++q3/84x/avn27vvnmGzVpUvpyjqNHj/YtUVQdDRo00Pjx4zV+/HilpKRo/fr12r59u7Zs2aLNmzf7Nlv+7LPPlJKSohUrVvh96SLp3Auzhw4dklS5F3nPfxe9MUYZGRnaunWr3njjDSUmJuq+++7Tu+++q+eee67UMQr3hmjQoIFGjBhR4nj9+vV1//3365///KcWLlyo7OxsNW3atBpfXemKvobXrFmzWhnTGOMrairzfZ41a5bGjBlT7HM5OTnat2+fpk6dqunTp+tPf/qTdu3apS+++MK3+XFpSpvzVdGkSRO98MILeuGFF/Tjjz9q48aN2rFjhzZt2qTt27fL6/XK4/HonXfekd1uD8jeH9K5vTNycnLUqFEj38bM5Tl/64DCZa+SkpI0efJkbd68WQMGDND//u//6je/+U2pYxR+LS1btiz1MS+66CINHDhQ8fHx+uyzz/Q///M/FV65URVWzFUrBKyQePnll/X111/r7Nmzevvtt4sdM8aUeRlSeWw2W9AUEnl5eb7bRXehL03Ry9bCdQmr6njyaDvJBK5JRSmOWh0AAIDg5DjwsVz2rbqg73zVb3q11XEAAEAARUZGqkuXLpoyZYo6dOigxx57TElJSXr99dcrtUZ/TbVq1Ur333+/7r//fklSenq63n77bb355pvyer1avXq15s6dW+o7tGuq8F3711xzjdq3b1/l+9tsNrVo0UJ33XWX7rzzTvXr10/r16/XhAkTNHDgwBJL2Hg8Hn3++eeSpEGDBhVbPqaokSNH6p///KccDocWLFhQ4Z4UVWG32323W7RoUStj7tixQ6dOnZLNZtOQIUOq9RjR0dGKjY1VbGysWrZsqddff10LFizQzJkz9eijj1Y7e1W0a9dO7dq108iRIyWd2+vitdde0/Tp0yWdW4pr/Pjx6tWrl98fu3Cu9u3bt8I3g5cmIiJCLVu21L333qsBAwaoW7duOnjwoB555BHdfvvtJf67ZWZm+h7zgQceUP36pb9sPnLkSMXHx+unn37S2rVr1a9fvypnK4sVc9UKAVuy6Re/+IXWrVun/v37q0GDBjLGFGuqCv9d1Y9gUfRSK5fLVe65RS/7i4yMrNLjHD9+vNyPwp3mAQAAUDPutJ2yx3VT3rGFVkcBAAC1ZNy4cb4X6WbOnGlJhhYtWuj111/Xiy++6Pvc/PnzA/JYVXnXfkXq1aun3//+95LOFQ+F+0QUtXLlSqWkpEiSFi9eLJvNVupH0Y2mSxunJgqXi5LOFTG1MWbh97lbt2667LLLavx4EyZM8F0VYdU8laTLL79c06ZN0wMPPOD7XCjM1ejoaD3xxBOSzl0xsGDBghLnfPHFF77XcN9///0y52phkSgFdq76a4+OQMz/mgrYFRLSuR+6FStWyO12y263Ky8vT1dffbVsNpu++eYbdejQIZAPH1BFLx2raBmmomv/VbXRq2h/CgAAAPiPcWUqY80wRXX+nZp2f1O2iAYV3wkAAISsiIgIdejQQVu2bNGpU6eUlpZW5rv4A238+PF64403JEnJycl+Hz8jI0MbNmyQ5J8XeSUVuyJi9+7dJY5X5wXbxMRE/fTTT7riiitqlE2SHA6HNm7cKOnca3I33HBDjceUpISEBN/t0q4O8Nc+HYVatGihiy++WKdPny71+1zbxo8fr3nz5kkKzFzdvXu3jh07Jim45+p//vMfffjhh2Uu9VYVx48f14EDBySdKw4K91WpqYrmqhUCWkj4HqR+fV166aXFPteqVSu1bdu2Nh4+IIoWBUU3uC5N0Y2sw3lPCAAAgHCRu/dduexbdEGfL1QvijeIAAAQzopuzBvITXor0qpVK99tf65LX2jZsmVyu91q0aKFevbs6Zcxy/veZWdna+HChZKkO+64o8JlhrKysvT444/LGKNPP/1Ur7zySo3zzZo1S2fPnpUk/epXvypzGZ6qSE1N9S1DFRUVpQEDBhQ7fvLkSe3cuVOS/15Ml/7/99fKOVoo0HO1sND55S9/6ZdiSip/rhbulSGdW65p6NCh5Y51+PBhvfLKK8rOztbXX3+thx9+uMb53n//fd+m5cOGDavxeNK5DeVXrVol6dxr0t27d/fLuDVVK4VEUZMmTZJ0bnOQUNa5c2ff7f3795d7btHj1157bcAyAQAAwH8KzmyUfXFXxdz2mRpdPtDqOAAAIAAcDof27t0r6dwy2xdddJFfxzfGVPoF2+3bt/tuX321//e0KnyRd9CgQX7bMLto5vPfhLtgwQI5HA5J0hNPPKHhw4dXON6//vUv7dq1yy+FxKFDh/Tyyy/7/v3SSy/VaDzp3EbJY8aM8X1djz32WIl1+QuXGmrdurW6du1a48eUpKNHjyotLU1S4N7sHIxz1Z+FTnlztejVEX/4wx/UrVu3csdyu9165513lJaWpk8++aTGhURSUpL+8Y9/SDq3TcDzzz9fo/Gkc/sYjxo1yrcFwh/+8Ae/FHL+ELA9JMoyadIkTZo0ye9P8LXtqquu8rWBiYmJ5Z67bt06SefWWbvyyisDHQ0AAAB+4s23K33lYGXv/JOM8VodBwAA+Nlrr70mp9MpSRo4cKDfXqgvtGzZMo0YMaLYOu6lSU9P17PPPuv7d0Xv0K4qt9ut5cuXSzp3pYA/ZGRk6G9/+5vv3+dv3lz4Im+TJk00aNCgSo35m9/8RpJ04MABbdmypdrZ4uPjdeuttyo7O1uS9PLLL+v666+v9niS9NNPP+muu+7S0qVLJZ1bAqjwjddFFb6YXt3NrM/n9XqLlSn+Gvd806ZN02OPPVbhEkzHjh0rVhb5e66eOXPGt2euv+bqsWPH9OGHH/r+PXjwYN9tY4w+++wzSdKVV15ZYRkhnVsN6J577pEkrVq1SqdOnapWLq/Xq9mzZ2vgwIG+qzbee+89XXLJJdUar9DevXvVq1cv3/NOnz59fHtoBIPgqEVCkM1m09ChQ/XRRx9p//792rx5s26++eYS523evNl3hcTQoUMDchkTAAAAAsh4lfP9/8iVulExt32uepE1+wMBAADUnjNnzmjPnj3FPpeXl6dDhw7pk08+8b1I37hxY02ePLnMcTIzM0uMU5p69eoVWx3D6/Vq/vz5mj9/vq6//noNGTJEsbGxuuyyy9SwYUOdOXNGSUlJmjp1qs6cOSPp3J6so0ePrs6XW6akpCRlZmaqfv36uuuuuyp9v4MHDxbbO9UYo8zMTG3ZskUffPCBfvrpJ0lS7969dffdd/vO++mnn3xv4B00aFCl19gfPny4/vSnP0k6V2gU3ey6qCNHjvje7GyMUVZWllJTU7V9+3bFxcXp+++/95372GOP6a9//WuFj33+f2On06nMzEzt3btXiYmJiouL871ofM011yg+Pl7NmzcvNobT6dTq1aslVe3d/SdPniwxv3Jzc7V3715NmzZNmzZtkiRdeOGFmjhxYrljlTbnSxMZGal27dr5/u1yuTRt2jRNmzZNPXv21IABA9StWzddcsklioiI0MmTJ7VmzRpNnz7dV/QMHTpUd9xxR6W/zspYunSpvF6vWrZsqR49elT6fud/zV6vV2lpaVq/fr3ef/993xUmDz/8cLG9RJKSknT48GFJqtRVPIWGDx+uGTNmyOPx6LPPPtMLL7xQ6nlFf4a8Xq/Onj2rn3/+WVu2bNHXX3/te+yIiAhNmjRJjz32WIWPff5/49zcXGVkZOj777/XqlWrlJCQ4Lsy4uabb9aCBQvUoEHw7I1naSGRlpamTZs26fDhw8rOzpbH46nwPq+++motJKuc559/XlOnTpXH49EzzzyjdevWKTIy0nfc6XTqmWeekXSuOfPH5TYAAACwhuvU6nNLOPWZq0aX9rE6DgAAqISPPvpIH330UbnnXHzxxfrss8/UpUuXMs9ZtGiRFi1aVOHjNW/eXJmZmb5/X3DBBYqKilJubq527dqlXbt2lXv/O++8U3PnzvX70iqF79rv3bu3YmJiKn2/gQMrXrayX79+WrBgQbE34X766ae+F0QLr3qojGuvvVadO3fW3r179cUXX+jdd99Vw4YNS5z3yCOPVDhW586d9Ze//EX33ntvpR67Mv+NmzVrpvHjx2vy5MmlliwrV66U0+lUkyZNqvRC/R//+Ef98Y9/LPecq666SgsWLCixT+/5KjPnJen666/Xd9995/t3y5Yt1bBhQ7lcLm3YsMG3AXpZHnroIU2fPr3Cx6mqoleYRERUfnGf8n5+C91///2aMWNGsc8VXa6pKnO1f//+iomJUWZmpj799NMyC4nK/Az16NFDU6ZMUZ8+lfsbo7LPa88//7xefPHFoFmqqZAlac6cOaPf/e53WrBgQZU3YvFXIZGUlFTsEiS73e67nZycrNmzZxc7f8yYMSXG6Nixo1544QW98cYb2r59u3r27KmJEyeqXbt2+vHHH/Xmm2/6Lo154YUX1KFDB79kBwAAgDW8zlNK/+YONe36P4rqMpGrXwEAAfHFkNDedzPYNWzYUC1atNAvfvELDR48WGPHjtUFF1wQkMfq2bOnUlNTtXLlSq1du1Y7duzQoUOHlJaWJo/Ho2bNmunKK69UbGysHnjgAfXt2zcgOfy5Jn90dLQuu+wyxcbG6sEHH9SQIUNK/E706aefSpIaNWpU5SWGhg8frr179yotLU1LliypcIPfBg0aqFmzZmrevLmuueYade/eXQMGDFCvXr2q9oUVYbPZ1LRpUzVr1kyXX365brzxRt16660aNmyYoqKiyrxf4fe5f//+aty4cbUfXzp31c5FF12k66+/Xnfffbd++9vfVvpKk+oYMWKEBg4cqBUrVigxMVE7d+7U4cOHlZGRIelcGdO+fXvdcsstevjhhyu1tFFV5efna8WKFZJqPldtNpuio6PVpk0b3XLLLRo1apRuu+22Yufk5eVp/vz5ks4ttV/WFTmladCggX7961/r008/1e7du/Xtt99WuGdIw4YN1bx5c8XExKhz586KjY3VkCFDil2xUVURERFq2rSpmjdvrrZt26pbt27q3bu3fvWrX5Va5gUDmymsK2tJRkaGbrrpJv3444+qzkMX7jZeU2PGjNGcOXMqfX5ZWb1er8aPH6+ZM2eWed9x48Zp6tSpVWr1KuvEiRO+jViOHz+u1q1b+/0xAuXUnAaSqVohBQAAECwatR6imN6fKKJRi4pPBgCEvJr8/X3o0CG53W7Vr1+fNyui1h04cECdOnWSdG75GOZgYBhj1Lp1a6WkpGjq1KkaP3681ZFCzjfffKO77rpLjRo1kt1uV3R0tNWR6rxA/P+r1je1fuONN5ScnCxjjAYMGKDly5crNTVVHo9HXq+3wo9gExERoRkzZmjJkiUaOnSoWrVqpYYNG6pVq1YaOnSoli5dqunTpwekjAAAAIB18k8skX3xjXKlbrU6CgAAQJni4+Mlndv3gDIicHbu3KmUlBTZbDa/bcZc1xTO1b59+1JGhLFaX7Jp0aJFstlsGjJkiBYvXlzbD+8ze/bsEssy1cTgwYOL7dAOAACA8OfJPaa0Zb3UrPvbiur8rNVxAAAASmjTpo0mTZpU4XIyqBmPx6NJkybpggsu0GWXXWZ1nJDUpUsXTZo0Sf369bM6CgKo1guJn376SZL01FNP1fZDAwAAAP7nLVDW1ufkOr1ezXvOUETDZlYnAgAA8BkxYoTVEeqEHj16qEePHlbHCGmPPfaY1RFQC2p9HaHCy20uueSS2n5oAAAAIGDyji2QPb67CtJ3WR0FAAAAAIJSrRcSXbp0kSQdO3asth8aAAAACChP1iHZl9wsx8HpVkcBAAAAgKBT64XE448/LmOMPv3009p+aAAAACDwPHk6u3G8MtePlnE7rE4DAAAAAEGj1guJESNG6OGHH9bXX3+tN954o7YfHgAAAKgVzh8/kT2+h9yZ+62OAgAAAABBodY3tV63bp3GjRunI0eO6JVXXtFXX32lhx56SJ06dVKTJk0qvP9tt91WCykBAACAmnNn/iB7fKya3zpVkVc/aHUcAAAAALBUrRcSffv2lc1m8/17x44d2rFjR6Xua7PZ5Ha7AxUNAAAA8DvjzlHmuofkOr1OzXr8Q7Z6jayOBAAAAACWqPUlmyTJGFPtDwAAACAUOQ58LPvSW+XOPmx1FAAAAACwRK1fIbFmzZrafkgAAAAgKLjTdsoe100xPWepcdt7rI4DAAAAALWq1guJPn361PZDAgAAAEHDuDKVsWaYon7xezXt9qZsEbX+KzkAoJbVq1dPbrdbHo9HXq9XERGWLFgBAECleb1eeTweSef+P+Yv/B8QAAAAsEDuD+8obXkfeXJPWB0FABBgjRs3lnRuCeucnByL0wAAULGcnBzfFgqRkZF+G5dCAgAAALBIwZmNsi/uqvyT31gdBQAQQM2aNfPd/vnnn5WVlSWv12thIgAASuf1epWVlaWff/7Z97mmTZv6bfyAXh8+efJkv4/56quv+n1MAAAAwCrefLvSVw5W9C9fUfQNr8lm4z1DABBuoqKiFBkZKafTKY/Ho5MnT8pms/l1CQwAAPzB4/H4royQzl0dERUV5bfxbabo6H4WEREhm83m1zEL163COSdOnFCbNm0kScePH1fr1q0tTlR5p+Y0kIzb6hgAAABBo+Fltyvmts9VL/ISq6MAAM5T07+/vV6vfvrpJzmdzkDEAwDA7yIjI3XFFVf4de+jgO+g58++w9/lBgAAABBMXKdWy764q2L6zFOjS2+zOg4AwI8iIiLUtm1b5ebmKjs723e1BAAAwaRevXqKjIxU06ZNFRUV5ffX5ANaSKxZsyaQwwMAAABhx+s8pfRvblfTrv+jqC4TeVMOAIQRm82m6OhoRUdHWx0FAABLBLSQ6NOnTyCHBwAAAMKT8Sh758tynUlSTO9PFNGohdWJAAAAAKDG2DEPAAAACFL5J5bIvvhGuVK3Wh0FAAAAAGqMQgIAAAAIYp7cY0pb1ku5e9+3OgoAAAAA1AiFBAAAABDsvAXK2vqcMtaOkNeVZXUaAAAAAKgWCgkAAAAgROQdnS97fHcVpO+yOgoAAAAAVBmFBAAAABBCPFmHZF9ysxwHp1sdBQAAAACqhEICAAAACDWePJ3dOF6Z60fLuB1WpwEAAACASqGQAAAAAEKU88dPZI+/Se7M/VZHAQAAAIAKUUgAAAAAIcyduUf2+Fg5D8+1OgoAAAAAlItCAgAAAAhxxp2jzHUP6eymJ2Q8+VbHAQAAAIBSUUgAAAAAYcJx4GOlLe0pd/YRq6MAAAAAQAkUEgAAAEAYKUjbIXvcjco7ttDqKAAAAABQDIUEAAAAEGaMK1MZa4Ypa9sEGa/b6jgAAAAAIIlCAgAAAAhbuT+8o7TlfeTJPWF1FAAAAACgkAAAAADCWcGZjbIv7qr8kyusjgIAAACgjqOQAAAAAMKcN9+u9JWDlP3tqzLGa3UcAAAAAHUUhQQAAABQFxivcnb9Rekr7pTHedrqNAAAAADqIAoJAAAAoA5xnVp9bgmnn9dZHQUAAABAHUMhAQAAANQxXucppX9zu3K+f0PGGKvjAAAAAKgjKCQAAACAush4lL3zZWWsulve/HSr0wAAAACoAygkAAAAgDos/0S87ItvlCt1q9VRAAAAAIQ5CgkAAACgjvPkHlPast7K3fu+1VEAAAAAhDEKCQAAAACS16Wsrc8pY+0IeV1ZVqcBAAAAEIYoJAAAAAD45B2dL3t8dxWk77I6CgAAAIAwQyEBAAAAoBhP1iHZl9wsx8EZVkcBAAAAEEYoJAAAAACU5MnT2Y2PKnP9GBm3w+o0AAAAAMIAhQQAAACAMjl/nCN7/E1yZ+63OgoAAACAEEchAQAAAKBc7sw9ssfHynl4rtVRAAAAAIQwCgkAAAAAFTLuHGWue0hnNz0h48m3Og4AAACAEEQhAQAAAKDSHAc+VtrSnnJnH7E6CgAAAIAQQyEBAAAAoEoK0nbIHnej8n5aZHUUAAAAACGEQgIAAABAlRlXpjJW36OsbX+Q8bqtjgMAAAAgBFBIAAAAAKi23B/+rrTlfeTJPWF1FAAAAABBjkICAAAAQI0UnNko++Kuyj+5wuooAAAAAIIYhQQAAACAGvPm25W+cpCyv31VxnitjgMAAAAgCFFIAAAAAPAP41XOrr8ofcUAeZxnrE4DAAAAIMhQSAAAAADwK9epVbLHdZXr9HqrowAAAAAIIhQSAAAAAPzO60hR2vJ+yvn+DRljrI4DAAAAIAhQSAAAAAAIDONR9s6XlbHqbnnz061OAwAAAMBiFBIAAAAAAir/RLzsi2+UK3Wr1VEAAAAAWIhCAgAAAEDAeXKPKW1Zb+Xu+8DqKAAAAAAsQiEBAAAAoHZ4Xcra8qwy1t4vb0G21WkAAAAA1DIKCQAAAAC1Ku/ol7LHdVNB+vdWRwEAAABQiygkAAAAANQ6T9Yh2ZfcLMfBGVZHAQAAAFBLKCQAAAAAWMPj1NmNjypz/RgZt8PqNAAAAAACjEICAAAAgKWcP86RPf4muTP3Wx0FAAAAQABRSAAAAACwnDtzj+zxsXIenmd1FAAAAAABQiEBAAAAICgYd44y1z2os5uelPHkWx0HAAAAgJ9RSAAAAAAIKo4DHyltaU+5s49YHQUAAACAH1FIAAAAAAg6BWk7ZI+7UXk/LbI6CgAAAAA/oZAAAAAAEJSMK1MZq+9R1rY/yHjdVscBAAAAUEMUEgAAAACCWu4Pf1fa8r7y5J60OgoAAACAGqCQAAAAABD0Cs5skD2uq/JTEqyOAgAAAKCaKCQAAAAAhARvXqrSE+5S9reTZIzX6jgAAAAAqohCAgAAAEDoMF7l7Jqs9BUD5HGesToNAAAAgCqgkAAAAAAQclynVske11Wu0+utjgIAAACgkigkAAAAAIQkryNFacv7Kef7N2SMsToOAAAAgApQSAAAAAAIXcaj7J0vK2PV3fLmZ1idBgAAAEA5KCQAAAAAhLz8E/GyL+4ql32b1VEAAAAAlIFCAgAAAEBY8OQeU9rSXsrd94HVUQAAAACUgkICAAAAQPjwupS15VllrL1f3oJsq9MAAAAAKIJCAgAAAEDYyTv6pexx3VSQ/r3VUQAAAAD8HwoJAAAAAGHJk3VI9iU3y3FoptVRAAAAAIhCAgAAAEA48zh1dsM4ZSaNlXE7rE4DAAAA1GkUEgAAAADCnjN5tuzxN8l99oDVUQAAAIA6i0ICAAAAQJ3gztwje1x3OQ/PszoKAAAAUCdRSAAAAACoM4w7R5nrHtTZTU/KePKtjgMAAADUKRQSAAAAAOocx4GPlLa0p9zZR6yOAgAAANQZFBIAAAAA6qSCtB2yx92ovJ8WWR0FAAAAqBMoJAAAAADUWcaVqYzV9yhr2wsyXrfVcQAAAICwRiEBAAAAoM7L/eFtpS3vK0/uSaujAAAAAGGLQgIAAAAAJBWc2SB7XFflpyRYHQUAAAAISxQSAAAAAPB/vHmpSk+4S9nfTpIxXqvjAAAAAGGFQgIAAAAAijJe5eyarPQVA+VxnrE6DQAAABA2KCQAAAAAoBSuUytlj+sq1+n1VkcBAAAAwgKFBAAAAACUwetIUdry25Wz+00ZY6yOAwAAAIQ0CgkAAAAAKI9xK3vHS8pYPVTe/Ayr0wAAAAAhi0ICAAAAACoh/3ic7Iu7ymXfZnUUAAAAICRRSAAAAABAJXlyjyltaS/l7vvA6igAAABAyKGQAAAAAICq8LqUteVZZay9X96CbKvTAAAAACGDQgIAAAAAqiHv6Jeyx3VXQfr3VkcBAAAAQgKFBAAAAABUkyfroOxLbpbj0EyrowAAAABBj0ICAAAAAGrC49TZDeOUmTRWxu2wOg0AAAAQtCgkAAAAAMAPnMmzZY+/Se6zB6yOAgAAAAQlCgkAAAAA8BN35h7Z47rLeXie1VEAAACAoEMhAQAAAAB+ZNw5ylz3oM5ufkrG47I6DgAAABA0KCQAAAAAIAAc+/+ltKU95c4+YnUUAAAAIChQSAAAAABAgBSkbZc97kbl/bTY6igAAACA5SgkAAAAACCAjCtTGauHKmvbCzJet9VxAAAAAMtQSAAAAABALcj94W2lLe8rT+5Jq6MAAAAAlqCQAAAAAIBaUnBmg+xxXZWfkmB1FAAAAKDWUUgAAAAAQC3y5qUqPeEuZX87ScZ4rY4DAAAA1BoKCQAAAACobcarnF2Tlb5ioDzOM1anAQAAAGoFhQQAAAAAWMR1aqXscV3lOr3e6igAAABAwFFIAAAAAICFvI4UpS2/XTm735Qxxuo4AAAAQMBQSAAAAACA1Yxb2TteUsbqofLmZ1idBgAAAAgICokastlslfro27ev1VEBAAAABLn843Gyx90ol32b1VEAAAAAv6OQAAAAAIAg4sk5qrSlvZS7759WRwEAAAD8qr7VAcLFE088oSeffLLM41FRUbWYBgAAAEBI87qUteUZuU6vV/Oe0xXRoKnViQAAAIAao5Dwk5YtW+q6666zOgYAAACAMJJ39EsVpH+nC/rOV4MWv7Q6DgAAAFAjLNkEAAAAAEHMk3VQ9iU3y3FoptVRAAAAgBqhkAAAAACAYOdx6uyGccpMGivjdlqdBgAAAKgWCgkAAAAACBHO5NmyL7lJ7rMHrI4CAAAAVBl7SPjJ/Pnz9eWXX+ro0aOqV6+eLr30Ut16660aM2aM+vXrV+1xT5w4Ue7xU6dOVXtsAAAAAKHHnbFb9vhYNb91miKvut/qOAAAAECl2YwxxuoQocxms1V4zj333KPZs2erefPmARm/0PHjx9W6desqP4ZVTs1pIBm31TEAAACAkNWk05NqFvuubPUaWh0FCHsnTpxQmzZtJIXe398AAAQLrpCooSZNmujuu+/WHXfcoU6dOik6OlqpqalKTEzUxx9/rLS0NC1cuFBDhw5VQkKCGjRoYHVkAAAAAGHCsf9fKkjdqpi+X6p+06usjgMAAACUiyskaigzM1MxMTGlHjt9+rQGDRqkb7/9VpL03nvv6dlnn63S+JVZsqlHjx6SQu8dGlwhAQAAAPiHrWGMYnrNUeMr7rY6ChC2uEICAICao5AIsMOHD6tTp04qKChQ+/btdejQIb+OH8q/EFFIAAAAAP5kU9QvJqhpt7/JFsHF8IC/hfLf3wAABIsIqwOEu6uvvlp33nmnJCk5OVkpKSkWJwIAAAAQnoxyf3hbacv7yZN70uowAAAAQAkUErWgc+fOvtsnT/KHAQAAAIDAKTiTJHtcV+WnJFgdBQAAACiGQqIW2Gw2qyMAAAAAqEO8ealKT7hL2d9OkjFeq+MAAAAAkigkasXevXt9t1u1amVhEgAAAAB1hvEqZ9dkpa8YKE9eqtVpAAAAAAqJQDty5IgSEs5dKt2uXTtdfvnlFicCAAAAUJe4Tq2UffENcp1OsjoKAAAA6jgKiRqIi4uT2+0u8/jp06c1fPhwuVwuSdKTTz5ZW9EAAAAAwMfrSFHa8n7K2T1Fxhir4wAAAKCOqm91gFD2zDPPqKCgQMOHD9ctt9yiK6+8UpGRkbLb7Vq7dq3+/e9/y263S5J69eqlp556yuLEAAAAAOos41b2jolynUlSTK85imh0gdWJAAAAUMdQSNRQSkqKPvjgA33wwQdlnjN8+HBNnz5djRo1qsVkAAAAAFBS/vE42eNuVEzfL9Xwolir4wAAAKAOoZCogTlz5igxMVGbNm3S4cOHZbfblZWVpejoaLVp00a33nqrRo8erVtuucXqqAAAAADg48k5qrSlvdQs9u+KuvZpq+MAAACgjqCQqIE+ffqoT58+VscAAAAAgKrzupS15Rm5Tq9X857TFdGgqdWJAAAAEObY1BoAAAAA6rC8o1/KHtddBRm7rY4CAACAMEchAQAAAAB1nCfroOzxN8lxaJbVUQAAABDGKCQAAAAAAJLHqbMbHlFm0lgZt9PqNAAAAAhDFBIAAAAAAB9n8mzZl9wk99kDVkcBAABAmKGQAAAAAAAU487YLXt8rJxHvrA6CgAAAMIIhQQAAAAAoARTkK3MxAd0dvPTMh6X1XEAAAAQBigkAAAAAABlcuz/UGlLe8qdfdTqKAAAAAhxFBIAAAAAgHIVpG2XPe5G5R2PszoKAAAAQhiFBAAAAACgQsaVoYxVQ5W17QUZr9vqOAAAAAhBFBIAAAAAgEoyyv3hbaUt7ydP7kmrwwAAACDEUEgAAAAAAKqk4EyS7HFdlZ+y0uooAAAACCEUEgAAAACAKvPmpSo9YaCyv31NxnitjgMAAIAQQCEBAAAAAKge41XOrj8rPeEuefJSrU4DAACAIEchAQAAAACoEVdKguyLb5DrdJLVUQAAABDEKCQAAAAAADXmdaQobXk/5eyeImOM1XEAAAAQhCgkAAAAAAD+YdzK3jFRGauHypufYXUaAAAABBkKCQAAAACAX+Ufj5M97ka57NutjgIAAIAgQiEBAAAAAPA7T85RpS3tqdx9H1odBQAAAEGCQgIAAAAAEBhel7K2PK2MtQ/IW5BtdRoAAABYjEICAAAAABBQeUe/kD2uuwoydlsdBQAAABaikAAAAAAABJwn66Ds8TfJcWiW1VEAAABgEQoJAAAAAEDt8Dh1dsMjykx6RMbttDoNAAAAahmFBAAAAACgVjmTZ8m+5Ca5zx60OgoAAABqEYUEAAAAAKDWuTN2yx7fXc4jX1odBQAAALWEQgIAAAAAYAlTkK3MxPt1dvPTMh6X1XEAAAAQYBQSAAAAAABLOfZ/qLSlPeXOPmp1FAAAAAQQhQQAAAAAwHIFadtlj7tRecfjrI4CAACAAKGQAAAAAAAEBePKUMaqocra/qKM1211HAAAAPgZhQQAAAAAIIgY5e55S+nf3C6PI8XqMAAAAPAjCgkAAAAAQNBxnV4v++IblJ+y0uooAAAA8BMKCQAAAABAUPLmpSo9YaCyv31NxnitjgMAAIAaopAAAAAAAAQv41XOrj8rPeEuefJSrU4DAACAGqCQAAAAAAAEPVdKguyLb5DrdJLVUQAAAFBNFBIAAAAAgJDgdaQobXk/5ex5S8YYq+MAAACgiigkAAAAAAChw7iVvf1FZay+R978DKvTAAAAoAooJAAAAAAAISf/+GLZ426Uy77d6igAAACoJAoJAAAAAEBI8uQcVdrSnsrd96HVUQAAAFAJFBIAAAAAgNDldSlry9PKWPuAvAU5VqcBAABAOSgkAAAAAAAhL+/oF7LHdVdBxm6rowAAAKAMFBIAAAAAgLDgyToge/xNchyabXUUAAAAlIJCAgAAAAAQPjxOnd0wVplJj8i4nVanAQAAQBEUEgAAAACAsONMniX7kpvkPnvQ6igAAAD4PxQSAAAAAICw5M7YLXt8dzmPfGl1FAAAAIhCAgAAAAAQxkxBtjIT79fZzU/LeFxWxwEAAKjTKCQAAAAAAGHPsf9DpS3rJXf2UaujAAAA1FkUEgAAAACAOqHAvk32uBuVdzzO6igAAAB1EoUEAAAAAKDOMK4MZawaqqztL8p43VbHAQAAqFMoJAAAAAAAdYxR7p63lP7N7fI4UqwOAwAAUGdQSAAAAAAA6iTX6fWyL75B+SkrrY4CAABQJ1BIAAAAAADqLG9eqtITBir7uz/LGK/VcQAAAMIahQQAAAAAoG4zXuV895rSE+6SJy/V6jQAAABhi0ICAAAAAABJrpQE2Rd3let0ktVRAAAAwhKFBAAAAAAA/8frOKm05f2Us+ctGWOsjgMAABBWKCQAAAAAACjKuJW9/UVlrL5H3vwMq9MAAACEDQoJAAAAAABKkX98sexxN8pl3251FAAAgLBAIQEAAAAAQBk8OUeVtrSXcvd9aHUUAACAkEchAQAAAABAebz5ytrytDISH5S3IMfqNAAAACGLQgIAAAAAgErIOzJP9rjuKsjYbXUUAACAkEQhAQAAAABAJXmyDsgef5Mch2ZbHQUAACDkUEgAAAAAAFAVHqfObhirzKRHZNxOq9MAAACEDAoJAAAAAACqwZk8S/YlN8t99qDVUQAAAEIChQQAAAAAANXkzvhe9vjuch750uooAAAAQY9CAgAAAACAGjAF2cpMvF9nNz8t43FZHQcAACBoUUgAAAAAAOAHjv0fKm1ZL7mzj1odBQAAIChRSAAAAAAA4CcF9m2yx92ovONxVkcBAAAIOhQSAAAAAAD4kXFlKGPVUGVtnyjjdVsdBwAAIGhQSAAAAAAA4HdGuXumKP2b2+VxpFgdBgAAIChQSAAAAAAAECCu0+tlX9xV+SkrrY4CAABgOQoJAAAAAAACyJt3RukJA5X93Z9ljNfqOAAAAJahkAAAAAAAINCMVznfvab0hLvkyUu1Og0AAIAlKCQAAAAAAKglrpQE2Rd3lev0BqujAAAA1DoKCQAAAAAAapHXcVJpy/sqZ8/bVkcBAACoVRQSAAAAAADUNuNW9vYXlL5qqLz5mVanAQAAqBUUEgAAAAAAWCT/+GLZ426Uy77d6igAAAABRyEBAAAAAICFPDlHlLa0l3L3fWh1FAAAgICikAAAAAAAwGrefGVteVoZiQ/KW5BjdRoAAICAoJAAAAAAACBI5B2ZJ3tcdxVk7LE6CgAAgN9RSAAAAAAAEEQ8WQeUtuQmOZLnWB0FAADArygkAAAAAAAIMsbt0NmkMcpMekTG7bQ6DgAAgF9QSAAAAAAAEKScybNkX3Kz3GcPWh0FAACgxigkAAAAAAAIYu6M72WP7y7nkS+tjgIAAFAjFBIAAAAAAAQ5U5CtzMT7dXbzMzIel9VxAAAAqoVCAgAAAACAEOHY/0+lLestd84xq6MAAABUGYUEAAAAAAAhpMC+VfbFXZV3PN7qKAAAAFVCIQEAAAAAQIgxrgxlrLpbWdsnynjdVscBAACoFAoJAAAAAABCklHunilK/+Z2eRwpVocBAACoEIUEAAAAAAAhzHV6veyLuyo/ZaXVUQAAAMpFIQEAAAAAQIjz5p1ResJAZX83WcZ4rY4DAABQKgoJAAAAAADCgfEq57tJSk8YJE9eqtVpAAAASqCQAAAAAAAgjLhSVsi+uKtcpzdYHQUAAKAYCgkAAAAAAMKM13FSacv7KmfP21ZHAQAA8KGQAAAAAAAgHBm3sre/oPRVQ+XNz7Q6DQAAAIUEAAAAAADhLP/4YtnjblSBfYfVUQAAQB1HIQEAAAAAQJjz5ByRfWlP5e7/l9VRAABAHUYhAQAAAABAXeDNV9bmp5SR+JC8BTlWpwEAAHUQhQQAAAAAAHVI3pG5ssd1V0HGHqujAACAOoZCAgAAAACAOsaTdUBpS26SI3mO1VEAAEAdQiEBAAAAAEAdZNwOnU0ao8ykR2TcTqvjAACAOoBCAgAAAACAOsyZPEv2JTfLnXXI6igAACDMUUgAAAAAAFDHuTO+lz2um5xH51sdBQAAhDEKCQAAAAAAIFOQrcy1I3R28zMyHpfVcQAAQBiikAAAAAAAAD6O/f9U2rLecuccszoKAAAIMxQSAAAAAACgmAL7VtkXd1Xe8XirowAAgDBCIQEAAAAAAEowrgxlrLpbWdtfkvF6rI4DAADCAIUEAAAAAAAog1HunjeV/s3t8jhSrA4DAABCHIUEAAAAAAAol+v0OtkXd1V+yiqrowAAgBBGIQEAAAAAACrkzTuj9IQByv5usozxWh0HAACEIAoJAAAAAABQOcarnO8mKT1hkDx5qVanAQAAIYZCAgAAAAAAVIkrZYXsi7vKdXqD1VEAAEAIoZAAAAAAAABV5nWcVNryvsrZ87bVUQAAQIigkAAAAAAAANVj3Mre/oLSV90jb36m1WkAAECQo5Dwo2PHjmnChAnq1KmToqKi1KJFC8XGxuqtt96Sw+GwOh4AAAAAAAGRf3yR7HE3qsC+w+ooAAAgiFFI+ElcXJx++ctf6p133tGBAwfkcDiUkZGh7du368UXX1TXrl2VnJxsdUwAAAAAAALCk3NE9qU9lbv/X1ZHAQAAQYpCwg++/fZb3X///crKylJ0dLT++te/auPGjVq1apXGjx8vSTp48KCGDBmi7Oxsi9MCAAAAABAg3nxlbX5KGYkPyVuQY3UaAAAQZOpbHSAcPPfcc3I6napfv75WrFihW265xXfs9ttvV4cOHfTiiy/q4MGD+vvf/67XXnvNurAAAAAAAARY3pG5KkjbqQv6LVCDC66zOg4AAAgSXCFRQ1u3btX69eslSePGjStWRhSaMGGCrr32WknSe++9p4KCglrNCAAAAABAbfNkHVDakpvkSJ5jdRQAABAkKCRqaOHChb7bY8eOLfWciIgIjRo1SpKUmZmpNWvW1EY0AAAAAAAsZdwOnU0ao8wN42TcTqvjAAAAi1FI1FBSUpIkKSoqSt26dSvzvD59+vhub9iwIeC5AAAAAAAIFs5DM2VfcrPcWYesjgIAACzEHhI1tG/fPklS+/btVb9+2d/OTp06lbhPZZw4caLc48ePH/fdPnXqVKXHDQan041krE4BAAAAAKgV6d/r+LGuahr7tiLb/MrqNFVW9G9ut9ttYRIAAEIXhUQN5OXlyW63S5Jat25d7rkXXHCBoqKilJubW6xEqEibNm0qfW6PHj0qfS4AAAAAALUvV9IT//cRulJTU3XllVdaHQMAgJDDkk01kJ2d7bsdHR1d4flRUVGSpJycnIBlAgAAAAAAAAAgGHGFRA3k5eX5bjds2LDC8xs1aiRJcjorv5FXRVdT5OXlaf/+/brkkkt08cUXl7tsVLA4deqU72qOrVu36rLLLrM4EVB9zGeEG+Y0wgnzGeGE+YxwE4pz2u12KzU1VZLUpUsXi9MAABCagv/V6yDWuHFj322Xy1Xh+fn5+ZKkyMjISj9GRUtBSef2rwhVl112WaW+RiAUMJ8RbpjTCCfMZ4QT5jPCTSjNaZZpAgCgZliyqQaaNm3qu12ZZZhyc3MlVW55JwAAAAAAAAAAwgmFRA00btxYF154oSTpxIkT5Z6bkZHhKySqslE1AAAAAAAAAADhgEKihjp37ixJSk5OltvtLvO8/fv3+25fe+21Ac8FAAAAAAAAAEAwoZCooV69ekk6txzTjh07yjwvMTHRd7tnz54BzwUAAAAAAAAAQDChkKihe+65x3d71qxZpZ7j9Xr1ySefSJJiYmLUr1+/2ogGAAAAAAAAAEDQoJCooR49eqh3796SpBkzZmjTpk0lzvn73/+uffv2SZKee+45NWjQoFYzAgAAAAAAAABgtfpWBwgH7733nnr27Cmn06kBAwbov//7v9WvXz85nU7NmzdPU6dOlSR17NhREyZMsDgtAAAAAAAAAAC1z2aMMVaHCAdxcXH67W9/q6ysrFKPd+zYUUuWLFH79u1rORkAAAAAAAAAANajkPCjY8eO6b333tOSJUt04sQJNWzYUO3bt9d9992np59+Wk2aNLE6IgAAAAAAAAAAlqCQAAAAAAAAAAAAAcem1gAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBKoVceOHdOECRPUqVMnRUVFqUWLFoqNjdVbb70lh8NhdTyEuTNnzig+Pl6vvvqqBg0apIsuukg2m002m01jxoyp8njLli3TsGHD1Lp1azVq1EitW7fWsGHDtGzZskqP4Xa79fHHH6t37966+OKLFRkZqXbt2unxxx/XDz/8UOVMqDu2b9+uyZMna8CAAb45GB0drY4dO2rs2LFKSkqq0njMZ1gpKytL8+bN04QJE9SnTx+1b99ezZs3V8OGDdWyZUv17dtXU6ZMUVpaWqXG27hxo37729+qbdu2aty4sS699FINHDhQc+fOrVKuuXPnasCAAbr00kvVuHFjtW3bVr/97W+1adOm6nyZgCZOnOj73cNms2nt2rUV3ofnZ1it6Jwt76Nv374VjsV8BgAAMkAtWbx4sWnWrJmRVOpHx44dzaFDh6yOiTBW1tyTZEaPHl3pcTwejxk3bly54z366KPG4/GUO05qaqqJjY0tc4xGjRqZadOm1fCrRjjq3bt3ufOv8GPUqFEmPz+/3LGYzwgGCQkJlZrTF110kVm+fHm5Y02aNMlERESUOcaQIUOM0+ksdwyHw2EGDx5c5hgRERHmtdde8+e3AHXAt99+a+rXr19sLq1Zs6bM83l+RrCozPOzJNOnT58yx2A+AwCAQhQSqBU7d+40kZGRRpKJjo42f/3rX83GjRvNqlWrzPjx44uVEllZWVbHRZgq+sfKFVdcYQYMGFCtQuKll17y3a9r165m7ty5ZuvWrWbu3Lmma9euvmMvv/xymWO43W7Tq1cv37n33nuvWbZsmdmyZYt5//33TcuWLX0vei1dutQPXz3CSbt27Ywk06pVK/Pcc8+ZBQsWmK1bt5pNmzaZd955x1x++eW+ufXggw+WOxbzGcEgISHBtGnTxowaNcq899575quvvjKbNm0yGzZsMF988YW57777TL169Ywk07BhQ/Pdd9+VOs7HH3/sm4ft2rUzM2bMMFu3bjULFy40/fr1q/TPxQMPPOA7t1+/fmbhwoVm69atZsaMGb6fP0nm3//+dyC+HQhDHo/H9yJq4XNiRYUEz88IFoXz54knnjC7d+8u8+Pw4cNljsF8BgAAhSgkUCsK381bv359s3HjxhLHp0yZ4vvFctKkSbUfEHXCq6++auLi4szPP/9sjDHmyJEjVS4kDhw44Ht3Y/fu3Y3D4Sh2PDc313Tv3t0338u66mfGjBm+x37yySdLHD906JDviqL27dubgoKCqn2xCGtDhgwxX3zxhXG73aUeT01NNR07dvTNscTExFLPYz4jWJQ1l4v6+uuvffNs2LBhJY6npaWZ5s2b+0rn1NTUEo/x61//usIXgletWuU759e//nWJbKmpqeaKK64wkkxMTIxJT0+v/BeKOuvdd981kkynTp3Myy+/XOE85PkZwaSmf6cxnwEAQFEUEgi4LVu2+H5xfPzxx0s9x+PxmGuvvdb3x73L5arllKiLqlNIPPHEE777bNq0qdRzNm3aVO4fS8YY33xv0aKFyc3NLfWcv/3tb75xvvzyy0rlAwrFxcX55s8zzzxT6jnMZ4Saa665xkjnlm4635tvvumbY3Pnzi31/sePH/ddaTF48OBSzxk0aJDvRbHjx4+Xes7cuXN9jzVlypTqf0GoE44dO2aio6ONJLN27VozadKkCgsJnp8RTGpaSDCfAQBAUWxqjYBbuHCh7/bYsWNLPSciIkKjRo2SJGVmZmrNmjW1EQ2oEmOMFi1aJEnq1KmTbr755lLPu/nmm3XNNddIkhYtWiRjTLHjBw8e1L59+yRJI0aMUJMmTUodp+hG219//XVN46OO6devn+/2jz/+WOI48xmhqGnTppKkvLy8EscKf99o1qyZ7r333lLv37p1a/Xv31+StGrVKmVnZxc7np2drVWrVkmS+vfvr9atW5c6zr333qtmzZpJYj6jYk899ZRycnI0evRo9enTp8LzeX5GOGE+AwCA81FIIOCSkpIkSVFRUerWrVuZ5xX9A23Dhg0BzwVU1ZEjR5SSkiJJFb6gUHj85MmTOnr0aLFjhT8TFY1z6aWXqmPHjpL4mUDV5efn+27Xq1evxHHmM0LNgQMH9N1330k696JWUS6XS1u3bpUk3XLLLWrYsGGZ4xTO0/z8fG3fvr3YsW3btsnlchU7rzQNGzb0vai2bds2FRQUVO2LQZ3x5ZdfKj4+Xi1atNDbb79dqfvw/IxwwnwGAADno5BAwBW+k6V9+/aqX79+mecVfXGh8D5AMNm7d6/v9vkvhp2vvPlcnXGOHz+u3NzcSmcFEhMTfbevvfbaEseZzwgFDodDhw4d0jvvvKM+ffrI7XZLkp5//vli5x08eFAej0dS7c9nt9utQ4cOlf+FoE7KzMzUc889J0l68803ddFFF1Xqfjw/I1jNnz9fnTt3VpMmTdS0aVN16NBBo0ePLvfqduYzAAA4H4UEAiovL092u12Sylz2oNAFF1ygqKgoSed+eQSCzYkTJ3y3K5rPbdq08d0+fz5XZxxjTLH7AeXxer164403fP8eMWJEiXOYzwhWs2fPls1mk81mU1RUlDp27KgJEybo9OnTkqSXXnpJDz30ULH7WDmfSxsHkKQXX3xRP//8s3r27Klx48ZV+n48PyNY7d27V/v27ZPT6VROTo6Sk5P1ySef6Pbbb9ewYcN09uzZEvdhPgMAgPOV/XZ1wA+Krs0cHR1d4flRUVHKzc1VTk5OIGMB1VKV+VxYrkkqMZ/9NQ5Qlnfffde3fM29995b6nJ5zGeEmhtuuEFTp05VbGxsiWPMZwSb9evXa/r06apfv74+/vhj2Wy2St+X+Yxg06RJE919992644471KlTJ0VHRys1NVWJiYn6+OOPlZaWpoULF2ro0KFKSEhQgwYNfPdlPgMAgPNRSCCgim46Wd56zoUaNWokSXI6nQHLBFRXVeZz4VyWSs5nf40DlCYxMVEvvfSSJKlly5b66KOPSj2P+Yxgdc8996h79+6Szs2TH3/8UV9++aW+/vprPfjgg/rHP/6hX/3qV8Xuw3xGMHG5XHrsscdkjNHvfvc7XXfddVW6P/MZwebkyZOKiYkp8fk777xTzzzzjAYNGqRvv/1WiYmJ+uijj/Tss8/6zmE+AwCA87FkEwKqcePGvtuFm0SWp3AT1sjIyIBlAqqrKvO56IbC589nf40DnO+HH37QsGHD5Ha71bhxY82fP18tW7Ys9VzmM4JVTEyMrrvuOl133XWKjY3VAw88oK+++kqffPKJDh8+rKFDh2r27NnF7sN8RjB5/fXXtX//fl1xxRWaNGlSle/PfEawKa2MKHTJJZdowYIFvqsiPvjgg2LHmc8AAOB8FBIIqKZNm/puV+Zy2cJNxyqzvBNQ26oyn4tuoHf+fPbXOEBRR44c0YABA5SRkaF69epp3rx5uu2228o8n/mMUDNy5Ejdd9998nq9evrpp5Wenu47xnxGsNi/f7/+9re/STr3wmzRpWMqi/mMUHP11VfrzjvvlCQlJycrJSXFd4z5DAAAzkchgYBq3LixLrzwQkmqcEOxjIwM3y+PRTc0A4JF0Q30KprPRTfiO38+V2ccm81W4QZ+qLtSUlLUv39/paSkyGazaebMmRo6dGi592E+IxQVzuvc3FwtX77c93kr53Np46Duevfdd+VyuXT11VfL4XBo3rx5JT727NnjO3/16tW+zxf+HszzM0JR586dfbdPnjzpu818BgAA52MPCQRc586dtX79eiUnJ8vtdqt+/dKn3f79+323r7322tqKB1Ra0T+0is7X0pQ3n88f54YbbqhwnDZt2lTrXZYIf3a7XXfeeacOHz4s6dw7ckeNGlXh/ZjPCEUXX3yx7/axY8d8tzt27Kh69erJ4/H4dT5XZpz69eurQ4cOFYdHnVC4VMzhw4f14IMPVnj+X/7yF9/tI0eOKCoqiudnhKSyNm5nPgMAgPNxhQQCrlevXpLOvZtxx44dZZ6XmJjou92zZ8+A5wKq6qqrrlKrVq0kFZ+vpVm3bp0k6fLLL9eVV15Z7Fjhz0RF4/z88886ePCgJH4mULqzZ89q4MCB2rt3ryTpjTfe0FNPPVWp+zKfEYqKvuu26DIcDRs2VI8ePSRJmzZtKnd98cJ52qhRI9/m2YViY2N9m6WWN59dLpc2b97su0/h2umAP/D8jFBU+LuIJN/8lZjPAACgJAoJBNw999zjuz1r1qxSz/F6vfrkk08knds0rV+/frURDagSm83mWy5k//79vhejzrd582bfO7OGDh1a4h1jHTt29L3r68svv5TD4Sh1nKKbtg4bNqym8RFmHA6HhgwZop07d0qSXnnlFU2cOLHS92c+IxTNnz/fd7tLly7FjhX+vpGVlaWvvvqq1PufOHFCK1eulCTdcccdxdYkl86tUX7HHXdIklauXFnmsiBfffWVsrKyJDGfUdzs2bNljCn3o+hG12vWrPF9vvAFWJ6fEWqOHDmihIQESVK7du10+eWX+44xnwEAQAkGqAW9e/c2kkz9+vXNxo0bSxyfMmWKkWQkmUmTJtV+QNRJR44c8c270aNHV+o+Bw4cMPXq1TOSTPfu3Y3D4Sh23OFwmO7du/vm+8GDB0sdZ8aMGb7Hfuqpp0ocT05ONs2aNTOSTPv27U1BQUGVvz6Er/z8fDNgwADfHHruueeqNQ7zGcFi1qxZxul0lnvOO++845tnV111lXG73cWOp6WlmebNmxtJpm3btsZutxc77na7za9//WvfGGvWrCn1cVatWuU75+677y7xOKmpqeaKK64wkkxMTIxJT0+v+heMOm3SpEkVzkOenxEsFi9eXO68+Pnnn03Xrl198+zvf/97iXOYzwAAoCgKCdSKnTt3msjISCPJREdHm9dff91s2rTJrF692jz22GO+Xyw7duxosrKyrI6LMLV+/Xoza9Ys38dbb73lm3s9e/YsdmzWrFlljvPSSy/57te1a1czb948s23bNjNv3rxif5C9/PLLZY7hdrtNz549fecOHz7cLF++3GzZssV88MEHpmXLlkaSiYiIMEuXLg3AdwOh7N577/XNndtvv918//33Zvfu3WV+HDhwoMyxmM8IBm3btjUtWrQw48ePN3PmzDFJSUnmu+++M+vXrzf/+te/is2vhg0bmoSEhFLH+fjjj33ntWvXzsycOdNs27bNLFq0yPTr18937MEHHyw3zwMPPOA7t1+/fmbRokVm27ZtZubMmaZdu3a+Y//+978D8e1AmKtMIWEMz88IDm3btjWtWrUyzzzzjPn888/Nxo0bzbfffmsSEhLMK6+8Yi666CLf/OrVq5fJy8srdRzmMwAAKEQhgVqzePFi3ztWSvvo2LGjOXTokNUxEcZGjx5d5vwr7aMsHo/HPPLII+Xed9y4ccbj8ZSbJzU11cTGxpY5RqNGjcy0adP8/W1AGKjKPC58t3hZmM8IBm3btq3UXG7durVZsWJFuWO9+uqrxmazlTnG4MGDK7waw+FwmMGDB5c5RkREBFd0otoqW0jw/IxgUNnn5+HDh5uMjIwyx2E+AwCAQjZjjBFQS44dO6b33ntPS5Ys0YkTJ9SwYUO1b99e9913n55++mk1adLE6ogIY2PGjNGcOXMqfX5FT49Lly7V1KlTtW3bNtntdl100UWKjY3V448/rkGDBlXqMdxut6ZNm6bPP/9c+/btU25urlq1aqU77rhDzz33nH7xi19UOi/qjvPXVa5I27ZtdfTo0XLPYT7DSgcOHNCSJUu0YcMGJScn6/Tp00pLS1NkZKRatmypG264Qb/61a80YsSISv2usHHjRn344Ydav369Tp8+rZiYGF1//fUaO3asHnzwwUrn+vzzzzV79mzt2rVLmZmZuuSSS9S7d289/fTTuuWWW2ryJaMOe+211/TnP/9Z0rk9JPr27Vvu+Tw/w0qJiYlKTEzUpk2bdPjwYdntdmVlZSk6Olpt2rTRrbfeqtGjR1f6OZH5DAAAKCQAAAAAAAAAAEDARVgdAAAAAAAAAAAAhD8KCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAACAapo9e7ZsNptsNpuOHj1qdRwAAAAAAIIahQQAAKhzjh496isSavIBAAAAAAAqj0ICAAAAAAAAAAAEnM0YY6wOAQAAUJsKCgp04MCBMo936dJFktS9e3fNmjWrzPOuu+46v2cDAAAAACBc1bc6AAAAQG1r0KBBpcqEqKgoSgcAAAAAAPyEJZsAAAAAAAAAAEDAUUgAAABU0+zZs30bXB89erTE8b59+8pms6lv376SpOTkZP3Xf/2Xrr76akVGRurKK6/UuHHjdOzYsWL327Nnj8aOHaurr75ajRs3Vps2bfTEE0/ozJkzlcq1cOFC3XfffbriiivUuHFjxcTEqHv37vrzn/+sjIyMmn7ZAAAAAABUC0s2AQAA1IKVK1fq3nvvVXZ2tu9zx44d08yZMxUfH6/ExER16tRJc+fO1ZgxY+RyuXznnThxQh9//LGWLVumjRs3qlWrVqU+RkZGhn7zm99o9erVxT6fn5+vHTt2aMeOHfrXv/6lRYsW6eabbw7MFwoAAAAAQBm4QgIAACDAUlJSNGLECMXExOiDDz7Qli1btH79ej3//POy2Ww6c+aMHn30UW3btk2jRo1Su3btNH36dG3dulVr1qzRyJEjJZ0rMH7/+9+X+hj5+fnq37+/Vq9erXr16mnkyJGaO3euNm/erPXr1+uvf/2rLrzwQp05c0aDBw8ucVUGAAAAAACBxhUSAAAAAXbo0CF16NBBGzZs0MUXX+z7fK9evVS/fn29/fbb2rBhg4YMGaIePXooISFBTZo08Z3Xt29f5eXlaf78+frPf/6j1NTUYuNI0uTJk7Vz507FxMRo5cqV6tatW7HjvXr10sMPP6xbbrlFp06d0n//93/rf//3fwP7hQMAAAAAUARXSAAAANSC999/v0SJIElPPvmk77bdbtf06dOLlRGFnnjiCUmS2+3Wpk2bih3LycnRhx9+KEn6y1/+UqKMKNS2bVv96U9/kiTNnz9fubm51ftiAAAAAACoBgoJAACAAIuJidHAgQNLPXbVVVepadOmkqRf/vKXuvbaa0s97/rrr/fdPnz4cLFjiYmJOnv2rCTpN7/5TblZbrvtNklSQUGBduzYUbkvAAAAAAAAP2DJJgAAgADr0KGDbDZbmcdjYmKUnZ2tjh07lntOoaIbY0vS9u3bfbcvu+yySuf6+eefK30uAAAAAAA1xRUSAAAAAVbaEkxFRUREVHhe4TmS5PF4ih07c+ZMtXI5HI5q3Q8AAAAAgOrgCgkAAIAQV7Sg2Llzpxo0aFCp+7Vu3TpQkQAAAAAAKIFCAgAAIMRdeOGFvtsXX3wxRQMAAAAAICixZBMAAECI69q1q+/2hg0bLEwCAAAAAEDZKCQAAABCXP/+/X37T7z//vsyxlicCAAAAACAkigkAAAAQlxMTIyefvppSdLGjRv1u9/9Tl6vt8zzT58+renTp9dWPAAAAAAAJLGHBAAAQFiYPHmyEhMTtWXLFr333ntau3atxo8frxtuuEFRUVHKyMjQDz/8oJUrV2rZsmXq0qWLHn30UatjAwAAAADqEAoJAACAMNCoUSMlJCRozJgx+uqrr7Rr1y7fVROladasWS2mAwAAAACAQgIAACBsNG3aVP/5z3+UlJSkOXPmaP369UpJSZHT6VSzZs3Url079ejRQ0OGDNGAAQOsjgsAAAAAqGNshl0PAQAAAAAAAABAgLGpNQAAAAAAAAAACDgKCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAAAAAAAAAAAQcBQSAAAAAAAAAAAg4CgkAAAAAAAAAABAwFFIAAAAAAAAAACAgKOQAAAAAAAAAAAAAUchAQAAAAAAAAAAAo5CAgAAAAAAAAAABNz/AzuTh3g5cPjbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'transmissibility_function_reassortment_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data\n", + " # Dataframe with model history\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a heatmap and dendrogram for pathogen genomes \n", + "Generate a heatmap and dendrogram for the top 24 genomes. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcsUlEQVR4nO3deZzVdb0/8NcwCKggIsgi+BN3VNwXEhVcMJfCLLdME7Vr4lriQqSCS4p6b6LXTHMBUskdSy01wy0VU3EjEbKruAUKKLKDMOf3hzjXkRmcw/AN5T6f93Eel+/2Pp851ffMaz7Lt6JUKpUCAAAALHeNVnQDAAAAYGUldAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgII0bcvH4iY8vr3asUF0691zRTQAAAGAl1KDQXVWqWl7tAAAAgJVOg0J3qVRaXu0AAACAlU7DerojdAMAAEBdGtjTbXg5wMpkwIABmTdv3opuBgAFadasWQYPHryimwH/pzRwTvf/3Z7uq6++Ov/5n/+ZyZMnZ+utt85VV12VnXbaqc7zp0+fnrPPPjsjR47Mhx9+mPXWWy9XXHFF9t9//39jqwGWbt68eRkyZMiKbgYABTnttNNWdBPg/5yG9XTn/2ZP9+23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzl+wYEH23nvvtG3bNnfddVc6duyYt956K2uuuea/v/EAAAD82+jpXgaXX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vyhQ4fmww8/zNNPP51VVlklSdK5c+d/Z5MBAABYARo15OLSSvJ/8+fPz4wZM2q85s+fX+vPvGDBgowZMya9evX63w+xUaP06tUro0ePrvWae++9NzvvvHNOOumktGvXLl27ds3FF1+cRYsWNeTjBwAA4CuuQaG7qlRaKV6DBw9Oy5Yta7zqWmBi6tSpWbRoUdq1a1djf7t27TJ58uRar3njjTdy1113ZdGiRfnTn/6Uc889N7/85S/zi1/8oiEfPwAAAF9xDRxevnLM6R4wYED69etXY1/Tpk2XW/2qqqq0bds21113XSorK7P99tvnvffey3/+539m0KBBy+19AAAA+Gpp4EJqK8ec7qZNm9Y7ZLdp0yaVlZV5//33a+x///330759+1qv6dChQ1ZZZZVUVlZW79tss80yefLkLFiwIE2aNFn2xgMAAPCVZXh5mYvBNWnSJNtvv31GjRr1v59DVVVGjRqVnXfeudZrdtlll/zzn/9MVdX/jgz4xz/+kQ4dOgjcAAAAKzGhu8zQnST9+vXL9ddfn9/+9rd57bXXcsIJJ2T27NnVq5kfddRRGTBgQPX5J5xwQj788MP85Cc/yT/+8Y/88Y9/zMUXX5yTTjqpIR8/AAAAX3Ge070MDjvssEyZMiUDBw7M5MmTs8022+TBBx+sXlzt7bffTqNG//v3jHXXXTcPPfRQTjvttGy11Vbp2LFjfvKTn6R///4r6kcAAADg38BzupfRySefnJNPPrnWY4899tgS+3beeec888wzBbcKAACArxKhGwAAAApi9XIAAAAoiJ5uAAAAKEjDQreebgAAAKhTw4aX6+kGAACAOhleDgAAAAUxvBwAAAAKoqcbAAAACmJONwAAABTE8HIAAAAoiOHlAAAAUBDDywEAAKAghpcDAABAQRo4vHx5NQMAAABWPuZ0AwAAQEEaNqfb8HIAAACok55uAAAAKIjQDQAAAAVp4PByAAAAoC56ugEAAKAgQjcAAAAUpGGhe3m1AgAAAFZCDZvTracbAAAA6tTA4eXLqxkAAACw8jGnGwAAAArSwEeGCd0AAABQF8PLAQAAoCCGlwMAAEBBGrh6+fJqBgAAAKx8PKcbAAAACmJ4OQAAABTE8HIAAAAoiJ5uAAAAKIg53QAAAFCQBg4v19MNAAAAdWng8PLl1QwAAABY+VhIDQAAAApiITUAAAAoiJ5uAAAAKIg53QAAAFCQhvV0L69WAAAAwErInG4AAAAoiDndAAAAUBBzugEAAKAgeroBAACgIOZ0AwAAQEEaNeTiUmnleC2Lq6++Op07d06zZs3SrVu3PPvss/W67rbbbktFRUUOPPDAZXtjAAAAvjYaFLqrSivHq1y33357+vXrl0GDBuWFF17I1ltvnX322ScffPDBUq+bOHFizjjjjOy2227L+Il/at68eQ26HgAAgH8PPd3LELovv/zyHHfccTnmmGOy+eab59prr81qq62WoUOH1nnNokWLcsQRR+T888/PBhtsUPZ7VlVV5cILL0zHjh3TvHnzvPHGG0mSc889NzfeeGP5PwQAAACFE7pLyfz58zNjxowar/nz59f6My9YsCBjxoxJr169/vdDbNQovXr1yujRo+v8rC644IK0bds2P/rRj5bps/7FL36R4cOH57LLLkuTJk2q93ft2jU33HDDMtUEAACgWIaXl5LBgwenZcuWNV6DBw+u9WeeOnVqFi1alHbt2tXY365du0yePLnWa5588snceOONuf7665f5s77pppty3XXX5YgjjkhlZWX1/q233jrjx49f5roAAAAUxyPDkgwYMCD9+vWrsa9p06bLpfbMmTPzwx/+MNdff33atGmzzHXee++9bLTRRkvsr6qqyieffNKQJgIAAFCQBobulSN1N23atN4hu02bNqmsrMz7779fY//777+f9u3bL3H+//zP/2TixInp3bt39b6qqqokSePGjTNhwoRsuOGGX/q+m2++ef76179mvfXWq7H/rrvuyrbbbluvtgMAAPDv1cDndC+vZnx9NGnSJNtvv31GjRpV/divqqqqjBo1KieffPIS53fp0iVjx46tse+cc87JzJkzc+WVV2bdddet1/sOHDgwffr0yXvvvZeqqqqMHDkyEyZMyE033ZT777+/wT8XAAAAy5/h5cugX79+6dOnT3bYYYfstNNOueKKKzJ79uwcc8wxSZKjjjoqHTt2zODBg9OsWbN07dq1xvVrrrlmkiyxf2m+853v5L777ssFF1yQ1VdfPQMHDsx2222X++67L3vvvfdy+9kAAABYfoTuZXDYYYdlypQpGThwYCZPnpxtttkmDz74YPXiam+//XYaNWrQGnW12m233fLwww8v97oAAAAUQ+heRieffHKtw8mT5LHHHlvqtcOHDy/7/Z577rlUVVWlW7duNfb/7W9/S2VlZXbYYYeyawIAAFAsz+n+mvzh4KSTTso777yzxP733nsvJ5100gpoEQAAAF/GQmpfE+PGjct22223xP5tt90248aNWwEtAgAA4Mvo6f6a/OGgadOmSzymLEkmTZqUxo0b9LcTAAAACiJ0f01C9ze/+c0MGDAgH3/8cfW+6dOn5+c//7nVywEAAL6iLKT2NfFf//Vf6dGjR9Zbb71su+22SZKXXnop7dq1y80337yCWwcAAEBtGhi6pe5/l44dO+aVV17JiBEj8vLLL2fVVVfNMccck8MPPzyrrLLKim4eAAAAtWhY6K5aXs2gPlZfffX8+Mc/XtHNAAAAoJ4ML/8aef311/Poo4/mgw8+SFVVzb94DBw4cAW1CgAAgLoI3V8T119/fU444YS0adMm7du3T0VFRfWxiooKoRsAAOArSOj+mvjFL36Riy66KP3791/RTQEAAKCehO6viY8++iiHHHLIim4GAAAAZfCc7q/JHw4OOeSQ/PnPf17RzQAAAKAMVi//mthoo41y7rnn5plnnsmWW265xGPCTj311BXUMgAAAOpiePnXxHXXXZfmzZvn8ccfz+OPP17jWEVFhdANAADwFSR0f028+eabK7oJAAAAlEnoBgAAgIII3V8j7777bu699968/fbbWbBgQY1jl19++QpqFQAAAHVp4EJqUve/y6hRo3LAAQdkgw02yPjx49O1a9dMnDgxpVIp22233YpuHgAAALXwyLCvyd8NBgwYkDPOOCNjx45Ns2bNcvfdd+edd95Jz549Pb8bAADgK6pBoTulleT1NfDaa6/lqKOOSpI0btw4c+fOTfPmzXPBBRfk0ksvXcGtAwAAoDae0/01sfrqq1fP4+7QoUP+53/+J1tssUWSZOrUqSuyaQAAANTBQmpfE9/4xjfy5JNPZrPNNsv++++f008/PWPHjs3IkSPzjW98Y0U3DwAAgFoI3V8Tl19+eWbNmpUkOf/88zNr1qzcfvvt2Xjjja1cDgAA8BXVoND9dZkPvTLYYIMNqv+9+uqr59prr12BrQEAAKA+GrZ6edXK8fo62GCDDTJt2rQl9k+fPr1GIAcAAOCro4HDy3V1/7tMnDgxixYtWmL//Pnz8957762AFgEAAPBlzOn+irv33nur//3QQw+lZcuW1duLFi3KqFGj0rlz5xXQMgAAAL5Mw+Z0f02GZn+dHXjggUmSioqK9OnTp8axVVZZJZ07d84vf/nLFdAyAAAAvoye7q+4qqpP/7Kx/vrr57nnnkubNm1WcIsAAACoL6uXf028+eabS+ybPn161lxzzX9/YwAAAKiXBq5eXlopXl8Hl156aW6//fbq7UMOOSRrrbVWOnbsmJdffnkFtgwAAIC6NCx0l1aO19fBtddem3XXXTdJ8vDDD+cvf/lLHnzwwey3334588wzV3DrAAAAqI3h5V8TkydPrg7d999/fw499NB885vfTOfOndOtW7cV3DoAAABq08Dh5SvH6+ugVatWeeedd5IkDz74YHr16pXk02el1/b8bgAAAFa8BvZ06+r+d/ne976XH/zgB9l4440zbdq07LfffkmSF198MRtttNEKbh0AAAC1adgjw74mvcQrgyFDhqRz58555513ctlll6V58+ZJkkmTJuXEE09cwa0DAACgNuZ0f02sssoqOeOMM5bYf9ppp62A1gAAAFAfDevpNry8UPfee2/222+/rLLKKrn33nuXeu4BBxzwb2oVAAAA9dWwnm7Dywt14IEHZvLkyWnbtm0OPPDAOs+rqKiwmBoAAMBXUAN7updXM6hNVVVVrf8GAADg68Hq5V8DVVVVGT58eEaOHJmJEyemoqIiG2ywQQ466KD88Ic/TEVFxYpuIgAAALVo0HO6U7WSvL7CSqVSDjjggPzHf/xH3nvvvWy55ZbZYostMnHixBx99NH57ne/u6KbCAAAQB0spPYVN3z48DzxxBMZNWpU9thjjxrHHnnkkRx44IG56aabctRRR62gFgIAAFAXPd1f8Z7uW2+9NT//+c+XCNxJsueee+ZnP/tZRowYsQJaBgAAwJdpUOgulUorxeur7JVXXsm+++5b5/H99tsvL7/88r+xRQAAANSXR4Z9xX344Ydp165dncfbtWuXjz766N/YIgAAAOqrYcPLS6WV47UMrr766nTu3DnNmjVLt27d8uyzz9Z57vXXX5/ddtstrVq1SqtWrdKrV6+lnv95ixYtSuPGdf9tpLKyMgsXLiy7/QAAABTPc7qXwe23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzn/sscdy+OGHp3v37mnWrFkuvfTSfPOb38yrr76ajh07LvW9SqVSjj766DRt2rTW4/Pnz18uPxMAAADLXwOHl//fTN2XX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vwvLnR2ww035O67786oUaO+dNXxPn36fGl7rFwOAADw1dSw0L2SZO758+cv0WPctGnTWnuXFyxYkDFjxmTAgAHV+xo1apRevXpl9OjR9Xq/OXPm5JNPPslaa631pecOGzasXjUBAAD46mnY6uVVpZXiNXjw4LRs2bLGa/DgwbX+zFOnTs2iRYuWWNysXbt2mTx5cr0+t/79+2edddZJr169GvLxAwAA8BWnpzvJgAED0q9fvxr76ppD3VCXXHJJbrvttjz22GNp1qxZIe8BAADAV4M53al7KHlt2rRpk8rKyrz//vs19r///vtp3779Uq/9r//6r1xyySX5y1/+kq222mqZ2wsAAMDXQ8OGl5dKK8WrHE2aNMn222+fUaNGVe+rqqrKqFGjsvPOO9d53WWXXZYLL7wwDz74YHbYYYdl/swBAAD4+jC8fBn069cvffr0yQ477JCddtopV1xxRWbPnl29mvlRRx2Vjh07Vs8Lv/TSSzNw4MD87ne/S+fOnavnfjdv3jzNmzdfYT8HAAAAxTK8fBkcdthhmTJlSgYOHJjJkydnm222yYMPPli9uNrbb7+dRo3+dxDBNddckwULFuTggw+uUWfQoEE577zz/p1NBwAA4N+ogT3d/zdDd5KcfPLJOfnkk2s99thjj9XYnjhxYvENAgAA4CunQaG79H+0pxsAAADqw5xuAAAAKIjh5QAAAFAQC6kBAABAQRo2p1tPNwAAANRJTzcAAAAUxJxuAAAAKIiebgAAACiIOd0AAABQEMPLAQAAoCCGlwMAAEBB9HQDAABAQczpBgAAgIIYXg4AAAAFMbwcAAAACqKnGwAAAApiTjcAAAAUxPByAAAAKIjh5QAAAFCQBvZ0Vy2nZgAAAMDKx5xuAAAAKIjh5QAAAFAQC6kBAABAQczpBgAAgIKY0w0AAAAFMacbAAAACmJONwAAABSkgcPLzekGAACAuhheDgAAAAWxejkAAAAUxOrlAAAAUBA93QAAAFCQhvV0m9MNAAAAdfLIMAAAACiI4eUAAABQEAupAQAAQEH0dAMAAEBBGtjTLXQDAABAXRrW0231cgAAAKiTnm4AAAAoiEeGAQAAQEH0dAMAAEBB9HQDAABAQfR0AwAAQEGEbgAAACiI4eUAAABQkEYNubhUqlopXsvi6quvTufOndOsWbN069Ytzz777FLPv/POO9OlS5c0a9YsW265Zf70pz8t0/sCAADw9SF0L0Povv3229OvX78MGjQoL7zwQrbeeuvss88++eCDD2o9/+mnn87hhx+eH/3oR3nxxRdz4IEH5sADD8zf//73hnz8AAAAfMU1KHSnVFo5XmW6/PLLc9xxx+WYY47J5ptvnmuvvTarrbZahg4dWuv5V155Zfbdd9+ceeaZ2WyzzXLhhRdmu+22y69+9asGffwAAAB8tTVsIbWqlWMhtfnz52f+/Pk19jVt2jRNmzZd4twFCxZkzJgxGTBgQPW+Ro0apVevXhk9enSt9UePHp1+/frV2LfPPvvk97//fcMbDwAAwFdWg0L32LceX17tWKHOO++8nH/++TX2DRo0KOedd94S506dOjWLFi1Ku3btauxv165dxo8fX2v9yZMn13r+5MmTG9ZwAAAAvtIatnr5SmLAgAFL9ETX1ssNAAAA5RC6U/dQ8tq0adMmlZWVef/992vsf//999O+fftar2nfvn1Z5wMAALByaNhCav8HNWnSJNtvv31GjRpVva+qqiqjRo3KzjvvXOs1O++8c43zk+Thhx+u83wAAABWDhWl0jIs3/1/3O23354+ffrkN7/5TXbaaadcccUVueOOOzJ+/Pi0a9cuRx11VDp27JjBgwcn+fSRYT179swll1ySb33rW7ntttty8cUX54UXXkjXrl1X8E9DXbZcr+eKbgIABbvz8QtWdBMAKFCXziv+d3rDy5fBYYcdlilTpmTgwIGZPHlyttlmmzz44IPVi6W9/fbbadTofwcRdO/ePb/73e9yzjnn5Oc//3k23njj/P73vxe4AQAAVnJ6uqEOeroBVn56ugFWbl+Fnm5zugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAJLnpppsyf/785VpT6AYAAGClNH/+/MyYMaPGa2mh+phjjsnHH3+8XNvQeHkWGzBgQObNm7c8SwIAAMAyGTx4cM4///wa+wYNGpTzzjuv1vNLpdJyb8NyDd3z5s3LkCFDlmdJWGG2HNlzRTcBAABogAEDBqRfv3419jVt2nSp11RUVCzXNizX0A0AAABfFU2bNv3SkP1Fe+21Vxo3XnpUfuGFF+pdT+gGAACAxfbZZ580b958udUTugEAAGCxM888M23btl1u9axeDgAAAFn+87kToRsAAACSFLN6udANAAAASd58882svfbaS+xfuHBhZs2atUw1hW4AAABI8sorr+S3v/1tjX0XXXRRmjdvnjXXXDPf/OY389FHH5VVU+gGAACAJL/85S8ze/bs6u2nn346AwcOzLnnnps77rgj77zzTi688MKyalq9HAAAAJKMGzcu3bt3r96+6667svfee+fss89OkjRr1iw/+clPcvnll9e7pp5uAAAASDJz5sy0bt26evvJJ5/MXnvtVb29xRZb5F//+ldZNYVuAAAASNKxY8e89tprSZJZs2bl5ZdfrtHzPW3atKy22mpl1RS6AQAAIMkhhxySn/70p7n55ptz3HHHpX379vnGN75Rffz555/PpptuWlZNc7oBAAAgycCBA/Pee+/l1FNPTfv27XPLLbeksrKy+vitt96a3r17l1VT6AYAAIAkq666am666aY6jz/66KNl1zS8HAAAAJJ88MEHSz2+aNGiPPvss2XVFLoBAAAgSYcOHWoE7y233DLvvPNO9fbUqVOz8847l1VT6AYAAIAkpVKpxvbEiRPzySefLPWcLyN0AwAAQD1VVFSUdb7QDQAAAAWxejkAAADk017smTNnplmzZimVSqmoqMisWbMyY8aMJKn+/+UQugEAACCfztfeZJNNamxvu+22NbbLHV4udAMAAECW7TncX0boBgAAgCQ9e/Zc7jWFbgAAAKhDqVTKo48+mrlz56Z79+5p1apVWddbvRwAAACSTJ8+PX369MmWW26Z4447LjNmzMhuu+2WXr16pXfv3tlss83yyiuvlFVT6AYAAIAkZ5xxRkaPHp3vf//7GTt2bPbdd98sWrQoo0ePzt/+9rdsttlmOfvss8uqaXg5AAAAJHnggQfyu9/9Lj179szRRx+dddddN4888ki6deuWJLn00ktzwAEHlFVTTzcAAAAkef/996sfGdaxY8c0a9Ys6667bvXx//f//l+mTJlSVk2hGwAAAJJUVVWlsrKyeruysrLGc7nLfUZ3Yng5AAAAVLvhhhvSvHnzJMnChQszfPjwtGnTJkkyc+bMsusJ3QAAAJBPh49ff/311dvt27fPzTffvMQ55RC6AQAAIMnEiROXe01zugEAACDJUUcdlbvvvjuzZ89ebjWFbgAAAEiy0UYb5eKLL06bNm2y33775Zprrsl7773XoJpCNwAAACQZOHBgxowZk9dffz29e/fO73//+2y44YbZfvvtc8EFF+Sll14qu6bQDQAAAJ/TqVOnnHjiiXnooYcyZcqU9O/fPxMmTMiee+6Z9dZbLyeffHJeffXVetUSugEAAKAOLVq0yKGHHpoRI0ZkypQpGTp0aCorKzN69Oh6XW/1cgAAAPiCqVOnZuLEiamoqEjnzp3TunXrVFZWZq+99spee+1V7zp6ugEAAGCxV199NT169Ei7du3SrVu37LTTTmnbtm323HPPjB8/vux6eroBAAAgyeTJk9OzZ8+svfbaufzyy9OlS5eUSqWMGzcu119/fXr06JG///3vadu2bb1rCt0AAACQZMiQIVlvvfXy1FNPpVmzZtX7991335xwwgnZddddM2TIkAwePLjeNQ0vBwAAgCQPP/xw+vfvXyNwf2bVVVfNmWeemYceeqismkI3AAAAJHnjjTey3Xbb1Xl8hx12yBtvvFFWTaEbAAAAksycOTNrrLFGncdbtGiRWbNmlVXTnG4AAABYbObMmbUOL0+SGTNmpFQqlVVP6AYAAIAkpVIpm2yyyVKPV1RUlFVT6AYAAIAkjz766HKvKXQDAABAkp49ey73mkI3AAAAfM7HH3+chx9+OBMnTkxFRUXWX3/99OrVa6mLrNVF6AYAAIDFbrnllpx88smZMWNGjf0tW7bMtddem8MOO6yseh4ZBgAAAEleeOGFHHPMMTnwwAPz4osvZu7cuZkzZ06ef/759O7dOz/84Q/z8ssvl1VTTzcAAAAkueqqq3LggQdm+PDhNfZvt912uemmmzJnzpxceeWVGTp0aL1r6ukGAACAJE899VSOP/74Oo/37ds3Tz75ZFk1hW4AAABI8q9//Wupz+neZJNN8t5775VVU+gGAACAJHPmzEmzZs3qPN60adPMmzevrJrmdAMAAMBiDz30UFq2bFnrsenTp5ddT+gGAACAxfr06bNc6wndAAAAkKSqqmq51zSnGwAAAOqhqqoq999/f1nX6OkGAACApfjnP/+ZoUOHZvjw4ZkyZUo++eSTel+rpxsAAAC+YO7cubnpppvSo0ePbLrppnn66aczcODAvPvuu2XV0dMNAAAAiz333HO54YYbctttt2XDDTfMEUcckaeffjq//vWvs/nmm5ddT+gGAACAJFtttVVmzJiRH/zgB3n66aezxRZbJEl+9rOfLXNNw8sBAAAgyYQJE9KjR4/ssccey9SrXRuhGwAAAJK88cYb2XTTTXPCCSekU6dOOeOMM/Liiy+moqJimWsK3QAAAJCkY8eOOfvss/PPf/4zN998cyZPnpxddtklCxcuzPDhw/OPf/yj7JpCNwAAAHzBnnvumVtuuSWTJk3Kr371qzzyyCPp0qVLttpqq7LqCN0AAABQh5YtW+bEE0/M888/nxdeeCG77757WddbvRwAAACWYsGCBVmwYEG22Wab/Pd//3dZ1+rpBgAAgMWGDRuWU045JSNGjEiSDBgwIC1atEjLli2z9957Z9q0aWXVE7oBAAAgyUUXXZSTTjop48ePz6mnnpoTTjghw4cPzwUXXJBLLrkk48ePzznnnFNWTcPLAQAAIMnw4cNz44035vDDD8/zzz+fbt265Y477shBBx2UJOnatWv69u1bVk093QAAAJDk7bffzq677pok2WGHHdK4ceN07dq1+vhWW22VSZMmlVVT6AYAAIAkn3zySZo2bVq93aRJk6yyyirV240bN86iRYvKqml4OQAAACw2bty4TJ48OUlSKpUyfvz4zJo1K0kyderUsusJ3QAAALDYXnvtlVKpVL397W9/O0lSUVGRUqmUioqKsuoJ3QAAAJDkzTffXO41hW4AAABIMmrUqBxwwAFp06bNcqtpITUAAABIcsstt6RTp07p3r17Lr300rz22msNril0AwAAQJJHHnkkkyZNyoknnpgxY8akW7du2XjjjXP66afniSeeSFVVVdk1hW4AAABYrFWrVjnyyCNzxx13ZOrUqbnqqqsyd+7cHHHEEWnbtm2OOuqo3HXXXZk9e3a96gndAAAAUIsmTZpk3333za9//eu88847efDBB9O5c+dceOGFufzyy+tVw0JqAAAAkGSDDTbIc889l9atW9d6fIcddsgOO+yQCy64IJ988km9aurpBgAAgCQTJ07MokWL6nXuKqusUq/zhG4AAAAoiOHlAAAAsNhDDz2Uli1bLvWcAw44oN71hG4AAABYrE+fPks9XlFRUe8h6Inh5QAAAFBt8uTJqaqqqvNVTuBOhG4AAABI8mkv9vImdAMAAECSUqm03GsK3QAAAJBP53Ovuuqqy7WmhdQAAAAgyXXXXZeqqqoa+95///1ce+21mT17dg444IDsuuuuZdUUugEAACDJj3/84zRp0iS/+c1vkiQzZ87MjjvumHnz5qVDhw4ZMmRI/vCHP2T//fevd03DywEAACDJU089lYMOOqh6+6abbsqiRYvy+uuv5+WXX06/fv3yn//5n2XVFLoBAAAgyXvvvZeNN964envUqFE56KCD0rJlyySfzvl+9dVXy6opdAMAAECSZs2aZe7cudXbzzzzTLp161bj+KxZs8qqKXQDAABAkm222SY333xzkuSvf/1r3n///ey5557Vx//nf/4n66yzTlk1LaQGAAAASQYOHJj99tsvd9xxRyZNmpSjjz46HTp0qD5+zz33ZJdddimrptANAAAASXr27JkxY8bkz3/+c9q3b59DDjmkxvFtttkmO+20U1k1hW4AAABYbLPNNstmm21W67Ef//jHZdczpxsAAACSnHjiiTUWSrv11lsze/bs6u3p06eX9YzuROgGAACAJMlvfvObzJkzp3r7+OOPz/vvv1+9PX/+/Dz00ENl1RS6AQAAIEmpVFrq9rIQugEAAKAgQjcAAAAUxOrlAAAAsNjAgQOz2mqrJUkWLFiQiy66KC1btkySGvO960voBgAAgCQ9evTIhAkTqre7d++eN954Y4lzyiF0AwAAQJLHHntsudc0pxsAAAAKInQDAADAYq+//nruvvvuvPnmm0mSP/7xj+nRo0d23HHHXHTRRWU/RszwcgAAAEhyzz335NBDD02jRo1SUVGR6667Lscff3x23333rLHGGjnvvPPSuHHj9O/fv9419XQDAABAkosuuihnnXVW5s2bl2uuuSZ9+/bN4MGD88ADD+T+++/P1VdfneHDh5dVU+gGAACAJBMmTMixxx6bioqK9OnTJwsWLEivXr2qj3/zm9/MW2+9VVZNoRsAAACSzJ49Oy1atEiSNGrUKKuuumr1M7uTZNVVV838+fPLqil0AwAAQJKKiopUVFTUub0sLKQGAAAASUqlUjbZZJPqoD1r1qxsu+22adSoUfXxcgndAAAAkGTYsGHLvabQDQAAAEl22223bLDBBsu1pjndAAAAkGSrrbZK165d8/Of/zzPPvvscqkpdAMAAECSqVOnZvDgwfnggw9ywAEHpEOHDjnuuONy3333Zd68ectUU+gGAACAJM2aNUvv3r1zww03ZNKkSbn77rvTunXr9O/fP23atMmBBx6YoUOHZsqUKfWuKXQDAADAF1RUVKR79+655JJLMm7cuLz44ovZbbfdMnz48HTq1ClXX311vepYSA0AAAC+xMYbb5zTTz89p59+eqZNm5YPP/ywXtcJ3QAAAPA5jzzySEaOHJmJEyemoqIi66+/fg4++OD06NEjSdK6deu0bt26XrUMLwcAAIDF+vbtm169euXWW2/NtGnTMmXKlIwYMSJ77LFHTjnllLLrCd0AAACQ5J577smwYcMydOjQTJ06NaNHj84zzzyTKVOm5Prrr891112Xe++9t6yaQjcAAAAkGTZsWPr165ejjz46FRUV1fsbNWqUY489Nj/96U9z4403llVT6AYAAIAkL7zwQr773e/Wefx73/texowZU1ZNoRsAAACSTJ06NZ06darzeKdOnTJt2rSyagrdAAAAkGTBggVZZZVV6jzeuHHjLFiwoKyaHhkGAAAAi5177rlZbbXVaj02Z86csusJ3QAAAJCkR48emTBhwpeeUw6hGwAAAJI89thjy72mOd0AAABQEKEbAAAAFps9e3YGDhyYrl27pnnz5mnRokW22mqrXHDBBeZ0AwAAwLJasGBBevbsmb///e/Zb7/90rt375RKpbz22mu56KKL8sADD+SJJ55Y6grnXyR0AwAAQJJrrrkm7777bl5++eVsuummNY6NHz8+u+++e6699tqccsop9a5peDkAAAAkGTlyZM4999wlAneSdOnSJWeffXbuuuuusmoK3QAAAJBk3Lhx2X333es8vscee2TcuHFl1RS6AQAAIMn06dPTunXrOo+3bt06H3/8cVk1hW4AAABIUlVVlcrKyjqPN2rUKIsWLSqrpoXUAAAAIEmpVMpee+2Vxo1rj8oLFy4su6bQDQAAAEkGDRr0peccdNBBZdUUugEAACD1C93lMqcbAAAAvsSMGTNyzTXXZIcddijrOj3dAAAAUIdHH300Q4cOzciRI9OyZct897vfLet6oRsAAAA+57333svw4cMzbNiwTJ8+PR999FF+97vf5dBDD01FRUVZtQwvBwAAgCR333139t9//2y66aZ56aWX8stf/jL/+te/0qhRo2y55ZZlB+5ETzcAAAAkSQ477LD0798/t99+e1q0aLFcaurpBgAAgCQ/+tGPcvXVV2fffffNtddem48++qjBNYVuAAAASPKb3/wmkyZNyo9//OPceuut6dChQ77zne+kVCqlqqpqmWoK3QAAALDYqquumj59+uTxxx/P2LFjs/nmm6ddu3bZZZdd8oMf/CAjR44sq57QDQAAALXYeOONM3jw4LzzzjsZMWJE5syZk8MPP7ysGkI3AAAAfM60adOq//3OO+/kvPPOy+OPP55+/frlnXfeKauW0A0AAABJxo4dm86dO6dt27bp0qVLXnrppey4444ZMmRIrrvuuuy55555+umny6opdAMAAECSs846K1tuuWWeeOKJ7L777vn2t7+db33rW/n444/z0Ucf5fjjj88ll1xSVk3P6QYAAIAkzz33XB555JFstdVW2XrrrXPdddflxBNPTKNGn/ZXn3LKKfnGN75RVk093QAAAJDkww8/TPv27ZMkzZs3z+qrr55WrVpVH2/VqlVmzpxZVk2hGwAAABarqKhY6na5DC8HAACAxY4++ug0bdo0STJv3rz07ds3q6++epJk/vz5ZdcTugEAACBJnz59amwfeeSRS5xz1FFHlVVT6AYAAIAkw4YNW+41zekGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgjRe0Q2Ar6o7H79gRTcBgIId0nPgim4CAAUa+9bjK7oJeroBAACgKEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCNF7RDQAAAIAizJ8/P/Pnz6+xr2nTpmnatOlSr/v444/z8MMPZ+LEiamoqMj666+fXr16ZY011ii7Dcs1dDdr1iynnXba8iwJK8zxPzlwRTcBAABogMGDB+f888+vsW/QoEE577zz6rzmlltuycknn5wZM2bU2N+yZctce+21Oeyww8pqQ0WpVCqVdQX8HzF+4uMrugkAFOyQngNXdBMAKNDz//hzWT3dL7zwQrp165Yjjjgip512Wrp06ZJSqZRx48bliiuuyG233ZbnnnsuW2+9db3bIHRDHYRugJWf0A2wchv7Vnm/0x9zzDGZNWtW7rzzzlqPH3zwwVljjTUydOjQete0kBoAAAAkeeqpp3L88cfXebxv37558skny6opdAMAAECSf/3rX9lkk03qPL7JJpvkvffeK6um0A0AAABJ5syZk2bNmtV5vGnTppk3b15ZNT0yDAAAABZ76KGH0rJly1qPTZ8+vex6QjcAAAAs1qdPn6Uer6ioKKue0A0AAABJqqqqlntNc7oBAACgIHq6AQAA4HMeeeSRjBw5MhMnTkxFRUXWX3/9HHzwwenRo0fZtfR0AwAAwGJ9+/ZNr169cuutt2batGmZMmVKRowYkT322COnnHJK2fWEbgAAAEhyzz33ZNiwYRk6dGimTp2a0aNH55lnnsmUKVNy/fXX57rrrsu9995bVk2hGwAAAJIMGzYs/fr1y9FHH11jlfJGjRrl2GOPzU9/+tPceOONZdUUugEAACDJCy+8kO9+97t1Hv/e976XMWPGlFVT6AYAAIAkU6dOTadOneo83qlTp0ybNq2smkI3AAAAJFmwYEFWWWWVOo83btw4CxYsKKumR4YBAADAYueee25WW221Wo/NmTOn7HpCNwAAACTp0aNHJkyY8KXnlEPoBgAAgCSPPfbYcq9pTjcAAADUw2uvvZYzzjijrGuEbgAAAKjD7Nmzc+ONN6Z79+7ZYost8uCDD5Z1vdANAAAAX/DUU0/l2GOPTbt27fLjH/843bt3z7hx4/L3v/+9rDpCNwAAACT54IMPctlll6VLly45+OCDs+aaa+axxx5Lo0aNcuyxx6ZLly5l17SQGgAAACRZb731cvDBB+fKK6/M3nvvnUaNGt5PracbAAAA8mnofvLJJ/PEE0/kH//4x3KpKXQDAABAkvHjx+eWW27JpEmTsuOOO2b77bfPkCFDkiQVFRXLVFPoBgAAgMV22WWXDB06NJMmTUrfvn1z5513ZtGiRTnxxBNz/fXXZ8qUKWXVE7oBAADgC5o3b57jjjsuTz/9dF599dVst912Oeecc7LOOuuUVUfoBgAAgKXYbLPN8stf/jLvvfdebr/99rKutXo5AAAA1KFUKuXRRx/N3Llz071793zve98r63o93QAAAJBk+vTp6dOnT7bccsscd9xxmTFjRnbbbbf06tUrvXv3zmabbZZXXnmlrJpCNwAAACQ544wzMnr06Hz/+9/P2LFjs++++2bRokUZPXp0/va3v2WzzTbL2WefXVZNw8sBAAAgyQMPPJDf/e536dmzZ44++uisu+66eeSRR9KtW7ckyaWXXpoDDjigrJp6ugEAACDJ+++/n0022SRJ0rFjxzRr1izrrrtu9fH/9//+n0eGAQAAwLKoqqpKZWVl9XZlZWUqKiqqtz//7/oyvBwAAAAWu+GGG9K8efMkycKFCzN8+PC0adMmSTJz5syy61WUSqXScm0hrCTGT3x8RTcBgIId0nPgim4CAAUa+1Z5v9N37ty5Xr3Zb775Zr1r6ukGAACAJBMnTlzuNc3pBgAAgCRHHXVU7r777syePXu51RS6AQAAIMlGG22Uiy++OG3atMl+++2Xa665Ju+9916DagrdAAAAkGTgwIEZM2ZMXn/99fTu3Tu///3vs+GGG2b77bfPBRdckJdeeqnsmkI3AAAAfE6nTp1y4okn5qGHHsqUKVPSv3//TJgwIXvuuWfWW2+9nHzyyXn11VfrVUvoBgAAgCRvv/12vviArxYtWuTQQw/NiBEjMmXKlAwdOjSVlZUZPXp0vWpavRwAAACSrL/++pk0aVLatm1b6/HKysrstdde2WuvvepdU083AAAAJEv0ci8PQjcAAAAsVlFRsVzrGV4OAAAAi5177rlZbbXVlnrO5ZdfXu96QjcAAAAsNnbs2DRp0qTO4+X2hAvdAAAAsNg999xT50Jqy8KcbgAAAMjyn8+dCN0AAACQxOrlAAAAUJhhw4alZcuWy7Wm0A0AAABJdt5557z88ss19o0aNSp77LFHdtppp1x88cVl1xS6AQAAIEn//v1z//33V2+/+eab6d27d5o0aZKdd945gwcPzhVXXFFWTauXAwAAQJLnn38+Z511VvX2iBEjsskmm+Shhx5Kkmy11Va56qqr8tOf/rTeNfV0AwAAQJKpU6emU6dO1duPPvpoevfuXb29++67Z+LEiWXVFLoBAAAgyVprrZVJkyYlSaqqqvL888/nG9/4RvXxBQsWlL3CudANAAAA+bQn+8ILL8w777yTK664IlVVVdl9992rj48bNy6dO3cuq6Y53QAAAJDkoosuyt5775311lsvlZWV+e///u+svvrq1cdvvvnm7LnnnmXVFLoBAAAgSefOnfPaa6/l1Vdfzdprr5111lmnxvHzzz+/xpzv+hC6AQAAYLHGjRtn6623rvVYXfuXxpxuAAAASLL55pvnww8/rN4+8cQTM3Xq1OrtDz74IKuttlpZNYVuAAAASDJ+/PgsXLiwevuWW27JjBkzqrdLpVLmzZtXVk2hGwAAAGpR2+PBKioqyqohdAMAAEBBhG4AAADIp73YX+zJLrdn+4usXg4AAAD5dDj5XnvtlcaNP43Kc+fOTe/evdOkSZMkqTHfu76EbgAAAEgyaNCgGtvf+c53ljjnoIMOKqum0A0AAABZMnQvD+Z0AwAAwFIsWLAgs2bNWqZrhW4AAABYbNiwYTnllFMyYsSIJMmAAQPSokWLtGzZMnvvvXemTZtWVj2hGwAAAJJcdNFFOemkkzJ+/PiceuqpOeGEEzJ8+PBccMEFueSSSzJ+/Picc845ZdU0pxsAAACSDB8+PDfeeGMOP/zwPP/88+nWrVvuuOOO6sXTunbtmr59+5ZVU083AAAAJHn77bez6667Jkl22GGHNG7cOF27dq0+vtVWW2XSpEll1RS6AQAAIMknn3ySpk2bVm83adIkq6yySvV248aNs2jRorJqGl4OAAAAi40bNy6TJ09OkpRKpYwfP7565fKpU6eWXU/oBgAAgMX22muvlEql6u1vf/vbSZKKioqUSqVUVFSUVU/oBgAAgCRvvvnmcq8pdAMAAECSUaNG5YADDkibNm2WW00LqQEAAECSW265JZ06dUr37t1z6aWX5rXXXmtwTaEbAAAAkjzyyCOZNGlSTjzxxIwZMybdunXLxhtvnNNPPz1PPPFEqqqqyq4pdAMAAMBirVq1ypFHHpk77rgjU6dOzVVXXZW5c+fmiCOOSNu2bXPUUUflrrvuyuzZs+tVT+gGAACAWjRp0iT77rtvfv3rX+edd97Jgw8+mM6dO+fCCy/M5ZdfXq8aFaXPr4UOVBs/8fEV3QQACnZIz4ErugkAFGjsW8X9Tv/JJ59klVVW+dLz9HQDAADAYrNnz87AgQPTtWvXNG/ePC1atMhWW22VCy64IHPmzKk+rz6BO/HIMAAAAEiSLFiwID179szf//737Lfffundu3dKpVJee+21XHTRRXnggQfyxBNP1DtwJ0I3AAAAJEmuueaavPvuu3n55Zez6aab1jg2fvz47L777rn22mtzyimn1Lum4eUAAACQZOTIkTn33HOXCNxJ0qVLl5x99tm56667yqopdAMAAECScePGZffdd6/z+B577JFx48aVVVPoBgAAgCTTp09P69at6zzeunXrfPzxx2XVFLoBAAAgSVVVVSorK+s83qhRoyxatKismhZSAwAAgCSlUil77bVXGjeuPSovXLiw7JpCNwAAACQZNGjQl55z0EEHlVVT6AYAAIDUL3SXS+gGAACAL5g6dWomTpyYioqKdO7ceakLrC2NhdQAAABgsVdffTU9evRIu3bt0q1bt+y0005p27Zt9txzz0yYMKHsenq6AQAAIMnkyZPTs2fPrL322rn88svTpUuXlEqljBs3Ltdff3122223/P3vf0/btm3rXVPoBgAAgCRDhgzJeuutl6eeeirNmjWr3r/vvvvmhBNOyK677pohQ4Zk8ODB9a5peDkAAAAkefjhh9O/f/8agfszq666as4888w89NBDZdUUugEAACDJG2+8ke22267O4zvssEPeeOONsmoK3QAAAJBk5syZWWONNeo83qJFi8yaNausmuZ0AwAAwGIzZ86sdXh5ksyYMSOlUqmsekI3AAAAJCmVStlkk02WeryioqKsmkI3AAAAJHn00UeXe02hGwAAAJL07NnzS8/58MMPy6ppITUAAAD4En/+859z6KGHpmPHjmVdJ3QDAABALd56660MGjQonTt3ziGHHJJGjRrlpptuKquG4eUAAACw2IIFCzJy5MjccMMNeeqpp9KrV6+8++67efHFF7PllluWXU9PNwAAACQ55ZRTss466+TKK6/Md7/73bz77ru57777UlFRkcrKymWqqacbAAAAklxzzTXp379/fvazn6VFixbLpaaebgAAAEhy880359lnn02HDh1y2GGH5f7778+iRYsaVFPoBgAAgCSHH354Hn744YwdOzZdunTJSSedlPbt26eqqirjxo1bpppCNwAAAHzO+uuvn/PPPz8TJ07MLbfckoMOOihHHnlkOnXqlFNPPbWsWuZ0AwAAQC0qKiqyzz77ZJ999sm0adNy8803Z9iwYWXV0NMNAAAAX6J169b56U9/mpdffrms64RuAAAAWOz111/P3XffnTfffDNJ8sc//jE9evTIjjvumIsuuiilUqmseoaXAwAAQJJ77rknhx56aBo1apSKiopcd911Of7447P77rtnjTXWyHnnnZfGjRunf//+9a6ppxsAAACSXHTRRTnrrLMyb968XHPNNenbt28GDx6cBx54IPfff3+uvvrqDB8+vKyaQjcAAAAkmTBhQo499thUVFSkT58+WbBgQXr16lV9/Jvf/GbeeuutsmoK3QAAAJBk9uzZadGiRZKkUaNGWXXVVbPaaqtVH1911VUzf/78smoK3QAAAJBPHxFWUVFR5/aysJAaAAAAJCmVStlkk02qg/asWbOy7bbbplGjRtXHyyV0AwAAQJJhw4Yt95pCNwAAACTZbbfdssEGGyzXmuZ0AwAAQJKtttoqXbt2zc9//vM8++yzy6Wm0A0AAABJpk6dmsGDB+eDDz7IAQcckA4dOuS4447Lfffdl3nz5i1TTaEbAAAAkjRr1iy9e/fODTfckEmTJuXuu+9O69at079//7Rp0yYHHnhghg4dmilTptS7ptANAAAAX1BRUZHu3bvnkksuybhx4/Liiy9mt912y/Dhw9OpU6dcffXV9aojdAMAAECSY489NjNnzqz12MYbb5zTTz89TzzxRP71r3/lm9/8Zr1qCt0AAACQ5Le//W3mzp37pee1bt06G2+8cb1qCt0AAACQpFQqLfeantMNAAAAi82cOTPNmjVb6jlrrLFGvesJ3QAAALDYJptsUuexUqmUioqKLFq0qN71hG4AAABY7K677spaa6213OoJ3QAAALDYLrvskrZt2y63ehZSAwAAgIII3QAAAJBkvfXWS2Vl5XKtaXg5AAAAJHnzzTdr3f/4449n9uzZ2XnnndOqVauyagrdAAAAkOTSSy/NrFmzcuGFFyb5dLXy/fbbL3/+85+TJG3bts2oUaOyxRZb1Lum4eUAAACQ5Pbbb0/Xrl2rt++666488cQT+etf/5qpU6dmhx12yPnnn19WTaEbAAAA8unw8q222qp6+09/+lMOPvjg7LLLLllrrbVyzjnnZPTo0WXVFLoBAAAgycKFC9O0adPq7dGjR6d79+7V2+uss06mTp1aVk2hGwAAAJJsuOGGeeKJJ5Ikb7/9dv7xj3+kR48e1cfffffdtG7duqyaFlIDAACAJCeddFJOPvnk/PWvf80zzzyTnXfeOZtvvnn18UceeSTbbrttWTWFbgAAAEhy3HHHpbKyMvfdd1969OiRQYMG1Tj+r3/9K8ccc0xZNStKpVJpeTYSVhbjJz6+opsAQMEO6TlwRTcBgAKNfWvF/05vTjcAAAAkueOOO7JgwYLq7XfffTdVVVXV23PmzMlll11WVk2hGwAAAJIcfvjhmT59evX25ptvnokTJ1Zvz5w5MwMGDCirptANAAAASb44+3p5zMYWugEAAKAgQjcAAAAUxCPDAAAAYLGHHnooLVu2TJJUVVVl1KhR+fvf/54kNeZ715dHhkEdPDIMYOXnkWEAK7dyHxnWqNGXDwavqKjIokWL6l1TTzcAAAAkNR4PtrwI3QAAAPA506ZNS+vWrZMk77zzTq6//vrMmzcvvXv3zm677VZWLQupAQAAQJKxY8emc+fOadu2bbp06ZKXXnopO+64Y4YMGZLf/OY32WOPPfL73/++rJpCNwAAACQ566yzsuWWW+aJJ57I7rvvnm9/+9v51re+lY8//jgfffRRjj/++FxyySVl1bSQGtTBQmoAKz8LqQGs3MpdSK1NmzZ55JFHstVWW2XWrFlZY4018txzz2X77bdPkowfPz7f+MY3ylrFXE83AAAAJPnwww/Tvn37JEnz5s2z+uqrp1WrVtXHW7VqlZkzZ5ZVU+gGAACAxSoqKpa6XS6rlwMAAMBiRx99dJo2bZokmTdvXvr27ZvVV189STJ//vyy6wndAAAAkKRPnz41to888sglzjnqqKPKqil0AwAAQJJhw4Yt95rmdAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBKkqlUmlFNwKAFW/+/PkZPHhwBgwYkKZNm67o5gCwnLnPw4ohdAOQJJkxY0ZatmyZjz/+OGusscaKbg4Ay5n7PKwYhpcDAABAQYRuAAAAKIjQDQAAAAURugFIkjRt2jSDBg2yuA7ASsp9HlYMC6kBAABAQfR0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBlYKRx99dCoqKqpfrVu3zr777ptXXnlliXOPP/74VFZW5s4771zi2HnnnVddo3HjxmnTpk169OiRK664IvPnz69x7u677159btOmTdOxY8f07t07I0eOrLWNc+fOzeqrr55//vOfGT58eI32Nm/ePNtvv/0S137+PT7/6tu3b/U5jz/+ePbcc8+stdZaWW211bLxxhunT58+WbBgwRKfyxdfnTt3rvF+e+yxR2644YZMnDixxnlNmjTJRhttlF/84hep7aEX7777bpo0aZKuXbvW+rN/vtbqq6+ejTfeOEcffXTGjBlT47zHHnus+rxGjRqlZcuW2XbbbXPWWWdl0qRJtdY+//zzc+SRRyZJOnfuXH19ZWVl1llnnfzoRz/KRx99VOt7fPE1efLkJMmcOXMyYMCAbLjhhmnWrFnWXnvt9OzZM3/4wx+W+Gxqew0fPrzWtgLLrj73+br+N3nbbbdVn3P99ddn6623TvPmzbPmmmtm2223zeDBg5PUvIfU9jr66KOr6yzLPf0zt956ayorK3PSSSctcayc+2A531mfKfc+//n3+PyrS5cu1ee8+eab+cEPfpB11lknzZo1S6dOnfKd73wn48ePX+Kzqe01ceLE6lrl3tM/r0uXLmnatGn1vfzzyvnOru93FtSX0A2sNPbdd99MmjQpkyZNyqhRo9K4ceN8+9vfrnHOnDlzctttt+Wss87K0KFDa62zxRZbZNKkSXn77bfz6KOP5pBDDsngwYPTvXv3zJw5s8a5xx13XCZNmpT/+Z//yd13353NN9883//+9/PjH/94iboPP/xw1ltvvWy00UZJkjXWWKO6vS+++GL22WefHHrooZkwYUKt7/H512WXXZYkGTduXPbdd9/ssMMOeeKJJzJ27NhcddVVadKkSRYtWpQrr7yyxnVJMmzYsOrt5557rvp9Pvzwwzz11FPp3bt39b6//OUvmTRpUl5//fWcf/75ueiii2r93IYPH55DDz00M2bMyN/+9rdaP9fP3vfVV1/N1VdfnVmzZqVbt2656aabljh3woQJ+de//pXnnnsu/fv3z1/+8pd07do1Y8eOXeLcP/zhDznggAOqty+44ILq//xGjBiRJ554Iqeeemqt7/HFz7Vt27ZJkr59+2bkyJG56qqrMn78+Dz44IM5+OCDM23atKy77ro1rjn99NOr/zvz2euwww6r9TMAGqY+9/nP3+M+ex144IFJkqFDh+anP/1pTj311Lz00kt56qmnctZZZ2XWrFlJkueee676mrvvvjtJzXvFlVdeWf0+y3pPT5Ibb7wxZ511Vm699dbMmzev1p+1vvfBcr6zlvU+/8V73KRJk/Lkk08mST755JPsvffe+fjjjzNy5MhMmDAht99+e7bccstMnz49hx12WI3rdt555yW+19Zdd93q91rWe/qTTz6ZuXPn5uCDD85vf/vbWj/Tcr6zy/nOgi9VAlgJ9OnTp/Sd73ynxr6//vWvpSSlDz74oHrf8OHDS9/4xjdK06dPL6222mqlt99+u8Y1gwYNKm299dZL1H/ttddKTZo0KZ199tnV+3r27Fn6yU9+ssS5Q4cOLSUpPfzwwzX2H3vssaX+/fuXSqVSadiwYaWWLVvWOL5o0aLSKqusUrrjjju+9D0+M2TIkFLnzp3rPP5FSUr33HNPrcduuummUrdu3UqlUqn05ptvlpKUXnzxxRrn7LXXXqUTTzyxxr6qqqrSBhtsUHrwwQdL/fv3Lx133HH1ft+jjjqq1KJFi9KHH35YKpVKpUcffbSUpPTRRx/VOG/OnDmlTTfdtLTLLrvU2P/222+XmjRpUvr4449LpVKptN5665WGDBlS45wLL7ywtPnmm1dv1/Uen9eyZcvS8OHD6zz+eXX9dwZYvupzn1/aPa5UKpW+853vlI4++uh6vd+X3SuW5Z5eKpVKb7zxRmnVVVctTZ8+vdStW7fSiBEj6vW+td0Hy/nOKpWW7T7/Zfe4F198sZSkNHHixDrP+bylfa8tyz39M0cffXTpZz/7WemBBx4obbLJJvV+39q+s+v7nQX1pacbWCnNmjUrt9xySzbaaKO0bt26ev+NN96YI488Mi1btsx+++1X72HAXbp0yX777VfnUMHP69OnT1q1alXj3Kqqqtx///35zne+U+s1ixYtqv7L/HbbbVevNiVJ+/btM2nSpDzxxBP1vqYu9957b53tS5Lnn38+Y8aMSbdu3Wrsf/TRRzNnzpz06tUrRx55ZG677bbMnj27Xu952mmnZebMmXn44YeXet6qq66avn375qmnnsoHH3xQo82777571lhjjVqve++993Lfffct0eYv0759+/zpT39aopcI+Oqo6z6/NO3bt88zzzyTt956q0Hv3ZB7+rBhw/Ktb30rLVu2zJFHHpkbb7yxXu9Z132wNnV9Zy3rfX5p1l577TRq1Ch33XVXFi1aVO/rarOs9/SZM2fmzjvvzJFHHlnd6/7Xv/61Xu9Z23d2Xer7nQVfJHQDK437778/zZs3T/PmzdOiRYvce++9uf3229Oo0ae3utdffz3PPPNM9dDfI488MsOGDat1jnJtunTpUmPeWV0aNWqUTTbZpMa5zzzzTJLU+EXh448/rm5vkyZNcsIJJ+S6667LhhtuWKPer3/96+rzPnuNGDEiSXLIIYfk8MMPT8+ePdOhQ4d897vfza9+9avMmDGjXj/TZ+bPn58HH3ywxpC+JOnevXt1+3bccccceuihOeqoo2qcc+ONN+b73/9+Kisr07Vr12ywwQa1zpevzWdzAuvzudZ27heHISZJ//7907x586y66qrp1KlTKioqcvnlly9Rr1OnTjU+0y222KL62HXXXZenn346rVu3zo477pjTTjstTz31VL1+JqA4X3afT5LDDz98iXvm22+/nSQZNGhQ1lxzzXTu3Dmbbrppjj766Nxxxx2pqqoqqx3Lek+vqqrK8OHDq+csf//738+TTz6ZN998s17vW+498/PnNeQ+P3bs2CU+08/WFunYsWP++7//OwMHDkyrVq2y55575sILL8wbb7xRr5/p85b1nn7bbbdl4403zhZbbJHKysp8//vfr/cfM2r7zq5LOZ8/fJ7QDaw09thjj7z00kt56aWX8uyzz2afffbJfvvtV92jMXTo0Oyzzz5p06ZNkmT//ffPxx9/nEceeaRe9UulUioqKpbp3D/84Q/59re/XeMXwxYtWlS398UXX8zFF1+cvn375r777qtR64gjjqg+77PXZ7+UVFZWZtiwYXn33Xdz2WWXpWPHjrn44our59/V1yOPPJK2bdvWCJ5Jcvvtt+ell17Kyy+/nDvuuCN/+MMf8rOf/az6+PTp0zNy5MjqXyCTlNVz89kfPOrzuX7x3BkzZuTxxx9f4he0M888My+99FJeeeWVjBo1KknyrW99a4kemL/+9a81PtM//elP1cd69OiRN954I6NGjcrBBx+cV199NbvttlsuvPDCev1cQDG+7D6fJEOGDFninrnOOuskSTp06JDRo0dn7Nix+clPfpKFCxemT58+2XfffcsK3st6T3/44Ycze/bs7L///kmSNm3aZO+9965zjZEvKvee+fnzlvU+nySbbrrpEp/pBRdcUH38pJNOyuTJkzNixIjsvPPOufPOO7PFFluU1SPckHv60KFDl/geuvPOO+s9Wqm+3+/lfP5Qwwob2A6wHNU212/hwoWl1VdfvXT22WeXFi5cWOrQoUOpoqKiVFlZWf1KUvrBD35Qfc3S5q717t27tMUWW1Rv1zU/bOHChaVWrVqVTjrppOp9Xbp0Kf3+97+v3q5t/l+pVCrts88+Nebrfdmc7tp8+OGHpTZt2pQGDhy4xLHUMU+tb9++pZ/+9KfV23XN9Rs8eHCpcePGpblz55ZKpVLp6quvLiWp8Zk2atSolKQ0YcKEL33fMWPGlJKU7rzzzlKptPQ5lL/85S9rzN287bbbSttss02Nc2qb/zd69Oga8/XqM6e7NhdeeGFplVVWKc2fP7/GfnO64d/jy+7zpdKXz+muzWfzwh955JEa+5d2r1jWe/ohhxyyxD2zoqKitO6665YWLVr0pe/7xftgOd9Zy3qfX5Z7XFVVVWnvvfcu9ejRY4ljdX2vLes9/dVXXy0lKTVq1GiJ7/frrrvuS9+3tu/s+n5nQX3p6QZWWp89bmXu3LnV83NffPHFGn+pv/XWWzNy5MhMnz59qbU+W8H6oIMO+tL3/e1vf5uPPvqo+tzXX389b731Vvbee+8vvbaysjJz586t189Xl1atWqVDhw71nlddKpVy3333LXWe3+fbt3DhwixYsCDJp0PLTz/99Bqf6csvv5zddtutXj03V1xxRdZYY4306tVrqefNnTs31113XXr06JG11147yac9TfVt82c1GmLzzTfPwoUL61xpGPj3+/x9flltvvnmSVLve+ay3tOnTZuWP/zhD7nttttq3DNffPHFfPTRR/nzn/+81Fq13Qfr8sXvrIbc55fFZ48Uq+9nmiz7Pf3GG29Mjx498vLLL9f4XPv161evUVdf/M5emvp+Z8EXNV7RDQBYXubPn1/9bM6PPvoov/rVrzJr1qz07t07V1xxRb71rW9l6623rnHN5ptvntNOOy0jRoyofl7qwoULM3ny5FRVVWXatGl57LHH8otf/CLbbLNNzjzzzBrXz5kzJ5MnT87ChQvz7rvv5p577smQIUNywgknZI899kjy6S8SvXr1ymqrrVbj2lKpVN3euXPn5uGHH85DDz2UgQMH1voen9e0adO0atUqv/nNb/LSSy/lu9/9bjbccMPMmzcvN910U1599dVcddVV9frcxowZkzlz5mTXXXdd4ti0adOqf76xY8fmyiuvzB577JE11lgjL730Ul544YWMGDGixvNak0/nVF5wwQX5xS9+kcaNP/2qmT59eiZPnpz58+fnH//4R37zm9/k97//fW666aasueaaNa7/4IMPMm/evMycOTNjxozJZZddlqlTp1YvdLNw4cI88MADOeOMM5Zo88yZMzN58uSUSqW88847Oeuss7L22mune/futb7H57Vu3TqrrLJKdt999xx++OHZYYcd0rp164wbNy4///nPq392YMVY2n3+M5/daz6vRYsWWX311XPCCSdknXXWyZ577plOnTpl0qRJ+cUvfpG11147O++8c73asKz39JtvvjmtW7fOoYceusTw5P333z833nhj9t133+p9X3Yf/Ex9vrOW9T7/xff4vIqKirRr1y4vvfRSBg0alB/+8IfZfPPN06RJkzz++OMZOnRo+vfvX6/PdFnv6Z988kluvvnmXHDBBenatWuN6/7jP/4jl19+eV599dXqIfX1+c7+TDnfWfClVmQ3O8Dy0qdPn1KS6leLFi1KO+64Y+muu+4qTZ48udS4ceMlHtvymRNOOKG07bbblkqlT4fRfVajsrKytNZaa5V23XXX0pAhQ0rz5s2rcV3Pnj2rz23SpEmpQ4cOpW9/+9ulkSNH1jhv1113LV1//fU19g0bNqxGe5s2bVraZJNNShdddFFp4cKFtb7H51/77LNPqVQqlV544YXSkUceWVp//fVLTZs2LbVu3brUo0eP0r333lvrz5pahsydc845pSOOOKLGvs+GHX7+s+jUqVPpuOOOqx7WePLJJ9f62JZSqVSaNGlSqVGjRqU//OEP1e/72atZs2alDTfcsNSnT5/SmDFjalz32bDKJKWKiopSixYtSltvvXXpzDPPLE2aNKn6vL/85S+lTp06LfG+6623Xo33WnvttUv7779/jeGTn3+PL75Gjx5dKpVKpYsvvri08847l9Zaa61Ss2bNShtssEHp1FNPLU2dOnWJ9zS8HP49lnaf/0xd/9sePHhwqVQqle66667S/vvvX+rQoUOpSZMmpXXWWad00EEHlV555ZUl3q+uYd7Lek/fcsstl3jk4mduv/32UpMmTUpTpkyp932wVKr/d9ay3ue/+B5f/BlLpVJpypQppVNPPbXUtWvXUvPmzUstWrQobbnllqX/+q//qh4y/3m1DfNe1nv6XXfdVWrUqFFp8uTJtX6um222Wem0006rft/6fGeXSvX/zoL6qiiV6rlsLwBlmzp1ajp06JB333037dq1W9HNqdVWW22Vc845J4ceeuiKbkq9nXrqqVm4cGF+/etfr+imAP+HfB3u6bX5qt/n3dNZ2RleDlCgDz/8MJdffvlX9pezBQsW5KCDDsp+++23optSlq5du9Z7KCjA8vJVv6fX5utwn3dPZ2WnpxsAAAAKYvVyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoyP8HDFrZf5rgVMQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap(\n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'transmissibility_function_reassortment_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='transmissibility_function_reassortment_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=24\n", + " # How many sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXsAAALmCAYAAAAT90eJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADa5ElEQVR4nOzdd3hUZfrG8fvMTHohJHRC74LSi4sISFEQQRQRcRVU0B8qq66iiwWwo667KqjIUi00EUREBFG60kFpoSOEDoH0NjPn90fMkCGTAGGSkOH7ua5cnJzznvd9ZhAwd948xzBN0xQAAAAAAAAAoESzFHcBAAAAAAAAAIArR9gLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA+wFXcBuDqkpaVp69atkqSyZcvKZuM/DQAAAAAAvM1ut+vUqVOSpOuvv16BgYHFXBEAX0KiB0nS1q1b1apVq+IuAwAAAACAa8a6devUsmXL4i4DgA+hjQMAAAAAAAAA+AB29kJSVuuGbOvWrVPFihWLsRoAAAAAAHzTsWPHXD9Zm/NrcQDwBsJeSJJbj96KFSsqOjq6GKsBAAAAAMD38bwcAN5GGwcAAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4gGs27D158qS+//57jRgxQt26dVOZMmVkGIYMw9DAgQMve76FCxeqd+/eio6OVkBAgKKjo9W7d28tXLjwkuew2+0aN26c2rVrp7JlyyooKEi1atXSY489pu3bt192TQAAAAAAAACuHbbiLqC4lC9f3ivzOJ1OPfroo5o4caLb+SNHjujIkSP69ttvNWjQIH322WeyWPLO1k+fPq3u3btr/fr1buf379+v8ePHa+rUqRo7dqwGDRrklboBAAAAAAAA+JZrdmdvTlWrVlXXrl0LdO9LL73kCnqbNm2q6dOna926dZo+fbqaNm0qSZowYYJefvnlPOdwOBzq3bu3K+i96667tHDhQq1du1YfffSRypUrp/T0dD322GOXtVMYAAAAAAAAwLXDME3TLO4iisPIkSPVsmVLtWzZUuXLl9fBgwdVo0YNSdKAAQM0ZcqUi86xe/duNWzYUHa7XS1atNCKFSsUFBTkup6SkqL27dtrw4YNstls2rlzp2rXrp1rnkmTJumRRx6RJD3++OP6+OOP3a7v3btXzZs3V0JCgmrXrq2dO3fKZvPupuzY2FhVqVJFknT48GFFR0d7dX4AAAAAAMDX3wAK1zW7s/fVV19Vjx49rqidwwcffCC73S5JGjNmjFvQK0nBwcEaM2aMpKx+vP/97389zvPvf/9bkhQZGan33nsv1/XatWtr+PDhkrKC37lz5xa4ZgAAAAAAAAC+6ZoNe6+UaZqaN2+eJKl+/fpq06aNx3Ft2rRRvXr1JEnz5s3ThRupd+/erZ07d0qS+vbtq+DgYI/z5HxoHGEvAAAAAAAAgAsR9hbQgQMHdPToUUlS+/bt8x2bff3IkSM6ePCg27VVq1blGudJhQoVVLduXUnS6tWrC1IyAAAAAAAAAB/m3cav15AdO3a4juvXr5/v2JzXd+7c6eoNXJB5du/ercOHDys5OVkhISGXXG9sbGy+148dO3bJcwEAAAAAUFxMR7rsCbtlP7dT9vidf/0ao5BGzyq41gPFXR4AFCvC3gLKGZ5erJl6duN1Kav5+pXOY5qmYmNjXe0hLkXOGgAAAAAAuNo5M+LPB7rxWYGu/dxOOZL2S6Yz13h73BaJsBfANY6wt4ASExNdx6GhofmOzbkDNykpqVDmAQAAAACgpDFNU87UYzlC3RjXbl1n6uX9BKr93M5CqhIASg7C3gJKS0tzHfv7++c7NiAgwHWcmppaKPNczIU7ii907NgxtWrV6rLmBAAAAADgUphOhxxJ+10tF3K2XzAz472yhj0+xivzAEBJRthbQIGBga7jjIyMfMemp6e7joOCgvKdJ+fnlzPPxVysRQQAAAAAAFfKtKfKHr/rfKCbHeom7Jac+X/tfLkswdGyRTSQrdRfHxHXeXV+ACiJCHsLKCwszHV8sZYKycnJruMLWzVcOE9+YW9+8wAAAAAAUFSc6XGuHro5Q11H0kFJpvcWMqyyhtU+H+q6wt16sviFXfx+ALjGEPYWUM6dsjkfsuZJzhYKFz4o7cJ5ypQpc9F5DMNgpy4AAAAAoFCZpilnypEcLRfO/+pMO+nVtQxbsKyl6ufYpdtAtlL1ZQurLcOaf8tDAMB5hL0FdN115388JCYm/75AOa83aNAg33maNGly0XmqVKni9rA2AAAAAAAKynTa5Ujcl2uXrj0+Rqbduw8HtwSUce3OdYW7EQ1kDakiw7B4dS0AuBYR9hZQjRo1VKlSJR09elTLly/Pd+yKFSskSZUrV1b16tXdrt10002u4+XLl6tfv34e5zh+/Lh2794tSWrbtu0VVA4AAAAAuBY5M5PlSNiVO9RN3Cs5M726ljWk2vnduTnaL1gC8/5pVgDAlSPsLSDDMNSrVy99+umniomJ0Zo1a9SmTZtc49asWePakdurVy8ZhuF2vW7dumrQoIF27typWbNm6f3331dwcHCueaZMmeI67t27t3dfDAAAAADAZzjTTntovRAjR/Kf3l3I4idbeJ3zgW72Lt3werL48dOoAFAcCHuvwNNPP63x48fL4XBo6NChWrFihYKCglzXU1NTNXToUEmSzWbT008/7XGe5557To888oji4uL0/PPPa+zYsW7X9+3bp7fffluSVLt2bcJeAAAAALjGmaZTjuTDrkDXER/jCnad6ae9upZhC80KdF0PR/sr1A2rKcPi59W1AABX5poNe1etWqW9e/e6Pj99+vw/hnv37nXbSStJAwcOzDVH3bp1NWzYMI0ePVobNmxQ27Zt9cILL6hWrVrat2+f3nnnHW3evFmSNGzYMNWpU8djLQMGDNCkSZO0evVqffzxxzp+/LgGDx6s0qVLa926dXr99deVkJAgi8Wijz76SDbbNfvbBgAAAADXFNORIXviXtnjY9zaLzjiY2TaU7y6liWwnFvLBVfrheDKuX5KFQBwdTJM0zSLu4jiMHDgQE2dOvWSx+f1NjmdTg0ePFiTJk3K895HHnlE48ePl8WSd7P506dPq3v37lq/fr3H6wEBARo7dqwGDRp0yTVfjtjYWFWpUkWSdPjwYUVHRxfKOgAAAACA3JyZibLH78rVfsGRuE8y7V5cyZA1tHquXbq2UvVlCYj04jrIC19/AyhMbBG9QhaLRRMnTtTdd9+t8ePHa/369Tp9+rTKlCmjli1b6rHHHlO3bt0uOk+ZMmX066+/6n//+5+mTZumnTt3Kjk5WZUqVVKnTp301FNPqWHDhkXwigAAAAAAhcE0TTnTTrkHutmtF1JivbuYxV+28Lq5Q93wujJsQRe/HwBQIl2zO3vhju8sAgAAAIB3mKZTjqQ/PYa6ZsZZr65l+IV7aL1QX9bQGjIs7O+6GvH1N4DCxN/8AAAAAAAUgOlIlz1hT67WC/aEXZIjzatrWYIq5tilW98V7FqCKtJPFwDgQtgLAAAAAEA+nBnxuR6QZo+P+aufrtN7CxkWWUNrunbnutovlKovS0CE99YBAPgswl4AAAAAwDXPNE05U49f0HohRvb4nXKmHPXuYpYA2UrVy91+IayODFugd9cCAFxTCHsBAAAAANcM0+mQI+lAjlA35nw/3cx4r65l+Ee4B7p/HVtDqsmwWL26FgAAEmEvAAAAAMAHmfZU2RN2uwe68Ttlj98tOdO9upYluLLHUNcSWI5+ugCAIkXYCwAAAAAosZzpZ91252aHuo7EA5JM7y1kWGUNq5W79UJ4PVn8w723DgAAV4CwFwAAAABwVTNNU86Uo+d35547/6sz7YR3F7MGZT0cLecu3VL1ZQuvI8Pq7921AADwMsJeAAAAAMBVwXTa5Ujcn2uXrj0+RmZmolfXMgKiLmi9UF+2Ug1kDa0qw7B4dS0AAIoKYS8AAAAAoEiZ9hTZ43flDnUT9kjOTK+uZQ2pev7BaH8FuraIBrIGlvXqOgAAXA0IewEAAAAAhcKZdiZ364X4GDmS/pR3++naZAuv4xbo+pVqIGuperL4hXpvHQAArnKEvQAAAACAAjNNU87kw7kCXXv8TjnTTnl1LcMWcr7lQo6eutbwWjIsfl5dCwCAkoiwFwAAAABwUaYzU/aEva5Q1/FXoGuPj5FpT/bqWpbAcq4euq5QN6KBLMHRMgzDq2sBAOBLCHsBAAAAAC7OzCTXzlx7fIxrt64jYa9k2r24kiFraLULHpKWtWvXEhjlxXUAALh2EPYCAAAAwDXGNE05007lCnTt8TvlTD7s3cUsfrKF1/UQ6taVYQv27loAAFzjCHsBAAAAwEeZplOOpD/P79TNEeqa6XFeXcvwCzsf5Eac36VrDaspw8KXngAAFAX+xQUAAACAEs50ZMiesMcV5J4PdXdJjlSvrmUJqpAr0LWVaiBLcCX66QIAUMwIewEAAACghHBmJHjcpetI3C+ZDu8tZFhkDa2RI9Stf76fbkBp760DAAC8irAXAAAAAK4ipmnKmXrCwy7dGDlTjnh3MUuAbKXqnd+hm71bN7yuDFugd9cCAACFjrAXAAAAAIqB6XTIkXTwfKib40FpZsY5r65l+EfkDnRLNZA1tLoMi9WrawEAgOJD2AsAAAAAhci0p8mesDtXoGtP2C050ry6liW48vmWCzlCXUtQefrpAgBwDSDsBQAAAAAvcKafOx/o5mi/4Eg6IJlO7y1kWGQNq+UKcnM+KM3iH+69dQAAQIlD2AsAAAAAl8g0TTlTjp4PdHOEus7U495dzBp0vp9ujl26tvDaMqwB3l0LAAD4BMJeAAAAALiA6bTLkXTgfMuFHA9JMzMTvLqWERDpYZduA1lDq8owLF5dCwAA+DbCXgAAAADXLNOeKnv8rly7dO0JeyRnhlfXsoRUuSDUzeqtawksSz9dAADgFYS9AAAAAHyeMz0ux+7cnP10/5Rkem8hwyZreG1XD123frp+od5bBwAAwAPCXgAAAAA+IaufbqzH1gvOtJNeXcuwhchWqr6sf+3OdYW6YbVkWP29uhYAAMClIuwFAAAAUKKYzkw5Evad36UbH/NXsBsj057k1bUsgWVd7RZyhrqWkGj66QIAgKsOYS8AAACAq5IzM1mO+Bhlxu+UIz7m/G7dxL2SM9Ora1lDqp3fnZvjIWmWwCivrgMAAFCYCHsBAAAAFCtH2inZz10Q6MbvlCP5kHcXsvjJFl4n1y5dW6l6MmzB3l0LAACgGBD2AgAAACh0pumUI+lQVsuFCx6SZqaf8epahl+Yx9YL1rCaMix8CQQAAHwX/6cDAAAAwGtMR4bsiXtzPBwtK9R1JOySaU/x6lqWwPIeWi/UlyW4sgzD8OpaAAAAJQFhLwAAAIDL5sxMzPFgtBytFxL3SabDiysZsobVuGCXbtauXUtAaS+uAwAAUPIR9gIAAADwyDRNOdNO5tqla4/fKWfKEe8uZgmQrVTd86FuqfpZwW54XRm2IO+uBQAA4KMIewEAAIBrnOl0yJH8p4dQN0ZmxlmvrmX4lXJrueDqpxtaQ4bF6tW1AAAArjWEvQAAAMA1wnSky56w+4LWCzGyJ+ySHGleXcsSXMnjQ9IsQRXopwsAAFBICHsBAAAAH+PMiM+xSzfm/EPSkvZLptN7CxkWWUNr5tipe76nrsW/lPfWAQAAwCUh7AUAAABKINM05Uw9dn53bo72C87UY95dzBooW3i986Fu9q/hdWRYA7y7FgAAAAqMsBcAAAC4iplOhxxJ+7MC3QvaL5iZ8V5dy/Av7WGXbgNZQ6rSTxcAAKAEIOwFAAAArgKmPdW9n252qJuwW3JmeHUtS3C059YLgeXopwsAAFCCEfYCAAAARciZfjbH7tydOfrpHpRkem8hwyprWO0LWi/Uzwp1/cK8tw4AAACuGoS9AAAAgJeZpilnyhH3UPevX51pJ726lmELlrVU/fO7dEvVzwp2w2rLsPp7dS0AAABc3Qh7AVwyZ2aSUndPkD0+RrbIxvKv0EG2UvX5cU8AwDXLdNrlSNyXu/VCfIxMe5JX17IElDnfQzc73I1oIGtIFRmGxatrAQAAoGQi7AVwUaYzUym7Jyhpy6typp1wu2YJLC//Ch3kX6GDAip0kLVUPcJfAIDPcWYmy5GwK0eoG5P1a8IeyZnp1bWsIdVytFw4/5A0S2AZr64DAAAA30PYCyBPpmkq7c/ZStz4ohyJez2OcaadUNrBmUo7OFNSjvC3Yses8De8LuEvAKDEcKaddtud6+qnm/yndxey+MkWXud8oJu9Sze8nix+Id5dCwAAANcMwl4AHqUfW6rEjS8o8/T6y7ovV/gbVCHHzt+OsobXIfwFABQr03TKkXw4K8TNDnT/CnWd6ae9upZhCz3fQzdnqBtWU4bFz6trAQAAAIS9ANxkntmixI3/UvrRRXmO8SvbRo7kw3KmHLnofM7U40o7MENpB2ZIkixBFV0tH/wrdCD8BQAUGtORIXvi3qwdujl66jriY2TaU7y6liWwnFvLBVfrheDK/DsHAACAIkPYC0CSZE88oMTNryht/1d5jvEr00phzd9RQMUOMk1TjsT9yji+TOnHlyrj+LJLDH+PKe3AdKUdmC5JsgRXcg9/w2rzRTEA4LI4M5PcWi64Wi8k7pNMuxdXMmQNre6+S/evXbuWgEgvrgMAAAAUDGEvcI1zpJ1S0u9vKmXXJ3k+YMYaXldhzd5SYLW7XEGsYRiyhdeSLbyWgus+8lf4u++v8HeZMo4vlTPl6EXXd6YcVdr+aUrbP03SheFvR1nDahH+AgBkmqacaafcA93s1gspsd5dzOIvW3jdHKFudl/dujJswd5dCwAAAPAiwl7gGuXMTFbyjv8qedu7MjMTPY6xBFVQWJNXFVTnoYv2FcwKf2vLFl5bwXUH/RX+7j0f/h5bKmfqsYvXlSv8rXzBzl/CXwDwZabplCPpz9yhbnyMzPQ4r65l+IXnaLlQ/3w/3dAaMiz8bzIAAABKHv4vFrjGmM5MpeyeqKTfX5Uz9bjHMYZfuEKvf0HBDZ4q8BPBs8LfOrKF11Fw3cHnw99jS//a+bvsEsPfI0rb/5WrvYQlONoV/GaFvzUJfwGgBDId6bIn7Lkg1I2RPX6X5Ej16lqWoIruge5foa4lqCL/hgAAAMCnEPYC1wjTNJX25zdK3PSiHAl7PA+y+Cuk/hMKveFFWQLLeHV9t/C33qNZ4W/CHveev3mEzzk5U2KVuv9Lpe7/Mqvk7PC3Yses8De0Bl+4A8BVxJmR4CHQ3SlH4n7JdHhvIcMia2hNVw/dnD11LQER3lsHAAAAuIoR9gLXgPRjy5S48QVlnl6XxwhDQbX+rtAmr8kWVr1IajIMQ7ZSdWUrVTdH+Lvbtes349hSOdNOXHSeXOFvSJUcO387yhpanfAXAAqZaZpyph7PEerGuNovXEr/9stiCZCtVL0c7Rf++jWsjgxboHfXAgAAAEoYwl7Ah2XG/a7EjcOVfmRhnmMCKndTWPO35RfZuAgryy0r/K0nW6l6Cqn3WFb4G7/rfPh7fNmlhb/Jh5W67wul7vtCkmQNqepq+eBfoYNsYTUK+6UAgM8ynQ45kg6c36F77vxD0szMeK+uZfhHuAe62f10Q6rJsFi9uhYAAADgKwh7AR9kTzyopC0jlLrvS0mmxzF+ZVoqrPk7CqjYsWiLu0SGYcgWUV+2iPoKqf9/F4S/f7V9SDt50XkcyYeUuu9zpe77XJJkDal2QfhbvZBfCQCUPKY9VfaE3e6BbvxO2eN3S850r65lCa7sMdS1BJbjJzMAAACAy0TYC/gQZ9ppJf3xlpJjPpacGR7HWMPrKKzZWwqsdneJ+iLaU/hrj49x7fq99PD3T6Xum6rUfVMlXRD+VuwoW2i1wn4pAHDVcKafPd9yIUeo60g8oLy+WVgghlXWsFq5Wy+E15PFP9x76wAAAADXOMJewAc4M5OVvOMDJW97V2ZmgscxlsDyCm0ySsF1H5Fh8SviCr3PMAz5RTSQX0QDhdQf8lf4u/OC8PfURefJFf6GVnff+Uv4C6CEM01TzpSj53fn5mi9cCntcS6LNcjjA9Js4XVkWP29uxYAAACAXAh7gRLMdGYqZc8kJW0ZJWfqcY9jDL8whTR6QSHXPS2LX0gRV1h0ssLf6+QXcZ1C6j9+Pvw9tvR8+Jt++qLzOJIOKnXvFKXunSJJsobWcAW/ARU6yBpatZBfCQAUjOm0y5G4P9cuXXt8jMzMRK+uZQRE5dilW98V7FpDq8owLF5dCwAAAMClI+wFSiDTNJX25xwlbnpRjoTdngdZ/BRS/wmF3PCirIFli7bAq4Bb+Nvgiazw99yOv4Lfpco4vvwSw98DSt17QKl7J0vKEf5W7JgV/oZUKeyXAgBuTHuK7PG7Lgh1Y2RP2JNnC5+CsoZUzQpxc+7WjWhwTf67AgAAAJQEhL1ACZN+fLkSNzyvzNPr8hhhKKjm/Qpt+ppsYTWKtLarmWEY8ivdUH6lG/4V/jpzhL/LlH58mcz0MxedJ1f4G1ZLoY2eV1DdwSWqBzKAq58z7cwFrReyeus6kv6Ud/vp2mQLr+MW6PqVaiBrqXqy+IV6bx0AAAAAhY6wFyghMuP+UOKm4UqP/SHPMQGVb1NYs7flF9Wk6AoroQzDIr/SjeRXupFCGjz5V/i7PUf4u/zSwt/EfYr/7THZE3YprMW/CXwBXBbTNOVMPpwr0LXH77ykvuOXw7CFnG+5kKOnrjW8lk/0cgcAAABA2Atc9exJfypp8wil7vtCee3k8otqobAW7yig4i1FW5wPyQp/r5df6esV0mCoW/ibfmypMk4sl5kel+f9ydv/I9ORpvDWY+hXCSAX05kpe8LerJ258TFu7RdMe7JX17IElj3/cLQcrRcswdF8QwoAAADwcYS9wFXKmXZGSVvfUvLOsXn2YLSG1VZY87cUWK0PX8B7mcfw9+w2V8sHT+FvSswnMh0ZKnXjOBkWazFVDqA4OTOT/tqdG+PWU9eRsFcy7V5cyZA1tFquXbq2UvVlCYzy4joAAAAAShLCXuAqY9pTlLzjQyVtHS0zM8HjGEtgeYU2GanguoP40dsiYhgW+UXeIL/IGxRy3T9kmk6l7vtC8asflkyna1zqngmSM12l2k6SYeGvWMAXmaYpZ9qpXIGuPX6nnMmHvbuYxU+28LoeQt26MmzB3l0LAAAAQIlHEgFcJUynXal7Jytx80g5U495HGPYQhVy/fMKue4ZHppTzAzDouDaA2TYgnVueX+3HXup+76Q6UhXxM1fEsYDJZhpOuVIOnTBQ9KyPvJr61IQhl9Y7tYLperLGlaTbxwBAAAAuGR89QAUM9M0lXZorhI3vihHwi7Pgyx+Cq73uEIbvyRrYNmiLRD5Cqp+jwxLgM4uu8et3UbawVk660hX6Q4zZVgDirFCABdjOjJkT9jjIdTdJTlSvbqWJahCrkDXVqqBLMGVaMcDAAAA4IoR9gLFKP34CiVueF6Zp9fmOSaw5v0Ka/qabGE1i7AyXI7Aqj1V+pZ5Oru0t+RIc51PPzxPZ3/prdIdv5FhCyrGCgFIkjMjwWPrBUfifsl0eHElQ9awmufD3BzBriWgtBfXAQAAAAB3hL1AMcg8u1WJG4crPXZBnmMCKt2qsOZvyy+qaRFWhoIKjL5NkZ2+19lfesq0p7jOpx9ZqLife6r0Ld/K4hdSjBUC1wbTNOVMPXHBLt2sgNeZcsS7i1kCZCtVz7U71xXqhteVYQv07loAAAAAcAkIe4Ei5Eg6pMTNI5S673NJpscxflHNFdb8HQVU6lS0xeGKBVTqpMguPyrup+4y7Umu8xnHlujsku4q3fl7WfzCirFCwHeYToccSQf/CnXdd+uaGee8upbhV+p8kJvjIWnW0OoyLFavrgUAAAAAV4KwFygCzrQzStr6tpJ3jpWc6R7HWMNqKazZWwqs3keGYSniCuEt/uXbKbLrT4r76TaZmfGu8xknVihu8a2K7LJQFv9SxVghULKY9jTZE3bnbr+QsNutbYo3WIIreXhIWgNZgsrTTxcAAABAiUDYCxQi056i5B0fKWnraLfgLydLYDmFNhmp4DqDZFj9i7hCFAb/cm0UdevPOvNTV5npca7zmad+U9yizorsukiWgMhirBC4epn2VKXsHq/0o0uy+ukmHZBMp/cWMCyyhtXyEOrWl8U/3HvrAAAAAEAxIOwFCoHptCt17xQlbhkpZ8pRj2MMW6hCGg1TSMN/yuIXWsQVorD5lWmuqFuXKm5xZznTTrnOZ57ZoDM/3qLIW3+SNbBsMVYIXF1M01T6oW+VsP6fciQdvPIJrUF/9dN1D3Rt4XVkWAOufH4AAAAAuAoR9gJelBVWzFPCpuFyxMd4HmTxU3C9/1PoDS/LGlSuaAtEkfKLvEGRty1T3KJOcqYed523n/1dcT92UGTXn2UNrlCMFQJXB/u5GMWve0oZRxdf9r1GQOQFu3Tr/9VPtxotcQAAAABccwh7AS/JOLFSCRteUOap3/IcE1jjPoU1fV228FpFWBmKk1/EdYrqtkJnfrxFzpRY13n7uR0682N7Rd36s6wh0cVYIVB8nJmJStrympJ3fCCZ9nzHWkKqnA91S9V37da1BJalny4AAAAA/IWwF7hCmWe3KXHTi0o/PD/PMf6Vuiq8+dvyi2pWhJXhamELr6OobisUt+gWtx9PdyTs1pmFNyvy1l9kC6tebPUBRc00TaXu/0qJG56XM/WYxzH+5dsrqO4j5/vp0u4GAAAAAC6KsBcoIEfSISVuGanUfZ/n+fAgW1QzhTd/RwGVOhdxdbja2MJqKOq25TqzqJMciXtd5x1JBxT3Y3tF3vqzbOG1i7FCoGhkntmi+LVPKvPkao/XLcGVFd7yfQVW78uOXQAAAAC4TIS9wGVypscp6Y+3lbxzjORM9zjGGlZTYc3eUmD1e+gZCRdraFVFdfsr8M3R09mRfCirpUPXn2WLqF+MFQKFx5kep8RNLytl92eev0Fm8VdIw2cVesOL7OIFAAAAgAIi7AUukWlPVfLOj5T0x9syM+M9jrEEllVo45EKrjtYhtW/iCtESWANrqSo25YrbnFn2c9udZ13phzVmb92+PqVblSMFQLeZTodStkzQYmbXpKZfsbjmIDo7gpv9YFs4XWKuDoAAAAA8C2EvcBFmE67UvdOVeKWkXKmHPE4xrCFKKTRMIU0/KcsfmFFXCFKGmtQOUXdulRnfuoq+5lNrvPOtJM682MHRXX9SX5RTYuxQsA7Mk7+qvi1Q93+O8/JGlZL4a0+UGCVHkVcGQAAAAD4JsJeIA+maSr98HdK3Dhc9vidngcZNgXX+z+FNn5Z1qDyRVsgSjRLYJSiuv6suJ9uU+bpta7zZvoZnVl0iyK7LpZ/mZbFWCFQcI6U40rc+EJWT3NPrEEKveElhTZ8VoYtsGiLAwAAAAAfRtgLeJBxYpUSNr6gzJO/5jkmsEY/hTV9nYdqocAsARGK7LpYcUtuV+bJVa7zZsY5xS3qpMjOC+Vfvm0xVghcHtOZqeSdY5S0ZZTMzESPYwKr36PwFv+WNbRqEVcHAAAAAL6PsBfIIfPsdiVuelHph7/Lc4x/xc4Kbz5afmWaF2Fl8FUW/3BFdlmosz/3VMbxpa7zZmai4n66VaU7fa+Aih2Kr0DgEqUfXaKEtf/I8ychbBHXKbz1GAVUvKWIKwMAAACAawdhLyDJkXxYiVtGKXXvFM9PiZdki2yq8BbvKKBSl6ItDj7P4heqyM4LdPaX3ko/ush13rQnK25JN0XeMk8BlbsWY4VA3uxJfypx/bNK+/Mbj9cNv3CFNXlVwQ2ekGHxK+LqAAAAAODaQtiLa5oz/aySto5W8s6PJEeaxzHWsJoKa/qmAmv0lWFYirhCXCsMW5BK3/Ktzi7vq/TD889fcKQp7uc7VLrjNzzEClcV056qpG3vKWnraMmR6nFMUO2BCms+mp7mAAAAAFBECHtxTTLtqVl9Jbe+LTPjnMcxlsCyCm08QsF1H5Vh9S/aAnFNMmyBKt1hts6t6O++S9KZobNL71JE+xkKqnZX8RUI6PzDKxPWPSNH0gGPY/yimiu89Vj5l2tTxNUBAAAAwLWNsBfXFNNpV+q+z5W4eYScKUc8jjFsIQpp+JxCGj0ri19YEVeIa51h9VdE+xk6t2qA0vZPO3/Bmalzy/pK7b5UUM1+xVcgrmn2+F1KWPuUW7uRnIyAKIU3f1tBtR+WYbEWcXUAAAAAAMJeXBOydqLNV+Km4bKf2+F5kGFTcL3HFNr4FX7kGMXKsNgUcdPnirf4Z/WRzmY6dG7l/TKd6QquPaDY6sO1x5mZqKTf31Dyjv9KzszcAwyLgusNUVjT12QJiCz6AgEAAAAAkgh7cQ3IOLFaCRtfUObJ1XmOCax+r8KavSFbeO0irAzIm2GxqlTbiTIsAUrZ/dn5C6ZT8asekpwZCq47uPgKxDXBNE2lHZiuhA3D5Ew56nGMf/l2Cm89Rn6RjYu4OgAAAADAhQh74bMyz+1Q4sYXlX54Xp5j/CveorDm78i/TIsirAy4NIZhUfiNn0rWAKXs/CjHFVPxvz4q05GukAZPFlt98G2ZcX8oYe2Tyjix0uN1S3Alhbd4T4E17pNhGEVcHQAAAADAE8Je+BxHcqwSt4xS6t7Jkun0OMYW2UThzd+Rf6UuhBS4qhmGofBWH8iwBih523tu1xLWDpXpSFdoo2eLqTr4Imf6WSVuHqGUXZ94/jvU4qeQ6/6p0MYv0dccAAAAAK4yhL3wGc70s0ra+o6Sd34oOdI8jrGG1lBYszcUWKOfDMNSxBUCBWMYhsKavyPDGqik3193u5a44TmZjjSFNX6pmKqDrzCdDqXunaTEjS/KmX7a45iAyrcpvNUHspWqV8TVAQAAAAAuBWmXl2RkZGjChAm69dZbVbFiRQUEBCg0NFT16tXTQw89pF9//fWS5lm4cKF69+6t6OhoBQQEKDo6Wr1799bChQsL+RWUXKY9TUnb/q2T39RS8rZ3PAa9loAyCm/9kcr2jlFQzf4EvShxDMNQWNPXFNr0jVzXkja/rMRNr8g0zWKoDL4g49RanVnQRvG/Puox6LWG1lDpW+apdOcfCHoBAAAA4CpmmKQDV+zPP//U7bffru3bt+c7bujQofrwww89tg1wOp169NFHNXHixDzvHzRokD777DNZLN4PKmNjY1WlShVJ0uHDhxUdHe31NbzNdDqUuu8LJW4ZIWfyYY9jDFuIQho+q5CGz8riH17EFQKFI2nb+0rc8Fyu8yGNhmXtAL4GW5OY9hQ5Uo/LmX5G1pCqsgaVL+6SSgRH6gklbvyXUvdO8TzAGqjQG15UaMPnZNiCirQ2AAAAX1USv/4GUHLQxuEKZWZmugW9N9xwg/75z3+qXr16SkxM1KpVq/T+++8rOTlZY8aMUaVKlfSvf/0r1zwvvfSSK+ht2rSpnn/+edWqVUv79u3Tu+++q82bN2vChAkqW7as3nrrrSJ9jVcb0zSVHvu9EjcOl/1cHgG7YVNwvUcVesMrsgZXKNoCgUIW2uhZGdZAJax1fzhb8rb3ZDrSFN7K8zeVShrTmSln6kk5U49nBbk5fnWmHpcz7YTrczMz0e1ev3I3KahmfwVW7yNrYNliegVXL9OZqZSdHytxy0iZmQkexwRWu1thLd+XLbRaEVcHAAAAACgodvZeodmzZ+uee+6RJN14441auXKlrFar25iNGzfqxhtvVGZmpiIiInTq1CnZbOdz9t27d6thw4ay2+1q0aKFVqxYoaCg8zuoUlJS1L59e23YsEE2m007d+5U7dq1vfo6StJ3Fk3T1JkFNyrz9FqP1wOr91VYszdkC69TxJUBRStl9/8U/+tjktz/Gg+u+6jCb/z0qmxXYppOmelxHsNbtyA39USefWMvi2FVQKUuCqxxnwKr3skOf0npx35Rwtp/5PnNMmup+irVeowCKnUu4soAAACuDSXp628AJQ87e69Qzl68w4cPzxX0SlLz5s3Vo0cPzZ07V+fOndPOnTt1/fXXu65/8MEHstvtkqQxY8a4Bb2SFBwcrDFjxujGG2+U3W7Xf//7X3388ceF9IqufoZhKKzFO4r7sYPbef8KHRXW4h35l2lZPIUBRSy47mDJEqD41Q9JptN1PmX3eJmOdJVqO1GGJfffSd5mmqbMzMRcu209B7knJdNe6DWdL86h9CM/Kv3Ij4q3Biow+nYF1uyvwMrdZdgCi66Oq4Aj6ZASNjyntINfe7xu+IUptPFIhTQYKsPqX8TVAQAAAAC8gbD3CmVkZLiOa9asmee4WrVqebzHNE3NmzdPklS/fn21adPG4/1t2rRRvXr1tGvXLs2bN09jx471iR/TLqiACu0VEN1d6bE/yFa6scJbvCP/Sl2v6fcE16bg2g/KsAbo3Ir7JdPhOp+6b6pMZ4Yi2n0uw1Kwv+pNe5ocaScuCGxPeAxy5Uj11ku6QoYu3Ons4khT2p/fKO3Pb2T4hSuwam8F1bxP/hU7Ffg9KglMe5qStr+vpD/ezPP3KajWgwprPlrW4IpFXB0AAAAAwJt896vbIlKv3vmnku/fv18NGzb0OG7fvn2Ssnal1qlzvr3AgQMHdPToUUlS+/bt812rffv22rVrl44cOaKDBw+qRo0aV1p+iRbW/B0F1eivwJr3XZU/rg4UlaAa98qw+Ovs8nslZ6brfNqB6TrnzFDEzdNcOzVNp0POtFOed96muQe5Zsa5YnpFFzBssgSVkyWogqxBFWT568Oa89fA8rIEVZBhDVD6kUVKPTBdaYfm5RlumpkJSt03Van7psoSWFaB1e9RUI375Ffubz7190na4e+VsO4pORL3e7xui2yqUm3Gyr/c34q4MgAAAABAYSDsvUL33XefXn75ZSUkJOidd95R9+7dc7Vy2Lx5sxYsWCBJ6t+/v8LDz/eM3LFjh+u4fv36+a6V8/rOnTsvK+yNjY3N9/qxY8cuea6rhV/pRvIr3ai4ywCuCoHVeqt0x7k6u/RuyZnuOp/25zc6Pb+pZPhlBbvpp9xaPhQnS0AZWYLK5wpvLwxyjYDIywpgA6v2VGDVnnJmJin98HdK3T9d6UcXuQXhOTnTTikl5hOlxHwia0hVBdbop6Aa98kW2bjE/rSAPWGPEtY9rfTYHzxeNwIiFdbsLQXXGVQkrT4AAAAAAEWDsPcKlSlTRl988YXuu+8+rV69Wi1bttTTTz+tunXrKikpSatXr9b777+vjIwMNWvWTO+//77b/TlD2Is1Zc9u4C5lNXG/HDnvBeCbAqvcrshO3ynulzvddrTaz+3I+yYvM/zC3IPbv3bcWnMFuuVkWPwKtRaLX6iCavZXUM3+cqbHKe3Pb5S6f7oyji9TXq0eHMmHlLztXSVve1fWUvUVVOM+BdW8r8Q88NGZmaSkP95S8vb3JWdG7gGGRcF1H1NY09dlCYwq+gIBAAAAAIWKsNcLevbsqY0bN+r999/XxIkTNWDAALfr5cuX1+uvv67BgwcrODjY7VpiYqLrODQ0NN91QkJCXMdJSUleqByArwmo3FWRnX/Q2Z97yLQne2dSi7/HXbfZu3Ldgl2/kIvPVwwsAZEKrjtYwXUHy5FyVGkHZin1wDRlnl6f5z2O+BglbRmppC0j5RfVXIE17lNQjXtlDbn6npZsmqbSDsxUwobn5Ew54nGMX7m2KtV6jPyimhZxdQAAAACAokLY6wUZGRn6/PPPNW/ePJlm7t1iJ06c0JdffqkaNWqoZ8+ebtfS0tJcx/7++T/9PCAgwHWcmnp5D0O62E7gY8eOqVWrVpc1J4CrU0DFDorsulhxP3WTmZngeZBhkSWgbJ7tE7LDXGtQBRn+ESW2nYEn1uBKCmn4tEIaPi17wl6lHpihtAPT890BnXlmozLPbFTihmHyL3+zAmvep6Bqfa6K3bGZZ7cqYc1QZZxY7vG6JaiCwlq8p6Ca9/vU7yMAAAAAIDfC3iuUnJysbt26aeXKlbJarXr++ef10EMPqWbNmkpLS9PatWv12muvadWqVbrzzjv173//W//85z9d9wcGBrqOMzI8/MhtDunp5/twBgUFXVadF2sRAcC3+Jf7m8r22qrU/dMkw8gd5AaUoVerJFt4bYU1flmhN7wk+9mtWQ922z9djuQ/87jDVMaJ5co4sVwJa55UQOWuCqxxnwKr9pLFL6xIa3emn1PilhFKiflEMh25Bxg2hVz3tEIbvyKLf3ju6wAAAAAAn0PYe4VGjRqllStXSlKuFg7+/v7q0qWLOnbsqK5du2rp0qUaNmyYOnXqpMaNG0uSwsLOhwMXa82QnHz+R7Iv1vIBAKyhVRV6w7+Ku4wSwTAM+UXeIL/IGxTW7C1lnvpNqfunK+3gLDnTTnq+ybQrPfYHpcf+oHhrkAKr9FBQjfsUULmbDFug53u8wDSdSt0zWYmbhsuZdsrjGP9KXVSq1UeyReT/4E8AAAAAgG+59MebIxfTNDVp0iRJUt26dXP16s1ms9n0+uuvS5KcTqemTJniupZzx23Oh7V5krMVAw9cA4DCYRiG/Mv9TaXajFG5vkcU2XWxgmo/JMMvn92xjlSlHfxaZ5fepRMzK+jcqoeVfvQnmU67V2vLOLVOZxa0UfyvgzwGvdaQairdcY4iuywi6AUAAACAaxA7e6/AiRMnFBcXJ0lq2jT/B940b97cdRwTE+M6vu666zye9yTn9QYNGlxWrQCAy2dYbAqo1EUBlbrIbPOJ0o8szGr1cHi+5EjzeI+ZGa/UvZOVuneyLIHlFFi9r4Jq3ie/sjcWuGeuI/WkEjcNV+qeSZ4HWAMV2ugFhV7/ggzb5bX5AQAAAAD4DsLeK2CznX/77Pb8d29lZmZ6vK9GjRqqVKmSjh49quXLPT9cJ9uKFSskSZUrV1b16tULUDEAoKAMW6ACq/VWYLXecmYmKu3QPKUdmK70I4sl0/O/Ac60k0qJGauUmLGyhlRTYI1+Cqp5n2ylb7ik4Nd02pUS84kSN4+QmRnvcUxA1d4Kb/kf2cKqX8nLAwAAAAD4ANo4XIHIyEiFh2f9WO9vv/2Wb+CbM8itUaOG69gwDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr14onqAFCMLH5hCq71d0V2XqDy9x5T+I3j5F/+Zkl5/93sSP5Tydve0envmuj0vEZK/P0N2RP25Tk+/dgynf6uqRLWPeUx6LWG11Nkl0WKvGUOQS8AAAAAQBJh7xWxWCy6/fbbJUlHjx7Vm2++6XHc2bNn9cILL7g+79Gjh9v1p59+WlarVZI0dOhQpaamul1PTU3V0KFDJWXtCn766ae99RIAAFfIElhGIfUeU1S35Sp3zyGFtfi3/KKa53uP/dwOJW1+Rafm1Nbp71spaft/5Ug5KklyJMfq7LJ+ilvUUfZz23Lda9hCFdbiXZXt9YcCKnctlNcEAAAAACiZDNM0zeIuoiSLiYlR8+bNlZKSIkm64447NGDAANWsWVNpaWlas2aNPvjgAx06dEiS1KlTJy1ZsiTXPMOHD9fo0aMlZfX/feGFF1SrVi3t27dP77zzjjZv3uwa99Zbb3n9dcTGxroe+nb48GG3B8cBAC6fPX63Ug/MUOr+aXIk7LqEOwz5lfub7HGbZdpTPI4IrHm/wlu8K2twJe8WCwAAgCLD198AChNhrxcsWbJE9913n06fPp3vuFtuuUWzZ89W6dKlc11zOp0aPHiwJk3K4+E7kh555BGNHz9eFov3N2Tzjw0AFA7TNGWP26LUA9OVemCGnMmHL3sOW+nGKtVmrPzL31QIFQIAAKAo8fU3gMJE2OslZ86c0cSJE7Vw4UJt375d586dk81mU4UKFdSyZUv1799fPXv2vGiv3R9++EHjx4/X+vXrdfr0aZUpU0YtW7bUY489pm7duhVa/fxjAwCFzzSdyjz5q1IPTFfagVlypuf/TULDv7TCmr2h4LqPybBYi6hKAAAAFCa+/gZQmAh7IYl/bACgqJnOTKUf/VlpB6Yr7dBcmZmJOa4aCq77qMKavSFLYJliqxEAAADex9ffAAqTrbgLAADgWmRY/BQYfZsCo2+TaR+ntNgflB77vSRDIfWfkF+Z/B/yBgAAAADAhQh7AQAoZoYtSEHV71ZQ9buLuxQAAAAAQAnm/Sd9AQAAAAAAAACKHGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4ANsxV0AAAAAAAAALp1pmkpOTlZCQoLS0tLkcDiKuyQAl8hiscjf318hISEKDQ2Vv7+/V+cn7AUAAAAAACghnE6nDh06pNTU1OIuBUABZWRkKCkpSSdOnFDZsmUVFRUlwzC8MjdhLwAAAAAAQAlgmmauoNcwDFmt1mKsCsDlcDgcMk3T9fmpU6eUkZGhSpUqeWV+wl4AAAAAAIASIDk52RX0Wq1WVahQQaGhobJYeCQTUFKYpqn09HQlJCTozJkzkqT4+HhFRUUpICDgiufnbwMAAAAAAIASICEhwXVcoUIFhYeHE/QCJYxhGAoMDFS5cuVUrlw51/mzZ896ZX7+RgAAAAAAACgB0tLSJGWFRaGhocVcDYArFRER4TpOSUnxypyEvQAAAAAAACWAw+GQlNXCgR29QMlntVpdPbez/3xfKf5mAAAAAAAAAIBiYBiGV+cj7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAuGQZGRmaPn26HnzwQdWvX19RUVHy8/NTmTJl1Lx5cw0ZMkRLliyR0+ks7lKBaw5hLwAAAAAAAC7JnDlzVK9ePfXv319ffPGFdu3apbi4ONntdp05c0abNm3SuHHj1KVLFzVo0EALFiwo7pKvSdWrV5dhGBo4cGBxl3JVWrZsmQzDkGEYWrZsWXGX41W24i4AAAAAAAAAV7/XX39dI0aMcH3epUsX9ezZU9ddd50iIiIUFxenXbt2af78+frpp5+0e/duvfTSS7r99tuLsWrg2kLYCwAAAAAAgHxNnjzZFfSWK1dOs2bNUvv27XON69y5s5544glt27ZNzzzzjE6dOlXUpQLXNMJeAAAAAAAA5OnIkSN68sknJUkhISFavny56tevn+89jRo10qJFizRt2rSiKBHAX+jZCwAAAAAAgDz997//VUpKiiTptddeu2jQm81isejvf/+7x2urVq3SAw88oOrVqyswMFARERFq2rSpXn755Xx3A1/Ya9U0TU2cOFE33XSToqKiFB4erlatWumLL75wuy8jI0Pjxo1TmzZtFBkZqbCwMLVt21azZs3Kc62DBw+61poyZYok6euvv1bnzp1Vrlw5BQUFqX79+ho+fLjOnTuX73uxbds2vfHGG7r11lsVHR2tgIAAhYaGqk6dOhowYIDWrFmT7/2jRo1y1SJJ8fHxev3119W0aVNFRES4auzQoYMMw9Cff/4pSZo6darrvuyPDh065Psa58yZo65du6pcuXIKCQlR48aNNWbMGGVmZrruM01T06ZNU4cOHVSuXDkFBwerWbNmGjdunEzTzPe1ZNf/9ttvq23btipbtqz8/f1VsWJF3XHHHZo9e3a+c2TXO2rUKEnS+vXrdd9997ne18qVK+uBBx7Qzp07c92b/Xo7duzoOtexY8dc71H2e1EimYBpmocPHzYlmZLMw4cPF3c5AAAAAAD4pCv5+nv37t3mjh07zN27dxdSdbk5nU6zTJkypiQzJCTETEhIuKL5HA6H+cQTT7jeA08fpUqVMhcvXuzx/qVLl7rGLV682LzjjjvynOcf//iHaZqmGRcXZ9588815jnvzzTc9rnXgwAHXmMmTJ5sPP/xwnnNUqlTJ3Llz50Vrzu/jX//6V57v28iRI13jdu/ebVavXj3X/ZMnTzbbt29/0XXat2+f52scMmRInvfdddddpt1uN9PS0sw+ffrkOW7w4MH5/jewZMkSMyoqKt8au3fvbiYmJnq8P3vMyJEjzY8//ti02Wwe5wgODjaXL1+e5+9pfh+TJ0/O9zV4k7f/XLOzFwAAAAAAAB5t375dp0+fliS1a9dOYWFhVzTfv/71L3388ceSpBo1amjcuHFat26dli5dqmeeeUZ+fn6Kj49Xjx499Pvvv+c71yuvvKL58+fr/vvv14IFC7Rx40ZNnz5d9erVkyR99NFHWrJkiQYOHKhff/1VQ4YM0eLFi7Vx40ZNnDhRlSpVkiSNGDFC27dvz3etTz75RJMmTVKrVq00ffp0bdiwQT/88IP69u0rSTp69KhuvfVWJSYm5rrXbrcrJCREffv21bhx47Rs2TJt2rRJP/74o95//31Vq1ZNkjR69GhNnjz5ou9hnz59dOTIEQ0dOlQ//fSTNmzY4HrdkydP1tatW12vrVevXtq6davbR15rjBs3Tp9++qm6d++uOXPmaOPGjfr222/VunVrSVk7fidPnqxhw4Zp9uzZ6t+/v77//ntt3LhRM2bMcO34/t///qcff/zR4xqrV69Wt27ddObMGZUvX15vvPGG5s+fr40bN2r+/PmuneA//PCDBgwYkO/7sGjRIg0dOlQNGzbUpEmTtH79eq1YsULPPPOMLBaLUlJS9MADDygjI8N1T+XKlbV161ZNmjTJdW7SpEm53qM777zzor8PVy2vRMYo8djZCwAAAABA4StpO3u//PJLV70vvfTSFc31xx9/mBaLxZRkNmrUyDx79myuMQsXLnSNadWqVa7rF+6S/eCDD3KNOXbsmBkWFmZKMsuWLWsahmHOnTs317jff//dtVb2LuCcLtwF2r17dzMzMzPXuNdee801ZtiwYbmunzp1yuNrzZaenm526dLFlGRWq1bNtNvtucbk3NlrsVjMRYsW5TmfaZpmtWrVTEnmgAED8h134Wt8+umnc41JTk52zRcVFWUahnHR971nz565rmdkZLh2JN92221mcnKyx5rGjx/vtnv7Qhf+nqSnp+ca88Ybb7jGzJkzJ9f1nP8dLV261GMdRYWdvQAAAAAAACgSZ86ccR2XK1fuiub69NNP5XQ6JUkTJkxQRERErjG33XabHn74YUnSunXrtH79+jzna926tZ566qlc5ytUqKDevXtLkk6dOqW+fft63Kl5ww036KabbpIkrVy5Mt/aAwIC9L///U82my3XtZdeekmNGjWSJE2cONFtJ6kklSlTxuNrzebv76/33ntPkvTnn39qy5Yt+dYycOBAde3aNd8xBVGlShW9++67uc4HBwe7dtmeOXPmkt53T+/njBkzdPDgQQUGBurzzz9XcHCwxzoGDx6sVq1aSVK+vXMDAwM1efJk+fv757r2j3/8w3X+Yr+3voawFwAAAAAAAB7lbEsQEhJyRXMtWbJEktSwYUNXawBPBg8enOseT/r165fntcaNG1/WuP379+c5RpK6du3qao1wIYvF4gpD4+LitGnTpnznSk9P16FDh7Rjxw5t27ZN27Ztc3sg2cXaV9x///35Xi+ou+66S35+fh6v5Xw/77333jznyB539uzZXA+t++677yRJ7du3V9myZfOt5eabb5Yk/fbbb3mO6dKlS57fgAgLC1OdOnUkXfz31tfk/nYEAAAAAAAAILn16E1OTi7wPOnp6dqzZ48k5Rv0SlLTpk3l5+enzMxMbdu2Lc9xdevWzfNazp20lzLOU6/dnFq2bJnv9eydqJK0detWtWnTxu16cnKyPvroI82YMUPbt2+Xw+HIc67sHsl5ueGGG/K9XlDefD+lrPc05+cbNmyQlNVr1zCMS6rp+PHjeV7L7hGcl8jISFcd1xLCXgAAAAAAAHgUFRXlOj5x4kSB5zl79qzr+GLtIPz8/BQVFaXjx48rLi4uz3F5tQGQsnbbXs647PYSeblYzeXLl3cdX1jzwYMHdcstt+jAgQP5zpEtNTU13+ulS5e+pHkulzffT0m5Au2TJ09edk35vRf51ZGzlvyCdV9E2AsAAAAAAACPcv74/sXaE1yqS93VeTW5kpofeOABHThwQIZh6KGHHlK/fv3UoEEDlS1bVv7+/jIMQ06nU1arVZLcWjp4kj2upMkOXbt16+axNzC8g7AXAAAAAAAAHjVs2FBlypTR6dOntXLlSiUkJCg8PPyy58m5G/ViO4TtdrvrwXDZP4pf3C5Wc87rOWuOiYnRqlWrJEkvvvii3njjDY/357eD2VdERUXp6NGjysjIcD3QDt7HA9oAAAAAAADgkWEYroePJScna8KECQWaJyAgwPXArLVr1+Y7dvPmzcrMzJSkqyYUXL9+/SVfz1nz9u3bXcf5Pdgsu5+tt1yNu6ebNm0qKeu1ZmRkFGstV+P74y2EvQAAAAAAAMjTM8884+qPOmLECMXExFzSfU6nU1999ZXr886dO0vKCkDXrVuX5305A+Xse4rb4sWLdezYMY/XnE6npk6dKilrB3OzZs1c1+x2u+s4vwfcjRs3zkuVZgkMDJSU9WC8q0XPnj0lSfHx8Zo8eXKx1pL9/khX13vkDYS9AAAAAAAAyFPlypU1duxYSVmBZfv27bV8+fJ879mxY4duu+02vffee65zQ4YMcT0069FHH1VCQkKu+xYvXqyJEydKklq1aqWWLVt662VckfT0dD322GMeH/Y1evRobd26VZL08MMPKyAgwHUtezezJE2ZMsXj3J9++qnmzZvn1XorVqwoSdq3b59X570SAwYMUJUqVSRJzz33nFasWJHv+FWrVl30v7OCyn5/pKvrPfIGevYCAAAAAAAgXw899JBiY2M1YsQInTx5Uh06dFDXrl3Vq1cvNWjQQBEREYqLi9Pu3bu1YMEC/fjjj3I4HG4PeLv++uv17LPP6r333tPvv/+uZs2a6YUXXlDTpk2VnJys+fPn66OPPpLD4ZC/v78+++yzYnzF7lq0aKH58+erbdu2euaZZ1SnTh2dPHlSU6dO1YwZMyRJ0dHReuWVV9zua9q0qRo1aqRt27bps88+09mzZ/XAAw+oYsWKio2N1ZdffqnZs2erbdu2Wr16tdfq/dvf/qalS5dq/fr1Gj16tLp166aQkBBJUlBQkCpXruy1tS5VQECAZs2apQ4dOigpKUm33HKL+vXrpzvvvFM1atSQ0+nUsWPHtHHjRs2dO1dbt27VmDFj1L59e6/XUrVqVUVHRys2Nlb//ve/FR0drXr16rkefle+fHmFhYV5fd2iQNgLAAAAAACAi3rllVfUsGFDPfvsszp48KAWL16sxYsX5zm+YcOGevfdd93OjR49WsnJyfrkk0+0b98+Pfroo7nuK1WqlGbNmqUmTZp4+yUU2BNPPKHly5drypQp6tevX67rFStW1KJFi1SqVCm384Zh6IsvvtAtt9yis2fPatasWZo1a5bbmOuvv15ff/21KlWq5LV6hwwZok8//VRxcXEaPny4hg8f7rrWvn17LVu2zGtrXY42bdpo2bJl6tu3rw4fPqyvvvrKrdXHhQryMMBL9eKLL+rxxx/XgQMH1KtXL7drkydP1sCBAwtt7cJEGwcAAAAAAABckrvuuku7du3SV199pb///e+qV6+eSpcuLZvNpsjISDVr1kyPP/64fvnlF23dulVdu3Z1u99isejjjz/WihUrdP/996tq1aoKCAhQeHi4mjRpohdffFF79uzJdd/VYPLkyZo2bZo6dOigqKgoBQQEqG7dunr++ee1fft2XXfddR7va9KkibZs2aL/+7//U7Vq1eTn56fIyEi1atVK//73v7Vu3Tq3tgLeULlyZa1bt06PPPKIateu7dajtri1adNGe/bs0bhx43T77berUqVK8vf3V2BgoKpUqaKuXbvqzTffVExMjB588MFCq2PIkCH65ptv1LVrV5UrV042m2/siTVM0zSLuwgUv9jYWFfflMOHDys6OrqYKwIAAAAAwPdcydffe/bskd1ul81mc+sFi8Jx8OBB1ahRQ1LJ3umJq5u3/1yzsxcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADAB9iKuwAAAAAAAADgalO9enWZplncZQCXhZ29AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDs9bJDhw5p5MiRatGihcqWLavAwEBVqVJF7dq104gRI7Rt27Z871+4cKF69+6t6OhoBQQEKDo6Wr1799bChQuL6BUAAAAAAAAAKIl4QJsXjRkzRsOHD1dycrLb+djYWMXGxmrVqlVKSEjQBx98kOtep9OpRx99VBMnTnQ7f+TIER05ckTffvutBg0apM8++0wWCxk9AAAAAAAAAHeEvV7yxhtv6JVXXpEk1a1bV4MHD1bLli1VqlQpnTlzRps3b9bcuXPzDGpfeuklV9DbtGlTPf/886pVq5b27dund999V5s3b9aECRNUtmxZvfXWW0X2ugAAAAAAAACUDIZpmmZxF1HS/fzzz+rcubMk6cEHH9SECRPk5+fncWxGRob8/f3dzu3evVsNGzaU3W5XixYttGLFCgUFBbmup6SkqH379tqwYYNsNpt27typ2rVre/U1xMbGqkqVKpKkw4cPKzo62qvzAwAAAACAK/v6e8+ePbLb7bLZbKpTp05hlQigCHn7zzX9AK6Q0+nUkCFDJEmNGzfWxIkT8wx6JeUKeiXpgw8+kN1ul5TVCiJn0CtJwcHBGjNmjCTJbrfrv//9r7fKBwAAAAAAAOAjCHuv0OLFi7Vnzx5J0gsvvCCb7fI6Y5imqXnz5kmS6tevrzZt2ngc16ZNG9WrV0+SNG/ePLEhGwAAAAAAAEBOhL1X6Ouvv5YkGYahHj16uM7HxcVpz549iouLy/f+AwcO6OjRo5Kk9u3b5zs2+/qRI0d08ODBK6gaAAAAAAAAgK/hAW1XaM2aNZKk6tWrKywsTNOmTdPbb7+tbdu2ucZkP7Bt6NChCggIcLt/x44druP69evnu1bO6zt37lSNGjUuuc7Y2Nh8rx87duyS5wIAAAAAAABw9SHsvQJOp1MxMTGSpDJlyuipp57SRx99lGvc7t27NWzYMM2dO1cLFixQRESE61rOEPZiTdmzG7hLWU3cL0fOewEAAAAAAAD4Hto4XIH4+Hg5nU5J0tatW/XRRx+pYsWK+vLLLxUXF6eUlBQtX77c1Yf3119/1cMPP+w2R2Jious4NDQ03/VCQkJcx0lJSd56GQAAAAAAAAB8ADt7r0BycrLrOC0tTcHBwVq6dKnrQWqSdPPNN+uXX37RjTfeqN9//11z587V2rVr1bp1a9d92fz9/fNdL2cLiNTU1Muq9WI7gY8dO6ZWrVpd1pwAAAAAAAAoOgMHDtTUqVNVrVo1nucEj9jZewUCAwPdPh80aJBb0JstKChIb775puvzmTNnepwjIyMj3/XS09Pd5rwc0dHR+X5UrFjxsuYDAAAAAADwZcuWLZNhGK6Pe++996L3DBw40DUeKA6EvVcgLCzM7fOuXbvmObZTp06y2bI2Uq9fv97jHBdrzZBzJ/HFWj4AAAAAAADAe77++mtt3bq1uMsA8kXYewUCAgJUtmxZ1+f5PQQtMDBQZcqUkSSdOnXKdT7nQ9lyPqzNk5ytGHjgGgAAAAAAQNExTVMjR44s1hqmTJki0zRp4YA8EfZeoYYNG7qOHQ5HvmOzr2fv8JWk6667znUcExOT7/05rzdo0OCy6gQAAAAAAEDBZG/gmzt3rjZv3lzM1QB5I+y9QjfffLPreP/+/XmOS0hI0OnTpyVJlStXdp2vUaOGKlWqJElavnx5vmutWLHCdX/16tULWjIAAAAAAAAuwz/+8Q8FBARIkkaMGFHM1QB5I+y9QnfffbfreO7cuXmOmzt3rkzTlCS1a9fOdd4wDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr1otE3AAAAAABAEalSpYoeffRRSdL333+vdevWXfYcTqdTv/zyi5577jm1bdtWZcqUkZ+fnyIiItSkSRM999xzOnToUL5zZD8A7sJNgK+99prrwXB79uy5aC233nqrDMNQxYoV8/xJ9W+//Vb33HOPqlatqsDAQEVERKhFixZ69dVXdfbs2Ut+3ShahL1X6IYbblC3bt0kSdOnT9fPP/+ca8zx48f18ssvS5L8/f310EMPuV1/+umnZbVaJUlDhw5Vamqq2/XU1FQNHTpUUlYLiKefftrbLwMAAAAAAAD5GD58uIKCgiRJr7zyymXf/9prr6lTp056//339euvv+rMmTOy2+2Kj4/X77//rvfff18NGjTIdzNhXvr37+86njZtWr5jT5w44cqv+vXr58qksp09e1adOnVS7969NXv2bB0+fFjp6emKj4/Xxo0bNWrUKNWvXz/PDYsoXoS9XvDBBx8oIiJCTqdTPXr00PDhw7Vy5Upt2LBBn3zyiVq2bOl6+Nrrr7/u1sZBkurWrathw4ZJkjZs2KC2bdtq5syZ2rBhg2bOnKm2bdtqw4YNkqRhw4apTp06RfsCAQAAAAAArnEVK1bUkCFDJEmLFy/WqlWrLut+u92uihUr6vHHH9cXX3yh1atXa+PGjfr222/1/PPPKzQ0VCkpKerfv7927tx5WXPXrl1brVu3lnTxsHfmzJmu3bz333+/27X09HR17txZv/zyi6xWqx544AFNnz5da9as0cqVK/Xmm28qKipKJ0+eVPfu3fXnn39eVp0ofLaLD8HF1K1bV/Pnz1efPn104sQJjR49WqNHj3YbYxiGXnrpJT3//PMe53jzzTd18uRJTZo0SZs3b1a/fv1yjXnkkUf0xhtvFMprAAAAAAAAJZ9pOuVMP1PcZRQZS0CUDKPo9jK+8MIL+uyzz5ScnKwRI0bol19+ueR7Bw0apJEjR8rPz8/tfLNmzdSrVy8NHTpUbdq00ZEjR/TWW2/piy++uKza7r//fq1du1a7d+/Whg0b1KJFC4/jssPgunXr5hrz2muvadOmTYqIiNCSJUvUvHlzt+s33XST7r//ft144406duyYXnzxRX311VeXVScKF2Gvl9x0003avn27xowZo2+//VYHDhxQRkaGKlasqA4dOmjo0KFq2rRpnvdbLBZNnDhRd999t8aPH6/169fr9OnTKlOmjFq2bKnHHnvM1S4CAAAAAADAE2f6GZ2cUa64yygy5fqdlDWwbNGtV66cnnzySb3zzjtaunSpli5dqo4dO17SvRf22b1QdHS0hg0bpqefflrfffedTNO8rGc23XvvvXrmmWfkcDj01VdfeQx79+3bp7Vr10rKvas3KSlJH3/8saSsn0y/MOjNVq1aNb3yyit6/PHH9fXXX2v8+PEKCQm55DpRuAh7vSgqKkqjRo3SqFGjCjxH9+7d1b17d+8VBQAAAAAAAK8ZNmyYPvnkEyUmJuqVV1657HYO2RISEnTmzBmlpKTINE1JUnBwsOvagQMHVLNmzUuer1y5curSpYt+/PFHzZw5U++//74sFvddzzlbPOTs8ytJy5cvV3x8vCSpT58++a518803S5IyMzO1ceNG1+cofvTsBQAAAAAAAC5RVFSUnn76aUnS6tWrtWjRoku+988//9TQoUNVvXp1lSpVSjVr1lSjRo10/fXX6/rrr9ejjz7qGnv69OnLri17t+6xY8c8tpjIDntbt26t2rVru13Lfl6UlNWf2DCMPD8aNWrkGnv8+PHLrhOFh7AXAAAAAAAAuAz//Oc/FRERIUkaOXLkJd2zcOFCXXfddRo7duwlPdgsNTX1suu68847XbuDL+ylu2nTJsXExEjK3cJBkk6ePHnZ60lSSkpKge5D4aCNAwAAAAAAgI+wBESpXL+ChXYlkSUgqljWjYiI0D//+U+NGDFCa9eu1ffff68ePXrkOf706dPq37+/UlJSFBoaqueee0633nqratWqpVKlSsnf31+S9Msvv6hTp06S5GrtcDlCQ0PVq1cvTZ8+XXPmzNGnn36qwMBASed39VqtVt1777257nU4HK7jTZs25XqQXF6io6Mvu04UHsJeAAAAAAAAH2EYliJ9YNm17Omnn9aHH36oM2fOaOTIkfmGvbNnz9a5c+ckSXPnzlXnzp09jouLi7viuu6//35Nnz5dCQkJ+v7779WnTx85nU7NmDFDktSlSxeVK5f7IX5RUeeD87JlyxLillC0cQAAAAAAAAAuU1hYmIYNGyYpayfs3Llz8xy7fft2SVJkZGSeQa/k3je3oG699VaVKVNG0vndvMuXL9eRI0ckeW7hIElNmzZ1Ha9evfqK60DxIOwFAAAAAAAACuDJJ5907ZIdOXJknq0X7Ha7JCktLU1Op9PjmJSUFH3xxRdXXJPNZlPfvn0lST/88IPOnTvnCn2Dg4N15513eryvc+fOrn6/H330UYHaSKD4EfYCAAAAAAAABRASEqIXXnhBkrR161b98MMPHsfVqVNHUlagO2vWrFzXHQ6HBg0apKNHj3qlruzdu+np6Zo2bZq++eYbSVKvXr0UGhrq8Z6IiAg9+eSTkqRff/1VzzzzTJ7BtCSdOHFCEyZM8Eq98B7CXgAAAAAAAKCAhgwZoooVK0rKehCbJ3379lVAQIAk6aGHHtK//vUv/fzzz9qwYYOmTp2q1q1ba/r06Wrbtq1Xavrb3/6mGjVqSJJeeuklnT17VlLeLRyyvfbaa2rdurUk6cMPP1SzZs308ccfa/Xq1dqyZYuWLl2qsWPH6s4771TVqlU1btw4r9QL7+EBbQAAAAAAAEABBQUF6cUXX9TQoUPzHBMdHa1PP/1UgwYNUlpamt555x298847bmPuvfdeDR48ON+evpejf//+evPNN10PhitTpoxuvfXWfO8JCAjQTz/9pIEDB2rOnDn6/fffXbt9PQkPD/dKrfAedvYCAAAAAAAAV2Dw4MGqUqVKvmMeeughrVy5UnfeeafKli0rPz8/VaxYUbfddptmzpypGTNmyGq1eq2mC3fx9u3bVzbbxfd9hoWF6ZtvvtHKlSs1aNAg1atXT2FhYbLZbIqMjFTLli31xBNP6IcfftBPP/3ktXrhHYZ5lXZb3rdvn06fPq3q1aurfPnyxV2Oz4uNjXX9pXT48GFFR0cXc0UAAAAAAPieK/n6e8+ePbLb7bLZbK4esABKNm//uS7ynb0nT57UJ598ok8++UTx8fG5ru/du1fNmzdX3bp19be//U2VK1fW3Xff7eotAgAAAAAAAADIrcjD3jlz5ujJJ5/Uhx9+qFKlSrldS09PV7du3bRlyxaZpinTNOV0OvXtt9+qV69eRV0qAAAAAAAAAJQYRR72Ll68WIZhqHfv3rmuTZkyRfv27ZMk9ezZUx9++KHuuOMOmaap1atXa+bMmUVdLgAAAAAAAACUCEUe9u7atUuS1KZNm1zXpk2bJkm65ZZb9O2332ro0KGaN2+eOnfuLNM0NWPGjCKtFQAAAAAAAABKiiIPe0+dOiVJuRqQp6amas2aNTIMQ48++qjbtYcffliStGnTpqIpEgAAAAAAAABKmCIPe8+dO5e1sMV96TVr1igzM1OGYahz585u12rUqCEp6+FuAAAAAAAAAIDcijzsDQ0NlSQdP37c7fyyZcskSdddd51Kly7tds3Pz0+SZLPZCr9AAAAAAAAAACiBijzsrV+/viTpxx9/dDv/zTffyDAMtW/fPtc92cFw+fLlC79AAAAAAAAAACiBinyr7O233641a9Zo/PjxatCggdq1a6cpU6Zox44dMgxDd911V657snv1Vq5cuajLBQAAAAAAAIASocjD3ieffFKffPKJjh07pieffNLt2o033qiOHTvmumf+/PkyDEMtW7YsqjIBAAAAAAAAoEQp8jYOpUqV0pIlS9SsWTOZpun6aNeunWbNmpVr/O+//67169dLkrp06VLU5QIAAAAAAABAiVAsTzxr0KCBNmzYoAMHDuj48eOqWLGiqlevnuf4yZMnS5JuueWWIqoQAAAAAAAAAEqWYgl7s9WoUUM1atTId0zjxo3VuHHjIqoIAAAAAAAAAEqmIg97X3vtNUnS448/rjJlylzSPWfPntWYMWMkSSNGjCi02gAAAAAAAACgpCrysHfUqFEyDEN9+vS55LA3Li7OdR9hLwAAAAAAAADkVuQPaAMAAAAAAAAAeF+JCHszMzMlSX5+fsVcCQAAAAAAAABcnUpE2LtlyxZJUtmyZYu3EAAAAAAAAAC4ShV6z97PP//c4/l58+Zpw4YN+d6bnp6uffv2adKkSTIMQy1btiyMEgEAAAAAAACgxCv0sHfgwIEyDMPtnGmaevnlly95DtM0ZbFY9NRTT3m7PAAAAAAAAKBYbdu2TaNHj9by5ct14sQJV0vTzZs3q0mTJsVb3FVs4MCBmjp1qqpVq6aDBw8WdzlXhSJp42CapuvD07n8Pvz8/NS2bVt99913at++fVGUCwAAAAAAgGvcsmXLZBiGDMPQqFGjCm2djRs3qlWrVvrqq68UGxvrCnqBgij0nb0HDhxwHZumqZo1a8owDC1atEh16tTJ8z7DMBQYGKioqChZrdbCLhMAAAAAAAAocsOHD1dqaqrCw8M1evRotWjRQkFBQZKk2rVrF3N1WUaNGqVXX31Vktw2c+LqU+hhb7Vq1Tyer1SpUp7XAAAAAAAAAF+XmZmp5cuXS5IeffRRDRkypJgrQklX6GHvhZxOZ1EvCQAAAAAAAFx1Tp8+rYyMDElS3bp1i7ka+IIi6dkLAAAAAAAAwF16errr2M/Prxgrga8olrA3JSVFKSkpeV4fM2aM2rVrpwYNGqh79+6aP39+EVYHAAAAAAAA5C3nw9uWLVsmSZo1a5Y6deqksmXLKigoSPXq1dPzzz+vuLi4XPePGjVKhmGoRo0arnMPPfSQa868HgqXlpamsWPHqlOnTqpQoYL8/f1Vrlw5de7cWRMnTpTdbr9o7enp6Ro/frxuv/12Va5cWQEBAQoJCVHDhg01aNAgLVq0yNWXd8qUKTIMw9WvV5JbjdkfBw8ezLWOw+HQ1KlT1aNHD1WqVEkBAQGKiorSTTfdpP/85z9KTU29aK07d+7UwIEDVaVKFQUGBqpKlSrq37+/1q9ff9F7r1VF3sZh/vz5uvPOOxUaGqrY2FiFhYW5XX/44Yc1depUSVkNn3fv3q1FixbpjTfe0PDhw4u6XAAAAAAAACBPTqdTDzzwgL788ku387t379Z7772nuXPnauXKlapQocIVrfP777+rV69e+vPPP93Onzp1Sj///LN+/vlnffbZZ5o/f77Kly/vcY4tW7borrvu0oEDB9zOZ2RkaMeOHdqxY4cmTpyoAwcOqHr16gWu9dChQ+rZs6d+//13t/NxcXFavXq1Vq9erU8//VQLFizIs33FrFmz9OCDD7rtfo6NjdX06dP19ddfa9y4cQWuz5cVedib/d2Bnj175gp6V61a5fqOQXBwsOrWrauYmBilpqZqxIgRuuOOO9SoUaOiLhkAAAAAAADw6JVXXtGvv/6qO++8Uw8++KCqVaumEydO6OOPP9aCBQu0d+9ePfPMM5o+fbrrnscff1x9+vTR0aNHdeutt0qS3njjDfXq1cs1ply5cq7jvXv3qn379oqPj1d4eLieeOIJtWrVSlWqVNGZM2f03Xff6bPPPtP69evVq1cvrVy5MldbiJ07d6pdu3ZKSkqSJPXu3Vv9+vVTzZo15XA4tHv3bi1evFhz58513XPnnXeqRYsW+uSTT/Tpp59KkrZu3ZrrPahcubLr+MyZM7rpppt0+PBhBQQEaPDgwWrfvr2qV6+upKQkLV68WB9++KH27t2rbt26adOmTSpVqpTbfOvXr9f9998vu92ugIAAPfPMM+revbsCAgK0du1avfXWWxoyZIiuu+66y/798nVFHvauWbNGhmGoY8eOua6NHz9eklSpUiX99ttvio6O1uHDh3XTTTcpNjZWn332mcaMGVPUJQMAAAAAAJQITtNUUoZZ3GUUmVB/QxbDKNYafv31V73xxht66aWX3M7fdtttuu2227R48WLNnj1bH330kcqWLSspK8gtV66cQkNDXeMrV66c5ybHAQMGKD4+Xk2bNtXixYtVpkwZt+tdu3ZVjx49dPvtt2vt2rWaMmWKBg8e7Dbm73//u5KSkmSxWPTVV1+pX79+btdbt26tBx54QGfOnFFwcLAkKSIiQhEREW7B88U2Yv7jH//Q4cOHVa1aNS1dutStVYUkdejQQffcc4/atWun/fv3691339Wbb77pNubxxx+X3W6Xn5+fFi9erJtvvtl1rVWrVrrrrrvUpk2bXDuHUQxh78mTJyVJ9erVy3Xtxx9/lGEYGjp0qKKjoyVJVapU0dChQ/X8889r+fLlRVorAAAAAABASZKUYWrwktPFXUaR+V/nMgoPKN6wt3nz5nrxxRdznTcMQ//85z+1ePFi2e12/fbbb+rZs+dlz79y5Ur9+uuvkqSpU6fmCnqz3XbbberTp49mzZqVK+xdvHixNm3aJCkrjL0w6M0pKirqsmvMdvDgQc2cOVOSNHbs2FxBb7amTZvqiSee0LvvvqspU6a4hb3r16/Xhg0bJEmPPfaYW9CbrXLlynr//fd17733FrhWX1XkD2g7deqUJOVq4bB9+3adPp31l1HOLeuS1KJFC0nK1ZMEAAAAAAAAKE79+/eXkcfu4ubNm7uO9+/fX6D5v/vuO0lZGyevv/76fMdmB6Pr1693e1jb999/7zp++umnC1THpViwYIEcDoeCg4PVrVu3fMdm13r06FEdOnTIdX7JkiWu44ceeijP+3v37q2IiIgrK9gHFfnOXqvVKkm5nkS4atUqSVLZsmVz7fotXbq0pKwnDgIAAAAAAABXi/r16+d5LTIy0nWcmJhYoPmzd7nu2rUrz1D5QpmZmYqLi3O1X9i8ebMkqWrVqqpWrVqB6rgU2bWmpKTIZrv02PH48eOqWrWqpPM9gf39/dW4ceM87/Hz81PTpk21dOnSK6jY9xT5zt7shs1btmxxO79gwQIZhqF27drluic+Pl6S8tymDgAAAAAAABSH7P62nlgs56M3h8NRoPmzW6JerpSUFNdx9k/TV6xYsUBzXSpv1Jq9QTQyMtK1aTQv5cuXL9B6vqzId/a2a9dOe/bs0dixY/X3v/9dZcqU0fr16/Xjjz9KkusJhDnt3LlTklShQoUirRUAAAAAAKAkCfU39L/O185muVD/4u3XWxSyQ+LGjRvryy+/vOT7sjdcFqXsWsuUKXNZO2499fa91F3McFfkYe/jjz+uKVOm6MCBA6pZs6bq1q2rHTt2yG63KzIy0mNj5V9++UWGYei6664r6nIBAAAAAABKDIthFPsDy+Bd2Q9MS0pKUqNGjQo0R/ZPyx87dsxrdXmSXWtiYqIaNGhw0Z25nmS3cz1z5owcDke+c5w4caJghfqwIm/j0KxZM7333nsyDENJSUnatGmT0tLS5Ofnp//973+5HtwWHx+vBQsWSJI6dOhQ1OUCAAAAAAAAxaZp06aSsh7wdvz48QLN0axZM0nSoUOH9Oeff172/Ze6yza71vT0dFf/3suV/RC6jIwM/f7773mOs9vtudrEohjCXkl65plntHnzZr3yyisaPHiwRowYoT/++EO9e/fONXbZsmVq2bKlbr75ZvXo0aMYqgUAAAAAAACKR8+ePSVJpmnqww8/LNAcd9xxh+v4v//972XfHxgY6DpOT0/Pd53sYPiDDz647HUkqXPnzq7jqVOn5jlu7ty5Onv2bIHW8GXFEvZKWSn9q6++qs8++0yjRo1SvXr1PI7r1auXli5dqqVLl9J0GQAAAAAAANeUrl27qlWrVpKk9957T7Nmzcp3/NatWzV//ny3c507d1bz5s0lSWPGjNGMGTPyvP/MmTNKTU11O5fzwW779u3L89569erpnnvukSTNmDFD//nPf/Kt9cCBA5o+fbrbuVatWrl2In/66adatWpVrvuOHTum5557Lt+5r1XFFvYCAAAAAAAAuLhp06YpMjJSDodD9957r3r27KmvvvpK69at08aNG7Vw4UK99dZbuvHGG3XDDTdo+fLlueb44osvFBoaKqfTqfvuu0933323vv76a23cuFHr1q3TtGnTNHDgQFWrVi1XL9y//e1vruNnnnlGK1as0J49e7R3717t3btXdrvddf3TTz9VzZo1JUnPPvus2rdvr4kTJ2rNmjXavHmzlixZovfff19dunRR7dq19c033+Sq9ZNPPpHNZlNmZqa6dOmiF198UatWrdL69es1duxYNW/eXMeOHVPjxo299Rb7jCJ/QJsnpmlq//79iouLkyRFRkaqZs2aPHUPAAAAAAAA17xatWrpt99+0913361t27Zp/vz5uXbv5hQeHp7rXIMGDbRs2TL17t1bhw8f1pw5czRnzpxLWr927drq27evZs2apcWLF2vx4sVu1w8cOKDq1atLysr1Vq9erb59+2rlypVasWKFVqxYcVm1tm7dWp9//rkGDhyotLQ0vf3223r77bdd1202mz755BOtXr06376+16JiDXsXLVqksWPHatmyZUpJSXG7FhwcrI4dO+rJJ59U165di6lCAAAAAAAAoPjVrVtXW7Zs0axZs/TNN99o/fr1OnXqlBwOh6KiolSvXj3ddNNN6t27t6sNwoWaN2+uXbt2acKECfr222+1bds2xcXFKTAwUDVq1NCNN96oe++91xXc5vTll1+qRYsWmj17tnbt2qXExEQ5nU6P61SoUEErVqzQggULNH36dP322286fvy4MjMzFRERoTp16ujGG29Uz549dfPNN3uc47777lPjxo01evRo/fzzzzp9+rTKli2rtm3b6p///Kdat26t1atXF/j99FWGaZpmUS+akZGhgQMHaubMmZKydvZ6kr2z995779WUKVPk7+9fZDVea2JjY1WlShVJ0uHDhxUdHV3MFQEAAAAA4Huu5OvvPXv2yG63y2azqU6dOoVVIoAi5O0/18Wys7d///6aO3euTNOUzWZTly5d1Lp1a1WoUEGSdPz4ca1bt04//fSTMjMzNXPmTNnt9os2oAYAAAAAAACAa1WRh70LFizQnDlzZBiGOnbsqEmTJqlatWoexx46dEgPP/ywfvnlF33zzTf64Ycf1L179yKuGAAAAAAAAACufpaiXnDKlCmSpMaNG+vHH3/MM+iVpKpVq2rhwoVq0qSJJGny5MlFUCEAAAAAAAAAlDxFHvauWbNGhmHo2WeflZ+f30XH+/n56bnnnpNpmlqzZk0RVAgAAAAAAAAAJU+Rh72nTp2SJF133XWXfE/9+vUlSadPny6UmgAAAAAAAACgpCvysDckJESSdObMmUu+5+zZs5Kk4ODgQqkJAAAAAAAAAEq6Ig9769WrJ0maOXPmJd+TPTb7XgAAAAAAAACAuyIPe3v27CnTNDV58mTXw9ry88UXX2jSpEkyDEN33nlnodcHAAAAAAAAACVRkYe9Q4cOVcWKFWWaph555BH16NFDc+bM0ZEjR5SZmSm73a4jR45ozpw56tGjhwYOHCin06lKlSrpySefLOpyAQAAAAAAAKBEsBX1giEhIfr+++/VuXNnnT17VgsXLtTChQvzHG+apkqXLq3vv/+enr0AAAAAAAAAkIci39krSU2bNtXWrVt19913y2KxyDRNjx8Wi0V9+vTRH3/8ocaNGxdHqQAAAAAAAABQIhT5zt5slSpV0tdff61jx45p2bJl2rZtm+Li4iRJkZGRatSokTp06KCKFSsWV4kAAAAAAAAAUGIUW9ibrWLFirrvvvuKuwwAAAAAAAAAKNGKpY0DAAAAAAAAAMC7CnVn76FDh7w+Z9WqVb0+JwAAAAAAAACUdIUa9lavXl2GYXhtPsMwZLfbvTYfAAAAAAAAAPiKQu/Za5pmYS8BAAAAAAAAANe8Qg17BwwYkO/1c+fOad68eTIMQw8++GBhlgIAAAAAAAAAPq1Qw97Jkyfne3379u2aN2/eJY0FAAAAAAAAAOTNUtwFAAAAAAAAAEBJZBiGDMPQqFGjirsUSYS9AAAAAAAAQC7Lli1zBXkXfgQHB6tKlSrq0aOHJk2apPT09OIuF5BE2AsAAAAAAABcltTUVMXGxmrBggV65JFH1Lx5cx08eLC4ywIIewEAAAAAAID8DBkyRFu3bnV9/Pzzz/rwww8VHR0tKeu5VD179pTD4SjmSnGtK9QHtAEAAAAAAAAlXbly5dSoUSO3c7fccoseeugh3XDDDTp48KC2bt2quXPnqk+fPsVUJcDOXgAAAAAAAKBAwsLC9PLLL7s+X7JkSTFWAxD2AgAAAAAAAAV2/fXXu44PHz6c57ilS5dqwIABqlmzpoKDgxUeHq7rr79ew4YN09GjRy9prdWrV2vQoEGqV6+ewsPD5e/vr+joaPXo0UMff/yxzp07l+e98+fPV58+fRQdHa2AgABFRUXpxhtv1OjRo5WUlOTxnlq1askwDLVt2/aitR05ckRWq1WGYej555/3OCY+Pl5vv/222rZtq7Jly8rf318VK1bUHXfcodmzZ8s0zTznz3443qhRoyRJv/zyi+655x5VqVJFfn5+ql69eq57jh8/rpdeekktWrRQZGSkAgICVKVKFfXt2/eSg/lp06apQ4cOKl26tEJDQ9WoUSONHDky3/e6ONHGAQAAAAAAACggf39/17Gfn1+u62lpaXrooYc0Y8aMXNe2bdumbdu26dNPP9X06dN1xx13eFwjNTVVjzzyiKZPn57r2pEjR3TkyBEtWLBAp06dcoWhOdfv37+/5s6d63Y+Li5Oa9as0Zo1azRmzBgtWLBATZo0cRvTv39/vfHGG/rtt9908OBBj4FqtunTp8vpdEqS7r///lzXf/75Z9177706c+aM2/njx4/r+++/1/fff6/u3btr5syZCg0NzXMdSXrppZf01ltv5Tvmq6++0mOPPabk5GS387Gxsfr666/19ddf65FHHtG4ceNks+WOSO12u/r376+vv/7a7fz27du1fft2ffnll1flTu5CDXtfe+21fK+fPHnyksdmGzFixBXVBAAAAAAAAHjLzp07XccXhqGmaapPnz5asGCBJOmOO+5Q3759VbNmTVksFq1bt07vv/++Dh06pD59+mj16tVq0aKF2xxOp1O9evXSTz/9JEmqU6eOHn/8cbVo0ULBwcE6duyYfv31V82aNctjfQMGDHAFvY0bN9azzz6rBg0aKC4uTjNmzNCUKVN09OhRderUSX/88YcqV67suvf+++/XG2+8IdM0NW3aNL344ot5vg/Tpk2TJDVs2FCNGzd2u7Z69Wp169ZNmZmZKl++vIYOHarGjRurUqVKOnr0qGbOnKkvv/xSP/zwgwYMGKBvvvkmz3XmzJmjrVu36vrrr9czzzyjRo0aKTU1VVu2bHGNmTVrlh544AGZpqmaNWvqySef1HXXXaeyZcvq4MGDmjhxon744QdNnDhR4eHh+s9//pNrneeee84V9NarV0/PP/+8brjhBsXHx+vrr7/W//73P91777151llcDDO//dFXyGKxyDAMr87JUw0LR2xsrKpUqSIp60cOsp8mCQAAAAAAvOdKvv7es2eP7Ha7bDab6tSp43GM03TqTHqKV2otCaICgmUxCqdL6bJly9SxY0dJ0siRI3PtmJWycqqWLVtq8+bNkqSVK1fqpptucl3/3//+p0cffVR+fn767rvvdNttt+Wa4+zZs2rXrp22b9+utm3batWqVW7XP/roIz311FOSpN69e2v69OkKCAjINY/T6dSxY8fcwtoFCxaoR48ekqROnTrphx9+cNuJnLNGSerbt69mzpzpdr158+batGmTGjZsqG3btnl8r2JiYtSgQQNJ0ltvvaXhw4e7rmVmZqpu3bo6ePCgbrvtNn3zzTcKDg7ONUfOOhYvXqwuXbq4Xc+ZMXbq1EkLFizw+D6cPn1atWvXVnx8vB5++GF99tlnHnfuZu8Otlgs2rFjh+rVq+e6tnXrVjVp0kROp1PNmjXT8uXLc+02/vzzzzVgwADX53n9N3Ixl/Ln+nIUehsHb2bJ3g6OAQAAAAAAfMmZ9BSVmz6quMsoMifvG6Wygfn/yH9hOHXqlLZu3aoRI0a4gt4+ffq4Bb2maeqdd96RJP3jH//wGPRKUunSpfXee++pe/fuWr16tfbs2eMK/ZxOp9577z1JUnR0tD7//HOPAaeUtekyZ9ArSR9//LGkrPYSkydPzhX0StLgwYM1a9YsLVmyRHPmzNGxY8dUsWJF1/X7779fmzZt0vbt2/X777/n2rUrZbVMkLKyu/79+7tdmzFjhg4ePKjAwEB9/vnnHoPe7DomTJigdevWacqUKbnC3pyvc8KECXm+D59++qni4+NVuXJlffLJJx6DXkl69dVXNXXqVB05ckSff/653nzzTde1cePGuVpSjB8/3mNbiQcffFAzZszQwoULPc5fXAo17F26dGlhTg8AAAAAAAAUuldffVWvvvqqx2vBwcH6v//7P40ePdrt/I4dO7Rv3z5JWUFwfm6++WbX8W+//eYKe7ds2aLY2FhJWWHoxXrZ5mS327V8+XJJUteuXV07yj0ZPHiwlixZIrvdrmXLlum+++5zXevXr5+GDRsmp9OpadOmeQx7s3sJt23bVtWqVXO79t1330mS2rdvr7Jly+Zb880336x169bpt99+y3NM27Zt8+0dnL1ejx498gyEJclms+nGG2/U7Nmzc62X3Yv3+uuvV/PmzfOc4+GHH762wt727dsX5vQAAAAAAABAsWrSpIn+8Y9/5Ho424YNG1zHN9544yXPd/z4cddx9q5hSWrXrt1l1bV//36lpGS19GjdunW+Y3Nev7BVQ6VKldSxY0f9/PPPmj59ukaPHu320/dr1651hdqeHsyW/T4sWrTokn9qP+d7cKEbbrghz2sOh8PVu/ezzz7TZ599dtnrpaena8+ePZKkli1b5ntfq1atLmn+olQ4TU0AAAAAAAAAHzFkyBBt3bpVW7du1ebNmzV//nwNGDBAFotFv/76qzp06KBTp0653XPy5MkCrZUd0EpZ/Wez5WytcCni4uJcx+XKlct3bIUKFTzely07xD18+LBWrFjhdi27hYOfn5/uueeeXPcW5H1ITU3N81rp0qXzvBYXFye73X7Z6+V8z8+ePetqS3ux9618+fKXvVZhK/SevQAAAAAAACgaUQHBOnnfqOIuo8hEBXju/+pt5cqVU6NGjVyfN2nSRD169FDHjh01cOBAHTx4UIMGDdK8efNcYxwOh+t4/vz5+bYeuHAtb7vS52Ddfffdevzxx5WWlqZp06a5fprf4XBo1qxZkqTbbrtNUVFRue7Nfh+6deumd99994rqkCSr1ZrntZzv+aBBg1wPtrsYT72MpZL5/DDCXgAAAAAAAB9hMSzF8sCya9WAAQM0f/58ffPNN/ruu+/0yy+/6JZbbpEkt+AzIiLCLSy+VGXKlHEdHzt2TPXr17/keyMjI13HJ06cyHdszjYGOe/LFh4erh49emj27NmaPXu2xo4dKz8/P/3888+uuT21cJCy3oejR48qIyOjQO/B5chZu2maBVovIiLCdXyx9+1i14sDbRwAAAAAAACAAnrrrbdcu01ffPFF1/mmTZu6jlevXl2guZs1a+Y6vrB9wsXUrFlTwcFZO5/Xrl2b79h169a5jvMKSLPD3Li4ONdDybJbOISFhalnz54e78t+HzZs2KCMjIzLeAWXz9/fXw0bNpRU8Pc8MDDQ9YC89evX5zv2YteLA2EvAAAAAAAAUEB169ZV3759JWWFqj/99JOkrKA2OjpakjR+/HilpaVd9tyNGzdWlSpVJEkTJkxQUlLSJd9rs9lc7RZ++uknxcbG5jl2woQJrns6dOjgcUz37t1d/XK/+uorpaWlae7cuZKk3r17KygoyON92SFwfHy8Jk+efMn1F1T2ejExMVq0aFGB5ujcubMkuXo052XSpEkFmr8wEfYWkhdeeEGGYbg+li1bdtF7Fi5cqN69eys6OloBAQGKjo5W7969Xd8tAQAAAAAAwNXnxRdfdPV3feONNyRJFovFtdN3//79evDBB5Wenp7nHAkJCRo7dqzbOYvFomHDhkmSYmNj9eCDD+a5O9bpdOro0aNu55544glJUkZGhh555BFlZmbmum/SpElavHixJOmuu+7K80Fw/v7+6tOnj6SsHsTTpk1TYmKipLxbOEhZrS6yA+vnnnvuojuUV61apeXLl+c7Jj9PPfWUQkOzWpk89NBD2r59e77jFyxYoD/++MPt3GOPPeb6/Xz00UeVnJyc676vvvpKP/zwQ4HrLCyEvYVgy5Yt+s9//nPJ451OpwYNGqTu3bvr22+/1ZEjR5SRkaEjR47o22+/Vffu3TV48GA5nc5CrBoAAAAAAAAF0ahRI9eO0hUrVmjVqlWSpP/7v/9T7969JUlff/21GjZsqPfee0/Lly/Xli1btGLFCo0fP179+/dXpUqVNGrUqFxzP/HEE+rSpYskae7cubr++uv14YcfavXq1dq8ebMWLlyokSNHqn79+ho/frzbvbfffrvuueceSdLixYvVpk0bffXVV9q4caOWLFmiQYMGadCgQZKy+t1eLM/KDnVTU1P17LPPSpLKly+vTp065XlPQECAZs2apYCAACUlJemWW27R3//+d82ePVsbN27U+vXr9d1332nkyJG64YYb1K5dO23dujXfOvJTvnx5TZ06VYZh6NixY2rRooWGDBmi7777Tps2bdLatWv1zTff6IUXXlCtWrXUo0cPHTp0yG2Oxo0bu4LyDRs2qEWLFpoyZYo2btyoX375RUOGDNGDDz6oFi1aFLjOwsID2rzM6XTq0Ucfld1uV7ly5XTy5MmL3vPSSy9p4sSJkrL6mDz//POqVauW9u3bp3fffVebN2/WhAkTVLZsWb311luF/RIAAAAAAABwmV566SXNmzdPkvT6669r0aJFMgxDM2fO1FNPPaVx48Zp3759ev755/Oco1y5crnOWSwWffvttxowYIBmz56t3bt36+mnn77kuj7//HPZ7XbNnTtXmzZt0t///vdcYypVqqQFCxaocuXK+c518803q0qVKjp8+LDOnTsnSerXr5+rZ3Fe2rRpo2XLlqlv3746fPiwvvrqK1e/X0/Cw8Mv/sLycdddd2nevHkaOHCg4uLiNG7cOI0bN87jWIvFopCQkFzn//Of/+jo0aOaM2eOYmJi9NBDD7ldr1GjhmbOnKlatWpdUa3exs5eL/voo4+0fv161a9fX4888shFx+/evVv//ve/JUktWrTQ6tWr1a9fP7Vs2VL9+vXTqlWrXN8leO+997R3795CrR8AAAAAAACXr2XLlq4duIsXL3Y9vMvPz0+ffPKJfv/9dw0dOlTXX3+9SpUqJavVqlKlSqlJkyZ65JFHNHv2bO3cudPj3MHBwfr666/1yy+/6IEHHlCNGjUUFBQkf39/ValSRXfccYc+++wz127bnAIDAzVnzhx99913uuuuu1SpUiX5+/urdOnSat26td5++23t2rVLTZo0uehrNAxD9913n9u5/Fo45NSmTRvt2bNH48aN0+233+6qIzAwUFWqVFHXrl315ptvKiYmRg8++OAlzZmfO+64QwcOHNC///1v3XLLLSpfvrz8/PwUFBSkGjVqqEePHvrPf/6jgwcPqmPHjrnu///27jw+qvLu+/j3zEwmk5nJQoAASQDZQkCsooALKOKCtyvFqlVrUWrV21pv7NPWpT6tbW2tdnF9rLgvbRXXuqHeIlpEFgHFhX1fQhJIIOvMZNbz/BEyZJLJSkKSyef9euWVwznXOXMlXJnJ+eaa35WUlKTXX39d//jHP3TqqacqPT1dTqdTY8aM0a9+9St98cUXGj58+GH3s6MZpmmaXd2JRLFr1y4dffTRqq6u1n/+8x998skn+t3vfidJ+uSTT+IWuP7JT36ixx57TJK0bNkynXTSSY3aLF++XCeffHK0/aOPPtrhfS8oKIjWT9m9e3e0gDgAAAAAAOg4h3P/vXnzZoVCIdlsNo0aNaqzugjgCOron2tm9nagm266SdXV1br66qujqx02xzTN6PT+/Pz8uEGvVPuXj9GjR0uS3nrrLZHPAwAAAAAAAGiIsLeDvPLKK3r33XeVmZkZLcvQku3bt0dXSWwpHK47vmfPHu3YseOw+goAAAAAAAAg8bBAWwcoLy/XnDlzJEn33Xef+vXr16rz1q1bF93Oz89vtm394+vXr9ewYcPa1MeCgoJmjxcVFbXpegAAAAAAAAC6F8LeDnDrrbequLhYkydPbtWibHXqB7At1eipq+cj1db0aav65wMAAAAAAABIPJRxOEyLFy/WU089JZvNprlz58owjFafW1VVFd12u93NtnW5XNHt6urqtncUAAAAAAAAQEJjZu9hCAQCuv7662Wapn72s59p3LhxbTq/pqYmum2325ttm5ycHN32+Xxt66hang1cVFSkSZMmtfm6AAAAAAAAALoHwt7DcM8992jDhg0aMmSI7rrrrjaf73A4otuBQKDZtn6/P7qdkpLS5sdqqUwEAAAAAAAAgJ6NMg7ttGHDBv3pT3+SJD3yyCMxZRZaKzU1NbrdUmkGj8cT3W6p5AMAAAAAAACA3oeZve30wAMPKBAIaPjw4fJ6vZo3b16jNmvWrIluf/zxxyouLpYkXXjhhXK5XDGzbesv1hZP/TIMLLYGAAAAAAAAoCHC3naqK6uwbds2XXHFFS22v/vuu6Pb27dvl8vl0tixY6P7NmzY0Oz59Y+PGTOmrd0FAAAAAAAAkOAo49CFhg0bpuzsbEnSokWLmm376aefSpJycnJ01FFHdXbXAAAAAAAAAPQwhL3t9Nxzz8k0zWY/6i/a9sknn0T314W1hmFoxowZkmpn7i5fvjzuYy1fvjw6s3fGjBkyDKNzvzgAAAAAAAAAPQ5hbxe75ZZbZLVaJUk333yzfD5fzHGfz6ebb75ZkmSz2XTLLbcc6S4CAAAAAAAA6AEIe7tYXl6efvnLX0qSVq1apcmTJ+vll1/WqlWr9PLLL2vy5MlatWqVJOmXv/ylRo0a1ZXdBQAAAAAAANBNsUBbN/DHP/5R+/bt0zPPPKPVq1fr8ssvb9Tm2muv1R/+8Icu6B0AAAAAAACAnoCZvd2AxWLR008/rfnz52vGjBnKzs6W3W5Xdna2ZsyYoffee09PPfWULBb+uwAAAAAAAADEZ5imaXZ1J9D1CgoKNHjwYEnS7t27lZub28U9AgAAAAAg8RzO/ffmzZsVCoVks9ko8wgkiI7+uWaqKAAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAGjEMQ4Zh6Le//W1XdwWtZOvqDgAAAAAAAADdzX/+8x9Nmzat0X6r1aq0tDSlp6dr8ODBOuGEEzRlyhRdeOGFstvtXdBT4BBm9gIAAAAAAACtFA6HVVZWph07dmjx4sV68MEHdckllyg3N1d/+MMfFAqFurqL6MWY2QsAAAAAAAA048Ybb9RPfvKT6L+rq6tVVlamb775RgsXLtRHH32kkpIS/frXv9Y777yjd999V/379+/CHqO3IuwFAAAAAAAAmpGVlaVx48Y12n/uuefqtttu07p163TVVVdp9erVWrFihWbOnKmPP/6Ysg444ijjAAAAAAAAAByGsWPHasmSJRo/frwkacmSJXr00Ue7uFfojQh7AQAAAAAAgMOUkpKif/zjHzIMQ5L017/+VcFgMG7b4uJi3XnnnZowYYIyMzOVnJyswYMH67LLLtNHH33U7OOUlZXp2Wef1VVXXaWxY8fK7XbLbrdr4MCBOuecc/TEE08oEAi0qs8vvviiTj/9dPXp00dut1vjxo3TXXfdpfLy8jZ97eg+KOMAAAAAAAAAdICjjz5aZ599tj788EMVFhZq5cqVOuWUU2La/Otf/9INN9wgj8cTs7+goECvvvqqXn31VV177bWaO3eubLbG0d348eO1c+fORvv37t2rDz/8UB9++KHmzp2r9957TwMHDozbz1AopCuvvFKvvvpqzP61a9dq7dq1+uc//9li6IzuiZm9AAAAAAAAQAc566yzotuLFy+OOfbKK6/ohz/8oTwej4YPH677779fH3zwgb744gu9/vrrOu+88yRJTz/9tG699da41w+HwzrxxBN19913691339XKlSu1ZMkS/fOf/9R//dd/SZJWr16tyy+/vMk+/uIXv4gGvaNHj9bTTz+tlStX6qOPPtINN9ygHTt26Pvf//5hfR/QNZjZCwAAAAAAkCBMMyIzUtnV3ThiDEuaDKN7zWU8/vjjo9ubNm2KbpeWlur666+XaZr60Y9+pMcffzxm5u7xxx+viy++WHfeeafuuecePfTQQ7rhhhs0evTomOt//PHHGjVqVKPHPeWUU/SDH/xAzz77rH70ox9p0aJFWrhwoc4888yYdt9++60eeeSR6GMuWrRIbrc7evzMM8/UKaecoquvvvrwvhHoEoS9AAAAAAAACcKMVKqq+Htd3Y0jJnXg6zKsGV3djRh9+/aNbpeVlUW3H3vsMVVUVCgnJ0d///vf45ZokKTf/e53ev7557Vnzx698MIL+uMf/xhzPF7QW9/s2bP18MMP66uvvtKbb77ZKOydO3euIpGIJOmJJ56ICXrrzJo1S/PmzdP777/f/BeLbqd7/ekDAAAAAAAA6MHqh6dVVVXR7bfffluSdMEFFyg5ObnJ8202m04++WRJ0rJly5p9LNM0VVxcrE2bNmnNmjXRj5ycHEnS119/3eiculq8xxxzjE444YQmr/2jH/2o2cdG98TMXgAAAAAAAKCD1A9409LSJNXW2f3qq68kSY8//rgef/zxVl2ruLg47v758+frscce06effhrzeA2VlpbG/Nvv92vz5s2SpIkTJzb72JMmTWpVH9G9EPYCAAAAAAAAHaR+wJqZmSlJOnDggEKhUJuv5fV6Y/5tmqauu+46Pf3006063+fzxfy7rKxMpmlKkrKyspo9d8CAAW3oKboLwl4AAAAAAIAEYVjSlDrw9a7uxhFjWNK6uguNrF69Orpdt7haOByO7vvxj3+sOXPmtOpadrs95t/PPPNMNOg97rjjdMstt+jEE09UTk6OnE6nrFarpNqau//4xz+iwW48hmG07gtCj0LYCwAAAAAAkCAMw9LtFizrbRYsWBDdnjJliqRDM3yl2tm548aNa9e1n3zySUnSyJEjtXTpUqWkpMRtd+DAgbj7MzIyott79+5t9rFaOo7uiQXaAAAAAAAAgA6wZs0aLVy4UJI0ePBgTZgwQVLtDN2jjz5akrRkyZJ2X3/t2rWSpIsuuqjJoNc0TX355ZdxjzkcDo0aNUqStHLlymYfq6Xj6J4IewEAAAAAAIDD5PP5NGvWrGjphF/84hey2Q69qf6iiy6SJG3YsEH/+7//267HqKv76/F4mmzz1ltvqaioqMnjZ511liTp22+/jSk50dAzzzzTrj6iaxH2AgAAAAAAAIdh3bp1mjJlSjQ8nTp1qm688caYNnPmzJHb7ZYkzZ49OzpLtynz58/XN998E7OvblbuO++8E7dUw9atW3XTTTc1e90bbrghWq/3+uuvjxsc/+tf/9J7773X7HXQPVGzFwAAAAAAAGjGvn37tGbNmui/PR6PysrK9M0332jhwoVasGBBdEbvSSedpNdee01JSUkx1xgwYICef/55XXLJJSoqKtKECRN0zTXX6Nxzz1Vubq6CwaAKCgq0YsUKvfbaa9q2bZveeecdfec734leY9asWfrlL3+pwsJCnXzyybrttts0btw41dTU6OOPP9aDDz4ov9+v448/vslSDscee6xuuukm/b//9/+0atUqTZgwQbfddpuOOeYYVVRU6NVXX9UTTzyhCRMmaNWqVZ3w3URnIuwFAAAAAAAAmvHYY4/psccea7ZN//79dcstt+jWW2+NKd9Q38UXX6y33npL11xzjQ4cOKC5c+dq7ty5cdtaLBa5XK6YfXPmzNGCBQv04YcfatOmTbr22mtjjqekpOiFF17Q/Pnzmwx7Jen+++9XYWGh3njjDW3YsEGzZ8+OOT5s2DC9/PLLGjFiRLNfM7ofwl4AAAAAAACglSwWi1JTU5Wenq6hQ4fqhBNO0KmnnqoLLrhAdru9xfMvvPBCbd++XU8++aTee+89rV27VgcOHJDNZtPAgQN19NFH64wzztAll1yiwYMHx5yblJSk+fPn67HHHtMLL7ygdevWyTRN5eTk6KyzztKcOXOUn5+v+fPnN9uHpKQkvf766/rnP/+pJ554Qt98842CwaCGDh2qmTNn6he/+IX69OlzWN8ndA3DrJtjjl6toKAg+gSye/du5ebmdnGPAAAAAABIPIdz/71582aFQiHZbLZo7VYAPVtH/1yzQBsAAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAA0AVM0+zQ6xH2AgAAAAAA9ABWq1WSFA6HFYlEurg3AA5XOBxWOByWdOjn+3AR9gIAAAAAAPQADodDUu1MwOrq6i7uDYDDVV5eHt12Op0dck3CXgAAAAAAgB4gLS0tul1cXKzKykpm+AI9jGmaqqmp0b59+7Rv377o/j59+nTI9W0dchUAAAAAAAB0KpfLpZSUFPl8PoXDYe3Zs0eGYXTY278BdL5wONyoTm96erqSk5M75PqEvQAAAAAAAD2AYRgaMmSIdu3aJZ/PJ6l2lmAoFOringFor/79+6tv374ddj3CXgAAAAAAgB7CYrFo6NCh8ng8qqqqis7yBdAzWCwW2e12uVwuud1u2e32Dr0+YS8AAAAAAEAPYhiG3G633G53V3cFQDfDAm0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAArB1dQcAAOjtymrCWlrk15d7/TIM6b+OcuqELLsMw+jqrgEAAAAAehDCXgAAukB1IKLPi/1aUlijdfuDMusd+7a0Qsf1t+vqsW5lu3mpBgAAAAC0DneQAAAcITUhU1/srQ14vyoJKGw23farkoC+/fSALhju1MUjnXLYqLwEAAAAAGgeYS8AAJ0oFDH1VUlASwpr9MVev/zh1p8bNqW3tnq1eE+Nrsp365TsZEo7AAAAAACaxDShw7Rq1Sr9/ve/1/Tp05Wbm6vk5GS53W7l5eVp9uzZ+uyzz9p0vffff18zZ86MXis3N1czZ87U+++/30lfAQCgo0VMU2tKA3r8m0pd/1Gp/rKqQksLmw96HVZDp2QnKyO58UvzgZqIHv6qUr9bXq6dlaFO7DkAAAAAoCczTNNs5k2kaM5pp52mxYsXt9hu1qxZevLJJ2W325tsE4lEdP311+vpp59uss2Pf/xjPf7447JYOj6jLygo0ODBgyVJu3fvVm5uboc/BgAkMtM0taU8pCWFNVpe5FeZP9LiOUkWaXxWsiZnJ+v4rGTZrYa8wYje2OLVe9u9ccs8GJKmD03RZaNdcifxN1sAAICehvtvAJ2JMg6HobCwUJKUnZ2tSy+9VKeeeqqGDBmicDisZcuW6W9/+5v27NmjF154QcFgUC+++GKT17rzzjujQe/48eN16623asSIEdq6dav+/Oc/a/Xq1XrqqafUv39/3XPPPUfk6wMAtGx3VUhL9tRoaVGN9npbDngthnRMP7smZydr4oBkORsEts4ki64a49bpuQ49v65K35QGY46bkv53p09Li2p0xWi3pg12yEJpBwAAAACAmNl7WC644ALNmjVL3/ve92S1WhsdLy0t1eTJk7Vp0yZJ0qJFi3Taaac1ardp0yYdffTRCoVCmjBhgj799FOlpKREj3u9Xk2dOlWrVq2SzWbT+vXrNXLkyA79WvjLIgC03j5vWEsKa7S0sEa7qlpXhHd0nyRNzk7WSYMcSo9TqiEe0zS1cm9AL6yrUokvfpA8It2mH41L1ciMpFb3HwAAAF2H+28AnYmZvYfh3XffbfZ4v3799Le//U0XXnihJOm1116LG/Y++OCDCoVqazA+8sgjMUGvJDmdTj3yyCM6+eSTFQqF9MADD+jRRx/toK8CANAa5TVhLSvya0lhjTaXt65u7lFpNp2SnaxTBjnU39n4j4ItMQxDkwYm69j+dr291aO3tnoVbJD5bq0I6c4lZZqW69AV+e5WB8kAAAAAgMTDzN5O5vF45Ha7JUnnnXee5s+fH3PcNE3l5uaqsLBQ+fn5Wr9+fZPXys/P18aNG5WTk6Pdu3d36Irs/GURABrzBCNaUVwb8K4pDao1L5iDXNZowJub2rF/U93nDeuFdVVauTcQ97jTZujSPJfOGZoiq4XSDgAAAN0R998AOhMzezuZ3++Pbscr9bB9+/Zo7d+pU6c2e62pU6dq48aN2rNnj3bs2KFhw4Z1bGcBAPKHTX2xtzbg/aokoFDLZXiV6bDo5EHJmpLj0LA0W4f+Ma6+LKdVv5iQoa9K/HpubbWKPLElJLwhU8+vq9bHu32afXSqju7b9MKgAAAAAIDEQ9jbyRYtWhTdHjNmTKPj69ati27n5+c3e636x9evX9+msLegoKDZ40VFRa2+FoCeYVtFUP/ZXSNJSk+2KKPeR92/bcz+lCSFIqa+KQloSWGNVu4NyB9ueQ6vO8nQSYOSNTnbofzMpCO6SNpx/ZP119Psem+7V69v9qqmQX93V4X1++XlOnlQsq4a41a/lLaXkAAAAAAA9DyEvZ0oEono3nvvjf77sssua9Smfgjb0ls36t7mIdW+1aMt6p8LIPGtLPbrgS8r1FJm6U4yGgXAsf+2KiPZolS7cUTDzCMhYppafyCoJYU1+rzIr+pgywFvstXQpIF2Tc526Jh+9i4Ny20WQxeNcGlKjkP/Wl+tzwr9jdosK/Lry31+zRzp0gXDnEqyJtb/IQAAAAAgFmFvJ3rggQe0YsUKSdLFF1+sE044oVGbqqqq6HZdbd+muFyu6HZ1dXUH9RJAollWWKNHvqpsMeiVpOqgqepgWAXV4WbbWQwp3R4bCDcMh+s+UmxGp5UxOFymaWpbRUhLCmu0tNCvMn/LNRpsFml8/9qA9/gByUruZoFppsOqm8en6+yhAT2ztlo7K2MXj/OHpXkbPfpkd42uGevW8QOSu6inAAAAAIDORtjbSRYtWqTbb79dkpSVlaXHHnssbruamprott3efG3F5ORDN+g+n69N/WlpJnBRUZEmTZrUpmsC6H4WF9To0a8rW7WQWFtETKnMH2lVOJpkUROBsLXRPvsRCk4LqkJaWlijJYV+FXubD7YlyZB0TL8knZLt0KSByXIlWTq/k4cpP9Oue6f00YKdPr28ySNPg5nKe71h3beqQsdn2XX1WLcGuvgVAAAAAAASDXd6nWDt2rWaOXOmQqGQHA6HXn31VWVlZcVt63A4otuBQPzV1evUX+wtJSWlTX1idU8g8X28y6cnvq1qFPSO65sku9VQuT+iCn9E5f5Iq2b9tlcwIpX4IirxtRwMp9iMRjOD45WTSLdbZG1jyYQSb1hLi2oD3oazXZuSl2HTKdkOnZztUEZy9w94G7IYhs45yqmTsx16eWO1Fu6qaTQevtwX0DelB3ThMKe+O9Ilh617zVQGAAAAALQfYW8H2759u6ZPn66ysjJZrVbNmzdPp512WpPtU1NTo9stlWbweDzR7ZZKPvQGm8qCWrc/oHOHObvd26qBI+1/d3j1zNrGzyHnDE3RNUe7Y+rtRkxTnqCp8oPBb/0QuHY7HN2uCpgdPku4Pl/IlC8UVpGn+dm2hqRUe/36wta4AXGy1dDqfX4tKfRrY1mwVX0YkmrT5OxknZLtUJYzMRYyS7NbdN0xaTpzSIqeXVOlTeWxYXcoIv17q1ef7qnRVWPcOnlQcrctvQEAAAAAaD3C3g5UWFios846S4WFhTIMQ88884xmzJjR7Dn1Z9zWX6wtnvqlGHr7gmumaeqf66u1sSyoD3b4dGmeS6fnOto88w9IBPO3efXC+sZB7/nDUvTDMe5GIZ7FMJRqN5Rqt2hwaqPTYoQjpioDkZhguHE4XPvZG+q8WNiUVBkwVRkIa1dVWFLrgtymDHBaNTk7WZOzHcpNTdyXwuHpSfrdKX20eE+N/rXBo4oGZTj210T00OpKLdiZpNnjUjUkgb8XAAAAANAbcFfXQUpLS3X22Wdr27ZtkqRHHnlEs2bNavG8sWPHRrc3bNjQbNv6x8eMGdPOniaGL/YForP2yvwRPfFtld7d5tWV+W5NGGBnhhp6jTe3ePTSRk+j/TNHOPX90a7D/lmwWgz1cVjVx9HyjNdA2IwTBodV4TdVXm+2cLk/omDLFR46XJ9ki04+GPCOSLf1mucJi2Foam6KJg5I1mubPfpgh69RGY91B4K6bfEBnTM0RZfmuXpEjWIAAAAAQGOEvR2goqJC55xzjtatWydJuvfee3XTTTe16txhw4YpOztbhYWFWrRoUbNtP/30U0lSTk6OjjrqqMPqc09mmqZe2tB4FmOhJ6y/flGhvAybrhzj1pjM5he8A3oy0zT12maPXtvsbXTssjyXvjfKdcT7ZLcaynJaWyyFYJqmfKF4wXDj2cMVgYgihzFh2JVk6KSBtSUaxvZNiiln0ds4kyyaNTZVZwxO0bNrq7Rmf+zs6Igpvb/DpyWFNboy362puY5e/f0CAAAAgJ6IsPcweb1enX/++fryyy8lSXfeeaduu+22Vp9vGIZmzJihxx57TBs2bNDy5ct10kknNWq3fPny6MzeGTNm9JoZafEYhqGbjkvTSxuq9U1p47dybyoP6bfLynVCll2X57t5WzISjmmaemmjR29tbRz0Xpnv0owRRz7obQvDMORMMuRMsii7hfLjEdNUdaB+feFwk6UkqoK1qXCyVZowoHYG77H97bJR3iVGbqpN//fEDK0o9uuF9dUqbbCQXmXA1NxvqvTRLp9mH52qkRlJXdRTAAAAAEBbGaZpdubaOwktEAjowgsv1IcffihJmjNnjh588ME2X2fTpk0aO3aswuGwJkyYoE8//VQpKSnR4z6fT6eddppWrVolm82mdevWadSoUR31ZUiqrRdcVwd49+7dMbWEu7NvSgN6cX21tleG4h43JJ2W69BleS71S0mMhZfQu5mmqRfWV+u97b5Gx64Z69a5w5xd0KvuIRQxVR005U4yCHhbyR829dYWj97e5o1bWsOQNG2wQ1eMdistmdIOAAAAHaGn3n8D6BkIew/D9773Pb3xxhuSpDPOOEMPPvhgszNu7Xa78vLy4h674447dO+990qSxo8fr9tuu00jRozQ1q1bdd9992n16tXRdvfcc08HfyU9+8UmYppaXuTXvI3V2uuNXwg0ySL911FOfXeEU247gQV6pohp6pk11Vqwq3HQ++NxqTp7aEqcs4CW7fWG9cK6Kq3aG4h73GUzdNlol84eksJCmAAAAIepJ99/A+j+CHsPQ1tLKQwdOlQ7duyIeywSiei6667TM8880+T51157rZ544glZLB0fVibCi00oYmrhLp9e2+xRZSD+sHbaDH13pFPnHuWU3UpggZ4jYpp64psqfVJQE7PfkPTf30nV6YMJenH4vtrn13PrqlXkCcc9PiTVqtlHp2psX2qiAwAAtFci3H8D6L4Iew9DR4a9dd577z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999zD6G3zEunFxheK6N1tPr2zzSt/wyXnD8p0WHTpKJem5jqYpYZuLxwx9fevK/VZoT9mv8WQbjo2TVNyHF3UMySiYNjUezu8en1z08+hk7OTddUYtzIdlMcBAABoq0S6/wbQ/RD2QlJivtiU+yN6Y7NHH+3yqYm8Qjluq64Y7daEAfZevegduq9QxNTDqyv1eXFs0Gs1pDnj03TiIIJedI4DNWH9c321ljT4I0OdZKuhi0c6df4wp5J4pwQAAECrJeL9N4Dug7AXkhL7xabYE9LLmzxa2kRgIUl5fZL0g3yX8jN5azK6j2DY1IOrKxrVUbVZpP9zfLpOGJDcRT1Db7Juf0DPrq3Wrqr4C2EOcll19Vi3xmcxHgEAAFojke+/AXQ9wl5I6h0vNtsqgnpxQ7W+LQ022WbCALsuH+3W4FTbEewZ0FggbOpvX1Toq5LYoDfJIv3ihHQdR7CGIygcMfXRLp9e3uiRJxT/14YTsuyaNdatgS6ePwEAAJrTG+6/AXQdwl5I6l0vNt+UBPSvDdXaURl/lpohaWquQ5fmudQvhXqUOPJqQqb+sqpca/bH/mEi2SrdOiFD4/oxAx1do9If0byN1fp4d43i/fKQZJEuHO7Ud0e6lExpBwAAgLh60/03gCOPsBeSet+LTcQ0tazIr5c3VmuvNxK3TZJF+q+jnPruCKfcdssR7iF6K18oontXVmjDgdigN8Vm6PaJ6ZQaQbewtTyoZ9ZWaUt5/D+a9XVYNGusWycOTKYeOgAAQAO97f4bwJFF2AtJvffFJnTwrcmvb/aoMhD/R8FlMzRjpFPnHuWUnZlq6ESeYER/WlGuzQ0CNKfN0K8mZWhUn6Qu6hnQWMQ09WlBjV7cUK2KJp4/x/VN0uyjU5VLaRwAAICo3nr/DeDIIOyFJF5sfKGI3t3m1TvbfPKH4/9IZDosuizPpdNyHLJaCH3RsaoCEf3x83Jtb1BexJ1k6M4TMzQ8naAX3ZM3GNGrmz36YIdPkThPn1ZD+q+jUnTJKJecSbxLAgAAoLfffwPoXIS9kMSLTZ1yf0RvbPboo10+NZH5Ktdt1RX5bp2QZeftyegQFf6I/vB5uXZVxQa9aXZDvz6xj4akMSsS3d/uqpCeXVultfvjL4KZnmzRD/JdOjXHIQvPnQAAoBfj/htAZyLshSRebBoq9oQ0b6NHy4r8TbYZ3SdJV+a7qKGKw1JWE9bdn5drT3U4Zn+fZIv+74kZvP0dPYppmlpe7Nc/1lVrf038euh5GTbNHpfKbHUAANBrcf8NoDMR9kISLzZN2Voe1IsbqrWmiZlqkjRhgF1XjHYTyqHNSn1h3b28XMXe2KC3r8OiX5+UoUEuxhR6ppqQqTe3evTONq9CcTJfQ9IZQxy6fLRbaSyACQAAehnuvwF0JsJeSOLFpjmmaeqb0oBe3ODRjsr4K88bkk7PdejSPJf6pliPbAfRI+3zhvX75WUq8cUmYf1TLPrNSX2U5WQcoecr9oT0wrpqfbEvEPe4K8nQ9/NcOntoCqUdAABAr8H9N4DORNgLSbzYtEbENLW00K+XN1Zrny/+25OTLNK5Rzk1Y6RTbhYiQhOKPCHdvby80dvcBzqt+vVJGerHHwyQYFbv8+u5tdWNZrHXGZpm04+OdlMWBwAA9ArcfwPoTIS9kMSLTVuEIqYW7PTp9S0eVQXi//i4bIa+O9Kp/zrKKbuV2Wo4pKAqpD98Xq4yf2zQm+O26tcnZqiPg6AXiSkYNvXudq/+vcUjf/zMV1Oyk/WDMW5l8nMAAAASGPffADoTYS8k8WLTHt5gRO9u9+rdbT75w/F/jPo6LLo0z6Wpuaw+D2lXZUh3f16mygZ/JBiSatX/PbGP0pOZDY7EV+oL65/rq5tcANNhNfS9UU6dN8wpm4XnTQAAkHi4/wbQmQh7IYkXm8NRXhPW61u8WrjLpyYyX+W6rboy363js+wyCH17pW0VQf3x83JVB2MHybA0m+48MUOpLFKFXmbt/oCeXVul3VXxp/lmu6w6NcehHLdVOW6bBrqshL8AACAhcP8NoDMR9kISLzYdocgT0ssbPU3OVpOk/D5JujLfrdGZSUewZ+hqm8uC+tOKcnlCsU+3IzNs+tWkDLmo74xeKhwx9eFOn17Z5JE31PyvI1ZDGuCsDX5rA+BD2w4bP0MAAKDn4P4bQGci7IUkXmw60pbyoF7cUK21+4NNtpk4wK7LR7uVm2o7gj1DV9hwIKB7V1bI1yDIys9M0u0T05VCSAWowh/RSxur9cnumnad39dhqRcCH/qcZjd4NwUAAOh2uP8G0JkIeyGJF5uOZpqmvi4N6MUNHu2sDMVtY0iaNtihS/NcLEaUoNaUBvTnVeWNFqMa1zdJv5yQIYeNEAqob0t5UM+sqdLWivjPm23lTjLihsD9UizUUQcAAF2G+28AnYmwF5J4seksEdPUkkK/Xt5YrRJfJG6bJIt03jCnLhrhlJu38yeMr0r8+uuqCgUb/Lcf19+un5+QLruVoAmIJ2KaWlns15r9Qe2pDmlPdVjl/vjPn+1lt0jZDULgbLdNg5xWJfGzCQAAOhn33wA6E2EvJPFi09mCYVMLdvn0xmaPqoLxf+RcSYZmjnDpnKNSCAJ7uC/2+nX/lxUKNcinTsiy62fHpxMmAW3kCUa0pzocDX/rPu/zhtWRv8RYonWBY2cCZ7uscvLHOAAA0EG4/wbQmQh7IYkXmyPFG4zo3W1evbvd2+it/XX6Oiy6LM+l03IdvM24B/q8qEYPra5UuMEz64kDk/U/49Nks/B/CnSUQNhUkadxCFzkCTWaVX+4+iRbGoXAuW6r0pMt1AUGAABtwv03gM5E2AtJvNgcaWU1Yb2+2auFu32KNPETmOu26sp8t47PshMk9BCf7anRo19XNvo/nZydrJuOTZOVoBc4IiKmqX3ecDQALqwXBHtCHftrj8tmKLtBCJzjtirLaeUPdgAAIC7uvwF0JsJeSOLFpqsUVof08iaPlhf5m2yTn5mkH+S7ldcn6Qj2DG31yW6fHv+mqtFbyk/PdeiG76QS+gDdgGmaqvBHVFAv/C301H4+UNOxU4GTLNIgV10AXBcC2zTIZaVUDwAAvRz33wA6E2EvJPFi09W2lAf1r/XVWncg2GSbiQOSdUW+Szlu2xHsGVpjwU6fnlpT1Wj/2UNS9KNxboJeoAfwBiMqjFMSYq833OQ7MNrDkJQVpy5wjtsqF3WBAQDoFbj/BtCZCHshiReb7sA0TX1dEtC/Nni0qyoUt40h6YzBDl2S51Kmw3pkO4i43tvu1fPrqhvtP/eoFF091k0JDqCHC4ZNFXsbh8CF1SEFOrgucEaDusDZB+sC96EuMAAACYX7bwCdiSmCQDdhGIaOy0rWd/rbtWSPXy9vqlaJLzZJMCUt3F2jxXtqdO4wp2aMcDITrIt4ghF9sMOnVzZ5Gh2bMcKpK0a7CGeABJBkNTQ41abBqbG/MkVMU6W+SKMQeE91SNXB9v0dvdwfUbk/orX7Y9/lkWIzGs0EznZZNcBppRY4AAAAgBiEvUA3YzEMnZrr0EmDkvXhLp/+vdmjqgbBQSAivbXVq492+TRzpEvnDE2hBmQn8wYjWn8gqHX7A1p3IKjtFaFG9Xkl6ZJRTl0yiqAXSHQWw1CWs3YhtvFZh/abpqnKgBk3BN7fzrrAvpCpLeUhbSmPfdeHzSINdNaGv7n1wuBBbpuSeU0AAAAAeiXKOEASbyPpzrzBiN7e5tX8bd4m3zLc12HR90e7dGqOg/qwHcQbjGjDgaDWthDu1nf5aJdmjnQdkf4B6HlqQpGDJSBqw9+6heL2esMKd3Bd4H4plkY1gXPdNrntvBsEAICuxv03gM5E2AtJvNj0BGU1Yb2+2auFu31NLhY0ONWqK0e7NT7LzszSNqoLd9cdDHhbE+7WN2uMW+cPd3Za/wAkrlDEVHG9xeEKPXWzgcPyd2QKLCnNbjQKgXPcNvV1UBcYAIAjhftvAJ2JsBeSeLHpSQqrQ5q30aPPi/1NthmTmaQr893K65N0BHvWs3iDEW0sC2rt/trSDNvaGO5KUpJFGpWRpItGODU+K7lT+gmg94qYpg7URFRQrxRE3azgykDH/vqWbK2rC1wXAtcGwQOcVtmoCwwAQIfi/htAZyLshSRebHqizWVBvbihWusOBJtsM2lgsq4Y7VK2m/LcvtDBmbv7g1p3oDbcbWqGdFNsFikvI0lj+9p1dN8kjcxIolYygC5RFYi/OFzDhT0Pl9WQBroOBsB1n1OtynbZ5LDx/AcAQHtw/w2gM5EAAT3UqD5J+s1JGfqqJKAXN1RrV1W4UZsVxX6t2uvXtMEOXTLKpUyHtQt62jU6NtytDXhHEe4C6CZS7RblZ9qVnxm73x82VRgnBC7ytK8ucNhUtKREQ/XrAme7DtUFTkumLjAAAADQVQh7gR7MMAyNz0rWsf3t+mxPjV7e5FFpg1ldEVNauKtGiwtqdP4wpy4a4ZQzKfFuxH2hiDbWq7nb3nB3VF24m2lXXh/CXQA9S7LV0LD0JA1Ljy3jE46Y2usNNwqBCz1h+ULte5NXqS+iUl9AX5fE7k9Niq0LnH3wc78UC4uIAgAAAJ2MMg6QxNtIEkUgbGrBTp/e2OJRdTD+j7Y7ydDMkS5NH5rSo4PMmlBEG8oOztzdH9DWdoS7VqN2hvTRmbUzdwl3AfQ25sG6wHs8Ye2pqjcj2BNWhb9jS0IkW6VBrkMhcK7bqmy3TYNc1AUGAPQu3H8D6EyEvZDEi02i8QYjenurV/O3exVo4l69X4pFl+W5dGqOo0fMtKoJ1S6otm7/oZm7bX1LstWonbl7dF1Zhj5JSibcBYC4qoMR7akKq9BTvyxESPu8kTYvaNkciyENcNZfHO7Q5xRb4r0TBQAA7r8BdCbCXkjixSZRHagJ67XNHn2yu6bJWa9DUq26Mt+t4/rbZXSj0LcmZGpjWSBm5m57w926mrt5hLsAcNgCYTMmAC6sVxc42LGTgZXpsMQJgW1Ktxvd6jULAIC24P4bQGci7IUkXmwS3Z7qkOZt9GhFsb/JNmMzk3Rlvluj+iQ12aYz1YRMbSqrDXbXHghqa3mwXeHuyPrhbkYSq8UDwBESMU3tO1gXuOBgXeC6xeK87awL3BRXkqEc16HwN8dtVU6qTf2pCwwA6AG4/wbQmQh7IYkXm95iU1lQL26o1voDwSbbnDgwWZePdinb3bnrN/rD5sGyDLWzd7e0M9wdUa8sA+EuAHQ/pmmq3B9ptDjcnuqwyjq4LnCSpXFd4JyDdYGTeGcHAKCb4P4bQGfq3DQHQLeS1ydJd52Uoa9KAnpxQ7V2VYUbtfm82K+Ve/06Y7BDl4xyqY/D2iGP3aHhbr0F1Qh3AaB7MwxDfRxW9XFYNa6fPeaYNxg/BN7rDberLnAwIu2qCmlXVUjSoXezGKqtC5zdoCRErtsqZxJ1gQEAAJA4CHuBXsYwDI3PStax/e1avKdGr2zyqNQXO7MqYkof7arR4j01Om+YUxcNd7b5ZtgfPlSWYd3+oDa3N9xNt2lsX7vG9k3S6D5JcrBYDwAkDGeSRaP6WBqVEAqGTRV5G4fAhdWhdtUFNiUVe8Mq9ob15b5AzLE+ybV1gbMbLA7XJ9lCXWAAAAD0OIS9QC9lMQxNzU3RyYMc+nCnT//e4lF1MDaN9Yelf2/x6qOdPs0c6dL0oSlNvg02EI6tubulPKhQG2/ILQ3C3XzCXQDolZKshoak2jQkNfZX1YhpqtQX0Z7qkAoazAj2BNtXmazMH1GZP6I1+2NLHKXYjDiLw1k1wGmlLjAAAAC6LWr2QhI1gyB5ghG9vdWr97Z7FWgipO2fYtFleS5NyXEoFKmtAbzuQEBr97c/3B2ebtPR9WbuphDuAgDayDRNVQRM7akOqTAaAtcGwftrOrYusM0iDXI1CIFdtTOD7dQFBgC0AvffADoTYS8k8WKDQw7UhPXaJo8+3l3TZL3Evg6LKgKRwwt3M5M0OpNwFwDQuXyhQ3WBC+vNBi72hhXpwN+CDdX+UTR2JnDtttvOax0A4BDuvwF0Jso4AIiR6bDq+u+k6fzhTr20waOVe/2N2rR2llRduDs289DMXRbCAQAcSSk2i0ZmWDQyI7YucChiqtgTjpaEKKyrC+wJyd94/dIWmZL2+SLa5wtodUnssXS7ERP+1n3OdFAXGAAAAB2LsBdAXDlum34xIV2byoL614ZqbTgQbPEcQ43LMhDuAgC6I5vFUG6qTbmpNp1Yb3/ENLX/YF3g6OJwB0PhqkD7pgJXBExVHAhqXYPXUofVUHa98De3Xl1gq4UQGAAAAG1H2AugWXl9kvTbkzK0el9AL26s1u6qQ9Od6sLdsX3tOppwFwCQACyGof5Oq/o7rTouK/ZYZaBBCHxwRnCJr311gWvCprZVhLStIhSz32pIAxvWBXZble2yyWEjBAYAAEDTCHsBtMgwDB0/IFnHZdm1stivguqwhqXZlJ9JuAsA6D3S7BalZdo1JjN2f03IVKEnNgTeUx1SsSescDsmA4dNHbxG43oS/VMsym4QAue4bUqjLjAAAABE2AugDSyGoRMHOWLe7goAQG/nsBkanp6k4emN6wLv89aGtgX1QuDC6rBq2pMCSyrxRVTiC+jrBnWBU+vqAjeYEdw3xSILdYEBAAB6DcJeAAAAoBPYLIay3TZlu22aqOToftM0tb8mEg1+D80IDqminXWBqwKmNhwINqqxn2yVsl0Hy0C4bco9GAIPdFlloy4wAABAwiHsBQAAAI4gwzDUL8WqfilWHds/9lh1IBKdBVxYbzZwiS+i9sTA/rC0vTKk7ZUhSf7ofqshDXBaY2sCH/ycYqMkBAAAQE9F2AsAAAB0E267RfmZduU3qAvsD5sqqr84nKf2c5EnrFA71ocLm1KhJ6xCT1gr9wZijvV1WOqFwIeC4HS7IYOSEAAAAN0aYS8AAADQzSVbDR2VnqSjGtQFDkdM7fOFGy0Ot6c6LF+ofSUh9tdEtL8mom9KY0tCuJKMmHrAdSUh+lEXGAAAoNsg7AUAAAB6KKvF0CCXTYNcNk0YEFsXuMwfaRQCF1aHVeZvx1RgSZ6gqU1lQW0qiw2BkyyKloCoHwYPclqVZCUEBgAAOJIIewEAAIAEYxiGMh1WZTqsOqafPeaYJ9g4BN5THdY+b7hddYGDEWlnZUg7G9QFNiQNdFmV7YoNgXPcVjmTqAsMAADQGQh7AQAAgF7ElWRRXh+L8vrEloQIhE0VH6wFXFAvBC7yhBRsx2RgU1KRJ6wiT1hf7IutC9wn2dJoJnCO26qMZAt1gQEAAA4DYS8AAAAA2a2GhqTZNCQt9hYhYpra5w2rsLp+beDaINjTzrrAZf6IyvwRrdkfWxLCaTOi4W+226rcgyFwltNKXWAAAIBWIOwFAAAA0CSLYWigy6aBLpuOH3Bov2maqvBHVFAdVqEntiTEgZr21QX2hkxtLg9pc3koZn+SRRpUrxxEXY3gbJdNduoCAwAARBH2AgAAAGgzwzCU4bAqw2HVuAZ1gb3BiAo9jesC7/WGFWnHZOBgRNpVFdauqnBsHyRlOS0HQ+BDAXBOqlVu6gIDAIBeiLAXAAAAQIdyJlk0MsOikRmxdYGDYVPF3sYhcGF1SIF21gXe641orzegLxvUBU5Ptiin/uJwqTbluKzKdFAXGAAAJC7CXgAAAABHRJLV0OBUmwanNq4LXOqLNAqB91SHVB1sX13gCn9EFf6I1h2IrQucYjOU7Wq8ONwAp1VWCyEwAADo2Qh7AQAAAHQpi2Eoy1m7ENv4rNhjlf6ICuKEwPvbWRfYFzK1tSKkrRWxdYGtRmxd4Pr1gZOpCwwAAHoIwl4AAAAA3VZaskVjk+0a2zd2f03oYF3gqtrwt+BgCLzXG1a4HZOBw6ZUUB1WQXXjusD9UiyNQuAct02pduoCAwCA7oWwFwAAAECP47BZNDzdouHpsXWBQxFTe73hejOB62YDh+VvRwpsSirxRVTiC+irkthjaXZDOW6bsuuFwLlum/pSFxgAAHQRwl4AAAAACcNmMQ4GrzZJydH9EdPUgZr4dYErA+2rC1wZMFV5IKj1DeoCJ1uNg7N/rcp2HZoJPNBllY26wAAAoBMR9gIAAABIeBbDUL8Uq/qlWHVs/9hjVYH4IXCJr311gf1hU9sqQtpWEZLkj+63GtIAZ23wm+u2xswIdtgoCQEAAA4fYS8AAACAXi3VblF+pl35mbH7/WFThXFC4CJP++sCF3rCKvSEtXJv7LG+jvh1gdPsBiUhAABAqxH2AgAAAEAcyVZDw9KTNKxBXeBwo7rAtZ8LPWH5Qu0rCbG/JqL9NQF9Uxq7351kxA2B+6VYZCEEBgAADRD2AgAAAEAbWC2Gst02ZbttmlivLrBpmirzR1RQHdaeqnozgj1hVfjbVxKiOmhqY1lQG8ti6wLbLVJ2nBB4oNOqJCshMAAAvRVhLwAAAAB0AMMwlOmwKtNh1Xf62WOOVQcjKmwwE3hPdUj7vBG1Zy5wICLtqAxpR2VsXWBLtC5wbAic7bLKmURdYAAAEh1hLwAAAAB0MneSRXl9LMrrE1sSIhA2VeQ5FP7WrwscbMdk4IgpFXnCKvKEtWpvIOZYn2RLoxA4121VerKFusAAACQIwl4AAAAA6CJ2q6GhaTYNTYu9NYuYpvbFqQu8pzosbzvrApf5IyrzR7Rmf2xJCJfNUHaDEDjHbVWW00pdYAAAehjCXgAAAADoZiyGoYEumwa6bDphQGxd4HJ/JG4IXNbOusCekKnN5SFtLg/F7E+ySINcdQFwXQhs0yCXVXbqAgMA0C0R9gIAAABAD2EYhvo4rOrjsGpcg7rA3mBsCFzoqf1c7Am3qy5wMCLtqgppV1VsCGxIyopTFzjHbZWLusAAAHQpwl4AAAAASADOJItG9bFoVIO6wMGwqSJv7EzgusXi2lMX2JS01xvWXm9YX+6LrQucEacucI7bqj7UBQYA4Igg7AUAAACABJZkNTQk1aYhqY3rApf6ItpTHVJBg7IQnmD76gKX+yMq90e0tkFd4BSbETcEzkqxymohBAYAoKMQ9gIAAABAL2QxDGU5axdiG591aL9pmqoMmA1qAtdu769pX11gX8jUlvKQtjSoC2yzSAOdteFvbr0QONttoy4wAADtQNgLAAAAAIgyDEPpyYbSk+0a2zf2mC8UiZaAqF8fuNgbVqQdk4FDEamgOqyC6rA+r98HSf1SLI1mAue6bXLbqQsMAEBTCHsBAAAAAK2SYrNoRIZFIzJi6wKHIqaKPY1D4EJPSP5w2x/HlFTii6jEF9BXJbHH0u2GshuEwDlum/o6qAsMAABhLwAAAADgsNgshnJTbcqNUxd4/8G6wHsahMFVgfbVBa4ImKo4ENT6A7F1gR1WQ9lua70QuDYIHuC0ykZdYABAL0HYCwAAAADoFBbDUH+nVf2dVh3X4FhlIHJoBnC9ELjE1766wDVhU9sqQtpWEZLkj+63GtJA18EAuO5zqlXZLpscNkJgAEBiIewFAAAAABxxaXaL0jLtGpMZu78mZKrQcyj8rasRXOQJK9yOycBhUwev1bieRP26wNmuQ3WB05KpCwwA6JkIewEAAAAA3YbDZmh4epKGpzeuC7zPWxvaFjSYEVzTnhRYUqkvolJfQF83qAucmmQ0Whwu221TvxSLLNQFBgB0Y4S9AAAAAIBuz2apXZgt223TRCVH95umqQM1kZiF4Wo/h1TRzrrAVUFTG8qC2lAWWxc42SoNch0KgXMPfh7ooi4wAKB7IOwFAAAAAPRYhmGob4pVfVOs+k5/e8yx6kAkJvytXxe4PTGwPyztqAxpR2VsXWCLIQ1wWmNmAtd9TrFREgIAcOQQ9gIAAAAAEpLbbtHoTItGZ8aWhAiEY+sC76lXFzjUjvXhIqZU5AmryBPWqr2BmGOZDkucENimdLshg5IQAIAORtgLAAAAAOhV7FZDR6Ul6ai02BA4HDG1zxdWYb26wHVhsC/UvpIQB2oiOlAT0belsSUhXEmGclyHwt8ct1U5qTb1py4wAOAwEPYCAAAAACDJajE0yGXTIJdNJwyIrQtc5j9UEqKwXghc5m/HVGBJnqCpTeUhbSoPxexPsqi2NrErti7wIJdVSVZCYABA8wh7AQAAAABohmEYynRYlemw6ph+sXWBPcHYxeEKD37e6w23qy5wMCLtrAxpZ4O6wIYO1QXOdscuEudMoi4wAKAWYS8AAAAAAO3kSrIor49FeX0a1wUu9tSGwAX1wuAiT0jBdkwGNiUVe8Mq9ob1xb7YusB9kg/VBc6uVx+4T7KFusAA0MsQ9gIAAAAA0MHsVkND0mwakhZ72x0xTZX4ItpTVb8mcO22p511gcv8EZX5I1qzP7YusNNmxIS/dZ8HOK3UBQaABEXYCwAAAADAEWIxDA1w1gauxw84tN80TVUEzJjwt+7zgZr21QX2hkxtKQ9pS4O6wDaLNMjVIAR21ZaHsFMXGAB6NMLebmbnzp16+OGHNX/+fO3evVvJyckaMWKELrvsMt10001yOp1d3UUAAAAAQAczDEMZyYYyku06um9sXWBvMKJCT7hRCLzXG1akHZOBQxFpd1VYu6vCsX2Q1D/F0mAmcO22205dYADoCQzTNNv3PhF0uHfeeUdXXXWVKisr4x7Py8vT/PnzNXLkyA5/7IKCAg0ePFiStHv3buXm5nb4YwAAAAAAOk4oYqrIU7soXEGDReIC7ZsM3KR0uxET/tZ9znRQF7ituP8G0JmY2dtNrF69Wt///vfl8/nkdrt1xx13aNq0afL5fJo3b56efPJJbdq0Seeff75WrVql1NTUru4yAAAAAKAL2SyGBqfaNDjVphPr7Y+Ypkp9Ee2pDqmwOnZGcFWwffO9KgKmKg4Ete5AbF1ghzW2LnBuvbrAVgshMAAcaYS93cScOXPk8/lks9n04Ycf6uSTT44eO+OMMzRq1Cjdeuut2rRpk/72t7/pt7/9bdd1FgAAAADQbVkMQ1lOq7KcVo3Pij1W6Y+ooF74W1ceotTXvqnANWFT2ypC2lYRWxfYahyqC1w/DM522eSwEQIDQGehjEM3sGLFCp14Yu3fYW+44QbNnTu3UZtIJKJx48Zp/fr1ysjI0L59+5SUlNRhfeBtJAAAAADQe9WEDtYFrqoNfwuqwyr0hFTsCSvcwalB/brA2fXKQqT1krrA3H8D6EzM7O0G3nzzzej27Nmz47axWCyaNWuW7rjjDpWXl+uTTz7R9OnTj1APAQAAAACJzGGzaHi6RcPTYycVhSKm9nrD9RaGq5sVHJa/nSlwiS+iEl9AX5XE7k+N1gU+OBP44MzgvikWWagLDACtQtjbDXz22WeSJJfLpRNOOKHJdlOnTo1uL1mypFeHveFISAdq9nZ1NwAAAAAg4dkt0rC02o86pmmq3B/RXm9Y+zwR7fWGtNcb1l5vWNWhpq/VnJqQtLW89iPm8Q0py2VRltOqAU6bBjitGuC0qF+KVbYGdYEzHQNktRB1AOi9eAbsBtavXy9JGjlypGy2pv9L8vPzG53TWgUFBc0eLyoqatP1utqBmr2yl83q6m4AAAAAQK81QNIAQ5L74MeRFDj40cCBPi+ovzPnCHcGALoPwt4uVlNTo9LSUklqsU5Pnz595HK55PF4tHv37jY9Tl09IAAAAAAAAACJqXdUP+/Gqqqqottud8t/CnW5XJKk6urqTusTAAAAAAAAgJ6Hmb1drKamJrptt9tbbJ+cnCxJ8vl8bXqclmYCFxUVadKkSW26JgAAAAAAAIDug7C3izkcjuh2IBCn4FADfr9fkpSSktKmx2mpRERPk+kYoAN9XujqbgAAAAAAuoAnGFGJN6y93sjBheFCOmmgQ1MdA7q6awDQpQh7u1hqamp0uzWlGTwej6TWlXxIZFaLjaL7AAAAANBL9Zd0VHpX9wIAuh9q9nYxh8Ohvn37SpIKCgqabVtWVhYNe1lwDQAAAAAAAEB9hL3dwNixYyVJW7ZsUSgUarLdhg0bottjxozp9H4BAAAAAAAA6DkIe7uBKVOmSKot0fDFF1802W7RokXR7cmTJ3d6vwAAAAAAAAD0HIS93cB3v/vd6Pazzz4bt00kEtELL9QuSJaRkaFp06Ydia4BAAAAAAAA6CEIe7uBSZMm6dRTT5UkPf3001q2bFmjNn/729+0fv16SdKcOXOUlJR0RPsIAAAAAAAAoHuzdXUHUOuhhx7S5MmT5fP5NH36dP3qV7/StGnT5PP5NG/ePD3xxBOSpLy8PP385z/v4t4CAAAAAAAA6G4Ie7uJ8ePH6+WXX9ZVV12lyspK/epXv2rUJi8vT/Pnz1dqamoX9BAAAAAAAABAd0YZh27kwgsv1DfffKOf/exnysvLk9PpVEZGhiZMmKD77rtPq1ev1siRI7u6mwAAAAAAAAC6IcM0TbOrO4GuV1BQoMGDB0uSdu/erdzc3C7uEQAAAAAAiYf7bwCdiZm9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACcDW1R1A9xAKhaLbRUVFXdgTAAAAAAASV/177vr34gDQEQh7IUkqKSmJbk+aNKkLewIAAAAAQO9QUlKio446qqu7ASCBUMYBAAAAAAAAABKAYZqm2dWdQNerqanRt99+K0nq37+/bLbuP+m7qKgoOgt5xYoVGjRoUBf3CGg/xjMSCeMZiYYxjUTCeEai6YljOhQKRd9de8wxx8jhcHRxjwAkku6f6OGIcDgcmjhxYld3o90GDRqk3Nzcru4G0CEYz0gkjGckGsY0EgnjGYmmJ41pSjcA6CyUcQAAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEYpmmaXd0JAAAAAAAAAMDhYWYvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS96JF27typn//858rPz5fL5VJmZqYmTpyov/zlL/J6vV3dPSS4ffv26d1339VvfvMbnXvuuerXr58Mw5BhGLrmmmvafL33339fM2fOVG5urpKTk5Wbm6uZM2fq/fffb/U1QqGQ5s6dq1NPPVX9+/dXSkqKRowYoRtuuEFr165tc5/Qe6xatUq///3vNX369OgYdLvdysvL0+zZs/XZZ5+16XqMZ3SVyspKzZs3Tz//+c81depUjRw5Uunp6bLb7crKytLpp5+uP//5z9q/f3+rrrd06VJdddVVGjp0qBwOhwYOHKhzzjlHL730Upv69dJLL2n69OkaOHCgHA6Hhg4dqquuukrLli1rz5cJSJJuu+226O8ehmHoP//5T4vn8PyMrlZ/zDb3cfrpp7d4LcYzADTDBHqYt99+20xLSzMlxf3Iy8szN2/e3NXdRAJrauxJMq+++upWXyccDpvXXntts9f78Y9/bIbD4WavU1JSYk6cOLHJayQnJ5tPPvnkYX7VSESnnnpqs+Ov7mPWrFmm3+9v9lqMZ3S1BQsWtGo89+vXz/zggw+avdZdd91lWiyWJq9x/vnnmz6fr9lreL1e87zzzmvyGhaLxfztb3/bkd8C9BKrV682bTZbzHj65JNPmmzP8zO6i9Y8R0syp06d2uQ1GM8A0DLCXvQoX375pZmSkmJKMt1ut/nHP/7RXLp0qblw4ULzuuuuiwl8Kysru7q7SFD1fxEcMmSIOX369HaFvbfffnv0vPHjx5svvfSSuWLFCvOll14yx48fHz12xx13NHmNUChkTpkyJdr24osvNt9//33z888/Nx9++GEzKysrGiq89957HfDVI5GMGDHClGRmZ2ebc+bMMV977TVzxYoV5rJly8z777/fzMnJiY6tK664otlrMZ7R1RYsWGAOHjzYnDVrlvnQQw+Zb7zxhrls2TJzyZIl5ssvv2xeeumlptVqNSWZdrvd/Oqrr+JeZ+7cudExOGLECPPpp582V6xYYb755pvmtGnTWv0zcfnll0fbTps2zXzzzTfNFStWmE8//XT0Z0+S+fjjj3fGtwMJKhwORwOquufElsJenp/RXdSNnxtvvNH89ttvm/zYtm1bk9dgPANAywh70aPUzUKz2Wzm0qVLGx3/85//HH3Rvuuuu458B9Er/OY3vzHfeecds7i42DRN09y+fXubw96NGzdGZ+VMmDDB9Hq9Mcc9Ho85YcKE6Hhvarb6008/HX3sn/zkJ42Ob968OToTfuTIkWYwGGzbF4uEdv7555svv/yyGQqF4h4vKSkx8/LyomNs0aJFcdsxntEdNDWO6/v3v/8dHWMzZ85sdHz//v1menp69I95JSUljR7jwgsvbDFgW7hwYbTNhRde2KhvJSUl5pAhQ0xJZkZGhnngwIHWf6Ho1R544AFTkpmfn2/ecccdLY5Fnp/RnRzufRrjGQBah7AXPcbnn38efVG+4YYb4rYJh8PmmDFjojdPgUDgCPcSvVF7wt4bb7wxes6yZcvitlm2bFmzv4iaphkd75mZmabH44nb5k9/+lP0Oq+88kqr+gfUeeedd6Lj5+abb47bhvGMnmT06NGmVFvOoaH77rsvOr5eeumluOfv3r07OkP4vPPOi9vm3HPPjYYNu3fvjtvmpZdeij7Wn//85/Z/Qeg1du7cabrdblOS+Z///Me86667Wgx7eX5Gd3K4YS/jGQBahwXa0GO8+eab0e3Zs2fHbWOxWDRr1ixJUnl5uT755JMj0TWgTUzT1FtvvSVJys/P10knnRS33UknnaTRo0dLkt566y2ZphlzfNOmTVq/fr0k6bLLLpPT6Yx7nfqLxv373/8+3O6jl5k2bVp0e+vWrY2OM57R06SmpkqSampqGh2r+10jLS1NF198cdzzc3NzddZZZ0mSFi5cqKqqqpjjVVVVWrhwoSTprLPOUm5ubtzrXHzxxUpLS5PEWEbr3HTTTaqurtbVV1+tqVOnttie52ckEsYzALQeYS96jLoV4V0ul0444YQm29X/5XfJkiWd3i+grbZv367CwkJJavFmre74nj17tGPHjphjdT8TLV1n4MCBysvLk8TPBNrO7/dHt61Wa6PjjGf0JBs3btRXX30lqTYsqC8QCGjFihWSpJNPPll2u73J69SNUb/fr1WrVsUcW7lypQKBQEy7eOx2ezSsWLlypYLBYNu+GPQqr7zyit59911lZmbqr3/9a6vO4fkZiYTxDACtR9iLHqPuL7AjR46UzWZrsl39m7e6c4DuZN26ddHthmFDQ82N5/ZcZ/fu3fJ4PK3uK7Bo0aLo9pgxYxodZzyju/N6vdq8ebPuv/9+TZ06VaFQSJJ0yy23xLTbtGmTwuGwpCM/lkOhkDZv3tz8F4Jeq7y8XHPmzJEk3XffferXr1+rzuP5Gd3Vq6++qrFjx8rpdCo1NVWjRo3S1Vdf3ey7MhnPANB6hL3oEWpqalRaWipJTb4dsk6fPn3kcrkk1b4wA91NQUFBdLul8Tx48ODodsPx3J7rmKYZcx7QnEgkonvvvTf678suu6xRG8YzuqPnnntOhmHIMAy5XC7l5eXp5z//ufbu3StJuv3223XllVfGnNOVYznedYA6t956q4qLizV58mRde+21rT6P52d0V+vWrdP69evl8/lUXV2tLVu26IUXXtAZZ5yhmTNnqqKiotE5jGcAaL2mp0cC3Uj9enhut7vF9i6XSx6PR9XV1Z3ZLaBd2jKe6/5wIanReO6o6wBNeeCBB6Jva7/44ovjltBhPKMnOe644/TEE09o4sSJjY4xltEdLV68WE899ZRsNpvmzp0rwzBafS5jGt2N0+nURRddpDPPPFP5+flyu90qKSnRokWLNHfuXO3fv19vvvmmZsyYoQULFigpKSl6LuMZAFqPsBc9Qv1FVJqroVcnOTlZkuTz+TqtT0B7tWU8141lqfF47qjrAPEsWrRIt99+uyQpKytLjz32WNx2jGd0R9/97nc1YcIESbVjZOvWrXrllVf073//W1dccYUefPBBXXDBBTHnMJbR3QQCAV1//fUyTVM/+9nPNG7cuDadz5hGd7Nnzx5lZGQ02n/22Wfr5ptv1rnnnqvVq1dr0aJFeuyxx/Q///M/0TaMZwBoPco4oEdwOBzR7bpFT5pTt6BQSkpKp/UJaK+2jOf6i2M1HM8ddR2gobVr12rmzJkKhUJyOBx69dVXlZWVFbct4xndUUZGhsaNG6dx48Zp4sSJuvzyy/XGG2/ohRde0LZt2zRjxgw999xzMecwltHd3HPPPdqwYYOGDBmiu+66q83nM6bR3cQLeusMGDBAr732WnQ27yOPPBJznPEMAK1H2IseITU1NbrdmrfQ1BXQb03JB+BIa8t4rr8YRMPx3FHXAerbvn27pk+frrKyMlmtVs2bN0+nnXZak+0Zz+hJfvjDH+rSSy9VJBLRT3/6Ux04cCB6jLGM7mTDhg3605/+JKk29Kr/dvLWYkyjpxk+fLjOPvtsSdKWLVtUWFgYPcZ4BoDWI+xFj+BwONS3b19JarE4fllZWfSFuX5xfqC7qL8YREvjuf6iEg3Hc3uuYxhGi4tRoPcqLCzUWWedpcLCQhmGoWeeeUYzZsxo9hzGM3qaujHt8Xj0wQcfRPd35ViOdx30bg888IACgYCGDx8ur9erefPmNfpYs2ZNtP3HH38c3V/3ezDPz+iJxo4dG93es2dPdJvxDACtR81e9Bhjx47V4sWLtWXLFoVCIdls8Yfvhg0bottjxow5Ut0DWq3+L7H1x2s8zY3nhtc57rjjWrzO4MGD2zU7CImvtLRUZ599trZt2yapdibZrFmzWjyP8Yyepn///tHtnTt3Rrfz8vJktVoVDoc7dCy35jo2m02jRo1qufPoNerePr5t2zZdccUVLba/++67o9vbt2+Xy+Xi+Rk9UlOLEDKeAaD1mNmLHmPKlCmSamfifPHFF022W7RoUXR78uTJnd4voK2GDRum7OxsSbHjNZ5PP/1UkpSTk6Ojjjoq5ljdz0RL1ykuLtamTZsk8TOB+CoqKnTOOedo3bp1kqR7771XN910U6vOZTyjp6k/U6z+23LtdrsmTZokSVq2bFmztRzrxmhycnJ0Ibg6EydOjC7609xYDgQCWr58efSc+qvOAx2B52f0RHW/i0iKjl+J8QwAbUHYix7ju9/9bnT72WefjdsmEonohRdekFS7AMC0adOORNeANjEMI/o24g0bNkRv9htavnx5dEbBjBkzGs10yMvLi85WeOWVV+T1euNep/4iRDNnzjzc7iPBeL1enX/++fryyy8lSXfeeaduu+22Vp/PeEZP8+qrr0a3jznmmJhjdb9rVFZW6o033oh7fkFBgT766CNJ0plnnhlT/1GqrQd55plnSpI++uijJt8m/MYbb6iyslISYxmNPffcczJNs9mP+ou2ffLJJ9H9deEWz8/oabZv364FCxZIkkaMGKGcnJzoMcYzALSBCfQgp556qinJtNls5tKlSxsd//Of/2xKMiWZd91115HvIHql7du3R8fd1Vdf3apzNm7caFqtVlOSOWHCBNPr9cYc93q95oQJE6LjfdOmTXGv8/TTT0cf+6abbmp0fMuWLWZaWpopyRw5cqQZDAbb/PUhcfn9fnP69OnRMTRnzpx2XYfxjO7g2WefNX0+X7Nt7r///ugYGzZsmBkKhWKO79+/30xPTzclmUOHDjVLS0tjjodCIfPCCy+MXuOTTz6J+zgLFy6MtrnooosaPU5JSYk5ZMgQU5KZkZFhHjhwoO1fMHq9u+66q8WxyPMzuou333672XFRXFxsjh8/PjrO/va3vzVqw3gGgNYh7EWP8uWXX5opKSmmJNPtdpv33HOPuWzZMvPjjz82r7/++uiLdl5enllZWdnV3UWCWrx4sfnss89GP/7yl79Ex97kyZNjjj377LNNXuf222+Pnjd+/Hhz3rx55sqVK8158+bF/LJ7xx13NHmNUChkTp48Odr2e9/7nvnBBx+Yn3/+ufnII4+YWVlZpiTTYrGY7733Xid8N9CTXXzxxdGxc8YZZ5jffPON+e233zb5sXHjxiavxXhGVxs6dKiZmZlpXnfddebzzz9vfvbZZ+ZXX31lLl682Pz73/8eM7bsdru5YMGCuNeZO3dutN2IESPMZ555xly5cqX51ltvmdOmTYseu+KKK5rtz+WXXx5tO23aNPOtt94yV65caT7zzDPmiBEjoscef/zxzvh2oBdoTdhrmjw/o3sYOnSomZ2dbd58883miy++aC5dutRcvXq1uWDBAvPOO+80+/XrFx1fU6ZMMWtqauJeh/EMAC0j7EWP8/bbb0f/0hrvIy8vz9y8eXNXdxMJ7Oqrr25y/MX7aEo4HDZ/9KMfNXvutddea4bD4Wb7U1JSYk6cOLHJayQnJ5tPPvlkR38bkADaMo7rZjo2hfGMrjZ06NBWjePc3Fzzww8/bPZav/nNb0zDMJq8xnnnndfiLGKv12ued955TV7DYrHwLiQcltaGvTw/ozto7XP09773PbOsrKzJ6zCeAaBlhmmapoAeZufOnXrooYc0f/58FRQUyG63a+TIkbr00kv105/+VE6ns6u7iAR2zTXX6Pnnn291+5aeZt977z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999xWPUYoFNKTTz6pF198UevXr5fH41F2drbOPPNMzZkzR0cffXSr+4veo6kVr5sydOhQ7dixo9k2jGd0lY0bN2r+/PlasmSJtmzZor1792r//v1KSUlRVlaWjjvuOF1wwQW67LLLWvV7wtKlS/Xoo49q8eLF2rt3rzIyMnTsscdq9uzZuuKKK1rdrxdffFHPPfecvv76a5WXl2vAgAE69dRT9dOf/lQnn3zy4XzJ6OV++9vf6ne/+52k2pq9p59+erPteX5GV1q0aJEWLVqkZcuWadu2bSotLVVlZaXcbrcGDx6sU045RVdffXWrnxcZzwDQNMJeAAAAAAAAAEgAlq7uAAAAAAAAAADg8BH2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAHSx5557ToZhyDAM7dixo6u7AwAAAKCHIuwFAABopx07dkRD2sP5AAAAAICOQNgLAAAAAAAAAAnAME3T7OpOAAAA9ETBYFAbN25s8vgxxxwjSZowYYKeffbZJtuNGzeuw/sGAAAAoPexdXUHAAAAeqqkpKRWBbUul4tAFwAAAECno4wDAAAAAAAAACQAwl4AAIAu9txzz0UXa9uxY0ej46effroMw9Dpp58uSdqyZYv++7//W8OHD1dKSoqOOuooXXvttdq5c2fMeWvWrNHs2bM1fPhwORwODR48WDfeeKP27dvXqn69+eabuvTSSzVkyBA5HA5lZGRowoQJ+t3vfqeysrLD/bIBAAAAdDDKOAAAAPQgH330kS6++GJVVVVF9+3cuVPPPPOM3n33XS1atEj5+fl66aWXdM011ygQCETbFRQUaO7cuXr//fe1dOlSZWdnx32MsrIyXXLJJfr4449j9vv9fn3xxRf64osv9Pe//11vvfWWTjrppM75QgEAAAC0GTN7AQAAeojCwkJddtllysjI0COPPKLPP/9cixcv1i233CLDMLRv3z79+Mc/1sqVKzVr1iyNGDFCTz31lFasWKFPPvlEP/zhDyXVhsP/5//8n7iP4ff7ddZZZ+njjz+W1WrVD3/4Q7300ktavny5Fi9erD/+8Y/q27ev9u3bp/POO6/RbGIAAAAAXYeZvQAAAD3E5s2bNWrUKC1ZskT9+/eP7p8yZYpsNpv++te/asmSJTr//PM1adIkLViwQE6nM9ru9NNPV01NjV599VW9/vrrKikpibmOJP3+97/Xl19+qYyMDH300Uc64YQTYo5PmTJFP/jBD3TyySerqKhIv/rVr/Svf/2rc79wAAAAAK3CzF4AAIAe5OGHH24U0ErST37yk+h2aWmpnnrqqZigt86NN94oSQqFQlq2bFnMserqaj366KOSpLvvvrtR0Ftn6NCh+vWvfy1JevXVV+XxeNr3xQAAAADoUIS9AAAAPURGRobOOeecuMeGDRum1NRUSdJ3vvMdjRkzJm67Y489Nrq9bdu2mGOLFi1SRUWFJOmSSy5pti+nnXaaJCkYDOqLL75o3RcAAAAAoFNRxgEAAKCHGDVqlAzDaPJ4RkaGqqqqlJeX12ybOvUXeZOkVatWRbcHDRrU6n4VFxe3ui0AAACAzsPMXgAAgB4iXlmG+iwWS4vt6tpIUjgcjjm2b9++dvXL6/W26zwAAAAAHYuZvQAAAJAUG/5++eWXSkpKatV5ubm5ndUlAAAAAG1A2AsAAABJUt++faPb/fv3J8QFAAAAehjKOAAAAECSNH78+Oj2kiVLurAnAAAAANqDsBcAAACSpLPOOita7/fhhx+WaZpd3CMAAAAAbUHYCwAAAElSRkaGfvrTn0qSli5dqp/97GeKRCJNtt+7d6+eeuqpI9U9AAAAAC2gZi8AAACifv/732vRokX6/PPP9dBDD+k///mPrrvuOh133HFyuVwqKyvT2rVr9dFHH+n999/XMcccox//+Mdd3W0AAAAAIuwFAABAPcnJyVqwYIGuueYavfHGG/r666+js33jSUtLO4K9AwAAANAcwl4AAADESE1N1euvv67PPvtMzz//vBYvXqzCwkL5fD6lpaVpxIgRmjRpks4//3xNnz69q7sLAAAA4CDDZOUNAAAAAAAAAOjxWKANAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJ4P8D+twzsjcgztgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'transmissibility_function_reassortment_example_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/doctrees/nbsphinx/evolution_26_1.png b/docs/_build/doctrees/nbsphinx/evolution_26_1.png new file mode 100644 index 0000000..4d7247e Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/evolution_26_1.png differ diff --git a/docs/_build/doctrees/nbsphinx/evolution_29_1.png b/docs/_build/doctrees/nbsphinx/evolution_29_1.png new file mode 100644 index 0000000..03eabb2 Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/evolution_29_1.png differ diff --git a/docs/_build/doctrees/nbsphinx/evolution_32_0.png b/docs/_build/doctrees/nbsphinx/evolution_32_0.png new file mode 100644 index 0000000..ce44dde Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/evolution_32_0.png differ diff --git a/docs/_build/doctrees/nbsphinx/evolution_62_1.png b/docs/_build/doctrees/nbsphinx/evolution_62_1.png new file mode 100644 index 0000000..771c170 Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/evolution_62_1.png differ diff --git a/docs/_build/doctrees/nbsphinx/evolution_64_1.png b/docs/_build/doctrees/nbsphinx/evolution_64_1.png new file mode 100644 index 0000000..42d3c38 Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/evolution_64_1.png differ diff --git a/docs/_build/doctrees/nbsphinx/evolution_67_0.png b/docs/_build/doctrees/nbsphinx/evolution_67_0.png new file mode 100644 index 0000000..244c1c2 Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/evolution_67_0.png differ diff --git a/docs/_build/doctrees/nbsphinx/intervention.ipynb b/docs/_build/doctrees/nbsphinx/intervention.ipynb new file mode 100644 index 0000000..f403acc --- /dev/null +++ b/docs/_build/doctrees/nbsphinx/intervention.ipynb @@ -0,0 +1,860 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Several interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors in a single population scenario, showing the effect of various interventions done at different time points.\n", + "\n", + "For more information on how each intervention function works, check out the documentation for each function fed into `newIntervention()`." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `my_setup_2` with the same parameters, but duplicate the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup_2', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " contact_rate_host_vector=4e-1, \n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100,\n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`my_population` starts with _AAAAAAAAAA_ genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define the interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. At time 20, adds pathogens of genomes _TTTTTTTTTT_ and _CCCCCCCCCC_ to 5 random hosts each." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 20, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'TTTTTTTTTT':5, 'CCCCCCCCCC':5, } ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. At time 50, adds 10 healthy vectors to population." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addVectors', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 10 ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. At time 50, selects 10 healthy vectors from population `my_population` and stores them under the group ID `10_new_vectors`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', '10_new_vectors', 10, 'healthy' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. At time 50, adds pathogens of genomes _GGGGGGGGGG_ to 10 random hosts in the `10_new_vectors` group (so, all 10 of them). The last `10_new_vectors` argument specifies which group to sample from (if not specified, sampling occurs from whole population)." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'GGGGGGGGGG':10}, '10_new_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. At time 100, changes the parameters of my_population to those in `my_setup_2`, with twice the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 100, \n", + " # time at which intervention will take place.\n", + " 'setSetup', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'my_setup_2' ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. At time 150, selects 100% of infected hosts and stores them under the group ID `treated_hosts`. The third argument selects all hosts available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_hosts', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7. At time 150, selects 100% of infected vectors and stores them under the group ID `treated_vectors`. The third argument selects all vectors available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_vectors', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8. At time 150, treat 100% of the `treated_hosts` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_hosts' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "9. At time 150, treat 100% of the `treated_vectors` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "10. At time 250, selects 85% of random hosts and stores them under the group ID `vaccinated`. They may be healthy or infected." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'vaccinated', 0.85, 'any' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "11. At time 250, protects 100% of the vaccinated group from pathogens with a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'protectHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'vaccinated' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 47.82778878187784, event: RECOVER_VECTOR\n", + "Simulating time: 78.3366736929209, event: RECOVER_VECTOR\n", + "Simulating time: 105.91879303271841, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 118.47279407649962, event: RECOVER_HOST\n", + "Simulating time: 131.35992383183006, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 142.51592961651278, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 155.0493103157924, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 166.15922138729405, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 178.45033758585132, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 191.46530199493813, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 202.95353967543554, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 215.14396460201561, event: RECOVER_VECTOR\n", + "Simulating time: 227.37567502659184, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 239.10997595769174, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 251.43868107426454, event: RECOVER_VECTOR\n", + "Simulating time: 270.88105008645147, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 307.90286561294283, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 357.4327138889326, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 400.04897821206066 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 400 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18432052612304692s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016484975814819336s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030623912811279297s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.043166160583496094s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04822254180908203s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08920669555664062s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.16597485542297363s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1528 tasks | elapsed: 1.4s\n", + "[Parallel(n_jobs=8)]: Done 3192 tasks | elapsed: 2.2s\n", + "[Parallel(n_jobs=8)]: Done 5368 tasks | elapsed: 3.2s\n", + "[Parallel(n_jobs=8)]: Done 7449 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8243 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8591 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8822 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 9064 out of 9079 | elapsed: 3.6s remaining: 0.0s\n", + "[Parallel(n_jobs=8)]: Done 9079 out of 9079 | elapsed: 3.6s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/opqua/model.py:1008: DtypeWarning: Columns (5) have mixed types.Specify dtype option on import or set low_memory=False.\n", + " data = saveToDf(\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0AAAAAAAAAANaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
1898145400.0my_populationVectormy_population_105GGGGGGGGGGNaNTrue
1898146400.0my_populationVectormy_population_106NaNNaNTrue
1898147400.0my_populationVectormy_population_107NaNNaNTrue
1898148400.0my_populationVectormy_population_108NaNNaNTrue
1898149400.0my_populationVectormy_population_109NaNNaNTrue
\n", + "

1898150 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 AAAAAAAAAA \n", + "1 0.0 my_population Host my_population_1 NaN \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "1898145 400.0 my_population Vector my_population_105 GGGGGGGGGG \n", + "1898146 400.0 my_population Vector my_population_106 NaN \n", + "1898147 400.0 my_population Vector my_population_107 NaN \n", + "1898148 400.0 my_population Vector my_population_108 NaN \n", + "1898149 400.0 my_population Vector my_population_109 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "1898145 NaN True \n", + "1898146 NaN True \n", + "1898147 NaN True \n", + "1898148 NaN True \n", + "1898149 NaN True \n", + "\n", + "[1898150 rows x 7 columns]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'intervention_examples.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 4 genotypes processed.\n", + "2 / 4 genotypes processed.\n", + "3 / 4 genotypes processed.\n", + "4 / 4 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAALmCAYAAABio+lSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xUVf7G8eemE3qviqiLothFBUQUUVaKigKWXQt217p21/1Z1rKuuq676+ouFhRUVFBRQUFRlKqIBUXpRVoIpNcp997z+2OSIZMpmUB6Pu/XKzJz77lnzgwjSZ588z2WMcYIAAAAAAAAAIAmJKG+FwAAAAAAAAAAQE0j/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE0O4TcAAAAAAAAAoMkh/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE1OUn0vAA2Dx+PRTz/9JEnq3LmzkpJ4awAAAAAAUNNs29bu3bslSUcccYTS0tLqeUUA0HSRcEKS9NNPP+mEE06o72UAAAAAANBsLFu2TAMGDKjvZQBAk0XbEwAAAAAAAABAk0PlNyQFWp2UW7Zsmbp3716PqwEAAAAAoGnKyMgI/uZ1xe/FAQA1j/AbkhTS47t79+7q1atXPa4GAAAAAICmj/22AKB20fYEAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgCgkTHGre8lAAAAAADQ4BF+AwDQ6PjrewEAAAAAADR4hN8AADQ2xi9jTH2vAgAAAACABo3wGwCARsYYRzLF9b0MAAAAAAAaNMJvAAAaHVeO/9f6XgQAAAAAAA0a4TcAAI2OK8e3sr4XAQAAAABAg0b4DQBAo+PK9q6o70UAAAAAANCgEX4DANDIOL41ktjwEgAAAACAWAi/AQBoZFwnS4TfAAAAAADERvgNAEAjZExJfS8BAAAAAIAGjfAbAIDGyLj1vQIAAAAAABo0wm8AABol2p4AAAAAABAL4TcAAI0S4TcAAAAAALEQfgMA0IgYQ+gNAAAAAEA8CL8BAGhkXHuHqPwGAAAAACA2wm8AABoVI+NmyRB+AwAAAAAQE+E3AACNjDF+UfkNAAAAAEBshN8AADQSgX7fjmT89b0UAAAAAAAavKT6XgAAAIiTKZHr7JSRXd8rAQAAAACgwaPyGwCAxsYtqe8VAAAAAADQ4BF+AwDQaAT6fBu3QPT8BgAAAAAgNsJvAAAaE0PoDQAAAABAPAi/AQBoVNz6XgAAAAAAAI0C4TcAAA2MMb7o52QCDU+oAAcAAAAAICbCbwAAGhoTrbrbaE+vb8JvAAAAAABiIfwGAKCOuU6ejLFjjIgcbLvObsk4ZecdmaghOQAAAAAAIPwGAKCuGZ9kPHKd/CgDHBnjRL7UzZaMt0IIDgAAAAAAIiH8BgCgjhlTKGN8sj1LI4bcxngk44l4re39TsbNlZEjKXJADgAAAAAACL8BAKhzxi2Ra2+R6+yKMsCR3/O1bN+ayif2tEsxflH5DQAAAABAdITfAADUMWOK5fg3B9qfRDrvFspf8omcsPBbKq/2NsYbY2NMAAAAAABA+A0AQB0zbokc/3pF39hyl1wnS1KEcNuUX+OPfB4AAAAAAEgi/AYAoO6ZUhk3TyZK+G2MN9D3O2JPb7d8kGh7AgAAAABAdITfAADUMdfJlnHyFD28diRTEt4WJSTwNmXV4wAAAAAAIBLCbwAA6phxcxWo4DZlG1dWPl8s4xbJdQsrn9Ge8NsRld8AAAAAAERH+A0AQB1zfOsCN4wr18kMO+/amyU5MhHOGVPeCsWw4SUAAAAAADEQfgMAUIdcJ0flFdzGlEjGGzamPOB2nezQ43Ik2cF70XqGAwAAAAAAwm8AAOqUa/+q8k0rjZsrY0rDB5Udc53dlY47gY8gWwAAAAAAILKk+l4AAADNiXELZIxHrpOtRCtdxs0LH2M8ZTc8lc8o0Ou77F6lynAAAAAAALAHld8AANQhY/yBcNsUS8YjY3wRBgVCb+OWVD4hU6FNiutk1eJKAQAAAABo3Ai/AQCoI6a8bYnxl90vjjKuvOK7cjBu5Ph+Dt5z7YxaWCUAAAAAAE0D4TcAAHXFlEpy91R7h/TvrjDM3dMH3Bi3wu3A9Xv4a36NAAAAAAA0EYTfAADUkUDLEifQ8kSSkZGMG2FgxYrvPQG5499QaT4nJBwHAAAAAAB7EH4DAFBHAhtd5u054BYpsIll5XF72qG4zu6KZyqNdCJeDwAAAAAACL8BAKg7xiPX2dOn25hCRQ6/PcHbrr2l4olKAwm/AQAAAACIhvAbAIA6YlxPpZYmUmgP7wqbYu65qOyPorCxjn+9CL8BAAAAAIisWYbfBQUFevPNN3X77bdr6NChOvjgg9W2bVulpKSoS5cuOvXUU/XEE08oOzs7rvmWLFmi3//+9+rdu7fS0tLUrVs3jRgxQtOmTavWuqZNm6YzzzxT3bp1U1pamnr37q3f//73Wrp06d48TQBAQ2O8eza73HOw0l2fKvb5Lg+8jSkNC86Nmx1+PQAAAAAAkCRZxlT+Heqmb968eTrjjDOqHNepUye99tprGjFiRNQxDz74oB5++GG5buQNx0aNGqUZM2YoLS0t6hylpaUaN26cPvroo4jnExISdP/99+uBBx6ocs17a9u2bdpvv/0kSVu3blWvXr1q7bEAoLnyFn0g27NQtve74LG0drcqteWY4H3jFqkgY6zKQ+/0DvcrucVQ+YrnyPFvkK/43ZA523T/UFZCep2sHwAAAPuO778BoO40y8pvSdpvv/106aWX6p///KfeffddLV26VIsXL9Zbb72l8ePHKzExUVlZWTr77LO1YsWKiHP873//00MPPSTXdXXQQQfppZde0rJlyzRz5kyddtppkqTZs2friiuuiLmWK664Ihh8n3baaZo5c6aWLVuml156SQcddJBc19WDDz6oSZMm1eyLAACoW8YjY/yVjlVue+JXxfYmpqwFiuvmSsYbYdLIP3wFAAAAAKC5a5aV347jKDExMeaYmTNnauzYsZKksWPH6t13QyvtcnJydOCBByo/P1/777+/vv32W3Xq1CnkMcaOHasPP/xQkjR//nydeuqpYY/z+eef6/TTT5ckjRkzRu+9917I2rKysnTcccdpy5YtateunTZu3Kj27dvv1fOOhZ88A0Dt8xROk126WI5/VfBYWts/KLXV+cH7jn+zinZdGbzfot1tSmk5Sp78F+U6WfKXfhoyZ+tu7yohsW3tLx4AAAA1gu+/AaDuNMvK76qCb0k699xzdcghh0iSFi5cGHb+xRdfVH5+viTpb3/7W0jwXf4Yzz33XPCxnnzyyYiP89RTT0mSkpKSQsaX69Spk/72t79JkvLy8vTiiy9WuXYAQANl/IEK7pBj9p6bbmnYJa4TGG9MsYwpijApld8AAAAAAETSLMPveLVu3VqS5PF4ws7NnDlTktSmTRudd955Ea/v1auXhg8fLkn67LPPVFhYGHK+sLBQn332mSRp+PDhUX/ae95556lNmzaSpPfee6/6TwQA0EDYMs7OkCMV26AYN1eVN7B0ne0yxsi4xXLt0GvLRtTCOgEAAAAAaPwIv6NYs2aNfvjhB0nSoYceGnLO5/Np2bJlkqSBAwcqJSUl6jxDhw6VJHm9Xi1fvjzk3DfffCOfzxcyLpKUlBSddNJJwWv8fn/UsQCAhstUqPLeo0L4bUpVOfyWCXyecJ0suc6OsKsd/8YaXCEAAAAAAE0H4XcFJSUlWrdunZ5++mkNHTpUth0IKW699daQcWvXrpXjBDYgqxyMV1bx/KpVq0LO/fLLLxHHxZrHtm2tW7cu9hMBADRMEcLv0MpvjyqH38Z4ys7lR9zw0ji7anaNAAAAAAA0EUn1vYD69sorr2jixIlRz99zzz26+OKLQ45t27YteLuqjSnKN7GQAhtZ1NQ8hx12WMzxlVV8rEgyMjKqNR8AYG84YUeMsztwxr9ZkpFM6BhTFniXh+Bh19P2BAAAAACAiJp9+B3N0UcfrUmTJmnAgAFh5yr27m7VqlXMeVq2bBm8XVQUulFZTc0Tj4rhOQCgvkQIv4OV3bmSkmRUqTrcLZbkBtufhE9A+A0AAAAAQCTNvu3Jueeeq59++kk//fSTli1bpmnTpmns2LH64YcfdNFFF2nWrFlh11TcADNWv29JSk1NDd4uLS2tlXkAAA2DMaaK8xHCbzev7M8iSUbGDd0c2fGvl+NfJxMt/K7cIxwAAAAAAEii8lvt2rVTu3btgvcHDBigCy+8UFOnTtVll12mc845Ry+99JIuv/zy4Ji0tLTg7fINK6Pxevf0Z23RokXIuZqaJx6VW65UlpGRoRNOOKHa8wIAKnJljGRZiRHPGmdnhIOB8Nq4RbIS2kbsC+74fonY77vs7N4uFgAAAACAJq3Zh9/RXHLJJZo1a5befvtt3XjjjTr77LPVoUMHSVLr1q2D46pqQVJcXBy8Xbm1SU3NE4+qeooDAGqCE2hPYkX+d9r2/hD1ymDltykJP+dkS/KHHS87W+1VAgAAAADQHDT7tiexnHPOOZICwfOcOXOCxysGyVVtJFmx4rpy3+2amgcA0DC4doTK7jKBjSsj9ecOHHPdHMk4Mm5B2AjH3hJ9XievmqsEAAAAAKB5IPyOoXPnzsHbv/76a/B23759lZgY+JX21atXx5yj4vl+/fqFnDvssMMijos1T1JSkn7zm99UsXIAQH0wbn6Mc56o5wLni2SMN0KYbeT6N8e4rjDqOQAAAAAAmjPC7xi2b98evF2x1UhKSkqwP/bSpUtj9uv+8ssvJQU2rDz++ONDzg0YMCC40WX5uEh8Pp+++uqr4DXJycnVfCYAgLpi3PC2JQGRP1cYuXLtTMl45bpZMqZySG7kRqgGr3geAAAAAACEI/yOYfr06cHbRxxxRMi5c889V5JUUFCgd999N+L127Zt07x58yRJp59+ekiPbynQ8/v000+XJM2bNy9q65N3331XBQWB4GPs2LHVfyIAgBpnTKQWJpLrZEYYa4IbW4aftMsCbyPjFsqY0ghjom12GXstkccSlgMAAAAAmodmGX6/8sor8nhi//r5P/7xD3300UeSpD59+mjIkCEh56+66iq1bdtWknTPPfcoOzs75LzjOPrDH/4gx3EkSXfeeWfEx7njjjskSbZt64YbbgiOL5eVlaW7775bktSuXTtdddVV8TxFAEAts73fhR0zpkSuE9732/GvUtQKbeMt2+TSke35VsbNjfRoUddhKvw3Hq4de48JAAAAAACaimYZfj/44IPq2bOnrrnmGk2ZMkWLFy/WihUrtGjRIj3//PM6+eSTddttt0kKtDiZNGlSsMd3uQ4dOuhvf/ubpEA/8BNPPFGTJ0/W8uXL9cEHH+iMM87Qhx9+KEm66KKLdOqpp0Zcy7Bhw3ThhRdKUvC6Dz74QMuXL9fkyZN10kknacuWwEZnf/vb39S+ffvaeEkAANUWHkgbt1gy/vChxi8jJ/y4JGM8Mk52YENMUyrXyYo0KsY6jCJvpBlteITKcgAAAAAAmqCk+l5AfcnJydELL7ygF154IeqYXr166eWXX9bw4cMjnr/22mu1Y8cOPfzww9qwYYOuuOKKsDEjR47Uyy+/HHMtL7/8sgoKCvTRRx9p/vz5mj9/fsj5hIQE/d///Z+uueaaOJ4ZAKBOmPDw27U3y0poFz7U+GVFCZ2N8cq4eTJuiYzxSVFC8ioWE98o45RVmQMAAAAA0PQ1y/B77ty5mj17thYvXqz169crMzNT2dnZatGihbp06aKjjz5ao0eP1oQJE5Senh5zroceekgjRozQf/7zHy1cuFCZmZlq166djjrqKE2cOFEXXXRRletp0aKFZs+erTfeeEOvvPKKVqxYoby8PHXt2lVDhgzRjTfeqIEDB9bU0wcA1AATIfw2rkeWFaFFifFFHB84VyrjFsu4RWUtUIqqtQ7X3iYZV7LiWnWgwhwAAAAAgGagWYbfhxxyiA455JBga5N9NWjQIA0aNGif57n44ot18cUX18CKAAC1L7y9iTGlgTYmxsiyrNCx0cJvuXKdLBlTKBlHxi2o1ipce6vi7/ntRm7LAgAAAABAE9Qse34DALCvXDsj/KDxyPauUOUe3Mb4Jfmiz+XsllyPjCnei5U4ij/8pvIbAAAAANB8EH4DALAXIvXONsYv19mhsM0wjT/QmiTaXG6+jHx7VZVtjKu4N7w0RjLRQ3gAAAAAAJoSwm8AAPaC698S4ahfMh65TnbwiDGu/J5lct38qHMZUywZr+IOsUNUp/LbLdtUU3Kd3L14LAAAAAAAGg/CbwAA9oKJ0MbEuAWBSmy3wqaV5aF2rKpuN7yKPP6FOGXV33EMdfPK1iPJeIJBOAAAAAAATRHhNwAAe8P4QkJnY/xyfL9IMmV9v8uOuwUKVHRH2/AysFHm3ou/8tv2rQ72FTemRKZChToAAAAAAE0N4TcAAHvBODkKCZ2Np/yGHP86uW5B2T07UJ1ddj/iXPsUfrt7qrmrYNxcGbdYjr1Njm+9TNztUgAAAAAAaHwIvwEA2AuVe3ib8vDb+OXaW2WcrLL7tiRXrrM7+mR7sdFlhYv3PHYVXDtTxi2U698sx/5Ve9djHAAAAACAxoHwGwCAveKE3vOtKbvll6mwsWSgPYqnLASPZl9D6HgruP0ypijweMYjGSq/AQAAAABNF+E3AAB7o1KY7TqZFc45Uln4bYxPxpQG2p/U2lri27jSGFvGeBWoFrcVf2gOAAAAAEDjQ/gNAMBeCfT23nPXH3LO9v1Udtsn17+xisrvfVO5pYrj37qn8rwi45fr/1XGLVEg+KbtCQAAAACg6SL8BgCgmowpC40r9NoO6bttvDL2rrLjfgVC5tqrsg7v+R3YZDN0jBNoeWL8ct0cyfjLNu0EAAAAAKBpIvwGAKC6TIlUsa+3JMf3S/C262TImCIZ42hPdXUtVlkbb6UDEcJ2UyLHt1ZGrlz/r3LtbfKVflZ7awIAAAAAoJ4RfgMAUA3GLZVjbyu745frZAVuhlVfG0lOcFNJU6kSu0bXVKnFSaCft1vpmLdsPT4ZU1x2n7YnAAAAAICmi/AbAIBqMKYoWOVtjF9uMAivHDa7Za1HykPv2tzwslLlt/HIRAq/jSPJL+MWyJiSsDUDAAAAANCUEH4DAFAN/tIlcvybJUmus13l7UVcZ0elka4CgXdZ+F2LG16asPDbCQu2XTtDRv6y8X4ZN1+B1i21V5EOAAAAAEB9IvwGAKAaXHtTMOg2Tt6etiZuYaWRJhAyl4XQRrUZMptK9yr2Gi875mRK5e1RjC0FN+Ik/AYAAAAANE2E3wAAVIMxboWg26+wjSXL2N4VZePKK799EcfVjMrtSxy5TmboEf+6CuMCPcEDwXzk9QMAAAAA0NgRfgMAUC1Gxi0K3DK2TDA8rhRAm9LAsbK2IoE2I7W1JCf8vvGHHqpw35RXfRtvsHIdAAAAAICmhvAbAIBqMZJbXHbTp0B7k0gBsivJlVGg4tu1t9biivyVjjiKVdFtnJ1la9oScxwAAAAAAI0Z4TcAAHEyxlYg7C4uu+8rq7CO0tLEODJObh0srHKVtytjPMF+41EvkxE9vwEAAAAATRXhNwAAcTKmpMJGkZKMT8YUy5RXglceL1fGya6DdXkrHbHLWrNUFWzvaeECAAAAAEBTQ/gNAEAVgm1NjB3SO9uxt5Rtahm5wtr1bwrbeLJ2FugLab1i3Lz4Ntg0jhz719pbFwAAAAAA9YjwGwCAKpUF3sarij2yjZMl45ZIxo54letkyHVrv+2JKes9HrzvFpUdqziocnW4JPlknN1VtkcBAAAAAKAxIvwGAKAqZeF2oOq74gaRjiRfoB1KpMuMXzJ10VPbDl2XsWV7loSvpRJjnLKWKfT9BgAAAAA0PYTfAABEsaeVSFk4XKnCOrD5pV+ukxNlAlvBqvHaZByVt14xxpGRX8YtqDQoUnW6W9bzm8pvAAAAAEDTQ/gNAEA0JrAZpAlWfnsqD5CMIxOltYlxCyNWXNc0x79Rxs2TMX45/jVlvckrhd0RW5uYQM9y2p4AAAAAAJogwm8AAKIwxitjnODmkcaUSmEBuCPjZEW+3i2I2g+8JlUM5QM9yP0ypjCeKyNUiAMAAAAA0DQQfgMAEIVxciQ5csvDbeOX61Su8nbl2DsiX288weC8VpnisuptI5nSQNsTZ3cc17mBQJ+2JwAAAACAJojwGwCAKIzxyLW3ybh5ZUdsVQ6KjbEjVIOXc8rC5boTqE6PtIGliXzM2FHOAQAAAADQuCXV9wIAAGiojPHI2AUybn7gvluisCpp44/QC7ycq8gbTdYGo0AbkxJVDrNNxDBcCvb8BgAAAACgCaLyGwCAaIxXxviCbU8CleAZlQa5Mm5xlOvrsqLalYyR69+05+HdksCfTrakSAG4I8feWDfLAwAAAACgjhF+AwAQRWDzSM+e6mjjkeSvNMqJ0dc7WsV1zQtUd7tynd0qr04v3/TSmCIZE6Wvt/HWzQIBAAAAAKhjhN8AAFRi3KLAn6Y08OEWyRif/N7lYWP9pV/IhAXiAY5/ba2usyJjCuX3LJbrZKq87YnjWyNj/DLGS8gNAAAAAGh26PkNAEAlxvhkSTJugWQly7g5UrTKaSnKBpN1zHjLeo+7MsF2K4F1Gbc48FwAAAAAAGhGqPwGAKCysjYmgdDbHwiPjTdGAB658rsuGdcjGTuwOWdZlbcp/9PNletsr8/lAQAAAABQ5wi/AQDNjqliI0pTHn4bvwLV027gw3iijK//ym/j5gb+NB65zo6yg77QPwEAAAAAaEYIvwEAzVAVldrl/bHLq77lSjIypjTK+Pqv/HbdXElGMm5wg85AGxRTFuIDAAAAANC8EH4DAJqfKsJgE6yUdgKbXxqnbOPLksjj3fwaXmD1Ob5VCmx0aQd7kPuLP5ZxC2V7V9Tr2gAAAAAAqA+E3wCAZscYu4oR5eG3kTHFCrQ88ZVVUkdS/5XVxskpvyVTttGl6+wMrNvNiX4hAAAAAABNFOE3AKBZMcbd0xM72hi3eM9Ye5skI9vzjRpCyB1NIKQvv1O+TiPH3tIg2rIAAAAAAFDXkup7AQAA1AXjFklWsgI/94294aVUvoGlCVZ7G/kl49biCvdNeXuWgIobcNLzGwAAAADQPBF+AwCaBdu3WgmJHZWQ2F0yscNvUxZyG7dQxslSoO2JX6GhcsNijCcQ0EuSKoT0xpVUVZsXAAAAAACaHtqeAACaD+NX1VXfknEyy/4sC76D1zbcym8ZrxTcqLMil7YnAAAAAIBmifAbANBMuDKyFQi/Ywfgjr1VxvhlTEnwWMNvHWJkIoTfxpSWPW8AAAAAAJoXwm8AQPNgbLn2zmAP79hjvXL8G1Wx0rtiEN5QufbOsGPGLZFx8up+MQAAAAAA1DPCbwBAM2HLuEVl4XdVPb+9cu1tMqZCj++ILUUaFuPmRDhYIqmhV60DAAAAAFDzCL8BAE1acPNK45b1xfaqqo0rjVssf8lnCu3x3XA3uywXqarduA2/Yh0AAAAAgNpA+A0AaOLKq55dSY6MWyxjvFVc45YFyXsC75Aq8IbKhG/I6bq59bAQAAAAAADqH+E3AKBpK9+o0vhk5Mh1MqQq+34bSXalMLkRhN8R2rk4vjX1sA4AAAAAAOof4TcAoEkzprTsT5+MWxS8XcVVMk6OQiq/3fxaWmFNCq/8luw6XwUAAAAAAA0B4TcAoEkzbomM8Uvyy7iFkoxUZQsTI9fJVMUw2fVvqcVV1pQIG3kaNrsEAAAAADRPhN8AgCbNmBLJ+OQrmSsZWzJGjn9tVRepchW1MUW1t8ga4jpZYccM4TcAAAAAoJki/AYANGnG2SVjPHL9G4IbXbpOzt7MVLMLqw2mJPxQIwjtAQAAAACoDYTfAIAmzbV3Bft+u84OxRNiO3ZjaHESpyo39wQAAAAAoGki/AYANFnGOHLdHBm3OHDALVagnUkVAXhZhTgAAAAAAGi8CL8BAE2WcXMkt0SunRG4L1vGjacNiF27CwMAAAAAALUuqb4XAABAbTHGK9fZLcvZXnbAJ8e/RjK+GNcQfAMAAAAA0BQQfgMAmi7XI8ferPI2J8Ytkb/0CyWmHB71kvgqwwEAAAAAQENH2xMAQJNl5CsLs8uruf2B426JjPFHvMb2LKmbxQEAAAAAgFpF+A0AaLqMLRmvjFtS6bg3ausTx7+uDhYGAAAAAABqG+E3AKDJ8nuWSLJlTHHYuWi9vW3vj7W8KgAAAAAAUBcIvwEATZZxcgJ/uqHht5EjyYl8jfHU9rIAAAAAAEAdIPwGADRZxpSW3Qjt722c3YoWfpdvjgkAAAAAABo3wm8AQNMVtYrbDfQDj3xRba0GAAAAAADUIcJvAECT5Tp5kiQTIdCO1vOb8BsAAAAAgKaB8BsA0GRF2uhyz0lvlONu7SwGAAAAAADUKcJvAECTVXmjy5BzovIbAAAAAICmrNmG38uXL9df/vIXnXnmmerVq5dSU1PVqlUr9e3bVxMnTtSiRYuqnOOVV16RZVlxfbzyyitVzldSUqInnnhCAwYMUIcOHdSyZUsdeuihuv322/Xrr7/WwLMGgObDdXKkWJXf0a+s8bUAAAAAAIC6l1TfC6gPp5xyihYuXBh23Ofzad26dVq3bp1eeeUVXXrppXrhhReUkpJS62tav369Ro4cqXXr1oUcX7NmjdasWaMXX3xRr7/+ukaPHl3rawGAJsH4FLuKO1rITeU3AAAAAABNQbMMv3fs2CFJ6tGjh8aPH68hQ4Zo//33l+M4Wrp0qf7+979r+/btmjJlivx+v954440q55w7d6569OgR9XyvXr2inissLNSoUaOCwffVV1+tCy+8UC1atND8+fP117/+VQUFBbrgggu0ePFiHX300dV7wgDQDJmK4bYpijDAyBgjy7IqHafyGwAAAACApqBZht+HHnqoHnvsMZ1//vlKTEwMOXfSSSfpkksu0eDBg7V27VpNmzZN1113nU455ZSYc/bt21cHHHDAXq3nySef1Nq1ayVJTzzxhO68887guYEDB+rUU0/V0KFDVVJSoltvvVVffPHFXj0OADQrxol92hRKclT5U6FR7OsAAAAAAEDj0Cx7fs+aNUsTJkwIC77LderUSX//+9+D92fMmFFra/H7/frXv/4lSerXr59uv/32sDGDBg3SlVdeKUn68ssv9c0339TaegCg6YgdYjv+TZKJtOkl4TcAAAAAAE1Bswy/43HaaacFb2/YsKHWHmf+/PnKz8+XJF122WVKSIj8V3L55ZcHb7/33nu1th4AaDKMv6oBklyZyhXiVVSMAwAAAACAxoHwOwqv1xu8Ha1CvCYsWrQoeHvo0KFRxx1//PFKT0+XJC1evLjW1gMATUXV7UuMJKdsY8yKCL8BAAAAAGgKmmXP73h8+eWXwdv9+vWrcvzEiRO1Zs0aZWVlqU2bNjr44IM1fPhwXX/99erZs2fU63755Zfg7UMPPTTquKSkJB188MH68ccftWrVqjifxR7btm2LeT4jI6PacwJAw1bFxpUmUPVtWXs+FQaqwE3tLgsAAAAAANQJwu8IXNfV448/Hrw/YcKEKq+puAlldna2srOz9fXXX+vvf/+7nnnmGV177bURrysPpVu2bKl27drFfIz99ttPP/74o3bv3i2v16vU1NSqn0yFawGgWamyfYlfgSrvCiG5Ka3FBQEAAAAAgLpE+B3BP/7xDy1btkySdN555+m4446LOvbAAw/Ueeedp4EDBwYD5o0bN+qdd97RjBkz5PF4dN1118myLF1zzTVh1xcWFkqSWrVqVeW6WrZsGbxdVFRUrfAbAJqf2JXfxvjkOruVmNRrzzG3uLYXBQAAAAAA6gjhdyVffvml7rnnHklSly5d9Pzzz0cdO3bsWF122WWyLCvk+IABA3TBBRdo1qxZOu+88+T3+/XHP/5RZ599trp16xYy1uPxSJJSUlKqXFvFsLu0tHrViVu3bo15PiMjQyeccEK15gSAhsp1C6oOso23rNI70ObEuCUyVH4DAAAAANBksOFlBT///LPGjh0r27aVlpam6dOnq0uXLlHHt23bNiz4rmj06NG6//77JUklJSV66aWXwsakpaVJkny+yhuuhau4CWeLFi2qHF9Rr169Yn507969WvMBQEPmeFfIsX+NOcYYv4xbKmMCFeKOf1OEzS8bqqp/YAoAAAAAQHNH+F1m06ZNOvPMM5Wbm6vExES9+eabOuWUU/Z53muuuSYYkFfcRLNc69atJQXamFSluHhPFWM8bVIAoLkyxpaMv4pRjozxSLLLr5Kp8pqGwVhp9b0EAAAAAAAaPMJvSTt27NDw4cO1Y8cOWZall19+Weecc06NzN2lSxd17NhRkrR9+/aw8716BXrNFhcXKy8vL+Zc5a1LOnfuTL9vAIgpjvDbOAoE4OW/VeMqsAlmw2eUKDqXAQAAAAAQW7MPv7OysnTGGWdo48aNkqR///vfuvTSS2v0MWK1RjnssMOCt1evXh11nG3b2rBhgySpX79+Nbc4AGhijDGScWWCFd1Rxrllv3Fj9owzjaTtSbHpItuK3pYLAAAAAAA08/A7Pz9fI0aM0C+//CJJevzxx3XDDTfU6GPs3r1bWVlZkqQePXqEnT/55JODtyO1RSm3fPnyYNuTwYMH1+gaAaBp8Sueyu9AyxNJcsr+dGXcktpcWI3xuCkqNm3rexkAAAAAADRozTb8Likp0ahRo/Tdd99Jku677z7dfffdNf44kyZNClQhSho6dGjY+VNPPVVt2wYCjFdffTU4trJXXnkleHvs2LE1vk4AaDKMX0auVEXlt4wnEICbQPjtOrsl0zjC71y7hV7dRuU3AAAAAACxNMvw2+fzaezYsVq8eLEk6ZZbbtEjjzxSrTk2b96s77//PuaYWbNm6S9/+YskqUWLFpo4cWLYmJSUFN18882SpFWrVumpp54KG7N06VK99NJLkgIB+oABA6q1VgBoToyxZdyCwKaXMbhuvuSWSnJljFt2TWMIvy25RspvHO3JAQAAAACoN81yt6yLLrpIn3zyiSRp2LBhuvLKK7Vy5cqo41NSUtS3b9+QY5s3b9Zpp52mgQMHasyYMTrqqKPUpUugCm/jxo2aMWOGZsyYEazkfuqpp9SzZ8+I899555166623tHbtWt11111av369LrzwQrVo0ULz58/XY489Jtu21aJFCz3zzDM18AoAQNMUCLwdOb7VsqyWscc62XLsLUpMPUoyXhknR7Iaz2bC2b7IvykEAAAAAAACmmX4/e677wZvf/755zryyCNjju/du7c2b94c8dzSpUu1dOnSqNemp6frH//4h6655pqoY1q3bq3Zs2dr5MiRWrdunSZNmqRJkyaFjGnTpo1ef/11HX300THXCgDNmyspsJmllZhWxVi/jJsrKRAiG7mSKa3d5cUtUXt6kVdmKcufIjdKmywAAAAAABDQLMPvmnDcccfptdde09KlS7V8+XJlZGQoKytLtm2rffv2Ovzww3X66afrqquuClaEx3LwwQfr+++/13/+8x9Nnz5d69evl8/n03777aeRI0fqlltuUe/evevgmQFAI2YcSW5ZP+8qen5Lcu1dgfEygT/dhhJ+Jyl6+C2tKkyUUxb0AwAAAACAyJpl+B1tU8nqaN26tX73u9/pd7/7XQ2sKKBly5a66667dNddd9XYnADQvBgZ45UxPllVbXgpSbIlY2RMsWRc2b6fan2F8TBWiiwjSd5KZ1LkWm1V6kguhd8AAAAAAMTULDe8BAA0HcZUrIA2kvFLcsqqwKu62FZgw0ufJFeuk1U7i6wmo2TJSgw/YSXJVgvCbwAAAAAA4kD4DQBo5PakwMaUKND2xJXiaAsSCLuNZFwZN68B9fxO0L3rjtdW+9hKxy0ZifAbAAAAAIA4EH4DABo5J1j9bVxPWcW3UcVQPDp/2ThbxpTfrn9Gllbk+1XsJFU6HjiX7zcyDWStAAAAAAA0VITfAIBGz7iFZTe8MnJljEfxVH4HQ3Ljj3N83XCUph2lthxjRTiboA3F8fQzBwAAAACgeSP8BgA0bsZVoHLbyHW2K1AJHn/7EuOWyBi/jFtSa0usrmK3tbaXOvKb0E/TRqkyZa1PqPsGAAAAACA2wm8AQIMXaEkSjStjvJLxyPauDGxiabwy8Wx4Kcm4uYHxbl6NrLUmFLup8hujEif007StdBmTIEPyDQAAAABAlQi/AQANnnFyo59zCyW3SMb4ZNx82d5vFQjE46vkNnJle79TfdRSe63eksJbm2wtTZckrSpKqnTGkltW+e0QgAMAAAAAEBPhNwCgwTOmOMrxQIuTwOaPfhlTLMe/ueykN87JHdn+1TWyzura5OmqSOH3Dk8g9N4aIb83SpCRkUv4DQAAAABATITfAIBGINpmlGbPeeOX62QFx7r2jrjndv1byja9rBuu1UlSkrL9yRHPe8uS7dIICffivC76Ntcrn2sUKTgHAAAAAAABhN8AgIYvav9uN/BhPDLGloynwlg7zsldyfhkFF+P8JrgUysZq7UcEzm89riB44V2aPhtZGmXN0Fe18jjSnwaBwAAAAAgusrNRAEAaHCM8UQ54cq4JTLGK0v+sk0uo1WJR+bau2Tkyopzg8yaUOqma5fTQf4orUuKynL7b3N9lc5Y8rnlY1wFwu+6WzcAAAAaBmOMiouLVVBQII/HI8fha0IAjVNiYqLS0tLUpk0btWzZUpZVs7/hTPgNAGjwjFssY/yyrMptQmxJTiAAT/BLsuU62dWb2xQHWp5YKTW13NisFip2UrXV00KusSQrTaq0OWdWWea90xNavR7o9x2Q63MkK7FO27UAAACg/rmuqy1btqi0tLS+lwIA+8y2bXm9XuXn56tFixbaf//9lZBQc7/lTPgNAGjwjCmVcXJkJXUN3Hc9shLSykJxr2RKAyGwseU6G6s5uU+ST1Jaja87Ep86q9BO1nd5Serb2pVHXZSmzSFjtpQEKncK/aFV7K5JDG50me1zJCXWwYoBAADQUBhjwoJvy7KUmMjXhQAaJ8dxZEzZvlelpdqyZYt69+5dYxXghN8AgIbPlMp1c5WgrjJuqYxbKCshTa6bI+PmSTKBCm5F6SMSg+NbE3gIU712KXuryG2tJbktlOE1OriVpQKnjdIq/VA7r6wfSmBFlsqfl5HklD1Fv2vkU3ulqLhO1g0AAID6V1xcHAy+ExMT1a1bN7Vq1apGqyQBoC65rquioiLt3LlTjuOotLRUxcXFatWqVY3Mz7+OAIAGz7glMm5B2e28QLW3JOMWybgFMsYr4xaruv2+Jcl1tpffqqHVxlbkpGpFnqt8v1GJbclnwn8Oneev2LOx4nlLZUXhso3kMS1rda0AAABoWAoKCoK3u3XrpjZt2hB8A2jUEhIS1KZNG3Xr1i14rLCwsObmr7GZAACoJUY+GbcocNt4tWeTRyPjlsjxb5Rr79jHB4myqWaNSpRjLNkKVHGvKVKwjUlFOb49QXyRDgjeNpJe3BzoD+5zjYxqdiMQAAAANGweT+BrVsuyaqwqEgAaglatWgVbndTkngaE3wCARqLi5o9libFx5DpZgarwsmrwvVf7ld/GSpffJMrvSD7HaKfXjRhg5/r2VH57Teqe65UQ3AQz0AKF3o4AAADNieMEvk5MTEyk4htAk5KQkBDcv6D837oambfGZgIAoLYYI+OW/9qTkUzgE6Hj3yDX3i7X3iYjRzLV7/ldl1yl6fv8FsrwOJqxvVg7St0Ild+pKrT3BPHG7AnH15Z0DBm53du6FlcLAAAAAEDjRvgNAGgUjPHKGEeBCu2ycNh4ZNx8GeOTZGT2YsPLuuQoTUWOtL2setsxRm6lym/XSg+9X3beWC3Dnt12T3KtrRUAAAAAgMaO8BsA0Ag4krFlTLFcJ1emLPw2xiPX2R2oCjeO1MDDb79JU6EtbSr2S5IcI7kmNPx2FLqJZfn5ArN/WGH71lI+jQMAAAAAEA3fNQMAGgFXkiO5xWUbUwbCb9fZJckvmZJA3+866Nu9L/KcVsrx7bm/sdgfUvkdqbrbKftUnelrHfbsvI4kNr0EAAAAACCipPpeAAAAVTKuZFkycmWMT5YJtA1x7R2S8UsyMqZIMnbseepZtj9Vef49Efa2UlteZ8+Glq5aqXKY7ZRVfm8sSVVypZzbY1Q2vmFXvAMAAAAAUB+o/AYANAJGtnelZGz5ij+UMZ7AUTdfe/p/O5Jqbkfo2uBxEjRnpyfkWKkb+FRsWz3kV3rYNX4T2O06y5egfDs0/Z76a6n4VA4AAAAAQGRUfgMAGgXj5kvGJ9feURZ6BzbBDJ43XjX0ticeN0G7vHbYMUkqdNspxfJJVuhzyLeTpGRpt1dqW6n0+9cSv2h7AgAAANQd27b1/vvva+7cuVq6dKkyMzOVm5ur9PR0de7cWUcccYQGDRqkcePGqU+fPvW9XKDZo1wMANBIGHkKXpRkl/X6lqQKQbLxRbqojsUOor1u+PnVhYHK7gKnhSRLXtMi5PwXWSmSpOV5tn7IjxDuW/wcGwAAAKgLH3zwgfr166dx48bphRde0MqVK7V7927Ztq2CggJt2LBBM2fO1F133aUDDzxQo0eP1sqVK+t72bXqwQcflGVZsiyKctAw8R0zAKARMDJucdnmkK6Mk1N22K4wwl8/SwuRoED/7cgV6J4I4XdB2VPI9aeofVKCPG5KyPn1xYG5sryuNhWHt3UxSqD2GwAAAKhljzzyiO6//34ZE9hv59RTT9Xo0aN15JFHqmPHjiopKVFGRoYWLFigWbNmafPmzZo9e7Z69eql//73v/W8eqD5IvwGADR4Rq6MmyVZCTLGrdDupEIY3CAqvxMlK1kyxRHPeiO0JN9RGvji2eNaKnJaaLevhaQ9fcG/zfVKspTldbShOFLAzy9xAQAAALXp5Zdf1v/93/9Jkrp27ao333xTp556asSx48eP1zPPPKM333xTf/rTn+pwlQAiIfwGADQCpuwPb9ltR8aEBsHGya3zVVVmWx2UIJ8SFCn8TtK83SbsqFP23IrtRNkmQfl2Ysj5XJ+Ra3XUDo8ddm0A4TcAAABQW7Zu3aobbrhBktSmTRstWrRIBx98cMxrEhMT9bvf/U6jRo3SwoUL62KZAKLgO2YAQMNnAq0/ghXfxoS0PAkcKqzrVYXxmtYqNp0injNWut7cWhR23C3Lw3f7ElTiJCnfH9rEJNtna7PvAJU64cG5FGh7AgAAAKB2PP300/J4Ar+Z+eijj1YZfFfUrl07jRkzJur5nTt36r777tPxxx+vDh06KDU1Vfvtt58mTJigefPmRb1u8+bNwT7br7zyiiTp008/1ZgxY9StWzelpqaqT58+uv7667Vt27Yq1+nz+fTcc8/ptNNOU+fOnZWSkqJu3bpp5MiReu211+S64W0dX3nlFVmWpYceeih4rHxNFT82b96sH3/8MXj/8ccfr3I9//73v4Pjly1bFvaY5fN6vV499dRTOvbYY9W2bVu1adNGJ554op577jk5ToRfu63EcRy9+uqrGj16tHr06KHU1FR17NhRJ598sp5++mmVlpZWOQcaPr5jBgA0eI5/TeCG8UrGI8lUaH3ScNhKUp7dKvy41UNGKRGukPyu5FidleuXvstvoUxv6Kdm10iritKjPmaO02vfFg0AAAAgImOMpk6dKklq3bq1Jk6cWGNzv/766zr44IP12GOP6dtvv1Vubq58Pp+2bdum6dOn64wzztBVV10l2472G6B73HvvvTrzzDM1a9YsZWZmyufzafPmzfrvf/+rY489VqtWrYp67ebNm3XUUUfphhtu0BdffKGsrCz5/X5lZmbq448/1iWXXKKhQ4cqJydnr5/rkUceqQEDBkiSXn311SrHT548WZJ0+OGH64QTTog4Jjc3V4MHD9add96p77//XgUFBSosLNSyZct0ww03aNiwYSoqCi8+KrdlyxYdd9xxuvzyyzV79mxlZGTI5/MpJydHixcv1u23364jjzxSa9eu3YtnjIaE8BsA0OC5TnbZrUDLE8lIpqQeVxSZbRLkdRPDjntMS5ko21IWOa6KTQdl+aSNJdLPBaEV3kYmrBq8onwnbd8WDQAAACCilStXKjs78L3IkCFD1LJlyxqZ9+2339Yll1yi4uJiHXjggXr66ac1Z84cffvtt3rnnXc0cuRISdJLL72ku+66K+ZcL7zwgh5//HENHTpUb7zxhpYvX6558+bp0ksvlSTt3r1bV1xxRcRri4qKdPrpp2v16tWSpHPPPVcffPCBli9frunTp2vo0KGSpEWLFmnMmDEh1dTnnnuufvrpJ11//fXBYz/99FPYR8+ePSVJV111lSRp9erVWrp0adTns2LFCn3//feSFHXdknTttdfq22+/1QUXXKCPPvpIy5cv1xtvvBEM2RcsWKBLLrkk4rXZ2dk6+eSTtWLFCqWmpurGG2/U9OnT9c0332j+/Pm69957lZ6ervXr1+uss85Sfn5+1HWg4aPnNwCgQXOdfEmh1Q6umyPjRv8pfn35Kq+j2iU7OrhSkbejREX7eXOmx1WO3Uqbil2tLfTr54LKFe2WHlwVPeh3TPRgPOJ4q6sSTWa1rgEAAACaox9//DF4+9hjj62RObOysnTNNdfIGKMrrrhC//vf/5SUtCeeO/bYY3Xeeefpvvvu02OPPaZ//vOfuvbaa3XIIYdEnG/JkiW6+uqr9b///U+Wted7g9NPP10pKSl68cUX9dVXX+n777/XMcccE3LtQw89pI0bN0qS/vznP+vhhx8OnjvuuON0/vnn65JLLtHrr7+uJUuWaNKkScGwu127dmrXrp26dOkSvKZ///5Rn/dFF12k2267TcXFxZo8ebIGDhwYcdzLL78sSUpOTo4aXkvSN998o8cee0z33ntvyJrHjx+v0aNHa+7cuZo5c6Y++uij4A8Tyt18883aunWrevfurfnz56tPnz4h50899VSNHz9eQ4YM0caNG/XEE0/o0UcfjboWNGxUfgMAGjZTIlXe3NItkuvW8waXVouwQ4W2pe/ykqRKLU4ckyg3ys+bNxT5VeIkaUuJrQLbVaTO3vn+6P3q3MitwKPyK1ILlWpOAgAAADQDWVlZwdudO3eOOs51Xa1cuTLqh9+/5/uZ559/Xvn5+erZs6eee+65kOC7ooceekg9e/aU67qaMmVK1Mfu3r17sEd2ZXfccUfwduWNN71er1588UVJgfYiDz74YNj1lmXpueeeU8eOHSVJzz77bNR1VKV169aaMGGCJOmtt96K2E/b5/Pp9ddflySNHj065mt+5JFH6p577gk7npSUpBdffFHJycmSpOeeey7k/ObNm/XWW29JCjyfysF3uWOOOSa40Wl5X3U0ToTfAIAGzZgSmUrht+tfJ9eueuOW2pTrhn+RlOuXXthcKsdqH3LcNokqcttGnsfvKMefpN1eR6VO+EYykuSLkXA7UdqpRJYgr6FNCgAAABCPwsLC4O1YLU8KCgp0xBFHRP3Yvn17cOwHH3wgKRDupqamRp0zKSkpWB0dq03IuHHjos5zyCGHqFWrwJ5E5RXe5b799lvl5eVJki6//HIlJoa3b5SkNm3aBEPrX375RRkZGVHXUpXy1icFBQV65513ws5/+OGHwTYzsVqeSNJll10WMfCXpF69eunMM8+UJH3xxRch7Vpmz54tx3GUnp6us846K+ZjnHLKKZKkHTt2aMuWLTHHouEi/AYANGiBkDt8kxfb+0OdryXk8U3lLw4tfZXjyHGNcp0uMtaeL463eVup1I284aUkbShO0k6PHTXkjlWXneevTgezBHnd5LLb0dcDAAAAIFCtXK64uHif53McRz/88IMkBduUxPqYMWOGJGnnzp1R5zz00ENjPmb79oHCnIpBvhToZ17uxBNPjDlHxfMVr6uuQYMG6bDDDpO0Z1PLisqPde/evcpgury3dzTlG2UWFxeHBP/Lly+XJJWUlCgpKSnm6z969OjgdbH+DtCwEX4DABo0x78xrO1J4PimeljNHn4TGjobq5Xe31Esv5G+yGkvv8qrvy19lZMsf1hYvseaIiOva+R1qt9+JNObKMVd/Z0gX9m6XatVtR8LAAAAaE7K231IgY0jo2nXrp2MMSEfl112Wdi4nJwc2XZ4YU9VSkqi7wGUnh6preEeCQmB6K9i9XP5WspV7NsdSbdu3SJetzeuvPJKSdL8+fO1efPm4PGMjAzNmTNHknTppZdGrUQvV9Wau3btGrxdcc27du2q7pIlxf47QMPGhpcAgAbNuMWSIrQDMeE94urSdm8L9ajwdeYO+2BJUq7P0bI8aXTnwKdYY7WRx429MWWePxB6e6rbwFuSMZYCP8uO3hc8yEqQx0mUEiVXabKstrIMO5cDAAAAkRx11FHB299///0+z1cxgL7qqqt0yy23xHVdSkrt/tZmtPYhteHSSy/VvffeK5/Pp1dffVUPPPCAJGnKlCnB16eqlifS3q+5/DE6deqk+fPnx31dtN7gaPgIvwEADZpxiyIfN946XkmoPH9oJcIuX5okj/zGaJfHlW0C7UVcpcpfRfid6YkjuI4isEVmfOG3UaJ8JlD54VeqLDlKFOE3AAAAEEn//v3VsWNHZWdna+HChSopKamy0jqWDh06BG8bY9S/f/+aWOY+ryUzM1N9+/aNOrZiy4+K1+2NTp066ZxzztH06dP16quv6v7775dlWcFNJQcPHhxzLfGuOTMzM+Kay6v5CwsL1a9fvyorzNH40fYEANCgRd3Ysp4rv7/PT1DFdiNfZO2pxrCNUbHbQlIgcPa40o8F0b9IzvBE3ugyHkblld9V2+0cpLXFqco1h+m7wh5l1wIAAACIxLIs/f73v5cU2KTx1Vdf3af5UlJSdPjhh0uSFi9evM/r2xcVg/evv/465thly5ZFvE7auwrs8o0vN23apC+++EJLlizR6tWrJcVX9S1J33zzTVzn09PTdeCBBwaPH3PMMZIkr9cb7P+Npo3wGwDQYBljy9RzyB3NukJXFTeNXFe8J8Au9Bvt9AY2vHSVqPVFjopjFGb/Wuzb63UU2pKs+D6de9wk5fgs+UyySp0E8WUAAAAAENttt92mtLQ0SdK9996rTZv2be+hs88+W5K0evVqzZ07d5/Xt7eOO+44tWvXTpL06quvynUjF+QUFhbq7bffliQddthh6t69e8j58tdGCgTK8Rg+fLh69+4tKbDJZflGl61atdKECRPimmPq1KkyJnLbyO3bt+uTTz6RJJ166qkh1d1jxowJBvbPPPNMXI+Fxo3vegEADZZrZ8gYT30vI6IvszwqsXoG78/YVlzhXKmW5aVISpCjFH2YUSw7Rjvv4r3Y6LLc5M1exbvh5c9FLbXTIxU5ycr1WzJ8GQAAAADEtP/+++tf//qXJCk/P18nn3yyFi1aFPMaY4zy8vIinrvlllvUqlVg8/mJEyfq559/jjnX7Nmz9eOPP1Z/4VVITU0NVmCvXLlSDz/8cNgYY4xuvPFGZWVlSZJuvPHGsDEVw/ANGzbE9dgJCQnBCu933nlHb731liRp/PjxwdemKj/88IOefPLJsOO2bevqq6+WzxcoMLr++utDzh9yyCEaP368JOnNN9/U008/HfNxNm3apGnTpsW1JjRM9PwGADRgtuLayLEe5PsdOWV9vSWpctGB35WkRDkmscL9mlfquDKy4oq/S+wEbSx2tN2Tpmyfpd12Z/VIjNJWBgAAAIAk6eqrr9b27dv10EMPaceOHRoyZIiGDRumMWPG6IgjjlCHDh3kOI527typ7777Tm+//XYw1E5MTAzZsLJr16569dVXNW7cOGVkZOj444/X5ZdfrrPOOku9evWS3+/Xtm3btGzZMs2YMUMbN27Uhx9+qCOPPLLGn9f999+vd999Vxs3btSDDz6on376SRMnTlT37t21adMmPfvss/riiy8kSQMHDtQ111wTNsegQYOCt//4xz/qvvvuU/fu3YPV1QcccICSksLjxyuuuEIPPfSQSkpKQo7F6/jjj9fdd9+tH374QZdeeqm6dOmidevW6emnnw62aRkzZoxGjx4ddu3zzz+v5cuXa+PGjbr99tv1/vvv69JLL9Xhhx+u1NRUZWdna8WKFZozZ44+//xzjR07VhdddFHca0PDQvgNAGi4jC2Zhhl+O8bIZ5KDRddGoem3bSRZFcLvvS/ujqnUMYqv8jtBRY7RslyfTuzQQr8UumqV1Ea/71I76wIAAACakgcffFBHHXWU7rjjDm3cuFGff/65Pv/886jjLcvSiBEj9OSTT6pHjx4h58477zy9//77uvzyy5WTk6P//ve/+u9//xtxnoSEBLVs2bJGn0u51q1b67PPPtNZZ52l1atX65133tE777wTNm7w4MH64IMPIm4OefDBB2vChAl6++239cknnwTbjZTbtGmTDjjggLDrevXqpREjRujjjz+WJPXt21cnn3xy3GufNGmSrrzySk2bNi1iZfbgwYP1+uuvR7y2Q4cOWrx4sSZMmKCFCxdqwYIFWrBgQdTHatOmTdzrQsND+A0AaLCMKZFUSyXT+yRVjpG2e1upbYseSjI7VDnbdkxgs0vXBFqL+Gqt8ju+8NtYLbQoy2i319bWUinH58p2EySxuzkAAAAQj7Fjx2rMmDF67733NHfuXC1dulS7du1SXl6e0tPT1bFjRx1xxBEaOHCgLrjgAvXp0yfqXGPGjNGmTZv0wgsv6KOPPtLPP/+snJwcJSUlqVu3bjr88MM1bNgwjRs3Tvvtt1+tPacDDjhAK1as0AsvvKDp06dr5cqVKigoUIcOHXTMMcfod7/7nS6++GIlJERvmfjaa6/p+OOP14wZM7RmzRoVFhZG7SFe0SWXXBIMvydOnFitdbdv315LlizRM888o7feeksbNmyQMUb9+vXTpZdequuvvz5iWF+uW7duWrBggWbPnq1p06Zp6dKl2rlzp/x+v9q1a6ff/OY3GjhwoM4++2ydcsop1VobGhbCbwBAgxXo911LJdP7wFhJMpJ2epPVJ62VWisQdlcUuJ8ktyyYLt2Hvt6xlDiu4tnCw6iFfirwqdQx2lHqaGupI9skifAbAAAAiF9SUpLGjx8f7Bu9L9q0aaPbb79dt99+e7WuO+CAA6Ju9ljZ5s2bqxyTkpKiG264QTfccEO11lEuOTlZd955p+68885qXbdy5UpJgdYwl112WbUfNy0tTffcc4/uueeeal9bbtSoURo1atReX4+Gj52uAAANl/HLuIX1vYoQxmqnrf5DJEle15KJUnX9/MYiOWoRPF9g1856vK6RrdZVjst1u2m3N7CIQttofaGvbBPO+DbLBAAAAICa4jiOpkyZIkk666yzQjbOBGoS4TcAoAEzamhtTxyla6c3TZLkc8rD7/Dq6WyfK6NEOWVtT34trr3e5X6TVulIhPX401VQ1ni8yDYqcYxKHEkW4TcAAACAuvX6669r27ZtkqTrrruunleDpoy2JwCABssYf30vIcxH2QdrRb4lqVQljmRkyVitIo41SgiG33MySyKOqQl5TiulV8i7/VZ3JZvdkrzBY9/nt5DfFEiSFmeXSpI+3+XXbfsTfgMAAACofevXr5ff79fy5cv1xz/+UZJ01FFHaeTIkfW8MjRlhN8AgIbLeKseU8f8rqVNJYFq9Fy/5HOTZaJspGJkyTYJqu2+5aVuUkixt6MkJVsJVT6szzXyq4NofQIAAACgtv3mN78JuZ+cnKznn39eFr+NilpE2xMAQINlVEuNsveBI2lVgU+SlOOTcvxpivbp1ChRXrf2N5QsdUIfw29SZOL4FF9gu9rm6y43zs1yAAAAAGBftW/fXqeffrq++OILDRw4sL6XgyaOym8AQMPVAENZY6S1RYHw+5tcv0Z3S5Ib5dNppr+D1pe0kFS7m3YWVwq/XSUqUt/vykocI6+bIMdYcYwGAAAAgL1n9vH7u8svv1yXX355zSwGzQaV3wCABqxhbXYpBTqJOGVfs/1U4FWpkyCvaR1x7ObSFtpUXPu/wlf5VQr0Ga/6U7zfdZVvJ8nf8H7GAAAAAADAPiP8BgAgGqtF2P2KObHXMfK6llaVdI54eZ4/QSvyaz/Ad41V6X6CvGofcsyJEHD7XSnblyjX8OUAAAAAAKDp4btdAEADVr+V30ZJqtg+xCglpBOLzw2E31tLI7c92VJiaXupU8urlLxuaPjtKEF+kxxyrDjCMvzGaJc3QS6V3wAAAACAJojwGwDQgNVvKutRZwW2xwh8unSVojz/nvNGkm2k3d7IrU12e41y/bUf4Of7K346T5ZtLBU5LVRxa4+SSOG3a7Sx2DTE1uoAAAAAAOwzwm8AQMNl/FWPqRWBT4+lbgu5VmvJSpEUCL8rs11L2VGWWeJKmR671lYZfBzHkhT4cKx28rjJ8prQanRfhAze6xqtyK/99QEAAAAAUB8IvwEADZZxi+rnca2WkiSPm6xct5uMAi1EHKWENWIpcoyyvJFLp/2uUZav9tueFNlSIPxOUrbTXbt8yfK6iSFjIrU2cYz0ZVZpra8PAAAAAID60GDDb6/Xq8zMTLlu/fZ7BQA0RZHblJQzSpUkedwk+dxEuUqTJHlNaliLkLmZrorsyOH397l1U7m+osCVKducs9hJke0m6Ovc0M066WwCAAAAAGhu6jz8Lioq0kcffaSPPvpIRUXhFX1ZWVk6//zz1aZNG/Xo0UPt27fX7bffLq/XW9dLBQA0WZE3qCznlIXfJU6SXCXIY9pKkmyTGBYif7SzWEVO5B/U/lhQN5+7fszzy6iFJEsFdrJKXEvzdlWuOCf+BgAAAAA0L7G/+68F77zzjiZOnKhevXpp8+bNIedc19VZZ52l7777TqastK6wsFDPPPOMNm/erHfeeaeulwsAaCI8Vh8lq0iJZrdkJcfsJ+4oRcmStnmS1TLRVqFaqmWiZJskrS8OD7oL/fUbLK8r8smU9fyenZmifq2NFlZoZ2KsNmXnAQAAAABoPuq88nvu3LmSpLFjxyohIfTh33rrLX377beSpGOPPVZ//OMfdeyxx8oYo5kzZ2rOnDl1vVwAQBPhNalyFGgFUt7DOxq/CZzf5U2Q3yQoxw60PSl1k7TLEyH8jtL2pK54XSOjQI/vtUWOih1LuX5H5e1dHKWHtWsBAAAAAKCpq/PK75UrV8qyLA0aNCjs3JQpUyRJxx13nJYsWaKkpCT5/X4NGTJE33zzjV599VX99re/reslAwDqia/kkxqYJVGSI6MEOUqUlKBSdVK68qNeUeqmqXWCVOJIpU6iNpcm67DUFHmcRM3JLAkb/32epwbWuW98StdOp4d8ruQry+eN1UqWyVWpaav8eg7oAQAAAACoa3Ve+b1r1y5JUp8+fUKO+/1+LViwQJZl6YYbblBSUiCXT05O1nXXXSdjjJYtW1bXywUA1CNjwveGqDYrRZLkGks+kyYpUTKxW4C4ZRXTflfKtxO1qjBwP9OXsu/rqSU+k6pSJ1GuMcHu3j61kZSsPLulNhdX7gEOAAAAAEDTVufhd05OjiQpJSU0QPjmm29UWhroT1q5urtv376SpJ07d9bBCgEADYExRjL7vmGkKdu80jaJ2u1rJSlBporNH92ycHyHx2hLaYK2lQZKqT/fXeefNuNW6qTINgmyjeSWPb0Mfye5Vmv9XNRScyNUrAMAAAAA0JTV+Xfx6enpkvZUgJdbsGCBJOnggw9W165dQ861aNGibhYHAGhAaqJNR4L8al02myWfSZAsS1V9+sv0tZCUoF8KbK0pLGsjYiU26E0jfyhsKyMp1+cEw2+PE+gDvqqw4Yb2AAAAAADUljrv+X3QQQfphx9+0BdffKEzzzwzePy9996TZVk65ZRTwq7ZvXu3JKlLly51tk4AQH2rifA7UTl2B3VL3CrHWLJdS5Ilu4pPf9/lp+iYFsna5XW0tTShbDUpyveHb3bZUHy00+j6PtKP+T6d2yNQ7V7qBnqc/1xAyxMAAABgX9m2rffff19z587V0qVLlZmZqdzcXKWnp6tz58464ogjNGjQII0bNy6s3W80K1as0Lvvvqv58+dr8+bNwQysXbt2+s1vfqPjjz9eZ599tk455RQlJMRX1JKXl6c333xTn332mX744QdlZWWpqKhIbdq0UY8ePXT00Udr2LBhGjt2rNq1axfXnMYYzZ07Vx999JEWLVqkHTt2KCcnR6mpqerYsaMOP/xwnXjiiRo3bpwOO+ywuOaUpA0bNujtt9/WZ599pvXr1ysrK0u2batt27bq06ePjj32WI0aNUpnnnmmkpOT45qztLRU06dP16effqrly5dr165dKigoUKtWrdS1a1cdddRRGjJkiMaNG6du3brFvdbFixfr/fff15dffqlt27YpOztbiYmJat++vfr166fjjz9e5513ngYMGBD3nBkZGXrrrbc0b948rVq1Srt375bH41Hbtm2133776ZhjjtGIESM0evToYEFxVWrjfSrVznu1LljGmDrdAeuee+7RE088oTZt2mjatGkaMmSIJk+erFtuuUWWZem9997T2WefHXLNU089pbvuuksDBw7U4sWLa2Qdy5cvD/4P+8svv2j37t1KTk5Wjx49NHjwYF155ZU6+eST457v448/1qRJk/TNN99o9+7d6ty5swYMGKBrrrlGZ511Vlxz2LatF198Ua+//rpWr16toqIi9ejRQ8OHD9fNN9+sww8/fG+fbpW2bdum/fbbT5K0detW9erVq9YeCwDiYYxfBTv2cZNjq4VWlByto1os1XrfABU4STomfZWynP3UOeGnqJc9uHGo7jhwh4Ysbq/D2yTLMdLzR+bqqh/aa96uhtk+5NTO6Xq0n63BC3wa3iVd83aV6Ldd0/X60et04Q+/0acx2p7kXvQXtUuL7wspAAAA7Jt9+f573bp1sm1bSUlJ+s1vflPl+IxXGu5vLu6r7pfX7YbuH3zwgW6//XatX78+rvGjRo3S448/rv79+0c8v23bNt18882aOXOm4onmDjjgAD3wwAO6/PLLo45xXVdPPvmkHn/8ceXl5VU5Z2pqqq6++mo98MAD6tSpU9Rxixcv1k033aTvv/++yjkl6eSTT9bjjz+uwYMHRx2Tl5en22+/XVOmTJFt21XO2aVLF91999265ZZblJiYGHXcSy+9pP/7v/9TRkZGlXMmJibqoosu0iOPPKLevXtHHffLL7/ohhtu0BdffFHlnJJ0xBFH6NFHH9WYMWOijvF6vfrzn/+s//znP8E20LG0bt1at956q+65556YIXhNv0+l2nmvRlPdf+PiUefhd0ZGhvr166fCwsKQ48YYHXbYYfrpp59kWaH/OJ922mlasGCBrr/+ej377LP7vIZTTjlFCxcurHLcpZdeqhdeeCGsP3lFruvqmmuu0UsvvRR1zFVXXaX//e9/MX/qkZWVpZEjR+qbb76JeD41NVXPPvusrrrqqirXvTcIvwE0NMb4VLAjvh8eRp3Daqn5+cdoWJtFWuk5SaVOgo5ttUGZdg/1SIz+hdvd60/RHw4o1oglCTqqbYocIz3dv1TjliVrbZFvn9ZUWzqlJGrGick6daFHh7VJ1S8FXiVaUuaZGTprWR99k+uJei3hNwAAQN0h/K4ZdRl+P/LII7r//vuDwd+pp56q0aNH68gjj1THjh1VUlKijIwMLViwQLNmzdLmzZslSddee63++9//hs337bffasyYMcGAtlevXrrgggs0ePBgdevWTcnJydq1a5d+/PFHzZkzRwsWLJAxRqmpqfJ4In9dX1paqosuukjvv/++JCk5OVnnnXeezjjjDB144IFq166dcnNz9euvv+qzzz7TrFmzlJ+fL0maNm2aLrzwwojzvvLKK7rmmmvk9/slSccdd5zOPfdcHXfccercubP8fr927typpUuXavbs2frll18kSSNGjNCcOXMizrlx40aNHDlSa9askSR16NBBF110kU455RT16NFD6enp2r17t1avXq25c+fq008/DQbkGRkZEau1XdfVH/7wB/3vf/+TJFmWpVGjRum3v/2tDj30ULVv316FhYXavn275s+frw8//FCZmZmSpL/+9a+65557Iq51zpw5mjBhQjDHPOSQQzRu3DiddNJJ6ty5syzLUmZmZrDIdvny5cFxq1evjjhnVlaWzj77bC1dulSS1LJlS02YMEHDhg3T/vvvr9atWys7O1vr16/Xp59+qo8//jgYkC9dulQnnXRSxHlr+n0q1c57NZbaCL/rvO1J9+7d9eGHH+rCCy8M+SnMgQceqBkzZoQF3xs2bAgG1cOHD6+RNezYsUOS1KNHD40fP15DhgzR/vvvL8dxtHTpUv3973/X9u3bNWXKFPn9fr3xxhtR57rvvvuCwfcxxxyju+66SwcddJA2bNigJ554Qt9//71efPFFde7cWY899ljEORzH0dixY4PB93nnnaerr75aHTp00Ndff61HHnlEu3bt0rXXXquePXvGXUkOAI3bvn8x66itCuwEGautRiz26ZmjWunoVsnym9i/gmUkTdnaSqVOkRZllarEMcqzU7XbW3VFQn3J8jkqdQM/rPU6gfYsjpHy3U5aHiP4BgAAABDdyy+/rP/7v/+TJHXt2lVvvvmmTj311Ihjx48fr2eeeUZvvvmm/vSnP0Uck5GRoVGjRgWD1/vvv19/+tOflJqaGjZ25MiRuueee/Tjjz/qz3/+sz755JOo67z22muDwfdJJ52kN954I2pLi4kTJ6qgoEDPPvusHnnkkahzzps3T1deeaVc11WrVq00efJkjRs3LuLYsWPH6oknntDs2bOjBsmSVFxcrNGjRweD76uvvlpPPfWU2rRpEzZ2xIgRuuWWW7Rp0yY9/PDDmjx5ctR5H3zwwWDw3bdvX7399ts66qijIo69+OKL5fF4Qv5uI1m5cqXOP/98lZSUKDk5Wc8884yuu+66iMWtY8aM0UMPPaRFixbp3nvvDbYEqcxxHI0fPz4YfJ999tl64YUXIrZ6Hj58uK677jplZmbqySef1DPPPBN1rTX9PpVq771a1+q88rucz+fT4sWLtXPnTnXv3l0nn3yykpLCs/hFixbps88+kyTdeeedcfe3iWX06NG69NJLdf7550f8VYmsrCwNHjxYa9eulSR9+eWXEXuRr127Vocffrhs29bxxx+vBQsWhGzOWVJSoqFDh2r58uVKSkrSqlWrdPDBB4fN8/LLL+vKK6+UJP3hD3/Qf/7zn5Dz69ev13HHHaeCggIdfPDBWrVqVcTXal9Q+Q2goTGuRwUZo/ZpjiL9RpO39dClvTLV+5MWmnRMa43qvEObPJ3UP+2rqNfdse4U5flcvb+jRLYxMpI+HdxC533tVaHdcPt+TzuhtS5aVqiuqUnKLAvq1w531Hde9F8LlKj8BgAAqEtUfteMuqj83rp1q/r27SuPx6M2bdro22+/jZjrRJKXl6eFCxeGtb4YPXq0Zs+eLUn629/+prvuuivu9UydOlWXXHJJ2PEZM2Zo/PjxkgKV2QsXLgzJp2Ipb7t7/PHHhxwvLi7WgQceqF27dikpKUlffvmlBg0aFNecHo9HH374YXBNFd14443B3CtSBhbLhx9+qCFDhoT1KV+2bJlOOukkGWO033776fvvv1fHjh3jmnP79u1as2aNhg0bFnLcGKOjjjpKP/0UaJf51ltvacKECXHN6bqupk2bpt/97ndh55566indeeedkgLvhffffz/u/thLly5Vly5ddNBBB4Ucr433afn6avq9WpUmUfldLiUlRaeddlqV404++eRq9d6Ox6xZs2Ke79Spk/7+978H/+JnzJgRMfx+5plngr928e9//zvsH5b09HT9+9//1sCBA2Xbtv7xj39E/J/6qaeekhT4NY8nn3wy7PzBBx+se++9V/fee6/Wr1+v9957L+I/IADQtOx7lfU2b3v9dU2hvKarpAIZWcqx2+jL7FT17xn9OmOkj3aWyF/h58OlboK8br38vDhu3+QG/iy292xwmeNPk+SvnwUBAAAAjdjTTz8dbN3w6KOPxh0oSoFNACsHiitWrAiGiQMGDAiGoPGKFiaWdxqwLEuTJ0+OO/iWpEMPPTTi8RdffFG7du2SJN1yyy1xB9+SlJaWFjG3yszMDHZP2G+//YJ5WLyi9dD+61//Gmz18dxzz8UdfEtSz5491bNn+DeHH3zwQTD4Pv/88+MOviUpISEhYvDt9Xr197//XVIgM3zppZeqtTHkwIEDIx6v6fepVHvv1frQcLbebGAqBvMbNmwIO2+MCf46yaGHHhq1385JJ52kQw45RJL0/vvvhzWGX7t2rVatWiVJmjBhQtTK9opN4t977734nwgANFLGOFUPqkKWP0V+Vyoty9H9Jr5mKq6RSp3QkR7Xkq+Bh987PIH1FVdY++Lc+L/wBQAAABBgjNHUqVMlBTYbnDhx4j7P+eqrrwZv33TTTWGtf/fGjz/+GNyI8rTTTtMRRxyxz3NKe9ZqWZZuuummGpnzrbfeCoa0V199dbVC+mjy8vL0wQcfSJIOOuggjRq1b789XK7i39Utt9xSI3POnTtXO3fulCRdeOGFEVudVFdtvE+l2nmv1hfC7yi8Xm/wdqTWKJs2bQr2Dh86dGjMucrPb9++PdhMvtyiRYvCxkXSrVs39e3bV1Jgl10AaPr2PfxeV5QovzFaUxRIvwvLQvCqImwTYYzHafif7D1loXfFtS/ObrhtWgAAAICGauXKlcrOzpYkDRkyRC1bttznOb/88svg7d/+9rf7PF9tzZmfn68VK1ZIkvr166fevXvXyLy1sdaFCxfKdQPf84wYMaJGQlpjjBYsWCApECgPHjx4n+eUauf518b7VKqdtdaXemt7IgVK6BcuXKiNGzeqsLBQjhM76LAsK/jrEbWt4l9yv379ws6X714rRf8VkUjnV61aFbLhQHXnWbt2rbZu3ari4uJqvaG3bdsW83zFzUcBoEEw+972ZENxIAZeUxCY69tcRyO7qMr0+7tcX9ixPH/DD7/9EbbxKGnAPcoBAACAhurHH38M3j722GNrdM5evXqpc+fONTqnVHPrXLlyZTBQrqk5pT1rTUhIiLoZ5d7OKdXcWnfs2BEMlI866qhqtSaJpTbfUzU5Z8V5a/K9Wl/qJfxes2aNrrjiCn31VfTNxiozxtRZ+O26rh5//PHg/Uh9fSqGyVVtTlG+kYUUaEK/r/MYY7Rt27ZgO5V4VFwDADQGxpTs8xybSgI/VPWbwBdum0scSVWH2BuKw8Pvon3P4mudEyHnLnEadqsWAAAAoCHKysoK3o4V/rmuG1LYWNkhhxyi5ORk5efnB/eNqypM3LJliwoKCiKe69KlS0i7jHjXWVhYqF9//TXiuZSUlGC3gerMKQWKPKMVs/bp0yekcLN83rZt2yolJSXqnDt37gxZQ0Xt27cP6dEd71o9Ho/Wr18f9Xz//v2rPacUaJVcWloa8VyvXr1CNueMd97s7OyoRaotW7YMKaqt6feppFp7r9aXOg+/t2/frlNOOUVZWVnB/tetWrVS+/bta+wnKfvqH//4h5YtWyZJOu+883TccceFjSksLAzebtWqVcz5Kv6PXlRUVCvzAECTYyoG0AmSql/BvL008EWYKQu8t5XaOmtJgsb0iB0IRwqMfY2ggPqzXeFfdOU0hoUDAAAADUzFvCbWb94XFBTE7LO9adMmHXDAAXHPJ0k333xzcJ+5yh544AE9+OCD1V7nZ599prFjx0Y817t375A2vdVZ68CBA5Wfnx/x3Pz583XqqaeGzVvVnI8//rj++c9/Rjx32WWX6ZVXXqn2WlevXq1jjjkm6vmKe/RV5/mff/75wRYxlU2ePDlkD7945506dar++Mc/Rjw3dOhQffHFF9WeM973aXXmlKr3Xq0vdR5+P/roo9q9e7csy9JVV12lO+64I+SnS/Xtyy+/1D333CMp8BOK559/PuK48gb9kmL+tEqSUlNTg7cr/zSopuapSuWK88oyMjJ0wgknVGtOAKgzVppU7UrwRG0t8Uva0+Vkt9eWE9zM0lLk/icJEY/u8jX8CupIbU82RahiBwAAABBb69atg7eLi4sb3Hy1OW9trjUvL69ZP/+K87Zp06bG56wJtfX860udl1rPmTNHlmXp0ksv1aRJkxpU8P3zzz9r7Nixsm1baWlpmj59etTy/LS0tOBtny92sFBx88zKO9nW1DxV6dWrV8yP7t27V2s+AKhLPnWs9jWu1UHZlaqeywu6fy12AoF6BMaK/O/rcxsKIx5v6IppewIAAABUW8eOe74H2b17d9Rx7dq1kzEm5OOyyy4LG9e2bVslJSVVOZ8kzZw5M2S++fPn7/M6zz333LB1RtvIMt45JSkvLy9kzgceeKDKtebn58fMwJ555pmQOTdt2lTlnFWt9eijjw57/kOHDt2nOSXphx9+CJlz8uTJ+7zWW2+9NWyt+zpnvO9Tqfbeq/WlzsPvHTt2SJIuvfTSun7omDZt2qQzzzxTubm5SkxM1JtvvqlTTjkl6viKPwWpqgVJxZ+SVG5tUlPzAEBTYkxoaG324tNVxWuK7dAedJleRybKLz+t9x5W7ccCAAAA0LRU3JDx+++/r5E5jzzySEmB/d+i9bSurtpYZ//+/YOtiWtqTmnPWl3XDdmosSbmlGpurT179gyGyitWrAhu/rmvamOttTGnVDvv1fpS5+F3+/btJSmk4Xt927Fjh4YPH64dO3bIsiy9/PLLOuecc2JeU3FzyoqbVkZSseVI5Y0n92Yey7Kq3BwTABo1E9rayWsiV2nHnEKJwduVK8DXFvqiht83/1Qve0EDAAAAaED69+8fDEAXLlyokpLqtmEMV7HSeM6cOfs8X23N2a5du2CoumrVKm3ZsqVG5q2NtQ4ZMiQY1M+dOzdmlXS8LMsKFsQWFhZqyZIl+zynVDvPvzbep1LtrLW+1Hn4ffzxx0uS1q5dW9cPHVFWVpbOOOMMbdy4UZL073//O66q9MMO21MZuHr16phjK57v16/fPs+z3377VdlwHgAaM9v3s4z2VGuXuqmSlR739V6rt9wY21q4UtTw22F/SAAAAKDZsyxLv//97yUFNgt89dVX93nOinnTs88+WyNB7ZFHHqmjjz5akvT555/rl19+2ec5pT1rdV1X//nPf2pkzgsuuCC4n90LL7wQsg/e3mrXrp3GjBkjSVq/fn2NBbUV/67+/e9/18icI0aMUNeuXSVJb775ZpUtReJRG+9TqXbeq/WlzsPvm2++WcYYTZo0qa4fOkx+fr5GjBgR/Ifh8ccf1w033BDXtX369FGPHj0kBTbJjGXBggWSAr82Ub5zarmTTz45eDvWPDt37gz+wGDw4MFxrREAGivX3iGZPeG3z02SrXZxX59jt5dbxae4aOG3rxF/UgcAAABQc2677bbgXm333ntvzN7T8Tj66KN11llnSZK+/vpr/eMf/9jnNUqBtUmSMUaXX355jYTKV199tTp37ixJ+sc//qGvv/56n+fs2rWrrrjiCknSli1bdNddd+3znFLg+VuWJUm6/vrrlZOTs89znnPOOTr88MMlSW+//bbefffdfZ4zNTVVt912m6RAa+Orr766Rlqq1PT7VKq992p9qPPw+4wzztDdd9+t+fPn6/rrr5ff76/rJUiSSkpKNGrUKH333XeSpPvuu09333133NdblhVsjbJ69Wp99dVXEcd99dVXwYrtc845J/g/Y7m+ffsGq8HffvvtqL+e8MorrwRvjx07Nu51AkDj5ChQnx3gcRNVbOLfCds2CVX2CbeVGvG4j8pvAAAAAJL2339//etf/5IUKKA8+eSTtWjRopjXGGOUl5cX9fwLL7wQDJXvuOMOPfzwwzE3f5Sk3NzcmOcnTJigiy++WJL0zTff6IwzztCvv/4a85qSkhJ5vd6o51u2bKmpU6cqISFBfr9fZ555pmbOnBlzznjW+re//U2HHHKIpEBF9R/+8Icq98Cras4TTzwx+AOAX3/9VSeffLJWrlwZ8xrbtmM+rmVZev3119WiRQtJ0oUXXqhJkyZVGVZXtdbbbrst2FLl/fff17hx46rsqV3VnLXxPpVq571aH+q8semUKVPUr18/DRo0SJMmTdKHH36ocePG6dBDD1V6etW/0l4TG2X6fD6NHTtWixcvliTdcssteuSRR6o9z6233qpJkybJcRzddNNNWrBgQfB/CkkqLS3VTTfdJElKSkrSrbfeGnGeO+64Q1deeaVycnJ011136dlnnw05v2HDBv31r3+VJB188MGE3wCaPhO6QWWJkyS/SZKsKOMrcWXJNbEHmyiT+R0qvwEAAAAEXH311dq+fbseeugh7dixQ0OGDNGwYcM0ZswYHXHEEerQoYMcx9HOnTv13Xff6e2339bPP/8sSUpMTFRKSkrIfD179tSsWbN09tlnKzMzU/fff79efPFFXXjhhRo8eLC6du2q1NRU5eXlac2aNfr44481a9as4PXRsrMXXnhB+fn5mj17thYtWqS+fftq3LhxOuOMM3TggQeqbdu2Ki0t1ZYtW7RkyRJNmzZNu3btijnniBEj9L///U9/+MMfVFBQoLFjx2rAgAEaO3asjjvuuGCv6aysLK1YsULvvvtuSIV4xYysXOvWrTVr1iyNHDlS69at0/PPP6/p06froosu0imnnKIePXqoZcuWKigo0Pr16zVv3ryQqutoa/3LX/6izMxMvfTSS1q1apWOOuoojR49WmeddZYOOeQQtW/fXj6fT9u3b9eyZcv05ptvavPmzVHXKQU2k5w+fbouvPBCFRUV6dprr9Uzzzyj8ePH68QTT1Tnzp2VlJSknJwc/fzzz/rggw/02WefxVxrUlKSpk+frjFjxmjZsmV677339Omnn+rCCy/Uaaedpv3331+tW7dWcXGxNm7cqAULFuitt96q8vnX9PtUqr33al2zTB03bUlISAirfo6XZVmybXuf13D++ecH/8cZNmyYnnnmmZhrSklJUd++fSOeu/fee/X4449Lko455hjdfffdOuigg7Rhwwb97W9/C+60eu+99+qxxx6LOIfjOBo6dGgwjD///PN19dVXq3379lq2bJkefvhh7dq1SwkJCZo1a1bw1w5q0rZt24KbcW7dupUNNQHUC2McWVaiPIXTlJTST8VZt0uSlpcMUqcUrw5I+jaOWRK10X+MuiTnq9cnraKOyhiRrxZmY9jxIxedoC0l9fNbSfUl96K/qF1aw/jCBAAAoKnbl++/161bJ9u2lZSUpN/85jdVjs94Ze/yl8ag++V1W7Ty3nvv6Y477gjuGReLZVkaMWKEnnzySfXv3z/imC1btuimm27SBx98ENfj9+7dWw888IAuv/zyqBmW67r661//qieffFL5+flVzpmWlqaJEyfqL3/5izp16hR13IIFC3TzzTdrxYoVca114MCBeuKJJ0Ja/VaWm5urP/7xj3rttdfkOE7UceW6dOmiu+66SzfffLOSk5Ojjps0aZLuv/9+ZWZmVjlnUlKSxo0bp8cff1y9e/eOOu6nn37SjTfeGGxrXJXDDz9cjz32mM4+++yoYzwej/70pz/p+eefj6tNTZs2bXTjjTfqT3/6U8x9AGv6fSrVzns1mur+GxePegm/95ZlWXH9DxHPPNXRu3fv4E+DKnNdV1dffbVefvnlqNdfeeWVmjRpUsznnpWVpZEjR+qbb76JeD41NVXPPvusrrrqqmqtPV6E3wAaAmP8sqxkefJfVEJSN5XmBfqKfVMySO2S/PpNSuR/I0NYafqp9Gh1SSnRIfMSow7bMaJA6WZD2PFDFwzQTs++/6C1MSH8BgAAqDuE3zWjrsNvKdAq47333tPcuXO1dOlS7dq1S3l5eUpPT1fHjh11xBFHaODAgbrgggvUp0+fuOb84Ycf9M4772j+/PnavHmzsrOzJUnt27dXnz59NGDAAI0ePVrDhg2LO1PLy8vTtGnTNG/ePK1YsUJZWVkqLi5W27Zt1bVrVx1zzDE65ZRTNGHCBLVr1y6uOY0xmjNnTrCyPCMjQ7m5uUpNTVWHDh102GGH6YQTTtD48eNjBqmVrV+/Xm+99ZY+//xzrVu3TtnZ2XIcR+3atdP++++v448/XmeeeaZGjRoVM/SuqLS0VG+//bY++eQTLV++XLt371ZhYaFatWqlzp076+ijj9bgwYN1wQUXqFu3bnGvdeHChXr//fe1YMECbdu2TdnZ2UpKSlL79u3Vt29fnXDCCTrnnHM0cODAuOfMyMjQtGnT9Nlnn+mXX35RVlaWvF6v2rVrpx49eui4447TsGHDNHbs2LgrqWvjfSrVznu1siYRflfVc6gqsX4SE6+aDL/LffTRR5o0aZK++eYbZWVlqVOnThowYICuvfbauCu1bdvWCy+8oDfeeEOrVq1ScXGxevToodNPP1233HJLsNF+bSD8BtAQGOOVZaWqOOsuSUmyvYFfmfumeJBaJ9k6NHVZhKsSVLE/uLFaa07uMeqUYuuMRaVRHyta+H3g/OOU429ejb8JvwEAAOpOXYbfANCY1Ma/cXXe87smwut9VRt5/8iRIzVy5Mh9miMpKUnXX3+9rr/++hpaFQA0MsaVLMnxrZWV1HXPYUlet2IVd8XAu/LtRG0psdQyMfZPmrP9bZUe4bOgx6XnNwAAAAAATcHe9yABAKDGuTLGL2MKZZy84FHbWCp1K3zKslIrXFPxt3kSZGRpl08qcWL/ls9uf6oifRr0sOElAAAAAABNAuE3AKDBcJ3dkvEG7pT/KckxlmwTCLMdq6sctalwVcVPZYlylab1RY5Kqwi/bdeSVLlnXKKaV8MTAAAAAACarjpve1KR4ziaOXOm5s2bp5UrVyonJ0eS1KFDB/Xv31/Dhw/Xueeeq8TE6BuWAQCaDmM8MmWht9GeTSeNJLsslXaVLKtiRG0lBgZIkpUgV4kqto08buzw22cSQq+VZKwWNfAsAAAAAABAQ1Bv4fecOXN0zTXXaPv27cFj5b24LcvSkiVLNGnSJPXq1UuTJk3SiBEj6mupAIA6YpxMmYSyqm6zZ7NKI+mlX41OPbKlfCZNKVb5uQT51U7JKpEkuWohowS5MvI4sR/L41gySpSlVEnlgXtazT4hAAAAAABQb+ql7cnUqVM1evRobd++XcYYGWPUu3dvnXTSSTrppJOCm2IaY7R161aNGjVKr7/+en0sFQBQh4wxIe1O9hwPBOCO2shRkkzw01eCAj2/y3+WmyijBBX4jTxV9C8pcSy5SpOswFzGaimH8BsAAAAAgCajzsPvX3/9Vddcc41c11V6eroeeeQR7dy5Uxs3btSSJUu0ZMkSbdy4UTt37tSjjz6qVq1ayXVdXX311dqyZUtdLxcAUKdsyfgjnjHGUr7bUR43RSa4yWUg/Hat1pKVJkfJck2S1hb5VFpl5bfkVRuVb5hZYrrJr9TYFwEAAAAAgEajzsPvf/7zn/J6vWrVqpUWLlyoP/3pT+rSpUvYuM6dO+vee+/VwoUL1apVK3m9Xv3zn/+s6+UCAOqS8cl1c8MPS/ox36ttntb6aFd7GQX2gvBbncsqwtNllCxbqVpV0kXFtltl25N825LfJFcI0i35TEqNPh0AAAAAAFB/6jz8/uSTT2RZlu68804dffTRVY4/6qijdMcdd8gYo7lz59b+AgEA9ca4xTJOTthxx1jaVmrrp8IUTdrslW0CbU6K3UDltqtEGSXJNilamJMsx0hVZN/K9hn53GSVfyo0slTiUPkNAAAAAEBTUefhd3nrkuHDh8d9zRlnnBFyLQCgaTKmWMbNCz1otVSxE6jO/mino2LbDVZo7/C1kc8ENrk0Stb0nd3kc03ZZLEfq8CWvCZJpqzVSZGTriInuSafDgAAAAAAqEd1Hn47TqAWLzExMe5rkpICFX6uW8XuZQCARs0Yr4zxhRxzla6SsvB7ZYFProwKnMDGlFm+ZPlMsgLV30lamu3K51pl18WW7zcyJnCdJBU4qcr3E34DAAAAANBU1Hn43bNnT0nSkiVL4r6mfGyPHj1qZU0AgIbBtbfI8a0JOWYrTc9u8EqSMj22XFfa4QmE3wW2pQxvK7lKkKtk5fgdPbW2QJK0pjB245MPM0q0LK9VoH+4laatnhTl2PH/YBYAAAAAADRsdR5+n3baaTLG6PHHH9eOHTuqHL9jxw49/vjjsixLw4YNq4MVAgDqS6DqO7RfSaHbVkV2oI7b5xp5XFcZnkC19k5PgnwmQbZJkt+kqNC/59ocf+zwu9DvarfPklGCJEuOsfRLQZ1/WgQAAAAAALWkzr/Lv+mmm5SQkKDdu3frxBNP1IwZM4KtUCpyXVczZszQwIEDlZmZqYSEBN144411vVwAQB0xxi/j5Kly+P1dQXsVlgXZRlK2z1VJ2aeNL7JslTgJ8ptkFbnp8jh7rv0q2xP78SR9leOUhd+S15EmbSquoWcDAAAAAADqW1JdP2D//v318MMP67777tOOHTt0wQUXqF27djr22GPVpUsXWZalzMxMfffdd8rLy5MxgSDj4YcfVv/+/et6uQCAumL8kvwyblHI4Ty/pXw7tIN3ecS9qsCvXd409W6RrAI7RV5TxS6XlRQ7RkaWjFK125egAj97SwAAAAAA0FTUefgtSffee6/atm2ru+66SyUlJcrNzdXnn38eMqY89E5PT9eTTz6p66+/vj6WCgCoI8b4JWPLNTkhx3N8lpxKmbZbdn+X11Gu31KJk6zdvmQ5buhmmVUptl0ZJchRmnJ8gTAcAAAAAAA0DfUSfkvSH/7wB02YMEGTJ0/WvHnztHLlSuXkBAKPDh06qH///ho+fLgmTpyoTp061dcyAQB1xXgCVd+WFXL458LwauzyIyWOq62l0pfZLXRgevWrtn/K98nIkpSgjSVUfQMAAAAA0JTUW/gtSZ06ddKdd96pO++8sz6XAQBoAIzxyci3p6y7zObi8H0hAiMS5Bhpt9dVvl/av0X1H7PQdmWMJddKVJ6Pqm8AAAAAAJqSOt/wEgCAyBzJeCXtaV1iW91UaIeH0vf8VChjpUuSlmZ7tTjbpzVFCdqb+NrIkt+kya1mv3AAAAAAANCw1WvlNwAAQcYOO+QoVV43PJT2GyMpWZKU73dVaLvyumkq3Yue3baSVOKkKby+HAAAAAAANGZUfgMAGgSj8PDbY1rIHyXQdsvC7yLbldc1KvQb5fmrH2Hn+Fvqje1tVGjT8xsAAABAbF9++aUsywp+LFmyZK/neuihh4LztG3bVh6PZ5/WdtpppwXnO/PMM/dpruLiYrVu3To432OPPbZP89Xk6ybx2u2Lmn7tGrpaq/w+8MADJUmWZWnDhg1hx/dG5bkAAE2ICQ+uS5w05UYJtB2lSpI8ZZXhuX6jCB1SqmSbBK0scOTZi6pxAAAAoCG7YPau+l5CrXlrVJd6edxXX3015P6UKVM0aNCgvZprypQpwdsFBQWaOXOmLrzwwr2a69dff9WXX34ZvP/ZZ59px44d6tGjx17N984776ioqCh4f+rUqfrTn/60V3NJNfu6lV9fjteuemrytWsMaq3ye/PmzcGPaMf35gMA0FSFh9zFTrKyfJHD72y7Y+h9n5EdoUVKVVwjrSr0E34DAAAAiKm0tFQzZsyQJLVq1UqS9Pbbb8vr9VZ7rkWLFmnjxo0hc1UMJatr6tSpMsYoNTVVSUlJcl1Xr7322l7PV76W8rWtXr1ay5Yt26u5avJ1k3jtGtJr1xjUWuX3ZZddVq3jAIDmy7F3ROz57cqKes3G0paSSoL3l+V4tDeNS3L9yfI4fll7tV0mAAAAgObivffeU2FhoSTpX//6l6644grl5ubqww8/1Lhx46o1V3ng2LVrV916662699579cknnygzM1Ndu3at9tqmTp0qSRo9erRKS0v10UcfaerUqbrrrruqPde2bds0f/58SdKDDz6oRx99VLm5uZoyZYpOOOGEas9Xk6+bxGvXkF67xqDWKr8nT54c/Ih2fG8+AABNj3HzZSJUfseKo7eXJobcj1YhXpWd3kT5XDfixpoAAAAAUK48ODzyyCM1ceJEHXLIISHH4+XxeDR9+nRJ0gUXXKBLLrlECQkJchxHr7/+erXX9dVXX2nt2rWSpN/97nf6/e9/L0lauXKlvvvuu2rP99prr8l1XSUlJenSSy/V+PHjJUlvvvmm/H5/teerqddN4rVrSK9dY8GGlwCA+mdcyYT/2paJkUdP3RpeKb43Cm1LOz2Odnr2LjwHAAAA0PRlZGRo3rx5khQMSMv/nDNnjnbv3h33XB988IHy8vKCc/Ts2VOnnXaapL0LNcuvad++vUaNGqVzzz1XrVu33uv5yiuhzzzzTHXu3FmXXHKJJCk7O1uzZ8+u1lw1+bpJvHYN6bVrLOo8/N6yZYu2bNkix4k/ZHAcJ3gdAKBpMm5+2LFYbU9WFfhq5HF3egMV5tR9AwAAAIjm9ddfl+M4SkhI0MUXXywpUClsWZb8fr+mTZsW91zlQeMhhxyiAQMGSNoTaq5YsUI//fRT3HP5fD699dZbkqTx48crJSVFLVq00HnnnSdJmjZtmmw7/sKh5cuX65dffglZ0+DBg9WnT5+QtcerJl+3io/Pa1e/r11jUufh9wEHHKADDzxQa9asifuazZs3B68DADRFrowpDTsaK5De2zYnlT22uqBG5gEAAADQdJVX9J566qnq2bOnJKlPnz4aNGiQpPiDzV27dmnu3LmSAkFmufPPP18tWrSQJL366qtxr2vWrFnKycmRtCfIrHh7165dmjNnTtzzlT+P1q1b65xzzpEkWZYVDF9nz54dfLx41NTrJvHaSQ3ntWtM6qXtiYn1e+y1cB0AoGEzxhtofVKJ102MMBoAAAAA6s4PP/ygH3/8UVJoSFrx/rfffhus+o3ljTfeCFYTV5yrdevWOvvss4Nj4u2YUB6AHnDAATr55JODx4cNG6YePXqEjKmK3+/Xm2++KUkaO3as0tPTg+fK1+rz+YJjqlKTr5vEa1d5vvp87RqTRtHzuzz0TkhoFMsFAFSXKY644WWhzb/7AAAAAOpXeQDaokULnX/++SHnJkyYoJSUlJBx8cw1aNCgYDuMcuX9oTMyMvTpp59WOVd2drY++ugjSdLFF18sy9rTNrJiq4wPP/ww2Os5lo8//jjYR7py4HrooYfq+OOPD3kOVanJ163iOF67+n3tGptGkSpkZGRIUrDhPACgaTHGyDhZ9b2M5suK3lsdAAAAaM5s29Ybb7whSRozZozatGkTcr5Dhw4aOXKkpECPZtcN/43WcitXrtT3338vKTwglaQRI0aoc+fOkva0vIhl2rRp8vv9UecrP+bxeDR9+vQq5ysPSLt3767TTz896nxff/211q1bF3OumnzdJF67iur7tWts6i38tuL4Rtvv92v16tV69NFHJQUasgMAmiIj195e34totgzbfQIAAAARzZ07V5mZmZIiB4cVj2/btk3z58+POld5T+Xk5GRNmDAh7HxSUpIuuOACSdLMmTNVWFgYc23l8x177LHq169f2PmjjjpK/fv3l1R1hXBubq4+/PBDSdJFF10UsfvCRRddpMTExLjmq8nXTeK1q6w+X7vGptbD78TExJAPKVDh179//7BzlT/S0tJ0+OGH69NPP5VlWRo3blxtLxcAUMeMcWTcHBk3/BPscxsJZQEAAADUn/KgsmPHjvrtb38bcczo0aPVrl27kPGVOY4TrOY966yz1LFjx4jjyltQlJSUaMaMGVHXtWrVKi1fvlxS9IC04nyLFy/Wpk2boo5788035fP5Ys7XpUsXnXnmmZKk1157LebefDX1ukm8dpHU12vXGNV6+G2MCfmIdryqj/Hjx+vWW2+t7eUCAOqa8QU+IlQff5/nq/v1AAAAAICk/Px8ffDBB5ICPaJTUlJkWVbYR1paWrAv9Lvvvqvi4uKwuebNm6cdO3ZIkj744IOI81iWpRNPPDF4TaxQs+K52267Lep8d999t6RADhfvfMcee2zU+T7++GNJ0ubNm7VgwYJaf9147RrWa9cYJdX2AzzwwAMh9x966CFZlqXrrrtOXbp0iXpd+V9k9+7dNWjQIB100EG1vVQAQD0w8ssoco+yXV67jlcDAAAAAAFvv/22PB5Pta4pKirSu+++G6ykLbc3geKXX36pLVu2aP/99w857rquXn/99WrPN3Xq1LCcTpLWrVunr776qtrzTZkyRUOHDg07XpOvW/njVBev3Z7Hqa5or11jVS/htyTdcMMNOuyww2r74QEADZgxRjJ+ybgyciqdbRR7MgMAAABooipuYvj0009XOf7OO+/Utm3bNGXKlJAgsrCwUDNnzpQknX766brqqqtizlNQUKBrr71WxhhNnTpV9913X8j5+fPna+vWrZKkm266SYMGDYo539dff61nnnlGGzZs0OLFizV48OCIz1OSnn/++WA7jWgmT56sTz75RDNmzNCzzz6rFi1aRJxvX183ideuKnX52jVWtR5+VzZ58mRJUq9ever6oQEADY5d1vLEL+PkVjpH+A0AAACgfmzatEmLFy+WJJ1//vm68MILq7zmq6++0j//+U99/vnn2r59u3r27ClJmjFjhkpKSiRJ119/vc4///wq53ruuee0YsWKiCFkeUCamJioP//5zzE7K0jS8OHD9eyzz8q2bU2ZMiUkwDXG6LXXXpMk9e/fX9ddd12Va0tLS9Mnn3yigoICzZw5UxdddFHwXE2+bhKvXVXq8rVrrOo8Wbjssst02WWXqU2bNnX90ACAhsY4MjIybomMm1/ppFUvSwIAAACAKVOmBPeuGzduXFzXlI9zXTcYipbPJUnp6ek666yzqjXXmjVr9PXXXwePFxcX691335UkDRkypMrwVpI6deoUbLHx9ttvy+v1Bs8tWLBAmzdvDnnMqvz2t79Vq1atJIW31ajJ163i/Lx2kdXVa9eY1UtZ3ZYtW7Rly5aQN0w0Ho8nOB4A0LQY45HkypgSSZX7e1P5XWdi7DQOAAAANEdTp06VJHXp0kVDhgyJ65pBgwape/fuIddv2bJFX375pSTprLPOUnp6elxzVazSrRiSvvvuuyoqKgobE+98eXl5wQ0VK88d73xpaWkaOXKkJOnTTz/Vzp07g+dq6nWTeO3iUVevXWNW58nCJ598oj59+uiII44Ilt7HUlJSosMPP1wHHnigvvjii9pfIACgDvklY2Sc3eGnLMJvAAAAAHVv8eLF2rBhgyRp7NixSkiI73uT/2fvvuPlLOv8/7/uaaef9ARCAqGDgIIUG4rdFRDEdUFld5UV11XXtquu/nSxl11cZRUbX1RQEUR6WZpIMRFCCDUQ0vtJcnqbdt/3dV2/P+45c86cM6fXJO/n4xEyc5frvmYyOUPe85nPFYvFuOCCCwB44YUXWL16Nb/97W9HXc0LcPzxxxfXyvvDH/6A7/tAbyDpeR7vec97Rjzee97znuLj6Bkjm81y0003AXDsscdy4oknjni8nsdijCkuIDmRzxug524Epuq525dNec/vP/7xjzjnePe7382cOXOGPX7u3Ln87d/+Lb/5zW/4wx/+wBvf+MbJn6SIiEwNZwCLs9mBu6b+LUpEREREZL/yh3OGb+sgA42lorfv8T/96U+L49x3330AVFRUcM4554x6rBdffJGWlhbuvvtuzjjjDP785z8D8JrXvIbFixePeKxFixbxute9jr/85S/ce++9NDU18ac//YnOzs7itUbj7LPPpqqqimw2y29+8xv+/d//fUKft1NPPbVYyaznbmiT/dz1hOv7Ks+5qf2u84knnsjatWv5zW9+w8UXXzyic66//nouvvhiXv7yl/PMM89M7gQPUDt37mTp0qUA7NixQwuSisiUCP2XcKaZXNdvscHGkn3Om8Wc+46YppkdWFrf/3XmVNZM9zREREREDgjj+ff3hg0bCMOQRCLB0UcfPVlTFBGZFpPxM27Kv1Pe0wj+mGOOGfE5Rx11FBCteioiIvsHazpwNuq3huvf7xsc8SmekYiIiIiIiIjsT6Y8/A7DKOCIx0ceavQcm8vlJmVOIiIy9UywHhvu6rk3YL8lNbUTEhEREREREZH9ypSH3/Pnzwdg8+bNIz6n59i5c+dOypxERGQauBDnunHOx5n2AbuNwm8RERERERERGYcpD79PPvlkIFoxdKRuuOEGgFGtnCoiIjOdwYYN4PI41zVgr8ObhjmJiIiIiIiIyP5iysPv888/H+cct9xyC3/84x+HPf7GG2/klltuwfM83v3ud0/+BEVEZEqYYAM2bMC5/IB9oXfwNMxIRERERERERPYnUx5+f/CDH2TZsmU45/jABz7A5z73OXbs2DHguB07dvBv//ZvXHzxxXiex9KlS7n00kuneroiIjJJnO3CuTTOtg3Yl3O1oMpvERERERERERmHxFRfMJVKccstt/CGN7yB7u5ufvjDH/LDH/6QQw89lIMPjir9du/ezfbt2wFwzlFbW8utt95KRUXFVE9XREQmjcUGm3Cpkwbs2ZGfw6EVLdMwJxERERERERHZX0x55TdEfb9XrlzJKaecgnMO5xzbtm1j5cqVrFy5km3bthW3n3rqqTzxxBOccsop0zFVERGZJM4Fhd/9AfvSJoEqv0VERERERERkPKa88rvH8ccfz+rVq3nggQe46667ePrpp2lubgZg/vz5vPKVr+Rd73oXb3nLW6ZriiIiMomc7Sj83t5nawywrGpPcly1wu/B1Ccr6Qxy0z0NERERERERkRlt2sLvHm9729t429veNt3TEBGRKeZsNvrd9O35HQcs9+0NefWc+cCBGfAmvBihs4PuP6xmHntyHTTluqdwViIiIiIiIiL7lmlpeyIiIoKLgu2eCnAAvARQwTPtOR5oSk7PvGaAVDw+5P65FfUsrZ43RbMRERERERER2TfNiPDbWktzczPbt2/HGDPd0xERkSnQ0+vbud7q5ZA5OK+K9sDyXMeB+35Qn6ykOjF4+F8dr+b4uhOncEYiIiIiIiIi+55pC7+NMfzyl7/k9a9/PdXV1SxatIgjjjiCdevWlRx311138YUvfIFvf/vb0zRTERGZHC76b2HhS4CQJIYqAHZmD9zwOxlLkPTKV397eCS8OAlXN8WzEhEREREREdm3TEvP78bGRt797nezcuVKnHNDHrts2TLOO+88PM/jnHPO4eSTT56aSYqIyNRwYfFmh5nNzlwNkKXVH7zn9f6uOp7ijQvfR7N7gnsaVpfs8zyYHV+M5yqmaXYiIiIiIiIi+4Ypr/w2xvCud72Lxx9/HM/zuPDCC7nyyisHPf7EE0/kVa96FQC33nrrVE1TREQmXc+Hn73ht3Ex2oOo4jkdHriV3wdXzcMPqkl5pa1PYp5HVTxJzEvi8KZpdiIiIiIiIiL7hikPv6+99lpWrVpFMpnk7rvv5oYbbuDjH//4kOecd955OOdYvnz5FM1SREQmX0+43fsNoJyNs7ojemtqOYArvw+pWIYjTiKWKtlem6jg0Jp54BKg8FtERERERERkSFMefl9//fV4nsdHP/pR3vGOd4zonFNOOQVgQD9wERHZ91jTDICz6QH7uk0CO0w7rANBrFDxXe3NKtnuATE8sFUo/BYREREREREZ2pSH38899xwQVXOP1MKFCwFoaWmZlDmJiMjUMX70QaZzA8PvzjCOdQp1PRe1folTX7rd84h5Hs6lyp0mIiIiIiIiIn1Mefjd3t4OwLx580Z8jjHRV+Pj8fhkTElERKaIc5Yg+xecK9/PuykfxxxAhd+vmLOUmDcw7PeoBMDampLts1PVxL1YoVOMPiQQERERERERGcqUh99z584FYMeOHSM+Z8OGDQAsWLBgUuYkIiJTxWDNbvouctlXs++RtQdO+n1Y9SHld7io7UkYVpdsrowlicfiOPp2ShcRERERERGRchJTfcETTjiBxsZGVq1aNeLWJ3/4wx/wPI/TTz99kmcnIiKTygWAxQRbYED1d4xHmw07s+Wrwvcny2rnsahyFlXxmvIH9ITfNoWHhytE3Z7ncWzNceSzdVTG2kr2iYiIiIjI5PJ9n5tvvpl77rmHJ554gqamJjo7O5k1axaHHXYYZ5xxBn/7t3/Lm9/8ZmKxoetNn3zySW6++WYeeughduzYQXNzMxUVFSxYsIBTTjmFt73tbVx00UXMnj172Hk1Nzdz/fXXc//99/PCCy/Q3NxMPp9nzpw5HHfccbzuda/j/e9/PyeeeOKwY1lrueuuu7j77rv561//yt69e2lra6Ouro5DDjmE008/nfPOO49zzjmHZDI57Hhr167lxhtv5MEHH2TLli00NzcTj8eZN28eL3/5y3nTm97EBz7wAQ466KBhx0qn09xwww3cd999PP300zQ1NZHJZJg9ezZHHnkkr3nNa7jwwgt59atfPexYAA899BC33347jz76KA0NDbS2tlJdXc1BBx3Eqaeeyjvf+U7e8573UF1dPexY27dv54YbbuCBBx5gw4YNNDU1Ya1l7ty5nHjiibz+9a/n4osv5vDDDx92rIl8ncHEvtb2RZ5zU7uy2JVXXsmnPvUpZs2axebNm5kzZw4AsVgMz/N4/vnnednLXlY8/qabbuLCCy/E8zx+//vfc9FFF03ldA8YO3fuZOnSpUBUlb9kyZJpnpGI7I+saSXTchkVde8j0/rV0p1eJe95+pWsbsvTEdjpmeAUOW3eMg6pOpiqWA237XqYnCmthP+HxR8nH9YC8ED7j2nzswCcMHsxp846nVz2WCqTHdyw+2p8O/4PC1rf/3XmVA4SxIuIiIjIhBrPv783bNhAGIYkEgmOPvroYY/3fv25Mc9zpnOXfH9Kr3fLLbfw7//+72zdunXYY4855hh+8IMfcM455wzYt23bNv71X/+Vu+66a9hxqqqq+OxnP8tXvvIVqqqqBuy31vKd73yH//7v/6arq2vY8d72trdxxRVXlORufT3yyCN88pOf5Pnnnx92rMWLF/Ptb3+bD33oQ2X3t7a28pnPfIbrrrsOa4f+910ikeDSSy/l29/+drFjRH+/+MUvuOyyy2hsbBx2bqeffjpXXHEFr33ta8vuf+655/jEJz7B8uXLhx1rzpw5fPnLX+azn/1s2aA5l8vxpS99iZ/97Gfk8/khx/I8j7/7u7/j+9//fvFnQH8T9TqDiX2tTZXR/owbiSkPv/P5PMceeyw7duzgla98Jddeey0ve9nLBoTfjY2N/O///i+XX345xhhOPPFEnnnmGbwyvVFl/BR+i8hUMGED2dZvk6o5j2z7f5fsc14d568+iUebs9M0u6nzjoNPZlHySAI6ebZjDS927C7Z/4GDPk1oKwBocLezvClaJPSUuYdxYu0ryeeOJpXo5tbGq0mH/rjno/BbREREZOoo/J4YUxl+f/Ob3+Syyy4r3n/b297Geeedx8te9jJmz55Na2sr69at48477+SBBx7AWssrXvEKnnnmmZJxnnzySc4991z27t0LwLJly3j/+9/Pa1/7WhYtWoTv++zcuZM//elP3HrrrbS0tADw9NNPc/LJJ5eMlc1mueiii7jzzjsBSKVSXHTRRbztbW9j2bJlVFdXs3fvXp588kluvfXW4lw+/elPc8UVVwx4jL/+9a/56Ec/ShAEALz61a/mPe95DyeffDLz5s2jo6ODTZs28X//93/cfffd+L7PrFmzimv79bV582be+c53sn79egAWLlzIBz7wAd7whjdw8MEH43keDQ0NPPzww9x8883s2rULgFtvvZV3v/vdJWNZa/nYxz7GVVddBUTFs+effz5nn302Rx11FPX19TQ1NfH8889z++23FwPt888/n9tuu23A3O655x4uvPBCuru7gahDxUUXXcTpp5/OggULSKfTbNu2jXvvvZc77rijeFxbW9uAyujm5mbe9a538fjjjwNQV1fHBz7wAd785jezZMkSkskke/bsYcWKFdxyyy3Fts4//OEP+cxnPjNgbhP1OoOJfa1NpckIv6e87UlFRQW33347b3zjG1m9ejUnnXQSxx57bHH/3//939Pd3c3mzZtxzuGcY968edx8880KvkVE9nUuB1hgYLWyI0m7v39XfAMsrZnD/ORiYlQSJ8/8illAb/gd8zyMTfa531td4AFe4b61KRZU1pHubpmqqYuIiIiIHHB+/etfFwPJhQsXcuONN3LWWWcNOO6tb30rn/jEJ1izZg2f/exnaWpqKtm/Z8+ekjDyK1/5Cv/5n/9JKpUaMNZFF13ED37wA/7nf/6H73znO2Xn9bGPfawYfL/qVa/ihhtuYNmyZQOOO/vss7nsssu46667ygauAA8++CCXXnop1lpqamq45ppreO973zvguDe96U1ceumlbN26lS9+8Yvce++9A47JZDK8613vKgbfH/7wh/nhD39IXV3dgGMvuOACLr/8cn7+85/z5S9/uezcvv71rxeD76OPPpqbbrqJl7/85QOOe8c73sHnPvc5VqxYwac+9amyY73wwgu8973vJZPJkEgkuOKKK/jYxz5WtqL7H/7hH2hqauLrX/86P/nJTwbst9Zy4YUXFoPvc889l1/+8pcsXLhwwLHvete7+M53vsN1113H5z5X/gOpiXqdwcS/1vZ1Ux5+A7ziFa9g1apVfPCDH+Sxxx7jpZdeKu579tln6VuMfsYZZ/D73/+eI444YjqmKiIiE8rhsDjbOWCPJcWuXDANc5pax9QtIeEW4vCIe/VUxUu/UlaTSOH6rEcdLwm/PTwXByC0CRZWzmKrwm8RERERkUmxa9cu/vVf/xWAmpoaHnnkEY477rghzznxxBO57777+P3vf1+y/aMf/WgxjPzmN7/JV77ylSHHqaur42tf+xpvectbmDVrVsm+W2+9lWuvvRaAl7/85Tz44IPU1Az9Tc5zzz2XM888k0cffbRkeyaT4e///u+x1hKLxbj77rvLhq59LVu2jBtuuIHf/OY3A/Z96Utf4sUXXwTg0ksv5f/9v/835FipVIpPfepTvOUtbyGXy5XsW716Nd/61reAqM3K8uXLy4bLfb3uda/jr3/9K7fffnvJduccF198MZlMBojC5r//+78fcqwFCxZw5ZVX8qY3vWlAf/P//d//5aGHHgKi4P3WW28lkRg8Zo3FYvzDP/wDb3rTm4ofDPSYyNcZTOxrbX8wLeE3wFFHHcWKFStYvnw5d9xxB08++SSNjY0YY5g3bx6nnHIK5513Hm9729sm5fqNjY088cQTPPHEE6xatYpVq1YVS/w/+MEPcs011ww7xjXXXMMll1wyouv9+te/HrQPUo9MJsOVV17JH//4RzZt2kQ+n2fp0qWcc845fOpTn+Kwww4b0bVERGYsZwBH6L9Qstl4C3HEad/Pe30nvBgJLw4uSWiqiMfjJZXdAHNTpf/TmohFb9VH1S1gYeU8TLigsCfG7OTA6gkREREREZkYP/zhD4th6Te+8Y1hA8kesVisJFhds2YNd9xxBwAnn3wyX/rSl0Y8h9e//vUDtvWt0P31r389bPDdY/bs2Zx33nkl2371q1+xZ88eAD7xiU8MG3z39Y//+I8l95uamoph98EHH1y2vcpgTjjhhAHbvvvd7xb7hf/4xz8eNvjuUVFRwYUXXliy7e677+bZZ58Fokrs4YLvvv72b/+25L7v+3z/+1HbncrKSn71q18NGXz3tWTJkgGtjibqdQYT/1rbH0xa+P3cc88BcNxxx5Utq+9x5plncuaZZ07WNAa1aNGiKb/mUDZu3MjZZ59d7P/TY926daxbt46rr76a6667jnPPPXeaZigiMn6OEJzDmr0l231qiRNipnQViqk3t6KauJfA2iSBqSQe84lRGn5XxksrCuKF/UuqF1Adr8HP9/6P7azEnMmftIiIiIjIAcg5V6yurqmp4SMf+ciYx/r1r39dvP3JT36SeDw+5rGef/55nnzySSAKK1/5yleOeay+c/M8j09/+tPjGuuGG24gm43WcLr00ktHHMqX097eXuzZvWzZsgG9wEer75/BYO1fRuq+++6joaEBgL/7u79j8eLFYx5rIl9nMLGvtf3FpIXfJ598MrFYjOeee65kFdlvfOMbAHz84x9n/vz5k3X5UTn00EM57rjjuP/++8c8xn333Tfki32oBSy6uro455xzisH3Rz7yEd73vvdRVVXFQw89xHe/+106Ozu56KKLWLFixbQ2nhcRGRfngBBcrN/mGNYb2GdtfzMnVcOc5ELy2WoA8kEtiVT0VvyKOUtpznfiUbq+RU+P74MrlmBdSN/PB6q88iuhi4iIiIjI+Lzwwgs0NzcDUchcrmf1SD3yyCPF2+ecc8645jWRY3V2dhYXSzz22GM58sgjxzXeRM5t+fLlGBOtFfU3f/M3Zftyj8Zf/vIXIAqYR1PdXs5EPs6JfJ1N9Nz2F5Pa9qRv7+4eX/va1/A8j/e+973TGn5fdtllnH766Zx++uksWrSIrVu3cvjhh495vGOOOabswgIjcfnllxf7/fz3f/83n//854v7XvOa1/DGN76Rs846i0wmw2c+8xkefvjhMc9TRGR6OZxN48VK+1xbPGD//0R6TqqOBNUEhWpuR4wKrxKApdUHkTN+SY9vgJSXLPw+G+vlyffZ51FJzPOwZd5vRURERERk7HpaZACceuqp4xqrpzvCIYccMu5OBBM5r+eff77YVmS8Y0Hv3GKx2LgLNyfyce7atau4MOTJJ5887mroiZzbRI4FE/ta219MWpldTyP4nq87zDRf//rXOffcc6f9hRAEAT/60Y8AOP744/n3f//3Ace89rWv5cMf/jAQfYKzatWqKZ2jiMjEsTiXx5qBizRat/9Xfh9UuRBcZcm2ithsACpj1RxStYDaZOkHA7Pj0YLPLpxLzJa2OcnmlgwIy0VEREREZPx61oUDRtxrupzOzk6CIBj3OBM9r4keq+94s2bNoqKiYkLGgpn7OCdivIkca6Jfa/uLSfsXc0+ovHr16sm6xH7hoYceoqOjA4gW2hzsaxx9F8u89dZbp2JqIiITzjkfXB6cX7I9JIGZvjWYp0xFrApnaku2xVz0P4UJL0k8Fqc2UV16ko2quwNTRRjUDxgzofBbRERERGTCdXV1FW+Pp3f1RI0zGeNN1twOlMc5EePN1LH2J5OWNLzhDW/g97//Pf/xH//Bpk2bOOaYY4rV4AC33357sUH/aPRfSXZft3z58uLtoXoOnXbaaVRXV5PJZFixYsVUTE1EZMI52wUEA7bnTKrQ+mT/liBFrl+A7RXD72pixKhPzqJvb5MwrCEVi2NsEkPpYpgAqVicrBn4nIqIiIiIyNj17b2cTqenfZzJGG8y5tbW1nZAPM6+49XXDyxSGutYEzkviUxa+P2lL32JW2+9lY6ODr7//e+X7HPO8ZWvfGXUY3qeN2PD70suuYR169bR3NxMfX09Rx11FG9961v52Mc+xiGHHDLoeS+++GLx9nHHHTfocYlEgqOOOornnnuOtWvXjnp+O3fuHHL/7t27Rz2miMjo2bJbu0wK4zzKBeP7i1QsTtwuGfAIHR5xL0bcVTA/tRicKznGuCSHVM9hMPFxLvwiIiIiIiIDzZs3r3h77969Yx6nvr6eZDJJEATjGmei5zXRY/WM19bWRkdHB/l8flytT2b64+w73njC74mc20S/1vYXk/Yv5hNOOIFHH32Ut771rSSTSZxzJQtg9twf7a+Z6uGHH2b37t0EQUBLSwsrV67k29/+NkcddRS/+MUvBj2vJ5Suqalh9uzZQ15j6dKlADQ1NZHP54c8tty5Q/0644wzRjWeiMhYOJcpu73bJMjb/XvBy7pkJTl/YIjt4TG/ogaPFEm7gASzS/Zbl+CwmsHXp0h6+/fzJiIiIiIyHV7xilcUbz/11FPjGuvlL385AA0NDeMOJSdyXieddFKx/e54x4LeuVlreeaZZyZkLBj/3A455BDmz58PRAtMGmNmzNwmciyY2Nfa/mJSy8VOPfVU7r//frq7u2loaGDz5s1AVMF9//33s2XLllH96jl/JjniiCP43Oc+x80338wTTzzBE088wQ033MDf/d3f4XkeuVyOf/mXf+Gqq64qe35PP57a2tqy+/vq26+nu7t7Yh6AiMgUMcFmsOUWQY7jgGc6U1M9pSlVESv/ZStrk5ww+zCsqcHYKvL5gwYcc3DFoYOOe+LsZRM1RRERERERKTjhhBOKgelf/vIXOjs7xzxW3za3d99997jmNZFj1dfXc/LJJwOwbt06Nm7cOK7xJnJuZ555JvF4VOhzzz33YG35bxGP1Bve8AYgagfyyCOPjGusiXycE/k6m+i57S+m5LvSiUSCgw46iGXLlhW3LV68mMMOO2zUv2aSCy64gI0bN3L55Zfznve8h9NPP53TTz+diy66iBtvvJE77rij2Of8s5/9LHv27BkwRi6XAyCVGj706ft1kWy2XIA0uB07dgz564knnhjVeCIio+VcDkeZT9i9CozzeKlr5n67ZyIkYuUrtANTzZzkXEJTjbEprBsYkieoLnNmpCpeOWFzFBERERGRiOd5fPCDHwSiwPTqq68e81gf+tCHird//OMfjyvIPemkkzjttNOAKCwdb7XwJZdcAkQdGn70ox+Na6z3ve99VFVVAXD11VePq+/07Nmzefe73w3Atm3buO2228Y1t57HCXDFFVeMa6x3vOMdLF68GIA//vGP7Nq1a8xjTeTrDCb2tba/mPJGoV/96le57LLLWLhw4VRfesLNmjULzxt8gbZzzz2Xyy67DIBMJsMvf/nLAcdUVkahhe/7w16vb6uTnh8mI7VkyZIhfx188MGjGk9EZLScacXZjoHbifp9P9W+//b7BqhLlA+pjU2R8qoJbQpry78tZzOHDzpubOrfykVEREREDgif/exnqa6OClEuu+wyXnrppRGdZ63luuuuK94/6aSTOO+88wB45pln+M53vjPiOSxfvpwtW7aUbPv//r//r3j7kksuGXHI3N7ezp133lmy7Z/+6Z846KDo26c/+clPRlUV/dvf/rbk/oIFC/jIRz4CRGvLfeYznxnxWC+++CKrV68u2falL32p2Jblk5/8JI2NjSMaK5/Pc+ONN5ZsO+ecc4otRu68805+97vfjXhut9xyS8lznEql+NznPgdERa0f/vCHR9xKZdeuXfz5z38u2TZRrzOY+Nfa/mBawu+vfvWrxZL+/d0///M/FwPycj9AelZiHUkbk75/0UbSJkVEZCZxzgcXDtxOnHQYY2P38B8C7qtmp6qoTQ7+oWXSi9paWTvIOtRDfNCaio2u8rsqnhzV8SIiIiIiB6pDDjmEK6+8EogymbPOOmvYcPjFF1/kb/7mb7j88stLtv/iF79g0aJoLZ///M//5LLLLhuyEDKdTvP1r3+dN7/5zXR0lBYRXXDBBfzjP/4jAM899xxvectb2LZt25Dzuueeezj99NN58MEHS7ZXV1fzu9/9jlgshrWWc845h5tvvnnIsbZv38773/9+PvnJTw7Y953vfIfjjz8eiKq/P/KRjwyZeQVBwJVXXsmrXvUqduzYUbLv1FNP5Stf+QoQ9bA+88wzef7554ec22OPPcbrXvc6fv/735ds9zyP6667rhgyX3LJJfz0pz8dsjK6ubmZT33qU7z3ve8lCEqLtT796U/zpje9CYD77ruPCy64gKampkHHcs7x+9//nlNPPZXnnnuuZN9Evs5gYl9r+4NB/pUtE2XhwoXMmzeP5ubmsl+DWLJkCStXriSdTtPe3j7kopc9PwQWLFgwrhVzRUSmh8G5gYv1OuK0BzFa/H3/61gxz8OWWZz5iNqF1CVqYLCHaAoLYQ4Rcg+mIlY76HX7S3gxDquZx0udA9twiYiIiIjIQJdccgk7d+7ksssuo7GxkTe+8Y28/e1v5/zzz+f4449n9uzZtLa2sn79eu6++27uvfdejDElCxkCHHTQQdx1112ce+657N27l29+85v89re/5QMf+ACve93rWLhwIb7vFyuDb7755iHD1J/97Ge0tbVx5513snLlSo499lguvPBC3vGOd7Bs2TKqqqrYu3cvTz31FLfeeuuAquq+3vKWt3D11Vfz0Y9+lHQ6zXvf+15e/epX8973vpeTTz6ZuXPn0tHRwebNm7n33nu54447yOfzzJo1a8BYNTU13HXXXbzzne9k/fr1XH311dxxxx1cfPHFnHXWWRx88ME459i9ezePPvooN998M9u3bx90bl/96lfZs2cPV111FRs2bODkk0/m3e9+N+eccw5HHXUUdXV1NDU1sWbNGu64445iaLxkyZIBY51wwgncdNNNXHjhhXR3d/OJT3yCn/3sZ1x00UWcfvrpLFiwgHQ6zfbt27n//vu57bbbBu3BHYvFuPHGGzn33HNZuXIld955J0ceeSQXX3wxb37zm1myZAnJZJI9e/bw+OOPc/PNNw9Z0T1RrzOY+Nfavs5zbgT/Wp4kLS0tPPbYY2zevJmurq4RfUWgp43IRNu6dSuHHx59rfyDH/wg11xzzYSNvXDhQpqamnjZy17GCy+8ULLvsssu45vf/CYQfTr16le/uuwYYRgye/Zs0uk0b3jDG8bdnL+/nTt3snTpUiAK2cv9kBARGQ8/8wBhbhVBtrTSIPQO4sfbj+Xra8e3sMdMkPBiJGNxsqa0KuC1C46mPlFHvXlr2fOS8SyBGV07q+K5lS/wx5334tvh30MrYglOnnsoK5tLF5Buff/XmVNZM8hZIiIiIjKRxvPv7w0bNhCGIYlEgqOPPnrY471ff27M85zp3CXfn9Lr3XLLLfz7v/87W7duHfbYE044gR/84Ae8/e1vH7Bv27ZtfOITnxjRYoQ1NTV8/vOf54tf/GLZIkhrLd/+9re5/PLL6erqGna8c845hx/84Accc8wxZfc/8sgj/Ou//itr1qwZdqxDDz2U733ve7z//e8vu7+1tZXPfOYzXHfddcP2nU4mk3zsYx/jG9/4RtlAHeDnP/85l1122YhC2te+9rVcccUVnH766WX3P/fcc3z84x9nxYoVw441b948vvrVr/KJT3yi2IKlr1wuxxe/+EV+9rOfDdvS2PM8Lr74Yv7rv/6r2DO8v4l6ncHEvtamymh/xo3EtITfjY2NfPazn+Wmm24iDAd+BX4oI+2hM1qTFX43NTWxaNEinHO89a1v5YEHHijZf//99/OOd7wDgO9973v8x3/8R9lxHn/8cV7zmtcAUc+j0fTsGQmF3yIy2fzMAwTZFYS5v5RsD72D+cK6o/jV1uHbP810qVicZbXz2NjVVFKJ/cZFL6M6Xk1t+Oay58W8sOxClyO6ZtWL3LzzvgGBezk1iRSvnn8MD+4p/Z9Zhd8iIiIiU2cqw2+ZWL7vc9NNN3HPPfewatUqGhsb6erqor6+nmXLlhWrpd/4xjcOuUYcwKpVq7j55pt56KGH2LFjBy0tLaRSKRYuXMgrX/lK3v72t3PRRRdRX18/7Lyam5u5/vrruf/++1mzZg3Nzc34vs+cOXM47rjjOPPMM7n44ouL7UiGYq3lrrvu4q677uKvf/0re/fupb29ndraWpYsWcIZZ5zB+eefz9lnn00iMfy/YdauXcsf/vAHHnzwQbZs2UJzczPxeJz58+fzile8gje/+c184AMfGNHagN3d3dxwww3cd999PP300zQ1NZHNZpk9ezZHHnkkr33ta3nf+943aOjd35///Gduv/12Hn30URoaGmhtbaW6upqDDz6Y0047jXPOOYcLLriguF7fULZv387111/Pn/70J9avX09TUxPOOebOncuJJ57IWWedxcUXX8xhhx027FgT+TqDiX2tTbb9Ivxua2vjVa96FZs2bWIsl56sVUonK/z+9re/XexP9M1vfrN4u4fv+yxcuJCOjg6OP/54XnjhhbIv3H/5l3/hF7/4BQBPPPHEiP8ij5TCbxGZbH7mAXIdV+Fsa5+tKdo5kv94cT5/2Lnvh9+nzD2M+RWzeaF9K3Evxo5MGwAXH/pOAvKQO23Cr1mZauPWvb+hKxjYUqa/1y44mjnJWdzd8CTzKmpIxmLsyXYp/BYRERGZQgq/RUTKm4yfcVO+4OX3vvc9Nm7ciHOOt7/97dx77700NTVhjMFaO+yvmWLr1q08/fTTQx5z11138Y1vfAOAqqoqLrnkkgHHpFIpPvWpTwHRp2Hf//7Ar+089thj/PKXvwTgrLPOmvDgW0RkajicbS/d4lUR2AQZM20duCZUbaKK2Yk51CYrqE1G1QFxL0bCqyM+SctshKaKuDeyt/OaeBXJWAqAeRW1VMVTkzInERERERERkZlgyhe8vP322/E8j3POOYc77rhjqi9ftHz5cjZu3Fi839zcXLy9cePGAZXfH/rQh0rub926lTe96U285jWv4V3veheveMUril/R2Lx5MzfddBM33XRTsbr9+9//PoccckjZuXz+85/nD3/4A+vXr+cLX/gCGzdu5H3vex9VVVU89NBDfOc73yEMQ6qqqrjiiivG/+BFRKaBszn6r/joCm9Debvvhd9nLjiW5U3rSrYdXnU8LlzIa2YdxjPdfwZgcfUsPBcn4VUzGY27nIsTG8FX3eZWVLMwtQSv8Ll3baKSziAzCTMSERERERERmRmmPPzuWcH1E5/4xFRfusTVV1/NtddeW3bfihUrBjS97x9+93jsscd47LHHBr1OdXU1P/zhD/nnf/7nQY+pq6vj7rvv5uyzz2bDhg1cddVVXHXVVSXH1NfXc91113HyyScPOo6IyIzmcqV3vRoCarDEaMlPznoOk6k+WTdgm+dqCW0lsVhAfbIagKp4Cmvr8OK5AcdPhNDEqUlU0JofOsheXDWHBPU4fOZV1LCgYi6V8RSbupqHPE9ERERERERkXzXl4XdtbS35fJ5FixZN9aUn1Kmnnsrvfvc7HnvsMZ588kl2795Nc3MzYRgyZ84cTjjhBN7ylrdw6aWXjqhp/1FHHcXTTz/NT37yE/74xz+yceNGfN9n6dKlnH322Xz6058eUVN8EZGZqzTg7nCH0RpUE/Mcq9uH71c909Qn5pTeT1aSzR0MQCKeZnHlEpKxjdQmKsn5s6msbJuUeXhejMOqF7IjPfT4S6sPws8fRKqikZNmH8ZBiZNYmGzjqfiWSZmXiIiIiIiIyHSb8vD7pJNO4uGHH2bbtm3TWsV8zTXXjGtRy7q6Oi6++GIuvvjiCZtTTU0NX/jCF/jCF74wYWOKiMwU/RubGBfDOA9vwJ59Q9KrLrn/+gUnQRjdNqaKing9qVicykJf7dgkvuVWJYZffbw+PgsTJHFhPUkvAa4C58WIMXzLFBEREREREZF90ZQvePnRj34U5xy//e1vp/rSIiIynVxQcte4GBYPt4+GrzFXX7LQ5PzEMcXbgakClyQVS/Qe4yombS5Vsaphj0l6NeB55MJ6quLVhLaCmBcjHpvy/xUQERERERERmRJT/i/eCy+8kIsvvphbb72V733ve1N9eRERmSbOpUvub8rU0ewnsW7fCr/PPeQMzlxwLIE/jyNq53PcrIMACIN5JceZYBGzU1XECuF3zp8zYKyJUhErrfxeUj2bili/SvM+i2LOji8lCCvBzOMVs5ftox8/iIiIiIiIiAxtytuePProo3z4wx9my5YtfPnLX+aWW27hAx/4AMcddxzV1dXDnv+GN7xhCmYpIiITzdmukvvNQZyOwGNOMpymGY3NrPgCUhUVhH6KWamaYtuQwKRKjgtMFalYgoSXAAfWJSdtTgmv9Nq1iUq64jnytve59Vy8z+1aIIYxlcxJzWYaPgsXERERERERmXRTHn6/8Y1vxOtTfbZ69WpWr149onM9zyMM962QREREIs6WVn6HFp5scxxenQD86ZnUGHh41MWWkQWOqF7G9uyOaIfz6F9CHfdiJL3JC717r9Nb+V0ZT1CbrCSRj5ccE6NP2xUXvf074lTEKol5pceKiIiIiIiI7A+mpdTLOTfmXyIism9ytrPkft56bM+G7MhO+eew4+N5mLAegIRXQcKLk4zFS9qK9KhP1lCdqJn0KSVcDZXxBB4eB1fNIhlLUJ+sxBukoYntCb9tjMpY3aDHiYiIiIiIiOzLpjxxeOihh6b6kiIiMgM401Jyf3cO/tyY5dVzZ374nYrF8a2J7jjwwyjQ9khQl6xlfkX5gPuI6qNJUE1ukucXhnOZm6qhOd/NsXWHkTEZjqhdzM5MO0Fh3n0D7nxQV3goHnFXheep7YmIiIiIiIjsf6Y8cTjrrLOm+pIiIjKNnM3ixapwlLatag+ib/M0ZKdjVqMzK1VFU66bVCyOR2+LkLiXpDpezbyKurLnJanHI1V230QyJkXcixHzPOalDiYe7C3ZHwXfA6u7rY2DnY1D36wSERERERGR/Y9KvUREZFI524FzBpwp2d7mR4HrjuzMX8thXqoWgLpkJZ7X+7lxjBRJr5KFlXMGOTNFWGiRMpmMS5KIxfDwSJiFVMVrScZ6e3xXJRI4V+bzbs8j6w82dxEREREREZF9m8JvERGZVA4DGHD5ku2dYRR+787ZaZjVyFQnosUqZxfC7+p4KlrYssAE84iRYGHq4LLnB8FcgrBq8icK1CWrOHH2EhwJEl6CendCcd+ymvkEgUJuERERERERObBMatuTb3zjGxM+5mWXXTbhY4qIyCRyAc604FxXyWZb6LTRGZgyJ80MFbEEYcyysGI+sJHqRKqkeUg+rCaZ9EhRV7avd2gqymydHPWJGuqSteA8ElSSC2YX57qwcg6hnbq5iIiIiIiIiMwEkxp+f+1rX8PzBvYYHQ+F3yIi+xgXYkzzwM2F37vDmVf5PSdVRZufZXHVHGanapmVWAhAfbIaXN/+3jFiLkmM6umZaB9HVL2cdrOd0FSTKFSsnzHvKF7s3MHBFUsxk73qpoiIiIiIiMgMM+kLXjo3cYtoTXSQLiIik8/hgxuYvPYsstg1ReF3dSJJaC2+Hb7SvD4Zhd+zUjXUJmqIU4WHR0UshbOlC1jGqASXnKxpj5jnavDwCG2KpKsEoCKeIuHFSHo1zNz6ehEREREREZHJManh90MPPTSZw4uIyD7AmWacG7ioZVDIvM3EfUY6QCoWL4bdL599GK1+F+s791IZT5Azgy+0WZeM+nTXJWpJxZI4W0VFPE5NoppcULqAZTZ3GJWp9kl7DCNlTC2xWDy6Hc4FoCpeSUU8CWbBdE5NREREREREZFpMavh91llnTebwIiKyDzDhDmLxRYV7HhnvCKrdJvbkJ78WORGLkYjFyIQBAEkvCocXVtazPd066Hn1yaiNSX1iFhaDc9F5c5MLMGWmHU7RopZD8cNKKitrMYBz0XrWc+NLSXpbCMPK6Z2ciIiIiIiIyDSITfcERERk/2bDBihWfse5ec8SAHakg0m/dsKLc3TdQQDEPI9ELE7CizE3VTPkeRWxqLVJpVdHdWwOPW+XKeaXPX5mLCYZI8U8AIyNPtvO5w6nJlExQ+YnIiIiIiIiMrUUfouIyORyBkch6PaSbEjDVL39HD9rMYdVLwaiIHx+xSwSsRieN/T1F6SiBS49khAuJgxrOGHWIXgz/W3TRRXottCD3BHn5bNOnsYJiYiIiIjsW7Zu3Yrnefo1zb+WLVs27XOYCb+uueaa6f4rsc+b9AUvRUTkQBeAi8JvQx3p0DFVbz9zU3Oojkc9upOxBFXxKmKex3DLJ1fG5hD3opA8F9QCMeZXzMWaoSvGp1tPu5O+EuYgJr/GXkRERERmoo5db5nuKUyaWYc8ON1TEJF9gMJvERGZNM5mcC7A2XYADBWEzpH3DiZvJ3Gly4KklyRpjgIeoCpeTcJL4OGRLCwMORjPVvPKuYdhwwX0VKlXx6vxg+pJn/N45P36AdscQz9WERERERHpdcghh/D8888Puv+kk04C4LTTTuPXv/71gP3OOTyvfLnNV77yFW6//XYA7rvvPhYvXjzgmPb2dgBmz549YN+qVav4p3/6JwA+9rGP8fGPf7zsdYaawzve8Q4aGhpYvHgx9913X9ljWlpamDt3btkxfvrTn/Kzn/0MgF/96lecfvrpA44xxtDR0cHcuXMH7GtoaOAd73gHAOeffz7f+ta3ys4hlUrh+37ZfZdccglPPvkkwKB/Vq2trcyaNYt4fOC/h26//Xa+8pWvAPCtb32L888/f8AxzjlaW1uZN29e2fGHex30jDGe1wLAkiVLym6XkVP4LSIik8bZdnA5nO0ubPEIHXSaetJm8sPvilglJkxRFU9SFavG4Yh7MarjwyxQ6XksqlyAsanipmSsAoatGZ9e5YJua5PTMBMRERERkX1TMpnkxBNPHPa4mpqaER3XV99A+5hjjmHZsmWjOr+5ubl4e+HChaO+PkSPr+f3sZy/cOHC4u3DDz981GPU1tYWb8+ePXtMc6ip6f1G7ljO7wnOIfqwYyxj9J3LWM4f72tBRm6GNy8VEZF9mbPdmLABa1oBMMTJG0emT6g8mao5FGs9XrvgOLz8GVTE6piTqiYVG/r6nvOYFz+2pI1InGTZtiIznR/O7FYtIiIiIiIiIpNl3/tXvIiI7DOcS4PzcTYKvx0xLB7twdSE385W4lycOcno63YeHgsrZ1GXGNgepOQ8z8OFNRjbW0mdIIXT26aIiIiIiIjIPkP/ihcRkUnjbBow2GB7YQNY53iyY2rCb2tTOOJUu6OK15+Tqqc6tmDoE50jF9bT923So2LyJioiIiIiIiIiE049v0VEZBJZnAvBZQBweDhgY/fk9/uek6omMJXRLEzU4ztBPR7esJ27rakdsM2ZYQJzEREREREREZlRVPktIiKTyIHzAVu452EdNObtpF95Tqq62Kak53dravHwcMNk7/lgYJ/sfFA34XMUERERERERkcmj8FtERCaNsznAB8D3lpK2VezOGfJ2ciu/Xz3/KCrjyd55FGq9ja1gvvdaYlQNem5NIgXecLXhIiIiIiIiIjLTKfwWEZFJY01j8XZIitDF6Qotk134XZesIRHrXawSF4XZoUnihzVDLlx5cNWsyZ2ciIiIiIiIiEwJhd8iIjIpnHOYYFPxfrepIW/jZI3j2XZ/0q6b8GLEiZPwesPv0EYLbDqibd4QfU9eU/+3kzY3EREREREREZk6Cr9FRPYTbrhG1lPOFvp9R0IXpy1I0REYOgIzaVetS1ZQGa+kLlk9+MxsJXFvsLdAtTwRERERERER2R8o/BYR2V+49HTPoB+Hc5niPYvH3nycjsBOas/v2alqamJzWJg6aNBjcsFs6pIVZfc5Fy+7XURERERERET2LQq/RUT2E9Y097vfOq7xxl1J7gKgt8LbOUibya2qnpWsJBVLkGQOKa9yyGP7LojZl7N6axQRERERERHZH+hf+CIi+wHnQly/sNuGu8YxngPG15fbuTy40pUt2/zJDb9rkxXEvBjWVuN55cPtHoOG33prFBEREREREdkv6F/4IiL7ARvuwLnukm0m3DqO8bYPCK5Hy9lWoHcM38X4zfb8uMYsx+vTo7siliQZixOGVcRIDHleTaJ82xPr9NYoIiIiIiIisj/Qv/BFRPYDznbhbHe/bZ1jHs+aPfQNrsc0J9OG6zNG1iRY2zXx4Xci1vtWNitVQ1U8hbEJPDd05XfCK9/b21r1/BYRERERERHZHyj8FhHZDziXx0/fVbxvTRvY7NjHM23A+Hp+W9NUMofAeZgxDpnwBn+76rtvcdVCjq0+DUccb5i3uGRsYMhdl6wAb3Jbs4iIiIiIiIjI1FD4LSKyP3B5XJ/FJcHgXG7Mw1lbWrU9tjFacC49rjF6zEpVUZ8sv4BldSJVvF0Xn4Xnqgv3hm57MjtZP2DbwsqB20RERERERERk3zR0MiAiIvsE53xwfcNvN67g2Zk2cOOs/A4242x78b5vx15RfVTdIkJnWd2yFYCqeJKsCYh5HvMqaugMctQkUqTsMrL+3Oj6tnxY3mNB6mBSsRfwbe/zVpcY+hwRERERkX3JrEMenO4piIhMK4XfIiL7AxfgbBvOZvBi1dhwN86OI/zuE1qPeYx+ledd4dh7aVfHq4q351XUUBlPsCvTUWh5EgXgCS+G69Pn25ihg+y4l2ROqppWP0NgDYurZlE1yCKY+7u+i4aKiIiIiMjg3DiKhK655hquueaaMZ//xje+cVzXB9i6deu4zv/a177G1772tTGfv2zZsnE/hocffnhc53/oQx/iQx/60LjGGO9jGO9rQUZObU9ERPYLFmfbsaYRgNBfM77w203AwpQllejQmB/7W04ilqAyHoXZ8ypqqS6E1HEvRgyPWckqqhMVONcbsAemquxYPeKuhtmpaioKvb8Prp7DrETdmOe4Lxvf/7aJiIiIiIiIzEwKv0VEZjhnu4c9Jsw/A0CQ/TMm2EKYW4kNt47jogHjiURNuAv69Qxv9sc+nZSXpDIWhd81iUqq4lGf7zMXvowl1QupTlQwN1WHc6OoYHa1HFpzEPHCgpn1iRpqDtDwW0RERERERGR/pLYnIiIznDWNxGO1wxzTFP0e7iTIPY41zeOq/IYAMMMeNRgX7sH1C8/35McepidjKeJeksp4gtnJWnwbADAvuZCs6SafyJOKpUaV1zsbZ3ZiDrFC+F0Tr6bSqyUY8yxFREREREREZCZR5beIyAxnTcsIjoqC6iD7KMZ/EVye/pXXI2WCTVEluRt7+G1tO7jS6z/bHo55vBhxYngsqqxnaeJM5qRmAVDpDiYRS1KbqGF+csGoxgxNNdXuKGalqqhJpKhNzMYFR495jiIiIiIiIiIysyj8FhGZ4ZxpHsFBPT1FHM5lcc5nrG1LnM0RBefjqPy27QOub8bRRsXzPJJeJbNS1Riboi4+NxrT1FLp1QAecS8Fo1i40boYxlZSEUuQisWJk8K5A/NtcbyLtYiIiIiIiIjMRGp7IiIywzk3dPsSZ9OYYHOf+93gMn3uZ/FiQy/+WDpgLvptHGG1czlcnzlAjNCML2BN2CWcWOewfow4Uf9v31RSGV9Awmsl6dUReKMJvxP4YYKEF2d2qpoE1WRtclxzFBEREREREZGZ48AscRMR2Yc4N3gXaucMof880NtSxIYNRFXXDmezBLnHRn4tm8a5bM+9sc/XZnC2q8/WOJmxdWEpCk0VSTcf5+J4gIeHcwlwKeYkFoNLjKlyOx6LkYzFoRCoi4iIiIiIiMj+QeG3iMhMV2xp0m+z87FmNzbc029Hb6W4DXcQZP408kvZzt4q8jEumGnN3qhPeZ/znVfL2s78mMYD8IgRmEqCYC7WJcDzqIjHAQhMFUHuMLBVhCY+6rFjxKhNVOGswm8RERERERGR/YnCbxGRGcw5gwm2lN9nO8h1/L/C4pblhcE6nO0c8hr5rutJt1xG6L+Ew2HDrYXxeyu3remI2qmMZM6mFWfbcT3tU7w6ut2CcTRRgZgXvV2FpiLaECxmVrKquM24FPlgFp43+re1RCzGsbXHght9cC4iIiIiIiIiM5fCbxGRGc0UFo8cyNksJliHY/B+IjbYwXALV4b55wlzKwoV5C6q2gZs37YlLl9YRHMEXFA4NpqXpZK8S43s3EF4Pcl5oad3PqylOtEzZvRWZt3Y+nXHiJFiPtYq/BYRERERERHZnyj8FhGZ8cqH285lcKYF468b9Mww//Qg5xpCfy3OhVjbUtga4GwXrhB+B9kHAPDTd9PTQ3wkHKbQqsUU7icJ7PjWV3ZlFrKsSUxMm5J5FXMw4Zwx9QsXERERERERkZlL/9IXEZnJXAAuHGRfDrAlPb4HHGJbcX1Ca+cs1naC83GmMaoq71lQ0/nYcDvWthXOjdqWWNsRBdpDVJj3n3PfavWASiwDw+vRiJU5f15F/bjG7JHyUuA8jBtfQC8iIiIiMtnihXVvjDFYO84V5UVEZhBrLcZERXQ9P+smgsJvEZEZLPTXMljFtSuE4tY0D3p+FEL3Od9l8NN345wfLZgZ7qQn1HbOxwSbCqE6gI+zmajlSd8WKMNwLlMM0AE6TS2hG1/4TZnw++CKJeMcM1Idr8e6+JjbpoiIiIiITJXKyujbj845urtHtiaPiMi+oLu7G+ei/KKqqmrCxlX4LSIyg5hga8l9G+7A9VRm9+MKobcrhtWj4UeV3qaxt5e3yxfHBHC2G2c7ouu7ENzIKktsuLfQ9iSyLVtLOI7FJCtiCbwyb1cVzBvzmCXjuEVYLXYpIiIiIvuA+vrebz/u2bOHzs5OVYCLyD7NWktnZyd79uwpbqurq5uw8fUdbxGRGcTP3E/VrH8u3g/zz+JcpuyxJtwe3Rgu/HZ9F7x0xW3OhWDTOBtVjFjbWVLh7Ww31rYX2q6EWNtKjEXDPgYbbqFvi5QN6ST1iUFat4zAQVX1JLyKAct2mmD+mMfsK5M/aELGERERERGZbDU1NVRVVZHNZjHGsGvXLjzPm9AWASIiU8kYU6z4hqjqu6amZsLGV/gtIjKDONP7Safx1xPmn8bzBvlRXQjFe3pzD643NnbOgjOE+WcIMvcRTx7VZ5zuYiuV6H4XfvftmGADicozwA7eW7xkWv0qxAMLzUEKKF/BPpxj65cSMwsGbPfNxCx4KSIiIiKyr/A8j0MPPZTt27eTzWaBqAVKGI692EREZKaoqqri0EMPxfPG2zq1l8JvEZEZxPWp0rZmL7huHNVlj7WmqXBrmP/R7Vv57fJAgAnWYYJ1eLFaenuC2z63iY7z12DNbpztwPNSI5x/afidMbApPfYuWzXxOvJBucUt1blLRERERA48sViMww47jHQ6TVdXV7EKXERkXxSPx6mqqqKuro6ampoJDb5B4beIyIxh/A30DY6d7SzcyJc9vqddSf+wecBxxQUtA8L8U+AszkZVIjbcU3qsy/a7H/Xu9rtvoaLuwpE8Cvov0Plku+Xw6rEH1fXeMrJajFJEREREpMjzPGpra6mtrZ3uqYiIzGgKv0VEZghrdpfc7w2io/7cA9ufjHRhm6gKxNlubLgTh6GnBUkxYC+M50xj6amF8NuE20p6cA0mCtVLj2vxDePqQOjU3kRERERERERERk/ht4jIDBHknihpUWKCbcXbNtxFPHlY6QkDwug4DFgWksLilhZcgLVt0e+mpTBEnwUuTSvOdpSeil+4kWUkYXs0Xt/j4rQHlkeasoOdMiyrqm8RERERERERGQM1TBURmWIm2DRgUUgAZ9t7b/cLtsP802VGKh3DeYN95TEEHNY2Y8NdUbsUN7BPeE+Lk9KNfbeNoNLcZkvGcV4Vu7Nj7z9Yl6zAOn1OKyIiIiIiIiKjp/BbRGSK+ZkHy/fxdlFIDUQV2H2OMcGmgYf3q/LOMa/s9ZztxJlmjL8O4z+PDXfQvzVJdGD/8DtVetwgvcdLhnDdONtbTZ52B9MRjD38XlI9t+xURURERERERESGo/BbRGQMXJnK6ZGy4Taiauyye6P/mr0Y/8U+F0z3uXZhAUvT3ue8GFk7WG9sR7bjxxh/XWHsPTiXG3jlPj3HrTcfvNK3iHLnDLiSK13w8umuReTt2NPrOalajFXbExEREREREREZPYXfIiJj0Le6ebRsuAvngkHG7S4e0zeMNv763lYoLo9zBmdb+pwZJzNo+A1h7jFC/5meGeD6hOm9124v3u5y8wCv3/6R9O22UGzpEmNzZlxLXZKKJdX2RERERERERETGROG3iMhYuDxB7kkAguwjIz/NBdhwL860DLI/g3MGk3+mZHsUhAc453AEhfN7K6rz3sFcs6Nu6Gubpj63y1+/R5epxvV/ixhB5Xe0YGch/PaqGEe7bwCq49XjG0BEREREREREDlgKv0VExsC5PM40Y00HJmwY8Xk2bAB8nBukitoFONuBNc1l9oWAARdiben+nKthe2YEC1L2zmTIva1BBf3fIhzlq9UHjmsKx6fIjWZKZcS98VWOi4iIiIiIiMiBS+G3iMgoOWfIdfwMZ7vobvwnwvxTIz/XdhTG6L+4ZNTyxDmfIHN/8bjS6waF6mtDmFtVsi9vk/jj6K3dX2O+TKuREfU5NzjbCUCWuWxLj29OXr/WKyIiIiIiIiIiI6XwW0RklJxtx5rdONuBs12j7P9d6APi8gP2WNuMczlMuAPbp0VJ74XTxYrw/oH79lwtDVkDTMzikA25MhXXg/QpLznE2eJioO1hPcaNL/xW5beIiIiIiIiIjJXCbxGRUbLBNqxpx9o2wIDNDHuOcz2hty3cHxh+O9sVBdzB5n6LWUZMsA1r9uBsDuOvKdl3c0OCJ9pyOK9vj+zUiB9Tf80DC9NxjKSBdwBE4fdL6RqCcRajJ72K8Q0gIiIiIiIiIgesAzb8bmxs5K677uKyyy7jne98J/Pnz8fzPDzP40Mf+tCox7vnnnu44IILWLJkCRUVFSxZsoQLLriAe+65Z8RjhGHIz3/+c17/+tezYMECqqqqOPLII/noRz/KCy+8MOo5icjkcATg0sWKb+fSQx/vfJxtLdwuLBrpMljT0ecYV1xQ0oa7y45jwq3gTGHxSwAPSAAx1nVHgfOO4MjCrkrSHDrqxwZgvTnc3+gz4C1iJG1PnA8uwHpz2JOLkzET14pFRERERERERGQ0yjR1PTAsWrRoQsax1vLP//zP/PKXvyzZvmvXLnbt2sVtt93GpZdeyi9+8QtiscE/a2hububss89m1arSPr6bN2/mqquu4tprr+XKK6/k0ksvnZB5i8g4uBBwONsd3S38PvjxATbcSSy+oHisNS040wjxWYWDequqHWXKrgFnO6OFNgtBOl4lIXMAx58bowU0H26p4x8XgaOKBn8OR4+h+DvPHB5vyTHw89Hhw++owt2SdgtozENLfpwrXoqIiIiIiIiIjNEBW/nd16GHHsrb3/72MZ375S9/uRh8n3LKKVx//fU88cQTXH/99ZxyyikAXH311XzlK18ZdAxjDBdccEEx+H7Pe97DPffcw8qVK/nRj37EwoULyefzfPSjHx1VJbmITJYoBLamoXjf2eygR5tgPTZsBHorv51tLy4MGW3v0zql32KYre4EAILMg1F4XgjQfebz9Y1HsT7XW+Hd7EPeO5RGcygZM7bPN0MXnef6vUUUW7cMKTqm21TRFcLT7bkxzaFHyhw/rvNFRERERERE5MB1wFZ+X3bZZZx++umcfvrpLFq0iK1bt3L44YePaoz169fz/e9/H4DTTjuNRx99lKqqKgBOP/10zjvvPM466yyefPJJLr/8cv7pn/6Jo446asA41157LcuXLwfg4x//OD/5yU+K+8444wze+c53cuqpp9LZ2cmnPvUp1q5dSyJxwP7RiUy7ngUdnWnv3Wa78GJVZY+3pgUTbiscWAi/ncHaTpxzeJ7Xr6VIaauQ5qCauSmiPuAuh3NR0O67Kpa3BLz74N5FIdsDeD69hLz1CJ03psfXG373W2zS+Thn8IZchDKq9O40FQQO0uNoexL3YvhhzZjPl5HzvLG9VkRERERERERmsgO28vvrX/8655577rjan1xxxRWEYRRY/fjHPy4G3z2qq6v58Y9/DET9vH/4wx+WHacnQJ87dy6XX375gP1HHXUUX/rSlwDYuHEjt95665jnLCITwAWFG0Fxk+1pRUJvOG7CnRh/IzZswIYNOJvDFarGw/wqwvwqgsz/YcIGch29H3r1l7O9YXOQexxnowDdEOPp9hyPtCSL+3+0sZNHW5L8cCO0+KP/EW+8hTQHPYFzaSAa5lfS3fhPg55rbScUqsNb/CTPtAeDHjsSCe+AfYuaemrNLiIiIiIiIvshJQtj5Jzj9ttvB+C4447j1a9+ddnjXv3qV3PssccCcPvtt0eL2vWxfv161q5dC8CFF15IdXV12XH6LsKp8FtkejmGCXVdPlrk0jQBltB/DmcasaYJXFQZ7UwbzrTjXAAuGKKlSJzOsPebHibYiHNR25O0qQSiau++2n1He2DZmx9LNa/HM53lK9ih0Hd8sBYvLiw+N3vzcbrC8SWq8ZiqkUVERERERERk7BR+j9GWLVtoaIj6/Z511llDHtuzf9euXWzdurVkX0+7k+HGOeiggzjmmGMAWLFixVimLCITxZVbkLI36LXhLmy4Fz99D87lscEWTLAO8PscF+BcHlweCHGmueylrDeLHdk+bUZcGhtsAeCldC0A67tKF6JsDRwdvqUpP/rw2eHxYFN0ns/AD+Oc7cSEWwY52+AKvc03pj3a/OEXyBxKcsj2KiIiIiIiIiIiQ1Pj6DF68cUXi7ePO+64IY/tu3/t2rUlvcVHO8769evZsWMH6XSampqR98LduXPnkPt379494rFEDnRh/vkh95tgM/HU0dhwV9Sfu1DVHfov4ly6z5EBzuVwLsS5LgCy3hFUuc3FIzJuHnv6rRlpCwtlpk30+WWzb0v2P9nmsycfsrI1DodD1L5k8CB8t3kF23M1nFq7FUOSu3dHi292mjqqej4i9aoBG/Uct2mczeDFSsNxa1ox4Q4gSbPv2JsfyQKZg0vEFH6LiIiIiIiIyNgp/B6jvmHykiVLhjx26dKlxds7duwY9zjOOXbu3FlspzISfecgIuMT5p8us7VP5bdpJGYXY4LN4LK4wiKQYW410BsIO5vGmZaoXUihlcij7Yfwjlm94fea9EL29qvgdjYKyjeno7YgrX5pyPxSV1SZ/kx7YXFNrwav0CqlnOt2zeZbL3Xy4lsWkrMJusJovK4wxaJU4TFRhYfBIwcug7OdA8LvMP8kzjQSevPpDBzZcSx2Cer5LSIiIiIiIiLjo2RhjLq6uoq3a2trhzy2b4V2d3dpADVR44jIFHL5Mtt6q69NsIFcx1WAjwm20RN4O9tOmH+u9xSXxdpWnOvG2Q4ANqd7fyynOYovPG8Y0Dq7UD3ekIt2NA1SYR0VhKdY3nly70avkt3m5JLjtmSiuedsgkdben/O/Km577dLPFxhAUxnu7Fmb+Ex9LaAMfnncBhyrpbMOINvgFmp8msgiIiIiIiIiIiMhCq/xyiX6+1DkEqlhjy2oqKieDubLV0obqLGGU7/ivP+du/ezRlnnDGqMUUORNHClAMXvHSu9++yDXf3hsO2rdj2xJq9UFKBbQuV3zkg6o8d9ulgkrbVPNeZ55Q5ybJz6Sn4zhhbdn/gLKE3l0dbYry+rjBP4uz2qzi4z5qWHUFP+B1nZ58WK5vSveM6PLxi+J0pPl5nu/Hicwu30+AMhjg7MuPr9w2QVNsTERERERERERkHhd9jVFlZWbzt++UWv+uVz/dWiVZVVZXs6z9O3/ujGWc4w7VUEZERcrmym/PdfyBZeVp0iEvTU+3tZ/5MT1juTFvpUKYJY5rJtH4HgIx3JH1j7M6wAggJBimi9l20Y/Aia48Xs8vYlXMl2yIx0hxJtbeXQvZNZ5gg12ewHRkLVLDefwWHVewlRkgMsOEOwEHlq8h1XEXV7E/jxapwhOB88jbFuq6hfy6ORCpWPvQXERERERERERkJtT0Zo7q6uuLt4VqQpNO9C9z1b20yUeOIyNRwxZYnXr8dfmG/jW73tEFxmT4HRdXQ1pvb53xX3N4a1mP75NRdJvp80h8k3W7zh28t8kJXBaWF4R7OeeCl6DTVZN3CYouSxny8JGjvDh3Wq6MzTGBIkHazADDhdqzZiw0bsKYJcDgXFH7Pkjapcbc9qYoniXve8AeKiIiIiIiIiAxC4fcY9a2k7rtoZTl9W470X3hyLON4nqdKbpHp0hNye6X9qJ0tfHjlMjjbTu/Cln2T5ygQfqTjZcDANkd/aa0vCZ83pqPK5525/j29oxZIDzVlGM4fdoYlgTok8B04koQuToepYWc2Ct9zBrame6/VZSwBNXSHMayL4dsojDf+8zjbhZ99GOOvARzOdtIT5L/YXc14O34fU38QMb1FiYiIiIiIiMg4KFkYo5e97GXF2y+99NKQx/bdf/zxx497nKVLl5YsfikiUyeqcIZd4TEYbxEAvrc06t0NWNNaOLJ8H26A9d1xnDew69SuXGnPb+uiyufGfuG38xI4r47sCKqrX+z06Xt22s0ntB6OJIGL0Wkq2J6JHlNn6PFEa297pV2ZkJWdS/GdhyVenA+ADXcVHnMIuKiveaENS1c4/ortpdUHcXjN4eMeR0REREREREQOXAq/x+jwww9n8eLFADzyyCNDHvvoo48CcMghh7Bs2bKSfWeeeWbx9lDj7Nmzh/Xr1wPwute9bixTFpEJEQIJfripjqbwICDG2swSXGEhS2t2DzvCQ03RGP0FFpryPYF2jJ4i7L25/otHJgiYNaLZNuZDfNubqK/LLCB0Ho44oYvRGiSKPcN356At6I3Km33D/2y0OAfGxbCUht9RyxOIKr4NPYF/58D1QEdtfvxokuEx4x9IRERERERERA5YCr/HyPM8zj//fCCqyH788cfLHvf4448XK7bPP/98vH49bI855phiNfiNN95IJlO+jcE111xTvH3BBReMd/oiMlYuwPcWs7E7xHdxft/4ev7cnCLqd21xNjvMAHGe6fAJqB84NLA3HwXIzqvl2u1RFXbaOJxX0+e4OLv8g0Y85d7C8Tjbswma/Rhb8sv4zvoUL3b1LirZXaaSvCOw/GyLZUX7fIzrfctwLgMuW5iPw9k0PeF3/yYto5HwYsS9GLn8IpzTmswiIiIiIiIiMnYKv8fhM5/5DPF4HIBPfvKTZLOloVc2m+WTn/wkAIlEgs985jNlx/nc5z4HQGtrK1/4whcG7N+0aRPf/e53ATjqqKMUfotMI+dyZF0NDmgOKvjPF7tZ3tJT6txTAT240FvAnlxI4CrL7k8X+p50u4N4tr23BUmbXVZy3OPtI299lCuE2s6rIWM8GvMez3dVcVtDmk3p3sC7OxwYfncGloebMly5OSBn4332mN6g3zmcy+MKYbgZvOPLsCriCQ6qqsO6JNbFhz9BRERERERERGQQB2xZ3fLly9m4cWPxfnNzc/H2xo0bSyqtAT70oQ8NGOOYY47h85//PN/73vd48skned3rXsd//Md/cOSRR7Jp0yb+67/+i6effhqAz3/+8xx99NFl5/LBD36QX/3qV6xYsYKf/OQn7Nmzh4985CPMmTOHJ554gm9+85t0dnYSi8X40Y9+RCJxwP6xyX7Cho3EEgunexpj4mw3xnk0+5bt2RQtfo4N3VFbEhvuJNv+oyHPz7qo4jtkYLDbHji6Qgsk2evPImqxEvnljvl8/lAAD/D4t+e6RjznnHWAx/bgaL64ppt3L66mNhF99vlCR+81btyRHnBuR6ENyuMtOTKmNLA3wbrohsuCy4PNAUN1Ox/e0uq5HF9/JPhg7MBFQUVERERERERERuqATVGvvvpqrr322rL7VqxYwYoVK0q2lQu/Ab797W/T2NjIr371K55++mne9773DTjmwx/+MN/61rcGnUs8Hue2227j7LPPZtWqVdx8883cfPPNJcdUVFRw5ZVX8s53vnOYRyYy8zlXvr3PTOecwZpGjIuzJe3TlK8AYEcmAGLYcBcUen8PxhR+7IYuAf3WhVzTEdDiW/LeYpqDFH3D79/vyPL5Q3t+ZHsjWuyyR8ZE4XejX0FXmOW+vTkOr6kGYEum9xqBGzhme9AbZWdM/y8LRfusacQR4FwOiI8r/K5KVFARqxrXGCIiIiIiIiIioLYn4xaLxfjlL3/J3Xffzfnnn8/ixYtJpVIsXryY888/n//7v//j6quvJhYb+qmeP38+f/3rX/npT3/KmWeeybx586isrOSII47gIx/5CKtXr+bSSy+dokclMrmcHTognqmc2Uuu48eELkbWOBoLi1M6opYiNtw+7BjdJgrMfTvws8fN6ZBtmYDbGpdxf2NpZfiWdABeCudVEVK+ZcpgNnT5OK+On26Ofg415kMeaopatWzPDL06Zd+MPWu9ssfYcDfOtALRHO3Ic/kB5qVmUcH8sQ8gIiIiIiIiIlJwwFZ+X3PNNQNam4zH2Wefzdlnnz2uMRKJBB/72Mf42Mc+NkGzEpmZbLgVKk6c7mmMmnNRD25DHHC81NVbnxxSjwm2DjtG3iaAkJxN0L/zyd5cVIX9TIfjL83+gHMNdRgq6DCzRjXvwDkebH85f2rsrbjf0D106F2OP0j4DVHlO4Clms7RD11Unxy4EKiIiIiIiIiIyFio8ltEppzxNwy6z7mZ2/CiJ/z2bfSj84nW3gUpQ1I421m4V65XdXRO1kSJd6Pf/5g4PQXTz3eErOnM01+bXUCXrWd7rm7Uc3/vyu5CP/HInlw4xNHlDRZ+O+dDYfYBNezNj/3PsDa2EM8bLGQXERERERERERk5hd8iMqWcCwmDlwqBad/tAc524ezIF3KcKsW5Fn4PXG/7kF4ejqjk2XnJkvPz3mEYbx4AuUJwvjdf+sUb5/W2Mlndnis7j82ZenI2SWc4PT+6c4NVfrsAE+4AIO+qCMeYfce9GDFbB07ht4iIiIiIiIiMn8JvEZlSznZiwx3g+vXGcCHOZrFm1/RMbCiF0Lt/5Xdpa2uHsx2F26XBdms4h7SLwu+eftjBgCC595zBFrPsDONkTIKsmZ5w2B8k1HbOx+SfAyBwSXJjbPpdl6zAugqcO2A7comIiIiIiIjIBFL4LSJTypo9WGoJ808Xtznnk23/PuCwwXZMMPzCkVPJuUKFdyEE/+pL5X50ejgThd8+s7HefKy3AN9bSt7GaQlqoyEKR4cOQm9x8ew7Wl4x7Dw+9WyO+5qqWd46s8LvMLcSE0StbKzz2JYefUsVgPpkFTm/npy/YKxTFBEREREREREpUvgtIlPK2S4MlSWLQzrTTph/FmvbsKYJG26ZMb2/nbPF0BuiUPeFjoErOjq8YuX3mvQhGCoJqCbvqmgJKtiQqYpGKLT0aA2gxcwHKoAYu3PDB9oNuZDfbc+xsduM+3GNxWDht7VtQLTTuBgdY+h7kozFqU6kgBjOxYc9XkRERERERERkOAq/RWTKONtNkPkzljg27K3uDv01ONtGtu37WNOECXfibMs0zrSXs+2YYH3hdhaAVn9g+GxdHAo9v6/flcCQ5Oa9y8i7FB9/NmR9dwzn1bOuO2rp8aU1nTzcMof1/isw3gI2pkfWKuSlLp9tmbFVVo/XoG1PzJ7i7ZAY3eHow/njZx3MrGT1WKcmIiIiIiIiIjKAwm8RmTI23IM1e+gwszHB5ijkdgFh7q89RxBaH5zBmbZpnWuRCzDhNkJ/LdbsBpIEbmBQvTU3t3h7Y7ehw9TzTKejNagmYxyr2gx7wsN5qKk3GN6Rg/YggSXJjszIA+PN3QMrz6fC8x2WVnfCEEckCGyczmD0Pb9jeNQmasY+ORERERERERGRfhR+i8iUsbYd469hdedsbLiFfNeNOJvBhDt6jqAzCHAuiwm3TetcezgCbLAFv/s2TLAN51WUPe66nani7c7AsD5dx227smzKVJIOLLc3pLl1z2zu3J0uHtfuO3bnExgSNOVHHn6XC9+nwh93dfOPT80adL/zagidN6b5xbwYtYm68UxPRERERERERKSEwm8RmTJh7nEgwep2r3B/BWAKvbITGCpp9ONkwoAguxw/fe90ThcAZ1qw4S6sacC5NI7y4XfaRIFv6B3EtkzAL7dBYz7ktgZX7IG9M1caCneGjm0ZD99Vsik9PdXco/VCp4/15pfdl2U+oRvb20p1vJK43pJEREREREREZAIpaRCRKWP8tTivhoebogUknW3H2Q6c7QQviXEpGnIpduYSGH8tYf6paZ4x2HAXzqaxwQ6cacQOEn5vTUeV2x12Pi2+5aGmqD/43bvTFHJxHmspDbh35ywb05acTdERzIwFPofTFhgybk7Zfc92Lyou6DlaqXgSz9NClyIiIiIiIiIycRR+i8ikc65ngUZLjnk8256HQohs/HXg8vxu7xl4roWmXI7mzF4scWD6A2Fr27C2Hee6sWEDIamyxz3dngcgb6MFLfOFxLvb9FZ7P9OeKznn0aYst+7K8P4n962FHvOu/HNwz94kG9Ll9w3HA+q8JeOYlYiMVOeqz0/3FERERERERKaEwm8RmQJRVbTDkncVUU/oQpVvkFsOwM835zEuQTq0GBcWwu/p6W1dwgWFWTjAkbHlF2XsCi3gke0Jv+3AufffkreOrtCyuhCc7ytyNkUUV5fqDBwvdY2t8tsjhnPJcc5MREYi7HgRZ/eNVkszmZum9RdERERERGTkFH6LyORzUZsT6xy3710QbSr8+Alzj2G8hazpzPPh55bxQpcjb2OkbT3OTX/ld1R9HgXaxlvIEQ8MXtkceIfwqod7gv79V8YksN68wr3ewDodOh5sHH2QXxlPUJ+chbVVEzRDERlK0Pocue13FO+b9K5pnM2+y3Ssm+4piIiIiIjIMBR+i8ikC/2tOOezNbeYDd3RNp95xf3N5iAAAuvYlDbszcfYmptDY7hwOqZbwtgQQxTKhlQOeWybmUt4AFQCtgZJwsJzkvWWFrc7HPkxfF5Rk6ggTpzQDP38yuTxvLFV7Mu+xdkAZ3wwOVzQWdzu73lYVcxDGOy5CdqexVkTPaciIiIiIjIjKfwWkUmX674V46/jq+sSXLmpC4A/tR5W3P9c1ywgagOSDR0NOY/PPe/xnfXTH4bmwm7aTVSt7rvyi1322J6rpVw7kP3NS90Jum0dANc19ITfHhaPFj8c/MRB1CYqSHqVGKu2J9NlX4g9XZiZ7ins81zQhc23YIOOkuczt+NObK5xGmc2s9l8c9nt/u6HcH47Nt86xTMSEREREZGRUvgtIpPOml2E+dVkQlPc9tPNId0cDVTwux1R9LahO2BrJuDO3T5784aKmI8Jtk7PpAFnu3DhNhqDaEFKf5CFHns803FghLc37gzpCKPn5E+NIZAErxLrHI15M/TJZcyvqCNJ/QTPcv8W96DuwHi5FeV23DndU5jRXJgjaHue7NabBz3GpHfgN64AG+CCDgCClqfwG/9C2PoMuR13D3sdm2/FhdkJm/dM5Uwev3kVAKZzw4D9YdcWwq4NWL8drCq/RURERERmKoXfIjLpnAswwVba/N4F1la0ZLl+92Kcl2J5cxSk7MyG7MyGPNmWY28uZE6iCxtun65pY00rnm3h+c6oAj10Q//IbA32hfrZ8VvRkmV5aw0Q58HGLHgJLFWEzmHG8BTUJKrxXPmFRKW82qTjoIr9P4DsK/PSz6Z7CjOazTfjN/6V/M7BA+yg9Vn8PY8AELavBSC75QZspoHcjjvIbv7dsNcJO17CdG+bmEnPYC7oImx7HojawvSX33UPNt+KzTXh9onvToiIiIiIHJgUfovIhHEuKLv94fYjyYWttPmlVcHfeSmNI0GLP7BRdM46amMZch1XE+afnpT5Dsv5dNk5LG+xrEy/Ft8mhjy8O9z/W570uHFXwKrMqwicAzxCasbU77sqHpUv5/zZEzq//d3xlXt4s3/tdE9jzPIND47u+F33E7Q9V3afelWDzbdj/Q6C5ieHbA+T3fhrcltuACC/5yFs0E124zXRvk2/I2gZ/mdt11NfJrfrngmZ90zmTBab3QOAv3c5uR13FffZfBu5bTdjOteTWfczTPfWaZqliIiIiIgMR+G3iEwYZzvKbMtxz96Q3fka0v3KgtsCQ0DdoONZF7VMseHeCZ/rSDgsLUENu3KGNV1J2sOh255sz4y+5ce+alsm5LnOKLh2eISkaB1lyxMPj1mpKjwPrDvAeniMUw1dzM69ON3TGDOT2Tm649PbcGF3+aDbjb7P/P7GpLdh0tuw2d0lC1n2F3a8VOxfbbO7Md1bsLnovgs6cWH3gHOcK/1UK+zcQND41wmc/cxk/U5cmME5h+neWqwCBwjaniPsWI8LM+R3/xl/71+mcaYiIiIiIjIUhd8iMmHKhd/WNrOy1Wd5axUtZcLR9dnFg46XK2QuzuUmbI4j0VvB7mgOkvy5Mcv1O3yu2jp0QLu5+8AJ4bZnAvbkeoLIGIFL0FSmgn8or1lwFKfPPY6qWNXET3A/5gFH5h7GG+SbFjOdM3nC1meHPMb6HdhcM0HbC9igG2dyYIPoV59xbL4d07lpsqc86YJhno/+THpHyX0Xpsnv/D9MeicmvQNny38Q5YI+4baztD/yAfoud+rCDCazu+SczpWfJmheXZynzewit/NubDAwKN9XOTvw75Lp3oyzPt3PfYewcx2ZjdfgTB6A7ObrsIUPcGxmJ2FrVDFv/cE/eBARERERkemh8FtEJowz7b23CxWazqbJG8czHa7QIqPUL7cNXk3dHoDz6oAprqh2+eLv6TAOwJa0z+MtQy9qtiF9YC169nxHz59LjNAlacqPLvyvT9SR8JJ43oHTLma8Yh5UxqHO3wz7ULsPF2aLAaPp3oozQ/crd2GGsGMtNt+CSW8n7Hgp2h504pzFOYfNNRJ2rsftB5XfYduaUR1vsnvxm58Eosps67fjgk5M1was30rY/gI2SPc7p3FAyGv91pL7LugiaFpZOreOl7B+O2HHumhxx2gwspt+O6o5j4WzYb/7k/Ne4IKuAdtsrgkXZvAb7gdnwfrYQlV9T7/04rF+OybXRNi+734bQ0RERERkf6XwW0QmTDofVcI5240NC1VxYQNb0gEPN5Wv3r5m28DQocdTbQHNZhnODn7MZOipNLemmY3p6Mdki2+HDbezY1ntcR92796ot7Chhs6wctSPf15yEZWxWjwUfo9URRwWVvjU5tYTt/vOgpdhx1pMpgGA/K77sPm2IY+3fjvdL/wQf8/DhG1ryLz0UwBMejs2vROb3UvQ8hSZ9VcNG6TvC4L20YXffsOf6Fh+Cc4GBC1PYTO7cWEaF2awmQa6nvoyQeOKknMy638BNl+yzRb+TIpcSNCyumST6dqI6d5C5+ovEjQ9Xtye234rLpzc5950lVb1B61PTcp1ws6NA7bZXDM214TJ7ALAOYMrhP99W6AAOJMjv/028jvv6j+MiIiIiIhMM4XfIjJhuv3dOBcQZB/G+NHidB25neStY2P36Fs0rGrLcfOeuTTmp/ZHlTNRMJc1cR5o3PerSidbh507pvNiVFDhFhFT5fcA8UGekpq4Y1migcr8dirD3TP2YwObaykJRk12b7G6NuzaSNj23JBVvC7fQtDyJCa9A5trLG73m1YStD1LfvcD+I0rMOkdA1qA7ItsIWAdqbBjLSbbQH7HXaTXXE7QvIqwz6KLQctq0i/9pKTS29/90IjGNtneQDzs3oZJ7yC75QaCppXktt/W50CfsHP9oONkt940oHJ7tMKuzSX3/b1/GfC6GWrB07B727DHAATNq6LjCouFhh3rMZkGTNfmYqsT53dgcy09Vy0dwPjkG/6EKSyQKSIiIiIiM4fCbxGZME25PM60EfovYYINAOSDaLHKsRRF563ji2s6WdNVOZHTHJYt9C5v9hP8qTEzpdfeF3WElf2joBGJU0smt4iqWM2Ez2lflxgk1a6KhxwWrKLK30FFvoHkDH0XN+ltmGxv72ib3dMbLLavjVqa5AZfyDbs3IBN78BmdxcXZIQopDSdm/B33Y/fuAIXdmP6BaT7IlMIaUfCOYfJ7sblW8ntuJPc1hvxG5djOnqDaJvdTX7HHaUfQHSNrDe669O3OmxbA87g734Qm91dUvntTHbI5z794hXjrso36e291wtz2PSOYvV1cXuZliU9gp7WMP7A9SiK51tDvuGB6HrZxuj+7j9jurcWWp+kC9fp7H3N9mu140wmCuaHmIuIiIiIiEyPGfrPZhHZF+3MBjjbgSOGb6KKw85w/K1AMmZk1YPDVfeNVE+bldzo1m88YOVtjBe6Rr9opbOV4HlUewsmYVYz35KqkNfXbytbvX1EdZqK+MDtHpAqvD7jtpslVfmBB80AJttI2L4Wf+9fovtdm4utIlwQBZH5hj8Nen5YaANi/faSNhymayPpdT+L2p/kmqMKczO1C+JOtKD9xeIHA33ltt9RrDruy3RvK4a6+Z3/B0R9uV04cAHKvuGzHSIALjnH9VZW23zLoMfZfCv+3kejULpM6Gs61mFzTSO65mD83X+O5hRmcSaL3/gYYdcmwj5BvyksPFmO6d4SnR904sIsQftanOltX2Uyewia/krQ/AQuzBb6m7eS2fD/om8eZPcUX68AQUvUdqV/9XnYtQWbayr5loKIiIiIiMwMCr9FZMKs7fJwGDpNLc1BNQCto1wEsZyESw9/EAATlVZHc3ZO6fdIZG2cO3YPf9yg7OyJmso+pS6e5yBbvnJ2Tqy9bPW3hyNlesLvLHWxmdfv2llD2L4mWoAxE70wbK6JsHNdtL9QjTxU1bALugu/d2HzvZXfYddmTNfGqL910Bm1C7Gjb6k0k9hcc9nwOGh7tmz4bbO7cX5b4dyeSuRBWsj03e5G+Dz1+TDBDhEsY32CtudwLizb+9sGneOuhPZ3/xlnA8KuzTgbRN8EyO7G+r094+0QrUZcYYFKZ6JgO2heVfKNBBd0RMG134bJ7MJm90Sv1fYXsdm9UY/0Pu8Dxddi/0VWTRZcqPBbRERERGQGUvgtIhPi4d0beaixk+7Ms3xr/Sx+vzOqBL6vcfxdiYMRL+xnsGbwSsWRsi6ac8IO3pZBel21NcEfdw2sOh2OK9Q8B6Z6oqc0481JOV4d3sqC3HO8qn5geHd0sIKv7z2Cf018v2R7KmY4evd3i/dPCe6bMX2/ewLcoOlxulZ/MVqMsfUZgtZno0ra5lXkdz9UDBD7VhXndz/cO47fQdi5oXBMc2n4mNkFzkaLPGb34MLukr7W+5Kwa2t0w4XYTG/f8p7AO7f1j8WWG31l1v18xNfw9zxM2L0NF+bKVpeX42xvZXR+z8ODH2eyUW/sjnUDWthkNl4bheP9Fs/sYYM03WsuJ7fzXgCCthfKH5dvIfPSz8g33Edm3c8x6e2kX/xfup78Qslj7Hj8X8vPMeii88kv0PnkfxC0PY9J7yBo/Ct+42MA5HbcGQX8Jkf38/+FSW+Lqs1NbmDADWTW/SJ6nQ/yYYMLM7iw98OD/j3LRURERERk6in8FpEJsb6zmWfb83T7u/Gtw3NRELYnN/iidiPVnh9hWwMX4Oz4e3TnbRQn5iemi8p+b0PXyMPHqniSo+qiNifOJQAITXJS5jWT1SdC5ubWMDezmhjR35G+bU7qgu0kbJqD22+ntvD01Ceh2svj9emwPje/hsQMeSd3YRabb41abTiD6d6CzTVGFbTOEna8RHbjNcXQ26QLixFaU1xI0VlD0LKaoO1ZIKrqtf16PBeu1nuzT1g7onkOsdDmVMpt+yPO+FGIb01xMUXrd0Tb861le1X37YM9HNO9HUyuJNAeVp9jbXbwDwCt347N7CS75XqCQphc3FeogO6p4Ico1Ld+B84GmPQ2XJgptiUJO14qOc6F2UKI7Aja12A61hM0/jU6tmsjJru32As+7NxIvuF+THpglbpJ78Tf82gUau99BJvbS9D6DPndD2Iye6IWMu1R8O433B+10xmi1QvOFFvOlN3tTPSaLzxu07Vl8LFERERERGRKzJB/MovIvu6h3RtpyIWE1sc4i+c6saaJhuzogqlyciMMq2y4Cxh/FWiQfwHnDA3ZMk2XZYDV7SPvO31Y7TxeN+cdAARhz0KmB95b0ex4mqVNv2Z+x33UuijgfFl1a3H/3HS0sGBNdj1HV0bb31yxguPt4yXjHNp4Vdne4NPB5puLCwUCZF76CUHTSsJCwGnzrWQ3/67YpsTf8ygQtZ7Ibbm+cLuT3JY/4PKF58JZTOd6huLs6ForzYRFCZ1zxUrm3LZbwObJbbs52hdmCDvXYzO7iv3M+7Zg8oeoxu7P5psJOzcWe1WPaG59ns9ylee9g0d/jpkNvyS75XpMpvcbDD2hec9rAaIgOLftFsK2NbigOwrDM7uiMdb+GGcNzjn8PQ/jN60sBvZh63P4ex8l33BfNHZ6B6ZzHel1P8eZPEHLakznBtIv/M+AKfrNKwmaVxK2PkN2w6/wdz9E5qWfkN14TRTaN6/C3/NINL/0dvy9K4Z9fWTW/WLQfS7oIrfzbsLWZ7H5NrVBERERERGZARLTPQER2T9kCwtcdvg+i5LtZI0jyK5gU3r8YXQ4TPjdEwyZYCPx5FHjvp4J1uJsBzOjPnT/Evdi4HrC7pnSsGPqHez1VqkuCtcCL+NI9zwvxs8isFDf3RtWVng+HnB8+zU4BibdiyuyrA9Gv+DoWDiTx4tXlN+Xb8N0bsRLRHOxfjteak5vJXG/6mMXdOJMHpPZFVX72iCqrG19ZlRzCtvLt8wYjM23EKuYPapzIKow9lKziCVn4cVToz6/hMlhurdHCywWwlYbdOLvXU6scgG2EP7bIKqUdiaHl6wr2wN8KH7T4+AlcOEoAn8X4owfPcYRtJRxQSdB2/MELauJV5+Dc5awbU1x/jZIE0vW4EyW7KbfYv02knNPiSq/Cz3FnckStj1LvPYI0mt/RMUhf4PNR4tlmszOsoF00PxkSfV4/28IOBsOqJx3Ybpw3QZM5/po7D7nme7NmO5tQz5ev+mvgz8XYRp/94M4v61QBT6+BT9FRERERGT8FH6LyITIm6hacHWbZUlFE0+2gfFfpDMYf4S8N29xzsfzygdOznYAHibYRCxx2Liu5WyWvI3jbJpQC15OuKQXpyf0tjZ+wObfy7IPF2/XB1Ebi9nBZuoSbyBtPBK2t+I2iU8qDoua7ig71pLYLtYz/g99huOMj0lvJ1F/dNn9Jr2doGU1iVnHRRtsACaPzbeVPR4cNtdEbvttuLArCky9GEHzE6Oa12iPN91bSNQfOapzAPy9y4nXHkpy3mnjDr/Drk3gwmjuPQGz9Umv+zm1J/wbrqc1TPdWgngVNt9K5ZK/wQyxuGM5QWNUyezCkffkd84QdqwlOfcVxcrzoU+wuHwLQdNjVC49B+d34rdErUHC9rXYXFMx/Pb3PIQXryRedRCm46UofHYWm2siaHseYhXkd/4fzvj0tLbpqQ7vz3RvjSrTC8/fgIDc+sUFL4ub8s3RuCaL3/jXgWPbAL955ZAPd8hA2wb4TSsJmp+kItOAlzjw1jMQEREREZlpFH6LyIRozEXhyuoOx/G1Hn9qzGCsodUff4C8udviTDteYiEQhTOe11sB62yhSjJsAHq/sm/CXcQTh4zqWs5lyJgKcHmMVfg90TzPA+Kcs/h0CA+85DsVg2XVWWa3ryluq/U3cUx9hrrujbyhdjkrvNeWnPPK7mug9oODjjnP7sDjKCazRb0NujHpHbh8KyGUDcDDjnX4e/9SUrntnCFoenzAsT0y668ms/FX4Cy5nXeRnHfaqOfmTI6wc8OgoXx/Pa04bNBNLFk74uuY7i3gxUjOO3XUc+wvaF4FQH73Q3he9E2I/J5HCFpWk1rwGrx41BLI3/0guc3Xk1r8NvyKOSVVyiMV9nmtjYTLNRM0rQQbYv3BPrgYKGh/kfyeR8Fki21rgtanCQuvh57FH/2mx7FBV9T3O+ima/X/hymE0D39toOmvzJcOySbbyLf8EDxftixtt/+gXPvG5AP9rzYMr3DSwzzgUBPoJ7b8gdSi98afWMgWU+8auHQ44qIiIiIyKQ48BqtisikyIZR9Z0pJHA7syHNQQ15O/5IbnM6wPXt5e2yJfutacWGDTiXB9dbaW6DLTg3yspzFxC6GM7l8Sagf7iUinkxwGNOctF0T2VaHFzpszDWTGWwo7htVveTHOOtZX73Xzim4/dUx0t7WC/suJ9lweCL7FXYjklf9NIF3Ti/HZPeQdhWvs2I9Vuxub2Yro19zxyyWjlsX4NNR8+FSe8YVYVy7yVCgpanR3y4LVQDm65No7pM0LIa07UZJuAbIbbwnNjs7mJ1ddD8BC7fQti+prgt7FiP3/QYNreXsP1FTKZh9BdzdlRzNrkmwq7N0YcYI2h70sNmGggaV5Df+yjFBUlNjrDjRUzXJkzHumg6fhtB8ypsrhkXdOI3Lo9a4jhXbGHiwsywrwWbaSgJv/u/zmy/qu8BBn1Oxvue5QAXVZnbENO9bUwfWoiIiIiIyMRQ5beIjNuHl9/I+s5mAK7Z2k2iUND756bR9acdzK6coW8gYU0T8VhUsemcw/gv4nlVONuGK1R+h/mnybR9l7pFv8OLzxl0bOcCcCFerIquPX9PRf2HaAtT5DqvIgzmTcj8JXLC7MXMTtaBA8/NkFUaJ1jc6/0AqJyjE1s4PL+cWd2ri9uq81s4tutGarLrSIQdHD+7tIK1OreRkxouG3TMY5t/SrL+3QST+EUFm2vEdG+JWlNYH5tvJrX4bSRqe9sMlQv4XNCFHaK3Td/K4tyWP5CoP3b0k3N2VAsLms6NNN58JLUnf43k3FeM/LzMLoLWZ6k+9l9GP8d+evpTm+4tOBN9mNfz/IXta6Ne6UDQ8mTUB73piWihyLF8ODBaJkt2029wQcfwx/bhwu5C1X/pn3fYHr2eczvv7t1oe98beh530Pp0yQKZI5HbemPvOPk2nA3xYtH/2o52rMnSU+WfmHVMtJioFy98A6aXswFeLDkd0xMRERER2e+p8ltExq0h04EpVNHlrSNdSP8aR9AudiSyxoKLFstzLsT4Lxb3ObMb47+ItS0452MLleYm2AEuh7NDf23fhruwJgrurWnE2U5e6q4gDPcSTkDV+lRKeDP7R3plLEnci+GIEaP8oon7kvoyWdXcCkvVELl+rW1lbuYpvH7VpfO6lgOQCNtK+oEDeDiSYcugY1ZlN1IZH/lrNT6GbjMu6CJofQa/4U8Ebc9HVbb9FrAs1wvZBZ04v3XQcftWMhergMfChsMe4lyhh3S+BdO9vVhxPhLOGnAm6iE92m+TlFFcVNFZnF9aoRy0r8F0ri/sj65l/Tb8pseLQfJks/lmXJgZ5TktuKALkyl9Xk22gaD1GcK2Z8ue1xNS+3seGXaxyQFK/iwcLuj9cKCn0nw6OZMjaFmFKy76GkKfRUudc9h8KzbXPE0zFBERERHZ/83spERE9gmdQfkK78aJKfymI7D4+SgMsuFuTFD4arwzWNtJEOzCmTbyrp6mIEoeo0UwKQbbg8l2XIkNt+CcDxicy7KixWJcnHDfyr45vHb+dE9hSPMqZpOKVWBMBfn86Hqxz0RvTz08YNt57je8smbwnsGVroODW28asL06F7UKibs8x+z+7oD9/cPyvhI2zZEVQyzC1/dYDw6tHv1fTBt0Ena8RNixFn/vXzCd63FBuvSYfPmAfqgQ1XS8VHK/p0p2tJwd/jG5MI0z+ahVhguj0LHfYxiMzTZErTiCzmiRxXHK96mC7l/N7fItA0LgsOMlnN9WWLBxCoyi3UnxlOwegvY1BI1/LdkeNK8maHpi0DYjPc9n2PbsoAH5SJns7mhMZ0mv+/m4xpoIYdtz5LbdErXLIfrw1oXdUQU40Z99ZsOvyO9+cDqnKSIiIiKyX1P4LSLj1j1I+P1Em192+1ik/Z5AMSwE1eBsJzbcRejimHAnDf4sugMfa9qL4bfxh17szYZ7CLLLCTJR71hnmrmjIYslSd7uOwsyenjMStVM9zSGFCNGbbweY1O4/aDtyaxwK/VJmJ2KgulX1reyILOSY/xHqez38OqTUBGHxelHJ2UuC9zIekEvqgyZF+8a/sD+nC305E5HfZy7NpdU+LowU1y0cDxsdu+YzutZyDAo9CN3tkx1tslHiyAWqnBNdjfOb8WNoB+2zTVjC4s42tzY5licq/GHbV9isv3+PMcQRk8Hm9k9YJsLuwY+nkmSXX8V2a03EbavnboPCoZgCt+G8Pc8jLNB1DLIb+9deNMGOJMn7FiLzQ3+7Q4RERERERk7hd8iMm45U77lwF9bJqjvCWCC7dENF+BsFBzYsIEwt4qcq8YPu1jbXQXhdkzwEjaMwpYwH1USDrbwpbPtBNlHyHb8AoAgaKQtMBgSdA/fSWHGSMZi1CdmdvidiqVIMQvrErj94O1nQfpxDq5IszgVBZlv7vguB7XewjF7f8CsZGmgelhlB/UJy6FNv5yUudSbgaFjOUuTzcxmDCGbDUoWiHR+W0l1ctjxEnYsizH258b2l8760Ydd+R13RPfL9AC3QUdUQV3osR22vYDNt+L84Xtbh53rcYX+5GYU7VLKcXb4DwUHPpf7yNdQyv35OTtl4X36xSvoXPmp4uKh067wWgvansXfuxzTvZWgeRVh5wYAXJgFmydoXhX1dxcRERERkQm376cPIjJtbBhVQPoj6Lc7XnG7B4gWqLQmqqZztpkwv5oGfzatZj7Pd3qk7FpsuAsTFNopuKAw19KqVOfyWNtZCGtCcIWv3tsosL+3eSk37Ji4yvXJdljNPJZUHj3d0xhS3Etgw4Omexrj9tr6XbypfiOz0k+yLLaV2liG6gTM7Y76VaeCRt4Yf4C5qd7A8hj3LIdVTF4YVxcOX3V9eE2eV2Zu4FD/CQ6pGtnfWVvooexcWNpPuXt7yWKDue23jW7CE62nN3bQiTM+Jr0dF5Z++JbfeQ+5bTcV22+Yro2YzC7yDfcPO3zQtLJ4uye4HPtUs+M6X4Zms3sImp+Y7mmUsJlddK76N7qe/Rb5XfcStj4DRB+E5HfdS9C0kvzuP0/vJEVERERE9lMKv0VkzPxMFBqFdvi2AePluZ4gy8e6oBheW2d4uLmKRr+K9sCRcG2EudV9en5HgaOz7SXjmWBLVEHupUq228J1/nt9nifaJq5yfbItrp6HZ+dM9zSG5Hkefjizq9NH4vDwKU5v/zFV/g4WhBuZx17qEpbqXNTXN+7yHNH+R+Ymo3ZAHnBo+k8c5Ea5mN8oJO3wfagPje9mcftt1PlbmJ0YWQAbND0e3XCWvtXHLuwmaFldvB92rB/VfCdasa+4yeNMFpPeQdi1seSYsHMD+V339jknTX7n/5HdeO2w45s+leTjXpzQ7Ds/V/ZNbsYFyS7MELY+g7/3EWy+pc/8HEHrs7igk6D16Wmdo4iIiIjI/krht4iMWWM6WnjSuMn/Sn5zOB/nDCbcSWB9bLgbnE+eOdy4M09DPsWmboPDEeajr49nvSOwhcDO2Q5MELVtcM4SZv8CzufaPacBFQB8aM2ZNPlVAKztmvlV38lYnFnJSg6tmcuyipNghvbRPqiqDoAYM3N+oxVzIQe13gzA8Y3fZ0GwnpNSpdXA8zvu57X2TuIezKlwLGn+Da/f8ZFJm9Oyxp9SMczTe2jwNNW59Sxt+g2nhfdwdt2zzK8Y+u9u+oX/AcovWunCDKZ7O865Cen3PR4234zf9ATO5km/8ANy228tzr3PQZjuLSWbMuuvxh+mSjhsf6lkIU5nBl/Ac0RzDcbQc11GxYyzOn+yuDCLv/cvBK1Pkd1yI65PD3p/zyO0/+WD0zxDEREREZH9j8JvERkTE+7knsZKAMJB+mlPpC3ZWpzZiwmbaPAXgPOxJoPvKljfHdAVxGjMW4yLAQZIsjM/j9BV4ZzF2TQm2IZzITbchTV7cC7Pn5sMOW8xAPftzdARpoacx3SoSZSf05xUFS+fs4yFlfXganAuTsyLFumMeR7J2MwIm1OxJABJb+Y9tyPVd+nTGAGxQjudqtwWqkwjh+eXlxwfd3lm5zdQnYDKmCFus1QEk7foX8q0kxhmfdZK20rMGRK2i/nZp6izjdQnhv6QJ+zciLMhJl2+at1vXBEtgNn+wlinPiHCjnUEzStxQZqg7TlM50ZM1yaciarvnQ2i0Ln/4pY2j8u3RosRDsKZXGmrEjP2D8acs5hprpI/MMzQHunWx4VpTHoHNre3tNrb+pjsnumbm4iIiIjIfkrht4iMSZBdyc83ZwmtoSU/vkrIkbhjT5zupk/TldvEmq4arGmhPbueB1sW0RVaukJo8Q3WRQlgizuW0x8OSbs6nGnGuSy5jp9gwx1kWr+OsxlwPk+25vnXNYcASbLGkTEzIzDu6w0LTyq7/YjagziY8zix+k1k8wvIBfXMq4jaiiyoqOWouoVTOc1BVcZ7wu/6aZ7J2NUkem9Xmrbi7ZgLOH7X15mXHlg9fMTe/2VWMqA6NjWL/VXEhw78Uqa9eHtp0685pu1XvN7eTqrM/wmYbCM214zp3krYuWHQPtedT36esGNtcTHI6WK6NpJ+8X+xfjumYx1B8xP4e/9CfvdDAOQb/gSFIHwghxuiFUnQvqbYUxwYMigfTtixju7nvzPm82Uf50z0y+QIO17C3/uXkt02s3OaJiYiIiIisv9S+C0iQ3LO4AptTZwLC7/neaG7lhc706zvbMJOQduTx1sDnPPxbBM542FNEx2mmrv3RJWcq9otTfmQnI2C1r1+FAK/lJ5LkH0EG+7GuSzO5XC2A2vbyGWfoj0w7MwZdpkTAWjIJ8pPYBqlBqmYnpWsBcDa3v09xb8vn304c1K1kz21EVlaHYXwnpk1rfOYnXJUJSDmQW1ydOcuqojC0WQMUmZg0Fuffa78NeM5qqYo/E7FLB5QV+axeVCsVu9Rn36GOfm1LKwM6V8pGzSuIOx4CZzB+R24QVp1uKCL7JY/TMwDGCcXdGOzu7F9gnibb4paTTTcDwy+NoHNt0ZjlAm2c1tvwgV9eqq7AGfD4s/F0QhbnyZsf3HU58n+xwXdhF2bS7aFHeuxfuc0zUhEREREZP+k8FtEhmSDLeCi4CfMRwvcWdPC460W31oe2DU1vVVf6sqDy4MLafTBBptoC5LctCua23Xbu8kax/NdUejdEUYV3Dc1xPEzdxEGG8HlcaYJZ1vJmxx+5j7SxvFse553PhYlhs+0D9M7YhokYuWT2jnJ+QBY27u/p+3JwcnTWZCaP/mTG4GDKw6jOpEkm583rfNYUtHFwpRPMgaLUqNbdPDIWBRSLagIqcsNbFvRs9hlf/O9JhKEo5/sGByU6CQRgxOqBrZXqUkODO2TYSuL2u7ktNgqUq70+cjveYig+UnAYbN7Sha37MsFnWQ3XjNRD2FcbG4vJr0d26d1hM3uxeaayDf8qTTA7qfn8eUbHigdM0jjNy7HBR292/xO/L3LcX4Ho+HCLPld9+HC4Rcnx7R19wAAa+xJREFUlf2fSW8naCxtl4QLS16/IiIiIiIyfgq/RWRQJtiECdYT+i+R776dTOYx/MwDdPoBmTDqe/vHrc9OyVyyxgEGQ4K1XRYTbMJz3QOOu3a7xXgLachGgXDGOKxpIxf6WG8+JtgKwPrMYizJ4tg7MlHF55bM4NWhfU1WP+1XzT+y5H7Ci1HjlQ+x40QV32Gfyu/XzHs5r5p/JM4kScUqJmWOo+W5OIfXLgBvej9YSGA4LrGBw6oyxLyhq3YrC3+8cyscHrA4eJ64B4sSndRlyld5l1Pvmkl4UxN+n+bfyrLqLCdnb+GgSkOyzzv80oo087qWDzgnFTTy8pYfYhpL2y8ELU8Tdm+Nbrc9ix1iQcvxtAGZaDbXWHI/bFtDbtc9mPQOgrbB/9zC1mewQZrM2h+XbHdhGleoCu8d8zky636OzbcMO5/u576Ds6YwVoawa+NIH4rs5wZ7PfZ8w0pERERERCaGwm8RGZQJNmPN3igAz/2VpzqqCHOraM/tJh1G/XOfaN4xodeMDRmQxjEuzs6swYQNxBjYw/evLTlazSJeLOTi6zsDcGny1pB287BmL3jVPNVRiaG3xUlPFLotPbIgb3aqaoSPaHSOrD665H7M8/CoKXtsgqitibG9P8pnxQ7l+JrTsC5J0pucOY6WR5I5ybrpngZJL2Bh8BILYq14wyyIt7Aieh0sSqapTPz/7d15fBvVuT/+z4x2yfsex87qmCQQIJBwE5YGylbCDoXCLWUp26WF0pYfLS23QNsLpdAFSrnsELjfEnYSAoQSIAkhCdkJkH1xnHjfLVvbbOf3h2LFimVZtmXLUj5vXnkhz5w580jHI9vPHD0HyFR2QZaAbKkFDiX273mb0QEnhmem74Sm5zBJ2olczxoUWdyhBD4AFMl1cPp7Jl5NIoAc93IY7d+EbTf8jTC8wecZqPkk6nlH1Ezmwxa01Nw7odQtg1DbYfhqez1MbdkMvXMf1Jbwm3mGvxGHl4Qx/A1QGlbC8Nf3GY53x7PQ2rcdDE2BCCS2NjqNHIffVAlt7+cnCoiIiIiIKDomv4kojDB8ULzBReLWtVrh0xQono/w130TsLS+GR/VA7bA68iQgokk1dCjdddvBfZgkjTP1jPh+5vds1EdyMKaZj9UpEEzeibKOzQD31/vwosVwYTcroPJbLfuwi+3FMCtCvx9/0zUBQBd9Cwn8nW7ElOc5xTOifk59YdFCq/TfVLuREBEviEgCXvw/9Kht3J/YBT8/tFQNTvMknNQsZilwf2IkCUJJ+dPgmRkwWVOXCI+1yYwLd2NC+t+hLHt7+B7dT9Ghhw9YXuO/n8AgHTZg6OdTbDpzZiVth9TPW/369zT6/4bM9zPDDj2/nD692Jyx+vI7liJc9x/QJm9BaaD9c2nd8yLeqzoVmdYc++C3lkBteUrAIDatCb6iY3YrplE0Fq/QaDqgz7bKXXL4K98O6y2uaG0hxLXhzN8NdC9PcvLdPHvXwih+aB7q0KlVJSGVZz5TX1qW/EjCM2X6DCIiIiIiFIGk99EFEaITqh6cOZZva8DOz3p0AWwvlVFrV/Frk4N+7wOdGr9q5ncXbTZ3aXOXMiSBJe5Z8mOj+r9qPLb4NEFDJjhNSKXHtncFkCrGkzKt6sGABlNih2rW/zQDBXLmzR0aIDX6JmQVWNYxE6CBLNe1Ge7geh+eotswlhnGXp7tQR6Ls5pCDMMYQYkCbIRecZ4LCyyCXbT4Bb/tMlmFNuLoRt22GT7oPoajNFWN1ySBxmer5DZuQ7pns1w9TEbO0OpgEUGclGPLDTDqjagyNiNovbF/Tq3078XuR0r+m4YJ06lEmbDg6yO1RiNCphlwCwJZHo3Rj3O6FbTWm3eCBjKoeTuCCpr0l9C8/S6WGdYO7UDavP6YHthQAgBoXkQOPB+LwcYEGrPsktdAjVLIAwFEHpoxrneuS+pX0saHnrHHvirPkx0GEREREREKYPJbyIK0+bbh4W1BgytFopWh12dPmzzjYNf8+L5ig7c860bp3yu4PUDAy91MCm9oNd9BbY8HJM1GkWOrB772hUdbx/Mx3UaaXi6Ira3MEPKxqvVFlT5NATUBixr9OKFig5M+mRgyd10iw2a7kS6Jf41taVuNwZOyT8Kqu8YiMPeql1mK2yyGb5ATtS+vIH8AcdxXHYpTIOc+T0poxBOOReGYUKWedSg+hooiwxcUXcZXAgmKi0Hb+xM9v876nGSUHFsWhNOq74Vk72LkNf+CTLVfXD0srBlNJHKjQyVvPZgiRJnoAJn7Z2Lma79SDPpyOxcH/U4oR+6mdW2/OrgA33gN7hGjr5vZnW109q2oWuBT72zEoa/CWrbN70eoTb3/pqqTeuhNn4JAPB8+yh0bw10T2U/4qYjmXvtzxIdAhERERFRymDym4gAAMLwQxid8Pp3IqB5oOpu7OkMoMbTjlUtVuRYwj+G3a4OrNSBBAnjXMW97k8zpWOCawxKHKNxdFZ4u3bNwKcNwYRcm+aEFmNea4PnKFR6gjPBG9XgbGivHmtSrKdMiwOqbkN5enxnf5el50Pq9rZslg4m50V4kt5ltuKYrNHo+y3cBJtshtTr3PHe5VlzIA8y+Z1vy4YkrNCFGZKeO6i+Bh6DDpvSgDHK2rDtZsMb9Ti7Woep6grYlFrkuz8FAOT4NkMWI7fERySTlM9RZtkfc/tA7TLEnjBOLbonWONc79gLvXMfhO6LWqNb74yczBbCgO6tgr/y3dA2//4FLGVBMTNYG56IiIiIKG4G95l2IkoZhtECobegoqMJOzscqOpswVZ3B9JNAbxV5cFoe3h97FZlYLW+s6x2FJmmA9gUcb9FdsEqMqEGxuGEjFxsaVsQ2qcLoCGgAQA2ux3QRGwxnP3FoaTT1247AGVQ6b3RzlwAMsrTJmNT634YMZRKMUky9MMW4zvcf2SfBBiHZpPbZRtgALoRXjLEJMkoSyuDiGFi7lGZRajxtqIp0L+Z+pnmLERdezQG+dYiQNgghAk+Jfos9aEyxbIHVq0BZY1Phm23a3VRj8tp/wz5bcESJ5meYMmQ4ubXhibIIXTcgbswOvPcvhsaGgzFDfe6Xwx9UCOVEVxA11A7oNR+CkvuCdA7K3ptLlR3xO1a+w4Y3mr4qxaFtvn2zoc5oyy+8VLqMnou5kxERERERAPDmd9EBE3ZinbFi6bOLfimvQMdShvcSgOa/T58VOeHWxX42h3+x3h/Zk53L59R6MiEqqfDKofX655bPAOZFjtMwg7oRTAMc9gs6MOtbAa2uvtfP7c+DjkFqxy8b2hDDi4vmYOzio6N2v6ojEIUOdJDX5+SXw6L3LNeuUVKgyGsoa9d5gwAgKrbkG0N1ic3STKsshk2PbZE2tT0KTgt//iY2nYpcmTAJiZAHsCM8S6jnZmwwAVdS++78RCRAIxR1gEArGpT2L4szwZYevn2MkuASaRO8ind23vpji66twqerY9xdjIAw1cLf9UH8PexUKYRaA49FgdvbAk9gMCBRQf7OXSDRWvbEppZTtQnYUDoyfUpEyIiIiKikYrJbyKCruyAx7cD7sABvF0dgFf1YX9nO3Z0BFDpVWNaBDIaW7dEb5rZDk23wWW2hrXJk05EusUOGOkIqOkITjvuPfn6QZ0PFZ7+J7/rAoMv6WCRg7PgDT0TFvV4jLZMj9p+vGs0Sp2H6m+XOsZGrBcuhAyI4GtlkmSY4Ti43YQzCmbAJpuRZXWg0J4Fv5oZU6xWYywy5HExte0yypEFv5ITSvIPxFHppTBJDii6c8B9DJZZBsa1zgdwqNZ3l3TvN0i3RP5ecPWyPVnZ1Jo+22gtX8O355WwhO2RKlD7KfT27dBaNkdtJ7RDpXOE0gYA0D1VwYUtAaDbJz2E0tpnf0TdCYPJbyIiIiKieGDym4iwshmo97diYa2CpQ0+vFfrQYXHjX1eLS79z8wrQ6krG98vnYNJrnIAwMl5R4f259pc8CsZ+G7e2RDdZj5LUSoz1fkHFttbVYOf2WqRgsnvgJoGzbBCVbPD9h++UGSheTrGOccBAGyyGWatHEX2nslrCSaIg8lvq2wKq7lt107EhPR8jE/LR4lzdMyxBpQsQFj7bNelyJGO0Y5CAIg4Oz1WWdZsGFrGgI8frFkZdTjXtQHpB0uWRJJpjnzz5Brjb0MV1ohl+Ouhe/ZDqO19N05xgf0LAQC6tzpqO2GoMNQO6J5q+CvfhjBUqE1rwpLe3RmBpojbiSJRapYkOgQiIiIiopTA5DcRoS3QgFXNAt+2B2thNysGKjo649Z/msmFYzPL4JLGwCwFZwLnWcZBPlhUempmSXCmt54TttaeJGwDWqwxmq6a4YNhNwVrcIuDb6GaYUWezRXa7zAdStpLkKCoGbAimAguSy+AorngMPec+W3oLhgHk98usxWSOFRnXTOsGOscBZfZAbvk6nFsb4IxRn+rt8gmWGQTJEhwmmzIlaYFY+9W9Lu/42CTnNB0R7+OiaciYy9GB9ZBjlIX3ixF3lfQsXyowhrZjP5/kiIVCS1YH1+oHdHbqe3QWr6C5t6BQM2nEKoHvoo3IARfRxq83hZUJSIiIiKi/uGCl0RHOEOrxZ6ONhzwA69UHkp4b3V7oxzVPznmEshwQVVzoOmjAAA+3wR8v+R0vHFgKcbZpyDgR49SHt5AEU4rmIzPG7bFLZZ4cGkzcHh6q9iZHVpUssgRfB67OxoxPWcMdMMC3V8Gm2xGibMQ0AGL1PPtV9Md0AwrMix2TMkshd8/MWx/hn4WCux7IBlZ6FcKX/SeuB7jysHpWVfAr2aiWV6MfGsRfP48AEC6+dBCm0dnFaPB344Gf983RewmM6zIg8+IfcZ5vB3T8k+0OY6L2maStAO7cHyP7fYAk04EoI8FdYXaAe+e/4PasBqGvxGB6o8QqPkYtqI5wxQgpTKleR1iv81JRERERES94cxvoiOc4t+AtS1+WNAStn1dqz9u55BFLgAzDCP8LcchJsIsycDBhHgkRbaisFnVI4HWR1J3rKsIRfYcOEwWlDiKQtuLHBlwmoIz3w+vp22RTdD04EzvsvRCjHMcFbFvXRmNgNq/ciICh0qpdJdjc2KMMw+KFowpzZwGm3ToBsQEVykkSCh1ZcMsyT3KufQm35YOiMTdW5WlYI1vsxH9Bo5V+BCpsrxFaxyy2Ci16O07oftqIYwAfBXzAd0HI9DS94FEfdDduxMdAhERERFRSmDym+gI1+jZgc8bfaj1BcK2t6uR69YOhK7bIQw7jG5lPADAp+Qg2+YMLnDZm8BMHJ89sff9w8xltobKnXTXvSxIhjkTo+yjMMqRiSwcmn3sMFshS8EEdNeimV0yLfaDi3wC09JORsAXOfmtRngd+2IYMmRJQm63mwhW2YRpWWORZ8sL9WeTHIA4NNs7W56C0c5MnJx7AqyyBbm2KOPUzShnNgx9+G5YmLtlr11mIMsikOb5Gq7AvqjHZWr7YTcD9m73BNIsiFoqhag7pWktRKAZQmlD4MB7AAC1eUOCo6JUoDat5Y0UIiIiIqI4YPKb6AgmhIL36rPRGNCwqMYzJOcY7cyEplsRUCInTvNiSKja5J71sYdTlvVQ7epCe+RZ12OdxQCA8oxCZEgT4JJGY2b2sQhoh5LA0sH/AMAqh88ePzFnUuixohTGLXYA0HQ7Li+ZA7Nsgk0244ScsXCYLLBIFmTIxaF2FtkB4FAmWNEycFreTMiQUeocjRxrbDPO8605UIa43nf32doZlkOF4uc4NmOSvQEmocAViD5zMt+3HiU2H2ymQ8dnWeKzyCsdIYxAz228eUJxYvgaEh0CEREREVHSY/Kb6AimK7uwuM4PAaBTF322H4jJGWNgCEvE2dIAcHRGeZ99yFJ8F73srxJnTuhxljXyjOYsUykAYKyzEL5AEXz+UZDVYyG6zdKWu6VsLVL47O1Cy4TQYz3OtbINYYEUOAkWyQSH2YKxzlI4zBZYZSuEVhBqJ0GG0S1prek2mPUyABJcUhHMh5VN6U2GOQdCxNZ2oJwHq6pYZMBp1kOv7IymP2Kc/nWwjT968jvLsw65plY4TIc+5eCUuVgh9YOI3ydkiA4nDCXRIRARERERJT0mv4mOEELoEIbv0NdGJzo7FmCUtX1Iz1tgLY6636Yd22cfZql/ZT7iqciRjlJnsG53sSMT01xnRmwniTSUurJRbJ4JABCQeySxZ2bNgU0KJs+dpjQAwNziGShyZEAS2UP1FEK+k30+Lin6PkySCafkTUeefAICB+t9A4AJDgTUtLBjdN0Cs1YGXS2CWYotoW2RhnbW9yiHjkJbcMbtea61GGeuxWinhlybgE2txzGNj8bUj8O/F8f5F8Aq6RjvUjAzowEZ8tB8AoKIqN8EP4lCRERERDRYTH4THSGE8MDQqkJfa4FvUBcwIEtDO7PMjOizmNUYymPYZWefbYaKy2xHvjk4K7vYmQ1fIC9iO1134ZjMCfApub32pSgFMCNYOsQkBV+XHEsxsixO6ENcJgQAvIFCeP2jIEsmOKRs+JUsdP8xIBl2HP5jQRdmBLQ0qLoDFjm2GekShvZmRabJjxJTLQBgSvsryDWqkWfqQJ7FBwgd6Z7NMfVjEgEUdiyDRTKQIXuRL6oxxtg2hJETEcVOaNEX7SUiIiIior6ZEx0AEQ0PReuE17Ma6XoNJFM+3O3z8bstOXi7ujPu53KYLMiw2FHv74AJaX0f0AczEpf8HuMsgN8/Hj8acyFqlH1AL1UOFM2FXMdoKFEm6hmGDJ+vNFiwWsiYnV8Gk3Ahx5YORRu+52iTMmAyMnD4bQ+vvzC8mDYAIQ79mDi8VEsksiQBIv5laia4ApAhsNtjx/dbbkNVxlx8jnEoaH0fjc7/QIu1GOPEdsj9LBOQ416OY3PX4/j6P8JvKUFe++K4x05ENBBC9yc6BCIiIiKipMeZ30RHiDZFQZXXjU5Vg19TsdWThf1eDfGs9N1Vm/vY7FJMSg+WOzGM2BZJjMaUwOR3tjVY71uW7Mi25ERtaxLR4zQMM3DwNTIjDeMcEyCMdBTZi+ITbIxkkQ5xeJYbCMXWG4vU98xvl9mK7otmxkum7EGG7IHTDDiUCqSplbCbAJPhg11rhhUB2I02mHV3v/suCHwFe6AGsvBD5mKFRDRCCN3XdyMiIiIiIoqKyW+iI4RPqcTmlmZ80uTArvYa3L5Zx9rW+M4q+07BFJglGZOcR2OsYyIAQNUGX85DGIOfPT5QaVI+AEBXC+HCxKhthZ4evbNuyWWffwzM+kT4lSyYA7MHHWd/+HxFGMgHf+QYjilx5gDCPoCoorNJARShCulmAy7fTpTV/Q3pluA0/EL3xyjStiNH2QmL3v8a9pNr/gir1gCbWhfvsImIBszwNyc6BCIiIiKipMfk9yBJkhTTv9NPP73PvhYvXoxLL70UJSUlsNlsKCkpwaWXXorFi/kxfBq8pkAAb9cY6NR0SNoObHPHt9Z3sSMTY+yTMSN3AiBJkCUrJEgQYvBvM9ph9bAtcvjMYrmPGcsDlWGxQzKCNbxV3QZVjT6LPdDH/sPpum3AsQ2KJEFR+0jURyBLfY9lhsUBKdKs8kGyQMEoZRNk6dBnFcZYWwEANqUOpe4PkOtdPahzOPyVgzqeiCieNPfORIdARERERJT0mPweAQzDwE033YS5c+diwYIFqK6uhqIoqK6uxoIFCzB37lzcfPPNMIxeig0TxWBbewALazxQ9QA2t/mgingWPAEmZ5ZCaAWY4JwESUiQjUxMTM+DIQa/tIBuhCe7yzMKw77Otw3NzPB8ezp8SjYAQAgTNCN62Q/Rz3IfffU3lPQBnFuW+h5Lh8kelxseh7PDh6LO5ZC6FeqZrK0M7lOrUdT6LnLblw7qHGajY1DHExHFk9qwKtEhEBERERElPS54GSe33XYbfvKTn/S63+Vy9brv3nvvxQsvvAAAmD59On71q19h4sSJ2LNnDx555BFs2rQJzz//PPLz8/HQQw/FPXY6Mni0NgBAqfkrPLkv/otojbaOh+JPg9koAyQdAd2GE7OPhYjDqQxhCs4iP5j4LHUUYUtbTWj/KEcW6v0dkCUJ2VYnmgOeQZ3PLMnQhAG73PcCj0cSKYbkvkkyQTfiX/bEKvzI8GzE99Lnh7ZNbvxH3M9DRDRSqC2bYATaINuyEh0KEREREVHSYvI7TgoKCnDMMcf0+7idO3fiL3/5CwBgxowZ+Pzzz+FwBEs8zJw5ExdddBHmzJmD9evX49FHH8WPf/xjlJWVxTV2Sn3C8EDXmgAAkuHGly3xT37LSIOADLVbiRInCuGNU+9OswUeLViqxWUOn+ld6hyFr1oPwG4yo8iROejkd6bVgeaAByaZH47pTo7hw0IWyQxNj/9NAwEBm1qHSfWPhbale7+J+3mIiEYKoboPLnqZlehQiIiIiIiSFjM7CfbYY49B0zQAwBNPPBFKfHdxOp144oknAACapuHvf//7sMdII5cwfGFfa4FNEdt5Wu7Hzo5gSYer1vnRrMS3hM6Pxl4Ev390j+1ef3HczpF3sLTJ+LRcpEnBc01KL8BVY85CjnQsyjMKMD4tH2nmwc86HuvKAwDk27IH3VdK6aOEzfi0XFhlGwwR/3IuVhH8XncoVXHvm4hopFLqlic6BCIiIiKipMbkdwIJIbBw4UIAwOTJkzFr1qyI7WbNmoWjjjoKALBw4UKIONdqpuQkhA5d3Ru2TfF+HLFtq5qB5Q0BAEC7Gv/a8SaRDhHx7SR+bzF59uBikmlmOyCcAIBRjhzYRBEULR0TXCUYZc+DpVtdarvJPKDFMF0HE+jmGGpcH0kk4cCkjALY5Mivy5SM8bCbnENybhO0IemXiGgk0zr2JDoEIiIiIqKkxuR3AlVUVKCmJli3eM6cOVHbdu2vrq7Gvn37hjo0SgLCaIfifR9CGDD0dgCArlb0bCcCuHpDGr52B4YsFk3LHLK+uxzjPA0AYJUt8PlzIEsSMizp8AWKoRsWZJgzkWvNh0k+VJf6+OxxKLCn9/tchbYiyJIEWeJbZHe+QDGm26/H0Vk9Z/kDQL65HHZ90pCc26XXD0m/REQjmVDbEx0CEREREVFS47TGOHnzzTfxxhtvYN++fTCZTCgqKsLJJ5+M66+/HmeccUbEY7Zu3Rp6PHny5Kj9d9+/bds2jB8/vl/xVVVFLxVQW1vbr/4o8QytFkJvhhCdEEYTlMBG6IYPwvBDkg+V/jB0NyzS0CS+p2SOwrb2WhhG/MtcHE7Xgwn2LGsaYEgosmdA7rYAo1mywYIc2OUWAECRIx1lrino1Hyo87n7dS6HlI18WxpcpjRwwnFP6ZaeC/hKkCAJK/Q+SqMMxFFpXhS3fRr3fomIRjqhD92NayIiIiKiIwGT33HSPZENALt378bu3bvxyiuv4JJLLsG8efOQmRk+O7Z7QrqkpCRq/6WlpaHHBw4c6Hd83Y+n1KCr22HozdD86yGbsuF3v4AtnrGYbbRAkg/V2vZqPjjl+C9wCQD/kXEOaryvQxuG5LeiOmCTzci3FsHwAxlWR9jMbJNkh6bkINdSBAA4OnMcFN8UZFt39ftckpGHHFsaHHI2mHboKc3UM/ltlmUImKAb8V/scra2EEWt78a9XyKikc7wNyQ6BCIiIiKipMbP9A+S0+nEVVddheeeew4rVqzApk2b8PHHH+Pee+9Fbm4uAGDBggW4+OKLoapq2LEdBxcgBIC0tLSo53G5DiWbOjs74/gMKFkZeiOE0Q5d+RaqbzWE0YJ/VVnRrmjBfUIBALT5KvFV2+BSuKaDSeZs66EFWc8oPBreQD4uKv7eoPqOmSThytILYNXLAADpZgcyTd3Kb6jFUHU7zMYYAECGOVgjfJw9+qcqTJIM68FSKdeMvQAT0vLgV7JwQuYJgBq/BTtTSZ7pWBybHbxhZz74vTElcxRUNQ26Hv/kt83o38x9IqJUobv7fwOXiIiIiIgO4czvQaqurkZWVlaP7WeffTbuuOMOnHfeedi0aROWL1+Op556Cj/72c9Cbfz+Q7NxrdboM2dtNlvosc/n63ecfc0Wr62txUknndTvfilxDK0GgAFDb4QW2AyIAPZ4dDQrAg5tMSyOU2CyTERArUeNf3C1OzKtdrQEvPiP3Cn4qHYjACDbmgMEZKj+/pXgGQzFPxFCBBPVTrMdQj/0aYqAFryBFFCD/zdLB68pLXoCO9NqR6bFgRpvOxTfVIx27gIgQ1LHI6APzeKNyc4XyEWRPRdfowpW2QRNN5BjzYBm2ID+ry/aJ/ngjRwioiON7q1JdAhEREREREmNye9BipT47lJYWIi33noLkydPhqqqeOKJJ8KS33b7obrMihI9uRMIHJq563A4orSMrK+yKpQ8hDAgSTIUXYcqsmHzr4EqjcL9e07E0oZOCHUzGrQDyJCakCG5sKd9cLPGSpxZOCZzAvKsJTDBjqvG5OKLpnWwSy5oAAwR/5m+velKfAPAWPsUBHxZEdv8qPgngFyDAABFCyawT80/Ck1KO7a314W1v7DwImhaPqQMA4oGpJldgAYoTHxHVST/B64eUwCzNgnvNDwPk2QCRPzPc1x6G7Jav4l/x0REScDw1cFQPdDdOyGEBmvezESHRERERESUVFj2ZIhNmDABZ599NoBgHfCamkMzeNLT00OP+ypl4vF4Qo/7KpFCKU4Eb4QowoomLRuADp9IwxeNClQhINTdeL/ehl0eCX7386j3D3zWrMNkwYnZk5FjKYRJZEIyHLAhC8dkjocFWfF5PgOl50D08hYW0NJgMoKzwgVkTEjLQ74tDyWOAlgOljixyCaYJBmGlgNVc0DRgqWFrJItYp8UTtWdsIni4GstyaHSOPGWIzXDorcNSd9ERCOfgO6phKG0Qmv9FkLnJ2GIiIiIiPqDye9hMHXq1NDj6urq0OPus7G7L34ZSfeyJVy88simBTbB0FuxqSMXb9ZmAJCxzp2Hr93BpPj6lg4sqe9AILAD7f79+MmmgdeIP61gKjJNJdD80+D1FcIbKITPPx4Z+tkIBEbF6RkNjF/JibrfGygMPT416xJkyBNQKH0HE9LyAACn5U9BiTMrVC6li0Ue+sU7U4FuWEOvsUmSIA/Rj5NMow457uVD0jcRUTLo2PAb+PbOR/vKH0NpXJ3ocIiIiIiIkgqT38NAkiIXwe2eFN++fXvUPrrvnzJlSnwCo6SkqzthaNWoC8hYUq9CSA60q4cu5Vf269jUpqAl0I67txXDow+sFoVZkpFrKYIkgslh6bCZvYaRPFWTDMMOYTigGxbIkoxT88sx2jYeTnPPWd4OKTsBESa3QkcmhqTYN4CiwKYh6ZeIKFlo7p1QW4LrbajNGxMcDRERERFRcmHyexhs3bo19Li4+NDie+PHjw99vXx59JmNn3/+OQBg9OjRGDduXPyDpKQghIDi+xyashnbO1Q0KzrqtDI8v08Ntfl3vReVXhXb21vwr/0Dn/U9Li0XFqMUutZLmZ1ebuqMRIrmhF/JgiEskCFhom0OZLjgMEWY5a0ndkZ7MproKu31Jt9gmCRgcs0f494vEVEy0du3QzuY9PZXvpXgaIiIiIiIkguT30OsoqICS5YsAQBMnDgRo0ePDu2TJAkXX3wxgODM7i+//DJiH19++WVo5vfFF188JEkmGvmEMKAr30LRdSjez9Do74QA8Jc9mVjV7O/R/t3avuuCOs2WHrWa7SYzTi+cigJ7FvxKFlQ9tWpgT80oh6K5YOhZODZ9Vo/9qmaPcBRFk2spRqF5at8N+8nMn1BERGFEoDXRIRARERERJRWmFgZh0aJF0DSt1/319fW4/PLLoSjBJORPfvKTHm1+/vOfw2QKLsB3xx13wOfzhe33+Xy44447AABmsxk///nP4xQ9JRthdMDQG1CrFkDV/dB0FUIA2zrUiO2/jJAQP1xZeiEyLOHJ3iyrAyX2MjhMdgAyBEzxCH/EcEmjoRtWBNQ0eH1je+w3hCUBUSU5PR9ef/xnzJt5n4+IKIzub0h0CERERERESSV5ivaOQHfccQdUVcXll1+O2bNnY9y4cXA4HGhqasKyZcvwzDPPoKmpCQBw6qmn4qc//WmPPsrLy3H33Xfj4Ycfxvr163HKKafg17/+NSZOnIg9e/bgz3/+MzZtCta8vfvuuzFp0qRhfY40MgihQPG8A9k0Cgvr0nHZqFFwawIVHhWV3oH1mWdzYVrGcSh11MNmsuOdA18AAMrTS2AWaciyZAGB+D2HkcIfKDj4iPf+4iWgZA5JvznWyDd2iIiOVCLQAkP1QLa4Eh0KEREREVFSYPJ7kGpqavDEE0/giSee6LXN5Zdfjueffx42W+TyEQ8++CAaGhrw4osvYtOmTbjqqqt6tLnxxhvxP//zP3GLm5KLoTdC8S6B4bgST+71otCegRqfAlUIYADrWZolGdOzJ8Is0pBhViHDAlmS4DRZMMF+AoSwIR0TMcC8+ojGmd3xN1SfDjBLA1uslYgodQlorZthLTg50YEQERERESUFJr8H4eWXX8by5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3bUfmRZxgsvvIDLL78czz77LNatW4empibk5eVh5syZuPXWW3HeeecN07OikUjojRBGJ/a2bUGdX8MtG92D6m9adgmK5FPh86cBGAubvQalzmycnncWvL7RfR5PNBwsUu9lpYiIjlSd3z6KnO++m+gwiIiIiIiSApPfgzBnzhzMmTMnbv3NnTsXc+fOjVt/lBo0/0boejO8GAUzOqK2TbfY0KH2XqukwJ4GWZLhMNmgaI7Qdl1Pg8NkhdCy4hU20YCVufxwygEUY3+iQyEiGnEMfwN0Xz1MjsJEh0JERERENOKx6C3RCOdpuR9e/1b8tWI0FCN62zkFx/a6L9Nix6l5x2Na5jiMc5SFlaoIqGmYmjkJfjUrTlETDdy5gSfxwwNz8J3qmxIdChHRiGN4qqE2rE50GERERERESYHJb6IRTBg+QHjRogAv7/NgWbMzYrsiRwYAINc0CRkWe8Q2kzNHIw1TYZWtkLSyw/bKcOq9J86JhovNBMhChVWtg1VtTHQ4REQjju6vhzBScEVqIiIiIqIhwOQ30YimAwAkowFtqo5n9voitiq0ZwIAhOFCrs0VsU2poxR+JQs2kwNqt5InXRQt8nFEwynHqsOqt0KCgNnwJDocIqKRR/cDQk90FERERERESYE1v4lGMGF48LcDczAtw4AmAtjtUXu0kSBhYtpYHJ92JvxKBmwmS8S+0uRCeAE49eOgDHHcRAN1vGULimreS3QYREQjmjB6/j5AREREREQ9ceY30QimGioe3O7GHk/vl6rNZIJdSocvUAAhTDBFuKzz7WnQtRwAgKJFLp1CNBJk6A2waC2JDoOIaEQTavQFsImIiIiIKIjJb6IRzK8L6AL4xh15pctMix0XFX8Hmn9aaNuEtBJMSi8IfZ1mtmJu3hUIqOlDHi/RYJW3PJfoEIiIRjx/5duJDoGIiIiIKCkw+U00gql6KwDg33U9a31bZBOmZpXAidKw7TmmKRjjKoAECQAwMb0Qhoi8CCbRSGKRAbtal+gwiIhGPM78JiIiIiKKDZPfRCNYwLcWANCk9FzYKsfqRLljJnQ9fPFKn78QJbbJGO0MLoJ5VFoZZ31TUsix6nD5tic6DCKiEU/3NyQ6BCIiIiKipMDkN9EIJhm9z4Id48qDqhRAN3rO6lYDJRjjyofdZIZTKh7KEInixmXSEh0CEVFSMPyNMJR2AIDm3gPd35jgiIiIiIiIRiYmv4lGMuHtdVexvQiaYYNmWHvs0wwrbLIVZxedAK9/9FBGSBQ3LjmQ6BCIiJKD7oc4mPxWGlfBYPKbiIiIiCgic6IDIKLebXJnAgj/g1aCBIfZjCxTKXxq78cW2UoAZQp6FkwhGnmKHTryJCZviIhi1br8KkgmO3RvFWR7ASzZ0yDZcpBxwoOJDo2IiIiIaMRg8ptoBFvd0nNbusWGAns6IJxRj7VI6fBHmBVONBKlmRQ4RXuiwyAiShpq4+rQY929C4a/CZLJBjD5TUREREQUwuQ30Qj2ZbPSY9u5RbPQqXcAIvrl6/eOB6ShiowovrJkN6a0v5roMIiIkpbu3gHZVZroMIiIiIiIRhTW/CYaYYRQoCk7YGh1UIyeCwC65FHIN0+IuNBlGImZb0oeDvhg05oSHQYRUXLTA1AavoQRaA1tEpo/gQERERERESUWk99EI4we+Baepl/C734eNb6eM79VJQ9+/3goWvSyJ0TJwmkGivQdyG9bnOhQiIiSmuFvQPOHsxGo/QwAIISA0vBFgqMiIiIiIkocJr+JRhhdqwBEALqyHZoI33d0ZjFU3ZGYwIiGSKFNwZjOfyc6DCKilGH4gwsI+3a9AN/ul6G2bUtwREREREREicHkN9EIIww3AAFDr0W7qoftG+XIS0xQREMoW+7AqObXEh0GEVHK0N07AAC+Pa/At/f/wb+XayoQERER0ZGJyW+iBBBGR8Ttht6OFsWE52vnYIdyEtpUI2y/WTINR3hEw8oh+SALve+GREQUk1DZE80b/LpuWQKjISIiIiJKHCa/iRJA9a+PuF1XtmBXpw/3be3Au7U9F7S0ytahDo1o2KWL1r4bERFRzHRvFQBA69wX/H/blgRGQ0RERESUOEx+Ew0zIXQYWlXEfYGOV6GqVfDqAn/d2Rm2rzyjANnS0cMRItGwytP3JjoEIqKUIgIt0D0HIALNwa+VVnh3vZjgqIiIiIiIhh+T30TDTkAY7RH3GEYrOrXgZamK4GqX49NyAQA51gyoevrwhEg0RKwykG87VM7HaQYKvasSGBERUWpSGteGfa17DkBr3wnNvTtBERERERERDT8mv4mGnQHFuyRsi67uBwB0iCLUBcLrep+c/kMAgMvsgKbbhidEoiEyxuHHNYHfhb6e6axAaeO8xAVERJSi2pZ9P+zrQM0naPn4HDR/eGqCIiIiIiIiGn5MfhMlggiEfan6V0BTduDLthw8W6GEtrvMVqi6Hcdnl6LAWjTcURLFnUNWYDGCJX2mpbsx2b84wRERER0Z1KZ1MFQ3DH8DhKEmOhwiIiIiomFhTnQAREccYQBQIQwvJNkJANCV7RBaPZ6rCGBTmz/U1CQF708dlzELuloAPRHxEsWRQ/LBZPgAGfiu5zGMr38y0SERER0ZjACEcvDmu6ECsiWx8RARERERDQPO/CYadsFa3pqyFYZWA2F0QhidUP1r0BAwwlqmmYNlTgL+Uiiaa9gjJYqHSWk+AECh3UCxsReZnetxbsYW5HcsS2hcRERHKs+2fyY6BCIiIiKiYcHkN9GwCya/hd4EXa2EpnwbnPltNMGvH5b8ttgBAIbghzQoeeXKbQAAl0lBvvIt7Go1yrwfwxqoSWxgRERHqI6vHoARaE10GEREREREQ47Jb6JhJ/Do/jkQIgDN/yW8LQ9CSE4IKRM7O5WwlidkTUtQjJSMih1aokOIqExbAwCYYKpEed2jAIBxDU/BorclMCoioiOY7kPju0eh89u/JjoSIiIiIqIhxeQ30bATePWAD4ZeD12vAYQX1dp4NBul0AVglmSMdmYi2+qEDQWJDpaSSJmlOtEh9CAByPV/C7MEpBnNsOjtAACL3g7p4KcgiIho+Bn+Rhjekfdzg4iIiIgonpj8JoqzzY0BGKL3pJ5qABUeFUrnO9ADGwEA79ZmoGxJcOGp43PG4LT0H+OCorPh85cMS8yU/MwSMLv10USH0YPNBBS2f4CJLi9Oqr070eEQEVE3vn1vJDoEIiIiIqIhxeQ3UZx926TiswP+XvfrBxPjAakYQkoDYEanfmh/sb0QhmGGZHDWNwUV2o0+20xNa4czsAeWg+/q09LdcI2AUvF5Vg0WtRkn6f+GTeEMQyKikUQordDcexIdBhERERHRkGHymyjOfJrAi992wKdFTlh2Jb8b1Fy4RQl80hi8U3UoWW6VHYAkwa9kD0u8NPIda93RZ5vvdv4NmZ6NcJqD31+XNt2EQltgqEPr0yhLCyx6O07c/18wGb5Eh0NERN0IzQtfxauJDoOIiIiIaMgw+U0UR9WdGra1KNAFsKyX2d+6kAAAijBhS2cufr19NHZ5Di10aZFswxIrJQeTBIwJrOl1f7ZVYG76V8jrWA4AuEx+FT90LkRG53qMN1UOV5gRSQCO0lYnNAYiIorOt/dVtK+6FbqnGkrTehiKu999KPUrhyAyIiIiIqLBY/KbKI72d2ioOljD5JP9PuhGz9rfhgjOCO/UTNjYZsYrlZ1h+y1wDX2glDQkAJmBnb3uH2Nrx8zGPyDNtw0AcNyBX2Jm5S0wGx5M9C8bniB7YZKA4s6lCY2BiIii09u3w7vzWejeamhtW6B7DvS7D6XxyyGIjIiIiIho8Jj8Jopgc2MAd3/eDC1C8jrqcQ2HZnBXdepoV4KJbkMIuAPBx10zv2/5SuCx3Z6w4/8jbwKUwNjBhE4pJt+uI9O3GQCQbgHGuwLIsABZVoEylx/fr78SLt+uiMeW1f0VszJqB3xuU/BbFWdm7MJoh4Z8W9+1x7vLshrIb/twwOcnIqLh07b8B/DvXwihtIRtNwKtUY8TQsCz7XF0fv0ndH7z56EMkYiIiIio35j8JjqMZgisqglgf4eO/R1an+19mgEhBBRdYFebGrbPHTCg6MF9W1qCiXFdGMiw2LGjQ0GTEpwlLkvBLGOGJR2GsMT5GVGyMktAgbkDGZ0bkGMVSDPryDe1wyYbmGRvRJapA+mezTDrkRMTVr0Npcb2AZ3bJAUT7C4zUKjvRLbZh2Jr/z4Kn2lWYNHbB3R+IiIaXnrnPqhNa2H4myH04JoRQleg1C2HMPRej9Nav4HhOQDNvRNq6zfB47XeF/4mIiIiIhpOTH4TddOhGPigwos1dcE/+r5tUvo4AnhsoxtbW1Qs2usNlTzpUtmh4Z3dHiyv8uOTyuBif7oALi36YVi747JLAQDFphnxeBqUIo5La8INe4+CBIH7qotwvvEy/nPPNEy1VeKHe6bhmj3HAABkofbaxykVV4VmcPfH9PQm/Nh/F37VcT5O2vdj3LS3DNlSS98HdjNN3tj/ExMRUcIY3mq0Lr0Und8+AgDwVbyG1qWXQmv9ukdbzb0HANCx4Z5g293z4N/7L9S/lofOb/40fEETEREREUVhTnQARCPJgQ4NSyp98GnBciebGhScXupAhjXyfaLqTg1eTWBTg4ImX89ZUStrAlB1gXqvDr8WnAHu02SoanpYu4muCUg3u6Drjvg/KUpaGVJb2Nelbe8AACb7/92vfia5PNjeGXsteacZmOmbD4dyAGneLaHt6aIZwISY+3Hpzf0Jk4iIRohA9cdwjL8Khrcq+HXNEuidlbAWnwm1eRNEoAVKw0pYC06B7qvrcbzasgm6vxEme/5wh05EREREFIbJb6JuPKpAo+9QXeOtLSq2NSv4j1H2iO1f2dqJWo8GCcCO1p6zbzc3hs8cdysGmrxWaIYVLrMVHi2436ZPQxFOgtL7p4rpCDRa/Sbs68zOdQCAKdX396ufs31PYDvuibn9OHsnjqr4H/isY2AyfKHtDqOfZU+UPf1qT0REI4Pa8AU82/4JI9AEAOjY8GsAQM73lqN91S3Q3TsAAJ4tf4l4fODAIqiNa2AqvWB4AiYiIiIi6gWT30TdfF7ds0blN00qsu0mlGeH1+LuUAxsaVagGcA+ve/a4ADwxk4POg8ugjklsxg13laUOHOhapzxTUGnZFRhpbsEACChfwtM9sapVgEy4DADvj6+Vaemd2Kq2AAAsGqNYfts/Uh+H5XmhcnHmq9ERMkqUL0Yh1dI9Hz7KHTP/piO9+58Fqa0sbBkTwMAdH79MCRrJlyTb4t3qEREREREvWLNb6KDmnw61h6s9d3dxoZAxNrfH1f6oBqAABDQRUznWF7lx4aGYF+51iyMTytEiXP0oOKm1HKM7z0AwcUurYYnLn3alSpIANLMfSfTy8U3mNLyFACEzfoGALsRe83v8dIemETP64mIiJKD7t4VmuHdJVD1PqD7ejkiXODAIqhN60Nfe7Y/wVrgRERERDTsmPympKbGmHTuy5paPx5a2xZxX7PfQIs/PGnY4NXx3h7voM5pkS0Y4xgPp37coPqh5HNGxm6UOnuWyfmBawlyfJsAABlWgbKGf8blfBmer3C3+AVu6rwVd4tfYk5GRWgRzCKHjrvFL3G3+CVOy6hEsX8NctqXRexnQsNTuFv8EmOdkReCnZbuhs0UfDzJ+wGKm9+KS/xERJScArWfAAA6v3kEhq8ehucAmt4/CZ6t/0hwZERERER0pGDym5Jap2pANwafAF9R7Ud1Z+8FtxsPW8yyUzXgH2Ti3SY7YJOyoGjOQfVDySdfr0SWKXjzRJa6bfdvhCuwB2YJyDIrcCiVcTmfyfChuOlVFLa+h9FN/0KhvhfpFgEJwBRLBUY3/Qujm/6FYn07bHoLJET+3nYoBzC66V+YYD4AkxScnW7uFv847ECWxYAEwBXYB6vWEJf4iYgoOemd+2CoHij1ywER/F1KbVoHtWVTgiMjIiIioiMFa35TUhMI1t7Ospv6fezXjQqOzbfCr4lQKZLefNWowKMacFmC94se29i/hf8iMQVmYXBzxykZmSRgVuWPsH/CegCZ+E/7u1iGC+HWzCir+RsA4C/ewiGNYVbldTgwYS38Njsu3nNKaLvV6IRdre3z+Iv3nIwxY57A9P13wGsvw2/TVwIAprS/Al9mOmrMJbA3Hhiy+ImIKDmoDatQ/6+0HtuNQGsCoiEiIiKiIxGT35T02gaQ/FZ1gdd3dgJIQ3Wnhlgmj1d36ih2AZCAtkB8FiKkI0+ezYAsdGSjCU5zMca6F2JqbjlaLAXDFoMsVEzU1qJTDk+yZyl7kdm5IaY+sv1bAABmzQ1ZAlxmwNFZg1zjADymTFjV5rjHTUREqUHovP1PRERERMODyW9Kes0+A+My+nfMnnYVu9s0PNhLne9Illf5kGWToRqxL3BJdLhMsx8AkKNVotQ+Efm1izG3bfGwxzGj8tYe2ybW/SXm48c1PA0AsGoNsJuASfZmZNd8gam6D1Lez+AMVMQtViIiSi1Ci23RTCIiIiKiwWLym5LethYVJxbasGivF6eNtiPL1rOUfZtfR4Vbg9Msw6cZfZY5ieSL6gBMMmA3SX03JupFmhxMfpe6P4CS5UpwNPFRYvfBKgWvKWegAmM7FiU4IiIiGsn0zr3w7Z0Px4Srw7YH6pbDVjQnQVERERERUSpi8puS3if7ffhBuQuv7ehErl3GycX2Hm2e+roDDrMEQwBOs4Svm/qf/PbrAtABj8pZ3zRwmQjWOS1qfRe2FFkQcqK0C53IAgBYtBaMankrsQEREdGIZnhr4N3xTI/kt2/PK0x+ExEREVFcMflNSc+nCdy3uhWaAVR3aqHtjV4dT33thhDA1hYVFhmQADjMEjqYwKYEcYqO0ON0z1eJCySOZjX8FqopM9FhEBFRElFbNkLrqIA5fTwAIFC7FP79C9DcUQHrqDPhLL8JQmmHObM8wZESERERUTJj8ptSwt72YNJb77YO5f4ODVua1dDX6sF9isLENyWOjEM3aMyGJ4GRxE9m57pEh0BERElGqB3Q3TtDyW+9Yy9EoAVK3VLonftgH3MxdPcuJr+JiIiIaFCY/KaU4tEEPtrnxbq6ALa2qH0fQDRAdhPg12Nv/0jLUXhuzFc4o+KioQuKiIgoiXRs/gNso8+F2vot2lffEtqud1ag6b3pAASyvvMqhOaBc9INiQuUiIiIiJIWk9+UUvZ3aBAiOBPc4ARvGiISgMnOVmzxZIc+UdBXe7PRgVK5GrLoR8aciIgohRmBFigNX0Jr+xYQh/1AFcFPSnm3PwlD7YA5cwoAwJJzPCRzz/VdDic0L3TPAZgzj4KhemD462FOnwAj0ArZlh3350JEREREI5Oc6ACI4ml7i4ol+33wasx809Cxm4Hr905Gvk3ru/HB9rLQcdGeU4Y4MiIiouSht29H84ez0b7q5l7bKPWfQ2vZhOYPZ6P5w9nQ2rfG1Ld39zw0f3w2ACBQ/RHca+4EAPj2/r/BB05ERERESYPJbyKifsqyBGdvO2QN+XYDZ2dsQ5a15w0Xlxk4N+NbnOnYMNwhEhERpSTdUxV67Kt4I2IbpWEVvDueheE5APeG38C36wWoLZsQqF2KQNVi6N664Qo3qkDtZ70+ByIiIiKKDya/iYj6aZSlHQCQb2rDWGsLvrf3HORYAj3aZVo0nLfnTJy1d+5wh0hERJSSfHteDj12r/kZDH9TjzaB2qXQWjcDADzfPIxA9WIY3mp4tz8Jpf5zqC2bhi3eaPz73oJn2xOJDoOIiIgopTH5TUTUh1GO8DrdczoeAwB8t/lenNl6P0xCwQW+v4X2T0nrxI22ebgy8OBwhklERJTy/PsXQmg+GIE2GP56tHx2KbS27aH9bStvgm/PKxGPDdR+CqF5oNR/DqXhS6ht26C2bO53DEJXoHVUhG3z7XsLLZ9eBP+BRRGPUepXwF+1GACgd+5Hy6cXIVD1AYTSBiPQ1u8YKHa+va/yNSYiIjqCMflNRNSHiZaa0GObCRjb8AwAoKDtfYxqeQsAMK7hf0Nt8uQWTKn5PcbV/y+IiIgojoQO3VcLIxCc8a02fBF6DACB6n9Dd++MfKjSBgDQO/dBa98OEWiG1kvb6CH4odR+ErYtUP0RAgcWwVfxWsRjAtX/ht4ZTJjrvjoEDiyC7tkPzb0Lgdol/Y6BYqe1bYPa2v+bHERERJQazIkOgIhoJLvGuQDH7fsVxpU8iqzAdpQ0vx6xnSxUXONcgKn1f4altQ1mwzvMkRIRER0Zmt47HoAU+rpt5Y0ouGwHvDufg+Gt7vN4f+Xb8O9fCEk2I+24+xCo/QytSy9H9pzXYRt9zsE278I+9tKIx6tN69C+5mdwr/9VaJvQPMHjKl5HXdWHPY4RmheQTOjYeC8gun2izAggsP89OMZdEcMzHznc6++BtfAU2Esv7LGv4a0JMJTWiMeZnMXIv2TLkMbW+fXDcB39C7R8eiFyz/kYwghA9xyA1rYd7WtuR+65n/TdCREREaUMJr+JiHrhNAO5/q9h0duR6/8Gaf4dsKu9/1Gd498Cp3/vMEZIRER05BFqR9jXunsnlMa10Ny7APRcgLoHQwWgQuiA1vo1hO6DUNrg3T0PsrMYhrcGnm1PwJQxCQAgyVaYM8uD5/I1oPObhwHdD6H7IwSnh2aYR4xd9/XYprZtgdr6LcwZ5ZBM1r7jHyCtbTuE0CCZXTCnjx9cX+6dkEx2mNJ69qN7KgFhRD5OaYPaugWW7KMHdf7DGf4m6L7gQqbe3S/BWngqlNpPobl3Qyjt0Dv3QTFU6J2VMFQPZIur17409y4I/dBaLrItFybnKAhDByAgyan/J7QQApIk9d2QiIgoCUhCiBh+Q6RUV1VVhdLSUgDAgQMHUFJSkuCIYtPi13Hbp82JDoNS1MkZ1bhyzwmJDoOIiIgSSHaWoPDKAwAA94bfwvPNn4bkPHkXboIl9/gh6RsA6v5fOoTWCUvuici7cP2g+mr6YDbUxi8HdKzr6LuQMfMvgzr/4VqXXQn/vjcjnktt2QSl9rPQtqzT34Jj3OW99lX/ejEMX23oa+fk25E56wko9SshWdJgyTkurrGPRP6qxbCXnJfoMFJasv79TUSUjFL/tjURUT+5zIDDZGCy8lnfjYmIiCilCdUNzb0b5oyyYPmSIaK5dwxJ8ttX8QaMQHNo1rnuqYLua4DJUTCg/tTmjTC8NX037PX4DfBsfwoAYEobD3vJ9wbcl+6thX//uwhUfdDLuTZCbfkqbJu/8i1Ishn2MRf3aK80rg2rIQ8EPx3g2f4UlLplkO35sI3+HuylFwTb138Ba+GpA44/ngJ1y6G1bQUAOMZfBdmWPaB+NPcedH4dXLSdCXAiIkoFTH4TER2m2O7DaLkOx+75/xIdChERESWYUN0I1HwMc0YZtJaNQ3Ye746n4Rj/g7j2KQwVbV9cD3Qrt2L466G1fgOT48wB9enb+y/onv0DjkmpWwalbhkAwFZ60aCS356tj8Hz7SNRzrW0xzZ/xWvQPVU9kt+6tw6tn5x/sCxOtz7qP4dS/3noa++OZ5B38dcwZ05Gx6bfIfd7Pc8x3AylHa1LL4MItAAAJJMdzkk3DKgv/4H3oDashHfbP5j8JiKilMDkNxGlpOnpLZiuvB+27V/atQjoPduWOlWcrc8PfZ3h2QOnUjXUIRIREVGS0Np3QvccgNK4dsjOodQth//AIthLL0T76ttgKO0AAGv+LLim/iy0Lf2E/4E5fULvsXZWwpw2FkIPoHXZlWGJ7y6dm/8A764XAAC20efCWXZdzHEavoZ+PrPeqc0b0Lr8P2Et/A5ck/8rpmOEocP95U+QefIz8O15ZUDn1du3Q+/cD1PamNC29lU39Zj1HTkADW1LL4c5awp0T7AcTtvKm0OLnqZP/wPMGWUDiitWvr2vwpI7A+bMcnRsuh+B2k9CiW8A6PzmTwjULEHatF/D8DeFxrrre0lpWAXPtn/CNfVOeLY+HtxXcApkRxG8O54BAKgtX/V4jYiIiJIRk99ElJLGiJ04turusG1vFUdOfheZW3Fs5d09dxAREREB8Fe+DRiB4L8hI+Df/x7spRfCt3c+hBpMfsNQ4Jr6M/j2vQkRaIZrys+AKMlv/95XYS0+GzA0BA68F7FN95nMhq+uf8nvWBLEsfblrYa/Yj6E7o85+a137oNv3xtwHXM3jIOLXPb7vIEmBGr+DWf5zcE+ffUIVC+O+XitfRu09m0wucZCbf4Kvl3Ph/Y5Jl475Mlvz7Z/Iv2E/4HJNQad3z4CHLb4qu7eBd29C/aS8+GreA2BquCEEKH74Jr6M6gtXwdfd6UVgeqPAACGrxaaexcMb/XBr+ug++uZ/CYioqTHBS8JQPIuuMEFLwkALkjfAANmKJIdp9X9AgBgV6phU8P/IOpwHYenchejxmfCVc7F+NQ4F7e3XACL1gJnoCIRoRMREVHSkAAM8Z9OJjtkW97BBGTwXNZR34VszYZ//7uAMCDbCwDZ2msXQmkDZDMgmSACMfyeLJkhO4pgchRB99Uh/cSH0LHht3BOugHp0/8Qata28iYEqv8Nw98Y/5sAB5+3tfA0ZM95NWrTzq8fQsfG/4ZszwvGMkCSJR2SJRMZM/8KSBLall05gE5MkKyZYbOuJVsuJJMj9HXGjEfgmHD1gOPsrnXZD6A0rILhq4FsywUkU9QbAJI1O3gTRRjBDQdfZ6F1Br9P+pDxH/+Ea8pP4xI7hUvWv7+JiJIRZ34T0YhkkQHViLwv0ypgkQ798XlM2/NodRwX3OfZ0Guf6Z7NKCh0Q7FlIj+wGWNdM6K2JyIiIjpkGOYM6X4Y3vDSa2rLZkDooQSm4Y9f2REAgNBgeKtCSW2lfgUMbxU8256AY+KPINtyYSjt8Fe+HVPCdEAOPm+1YRW0jn0Rm0gmO0zOImgdewGIQSW+AUCoHRBqB9TmjQB6+aWzz070sMQ3AIhAc9h3StsX10OypMOcdUxom2zNgmzLOnSMEJAkKfS1oXZAtqSH9WuoHdBavwl9f8Ty/IXSGr4hwvdXNIEDi+CcdCMksz3mY2Jx+PPtixFoA2BAtuXENQ4iIjoycOY3AUjeO8+c+Z2abCZggsODbZ2uiPv/P3EXSpr+3zBHRURERHTksZXMRaDqw0SHAdlZgoIrKtHw1jgYB2ttJytz9nHIu3ADdG8VzGlj4d3xLJxH3RLa37Hxv5E2/Q+QJDlsW+fXDw57rKa0cciY9dSgFiY9XKD63zBnHQ2TK7a/OdvX/Bxay1fIPW9Z3GJItGT9+5uIKBlx5vcIU1lZiX/84x/44IMPcODAAdhsNkycOBFXXnklfvrTn8LpdCY6RKIhd4yrCWONbdDTZmBnpyNs3+yMGmTXrE9QZERERERHFqV+RaJDAAAY3ip0rP9V0ie+AUBr3YyO9XcDZgfMaRPgXv8rwGQDDia7A3VLYdo9D5AtoWMCdcsSEqveuQ+tn5wH+/irYSs5r1/H2ksvhmzN6LFdaVwD757/Q9Zp/wdJkqB76xCoXQIAcIy/GpIcnqYwvAegNKyA4W+CbM8b+JMhIqIjEpPfI8iiRYtwzTXXwO12h7Z5vV6sX78e69evx/PPP48PPvgAZWVDu4AKUaKd7n4EpY0vI7vkz9iJ60PbbSbgB3umJy4wIiIioiOMUDsSHUKIZ8tfEx1C3Hi2/j3s6/Yvrg//umHVMEbTN3/FfPgr5vfvoFNfhrPs2h6bNfcO+Pe+Cm3aPbBkHwNfxavoWHcXAMBeciGkbiVhAEBt2gAIA5p7J6xMfhMRUT8x+T1CbNq0CT/4wQ/g8/mQlpaG3/zmNzjjjDPg8/nw2muv4bnnnsPOnTtx/vnnY/369UhPT++7U6IkNN4VQGHVYgBASftC/DAnK7TPYvh7OYqIiIiIiEYSzzcPQ2n4osd25eAs9o71dyPzlBfg3fF0aJ977c8AU7ca40KH7qkMtv/q9zCljQ3tsuafDOek64ckdiIiSh1Mfo8Qd955J3w+H8xmMz7++GPMnj07tO+73/0uJk2ahF/96lfYuXMn/vrXv+KBBx5IXLBEQ6jQ1AqrFlzIKbtjFWZ2jKxZL0RERERE1DetfRu09m297g9Uf4SOTfdBd+8KbfPt+b9e2ys1H4cfX/kuHBP+E5LJOvhgiYgoZcl9N6GhtnbtWqxYEayld+ONN4YlvrvcddddmDJlCgDg8ccfh6qqwxoj0VC7w/Qo7lWuxfl1PT8aSUREREREqce3+6UBH2sEmtD47mQ0vDsF7atujWNURESUSpj8HgEWLFgQenzDDTdEbCPLMq69NpgUbGtrw9KlS4cjNKJhYTcBpU3zkN/+b6R7Nic6HCIiIiIiGg7CGNThemcF9Pbt0D374xQQERGlGia/R4AvvgjWQXO5XDjxxBN7bTdnzpzQ45UrVw55XETD5SY8DKvWlOgwiIiIiIiIiIgohbDm9wiwbVuwDlpZWRnM5t6HZPLkyT2OiVVVVVXU/QcOHAg9rq2t7VffidTq1+Ftak10GDQIFhlAxyLUcC1LIiIiIiIaAKvVD28ff/OOJN3/5tY0LYGREBGlPia/E8zv96OpKTjjtaSkJGrb7OxsuFwueDyesGR1LEpLS2Nue9JJJ/Wrb6LBejfRARARERERURJbBiD2v3lHksbGRowbNy7RYRARpSyWPUmwjo6O0OO0tLQ+27tcLgBAZ2fnkMVERERERERERERElOw48zvB/P5DtR6sVmuf7W02GwDA5/P16zx9zRT3+/3Yvn07CgsLkZ+fH7X8ykhRW1sbmqW+du1ajBo1KsERUX9xDJMbxy/5cQyTH8cw+XEMkxvHL/lxDJNfMo6hpmlobGwEAEybNi3B0RARpbaRn+FMcXa7PfRYUZQ+2wcCAQCAw+Ho13n6KqkCBGuOJ6tRo0bF9Bxp5OIYJjeOX/LjGCY/jmHy4xgmN45f8uMYJr9kGkOWOiEiGh4se5Jg6enpocexlDLxeDwAYiuRQkRERERERERERHSkYvI7wex2O3JzcwEAVX2sTt3a2hpKfvdnAUsiIiIiIiIiIiKiIw2T3yPA1KlTAQC7d++Gpmm9ttu+fXvo8ZQpU4Y8LiIiIiIiIiIiIqJkxeT3CHDqqacCCJY02bBhQ6/tli9fHnp8yimnDHlcRERERERERERERMmKye8R4JJLLgk9fumllyK2MQwDr7zyCgAgKysLZ5xxxnCERkRERERERERERJSUmPweAU466SScdtppAIAXXngBq1ev7tHmr3/9K7Zt2wYAuPPOO2GxWIY1RiIiIiIiIiIiIqJkYk50ABT0+OOP45RTToHP58M555yD3/72tzjjjDPg8/nw2muv4dlnnwUAlJeX46677kpwtEREREREREREREQjmySEEIkOgoIWLVqEa665Bm63O+L+8vJyfPDBBygrKxvmyIiIiIiIiIiIiIiSC5PfI0xlZSUef/xxfPDBB6iqqoLVakVZWRmuuOIK3H777XA6nYkOkYiIiIiIiIiIiGjEY/KbiIiIiIiIiIiIiFIOF7wkIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8pqRUWVmJu+66C5MnT4bL5UJOTg5mzpyJRx99FF6vN9HhHZEkSYrp3+mnn95nX4sXL8all16KkpIS2Gw2lJSU4NJLL8XixYuH/omkqIaGBrz//vu47777cN555yEvLy80Jtdff32/+4vHGGmahqeffhqnnXYa8vPz4XA4MHHiRNx6663YsmVLv2NKdfEYw3nz5sV8rc6bN6/P/rxeLx555BHMnDkTOTk5cLlcmDx5Mu666y5UVlYO7gmnmPXr1+MPf/gDzjnnnNB1k5aWhvLyctxwww344osv+tUfr8HhF48x5DWYOG63G6+99hruuusuzJkzB2VlZcjMzITVakVBQQFOP/10PPLII2hubo6pv1WrVuGaa67B2LFjYbfbUVRUhHPPPRfz58/vV1zz58/HOeecg6KiItjtdowdOxbXXHMNVq9ePZCnmdLiMYbLli2L+Rp84IEH+oyJ76Px8+tf/zrs9V+2bFmfx/BnIRERxUQQJZn33ntPZGRkCAAR/5WXl4tdu3YlOswjTm/jcfi/OXPm9NqHruvixhtvjHr8TTfdJHRdH74nliKivabXXXddzP3Ea4waGxvFzJkze+3DZrOJ5557bpDPOrXEYwxfeumlmK/Vl156KWpfu3btEpMmTer1+IyMDLFo0aLBP/EUcNppp8X0ml977bUiEAhE7YvXYGLEawx5DSbOkiVLYnrd8/LyxEcffRS1r/vvv1/IstxrH+eff77w+XxR+/B6vWLu3Lm99iHLsnjggQfi+RIkvXiM4dKlS2O+Bu+///6o8fB9NH42bdokzGZz2Ou3dOnSXtvzZyEREfUHk9+UVDZu3CgcDocAINLS0sSDDz4oVq1aJT799FNx8803h35RKS8vF263O9HhHlG6XvvbbrtNfPPNN73+27t3b6993HPPPaF+pk+fLubPny/Wrl0r5s+fL6ZPnx7a95vf/GYYn1lq6P6L/JgxY8Q555wT+ro/ye94jJGmaeLUU08Ntb3sssvE4sWLxZo1a8Q//vEPUVBQEPrD/8MPP4zDs08N8RjD7om3f//731Gv1dbW1l77cbvdory8PNTXzTffLD799FOxatUq8eCDD4q0tDQBQDidTrFp06a4PP9kNnHiRAFAFBcXizvvvFO89dZbYu3atWL16tXib3/7mxg9enTotbz66quj9sVrMDHiNYa8BhNnyZIlorS0VFx77bXi8ccfF++8845YvXq1WLlypXj99dfFFVdcIUwmkwAgrFar+OqrryL28/TTT4de94kTJ4oXXnhBrF27VixYsECcccYZMV/LV111VajtGWecIRYsWCDWrl0rXnjhhdD3GwDxzDPPDMXLkZTiMYbdk98vvvhi1Guwvr6+11j4Pho/uq6HEtBdr1tfyW/+LCQiov5g8puSStfMK7PZLFatWtVj/yOPPBLzbA2Kr8G+7jt27AjN+JgxY4bwer1h+z0ej5gxY0Zo/Dm7v3/uu+8+sWjRIlFXVyeEEKKioqLfidN4jdELL7wQOvdPfvKTHvt37doV+nRHWVmZUFW1f082RcVjDLsn3ioqKgYcy+9+97tQP4888kiP/StXrgx9r0T7tMeR4vzzzxevv/660DQt4v7GxsawROby5csjtuM1mDjxGkNeg4nT29h19+6774Ze10svvbTH/ubmZpGZmRm6CdnY2NjjHBdeeGGfybtPP/001ObCCy/sEVtjY6MYM2aMACCysrJES0tL7E80hcVjDLsnv6MlV/vC99H4+fvf/y4AiMmTJ4vf/OY3fY4PfxYSEVF/MflNSWPNmjWhX1BuvfXWiG10XRdTpkwJ/bGgKMowR3nkGmzy+7bbbgv1sXr16ohtVq9eHfWXVIrdQBKn8Rqjrms0JydHeDyeiG3+9Kc/hfp54403YorvSJOo5LeiKKHkz5QpU3r9SPGtt94aOtfatWsHdK4jyaJFi0Kv1x133BGxDa/BkS2WMeQ1OPIdddRRAgiWzjjcn//859BrOn/+/IjHHzhwIDT7eO7cuRHbnHfeeaHE3IEDByK2mT9/ftQbHNS7aGMYr+Q330fjo7KyMvRJlWXLlon777+/z/Hhz0IiIuovLnhJSWPBggWhxzfccEPENrIs49prrwUAtLW1YenSpcMRGg2SEAILFy4EAEyePBmzZs2K2G7WrFk46qijAAALFy6EEGLYYjzSxWuMdu7ciW3btgEArrzySjidzoj9dF/A8d133x1s+BRHS5cuRXt7OwDguuuugyxH/lWCY9g/Z5xxRujxnj17euznNTjy9TWG8cJrcGilp6cDAPx+f499Xb+LZmRk4LLLLot4fElJCc466ywAwKeffoqOjo6w/R0dHfj0008BAGeddRZKSkoi9nPZZZchIyMDAMevv6KNYTzwfTR+fvrTn6KzsxPXXXcd5syZ02d7/iwkIqKBYPKbksYXX3wBAHC5XDjxxBN7bdf9F6eVK1cOeVw0eBUVFaipqQGAPn/x7dpfXV2Nffv2DXVodFC8xqjrOu6rn6KiIpSXlwPgdTzSxDqGM2bMCP0xyTHsWyAQCD02mUw99vMaHPn6GsN44TU4dHbs2IGvvvoKQDCx1p2iKFi7di0AYPbs2bBarb320zUugUAA69evD9u3bt06KIoS1i4Sq9UaSuytW7cOqqr278kcoaKNYbzwfTQ+3njjDbz//vvIycnBX/7yl5iO4c9CIiIaCCa/KWl03Z0vKyuD2WzutV33X3S7jqHh8+abb2Lq1KlwOp1IT0/HpEmTcN1110Wdhb9169bQ477+UOH4Jka8xmgg/Rw4cAAejyfmWCk2N9xwA4qLi2G1WpGXl4dZs2bhv//7v1FdXR31uFjH0Gw2o6ysDACv1VgsX7489HjKlCk99vMaHPn6GsPD8RocGbxeL3bt2oW//e1vmDNnDjRNAwD8/Oc/D2u3c+dO6LoOYPivQU3TsGvXruhP5AgW6xge7t5778XYsWNhs9mQnZ2N6dOn4xe/+AV27twZ9Ti+jw5eW1sb7rzzTgDAn//8Z+Tl5cV0HH8WEhHRQDD5TUnB7/ejqakJAHr9eGiX7OxsuFwuAMFfUmh4bd26Fdu2bYPP50NnZyd2796NV155Bd/97ndx6aWXhj6q3V1VVVXocV/jW1paGnrM8R0+8RqjgfQjhAg7juJj2bJlqK2thaqqaG5uxpo1a/Dggw+irKwMzzzzTK/HdY2Fy+VCVlZW1HN0jWFjY2PYrFgKZxgGHn744dDXV155ZY82vAZHtljG8HC8BhNn3rx5kCQJkiTB5XKhvLwcd911F+rr6wEA99xzD/7zP/8z7JhEXoOR+jnSDWQMD7dq1Srs378fiqKgra0NX331FR577DFMmTIFDzzwQK/l9fg+Oni/+tWvUFdXh1NOOQU33nhjzMfxZyEREQ1E79NniUaQ7vUS09LS+mzvcrng8XjQ2dk5lGFRN06nExdddBHOPPNMTJ48GWlpaWhsbMTy5cvx9NNPo7m5GQsWLMDFF1+MJUuWwGKxhI7tz/h23dgAwPEdRvEaI4514k2YMAGXXXYZZs+eHfqDbu/evXj77bfx1ltvwe/347/+678gSRJuueWWHsd3jWGs78VdOjs7YbPZ4vQsUsvf//73UDmFyy67LGJpL16DI1ssY9iF1+DIdfzxx+PZZ5/FzJkze+zjNZgcoo1hl1GjRuGyyy7DqaeeigkTJsBsNmP//v14//338corr0BVVfz+97+Hoih46KGHehzPMRycFStW4Pnnn4fZbMbTTz8NSZJiPpbXIRERDQST35QUui9YE63GYpeuP+58Pt+QxUThqqurI85AO/vss3HHHXfgvPPOw6ZNm7B8+XI89dRT+NnPfhZq05/x7f6HO8d3+MRrjDjWiXXppZfiuuuu6/GH5syZM/GDH/wA77//Pi677DKoqopf/OIXuOiii1BUVBTWtmsM+/NeDHAMe7N8+XLcc889AICCggI89dRTEdvxGhy5Yh1DgNfgSHHJJZdgxowZAIKvy549e/DGG2/g3XffxdVXX43HHnsMF1xwQdgxvAZHloGMIRC81iorK8MmYQDACSecgEsuuQS33HILzjnnHLS3t+Phhx/GD37wAxx33HFhbTmGA6coCm655RYIIfCLX/wCxxxzTL+O53VIREQDwbInlBTsdnvocdciQdF0fbTX4XAMWUwULtpHrwsLC/HWW2+F/tB44oknwvb3Z3y7f2yb4zt84jVGHOvEyszMjDrD6oILLsB9990HIFhD9YUXXujRpmsM+/NeDHAMI9myZQsuvfRSaJoGu92ON998EwUFBRHb8hocmfozhgCvwZEiKysLxxxzDI455hjMnDkTV111Fd555x288sor2Lt3Ly6++GLMmzcv7BhegyPLQMYQCM7iPTzx3d1JJ52Ef/7znwCCZS66HnfHMRy4hx56CNu3b8eYMWNw//339/t4XodERDQQTH5TUkhPTw89juXjZl2LkcTykWAaHhMmTMDZZ58NANi9e3dopXagf+PbfaEZju/widcYcaxHvltuuSWUnOu+gF+XrjHsz3sxwDE8XEVFBc455xy0trbCZDLhtddew3e+851e2/MaHHn6O4ax4jWYOD/60Y9wxRVXwDAM3H777WhpaQnt4zWYHKKNYayuuuoqZGRkAIh+DQIcw/7Yvn07/vSnPwEIToTpXk4kVrwOiYhoIJj8pqRgt9uRm5sLAH0uNNLa2hr6JaX7QieUeFOnTg09rq6uDj3uvtBMX+PbfcEaju/widcYDaQfSZL6XIyI4qegoCD0ftv9Ou3SNRYejwdtbW1R++oaw/z8fNYa7qampgZnnXUWampqIEkSXnzxRVx88cVRj+E1OLIMZAxjxWswsbrG0ePx4KOPPgptT+Q1GKkf6l1vYxgrs9mM8vJyANGvQYDvo/3x97//HYqiYMKECfB6vXjttdd6/Pv2229D7T/77LPQ9q6/7fizkIiIBoI1vylpTJ06FStWrMDu3buhaRrM5sjfvtu3bw89njJlynCFRzHo7aPe3ZPi3ccvEo5vYsRrjA7v5/jjj++zn9LS0gHNDqKBi1aWYerUqXj77bcBBMdo1qxZEdtpmoY9e/YA4LXaXVNTE84++2zs3bsXQHD227XXXtvncbwGR46BjmF/8BpMnPz8/NDjysrK0OPy8nKYTCbouh7XazCWfsxmMyZNmtR38ASg9zHsj76uwS58H41dV/mQvXv34uqrr+6z/R//+MfQ44qKCrhcLv4sJCKiAeHMb0oap556KoDgLI4NGzb02q77xxNPOeWUIY+LYrd169bQ4+Li4tDj8ePHh76O9PHS7j7//HMAwOjRozFu3Lj4B0kRxWuMuq7jvvqpq6vDzp07AfA6Hm6NjY1oamoCEH6ddol1DNevXx+aqcUxDGpvb8e5554bei98+OGH8dOf/jSmY3kNjgyDGcNY8RpMrO4zfbuXOLBarTjppJMAAKtXr45aJ7hrXGw2W2hRxi4zZ84MLbAXbfwURcGXX34ZOiZanWoK19sYxkrTtND732CuQb6Pxh9/FhIR0UAw+U1J45JLLgk9fumllyK2MQwDr7zyCoDgQjhnnHHGcIRGMaioqMCSJUsAABMnTsTo0aND+yRJCn1Edfv27aE/9g735ZdfhmZfXHzxxVFn5VB8xWuMysvLQ7Nv3njjDXi93oj9dF+k6tJLLx1s+NQPzz77LIQQAIA5c+b02H/66acjMzMTAPDyyy+H2h6OYxjO6/Xi/PPPx8aNGwEA9957L37961/HfDyvwcQb7BjGitdgYr355puhx9OmTQvb1/W7qNvtxjvvvBPx+KqqKnzyyScAgDPPPDOstjAQrDV85plnAgA++eSTXksuvPPOO3C73QA4fv0VbQxj8frrr6O9vR1A5GuQ76MDM2/ePAghov7rvgjm0qVLQ9u7ktf8WUhERAMiiJLIaaedJgAIs9ksVq1a1WP/I488IgAIAOL+++8f/gCPUO+9955QVbXX/XV1dWL69OmhsfnrX//ao82OHTuEyWQSAMSMGTOE1+sN2+/1esWMGTNC479z5864P48jSUVFRWg8rrvuupiOidcYvfDCC6Fz//SnP+2xf/fu3SIjI0MAEGVlZVG/t45k/R3DiooKsXHjxqhtFi1aJKxWqwAgHA6HqKqqitjud7/7XejcjzzySI/9q1atEmazWQAQc+bMieXppLRAICDOOeec0Gt25513DqgfXoOJE48x5DWYWC+99JLw+XxR2/ztb38Lva7jx48XmqaF7W9ubhaZmZkCgBg7dqxoamoK269pmrjwwgtDfSxdujTieT799NNQm4suuqjHeRobG8WYMWMEAJGVlSVaWlr6/4RT0GDHsKWlpdcx6bJmzRqRlZUlAAhJksT69esjtuP76NC4//77+7x++LOQiIj6i8lvSiobN24UDodDABBpaWnioYceEqtXrxafffaZuOWWW0K/wJSXlwu3253ocI8YY8eOFcXFxeKOO+4Qr776qli1apXYtGmTWLJkibj33ntFXl5eaGxOPfVU4ff7I/Zzzz33hNpNnz5dvPbaa2LdunXitddeC0ue/+Y3vxnmZ5j8VqxYIV566aXQv0cffTT0ep5yyilh+1566aVe+4nHGGmaJk455ZRQ28svv1x89NFHYs2aNeKJJ54QBQUFAoCQZVl8+OGHQ/BqJKfBjuHSpUsFADF79mzx0EMPiQ8++ECsW7dOrFu3Trz++uviiiuuEJIkhfp88skne43F7XaL8vLyUNtbbrlFfPbZZ2L16tXioYceEmlpaaHk3aZNm4buRUkSl112Wei1+u53vyu+/vpr8c033/T6b8eOHb32xWswMeIxhrwGE2vs2LEiJydH3HzzzeLll18WX3zxhfjqq6/EihUrxP/+7/+GXRNWq1UsWbIkYj9PP/10qN3EiRPFiy++KNatWycWLlwozjjjjNC+q6++Omo8V111VajtGWecIRYuXCjWrVsnXnzxRTFx4sTQvmeeeWYoXo6kNNgx7LppfOyxx4r77rtPLFy4UKxdu1Zs2LBBvPvuu+LGG28M3XwCIO6+++5eY+H76NCIJfktBH8WEhFR/zD5TUnnvffeC92Fj/SvvLxc7Nq1K9FhHlHGjh3b63h0/3f55ZeL1tbWXvvRdV38+Mc/jtrHjTfeKHRdH74nlyKuu+66mMao619v4jVGjY2NYubMmb32YbPZxHPPPRfvlyGpDXYMuxJvff1zOp0xJVt27dolJk2a1Gs/GRkZYtGiRUPxUiSd/owbEJxR2hteg4kRjzHkNZhYsf6uUlJSIj7++OOofd13331hNyoO/zd37tw+Zyh7vV4xd+7cXvuQZZmfYjzMYMew+yemov0zmUzigQceEIZhRI2H76PxF2vymz8LiYioPyQheikUSDSCVVZW4vHHH8cHH3yAqqoqWK1WlJWV4YorrsDtt98Op9OZ6BCPKMuXL8fy5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3ZM/X344Yd49tlnsW7dOjQ1NSEvLw8zZ87ErbfeivPOO2+In01quv766/Hyyy/H3L6vHw3xGCNN0/Dcc8/h1VdfxbZt2+DxeFBcXIwzzzwTd955J44++uiY4z0SDHYMOzo68N5772H16tVYv349amtr0dTUBE3TkJ2djaOPPhpnnnkmbrrpJhQUFMR0Do/HgyeffBJvvvkmdu/eDUVRUFpairlz5+LOO+/E2LFj+/UcU1V/1ycYO3Ys9u3bF7UNr8HhFY8x5DWYWDt27MAHH3yAlStXYvfu3aivr0dzczMcDgcKCgpw/PHH44ILLsCVV14Z0++Rq1atwpNPPokVK1agvr4eWVlZOO6443DDDTfg6quvjjmuV199FfPmzcPmzZvR1taGwsJCnHbaabj99ttj/r3pSDHYMVQUJXQNrl27FtXV1WhqaoLf70dmZiaOOuoonH766bjppptiXlSd76Px9cADD+D3v/89gGDN79NPPz1qe/4sJCKiWDD5TUREREREREREREQpR050AERERERERERERERE8cbkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3ERERUYLNmzcPkiRBkiTs27cv0eEQERERERGlBCa/iYiIiAZo3759oaT1YP4RERERERFR/DH5TUREREREREREREQpRxJCiEQHQURERJSMVFXFjh07et0/bdo0AMCMGTPw0ksv9drumGOOiXtsRERERERERzpzogMgIiIiSlYWiyWmxLXL5WKCm4iIiIiIaJix7AkRERERERERERERpRwmv4mIiIgSbN68eaHFL/ft29dj/+mnnw5JknD66acDAHbv3o3/+q//woQJE+BwODBu3DjceOONqKysDDvu22+/xQ033IAJEybAbrejtLQUt912GxoaGmKKa8GCBbjiiiswZswY2O12ZGVlYcaMGfj973+P1tbWwT5tIiIiIiKiIcWyJ0RERERJ5JNPPsFll12Gjo6O0LbKykq8+OKLeP/997F8+XJMnjwZ8+fPx/XXXw9FUULtqqqq8PTTT2Px4sVYtWoViouLI56jtbUV3//+9/HZZ5+FbQ8EAtiwYQM2bNiA//3f/8XChQsxa9asoXmiREREREREg8SZ30RERERJoqamBldeeSWysrLwxBNPYM2aNVixYgV+/vOfQ5IkNDQ04KabbsK6detw7bXXYuLEiXj++eexdu1aLF26FD/60Y8ABJPlv/zlLyOeIxAI4KyzzsJnn30Gk8mEH/3oR5g/fz6+/PJLrFixAg8++CByc3PR0NCAuXPn9phtTkRERERENFJw5jcRERFRkti1axcmTZqElStXIj8/P7T91FNPhdlsxl/+8hesXLkS559/Pk466SQsWbIETqcz1O7000+H3+/Hm2++ibfffhuNjY1h/QDAH/7wB2zcuBFZWVn45JNPcOKJJ4btP/XUU/HDH/4Qs2fPRm1tLX7729/iX//619A+cSIiIiIiogHgzG8iIiKiJPKPf/yjR8IaAH7yk5+EHjc1NeH5558PS3x3ue222wAAmqZh9erVYfs6Ozvx5JNPAgD++Mc/9kh8dxk7dix+97vfAQDefPNNeDyegT0ZIiIiIiKiIcTkNxEREVGSyMrKwrnnnhtx3/jx45Geng4AOPbYYzFlypSI7Y477rjQ471794btW758Odrb2wEA3//+96PG8p3vfAcAoKoqNmzYENsTICIiIiIiGkYse0JERESUJCZNmgRJknrdn5WVhY6ODpSXl0dt06X7opkAsH79+tDjUaNGxRxXXV1dzG2JiIiIiIiGC2d+ExERESWJSGVMupNluc92XW0AQNf1sH0NDQ0Disvr9Q7oOCIiIiIioqHEmd9EREREBCA8Gb5x40ZYLJaYjispKRmqkIiIiIiIiAaMyW8iIiIiAgDk5uaGHufn5zOpTURERERESY1lT4iIiIgIADB9+vTQ45UrVyYwEiIiIiIiosFj8puIiIiIAABnnXVWqF74P/7xDwghEhwRERERERHRwDH5TUREREQAgKysLNx+++0AgFWrVuEXv/gFDMPotX19fT2ef/754QqPiIiIiIioX1jzm4iIiIhC/vCHP2D58uVYs2YNHn/8cSxbtgw333wzjj/+eLhcLrS2tmLLli345JNPsHjxYkybNg033XRTosMmIiIiIiLqgclvIiIiIgqx2WxYsmQJrr/+erzzzjvYvHlzaDZ4JBkZGcMYHRERERERUeyY/CYiIiKiMOnp6Xj77bfxxRdf4OWXX8aKFStQU1MDn8+HjIwMTJw4ESeddBLOP/98nHPOOYkOl4iIiIiIKCJJcCUjIiIiIiIiIiIiIkoxXPCSiIiIiIiIiIiIiFIOk99ERERERERERERElHKY/CYiIiIiIiIiIiKilMPkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3EREREREREREREaUcJr+JiIiIiIiIiIiIKOUw+U1EREREREREREREKYfJbyIiIiIiIiIiIiJKOUx+ExEREREREREREVHK+f8BeuVVcZN/SbQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot( \n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'intervention_examples_composition.png',\n", + " # Name of the file to save the plot to.\n", + " data \n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot\n", + "\n", + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5gb1dUG8HfUt1d3G9sYN9wrpto0A8ZgWsB0UxMgEEgChFBCQgmhfBBMaMH0aoohpprmAgZ3g3vvfXtXm/n+WK+8oymakUbSSnp/z0Mi3blz566s1WrOnDlXkCRJAhERERERERERERElhS3ZEyAiIiIiIiIiIiLKZAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESOZI9AYpNU1MTVqxYAQBo164dHA7+kxIRERERERFZLRAI4MCBAwCAQYMGwePxJHlGRJROGNFLcStWrMDo0aOTPQ0iIiIiIiKijLFw4UKMGjUq2dMgojTCcgdEREREREREREREScRM2hTXrl270OOFCxeiU6dOSZwNERERERERUXras2dP6E7W1ufiRERWYJA2xbWuQdupUyd07do1ibMhIiIiIiIiSn9cD4aIrMZyB0RERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERFFIIl+1K96CjVL7kKwbrtqH9++edjzugv7P+yl2se3bx72vCpgz6sCapbeDUmS4j1tIiIiIiIiShEM0hIREUVQs/BW1Cy6DfUrHkHZp6MhBX2y7f7KVSj/4gRA9CNYuxn7P+gu6xOs39G8/aD6Xx9G/eqnEjV9IiIiIiIiauMYpCUiIoqgYe2zocdi0z40bnlXtr1m0R8V+zRufjv0uGn7J4rttSr7EBERERERUWZikJaIiMikYM0G2XPf3u8VfQLVa0KPxcZ9cZ8TERERERERpS4GaYmIiGIlBpRtknjosWBP3FyIiIiIiIgo5TBIS0REFDO1RcBaBWltjoTNhIiIiIiIiFIPg7REREQmid6yyH18NaHHkq8yntOhDCB6K+Dd/S0CtZuTPRUiIiIiIooDBmmJiIh0SK3LFhzUsO55+PbN092vccNLCNRshHfvXNSv+r94TY8ygHfvXOyb3gUVs07BgQ97oe7Xh5M9JSIiIiIishiDtERERDr85UtU26t+uDrivg0bXkbNzzdZPSXKMPUrHwOCTaHndb8+BEkMJnFGRERERERkNQZpiYiIdPjLl6q2B2s3RtxXbNyLQNVKq6dEGcZfvlj2XAo0QGoVtCUiIiIiotTHIC0REZEOQYjhT6UU0N5mc0U/LpHETFoiIiIionTCIC0REZEuIeo9JVE7SCs486IelwgqtZKJiIiIiCh1MUhLRESkJ16ZtAyyUUz4/iEiIiIiSieOZE+AaPl+L95dV48tNc3BjCOLnbhpaD5Ks+xJnhkRZQLv7q9Ru/RuCM485B/1DJyF/SH661Dz0w3wHZiPYO3mqMfWy6RlkJZise+dktDj9hfugj27cxJnkxokMYi6Ff9E09b34SwdjfzRT8LmzE32tIiIiIiIADCTlpLMF5Tw5NKaUIAWAFZX+PH66rokzoqIMoUU9KLy+wvgL1sE357vUD3/OgBA3Yp/onHzmxEDtKKvOsIB9IK0rClK1qiad0Wyp5ASfHu+Qd2yexGo/BWNG15Cw9pnkz0lIiIiIqIQBmkpqfbWB9EUlBTtC/Z6kzAbIso0TTv+B8lfE3ru3/8jAKD+14cN7R+oWq27XQrqfZYxk5aMERz62Z6+Pd8maCaprerHa2XPa5fcmaSZEBEREREpMUhLSaUWoCUiShQp0BjrAM3/b3Oqbxd92ruy3AEZJGi9v8gUsWFnsqdARERERKSJQVpKKi+DtESUTIIQ0+4tNWe1gmiSTpCWNWnJKAb0iYiIiIjSH4O0lFR6QVpJYgCXiOJLiPXP4MFMWknUqC8b1AvSsiYtGcW/h0RERERE6c6R7AlQZvMGtE88gxLgiC3JjYhIn0omrZkLRMH6XQd3Ul8gTPSWa++cAdmR/soV8O7+Gq52Y+Bqf0yyp5OSJElCsGZ9sqeRcnz7f4Zv/w9wdzoZzpJhmv2CTQdg97RL4MwonvY01OCtTUuxt7E22VMhIpOyHU78Y/jpyZ4GEVFSMUhLSaVXk3b6+npc0k9/sRQiotioXAkKGq9TW/3jVcjqdblmVmywbovO3hIkSYIQY8mFtspfuQJlM0cBohcQbCg+9Su4O5+S7GmlnNqlfzXUT/TXw+bMifNsUoN37xxUfHUSIImotTlReubPcJYMV+1bNnME2p+3EYLdleBZktX8YhDHf/4fbKrVuThGRG1WiTubQVoiyngsd0BJ5dMJ0i7aq7cqOhFR7AS7R9HmK1tkaoxA1coYZpC+t7HXLPpzc4AWACQRVT9cldwJpaj6FY8Y7PfPOM8kddT8fNOhTHXRj5qFt2r2Fet3oHHr9MRMjOJqefkuBmiJiIgopTFIS0mld7OvT0zf4AURtQ323O6KNilQb2oMyV8X/QTSuC6tb/cs2XOxYWeSZpIZvLu/TvYU2oxA1SrZc9++efr9y5fGczqUIHUBnRrgRERERCmA5Q6ozdJbVIyIKG5E9fqyWqRYAq0ZUJeWEiU9y2ZYSXDmQfKr1Cq1ORM/GbKcGFZP3GN34OLDtesRE1HbkutwJ3sKRERJxyAtJZdOHFZvUTEioniRRL/JHRikpTZA4M1RkWkEsm38OpwOgmGfp8XubLx83EVJmg0RERGRefxWSkkTECXsqNXOWPOJQHljEHYBqPFL8AYktMuyodBjT+AsiSidSIFGBGo2wJ7TDTZ3kXqnBAZpJUlk/mOGE/21CNZtByDCkd836gWspAgL3vkrVwGiD86S9M4sFNUyZUPUf9sEgZm0qaQh4MOGmjJF+8awNjsvXBAREVGKYZCWkmJrjR8PLahCjU8/W/bG75QLQJxymAfXDcqP19SIKE15d81C5ffnQgo0AIINeSMfg6vdGEW/+lVPmBo3WB9DrdU0rklLkTVsfA3VP0wJPRccuSge/zVc7Zvfl5KJTOtAxXI0bHgZ2b2vVmzb86o8ONlpSnreqdKw8TVU/3it5nbJX62+gZm0KeOTbStx0Zw34Q1GLktjF3gJjIiIiFILLzFTUnyyqSFigFbLN9ubsLfeXM1IIqLaZfc1B2gBQBJRt+xeePd8r+jnL19saly9leMjyrByB1LQm+wptBmSJKF28R3ytkAd6n59KPTcX2buvVj94zWKtkDdNkWbb98PpsZNBZIkoXbJXYCk/v3AX7VGc19BYJA2Vdyz9EtDAVqAmbRERESUevjthZJid11s2WMHGjMrsEFEsfNXLJc9lwINgBh70FAzO8+QzPosE72VyZ5C2yEFITbtVzT79v8Yety09f2YD9O44RVFW/X862Met+2RIDbu0dzauPFV7V25cFjK2NFQZbjvkYUd4jcRIiIiojhgkJaSotqrHpgoctvQKSdyzdmAmJ63ahJRPCk/N6Rgk6kRCk94y6rJNB8/48odZFZQWpeokQ3Y6hZtKdgQ82EkSVljWdJbtTNVSfo/k17NXoHlDlJGMOz7n00Q4BBssv+cNjvGtOuOJ0efnaRZEhEREUWH30op4URJQo1P/UR9TCc3pgzIw73zK7G+UnvxHl8wDU8wiSjO1IK05jJpHQX9rZrMwQlkWNAy44LS2iSN2/JbL25l9iKCKlHlNY8Q0ExNEYK0AZ2F1ZhJmzICYZ8hP595M0a1OyxJsyEiIiKyFjNpKeEa/BK0YqzZzuaTU3eEZFp/hsU1iMgCagFRszVSbS5r5tIiw4K0klrAMFNpZNIKrYO0eoFFo1QD42kYpI3wu6SXlcyatKkjGHaBwWGLfPcVERERUargt1JKuCqNUgcAkO1ovm4QqZpBrUYmbmsBUcJ76+rxv82HTsz6Fztxx8gCZDt5fYIo8yg/WBrWv2BqBMFubZA2ULkC9uxOhvoGG/Zi//TOACRAsKPjpXUQHB5L56NFEoOoW/43eHfPgqNoMPJHPQGbqyCKgYIINuxF7ZI7IHrLkTv4Xrjaj7F+wikgULVCfUOrxY4kb4XpcSVJgtCqZILoUxlD1L5TJXXpf3Fo2vy29p4W1Kam+Pty51r4wy702Fu914mIiIhSHSNVlHCfbdHOZsk5mEkbKUj71tq6iMf5YkujLEALAGsq/HhtdeR9iSgNWXGLt8WZtBVfnw7J4LzKPh2FUCBKCqL8i+MtnYuehrX/Qd2vD8FftgiNG6ahZuGtuv0Ddds0toionn8dGje9Ae/Oz1Hx9XjTJSfSgSRJqPj6DI2th4JO3t1fRTG4PIjVuOFlRZdg3Rbz47ZxsZSGqFlwi4UzoXgoa6rHWd8o38t2gacyRERElD74zYbalCJP81vyjB5Zuv06ZEe+ve1NjUDu7J0W1PgjooxkcxdbPKIEf/liQz3Fhp2y50b3s0LD+v/KnjdufFW3v798ifoGMQjvzk9DTyV/LRq3To91eiknWL0OUqBefWOroJM9J4pam2FlFARHjqKLPb+P+XHbuKYt7yV7ChRHy8p3IaBS0qLUo3x/ExEREaUqBmkp4bTqyfbMd+DI4uYstREd3KGsWvUx0rCeHhHFWeyfGzZnHlydTpa1OUtHxzSmFNC+u6CtCFSvNbeDRr1VSaU+quSrimJGqU170TAArW7ftnnaRzF22O3guT0UfdTaUl2waX+yp0Bx5FP5TJnccyg6ZOUlYTZERERE8cGatJRwgbAAa6ccO6YMyMWRxS647M0npw6bgBdOLsXS/V6UNYl4b10dvK3OOxsDDNISUXI4CgfCt+fb0HNblrGaspqsKMPQ5mj8TKqLWGVeTUnB7tbbGnokiT7zg4cHgFWyD9MyMB7Na0UpIyAq38dvnnBJEmZCREREFD8M0lLCBcK+Zx/fxYOh7ZQnrE67gKM6NS+K07fIibt/rAxtY5CWiMyQIqz8boYQvlCNlI6LMMVI6/VWbc+8IK1uYL71axTNAl9hGYeSSsBcTMMgrZSWi6FRi/BSB30L2sFu4w2BRERElF4YpKWEC4adnDoMfMf22OUn8X4R+HhjPXoUODCk1KUMmgBw2QCfdXEZIjJJEoNo2vEJBMEBd7eJEBK0wIskBtC07UM0rHseNncpXB2Os7juqfzzRvLXxjhc5CClv3KFarskSaqff5bTuz2/1VwaN72BmoV/0MzUDFSvVjam6MI//spVqF18OzyHnYPsvtdH7B+o3Qrf/h/gKhmpGjhtITbuCT2OJpNWkgIINuxGzeLbIdbvQFClVEU6ZNIG6rbBt28enCUj4Czsr1liw/B4tVvhyOthzeTIcuGZtI4U/dwgIiIi0sMgLSVceD1Zh4EAQ5ZD2eeddc2LrlzYJwfn91YuHFHksWNfg9qttYAoSbAlIrBBlMGq5kxG07YPAABZva9F4bH/jbCHNWp+vgkN618MPW+Zg2XCggO+ffOsHT+Md+9cVHw5TnVb3bL7kDf8gbgeXzJYjqF6/nVo3DBNt0/V3EuV4/troppXMvmrVqPsk4EAAO+uL+DdNxdFJ7yp2T9QvQ5ln45qDujbPSg4aqr++BW/wFk8JKpMWt++H1A1+wLdPqKvKnEB/jgIVK8/+HrWADY3Sk7/PuZM2rL/DUHpxIVwFPS1aJZkpQVl22XPHbbIC8gSERERpRpehqaECy93YCSTNltnEbHvdjSqthe5tQfeVhNbxg0R6QvW75IFRxs3vATRXxf340piQBagtZKzdNTBR9YGtgRB/3ppw7rnoVXjte7XBy2dixr//h8N9YsUoNUSrNsW1X7JVPbxANnzps1v6favWfKXQxnXwSZUL7hFt3/l9+cDiC6TNlKAFgAg+iAF6k2P3VbULrvnUHBf9KJm4R9iLjsi+WtQu/RuC2ZH8bCpplz23C+qX4QnIiIiSmUM0lLChS8c5rAZyaTVfqtWNomGM71a1PtZ05YonoJ1WxVtkq867seNZ+Apu9/vmx8I1mZw2dwlutubtrxj6fHM8pUtiuv4kX7+dODd/rG8Iah+cTG0uXZT8wMLaymHExt2x23seGva+r7sub9sEWBB0K5p24cxj0HxUeqR3zG1umpfkmZCREREFD8M0lLCRZNJCwBdctUDI0FJfSExn6gdiA0vuUBEFlO9jTr+v3dSoCEu4xYc/QKyel3e/CTK22zzRz2p2q5Xn7RNiGOgEIChmrxkvWDDrmRPwVKSgbrJlLqagvJM6T8PHJukmRARERHFD4O0lHCKmrQGMmkBoMCl/XatU8mM9Qa1Ax/hgWIiSg/xCtJm970+VL8zUnkCNZ2mSMgZcKvG1jYepEXkD0wppkAug7Ta4vfeSLcgbawLh1Hb1hSU//vmOtxJmgkRERFR/GT8wmE+nw+vv/463n//ffz666+oqKiA0+lEly5dcMwxx+C6667DMcccE3GcL774Ai+++CIWLVqEAwcOoF27dhg1ahSuv/56nHHGGQn4SVJHeOxUZU0wVXqnqrU+Ee2z5dltPt0gbVsPihBRNKRgfIK0MhaXO4DJci2JJIl+SH4DJSRiXLSJNMTxvSHW74zb2OGkQCNg98R3oTKJNUoTyRcMoMKbgM/bg2r8TbLnHnvGn8IQERFRGsrobzjbtm3DmWeeiVWrVsnafT4f1q9fj/Xr1+PVV1/FzTffjH//+9+qJxeiKOL666/HtGnyBVN27dqFXbt24eOPP8a1116LF154ATYbE5cBZYDUaTCTVu9UdVW5D70KnbK2A43amV3z93hxdGePoeMSkXlqK61LcV44rGHTm6ied3lcjwHA+iBtG82kbdj4Gmp+/j2kQOR/NymmLEZm0qppWP8SRG9Z3MavXXoXsvv+FjZ3kWVjir4a7Hu7IPS8+NSv0LRjJhrWPQ9bVgcUnTQDrtACfNZiuYPEmbr6B/xlyWdoCCTv4oybQVoiIiJKQxkbNfT7/bIA7eDBg/Hqq6/ip59+wqxZs3DfffchJ6d5kYKpU6fiX//6l+o4d999dyhAO2zYMLzzzjtYuHAh3nnnHQwbNgwA8NJLL+Gee+5JwE+VGpQ1aY2doGfrpNy+tVae6VXj1b/1duFer+nFxojIOO/uWYq2ho0vx+14UtCHmgW3xG381gSLg7SSr1JzWzCB2Y6tSaIfNQtuNhSgBRBbJm2a1KSNreSDUvX86ywdT03jptctHa9u+d9kzyu+Pg0Na58BpADEhl2oXXKXpceTYSZtQtT5vfjjwv8lNUALMJOWiIiI0lPGBmk/+eSTUID26KOPxtKlS3HllVdizJgxOPXUU/H3v/8dc+bMgdPZnJ35r3/9C4GAPEtj/fr1ePzxxwEAI0eOxI8//ojJkydj1KhRmDx5Mn744QeMHDkSAPDYY49h48aNCfwJ267wTFqjC4dN6pVt+Bh7GyKfrOlUQyCiGNlcyuy8+pWPxe14/orlusFOKwUb95jqnzPgT/odbNq1FevXPWfqWFYRmw5A8tca7i+JvqiPpfZeSUWSrybux8jqfa3see6Qe2Mar2bhrTHtH65+9VO62317vrX0eK05CgfGbWw6ZEd9FQLxXkzQgD757ZI9BSIiIiLLZWyQdv78+aHHd911F+x2ZWbUiBEjMHHiRABAVVUV1qxZI9v+1FNPhQK3U6dORVZWlmx7dnY2pk6dCgAIBAJ48kn1lb0zjT/KTNq+RU6c3iMLdgPdwxcnU8NEWqJ4SnB2ZAKDBu7Op0Tsk3XEFMDmgrP0KOQc+YdQe8kZc5WddTIAhSSVApCCXnM7xBCkhZB6X0Wc7Y5WaY3/H5Wcvr+Dp+dkwOaCq8PxyO57I1wduMp9s9hff/V/V2pNSnJ5Fodgw7V9jsLYjr2SOg8iIiKieMjYe4V8vkMnlIcffrhmv169Dn0JbL2PJEn45JNPAAD9+vXDmDFjVPcfM2YM+vbti3Xr1uGTTz7BM888E9+FM1JAQIouk1YQBFw1IA9XDcjDRZ/t1+1rKEhr7LBEFJVEZ1rF/htdetZSlM0crmi35/eRPRfskbP6C497BYXHvaJod3U4HoKzAJK/+lCj7m3akf9eSJIIwepAp8mgq+mgrmzn5GflmSXYnCqt8f+rIrgKUDT2HVmbq/Op8O2bE/djW0USgxBsVtd1hqmSGzmD/oL6FY8o2gVHjpUzSktqF7jLLv57wo6f7XAhy6H2+0dERESU+jI2SNu3b9/Q482bN2PAgAGq/TZt2gSgOUDYu3fvUPuWLVuwe/duAMDYsfpZLGPHjsW6deuwa9cubN26FT179ox1+ilLkqSoa9Ka4TdQmo5BWqI4SniqugXHUw28QZnpGWtN2rAAlaQXpDVyUU8SLc9GNRt0lcTMCtKq1p9NxHte5T0q2FLrq5zkr4XgLrR+XBNBWvUgu/X1ptORGPY+FyCgxMPgNhEREZEVUuubvYUuvvhi3HPPPaipqcG//vUvTJgwQVHyYNmyZfjss88AAJdccgny8/ND21avXh163K9fP91jtd6+Zs0aU0HanTv1F43Zs8dcbcRkU6sDq7MemCl1fhG5zuZAxfID8oCBywb4ws6pWe6AKI5iCLyJ/nrsn94Zkr8GuUP/jryh9xk4ngW/0BoBmvAs1VizAAXBLg8pHwzSBpsOoG75PyD5qpBz5K1wlo5A/dpnIw8oBWHFn/NA7RbU/fowpGADXO2PNbdzMPpyB7pB6rZKdc4JyKQVVP6dtS4umCQFfSj/chz8B34CAJROXAxn6QhLxpYdx1+Dpn1z0LTtQzhLRyO7342y37HGzW+jcev7CFavg6NoIFwdxyG77w0R70KqX/mo8UkYvSBDCuHlDjL85jAiIiIiS2VskLa0tBRvvPEGLr74Yvz4448YNWoUbr31VvTp0wd1dXX48ccf8cQTT8Dn82H48OF44oknZPu3Dp527dpV91jdunULPd6xY4epebbeNx2ELxoGWJdJ+9wvNbh9ZCH2NwTxzfYm2TaXXYAv7Ng76wI4opC3zBHFR/QBq31v5YX2r1v+N7g6HAd3p5Mi7BV7NqZmFl14AFgtUGbqQGHHORjwq5pzCXx7vgEANO34H0pOnw3JWx5xuGD9Djjyj4hpSpIkofKbMxGobq693rT57Yj7+KvWwFnYv/lxxdKoj924+S3kDoywuFpbo3IRIiG1OlWyZrWyQs2qnDM5FKAFgLJPR6LjZfUQHMYX7TTCu+cbVP94DQCgcdMbEOweZPdpXhDNu/tbVM29NNQ3UL0GTVvfh2DPQnbvqyybgyBovGYpmNWdaF/sXCt7nqy62URERETpKKNTBs4++2wsWbIE1157LZYvX44rr7wSRx99NE499VTcf//9yM7OxlNPPYV58+ahQ4cOsn1raw+tep2bm6t7nJycQ7eB1dXVWftDpJjwUgeA8Zq0kawoa87k+mBDvWJbvkt5kDUVxm+NJCKzYglYyfet+OrkyHuIgRiOd5DGbeNZvS6TN8R6S3TY/pIYhCRJoQAt0JxtqFYfV03t0r/GNh8AYtP+UIDWqKrvzw89rllwc9THjjXAnBzJKXdgc+YrG7UCjiZ5t89QtPkrfrFk7Naq51+n+bxh/Qvq+/x4tbWT0PhdlyQLPkfS3Lb6StnzIAPbRERERJbJ2ExaoHkhsNdffx2ffPIJJJWTq3379uHNN99Ez549cfbZZ8u2NTUdytR0uVy6x3G73aHHjY2NpuYYKfN2z549GD16tKkxk8mqTNpbh+fjqaU1sjZvsHn8HbXKk6xCtw276+W3p1Y0peAttkQpQrVmZ1wPaMHvs0bw1XP4pfJuEYK0uYPv1j9MeCauFDC16FG4QJW54KqqKBb+ah3UlQINUR9asGdFvW/SqL6/E1DuwKF8razKpFUT04JwmoNqfzb4yxZbfzwVgk3je5sVF3vSXHhNWiIiIiKyTsYGaevr63HGGWdg3rx5sNvtuOOOO3DVVVfh8MMPR1NTExYsWIB//OMf+OGHH3DOOefg8ccfxx//+MfQ/h6PJ/TY59Ovxef1HjrJycoydzIaqZRCqvE4bLhuUB78QQkBqTmo6rGbD9Ie3ckDaRjw72XyQG1DQIJazNdlF3DW4dmYuflQIOFAA4O0RPGT4BN5C4LCqvU+AThyu8sbIizUlDf8Qf0Dhde0lYKQxOhrulrxWic1gzAFM/HUFw5L0s8RIUgruIthc5cg+4irzGddJ7hecGy/ByZovGbMpI2sPiD/N/rzQP3Fc4mIiIjIuIwN0t5///2YN28eAGDatGm48sorQ9tcLhdOPfVUnHjiiRg/fjy+//573H777Tj55JMxZMgQAEBeXl6of6QSBvX1h26/j1QaId15HAJOOcyarKnh7d2Ktga/CJvKKhYOG9ApRx4YOdCYeoEBopSR4ICVJYtPGS1jYHW5AykIxBKcsuK1TmIGoWRBPeGEi1MmrS2nG8R6c7Xr9TJpBWc+Ol7cXNc4ULU2iiBtgt8XMWSUm6H5mjGTNqI6v/yzKs+p/C5GRERERNHJyJq0kiTh5ZdfBgD06dNHFqBtzeFw4IEHHgAAiKKIV199NbStdYZr60XE1LQuWZBuC4Elk9sORdZso0YmrdMmoF22PDCytSaA5fu92Fuvf1K2tz6AebuaMHdnI7bX8ASOyIhg/XbLx/RXrUbTjpkQfdXKjVZk0kbIkD3U0dogLaQgpGD0QVorSkskN5M29W6floIqpYskCcG67ahZ9Cc0bHojqlIBWtncuvQyaQWb+uNW9Oo5W3LxwwS9TNqmbTMQqN0M0VsV+4G0XjNm0uryi0HM3LFa1pbrYJCWiIiIyCoZmUm7b98+VFRUAACGDRum23fEiBGhx2vXHlrR9sgjj1RtV9N6e//+/U3NlbQJgoBsh4A6/6ET/C+2NqpeeXDZBbTPUm7556JqOG3An0YUYJhKZu6y/V48urgarUvpXj8oDydblA1MlI58BxagccPLUe3btPNz1fbGzW+HVn235x2B0okLYHMXtzrm/KiOJ2Mw+Go4mKu1f9hxAhW/wlV6VNTjBWvWxTQfAKhf9X8xjxG1FCt3IEkSgjXrFe2B6tWomDU+9Lx28Z1of+EuSN4K44NHcQFAL5NW8lVFHLviq1NQfPr36gMkOrNUJ0hb+f15lh1G6zWzZAHCNHbJnLcUC4XlOPTXZSAiIiIi4zIyk9bhOHSCHQjofyH3+w/detd6v549e6Jz584AgDlz5uiOMXfuXABAly5d0KNHD7PTJR3hi44t2eeFQ+Vd7bQBJR71E1S/CLy6Sr1kxaxtjQhf6+zLreYWfyPKNA1rn4t638pvzlRtr1vxaOhxsHYjmnbMlG337Z0d9TFDbE7YsrtE7hdrJm1YkMNfvgSSGIcFmkxo3DAtiUdPrSBtsHazanvF12fInouNexCoWoX6dc8bGldw5kX33jK6cJjG2L59c+Dbqx6kTXSGdSwZ5abYNLI/mUmraXdDNT7Y+quiPZflDoiIiIgsk5FB2uLiYuTn5wMAfvrpJ91AbesAbM+ePUOPBUHApEmTADRnyv7888+q+//888+hTNpJkyZBUKmXStELhEVQsxzKsgYA0LfICafOAmV7NRYRq/Epgwd1/tQKKBAlWuOm11Tbne2PjWo8m6c9ApW/yI+x+W3Zc3tWx6jGlh3HmYvCY+UZwAXHvKTsGGOQNlC9Rn7c7C6JC07FiafHb6LfOcUyaUWfRmasSmkA0VuBhjVTDY1bePybulnaOYP+otoenpmtRdAodwAA3l1fqW9IcLmDRAXs7VkdYM/rpWhnJq22sqZ6RZtNEHB0++4qvYmIiIgoGhkZpLXZbDjzzOZsrd27d+Ohhx5S7VdZWYk777wz9HzixImy7bfeeivs9uaTo5tvvhmNjfIMy8bGRtx8880AmrNwb731Vqt+BDro6gF5sudS6H/kju/iiWr8oMr5YjD1yicStQmCPbrfQ0fRYOVYYdmDkmgsmGTL7qy73dX5VBQc/QLc3c5C3ohHkHXEFOWxo6kb2kp23xvkDVIgpoXDBFdRTPOxgj3viKj3taKmbkKZqaErBQED5THyj5oKd7ezdC8AuDuO09hi8OKvXjDX5oAtq5Oy3WTQMtLvV0QW1yd2dTpFfYPgQNHJM4Hw32Vm0mryqXzGfnTilTg8ryQJsyEiIiJKTxkZpAWA++67D9nZ2QCA+++/H2effTY+/PBDLFu2DD/99BOefPJJDB06FKtXNy+QcPLJJ2P8+PGyMfr06YPbb78dALB48WIce+yxeO+997B48WK89957OPbYY7F48WIAwO23347evXsn8CfMDDlO+cmpJDWXL2jtrMOzo85gDqicMIrh9Q+IyJhog3Eqv7+CPewWW4MZf4IzP8KhBGT3vR7FJ/8PuYPuhGBTCWzFmEkruApkzyXRr7tgUmvZ/W5UNop+ZVuixZJxmWpBWrUrgZpdRdX6p6VnLUOnKVLov5z+v2/+O6X33tLappMha7SfINhV/w3NLhwm2LNN9Y+ngmNeRNYRV6hvtNnhLOyPopNmyNuZSavJF5S/F/KcbkzqPjBJsyEiIiJKTxm5cBgA9OvXD5988gkuvvhilJWVYebMmZg5c6Zq35NOOgnvv/++6raHHnoI+/fvx8svv4xly5Zh8uTJij7XXHMNHnzwQUvnT81sYcEbUVIGVtVq1EYiHRyDmbREFoo6GKdykUUIC3wl8rZstcCtCYpMXNFEJm34z43E1w1VFVOgNcWCtKayPUVltiageuEBiLAoXcxBWv0AsGpAViVo2fL3URAE2eODW43NJUEEm/qiVqESEWH/Nm3id6mN8oW9F1wxfg4SERERkVLGBmkB4JRTTsHatWsxbdo0fPHFF1i1ahWqqqrgcDjQsWNHjBo1CpdccgnOPvtszUxMm82GadOm4fzzz8eLL76IRYsWoaysDKWlpRg1ahR++9vf4owzzlDdl2IX/s9S6RUxf7d8AZ7wxcW01PpE5Lls+HRzA95Yo76QGAA0BNrWSShRqvDta67xHajdgqp5VyBYuwk5/W9G7uC79PfbPUvZGBZQCmgs5hQPRmuAagrLrGza+h6ye19t7NhqgZFgU9RT8e6Zjer510W9/55XLaizniKZtIG6baiedzl8++YZ3kcStcodaLxuuoFUrWCssX8D3fet4IDkLVc0S4Ha0GN/+VKUzRwRtls2bJ72yD/qGXi6nRl1JmrDpjeR3esyWBrklSTtRdUOvhbhQXGxYRf2Te8CSCJcHU5AwTH/hc2ln32fKcLLHbgMlPEgIiIiInMy/htWSUkJ7rjjDtxxxx0xjTNhwgRMmDDBolmRUUbirw6DMYRPNjVgfPcs3QBtC1GSFFm8RASI3ird7ZIkoW753+Df/wMAoHbpX+E+bBKchUeaqk3atPMz2fNgzTrTc42W2VvAw6llS9avedrgzuqBNtFbBZu70NQ8JElC9Y9XI1i3xdR+1kuNC191y+83FaBtJqrXMNb6+6FbkkBjmwXlDvwH1Bc/bdz8DnL6N9fWr/7pd4rtUqABwbqtqP5hCtyT90WdiVo973J4Djs3qn21SJBgixCkVctyFht2AwCatk6Hq/2xyDnyFkvnlar84UFaOzNpiYiIiKyWsTVpKT04DARKSzyHTiR65Gtfl1i234ttNcZOMGu8qZH5RZRo/spfdLdLgXo0bnpD1la37G/N23xVxg8UlC/U6CgapOiSdfhlirb84Q/D3eV048dRYXMVa25ztj8u4v6Bmo2KNm9Y0FlLdp/rVdsbN75qaH8Z0d8GArRImUzaqF5jSYQ9p5ui2Z6lvsCW5Ne5SKgRoNcM3hrcHwC8Oz9VbXcUHao56i9bpLm/6C2D2FQWU9kRq9+Lnm6TYM/tob5RI5M2XM3CP1g6p1SmzKRlkJaIiIjIagzSUkrzGEiTHdXx0AJDl/TL0ewXlIC68FXHiMikCL+TKotcSaK35UHUR5WCXkVb/phnYM857NDMHLlwdz0TuUP+FvVxAI2SAwAEZwHyRzwScX9X+6OjPrYj/wjVQLAkRbF4WCLr+Oowk0GdcqQg7Hk9Fc02T0kUg5kvd+DqdHKrblF85TOzKJ0UjHHhLesyqrP73wx7dkc4CtUXttKqSUvawhcOczJIS0RERGQ5fjullJZlIEjbOpA7pJ0bIzu4sHifcpEem9Bcl9aI1Lg5lyjxItVrVb8dWji4LYZgXViQtujk/8HmKkD732xDoHbrwdqZ7SAIAlztx8BR0B+B6jXRH8+epcjm7TB5HwS7W2OHQwRHXlSHzDnyVgBA9hFXovpguYiQKF67RAVH3V3OQMFxrwAQINjdqFv+d9SvfrLVRNI5SCsqApfZB8sHqNP5mxZFuQNXx3GHukVRS1k6uKCdZGSxNNEf28JbonUXDfKG/gMANNcTCNUJZl1Vw5hJS0RERBR//HZKKc1IJm24LIf6Ca1dAOr8DL8SxSZCwE01M+/g73EMmZ2hbNyWEe2e0GNHXg/lDo6sqI8FHFzZPrzNQIC2uWO0N7EcfJ3UVqyPKtCZmOCoJPpgz+oQeq7MLE3fIK0kiYrApWqN2tBGvZq0WkExg/tEs+Bdy++rgd9NSQrEmJ1t4fsgUgCxpdwBM2kN84VdbGCQloiIiMh6/HZKKc1jNx+kdWqcz+6qC6J3ETNpicwK1G5Gw7oXYc/pCkdBf92+VXMmKxsPBqa8Oz+P6viSJEJs3CtvtOkHTAVBY0Ehw2JYODCaYBkQep0ElSBtVFmxicpgFcPvXAj7EDYwj0DVWjSsfxE2T3vkHHkLBEe2dfOLo9pFf4Lgypc36mVv6tVZ18yk1dundZDW/MWBYP1O1Cz+C+pX/iti3wMf9jI9fmtqJUuiFSlrOLSdmbSaJEnCS+sX4Id9WxCUJGyoOSDb7rLztSMiIiKyGr9hUUrTCrjq76N+QhuUgH31baNGI1GqkAINKJs5EpKvEgDgLBmp29+3b56iTRBs8O6di+r515o8dhMEhwf1K5R1YCNmtWqt+m5Y9EFawws9KXY8uJ9dJZM2mizEBAVppWBYkDb8548wD9Ffj/IvjofoLQMA+KtWouiEN62cYtwE67cB9WGNOtmbgsXlDmRByCguDvgP/AT/gZ9M7xeNmkV/sm6wSD8rM2kjemLlHNy+WH1BOYCZtERERETxwIXDKKUJggCNmKumHKf2DivLo1h8hyiDNax7MRSgBQB/+WLTY4j+WjSsf9H0ft493wIAmlQycG3OAt193V1OM3281jw9LpA9F1yFxneOOkAsHNw9X7nFHkX5hgQFaT09LwxrkX8GR8oC9u6YGQrQAkDT5resmlpSSP5qna3af5+0Mk0Fg+UONOuzthH+Az9ZcPHkoAhBWrHpYFYoM2k1fbZTv2Z3vtOju52IiIiIzGOQllLeGT3MBSdGdXRDoywtEZnkr1oV8xj27M7w7Ztrer9gw04Azdm8ijEL+urum9P/FtjcpaHnBUe/YOrYuUP+BsGRe/CZgMLjXjW8r7PdUaaOFXIwY9LZ7mjFJkfhANPDSQmoBSu4ipDV46KwxvBgoX4BmUDNOmsnlWT27G7aG/WyYlXrOcN4uQMA2X1+qzOz5LPndLdmoEgLGLZ8ZkRbeiQD1AeUC6y2dlHPIQmaCREREVHmYAoBpbzL+ufipz1eVDQpAw6/G6xcRf3wAicePKYIP+/x4uNNyuCOEUYWuibKCBZk5wmOnOh2bKl1GrZYUf5RUyNmDdpc+Sid9Cuatn0AR34f05m1jrweKD17Gby7voCzeChcHY43vK/NVWzqWCEHA3g2p/L1ilSDU1UcM2kLjnsVYtMBeA47B/acLrJtylv6I3ygptkHrrNkmM7WKMod6F1vD3tf5B/9LBrWm7sgkVBhi6xFK2LWcEsGbdSL+KU/nyj/XD2r25EYUNgRDpsNYzsejlM690nSzIiIiIjSF4O0lPJsgoAJPbLx5to6xbZsh/qJWs8CJ3oWOLGtJoBlB/SzRYhIm24NTTOiCMSFap2GBXZsnnaG9rdnd0JO/5tNH7eFI/8IOPLN7y9EWcux9W3ttuzOEBt2t9oaRSBTil8Nbk/XM2HzlKpvDA+gRfy3T9ACZ4misvBbiG7QUON3TWcfIex2fkGwQXDkQAqEF8qNr/wxz6Hm5xsi9pPCsoUdhUciULXa8vkIB8sqRF0fOgP4w4K0l/Uajgt7Dk3OZIiIiIgyBIO0lBby3eonr1kR6hp4NIK4RJQ4geq1EBt3R+4Y7mAmrRQWTNBbmCmlyYKbxj67xKYyBBv3QGzYA0CSZwzHsyatmWBjpHnEME9JEhGoXIFg/XbYc3vAUTgw6bVZBb26q7pz0whmmyh3oNkWZ4aDoWL4InMW1agNF/qMYJBWjSRJWF21T9bmYv1eIiIiorjjNy5KCwVu9ROtrAhB2GiDtOl18y1R9MIz36LhO7gAmOljtyykFJZJG9Wt/ynBXEDJt38+Kr6ZKFvYDQA6TTn4CRbXhcOMB2n9ZQt0R5Ki/MSVJAmV350H745PQm3uw85F8UkfRTWeZfQyaXWD71qvg/FyB81tSQhMGgyMh3+e6Aa0Y9HyGrTxxdSS5XfzP1S0uaK8A4CIiIiIjGMKAaWFAleUQVo7T9CIYhGo1l8BPJ6klqw7MayOZZpmfAV0FmmTVEoG1Cz4gyJACwCBmk0AgGDDLusmF85kIFD01WhvjLImbaBqlSxACwDe7TPgL1tieqxg3fao5qBGL/BocxVq76gV3NV7rVWCtPbsrtr948VucIHP8Is+cQrStpSBEHQD5pnpQFMdXlz/s6LdZWeQloiIiCjeGKSltNAl16GoP5vjFNAxR/+kQm2xMSIyTnAqF+dLlJaap1J4bdU0zaRt2vZBq2eRLzD5yxerj7N9RvMDkzVpzSzwpve+cBT2V7SJ3nLtwaLM+BUb96q2N23/2PRY3n1zo5qDKrtbc5PnsEma25wlw1Xb9epCCyqlPwqOfk5ncvEgwN3xRGT3uyliTyms3EG8gqj2vCMAQLtucgbb11iraLMJAgYXdUrCbIiIiIgyC4O0lBZcdgG3jSjAEYUOFHts6F3owB+HF8Bh0w9kHNtZ+2SZiCKzZ3VO3sFbMmjDyx2kaSatZcHnUC1f44smOtsdjaKTZgB2T8S+ucMe0K376iwepmzUDcQqM2nVMoeVQwbUN0SRnWnZAnkABJv2352sI67S3k8rY1Yvk1blFnVn+2ORO+Rv2vtYyJ7THYUnvAV7Thd4elwYeYfwTFq7fpBWcBZENa9k1yVuy/yi8nfx3bGXoX1W8i7IEREREWWKND2TpUw0uNSFwaXFpvZxRSh38MhxReiYY8eUr8pk7VHefUuUfpJYp1ASW2rSZsjCYSYDmdrDNAfCQjV9I3AUDUbpmfMBNGdmRjqSq3SUfgfVoKLOqKo/t4SI2cSSepA2bnVODRJ0MmmjusBgstyBIAjIHXQn6n75u/ljmVR6zgrYDmZVC45s0/tH+rdqN+lXHPhkECS/TrkMMsUfthBjtsOJ3/QckqTZEBEREWUWZtJSRouUaeu0WZk/RZSOkvgbcjDIqMiYTNNyB7JAZiyZgC3ZigYzaWWBMiOvbaQguVpQUTcArbLNSAkEzUzaaAKhFr7PdYK00dErd6Dx75WgQHXr4+sFp7UHiDBPuxtJ/QxKQ+FBWkfafp4SERERtT0M0lJGc0T4DdDazkRaomb+cvOLMFlF9FU1PwjLpE3bcgcWaSlzYDSTVhbQM5I5HXHRMGVQTbf0gtqiaAv/EHH+YkBZW7P58Ml9fwgGSkaYG1Avk1bjZ01U4K3V8aOpLxspk1awua0NoKtoWP/fuI7flgRFEbct/J+szWnjqQIRERFRovCbF2U0R4STO6dNALN0iLQFKpYn7diNG19pfhB+W3tGZn4Zv3TUsO7F5j1EY0Ha1oEyzcxMM3NRCSo2rH9JezSVrNmGtc+icdObuodpWKu+QFY0QXy1OURLryZtlAPqbFP/90pYTdbWr3U0P3ekIK3dhXj/ja6efz0CNRvieoy2YvrWX7CobIeszZnEkjZEREREmYZBWspoRR79X4E8F39FiNoqV6dTASjLHaitaJ8O8kY+GnocqRCLFNTOTJX81c0PdPq0FqheH3osNh2I2N9ZPDRCD+XcG9apB1SbqQd9q+dfq3sU/4GfVNuDtZt191NjaR3bCGPlDX/Y1HB67wV7didTY1mt9WJn0dSkzT7iSv0Odg/yhv1D1uTudpbseVYv+Ri5Q+6T9z/snIjz8B34OWKfdLC0fKeirVNWfhJmQkRERJSZGIGijFaapZ0hUui2wWUX4n0nJVHKktrKCnqKhcPSM/Mru8/1xjtrLJol62Iwk9bV8YTQY0fR4Ij9bW79BRxVszh1yx1Yl8XaPFzk10Yhmn00RMpize5zPex5h8vacgb/VWdA7a9yjqJBmtvCj2G18GCzzVVgegxn+2Ph6XFR8xN7FuwF/ZofC3bkj/kPBMGGrF5XwFkysvkYWR2RN+wB2Ri5Q+6BPac7AMBROBDZ/W6Sz3Po3yMHkNvKZ12ceYNBRdvdQ05OwkyIiIiIMlN6phsRmXBmzyx8tqVR0X71gNwkzIYohVgcPDNPbA4Uhwdp07QmrW6QKyyIJIW/JmpUMmnbnb8JBz7sJWtzFA4IPfZ0Px91lb9qDim4iiIf1zSLA2QRa+aqzMDgImtWsHlK0O6c1QjUrEegchWcJcPhKOijNzvNLYLOz5o37EFUzb0khplqjDv8IXh6ToYjLAgczcJhgs2JwrHvIDjsHxBcBbBndUCgdgsEmxP2nK4AAJsrHyVnzkewdjNsWR0VvyeO/CNQes5KiA27YM/pDsEhrwnsLB6M9hfuRrB+O+p+fRhNW95VmUhmXK31hV2MmNxzKM7vEfnCDBERERFZIz3PZIlM0Dr10it1kBk5NUQRGAkExvX4omqgOF3LHchFCBoZyPwMz6R1d50Am1qQtXWgL0Jg3tKyAIcOavF4UQTcRL/Fc9An2N1wFg2CUycTtoUkRvl7GEWwOhJ7Tnfk6mX9mmVzQhAEWZDakddT0U2wOeEo6KszTC5settdBbC5BiGr1xXqQdqkX5BKDG9Q/rnROZulDoiIiIgSKRPOZIl0ad162hKkVdt6y/flAICjO7nx+6H5cNgyI8uGqDXf3tlJPb5352fqt8lzoRtIEcod+MuXQwqGlTvQXNipdTAvQrAqHlnMFgfIolk0S0pwkNacKF+fOARp4ciybizBrpsJHA9ax2vc8DIkXzWyel8FmzMPQPN7onHja5BEH7KPuAqClT97HK2vPoDpW35BlU95B9GCA9tlz11pelcCERERUVvFb19EGvKckU/kf9rjxcK9B/D2hPYJmBFR2+Hd/Q0qvj4t2dNA9YKblY0ZkUkbLizbNEJ2ZdnMYYdqfR7UfDu68nOvdeAqUhkFReDXClbXA23j5Q5MizqIbf3FRSlQb91gccnKjkT9NfHtmwvfvrlo2PgKSs9aCkEQUDX3cjRtfQ8A0LTtQ5Sc9m0iJxqVvQ01OPqzqajwNhjq77bzghcRERFRInHhMMp4WqepuTrlDloLSkCdLzNuhSRqUb/mmWRPAQDQuGGaok1IgYXDXJ1OMtVfschTpGxQAwuHtQSYQkPaXBrjtmqLEBCUvOURj6tGcOrU27W7ohpTiy2ro/md2nAmreCM9pZ064O0Yv0Oy8YSbNb+uxs8qO7mQMVy+PbNgxRokP3++PZ8h0DNhnjPLmbf7dloOEALADmOJPwbEBEREWUwBmkp43kc6ieqZkoYVHkZpKXM4t3xiaF+eSMfRf5RCQ7opsAtukXj3jfVP3/kE6b6SwZq0irY3aqBMVnphDjV5nR30c7KtukFcHXY83urtjsK+pkeqy1n0tqzoryTIwmLYXl6TjbeuQ1l0rYWrFkHKaAMdAbrd8ZjQpaqCxh/HzttdpzWRbuOLxERERFZr+2fyRLFWY5KWYMpR+aGHhs5jfUGuZQYkZqswy+DLasjvLu+aK4ha4LNXYrsvr8F7FmoW36f8QBhCpQ7sLmLNbc5igYjUPmrrM1ZOiLCiGGfQVEs6ibYXIBdpS5t6yxSi4K0OYPuQv2KfxrqG6nEghZ7TjcE1bIboymf0IaDtFoKjn9Dd7tgMpPW2f44OIuHomFt9Bddisa+gwp/Hbw7P4XgLmkujxBsUp9fUjJpDbwmkgT1bwZt/3tAMOz3t0NWHiZ0VV60yHW4cVHPIRhc3DlRUyMiIiIiMEhLhGyVTNr22eZul673t/2TM6KksDkgCAKyDr/MdJDW2f4Y5A1/EACQN+Ru1K/5D2oW/D7ifqlQ7kCL4MyHu/MpiiCtMigUe7kDxbHtbtWFk+RZpNYEaYXwYLBeIDbKIG2kurxmtO2Fw4Dm94P875DiNVbsYu5mqqzDL0VOv9/FFKQFgOJTZoYe7327CJJmkDYZmbSRXxNJEtVfuzhlmVspIMrn2L+gPV4+7iKN3kRERESUaAzSUsbLdipPtvJa1aM1klhT3mRdMICorTOzOJTQktVqsyBwajSolALlDrRIog8QYg9ORVXuQCtzUYxDuYOwf0tJZ1zJVxXlQbTGTMNMWsGmEsyO9PtiLpPW5io01d8IQXBo/2skI0hr5A9+sEl9gbQ2FqSVJAnb6ipR7T8UBN9RXyXrY49iET0iIiIiip/UPZMlsohaSdp8l7mT1+d/rUWWQ8CYTh6LZkXUNgVqNqLimwnGdwhltVoQDDAaUEjhTFoEvRBUF8qKlDkbXu4giiCt1tCtskj1gqlmKLKdNbJlG7e+j4b1L2qOE6jbBkdud0W7JPrh2zdPfacoyh349s83vU9CqQVpIwUcTdakFeIQpBW9ZZrbgg27LT9eZJFfk5pFt6Fm0W0qW9rOHTVNAT/O/vYVfL17vW4/exLqEhMRERGRNl5Cp4xnV1kgLN9l/lfj3XUqmTVEaaZuxT/V63xqEA5mtUZTgkBw5MieG82oFFKgJq02CYLdwMWeSMGVKEoE+PZ8q36oVkHj8H+T6IV9xmoEf6tmX6g7Sv2qJ1XbfXvn6uxlPpjmP/Cz6X0SSW1xtUg1XQVbhHII4cdwF0XuZOS9a1Sw0bqxjIohY9qqCxhW+GrXuogBWoCZtERERERtDb+dUcbrW+SU1aXtkmtHllp6bQR76lnygNJf44aXze1wMDjrKDzS9LE8PS6QPdfMjAxnRWmFJHK2GyN7LrgKYcvqaGqMaBbb8pctAgC4DztH1p7T/5bQY0/3c02Pqyr83yjKurMNa/6t2t646XXNfaQosowdxcM0txWfPsf4OAX9TR/bCLVFwtydT9Xdx9n+GFPHcJY0L16XN/xhzT75o58yNWZbI3rLo97X5mln4Uxis62+0lC/AUUd4jwTIiIiIjKDQVrKeC67gBuH5KNjth2H5dlx/aA8CFHeAihGs2o4UTo7mNXqKOhjarfs/jfD021SlMdMjSCtPV/9NXF1PBE5A++E4C6BPe8IFB7/JoSIgefwcgfRfxblj/gXnO2PhT2nO/LHPAt7TtfQNmfJSOQO/TtsnvZwFA2J+hhGMmmlGH4G3UBs0Hy2pKSS1WnPOQx5wx+Cq8PxhscpOuVT08c2wt35FNk8Co59OeLCYTZnLmxZnQwfoyUrPrvvDfD0+A1s2V0VfbKPmGJ4vDapDWXDxqIpqHz/OwRb6D+P3YEJXfvhrsEnJ2F2RERERKQlle8JJbLMqI5ujOqofkJrJlzrFwF3asSHiBIjittpO1xSBZtLefu20d9GIUVu4XUU9EewRnlLsiAIyB/5CPJHPqKzd6TXIvoAp6OgD0on/KB+VEFA3tD7kDf0PgDAnleju6AVXv5CNfM3yuzaSCTR+MJ3IcEm2dOik/8HT7ezTA3RYfIB2Dyl5o9tgGBzoOQMvRIP6rJ6XYH6lf8ytY/NXYiicdNNHysVRJOBHhLNYn1x4g0L0p572EB8dPKU5EyGiIiIiAxLjTNZohThCzKTlqi1qLLSUyTIGrN4LtrT1jMCFf/GKvONU9BLiiaTNiDPpBXsWVEcue0t0qS+SF0GiyVIG6eLCtEIz6T1OJxJmgkRERERmcFMWqIIzMRRvEEJefGbClFGiGaRsYynKA3Qxi8YhQVpfXu+w55XBQjuEmT3uR55Q/9mOKsxWL8D9pxuxo8dRSZteLmDqIK08QzKR8vG4J1MDBc3osrQtohfDOLuJV/g2z0b4BdF7GmokW13p3idbiIiIqJMkSHpSkSJcaCx7WTSEFlNEhP1/uafpsgiBPzaen1sjUC85C1H/Yp/on7NVMDgAl9Vcy9XGUg72CYFLQjSOqLJpG17BIFBWpkYsmHrfnnAwomY88TKOXhs5WwsLd+FFZV7UOatl2332PnvTERERJQKeCZMZKEGfxsPjBDFIFi32VR/W1bH6A6kcQu2p/u50Y3XRmX1vDiOo5vPCHRHu1BbK4YXE4tQ0qJ28e2GA2a+fXMUi4z59v+o2V8SzZU7kCQJEP3yRpu8hrmn+3lhzy9QjCM4ck0dNxHcnU9VtOUceWviJ6LCUTgg4cd0tj826n19e2dbNxGTFhzYrru9Q1bbe+8RERERkRKDtEREZIiRDER7Qb/Q49yBd8q25Qz4k+y5VhBXa+Evd+fxEY+fSsIDe7GRBynDg5ZG5Bz5B/P7DLxD9rz41C8N7WekpIVkqiZt2M/vq9LuajqTVuW1DHuPZvf/QyhwK7gKkTv0fmT3+W1oe+6Qv7XJ+q/O0hGtgvMC8sf8BzkDb4c9p7usX/6YZ+Ny/PyjntbcljdCb+G8+HAW9oenx4UJP26sgjqZ46XuHFzWa0QCZ0NERERE0WJNWqIIzFQRFJlIS+nMQAZi6cRF8O2bB3tOVziLBsm25Y96HO5uZ8O3bx5y+t2Aiq9Ph9i41/DhBUeOkV6Gx0s2wRbDn+CI9U3NfxjZsjqY3id/5L/g7nomfPvmIqffjbC5i43taGRxODO3nktB+Zh65Q5MZtKqjRV+IcHd8QS0P38j/BXL4Cw9Cvas9sg/+jlk9b4ags0FZ8lQc8dMoKKTPoJ//08Q3EVwFh4JACg9ezn8FcshesvhKOwfardaTv+bUbPgFtVtnm4T43LMSArHvou9W6cn5djREsMuykzuORRnHzYAWXYnjuvQE6UeI5+dRERERJRsDNISWSj8RIkonUjByMEtmzMXnq5naG53dzwB7o4nHHxmMqBqIPtScHLpPgBR1aQV7J6oDiX/NzV8sMh9DNakBQCIQdkiWJKVNWnVxlIJMttzusKe0/VQF0GAq91oc8dKAkGwwdVBfpu/zV0Id6dxyZlQkgmCAFt2Z4gNu5M9FcOksIsyw0q64OLDhyVpNkREREQULZY7IIpAMLEiNzNpKZ2ZzkCMyGyQNvKfLMGZmbUXWwdp/OVLUfndOabHiDZIGxUD/5ZmFqqTFFm3Oh/Gpt/HamPx61N6S52MfADYUFMme55asyciIiKiFjzLILKQ+aV6iFJHoHKFtQMaueW9dXcjmbSOTMmkVQ/DeHd9hbKZIyD5q82PGLYYVjwJBr5+NGz4r4kRwz59dTJpG7e8Y2JcjbFMXLwjiqeVlXsUQVob359EREREKYlBWiILMZOW0lmgaqWl4znM1rk0UMPVWZT4FeFj4eowVvbclt05pvEqvj496n0FR1ZMxzZ3sMgB9/pfHzY+XljWrT3vcM2uNnep8XGhVTqBX5/SmbNkZLKnYNgHW39VtDltBsqJEBEREVGbw7MMIguxJi2lM8FVZOl42UdcpWjL6nWl9vFb1RzVkqUyZluW3f9m2fOcI/8Y3UAWfPYIjuyYxzB+MIu/foSVO8jqcaFm19Z1Y42JvHAYRS932APJnoJC3oh/mt/JSJ3lOKj0NiraTuigfZGCiIiIiNounmUQRen83sqABjNpKa3p3EIOAKWTlBldelwdjkXh8W+Gnru7nYWCo5+PamotkrUifLSyepyPgmNfgafHb5A36gnkDLjN4J7mb2fO6nOd5jZ3t7NNjxcTiwNa4TVpJb1FxxT1ayMNbmzhMIpO7qC/JHsKCs7C/ig6+VNT+9hzu8dpNvr8Ye/n7rlFGFrSJSlzISIiIqLYRL53lIggQLl0zFEdPfjlgA8bqw4FA5hIS+lNP0grOMwv2pXV61Jk9bo02gmlhezeU5Dde0pcj2HL7orCY15E4/qXoLYQlvns0thYnokaHkgV/dpdTQdp1T7YWfPTKoKBMibJ4Ol2pqn+UrApTjPR5xfl7/1zDhuYlHkQERERUeyYCkJkgNopul1Q/gJx4TBKV1LQh2D9Dt0+Rhb2oniJcIWoZSEhrX8jIcGBMqvfK+GZtEGfdl/RZJBW7ZOdmbQURgo0JOW4vqA8a9xp43uTiIiIKFXxmxxRlOw25QrK/11RC1+Q6bSUXupXP429b7jRtOVd/Y4M0iaOydXbhZbMT40yAAkPsMe5Jm3Dmn8b7ht5bAZpKTLJVwXv3jkJPWZZUz1e37RE1uZqo5nJRERERBQZzzKIomQXBNhU4iRL9nsTPxmiOJECDahZ+AdjnRmkbcP0g7qiryox02hhcZCzdQkDf+VK/b4m73mQVGsxs9wBKdUsinLhvyg9u/ZHRRszaYmIiIhSF7/JEUWp0G1DRZPy5P2dtfVJmA1RfAQbdhvvnIDswvxRT8b9GKkpQgZ/hOy6pm0fWjgXA0Sdhb2i0SqQWvfLgxGObTKTVqW+bVuto5ouHIWpWVc1WLslocfbUFOmaOud3y6hcyAiIiIi6zBISxQll13AxMOzFe0iVw+jDJWIW+azjrgy7sdIBYLJTE7BnqW/3ZkXy3SSr3UJA0l70TBFXyNDi8q7IwS7x9QYpK/gmJdkz4vHf52kmaQWX1D5Xj6/+6AkzISIiIiIrMBUEKIo5DmbAyTtspTXObIcvPZBGSoBQVqbuwiCuxiStyLux0ongt2tv92Rm6CZtIj+YlbHKwLY+7r860vrcgeSSuarvLPJIG2wSdlo0389yZzsPtcgu881yZ5GyvGGZaQ/OPx0eBzOJM2GiIiIiGLFaBJRFFrW7BFV4gzZTtYqpAxlS1BNWmarK0V6TSJkftqcCQ7SqtZ5NUitrEbrwGuEIK16jVkdwbBMWsEBIVHvdSId3qA8SOvi+5KIiIgopTFISxSFljBsrV95sp/jYJCWMlMiyh3QQUL454yE+rXPanePEKQVHDkWTMo4KYZMWkEQlIHaVoFXSfRFOLi5TNpg4x758VnqgNqAn/dvw5e71sna3HbeIEdERESUyvhtjigKwsEASbVXGaR1M0hLaSRQvdZ454QFaZlJG65p+ydo2vKO5vaI5Q4Snkkb47+hYJdn47YKvPr2fBfh2OaCtJXfnCnfPVBnan8iq1V6G3DyV88r2t1c0I6IiIgopTGTligKLWHY3kXK2m+BGO7iJWprgnUmVisXkhsgcHUcl9TjJ5NegBZAxBqqrk4nWzibyBx5PaPbr3DAwUfyry+SmcCrySAtZS7BXWxuh0hZ3BZZcGA7GgLKsh7FbuVipkRERESUOhikJYpCy9pgfVWCtP4gs/wojRgMvGb3uzGpdToFRw7yRz2RtOMnnrmMfcGmv5iQp9tZsUzGNEfxsKj2Kzi6OXtQ8V4zEXg1E9CVwhZmosxSeNzrpi4+SYH6hLxnqnyNirbuuUU4pXPvuB+biIiIiOKHQVqiKNgPljuwCQIu7iuv5ehXW02MKFUZDGjlj346zhNpReVW+dKzf4GzZHji5pBqIgRphQiZtlYTBAHtL9hmah9Xp5Ph6nDcwQHCg7QmbmEw0VcK1Bsfl9KOp9uZKD17KQrHTYer44mK7e4uZyjaJF9V3OdV6/cq2had9QcUMZOWiIiIKKWxeBVRFGytkthynPJrHSpriRGlLgMBLVt216Svdu/I75XU47d1kTJpEaFmbTwIrkJT/R0F/Vo9C184LD7lDiR/rfFxKS05iwbBWTQIUqARvr3fy7bZPKWK/qKvUrXdSuFB2lM790E7T4LrShMRERGR5ZhJSxQFR6vfnLAYLdZV+rGyzIcAM2opDUgGaiwKjqwEzKQ1/m6ZLXcQ6ZbtRGfSNh/T5HViodWHbdhFgZpFf4borTA0jNi0H1LQWO1Qo2NSBhCUX5kFezZg98jaRG9l3KdS42+SPc9zJv73l4iIiIisxyAtURRayh0AgNOuDJY8sKAK/15Wk8gpEcVF7eLbI/YR7IkO0pJZkTJphSRk0kYqwaDQqsyFEFbuwF+2APveKTEcVN37hhuSqJ9RK4lBlP1viLk5UtoSVIK0EGywhWWES774B2n/vvxr2XMGaYmIiIjSA4O0RFHoknsoQOCyqWe0LdzrRUUTVxGn1BVs2GOoX6KDtI6igQk9XlpQCzC1ZjZgagUTCzIBgHfnpxH7lH95kuHxmnZ8on+8Hf9TbRfcxYaPQelE/XfI5iqSPRfjXJNWUqnJ7TablU5EREREbRKDtEQGTOolX4zjN30OLRbm0PktqvPxtmxKXWLTAWMdExwgyO5zve5zUgrUbAAA5Bx5q+p206UHLCAI5ko2BOu2hh5rvTcDlb8YHs+7/WPd7U3b1YO4hce9ZvgYlEZULnRIok9Rz1kS/XGdRkClTni3nMK4HpOIiIiIEoOX3okMuKB3DkQJ2FUXwEndstAx59CvjkMjkxYARJWMF6JUYaQebTJk9boCYuNeNO34FM7iwcgb8a9kTynxTAY4s3peDADIHfYg6lc/FYcJJZar44mKRZxa2HK6QazfEXpuz++LYM06RT8p0gJiGovhubueaXyilD5UgrTZva9GdcUyeaOBxRZjERCV408+fGhcj0lEREREicEgLZEBLruAy/qrr5ysFyqJ76kaUZwZDtKaXMQqRoIgIHfQncgddGdCj5vKBGdz9r/NmaMb4EwV9pxu2hvDFgXL7n01apeovFci1KTVel+bzQCmdKH8dxccuYr6yIgU/I9RQGV8p403xhERERGlA36rI4qRTiItRCbSUgqTgl5D/Ri0avsER07kTilE7+eRRPn7VnBka3TUDqY11/3k+5paUblo1fw+DPsqnYRMWkd4oJiIiIiIUhIzaYniKMhUWkplbbTcAQFmA4jpF6TVCLxCeXFBq69auYNg/S5UzpkM//4fYpsgpR0p2KhoExw5KmUx4vuH36+SAe5gJi0RERFRWuC3OqIY6SURimAqLaUu4zVpmXHY1smCtOmQ+ax3S3lYME2wG8+krV1+HwO0pErtzgLBmYvwr9JSxDIasfl0xxpFm0OlXi4RERERpR5+qyOK0eEFTs1tLHdAKU0MGOqWO/juOE+EwgUqfzW3g2zF+bYTpHW2O1r2XHDma/bN7v+H0OOmnZ8bPoY9r6f6Btlr0ixQudLwuJRZXGHvVZunHQRHtrImbZwzaSt9DYq2ApcnrsckIiIiosRgkJYoRm67gKM7uVW3BRmkpRQmGait6OlxEVydTk7AbKg1V6dTkj0FS+SN+Cds7lIAQHa/G5HV63LtvkPvDz0W7OqfuWpsng5wlAxXtEuBOmWbpH9hIrvfjYaPS+nFUTwYWUdc1fzE5kTeyMcgCDYgPIs1zguHqc5NUXKBiIiIiFIRa9ISWeDW4QW41i/imlllsnZRYpSWUpkySOvucjoKx02HYHNBCjRCcBVw4bAkcLUbA9+eb4zvIAu4t51/L3fHsWj/mx2QRC9srgLULLxNtV+HiytgcxeGngv2LMPHEOxuFJ/yOfa/11HWLvprlZ1VsmtbcxQOMHxcSi+CYEPhcS8jb8QjEBw5sDkPlhAJz6SN88Jh4U7r0jehxyMiIiKi+GGQlsgiuU4bSrNsKGs8dILGGC2lNJVggz3vcNiceQDMZTOSxUzWoFRbJKutEBweCGi+XVsze9smLytj5r0n2N2K/QFA8tco2yIEaQWVcSiz2LPayxvCfhfb8u8aEREREbVtDNISWSg8bMJyB5TS1AJmvPLQNphdKKj1bfxtOfNZI8ClqPtpN16DU7B7AJsyqCv55EHaupVPIFi9Vn8wm8vwcSkzCGG/i2LDnrgdS5IkvL15WdzGJyIiIqLkYk1aIgvtb5QHtVaW+ZI0EyILqGY1MkjbJpgO0rYOfqZekBY2+TVlM+UOYHNDUKnZKbbKpG3c+iFqF/854lDMpCWFsAsI9asehxSni1lvbFqCpeW74jI2ERERESUfg7REcfTF1sZkT4EoapJKQNZZelQSZkJK5v5823MOCz12dxxn8VysI2hlyIYFwpwqC4FpjqmxqJKjoF/ocdXsCwyNJQWbDB+XMoPaBQOxfkdcjjVj20pFW7adFw6IiIiI0gWDtEREpE4lkzbr8EuSMBEKF36LdSSOgkOLC2X3/z1snnah5/ljnrVsXrESnPmKNlenkxU/r7vzaTEfy93pJNP72HO6x3xcSi+enpMVbcGmfXE51ra6SkXbhT2HxOVYRERERJR4rElLRETqwoK09tyeEOysydkmGAzSenpciMLjXpO12Zx5KD37VzRtex/2vCPg6XpGPGZomeJTv1I2RlFXN6v3NWjcMC30XHORMh2amb6UsbJ6nI+qsDaxqSwux9peLw/S3jFwHCYfPiwuxyIiIiKixGOQloiINMiDWK2zLynJDAZpi8a9p9puz+6InP43WzmjuFEvV2A+SCuEL/rVejE1gySRdcZJyVE0GIHKX0PPxaYDlh+jIeBDubdB1jal9yjLj0NEREREycNyB0RkiCT64StbhGDD3mRPhRJFkWnYhhecyjjp+uc7ju+xsMXHJNFveggp6LVqNpRGwi9gxSNIu6O+StHWLafQ8uMQERERUfKk61keEVlI9Neh/LOjUf7paOx/vwsat36Q7ClRIoQHaU3WQaU44r9FFOQB4Mb1/zU/hMggLSmFB2lrF//Z8mM8/Mu3sufF7mzkOt2WH4eIiIiIkodneURxJkpSsqcQM++uL+AvX9L8RBJR9+vDyZ0QJYSEsPcuA4NthtmFw1KF4Cow1i+K2rC+3V+b3kfB5ox9DEo7Nnexok0KWlsa472tv8ied8k29rtCRERERKkjPc/yiJLEqfIbFTC/Nk2b07j5bdnzQMWyJM2EEioskzZdA4MpycC/hbvzaQmYiLWye18DtKod6+52lmo/R9Eg02MHqtdEPa8W7s6nxjwGpR9HXm9Fm+SvtfQYHru8XIeDn8dEREREaYff8Igs9MAxRYq21M+jBViLNEMpatLyT0bbof9v4e56JvKPfi5Bc7GOzZWPopNmwNluDNzdzkbBUc+o9hMEaz+T7HlHRJ5bdlcIzKQlFZ7DL1G0SVEsTKenMSCvofzoqDMtHZ+IiIiIks8RuQsRGZWrkkrbXO4gtYOcgqC2ujqlP9akbbN0/i1KJvwEV/sxCZyMtTxdJ8DTdUJiD2og6OvudGICJkKpSGiV/R0iWhekDYoifGJQ1tYpK9+y8YmIiIiobeAZN5GFbCrn+WlQklaxKjplCMXCYal9sSGt6AXM+e9knhSM3IcXq0iL2t9II+8pg5qCfkVbloNZ3URERETphkFaIgupxUaumlWGy77Yj7311t76mEiBypW625u2f4IDM0egYtbpCNRuTtCsKN5EX5XsueSvT85ESEG/PjCDtGYFjXxuMZOcNKjdbWJVuYM9DTU49asXFe1ZdgZpiYiIiNINzziILGTTyGDzi8C0ldYuIpJIgSplkFY6mGUp+qpROfsiBMqXwrv7K9QsuDnR06M4qVt+v+y5v2xBciZCSnpZncykVafxmgUb9xkcgF+ZSEMcM2n/uPB/+OnANkU7g7RERERE6YdnHEQW0vuF+rVMebtiKhObDgAAGjZMA0RvqN278/NkTYkog2h/2tg9HRI4j+TxdD8/Yh9X5/GhxzlH3qrap/qnGwwdTz97mTKaWiatRTVpF5btULQVuDzIc7otGZ+IiIiI2g6ecRBZSK0mbaqTtIrqHjwBlbyVCZwNEQHQvfXenntYAieSPLlD7oUtq6N+n0F/CT3WCupK3gpjB2RNWtLQHMAP+wJgUbmD/Y11irZ7Bp8Cu41f4YmIiIjSDb/hEVkoHYO0Wieakug/+P++RM6GiADNIG1W72sTPJHkcRYPQbtz18Ke30ezj7vTiaHHgt0j32g7eLu43WBGIjNpSU94yQMx9nIHTQE/6gJeWdvXp12PPw8aF/PYRERERNT28IyDyEJpWQpS1CjT0BK81dpORHHDW++b2VwFcBQOMNg5rIan6IckSRDC27XwNSc9YZnWViwcdqBJuVjjsOIuMY9LRERERG2TykoHRBQtrYXDUlGw6QAaN70JmzNfvUNLuQMGaYmSQCtgqFGeJI0JBssQCILyK0/9ysfg3fmZsQMdXCyRSI0gOOS/fRYsHLa6Wr6onV2wocidFfO4RERERNQ2MUhLZKFIIdqmgAiPo+1nY0lBH8r+Nxxiw07tPqFMWpY7IEo4razOTAwkht9mbqJf7ZI7DR8m2LDLcF/KQOEXC2JcOEyURJw+67+ytlJPDmzM6CYiIiJKW/ymR2ShSDVpv9/RlJiJxKhx85u6AVoAoTIHzKRNT4GajcmeAunRCMYKNleCJ5JCjJY10ODfP9+iiVBaCrsIEGu5g18r9ijaOnhyYxqTiIiIiNo2BmmJLGSPEKRdV5kaAU1/2eKIfUInoGlU4oEOCdZHCNJTUknBRtV2wV2U4Jkkn+DIMdZPpdyBGVbUGKX0JYTfSyPFVnpkX1Odou3c7gNjGpOIiIiI2jYGaYksJAgC9KoZuCJFcdsKI4HXg7dyqgU+JAtWtaYkU3kP5A3/ZxImQmqkoEZWfoyBoVRkcxkMTJvIpM0/+nllYyaWkqCkqfA2KNruG3pqEmZCRERERInCIC2RxZw6NQ+cKfMbZ2CioUxa5aI9mgEkSiEq72ObsQWaKP60MmmBzAsk2tzFhvoJBmvXerqfj5y+v1VuYJCW9CgubMV2waS8qV72/PgOPVmPloiIiCjN8dsekcX0kmX1ArhtioFM2lAtWpUgrb9sAaQAA7WpTFANBvBPRpvBTNoQwepMWs1F2XiHAOmxJkjrCwawsnIP1lTvl7UXu7OjnBcRERERpYrYCrQRkYJeHHZXXaqc5EcOxgVrtwCd1LPTKr46GRAcKD7tG7g7jo3HBCnuVN7IzOJqM6SAViZt5gVpbQbr8BquSaty4QkAJGbSkglig3Lhr0gWl+3AabP+q1rqgEFaIiIiovTHM24ii9l0slB/LfMlcCbRU8+ilGvc+t7Bzhq3wEsB1P3yDwtnRYnkr/xV0SaYqOlJcabxbyHYPQmeSPLZ3CUGOxp8/2pkI9uc+QZnRJlJ/re/aftHpkd4+JdvVQO0AFDsYpCWiIiIKN0xSEtkscMLtLO1+hWlRpDLnn9ExD42V0sdSO3MvWD9DotmRInm3f21os3V6aQkzITUZPe5Tr293+8TPJPkc5aOAmyuyB21LiiFkfw1AIDcYfKLTAXHTjM9N8ocYtM+2XObp73pMXY0VGluG1bSxfR4RERERJRaGKQlstiVR+aid6FDtTZtqtwsa3MWROzTEsgI1aZV7ZQq5R0onKAS9HLk903CTEiNPbsTCo55UdaWO/ge2LM7JmlGyWNzFaDw2Jcj9hMM1Npu7tgczM3pdxM83c+HLacbcgb8Ee4u42OZJqU5d+fTZM91/zZqCIryi542QUC+04Pr+4zBb3oMjml+RERERNT2sSYtkcU65jjw4LHNWabfbm/EiytqQ9ukFFnUR5ICEfuIB4O0COqUcBAjj0NtlEqtYWpbsvtcp5lRm2myel2K6p9+BylQZ8FozZ/TNncxik78wILxKBM4igbBu/urQw1R/P0LhNU9fuP4i3FJr+GxTo2IiIiIUgQzaQ/avn07/va3v2HkyJFo164dPB4PunXrhuOPPx733XcfVq5cqbv/F198gXPPPRddu3aF2+1G165dce655+KLL75I0E9AbVH4ImJiasRoDZ1cHsqk1Q7SSsykTVmCwVvDidIOFwijaITVPJakKDJpw957Dhu/phMRERFlEqZKAZg6dSruuusu1NfXy9p37tyJnTt34ocffkBNTQ2eeuopxb6iKOL666/HtGnyWnW7du3Crl278PHHH+Paa6/FCy+8ABu/bGec8JtrUyVGKwXqI/YJVK7AgY8HIVClcwGDmbSpi0FaylQM0lIUwhdWlLwVhvddXbUXdy/5Equr5HVt7QYW8SQiIiKi9JHxQdoHH3wQ9957LwCgT58+uO666zBq1CgUFBSgvLwcy5Ytw4wZMzQDrHfffXcoQDts2DDccccd6NWrFzZt2oRHH30Uy5Ytw0svvYR27drh4YcfTtjPRW1DqmbS1v36oKF+ugFagDVpU5lqkDZF3sBEMZBSpno4tSlhJWK8u740vOt5372GddUHFO0M0hIRpSdJklBfX4+amho0NTUhGOQ5E1GqsNlscLlcyMnJQW5uLlwuAwsYm5DRQdpvv/02FKC94oor8NJLL8HplGdCnHzyyfjzn/8Mn095S/f69evx+OOPAwBGjhyJuXPnIisrCwAwatQonH322Rg7diwWL16Mxx57DFdffTWOOOKIOP9U1JaEL1STKkFasUl5shgNI7VtqW1yloxA44aX5I0MGFAbljPgNtT98kDoubN0dHQDMZOWoiA2hmXBGlxoscrbqBqgBYB2npyY50VERG2LKIrYvn07Ghsbkz0VIoqSz+dDXV0d9u3bh3bt2qGkpMT4IsURZGyQVhRF3HDDDQCAIUOGYNq0aXA4tF8Otej4U089hUCgOQg1derUUIC2RXZ2NqZOnYqjjz4agUAATz75JP7zn/9Y+FNQWxeeSStlWiYiM2lTlj2nq6JNYJCW2rCc/regcfPbCNZuguDMR/5RT0c5kjVfsCizOAqPjGo/UeN7wdHtumN0u8NimRIREbUxkiQpArSCIMBuZ5kxolQRDAZlC8IfOHAAPp8PnTt3tmT8jA3Szpo1Cxs2bAAA3HnnnboBWjWSJOGTTz4BAPTr1w9jxoxR7TdmzBj07dsX69atwyeffIJnnnnGsgg7tX3hIa1UyaS1isSatKkrLJvQnnd4kiZCZIzNU4rSs5fBX74UjrwjYM/pkuwpUQax53STN+gsqhnJ68dfjN/0GAynjSftRETppL6+PhSgtdvt6NixI3Jzc7l2DVEKkSQJXq8XNTU1KC8vBwBUV1ejpKQEbrc75vEz9tPg/fffB9B85WrixImh9oqKCmzYsAEVFfoLPmzZsgW7d+8GAIwdO1a3b8v2Xbt2YevWrTHMmlKNIpM2w4K0zKRNYYp/u4z9c0EpxObMg7vjWAZoKeEEm/yOK8lgkFZS+WJwSufe8DicKr2JiCiV1dTUhB537NgR+fn5DNASpRhBEODxeNC+fXu0b98+1F5ZWWnJ+Bn7ifDzzz8DAHr06IG8vDy8/fbbGDRoEEpKStCnTx+UlJSgb9++ePzxx+H1ehX7r169OvS4X79+usdqvX3NmjUW/QSUCsKzpn2ZlkobQyZRJhD9tahddh+q5/8OgbptyZ6OTLBhp7xBdSExIiICAIQFaUVvedRD8X4rIqL01NTUBKD5HDE3NzfJsyGiWBUWFoYeNzQ0WDJmRpY7EEURa9euBQCUlpbiD3/4A55+Wlm7bv369bj99tsxY8YMfPbZZ7J/gJ07DwUwunZV1m5srVu3Q7fA7dixw9RcWx9HzZ49e0yNR4kVfqJV1ph5C9IEajbAkd872dNocyTRj31v5YeeN6x/Ae3OW98mXqtg/U7ULLhF1sZ6tERE2sIzaRFsgiRJLHFFREQhwWDznWp2u50ZtERpwG63w263IxgMhn6/Y5WRnwzV1dUQxeZg2YoVK/D000+jU6dOePPNN1FRUYGGhgbMmTMnVGd2/vz5uPrqq2Vj1NbWhh5HugqWk3Nodd66ujpTc+3WrZvuf6NHR7l6NSVEeLkDAGjwZ1agtmnbjGRPoU1q3Py2oq122X1JmIlS7fK/KxuZSUsZQvLXRu5EFEZwZCvaAtWR757KsPtriIiIiNKK1RfkMzJIW19fH3rc1NSE7OxsfP/997j00ktRVFSErKwsnHDCCfjuu+8wZMgQAMCMGTOwYMEC2X4tXK6w7IkwrYsHt17JkdJf93xlsnqdP3VPydxdJ0buFEb0V8dhJqnPt/sbRVvTlneTMBOlxo0vKxuZSUsZQgowSEvmOQoHKNokr/76BgDQFPQr2jx21qMlIiIiykQZedbt8Xhkz6+99lr07dtX0S8rKwsPPfRQ6Pl7772nOobPp193s3VN26ysLFNz3bFjh+5/CxcuNDUeJVaJR/kr1hBo+5m0jqLBqu15Q+83P5gYiG0y6aot3wIrqbxHmUlLacBuoJyIs92YBMyE0o1gV16wl4LKNQ3CNQaUQdosLhpGRERElJEysiZtXl6e7Pn48eM1+5588slwOBwIBAJYtGiR6hiRShi0ztw1WyA8Ur1batsEQUCOQ0B94FD2bGMgBTJpJfV6KoIzF4KrEJKvyvhYovIElFIPa9JSWpAMfP6qXaQgMsCW0w1i/aG1ByQxcpC2ISyTVoAAl40XxYiIiIgyUUaedbvdbrRr1y70vPXCXuE8Hg9KS0sBAAcOHAi1tw6eRlrcq/ViYXrHovSU5ZRnTFZ5234AQNII0sLmNn3buyRFn0kbFCU0pkDmcUZgJi1lCgZpKUqCzS1vMJBJu7O+SvY8y+HgYmNEREREGSojg7QAMGDAodphkVZha9nucBxKPD7yyCNDj9euXau7f+vt/fv3NzVPSn0eu/xk66mlNXhtdS0kIxldSRKsVn9PC3a3oRp7rTWsmQrRXx+5Y5j5u5twzddluOqrMjy1tBoBse2+XmY0bfsYe98qROOmN5I9FVWBum3qG5hJS2kh8ueI5kUqoggEuzxIq1fuYFd9NYZ98n+Y+I28Bni2StkEIiIiIsoMGXvWfcIJJ4Qeb968WbNfTU0NysrKAABdunQJtffs2ROdO3cGAMyZM0f3WHPnzg3t36NHj2inTCnKZVdmxHy+pRHba9tmICBQu1VzW/gJqFFNW94x1V+UJLy8qhaNAQkSgJ/2eLFsv37t51QgSSKqF/weUhteTK1+1ZOq7YGqVQmeCVEc8GIDxVN4kFan3MHjK2djecVuRTvr0RIRUbz5fD688847uOKKK9CvXz+UlJTA6XSitLQUI0aMwA033IBvvvkGosi7i4gSLWPPVs4///zQ4xkzZmj2mzFjRijj8fjjjw+1C4KASZMmAWjOlP35559V9//5559DmbSTJk3iLWwZaE+9ejB2b33bXFCrbsXDqu323J4QXEUR98/qdaWiLVC7ydQcmgISan3yjLc1FakfpBUb90Fs2JXsaehqWPNv1XbJzxXvKfUVjHlW9jy73+/hPuxcWVvu4L8mckqURgQhLMCqs3Dmptpy1fY++e1U24mIiKzw0UcfoW/fvrjkkkvwxhtvYN26daioqEAgEEB5eTmWLl2K559/Hqeeeir69++Pzz77LNlTzkg9evSAIAiYMmVKsqfSJs2ePRuCIEAQBMyePTvZ07FUxgZpBw8ejDPOOAMA8M477+Dbb79V9Nm7dy/uueceAIDL5cJVV10l237rrbfCbm+u03jzzTejsbFRtr2xsRE333wzgOZSCbfeeqvVPwalALdKJi0ABNvo3fuSX20hPAH5R03Vv8hgcyHnyFuRf9TTym06J6pq1F6btKh2wNuoiZLK1XEcsvpcB9hccJaMRM6APyFv2N9hz+8L2NzIGXQXnIVHRh6ISI0iU1v7D5dfVP496JFbhEdHnmnxpIiIiJo98MADOP/887F161YAwKmnnoqpU6fi22+/xZIlS/D111/jmWeewWmnnQabzYb169fj7rvvTu6kiTKMI3KX9PXUU0/hp59+QlVVFSZOnIhbb70VEyZMQFZWFhYuXIh//vOfoUXBHnjgAVm5AwDo06cPbr/9djzyyCNYvHgxjj32WNx5553o1asXNm3ahH/9619YtmwZAOD2229H7969E/4zUvK5NC6FBNvo3SNSQFk/tsMlVbC58nX363hJNQSHBwCQ1fsaNG6Y1npQU3NoqwHsWLHWJVFyCTYHCo95EYXHvChrb3+efm15IkPCL2TqLEIXCNt275BT8Pdhp/GOKyIiiotXXnkF9913HwCgffv2mD59OsaOHavod8opp+Cmm27CypUrcdttt8kWTyei+MvoIG2fPn0wc+ZMXHDBBdi3bx8eeeQRPPLII7I+giDg7rvvxh133KE6xkMPPYT9+/fj5ZdfxrJlyzB58mRFn2uuuQYPPvhgXH4GavvUatICQKCNLhwmBZSZtEZq0bYEaAFAEOQfLZLJTFpR5bVpm6+WSQzSEhGlMflVWUkvSBtW56+9J5cBWiIiiotdu3bh97//PQAgJycHc+bMQb9+/XT3GThwIL766iu8/fbbiZgiER2UseUOWhx33HFYtWoV/va3v2HIkCHIz8+Hx+NBz549cdVVV2HJkiV44IEHNPe32WyYNm0aPvvsM0yaNAmdO3eGy+VC586dMWnSJHz++ed46aWXYLNl/EudsTSDtGHnbpIk4dvtjXh0URXeXluHpkBywpKq5Q5sJlebtoVd/xH9pnZv8Ct/9i+3NmLGxnoEVeoeLN3nxX+W1+DzLQ2qAd42g0FaIqK0JUQodxAURTzy63c4Y9Z/saxCXp/cwe+JREQUJ08++SQaGhoAAP/4xz8iBmhb2Gw2XHbZZarbfvjhB1x++eXo0aMHPB4PCgsLMWzYMNxzzz262bfhtUQlScK0adNw3HHHoaSkBPn5+Rg9ejTeeOMN2X4+nw/PP/88xowZg+LiYuTl5eHYY4/F9OnTNY+1devW0LFeffVVAMD777+PU045Be3bt0dWVhb69euHu+66C1VVVbqvxcqVK/Hggw/itNNOQ9euXeF2u5Gbm4vevXvjyiuv1FyjqMX9998fmgsAVFdX44EHHsCwYcNQWFgYmuO4ceMgCAK2bdsGAHjttddC+7X8N27cON2f8aOPPsL48ePRvn175OTkYMiQIZg6dSr8/kPn5JIk4e2338a4cePQvn17ZGdnY/jw4Xj++edDazLpqa6uxj//+U8ce+yxaNeuHVwuFzp16oSzzjoLH3zwge4YLfO9//77AQCLFi3CxRdfHHpdu3Tpgssvvxxr1qxR7Nvy85544omhthNPPFHxGrW8FqkoozNpW5SUlOD+++8PvUmiMWHCBEyYMMG6SVHaCGgUUw1v/3mvFy+uaF6cacl+H2q8In43RL/EQDyolTswnd0TnklrstzBtJXqi1S9u64eogSc3zsn1Lal2o9/La4GAMzdBdgF4LQe2ebmmygqNQiJiChd6Jc7eHzlbNy15HPVPR02e7wmRUREGUySJLz22msAmrNor7vuupjGE0URt9xyC/7zn//I2r1eL5YvX47ly5fjmWeewfvvv49TTz1Vdyy/349JkyZh5syZsvZFixbhiiuuwOLFi/Hvf/8blZWVOOecczB37lxZv/nz52P+/PnYuHEj/vrXyAu/XnPNNXj55ZdlbevWrcMjjzyC119/Hd9++61qAHv27NmyoGALn8+HjRs3YuPGjXj99dfxl7/8Bf/85z8jzmPDhg0YP358qDawlW688UY899xzsrZff/0Vt9xyC2bPno3p06cjEAjgsssuwwcffCDrt2zZMtxwww1YunQpXnxRXhqstW+//RYXXXQRysvli6Du3bsXn376KT799FNMmDAB7733HnJzc3Xn++yzz+IPf/gDAoFD8YLdu3fjzTffxEcffYQvvvgCJ5xwgtEfPy3wsj1RnFV51W93DK+7+t32Jtnz73fKnyeKo3hozGMINuMrXKvZU68dzPx8S4Ps+eur5Zm/L69SW/isjVBkWSlJQW8CJmKe4CpM9hSIiNo2xWe8/O//93s3ae5a5MqKw4SIiCjTrVq1CmVlZQCA448/Hnl5eTGN95e//CUUoO3Zsyeef/55LFy4EN9//z1uu+02OJ1OVFdXY+LEifjll190x7r33nsxc+ZMXHrppfjss8+wZMkSvPPOO+jbty8A4Omnn8Y333yDKVOmYP78+bjhhhswa9YsLFmyBNOmTUPnzp0BAPfddx9WrVqle6xnn30WL7/8MkaPHo133nkHixcvxueff44LL7wQQHNg8LTTTkNtrTJZKBAIICcnBxdeeCGef/55zJ49G0uXLsWXX36JJ554At27dwcAPPLII3jllVcivoYXXHABdu3ahZtvvhlff/01Fi9eHPq5X3nlFaxYsSL0s02aNAkrVqyQ/ad1jOeffx7PPfccJkyYgI8++ghLlizBxx9/jKOOOgpAc4btK6+8gttvvx0ffPABLrnkEnz66adYsmQJ3n333VCA+r///S++/PJL1WP8+OOPOOOMM1BeXo4OHTrgwQcfxMyZM7FkyRLMnDkzlHn9+eef48orr9R9Hb766ivcfPPNGDBgAF5++WUsWrQIc+fOxW233QabzYaGhgZcfvnl8Pl8oX26dOmCFStWyILtL7/8suI1OueccyL+O7RVzKQlirPOuQ7UVChv9w+G3QKwq85cIDNenCXD0bT5Lc3tuYPvQd2v8hrLRSd+JO9kiy2TVi9xty6sFMKWmrbxullFEgOGagAnWnbva5I9BSKitk2xcJj871VTUL30T4/cIpzciYvLEhGR9VoHSkeMGBHTWCtWrMATTzwBoLlm7bx581BYWBjaPm7cOIwfPx5nnnkmfD4frr/+eixYsEBzvAULFuCpp57CH/7wh1Db8OHDMW7cOPTp0we1tbW45JJLUFZWho8++kgWeBs+fDhGjhyJYcOGIRgM4sUXX8S///1vzWMtWrQIEyZMwCeffAKH49C56hlnnIGBAwfivvvuw/bt2/HAAw/g0Ucfle07dOhQ7Ny5U/aztjjttNPw+9//HhMnTsTXX3+Nv//977jiiitgt2vfIbNy5Up88cUXGD9+fKgt/N/G6WxOeiosLMTAgQM1x2ptwYIFuPXWW/Hkk0+G2oYPH45TTz0VRx55JLZt24a//OUvqKioUH3dx44dG3rdn3vuOZx++umy8f1+Py677DL4/X6cfvrp+PDDD5GdnS0bY+LEiTjhhBNw/fXX46OPPsLXX3+tmVH9888/Y8KECZgxYwZcrkPlFY8//niUlJTgnnvuwfbt2/HZZ5/h3HPPDb0uAwcODF14AJovFhh9jVIBM2mJ4qzEo/5rFl6Tts0Iy3p1dzlD9jxv+AMoPP5NAIDgLkHJmT/D0/1cWZ/whcPMZtKq1Z3V0pZL0IaTjNTmbaN1ax3FQ5I9BSKiNi7s731YuQN/2GJhv+kxGK8edxEWnvUHFLqZSUtERNZrfUt6+/btYxrrueeeg3jwb9lLL72kGrQ8/fTTcfXVVwMAFi5ciEWLFmmOd9RRR8kChS06duwYCsodOHAAF154oWpm5ODBg3HccccBAObNm6c7d7fbjf/+97+yAG2Lu+++OxTkmzZtmixzEwBKS0tVf9YWLpcLjz32GABg27ZtWL58ue5cpkyZIgvQWqVbt26KADMAZGdnh7Jay8vLDb3uaq/nu+++i61bt8Lj8eD111+XBWhbu+666zB69GgA0K0N6/F48Morr8gCtC1uueWWUHukf9t0wyAtUZxpxRvDA5FtZlHn8KzX8EXAAGT1uhSdpkjoeHEZXO2OUo4Rvo/JTNrwUhB6UihGa2wBtTYapFXUWiQiIrmwcgdSWLmDQFhd8tO79MOVvUehnUe/XhsREVG0Wt++n5OTo9Mzsm+++QYAMGDAgNAt9Gpa171t2UfN5MmTNbcNGTLEVL/Nmzdr9gGA8ePHh0oIhLPZbKEgZkVFBZYuXao7ltfrxfbt27F69WqsXLkSK1eulC2UFanMw6WXXqq7PVrnnXdeKAM3XOvX86KLLtIco6VfZWWlYjG1//3vfwCAsWPHol27drpzaakj+9NPP2n2OfXUUzUvHOTl5aF37+a7jCL926YbljsgijOtIGIgbINaCKyiKYhiT2IWE5EkEY0bX0Xdikfk8wqvL2tA+D6GMkgB7K0PYFtNQFHSINz6Sj96FzoOLmhmJutWgm/v9/DtnQtXh+Ph6nhCVD9ftCQp8uvg2zsbgjMPznZHweaMrWaUnga/iDUVfpRm2dE93wEp0ATf/h80+ytXLSciotYExcJh4eUO5BcsnVwsjIiI4qx1Ddr6euUC0UZ5vV5s2LABAHQDtAAwbNgwOJ1O+P1+rFy5UrNfnz59NLe1zlw10k+tlmxro0aN0t3ekvkJNJd1GDNmjGx7fX09nn76abz77rtYtWoVgkHtxJrWt+KrGTx4sO72aFn5egLNr2nr54sXLwbQXEvW6MLie/fu1dymtkhba8XFxaF5ZBIGaYniTOt2/ICBW/pv/LYcDx9XhMML4h9I3PtGNiAqF60SfTXmBwsvd2Agk3b5AS8eXVRtKIv23vmVOL1HFq4akGeq3EHNzzeiYd3zoefurhNRfMpMnT2sFazbHrFP5ffnAQDseb1QOnERbO4iy+fR4Bdx94+V2H1wgbZrj8zC0F+PR6BS76ovM2mJiHRFWDjs18o9sucOGy9+ERFRfJWUlIQe79u3L+pxKisrQ48jlU1wOp0oKSnB3r17UVFRodlP63Z5oDm71Uw/UdSvJRhpzh06dAg9Dp/z1q1bcdJJJ2HLli26Y7RobGzU3V5UZP35HWDt6wlAEYjev3+/6TnpvRZ682g9F72AeDpikJYozkqy1E/CwoORdpWrURKAOTub4h6k9Vf8qhqgBQDfHu1bVDSFLxxmoCbt51saTZU5+HJrI37Tx/gtO2JTuSxACwDenZ8iULcNjtzuxg8cA/8B7ds9wgVrN6F+7X+QN+Qey+exeJ83FKAFgE83HMBA3QAtILji82WCiChthAdpW9WkrfQ2KLo7eIcCERHFWevb3CPdxm+U0SzKtiSWOV9++eXYsmULBEHAVVddhcmTJ6N///5o164dXC4XBEGAKIqhxcKkCFlEeouKtWUtwdIzzjhDtfYtWYNBWqI4m3R4Nj7foryCFAy72Nc934G9DcqrRLW++K8w5tv/o6XjKRYOM5BJ+8sBX8Q+4cobjb82gdpNqu2StxxIUJBWcBWY6t+w7vm4BGkX7JUH5Pf69eshCs4CuDurr8pJREQttMsdVKgEaYcUq9fGIyIissqAAQNQWlqKsrIyzJs3DzU1NcjPzzc9Tuvsz0gZuYFAILRgWcst68kWac6tt7ee89q1a/HDD80l4f7617/iwQcfVN1fL2M4XZSUlGD37t3w+XyhhdbIeryETxRnhR47bhmm/EMYXu7A41C/umcmuzRagmDx1bzwhcMMZNJGy/DLo1EXV2qzC3XFj4FKGzIlE+ZBYO1EIiJ9OuUO/Cq3YR6e1zZOXImIKH0JghBaFKu+vh4vvfRSVOO43e7QQk4LFizQ7bts2TL4/c3nXm0lmLdo0SLD21vPedWqVaHHegtutdRrtUpbzFYeNmwYgOaf1eczn2Blpbb4+liFQVqiBDi2swdnHy6vuRK+cJjWXRFBsxG1aFgcpI124TCzJFOLhmkEisUEBmnNFNAFEK86sAGTydnOokFxmQcRUXqRf2ZLrcodBFQuCNpZ7oCIiBLgtttuC9X/vO+++7B27VpD+4miiLfeeiv0/JRTTgHQHLhcuHCh5n6tA8Et+yTbrFmzsGfPHtVtoijitddeA9CcMTx8+PDQtkDg0Dmk3sJrzz//vOa2aHg8HgDNC7a1FWeffTYAoLq6Gq+88kpS59Ly+gBt6zWyAr8dEiWIPey3LTyTVit8l4hMWmX2T6zjmS93EC3jmbQac0hoJq3Zf0zr//ElSULQdLCYiIgiUvwtPfRZG55J6xBsaZ0FQkREbUeXLl3wzDPPAGgONI4dOxZz5szR3Wf16tU4/fTT8dhjj4XabrjhhtBiTtdffz1qapQLTM+aNQvTpk0DAIwePRqjRo2y6seIidfrxW9/+1vVRageeeQRrFixAgBw9dVXw+12h7a1ZA8DwKuvvqo69nPPPYdPPvnE0vl26tQJALBpk3rJvmS48sor0a1bNwDAn//8Z8ydO1e3/w8//BDxfRatltcHaFuvkRVYk5YoQcIXBvtpjxeHbajHuUc0X9Wct6tJdb+l+32QJCkuJ3P+8qUomznC8nHDyx34y/RvL9lcHV2m7Z3zKiN3Oqhp2weq7YG6zXB1ODaq45slNplbEVPyK7/46PFX/IKqH66C2LQfeUPvR3afa0Pb9tQH8PSyGmyujl/AnIgokwlhQVrJfyjjpiEgvy3QyRIyRESUQFdddRV27tyJ++67D/v378e4ceMwfvx4TJo0Cf3790dhYSEqKiqwfv16fPbZZ/jyyy8RDAZlC48NGjQIf/rTn/DYY4/hl19+wfDhw3HnnXdi2LBhqK+vx8yZM/H0008jGAzC5XLhhRdeSOJPLDdy5EjMnDkTxx57LG677Tb07t0b+/fvx2uvvYZ3330XANC1a1fce++9sv2GDRuGgQMHYuXKlXjhhRdQWVmJyy+/HJ06dcLOnTvx5ptv4oMPPsCxxx6LH3+0bp2XY445Bt9//z0WLVqERx55BGeccQZycpoXzc7KykKXLl0sO5ZRbrcb06dPx7hx41BXV4eTTjoJkydPxjnnnIOePXtCFEXs2bMHS5YswYwZM7BixQpMnToVY8eOtXwuhx12GLp27YqdO3fi8ccfR9euXdG3b9/QomwdOnRAXl6e5cdNBAZpiRLEoZKs+t76eozs6IYvQrrs5uoAehU6dftEIy4BWgCCSpK+JImKE9gW01bWxmUerTWsU78FpXbJX5Hd6/K4Hx8AGtabqwEl+c29LjWL/ohAxTIAQPVPv4PnsHNh85QAAF5fXacboN1nPwIdghtNHY+IiFqTX0z17vwMGPkIAGD6ll9k2xw23sxGRESJde+992LAgAH405/+hK1bt2LWrFmYNWuWZv8BAwbg0UcflbU98sgjqK+vx7PPPotNmzbh+uuvV+xXUFCA6dOnY+jQoVb/CFG76aabMGfOHLz66quYPHmyYnunTp3w1VdfoaBAvtCzIAh44403cNJJJ6GyshLTp0/H9OnTZX0GDRqE999/H507W7cg6A033IDnnnsOFRUVuOuuu3DXXXeFto0dOxazZ8+27FhmjBkzBrNnz8aFF16IHTt24K233pKVxAgXzSJ1Rv31r3/FjTfeiC1btmDSpEmyba+88gqmTJkSt2PHE78hEiWIw6aeCbuyzIf31mnXtwGAxfuSV2fF1elk0/sEapW3HASq12n231UX35IDkk7dWZu7SHOb1Vwdx8V1fN+e7w49kYJo2Phy6OnS/frF3Xc7jozXtIiIMoJvn/yWPlfHQ5kjOU6XbFutP73qpxERUWo477zzsG7dOrz11lu47LLL0LdvXxQVFcHhcKC4uBjDhw/HjTfeiO+++w4rVqzA+PHjZfvbbDb85z//wdy5c3HppZfisMMOg9vtRn5+PoYOHYq//vWv2LBhg2K/tuCVV17B22+/jXHjxqGkpARutxt9+vTBHXfcgVWrVuHII9XPh4YOHYrly5fjd7/7Hbp37w6n04ni4mKMHj0ajz/+OBYuXCi7/d4KXbp0wcKFC3HNNdfgiCOOkNVgTbYxY8Zgw4YNeP7553HmmWeic+fOcLlc8Hg86NatG8aPH4+HHnoIa9euxRVXXBG3edxwww348MMPMX78eLRv3x4OR3rkoKbHT0GUAlwal0QCooSmCJm0jeGrjCVQ1hFXmt5HsKl8tOjUfk3I4mga4rWomcbBEncsADDxszUIBZE7ERGRJmfJSHh3fdGq5dDftvBS4AWutnOyRUREmcXlcuGSSy7BJZdcEvUYxx9/PI4//njT+40bNw6SgfUxpkyZYigT8v7778f9999v+PgXX3wxLr74YsP9Wxx22GF47rnndPvo/Vxm5wkAvXr1ki3CpqZHjx6GXk+rX3e3243f/va3+O1vfxuxbzgj8wBgKFv4vPPOw3nnnWd6Dm0ZM2mJEsRlV8+klQDl2VuYQIJje63ZXMXR7KRs0wlQxn9xNJ0DiPoZptZK4j9kBI0M0hIRxcSe20Pe0Opvuxj2N3BStwEJmBERERERpRIGaYkSRCtICwCREmX9Scw0Va5WbWQX40FaSZKSGqRN60xaGF9srtFWGL9pEBFlAsUCn4f+9gTDLsba4rAYKBERERGlNgZpiRLEpVGTtjEg6S7oBADzdjXFY0qGCEIUK1Db1BY5Uw9QxiP+rLiFQidTWazfYWpsb1DCxxvr8fLKWmyuNh7glQJN8O2dbepYsTMeBKgXElebl4goPcm/VkvBQ3VnRYQHafkVnIiIiIjk+A2RKEFcGrHOGRsbIu4blIDV5dbelu87sMBYxyiCtOqZtOqB0nhkCStHjFBOomaD4bFf/LUG76yrx1fbGnH/T1WobDK26FnZpyMMH8MyBzO1jNT8/TnrsnjPhogorfkrlsmeN258JfRYZCYtEREREUXAIC1Rgjg1MmmNev7XGotm0qx+1f8Z6xhNJq3drWiSNBYO21lnLMhpRnhMUmzcp9vfu+c7w2P/sPtQZpQ3KGH+bmMrdAeqVmtuc5aOMnx8LcH6XcrGg8HybbX6mdoA0D6wXrXdUTQopnkREWUK//4fNbcpgrQm7nQgIiIiosygsgQ7EcVD59zYft32NVhbz7Rp24eG+tlc+abHNlOTtiFSQd4ohAdppaB+uQgpEDmbWYuRAKjuCpY2NwqOfhG1S++Cd9eXsk2uDsZXTBWblIFoR34fAECDP/JrbId6sDyn/82G50BEROrCFw5jJi0REVF89ejRQ/88jKgNYiYtUYI4TPy29SlMxPUTY3+wBGeB6ZEFEzVpG/36wedxXT2Y3DcHF/bJQZHb2IsYvkCLJEYoFRHD4mE+I6ueaWQRZ/W6EqVnLYKzZCiKTp4Je25P+W4mgsdiU5nmtiYDc5Q0srqy+1xneA5ERKROWZOWQVoiIiIikmOQlihBzPyydYkx69ZKNpf5IC1sKvPXuIoZKZP2yBInzj0iB+f3zsHzp5Sif7FaAFhOEZOMEKSVDAZpw29XBWIL0uYMuhPOg+UEBJsDeSMflR/PX2doXgAgNh1QOzAAwGsgW1krSEtERLFjTVoiIiIiioRBWqIEMXM+5tVY6GlnbUB2y0a1V8R32xuxv8H6uq4tBKf5cgfqdWxFiJKEBXuasLHqUFA00q34jrBavm575Bey1ici2LgP/soVkMQgpKA1mbRq/yybqwORb6PRCNIKjuyw57ny3QK1huYFAKJXLZO2eV5GMmmDiBz8JiIic1r+PrAmLRERERFFwiAtUYIIJk7ItLIz/zS3Aq+ubs6uXLbfi+u/KcMLK2px8/flmLXNZF1Vg/V5BLtKfdlI+6gEaYNBPy7+/AD+b2kN7v6xEv9cWAUAaAjolztwhL1sLgNB2ltnV+CXGRNQ9slgVMw6FVJQ/7Vp2v5RxDEBQG2qlV4RL6/Sz3j17p2r2h4epLU55UFasWG3oXkBGpm0B2sgGgnSljkOh8g/CURE1jpYE52ZtEREREQUCc/IiRLEQGwxpMCl/av55dZG1PlFPLGkWtY+baXxW+MBAKp1Y60hOHIUbT+W58meLz/ggyhJEcsd2MMyaZ0GP7U+ybodAODb+z2ats3Q7RuoXGFozE3V6hm3s7Y1os6nHWyuXfwn1XbBniV/HpZJCwDBRuWCYGpUa9IeDAo0GVycbZPzaEP9iIjIGF/ZQgCsSUtEREREkTFIS5QgThNR2omHZ+tur/GKiLDeVkSuDsfFNoAOZztlsO/VHd0UbUFRPTu1tfBM2kKDi4etdZ0Uetyw9j+6fe053Q2NuWCPV3NbtU6QNlC1WrU9PHPWUdBX0Uc0GKSVDmZrydoOLtbmNVI3F8A611hD/YiISKlw3PuKNslfA4CZtEREREQUGYO0RAk0uDRy9mqh24bOuQ6celiWZp9IgU0j7NldYx9Eg2BTq0mrJAIIRii7EJ5Je1oP/QC2Ov1jSIF6Q6P4NWoFAyqLlUVQdMoXijbBofJvLgWMDahW99ZkJm344mG5wx40dmwiIoLnsHOUjaxJS0REREQGMUhLlEDd8hwR+5xymAcA0C5b+9dTL1holBQW1MsZ9BfA5o553BaCuzhin6AoqS7G1Vp4ArLRcgdmiAFjpSL0XnfR5L+Jq3SU+oawEgjh/05aJNVgbvOcjGbShgdp7TnxC+QTEaUbweaAPe9w1W3KTFp+BSciIiIiOX5DJEogI3E8+8FbID065RGsyKSFKA/qCYIDsPCkUQj7eFH70UUp8mviCMukNbjemb7wYHSwCZIYORjq0+liNpMWKourASqLrokGM2nV+plYOAwApPA/CZa82ERExJq0RERERBRJ5LQ+IrKMoSDtwTiZWydIu79RPVr44YZ6LNjrRddcO64akIc8jQXIpKAPTVvfkzcKdgiCLUJhABPCgo2SGAAEl6wtYChIK39uZn4iBKj9RDZ3McTGPfJxA/UQXPnaY0kSFuzVrkk7dd4i7LEdAQDoW+TApVkfo3j7v+EoGqS+g2ZJCHkEvm7Fv1B88seh5wFRwu++KUOtv/nnsglAx2wb3NVX4HzHWnQNrGz9UwEAtlYbDPQqbr9lkJaIKCYH74ZYVr5L1swgLRERERGFYyYtUQIZCdI6WjJpw1fMauWZ5TWq7dPX12NbTQA/7vZixkbtOqsN6/+rbLQ5IDiiqfeqwUBW7pZqv+IW0HC2GM5jl7rPUx/TXaRokyKUPPh6W6Pu9pYALQCsqwzgxW3dEKj8FU2b31Ltr8iYDc2jQfbcu+MT+MuXhZ5/u70xFKAFmt9Tu+tFbHEehdfzngsbrLnf3gaDJRPCg7SSFSnbRESZRP452rT9YwDA2ur9snYGaYmIiIgoHIO0RAl0fBdPxD4tmaPOWKKTAD7boh1U9FcsU7TZszohZ8CfZG3ubpOiPn54pupA35eKPlVeMWLgusgtD2YWqGQHa71Sux391efmq1a0RVo87OVVxurWttjpHBKhh/GP38ZNbxiax35HH/jRupRDc5DVbWwdN5QEt8meuzqdbHiOREQEBGs3yZ7bsjogoFJOJyjyIhgRERERyTFIS5RAfYocOKqj/uJc9oPBWSOLjEVNpX6pp/u5yOp1RWjRE8GRjdyBf7bskCXB7arteuVSx3fPQoFb/jHltAu4rF9uKDD7mz45KPaof5QF4VRt93Q/X1mOwW8uCGuEqPcRq1nuQCnYuNdwX7/Q6v11MJPWbzAW4JIOZfFm97kejrweho9LRESAzdNB3iD64VMJ0k46bECCZkREREREqYJBWqIEEgQBtw3Ph1PnN6+lFG08b4SUJHmQNmfAH2FzF8Oe3QntzlmDkomL0P7CPXB1OC7qYzhLR8ueB6AenA4vd3BRnxz8e1wxnhpXjKsH5Kruc1avbDxzUgmeObEEF/TOQZZGaQhRUA/SujudDMEhHztSuYNoiHplvzXKHagyUXbALxzK1pYgIihKhspsHJxU8/86slFwzAvG50dERAAAT48LZM+lQCN8QWWQtnN2QaKmRERERHG2cuVKXHbZZejWrRtcLhcEQYAgCFi+fHmyp9amTZkyBYIgoEePHsmeSpvBIC1RggmCgHZZ2gG6lpq0cV2ySZKfMAr2rFaPXXCVjoRNZxEtQ2zyAGUgbNEwoDnRMzyAaLcBHXMc6JTjgKBTs680y4522c2vo1aQNqCRSSs48yA4c2Rtol+/3EE0gjpBWsFAzd5DjAdpA2hVUkOS4DceoQ1xFKiXiSAiIn2t/54CgBRshE/l7hWX3cSFOiIiIjJt9uzZoWDp/fffH7fjLFmyBKNHj8Zbb72FnTt3wu/3x+1YlP7ieD81EWkJ6iyWZT8Yu7MiSPvp5gZIAI7q6Eb7bDvWV/qxdt8BdN7+K7q07ihY/1EgHBwzCAcWei7C/KwrFX0O7JiDpVXDZW3RLKaS5dAod6CRSSs4cyE4ciEB+MFzFb7LvgkTd1dgbNWTCHo64V97x2NzdQCX9c/FhB5ZeOYX9YXaIgkKzpj/IVe6xqPCOxZHlvnw4IKqiP39ghtVto5Y5j4H3n1HoHrLlwBGGjqW1PLax+H9QESUCQSHWpBWmUnrMlHyhoiIiNquu+66C42NjcjPz8cjjzyCkSNHIiur+fvAEUccEWHvxLj//vvx97//HQAgRVi4m5KLZ+JESRDQSYx0HKxJa8WH5xtrmm/h/3BDPa4dmIdnltdAggP2oi/xp8rT0Tm4urljPE4WD2bSvpn3HyzznKPa5aOwAC0ARLNemkcjk3ah52JcUnurytTyIDhz8WnOPfg2+2YAwBsHumF3wxx8m30pgOaspzfX1OHNNdGXQdjmGIb+/tlR7/+DZwo+yPsXEAA+MhCgBYBqWydMzf8E9bYSwNgurRx8HW3qwW0iItKnyKQNNMIbVMmktfErOBERUarz+/2YM2cOAOD666/HDTfckOQZUapjuQOiJDiyRHnrf4uWmrTZGtmh0WgMSJi6vCaU1BkU3JiR+4/Qdslfa9mxQmMGGuFDlmaAVsuGSvO3h6zT2KcwuFO1XXAVwubICQVoW3ybfYvpY+tZ4Lkkpv0/yPuX6X2+yLmjOUAbBanlT4KkDCgQEZEBdo/sqRRsYiYtERFRmiorK4PP5wMA9OnTJ8mzoXTAIC1RElzQOzsUjA3X0p7vju+v5wbX8XEd33/gJ/iErMgdw+ytV57MRlLtVU9NzhErFW2CuwT27I4JuaV/j6OfarujeJjmPva82G6J2eocpbt9aDsXhrdXv0ggHsyktWV1imkORESZSlAsCikqgrR2wQa7jV/BiYiIUp3X6w09djp5NyLFjt8QiZKgY44DDx5bpLrN3up+/9dOK4VHK5prIWexsuxArLL7/BZCFAVZoyl3oEWtJm3J6d83PzC1cJdSl9zIWVBaP3/BMS9q7pM79L6o52TEH4bl49bhBbikX45im4Tmn8mR2yOucyAiSlvhf1skEb6wcgfMoiUiIkqu1ouKzZ49GwAwffp0nHzyyWjXrh2ysrLQt29f3HHHHaioqFDsf//990MQBPTs2TPUdtVVV4XG1FqsrKmpCc888wxOPvlkdOzYES6XC+3bt8cpp5yCadOmIRCIfEej1+vFiy++iDPPPBNdunSB2+1GTk4OBgwYgGuvvRZfffVVqHTiq6++CkEQQvVoAcjm2PLf1q1bFccJBoN47bXXMHHiRHTu3BlutxslJSU47rjj8H//939obGyMONc1a9ZgypQp6NatGzweD7p164ZLLrkEixYtirhvpmJBLKIkObxA/Upb65isx2HDa6e3Q3ljEDd+Vx6/ycShBmnz4inmg7TRxKTtAhBUOZQI5YmwPeew5geKbCdzTuyahY/Xl6FO9Gj20QrSCna3zsjxC8oXBbcj29keADCpVw6W7/dhdcWhUhGh1yvGADYRUeYK+wyXJEUmrcvOIC0REVFbIYoiLr/8crz55puy9vXr1+Oxxx7DjBkzMG/ePHTs2DGm4/zyyy+YNGkStm3bJms/cOAAvv32W3z77bd44YUXMHPmTHTo0EF1jOXLl+O8887Dli1bZO0+nw+rV6/G6tWrMW3aNGzZsgU9evSIeq7bt2/H2WefjV9++UXWXlFRgR9//BE//vgjnnvuOXz22WeaZR6mT5+OK664QpZtvHPnTrzzzjt4//338fzzz0c9v3TGIC1RG6OWSeqwMr20FRE22CBCiMdCUY7sKDNpzf+sLruAxoDyWEHBCQlAua07CsU9cMAHwdGcQaq8JdUchw2wC/o/nwCtFeLinx2txg55oCD8bSWGXpPkzI+IKOUpLnIpyx0wk5aIiKjtuPfeezF//nycc845uOKKK9C9e3fs27cP//nPf/DZZ59h48aNuO222/DOO++E9rnxxhtxwQUXYPfu3TjttNMAAA8++CAmTZoU6tO+ffvQ440bN2Ls2LGorq5Gfn4+brrpJowePRrdunVDeXk5/ve//+GFF17AokWLMGnSJMybN09RPmHNmjU4/vjjUVfXvLD1ueeei8mTJ+Pwww9HMBjE+vXrMWvWLMyYMSO0zznnnIORI0fi2WefxXPPPQcAWLFiheI16NKlS+hxeXk5jjvuOOzYsQNutxvXXXcdxo4dix49eqCurg6zZs3Cv//9b2zcuBFnnHEGli5dioKCAtl4ixYtwqWXXopAIAC3243bbrsNEyZMgNvtxoIFC/Dwww/jhhtuwJFHHmn63yvdMUhL1MaoBRstXENMZmrhx7iu+jIUxSOT1p6FDc7jotjR/C5aQdpyew88VvQtdjsGwi3W4vraKeh0cEXteuSZP1Ardhtgk/wAtOvuClI0Qdrmn2OfPbbatGpsYQuC+cLSjz/OfQAnNP6XmbRERNEK+/yUJBGvbVwsa3PZ+PWbiIjUSZII0RvHOyjbGJu7BEKSzz3mz5+PBx98EHfffbes/fTTT8fpp5+OWbNm4YMPPsDTTz+Ndu3aAWgOwLZv3x65ubmh/l26dMHAgQNVj3HllVeiuroaw4YNw6xZs1BaWirbPn78eEycOBFnnnkmFixYgFdffRXXXXedrM9ll12Guro62Gw2vPXWW5g8ebJs+1FHHYXLL78c5eXlyM7OBgAUFhaisLBQFjDWmmOLW265BTt27ED37t3x/fffy0o6AMC4cePwm9/8Bscffzw2b96MRx99FA899JCsz4033ohAIACn04lZs2bhhBNOCG0bPXo0zjvvPIwZM0aRqUsM0hK1OWq37ccrk3aL8ygs9FyM8+IQpJUC9fgq54+m93NF8bO6dP6u73Y0/xHy2vLwVdYtaAkb/9zQO6ZPQIcgwBasB4R8zT52aNQU0skWFmzNpRBmZ/0u+slpsIVl0q6vUs5voedinGLXLuFARETaFCeaKkFaJxcNIyIiDaK3HPvfbR+5Y5poP3k/7J52SZ3DiBEj8Ne//lXRLggC/vjHP2LWrFkIBAL46aefcPbZZ5sef968eZg/fz4A4LXXXlMEaFucfvrpuOCCCzB9+nRFkHbWrFlYunQpgOYganiAtrWSkhLTc2yxdetWvPfeewCAZ555RhGgbTFs2DDcdNNNePTRR/Hqq6/KgrSLFi3C4sXN331++9vfygK0Lbp06YInnngCF110UdRzTVf8lkiURNcNUmZzDixxKdr0gpCx+jj3H3GpSSs27kWTTgBTyzUDcyN3CmM0iL3eNTb0+APHLaaPIz8mYItwy2q3wHLVdntOd8193F3PBACU2XtEOzVNdgOlJN7NexLZ/W6y/NhERBkhfMFK0R9VGR8iIiJKjEsuuQSCxt/qESNGhB5v3rw5qvH/97//AQD69u2LQYMG6fZtCWguWrRItojYp59+Gnp86623RjUPIz777DMEg0FkZ2fjjDPO0O3bMtfdu3dj+/btofZvvvkm9Piqq67S3P/cc89FYWFhbBNOQwzSEiXRcZ096JZ3KNB345A8eBzKPxCCIODYznqLTcUmHjVpBXsWgjA37uBSFzrmmE9vlcyXvo2ZwyYoaryG06pJa3PmaO5jc+Yg/6ipaBLMB6sjsdmN/XvYszLn6j0RkZXCF4YMBL0Qw/5ITR1zbiKnRERERDr69eunua24uDj0uLa2NqrxW7JK161bB0EQdP/7/e9/DwDw+/2oqKgIjbFs2TIAwGGHHYbu3bUTfmLVMteGhgY4HA7duU6cODG03969e0OPW2reulwuDBkyRPNYTqcTw4YNi9NPkrpY7oAoiTwOAY+fYOx2hBO6evDjbm/kjtGIR5DWkYVAeEZRBHcfVRjVsaQoFiiLVXOQVqOcQUh02VOeHheiaf3GqPbVY9dcyIyIiKwghJWL8QV9ij79C3ghjIiIqK1oqd+qxtaqRFEwqJ+go2X//v1R7dfQ0BB6XFZWBgDo1KlTVGMZZcVcW4LLxcXFsNv17zzt0KFDVMdLZwzSEqUIZ5zq0gKAYDKYamhMexaCUJZuiAcxGZm0grLGazgxypsVBMEGrxDbwmZqIs2XiIhipMik9Su6OCOUyiEiosxlc5eg/eToAmWpyOaOvn5qqmgJ7g4ZMgRvvvmm4f26dOkSrylpaplraWkpvv/+e8P7qdWu1SohQfoYpCVKEfEM0sYjkxZ2D5ps5mvSRiMJMVo4bAJskn7Qc37WFMzPmhJ63i6wEXdWnhh5cMGOJhuDtEREqcZIJi2DtEREpEUQbElfSIus1bKQV11dHQYOHBjVGC2Lje3Zs8eyealpmWttbS369+8fMRNWTVFREQCgvLwcwWBQd4x9+/ZFN9E0xpq0RCnCIcQvFCnFIZM2YNOuu2q1YEB5EhxvNrEBtojlDuQOOI7Ax7n3R+wXlAT4BO3bbqIlJCWcTUSUOZRBWmbSEhERZbKWuqubN2+W1W41Y/jw4QCA7du3Y9u2bab3N5rV2jJXr9cbqk9rVsviaD6fD7/88otmv0AggOXLl0d1jHTGIC1RiigJan8YZ4uVMY1dLhVH7mTScteZpvoXBXdEfayxgfei3jdaOY0bDNSkVfoh65qIffwmF1yLllNqTMhxiIgyhWCTlzvwBZV/J1wM0hIREWWMs88+GwAgSRL+/e9/RzXGWWedFXr85JNPmt7f4zl0Ednr1V7n5qyzzgoFdJ966inTxwGAU045JfT4tdde0+w3Y8YMVFbGFsdIRwzSEqWILKlKtf2cuvtwaoP5D+rWRGdhTPurqXGYq6FzffWlUR9rTN1/0S5gbqEtIUKpAj19fd+jk6sWNsl8kNYI0eaJ3CkK4Zm0N1WdH5fjEBFlrLBM2oCo/DvBTFoiIqLMMX78eIwePRoA8Nhjj2H69Om6/VesWIGZM2fK2k455RSMGDECADB16lS8++67mvuXl5ejsVGejNN6wbFNmzZp7tu3b1/85je/AQC8++67+L//+z/duW7ZsgXvvPOOrG306NGhzN/nnnsOP/zwg2K/PXv24M9//rPu2JmKQVqiVBH04tjGVxTN4xpfwImNL+COCgO1TrWGFmOZmDqfiRhorngAnYLroj5WjtCAP1eeistrbjC8TzT1Wc+ofwQ3VZ2L66ovB0RfVJm0xsSr/rA8SNsjsCROxyEiykxC2MJhfpWv2k4bv34TERFlkrfffhvFxcUIBoO46KKLcPbZZ+Ott97CwoULsWTJEnzxxRd4+OGHcfTRR2Pw4MGYM2eOYow33ngDubm5EEURF198Mc4//3y8//77WLJkCRYuXIi3334bU6ZMQffu3RW1Xo855pjQ49tuuw1z587Fhg0bsHHjRmzcuBGBwKHz2uf+n737Do+qTNsAfp/p6SGFEjpIFUQQBERERGVFELEAYu9rYcW17drbWr513XV1FTtWQARERRQVRUWRrhQpUgRCDenJZOr5/ggZZk6bcyZTk/t3XV5mTpt3JpNh5j7Ped6XXkKXLl0AAHfccQdGjBiB119/HcuXL8fatWvx1Vdf4V//+hfOOussHHfccZg7d65srC+++CIsFgs8Hg/OOuss3Hvvvfjhhx+wcuVKvPDCCzjppJOwf/9+9OvXL1pPcZPBicOIUoToc8Em1qquL/JtivjYXjH6vUrdPv3HzPftbtydCSbYUYvjPPKzdKq7wHgyPTq4YtnvhkkUYpKn+g38OgY738fPaVN0bs2etEREsSTtSeuBvGrWLDCkJSIiak66du2Kn376CRdeeCE2bNiATz75RFYtGyw7Wz4Bd69evfDtt99iwoQJ2LNnD+bNm4d58+bpuv/jjjsOEydOxAcffIDFixdj8eLFIet37tyJTp06AQDy8vKwbNkyTJw4Ed9//z2+++47fPfdd4bGOnjwYLz99tu46qqrUFdXhyeffBJPPvlkYL3FYsGLL76IZcuWafatbY4Y0hIlmLdyG6rWPQJr7vHIOP4OCGab4nait0YzpG2MmFTSGkgazaifWMXvroDJlmP8zo5+4TUZCJsbO4mW6HfDpPDlOxqMPHfpKm0wFMUgjCciomOkIe1GhM7QbTOZdU/eQURERE1H9+7dsW7dOnzwwQeYO3cuVq5cicOHD8Pn8yE/Px89evTAqaeeigkTJgTaBUiddNJJ2LJlC1577TV89NFH2LBhA0pLS+FwONC5c2cMHToUkyZNCgSuwd59910MHDgQH374IbZs2YKqqir4/cpBQOvWrfHdd99h4cKFmDlzJn766SccOHAAHo8Hubm56NatG4YOHYrzzjsPp512muIxLrnkEvTr1w9PPfUUvv76a5SUlKCwsBDDhg3DX//6VwwePBjLli2L+PlsqpI2pN2+fTtKSkrQqVMntGrVKtHDIYoJz5F1KPmkfgbFOgA1G59Fq0sOK25btmQ87Gk3x2Qcsaik9RiopPUdfSs6+H4uWl/uUg2qVQn1YWkk1bER87thFmPzFvrEinLd2zrESt3benW+5ftFESaGCERExgW1O/hZbIu/YEzIavajJSIiio/TTz8dosr3XK11UlrbderUSfdxAMBsNuOSSy7BJZdconsfqbS0NEydOhVTp041tJ/VasVdd92Fu+66S/c+5557Ls4919iE4MF69+6Nt99+W3X9jBkzMGPGjIiP3xTF/XqrQ4cO4cUXX8SLL76IiooK2frff/8dJ510Erp3745TTjkFbdu2xYUXXshZ36hJqlx1R8htv6sEnrKNsu3EoxOP5Pt2xWQcsaikNRL77rb0D/xcu+WlCO6s/gGY4da9i6WR/WRFnxseWCPat8Sp3g93V6UHxdX6++X6DZxr2yEcr2u7tYf0P49ERHRMcCXtfPSUrU8zR/bvBhERERE1fXEPaefNm4dbb70Vzz33HHJyQi9rdrlcOOecc7Bu3TqIoghRFOH3+/HRRx9h/Pjx8R4qUcy59y+RLfNWyifQEn31szP2cX+BHN++wPITXJ+GbDfUqX6WSkssKmkL0/RXC4nCsW2dO2cbvi/RVwcASBOrNLezB4W4nbONVTNNqL5fcqceVAj5ho7RoM6r/nz/Uak/PG7t3QyxEU1xTY5C2WsIADaXeiI+JhFRcyaYjoWwFXDI1o8q6hbP4RARERFRCol7SLt48WIIgoAJEybI1s2YMQPbt28HAJx33nl47rnnMG7cOIiiiGXLlmH2bOPhDVGqMdly5Qt99eGiGT5MLT8fpzhnYFTt85hS9ZeQzSZW34Xeri8BAOn+UvSvmw8A6ONahL+XDlO9z1hU0kYa/AZ/wdWrIcQOxw1b4HIUR1qu5raTqo5VOQ+vfQ3Dna9J7tONwZ6PjQ20YV+NdWqRa3AA7/BXYpjzTdxQcWmgn28kLC36YUjde4bGR0RE+ngVPma/OuyiBIyEiIiIiFJB3HvSbtlSXyU4ZMgQ2br3338fAHDGGWfgo48+AgBMnToVZ599Nr766ivMmjULkyZNittYiRJBKaQU/ccqQAv8f2Bi9T3K+wK4ofKykGVXVv057H0aaB+rm1v/FfshRNF4Yix69U2oJgLw+AGbGQg3N9fQuncxtO5d9WP53fCJkVWxauXXgkpMe0H1/ZhULe8fZGpMH17RB5PC822krxIRESnzSELaB4vSkWWVV9cSEREREQEJqKQ9fLh+UqR27dqFLHc6nVi+fDkEQcANN9wQsu6aa64BAKxZsyY+gyRKoIb+syHLPPonh9JiE5XDTF+4xDIC7kiTXzGCXrE6K2kBoO7ouPyNDSJ9LngR2QQwmveskvuaoJx6myJ5vgID8SuGvIxoiYgazynpW26J5+SWRERERJRy4h7SlpeX19+xKfSuly9fDo/HA0EQcOaZZ4as69y5M4D6SceImgLR50bZd5eqrDwWulWtexT7Zwg4PF8++Ugk0v2lisudGj1SI7WvJsLwUCGkjqbPd9UH1Y3NpavW/B1eX2StBjaUqE/MtadK+fELKl/uBYORqnPXh6j7Yz4OvJcL98GliseNRWU1EVFz8rrYH9+jY8gy377PIfo4MSMRERERKYt7SJuZmQkAOHDgQMjyb7/9FgDQu3dvtGjRImSd1VpfiWCxxL07A1FMuPYtRt2O9xXXiX7P0f/7UL3uoajeb55/r+LyzWXRnygq0smnxBhXGs3dVgu3T2x0SAsYD0gbvP1bteq6BduVq53VQ1pjfSUql9+Kip+nQvRUAAC8kLfX+L2cE4cREUWqWrTiUYyQLbfAD1fx5wkYERERERGlgriHtD171lcEfv556IfUuXPnQhAEjBgh/1DbEOi2atUq9gMkioPK5beqrzwa0vqqd0X1Pm1FZ2Ns9T8U17VOj+yyfS098/RPAHZB1b2Bnx3txxu+L1ubUYGfz655Nuz25S4/PBop7XHuZbrut4f7O13bRYNa99te7m90H2N0zTPw1x2Ev7Y4sOygpbtsO4spsl67REQEFCMbHoV2OF1QBl/VjgSMiIiIiIhSQdxD2nPPPReiKOKVV17BSy+9hA0bNuDOO+/Epk2bAAAXXHCBbJ+GXrRt27aN61iJEqGhkhZCtIIyAendb0Tu8LfRoyALw51vyLaIRe2qL8xBe7u+hFl0oZfrKwx0zQksF6xZhu9LsKQHfu7jDl+l5PSKgd60DYq8G2AV/CgwV2FszeOB5Rl9lCdpA4AO3vj0ybaL6pW3rXxbVdd19vwccntU7fOybcwKPW39MehRTETUXLgUAtqJ2IDh+AOiyCsViIiIiEhZ3PsH3HrrrXjxxRexf/9+3HpraDXh0KFDMXLkSNk+n3zyCQRBwKBBg+I1TKLYMmlUmTaEtKq1k/q1uSo0bCv401e4FYBnTQWW73cdu8sYhHLhDnlD5WXIOeVVOHfOgrsyaGK0CCbCEj1VgZ8dYpXGlvWcXj9ckj68lw4ZhoGt7EdvrQ5Zlz3wKeyfIf99mFTaHWT7DqDS3DrsOPTqX5SPNmPr70s6Dq1XyTkDz8SpBXXYN6sVLFAOBswKyzm1DRFR5OokH69t8OI/whf1N2Lcd52IiIiIUlfcK2lzcnLw1VdfYcCAARBFMfDf8OHD8cEHH8i2/+WXX7By5UoAwFlnnRXv4RLFhGC2qa4ToxjSqjFLDh2LiaJ8oo6DCqaQKlgAgN9Yj1UA8HuOhbxW0aWxZb06n7yS1i59UhrBpKNPrKjn+Tkq0pEJAEyWNNWAFgDMonwSm3BV0EREpM4lCWlzcOzfpWP/xhMRERERhUrITFy9evXCqlWrsHPnThw4cABt2rRBp06dVLd/8803AQBnnHFGnEZIFDueI2vhLd+kvoH/aGgWtXYHcibJsX/aX4dLetZP6rd0rxMrD7jROceC8V3TI+5PWuPRE0IKgBB6WainfAPKf7gaAJDR525Yc3vJ9vI5D6L6l0cBvw+Z/R6A6D4W0lp0hLS1HhF1kkpaRxRDWj2TeYnQH75G+lIQIABmu+Y2ZsirunZWerG/xos2GZyskYjIqHI4Qm7bg95n/a6SeA+HiIiIiFJEQr+Bd+7cGZ07d9bcpl+/fujXr1+cRkQUW35PFUo+1W7b0VBlI7qOxGwc0jzyYK0fW8s8qPH48eIv9e0CVh50wecXMbFHZkT3sa9GT0WsAEEIfRuq2/Fe4GfXvi/R8qI/IJhCg9yyJefDc3g5AMB9aBnEoEpaC8KHtB9srYFbUi3qsESzkjZ8KapfBPTm3xGPTAAEQQBMtmPhv2wT5TB92relmDmmUBboExGRtr9jVMhte9CJu9rfnkfO4P/Ge0hERERElALi3u7g0UcfxaOPPoqSEv2VBGVlZYH9iFJZ7ZaXATFMeHk0pPVWbW/UfcnaCATJsMqDt99K3Vj8hzNk2aJdTtl2emUq3IecCJjUzxX5a4vhrQydGMtXdzgQ0AKAt3wD/HWHArdtYvgxWxXS0XDtDsxZXRSXt/WsD7nd1b0MA+vmKG4bzEgb4H6Fx9pj2IrOlq3v4f5Gcb/AG7xKQAsARd6NquvWHlLfj4iIlNklV1OUBVfWmtTbHRERERFR8xb3kPbhhx/GI488gkOHDoXf+KjS0tLAfkSpzFe9K+w2gX51Gn3rHB0v0D6IYELO8HdUVw8rcsiWefzAxiOh91nrjbxZrVabhCmV9ZMGWguHyNodyPgklbG+Os3NlS7fl3IpNF0NV0mbd+ZnistPc74W+FkQ/RjhfBUjnK8i11Rfkaz2NPgN9KQ9NqEZkH3SU7L151WrnMDSkZO38W1RXVcpLTcmIqKw7Pa8kNsnozjws6A1cSgRERERNWtsOEgUT4KO8yIN7Q68NaqbpPe6DXV/zJMtb3VJKVz7voQluxus+f1V9++aa0WnbAt2VQb1yfOLgMql75GQTow1uvbfOGA+DsOcM9Dd8wMAwOQogBAmpBVlVaCNv/y+2i1/nOF60lpyesCc3R0+SWXvYNcstCrbiiM9nkFXewk6WEbDknMbninoiPVHvCjKNOOe78tkx1OrpE2zCHAGheN3npSDDOux1401vz8KJ2zGkc9PhzmzM3JHzETOwe/Qblct9taFVk837GVvfx5cez5WfWw93V9js22UbDkbHRARRcCaCbiOve9fgg2BnzlxGBERERGpSYmQ1uOp/0BrtbL6gFJd+JBWFI+GtB71kFZQmQzKZG+BtM4TdY2kbaY5NKQVjV2CH470WMd5fsQ5NaFVoIJgDV9JK/tC2/josEZSISwAsOrIz615/WUhLQB08q7BwC45sOaPDCyzAzilSKOVg8pzLV2ea5cPzJLTA60m7T92O/NytK+owN79kqrjo0+VYM1SHQcAWETl0IDtaImIjJNeKRHS+9vvhiiK9f3CiYiIiIiCpERIu27dOgBAYWFhYgdC1EiCjkpa0V0/CZbfW61+HJNySGuEdEKo+dtrG33MYNKw0aRUpWuyaPakBZSqjqKYJB/lsAi6vjALljStlYbu06fyMNySFXonF1ParmGRyZKhua+gY6IzIiLSRxrSyv79E32G/80gIiIioqYv5p8Q3377bcXlCxYswKpVqzT3dblc2L59O9544w0IgoBBgwbFYohEcVOz6d/ht9n4DLL6PwbnjvfUNzI3fuIRIz1RIyGvVpUHgYJgDtvuQDrplefImkaPTSpcq4MGglneyzcgTNgs9cSKcjw9PE+2XPpb0Tk0WegOHAtpBWum5r5qIe3Xu+swop1GME1ERDLS93FZSOv3GP43g4iIiIiavph/QrzqqqtkFWqiKOL+++/XfQxRFGEymXDbbbdFe3hEcSP6feE3Oqpu90fwVWxWXa8ZFuq0tSx2ffFK6+SP1ZTdDShZJlloCVtNJK2kde76wPB4WqWbcLBWvVrUrHMKRXNGe9V1gsEZu3dVeuHzizAHlcCWOOXPm1lnKa1SmNvw3iuEqaQ1icqvzS0xfI0QETVV4U6Cin43BPAEGBERUXNz1VVX4a233kLHjh2xa9euRA+HkpDOaKJxRFEM/Ke0TOs/q9WKYcOG4eOPP8aIESPiMVyi2JBNgKXOuf0t1XWmtDYwZ3aCo/MlkuWtDQ2nxBm7S9z3VslDP8eJT8qWCSZr2ABR1pNWJVAMNqL25ZDbF3bTvg+9z0Vat2sVl5scrWDO7Ky63586KX8Zr5O0Nih3ycfRJiNMpfFR6VaNSlpLuEra2FZVExE1JyLCtDvg5GFEREQx9+2330IQhMB/kyZNCrtPQ5Ehe8dTosS8knbnzp2Bn0VRRJcuXSAIAr744gt069ZNdT9BEOBwOJCfnw+zWV9IQZTMRB3hYgPBkq643N7hfGT1ewiCYELOKa/AW74J3rJfAACF52+KyjilIpngRKmKyJaWh+xB/0blytsBAIXn/wYAMNlytO9fEm6L3vC9cy9qdwQZWXYcdIo4u2MaHBbt8Z+jEqJKmazKY8076zMIJvX3qQu7ZeDzXU7ZcpdPREbQfIh1XvnzZtFZSZttk59za/i1hQvC2ZOWiCh6wvWklfdaJyIiolibM2cO7r//fvTt2zfRQyFSFfOQtmPHjorLi4qKVNcRNUmi/iBMMCuHtHlnzA/8bLJmonD8usaOKqw6n4i0MCGnlNKkWGYByDh+GjKOnxayXAgT0korjvSEtAX9H8CVjmPH/b1c+wtxpkLAqUihh6C9aDSs+QM0d1PreSudJExaWdsyTf/FDllKIW3D/yPsSUtERMZJQ1rZvwAMaYmIiOJOFEU89NBDmDdvXsLGMGPGDMyYMSNh90/JLy7tDoL5/X74fD707t073ndNlFgGQlpYkqdXXa3H+KXwfoVdBPnXVADq1akNRL8n0CpFFEWI3prwA5CEqZYw73R6J+eC0iRnKlXPIcNROb5LUlwtraQNVwEcTLGStuH/4XrSQn+VNxERaQvX7kB6hQgRERHFVkFBAQBg/vz5WLt2bYJHQ6Qu7iEtUfOlP6R1bn01huOop7eDgVPhEvxwfArtDtTuL1wlbcWyq3HgLRP2zxBw4C0TPId/Cj8AyWRkljAPNtz6wGEVtlNrTRFMLaS9+/tSvPhLJVw+ERtK3Hh+XWXIerUKXCVZNoWxBdodRF5JqzQJHBERqTviCr3ig+0OiIiIEusvf/kL7HY7AODBBx9M8GiI1CUkpK2trUVtrfoly88//zyGDx+OXr16YcyYMfjkk0/iODqi2PDV7kv0EEJk6KzSrI0kpFXI/NTuLVxP2kgIRitpG/FOaLJmhx+Pxrqle+uwfH8dHvu5XLZOYR4xVUqVtNVHq6BNVu1KWpegHuLO3qKjcpmIiAAATq9CACs9wceQloiIKK7at2+PG264AQDw6aefYsWKFYaP4ff7sWTJEtx5550YNmwYCgoKYLVakZubixNPPBF33nkndu/erXmMhonJOnXqFLL80UcfDUxYtm3btrBjGT16NARBQJs2beDzKRfVfPTRR7j44ovRoUMHOBwO5ObmYuDAgXjkkUdQVlam+3FTfMU9pP3kk0+QlZWFNm3aoKqqSrb+mmuuwbRp0/Djjz9iy5Yt+OKLL3D++efjySflM8MTpRJ/3eFG7Z818P+iNJJ6F3fXDu4aSPum6uE1UElrSm9r+PhhSdoShOs5W5imf3JCc07PkNuOTheFH06YSt0Xf5G/FwLAH5Ve3eMqUHgMDVWw5swumvv+Yh+nuu7bvXW6x0BE1NztrD4iW1ZkkkyA6ZNPJElERESx9fe//x1pafVtBR944AHD+z/66KMYNWoU/vWvf+HHH3/EkSNH4PV6UVFRgV9++QX/+te/0KtXL8yfPz/8wSSmTJkS+Pn999/X3PbgwYP4+uuvAQCTJ0+G2Rz6PbCsrAyjRo3ChAkT8OGHH2LPnj1wuVyoqKjA6tWr8fDDD6Nnz55Yvny54XFS7MU9pP3iiy8giiLOO+88ZGVlhaz74YcfAk2U09PT0b9/fzgcDoiiiAcffBAbNmyI93CJokbtS5k5s7Ou/dOPuzqaw8Hwtg5d2yn1lw3Hq1ABqnbJvzm9nfE7CEcS0trV7vyofoU23YfOPukpwFz/j7uj44WwtTpN134398sKv1Ej2BVaIzRk5eYM7SC8lXdLLIZERNTs1CpU0na0Sdod6OmtTkRERFHVpk0b3HTTTQCAxYsX44cffjC0v9frRZs2bXDzzTfjnXfewbJly7B69Wp89NFHuPvuu5GZmYna2lpMmTIFv/32m6FjH3fccRg8eDCA8CHt7NmzA9Wzl156acg6l8uFM888E0uWLIHZbMbll1+OmTNnYvny5fj+++/xj3/8A/n5+Th06BDGjBmDP/74w9A4KfbkU5XH2PLlyyEIAkaOHClb98orrwAAioqK8NNPP6Fdu3bYs2cPTj31VOzduxcvv/wynn/++XgPmSgqRK9ySJve40Y4d86Gt1S9gbmjyxSYHAVRHU+6Vd85Gj8iqKRVSHZVY1JT9N+GpJWrWoWsLewm2Az0fnV0GI/Wl5TC7y6DOb2N7v1GtEvD57uc2FGhvzo2XnL8B3EQPRI9DCKilFfrDa2abWFLOzp547GraRjSEhGRGr8ootodQZVMisq0CTDpnSwlCu655x68/PLLqKmpwYMPPoglS5bo3ve6667DQw89BKvVGrJ8wIABGD9+PKZOnYohQ4aguLgYTzzxBN555x1DY7v00kvx888/Y+vWrVi1ahUGDhyouF1DiNu9e3fZNo8++ijWrFmD3NxcfPXVVzjppJNC1p966qm49NJLMXToUOzfvx/33nsv3nvvPUPjpNiKe0h76NAhAECPHvJA4PPPP4cgCJg6dSratauvrmvfvj2mTp2Ku+++G0uXLo3rWImiSf3yRgGCSbuSUzCHn5wqVhQ6F4TlUepJqzZxmGACBBMgGmjAGkXh+tUqESwOmC36A9oGaTr7AEdL8/l4R0SUHKSVtOkW29GQ9hjRw5CWiIiUVbtFXP9VSaKHETevnlmAbHv8viO1bNkSt956K55++ml88803+OabbxQLCJVI+8hKtWvXDnfddRemTZuGjz/+GKIohm17F2zSpEm4/fbb4fP58N577ymGtNu3b8fPP/8MQF5FW11djf/9738AgMcee0wW0Dbo2LEjHnjgAdx8882YM2cOXnnlFWRk6GuFSLEX93YHhw/XVxJIWx1s3LgRJSX1b0bjx48PWdfw4mQpNqU0tZBWEMJWkwpmewwGpE9k7Q7kO5m0ps8SYnu+SOufRkuYVgjxGgcREaU+eUhrhWAJnZzR7y6P44iIiIgo2F133RXIoyLpTdugsrISO3fuxMaNG7FhwwZs2LAB6enpIeuMaNmyJc466ywA9S0N/H55EVNwK4TgPrYAsHTpUlRUVAAALrpIe96U006rb9nn8XiwevVqQ+Ok2Ip7SNvQ1Li0tDRkeUM/kMLCQlmVbYsWLQAAdXWcwIZSl1q7A0AAROUZGQNbhKm0jaVt5cZnoVaaa0zrJKJgsqqvjAKt+zbQ6aDR4pgHG8SaWyKiaKj1hbY7SLfYIFhDq1MqV/wlnkMiIiKiIPn5+Zg2bRoAYNmyZfjiiy907/vHH39g6tSp6NSpE3JyctClSxf06dMHffv2Rd++fXHDDTcEtm0oQjSioTp2//79iq0YGkLawYMH47jjjgtZt2rVqsDPbdq0gSAIqv/16dMnsO2BAwcMj5NiJ+4hbdu29RPYrFu3LmT5woULIQgChg8fLtun4WxAQUF0e3ISxZPoUz7JYM7sCHvbczT3teQeH4sh6TL/91rD+6QrXNafbVN/uxGssZ1US4tLKVGOkdK6+LZ06JB1rELZlKbenkFgSEtEFBVOSSVtmtkqO0lrsufHc0hEREQk8de//hW5ubkAgIceekjXPosWLULv3r3xwgsv6LrK2+lUK9JSd/755weqcaW9YtesWYPNmzcDkLc6AI61FjWqttb4932Knbj3pB0+fDi2bduGF154AZdddhkKCgqwcuVKfP755wCA0aNHy/ZpmBmvdevWcR0rUTSJfrdsmSm9LexFo2FvMwrV69T/cXB0OD8mYxrQ0oY1h+TjaqxMhUA2x64e0qZ1noyaTf+J+jgaaDWj75wT2yreYJG0jjDi/K7p+Gh7/T+yRRlm9G95rAI7o9etqFpzX2wHQETUzPkljdzNggBLbm94Dv90bGGMrx4hIqLUlWkT8OqZzac4LdOWmEsNc3Nz8de//hUPPvggfv75Z3z66acYO3as6vYlJSWYMmUKamtrkZmZiTvvvBOjR49G165dkZOTA5ut/nvXkiVLMGrUKACAGMHkLpmZmRg/fjxmzpyJefPm4aWXXoLD4QBwrIrWbDZj0qRJsn19vmNX565Zs0Y2wZmahvmgKDnEPaS9+eabMWPGDOzcuRNdunRB9+7dsWnTJni9XuTl5Sm+2JYsWQJBENC7d+94D5coevzytgEF5/4Eky0bAGBrfTrcB76VbWPO6gqTIzZVN/cMysV7v1Xj4x3RPXsm/ZIaXNGpJGvgMxGFtBnH34majc/o2vbvg3Lw5MoK2fJzO6cZvt9InVLkwIfb9E8Yk+cwdrHD5B4Z6JRjQaXLj+FtHSHhdEbfv8Oc0xPuA0tR+9t/DR2XiIj0ESVXJgiCgLTOk+Hc9vqxhb7onxwlIqKmwSQIcZ1IqzmbNm0annvuORw5cgQPPfSQZkj74Ycfory8HAAwf/58nHnmmYrbSdt6RuLSSy/FzJkzUVlZiU8//RQXXXQR/H4/Zs2aBQA466yz0LJlS9l++fnHMoPCwkKGrykq7u0OBgwYgH/+858QBAHV1dVYs2YN6urqYLVa8eqrr8omFKuoqMDChQsBAKeffnq8h0sUNaIkpHV0mQJzRvvA7eCfg1lyY3ty4tJemfjzCdFtN+CTXNVvM2tvL5jCbKAirculgM5+vWoThGlV2UZbrO9KEAQMbePA6E7pSLeaZOvSOl6AnMHPwdZG+qGC7Q6IiKJBepLSBEH275TSlTVEREQUX1lZWbjrrrsA1Feezp8/X3XbjRs3AgDy8vJUA1ogtC9spEaPHh1o9dlQPbt06VIUFxcDUG51AAD9+/cP/Lxs2bJGj4MSI+4hLQDcfvvtWLt2LR544AFcf/31ePDBB/Hrr79iwoQJsm2//fZbDBo0CKeddprmmQ2iZCaKfrj2fBKyTD4ZmHKCF+tJtYDoX4YvbfNqjlU6KQhQe96kzCrvds3xPLVgCq1sZk9aIqLokIW0giD79170VMVzSERERKTi1ltvDVSlPvTQQ6otCrxeL4D6yez9fuV5Rmpra/HOO+80ekwWiwUTJ04EAHz22WcoLy8PhLXp6ek4//zzFfc788wzA/1s//vf/0bUboESLyEhLQD07dsXjzzyCF5++WU8/PDD6NGjh+J248ePxzfffINvvvkGrVq1ivMoiRpP9Ptw4C0zvOUbQlfIwleVuFBIxZBW2pMvusc/RtBdnqoWFKsU2MZE0gTCBoP/NzcyUCAi0uOj3RtDbgsABLPkpKzohc8Z2eQeREREFD0ZGRm45557AADr16/HZ599prhdt27dANQHsR988IFsvc/nw3XXXYd9+/ZFZVwN1bIulwvvv/8+5s6dC6A+H8vMzFTcJzc3F7feeisA4Mcff8Ttt9+uGigDwMGDB/Haa69FZbwUPQkLaYmaC1fx54rLpRWy3soturaLBXtk3QZUySppY/ROU1+dpC/6VGu5ELsAWc5oFp6rMdlaY5gzOoTczvSXaG7/+S4nSpw+zW2IiAj4ev+2kNt+iIonxup2zozXkIiIiEjDTTfdhDZt2gConyBMycSJE2G32wEAV199Nf72t7/h66+/xqpVq/DWW29h8ODBmDlzJoYNGxaVMZ1yyino3LkzAOC+++5DWVkZAPVWBw0effRRDB48GADw3HPPYcCAAfjf//6HZcuWYd26dfjmm2/wwgsv4Pzzz0eHDh0wffr0qIyXoicpQlpRFLF9+3asXLkSK1euxPbt21maTU2G8/c3FZdLL3/0Ow8qbmfJHxD1MUkNaeNQXVeQZvxtQnrCTk+7g4zetxu6D3NmZ5hzekDQWUnbMcsCSZtW2ExAm8z4zZ/olabXYVx9fHR7BTdIO+6qkNvnZa8Nu8+WMvnEd0REFKprVuhEnwecVRAUrohxHVgaryERERGRhrS0NNx7772a27Rr1w4vvfQSTCYT6urq8PTTT+PMM8/EoEGDcNVVV2H16tWYNGkSHnnkkaiNa8qUKQAQmLCsoKAAo0eP1tzHbrfjyy+/xAUXXAAA+OWXX3Drrbfi1FNPRf/+/XHGGWdg6tSpWLBgAdxuN7Kzs6M2XoqOhIa0X3zxBcaNG4fs7Gx0794dQ4YMwZAhQ9C9e3dkZ2fjvPPOw+LFixM5RKLGE1T+zGSVNfIAL73nLcjoeUv0xyRhMwuY1l/5DbprjvFKXmm7Az0tBTJPfBhpXS+HObt72G1trU9Hi9Pn6A5ogfqJsx4e2iJw22IC7jgpB/Y4ltKe1Mqua7sOWWZc1TsT3XJjEyDbCgYie/DzsOT2gb3dWBx3yqO4uV8WuuSo3x/PmxERhSd9q3yg31nKLWZ8dXEZDxEREYV3/fXXo3175Ym8G1x99dX4/vvvcf7556OwsBBWqxVt2rTBn/70J8yePRuzZs2C2Ry9S1SlVbMTJ06ExRL++2FWVhbmzp2L77//Htdddx169OiBrKwsWCwW5OXlYdCgQbjlllvw2Wef4csvv4zaeCk64ldCFsTtduOqq67C7NmzAUCxarampgYLFy7EwoULMWnSJMyYMQM2m75Z3ImSi0oIKP3SpvB3kDPkhRiMR9nQIgeGFjkwd1sNPthaE1gunQRFD/nEYeH3MdmykTv8bQDAgfdbQHSXq26b/6dvDI8JAI7LtWL2uS0j2jca9LR9eO2sAmTZYn/+LKPXrcjodWvg9ogMYES7NExaqNwnkRktEZFxWVa7Ytsi0e9KwGiIiIiaj9NPP133Fdp2ux27d+8Ou90pp5yC+fPnR3yfM2bMwIwZM3SNqVevXo26wvzUU0/FqaeeGvH+lBgJCWmnTJmC+fPnQxRFWCwWnHXWWRg8eDBat24NADhw4ABWrFiBL7/8Eh6PB7Nnz4bX61Vs0EyU/JQTSmm7g2SJwaSBqsEr9I/uI5/d2ghBsBh4NpJmOq6w9LR9iOdEZoYkx8uTiCj1KIW0Poa0RERERBQq7iHtwoULMW/ePAiCgJEjR+KNN95Ax44dFbfdvXs3rrnmGixZsgRz587FZ599hjFjxsR5xESNpBLMSStrxCRJwcySlLC42htyu6zOhz9/fSRwWwDwqqT6U9qT1mK0MNTQZGnJmmrK6aooTtKH42W/AyKisHZUHZEtU5wAlO0OiIiIiEgi7j1pG0q7+/Xrh88//1w1oAWADh06YNGiRTjxxBMBAG++qTwBE1Eyc+//WnmFoSAyfrz+0DDuYG1o4jr1m9AvoCKAudtqQpZJq2+NVtLCZOD8kdFjJ5CesNrwcxUn3+5hoEBEpMUnPUOJo6cRZVfOsJKWiIiIiOTiHtIuX74cgiDgjjvugNUaPqSyWq248847IYoili9fHocREkWXYFWekEva7iCt6+Uht635J8VsTFpWHND+4uiRfwfFol3OkNvSdgfRnJvL0fGikNtZJz4actveflz07izK9LSOsCZ0Okd1m8s8iR4CEVFS211TJluWa0uDYMmQLbfmD4jHkIiIiIgohcQ9Djh8+DAAoHfv3rr36dmzJwCgpKQkJmMiiiWTvUBlRehJivRu18OU3rb+hmBG5gn3x3hkyvxRuKo9konDgmX2/qvicsGSiYzj7whZltbtaljzBwIATGltkDXgH8buLI70PA3JWklLRETa3H6fbNmggvYQTPKZnk32vHgMiYiIiIhSSNx70mZkZKC8vBxHjsh7dqkpK6uvTEhPT4/VsIhiRlTpOyftUWfJ6oSWF/wOT+k6WLK7weTIj8fwZBwWeUjoF0VD4aFPUm1rNHh0dLoQlStvD1lmLTgZeWd/CZMttDLZZMtB/phl8FXvhCmtNUy2HEP3FU/J2m+WiIgaz+2Th7R2c/1H7bTu18O59dXAclFUuCyFiIiIiJq1uFfS9ujRAwAwe/Zs3fs0bNuwbyzdc889EAQh8N+3334bdp9FixZhwoQJaNeuHex2O9q1a4cJEyZg0aJFMR8vJT/R51ReodCjTrA4YGs5JGEBLQA4FMpelVocaPFL2h0YnjhMkJ8/shYOkQW0gc3NNlhyeiR1QAuwSpaIqCmTVtLaTGYIR9/3BelHboa0RERERCQR95D2vPPOgyiKePPNNwOTiGl555138MYbb0AQBJx//vkxHdu6devw7LPP6t7e7/fjuuuuw5gxY/DRRx+huLgYbrcbxcXF+OijjzBmzBhcf/318CtMJEHNh+itVVyuONtzErArhLSLdzllE4pJzf+9Bodq67+gbpH0LzVcQao4cVjqB5yspCVKvAM1Xnyyoxa/HK7vvy2KIlYccOHTHbUor5NXQhLp5fZ7Q27bgv8tE6QfufnZkIiIiIhCxT2knTp1Ktq0aQNRFHHttddi7NixmDdvHoqLi+HxeOD1elFcXIx58+Zh7NixuOqqq+D3+1FUVIRbb701ZuPy+/244YYb4PV60bJlS1373HfffXj99dcBAP3798fMmTOxYsUKzJw5E/379wcAvPbaa7j//sT0FqXkoF5Jmzoh7bubq/HiL5Wa+83aUoP7fyzDukMu7K0ODTrMBitIBYVKWqEJVKEypCVKrNI6H/72Qxne/a0aT6yowPfFdfhkRy3+tboC7/xWjbt/KINLzwx/RArWle4LuW0zB/WilYa0rKQlIiIiIom4h7QZGRn49NNPkZubC1EUsWjRIlx88cXo0KEDHA4H7HY7OnTogIsvvhiLFi2CKIpo0aIFPv3005j2pP3vf/+LlStXomfPnrj22mvDbr9161Y888wzAICBAwdi2bJlmDx5MgYNGoTJkyfjhx9+wMCB9ZMZ/fOf/8Tvv/8es7FTcjMpzOoMQHG252RwXK5yq+pl+1xwhwkvKlx+vLahSrbcZnDmMMHskC0zpbU2dIxkpNRKgojiZ/7vtXB6j72PvbCuEu9trgncrnD5sWS3yok1ojB+rwyd4LbK4zp2gyEtEREREYUR95AWqK86Xb9+PS688EKYTCaIoqj4n8lkwkUXXYRff/0V/fr1i9l4du/ejQceeAAAMH36dNhs8l6hUv/5z3/g9dZf1vb8888jLS0tZH16ejqef/55AIDX68W///3vKI+aUoXJUShbJtjzYCs8JQGjCW9UhzTVdXXe8BVmh53yL579W4b/mwomWNJga3PmsQUmOxwdzjd0jGSUbjVhgMHnIt5uOiFLcXn7LPns5ESppqHFgZZt5Z6w2xApybCEvr97QnrUhn7k5sRhRERERCSlXDIXB0VFRZgzZw7279+Pb7/9Fhs2bEBpaSkAIC8vD3369MHpp5+ONm3axHwst9xyC6qrq3HllVdixIgR+OabbzS3F0URCxYsAAD07NkTQ4YMUdxuyJAh6NGjB7Zs2YIFCxbghRdeaBKXbJMxfk9omwBTWmvkjV4Ckz03MQMKw6JxTb7HLyLLJqDKrf9y4HaZZhyXa7y1Q4vT56B2y4vwOQ8hrcslsOTEfuLAeJg2IAef76rF+0HVe8nk9PZpeOlXeTW0UhsMotQT/nXMtiQUKa8keL240wmBnwX2pCUiIiKiMBIW0jZo06YNLrnkkoTd/wcffIBPP/0UeXl5gfYF4ezcuRP79tX3HRsxYoTmtiNGjMCWLVtQXFyMXbt2oXPnzo0eM6UW0R0a0uYOfxvW3F4JGo0+bTPNKK6WT6Dj8YsIM3+YTN+CyCpHTfZcZJ5wb0T7JjO7WcD4rhnYU+XD98V1iR6ObiLbdFIToCd/FZrAJIWUGF7JRLFp5qATlILkagRW0hIRERGRRELaHSSL8vJy3HbbbQCAp59+GgUFBbr227RpU+Dnnj17am4bvP63336LYJSU6qSVtII1O0Ej0U+tkszjh+FJdbQqcyl1GA3niZKRnotZ+JZFkZJW0lpNnDiMiIiIiPSLaSXt7t27o37MDh06RO1Yd999Nw4cOIBhw4bpmiyswd69ewM/t2vXTnPb9u3bB37es2eP4TEG35eS/fv3Gz4mxY/ocwO+0EloUiGkVes9u7XMA6/B75UMPNSkVuqZWqMlUlZaF/4NrM7giSiiBlsrDofctpiCgllJSFv3x1xg+FvxGBYRERERpYiYhrSdOnWKag9WQRACk3U11vfff4/XXnsNFosF06dPNzTOqqpj/RozMzM1t83IyAj8XF1dbXicwSEvpR5PyQrZMlMKhLRKk38BwOsb5L1Kw2ErU2U2hfQ6WZ6qLKuAKk9oUOVnvwNqAvRcCbCtjBOHUWTWle4LuW0K+WwZ+g4vepOzLzkRERERJU7M2x2IohjV/6LB7XbjhhtugCiKuP3229GnTx9D+9fVHesjabNp99u02+2Bn51Op8aW1BT53WWyZaa01gkYSXREUmDWNjPhra+T0vnHZciW/aV/cgT4N/eTj4PtDqi5KMo0h9+ISMHQlh1Dbi89sCPws+itDVknWLPiMiYiIiIiSh0xTU+uvPJKzfXl5eVYsGABBEHAFVdcEcuhhHjiiSewefNmdOjQAQ899JDh/R0OR+Bnt9utua3L5Qr8nJaWZvi+wrVI2L9/P04++WTDx6U48csn3xJMzSsAGNrGHn6jZqhluhmTe2Rg1pb6aqp+hTYMapUcz1W/QhsK0kwoCaqoZkhLRKRNWkxwXvvjAz+ndZ6E2t+eO7atPzpXhhERERFR0xHTkPbNN9/UXL9x40YsWLBA17bRsnnzZjz55JMAgOeffz6kHYFeWVnHqh/CtTCoqTl2OVu41ghKwvW8peQmIrRtgDm7e4JGkhhmATCzKa2qCcdlYIJCRW2imU0CruiViWfXHJv0jhktEZE2aVuYdIs18LNglpyo97OtBhERERGFanbXIf/73/+G2+1Gly5dUFtbi1mzZsm22bBhQ+DnJUuW4MCBAwCAcePGISMjIyQ4DTexV3AlLPvLNkOipJJWOrtzE8d8NnWZJH26WUlLRKTNLzmdJQT3oTVZQzcWvRBFMapzNxARERGRMQ2fxR566CE8/PDDiR0MmmFI29B+YMeOHbjkkkvCbv/YY48Fft65cycyMjLQu3fvwLLNmzdr7h+8vlevXkaHS6lODK2kFZpdSMsvn6lKGrAfdspbdxAlE1EU8e3eOvy034Uu2RZc1D0DFp4pojiSTp0Q/G+gYFL4yC36AKHZfRQnIiKKi2+//RYjR45UXJeWlob8/Hz069cPF1xwAS699NKQ+YSIEqV5JUZR0rlzZxQVFQEAli5dqrntd999BwBo27YtOnXqFOuhUbKRhLQQmlc/WuYjTQcraSnZbS3zYvqvVfjlsBvzt9di0a7IJuuM0hyl1Az5JS2OQk5USitpAbY8ICIiShCn04m9e/di4cKFuPbaa3HSSSdh165diR4WUfMLaWfMmAFRFDX/C55M7JtvvgksbwhZBUHA+PHjAdRXyi5fvlzxvpYvXx6opB0/fjwvaWuGRGm7g2b2J2fmSz5lbTwinxTRx6SWktgbG6tCbr/7m3bPeKJokwb8wf8ECgohrciQloiIKC5uuukmrF+/PvDf119/jeeeey7QynLjxo0477zz4PPx6kFKrOaVGEXRtGnTYDbXV0VOnToVTmdoxY7T6cTUqVMBABaLBdOmTYv3ECkZSCtpTalRSXtKUXQu9WAlbeqq9cgDWZ5nomR2oCY6H6rZpoUiJZ04LOS1pNTWQPTGeEREREQEAC1btkSfPn0C/51xxhn4y1/+gk2bNgWK8davX4/58+cndqDU7DGkjVD37t1x1113AQBWrVqFYcOGYfbs2Vi1ahVmz56NYcOGYdWqVQCAu+66C926dUvkcClRJJW0Qor8yfXJt+na7r8j8zXXmxl2pCx/+E2ImiSeXKJISScOC+1Jy0paIiKiZJOVlYX7778/cPurr75K4GiIGNI2yj/+8Q9cc801AIC1a9di8uTJGDRoECZPnoy1a9cCAK699lo8/vjjiRwmJVKK9qTVE1J0ybGgVboZZ7R3NOo4lJykFWFEzQXftihSouR9U0C4nrSspCUiIkq0vn37Bn7es2eP6nbffPMNrrzySnTp0gXp6enIzs5G3759cdddd2Hfvn267mvZsmW47rrr0KNHD2RnZ8Nms6Fdu3YYO3Ys/ve//6G8vFx1308++QQXXXQR2rVrB7vdjvz8fAwdOhRPPfUUqquV23x17doVgiBg2LBhYcdWXFwMs9kMQRBw9913K25TUVGBJ598EsOGDUNhYSFsNhvatGmDcePG4cMPP5R9FgomCAIEQcDDDz8MAFiyZAkuvvhitG/fHlarVXEOpwMHDuC+++7DwIEDkZeXB7vdjvbt22PixIm6A/X3338fp59+Olq0aIHMzEz06dMHDz30kOZznUicUrYRTCYTXn/9dVx44YV45ZVXsHLlSpSUlKCgoACDBg3CjTfeiHPOOSfRw6QEcO1fAs+RNXD+PiN0hZAa50X09JJNt9RvpDV7OkPa1MX2s8mvzivi++I6LNxZi36FNkzpmQl7M20EXecVUeeLzos2+AKA3ZVe/FHpxfEFVuQ5UuMkGyWOViWtUrsD5473YLLnwd5+HMxprWI9PCIiIlJgsx27itRqlZ9Uraurw9VXX41Zs2bJ1m3YsAEbNmzASy+9hJkzZ2LcuHGK9+F0OnHttddi5syZsnXFxcUoLi7GwoULcfjw4UCIGXz/U6ZMkbViKC0txfLly7F8+XI8//zzWLhwIU488cSQbaZMmYLHH38cP/30E3bt2qU5mf3MmTPh99cXmV166aWy9V9//TUmTZqEI0eOhCw/cOAAPv30U3z66acYM2YMZs+ejczMTNX7AYD77rsPTzzxhOY27733Hm688UbU1NSELN+7dy/mzJmDOXPm4Nprr8X06dNhscg/Z3m9XkyZMgVz5swJWb5x40Zs3LgR7777blJWTsc0pH300Uc11x86dEj3tg0efPDBRo1Jj4cfflj2h6FlzJgxGDNmTOwGRCmleuO/UbXyr8orUySk1TPJXVogpFXfhr0dU5dS3uXyiYHfOyWWXxTxtx9Ksf9oH9b9NU58vsuJmWMKm93fnSiKeHJFedSPu6HEjSdWlMMnAplWAU8Pz0NBGoNaUqfVk1ap3UHV6nvqt8toj8LzfoHJ3iK2AyQiIiKZ3377LfCzNMQURREXXXQRFi5cCAAYN24cJk6ciC5dusBkMmHFihX417/+hd27d+Oiiy7CsmXLMHDgwJBj+P1+jB8/Hl9++SUAoFu3brj55psxcOBApKenY//+/fjxxx/xwQcfKI7vyiuvDAS0/fr1wx133IFevXqhtLQUs2bNwowZM7Bv3z6MGjUKv/76K9q2bRvY99JLL8Xjjz8OURTx/vvv495771V9Ht5//30AwPHHH49+/fqFrFu2bBnOOecceDwetGrVClOnTkW/fv1QVFSEffv2Yfbs2Xj33Xfx2Wef4corr8TcuXNV72fevHlYv349+vbti9tvvx19+vSB0+nEunXrAtt88MEHuPzyyyGKIrp06YJbb70VvXv3RmFhIXbt2oXXX38dn332GV5//XVkZ2fj2Wefld3PnXfeGQhoe/TogbvvvhsnnHACKioqMGfOHLz66quYNGmS6jgTJaYh7cMPPxw27GlY/8gjj+g6ZjxCWqLGcG57XXWd6C6P30AaYX+1nksw6/92tfrOWlMjkyYFDoWKzPUlHpzcOjqTylHjrD3kDgS0wVYfdGNQM/sd7a32YXNZ+N6eelt4NLzyX/61MnCyotojYv7vNbi+b3aEo6TmQLvdgfpHbn/NHrj2LUZa5+T7okBERPHlF/044qpN9DDiJt+eDlMCC5l8Ph/++c9/Bm5fdNFFIetfe+01LFy4EFarFR9//DH+9Kc/hawfMmQILr/8cgwfPhwbN27EtGnT8MMPP4Rs88ILLwQC2gkTJmDmzJmw20M/r5977rl47LHHsH///pDlCxcuDIS3o0aNwmeffRZS+Xv22Wdj6NChuOGGG1BaWoq//vWvmD17dmB9z549MWDAAKxZs0YzpN28eXOgZae0itbj8eCyyy6Dx+PBn/70J8ydOxfp6emB9QMGDMDYsWNx2mmn4YYbbsC8efPw5Zdf4qyzzlK8r/Xr12PUqFFYuHBhyPNw2mmnAQBKSkpwww03QBRFXHPNNXj55ZdDKmUHDBiACy64IFCN+9xzz+HGG29Ejx49Qu7j+eefD2y/dOnSkOreUaNG4ZRTTsGVV16pOMZEinm7A62eFEbpqe4jSjR/3SHVdd7yjXEcSeRqveH/bhsqKrWCjz4F+iYgo+RzalsHvt1bF7LssFMeClJibFEJJTeXNr+Q9mCtvtel3hYejqPvbYecoT3Fl+6tY0hLmjQnDgvzBdTvKo3JmIiIKLUccdWi5cyHEz2MuDl0ycModGhfGh8Lhw8fxvr16/Hggw8GwsmLLroIp556amAbURTx9NNPAwD+8pe/yALaBi1atMA///lPjBkzBsuWLcO2bdsCE8f7/f5ACNyuXTu8/fbbsoC2gclkCqmCBYD//e9/AOrbMLz55pshAW2D66+/Hh988AG++uorzJs3D/v370ebNm0C6y+99FKsWbMGGzduxC+//CKrkgXqWwsA9ZnblClTQtbNmjULu3btgsPhwNtvvx0S0ErH8dprr2HFihWYMWOGakhrMpnw2muvqT4PL730EioqKtC2bVu8+OKLiq0MgPpCz7feegvFxcV4++238Y9//COwbvr06YHWDa+88opi+4UrrrgCs2bNwqJFixSPnygxDWm/+eabWB6eKDlphJbpvW6L40Bia3jb+gnD1NpAXtQtA+d3VX4Dp+SnVAXNucSSh1Wl4XNzPJlZ4/GH3wiAV99mqmEue2xTONL3SGnrEVN6O/hr96rszRcYERFRrDzyyCOqV2+np6fjz3/+M5566qmQ5Zs2bcL27dsByCtspRqqQAHgp59+CoS069atw9699f/2X3/99WF7tQbzer1YunQpgPqK2fbt26tue/311+Orr76C1+vFt99+i0suuSSwbvLkybjrrrvg9/vx/vvvK4a0Db1yhw0bho4dO4as+/jjjwEAI0aMQGFhoeaYTzvtNKxYsQI//fST6jbDhg3T7I3bcH9jx45VDXIBwGKxYOjQofjwww9l99fQa7Zv37446aSTVI9xzTXXNK+QdsSIEbE8PFFSEkWNVgFa65KInizOfDTEUwo03ji7ABnsdZDSlF4DDGmTh42tUQOq3fpemHrbHaiHtAzRSJu0klb6ijGntVYPacXwLTuIiIgo+k488UT85S9/kU0atmrVqsDPQ4cO1X28AwcOBH5uqNIFgOHDhxsa144dO1BbW9/6YvDgwZrbBq/fsGFDyLqioiKMHDkSX3/9NWbOnImnnnoqpLDj559/DoTRShOGNTwPX3zxhe6CkODnQOqEE05QXefz+QK9aV9++WW8/PLLhu/P5XJh27ZtAIBBgwZp7nfyySfrOn48MUUhija/W3WV6KtTXZdM9GQZDS1LlYIPG0vOUp7Sa0AaQFDiqP2NNce/PN2VtDpfvmqbNcfnloyRTxwm+ZitMHlYA19NcVRbhBEREdExN910E9avX4/169dj7dq1+OSTT3DllVfCZDLhxx9/xOmnn47Dhw+H7BM80b0RDcEqUN9ftUFwCwI9SkuPtUJq2bKl5ratW7dW3K9BQ/i6Z88efPfddyHrGlodWK1WXHzxxbJ9I3kenE6n6roWLdQnSi0tLYXXa7ywLfg5LysrC3ymCve8tWrVyvB9xVrMe9ISNTeiz6WxLkVCWh3bNEwYplR1ZuHpn5Sn9BrYXZkaleDNgU1hYjcAaI7FntUenRWyOpvSrjjgwi1LSmTLee6JwpGGrNLqa0Fj8rCaDU/DueMdtBg5H7bC5KvqICKi+Mi3p+PQJQ8nehhxk2+PT3u8li1bok+fPoHbJ554IsaOHYuRI0fiqquuwq5du3DddddhwYIFgW18vmPzHnzyySeal+hL7yvaGtvS7MILL8TNN9+Muro6vP/++4Gr3n0+X2Bisj/96U/Iz8+X7dvwPJxzzjn4v//7v0aNAwDMZvVLAoOf8+uuuw633aavXaRSr14gNVvBMaQliiJR9ANi6k+upOetTKvdQSq+GVJ4P+xzYWr/RI+CAOWewQDg0zs7VhMS7UpaAChxyo/JtzUKJ1y7A61KWgDw1+5D1eq/If9PS6I7MCIiShkmwZSQibSaqyuvvBKffPIJ5s6di48//hhLlizBGWecAQAhgWVubm5IyKtXQUFB4Of9+/ejZ8+euvfNy8sL/Hzw4EHNbYMv9w/er0F2djbGjh2LDz/8EB9++CFeeOEFWK1WfP3114FjK7U6AOqfh3379sHtdkf0HBgRPHZRFCO6v9zc3MDP4Z63cOsTgfVuRNHk1640zOxzV5wG0jjndgl/RrOhqozBRdPUPVc7TKDEUps4rEpnVWlTovcRNza/zmKfbQrD4w89SWuRtDuwZHULewxv1e9RHRMRERFpe+KJJwLVnffee29gef/+x6pTli1bFtGxBwwYEPhZ2mYgnC5duiA9vf57+c8//6y57YoVKwI/qwWbDSFsaWlpYLKshlYHWVlZOO+88xT3a3geVq1aBbdbvbVjNNhsNhx//PEAIn/OHQ5HYOK2lStXam4bbn0i8BsHUTSFqaK1tFBvkp1MWqWbcXH3DFhNQJZVOQyyHE1nLUxpmySryuX0lBzU8sbm+I+63vDV28iUtlc+T1yQNpcv9ESt3Rx6wVrmCffCknei5jFEb63meiIiIoqu7t27Y+LEiQDqw9Avv/wSQH3A2q5dOwDAK6+8gro6460L+/Xrh/bt2wMAXnvtNVRXV+ve12KxBNoSfPnll9i7V2Xy0aPHbtjn9NNPV9xmzJgxgX6w7733Hurq6jB//nwAwIQJE5CWlqa4X0N4W1FRgTfffFP3+CPVcH+bN2/GF198EdExzjzzTAAI9CBW88Ybb0R0/Fhqjt/niGJGFLUvu02lNgAXdcvAu+e0xPNnyPvSAMcqadl/lij+VOcXSp23mKjRm70qbTdzTCEGtlLuYSWlVr1M1MDlCz1RKw1pzZkdUHjeWrSaUo5Wk+V9jwEAPvWJNoiIiCg27r333sB39ccffxwAYDKZApW1O3bswBVXXAGXS33+mcrKSrzwwgshy0wmE+66q/5q2r179+KKK65QrUb1+/3Yt29fyLJbbrkFAOB2u3HttdfC4/HI9nvjjTewePFiAMAFF1ygOkGZzWbDRRddBKC+x+7777+PqqoqAOqtDoD6lhANQfOdd94ZtiL4hx9+wNKlSzW30XLbbbchM7O+5cfVV1+NjRs3am6/cOFC/PrrryHLbrzxxsDv84YbbkBNTY1sv/feew+fffZZxOOMFcYrRNHUBPrRSplVgmXz0cCCBZdE8ad2Oqg5/jn6VRPrUF5R3i/UJAjw6mtpqx6MEx1V5wv94uQwK0/9YLLlwORQPgEqep2yCciIiIgotvr06ROo4Pzuu+/www8/AAD+/Oc/Y8KECQCAOXPm4Pjjj8c///lPLF26FOvWrcN3332HV155BVOmTEFRUREefvhh2bFvueUWnHXWWQCA+fPno2/fvnjuueewbNkyrF27FosWLcJDDz2Enj174pVXXgnZ99xzz8XFF18MAFi8eDGGDBmC9957D6tXr8ZXX32F6667Dtdddx2A+n6uzz77rObjbAhjnU4n7rjjDgBAq1atMGrUKNV97HY7PvjgA9jtdlRXV+OMM87AZZddhg8//BCrV6/GypUr8fHHH+Ohhx7CCSecgOHDh2P9+vWa49DSqlUrvPXWWxAEAfv378fAgQNx00034eOPP8aaNWvw888/Y+7cubjnnnvQtWtXjB07Frt37w45Rr9+/QIB96pVqzBw4EDMmDEDq1evxpIlS3DTTTfhiiuuwMCBAyMeZ6xw4jCiaGqCIa1apaw5UEnbHGMhosRSC3H2VGn3xW5K/KKIRbucWHlQvTeW1y8G3qPUKm71tkFgbEbh7K2tCLltN0XyMVsE/G7AbI/OoIiIiEiX++67DwsWLAAAPPbYY/jiiy8gCAJmz56N2267DdOnT8f27dtx9913qx6jZcuWsmUmkwkfffQRrrzySnz44YfYunUrpk2bpntcb7/9NrxeL+bPn481a9bgsssuk21TVFSEhQsXom3btprHOu2009C+fXvs2bMH5eXlAIDJkycHevKqGTJkCL799ltMnDgRe/bswXvvvRfoZ6skOzs7/APTcMEFF2DBggW46qqrUFpaiunTp2P69OmK25pMJmRkZMiWP/vss9i3bx/mzZuHzZs34+qrrw5Z37lzZ8yePRtdu3Zt1FijjZW0RNEUpt1BKjKpVdKy3QFRwqgFhtvKvY3uvZoqFv/hxNubtPt6zd5y7NKmEmfo+3PDs8RKWooGt09+gkTa7kAv0cuWB0RERPE2aNCgQMXr4sWLA5NKWa1WvPjii/jll18wdepU9O3bFzk5OTCbzcjJycGJJ56Ia6+9Fh9++CF+++03xWOnp6djzpw5WLJkCS6//HJ07twZaWlpsNlsaN++PcaNG4eXX345UN0azOFwYN68efj4449xwQUXoKioCDabDS1atMDgwYPx5JNPYsuWLTjxxBPDPkZBEHDJJZeELNNqdRBsyJAh2LZtG6ZPn45zzz03MA6Hw4H27dvj7LPPxj/+8Q9s3rwZV1xxha5jahk3bhx27tyJZ555BmeccQZatWoFq9WKtLQ0dO7cGWPHjsWzzz6LXbt2YeTIkbL9rVYr5s6di3feeQfDhw9HTk4O0tPT0atXL9x7771YvXo1unTp0uhxRhsraYmiSGyClbRqHJb6lLZHng0AJzohiietHHZPlRedc5r+JFdvbgw/8cLHO2pxaa/6nlYfbFXe/rR2Dmwuk/f3ktLbVoGapw1lB2TL8uzp2juZbPVVsxKiz/jEJERERBTq9NNPN9xCqKG3q5K+ffviv//9b6PGNHLkSMVAUY9x48Zh3Lhxjbp/AHj66afx9NNPR7Sv3W7HjTfeiBtvvNHwvpG0c8rOzsYdd9yhGF7rddlllylWHzdmXLHEGjiiaNKopM0a8GQcBxJ7aUdLaPvmW9Et99j5nik95ZcaUGrqlM3zeMlK67OEL7k+ZySNPVXKJ9FGtnfo2r/pXSdB0eT0yYP+njnySx6DtRgxO1bDISIiIqIUxG/gRNGkUElrLRiMrJOehL1NZGfMksEpRXb8uE95JktBEPDQkBZYc8iFLJsJvfP1zZROye+0dg7sCrqcvE9+06/OTBVaOWySnQxOeiZBQI7dhAqXdgzL55W0uP2h//6nW6yBWYXVODqej7yzv0Lp4jNjOTQiIiIiShEMaYmiSSGkzTt7MUy2xjXOTrRw4YTVLGBwG33VaJQ6eKlF8mombWfjJs0soCLMNnzKSYs0pG1hC9Pq4Chr3okKS/lqIyIiImqO+B2cKIpEpXYHgvZMiamAgVDzJC0C4+sgeYgaIc6GI27sqgzfYzVZ+UURG0rc+KNSPhFTrJi0Cx4BAD7+AZAG6cRhNpPOf/sVqm39rhJ4K39H3R/z4as7HI3hEREREVEKYCUtURQ5f39DtkwQUv9ciI/X+TZL0uiAr4LkofUnOWtLDWZtqcFVvTNxTmd91XzJQhRFPLmiHL+WeCAAuKZPJs7uGPvHcNgZftLHH/a5MLV/zIdCKeqP6rKQ2zZz5CdoSxacEPjZ5ChE/rnLYclKvtmHiYiIiCi6Uj89Ikoi1b88Jl/YBCppW6en/mMg40ySCi9m9clDT1HnjKB+wqliS5kHv5bUVwGLAF7foPwYKt3RncbLo/NwB2vDh7nUPG2uOBRyW/f7ZZjPCP66w3DueD/CURERERFRKmFISxRjgjn1J9Ia3i603+ywInuCRkKJxNntk0dT/V2sL9HXpuFQBGFpNN63dlWkbhsJiq1WaVkht7dW6mtTYLLlwJLTS3Ob2i3TIx4XEREREaUOhrREFFanbCv+0j8bffKtGNXegWv7ZIXfiVKetE+nyFLapNF0fxWxe2DZttCPPCe3Nh7aWvU0r6VmySvpST+mXU/d+7Y4Y77mekFgdzIiIiKi5oCf+ohIl2FFDgwrcoTfkJoM9qRNXk03pI0daYuIbJvxwNXCkJZUePyh1d25tjTd+1pyeiCt6+Vwbn9Hcb1gzWjU2IiIiIgoNbCSloiIFEknHWcwmDz8TTQyj+Wjkk6AaJa+wHWw8FMTqZCGtFaT0V7u6i8uwcKQloiIiKg54NcNIiJSJC0a3F7hTcxASEZvYD5p4SEs2lkr2VfEvG01uPGrEjz0U1lE/V3j6bdSt2xZJCcMdkhev+YIPgGxkpbUrDlSHHLbcEgrqL8gPSUrIfpckQyLiIiIiFIIQ1oiIlKkFEeVOJM70GsujGSUMzZVwxt0rf+eKh9mb61BucuPzaUefLitJvoDjJC0JQEAPPxTuWxZtcf41GnSkLbWYzzpPVDDExWkbMn+30NuWzRCV0VhKruduz4wOiQiIiIiSjEMaYliyFowONFDIIqYoBDTfrqjVmFLijelMFPLb6WewM+zt1aHrFu6ty4aQ4qKarfyA/NJHrCRMatNeLds37FjnNTSputYkbRIoOYh354ecrvc7TS0v7d8k/b60l8Nj4mIiIiIUgtDWqIoEqxZIbfTu1+XoJEQNZ5SHuU1XsBIMdCY3q1uX/L2s1XLQKWhtNOr/zF4/cpBbXDgesMJ2bqOJe1rS9TA5Qu9ymBy5xMN7W9rNVxzvd9TYXRIRERERJRiGNISRZHJnh96O611gkZC1HgsGkxeatWhalKllaraMKW5ssdAKbHHLyqeXEi3Hru3XLsJ759TGPZYSZxvU4LV+TwhtztktjC0vyXrOM31opshLREREVFTx5CWKIpEv6RfoWB0dmei5KH0DwSD2+RgtKAzOKRN5pxRLUz2Sx6wkZa0Xj/gUkhX0yyhd2Y2CWiXqf2ezUpyUuL1++AVQ18cDrPF2EEs6ZqrRU+l0WERERERUYox+AmSiJT46g7j8LzuEN3lIcsFE//EKHUpBbKL/3DiQI0PvfOtqPGIGNHOgfZZfJ3Hm4Gr/QEApqAa1WS6Yt/nF7H4DyfKXH6M6pCmehJg0S4nLuyWEbjtMVDS6vGLOFInT1elIS0AWMKUHHuNNgOmJmVPlRdf73Yiw2rCuZ3TkG6tP5Xl8sknlDMa0gphQlo/K2mJiIiImjx+syaKgkOzWiqvYCUtpTC1uOrXEjd+LXEDAD7fVYv/nVGAHDsvzIinBduNTeCWrBXQM7fU4JOjk9F9tduJrjnKH0s+2FqDHi2s6FNQP8FXnYGQ1u0X8cCPZbLlSiGtOczz9NVuJ87prB2mUdNU6/HjoZ/KUOOpf+39Xu7B30/OBQB8uW+bbHuH2Wro+CZLhuZ6kT1piYiIiJo8fqsmaiRvxRb1lQxpKYWZdCR7Hj+wYHtNHEZDwfIdxv75TtaetA0BLQDUeET8WuJR3fb5dccu9y5M0//491X7FJdbFZ4UpeA22F6VY1HTt77EHQhoAWDdYXegsnrJ/t9l22dZ7cbuwJymuZqVtERERERNH0Naokby1x1SXScILFan1GXR+S/E9gr5pb4UWxlWY/98N4Wr9Mtdx1oWdM5Rr1KUVsPWqDSwVQquTylyRDQ2avoq3fI/orqjfUfK3U7ZukyDIa0193jN9Zw4jIiIiIwSBAGCIODhhx9O9FBIJyZIRI0kihozybCSllKYWW/5ZRMIAJs6I+0BUoFb4/FYTQJ8QetdKsWvZoVK8VEd0pDvMOHXEjcW7pQHb9R82RT+Oa/zicgEcLiuOmT5A/3ONH4HZpvmatFbDdHvg2Di5woiIiI9vv32W4wcOVK23Gw2Izs7Gzk5OWjfvj1OOukknHrqqRg3bhxsNu1/j4lijZW0RI2lNQsPv0xRCgtz5TcllLHQ1RU001hTiGtdmiFt6G21QFftHMSJLe24oncWRrVnVS0dY1NoWNzwOjxcF9rypUNmiwjuIfxHctFTGXYbIiIi0ubz+VBWVoZdu3bh+++/x3/+8x9cdNFFaNeuHR5//HF4vbxKkBKHlbREOvnqDsNfux+W3OMllSzqYYHASlpKYUo9O5UkIvSr84rYWelB2wwLsjlpWVjBoWaFS6P6P0VohrRmAQjqHapWRRyu5XJTaBFB0aP0LtPQ7mB71ZGQ5YV27UnAlAhC+Pcxv6cSJnskATAREVHzdtNNN+Hmm28O3K6urkZZWRl+/fVXfP311/jqq69w+PBhPPDAA/jkk0/w6aeforCwMIEjpuaKIS2RDq4D36Hs63EQPZWwtjwF+aO/gdBwaaKocaaNPWkphentSRtvB2q8eOincpS7/DALwF0Dc9C/pcFJepqZ4ur696lfS9xNYvKrZftcquvK6kJD6A+2Kk9sp1AYGUItyi6t8yHPwRNwzY3S62FvtReVvkOynrSFjkzjd6AjpPWWroMls6PxYxMRETVzLVu2RJ8+fWTLzznnHNxzzz3YtGkTLrvsMqxduxYrVqzAhAkTsGTJErY/oLhL0q/gRMmleu0DgcsMPYd+RN0fcwPrRJ96WAATQ1pKXXoraeNtyZ66wCRSPhH4aHttgkcUf0aLPP+orA9pX/1V+XJpUattS4zE6j71HjXLpv0RKNOq/Pr/jL1qmyWll+svh914btP3suWFDuOVtHp62Nft+tD4cYmIiCis3r17Y9myZejfvz8AYNmyZfjf//6X4FFRc8SQlkgH98HvQm7XbHw28LPoq1PcR7BkwpLVNabjIoql1hn6qgU9cb4u/OvdoSHZ5lJPXO8/FRWk1f8uDzmV60MTMa+Y0bsc2uZYtXSOTTlA/euAbN3HG9clXXP9WJX1n+xoficFSDmkzbSacMQlr9TunJVn+PiCnpO6YSYXIyIiosilpaXhnXfegXC0J9YzzzwDj0f5e8aBAwdw3333YeDAgcjLy4Pdbkf79u0xceJEfPXVV5r3U1ZWhjfffBOXXXYZevfujczMTNhsNrRu3RqjR4/GK6+8ArfbrWvM77//Pk4//XS0aNECmZmZ6NOnDx566CGUl5cbeuyUPFjmRxQBMajFgVJIay0YjKwBj0Mw8xJsSl0Wk4D+hTasPaz9IUFtYqZYYa9Q43xhqlY9fhGWOFdO+wy2xs0N6j2s9BrolmvBya31vedO6ZkRtmVBnsOM8V3TsaAZVmqTnNLL1S8CPsmL8bz2x8MSo0lDRS+ruImIiGLp+OOPx1lnnYXFixdj3759WLlyJU455ZSQbd577z3ceOONqKkJPVG7d+9ezJkzB3PmzMG1116L6dOnw2KRR279+/fHH3/8IVt+8OBBLF68GIsXL8b06dPx2WefoXXr1orj9Hq9mDJlCubMmROyfOPGjdi4cSPefffdsGExJSdW0hJFwh90Rk3S7sBaMBgFY5fDXnRmnAdFFH0nFIav3Ip3SEvKVX1awgWi3gTMJRYuOJYKzsKkw31oSC4eH5YXqHzQkmUTML6rvsvRR3VIMzBCasqU2nP4IcIvqQkf0bpLxPdhye2tPQYfQ1oiIqJYO/PMY9/jv/8+tK3RBx98gMsvvxw1NTXo0qULnn32WXz++edYvXo15s6dizFjxgAAXn/9ddx9992Kx/f5fBg8eDAee+wxfPrpp1i5ciWWLVuGd999F3/6058AAGvXrsXkyZNVx3jnnXcGAtoePXrg9ddfx8qVK/HVV1/hxhtvxK5duzBp0qRGPQ+UGKykJYqAGBTSSitpBbMj3sMhihk9tZWuBAR8ZEy4HD3eLSsA4y0WgjeXDtdIEbBJR5DbwBFudjFqNpRern4R8Imhb4BGXl8y4frSspKWiKjJE0U/RL/yHAJNkWDKhqBj8sx4GjBgQODnrVu3Bn4uKSnBDTfcAFEUcc011+Dll18OqZQdMGAALrjgAtx333144okn8Nxzz+HGG29Ejx49Qo6/ZMkSdOvWTXa/p5xyCi699FK8+eabuOaaa7B06VJ8/fXXGDVqVMh269evx/PPPx+4z6VLlyIz89ikpaNGjcIpp5yCK6+8snFPBCUEQ1qiSASFtM6d74euY4sDakL0hF8VLj92VnjQOcca+wGpmLGxClN6ZsLGUE1RuKrVRFTSfvS7sTYCi/9w4tKemXBYBIWQVv/v3cjXAIeFr6fmrMbjx5sbq/Hz/jq4Ff5GDtb44Jf8bZkb80VT0P5Y7tr3BUo+G4ack/8La8FJkd8PERElLdFfiaoDFyZ6GHGT1XouBHNuoocRIj8/P/BzWVlZ4OeXXnoJFRUVaNu2LV588UXFVgYA8Mgjj+Ctt95CcXEx3n77bfzjH/8IWa8U0Aa7+uqr8d///hfr1q3DRx99JAtpp0+fDr+//oPJK6+8EhLQNrjiiiswa9YsLFq0SPvBUtJJrlMWRCmioZLW7yqF59CPIetYSUtNid7w6/l18TvjrzSiRbuc+L5YeRI/Ch/Clse5HLrW48fHEUzA9dXRSeOkl54bq6TVv62Nn5KatU+21+L7YuWAFgA2lXqiWkkrhKukBeA59CPKlk5WbL9AREREjRccelZVVQV+/vjjjwEAY8eOhd2uXphlsVgwdOhQAMBPP/2keV+iKOLAgQPYunUrNmzYEPivbdu2AIBffvlFtk9Dr9m+ffvipJPUT9pec801mvdNyYmVtESRODpxmHPXHNkqhrTUlEirxNQUV/vgTcDkU8FeWV/VbHuItrCbUKYRtIarpF38Ry26t8iJ9rBU/VaqPFNuOO/8Vo2xXdJlPWljFdLq6XFLTdd8HZPGSd8jGxPSmtLbAEfCb+er+h2itwaCVV45Q0RERI0THMxmZ2cDqO8ju27dOgDAyy+/jJdfflnXsQ4cOKC4fOHChXjppZfw3XffhdyfVElJSchtl8uFbdu2AQAGDRqked8nn3yyrjFScmGNCFEkGr6U+b0K69igk5qOnnnhJw5rELe2pszNZMZ01g6nPWHeliriXEnrbeSLRdbuIOjnPIf2Rxuj5xGGtgmtlODLj4JJT4A0pt1BxvF3AuZjf8vmnJ6q23ISMSIiotgIDkbz8vIAAKWlpfB6Fb77h1FbG3rCVxRFXHfddRg7diwWLlyoGdACgNMZ+u99WVlZ4Gqali1bau7bqlUrw+OlxGMlLVFE6gMNU5r8jdHvqYj3YIhixh7+6tuA+ooyRljxII04C9PMeGt0Ia784rDi9p4ws3TVeeN76XRjK1SlhcHB1YvtMi0orXOr7mu00nFsl3T8tN8VuG3h6W0KEs1KWnvr09Bq0n54Sn+BOb0NRF8dShacoLyxj+1diIiaIsGUjazWcxM9jLgRTNmJHoLM2rVrAz83TPrl8/kCy6677jrcdtttuo5ls4UWvLzxxht4/fXXAQAnnngipk2bhsGDB6Nt27ZIT0+H2Vz/5euKK67AO++8o9neiFd8NU0MaYkicfTN0mSV/6MiuhnSUvMUt0pakhO0J7lyh/nl1IUJcaOtMR8pRVGUhdTB1bHhQlSj922VlN56/fVj4AdjAgC/5OoZcyNfFyZbDuytTwMA+GqVL5EEAJEhLRFRkyQIpqSbSKu5+fLLLwM/n3rqqQCOVdQC9Z8D+/TpE9GxX331VQDAcccdhx9//BFpacpXw5WWliouz83NDfx88OBBzfsKt56SE+tBiCLgd9fP8qh0ZsvPkJaaqXhdMF/jYRpsVLiJw+JfSRv5vnO21WgeL1w7A6PtDqyST0oigDhn2k2eKIq45/tSTFp4CF/sMj6hXCJ5pZW0UbyawOTIV10netnugIiIKNo2bNiAr7/+GgDQvn17DBw4EEB9Rezxxx8PAFi2bFnEx9+4cSMA4LzzzlMNaEVRxJo1axTXORwOdOvWDQCwcuVKzfsKt56SE0NaokiI9Zc7OLe9Ll/lLo/zYIiSQzwqaTeXql/G3pwYndjdHa7dQQqljnO3yUO84OA1XCWj8ZBWvoOHZeNRNfmzw9hVWd/n7Y2N1fi+OHWqREvrQvvTmU3R+2gtmKyq61hJS0REFF1OpxNXXHFFoBDrzjvvhMVy7OLz8847DwCwefNmfPHFFxHdR0Nf25oaedFBgwULFmD//v2q688880wAwPr160NaM0i98cYbEY2REoshLVGEfM6D8FZukS23tzsnAaMhig2LgUQrHrnVq+u1m+s3V+F+S+Em6sq1x/fjQLQbBQT3Ae2aq93JyWjPUGklLQB4fPJlFD0vrKtM9BB0K5OGtI2YOMwIhrRERETRs2nTJpx66qmB0HPEiBG46aabQra57bbbkJmZCQC4+uqrA1WxahYuXIhff/01ZFlDFewnn3yi2NJg+/btuOWWWzSPe+ONNwbabt1www2Kge97772Hzz77TPM4lJwY0hJFSPRUw2TLlS3P6HNX/AdDFCP5DhMcZn2hlnQCnVjYW810LBLhfjN9C2xhtoiuqIe0QT+P7qh86VhgW4N3rhTqso6WGnhEV8jtbKs9qsfP7Pegyhq+ComIiPQ6dOgQNmzYEPjv559/xueff47/+7//w+jRo9GnT59Ai4EhQ4bgww8/hNUaekVLq1at8NZbb0EQBOzfvx8DBw7ETTfdhI8//hhr1qzBzz//jLlz5+Kee+5B165dMXbsWOzevTvkGFdccQUAYN++fRg6dCjeeOMNrFixAt999x0efvhhnHTSSSgtLcWAAQNUH0u/fv0CQe6qVaswcOBAzJgxA6tXr8aSJUtw00034Yorrgi0aqDUwonDiCLl90CUTBiS1vVyWHN7J2hARNEnCAKeOz0PL6+vwppD2q0GeAV48mr41ZgF5X6q8f7VRfv+gnNUh8WEEwttWHdY+fVqNKRVKrzVmmmXmhe3GFrR2sKWHtXjZ574EMwZ7VHx4/WhK/gaJCIi0u2ll17CSy+9pLlNYWEhpk2bhrvvvjukzUGwCy64AAsWLMBVV12F0tJSTJ8+HdOnT1fc1mQyISMjI2TZbbfdhi+//BKLFy/G1q1bce2114asT0tLw9tvv42FCxeq9qUFgGeffRb79u3DvHnzsHnzZlx99dUh6zt37ozZs2eja9eumo+Zkg8raYkiJIreQG/aBrZWwxM0GqLYyXWYcc+gXIzroh0+MDNInHC5Y8PvRi1I98Vr1jdojyNS0uC1baZZfVuDx1YKaeP8dFGS8os+eEVPyLIWdu1KbqMEwYT07tfBZC+I6nGJiIiaK5PJhJycHHTo0AHDhw/HtGnTMHfuXOzduxf33nuvakDbYNy4cdi5cyeeeeYZnHHGGWjVqhWsVivS0tLQuXNnjB07Fs8++yx27dqFkSNHhuxrtVqxcOFC/Pe//8XAgQORnp6OtLQ0HHfccfjzn/+MNWvW4OKLLw77GKxWK+bOnYt33nkHw4cPR05ODtLT09GrVy/ce++9WL16Nbp06dKo54kSg5W0RLoIkNV++Vzw10oaegvqwQBRqgsXBEYSXImiiD+qvIAItM6wwGGJ9oXwyc8vijhU60Nhmhlmo2WeOtV4RLh9omoFa7yroKPdGkPakkCrl7JgsCet0tY8IdH06XmNuiWtDgCg2KT/wwAAn45JREFUhS26IW2A7HXLFyEREZGW008/PWZXP2VnZ+OOO+7AHXfcYXhfi8WCqVOnYurUqarbzJgxAzNmzAh7rMsuuwyXXXaZ6npe/ZV6GNIS6SJ/cyv57BTAL7mcliEtNWHhsq1FO2tx1fFZuo9X6/Hj6sUlIcvuOzkXJxRG3h+13OWP+yRYjVFa58Njy8uxr8aHXLsJ9w/ORfus8P80G/24VecTcfnnh1XXf7nbiev66v/dNVa0Py5KM1mtrN9wuwOFZfy4Gz07KjzhN4ozt0/EFRp/Lw08fvnkXbmxCmml931kNextRobfkIiIiIhSRup8kyVKNtKAFgDiNKszUSKEy7YW7XIaOt5P++VVaP+3qlx1ez1ngr/ZY2wMibZkTx321dS3TSl3+fHJjtqEjSUeE78du6/oHk/6zlvpVr8D4xOHyZexKCF63t9cneghyKw84NIVxEsraR1mCxwWq8rWjRX6Qqzd/L8Y3Q8RERERJQoTJaIoElhJS01YhTu6nTi/L5ZXoXk07kJrXYPlCsFvMpu3rSbk9tK98ufEiPFdI5+0qM4bv+RRT8hpN+tPU6VB6hKNsH7jEWOVm0rtEZjRRs/6kuSrpH1XZ3Dsl/SlTzPHKqAF/O6y0AWmyK84ICIiIqLkxJCWKJoY0lITNrSNParH8xksp9Szda2eJDeJ+KKc9o3rkg5rhP+yx/Op0/Orf3BIru7jSUNarWrZQa2MhVtsd0DJIGfwCyG3fTV72GeOiIiIqIlhSEsUhqEvQQxpqQkzUtmoh9FMUM/l+HXRTj1TREO1Z5bNhHfPaYkHBucaPoYnjrOH+XXEnDk2/R9RpBOHaclzGHufVm530DxfZ81FMv567W3/FLrA54ToOpKYwRARERFRTDCkJYom9qSlJsxitJlnlOnJEJ1xvGQ/mRnILAPccQy49fwuzQbeTqUPV+ulaonC23Qc82xKavF7IZjSi2SfMXw1e+J2/0REREQUe+GnkCZq9vR/CWNPWmrK9IRb3+114us9dch3mHBZr8yQqsVylx83flUCADi5td1w0KWnui3Fuh1ELNxzEUmcHslzV+ny4/qjv9PBre24fUC2Yg9XKT2/SyNZqjSUFSBA7b3bavBkg2IlreS21y/i/c3V2FbmQb+WdlxwXDr2Vvswe0s1rCYBU3pmomV6cv77sLXMg3nbapBpq/+bzbEJ+HK3E+9vroHTK2JYkR1X9M5Crj36JyG1+iDXeUU4LPE/MfR7uQdlLn1/DEe8+2M8mmMEkwWmtCL4a/cGlpV9ezEKz98IwRzdVjRERERElBgMaYmiiSEtNWEWHeHb/36pCvxc5fbjvsEtArcbAloAWHHA+ARf+2t84TdKIaV10Xs80t9MJJW028o96Jht7GPB9UG/058PuLDigAuD2zjC7qcnnzcZCFNlIW0UK2kVe9JKHsBH22uxcGf9ZGVby71oYTdh7rYaHKmrD/sO1frwxKl5xu44Dtw+EU+sKA9UoNd4/DinUzpe33Bs4qxl+1xw+UTcNTA36vc/7Vv1y/Xf31yNa/pkRf0+tXj9Ip74uVzXtn7Rh1+rv43peKTMmR1CQlpf1XZUr38KWSc+FNdxEBEREVFs8NpsonCMNKfze2M3DqIEyzbQIxQAfo1w1navSont98V1ER0vWX30e23Mjh1J/eHrG6rCbxTGs2sqdW0Xroq6S44FRlogS6t3O2uEzUbbdgiCIHs+pZ0hPtke+rt8ZX1VIKAFgO0V3qSc1O6H4rqQFiFrDrkx/Vf573DVQXdM7l+rYvWLP5wxuU8tqw+6UKOzZUq1r1y2LM+eHuURhbJkd5ct8xz+Oab3SURERETxw5CWKIosLY5P9BCIYiY7Bpc7K1EL8A47WUnbIBadMOPZZ1VrErg0i4Crj8/S7CsbbErPDNmyFg7116rRdgcAYJNcJCGdZE3PhHXJOKddhVsekgaHy81NjUf/L8kryk9CTes9PJrDkUnvcZN8odh8f19ERERETQ3bHRBFkWCJ76WZRE1Rc5mUKZYP0xRJv4M4Uvod33tyDsyCgKJMM/IcZt0TmY3vKg9ptUQycZjVJMAVNJ54TrIWS17meyGM5Pc+UX7lzK29T43iaORshScjo/ftqNn075jeDxERERHpIxq58loHhrREYRmYOMySFsNxEDUP9VWWyR0yUuNI31X75FvRrzB08qMICl51iaySVgA8jQtpkzHW9UX5Q2WqM/LS8CM0pE0zGTtZEClTetu43A8REUWf2WyG1+uFz+eD3++HycQLm4lSmc/ng89Xf3Wk2Ryd+Yn4rkAEQPR74Nw1B3V7Pm3UmRDBzJCWKJjWZe1qvvjDicO1jWgFkCLBk1YeVFrnw5d/OPHT/jqVQFD7MTY239x0xI0fiutQp1BqWe7yY8luJ9YeMj75WwNpJa1S5W+sQtpIKmltksFsKvXg+711qFZoF6Bm9cHIny89Sut8+O/aCnywpRo+neXoRi7vD7anyovv99ZhW5kHV39xGJMXHsK+6tTvyS7tbaxFWklrERJT9yD6Y9MvmIiIos/hqJ9cVRRFVFdXh9maiJJdeXl54Of09OjMTcBKWiIAZUvOh2vvZwCA9J63ImfI80FrDXyJNVmjOzCiFOcX68M2I5WHs7bU4JMdtXjq1Dy0TDd+RjJV6nBXqkzGVO7y428/lKHi6KRKg1rZcOfAXM1jSbOlxnQ7WLSzFjM21X9xaJtpxj+H58F8NKSs9vhx37JSlDgbd528NEdXCmRj1bLB6MRhgLwn7YKjE4XlO0z414g8XceY/msVajwixnaJ/uRSR5w+3LzkSOD2R9tr8f6Ylpr7iKKIxRFMzrXpiBv/WFEua5Vw+9JS/N/wPHTUmLQt2TWm3YE5QSGt+8A3CblfIiIyLjs7GxUVFQCAAwcOAAAyMzNZUUuUQkRRhMvlQmVlJY4cOfb5u0WLFlE5fup+kiaKEm/l9kBACwC1m19A9qB/QTDbDB/LSBUOUXPQUNC3tUw+yY6WGo+I74vrcGG3Y5cQZ9n0fYBtCIZT1eqDrkBAC9SHuTUePzKs+j/AN+bhNwS0AFBc7cPKgy4MaeMIjK2xAS0A+CUnv6L9+2qXaQGgXLlqieC+1ApTj9T58cyqCt3Heee36piEtHN/rwm57ROB4mov2maqf8wrrjZWrV5a50Oew4zXN1Sp9rJdsL0Gf+mfY+i4ycRIKwyfGPr8mRCdS9zCEuW/N9FbC8ES/dcVERFFV0ZGBtLS0uB0OuHz+VBcXAxBEKJ2mTQRxZ7P55NduZmTkwO73a6yhzEMaanZ81Zsli3zu47AnN6m/obOS6cdHS+I5rCIktKNfbPw8voq3ds39Jet9Rq/rHpHRWiw2y3XiqV768Lu5xNT+x+30jp5AubyicgIKtQP97ZkjiCIPK2tQ3H5piOeQEi7oyI6l7RLQ0+14Q5sZcMqlYpjALj1xGzF5cPbOjB7a43iukgqdPdqBJobjhg7ARELSn8XxdU+zZD2oMGWIvuq60Naredi2T4X/tLf0GGTSpbNyGtD+kcYnzND1rx+8pEwpCUiSgmCIKBDhw7YvXs3nM76q1lEUYTXm/otg4iaq8LCQuTn50fteKn8PZYoOgT5mUu/q+RYSKuDyVGInGFvRHNURElpZHsH/ABe1RnUNnQ5iKQ3baStZVN54jGzAMV+ouGeC+mjjSSILEhTrtQN7uEarWdV+njUhntLv2xcvbhE9TinFimfsS6MoE2GlrM7pkXUGiBelF4f4XozG/3zckZwoiWcbJuASrfycdtkxL+qSM97Tp7DhH4FNry5LfbjUWLNHyhbJvr55Z6IKFWYTCZ07NgRNTU1qKqqClTVElFqMJlMsNlsyMjIQGZmJmw241dga2FIS82e6JU3bffXHQ7eIuwxck55FSZb6l7iSaSXIAg4s0Oa7pDWL4b+vzH0Br0G2t8mHYtJQDSysEjaB3hULmE3ByWo0WpLIL0rtVA53WrCuC7p+GRHreJ6rRYzvfKs+K00OlWu9khKk+NI6e8r3MvI6EmQWrUeB42g9b6gd/KzaNJzjxOOS8ewIoc8pI3XS8Sk8NFdZEhLRJRKBEFAZmYmMjMzEz0UIkoy7FBNzZ7oLpctCw1pwzPZ9U0cQ9TcNASmkVbFNnD5RN3hqz/6WVLcWEyAV6mSNsxtKXME/7p7/aJi9aU5JpW0ofejddxIg2G13SJpHR5JH9t4Uno9NPZvTqrGE50DiqII19E/Zq0cNgaFu2Hpec4ECCrbxelFojBBGStpiYiIiJoGVtJSs+dXCGlrt76GtM6T6m/o+NYmWJX7IhI1dyVOH5xeP/67rtLwvqsPuTFp4SHD+0XSWiFZ1HhELNolv6y+zmBiFUm7A69fuQrZEpSSRmtyxPUloRWuWkFstM8mR/IIzCk4E92GI24MLVLuMwwYb3fw1qZqvLVJfuWJEbsqPLjnhzJd2yaiklYPQVB+7uL1ChEUWjSJriNAVqc4jYCIiIiIYoWVtNTsiW75zNzu/V+F7ecXTLBkhN+IqAlJ01laOP/3Gny8XflS9VhJhXYHvxx2Gdr+5wPGto/k6nyvX1Ss4g0+VrSyyi1loSFtjVqvBchbI+i1SaXVgSeC8M+SxJ+W1E5KfLVbe5I9I//GRYvegBZITCWtnteagPqQVjQcc0eJQruD2u1vJWAgRERERBRtSfy1gyg+RL9y+CF69M9gb87sFKXREKWGcV30zSS+6qAbS/Zoh0WN0TZTYeK/FAhpn1ghPzmk5YOtNYa21xOmSidm8vjDt5SIVbXgryXqvWO1AtxIbC0z3qfWksSVtAdqIptsJNn/TGLQAje8ME+KxQQMbWNHllX+enDEq2+xQiUt2O6AiIiIqElgSEukUk3kdx1p2EBz9+yh0yEoTeRB1ISN7piGrjmJf91f2Vs+4YIvhdsdREoaD4Vrd5BuEXBya3vIMo8/fHAXLqvMd0T/Y4UQtwvJ1SVzT9pI8+NY/JW0UzhpEqlE/B1rVcc6zAKu7J2JdKsJgiCgteQkR5Q6gYQlCAIsuX1Clhk5qUxEREREySvx37CJkpTfdQTI6qy4rmDcWpizusBkYy9aap4ybSY8PLQFLv/c2CR70dS/0Ibj822y5alQSRtr4Yr63hxdiPm/h1bnqoViwc9nuCAqFq0moh1+RTLESCZii5dI+g8DiElKG83qV5+/viVDtPog66GWC//5hCyMbJ8WsqxjtgU4EIdBKXB0noTqtRsCt/0e4z2/iYiIiCj5JPHXDqJ4Uf5WJmpU0gq2bAa01Owl+gpwQVAeQ3MIacM9RD1XXlsk4ZfHr3zg4EXhqlpjUf0Y7ZdZJEOUPlfJJNKRxeLPxB3FPz4R8f9bVru7RL/XSZkkk5WykpaIiIioaWAlLTV7nrL1isvdJatgbztaZa8k+8ZGlACJDi5MQn0VYcNEPg1SYeKwaJNmiHp+N9LJsH457MZDP8kndgqemMoV5smtcif/k58KlbQ/76/Ds2vqqyPNAvDaWQVItyoPItK/w+oo9/oFgNI6PyYtPAQAeP2sAmTajo1ZbYIzLT4R2FPpwWc7ncizm3BqWwc+21kLm1nABd0ykH30+GsPufDjPhc65VhwTqe0kOpiURTx9Z46bCn1YEArG4a2cYTch18U8fkuJ97aVK06DqWnOJFdVQRrVsht94FvcHBWK9jajEJG79tgKxys6zjOHbPg3DkL5vQiZPZ7AOb0NrEYLhERERHpxJCWmjXR54Z732LFddVr70dWv/sSMgM2USqI+DLrKGm4d5MQGsxGEgalgh0VHnTJseraVs/vRmkyrL3V8kmoluyuw8Tu9b1/P9lRG/a40b5EPRmKWONZSbu51B0IaIH61/bVi0sw+9yWittrvdprPX7VcPf1DeqhZDRc92UJZgWNuc5r/O+yxuPHgz+WB04OzN9+7PW3p8qLB4a0wB+VXjy1sn4ivu+K60PtP3U6NrHhsn0uvLq+6uj6OmQPMYW0SfnyD+2AFtBb0Ru/14g0pAUAf90h1O2cCdeej9FyYjFMthzNY7j2f4vy7y4J3PaU/YqCMT9EfaxEREREpB/bHVCz5i3fqLneV6fWbzMJUgOiZq7EWV8JKM0am2olbUPQBISv4pNWySpRye5kWgRNBmbXMS/UzkrtmeaVTnz1yVcPn9XebU8slPcj1iPbZvyjTzRfUuFOIry50Vh4qnW47RXav4tYEhH6u3ZGENIu/sOpWr294YgHXr+ItzeFXuovff6eXxfarzX47wgA3tDxfOfYk+vjsjmtleo60VsDT8mqsMeo+2NuyG3PoWUQ/Z5Gj42IiIiIIpdcnzqJ4kz0ObXXe2sRm859RNRYDdmNWVLl2FR70u4wELhpVdIObFUfbipV0iqxBm1n09Hsttaj/QtQWnuGZFKmYEoPxSwAk3tkaN7PuZ2Vj5luMX6SLZovqXBdBnaFCbmltMbmTfAfQ/DdeyIYy/4aeWV3MK9fxE6DQXS4Y0q1yTCjV15kJwRixVo4BJbcPqrrRV/4ind/3UGFhcaeGyIiIiKKLoa01KyJPrf2Bj6X8vJkuP6WKAmMbOcIv1GM9G9ZH5xIs8am2u4gWtpm1nc60ltJGzwZWDQyP6VfT+cc9e5LSu+2z5yWh85hWj/0aKG8PpJK62i+40cSVmrROpraXcWrjU/wc+2NoAVuuN+V2x/706iPn9ICjgiC/VgSTFbka7QmEH11YY8h+pXCbb53EhERESUSQ1pq3vzaIa3oVwlpiaheArOLhkv6pcWdTbXdQbSe6oa8SW8lbXC4pidfDLeN0mqt815Kq1pnhO+7YFZ5fL4Eh/jeKL9AtQJXtd9FvP5GGltJG64SOB6Vwpkq7TESHduabDmwtxujuE5UO8EcslHiWmEQERERkTJOHEZNhuj3wn1gKXy1xTBntIet1XAIJu2XuBgmpHX+PiOxUzgTJblE/nk0XIYvr6RNwGASzEhg1BBe6ulbC9Rffr/xiBu98qy6qpTDhaBKvx+t8Uc6CZlaZ4ZIKjrj2e7AKO1KWuW11e4oD0LF6kMuDGplh80sxKSS9kCND7UR9LqNBjEZqk5NduXlPhd8tQfgLV8PS96JMDsK5dso9J/1Vm2HtYV6GwUiIiIiii2GtNRklC+9BHV/fBi47eh8CVqMeF9zH2/Fb5rrazY+q7hcSHgNDVFySGTPS0sgpBUQHFUlulIy2TWEs1adlbQA8OjycgxsZdMVgM/YWI3+LVXCI0AxVNMKYpXW6Bm52sNLdDsMrYrSvVXGqxu1Ho5SyFnl9uPGr48Yvp9I/HdtJY7LteDRoS2wryb8YzMJoSG+L8wL7pHl5Y0cYfQk4lOBYFb+O/OUrkXl6rshukphcrRE/pgfYcnuGrKNq/hz2X4lC/oi76wvYG97dkzGS0RERETa2O6AmgRfzd6QgBYA6nbOhM+pMDFGEM+RNbEcFlGTd7A2cRPNeI4mUGbJv2RNNaPNtkUnBmpxdKZ6owWqqw66dVWBHqj1aYb3m47Ir2DQmo9MaZx6qmvV2jlkqVy+riXTGr0ITus5XLJHfTLLCpfyjlo5ptK6RTvDTyoVTb+Xe7GlzIMPt9aE3Vb6OohVkWzt0V+CO8V7owhm5Z7gtZv/B9FVCgDw1x1C9a+P6z5mzeYXojI2IiIiIjKOIS01Cb7qPxSX+50HNPcz2fMiu0NOHEYEAEjXO/tUDDRUJEpHkOK5i6qR7dMCP+t5iBd1S1dcfmrb+mAnK4a/O63wq04hectzqI8l0nfbTtkWxcnRTo9gsrsTCmwRjkJOq9L793L1atP9OipRpZSqhr/4Qz0IjpX9NT4ccoZP+KXBerhK2kiV1tWPpSbavSfizNZymK7tnL/PkC0zpbdT3NZX+XtjhkREREREjcCQlpoEX51yxazfXaG5n+ipisVwiJqNwrTE/TPSEOhIJ4hqqj1ppRXDIRSSzPFdMzC+azrSgmamv3tgztH2EIjpjPVa0Zf012MzITAmJZGeE8uwmvC3Qbnollvf2ckkAI8ObQGH3ma8QdQmIYuEVm9WrZeuWpsdreda6W8hmSvNpS/JSPrYGpHET4Uuad2uiXhftc8/IicUIyIiIkoY9qSlJsHvPKS4XPRUau8XcUjLSloiIDohx+iOaVh10IUjdcYSmYasTfrX2GR70hp8WDazgCk9MzGlZ6bi+ijmjjJGfgUds7U/ijRmmH0KbHi8IMIrJmJEs4+zxhOnFlYb7UmbiNpRvSdO6sPw2PeXbhhPYw6fDBfUCEJkJ8lE0a/++cjPkJaIiIgoUVhJS02CX6WSViukFUWRlbREjZXAPPRYJW3ocn+SX8EsRpgMBT+saGRXscyYRFH9cUqXhhtHMoRh0aTVZzWSX6uosZdSOJqIidO0xhhM2pM2Vt0IGsLfxjwT8td36rxQRW8N1B696PfEdzBEREREFMBKWkp5niNrUL3uYcV17kM/Iq3LlJBlorcOFT9eD+eOdxtxr6nzZYyoqWq4NNosSfGW7HFiWFvtvqOiKGLu77VY/IcTbTLMuLVfNgrTzbrv2+sX8e5v1fhpvwtdciy46YRsZNv1nfeMtGducCZUJplEKpJ3JK0WA4314E9lqHT5cUaHNEzpmaF9X2HG0dTebbX69Wq9NNSyVa3MVRrIbi3zwJWAuf5e31CtaztpT9r9NZENVhRFzcnlfFGopE01oijCX3cIh2a31tzOX7sXpV+eg9zT3ou8bz8RERERRYSVtJTyKpbforqudvP/ZMucO95tZEBLRA2ikXEcrPXBLi2h08F6NNCRXra/4YgnMHu7mj8qvZiztQYVLj82l3owd1v4meeDrS9xY9EuJ8pdfqw55Mbnu2p177u7KrLLiRue633V8v2r3MZ/E7GsUN1f40ONV8QnO2qx6UhoZZ40GAs3jFiGyYmw4oBLdZ1WaKhWjar1m5dW0r6+IbmvHvFEqaF0uKP4jr49JHnRfVR5Di1D2dfjdW3rKv4c1RueifGIiIiIiEiKIS2lPM/h5Ya295ZvVF1ncrTUd5AmFhoQRWp0x7RGH8NmFnBWBMfpnW8FABSkyStgD9RqV+DN2hIayn6zt87Qfb+yPjTsmvu7/pD2iI5Z7pU0BHjF1fLHFu7xKonXB4Avdzs114d7Nx3c2h5yuyhDf8VzMspzqD/zWuGi2kRv2pW0wduJ2FWZvP1GzQJQarAvtZpwWW/B0QkPfU1glsHswc/r2s5b8Rs8JT/rPq63fFOkQyIiIiKiCDGkpZQmisa/0Ik+9TDGVnRWY4ZD1Ox0yrHirA71AWu2TcDF3TMiOs5pbR3Ishk7+dE6o75jz4Tj0mXrPGEyyxqtxqA61Hoi3z/SnqANe3kV9o/ktFG8zjVJgzfp4w83gVnbTDNGdahvX2EzQXUitFQRcS6o1u5A530lexw5qUdk7x1Kwj3HDa/9JpDRIq3LFJjStFsYADDe20Fkb1oiIiKieGNISylN9Ojrcxeyj0/5UlNLi34w2QsaOySiZue6vll48+wC/O+MAvTOs2pu+49hLWTLRBHItJnwf8Mj63/YJceKDGto0hfusunGVtA1asKhCPdrCDe9CuemwgWdSuJ1PYC0AFQ23VKYgQiCgBv6ZuPVMwvw+tmFGCSprE1mN/TNwoh2of2RtV57mlWxass19xF1bafm5NZ2vHl2ga6/zb8PyjF+B0H6FtgatX+wcI+1YX2k/aGTicmeh5YX70XmCfdrbqd1Ujut65VI7zU1dHtOIEZEREQUd5w4jFKa6I0kpFWppBW9BibJYLsDomDp1vpzfuHCwgLFS73rk5LGnDW0mwXUBFW3esOFtI0MZ+Qzu+sXaT4cqKRVOEBkE4dFNg6jLJJfrNGetA30TsyWTDKtAqTtlrVee5FMHKYl+KUSyevOLNT/bbdXabUQrCjTgnSLgNoIq9Sj+XKsP6GhfsRjIW0TSGkBCCYzzFmdw2ylHtKaMzvK2z353I0fGBEREREZwpCWUproMTYJiuhzoW7nTOV1fiMhLRFFwqyQDDbEJFqzsYdjleR3W8s8OLGlHVvLPHhiRTnqvCIeO6UFurWwwh+F3pxuhbzji121OKtjWtiJriLNhUqO9rJVarUQyVPXmOfbiHKXH5ctOgSPHxjYyoZVB0PDn3iFxYlgEgSYJc/zIY3+wUYmATu2XH0vT1AiHMnLzhKYnC/8L8ksNO53Gc2XY2mdP3DiSEnDc9YU2h00EGy5musrNSZZBQQIptCrINwHlzZ+UERERERkSOqVpRAF8esIaT1lGwI/V66Ypr4hK2mJGi1chaq0qhA4FpQ0JuCxSHae+3stfjnswgM/lsHpFSECuP/HMhyu9WHO1hrlgzTSGxur8cGW8MeONCBeccAFr1/E27/JryAwRfCeFK93sd1VPniOhtrSgBaIX1icCIIg7yG8+pBbNVjVqtBWW6P1Jxc8oV0kvZClVdBazILy37deeoJgve7/sQx+UUStR7l6NFBJG515ypKCydqIdhOCAJjk7SY8R9ZFfkwiIiIiMowhLaU00Rt+RnXXvsWBn2u3TFfdzpLdTd/kGwAES+NntCdqiqS9YaVsCilO77z6cMDaiJS2SqG09YkVFbJlc7bVYNEuZ8T3AwBOpaawR83fHv49SYlG0V+I74uV27W0zzYbvk8jAVwspUpEG0kAaQLwh0Iof6BGuZpWerIhmHqwq28skVRwK/1dqbFbhEYFrY7GJLwSTq+IXw+78Xu58gkRve0O2mcZ/7tKFJOjMOJ9BUsGBFu2bHnw5yciIiIiir0k+YpGFCFRR0WaWg9aibRu18LWchjMGR3DbmuyNW6CFKKmqkOWdhcdi0nANcdnBm7n2ASc1bF+YiWHjr6XDbrkhN5PpVtfArWtzANnhD0zG2hktLooPc7JPTIVtpQrrlYO9/pFMOmSSRBwalHiJ+FKlZD26uOzDO8jCIBbobxcpcAzTEirvFzvq1nr0v7xXdMVl2cEnT04p5P6yckBLW1Is5girobPd5hQmBbdj6QldX64VEr7G54LrefEJADX9jH+O08US4s+Ee0nWNLhaDcW9tany9aJ3thcdUBEREREytiTllKbxmzFgU18Ll2HSut0EQAg/9yf4Nw5E67iL+BWrCJJlUiBKP60KumOy63/J2d0p3S0TDfjQI0PQ9vY4YigpLMoI7TCrV+hDb8cTo2JbqQVkb3yrOico++fY7VqykhbBvz5hGz0KajD9F+N9fduUJRhxgmFNmw64sHuqsjaOKRKt4OzOqahIM2E74vrsGyfvn9XBEG5BYioEq1qtSRQbXegM6XVCiTtKlWsvfKO9Sm9oncmuuZa8cK6SgDA5b0yYRLq9x1WVH+iJdJi2P87LS8mbS+krSYaNDzPSpW0T57aAltKPejewoquuVbZ+mNC9xUS/NlAEEzI7Pcgqn95VNf2lhYnwNFpIhwdxsOS2xMAYG05DJ5DywLbiP7UeE8lIiIiaioY0lJqE0OrykzpRbC1Hom6He8d28TglwxzehtkHv9XZB7/Vxz+6Hh4yzeFrA83OQcRKbMFldn1b6m/gvOEAht+LQn9O5ZWIsbzspDGTjYk7YOZ5zDBojOgUqritTXiwVvNAka2T4s4pP336fkAgHd/q444pE2licP6t7Qj02rSHdKaBMFQL1it15baYXRX0mrer4gsm4AqSUV68O/GJAgY3taB4W0dqseJtN1B5tGKXQGRTXCmRIB6z1mfSiVtvsOELjlWdMnRCmeTlzmjg67tcoa9ifRuV8mWW7K7h4S0YEhLREREFFfNtt3BqlWr8Oijj+Lss89Gu3btYLfbkZmZie7du+Pqq6/GDz/8YOh4ixYtwoQJEwLHateuHSZMmIBFixbF6BEQAIjSSlrBDEEy+YXoKov8DgT5FzXBxHMbRJGIPIyTxzbSCrhoBn0un4jdlV7VSYfC9bEMR1pZaRIE3f1hS5zydgfmJEg5GzOExI/eGCM5pAnKlbTbyrzYXu7BllIPdlR4UHe0BYdWSKva7kB3Ja36hj5ROWA1GwxdG/u3EU1rD7lUx+MX6ydp2ytpHxLFtrgJIVgy9G1nVg7apZ+f/O5K+OuOwLXvK7iKF8NXU9zoMRIRERGRumaZNp122mn4/vvvZcvdbje2bduGbdu2YcaMGbjiiivw6quvwmZT7/Xn9/txww034PXXXw9ZXlxcjOLiYnz00Ue47rrr8PLLL8NkaraZeMzU/TEv5LYAk+xLRu3Wl5HR925YsroYPr5gUqimEZrlnw1Ro0V6NXOdQg9ZaUWp3pBwn8qETQ3KXX488lMZ9tX4kOcw4YHBuSjKDP2bb2wl7drDoVWYFkG7F2mw1YfklW3JkIt5G/GkxOIy92QhCMrVnK9tCK1czneY8PiwFpohZ4XKJF5+nbWnWq8TvwhUuOTHNxq+H3Y2smFzFK086MbKg8qVoH4RmLWlBh9JJvpLhhMejSFYlHsLy7ZTCWlhDr3CwbntNTi3vRa8J3KGv4X0rpdHOEIiIiIi0tIsU8N9+/YBAIqKinDbbbfhww8/xIoVK/DTTz/h2WefRdu2bQEAb7/9Nq666irNY913332BgLZ///6YOXMmVqxYgZkzZ6J///4AgNdeew33339/7B5QM+bc/k7oAsEEv1teOevc9ibESJIMs0JAz0paIk2ZVuWgY2dFZJfDb1WYoT0/ypMMAfVB4+c7awNBbmmdHx9uk0+c09iQdk+VJCgWoLuSVkmdyuRI8bTygL7L/5WkWixmZLwmob6dRThH6vz4dEet5mtr8R9O5RVR6EmbpjJpX7wrS+OV19f5/PhkR61subGMNvleuXoraaFWSWsO14ZGRM2vTxobFBERERHp1ixD2p49e2L27NnYvXs3/vOf/+DCCy/EoEGDMGTIENx+++1Yt24dunfvDgCYOXMmvvvuO8XjbN26Fc888wwAYODAgVi2bBkmT56MQYMGYfLkyfjhhx8wcOBAAMA///lP/P777/F5gM2IyZ4XctvvqYTfVSLbzufcD9FVqnqcjOPvUFxuzRugaxkRHTO2i3I1V7UnfJo0qJVySDCsKHT56e1CZ5pXqgI0yu0TMV9SWafUe9RIj1ElHbJCJz07XOvTXUkbK9ZGfho41IgKylQrXmybaVZcPrpjmmxZ+ywLLu+dqeu4C3c6NYPUrWUexeV6M3q135BZAM7qIB87EHmP2UjF67VQ7REVn7dUb3dgzTsREEJfn/b24yRbCfXbKe4f/vONr2ZPZIMjIiIiorCaZUj76aefYuLEiTCblb9oFRQU4F//+lfg9ocffqi43X/+8x94vfUVXs8//zzS0kK/5KSnp+P5558HAHi9Xvz73/+OxvApiOipDLmde8qrgF9edSf66uCr3qV4jLSulyPzhPsU12UNeByOLlNgzugAU3o72NuPQ87QFxs9bqKm7NzO+i65VXLriVmKy6/snYWTW9vRPsuMK3pnonuL0FYk56oEw0boDrsaWbgq3f/09mlQKWTUpVW68r9lRtw+IKfRx4hUqnU7cKiUPY/tko7CoArvaf2zkWk1oWcL/ZNQRXICQOt1Gxy+q11NcvuAHGSqzD4X7wA93AR6I9o5MKFrFP7WVf6IjYTSia9flzM58pE7YjYs+QNgzjoOGX3/hhYj5yHzhPthzu4GS15/5I6YBXN6a8X9HZ0nhr0P0Vsjnw+AiIiIiKKC122rGDlyZODn7du3y9aLoogFCxYAqK/MHTJkiOJxhgwZgh49emDLli1YsGABXnjhhSbdfy+eRL8Xojf0UmRzTg+IokLPSV8dvJKQ1pzRES0v3iXfNojJloMWp73XyJESNS82s4CLuqXjw23yy4nDUQvAcuwm3HGSepBoj0IJnN7wNdohrdUEWBuRhkWj+q91RuOD3kil4r+IHbLM2C1pW2ExAS+cUSDb1si/+ZG8ttQCRyD0daW22aDW6pe4xzuktZqAOpW20bPPbRn4WVrxbpRasJ3qlbQAkNbpQqR1ujBkWdaAx5A14LGw+wqCCWndrpP0oZUSIXqdEKw6WysQERERkW7NspJWD5fr2CWuShW3O3fuDPS2HTFihOaxGtYXFxdj165d0RtkMyd6qmTLTNZsQCGkFX0uWSWtOatzrIZG1OzF+2RUNO5N78z0jW0BK93fLAiN6kkbjac6keFUKuZiSq/vaDyOSEJahXn1AoJXRXJsc5z/juM1cZd04sHA/afiizHKFCdMlVD6/EVEREREjcdKWhVLly4N/NyrVy/Z+k2bNgV+7tmzp+axgtf/9ttv6NxZfzi4d+9ezfX79+/Xfaxk4HMexJFPB0P0uyD63YDPjZYX74HJnmvoOH5XKQ7OzJctF2w5KiFtHZzb3wpZZs7sZOg+iUi/eGcd0eidqRZiiaIYEsqFuyS9tM6HPId6Zap0f5OARvWkjcZzHe/eo8FS8eoSpUw9Go/iSJ3xy8i1KmmdXhGTFh6KeDxxb3cQp9IBtb9hU6o1SI4FHSFt2ZLxyBv9FUxW5fY0RERERBQZhrQK/H4/nnrqqcDtiRPlPbqCw9N27dppHq99+/aBn/fsMTbhQvC+TYJggq/mj5BFot/4rOCVK6YpHRyCJROiYk/aWnjL1ocsY0hLFDvxjjqikfOpZV1rD7kxIGhCs3AViXcsLcWbowt13099SKt3lHLRyJUSWUGYirmY4ustQWFzYyu7tcT7d2OLVyVtE2530Fh6Kmk9JStQ/cvjyB74dBxGRERERNR8sN2Bgn//+99YsWIFAOCCCy7ASSedJNumqurYpV6ZmdozN2dkHOvbVV1dHaVRpibBZJMv9LsNH8e5/R3ZMnNmRwiCgMy+98jW+ap2yLfP6Gj4folIn2jmVYNaqffMbBCNcEWtuu7L3c6Q2+FCsVqt688hD2kFob6SNcsW+iCGtgn/uAFgTCMmamuQaTMZfg4n9zj2b9vwtvrGqmR3pfzEWrJTyhLjke9VueWVtt7GNknWkGuP/sfEYUWhr5Xgv+8zOqRJNweg/29BL7XnzNjfQOgxUrAgXJHfdUTXdp7SdbEdCBEREVEzxJBWYunSpfjb3/4GAGjZsiVeeuklxe3q6uoCP9tsCsFjELv92JcLp9OpsaXcnj17NP9rCJNThVJIK/qMh7RKMvs9CABwdDhffh9e+SQj9vbnRuV+iUiuMXlFcPgHAH8+IfwltdEowFPLug7V+iTbNS4Uk8ZsDa0GLu527HEPaWPHzf2ydR1vSBQCLLtZwHldj4W9LXSEc+cGhcMj2yuHa3oclxu+ci/ZxKrdQThKrQ2iVUn7t0GhE/P1zLOiTQwmlBvTOR2ds+sv5MpzmCRhv0N2n/kOEy7qFt1JqtT+1hPZ9iNZ2IvO1reh3xPbgRARERE1Q2x3EGTjxo2YMGECvF4vHA4H5syZg5YtWypu63A4Aj+73dohY/AkZGlpxr7IhmulkHKUQtoIKmmVpHe7GgAgmO3IHTEb5UsnHbsPnzwcF8yNrz4jImWNyTomHJeBoW3sKK724YQCG6w6ytuEKERkesOuxhYuynrSHv3/6E7pGNTajlqPiLaZZgiCgAld08POZG+N0iXik3tk4oz2aXD5RHj8Iv7+Q5nm9rag30uWNfJzvrEIAmNNsY9uHPI9pSJtn/E2tor6t7Tj9bMK8PMBF7rmWtAxyxKTfsEFaWY8dkoLHHb6kGs3IT3otZNrN+GZ0/Kwq9KLfIcJTq+IFg4T0nT0A+nRwootZfqCQ7WJwwgwZ+j73CkypCUiIiKKOoa0R+3cuRNnn302ysrKYDabMWvWLJx22mmq22dlHavsCtfCoKamJvBzuNYITZ1gMgOCOXRyryiFtCH3Y5FU3Sh8mRAEFpITxUpjo53WGRa0ztD/T1Qse9JKlzc+pA29HZyx5jnMyHMor1MTzTaeLdPrA9M9VcZaEDSmp24qFi8qjTke/6IonUjwNrKyO1imzYRRKi0HoiXdIsBqFlCUqfz3bTEJgerqFgaO2zNPf0irNtlaY6vkmwRBZ2W7mHptSoiIiIiSHUNaAPv27cOZZ56Jffv2QRAEvPHGGxg/frzmPsEVrsGTiCkJniysyU0EFgmTDQiqbBV9+icO89XsgXPn7LDbCWY9l/+mYDJAlCKiUdkab0v2KLejkQZjekLa/TVerDroRqdsC/oWHLuCQBRF1HhCD2DWSCn1REaxeKaNFsZaGpEUp94rRSWQjcMD8flF7K3yYu1hN7rmWNA73wZPLGcOi4FGFF1rshh4/t0qf8Qp9lTGhJ6JwwCw3QERERFRDDT7kLakpARnnXUWduyon1jq+eefxxVXXBF2v969ewd+3rx5s+a2wet79eoV4UibDsFkC20/oLOS1u8qw+EFJ0B0l4e/D7Mj7DZgJS1RzMS7OjIad/f5LuWQ9qCkJ21xdfgKsnu+L4PraOIzbUA2hrapf096ZnWFbFutfFNXSBuDJ9to6NqY4C2alcDxslfhNRCPh7GzwouXfq2Ex19/f3cPzMHc37XbYSSbWLxeAcBs4IW0cKfy33pxtU9xuR5NpghXZ0gr+llJS0RERBRtzTqlqqiowOjRo7Fp0yYAwFNPPYVbbrlF176dO3dGUVERgPrJxrR89913AIC2bduiU6dOkQ+4iZBWuertSVu75WVdAS0ACNbwEw1BSL0+iESposYjb/qYZqTUzaCcGMxCr6bMFb6hpSuoJO/5tZWBn1cdlL/feTRKc9saaPkQTQ5j09w3qi+uU6nRapKrdMvH3JhqYr0aAlqgPsCfvr6qUcdrlR7ffwdj+RSV6/i7jOUxUvHqASWydlFqRFbSEhEREUVbsw1pa2trce6552LNmjUAgPvuuw/33HOP7v0FQQi0RNi8eTOWL1+uuN3y5csDlbTjx4+PWQVJSpFMHib69IW0dXsXqq6z5PUPvZ3bJ+zxBBNDWqJYUQp/bjpBx8mTCLVMN6NHC52X6TaS0bA53CXU6RrHG1qkp3VL9GXaTIaez8aEbwp5fkqyGwy2IyF9rioaGUzeGOW/yfsH54bcbpVuRkbQ6/vczrGbsLPK3UReSAlmzuoCS478qq/0XreF3GYlLREREVH0NcuQ1u12Y8KECVi2bBkA4LbbbsPjjz9u+DjTpk2D2VwfREydOhVOZ+jlc06nE1OnTgUAWCwWTJs2rXEDbyIEc2hIq7fdgVbAnX3yv0O3DRPA5gx9Wdd9ElFk2ihUgDZMBhQrfxuUg8GtYx9qNnbiMCmTRsIZj+pMNXcNzMHE7vqq6ho3ztSrpI2H984pjOnxO2VbcHy+LfyGBvQtsOHmfvXB7+DWdvzn9Dw8ckoLnNclHdccn4lLeuis0oxAKrbNSEaCICBv9FfI7PdAoC1UzqkzYC8aFbohe9ISERERRV2z7El7ySWXYPHixQCAM844A9deey02bNigur3NZkP37t1ly7t374677roLTz31FFatWoVhw4bhnnvuQdeuXbF9+3Y8/fTTWLt2LQDgrrvuQrdu3WLzgFKNtJLWr3fiMPVzCiZ7gWyZOes4+Kp+V9xesOfrvE8iioSYgOAt3WrCpB4Z+PmA/skIIxHtGeCTNVvKsplwYbcMWE3Ae5trNLdtTBEpI1plFpOALJuAKoXWCtFwRnsdvdsjMKJdGka0Swvcbp9lwaW9MmNyX8FMvFIpaszpRcjq/yiy+j8aWFa3d1HINqLISloiIiKiaGuWIe28efMCPy9ZsgQnnHCC5vYdO3bErl27FNf94x//wKFDh/DGG29g7dq1mDx5smyba6+9NqJK3aZKkIS00NnuQGuiL5NC6CpY1C+rlPbFJaKmIVaXnPtFMRACRVJJu6XUg24tlP/JTfZoSU+bHlYxxkYsn9Y8R9Nq+ROHbhPNmiCdUIyVtERERERR1yzbHUSTyWTC66+/joULF2L8+PEoKiqCzWZDUVERxo8fj88++wyvvfYaTCY+1Q0inTjMfeAb1XUme57C/aQpbKk8BiJqGmwxSmpu++YIDtfWz/weSUj74E9luOSzw4rrkr0AUM/wGtVvnaW0qmIb0jatzyU8URBjkpBWZEhLREREFHXNspJWjPKlqgAwZswYjBkzJurHbZJk7Q7Ch7RaE1QI1ix5n1sAgkU9pJWOgYiiy6wQ2sUjjIxVJe0hpx+L/3Di0l6ZYScCM8obZr4jqymxk2vZYlxwyemeNAgCYpViN7WQVuk9J7Ykv5cmHhILguQrA0NaIiIioqhrWp/QKSXI2h3oCGn97jLVdda8E1X2qVDdR2nmYiKKnq65FuTYjqUWrdLNaGGP/T85NhOQZY1NWvLxjloA0T/RVxMmgZ1wnPpkS/lxCNpOLYpN79IG1THquRpLl/Y0NgHWX07MDrk9Mkw/2Ov61E++Fck5h4Gt9J2EzLal7kfAv/QPfT6v6JUJcxQejvS4FMQkCWlFnl4hIiIiirbU/YROKUsa0oo6etKKnirF5Zb8Acge8qLiOn9tserxzGktw94nEUXOJAi4uV82ijLMaJdpxp9PyGrcJfE6CYKAOwbmxPQ+4h0pjumchkGtlFu0/P3k3Jjff7pV30eFJ09tEXabogx5WW7H7NS7qOecTukhhZPhHvvJre04q0MaCtJMGFZkxxntNa70AHBau/oQN5KQ9sreWTilSLulT5pFgDmF+wOc3MqOszseez5Htnc0uiftWR3ScLLK3xlBNi+AKPoSNBAiIiKipiv1vhlR6pP2g/WHn4ldFtIKJrS+wqsZ+vjrDkUyOiKKkhNb2nFiy/iHHr3ybJh9buiJGJ9fxJRFyj1hG6tfoQ2/HNY5AWIE0iwm3DkwB5MWyt/T2mfF559xs4CwbR665FgDz/sPxXV4fl2lbJup/bPx9x9Cr4wQU7AprdUsYNa5+k/2Wc0CruubBaC+QnZftXoLn1y7KdC2wxJBkOowC7itfw5u619/+/Zvj2BfTWiglm5J3YAWqH8+r+2ThWuPPp9AZM9VsPrfD6kRpHUdrKQlIiIiijpW0lLcRaOSVrBkxqUqj4iahmgWDUonDkvxvCsm1N6elX4PMWgTn/S0Xo/BqyKpDpXOU6r0u8iIUUuQRIpRO2pqIEiq4FlJS0RERBR1rKSl+JNM8lX9yyNwH/gW6b2mIq3ThYHlzl1zUf7tRYqHEKyseCEi/aJ5UkdaUWriCSMZtWdE6bmSht7NgVZVcvBTFEl1qDSsVDqC3hYWqSTef4fSX6HQ5GcOk1bSeuGvKwHMaahadRfcJT/Dmtcf2YP+BZMtti1niIiIiJoqhrQUd7KJwwC4Dy6F++B3sF64HZaszvBWblcNaAGGtESUGKIo4vviupBlv5bErtVBqlKtpI3vMJKWRyOlDa4sjqiSVvLkK92TowmWnVr44ootaUgLoOKnP8OU3ha1W14CAHiPrAFEP3JPfSPeoyMiIiJqEviRluJO9KsFGiI8h38CANT89l/NY/idB8Lej6PzJYrLLS1OCLsvETU90Yilylx+OL2hsZcrXLPWMIoyk/986WltHSG3O4eZ7CtLpVJTqTC0V7414nGlqsJ0+QRqDYJfTdsr1HvXqpHmr8XV8svS18Wwh3KiHJ8vPwFM0WOyF8iWuQ8vh3NbaCDr/P3NeA2JiIiIqMlhSEtxZy8arbrO7y4HAHjLftU8hq3lKWHvJ6P3bYrLM0+4N+y+RERKvFGeK2dASxty7fr+KZ7cIyPk9i394ndFwdmd0gLVlwKAcV3TNbfv3kI5eDUJwDXHZwYC80Gt7OiU3fxC2gyrCacUKU+qJwaV0kZWSRt6u4XO11eq6xTmxIGWvgXN7zVolDm9NUwOyWR5fjdEb3ViBkRERETUBCV/+Q41OfbWp6uuE90V9T8oXFYXzNFpUtj7sRUORsuL98J9aBk8h3+CKIrI6HULLNndjAyXiJoIQZBPUtWjhRVbyjy6j+GJcgPV6w3MKD/huAz0LbDhx311GNEuDR0bEUoZ1SXHiudOz8PWci/aZ5nRJkP7vm0q6aJJEDC6UzqOz7ehxiOiW4vm+zHkmuOz8OM+l2x58CtsUGs7lu+Xb6NF2u7glCI7Fu50hixrk6FeyZuqwrXvHdTKhpUHlSuIh7ZxKC6nULkjZqP0i5GB26Jf/3snEREREYXXfL8dUcLIKjGC+BtC2jAXJgtmfV+ozBltkdZ5ItI6T9Q7PCJqopTeVTpmWwyFtNGupDVa43hcrhXH5Sam6i/XYcbJrRsX7jX8Dtpl8eOHWpVs8IkEWwQTh0kpTajV9DrShpem0bTWJz17E4HmMP+d7LMXQ1oiIiKiqGoe18BRUhEsDgjWbMV1ftdhOHfNhXv/19rH0BnSEhFpMTrJvTfKlbRCnGekT7QoZI5NhlnlyQh+hVmjUPDaBOcIUxTuYdo1nghfRCdfQt8LmsPTLJhCTxCJ3hrF7SrX3Ifara/B5zwYj2ERERERNRksZaGEMKW1gs9TKVvu3PaGbBIKJYJZuZcfEZEaQYCs3M1qMDV8bUNV9AaE5hdaNrfHq0W1kjbo5+hU0sqXNcVzA+Eek00j8I7yuZemy6Tva0PNr08AAMwZHVAw/leYbDmxHBURERFRk8FKWkoIk6NVo/YXLBnhNyIiCpJuUbjs22BYtaPCG6XRRHb/qc5oKN6UqT0VWUHl3dHoHdta4Rhdc5reRFnhXllafZSj0e6gORDMaYa299XsRt2eT2I0GiIiIqKmhyEtJYSj3TkR7yvYcmHNHxDF0RBRc3BSy9AK/I7ZFrTPbPwFJUPbRF7Z39z+Ec60NbdHrM4kCOiTLw9LBwe9noYWGWvtk22TR5WnKhzj2j6Zho6bCgRBQN8C9fB5RDv159LHjFYXc/Zxhvfxlq6NwUiIiIiImiZ+W6KEyOhzD7IG/p/h/az5A5E/+hsIlvQYjIqImrKr+2RhwnHp6F9ow+iOabh7YA7aZMqrDG/om2XouCPbR94ju7lV0lKo2wbkYFhRfSibYREwqXsGJnY/dqVItsFQ+7nT82XLzCYBjwzNDdz+64BsODQm0Uplf+mfg3M7K1d72rR60jKk1UUQTDCltzO0j+j3xWg0RERERE0Pe9JSQggmMzL73AUIZlStvENlIwvaXMmZg4koOuxmAZN7hFYQVrrlMwalW40lp6ZGJK2N2ff/27vv+Laq+//j76tty9txFhlkmSQkQCBhNKEQZlmFpC2lfCmjFOimlG5aoPQHBbpLB+XLKv22QGkZBQolQKAhCRkklJlBJtlO4njJ1jy/PxwrlnQlS7Zsxcnr+XjkEenOIx1dj7fP/Rz0f2Ueh742pVxfm9LzYx1W6VZxmpnwxld59Og5A3t+kv1cmcehSyeW6tl1rbbri12WApHURDaWl6K0B8e17K46SsHApux3MIS0AAAA2Towh1KgH0n/Sw2jZQEUgjPH4LQnZVYPjlgHfcFQV7VL6d4hm9y2+wc7wFnu3EplmHCDjEn9YxgAAABSEdKioKyMIS2TgwHoXXZfgTLcFW2rJyEt82ghX4jBuhZLE2TnZSDtQSLXn81a1/xZ2x8ZqODWub3UIgAAgAMHIS0KK8OINUbSAuhtbTbFKJ05fmd09GA8LBkt8oXSGV0Lcud9j1mu3CedM8FdakxX2goAAABxhLQoLEf6mZgdRYP6sCEADka7W1PHHw4qTp1MLJNB/ty27+xAHkn7pSMTJ2C76DDujuiOiVXpv092dvnE3MOzA9Ul4xPfi64mAzxjpP1kY7DRzRqzkd3L89wQAACAAw8hLQoq021zZVN/3octAXAwsrvLOZeQdnyVWxXe7o+ltQ7g0Y/HDfbpuMFeuRzS4dVunTqcIKw7Lh6fXfg6upy5YDucPNynIwa45XJIUwd59JGh3rTbXljr18Ac/zBzMCsadVHadaVTfyY501/n1E0GAADIjJ/oUVCZQlp3zbF92BIAByO7yCCX2HTW2PayLA5LsqmcoEPLXFrfGLHd98CNZ9v5XJa+cUx5oZvR742rdGuI36mtLZlHMB7IgX+uSj0O3XBcZVbbfmJc90Z4m6SvHgfLu295ytKu80/8mvyHf0MN8z+n1g8eTN0gFpacnt5rHAAAQD/HSFoUVKaQ1rL4eALoZTbBai5hl3PvtukmG3Nl+DJ2IJc6QH7xUcH+I8On0XLKsiy5K4+0XW0igV5qEwAAwIGBkbQoqFxnCQaAfEoeDZerjnC2fdKm1GO5MgS+hLQA+p20f0C34n9cd/iH2W5R//LHVXLUzfIOOcV2vTFGgfd+rcYl10mSvMPPl+X0Khbao0j9W3JVHiF31RSVHPlDOdz8/AgAAA48hLQoKAchLYAC6mmFxI6gtc2u1oEyj6Qlo0W2qGSA/UeaD6Nj368UzuJDbDcJbZ+n3XPO0sDZq+UsGZG6fuvL8YBWkoIfPpW4vnWbQlteUCxYp4rp93Wj7QAAAPs37idHQTl8NYVuAoCD2Mgy+79VHlWTXd1Evzvzt1FXhuGy1BBFttoiTLiUD6ePSJzUalSa6z8rB+nl6/DY15l2eCrij50lo9IfIBZSaMcC21UN8z+XVRtaV9+f1XYAAAD9DSEtCspZMkLeoWemLC877jcFaA2Ag82hZW4d2SmQnTWmfSKws0YVZVWOYFhJ5lnhqUmLfEgzUDvu85NK+6Yh/dysscUq9bRfeG6HdOnEkjwe/eC4oJ3FQ+U95GMpy4vGXdlpm8HyjpiV9hgm2ma7PNqysecNBAAA6Mcod4CCqzzlCbVtelbR5nUy4SZ5h54pz6DphW4WgIPEd6aWa9mOkHwuS5MHtAe2R9V4dceMKq3eE9bWlqieXms/4U1Xo2EdmWrSdr/JgL4+pUyLtgV12ogiTRqQ3cjvg111kVM/O7FK7+8Oa3ipS8NK+TG4OypnPq62Tf9SrOVDSZKrYqI8Q09P3OakR9T24T8V/PCfal3z58QDmHBfNRUAAKBf4adTFJzlKlLRoZ8sdDMAHKScDkvTBntTlo8oc2lEmUsvb2zt/rEzTYR+cAy8Qy+ZXOPRCUN9hW5Gv1Phc+qEoZlHwCOz9p/bPpF5G6dHRYd+UkWHflLR5g0Kbf9PfJ2Jhnq7iQAAAP0SIS0AABn0pBpoppIGhLTIlt1HhZHY6Dcc7oSnkcaVal3zFzlLRsg9cLosq399mmNtOxXc9opMJCB35SS5q48udJMAAMABgpAWAIAMehLSOjMksU0hJoNC9xHyo7+wHInlOALv36WA7pIkFR/2BZWf8AfFgvU5HTMWakg7iVlvijSt165nj1OsbUd8WenUn6pk0jf7vC0AAODA07/+dA0AQB8rcnU/Dcs0cRiQLbvPYKY/AAD7laSRtJ0FVt6tWLhZwU3/yumQwS1zetqqbmnb8FhCQCtJgfd/W5C2AACAAw+/PgIAkMHkNJMyzRpT3OW+tZVunZ/FdkAmxwxKrJl8aJlLnkwFj4H9iMNXk3F9rK1OsdCenI6ZHJT2lVhwd+qyUOoyAACA7qDcAQAAGZR57P+eOXucv8t9Tx7mUzgmPbUmkO9m4SByYa1fMWO0YndYA4uduuiwrj976GWGciXZcvpHZFxvQnskE7XZ0SdF2+z3SbO815mYzTKbtgMAAHQDIS0AADmaPba4y5GMZ48qkmVZ8jiliw7z65GVLX3UOhxoPE5Ll04sLXQzgG7pKqSNhRpSwk/PkNNUfeYctW14QvVzZ6fuVKiQ1qZKubELbgEAALqBkBYAgF7QOcKNMugOwEHKWdL1SFqjpKDTar+DwXLZjxo30TYZY2R1ozZz8n6m06hou+N1rLcsy37ULCFtr0l473HAMTZ3JNDXAA52hLQAAPSQw5JiJnnZvl80YtwaDeAg1dVI2vq5s1KWWZaz/X+XfU3v5v/+WM3//bGKx39FZcf+SpbD2WU7QjsWaM9rVyjWVqeSSd+Uf/L31LTsBgVW/E4m3Cg5vPKNnKWK6ffFzxtY839qWvptxYI7pVjY/sCxkKItm+X0H9JlG5AdE4uqcfHX1PrBn2S5ilVy5I3yT/hKoZuFvRqCMf3+v41a2xDWCUN8uvzwkoSfebqyqzWq3yxv1Mr6cMLY9FK3pXvPyFzDGgAOdEwcBgBADzlsfjfpvCzGQCvggGaJ0V/pOIuH5b5TFyNpOwRW/FbBzc9ndciG+Z9XtHGVTKheTctuUOvq+9Xy9k/aA1pJigXVtu4RBT74U/vTcJMa5n9esdat6QPavZrf/klWbUB2gpueUWDF72UiLYq11alx0VcVDWwtdLOw17/WBfRmXUiNIaN/b2jVsh2hnPZ/bFWLViQFtACAdoS0AAB0Yag/cZTWR4f5Ep5feXhqvdCTO20zsdqTsr62gptZgP7KEC9kzXL5ZHkqc9rH6R/e/n/JyHhgm064bmFWx4w0vJ/wvOnNm+y32/1fSVK0YZUUC2Z17MCK32W1HbIT2fO+zbJ3C9AS2HkyaTLU+99pymn/NQ2RfDYHAA4ohLQAAHThisNL5Xe3j5Q7d1SRhvgTA9aPDPUljKObNsijoSX7tplY7U455pWTmQgKwMGhqxGxyfyHf0OS5PBWqeSIH2bc1nQxyjWdWGCz/fJQfcL/KITU209MOLcgEH1nV1tutwvVt9nUdgYASKImLQAAXTqixqO7Tx2gSMyo2J36902fy9Jfz65RYzAmp8NSqSdxG5fD0qPnDNS2loiiRhpY5JTbye3RAA4OuYS05R+5V66ycfHnpVNulqN4iBoXfsF+B7vJvJI3yaEueCy4u/1/QtqCMTaTscUIaQ8IoahRUzjxevzG0WU6pMRlWzoKAA42hLQAAGTB47TkyRCsOixLFb7Mk9cM9vNtFzggECbkJN0EYLacqeVhHL70kwmZWBa3TtuEfunEQu0hrQkS0haMTfDOSNoDw26bUbRH1HhU5OIGXwCQCGkBAAAA9KJcQlrLSv31xG5Zh8D7v5ZMVMXjrpDlKlFg1f/KWTJSxYd9UZaj4w9n2Y+kjTauVv1/LkmpYXsgCG6dq7Z1j0oy8o36tLxDTpHUXjIi8P7vFN71RsZ6y66yWvkPv04Od/7L9YR3vqGWFb9V69q/SrHUiagaF31FsdAe+SdeK4e7JO/nxz4bmyJ6eWOrmkKpf9xIF6Y+szag9Y1hJQ9ary5yqqbIqTUNYYVtRtEWuSwCWgDohJAWAAAAQK/JqSatw+bXE7tlnQRW/FaBFb9NWBZt2aSyqbe3P8lhJK0JN6lt7V+y3r6/CO9apt0vnB4fpRpYfZ+qz3ldngFT1fTGd9Xy7i+yPM4bqjr1qby2LdqyWTufO1GKtmbcrnn5DxTZ/aYqZz6W1/Njn5ZwTDctqFcgktvkiH9+v7lb56v2EdACQGd8VQQAAABykVt+cdBzeCqz3tZypY7SdLjLcj5nyzt3xB+baFvO+x9ogptfSCwjYKIKbXlBktS26V/ZH2fTs9mVmMhB28Ynugxo9237eF7PjUTv7QrnHND2xICizGWiAOBgQ0gLAAAAoNcUjboo6209g6anLHMPmCZnyahunz/asqHb+2bDWTqmV4+fDyaSOtIxFmnZu64lhwNF8z6pWrRpTQ7nz35UNHK3J9i37++Jh/j69HwAsL+j3AEAAACAXuMbeYGqzpyr0LaXZWJhOYsGq3Hx11O2cxQPta13ajm9qj57vlrX/lVNS7+Z8/mjzetTlvknf7f92C6/PIM+qkj9W4oGNqdsF9nzvqSYXBWHS5JcFRPlcJWofu7sfRv1g+DQRIOpC6N7a7/GwgmLfaMukrPk0L07moRRyZIUa9spZ4bJ3HJuWySQ2/bGyLKYva83NCTVoR3id+rYwV69sT2oTc2pk37ZOWGIV8t2hBSMpo7IHV/l1mGVbjktaUK1R0cMSJ0oEAAOZoS0AAAAQE4IiHLlHXKyvENOliSZWNQ2pHX6R6bd31k8RCWTrpdk1LT0WzmdOzmkddecoLJjfpLYvsEfzfp4wS0vJTzPNWQsBLuSD2bvBF0mKaQtrr0m3leSFFj5B5lw4779gjvz2rZYLiN5pfayDRkmk0P3NSaNpJ1Q5dbF40vUGIxlHdLOHO7T+saItrakbn/MQI8+PiaHGtUAcJDhuxsAAADQI4S2ubAcTlmu4tRwM4vRkZYz+9ujg5tfkLPkUEUaViYsj48S7SbLVZTwPNa2XSYWkdXFBGfdEQ1sU2TP25JpH5XoKh8vZ8mILvcLRY22tkQ1oMghv9shE0sdSRttWtNeqzapHqzlcCc8d/gGKNoppI215RbSNgZj2tAU0bASpyp9+2qQRtvqFNz4VO4TtZmokn+NjbXtVHj3m4mjmi2n3NVTFAvtkQnWy1V1lCxHz2qghqJGaxvC2h6IyhipyueU6VSkOhA2cjstuTsVFfQ4LY0pd8vj7N2vE9HAFsWCu+WqODxhpHFDMKYNjZGEdqbzYVNiveFyb/sLyaXtliwVu+y37+33AAD6O0JaAAAAAH3KcpXajEDteroMy+nN+hy755xpu7zHIa2zOGXZrudPUvUZL8ly5a/GZuu6v2nPfz6TUk6h7PjfyT/+S2n3awrF9KPX6/VhU1TlXod+cFyFymxG0gY3PavgpmdTD5Ac0noHKNq0Nv68bdMz8o2cldVreHNHUD99o0GRmOS0pGunlOm4IT6F6hZp17PHZ3WMZLG2nXL6D9n3OrbM0e4Xz5X2jgxOxzPkVFWd/ny3w/TmUEw/XFCvLTYjRLtSU+TQLR+pVJWvdybKal3/d+35z/9IsZB8I2er4uS/y7Iszd/SpruWN3Z7rsNyT/s16c0lXLWkYrf99jkdBwAOQkwcBgAAAOQgmxFpyMxyl6Qus7L41SSHkbTpuHo8kjY1pA3vWKDQ9ld7dNxkze/cYVvvtvmtWzPut3Brmz5sag8SG4Ix/eX9ZvuatGlYjsQ6oZanIuF5eMfCrI/1z7UBRfa+hKiRnvigPZjvbkArSW0bn0x43vLOz7sMaCUptPUlhesWdfu8r21p61ZAK0l1rTHN35x9H+Sq+e2fxN+Dtg2PK7zjNbVFYrrvnaYefbUqi4+kzX4fh6Ril/217HEQ0gJAJoS0AAAAAPqUe8CxKctcVVO63q/q6J6fe9CMHu3vLB0ly1OZsjzauq1Hx00WS3O8WGCLjEkfvT28IrHG65t1IclE0mydyHIVy1V+WMKyyJ73Ep47iodkdSxJendXYr3bdY2RjG3PRiy0J+F5tHVr1vuGdy7p9nnXN2T3Hqazq617AW82IruWJTwPrL5fcz9sU0u4Z+/1uIr2UdW+NKFrMkvSiFKXfGnKHfjTjLAFALSj3AEAAACAPlV27K9kom0K71oqS5Y8gz6q0im3dLmfu/JwlX/kHrW8f5dMqEHR1m1y+ofJRIOKBTZndW53xcQetd1yuFV5yhPa/fzJiStiPQvxUtiMot13rrDk9NiuKvVYCkQSwzlj0zZH8SEJz53Fh6h0yi0pNXf9E7+mpqXf7nTunoWNrZEejkRPKt1gkkfROrySTQ1eST0aib25Obf+dVrto4c7tPX0decgHKjTs+sSy4kUuSwVpQlPk5W4HTp3dJEGFrcPoU1XY3ZshUu729o/p+Uehy4YW6wyryOhJm9nHTVuAQD2CGkBAAAA9Cln0UBVnfJ4t/Ytrr1KxbVXpV1vYmFte8g+wPSOuKBb50w5zuCT5B44Q+Edr+07b5ajVbNm0oehJhaUlSakLXE7tF1JAW9S20qPuV0lk7+TVTMsV3JpigzhcedTphkxu6stZvtL6JDLjVpW/EGNr6evtytJJrm+blJI6x12loJJJRF6yhijzc25hdMTqtx6p9NI4tZo34W0y4JjVBdO7KfvTCvXhCr7z0xX7ELaC2v9+sQ4v+327jRlDSoIaQEgI75KAgAAAD3ADbz7GSv9OJSs6t5me5rkCajyPJLWZBpJm6HGbKkn9TXGoklty/AepUh6zzK2q5O2NKHkrtYMYWcW/ZMc0ppoYkhrOdJPLmeirV0e305DMKaWHEfCJo9a7auRtEbSi+b8hGVjK1waX+m23yELdiNwBxSl7yu7kNaSVGbz2QQA7MNIWgAAAAB9qr4tqnvebtKahogcksZXuXXV5FL5090nnQPLsiSHu70kQIo8hkRJQacJN8Ufv7MzpB8v2iNJOmGIV18/ujzrw8bCzWpc+EWZ4K6025hoUJGY0d9WtWjJtqC2tERV7rFU4nHYjvhcssurozo3PTlgziA52A7XLdL2RwbLVXWkyk/4o7ZomO57p0lbk8oBpItyNy69XYOyPJckWd7qhPeiZcVv9YL/es3bWapwzGis85v6pL4nj9oD2HQjjCWpack3FNz4hCJNa+QqH6/yE+6Wq2yc7bbPrw/ohQ2tag7F1J18tTjps/xmXWKYbExMzW/eotY1D8lEWva+1iqVHH69ims/n/sJ9/pX8fe00TkpYdm5o4vbr4tuKrKpSTugKP1sYm6bVSUeS04mDgOAjPhTFgAAAIA+9af3mrVsR0gNwZjqgzEt3BrUY6taut4xS5YjTVDXg6Aq9RyJQWfggwfijzsCWklauDWoD5uyH2Xb8vbtal37fxm3CW6bqyXbgnpqTUBbWtpD2YZQ+lvyHyy/VyF1qsea00japMTNRBRr267QlhfUuPAL+t2bjVqxO6yGkEn41xSyTzZ3NjdnOlnKEoevJuH5KvdH9feNxdoeiGp3W0yLfZ/R3OIvdNoh/UhaSQptn6dYYItCW19Ww3z7MHRVfVgPvNuszc1RNYRMtybgsisRsL5x3x8Ogpv/reb//kjR5nWKte1QrG2Hog0r1LDgKkUa12R9nmjrjvjjkHya4/96wvqBRQ4dOyjze9IVu8umMkPpAruRtOWMogWALvGVEgAAAECfWtuQGlqub8xfuYCOkYkpHN2/5TtZrK0u4bm7sn30YiSWGujdtKA+6+OGdi7pchsTqtfv/tuY9TElaYdrbPyxo3hI1vs5iganXResfzvnfgs4qlKWFY25LO25PAM/kvB8k2tyyjabXEfEH7urj8m6LaHt/7Fd/vrWNtvl6Qzxpw4dHVOR+llb3+lzH9r2atrjhXcuzvrckfr/xh937uMOZ48q7vEI1mElTjk7HcJpSTUZRtJW+VJjBrv3CACQiJAWAAAAQJ+yq1eaZp6pbrFcxbbLHZ7KvJ3DVXVUwvNo63ZJUtDmteVSz9SEsgh0Y1GFsysNu68N1r5w1Dv0zKz38w4+Re6BM2zXJYzOzVJEqaOcS4/5Sfu5hpwq98Dp+849/HyVHn1bwrZhK3VUaMja19/FYy+XZ9BHc25XZ+/vtiuVYW9AkUPfPKZctZ1qvp48zKePDLFpZ6cAP9q0Ou0xk/8AkIkJ7xuZ3LmPO5w2oijrY6VT7Hbo42Pa32NL0v9MKJHbmT74nTbIq5Fl+0Zre52WzhttP8kYAGAfatICAAAA6FNtkdSEMcfMMaOicVcq8P5dKcsdnoq8ncM77Gy1rr4v/jwW2CLJPqTNRSy4O+F56dG3KrR9noKbn48vMyb7ELFDi6M9oPYOO1cOd/aBmeXyqfpjryhS/5aCW19S09JvxdcFrdQw/FtTy+XrFOD9ZUVzwsjpiJUY0g66uEEOT9necxWp+mOvKlL/luTwyFUxUZZlqfrshdr1rxMkSVHZhbTtQWTZcXfJcvlU9bG5iux+S7FQvUwkoPqXzs369bZGYlqXNNL7isNLNKzEJZdDGlnmUnPIKGKMorH2kNbncuhHJ1RoQ2NEXqelIX6nLMvSpGq33tm1r69CnapRRBpWpW1DrG1H2nUp20Y6hbRJo5SH+p0Zw9RcXHRYiU4ZXiSHlbkerdQe6v5keqXWN0YUjBqNLHPlpd40ABzoCGkBAACAnmAunJzEjFHQrnRqHofSWmnqklp5DGmdRUMTnkcDW2SMUVt3ZpnqJJY0ktZd8xGF6l5P2ij30hAdoywtV+4jKy2HU+7qKYolTWYWVGpIe1SNR65Ot9cfWeNJDGmTQlbLlRgYd5wrYVmnycCSQ15JCu1tR0epA8tyyF19VHy9q3yCIg3v2762ZCvrw+rcg05LOmV4kTydws4im9+iHZalUeWJJQ68SQFpeO9IWmNiijSmH0kbzSGkNeF9pT1arMSR4qV5rgM7sDj7kgVOh2Vb8gEAkB4hLQAAAJCTPN6Xf5B4qy6kd3aFFI0ZlaeZcGhHa/7G0lpOr4yk/3rO1W7nCB0T/LvKYzvyWu7AWdwe0jZaNVrq+5SaHDWqfPnPOsTbLOmTKds/8J9/y1E6Xg5v6i3pJtqmjXWbFFKRhrq+omF6W0cHn5AlyeGtTJnoa8+HL0q6Mqf2Pl5yq8aGF2pUuknVctRo1eg55+UJy5yWEgJaKXUSqeW+CzQ+NFdTg4/JqahkZR8k7nYM09ziL6Usbx9Ja8lVeUTqTpJcFftC2qCKtcR3oXY5R2h45L+asfibWhUervei46XS8VrXVpaw79gKd0JAm4vk/R5Z2aING5epVI0q83xGx7Y9Ko9aE7bZ4JqidzdVqXjOAzqhdKMcMlrUNlGNzho5TFS72oyGtbysGVX1cvuqNHd9nXzeT2tq8O/x0dIdSj38BQkA+hNCWgAAAAC9ZtHWNv1iWdeTXO0JxhQIx1Scj9uinV69WPQ1PVtygyTp5eIv6Ye7js3rSFpH0WBF5dJvKp/WTueo9oVte//ZeL5pitQkKSmU2+cQSdLK4i9LkupaRutjgZ/L4a2SlTTh2T2ha2RT2jUjYzn1y8p/6UbzO/U0qo7Kpd9U/FM7XaMTlvtcqaGgXXc+XPZrbQpM1idabpBlZRMkWmqz/Ppl5XO2a8NWkVzl49OWcXCVT5T0uCTpT2X36D3v6fF18zcv0Fr38TKWY2//JJaSmFDV/dGgduHuwtbD2h+UTtMKz0x9vvGy+LoNrin6TcU/FbU8UkiaU7dTDsXU5BiYcIwlniP1asNGefe0aGvJBEnS+tZpcpvED5/fEex22wEAfY/CMAAAAAB6zcKt2QdFK+tzr7Vqx3L69Jz/2/HnzY4aLfF9Kq81aS2nRx96jt4X0ObZMu8F7efxVCWUBGixKrTSc3K3jhmy/Ho3OqHbbbKc7aUKNrsOTwloJclvE9Kms7DokuxP7PTqA/f0lLCyQ5tVKldSiYTOXBUTJbWPou0c0ErSGs9H2gPaNHoS0hZ18X686zkjoWTE296z2gPavVocA9K+5t3OEdrq2teXC4s+q2ZHdeL5gxu702wAQIEQ0gIAAADoNS3h7MsYtPVw0q0ODm+NYlZiuPa29yw5Sw7Ny/E7tKis6426qdkxQJanQg63X77h5+07pyO1XIKdT4wrti2X3GZlP2lYMnf1MXIUDVbQKrFdf8yg1FrAw0vtb96MWD45/COzOq+r7DA1OAalXd/mKFPUf1ja9d5DPibLXaaQzURnmQwrcWrSgO6Xhzh6YOZ9jeVQs6Na/iO+L8tdrrY072u26pyJwbnbpBu1DQDYH1HuAAAAAOgJQ93HTGwnCUsjlqeytCHP0JRlQatUzpLsQsFsWaOukHbnts9o7y6NqDkk/nzjzm1a21aRsl2rVa7K0+dIknwjZ6ly5hMKbn5ekYaIlPQ+WWqvlDy2wqVRZW4dPdCjowd5NbHKox8v2pOwbdTq/shQy1Ws6rPmybz0o5R1l08s0ekjUyclG+5Pf30UnfhYdud1OBXwT864TYNnjAakWefwVqr67AVqW/6z9NUm9hru3q0xg4ZqYLFTJw3zpdTYzcWRNV59d1q5bl/SkHab8IBTVTrl/6lo9P8o+qJ9OYdsbXPVJjx3KT8j0wEAfYOQFgAAAECvCeYwOjZq8jOStsllE9I6K2U58vvrT9BRkfM+x5ds0PlH7rtN/dnFi21DWmM5FSoaoY6xqb6RF8g38gLp/XnS2n3blZpduvdc+xIGkwZ4NNW1TEsjR8eXRXItZpvEVTZWvtqrpfX7llXGtuqsUUfabu+x0pe7aHPVZD0WucU3TgqlX9/oGpZxf3fl4So+8kfS65nPM614rT595PgsW9W1KQO9mub+r5aE7d+fyMjLZVmW3BUTpbJ1ySVxcxJOGinsNBneMADAfoeQFgAAAMhBfmLEVIFwTDtao6ryOlXm7V5Vsvq2qFojRkP8ziwnZOp9uYS0dpURGoMxGUnlObwnjY6a1GVW6rKeSnfbfyYmVK/w7v/GnzuDmyUdYbttm1Wu0r2PY8ZoS3NUm0KJ5Q680QaFdy2XHC7JxGQ5vHKWjZPlcMoYI0doV0KRu6i6P5K2w65w4ohZp2mTibTKcqWOpPWagGRbeCG39y+53mqyPVb6cgiSZIxRXVvXv/5a4fb+cRYPk8OX+ZzZMCam4taVkss+pG3sNI1bXSzdWODuYSQtAPQvhLQAAABAgc39sFX3vN2k2N48c9aYYl00PrcA8J63G/XSxvbZ3UeUOvXD4yq7HfbmUyiHkPaet5s0ocqtoSXtv6Y8sqJZT6wJSJLOH1Osi7N8TxpMmaSmhGUtVpmaQjGVevL3nixuPqTrjZKEtszRzrUXx583+S6XSs+y3faptSF9frJXdYGobnm9XjtaY5ISw+Yi06idT5+ZsMxZVqvKmX/XnnmXyhH6rNQpO+1JuQNjjP74dpPmbh6RsNxhItr+yABVznxc3kMS22IFd6a0ucMr2936bJY56NK29DVnJWlPp7DTrt2/XNaoRdu6/vU3uuM/2vnPSyTLKf/k76js6Fuza6DdsQJbtev5mSqJfCztb973rB+skYeE9fTagD6I5ncSOqfJftI+AEDhFf6nNgAAAOAgZozRwytb4gGtJD2xJqCmUPYFWre2ROIBrSRtbIrq1c1tGfboO7lOBvbsuvZQtikU05N7A1pJ+ueagBqD2b0nDUH7c25ryaFAbhbWtpZ2vVESK2kstkPp2zRnY6uiMaMXNrTuDWhT+UxTyrJo4yrt+tcMRXa/KVdSjYBID0bSbmmJau6HqZ8rh6IykYCalt+Usi609QW5TSBluSQ9sy67EHGPTb8nB5C7I6mjeDusqA9r0bbszuU0e0efmqha3vqJIntWZLWfncDqexVtXKmS2M6M2925ZI9e35r/QJVyBwDQvxDSAgAAAAUUNVKDTQhVn2UgKUk7AqlB3+62/AaS3RGKGrWEcwtpd7e1v+6drdGEONNI2pnla0oXDDfmEHx3xRgjl5V78YtB0VUJzycHn5PDRNJu3xw2GV/30Mh79u0LN0rqFDruFfN0/xb+XW3279/gyEpJUrR5nV1LNCzydrfPKbWX8Uh2VPCZhOcfNqV/j9buSf/+JhscXdnpmVFw60tZ75ss2rxekjQ88t+M2zWEeqeIylBt6JXjAgB6ByEtAAAA0BM9LP2abq6sXObQCtrkU3mag6tHdnUjKO4YUWxXyzac5eHCMfsXH8gxMM6kOWwUMamd71BUjqRg1GHC8sd267TAXRobWSxZrvi/Uu3Rhc3fVGV0o+3t6S3hmKJJ2aglI7dp1fjQSzo98KuM7XQmjaQ1RZkn2MrV6PDrOr/lR+3HjjSnbhAN6lNN39Gw8Ft5Pe+U4JMJz9c3RhRL86Hf1Jw+pHXIyKHovv4JL0xYH9r+n2630UTbRx0fEnlHZ7fcrpLYzoyBfDJLRk7FUoL2Dk5l/qPDyC7CYQDA/oWatAAAAEBO8pt+pjuaySFlDUZSt90PMlrtTHOLfodvHlOu7YGo/vz+vnCvI1+1Gw2bLnxNFklz2ma7mcm6qd5mVOlfzqqRaXhPO5+alLJuyOVG0o/3/ks0a+8/Sbr0+R0JoXtz2Cia9Fm4sLZEJ8wfnFU7XUkBX7r3pjvK3TF9re78+HMTCcjEorIczn3LokENjb6vb+45XV+v2Z5yDGNMl5PcJfe604Q0LJIY+rZGjHYEohrsT/0Vd3Nz+nT/4XM6JhwbIunHCqwepYb5V8bXh7b/J6s22rY70iqp/e84ZwR+qdm1FSo96ka1RYwu+3dd2v1OPMSrrxxVntU5nlsX0IPvpYbjxbHdMqFdObcZAFA4jKQFAAAACijd6L9cQtagTXi5P4yk3dmaeehrsdtScvZl9r7ykM2u2Ya0aUfS2oTZ3bU7afhymceSy2HJcvl7dNwSd+KvaHYjaZ05/BaXPJI2nyGtXXBpooGk55lrI2fZpclnUXlsm0piiUHnusbUUarGmIwjaZN5Bn00sX2t2xRt+qA7jZSirQlPLVd73Vyfy1KVL30nluUwuZ3PZR8eW4opFiSkBYD+hJG0AAAAQJ7sCcb05/eatCcY01mjijV1kLfLfdKFVAu3BvWn95rVFIppV1tMNUVO2UW3LoeltQ2pIVRrxOiZtQEt3Nomn9PSeaOLddTArtuTT12NpPW7rJRRI2/vDOvTz+6w3f72JQ0q81gaUORUzLSXRCh1W3tH3VoaWebUZyeUqi5gf96WPI6kTT5Hpa999Kjl7llI63db2tUp17x9SUPKNs4cRnUm3yq/ZHvuE1TN39KmFza0aldK6J7ajl3PHCc59v2aGanPXI/2l8sa9I1jyuXY+5pe29ymORtb5bKk80YX68gaj/61rjVlP0vSsMjbWuE5Jb7s2bUBnTDEpwV729sUimlThlG0dpylY+QoGqJY69b4st3/Pl2Wp0yyXHIWDZZMTMEt/5azZJSKxn1OJZO/o7b1jymw8m5ZzmKVHHmDPINOVHDz84ltdvrij4f4nfH6y8lyCmmd6UJaKbL7zayP05Xw7rfUtPyHshwelR59q1zltRm3D6z6XwU+eFAmEpBn4AyVTb1Dlqs4b+0BgAMRIS0AAACQJ/e81ag3drSPXHxvd4N+O7Na1UXOjPukG9351JrEEYkbm7IfDShJ/9ncJm3e9/z93Q26+7QBOQVAPZUa6iUqdjvkyPEu8saQUWNo33uxtdO6jU0RtUXSB5H5rEn79NrE/qn0tr+vDldJj47rdzskZX7f0uRytlxKrWe6tiGs0eXurPbf1BTRb5Y32q+0CYsjDe9n3zhJS7aHtGRbUMcN8WljU0R3vbnvXO/vbtA1R5Rq3ubE0bjW3j9WJIe0q/dEtLYhrN8sb+x2uQ/LsuQZ9FG1rX80vizaskFqaX/c+SqMNq9T8/IfyoT2qOXdn8eXh3bM14DzlqYe21kUfzzE79S7u+xrzZZ78zOSVpJCdYvkqTku6+PZMSam+pfOU7RloyQp0rxWA85dmrYERGj7PDUsuDr+PLL7TVlOn8qm/bRH7QCAAx3lDgAAAIAesDqNJuwIaKX2EbKvb+t61OLWltwn1+qOqGkP5/pSUxcjV8s8DhW78/sryTu7QkqXQ7fa1LntrkNKEsP3xtDe19pptGSHkimpdWjTGVCU3ftRPP5LWW1XEtuZsmzNnuwD/zUZPjMlbocsb3XWx5rRep/t8l8sa9zbrsRzRY30nM0o2uLYHknSiPDylHWvfNiWdUBbnabkgHfIKbbL0+kc0ErtE6gFVj+Qsp2jaFD88fDS9OOlarr4w05nlWkCXX9stySp+a2fZH2sdCL1b8cDWkmK7FqWMNI4Waju9dRl21/tcTsA4EBHSAsAAAD0ErvJpZJFuleUs1vCfZMHx2Wqf/qxQ4vkc1k6eqAnr+dsjRiF0pw3n3V6k19bR+hmWZbcA6cnrCuZ9O2sj3v6iOK0IXOHidUe+Q//lhzFQ7s83oTQSynLcvnMZerDs0YVq+Twb2R9rNMDv8q43q5ZjTadOTP2d0nSxNCLKeuCOQTx5462v/2+aMylclVMzPo4dmKh3SnLPIP3hb8fGeJTjU0gP6bcpfFV2Y1ylqQRZfZh70db75UkBT/8pyINq7I+nh27usLRwJb020dSg/VYa+qkcQCARJQ7AAAAAHJg0k30ZbPclcWQiLYcR3fOGlus4SUuLdke1MKtudUXDfVhICylhoHnjCrSuAq3BhQ5Nbai/VcRf55H0vaV5AnfRnUKywac/ZraNjypSONK+Sd+XZYz+yD6sCq3fnVytb70cvpJn8q9Drm8h6rm/LcVrn9bDm+1oo2r5Swbpz2vflqRPe/Ft/WbPRpX7tTqhn0JfS4fg+RNh/id+lStXyNLXRpW6pJGfF/eQ85OKXNgIs0Jt7xLUnlsh343foG+vOIjWZ1LSg1pD6t066Kp31Ro+7Ey0TYVrzQKRPaNZs80udypw32aNdavDxrCOsTvShtwWi6fBnz8TYW2vaJY207FWrerccl1aY9r+1pCiSUi3DUnyNGpXnGZ16E7TqzSit1hte0teVLisTShyiNXDjVAHGlKDnyk7c8dLVHLe79U+Ql/yKn9nZlIS8qyWMuH0oCp9tvHUr8uRVu3yxiTtkQCAICQFgAAAMgLuzv7s5ngKZRjSDt5gEeHV3u0OxjLOaQN5/F2/2wkn25QsVMnDE0tB9BX8plRJ5cSdiZlzb6RF3T72NVFTpV6LDWF7BvckWs7vFXyDj6pfVnlpL3LUssP+D1Oda5zG81hSHHypuUeh6Yn9aG7+ii5q49K3C8WTglpJamsdHDW55JSr6uxFS45PKXyDT9XkuRfu1OBTsN9M438HVHmUk2xUzXFXZcTsBxueYee3t6uaEiNS78pmeyHoptw4oRvnUsddPC7HTomi8kFczXImTiKN/DBgyqZcoucvppuHS85cJaUUP4gdWXqyFvFgjLhRlme8m61AQAOBoS0AAAAQA7S5a6bmlPrfO4JRrWuIax3doW1riGsIX6XvM720W8uR3tIU9fadUkEO92Z/+sPbzVpWKlLYyvsb6fe1hLRf+tCCkaNqn1OTR3slXfvLFXBqNHS7cGEycCGlbh01EBPwmi+UNRo8bagFm0L6v3diTVGcxkh2Bsa0tVByFEoarQi6bVlE8jnov09TRfSpj9XLJh6m33y5k8mTUonSVU+p6YO8qZMRJU8Yjjbl2k57D9jTv8w2+W/Wd6gN+tCtus6S37tyZ8pu+sw3bbZspweOUvHKtq4Mut9Ig0rEp73dEK5XFSWVEgOtxTb+xmNtqlx4RflznICMYe3Wr7h58vhaw/8Y+HUkDa86w21rvmLoq3tZQ8cvkHyDf+4HN4K2/IIkhRr3SYHIS0ApEVICwAAAPTQluaIvvdafcryFze26cWNnQOL3Ea+2umImTIFdZncML9et06vTAlqNzVF9IMF9WrtNET08Gq3bjy+UpL006V79PbO1EmkzhtdrEsm7AugfrWsIWECtc6cBb7TeVV9WG2RmHzZ1KHI4OdvNKQsy3f+nKmFmZofC6aWSUh+31vCRn9ZkXoL+/gqt24+viLhlvTk4LSnr9NRNERSahvnb8nu2kgOWpNf2+bm9KNdezKS3FUxIaeQNtq8PuG55S7t9rlzVVlcpKJRF6t1zZ/iy9o2/ENtG/6R9TGaS3+imvPfluXypYwKlqTWNX9W65o/JyxrqZysAectSxvSRlu3y1V+WNZtAICDTf8sAAUAAADsRx5ZmRp49ZaOjMrdg8TzB/NTA+VF24IJAa0kvbsrrJ2tUe1sjdoGtJL0yqZ9kwTVt0XTBrSS5EnT5kHFffdrSTajNTOpb4vaHsOT55Q2XRDrdqSvQypJ7gHHpizLtH1nK3aHtT2QGHLuymLyu3QcxYekLLMcXZcayCT5ffHmcB2UdGf4ecd5yyd0e19JstxlPdo/F2PK3fJPur5Hx4g2faDgtlckSTGbcgd2IvVvK7x7efqRtG07etQmADjQEdICAAAAPbRoW89HyGbD77I0qrx9BKyrB5mg3XjCFruiupKawzEFwulHIHZel6l0g9sh1Vba3wJ/zRF9F2Bta8m+rqidJpv3wmm1T/iVT5Oq7Scbmzwg8yRkJUf+IOF5+UfuzWoCuw4tSa/Pn/RB25lDeY6iURclPC+uba9Re8GY4uwblOSwpM/QpC7ejw4eh3Rkltva8Q3/eLf3lRSvb9sbZg7fVyO42GXp9JE+uSsnyzfykz06biywSZJkoqnlMdIxoUaZUOrIW0kykeyPAwAHI8odAAAAADno26m32g0ocmhStUdnHVoUHzmY79vr090JHo1JMSv9q+48GdeuNvsAdFK1W58Y59eAIvtRlIdXe/T5SaW6950mSdJHhnrltCy1hGPa3BzRsBKXNjZFbEPg6UO9Om1EkVwOS/9eH1Bzp5BxYLFTL2xoTdi+rrVnIa3dRG8/OK4i7WvrrismlarC59D6hkj8M3dIiVOzx/kz7ucZME2Vpz6jto1PyD1gmorGXSHPW80p21X7HBpe6tJbO0MJfZj88hqT6vh+qjbz+TsrPfo2We4yhXcukbvqSJUccYMk6aLD/NoeiOY88Z2klDIdF9b65XNaWr0nnPA6HJY0xO9UJCYFIkZnjCxSmbf7Y5Q8A49X5cwnFFh9r4Kbno0vd5aOlatsnEykWaHt8yRJ3kPOiq+3XMXyHXqhvENP7fa5u/K5w0tV5XOovi2ms0YVx8t5lM94QK7ywxTevdx+VrYk4V3LFGvbHn8ebd37OKdw1ShGSAsA3UJICwAAAOznbj6+MmVGemeWKe3nDi/R/e+mhnTJomkGSEZimQNho/bJpRyWpd1pRllef0y5it2ZA7LTRxbp9JFFaddvaY7oulcTJ8U669AiXX74vlqftZWpkxJVeh16dNW+chTdnaitQ3JIW+q2NDHNqNee8DotXXRY9yab8g0/R77h58Sf202YNXWQV5+bVKrPvVCXMHo2Ekt8fckjh8tzKBlgOT0qPerG1OWWpa8fXa6vS/rFGw05jURPfikuh9VlcJ0vvpEXyDfygj45Vy48TksX1qZ+VhzuEpUe/f+yPs6e1z6n1g8eiD/vKE+QU7hqYjKhPfaroq22ywEA7QhpAQAAgP2c16a2QbalOLOtR9oSsQ8vo8Z0OXq4PdczWttgX7c2XS3aXNgFxdnk1Mnh9ur6sPbsHfHrcVoqdjsUjhrbcg8upyVL+yacKvM6FEwKafPx2nqb22aQb0cJhOSPVkMoFn9/jKSmpJG0pZ78vl5fjnU78j2CHPs4fAMTnkdbNioa2KZYcHeaPVLFgrsUC6XWvJakWOt2RQPbZDlcsrzVCRPUAQAIaQEAAIAeyVSvNV98NkGg0ybg8DikpExN6XKQny7do2unlMvlkO57p0kLttiPZmwKxTRvs/1EQB2eXhvQ31a1KJbmrchHjmkXNtu9B8lqihJHfgYiRte8tKtbbShxWxqYFPr2i5DWJtnsGF3bPiJ7X8f9alnmSaJKezD5lh27z3Ym2f7RAblzFA1KeB7c+KR2bHwyp2Ps+c/Fade1vHOHWt65Q5LkqpioylOflqt0dM7tBIADFROHAQAAAPsxh9U+6Zbd8mR2JQXSRVpLt4f0+tY2ra6P6MWN6UPYuR+2acn2UMY2PrIyfUArKS8j5uyyvGzyveRQtSeaw0ZrGyIJy3o6EVlfsPv8dAxgzTVjzndI63cTuu4vnEkjaXtTZM97an7rJ312PgDoDwhpAQAAgFxkMQFPPg31O21DziH+1PBxysDU2qiDip0aV2F/A932QEzbAhHbdR3CmdLXLIwuz8/Ne+Veh4qSbo0fkzSJlJ2yPIeKyQoxkVyuhvhT+2Dw3s+P3econYFFjvjEdfkyeUD29XyH5tBW5M5VOblPzxepf6tPzwcA+ztCWgAAAKCPlLgtTR2U2yRTnSfG6qy6yKlP1/rlcbSPlPzE2GJdMqFEk6rbg0unJZ06wqeJ1W5dd3TqhFrtTNoJwzq0RVNjyJIsRz9WeB26dGL3Jr9K5nJY+tzhJSp2WXJY0vShXttQGqmOHezVcYO9stQ+svrYwV4dP8QnSbp4fElKSQg7pR5Ln5tk/1nsifFVbp0+Iv2EcR3KvQ5dkeZaQH64KifLf/g3JUdu15XlqejW+aKBTd3aDwAOVNSkBQAAAPLoosP8emRlS8ryM0cW6fLDS+SwLEVjRoFI+4RcHXGn22Hpsn/XJewzptyVcaTh7HF+fXxMsYyR3HtHOP7w+Eq1RmJyWla8Xmp1kVOPnjNQdyzZo2U79pUuMJIiXYwMTp4oy2FJV00u1S+7qF168jCfvnBEaV4nB/rosCLNOMSncExZj+jMZaKpoX6nbvlIpV7a2KqHbfqwv/I4LX3jmHK1Rdr7svNkXaPK3bprZrVawpkniPO7rV6pB+uwLH1+cqkunVgil0N66L1mPbe+NWGbWWOL9elaPxNN9TLLslQ27acqPfr/yYSbU9e7irTt//wpywd9ZrdMqD7lLgPLUy7L4VIs3CRFQwrveUe7nz85vj4W2CoTC8tydD0iHgAOBoS0AAAAQB6lmwipwuuIh1xOh6VST9eBU3JAasdlk0IWuexHRqYEm0ZdjqQNRlJD2mwm7PI6rV4J1RyWJW8v3fVe5nGo1ONQte/AvK3e57LvD8uyVJLF57E3dfxBwa7mbU2RfckP9A7L6ZXl9Ga/vWXJ8lalXe9wl0puyV1xeNIao1jrNjn9w7vZUgA4sBDSAgAAAD2SGB6lG7np7EahsWxC2p74xweBLrfZ0ZqY4jqU3ejUXEaw9qZcmtERVDKZVeHYvfPJtYjRP1neasnhlWLB+LK6JybIXXOCHJ4yVc78RwFbBwCFR0gLAAAA5FG6AX/ZjD5NFu5ilGuu8jEY0bKsrALn/SaktXnRHocUsnlv/W5Hwv/oe3afUULaA4NlWXL6D1G0aW18mYm0KLT1xfYAFwAOcvz0AQAAAOSgq7Gt6QK+bEZn1lYm1mY8Zbgv22ZlpavSBlL7hGOZ+N2WSrIIMUeX7z91JpPvoJ862P5W7kpv+4aVvux/TRqYxaRbyJ7ddVLu5T3eX3gGz0x47j/8mznt7ywZnc/mAMABhe92AAAAQB7VFDk1qToxoKz0OjSlpusZ088ZVRS/3bvIZWnGIfkNaY8ZlLkNTkv66lFlGbeZOdynUWWZb8gbWOTQ0QNzmyG+N50+sij+eIjfqcsmlKgmKVz1OS1NH9r+fg8sduqIAdmFzJ+dWJq/hkJHD/SqrFN93NHlLh3axecNfafkiO9Leyf6srzV8k/KLaQtPuwa5VaEBAAOHny3AwAAAHLQVckAhyV9e1qFlu8IaldbTMUuS0fVeFSRxWRUxw/x6bYZTm1ojOjwao8GFud3AqujB3olNaVdf8eJVRpe6tLdbzWpzaYe7heOKNXJw3xpJ3G66DC/qnwOTRnoVfF+VDLgkgklOqLGo8ZgTEcP8qrE7dBt06u0bEdQLREjj8PSETUeDer0fn9raoWW7QiqMRTT+EqPfrp0T0p9Xkk6Ns2oXHTPgCKn7jixSm/uCMnrtHT0IE98wj0UnnfoaRpw3nJF6t+SZ+hpcvpqctq/6NBPynXuEoXqFkix6L4Vzvz+QQoA+iNCWgAAACCPLElep6Xjh3QvdBhd7u61UgGZanvWFDk0vLT914Mqn0NbWqIp20wb5E0b0ErSrLH+njeyFzgsS0fVJIapZV6HTh5elGYPyZPUh8cN8enptYkTre1HOfQBpcrn1Ckj0vcNCstdebjclYd3f/8Bx8g94Jg8tggADgz8WAEAAADk0f486M/lsNIGi50nNks36ZfvIJ7Aye6VH7zvBgAAyDdCWgAAACCP9vfgLl0Zgs7BrNMmpXU52kPeg5Vd+M5t+AAAIF8IaQEAAIBcpJZqTeDcz4O7kE2tWSlxlKzdgNkiZ+LCTKUTDkR2+bTz4HoLAABALyKkBQAAAHJQVZT+R2i/y9LQkvxO9pVvrRH7kPaoGk/8cW1lak3cw6oSl80c7sv4/EBTW5H6noyzeZ8AAAC6g4nDAAAAgByUeRJDWr/boVFlLlX5HJo11r/flwSorXBp1Z5IwrLTRxRpdqdJvz4zvkRG0qr6sCRpeKlLl4wvSdjnosNKZIy0ek9Yo8rc+p8J++ekYfly9CCvPnd4iRZsCSoYNRpR5tLFSe8JAABAdxHSAgAAAD1weLVHt59YVehmZK3EkzoS+LMTS+TudO++12npisNLMx7H67R0eRfbHGjOPLRYZx5aXOhmAACAAxDlDvJow4YNuv766zV+/Hj5/X5VVVVp2rRp+ulPf6pAIFDo5gEAAAC2tVX377G/AAAABz5G0ubJ008/rUsuuUSNjY3xZYFAQEuXLtXSpUt177336tlnn9XYsWML2EoAAAD0lOli4rD93f4+sRkAAMDBiJG0ebB8+XJ9+tOfVmNjo0pKSnTrrbdqwYIFeumll3TVVVdJklatWqVzzjlHTU1NBW4tAAAADmZOm98AiG0BAAAKi5G0eXDttdeqtbVVLpdLL7zwgk444YT4ulNOOUXjxo3Tt7/9ba1atUo///nPdfPNNxeusQAAADioHV7t0YItwfjzco8lF0M3AAAACoofx3po8eLFmjdvniTpyiuvTAhoO1x//fWaMGGCJOnXv/61wuFwn7YRAAAAvae/jUL9yBCvaivax2o4Leni8SWyKIEAAABQUIS0PfTkk0/GH19xxRW22zgcDl166aWSpD179mju3Ll90TQAAAAgRbHboVs+UqnfzqzW/WfU6OThRYVuEgAAwEGPkLaHXnvtNUmS3+/XMccck3a7k046Kf54/vz5vd4uAAAAIB3LslRT7JTPxQhaAACA/QE1aXvo/ffflySNHTtWLlf6t3P8+PEp+2Rj06ZNGddv3bo162PtD5pDDVq49luFbgYAAEC3HeZo1R8ntcafj/DvUWD3lgK2CAD6N8sqUlHldYVuBgAUFCFtD7S1tWnnzp2SpGHDhmXctrKyUn6/Xy0tLfrwww+zPsfw4cN71Mb9TSQa0rGlawrdDAAAgDyqV7h1XaEbAQD9luUoU5EIaQEc3Ch30ANNTU3xxyUlJV1u7/f7JUnNzc291iYAAAAAAAAA/QsjaXugra0t/tjj8XS5vdfrlSS1trZ2seU+XY263bp1q4499tisjwcAAAAAAABg/0JI2wM+ny/+OBQKdbl9MBiUJBUVZT+DbldlFPobj6tI/2kmVAYAAP2fw7J0aEmlRvgrC90UAOjfLG+hWwAABUdI2wOlpaXxx9mUMGhpaZGUXWmEA1Wxu0QfO+wnhW4GAAAAAAAAsN+gJm0P+Hw+VVdXS5I2bdqUcdv6+vp4SHugTQYGAAAAAAAAoPsIaXto4sSJkqQPPvhAkUgk7XYrVqyIP54wYUKvtwsAAAAAAABA/0BI20MzZsyQ1F7K4I033ki73auvvhp/PH369F5vFwAAAAAAAID+gZC2hy644IL44wceeMB2m1gspoceekiSVFFRoZkzZ/ZF0wAAAAAAAAD0A4S0PXTsscfqxBNPlCTdd999WrhwYco2P//5z/X+++9Lkq699lq53e4+bSMAAAAAAACA/Zer0A04EPz617/W9OnT1draqjPOOEPf//73NXPmTLW2tuqRRx7RPffcI0mqra3V9ddfX+DWAgAAAAAAANifENLmwZQpU/Too4/qkksuUWNjo77//e+nbFNbW6tnn31WpaWlBWghAAAAAAAAgP0V5Q7y5LzzztNbb72l6667TrW1tSouLlZFRYWmTp2qO+64Q8uXL9fYsWML3UwAAAAAAAAA+xnLGGMK3Qh036ZNmzR8+HBJ0ocffqhhw4YVuEUAAAAAABx4+P0bQG9iJC0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFJCr0A1Az0QikfjjrVu3FrAlAAAAAAAcuDr/zt35d3EAyAdC2n6urq4u/vjYY48tYEsAAAAAADg41NXV6dBDDy10MwAcQCh3AAAAAAAAAAAFZBljTKEbge5ra2vT22+/LUmqqamRy7X/D47eunVrfNTv4sWLNWTIkAK3CLmiD/s3+q//ow/7P/qw/6MP+zf6r/+jD/u//tiHkUgkfjfr5MmT5fP5CtwiAAeS/T/RQ0Y+n0/Tpk0rdDO6bciQIRo2bFihm4EeoA/7N/qv/6MP+z/6sP+jD/s3+q//ow/7v/7Uh5Q4ANBbKHcAAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVkGWNMoRsBAAAAAAAAAAcrRtICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0qJPbdiwQddff73Gjx8vv9+vqqoqTZs2TT/96U8VCAQK3byDkmVZWf07+eSTuzzWc889p1mzZmnYsGHyer0aNmyYZs2apeeee673X8gBaseOHXrmmWd044036qyzztKAAQPifXL55ZfnfLx89FEkEtHdd9+tE088UTU1NSoqKtKYMWN0zTXX6N133825TQe6fPThgw8+mPW1+uCDD3Z5vEAgoDvvvFPTpk1TVVWV/H6/xo8fr+uvv14bNmzo2Qs+wCxdulS33HKLzjjjjPh1U1JSotraWl1xxRV67bXXcjoe12Dfy0cfcg0WTmNjox555BFdf/31OumkkzR27FiVl5fL4/Fo4MCBOvnkk3XnnXdq165dWR1vwYIFuuSSSzRy5Ej5fD4NHjxYZ555ph5++OGc2vXwww/rjDPO0ODBg+Xz+TRy5EhdcsklWrhwYXde5gEtH334yiuvZH0N3nzzzV22ia+j+fOd73wn4f1/5ZVXutyH74UAkIYB+sg///lPU1ZWZiTZ/qutrTWrV68udDMPOun6I/nfSSedlPYY0WjUXHnllRn3//znP2+i0WjfvbADRKb39LLLLsv6OPnqo7q6OjNt2rS0x/B6veZ///d/e/iqDyz56MMHHngg62v1gQceyHis1atXm3HjxqXdv6yszDz99NM9f+EHgBNPPDGr9/zSSy81wWAw47G4BgsjX33INVg4c+bMyep9HzBggHn++eczHuumm24yDocj7THOOecc09ramvEYgUDAnH322WmP4XA4zM0335zPt6Dfy0cfzp07N+tr8KabbsrYHr6O5s/y5cuNy+VKeP/mzp2bdnu+FwJAZoS06BPLli0zRUVFRpIpKSkxt956q1mwYIF56aWXzFVXXRX/hlpbW2saGxsL3dyDSsd7/8UvftG8/fbbaf+tXbs27TG++93vxo8zZcoU8/DDD5vFixebhx9+2EyZMiW+7nvf+14fvrIDQ+cfOEeMGGHOOOOM+PNcQtp89FEkEjEzZsyIbzt79mzz3HPPmUWLFpnf/OY3ZuDAgfFfUP/1r3/l4dUfGPLRh50Don//+98Zr9X6+vq0x2lsbDS1tbXxY1111VXmpZdeMgsWLDC33nqrKSkpMZJMcXGxWb58eV5ef382ZswYI8kMHTrUXHvttebvf/+7Wbx4sVm4cKH5xS9+YQ455JD4e/mZz3wm47G4BgsjX33INVg4c+bMMcOHDzeXXnqp+fWvf20ef/xxs3DhQjN//nzz6KOPmk996lPG6XQaScbj8Zg333zT9jh33313/H0fM2aMue+++8zixYvNk08+aWbOnJn1tXzRRRfFt505c6Z58sknzeLFi819990X/7xJMn/84x974+3ol/LRh51D2vvvvz/jNbh9+/a0beHraP5Eo9F4UNrxvnUV0vK9EAAyI6RFn+gYyeJyucyCBQtS1t95551Z//Ub+dXT933lypXxv6BPnTrVBAKBhPUtLS1m6tSp8f5ntHRubrzxRvP000+bbdu2GWOMWbduXc4BX7766L777ouf+0tf+lLK+tWrV8dHy48dO9aEw+HcXuwBKh992DkgWrduXbfb8sMf/jB+nDvvvDNl/fz58+OflUyj5w8W55xzjnn00UdNJBKxXV9XV5cQuL366qu223ENFk6++pBrsHDS9V1nTzzxRPx9nTVrVsr6Xbt2mfLy8vgfy+rq6lLOcd5553UZMr300kvxbc4777yUttXV1ZkRI0YYSaaiosLs3r07+xd6AMtHH3YOaTOFgF3h62j+/PKXvzSSzPjx4833vve9LvuH74UA0DVCWvS6RYsWxb+RXnPNNbbbRKNRM2HChPgPtaFQqI9befDqaUj7xS9+MX6MhQsX2m6zcOHCjD9MIXvdCfjy1Ucd12hVVZVpaWmx3eYnP/lJ/Dh/+9vfsmrfwaZQIW0oFIqHFBMmTEh7K+E111wTP9fixYu7da6DydNPPx1/v7761a/absM1uH/Lpg+5Bvd/hx12mJHab5lPdscdd8Tf04cffth2/w8//DA+mvPss8+23eass86KB0gffvih7TYPP/xwxiAe6WXqw3yFtHwdzY8NGzbER/6/8sor5qabbuqyf/heCABdY+Iw9Lonn3wy/viKK66w3cbhcOjSSy+VJO3Zs0dz587ti6ahh4wxeuqppyRJ48eP1/HHH2+73fHHH6/DDjtMkvTUU0/JGNNnbTzY5auPVq1apffff1+SdOGFF6q4uNj2OJ0nwnriiSd62nzk0dy5c9XQ0CBJuuyyy+Rw2P8IQB/mZubMmfHHa9asSVnPNbj/66oP84VrsHeVlpZKktra2lLWdfwsWlZWptmzZ9vuP2zYMJ122mmSpJdeeklNTU0J65uamvTSSy9Jkk477TQNGzbM9jizZ89WWVmZJPovV5n6MB/4Opo/X/7yl9Xc3KzLLrtMJ510Upfb870QALJDSIte1zFrst/v1zHHHJN2u87f4OfPn9/r7ULPrVu3Tlu2bJGkLn9A61i/efNmrV+/vrebhr3y1UedZz/PdJzBgwertrZWEtfx/ibbPpw6dWr8lx76sGvBYDD+2Ol0pqznGtz/ddWH+cI12HtWrlypN998U1J7ANRZKBTS4sWLJUknnHCCPB5P2uN09EswGNTSpUsT1i1ZskShUChhOzsejyceQC1ZskThcDi3F3OQytSH+cLX0fz429/+pmeeeUZVVVX62c9+ltU+fC8EgOwQ0qLXdfy1c+zYsXK5XGm36/wDWcc+6DuPPfaYJk6cqOLiYpWWlmrcuHG67LLLMo5qfu+99+KPu/qBmv4tjHz1UXeO8+GHH6qlpSXrtiI7V1xxhYYOHSqPx6MBAwbo+OOP1w9+8ANt3rw5437Z9qHL5dLYsWMlca1m49VXX40/njBhQsp6rsH9X1d9mIxrcP8QCAS0evVq/eIXv9BJJ52kSCQiSfr617+esN2qVasUjUYl9f01GIlEtHr16swv5CCWbR8mu+GGGzRy5Eh5vV5VVlZqypQpuu6667Rq1aqM+/F1tOf27Nmja6+9VpJ0xx13aMCAAVntx/dCAMgOIS16VVtbm3bu3ClJaW8L61BZWSm/3y+p/Zsp+tZ7772n999/X62trWpubtYHH3yghx56SKeccopmzZoVv0Wzs02bNsUfd9W/w4cPjz+mf/tOvvqoO8cxxiTsh/x45ZVXtHXrVoXDYe3atUuLFi3SrbfeqrFjx+qPf/xj2v06+sLv96uioiLjOTr6sK6uLmGUIRLFYjHdfvvt8ecXXnhhyjZcg/u3bPowGddg4Tz44IOyLEuWZcnv96u2tlbXX3+9tm/fLkn67ne/q4svvjhhn0Jeg3bHOdh1pw+TLViwQBs3blQoFNKePXv05ptv6le/+pUmTJigm2++OW1ZLb6O9ty3v/1tbdu2TdOnT9eVV16Z9X58LwSA7KQf1gjkQed6XiUlJV1u7/f71dLSoubm5t5sFjopLi7Wxz/+cZ166qkaP368SkpKVFdXp1dffVV33323du3apSeffFLnn3++5syZI7fbHd83l/7tCOAl0b99KF99RF8X3ujRozV79mydcMIJ8V881q5dq3/84x/6+9//rra2Nn3hC1+QZVm6+uqrU/bv6MNsvxZ3aG5ultfrzdOrOLD88pe/jN9GPXv2bNuSPlyD+7ds+rAD1+D+66ijjtI999yjadOmpazjGuwfMvVhhyFDhmj27NmaMWOGRo8eLZfLpY0bN+qZZ57RQw89pHA4rB/96EcKhUK67bbbUvanD3tm3rx5uvfee+VyuXT33XfLsqys9+U6BIDsENKiV3Uu/J+pBliHjl9CWltbe61NSLR582bbET2nn366vvrVr+qss87S8uXL9eqrr+oPf/iDvva1r8W3yaV/O/+CSf/2nXz1EX1dWLNmzdJll12W8gvRtGnT9OlPf1rPPPOMZs+erXA4rOuuu04f//jHNXjw4IRtO/owl6/FEn2Yzquvvqrvfve7kqSBAwfqD3/4g+12XIP7r2z7UOIa3F9ccMEFmjp1qqT292XNmjX629/+pieeeEKf+cxn9Ktf/Urnnntuwj5cg/uX7vSh1H6tbdiwIWGwgCQdffTRuuCCC3T11VfrjDPOUENDg26//XZ9+tOf1pFHHpmwLX3YfaFQSFdffbWMMbruuus0adKknPbnOgSA7FDuAL3K5/PFH3dMtpBJxy19RUVFvdYmJMp0y+WgQYP097//Pf4D8V133ZWwPpf+7Xy7Jv3bd/LVR/R1YZWXl2ccsXLuuefqxhtvlNRe4+++++5L2aajD3P5WizRh3beffddzZo1S5FIRD6fT4899pgGDhxouy3X4P4plz6UuAb3FxUVFZo0aZImTZqkadOm6aKLLtLjjz+uhx56SGvXrtX555+vBx98MGEfrsH9S3f6UGofFZkc0HZ27LHH6re//a2k9tvbOx53Rh9232233aYVK1ZoxIgRuummm3Len+sQALJDSIteVVpaGn+czW0mHUXds7kVEH1j9OjROv300yVJH3zwQXxmVim3/u1csJ/+7Tv56iP6ev939dVXx0OkzhMhdejow1y+Fkv0YbJ169bpjDPOUH19vZxOpx555BF99KMfTbs91+D+J9c+zBbXYOF89rOf1ac+9SnFYjF95Stf0e7du+PruAb7h0x9mK2LLrpIZWVlkjJfgxJ9mIsVK1boJz/5iaT2ARudywhki+sQALJDSIte5fP5VF1dLUldFmyvr6+PfzPtXDAehTdx4sT4486zV3cu2N9V/3Yu/E//9p189VF3jmNZVpeTOiB/Bg4cGP96azfLfEdftLS0aM+ePRmP1dGHNTU11MLsZMuWLTrttNO0ZcsWWZal+++/X+eff37GfbgG9y/d6cNscQ0WVkc/trS06Pnnn48vL+Q1aHccpJeuD7PlcrlUW1srKfM1KPF1NBe//OUvFQqFNHr0aAUCAT3yyCMp/95555349i+//HJ8ecfvdnwvBIDsUJMWvW7ixImaN2+ePvjgA0UiEblc9h+7FStWxB9PmDChr5qHLKS7xbNzeNu5/+zQv4WRrz5KPs5RRx3V5XGGDx/erdEW6L5Mt2NPnDhR//jHPyS199Hxxx9vu10kEtGaNWskca12tnPnTp1++ulau3atpPbRRJdeemmX+3EN7j+624e54BosnJqamvjjDRs2xB/X1tbK6XQqGo3m9RrM5jgul0vjxo3ruvGQlL4Pc9HVNdiBr6PZ6ygbsHbtWn3mM5/pcvsf//jH8cfr1q2T3+/neyEAZImRtOh1M2bMkNT+V/E33ngj7Xadb0uaPn16r7cL2Xvvvffij4cOHRp/PGrUqPhzu9vKOvvPf/4jSTrkkEN06KGH5r+RsJWvPuq4jrs6zrZt27Rq1SpJXMd9ra6uTjt37pSUeJ12yLYPly5dGh/5Qh+2a2ho0Jlnnhn/Wnj77bfry1/+clb7cg3uH3rSh9niGiysziMnO9/a7PF4dOyxx0qSFi5cmLGOZUe/eL3e+ORWHaZNmxafqChT/4VCIb3++uvxfTLVUUWidH2YrUgkEv/615NrkK+j+cf3QgDIDiEtet0FF1wQf/zAAw/YbhOLxfTQQw9Jap9QYObMmX3RNGRh3bp1mjNnjiRpzJgxOuSQQ+LrLMuK35q2YsWK+C8lyV5//fX4X7PPP//8jKMckF/56qPa2tr4aIa//e1vCgQCtsfpPNnHrFmzetp85OCee+6RMUaSdNJJJ6WsP/nkk1VeXi5J+tOf/hTfNhl9mCgQCOicc87RsmXLJEk33HCDvvOd72S9P9dg4fW0D7PFNVhYjz32WPzx5MmTE9Z1/Cza2Nioxx9/3Hb/TZs26cUXX5QknXrqqQm1L6X2WpinnnqqJOnFF19Me6v1448/rsbGRkn0X64y9WE2Hn30UTU0NEiyvwb5Oto9Dz74oIwxGf91nkxs7ty58eUdISvfCwEgSwboAyeeeKKRZFwul1mwYEHK+jvvvNNIMpLMTTfd1PcNPEj985//NOFwOO36bdu2mSlTpsT75uc//3nKNitXrjROp9NIMlOnTjWBQCBhfSAQMFOnTo33/6pVq/L+Og4m69ati/fHZZddltU++eqj++67L37uL3/5yynrP/jgA1NWVmYkmbFjx2b8bB3Mcu3DdevWmWXLlmXc5umnnzYej8dIMkVFRWbTpk222/3whz+Mn/vOO+9MWb9gwQLjcrmMJHPSSSdl83IOaMFg0Jxxxhnx9+zaa6/t1nG4BgsnH33INVhYDzzwgGltbc24zS9+8Yv4+zpq1CgTiUQS1u/atcuUl5cbSWbkyJFm586dCesjkYg577zz4seYO3eu7Xleeuml+DYf//jHU85TV1dnRowYYSSZiooKs3v37txf8AGop324e/futH3SYdGiRaaiosJIMpZlmaVLl9pux9fR3nHTTTd1ef3wvRAAukZIiz6xbNkyU1RUZCSZkpISc9ttt5mFCxeal19+2Vx99dXxb7S1tbWmsbGx0M09aIwcOdIMHTrUfPWrXzV//etfzYIFC8zy5cvNnDlzzA033GAGDBgQ75sZM2aYtrY22+N897vfjW83ZcoU88gjj5glS5aYRx55JCHk/d73vtfHr7D/mzdvnnnggQfi/37605/G38/p06cnrHvggQfSHicffRSJRMz06dPj237iE58wzz//vFm0aJG56667zMCBA40k43A4zL/+9a9eeDf6p5724dy5c40kc8IJJ5jbbrvNPPvss2bJkiVmyZIl5tFHHzWf+tSnjGVZ8WP+7ne/S9uWxsZGU1tbG9/26quvNi+//LJZuHChue2220xJSUk8ZFq+fHnvvSn9xOzZs+Pv1SmnnGLeeust8/bbb6f9t3LlyrTH4hosjHz0IddgYY0cOdJUVVWZq666yvzpT38yr732mnnzzTfNvHnzzO9///uEa8Lj8Zg5c+bYHufuu++ObzdmzBhz//33myVLlpinnnrKzJw5M77uM5/5TMb2XHTRRfFtZ86caZ566imzZMkSc//995sxY8bE1/3xj3/sjbejX+ppH3b8cfOII44wN954o3nqqafM4sWLzRtvvGGeeOIJc+WVV8b/SCLJfOtb30rbFr6O9o5sQlpj+F4IAF0hpEWf+ec//xn/q6bdv9raWrN69epCN/OgMnLkyLT90fnfJz7xCVNfX5/2ONFo1Hzuc5/LeIwrr7zSRKPRvntxB4jLLrssqz7q+JdOvvqorq7OTJs2Le0xvF6v+d///d98vw39Wk/7sCMg6upfcXFxVqHA6tWrzbhx49Iep6yszDz99NO98Vb0O7n0m9Q+Qi8drsHCyEcfcg0WVrY/qwwbNsy88MILGY914403JgTqyf/OPvvsLkd8BgIBc/bZZ6c9hsPh4K6wJD3tw853oGT653Q6zc0332xisVjG9vB1NP+yDWn5XggAmRHSok+tX7/eXHfddaa2ttYUFxebiooKM3XqVHPHHXeYlpaWQjfvoPPKK6+YH/3oR+ZjH/uYqa2tNVVVVcblcpmKigozefJkc80119iWp0jn2WefNeeff74ZOnSo8Xg8ZujQoeb888/nr9g9kK+QtkM++igcDpvf//73ZsaMGaa6utr4fD4zevRoc9VVV5l33nmnJy/3gNTTPmxsbDT/93//Z7785S+b4447zowYMcIUFxcbj8djBg0aZE455RRz6623mu3bt2fdpubmZnPHHXeYqVOnmoqKClNcXGwOO+wwc91115n169fn8+X3a/kI+JJxDfatfPQh12BhrVixwvz85z83s2fPNkcccYQZNGiQcblcprS01IwZM8Z84hOfMA888EDWP0fOnz/fXHzxxWb48OHG4/GYgQMHmtNPP9389a9/zaldf/nLX8zpp59uBg4caDwejxk+fLi5+OKLc/q56WDR0z4MBoPmscceM9/4xjfMjBkzzKhRo0xpaalxu91mwIABZvr06eaGG24w69aty7pNfB3Nr2xD2g58LwQAe5YxaWYtAAAAAAAAAAD0OkehGwAAAAAAAAAABzNCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAACAbnrwwQdlWZYsy9L69esL3RwAAAAA/RQhLQAAOOisX78+Hq725B8AAAAA5AMhLQAAAAAAAAAUkGWMMYVuBAAAQF8Kh8NauXJl2vWTJ0+WJE2dOlUPPPBA2u0mTZqU97YBAAAAOPi4Ct0AAACAvuZ2u7MKWP1+P0EsAAAAgF5HuQMAAAAAAAAAKCBCWgAAgG568MEH45OIrV+/PmX9ySefLMuydPLJJ0uSPvjgA33hC1/Q6NGjVVRUpEMPPVRXXnmlNmzYkLDfO++8oyuuuEKjR4+Wz+fT8OHD9cUvflE7duzIql1PPvmkPvWpT2nEiBHy+XyqqKjQ1KlT9aMf/Uj19fU9fdkAAAAA8oxyBwAAAH3gxRdf1OzZs9XU1BRftmHDBt1///165pln9Oqrr2r8+PF6+OGHdfnllysUCsW327Rpk+6++24999xzWrBggYYOHWp7jvr6en3yk5/Uyy+/nLA8GAzqjTfe0BtvvKHf//73euqpp3T88cf3zgsFAAAAkDNG0gIAAPSyLVu26MILL1RFRYXuuusuLVq0SPPmzdPXv/51WZalHTt26POf/7yWLFmiSy+9VGPGjNG9996rxYsXa+7cufrsZz8rqT3U/cY3vmF7jmAwqNNOO00vv/yynE6nPvvZz+rhhx/W66+/rnnz5unWW29VdXW1duzYobPPPjtl9C4AAACAwmEkLQAAQC9bvXq1xo0bp/nz56umpia+fMaMGXK5XPrZz36m+fPn65xzztGxxx6rOXPmqLi4OL7dySefrLa2Nj322GP6xz/+obq6uoTjSNItt9yiZcuWqaKiQi+++KKOOeaYhPUzZszQ//zP/+iEE07Q1q1b9f3vf19/+ctfeveFAwAAAMgKI2kBAAD6wG9+85uUYFWSvvSlL8Uf79y5U/fee29CQNvhi1/8oiQpEolo4cKFCeuam5v1u9/9TpL04x//OCWg7TBy5Ej98Ic/lCQ99thjamlp6d6LAQAAAJBXhLQAAAC9rKKiQmeeeabtulGjRqm0tFSSdMQRR2jChAm22x155JHxx2vXrk1Y9+qrr6qhoUGS9MlPfjJjWz760Y9KksLhsN54443sXgAAAACAXkW5AwAAgF42btw4WZaVdn1FRYWamppUW1ubcZsOnScfk6SlS5fGHw8ZMiTrdm3bti3rbQEAAAD0HkbSAgAA9DK78gWdORyOLrfr2EaSotFowrodO3Z0q12BQKBb+wEAAADIL0bSAgAA9HOdQ9tly5bJ7XZntd+wYcN6q0kAAAAAckBICwAA0M9VV1fHH9fU1BC+AgAAAP0M5Q4AAAD6uSlTpsQfz58/v4AtAQAAANAdhLQAAAD93GmnnRavZ/ub3/xGxpgCtwgAAABALghpAQAA+rmKigp95StfkSQtWLBA1113nWKxWNrtt2/frnvvvbevmgcAAACgC9SkBQAAOADccsstevXVV7Vo0SL9+te/1iuvvKKrrrpKRx11lPx+v+rr6/Xuu+/qxRdf1HPPPafJkyfr85//fKGbDQAAAECEtAAAAAcEr9erOXPm6PLLL9fjjz+u//73v/HRtXbKysr6sHUAAAAAMiGkBQAAOECUlpbqH//4h1577TX96U9/0rx587Rlyxa1traqrKxMY8aM0bHHHqtzzjlHZ5xxRqGbCwAAAGAvyzCzBAAAAAAAAAAUDBOHAQAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAAf1/JwrsUWtU3I8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'intervention_examples_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/doctrees/nbsphinx/intervention_47_1.png b/docs/_build/doctrees/nbsphinx/intervention_47_1.png new file mode 100644 index 0000000..1693392 Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/intervention_47_1.png differ diff --git a/docs/_build/doctrees/nbsphinx/intervention_49_0.png b/docs/_build/doctrees/nbsphinx/intervention_49_0.png new file mode 100644 index 0000000..5210716 Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/intervention_49_0.png differ diff --git a/docs/_build/doctrees/nbsphinx/metapopulation.ipynb b/docs/_build/doctrees/nbsphinx/metapopulation.ipynb new file mode 100644 index 0000000..ac1939c --- /dev/null +++ b/docs/_build/doctrees/nbsphinx/metapopulation.ipynb @@ -0,0 +1,1396 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Metapopulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Migration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by migrating hosts.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population 4** (both are one-way connections). **Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a migration rate of 2e-3 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=2e-3, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " host_host_contact_rate=0, \n", + " # host-host inter-population contact rate between populations\n", + " vector_host_contact_rate=0,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration( \n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `population_A`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 83.06461341318253, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 100.06274296487011 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19491923660278324s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.027785778045654297s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.024601459503173828s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.040442705154418945s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.06669497489929199s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0938570499420166s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 606 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 714 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 793 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 810 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 829 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 848 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 869 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 890 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 918 out of 918 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2NaNNaNTrue
30.0population_AHostpopulation_A_3NaNNaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
293755100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
293756100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
293757100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
293758100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
293759100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

293760 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "293755 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "293756 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "293757 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "293758 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "293759 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 NaN NaN True \n", + "3 NaN NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "293755 NaN NaN True \n", + "293756 NaN NaN True \n", + "293757 NaN NaN True \n", + "293758 NaN NaN True \n", + "293759 NaN NaN True \n", + "\n", + "[293760 rows x 7 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_migration_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAALmCAYAAADlpH2lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUZdYG8HtKOmmkQKgBRKnSAlJUQBGWjkhRUAEbUuy4u6KLILqwn1hWERVYCFgQbEgTaQJSQzf0llATSO9tyvdHnCHztimZFub+XVeuK/PWZ94kk5nnvOccldFoNIKIiIiIiIiIiIiIiMiLqT09ACIiIiIiIiIiIiIiImsY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvB4DGkRERERERERERERE5PUY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvJ7W0wOgmqO0tBTJyckAgJiYGGi1/PUhIiIiIiIicjadToeMjAwAQNu2bREYGOjhEREREXkHzkiTzZKTk9GlSxdPD4OIiIiIiIjIZyQlJaFz586eHgYREZFXYMkpIiIiIiIiIiIiIiLyeszQIJvFxMSYv09KSkJcXJwHR0NERERERER0e0pLSzNXSKj6WZyIiMjXMaBBNqvaMyMuLg4NGjTw4GiIiIiIiIiIbn/sX0lERHQLS04REREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiNzuSdQ1/P7AOy88fhNFo9PRwiIiIiGoEracHQERERERERORLLhfmoOu6T1Bu0AMA8stLMbXVvR4eFREREZH3Y4YGERERERERkRu9f3y7OZgBAC/sX+25wRARERHVIAxoEBEREREREbnR3puXPD0EIiIiohqJAQ0iIiIiIiIiNwrS+nl6CEREREQ1EgMaRERERERERG4UrGFAg4iIiMgRDGgQERERERERuREzNIiIiIgcw4AGERERERERkRsFSWRo6Ko0CSciIiIiaQxoEBEREREREbmRVIZGQUWZB0ZCREREVLP4bEDj5s2bWLduHWbMmIH+/fsjOjoaKpUKKpUK48ePt7p/amqqeXtbv+Lj4x0eb3x8vMvPQURERERERK4nlaHBgAYRERGRdVpPD8BT6tSp4/Zz3nXXXW4/JxEREREREXmXQI34ozgDGkRERETW+WxAo6pGjRqhRYsW2LRpk8371K9fH8nJyVa3mzNnDr799lsAwLhx4xweo8nQoUPx7rvvyq739/ev9jmIiIiIiIjIdYwSyxjQICIiIrLOZwMaM2bMQOfOndG5c2fUqVMHqampaNKkic37+/n5oU2bNorb6PV6bN++HQAQGhqKhx9+uDpDBgBERERYPS8RERERERF5L53BIFqWX1HqgZEQERER1Sw+G9CYNWuWy8+xZcsWXL9+HQAwYsQIBAUFufycRERERERE5N10Rr1oGTM0iIiIiKzz2abg7rB8+XLz984oN0VEREREREQ1n1SGBgMaRERERNYxoOEiBQUFWL16NQAgPj4e999/v2cHRERERERERF5BbxR30WBAg4iIiMg6ny055Wo//PADiouLAQBPPPEEVCqVU467c+dOtG/fHhcuXIBer0edOnXQpUsXPPbYYxg6dGi1znP16lXF9WlpaQ4fm4iIiIiIiCrpDCw5RUREROQIBjRcpGq5qSeffNJpx01JSbF4nJqaitTUVKxatQo9evTAypUrUb9+fYeO3bBhQ2cMkYiIiIiIiBTojCw5RUREROQIBjRc4PLly9ixYwcAoHv37rjjjjuqfUx/f38MGTIEffv2RZs2bRAeHo7c3Fzs3bsXn3/+Oa5cuYLdu3fjoYcewt69exEeHl7tcxIREREREZHzSffQKPXASIiIiIhqFgY0XODrr7+G8a+aqM7KzkhKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGHdp/jypUriuvT0tLQpUsXu49LREREREREt0hlaOQzQ4OIiIjIKgY0XOCrr74CAAQEBGD06NFOOaZUMMMkNDQUq1atQtOmTZGdnY2FCxdi7ty58Pf3t+scDRo0qOYoiYiIiIiIyBrpDA0GNIiIiIisUXt6ALebpKQknD59GgAwZMgQxUCEM4WHh+PRRx8FABQVFeHgwYNuOS8RERERERHZR2dkU3AiIiIiRzCg4WSuagZui1atWpm/v3btmlvPTURERERERLZhDw0iIiIixzCg4UQVFRX47rvvAACxsbH429/+5tbzq1Qqt56PiIiIiIiI7CfVQ4MZGkRERETWMaDhROvXr0dWVhYAYMyYMdBq3dui5OTJk+bv69Wr59ZzExERERERkW30DGgQEREROYQBDSeqWm5q3Lhxbj13Xl6eOTskODgYCQkJbj0/ERERERER2Uay5JSOAQ0iIiIiaxjQcJLs7GysX78eANC2bVu0b9/e5n179eoFlUoFlUqF1NRU0fqNGzeipKREdv/CwkKMGjXKnB3y9NNPIyAgwK7xExERERERkXvIlZwyGo0eGA0RERFRzeHemkheZNeuXTh//rz5cWZmpvn78+fPIzEx0WL78ePHKx7vu+++Q3l5OQDnZ2fMnTsXY8eOxfDhw3HvvfeiWbNmqFWrFvLy8rBnzx588cUXuHz5MgDgrrvuwsyZM516fiIiIiIiInIeqQwNg9GIYl05Qvx4cxoRERGRHJ8NaCxevBjLli2TXLd7927s3r3bYpm1gIap3JRGo8HYsWOdMsaqsrOzsXjxYixevFh2m549e+Kbb75B7dq1nX5+IiIiIiIicg6pDA2gMkuDAQ0iIiIieT4b0HCmc+fOYf/+/QCAhx56CHXr1nXq8efNm4etW7di7969OHPmDDIzM5Gbm4vg4GDUq1cP99xzDx577DH07dsXKpXKqecmIiIiIiIi59IZ9JLLCyrK4NxPk0RERES3F58NaCQmJorKSjmqefPm1ap1un37dsX1CQkJbPJNRERERER0m1DK0CAiIiIieT4b0CAiIiIiIiLvdDI3HT9fOo7Ciso+hSoV0KF2fYyIv9ulWelGoxE/XUrGoayrULpn7WpxLi7kZ6FrbGOcy89A64i6UMH6uDQqFZqFReFMXobk+l+vnUbH6AaODp+IiIjotseABhEREREREXmNc3kZ6LL2ExTpykXrZrbvi7c79HXZuef8uQ1vHv7V5u33ZlwCAKy7csop53/r8EZ0jKqP/g1aOuV4RERERLcbtacHQERERERERGSy5soJyWAGAHx78YhLz73Cxce3xY+pyZ4eAhEREZHXYkCDiIiIiIiIvMb14nzZdTnlxS49d055iUuPb4tifYWnh0BERETktVhyioiIiIiIiLxGRmmR7LpinWsn+0sFwYSH6t2J2MBa5sdXi3OxI/2i7P6PNG6LQI2faHlKYTb23Ex12jiJiIiIfBUDGkREREREROQ1MkoLZdcV6ypgNBpd1hi8RBDQmN2xH+6JaWx+vO7KScWAxqIeIxEZECxavvLiUcmARreYxngg7g689+dW8zKjUjdyIiIiIh/HklNERERERETkNZQyNIwwokyvc8l5jUYjSgXHFmZbaKwEUvzUGruWh/oFuCw4Q0RERHQ7YkCDiIiIiIiIvIZShgYA2Ybh1VVh0MMgyI4IEgU0lD9Cywc0pPcL9QuwY4RERERExIAGEREREREReQ2lDA3AdX00hOWmACBQY1ml2XpAQ3q9UoaGEAtOEREREcljQIOIiIiIiIi8QlFFmWRgoapivWsyNITlpgAgSGuZoaFWKA+lVqmglgl4aGUzNALBglNEREREtmNAg4iIiIiIiLxCZplydgbgwgwNieOKS07Jhx+0Ctkbchkatfz8bRwdEREREQEMaBAREREREZGXEJab8lNrRGWZil3UQ0MqQ8OeklNKpaL8VHaUnDKy6BQRERGRHAY0iIiIiIiIyCsIG4JHB4QgRGuZxeCuHhpalRpaQWaFtR4acmSbgmsDoFLI+iAiIiIiSwxoEBERERERkVcQZmjEBIoDGkUuytAQlpwKFJSbApR7aChlVtjTFJyIiIiI5DGgQURERERERF5BmKERE1gLwaIMDVeVnLIMaARptaJtHC45JRvQCJQ4DktOEREREclhQIOIiIiIiIi8glSGRrDWMlOiWO+eklPChuCAclNwJVqZklNsCk5ERERkHwY0iIiIiIiIyCuIAxq1ECwILLirKbjdJacUMiuUSk6xgwYRERGR7RjQICIiIiIiIq8gLjkVIlFyyk0ZGlqpDA2FklMKlaL8VLb30GDBKSIiIiJ5DGgQERERERGRV7Cp5JTbmoLb10NDiZ9MySk2BSciIiKyDwMaRERERERE5BWkmoKHuClDQ1hyyt4eGo6VnAqESlB0yqiU6kFERETk4xjQICIiIiIiIq+QWWaZoREtUXKqyFUZGjY0BVfqoaFEtim4lk3BiYiIiOzBgAYRERERERF5XLleh7zyUotl7iw5Vap3Zckp6QwNf4lzEBEREZE8BjSIiIiIiIjI44TZGUBlySlRU3C9i5qC6wQlp+xsCq5ELqABAMKkDxacIiIiIpLHgAYRERERERF5nLAhuAoq1PYPRrDGTU3BRRkaTiw55WAghIiIiIgs8V0VEREREREReZywIXhUQDA0arU4Q8NlTcGFPTSkSk45FtBQObgfEREREVliQIOIiIiIiIg8TpihERMYAgAIEQU0XJShIQiUSJackmnu7QhT1oYKlsEOo5FFp4iIiIjkMKBBREREREREHifM0IgJrAUAoqbgRR4sOeVoDw0pUgETIiIiIlLGgAYRERERERF5nFyGhvtKTgmagkv10IDzSkcFSpS0IiIiIiJlDGgQERERERGRx9maoVGsd01AQ5yhIdFDQ+28gEaAuvL4opJTTjsDERER0e2HAQ0iIiIiIiLyuExBhka0KUND454eGqIMDakeGk4sOSVV0oqIiIiIlDGgQURERERERB4nX3JKkKGhq3BJ42xRU3CWnCIiIiLyOgxoEBEREREROdn+jEv45dJxlP1117/RaMS26+fw69VTMBgNHh6ddynVVeCXS8ex88ZFi+WmklMhgh4aeqMBFQa908dhW8kpJ2ZoaP8qOSWIkVwoyMJnp3bj+5RjKKgoxb6blr9LRERERL6Mt4QQERERERE50acnd+HF/asBAF2iG2LfoBfx2oG1+OjETgDA6Cbt8V2vxz04Qu8yfNsy/HrttGi5XFNwoDJLw9/JGQ62NAXXCKMP1SBXcio5Jw1T9/0sWt4luiH2DnoBaieWvSIiIiKqafhOiIiIiIiIyIlMwQwASMq8grVXTpqDGQCwMuUoUguyPTAy73O1KFcymAEAsTJNwQGgyAV9NEqFGRoS51UKJrSOqGPX+dpG1gUAaG0MUCRlXsGma2ftOgcRERHR7YYBDSIiIiIiIhfacPWUaNnJ3BseGIn3yS0vkVxeNygUrf4KEEhlMgiDD86gM1iWApMLNPSrf5fk8s+6DVc8/j/a9jZ/r1ap8Fa7PgCAe+s0sXmMO9IvWt+IiIiI6DbGklNEREREREQupJdoYF1mYD8EAJDq7T2maQe8cfcD0Ko1AIAAjUa0jSuun17Q20SuvNQ394/B20d+Q0FFGSL8g5BRVoQhDVuhZ91misef1aEfAjRanMvPxMS7uqJecDgAoEedJljRcyy+vnAYhboy7Ll5SbZHiNqJJa+IiIiIaiIGNIiIiIiIiFxIanKaDZ4rGWAZ0dCo1Pim51iLZWqVGn5qjcV1LNU5//oZjOKxSIkKDMF8K9kYUgI0Wszq0E9y3aNNO+DRph0AAPW+ewdpJfmS2zGcQURERL6OJaeIiIiIiIhcSCqgUS5zB76vMQqCCHIT9oGCBuCuydCwHIs3ZkOovHBMRERERO7EgAYREREREZELCXszAAxomAizIuSCCAFqy4BGqQsyXMQlp7zv47I3BlmIiIiI3Mn73qERERERERHdRlhySp6whYZcBoIoQ8MF109ccsr7ggdqFp0iIiIiH8eABhERERERkQtVGBnQkGMQZEXITdgHaNyfoaFmhgYRERGR1/G+d2hEREREREQ1lLAnBABUSJScckUPiJpInKEhvZ07MjSEPTS8MUNDxQwNIiIi8nEMaBARERERETmJsGwRIF1yqlhX4Y7heD1RDw2Zj6iBGj+Lx6V6518/cckp7/u47IUxFiIiIiK38r53aERERERERDWUsGwRIN0UvEhX7o7heD2jIEdDbsJeWHKqzMlN1Y1Go2gs3ljeyRvHRERERORODGgQERERERE5iU4ioCGdocGABiCRoWFjU3BnZ2hIZdZ4ZYYGS04RERGRj/O+d2hEREREREQ1lFSGhlRTcGZoVBL10JBrCq52bVNwqZ+bN/bQYIYGERER+ToGNIiIiIiIiJxEb7CtKXhRBQMaAGAQBBJszdBwdlNwYUNwpbG4mtJp1czQICIiIh/HgAYREREREZGTSGZoSJScYoZGJXGGhjRhDw1nZ2gIAyuAl5acYjyDiIiIfJz3vUMjIiIiIiKqoRjQsI+jPTTckaHhjQENtReOiYiIiMid+G6IiIiIiIjISaSaguukSk4xoAEAMAoCCbI9NFzcFFwqEOWN/SqE14uIiIjI1zCgQURERERE5CTSPTSYoSHHAFszNPwsHpdJXNNqjUMyQ8P7AhpS4yQiIiLyJQxoEBEREREROYlkySmJZcU652YY1FTC+Xm5DA1hySl3ZGho1N73cVlqnERERES+xPveoREREREREdVQUhPOOmZoyLI1Q0NYcsodPTTUsi3KPUdqnERERES+hAENIiIiIiIiJ5GacK5gDw1Z4h4a0sQZGs4NaEiXnPK+j8vM0CAiIiJfp7W+CREREREREdlCZxRnY0j10Kgw6FFh0MNPrXHHsLyWMJAgm6GhdnWGhlTJKW/M0GBAg2xXXl6OwsJCFBUVoby8HAaJ4CoREZGzaTQaBAYGIiwsDCEhIVA5uS+ZzwY0bt68iaSkJCQlJeHAgQM4cOAAsrKyAADjxo1DYmKi1WMkJiZiwoQJNp1v6dKlGD9+fDVGXCkzMxOffPIJVq9ejdTUVABAfHw8hg0bhpdeeglRUVHVPgcRERERETlGqil4uUwD66KKckQEBLl6SF7NKCg5JfeB1xMZGiw5RTWV0WhEZmYmMjMzPT0UIiLyQTqdDmVlZcjLy0NQUBAaNWoEtRN7k/lsQKNOnTqeHoLd9u/fj2HDhiE9Pd1ieXJyMpKTk7F48WKsXr0aXbp08dAIiYiIiIh8m9Qd9HJ31RfpGNAQZWjIBBGEPTTc0hTcQyWn5BqjA9KBFyKhtLQ05OXlWSxTqVTQaHw7I4yIiNxDr9eby4qWlJTg8uXLaNy4sdMyNXw2oFFVo0aN0KJFC2zatMnhY/z222+oV6+e7PoGDRo4fGwAuHLlCgYPHoyMjAxotVq8+uqrGDRoEABg3bp1+PDDD5GWlobBgwfj0KFD1T4fERERERHZz5476NlHAxBeLfkMDT+Lx2UyWS+Okvq5aZx4J6GzsOQUWVNaWmoRzIiKikJYWBgCAgKcXvKDiIhIisFgQGFhIdLT06HX61FSUoKioiLUqlXLKcf32YDGjBkz0LlzZ3Tu3Bl16tRBamoqmjRp4vDx7rzzTsTHxztvgAJvvvkmMjIyAADffvstRo4caV533333oVOnThg9ejRu3ryJt956y6aSWURERERE5Fz2TDgXM6Bhc4aGuOSUczM0ak7JKQY0SFlubq75+9jYWJalJiIit1Or1QgLCwMAXLt2DQBQUFDgtICG991y4iazZs3CoEGDakTpqfT0dHzzzTcAgH79+lkEM0xGjRqFfv36AQC++uorUVkqIiIiIiJyPZ0dTXeZoSHVQ0N6O2HJKXc0BZdrUO5J7KFB1hQXF5u/j4iI8NxAiIjI59WqVcucHVhSUuK04/psQKMmWbNmDQx/fTBSakJuajpuMBiwZs0adwyNiIiIiIiqsOcOegY0JDI0PNQUXPhzU6tUXlmeR29HwIx8k15fWY5Nq9WyZwYREXmUWq02/y8y/X9yynGddiRymV27dpm/79mzp+x2Vdft3r3bpWMiIiIiIiIxBjTsI8rQkGsKrnZthoatpa88jSWniIiIyNf5bA8NZ5swYQLOnDmDzMxMhIWF4Y477kCfPn0wadIk1K9fv1rHPnnyJAAgPDwcdevWld0uLi4OYWFhyM/Px6lTp6p1TiIiIiIikne9OA9Hs66jXe16qB8SjvzyUuzLuISkjCs2H2PXjRRoVMr3mGlVauiMBoT7B6JrTGNR6SVHXCnMxdHsaxahhHD/QNwT3QiBWj/Z/ZzFaDTidN5NnMvPxAHB9XIkQ8NoNCI5Jw2phTm4MywGLSJiZc9dVFGGfRmXRcGkQ1lXLR57Y0NwALhQkIU1l09YLNOoVOgU1QB1g8OQUVqIAxlXoJMIfNQJqoWEqIZe+9yIiIiIbMGAhpNs377d/H1WVhaysrKwf/9+fPDBB/j4448xceJEh4999Wrlm+sGDRpY3bZhw4Y4ceIErlyx/YOU8Dxy0tLS7D4mEREREdHt5terpzB0ayIqDHpoVGp82GUw5v75O9JK8u06zocnduLDEztt3r5jVH3sGjAVQdUIOvyQegyjt38t2QS7bWQcdg2YgjD/QIePb4vZxzbj7SObJNfJ5UWIemgYdDAajVCpVPjHwfV4//h287r3OvbH9HYPio6RXpyPbus/RWphjtUxSl0fb7Dx2hlsvHZGtNxfrcGM9g9hzp/bFDN/BjZoibV9nvLKclpEREREtmBAo5qaNm2K4cOHo1u3bmjYsCEA4OLFi/jxxx/xww8/oLS0FM8//zxUKhWee+45h85RUFAAADZ1gg8JCQEAFBYW2n0e0/iJiIiIiEjef5J/R4Whsg6w3mjAS/t/cct5D2ddw2/XzmBY4zYOH+OD4ztlJ+uTc9Lw27UzGNmkncPHt0ZvMGDe8R2y6+UyVgI1lkEcg9EIndGAcp1OdLz3j2/HP+/uDbXgWD+k/mlTMAOA+efrCY6UlSo36PHW4Y1Wt1t/9RRO5t5A60j5zH8iIiIib8aARjU8/PDDGDdunOjuls6dO2P06NFYt24dhg8fjoqKCrzyyisYMmSIYskoOaWlpQAAf39/q9sGBAQAcG7neCIiIiIiumVH+kWPnftCQWa19reWRZJZVlSt41tTbtCjoKJMdn2naOmsdK1EmSS9wYDrxfmiPhy55SXQG41QC5IQbpTaf9OXJ+SUu/aznKt/xkRERESuxOKZ1RAeHq6Yqjto0CDMmDEDAFBcXIz//e9/Dp0nMLAy5bu83HrTwLKyyg8HQUFBdp/nypUril9JSUl2H5OIiIiIyNdE+t96L15LG4BmoVFoFhqFJrVqAwDuCI02L5P6qhccJnvs68X2lbUSKnVyM217CYMPANAoJALNw6IxtmlHfNB5sOR+Uk26DTDKTs4bJbJQdAbLzIeqPxtv8mW3R2TXVf09iQkMUTxOdEAImoVGifqSSF0bIiKqNHPmTKhUKq8pzRcfHw+VSoXx48d7eihEXoMZGi723HPPYcaMGTAajdixYwfefPNNu48RGhqK4uJim8pIFRVVvqG3pTyVkC09OoiIiIiISNk/2vbGP+5+wOH9d91IwX0bPpNcl1ZS4PBxAaBMENBQQSUZZHCnHf0nIz60tuI2Us3C9UYDMkqlAxpSZbWEpZwebtwGy+9/DACgWjrNYl1ckHxQydXqBYdLLp/XeRBea9PL/Pir84fw5B8rZI/zfudBGN+8M2JXvC17nYiIgMq+sL1795ZcFxQUhJiYGHTo0AGjRo3CqFGjoNVyOpGIPIcZGi4WGxuLqKjKO36uXbvm0DFMgQZrTbsBmJuBsx8GEREREZFnhLuwqfb14rxq7V+qr7B4HChotu3qu/cdPb5UQMNgNCJDpoyUQSJIIwxoaBTuvvXkjblSzxUA/NWWPyupMlxVCX+2JszPICJ7lJSU4PLly/jll18wduxYdO/eHenp6Z4eVo3Wq1cvqFQq9OrVy9NDIaqRGNBwg+qmqbVq1QoAkJeXp/hPIy0tDfn5lSnoLVu2rNY5iYiIiIhIzJYJ+TC/6gU0lD49pBU7nqFhNBpFJafkJr1dRerq2fJxSapZeGVAw/aSU3rBMq1aY/3EHiAX0AgQ/KyUAjLArUbqKrDkFBHZbtKkSUhOTjZ/7d27F59++ini4+MBAAcOHMDQoUP5WuImqampMBqNSExM9PRQiLwGAxoulpGRgczMysZ99erVc+gY9957r/n7HTt2yG5XdV2PHj0cOhcREREREcmrMOitbhNWzQwN4QR0Vdaaeisplxi7adLb2zkjQ0MneP7WAgKeIjcuf0EARqtSDsi4O1hFRLeH2NhYtGnTxvzVtWtXTJ06FYcPH8Ydd9wBAEhKSsK6des8PFIi8lUMaLjYwoULzVHrnj17OnSMIUOGQP1XOvHSpUtltzNFa9VqNYYMGeLQuYiIiIiISF6xrsLqNmF+AS47f0FFGQoryhzaV1huCvBEhoY40KAUwDGRDGhAKUNDvEyYoSGV9WHPmFxFLTMuYUDDeoZG5c9WWDGA91QTkSMiIyPxxhtvmB9v3LjRg6MhIl/GgIaDUlNTceTIEcVt1q1bh3feeQdAZROlCRMmSG5nqp2nUqmQmpoqWl+3bl2MHTsWAPDbb7/hhx9+EG3z/fff47fffgMAPPHEE6hbt649T4eIiIiIiGxQrC+3uk21S05ZmUtPK3YsS0PYEBwAgrQ1JENDIsCgmKFhQ1NwrUJAw5OknisA+GsEGRpWe2jUjJ8tEdUcXbp0MX9/6dIli3UZGRl466230KFDB0RERCAwMBDx8fF44oknsGvXLsXjxsfHQ6VSYfz48QAqy1o99thjaNiwIQIDA9GwYUNMmDABp0+flj1GYmKi4tyaSWpqqnk7R8o4lZeXY+3atZg6dSo6d+6MyMhI+Pn5ISoqCvfccw9mzpxprtQiNH78eKhUKnOFlR07dpjHYvoylfYyEV4bOWvXrsWIESPQoEEDBAQEICoqCt26dcPcuXNRWCj9vxIQXzeDwYCFCxeie/fuiIyMREhICO6++2689957KC4ututaEbmKz+ag7tq1C+fPnzc/rvpic/78edGLmvCFIzU1Fb1790a3bt0wePBgtGvXDrGxsQCAixcv4ocffsAPP/xgzs6YN28e6tev7/B433vvPWzcuBEZGRl47LHHcPDgQQwaNAhAZeDkgw8+AADExMTg3Xffdfg8REREREQkz6YMDReWnAKA6yX5aB4eY/dxhf0zACBA0Gja1XfvS2VOOJqhoTca5DM0pEpOCZuCWwkIeIqtTcGVMkyAKhkaguVS14aIyBZ+frcCpXr9rTJ+mzZtwsiRI819XU0uXbqES5cu4euvv8aUKVPwySefmCuQyFmyZAkmTpwIne7W/6yrV68iMTERK1aswFdffYWRI0c66RnZ77nnnsOyZctEy7Ozs5GUlISkpCTMnz8fv/zyi1vKwZeWlmLMmDH4+eefRePZt28f9u3bh08//RTr169H+/btFY9VXFyMvn37YuvWrRbLTf1U1qxZg23btiEkJMTZT4PILj4b0Fi8eLHkCxAA7N69G7t377ZYJhcJ3bt3L/bu3St7nuDgYHz00Ud47rnnHB4rADRs2BBr167FsGHDkJ6ejv/85z/4z3/+Y7FN3bp1sXr1ajRo0KBa5yIiIiIiImnFOtdnaFjjaIaGVECjpvRZsLuHhlSGhkEQ0KhhPTSETcGZoUFE7pacnGz+3tQn9ujRoxg8eDDKy8vh5+eHqVOnYsiQIQgJCcGRI0cwd+5cpKSk4LPPPkNISIhoLquqo0eP4ttvv0VsbCzeeOMNdOnSBaWlpdiwYQM+/vhjlJWVYezYsWjSpAkSEhJc/nyl6HQ6NG3aFA8//DC6dOmCRo0aQavV4tKlS9iyZQuWLFmCrKwsPPzwwzh+/Lj55meg8mbladOmYcKECTh48CASEhJEpeX9/f3tGs+4cePMwYx27drhtddeQ8uWLZGdnY3vvvsOiYmJuH79Oh588EH8+eefijdbP/vss9i3bx/GjRuHUaNGoW7durh8+TL+7//+D3v37kVSUhLeffddzJkzx64xEjlbzXj36oU6deqEr7/+Gnv37sXBgweRlpaGzMxM6HQ6REZGonXr1njwwQfxzDPPWLx4Vcc999yD5ORk/Pe//8Xq1avNKXRNmjTB0KFD8fLLLyMqKsop5yIiIiIiIjFbMjRCq9lDw9o8+3WHAxqWY1dBJSpj5GqSPTRsiCvIBTQyy6QzNKSagtvTQ8OTbO+hYWuGhqCHBhM0iMgBOp3OXB0EqCyfDlRmLJSXl0Oj0WDdunXo27eveZvOnTtj5MiRuPfee3Hy5EnMmzcPTz75JFq3bi15jmPHjqFx48bYt2+fRSn1+++/H/369UPfvn1RUVGByZMnIykpyTVP1IpZs2ahadOmov5ECQkJeOSRRzB58mR0794dGRkZ+PTTTzF79mzzNvXr10f9+vXNGQ4hISFo06aNw2NZv349Vq1aBQB48MEHsWHDBouASN++fdGtWzc899xzyM7OxquvvoqVK1fKHm/Pnj346quv8Pjjj5uXdezYEf3790dCQgKOHz+ORYsWYfbs2dBqOaVMnuOd7+DcIDExEUaj0eYvodDQUIwdOxbz58/Hvn37cOnSJRQVFaGsrAzp6enYunUrpk+fblMwY/v27ebzCGvlCUVHR2P27NlITk5GQUEBCgoK8Oeff2L27NkMZhARERERuZi1DI0AjVZ0J729rJVgSitxToZGoEbr9ubXjpackpq8L9SVyQaYpD7D1ZgeGrIlpxxtCm65nCWniMgeRUVF2LFjBx566CHs27cPANC4cWOMGjUKSUlJOHDgAIDKu/urBjNMIiMjsXDhQgCAwWDAggULFM/3wQcfSPaF7d27N5599lkAlT02Dh48WK3n5ahmzZqJghlVtW3bFs888wwAYPXq1S4dy2effQagshTY0qVLJbM7nn32WfTp0wcA8NNPPyEtLU32eMOHD7cIZpgEBARg6tSpAICsrCycPHnSGcMncph3voMjIiIiIiLyQsV65QyNsGpmZ9girbjAof2ETcGlyk1JBQK8gVSj7Bsl8k1OpUpO2dNDw5PFqOQCFcKAhlalnF3DklNE5IhZs2ZZNKmuVasWevXqhe3btwMAYmNjsXr1agQEBGDLli3m/Z5++mnZY/bo0QMtW7YEAIt9hCIjIzF06FDZ9U899ZT5e6XjuFNOTg4uXLiAEydO4Pjx4zh+/DgiIiIAACdPnkRFhfXMTkfodDpzc/G+ffuiYcOGstuaAkE6nc78c5QyduxY2XWdOnUyf3/x4kU7R0vkXMwPIiIiIiIispG1DA1n9M+wNpl+vTjPoeOKMzTcP+HtzJJTN0rkAztSYZma0kNDLkNDmPmjUduYoSEsOVWNsRGR72rSpAlGjBiBadOmmauRHD9+HEBl3wdrDafvuecenDp1CufOnUN5eblkNkGHDh0USxm1b98e/v7+KC8vt+jn4W7Jycn46KOP8OuvvyI9PV12O4PBgJycHKeVoq/q4sWLKC4uBlB5bZVUXW/6mUlp0aKF7LratWubvy8ocOzGCiJnYUCDiIiIiIjIRtZ6aDgloGFloj1NYSJfibCHRoCb+2dUh3RAw74MjZrTQ0MuQ0PQFNxKhkZ1S58RkW+aNGkSJk+eDKDy/1FgYCCio6MRHh4u2jY7OxtA5WS3tZ4KpjJSRqMROTk5qFOnjmgbaxP/Wq0WtWvXRnp6uvnc7va///0Pzz//PHQ6nfWNAZSUlLhkHFWfv7XrVrWEl9J1Cw4Oll2nrpLVqNfrbRkikcvwHQ4REREREZGNrGZo+Fe/5JS1nhKONwUXZ2i4O0dBKjvAlh4aUpP86YoZGtXroWEtqORKcoEWYQN3pQyTAI3W/ByEW3lrWTEi8g6xsbF2N6p21mumJ197bXH69GlzMCM2Nhavv/46HnjgAcTHxyM0NBR+fpWZj0uWLDGX4HLHa663XzciZ2NAg4iIiIiIyEYlVntoVD9Dw5r8ilIU68oRrBWX61Ai1RRcyNXTLo5O7EgFPW6Uygc0bOqh4a0ZGjIBHlEPDYUeIFI/WyIiZzOVIcrKyoJOp1PM0jCVZlKpVIiMjJTc5saNG4rn0+l0FlkhVVXNIDAISgxWVVRUpHgOJYmJidDpdNBoNNixY4dsiSZ3ZI9Uff7WrlvVsljC60ZUE3nnOzgiIiIiIiIv5JaSUzZsk+ZAlkaZwfM9NKTY8nxVKpUoS0Oph4Z0ySnbm4J7ks09NBQCMlV/tsI7d6WyV4iIHGHK5CgvL8fRo0cVt01KSgIANG/eXLJ/BgAcPXpUsZTTsWPHUF5ebnFuk9DQUPP3OTk5ssc4e/as4jiVnDhxAgDQrl07xX4TBw8eVDyOMzIqmjZtai4RtX//fsVtTdceEF83oprIO9/BEREREREReSFrAY1wf9f30AAcKztVKhi7J+7ir85UujBzQamHhmTJKYPtJac8SbbklFpYcsqxDA1WnCIiZ+nTp4/5+yVLlshut3fvXpw8eVK0j1B2djbWrl0ru77qOYTHadKkifl7pYDCihUrZNdZYwq2KGV5pKWlYc2aNYrHCQysfK9QVlbm8Fi0Wi169uwJANi8eTOuXr0qu+3ixYvN+/Tq1cvhcxJ5C+98B0dEREREROSFrPbQcEPJKQBIK3EgoCFRcsob6m7bOobqZmiIS055/rlLsbkpuI0lp7zzWRLR7aBLly5ISEgAACxatAhbt24VbZOXl4eJEycCqCwLNWnSJMVjvvrqq5IllHbs2IGFCxcCADp16oTOnTtbrG/Tpo25nNL8+fMlgwWrVq3C999/b8Mzk9a8eXMAwLlz57Bnzx7R+uLiYowZM8ZqI/C4uDgAwMWLF6vVY2PKlCkAKjNknn76aVRUiG+6WLJkCTZt2gQAGD58uPncRDUZAxpEREREREQ2KrbWQ8MpTcGtcyhDQxDQEJYwAlxfjqg6xxcFNEqVMjTE9IJJI6/toSEb0LC9KbhSOTGWnCIiZ1q0aBH8/f2h0+kwYMAATJs2DTt27MDBgwexaNEidOzYEcnJyQCAadOmKZY8ateuHa5du4ZOnTrhs88+w4EDB7Br1y5Mnz4df/vb38x9Oj777DPRvlqt1hw4OX78OB544AH88ssvOHLkCDZu3Iinn34ajz32GLp37+7wc33iiScAVPboGDhwIP79739j586dSEpKwueff4727dtj+/bt6NGjh+JxTGO4efMmXn31VRw6dAjnz5/H+fPncenSJZvHM3DgQIwcORIAsGnTJnTt2hXffPMNDh06hC1btuCZZ57BM888A6Cyd8aHH37oyNMm8jrsFEZERERERGQjd2Ro2JKx4EgPjVK9sOSUHwoqHC934QipO1FtzSAQTvRXGPSy29bkHhpygRbheLUqjeR2gCBDw0szUYjo9tC+fXusXbsWI0eORH5+Pj744AN88MEHou2mTJmCOXPmWD3W1KlTMWnSJEydOlW03t/fH8uWLcM999wjuf9bb72F33//Hfv27cOePXswbNgwi/W9evXC/PnzHe4j0blzZ8yaNQtvv/02cnNz8eabb4q2ee2119CmTRvs3r1b9jiPPvoo5syZg4sXL+Ljjz/Gxx9/bF7XuHFjpKam2jym5cuXQ6fT4eeff8bhw4fx+OOPi7apV68e1q9fj/r169t8XCJv5p3v4IiIiIiIiLyQO5qCS2lSq7bF4+sOlJwSNwX3jvvbbC45ZcfHV1sCGko9NDwZApDL0BBSztCQLznF/Awicra+ffvi/PnzmD59Otq3b4+wsDAEBASgUaNGGDt2LP744w/Mnz8fahsCyc888wz++OMPjBo1CvXq1YO/vz/q16+PJ598EkeOHMGjjz4qu29wcDC2bduG9957D23btkVQUBDCwsLQuXNnzJ8/H1u2bEFISEi1nuuMGTOwfv169O3bF5GRkfD390eDBg0wfPhwbNq0CfPmzbN6jFq1amHPnj146aWX0LJlS3Nzb0cEBgbip59+wpo1azB8+HDzNYuMjMQ999yDOXPm4MyZM2jfvr3D5yDyNt7xDpaIiIiIiKgGsJ6h4ZqSU01Do5BSmG1+nFYs3z9CjmQPDTdP3VerKbgdmQZSZZV0BmEPDe+8v8/W56lVy2doBCmVnGJXcCIS6NWrV7VfG2JiYvDee+/hvffeq/Z4unbtipUrVzq0b1BQEKZPn47p06dLro+Pj1d8rjNnzsTMmTMVzzFgwAAMGDBAdv348eMxfvx4xWPUqVPHIjNDjq3ZGoMHD8bgwYNt2rYqW8YKWL9uRO7kne/giIiIiIiIvJD1HhpOKDklEWRoFhpl8dg5TcHFk96emKuwNahiTxNv6QwNYQ8N7yzFZGugxdYeGu4OWhERERG5EgMaRERERERENnJHDw0pzcIsAxqONQUX9tBwf8J+de7urG6GhqiHhlLJKQ8GO9Q2BiC0CqVblH62vL+WiIiIajIGNIiIiIiIiGxkvYdG9UtOSWkaatlDI7e8BCVWxiIkVXLKGzjaFFyJVIaGsOSUUkDAk6Sep1S/D6WADJuCExER0e3KO9/BEREREREReSGrGRpOKDklbN4NAM1Co0XL7C07VSYIaARotHD3XHf1emjY/vFV6jz2ZGh4kmRAQyL4ohzQYA8NIiIiuj15xy05RERERF5AbzDgRmkBogJCEOAldy4TkefoDQaczrtpEQiwVurJGSWnpDIv6gaFIkjjh5IqZaN2pl9EblmJzcfNKC2yeCw16X2lKBeHM6/aMVr7ZJQViZbZmkFgaykmADiSdQ0twmMtXsuFGSpKPSg8mdMgFajQqsQNwKWyNkwsMjQE687lZ8JoNIque6muAjnlJYgNrAWNl2avEBEREfGTOhERERGAgopS9N+0GLtvpuKO0Gj82vcZ3BEmviOaiHzD1aJc9Pr1c1woyLJ5H61K7ZQyTiUSjceDNH6oFxxmMZ4Ju1ZW6zxSY/3gxA58cGJHtY7rKvaUnJqwayVeO7AWm/s+h47RDfBn9nVcK86z2Eap5JQncxhszdBQuh5KGRqvH1yHX66cwKa+zyFIW7nd2bwMDNi8GBcKsnB/naZY99BTCHVRPxgiIqHU1FRPD4GIahDedkFEREQEYNm5g9h9MxUAcL4gE/NP7fbsgIjIoxad3W9XMAOoLDflqn4FgRot4oLDnHrMALV33N9m6xVTyqiQkl1WjLnJ2wAA7x/fLnE8+Y/DrmrubgupQEUtrb9omUqlkn0OAZpbGR0qiSu860YKVl8+bn783rEt5t/3nTcuYmXKMbvHTUREROQODGgQERERAXhh/2qLx/89+YdnBkJEXuFqUZ71jQTaRcY55dw96zazmFBvV7seArV+6Bzd0CnHN2kbWRetI+o69Zj2igsKQ4R/kE3btoqoY/fxz+VnApD+eVY93t/b9LJY91nXh+0+l7P4qTVoLsgQHNiwpeS2rWWuSdsqv4utI6W3+TM7zfz98guHLNa9vP8Xm8ZKRERE5G4MaBAREREREQkY7Sg6FKDRokt0Qyzo9ohTzh2g0eLr+x/DXeEx6FC7PhZ2HwEAmH73gxjQoAWCtX7wV2sc/qoTFIrZHf6GhOiG+Fe7Pk45piNfrSLq4Kv7H7M5q+XTrg+jW0xjBGi05mOE+wdiQvPO2DfoBXSoXV+0T1ZZMQDxz7NNRF00CIkwP57WtheGNmqN+FqRmNH+IfSoE+/YD89Jlt33KNpGxiFI44eH6t2Jdzr0k9xuyb2j0b52PfP1qB0QjBdb3othjdqYt/moyxD0iI0X7XuhIFP2/N7aMJ2IiIjIO3KMiYiIiIiIvIjRaFtAI3fsbITbmGFgj8GNWmNwo9YWy6IDQ7D+oWecep4oFxzTVe4Ii8aeQS/Irj889BXsz7iErus+NS/L/KsRukHw85zcsrvF45jAWlj94AQnjrZ6usXG489hr1ndrlN0AxwZ+qriNk1Co7Br4FR8fnoPJu/9ybz8YkG27D729CshIiIicifedkFERERERCRga35GsERvA/KcqIAQi8cl+goU68pFAQ1fnK5vGhpl8fiiQo8Ye/uVEBEREbkLAxpEREREREQCwglwKRqVGn5qjdXtyH2iBQENAMgqLRYFqNQ+WFKpaa3aFo9zykuQ81dJLiGWnCIiIiJvxXcpREREREREArb00AjW+rlhJGSPcP9A0WR8ZlkRMzQANK4VKSolJVd2igENIiIi8lZ8l0JERERERCRgSwsNlpvyPiqVClEBwRbLMkuLRAEqX+wR4a/RomGVRuiAfNkplpwiIiIib8WABhERERERkYBNGRoaZmh4o+hAy7JTWRIZGr4Y0ADEZacuyAU01JwqICIiIu/EdylEREREREQCtvTQYMkp7yTso5FZKlVyyjcDGs3Coi0ey2VoqH30+hAREZH3Y0CDiIiISIKW9cOJfJoNFadYcspLiUpOlbHklEnTUMsMDfbQICIiopqG71KIiIjI5xkl7sTmRCWRb5N6XRBihoZ3EpecKmbJqb80C42yeHyhIFNyO1+9PkREROT9GNAgIiIin1eq14mWcaKSyLfZ1kODgU9vJAxosOTULU0FAY3LRbmoMOhF22nZQ4OIiIi8FN+lEBERkc8r1JWJljFDg8i3sYdGzSVdcsqSr2YgCAMaBqMRlwpzRNux5BSR66WmpkKlUkGlUiExMdHTwyEZM2fONP+cyLW2b99uvtbbt2/39HAwfvx4qFQqxMfHe3ooJMB3KUREROTzCiskAhoaTlQS+TL20Ki5hE3Bs0qLYTAaLJb5atPr2gHBiPAPslgm1RjcVwM+REREBIwePdocXFKpVEhNTfX0kCwwoEFEREQ+r7CiXLQsQKP1wEiIyFuwh0bNJSo5JZGh4cvz9eLG4OKAhsaXLxARAfC+u+WJnIEZN9atW7cOq1at8vQwFDGgQURERD5PquSULfXziej2xQyNmisqwHoPDV/OQBA2Bj+fLxXQ4FQBERH5tsTERBiNRq/LTnClwsJCTJkyBQAQGxvr4dHI47sUIiIi8nlFOnGGhi3184no9mVTDw2WpvNKwgyNEn2F6HVe7cMfhYV9NM7k3xRt48sBHyIiIl/11ltv4fLly3jwwQfRv39/Tw9Hlu++iyMiIiL6i1TJKQY0iHybLVlazNDwTsIeGgCQUVpo8diX5+tFAY28DNE2zNAgIiLyLQcPHsSnn36KgIAALFiwwNPDUcR3KUREROTzpEpOMaBB5NtsC2gwQ8MbhfsHiibkS/U6i8e+2hQcEJecOpefKdqGPTSIHLN7924888wzuOuuuxAWFgZ/f380aNAAgwYNwmeffYbc3FybjzV+/HioVCrEx8crbpeYmGi1ce+2bdvw2GOPoUmTJggKCkJwcDAaN26Mrl27Ytq0adi2bZt529TUVKhUKvTu3du8rHfv3hYNglUqFRITEyXP9fvvv2PcuHFo2rQpgoODERYWhrZt2+L111/H9evXZZ+HsLdBXl4eZs+ejQ4dOiAiIkL2nKtXr8bIkSPRqFEjBAYGIiIiAgkJCZg1axZycnIUrx0AXL16FVOmTEHTpk0RGBiIevXqYciQIdiyZYvVfR1lusZVn9P333+PPn36IDY2FkFBQWjRogXeeOMNm35nysvLsWDBAvTu3RsxMTHw9/dH3bp1MWDAAHz99dcwGAyy+wp/z65du4ZXX30Vd955J4KDgxETE4OBAwdi48aNdj0fOfHx8VCpVBg/frzV5yVl3759eOutt9CrVy/UrVsX/v7+CAsLQ6tWrTBp0iScPHlScj/T38msWbPMy4S/08K/IVv/BpOTk/Hcc8+hefPmCA4ORmhoKFq3bo1XXnlFsVyV1HXbvHkzBg8ejLp16yIgIABNmjTBpEmTcPXqVVsvkUN0Oh2effZZGAwG/POf/8Sdd97p0vNVF7tdEhERkc8rrJAIaLCHBpFPsyWmGcSSU15JpVIhKiAYNwVZGcJtfJWwKbgUZmgQ2aekpARPP/00VqxYIVp37do1XLt2DevXr0dGRgZmzpzp1rG98sor+Pjjj0XLL1++jMuXL2P//v1ITExEZqY4uGmP0tJSTJgwAd99951o3fHjx3H8+HF8/vnnWLFiBQYPHqx4rHPnzqFv376Kk8E5OTkYMWKERTAGAMrKynDo0CEcOnQICxYswC+//IKuXbtKHuOPP/7AoEGDkJ+fb16WlpaGtWvXYu3atW77WT399NNYsmSJxbIzZ85g7ty5WL58ObZu3YoWLVpI7puamor+/fvj9OnTFstv3LiBX3/9Fb/++iu+/PJL/PLLL6hdW/n1/+DBgxg4cCBu3rxVirCkpAQbNmzAhg0b8Oqrr+KDDz5w8FlWX2JiIiZMmCBaXlFRgVOnTuHUqVNYtGgRPvnkE0yePNktY5ozZw7eeustUdDo5MmTOHnyJD7//HMsXLgQTz75pNVjvfHGG5g7d67FstTUVHzxxRf48ccfsWPHDrRs2dKp4zf58MMPcfToUTRv3hxvvPGGS87hTAxoEBERkc9jySkiEpJqIi1cxpJT3is6MEQxoOHLPSIahkRAq1JDZ5S/Y5cBDSLbGQwGDB06FJs3bwYANG/eHJMnT0ZCQgKCg4ORlpaGPXv2YNWqVW4f27p168zBjLvvvhuTJk1Cy5YtER4ejtzcXJw4cQJbtmxBUlKSeZ/69esjOTkZBw4cwFNPPQUAWLJkCTp37mxx7AYNGpi/NxqNGDFiBNavXw8AGDx4MEaNGoWmTZtCrVYjKSkJH3zwAS5fvowRI0Zg9+7dSEhIkB33iBEjcO3aNbzwwgsYMmQIIiMjce7cOTRu3BhAZdCiT58+OHz4MDQaDcaMGYMBAwagSZMmqKiowM6dO/Hhhx/i5s2bGDBgAI4cOWLe1+Ty5cvmYIZarcZzzz2HESNGIDw8HH/++Sfmzp2LmTNnKo7TGRYsWIADBw6gS5cueOWVV9C8eXPcvHkTiYmJWLVqFa5fv45+/frh+PHjCA0Ntdi3sLAQDz74IC5evAgAGDZsGJ566inUq1cPKSkpmD9/Pnbs2IFdu3Zh8ODB2LlzJzQajeQ4iouLMXLkSOTl5eGf//wnBgwYgICAAOzfvx9z5sxBWloaPvzwQzRq1AgvvfSSS6+JHJ1Oh8jISAwdOhT3338/mjdvjpCQEFy/fh2HDx/GJ598gszMTEydOhUtWrTAAw88YN532LBhSEhIwIIFC/D5558DqMysEKpfv77N41mwYAGmT58OAIiJicE//vEP9OjRA3q9Hlu2bMH777+PoqIijB8/HtHR0RgwYIDssRYtWoQ9e/agZ8+emDhxIu68807k5uZi+fLlWL58OTIyMvDUU09h7969No/PVikpKebMlQULFiAgIMDp53A2BjSIiIjI57HkFBEJCUtOBWn8RI2lWXLKe0UFBCuu9+WSU1q1Bo1rReJCQZbsNr4c8PEVRqMBhjL534HbjTogCioXBermz59vDmY8/PDDWLFihWhCcODAgZg9ezbS0tJcMgY5piBK48aNsXv3btSqVctifa9evTBlyhRkZ2ebl/n5+aFNmzYWGRtNmjRBmzZtZM+zePFirF+/Hn5+flizZg3+9re/Wazv2rUrnnjiCdx33304ceIEXn75ZezatUv2eMePH8evv/6Kvn37mpd16tTJ/P0777yDw4cPIyIiAlu2bLFYBwD33nsvxo4di27duiEtLQ3Tp0/HN998Y7HNa6+9Zs7M+Prrr/HYY4+Z1yUkJGDkyJG47777cPDgQdlxOsOBAwcwYMAA/PLLL9Bqb03T9u/fH23atMGMGTNw+fJlzJ49G//3f/9nse+sWbPMwYy33noLs2fPNq/r1KkTHnnkETzxxBP45ptvsGfPHixcuBCTJk2SHEdGRgZyc3OxZcsW3H///eblXbp0wSOPPIJ77rkHV69exZtvvokxY8YgJibGmZfBJv3798eYMWMQHGz5P75Dhw4YOHAgXnzxRdx///34888/8fbbb1sENCIiIhAREYHY2FjzMqXfaWsyMjLw+uuvAwDq1auHffv2oWHDhub1PXr0wJAhQ3DfffehqKgIzz33HFJSUuDnJ/3ecc+ePXj22Wfx5ZdfWmSRPvjgg/D398fixYuxb98+HDlyBB06dHB43FKef/55FBcX47HHHkOfPn2cemxXYUCDiIiIfJ5UhoZe4c5VIrr9CUOagRotAxo1iFRj8Kp8fb6+aWiUYkCDPTRuf4ayLNz8Ltb6hreJ2EdvQhPo/AlYg8GA999/H0BlxsLy5ctl725Wq9V23f3tDOnp6QCAjh07ioIZVVkrRaTEaDTiP//5DwDgxRdfFAUzTCIjI/H+++9jwIAB2L17N86dO4fmzZtLbjt+/HiLYEZVhYWF+OyzzwAAs2fPFgUzTBo3box//etfmDx5Mr7//nssXLgQISGV/xvS09Px888/AwAGDRpkEcwwCQ0NxcKFC3HPPfcoPPvqCwgIwKJFiyyCGSZvvvkmVq1ahePHj+N///sf3n33Xfj7V2aHlpWVYfHixQCA1q1bS5bHUqlUWLBgATZu3IisrCzMnz9fNqABABMnTrQIZpjUq1cPH3zwAUaPHo2ioiIsW7YM06ZNc/AZO87a3094eDjeeecdDBs2DLt27UJWVhaioqIU93HU0qVLUVxcDKCyXFPVYIZJhw4d8MYbb+Ctt97CtWvXzP1epMTFxeHTTz+VLIk5bdo088/6jz/+cGpA4+uvv8amTZsQHh6Ojz76yGnHdTXmkRIREZHPE05SAszQIPJ1RhvKS7HklPeKDlQOaKh9vKSSsDG4EDM0iGxz9OhRc7PeZ599VjFo4AlxcXEAgJ07d+LChQsuOcfJkyfNxx4xYoTitlUny5VK54wdO1Z23Y4dO5CXl2fX+SoqKnDo0CHz8t9//x16vR4AJHsymHTp0gWtW7dWPEd19e3bF/Xq1ZNcp1arMW7cOABAdnY2Dh8+bF536NAhc8Pw8ePHy5aSCgsLw6hRowBU/qyUsoSUrsXDDz+MiIgIAHBpw3R7FBUVITU1FSdOnDD3aamaAXHs2DGXndt0DSIiIjB8+HDZ7Z555hnRPlJGjBghGwy96667zK8tpowcZ8jKysKrr74KAPj3v/+NOnXqOO3Yrubb7+KIiIiIIFNyik3BiXya8DVAqgF4MJuCe60oKxkavlxyCrCtMTgRWXfkyBHz9/fdd58HRyLN1Ig4KysLbdq0waOPPoqlS5fi/PnzTjtH1ZJM3bp1g0qlkv2qGvAxZY9Iufvuu206X1xcnOL5qpYUqnq+qr0ThL1BhLp06aK4vrrsOX/VcR8/ftz8vbUskqrrq+5Xlb+/P9q1ayd7DD8/P3NmgFTvCXfJzMzE9OnTcddddyE0NNRcDq1t27Zo27YtBg4caLGtq5iuY8eOHWXLSAFAnTp1EB8fb7GPFLmm7yaRkZEAgIKCAjtHKu+1115DRkYGunTpgueff95px3UHBjSIiIjI57EpOBEJCV8CAjTiUhDM0PBe0YHKPTR8PQGhWWi04no9/wcS2aTqhKkpG8KbPPjgg5g/fz6CgoJQWlqKlStX4qmnnkLz5s3RoEEDPP/889W+i/3mzZsO7Wcq1yPFNHnrqvNV7RlStaeCFFfftW7P+auO257nULduXcn9qqpdu7ZslodwLHLHcLVDhw6hRYsWmDNnDs6ePSvKphUqKSlx2VhM18DatQduXX+l6ybsCyKkVldO4Zsyi6pr27ZtWLZsGTQaDb744gvz8WsK9tAgIiIin8em4EQkJGwKLvWhmT00vJe1HhrM0FDO0OD/wNufOiAKsY86NjFcE6kDXFNHvyaYMmUKRo4ciW+//RabN2/G7t27kZeXh2vXruHLL7/EwoULMX36dLz77rsOHb/qBOvatWvNd6NbozQRrDSxXvV8hw8fVrw7vqoGDRpILpfqWeBOzji/txzDlcrLyzFq1ChkZWXBz88PL7zwAoYOHYo777wTkZGR5nJNFy9eRLNmzQBIv3dzNm+/bnJMfW8SEhJw5swZnDlzRrRNSkqK+fu1a9eaG8E/+uij7hmkAgY0iIiIyOcxQ4OIhGx5DWCGhveKstpDo2ZOQDhLUys9NPg/8PanUqld0iTb10RH38p2SktLs1o2xh6mO6YNBoPidkVFRVaPFRsbi5dffhkvv/wyDAYDjh49ip9//hnz589Hbm4u3nvvPXTu3BlDhw61e5xVmy5HRERYlHlyharni4mJkQ1UKKmaAXLjxg3Jhs5V17uSteNXXV+1eXvV72/cuIE777xT9hhVy23JNYDPysqCXq9XDCaZxiI8RtW7+53x+ypl27Zt5v4RCxYssOhNUZW7skdq166NtLQ0m34/TNdf7tp7QllZ5Q19+/fvx2OPPWZ1+xdffNH8vTcENGpWPgkREVENVqIzIL/MAJ2BkwSelFdegozSQouvvHJxOvKN0gLoDM5J6SWimkeYoSGFGRrey1qGRk29o9JZwvwDFa9Rekk+9FYmpYiosn6+yc6dO5167NDQUAAwN36Wc/bsWbuOq1ar0bFjR8yePRtbt241L1+1apXFdra+Tpr6KgDA7t277RqLI5xxvrZt25q/P3DggOK21tZXlz3nrxosqvr9/v37FY+RlJQkuV9V5eXliuXHdDodjh49KnkM0+8qAOTk5MgeIzs7G1lZWYpjlXPixAnz96NHj5bdrmqPFSnO+v9vugaHDx+GTqeT3e7mzZu4dOmSxT5UfQxoEBERuVipzoA5SbkY/1smnt2Siac2ZWLzJdfV8yRpmaVF6LF+PiK++RdiV8y0+DqVJy65YDAaEfXt21hx8YjE0YjodnYuLwM70i9aLJMKcEg1CifvEG0tQ8PHS04BymWnTuTeQPSKt/FDavVq6xPd7tq1a2e+u3/x4sUoLCx02rGbNGkCoLIJsFQ5GKByEvrHH390+BwdO3Y0ZysIGygHBgaavzfdzS13DFOWxMKFC1FaWurweGzRp08fc7+BTz75xKGyQr179zZnIixbtkx2uwMHDig2cnaGTZs2IS0tTXKdwWAwjy8yMtIigNapUydEREQAqHwOcpkRBQUF5mBVq1atFHu9KF2Ln3/+2Rys6NOnj8W6yMhI81iUAgrfffedw2WgqgYN5LI8DAYDFi1apHgcW3+vrTFdg9zcXPz000+y2/3vf/8zP2fhdfOk7du3w2g0Kn6NGzfOvH1KSop5uTdgQIOIiMjF/rhWhqMZt0oalemNWHayAKU63vnoTp+d2o09N1Pt2ie/ohRT9/2MCmZqEPmUWUc3i5ZpVOKPTlq1cvNM8pyoAGtNwRnQaBam3Bg8t7wEU/b+DIOR71eI5KjVarz++usAgKtXr+LJJ59Eebm4lClQOdl6/fp1m4/ds2dP8/cffPCB5Davvvoqrl27JnuMlStXKjZGPnjwoHmS2hRAMak68X3hwgXZY6jVakyfPh1AZf+CJ598UnGiOD8/H/Pnz5ddb01ERASmTp0KANizZw9eeeUVxTJHN27cwOLFiy2WxcXFmctrrVmzRpSdAgCFhYWYOHGiw+O0VVlZGSZOnCjZ7Hnu3LlITk4GADz11FPmPhEAEBAQYC67dPz4ccyePVu0v9FoxNSpU83BKtN1k/P5559j165douXp6emYNm0agMrm1VUnuk3uv/9+AMAvv/wi+fty5swZ/Otf/1I8v5LmzZubv09MTJTc5o033sDhw4cVj2Pr77U1EyZMMAfWXnvtNcm/w2PHjuHf//43AKB+/foYNmyYw+cjS+yhQURE5GI3isVvTisMwI1iAxqH8d4Cd7lQ4Fh6c3ZZMa4X56FxLe+peUpErvVnjvhOyX+07Y0n//gO+r8mdztG1Xf3sMgOEf5BqBcchuvF+ZLrrTXF9gWdoupbzUK8WVqIYl0FavkFKG5H5MumTJmCtWvXYvPmzfj555/Rtm1bTJ48GQkJCQgODkZ6ejr27duHFStWYMyYMZg5c6ZNx+3QoQO6deuGvXv3YtGiRSgvL8e4ceMQHh6Oc+fOYeHChdi2bRu6d++OPXv2SB7jH//4B55//nkMHToU999/P+68806EhIQgKysLu3btwqeffgqgsgm3sCdBo0aN0KBBA1y9ehXz5s1DgwYNcNddd5kzG+rUqWMuNfT888+bn//333+Pw4cPY+LEiejSpQvCw8ORn5+P06dPY/v27VizZg0CAwOtTq4reeedd7Bjxw7s378f//3vf7F9+3Y8++yzaN++PUJCQpCTk4MTJ05gy5Yt+PXXX9G2bVvR8/vggw+wefNmFBQUYMyYMdixYwdGjBiBsLAw/Pnnn5g7dy7Onj2LhIQEq2WMqiMhIQFr165Fjx498Morr6B58+a4efMmli1bhu+++w5AZUNzqWDAjBkz8NNPP+HixYuYOXMmkpOTMWHCBMTFxSElJQXz58/H9u3bAQDdunXDc889JzuOmJgYBAcH46GHHsIrr7yCAQMGICAgAElJSfj3v/9tDsbNnj1bsqH75MmTsWbNGpSUlKBXr16YOXMmOnTogMLCQmzduhX//e9/ERMTA41Gg4yMDLuvU79+/RAbG4ubN2/irbfeQmpqKh5++GFER0fj/PnzWLRoEbZu3YoePXooliLr3r27+ftXXnkFb775JuLi4sw3OsTHx0OrtT5dHhMTg/fffx9TpkzB1atX0alTJ/zzn/9E9+7dodPpsGXLFrz//vsoLCyESqXCwoULbW5gT9YxoEFERORicmmZBeW849GdbKmHLyetuIABDSIfkiaYBG8QHI5RTdrhRmkh3ji0AbX9g/FB58EeGh3ZQqVS4bOuwzFh10rkVumTFKTxw/S7H0S94HAPjs47PN38Hvx69Qy2pp3z9FCIajS1Wo3Vq1dj3Lhx+OGHH3D27Fm8/PLLTjn2kiVL0LNnT/MEt7Ak0LRp09C6dWvZgAZQWRJHal+TgIAAfPHFF0hISBCtmz59OiZPnoyUlBRRw/ClS5di/PjxACpfc1euXImXXnoJX3zxBS5cuIC///3vsmOSmhC3R0BAADZv3ozx48fjp59+wrFjxxQDJGFhYaJl8fHxWLNmDYYMGYKCggIsWLAACxYssNhmxowZUKlULg1oTJkyBTt27EBiYqJks+W4uDj89ttvCA8X/98KDQ3F1q1b0b9/f5w+fRo//vijZAmyHj16YM2aNYoNv4ODg/HDDz+gf//+mDNnDubMmSPa5sUXX8Srr74quX+/fv3w4osv4pNPPsHVq1clA2Rr1qxB//79ZcegJCQkBMuXL8ewYcNQWlqKL7/8El9++aXFNr169cL8+fMVe1XccccdGDVqFFatWoVNmzZh06ZNFutTUlIQHx9v05gmT56M3Nxc/Otf/8KNGzfwyiuviLYJCAjAwoULMWDAAJuOSbZhQIOIiMjF5KbRGdBwL2Fc6YWW9+Jf7S3rmIb5VdZUjfp2Bop0t8oFyN3hS0S3nzK9DplllrWZN/Z9Flq1Bq+0vh+vtL7fQyMjew1r3AaDG7ZCdnmxeVmYXyACNPwYDAARAUHY8reJyC8vRZlBBxVUyCgtRKuf3/f00IhqnODgYHz//ff4/fffsXTpUuzatQvp6enQ6/WoU6cO2rdvj0GDBuGxxx6z67gtWrTA4cOH8d5772HDhg1IS0tDeHg4OnXqhBdeeAEDBgyQLb8DAL///jvWrl2LnTt34uzZs0hPT0dOTg6Cg4PRrFkzPPjgg5g0aRKaNm0quf+kSZNQp04dfPnllzh69Ciys7NlGyD7+flhwYIFmDRpEhYtWoTt27fj8uXLKCwsRK1atdCkSRN06tQJ/fv3x6BBg+y6DlJCQ0Px448/YteuXVi2bBn++OMPXL9+HSUlJQgLC0OzZs3QpUsXDBw4EH379pU8Rq9evXDixAnMmTPHfH0jIyORkJCAF154Af369bM5o6Y6li5dir59+2LhwoVITk5GYWEhGjdujGHDhuGf//ynuc+JlPj4eBw7dgyLFi3C999/j+PHjyM/Px+1a9dGhw4dMHbsWIwZMwZqtfXKAAkJCTh8+DDmzZuH9evX49q1awgJCUHnzp3x4osvWg1G/Pe//0XXrl3xxRdf4OjRo6ioqECjRo3w8MMPY9q0aYiKirL72lTVr18/HDx4EHPnzsW2bduQkZGBiIgItGrVCmPHjsXTTz+Ny5cvWz3O119/jYSEBPzwww84c+YMCgoKFMuWKZk+fToGDRqE+fPnY9u2bbh+/TrUajUaNWqEvn374uWXX7Y5QEK2Uxm9pZsHeb2rV6+am11duXLF3PSJiIiULT9ZgPUp4tq1T7WuhX7xyjW+yXke3/Etvrl4q6bqP9s+gDkJ0nfK9Fg/36LfxvyuD2NKyx6uHiIReYFLhdmI//7fFsuyx7yDSCs9GYhuB5cLc9D4+/csluU//i5C/QJl9iBXcfTz97lz56DT6aDVai1qzhOR90hNTTX3LKma6eIJ48ePx7Jly9C4cWOkpqZ6bBx0+3LF/yUW7iYiInIx2QyNCt5T4E7CklNK/WDjgkItHgvLzxDR7SutuMDicYBGiwj/IA+Nhsi9VGCzdCIiIvJuDGgQERG5mFwuZH4ZS065kz3ho7hgyzq710sY0CDyFcISc/WCwsyNIomIiIiIyLN8NqBx8+ZNrFu3DjNmzED//v0RHR0NlUoFlUplc6pXcXExfvrpJ0yaNAmdO3dGZGQk/Pz8EBUVhW7dumHmzJlIT093ynjj4+PN41P6Yl02IqKao6CCAQ1PUroLtZ4goMEMDSLfkSYIYAoDnES+hkWqiYiIyJv4bDe0OnXqVGv/P//8Ez169EBhYaFoXXZ2Nvbt24d9+/bho48+wsKFCzF69OhqnY+IiGouNgX3DsK2YUr3W8cFCQIaJQUyWxLR7UaUocGABhEREVWRkpKCoqIiu/eLjIxE/fr1XTAi8jVFRUVISUlxaN+77roLfn5+Th6Re/lsQKOqRo0aoUWLFti0aZPN++Tn55uDGT169MCgQYOQkJCAqKgoZGRk4KeffsKiRYuQn5+PsWPHIiwsDP3796/2WIcOHYp3331Xdr2/v3+1z0FERM4ld2djQTlveXQne662cALzenGecwdDRF5LlKERxIAG+Q5WVyMism7ChAnYsWOH3fuNGzcOiYmJzh8Q+ZwDBw6gd+/eDu2bkpJS4yv8+GxAY8aMGejcuTM6d+6MOnXqIDU1FU2aNLF5f7VajVGjRuHtt99Gq1atROv79u2L/v374+GHH4Zer8cLL7yAc+fOVbv+bkREBNq0aVOtYxARkXsxQ8M7Kf1PFk5gZpQWocKgh59a4+phEZGHMUODiIiIXCk+Pl6UPe4piYmJDLJQjeOzAY1Zs2ZVa//u3buje/fuitsMHToUw4cPx48//ogLFy7gyJEj6NixY7XOS0RENY9sU/ByA4xGI5vNuoldJackJjDTiwvQsFaEcwdFRF6HAQ0iS0a7chyJiG5/27dv9/QQyMf16tXLa4JinuCzTcHdpWr6z4ULFzw4EiIi8jYVBqBM7+lR+A57JmSiAoJF2RjCMjREdHtKK2bJKSIiIiIib8WAhouVlZWZv9doWKaCiMgXKU2ks+yU5yhlxqhUKsQFhVosE05yEtHtp1yvQ2aZZZNPZmiQL1Ep5i8SEREReR4DGi5WtUlQy5Ytq328nTt3on379ggNDUVwcDCaNGmC0aNHY/Xq1T6dakRE5M2UXp0LKhjQcBfhz8HalI2w7NR1ZmgQ3fbSSwpEy6RK0BH5En7MJCIiIm/isz003OHYsWNYv349AKBt27ZOCWikpKRYPE5NTUVqaipWrVqFHj16YOXKlahfv75Dx7569ari+rS0NIeOS0Tk8xQmAvLLGNBwF3sD//UEZWaYoUF0+xP2zwjQaBHpH+Sh0RARERERkRADGi5SVlaGZ555Bnp9ZXH09957r1rH8/f3x5AhQ9C3b1+0adMG4eHhyM3Nxd69e/H555/jypUr2L17Nx566CHs3bsX4eHhdp+jYcOG1RojERFJUwpZFJTztkdPsVZWQ5ShwYAG0W1P1BA8KEyxPB0REREREbkXAxouMnXqVBw8eBAAMG7cOAwePLhax0tKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGH1TofERE5kVKGBktOuY2o5JSVOUphI2A2BSe6/Qn/zlluinwN43dERETk7RjQcIE5c+Zg8eLFAIDOnTvjs88+q/YxpYIZJqGhoVi1ahWaNm2K7OxsLFy4EHPnzoW/v79d57hy5Yri+rS0NHTp0sWuYxIRkZUeGmwK7jZ2l5wKFpacEtfWJ6LbiyhDgwENIhgV38kQERERuRcDGk725ZdfYvr06QCAFi1aYMOGDQgJCXH5ecPDw/Hoo49iwYIFKCoqwsGDB9G9e3e7jtGgQQMXjY6IyLcxoOGdrJecCrV4zKbgRLc/UYZGEAMaRERERETeRO3pAdxOVqxYgcmTJwMAGjdujM2bNyM6Otpt52/VqpX5+2vXrrntvERE5Dj20HAfUckpawENwUTmzZJC6Ax6J4+KiLwJMzSIiIiIiLwbAxpOsmbNGjz55JMwGAyIi4vD1q1b3Z7xwIaFRETeSanSETM03MfekhnCiUwjjLhRUujMIRGRl2FAg3ydVLCft14QERGRN2FAwwm2bt2KUaNGQafTISoqCps3b0azZs3cPo6TJ0+av69Xr57bz09ERNKUJgLyGdDwGGv3AUQHhkCrsnyrxMbgRLe3tGKWnCIiIiIi8mYMaFTTnj17MHToUJSVlSE8PBy//fYbWrdu7fZx5OXl4bvvvgMABAcHIyEhwe1jICIiaUrNqJmh4T7CH4O1klNqlRp1gyz7aAgnO4no9lGu1yGzrMhiGTM0iIiIiIi8CwMa1XD06FEMHDgQRUVFCAkJwfr169GpUye7j9OrVy+oVCqoVCqkpqaK1m/cuBElJSWy+xcWFmLUqFHIysoCADz99NMICAiwexxEROQaik3BK4wwKNWkIqext+QUAMQJJjOF5WiI6PaRXlIgWiZ8DSAiIiIiIs/SenoAnrJr1y6cP3/e/DgzM9P8/fnz55GYmGix/fjx4y0eX7hwAf369UNubi4A4N1330V4eDiOHz8ue87Y2FjExsbaPda5c+di7NixGD58OO699140a9YMtWrVQl5eHvbs2YMvvvgCly9fBgDcddddmDlzpt3nICIizzAYgWKdEbX82AfJ3WxpPSUsN8OSU0S3L2HAMkCjRaR/kIdGQ+QZUv8alTJNiYikjB8/HsuWLUPjxo0lb9x1N1PP2bfffptzZkS3AZ8NaCxevBjLli2TXLd7927s3r3bYpkwoPHHH3/g5s2b5sevvPKK1XNW54UzOzsbixcvxuLFi2W36dmzJ7755hvUrl3boXMQEZFrWJsGKCg3oJYfkyZdzZEMDWG5GWZoEN2+hAHLuKBQ8wQIERERUU3Su3dvbN++HQDw0EMPYdOmTZ4dEJETcfakBpg3bx7mzp2LoUOHokWLFoiOjoZWq0VYWBhatGiBcePGYePGjfj9999Rv359Tw+XiIgErN3YWFDOOx/dwd4eGgAQFyzoocEMDaLbljBgWS843EMjISIiImvi4+OhUqlENyATcOnSJezYscP8eOvWrbh+/boHR0TkXD6boZGYmCgqK2WP8ePHO+1F0xQxlZOQkMAm30REtzE2BvcMW+67FpWcKhbX2Cei24M4oMH+GUSA9UxTIiJv52ul87766isYjUYEBARAr9dDp9Ph66+/xt///ndPD43IKbwqQ+PChQvYv38/bty44emhEBEROY21t8/5DGi4BUtOEZEScckpBjTI97DMGhFRzffVV18BAAYNGoS+fftaLCO6HbglQ+PmzZv44YcfAABjx45FeLhl+vb58+cxevRoHD16FEDlm6ihQ4di8eLFiIyMdMcQiYiIrNIZjPjmdCGS0svgr1ZBZzAiu0w+GJFbkYF9eRuQq8uU3Uaj0mDfH3dg4h1D8GKH2uZeGsUVBiw4lo8/Myugl7mjKNRPjSHNgjGgSbDiuM/nVuDLPwtwvUhn9TmqADQO02JKuzDUq+X6twnXivIwYddKnMm7iQfi7sDJ3Bs4lpNmcRdVveAw9Kl3J3bfSMGFgiwAQKDGD0MbtcbC7iMQqPWD0WjEe8e2YvG5/WgVXgeL7x0pKhdzLt/y52DLpI1UU/CM0kLEBNYCAGSXFePJnSvwe/p56AzWA1NRASGY1qYnXm3T0+q2Um6WFOCJnSvwx40U6I2OB8LUKhW6RDfC8vsfReNa7L1FYgvP7MO//9yK+sHhWHLvKNwVHuvpITmsTK/DpL0/4sfUZJTqK2S3qxD8Dd8uGRrFFQYsTC7A+dwKJNQJwOMta0Gr5qQ1ERHR7Wjfvn04e/YsgMo52NLSUmzYsAHHjx/H4cOH0bFjRw+PkKj63JKh8dNPP2Hq1Kn473//KwpmlJWVoX///jh69CiMRiOMRiMMBgNWr16NoUOHumN4RERENjlysxwbUkqQWWLA9SI9bpYYoDNA9ispfzOydTdggF72q8JYjstlJ/H9pSSsvVBsPteai8U4cKMcZXqj7PFzygxYdrIQ6VYCFV/+mY/LBTrFsZq+KgzA+VwdlpxwT2mld45uxubrZ3G5KBeJ5w8iKfMKyvQ6lBv05q/UwhwsPrsfp/JumpflV5TiqwuHsPjsfgDAwcwr+NeRjbhUmINfr53Ge8e2is4lCmjYML44iQnN15LWmr9/99gWrL96CsW6Cosxy32lleTjtQNrcSbvpn0X6i+zjm7GputnUaK37XxyX6V6HXbeuIh/Htzg0Djo9pZakI3Je3/CpcIc7LmZileT1nh6SNWy7PxBLD13APkVpYp/F8IsrrigUJkj1iybL5dgb1oZMkoM+DW1BEdulnt6SEREt5WZM2dCpVKZb5bJzc3F22+/jdatW6NWrVqoXbs2evfujRUrVlg9VmpqKl555RW0bt0aoaGhCA4ORvPmzTFx4kQkJycr7msaw8yZMwEAW7ZswZAhQxAXF4fAwEA0bdoUU6dOxbVr12x+LnK2b99u3s5aGXUpRUVFWLlyJZ555hm0b98e4eHh8PPzQ0xMDHr27Il58+ahsLBQct9evXpBpVLh0qVLAIBly5aZx2L66tWrl8U+wmsjxWAw4Ouvv8aAAQNQt25d+Pv7IyYmBr1798aCBQtQXi7//1N43UpLS/H++++jY8eOCA0NRWhoKLp06YL58+dDp7N+k1l1LF++HAAQGRmJgQMHYtiwYQgNDbVYR1TTuSWgsWnTJqhUKjz88MOidYmJibhw4QIAYMiQIfjvf/+LwYMHw2g0Yvfu3Vi5cqU7hkhERGTVspP2TfLn6TLs2DYT53Nv3Tl8pcD2N7pXCvSy6wxGIy4rrJdz1YF9HLHw7L5q7Z+ckw4AeO9PywDGgtN7RNvWF2Rs2FI+KvavTIyqqpalOZnrWJnMY9mONeU7/tfzdZaDmVedejy6PQgzgGr674mjf28tI+o4eSSe8e3pIovHn//J0nkkTy0xiVmdjEAiX5OSkoKEhAS88847OHnyJIqKipCTk4Pt27djzJgxGD16tOyE9vLly9GiRQt8/PHHOHnyJAoLC1FSUoLz589j4cKF6NChA+bMmWPTOGbNmoWHHnoIa9euRXp6OsrKypCSkoLPPvsMrVu3xh9//OHMp223gQMH4tFHH8X//vc/HDt2DPn5+dDpdMjMzMTOnTvx+uuv4+6778bp06fdMp7s7Gzcf//9eOKJJ/Drr7/ixo0bqKioQGZmJrZv344pU6agffv25iCKkhs3bqBbt274+9//jiNHjqCwsBCFhYU4cOAAXnjhBQwfPhwGGzK7HVFeXm6eRx05ciT8/f0RFBSE4cOHAwBWrFjh8oAKkTu4JaBx5swZAEDXrl1F67799lsAwAMPPIDVq1fjhRdewC+//II+ffrAaDTiu+++c8cQiYiIrMpVKC8lRW+0/c2iEUZkld46vs6OU8mVpAKAUt3t3QCv5K/yMfnlpXbve2+dJla30ajVuDsyzmKZLaWlrCmoKHNovzKDcz+ACHsGEAHAaUEGUbFOvkxTTZBfYf/rw8j4u9E5uqELRuN5RRW39/8Fqh6tSjxFwIAGke1Gjx6NlJQUPP/889iyZQsOHDiA//3vf7jzzjsBAKtWrcLrr78u2m/9+vUYP348ysrKUKtWLbz99tv4448/sHfvXnzwwQeIjo6GXq/H9OnT8fnnnyuOYf369Zg5cybuuusu/O9//8OBAwewZcsWTJw4EWq1Gnl5eRg0aBCuXLnikmtgC51Oh7Zt2+LNN9/Ezz//jP3792Pfvn1YuXIlHn30UajVaqSkpGDYsGEoLbX8P7506VIkJyejXr16AIChQ4ciOTnZ4mvp0qU2j0Wv12PQoEHYvXs3AKBnz574/vvvcfDgQaxZswbDhg0DAJw6dQoPPvigbOaIyfDhw3Hy5Em8+OKL2Lx5Mw4dOoRvv/0WLVu2BACsXbsWixYtsnl89li3bh2ys7MBAI8//rh5uen7mzdvYuPGjS45N5E7uaWHRkZG5R2qDRo0sFheUlKCffv2QaVS4bnnnrNY99RTT2HLli04fPiwO4ZIRERklb9GhQqD9ETQSx3CUDdEY36sNxqw6mfLLIeF3caiY3Q0VFDho5M78fWFW//jjDAgq0QPo9EIlUolClIMbBKEe+sHAgA+PpyPG8W3jq1XmJsqlghovN01AoFayzswz+VUYMkJ5Tfn3sgU0Ajx87e6rUFwTUP9Amw6x+QW3fH83h/NjysM8tkrL7e6D0806yRaPmnvj0jKvPWh0dGARrne8tzvdOiHgQ1a2rz/teI8DNl66wNeka4cBRWlCPULdGg8dHsSBTT05ebXppoov9zy721yi+54unkX2e2jAoPZW4Z8llYtDmg4I5BP3sdgNKKw3HcCnLX8VZIZSM524MABfPvtt3jsscfMyxISEjBy5Ejcd999OHbsGD755BM8/fTTaNOmDQCgoqICzz33HIxGI2rVqoU//vgD7du3N+/ftWtXPPLII+jWrRvS0tIwbdo0jBw5EtHR0ZJjOHjwIDp27IgdO3agVq1b2cYPPvggevTogSeffBL5+fl47bXXsGrVKtdcCCuWLl2K5s2bi5bfc889GDVqFJ5++mn069cPZ86cwTfffIOnn37avE2TJpU3Jfn5+QEAIiIizNfSEV988QX27t0LAHjyySeRmJhofs/TqVMnDB48GG+++Sb+/e9/48KFC5g9ezb+85//yB7vwIED2LRpk0XZq44dO6Jfv35o1aoVbty4gQULFmDixIkOj1mOqaRUfHw87r33XvPyBx54APXq1cP169exfPlyDBo0yOnnJnIntwQ0cnNzAQBqwZujffv2oaKiAmq1Gn369LFYZ3qBunnTsRrTREREzuavVqEI0h/8GoVq0SD01r/VIokJ6z71G6FJaBQAoEFwhMU6o9GIcgNQUGFEmL8KesHcQWywBk3DK9+0BwmCEXqZIAsAlEgENFrU9hN9oKupH2hL/rpzPFgjDmgIJ2CF9fFt/VDrp9ZYPFYKaDQICUfH6Aai5ZUNym8FNBy5YxwAygUZGneFx0ieT85dFTGiZWnFBQgNZ0CDbhEGNAxGI8r0OgRq/Tw0ouoR/r3Z+3dD5Es0EhkaOmZo3JYKy414dkum9Q1vE4v6RCMswPUBjUGDBlkEM0xCQ0OxcOFC3HPPPTAYDPjiiy8wf/58AMDPP/+M69cryyO+9dZbFsEMk8aNG+P999/H448/juLiYixdulQy08Nk4cKFFsEMkyeeeAIrVqzAr7/+ip9//hnp6emoW7eug8/WcVLBjKr69OmDIUOGYPXq1Vi9erVFQMPZPvvsMwBATEwM5s+fL3kDx6xZs/DTTz/h9OnTWLRoEd555x0EBEjfHPXCCy+IengAQO3atTFhwgTMnTsXycnJyMvLE/UZro6srCxs2FDZH2/MmDEWz0OtVmPMmDGYN28e1q5di9zcXERERDjt3ETu5paSU6YX0fR0y7rPpsZBrVq1QmRkpMU6U6RVq3VLzIWIiMgqf438Oo3gP2qJXlwaKEhzazJQI3ijbETlZEFWSeVkuU4QpNCqq7whFbzHVsrQEAY0AjTuuTvNXYp1lc35giUmWgt1lkElYYaGyqa24OK7VR2Z2BFmgzicoSEIpvir7XufFOIXIBpLOstOURU6gx7n8sUTXMX6mlt2ShjQCGNGEpEsyZJTzNAgstmECRNk13Xp0gWtW7cGUNmw28T0vUqlwlNPPSW7/8iRI80T4FX3F2rbti06dRJnDJuYzqHT6Rxq6O0KGRkZOHfuHI4fP27+iompvBHn2LFjLjvv9evXcerUKQDAqFGjzM2zhbRarflnm5OTo1hNZuzYsbLrTD8Xo9GIlJQUR4ctacWKFaioqHy/VrXclIlpWWlpKb7//nunnpvI3dwS0GjRogUAiOq0/fjjj1CpVOjZs6doH1Pwo06d26MZHxER1Xx+wkhCFcIARYlEzfmgKpPuGsEkuSl7wNRHQ5hYoalyeEGCBhQSNFAsaMYRLNzZi9XSWi8JZQochWjFGRq5ZZaTmM7L0PBcQKNMECjzVytE2WTEBYVZPE4rtq/ZPd3eUgqyJbOQTMHDmkj498aABpE8yZJTzNAgslnnzp0V13fpUlny8OzZsygvr/zfevz4cQCVlUpMk/hS/P390aFDB4t9qjMGAEhOTlbc1pV2796N0aNHIyoqCrGxsbjzzjvRtm1b85epz0Rmpusyiapex3vuuUdx26rrla6/aQ5USu3at0paFhQ49z34smXLAFSWtzL166iqXbt25tJcptJURDWVWwIaAwcOhNFoxMKFC/H555/j+PHjmDZtGk6ePAmgsmGOkCnaWb9+fXcMkYiIyCp/jfwEuDDWUSJxN3PVDA3hHZDCDA1h1oXWImXY8mTCbA6LcQgiI8JyVd7Mlh4XpuscqBFnaOSWl1g8FmZo2B7QsPxZKZWckiOcQM13VoaGxv6ARt0gyzvP2BicqhKWmzIpqsEBDeHfW5i/bf1ziHyRWqUWZTCyhwaR7WJjYxXXm27aNRqNyMnJAQBzE2dr+wIwl4cy7VOdMVg7jivNnDkT9957L1atWmV1DCUlJYrrq6Pqua1dt6qluZTGHBwcLLuuail+vd7+zxRyTp06hYMHDwKQzs4weeKJJwBUBpOcnSFC5E5uqec0depULFiwAGlpaZg6darFum7duqF3796ifdauXQuVSmU1skxEROQu/ooZGpaPhQENtUplcae/sEa10SjI0BCVnJI/l1KGRmkNDWgEafxEgQQppkwYvcTdo9YCGrZeCa3KMmjgyMSOOEPD0R4awpJTDmRoBFtmaKSXMEODbpELaBRLZJ3VFPnlLDlFZA+tWm0RvGeGxu2plr8Ki/pIN5W+HdXyd897YKn+C+7Y1xXHcZWtW7di1qxZAICmTZti2rRpuPfee9GoUSOEhISYS8/PmDEDs2fPdtu4vP26KamacfHqq6/i1VdfVdzeaDRi+fLlePvtt109NCKXcEtAIzw8HFu2bMETTzxhUWfuvvvuw4oVK0TbHzt2DAcOHIBKpcJDDz3kjiESERFZpfRx3lrJqSCNn8WbZLkeGpmmDA3ByTRq+X2VemgU19CARojWH1obJutNgSPhRD8gDmgIL5Naok64FFGGhtH+u6mc1kNDcCdXgMb+t3JxwgyNYmZo0C2nZAMaNTNDo8KgFwWYbcn+IvJlWpUaFagS0HAgM5G8n1qlckuTbF9z48YNNGzYUHE9UDl5buolaypDZFqnxFSevWrpIrlz2LJeeJyqGQQGg8HicVVFRUVWxyrHVEoqMjIS+/btky2z5Y7skarP39p1q9oXWOn6u5vBYMA333xj935fffUVAxpUY7mt43bLli1x8OBBpKSkID09HXFxcYiPj5fdfunSpQCABx54wE0jJCIiUlahEDkQNwUXBzSqEtaoNvfQKKmMZOgF2QRVszKEGRrCbS3GIQpoyEziC46pECNxi2CtnyhwI8UUOJIOaFjele1whoaoh4YjJacsJ1Dzyx0tOSXsoeFAQEOQoZHGDA2q4nTu7VVySip4yAwNImVatRpV4hnM0CCyw4EDBxQDGgcOHAAANG/eHP7+lT3g2rRpg7179yIlJQUZGRmyE/wVFRU4cuSIeR9r57BlvfA4VZti5+TkICoqSvIYZ8+eVTyHkhMnTgAAevfurdgzxFRCSY4zMiqqPv/9+/ebSzJJSUpKktzP037//XdcuXIFAPDCCy+ge/fuitvv378fH3/8MS5cuIDdu3ejR48e7hgmkVO5LaBh0qRJEzRp0kRxm3bt2qFdu3ZuGhEREZFtKhRqO4lKTgkzNLSWAQ1xyam/emiUVs4gCHp5W5acEsQkhNkcFuOoEDQF96sZd+JJNfmWYgocSQUZnNZDQ/CzcqzklOUEqiMZGkaj0Sklp4Q9NFhyikyMRuNtV3JKqrybL/XQMCoEvInkCN+jKN04QUSWli1bJtknFqgMJJiaSffp08e8vE+fPli0aBGMRiOWLl2Kv//975L7//DDD8jLyxPtL5ScnIwjR46YG4gLLVmyBACg0WjQq1cvi3VV5+sOHjyIfv36SR7ju+++kz2/NTpd5Q06SlkeR44cwf79+xWPExhY+f66rMyxG4UAoF69emjZsiVOnTqFVatWYe7cuahVq5ZoO71ej8TERACVmSUdO3Z0+JzOZio3pdFo8NZbb1ntBdKnTx/Mnz8fOp0Oy5cvZ0CDaiS3NAV/55138M477yAzM9PmfXJycsz7EREReYNyhQwN4eR4sd7ybmZhhoZwssDwV8mp7FIDDEYjdKIMDcdKTgkzNAIVGpt7kxA/f9E1klKir5Cc6AeAnPJii8dGONoUvPoZGsISN/kO9NCQOq9DPTSCBBkaLDlFf8koLUROuXTjzZpackqYDaWCyuaA6e1A6v9DzfgvQJ6kFQXyWXKKyFZr1qzBqlWrRMsLCwsxceJEAJVlnUzfA8CwYcNQr149AMB7772H5ORk0f5XrlzBtGnTAFQ2nZ4wYYLiOJ577jnJgMG3336LDRs2mM8bFxdnsb579+7mHhYfffSRZGD8/ffft8hWsFfz5s0BALt27cL58+dF6zMyMhQzJUxMY79w4YLDYwGAKVOmmM/74osvSm4za9YsnDx5EgDw7LPPIiDAO26OKCoqwk8//QSgsqy/LY3lo6Oj0bNnTwDAqlWrqhUQIvIUtwQ0Zs6ciVmzZuHmTek7vqRkZ2eb9yMiIvIGFQo35oszNCxLAwkzNORKTumNQG6ZQTFDQ9ibXOnOSWEPjeAa1ENDY0NTcIPRiAqDXiZDw1rJKduuhfBnVeFAhobwjnBHMjSkgjYO9dAItszQyCwrQrleJ7M1+RK57Ayg5pacEgYPQ/0CbO6fcztQCsQTyRH+32PJKSLbJSQkYMyYMZgyZQp+//13HDp0CEuXLkVCQoK5XNSUKVNw9913m/fx9/fHwoULoVKpkJ+fjx49emD27NnYs2cP9u/fj48++ggJCQm4fv06AGDevHmIjpZv6J6QkICDBw8iISEBiYmJOHToELZt24bJkyebAwWhoaGYN2+eaN/Y2FiMHDkSAPDbb79hyJAh2LhxI44cOYJffvkFI0aMwN///nerZY2UPPnkkwAqJ+N79uyJTz/9FHv27MGePXswb948tGvXDidPnkS3bt0Uj2Maw4EDBzB37lwcO3YM58+fx/nz53Ht2jWbx/P888+bz7V06VI8+OCD+PHHH3H48GGsX78ejzzyiLk5ebNmzfCvf/3LkaftEj/99BMKCwsBAI888ojN+5m2zc3NxZo1a1wyNiJXcnvJKSIiopqqXKHklDDIYK2HhqjkVJXsgawSA/SCc2ktmoJbnkthWOIeGjWk5FSwxh+FKtsmUIt1FaJm2YBUU3DnZGjonNAUvERfAZ1Bb1PjcxOpgIZjJafCRMtulBSiYa0Iu49Ft5fTeRmy62pqySmpgIYvUQrEE8kRZ2jwF4nIVqtWrcKDDz6IBQsWYMGCBaL1jzzyCD788EPR8oEDB2Lp0qWYOHEiCgoKMGPGDMyYMcNiG41Gg9mzZ2PSpEmKYxg4cCAGDhyIWbNmSWZyhIWFYc2aNbJ9bT/66CMcPHgQ586dw7p167Bu3TqL9Y8++iieeeYZxbJXSkaMGIEJEyZg6dKluH79uigrQqPR4KOPPkJOTg727t0re5xJkybh888/R3Z2Nt544w288cYb5nU9e/bE9u3bbRqPRqPBunXrMGTIEOzevRvbtm3Dtm3bRNu1bNkSv/76q2RJKk8xlZtSqVSypc6kDB8+HFOnToXBYMDy5cvNQSyimsJrb0+qqKj80OTn52dlSyIiIveQawquVomb0ol6aAjupBeWjTJWufsxq1QvKhNi0RRcED0RBj+qKhU1BZeexBcuddc9vXKlXypLTtkWcCjRV4iaZQNAbplyDw1bMzTEJacc6KGhFTchtjdLo0wii8LfgQyNqIBg0XNKL2HZKVLO0BCW0asphCWnwnwuoCF+NXdCD1W6zTFDg8hxTZo0waFDhzB9+nS0bNkSwcHBCA8Px/3334+vv/4aP/zwg7mkk9C4ceNw+vRpvPTSS2jZsiVCQkIQFBSEZs2a4dlnn8WRI0csJu2VzJw5Exs3bsTAgQNRp04d+Pv7Iz4+HpMnT8aJEyfMJYek1KlTB/v378c//vEPNG/eHAEBAahdu7b5OaxYsQIajf031VS1ZMkSfPXVV7jvvvsQGhqKgIAANG7cGE888QT27NmDl156yeox6tevj6SkJDz99NO44447zD01HFG7dm3s3LkTy5cvx9/+9jfUqVMHfn5+iIqKQq9evTB//nwcPXoUjRs3dvgcznbt2jVz4KVbt27msmW2qFOnjrl3xsaNG5GRIX9TC5E38toMjaNHjwIAYmJiPDsQIiIiVDZWlbvTVaothShDQ1hySpShcevgmSUGUUBDKUNDqaKIsORUkNa77mUI1vpJlrIJ0frbnL1Qoq+QDDI4qym48GelNxpgNBpFQSwlUk2ICyrKEBkQbPMxpII2jmRoqFQq1A0KxZWiXPOyNDYGJwCncxVKTlXUzIBGgU4Q0PB3fLKjJpIqOcV4BlmjVVn+b9EzQ4PILpGRkXjvvffw3nvv2b1vfHw8Pv74Y6eMo1+/frJNva2JjIzE3LlzMXfuXMn1vXr1kuyvYZKYmGhuoi3n8ccfx+OPPy67fubMmZg5c6biMZo1a4bFixcrbgNAcawmarUaTzzxhE39O4RsGStg/brZo379+tBLZKnbaufOnU4ZB5EnuCSgYUp5Evrll19w8OBBxX3Lyspw4cIFLFmyBCqVCp07d3bFEImIiOyiN8pnLUhlElgtOSXTQwMAbhaL35haZGjY1RTcchLC23poyNWyD9b62Z6hoZPJ0BD00BBeJkdLTgGVd6v6qWwPJtTSSgc07CFVVsuRgAYAxAkDGmwMTrCWoVFDS04JXgfC/HwroCEViDcYYXdQlnwLMzSIiIjIm7kkoDF+/HjRG2Sj0Yi33nrL5mMYjUao1Wqb0syIiIhcTamxqmSGhrDklNZKD40qd+rckAhoWGRoCGIASk3BRT00vCygYZCZJAnR+ouukRy5DI2c8mLBuYQlp2wjnNgBgAqDXjLQIUejViNE62+RjSKs7W+NVA8Ne8ZQlbCPRjozNHxeia4CqYU5sutraoaG8O+MJacqg7t6I+Bl/w7IiwhvKGAPDSIiIvImLqs7YTQazV9Sy5S+/Pz80KNHD6xZs0axrh8REZG7KDVWlZjvtpqhoVRySjqgcet7UckpmbEZjUZRQCPQy2awhEEGk8qSUzYGNGzO0HCwKbhEJoYjkzvCZsTV7aHhr9Y4fId1XHCoxeM09tDweefyM0R/I1XV2B4agr8zX2sKLheMlwp0EJkISz4yQ4OIiIi8iUsyNFJSUszfG41GNG3aFCqVCr/99huaN28uu59KpUJgYCCioqKq3WCIiIjImZQzNCRKTomaglvJ0KgS0JAuOXXrHMKJeLmhVRjE62wuOeWk2q5WTyOz3N4MDalyTHnlpTAYDVCr1JK1am1vCi6doWGvUL8Ai0yI6mZo+KsdfxsXJ8jQSCtmhoavUyo3BQDFOpacqonkAhcVeiDIa7spkqcJb7rQOfA/j4iIbHPt2jXk5MhnycoJCQlBkyZNXDAiIu/nkrexjRs3llxer1492XVERETezN67Wa01BRcGQareGS0VoKhaZkoYk5DLchA2BK8ch3SQwFN5G3JjD9b6iyZU5JToKlBhFE+2GGFEQUUZwv2DJM9jc1NwibJOjgQ0hBOpdvfQEGSh+Ffj5o+6QZYZGunM0PB51gIaVcul1STCvzNfawoul13IDA1Swh4aRETu8+abb2LZsmV279ezZ09s377d+QMiqgHccl+OgTU3iYiohitXmPwplQgcWMvQEE4WyPWSMG9fNUNDMM+vk9m1VGKF9/XQkC85Vd0MDQDILS9BuH+QZCkd25uCi8fhyOROdUtOCTM0AqqToREsyNBgDw2fdzovw+JxgEZrUeasuIYGNHy9hwZLTpEjhDcUKPXqIiJg5syZmDlzpqeHIZmRTER0O3JZDw0iIqLbSYXCDfmlEhNGwgyNYCtNweWLL1Wy7KFhORFva4aGRgX4edl/fuWAhm0Bh8qm4HIBjVLZ89hecso5GRrCgEZ+eTV7aFQjQyNOlKFRwA/BPu50rmWGRrvIOIvHNbbklDBDgyWn/lru5oFQjSLK0GDJKSIil0lMTLS553DVL2ZnkC9z27RGcXExiouLZdd/+umnuO+++9CyZUsMGDAAa9euddfQiIiIrKp2ySkrPTRUKuXjV20ELmoKLrOrsCF4sFblcBNpV5FrQhys9bO5KXixrkKUvWCSW14CQDqgYXPJKYlMkQoHsk/FJaeq20OjOiWnLDM0Kgx6ZJXJv0+j25vBaBCVnOoU3cDicU0tOSXsoeF7TcGllzNDg5RoVWwKTkRERN7LLQGNtWvXIjQ0FHFxcSgoEJc0eOqpp/Dyyy9jz549OHPmDH777TcMGzYMc+bMccfwiIiIrFIqOSVFVHJKq1xyCpCfLNCoYBGIEGYu2BrQsKfclLumupxSckohoJFTVhnQkDqLrVdDKkNDJ9GzwxpRySmdnSWn9M4LaNQJqiVaxj4avutKUa4oCNsxyjKgUVNLTgn/znyvh4Z8U3AiOcL3GTqWkCYiIiIv4paAxm+//Qaj0YghQ4YgNNSyxMGuXbuQmJgIAAgODkaHDh0QGBgIo9GIGTNm4Pjx4+4YIhERkSJ7J39KBOWBxBkawul0+RCCMCNDGAvRy0xYlVQIAhreVm8KgEHmeYdo/W3O0FAuOWXK0BBPxtiaoaFSqUTBFUcyNKpbckqcoeF4Dw1/jRbRASEWy9KK2UfDVwn7Z4T5BaJZaJTFshpbcqrct3toyJecYoYGyWNTcCIiIvJmbpnZ2LdvH1QqFXr37i1at3DhQgBAvXr1cOrUKRw6dAinT59Gw4YNYTAY8OWXX7pjiERERIrsLjllJUNDOEFuVMjQ0KotJ96FiRZyQysWNAUPEkZGvIBshoafnU3BrQQ0pM5ia0ADEE/uONJDQ1xyyt6AhmWQLEDjeEADkGoMzgwNXyXsn9EiPAYhWn+LZTWx5JTRaPT5HhosOUWOEJac0jOgQURERF7ELQGNmzcrPyTdddddonUbN26ESqXCCy+8gAYNKlPbGzZsiBdeeAFGoxE7duxwxxCJiIgUlcvVdZJhrYeGcIJcrpcEAGgE/62FE/E6F5Scche5RtTBGvmAhrCnRYnOlgwNx5uCA4CfsJ64EzI07O2hIWoKXo2SUwBQV6IxOPkmYf+MFuGxCBYEYUv0FZKZTt6sRF8hmoj1tR4abApOjhA3BecvDBEREXkPtwQ0MjIq09iF5aZOnDiBzMxMAMDQoUMt1iUkJAAALl265IYREhERKbN38kcU0LCSoaE0UagVBDCEiRZyWQ6lwoCGn/cFNGRLTvn5SzbjBoDIgCCLx8I7sKvK/avcTHWaggPOydAQlZyyO0NDUHJKU72ARpwgoJFWzAwNXyUKaETEIliQoQEApYKgmrcTlpsC2EPDvNzOID35FuH/X5acIiIiIm9SvVoFNtL89YE7OzvbYvmuXbsAADExMaLsjcjISABAaal9dy8SEdHtr8KgxxsHN2DD1VOypYaqCtH64/FmHTGtTS+L5tr2sLUpeLleh78fXI/ssmKL5eIeGpaTBWUGHTZkLZQ8ploFbPlBg8iAIExp0QNNgtpYrD+fq8OMPTkYcWcI7o72R2GFAUuPF2DXdcsJ86oZGjqDHm8c2oANV0+jTK+D3qCCUV8H/qpA3Ci/BAN0+P4r6ecYqg1H98jeqBMQhwa1NBjfOhSxwY5Nris2BVdL/6wi/IOQUVpkfrwy5ajs8ZecS8KqlBMo0Yl/T+wJaPgJAhqP7vgaQRo/XLcjCBDmbxnQOJR1FXP/3IZ/tO0t+Xt5qTAbr+xfg9zyEvSKa4a3j2yyWF/dDA1hyanFZ5Ow9spJZJUVIyYwBG0j4/BRlyEo1evw8v5fkFFWiCktemB8887VOq+t8spL8OK+1dibcQkqqNCjTjw+uWcYatXwO+zPZFfguzOFyCo1IDZYjcdb1EJ8uJ/s9qU6I1acKcTFPB161AtAv8ZBot+XH1P/xMcn/0DjkEjM6zwIRbpyvJz0C04JSknJuVSYY/G4RXisqOQUUPm3NqF5FwCVQdj/S96OtVdO4r46TTCzfV8EauWfh60uFWbjxX2/4ERuuk3bh/oFYPwdnfFS6/tE65acOyBa5i0lp4orDPjqVCGuFujwQKMg9G4YhEv5Onx9qhA3iq3/XwvUqtCzfiAGNLn1+7AhpRg7rpZaZOfll0tPRH9yNB8bUosxID4YPepbvyYGoxGrzhTh0M1yNAnXYnyrWgh2Yl+mHVdLsDG1BEUV0v8T/NRAQp0AjL4rxK7XbnKMMIj/ycld+ObCYacdX61SoUt0I3zadRgiA4Lt2regohQv7f8F+25eQufohvik6zCE+wdZ35GIiIhuG24JaNSvXx/nz5/H0aNH0atXL/Py9evXQ6VS4b77xB9A8vLyAADR0dHuGCIREdUgn5/egw9O2FeS8O8H16NtZBz+1qCFQ+e09W7W/578A/89+YdouajklET2QaE+V/a4+QUACoAJu1ZiefdYAJYf3s/kVOCDg3n4sk8Uvj5ZKApmAECw9tY5Pz+9F/OOC69hpuz5q8rT5WLtjR8xKOp53CjWo0iXj1ndIm3atyq5clMAEKjRimp4m0QIJi6UavsXVJTJ9qqwq+SUIHhgTyDDJFRiIvWNQxtwd2QcBjRsKVr39K7vsTXtHADg9/QLovUB1WgKDohLThXqylBYUHmtcstLcC4/E8W6cmSUFuFQ1lUAlb9/XWIaolVE3Wqd2xZvHNqA5RcOmR+fzc9AmF8gPr5nqMJe3k1nMOKDQ7nIK6/83b9RrMe8Q3n4tHeUbLB1Q0oxNqZWlk47m1OB+DAtWtS+FWy4VpSHkb9/BSOM2IUUaNVqnMnLwL4Mx7OcW4bXEZWcAoCndq3C0EZtUDsgGOuunMIbhzYAAPbcTEWjkAhMbtnD4XNWPce2tPN27fNy0i9oVzsOveLuMC+7WpSLNw//arGdv1pT7d4zzvLT+WJsu1J549bZ3AI0i/DDh4fykG5DMMNkeX4hGodp0SbaH8czy7HsZKFdYzifq8MnR/PRPNLPalB6x9VS/HyhMlB/uUAHf7UKz7QNVdzHVtcKdVhwzHrJu6uFxagTrMEDjTh57WrC9yi55SXmEo7Oci4/E/4aDZbcO9qu/d46tBFL/wpWnsq7iRA/fyzo9ohTx0ZERETezS0lp+677z4YjUbMnz/fXGLqwIED2LhxIwCgX79+on1OnToFAKhb1/UfmImIqGZJyrji0H4HM686fE65PhUAkFDn1uTi4axrktvUDbac+IkJDHF4LGfzpc9RqjciNV+H83kVkutrB976t38w07FraFJiKECxoXJS/2Ku9PmsUcquUavUiA2sJbmuQ+36Dp2vKj+1BuF2lJ6pE2jbxF10gPzPtWFIuORyU9DC1uXmMQVVbzLxjjDrN41svHbGHMwwj+u6fZPNjjog8TsqHEtNc7VAZw5mmGSUGFAoc1c6AKw8W2Tx+KtTlpPW+zIuWfTg2XTtbLX+voO1fmgaWhshWn/Jv5FDf72Ovndsi8XyKft+dvicJkajEXtupjq0b5LgOUv9/jQIiXDo2K6w9qJlFt+i5AK7ghkm5/56/U3Jd7wc2HkbXsM3X7KczN582XmT22eybf8fcjGvZpU9q6lig6T//zpbUsZlu/dZfG6/xePPT+911nCIiIiohnBLQGPy5MlQq9VISUlB06ZNkZCQgJ49e0Kn0yEyMhKjR4vvyti2bRtUKhVatWrljiESEVENUqxwR76SCqP9k0XWhGhVePiOW5PYUiWUnmreBTGCyfm6wWF4slknh86p9Dwyig0ok4i+xASp0T3uVqmeCifUwy41VE7IOVqKPV+mKfbn3YYDAB5v1hFxQZZlkfrWuxOzO/ZDs9Aox076lxda9pDsESDn9ba9rGZ0tAiPxeBGrWXXtwyvg8ENxe9rTubesHkcJmF+gZh4V1e796uqT1xzdI5uaPd+Sg3snalcL/4919fwxrRpRdJ/uzobS9oBwJUCy2MIm8WnleRXq979G20fhL9GC7VKjb+36S1an1Ne+Xd/oSDL4XPIKdKVO9yno1TQtyhPon/GP9qKn4+3SJUJRFtjer1XynizRq7MU1WXC1wXSMgps/331Z6/FXLcU827IMrOUlCOcOTvvVjn2N8KERER3T7cknPdsWNHvP/++3j99ddRWFiIw4cr62/6+flh0aJFombheXl5WL9+PQBYlKgiIiICgGLBxNX4OxLwcOO2ou3mHd+OP26kmB9XZzJUOFfUMdYfjzQPQUyQBuEBt+4PEE72Dm7YCot6jJA85tL7RuOlVvfhanGeeVl2qR5ZpZXjVAGIDdZgbvJGnKgy6a1XmKy8WaKHcG5oWLNgPHxHCAIFPTSs6RFzJx5u1MX8+N/Jq5Fdfuvu8FJD5feOzi9JNew9NvRV3F27HgAgPrQ2zjzyd+y7eRkl+grEBtZCQnQDaNUa/DnsNey7eQmFguBWk1q10SwsCvszLqOgogxf/pmPPEEN+c97NUWbSPsyQB9r2gE9YuNxLPu65HR+qF8AusY0FjV/r0qlUuHnB8Zj2oG1+LhKWbJTebb1OagqZeR01K7mZFOg1g9/DJiCpIzL2JtxCf84uN6m/YTl01xFKoNHrol8TSEf0LD9GMIJXVv6CH3ebTjqBUtnCFXVLDQKrav8bUxv9yDmHd+OnCqlZnLKKr9vFBKJLEGvoOrKKBWXTFrZ63EESvzOfXhiB3akXzQ/Fk6MCgMajUIi8Fw1g4CuJNXq4vm7QxHqb3n/2aZLJTiWcet1r+SviLLwL6NpuBaPNL8VbPfXqFAnWIPrhTqsOltkkelQbMMvoCv/8nIF/7Taxfijb+PKslI7rpYiKf1W2UClbElynpYRdXD+kTewP/OyKGhaHYezrmLW0c3mx848NhEREfkOtxWRfeWVV9CnTx/88MMPSE9PR1xcHB577DFRM3AA2L59Ozp3rmw4OWjQIHcNkYiIaogSwd15naIaYIjEnfHfpx6zCGhU565l4XSOn1qFOyKsT+x2jKoPtUS/DKCyrFLH6AboiAaKx0g8v8cyoKEwgZlRohdlaHSqE2ARzACAChuCOx2jY/Ha3e3Nj1dd2oGkzKoBjcpSOEZU3h1sb8N14YSjRqVG28g4i2WhfoF4qP6don2Dtf54oF5z2WP3/quW/u8Xs3BdMInctnasXeM0aVQrEo1q2d8rpCqNWo1xdyRYBDQuFeagqKIMITY2u25cK7LawQyTAI0W99VtCn+N7Q3GlQJqziQZ0KjGXejeQDagYcfzEmZE2RLQ6Ff/LjRxMKupW2xjbLh62vw4+68Mjca1InEk27L8XUFFqWSvGFtllFqW1/JXazAyvp3ka8svl09YBDSE/xeEGWAdoqpfqs7d2sX4o3ag5d/myaxyHMu49bhEZoY/IkCNhDri15Q6wRrsvFZqGdCwIUPDlX96OaWWrynNwrXmsZ/Psfy56mv4a0BNEhEQhH71xZ/VqyPULwBAlYCGgQENIiIisp9bu+K1bdsWbduK76AVGjp0KIYOrbkNH4mIyLWK9ZZ35cuVDhI2tdS5oVyNK6Za/NSC56EwoZxRrEeZYMYzQCOeDNTZUH5LLZhEFPZsMJWcAiqzNCROo0g44RjuH2h3UMQardq5x3OGu8JjoYLKIpvndF4GOkUrB7ZMXJEhoZEJuklx14RiucSdu+4qd+Uq6UXSk3f6arw0SV0nIWFTe3sIg2emDI0GEj1hLhXmoI0gKGkPYYZGTGAt2deEIEFzb2sZGuHVCLR4E2FwutSBlIUQreXfuy0lp1wpt8zy/1FElaxHjeClqTp/K+R5AWrLv9syidKCRERERNa4pYcGERGRMwnvxJUr8yOcpK3OneWenO4RTkbqFYIR14v0orEGSMxl2hLcEQY06ooCGrfupnakj0Z+RZnF4zAbMxTs4e/4PK7LBGn90CS0tsWyU3m299EIVihr5Shh8E+Ju7IkbssMDZmmz9XpC2BLhoY9P1+hSH/LgEb2X2WmAjXi+6IuFeY4fB5AnKERExgisyVEZahEPTREAdOgao3NWwQJZvhLHXjxDfazfG23peSUK1tXCEtORVbJStEI/g8xQ6NmCxC8bjgrQ6Om91ciuh2NHz8eKpUK8fHxnh4KgMrSryqVCjNnzvT0UIjICTwW0DAajbhw4QIOHDiAAwcO4MKFC9VqZkdERL6jRHAnbrDMHetaOzIb7GVrIoG1RtK28BcENJSyK7JLxc9ROkPDhoAGrGVo3Jp8dGSyS3QHtQsmHL0xQwMAWkVYlr2ypzG45zM0WHLKEYUVBhSUS49f7iZ7W56vLROC1cvQsPy7NPXTkBpadQMamaKARi3ZbYUBFeH/BWGPHlcETD1BmKFRYm4KbvsxggXHsKXklKsYjUZRU3ClDA17+s2Q9wkQlDcs0+vsmgOQ27ZI0E+LiMjX9OrVyxy0EX75+fkhJiYG999/P+bOnYvs7GxPD5eo2twe0Pjtt98wePBghIWF4c4770TXrl3RtWtX3HnnnQgLC8OQIUOwadMmdw+LiIhqkGLBB1e5DA2nlpyy8fO2K4LzwslIWxp6VyUZ0LDhWgiDNsIMjTKLgIb9z1tYcsolGRoS73S84QaKluF1LB6fyrW9MbhS43FHaewI/LgroFFxmwU00mX6ZwDyGRrlMnffV/0dLrehZEt1AhpyGRpS5b+qn6FhWXIqWiFDQ/h3YD1Dw7tKTjkaahWXnJL+e1Q6foifoOSUBzttF1UYRUGKyCoBDS0zNG4rwswqwLYsMxO5JuIMaBD5pvj4eKhUKowfP97TQ/FqOp0OmZmZ+OOPP/DGG2+gZcuW2L17t6eHRVQtbuuhUV5ejvHjx2PlypUApCcTioqKsH79eqxfvx6jR49GYmIi/P2l66ITEZHvKhFMXMndsa4VZTY4MUPD1u2ckCAgCmjY+Tz8JQIaUpPFQsIMDaWSU45kaIgDGs6fcJTK0KgweL4UVasIy4CGpzM0tCp7moJ7ruRUTZ7KlGsIDsjfdS7XH6FMbzRPbNsyGejUHhqmDA2JbS8V5Tp8HgDIKBNkaAQolZyys4eGl5WcCvZTOdS7Ikimh4Y9RxJnaFj/n+Kqvz1huSmAPTRuZ8IeGkBlkEJYikqO8P2fifBGFyIiIW+4ocldkpOTLR6Xl5fj4sWL+Oqrr7BmzRrcvHkTgwcPxpkzZxATE+OhURJVj9sCGmPGjMHPP/8Mo9EIrVaLhx56CPfccw/q1q0LAEhPT0dSUhI2b96MiooKrFy5EjqdDqtWrXLXEImIqIYQ9tCQawourr3t+h4arnirLCw5pdRDQ0ijkp7Ut6nklCDDxfUlp5wf0PCTeO5leqNkkMedWgpKTl0oyLJ5Usc1Jae8K0PDaDTKZGjU3NnMNJmG4ACgk/mQLdcfobDCiMC/flXKbSo5VY0eGoKSU6YMDSnOztBQLjll+Xcg/L/gjgyw6nB0XiVQ8NpV4pQeGp6b5BGWm6rlp4JflecofG3y4FDJCYQlpwD7+mjIBTSYoUFEdEubNm1Eyzp27IgRI0Zg3LhxWL58OXJycrB48WK88cYbHhghUfW5JaCxfv16/PTTT1CpVOjduzeWLFmCxo0bS257+fJlPPXUU9i2bRt+/PFHbNiwAQMGDHDHMImIqAbQGwyiO5KDtNL/zpxacspBzuihIby72pbsChPh5JeJM5qC64wV+H/2zjs8iqr/4me2pjcgQGihd+kdJL4gXUBFfMUCCKKADcXeQH4qiu1VBAWlWQEpIkUp0mtCb1JDS4BAet06vz+W3ezcuTM7W7NJ7ud5fAw77e7s1Hvu9xyT1QitSufRqP1AVGhoKf24BguPSPHHAYW0nLLwVpzLu4VWsTVdLusXyyl3MjT8mQ58B6ljvKJaTkmNOpcSNPKNVlQNtV0XlFhOufP7ksQRllPZBnuGhj8sp5SHgpPCnshyKgCCqTd4Wukktpyir0dOowzTCI+HsszQyCmRzs8AAI2oQqP8XgMY4lBwACgxKxc0isxM0GAwGAxveOWVV7BkyRIAQHJychm3hsHwnIBkaCxatAgA0KZNG/z111+SYgYA1K1bFxs2bEDbtm0BAAsXLgxACxkMBoNRXqCNzguE5RTZheILKymlkIKGOyPkpSoRlFVokKHg4tHS9hwNX1Ro+GMEtVSFRlkTpQtBrbBowWfOORpyZfF+sZxyYwR/ICo0pGyUrOXYdEreckqiQkOis7rAqQPaleWUhlOB8+KCRVZoFJgNMFkt1F/ienGepMe9EsSChvJQcNJyKhCCqTd4Gm5NWk6ZrNLHjxThRIVGiYUvM6Eg2yA8fmNDCEFDVGnp9yYx/AgtQ8OtCg0maDCClGnTpjkCmAEgJycH7733Hlq2bImIiAjExcXhnnvuwa+//upyXZcuXcKUKVPQsmVLREZGIiwsDI0bN8bTTz8tshIisbdh2rRpAIDNmzdj6NChqFmzJkJCQtCgQQM8++yzSEtLU/xdpNi2bZtjvm3btrn8XiSFhYVYunQpxo8fj7Zt2yI6OtoRXt27d298+umnKCgooC5rD8C+fPkyAGDx4sWiIOykpCTBMuS+oWG1WvHTTz9h0KBBqFGjBnQ6HapVq4Z77rkHc+bMgdEofa0h91tJSQlmzZqF9u3bIzIyEpGRkejcuTNmz54NsxtCrq+pX7++42+DwVBm7WAwvCUgFRr79u0Dx3F4+eWXodW6fgnXarWYOnUqHnvsMezbty8ALWQwGAxGeYEmaEhZTpGdtO6GaQsow1Bw0nLKzFug1BGfHM3rWIeSDA3iRSZCo0eYRisYIVnCFyECsT7J0PCLxz3l6weDoAHYcjTSinId/3bO0aAFLtsp8wqNshQ0ymmFBs/z8oKGxNeStpwq/Q1cdQZ6k58BiDM0ACBbxnbqamEOGkVV9WhbYsspuQwNwnLK6d5gsVqRbxK+pAdbhYaSaybt6k2ruiux8G5ZWJGWU4DNdipS557wxfO8V2IZIM7QiNELj1cyQ8Nd8YYRXJDPM4B00DcNScspExM0GMFDamoq7r33Xly4cMHxWWFhIbZt24Zt27Zh9erV+Pnnn6GhVJgvWbIEEyZMEHU0nz9/HufPn8cPP/yAGTNmKLIJmj59uqjzPjU1Fd988w1++ukn/Pnnn+jVq5dnX9IHDB48GNu3bxd9fvv2bezYsQM7duzAnDlzsH79ejRr1szv7cnKysLQoUNFYdm3b992/HazZ8/Ghg0bZAdpA8DNmzcxYMAAHDlyRPB5cnIykpOTsXHjRqxevRoqLyxBPcUuAgG2AeUMRnklIGfPrVu3AAAtWrRQvIz9gnX79m2/tInBYDAY5RNa8KPUiHVxhobvOkIUh4L7wXLKHessqQoNkxLLKaLtHMehRmiU4LMSi21EtUeWU0bhy5o/KjRofV/GIBE0mkcLczRO52ZIzCkkrMwzNMrOcqqc6hnIM/IoljH/l+qkNUhVaBidKjRcWE55K2jEUoTGLEOxpHjrqe2UwWIWiRByFRqk1aBzhQa5HgCI1gZPKLiVl5Ms5SErNADpSh4pSMspwLMcDV+cjmSGRixhOUXewoLk8s3wEI7jRKKGTwQNVqHBCCIefvhhpKam4plnnsHmzZuRnJyMH374AU2aNAEALFu2DK+88opouXXr1mHMmDEwGAyIiIjAe++9h507d2Lv3r347LPPULVqVVgsFrz55puYO3eubBvWrVuHadOmoWnTpvjhhx+QnJyMzZs34+mnn4ZKpUJubi6GDBmCq1ev+mUfKMFsNqN169Z46623sGrVKuzfvx/79u3D0qVL8d///hcqlQqpqakYPnw4SkqEg6AWLlyI48ePIyEhAQAwbNgwHD9+XPCfO24vFosFQ4YMcYgZvXv3xvLly5GSkoI1a9Zg+PDhAIDTp0+jT58+kpUjdh544AGcOnUKzz//PDZt2oSDBw/il19+QfPmzQEAf/75J+bPn6+4fb5k1qxZjr+HDRtWJm1gMHxBQCo0wsPDkZOTg8zMTMXLZGfbXobCwsSjwhgMBoNReSmmlOhKjVjXcJ4LASRlGQpOBvqaeeUv/3ofWk4BQPWQCFzML72fl3hjORWACg1au6RGvQeaFjHCHA1BhYZMEytFhYZEJ315tZySCwQHpO2HlFRouAoF9yYQHAB0ag3CNTpBh2G2sUjyl/BU0LhN2E0BQFU3KjScMzTI6i8AiNIFTyi4VGaKEmhVdyVmsUAiJ1Hq1TahwPnwKjRZAcW1fzYsVsBLvUycoUFaThG2gSxDo/yjV2sEVXjuWE7RBrUAQJGE0MGQx8pbkSlTcVfRqKIPg8qLTCmlJCcn45dffsEjjzzi+Kxjx4546KGH0KtXLxw9ehRfffUVxo0b5whvNplMmDBhAnieR0REBHbu3OmwYQeArl274sEHH0S3bt1w/fp1TJ06FQ899BCqVqVXRKakpKB9+/bYvn07IiJKBwf06dMHPXr0wBNPPIG8vDy8/PLLWLZsmX92hAsWLlyIxo0biz7v0qULRo4ciXHjxqF///44c+YMfv75Z4wbN84xj902ye4AExMTQw3CVsq3336LvXv3AgCeeOIJLFq0yFGB2KFDB9x3331466238OGHH+LChQuYMWMGPv74Y8n12aswnG2v2rdvj/79+6NFixa4efMm5syZg6efftrjNstx4sQJwb+NRiMuXbqEn376CatWrQJgE94GDBjgl+0zGIEgIIJG06ZNsX//fixduhR9+/ZVtMzSpUsdyzIYDAaDYYccnafhVJIjkEWWU7wXllMe4ousDZ1KeLt2R5jRS3Q2eWI5BYiDwb0RNPICkKFBsygyBv4woNI8RlihcTbvFsxWCzQqtbzlVKXI0KB3cFkDsG1/IGc3BUhXvUiNvC90I0PD2woNwFal4SxoZMl0gF0p9EzQIO2mVByHOL20yEmeB85iN5nPw4FDpB+uL57iTZWTiuOgUwFGp1NBrvqHBsdxCNNyyHeq9PEkGNzC89B6WYXIKjQqH3qVBvkoraIi82/koA1qAZjllKdkGooQ/+u0sm5GwMh4ZJps5Z+vGDJkiEDMsBMZGYl58+ahS5cusFqt+PbbbzF79mwAwKpVq5Ceng4AePvttwVihp169eph1qxZeOyxx1BUVISFCxdSKz3szJs3TyBm2Hn88cfx66+/YsOGDVi1ahVu3LiBGjVqePhtPYcmZjjTt29fDB06FKtXr8bq1asFgoav+eabbwAA1apVw+zZs6l2itOnT8fKlSvx77//Yv78+Xj//feh19OfLZ577jlRhgcAxMXFYezYsZg5cyaOHz+O3NxcREdHi1fgJa1bt5ac1rRpU7z++usYPXq0z7fLYASSgFhODR06FDzPY+HChY6AcDl+/PFHLFiwABzHOUq7GAwGg8EAxKPz5Eara4hRWN50Iikd/eq5kYg04goN5T3yvq7QqBHmQ0GDDO31g8c9rV3Bk6EhfHk0WMxIzc8CIF/pU/YVGv7ffxUtQ+OGC0HD7QoNp95sV5ZT5HXQE8gcjWxjseS1ztMKDTIQ3NVIWnEouHSFRqRWH5BRuUrx9hJE2k4VU1coLzSQtlOeWE754lIqztAgBA2iQsODZjKCDPLcZZZTjIrG2LFjJad17twZLVu2BGAL7LZj/5vjODz55JOSyz/00EOODnDn5Ulat26NDh06SE63b8NsNnsU6O0Pbt26hXPnzuHEiROO/6pVqwYAOHr0qN+2m56ejtOnTwMARo4cicjISOp8Go3G8dtmZ2fj0KFDkut89NFHJafZfxee55Gamuppsz3mzJkz+O6777Bjx46Ab5vB8CUBebJ/7rnnULNmTfA8j3HjxmHIkCFYuXIl0tLSYDKZYDabkZaWhpUrV2LIkCEYM2YMrFYrEhIS8OyzzwaiiQwGg8EoJ5Avs1KB4IC4k9Yby6myhBxhLZUvQENK0FCyDjJDAwCqh0gJGu71MvE8LxpFHa2tXIJG1ZBwVNULLXXsORpy4fL+qNBwS9AIwHlU0QQNVxUa7mZo5AsspwJQoUFUSmQZinyeoSEOBJcfRUtaTpl5q6PyjLy2+KP6yxuUWk5JSRIhhBjhboYGAIQTweCFJvfPa28vpSVmcbaMSNAgdgILBS//6JmgwajgdOrUSXZ6586dAQBnz56F0Wg7du0WQfXr13d04tPQ6XRo166dYBlv2gAAx48fl53Xn+zevRsPP/wwqlSpgvj4eDRp0gStW7d2/GfPmfBntq7zfuzSpYvsvM7T5fa/XIh5XFyc4+/8/HwlTXQbnucF/1ksFty8eRMrVqxAmzZtsG/fPvTr1w+///67X7bPYASCgAga4eHhWLt2LWJiYsDzPDZs2ICHHnoIdevWRUhICPR6PerWrYuHHnoIGzZsAM/ziI2Nxdq1a1mGBoPBYDAEFJuFL7Ohamn3RH9aTim1kvJFKDgZoKmkusKxrFSFhpJQcDcsp9zt2CqxmEXfo7JVaADyORpSVArLKYkOruD55dzDteUU/XPpDI3Sz135z/tC0IjTERUahmLJeS8X5ni0DbJCo5pMfgYgDgUHSq1rxPk8vr+2eIPZS2GOzNEoMYvTZVzdo8KIdXhiOWX1UlzIMYjPi1iXGRpebZIRBIgEDR9kaDBBgxFMxMfHy06vXt327MfzvCM7NisrS9GyABz2UPZlvGmDq/X4k2nTpqFnz55YtmyZyzYUF0s/d3iL87Zd7Tdnay65Nsv1Y6qcnrktLqpsfYVKpUJ8fDweeOAB7Nq1C02aNIHRaMSTTz5ZZr8/g+EtAcnQAIB27drh+PHjeOGFF7B69WrJE1etVuP+++/HF198gVq1agWqeQwGg8EoJxSJBA3lllOBqNDwxwByskPSbLUoHpIQ4utQcB9laNBCe/3R6UizxTEGkaDRPCYeO25edPz79B1BI/CWU8qFt0AEc1ekCg0rz+NmkbDDLlInzC+QGnUuNfJeaDnl31BwAIglLKeyDNKh4FcLc2DlrW5bPHlboQHYBI0IrZ6SzxNcgoa3RQahxHXd3QwNAAjTkpZT7t8fvbV/IvMz9GoOoRpXGRrl7xrAEKJXkRUayjv0yEEtdqSEDoY8VfRhyHhkWlk3I2BU0QdmsCwtfyEQy/pjPf5iy5YtmD59OgCgQYMGmDp1Knr27Im6desiPDwcmjuDFt59913MmDEjYO0K9v3mCyIiIjBx4kRMmTIF+fn5+P333zFhwoSybhaD4TYBEzQAICEhAcuXL8f169exbds2nDhxwqEGxsXFoVWrVkhKSkLNmjUD2SwGg8FglCPcsZwiR517laEhWlTZA68vnou9sZzyrkJD3CFJVmgYrDbrGXc76EhLGMA/nY7lrkIj946gIXOshvlB0HCn89kSAMsXqWM8EGKKr8kusYIciF4nQoNTWaXXMnczNAIdCk6Gc2cbixGhpV97TVYLrhflo1a4eyGXtw3uVWiQPvxAaWdn0FdoeHkOiSo0LLzbYnq4hrSckl6BlJDo7aUgp0Q+EBwA1MRHHugujCCDrNAokbCRosEsp3yLilMFJCS7snHz5k3UqVNHdjpg6zyPjY0FUGpDZJ8mx40bNwTLyG1DyXRyPc4VBFarVfBvZwoLC6mfK8FuJRUbG4t9+/ZJ2mwFonrA+fu72m/2fU8uV95wtsQqS8sxBsMbAipo2KlZsyYeeeSRstg0g8FgMMo55Mus3Gh1UYaGF5ZTZRkKrlOTllOBCQWnLUkKGhaYYeKNbotFZIWGTqUWdXL4gmAXNJpHCwWN0zkZNr9bmWX8YTnlDgGxnJKs0Ch/vZmk3ZReDVQLUwMCQUMiQ0PScsoKnufBcVyABA1xhUa4jJh8uSDbbUGDtJwi82VIaOeBvWNUlM+jCxXNW5Z4KwSILad4UUWdKy09jMjQkAsFlxIRvK2WICs0YkLEnWYa4nvxsAkstApCRvnAq1BwiQoNJmgwgonk5GRZQSM5ORkA0LhxY+h0tntpq1atsHfvXqSmpuLWrVuSHfwmkwmHDx92LONqG0qmk+txDsXOzs5GlSpVqOs4e/as7DbkOHnyJADgnnvukc0MSUlJkV2PLyoqnL///v378fjjj0vOe+DAAepy5Q2z2Uz9m8EoTwQkQyMYycjIwNq1a/Huu+9i4MCBqFq1KjiOA8dxGDNmjNvr27BhA+6//37Url0ber0etWvXxv33348NGzb4tN1FRUX45JNP0KlTJ8TFxSE8PBzNmjXDyy+/jMuXL/t0WwwGgxGMkLYCYXKWU2SGRhmEgvsiQ0PLkZZTyr8HTdDgeV5ZKLgCyykAKLEWeF2h4a8R1MEuaJAVGoVmI64W5sgKY5Vb0Aie304ppKBRI1wDwlVHOkNDopPZZAXsrlNGF3YtpPWeJ8TqxBUaclwudD8Y3F3LKa1KLbq+2jM0SME02ELBFVs1SXTU+MVySiYUXEq48DbPIsfgfoWGL7bLKFu8ydAolhA/mKDBCCYWL14sOS05OdkRJt23b1/H5/a/eZ7HwoULJZf//fffkZubK1qe5Pjx4w7hg8aCBQsA2Czfk5KSBNPq16/v+FtOUPjtt98kp7nC3okuV+Vx+PBh7N+/X3Y9ISG29weDweBxWxISEtC8eXMAwLJly1BQUECdz2KxYNGiRQBslSXt27f3eJtljfPvKie+MRjBTKUVNKpXr4777rsPM2bMwF9//YXMzEyP1mO1WjF+/HgMGjQIq1evRlpaGoxGI9LS0rB69WoMGjQITz31FKw+6EQ7f/482rZti9deew0pKSnIzs5GUVERzpw5g88//xx33XUX1q5d6/V2GAwGI5gpJkaRyFVo+DNDI5CDQ0WWU7z4hT5aR28QTdBQ2imsoogxoRqtyBrKYC2Cu3tW3OHoL0EjuDM0EsKiEEl0tp7OzZBdxh8ZGu4QCA97qU764PnllHOjUHi+1ghTi0adu2s5BZTmaAQkFJyaoSHdtssFngga7llOcRwnGuldLFmhEVyWU96GadMqNNw9O9yxnJKu0HBrkyKyCcupGJqgQbnZshyN8o03GRqSoeAmJmgwgoc1a9Zg2bJlos8LCgrw9NNPA7DZOtn/BoDhw4cjISEBAPDBBx9QbYCuXr2KqVOnArCFTo8dO1a2HRMmTKAKBr/88gvWr1/v2C5p+d69e3dHhsUXX3xBtUGdNWuWoFrBXRo3bgwA2LVrF86fPy+afuvWLdlKCTv2tl+4cMHjtgDA5MmTHdt9/vnnqfNMnz4dp06dAgA89dRT0OuDa7CEUi5fvoxvvvnG8e9BgwaVYWsYDM8JuOVUZmYm9u7di4sXLyI/P18yHNyZd999169tqlu3Lpo1a4aNGze6vexbb72FH374AYAt+PzVV19Fw4YNceHCBXzyySc4fPgwvv/+e1SrVg0ffvihx23Mz8/H4MGDce7cOQC2C+h///tfhIaGYuvWrfjoo4+Ql5eHhx9+GLt370bbtm093haDwWAEMyLLKTcqNAIxsjwgllMUYSZar0KJxSLy6tdT+jKV2E0B9AoNAKgeGiEQJEqshW530AUqtJfWrJIgqqzmOA4tYqpj/60rjs9O5dxEz/hEyWUqR4UG/UcqjxUaN4qEJ2VCuBpG4sB0NxQcAApMPKqEBiZDI1ZHETRkfgrPBA33KjQAm7jnfE+wW06Rgmm0Nrgsp7wN0yYFjWIPlAV3LKekcnO8FRZyiBtWLM1yijL8ztv9xyhb9MQzDcvQYFQ0OnbsiFGjRmH79u0YMWIEoqKicOzYMXz88cc4c+YMAFsH+l133eVYRqfTYd68ebjvvvuQl5eHHj164JVXXkGfPn2gVquxZ88ezJw5ExkZtkEvn376KapWrSrbhpSUFHTs2BGvvfYaWrdujdzcXPz+++/47rvvANispT799FPRsvHx8XjooYfw66+/4u+//8bQoUMxefJkVK9eHVeuXMGPP/6IFStWoHv37tizZ49H++iJJ57An3/+icLCQvTu3Ruvv/46OnToAADYs2cPPv/8c9y4cQPdunXD3r17JdfTvXt3bN26FcnJyZg5cyYGDhyI8HDbgIjQ0FDUqlVLUXueeeYZ/Pzzz9i7dy8WLlyIy5cvY9KkSahfvz6uX7+OBQsWYOXKlQCAhg0b4p133vHoewcKexWQHavViszMTOzcuRNfffWVY0D3o48+yvoOGeWWgAkaGRkZmDJlCn7//Xe3Pdr8IWi8++676NSpEzp16oTq1avj0qVLgtI6JZw9e9ZxA+jYsSN27NiB0FDbC1OnTp0wdOhQ9O7dGykpKZg1axaefPJJNGrUyKP2zpo1y+FR+Mknn+CVV15xTOvWrRuSkpLQu3dvFBUV4cUXX8S2bds82g6DwWAEOyLLKRkfd3GGhucdsXIhzXL4opCD7JCkZWioOA7VQtW4VkD69YtbYFYYKi4laNQIjcS5vNuOf5dYC923nApQaC/tFyc7k8ua5tHxAkHjdM5N+QyNylChUYEsp9ILSMspNdIJGyqzxPeSq9DIv1OhYXThP6+VCPN0B7JCI9tY7NMKDYvViiyD0MbKVYUGIPbit1tOkRUaUbrgGkXprWVSKKVCQ5Tz5OLmE6ZRbjklJSD42nJKcYUGs5wq14QQorwvMjSKJD5nMMqCZcuWoU+fPpgzZw7mzJkjmv7ggw/i888/F30+ePBgLFy4EE8//TTy8/Px7rvvivrC1Go1ZsyYgYkTJ8q2YfDgwRg8eDCmT59OreSIiorCmjVrkJiYSF3+iy++QEpKCs6dO4e1a9eKnED++9//Yvz48bK2V3KMGDECY8eOxcKFC5Geni6qilCr1fjiiy+QnZ0tK2hMnDgRc+fORVZWFt544w288cYbjmm9e/dW3C+mVquxdu1aDB06FLt378Y///yDf/75RzRf8+bNsWHDBkREuB50UZa0bt3a5TwPP/ywY3A2g1EeCYjlVHZ2Nnr27InffvsNJpPJFnbpxn/+YPr06RgyZAiqV6/uemYJvvzyS4c48/XXXzvEDDthYWH4+uuvAdg8Ar/44guPtmMymfDVV18BsF1AX375ZdE83bt3x7hx4wAA27dvdxkCxWAwGOUVcYWGtDbvT8spKfxx29Iq+B4cgGqh4pHYVEFDcYUG/TGBDAYvsRa6bT2SZxR63QayQiOYMjQAcY7GqZyblT5DQyrjpbwJGlaeR0axWNAgT0tJyymZoeiFdzqgA1KhoRc+45qsFtkR0e5maGQaCkXHvJIKDbJj1N7ZKbKc8tP1xVO8FQVD1DTLKfcIJyo0CmVDwf1ToUGGgsdSSgqpGRrl7DrAECLO0FBuOcUqNBjlgfr16+PgwYN488030bx5c4SFhSE6Ohp33303fvrpJ/z+++8OSyeS0aNH499//8ULL7yA5s2bIzw8HKGhoWjYsCGeeuopHD58WNBpL8e0adPw119/YfDgwahevTp0Oh0SExMxadIknDx5Er1795Zctnr16ti/fz9ee+01NG7cGHq9HnFxcY7v8Ouvv0Kt9u75YsGCBfjxxx/Rq1cvREZGQq/Xo169enj88cexZ88evPDCCy7XUatWLRw4cADjxo1Do0aNHJkanhAXF4cdO3ZgyZIlGDBgAKpXrw6tVosqVaogKSkJs2fPxpEjR1CvXj2Pt1FWcByHyMhItGjRAuPGjcP27dvx22+/lVvbLAYDCFCFxsyZMx2+eP369cNLL72EDh06IC4uDlwgTch9CM/z+OOPPwAAzZo1Q9euXanzde3aFU2bNsWZM2fwxx9/YPbs2W5/561btzqCn0aPHg2VxEi7MWPGOMoHV61ahU6dOrm1HQaDwSgPkKPz5Co0fGk5JRr9qnA5X9zndMTLP82OR8UB1cLELxY6iqBhUijsSFtOiQUNdzuaRZYwfgsFF7fLEGR+Jc1pgoZME8u8QiMAwqBUJ70/LN38ye1iq0isSAjX4GSm8DomJWjIiW8FdzIPXAkavggFjyMspwAg01AkOf/lgmzwPK/4+nfbIPb4rqqgQoMUtCVDwYMsQ0Oppiq196iWU8Q6Xe35MGIdRSZe8jeTaq83xW5mK498o3AFMTTLKcoXkTpfGOUDPSGyulOhIVWJwQQNRrARGxuLDz74AB988IHbyyYmJuLLL7/0STv69++P/v37e7RsbGwsZs6ciZkzZ1KnJyUlyQ5AXrRokSNEW4rHHnsMjz32mOT0adOmYdq0abLraNiwIb7//nvZeQBl1fYqlQqPP/64ovwOEiVtBVzvN09hLi2MykZAKjT++OMPcByHIUOG4K+//kK/fv1QpUqVcitmAEBqairS09MBQFbZdp6elpaGS5cuub2tXbt2idZFo2PHjggLs71w7t692+3tMBgMRnmgiKzQkA0FJ62afBgKLvG5PzpcScsYaoUGB1QLFd/WyY4v2/IKLackviWtQsPdPSuyhNH6Z4RQeazQyDYW42ZxPnVeDafyyYh7byjLUPDyVqGRTgSCh2k4ROo4US4AbZ+arTxkXIBQYLKC53nJahY7vjheonR6cMT1IEtG0Cg0G2Wnk5CB4NG6EEXtJis0SqRCwStYhUYocQB5UqERphWug4e0xZk/QsFJuykAiGWh4JUCcYWGG5ZTMhUa/nJ2YDAYDAaDEXwEpELjyhWbL/TkyZMDsbmAcOrUKcffzZo1k53Xefrp06fdzupQui2NRoNGjRrh2LFjOH36tFvbAIBr167JTr9+/brb62QwGJWXM7kZ+ODoFhSajXi2eQ/cU1NZhtC6q6fw04VDuCuuJqa2SkKR2Yh3D/2NY9nXwYPHiewbgvnl7HfIjpD0ojz0/es71NLXR4OQjgA4hGo49Kkbig7VxR3qh24asOVqMYpMvCjYN5BoCWGmyFI6ErHEWogTBbuwLz8bG26pRBkaj+7QQE+IGtcKcxVtVy5Dw5nrxot47eBS9KxZDW/e1QcRTuKExcpj9YUinMo0CsSFjdeE95Sjt4Dpe0ttasK0HPrWDUW7eOHvwvM8Nl8pQfJNA6w8j1ZVdBjaMAy3i634/VwhbhG/E5lfAAC3ii2CbQE2QahJjBYPNg6HllLV4k/qhcciRK1xjC4HgIe2/Uidt6yrMwBgV0YqkjaIPaHdQc2pcHf1BnirTR9o7nRc5xlL8N7hv3EkKx1XCnOoy5VYzNRtN42Kx7R2/VAzLEo07UZRHqYd2Yh/czNctis+JAImqxW5xmJYwcPK89h5MxUA0CW2E/rF94WaU+Hf/DM4kXcKNUNqoltcZ0l7NrLTtka4GhzHQUOcW7uuZ2LLhvWoE6nBtLb9UCciBusv5eJYwXYUWfLQOKwjqmhrCpbZeLkYKTfEooFepYfBWmrpdjrLdrzHhagwrGE46ka5//iv4lSI1YcKRAryWkwycNP3CFN4vGaWCL9HNb0yb2oyQ+ODY1uw8HwysozC9S09Y8LOy/I2WPWiNBjaMAxrLxYhNdd1B2vtSA1GNglHpE6FM1kmrL9UhDxKJz2NfDmlSgGkUJ1ZYsH2tBKJuemQllMA8OH+HGhU4s+LJQSTJafyEaH1bHwcKZ5oVEAEpU00y6mvD+cJ7BTD79wv2sYHh3VGRpGFej8CgGi9CkMahKFRTNlfy+1suVKMAzcMMDr9JmoV0LKKDsMahlGfBS7lmbDmQhGyS+jHctVQNe5vFIaEiNJzlOd57Eoz4Ngt4X5Zd/W04nvKqZyb1M8tvBVGq0UkljAYDAaDwaiYBOSOHxERAYPB4FVeRbDh3Plfu3Zt2Xnr1Knj+Pvq1asebys8PBwxMTEut3Xs2DHcunULBoPBLU8853YyGAyGN1h5KwZu/B6pBVkAgLVXT+HSQ29ROxudOZVzA0M2LwAA/JZ6BGpOhUOZaViaekRyGbkOM9JyCgC2XD8H4BzaR/BoFNYOAHAow4jPesehltOLd1qBGbMO5kpbaijs8/ZF17iO4lFrtwbZl7sWGabLAIArxaLZcOu2+DOlKLWcAoCdt45j5y2bJdgXXYY5Pl9zsQjLzortZC4VXRb8O7dEi1NZwpGXhzKM+KJ3HGqEl/4u+24Y8P2J0uqF47dN0Ko4/HO1WCTmSGGyQrQtADiZaYKZBx5rHtigP7VKhWbR8TiSle747KjT386UdX4GYBuZv/3GRa/X88/181BxHN5pey8AYNLelfj54iHZZXjw1G1vv3ERZ/IysG3gJNG0R7b/jG03Lnjd3v3ZySgyhqKGLhGbsn8HAJzIP4VbxUCTsA6K1lEz3HYuk520u3NXItt8E7gBpNy+it/ufg4vHViLC8VHAADXDGcxtOqz0KlKn+tuF1txvVCYRQMAYaoYGKylnX75xtLj/XimCXP/UwVqSqe1K2J1QkFDaqS0neTb7j/z2lESCA6IBb5zebdxLk980buap0JOkXx7T2WZsOES5SIqM//tYguebRuFDw5kwxBAzZvM0DBbbceDO5DB4gBwNkf5SHkAuJJvAeCbLx6jV1Gr91UcBxUnrLa7QBGcDmUY8TlxvygrPk7Okb0fHbllxLd9qlIrKANN8g0D5h2nVwQev22CTsVhcAOh5ZzZyuOD/TnIM8pVRJhwJtuI/yWVujIczzRh9tE8XCceCTJKCpBxo8CbrwEAKDIbmaDBYDAYDEYlISB3/NatW2Pbtm24fPky2rZtG4hN+p38/NIHv4gI+Y6P8PDSl7KCAvcf1uzbcrUd2rZYyA+DwSgLUvOzHGIGYPN435txGQ8ktpZd7p1Dfwv+/VrKOmrnuTNV9dIdX7EU33c7t0xX0Qg2QYMHcOimUSBonM02yfqDk/7jdsh8CrUP/OtpgdmF1lxEqGNwy+R5p6ErYnSh1M/rhcdKLvPlqZ0CQeNfinBAt4UQf2blgTPZJkEH1elM8fr23TAoFjNccTqrbHy4W8fWFAgaUijt6PUENacKSOC3MztulooTO296J5LsvJkKK28VVEvwPC/YhrecLUrBTaNQjDtSsEWxoGG/xkQ6jWovsuTZxIw7HMu+jm1pNx1iBgBYYcH54kNoEd5NsD4rxewtSlNVsD69qvQ8zjVYcb3QgtqR7r8C1AqLxoX8TLeX84Q64TGK5pO7/jujV/nnvDmdZcKFXLNfxAwVB0EVgjMxFGsmkjBKtYNw/Rxi9Cqq9VNZUC1U2mIsQsu56Dy32V+dyzaXuaCRb7S6vB8Vm3mk5pnQPE46AyxQuLrnncoyigSN9AKLy98DAG4WWZFtsCIuxPbbfn3YVh2q56Sfzbyh2GKC9NMJg8FgBC9paWnIzpavJKURHh7utgMMg1FRCEiGxtNPPw2e5/Hjj3T7hPJISUlpWbdOJ/8w6iwqFBcrH/lFbsvVdrzd1tWrV2X/O3DggHsNZzAYlRaad7qZd93jczgzTfRZnlHaRqNeRCwG1Ja24msZWx3d4xOp0yy8cIRnap6JmC7dTr0a6FmL7smeaxRee30Rdk3r3EuMNsDKW8G7nV6hjEaRVZFUoyF1WqvYGrLLOnv6mxWmxlbV1qJ+TuZdGCnry/Vhb2JZhc0+3bQrdAoyA55u2s3lPJ7yXfcHRZ+FqDVY9Z8xqBkqX13lKc5ZGd5m3Fh5XhSmbuGtPs3dMPBFyDHTLU9cEaHl0OvOdeOuajpH5o2ZF4t0BZSA21BdvsiSh3b+NwxpAw1ne2bUcDrU1bcQTPc09+Dppl0lp0VpQ/B+u/6inA1P0HAqjG/SRdG8Tzbu7DL0vK6+haCyxZdYeQhsejyleZy48qpnQojkCP74MDXaVJN+L9CqgLsl7lHO9K0bPNki99ajC+gA0Leu9DRnzEGQoaD0eCg2lX1bAdfB7rTpJjfS4C1Olyi7CJKgb4QQP4iMQfDzMxgMhke89dZbaN26tdv/jR07tqybzmCUGQEZwjJy5Ej8+eef+OWXXzBz5ky8/vrrgdisXwkJKX0BMBrlR7YYDKV2AKGhyh7IadtytR1vt+XKOovBYDCUkm0UC6pKQjxpdhOkrck7bfqiemgkYnSh6F+rKeL00iP9VJwKG/s9hb/TzuLl5DW4VFA68sVK2GSQnulkc6uHqTC4fhg0Kg6tqupQPYze+ZxDCDBSVQ7uwHEc6oTH4KpTrkDP2hYkhkbid2FRC95tcy+MFtt9o9Ydv347t0sKMe3IRtH6VRyHVf8Z41h/rC4UA2o3Q5SEGMNxHNrG1cKRLLEABQDXCnNQP7IKAHHdRZcaejSLU2P5NuHno5pURZ3wCPx1qRjphaW/jYnQKiyUPm9ypKiaA0a3EFY16u6MdCY7my7kmrH9WulvVlb9IT2q18ex4S9j+42LAkHoTO4tXC3MQVKNhuhcrQ66SQh0vmBcky5oE5eAq4U5aBOXgCOZ6WhbJQENIqugW3w9bEw7izyTez79JLtupuI3Jws5uYqQyc26o01cAjpXq4vU/CykFQmzXzJKCvD+kU2Cz6zg4Xxmmq3i9b/X9l5UCyk9Pniex3P7Vyv+DqEaFYyEBvFkS/kqWp2aw11VdahyZxR6pE6FD3vGYca+bJzMFl/3eMp+aV1Vh1kd43DslhEGC4+V54twvUg838RWdTHO+gJO5V5B48gEbLioFRzXngbnjmrYHs2i47H/9hWBSBSq1qJvQmPUjYjFfXVaYN+tyx6HNms4FXrVqI8WMfKiqZ17azXBseEvY8eNiw5BrNBkxW9nbJ424epo1NDVx6PNwqnVDumFFvwlYzN1b91Q1IksPaIyiixYmyqc30RcU2L0KjzQSNkIdI4DGkRr0ShGi4u5JpzPMYHnbYLFXVXlBzJN7RCNo7eMyCoRXiQ1Kg4tqmhRU0GlwojG4WhRRYdr+cqtpowWQOd9zrwDjgMaxWjRIFraTm9kk3C0rKJDWoGwnX9eLMItN622/A1Nz3iieQT+vFiEbKdqmGIfCGFlBdl0jcr2Hc1WYMlpoRsB7VuGqSNxb+xo3DRewhMtPRMb9WoNntq9nNhW+d2njPLPtGnTMG3atLJuhsf3eAaDwShv+FTQ2LFjh+S0J598EqmpqXjrrbewcuVKjBo1Cs2aNUNYmOsH/rvvvtuXzfQJkZGlFiiubKQKC0uNQpXYRkltS4ldlbfbYjAYDF+QbaAJGq47HZSM7R3fpAvqRig3FQjX6vFAYmukFeXieadOS7JC43qhBSVmK0I09NG+sXo1+ie6vmdlE2G0vhA0AKB+RJxA0LhZkof76opv42Mbd0JiZBx1Han5mVRBI0YXiqF1W7rVnkiKDVbpdrJKBQ3ivapFFS361BV3YPSqHYqm0WE4essoEDTIigxaRykZWBuh5RT9VgCwO61EKGiU4Ytg0+h4NI2OL7PtA0DHqnXQsaotU6vBnd8QsOWmPN5Ima2SHDqVmhA0Svc3ueuH1W2Fe2s1AQC0iUsQretC3m2xoEGsxESpDBvbuBPqRZSeI+4KGiEaNXIJQUPp8eZMlE6Fu2uH4iTFYUDqKIwLUSOpju2asulKMdKLxHP2qxdxR4y0ZddtvJQhqDzypvu3fdXaaF9VegBM2yq10LYKvdrKXzSPqY7mMaU5fbeLLTh4VWiN1bduKMIo4dUnbhtlBY0O1XVo5xQ0fS7bJBI0yGtUjF7l0fHQIFq+U59Ep+bQqYZ3lSccx6FlFR1aVil76yM5OM42kKAVIfLsSCsRCBpuFA74DVpV4oDEUOy5XiIQNEokgtbLA+R1Vq+y3XMNFl4kaEgRqo5AYmgrTG7u2T0vz1giFjTK7y5lMBiVnEWLFmHRokVl3QwGo1zhU0EjKSmJOrqW5ODBgzh48KCidXIcB7PZvYC6QOBczeAcEE7DOQjck+Dt2rVrY//+/SgsLEROTo5sMLh9W9WqVWP5GQwGo8wgO/UBwEIZKU2ixK4kUuv5aD5nSO95HsClPDOa3fG0Fo30U6C28DzvlwoNAKgVHi34d3pRnmAkvx2tjG2RVMi3J0HTcjYvzvkpZP8CB7pooLqzg3XEKGpy9LMSS6hQCVGKBrlLgqFDrCJDZsp4k9lBO57JjjZahYaGE54jSp5dnVG7Ob8cUtnctOOQvCZx4KgZGmT7yE1U9E4/2r7zIANdMeQ1SRcQQ18GoGwQRKCh3aNUnDiEvTwLGmSFhurOMU/7PeS+ZaSLnBc5aJdhVqHBYDAYDEblweeP3DzP+/y/YKRFi1I/4n///Vd2XufpzZs399u2zGYzLly44PF2GAwGw1d4bjnlet3hGs9GkpL5BFZeLJY7206RzVXy2l1sMYlEhhgfZGgAQAKRYSAtaEjf2lUSt/0QtfvjG+QEDWdrL3I/qjiOmmlg71TWEj2PRqJzSMlx5CoMV7hd4b+D86mj4kB2tvta0CDXR8vl0FDOEXeyH0hRxhtUd7ZOQnv+JT/jOLo1lYa41pGd+RX9GKddX6TEXFcoWYq0sdP4Uz1hCCDFyGAQpMkcD43K1s4QQqwPFsspT1ohEjRkzi/7dYt2XkZ6of7RrtlM0GAwGAwGo/Lg0wqNrVu3+nJ1QU39+vWRkJCA9PR0bN++XXZeuxVXrVq1kJiY6Pa2evbs6fh7+/bt6NqVHsqYkpLisJzq0aOH29thMBgMX+G55ZR8R5BOpYbOg853gFKhQbGiSc2TrghU0kWVQxFyfFWhkRAmFDTSinJhoow+96RCwyNBQ0Y4Sc0vrdAgW8hx9A4Ue9u0RPPJ8FFlFRpuCBrEv4N0HEWFQU0cN94EdtMEOmUVGuLlVBynOPfBl93VKo6+PquCjjkO9A488vtxd+Z0rLuCH+PuVGj4otiGvEaRVWYM/xGMe5q8R2nuHGSknWV5rtCwEse8/ZCX+z2KKCHoUV4JGmLY/ZvBYDAYjMqDTwWN3r17+3J1QQ3HcRg2bBjmzp2Lf//9F/v27aMKDfv27XNUVQwbNsxtWwPAZuUVHR2N3NxcLF68GK+++ip1Pc6ee/fff7/b22EwGAxfQavQoI2UJnF1iYzw0G4KAPQq4S3PAoqg4Vyh4cE2aIJGtI8qNGqFiS2nzBRRRk7QkNq/oRr3LafUnPR2BJZT5KhyAFbKsWBvmo6s0CCGgiqq0PBG0FC8JMMTVMQeF2RokJZKLn5Gjy2nqBUayjFQKqM8RcVxVFGC5sNPtW+jWE6R+0Vsq1axj3K3BA1XK1NwYJiIn4AS1cHwE8F4bJPnrl3HqMiWUw5Bg2oDZSOPLLcEEKnzrSTFKjQYDAaDwag8sEduL3jxxRehVts6dJ577jkUFws7soqLi/Hcc88BADQaDV588UXqesaMGQOO48BxHLZt2yaartPp8PzzzwMATp8+jU8//VQ0z969e/HDDz8AsAlLnTp18vRrMRgMhtdkGzzL0HBFhId2UwCgV5OWU+JOyWsFZkcHuif9IjkGYX5GhEYvsn/xFKUVGnJWUGRnsp0QTzI0ZCo0LslkaKhcVGiIMjTIUHAfZ2iQnb8VffR6WeP3DA3i6KKJflIVGkopsZhcz6QQ2/lAETQo7SbhOLE4qOZUokEv5Let6Ic4XdDwn+UUeY3SsgqNgBGMe5rUKewWZCLLKSXlhkEKeY7JW07Z/p9LETS8sWejDe6r6Nc2BoPBYDAYpfi0QqM8sWvXLpw/f97x79u3bzv+Pn/+vKDaAbCJDiRNmjTBK6+8gpkzZyIlJQU9evTAa6+9hoYNG+LChQv4+OOPcfjwYQDAK6+8gsaNG3vc3ldeeQVLly7F2bNn8eqrr+L8+fP473//i9DQUGzduhUffvghzGYzQkND8eWXX3q8HQaDwfAFHmdouOie8KZCQ6ciQ8HFHYZWHriSb0ajGHEHv5L+MLJCw1f5GYBY0Cg0G5FpKBTNFyjLKbmsjvSiPJSYTQjRaKlZJNQMDdgzNISfG4mfScmgVq8yNIJghG9FRk10YHkjaNDCuZVVaIjPEXcqaIvNvhU0aJgpVSC0aidSDKHle4iPcbeaWO4gjwFvIi2UZKuYiOHqZA4Qw3+QezoYBGmLhB1TCFmhESQZGp5AnmNKLKfyDL4VcKgZGhX94sZgMBgMBsNBpRU0vv/+eyxevJg6bffu3di9e7fgM5qgAQAffPABMjIysGDBAhw+fBj//e9/RfOMGzcO//d//+dVeyMjI7Fu3ToMGjQI586dw7x58zBv3jzBPFFRUfj555/Rtm1br7bFYDAY3uJ5hoY8/q7QAGy2U1RBQ8E2xIKGb/IzACCBsJwCgMtO4duA7QWfzChwRiVRvRHqSYWGjOUUAFwuzEbT6HixTY7EiHRHhgbRGSiu0HDdYeFVhobiJRmeIKrQ8KIHknY8kxULNKs7mhjnThe0UUJs8MRWVKpCw2gV5/nQzyXh96OJlmJbHrebWa4gf3E5fcHlT8Ysp4KaYNSORBkadxoZrJZTnmgA4lBw2//lLad8+32D8KdnMBgMBoMRQNgjt5eoVCr88MMPWLduHYYNG4aEhATodDokJCRg2LBhWL9+Pb7//nuoZDqYlNKoUSMcPnwYH3/8MTp27IiYmBiEhYWhadOmmDJlCo4dO4YhQ4b44FsxGAyGd2QbKZZTCgQNV6+7XmVoEFUIljuCRsNo4eepeSZFbaFBChqxet8JGqEaLWIJgYQUNOSqJgDpDgBfh4IDwKU7bSM7T11VaJCWU+IMDddtc0fQIDvEgqOLqeIiZzklzoiQ/x09ydDgwFGFEE8tieyYPMzVkMrQMFEFDUqFBnFdpdppidZTsRHZ4XixLo8sp4Kxl72SEAwmTmbiGmR3QBRbTpXfM1GUoSFzzNt3By1Dw5s9wCynGAwGg8Go3FTaCo1FixaJbKW8YdCgQRg0aJDf2xIeHo5XX30Vr776qkfbYjAYjEDgqeWUK2/6CI3vQsHtllNNYrW44BQGbg8Gp42GdkWOUZih4csKDcBmO+W8b8WChnzVhLTllCcVGvLdhKn5mQBo+5HegStdoSGcjxaWTBLmRoaGqEKD9Yj4FdImisy8cAdaJgx5nSErNKSEOCXWQnKUWMzQeSAMqjixKAFIVGiQ4iDlXJLOB3EKX6/gx7g7/v6+kB5IQYMUZRn+Q9SPHgTHttIKjfIsaHhkOUUTNLzYBbRtMcspBoPBYDAqD6xCg8FgMBg+xWK1Ipfo2AeUVWgUufCmj9B6bjmlIyyneFjB8zwaxwo786/km22d5pTKAlf403IKAGoRtlOXC4WChquqCV9maLjaVmq+LRic7GBQgV6hURoKLvxcZDmlJEPDHcupSmbHU9aQx6CFknHh6boAWoWGsHJCSojzVtAwUAQIJdj6OpVaTonnsxJj0mmWc6JjPBh6ff2IbzM0XEPm/LihpzK8hhRIyx5SdJfK0DCU4wwNC7GjSy2npKsmcn2docEqNBgMBoPBqNSwR24Gg8Fg+JRck1jMAOjhvCTFAazQAAALzGhM5GWYrcC1AjPlxdh115a/BQ0yGPxyQY7g31oXuRZSgoZnGRrKLKeUZmjYW0ZWaJCWU4oqNNwKBRfOyzpE/IvYcsq5csC9vU8VNCCfoSElxHlrOWWweChowPMMDYuVV1ShUdmqkMQVGv7dHrOcKjuCsUKD1CnsFRqkoFGeKzTEGRoyllN3/p/va8sp6rbK7z5lMBgMBoPhHkzQYDAYDIZPyTaI8zMAZRUaxX6s0CAzNABbgHCMXoX4UOHtMDVXLGgos5wiBY0Qd5spCxkMfqkgS/BvV5ZTUqPQPanQcLWt1AJ7hQbRBk6qQsP2G5B2LZ5UaLiVoUH8m1lW+Be5DA0SV7+iJxkakhUaXvZBl3gqaHActQvOaBVfC8nvZrLy4gwNimAjyomp4Ic4KWjIOUC5qsxRclyQIquOCRplRjBUH5HHg/12FErJ0Civ9xspyymAct2+M2uuzy2nKBUa5XN3MhgMBoPB8AAmaDAYDAbDp9DyMwDXGRpmq0U0mprEm1BwHaUD3gozNCqgfrSwQuFSntlDyyn/ZmjUIio08k0Gwb9dhYJLWk5pPKjQUGg5RQvopXXilFZoCD8n7Vwsvs7QENnxMPwJmaGhROiUgpahIRI0lFZoeGs55bGgYbO/I6FVaJDB4yareFlFFRruN7Nc4VaGhoufXZHlFPHzaeW1XoYPCUbtSCpDg6zQ4CE+dsoLolBwmd/BPmuekXbl8fxqRDt3WYUGg8FgMBiVByZoMBgMBsOnZBukBA35N3dXdlMAEKHxbYUGYIGK41A/WjjNVqHh/otxtlFYneJ7y6lo2ekuQ8Eluuf8YTl121CIApOBuhdpo2ilQ8HJDmrXbXOnQqOy2fGUNWSFBq1aR/G6KOKE6woN+jlC82N3B88rNEA96EwUQYMUOYwWseUU7RpAfreKnhPjywwNJZgs5G8QhL3slYRgOLZFFRp3LlMhFKG9pJzaTsmJhuSllAcPK8/73HKKBhM0GGXJokWLwHEcOI7DpUuXyro5DrZt2+Zo17Zt28q6OQFlzJgx4DgOiYmJZd2UCk+wHf9JSUngOA5JSUll3RSGH2GCBoPBYDB8Ctmpb8eVoOEqEBzwrkKDlqHBcbY21Y8STruUZ/aoYyTHENgKDRKXgoYvQ8FdCBqAzRKL7KtVcRxVNLDbR5CWU2SGBhlGSsOdDI3KZsdT1ohCwZ0zNNzsjKJWaIAUwIhQcIkKDW+7oL2r0FAoaFiE38Vs5WH1wHLKGxGpPCD29/fv9liGRtkRjLtaXL1gayRNaC8myznKCWTFrSvLqUIT73OxiVlOMRgMBoNRuWGCBoPBYDB8inSFhvybpqv8DMC7UHCdWtzZr+JsHYSJhOWUwcIjvVDYeajMciqwGRokrkQGqVHoHgkaLsQTwGY7RXbWSmdo3BE0RBUaQosqV8cR4G6FBjF6XfGSDE9wJ0PDFTSBjlyf0gwNr0PBKQKEEmwZGhRBg6dVaFiIf4stp0hLL4BZTsl1erv61ZUcFibScoq9XZUZwVyhoVOJj7dgqNBw1QLaLVeUUyNzzPMA8iS8tbzK0KCcnKxCg8EoG6ZNm+YYnc9g+AtWccMgcb8HQ4YGDRr4cnUAbA8rFy5c8Pl6GQwGg+EfpDI0yI5FEkWWU16Egqs4FTScSuCpbxc0YvQqxIWokFVSOi01V9geV8/oPM9TBA3fVmhUD42AiuMkR1gH0nLKVV4HAFwqyAbPVxd8xoHe6WDfv6T/PA/biFe7RuFqQKtezbnVOS2yx2D9IX7FnQwNVy/GtOni4Gzh+qXOEVfh0K4oUXD9omHrbBcfdLQMDVLQMFl5cYYG1XJK+O+KfoyLLaf8m6FBVmiQVWYM/+HteesPpDI0OI5DiIZDsZOIUUKWc5QTxFVQhOWU03QeQK5BQtDwcbsq+rWNEdyMGTMGY8aMKetmMBgMoNLZq1VWfCpoKPVKs7+AkqGgtM+ZystgMBjli2yDZ5ZT/q7QAACtSgOzxVj6AVfaQZgYpUFWSem0K/lEGrULisxGUQBxjN63goZGpUb1kEhcL86jTvc4FNyTDA0FgkZqQZaow0IlVaEBeoYGYLOd0qhsQo6r/oowN6oz7O1xho3w9C/iCg3v9jcp8IlDwRVaTnlboWFx73phR9pySnw9JEUOs1X8LK0kFLyiVyGR38/fbxIsQ6PsIE/boKjQIM9Jp1MylBA0ioOgQsMTrMSOlrWcAqj5Gb6Ag7DCjd2/GQwGg8GoPPhU0Bg9erTs9CNHjuDo0aPgeR4xMTFo164dqle3jdy8efMmjhw5guzsbHAchzZt2qBNmza+bB6DwWAwAoBUhYZPQsG9qNAAbKOzi536HTmnrq/60RocyjBSlrLPK0+OsUT0ma8rNAAgISxKRtCQr9DwqeWURLiyM6n5WahJtgFSFRr0DA3AZq0TBtfVGYB7dlP29jgTDB1iFRkyyNv5uuCJtqECJ8jNcB0KLmE55WW3t8cZGuBEogQgUaFBEU2sCiynSCGzoo9idsdyyhVKKgDIvlpK9jPDT9BMh8oaMudJ43T+hRD3t2CwnPIEd3JqeB7I9YPlFGATtJzXUT73JoPBYDAYDE/w6SP3woULJf/r1asXTp06hdq1a2Pp0qXIyMjAli1b8Msvv+CXX37Bli1bkJGRgaVLl6JOnTo4deoUevbsiYULF/qyiQwGg8HwM9KChvyrpqJQcC8rNESd8JyToBElX6XgagA3aTcFAFFehJhLkSATDO5K0ADoHXShGv9UaFyiVGhIZmjYQ8Epq7WPgFYymt+dQHB7e5xhHSL+hexw9zagmuysF1douA7NBpRlJcjhjeWU4lBwq1jQUGI5VdmC78WChozllIt1KTkuyMwEZjkVOILRTk0qQwMAQgjBvUJaThHz2jI06N/T229PPs/QxGEGI1AsWrTIkSNBcy45ePAgxo0bhyZNmiA8PBwhISGoU6cOOnTogMmTJ2PNmjWyx/Cff/6JESNGoHbt2tDr9ahSpQq6deuGmTNnoqCgwKu279u3D2+//TaSkpJQo0YN6HQ6REVFoUWLFpg4cSJOnTol+52nT5/u+My+D5z/o+0Pi8WCxYsXY8iQIUhISHB8p549e+Lzzz9HcTH9fdKZ06dPY8yYMahTp45jf44aNQrJycke7wtXbNu2zfG9tm3bBqvVivnz56N79+6Ii4tDeHg42rRpg48++gglJeLBbiQFBQWYOXMmunXrhri4OOj1etSuXRsjRozA2rVrZZdNSkoCx3FISkoCAJw5cwYTJkxA/fr1ERISgpo1a2LkyJHYt2+f4u8jh32+adOmufxeJFarFf/88w+mTp2KHj16oGrVqtBqtYiJiUHbtm0xdepUXLlyhbqsPaNl8eLFAIDLly9TjzNnyH0jxa5du/D4448jMTERISEhjoH3b7/9Nm7duiW5HG2/LVu2DH369EG1atUQGhqKpk2b4tVXX0VWVpbyHcVwC59WaEiRkpKCZ555BtWqVcO+ffuQkJBAnU+tVuOhhx5Cz5490aFDB0yaNAlt2rRBx44dA9FMBoPBYPgA6VDwYKjQEN72OK6007B+tHe3RFLQiNTqFQVnu0stmWBwJSKDiuNEwoBnFRrKLKe6hAs/s1lE0NsF0O1a7B715MhXGm5bThH/Zv0h/oXWuWzlrVApsEqiYbOwKu3otxJHV8AqNChigxKkMjTMCkLBAU8tpyr2QS7O0PDn1nhKKDgTNAJFMAbek0UXGqfjgawgDAbLKU/ueeQ5JrCcohz+eRIZGt4SjL8/g0Hjiy++wNSpU2ElnkmuXbuGa9eu4dChQ5gzZw7y8/MREREhmKekpASjRo3CqlWrBJ9nZWVh37592LdvH77++musW7cObdu2dbttixYtwtixY0Wfm0wmnD59GqdPn8b8+fPx1VdfYdKkSW6vn8aVK1cwdOhQHD16VPB5VlYWdu/ejd27d2Pu3LlYt24dmjRpQl3HsmXL8MQTT8BgMDg+u3btGn799VcsX74c3377rU/aKofRaMTgwYPx119/CT4/duwYjh07hp9++glbtmxBjRo1qMsfPnwYQ4YMQXp6uuDztLQ0rFixAitWrMADDzyAn3/+GSEhIbJt2bBhAx566CEUFhY6Prtx4waWL1+OFStW4LPPPsOLL77o2Rf1Ae+//75A+LKTm5uLo0eP4ujRo5g7dy5++ukn3H///X5vj9VqxfPPP49vvvlG8LnBYMCRI0dw5MgRzJ49G8uXL8e9997rcl2PP/44fvrpJ8HnZ8+exaxZs7Bq1Srs3LlT8jhgeE5AiqK/+OILWCwWvPnmm5JihjM1a9bEm2++CZPJhM8//zwALWQwGAyGr8g2SmRouAoFV1Kh4WXFg9gmqbRNVUJUiNR5PpLX34HgdmQrNBTYQNE6lD3L0HC9rVxjCYqtwtFJUhUa9pE1ahUHcoCz8c5wUCV9P6Fu+r2QI3qY5ZR/ITM0gNLKG0/8z92v0JAIBfc6Q8NDyyl3KjQo21BiORWMo9j9CXkOyxVMeFuZQ4oZAKBlllMBIxiPbVGFhlMbg1HQ8ASyQkN4jokt7vL8laHBsjYZ5YBjx445xIz69evjs88+w5YtW3D48GHs2LED8+fPx6hRoxAeHk5dfvTo0Q4xo02bNliyZAmSk5Px999/Y+zYseA4Dunp6ejTpw/S0tLcbp/ZbEZsbCzGjBmDBQsWYOfOnTh06BDWrl2L999/H1WrVoXFYsGzzz6Lf/75R7Ds8OHDcfz4cUycONHx2fHjx0X/1apVyzE9MzMTPXv2xNGjR6HX6/Hss89i+fLlSE5OxtatW/HGG28gLCwM58+fx8CBA5Gbmytqc3JyMh599FEYDAbo9Xq8/vrr2LFjB/bv34+vvvoKVatWxcSJE3HkyBG394c7vP322/jrr7/Qr18/rFq1CikpKVi1apWjA/zUqVO47777YKFYhqalpaFPnz5IT08Hx3EYO3Ys/v77b6SkpGDJkiUO+/2VK1e6DJtPT0/HqFGjoNFo8OGHH2LPnj3Ys2cPPvjgA0RFRcFqtWLKlClYvXq1r3eBYsxmM2rWrIlJkybhxx9/xO7du3Hw4EGsXr0ar776KiIiIlBUVIRRo0bh9OnTgmUnTZqE48ePY9iwYQCAhIQE6nHmDq+//rpDzKhfvz6+/fZbHDhwAFu3bsWUKVOg1WqRm5uLIUOGiIQ3knfeeQc//fQThg8fjpUrV+LgwYNYv349Bg8eDAA4f/48pkyZ4lb7GMoISIXGzp07AQBdunRRvEzXrl0B2EqAGAwGg1F+kK7QkH9xV1Sh4YNQcGd4pwoNjuNQP0qLY7elcjTkX5zJDI0yETQUWU6JCfVA0HAVQG4n35QDLeIF26d14DqPkNeqOFicekzsfSEWBWqDuxUazHIqsFAFDatV0bFLw6WgQVQ1SFVoeNst5rnlFEcXNJRWaHhiOeVmG8sbvs3QcG9bAKvQCCTBOEKfzHpSOx0P+gqSoSFn60a3nJLI0PCyHaJtBYOiVc7geSt4Kz2XrSLCqaLAKagw9iW///47rFYrwsPDsXfvXkeGrJ1evXph/PjxyM3NRVhYmGDaunXrsGzZMgBAnz59sH79euh0pdXq/fr1Q7du3TBhwgRkZWXhpZdewtKlS91q38CBAzFq1CjRttu1a4fBgwfj+eefx913341jx47hvffew3/+8x/HPDExMYiJiUF8fOlzfqtWrWS39/zzz+Pq1auoV68etm7divr16wumJyUl4aGHHkKvXr1w8eJFfPLJJ/jggw8E80yaNAlmsxlarRYbN27E3Xff7ZjWuXNnPPDAA+jatavLjmhvSU5OxoQJE/Ddd985PuvQoQOGDx+O8ePH44cffkBKSgq+++47UXXLiy++iOzsbADA/PnzMW7cOME6Ro4ciYEDB2Lr1q1YunQpRo8ejYEDB1Lbce7cOURHR2Pv3r1o3ry54/Nu3bph2LBh6N69O/Ly8vDss89i8ODB0Grdf+/zlvHjx+O9994Tbbt9+/YYNmwYnnvuOXTt2hVpaWn48MMP8eOPPzrmiY+PR3x8PGJiYgAAWq3W5XEmx/Hjx/HZZ58BsB2vO3fudKwbsB2D/fr1w+DBg2E0GjFhwgTs379fcn179uzB//3f/+Gtt94SfD5gwAAMGDAAGzduxO+//46vvvoK1apV87jdDDEBETTs3mPO5WCusM8r51vGYDAYjOBDKkODHClN4krQUHGcR9ZIzqhlKjQAm+2UlKDhboZGjE6+NNhT5CynlIgMtN/Bk/2qpBoEAPIsOaiiLn3RUUlWaDitWw2UOPXdOiynFPRVuJuhQdtjPM+zkZ9+glZB4MqOTg5S0CDXpTRDQy5nQQkGyug7JbhToWGiWk65ttSqbMH37mRouMKTRbUsQyNgBKOgQQ7ecC4aJCs0ym+GBmE55fQdaedMroTllK/1h/K5N8sW3pqH/BsPlnUzAkZkjRXg1DEB3eaNGzcAAE2aNBGJGc5ER4uf7+0jyLVaLRYuXCgQM+w89dRTWLZsGTZv3oyVK1fi+vXrqFmzpuL2OVdPSLXr/fffx/Dhw7Fr1y5kZmaiSpUqitfvzKVLlxyCy+zZs0Vihp127dph8uTJ+OSTT7Bo0SKBoJGcnIyUlBQAwNNPPy0QM5y/02effYaHH37Yo3YqpXr16vjiiy+o07788kusWbMGt27dwpw5cwSCRnp6uqPqZsCAAQIxw45er8eCBQvQuHFjmM1mzJ49W1LQAGxVAs5ihp2WLVvirbfewmuvvYa0tDT88ccfGDFihLtf1WsSExNlp9euXRuvvPIKXnzxRUeejL/exebOneuwf/v+++8FYoadAQMG4Mknn8T333+PAwcOIDk5GZ06daKur0OHDnjzzTdFn3Mch5deegkbN26E2WzG3r17MXToUJ9+l8pOQORpuwq1YcMGxcusX78eAFC1alW/tInBYDAYvsfKW5FrpAegueq0LDJLVUbYiNDovX6wIS2neAg7CL3J0QgKyykFo9xpYoJnllPKHiHyTMJScU6iA9c53FNHjHB2WE4p6IklO4xcQTukWKeI/6BVaEhlOig538nsC3GFhrIMDTJc1l0MFAFCCSoO1F49s+JQcLJjkWY5Vbls1dzJ0PDHq7KOWU4FDPLYDoYB+mSFhsapjaQlYnm1nCIdROU0PJ4H8iUtp7z7/qLfn929GUGIXVw4deoUDhw4oHg5s9mM7du3A7BVYtSpU0dy3qeeesqxjKtgZ1cUFhbi0qVLOHnyJE6cOIETJ04IRtV7U/Wwbt06WCwWhIWFyXbOA3AIFenp6YKw6M2bNzv+pmV/2Ln//vupHdW+ZOTIkaLKFjsREREYOXIkAODkyZMOYQuwBUrbbahoYoadxMREh32V8zIkHMdh9OjRkuuxW5MBwv1XluTl5SE1NVVwnNn3pX2av7Dvg5YtW8q6CNnPK+dlaIwaNUrynaVDhw6Ovy9evOhuUxkuCEiFxn/+8x8sWbIEn3/+OQYOHIgePXrIzr9nzx588cUX4DgOffr0CUQTGQxGkHIl34wd10pQM1yNe+qEKB5peavIgo2Xi5FVYkFChAaD64cixE1v/fKKxWrFvLP7kJqfhQitDqn5WTC5yK8g0ahUSKrREKMbdXTZqXgmNwPzzuzDzeICmHmr5AulVIZGtqEI/zu1E9OPbJLdjtJA8PQCMzZfKaaOCCwyCY+BA1mH8dj20gfMYrMVKblCYYXjOFTV1kInvrPsdtdeFfp9+k/QkKvQ8My2J1TjgaChsGT/TOEx3DTcdPz7tYM6WCGu2HQ+znRE78gfF4qwK60ERQo6f9zO0KB8ZrECUruS53nsTCvBlXwLuifo0SA68GXb5RmaoDFu1zLoVBrkm5RX8toh7wnvH92E6mciHf8+lXNTMF1KiPNWLF1x6RhS87Oo00LUGgyt2xJD67YUTZOq0Mgy5Yg+KzKb8Nj2Xxz/3pdbglyLsJJZnBNECb4Hj3+zjNiVZkAx2fsqQZVQNQYkhiIupHT9zvdZKWpHajC4fpjonPYFWSUW/HWpGJFaFQbWD4VGxaHAZMXys4WC+QItaDDLqcBB7umDGQbcLLJg/w3btaRHgl40j1bFoV28Dl1quq6ivJZvxparxcg3WlEvUou6UWocuGFAqEaFfvVCER8mPt9S84RipPMtibScOpVpxNeHS0V/FcehRRUtkmqH+GVk6u60Ehy9bRTYN17IlRdjL+WZBW0EgLPZwopaOcup388VIM9Iv3fL3dH3Xy/B4Qyjo0KTBvlYySynGMHII488go8++ggGgwE9evTAgAEDMHjwYPTs2RMtW7aUPNcvXryIoiJbLqEr63bn6SdOnHC7jbdv38bnn3+OFStW4Ny5c7Ln0u3bt91evx17ZUVRURE0GuVdkTdu3EDdunUBwJGVoNPpHDkTNLRaLdq1a4etW7d63F5XSI3Yt9O5c2dHlc3x48cdodDOv5GS33bDhg0oKirCxYsX0bhxY9E89evXlx0IXq1aNSQmJiI1NdXtrAlfcvnyZXz66af4888/cfnyZdl5b9++jQYNGvi8DQaDAefOnQPget+3a9cOWq0WJpNJ9rxq1qyZ5LS4uDjH3/n5+W62luGKgAgar7/+OpYuXQqDwYA+ffrgmWeewZgxY9CmTRvHBZzneRw9ehSLFy/G3LlzYTQaHQE/DAajcpJrsOLNXVmO0M0CkxXDGtID05yx8jze35eNjGL7m44Bl/PMeKmDdEdwRWLakY34v6Pej75YfD4FJRYTnmnWXXKeYrMJd6+fg4ySApfrk8rQGLntR2xOP+dyeSX5GUYLj2l7s5Er8fJssgq79q4WX8fPF6+7XO/lkpOoccuMqRhEnX4q5wb23RI+mPlL0KiiD4NOpaaO1lZaNUHiieWU4goNSybyLJmOf1+5Jp6H7JQmQ3VPZynPJ3A3Q4PW97jsbCEebR5BnX/TlWL8cMJ2vK9PLcL/kqqgGqVTi0GHJkovv3TMZ+tzdS2hdfgD8Los53RuBk7nZkhO/+HcAazrOw6D6gjtAKQyNGjw4PHzxUOy89DOS3KXX8u3YPGpAtFIclck3zDg895x4DgOVp7HjP3ZuFnkaiUGpBdYMLmtdGWZJ1isPN7enY3MEtv20wrNeOauKHxxMBf5JuUVGq4UDXe7lFUcvUqG4R/IYzutwIK0gtJ74+50uki69VoJXu7AoXMN6eeKErMV0/ZmO46nnYQQv+96Cb66p4rgGlRosooGU2icjgeygjCzxIpdRBt3pJWgxMxjYH36qF9P2ZlWgtlH3M9KyDaI20jirNOQR/+x29L3b6k+0/3XS/D5IddtJbUOJmcwgpFmzZrh119/xVNPPYXs7GysXbsWa9euBWBzIxkwYAAmTJiAXr16CZbLyiodJOGcUUHD3lFOLqeEgwcPon///sjMzHQ9M4DiYrq1sBIyMqSfk+SwCztA6feLi4uDWi3//C1n8eULXP0uztt3/l18/du6Woe9LampqW4fH75iw4YNGDFihOC3lMOb40wOe24J4Hq/abVaVKlSBTdu3JDdb1JVOgCgcnoul6qwYXhOQASNZs2aYfHixXjsscdgNBrx9ddf4+uvv4ZOp0NcnO3FKDMzE0ajbVQsz/PQaDRYuHChrNrFYDAqNutTixxiBgD88m+hIkEjvcDiJGbYOJhhqDS++L4QM+ysv/avrKBxKPOaIjEDoFtOlZhN2JJ+XtHycXrXL/dns02SYgYAaDnPQ8XPFEi3k/Yd4kPoHeLewnEcIrV6ZBrED4RRWtcjTqN1ISJbME8EDSk5g4PyDlo74Rph9U2YVgXAs4e+SDf9XmjXhDUXiyQFDbuYAdgyPZafK8SkNr7trK3IkL+1HGEKrNAitSG4VVLocr7S+enXABXn/0qbDWn/igSNUDUnCvb2hgjK/iWLI47cMrotZgBAeqHt3lo9TI30AosCMcNGyk33K2+UrNMuZgDA1qsleLJlJE5mijtPQ2SqQ8gR866mu5rfXUGV4R1yv60rDmcYZAWN8zlmkTjmzK1iK64VWFA3svT++S9FfHcWMSJ1ytp7KMPoc0HjSIay81CvBgxu3n5DnL6jXsOhUKGVllTxxZFb8hakdjibh6XT+pik4S6cKgqRNVaUdTMCBqcqm+e1Bx98EH379sXSpUvx999/Y+fOnbh16xZu376Nn376CT/99BNGjx6NBQsWCDpA7fjr/dVoNGLkyJHIzMyEVqvFc889h2HDhqFJkyaIjY2FXm+7Rl68eBENGzYE4F0llL1Dt2rVqm5VTtCyNoLhnd4XbQiWdfiT27dvY9SoUSgqKkJERASmTp2K/v37o2HDhoiOjnZkw/zzzz8Oh55AVNwF+35juCYgggZg85erX78+Jk2ahIMHDwKwlftcvy4eGdu+fXvMmTMHnTvL23swGIyKzfkc5aOynaGVp5uttvBFd/31KzslFnkrAlfTnaF1chdbTIo7v0c1aOdynhyJ4Ek7dUKa4arhX0XbI9Gppd/wafkfw+uJ7WV8xZA6LbD4fIro8wfrtXa57JONO+OLkzsc/360QXtoPLCqknoG7BQ5CEcK/oGRVz6yZmSisGS8R4Ke2jHkihi9Ci2ruNcx7e0VgbTeYMgTpQvBoNrNsP6a/HnYOKoq2laRD6oEgIfrt8FHx/5RvP2R9en2BEnxrXA+/4bgs+raeghTRyO1xPMKEmeKzeJjJUqvQs1wDnB/4LQIDhweShR/v3Ci5EnOIsoVhjsdle6EGReZeRgtvE9tp9ILxd/BbKXfTbolSAu9NcLUSIzS4FKe+F5WN1KDhAjhtbF2pBq1I9S4VkDfh91ltsXwPV1q6rHpSrFHuTAGF8ewkmPcRMyTR8mKaFW1VGRsU1WHCC2HAhmhROm23cWkQH9Uc8BTraLww8l8xfkeOhXQoXqpMNStph7rUpXd/6XspJS01YZ8hhLDNRynCnhIdmUlOjoaEyZMwIQJEwAAp0+fxh9//IGvv/4a6enpWLx4Mdq1a4cXXngBgNCq5ubNm9R12nHOZ3BezhX//POPw9d/zpw5GD9+PHU+X43qt4eJ5+fno3nz5i4rLGjExsYCADIzM2GxWGTX4Wq/eYur9TtPd/5dyN9WLh9FyW+r5Hva5yHX4SygWWUsqgsLlQ8eIvn999+Rk5MDAFi1ahX69u1LnS8Q1SP24wdwvd/MZrOjcsmd84oROAImaAA2j7nk5GSkpKRg8+bNOH78uOOgjY2NRevWrdG3b1+XXnQMBqNy4KkPtdTrTIGRR2hAr3qBxyoTvN2zen30jBePcHEmJfOqwLLFVZA3+fIYrtHhueY9AQB/Xj2Jk07+9bT3TJpt0rPNe6B/raa4mJ+J60X5UHEculariyF1Wsi2BYDI6qFaqIroYGqLe3Kj8W/eJVQNA2L19IfgjCIzjmbdwMHss47PtGrpF2XSTisxIhatYmu6bK+nvNf2XpGgoeI49Krh2mt0Vsch6FS1Do5lXUeT6KoY1aC9R22gjWqZ0HAYese3Q0ZJI+zPPIlCc2klSIiGQ+0IjWiEc/OYeDxCiFX96oWhSoga57JNkmPX60RooFUDl3LNsAKI0HLonhByp7rDje/h1twMX7As6XH8cvEwLkpkTtQIjcR/G7RVlAnzf+0HoE1sAo5mp8sGAmtVKvRJaIzeNRpSpz9c726cuh2BLNMNADyq6WMwunF76FVa7LndECWWYtSP1qLIUvpCd9tQiBhdiKSN1T/Xz+HA7auOf0tdT/9TV4fVMs53dfTN0LNGNdSLEot1WSUWZBusqBWhwwP1mlKvAeSocLKzsHqYGl1r0keq/3mxSNBZbL6zk8mOSK0KGHRnRLnFymMt0aGZY7BS8wY8xUzpCKX9/JPaRKKHjMjAcRze6RKDXeklyHKq+IjVq9Czlji3S8VxeK9bLHanlSCbuN/UidCge4LnVYAM92lZRYfp3WJx9JYBJitwIceEE0SVTq9aIYgLUeHfLBPOOAnQrjQDuewGO+QspFBRPUyFGH3pPSkmRI0PesRi33WDIBPqar4ZhzJKB0aQQokvINvaLE6LprGl1xR7tkijGC3qR2uQfNPgUtTQqzl0rK4XVKk81jwCDaO1uJwvFgnPZZtwymmwgmRWOHE2N4rRoGWVUmFod3oJbhdbwRF3cFfPrAxGMNG8eXM0b94cjz76KJo3b47CwkIsW7bMIWg0aNAAYWFhKCoqwv79+2XX5Rw23qpVK8VtOHnypOPvhx9+WHI+e/aFFEpHurdr1w6//PILDAYDUlJSXGYY0GjdujV+++03GI1GHD16FO3b099jzGYzjhw54vb63SE5ORmPP/647HQ7zr+L89/79++XFTTsv21YWJhkpkRqaioyMzMdghHJrVu3cOnSJdG2ASAysjR3ztmOieTs2bOS01xhP87i4uIkxQzAd8eZHHq9Ho0bN8a5c+dcnleHDx+GyWS7Z7lzXjECR5l07XXs2BEdO3Ysi00zGIxyhMbHPtSFJiuqoWJ73cuF6t6b0Bjvtu0nu/w3p3cLBA1Xo93I8bAxulB81NGWMxGnD8WrKesk5wUAI8VL8sMOAxGpwDqJRi7xdtwoRotRzUjroNZ3/pNn6cUj+O/20oc3M0V8cUzjhdPaxbkeWe4NtI7ezlXrKlpWrVLhkQbtRCKCL3i1bXM0jIoAEAFA+uFcCR2q6wWjPqXo6qVuxKqNA0+4Vo+nmnb1ybpUnAoPN2iLh9HWq/VYAdTWN0FtfRMAts6+cS1to7geQw+P1vla8lqBoGGW7GyT7oRrHX43mod3xaSmUehZy7ProisbtrqRasp10sbGy8WCTk3TnUsdKYqEa1WOdfA8j78uFwtsrXJ9LGhYKLuMdrtqU9W1xVmEToUBicrtfaJ0Kp/bATE8p0msFk3udMyvvVgkEjQGJIaiUYwWK84VCgUNF4KFWUEhE7mGQuIZpEG0WISsEa7B8EbCV/A96SVCQcOTkhOXCNfZpqoODzSm27jWjtSgdqRn3QQqjkOPWiHUq+a+6yVCQUOhcNOyik5wjbqYa7ojaAivbUzQYJRH6tSpgyZNmuDw4cOCwG2NRoPevXtjw4YN2LRpE65du4batWtT1/H99987lklKSlK8bbO5VHgsLCwUdG7bsVqtmD9/vux6QkJKn08MBoPDqorkvvvuw6uvvgqe5/Hll1/i119/VdxWO3379sVbb70FAFi8eLGkoLFq1SrZDnpfsHz5cnz88ccIDRXnJtoFKgBo0aIFatYsfWFJSkqCWq2GxWLBggULMGLECOr6r1y5gk2bNgmWocHzPJYsWYIpU6ZQpy9atMhh4UQKComJiY6/U1JS8OCDD1LX4clvZcd+nJWUlMBqtVJt1YqKivDjjz/Krsd+nBkM3lmZ9u3bF+fOncPJkydx4MABSWcg+3llX4YRfHiWHspgMBgBQEu5Z3vjp+iqxL8ikEXJVXAHcjSquxUanOBv1z3FRqt4BJ9O5bnWTlZoOI+MdBcyXNckU4ZLVmh4Gs6tFDVX9rdvWrhzefQiZfm9DEDcQe4LdyS1iuxso9+DDDLWfao757o3dk2RLqqWaOeyHQ2xqL1Cw2whr3mlf3Mch2hCRCHFZm+hDRyn9Y2Wx2sSw7fYTx3yWPZNhYZwHvI5M0JhxSBZkewPQYNcY1mcGjqF39PVo779miWu0Kj4z/mM8sfq1asddjs0rl69in//tdlwklkRkydPBmDLuhg3bpxjtLgzCxYswMaNGwEADzzwgKDj3BWNGzd2/L1o0SLqPG+88QYOHTokux7nbV64cEFyvqZNm+Khhx4CAPz222/4/PPPZdebmpoq6kjv3LmzQ8SYO3cudu3aJVru+vXrmDp1quy6fcGNGzfw8ssvU6e99NJLjhD0iRMnCqYlJCTg/vvvB2ALy168eLFoeaPRiCeffNLxmz/77LOybZkxYwbOnDkj+vz06dP44IMPANh+p2HDhgmmx8bG4q677gIALFy4kGr7tGvXLvzvf/+T3b4c9uOsqKjIIfI4Y7FYMH78eKSnp8uux36cZWRkID8/3+P2TJw40SGqTJgwAXl5Yt/XjRs34ocffgBgO+aYi1BwUmY9IteuXUNKSgp27NjhtwR7BoNRvqFZTikJKpR6nylUbspbbsk2eHc9JTvKXVVokNOdO8bIl2XammiWU1ovxABS0IhyMyBa2A6hoiY9uhowE2KHvwUHdRB00pV9C3xDRfkeDO8g+9V8IWhoiOuAVJUX7TpoR3WnqtCLS5nLIGK1zLo1HL0DUmw5JZwvmhCTyWuzt9A6Lmk2VEFwqWSUMfb7JXnfNLs4JD2znBKuNEKr7AAkB/AYPY+5kYRsa1mcGqQwq7RCg8R+dSEFS1ahwQhGvvzyS9SqVQsjR47Et99+i+3bt+PIkSPYunUrZs2ahR49ejj6w5555hnBsoMHD3YIABs3bkTXrl3x888/4+DBg9i8eTPGjx/vyL2Ii4tzKRCQ9O/fH/Hx8QCAt99+G8888wz+/vtvHDx4EEuXLkXfvn3xySefoEcP+UrV7t27O/6eMmUKduzYgXPnzuH8+fM4f/68oBJk7ty5Duukl19+Gb1798YPP/yAffv24fDhw9i8eTM+++wz3HvvvWjUqBFWrBCH1s+ZMwcajQYmkwn33nsv3nzzTezatQvJycmYPXs2OnTogOvXr6NNG3pumq/o2LEj5s6di4EDB+KPP/7AoUOH8Mcff2DAgAGYN28eAJvNFvm7AsAXX3zhyHN48skn8dRTT2Hz5s04ePAgfv75Z3Tp0gVbtmwBYMsjHjhwoGQ7GjVqBKvViq5du2LmzJnYt28f9u3bh5kzZ6Jbt27Izc0FAHz99deOAG5n7MLZzZs30atXL/z22284fPgwtmzZgpdeegl9+/b1ymFn5MiRjqqdsWPH4vXXX8eWLVuQkpKCxYsXo0uXLvj1118VH2dWqxXPPPMM9u3b5zjGzp8/r7g9rVu3dghRdtuy+fPnIyUlBdu3b8fUqVMxZMgQWCwW6HQ6fPfddx5+c4a/CajlVH5+Pj755BMsWrRIoL4dP34cLVqUeqP/9ttvWLlyJaKjo12WtzEYjIoLOZoOAErMVoRoPLOtKKwMFRpGX1douGc5JTcallZdQ3bkaTiVY0SyJ5CjgMlONXcghRWTTKcj+RJdGSo0aBU45bHvkI3gZgDia51c1YJSyOuA1PWUVqlW2o47goY3FRou1BC5VZMDzO2VLGSFBHm/JqvjfC5oUFZHq9oo+yslI5DQzjC71kYe566eb5SMgRFZThELhSus0CArF2jinK8pkwoNkaBBn8/Vt7eLsMxyilFeKCoqwvLly7F8+XLqdJVKhenTp2P48OGiaUuWLIHZbMaqVatw6NAhPPbYY6J5EhISsG7dOtSq5Z7lbXh4OJYsWYLhw4ejpKQE3333najzNikpCbNnz5bNEGjUqBFGjhyJZcuWYePGjY6KETupqakOa6O4uDjs3r0bI0eOxM6dO7Fjxw7s2LFDct1RUVGiz7p06YIlS5ZgzJgxKCkpwUcffYSPPvrIMV2j0WDOnDnYvXs3jh49qmRXeMQHH3yAzz77DH/99Rf++usv0fRmzZph7dq10GjE3a61a9fGli1bMGTIEKSnp+P7778XWBzZeeCBB6gVHM7UqlULX375JUaOHIk33nhDNF2lUuGTTz6RtJMaP348NmzYgNWrV+PUqVN45JFHBNNbt26NFStWuFX940zt2rUxd+5cjB8/HiUlJfj444/x8ccfC+Z5+OGH8dRTT8laO/3nP/9B165dsW/fPvzyyy/45ZdfBNPdcfKYOXMmCgsLMWfOHFy4cAETJkwQzRMdHY1ly5ahbdu2itfLCCwBe84/d+4c2rdvjw8//BBpaWngeV7ygOvatStWrlyJBQsWUEvIGAxG5YBWoVGsYDSXZCh4JajQkLOcUmIBpSLmkQsZt00nOgGdlie3R63QIKxWdBLeoErxqeUUEfQrJ2gEvkKj7LvpaJ0hSo6xYKPs9yQjGCBvLTRB3V3I85S8TtgxULKE7DgqNPwoaMhbTtE7WskOV/J+TVbH+d5yilVoMMTQqkrtnd/ksUwTxZxRUqFBbk5kOeWiOsoO2TYfny4AgqRCg7gUGRUKN2Rb7c8azHKKUR749ddfMW/ePIwaNQpt27ZFjRo1oNFoEBERgZYtW2LixIk4fPgw3n77beryISEhWLlyJdasWYMHHngACQkJ0Ol0iI2NRZcuXfDRRx/hzJkzHne69u/fHykpKXjssceQkJAArVaLatWqoXfv3pg3bx62bNmC8HB63o4zP/30Ez755BN07twZ0dHR1JwEOzVq1MCOHTuwdu1aPProo44AdPu2u3fvjpdffhnbt2/HggULqOt45JFHcPjwYTz++OOOfWKvhNm1axeeeuopj/aHO+h0Oqxfvx5z5sxB165dERMTg7CwMLRu3Rr/93//h0OHDiEhIUFy+Xbt2uHMmTP46KOP0KVLF8TExECn0yEhIQEPPPAA1qxZgxUrVggySqQYPHgwUlJSMHbsWNSrVw86nQ7x8fF48MEHsWvXLklrLMAmePz+++/45ptv0KlTJ4SHhyM8PBx33XUXPvjgA+zfvx81atTwaB/ZGTt2LHbu3Inhw4ejWrVq0Gq1qFmzJgYMGIClS5fit99+k8wIcW7nxo0b8fbbb6NNmzaIiIjweGCaSqXCN998gx07duDRRx9F3bp1odfrERUVhbZt2+LNN9/EuXPn0K+ffP4oo2wJSIVGSUkJBg8ejAsXLiA8PByTJ0/G3XffjSFDhlDnT0xMxD333IN//vkHa9asQc+ePQPRTAaDEWTQbk/FtCGYCqkMFRreW065W6EhRGg5RQoaris0vMnP4Hle1GnmneWUss5IQGxHRVrN+Bo1Reyj6rTNmQAA/HZJREFU7V9/Uh7FCxredniy/pOKAdmv5pMKDVLQ4KUspxRkaHgR9uJNhQbZ0WofF0CODyDn87flFM0uiNYBXTGuUgyl0ESKUssp4ec0UUww3QPLKbJCQ2mGBnmK+icUXEhZ3MNJYdbK2/Yzef1whX12UYWGzHMag+FvxowZgzFjxog+r1mzJp566imvO9jvu+8+3HfffW4vl5SU5HLkesuWLWUDmRMTE12uQ6vV4pVXXsErr7yiuG2DBw/G4MGDFc9P0qJFCyxZskRy+qJFiySzQXyFWq3GxIkTRTkZSomIiMDrr7+O119/3eu2NG/eXFIAcoVarcakSZMwadIkyXnkjgGp49+Z7t27Y9WqVZLTlRyrkZGRmDFjBmbMmCE737Zt22Sn2+nVqxd69eqlaF5nlLTVjjcZsAx5AiJozJ07F+fPn0d4eDh27typSD0eOHAgtmzZgr179/q/gQwGIyihdViUMEFDFu8tp7zL0OAEFRpCaKsiw3B1Ks8rNIrNvOiY8c5yiqjQkOiMBMQ2B5WjQoMWCl4GDfGS8thmhu8hxVufhIJzpB2KlOWU6woN0mPfHSJd+PjLZfKIQsHtGRpkKDixCn8LGrR7E+2ZwQsdiFEOoR1lDsspCfs0KZQU9VqJgQQFRuG/wxVnaIg7+i1Wnjp4wVNEFRpBYDkF2HI0XAka5FSHoOHmIBwGg8FgMBgVh4D0iKxcuRIcx+GFF15QXApnD/A5d+6cH1vGYDCCGdqLiZIKDan3mcpgOeX7Cg35fUZWBQgqNESWU0oqNDzvtcuhdJh5I2iQ/vfuWE5VjgyNikHZ70lGMEAO7PVFPyJ5HZC2nFKQoeFFg0I1nKxAI7dqqQoN8lZMdsjGEEPOaddnb6CJF3TLqYpypWIowUo5BuyHJhlw76rzW0mFhvMqrDyPIuLEUFqhQbNY9X2VBjkAJfDQvifNXsvVNy+t0GCh4AwGg8FgVFYC8h5/+vRpAHDLf6xKlSoAgJycHH80icFglANYhYb7eJ2hwZGjBN2s0ODofwPKQsF1as8LB0m7qRA1B70Xw6y1RIaGnOWUKBTc7xUaZd9JRw8FL/t2uYvXllO+aQajjCEzNHxxjokrNOjXECUVGt5kaHAcJ2s7RY5cd4bsj5XO0BDOJ6rQ8HWGBlXQEH9W/q5IDG+gPSI6LKdEx7L8uhRVaDhtr8gkHrahNEODdnr6egxOcFRoiD8zKsjGI09k+7MqCwVnMBgMBqPyEhDLqYKCAgA2fzilGAwGADYvPgaDUTmh+RuXsFBwWeQEDSUo7YCzI6rQkAkFp0F6x3tToZFHjAD2pjoDoFVoKM/QUFeGCo0KEgrufZuZpFER8IfllKhCwxNBw56h4WWDIrQccgz0afKWU2QouO3/5Ohxcr4o4vpbaOI98sqXgja6nvbMwCynKhe0oga7kCGuQJVfl6JQcKe/ac+Y4UorNCjnt79zNMomFJxuOUXiyjnKvruY5RSDwXCXs2fPwmg0ur1cfHw84uPj/dAiBoPhKQERNKpUqYIbN27g0qVLaN++vaJlTp48CQCoUaOGP5vGYDCCGNroORYKLk+20TvLKVGFhovOWnGFhkyGBmV5o8V/llPRCkdGSkFmaPDgYbFaqWKFyHLKz4JDMNiolEfxgoZUhyfP80GxnxmBQRQK7oNTWBQK7onllD1Dw8v2ROlUAOjCiazllESQMnl/JucjLacAIM9oRVyIF2EgTtA6o1mFBoNWVeqwnCIzNHxsOVVAPGNqVfTKCxpUKyYllQtuEAwVGmqVzf7O+asZFexnyQwNZjnFYDDcpF+/frh8+bLby7333nuYNm2a7xvEYDA8JiBDPO0ixo4dOxQvs2TJEnAch27duvmrWQwGI8ixUF5yvBM0Kv6LjrcVGqSgQfsNnCH7AwQVGsS6FGVoqD3v7CItTbyt0CAFDUB6hHWgQ8GDAVpfSHns/5dqsp8HxzKCjLK1nJLP0NCqxNdmd4mQs5xyI0PDEQouspwSzheh40RCiS9zNGidzfQMDZ9tklEOoGkA9nNHVKHh4nA0ShdOOXAWUMgKjXCtSrEoTootgO8tp8hdU1anBllt5olwUypoMMspBoMRWJKSksDzPHieR1JSUpm2Zdu2beB5Htu2bSvTdjAYZUVAelxGjBgBnucxb948XLlyxeX8X375pUP8eOSRR/zdPAaDEaTQtIsSV6bHkC5VLzTxLjMhyjtyFRpK3qvJDjiXFRpkyKRchQZlVeJQcM8LB/MMwg14bTlFESWkgsEDHQpOg5ZRwnCN1HnBBI3KRUAspyQqNMhKNWdUUHkVCG4nUqZiTU4sITtaHaHgZIUG0UYVx92pCikl14eCBq0TlFVoMGgihf1cFmVo+KBCw3lzZBVwhFb50afiOMq55tubkEjQKKOTg9RWlQg34goNe4YGs5xiMBjucenSJYcg4c5/rDqDwQg+AtLj8vjjj+Ouu+5CSUkJkpKSsGHDBkHHC8dx4HkeycnJePTRR/Hyyy+D4zj06tULAwcODEQTGQxGEEJ7mSz2ogSfh3eh4uUBn1douBjtRgpEch1j1AoNi+8yNMSWU76v0JASNMQVGhW/G432W5dHGyqpvmKlXa+s/6RiQGoNvsheUFqhYXBRoeFtfgYARMl4Vsmtnqy8kKzQoFy6RcHgvhQ0qKHghMCO4LDnYwQO2iAM+yFMHueuKjSUdLQLLKeIgzLCTZ848lzzteUUea8qq/u1Tys0yGusTNYZg8FgMBiMikVAMjRUKhXWrFmDnj174tKlSxgyZAjCwsIcLxlJSUnIz893BIHzPI+GDRti2bJlgWgeg8EIUmijLZUIErSOczsFJh5hWm9aFbwYLWYUmt0POXOG7Ih3VdFC7mvnpcWWU2LEFRpehIL73HKKkpUh0SFJfq7hfOMTH8zQOgrLY9+hVJMtVt43w/QZ5QJ/WE6JMjSkLKdkKzTU0PngciJrOSVzqSRHjZsdFRryllOAOMeItAX0BmqFRhBkBDDKFlp/tv1eRVYR+SJDw3kWMkMj3I0KDcBWueBcY6ugINktgqVCQyTcUPazqz3PMjQYDAaDwWAEzBOjbt26OHLkCB555BGoVCoUFhY6yrdu3bqFkpISR9XGyJEjceDAAcTHxweqeQwGIwihvWx6k6EBiD2OKxLeBoIDgErhiGI7chUaYsspP2dokBUa3lpOeVGhURaWU4GmovQVSo3grrhXCgYNf1hOqUUdqFIZGjKCBqemigXu4rnllFSFBjEfZRV+rdCgCBomi7TAzqgcyA32J89pV4KBEssn58sGmdMmJyLS0BIN9LnlFB8c54dHFRpEY9USllMV3VaWwWAwGAxGKQGp0LATFxeHn3/+GR9++CHWrVuHlJQUZGRkwGKxoEqVKmjXrh3uu+8+NGnSJJDNYjAYQYqnFRpykB7HFQlv7aYADyo0ZAUN16/LZBiuNxka5Ohf0r/dXWgVGkozNCqD5RTt9y2PllNSsAyNygX5e/tCkyQrtaQyNAwWGcspqHxjOeVhKDgpppgkKjRI4QMQ2/75PUOD/A0rzuWIoRC5qguxwGh7hpEStZWMf3G2uPK2QsPvllPEv4NH0BDP40qXkA4FZzduBoPBYDAqCwEVNOzUq1cPkyZNKotNMxiMcgSt3L9EwQue3BzkCLqKhCtBQ0lns8rN8n1RKLjT8oospyy+sZwyWnhR9U6Mt5ZTFNsoqQ5JkeWUF9ZZ5YWK7k1vVahosO6TioFfLKfIUHAPKzR8IWjI+fnLrZ6svLAHKZMDDqiWU2SFhi8tpyjnJy1Dg1G5kLts06qI5JwF3bWcElVouJ2hIfy3rx9XRRkaQRIKTjuXSUSh4PbP3cx9YzAYDAaDUXEIiKBx5coVAECtWrWgVmgnYrVace3aNQA2uyoGg1H5oGkX3lpOVeQKDV9YTqmJDjjXFRrCf3ttOeWhEEAb+eu95RStQoP+skwGUZZFhUagj2zaN5TLrylvsG6RyoXYPs/7dZLXAanAWrJSTdAOqKErS8sporfXLmSQdjhk1gbgP8spnudhoGhApMhS0UVXhhhZyynKeWThAamnDnctp8gKjQgvKzR8bjlF/Dt4KjS8CAUXVWiwOzeDwWAwGJWFgAgaiYmJUKlUOHbsGFq0aKFomdTUVDRu3BgqlQpms/SLHoPBqLhQKzSUhILLzFKRMzR8YTklrtCQ399eV2iIMjQ8uy2RI381KiCMNhzTDdScuIfOzEtYTolCwSt+hgaNiuT2wCynKhcW4tbgiwwNkeWURGebQS4UnPNNKHikh5ZTogoNqQyNAFpOSd3GLVbfi1KM8oXcIAzacW628pIVUEoeF523VkA8h4S7W6Hh9wwN4b/LrEKD/J6KBA3hMpxEhgaznGIwGAwGo/IQsB4X2shcfy7HYDDKP7QMDVahIU22wReh4L7M0CDmpUga5MhkvY8qNKJ1Kq9H53IcBy3RHskKDVGgcMUXNGijuitUhUbF+SoMBfjDckpUoSFpOSU9cIeDyieh4GEaTrKDXy1zuZIKBScHHND6bskKjTwj75PQXimLGrIDmOkZlQ93Lafk+tKVCApCyynvKjRIzdEkrXN6RLBUaIiyQiiXRVd7vrRCg1lOMRgMBoNRWQnaHhd7J5nKF6mMDAajXCKVoeFNh0iFrtAwusjQUPD2SnbEu9rX5HRO8DdRoUGznCIzNDyt0CAEDW8Dwe2QlRbSoeDCz2l2VRUNWiZLRRqDwEZ6Vi78YTklytCQtJySq9DwTSg4x3GSVRpyllNSvv5iQcN1hgYPIN/oA0FDoheaHO/AHKcqH25bTsmIFrRBNSTO1w3y+TLCzecQcUe/ny2nyugEISvOlFhOkU21XxI5jllOMRgMBoNRWQnaHpfr168DACIjI8u4JQwGo6yQKsYweOC3a6ciV2j4xHLKzYBFckS+oEKDI+cV47MMDWKIn7f5GXbICg2pDkmy87syWE7R+kJYhQajvELeb+SqFpRCWk5JiWQGi7y1qi8yNAAgUmLEuKzllESFhthySrwsTVj2he2UpKBBWk55vSVGeUNOoKBaTnlZoWGfw2jhRedEuJsVGuS55nvLqeCoYCKvZ7Tz2dV4AukKDXbjZjAYDAajshDQZ30lI0FMJhP+/fdffPDBBwCApk2b+rtZDAYjSKFVaACubafkphZW4AoNX1hOiSo0XHRQiys0pK/zdMsp/4SC+07QICo0FGZokOHqgSDQYoLcb10RYIJG5cJK/OA+sZwixQDK9YPnedkKDUA8otlTpCo05AUN4b/dqdDQqDiRiJJD85dxE6PE7hKHgnu9KUY5Q9ZySiIUnAbP8worNGz/p1X/RriZoUGe5363nAqSDA0llShkU1VSGRoSg04YDAaDwWBUPPwSCq5Wi9+8eJ5Hq1at3FoPx3EYMWKEr5rFYDDKGVIvk66CwWVDwX1gdxGs+KVCw8XLodimxTlDw/XbspEYmaxT+SYUnAyj9RSNKENDoeVUZajQoHzGKjQY5RWyY9MnllNkKDjleioVFO6MLyynAGlBQ85ySnmFBn0dUXoV8p16Zn1SoaE0Q4MpGpUOWcspWoaGxLGkRMwASp83CyjVv+5WaJCioN9DwX26duWIBA3qY5X8dy+t0CAtp9iNm8FgMBiMyoJfBA2pIG93A75HjhyJF1980QctYjAY5Q0rL901WuKV5VTFHb3lMkNDwesrOSrZVYWGXMikKBScsipRhQZFEFeC3yo0OGUe+JUxFJzWWeiLwN9ggXWMVC7EoeDer1McCi4+plzZTQFlbDlFTLPvJ7KzlWY5BdjE5TT4VtCQsp0kO6Er/lWYQSJ33aadRlLjY5SKCfZDroAYVBGm4WSFQhp+FzSIf5dZhYao6sv97+kQNNy0SWUwGAwGg1Fx8Iug8d577wn+PX36dHAch2eeeQbx8fGSy3Ech5CQENSsWRPdu3dHw4YN/dE8BsMnWKw8dqeX4FqBfE14qIZDp+p61I70y+lWYZEbHbfuYhGqhEp3fN8ulv5NMoptK84qsWB3ugH5RitO3DYiPkyN+LDSdVYJUaFnrRCcuG1EtsGKnrVC3LYP8DUnsjLwxYlDyDcZUCdCgzyjFbeKLbDyts6ks7m3ZZc/csuAX/4tcPw7TMOhS009aoaXHpsmCyFo8Dx+Pp0PjuMQo1ehR0KIQCwQV2iUTiNfNA9mXsNvFw9jZP02sPA8fr5wCOuunRbM447lVM6d3zDXaMW1fGGnoK8EDTLU94dzB7D9xkXRfDeL82WXY5Q//rpUjBi9weV8t4qtgvPKjoYDWlXVoUUVnWia2cpjx7USAMDdtUMkR7crxcrz2HfdgMt5Zqg4oHmcDndVE2+3MlFstmLHtRJklijr4MoqEd43fGE5RV4HLLwVb6SsF3xWYjG5XI/fKzRkLldkJ2tWiQUlZl6UR0WznALE1+L9NwzIc+r8DVFz6FxD/hnJ+X4NABlF9Hv85TzhfYAVaFQ+5PrGOY6DmhOKl+suFjmOUY0KuKuqDs3idKIKJCkO3bQdlzeJYzLCzeoMQHye70wzYHwr3u1Ko5OZRpy8bRSJNaSYGCwVGkduGQX/LjFbkXxT+BmJVIXG1usXRNdYKXpVr49BdZormpfB8CeXLl1C/fr1AQALFy7EmDFjyrZBDCrTpk3D9OnTAbg/UJvhHtu2bcM999wDANi6dSuSkpLKtD1jxozB4sWLUa9ePVy6dKlM28IQEjBBAwAmT56MFi1a+GOTDEbAWXyqAH9fVpZZ8MeFInzcKw7Vw3xkhF0JkMrPAIBd6a47GeU4eNOAH07kCzq6LuSKR8kuOFnaSbk+tRhf9I4TeaIHirTCXHT68yuUWEs8XsepTBP4EmEVx5qLRfj07jjEhdiOzZ9Oiztm/7hQ5Hih3nS5GJ/1jnOMPJQNBae8Lj+y/WecyL6B68X5WHDugGi6UkHDZOHx7t5s3Cyi9zr4ynKKDAX//dIxRctVhgoNFeX3rUiP99uvKT/X/rhAr45acb4Ir3SMRsfqesHnXx7KdXTYHMww4JWOMR63EwCWnS3EqvPObSjCs22j0KtWiFfrLc98kpyLU1muxQIpfKFJ0q4DM4//4/Z6fJWhESGZoaHccspgAT47mCOaT0rvjyEEjbPZJpzNFv4uf1wowid305+RjBYe7+zJxu1i1z3MN4hOZaZnVD5cDfbXqACL02GyjbjOrzxXhDc6R6NWhLJX5FNZJup1JtyDATDkIgYLj5Xni/Bg43DF60i+YcCnB3MVzRssoeAAsDe9BN0SbPerzw/liaaTS6glMjRSMq8iJfOqonaYrL2ZoMFgMBgMhhMnTpzA119/jc2bNyM9PR0RERFo1qwZHn30UYwfPx4aTXAN0g5Ij8vChQuxYMEC1K5dOxCbYzACwu505Z1dxWYeRzK864SvbJCjP33JopP5ikft2rlZZMH+G2X3G66+fMorMQMQVk/YKTTxOHZndFyRyYoz2eKRr1Ynu5D0QotgFCxpweQsaISo6Te8ny4ewi8XD1GnhWuUjSq/mGuWFDMAICbEN7c3pe0hCVVrfbJ9d+hctW5At1clJEz0WYSH+6sis++68LzNNQhHn6bcNCLHSxueHRTxZXead9eL8kxmscUrMQPwjc1TmMY314FQtW+uZzESgobcdw0hPacAHLst3rd6ynyAWNCgUWLhcUDi/vpvlkmRmEHDV5UtjPJDoxj5F21XxwQPYN91g+ygGiVIVUPJQTvX9rjxrgG4924iVVXlb0Ip1Sv/XLW1u9BkxdFb4uoM0tLOfs1Sc8HVscJgVES2bdsGjuPAcRy2bdtW1s1hMHzCtGnTHMc1w8b8+fPRoUMHzJs3DxcvXkRJSQlu376NXbt2YeLEiejRowdu35Z3BAk0ARE0Ro8ejdGjRyMqKioQm2Mw/A7Pi+0WXCHl+cygk5rn2lfcU267KWbYuUip4ggUN4rFlRPuUl2bSP3cfmwWmnhoVXrRdCMhpBQ7+RhkG4VVStHa0hHhPavXR4RGvL4rBTkoofjGh6q1SKqpzGqw2CL9G9YIU6N2hG+GNA+q7f7ovTh9GLpU87+48EXnoY6/9WoN3m7T1+/bdKZeRBx6xCc6/v2fmo0QHxoZ0Db4invrhvpt3QZCI6RlCJD+6+5gtPBUgTbPi3WWd7I8vMbbCdNwaBrrvRhRNzwWLWKqe7x8y/Ae0KuBFlV8I4y0qqqFnrg0RutVqB8t3SlYP8p1h2G1UBVqSFSgto/XK8ojyZSwiswskbf1lKNtJbddq4zc3yhc0Pk9pkWEYHr7ePEzCUmxmVccCi5Fx+ruH3ttqoqXcffdoUgqFIQgXMOhiQ+ucZ7QPE78Pa/csQ01Snzfu4h907yK7VpWU9fA9w1kMBgMBsOJRYsWgef5Cm03tX79ejzzzDMwGo2oXr06vvrqK+zfvx8bNmzAAw88AAA4cOAA7r//flgsnj+b+5qADWu4cuUKAKB69erQ6+UfJktKSpCRkQEAqFs3sCNOGQwlWHixtUrH6jqEOL21n8w0Idup44rJGe5xIUc8ArRXrRC3PCs5DqgXqcWtYovAHszTgXdl6ZeZaxSKCuGqaFTR1hLNVyNMjd61qmDWiW2iaTHaeLSI0yKtwIxcIy2cloeOE3fsWlEMoLRTwPlFP9NQKJjXedR+zbAo7Bg0CW8eXI+/0s44PqfFvT/RsAOebd4D9SLiRNNokD+FXg10qq5HXIga/RND3Q7jlOL9dv1RMzQSB25fVRR4XS0kHE817YIonf+tfl5o0QsxulCcyrmJxxq2R82wwA8aWHfvOHx5cidUHIcXW/YK+PZ9xZiWEYgLUWHpWdvx3CNBL2vHcTrLhMwSK5rFalE1VDg25Eq+xdE5A4iPVdpx5M1AWak8gWKFHVsVkVxCzAlRc4o7GCN1KvynTqikPZM7cByHTf0nYPbp3bhSkONy/voRVRClTsTfaSdQVReLvjU64j91Q2Uzo9whNkSNad1ise1qCQpNVsToVehbL1R21LpWgRoxvVus5Ai3ulEavN0lBrvTS1DidExeyTfjSn7psZstUaVECoBxISq0iLN1xHIch+uFZtQM1wjuzxwH1I/Son+i/4RKRnBSNVSND3rEYneaAbUj1bibsN0b3yoStSLUuOI0aIY8Fq08YKZcp++tG4oisxUpN40I03BoSREa1SoOLeK06F3b/WeAxGgthjUME1gYuvu8aiIEgYbRGtQMF14/fHmN84QYvQovtIvC/w6XWkvlGKzIM1ip70pTO0QjMVq4r6uGqvFe11isOt8M1iv3I91wHhbe9ht2q6lXlEvVvor4GZrBYDAYjMqGyWTCc889B6vViqioKOzevVuQZz1gwABMnjwZc+bMwa5du/Djjz8GTdZPQASNjRs3YuDAgYiIiMClS5dcChpFRUVo2bIliouLsXnz5jIPgWEwSGgjiMa2jERVp06HmQdykE0pm2Yo40KuUNAY1jAMo5pFSMwtz9+X6P727lKW3YO5JmElRE19A7SPvFc0X+caerzcIZoqaADA/Y3DsepcIXKd7Fjs38tg4aHiVNByepj4UvsPjaZE8OWdrRiyDMJ9W0Uv9HpuV6UWfrx7FKr9KsxWckbNqbCo13/dKvkkX/KjdSo81y5a8fJKUatUeLZFT5+v1xdwHIcxjTuVaRuidaF4r12/Mm2DL9CoODzQOBwPuOFVLsWKc4UCQYO8ctC6bb0RNG5JjGxXOlK3IkJ2gidEqP1yfVBCQlg0PuwwyK1lXmnb1E+tARpEa9Eg2r2R2SFqDiUSI6ejdJxLwaVFFR1aVBEKShtSi7DoVGnlYbZEVQ0pTrWqosPktqzimyFNYpQWiVH0Y1yn5jCsofA6v/JcIa7klw7OsPDiCg2dChjf2v8ViK2q6LwSNIzEAn3qhqKPHysQPaVrTT3mHIUgfP1KvhkJlOpaqQq1hjFaPH1XFJJvNkYtfWPH53O7VUFsCMssZDAYDAZDCatWrcLFixcBAG+88YZAzLAza9Ys/Prrr8jOzsasWbOCRtAIyNCM5cuXg+d5DB8+HLGxsS7nj4uLw4MPPgir1YqlS5cGoIUMhnuYKO/dvvDbZtjgeR4Xc4SWRA1lLDFcESrh7V2eyCEqNLQcXRguoh2czsupbKNXnbEPRLRbG+hVwpdf0nLKuZ80kxA04vTiXIUYF9UKcfpQt/0ryZd8X1VkMBj+xktrdhFSFRqurgUVGTKTREmOA8MzQklze4XEETlH2RLWUuRvGc1+S4aPISNqLFaIMjSUjPj3BeRmlFSGOkNe9oP13UTFcagTKXyuv5zvvq0rrbqMWfwygoHdu3dj/PjxaNq0KaKioqDT6VC7dm0MGTIE33zzDXJychSva8yYMeA4DomJibLzLVq0yJEJIGWN888//+CRRx5B/fr1ERoairCwMNSrVw9du3bF1KlT8c8//zjmvXTpEjiOwz333OP47J577nFsw/7fokWLqNvaunUrRo8ejQYNGiAsLAxRUVFo3bo1XnnlFaSnp0t+DzLbIDc3FzNmzEC7du0QExMjuc3Vq1fjoYceQt26dRESEoKYmBh07NgR06dPR3Z2tuy+A4Br165h8uTJaNCgAUJCQpCQkIChQ4di8+bNLpf1FPs+dv5Oy5cvR9++fREfH4/Q0FA0a9YMb7zxhqJjxmg0Ys6cObjnnntQrVo16HQ61KhRA4MGDcJPP/0Eq1X63YA8ztLS0vDSSy+hSZMmCAsLQ7Vq1TB48GD89ddfbn0fKRITE22D8zzsGN+3bx/efvttJCUloUaNGtDpdIiKikKLFi0wceJEnDp1irqc/TyZPn264zPymCbPIaXn4PHjxzFhwgQ0btwYYWFhiIyMRMuWLTFlyhRZuyraftu0aRPuu+8+1KhRA3q9HvXr18fEiRNx7do1pbtIMatXr3b8LfV7hIWFYeTIkQCAU6dO4ezZsz5vhycEpEJj79694DgO/fopH8XZv39/LFmyBHv37vVjyxgMzzBReqS0xGAgqU5jhmtuFFlQSIwubhjjudevOx0uHKQrMXzdEekOuURWhZSg4SrbRS4E0l55pOfCUICc0s/5Ijj771icdgQpaFShCBoalRrRuhCRbZadWJ14GVeQL/lB+s7OqISQhyJ5RtKuI95cW6QEDeOdTrlAdcQFE2SFRnQZWatUBjwdMECOoM42WMHzvEjcFv2WTNBg+Bg1cczRKjQ81O3cRixouLc8aTlFvpsEE3UjNYJsuit5ZnSr6TrjxBkt5XepxPFRjCCguLgY48aNw6+//iqalpaWhrS0NKxbtw63bt3CtGnTAtq2KVOm4MsvvxR9fuXKFVy5cgX79+/HokWLvA79LSkpwdixY/Hbb7+Jpp04cQInTpzA3Llz8euvv+K+++6TXde5c+fQr18/2c7g7OxsjBgxQiDGAIDBYMDBgwdx8OBBzJkzB3/88Qe6du1KXcfOnTsxZMgQ5OWVWuFdv34df/75J/7888+A/Vbjxo3DggULBJ+dOXMGM2fOxJIlS7BlyxY0a9aMuuylS5cwcOBA/Pvvv4LPb968iQ0bNmDDhg347rvv8McffyAuTt7iOSUlBYMHD3bEAAC2Y3v9+vVYv349XnrpJXz22WcefkvvWbRoEcaOHSv63GQy4fTp0zh9+jTmz5+Pr776CpMmTQpImz766CO8/fbbItHo1KlTOHXqFObOnYt58+bhiSeecLmuN954AzNnzhR8dunSJXz77bdYsWIFtm/fjubN3c/5lGLXrl0AgKZNm6JGjRqS8/Xu3RvfffcdAJto26RJE5+1wVMCImjYL0DufOFGjRoBAFJTU/3RJAbDK2iWU3IdxQDL0HAHsjojWq9ClRDP3yb1bnS4ROo45FHyJcqaPBNRoUEJ7waAIhdJlhqVuMPVjn1Um04lrKgwWksE9XzOmxBbTtHFiVhdqKSgQavqcIW4QsPtVTAYfsFVsRBtxK03gsbNIulzvtjMI1JX+U4O0qaIdYJ7h9wxHeapoEH8JiarTZCP0MkLGqzahuFryEH+FkqGRtlVaLi3PDngKlgrNABbvo4zVyQqNOS+gYrjoFUJK1OkgsUZDH9jtVoxbNgwbNq0CQDQuHFjTJo0CR07dkRYWBiuX7+OPXv2YNmyZQFv29q1ax1ixl133YWJEyeiefPmiI6ORk5ODk6ePInNmzfjwIEDjmVq1aqF48ePIzk5GU8++SQAYMGCBejUSWh3W7t2bcffPM9jxIgRWLduHQDgvvvuw8iRI9GgQQOoVCocOHAAn332Ga5cuYIRI0Zg9+7d6Nixo2S7R4wYgbS0NDz33HMYOnQoYmNjce7cOdSrVw+ATbTo27cvDh06BLVajVGjRmHQoEGoX78+TCYTduzYgc8//xwZGRkYNGgQDh8+7FjWzpUrVxxihkqlwoQJEzBixAhER0fj2LFjmDlzJqZNmybbTl8wZ84cJCcno3PnzpgyZQoaN26MjIwMLFq0CMuWLUN6ejr69++PEydOIDJSaIFYUFCAPn36OGyDhg8fjieffBIJCQlITU3F7NmzsX37duzatQv33XcfduzYAbWarngXFRXhoYceQm5uLl5//XUMGjQIer0e+/fvx0cffYTr16/j888/R926dfHCCy/4dZ9IYTabERsbi2HDhuHuu+9G48aNER4ejvT0dBw6dAhfffUVbt++jWeffRbNmjXDf/7zH8eyw4cPR8eOHTFnzhzMnTsXgK2ygqRWLeU5S3PmzMGbb74JAKhWrRpee+019OjRAxaLBZs3b8asWbNQWFiIMWPGoGrVqhg0SNqKdv78+dizZw969+6Np59+Gk2aNEFOTg6WLFmCJUuW4NatW3jyySd9NvC/oKAAV69eBQBJscyO8/TTp0/7ZPveEhBBw2y2PaBInTQ07POWlNA7wIKBpKQkbN++3a1ltm7d6nYmyLRp0wQlUb5eP8N9SI9aFRe4l53KAJmf0TBa47YlkTOhCkJN7YRrVcgz0kc8l+UrEilo6Di6jZMnFRrOGRoAoFcJBYYSq1C0cH7RJ0PBpcSJOH0YLhXQy31jde77OzNBg1FeofW1eCNoSGVoALYcjUhlWdgVCjaqP3B4WqFBEyayDFZRUDH7LRn+RmQ5xdtsp5wJlHMpaZ/pbrEBWZ2gdeP5N9DUIyynruabRftdCTo1JxBymKDhHlYrj8yiypP5WCVMB5WfXhpmz57tEDPuv/9+/Prrr6Ls2MGDB2PGjBm4fv26X9oghV1EqVevHnbv3o2ICGEuZVJSEiZPnoysrCzHZ1qtFq1atRJUbNSvXx+tWrWS3M7333+PdevWQavVYs2aNRgwYIBgeteuXfH444+jV69eOHnyJF588UXH6HAaJ06cwIYNGwROLx06dHD8/f777+PQoUOIiYnB5s2bBdMAoGfPnnj00UfRrVs3XL9+HW+++SZ+/vlnwTwvv/yyozLjp59+wiOPPOKY1rFjRzz00EPo1asXUlJSJNvpC5KTkzFo0CD88ccf0GhKr48DBw5Eq1at8O677+LKlSuYMWMGPvnkE8Gy06dPd4gZb7/9NmbMmOGY1qFDBzz44IN4/PHH8fPPP2PPnj2YN28eJk6cSG3HrVu3kJOTg82bN+Puu+92fN65c2c8+OCD6NKlC65du4a33noLo0aNQrVq1Xy5GxQxcOBAjBo1CmFhwn6Hdu3aYfDgwXj++edx991349ixY3jvvfcEgkZMTAxiYmIQHx/v+EzumHbFrVu38MorrwAAEhISsG/fPtSpU8cxvUePHhg6dCh69eqFwsJCTJgwAampqdBq6e4je/bswVNPPYXvvvtO0P/Vp08f6HQ6fP/999i3bx8OHz6Mdu3aedxuO84WVs7iJA3n72UXQcqagAgaVatWxfXr13Hx4kW0b99e0TL2E9JVOVR5QqVSoXHjxq5nZAQ9JqL/iNZJHLyvEMHPBaJCw90AUxJ3OlwitNLzlqVtmKhCQ8ZyipdpqFbFie3Q7vzfcOe41nFCgaHEKrS7sldolJhNKDILxScyFNyOXBWGbyo02BnHCE7I05H0Zgfc90l3RspyCrDnaASx54ifYJ3ggcNTQUOr5hCp45DvVBGZXWJBXadOTrOVRz4h0scw+zCGjxFZTln58puhQVpOBfHpUpcQNExW4LrM/UwKnYpDodOQI3LQGUOezCIj4t/bWNbNCBgZ0/uhWoR71mZKsFqtmDVrFgBbp+CSJUtEYoYdlUrl1uhvX3Djxg0AQPv27UVihjPe9L3xPI+PP/4YAPD888+LxAw7sbGxmDVrFgYNGoTdu3fj3Llzkn1kY8aMkbStLygowDfffAMAmDFjhkjMsFOvXj288847mDRpEpYvX4558+YhPNz2vnrjxg2sWrUKADBkyBCBmGEnMjIS8+bNQ5cuXWS+vffo9XrMnz9fIGbYeeutt7Bs2TKcOHECP/zwA/7v//4POp1txJLBYMD3338PAGjZsiXVHovjOMyZMwd//fUXMjMzMXv2bElBAwCefvppgZhhJyEhAZ999hkefvhhFBYWYvHixZg6daqH39hzXJ0/0dHReP/99zF8+HDs2rULmZmZqFKlil/asnDhQhQV2QZ/fv7554JOfzvt2rXDG2+8gbfffhtpaWmOvBcaNWvWxNdff00dzDt16lTHb71z506fCBr5+fmOv+WuDQAc5w1gO/+CgYA85rRt2xYA3Ar4tnvueaOW+ZuFCxfi+PHjsv85f+c+ffp4ffNytT2yBJDhH8iHZdr7NcvQ8AyLlUdqnrCTvFGMd9priFuCRnC+/eWRGRoSllM8gBKZ0WlUH+g7sxslQsFLLKSgYZsvyyis3ACkLafiZHIyYvUeVGgQ9TKsQoMRrJBnI80VztMBpQUmK4rM0gvLTavIsAyNwOFpKDgAxOqJHI0S4e+WRzHDZ+IUw9fQLaeIecpLhgb5fhLEFRpRepXIeu5KnvfB4OSgMwYjEBw5csQx0vmpp55y2TEYaGrWrAkA2LFjBy5cuOCXbZw6dcqx7hEjRsjO69xZLmed8+ijj0pO2759O3Jzc93anslkwsGDBx2fb926FRaL7aJBy2Sw07lzZ7Rs2VJ2G97Sr18/JCQkUKepVCqMHj0aAJCVlYVDhw45ph08eNARGD5mzBhJV5yoqChBqLNclZDcvrj//vsRExMDAH4NTHeHwsJCXLp0CSdPnnTktDhXQBw9etRv27bvg5iYGDzwwAOS840fP160DI0RI0ZIiqFNmzZ1XFvsBQDe4uyIZBfJpHBuV3FxscycgSMgFRrDhg3D+vXrsXLlSixfvlxSjbKzbNkyrFy5EhzHYfjw4YFookfUr1/f5Tw//vij428lATCuCGaBpzJBjoAK5heG8kZagcVRKWCnoZcVGm4JGjJ+82U16MtgMcNgFb7kSVVoAPK2U1oVpyBDQygwFJEVGndWn1kiFDQ4cIiRsI/yf4WG26tgMPyCq0ORXqHh2bbkqjMAW4ZGZcNk4VFIfG+Wu+A/wmSqGl0RF6LCldKBYcgmhChSmOKASpkJw/Av4lBw8XVaE6AqUPJK5Y7YzfO8IEsCcJ3vV9bUidQg21Bqd0TL0XC163VE3x2znGKUBYcPH3b83atXrzJsCZ0nnngCS5YsQWZmJlq1aoVhw4ahf//+6NWrlyO71lucLZm6deumeDl79QiNu+66S9H27IKNu9tzzk5wNTC4c+fOOHnypOLtuIuS7ds5fvy4I+D8xIkTjs9dVZF06dLFkRtx4sQJ6n7T6XRo06aN5Dq0Wi3atWuHrVu3UrMnAsXt27fx+eefY8WKFTh37pysQ4W3Qfdy2Pd/+/btJW2kAKB69epITEzEpUuXBL8Ziasci9jYWBQUFAgqK7whJKTUxtxolLcfNBgMjr9DQ90fkOoPAvKGN3r0aCQmJoLneYwaNQpTp06lem5dvXoVL730Eh599FFwHIc6deoIlKzyhtVqdXj0RUREyCp2jPKFJy8M7PFaGWR+RrVQFaK87IwKcTNDI9jINYoVcDlBo8jMQ8PRv4ft6wn3hzhDQ3iDKjYTGRp3XvTJ/IwYXQjUKvp25aowfJKh4fYaGAz/4KrzhVah4S9Bo4i8WVUCyEBwgI3q9yeeWk4B4mBwskIjhxA0ovQqZi/I8DnkY4vNckr4mReFSO61hczQcOPeQLvcB+EjrYB6RDD4ZU8qNIh3MGY5xSgLnDtM3elcDxR9+vTB7NmzERoaipKSEixduhRPPvkkGjdujNq1a+OZZ57xehR7RkaGR8vZ7XpoxMbG+nV7zpkhzpkKNKpXr+7R9pTizvad2+3Od6hRowZ1OWfi4uJcZh/b2yK1Dn9z8OBBNGvWDB999BHOnj0rK2YA/q0msO8DV/seKN3/cvuNzAUhUd15aLFXFnmLc8C8KxupwsLSvp9gqUILSIWGTqfDypUrcffdd6OgoABffPEFvvjiC9StW9dxwb9+/TquXLkCwDbCJCIiAqtWrZIstykPbNmyBWlpaQBspUOuDk5G+YEc/aOlXPPZK7dn+Do/A7B5H2tV9Jc9Ejnxgy8jWSrXWCL6TKeih4IDtk5MjUoFMyVdUSOboXFH0CAyNIpEllO2/2cZhJ9L5WcA8pZTLEODUZERZWhQHrpJCzWluBQ0KmGFBjmqX80B4V5UETDk8UrQCBH2tmaVyFdosEobhj8gD2ErrUKjjDI0bO3hFT3jkHZTQPBXkNeNFL5A0QQNV9+A/I4GVqHhFlXCdMiYTs8oqIhUCZO3VKnITJ48GQ899BB++eUXbNq0Cbt370Zubi7S0tLw3XffYd68eXjzzTfxf//3fx6t37mD9c8//0RiYqKi5eQ6guU61p23d+jQIdnR8c5IBR/TMgsCiS+2Hyzr8CdGoxEjR45EZmYmtFotnnvuOQwbNgxNmjRBbGyso//44sWLaNiwIQC4FDx8QbDvNymcIxGcA8JpOBcl0LJCyoKACBqALUdj//79eOyxxxwleZcvXxaIGHY6dOiAH3/80WW5TbCzZMkSx9++sJtiBA/k6J9gL+kuT5AVGg29zM+wE6LhYDK6vpnJvfyV1StSDlGhoYIaak56vxSaeGg4NQDhiyEHsVc0AFGGBmk5VWI1wMJboOZsD5UWnl6hESdTheF7yymWocEon9CEVc8rNORV2iIZ+7mKCtkJHqVjo/r9iS8FjWzCb5KstmFZKAx/QF4fLDwvytAIXIWG+DMrr+wZh7TDBYL//aQuUaHhyR1LTzzYMssp91CpOL+EZFc2qlat6vj7+vXrPu3Hso/Itlrln/mcR09LER8fjxdffBEvvvgirFYrjhw5glWrVmH27NnIycnBBx98gE6dOmHYsGFut9M5dDkmJsbvVunO26tWrZqkUCGHcwXIzZs3ZTtpb9686fb63cHV+p2nO4e3O/998+ZNNGnSRHIdznZbUgHwmZmZsFgssmKSvS3kOlROJY++OF5p/PPPP478iDlz5kg6+gSqeiQuLg7Xr19XdHzY97/Uvi8LIiMjUadOHVy9ehX//vuv7LzO05s3b+7vpikioG8GzZs3x8GDB/H333/jueeeQ8+ePdG0aVM0bdoUPXv2xPPPP49NmzYhOTm53IsZBQUFWLVqFQCgXr16SEpK8sl6+/Xrh/j4eOh0OsTHxyMpKQkzZ85Edna21+u+du2a7H9ywUGVDWWhe3RbH4Y0JgsvGp3lbX6GnVCFo9Rk7anK6EfMISo05OymAFsnppryEqtR2UYPuMrQIC2nAMDolKNRWqEhLBGWrdCQES18YjkV3O/sjEoEeSiKQ8HFFxJP+18yilmGBomoE5yN6vcauctrmBc9vXEh8qHgonB39lsy/AB5CJdphoaEoKEEitte0AsatcI19IE2AuRnIL8jbT8wGP6mffv2jr937Njh03XbLWHswc9SnD171q31qlQqtG/fHjNmzMCWLVscny9btkwwn9KR5+3atXP8vXv3brfa4gm+2F7r1q0dfycnJ8vO62q6t7izfWexyPnv/fv3y67jwIED1OWcMRqNsvZjZrMZR44coa7D2b5Irn8yKysLmZmZsm2VwjnH5OGHH5aczzljhYavKirs++DQoUMwm6VtEzMyMnD58mXBMsFCz549AQBnzpyRzbTZvn274+8ePXr4vV1KKJM3g3vvvRf/+9//sGPHDpw6dQqnTp3Cjh078OWXX6JPnz5l0SSfs2LFCofq+Nhjj/nshNm0aRNu3boFk8mEW7duYfv27XjjjTfQoEED/PHHH16tu06dOrL/OQcRVXZMRB8SbdAgGxDqPpfzzaKOvQbRvqrQUHa5k6vQKKt3pFyTsEJDp5IXNArNVmqGhtSLrd1Kyz44VsdRBA3eWdCwV2gQgkaIjGjhYfWGFEzQYJRX6BkavrGcCiNGyxfRNlbBIXMXmE2Rf/FlhkaOwSo4F9hvyQgE5PODxSq+TpdVhgagXNCgWU4Fe4aGVs0hIULeq90VLBScEQy0adPGMbr/+++/d+lF7w7169cHAOTn5+PMmTPUeYxGI1asWOHxNtq3b++oViADlJ1Dg51DgWnrsFdJzJs3DyUlYstkX9K3b1+HpftXX33lka3QPffc46hEWLx4seR8ycnJskHOvmDjxo2SA4itVqujfbGxsQIBrUOHDoiJiQFg+w5SlRH5+fkOsapFixayWS9y+2LVqlUOsaJv376CabGxsY62yAkKv/32m8c2UM6igVSVh9Vqxfz582XXo/S4doV9H+Tk5GDlypWS8/3www+O70zut7Jm+PDhjr8XLVpEnaeoqEhw/MhVAgWSIH/MKb/42m6qdevWeOedd/Dnn3/i4MGD2LdvHxYvXox+/Wyelzk5OXjwwQexYcMGr7fFcI0nllMBsO4r91zIEdpNJYSrEeajt7EQhZ0uFaFCo9DEQ6MSvyDad6XUCHJ7hYaKU4m2YXCq0LC/K5KChmxOhsw031RoMEWDERxI10DZoFVoeHJ/sPI8bhEVGomEfQfL0GCj+v2NLy2nLDyQ52QNKfotmeUUww+oKZZTFuI6Tat69QdSGRpKIC2n1Fzg2u0NdSO9G7hEDkRiggajLFCpVHjllVcA2FwvnnjiCRiNRuq8VqsV6enpitfdu3dvx9+fffYZdZ6XXnrJkd1KY+nSpbLByCkpKY5OaruAYse54/vChQuS61CpVHjzzTcB2PILnnjiCdmO4ry8PMyePVtyuitiYmLw7LPPAgD27NmDKVOmyNoc3bx5E99//73gs5o1azrstdasWSOqTgFszitPP/20x+1UisFgwNNPP00Ne545cyaOHz8OAHjyyScFOcN6vd5hu3TixAnMmDFDtDzP83j22WcdYpV9v0kxd+5c7Nq1S/T5jRs3MHXqVAC28OrRo0eL5rn77rsBAH/88Qf1eDlz5gzeeecd2e3L0bhxY8ffUp3vb7zxBg4dOiS7HqXHtSvGjh3rENZefvll6nl49OhRfPjhhwBsmRXOAkIwcP/996NBgwYAgI8++oi6P1555RXHNcJ+rQsGApahQWK1WpGVlYWioiLUqlVL1qOtvHHt2jVs27YNANC1a1ev1asXX3wR06ZNE33epUsXPPHEE/juu+/wzDPPwGKxYPz48bhw4YJAcVSKc8gLjevXr7MqjTuQLw20Uf3iT9gDtisu5BJ2Uz7KzwCUd7qQI72cKatfMJfI0NBy8ud3kYleoeEq1NL5JVCvCoXJUvoQKrScss0nspySqdCQtZzypEKD+DXKwTs7o5IispyiXEg8ydDILrGKRhHXi9LgVFapMFwpMzRY7kJA8UbQiNapwEF4jmSXWByVGGL7MHahZ/geNc1yiszQCNChRxU0FC5LWi0Fu92UnbqRGuyGdKenq/EqOpHlVOW77zGCg8mTJ+PPP//Epk2bsGrVKrRu3RqTJk1Cx44dERYWhhs3bmDfvn349ddfMWrUKGr/Do127dqhW7du2Lt3L+bPnw+j0YjRo0cjOjoa586dw7x58/DPP/+ge/fu2LNnD3Udr732Gp555hkMGzYMd999N5o0aYLw8HBkZmZi165d+PrrrwHYQrjJTIK6deuidu3auHbtGj799FPUrl0bTZs2dfTfVa9e3WE19Mwzzzi+//Lly3Ho0CE8/fTT6Ny5M6Kjo5GXl4d///0X27Ztw5o1axASEuKyc12O999/H9u3b8f+/fvxv//9D9u2bcNTTz2Ftm3bIjw8HNnZ2Th58iQ2b96MDRs2oHXr1qLv99lnn2HTpk3Iz8/HqFGjsH37dowYMQJRUVE4duwYZs6cibNnz6Jjx44ubYy8oWPHjvjzzz/Ro0cPTJkyBY0bN0ZGRgYWL16M3377DYAt0JwmBrz77rtYuXIlLl68iGnTpuH48eMYO3YsatasidTUVMyePdvRP9mtWzdMmDBBsh3VqlVDWFgY7r33XkyZMgWDBg2CXq/HgQMH8OGHHzrEuBkzZlAD3SdNmoQ1a9aguLgYSUlJmDZtGtq1a4eCggJs2bIF//vf/1CtWjWo1WrcunXL7f3Uv39/xMfHIyMjA2+//TYuXbqE+++/H1WrVsX58+cxf/58bNmyBT169JC1Iuvevbvj7ylTpuCtt95CzZo1Hc46iYmJ0Ghc90VVq1YNs2bNwuTJk3Ht2jV06NABr7/+Orp37w6z2YzNmzdj1qxZKCgoAMdxmDdvnuIA+0Ch1Wrx9ddf47777kNeXh569OiBt99+G507d0Z2djbmz5/vqADr2bMnHn/88TJucSkBFTQsFgsWLVqERYsWITk5GSaTCRzH4dixY2jRooVjvrVr12LHjh2Ijo7GW2+9Fcgm+oSffvrJoQ7TVEt3sZdtSfH0008jOTkZP/zwA9LT07FixQo8+uijbm/HkyClykp5fWkIdi6SgeA+ys8AXFReOKGXeWstu1BwokLDpeUULxpxaFvO9pnUy6HBSdCw2U7llE7jxRkaZCi4JxkaYRot9Gr3b0Xk+yo7AxlBg4uD0UwZPepJ/wuZn6FVATXDhYpspczQYBUaAYW0OXMHtYpDjF6FbKffLLvEivrRtr/FllMVZ/ATI3gQVWhYKRkaAavQ8J3llLacnC71onxdoeHV6hgMj1GpVFi9ejVGjx6N33//HWfPnsWLL77ok3UvWLAAvXv3dnRwk5ZAU6dORcuWLSUFDcDm6EFb1o5er8e3336Ljh07iqa9+eabmDRpElJTU0WB4QsXLsSYMWMA2HIJli5dihdeeAHffvstLly4gFdffVWyTbQOcXfQ6/XYtGkTxowZg5UrV+Lo0aOyAklUVJTos8TERKxZswZDhw5Ffn4+5syZgzlz5gjmeffdd8FxnF8FjcmTJ2P79u1YtGgR/vvf/4qm16xZE3///Teio6NF0yIjI7FlyxYMHDgQ//77L1asWEG1IOvRowfWrFkjO5g8LCwMv//+OwYOHIiPPvoIH330kWie559/Hi+99BJ1+f79++P555/HV199hWvXrlEFsjVr1mDgwIGSbZAjPDwcS5YswfDhw1FSUoLvvvsO3333nWCepKQkzJ49WzarolGjRhg5ciSWLVuGjRs3YuPGjYLpqampSExMVNSmSZMmIScnB++88w5u3ryJKVOmiObR6/WYN28eBg0apGidgWbQoEH49ttv8eyzz+LmzZt47rnnRPN07twZq1atCqpihIC95WVkZKBXr16YMGECdu/eDaPRCJ7nqd5piYmJ+PTTT/Huu+86AmfKEz/++CMA20ErF1TjS5zL4JzDWhj+gSxnVvLSUPm6ldyjxMzjWr7wLaSBLwUNX1hOlRG5HoSC0yynpDyg7ZdhA1Gh4Yyz5ZSZp2doyFVhhGq0CKEIF3JWVHKwDA1GsCKydCOOVZrGYPHAc4rMz6gWqkY4YdFXGTM0mKDhe+Qur6Fe2kKStlN2ccNi5VFgFJ4X7Ldk+APysc/C82WYoSH+TLGgQVaPl5MHI1eWU66+BcvQYAQTYWFhWL58Of755x88/vjjqF+/PkJDQ6HT6VCnTh3cd999+O677/Dyyy+7td5mzZrh0KFDmDhxIurVqwedTodq1aphwIABWLduHWbNmiW7/NatW/G///0PDz74IFq3bo1q1apBo9EgKioK7dq1w9SpU3Hq1CmHMEEyceJErFixAv369UN8fLzsyHWtVos5c+bg6NGjeO6559C6dWtER0dDrVYjOjoabdu2xbhx4/D777/j9OnTbu0HGpGRkVixYgV27tyJ8ePHo2nTpoiMjIRGo0FcXBw6deqEyZMnY/369di0aRN1HUlJSTh58qRg/1avXh2DBw/GX3/9henTp3vdTiUsXLgQv/zyC5KSklClShXo9Xo0adIEr776/+zdeViU5foH8O/MMAwMOwgKLqDmrhVKprnh0dzXRM/JStFSU8rS7JRmRdkpy+x3LMNES/RkpmamHrWjuGBuiWIumEsKKYqCCArIPvP7gxhn3nlnn2FYvp/r8hLe9Zlh1ud+7/v+J1JTU3UuAhcKCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4GL7Qssq3336LTz75RJNBJJVa/2Y/b948nDx5ElOmTEHLli3h7u4ODw8PtGvXDq+88grOnz9vl1YEjjRlyhScOHECU6ZMQYsWLTR/9549e2LZsmU4dOgQGjRo4Oxh6qiWDI2KigoMHz4cycnJkEqlGDt2LHr37m0wetqxY0c8/vjjOHbsGDZv3oxHH320OoZpF8ePH8e5c+cAAMOGDdM0V3I07Rc3Y/UTyT6EV0GJfWnQu8iKn6+NSrtXpnMXSSVAmJ0aggOWlJwy0hTcaT00LGsKft9EU3BTPTQAQCHVDTRol5yq+OuLvl7JKROlo/xclcgsuqe7zIpyU4B+TWn20KCaS/exKtZDw6oMjfu6M24NlTL9puD1seQUAxrVRioBbK3oJWwMfqe48u93r1RYWJB/S3IM/YDGgws3qlRfhob+MrN7aNTS7HF/Nyk85BIUWvl+pWAPDaqB+vbti759+5q1bVhYmFkNkhs3bqyXOaAtOjraYECiefPmmDlzJmbOnGnWmMQ89dRTeOqpp8zevlOnTvj8888tPk9sbKzZ5bi09ezZEz179rR4vypNmzY1ev9aOy5LPf3003j66aet2tfV1RUxMTGIiYmxeRxNmzbFkiVLTAYvDDF1O9LT0w2ui4yMNPmc6NChg+ZCcjHmPK/kcjlef/11kz0hqqoMmfLwww8jPj7e5HZC5r4GAMbvN3vo2LGjVbfBWarlm8Hq1auRnJwMuVyO7du34/vvv8eMGTOM7jNixAio1WrRZjQ1mXYzcHuUmzKXhJN51UovoGFWDw0y5nKebv+Mpl4uel9SbOFu5rGMZ2g450uSpRkahWWGSk4ZP0+pTskp3T4duiWnKrPrhBkaxkpOAYC/Qr/5t9gycwi/r9aS7+1UD5h6KIolTVgX0NDN0AhSyuAuFwQ06lnJqXKVGvmCSTFfToI7jLuLxObPn/oZGpWPa2FgSgLA25Uv9GR/UsEHCJVa/3W62npoiCwz9/3BmuzxmkAikSDUhsbg7KFBRERUP1XLt7x169ZBIpFg2rRpGDhwoFn7hIeHAwAuXLjgyKHZVVlZmaZhT2BgoNV14axRlRUCACEhIdV23vpKWJ/VnIoL/Hht3GW9/hn2TSAz1htDm7EMDSuqwtiFMEND2BRcGPgxXHJKvIeGeMkp3cwJ3ZJTQEF5CcpUuk8EU8EJsZJUfiw5RXWN8PklWC0MiAPmX4GrTdhDI1Apg1JQF6W4XG3VsWure8IGVwB82RTcYWzpn1HFz033vSr3rwyNPMHf0ttVwkw8cgixh3FJhbMyNKzvoSGcyK8tGRpA5UVM1tLvoVF/3vOIiIjqs2r5lnf69GkAlVkX5qpqEJSTk+OQMTnCzp07kZ2dDQAYP3680dqC9qbdCKdPnz7Vdt76Sq/xnhlfGvjx2jhhhkZLX/v1zwDMLzllLEPDWX/Du2XGMzT8BVe4FhoqOWW0nJZap9m9q6CHhnbJqXKVWq/cFGBOhoZ+8MJY3w1jGNCg2kKvh4adSk5lCzI0xEpOqVEZ1KgvhFf1SyWAJ6/qt52Bu9Dc91VjhCWnqgIaLB1G1UXs84NwUlzm1B4a5pacqp09NADjjcFN9tDQy9Cww4CIiIioxquWGfe8vDwAQEBAgNn7VFRUflGvSR3UTdEuN2Vuw5eEhARMmjQJAPDuu+/q1eU7c+YM3N3d8dBDDxk8Rnx8PFauXAkAaNSoEUaPHm3hyMlSwi86xq7qJ9MKylS4dV/YENy+L0/26KHhLKZ6aPgppMgsfHD/VWZoiPXQqPxfrIeGMOtIITHcFLxCBeQU6wY0XCRSeMmNl8Lyc9XP4BBbZg720KCaymTJKdGm4Jado6xCrek1UCXIXQqlXP/s98vVUNo3PlxjCSfBvV2lfG1wIHc7dEoWBuSrmoIL/5YsHUaOIpZ9oZehUU2vI7Y1Bdf9vbaUnAJMNwY3hk3BichZ0tLSUFhYaPF+fn5+aNy4sQNGRPVNYWEh0tLSrNq3TZs2kMtr95fEaglo+Pv7IysrC9euXdOUkjLl0qVLACpLN9UGubm5+O9//wugspFK586d7XLcEydO4IUXXkDfvn0xePBgdOrUCQEBASgvL8f58+exdu1a7Nq1C0Bl8Cc+Ph4eHsavkibbCa/+EcvQYFNw810RZGfIpbZ9uRFjvDeG7rklEP9z1ZSm4MIMDWEN8go1IBGZVjVWMkH4BVAhzNDQ7qEh0j/DX6E0WUvdoRkaVh2FqPrZI0Mju6hC7zUqSCmDm0jgtj710bhbyqv6q5MjMjTulqhQoVIzQ4OqjdhHI/2SU84bS/0oOSUz+NnbFJacIiJnmTRpEpKSkizeb+LEiWY1mSYyJTk5GX379rVq37S0NISFhdl3QNWsWgIaHTp0QFZWFpKTk80uO7V+/XpIJBI89thjDh6dfaxfvx4lJSUAzM/OMFdFRQUSExORmJhocJuAgAB8/fXXGD58uF3PTeLK9DI09LdhPMN8wv4Zod4udq9XLDbRJySXVjYndHORoKiGTAKq1CrcKy3RWSYXZGiIXbkqFSs5pVmkX5ZG+OVdWHKqTF0ClboCUokM5SrolZwKMCMwIdpDw8qm4Cw5RTWVqdd+8abglr3eCPtneMglUP71BHeTSVCs9XwuKqsZr2XVIU84Cc7+GQ5ll4CGoIeGGpWBKf4tqbrIRC7GEE6K14YeGtaUw60p3FykaKiU4aYgWxsQuUBMQHg72RSciGqLsLAwqGtIr7uEhAQGWajWqZaAxqhRo7B3714sXboUs2fPhp+fn9Htf/jhB2zbtg0SiQRjxoypjiHa7D//+Q+AyiyJZ555xm7HHTJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7W2385JxtblObU10OU/YENz+qW/mlMao+lLkKhMPaDjj40Z+WQnUgjMLm4L7KfQjahKRnAVDTcEB/YCGMEMDqCw75S7zRLlKjZwS3fTaADfTmWGiGRp2awrO5yDVDnbJ0LivO9nbUPngNUAp1w1o3BeLoNRRvKq/etmjKbiXqwQyiW7ZtTvFKmbbULUR64/hrAwNoPICDe33BLN7aAhiAWIXW9VkzbxdRAMapuhnaNhrRERExu3fv9/ZQ6B6LjIyssYExZyhWgIaU6ZMwaeffopr165hwIABWL16Ndq3b6+3XVZWFpYsWYJFixZBIpGgY8eOGDduXHUM0WaHDh2yar/o6GhER0cbXB8UFITJkydj8uTJVo6MHEF45ZaxZstV6u/LjGmX7wobgtv/pcncDA0AcJMBd0XWO+O94m5psd4yYckppVyid1W2WECjKmCjdwW5Wv/Lu1LmBqFSdTHc4YkKNfRLTpkRmBDbxuoMDcEzijFFqqn0m4Lrb2NpyCFLMOkT6K4V0HCR4I7WunpVcop9FxzC0MurUm77/SuVSOCrkCJHqydMbrGKwSmqNmIf4UsEk+LV1UMDEAlomLlfbc7QAIBmXjIcu2n5fgqRklNqtdpkGVQiIiKq3aoloKFQKLBlyxZERkbixIkT6NSpE9q0aaNZ/+yzz6KgoABXrlyBWl35ISQgIACbNm3ihxGqkcr0emjob2PvR+7togqcuV1qU23Ylr5yPORre/bD3RIVTmWX2KUsU6kKes1tHZGhYU4PjarAlPBqrztlmbhTdhP3s2R48k4HdPRrhNScMlwvqAzEBLrL8HCgqyYDQq1WY//NyziXdwsdfBuiT6OWAIA9mZdQpqrAwMZtdEpCqdQq/JxxAa5SGQJdQ3FTq8H3lYJc/XFKXHV+d5VJ4CG4Kvtuif7fxtAVhn/klaFIMMvqLnOBr6u7Tv+OtKLT8JD54mqJBPk5f+hsH+BmOqAhFry4lCuDuuy+yNbGXcvXnW2oZd/bqQ4Tfmw5d6cM/0t/8BjPKda/fPT3nDK4SAw/DxQyCR4OdIX/X+V5bgkCGkFaGRrCMkAnbpWgQNj4SWTMD/nK0cKG1161Wq3zumiOnOLK0kKjH1Ii2MOyj6T3y1Q4mV2quW3eCqne1b0sU+RY9ig5BVT2gdIOaBzJLMbtIganqHqIlZwqFHzQF8vicBThqQ7fKMGl3DLRbbWlCS4OEn6Wrems7Z0nzERRo/LCgdrUFJ2IiIgsVy0BDQB45JFHkJycjIkTJ+LIkSM4f/68Zt2pU6d00mS6du2K7777Di1atKiu4RFZpLob72Xkl2P+4Vy7BBCmdvJCv2bWXRUPAPdKVJh78I7O5IM9uckkCPG0/7cQcyZeqv6O2ld7pRWdQXL+TgBASgGwY+v/MLvNP3D1TlOdfZ8IUeCVcB8AwPyUn/Hh6T2ade88+iRyigvx5fnDAICnW4Tjuz4PStONT/oO69N+AwC0cu+CcK9+mnXZpboBDblEoRfoVcgkUMolyNFK5rhTrP9YMfQ4/S27FL9l6y5TuEgQoFDqBDQuFh0X3R8APF1MP6bESk7tuFwBT5cCk/uawoAG1WTfpBp/jCffKkHyrRKj23i5SvBhD38EKWXILhIGNB5MgQmvmj90owSHbhg/dpWYR7zQu4l17w/fXyjET5ctD04CQFJGMT7u6YcwMwMqJRVqvH04FxkFxmuL+Cj4wuBI9gpoVAbqHkzGij1emaFBjiI27y+8cKm6emgAVSU0H3yG23bFutfV2pahEeotPi1h6laIlf0tVanNyp4nIiKi2qtavx089NBDOHToEA4cOIA5c+YgMjIS7dq1Q+vWrfHEE08gJiYG//vf/3D06FEGM6jGUqvV+g2URT40Cy/4sqVH3ZFM+2RDAMDea0WmNzLiZHaJw4IZANDCx8Uh/RDMmXhp+tfVYdrbXik6pbONSq3GhnT9if0jN0pw/69vwP+XekBn3Uen92LFxV81v6+7chKZ9+8BAP64d1sTzACAS0UnoFI/mKQrUwsaggvKTQGAQgZ4CCYxvWT+ettVPU7NqQWtkEkQ6OZpesO/lJTpj0tIrHG4sPm4tapzsoHIGEc9EvNL1Th2s/L1IEcY0NAqOeUht34Ee67pl7gzV+JV295bvjx1z+xtL+SWmQxmAPqvi2QdQ/OC9uihAQB+ZgQrfJltQw4ilZi+KKI6e+XZ62VLpL1ajaadaajN1FcCse9gtmSzExERUe1g1wyN06dPAwDatm0LV1dXg9v17NkTPXv2tOepiapNYZlarwa6t8gXbWEKu7lN/cTPab8AQmGZbR/yC2zc35SIRqYnxq3hIpWgrZ8c542k7T/TtrKxdYcAV5y5XbmdMKAAAEUV+pN+agDFFWoo5UBRhe45ylT6E28X72UjWOmN5NvX9NapUAEpKr/YlatLddYJy00pZJWlYjoGyHH+zoPztvV4HJeKTmgaird2j0A7/8qrn9v6y01esd0hQA5Pr4dwNPtPo9tVae/T3OQ2YZ7+aOMTiAt3K9NB/F2C4SrV79VhjarbRuRsjqyUee+v8krCtwTtHkEdA1xx2MyMDCFTpakMUavVNr83XM03v5NrkZnviQ0NTJCRZdr6u+LXm7qPKamk8r3EHh4JdMX//jQcEGvqJWOGBjmMRCJBO385UnPEPx/KpUArB/R2M6RdgKsmeG3TcfwNfxeviaQSCboHK3Ak88Ftb+snN3mRk1gASKxXFREREdUtdv109uijj0IqleL06dM6Tb/ff/99AMCMGTPQoEEDe56SqNoJ+z0AgL+b4QbMVWyJSQgvNPJTSBHsYd5Ezb1Slc6VrLY2tlYJboeHXIJQK+veapNJKyfiBofZ54p9Ma929sbGi4XI/KtHRUOlDK4yCfLLVIhs4oZGf9VwH9FCCZUaOJdTip05YneY7UGdtPw76NOoJW4XF+ofXa0GJEAbPzmK7qoArQuXFbLKL6it/eTwd5NiSJgSHnIpRj9UGYw5f6fsr2wgXwQon0Ny3gkEuvrhrUf7o0NA5b79m7mjpBw4fbtE9EtfS185xrb2gARPQiaV4uCtNBSUViCnWIVylVqnybCLRI4wt45o493E5G2WSCTY+eQLWHAqEedyyhEk6aZZF+gu1WlsbC5XmQTdghUID3JMIIzIUhKRHA3ha7YKlc9VCYwH4zILK5Cr1Ry5+K/nnvAVSHvC529N3VBUrsapbPHntzbh+4O1k0BiF8M+5Oti8KrmqttvLXNfgT1tyFahB6Y97AU/Nymu3qssC+Uhl6BfM3fNe6atujRUYGonLxy7WaJ3ZXWgUoaoVh7sqUcONTPcBxsvFuCGIPPLy1WKAaHu8HWrvuDotIe94KeQ4lq++f2ItClkEvQIcUPHBrUroAEAUzp5wVchxZ/3yhHsIUNUaw+T+4hl6Jbb+mWHiIiIajy7X26iFvkAERsbC4lEgqioKAY0qNYTNnT1cZWIfpgWlvUpt6HmVIVg327BCkR38DJr3+O3SrDo+F3N77Z+xK8QPMfb+MnxxmO+Nh61evi5yTD1YW+T28mkEoxp5YExrTzw+WVAeOGwsftQ7DVQzJX8HADA7RKRgMZfZ3inmy+++N0F224+WPdwAw+sHxikt4+LVIKxrYUlovwAPKy3rVQiwfCWSgxvaaqRtwveCx+ot/Tv27NM7GdYc68AfNPz7/j0eB6Sbz3IPvlbU3c81cr0F1eimk5s3tWS12xta87lY3vagyvXi/+a7BW+nWi/BUkkEgxrocSwFqae38DJrBIsTH7w/mDtJJBYIOSVcB+DJUTKVWo8szNbdJ09sRSdfXjIpZhkxePXEv2audvU34vIFr4KKaZ0Mv35sDp4yqWY3NGxz7eaykMutfi9UqwkXgUzNIiIiOo8u+Zvy+WVVxkWFdlWR5moJhNmaPgbuGpLOJFizwwNS+ZohJuaO+Fu7ljqes898Ztn+D40t7RYWsEdABDP0IAKClnlY6igTLfsgKdLzcxE4MVwRJXEXjOsnVd3E7zAVmVoCF9nrH0ZlgkGZm2GhlggxFivHlvjDOa+3MhYpYiIqE6TSCR630VsuYiMiIiIage7ftVr2LAhAODEiRP2PCxRjXJHkKER4C7+NLJrhoZgssiSq071AhpWj6KScCLNEQ28axSJ/j1mKCikVgMqM+/hK/mVAY3s4gL940AN978eQHoBDXntKyFAVJ+IBzSse51UCJoul1SIl5yy9mVY2NPZ2vcpsUBITciOcKnr709ERKT/nYvxDCIiojrPriWnevfuje+++w5vvPEGLl++jNatW2uyNgBgy5YtOH78uMXHnTBhgj2HSWSTHEGGhp9CPEND2EPDtoCG7u8WZWgItrW95JTu7/XxCli1PTI08o1kaKhVUP4101hYrtsUvKZmaFiK3zWprhKbQ7dXhoYmoGHDe4I2e2USir2/CYMl2mwOM5j5AlIf35+IiOobF4kEJVpvDMzQICIiqvvsGtCYO3cuNm/ejLt37+LTTz/VWadWqzF//nyLjymRSBjQoBolVxDQMD9Dw/pzCmvBWlLmSb/klPXjsHUstZNld1iF2rw/dGbRPRSVlyFbtOSUGu5/zQYWCAMazNAgqtFEMzSsPJbCYMkp4fGteyG2VyahaEDDSJSlOho8SyX1IIOQiIjs+p2LiIiIage7XrvWoUMHHDhwAP3794dcLodardYpzVL1u6X/iGoSYVNwfzdDAQ1BhoYNj2VhySmZBZM09s/QqGclp0TYI0MDANIL7hhsCq6U/xXQqCU9NIiokl0zNERKTqnV+q9A1r4MCzMJK9TW9VkSLzll3ZjMYc4I636wnYiIAJHvXMzQICIiqvPsmqEBAF26dMGuXbtQXl6O27dvo7i4GC1atIBEIsH//vc/tGrVyt6nJKpWZjcFF0ym2NIUXPi53JIyGhLBlbu2xgj1xlLnJ43E7jD7BDSu5OcYLDml6aEhyNDwcGGGBlFNJvaSaG1Ggl6GRoV4ONX6klP6yyrUxstFiREG7CVwfrC7JvTwICIixxN+FxGWxyUiIqK6x2HXz7m4uKBRo0YICwvTLAsJCUFoaKjF/4hqiuJyNQrLdD8lB5iboWHD1ULCq19tydCwNQtbr4dGnc/QEGkKbiCgoYb5JacA4EzuTZSLbK+GWtNDg03BiWoXseCF3TI0ytV6QWXA+p4UYk2zrXmvEpYidGR2BmBehoalQRkiIqqdmKFBtVl6ejokEgkkEgkSEhKcPRwyIDY2VvN3Isfav3+/5r7ev3+/s4eD6OhoSCQSnbltqhnsnqEh5t133wUABAUFVcfpiBzmjqDcFGC45JTcjvVchVf929JDw9YUDf2SUzYdrs6xJEPjaPafost1Sk7p9dComSWnbP3qyM+GVFeIPZStzWQTzdAQebLZM0PDmvcq4T7WZkeo1Gq7ZXYwQ4OIqH5gDw0iIiLrXbt2DceOHUNycjKOHTuGEydO4N69ewAq5/NjY2OdO0ADqjWgQVTbCctNKV0kcDNwKapdMzRsKTll5wwNlTBbxMFX4jqbWDaGsRrzKgum9o9kGQpoqB40BWcPDaJaxa49NAQBjQo1UCbyXmLt1WJik/7WvFcJS05Zm6FRpgIU4lUcdZkxxLr+3kRERJXs2beQiHTt378fffv2BQDs27cPkZGRzh0QkR3ExsbivffeA2Bd/8C65M8//6y12Sf8ukdkAWGGhqHsDEC/2apNPTRUwgwNC0pOCRfY+Hpd/0pO6TPWFLxCGPExIqu4QPz4ajWUBnposOQUUc0m9opobdaBsOQUANwXRrhh/Yc50QwNK94jhEEQsVJW5ii1Y+Fza8dARES1i/CtkhkaRERkLwkJCVCr1UhPT3f2UBxCO6AjkUjw0EMPoXfv3k4ckfmqJUNDW05ODo4cOYIrV64gPz8fFRX6JXyE3nnnnWoYGZFp5jYEB8TSn+2YoWFJySm799CwvvxV7WRhU3Cbiy8xQ4OoNrNnhoaw5BQAFIlEHKydu7dXDw39klPWjcfcgIY5WzFDg4iofmAPDSIiIut4eXnhgw8+QNeuXREREQE/Pz+dzKyarNoCGllZWZg1axZ++OEHlJeXW7QvAxpUUwgDGoYaggNi6c/Wn1f4udyWDA1bM+r0x2Lb8Wo60ZJTRjM07BHQqOyhoVKrUFhLMjT41ZGokti7gqMDGtYeX2zS35psQr0MDSsHVGrHSSj20CAiqh+E72W2fOciIiKqTwICAvDWW285exhWqZbr13Jzc9GzZ098//33KCsrg1qttugfUU2RY0HJKb0MDRtKaQgniyy58lRY6sTWZ5TwZkjr5aSRsQwN2/Pc1VDD3UWC++VleuuYoUFU+1jftFui915SJFJLw9oPc1KJRC8obc2VrfqlCK0bT6nppF0A5r2PiVTrIiKiOkiYbcgMDXK2Q4cO4YUXXkCbNm3g7e0NV1dXNGnSBMOGDcOXX36JvLw8s48VHR0NiURissZ9QkICJBIJJBKJwdI4e/fuxdNPP43mzZvD3d0dSqUSoaGh6NatG+bMmYO9e/dqtk1PT4dEItG5Srtv376ac1T9S0hIED3Xvn37MHHiRLRo0QJKpRLe3t7o1KkTXn/9ddy4ccPg7YiNjdUcGwDu3r2LBQsWIDw8HL6+vgbP+dNPP2Hs2LFo1qwZ3Nzc4Ovri4iICLz33nvIzc01et8BQEZGBmJiYtCiRQu4ubkhJCQEI0aMQGJiosl9rVV1H2vfpo0bN6J///4ICgqCu7s72rZti7lz55r1mCktLUVcXBz69u2LwMBAuLq6olGjRhgyZAi+/fZbqIyUxhY+zq5fv47Zs2ejdevWUCqVCAwMxNChQ/Hzzz9bdHsMCQsLg0QiQXR0tMnbJebo0aOYP38+IiMj0ahRI7i6usLb2xvt27fH9OnTce7cOdH9qp4nVf0zAOg9poXPIXOfg2fOnMHUqVPRqlUrKJVKeHl5oUOHDpg1a5bRclVi99vu3bsxfPhwNGrUCAqFAs2bN8f06dORkZFh7l1UL1RLhsbChQvxxx9/AAAGDBiA2bNno0uXLvD397e6kSWRM+iVnHI3XHJK2EPDlgZ19syKsD1Do36VnBLeXsD4ZJrY9pZSq1VQukhRUFakt85TzoAGUU0m1i/D2h4aQGWWhvbkjHjJKeuP7yKVoEIrImFN7XG7ZWjYsYeGrF4G24mI6h/9Mr/OGQdRUVERnn/+eaxbt05v3fXr13H9+nVs374d2dnZiI2NrdaxzZo1C//+97/1ll+9ehVXr17Fr7/+ioSEBNy+fdum8xQXF2PSpEn4/vvv9dadPXsWZ8+exbJly7Bu3ToMHz7c6LEuXbqEAQMGGJ0Mzs3NRVRUlE4wBgBKSkpw4sQJnDhxAnFxcdiyZQu6desmeoxffvkFw4YNw7179zTLMjMzsW3bNmzbtq3a/lbPP/88vvnmG51lFy5cwMKFC7FmzRrs2bMHbdu2Fd03PT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2HX9tVS0BjS1btkAikWDo0KHYunVrdZySyCEsKjklmEuxpSm4Xt8KCyZqhJsaK5dk1lgEt6PuzxlZ1kND+LeyhgoqKF0keg3BAcDTpWaWnGLNKSLDbEmHdZNJUFhmKqBh/fFdpECJVmaENcF3e/XQKDE3oGHGZszQICKqH4RBdHuUfyWylEqlwsiRI7F7924AQKtWrTBjxgxERERAqVQiMzMThw8fxoYNG6p9bP/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc+wmTZpoflar1YiKisL27dsBAMOHD8e4cePQokULSKVSHDt2DIsXL8bVq1cRFRWFQ4cOISIiwuC4o6KicP36dbz88ssYMWIE/Pz8cOnSJYSGhgKoDFr0798fKSkpkMlkGD9+PIYMGYLmzZujrKwMBw4cwGeffYasrCwMGTIEJ0+e1Oxb5erVq5pghlQqxdSpUxEVFQUfHx+cPn0aCxcuRGxsrNFx2kNcXBySk5PRtWtXzJo1C61atUJWVhYSEhKwYcMG3LhxAwMHDsTZs2fh5eWls29BQQH69euHK1euAABGjRqFyZMnIyQkBGlpaVi6dCmSkpJw8OBBDB8+HAcOHIBMJn5h7v379zF27FjcvXsXb775JoYMGQKFQoFff/0VH330ETIzM/HZZ5+hWbNmeOWVVxx6nxhSXl4OPz8/jBw5Er1790arVq3g4eGBGzduICUlBZ9//jlu376Nl156CW3btsXf/vY3zb6jRo1CREQE4uLisGzZMgCVmRVCjRs3Nns8cXFxmDdvHgAgMDAQb7zxBnr06IGKigokJiZi0aJFKCwsRHR0NBo0aIAhQ4YYPNaKFStw+PBh9OnTB9OmTUPr1q2Rl5eHNWvWYM2aNcjOzsbkyZNx5MgRs8dXl1VLQOPq1asAgJiYmOo4HZFDlKvUuFuiO2vjZ0EPDZW68up9a67UtVc5D8D2DA39puB1e9ZINJxh5E60S4bGXz00cu7rBjRkEikUsmprfeRQrCZIdZVYkNeWwK+wj4Y9e2gAVe9VNmZoqO2ToVFm1x4adjsUERHVYHoZGvyMaTa1SoWKghxnD6PayDwDIJE65gPC0qVLNcGM0aNHY926dVAodDPrhw4digULFiAzM9MhYzCkKogSGhqKQ4cOwdPTU2d9ZGQkYmJicOfOHc0yuVyOjh076mRsNG/eHB07djR4npUrV2L79u2Qy+XYunUrBg0apLO+W7dueO6559CrVy+kpqbi1VdfxcGDBw0e7+zZs9i5cycGDBigWdalSxfNz++//z5SUlLg6+uLxMREnXUA0LNnTzzzzDPo3r07MjMzMW/ePKxdu1Znm9dee02TmfHtt9/i6aef1qyLiIjA2LFj0atXLxw/ftzgOO0hOTkZQ4YMwZYtW+Di8uD7/uDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOhn4/fr1g6urK1auXImjR4/i5MmTCA8Pt3rcdUW1zIx5enqipKQEDRs2rI7TETlEXolKb3I7wM1wySmxyZRyFeBqeBeDbMmK0M/QsI09gyu1gSUBCrXa9PZ+ru7ILdUvJaVznL96aBSUlegs95S7skwfUQ0n9gy1JeDg5mJGQMP6w+tlMlhTe1wvQ8PqHhrmnducTEM2BSciqh+EF1exh4b5KgpycPHlINMb1hGtv8iCi7f9J2BVKhUWLVoEoDJjYc2aNXrBjCpSqdSiq7/t4ebNmwCAzp076wUztJkqRWSMWq3Gxx9/DACYOXOmXjCjip+fHxYtWoQhQ4bg0KFDuHTpElq1aiW6bXR0tE4wQ1tBQQG+/PJLAMCCBQv0ghlVQkND8fbbb2PGjBnYuHEj4uPj4eHhAaDyftm8eTMAYNiwYTrBjCpeXl6Ij4/H448/buTW206hUGDFihU6wYwqb731FjZs2ICzZ8/i66+/xgcffABX18qqDSUlJVi5ciUAoEOHDqLlsSQSCeLi4vDzzz8jJycHS5cuNRjQAIBp06bpBDOqhISEYPHixfj73/+OwsJCrF69GnPmzLHyFlvP1PPHx8cH77//PkaNGoWDBw8iJycHAQEBDhnLqlWrcP/+fQDAZ599phPMqBIeHo65c+di/vz5uH79uqbfi5jg4GB88cUXonM+c+bM0fytf/nlFwY0UE1NwTt16gQA+PPPP6vjdEQOkVOkO2MjlwKecsMTJmKTKdZ+wLYlK0K4pd2bgtfxOSOxiTNjk2kVauOXNz8e2MyMk6rgJtMvOcWG4EQ1n9jLsy09NNzMyNCwreSUcCLI8mPYr4eGeduZ8z5W14PtRERUiT00yNl+++03TbPeKVOmGA0aOENwcDAA4MCBA7h8+bJDznHu3DnNsaOiooxuqz1Zbqx0zjPPPGNwXVJSEu7evWvR+crKynDixAnN8n379qGiovLDp1hPhipdu3ZFhw4djJ7DVgMGDEBISIjoOqlUiokTJwIA7ty5g5SUFM26EydOaBqGR0dHGywl5e3tjXHjxgGo/FsZyxIydl+MHj0avr6+AODQhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqoyc+q5aAhrTpk2DWq3Gf/7zn+o4HZFD3CnRnWnxd5MZvVpe2BQcsL6PhjBDQ2bBM1cvoGFrU3DBxFVdb7wq3hTc+pJT5gQ0XGWVV1KIZWjUVLwWjqiSvTM09EtO6b+R2BIw0S/V4bweGqV2LTlVt9+biIiokl5gnnVNqZqdPHlS83OvXr2cOBJxVY2Ic3Jy0LFjR/zjH//AqlWr8Mcff9jtHNolmbp37w6JRGLwn3bApyp7RMzDDz9s1vmCg4ONnk+7pJD2+bR7Jwh7gwh17drV6HpbWXJ+7XGfPXtW87OpLBLt9dr7aXN1dcUjjzxi8BhyuVyTGSDWe6K63L59G/PmzUObNm3g5eWlKYfWqVMndOrUCUOHDtXZ1lGq7sfOnTsbLCMFAA0bNkRYWJjOPmIMNX2v4ufnBwDIz8+3cKR1U7UENMaNG4dnnnkGmzdv1uvWTlRb3CkyvyE4YKjklLUZGrq/W5ShIdjW1vmi+lZySjx4YSSgYWJqv2sD0wENuazyGMKAhkdNbQhORA/YuYeGOSWnbHkZtkeGhr16K5lbcsocdf29iYiIKumXTnTOOKj+0p4wrcqGqEn69euHpUuXwt3dHcXFxVi/fj0mT56MVq1aoUmTJnjxxRdtvoo9KyvLqv2qyvWIqZq8ddT5tHuGaPdUEOPo8vmWnF973JbchkaNGonup83f399glodwLIaO4WgnTpxA27Zt8dFHH+HixYtG+5sCQFGR8XLftqi6D0zd98CD+9/Y/SbsCyIk/asHUFVmUX1XLT00Dhw4gOeffx5paWl466238OOPP2L8+PFo27atyT8YANH6bUTV7U6x7ouGsYbggHiGhrVN6vQni8zf194tF+pbQMOSDA01gAqV8W9R7X0bwtNFgYLyEoPbuEr/Cmiw5BRRrSMVCS/YkkHh8KbgjuihwQwNIiKqJvqBeWZomEvmGYDWX1g3MVwbyTwdU0e/NoiJicHYsWPx3XffYffu3Th06BDu3r2L69evY/ny5YiPj8e8efPwwQcfWHV87QnWbdu2aa5GN8XYRLCxiXXt86WkpBi9Ol5bkyZNRJc7u0+lPc5fU47hSKWlpRg3bhxycnIgl8vx8ssvY+TIkWjdujX8/Pw05ZquXLmCli1bAoDJgIc91PT7ra6qloBGZGSkzh/4xIkTOrXrjJFIJCgvL3fU0IjMllMszNAwHrkWm9Aps/LqU70ggi0lp1D5om7ti65wgt/aK3FrC0v/YqYyNILcPdHcyx9ncg3XrXT566FVm0pOWUp4L9XtRxHVKw7O0Lhv54CGMPjuzB4aJeY2BTdjM0veJ4mIqPYSfueyY7JfnSeRSh3SJLu+adCggebnzMxMk2VjLFF1RbbKxEVzhYWFJo8VFBSEV199Fa+++ipUKhV+++03bN68GUuXLkVeXh7+9a9/4bHHHsPIkSMtHqd202VfX1+dMk+OoH2+wMBAg4EKY7QzQG7duiXa0Fl7vSOZOr72eu3m7do/37p1C61btzZ4DO1yW4YawOfk5KCiosJoMKlqLMJjVD1WAfs8XsXs3btX0z8iLi5OpzeFturKHvH390dmZqZZj4+q+9/QfU+Wq7ave2q12up/RDXBHUFAw99EhoZUItGbZLKmpqtardYrE2VLU3DAtn4Hek3B6/ikkdhrkLHXJWM9NDxcXKF0cUULL+NvYrUxQ4Ov1ESVxF4SbXmZFGZoFNu95JTu71ZlaAh2sTpDw47Z0y51PNhORESVhN+LmKFB1a1z586anw8cOGDXY3t5eQGApvGzIRcvXrTouFKpFJ07d8aCBQuwZ88ezfINGzbobGfuRZBVfRUA4NChQxaNxRr2OF+nTp00PycnJxvd1tR6W1lyfu1gkfbPv/76q9FjHDt2THQ/baWlpUbLj5WXl+O3334TPUbVYxUAcnNzDR7jzp07yMnJMTpWQ1JTUzU///3vfze4nXaPFTH2yqioug9SUlKMXoiflZWFP//8U2cfsl21ZGjs27evOk5D5FDCklOmAhpAZSmPUq3P1NbVJtdf5sySU7YEV2oj8QCF4S9KFWrDf+RANw8AQHNP4wENFwM9NDzlNTegQUSVxF4SHd0U3JYP5fbooaGXoeHgHhrmbGVtUIWIiGoX/cC8c8ZB9dcjjzyCpk2b4tq1a1i5ciVee+01ncbXtmjevDmAyibAFy5cQJs2bfS2KS0txaZNm6w+R+fOneHn54fc3Fy9Bspubm6an0tKDJdM7ty5M5o0aYKMjAzEx8fjlVde0dnX3vr37w+lUon79+/j888/x7hx4yz+PNy3b1/IZDJUVFRg9erVeOqpp0S3S05ONtrI2R527dqFzMxM0R4sKpUKq1evBlCZVaIdQOvSpQt8fX2Rl5eH1atXY/bs2TqZElXy8/M1war27dsb7fWyevVqnXNo27x5syZY0b9/f511fn5+mrEYCyh8//33Vl+4rh00KCws1AmiVFGpVFixYoXR4wgf11WlqizVv39/7N69G3l5efjxxx8xbtw40e2+/vprzW0W3m9kvWr5utenTx+b/hE5m0qt1svQCHA3XnIKsE9NV9GAhgWzY2Jb2nLhUoVg57reQ0M8nGFdhkaQW+UH2xZexuu3Vn0x08/QqDslp4jqKrGXRFt6aJgqOWVrqwi9iSArvmCwhwYRETkLe2iQs0mlUrz++usAgIyMDEyYMAGlpaWi26pUKty4ccPsY2vPhy1evFh0m9mzZ+P69esGj7F+/XqjjZGPHz+umaSuCqBU0Z74vnz5ssFjSKVSzJs3D0Bl/4IJEyYYDYDcu3cPS5cuNbjeFF9fX7z00ksAgMOHD2PWrFlGyxzdunULK1eu1FkWHBysKa+1detWvewUACgoKMC0adOsHqe5SkpKMG3aNNFmzwsXLsSZM2cAAJMnT9aZfFcoFJqyS2fPnsWCBQv09ler1XjppZc0waqq+82QZcuW4eDBg3rLb968iTlz5gCobF49ceJEvW2q+h9v2bJF9PFy4cIFvP3220bPb0yrVq00PyckJIhuM3fuXKSkpBg9jrmPa1MmTZqk6Qv92muviT4PT506hQ8//BAA0LhxY4waNcrq85GuasnQIKqt7pepcDGvDPmlar3AgjkZGnLBJmXWZGiIfCi3JIggNqdz4laJTlAk2EOGxp7mvRxkFN7HnbJMqKCCn0tDSCU+5g+mFlGr1UjNuymacWEooHHmdimuFIp/eAUAV4kSx2+VoLxc/0oCbRn3b0ClVtWqDI1r+eU4fkv8Q6sEQHMfF/ib6DtDVBfYO0PDTfCCf79M9/XH1ml7e5TquF2k++XL2mDCrcIKg68j2tLvme6tVteD7UREVEkYRD+bU4Yzt0vRyleud1EAkaPExMRg27Zt2L17NzZv3oxOnTphxowZiIiIgFKpxM2bN3H06FGsW7cO48ePR2xsrFnHDQ8PR/fu3XHkyBGsWLECpaWlmDhxInx8fHDp0iXEx8dj7969eOKJJ3D48GHRY7zxxht48cUXMXLkSPTu3RutW7eGh4cHcnJycPDgQXzxxRcAKptwC3sSNGvWTJN58emnn6JJkyZo06aNpsdCw4YNNVfJv/jii5rbv3HjRqSkpGDatGno2rUrfHx8cO/ePZw/fx779+/H1q1b4ebmZnJy3Zj3338fSUlJ+PXXX7FkyRLs378fU6ZMwaOPPgoPDw/k5uYiNTUViYmJ2LlzJzp16qR3+xYvXozdu3cjPz8f48ePR1JSEqKiouDt7Y3Tp09j4cKFuHjxIiIiIkyWMbJFREQEtm3bhh49emDWrFlo1aoVsrKysHr1anz//fcAKhuaiwUD3nnnHfz444+4cuUKYmNjcebMGUyaNAnBwcFIS0vD0qVLsX//fgBA9+7dMXXqVIPjCAwMhFKpxJNPPolZs2ZhyJAhUCgUOHbsGD788ENNMG7BggWiDd1nzJiBrVu3oqioCJGRkYiNjUV4eDgKCgqwZ88eLFmyBIGBgZDJZMjOzrb4fho4cCCCgoKQlZWF+fPnIz09HaNHj0aDBg3wxx9/YMWKFdizZw969OhhtBTZE088ofl51qxZeOuttxAcHKzJ8gkLC4OLi+n5scDAQCxatAgxMTHIyMhAly5d8Oabb+KJJ55AeXk5EhMTsWjRIhQUFEAikSA+Pt7sBvbV6eeff9bpsXL+/HnNz7/99ptO8MjT0xNRUVHVOTyDGNAgMuBGQTneOZKL/FL9yR2pBPBVmFFySiqB9jX+dsvQsPGz+Wcp9/SWPdvWE8NbKo3ut/bCVezIiUepurhyHHDByJxohAfZr/FZTfHm8e345Ox+A2vF/47xZ/Jx8b7hCH9GvisWHb+Lu+XG38R23zqGib+Uo6C89jQFT8ooRlJGscH1Mgkwp4sPOjesuUEZInsQz9Cw/njCgIZeHyN7Z2hYGHg/e7sUZ3PKjB7TXOfulOHcnbvW7SzADA0iovpBrMzhB7/mIdBdig+e8IMvL6ihaiCVSvHTTz9h4sSJ+OGHH3Dx4kW8+uqrdjn2N998gz59+mgmuKvKD1WZM2cOOnToYDCgAUBTkki4bxWFQoGvvvoKEREReuvmzZuHGTNmIC0tTa9h+KpVqxAdHQ2gsgTq+vXr8corr+Crr77C5cuX8c9//tPgmMQmxC2hUCiwe/duREdH48cff8SpU6eMBki8vb31loWFhWHr1q0YMWIE8vPzERcXh7i4OJ1t3nnnHUgkEocGNGJiYpCUlISEhAT84x//0FsfHByM//3vf/Dx0b+Y1MvLC3v27MHgwYNx/vx5bNq0SbQEWY8ePbB161ajDb+VSiV++OEHDB48GB999BE++ugjvW1mzpyJ2bNni+4/cOBAzJw5E59//jkyMjJEA2Rbt27F4MGDDY7BGA8PD6xZswajRo1CcXExli9fjuXLl+tsExkZiaVLlxrtVfHQQw9h3Lhx2LBhA3bt2oVdu3bprE9LS0NYWJhZY5oxYwby8vLw9ttv49atW5g1a5beNgqFAvHx8RgyZIhZx6xuCxcuRFJSkui6LVu2YMuWLZrfQ0NDa0xAgxWGiQxIyigWDWYAlcEMc0qICCdU7JehYf5EjbmlTjZfLjRZy/Dzc79qghkAUIFyfJumn45Y2xWXl2HJ74Zvl7GSU9dLLhlcp5C6AwA8ZKazWr69nIKLd3VrmHrU4pJTFWpge9p9Zw+DyOHEXnNtCmiYuLrUlnJWgO2lOnam6z+va0JDbvbQICKqH+QG3mSzi1Q4kmk664/IXpRKJTZu3Ii9e/fiueeeQ/PmzeHu7g5XV1c0bdoUw4cPx/Lly/Haa69ZdNy2bdsiJSUF06dPR2hoKFxdXREYGIhBgwZh+/btWLRokdH99+3bhyVLlmDMmDHo1KkTAgMD4eLiAm9vb4SHh2POnDk4d+6cJjAhNH36dGzatAkDBgxAUFCQ0SvX5XI54uLicOrUKbz88svo1KkTfHx8IJPJ4OPjg0cffRTPP/88fvjhB/z+++8W3Q9ivLy8sGnTJvzyyy944YUX0KZNG3h5ecHFxQX+/v547LHHEBMTgx07dmD37t2ix4iMjERqaqrO/duwYUMMHToUP//8M9577z2bx2mOVatW4bvvvkNkZCQCAgKgUCjQunVr/POf/0Rqairat29vcN+wsDCcOnUKS5cuRZ8+fRAQEAC5XI6GDRti0KBB+M9//oMDBw7A3994L0+gMlskJSUFM2fORMuWLeHm5oaAgAAMGjQIO3bswJIlS4zuv2TJEnz33Xfo3bs3vL294e7ujjZt2uDNN99ESkoK2rVrZ/F9o23gwIE4fvw4nn32WYSEhEAulyMwMBB9+vRBfHw89uzZAw8PD5PH+fbbb/HJJ59oMojEeo+Ya968eTh58iSmTJmCli1bwt3dHR4eHmjXrh1eeeUVnD9/HhMmTLD6+CROora2G4sB77//vj0PB6AyIkrOl5GRgaZNmwIArl27hiZNmjh5RI711al72GfgivPuwQq82tn0pPQbv9zRKY0x/WEvRDZ1t2gcV/PL8fqBOzrL1g4ONPvqU5VajWmJt3HPQHBG2/J+AUavYmqzPgEX7+s2xGrpFYA/ouaaNZba4lZRPhp9b/iDixRSzGz+BiQS4HqBbqmVQ3d/wvWSi6L79fAZjcaKyrqPe3O/w+2yDKPjkECiEzxZ1fPviG71mLk3w2GSMooQdyrf4v2aecmwqHdl/5CFx/JwMvtBea7xbT0wsqXpDx5ENV1RuQpTdt/WBLBdpMCK/g2gFNYgNFNucQWm78kxGEZt5y9HbHc/6wYLIP7MPey5+uC9blCYOyZ1MF4WT9tbh+7gjzzdElBzu/rg0UDj2VjLTt3DfiNZXbZ6+3FfdGxQe4PARERknusF5ZiddEd03eiHlPhHG/s0Z3YGa79/X7p0CeXl5XBxcdGpOU9ENUd6erqmZ4l2poszREdHY/Xq1QgNDUV6errTxkF1lyPel+xecio2NlZTd8xeGNAgZxCW9VC6SODtKkVzHxezJ3s85brPhYIyy+OHeYJm5F5yiUWlNKQSCV6P8MX6CwXILtI9Vtb9Cp1JsqwildGARoVI/PNqYR4qVCrIbIho1zRlKv1mXNpUUGFmZy+4SKT49vcCZBY+2N41X/8+CpAHorVHe4T7tNG8Pg6WD8XBO3tRqi5BuPfjuHL/As4VnNbZT5gJ4uPqZu1NsqseIW64ll+BbVcqr8wOdBfPWCquUONuyYPHnHYpG2GyktTmTgBENYO7ixRzuvhg8x/3oUblZIq1wQwA8HOTYVZnb2y7cl8vMN3US4aJ7c0PPogRZlOUWZihISxRFertgkfMCCQ8084TFWrgl+uVQY2GSstLgkglQGs/ORp7ynD4RgmKytVwd5GgdxM3dAioefVpiYjI/hp7umDGI174Ob0IV+7qBtgtLaNIREREtYNDemjYM+nD3sERInMJJ+8HhLrj6baWXeHj6ao7iVVgRc2pvBLdyXVfM5qRC7X2k+PtbvpX8L6yLwc37z84fnZRBVr7GZ4EEgtolKkqcP3+XTTztP4K4Zqm1ERAAwAC3dXwlLtgbldfneVXdrsgTSvx4uOIofhnp74iRwgAoB2Zfhx+a99GXmmRwXP6yGtGQMNFKsGz7TzxbDvjz4fkmyX49MSDevjaQULh+wTL3VNd8miQAo8G2a9fzOPBbng82DHPf2GsxdLJH+H7wsiWSrM+u3m7SvHSo9546VH9esbWYIYXEVH91aeJO/o0ccfy0/ew99qD7D9r+hcSERFRzWf3gMa+ffvsfUgipxBmaFjTiFsvQ8OMsk9CeSW6s0vmNCM3V6BSqhPQyLpveCJfrVZDZSBYeSU/p04FNExlaABAUUUZPOX6E5blat2/l4vE/L+Xq9T4Fco+rpaVK3M24XNGe+JT+P2SsWsi57C1h4YwAGKi5QcREZHD6L+nOWkgRERE5FB2D2j06dPH3ockcooKwQdgmRWXkHvK7ZGhIQxoWF6Ww5AgdxmAMs3v2UWGJ/LLVIBar1BQpSv5dxAZbLdhOV1phRkBjfIy0eXlKkFAw4JSXKYDGjUjQ8NcMsFN135OCedMmaFB5BzC5tkWZ2gInsyWlEQkIiKyJ+F7mlh2ORGRPaSlpaGwsNDi/fz8/NC4cWMHjIjqm8LCQqSlpVm1b5s2bSCX1+4SvQ4pOUVUFwizEayZo7FPySlHZmjoTqBnG8nQKFUJOzo8cCU/x25jqgmEGRrC5txAZYaGmHK17r4WZWjIjL8k17qAhiDtQvtLpfCxxClQIucQBiAsnfwpF2Yz1p12SkREVMsIP3syQ4OIHGXSpElISkqyeL+JEyciISHB/gOieic5ORl9+4qVNzctLS0NYWFh9h1QNWNAg8iAmlJyKrfYcQGNygyNB4RNw7WVVqj1JvWrpBXcsduYaoIyQVDC3cUFJRUVqNAqJ2V+hob5GTUmMzRqSA8Nc1mWocGQBpEzCJuC25yhwecyERE5iV7WITM0iKiGCgsLs2v/YVskJCQwyEK1DgMaRAYIr1IVXvFjDkeUnPJzZIZGUQVUarXo5HKZCoDBHhp1K6AhLDnlKnWBFFIUlJdolhnO0HBMDw03mYvJDI6aRu8qOTYFJ6px9EtO2dhDgxkaRETkJOyhQUTVZf/+/c4eAtVzkZGRNSYo5gz82klkgH4PDcuP4ekqyNAos/zF5q4goOFjz4CGu+6xylX6AZQqxjI06nrJKblUCncX3WCCQ3poyAwHNLxrWXYGoD+xqV3GTfgoYzyDyDlsnfwRXv3KHhpEROQsLoK3IEuD9ERERFQ7MKBBZIDw8689MjSKytUWfbAurVCjUFCg3M/Nfk9bX4UUgiEiy0AfjTKV4YBGVnEBCstKRNfVRqUq/QwNd5luwyRzMzRkFmVoGM7AqG39MwD9rItyIyWnWKWGyDmEgccyGzM0rCnPSEREZA/M0CAiIqofGNAgMkB41ak1F516yfV3KrQgS0MsW8KePTQkEgkChX007hvO0NBv5fxAXeqjIZ6hYWZAQ2VDU3AjJadqY0BDWEtfjQdZGsLMSF7UTeQcej00LIhnqNVqvX5TzNAgIiJnsbWMIhEREdUODGgQGaCfoWH5MTyE6Q+wrI+GMKAhlwJKYS61jYIEfTSyisQzNEpVMJihAdStPhplgrJRohka5eWi++r10LCk5JSxgIbc3ezj1BRiZdqqSrkJnwVSFp0icgoXwcuOJZM/wmAGwAwNIiJyHmFGvdj7FBEREdV+DGgQGSD8ACyz4qpTuUwChWB2p6DU+gwNX4UUEjvX5tHL0DAQ0Cgz0kMDANLqUECjVKUbrJBLpeaXnBL20LAkQ8NID43amKEhVqat6nnFpuBENYNehoYF5TnEtmWGBhEROQszNIiIiOoHBjSIDKgQfAC29qpTT7mwMbglGRq6wQV7lpuqEqjUPWa2gR4apSq1fp0gLXWpMbhohoaw5JShpuA2ZWjUrR4aYs+Zir8eQ+yhQVQz2DL5UyHyniA8HhERUXXR66HBeAYREVGdxK+dRAboZWhYG9Bw1X2aWRTQKBZmaBi+gt9aQWZmaJSayNC4UlB3Ahp2zdAwUkZKyHjJqVoY0BC5UltTcooBDaIawZbJH9EMDT6ZiYjISZihQUREVD8woEFkgEpw5ak1JacA/cbgtpacsrdAQQ+N20UqvdsOAGUmemjUpZJT+k3BZeY3BRdmaNTrpuD6y8qrmoILlvPNiMg5bJn8EdtWrHcOERFRdbCljCIRERHVHvzaSWSAvTI0hI3BLcnQyBUGNNzs/5QVZmhUqIE7xfpjNJmhkX9Hry9CbaVfckom0hTcUIaGbjDEopJTMmMlp+pGU3CVpoeG7nIpr+omcgpbJn/Emq2yhwYRETkLMzSIiIjqBwY0iAyoEEzqWDtH4+kq7KFhfYaGnwMyNLxcJRBWssoS6aNRplJD/7r6B4oqynCrKN/Oo3MO/ZJT+gGN4grdbao4LEOjNpacEglSVH2xFGYBMZ5B5Bz2ztAQy8wiIiKqDsKMerHAOxEREdV+DGgQGSBsdio2OWsOTxsyNO5WQ8kpiUSCQDP6aJRWqE1mYKQV1I2yU3oZGjILSk7p9dCovyWnxJuCV/7PklNENYMwo6JCrR9wNESs3wYTNIiIyFmEQXVmaBAREdVNnEMiMkCv5JSVzxZPK3toqNTqaumhAQBBgj4aWff1gy6memgAlWWn6gK9DA2JBSWn9DI0zG8KLjcS0PCuhRkaYhObbApOVLPIRd5WhBmKhggnilyklUFyIiIiZxAG6dlDg4iIqG5iQIPIAOGEq7UZGl6u1mVoFJSp9YIqjgpomJuhYazkFABcyc+x57CcRj9DwwXuLrr9LZihYZpEItHL0qjKfBI+v3hVN5FziPW8KDczQ0MY+LD2fZKIiMge9Moo1pH+fkRERKSLAQ0bSSQSs/5FRkba5Xzr1q3DgAED0KhRI7i5uSE0NBTPPvssjhw5Ypfj0wMVghlXq3toCEtOlZoX0BBmZwCAj6MCGoIMjWyRHhpiTcE9XFx1fq87AQ3d2y+XSs3K0FCr1aiwpYeGrG4FNAD9slOGSk7xqm4i5xDreWHuFa3CiSLhRBIREVF1EsvQMFUyl8iZ0tPTNXNGCQkJzh4OGRAbG6v5O5Fj7d+/X3Nf79+/39nDQXR0NCQSCcLCwpw9FBLgV89aoqioCEOHDsX48eOxe/du3Lp1CyUlJbh69SrWrl2Lnj174r333nP2MOsUvZJTVr53eQhLTpnZFDyvWHdGyctVInolrT0Eueu+FIhmaIiUnHrIu4HO73Wlh0apXkBDpOSUSIaGMJgBADKLmoK7GFxXG5uCA/rNGQ01BeebEZFziGZomFlzXBj4YENwIiJyJrH3ITYGJyIiEqdSqXDgwAHMmzcPkZGRaNSoEVxdXeHt7Y2OHTtixowZOH36tLOHKcrw7BlZZPr06ZgxY4bB9R4eHjYdf/LkydixYwcAoG/fvnjllVcQEhKCM2fO4MMPP8Tly5cRGxuL4OBgTJ061aZzUdWV9rrLhBOz5vIUlJy6X65GhUpt8nh5JbqT6o4qNwXoZ2jcLlKhXKXWmegqFfk28JBXAE7duaH5va700BBmaLhKzWsKLiw3Bdiz5JS72cepSYRfLDUZGiw5RVQjiGVVmJuhIcxkdFTQnYiIyBziQXpmEBJZa//+/ejbty8AYN++fXarPELkTLGxsZoLwut7Fl9YWBiuXbumt7ysrAypqalITU3F8uXLMWfOHCxcuLBGZSkxoGEnQUFB6Nixo0OOvXfvXnz//fcAgOHDh2Pz5s2Q/VWa5rHHHsOIESPQpUsXXL16FW+88QbGjh0LPz8/h4ylvhB7SbM2Q0PYFBwACsvV8HY1fsBcQckpPwcGNIIEPTTUAO4Uq3SahZep1FALMhBaegXo/J5ReBclFeVQyGr3S0tphRkZGiIlp8QyNCwqOWUgoCGXyuBWS+/TysDdg2dUVUBDeE/VoPdFonrFlh4a5YLNOGFERETOJPY+VNm/jR80iYjIcgkJCXW6HNyNG5UXKD/00EMYM2YMevTogZCQEBQVFWHfvn34v//7P+Tm5uKTTz6BTCbDhx9+6OQRP8CvnrXAp59+CgBwcXFBXFycJphRpUGDBvj4448BAHl5eVi5cmW1j7GuEbs61fqAhv7TzJw+GncFAQ0fheGr923lIZfAXXApfZagj4ZYDw1hySk11LhakOuYQVajMrWVGRpiAQ1LMjQMBC185G41KhJuCb0eGirxpuC189YR1X5i723WZmiwKTgRETmTi8j7kLnvaURERPVN165d8fPPP+PixYtYuHAhhg8fji5duqBnz554++23kZycjMDAQADAokWLcOXKFSeP+AEGNGq4/Px87NmzBwDQv39/NGnSRHS7p556Ct7e3gCAzZs3V9v46iphfX8AkFo5UeMqk0AYizCnj4awKbgjS05JJBIECrI0hH00ykR6aPgp3OEnKIV0pQ700dBvCm5ehoZoySk7ZGjU1obggJGm4HolpzgRSuQMEolE73lqdQ8NfqokIiInEi+jWL/LiRARERly+PBhDBw40OAFtC1btsQ777wDACgvL8dPP/1UjaMzjl89a7jk5GSUlpYCAPr06WNwO1dXV3Tr1k2zT1mZ/mQrmU+seZwtEzXCLA1zMjRyi6uv5BQABCkFjcFFMjSExbikkKKFoOzUlfwch4yvOglLTtmWoWF+Zk2dDGgIytlUGGoKzngGkdMIy06VmXk1q7A0FTM0iIjImcR6FArLIxI52qFDh/DCCy+gTZs28Pb2hqurK5o0aYJhw4bhyy+/RF5entnHio6OhkQiQVhYmNHtEhISIJFIIJFIkJ6eLrrN3r178fTTT6N58+Zwd3eHUqlEaGgounXrhjlz5mDv3r2abdPT0yGRSDT9M4DKXq5V56j6Z6gUz759+zBx4kS0aNECSqUS3t7e6NSpE15//XVNiRsxsbGxmmMDwN27d7FgwQKEh4fD19fX4Dl/+uknjB07Fs2aNYObmxt8fX0RERGB9957D7m5pitIZGRkICYmBi1atICbmxtCQkIwYsQIJCYmmtzXWlX3sfZt2rhxI/r374+goCC4u7ujbdu2mDt3rlmPmdLSUsTFxaFv374IDAyEq6srGjVqhCFDhuDbb7+FSuTiyyrCx9n169cxe/ZstG7dGkqlEoGBgRg6dCh+/vlni26PIWFhYZBIJIiOjjZ5u8QcPXoU8+fP12ti3b59e0yfPh3nzp0T3a/qeVLVPwOA3mNa+Bwy9zl45swZTJ06Fa1atYJSqYSXlxc6dOiAWbNmGXxOAuL32+7duzF8+HA0atQICoUCzZs3x/Tp05GRkWHuXWRX2q8Dly9fdsoYxNTOouw10MaNG7Fhwwakp6dDJpOhUaNGeOKJJxAdHa3zx7eU9hOxbdu2Rrdt27Ytdu3ahfLycly6dAnt27e3+rx1wR937+Fcrm62QKCbFxq6e5vc9/5fGRTFqkKUqIrgLQsweAX57eJCXC3IRVNPXwS6eYpu4yGXIkcrQJF2rxy+blLcKroHT7kCHi4KvX1yiquvKTgAnQyNYtV9HLyVAzfFg+yL9MICVKjLdfaRSiRo4eWPEzkPXliPZV/F4w2a6R2/tU8gPOUPbmduyX2o1GoEuHlYNE61Wo0r+Tlwd5Ejv6wEhWWlFu1vjuziAp3fxTI0CstLkXJb9w0lS7AfYGGGhsxAQENeiwMagqfNjcIKXLlbphc0ZECDyHnkUqBE6y3nWn65WUH8W4W671PM0CAiImdyEfk8mX63DIWCSL2PqxQB7o4r50v1U1FREZ5//nmsW7dOb93169dx/fp1bN++HdnZ2YiNja3Wsc2aNQv//ve/9ZZfvXoVV69exa+//oqEhATcvn3bpvMUFxdj0qRJmh6w2s6ePYuzZ89i2bJlWLduHYYPH270WJcuXcKAAQOMTgbn5uYiKipKJxgDACUlJThx4gROnDiBuLg4bNmyRXMBsNAvv/yCYcOG4d69e5plmZmZ2LZtG7Zt21Ztf6vnn38e33zzjc6yCxcuYOHChVizZg327NljcE4wPT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2Hb8pJSUlmp+FLRCciQENOxFGAP/44w/88ccfWLNmDUaNGoWEhAT4+PhYfFztCJyhclNVmjZtqvn52rVrFgc0TEX7MjMzLTqes31y6hhWXNaPID/kHo7OXk+a3D+18DBSCw8CALxk/rhdHANfhe7f8MNTe/BWyk7N7x9HDMU/O+kHsISNwddfKMCs5K24VnIBrhJ39PAZhUDXpnr7afN1c3BA468G4KmFh5BaeAi4DXxhIvgqk0jQ3FP3DTHhj+NI+OO43rYKmQs2RD6HEc06IOFSMl48sgmlFRVY0Hkg3nqkv1ljLCovw/DEb7An85J5N8pOxAIaxRXl6LLt3yb3taiHhtRADw1BWa/aRHil3PcXCvH9hUK97RjPIHKeygyNB1HG+DP5Vh1H7MpYIiKi6iKVVH6m1L5u5rOUe3rbDWvujufae1XbuGoqtUqN8vslpjesI1yUCkgc9FlFpVJh5MiR2L17NwCgVatWmDFjBiIiIqBUKpGZmYnDhw9jw4YNDjm/Mf/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc2ztOSq1Wo2oqChs374dADB8+HCMGzcOLVq0gFQqxbFjx7B48WJcvXoVUVFROHToECIiIgyOOyoqCtevX8fLL7+MESNGwM/PD5cuXUJoaCiAyknW/v37IyUlBTKZDOPHj8eQIUPQvHlzlJWV4cCBA/jss8+QlZWFIUOG4OTJk5p9q1y9elUTzJBKpZg6dSqioqLg4+OD06dPY+HChYiNjTU6TnuIi4tDcnIyunbtilmzZqFVq1bIyspCQkICNmzYgBs3bmDgwIE4e/YsvLx0X7sKCgrQr18/TW+DUaNGYfLkyQgJCUFaWhqWLl2KpKQkHDx4EMOHD8eBAwcMTkrfv38fY8eOxd27d/Hmm29iyJAhUCgU+PXXX/HRRx8hMzMTn332GZo1a4ZXXnnFofeJIeXl5fDz88PIkSPRu3dvtGrVCh4eHrhx4wZSUlLw+eef4/bt23jppZfQtm1b/O1vf9PsO2rUKERERCAuLg7Lli0DUJlZIdS4cWOzxxMXF4d58+YBAAIDA/HGG2+gR48eqKioQGJiIhYtWoTCwkJER0ejQYMGGDJkiMFjrVixAocPH0afPn0wbdo0tG7dGnl5eVizZg3WrFmD7OxsTJ48GUeOHDF7fPaQlJSk+bm6gynGMKBhI6VSiREjRqBfv35o27YtPD09kZ2djaSkJHz11VfIycnBTz/9pHlzk8vlpg+qJT//waSCp6f41f9VPDweXOleUKB/pbgp2gGRuuyPopNoq3wcSpnhTI1SVTF+Lzys+T2/4g7WXknGu+EPJt7vl5fi/VO7dfZ75+T/MKPtEzqZCADg5ao7qX27LAPXSi5UnktdhHP3j6CPqYCGo0tOuctQpirBuULzXxwlEoleySlDSirK8XbKzxjWtB2mHNqoKc8Ue3IXXm7XE95mlFXadf1CtQczAEAuleqVnDKXzA49NLzl+hk8tYVYw2ExrFRD5Dz2yqwQuzKWiIioukgkErhIzS+dWN+V3y/B6Q9/cvYwqs3D80ZB7umYzPelS5dqghmjR4/GunXroFDofocbOnQoFixYUO0XilYFUUJDQ3Ho0CG9eaXIyEjExMTgzp0H1S3kcjk6duyok7HRvHlzdOzY0eB5Vq5cie3bt0Mul2Pr1q0YNGiQzvpu3brhueeeQ69evZCamopXX30VBw8eNHi8s2fPYufOnRgwYIBmWZcuXTQ/v//++0hJSYGvry8SExN11gFAz5498cwzz6B79+7IzMzEvHnzsHbtWp1tXnvtNU1mxrfffounn35asy4iIgJjx45Fr169cPy4/gWb9pScnIwhQ4Zgy5YtcHF5ME07ePBgdOzYEe+88w6uXr2KBQsW4JNPPtHZ97333tMEM+bPn48FCxZo1nXp0gVjxozBc889h7Vr1+Lw4cOIj4/H9OnTRceRnZ2NvLw8JCYmonfv3prlXbt2xZgxY/D4448jIyMDb731FsaPH69pFl2dBg8ejPHjx0OpVOosDw8Px9ChQzFz5kz07t0bp0+fxrvvvqsT0PD19YWvry+CgoI0y4w9pk3Jzs7G66+/DgAICQnB0aNHdeZVe/TogREjRqBXr14oLCzE1KlTkZaWZnBe+PDhw5gyZQqWL1+u09OiX79+cHV1xcqVK3H06FGcPHkS4eHhVo/bEvfv39cERBUKBUaOHFkt5zUHiwPY6Pr161i3bh1eeOEF9OzZE48++iiefPJJfPDBB0hNTdU8yJKSkjQRQEsUFxdrfnZ1dTW6rfYbZlFRkcXnqk/uq4xffZpfkQsVdD8JZ9zXrb14qygfJRW6JZhKKspx4W623vHCvHVjh3nlutvklxtvpO0hl6Ch0rGpXS19XVCsKoAa5n8D6ODbEN2DQk1v+JdL927jTkmRTq+JcrUKv2ZfNWv/a4V5Zp/Lnjr6BaOZhy+8LSz91MIrAG4y8+PGHXwbiS5/NMD8KwRqmqZepm+/ixRopGR8nchZmnra5/lnzvOdiIjIkfheRNVNpVJh0aJFACozFtasWaMXzKgilUotuvrbHm7evAkA6Ny5s9GLZE2VIjJGrVbj448/BgDMnDlTL5hRxc/PT3NfHTp0CJcuGb5YMTo6WieYoa2goABffvklAGDBggV6wYwqoaGhePvttwFUlokvLHxQKeDmzZvYvHkzAGDYsGE6wYwqXl5eiI+PNzhGe1EoFFixYoVOMKPKW2+9pZl0//rrrzU9doHKLJWVK1cCADp06CBaHksikSAuLg4BAZUXoi5dutToWKZNm6YTzKgSEhKiKTVVWFiI1atXm3fj7Kxx48Z6wQxtPj4+eP/99wEABw8eRE6O43q8rlq1Cvfv3wcAfPbZZ6IXiYeHh2Pu3LkAKuePjTXVDg4OxhdffCHaoHvOnDman3/55RcbR26+N954A1evVs7XxcTEICQkpNrObQoDGjby9fU1uK5hw4b44YcfNNG3L774wuLju7k9mEDVfuESo13XzN3d8hI1165dM/pPOwWxNpBJpJBCBin0AwEySeUkqqF/Jeq7evsUles2gS4RNI6ucvGefkBjcHN3dAtWwE0m+ev4ugGVUnWRwbE0UsoQ84i3XtNWe/N3k2HEQ/pBs6r7UPtfA4U3Pn98FJp7BeBh/xB81GUIGrl7wVUq0/knF2QcFFWUIatYP5jkZWYGQoVavKufBBK9c9vjXwOFB/7ZMRJPhrSCq8wF/+n9NB7yamDWvh18G2JNr3+IvhkZ0tTTF8u6P4UmSh+4SmXwkiswvkU4prURr/dZGzzdxgMdA+RwNfD4DnKXIuYRb7jx0m4ip4nu4InWvi6QG3lfNPZPIQPCA10xppVlPZGIiIjsbVonL4R5uxh93zLUG5HIGr/99pumfPeUKVNMVtaobsHBwQCAAwcOOKyh77lz5zTHjoqKMrqt9mS5sdI5zzzzjMF1SUlJuHv3rkXnKysrw4kTJzTL9+3bh4q/5nTEejJU6dq1Kzp06GD0HLYaMGCAwYliqVSKiRMnAgDu3LmDlJQUzboTJ05oGoZHR0cbLCXl7e2NcePGAaj8WxnLEjJ2X4wePVozB+rIhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqowcR1u7dq0mANauXTt88MEH1XJec/HyBQdr0aIFnnzySezYsQN//PEHbty4YVFES7s+nqkyUtrRZmveRE316KhtlvX6G5b1qkwv8/l2Pu6VPch2ie3mhycaBhnaFZ+eOYeDgqzCgnLd+qIlKt3sjCoXRTI03F2kmNX5Qf+NZ5JKcU7rNahcXYZVA/zhasHV/I7QqYFujNNLrsC9Z/9lcr83H/4b3nz4b3rL80qK4Pfd2zrL0vL1s1GUZpZzUkE8oDGu+SP4PvJZs45hixHNOmBEM8d+mHmx7RN4se0TDj1HdfJzk+Htbn7OHgYRGdHIwwULelh/VR4REVFNEeYjx8e9+J5G1efkyZOan3v16uXEkYibMGEC1qxZg5ycHHTs2BEjR47EwIED0atXLzz00EN2OYd2Sabu3bubvV9V9oiYhx9+2KzzVQVsLD2fdu8EYW8Qoa5duyI1NdXs81jKnPNXOXPmjKbB+dmzZzXLH3/8caPHePzxxzVVY86ePSt6v7m6uuKRRx4xeAy5XI7w8HDs27dPtPdEdbl9+zY+++wzbNq0CZcuXYLawIWvVds6StX937lzZ6PtBRo2bIiwsDCkp6fr/M2EDDV9r+Ln54eCggKd1gSOsn//fjz//PMAKrO3Nm3aZNWF847EgEY1aN++PXbs2AGgMsXIkoCGdpAhIyPDaDOia9euaX6uL/0wzCW8CEdtYGK8SnqB/qR7Ybluhoyw3FSVS/dMv2CKlU7KLS1CQ3fnNqcrqtDNQhE2wraUj6sbZBIpKrRKTF3O10/5M/7XeKBCxYK4REREREREtnJRKvDwvFHOHka1cVE6pi+h9oSpJZPr1aVfv35YunQpXn/9dRQVFWH9+vVYv349gMryPcOGDcP06dONTmSbkpWVZdV+VeV6xPj5Gb4ozh7n0+4Zot1TQUzDhg2tOp+5LDm/9rgtuQ2NGj0ob629nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUlCPL8VfdB6bue6Dy/k9PTzd6vxkrpQVUZusA0GQWOcrx48cxYsQIlJSUwNPTEzt27KhRzcCrMKBRDSwpOSPUvn17zc/nz583um3VehcXF7Rq1crqc9ZFEuj+DUxNoP9ZmKu3rKDMvICGWMkpIbGARk5JofMDGoKyWtY2wq4ikUgQoFAiq/hBdtHle/pvPOYGKrQDIzrnsW54RERERERE9ZJEKnFYk2yqWWJiYjB27Fh899132L17Nw4dOoS7d+/i+vXrWL58OeLj4zFv3jyrS8poT7Bu27YNYWFhZu1nbCLY2MS69vlSUlKMXh2vzVBVElvm7OzBHuevKcdwpNLSUowbNw45OTmQy+V4+eWXMXLkSLRu3Rp+fn6ack1XrlxBy5YtAcBo9oa91PT7zRKpqakYNGgQ8vPzoVAo8NNPP5nM/nEWBjSqwblz5zQ/W9pA5bHHHoOrqytKS0uRlJSEN998U3S70tJSHD16VLOPuS/o9YXw5cXUi9qfBXl6y/QyNAyVnLqXDbVabfBFTaVW4fr9e3rL75Q4v5G7vTM0AKCBm4duQEMkQ8NQKSkhgz006tAbCBEREREREdUODRo00PycmZlpsmyMJaquyFaZuABQu/y4IUFBQXj11Vfx6quvQqVS4bfffsPmzZuxdOlS5OXl4V//+hcee+wxjBw50uJxVjWcBir7CVQ1sXYU7fMFBgZaVT5dOwPk1q1bRquc3Lp1y+LjW8LU8bXXazdv1/751q1baN26tcFjaJfbMtQAPicnBxUVFUaDSVVjER6j6rEK2OfxKmbv3r2a/hFxcXE6vSm0VVf2iL+/PzIzM816fFTd/4bu+5rg8uXLePLJJ5GTkwMXFxesX78e/fr1c/awDGJTcAdLS0vD7t27AQAtW7ZE48aNLdrfy8tL8wBKTEzUNJsS+vHHH3HvXuUk+ejRo20Ycd0knPA2VnJKrVbjzwKxDA1BDw0DGRp3S4uRXWy438mtogKUqfRTxO6UGE63rC7CDA1ze1sY00Ch2yRWLKBhKPPC3O0YziAiIiIiIqLq1rlzZ83PBw4csOuxq3qqVjV+NuTixYsWHVcqlaJz585YsGAB9uzZo1m+YcMGne3MvXAwPDxc8/OhQ4csGos17HG+Tp06aX5OTk42uq2p9bay5PzawSLtn3/99Vejxzh27JjoftpKS0uNNtEuLy/Hb7/9JnoM7f6/ubn682lV7ty5Y3a5KCHtPiZ///vfDW6n3WNFjL0uiK26D1JSUlBeLj4/CFSWSPvzzz919qlpMjIy0L9/f2RmZkIqlWL16tVWBTerEwMaNti2bZvRB+2tW7cwZswYlJZWXtk/Y8YMvW0SEhIgkUggkUgQGxsrepw5c+YAqHzxiImJ0auXdvv2bbzxxhsAKqPhhqKU9ZlehoaRbfNKi3QaiFfR76FhuG7dRSN9NMTKTQGVJaeczVEZGtquiGVomJkGaO52RERERERERI72yCOPaK7uX7lyJQoKDF/caKnmzZsDAPLz83HhwgXRbUpLS7Fp0yarz9G5c2dNtoKwgbKb24OSZCUluhd4Co9RlSURHx+P4mL9+RR76t+/v6bfwOeff25VWaG+fftqMhFWr15tcLvk5GSjjZztYdeuXcjMzBRdp1KpNOPz8/PTCaB16dIFvr6+ACpvg6HMiPz8fE2wqn379kZ7vRi7LzZv3qwJVvTv319nnZ+fn2YsxgIK33//vdVloLTnXw1leahUKqxYscLoccx9XJtSdR/k5eXhxx9/NLjd119/rbnNwvutJsjKykL//v2Rnp4OAPjqq68wfvx45w7KDAxo2ODll19GaGgoZs6ciXXr1uHIkSP47bffkJiYiPnz56Njx444efIkAKBnz56IiYmx6jx/+9vf8I9//AMAsHXrVjz55JPYunUrjh8/jlWrVqFbt264evUqAODjjz822jypvtLroWHkBVQsOwMACsp1X+hKDZScAoBLRvpoGApo1IQMjft27qEB6GdolIpkpxgqJaW/naEMDeZoEBERERERUfWSSqV4/fXXAVRe5TxhwgTNRa1CKpUKN27cMPvYffr00fy8ePFi0W1mz56N69evGzzG+vXrjTZGPn78uGaSuiqAUkV74vvy5csGjyGVSjFv3jwAlf0LJkyYYHSi+N69e1i6dKnB9ab4+vripZdeAgAcPnwYs2bNMlrm6NatW1i5cqXOsuDgYM0V6Fu3btXLTgGAgoICTJs2zepxmqukpATTpk0Tbfa8cOFCnDlzBgAwefJkTZ8IAFAoFJoLms+ePYsFCxbo7a9Wq/HSSy9pglVV95shy5Ytw8GDB/WW37x5U3OxtVKpxMSJE/W26d27NwBgy5Ytoo+XCxcu4O233zZ6fmO0ewUnJCSIbjN37lykpKQYPY65j2tTJk2apAmsvfbaa6LPw1OnTuHDDz8EADRu3BijRo2y+nyOkJeXh4EDB2oCpv/3f/+HKVOmOHlU5mEPDRvduHEDX3zxBb744guD24wZMwYrV67UeeGx1DfffIN79+5hx44d2LdvH/bt26ezXiqV4u2338bUqVOtPkd9Ymz63FBA4355GVRqFaSSyjigoZJTAHDxruUZGnW1h0aAm9LkNiqzS04Z6qFh0ZCIiIiIiIiI7CImJgbbtm3D7t27sXnzZnTq1AkzZsxAREQElEolbt68iaNHj2LdunUYP368weocQuHh4ejevTuOHDmCFStWoLS0FBMnToSPjw8uXbqE+Ph47N27F0888QQOHz4seow33ngDL774IkaOHInevXujdevW8PDwQE5ODg4ePKiZy5LJZHrVPpo1a4YmTZogIyMDn376KZo0aYI2bdpoMhsaNmyoKTX04osvam7/xo0bkZKSgmnTpqFr167w8fHBvXv3cP78eezfvx9bt26Fm5ubycl1Y95//30kJSXh119/xZIlS7B//35MmTIFjz76KDw8PJCbm4vU1FQkJiZi586d6NSpk97tW7x4MXbv3o38/HyMHz8eSUlJiIqKgre3N06fPo2FCxfi4sWLiIiIMFnGyBYRERHYtm0bevTogVmzZqFVq1bIysrC6tWr8f333wOobGguFgx455138OOPP+LKlSuIjY3FmTNnMGnSJAQHByMtLQ1Lly7F/v37AQDdu3c3OmcYGBgIpVKJJ598ErNmzcKQIUOgUChw7NgxfPjhh5pg3IIFC0Qbus+YMQNbt25FUVERIiMjERsbi/DwcBQUFGDPnj1YsmQJAgMDIZPJkJ1t+CJgQwYOHIigoCBkZWVh/vz5SE9Px+jRo9GgQQP88ccfWLFiBfbs2YMePXoYLUX2xBNPaH6eNWsW3nrrLQQHB2tKUYWFhcHFxfR0eWBgIBYtWoSYmBhkZGSgS5cuePPNN/HEE0+gvLwciYmJWLRoEQoKCiCRSBAfH1+j+h2XlJRg6NChmjJizzzzDPr37280I8nDw0Mv8OksDGjYYPXq1UhKSsKRI0dw5coV3L59G/fu3YOnpyeaNm2KJ554AhMnTkT37t1tPpe7uzu2b9+O7777DgkJCTh16hTy8vLQsGFD9OrVCy+99JJdzlNXWTLh/Weh4Xp/98vL4CmvDEyViGQaVLloRYZGjSg5JczQsEfJKUGGhhhmaBAREREREVFtJJVK8dNPP2HixIn44YcfcPHiRbz66qt2OfY333yDPn36aCa4hSWB5syZgw4dOhgMaACVV2GL7VtFoVDgq6++QkREhN66efPmYcaMGUhLS9Orqb9q1SpER0cDqOxLsH79erzyyiv46quvcPnyZfzzn/80OCaxCXFLKBQK7N69G9HR0fjxxx9x6tQpowESb29vvWVhYWHYunUrRowYgfz8fMTFxSEuLk5nm3feeQcSicShAY2YmBgkJSUhISFBU51FW3BwMP73v//Bx8dHb52Xlxf27NmDwYMH4/z589i0aZNoCbIePXpg69atRht+K5VK/PDDDxg8eDA++ugjfPTRR3rbzJw5E7Nnzxbdf+DAgZg5cyY+//xzZGRkiAbItm7disGDBxscgzEeHh5Ys2YNRo0aheLiYixfvhzLly/X2SYyMhJLly412qvioYcewrhx47Bhwwbs2rULu3bt0lmflpaGsLAws8Y0Y8YM5OXl4e2338atW7cwa9YsvW0UCgXi4+MxZMgQs45ZXTIzM3VeN9auXYu1a9ca3adPnz6aAJmzMaBhgz59+uikAFojOjpa8wZgjvHjx9eKWmY1jSUlp9INZGgAlX00NAENoxkatbPklF6Ghj1KTrmZDmiY2xvD3ObhRERERERERNVFqVRi48aN2LdvH1atWoWDBw/i5s2bqKioQMOGDfHoo49i2LBhePrppy06btu2bZGSkoJ//etf2LFjBzIzM+Hj44MuXbrg5ZdfxpAhQwyW3wGAffv2Ydu2bThw4AAuXryImzdvIjc3F0qlEi1btkS/fv0wffp0tGjRQnT/6dOno2HDhli+fDl+++033Llzx2AvWblcjri4OEyfPh0rVqzA/v37cfXqVRQUFMDT0xPNmzdHly5dMHjwYAwbNsyi+0GMl5cXNm3ahIMHD2L16tX45ZdfcOPGDRQVFcHb2xstW7ZE165dMXToUAwYMED0GJGRkUhNTcVHH32kuX/9/PwQERGBl19+GQMHDjQ7o8YWq1atwoABAxAfH48zZ86goKAAoaGhGDVqFN58802jpeXDwsJw6tQprFixAhs3bsTZs2dx7949+Pv7Izw8HM888wzGjx8PqdR014GIiAikpKTg008/xfbt23H9+nV4eHjgsccew8yZM00GI5YsWYJu3brhq6++wm+//YaysjI0a9YMo0ePxpw5cxAQEGDxfaNt4MCBOH78OBYuXIi9e/ciOzsbvr6+aN++PZ555hk8//zzmpL8xnz77beIiIjADz/8gAsXLiA/P99o2TJj5s2bh2HDhmHp0qXYu3cvbty4AalUimbNmmHAgAF49dVXzQ6QkPkkamu7sVC9k5GRoWl2de3aNU3Tp9qg0ffv4VZRvub3xIHT0C+klei2Y/auxo9/nhFddzlqLlp4Vb4Af3pmP14//l/R7dxkLih87kNNeSpt3f/7BY5m/6m3vF9wKyQOcnx9RmNmHNmEZeePaH6f3rY74rqPsemYO679jqGJXxvd5n8DpmBA4zYmjzX72Fb8X+oBveUTWnbB6t6WfTAkIiIiIiKqqaz9/n3p0iWUl5fDxcVFp+Y8EdUc6enpmtI92pkuzhAdHY3Vq1cjNDRU0xiayJ4c8b7EpuBULwgLEqmNdNEw1EMDAArKHjS2KjHSFLy4ohwZhXdF19XoDA0HlJwyp4eGuZkXhjI5JGyiQUREREREREREVOcxoEH1gn7JKcPbGgtoFJaXan42VnIKEO+jUa6qQGbRPdHta0IPjftO6qFha8kphjOIiIiIiIiIiIjqPgY0qF4QXsBvKEOjsKwEt40EFgrKLAhoiPTRuHH/nsHJ+zslRUaPVx2c1UPD1qbgREREREREREREVPexKTjVS4amz/8sNJydAQgyNFQVRre9eO+23jJD5aYAoKC8BKUV5XCVOe9pqRfQsEOGhrfcDS4SKcqNBCPMztBQseQUERERERERETlPWloaCgstr7Lh5+eHxo0bO2BEVN8UFhYiLS3Nqn3btGkDudz2+T5nYkCD6gX9klPiE+PGyk0BlUGHKqYyNC6JlJwyFtAAKvtoNFJ6G93GkYQ9NJR2yNCQSCRo4OaBm1pN2YXMzbwwXHKKAQ0iIiIiIiIicrxJkyYhKSnJ4v0mTpyIhIQE+w+I6p3k5GT07dvXqn3T0tIQFhZm3wFVM5aconrB3KbgpgIahdolpwRNwYPcPHV+v3jXsgwNALhT6tzG4I7I0ACAAIXxxuDsoUFERERERERE9UFYWBjUajXUajWio6OdOpaEhASo1Wqkp6c7dRxElmCGBtULwpJEhubP023I0OjkF4w9mZc0v6cV3NErIXWt8K7R4zu7j4ZeU3A7ZGgApvtomJuhYW7gg4iIiIiIiIjIEfbv3+/sIVA9FxkZabD6TH3ADA2qF8y9gt9khka54abgHf0a6fxeoVYhreCOzjJTGRo5xZbXYLQnR2VoNFAYD2iYn6HBHhpERERERERERET1FQMaVC/oZWhYWXKqwEjJqYbunggUZCJcEjQGr/Elp5yWocGSU0RERERERERERGQcAxpUL+j30BD3Z6FuQCNE0KBbN0OjQmedQuqC1t6BOssu3tVtDC4MaMgkuk/BOyV1s4eG6QwNNgUnIiIiIiIiIiIi4xjQoHpBOOEtVmeupKIcN+7f01nWwVe3jFRBmeEeGgqZC1r7CAIa97J1ts8qLtBZ31awvbN7aAgzNJQurnY5boDdMjTqb31AIiIiIiIiIiKi+o4BDaqXxKbFxcpBtfdtqPO7ToaGSj+g0cq7gc4y7QyNDJHjP+IfovN7TonzemiUqSpQLsiAqK4MDVubgrOFBhERERERERERUd3HgAbVC3o9NEQmxoX9M7zlbmgsKDlVYKQpuGjJKa0eGsKAiZdcgeae/jrLnFlySpidAQDuLi52OXYDN6XR9eY3BWfJKSIiIiIiIiIiovqKAQ2qF8zpoSEMaIR5+sFTrtBZVmgsoCGT6QU0rt+/i8K/ylRdK7yrs66phy/8FboT/c4sOSXsnwHUvAwNgwENxjOIiIiIiIiIiIjqPAY0qF7Q66EhEtJIL7ij83uopx88BD0kdHpoqPSbgj8kKDkFAH/k5wDQz9Bo6uGLAEFAw5klp8QzNOwU0DDRQ8P8DA320CAiIiIiIiIiIqqv7FNPhqiGE17Bf7e0GNmCBt2XtMpDAeIBjXtlJZr9hAEAhcwF7i5yNPXw1QlenLidgRClN/7I1z2+WIZGdnGh3riM3i5IEKBQ6pXUskRpRTnulhXrNUQH7JehEWAiQ+Numf7fQ0yxSBYJwJJTRERERERERERE9QEDGlQvCCe8Jx1cb3KfUA/9klNX8nMQtC5WdHuFrPLp1No7UCeg8fyhDcAh/e2bevjoBTSu379r8PiGhCi98UPfCegeFGbRfgDwf6kHMD9lJ+6LZGfIpTK4SGUWH1OMl+B+FJqf8jPmp/xs9fEZziAiIiIiIiIiIqr7WHKK6gVrEhjCvPQzNIxRSP8KaPjol50SU1lyynjmgjlu3L+H15P/a/F+d0ruY07yNtFgBmC/7AxAvym7vTn6+EREREREREREROR8DGhQvdDCM8DifR71b4xW3g3MLmfU0rvyHF0bNDP7+KGeflDaoU/FxXvZFu+Tln/HaO8KcwMzNUELL8v/vkRERERERERERFS7MKBB9cJHEUMQ5uln1rYKmQvefqQ/HvJugIbuXvioy2Cj2QruMjk+6jIEDd29AAB/b/4oRjbrYDAQIpfK8Gr7XnjUPwTuLnJ8/vgoeLoYL8lkiqEsC2NKKsoNrmvk7oXPHhthy5CqTb/gVpjc6jFnD4OIiIiIiIiIiIgcjD00qF54xD8EV6Lm4U7JfahgOCsBALxcFHDTypp44+G/YVaH3rhbViy6vY/cDa6yB08ldxc5fuo3CfllxSgWCRp4uijgrnX851s/jgkPRSCvtMjs2/N73i302blM8/v98jKo1WqLSi+VqHTH5q9Q4vxT/wQANFB4OLyM0+DGbbG2z3iUq1UW76uUyVGiqoCLRApvVzcHjI6IiIiIiIjIcdLT09G8eXMAwKpVqxAdHe3cAZGo2NhYvPfeewAAtZEqF2S7/fv3o2/fvgCAffv2ITIy0qnjiY6OxurVqxEaGor09HSnjoV0MaBB9YZEIkGAm3U9K1xlLgiUeVq0j5fcDV5mVpOSS2UIdDP/+HeVusEVNdQoqSjXCcSYIszQcJfJLRqDPfgJmqJbwvbuI0RERERERERERPVPVlYWdu7cieTkZKSkpCAzMxO3b99GaWkp/P398fDDD2PUqFGYMGECPDxq1iwcS04R1UJifTfuV1hWdkoY0FDIqje+qTaRKUNEREREREREzrF//35IJBJIJBLs37/f2cMhsovY2FjN47q+27p1K6Kjo/Hll1/iyJEjSE9PR0FBAUpLS3Hz5k3s2rULM2bMQIcOHXDixAlnD1cHMzSIaiGlzFVvWVF5GWBBKw5hOSyFVGbrsIiIiIiIiIiIiGq9hIQEJCQkOHsYDiORSNCqVStERkYiPDwcjRs3RnBwMIqLi/Hnn3/i22+/xf/+9z/8+eefePLJJ3H27FmEhIQ4e9gAGNAgqpVEMzTKSy06hrCHhpuRxudERERERERERERUN0ycOBHPP/+86LpevXrh2Wefxb///W/MmjULubm5+PTTT/HZZ59V8yjFseQUUS0kl8ogk+g+fWtbySkiIiIiIiIiIiKqfi4upucBX3rpJXh6Vvbb/eWXXxw9JLMxoEFUC0kkErgLMiosztDQC2hUb8kpdtAgIiIiIiKiuuTQoUN44YUX0KZNG3h7e8PV1RVNmjTBsGHD8OWXXyIvL8/sY0VHR0MikSAsLMzodgkJCZqeAOnp6aLb7N27F08//TSaN28Od3d3KJVKhIaGolu3bpgzZw727t2r2TY9PR0SiQR9+/bVLOvbt6/mHFX/DJXi2bdvHyZOnIgWLVpAqVTC29sbnTp1wuuvv44bN24YvB3C3gZ3797FggULEB4eDl9fX4Pn/OmnnzB27Fg0a9YMbm5u8PX1RUREBN577z3k5uYave8AICMjAzExMWjRogXc3NwQEhKCESNGIDEx0eS+1qq6j7Vv08aNG9G/f38EBQXB3d0dbdu2xdy5c816zJSWliIuLg59+/ZFYGAgXF1d0ahRIwwZMgTffvstVCqVwX2Fj7Pr169j9uzZaN26NZRKJQIDAzF06FD8/PPPFt0eQ8LCwiCRSBAdHW3ydok5evQo5s+fj8jISDRq1Aiurq7w9vZG+/btMX36dJw7d050v6rnyXvvvadZJnxMC59D5j4Hz5w5g6lTp6JVq1ZQKpXw8vJChw4dMGvWLIPPSUD8ftu9ezeGDx+ORo0aQaFQoHnz5pg+fToyMjLMvYvsysXFBW5ubgCA4uJip4xBDC/JJqqllC5yFJSXaH6/X25hhoZK2EODLwdERERERERElioqKsLzzz+PdevW6a27fv06rl+/ju3btyM7OxuxsbHVOrZZs2bh3//+t97yq1ev4urVq/j111+RkJCA27dv23Se4uJiTJo0Cd9//73eurNnz+Ls2bNYtmwZ1q1bh+HDhxs91qVLlzBgwACjk8G5ubmIiorSCcYAQElJCU6cOIETJ04gLi4OW7ZsQbdu3USP8csvv2DYsGG4d++eZllmZia2bduGbdu2Vdvf6vnnn8c333yjs+zChQtYuHAh1qxZgz179qBt27ai+6anp2Pw4ME4f/68zvJbt25h586d2LlzJ5YvX44tW7bA39/f6DiOHz+OoUOHIisrS7OsqKgIO3bswI4dOzB79mwsXrzYyltpu4SEBEyaNElveVlZGX7//Xf8/vvvWLFiBT7//HPMmDGjWsb00UcfYf78+XpBo3PnzuHcuXNYtmwZ4uPjMWHCBJPHmjt3LhYuXKizLD09HV999RU2bdqEpKQktGvXzq7jN2XPnj2a1wZDj0Fn4AwmUS0l7KNheYZGhc7vLDlFRERERERUP6jV6hp1ta2jubm5aa78tzeVSoWRI0di9+7dAIBWrVphxowZiIiIgFKpRGZmJg4fPowNGzY45PzG/Pe//9UEMx5++GFMnz4d7dq1g4+PD/Ly8pCamorExEQcO3ZMs0/jxo1x5swZJCcnY/LkyQCAb775Bo899pjOsZs0aaL5Wa1WIyoqCtu3bwcADB8+HOPGjUOLFi0glUpx7NgxLF68GFevXkVUVBQOHTqEiIgIg+OOiorC9evX8fLLL2PEiBHw8/PDpUuXEBoaCqAyaNG/f3+kpKRAJpNh/PjxGDJkCJo3b46ysjIcOHAAn332GbKysjBkyBCcPHlSs2+Vq1evaoIZUqkUU6dORVRUFHx8fHD69GksXLgQsbGxRsdpD3FxcUhOTkbXrl0xa9YstGrVCllZWUhISMCGDRtw48YNDBw4EGfPnoWXl5fOvgUFBejXrx+uXLkCABg1ahQmT56MkJAQpKWlYenSpUhKSsLBgwcxfPhwHDhwADID1Tnu37+PsWPH4u7du3jzzTcxZMgQKBQK/Prrr/joo4+QmZmJzz77DM2aNcMrr7zi0PvEkPLycvj5+WHkyJHo3bs3WrVqBQ8PD9y4cQMpKSn4/PPPcfv2bbz00kto27Yt/va3v2n2HTVqFCIiIhAXF4dly5YBqMysEGrcuLHZ44mLi8O8efMAAIGBgXjjjTfQo0cPVFRUIDExEYsWLUJhYSGio6PRoEEDDBkyxOCxVqxYgcOHD6NPnz6YNm0aWrdujby8PKxZswZr1qxBdnY2Jk+ejCNHjpg9Pmvl5+fj2rVr2LBhg07PDGf93cVwBpOollK6uOr8XmRpDw1hhgYDGkRERERERPVCcXEx/vOf/zh7GNXmueeeg7u7u0OOvXTpUk0wY/To0Vi3bh0UCoXONkOHDsWCBQuQmZnpkDEYUhVECQ0NxaFDhzS18KtERkYiJiYGd+7c0SyTy+Xo2LGjTsZG8+bN0bFjR4PnWblyJbZv3w65XI6tW7di0KBBOuu7deuG5557Dr169UJqaipeffVVHDx40ODxzp49i507d2LAgAGaZV26dNH8/P777yMlJQW+vr5ITEzUWQcAPXv2xDPPPIPu3bsjMzMT8+bNw9q1a3W2ee211zSZGd9++y2efvppzbqIiAiMHTsWvXr1wvHjxw2O0x6Sk5MxZMgQbNmyRaenweDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOsHXfv36wdXVFStXrsTRo0dx8uRJhIeHWz1uQ2JjY3XKcWmTyWRYsmQJevbsaffzWos9NIhqKf0MDRubgrPkFBEREREREZHZVCoVFi1aBKAyY2HNmjV6wYwqUqnUoqu/7eHmzZsAgM6dO+sFM7SZKkVkjFqtxscffwwAmDlzpl4wo4qfn5/mvjp06BAuXbpk8JjR0dE6wQxtBQUF+PLLLwEACxYs0AtmVAkNDcXbb78NoLI/RWFhoWbdzZs3sXnzZgDAsGHDdIIZVby8vBAfH29wjPaiUCiwYsUK0QbNb731lmbS/euvv0Zp6YPKHCUlJVi5ciUAoEOHDqLlsSQSCeLi4hAQEACgMvhmzLRp03SCGVVCQkI0paYKCwuxevVq826cnTVu3FgvmKHNx8cH77//PgDg4MGDyMnJcdhYVq1ahfv37wMAPvvsM51gRpXw8HDMnTsXQGXpuZ9++sng8YKDg/HFF1+IZpLNmTNH83N1N+bu168fzp49i5iYmGo9rykMaBDVUkqZboaG7U3BqzegoVazLTgRERERERHVXr/99pumWe+UKVOMBg2cITg4GABw4MABXL582SHnOHfunObYUVFRRrfVniw3VjrnmWeeMbguKSkJd+/eteh8ZWVlOHHihGb5vn37UPFXGW6xngxVunbtig4dOhg9h60GDBiAkJAQ0XVSqRQTJ04EANy5cwcpKSmadSdOnNA0DI+OjjZYSsrb2xvjxo0DUPm3MpYlZOy+GD16NHx9fQHAoQ3TLVFYWIj09HSkpqZq+rRoZ0CcOnXKYeeuug98fX3x1FNPGdzuhRde0NtHTFRUlMFgaJs2bTSvLVUZOfY2Y8YMnDlzBmfOnMHRo0exatUq9O3bF3v27MHf//53/Prrrw45r7UY0CCqpdxtzNAo1gtoiL/5EREREREREZG+kydPan7u1auXE0cirqoRcU5ODjp27Ih//OMfWLVqFf744w+7nUO7JFP37t0hkUgM/tMO+FRlj4h5+OGHzTpfcHCw0fNplxTSPp927wRhbxChrl27Gl1vK0vOrz3us2fPan5+/PHHjR5De732ftpcXV3xyCOPGDyGXC7XlDoS6z1RXW7fvo158+ahTZs28PLy0pRD69SpEzp16oShQ4fqbOsoVfdj586dDZaRAoCGDRsiLCxMZx8xphpu+/n5Aajsb+EIQUFB6NixIzp27IjHH38c0dHR2Lt3Lz744AOcPn0akZGR2LVrl0PObQ3WmCGqpZQyQUCjwsIMDUEPDTeZ4RdgIiIiIiIiqjvc3Nzw3HPPOXsY1cbNzc0hx9WeMK3KhqhJ+vXrh6VLl+L1119HUVER1q9fj/Xr1wOoLN8zbNgwTJ8+3ehEtilZWVlW7VdVrkdM1eSto86n3TNEu6eCmIYNG1p1PnNZcn7tcVtyGxo1aiS6nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUVFFRkcPGUnUfmLrvgcr7Pz093ej9ZqyUFlCZrQNAk1lUXd566y1s3boVx44dw5QpU3D58mXR8mjVzfkjICKr6DUFLy83sKU49tAgIiIiIiKqnyQSicOaZFPNEhMTg7Fjx+K7777D7t27cejQIdy9exfXr1/H8uXLER8fj3nz5uGDDz6w6vjaE6zbtm3TXI1uirGJYGMT69rnS0lJMXp1vLYmTZqILhfrWVCd7HH+mnIMRyotLcW4ceOQk5MDuVyOl19+GSNHjkTr1q3h5+enKdd05coVtGzZEkD1lDqv6febPYwcORLHjh3D1atXcezYMTzxxBPOHhIDGkS1lX5TcFt7aFRvySl20CAiIiIiIqLarEGDBpqfMzMzTZaNsUTVFdkqlcrodtrNrg0JCgrCq6++ildffRUqlQq//fYbNm/ejKVLlyIvLw//+te/8Nhjj2HkyJEWj7Oq4TRQ2U9Au8yTI2ifLzAw0GCgwhjtDJBbt26JNnTWXu9Ipo6vvV67ebv2z7du3ULr1q0NHkO73JahBvA5OTmoqKgwGkyqGovwGFWPVcA+j1cxe/fu1fSPiIuL0+lNoa26skf8/f2RmZlp1uOj6v43dN/XdIGBgZqf//zzzxoR0GAPDaJaSpihcb/Csh4awpJT1d0UnIiIiIiIiKg269y5s+bnAwcO2PXYXl5eAKBp/GzIxYsXLTquVCpF586dsWDBAuzZs0ezfMOGDTrbmXvleVVfBQA4dOiQRWOxhj3O16lTJ83PycnJRrc1td5WlpxfO1ik/bOphs3Hjh0T3U9baWmp0Sba5eXl+O2330SPUfVYBYDc3FyDx7hz547Z5aKEUlNTNT///e9/N7iddo8VMfbKqKi6D1JSUlBupGJKVlYW/vzzT519apvr169rftbug+NMDGgQ1VK2Z2jo1t2r7pJTauZoEBERERERUS32yCOPaK7uX7lyJQoKCux27ObNmwOobAJ84cIF0W1KS0uxadMmq8/RuXNnTbaCsIGydt+RkpISo8eoypKIj49HcXGx1eMxR//+/TX9Bj7//HOrygr17dtXk4mwevVqg9slJycbbeRsD7t27UJmZqboOpVKpRmfn5+fTgCtS5cu8PX1BVB5GwxlRuTn52uCVe3btzfa68XYfbF582ZNsKJ///466/z8/DRjMRZQ+P77760uA6UdNDCU5aFSqbBixQqjxzH3cW1K1X2Ql5eHH3/80eB2X3/9teY2C++32kClUum8xmgHA52JAQ2iWspd2BS83MIMDb2SU8zQICIiIiIiIjKXVCrF66+/DgDIyMjAhAkTUFoqfrGhSqXCjRs3zD52nz59ND8vXrxYdJvZs2frXD0ttH79eqONkY8fP66ZpK4KoFTRnvi+fPmywWNIpVLMmzcPQGX/ggkTJhidKL537x6WLl1qcL0pvr6+eOmllwAAhw8fxqxZs4yWObp16xZWrlypsyw4OFhTXmvr1q162SkAUFBQgGnTplk9TnOVlJRg2rRpos2eFy5ciDNnzgAAJk+erOkTAQAKhUJTduns2bNYsGCB3v5qtRovvfSSJlhVdb8ZsmzZMhw8eFBv+c2bNzFnzhwAlc2rJ06cqLdN7969AQBbtmwRfbxcuHABb7/9ttHzG9OqVSvNzwkJCaLbzJ07FykpKUaPY+7j2pRJkyZpAmuvvfaa6PPw1KlT+PDDDwEAjRs3xqhRo6w+nyOsWLHCaJNxlUqF1157TRPU69Wrl9k9chyNM5hEtZTNGRpOLjklQd1vnERERERERER1W0xMDLZt24bdu3dj8+bN6NSpE2bMmIGIiAgolUrcvHkTR48exbp16zB+/HjExsaaddzw8HB0794dR44cwYoVK1BaWoqJEyfCx8cHly5dQnx8PPbu3YsnnngChw8fFj3GG2+8gRdffBEjR45E79690bp1a3h4eCAnJwcHDx7EF198AaCyCbewJ0GzZs3QpEkTZGRk4NNPP0WTJk3Qpk0bTWZDw4YNNaWGXnzxRc3t37hxI1JSUjBt2jR07doVPj4+uHfvHs6fP4/9+/dj69atcHNzMzm5bsz777+PpKQk/Prrr1iyZAn279+PKVOm4NFHH4WHhwdyc3ORmpqKxMRE7Ny5E506ddK7fYsXL8bu3buRn5+P8ePHIykpCVFRUfD29sbp06excOFCXLx4ERERESbLGNkiIiIC27ZtQ48ePTBr1iy0atUKWVlZWL16Nb7//nsAlQ3NxYIB77zzDn788UdcuXIFsbGxOHPmDCZNmoTg4GCkpaVh6dKl2L9/PwCge/fumDp1qsFxBAYGQqlU4sknn8SsWbMwZMgQKBQKHDt2DB9++KEmGLdgwQLRhu4zZszA1q1bUVRUhMjISMTGxiI8PBwFBQXYs2cPlixZgsDAQMhkMmRnZ1t8Pw0cOBBBQUHIysrC/PnzkZ6ejtGjR6NBgwb4448/sGLFCuzZswc9evQwWopMu//DrFmz8NZbbyE4OFhTiiosLAwuLqbnxwIDA7Fo0SLExMQgIyMDXbp0wZtvvoknnngC5eXlSExMxKJFi1BQUACJRIL4+HizG9hXl6lTp+K9995DVFQUunXrhtDQUCiVSuTm5uLkyZNISEjA6dOnAQDe3t748ssvnTxiLWoiM127dk2Nyl7O6mvXrjl7OPVe3O+H1PjmNc2/XtuXWrT/oz8t1tl/zaXjDhppJe1z4ZvX1P1//sqh5yMiIiIiIqqtrP3+ffHiRfW5c+fUFy9edODoSKiwsFAdFRWl+ZsZ+vfuu+9q9klLS9MsX7Vqlehxf//9d3VQUJDB482ZM0e9atUqze9paWk6+4eGhpock0KhMHj+uLg4g/sJ9yktLVVPnz5dLZFITJ6zefPmeud69913NevNce/ePfVTTz1l8lwA1H379hU9xr59+9ReXl4G93vnnXcsHpc5hH/76Ohog2MIDg5Wp6amGj1W27Ztjd7+Hj16qHNyckT3nzhxohqAOjQ0VJ2cnKxu0KCBwePMnDnT6O2aOXOmwX2bNWumPnfunOYxOXHiRL399+3bp9l+3759eut//vlntZubm8FzREZGqs+ePWvyeTVu3DiDx9B+DmnfN4b861//UkulUqPPr9WrV4vua85rQBVj95u1zHnuAFC3a9dOfeLECavP44j3JZacIqqllDaWnCrWKzkls3lMRERERERERPWNUqnExo0bsXfvXjz33HNo3rw53N3d4erqiqZNm2L48OFYvnw5XnvtNYuO27ZtW6SkpGD69OkIDQ2Fq6srAgMDMWjQIGzfvh2LFi0yuv++ffuwZMkSjBkzBp06dUJgYCBcXFzg7e2N8PBwzJkzB+fOnUN0dLTo/tOnT8emTZswYMAABAUFGb1yXS6XIy4uDqdOncLLL7+MTp06wcfHBzKZDD4+Pnj00Ufx/PPP44cffsDvv/9u0f0gxsvLC5s2bcIvv/yCF154AW3atIGXlxdcXFzg7++Pxx57DDExMdixYwd2794teozIyEikpqbq3L8NGzbE0KFD8fPPP+O9996zeZzmWLVqFb777jtERkYiICAACoUCrVu3xj//+U+kpqaiffv2BvcNCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4eJg8zrfffotPPvlEk0EklVo/PT5v3jycPHkSU6ZMQcuWLeHu7g4PDw+0a9cOr7zyCs6fP48JEyZYfXxHOnHiBD744AMMGzYMHTp0QIMGDTSvD23btsX48eOxceNGnDp1Sqd/S00g+SsiQ2RSRkaGptnVtWvXNE2fyDk2pp3CuP3/0fzezicI5576p9n7t9j4IdIK7mh+39JvEkY062DXMWqTrJqj83u/4FZIHOT4epRERERERES1jbXfvy9duoTy8nK4uLjo1JwnopojPT1d07Nk1apVBgNK1SE6OhqrV69GaGgo0tPTnTYOqrsc8b7EDA2iWspd2EOjwsKm4E7uoUFERERERERERERkCQY0iGop/ZJTFjYFF5ackrLkFBEREREREREREdVcDGgQ1VJKF1ed3y3toVFSUaHzOzM0iIiIiIiIiIiIqCbjDCZRLaUUlJwqqiiDWq2GRCIxa3+9klPS6n05UIPte4iIiIiIiIiodklLS0NhYaHF+/n5+aFx48YOGBHVN4WFhUhLS7Nq3zZt2kAul5vesAZjQIOolhJmaKjUaijWvAnzwhlAmYoZGkRERERERERElpg0aRKSkpIs3m/ixIlISEiw/4Co3klOTkbfvn2t2jctLQ1hYWH2HVA14wwmUS0lzNAA9IMUlmBAg4iIiIiIiIjIscLCwqBW14yqFQkJCQyyUK3DGUyiWipA4QEPF1cUWtgMXIxcKkMjdy87jMqw3g1b4MCtK5rf53Ts49DzERERERERERHZ2/79+509BKrnIiMja0xQzBnYFJyollLIXPB++EBIzC4yZdjbj/SHp1xhh1EZtuixYZqgyehmHTEgpI1Dz0dERERERERERER1CzM0iGqx2R37YOJDEfizINfqYzT19EWgm6cdRyWua2Az/DHmTeSXlaChu5fZzcuJiIiIiIiIiIiIAAY0iGq9ADcPBLh5OHsYZvGQK+Dh4EwQIiIiIiIiIiIiqptYcoqIiIiIiIiIiIiIiGo8BjSIiIiIiIiIiIiIiKjGY0DDRsePH8f777+PAQMGoEmTJlAoFPD09ETr1q0xadIkHDx40C7niY2NhUQiMevf/v377XJOIiIiIiIiIqo9ZDIZAKC8vBwVFRVOHg0REdVnKpVK815U9f5kD+yhYYPevXvjl19+0VteWlqKS5cu4dKlS0hISMCECROwYsUKuLq6OmGURERERERERFQfKJVKlJSUAADy8vIQEBDg5BEREVF9VVBQALVaDQBwd3e323EZ0LDBjRs3AAAhISEYO3YsevXqhWbNmqGiogJHjhzB4sWLcf36daxZswZlZWX47rvv7HLeM2fOGF3fvHlzu5yHiIiIiIiIiGoPX19f5ObmAgCysrJQUVEBb29vKBQKSCQSJ4+OiIjqA5VKhYKCAty8eVOzzMvLy27HZ0DDBm3btsWHH36IMWPG6KXNdOvWDc899xx69OiBixcvYt26dXjxxRfRu3dvm8/bsWNHm49BRERERERERHWLm5sbfHx8cPfuXQBATk4OcnJyIJFI7Frug4iIyJCKigpNZgZQmZ3h4eFht+MzoGGD//73v0bXN2jQAIsXL8bw4cMBAD/88INdAhpERERERERERGKCg4Ph6uqK7OxszTK1Wo3y8nInjoqIiOojd3d3NGvWzK5ZggxoOFjfvn01P1++fNmJIyEiIiIiIiKiuk4ikaBBgwbw9vZGQUEBCgsLUVpaCpVK5eyhERFRPSCTyeDu7g4vLy94eHjYveQhAxoOVtWMC7BvN3ciIiIiIiIiIkNcXV3h7+8Pf39/Zw+FiIjIbqTOHkBdl5SUpPm5Xbt2djnmgAEDEBQUBFdXVwQFBSEyMhILFy7UNP4iIiIiIiIiIiIiIqprmKHhQCqVCgsXLtT8Pm7cOLscd/fu3Zqfs7OzkZSUhKSkJHz88cdISEjAyJEjrTpuRkaG0fWZmZlWHZeIiIiIiIiIiIiIyFYMaDjQ//3f/+HYsWMAgKeeegpdunSx6XidOnXCqFGj0LVrV4SEhKCsrAwXLlzA2rVrsWvXLuTl5WHMmDHYtm0bBg8ebPHxmzZtatP4iIiIiIiIiIiIiIgcRaJWq9XOHkRdlJSUhP79+6O8vBxBQUE4c+YMgoKCrD5eXl4efH19Da5fvnw5XnzxRQBASEgILl++DDc3N4vOYUmDlmvXrqFJkyYWHZ+IiIiIiIiITMvIyNBcdMjv30RERA8wQ8MBUlNTMXr0aJSXl8PNzQ0bN260KZgBwGgwAwCmTZuG5ORkfP3117hx4wY2bdqEZ555xqJzXLt2zej6zMxMdO3a1aJjEhERERERERERERHZAwMadpaWloYBAwYgNzcXMpkM33//PXr37l0t5542bRq+/vprAJUZIpYGNHjFBxERERERERERERHVVFJnD6AuuXHjBvr3748bN25AIpHgm2++sbpBtzXat2+v+fn69evVdl4iIiIiIiIiIiIiIkdjQMNObt++jSeffBJXrlwBAHzxxReYMGFCtY7Bkh4YRERERERERERERES1CQMadnD37l0MHDgQ586dAwAsXLgQMTEx1T6OqvMDlY3BiYiIiIiIiIiIiIjqCgY0bHT//n0MHToUKSkpAIC33noLb7zxhlPGsnz5cs3Pffr0ccoYiIiIiIiIiIiIiIgcgQENG5SWlmL06NE4dOgQAOCVV17BBx98YPFxEhISIJFIIJFIEBsbq7f+zJkz+OOPP4weIz4+HitXrgQANGrUCKNHj7Z4HERERERERERERERENZWLswdQmz399NPYtWsXAOBvf/sbnn/+eZw9e9bg9q6urmjdurXF5zlx4gReeOEF9O3bF4MHD0anTp0QEBCA8vJynD9/HmvXrtWMQyaTIT4+Hh4eHtbdKCIiIiIiIiIiIiKiGogBDRv8+OOPmp/37t2Lhx9+2Oj2oaGhSE9Pt+pcFRUVSExMRGJiosFtAgIC8PXXX2P48OFWnYOIiIiIiIiIiIiIqKZiQKMWGDJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7e3s4RIRERERERERERER2Z1ErVarnT0Iqh0yMjLQtGlTAMC1a9fQpEkTJ4+IiIiIiIiIqO7h928iIiJxbApOREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERET/3969R3ld1/kDfw4MMDDAQUELAvOCI2pmrMDq4l2jU1hEF9tuXgJ1rVhsXXUt827mWnnh7K5bYOa2kdlFS+P8CkVEEBFl21QQL2AqEiCgyG0Y+P7+4PBdxhmYGZhhvjM8HufMOZ/5ft6f9/v91Zee73yfn/f7AwCUvPLWngAAAABAU9W880re+Z9rsnnNy42+puKgz6Vy0IUtOCsAoCUJNAAAAIA2Z9VDo1Kz6k9NuqZTnyEtNBsAYE+w5RQAAADQpmzZuKrJYQYA0PYJNAAAAIA2pVCztrWnAAC0AltOAQAAAG1KYfP6Oq/1HHZbUtZxp9d12vdDLTQjAGBPEGgAAAAAbUqhZt27XilLt8PHpaysrFXmAwDsGbacAgAAANqUQk3tFRpl5V2FGQCwFxBoAAAAAG1KnS2nOnZtnYkAAHuUQAMAAABoU94daJQJNABgryDQAAAAANqUultOdWulmQAAe5JAAwAAAGhTrNAAgL2TQAMAAABoW94daJQLNABgbyDQAAAAANqUQs26Wr9boQEAeweBBgAAANCm1H2GhkADAPYGAg0AAACgTfEMDQDYOwk0AAAAgDZFoAEAeyeBBgAAANCm1N1yqlsrzQQA2JMEGgAAAECb8u4VGrFCAwD2CgINAAAAoE2ps+WUh4IDwF5BoAEAAAC0KYWadbV+9wwNANg7CDQAAACAtqXOMzQEGgCwNxBoAAAAAG1KnS2nrNAAgL2CQAMAAABoUwQaALB3EmgAAAAAbUrBllMAsFcSaDSjV155JRdffHEGDRqUysrK7Lvvvhk6dGhuvvnmrFu3ruEOGmnKlCkZPXp0+vfvny5duqR///4ZPXp0pkyZ0mxjAAAAQKmqu0KjWyvNBADYk8pbewLtxe9+97t86Utfyttvv118bd26dZk7d27mzp2biRMn5sEHH8zAgQN3eYwtW7bk/PPPz6RJk2q9/vrrr+f111/Pfffdl7Fjx+Y///M/06GDrAoAAID2qU6gYYUGAOwVfOvdDObNm5fPfe5zefvtt9O9e/fccMMNmTVrVh566KGcd955SZKFCxdm5MiRWbNmzS6P861vfasYZgwePDiTJ0/OnDlzMnny5AwePDhJMnHixFxxxRW7/6YAAACgRBVq3rULgmdoAMBeoaxQKBRaexJt3YknnpgZM2akvLw8jz76aI477rha52+++eZceumlSZKrrroqV199dZPHWLhwYY488sjU1NRkyJAhefTRR9O16/99YFu3bl1OOumkzJ07N+Xl5Zk/f/5urQapz2uvvZYBAwYkSV599dX079+/WfsHAACAxnjj7opky8bi773PmJPOfYa24oyal7+/AaB+Vmjspjlz5mTGjBlJkjFjxtQJM5Lk4osvzuGHH54kue2227Jp06Ymj3PrrbempqYmSTJhwoRaYUaSdOvWLRMmTEiS1NTU5JZbbmnyGAAAAFDqCoUttcKMJCmzQgMA9goCjd103333FY/PPffcett06NAhZ511VpJk9erVmTZtWpPGKBQKuf/++5MkgwYNyrHHHltvu2OPPTaHHXZYkuT++++PxTcAAAC0O5s31HlJoAEAewcPBd9Njz32WJKksrIyxxxzzA7bnXTSScXjmTNnZsSIEY0eY9GiRVmyZEmdfnY0zvPPP5/XX389ixcvzkEHHdTocdqb6g0b8+pLz7T2NAAAAGhGhZq1eXv9YbVeW/vSyynrvLrBawcc8oF0rujSQjMDAFqaQGM3zZ8/P0kycODAlJfv+B/noEGD6lzTWM8991y9/TRmnKYEGq+99tpOz7/xxhuN7qsULJr735n+XE1rTwMAAIDm1vGfav/+5KIkixq87LQkhxy545sRAYDSJtDYDRs2bMiKFSuSpMEHdO2zzz6prKzM2rVr8+qrrzZpnO2DhobG2fbQsCRNHmf7a9uDzWuXJNm/tacBAAAAAEAz8AyN3bBmzZricffu3RtsX1lZmSR55513WmycbWPsyjgAAAAAAFCqrNDYDRs2/N+DyDp37txg+y5dtu7TuX79+hYbZ9sYuzJOQys63njjjQwbNqxJfQIAAAAAQHMQaOyGioqK4nF1dXWD7Tdu3Jgk6dq1a4uNs22MXRmnoe2s2poDjjguf7fp/7X2NAAAAGghHbv2Taf3DE9ZWcdGtR9wyAdaeEYAQEsSaOyGHj16FI8bs73T2rVrkzRue6pdHWfbGLsyTnvTfcBp+cCA01p7GgAAAAAANAPP0NgNFRUV6d27d5LaD+6uz6pVq4phQ1Mfvr39yomGxtl+26j29pBvAAAAAAD2XgKN3XTEEUckSV588cXU1NTssN2CBQuKx4cffvgujfHufpp7HAAAAAAAKFUCjd10/PHHJ9m61dNTTz21w3bTp08vHg8fPrxJYxx00EHp169fnX7q8+ijjyZJ3ve+9+XAAw9s0jgAAAAAAFCqBBq76ZOf/GTx+Mc//nG9bbZs2ZK77747SdKrV6+ccsopTRqjrKwso0aNSrJ1Bcbs2bPrbTd79uziCo1Ro0alrKysSeMAAAAAAECpEmjspmHDhuWEE05IkkyaNCmPP/54nTbf//73M3/+/CTJ+PHj06lTp1rnH3nkkZSVlaWsrCznnHNOveNcdNFF6dixY5Jk3LhxWb9+fa3z69evz7hx45Ik5eXlueiii3bnbQEAAAAAQEkRaDSD2267LV27dk1NTU1GjBiRG2+8MbNnz860adNywQUX5NJLL02SVFVV5eKLL96lMaqqqnLJJZckSebOnZvhw4fnnnvuydy5c3PPPfdk+PDhmTt3bpLkkksuyaGHHto8bw4AAAAAAEpAeWtPoD0YPHhw7rnnnnzpS1/K22+/nW9+85t12lRVVeXBBx9Mjx49dnmcG264IcuWLcudd96ZefPm5e///u/rtBkzZkyuv/76XR4DAAAAAABKkRUazeTjH/94/vd//zff+MY3UlVVlW7duqVXr14ZMmRIbrrppsybNy8DBw7crTE6dOiQSZMm5cEHH8yoUaPSr1+/dO7cOf369cuoUaPy+9//PhMnTkyHDv61AgAAAADQvpQVCoVCa0+CtuG1117LgAEDkiSvvvpq+vfv38ozAgAAgPbH398AUD+38gMAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACWvvLUnQNtRU1NTPH7jjTdacSYAAADQfm3/N/f2f4sDwN5OoEGjLV++vHg8bNiwVpwJAAAA7B2WL1+eAw88sLWnAQAlwZZTAAAAAABAySsrFAqF1p4EbcOGDRvy5z//OUmy3377pby89Bf4vPHGG8XVJHPmzEnfvn1beUaw69Qz7Yl6pr1R07Qn6pn2pK3Wc01NTXGXhKOOOioVFRWtPCMAKA2l/400JaOioiJDhw5t7Wnssr59+6Z///6tPQ1oFuqZ9kQ9096oadoT9Ux70tbq2TZTAFCXLacAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5AAwAAAAAAKHllhUKh0NqTAAAAAAAA2BkrNAAAAAAAgJIn0AAAAAAAAEqeQAMAAAAAACh5Ag0AAAAAAKDkCTQAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5Ag3brlVdeycUXX5xBgwalsrIy++67b4YOHZqbb74569ata+3psZebO3durr322owYMSL9+/dPly5d0r1791RVVeXcc8/NY4891qT+pkyZktGjRxf76t+/f0aPHp0pU6a00DuAxrnssstSVlZW/HnkkUcavEY9U2r+8pe/5KqrrsqQIUOy3377paKiIgMGDMgJJ5yQK6+8Ms8888xOr1fTlILq6upMnDgxH/nIR9K3b9/iZ4/DDjss5557bmbNmtWoftQzLWnZsmV54IEHcuWVV+ajH/1o+vTpU/wMcc455zS5v+ao15qamtxxxx054YQTst9++6Vr16455JBDcsEFF+TZZ59t8pwAgN1UgHbot7/9baFnz56FJPX+VFVVFV544YXWniZ7qRNOOGGHtbn9z1lnnVXYuHHjTvvavHlzYcyYMTvtZ+zYsYXNmzfvoXcH/2fevHmF8vLyWvU4bdq0HbZXz5Si22+/vVBZWbnTuhw/fny916ppSsXixYsLRx55ZIOfPcaNG1fYsmVLvX2oZ/aEndXX2Wef3eh+mqtely9fXhg6dOgO++jSpUvhRz/60W6+awCgKazQoN2ZN29ePve5z+Xtt99O9+7dc8MNN2TWrFl56KGHct555yVJFi5cmJEjR2bNmjWtPFv2RkuWLEmS9OvXL+PHj88vf/nLzJkzJ48//nh+8IMf5H3ve1+S5O67727wTrRvfetbmTRpUpJk8ODBmTx5cubMmZPJkydn8ODBSZKJEyfmiiuuaLk3BPXYsmVLzj///NTU1GT//fdv1DXqmVJz/fXX5x//8R+zdu3aVFVV5eabb84jjzySefPmZerUqbn55pvzd3/3d+nQof6P1GqaUrBp06aMHDmyeCf5Bz/4wdx11115/PHH84c//CFXXnllKisrkyQTJkzITTfdVG8/6pk97YADDsiIESN26drmqNfNmzdn9OjRefLJJ5Mkn/rUpzJlypQ88cQTuf3227P//vtn48aNueCCC6xQAoA9qbUTFWhu2+5+Ly8vL8yaNavO+X/9138t3lFz1VVX7fkJstcbOXJk4Z577inU1NTUe3758uWFqqqqYp1Onz693nbPP/988e73IUOGFNatW1fr/Nq1awtDhgwp/vdgVRJ70i233FJIUhg0aFDh8ssvb3CFhnqm1EydOrXWirnq6uodtq1vNZ2aplTce++9xVo+7rjj6v38MXfu3EKnTp0KSQq9evUqbNq0qdZ59cyecuWVVxZ+97vfFZYuXVooFAqFRYsWNXmFRnPV66RJk4pjf/WrX61z/oUXXijuCjBw4MA6/90AAC3DCg3alTlz5mTGjBlJkjFjxuS4446r0+biiy/O4YcfniS57bbbsmnTpj06R3jggQdy5plnpmPHjvWe79OnT77//e8Xf//lL39Zb7tbb701NTU1SbbeUdm1a9da57t165YJEyYk2br37y233NIc04cG/eUvf8m3v/3tJMkdd9yRzp07N3iNeqaUbNmyJRdeeGGS5Oijj86kSZPSqVOnHbavr8bVNKVi+2djXH755fV+/jjmmGNyxhlnJElWr16d+fPn1zqvntlTrrnmmpxxxhl5z3ves8t9NFe9fu9730uS7Lvvvrn55pvrnB84cGAuv/zyJMmLL76Y3/zmN7s8ZwCg8QQatCv33Xdf8fjcc8+tt02HDh1y1llnJdn6B9u0adP2xNSgSU455ZTi8UsvvVTnfKFQyP33358kGTRoUI499th6+zn22GNz2GGHJUnuv//+FAqFFpgt1Pa1r30t77zzTs4+++ycdNJJDbZXz5SaP/zhD3nhhReSbH2wfXl5eZOuV9OUkurq6uLxwQcfvMN2hxxySL3XqGfakuaq14ULFxaDvTPPPDPdunWrt5/tt4cVaADAniHQoF157LHHkiSVlZU55phjdthu+y/YZs6c2eLzgqbauHFj8bi+OykXLVpUfBZHQ18Ybzv/+uuvZ/Hixc03SajHL37xizzwwAPZd999i3c2NkQ9U2ruvffeJElZWVnxrvUkWblyZV544YWsXLlyp9eraUrJti9tk+Tll1/eYbttN1CUlZXl0EMPLb6unmlLmqtet/1d2VA/733ve1NVVZXE35UAsKcINGhXtt1FM3DgwJ3eTTlo0KA610ApmT59evF42xZp23vuueeKx9vXc33UO3vK6tWrM378+CTJTTfdlD59+jTqOvVMqZk9e3aS5MADD0yPHj3ys5/9LEcddVR69+6dqqqq9O7dO4cddli+973v1Qqgt1HTlJLPf/7z6dmzZ5Kt/2/evHlznTbz5s3Lgw8+mCT5whe+UGyfqGfaluaq113p59VXX83atWsbPVcAYNcINGg3NmzYkBUrViRJ+vfvv9O2++yzTyorK5Ns/eAJpWTLli357ne/W/z9zDPPrNPmtddeKx43VO8DBgwoHqt3WtKll16apUuXZvjw4RkzZkyjr1PPlJItW7ZkwYIFSbY+02j8+PH54he/mGeeeaZWu4ULF+aSSy7JqaeemtWrV9c6p6YpJX369Ml//dd/pVu3bpk5c2aGDh2au+++O7Nnz87UqVNzzTXX5KSTTkp1dXX+5m/+ptZzvBL1TNvSXPW6K/0UCoVa1wEALUOgQbuxZs2a4nH37t0bbL8t0HjnnXdabE6wK2655ZbMmTMnSfKpT32q3u3TmlLv22o9Ue+0nBkzZmTixIkpLy/PHXfckbKyskZfq54pJW+99Va2bNmSJPnzn/+c22+/PX379s1Pf/rTrFy5MuvWrcv06dOL+7LPmjUrX/nKV2r1oaYpNZ/4xCfy1FNPZezYsfmf//mfnH322TnuuOPy4Q9/OFdffXW6deuWW2+9NTNmzKjzMGb1TFvSXPWq7gGgdAk0aDc2bNhQPO7cuXOD7bt06ZIkWb9+fYvNCZpq+vTp+Zd/+Zckyf7775//+I//qLddU+p9W60n6p2WUV1dnfPPPz+FQiHf+MY38oEPfKBJ16tnSsn224Vs2LAh3bp1y7Rp0/LFL34x++yzT7p27ZoTTzwxDz/8cI4++ugkWx8E+8QTT9S6bhs1TSmorq7O3XffvcOHdf/1r3/NT3/600ydOrXOOfVMW9Jc9aruAaB0CTRoNyoqKorH1dXVDbbftud1165dW2xO0BTPPvtsRo8enZqamlRUVOTee+/N/vvvX2/bptT79vu7q3dawne+850sWLAgBxxwQK666qomX6+eKSXb12OSjB07ttZDlbfp2rVrbrjhhuLv99xzT719qGla29q1a3P66afnxhtvzMqVK3PppZdm/vz52bhxY95666384Q9/yPHHH5+5c+fmk5/8ZH7wgx/Uul4905Y0V72qewAoXQIN2o0ePXoUjxuz1HfbHZiN2Z4KWtqiRYsyYsSIrFq1Kh07dszPf/7znHjiiTts35R63/5uY/VOc1uwYEFuvPHGJMmECRNqbbvQWOqZUrJ9PSbJiBEjdtj2tNNOS3l5eZLkySefrLcPNU1ru/rqqzNjxowkyaRJk3LTTTdl0KBB6dy5c3r27JkPf/jDmTZtWk455ZQUCoVccskl+dOf/lS8Xj3TljRXvap7AChd5a09AWguFRUV6d27d958880GH8a2atWq4gfP7R8GB61hyZIlOf3007NkyZKUlZXlzjvvzKhRo3Z6zfYPJ2yo3rd/yKF6p7ndcsstqa6uzsEHH5x169bl5z//eZ022z9M+eGHH87SpUuTJB//+MdTWVmpnikpXbp0yX777Zfly5cn2XmdVVRUpE+fPlm6dGmxfeL/0ZSOQqGQO++8M0lSVVWVs88+u9525eXlue6663L88cdny5Ytueuuu3LLLbckUc+0Lc1Vr+/up0+fPg32U1ZW1uADxAGA3SfQoF054ogjMmPGjLz44oupqakp3jX5bgsWLCgeH3744XtqelDHihUr8uEPfzgvv/xykq13uJ911lkNXnfEEUcUj7ev5/qod1rStm0WXn755Xz+859vsP11111XPF60aFEqKyvVMyXnyCOPzCOPPJIk2bx5807bbju//WcONU2p+Otf/5qVK1cmSQYPHrzTtsccc0zxePu6VM+0Jc1Vr+/u50Mf+lCD/QwYMGCXVqoCAE1jyynaleOPPz7J1mW/Tz311A7bTZ8+vXg8fPjwFp8X1Oett97KRz7ykTz33HNJku9+97v52te+1qhrDzrooPTr1y9J7Xquz6OPPpoked/73pcDDzxw1ycMLUQ9U2q23/JvW+Bcn7fffjsrVqxIsrUmt1HTlIrtg7aampqdtt20aVO916ln2pLmqtdtf1c21M/SpUuzcOHCJP6uBIA9RaBBu/LJT36yePzjH/+43jZbtmzJ3XffnSTp1atXTjnllD0xNahl3bp1GTlyZJ5++ukkybe+9a1cdtlljb6+rKysuC3VggULMnv27HrbzZ49u3jX2KhRo1JWVrabM4fa7rrrrhQKhZ3+bP+g8GnTphVf3/blgXqm1Hz6058uHv/mN7/ZYbvf/OY3KRQKSZITTjih+LqaplTsu+++6dmzZ5Lk8ccf32mosf2XtgcddFDxWD3TljRXvVZVVRVXbfziF7/IunXr6u3nrrvuKh6PHj16d6cPADSCQIN2ZdiwYcUvFCZNmpTHH3+8Tpvvf//7mT9/fpJk/Pjx6dSp0x6dI1RXV2f06NGZOXNmkq11eP311ze5n4suuigdO3ZMkowbNy7r16+vdX79+vUZN25ckq13Wl500UW7N3FoQeqZUvLBD34wH/3oR5MkkydPzkMPPVSnzdKlS3PFFVckSTp37pxzzz231nk1TSno0KFDRo4cmWTrM7tuuOGGetutWrWq1o0VZ5xxRq3z6pm2pLnq9Z//+Z+TJCtXrsyll15a5/xLL72UG2+8MUkycOBAgQYA7CFlhW23lUE7MW/evAwfPjzr169P9+7d881vfjOnnHJK1q9fn5///Of54Q9/mGTrXTdz585Njx49WnnG7G0+/elP59e//nWS5NRTT82tt96607sYO3funKqqqnrPXX755fnud7+bZOve2JdddlkOOeSQvPTSS7npppsyb968YrvvfOc7zfxOoHGuvvrqXHPNNUm2rtA4+eST622nniklCxcuzN/+7d9m9erVqaioyEUXXZSPfexj6dq1a+bMmZMbb7yx+MDZm266qd4vu9Q0pWDBggU55phjineYf/zjH8/ZZ5+dgw8+OBs2bMjs2bNz66235i9/+UuS5LTTTsvUqVPr9KOe2RMee+yxvPjii8XfV6xYkUsuuSTJ1i2dxo4dW6v9OeecU28/zVGvmzdvzkknnVS8CenTn/50zjvvvOyzzz6ZM2dOrrvuuixbtiwdOnTIAw88UAzCAYAWVoB26Le//W2hZ8+ehST1/lRVVRVeeOGF1p4me6kd1eWOft7//vfvsK/NmzcXvvKVr+z0+jFjxhQ2b968594gvMtVV11VrMdp06btsJ16ptTMmDGj8J73vGeH9VhWVla44oordni9mqZU/PGPfyz06dOnwc8cp556amHlypX19qGe2RPOPvvsJn1O3pHmqtfly5cXhg4dusM+unTpUvjRj37U3P8YAICdsEKDduuVV17JbbfdlgcffDCvvfZaOnfunIEDB+azn/1svv71r6dbt26tPUX2Uk3dU/r9739/Fi9evNM2v//97/PDH/4wTz75ZFasWJE+ffpk6NChueCCC9wtRqtr7AqNbdQzpeTNN9/MhAkTct9992XRokWprq5O3759c/LJJ2fcuHEZPHhwg32oaUrBm2++mUmTJmXKlCl59tlns3r16pSXl+e9731vhg4dmi984Qv5xCc+0eDnFPVMSzrnnHPyk5/8pNHtG/o6oznqtaamJj/60Y/ys5/9LPPnz8/atWvTr1+/nHbaaRk/fnyOPPLIRs8XANh9Ag0AAAAAAKDkeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAJe6uu+5KWVlZysrKsnjx4taeDgAAALQKgQYAQAtZvHhxMYjYnR8AAABAoAEAAAAAALQBZYVCodDakwAAaI82bdqU559/fofnjzrqqCTJkCFD8uMf/3iH7T7wgQ80+9wAAACgrSlv7QkAALRXnTp1alQYUVlZKbQAAACABthyCgAAAAAAKHkCDQCAEnfXXXcVHxC+ePHiOudPPvnklJWV5eSTT06SvPjii/mHf/iHHHzwwenatWsOPPDAjBkzJq+88kqt65555pmce+65Ofjgg1NRUZEBAwbkwgsvzLJlyxo1r/vuuy+f/exnc8ABB6SioiK9evXKkCFDcs0112TVqlW7+7YBAACgFltOAQC0I1OnTs2nPvWprFmzpvjaK6+8kjvvvDMPPPBApk+fnkGDBmXy5Mk555xzUl1dXWz32muv5Y477siUKVMya9as9OvXr94xVq1alc985jN5+OGHa72+cePGPPXUU3nqqafy7//+77n//vtz7LHHtswbBQAAYK9jhQYAQDuxZMmSnHnmmenVq1cmTJiQJ554IjNmzMhFF12UsrKyLFu2LGPHjs2TTz6Zs846K4ccckgmTpyYOXPmZNq0afnyl7+cZGsA8k//9E/1jrFx48acfvrpefjhh9OxY8d8+ctfzuTJkzN79uzMmDEjN9xwQ3r37p1ly5blYx/7WJ1VIQAAALCrrNAAAGgnXnjhhRx66KGZOXNm9ttvv+Lrxx9/fMrLy/O9730vM2fOzMiRIzNs2LD88Y9/TLdu3YrtTj755GzYsCH33ntvfvWrX2X58uW1+kmSa6+9Nk8//XR69eqVqVOn5phjjql1/vjjj88Xv/jFHHfccXnjjTfyzW9+M//93//dsm8cAACAvYIVGgAA7cjtt99eJ4RIkq9+9avF4xUrVmTixIm1woxtLrzwwiRJTU1NHn/88Vrn3nnnnfzbv/1bkuS6666rE2Zs8/73vz/f/va3kyT33ntv1q5du2tvBgAAALYj0AAAaCd69eqVj3zkI/WeO+igg9KjR48kyQc/+MEcfvjh9bY7+uiji8cvv/xyrXPTp0/PW2+9lST5zGc+s9O5nHjiiUmSTZs25amnnmrcGwAAAICdsOUUAEA7ceihh6asrGyH53v16pU1a9akqqpqp2222f7B4kkyd+7c4nHfvn0bPa+lS5c2ui0AAADsiBUaAADtRH1bSG2vQ4cODbbb1iZJNm/eXOvcsmXLdmle69at26XrAAAAYHtWaAAA0CjbBxxPP/10OnXq1Kjr+vfv31JTAgAAYC8i0AAAoFF69+5dPN5vv/0EFQAAAOxRtpwCAKBRBg8eXDyeOXNmK84EAACAvZFAAwCARjn99NOLz9+4/fbbUygUWnlGAAAA7E0EGgAANEqvXr3y9a9/PUkya9asfOMb38iWLVt22P6vf/1rJk6cuKemBwAAQDvnGRoAADTatddem+nTp+eJJ57IbbfdlkceeSTnnXdePvShD6WysjKrVq3Ks88+m6lTp2bKlCk56qijMnbs2NaeNgAAAO2AQAMAgEbr0qVL/vjHP+acc87Jr3/96/zpT38qrtqoT8+ePffg7AAAAGjPBBoAADRJjx498qtf/SqPPfZYfvKTn2TGjBlZsmRJ1q9fn549e+aQQw7JsGHDMnLkyIwYMaK1pwsAAEA7UVbwNEcAAAAAAKDEeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUvP8PEIIbP2eDbHwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Create plot with aggregated totals per population across time.\n", + " 'metapopulations_migration_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8,\n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot the isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## B. Population contact" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by \"population contact\" events between vectors and hosts, in which a vector and a\n", + "host from different populations contact each other without migrating from one population to another.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population** 4 (both are one-way connections).\n", + "\n", + "**Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup(\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A', \n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a population contact rate of 1e-2 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=0, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " vector_host_contact_rate=2e-2,\n", + " # host-host inter-population contact rate between populations\n", + " host_vector_contact_rate=2e-2,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to one of the clustered populations with a one-way population contact rate of 1e-2 for `population_A` hosts and `clustered_population_4` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'clustered_population_4',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way population contact rate of 2e-2 for `population_A` hosts and `population_B` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_B',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_A` starts with `AAAAAAAAAA` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 100.1491768759948 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19925533388085942s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.017675399780273438s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030938148498535156s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.039101600646972656s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.07192206382751465s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 453 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 528 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 545 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 562 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 581 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 611 out of 611 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2AAAAAAAAAANaNTrue
30.0population_AHostpopulation_A_3AAAAAAAAAANaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
195515100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
195516100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
195517100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
195518100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
195519100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

195520 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "195515 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "195516 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "195517 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "195518 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "195519 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 AAAAAAAAAA NaN True \n", + "3 AAAAAAAAAA NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "195515 NaN NaN True \n", + "195516 NaN NaN True \n", + "195517 NaN NaN True \n", + "195518 NaN NaN True \n", + "195519 NaN NaN True \n", + "\n", + "[195520 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_population_contact_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhkAAALmCAYAAABfB/XFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd7gU5dk/8O9sO53DoRepBhUVC00BDajEBpaoqLFiw56qyavmRYghkp8afSOSiAXskRgbYouFIggcEBBEUBCQXg+nn20zvz+W3bPzzDOzvX8/1+UlZ2d29tnZ/tzPfd+KpmkaiIiIiIiIiIiIiIiIYmTL9ACIiIiIiIiIiIiIiCg3MchARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXBhkICIiIiIiIiIiIiKiuDDIQEREREREREREREREcWGQgYiIiIiIiIiIiIiI4sIgAxERERERERERERERxYVBBiIiIiIiIiIiIiIiiguDDEREREREREREREREFBcGGYiIiIiIiIiIiIiIKC4MMhARERERERERERERUVwcmR4AJaalpQVr1qwBAHTs2BEOBx9SIiIiIiIiomTz+XzYt28fAGDAgAEoLi7O8IiIiIiyA2ekc9yaNWswdOjQTA+DiIiIiIiIqGAsW7YMQ4YMyfQwiIiIsgLLJRERERERERERERERUVyYyZDjOnbsGPr3smXL0LVr1wyOhoiIiIiIiCg/7dq1K1RJIPy3OBERUaFjkCHHhfdg6Nq1K4444ogMjoaIiIiIiIgo/7EfIhERUSuWSyIiIiIiIiIiIiIiorgwyEBERERERERERERERHFhkIGIiIiIiIiIiIiIiOLCIAMREREREREREREREcWFQQYiIiIiIiIiIiIiIooLgwxERERERERERERERBQXBhmIiIiIiIiIiIiIiCguDDIQEREREREREREREVFcGGQgIiIiIiIiIiIiIqK4MMhARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXAo2yLB371689957mDhxIs477zx06NABiqJAURSMHz8+oWM3NTWhb9++oeP17t07KWMmIiIiIiIiIiIiIsomjkwPIFM6d+6csmNPnDgRmzdvTtnxiYiIiIiIiIiIiIiyQcFmMoTr2bMnzj777KQca+XKlXjiiSdQXFyMioqKpByTiIiIiIiIiIiIiCgbFWyQYeLEiZgzZw52796NrVu34umnn074mH6/H7fccgv8fj/uv/9+tGvXLgkjJSIiIiIiIiIiIiLKTgUbZJg8eTLGjh2b1LJJ//d//4cVK1bg6KOPxh/+8IekHZeIiIiIiIiIiIiIKBsVbJAh2bZu3YqJEycCAP75z3/C5XJleERERERERERERERERKnFIEOS3HHHHWhsbMS1116LUaNGZXo4REREREREREREREQp58j0APLBv/71L7z//vuoqqrCY489ltRjb9++3XL7rl27knp7RERERPlG9dSh8dv/g692Q8R9FcUOZ6fhKD3qFigK1+NEq8mr4oMtzdjZ4Atd1q3cgTF9SlDs4HkkIuCrPW5U73HD49cM24odCm4Z0CYDoyIiIqJkYJAhQTU1Nfj1r38NAJg6dSo6duyY1OP36NEjqccjIiIiKjSHFl4D97Y5Ue/fvOlFaO4alJ/wPykcVX55clUdvtrrES51Y2udD78dVJmRMRFR9li734O/Lq813V7hVHDLgDQOiIiIiJKKy4oSdO+992LPnj0YNmwYbrnllkwPh4iIiIjCaJoK9/YPYr5ey/a5KRhNflI1Dav3iQGGgBV73dA046plIiosq0zeI4iIiCg/MJMhAQsWLMDzzz8Ph8OBf/7zn1AUJem3sW3bNsvtu3btwtChQ5N+u0RERER5we8BNF/k/QSarzEFg8lPqgZIqp8AAHwq0OLXUOJI/vdkIsodshJJRERElD8YZIiT2+3GhAkToGkafvWrX+GEE05Iye0cccQRKTkuERERUSHQNK/hstJj7oDi1Nf+9h1aB/e2d1svUI3Xo/g0ejWU8FcHUUFThRhDnzYOnNDRFfq7yM5AJBERUS7j1/04TZkyBRs2bECPHj0wefLkTA+HiIiIiGT8xhId5Sf8EfbSrrrLmre8oQsyaCpLe0RLnDwUNXk1oCQ9YyGi7KQKZdOObufEVceUZ2g0RERElGwMMsTpr3/9KwBg9OjRmDNH3kiwsbEx9P9//etfAIBOnTrhzDPPTM8giYiIiAqcJslIUGyuyJcxkyFqkYqgNHjVtIyDiLKXGIy0MXGBiIgorzDIECePJ7C6bebMmZg5c6blvvv378cvfvELAMDIkSMZZCAiIiJKF0m5JNicES+TBSdILlJj5yYfa7ETFTox1GjLyCiIiIgoVfjZTkRERER5S5OUS4ouk4HlkqIVqVxSIzMZiAqeWC7JpjCVgYiIKJ8wkyFOkVZsAUDv3r2xdetW9OrVC1u2bEn9oIiIiIhIT5aRwEyGtGr0MpOBqNCxXBIREVF+YyYDEREREeUtYwNnBYrNbtiPmQzxi5SnwCADETHIQERElN8KNpPhiy++wMaNG0N/79+/P/TvjRs3YtasWbr9x48fn6aREREREVHSiBkJklJJAKAwkyFukRJ8m3wsl0RU6IxBBkYZiIiI8knBBhmeffZZvPDCC9JtixYtwqJFi3SXMchARERElHvEYIEYTAgRL1c90DQNCifCIooUZGAmAxEZezJkaCBERESUEiyXRERERER5y1AuySTIIGsGDc2fghHln8jlkpjJQFToWC6JiIgovxVskGHWrFnQNC3q/+KxZcsWaJrGps9EREREmWLIZJCXS5IGH1gyKToRvis3MZOBqOD5GWQgIiLKawUbZCAiIiKi/Bd1JoPdGHwwNo0mmYiZDD4GGYgKHXsyEBER5TcGGYiIiIgof4mZDJJgQmADMxniFbHxM8slERU89mQgIiLKbwwyEBEREVHeEhs/S4MJYCZDIiLlKTSwXBJRwTNkMmRmGERERJQi/GwnIiIiovwlBAoUk3JJsjJKhgAFSYmTh6Jmn2ZYxUxEhUXMZ2ImAxERUX5hkIGIiIiI8pYhUGBSLkmRlktiJkOyNLEvA1FBY08GIiKi/MYgAxERERHlLzGTwaRcEjMZ4hdNlkIjSyYRFTT2ZCAiIspvDDIQERERUd4yBApMyiUpNjugCF+NGWSISjThg0Y2fyYqaMZMhsyMg4iIiFKDQQYiIiIiyl9CoEDW4DnEpt/Gxs/RkSUylDn0M4hNzGQgKmgMMhAREeU3BhmIiIiIKG+JgQLTckmQNIVmJkNUZI2fy136GURmMhAVNrFckp09GYiIiPIKgwxERERElL+ibPwMwJjJ4GcmQ7zKnPqfGezJQFTYmMlARESU3xhkICIiIqK8ZchkMOnJIN2mMZMhGmKOggKg3ClkMvgYZCAqZAwyEBER5TcGGYiIiIgof4mZDBblksSm0MxkiI7Yk0FRgFIhk6GJ5ZKICpoxyMAoAxERUT5hkIGIiIiI8pYWQ+NnRSiXxJ4M0dGEKIMCY+NnlksiKmxiTwZmMhAREeUXBhmIiIiIKH8J5ZLEbAWrbRrLJUXFUC5JkfVkYCYDUSET3wE4EUFERJRf+NlORERERHnLkMlgUS7JkMnAcklxUQCUCj0ZmtiTgaigsScDERFRfmOQgYiIiIjyltj4GZblkoRMBpZLiops8rBMbPzMcklEBY09GYiIiPIbgwxERERElL/ETAbLckliTwZmMkTD0PgZCsocLJdERK3Yk4GIiCi/MchARERERHnLkI0gBhLCMJMhPmKOgsJMBiIS+FkuiYiIKK8xyEBERERE+UvIRrDOZBCDDMxkiIa4QjnQk0H/M6PJx0wGokLGngxERET5jUEGIiIiIspbxkyGGBo/M5MhLrJMBrcf8ImzjERUMNiTgYiIKL8xyEBERERE+cuQyWBeLsmYycAgQzQMk4cAyhzGCUSWTCIqXOzJQERElN8YZCAiIiKivJVYJgPLJUVD1pNBLJcEsPkzUSFjuSQiIqL8xiADEREREeUvIcgQW08GZjJEQ1igDAWAy65AjDM0+ZjJQFSoGGQgIiLKbwwyEBEREVHeMjRvtiiXxEyG+Ij5CcrhWutlQpSBmQxEhUnTNEPGE3syEBER5RcGGYiIiIgofzGTIfUkmQwAUCr0ZWBPBqLCJHvlcyKCiIgovzgyPQAiIiIiomRQ3YfQuO4J+GrXwVuzBs72g+Cr26jfyTKTQQgy+JtTMcyc46vbiKbvnoG9vBdKj7oVis0OILA6ed72Fry2oVG3f7AMSrlTH2SYu7kJK/a4LW+r2KFgeLdiHNde/zhpvmY0rvs/aL4GlPb/JewlnRK8V0SUSvub/fhoSzMOtvjlQQYmMhAREeUVBhmIiIiIKC/UzL8cnp3/Df3tr11v2Mc6k0E/sd383TNoO3xG0saXi1RvPfbPGQTNWwcA8DftQJuBUwAAH2xpxgvrGgzXCVZBEZs/bzzkw8ZDvoi3+fm2FvxlRBV6V7Y+VocWXoeWrW8AAJq3vIGOP/82VJaJiLKLqmn405JD2NPkN92HQQYiIqL8wixFIiIiIsp5mq9FF2AwozjbWBxDWJFfzNXyTRtmhAIMAND49V9C/161T96zosgemD2sLIrvp4ZfA77e33psTVNDAQYA8NdtgHffl3Edm4hSb2eD3zLAAADFDk5FEBER5RN+shMRERFRzlN99RH3sZV2h6vTCNPt9vLewgVFCY4q9/lqvjbd5vXLeywM6xo4b8O7FiHexcrhPaI1rzFbwt+0M84jE1GqReq/cmw7J9rGGYQkIiKi7MRySURERESU8zRvo+m2kn43w1F5NEr6XAGbyzyTQQxAaL6mpI0vZynRTwSWOBTcdkIFTukSCDKc1KkIk4a1xdf7PfCp1tddttuNXY2tK5/DpyjDMylah2VR9oqIMqrZr3/BlzgUnN2rBADQscSOEd0YwCUiIso3DDIQERERUc7T/OYBgfLj74Wj8qiIx1AcJfoL2PgZUOymm8S1yr84ugyndi3WXXZMOxeOaWfebDtod6NfH2TQWo+ueiVZKgwyEGUtt0//7tC2yIarjinP0GiIiIgoHZijSEREREQ5T+ynoGOLbl2NYtcHGTRfs26yuyDFkMmQCLEJbPhp12RBBs263jsRZU6zEGQocbDLMxERUb5jkIGIiIiIcp5VuaRoS+sojlLxqIDfncCocp8i+bkQDLwkM/yiCHOQ4cVWZOWSNB+zTIiyVYvQr6XYziADERFRvmOQgYiIiIhynlW5JChRBhmETIbAcQt8MtsmKZekeqW7ioGCWIhXjZTJoPlb4r8xIkopMZOhmJkMREREeY9BBiIiIiLKeVblkpRoyyWJPRnAIIPs54KmHs7uSGIqg6FcUti/VUkmAxhkIMpaYk8GBhmIiIjyH4MMRERERJTzrMolRdskWLGL5ZIAzWeRIVEIZD0ZTEpIKYZ8hBhuRriuykwGopzVLJRLKmG5JCIiorzHIAMRERER5TzrTIboggywF0Es3FPomQyKYiyXFJzgT2VPhvCG2wwyEOWWFmYyEBERFRwGGYiIiIgo51n3ZIiyXJKiAPZi/XELvcGwJJNBO5zJkMwgg3grkcolFXrwhyibsScDERFR4WGQgYiIiIhynnW5pOiCDACgOPQlkwq+XJKkBFKoJ4O4ZyLziBY9GZjJQJRb3EK5pGKWSyIiIsp7DDIQERERUc4zLZek2KDI+gqYUOz65s8Fv2Je8xsvC07wa8nLZTBkMkToycDGz0TZS8xkKHFw2oGIiCjf8dOeiIiIiHKeabkkJcp+DMHdHQwyhNM0n/Ey08bP8ROzIMIbP8vLJTHIQJStDOWSmMlARESU9xhkICIiIqKcZ1YuKeqmz8H97SyXpKN6DReloieDIjbcDv83yyUR5RS3X9X9zZ4MRERE+Y9BBiIiIiLKeablkmLoxwAYMxlQ6JkMkiADTHoyJMIm9mSIUC6p4BtyE2UxNn4mIiIqPAwyEBEREVHOMy+XFNvXXUNPhkKfzJZmMgSyCJKaySCWSwo7OsslEeWWFkNPBgYZiIiI8h2DDERERESU88zKJcXanFhxsFxSOFkmQ0p6Moi3wcbPRDnJr2rw6KslsScDERFRAWCQgYiIiIhynmm5pBgZMhkKvFySNJPBpFySmI0QC0O5pPB/M5OBKGe4/cbALsslERER5T8GGYiIiIgo55mWS4qR2JOh0IMM0p4MwXJJSayXZJbJoGkaNG+DcVwMMhBlJbEfA8AgAxERUSFgkIGIiIiIcp5puaQYOwcYezIUdrkkaNGXS0qEIqRBBB+1QIaK8TEs9OAPUbZqkWUysFwSERFR3mOQgYiIiIhyXtLKJYk9GQp8MtuqJ0NSGz8Lf6vBTAZJqaTAGJjJQJSNxEwGpw1wiPXQiIiIKO8wyEBEREREOc+0XFKsNX0MmQyFHWSQ9mQwmeBPqPGz2JPh8OMmbfoMsPEzUZZqEYIMLJVERERUGBhkICIiIqKcpmlq0soaGXoyFHi5JGlPBpPGz4kQf5QEpylVkyADMxmIspNYLomlkoiIiAoDgwxERERElNOSmW2g2FkuSceqXJKQJCJmI8RCvC7LJRHlJjGToYSZDERERAWBQQYiIiIiymmmpZICW2M6lpjJgAIPMsh7MiR/gt9QLin4f9NMhsJ+XIiyldiTgZkMREREhYFBBiIiIiLKaZo3OU2fAUAx9GQo7HJJ0HzGy1LS+Fk/ERnMkjArlwTVC031J3EERJQMhnJJDk45EBERFQJ+4hMRERFRTtN8SQwyOFguKZw0k8GkJ0Mi65VtppkM8nJJAFLSG4KIEtPiU3V/s/EzERFRYWCQgYiIiIhymnWQIcZySYZMhsIOMsh7MqSgXJJ4G4dTGczKJaVqHESUGPZkICIiKkwMMhARERFRTktmSSOxJ0PBl0uyavwsXC6WPIqFWU8G1SKTgUEGouzTLJZLYk8GIiKigsAgAxERERHltKSWS7KzXFI4WbmkVJQpEqch1cPzlJaZDIWeZUKUhcRMBpZLIiIiKgwFG2TYu3cv3nvvPUycOBHnnXceOnToAEVRoCgKxo8fH9Uxmpqa8Oabb+L222/HkCFDUFVVBafTifbt22PYsGGYNGkSdu/endo7QkRERFTgLIMMWozlksRMhgIPMliVSzKc2gTmEg2ZDNEEGZjJQJR1DEEGZjIQEREVBEemB5ApnTt3Tuj6X3/9NUaMGIGGhgbDtoMHD2LJkiVYsmQJHn/8ccyYMQNXXHFFQrdHRERERHJJLWkk9GSA6oWm+qDYCvNrs7Txsz8FjZ+Fa0fV+JlBBqKs08yeDERERAWpMH8tCXr27IljjjkGH3/8cdTXqaurCwUYRowYgbFjx2Lw4MFo37499u3bhzfffBPPPPMM6urqcPXVV6NNmzY477zzUnUXiIiIiApWUhs/O0oNl2n+Zii2ihhHlSc0SbmkUJAhtnNrRcxkCJZLUpnJQJRTWsSeDAwyEBERFYSCDTJMnDgRQ4YMwZAhQ9C5c2ds2bIFffr0ifr6NpsNl19+OR588EEce+yxhu1nn302zjvvPPz85z+H3+/H3Xffje+//x6K+AuKiIiIiBKS3J4MJYbLNF8z4CzMIIM8k0E+uZ/It1xj4+fARCXLJRHlFvZkICIiKkwFG2SYPHlyQtcfPnw4hg8fbrnPRRddhEsuuQT/+c9/sGnTJqxcuRIDBw5M6HaJiIiISC+Z5ZLEngxA4fZl0DRN3pPhcOPn5OUxGBvFtfZkMC+XVKiPC1E2M2QysCcDERFRQSjYxs/pcsYZZ4T+vWnTpgyOhIiIiCg/JbVckjSTIYk9H3KJ5pdffrhcUkobPx/+P8slEeUW9mQgIiIqTAwypJjb3doYz263Z3AkRERERPkpqeWSbA7A5tRfWKgr5iVZDECKyiWJtxHKZGCQgShXaJpmLJfETAYiIqKCULDlktJl/vz5oX/3798/5utv377dcvuuXbtiPiYRERWu1fvcWLrLDY+qwaYoKHcq6NXGgZ92LzbtG6RpGhbuaMGP9X6M6FaEPpVO6X6Uu5btduO7Gi8GdXahfztXpodjybPnCzT/8Ipuhbt335dJvQ3FXqLrRaD5CjPIIOvHAACqpwY1C66Bv+n3ALqELm/8dhpqNq4CADgqj0HZsb+CLcpeFjbh/UcF0ODx4wPHzdhXJO+b5tx+NBx1tZbHPKadE2f2MH9/I6Lk8ajG3DH2ZCAiIioMDDKk0OrVqzF37lwAwIABA+IKMvTo0SPZwyIiogK1/qAHDy+rlRaPafZpOLd3qfR6H29txvPfNAAA3t/chL+f0R4dSpidly+W7GrB418F6t6/90MT/nJaFfpmaSDJe+hbHPjoLED1pPR2FEeprheA98ByuDqPSOltZiPTfgiqFy0/vAKtagLgaA0yePcuRIv73da/D3yFdme+GdVtGcolacD/fXUIX5fda36lBgANbvPtABbsaEGLX8OYPvL3NyJKnrX7je/NxQ4WTyAiIioE/MRPEbfbjZtvvhl+f6CW7ZQpUzI8IiIiKnRf7/eYVqefeTiIIPN82Da/Bvzn++SVpqHMm7aqdSJZA/DSOvPnQqZ5dn0ac4ChuNdlMd+O2rJf/7fHfLV8PvPVfmu5XYtQIMm9/f2ob0v8UeL2a1hzwKQnRIy+2mMdiCCi5Piuxpj9VMpMBiIiooLATIYUueuuu7B8+XIAwPXXX48LLrggruNs27bNcvuuXbswdOjQuI5NRESFxZuc+TpskEwiUO7yqvq/1x3M3sdXi7E3guIoQ/lJD8ZxQz7hOMZm0AXB0NlZT4U+o8kmNopW3dBUPxRb5MynImEistatxtiy25zYiJaIUkP2SnOxJwMREVFBYJAhBR5++GE8++yzAIAhQ4bgqaeeivtYRxxxRLKGRUREBY7TbJTzNH1ExF5xJIp7jwv9bXNWoKjnz6G5D8B74CsUHXEeHBV9Y76ZoiPO16/CV5MUocsxmhg0AFA24H9a/9jXAQjbpbj7z4DNc/VXUL1AFEEGsTlsrUc17DOq6R+wQx8EKz/ud4ZG3TsafFi+pzXjxe3nux9ROvhU/WtteLeiDI2EiIiI0o1BhiR7+umncf/99wMAjjnmGLz//vsoKyvL8KiIiIiSJ8LiZqLUESa9HW2PQ5tBD0t3dXU+Lf7bUcSvyMYJ74IgBnXKe+vP92f7gebWfUp7XwZs/rVwCA8UFEe8KbE5rCp5n7mg8c+wQ59l0qn3XbCXVukuW77HrQsyeBhkIEoL8XUrBg8pQNM0NDY2oq6uDi0tLaESy0RERKlkt9tRXFyMNm3aoKysDIrYFC1BDDIk0WuvvYY77rgDANCrVy/897//RYcOHTI8KiIiogCN0QHKcYaV9UqK2osJx5Wt6C8MQnBFOC/ihKJNlrGgRld+K9JkpE3zGgIMAKD56gF00V0mlmdxF2iMiCjdfMJrzZ7kyYt8oKoqfvzxRzQ3x1b+j4iIKFE+nw9utxu1tbUoKSlBz549YbMl7/cUgwxJ8u677+K6666Dqqro2rUrPv30U5Y6IiKirMIQA+U8YWW9okQuwxMPw3G1Ap2lNpSJsg4y2O3GnxZalI26xUwGkVNrAewlgX4ZYYELzVNn2LfIpj8WMxmI0kMVFjM4UhQHzlWaphkCDIqiwG5PzWcZERFROL/fH1p42NzcjB9//BG9evVKWkYDgwxJ8Omnn+Lyyy+Hz+dD+/bt8d///hdHHnlkpodFRERElF8MmQwpmpgRMyQKNJNBM2Qy6M+3GHqx2SQ/LZKUyeBCMxSbC7CVQnMfCDt8vWHfImEYbr8GTdOSnhJORHpij3UbX3I6jY2NoQCD3W5Hly5dUF5entRVpERERGZUVUVDQwN2794Nv9+P5uZmNDY2ory8PCnH56dZghYvXoyLLroIbrcblZWV+Oijj3DcccdlelhEREQGkdbyspwSZT0xoyBl5ZKYyQDAEFxRDOWS9O8ZdqEBM5C8TAaX1gzF7oLNWaE/vleSyWA39ndgMgNR6vlVMZOBUYZwdXWt71ddunRBmzZtGGAgIqK0sdlsaNOmDbp0aS01Wl9vXLAT9/GTdqQCtGrVKowZMwaNjY0oKyvD3LlzMWjQoEwPi4iISCpSDIGTcJTtjD0Z0pPJULA9GQxBHSGTQVy1LC2XFF0mgxgYEDm1ZsDmguJsox9DFEEGAGjhGxxRyokvM8YY9FpaWgAESiQla9UoERFRrMrLy0MZvsnsEVSw5ZK++OILbNy4MfT3/v37Q//euHEjZs2apdt//Pjxur83bdqEc845B4cOHQIA/PnPf0ZlZSXWrl1repudOnVCp06dEh47ERFRKnj8GlcdUnaLsLI+WdiT4bAImSOGngyKLRCICH+cosxkcNgUOG2A1+RUu7RAuSQxyKBJyiWJjZ+Bw30ZjIkWRJREYpCBjZ/1/P7Ae6PdbmcGAxERZYzNZoPdbofP5wt9NiVDwQYZnn32WbzwwgvSbYsWLcKiRYt0l4lBhoULF2Lv3r2hv3/zm99EvM0HH3wQkyZNinmsREREyRBpHa9HBUrTMhKiOEVYWZ887MkAyDJHrMsl2RQANicQ9mMl2nJJQKAvg1eMXBwWzGSIqlySJFjqZiYDUcoZyyVlaCBERESUdvzYJyIiKhCRyiV5JJNw7NNAWSVd5ZJszGQAYLjfYoaHoVySgkBzZt1O0ZVLAqz7MjgR6MkQTSaDwwaIR2KQgSj1WC6JiIiocBVskGHWrFnQNC3q/0Tjx4+P6fqapjGLgYiIsppsBTHn5SibRFpZnzzsyQBAEtSxLpcUymTQHSL6TAarvgyt5ZL0mQyyngyKohiO5SnQh5AonfzC72YHyyUREREVjIINMhARERWaiOWSJBEFn2QBN+MOlDERVtYnC3syHBZr42dFMWYyaMnJZHAFyyW5ImcyAECR8BAyk4Eo9fzCW4adsw1EREQFgx/7REREBSJS5SNZw1VxVSJRRqUrk0E8bqFmMsC88bOmaYaAY6BcUvyZDMUWmQzOYCaDI3JPBsDY/FkWRCWi5GLjZyIiosLFIAMREREBiD6TgShj0tX42RBkKMwXgqaKwZXW8yLrzxwol5SingxaC2B3QREyGVSPPMgglktiJgNR6okLEyzihkREMZs0aRIURYGSJQHM3r17Q1EUjB8/PtNDIcoKDDIQEREVCOO6Yz15kIETc5Q9xN4IqSqXJAYvCrYnA8zLU5kFGRS7PsigqcnJZHAhkMlgc4qZDGblkhhkIEo3lksiSr558+aFJtbF/0pLS9GrVy9cfPHFePXVV+Hz+TI9XCIqYPzYJyIiKhCRptjY+JmyXprKJSmG4xZmJoPV+ZadEZuiAIq+XFIsmQwlDvPHM9iTQXGKPRmiy2RguSSi1DNmMmTHamOifNXc3Iwff/wR77zzDq6++moMHz4cu3fvzvSwctqoUaOgKApGjRqV6aEQ5RxHpgdAREREaRJhjs0jWazNTIb8puZaz420lUti42cAludb9tyxIcFMBstySU2BngxCkEE1yWQQezIwk4Eo9cQSi8xkIEqu22+/HXfccUfo74aGBixfvhyPPfYYtmzZgurqalx00UVYsmRJ1pQUymdbtmzJ9BCIsgqDDERERAUi0hSbRxJQkPVkYNwhf+Razw1j2SI2fk4lzRBkiNyTQbPFn8kgZh+Ec2nNUOyycknR9mSIehhEFCfxfcHBSU6ipOrUqROOP/543WWnnnoqrr76agwdOhQbN27EsmXL8N577+GCCy7I0CiJqFBxbQEREVGBiBhkkPVkkKxWFsshUO7KucdSnOy3pasnQ45FY5LF0AMjcpBBsaUqk6HFpFxSPTTJ85iZDETpJ36m2BhjIEqLqqoq3HfffaG/P/zwwwyOhogKFYMMREREhSJSuaQoMxlybfU7mRObdGY9zbwRcVIxkyHAslyScXebogBCJoMWQyaDZeNnrflwuaQKYYsGzddo2L9IeGqwJwNR6rFcElHmDB06NPTvrVu36rbt27cPf/zjH3HyySejbdu2KC4uRu/evXHttdfiiy++sDxu7969oSgKxo8fDwCorq7GL37xC/To0QPFxcXo0aMHbrjhBqxfv970GLNmzQo1q7YqMbRly5bQfrNmzYp4n0Uejwdz5szBXXfdhSFDhqCqqgpOpxPt27fHKaecgkmTJmH//v3S644fPx6KomD+/PkAgPnz5xsabffu3Vt3HfHcmJkzZw4uu+wyHHHEESgqKkL79u0xbNgwTJ06FQ0NDabXE8+bqqqYMWMGhg8fjqqqKpSVleGEE07AlClT0NTUFNO5IkoFlksiIiIqEJEbPxsvk/VkYJ+G/OHLtYcyTeWSDMELZjIE6DIZJD0ZJJkMSFYmA5qh2ItgEzIZgMMlk5zlusuM5ZJy7clOlHvE9wWWSyJKH6ezNcjv97d+fn/88ccYN24c6ur05QW3bt2KrVu34uWXX8add96Jv//977DZrL9XPf/887j11lvh8/lCl23fvh2zZs3Ca6+9hpdeegnjxo1L0j2K3YQJE/DCCy8YLj948CCWLVuGZcuWYdq0aXjnnXcwYsSIlI+npaUFV111Fd566y3DeJYsWYIlS5bgySefxNy5c3HSSSdZHqupqQlnn302Pv30U93la9aswZo1a/Duu+/is88+Q1lZWbLvBlHUuLaAiIiIAJiVSzLux0yG/OGXBIyyeUrIULYoVeWSxK/IBZrJYOzJECmTASnNZIA0kyFQMsmwP4MMRGknfmdguSSi9FmzZk3o3926dQMArFq1ChdccAHq6urgdDrxm9/8Bp9//jmWLVuGp59+Gn369AEAPPXUU7pySzKrVq3Cbbfdhk6dOuHJJ5/E0qVLMX/+fPzhD39AUVER3G43rr76aixfvjx1dzICn8+Hvn374ne/+x1ef/11fPnll6iursYbb7yB2267DS6XCwcOHMDPf/5z7N27V3fdKVOmYM2aNRg8eDAAYPDgwaEJ/OB/H3/8cUzjuf7660MBhhNPPBEvvvgiqqur8dFHH+GGG26AoijYuXMnzjrrLOzYscPyWLfccgs+//xzXH/99Zg7dy5WrFiBt956C8OGDQMALFu2DH/+859jGh9RsjGTgYiIqEBEzmSQ9F+QZTLkWh1/MpVz866GHgEpCjLY2JMhQCxPFXtPhqRlMgTLJdldgK0IUN2tNyFp/ixmMrBcElHqiSX4HIwyEKWFz+fDY489Fvp71KhRAAIr+z0eD+x2O9577z2cffbZoX2GDBmCcePG4bTTTsO6devw6KOP4rrrrsNxxx0nvY3Vq1ejV69eWLJkCbp06RK6/Kc//SnOOeccnH322fB6vbjjjjuwbNmy1NzRCCZPnoy+fftCEbKoBg8ejEsvvRR33HEHhg8fjn379uHJJ5/EQw89FNqne/fu6N69eygToKyszNBkOxZz587F7NmzAQBnnXUW3n//fbhcrd+Rzj77bAwbNgwTJkzAwYMH8dvf/havv/666fEWL16Ml156Cddcc03osoEDB+K8887D4MGDsXbtWjzzzDN46KGH4HBwqpcyg5kMREREBMAkk8GkJ4Os0SrlnpwrfZWmcknMZDhMNT/fsrBLansytAD2wI9zm5DNIMtkYLkkovQTGz9bvKSJKAkaGxsxf/58/OxnP8OSJUsAAL169cLll1+OZcuWobq6GkBgFXx4gCGoqqoKM2bMAACoqorp06db3t5jjz2mCzAEnXHGGbjlllsABHo2ZCqb4cgjjzQEGMINGDAAN998MwDg7bffTulYnnrqKQCBMlYzZ87UBRiCbrnlFowePRoA8Oabb2LXrl2mx7vkkkt0AYagoqIi3HXXXQCAAwcOYN26dckYPlFcGGQgIiIqEJHiAh7JPKpZ1gLn6/JDzj2OaSqXxJ4MQVblkiQ9GZDKTIam0LEVl74vg+ZhJgNRNhBfZgwyECXX5MmTdY2Iy8vLMWrUKMybNw8A0KlTJ7z99tsoKirCJ598ErreTTfdZHrMESNGoH///gCgu46oqqoKF110ken2G2+8MfRvq+OkU01NDTZt2oRvvvkGa9euxdq1a9G2bVsAwLp16+D1Rr8QIhY+ny/UQPrss89Gjx49TPcNBmd8Pl/ocZS5+uqrTbcNGjQo9O8ffvghxtESJQ9zaIiIiApEPOWSzPov+DV+icgHsnJYGgITyLYsbNippSuTQWEmAyA531GVS0pRJgMCPRkAQHHoMxlUXxQ9GQo1TkSUJpqmGd4X7CyXRJQWffr0wWWXXYZ77rkHnTp1AgCsXbsWAOByuSI2FT7llFPw7bff4vvvv4fH45Guuj/55JMty/CcdNJJcLlc8Hg8uv4Q6bZmzRo8/vjj+OCDD7B7927T/VRVRU1NTeh8JdMPP/yApqYmAIFzayV8e/AxkznmmGNMt7Vr1y707/p643cionTh/AAREVHBsA4zyFb6yiahgUCZHXGlMOUeWWNvIBBccqWqp3Ii0tWTgZkMAZrYkyGaxs/CxIQ/uT0ZAMDGTAairCN7ifFrAlFy3X777bjjjjsAAIqioLi4GB06dEBlZaVh34MHDwIITEBHqtEfLIGkaRpqamrQuXNnwz6RJuMdDgfatWuH3bt3h2473Z577jncdttt8Pl8Ue3f3NycknGE3/9I5y28/JTVeSstLTXdZrO1LgLx+wtzYQxlBwYZiIiICkTEcknSJs/yfc0yHCi3iE06gwKlcLJwdihN5ZLETAZjBkWBEM+3RSaDgsCEhzGTIYYgQ4SeDMrhngyKUwgySBo/i0Ey9mQgSi1pkIGZDERJ1alTp5ibEVv1KMjEcVJl/fr1oQBDp06dcO+99+LMM89E7969UVFRAacz8P3k+eefD5WPSkePuWw/b0TJxCADERFRgYhYLknWk8Eik4Fyn9ikM8gsuJRxaSqXZMyQKNCommW5JP2TJDSXaOjJEH25JIctsPJZnKxUND/s8LSWSxIaP6ts/EyUcbLMR2YyEGVOsITOgQMH4PP5LLMZgmWFFEVBVVWVdJ89e/ZY3p7P59NlT4QLX2mvqubfqRobGy1vw8qsWbPg8/lgt9sxf/580/JC6ciyCL//kc5beEkn8bwR5Ro2fiYiIiIA8kwGs5XuWTsJTTExexzNHvdM0wwr69OTyQCVmQwAhMbP+k3BIEMw26D1ENFnMiiKIs1mcGnNgUyJYLmkKDIZWC6JKL1YLokouwQzHjweD1atWmW577JlywAA/fr1k/ZjAIBVq1ZZliFavXo1PB6P7raDKipaFwfU1NSYHuO7776zHKeVb775BgBw4oknWvYvWL58ueVxkpF50Ldv31B5o6VLl1ruGzz3gPG8EeUaBhmIiIgKRKQpNtkknM9spTszGfKCWc8NswyHjDP0ZEhV42dmMgCxNX4ONQpPoPEzIO/L4MThmskmmQyaJJPBJZRp8arG7AsiSh5pJgPLJRFlzOjRo0P/fv755033+/LLL7Fu3TrDdUQHDx7EnDlzTLeH34Z4nD59+oT+bTXJ/9prr5luiyQYALHKhti1axfeffddy+MUFxcDANxud9xjcTgcGDlyJADgv//9L7Zv326677PPPhu6zqhRo+K+TaJswCADERFRgYg0v+aV9WQwy2QozDnXvGP2OGZrJoOxfA97MqRUDI2fQ5kMhnJJ0WcyAPIgg0sLBBnMejKoUWQyACyZRJRKspeXRS93IkqxoUOHYvDgwQCAZ555Bp9++qlhn9raWtx6660AAiWNbr/9dstj/va3v5WW/5k/fz5mzJgBABg0aBCGDBmi23788ceHSgFNmzZNOoE/e/Zs/Pvf/47insn169cPAPD9999j8eLFhu1NTU246qqrIjZ77tq1KwDghx9+SKhnw5133gkgkEly0003wes1Lrp4/vnn8fHHHwMALrnkktBtE+UqBhmIiIgIAOBhT4aCY5axkL2ZDOkpl2TIkBBvt2BYNH6GWU+GBDMZJMEBZzDIEEMmQ5FkdtNdoLEionSQBRlsbHhKlFHPPPMMXC4XfD4fzj//fNxzzz2YP38+li9fjmeeeQYDBw7EmjVrAAD33HOPZbmeE088ETt27MCgQYPw1FNPobq6Gl988QXuv/9+nHvuuaG+D0899ZThug6HIxTMWLt2Lc4880y88847WLlyJT788EPcdNNN+MUvfoHhw4fHfV+vvfZaAIGeD2PGjMFf/vIXLFiwAMuWLcM//vEPnHTSSZg3bx5GjBhheZzgGPbu3Yvf/va3WLFiBTZu3IiNGzdi69atUY9nzJgxGDduHADg448/xqmnnopXXnkFK1aswCeffIKbb74ZN998M4BAL4a//e1v8dxtoqzCxs9EREQFImK5JFlPBpMrMZMhP5j23MjSx9eqfE9SicGLQs1kMPSisCqXFPh/KjMZkEBPBoB9GYhSSbb4wMEljUQZddJJJ2HOnDkYN24c6urq8Nhjj+Gxxx4z7HfnnXfi4Ycfjnisu+66C7fffjvuuusuw3aXy4UXXngBp5xyivT6f/zjH/H5559jyZIlWLx4MS6++GLd9lGjRmHatGlx9yUYMmQIJk+ejAcffBCHDh3CAw88YNjnd7/7HY4//ngsWrTI9DhXXnklHn74Yfzwww944okn8MQTT4S29erVC1u2bIl6TC+++CJ8Ph/eeustfPXVV7jmmmsM+3Tr1g1z585F9+7doz4uUbbixz4REVGBiLQ4XdqTwSyTIVtXulNMzB7HrE1UMfRkSFG5JPErcoFmMmiGTAarcklJ6skQRyaD6jEGGZySXzksl0SUOrLPDbZkIMq8s88+Gxs3bsT999+Pk046CW3atEFRURF69uyJq6++GgsXLsS0adNgs0WeHrz55puxcOFCXH755ejWrRtcLhe6d++O6667DitXrsSVV15pet3S0lJ89tlnmDJlCgYMGICSkhK0adMGQ4YMwbRp0/DJJ5+grKwsofs6ceJEzJ07F2effTaqqqrgcrlwxBFH4JJLLsHHH3+MRx99NOIxysvLsXjxYvzqV79C//79Qw2c41FcXIw333wT7777Li655JLQOauqqsIpp5yChx9+GBs2bMBJJ50U920QZRNmMhARERGAQGNUTdOghJU3yLma/RQT00yGbA0iGcolpWi9jE0fvNAKNMhg1WhbbKIc3JKSTIZg42eTngyaz1guyaYocNkAT9hDxyADUeqInxsKWC6JKBlGjRqVUG8AAOjYsSOmTJmCKVOmJDyeU089Fa+//npc1y0pKcH999+P+++/X7q9d+/elvd10qRJmDRpkuVtnH/++Tj//PNNt48fPx7jx4+3PEbnzp11GQxmos1quOCCC3DBBRdEtW+4aMYKRD5vROnCIAMREaWNX9Xw8dZmHGhRMbpnMbqUJf9jyOvX8MGWJjR5NZzbuwRti1O10jlx+5v9+GhLMw62tE7kKYqCIysdOKd3SUI/ztfu92Dxrha4fa1fODceiryi+MlVdQi/1Y2HfNL9cqEnQ7NPxfubm7GzIXAfFAXoU+nEub1KYI9ieeWinS1Yvc+DUoeCM3uUoGeb9HxtWnfAg6/2enB0lRNDuhQl7bibDnkxf3sLGr2ts667m+RlgNIdRGr0qnh/cxN2N/rRpcyO8/qUoly2FD1NjZ8VIZPBd3AlGtf/A6VH3wpFsUFT/Wj6bgb8DZtR2u9mOCqPSsk4YqVpGlp+eBXemtUo7n05XB0GR3U9X90mNG2YDn+zvpmjd9+XaFDaY0HJTThg7wVH3bFwrqwFANS49U8Ss54M3v3VOLR4Akp6XYai7mdHHIssk8ElZDLYXEKQQZLJAARKJoWXgXt9QwPauGzoXGbHeb1LUeFiUjdRPFRNw3+3NuP7Q77QxFaDV/+9gKWSiIiICguDDERElDavrG/A3M2ByaLPtjVj+pkdpKtWE/H0mjos3OEGEJgk/r8z2mflSjpV0/CnJTXY02SczV24AzjkVvGLY8rjOvYPtV5MWXYorpI3i3a6o9rPl/0xBjy1qh7Ve/T3Z+EON2paVFzT3/rcLtzRgmmrWicuF2xvwd/PaI/yFE9KbjrkxZ+WHIIGYA6AewZVJiXQsL/Zj0lf1uhWdVtJd+PnJ76qxdf7W4NgG2q8+OMpVYb9DBkFqSqXJDlu3ZI7oLoPouLEB9Cw+k9oWP0nAEDT+n+g0+XbYXNVpmYsMWj+/lnULp4AAGj85nF0/Pl6ONocaXkdzdeCAx+cBrV5t3T7M23nYqvzcLDCDcDkPcK0JwOA5u+eQfP3z6H9eV/A1WmY5XhknwlOreXwjZg0fvY1QNNUQ8Nul10BwiY+w59j3x7w4sFhxucYEUX2xneN+M/GJst97Fn43YuIiIhSh+sLiIgobap3t05ONXo1rD0QWxmNaAQDDACwt1nF6n3Jv41k2NXolwYYgpbviW6yX2b1Pk/Ka+rnQibDqn3yc7hyb+Rzu3SXfp9Gn4bvamKrLR+PWd/U6xp0hwc6ErF2vyfqAAOQ3sbPHr+mm/wFgDX7vfDKSttYlO9JJsUpD0K5d7wPAKEAAxCY4G7a8HRKxhGrYIABAKD5UL/qwYjX8ez70jTA0KRUtgYYIig5HBwQSxm1jkeFe8dHEY8jy2Ap0Q4BQCiQY3MaAzqau8ZwWZksG+awdQe9aMnWDudEWW7F3sjfrUqSvIiEiIiIshuDDERElDb1Qip9eJmgVNljUg4m0yLVBhdLkcRCOjmbZNkeY1A1DV6TUxhNXXbZ8yYd2RvfCeWpWpL0WDbGOPh09mQwezykF4v1/e3JKycVztXpNNhKuhou1/wt0v29NatTMo5EefcsjLiPv36T6TYfjFkJZoZ1LQYAuDqPgK20u3QfTY0c4BvcpQhOtAadbJoPJ7nnwNnpNNhLuwUuK+kCQD+B6W/abjjWiG7Wz49YAm9E1KrJ7AM2zPAIrz8iIiLKLyyXREREaeFXNTQLE52HWpI7wyM2Ig1cltSbSJpINe8bvRp8qgZHFL0DROJ9PqLcjkGdW3/sF9sVnNTJha11Puxp8sPt1+CMcDvvbNKXRUh3OZ1YWZ3fSPP2mqZhb5YGp+LVIrz2upbZMTSsDJPh8U1zJoOMBg3iRLImBBlkpXmSwVbUFh3GLMHBTy+ELzyAYNIAWlGc0stzga/+B93fjsr+KOp5EQDA6y8D9un3P693SaAM0WEKgL6VjtDzyeasQIcxS9C8+XXUL79Hf+UoGmj3rHDgvrazsHzHAfhhR3/P5+jtW4F2ow+13qbdBVtJZ10Ghr9xG5ztTtQd66IjS9Gt3IEfDnnR4tfwwZZm3XZ/tn5AEGU5MTg8olsROpS0lpnrWeFgkIGIiKjAMMhARERp0SRZSZ3Ian0Z2XxRGhb1xyWaSfo6j4p2cTSuFs9qn0oHrpL0d+hbGf3E6Jr9HvxQ27rKPtvn5qzOb6SJxXqPlrQMgmwhTggdKTwnqne7sbOxNbCSznJYHpPbkj2Eml9YCZ+iIAMA2Mt7onzA73FowdVhAzB5z7LlbpDBLwQZio44H20GPQwA8LX4gU8P6LZfdlSZvCl3GHvZESg//nfw1axG86aXwrZE97w6wrEX7Zr+Hvq79KgJhp4X9rIehiCDSFEUDO1ShKFditDkVY1Bhvx6mROljfgZeW7vUhxVlbvvg0RkbsuWLZkeAhHlCJZLIiKitGiUpNbXJDmTQVZeW5bdkA3EedVypwIxl6A2ziCMOImejMbXYqJDtgcZrKoDRaoclK0lthIhZhGVOPRfAcWMmfT2ZJBfLn2Y0pTJ0Er4qqyp0FSfYS8la4MMkV/7/gZ9kMFe0Tf0b9nbZ2zvJuL5i/aNI/J+9rIeur9lQYZwsqywXOgtQ5RtVE2DW3jfljVsJyIiosLCIAMREaVFOjIZZKvXs3UOSTwdDpuCNkX6j+XaOAuGi9dKxoe9GKjI1vMapFqcukhjNyuVpGVpwCoaYrkkcUJIiDnAm85MBtNySZLLxCCDPcVBBkNjaRWar9G4ny13k4PFckn28rAgg2T/mKYSDQHOeN/zjbdqL+upP3KEIIOsIly2v48RZSNZYLjYziADERFRoWOQgYiI0qLBa5zNOZT0IIPxsmydRFKFgdkVoNIlBBniPD/ifY6jrYOBMZMhS0/sYVaNiyOtXs7HTAaxtEWRXQwyCJkMaXx4oy2XpGkaoHr1F9pSXPNbCDJomjzIkL2ZDNZUTy00t74ckiMsk0EmtsQoYeckvm/YDJkMP1ruL5sDTefznChfyMoJip8pREREVHgYZCAiorRokpRLqnWrSW28KTtWtjYoFn+j2xWgskj/I73OHd/YjUGGxH/8i/MH2Rq8CUqk8XO+NX0GImcyiCX209qTIdpMBjHAgAxkMpgEGZCjjZ/99ZuFSxTYy3uF/kq4XJIhEyTK51UU79uxlktSFMXwPsbGz0SxE3v8ACyXRERERAwyEBFRmjRKMhk0xF8SSCaXMhkMQQabgjZiJkO85ZKECbrUZDIkfsxUsgouqZp16aO8zGQQmiyIpS3ETAZJTDBlzIIM4ny0WCoJQEobPwOAogiN1zU/NK8syJCbE2w+oR+DrewIKPbW7BD5IxPLfdXvq5k1zo54GEm5pFIhyNC0PeLxDUGGLH8fI8pGbiForQBwcVaBiIio4PHrABERpYWs8TOQ3JJJuRVkMAYC2oo9GbKqXFJu9WSI1LjYanJxb3MeBhmEO1wi9mQQniPpzGQwC2gYLva7DfukvPFztJkMkiyLXOCv36T721FuXSoJiDGeYtg5dY2foXqhNu+1vo6hwXmWv5ERZSFZ+T0lRwOtRERElDwMMhARUVo0STIZAKCmJYlBBsmEUbbOIYmNie1KMjMZ9H8nJcgg3kbUk4WZEWmFslkQwqdqONCcxmX8aRK58bM4+ZryIYWYZzLoL5dlMqQ8yCA+802CDNIsixzgF5s+C/0YEm38rBjOX7zvG8ZbtZV0ARR9w21/k3XJpFwr+0aUjQxBBpZKIiIiIjDIQEREadJo0mGzJomZDLKbyNaeDGJj4kBPhlRlMiQ+AZBP5ZIA88bV+5r9WR4+iY84KWQsl6TfP609GUxuS3z2Syfy09yTQYNJJoM/N4MMvkhBhkTfPw3vPdG+p0W+XcVmh720u+6ySH0ZDJkM+fhiJ0oxsVxSsd1kRyIiIiooDDIQEVFamJVLSmYmgyqZrPRmaeUbcah2G1ApZDLUZVVPBv1Bsr2WuVXjZ8B8cjEf+zEAQHPMmQyZb/xsIM1kKJLsmDyKpFySmkuZDBECjGImgyPJmQyGveMNWpjcD5tQMklt+NHyMOKCazZ+JoqdsVwSpxSIiIiIQQYiIkoTWeNnADjkTt6krmzi2GyVdKYZGj8rijSTIZ6VxOL8emoaP2fneQ2KlMlgNrm4Nw+DDH5VM/Q9iJjJkMaH1yyWJj5EmixbwOZM/oDCyXoyeBsMu2VtkMGCpvrhb9iiu8xeLmYyGK8XW08G8adGlE+sKN9fxL4MsZZLyvZgKVE2chsy4zI0ECIiIsoqDDIQEVFaNKUhk0G2et2brUEGYVyyckl+zbzMlJXUNH62vo1sE2/j5z2N+RdkECeEAGMmgzMXMxlszjQ0G42y8bOkKXW6aVps76X+pu2A5tNdJpZLkkkskyHe93v5rRqCDDGWS2ImA1HsxB4/7MlAREREAIMMRESUJg1mjZ+T2JNBtnrdm6VLVcVh2RQYGj8D8fVlYE+GyJkMZpPoe5rysOlzFEEGcY7IJCaYEmZBBkMmgxBkSH3TZ0hW4mdx42fVG9PuYqkkxVEGW3FH3WXSckkxZTLod9aS3PEk5iADMxmIEmbMZGCQgYiIiBhkICKiNGkyWZF/KKlBBuNl6ZwsjYU4VodNgcuuoESY7Y0vyCD0ZIj5CEZioCLrgwxxZjLsbTbPZMjyu2xK7McAyMolZTCTIcrb0sRsgbQEGfR1QDSzTIYsCDJoCQYZ7BV9DZkhiVdFEzNBoj1gtOWSeur+jj2TIcrhEFGIGGQoYpCBiIiIwCADERGliVnj50NuNWn1/WWlL6IuxZJm4liDc19txb4McTR/TkW5JHEOIft7MsS+XdO0vOzJIJa2cNqMQQVjkCHlwwrxmJxyw3MsA5kMxsbP/izOZIhtDL4GMchwZFTXiy2RQdw7teWS1OZdlsEW8X3Ml+XvY0TZSPxMETPjiCh7jR8/HoqioHfv3pkeCoDA9wRFUTBp0qRMD4WIkoBBBiIiSjmP39h4NkjVgDpPkoIM0kyG7JxEMjZ+DvxfLJlUl5RySTEfwiDfyiXJAlL1Xk266j/XieWSZKUtDI2fs7Ang6Fckr0oFcPRkzV+lgUZZE2p0yzRTAaHpB+DvFxSDG8ohvOX2sbP0FT4m3aa7i/OhWZpDJooq4mfKcxkICKK3hlnnBEKrpx99tmZHg5RUjHIQEREKWfW9DnoUEtyVo/LJoziSARIC3GVdrCMh9j8OSnlkgqxJ0Mc5ZLyMYsBiG7VqSGTIY2Pr1kg0HCpOJGfjnJJ0TZ+zopMhgTLJZVHF2SIjfhci/OIJu9hSlF7wF6su0y1KJlkY+NnooSxJwMRWenduzcURcH48eMzPZSss3XrVsyfPz/096effoqdO80XRxDlGgYZiIgo5RojzFgmq/mzbMIoVxo/B3+jV7qys1xSrvVkiFQGRbZSf0+BBBlkq07FuEM2ZDKID6Exk4GNn/VjkAUZzF/8sp4MhmMKj0HsbyXCNbRo38+ie/4pihJT82dmMhAlzvCZwnJJRBQnTdOgaVrBlEt66aWXoGkaioqK4HA4oKoqXn755UwPiyhpGGQgIqKUa/RGCDK0JCnIkEvlkoS7HJzEryxKRuNn8dgxH8LAmMmQnec1iJkMrQzlkiQTQk4h8JDOhummQQbxb3EiPy2Nn/VflTVNhebN/UwG1VMH1b1fd5m8XJL+UYg5KcoQpIn3fcP8hmMJMrDxM1HimMlARBSfl156CQAwduzYUKmk4GVE+YBBBiIiSjmzps9BSctkkEx8Z2u5JHGswXlfsSdDbRz9KtLR+DnbVwDH0/g5UiZDlt9lU+Kq0xJZuaRMZjKYvEYNL+esaPycaz0Z5I+jmMUAKLCX9Yp49UQzGbQoMxnE4IYVe1lP3d+WQQY2fiZKWDTZcUREpLdkyRJ89913AICrr74a11xzDQBg7dq1+OqrrzI5NKKkYZCBiIhSrilCJsOhJAUZfJLDZGu5JEMg4PAnstiTIb7Gz6noyZBb5ZLiafycrZkMWoITodE1fhZ6MmRjJoPfrfs7LY2fc7wng1kzaF+DPshgK+0OxVFs2C/hl7nhvSfDmQzCeLL044EoqxkyGVguibLUpEmTQg12AeDQoUN48MEHcdxxx6G8vBzt2rXDGWecgddeey3isbZs2YLf/OY3OO6441BRUYHS0lL069cPt956K9asWWN53eAYgiWBPvnkE1x44YXo2rUriouL0bdvX9x1113YsWNH1PfFzLx580L7zZs3L+L9EjU2NuL111/HzTffjJNOOgmVlZVwOp3o2LEjRo4ciUcffRQNDQ3S644aNQqKomDr1q0AgBdeeCE0luB/o0aN0l1HPDcywZJC559/Prp06QKXy4WOHTvijDPOwPTp0+HxmH8HE89bS0sLHnnkEQwcOBAVFRWoqKjA0KFDMW3aNPh8vthOVoxefPFFAEBVVRXGjBmDiy++GBUVFbptRLnOkekBEBFR/muMMGOZrHJJsonvbC2XJJ4Se6hcUhJ6Mgh/J2NFAcslpZ7ZOdUQzwryVs1RNH52Ck+SdGYymDZ+jpDJkJZySTa7OAiTTAa34bJ00zRJQMEkyCBmMshKJQHGkEDC5ZKifd+I4f3FGGT40XxfYThqln4+EGUzMcjATAbKBZs3b8bPfvYzbNq0KXRZY2Mj5s2bh3nz5uHtt9/GK6+8AofDOEX24osvYsKECXC79Z/1GzduxMaNG/Hcc8/hoYcewn333RdxHJMnTzZMqG/evBlPPfUUXn75ZcyZMwenn356fHcyCcaMGaNrTBy0f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7wQixYtMown+NhNmzYNH3zwAXr1kmRkhtmzZw/OPfdcrFq1Snd5dXU1qqur8fHHH+Ptt9+GzZb8tdgejwevv/46AGDcuHFwuQLfYS+55BK88MILeO211/Doo49Kn39EuYSZDERElHIRezK4kzO5K5sY9arZOSEujsms8XOzTzNd6W1+bP3fSenJIN5G4odMqUhlUMRMBp+qYX9zZu+VWWAk0brxYmmLYnGmFbJMhixo/Cz+nYFySbJMBtVnXMGXDY2fISnZZJbJEE3TZ5mYYwxxN34WjmMR3bCV6oMMakzlkuIaDlFBM3ymMJOBcsAVV1yBzZs347bbbsMnn3yC6upqPPfcczjqqKMAALNnz8a9995ruN7cuXMxfvx4uN1ulJeX48EHH8TChQvx5Zdf4rHHHkOHDh3g9/tx//334x//+IflGObOnYtJkybh6KOPxnPPPYfq6mp88sknuPXWW2Gz2VBbW4uxY8di2zbzz7FU8/l8GDBgAB544AG89dZbWLp0KZYsWYLXX38dV155JWw2GzZv3oyLL74YLS0tuuvOnDkTa9asQbdu3QAAF110EdasWaP7b+bMmVGPxe/3Y+zYsaEAw8iRI/Hvf/8by5cvx7vvvouLL74YAPDtt9/irLPOMs2wCLrkkkuwbt06/PKXv8R///tfrFixAq+++ir69+8PAJgzZw6eeeaZqMcXi/feew8HDx4EgFCZpPB/7927Fx9++GFKbpsonRgmIyKilBODDCUORbe6Olnlkszm4n0q4BIXJGeYONZQkKHIOAFc61bRsTT6O5Cexs+JHzOVIk3Mi5OL+5v9hkntqiJb0vqFRMOsxJNfA5wJHDeaxs9i3CGdk6/mPRn0gzD0PchA42cA0LySH7FZEGSQBhQSDDIkHp9NVrkkc2Img+reD83XDMVRYthXDKbJyqYRkTXxM4WZDMmlaSpU94FMDyNtbEXtjf2PUqC6uhqvvvoqfvGLX4QuGzx4MMaNG4fTTz8dq1evxt///nfcdNNNOP744wEAXq8XEyZMgKZpKC8vx8KFC3HSSSeFrn/qqafi0ksvxbBhw7Br1y7cc889GDduHDp06CAdw/LlyzFw4EDMnz8f5eXlocvPOussjBgxAtdddx3q6urwu9/9DrNnz07NiYhg5syZ6Nevn+HyU045BZdffjluuukmnHPOOdiwYQNeeeUV3HTTTaF9+vTpAwBwOgPfWtu2bRs6l/H45z//iS+//BIAcN1112HWrFmhRQeDBg3CBRdcgAceeAB/+ctfsGnTJjz00EP461//anq8YLZCeMmmgQMH4pxzzsGxxx6LPXv2YPr06bj11lvjHrOZYDmk3r1747TTTgtdfuaZZ6Jbt27YuXMnXnzxRYwdOzbpt02UTgwyEBFRyjUJjZ+7l9ux8VBr3cuaFhWapkWsMxqJ2SStR9XgyrIfweJY7Ycnv0odChw2fTmlWk+sQYYU9GQwTM4lfMiUirUng9j0ucypoMypoCY8Mz7F85FmE/uBxzP+x7BFqM0lCzI4lOzPZDA0frZnoPGzZBxAlmQySMolRduTwVEeZbmkWMdkOH/RPq/iL5cEAP6m7XC0MU6S5FoDe6Js41M1w+tG1ueH4qe6D2Dvvzplehhp0+nKvbAXd0z57YwdO1YXYAiqqKjAjBkzcMopp0BVVfzzn//EtGnTAABvvfUWdu7cCQD44x//qAswBPXq1QuPPPIIrrnmGjQ1NWHmzJnSjIigGTNm6AIMQddeey1ee+01fPDBB3jrrbewe/dudOnSJc57Gz9ZgCHc6NGjceGFF+Ltt9/G22+/rQsyJNtTTz0FAOjYsSOmTZsm/Z04efJkvPnmm1i/fj2eeeYZ/OlPf0JRkbxn1913323oCQEA7dq1ww033ICpU6dizZo1qK2tRWVlZdLux4EDB/D+++8DAK666ird/bDZbLjqqqvw6KOPYs6cOTh06BDatm2btNsmSjeWSyIiopRrEDIZupfrY9x+DaiPUFIpGmYT39nY/Nksk0FRFEPJpNoYV9Ono1ySluoZ9wRFesjF7Xub9Oe4cwxBnWQxLZeU4KmOpvGzU3iSeNMURPJLJqyCIpVLylQmg5TqTbhBd6KkAQVp4MEPf8MW3WXRZjLEHghOTrkkq/CGzdUGilM/GWDW/Fls/JzOBudE+UD8PAFYLolyww033GC6bejQoTjuuOMABJoyBwX/rSgKbrzxRtPrjxs3LjQpHX590YABAzBo0CDT7cHb8Pl8cTVtToV9+/bh+++/x9q1a0P/dewYCAqtXr06Zbe7c+dOfPvttwCAyy+/PNQgWeRwOEKPbU1NDb766ivTY1599dWm24KPi6Zp2Lx5c7zDlnrttdfg9Qa+j4WXSgoKXtbS0oJ///vfSb1tonRjkIGIiFKuyWfMZBAdSkLzZ7PV6+maMI2FOKEcnm3QRggy1MXY/JnlkmJv/CxmMnTKRJDBolxSIqKpn+3IUONnj8XtGE6H0FxZsctXqiVXDF+VTbIG0kYaZFChCRP7atMOw76mQQbh79gzGeItlxTb88/Q/LlB3vzZ0Pg5C/v1EGUztyTljuWSKBcMGTLEcvvQoUMBAN999x08nsCihrVr1wIIlAEKTqzLuFwunHzyybrrJDIGAFizZo3lvqm0aNEiXHHFFWjfvj06deqEo446CgMGDAj9F+xbsH///pSNIfw8nnLKKZb7hm+3Ov9WjarbtWsX+nd9fX00Q4zaCy+8ACBQminY/yHciSeeGCorFSyrRJSrGGQgIqKUE3sytHHZUOHS/yhNRvNns4nlWBsnp4OhXFLY6RD7MsTas0KctxVX78Yj54IMMZZL2isEGTKRyWC2qjrRiVBx5WmJZELI2Pg5oZuMmsfiZZ8VjZ9jqBOd6ZJJZqWRxICCT+jHoDhKYSuOrjRH7IkM+vMXd7ZHhBs2BBmazDIZ9H+z8TNRbNyS71MMMlAu6NTJ+nOuc+fOAAKfUzU1NQAQatQb6boAQqWNgtdJZAyRjpNKkyZNwmmnnYbZs2dHHENzc3PKxhF+25HOW3hZKasxl5aWmm6z2Vq/r/j9if8mDfr222+xfPlyAPIshqBrr70WQCDAk+xMCqJ0KtieDHv37sWyZcuwbNkyVFdXo7q6GgcOBBosXX/99Zg1a1ZMx/vggw8wY8YMVFdXY9++fejYsSOGDBmCCRMm4LzzzkvBPSAiyh1ikKHMaUNVkQ31YTOMyWj+bBZLsFotnSmGQEDYXJwYZIg1k0GcYE9OJoP+INm+AjjSJLk4uZgNmQxm2QOJ9r+IJpPBKcylawgEYuzJePJYsAoAik+xrC6XBGS++bNJkEFTvbqsD7/Qj8Fe3te0DFLSGz9HWy4pxhs2BBlMyiWx8TNRYsSgtcNmfF1RYmxF7dHpyr2ZHkba2Irap+V2Eun7lmjPuGQfJ1U+/fRTTJ48GQDQt29f3HPPPTjttNPQs2dPlJWVweEITB9OnDgRDz30UNrGle3nzUp4ZsJvf/tb/Pa3v7XcX9M0vPjii3jwwQdTPTSilCjYIEN4lDgRqqpiwoQJeO6553SX79ixAzt27MDbb7+Nm2++GU8//bQuOkpEVEjExs9lTgVVxXb8WN86sXswleWSkrcgJWmMPRlav0BnY0+GXGuYGksmg6ZpUQUZUn2Xzc5poq8MMcggW3UqmyTyaUCqQy2W5ZLEC/zpz2RQlOjPgObPjUwGv5DJYFYqCTD2Xon9rSTeckmRjqNnE4IMqmlPBv3f2f4+RpRtovk8ocQoii0tjZALzZ49e9CjRw/L7UBgQruqqgpAawmd4DYru3fv1l3H6jai2S4eJ3wuSVVV07mlxsbGiGM1EyyDVFVVhSVLlpiWiEpHlkX4/Y903oLnXrxepqmqildeeSXm67300ksMMlDOKtggQ7iePXvimGOOwccffxzzdR944IFQgOHkk0/G73//exx55JHYtGkT/t//+39YuXIlnn32WXTs2BF/+ctfkj10IqKsp2kaGoUfpWUOBW0TLAkkY7Z63ZuFq1XFFbThv9PbFCU3yJCMBUC5Vy4p+u2NXg3NwnM0M42fzTIZklsuKZqeDEAgsyLVE0gJZTLYmckQze2LwQexXJKj4siobyLmakmG85eqngw9dX+bNn7OUFkwonwhlksqZpCBckR1dbVlkKG6uhoA0K9fP7hcge8Xxx9/PL788kts3rw5VK1Cxuv1YuXKlaHrRLqNaLaLxwlvfFxTU4P27eUZIN99953lbVj55ptvAABnnHGGZQ+KYPkfM8nIPAi//0uXLg2VE5JZtmyZ9HqZ9vnnn2PbtsD3kbvvvhvDhw+33H/p0qV44oknsGnTJixatAgjRoxIxzCJkqpggwwTJ07EkCFDMGTIEHTu3BlbtmxBnz59YjrGd999h0cffRQAMHjwYCxYsAAlJSUAAk19LrzwQowcORLLly/HI488ghtvvBE/+clPkn5fiIiyWYtfM0xIlx4ulxSuJgmZDGZzsVkZZLDINmibaONn4W+x1FE8jOWSEj5kSsXS+Hm3kMVgU4D2xenPPjSrD5/IufapmqHxuWxSSJbJkI6G6dY9GYQ7nomeDDG0L9NUd+SdUig1mQyC2Ds/CweM90kVY0+GKDMZsr3sG1G2EYPWzGSgXPHCCy/gkksukW6rrq4ONQwePXp06PLRo0fjmWeegaZpmDlzJn7/+99Lr//GG2+gtrbWcH3RmjVrsHLlylCTaNHzzz8PALDb7Rg1apRuW/hc1fLly3HOOedIj/Gvf/3L9PYj8fl8AKyzIVauXImlS5daHqe4uBgA4HbH/72oW7du6N+/P7799lvMnj0bU6dORXl5uWE/v98fKnVeVVWFgQMHxn2byRYslWS32/HHP/4xYm+J0aNHY9q0afD5fHjxxRcZZKCcVLD1eyZPnoyxY8cmVDbpiSeeCL0RP/nkk6EAQ1BpaSmefPJJAIE37Mcffzz+ARMR5SixHwMAlDsVVAmTuDXJyGQwmTDKzsbP+r/DJ3nbFOl/tMeeySD0ZIhtaFLGTIbsO6fhYimXJDZ97lBsy0iNabPASCJPX3FCCABKZJkMkrtr1iMimawCgJEbPxch5WJp/JzhcklWPRnCGXoyWAUZxKyoWMdkCHCm5jklBhk0bx1UT61xP5ZLIkqIO4oeP0TZ6N1338Xs2bMNlzc0NODWW28FEChJFPw3AFx88cXo1q0bAGDKlClYs2aN4frbtm3DPffcAyAw/3PDDTdYjmPChAnSSfxXX30V77//fuh2u3btqts+fPjwUE+Exx9/HJrke+4jjzyiW9Ufq379+gEAvvjiC2zcuNGwfd++fZYZBUHBsW/atCnusQDAnXfeGbrdX/7yl9J9Jk+ejHXr1gEAbrnlFhQVpeG7YRQaGxvx5ptvAgBOP/30qJqHd+jQASNHjgQAzJ49O6EgDVGmFGyQIVGapuGdd94BABxzzDE49dRTpfudeuqpOProowEA77zzjvTDgIgonzUJQQYFgR+lYibDoZbEGyeYTdKmY0V2rMQSOOFz2sbGz1pMk/qp6MmQa+WSIpVBCZ9cNOvHkO4+c2aBkUgBEyti/WzArFySpCdDGh7kmMol+YUfW2kol2Qs92Mhw+WSTDMZtNbLVW891JZ9us2O8ugzGWJ+TYjnL9rncqyNn0uPMFwmy2YwlkvK8jcyoixjKL/HTAbKEYMHD8ZVV12FO++8E59//jlWrFiBmTNnYvDgwaFSR3feeSdOOOGE0HVcLhdmzJgBRVFQV1eHESNG4KGHHsLixYuxdOlSPP744xg8eDB27twJAHj00UfRoUMHyzEsX74cgwcPxqxZs7BixQp89tlnuOOOO0KT9xUVFaFqGeE6deqEcePGAQA++ugjXHjhhfjwww+xcuVKvPPOO7jsssvw+9//PmJJHivXXXcdgMAE+ciRI/Hkk09i8eLFWLx4MR599FGceOKJWLduHYYNG2Z5nOAYqqurMXXqVKxevRobN27Exo0bsWPHjqjHc9ttt4Vua+bMmTjrrLPwn//8B1999RXmzp2LSy+9NNSA+sgjj8T//u//xnO3U+LNN99EQ0MDAODSSy+N+nrBfQ8dOoR33303JWMjSqWCLZeUqM2bN4c+TILRRjMjR47Ehg0bsGPHjrjKMhER5bIGYYa/1KHApihoW6SveV/jVqFpWkJ1PM0mY3MhkyH8d7rY+FkDUO/RUFkU3blJR5AhC0+pTqSJeZ9FJkMm+jEAqSmXJAsyyBs/S8aTjnJJsTR+zkS5pFgyGTLekyFyJoNYKgkA7OW9TQ+ZcCZDssolRfhcUBzFsBV31AVQ/I3b4KzS12YW42vZ/j5GlG3Engwsl0S5Yvbs2TjrrLMwffp0TJ8+3bD90ksvxd/+9jfD5WPGjMHMmTNx6623or6+HhMnTsTEiRN1+9jtdjz00EO4/fbbLccwZswYjBkzBpMnT5ZmPLRp0wbvvvsuevfuLb3+448/juXLl+P777/He++9h/fee0+3/corr8TNN99sWbLJymWXXYYbbrgBM2fOxM6dOw3ZA3a7HY8//jhqamrw5Zdfmh7n9ttvxz/+8Q8cPHgQ9913H+67777QtpEjR2LevHlRjcdut+O9997DhRdeiEWLFuGzzz7DZ599Ztivf//++OCDD6TllDIlWCpJURTTMl0yl1xyCe666y6oqooXX3wxFFgiyhUMMsQpmJIFBDIZrIRv//bbb2MKMmzfvt1y+65du6I+FlEh8Po1fLClCQ1eDef2LkG74sxMFhYyTdPw+bYWfHvQC1XTcFDotVDqDPwgFcsleVXg76vqok6xqyyy4We9StC1rPWjzGxS9JMfm/HNAesJwDZFNvysZwm6lTvgOfw8+rHOF+VoYrdPmNgOX2HbxmU8C9NX1+Gm4ytCq+zNNHhUQxPjVPRk2FLnw/ubm3BCBxc+29Ycc0mnoHqvhtX7PChzKDi5kwsOm4KTOrkwrGtxzMdq8qr4YEszdjb4sOmQ9WO3cq8Hte5afH/Iiz1N+rGbneMPtzRjxR556vL2Bj86l9rhNHkCdy6147w+pahw2dDkVfH+lmbsamgdY4XLhvYm71fRBslUTcPHW5ux8ZAvlDnZIGQSOW3yrAWbosCu6Cddn1hZi9O6FeP8PqVwRTmRpGkaPtvWgl2Nfow8ohg9KoxfNX+o9WLethY0elXsbTZ/3rz5fSM++7E59Hdz81VQKi7DEb6vcXrzc1nXk6Hh6ymoGjkbiiP2526imn94DfVf3SffGBZk8NXpyx/YSrvHNN7YyyUJ7/M1q1Gz4JrQ347y3ijt/0vYSzpB0zS0/PAq3Ls+gWfPglhvCbayHrogQ8Pqh9D8wyuBbUXtUdrvJtht/XTX2d7gw5MrW8sqdS6z49zepdL3YKJ8tXKvG2v3ezCgowsndbQuNSKWSyqSZMb5m3ahcf00+Bu2xjQOm6MclcP/GdN1iKLVp08frFixAo8++ijeeustbN26FU6nEyeeeCImTJiAq6++2vS6119/PUaOHIknnngCH3/8MX788Ueoqopu3brhzDPPxN13340BAwZENY5JkyZh2LBhePLJJ7F8+XLU1NSgW7duOP/883HffffhiCOMmXlBnTt3xtKlS/HXv/4Vb775Jn788UeUlZXh+OOPD92HaCfwzTz//PM488wzMWPGDKxatQoejwddunTBT3/6U9x1110YOnQoJk2aZHmM7t27Y9myZXj44Ycxf/58bN++HS0tLXGNp127dliwYAFeeeUVvPrqq1i5ciUOHjyINm3aYMCAAbjssstwyy23hJp1Z4MdO3aEgiHDhg0LldyKRufOnTFixAgsXLgQH374oWXDcaJsxCBDnMIn/60+CACgR4/WOrHB7vLRCr8uEUX2zNp6zN8e+BKzaGcL/j6qvaE8AqXWB1ua8cK6BtPtZYdnYdsWGSdxFu+MrfbkFzvdeOqM9nAengBdult+/U21PmyqjRwwWLijBU+d2QHPr63HvO3xfRmOV/gcrt2moMKpoD5sgnjVPg8mfVmDJ8+wfk4/ssJYhzwVmQwALB/nWDX6NHxx+PGft70FGIiYAw3TVtVhxd7oVpPvbPRjZ6O8RJdZJsOGGi821Jgfc0uEoNQ3B72YPKwKf19Zh5X7ol/1/vK3DfjLae0i7jd7QyPe2tRkuY9V/WyHDfCHnZJt9X68tqER2xt8uOukyqjG+u4PTXh1faDW8IdbmjD9zA5oE/ZaP9Tix4OLaxBNL/O1B4SV+a6LAADLMQ61tq64LssyGdzb5qB26d1oO+KZFA7IqGnTy6hdaF4jOTyToX6Fvmmlw6IfAwAs2SW8p8ZeL0n3l9q8Gy2HJ/6D3Ds/Roexy9C8cRZqF90Y1XFk7GU94TvwVehv774v4d3XutKyeeMLUIZ9r7tOvaf1fSfom/1eTB5eFfH2iPLB1/s9mFod+N7w3uZm/O8pbXF8B/P31kjlkjRNw8H/ngtfzdcxj0Upas8gA6VUVVUVpkyZgilTpsR83d69e+OJJ55IyjjOOecc08bNkVRVVWHq1KmYOnWqdPuoUaMsS3TPmjUr1CjZzDXXXINrrrnGdPukSZMiBhqOPPJIPPvss5b7AIiqnLjNZsO1114bVT8IUTRjBSKft1h0794dfn/8ZYAXLIh9oQVRtuAynTjV19eH/h0pLausrCz072BdNiJKjeVhq4z3N6v4IYqJZUquapOJ/qDgClGXXUGlK7HZ71q3io21rRNoHUoS+1ir92jYUOPFir3pb7QlTv5WSVa1H2hRsa3B/Dnd4FGx/qCxZIqs0W+sStJcEmFVlMGCIFXTLCfuK5zRj79zWeDcJ7sMxPqDXtR5VKzeH9t9E3tGmPkqisBFuVmqBYBSWc0kxPZYBAMMQCA76Z1N+uaGq/Z5ogowRLLOdRYUV5vEDxSBYi8ClOgz4tw73k/haExu88e3rXcICzLYioXGg4r1eqODQq+cWDOWbI6yiPt491dDbdkP93bzc6c4SiMex1FunSmseWvhatwQ8Tjra7xoysZGPkQp8PK3+t+mM9bUWe7vET6OxM9JtWlnXAEGIiIiyn0MMsQpPN0rUmpWeIf75uZmiz2Ntm3bZvnfsmXLYhs4UZ4T64/XJmM2i2Kyv9l6QvS07kVh/068rEi9p/UxT0YDwlq3sdxQqrUvtuHoKqfustO7y0sWuC3iZockE4Ddy+3oVpZ42bBj2jkNzbpTyRtjIwK3XzPtXVDqUHDzgApE8/ToWeFA7zaBidfhcZRsiuRQixpzj4Vo68aLZSxkRnQzv0/Du8mfc4nMt35Xow967Y3w/hAtn1KMoi6jknIsK4q9CMU9fx71/obm1Gngb7QurRk+JnF89rKelteVlUKJhav7OVCckbNgNH8LNL9J9pitCMU9Lox4jOI+VwI2p+U+xxTvjSq4neaPAKKM2Spk4InlA0VivyMxy9H0dUxERER5j+WS4lRc3Poj3eOxXuHndrf+oCspKYnpdiKVYiKiVqqmGSbj6uKsE0/xUTUNB4VzPuqIYlQW2WBTgP7tnDgxrN7vNf3L0bfSiR/ro884WbC9BTVht1FvEUjqWmbH0C7W9YW/3Nmiqwt/yK0aejuc1aMY5Smq0V3hsmF41yKUCKvIL+hbii5lDjwmlD/yWaTy1knOxeRhVQk10w4qddrw5xFVmLGmHqtNVsxXuBSc2SP6z7mFO1oMPTviJa6uBIDzepegssiGU7oUoVu5A51K7fhqrwcev4bPtzWjzqM/lwqAB09tG+o/cX6fEnQqtWPTIS9ko2z2BXogiI6qcqJ/u8Bk55wfmnRBBdljFEmzT4PHr0XsiyAGZk7tWhQq/aQA6F3pwKkWr4fg6/Hzbc26UkWasQVz1MQAxT5hAusnbR04rr0LNgU4psqJJp+GrXU+wy3u3Pcjqus6hP72wwFbUeQSUsnQ9vQX0XzEefDVtZbaUWxFKOp+Lpp/eAVN66eF7Z3+2Wl/807rHdSwwILQHLqou3W5BjEgdslPImcUhHOU90KHsUvRsvVNqN7DK6RVDxq/0TfX1DQ/ILzKXJ1HwtXtLBQfcQGc7U+KeFuujkPR4fwv0bL9vdBEZ/P3z+n6NJTbW/DnEe2wZFdLqF+J26/hwy2xLQIiKlTie4KhlKJm/DAuO/73UZWeiyZjiYiIiLIXgwxxqqioCP07UgmkxsbWUgHZ1PGeKN/IVtvWs+RBWtV5NMME/RVHl5k24LYpSszZDFvqfKgJm+RuCHuMxem9K44qwzCLldsAsLfJj73N4WW2jD+QL/5JWcSGy8mmKAqGdilCu2KbbiLeZ7EMXpzA7lJqR0USgyMdSuy4+MhS0yBDxxI7rjom+s+5PU1+Y833OLkly/2vPLoMxWHBm76VTvStDEz+r97nQZ1HH9wa27dUF0xSFAVDuhRhiMnE/MEWvzTIcEIHF8YdFSgTIwYz4gkyBK/XocT6OSiuvj6rZwlOsKitLQq+HruU2fHAotbmE4mUqBUDH/uE19fwrsUY01c/sTRc0h+v2rdHF2TQ0tL0OUBxlKC0n0mvAM2rDzIkqZ5vtDRNhdq0y3qfsJXFmiq8diOcR/HuxNNE3lF5NMpPaG1KrfmaDEEGaH5A0782inqMQfnx98Z0W84Og+DsMCj0t3vHh7ogg6b50anUjguPbC3jdMitGoMMzGQgkjIGGcRUBuNnXMWgh6HE0N+GiCgb7NixAzU1Fs3YTJSVlaFPH+sSjkT5ikGGOIVnGIQ3gZYJb/bMRs5EqSMrr8JMhvQS63fbFHmD50SUC7X1G8OaIxvm96KYD2sjTMLLggyRVpCnklitRAzihBMnsNsk2PNCOh6LLtLJPE+xzvF5JEEGq/HINsXaINtuMuEanpRS5rShLizNIqVBBuE90KL9giVD+Yv4DgPA+HwVgwwdowze2RT9KNSsqfhpWMab1ltXW/YDmj5YprjaQvMcah2R3zyTQYlQXkiNUBolLrIeF5ofmmFyMvHHWBFvSzW+v8vuEmMMRHJiZpvh80KSyRDVlzEioizzwAMP4IUXXoj5eiNHjsS8efOSPyCiHJAtv9ByzrHHHhv69/r16y33Dd/ev3//lI2JqNB5JZOM9V5OFaTTgWb9JFFVkS2ula9WxMa1DRaTttHcchshCLKv2Xi8ovQmMeiIk/pWmQy1bv028b4lg9XEdayNkpP5zBAzGRw261XXdslsaawxErvJuXCE3a7YdDveIEM0DXfFCX1Hkl57sfaQCBde3sunaob3iI5RNmtXhIktDRl8UeoYZtjSeutq0w79BYrN0GdBCyuXpAlBhkg9DCKWRomHNMigGldAJ2Pls3hb0glQyXASv2WinBDrS9rwnmDcw3ALySjZSBSPSZMmQdM0aGn+bBYFxzBp0qSMjoOIKNUYZIhTnz590K1bIJ9//vz5lvsuWLAAANC9e3f07t071UMjKljSckls/JxWB4RMhvbFyf+YKRdW5zeEZzII+0YVZBCOt79JksmQlJm1+AitGiwzGcTnu5ilkZzxWGQyJPE8xfp70CPMfBRFGIs8kyG28ZsFJey6TAb9TvWe+H7oRhOcEANQ4nMnWsl81oS/Lx9sUQ2v0ZzPZDA8Z9I7keFv0vdjsJV0MdY1D2/EKpRLUiKUS0pNkMH42Ml6MiSlvIpNSNqWBBmkdynDE1JE6RLr4oCI7wlitpAsqEhElANmzZoVChDF8h+zGKiQZckvtNyjKAouuugiAIFMhSVLlkj3W7JkSSiT4aKLLuJKDqIUkpZLYpAhrcQmvu0ilHeJh5jJkGggqVKYiG/0GSdqZave08WQyRBD4+dUBBmsMxliO1YyPxLFTIZIpZvSVS6pVJjpT1UmgyZpfG8VELIkXC2hTIawQe0VAnglDgVlYj0wE1kbZMh0uSSh6bO9pBsUu74PTXi5pFgzGcR7Y0tC/pE0eKD5jRP7SQgyiOWSpKVc+NWcCphL8rltlTEpbjL+tk1BRhIRERHlBH7qJ+DXv/417PbAN7O7774bzc36pnHNzc24++67AQAOhwO//vWv0z1EooIiCzIwkyG9xH4GKclkcJpnMsQjUmPkTGYxALH1ZBAnolNRLslq4rooygnjoGSeWY8wdxhpdWYyyiWZZQqEBx/ETIZ4+8TURciAkD0v4s9kSN4jEx4UM/RjKLFHvfjCpolBhmxZHZvZckmGTIbSblBs+kbl+p4MsWYypKAnA2Bc3awaGz8n5WeKoVySz7iL5GrMY6BCIfusbPJFH2SI2JOBmQxEREQFo2AbP3/xxRfYuHFj6O/9+/eH/r1x40bMmjVLt//48eMNxzjqqKNw7733YurUqVi+fDlGjBiBP/zhDzjyyCOxadMm/PWvf8XKlSsBAPfeey/69euXkvtCRAGySbZIE3OUXGImQ/vi1GcyNIbVYzEshI1iArMywkR8rKUEki2WngzpyGSwDDIksSdDoo2fZaszw8mGapaZYMZsb7Hxc7hEGj9bkWW4xNuTQbxaIu+i4eWS9gmZDJ1Ko39+Zm0mQ4bLJalCkMFe2s0QeNDCyiWJmQyRGz/r/05qkCF8MlJSLiklPRnY+JlIR5b11+RVTb8/RGr8LAYLk1L2jIiIiHJCwQYZnn32WdNO8YsWLcKiRYt0l8mCDAAwZcoU7N27F88//zxWrlyJK6+80rDPTTfdhD//+c8Jj5mIrImTjADQ7NPg9WtwZniiuFAcFHoytIuyqWssyoUfvg3hQQZh3+h6MkTIZMh4kEH/d2w9GZI/dstySTHOQFrNgce6IDwT5ZIURYFdgbFMUdgdKxWyO+LNropULkn2vLB6rKxIJ101LWLQTtZYMXySeq+h6XP0QUgbciSTIe09GfSNn22l3aC6D+p3Otz4WdM0QCyXZI+tJ0PSSpxJyhhpaWj8LC2XRFTAZJ97jRYZohEDj4bXcba8VxMREVGqcWlBgmw2G5577jnMnTsXF110Ebp16waXy4Vu3brhoosuwvvvv49nn30WNhtPNVGqmU2+1ss6QlPSqZqGA2nJZND/onX7wwNMsU/wlTkVy8nlSCviUy3angyqphkyd8R+E6kYT7jYAzLJC4KIQcZIWRWyJs/xrNKWZkSE92QQyyWlqPGzLMMl3p4MsonkaEYtifPqGMolRdn0GQBsiv7+a9nyFTbDvbbErAV7aXcodpNySZof4iOpKBEyGYS/k5XJIPZKgKamZAW08XbYk4EonF/y0SL2pgpnCDIYSsaJ5ZKy5L2aiIiIUq5gMxlmzZplKImUiPPPPx/nn39+0o5HRLGT9WQAgHqPhnbF0k2URPUezRDoSUlPBsnEeaNXhctul5RLinw8m6KgwmUzXSme6XJJYgkfs2Bag1csYpCangzWjZ8zd64MmQwRZkNl/QrscZwuu00xzLroejIINxTvOvfIQQbjZfH2ZJBnMphsCBMxyCCWS4opk0EYj2KLKrsi3WTZHKkklkuylXQDDD0ZDpdLErMYgIiNn42rlpMVZZBM/qeiJ4NN+KkjCTKYPt+JCoAsQN1ssTgnUnZTSjKSiIiIKCfwU5+I8oZZkCHeGugUmwNCqSSbAlSlIMhQJmkuXH84tT+eckkAUGlRVijjjZ8N5ZJMnueSIEkqejLYFMX0vMaayWB1amPuySCcl0hjkU2WxtqTATA25gb0j5mYyRCvWrdqOYEt7cmQ7kwGk+empmnwqZqhZ0vHGMqpiZkMgHGyKzMyVy5JU71QW/bqLrOXdoNiF6LqhzMZNKHpMwAoEcslCfXX4xinlE1Wxigz5ZLYk4EKmSxpwbpcUqSeDPrXmCGbiIiIiPIWgwxElDe8JqWW462BTrE5INRbryqyJW/Vaxi7TTHUuW9I8DG2mozPdE8Gp6Hxs3w/MZhW6lDinmSOPCb55UUZnEvwCK//SFkVsuBAPKfLJrmSPeyysiQFGbwq0GKRKiBbeBrvU1d2tWgm9M0qbPhU4ECLapi4jalckmTaN1LmRDoYQm5pXAKvNu+BOB0eCDIImQyHezJIMxkilUtKUU8GRfwJIstkSEW5JNWX8DGJ8ols4UJM5ZIi9WTgdAMREVHB4Kc+EeUN83JJDDKkg6HpcwqyGILEvgyNCWYyVFgEGTJdLsmQyWAyiSkGGVKRxRBkFryI9VxZ7Z1o4+eIPRkkpyeeIIM0kyHsstJ4uy9LWPVzECeK7AriLiUU7/XMMhla/Br2CqWSSh0KymI4N7LHJisyGQznKn2DEps+w+aCUtQeMPRkCJRL0iRBhkiZDOLrMGlxS0m5pHQ0fpb2ZJBguSQqFLKFC01W5ZKEvyNlMohZS0RERJS/GGQgorzBckmZZWj6HEO99ViJfRkaDv8gjqcnAwBUWvQuyHQmg6Hxs8nTWewpkYp+DEFmc8OxnivrvWOb5TP0ZIjw9HMkqVySbNI1/DETs24SYdY3BDA+L8QMmFjEm8lgllnQ4tMM/RhiyWIAAJthastYtiMzMhdkEPsx2Eu7QVEUQ7kkzaJcUsSeDOLuyUplECceJZkMhmyHeERTLim72noQpZUsk6EppkwG/QvIECzkdAMREVHB4Kc+EeUNs4VX9Rarfyl5DjTrJ29S0fQ5qFyY5W5I8DG2LpeU0KETFnVPBuEctLHoM5GoZGUyWEUZYu7JYAgyROrJEN1lkcjORfhNJ6tcEmAdMBWfF/E2fQbMHpbIj4jZc7PFr2Gf8P4QSz8GQF4uKTvCx5krl+QXmz6XdgMAKELjZ1g0flZsMfZkSFEmQ6p6MhjKJbEnA5FOrD0ZxN5AhtcPezIQEREVLAYZiChvMJMhs8Smru2KU5nJoP9ZWx/MZBD2i3Y+zCrIkPFyScIqQfNgmn5DZQbKJcXc+DkZgzlMDDJE7MkQITgQLdmpsIfdsWK7eaNsILZMB1lz7yBxoiiRfhyyld0JZzIYggwxZjIokiBDNswEZ7JcUrOQyVByOMhg0pMhrkwGcdVyjGM0Y5z8V1PSkwE2h3A7snJJTGWgwqRqmvR91LJcUsQSail4HRMREVFO4Kc+EeUN9mTILGO5pDRmMpiUS4p27shq1X9RiponRyvaTIbatPZkkF+ezEyGWBnLJcWTyZCkcklhx1EUxTKbwWpbsXAfxMc4nNgPIfmZDJH5TYbn9mvY16Tf2CnmcklZGmTIonJJwUwGmJRLMmQyKDYoESYA09mTwRhkSEKgOppMBsl9yoqnFlGKmZVfjK1ckrBDKoKFRERElBP4qU9EecPsx5JVs1RKDk3TDI2f26cyk0GYmDUrlxTtfJhVTwZnpjMZouzJIK5yr0hpT4YklUuyEGvVGXH+3RVhNlSWQJCsCVRxgt8qkFBiEQ2oEkqOWWVliQtPZT0noiXNZIjiemZNyeXlkpKRyZAF7+3iyUpruSR942d7hHJJhsbPEUolAZHrr8dNUi4pFY2fxYwJTfUlfEyifGG2aMGqXFKkPi2Gvicsl0SUVcaPHw9FUdC7d+9MDwVAYDGOoiiYNGlSpodCREnAIAMR5Q2xXEoQMxlSr96jGSY526WxJ0OjSWq/daGaVlldLkkYmt9kElOcgE5tuST55clt/BwbY7kk6/1tSSqXJHs4xAbSpRaBhFKLAESVECiybvyc4kyGKObOzQJgDR7VUE6tY2mMPRkMzUSZyWDMZOgOAKaNnyGUS1IilEoCjIGcpMUYpBkGqW/8HHVPhmwIYBGlmFnCQpPZmzmMrw3Dq5SZDEREIaNGjQoFUsT/nE4nOnbsiJ/+9KeYOnUqDh48mOnhEiWMn/pElDfMMxlUThik2H4hi0GBcYI0mcSeDA2HV93F+yi3sRhrxoMMipjJEF2QIbXlkswyGWI7jlUQKNbHUiyXFOlxk22WBR7iYRdOvVUgodiumAY3xEwGq4CpMciQSCaD8brRhGrNAmA7GvyGxzNvejJksJ6/2Pg5lMlg2pMhjkwG4e+kvauIE4+qrFxSeoIMRIUqrkyGiOWS2PiZqND17t0biqJg/PjxmR5KVvP5fNi/fz8WLlyI++67D/3798eiRYsyPSyihDgi70JElBvMejL4NaDZp1lO9FFixFXKVcU22FPYy8C0J4O4Y5RDKHMEJnplyTCuDP8+NvZkMO6jahrqhZJRVn0mEh6TyaEjlShKJTGTIVJWhWxzsuJJ4gS/VSaDXQkERGQ1sA2ZDBal38TnRSKZDLKrRhOnNevJ8GO9vkRNmUNBmTPGTAZpT4YsiDJIAjKapkkDNcmk+ZqheWp0lwUbP0MMMhwulxRPJkNmezIkP8hgKOUCk0yGxG+ZKOuZvWe3+DSomiYtj8aeDESUTIW0EHDNmjW6vz0eD3744Qe89NJLePfdd7F3715ccMEF2LBhAzp27JihURIlJqs+9Tdt2oSlS5diz549mR4KEeUgsyADYF3LnBJ3oFnsx5DajxcxyBCaYBdLe0R5PEVRTFf+x1oCKNmMPRmMz/MGj2aYFLPKzkiUrCeDw4aYA0vJjEnEHGSQ3HjSejIIx7HqyWC3KaZZF1VCXxOx70Y4sR9CIpkMshdOND8BzXoybBOCDB1jbPoM5FomQ+oH5m/eZbjMFspkKBZ2NstkiKZcknCVVPVkgJqSyUnFJqynijKToYDmPKiAmb1nawgszpGJ9J7AngxERHLHH3+87r+BAwfisssuwzvvvIPrrrsOAFBTU4Nnn302wyMlil9aggx79+7F9OnTMX36dNTW1hq2b9y4EYMGDcJRRx2F4cOHo3v37rj00ktRU1MjORoRkZxJWX4AMKzypuQ6IGQytEth02fAWC7J7dfg9Rsn2mOZDqswCTIUZXB1PiDJZJA8lWVBtNSWSzJeluzzFOskXzLKJYm9FKIhG6YYwLAMMijmYxX7mliVfjNkMiTwcMgzGSI/IGarYsX3h44lsT83ZZkMJm140kpa8isNM9Sq0PRZcZRBcVYE/m0TMxmCPRn0QQYlqsbPaerJoPoDgQadFJRLkjR+TnHSCVHWsmi9YFoySXxPYCYDEVHi7r333tC/q6urMzgSosSk5VP/zTffxF133YX/+7//Q2VlpW6b2+3Geeedh1WrVkHTNGiaBlVV8fbbb+Oiiy5Kx/CIKE94LWac2Pw5tQ4KPRnaxzGJGAsxkwEINH9OZGrPrLxQxjMZoujJIAYZyhxKYivZI41Jcux4zpPV5F4sj6WqaRBf4pHLJSUnk0E2nyxO8JdalAZy2MzHKvZk8GtAo8nq0mT2ZIg3kyHaSf94MhkUBVCEFbJZkckgfRKnIZNB0vQ5VKLJpFySJpRLii+TIbZxmoqiXJKSpnJJRIXKrCcDADSZrNyJuJhD7MmQXYUTqMBMmjQp1GQXAA4dOoQHH3wQxx13HMrLy9GuXTucccYZeO211yIea8uWLfjNb36D4447DhUVFSgtLUW/fv1w6623GsrgiIJjmDRpEgDgk08+wYUXXoiuXbuiuLgYffv2xV133YUdO3aYHkO8L2bmzZsX2m/evHkR75eosbERr7/+Om6++WacdNJJqKysDDUoHjlyJB599FE0NDRIrxtscrx161YAwAsvvGBodjxq1CjddcRzI6OqKl5++WWcf/756NKlC1wuFzp27IgzzjgD06dPh8fjMb2ueN5aWlrwyCOPYODAgaioqEBFRQWGDh2KadOmweczLkRIlz59+oT+7Xa7MzYOokSlpSfDxx9/DEVR8POf/9ywbdasWdi0aRMURcGFF16Is846C5988gnmzJmDRYsW4fXXX8cVV1yRjmESUY5juaTMOdCsP7/tU5zJIFsZ3uDVDL9+Y1mhWmlSXijjQYYoejLUik2fU1gqCZBPYBfHsXQ+WWdWNhcSV+PnJA1IPE6ZxbmxK4ppw2xZ8/Q6tyoNsonnIDM9GaKbXI+16fPhEcAGP/xovW5W9GTIVLkkk6bPgKRckuoOZKLEk8kg/J20IIMtPT0ZDBkT7MlAFGKVySDrEwTE05OB5ZIoO2zevBk/+9nPsGnTptBljY2NmDdvHubNm4e3334br7zyChwO4xTZiy++iAkTJhgmfzdu3IiNGzfiueeew0MPPYT77rsv4jgmT55smFDfvHkznnrqKbz88suYM2cOTj/99PjuZBKMGTMG8+fPN1y+f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7zQ0BB5//79ocdu2rRp+OCDD9CrVy/LY+3ZswfnnnsuVq1apbu8uroa1dXV+Pjjj/H222/DZkt/cDQYmAGAnj17pv32iZIlLa+eDRs2AABOPfVUw7ZXX30VAHDmmWfi7bffxt1334133nkHo0ePhqZp+Ne//pWOIRJRHmC5pMwRy6GkuieDw6agRJi4bZBkMsQyH2ZWXijSZHWqRdOTQazVb1b6KVlkC/MzGYwR+zEAQKRTYJdsT1a5JHGVmVXTebvN/DlWbDc+z8WAUpA4wZ/sTJboejJEd6xOcWQyAIANOZLJkJZySWImQ3iQoUjcHVC90PyxN342TCgmKTQoTv5raWr8LA0yZOYhJMo4s54MgFW5JP3fhj4thp4MzGSg7HDFFVdg8+bNuO222/DJJ5+guroazz33HI466igAwOzZs3Ula4Lmzp2L8ePHw+12o7y8HA8++CAWLlyIL7/8Eo899hg6dOgAv9+P+++/H//4xz8sxzB37lxMmjQJRx99NJ577jlUV1fjk08+wa233gqbzYba2lqMHTsW27ZtS8k5iIbP58OAAQPwwAMP4K233sLSpUuxZMkSvP7667jyyiths9mwefNmXHzxxWhpadFdd+bMmVizZg26dQt8J7nooouwZs0a3X8zZ86Meix+vx9jx44NBRhGjhyJf//731i+fDneffddXHzxxQCAb7/9FmeddZZphkXQJZdcgnXr1uGXv/wl/vvf/2LFihV49dVX0b9/fwDAnDlz8Mwzz0Q9vmR65JFHQv9mRRfKZWnJZNi3bx8A4IgjjtBd3tzcjCVLlkBRFEyYMEG37cYbb8Qnn3yCr776Kh1DJKI8YJXJUG8VgaCEaJpmKJeU6p4MAFDuVHSNCeslzY9jYR5kSOCgSRBdTwb9hZUmpZ+SRTaBHU/yRLLKJYn9GIDIwSFZA9tUxUlKLdIKHIp542e7LdCQvNnX+voya/4sPi8sKjRFJItPZDyTQdOgCOvqsyLIkLHGz0ImQ0lYkMFmDDJo/hZAExs/R9OTQf930voXSCf/U9CTwcZySURmrDMZ5Bsj9WTQmMmQMFXT0FBAi6PKXYr0O1myVVdX49VXX8UvfvGL0GWDBw/GuHHjcPrpp2P16tX4+9//jptuugnHH388AMDr9WLChAnQNA3l5eVYuHAhTjrppND1Tz31VFx66aUYNmwYdu3ahXvuuQfjxo1Dhw4dpGNYvnw5Bg4ciPnz56O8vDx0+VlnnYURI0bguuuuQ11dHX73u99h9uzZqTkREcycORP9+vUzXH7KKafg8ssvx0033YRzzjkHGzZswCuvvIKbbroptE+w5I/TGVjE0LZt29C5jMc///lPfPnllwCA6667DrNmzQot5Bk0aBAuuOACPPDAA/jLX/6CTZs24aGHHsJf//pX0+MFsxXCSzYNHDgQ55xzDo499ljs2bMH06dPx6233hr3mK2sXbtW97fH48GWLVvw8ssv46233gIQCIade+65Kbl9onRIS5Dh0KFDAGBIO1qyZAm8Xi9sNhtGjx6t2xZ8g9q7d286hkhEecCqtqzZxBwlrt6rGbJIUt2TAQj0ZdgXVqapwasmVC7JrMRQ5sslxd6TIZVNn4HkZTIk68xKMxkiBRlkl6XoobZs/GzRk8GuBHqF7GlqvUwMKAUZejIk8INdVu83qT0Z4nx/sGl+3ZMma4MM6chkaNTXbQ7PZIBYLgmAprqhGcolRZPJEKHJa7zE1c2aXzI5mYxyScJPHQYZiEKsvjebZjIIfxs/LlLQW6XANHg03PLJ/kwPI22eGd0BbYpS/1177NixugBDUEVFBWbMmIFTTjkFqqrin//8J6ZNmwYAeOutt7BzZyCo/8c//lEXYAjq1asXHnnkEVxzzTVoamrCzJkzpRkRQTNmzNAFGIKuvfZavPbaa/jggw/w1ltvYffu3ejSpUuc9zZ+sgBDuNGjR+PCCy/E22+/jbffflsXZEi2p556CgDQsWNHTJs2Tfr9dPLkyXjzzTexfv16PPPMM/jTn/6EoiJJRieAu+++29ATAgDatWuHG264AVOnTsWaNWtQW1tr6CWbDAMGDDDddvTRR+N//ud/cP311yf9donSKS2f+sE30d27d+suDzaiOfbYY1FVVaXbFox+ymriERHJWJZLYiZDyhxoFpv8AW1T3BMACKx8CtfgNWYyxPKTpdJkYj7jQQbhC7XsqWwIMmSgJ0Oyy0rFMk8rBhnsSnzlgpLV+FlkWS5JUVBscu5simLoFWJWLklcdJpIuaR41+ZbTVgFlTkVy0bYVsRySf5sqGmThtWXMoZMhtLuoX9LyyX53YA/9sbP4hlOVeNnTVPT0vgZqrGpI3syUKFKTU8GsVwSMxkoO9xwww2m24YOHYrjjjsOQKApc1Dw34qi4MYbbzS9/rhx40KT0uHXFw0YMACDBg0y3R68DZ/PF1fT5lTYt28fvv/+e6xduzb0X8eOHQEAq1evTtnt7ty5E99++y0A4PLLL0dFRYV0P4fDEXpsa2pqLCuhXH311abbgo+LpmnYvHlzvMOO24YNG/D0009jwYIFab9tomRKS5Ah2BDmww8/1F3+n//8B4qiYOTIkYbrBAMSnTt3Tv0AiSgvWDd+5pRBqhwU+jG0LbIlvR68jNj8ttFj7MkQiwqTEkNFabgvVoyNnyP3ZEh1JoOs+k/yMxmifzTdwpxGVGOR7JKsngyiMstySZEyGfTXNS2XZOjJEMXATEgnXaOY0I+mJ0N8TZ8B7XDj53DZkckgk9qBaZpm6Mmga/xsUi5J0+Jo/GzoyZAc0obMaejJICuXFG/mDlGus+rJ0GSyOCdin5ZUvI6JkmDIkCGW24cOHQoA+O677+DxBILywfI2ffr0CU2sy7hcLpx88sm66yQyBgBYs2aN5b6ptGjRIlxxxRVo3749OnXqhKOOOgoDBgwI/RfsW7B/f+oybsLP4ymnnGK5b/h2q/Nv1ai6Xbt2oX/X19dHM8SYaZqm+8/v92PPnj34z3/+gxNPPBFLlizB2WefjTfeeCMlt0+UDmn51B8zZgw0TcOMGTPwj3/8A2vXrsU999yDdevWAQg0YBEFI5Ddu3c3bCMikvFa1OqoN1n9S4k7IPRjSEepJMAYZGiQpPYrMeQyiCvGgxKZrE0GY7kk4z7pL5eUnEwG2eReUEw9GYRZj2iCDLI9ZM2gkyHexs92mzHDRnysg8T5oIQyGWQVgKK4XjQ9GeINMgCHyyWFyY539fSvg9e89dB8jbrL9OWSZEEGt6HxczSZDBGbvMYrTT0ZpMGMaDDKQAXAKpMh+sbP+r8NgTwGGShLdOrUyXJ7cHGrpmmoqakBABw8eDCq6wIIlTYKXieRMUQ6TipNmjQJp512GmbPnh1xDM3NzSkbR/htRzpv4WWlrMZcWlpqui28tLvfn57SijabDZ06dcIll1yCL774AkcddRQ8Hg9uvPHGjD3+RIlKSy2iu+66C9OnT8euXbtw11136bYNGzYMZ5xxhuE6c+bMgaIoEaO9RERBVhWRzCbmKHEHmvXntn0amj4DsnJJxsc4pp4MJhPzVhPh6SAGOTQE6qSHT/alvVyS5JzEFWRIxmBgLJcU792P72qRZyNLHIFwl2xPu6KgSPJtTEFgQrdCLJdk2vhZ7MkQcVim5JkMka8XTU+GTqXxPzcVQyZDNswES1bBa1rSntsyYhYDANhLuraOSFECTZ3VsKCC6gYMPRmsMxlk5zdV5ZJSlslgizPIQFQA4unJIGa1GcsliWXPWC4pVuUuBc+MljcOzkfi9/lUSeT7fLJ+C2T6N0Ukn376KSZPngwA6Nu3L+655x6cdtpp6NmzJ8rKykKlzCdOnIiHHnoobePK9vOWDOXl5bj99tvxm9/8BvX19XjjjTcwYcKETA+LKGZpCTJUVlbik08+wbXXXqurkXb66afjtddeM+y/evVqVFdXQ1EU/OxnP0vHEIkoD1iVS2r0avCrGuwZLn2Tjw4I5ZIylclQ71ET6rdamsisbArJVqT7VMB1+He7qmmoF8qBtUnxD7aklUuyuEoiPRnizWSwxfH+EM04bYqCEocirXFttwFOyWiCQ4k2k8HQkyGBHhnxZjJYrYoNij+TwVguKTtiDOnPZPA36Zs+K64qKI4S/WX2ImhhQQZZuaRImQyy85u6ngypafwsz5iQ7Ab9o5YNTy2iVLN6z2422Rix8TMzGRJmU5S0NEIuNHv27EGPHj0stwOBCe1gv9BgCZ3gNivBct/hZXfMbiOa7eJxwlfaq6qq+ztcY2Oj9PJoBMsgVVVVYcmSJaYlotKxyj78/kc6b+G9X63Of7YLL+eUyXJZRIlI26d+//79sXz5cmzatAmLFi3CDz/8gPnz56Nbt27S/WfOnInnn38eZ555ZrqGSEQ5TNM0y0wGAKg3WZVFiTkolEtql65MBqEEjazxcyyydZWMLPYRvvqwwWO836nvySDLZEjpTVpyxxFkkPdkSNKAJMpMSiY5TDIZgmMRs1LMgwzZkMkQRbmk0gTKJQnTW9nQk0Feki3FQQaLps9Bir1YPyJJ4+fImQzGy5JWLcnQkNmYyZCMxs+Kon9xyXoyyCT2aUKUG+LJZIjc+FkMFjKTgbJDdXV1VNv79esHlyvw+Xj88ccDADZv3ox9+/aZXtfr9WLlypW66yQyBtlxwhsfB8s5yXz33XeWt2Hlm2++AQCcccYZlj0oli9fbnmcZPymCr//S5cutdx32bJl0uvlGp/PJ/03US5J+9KCPn36YNiwYejdu7fpPieeeCKuv/56XH/99XA6I9eLJSKKpkwH+zKkhrFcUpoyGYSJ9EavCnFyLzvDBrExy2QIkk06p74ng/GyeDIZksVQLineTIY47kK0U5GlspMG854MwawrMZOh3qNJy9gYMhkS6skQXyNcfxRvsZ3izWTQNNg0/Q+uaN73U06a9pHagYnlknT9GEIX6vsyaP4WaGpsmQyyhzNlPRmgSm4xBZkMqvxHu3E1duI3TZTtrN5Dm8wyGSL0aTEG8pjJQNnhhRdeMN1WXV0dahg8evTo0OXBf2uahpkzZ5pe/4033kBtba3h+qI1a9aEghEyzz//PADAbrdj1KhRum19+vQJ/dtqkv9f//qX6bZIghPbVtkQK1eujDjpX1wcWOjgdrvjHku3bt3Qv39/AMDs2bPR0NAg3c/v92PWrFkAAhkYAwcOjPs2My38cbXKuiHKZmkpl/SnP/0JAHDHHXegQ4fo6gvW1NTgySefBBCo+UZE+emHWi/mbWs5PEEcv2gmm15c14AeFXaM7lmCbuXRvf35VQ0fb23GwRYVP+tVgk4RVuHubPDhvz82o86kbno4RQH6VjpxTq+SnC3jpGmasfFzhjIZatyqYZIzS5MTYiIrTbS7yR9a4V4rBBnKHEpCE8zRjSn1PRm21fvw5MpaOG0KBnUuwpAuxma2AHDIreLFb/U/POINMthT+IQpM0ktsCuKNEATymQQSl9pAP5vZZ0hU2FrvX7yNNGG5WL5mFfXN0QsKfbFzsg/JjuElVPTVC+avn0K3gMrQivH7WU9Udb/LtglE+diT4Zpq2pxbf8KnNWzWDfRte6AB4t3uk3LfXQsteO83qWmzd5jYzwntYtvDvREENgc5SjucwWKuhp7kUXSvOUNuLe/D031wHfgK9026bkSmj83rvkr/M07sco1Futco+FCE36q+tFWcluapmHBjhYs3+MxbEvadKGQpdCy9U1Dz4hUlEvy7l+GmnlXoPyEB+Bsd0LrbsLVnlpdj/P7lGDUEcVZm+WWTr66TWj6bgbspd1ResztUKJoGk7p4969AC2bX4PqrTfd5wd/LyzxDkaLFpj8sxW1x27bkab7N0kyGaQB7t3zcejrf0HzBxrA+mr0JT4UsS8KUYa8++67mD17Ni6//HLd5Q0NDbj11lsBBEoSBf8NABdffDG6deuGnTt3YsqUKTjvvPMwYMAA3fW3bduGe+65B0CgsfANN9xgOY4JEyZg3rx5KCsr013+6quv4v333w/dbteuXXXbhw8fDofDAZ/Ph8cffxxnn3224fPpkUce0a3qj1W/fv2wfv16fPHFF9i4cSN+8pOf6Lbv27cP1157bcTjdO3aFevXr8emTZviHgsA3Hnnnbjrrruwb98+/PKXvwwFYcJNnjwZ69atAwDccsstKCqS/17Idlu3bsVTTz0V+vv888/P4GiI4peWIMOkSZOgKAouu+yyqIMMBw8eDF2PQQai/FTT4seDi2uQqgSDUqEG+tf7Pfh6P7BwRwueOrNDVCuvX1nfgLmbAz+cPtvWjH+cZX49t1/DxC9rDPXxrSzc4cbBFhXX9C+P+jrZpN5rLFOVqZ4M0dSDz0WyCf2Ji2vw6vkdYVOUtDd9BuSZDMkOMtR6tNCk9efbW/A/QypxcifjD4epyw4ZHntnnEGW1GYymJRLsgHFFkGGCklWypJdkSfzEw00KYp+Qf5Xe40TzrEqdyq6jI76Ff+Dxm/+ZtjPvW0OOlz0teHHs1guye0Hnl1bjwavip//JPBj/cc6H/689FDEwPOa/R5MGZGMur3G89yy5d+mezd9/yw6jF0GZ/voV9o1b30Th+aNM90uy2QQyyV59szHatcYzKp8LnTZ0jovHm/yG0pYffJjC55dK5+sTFb8UiyX5Dv0jWSnFDR+BtCyZTZafnwLnS77EfbSLtKr/Vjvwz+/rkezT8P5fUoTH0cO03xN2D93KDR3oAa3v3Er2gx5LMOjoiBvzRoc/Hi0MUgXZp+9D/5W9Rf4lLD3BR8AmJcPa/RpgSb2Ye/DsiStuiW3osRvNZHITAbKDoMHD8ZVV12F+fPn47LLLkObNm3w9ddf469//Ss2bNgAIDCpfcIJrQFol8uFGTNm4IILLkBdXR1GjBiBe++9F2eddRbsdjsWL16MqVOnYu/evQCARx991HK+a/DgwVi+fDkGDx6MP/zhDxgwYABqa2vxxhtv4OmnnwYQKIv06KOPGq7bqVMnjBs3Dq+99ho++ugjXHjhhbjzzjvRuXNn/Pjjj3jppZfwn//8B8OHD8fixYvjOkfXXXcd5syZg8bGRowcORL/8z//g0GDBgEAFi9ejL/97W/YvXs3hg0bhi+//NL0OMOHD8fnn3+O6upqTJ06Feedd14oqFJSUoLu3Y1lHmVuu+02vPLKK/jyyy8xc+ZMbN26FXfccQf69OmDXbt24fnnn8ebb74JADjyyCPxv//7v3Hd73QJZssEqaqKAwcOYOHChfj73/+OAwcOAACuvvpqnHTSSRkYIVHi0hJkICKSWbXPk7IAgwKgS5kdP9QaSyPUeTRsPOTFse2t61EDCAUYgEDN/8+3NeOc3vIJh/UHPTEFGIKW73HnbJDhkCRjo20aJrkBRLUKWTZ5a+WMHsX4fFtL6O/j22d+tabTFpiIDp9I1wBsb/CjZ4UDDcJzrsJkMjuZSiRRhjKTckBW+lRG/zVkxR6PIchwsMWPzXXG17iY5SLTpcx42/FMoA7uXIQPt7S+T5g95cxKWJU4FOm5Kz6ciuCwKah0KaiN8b2lJMFG5kV2Bc2SRtWJEDPBWrbNke7nO7QWatMO2MuOaL1Q86FIk6fKV+92h4IMa/Z7osps23jIh3qPKg3ixEJxxDgBrfnh3vnfmIIM7u1zLbfbS40p9YqrreGyr4vG6P72wol1Bz0YWapvGr1ij3kQK55goozirIi8j6Ms4j6R2Bwmt6N60bBmKipPeQJA4LOiUfJ8X7nXU/BBhuatb4YCDADQ+M3fGGTIIp6dn1oGGADge+dp+gBDFFQtsHimOOyzRNbCwRahz4nizM3vt5R/Zs+ejbPOOgvTp0/H9OnTDdsvvfRS/O1vxoUPY8aMwcyZM3Hrrbeivr4eEydONCyCtdvteOihh3D77bdbjmHMmDEYM2YMJk+eLM14aNOmDd59913T0uKPP/44li9fju+//x7vvfce3nvvPd32K6+8EjfffLNlySYrl112GW644QbMnDkTO3fuxC9/+Uvddrvdjscffxw1NTWWQYbbb78d//jHP3Dw4EHcd999uO+++0LbRo4ciXnz5kU1Hrvdjvfeew8XXnghFi1ahM8++wyfffaZYb/+/fvjgw8+QHl5dr/fiFkwMldccQWee+65iPsRZausXVrg9Qa+LLEnA1H+2t0YXQPGeAzuXITRPUtMt8fbn2FbvfmY9zfHd8xoSitlqxafsRZ+qkv1BFW4bDipo3mgqGeFHd3KY0vTH92zRDdJfEYP8+dQutgUBadKSgUFnzdi48Z09EY4qq1T13ujbZENx8URkBnSpQhdy6J7jGT1oc0aU57aLXKqdK82DhxT1TrmM3oUx1Vv/qIjS3UT+nef3Ea637BuxYY175UuBce2d6FvpQNdhAn44V1b78Np3WObHGrjUjAgiiCqlfDbT5aRR+jvhxo2cSkKlt4I/e2tx8nud6T71oS9h4pNwK2I71/xsBVVwdXt7Jiuo/ljq1GseeXBFQBQnJUo7nGB4fKSPlcaLjtg72m4TJYB1mBSvvCEDk5DL5x4Ffe61DJTwdl+MOzlvRO+HVeXkbCVyLMVvAdaG2wOM3nP8GRDd/EM89dtNFymic19KWPE90oZb4wBhiDxM1b2alAs8/kUFPc2z8IiSqc+ffpgxYoVuP/++9G/f3+UlpaisrISP/3pT/Hyyy/jjTfegMMhX/xy/fXXY/369fjVr36F/v37o6ysDCUlJTjyyCNxyy23YOXKlbqJdCuTJk3Chx9+iDFjxqBz585wuVzo3bs37rjjDnzzzTcYOXKk6XU7d+6MpUuX4g9/+AP69euHoqIitGvXLnQfXnvtNdjtiZUoe/755/HSSy/h9NNPR0VFBYqKitCrVy9ce+21WLx4MX71q19FPEb37t2xbNky3HTTTfjJT34S6tEQj3bt2mHBggV48cUXce6556Jz585wOp1o3749Ro0ahWnTpmHVqlXo1atX3LeRKYqioKKiAsceeyxuuukmzJ8/H//6179ytuQTEZDFmQyrVq0CAMuu9kSU2/Y06Sfsj6pyon+7xAOLnUvtOL17MVx2Be2KbdhQ48VbG5t0+zSYTE5GIk7ohtvfrL8/3cvtGNzZ+CWhwaPi07DV8o2+QCPXpDXUTKMWYUKvOMHV07H6zcBKLNzRgn3Cua8qsuG07rFPGv+krRN/HlGF1fs8OLLSiRMsghjpdNsJbfDFzn26y4ITgV7hOZmOIE+xQ8GfR1Rh0U43NE3DsK7FcWUy2BQFU0ZU4YsdLagssqFXGweW7nKjyRfINvrmQOvqTNmqetllk4e1xTHtonvcHjilLRbsaEGRTcGI7vF9oW9XbMf/O70dVuxxo2cbB44zmdw/oYMLk4dV4ev9bnhVoMypYFjX4lCGw+ThVVi0swV1bhW92zhwStgk/zX9y9G30okf6+VNa8OFjptgRtGNx1fgmHZObG+ILhi8o8FnqOFf7lRwVs8S2AD0q3JikPB+qFnUD4cwial6ajGyeQY6+Lfii5LxWO86M7St1q2G3kPFqc+uZXYMPRyke2eT/nNAfO3Eq+qM/6Dlh1fha9gs3d6y9S346zaEXRLb7YpBCVfnn8LZaThszjYo7n0Z7GXGsgOlx9wJe3lvePZ9GTqXNXuPNfRWlp0C8XXVscSGi44sw+lxvkZkirqdhfbnfQH3jo+gqfr7Zy89AiV9r0pKLwRbURXaj1mCfW/0lmxtPf4Nx1Xg6ConXljXoPt+oDLIAFtJZ8NlmvsglOLoSuBSaomNlu1t+gWCeGEcjQOBsLfb9v6tOOlw0LbsuN/C6XDhuPYu/GnJId31mnwa2scwFkf7gSg6HHRVbC4UdRsNV+fTYzgCUWpVVVVhypQpmDJlSszX7d27N5544omkjOOcc87BOeecE9d1q6qqMHXqVEydOlW6fdSoUdBktc0OmzVrVqhRsplrrrkG11xzjen2SZMmYdKkSZbHOPLII/Hss89a7gPAcqxBNpsN1157bVT9IETRjBWIfN7iFW3WBlG+SEmQ4cUXX5Re/s477+g6psu43W5s2rQJzz//PBRFwZAhQ1IxRCLKAmKQ4fTuRTi7V3LLEpzcqQgndyrCD7U+rN7XOgEWb6Npq4WvYibDCR1cuOoYY9rmwRa/LsgABIIeYoPXXOAWTkiaej633p5Dwc96JTfboG+lE30rsyuLzmlX8JO2Dmw81DrJHCzNJa5ETrThb7TaFdtxQd/EX69lTpuuBNnFPwl8NfloS1MUQQb9na8qskUdYAACWR9WGU/R6lRqx3lRlFQ5up0TR5sEUtsW2TDG5Bg2RYk5myFRDpuCnx4R/bn5cpexUfDp3Yul74HA4Ylz1bzPgzhxpnnroAA43vMRjvCtxqT2q0Pb/BrQ4NHQpkgxTAr3buMIjWHOD026SfVkrVK3OctRevQE0+3+uo36IEOsP2KFSfiiHmNRfvy9lldRFAXFPcaiuMdYAIDHr6H2w32W1wkSX2s3HFdhCBAlg6vTMLg6DUv6cUWO8l6ArchwHpWwTIrg892vAf/8unU2luv1Aw2CRf7mXbAxyJAdVH3w2Vl1AtoMelh/2aZGYH1j6O9Ovu9xQWNgkrXjEdfD0aYfgECZvfDXv/hdOVImg6vTaYbbJiIiosKRkiDD+PHjDauPNE3DH//4x6iPoWkabDZbVOlYRJSb9gjlkjqXpm6Gukyo0W5WZiUSv8Xk0IEW/f1pXyK/PxWSFd8NHtW0Zns2EzMZiuy5dx9yhfi8CWYyiNk18TY9zjZiT4FoMhnSnUlDrRwxrjpXvXXWOwhBBtVTG/p3hbrfsPsht4o2RTZDP4bwl4PTFmgWHZS2ZvGGc5NYJoNii33CX8y0C1Iln2liGalE+3tkBWlpJuNl4tunn1EGQDF+l1GbdwNVkWtLUxqIPRFkj5f4vhgWPlObdwOHgwylQpChSSyXJH3rar1QsWVtkQQiIiJKg5TNBmmaFvpPdpnVf06nEyNGjMC7775rWZOOiHJXg0c1NFlMaZBBWN4dd5DBYsJBzGToUCJ/i3XaFUPzzHgaRmcDcTKKk7ypI9ZCbzjcV0Sce09XJkOqlQh3JJogQ15MhuYoWWzLKu6geSIEGVQxk6E1yGCHD+U2fR3yYBN6w2Ra2CDEAJwnhv4NiUkwyCCswIc99iDD3qboyl5pmoYm4XVVmgevK0UWZJBcZheetGl7imQ14xcff/PuDIyDZMSsr+iCDK3ZD/6mXaF/l4oLcgyfu8YXhK4ng+S2iYiIqHCkZLnB5s2tNWk1TUPfvn2hKAo++ugj9OvXz/R6iqKguLgY7du3T7hhDRFlt93ChIdNATqYrPxPBjGTwayxZSRmmQyqphkzGSxqB1W4FLibW48V73gyzdCTgW/dKVNueA4Hzn0mejKkgxiwapEsO2eQIXvI+o1bPRqW/RgAiBObYlCirb0FDWprOaeawykK4nu0XZfJoCB8kixZPRkiE85ErOWSkpDJsK9Z/hkjjsTtN16WH8Hj6KJg4vNYlulRcCRNntWwiWnKMCHIoEQVZGi9jhoWMAosyGnd1hRjuSQGGYgon+zYsQM1NTUxX6+srAx9+vRJwYiIsl9Kggxmnd27deuWk13fiSj5xH4MHUtsKZ0cTVa5JLPyGnUezbDNLJMBAMqdNl3mQ64GGdwsl5Q2FWImQ6hckn6/WMvWZCsxYCCurgYYZMgmthjfvyOVSxJX56phmQwAUOn0Yntryw6LTIbWf4uV6nK2XFIcmQz7TMoliXPosmBeaT6kR8VbLokxBnmQgZkM2UPMZJCULBKDZUrYYxqelSJmMoifuxHLJTHIQER55IEHHsALL7wQ8/VGjhzJhs9UsNJSOFFVc3PyjIhSJ539GIBAc9lwcTd+Nln5Kta7tiuBRq5mxFXpLJdEkZg9Z8TV2M48+Y0vBgy8auD1Fx6MZJAhe8SeyRBjuSSPGGTQv4fXmgQZwsvfOIVBJqvxc2RCn7IsKpckjkQWzMuL9/VoyyUJUQZmMkAaZGC5pCwSV7mk8EyG1qyUeBbk6DMZ2JOBssukSZMwadKkTA9DV0KciCif5cHSJCLKRWImQ+fS1P4wESdo485kMLnaASHI0K7YpqsFLjKsSvfkZjDWEGSQzTRSUhh6MhRYJgNgfL4ZG9Tya02mSIMMFs/FiEEGoVySmPnQ1qXfu+ZwkEEsl6TPZBACV+lapi6eB8mkraWklEuKMpNBOCd2xZgBkpuMz0VZnwbxEmYyAJqkJ0P4xDRllpj1FV25pNaeDOFZKWLWklguSfbOpYRfasuTVQ5ERABmzZoVdV/Z8P+YxUCFLG0/G5qamtDU1GS6/cknn8Tpp5+O/v374/zzz8ecOXPSNTQiygBjkCE3Mhn8ZpkMLWLTZ+v7Uy6Mpz5HyyUZejLkw4rXLFXhlAemxOya/JgQlAcZxMyFJiHCwkyGzLEKqsqokXoyaNaZDG2FBjCHWmIvl5S+t93EejIkpVxStJkMQgC+1KFYBotyhjSwY7xfNuE5krZkl2zGTIbsFlUmgxB8DctksGr8bMhsYrkkIiIispCWqYg5c+agoqICXbt2RX298UfljTfeiF//+tdYvHgxNmzYgI8++ggXX3wxHn744XQMj4gywBBkKEt1kEHIZPBpcaWumq1qFDMZrPoxAIHGz+Ea4sysyDRjT4Y8mIzKUuWS54ymaYZySWK5j1xVZFcMU4BikIGZNNkj2eWStLBySZrqh+Zr0G1vW6yfaD8UymQwH5chkyFNM8jGZ3Ji5ZJiDTK0+DTUmpTkEz8GxddY3gSONZ/xMlm5JCGgwkwGGCexwZ4MWUWNIsgg/G0LCxwZGz+3ErN+pY2fw99EGGQgIiIqaGkJMnz00UfQNA0XXnghKioqdNu++OILzJo1CwBQWlqKk08+GcXFxdA0DRMnTsTatWvTMUQiSiOPX8NBYeV/ujMZVM04mRIN854M+vvTvji2TIa8KZeULxNSWUh8zvgPP4fFckn5kslgUxTD80l8zbInQ/aQl0sy31/zRF8uSZNkPbQrLdH93dqTwTzo5hIG6ZUv7k8+w2R2YpkMiLFcktgzSD+SwihBpqle44XSIIP+b5WpDNJMBs1zCJqvOQODIZFYLkk20e8XHkIlvCeDe18oqGvMZNBfURpk0P3BngxERESFLC2/HJYsWQJFUXDGGWcYts2YMQMA0K1bN3z77bdYsWIF1q9fjx49ekBVVTz99NPpGCIRpZGsAWXn0tS+HYk9GYD4+jKIE7pBB1rETIYIQQZhVXp9jmYyGMolcSV5yojZL0Agm0EMfDnyJJMBMD6fmoWZEgYZsoctxued2GPBIGziTPXWGja3LSvT/d3o0+Dxa5La463E+fJ0ZTIkWi4JCWYymPVjAGSNn/O0BJksk0HyM0h8GjOTAaY9RPzNe9I8EJISntuKpC+CVeNnaCrUlr0AJEEG8bspyyURERGRhbQEGfbuDXxxOfroow3bPvzwQyiKgrvvvhtHHHEEAKBHjx64++67oWka5s+fn44hElEaiaWSKotsKE7xaslih7FgRTx9GcwmHMRMhojlkvIkk0Esl8QgQ+oU2xXDKtsGryrJZMifx0Cc4DSUS/IzyJAtZC99qzl8WXaCbnt4uSSPGGRQUFVWbrjOIbdqeI8Or7GfqXJJxpSO6G9XU32GSd5YGz/LAvuh40do/Jw3rynZRDnLJUVFMwkysGRSloimJ4PwnmMTCigFH0tDuSThM1eeyRB2KRs/ExERFbS0BBn27dsHAIZSSd988w32798PALjooot02wYPHgwA2Lp1axpGSETptDvNTZ+BQOkVsS9DPH0Q/JIVqF6/FqoHHhSxXJJLaPyco0EGlktKH0VRpM8bcaI0T6qbADBOcIrPN7EpZb6UdslF8iCD+XtspJ4M4RNn4r6Ksw3KnHZDabBDbtVQFiS8IbWhXFKmGj/HEmQQSyUBQMyZDOZ3VBxJszdPgwwSiizIYGj8zCiDsaL/4Uubd0kvp/SKplySGE+1C+8hwUbexkyGyOWSdJeyXBIREVFBS8uvcbs98GXn4MGDusu/+OILAEDHjh0NWQ5VVVUAgJaWljSMkIjSaU9j+oMMgLEvQ1yZDJKriKWSgMiZDGL5Jo8a6FWRa8RVr0V5PCGVDcTnTYNHg9haJJ/KJYkTnGJQoSVfS7vkIHEFOGCdyRCxXFLYxKYqZDIorjZQFAVti/Tvs4fcqqHHQHhcIWPlksRzE8vEtWoMMsRaLimWTAZj4C6fX1PG+ya+fbIlAyzKJTGTISsIjZ8VyUS/oVySU9/TJhgwEhfjeMXvppL3LoXlkoiIiOiwtAQZunfvDgBYtWqV7vK5c+dCURScfvrphuvU1gZ+UHbo0CHl4yOi9BLLJaUvyKD/8RRfTwbjdQ60GCc6SyN0361wGbc3pG9ZbdIYMhlYLimlDGW2vCq8/sLMZPCrGtx+6/0pfcQV4ECEckmRGj+Hl0sSejLYnJUAIAky+CWZDK3/donlktIW2E1uJkOs5ZJi6cmQt+WSpIyfuTZJuSSt0LMZWC4pu0WVySB8T3CIQYbDmQySLxDhgcfImQwMMhARERWytExFnH766dA0DdOmTQuVR6qursaHH34IADjnnHMM1/n2228BAF26dEnHEIkojcQgQ5c0BRnEVeBxBRkkV9kvTOC0L4781lrmNPaIqPfk1kSGqmmG7AsGGVJL1jBcLOGVTz0ZxF4t4T0ZxMlQIN8nRLObODkLRAgy+CL0ZAhv/CwEJBRXGwCyIIOkJ0PYuMTXRvqq1OlvN5ZJ66SUS7LKZBD+Fhu95vNrSlONzaBlH2G59cmcAqaZDCyXlA0M5ZKiafwsBBn8TYHHslTyeg8vmRSxJwODDERERAUtLUGGO+64AzabDZs3b0bfvn0xePBgjBw5Ej6fD1VVVbjiiisM1/nss8+gKAqOPfbYdAyRiNJE1TRD6YbOZblTLkmWyWBs+hz5/sh6RORaXwaP3/iDkz0ZUqtc0jBcfBrn00MgTng0h5VHEptAA/k9IZrtpD0ZLKZnxcCB7NpB5pkM+vfaQy2qYcVu+LjEBDPZ+3lKJND4OdFySc0+FfUWAXVj42cxMy+PUqNEWnRBBlmZxEKimfZkYCZDVtDEckmRgwwOZ6l+++HH0mlXICbaRl6QE974mT0ZiIiICllafjkMHDgQjzzyCBRFQUNDA7766iu0tLTA6XTimWeeMTSErq2txdy5cwEAo0aNSscQiShNDjQbV5pmqlxSfI2fjZeJPRki9WMIEieM4wl6ZJJsJTkzGVJLLLPV4FUNE6X51JNBDFqFBxZkQQYGuTJH3vjZfP+IjZ/DyiWJ/RsU1+EgQ7Exk8HQ4DQ8yGBo/JyeIIMxby2RTAYlpuaq+5oifa7oxyK+rvI5cCfLZJBl5ORgu6TkYrmk7BZP42dnme7v8P4aYrnPxrDgviwJiz0ZiIiIKChtyw1+85vfYPTo0XjjjTewe/dudO3aFb/4xS8MDZ8BYN68eRgyZAgAYOzYsekaIhGlgVgqqdiuoI0rPZMYhkwGX+yT+rI5qQNCJkP74uh+ZJW7FKCp9W+r1abZSGy6C7Dxc6qJJb/qPZoxkyGPFh6LE5xWQYYiuyKdIKT0iKVckqap0LzW5ZLCJ840j5jJYF4uSQyyWZZLMq8ilGTxN37WxEwGexGUGJ7nVv0YZEMppCADVK/hov/P3pmHx3T2b/w+M5mZLLInSFBB7ZTYahel9rVFf3QRraUoRemi2lerLW+9uuCNWlqhXoqiKFr7XsS+q5ZQa4gEWSfJnN8fYyZznrPMmclkkky+n+tymZz1mTNnzpzzfJ/7vqWLZTykQqJLDXJ2SRlkl1QscCKTQasrI5xvY33l68Uh1eayk2lzb0p2SQRBEARBKOFWTWP9+vVRv359u8v17t0bvXv3dkOLCIJwN6LQZz+tQx0mBcEVwc9SsJkMapUMbIhvSbNLYkN3OUAksydcSxkVSgZPymRQCn7OzBUHrhNFhyNKBj43HWx3FacPBm9MyV/G1i6JKTJYlAzBEkWGEEbdYPt1KJF2SYySwdHQZ9aekIVtSakqMqi1SypZ9X/XI6dkyLoLnjeB4+iHvygRZTJIdPSz57C4yJCvZBDdK0uFkQlboLhvgiAIgiBKD3RXSBCEWxEVGdxklQQUjj0Rz/NOZTIAEh3GJazIkMU8eHp7cW4rGJVW/FnLLyMPVlDiSXZJjigZPLoztASglbijZEfPWpBSMWj0QczKCnZJTzIZAlUEPwszGdjgZ3f1HhfELilLuCVHQ59JySCLpF2SxPXTbadJsUXm3sSUAz47RXoe4T6Y81hVJoNeWGTgc9NhykkDoJxfJmmXZDORo0wGopgRHx8PjjM/nyQmJhZ1c6zs3r3b2q7du3cXdXPcSmxsLDiOQ1RUVFE3xeMpbud/TEwMOI4jS3wPp8juBHiex5UrV/DgwQMAQEhICKpWrUodVATh4dxJL7oiQ2EoGTJyeVE2QajKIoM/YxNV4uySmDRMA+UxFDrsw/9Dozhalx2tXZJhQ2epyFB8kTr6skoGidBnji0yKNkl6aXtkvJ44GG28LokUDKIMhmk2+dy2HtbR+ySWCWD1tuhXSfZyWSwbYmJ50XFYwp+BvIc+Lw8EV5GyQAAeZm3ofEOdWNrCBFOZTIEiJfJvA2NrrrotzTDjl2SvX0TBEEQBFF6cPuTw++//46ePXsiICAANWrUQPPmzdG8eXPUqFEDAQEB6NWrF7Zu3eruZhEE4SaKUsnAdtCmuaCHiVUxcABCDOourSU9+Jm1S6LQ58KHDX6WCj/2JCWDKPg5j4oMxRWpQSJyRQZWmQCtt7jznLdVMjB2SU+UDGyRAQAeZAmvo1pBJoNw2Ry3+eAUQMkgkcngCHaVDDavs/N4Ucs8+XvFS2QySF0+S72Sge3EtoHCn4sekV2ShJpAlMngpQen8xcu8+SzZAfkZNixS6JMBoIonkydOtU6ip0gCgtSphAsbisyGI1GDBo0CN26dcPmzZuRnp4OnucF/9LT07Fp0yZ07doVgwYNgtFodFfzCIJwAzzPS2YyuAspJQNfwBGKbB5DkEEjGi0rh1SIb0mCDX5mO4QJ18OqX6TwpIHHvmyRwaYQR0WG4o+8XZKwyKDRBQCMr7vt6GnJ5WEuqLEWYuweNTabZe2ScorKLsmR350CZjLcY35z2RwL26ZIFS09+nslYZekleiMoUwGJSUDFRmKHKbIoMYuScMBGp/ygmmWIG9FuyTpBijumyCKktjYWGtfE3WCEkTRsnv3bvA8X+oswkobbrNLGjRoENatWwee5+Hl5YXnn38ezz77LMqXN9/g3LlzB0eOHMG2bduQk5ODlStXIjc3F6tWrXJXEwmCKGQeG3lRJ0b5IsxkMPFAVh5foE6U5Czhw12oytBnQDwqvaQFP7M2UaRkKHzYc1gKj1IyMOeU0QTkmXhoNRwVGUoAsnZJTCYDpwsQd07ZKhlkgp8Bcy7D4xz5kda235jiYpfEy3ncSyC2S1JfZEjPMYlCW8v6apGSLd1pWNqKDLyEXZLU5TOvtEsZFIoMpszbbmwIIYkTdkkaDtD6lEfeo8v5yzwpGLHFfYFdkkSBVKBkoEwGgiAIgijVuOVOYNOmTVi7di04jkP79u3xww8/oHLlypLLXr9+Ha+//jp27tyJNWvWYPPmzejWrZs7mkkQRCFzhxlRqeWAUG/3DbtmlQyAWc3gI3MlVKNyYO2SQr3VF01Ewc8lzC6J9e42eHBnVHFBr+Wg15g72+XwpI/BV+I7m5nHo4yGEwePSyUPE0WKWrskTucv7hh70nHG87xEJkN+kSHIoMGNNPkig9am11hkl1QClAwFsUtiVQwcgDAfDS7ZZPXa/s6xRQadxrOKliLILkkVSkUxsksqekR2SZJFBsYuieOg8YkQTLOoUtjfXVu7JKmvAtklEQRBEARhwS1P5PHx8QCABg0a4LfffpMtMADAU089hS1btqBhw4YAgMWLF7uhhQRBuAPWKincRyvoACpsfLw4kTO2Use+XL+C7cMaa5cU5oCSgbVLSnOBfZM7ySYlQ5HAKmBYWEuYkozUOWUpLmQydl1SBQmiaJG7ukrbJbFFhidr52WJAno5m9DSYDuFaoGSgbVLKgGZDAWxS7rHFMFDvDWiY6CkZPBkFQMASbskDSe+TyjtRQaySyrmmFTYJTF/S9klWVQpfl4KdkkS3wXOZutkl0QUN+Lj4625BImJiaL5x44dwxtvvIEaNWrAz88P3t7eqFSpEho3bozRo0djw4YNis9mGzduRL9+/VCxYkUYDAaEhoaiRYsWmDFjBtLS0grU9kOHDmHKlCmIiYlB+fLlodfrERAQgDp16mDkyJE4f/684nv+5JNPrNMsx8D2n9TxyMvLw5IlS9CjRw9ERkZa31Pr1q3x1VdfITMz0267L1y4gNjYWFSqVMl6PAcNGoSEhASnj4U9du/ebX1fu3fvhslkwsKFC9GyZUuEhITAz88PDRo0wPTp05GVlWV3e2lpaZgxYwZatGiBkJAQGAwGVKxYEf369cOvv/6quG5MTAw4jkNMTAwA4NKlSxg+fDiqVKkCb29vREREYMCAATh06JDq96OEZbmpU6fafV8sJpMJO3fuxMSJE9GqVSuEhYVBp9MhKCgIDRs2xMSJE3H9+nXJdS2ZH0uWLAEAXLt2TfI8s4U9NnLs378fr776KqKiouDt7Y2goCBER0djypQpuHfvnux6Usdt1apV6NChA8LDw+Hj44OaNWvi3XffxYMHD9QfKMIh3KJkOHToEDiOwzvvvAOdTmd3eZ1Oh4kTJ+KVV15R/PIRBFGyKMo8BsDceeCr45BuI/22fa2WXBOgf9L0ZCZkNNRH/Xvyl7BvyszlS0xnqWgkuad3SBUT/HQa0XlniycN6Jc6pzKtRQYqchV35DIZTEZGyaAPENkCWUbnslZJ5uVtlQzK11zbTAa9KJPBPJK/sEMROY79UjqvZHDELikpU1zYZ9+qcpHBgy4mEkjZJQHma6htDTOvBBX/CwUlu6QMsksqcgpglyRYRoWSQaYBNvsmuySi5PD1119j4sSJMJmE17gbN27gxo0bOH78OOLi4vD48WOUKVNGsExWVpbVDtyWBw8e4NChQzh06BDmzJmDTZs2WQfPOkJ8fDyGDBkimp6Tk4MLFy7gwoULWLhwIWbPno1Ro0Y5vH0prl+/jl69euHUqVOC6Q8ePMCBAwdw4MABzJs3D5s2bUKNGjUkt7Fq1Sq89tpryM7Ov3e5ceMGVqxYgdWrV+O7775zSVuVMBqN6N69O3777TfB9NOnT+P06dNYtmwZduzYYbVtZzlx4gR69OiBW7duCabfvHkTa9aswZo1a/DCCy/gf//7H7y9vRXbsmXLFvTv3x/p6enWaXfu3MHq1auxZs0azJo1C+PGjXPujbqATz/9VFCMsvDw4UOcOnUKp06dwrx587Bs2TL07du30NtjMpkwduxY/Pe//xVMz87OxsmTJ3Hy5EnMnTsXq1evxvPPP293W6+++iqWLVsmmP7nn39i5syZWLduHfbt2yd7HhDO45anB0u1qU6dOqrXqVWrFgDg/v37hdImV2M0GrFo0SJ07twZERERMBgMKFOmDGrWrIkhQ4bg4MGDRd1Egihy7qYzRQY35jFYYNUDSkUGudGLthYbyaySwQH7J6kQ38dOFD2KCjaTwUCdvG5BKfxZy5mLaZ6ChuNExQO5IoPHj7ougbgik4HPERcZNDZKhkCD8jXXNsiX7TPn4aZQX1HPvgNFBqb4AkeUDKx60Fcr1lQIgp+FHS0e/52SUDIA5uuoLRT8THZJxRq2yKBRUWSAvF2SOPjZAbskiX0TRHHk9OnT1gJDlSpVMGvWLOzYsQMnTpzA3r17sXDhQgwaNAh+fn6S6w8ePNhaYGjQoAGWLl2KhIQE/P777xgyZAg4jsOtW7fQoUMH3Lx50+H25ebmIjg4GLGxsfjhhx+wb98+HD9+HL/++is+/fRThIWFIS8vD2+99RZ27twpWLdPnz44c+YMRo4caZ125swZ0b8KFSpY5ycnJ6N169Y4deoUDAYD3nrrLaxevRoJCQnYtWsXPvjgA/j6+uKvv/5C165d8fCh+N4sISEBL7/8MrKzs2EwGPD+++9j7969OHz4MGbPno2wsDCMHDkSJ0+edPh4OMKUKVPw22+/oVOnTli3bh2OHj2KdevWWTulz58/j549eyIvT2y1efPmTXTo0AG3bt0Cx3EYMmQIfv/9dxw9ehRLly5FgwYNAABr165FbGysYjtu3bqFQYMGwcvLC1988QUOHjyIgwcP4vPPP0dAQABMJhPGjx+PX375xdWHQDW5ubmIiIjAqFGj8OOPP+LAgQM4duwYfvnlF7z77rsoU6YMMjIyMGjQIFy4cEGw7qhRo3DmzBn07t0bABAZGSl5njnC+++/by0wVKlSBd999x2OHDmCXbt2Yfz48dDpdHj48CF69OghKoaxfPTRR1i2bBn69OmDtWvX4tixY9i8eTO6d+8OAPjrr78wfvx4h9pHqMMtww38/PyQmpqK5ORk1eukpJgNY319fQurWS7j2rVr6N69O86dOyeYbjQa8eeff+LPP/9EfHw8xowZg2+//bbQR8wRRHFFpGQogiKD+eEp/4E53YkcBEs/jInnRSPKwxxQMhi0HLyYEZOPjaYiOS7OIPbEp2ubO1AKf/ZE/3QfL05Q0LJ0hFKRofgjX2Rg7ZL8kccqFp50bLL5DdAYBKP5g+0UGWy/EnqJa1SOiXfD98aFdkmOZDIwRfCyPhqkKgS6lLbvFM+LMxkAS6E2/1iUerskhUwGsksqetRkMrBqHEm7pCeqFDb4OTuPR56Jh1bDydRH8yeSXZJrMPEmJGdnFHUz3EaowRcakeKvcPn5559hMpng5+eHP/74A+XKlRPMb9OmDYYOHYqHDx+K+qM2bdqEVatWAQA6dOiAzZs3Q6/XW+d36tQJLVq0wPDhw/HgwQNMmDABK1eudKh9Xbt2xaBBg0T7jo6ORvfu3TF27Fi0bdsWp0+fxr/+9S8899xz1mWCgoIQFBSEsmXLWqfVq1dPcX9jx47FP//8g8qVK2PXrl2oUqWKYH5MTAz69++PNm3a4MqVK/jyyy/x+eefC5YZNWoUcnNzodPpsHXrVrRt29Y6r1mzZnjhhRfQvHlzu53DBSUhIQHDhw/H/PnzrdMaN26MPn36YOjQofj+++9x9OhRzJ8/X6QCGTdunLUfcuHChXjjjTcE2xgwYAC6du2KXbt2YeXKlRg8eDC6du0q2Y7Lly8jMDAQf/zxB2rXrm2d3qJFC/Tu3RstW7bEo0eP8NZbb6F79+6qHF9czdChQ/Gvf/1LtO9GjRqhd+/eGDNmDJo3b46bN2/iiy++wI8//mhdpmzZsihbtiyCgoIAmN1o7J1nSpw5cwazZs0CYD5f9+3bZ902YD4HO3XqhO7du8NoNGL48OE4fPiw7PYOHjyIzz77DB9++KFgepcuXdClSxds3boVP//8M2bPno3w8HCn202IcUuRoWbNmjh8+DBWrlyJjh07qlrHciGuWbNmYTatwOTk5AgKDM888wwmTJiAmjVr4vHjx9i/fz9mzZqF9PR0zJkzB5GRkXj//feLuNUEUTQUjyKDeiWD3GBTi5IhNdsk6nxwxC6J4zj46zRIyc5/gE9TSvQtZogyGTy8Q6q4UEZByaBQfyix+HhxSLHpZ7V0hLJKGk/vEC2JqA9+DgCYDgZLx5lS6DNgDn5WwrauIJVXkpMH+BT63bDrgp8dskvKEP6ehPtq8ZD5jTEJlAyl7Dslo2RgTxOyS1LIrjKmgM/Ldui8JFwMm1mjxi5JA2j1TJEh+x54U56kZWdGLi+roqTgZ9eTnJ2BsiumFnUz3EbSwKkI9y5jf0EXcueOuUBao0YNUYHBlsDAQNE0y0hrnU6HxYsXCwoMFoYNG4ZVq1Zh+/btWLt2LW7fvo2IiAjRcnLYqgzk2vXpp5+iT58+2L9/P5KTkxEaGqp6+7YkJiZa+97mzp0rKjBYiI6OxujRo/Hll18iPj5eUGRISEjA0aNHAQAjRowQFBhs39OsWbPw0ksvOdVOtZQrVw5ff/215LxvvvkGGzZswL179xAXFycoMty6dcuqTunSpYugwGDBYDDghx9+QPXq1ZGbm4u5c+fKFhkA82h62wKDhbp16+LDDz/Ee++9h5s3b2L9+vXo16+fo2+1wERFRSnOr1ixIiZNmoRx48ZZ80kKa8D0vHnzrNZlixYtEhQYLHTp0gWvv/46Fi1ahCNHjiAhIQFNmzaV3F7jxo0xefJk0XSO4zBhwgRs3boVubm5+OOPP9CrVy+XvpfSjlu6I3r16gWe57F48WJrCLQSP/74I3744QdwHIc+ffoUevsKwvr1660FhhYtWuD48eMYPHgwmjdvjueffx6ffPIJ9uzZY60O/vvf/0ZurvRDDUF4Mlm5PFKzhQ+q7s5kAKRk4I4HP+c+eVq7z4Rq6jRAgEIHsHR7xOHPJQW2k5eUDO6BzfKwxROVDGzxytIRyvpEe7p/fElErnOWVTJwksHP0pkMtqHPgP0ig619mNRXx+iOYeqiB7LCt0vieV6kZAj30UIca5xPqSsyyGUysEWGklP7LxR4hSIDQGqGIsfkRCYDAI0v0+HJm2DKShLdJwP598rSdkm2f1AmA1EysHT4nz9/HkeOHFG9Xm5uLvbs2QPArFioVKmS7LLDhg2zrmMvvNce6enpSExMxLlz53D27FmcPXtWMPq8IOqATZs2IS8vD76+vood5gCsxYNbt24JAoG3b99ufS2VJWGhb9++kp3HrmTAgAGybihlypTBgAEDAADnzp2zFpsAc2iwxUJJqsBgISoqymq9ZLsOC8dxGDx4sOx2LLZagPD4FSWPHj3C1atXBeeZ5Vha5hUWlmNQt25dPPvss7LLWb5XtutIMWjQINmCSOPGja2vr1y54mhTCTu45Yl8zJgxiIiIAM/zeOONN9CjRw+sXbsWN2/eRE5ODnJzc3Hz5k2sXbsWPXr0QGxsLEwmEyIjI/HWW2+5o4lOY5u18MEHH0CrFd/YNW7cGD169AAApKamivzMCKI0kJQh/gEu7koGOSz2RveZDpxQb63Dfvj+euFl+HEJUjKwdkkGT++QKiYo2SV5qpLBFst5l8X4x5OSpvihNpNBo1fKZGCslRxUMmjsKBly3eKF4367pPQcXlQ0KOsrDn4uzUoGXjaTQfi+S71dkp0iA+UyFC1iuyRxR784+JmDxhAmUpCZMu9ArxEX2ixFfXtfBbJLIkoKAwcOhE6nQ3Z2Nlq1aoWePXviu+++w9mzZ8ErqNeuXLmCjAyzlZVSRyg7/+zZsw638f79+5g8eTJq1qwJf39/VKlSBfXq1UP9+vVRv359q7e8ZVlnsSgQMjIy4OXlBY7jZP9Z+rQACDroLd77er3emlsghU6nQ3R0tNNtVYPcyHYLzZo1s762zQyw/YzUfrYZGRmyndRVqlRBWFiY7DbCw8OtSgJHswtcybVr1zBmzBhERUUhMDAQVatWFZxnw4cPty5bWHm52dnZuHz5MgD7xz46OtpaYFP6XlkyfqUICQmxvn78+LHscoRzuC2T4ddff0XHjh2RkpKCLVu2YMuWLbLL8zyP4OBg/Prrr8U+k8FoNFpfV61aVXa5atWqSa5DEKUF1iop2KApkqBgtoM2rQBKhmRGyRDq43gPryPtKW6I7JJIyeAWlOySPFHJwHZ0ZuSa/aGzmX4V1keaKHoKYpdk6dhk7ZI4psjgpxNn29hie1mSEru4p67rfrukJKYIzgEI8dYo6BikigweWLW0xSSXycAsVtrtkhQyGQAqMhQ5TJGBkwx+FmcycBotNN7lYMq8bZ2el3kHOo6Dr47DY2P+OhmWATnMV4FjC1AU/EyUEGrVqoUVK1Zg2LBhSElJwa+//opff/0VABAWFoYuXbpg+PDhaNOmjWC9Bw8eWF/bZh5IUb58viWZ7XpqOHbsGDp37qw60zQzM9Oh7duSlJTk1HqWYguQ//5CQkIkB93aomRP5QrsfS62+7f9XFz92drbhqUtV69edfj8cBVbtmxBv379BJ+lEgU5z5Sw5GAA9o+bTqdDaGgo7ty5o3jclPqRNZr8+1s5JQrhPG7TNEZHR+PMmTN4++238csvv8h+mFqtFn379sXXX39t14uuOGCbGXHlyhXUrVtXcrm///4bgFk2Vb16dbe0jSCKE3eKQR4D4JpMBks/zP0s4XtyJPTZAutxa/tQV9wRBT9TJ69bYNUvtnhin6CUkoG16gLo/CuOyCoZjGyRwV9k8WEZnStZkLD9m+MQZNCI7Oss2I5K5zgOOg1gW8vNkTiXXA4zMp53g13SvQz290kDLw0nVjLYtCWTqdR4upIB4MHzJnBMgUtkl1RyfpYLB3t2SRm3FecThYyK4Gf2Wmw5xzU+5QVFBstrPy8NHhvztytvl8RWHajI4ApCDb5IGji1qJvhNkINRTOo9MUXX0THjh2xcuVK/P7779i3bx/u3buH+/fvY9myZVi2bBkGDx6MH374QdApaaGwvOmNRiMGDBiA5ORk6HQ6jBkzBr1790aNGjUQHBwMg8F8H3DlyhXrQFYl9YU9LP1yYWFh2LVrl+r1pLIbCuuYOIIr2lBctlGY3L9/H4MGDUJGRgbKlCmDiRMnonPnzqhWrRoCAwOtWSM7d+5Ehw4dABTsPFNLcT9uhH3capwYGRmJ1atX4/bt29i9ezfOnj0rqHrWq1cPMTExDoXiFDUDBw7ElClT8OjRI/z73/9Gt27dRNXbEydOYNOmTQDM3mABAQFSm5Lkxo0bivNv36Ybe8I1/JmSg703skSdDEpwHFA1UIfOlX2gVRhBfSstF8supAmmFUUeAyDOZLjyMAdzTjyUXFauY2HlpTQE6DW4lCIcBRnmXXAlw9lkI344+1gyK4LjOFQJ9IKJB649ygHPm49jjyq+8H2ynZNJ2Zh3+jE4AHVDdaJtOEJkGS90q+IjGs2aZjRhc2IGkphOvaJQppRGykiEMlrw8sAbM/b8S7ibLSpaAqRkKI6YeB7G+0eR+Vc8TMZU6/S8jJuC5TQ6sV1SxqV50OgDkXbyX8yy4hBGpSID+9Ok03DIselxyykCu6Scu/uRsvcVVWsak/YLt6RaycCEPj8pgrPfkrP3838D/0oV2geVhsJd6u7+yLq2FgBQpuFUlKn3nuh+ZuOVDBy8lWX9W6/l0Ky8AdFlPT/smOd5ZFz+QXGZjEvfic5TC1rfSPjWHAUv/6gCtSMv/SbSL86FxhAG/unR2HI9F3fThb8DfjoN2lfyRpVAHc7eN+LkPSNqh+jQuFzJ+pxMOenIuPAtclLPAwA0hjD41hgGXbD0QDZTFjMKWU0mw5N7Ba1Pedh+69MvzEX27Z0wZI0D8JR1+i8nT2H/6QfI4H0A1MnfFVNk4CiTwSVoOI3bg5BLK4GBgRg+fLjVEubChQtYv3495syZg1u3bmHJkiWIjo7G22+/DUBos3L37l3FbdvaCdmuZ4+dO3daLXji4uIwdOhQyeVcNfrdEhj9+PFj1K5d264SQYrg4GAAQHJyMvLy8hS3Ye+4FRR727edb/u5sJ+tUt6Gms9Wzfu0LMNuw7aoZQlDliI9Pd3uPuT4+eefkZqaCgBYt24dOnbsKLmcO1QWlvMHsH/ccnNzrQofR75XhPsokjuBiIgIDBw4sCh27XLCwsLw448/YuDAgThw4ACaNm2KcePGoUaNGkhLS8OBAwcwa9YsGI1GNGrUCLNmzXJo+0oXN4JwFbfTc/HpoRQ449Sz72Y2HmSZ8Ept6ZthYx6Pj/9IEU0vLkqGR0Ye+29lyywtzen70hYLoU4oGVjrm5tpebiZJi9F3HdTPO1ySi4+fDYIp+8bMT0hv2Di6PsSk40rD3MwqUmQYOqsYw9x/oH4GJBdknso7ZkMt9PzcDtdXGQoDR2iJQ2TKRcPfmsHPldZhi1ll8QbU/H42PviZfXSRQY5REUGLZcvRwNw7VEuaoXoFdtXYJjiX176NeRduebcppxUMoQ/+c1l65B3M/JEdoYWSkPhzlJgAIC0k1ORl34dGu5LwTIXJH7vdv6ThSnPBqF+WCGfO0VMxsU4wKRs85qbcgq5KfKho1lXVyH8xb8lbXzUwJtycX/TszA9KU7Ou9kSl3KrSS6750YWRjcMwFfHHoIHsPEK8G6TwBJVaHh44HVkJa4STMv8eynK9rsqyqSRQioXQcouCRCHP+c+OIHcBydgCOwD6POLDFdMVXDFJB61TEoGwtOoXbs2ateujZdffhm1a9dGeno6Vq1aZS0yVK1aFb6+vsjIyMDhw4cVt2UbKF2vXj3VbTh37pz19UsvvSS7nCVLQQ61I8Kjo6OxfPlyZGdn4+jRo3Y98aWoX78+fvrpJxiNRpw6dQqNGjWSXC43NxcnT550ePuOkJCQgFdffVVxvgXbz8X29eHDhxX74Syfra+vr6xl+tWrV5GcnGwt4rDcu3cPiYmJon0DgL+/v/W1rZUQy59//ik7zx6W8ywkJES2wAC47jxTwmAwoHr16rh8+bLd79WJEyeQk2O+L3Pke0W4Dw/sjnA/vXr1wrFjxzB06FCcPHkSgwcPRosWLfD8889j6tSp8PX1xTfffIN9+/YVugcdQTjD2fs5ThUYLBxPku/MvpSSI2kBVL6IlAyBClYzBSXcicKJUoexWk7fNyIr14S4k4/sL+wgJ5KMAmlkVi4vWWAAlLMCCNeh1KHq44FVBn8V78lPxzkcuk4UPvUN1+wWGABA4x2GPJW+7hpvcYheqLf8tZctPrFnU0p24YcyaLz8XLYtqSKLFOz7sijtHFGcKVmzlThUFmcyL/+g2ibq1D3Pz1jLvimVoefYtTYv/RpyU8/ZX1CuDf9stBYYsuErW2AAgKw8HrOeFBgszCmEe6PCJPvGZtE03piCnHvijpe8TAkvdY248CVWMpj/1/pWlGxDGZO6cE89L7y+cy681hFEUVKpUiXUqFEDgDDs1svLC+3atQMAbNu2TdF1YtGiRdZ1YmJiVO87NzdfXyQ3Ut1kMmHhwoWK2/H29ra+zs6Wf1bv2bOntaP4m2++Ud1OW2w7qZcsWSK73Lp16xQ7zV3B6tWrZbMDLEUjAKhTp47AQSUmJsaqwPjhB3kF3/Xr17Ft2zbROiw8z2Pp0qWy24mPj7c+Y7Od/JZAaEC5k3/FihWy8+xhOc+ysrJk1RIZGRn48ccfFbdjOc+UzjE1WI7BuXPnBAU6Fsv3ynYdonjhQU8PRYfRaMTSpUuxfv16SZ+yu3fvYtmyZdi+fbvD2/7nn38U/yl9AQlCLQW1i2ADgG1JyRKPkAzUc4gOL5rRfzWCdSjrRECzPcJ9NKgd7Lg9katGX9/PNBVKZ1keL7SNMsp81lUDvVC+iNQppY0yeg0aynx/WkWWnNGaamlcTm+3Y7RVpLfifMI9jG2Ybwfp58Whi/9pu+vowppBW6YKkJdld1loveH9VB/R5JaRBpFiAQBqBesQwhQg2OtkhkIuj6swVOoJaAt+jnK6ABgqdFW1LDty2WIB1LScQVV2S7BBgzohBbPcK04EtZF/0GdpEaHus5L7PfQkeInvZWCbpYDWx7Ht5Dx2ug25aVetr7M0jlvIsIHmxR027F1pOm9jQ2dBFywe2cmeqpasGu+ofpLXpkbZ61S0FIjO3mB9bajQBRpDkKr1CKKo+eWXX6xWMVL8888/uHjxIgBx9sDo0aMBmPuA3njjDeuoalt++OEHbN26FQDwwgsvOGQHbpvfGR8fL7nMBx98gOPHjytux3aflnxQKWrWrIn+/fsDAH766Sd89dVXitu9evWqqHO7WbNmVvXCvHnzsH+/2ELv9u3bmDhxouK2XcGdO3fwzjvvSM6bMGGCNeh65MiRgnmRkZHo27cvAHMgslSxxGg04vXXX7d+5m+99ZZiW6ZNm4ZLly6Jpl+4cAGff/45APPn1Lt3b8H84OBgPPPMMwCAxYsXS1oW7d+/H99++63i/pWwnGcZGRnWwosteXl5GDp0KG7duqW4Hct5lpSUhMePnf+tHzlypNUmavjw4Xj0SDxAYOvWrfj+++8BmM+5pk2bOr0/ovBwu11ScnIy/vjjD1y5cgWPHz9Wleb98ccfu6FlzpGeno6uXbti37590Gq1ePfddzFkyBBUrVoVWVlZOHz4MD799FPs378fffr0wX/+8x9MmDBB9fYrVpQeYUIQroStjZX10aCFQqfdvcw8HLSx4lGKcXiYLX64+6J1iDVDwN14aThMaxmMA7ey8dCovlP+79QcVCjjJVkU8Ndr0DrSYLbhcBClztNwHw1aRnqLjrcUyRLFHAB4JkyHKoHqO4oycnhsuy4c/ZFryg8UzpUopA6o4YfOUT4U1ORGxjcKxL6bWbiXaf7cNRxQK0SHhuGeV2SILOOFz1sFI+FOtmTgc6UyXmjpgcWVkkirCt4INGjwz+NcNClngM+VFNg+bmj9q8I7akD+374V4VP1ZXAcB95OuKyhUk/4R38GXXB90bxaIXpMaxmME0nZVlVemI8GrSV+x1542hdr/8offSt37XQluuD6COt+GFn/bACf65x/rkYXAO/KLzjtbW+5OlcL0mFay2AcTzLKdpKX0XFoGeldZL/ThYFPlQHQeJdFzr2DMOWkAeBhyriFzL/FxYfuVXxQzleLv1NzYHtWnr5nxNVH+SNM89wQgFj0CN+jT7XB8K32CnQhDZB1fb3s+ZxxYY5gnlSxQi22Pv/ZnLjIEOKtwYOswlckFTkS10jJ4y9RAGLPVe2Tr7b52nToybUp/7r4LIBg4ypcyH4KeTJjEiO8HqBpuQfw4t6HV5kq8K46SP17IYgi5ptvvsHLL7+M7t2747nnnkPt2rURGBiIlJQUHD16FHPmzLGOhn/zzTcF63bv3h39+/fH6tWrsXXrVjRv3hwTJkxArVq1kJKSgp9++sk6Ej4kJMRupz1L586dUbZsWSQlJWHKlClITExE3759ERYWhr/++gsLFy7Ejh070KpVKxw4cEB2Oy1btrS+Hj9+PD788ENERERYn9eioqLg5WW+vs6bNw9Hjx7FlStX8M4772D9+vV47bXXULduXRgMBiQnJ+PUqVP47bffsHPnTvTt21dkfx4XF4fWrVsjJycHzz//PMaPH49u3brBYDDg8OHD+OKLL3D//n00aNAAp07JW+wVlCZNmmDevHm4evUq3nzzTVSqVAn//PMP5s2bh99//x2A2SKK/VwB4Ouvv8aOHTuQkpKC119/Hfv378dLL72E4OBgXLx4Ef/5z3+sdk8DBgxA167yAz+efvpp3Lt3D82bN8d7771nVbPs3r0bM2bMwMOHZovjOXPmWEOWbRk9ejRGjBiBu3fvok2bNvjoo49Qs2ZNPHjwAJs2bUJcXByaNGmCgwcPOnWcBgwYgMmTJyM7OxtDhgzByZMn8fzzzyMwMBDnzp3DnDlzcOzYMdXnmclkwptvvokxY8YgLCxfdfz000+rak/9+vXxzjvvYObMmVbLrffeew/R0dFIT0/Hxo0bMXv2bOTl5UGv12P+/PlOvW+i8HFbkSEpKQnjx4/Hzz//LJCAqaE4FxmmTp2Kffv2AQC+//57DB482DpPr9fj+eefR/v27dGpUyfs2rULkyZNQocOHdCgQYOiajJBiGCFDJFlvDColvxosfPJRqbIIP+gzXbkt4o0IMyJ7AJXEuStRfeqvkXaBgt6hcDsSv7mz+HiA6P9IoNM6Gmz8t54vrL6EYcPsvJERQbzw6m5nVIFpe5VfMkP3814e3EOfa4lnUr+XqjkT4GSJYF6YXrUe+JT/5ixStKFNERA4+kyayp3Evo3+Bd0Ic/Izn86SIeng+wXVMOZ3597MtdOV6MLeUax/e6kaqAOVR0oPnsKhogYGCJirH8b7x2RLDJwHIem5Q1oWl5YvDTmPWaKDIXW1GKLLtQ8UlUXXF+y4Gch6+pPyEuzLTLIZ03Zxcb+J5sT2vFoOaBCGa1nFRnkileSRYY0wd+cLlBywAd7rtreeupCGkAXIn4ubfLkH0F4KhkZGVi9ejVWr14tOV+j0eCTTz5Bnz59RPOWLl2K3NxcrFu3DsePH8crr7wiWiYyMhKbNm1ChQoVHGqXn58fli5dij59+iArKwvz588XdajGxMRg7ty5ip70Tz/9NAYMGIBVq1Zh69atVmWFhatXr1pteUJCQnDgwAEMGDAA+/btw969e7F3717ZbQcEBIimPfvss1i6dCliY2ORlZWF6dOnY/r0/Hs+Ly8vxMXF4cCBA4VaZPj8888xa9Ys/Pbbb/jtt99E82vVqoVff/3VWmCxpWLFitixYwd69OiBW7duYdGiRQJ7HgsvvPCCoi0UAFSoUAHffPMNBgwYgA8++EA0X6PR4Msvv8SLL74ouf7QoUOxZcsW/PLLLzh//ryoqFO/fn2sWbPGIZWMLRUrVsS8efMwdOhQZGVl4d///jf+/e9/C5Z56aWXMGzYMEVboueeew7NmzfHoUOHsHz5cixfvlwwX8rpRY4ZM2YgPT0dcXFx+Pvvv62B7LYEBgZi1apVaNiwoertEu7FLUOUUlJS0Lp1a/z000/IyckBz/MO/Suu8DxvrVLXqFFDUGCwxcvLC9OmTQNgrvDJyd4IoqgwMSPVFPq9AZjVALYoKRlSGWsKJT/50oheod6if6JyUBOofF9mNK4aWwzB8hIPp7afr1RBydF9EARROmDzGDitQnHXjpLBVYGiYYyt2/3MwlcyFAXs7TMJzQoO+1NcQKfJkoGzz2GMBU9BigycJr8gZmSKDN5aDjp7N60egpTay5QjVDJwOukBQnnMqlL3egRRmlixYgUWLFiAQYMGoWHDhihfvjy8vLxQpkwZ1K1bFyNHjsSJEycwZcoUyfW9vb2xdu1abNiwAS+88AIiIyOh1+sRHByMZ599FtOnT8elS5ec7gjt3Lkzjh49ildeeQWRkZHQ6XQIDw9Hu3btsGDBAuzYsQN+fvYzUJYtW4Yvv/wSzZo1Q2BgoNWORory5ctj7969+PXXX/Hyyy9bQ64t+27ZsiXeeecd7NmzRzazYODAgThx4gReffVV6zGpUKECBgwYgP3792PYsGFOHQ9H0Ov12Lx5M+Li4tC8eXMEBQXB19cX9evXx2effYbjx48jMjJSdv3o6GhcunQJ06dPx7PPPougoCDo9XpERkbihRdewIYNG7BmzRpB5oUc3bt3x9GjRzFkyBBUrlwZer0eZcuWxYsvvoj9+/fL2joB5iLEzz//jP/+979o2rQp/Pz84Ofnh2eeeQaff/45Dh8+jPLlyzt1jCwMGTIE+/btQ58+fRAeHg6dToeIiAh06dIFK1euxE8//SSbOWHbzq1bt2LKlClo0KABypQp47S7gUajwX//+1/s3bsXL7/8Mp566ikYDAYEBASgYcOGmDx5Mi5fvoxOnTo5tX3CPbhlWOCMGTPw119/AQA6deqECRMmoHHjxggJCSnR9hp37961+qNFR0crLtu4cWPra4u/H0EUF0SdEXaWZzuVpSx0LDxkigyBVGQQoGSXZFE5GFSoBOSUDI46OGklPh7bwoLUyE0nXKIIgigFiIoMXgUoMmhcVGTwFl7k0nN4ZOaa4ONh1dLS0P9dYBx8BtEyndl5paPKIPxT5THjGMuegtglQWNrl8QUGbw8scggd16Jp4uUDBLByyaeF63pcYeMIGSIjY1FbGysaHpERASGDRtW4E7vnj17omfPng6vFxMTY3cwbd26dRVDd6OiouxuQ6fTYdKkSZg0aZLqtnXv3h3du3dXvTxLnTp17AYeF/agW61Wi5EjR4pyF9RSpkwZvP/++3j//fcL3JbatWsrBkkrodVqMWrUKIwaNUp2GaVzQO78t6Vly5ZYt04+h0fNuerv749p06ZZB1bLsXv3bsX5Ftq0aYM2bdqoWtYWNW21UJwHs5d03FJkWL9+PTiOQ/fu3bFhwwb7K5QQbCVW9iygbAOBpKRZBFGUsM/JdpUMHPugbb5QSxUNWbukQL1ndeQUFKUig2WevdBbQN5XnFWd2ENqedvCAqtk0HIo0cVigiAKDz7PgSKDvW5xVykZJOz67meaUMnfs3+b6CqtHp43gePE5wP78+hBBj3yiB7C1RYZmBGeuQVRMsjbJZmLDPa3IXePWqJQkckgpWSQqoV5WE2VIAiCIIhigltuMa5fvw7AHF7iSYSEhFj96P744w/FQsOePXusr6tUqVLobSMIRxA9Qtp5EGMfTnjI2waQkkEZvZKS4UlfmCq7JBcpGaREE0pKBnpQJQhCDlbJgAIoGTgXFRn0Wg6BeuGFzlMtkwh7yPxAmqTv59nfU9aCxjNxssjg5SYlg5aDTsWNTrYnfMWligw5QiWDRkLJIGVpqinpBReCIAiCIIolbukeKlPGPKqiXLly7tid29BoNFYp2a1bt/D5559LLpeSkoL33nvP+nePHj3c0j6CUAtbILBvlyTh2y9RZDDxPB6xSgYqMghQtEtyRMkg00nmqJJBanGlTAby9SUIQg5HMhmk/MaZlV3RJABiNYNckbYkQ5kMBYCXLjKwHbOm0ii1d9ouqQDBzzbXBiklg17FfU6GUnhYsUPuvFKhZPCSUjKIt0c2lwRBEARBFAZu8e2pX78+du/ejWvXrnlcCvjHH3+M9evXIyMjA1OnTsWxY8cwePBgVK1aFVlZWTh06BC++eYbq5qjQ4cOFFRCFDtYTzp7z2tSDye5Jl7UGZ5m5EUFDAp+FqImk0Gr4eClUQ7YNsrMk8pYUILjxPuyzdxg20BKBoIg5HBpJoOLiwx/P8zvSL7ngUqGUtj97TCczJAKns+TnCNSMpSKg+zcm2TtkvgC2CWBz/9+SgU/q7kPycjhEWI/o7N4I1EsUJPJIJmlRaEMBEEUI/78808YjUaH1ytbtizKli1bCC0iCMJZ3FJkGDFiBHbt2oUff/wRvXv3dscu3UatWrWwfv16DBw4EPfv38fGjRuxceNGyWWfe+45rF692s0tJAj7sF07djMZpJQMEv1DqRI93wGUySBAyUvYtgBh0HIiFYEanFEaeHEcciFdWGBDvulBlSAIOVyZyeAquyQACPMRXnhLg10SXakdQNYuiVUyuKMxRYs4GNH9wc+8TZHBeSVDyf+weDVKBolMBqmAclIyEARRnOjUqROuXbvm8Hr/+te/MHXqVNc3iCAIp3FLkWHAgAHYuHEjli9fjhkzZrgkpb040bFjR1y8eBHff/89tmzZgnPnziE1NRVeXl4oX748mjZtikGDBqFXr14lP3SM8EhEtgp2lpcaNSbVAc7mMfjrOIftezwdjuNg0Er7BdvmNXhrOaTnOP6Q7KiSwbqOTXsEmQyskoE+ToIgZCjOSgZbPNEuiUVu1H6pRu6enJcuOmmY39O8UmGX5FyRAaJMhgIoGUw2RQZIKBlU9Jhn5JSg77jceaUik0G1koEuBwRBeBAxMTESRfGiYffu3UXdBIIoUlxaZNi7d6/svNdffx1Xr17Fhx9+iLVr12LQoEGoVasWfH2VRrWZadu2rSubWSiEhobi3XffxbvvvlvUTSEIhxFlMtgNflaXyUChz+rQazhkSzwF6m36wdTkMkjhlJJBw8G2Y8H2s2WLSaRkIAhCDkcyGaT8xpmVC96gJ4SLigyep2QoHo/aJROegp9tcC7cQ2SXVKBMhvzPQ0rJoKQIteAJSgapIoNJlMlAdkkEQZQ8EhMTi7oJBEG4CJcWGWJiYlSN1D927BiOHTumapscxyE3V/pmnyAI18A+f9i1S5LJZGChIoM69FoOkFApsHZJzuCMkoH9fG2l9uxzOmUyEAQhhyNKBrvBz5rCs0t6kGVCron3KKWdky43BCCrZCiNdkksahUxrF0SXGSXZOSE1xBvLQedx9klybVVIpOBVTJI2SVR8DNBEARBEG7C5XZJxUWmRBCEekxs8LOd5TWcub/Cdi2pEX2pVGRQhVwBwdZn2OCkL5EznWZs4UCQycAqGcgCjiAIGRzKZLBTZHBtJoNwWzzMhYayvq7bR9EjvFbTlVoKueBn6cFN7M9pqbBLcvI9ijIZXBT8zCoZDF4qiwwlyS5JDim7JDVKBom37kH1VIIgCIIgihEuLTLs2rXLlZsjCMJNiO2SlJfnOA5eGiBHIRAYAB4ywc+BFPosiV6uyMBkMjiDM7UJtnBg+9mKMhnoIyUIQgaHMhnsGfy4sMhQRsfBoBXa1N3PzPOwIoMQ6lN0ALV2SaWgxlAs7JJsPo9sjXCkvreWE1hLylGylAwySBYZhEoGjZdYySC6xwegoQEiBEEQBEEUAi4tMrRr186VmyMIwk04apcEmEfI59ja6EiMlCK7JHXIKhlcYpfkbCZDPnkKxSRPshchCMJ18LxJZJGimMngxuBnjuMQ5qPBzbT8EdKelsvgAV2qbkAuYJfskqw46bvFiYKfXWOXxAY/+3hxqu5zMiQsKUsaUpZyapQM7H2bMzaaBEEQBEEQaqDbDIIgRM+Qajx32T5vqUwG1i4piIoMkhhk+s5ckcngjJJBbJekoGSgGgNBEBJI2aMUF7skQCr82QPsVGygTAYVyFgBydolMb+NpcIuSVSIUXkiuTT4Wd4uydtLI7CWlMMjlAxOZjKwt+eUx0AQBEEQRGFBPX4EQYgeQNQqGWxRpWQguyRJ5O2S8l+7VcnAFpBszg/2cyYlA0EQUrB5DEDBigyuVDIAQCgT/uxpSgYWulKL4R1WMgj/lvK693hU2yW5MJPBxi7JyBYZtJwq28ZMqZvUkoaLMhkoS4sgCIIgiMKCevwIgoCJedBWV2QQ/s0qGUw8j0dsJgMpGSSRKyDYTveWkAz4eXHQ2TmkzikZWLskG1ssVnZPz6oEQUjA5jEAxSeTARArGe55mJKBhS7VUsicc7KZDKXQLslJ4y3WLom1TnOoBYpKBnXBz+klxC6JV1THqCkyiJUMrOKG7tsIgiAIgigsqMePIAixXZKaIoMoHFg4Pz2HF4UiUpFBGlklg82Ds5SlkpcGCPFW7nhzJphZXECSfm1elp5WCYIQI1lkYEY3C5a3q2Rw7e9HmDdrl+RZSoaS0aVaxMjaJUmfC+zPXamwS3I2k6EQ7JJM4GDkhIVKc/BzKbFLYq6RPG8SFxl0EkoGVq1M920EQRAEQRQS1ONHEIRoNJ6axw97SgbWKgkguyQ55PyE7QU/azXm8FIlnJHFs+vYqhfymM+ZAgQJgpCELTJo9OA0XgorKBQZOA04F1t8hPmK7ZKURxGXLDzorRQijikZ2J/q0qlkKAK7pCcZGTnwAc8UG7291NklZeR4gFKJ+VJL597YVzJQlhZBEARBEIUFdQ8RBCF6hNSo6MwRW+oI57Ohz35eHHSk0ZZEqoDAAQIrJMkiAweE2lEyOFMEUFQyMCcLq2ghCIIAxJkMylZJUM5kcLFVEiBWMhhNwOMSYqniDHSplkCuEiMT/Fwa7ZJEuRXOZjK4wC6JzWMAnigZPCr4Wb6dPFOI5XPTRMuoyWQgIQNBEARBEIUFFRkIgnAy+Fn4N+vV/5DyGFQjJfXXayEYuSuVyaDlOFF4KYuaghGLYiYDc7I4Y8dEEITnw9olFbciQ4i3RvRb50mWSc6NPy9tkF2S4xSBXZLJ/Hlkc+JriFolQ2YuX/KVSqxdEmOVBAAanVjJwN7jU/AzQRAEQRCFBXUPEQQBE/PgpcouibXUYfqHWLskKjLII5W3wI7Mk7ZLAsJ8XN/5xu7KdgAg+znTwypBEFKIigxa54sMXCEUGbQaDiHerGWSB1iqEA7gYPAzcxvDet17JM52zLPBzyYjeJOTRTzeUmQQjtK3KD7VZDKYeCC7JHxgSsebLTLksEoGDpDIvREFP9PtOEEQBEEQhQTdZhAEIWGXZH8d9iHFXiYDFRnkkSogsA/N0nZJHEK9XX9cWSWD7Wcr8valj5UgCAkcVTKwViDClQvnQsNaJt3zYCUDIYGsXZL0eVAa7ZJEZ5KTdkkAAFO2k00wF33YIoO3FweO40T3LHKUHMskOdhMBib02ctPMruGtUsi51KCIAiCIAoL6h4iCEL0nK3mGVLcES2cLyoyUOizLNJ2SfaLDF6FpGRQzGQwscvS0ypBEGIcz2RQ8CIvgJ+7EmGM3VyyBxUZnOwbLmXI2SWpC37OKw1VBtH30jm7JMD58GdeRsng88RGUu3tZUZJz1wR2SUJlQxSeQyAeHCIMzaaBFHaSExMBMeZC5nx8fFF3RxChqlTp1o/J6Jw2b17t/VY7969u6ibg9jYWHAch6ioqKJuCsFAvX4EQYhG43EqHiLZiADKZHAeqQICO006kwGFomRgR2vafrYiJQPd0xEEIYFLMxlMOS5okRi2SHvPg+ySxF3DdLFWjZxdkiiTwQ1tKXJYO03nlQxOFwtlgp+9n3wgOo9SMigUW0V2SYySQSKPARCfp6RAJQiCIIiSw9mzZzFixAhUq1YNPj4+CA8PR5s2bfDdd98hN1f6nrUoodsMgiCcDH6Wt9QBgFRGyRBERQZZJO2SNPaX4QD46jTW0XyuwhElA3n7EgQhhcOZDEp2SYUEW2TwpOBnQg1kl+Qwqu2SJJQMzoY/m+TtkgBzvoqaVmXklPQiovCEM6lWMgj/JiUDQZR8ituocoJwBaRMEbNw4UI0btwYCxYswJUrV5CVlYX79+9j//79GDlyJFq1aoX79+8XdTMFeLlyY1WrVnXl5gAAHMfh77//dvl2CYLIhwcrpba/jlJHNECZDI6gc9IuyTIoL8xHg38eu65zjC0g2VpCsMUksksiCEIKlyoZCgnWLsmTigwiJQNdqkXwMhZdau2SeAAmnvfwTlsnKylaA8xDIfLXd7bIkG+XJByp721zX6TXAtl2vr7pJULJoIDILkmlkoG9b/Pk05UgCIIoFcTHx3u8ldnmzZvx5ptvwmQyoVy5cvjwww/x7LPP4sGDB1i4cCHWrl2LI0eOoG/fvti9eze0WtfbaDuDS4sMiYmJqpazVKbYm3up6VTFIojCR2yXZB9RR7TNNnieF9slUSaDLAaJjnq2yOAtVWR4cohDvbWuLTKIrLDyX4tk93SNJghCAoczGYogqjicUTI8MvLIzuMli7olDoWMC8KCzDEyySgZJG5jTLy6gRklFmczGTgO0HoDNoWFgtolySkZAPM9abYd/6qSkcmg0EaRXZKzSganGkYQBEEQhJvIycnBmDFjYDKZEBAQgAMHDqBatWrW+V26dMHo0aMRFxeH/fv348cff0RsbGzRNdgGlxYZBg8erDj/5MmTOHXqFHieR1BQEKKjo1GuXDkAwN27d3Hy5EmkpKSA4zg0aNAADRo0cGXzCIKQwangZ7Yj2qZSkZ7Li5QNZJckj0Gi6KxKyfDkmIf6uPbYahWssFglA9klEQQhhaNKBtZv3B2wSgbAHP4cWcalt8dFgnNdw6UMmXNOTsnA2iUB5g7ckn+2KOH8mcRpvQXqBWeDn+Xskmzvi/QaDul2CpUZ7I1picOOksFLXSYDe49HEARBEETxYt26dbhy5QoA4IMPPhAUGCzMnDkTK1asQEpKCmbOnFlsigwu7R5avHix7L82bdrg/PnzqFixIlauXImkpCTs2LEDy5cvx/Lly7Fjxw4kJSVh5cqVqFSpEs6fP4/WrVtj8eLFrmwiQRASsI9laqT/4o7o/NesVRJAdklKsAUFQBwwKRXUZwlhDvN2rTSO3VeebSYDBQgSBKEChzMZiqDI4O2lQRmd8GJ7z4Mskwh7OJbJINU3y1rReB5OjEKxLOrFhD8X2C5JXsmgU3EvklkSlAxKCiRmHs9kMmhklAwmZj1PEGoRhDMcOHAAQ4cORc2aNREQEAC9Xo+KFSuiR48e+O9//4vU1FTV24qNjQXHcYiKilJcLj4+3uoxL+f6sXPnTgwcOBBVqlSBj48PfH19UblyZTRv3hwTJ07Ezp07rcsmJiaC4zi0b9/eOq19+/bWfVj+ydnI7Nq1C4MHD0bVqlXh6+uLgIAA1K9fH5MmTcKtW7dk3wfrlf/w4UNMmzYN0dHRCAoKkt3nL7/8gv79++Opp56Ct7c3goKC0KRJE3zyySdISUlRPHYAcOPGDYwePRpVq1aFt7c3IiMj0atXL2zfvt3uus5iOca272n16tXo2LEjypYtCx8fH9SqVQsffPCBqnPGaDQiLi4O7du3R3h4OPR6PcqXL49u3bph2bJlMJnk73/Z8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOKc7qw8dOoQpU6YgJiYG5cuXh16vR0BAAOrUqYORI0fi/PnzkutZvieffPKJdRp7TrPfIbXfwTNnzmD48OGoXr06fH194e/vj7p162L8+PGKTjxSx23btm3o2bMnypcvD4PBgCpVqmDkyJG4ceOG2kOkml9++cX6Wu7z8PX1xYABAwAA58+fx59//unydjiDWwbfHD16FG+++SbCw8Nx6NAhREZGSi6n1WrRv39/tG7dGo0bN8aoUaPQoEEDNGnSxB3NJIhSC/sAoqbfWJzJkL8Ntsjg48VJdqQTZtRYc0hZx1ntklysZBCFevMKSgaySyIIQoKSkMkAmMOf03LyR67fzyzpo53NkJJBBXIduiY5JYPEoiWg39q1OKJkEBYZCmqXZGSLDDa3PmryoTJKeCYDb1fJIF1kYAUcdDtOlDYyMzPxxhtvYMWKFaJ5N2/exM2bN7Fp0ybcu3cPU6dOdWvbxo8fj2+++UY0/fr167h+/ToOHz6M+Pj4Age7ZmVlYciQIfjpp59E886ePYuzZ89i3rx5WLFiBXr27Km4rcuXL6NTp06KHbQpKSno16+foEACANnZ2Th27BiOHTuGuLg4rF+/Hs2bN5fcxr59+9CjRw88evTIOu327dvYuHEjNm7c6LbP6o033sAPP/wgmHbp0iXMmDEDS5cuxY4dO1CrVi3JdRMTE9G1a1dcvHhRMP3u3bvYsmULtmzZgvnz52P9+vUICQlRbMfRo0fRvXt3JCUlWadlZmZi8+bN2Lx5MyZMmIBZs2Y5+S4LTnx8PIYMGSKanpOTgwsXLuDChQtYuHAhZs+ejVGjRrmlTdOnT8eUKVNEhZzz58/j/PnzmDdvHhYsWIDXXnvN7rY++OADzJgxQzAtMTER3333HdasWYM9e/agdu3aLmv7/v37AQA1a9ZE+fLlZZdr164d5s+fD8BcSK1Ro4bL2uAsbikyfP3118jLy8PkyZNlCwy2REREYPLkyRg7diy++uorLF++3A2tJIjSiyiTQZVdknxHNFtkIKskZZz1/8558sGF+bhYySCywpJ+DZCSgSAIaRzPZCiqIoMGifnPrx4V/kzYw7HgZzm7JI+mANkenNZbuCln7ZJ4GbskTf53Vc1AlhJvl2Qvk0Em+Fk0kIgGhxClCJPJhN69e2Pbtm0AgOrVq2PUqFFo0qQJfH19cfv2bRw8eBCrVq1ye9t+/fVXa4HhmWeewciRI1G7dm0EBgYiNTUV586dw/bt23HkyBHrOhUqVMCZM2eQkJCA119/HQDwww8/oGnTpoJtV6xY0fqa53n069cPmzZtAgD07NkTAwYMQNWqVaHRaHDkyBHMmjUL169fR79+/XDgwAHFQb79+vXDzZs3MWbMGPTq1QvBwcG4fPkyKleuDMBcSOjYsSOOHz8OrVaLQYMGoVu3bqhSpQpycnKwd+9efPXVV0hKSkK3bt1w4sQJ67oWrl+/bi0waDQaDB8+HP369UNgYCBOnz6NGTNmYOrUqYU+GDkuLg4JCQlo1qwZxo8fj+rVqyMpKQnx8fFYtWoVbt26hc6dO+Ps2bPw9/cXrJuWloYOHTpYLW/69OmD119/HZGRkbh69Srmzp2LPXv2YP/+/ejZsyf27t0rG9ybkZGB/v374+HDh3j//ffRrVs3GAwGHD58GNOnT8ft27fx1Vdf4amnnsLbb79dqMdEjtzcXAQHB6N3795o27YtqlevDj8/P9y6dQvHjx/H7Nmzcf/+fbz11luoVasWnnvuOeu6ffr0QZMmTRAXF4d58+YBMCsQWCpUqKC6PXFxcZg8eTIAIDw8HO+99x5atWqFvLw8bN++HTNnzkR6ejpiY2MRFhaGbt26yW5r4cKFOHjwINq1a4cRI0agRo0aSE1NxdKlS7F06VLcu3cPr7/+Ov744w/V7VMiLS0N//zzDwDIFrAs2M6/cOGCS/ZfUNxSZNi3bx8A4Nlnn1W9jqWiaangEARReIjtkuyvI1Yy5L9OZYoMFPqsjLMqj/zg58JVMtjaQeQxD6tqRg8SBFH6cFzJUDS9tWz4s8coGZx3uSlFOGiXpGBb6KnwBbFLEikZnLRLMsnYJWnyi0FqBjx4XPCzSiUDWwijwSHFH543gTc9sr+gh8BpAsBxhXNizp0711pg6Nu3L1asWAGDwSBYpnv37pg2bRpu375dKG2Qw1LYqFy5Mg4cOIAyZYSFwpiYGIwePRoPHjywTtPpdKhXr55A2VClShXUq1dPdj+LFi3Cpk2boNPpsGHDBnTp0kUwv3nz5nj11VfRpk0bnDt3DuPGjVPsgzt79iy2bNmCTp06Wac1btzY+vrTTz/F8ePHERQUhO3btwvmAUDr1q3x8ssvo0WLFrh9+zYmT56M//3vf4Jl3nnnHauCYdmyZRg4cKB1XpMmTdC/f3+0adMGR48elW2nK0hISEC3bt2wfv16eHnld5127doV9erVw8cff4zr169j2rRp+PLLLwXrfvLJJ9YCw5QpUzBt2jTrvMaNG+PFF1/Eq6++iv/97384ePAgFixYgJEjR0q24969e0hNTcX27dvRtm1b6/RmzZrhxRdfxLPPPosbN27gww8/xKBBgxAeHu7Kw6CKrl27YtCgQfD1Fd7vR0dHo3v37hg7dizatm2L06dP41//+pegyBAUFISgoCCULVvWOk3pnLbHvXv3MGnSJABAZGQkDh06hEqVKlnnt2rVCr169UKbNm2Qnp6O4cOH4+rVq9DpdJLbO3jwIIYNG4b58+cL3CU6dOgAvV6PRYsW4dChQzhx4gSio6OdbrcFW/sl24KhFLbvy1KYKGrcUmS4d+8eAHNVUy2WZS3rEgRReIiUDCrWEVnq2NolGZkiAykZFJHyElbzKGxRMoQWciaDrcOASMlAHVcEQUjgcCaDqque6wkVFRlIyVBqILsk+4iOkfOZDAW1S8rmhNcQ2yKDvhTYJbHXSLVKhjzmvo2UDMUf3vQIj++8WNTNcBv+5deA0wa5fLsmkwkzZ84EYO6oW7p0qajAYEGj0Tg0StoV3LlzBwDQqFEjUYHBFns2OkrwPI9///vfAICxY8eKCgwWgoODMXPmTHTr1g0HDhzA5cuXUb16dcllY2NjBQUGW9LS0vDf//4XADBt2jRRgcFC5cqV8dFHH2HUqFFYvXo1FixYAD8/c6H0zp07WLduHQCgR48eggKDBX9/fyxYsMChQczOYDAYsHDhQkGBwcKHH36IVatW4ezZs/j+++/x2WefQa/XAzD3ZS5atAgAULduXUlrJ47jEBcXh99++w3JycmYO3eubJEBAEaMGCEoMFiIjIzErFmz8NJLLyE9PR1LlizBxIkTnXzHzmPv+xMYGIhPP/0Uffr0wf79+5GcnIzQ0NBCacvixYuRkWF+Dvnqq68EHfEWoqOj8cEHH2DKlCm4efOmNT9EioiICMyZM0fSvnrixInWz3rfvn0uKTI8fvzY+lrp2gDA+r0BzN+/4oBbev4slbQtW7aoXmfz5s0AgLCwsEJpE0EQ+bDPkGoeQJSUDKxdEhUZlJH6wVKD5ZjrtJxLjzFrCWFbQGJDLknJQBCEFA4rGYqIcCbTxlOCnymTQQ1ydknS54CUXZLHFxkKciaxdklOKhnkMhkMnNH6ujRkMrBKBpNqJQMFPxOlk5MnT1pHBA8bNsxuZ527iYiIAADs3bsXf//9d6Hs4/z589Zt9+vXT3FZ2w5sJduXl19+WXbenj178PDhQ4f2l5OTg2PHjlmn79q1C3l55uu+lMe/hWbNmqFu3bqK+ygonTp1krV712g0GDx4MADgwYMHOH78uHXesWPHrKHQsbGxsjZIAQEBguBeJTWN0rHo27cvgoKCAKBQQ7EdIT09HYmJiTh37pw198NWKXDq1KlC27flGAQFBeGFF16QXW7o0KGidaTo16+fbIGyZs2a1muLRblSULKy8gdlWApXcti2KzPTyfssF+MWJcNzzz2HpUuX4quvvkLXrl3RqlUrxeUPHjyIr7/+GhzHoUOHDu5oIkEUOYkPc7DrRhbSjI5bNZT11aJLlK/THc3sHlXZJTEP21cf5WLOCfNNxYUHOYJ5VGRwHDUODLaLhHprRMUdZ2ELSPcyTZhz4iG0Gg5JjJUIPawSROkm+/ZOZF1dKerwyktLFPxdXIsMbKZNcpbJ+ltWEPx0GsRU8kbVQGnpNQAcuZON43ezrao0V5KUIewop8HLDiCTySB1b+TpdkkinLBLuqCLwWV9G1Q/uREt/CrBJyp/pOD9zDxsvZaJZIXiXnbOMJj8e+CetqpguunKYqTc/su8r8xhAJQDF689ysX3J26iWdZPqBqghW/t0eA04u+nKfsB0s9/gxupadib0wJpvLnzQGMIgldALcAJWxdT5h3kpV8HL6OSyYdHnv9/BVPK5v2FdpkLob2xCUnp2dhtbImUzCzwuQMB//wRvhVSG6Kn0YQAvQY3Hudixz+ZyDMBVx4K78m1dEtOlBJOnDhhfd2mTZsibIk0r732GpYuXYrk5GTUq1cPvXv3RufOndGmTRs8/fTTLtmHrZ1QixYtVK9nUVlI8cwzz6jan6WI4uj+bL342awJlmbNmuHcuXOq9+MoavZv4cyZM1bL97Nnz1qn21NbPPvss9YcgrNnz0oeN71ejwYNGshuQ6fTITo6Grt27ZLMMnAX9+/fx1dffYU1a9bg8uXL4BXukQoaZq6E5fg3atRI1gIJAMqVK4eoqCgkJiYKPjMWe7kIwcHBSEtLEygQCoK3d/4gDaPRqLCk0C3Ix8dHYUn34ZYiw/vvv4+VK1ciOzsbHTp0wJtvvonY2Fg0aNDAOoKX53mcOnUKS5Yswbx582A0GmEwGPD++++7o4kEUaSkZpsw9VAqMgswyur0fSM+b+WcnJINhVNnlyT8OzXbhP23pC3RKJOh8An11uLKQ3sPr+pgRwRm5vKyny0pGQii9JJz/xgebH1eNMJWipJSZDDxkL3eOcruG5n4JiYUIRKWdsfuZmPWsYIXMwjnkX34NclkMkgVGTwjwkOBggU//6lrjflBKwEAO33fgvbAi2gGDj5R/WDieXx2OBW30+2ph1oB3uKpmvt7kJWz27wv/3aAt3KRAQC23tJhN/8CJl9uici0qwh89lvRMik7++Lx3aOYGXoU6RobK4dcAOk5ouXVEfzknwq8xUGm170a4Y2Hg/GVdimStZXNT/DMU/yxZODPYw/xQdNATP0jBY9lMiikFDkE4YnYdmI60uHtLjp06IC5c+di0qRJyMzMxMqVK7Fypfl6WaFCBfTo0QMjR45U7Fy2R1JSklPrWaxmpAgOlr+WuWJ/thkUth79UpQrV86p/anFkf3bttuR91C+fHnJ9WwJCQmRVUOwbZHbRmFz7NgxdO7cGcnJyaqWL8xR95ZjYO/YA+bjn5iYqHjc2JwJFs2T0C6LAqeg2IaI27NASk/PH+RVXNRabiky1KpVC0uWLMErr7wCo9GIOXPmYM6cOdDr9QgJCQHHcUhOTrZWaXieh5eXFxYvXmy3akQQnsClB8YCFRgA4K/UXDx6MoLJUViffTWjnHwcMOMPcXEwcWmgTqi46l7OV4u7NqNTny1vsJknPsblfJ3LanDks6URcQRResm68auqAgMAcHrlDjbDU32Qff0XmZUL73Y1UM/BoAWyC8ElKTsPOJecgzYVxNfiE0nKI5NcjYFkZyK8ykRJTudllQwctJwwSDebTdX1NJjvN+eA065GH4zVZcYJpq0u8288kzgbPlH9kJSRp6LAII8fn2p97cOrL9gZOT9c0TVHyLWfRUUGU3YKjHf34pqujbDAUMRc0LfHHW0tc4FBgYsPcnA2OUe2wACQArUkwGkC4F9+TVE3w21wmoCibkKRMXr0aPTv3x/Lly/Htm3bcODAATx8+BA3b97E/PnzsWDBAkyePBmfffaZU9u37fTcuHEjoqKiVK2n1Dmr1Nltu7/jx48rjiK3RS7c1llLYVfhiv0Xl20UJkajEQMGDEBycjJ0Oh3GjBmD3r17o0aNGggODrZa+ly5cgXVqlUDoDDQw4UU9+Mmh22+hW0ItBS2Yc9S2RNFgVuKDAAwYMAAVKlSBaNGjbJ6rmVnZ0v6jjVq1AhxcXEC+RFBeDJsJ7+zGJ182E3LETagjFQSMcMzYXqU0XFIU3iQAYBggwZ1Q5W95AjgtdplsPSCuVIdZNAgpqJY7ja8vj8+O5wKHuaw6P418v1321T0xq9XhSMC3nzGH85QPUiHcB8N7mXaPzFpRBxBlF5MWepGrGkDakIX0lBxmYBG03Hv5u+AhG97YKtFzjRPFRzHoW0FH2y7XjgjqjJypK+jWW7snA7Uc6hDv8MivIJqQV++PYx3djFz5D+bYG8N7tv8NiZnmVCtkNpXHOBNTDFMq/488o7qj3spwqNzz+tp5D68CABwwh3USnjuX6iQm28J0TB7Iw55vwyeUze4Ihd6mDLvgud5QSeEKfMuACCTK16dniZOh0yNunu6dJlrjgVSoBZ/OE5TKEHIpQ3bbM/bt2+7dPCqZeSyyaT8fbMdZSxH2bJlMW7cOIwbNw4mkwknT57EunXrMHfuXKSmpuLzzz9H06ZN0bt3b4fbaRusGxQUhHr16jm8DWf3Fx4eLls8UMJWKXH37l3FjtO7d+86vH1HsLd92/m2Ad22r+/evYsaNWrIbsPWKkou5Ds5ORl5eXmKBR5LW9htWM5VwDXnqxQ7d+605hHExcUJsg5scZfKIiQkBLdv31Z1fliOf0EC1l2Nv78/KlWqhH/++QcXL15UXNZ2fu3a9hWd7sBtRQbA7GmWkJCAo0ePYvv27Thz5oz1RAsODkb9+vXRsWNHu95nBOHp+Os5PFdJ2VMtz8SLOpWdtXV+xHj5+6tQQwR5a/F5q2AcvpONdJlCg79Og5aRV/DhvwABAABJREFUBng7MDK+tNK9qi/K+2mRlJGHlpHe0EsMNasXpsdnrYJxOSUH9cP0qOiffwmPCtBhZtsQbL6agVwT0CXKB08HqRs9wqLXcvi0ZTAO3srGI6MJN9NycfSu9KhbelYliNKLKUvop6or2wr6ckLfY61PeXhXHQROo3zL6RVUC2E9j8F4ezt0oU2h9auErGtr4BVUG4bI513edluG1C2D6sFeuJlWcDnD4dvZuGOjOJMrJrBe/jWCdagd4tw1Wwk/HYcWEd5OqRxLAyEdN+POMuZ+S2F0XZi3VlBkuO8hQeGy5Al/+zmN+iKDIbIDcEJciMx99Cd43iR5mHtXYywJeB5p52YJcjKC/fzRIiIbARUnwXhrO3KSj6Jmzl6MTe2Fv8tPgLZiTwDmPLAGYXqcuW9E/Hmh3QAPDuDzwBsfgjMEWaebss3XtGxO2I6AvLtomr0SHKeDX713VB8DADDe3gXj/cPWvzWGMHgFKPutp5u8sTdT6HuuqfgCYPM2dHwGmmcuxz5fYWeOvYFLdCkgSguNGjWyvt67dy/at2/vsm1b7Ews4b5y/Pnnnw5tV6PRoFGjRmjUqBH69u2Lxo0bAwBWrVolKDKoHaEdHR1tfX3gwAG0bt3aofY4Cru/l156yeFt1K9f3/o6ISFBsciQkJDg8PYdwd72befbFnBsXx8+fFgxE+TIkSOS69liNBpx6tQpwTltS25uLk6ePCm5DVvrnZSUFNl2PHjwQLXVEYttLobSZ26b2SGFq5QH9erVw+3bt3H8+HHk5ubCy0v6GSQpKQnXrl2zrlOcaN26NVasWIFLly7hzp07AlstW/bs2WN9bS/72F24tchgoUmTJmjSROw3SRCEmWCDFoNqKXuq5UoUGXKdqDJk5/Gi0WQBenUX+PJ+XuhdrUguIx5J43IGu8s8HaSTLR485e+FN59xzei7EG8telQ1P2Qn3MmmIgNBECIsHXIWvCu/iDJ1xzu9PV1QbeiC8kfh+NUZ6/S2HEGr4dBOQj3mDEkZeYIig5wVItsR2CBcj37V/SSXJQoPzssb3pVfRNY1W2sShSKDjwaweUb39CIDbxLmk3Ba+/cpdsnLRF76P+ARKZis4SC69zUZH+Lu4U8E08K7XIGXfxUAwCNTDnKSzZ0WVXKPoo7hdwTVGihYvqK/F/bdzMLfNrlV/JPwZlP2fWhsiwxZ9wCYLZVsCTNdRc/0zwGtNyJq/cuht/vo0S6kX/va+rdP5OsIajVOcZ076bnYu1s44lNTqT9wIf9vP1MKOmV8LVFkUH4WICUDUVpo0KCBdTTwokWL8M4777jMs7xKFfM16PHjx7h06RJq1qwpWsZoNGLNGudtrxo1aoTg4GCkpKSIQnJtg2Ftg1+ltlGxYkXcuHEDCxYswNtvvy1Y19V07NgRvr6+yMjIwOzZszFgwACHO47bt28PrVaLvLw8LFmyBC+88ILkcgkJCYphva5g69atuH37tmSmh8lkwpIlSwCYB0zbFgAaN26MoKAgpKamYsmSJZgwYYJAUWDh8ePHWLVqFQCgTp06itkhS5YskS0yrFu3zlpA6Nixo2BecHCwtS1Knfw//fST0xZGubn5v6/p6emCwoYFk8mEhQsXKm6HPa8tNkuO0rFjR2zbtg2pqalYu3YtBgwYILnc999/b33P7HEravr06YMVK1YAAOLj4yWzijMyMgTnj5Jixp3QWAaCKKFIPSM4o2RgVQyAOiUDUXpQymigZ1WCKL2wSgaNd5jMkqUHVrmXJVtkEE4nn/SihDn4SkoGJij8vgpbwRINa5ekcUGRAUDew0uiWo7UV8CUIbbV1frYdMJohIMueF46mFncx2WewF7D8osMQiWDnn9iIWGSzutQgs344FRkzGgkOuWyeeG558Vng5MoiNmLeNPRjRtRStBoNJg0aRIAs6/5a6+9Zs0AZTGZTLh165bqbbdr1876etasWZLLTJgwATdv3pTdxsqVKxXDb48ePWrtOLYUNSzYdkb//fffstvQaDSYPHkyALMf/muvvaZYlHj06BHmzp0rO98eQUFBeOuttwAABw8exPjx4xUteu7evYtFi4SWmBEREVbVxoYNG6ydqLakpaVhxIgRTrdTLdnZ2RgxYoRkoO+MGTNw5ozZtu/1118XdIgbDAarZdDZs2cxbdo00fo8z+Ott96yFpAsx02OefPmYf/+/aLpd+7cwcSJEwGYA4oHDx4sWqZt27YAgPXr10ueL5cuXcJHH32kuH8lqlevbn0dHx8vucwHH3yA48ePK25H7XltjyFDhljDmt955x3J7+GpU6fwxRdfADBnIPTp08fp/RUGffv2RdWqVQEA06dPlzwekyZNsl4jLNe64kCRDUG+ceMG7ty5g4yMDDRt2hQ+Pq4ZQUYQJRFnasYajgPHrOuMxfNjxrtVywG+ZG9E2KBkd0WZDARRemGVDBoDFRm8teqKDOzvNY0uLhmIiwwermTIY5QMDtglKZH78CJMZexbl+RlCosMnD4InFf+SEeOKTLAJF1kYOEtRQbmGpZvlyRUMhj4jCcr5opyHOzCtoltswRSW88xCc89HbIh9QRhX8lgd/cE4TGMHj0aGzduxLZt27Bu3TrUr18fo0aNQpMmTeDr64s7d+7g0KFDWLFiBQYNGoSpU6eq2m50dDRatGiBP/74AwsXLoTRaMTgwYMRGBiIy5cvY8GCBdi5cydatmyJgwcPSm7jvffew5tvvonevXujbdu2qFGjBvz8/JCcnIz9+/djzpw5AMxBy6zH/VNPPWVVKPznP/9BxYoVUbNmTatnf7ly5ayjyd98803r+1+9ejWOHz+OESNGoFmzZggMDMSjR49w8eJF7N69Gxs2bIC3t7fdDm8lPv30U+zZsweHDx/Gt99+i927d2PYsGFo2LAh/Pz8kJKSgnPnzmH79u3YsmUL6tevL3p/s2bNwrZt2/D48WMMGjQIe/bsQb9+/RAQEIDTp09jxowZ+PPPP9GkSRO7FjwFoUmTJti4cSNatWqF8ePHo3r16khKSsKSJUvw008/ATCHVkt10H/88cdYu3Ytrly5gqlTp+LMmTMYMmQIIiIicPXqVcydOxe7d+8GALRo0QLDhw+XbUd4eDh8fX3x/PPPY/z48ejWrRsMBgOOHDmCL774wlogmzZtmmRo96hRo7BhwwZkZmYiJiYGU6dORXR0NNLS0rBjxw58++23CA8Ph1arxb179xw+Tp07d0bZsmWRlJSEKVOmIDExEX379kVYWBj++usvLFy4EDt27ECrVq1w4MAB2e20bNnS+nr8+PH48MMPERERYf3NjYqKkrU+siU8PBwzZ87E6NGjcePGDTRu3Bjvv/8+WrZsidzcXGzfvh0zZ85EWloaOI7DggULVIeUuwudToc5c+agZ8+eePToEVq1aoUpU6agWbNmSElJwcKFC61KqdatW+PVV18t4hbn49Yiw+PHj/Hll18iPj5eUCk+c+YM6tSpY/37p59+wtq1axEYGGhXUkMQpRmtRmi5wHo8q0Eqj8FVfniEZ0BKBoIgWHieJyWDBOz1Ui6Tge0IpNp+ESK657Fjl2TD/SzPVTLwpjyAZ4oorrBLApD76BJQQThNUqHLFBkEKgZArGSQKTKIN21RMgg7U+wqGcw7AVQGTJsXZ9QPKpQMUrfh2SbhuefFZ0krGeyckjqSTRGlCI1Gg19++QWDBw/Gzz//jD///BPjxo1zybZ/+OEHtGvXztrpbLHOsTBx4kTUrVtXtsgAwGqnw65rwWAw4LvvvpO0Gp88eTJGjRqFq1evikKhFy9ejNjYWABmn/uVK1fi7bffxnfffYe///4b7777rmybpDqpHcFgMGDbtm2IjY3F2rVrcerUKcWiRUCA2Oo3KioKGzZsQK9evfD48WPExcUhLi5OsMzHH38MjuMKtcgwevRo7NmzB/Hx8fi///s/0fyIiAj8/vvvCAwMFM3z9/fHjh070LVrV1y8eBFr1qyRtM9q1aoVNmzYoBjq7Ovri59//hldu3bF9OnTMX36dNEyY8eOxYQJEyTX79y5M8aOHYvZs2fjxo0bkkWrDRs2oGvXrrJtUMLPzw9Lly5Fnz59kJWVhfnz52P+/PmCZWJiYjB37lzF7IOnn34aAwYMwKpVq7B161Zs3bpVMP/q1auIiopS1aZRo0YhNTUVH330Ee7evYvx48V2rgaDAQsWLEC3bt1UbdPddOvWDd999x3eeust3L17F2PGjBEt06xZM6xbt07x/HE3bhvLcPnyZTRq1AhffPEFbt68CZ7nZT2/mjdvjrVr1+KHH36QlAQRBGGGfU7Ic+JZ97FR+D1Um8dAlB7Ykbm20LMqQZRO+Nw0kZUKKRnU2yWxv9ekZChKHCkyCB/iHmabYHRGRloSYK2S4GIlg4rDlsfYJWl8hMGHHKdOycAOnpFVMmTZUTIAghBqVTBtEqkvJJC6GhiZIoOckiHPzoHVkZKBKGX4+vpi9erV2LlzJ1599VVUqVIFPj4+0Ov1qFSpEnr27In58+fjnXccC3WvVasWjh8/jpEjR6Jy5crQ6/UIDw9Hly5dsGnTJsycOVNx/V27duHbb7/Fiy++iPr16yM8PBxeXl4ICAhAdHQ0Jk6ciPPnz1uLBSwjR47EmjVr0KlTJ5QtW1ZxhLdOp0NcXBxOnTqFMWPGoH79+ggMDIRWq0VgYCAaNmyIN954Az///DMuXLggux21+Pv7Y82aNdi3bx+GDh2KmjVrwt/fH15eXggJCUHTpk0xevRobN68Gdu2bZPcRkxMDM6dOyc4vuXKlUP37t3x22+/4ZNPPpFcz9UsXrwYy5cvR0xMDEJDQ2EwGFCjRg28++67OHfunGCwNEtUVBROnTqFuXPnol27dggNDYVOp0O5cuXQpUsX/Pjjj9i7dy9CQkLstqNJkyY4fvw4xo4di2rVqsHb2xuhoaHo0qULNm/ejG+//VZx/W+//RbLly9H27ZtERAQAB8fH9SsWRPvv/8+jh8/jtq1ayuub4/OnTvj6NGjeOWVVxAZGQmdTofw8HC0a9cOCxYswI4dO+DnZz97bNmyZfjyyy+tShupLAu1TJ48GSdOnMCwYcNQrVo1+Pj4wM/PD7Vr18bbb7+Nixcv4rXXXnN6++5g2LBhOHbsGIYNG4aqVataP/fWrVtj3rx5OHDgAMLCitfzl1uUDFlZWejevTv+/vtv+Pn5YfTo0Wjbti169OghuXxUVBTat2+PnTt3YsOGDWjdurU7mkkQxQa1QgKzVU3+w4RTSgajWMlAELYoKxmoY4wgSiOsigEgJQMgLspmyikZmN9rKtgWJeozGUK9xfdIyVl5iPArMgfaQoO1SgJcFPwMIPfhJfG2JZZjlQwaX9coGSyfsMOZDDArExw5DmwmAzTOKRmMJuFEymQgCMdo37492re3b9MGmPuj1ITgVqhQQTTC3pbY2FjZIkGVKlUwduxYjB07VlWbpHjhhRdkg5GlqF+/PmbPnu3wfqZOnaraSsqW1q1bF6gvr1KlSorH19l2OcrAgQMxcOBAp9bV6/UYPXo0Ro8eXeB2VKpUCd9++63dgoIc9t5HYmKi7LyYmBi734m6devixx9/lJ2v5nul0+kwadIkuxkD8fHxsvkPtjzzzDNYsGCB3eVY1F4DAOXj5grq1avn1HsoKtxyRzxv3jz89ddf8PPzw759+9CwYUO763Tt2hU7duzAH3/8UfgNJIgSCtsp4Uzw82OmyBBARQaCQSmTgZ5VCaJ0wo4AhkYPzqtM0TSmGKE++Fn4N/mkFyEO2CX56jTw8+KQbvO53s80IcL+4LwSBy+hZICLlAymjJsw5WQIpklZdbKZDKxdktpMBvEnbP7CyWUyiIsM7lUySF0OzHZJ+RcOHe9cJgMVGQiCIAiCKCzc8kizdu1acByHt99+W1WBAQAaNGgAwGyzRBCejrNCew3zoOCMYp+UDIQ9NBwHudOCnlUJonRiykoW/K3xDqM8H6gPfhZlMtDFtAhhrXSUb6ZCS0v4s6nwlAwAkJt2XbhtqSaI7JKcUzKIN27JZJBWMijaJbEZC/ZgixKqMhnERyObVTLAuUwGKmgSBEEQBFFYuOU2w+Lr1qlTJ9XrhIaGAjCH4RAEIY0ok8EpuyTKZCDsI2eZpKVORYIolbAjgCmPwYxIySBT/Wcnk11SEcL+jtm5lwpnw589tMjA5xVeJgMA5KYzRQaJ74BIyeDrKiWDdCZDnhq7JAeVDGzhQ1Umgwq7JJ2sXRIpGQiCIAiCKBrcYpeUlpYGAChTRr2MPjvbPHpGp7N/I0YQpRXXBD+TkoGwj7eXBg+N4o4UelYliNIJz4wApjwGMz7MMGFSMpQEHDv2bPjz/Uwnbr5KALyEksFVdkkAkJt2DUBT698uUTLw6ooMUkoGPjcDyMsE4GIlA7u8ikwGqTtxqUwGabsk5W1TkYEgCE/m6tWrSE9Pt78gQ3BwMCpUqFAILSJKG+np6bh69apT69asWbPE94G7pcgQGhqKO3fuIDExEY0aNVK1zrlz5wAA5cuXL8ymEUSJhh1F7kwmA2uXRJkMhBRyuQz0rEoQpRNSMkgjskvK42HieWiY32u2I1BLP73FCHt2SaVDyQBWycBpwWm00ss6QW76DeHmmfl8bib4nIeCaU5nMrBiFQklg0XFAChnMhRYycCp6DyQUjIwp5kO2eAkVAt2Mxlc9xESBEEUO4YMGYI9e/Y4vN7gwYNVBQkThD0SEhJUh8yzXL16FVFRUa5tkJtxyyONpbCwd+9e1essXboUHMehRYsWhdUsgii2qO23ZTt4nbFLIiUDoQYfGS8PsvggiNIJ62VOSgYzUgVZo4RlEvt77UXWc0UGx9512bVLEvbSJmeVDiWDK/MYACCPzWRg72kZqyQA0Pg6l8kgKmBw5ntdPjsF/BOlga06S6xksBkVW9BMBieVDNlsWDyfJbmu/UwGutYQBEHIERUVBZ7nwfM8YmNji7Qt8fHx4HkeiYmJRdoOgnAEt/Qm9uvXDzzPY8GCBbh+/brd5b/55htrQWLgwIGF3TyCKHqcTH5mRz46Gvxs4nmk5bCZDFRkIMTIKxnoYZUgSiOkZJBG6lopZZnEdgRSGGsRIvodU76ZEtsl5cHkxCCPYo+JUTK40CoJAHIzlJUMrFUStD7gdAHCdVhVgFzwMwNv3RsPkzEFAKNkgLySQVQ0sLcvtk3OZjIwN/lymQz2Bhzp6FpDEIQHs3v3bmuRwJF/pGIgXEVMTIxT5yDP8yVexQC4qcjw6quv4plnnkFWVhZiYmKwZcsW8DY3QBzHged5JCQk4OWXX8Y777wDjuPQpk0bdO3a1R1NJIgSCWuXlOegX1KakRc9nvhT8DMhAdklEQRhCykZpGHtkgAgU42SgS6mRYijRQbh41OOCXhk9LwiA5/HKBk0jikZ5Aovlqk8qwiwo2TQ+kaAY3vfnbRLst2Z6UlxwVI45SG2S7LNZBC12x7M8hxnX8kgUtcAyGbskrxAmQwEQRAEQRQv3JLJoNFosGHDBrRu3RqJiYno0aMHfH19rTeKMTExePz4sTXsmed5VKtWDatWrXJH8wiixCIKfnbwGZfNYwBIyUBII2eXRM+qBFE6ISWDNDqN+bfZ9vdYlZKBrqVFiGN2SUEGjegzvp+ZhyCDZ90/8aySQeuYkkGuszsPenjBaKMmMMMePVOmndBniDMZ5O2ShPuy/YQtBVNLsSEHPlY7JQt6W7skR5UMbBi1CiWD1L2VWMmQJalksJvJQDduBEEQBEEUEm67G37qqadw8uRJDBw4EBqNBunp6VZJyL1795CVlWVVNwwYMABHjhxB2bJl3dU8giiRsP2+jgY/s0UGHy+ORlMSkkgpGTiQXRJBlFZIySANx3EiNUMmU2TgeV40KEBLv71Fh4N2SRqOQ6h3KQh/LqCSQa6zO5czFyt49jGUVecydkls6DMA1ygZsoVFBlbFAAiVDOAd/KxZJYOKTAYpjMzx9JKxS7KvZHBq9wRBEARBEHZxi5LBQkhICP73v//hiy++wKZNm3D06FEkJSUhLy8PoaGhiI6ORs+ePVGjRg13NosgSiwaplPC0eBnNvSZVAyEHFJFBuoTI4jSCc/zEkqG0CJqTfHD24tDuk1hIZupKEipDimToShxrMgAmHMZkjLz76HuZ3pe+DOrZOBcpGTIhfR2RJkMrJKBDX2GI0oGIbYFDkvgs+WaxoY+A0Ilg+N2Sa5RMrDXEZ2cXZKdZwEaTEQQBEEQRGHh1iKDhcqVK2PUqFFFsWuCKJaIkxHUIbJLcvAZl/UQpjwGQg4fKjIQBPEE3vhQNJqX7JLyYYuyrF2SVOcrm7FEuBEnjn2ojxZAfuexJyoZ2EwGOKhkyFFSMvAQ2SXZC35WpWRgrYlk4B1UMuiQabOyo3ZJzmQyiGHtkpxVMlBBkyAIgiCIwsItRYbr168DACpUqACtVqtqHZPJhBs3bgAwWy0RBCGmoJkMpGQg1CIVZkpWSQRROmFVDADZJdlizy5JaqQxdfwVI1SoQsN9WLskz1MygFUyaBxUMsgcxjxI2yWxtxRs8LOqTIY8o2gZQErJYBv8fF/wP6tk0PMZ0Nh05rtDySB1e5XDnGI6PgvSwc/y56+Wo3s3giAIgiAKD7cUGaKioqDRaHD69GnUqVNH1TpXr15F9erVodFokJvr4M0cQZQS2JGPjtolsZkM/lRkIGSQskuSyYImCMLDYfMYoPUB5yUe/VtaYZVfWXn2lQxe1PFXhDhnl2RLaVAycFoHlQwyI1+smQycHSUDU2TQStglgS188LngeR6caNtsW9QrGQx8puBvh5UMbFHCSSUDixeyJacrDTjS040bQRAEQRCFiNt6FHkHOz8Luh5BlAa0zDfY0eBnUjIQavGRGGZLdkkEUToR5TGQikEAW5RllQx5Ej/WpGQoSoSfl5pnj1BWyZDlgUUGRskg6tC3g2zwMyzFCqYQYPMnb8qxdvpbd69CyWBeWaoIIPx8JJUMMpkMejBFhgIqGSTbzMBxnN1Cg07WLkn+/KXrDEEQBEEQhUmxvdWw3OBrNMW2iQRR5LCSZ0ftkiiTgVALKRkIgrDAKhkoj0EIa5fEBrZK2choqWpbdIhUJCqUDN5CJcNjIy/6nEs8BVQyyNkl8X5R5v9ZuySb16bMu6L1pIKfJa2HJMKfOZ6RD3FCJQNvygOf/QCAhJKBKTKwGQv2EC2vcY2RgJesXZL8Ojq6zhAEQRAEUYgU2x7827fNEll/f/8ibglBFD7yIm5lxMHPjj3gkpKBUAtlMhAEYYGUDMrYC36WVDLQ5bTIEI8Zd9wuCfA8yyTexAY/O6ZkkAt+5v2qmf9XCH5m8xjAeUFjCBVtS0oVwEsUGdigetsChynrPkzZybB87mIlA3Mc3KBkAOyrRXWQUTIoKHF0dJtPEARBEEQh4tZbDdYfU4qcnBxcvHgRn3/+OQCgZs2ahd0sgiixsA8gjisZqMhAqIP1GCcIovRCSgZl7AY/s4OqQfZzRQtz8FXYJXl7cfDXCdfzvCIDE/zsaCaDzIh63q+q+X+F4GdTBhv6XB4cJ3GPyqlVMrBFBpvFs+4JCqeuVjKI7JtUZDIA0uHPtnjx2ZKDkpSUDF50oSEIgiAIohAplOBnrVY8uofnedSrV8+h7XAch379+rmqWQThcbAPCwXNZKDgZ0IOqSKDku8vQRCeCykZlPFmjM9Fwc9MJ7ZWo24gDlFIOGGXBAChPlo8zsnvQL6fqdC7WxJh7ZIcVDLIqWtNvpUBiJUMtsUeVskgGfoM9UoGTiGTgc9Ngyn9hvVvcZGhYEoGtj1qlQz2MxmyJKcr3ZuRXRJBEARBEIVJofQo8jwv+Cc33d6//v37Y9y4cYXRRILwCMRKBvWdvlm5PJgaAwIok4GQQcouyeP8pwmCUAUpGZQR2yUJf2zZkcZeVGAoYpw7/uFM+HOyhysZ4Colg28lyekaRSWDdJFBbSYDa5fEfua5Dy9aX4vtkpjj4KiSgS1KqMxksFcP8HpS/GAXU85kULVrgiAIgiAIpygUJcO//vUvwd+ffPIJOI7Dm2++ibJly8qux3EcvL29ERERgZYtW6JatWqF0TyC8BjEmQzq12VVDADZJRHySAU/S5xCBEGUAkjJoAxblBVlMkgoGYjihLoCOpvLcM/jlQyOFhlklAyGCgDEdkmCZVglg0yRwflMBrbIcMH6WqRk4ISKAd4BJQNvygN7PnFSFk+ScKJ1bdHx2ZLTlc5eUjIQhDoSExNRpUoVAMDixYsRGxtbtA0iJJk6dSo++eQTABAMbiZcz+7du9G+fXsAwK5duxATE1Ok7YmNjcWSJUtQuXJlJCYmFmlbCCFuKzIAwOjRo1GnTp3C2CVBeBRqBzVqmQUdUTKweQxajnz3CXnIx5cgCAukZFCG/S0V2SWxSga6vhYt7E2XynupUKbI4PmZDI7ZJcnZ9uTpAsHpAhwKftbI2CU5q2RgCxxCJQNrl1QAJYPUsq5SMjwpMnCc6lOWrjUEQRAEUUL4559/cOTIESQkJODIkSM4duwYHj16BMDc5z516tSibaAMhVJkYFm8eDEAoGLFiu7YXZFy/fp1fP/999i0aROuXbuGx48fIzw8HFFRUWjfvj0GDBjgcDYFQcjBjn50xL2GVTIE6DXkCU0QBEHYhZQMyrDKL3Hws/Bvqu8XNc5lMoSxdklZHlZkYJQMcFDJIGfbk2sCvAJrAY+YIoOCXZKckgGcVA6g/eBnkV1Sqo2SAaySgSkyOKRkkCh4uCiTQc4uSQmySyIIz6C4jSonCFdAypR8rl27hqioqKJuhlO4pcgwePBgd+ymyJkzZw4++OADpKenC6bfuHEDN27cwP79+/Ho0SN88803RdNAwuNglQyO5PCySgZ/ymMgCIIg7MCb8sBnPxBMIyWDEJFdUh5rlyRc3os6/ooY55QM4SIlgwkmnofGUwZssEoGB4Of5eySck08vAJrwvT4kXD7Nq/VKhk4jjN32tt25jsY/AwApqy71tdsJoOBE26Pd0TJIFGQ4Dh1j99Kp5GGz4EWjhe1dBL5WgRBEARR0oiPj0d8fHxRN6PQsC2ycByHatWqITIyEnv37i3CVqnDLUUGwDzCHwDKlSsHg0F5JExWVhaSkpIAAE899VSht80VfPbZZ/joo48AADVq1MCwYcPQtGlTBAYGIjk5GSdOnMC6deug0dCTJOE6RMHPDlQZHhuFy1IeA0EQBGEP3pgCdqQ3KRmEiIOflZUM7IABws2Ijr9KJYO38L4pjwdSs00I8RaPri+JsEoGzsHgZ7tKhhsJwu0/+Rh43gRT5l3BPNngZ5hzGWwVA5LqAVFnv/x3TpzJUAAlg4SqQq2SQemu3DaPgVOObhCuR7f6BEEQBFHs8ff3x2effYZmzZqhSZMmCA4OFiiYijNuKTJs3boVXbt2RZkyZZCYmGi3yJCRkYG6desiMzMT27dvL/byrx07dlgLDK+99hoWLVoEnU54A9mhQwdMnDgRRqNRahME4RSi4OcCKRnoyYMgCIJQhs1jAACNIbQIWlJ8YZUMOSbzIADtk5EBeaJMBne1jJBG+HnxKntsAwwaeGmEnen3Mz2oyMAoGeAiJUOOiYc2oCZ4HBNMt3wKpqz7oiwDWbskAGCDlNUoGRQKe4WuZFCZyaBUe/RCfhi1IyVKymQgCIIgiOJPaGgoPvzww6JuhlO45bFm9erV4Hkeffr0QXBwsN3lQ0JC8OKLL8JkMmHlypVuaKHzmEwmjBw5EgDQoEEDfP/996ICgy16vWM36ETpwFnLOVaSX9BMBoIgCIJQgs1j4HT+Do9w9nTY4GdAaJmUy/zoU8dfUeOcXZKG4xDKFBSSPSn8ucBKBrkig1nJwFoWgTffl5oYqySAg8annOx+OEYZIKlksBP8bItYycBszwElg2QItQsyGWyVDI6go2sNUYo5cOAAhg4dipo1ayIgIAB6vR4VK1ZEjx498N///hepqamqtxUbGwuO4+x6psfHx4PjOHAch8TERMlldu7ciYEDB6JKlSrw8fGBr68vKleujObNm2PixInYuXOnddnExERwHCcYzdy+fXvrPiz/5Gxkdu3ahcGDB6Nq1arw9fVFQEAA6tevj0mTJuHWrVuy72Pq1KnWbQPAw4cPMW3aNERHRyMoKEh2n7/88gv69++Pp556Ct7e3ggKCkKTJk3wySefICUlRfHYAWbb8dGjR6Nq1arw9vZGZGQkevXqhe3bt9td11ksx9j2Pa1evRodO3ZE2bJl4ePjg1q1auGDDz5Qdc4YjUbExcWhffv2CA8Ph16vR/ny5dGtWzcsW7YMJpOM7A/i8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOMTGxtp9X1IcOnQIU6ZMQUxMDMqXLw+9Xo+AgADUqVMHI0eOxPnz5yXXs3xPLHkMAETnNPsdUvsdPHPmDIYPH47q1avD19cX/v7+qFu3LsaPHy/7nQSkj9u2bdvQs2dPlC9fHgaDAVWqVMHIkSNx48YNtYeoVOAWJcMff/wBjuPQqVMn1et07twZS5cuxR9//FGILSs4W7duxeXLlwEA7733Hry83OZARRCi0Y8mB6oVlMlAEARBOIopO1nwN+UxiGHtkgBz+LPfk75F1kaGbNKLFk5pyLgdwn00uJuR34F9z4OKDKySwdFMBjm7pDwTD6+ApwFOeBPLmcwd53lM6LPGO1x59D/baS9ZZBAWBpTultkig55jPlMHlAxSqgf1mQzyPkhetnZJqltDdklE6SQzMxNvvPEGVqxYIZp38+ZN3Lx5E5s2bcK9e/cwdepUt7Zt/Pjxknmd169fx/Xr13H48GHEx8fj/n2xitQRsrKyMGTIEPz000+ieWfPnsXZs2cxb948rFixAj179lTc1uXLl9GpUyfFDtqUlBT069dPUCABgOzsbBw7dgzHjh1DXFwc1q9fj+bNm0tuY9++fejRowcePcrP77l9+zY2btyIjRs3uu2zeuONN/DDDz8Ipl26dAkzZszA0qVLsWPHDtSqVUty3cTERHTt2hUXL14UTL979y62bNmCLVu2YP78+Vi/fj1CQkIU23H06FF0797daisPmM/tzZs3Y/PmzZgwYQJmzZrl5LssOPHx8RgyZIhoek5ODi5cuIALFy5g4cKFmD17NkaNGuWWNk2fPh1TpkwRFXLOnz+P8+fPY968eViwYAFee+01u9v64IMPMGPGDMG0xMREfPfdd1izZg327NmD2rVru7T9JRW39IhbLkA1atRQvc7TTz8NALh69WphNMllrF69GoD5RrBHjx7W6Q8ePEBycjJCQ0PtXjAIwlnEmQzq16VMBoIgCMJRWLskymMQw9olAcJcBnaENykZihvqB2yE+mgB5Hdq38904EasmMObmNHyDioZlOySOK0BMJQV7i/PbAHEKhmU8hgAdUoGTtTZr94uyVvDFCiKg5IBTCaDSkjJQJQ2TCYTevfujW3btgEAqlevjlGjRqFJkybw9fXF7du3cfDgQaxatcrtbfv111+tBYZnnnkGI0eORO3atREYGIjU1FScO3cO27dvx5EjR6zrVKhQAWfOnEFCQgJef/11AMAPP/yApk2bCrZdsWJF62ue59GvXz9s2rQJANCzZ08MGDAAVatWhUajwZEjRzBr1ixcv34d/fr1w4EDB9CkSRPZdvfr1w83b97EmDFj0KtXLwQHB+Py5cuoXLkyAHMhoWPHjjh+/Di0Wi0GDRqEbt26oUqVKsjJycHevXvx1VdfISkpCd26dcOJEyes61q4fv26tcCg0WgwfPhw9OvXD4GBgTh9+jRmzJiBqVOnKrbTFcTFxSEhIQHNmjXD+PHjUb16dSQlJSE+Ph6rVq3CrVu30LlzZ5w9exb+/v6CddPS0tChQwdcuXIFANCnTx+8/vrriIyMxNWrVzF37lzs2bMH+/fvR8+ePbF3715otdJ2ixkZGejfvz8ePnyI999/H926dYPBYMDhw4cxffp03L59G1999RWeeuopvP3224V6TOTIzc1FcHAwevfujbZt26J69erw8/PDrVu3cPz4ccyePRv379/HW2+9hVq1auG5556zrtunTx80adIEcXFxmDdvHgCzAoGlQoUKqtsTFxeHyZMnAwDCw8Px3nvvoVWrVsjLy8P27dsxc+ZMpKenIzY2FmFhYejWrZvsthYuXIiDBw+iXbt2GDFiBGrUqIHU1FQsXboUS5cuxb179/D6668X+wHy7sItRYbcXPPNmNyXRgrLsllZWXaWLFoOHToEwCwt8vf3x/LlyzF9+nScPXvWuowlCHrMmDF28yhY7Elvbt9mJcVEaYINizxxz4iz942oF5Y/2uxuRh5+T8zAw2zhg+8/j4UPSZTJQBDqMeWkIf38t8h9eEFyPsd5QV++HXyeji3QKNnSQNb19cj6ZwMADt5P9YZ3JekRVNl39iLrynKYctMk5+uC6sKvztvgvHwl5xOugbVLIiWDGK2Gg05jtoWx8OOFNJTRma8Ft9KFI6NJyVDUMBkaycdVrxnmI7x3Ss7yDCWDKecxcpnjoEbJ8CArD78lZiI5Mw9/P5TujD+eZERq9kPcMgwS1HP4rDtI2TtV9Luq9VUuMrCd9mmnpiE35RRyUvNtGUxpnQBtHevf5wxd8VBTXnJzWZywo8jACd9HVuJq5D76U7lNT+CND8UTOXXPw0r1AC/e9vlYffIzFTRLBiYTj+SM0pPjGOqrh6aQzs25c+daCwx9+/bFihUrRP0x3bt3x7Rp09zer2IpbFSuXBkHDhxAmTJlBPNjYmIwevRoPHjwwDpNp9OhXr16AmVDlSpVUK9ePdn9LFq0CJs2bYJOp8OGDRvQpUsXwfzmzZvj1VdfRZs2bXDu3DmMGzcO+/fvl93e2bNnsWXLFoFLSePGja2vP/30Uxw/fhxBQUHYvn27YB4AtG7dGi+//DJatGiB27dvY/Lkyfjf//4nWOadd96xKhiWLVuGgQMHWuc1adIE/fv3R5s2bXD06FHZdrqChIQEdOvWDevXrxc4lnTt2hX16tXDxx9/jOvXr2PatGn48ssvBet+8skn1gLDlClTMG3aNOu8xo0b48UXX8Srr76K//3vfzh48CAWLFhgtWFnuXfvHlJTU7F9+3a0bdvWOr1Zs2Z48cUX8eyzz+LGjRv48MMPMWjQIISHh7vyMKiia9euGDRoEHx9hc9h0dHR6N69O8aOHYu2bdvi9OnT+Ne//iUoMgQFBSEoKAhly+YPPlA6p+1x7949TJo0CQAQGRmJQ4cOoVKlStb5rVq1Qq9evdCmTRukp6dj+PDhuHr1qqzt/cGDBzFs2DDMnz9f8FzfoUMH6PV6LFq0CIcOHcKJEycQHR3tdLs9BbcUGcLCwnD79m1cuXIFjRo1UrWO5QtZnFUAJpPJKn0KCwvD22+/jdmzZ4uW+/PPPzFp0iSsW7cOmzZtQlBQkOp92H4ZCIJFqmPi8yOp+LxVMKoG6pBr4jH1jxQ8yLI/so6UDIQ9NBwgMzCx1PFwfyyyrq1RXCbz7yXgc9PgV3uMm1pV8si6sRkpO/tY/868/D1Cnv8NhgqdBcvlPDiNB793ULSpyAKQk3oWwW3/J7sMUXBIyaAOby8OOTaKwZP35DuMqOOviGEKwbkPTiAv4w60vtKd0LaE+wg7jD1FyZC69xXxRDtKBhPP4/PDqbiRplxouZWe96TQ9rRwRm46sq6Ir9/2lAxskSHn/mHk3D8smMb7NwVsPqq72mq4q62mvN0n6LXC95Obeha5qWdllrYD56V64IHSYgIlgwO7J7ukkkFyhhFl/7W1qJvhNpI+6YTwMq7PdjKZTJg5cyYA88j+pUuXyg741Gg0Do2SdgV37twBADRq1EhUYLClIP1hPM/j3//+NwBg7NixogKDheDgYMycORPdunXDgQMHcPnyZVSvXl1y2djYWFkb9LS0NPz3v/8FAEybNk1UYLBQuXJlfPTRRxg1ahRWr16NBQsWwM/PrCK7c+cO1q1bBwDo0aOHoMBgwd/fHwsWLMCzzz6r8O4LjsFgwMKFCyUt0T/88EOsWrUKZ8+exffff4/PPvvMmr+anZ2NRYsWAQDq1q0rae3EcRzi4uLw22+/ITk5GXPnzpUtMgDAiBEjBAUGC5GRkZg1axZeeuklpKenY8mSJZg4caKT79h57H1/AgMD8emnn6JPnz7Yv3+/1fWlMFi8eDEyMjIAAF999ZVkn2p0dDQ++OADTJkyBTdv3rTmh0gRERGBOXPmSP5+T5w40fpZ79u3j4oMcFPwc8OGDQHAoRBni19cQSpYhc3Dhw+t/l5nzpzB7NmzERERgWXLluHBgwfIyMjAnj17rD5zBw8etMraCMIWtuNW7QODlO+ziQdOP+nM+Cs1R1WBAQCCDPTkQSjTKtJb8Heod+k9Z7JvblG33I3NhdySkk32jU2iaVkSxyz71jZVPtjZN9R9LoTzmIzCoD5OH1xELSne+DvQmycVFE24D85L3LljvLNTYkkxwczvYEp2yS8y8Dwv+Run0QUornczLc9ugUEJPZ8hOV3rpzzgyl67lLatBke+y/bgdP72F3qClO2aBR+TeYSvoWJ3GBy4flBBkyhNnDx50uoKMWzYMMWO/KIgIsJcQN27dy/+/vvvQtnH+fPnrdvu16+f4rK2HdhKti8vv/yy7Lw9e/bg4cOHDu0vJycHx44ds07ftWsX8vLMvyVSHv8WmjVrhrp16yruo6B06tQJkZGRkvM0Gg0GDx4MwGyVfvx4vvrv2LFj1lDo2NhYWUeXgIAADBgwAID5s1JS0ygdi759+1oHMhdmKLYjpKenIzExEefOnbPmftgqBU6dOlVo+7Ycg6CgILzwwguyyw0dOlS0jhT9+vWTLVDWrFnTem2xDJQv7bilh6h3797geR5r1661ZhgosWrVKqxduxYcx6FPnz6F30AnSU9Pt77OysqCr68vdu3ahZdffhnBwcHw8fFB27ZtsXPnTjRo0AAAsG7dOhw+fFhukyL++ecfxX+2Hn1EySU7T1hlMKj0TmgQroefTsL7+cn27qSre9irEuCFCmXU25kRpZOXavjB8OQ04QAMqav+YdnTsHhH218u2/5CpRg+R2x9JGUvwctYJIlgPcQJ18MLO1EVA1lLMa0qeNtf6AktIlw/gpNQj/dTvUXTTNkPJJYUo2c6bU2eIPfjcyWzBPRlWyqudjPNgawCCaKz14snar3hHaXcUeVd5f/sbrtB9iZwvOMFkPphOoRX6SYKqXYWHxVttdAiUv4aEp39C6D1hn+TL9HSgesHuTcSpYkTJ05YX7dp06YIWyKNJWw2OTkZ9erVw//93/9h8eLF+Ouvv1y2D1s7oRYtWoDjONl/tkUYi8pCimeeeUbV/iIiIhT3ZzuY2HZ/tl78bNYES7NmzRTnFxRH9m/bblvrdHtqC9v5tuvZotfrrf2JUuh0OusIeqksA3dx//59TJ48GTVr1oS/v7/Vyqt+/fqoX78+unfvLli2sLAcx0aNGslaIAFAuXLlEBUVJVhHCrlgbwvBweYBV48fP3awpZ6JW54MBw8ejOnTpyMxMRGDBg3C4cOH8fbbb4tkK//88w++/vprqxSlUqVKgupSccPbW3jzN3ToUNSsWVO0nI+PDz7//HNrMPTKlStVS7tsQ3sIzyWLKTJIKRSkCPHW4vNWwRi3W/gwnPukDygpQ/hAFemnRdPywoeRYIMGbSp6k288YZdwXy2+bBOC40lGVAn0Qu0Q+/7MHgvT0epT/Q1ovMORc/8ojLdtR0J4QIdTISJVrOHzxCNOeZPQasYrqA4MlXrBlHELmX8vLbT2EYSzvPi0LyqW0eLqw1zZq4AXB9QJ1QtylAj3owttBI1vRZgy8nPQTFJe+hKwA8PzPOGSbxJ3xod02WM37+Ymo2Io76vFsxEG6LUcQr01SM4ywcgcIJMxFaaH51FVk4hnykcAeN86j/PyhXelXtAF11fcr1+dcTBl3EL6uf9IzveuOggN/Z7Ce8ZVOJdTHfCvAY1PeeQkHzOr5Bg0+mD41hyBcB8t2lQwwODVAaFd9yP75u/iMGwH8AqqA58qYtsPOaSuIVoOqK79GzVz2kEf8Sl0QXXwWiCPakE6QdbahWQj/kwVF33oTp8oTdh2YlpUA8WJDh06YO7cuZg0aRIyMzOxcuVKq/NHhQoV0KNHD4wcOVKxc9keSUlJTq1nsZqRwtKhWlj7s82gsPXol6JcuXJO7U8tjuzftt2OvIfy5fOtGW3XsyUkJMRuvq2lLXLbKGyOHTuGzp07Izk5WdXymZmZhdYWyzGwd+wB8/FPTExUPG5szgSLRmMeiGBR4JR23FJk0Ov1WLt2Ldq2bYu0tDR8/fXX+Prrr/HUU09ZL/i3b9/G9evXAZhlumXKlMG6descDkp2J2yCvJw3HWD+EfHy8kJubi4SEhIKu2lECcNZJQMARPh5oUMlb+z4J7+zLufJSLo7TJGhQbgeg2oVL6koUbIo7+eFblVK98hlnhf3IvnVnQBdUB2kX5jLFBkIJSSLDLnp4gUZRYgurBkCGk+H8X6CoMgg9dkQroY9xtRtJQXHcWge4Y3mxa9fg5DAUD4GmVeWWf/mc9QWGRglgwdcgngJazptmcp212OVDOruOcsAKNiAKo7j4B3VX7bI4FdzJPTlWiMagK1TcubVu0i9/LloeS+v2giv9Y5gmr5sC+jLtihQOx1F/hrS4Mk/MxqOQxtGOfVXag4+PJACFrpalwxCffVI+kS+X8HTCPUtvYX20aNHo3///li+fDm2bduGAwcO4OHDh7h58ybmz5+PBQsWYPLkyfjss8+c2r5tp+fGjRuto7btodQ5q9TZbbu/48ePK44it0VuYG1RD4J0xf6LyzYKE6PRiAEDBiA5ORk6nQ5jxoxB7969UaNGDQQHB1v7dK9cuYJq1cx5SO54Zivux81TcVtPUcOGDXH48GG88sorVunatWvXBIUFC40bN8aPP/5oV5ZS1BgMBoSHh+PevXsAlEOavb29ERYWhjt37liXJwgLWbnOKRkssB6rliIDq2Qo50uWSARRYHix5zZndR9kvrvU6a2IdJHBvpKB08g9kNLxdj90A0+UfDh9oOBvkzFV1XrsmJA8T7jmmyRGwHP2HxlZJYM7bTg5rYI9mYzVEeflI728Rl2nWHFG78BgJaL4odFwhRKEXNoICwuzvr59+7ZL+5YsI5ct+Zxy2Npry1G2bFmMGzcO48aNg8lkwsmTJ7Fu3TrMnTsXqamp+Pzzz9G0aVP07i229rOHbbBuUFBQoeed2u4vPDzcKVcOW6XE3bt3FfvY7t696/D2HcHe9m3n2wZ0276+e/cuatSoIbsNW6souZDv5ORk5OXlKRZ4LG1ht2E5VwHXnK9S7Ny505pHEBcXJ+tG4y6VRUhICG7fvq3q/LAc/4IErBNC3JraWbt2bRw7dgy///47xowZg9atW6NmzZqoWbMmWrdujbFjx2Lbtm1ISEgo9gUGC7ZhM/bkMZb5Uun0ROmGVTIohb1JwWbSydklUZGBIFyBRCeSZaSEaMSEB3Q4FSZOKhlgLTJQR4rb8YROVIJgYIsMUtkwUrB2SZ6gZICEkgGc8v2jiedxi1EyVCjjvucdxSKDzOMup5UuMnCeUGSQecKnQZ1EaaJRo0bW13v37nXpti2OFpZwXzn+/PNPh7ar0WjQqFEjTJs2DTt27LBOX7VqlWA5tSO0LT79AHDgwAGH2uIMrthf/fr5Fnn2HEAK2yHEkf3bFnBsX9vLY7XNWJUrAhmNRsWg5NzcXJw8eVJyG7buKykpYoWbhQcPHqi2OmI5d+6c9fVLL70ku5xtZocUrlIeWI7B8ePHkZsrnxeVlJSEa9euCdYhCo5biwwWnn/+eXz77bfYu3cvzp8/j/Pnz2Pv3r345ptv0KFDh6JoktO0bdvW+lopTfzRo0dWX8AKFSoUeruIkoUok8HhIoNYyZCZa8JDo3C7ZanIQBAFR0LJIB8K6Qk9ToWH00oGrXmEH0fKkSKAOcbUa0V4ABp9kOBv9UUGT7RLEg+ashfwfj/TBCPz0+hOJQO0CqO+5ZQMMkUGT1Yy0NWaKE00aNDAOgp+0aJFSEtLc9m2q1SpAsAc9Hrp0iXJZYxGI9asWeP0Pho1amQd1c+G5Npmg2Zny2fFNGrUyKomWLBgAbKyxPfdrqRjx45W//rZs2c7ZYnTvn1764j9JUuWyC6XkJCgGNbrCrZu3Yrbt29LzjOZTNb2BQcHC4pajRs3RlBQEADze5BTEDx+/NhaQKpTp45idojSsVi3bp21gNCxY0fBvODgYGtblDr5f/rpJ6ctjGw78uXUECaTCQsXLlTcjtrz2h6WY5Camoq1a9fKLvf9999b3zN73AjnKZIigyfx4osvWl+vW7dOdrl169ZZT+A2bdoUeruIkgVrl2Rw1C6JeZjIyQOSMsQ/ZlRkIAgXIFVkkLFLoowAZdRmMvCySgbRki5oFeEY1G1FlHw0OtfYJfHwgOu+hF0S7NglsSoGHy8OQQb3PWYq2yXJdLjL2CV5hJKB7JIIAhqNBpMmTQIA3LhxA6+99hqMRqPksiaTCbdu3VK97Xbt2llfz5o1S3KZCRMm4ObNm7LbWLlypWL47dGjR60dx5aihgXbzui///5bdhsajQaTJ08GYB4Q+9prryl23j569Ahz586VnW+PoKAgvPXWWwCAgwcPYvz48YoWPXfv3sWiRYsE0yIiIqzWUBs2bBCpOAAgLS0NI0aMcLqdasnOzsaIESMkHUtmzJiBM2fOAABef/11QZaswWCwWgadPXsW06ZNE63P8zzeeustawHJctzkmDdvHvbv3y+afufOHUycOBGAOaB48ODBomUsA6PXr18veb5cunQJH330keL+lahevbr1dXx8vOQyH3zwAY4fP664HbXntT2GDBliLXa98847kt/DU6dO4YsvvgBgHgTep08fp/dHCCky3x6TyYQHDx4gIyMDFSpUsJuWXlx55pln0LVrV2zZsgUrVqzAkCFDRGqMO3fuYMqUKQDMIdhDhgwpiqYSxRjX2yXxuMtYJYV4a+ihgyBcgpRdkkwmA6GIWiUDZJQMNIq+KCjhHagEIYEok0F18LN4mokXFx9KElLBz7CjZJDKY3Bn4KJSkYGTG1PnwUoGg9SJCfrJJEofo0ePxsaNG7Ft2zasW7cO9evXx6hRo9CkSRP4+vrizp07OHToEFasWIFBgwZh6tSpqrYbHR2NFi1a4I8//sDChQthNBoxePBgBAYG4vLly1iwYAF27tyJli1b4uDBg5LbeO+99/Dmm2+id+/eaNu2LWrUqAE/Pz8kJydj//79mDNnDgBz0DLrcf/UU0+hYsWKuHHjBv7zn/+gYsWKqFmzprVPrVy5clabnDfffNP6/levXo3jx49jxIgRaNasGQIDA/Ho0SNcvHgRu3fvxoYNG+Dt7W23w1uJTz/9FHv27MHhw4fx7bffYvfu3Rg2bBgaNmwIPz8/pKSk4Ny5c9i+fTu2bNmC+vXri97frFmzsG3bNjx+/BiDBg3Cnj170K9fPwQEBOD06dOYMWMG/vzzTzRp0sSuBU9BaNKkCTZu3IhWrVph/PjxqF69OpKSkrBkyRL89NNPAMyh1VId9B9//DHWrl2LK1euYOrUqThz5gyGDBmCiIgIXL16FXPnzsXu3bsBAC1atMDw4cNl2xEeHg5fX188//zzGD9+PLp16waDwYAjR47giy++sBbIpk2bJhnaPWrUKGzYsAGZmZmIiYnB1KlTER0djbS0NOzYsQPffvstwsPDodVqncqP7dy5M8qWLYukpCRMmTIFiYmJ6Nu3L8LCwvDXX39h4cKF2LFjB1q1aqVoo9WyZUvr6/Hjx+PDDz9ERESE9X4iKipKlfV8eHg4Zs6cidGjR+PGjRto3Lgx3n//fbRs2RK5ubnYvn07Zs6cibS0NHAchwULFqgOKXcnv/32myCz4+LFi9bXJ0+eFBR0ypQpg379+rmzebK4tciQl5eH+Ph4xMfHIyEhATk5OeA4DqdPn0adOnWsy/3666/Yu3cvAgMD8eGHH7qziU7xzTff4I8//kBqaip69OiBcePGoVu3bvDx8cGRI0cwffp03LhxA4D5i092SQSLSMng4NOpVPAzW2QgFQNBuAZeUslAmQxO4aSSgZPNZKDjXeiIRmlTrxVR8nHeLkk8LY8HSvQdl2Tws/I7ulmEeQyAk8HPcpkMXPHraHAUL435yiy+WtP1mihdaDQa/PLLLxg8eDB+/vln/Pnnnxg3bpxLtv3DDz+gXbt21k5n1s5m4sSJqFu3rmyRATDbuUita8FgMOC7775DkyZNRPMmT56MUaNG4erVq6JQ6MWLFyM2NhaA2ed+5cqVePvtt/Hdd9/h77//xrvvvivbJqlOakcwGAzYtm0bYmNjsXbtWpw6dUqxaBEQECCaFhUVhQ0bNqBXr154/Pgx4uLiEBcXJ1jm448/BsdxhVpkGD16NPbs2YP4+Hj83//9n2h+REQEfv/9dwQGBorm+fv7Y8eOHejatSsuXryINWvWSNpntWrVChs2bFAcdO3r64uff/4ZXbt2xfTp0zF9+nTRMmPHjsWECRMk1+/cuTPGjh2L2bNn48aNG5JFqw0bNqBr166ybVDCz88PS5cuRZ8+fZCVlYX58+dj/vz5gmViYmIwd+5cxeyDp59+GgMGDMCqVauwdetWbN26VTD/6tWriIqKUtWmUaNGITU1FR999BHu3r2L8ePHi5YxGAxYsGABunXrpmqb7mbGjBnYs2eP5Lz169dj/fr11r8rV65cbIoMbtOxJiUloU2bNhg+fDgOHDgAo9EInuclJcVRUVH4z3/+g48//tgaYFKcqVGjBjZu3Ihy5cohKysLM2bMQNu2bdG0aVNr9YzjOEyZMkXxgk6UXkRKBgftkqSCn++mU+gzQRQO4iID96QTQ/wAT53eSsgpGdh7AzaTQdZ/u6TblBAEUSRwjF0Sr1rJIL5fK/G5DBKZDHaVDOliJYNbkbXQg3yRQcYuyd57LQlwHAc93fYTBABzB+3q1auxc+dOvPrqq6hSpQp8fHyg1+tRqVIl9OzZE/Pnz8c777zj0HZr1aqF48ePY+TIkahcuTL0ej3Cw8PRpUsXbNq0CTNnzlRcf9euXfj222/x4osvon79+ggPD4eXlxcCAgIQHR2NiRMn4vz589ZiAcvIkSOxZs0adOrUCWXLllUc4a3T6RAXF4dTp05hzJgxqF+/PgIDA6HVahEYGIiGDRvijTfewM8//4wLFy44dByk8Pf3x5o1a7Bv3z4MHToUNWvWhL+/P7y8vBASEmLtJ9u8eTO2bdsmuY2YmBicO3dOcHzLlSuH7t2747fffsMnn3xS4HaqYfHixVi+fDliYmIQGhoKg8GAGjVq4N1338W5c+cEg6VZoqKicOrUKcydOxft2rVDaGgodDodypUrhy5duuDHH3/E3r17ERISYrcdTZo0wfHjxzF27FhUq1YN3t7eCA0NRZcuXbB582Z8++23iut/++23WL58Odq2bYuAgAD4+PigZs2aeP/993H8+HHUrl3b4WNjS+fOnXH06FG88soriIyMhE6nQ3h4ONq1a4cFCxZgx44d8PPzs7udZcuW4csvv7QqbTQa57usJ0+ejBMnTmDYsGGoVq0afHx84Ofnh9q1a+Ptt9/GxYsX8dprrzm9fUIajneDcWheXh5atmyJhIQEaDQa9OvXD23btsVbb70FjuNw5swZ0ZezRYsWOHLkCKZMmeK2C0hBSU5Oxpw5c/DLL7/g6tWrMBqNiIiIQExMDMaMGYPo6GiX7/PGjRvWQKN//vnHGuxDlCxG77yP+5n5HZfvNglE43IKIXYMu/7JxHenH1v/rhbohTJ6DU7dy++YG1DDDy9Wt39hJwhCGZPxIe4uDxJMK9v/H2j9KiLj0gI8/CPfI1QX3gJh3eVHMJV27vwvSLIzr/wrGYIOoOQtMTDezR/JEfDsHPjVfgs5ySdxf6PNbyvnhYjBOYXa5tJOyt5XkHXlf9a//eq/j4DG4hFVBFGSyEm9gPu/CJ9Fyr9mtOvPfz8zD6N3JgumLe4UBl929EcJIif1PO7/UlcwrfzgPGsxXYqh2+7hsTH/kXJSk0A0ceA+1hXcXuoNmMRe42G9T0MXXF803WR8hLvLxaNPDU/1Qchz8jl7JYWhW+/hcY7wMX9YfX90fEqmuEKopiDP35cvX0Zubi68vLwEPuYEQRQPEhMTrRkYtoqQoiA2NhZLlixB5cqVkZiYWGTtIDyXwvhNcstQjSVLliAhIQE6nQ4bNmxA586dASiHm/Tq1QuHDx+WDDcproSGhmLq1KmqvfwIwkJ2bsGUDGK7JFIyEEShIVmbJ7skZ5BSMgBmyyTbIgOrZJDPZKDj7X7IfoMo+Wj04s5m3vgQnHeY4npS7pYlXsnA2iVxGsUCwyOjSVBgAIpAyQCzZRIvUWSQE+57cvAz8CT8mSky0NWaIAiCIIjCxC3DbFasWAGO4zBixAhrgcEellH/ly5dKsymEUSxICuvYJkM7IA5Yx6Pe5mUyUAQhYNEJoNc8DPZ98jC87zkqFNAHP4s6jiStcag41340DEmPA82kwEwq9bsrueRdklskUF5TNotJo/BSwOU9SmKIoOMckIm7ZjT6ACprAlPKjIQBEEQBEG4EbcUGU6fPg3ArE5QiyVwJjk52c6SBFGyyTPxyGH6LL0dLjIIl7+XmQembkFKBoJwFVLBz3JFBkKePOkCAwCY2PDnPEbJoLF0JtHxdjts4UymA48gShRaH1FnuppcBqnbtbwSXlzm2UwGu6HPwuXL+2qhlUrELmTkwp85hcddqfBnTwh+BqSLDHS1JgiCIAiiMHGLXVJqaioAs52QWvLyzDesSinrBOEJsKHPgDN2ScK/2U16azkE6OnRgiBcAS81kttSZCD7HtXIWSUBAOwpGbRPlAzs8S7hnXslEXHYOUGUPDiOA6cPBJ+dP7jJZEy1u55UX3qJVzIwdkmcvdBnRslQoUwRBSfLFBnkgp8Bs2USn5smnOgpSgaJt001YYIgPJ2rV68iPT3d/oIMwcHBqFChQiG0iChtpKen4+rVq06tW7NmTeh0Jfs+xC13gSEhIUhKSsI///yjOvz48uXLAIDw8PDCbBpBFDmsVRJQcCUDS1lfLTh6siAI1yChZMjvaKUig1qUigz2lQxkl1R00DEmPBONPhB5NkUGXpVdknhaiS8yOGiXxCoZKhZBHgOgZJfkoJLBU4oMZJdEEEQpZMiQIdizZ4/D6w0ePBjx8fGubxBR6khISED79u2dWvfq1auIiopybYPcjFvskurWrQvAfLDVsnLlSnAch6ZNmxZWswiiWJCVK34adTSTgQ1+ZiGrJIJwIYp2SeyyJb23qfBQKjLYy2TI70yiThS3Izqn6TMgPAOOyWVwNpOhxNslFVDJEFlESgY5uySlIgMkigyw835LCnqJZwO6WhMEQSgTFRUFnufB8zxiY2OLtC3x8fHgeR6JiYlF2g6CcAS3FBn69OkDnucxd+5cpKSk2F3+559/xsaNGwEAL774YmE3jyCKFNYuScuJ7Y/swQY/s5TzdctXnSBKB1JFBshlMpTszqZCRbHIIFQy8CahkiE/+Jm6TAiCcA0aXaDgb7602iU5kMmQncfjfqbwN7FCkSkZZIoMCr8TnFfpUjKQqJkgCE9n9+7d1iKBI/9IxUC4ipiYGKfOQZ7nS7yKAXBTkWHYsGF46qmn8OjRI3Tq1Annz5+XXC4pKQkffvghBg0aBI7jUK9ePQwYMMAdTSSIIoO1S/LWcg5bG9mzSyrnR0oGgnAdUpkMnPB/wi6KSoY8oZKBDYnOD36WWLeEjyIu/lDwM+GZcHphkcGkIvjZE4sMrJJByS7pdlqu6BexqJQMTmUySCkZPCb4uahbQBAEQRBEacMtd4EGgwHr169HTEwMjh07hvr166NmzZrW+a+88grS0tJw5coVawUnNDQUa9asIR95wuPJZuySDA6GPgP2lQ9lyS6JIFyHol2S8PsrGRJNALBTZMhRVjJwcsHP5qVBCgd3Qsea8Aw0jF2SukwGcyKP7ZW+pBcZ2EwGJbskNo8h3EfjsOWnq5ArPnN2gp/F2/GUIgPZJREEQRAE4V7c5qHSoEEDJCQkoEWLFuB5HhcvXrTOO3XqFP766y+YTCbwPI9mzZrh8OHDePrpp93VPIIoMqSUDI5CmQwE4T54JbskttObRtXLwuYsCObZKBl43gSYcoQLaCiToeigc5rwTDid40oGQKxmMJX0674DSgY2j6FCUakYoGSX5KCSwVOKDJKZDPSbSRAEQRBE4eHWO8Gnn34aBw4cwP79+7FhwwYcPXoUSUlJyMvLQ2hoKKKjo9GrVy88//zz7mwWQRQpbCaDMyPAlOySOADhPlRkIAjXIe5Akh8pWcI7mwoTtZkMbIEBNkoGyZV5qj0UJhT8THgoGr3jmQyAuchgeyuXV8Iv+zybyaCgZLjBKBmKKo8BcC74WarI4MlKBrpcEwRBEARRmLi0yHD69GkAQK1ataDXy3cAtG7dGq1bt3blrgmixJLF2CV5O2GXpBT8HOajsat0IAjCASSVDBzzv2XZEt7bVIgo2iXl2igZ2NBn5NtiSI/KpGPuVsjWkvAQRJkMKuySALNlku11x+PskhSCn2+lC5ctsjwGANDKZPU4aJfkMUoGsksiCIIgCMLNuPROsGHDhtBoNDh9+jTq1Kljnf7pp58CAEaNGoWwsDBX7pIgSjysXZIzSgalIgJZJRGEq5HPZBB3epf03qbCQ7nIYKNkyJOwVdIoZTIQhQud04Rn4kwmA/6fvTOPb6Ja3/gzk637BgXK2oJsQlWgoohAuSKrCCqi4hWKCggoiuKG6EXxJ1y5eC+IRQpXCq6giICKlx0EZC2yCiK0YKFshZbubZL5/RETMmdmsk7SJLzfzwdNZjlzOk2mM+c9z/MAYG/bTMFeXHbRLslkFlBQFgRKBgdD67JKBgf2UMGEXqa2Qn8xCYIgCILwJarfRQkyN9ZTp04Fx3EYMmQIFRkIgoENfvZEyeAo+JlCnwlCZRwFP9Ogt8t4pWRQmrFq2cObbhFuQ595IjRQL5NBrR7VDoKLwc8XK0wwMn8OAzGTwVHwM0I5k4HskgiCIAiC8DOqBj/rdJabsoqKCjWbJYiQRg0lA89xkpl0VkjJQBAqIztLVcEuiQa8FXFVySA4UjLIjZgE+yzigIfOLxGaeJrJwN5/BXuRAWwmg8LM/nNMHkO0nkOM3PR5f6GSXVKoZDLIPU9QjYEgCIIgCF+i6p1g/fr1AQD79u1Ts1mCCGnYIkOYB0UGQDn8mYoMBKEuggO7JMpkcAMXlQyQVTKQXVJtIVGs0u+ACBG8y2Sw2y/YL/usXRIvfx+ZXyrerlFk7doMKdsluRf8HDJKBpnnArpaEwRBEAThS1S9G+zevTu++OILvPrqqzh58iRatWplUzcAwMqVK7F371632x0+fLia3SSIgEINuyTAEv5caZIuJ7skglAZGbskTnGgNdhHm3yH50oGTnFm7V97eNcxwk1o2IoIDdhMBpirIRgrwWmVBq//2k+iZAjua5DELknhenu2NHDyGAAHRQYKfr4OXa4JgiAIgvAhqhYZXn/9daxYsQLFxcX417/+JVonCAKmTJnidpscx1GRgQhp1LBLAqzhz9IH2/qRVGQgCHVhZ3LbDWBIig3BPdjkS1wuMrBKBl5vV9QhuyT/Q+eXCE3YTAYAMFcXQaNt4HA/tshgCvavCGuXpJDJcI5VMtRiHgPgqMjgZvBziBQZdDK3/1RjIAiCIAjCl6hql9SuXTts3boVvXr1gk6ngyAIIlm99b27/wgilKlSzS5JuixSyyFKbgVBEJ4jUTJwCq8JR7ga/AxGySAOfabz7Xck92X0OyBCAzaTAQAEF8KfQ80uSWDtkmSUDIIgSJQMDWtbycArZDKQXZINuloTBEEQBOFLVJ9y0qlTJ6xduxZGoxGXL19GZWUlmjdvDo7j8L///Q8tW7ZU+5AEEdRUqmSXpJV5mCAVA0H4ALbI4EjJQIVyZeQCnf/CkZKBs4U+K+7tTa8IN1G2CiOI4ILTGABNmCgvxpVcBmnwc5Bfg1i7JBklQ1GVGeXM/WttKxmgoGTg3A1+dmjHFzzI2iURBEEQBEH4EJ9NcdZqtWjQoAGSk5Ntyxo2bIhmzZq5/Y8gQhnVlAwy+1EeA0H4AImSwf5Pqfh7KNCAtyKuKhkkmQz2SgbZAW46576Fzi8RuvCMZZJrSgbx+2BXMkiCnznpvSSrYtDzQN3w2lXOepTJEMJKBk/tVwmCAPLy8sBxHDiOQ3Z2dm13h1Bg6tSptt8T4Vs2b95sO9ebN2+u7e4gIyMDHMeJxpuJwMAvUzX+8Y9/AADq1avnj8MRRFDBKhkMXgQ/s9SnIgNBqI6kcODoxjbYZ7T6EFczGeBQySA994IgkCWEX6GzTYQOnD4WqLxge2+uLnK6T6gVGQQ2k0FmZv9ZJo+hYZRWYhvlb8RWevYrHBQ/QjiTQU7JYGTnSBAEQRAEEXCYzWZs27YNP/30E3bs2IFjx47hypUrCAsLQ9OmTdG9e3c888wzuOWWW2q7qxL8WmQgCEKKWkoGWbskKjIQhPowSgaxFQMFP7uKy0oGswMlA1EL0GeaCF14fSzsh9gFF+yS2MF1U7AXl83O7ZJYJUOjWs5jABwoGRxlMsjYJYWKkkEv82NXB3sFjCAIAJZZ5T179gQAbNq0Cenp6bXbIYJQgalTp+Ltt98GgBs+mzc5ORl//vmnZHlNTQ2OHDmCI0eOYP78+Zg0aRJmzJgRUGqe0DCdJIggppIpMngqb5ZTMpBdEkH4AEd2SZI/8Df2DZIjHBUZIBghmKrBafSAyT0lA51zH0PBz0QIw+njRO9dyWQINSUDm8ngipKh1vMYAMVMBkdqQzm7pFBWMtQE/YeTIAiCIIDs7OyQtjI7d+4cAOCmm27CQw89hK5du6Jhw4aoqKjApk2b8O9//xtXr17F+++/D41Gg/fee6+We3wdv98RFhYW4pdffsGpU6dQUlICk8nkdJ+33nrLDz0jCP9jFgRUMV8BT4OfdaRkIAg/wdolXS8ycDTg6jqOigywqBk4jV6iZBAVGSiTofYJoJkzBOEtkkwGF+ySpMHPKnaoFhBYJYNMJsO5MvHNa8NAUDLwSio3B0UGOSVDqAQ/yzwXVDt/7CYIgiAIopbp3Lkz/vGPf6B3794SlcLdd9+NYcOGoUuXLrh06RJmzpyJp59+Gs2bN6+l3orx213UxYsXMXHiRHzzzTcwGo3Od7CDigxEqFJtkj6JeqpkYO2SNBxQJ6x2Q/gIIiSRKBk4hdegTAYHOFQy4K9cBkMcBEbJQHZJtQ19ponQhdOLiwxml4KfWbskVbvkf9hMBsYuqbzGjCuV4r+DgaBkkLdLchwIKhv8LPkbH5xoZR4BSMlAEARBEIHPjh07HK5v0aIF3nrrLTz33HMwGo347rvv8OKLL/qpd47xyx3h1atXcffdd+PkyZM3vLfWjU55RSnmbf3Z7f00MKGN9gQ6a/epMmlSE9EYEa2egjampVv7mSsvo+zobBhLcwFYxg/3GDviT1MjdNIfQZumbRHe/DGn7RRWmPC/0xXILZYW3DxXMojfJ4ZroJGZxUSIqchbjppLOxDWdDD09btJ1purrqDsyL9tv3NX0cXfgsibn1cOInSTmsIclJ9YBHP1VQAAb6iLiFajoItvp0r7oUrl6RWozP8egqnK+cYuYq68KF7gIFTSXHEeV7f+3eW2OU0YwpoOQliTgZ52LygQzCZUn9/kcJvinePA6aJhKj4uWm6vZJBTjhRvf9olT21NRCNEthkPTVRTF3vtOubKQpQd/Q+MpbngOB66up0R0XosON712b41Vw+h/Pf/wlx1WbSc10UjvPkw2euV2phrSlB29D+A2YjIm58Hb0hAVf4PzFb0d4YIHXjGLqn8tw8R0WIEdHU7Ke4jVTL451mnqmATKnO/Ah9WDxFtn0Vl3teoubwbgpeD5DWF+8QLOC12FVRi/8Vq1JgFlBvFPx8HICkAlLPyRQbHvwv5IoN7k+ECFbniSk3QV8AIwnO2b9+ORYsW4eeff0ZBQQEqKytRr1493HbbbejXrx8ef/xxxMXFudRWRkYGFi9ejGbNmiEvL09xu+zsbIwcORIAkJubi+TkZMk2GzduxIIFC7Bz506cP38eHMchMTERSUlJuPvuu9G/f3/87W9/AwDk5eUhJSVFtL81m8GeRYsWISMjQ7J806ZNyM7Oxs8//4zz589Dq9WiWbNm6Nu3LyZOnIiGDRvK/hysV35xcTHmzJmDb7/9Frm5uSguLpY95nfffYfPP/8cu3btwsWLFxEWFoabbroJAwcOxIQJExAfH6947gAgPz8f06dPx5o1a3Du3DkkJCQgLS0NEyZMQK9evRzu6yn259j6M3399deYP38+Dh48iJKSEjRr1gwPPPAAXn31VaefmerqaixcuBBff/01Dh8+jOLiYiQkJKBjx44YNmwYhg0bBp6Xf5ZkP2dnz57FrFmz8P333yM/Px+RkZHo3LkznnvuOfTt29fln0eJ5ORknD59GiNGjPDIimjnzp34/vvvsW3bNlFQcePGjdGjRw8899xzuPnmmyX72X9PrMj9DbP/Drn6HTx06BA+/PBDbNq0CWfPnoVGo0HTpk3Ru3dvPP/887LfSUD+vK1btw5z5szBnj17cPXqVTRs2BB9+/bFG2+8gcaNG7t2klTE/rt/8uRJvx9fCb8UGWbMmIE//vgDANC7d2+8+OKL6NSpExISEgIqoILwPSZTDXYblR/UHPGLsTMqSvbgzsovVelLZe5XqDvoIHh9jMv7XNk4GDUXt9ve7wx7DF9FWwYQN1Tfjde2d0dLwYSIFsqDioIg4N1dRRKpuRW1gp8pj8E5FbnLULTlEQBA2ZEPUPf+X6FLuFW0zdWND6D6wla3267E5zBeO4G4rgu87qep/BwK13QTheECQMXJJag3JBc8M/OSsFB5ZhWubnrQ9wfilDMZBGMpKk997lZzFSf+i4Tea2FoeK8avQtISn/9h9Ntqv5cJbtcVLiTuYeozFvmcj8qT3+DxAdPMOHd3nN10wOovnC9oF5x8lOYK84juuO7Lu1vrixE4Y/dICjMoi4/8V/UHbgPuvhUVfqrxNWND6K6YD0AoOrsGkS0fU66Ed3HESEEq2QAgMKfeiDxgePQRDaS3ac2MhlqCnNwZe29NtVB6UHXri2ecMDYDpk51xTXN4jUQOfhvauqKAY/O0CmIM3aRYUS1aEh0iAIt6ioqMBTTz2FL7+UjiGcPXsWZ8+exQ8//IBLly5h6tSpfu3bxIkT8Z///Eey/MyZMzhz5gx27dqF7OxsXL58WbqzG1RWVmLkyJH46quvJOsOHz6Mw4cPY968efjyyy8xcKDjiU4nTpxA7969HQ7sXr16FUOGDMHGjRtFy6uqqrBv3z7s27cPmZmZWLlyJe68807ZNn7++Wfcd999uHbt+t+fgoICrF69GqtXr/bb7+qpp57CJ598Ilp2/PhxzJgxA0uWLMGGDRvQpk0b2X3z8vLQr18/HDt2TLT8woULWLNmDdasWYP58+dj5cqVSEhIcNiPvXv3YsCAAbh48fpkt4qKCvz444/48ccf8eKLL2LWrFke/pTeI1coACxBxb/99ht+++03LFiwAHPmzMG4ceP80qfp06djypQpMJvFf/yOHj2Ko0ePYt68ecjKysLw4cOdtvX6669jxowZomV5eXn4+OOPsXz5cmzZsgVt27ZVtf/OqKq6PolSowmcsT+/FBlWrlwJjuMwYMAArFolP2hAEK5wWN9HtSKDqew0KvOWIaLV0y5tb666IiowAMBX0f+5vp7TYV3E82h6ZqXDIsOFcpNigQGQD3B2hSid+AEvKTJwLjSBSuWZ78TvTy8XFRnMlYUeFRisVP25EoD3RYbq85slBQYAEKqvoubSLhga9fb6GKGIdMa1b+C1kbbXnDZKlTar8n8M6SJD5Z+rPd6X010vDHOaCK/6YSo5BWPxceji1LspNFddERUYrFTm/+BykaH60i+KBQbLQWpQfW6DT4sM5poyVBdssL2vubwH5cc/lmzn7e+AIAIJ3pAoWSYYy1B9YauiUrU2igyVp1dIbY18xCGjY8VkowDIYwAgO2mI0zq+PvG6aMkyTaT/ZyP6i+axtW9rRRD+xGw2Y9CgQVi3bh0AoGXLlhg3bhzS0tIQERGBgoIC7NixA8uWuT5BRS2+//57W4HhlltuwdixY9G2bVvExsaiqKgIR44cwfr167F7927bPo0aNcKhQ4ewZ88ePPnkkwCATz75BLfffruobftZ1YIgYMiQIfjhB8tz0cCBAzF06FA0b94cPM9j9+7dmDVrFs6cOYMhQ4Zg+/btSEtLU+z3kCFDcPbsWTz33HO4//77ER8fjxMnTqBZs2YALAOfvXr1Qk5ODjQaDYYNG4b+/fsjJSUFNTU12Lp1Kz744ANcvHgR/fv3x/79+237Wjlz5oytwMDzPEaPHo0hQ4YgNjYWBw8exIwZMzB16lSH/VSDzMxM7NmzB507d8bEiRPRsmVLXLx4EdnZ2Vi2bBnOnTuHPn364PDhw4iOFv89KS0txT333INTp04BAAYPHownn3wSDRs2RG5uLubOnYstW7Zg27ZtGDhwILZu3ao4UFxeXo6HH34YxcXFeO2119C/f38YDAbs2rUL06dPR0FBAT744AM0bdoUzz//vE/PiRJGoxHx8fEYNGgQunfvjpYtWyIyMhLnzp1DTk4O5syZg8uXL+PZZ59FmzZtbOocwHJu0tLSkJmZiXnz5gGwKBBYGjWSn+whR2ZmJiZPngwASExMxKuvvoquXbvCZDJh/fr1mDlzJsrKypCRkYG6deuif//+im0tWLAAO3bsQI8ePTBmzBi0atUKRUVFWLJkCZYsWYJLly7hySefxC+//OJy/9Rgy5Ytttf+LnA4wi93GmfOnAEAjB8/3h+HI0KYMt5xhdddKnKXulFkuOp0mz90XWGu/MbhNjVOZhF5qu65MykMP+VVwCRYHnjTm3gwo+sGQ6gW/05N5QWi9+5aJLGYKy9BMNeAc8G6xWE7Dj57gqnCq7ZDGXNNiV+OE5byiO21LvFOaCKbwlR2xqs2zTWl3nYroDFXXZEsC28xHBUnlzjd1/5882F1oE/qZZtt7xFOsiHcbo65jlgR3PidyhUVJduY1bMAk8VUAdZqxHRNKsU1NJKXZxNEMBLWZABK9sVKinyOv5P+n8VvqrzgnwNxWhgjmgMOLpM9GstYDtUCvCEB+oa9UX1urW1ZePMnHO7DacMR3vzvqDj1GQBAn/Q3aGNu8mk//cnQVpFY9nsZACAxnEfnBpRpFAwIZjNMpYW13Q2/oYmqA07BLsZb5s6dayswPPDAA/jyyy9hMIi/BwMGDMC0adNQUCB//+YrrIWNZs2aYfv27YiKEk9USk9Px/jx43HlyvV7Zp1Oh/bt24uUDSkpKWjfvr3icRYuXIgffvgBOp0Oq1atktjq3HnnnXjiiSfQrVs3HDlyBC+88AK2bdum2N7hw4exZs0a9O59fZJbp07XnSreeecd5OTkIC4uDuvXrxetAyyhtY8//ji6dOmCgoICTJ48GZ9/LlZ9v/TSSzYFw2effYbHHrte5E9LS8PDDz+Mbt26Ye/evYr9VIM9e/agf//+WLlyJbTa60On/fr1Q/v27fHWW2/hzJkzmDZtGt5//33Rvm+//batwDBlyhRMmzbNtq5Tp0546KGH8MQTT+Dzzz/Hjh07kJWVhbFjx8r249KlSygqKsL69evRvXt32/LOnTvjoYcewh133IH8/Hy88cYbGDZsGBITpRMmfE2/fv0wbNgwRESIi/sdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmaPPtDMuXbqEl19+GQDQsGFD7Ny5E02aNLGt79q1K+6//35069YNZWVlGD16NHJzc6HTyY/Z7NixA6NGjcL8+fNFY3X33HMP9Ho9Fi5ciJ07d2L//v3o0KGDx/12h/LycluR0mAwYNCgQX45riv4pcgQFRWFqqoq1K9f3x+HIwIYvc6AfpHbnW/4FwXGBPxadf1mvzL8JkQ2ec3j45vKzqDy1Be299XnN8JUcQGacOefTaGGkYrL2GtohSqYKi85bsfBDLdb6no+GN0qXod3u8bjt8IapNbVo2kMzVZyhmAsE703Mw/tJqbIwBkSENFqtHKDpkqLf7mozUvQRMj7W7rcT/azJ1pJ2ndFzOLAYF29u6Gvf7eqh9DF34qwlKG297wuEnX670BF3lKYnVwL7Kk+vxk1l3ZeX6DywHegITAFoLjunyMs+REYGvZGTdFh2X04Xgd9g7/BkJQuWh7/t29RceoLmErzXDp22eF/iTy3BZX9t9nriO047vxOmRnKfFgiOF0MTCV2g/w+9n0XmO8PIP3ZwlsMhzamhU/7QRD+RBPZBHXv241LK1qLlgvmmlrqkQJOcobCkh+BJjrF4TbO4DRhMDTuD9PpugCuH69NvA6tE3TQckC7unq0q6NXbsTPxPdcjspTX8BYmgtt3M0IT3GekxZ79yLoG94LmKucFiWCjQdvikDTaC2uVJrQtWGYxFqVCExMpYX4/bl6zjcMEVp9eBHaGPUHRc1mM2bOnAnAMrN/yZIlkgKDFZ7n3ZolrQbnz58HAHTs2FFSYLDHmY2OIwRBwD//+U8AwIQJExR9++Pj4zFz5kz0798f27dvx4kTJ9CypXx2ZUZGhqjAYE9paSk++ugjAMC0adMkBQYrzZo1w5tvvolx48bh66+/RlZWFiIjLcrw8+fPY8WKFQCA++67T1RgsBIdHY2srCzccccdDn567zEYDFiwYIGowGDljTfewLJly3D48GH897//xbvvvgu93vL3sKqqCgsXLgQAtGvXTtbaieM4ZGZm4qeffkJhYSHmzp2rWGQAgDFjxogKDFYaNmyIWbNm4ZFHHkFZWRkWL16MSZMmefgTe46z709sbCzeeecdDB48GNu2bUNhYSHq1Knjk74sWrQI5eWWySEffPCBqMBgpUOHDnj99dcxZcoUnD17Ft999x0efvhh2faSkpLw4Ycfyk4GnjRpku13/fPPP/utyPDqq6+KJvMr5anUBn4ZhUxNTcXmzZtx+vRp3Hbbbf44JBGgGAwRyEi/z+Xtf71UhV93X59NVqFJREyn6R4fXzCW48KZldcHlwUzKk8vR2Qb575w7KxoTif17dULFRAqHXsmmh2E0Gm89LZuHqtD81jvZs3fSLCzxc0V4kBfdtBSF3+rw8+fYDah7Lc5ooF/c8UFr4sMjmbkC36ySwhG2LDnsMb9EXXL6z4/riayEaLavejWPiX7p4qKDG4NSAcZgiBICmfauPbgeA3CWzwOd+fE8rpoRLYe4/L25cc+Ehc5zOp+h9jriA03fqds4YOPaAxNRCNxkcFJoKm3CCZpkYFFG+/5LCOCCFS0sa2gb5CO6vObry8UAqvIYK4ucrg+os04GBpIByM8wZgrPlaHenoMvilSfuNahtdFIaK1g8kgMnC8FhE3OfdjDkY4jsPtpF4gblB+/fVX5OfnAwBGjRrlcCC/NkhKSgIAbN26FSdPnkSLFupP2jh69KgtEHbIkCEOt7UfwP7ll18UiwyPP/64YhtbtmxBcXGxW8erqanBvn37bO83bdoEk8lyby7n8W+lc+fOaNeuHY4cOeLwON7Qu3dvxcFbnucxYsQIvPzyy7hy5QpycnJs+RL79u1DUVERAEtRRskGKSYmBkOHDsW8efNw9OhRFBQU2D4XLI7OxQMPPIC4uDib2qE2igwsZWVluHTpEsrKyiD8NTHKXilw4MABkZpBTdavtyjc4+Li8OCDyvmMTz/9NKZMmWLbR6nIMGTIEMUCZevWrREVFYXS0lKbcsXXfP7555g7dy4Ai03Su+/6LpfLE3yjS2MYM2YMBEHAp59+6o/DESFEFBNQUFZjtl2kPIHTRsDQ5H7RsspcaQCSHOygmL0vuBUdKmGuKoTgYNDKUfcpP9O/OFUylIiVDJqoZIftcbwGvKEu06bCgKMbsLO+xStJyaCExE5GE7gP2hwTWBnSRQZjGdgBck7GF9tncMyNfiAqGZjgUY7XyvyB8LHxu4ySQQJ7LgkiVODE87ACLQyYtXtkYf+meEMNEzKho9nwBEEEAfv377e97tatWy32RB5r2GxhYSHat2+PRx99FIsWLcIff/yh2jHs7YS6dOkCjuMU/9kXYawqCzluueUWl46XlJTk8Hj2djj2x7P34mezJlg6d+7scL23uHN8+34fPnxdle1MbWG/3n4/e/R6PW699VbZdYBl8N46g14uy8BfXL58GZMnT0br1q0RHR1ts/JKTU1FamoqBgwYINrWV1jPY8eOHRUtkACgfv36SE5OFu0jh1Kwt5X4+HgAQEmJ762aN2/ejKeeegqAReW0fPlyhIcHhm2lFb8UGYYOHYrHH38cK1askCRyE4Qj2DDjGjNQ7eWYaridnzcAVF/YBlNZvtP92CJDjV4qY9UJVQAEhw9/fsgDJFxEMIqVDKaKC6IiFqtkcMV6gGest0wV3vsmO7ZLIiWDIoySgeOpyBAIyBXNeJmirc9gBsbVVgMpfefds0tiBjQ5LVjfd28K7i51wYUiA0dFBiJEkWQpBZhdkrOcME6r3gMnmyWm9cvTI0EQhHfYD2IqzQ6vTe655x7MnTsX4eHhqKysxNKlS/Hkk0+iZcuWaNy4MZ555hkcOHDAq2NcvOjZZDer1Ywc1gFVXx3PPoPC3qNfDl/bsbtzfPt+u/MzNGjQQHY/exISEhTVEGxflNrwNfv27UObNm0wffp0/P77706fUyoqfJcraT0Hzs49cP38OzpvbM4EC/9XpoxVgeMr9u7di/vvvx9VVVWIiorCjz/+GFCBz1b8Ype0detWPPXUU8jNzcUbb7yBb7/9FsOGDUObNm2c/sIAyHqPETcGrJIBsKgZDE4uso4wNOoLTmcf6iegIu9rRLWb6HA/c7V4oLdCK71Z0QmWi6Wp8hL4sLqS9QBgpipDwCDUiJUMMFVAMJaB01lmcrDBz86UDADAh9UHcH0GgdKsZncguyTPYO2SOE3g+EZLuKGKDNKimT+VDBynFRd7Vf4OKaqXBCMEs9GiSnCCZNY0p4E0XDYQlAyU/UOEKEyRwZ1MBn/c5pn9qGQwkpKBIPyKJqoOWn3ovRI6WNBE+caXPRgYP348Hn74YXzxxRdYt24dtm/fjuLiYpw9exbz589HVlYWJk+e7LEdiv2g5+rVq22ztp3haHDW0WC3/fFycnIcziK3p3HjxrLL5Tzw/Ykaxw+UNnxJdXU1hg4disLCQuh0Ojz33HMYNGgQWrVqhfj4eJvV0KlTp2y2YL6eLAUE/nlzhyNHjqBv374oKSmBwWDAd9995/NMEk/xy9Nhenq66Be8b98+7Nu3z6V9OY6D0RhYEmXCf0TopBeG0moBCV48O3EaA8KaDkbFycW2ZZW5S50WGdiBsUptPYD5aGphGZSxBL7KVxX9cD0lXEAQBIldEmDJUOB1URAEQaJk0Ea5omQQ35SZfa5kILskJSR2SUGkZIDJd7M7ahsz+3nmDf4tAPHMw5HKNiiOvvOCqcqlIgNb+KgNuyRXMhnILokIVQJdySA4yWTgNL5TMlCRgSB8C8fzPglCvtGoW/f6hL+CggKnlifuYJ25bDY7fg4rK5M+a7LUq1cPL7zwAl544QWYzWb8+uuvWLFiBebOnYuioiL83//9H26//XYMGjTI7X7aB+vGxcWJLIp8gf3xEhMTFYsHjrBXSly4cEE2tNd+vS9x1r79evuAbvvXFy5cQKtWrRTbsLeKUgr5LiwshMlkcljgsfaFbcP6WQXU+bzKsXHjRlseQWZmJp5++mnZ7fylskhISEBBQYFLnw/r+fcmYN3XnDx5Evfeey8KCwuh1WqxdOlS3HPPPbXdLUX8JngVBMHjf8SNC89xiNSKH2ZK2acdDwhLeVT0vubyLhgZ/30WdqC3Qiu9+TPB8lBqrlL2mCMlQ4Bgrpb1YrcqD8yVFyVBra4oGTRhYtmm7zMZSMmgiETJEDxFhtBWMog/z7zej1ZJgM/tkhyql1z9vUqUDFK7JF9XrF2yS2ILNgQRKrAqHQfZLf6eKCeYa2QnSdijaiaDiVEy0NeeIIggoGPHjrbXW7duVbXt6GiLAtca7qvE77//7la7PM+jY8eOmDZtGjZs2GBbvmzZMtF2rs7Qtvr0A8D27dvd6osnqHG81NRU2+s9e/Y43NbZem9x5/j2BRz717t27XLYxu7du2X3s6e6utqhdZbRaMSvv/4q24b1swoAV68qqyCvXLmCwsJCh31Vwj58+5FHHlHczj6zQw61lAfWc5CTk+NwwvrFixdx+vRp0T6BRn5+Pnr16oWCggLwPI/Fixd7VHD0J34pMmzatMnjfxs3bvRHF4kAJpJRM5TVeD+wYmh4DziDWJpZmbdMYWsL7OzbCo1U2lnDWQYxLUoGeQQHs09pbpj/UHpAt85CZkOfwevAhzv38/RNJgMFP3sCq2SgTIbAQGCs5/wa+gyLXZIItYOfK5QLi67+XgVBGvwsvfEOBLskGm0kQhNWyeCOXZKvcZbHAABQVclAdkkEQQQft956q20W/MKFC1FaWupkD9dJSbGo20tKSnD8+HHZbaqrq7F8+XKPj9GxY0fbrH42JDcs7PpzQ1UVo9xm2rCqCbKyslBZ6dvni169etns0OfMmePRhOGePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccTvO0H8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rwFAhcvXkSvXr2Ql5cHAPj4448xbNiw2u2UC/ilyNCjRw+v/hE3NlF68cdUDSUDx+sQ3uwh0bKK3K8c7sMOjFXwUkmV0YUiAykZAgOhRv5G0/SX8kAS+hzZzKVZuzyrZFChyCCxl7GHlAyKSOxeAljJcCNlMrCfZ86foc+AdGDcrN53SBAEmBwoGVz+vQaEksGFQVUqMhChSgDbJQlO8hgAtTMZxO8p+JkgiGCA53m8/PLLACyzgYcPH47qavkJFGazGefOnXO5bfsxqlmzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSbaZ2qtWrZKoOACgtLQUY8aM8bifrlJVVYUxY8bIBvrOmDEDhw5ZchiffPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCikeMGCHZxppxu3LlStnPy/Hjx/Hmm286PL4jWrZsaXudnZ0tu83rr7+OnJwch+24+rl2xsiRI23Frpdeekn2e3jgwAG89957AIBGjRph8ODBHh/PFxQVFaFPnz62Iua///1vjBo1qpZ75RqU2EcEPKySoVQFJQMAhKU8gvLfs2zvjVd+hbH4OLSxrWW3F4zi2eQVfKxkGyOsRQZluySqMQQGZmdKBg9CnwGpkkGN4GdHSgYKfnYAq2QI4CLDDaVkYO2S/F1kYDIRWNWANwg1JQ4tkVxXMjDf6wANfpaoQggiRAhqJQOvU9XKjJQMBEEEK+PHj8fq1auxbt06rFixAqmpqRg3bhzS0tIQERGB8+fPY+fOnfjyyy8xbNgwTJ061aV2O3TogC5duuCXX37BggULUF1djREjRiA2NhYnTpxAVlYWNm7ciLvuugs7duyQbePVV1/FM888g0GDBqF79+5o1aoVIiMjUVhYiG3btuHDDz8EYAlaZj3umzZtisaNGyM/Px//+te/0LhxY7Ru3dqmAKhfv77NJueZZ56x/fxff/01cnJyMGbMGHTu3BmxsbG4du0ajh07hs2bN2PVqlUICwtzOuDtiHfeeQdbtmzBrl27MHv2bGzevBmjRo3CbbfdhsjISFy9ehVHjhzB+vXrsWbNGqSmpkp+vlmzZmHdunUoKSnBsGHDsGXLFgwZMgQxMTE4ePAgZsyYgd9//x1paWlOLXi8IS0tDatXr0bXrl0xceJEtGzZEhcvXsTixYvx1VeWCaqNGzeWHaB/66238O233+LUqVOYOnUqDh06hJEjRyIpKQm5ubmYO3cuNm/eDADo0qULRo8erdiPxMRERERE4N5778XEiRPRv39/GAwG7N69G++9956tQDZt2jTZ0O5x48Zh1apVqKioQHp6OqZOnYoOHTqgtLQUGzZswOzZs5GYmAiNRoNLl5QnyyrRp08f1KtXDxcvXsSUKVOQl5eHBx54AHXr1sUff/yBBQsWYMOGDejatatDG6277rrL9nrixIl44403kJSUZFNzJycnQ6t1/uyRmJiImTNnYvz48cjPz0enTp3w2muv4a677oLRaMT69esxc+ZMlJaWguM4ZGVluRxS7g+qqqowYMAAmwXW448/jl69ejlU7kRGRkqKkbUFPR0SAU+UTjxlqqxaHXsYff0e4MPqiwaBK3KXIvq2t2S3NzNKhnJIB8ZsdklVDuySHIwL+dvX90ZGMMorGayfB4mSIdq1i7YmjAl+rrwEQTCD4zyb+icIAtkleYjAZjIEkV2Sy979QQibb+N/uyRm8E3FQp3TDBZXf68ydkl+D34muyTiRoYNaA+kIoMTJYOaoc+ANPhZS0UGgiCCBJ7n8d1332HEiBH45ptv8Pvvv+OFF15Qpe1PPvkEPXr0sA06s3Y2kyZNQrt27RSLDIBltrLcvlYMBgM+/vhjpKWlSdZNnjwZ48aNQ25ursSjfdGiRcjIyABg8blfunQpnn/+eXz88cc4efIkXnnlFcU+yQ1Su4PBYMC6deuQkZGBb7/9FgcOHHBYtIiJkY6pJCcnY9WqVbj//vtRUlKCzMxMZGZmirZ56623wHGcT4sM48ePx5YtW5CdnY1HH31Usj4pKQn/+9//EBsrnXwaHR2NDRs2oF+/fjh27BiWL18ua5/VtWtXrFq1ymGoc0REBL755hv069cP06dPx/Tp0yXbTJgwAS+++KLs/n369MGECRMwZ84c5OfnyxatVq1ahX79+in2wRGRkZFYsmQJBg8ejMrKSsyfPx/z588XbZOeno65c+c6zD646aabMHToUCxbtgxr167F2rVrRetzc3ORnJzsUp/GjRuHoqIivPnmm7hw4QImTpwo2cZgMCArKwv9+/d3qU1/UVBQILpufP755/j8888d7tOjRw9b0aq2IcErEfD4SsnA8RqEJT8sWlaZq+xFxw6MlXNRkm1cUTLQkHBgINQoKRksg4RGRsmg9VDJAMEEoeqK2/2z7W4sg8PBRFIyKMIWGQLZLulGUjIEnF2SmkUGJ/ZowWSXBNZuTA4KfiZCFY5RMrihePK1YtWZXZKaVkkAYJQoGVRtniAIwqdERETg66+/xsaNG/HEE08gJSUF4eHh0Ov1aNKkCQYOHIj58+fjpZdecqvdNm3aICcnB2PHjkWzZs2g1+uRmJiIvn374ocffsDMmTMd7r9p0ybMnj0bDz30EFJTU5GYmAitVouYmBh06NABkyZNwtGjR23FApaxY8di+fLl6N27N+rVq+dwhrdOp0NmZiYOHDiA5557DqmpqYiNjYVGo0FsbCxuu+02PPXUU/jmm2/w22+/uXUe5IiOjsby5cvx888/4+mnn0br1q0RHR0NrVaLhIQE3H777Rg/fjx+/PFHrFu3TraN9PR0HDlyRHR+69evjwEDBuCnn37C22+/7XU/XWHRokX44osvkJ6ejjp16sBgMKBVq1Z45ZVXcOTIEdx8882K+yYnJ+PAgQOYO3cuevTogTp16kCn06F+/fro27cvPv30U2zduhUJCVIbbpa0tDTk5ORgwoQJaNGiBcLCwlCnTh307dsXP/74I2bPnu1w/9mzZ+OLL75A9+7dERMTg/DwcLRu3RqvvfYacnJy0LZtW7fPjT19+vTB3r178fe//x0NGzaETqdDYmIievTogaysLGzYsAGRkZFO2/nss8/w/vvv25Q2PO/5TcfkyZOxf/9+jBo1Ci1atEB4eDgiIyPRtm1bPP/88zh27BiGDx/ucfuEPKorGd555x21m8Rbb8nPLCduDFglgxqZDFbCUx5F+bHrvoPG4t9gLDoMXXyqZFtJ8LMQIdnGpeBnXw8MES6hGPyspGSIck3JwIdJZ3+YKi6AD6vrXgf/wqGKAWSXpIQgCEFtlwTBBMFstMxgDzECzi6JHdD3Akd5DIDnwc/gtdLCAykZCMJnsHZJjpQM/p7X78wuSU0lg1kQYGIuNWSXRBBEMNKzZ0/07NnTpW2Tk5NdemZv1KiRZIa9PRkZGYpFgpSUFEyYMAETJkxwqU9yPPjgg3jwwQdd3j41NRVz5sxx+zhTp0512UrKnrvvvht333232/tZadKkicPz62m/3OWxxx7DY4895tG+er0e48ePx/jx473uR5MmTTB79mynBQUlnP0c1oBhOdLT051+J9q1a4dPP/1Ucb0r3yudToeXX37ZlqeiRHZ2tmL+gz233HILsrKynG7H4uo1AHB83jzBnWMHIqqPXkydOtXmmaUWVGS4sWGVDGUqKRkAQFevC/iIxjCX59uWVeYulS0ySJQMgvQhzpXg5yC+XoQUSnZJpooLEAQzTKWnRctdzWTgNHpw+njRTENL4aKdZ/10UmQguyQFZAaEAtkuiQ1+BiwD0hwvVUwFOyFtl1Th2C7JUyUDx2khcOJ+CgFQZKBMBiJkCeRMBmfBzz4MfQYo+JkgCIIgCIKQxye3iYIgqPaPIHypZOA4HuEpj4iWVShYJglMJkOZWS/ZxmaXVHVZ2XbJ084SqqKsZLgIc3mBJPTU1SIDIFUzOBt4dASroJFASgZZBEbFAADgpd/ZQEHW3iJELZPYfBtO72+7JGZgXMXgZ2dB7y4XGdjvNS8T/OzreyRSMhA3MO4oGfyNU7skrXpKBjb0GSAlA0EQBEEQBCGP6lPQNm3apHaTxA2OL5UMABCW8ijKjsyyvTeVnISxMAe6up1sywTBLJn5Xm6WJtBb7ZJgqoRgLAOnk85Clnles0GPbf5DqJFXMgjVRTBeOy5eqAkDH97A5bY14fVhsmvD2cCjI0jJ4CFsHgOCzC4JoZvLIBhr2S6JGRgXzP7LZHC1cMTaJVmUDH4OfnYlk4GKDESowtqqqViM9BZzdZHD9WpmMsjN69Fp6G6VIAiCIAiCkKJ6kaFHjx5qN0nc4ETpfadkAABdnU7QRDeHqeSUbVlF7lfiIoPMgHS5UTq4YuIMEGApFpgrL4N3s8hA+A8lJQMA1FzaLXqviWzmlg0cG/5scjbw6ADKZPAMOasXKjIEBqwqLKTskip9Y5dkGfAMPCUDR8HPRIjCcYGrZPBnJkMNG8gACn4mCIIgApfc3FyUlSk/5ysRHx+PRo0a+aBHxI1GWVkZcnNzPdq3devW0Omkk5mDCTLTJQIeVslQXiPALAjgVcr+4DjOomY4+J5tWWXeMkSn/RMcZ3mSYj3EAaDMKH98IwzQoQrmqktAdLJkPdUYAgNHRYbqSztF77XRroU+W+HDxEUGb5QMZJfkGYKMkgEBnckg7VuoFhnYzzRXy8HPatolOSsoehz8zGnBSbRutZ/JQEoGImTxJpPBxzd6Tu2SVFUykF0SQRAEETyMHDkSW7ZscXu/ESNGuBQkTBDO2LNnj8sh8yy5ublITk5Wt0N+huaiEAEPm8kgACg3qvsEF54szmUwlZ1Bjd1AMzsoZoQOVQqCihon4c+Os0bowc1fmBXskgCg5vIu0Xt38hgAqZLBm0wGskvykGCzS+I4SREkVIsM7Ge61u2SVFUy+CaTgeO1gL/tklwqMtBcFSI0CeRMBqdKBhUzGeSCn8ktiSAIgghVkpOTbfmwGRkZtdqX7OxsCIKAvLy8Wu0HQbgDPR0SAU+UTvo0U1YjIEpFFZE2PhXa2LYwFv9mW1aRuxT6encBkNp7VOqSFNuyhT9XXpZdT0PCgYEjJYO54rzovbtFBg0b/OxVJgMpGTxBEvzM8ZaB2gCG04SJ+x2yRYZatktiPwesNZEXsAVFThcLoabYbgMZhY1sQ6ySoRaCn13IZJBYTxFEqOBDxZO3OFMyQE27JEbJoOPhln0kQRAEQfiTzZs313YXiBuc9PR0JxOLQxtSMhABj0HDSWZNlVarO1RvsUwSqxkq85bZAkHZQbEKXUPFtoxOlQyO+uFKbwk1YIO8HaGJctMuSaJk8GEmA5WtZJHYJQWyVdJfsBYXoahkEMwmSYHP73ZJPspkEIyV4oICAE1UM+ZQntslSZVugaBkoCIDEZqwSga37JJ8jLkW7ZK0ZJVEEARBEARBKEBFBiLg4ThOomYoq1F/cIW1TDJXnEf1hZ8tryVFBmUlg3O7JG96SaiFIyUDi9t2SWHS4GdPq9lmZ3ZJZlIyyMLMGA9kqyQrN0SRQaa4x+tDwy5JLvTZ0yIDq2SoDbskl+xhKPiZCFUCNPhZMBudTj5QM/iZtUui0GeCIAiCIAhCCbpVJIKCSOapprRG/dnb2rg20MbfKlpWmfsVAKmSoVIrtsOxx2aXVEV2SYGM4CCTgUXjbvAzo2SAucp5toICZJfkGaySgQsCJQNuhCKDzOeZ0/rZLonNEVDJLsnE2qLxOvDhDUSLXM9kcEHJ4OOKtStKBsm5JIgQIVCVDEJ1kdNtfKlkoNBngiAIgiAIQgkqMhBBgT+UDAAQnvKo6H3l6eUQzDWSAeIKbaJiG87tkpT7To9u/sNVJQOnjQBvqOtW23yYtAjlaS6D8+IEla3kkBQZSMkQEJirZYoMfs5k8JVdEpvHwIfVk8wodtkuyVz7wc8guyTiRsaL4GfBh99NZ1ZJgG+Dn8kuiSAIgiAIglCCigxEUBCl972SAQDCUoaK3purLqO6YKPULklTR7ENW5FBScng4NnTTF5KfsPVIoMmKsXtkENeFwlOGyla5mkugzO7JHYwkvgLdoCU19dOP9xAMvs0BIsMbNGM00aA87flDhPoKsk/8BC2kMiH1/f8dypRMkiDn30dKCa4EPxMRQYiZPHRdcJbzFUuFBl8qmRQrWmCIAiCIAgixKBbRSIoiPSTkkEb3Ry6up1Fyypyl0JgZt9W8PGKbdTAiZLBwfGrTFRk8Beu2iW5m8dghbVMMnlYZJDay7AFD1IyyEFKhsCE/Tz7PfQZAOczJYP4O64Jq+f575S1cArQ4GfJuSSIEIG1SwqYTAYX7JKgYiYD2SURBEEQBEEQrkJFBiIoiGIzGap9N7AaliIOgK48/a2kYFDBxSrub+Qsg0pKRQZHSoZKmpTuN1xXMiR71D4b/qyWXRKnj2M2oA+NHAIT/AwqMgQErCqsNooMPrNLqmTtkqRKBpftkoRACH52QcnAUyYDEaJwrmcy+HPY3SW7JFWVDOL3pGQgCIIgCIIglKBbRSIoYJUMpT5SMgBAeLLYMkmoKUZl/mrRsnJOeWDMCIsti1BdJPtQ6qjnlUZSMvgLs9FVJYN7oc9WWCUD69fuKmyRgWeLDGSXJA8FPwckrJKB93ceAyC1QVEr+LlCapfk8e+ULXxwWnABGPxMdklEqBKoSgbX7JJUVDIwClvKZCAIgiAIgiCUoCIDERSwSoYyH2UyAIAmsjF09e4WLROqrojeVyBKcf8a7vpgprmyULLe0bgQ2SX5B8Fsctkb3VMlg4YJf/ZUySCZ+c0UGQSyS5KFVTIEo13SDZHJEEp2SWwmg4xdkqu/U0nhg/e/XRJcyGQguyQiZAnQTAahloOfdRoqMhAEQRAEQRDyUJHBR7z66qvgOM72b/PmzbXdpaBGqmTw7cBqeMqjDteXI0JxndUuCZAPf3YU7kxFBv8gmMpd3lYbrY6SwZNMBkEQZJQMjFUX2SXJIslkCAIlA9kl+QmOsfhRScnAqpXkgp9dVzIwdkmcxu92SaRkIG5kAlbJ4He7JAp+JgiCIAiCIFyDbhV9wK+//ooPPvigtrsRUkiVDL4dXAlLHgJwyl+PcrPyA5zVLgmQz2Ugu6TaRy70mc1QsFKrmQymCkkRQZLJQHZJsrBFBspkCAyE6gCwS2IGxgUfKRk03hQZXAl+9rFdkkuZDFRkIEIV3vVMBhZffjP9bZdkNJNdEkEQBEEQBOEaVGRQGbPZjNGjR8NoNKJevXrOdyBcIpINfvaxkkETXh/6Bj0V15eb9YrrxHZJMkUGskuqdeRCnzXRzSXLOF0MOH28R8dQI5PBzKgYAICX9IfskmQJQrukGyOTgQ0yrwW7JF59uyTBbIS5UqxcUzP4GbUQ/OyKkoGj4GciROG4wFQyuGKXxP4t8QYKfiYIgiAIgiBchW4VVWbOnDnYs2cP2rRpg6eeeqq2uxMyROnFgytVJmkYndqEpzyiuK7MrFNc59QuycExqcTgHyRKBo6HJrKpZDtNVDI4ycCea/AqZDKwA7KA1C5JrVnYoYbA+MmTXVJgEJB2SSp4rZurCsFewfmweqoFP3O1oGRgv0OykJKBCFVYuyTBBEHhO+fhbYJHsHZJfERDyTZqZjKwdkmkZCAIgiAIgiCUoCKDipw5cwZvvvkmAODjjz+GXq88251wD1bJAPg2/BkAwpo+KB2MAmAGhwqT8lenBo6VDGaqJNQ6rJKB00ZJlAeA51ZJgEUNIzpmTQkEY4VbbQjMgCw4LThtJLMRKRlkMQe/XVJoBj+Hpl2SWZK5woEPq+v57zQQgp/JLom4gZFV6QRA+DNrl6SJaCzZRs1MBknwMxUZCIK4AcjLy7Nla2ZnZ9d2dwgFpk6davs9Eb5l8+bNAZU3m5GRAY7jkJycXNtdIRioyKAi48ePR2lpKUaMGIEePXrUdndCiiid9A9HqY9zGfiwOjA0vFeyvJKLhiAZ7LmOkbPPZJAqGZRmwhH+QzCKlQycNlJSFAAATZRnoc+AfMaDu+HPrF0Sp4uWDuqRkkEWafBz4Bd9bwQlg8QuqRaUDJLBQxWCn1mlEh9WFxyvVc0uSS74WQgAuyQqMhAhC6tkAALCMom1S5KbIKFmJgMFPxMEQRAEQfiXixcvYvHixXj22Wdx1113ISUlBdHR0TAYDEhKSkKfPn0wb948lJVJbcBrG7pVVIlly5bh+++/R0JCAv71r3/VdndCDi3PwaARD7D4OpcBAMJSHpUsq+DiHO4jsktyM/iZ8A9miZIhUmJvBABaL5QMnD4WYAa2zZXu5TKwA7K8LloaSE5FBlmEIMxkuBGKDIFhl6R+oY7NXLFeT1QLfpZTMvg8+Nn5gCplMhChCidTZHAn/NlXmKuLRO/5sETJNmoqGaRFBpotShAEUdsE2qxyglADUqZcZ9WqVcjIyMBHH32EX375BXl5eSgtLUV1dTXOnz+PtWvXYty4cWjXrh327dtX290VQU+HKlBUVITnn38eAPDPf/4TdevWVa3t/Px8h+sLCgpUO1agE6XjRMHIZT5WMgBAWNNBKOb1ItuIcj7WwR7Ab7qe+DT6I8uboggc+OEsorgytNKcBACcMzcA0MhXXb6hMJacQvmxeTBVuPc9MJXmid5zOgW7pGjPlQwcx4EPrw9z2Z+2ZSU5r4MPT3Kjn6eZfsZIBkirL+3G1a1/97ifLJqIRohsMx6aqOsZFYK5BmW/zYWxMMfns6cBy+COoeG9CG8+zO19qy/vQcUf2ag48Yl4RRBkMrD+/carByW/W01kE0S2eRaayNq7hhivnUD58fkwVZx3e19TyUnR+4CwSzJXo+y3j1BzeRcED+3HTMXHRe9t1xO2uGWuwdWtj8NaMJD7fdZcOQhTaS7TZ8d2SYKxEmW/zUbN1UOy/eN1MQhv8QT09bpI1gnGcpQdnY2aoiPirjIzpjltpMRqjpQMRMjCBj8DKN7+tKz1Xk35UwDa2d7vOFeFM9eMEMxVMBYfR4LpDP6m24po3vvZZkJ1se11BReNDTUDURMRh/SKLIQJFpWmWkoGo1nA9nPigj1lMhAEQRAEUdtkZ2eHtJUZx3Fo2bIl0tPT0aFDBzRq1AhJSUmorKzE6dOn8dlnn+F///sfTp8+jXvvvReHDx9Gw4bSnK7agIoMKvDKK6/g/Pnz6Nq1q+phz02aNFG1vWAmUsejsPL6ANDOgip0qu/bgUNeHwtD4/6oOvOdbVkFn+Bwn8va5risbS5aViTEYbexky+6eMMimGtQuKYHzOWOC3GuYFEyqJvJAACasHqiIkN1wUav2uN00RbbFDvM5fmoPPW5V+2yVJ7+BokP/A6Otxzr2p6XUf7bbFWP4YyKP7IhCGZEtHC9gGIq+xOFa7rL+t4Ho5LBXHlJ9ndbeeY7JA4+WiuzPARjJQrXdIfZgwKDHLVil8Rk7VT9uRpVf65W9RjW64ncjOLKU1+Ij39mJeoOPgKO42CuvGz5DDNwvFbm9329yFC8cxwq/ljksE/lJz5B4uBD0Ma0FC0v2jHapWsIH9EIpmu/Mx2jIgMRmsipdCpPfyO7rSmmH2C4XmTIu2ZE3jWrGqk1gNY4WpaAiUX9Ve3jgtjPcKrsTiDyLvyhuxvPFj9o6btKwc+f/VYqWUZ2SQRBEARBEL5lxIgRimPL3bp1w9///nf85z//wcSJE3H16lX861//wgcffODnXspDt4pe8vPPP2PhwoXQarX4+OOPSdrjQ+IM4nN7pdI/NjHhyY+I3lfrfTeDuHEUDdi4ivHqEVUKDADAGxKgiWB/r5xXmQwAwMsEMnrVXlhdcLooVduUw1RyCsbio7b3Vfnf+/yYclT9ucq97c+tUwzW5fSOFUiBAK+Pc2k7U/ExmEpO+bYzCtRc2a9agQGwfKb9jh8sfjQRlpkkvM75585Y/JtNtVR96RcINcWSbThtFBzZJVW68l0xV6Hq3HrJ4qo/Xft+SzKKOJ7ueYiQhdNGSu0JFdAL5U63Oa3rhFLO8SQVd7jKN8Ip3Z2293/ou+Ia95d1kkrKvf0XpbksETIZaQRBEARBEIR6aLXOn1efffZZREVZxoZ+/vlnX3fJZajI4AXV1dUYPXo0BEHAxIkT0b59e9WP8eeffzr8t3v3btWPGaiEa8Uf19PXjH4JUQ5rOhjauJtt77UN0iXb6FX4JnEARtxcC9YhQYqafvXhKY9BE9kI+qRetmVhyUPB672bZR3e4nFvuyZuL+UxGBr1+2vA0beYq67YXguMj76/MFcVurW9qfyc7HJOG4mwxvep0SWfom+QDj68gUvbSmxr/IRgqlCtLW1cO2jjU1Vrz1U4bYRvD8DrEJY81PIyrA70DXs73+ev65ncdU0T3QK6Op0kwc9WJYNgNkFw8bvC5rwIglm2qMGiTbgNUbe+Cc5wfZA0/KYMl45JEMEIpw2Hockgl7a9rcq1gnglp949XhkfL1lWxUchvOWTNhWit1SYpPfYtyUGviqQIAhCju3bt+Ppp59G69atERMTA71ej8aNG+O+++7DRx99hKKiIpfbysjIAMdxSE5Odrhddna2zWM+Ly9PdpuNGzfiscceQ0pKCsLDwxEREYFmzZrhzjvvxKRJk7Bx43UlfF5eHjiOQ8+ePW3LevbsaTuG9Z+SjcymTZswYsQING/eHBEREYiJiUFqaipefvllnDsn/xwFSL3yi4uLMW3aNHTo0AFxcXGKx/zuu+/w8MMPo2nTpggLC0NcXBzS0tLw9ttv4+rVq5LtWfLz8zF+/Hg0b94cYWFhaNiwIe6//36sXy+dNKMW1nNs/zN9/fXX6NWrF+rVq4fw8HC0adMGr7/+ukufmerqamRmZqJnz55ITEyEXq9HgwYN0L9/f3z22Wcwm5WtWtnP2dmzZ/Hiiy+iVatWiIiIQGJiIgYMGICffvrJrZ9HieTkZHAch4yMDKc/lxw7d+7ElClTkJ6ejgYNGkCv1yMmJgY333wzxo4di6NHj8ruZ/2evP3227Zl7Gea/Q65+h08dOgQRo8ejZYtWyIiIgLR0dFo164dJk6cqPidBOTP27p16zBw4EA0aNAABoMBKSkpGDt2rFOLe1+h1WoRFmZRzVdWBk6WI9klecF7772HY8eOoWnTpvjHP/7hk2M0bqzuTOhg5u9to7Dr/HVv2JIaAefKTGgU5duPMacNQ52+W1CR+yV4QyLCwgYB+68P1DSK0uCFDrHYc6EKVSYBQk0pjEVHcaC8Ps4axYF8bfRnkMyfQc2VHGiEGrSq+RnR5ks412U3bqoThVbxUg9gQgnmDzKvQ2S7l9xqgeO00DfoAUNDS3Eh4Z7VqDj1KcBpEe6GTY8S4ckPg++zAdUFmyAIRuc7uNjPOvftQtWZ72BmBgy9ofz4xxDsAiXtfZ8Fo3hgObzFE+Alyg/vMV49LFJNsAGXzpCbYR/V4V1LoTC2lbfd8zm8IQ51B+xCRd4ySYGl7PC/ALvPEBts7TeYzAJOG4GIthPcbkYTnoTw5sPAuThTWE04jeMiQ1izB6GJ8ezzwmnCENb4PujqXrfHi++5HBWnPhdlwZQdmiHaT7Bez2QK53X6bQOn0UNJySBXJIho+xw4bSQqz3wHU/Gx67sYxTOu5YpVEW3GiWysNBGNEN58GHhDAuoO2I3K09+AD2+A8JTHJPsSRCgR3/1zVJz6AsaSPxxul/bnKkQWPYgTuq4wcTroE7tAV/d2rM4zQ7C7xvEtnkZkmDoF4ghdR+BP8bKYtJmIbT1YlfYBwMgUGUanRqNeBCluCYIILioqKvDUU0/hyy+/lKw7e/Yszp49ix9++AGXLl3C1KlT/dq3iRMn4j//+Y9k+ZkzZ3DmzBns2rUL2dnZuHz5slfHqaysxMiRI/HVV19J1h0+fBiHDx/GvHnz8OWXX2LgwIEO2zpx4gR69+7tcID26tWrGDJkiKhAAgBVVVXYt28f9u3bh8zMTKxcuRJ33nmnbBs///wz7rvvPly7dn2yW0FBAVavXo3Vq1f77Xf11FNP4ZNPxFl/x48fx4wZM7BkyRJs2LABbdq0kd03Ly8P/fr1w7Fjx0TLL1y4gDVr1mDNmjWYP38+Vq5ciYQEx2rHvXv3YsCAAbh48aJtWUVFBX788Uf8+OOPePHFFzFr1iwPf0rvyc7OxsiRIyXLa2pq8Ntvv+G3337DggULMGfOHIwbN84vfZo+fTqmTJkiKeQcPXoUR48exbx585CVlYXhw4c7bev111/HjBni57e8vDx8/PHHWL58ObZs2YK2bduq2n9nbNiwwXZtUPoM1gZUZPCQY8eOYfr06QCADz/8EJGRkbXco9AnMZxHQhiPK3a5DMeu1Pi8yABYLD0i2z5neXNOXCXkADSN0aJpjLUfUQAaYP7Bazj7p3jbO266GX3qN8TFZQ+Jlt/SRABvoAKDWzCDcZwmHDGdpnvVJKcNQ0SrUV61wWJI+hsMSX9TtU1d3M3Q2alr1KAq/0cY7Qb1zXbqBXZ2deTNE6Gr00HV4wNA5envREUGocr5DBd72CJD1C1vIPrWN1Tpm7/QRDVFVPtJkuXlx+aJB5NNUhsLvyCIbeo4fZzX3zt/40zJEH7TkwhrMkC14/G6KES2HiNaVnb4fXHBxnpemSKONj4VmgirukVeyWCW+Z7EdJoBThsBc1k+KuyLDIwSRaiReq5H3/YO+LA6sj+LNqYFolJflV1HEKEGpw1HRCvnWWtFFefRsigbLWu2AwAik19EZIvb8VNeBapx/flAe9MYxNRPVGrGLQxFNcCf4u9+RLPBqqkYAKDGLL7PahZDj40E4Q8EswBjeS1NJqkFtBEGcD4KlTebzRg0aBDWrVsHAGjZsiXGjRuHtLQ0REREoKCgADt27MCyZct8cnxHfP/997YCwy233IKxY8eibdu2iI2NRVFREY4cOYL169eLnCsaNWqEQ4cOYc+ePXjyyScBAJ988gluv/12Udv2E1UFQcCQIUPwww8/AAAGDhyIoUOHonnz5uB5Hrt378asWbNw5swZDBkyBNu3b0daWppiv4cMGYKzZ8/iueeew/3334/4+HicOHECzZo1A2ApJPTq1Qs5OTnQaDQYNmwY+vfvj5SUFNTU1GDr1q344IMPcPHiRfTv3x/79++37WvlzJkztgIDz/MYPXo0hgwZgtjYWBw8eBAzZszA1KlTHfZTDTIzM7Fnzx507twZEydORMuWLXHx4kVkZ2dj2bJlOHfuHPr06YPDhw8jOlqsViwtLcU999yDU6csFreDBw/Gk08+iYYNGyI3Nxdz587Fli1bsG3bNgwcOBBbt26FRiP/N7y8vBwPP/wwiouL8dprr6F///4wGAzYtWsXpk+fjoKCAnzwwQdo2rQpnn/+eZ+eEyWMRiPi4+MxaNAgdO/eHS1btkRkZCTOnTuHnJwczJkzB5cvX8azzz6LNm3a4G9/uz4+MnjwYKSlpSEzMxPz5s0DYFEgsDRq5Pokx8zMTEyePBkAkJiYiFdffRVdu3aFyWTC+vXrMXPmTJSVlSEjIwN169ZF//7KuVkLFizAjh070KNHD4wZMwatWrVCUVERlixZgiVLluDSpUt48skn8csvv7jcP08pKSnBn3/+iWXLlokyGGrr9y4H3S16yL///W9UV1ejefPmKC8vV6wKW9m4cSPOn7cMgA0cOJCKEh7AcRxax+vwS8H1m67jV2twT1N1Au5chRW0KVlSa2RWcADAS4sJgrnG637deDAzfmthRnQowTOZBVYlg2A2imbQAwBkwmzVgDOI7R/cVTKYKi6I3rtqPRQMcBo9BLvLRG0pGQSBvQIG3/fOWZGBk7lGqw8P0V8T23l1cH4V7JLM1VfEi3kDoPnr7yITACspMhilRQZ/5L4QRCjBMRkIgslyfdYLFajmrt/vV6kYJWaWcQtVc4xOEATUMJcjbfBd7gkiKDGWV+Hge9/Vdjf8xi2TB0MX5Ztni7lz59oKDA888AC+/PJLGAzia/aAAQMwbdo0FBQU+KQPSlgLG82aNcP27dtt3upW0tPTMX78eFy5cv0+T6fToX379iJlQ0pKikPb7oULF+KHH36ATqfDqlWr0LdvX9H6O++8E0888QS6deuGI0eO4IUXXsC2bdsU2zt8+DDWrFmD3r2v24F26nRdwfvOO+8gJycHcXFxWL9+vWgdANx99914/PHH0aVLFxQUFGDy5Mn4/PPPRdu89NJLNgXDZ599hsceu66eTUtLw8MPP4xu3bph7969iv1Ugz179qB///5YuXKlyCO/X79+aN++Pd566y2cOXMG06ZNw/vvvy/a9+2337YVGKZMmYJp06bZ1nXq1AkPPfQQnnjiCXz++efYsWMHsrKyMHbsWNl+XLp0CUVFRVi/fj26d+9uW965c2c89NBDuOOOO5Cfn4833ngDw4YNQ2KiOhMa3KFfv34YNmwYIiLEz1kdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmTdW9JcuXcLLL78MAGjYsCF27tyJJk2a2NZ37doV999/P7p164aysjKMHj0aubm50OnknwF37NiBUaNGYf78+aI8unvuuQd6vR4LFy7Ezp07sX//fnTooP5EzKlTp4qspOzRaDSYPXs27r77btWP6yl0u+ghVVWWB4hTp07hsccek/23fPly2/bTpk2zLb906VJtdTvoaZMg/uIfu+L/2bysmwUnmV1qQe5hj+cAjpO5eFGRwQPYJ2wKI/QGe3sU4LoFi5wHP6fxTWGPDT4WaoplBrWVYZUMoVRkYIM8hUBRMnDBZ53BaZ0U+f1RZGCLon99ziWfd1FhQcEuiVEy8IZ42w0waw3FWp9JlAycFuD1TjpPEIQIDXt9rgQgSAKh1S0ySKsMahYZTIL0Lkvno5nGBEEQvsBsNmPmzJkALDP7lyxZIikwWOF53q1Z0mpgnYDasWNHSYHBHmc2Oo4QBAH//Oc/AQATJkyQFBisxMfH287V9u3bceLECcU2MzIyRAUGe0pLS/HRRx8BsIx/sQUGK82aNcObb74JwJJ3UFZ23Urw/PnzWLFiBQDgvvvuExUYrERHRyMrK0uxj2phMBiwYMEC2RDeN954wzYQ/t///hfV1defzaqqqrBw4UIAQLt27WStnTiOQ2ZmJurUsaiH586d67AvY8aMERUYrDRs2NBmk1RWVobFixe79sOpTKNGjSQFBntiY2PxzjvvAAC2bduGwkL3shfdYdGiRSgvt9yDffDBB6ICg5UOHTrg9ddfB2CxTfvuu+8U20tKSsKHH34oKjBYmTTpugOBv8OX77nnHhw+fBjjx4/363GdQUUGIqhow2QWXCg340qlik9tLsA+1yk9c2lkvl0cB1IyqITjwTjCXThGyWC2KhmMMkUGrW+KDBxTZIBglgTVOoItMmhCqMhg8eS3o9YyGZjrrYrWHP4iIJQMTJFBULBLEm8nvsYJNrsksZKB119XBLHfVcHEZjKIiwycLlr2BpogCGU4Vt1nUzL4ssgg0w/1modR5gBUZCAIIpj49ddfbYGso0aNcjiQXxskJSUBALZu3YqTJ0/65BhHjx61tT1kyBCH29oPYDuyfXn88ccV123ZsgXFxcVuHa+mpgb79u2zLd+0aRNMJssfTDmPfyudO3dGu3btHB7DW3r37o2GDRvKruN5HiNGjAAAXLlyBTk5ObZ1+/bts4VCZ2RkKNogxcTEYOjQoQAsvytHahpH5+KBBx5AXFwcAPg0FNsdysrKkJeXhyNHjthyP+yVAgcOHPDZsa3nIC4uDg8++KDidk8//bRkHzmGDBmiWKBs3bq17dpiVa6ozbhx43Do0CEcOnQIO3fuxKJFi9CzZ09s2LABjzzyCHbt2uWT43oKFRk8JDs7G4IgOPxnHwa9adMm23JnCeiEMk1jtAjXih9yjl/17wC9wMztUnrkkrdL4uQHsKjI4D5sJgNdzryC1ynYJdWikgFw3TLJXFMmGTDlw+ur0KvAQGLHYa4tJUPo2yWB872TpEQBYjuvDq5rinZJYiUDZ7g+4439rrJFQ3MNW2QIrAdwgggGOFbJYFYoMrguzHOKTI0BvIoFQtYqCQB0wXe5JwjiBmb//v221926davFnshjDZstLCxE+/bt8eijj2LRokX4448/VDuGvZ1Qly5dwHGc4j/7IoxVZSHHLbfc4tLxkpKSHB7P3g7H/nj2Xvxs1gRL586dHa73FneOb99ve9v0O+64w2Eb9uvt97NHr9fj1ltvVWxDp9PZbHrksgz8xeXLlzF58mS0bt0a0dHRNiuv1NRUpKamYsCAAaJtfYX1PHbs2FHRAgkA6tevbxubVTr3gPNQ5fh4ywSvkhLXJ0e6Q7169dC+fXu0b98ed9xxBzIyMrBx40a8++67OHjwINLT07F27VqfHNsTKJOBCCr4v3IZfr10fYDt+JUadEnyjY+jHBKTHsVMBukyUjKoCetbRTPsvEGiZLCGDDOhz4APlQy6aMvMbbuBbKG6CEAzxX2smCsvSJaFll2SWMlg9fz2NwKrZAhGuyRN4CkZbJ95N5QM1kKrO0oGOMlk4LVUZCAIt5HLZBAEGPytZFDxNogNfQZIyUAQ/kIbYcAtkwfXdjf8hjZCfoawt9gPYlpVA4HEPffcg7lz5+Lll19GRUUFli5diqVLlwKwWM/cd999GDt2rMPBZWdcvHjRo/2sVjNyWAdUfXU8+wwKe49+OerX9+2EMneOb99vd36GBg2uP6/a72dPQkKCohqC7YtSG75m37596NOnj8s2SBUV0omMamE9B87OPWA5/3l5eQ7PmyMbKMCiagFgU+D4izfeeAOrVq3C7t27MWrUKJw8eVLW2svf1H4PCMJN2CLDsSv+HaBnn7uUlQzSZRws/nvgNGLbESoyuI9kRjU9/HqDopKBtUviND4bhOU4HpwuFoLdzGwz4zevBGuVxGkjwIXQgCk7UxYBomTggtIuKQAyGVgFiCt2SQpKBoFRMvAiJYOzTAbxjBtSMhCE+0iuz38VgXWC+PtWaVLvPkUmkkFV5JQMWioyEIRf4HjOZ0HIRGAxfvx4PPzww/jiiy+wbt06bN++HcXFxTh79izmz5+PrKwsTJ48Ge+++65H7dsPeq5evdplRw1Hg7OOBrvtj5eTk+NwFrk9jRs3ll1e2xaeahw/UNrwJdXV1Rg6dCgKCwuh0+nw3HPPYdCgQWjVqhXi4+NtVkOnTp1CixYtAFjyQnxNoJ83NRg0aBB2796NM2fOYPfu3bjrrrtqu0tUZCCCDzb8Oe+aEeU1ZkT4ScctCX5WuHbxMg9jtkW8DrD7IywIVGRwHwp+VhMlJQNrlyTxnlYZXh8Hk92gqeCiXZJJJvQ5pG4sAkTJIMlkCEW7JH8UGSTFGTPzfyuc3SsFJQNrl+ROJgNrlxRChTmC8Bcu2yWZ1Huglgt+VpMamb6SXRJBEMFE3bp1ba8LCgqcWp64g3Xmstns2AfPPtBYiXr16uGFF17ACy+8ALPZjF9//RUrVqzA3LlzUVRUhP/7v//D7bffjkGDBrndT2uoMGDxp7e3KPIF9sdLTExULB44wl4pceHCBdnQXvv1vsRZ+/br7QO67V9fuHABrVq1UmzD3ipKKeS7sLAQJpPJYYHH2he2DetnFVDn8yrHxo0bbXkEmZmZoqwDe/ylskhISEBBQYFLnw/r+fcmYL02SUxMtL0+ffp0QBQZ6HaRCDpaxOlEKgEBwIki/w3Ss49dSl8iOSWDFclMcFIyeABb7aHLmTfwegUlg6TI4BurJFv7BrEE1+VMBrbIEBY6eQxA4CgZQsIuyYndlz/sktgMGWuQvTTQ3oFdklLwsxuZDNLgZyoyEIS7sMV3wVQJQJAUGap9nMmgJmzwM88BGlIyEAQRRHTs2NH2euvWraq2HR0dDQC2cF8lfv/9d7fa5XkeHTt2xLRp07Bhwwbb8mXLlom2c3UildWnHwC2b9/uVl88QY3jpaam2l7v2bPH4bbO1nuLO8e3L+DYv3YWyrt7927Z/eyprq52GJRsNBrx66+/yrZh/awCwNWryg4BV65ccdnqiOXIkSO214888ojidvaZHXKoNUHQeg5ycnJgNBoVt7t48SJOnz4t2ifYOHv2rO11oITb06icD5k6daot7Dk9Pb22uxMyGDQcmseKRTjH/WiZJM1kkL8YyhUZREoG+zapyOA+ksE4evj1Bo6xSzIr2SX5KI/BChv+zM7SVsJcIZ6pEFJ5DAC4gFEyOBoEDw44XudYrRBAmQycK3ZJVaxdkr2SgbFLMjkJfiYlA0G4j1wmAwADWCWDevcpcpkMasLaJZGKgSCIYOPWW2+1zYJfuHAhSktLnezhOikpKQAsQa/Hjx+X3aa6uhrLly/3+BgdO3a0zepnQ3LDwq4Xt6uqlJ8JOnbsaFMTZGVlobJSmrWnJr169bL518+ZM8cjS5yePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccWRvYD+UpqCLPZjAULFjhsx9XPtTOs56CoqAjffvut4nb//e9/bT8ze96CAbPZLLrG2BfoahO6ZSSCkjYJ4gG3Y1f9WGRwOZNBusa6hB0wJCWD+0j/CFKRwRskSgabXZL4ZtTXSga2yOCqXRKrZNCEWJEBEjuO2spkECsZuCBUMgCOcxlqJ/jZel4daeWU7JLESgaRXZJEycDYJZGSgSC8Rqo0q4KckqFSVbsk1ZqShQ1+pjwGgiCCDZ7n8fLLLwMA8vPzMXz4cFRXy98/m81mnDt3zuW2e/ToYXs9a9Ys2W1efPFF0SxjlqVLlzoMv927d69t4Nha1LBiPxh98uRJxTZ4nsfkyZMBWPzwhw8f7nDw9tq1a5g7d67iemfExcXh2WefBQDs2LEDEydOdGjRc+HCBSxcuFC0LCkpyWYNtWrVKomKAwBKS0sxZswYj/vpKlVVVRgzZoxsoO+MGTNw6NAhAMCTTz5pyx0AAIPBYLMMOnz4MKZNmybZXxAEPPvss7YCkvW8KTFv3jxs27ZNsvz8+fOYNGkSAEtA8YgRIyTbdO/eHQCwcuVK2c/L8ePH8eabbzo8viNatmxpe52dnS27zeuvv46cnByH7bj6uXbGyJEjbcWul156SfZ7eODAAbz33nsALEHrgwcP9vh4vmDBggUOg6TNZjNeeuklW6GtW7duLmeu+BrKZCCCkjYJOqw+df39ias1MJoFvzwEsT64ipkMcsHP1o1JyaACZJekJmwmg1BTAsFs8r9dkt0AKeC6XZJcJkMoISlMBkomQ9AWGSKUC1h+KTIw501ByeCaXZKD4GdJJgMb/CwuMvCkZCAIt+EUlAw6SSaDesf0eSYDU2TQU5GBIIggZPz48Vi9ejXWrVuHFStWIDU1FePGjUNaWhoiIiJw/vx57Ny5E19++SWGDRuGqVOnutRuhw4d0KVLF/zyyy9YsGABqqurMWLECMTGxuLEiRPIysrCxo0bcdddd2HHjh2ybbz66qt45plnMGjQIHTv3h2tWrVCZGQkCgsLsW3bNnz44YcALEHLrMd906ZN0bhxY+Tn5+Nf//oXGjdujNatW9sUAPXr17fZ5DzzzDO2n//rr79GTk4OxowZg86dOyM2NhbXrl3DsWPHsHnzZqxatQphYWFOB7wd8c4772DLli3YtWsXZs+ejc2bN2PUqFG47bbbEBkZiatXr+LIkSNYv3491qxZg9TUVMnPN2vWLKxbtw4lJSUYNmwYtmzZgiFDhiAmJgYHDx7EjBkz8PvvvyMtLc2pBY83pKWlYfXq1ejatSsmTpyIli1b4uLFi1i8eDG++uorAJbQarkB+rfeegvffvstTp06halTp+LQoUMYOXIkkpKSkJubi7lz52Lz5s0AgC5dumD06NGK/UhMTERERATuvfdeTJw4Ef3794fBYMDu3bvx3nvv2Qpk06ZNkw3tHjduHFatWoWKigqkp6dj6tSp6NChA0pLS7FhwwbMnj0biYmJ0Gg0uHTpktvnqU+fPqhXrx4uXryIKVOmIC8vDw888ADq1q2LP/74AwsWLMCGDRvQtWtXhzZa9nkCEydOxBtvvIGkpCTbGFpycjK0WudD2ImJiZg5cybGjx+P/Px8dOrUCa+99hruuusuGI1GrF+/HjNnzkRpaSk4jkNWVpbLIeX+YvTo0Xj77bcxZMgQ3HnnnWjWrBkiIiJw9epV7N+/H9nZ2Th48CAAICYmBh999FEt9/g6VGQggpJW8eKLQLUZyC02omW87y8Ors6f18iMeVsXUSaDGjDFHlIyeAXP2CUBlkIDaiH4WdQHl+2S2CJDaGcy1J6SIfjtkgCA0yiHP3Oc/5UMgmKRgZN/bdnY8l9GycDbF+ook4EgfA97fbbaJfmyyKBeU7IYmQNog/NSTxDEDQ7P8/juu+8wYsQIfPPNN/j999/xwgsvqNL2J598gh49etgGnVk7m0mTJqFdu3aKRQbAYucit68Vg8GAjz/+GGlpaZJ1kydPxrhx45CbmysJhV60aBEyMjIAWCY5Ll26FM8//zw+/vhjnDx5Eq+88opin+QGqd3BYDBg3bp1yMjIwLfffosDBw44LFrExMRIliUnJ2PVqlW4//77UVJSgszMTGRmZoq2eeutt8BxnE+LDOPHj8eWLVuQnZ2NRx99VLI+KSkJ//vf/xAbK32Ojo6OxoYNG9CvXz8cO3YMy5cvl7XP6tq1K1atWuUw1DkiIgLffPMN+vXrh+nTp2P69OmSbSZMmIAXX3xRdv8+ffpgwoQJmDNnDvLz82WLVqtWrUK/fv0U++CIyMhILFmyBIMHD0ZlZSXmz5+P+fPni7ZJT0/H3LlzHWYf3HTTTRg6dCiWLVuGtWvXYu3ataL1ubm5Ls/WHzduHIqKivDmm2/iwoULmDhxomQbg8GArKws9O/f36U2/c3Zs2cxe/ZszJ49W3Gbtm3b4rPPPgsYqySA7JKIICVGz6NRlPhC7C/LJHbymNLkLjm7pOt+SaRk8Bp2MI6KDF7BKhkAwFxTLBmUdBaa630/4sR9cNkuSZzJEHJ2SQGSyRAKwc+ANKtARC0EP9sUIpLrmrKSQRAECKZqiQWSWMnA/JzmKlG4NKtk4HTRIAjCPSTFd3MVIMgEP6tYZPCxkEGiZNCRkoEgiCAlIiICX3/9NTZu3IgnnngCKSkpCA8Ph16vR5MmTTBw4EDMnz8fL730klvttmnTBjk5ORg7diyaNWsGvV6PxMRE9O3bFz/88ANmzpzpcP9NmzZh9uzZeOihh5CamorExERotVrExMSgQ4cOmDRpEo4ePWorFrCMHTsWy5cvR+/evVGvXj2HM7x1Oh0yMzNx4MABPPfcc0hNTUVsbCw0Gg1iY2Nx22234amnnsI333yD3377za3zIEd0dDSWL1+On3/+GU8//TRat26N6OhoaLVaJCQk4Pbbb8f48ePx448/Yt26dbJtpKen48iRI6LzW79+fQwYMAA//fQT3n77ba/76QqLFi3CF198gfT0dNSpUwcGgwGtWrXCK6+8giNHjuDmm29W3Dc5ORkHDhzA3Llz0aNHD9SpUwc6nQ7169dH37598emnn2Lr1q1ISEhQbMNKWloacnJyMGHCBLRo0QJhYWGoU6cO+vbtix9//NHhQDQAzJ49G1988QW6d++OmJgYhIeHo3Xr1njttdeQk5ODtm3bun1u7OnTpw/27t2Lv//972jYsCF0Oh0SExPRo0cPZGVlYcOGDYiMVLartfLZZ5/h/ffftylteN7zIevJkydj//79GDVqFFq0aIHw8HBERkaibdu2eP7553Hs2DEMHz7c4/Z9yb59+/Duu+/ivvvuQ7t27VC3bl3b9aFNmzYYNmwYvv76axw4cECUBxIIkJKBCFraxOtwtvT6E9vxK9UY2NzBwJFKSIOf5beTDX627kNKBhVg7ZLoAdgbLIOLHOzPq1BdXAuZDGK7JFcyGQRBCH27JFnP71pAEkwcrEUGR5kMfrg14tnzZjmvAjs/2Unws1wwuqNMBsCiZuB0lp/fXFMi3pfskgjCbSRKs7/+bkozGdQ7ps8zGZi+UiYDQRDBTs+ePdGzZ0+Xtk1OTnYpBLdRo0aSGfb2ZGRkKBYJUlJSMGHCBEyYMMGlPsnx4IMP4sEHH3R5+9TUVMyZM8ft40ydOtVlKyl77r77btx9991u72elSZMmDs+vp/1yl8ceewyPPfaYR/vq9XqMHz8e48eP97ofTZo0cTqz3RHOfo68vDzFdenp6U6/E+3atcOnn36quN6V75VOp8PLL79sy1NRIjs7WzH/wZ5bbrkFWVlZTrdjcfUaADg+b57SsWPHgCseuAopGYigpU2CeKD+2NUaly8E3uBV8LN1kSSToZasT4IZyS+CLmfewHG8ZBazUFMszWTwsZKBtUti/eblEKqLJYPuIVdkYD2/AyT4OVi/d7WtZJDcfinYJXGOMhkEAeYqsVUSAPAGx0UGews0sksiCO9RymRgiwxVKnoc+VvJoA/OejJBEARBEAThR4JzdIAgALRJENuHlFQLKChTcZqYAhKTHoUZ9HLKLptbEikZvIfsklSHtUwyV0vtkliPd/X7EMf0ocjpPmweAwBowkIrk4HsktRFscjA8czAvq86wGYyWM+ro+KpVMnAZpZw2ijR3xe5oqB94ZCCnwlCBSRKs2oAZmmRwaReZcAs0dWqC1tkICUDQRAEQRAE4QwqMhBBS2I4j3iD+CP82xXfD9azagmlxy6tnF2StSAhUTJQkcF9XI3gJlyFDX+22CWxwc8+VjIY3LdLMlWK8xg4XSw4rW8Dqv2N1C4pMIKfg9YuSSn42R+hz5A5b0rBz3bXNWlBW6pk4Jjvj1wxxb5wSEoGgvAeyfUZgGCqhh7iv5+qBj/7WMnABj/r6ImRIAiCIAiCcAJlMhBBC8dxaJOgwy8F12f0Hr9ag3ua+nYQlH2uU5rcxTvICJAoGQQqMriL4HDGL+EJEiWDnF0SG3Cpeh/iRO8FYykEs9GhTz6rZAg1qyQAAaNkCHW7JMm12WcdcM0uyaGSQZBmMvB6cXAcx+ssahO735t9ULQk+JmUDAThNqxdEgAI5ioZJYN6x/R5JgMFPxMEQRBBSG5uLsrKytzeLz4+Ho0aNfJBj4gbjbKyMuTm5nq0b+vWraHT+el51EdQkYEIalrHi4sMx/yiZHBtO9ngZ8VMBioyuA3ZJakOr5cqGcAGP/s5k8HSjyJwYXUV92GLDJoQLDIEqpIheO2SFIKfa63IYBl9FCTXNSd2SUxmCasEAizqI3vFgrVwKAhmCEbxQxgpGQjCA+SK7yZpkcEkAEazoIr1kK8TyKjIQBAEQQQjI0eOxJYtW9zeb8SIES4FCROEM/bs2eNyyDxLbm4ukpOT1e2Qn6EiAxHUtGXCny+Um3C10oT4MN8NfLmsZKBMBh/DKhnoAdhbOJ3zTAaf2yXppYOk5uoi8A6KDCaJkiHE8hgAcAGiZJBmMpCSwTMUlAxs6o/9+XXBLok3JICF0yoUGYwVYK+jpGQgCPeRt0uqhIEpMgCWXAY1igxmHyc/1zCXIm1wXuoJgiAIwi2Sk5Ml9ti1RXZ2NhU+iKCDigxEUNM0RotwLYcK4/U/BMev1uDOJN8VGViJunImg3SNbRFHSgavYbMxgnSwM5CQKBlk7ZJ8W2SAJsxiDWQ3U99Z+LO5QpzJEJJ2ScwgllBrSoYQD372V5GBF583AfJ2SZybdkmcTJGOzZ+wFg7ZPAaAlAwE4QmydkmmSomSAbAUGSJVuMz4evzDSEoGgiAIIgjZvHlzbXeBuMFJT08PmEJVbUCjckRQw3McWsWLn9Z8bZkkiRtWmEEv9zxm3ZSUDGpAwc9qI6tkYIsMPrZL4jhOYpkkMAOpLDeEXRKjZECtZTKESPBzLSsZOCUlg+SG1O66JqNkEFglg0yRAcx3VjBZBj6FmhLJpjwpGQjCfTR6ySJLkaFCsrzSqM5Dp+8zGcTvqchAEARBEARBOIOKDETQ09rfRQYXlQwaOSWD9QVlMngPZTKojqySgbFLkvWeVhl2NrYzJYPULikEiwwBq2QIztuIQM1kcGiX5Erws5xdEqM+sikZmNBncBq/fL8JItTgOF567TBVQYNq8IJRtLjapFKRQZVWlKlh+qkLznoyQRAEQRAE4UeCc3SAIOxow+Qy5F0zosLou8cvgfWwVhjb1shlMvy1MSkZ1IAyGdSG08spGZjgZ1/bJUEa/iw4tUsK/UwGBEomg2QQPDhHnlgLIdtyzk8ukux5E+TtkhwVGQSZTAZZuyRGtXE9k6GU2S5KUZlHEIRjOKZAJ5irwAESy6RKtYoMPlcykF0SQRAEQRAE4R5UZCCCnpvidNDYPfsIAE5cNSpu7y2uKxmky2xfOFIyeI/EVoQuZ97C61glwzW/2yUB0iKDuUrZLkkQzDBXXhQtC0m7JDZYtLaUDGaxkiHU7JJqT8lgKS4IjooMcsHPHikZLIOeZkbJQHkMBOE5bC6DtUDPFhmqVCoy+Nrrl4KfCYIgCIIgCHehW0Yi6DFoODSPFc8+PXbVdwNw7HOd0uQuWbskpUwGgYoM7iKdUU2z7LyF08eI3gvVxYDRz8HPADiD63ZJ5qpCiYVPSNolsUoGc21lMoSKXVItZzIw502wnlc28wKO7ZKEKrbIIKdkYL6zDpQMBEF4CFsI/kttJi0yqHM4XysZKPiZIAiCIAiCcJfgHB0gCIY2CeIBuOM+zGVwNQlA7nnMVqCQDBhSkcFtHAWkEh7hUvBzgNklsVZJAAc+LFH1PtU6PDuAVUtKhlCxS6rtTAal4GcHNnCc5BonwFzNBj97nsnAk5KBIDxGkptjVTJA/De0SqXgZx/XGCj4mSAIgiAIgnAbKjIQIQEb/nyiqEYyC8tXuJPJYH1mo0wGNWCzMehy5i3S4OdrNmsVK/6wS+JYu6RqZbskSR6DoY7fZqP7E04TGEoGwcwqGYK1yFC7Sgbw7HlTyGSAsl2SUFMq+dvBqoAA9zIZCILwDJftklS6N/V/JoNvj0cQBEEQBEEEP3TLSIQErZnw5yqTJQDaF7APdtLZpRbk7JJsHrqUyeA9ksE4mmXnLaySARCkA5FMuKUv4JnwWkdKBlPFBfG+IWiVBMgNYNWSkkFgMxmC8zai1jMZ2NsvW/HG9eBnVsUASL87gHImg1BTIt6OlAwE4Tkywc+ATJFBJSWDv4sMWlIyEARBEARBEE4IztEBgmCI0fNoFCWeGXrMR5ZJbNieopLBgV0SKRnUQNlWhPAMVskgSy3YJTnMZGCVDCFaZJD4fZurfB78KU+I2CVpFJQMXO0EPwtKSgYHwc/mqkK2UXAy32FWfWRVMphJyUAQqqFol8QUGSqDJPjZKLFL8unhCIIgCIIgiBCAbhmJkKENY5nksyID817pSyRXZLBNDCMlg/dQJoPqcLoY59v4I/iZLTJUuW6XpAnRIgMb/AygdoqTEruk4LyNqO1MBo4tzvxVXBAcFRmYa5xQJVYycPo4WWWJq5kMpGQgCM9h1WbW4GeDJPhZJSWDKq0oI7FLkrupJQiCIAiCIAg7gnN0gCBkYC2Tjl+t9slML8nQtsJzFy8jLbfuK5kta66tENdghlUy0OXMWzhe43Q2sz8yGdwJfjZJlAz1fdCjAIBVMgAQauG6IYSKkqG27ZLY65Ugr2QQ2/E5HuTjDdLQZ4AyGQjCLygoGXQCE/ysVpHB13ZJJjaTgYoMBEEQBEEQhGNoVI4IGdokiGf6XqsWUFBmUtjac9i6hdJjFykZfAxlMvgEObsV0Xp/KBmY8FrHdkk3SiaDjJLBVAvhz5JMhmAtMsh/jv0W/CwpMljPq4PiqRNLOLk8BgASi7PrmQziIgOvi3bYPkEQyrhql6RWkcHXbnk1zC2Wlp4YCYIgCIIgCCfQLSMRMtQL5xFvEH+kfWGZJAl+VsxkkK4w//VUSJkM3iNQJoNPcJbL4J/g5zjxAnOVzeKF5UbJZGAHsIDaUTKEjF0Sr5NXLfBaP/WAyWRQUDI4sktiYYtztuVskUFJyUB2SQThMZK/jb62S/J5JgMpGQiCIAiCIAj38NfTNEH4HI7j0CZBh18Krs/uXX2qHEcK1R2IO1lsFB9XYeBHVslgfcEMbhmLDuPq1r+r0Dv34Hg9DI36IDzlEb8f21vMZfnMkuAc7Aw0OJ2DIgPH+8VOhs1kAICin58AZAocxpKTovehmskAGSVD8c5xytkCCnAcD11iF0S0HiPr369ERd7XqMpfg+oLW5kGg1PJAFhyGVgrLn8FP3M8e94sfx2MRUeZ5a4XGXi9kl2SuMhgLP4NV7f+HTWX9zHbUZGBIDyFzWSwXiv1YIoMRs+LA7sKKrH/YjVqzAKOFEonpyw8VII4A4+/NQlDcqx317KSGioyEARx45KXl4eUlBQAwKJFi5CRkVG7HSJkmTp1Kt5++20A8IlNNnGdzZs3o2fPngCATZs2IT09vVb7k5GRgcWLF6NZs2bIy8ur1b4QYqjIQIQUrePFRYZzZSac84Flkj1Kz10amfE7698+VslgrryEylOfq9wz16j4YxEgCAhv/mitHN8TBEFA6cF3Rcs4UjKogiMlA6cJ98t5ligZAFSeXu7aviGaySCnZKg6851HbVWc/BTmqiuIvvUN17bPXYaiLQqFyKAuMkRI8z78ZZfEFkXNJphrylB9YYt4uTt2SUpKBjaToeqK7N8bUjIQhBcw12hT2RkA6tkl7T5fhQ9yrjncZtd5y/3vlvxKzO5ZB3EGzyZf/HpRasWno3kcBEEQBEEQtc4jjzyCZcuW2d7n5uYiOTm59jrEQLeMREjRJsFfA0TXMchJFiA/57RBpGVAjtPF+LBH7lN19sfa7oJbmEpzJcs4jUKQK+EWfFg9xXVyCgNfwPE6cEr+8k7QRDRSuTcBAqeVeOt7Q1X+925s+4PiOneVFIGEXIYBr/fTtZmxZRLM1ai5vFuymf35dXau+TD5AptiVgO7nUJwNEEQzpErjgPSIkOlh0WG/TID/0pUmgT85oWKd/8l6b4RVGUgCIIIGDZv3gyO48BxHDZv3lzb3SEIVZg6dartc03I8/3334sKDIEI3TESIUVyjBa31PVfoUHDAbc3kM4wBiwz63s1vW7v0jJOi+Z/ydcNSX8DH5bolz66gjWgMFgQakoky8KC0PIpELGcR/k/7OEp/lO7hDd/3O19DI37h+xAKcdxqp5/NvTXEYrB25owhDW9X50O1QJhKY+JF3BahDV90C/HZgckheoiSUYCAIQ1HWx7bUi6B5zS51sThrBm8n3X17sLfGQTx/0JT4K+fg+H2xAEoUxYswctxWCGcHOx6H15jWdFBncVEOVe2DJVyuxbL5weGQmCIAiCCAyys7MhCMINZZVUWlqK8ePHAwDq1VOeGFrbkF0SEVJwHIeJHWOx+3yVz22SdDyHjvX0aBGnXNR4qn002iboUWEU0L3x9YIDH1YXdQbsQmXe1zBXX/VpP+Woubgd1Rd+tr0XzEYHWwceckWRiJYja6EnoUdY4/6o028Lqs6tFwUL6+JTEZbsv0JOTOf/QJd4B4xFR1zaXhOVjIgWT/i4V7VLbJePoW/QA8biY27va7p2QmQ5ZQ3/dQV28Fuf1Av6Bj0Q1uR+6OJT3e5LoBB1y2RoY9ugpnAfOI0Bhsb9oa97u1+OzRYLzFVXIJiks4f1iZ1trzURSag7YDcqT38jKvxw2gjL7yLhFvljaSNQt/8vqMj9Cuaqy5L1vKEOwlMe8Z+KgyBCEH29u1BnwA5U5f8oukeJr2oK2N3mlXk4+M/kMKNVvA4pMVrsOl+FxHAeRVVmXKq4Hhxf7UXANBv63KtpGM0qJAiCIAiCqEWmTJmCM2fO4J577kHjxo2xePHi2u6SLFRkIEKOCB2P9Cbq2Yp4A89xuLuRNKwWALTRKYhKfcXPPbJQevA9UZEBgm8LMmojGMUDpJyhTi31JDTR1+8Gff1utdoHjtcgooX/w9ADGU6jR8RNIzzat+rs/5gig+vqJVb1EJ7yKCJaPeVRPwIJjuMQnvwQwpMf8vuxWQsjc/UVwCwuMmhlCjjamBaISn3V7eNpIhshqv1Lbu9HEITr6OveLilUJhbVANuvVxnKa8zsbi7BFhluqavHw60i8WT7aADAjN1FuFRx/RpSze7gBmwdJNbDbAeCIAiCIAjCe/bu3YsPP/wQBoMBmZmZeO+992q7S4rQXSNB3Iiwkv5gKzIwA6Scil71BBGSaMTFTm+UDBQQ7D2srZdQdVWkHAIAjtf7s0sEQfiASJ1YAVBj9kxlYBLE+7BxYHpmgZpKBh1PKgaCIIKf7du34+mnn0br1q0RExMDvV6Pxo0b47777sNHH32EoqIil9vKyMgAx3FOw1azs7NtHvNKti4bN27EY489hpSUFISHhyMiIgLNmjXDnXfeiUmTJmHjxo22bfPy8sBxHHr27Glb1rNnT9sxrP+ys7Nlj7Vp0yaMGDECzZs3R0REBGJiYpCamoqXX34Z586dU/w5WK/84uJiTJs2DR06dEBcXJziMb/77js8/PDDaNq0KcLCwhAXF4e0tDS8/fbbuHrVuZtDfn4+xo8fj+bNmyMsLAwNGzbE/fffj/Xr1zvd11Os59j+Z/r666/Rq1cv1KtXD+Hh4WjTpg1ef/11lz4z1dXVyMzMRM+ePZGYmAi9Xo8GDRqgf//++Oyzz2A2K08+YD9nZ8+exYsvvohWrVohIiICiYmJGDBgAH766Se3fh4lkpOTwXEcMjIynP5ccuzcuRNTpkxBeno6GjRoAL1ej5iYGNx8880YO3Ysjh49Kruf9Xvy9ttv25axn2n2O+Tqd/DQoUMYPXo0WrZsiYiICERHR6Ndu3aYOHGiQ6slufO2bt06DBw4EA0aNIDBYEBKSgrGjh2L/Px8V0+RRxiNRowaNQpmsxmvvfYaWrVq5dPjeQspGQjiRoTTiN8HmV0SJEUGebUIQRAWJIU4L5QMnJaKDN7C6xm7pOorgIkJdtXI5/0QBBE8yAUml9eYoddoZLZWhhUmsOP+bJGhyou5I0ZmvENLVkkEQQQxFRUVeOqpp/Dll19K1p09exZnz57FDz/8gEuXLmHq1Kl+7dvEiRPxn//8R7L8zJkzOHPmDHbt2oXs7Gxcviy1u3SHyspKjBw5El999ZVk3eHDh3H48GHMmzcPX375JQYOHOiwrRMnTqB3794OB2ivXr2KIUOGiAokAFBVVYV9+/Zh3759yMzMxMqVK3HnnXfKtvHzzz/jvvvuw7Vr12zLCgoKsHr1aqxevdpvv6unnnoKn3zyiWjZ8ePHMWPGDCxZsgQbNmxAmzZtZPfNy8tDv379cOyY2Or2woULWLNmDdasWYP58+dj5cqVSEhwnCu4d+9eDBgwABcvXrQtq6iowI8//ogff/wRL774ImbNmuXhT+k92dnZGDlSal9dU1OD3377Db/99hsWLFiAOXPmYNy4cX7p0/Tp0zFlyhRJIefo0aM4evQo5s2bh6ysLAwfPtxpW6+//jpmzJghWpaXl4ePP/4Yy5cvx5YtW9C2bVtV+2/lgw8+wK+//oqWLVvi9ddf98kx1ISKDARxA8IxRQYh6JQMjF0SFRkIwiHsd0QwVkAQBJd8ts3GMnFb2khV+3YjIpvJQEoGggg5IrTSa2yZUUCcm+2wRQYNc+02MDULNZUMWtK9E4RfEQQBlZWuTwYJdsLCfJf7YjabMWjQIKxbtw4A0LJlS4wbNw5paWmIiIhAQUEBduzYgWXLlvnk+I74/vvvbQWGW265BWPHjkXbtm0RGxuLoqIiHDlyBOvXr8fu3btt+zRq1AiHDh3Cnj178OSTTwIAPvnkE9x+u9iqr3HjxrbXgiBgyJAh+OGHHwAAAwcOxNChQ9G8eXPwPI/du3dj1qxZOHPmDIYMGYLt27cjLS1Nsd9DhgzB2bNn8dxzz+H+++9HfHw8Tpw4gWbNmgGwFBJ69eqFnJwcaDQaDBs2DP3790dKSgpqamqwdetWfPDBB7h48SL69++P/fv32/a1cubMGVuBged5jB49GkOGDEFsbCwOHjyIGTNmYOrUqQ77qQaZmZnYs2cPOnfujIkTJ6Jly5a4ePEisrOzsWzZMpw7dw59+vTB4cOHER0dLdq3tLQU99xzD06dOgUAGDx4MJ588kk0bNgQubm5mDt3LrZs2YJt27Zh4MCB2Lp1KzQKExDKy8vx8MMPo7i4GK+99hr69+8Pg8GAXbt2Yfr06SgoKMAHH3yApk2b4vnnn/fpOVHCaDQiPj4egwYNQvfu3dGyZUtERkbi3LlzyMnJwZw5c3D58mU8++yzaNOmDf72t7/Z9h08eDDS0tKQmZmJefPmAbAoEFgaNWrkcn8yMzMxefJkAEBiYiJeffVVdO3aFSaTCevXr8fMmTNRVlaGjIwM1K1bF/3791dsa8GCBdixYwd69OiBMWPGoFWrVigqKsKSJUuwZMkSXLp0CU8++SR++eUXl/vnKrm5uTaFR2ZmJgyGwJ+ERkUGgrgR4Vm7pOBSMkjskrRkl0QQjpB+RwTAXANonA9kS5QMZJfkNRK7pOoiqYUVFRkIIujR8hwMGg5VdoP+ZTXe2yXxzMC/mnZJbGyEluySCMKvVFZW4tNPP63tbviNJ554AuHhvnmWmzt3rq3A8MADD+DLL7+UDNINGDAA06ZNQ0FBgU/6oIS1sNGsWTNs374dUVHi++v09HSMHz8eV65csS3T6XRo3769SNmQkpKC9u3bKx5n4cKF+OGHH6DT6bBq1Sr07dtXtP7OO+/EE088gW7duuHIkSN44YUXsG3bNsX2Dh8+jDVr1qB37962ZZ06dbK9fuedd5CTk4O4uDisX79etA4A7r77bjz++OPo0qULCgoKMHnyZHz++eeibV566SWbguGzzz7DY489ZluXlpaGhx9+GN26dcPevXsV+6kGe/bsQf/+/bFy5UpotdfHT/r164f27dvjrbfewpkzZzBt2jS8//77on3ffvttW4FhypQpmDZtmm1dp06d8NBDD+GJJ57A559/jh07diArKwtjx46V7celS5dQVFSE9evXo3v37rblnTt3xkMPPYQ77rgD+fn5eOONNzBs2DAkJiaqeRpcol+/fhg2bBgiIiJEyzt06IABAwZgwoQJ6N69Ow4ePIh//OMfoiJDXFwc4uLiUK9ePdsyR59pZ1y6dAkvv/wyAKBhw4bYuXMnmjRpYlvftWtX3H///ejWrRvKysowevRo5ObmQqfTyba3Y8cOjBo1CvPnzxcVRO+55x7o9XosXLgQO3fuxP79+9GhQweP+y3HM888g/Lycjz22GPo1auXqm37CpqbQhA3IqxdUtApGcguiSDcQe474koug2CuAcxiGx+e7JK8hi0yAIC54qLoPSkZCCI0YHMZPAl/NjG7sJkMBqYQUOVN8DMpGQiCCAHMZjNmzpwJwDKzf8mSJYqzgHmed2uWtBqcP38eANCxY0dJgcEeZzY6jhAEAf/85z8BABMmTJAUGKzEx8fbztX27dtx4sQJxTYzMjJEBQZ7SktL8dFHHwEApk2bJikwWGnWrBnefPNNAJa8g7Ky66rp8+fPY8WKFQCA++67T1RgsBIdHY2srCzFPqqFwWDAggULRAUGK2+88YZtIPy///0vqquvK5KrqqqwcOFCAEC7du1krZ04jkNmZibq1KkDwFIQc8SYMWNEBQYrDRs2tNkklZWVYfHixa79cCrTqFEjSYHBntjYWLzzzjsAgG3btqGwsNBnfVm0aBHKy8sBWKyG7AsMVjp06GCzHjp79iy+++47xfaSkpLw4YcfyiquJk2aZHv9888/e9lzMZ999hnWrl2L2NhY/Pvf/1a1bV9Ct40EcQPCMUqGYLdLYkNtCYIQIxeOzhbr5BBqyiTLSMngPbw+XrLMVCGeQcdRJgNBhASsZVKZ0f0CgLuZDF7ZJTG7kpKBIIhg5Ndff7UFso4aNcrhQH5tkJSUBADYunUrTp486ZNjHD161Nb2kCFDHG5rP4DtyPbl8ccfV1y3ZcsWFBcXu3W8mpoa7Nu3z7Z806ZNMJksYxNyHv9WOnfujHbt2jk8hrf07t0bDRs2lF3H8zxGjBgBALhy5QpycnJs6/bt22cLhc7IyFC0QYqJicHQoUMBWH5XjtQ0js7FAw88gLi4OADwaSi2O5SVlSEvLw9Hjhyx5X7YKwUOHDjgs2Nbz0FcXBwefPBBxe2efvppyT5yDBkyRLFA2bp1a9u1xapcUYPCwkK8+OKLAID33nsP9evXV61tX0NFBoK4EaHgZ4K4sZBTMhhdUDIYSyXLKPjZezhtuOR3Yq44L96IlAwEERJEMuHP5R7YJZkZuyQ2k0FVuyRmX5nsaoIgiIBn//79ttfdunWrxZ7IYw2bLSwsRPv27fHoo49i0aJF+OOPP1Q7hr2dUJcuXcBxnOI/+yKMVWUhxy233OLS8ZKSkhwez94Ox/549l78bNYES+fOnR2u9xZ3jm/f78OHD9te33HHHQ7bsF9vv589er0et956q2IbOp3OZtMjl2XgLy5fvozJkyejdevWiI6Otll5paamIjU1FQMGDBBt6yus57Fjx46KFkgAUL9+fSQnJ4v2kUMp2NtKfLxl8lhJSYmbPVXmpZdewqVLl9C5c2c888wzqrXrDyiTgSBuRELOLokyGQjCEbKFOJeUDDJFBh0FP6sBb0iAufyc7b254oJoPdklEURowNollXlil+REyWBgigxVXtzWsfkPpGQgCP8SFhaGJ554ora74TfCwnwzWcx+ENOqGggk7rnnHsydOxcvv/wyKioqsHTpUixduhSAxXrmvvvuw9ixYx0OLjvj4sWLzjeSwWo1I4d1QNVXx7PPoLD36JfD17O73Tm+fb/d+RkaNGggu589CQkJimoIti9Kbfiaffv2oU+fPi7bIFVUOJ/s5inWc+Ds3AOW85+Xl+fwvDmygQIsqhYANgWOt2zcuBGLFy+GRqPBxx9/bGs/WKAiA0HcgHBckNslMTOwSclAEI7heC3AaUUh7y5lMhgZuyReD45XnhFCuA6vFxcZWLskV0K5CYIIfFi7pHIP7JLYIgObyaBnxh6qvLFLYoOfqcZAEH6F4zifBSETgcX48ePx8MMP44svvsC6deuwfft2FBcX4+zZs5g/fz6ysrIwefJkvPvuux61bz/ouXr1atusbWc4Gpx1NNhtf7ycnByHs8jtady4sexyOQ98f6LG8QOlDV9SXV2NoUOHorCwEDqdDs899xwGDRqEVq1aIT4+3mY1dOrUKbRo0QKAJS/E1wT6eVPCmqOSlpaG48eP4/jx45JtcnNzba9Xr15tC/t+9NFH/dNJB1CRgSBuRILcLomCnwnCfThtOISa6zJOVzIZzIxdEuUxqAcb/ixUiWf+cDxlMhBEKMDaJXmiZGDtknhf2iVJgp+D8yGdIIgbm7p169peFxQUOLU8cQfrzGKz2fH13D7QWIl69erhhRdewAsvvACz2Yxff/0VK1aswNy5c1FUVIT/+7//w+23345Bgwa53U9rqDBg8ae3tyjyBfbHS0xMVCweOMJeKXHhwgXZ0F779b7EWfv26+0Duu1fX7hwAa1atVJsw94qSinku7CwECaTyWGBx9oXtg37WfBqfF7l2Lhxoy2PIDMzU5R1YI+/VBYJCQkoKChw6fNhPf/eBKyrTVVVFQBg165dssHnLBMmTLC9DoQiQ3DpLgiCUAc+tOySQHZJBOEUthjnkpKBsUviKY9BNTiD45tZjpQMBBESREjskrwPfmaVDAamEFDN7uAGEiUDPS0SBBGEdOzY0fZ669atqrYdHR0NALZwXyV+//13t9rleR4dO3bEtGnTsGHDBtvyZcuWibZzdYa21acfALZv3+5WXzxBjeOlpqbaXu/Zs8fhts7We4s7x7cv4Ni/3rVrl8M2du/eLbufPdXV1Q6Dko1GI3799VfZNqyfVQC4evWqYhtXrlxx2eqI5ciRI7bXjzzyiOJ29pkdcqilPLCeg5ycHBiNypNpL168iNOnT4v2IbyHbhsJ4gYk2O2SKPiZINyHzS5xRcnABj+TkkE9WCWDdAMqMhBEKBDJjNKrYZfEigvUVDIYSclAEEQIcOutt9pmwS9cuBClpdKcMU9JSUkBYAl6lbMyASwDw8uXL/f4GB07drTN6mdDcu1zLKyznpXasKoJsrKyUFnp/N7fG3r16mXzr58zZ45Hljg9e/a0zdhfvHix4nZ79uxxGNarBmvXrkVBQYHsOrPZbOtffHy8qKjVqVMnxMXFAbD8DEoKgpKSElsB6eabb3aYHeLoXKxYscJWQOjVq5doXXx8vK0vjgb5v/rqK48tjOwH8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rzVJps3b4YgCA7/jRgxwrZ9bm6ubXkgQEUGgrgRkQQ/B5tdEmUyEITbsEoGo/tKBk5Loc9qweuVg/MACn4miFBBqmTw3i5Jwzu2S/Im+JntHikZCIIIRniex8svvwwAyM/Px/Dhw1FdXS27rdlsxrlz52TXydGjRw/b61mzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSTZrqFWrVklUHABQWlqKMWPGeNxPV6mqqsKYMWNkA31nzJiBQ4cOAQCefPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCiu0Hn610794dALBy5UrZz8vx48fx5ptvOjy+I1q2bGl7nZ2dLbvN66+/jpycHIftuPq5dsbIkSNtxa6XXnpJ9nt44MABvPfeewAsQeuDBw/2+HiEGMpkIIgbEUkmQ3ApGSSZDFqySyIIZ7BKBlYRJIdEyUB2SarhTMnAaSiTgSBCgUimyFCugl0SO+5vkFEyCILgtvWAWRDA9k5HSgaCIIKU8ePHY/Xq1Vi3bh1WrFiB1NRUjBs3DmlpaYiIiMD58+exc+dOfPnllxg2bBimTp3qUrsdOnRAly5d8Msvv2DBggWorq7GiBEjEBsbixMnTiArKwsbN27EXXfdhR07dsi28eqrr+KZZ57BoEGD0L17d7Rq1QqRkZEoLCzEtm3b8OGHHwKwBC2zHvdNmzZF48aNkZ+fj3/9619o3LgxWrdubVMA1K9f32aT88wzz9h+/q+//ho5OTkYM2YMOnfujNjYWFy7dg3Hjh3D5s2bsWrVKoSFhTkd8HbEO++8gy1btmDXrl2YPXs2Nm/ejFGjRuG2225DZGQkrl69iiNHjmD9+vVYs2YNUlNTJT/frFmzsG7dOpSUlGDYsGHYsmULhgwZgpiYGBw8eBAzZszA77//jrS0NKcWPN6QlpaG1atXo2vXrpg4cSJatmyJixcvYvHixfjqq68AWEKr5Qbo33rrLXz77bc4deoUpk6dikOHDmHkyJFISkpCbm4u5s6di82bNwMAunTpgtGjRyv2IzExEREREbj33nsxceJE9O/fHwaDAbt378Z7771nK5BNmzZNNrR73LhxWLVqFSoqKpCeno6pU6eiQ4cOKC0txYYNGzB79mwkJiZCo9Hg0qVLbp+nPn36oF69erh48SKmTJmCvLw8PPDAA6hbty7++OMPLFiwABs2bEDXrl0d2mjdddddttcTJ07EG2+8gaSkJNu9THJyMrRa50PYiYmJmDlzJsaPH4/8/Hx06tQJr732Gu666y4YjUasX78eM2fORGlpKTiOQ1ZWlssh5YRzqMhAEDcgHB/cdkkU/EwQ7uNRJoNRLHkluyT14PRkl0QQNwIRbPCzGnZJTJXBwApUYclW0ClnRMrC5jEAZJdEEETwwvM8vvvuO4wYMQLffPMNfv/9d7zwwguqtP3JJ5+gR48etkFn1s5m0qRJaNeunWKRAbDYucjta8VgMODjjz9GWlqaZN3kyZMxbtw45ObmSkKhFy1ahIyMDAAWn/ulS5fi+eefx8cff4yTJ0/ilVdeUeyT3CC1OxgMBqxbtw4ZGRn49ttvceDAAYdFi5iYGMmy5ORkrFq1Cvfffz9KSkqQmZmJzMxM0TZvvfUWOI7zaZFh/Pjx2LJlC7Kzs2UDdZOSkvC///0PsbGxknXR0dHYsGED+vXrh2PHjmH58uWy9lldu3bFqlWrHIY6R0RE4JtvvkG/fv0wffp0TJ8+XbLNhAkT8OKLL8ru36dPH0yYMAFz5sxBfn6+bNFq1apV6Nevn2IfHBEZGYklS5Zg8ODBqKysxPz58zF//nzRNunp6Zg7d67D7IObbroJQ4cOxbJly7B27VqsXbtWtD43NxfJycku9WncuHEoKirCm2++iQsXLmDixImSbQwGA7KystC/f3+X2iRcgwSwBHEjEmJ2SawNDEEQUljFjyuZDGaJXRIVGdTCqZKBigwEERJEalklg/t2SWyRQcM5tksCgCoPwp9rZPbRUo2BIIggJiIiAl9//TU2btyIJ554AikpKQgPD4der0eTJk0wcOBAzJ8/Hy+99JJb7bZp0wY5OTkYO3YsmjVrBr1ej8TERPTt2xc//PADZs6c6XD/TZs2Yfbs2XjooYeQmpqKxMREaLVaxMTEoEOHDpg0aRKOHj1qKxawjB07FsuXL0fv3r1Rr149hzO8dTodMjMzceDAATz33HNITU1FbGwsNBoNYmNjcdttt+Gpp57CN998g99++82t8yBHdHQ0li9fjp9//hlPP/00WrdujejoaGi1WiQkJOD222/H+PHj8eOPP2LdunWybaSnp+PIkSOi81u/fn0MGDAAP/30E95++22v++kKixYtwhdffIH09HTUqVMHBoMBrVq1wiuvvIIjR47g5ptvVtw3OTkZBw4cwNy5c9GjRw/UqVMHOp0O9evXR9++ffHpp59i69atSEhwMvEIFlVFTk4OJkyYgBYtWiAsLAx16tRB37598eOPP2L27NkO9589eza++OILdO/eHTExMQgPD0fr1q3x2muvIScnB23btnX73NjTp08f7N27F3//+9/RsGFD6HQ6JCYmokePHsjKysKGDRsQGencdvezzz7D+++/b1Pa8OysCjeYPHky9u/fj1GjRqFFixYIDw9HZGQk2rZti+effx7Hjh3D8OHDPW6fkIcTAiUdgvCI/Px8W6DRn3/+aQv2IQhHVBVswpX//c32ng9LRP1HL9Zij9zj0upOMBZe9/SLvXsxIm6iPxAE4Ygr6/qh6uxPtvfRae8jqv3LDvcp3jUB5b99aHsf3moU4u7K8lkfbySqzq3HlbX3Kq6PuXMeIts848ceEQThC86XGfH85iuiZZ/2TZQtDCjx9NpLKLGzWfrHnXG4uc71QmRpjRlPrRUHg867pw4SwtyTMhRXmTF6vbidBb3qIsZA89IIwoo3z98nTpyA0WiEVqsV+ZgTBBEY5OXl2TIw7BUhtUFGRgYWL16MZs2aIS8vr9b6QYQuvvibRHeMBHEDEux2SayXPNklEYQLaNxXMrDBzzwpGVSDMhkI4saAtUsC3FczSDIZmPqEQcbSqJqVP7iAUU7JQE+LBEEQBEEQhAvQbSNB3IhIgp+DzC7JKLZLoiIDQThHkslgdCWTgbVLci5zJVzDWSYD2SURRGgQIeM35G4ugySTgbFL0vIAe5QqD+aPyNolUSYDQRAEQRAE4QJUZCCIGxFJJkNwKRkkwc+M1zxBEFIk3xMPlAwU/KwevCHe8QYaKjIQRCig5TkYGGukshp3iwzi7VmnJY7jJPZLVR4pGaTLSMlAEARBEARBuIJyOgxBECELxwW3XZKkyEBKBoJwikTJwAaoyyBVMlCRQS04XYyl4Ktw/SUlA0GEDpE6TjToX+alXZJcnINBI1YveGSXxBQzeE6qmiAIgiCIQCU3NxdlZWVu7xcfH49GjRr5oEfEjUZZWRlyc3M92rd169bQ6XQq98i/UJGBIG5Egt0uiR0cpSIDQTiF8yCTwWwU36STkkE9OI4Dr4+Hueqy/AY8ZTIQRKgQoeVgH/1c7qaSQZrJIB34tygZrm/oWSaD+L2M0xNBEARBBCwjR47Eli1b3N5vxIgRyM7OVr9DxA3Hnj170LNnT4/2zc3NRXJysrod8jNUZCCIGxE+eO2SBEGQCX4muySCcIZHmQysXRIpGVSFMyQACkUGjuySCCJkiNTxAK7fa5XJ+RIpYBYEsOUCuZgEPbOwWiZfwRls8LOO8hgIgiCIG4jk5GTLeEMAkJ2dTYUPIuigIgNB3Ihw7FdfgCCYwXFBYLxrrpYsIrskgnABD5QMFPzsW3hDApRKvGSXRBChQ6TO80wGuVqBRuZ2jc19UCOTgfIYCIIgiGBi8+bNtd0F4gYnPT09YApVtQHdOhLEDQjH2iUBQaNmkJt9TUUGgnCOR5kMjJKBJ7skVeENCQ5WUpGBIEKFCMZ3yB27JLlagUbRLuk61R7c1tUwFQ0tKRkIgiAIgiAIF6EiA0HciMgVGcxBUmSQmX1NdkkE4RxOy3xPnCgZBEGg4Gcfw+uViwychjIZCCJUsNglXcdduyQWubF/A3Nrp0omAxUZCIIgCIIgCBehIgNB3IjwUqc0QQiO8GdZixdSMhCEU9xWMpgqAUE84kTBz+rCGeKVV5KSgSBChgidukoG2UwGNeySBFbJ4HYTBEEQBEEQxA0K3Tp6yd69e/HOO++gd+/eaNy4MQwGA6KiotCqVSuMHDkS27Ztq+0uEoSEoLZLkhkYJbskgnAOq/hxlskgGMukbZCSQVUcKhmoyEAQIUMkM1rvViaDjOjBNbskD4oMzK0gKRkIgiAIgiAIV6HgZy/o3r07fv75Z8ny6upqnDhxAidOnEB2djaGDx+OBQsWQK+nAQMiQAjiIoPE4oXXgeNlfh6CIERIlAwy+Sb2mJk8BgDgdBT8rCaOMhk4Dd0zEESoIFEyeGmXpJGzS2IKAtVyidFOYJUMOpqORhAEQRAEQbgIFRm84Ny5cwCAhg0b4uGHH0a3bt3QtGlTmEwm/PLLL5g1axbOnj2LJUuWoKamBl988UUt95gg/kLOLskcnHZJpGIgCBdxW8kgU2TQRKjapRsdzmHwM2UyEESoEMkUGdxRMvjVLonNZJBRTBAE4TkajQZGoxEmkwlmsxk8T5U8giAIwv+YzWaYTJaJxhqNepN2qcjgBW3atMF7772Hhx56SPJLufPOO/HEE0+ga9eu+P333/Hll1/imWeeQffu3WuptwRxnVCyS6IiA0G4hruZDEING/ocQaohlXGoZCC7JIIIGSIYSUB5jetKBvkig3O7pCoPbutqzJTJQBC+JCwsDFVVVRAEAaWlpYiJiantLhEEQRA3IKWlpRD+UrCGh4c72dp16NbRC77//nsMHTpUsepTt25dzJo1y/b+m2++8VfXCMIxnEx9MWiKDKySQb0LIkGEMpyW+a64qWSgPAb1cZjJQHZJBBEyRGoZJYNRsD3YOcNluyTmccSjTAZJkYGUDAShJvZFhfPnz+PatWswywWvEARBEIQPMJvNuHbtGs6fP29bFh0drVr7pGTwMT179rS9PnnyZC32hCDskFEyBKtdEkjJQBAuIadkEAQBnIIdhkTJoKMig9rwhngHK6nIQBChAmuXZDQDNWZA74I4TC5awRW7JM+KDOL3pGQgCHWJjIxEeHg4KioqYDKZcPbsWXAcp6pVBUEQBEEoYTKZRBNdwsPDERmpXu4iFRl8TFVVle013TwQgUIw2yXBSHZJBOEJEtWPYAYEI8DpZLcXjGXi/UnJoDqKmQwcD04mO4cgiOCEtUsCgLIaM/QuPBu4nMmgRvAzKRkIwqdwHIemTZvizJkzqKiwPNMIggCjMTgmexEEQRChQ3h4OJo2bao46dAT6AnWx2zZssX2um3btm7vn5+f73B9QUGB220ShFzw87U9E8HpnPuC8vpYhLcYAX1iZ9n15srLKDv6HxhL87ztpSymErEiiOySCMI15ApyRVufkL0eAIDp2h/i/bXqzXAgLPB6BSUDqRgIIqSI0Eof3hYeLkHYX+qD4mozDl2uAQDc3zwCfZLDUTfcUoAwMXZJPAfZh0EDo2Q4U2LEh/uLxdtoOdyVFIb2deWvMUamLiFTGyEIwkt4nkezZs1QVlaGkpISm6qBIAiCIHyNRqNBeHg4oqOjERkZqWqBAaAig08xm82YMWOG7f3QoUPdbqNJkyZqdokgLMgoGar+XO3y7uUnPkHi4N+gjU6WrLuycRBqLu7wpnduQUoGgnARNpMBQGXeUpd3J7sk9eF4LThdDISaa8xyKjIQRCih5TkYNByq7GQJey9Uy2676lQ59lyowgc9EsBznMQuSS6PAZDaJZVUC9h2rkqy3aY/K/F/XePRPFaqYpMoGVR+8CQIwgLHcYiKikJUFN1bEQRBEKEDzU/xIf/+97+xe/duAMCDDz6ITp061XKPCMICx3HezUo2VaL6/Ebp4ooLfi0wAACnj/Pr8QgiWOG1UbIFRpf3dxBSTHgOH15fsswVVRlBEMFFrN71AfuCMhMKyiwzm6sYvySNwsB/lM619s0CcPCSfIGjmplMTXZJBEEQBEEQhKtQkcFHbNmyBa+99hoAoF69epg3b55H7fz5558O/1mLGAThLmEpj3i1v1BTIllmKj3tVZueEJ7yqN+PSRDBCKcNR1jTQR7vT9813xDe/HGZZY/VQk8IgvAldzdyT3lZVmMpLlyuEKcxx4fJP761SdAhQWEdC1u4sFLJLA+TsXkiCIIgCIIgCDnILskHHDlyBA888ACMRiPCwsLw9ddfo169eh611bhxY5V7RxAWYrt8DH397jAWH3Np+8q8b2Aque7RLjABzABgKvtT9J7TxyOi9RjvOqoAx2mhb9ADhoa9fNI+QYQicd0+Q0Wjz2Fksk0cwfE66Bv8DYakdN917AYm6ta3oI1rh5rCHAACdPG3IizFfXtFgiACm4dbRaJJtBanrxlhP5S/70IV8kulfuzWAf9L5eJ1ieHyirQwLY9374rHjoIqlFSLCxPsMRRqDKg0ivejIgNBEARBEAThKlRkUJnc3Fz07t0bV69ehUajwVdffYXu3bvXdrcIQgLH6xBx0wiXtzdd+0NcZDBJiwxmpsigjWuHmE7TPe8kQRCqwmnDEdHq6druBmEHx3EITx6C8OQhtd0VgiB8CM9xuKthGO5qyCwHkF9aLtm+ymhVMrBFBmW1Qp1wDQY2j5AsL6oyi4oMbPaClQom+TlcKQCCIAiCIAiCIBjILklFzp07h169euHcuXPgOA6ffPIJBg3y3JqCIAIJjgmNlSsymMrFRQZNVFOf9okgCIIgCCKYMSssr/xrwP8SY5dUV0HJ4AhWkKCoZCC7JIIgCIIgCMJDqMigEpcvX8a9996LU6dOAQA+/PBDDB8+vJZ7RRDqwWmYIoMLdkmaiCY+7RNBEARBEEQoUmGyFBekSgb3iwwaJsDZpFDZqDRSkYEgCIIgCILwDCoyqEBxcTH69OmDo0ePAgBmzJiB8ePH13KvCEJlNOLAQsFUKdlEUmSIpCIDQRAEQRCEEgrORag0ChAEAZfYIkOE+49vWmYXo0B2SQRBEARBEIS6UJHBS8rLyzFgwADk5OQAAN544w28+uqrtdwrglAfiZJBzi6p7IzoPRUZCIIgCIIg3KfSJKC4WkANozrwxC5Jw4mLBUZSMhAEQRAEQRAqQ0UGL6iursYDDzyA7du3AwCef/55vPvuu7XcK4LwDWwmA5gig2Cugbm8QLSMigwEQRAEQRDKCAqqgkqjILFK0nBAQpgHSgZJJoP0mIIgUCYDQRAEQRAE4THa2u5AMPPYY49h7dq1AIC//e1veOqpp3D48GHF7fV6PVq1auWv7hGEqjjLZDCVnwMgfjilIgNBEARBEIQyCm5JqDRKrZLqhPHgOfcH/jVMXUIuk6HGLA2EDqciA0EQBEEQBOEiVGTwgm+//db2euPGjbjlllscbt+sWTPk5eX5uFcE4RtYJQNrl2Rm8higCQdnqOPrbhEEQRAEQQQtikUGk4DL5eJqgCdWSYDULklOycBaJQGUyUAQBEEQBEG4DtklEQThEk6VDDKhz5wHs+0IgiAIgiBuFBTckmSVDIkRHhYZ2OBnGSUDa5UEkF0SQRAEQRAE4TqkZPACJQ9VgghFnAU/U+gzQRAEQRCEezhSMrBFhrrhns0P0/LOlQwVjJKBA2AgJQNBEARBEAThIlRkIAjCNZzYJckpGQiCIAiCIAhlHCkZSqrFkoNED+2SWEGCnJKhglkYpuVIkUoQBEEQBEG4DBUZCIJwCU/skgiCIAiCIAhlzApFhgqjgKtV6hQZNKySQeagbCZDGKkYCIIgCIIgCDegTAaCIFyC04SJ3jtXMjT1eZ8IgiAIgiBCkatVZomFkad2SWy9QCbjWZLJQHkMBEEQBEEQhDtQkYEgCJdglQwwVYremknJQBAEQRAE4RaCQiqDXEZCXY/tkthMBufHC6ciA0EQBEEQBOEGVGQgCMIlOJlMBmv4uWCsgLnqsmg9T0UGgiAIgiAIhyhlMrDEh/GSAGdX0TBPfGSXRBAEQRAEQagNFRkIgnAJiZJBMAPmGgBSqySAlAwEQRAEQRDOcLHG4LGKAYCkOCGnZCC7JIIgCIIgCMIbqMhAEIRLsEoG4HouA1tk4HSx4HXRfukXQRAEQRBEsOKqkiHRwzwGQCaTQUbJQHZJBEEQBEEQhDdQkYEgCJeQKBlgsUkC5EKfScVAEARBEAThDFeVDIleKBlYuySjWbqNxC6JigwEQRAEQRCEG1CRgSAI15ArMliVDOVMkSGqqV+6RBAEQRAEEcz4xS5JEvzsXMlAmQwEQRAEQRCEO1CRgSAIl3DHLkkTQUoGgiAIgiAIZ/jFLkkS/Czdhs1kILskgiAIgiAIwh2oyEAQhEtwHA/wevHCv+ySzEyRgSe7JIIgCIIgCKcILmoZvFEyaBglg1Eu+JnxUArT0mMiQRAEQRAE4Tp090gQhMuwuQzXlQxnRMspk4EgCIIgCMI5LisZIrywS2KVDGSXRBAEQRAEQagMFRkIgnAZThMmeq9ol0RFBoIgCIIgCKe4UmOI0XMweDHoz2YyGM2AwBQayC6JIAiCIAiC8AYqMhAE4TJsLoNgqoS5uhhCTYloORUZCIIgCIIgnONKkcEbqyRAmskAAGbmwJVGKjIQBEEQBEEQnkNFBoIgXEZil2SskKgYAEAT0dhfXSIIgiAIgghaXLFLSvS2yCBTL2CEC1K7JCoyEARBEARBEG5ARQaCIFxHomSQFhn4sHrgtGJbJYIgCIIgCMIzEsO9e2TT8tKCgZGRMlAmA0EQBEEQBOENVGQgCMJl5JQMZspjIAiCIAiC8AjWtkgOr+2SnCgZjGZBomwguySCIP6/vTsPsqq888f/bmigoYEvCphgwBVb1KghiKPjigtWgiaiianERCRoHJM46DjqaIxrjDJq3GpmLAUlTiZqTKImOlQpigyyiCiTiQYCLqiMIiCgyNY03N8f/LhDQwPNpTfw9arqqtP3POf0p62P1L39Ps/zAMC2KG/uAoAdxyYhw5oVWbvqo1qvtRIyAADUS332ZOjeYftChrpmMqzZIN3YeBZDYrkkAAC2jZkMQL1tvPFz6lguyUwGAID6aa49GTbMFeoMGSyXBADANhAyAPVWn42fhQwAAPVTqMdchsbek2HlxmslxUwGAAC2jZABqLe6lkvaNGTYoylLAgDYaXUoL0uHNtv3kW1rezKs3GgmQ7vWZWlVJmQAAKD+hAxAvW28XFKhZnnWLJ9b6zUzGQAA6mdrGz9v76bPSVLHRIasWft/xytq1tY6ZxYDAADbSsgA1FtZ64pa369Z9l6yZmWt14QMAAANY7cO2/9xraysbJPZDDUbbAax8UyG9vZjAABgGwkZgPrbaLmkmk9m1T5f1iqt2vdowoIAAHZcTTGTIUnKN/rUt+FMho33ZDCTAQCAbSVkAOpt4+WS1nwyu9b3rdrvnrJW5U1ZEgDATqvBQoaN9lhYs8FMhhU1QgYAALaPvwYC9bbxxs9J7Q+llkoCAKi/rUxkSPf2DfNMWOuNbvPb2cvy/9quSJLM/XRNrXOWSwIAYFsJGYB62zRkqK115R5NVAkAwI6vUNhyzNC9gWYytC4ry4aRxp8Xrt7sWDMZAADYVpZLAuqtVbtdtni+dce9mqYQAICdwIFd227x/G4dGiZkaL8NwUGntj4iAgCwbbyDBOqtbY8TU9aua90nW7VN+73PatqCAAB2YKfs2T6d29YdAPT/XNsG+4P/3+5eUa9xrcqSI3q0a5CfCQDAZ4flkoB6a93+c+l26tSsnPNY1lYvKb5e1rp9KnqdljZd+zZfcQAAO5gObVrln4/ZNVM+WJUela1zUNe2+a//XZlWZckxX6hfMFAf39ivQ3p1ap23P67Z7D4QbVolh3Zvl6pd2jTYzwUA4LNByABsk/JO+6TjwVc0dxkAADuFXSpa5yt7dyh+f+IeW94DqxRlZWU5okdFjujR4LcGAADLJQEAAAAAAKURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMjSgd955J5deemn69OmTysrK7Lrrrunfv39uvfXWLF++vLnLAwAAAACABlXe3AXsLP74xz/mu9/9bj755JPia8uXL8+0adMybdq0jBw5Mk8//XR69+7djFUCAAAAAEDDMZOhAUyfPj3f+ta38sknn6Rjx4656aabMmnSpDz33HM5//zzkySzZs3KoEGDsnTp0mauFgAAAAAAGoaZDA1g+PDhWbFiRcrLy/PMM8/kyCOPLJ474YQTst9+++Xyyy/PrFmzcvvtt+e6665rvmIBAAAAAKCBmMmwnaZOnZoJEyYkSYYNG1YrYFjv0ksvzQEHHJAkueuuu7J69eomrREAAAAAABqDkGE7PfHEE8XjoUOH1jmmVatWOeecc5IkS5Ysybhx45qiNAAAAAAAaFSWS9pOL774YpKksrIy/fr12+y44447rng8ceLEDBw4sNFra4lWrliRmbNebe4yAAAAaEH6VH05Fe3bN3cZAEAJhAzbacaMGUmS3r17p7x88/85+/Tps8k19TF37twtnv/ggw/qfa+WYOasVzP1pdebuwwAAABamC8delRzlwAAlEDIsB1WrlyZhQsXJkl69uy5xbG77LJLKisrs2zZsrz33nv1/hm9evXarhoBAAAAAKCx2JNhOyxdurR43LFjx62Or6ysTJJ8+umnjVYTAAAAAAA0FTMZtsPKlSuLx23btt3q+Hbt2iVJVqxYUe+fsbVZDx988EEOP/zwet8PAAAAAAAaipBhO1RUVBSPq6urtzp+1apVSZL227CZ1daWYdrR9Kn6cnOXAAAAQAvjsyIA7LiEDNuhU6dOxeP6LIG0bNmyJPVbWmlnVdG+vc28AAAAAAB2EvZk2A4VFRXp2rVrkmTu3LlbHLt48eJiyGAzZwAAAAAAdgZChu104IEHJkneeOON1NTUbHbczJkzi8cHHHBAo9cFAAAAAACNTciwnY4++ugk65ZCeuWVVzY7bvz48cXjo46yXBAAAAAAADs+IcN2Ov3004vHDz74YJ1j1q5dm4ceeihJ0qVLlwwYMKApSgMAAAAAgEYlZNhOhx9+eI455pgkyahRozJ58uRNxtx+++2ZMWNGkmT48OFp06ZNk9YIAAAAAACNoby5C9gZ3HXXXTnqqKOyYsWKDBw4MFdddVUGDBiQFStW5JFHHsl9992XJKmqqsqll17azNUCAAAAAEDDEDI0gL59++bRRx/Nd7/73XzyySe56qqrNhlTVVWVp59+Op06dWqGCgEAAAAAoOFZLqmBnHbaafmf//mfXHLJJamqqkqHDh3SpUuXHHbYYRkxYkSmT5+e3r17N3eZAAAAAADQYMoKhUKhuYugdHPnzk2vXr2SJO+991569uzZzBUBAADAzsfnbwCom5kMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABAScqbuwC2T01NTfH4gw8+aMZKAAAAYOe14WfuDT+LA8BnnZBhB7dgwYLi8eGHH96MlQAAAMBnw4IFC7LXXns1dxkA0CJYLgkAAAAAAChJWaFQKDR3EZRu5cqV+fOf/5wk6d69e8rLW/7klA8++KA462Lq1Knp0aNHM1cEpdPP7Gz0NDsT/czORD+zs9kRe7qmpqa4msDBBx+cioqKZq4IAFqGlv8XabaooqIi/fv3b+4yStajR4/07NmzucuABqGf2dnoaXYm+pmdiX5mZ7Mj9bQlkgBgU5ZLAgAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASlJWKBQKzV0EAAAAAACw4zGTAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQgSb1zjvv5NJLL02fPn1SWVmZXXfdNf3798+tt96a5cuXN3d5kGnTpuWGG27IwIED07Nnz7Rr1y4dO3ZMVVVVhg4dmhdffHGb7jdmzJgMHjy4eK+ePXtm8ODBGTNmTCP9BrB1V1xxRcrKyopfL7zwwlav0cu0NO+++26uvfbaHHbYYenevXsqKirSq1evHHPMMbnmmmvy2muvbfF6PU1LUV1dnZEjR+aUU05Jjx49iu899t9//wwdOjSTJk2q1330NI1l/vz5eeqpp3LNNdfkK1/5Srp161Z8D3Huuedu8/0aoldrampy77335phjjkn37t3Tvn377Lvvvrngggvy+uuvb3NNAMB2KkAT+cMf/lDo3LlzIUmdX1VVVYXZs2c3d5l8hh1zzDGb7c8Nv84555zCqlWrtnivNWvWFIYNG7bF+5x33nmFNWvWNNFvB+tMnz69UF5eXqsXx40bt9nxepmW6O677y5UVlZusS+HDx9e57V6mpZkzpw5hYMOOmir7z0uuuiiwtq1a+u8h56msW2pt4YMGVLv+zRUry5YsKDQv3//zd6jXbt2hfvvv387f2sAYFuYyUCTmD59er71rW/lk08+SceOHXPTTTdl0qRJee6553L++ecnSWbNmpVBgwZl6dKlzVwtn1Xvv/9+kmT33XfP8OHD89vf/jZTp07N5MmT84tf/CJf+MIXkiQPPfTQVp/a+slPfpJRo0YlSfr27ZuHH344U6dOzcMPP5y+ffsmSUaOHJmrr7668X4h2MjatWvzgx/8IDU1Ndltt93qdY1epqX52c9+lr//+7/PsmXLUlVVlVtvvTUvvPBCpk+fnrFjx+bWW2/N3/7t36ZVq7rf5uppWorVq1dn0KBBxaeuDznkkIwePTqTJ0/OM888k2uuuSaVlZVJknvuuScjRoyo8z56mqa0xx57ZODAgSVd2xC9umbNmgwePDgvv/xykuSMM87ImDFj8tJLL+Xuu+/ObrvtllWrVuWCCy4wiwcAmlJzpxx8Nqx/Qry8vLwwadKkTc7/8z//c/HJk2uvvbbpC4RCoTBo0KDCo48+Wqipqanz/IIFCwpVVVXFXh0/fnyd4/76178WnxQ/7LDDCsuXL691ftmyZYXDDjus+P+EGTw0lTvuuKOQpNCnT5/ClVdeudWZDHqZlmbs2LG1ZpVVV1dvdmxdM870NC3JY489VuznIwXwsRQAABQ+SURBVI88ss73H9OmTSu0adOmkKTQpUuXwurVq2ud19M0hWuuuabwxz/+sTBv3rxCoVAovP3229s8k6GhenXUqFHFn/3DH/5wk/OzZ88uzp7v3bv3Jv/PAACNw0wGGt3UqVMzYcKEJMmwYcNy5JFHbjLm0ksvzQEHHJAkueuuu7J69eomrRGS5KmnnspZZ52V1q1b13m+W7duuf3224vf//a3v61z3J133pmampok6548bN++fa3zHTp0yD333JNk3Xqyd9xxR0OUD1v07rvv5qc//WmS5N57703btm23eo1epiVZu3ZtLrzwwiTJoYcemlGjRqVNmzabHV9Xj+tpWpIN91q48sor63z/0a9fv5x66qlJkiVLlmTGjBm1zutpmsL111+fU089NZ/73OdKvkdD9eptt92WJNl1111z6623bnK+d+/eufLKK5Mkb7zxRh5//PGSawYA6k/IQKN74oknisdDhw6tc0yrVq1yzjnnJFn3AWrcuHFNURpsswEDBhSP33zzzU3OFwqFPPnkk0mSPn365IgjjqjzPkcccUT233//JMmTTz6ZQqHQCNXC//nRj36UTz/9NEOGDMlxxx231fF6mZbmmWeeyezZs5Os27y8vLx8m67X07Q01dXVxeN99tlns+P23XffOq/R0+woGqpXZ82aVQzazjrrrHTo0KHO+2y4rKmQAQCahpCBRvfiiy8mSSorK9OvX7/Njtvwj14TJ05s9LqgFKtWrSoe1/XE4dtvv13c22Frf8hdf/5///d/M2fOnIYrEjbym9/8Jk899VR23XXX4hOAW6OXaWkee+yxJElZWVnxye4kWbRoUWbPnp1FixZt8Xo9TUuz/o+pSfLWW29tdtz6hxrKysqy3377FV/X0+woGqpX13+u3Np9Pv/5z6eqqiqJz5UA0FSEDDS69U+b9O7de4tPHfbp02eTa6ClGT9+fPF4/RJfG/rLX/5SPN6wp+ui52kKS5YsyfDhw5MkI0aMSLdu3ep1nV6mpZkyZUqSZK+99kqnTp3y61//OgcffHC6du2aqqqqdO3aNfvvv39uu+22WoHwenqalubb3/52OnfunGTdv89r1qzZZMz06dPz9NNPJ0m+853vFMcnepodR0P1ain3ee+997Js2bJ61woAlEbIQKNauXJlFi5cmCTp2bPnFsfusssuqaysTLLuzSC0NGvXrs0tt9xS/P6ss87aZMzcuXOLx1vr+V69ehWP9TyN5fLLL8+8efNy1FFHZdiwYfW+Ti/TkqxduzYzZ85Msm5/nOHDh+fss8/Oa6+9VmvcrFmzctlll+WEE07IkiVLap3T07Q03bp1y7//+7+nQ4cOmThxYvr375+HHnooU6ZMydixY3P99dfnuOOOS3V1db785S/X2hcq0dPsOBqqV0u5T6FQqHUdANA4hAw0qqVLlxaPO3bsuNXx60OGTz/9tNFqglLdcccdmTp1apLkjDPOqHP5r23p+fX9nuh5GseECRMycuTIlJeX5957701ZWVm9r9XLtCQff/xx1q5dmyT585//nLvvvjs9evTIr371qyxatCjLly/P+PHji+t8T5o0Kd///vdr3UNP0xJ97WtfyyuvvJLzzjsv//3f/50hQ4bkyCOPzMknn5zrrrsuHTp0yJ133pkJEyZssumunmZH0VC9qucBoOUSMtCoVq5cWTxu27btVse3a9cuSbJixYpGqwlKMX78+PzTP/1TkmS33XbLv/3bv9U5blt6fn2/J3qehlddXZ0f/OAHKRQKueSSS/LFL35xm67Xy7QkGy51sXLlynTo0CHjxo3L2WefnV122SXt27fPsccem+effz6HHnpoknWbfb700ku1rltPT9NSVFdX56GHHtrshswffvhhfvWrX2Xs2LGbnNPT7Cgaqlf1PAC0XEIGGlVFRUXxuLq6eqvj16+h3L59+0arCbbV66+/nsGDB6empiYVFRV57LHHsttuu9U5dlt6fsM1w/U8De3nP/95Zs6cmT322CPXXnvtNl+vl2lJNuzHJDnvvPNqbZq7Xvv27XPTTTcVv3/00UfrvIeepiVYtmxZTjrppNx8881ZtGhRLr/88syYMSOrVq3Kxx9/nGeeeSZHH310pk2bltNPPz2/+MUval2vp9lRNFSv6nkAaLmEDDSqTp06FY/rM011/ZOK9VlaCZrC22+/nYEDB2bx4sVp3bp1HnnkkRx77LGbHb8tPb/hk7l6noY0c+bM3HzzzUmSe+65p9aSAfWll2lJNuzHJBk4cOBmx5544okpLy9Pkrz88st13kNP0xJcd911mTBhQpJk1KhRGTFiRPr06ZO2bdumc+fOOfnkkzNu3LgMGDAghUIhl112Wf70pz8Vr9fT7Cgaqlf1PAC0XOXNXQA7t4qKinTt2jUfffTRVjfcWrx4cfHN4IYbfkFzef/993PSSSfl/fffT1lZWR544IF8/etf3+I1G25Ct7We33AzOz1PQ7rjjjtSXV2dffbZJ8uXL88jjzyyyZgNN8x9/vnnM2/evCTJaaedlsrKSr1Mi9KuXbt07949CxYsSLLlPquoqEi3bt0yb9684vjEv8+0LIVCIQ888ECSpKqqKkOGDKlzXHl5eW688cYcffTRWbt2bUaPHp077rgjiZ5mx9FQvbrxfbp167bV+5SVlW11k2gAYPsJGWh0Bx54YCZMmJA33ngjNTU1xacLNzZz5szi8QEHHNBU5UGdFi5cmJNPPjlvvfVWknVPg59zzjlbve7AAw8sHm/Y03XR8zSW9UsEvPXWW/n2t7+91fE33nhj8fjtt99OZWWlXqbFOeigg/LCCy8kSdasWbPFsevPb/ieQ0/Tknz44YdZtGhRkqRv375bHNuvX7/i8Ya9qafZUTRUr258ny996UtbvU+vXr1KmtEJAGwbyyXR6I4++ugk66asvvLKK5sdN378+OLxUUcd1eh1weZ8/PHHOeWUU/KXv/wlSXLLLbfkRz/6Ub2u3XvvvbP77rsnqd3Tdfmv//qvJMkXvvCF7LXXXqUXDI1AL9PSbLhU3foAuC6ffPJJFi5cmGRdT66np2lJNgzAampqtjh29erVdV6np9lRNFSvrv9cubX7zJs3L7NmzUricyUANBUhA43u9NNPLx4/+OCDdY5Zu3ZtHnrooSRJly5dMmDAgKYoDTaxfPnyDBo0KK+++mqS5Cc/+UmuuOKKel9fVlZWXFJp5syZmTJlSp3jpkyZUnzC6utf/3rKysq2s3L4P6NHj06hUNji14abQY8bN674+voP9HqZlubMM88sHj/++OObHff444+nUCgkSY455pji63qalmTXXXdN586dkySTJ0/eYtCw4R9T99577+KxnmZH0VC9WlVVVZzd8Jvf/CbLly+v8z6jR48uHg8ePHh7ywcA6kHIQKM7/PDDix/yR40alcmTJ28y5vbbb8+MGTOSJMOHD0+bNm2atEZIkurq6gwePDgTJ05Msq4Xf/azn23zfS6++OK0bt06SXLRRRdlxYoVtc6vWLEiF110UZJ1TyRefPHF21c4NBK9TEtyyCGH5Ctf+UqS5OGHH85zzz23yZh58+bl6quvTpK0bds2Q4cOrXVeT9NStGrVKoMGDUqybg+om266qc5xixcvrvWww6mnnlrrvJ5mR9FQvfqP//iPSZJFixbl8ssv3+T8m2++mZtvvjlJ0rt3byEDADSRssL6R72gEU2fPj1HHXVUVqxYkY4dO+aqq67KgAEDsmLFijzyyCO57777kqx7OmXatGnp1KlTM1fMZ9GZZ56Z3//+90mSE044IXfeeecWn/Zr27Ztqqqq6jx35ZVX5pZbbkmybq3lK664Ivvuu2/efPPNjBgxItOnTy+O+/nPf97Avwls3XXXXZfrr78+ybqZDMcff3yd4/QyLcmsWbPyN3/zN1myZEkqKipy8cUX56tf/Wrat2+fqVOn5uabby5uKjpixIg6/wClp2kpZs6cmX79+hWfxj7ttNMyZMiQ7LPPPlm5cmWmTJmSO++8M++++26S5MQTT8zYsWM3uY+eprG9+OKLeeONN4rfL1y4MJdddlmSdcsRnXfeebXGn3vuuXXepyF6dc2aNTnuuOOKDwWdeeaZOf/887PLLrtk6tSpufHGGzN//vy0atUqTz31VDGcBgAaWQGayB/+8IdC586dC0nq/KqqqirMnj27ucvkM2xzvbm5rz333HOz91qzZk3h+9///havHzZsWGHNmjVN9wvCBq699tpiL44bN26z4/QyLc2ECRMKn/vc5zbbj2VlZYWrr756s9fraVqSZ599ttCtW7etvuc44YQTCosWLarzHnqaxjZkyJBteo+8OQ3VqwsWLCj0799/s/do165d4f7772/o/wwAwBaYyUCTeuedd3LXXXfl6aefzty5c9O2bdv07t073/zmN/PjH/84HTp0aO4S+Qzb1jWK99xzz8yZM2eLY/7zP/8z9913X15++eUsXLgw3bp1S//+/XPBBRd4sopmVd+ZDOvpZVqSjz76KPfcc0+eeOKJvP3226murk6PHj1y/PHH56KLLkrfvn23eg89TUvx0UcfZdSoURkzZkxef/31LFmyJOXl5fn85z+f/v375zvf+U6+9rWvbfV9ip6msZx77rn55S9/We/xW/sTQ0P0ak1NTe6///78+te/zowZM7Js2bLsvvvuOfHEEzN8+PAcdNBB9a4XANh+QgYAAAAAAKAkNn4GAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAACjR6NGjU1ZWlrKyssyZM6e5ywEAAIAmJ2QAAD5z5syZUwwHtucLAAAAPuuEDAAAAAAAQEnKCoVCobmLAABoSqtXr85f//rXzZ4/+OCDkySHHXZYHnzwwc2O++IXv9jgtQEAAMCOpLy5CwAAaGpt2rSpV0BQWVkpSAAAAIAtsFwSAAAAAABQEiEDAECJRo8eXdwEes6cOZucP/7441NWVpbjjz8+SfLGG2/k7/7u77LPPvukffv22WuvvTJs2LC88847ta577bXXMnTo0Oyzzz6pqKhIr169cuGFF2b+/Pn1quuJJ57IN7/5zeyxxx6pqKhIly5dcthhh+X666/P4sWLt/fXBgAAgCLLJQEANIGxY8fmjDPOyNKlS4uvvfPOO3nggQfy1FNPZfz48enTp08efvjhnHvuuamuri6Omzt3bu69996MGTMmkyZNyu67717nz1i8eHG+8Y1v5Pnnn6/1+qpVq/LKK6/klVdeyb/+67/mySefzBFHHNE4vygAAACfKWYyAAA0svfffz9nnXVWunTpknvuuScvvfRSJkyYkIsvvjhlZWWZP39+zjvvvLz88ss555xzsu+++2bkyJGZOnVqxo0bl+9973tJ1oUS//AP/1Dnz1i1alVOOumkPP/882ndunW+973v5eGHH86UKVMyYcKE3HTTTenatWvmz5+fr371q5vMngAAAIBSmMkAANDIZs+enf322y8TJ05M9+7di68fffTRKS8vz2233ZaJEydm0KBBOfzww/Pss8+mQ4cOxXHHH398Vq5cmcceeyy/+93vsmDBglr3SZIbbrghr776arp06ZKxY8emX79+tc4fffTROfvss3PkkUfmgw8+yFVXXZX/+I//aNxfHAAAgJ2emQwAAE3g7rvv3iQYSJIf/vCHxeOFCxdm5MiRtQKG9S688MIkSU1NTSZPnlzr3Keffpp/+Zd/SZLceOONmwQM6+2555756U9/miR57LHHsmzZstJ+GQAAAPj/CRkAABpZly5dcsopp9R5bu+9906nTp2SJIccckgOOOCAOscdeuihxeO33nqr1rnx48fn448/TpJ84xvf2GItxx57bJJk9erVeeWVV+r3CwAAAMBmWC4JAKCR7bfffikrK9vs+S5dumTp0qWpqqra4pj1Ntw8OkmmTZtWPO7Ro0e965o3b169xwIAAEBdzGQAAGhkdS1/tKFWrVptddz6MUmyZs2aWufmz59fUl3Lly8v6ToAAABYz0wGAIAd3Iahw6uvvpo2bdrU67qePXs2VkkAAAB8RggZAAB2cF27di0ed+/eXXgAAABAk7FcEgDADq5v377F44kTJzZjJQAAAHzWCBkAAHZwJ510UnE/h7vvvjuFQqGZKwIAAOCzQsgAALCD69KlS3784x8nSSZNmpRLLrkka9eu3ez4Dz/8MCNHjmyq8gAAANiJ2ZMBAGAncMMNN2T8+PF56aWXctddd+WFF17I+eefny996UuprKzM4sWL8/rrr2fs2LEZM2ZMDj744Jx33nnNXTYAAAA7OCEDAMBOoF27dnn22Wdz7rnn5ve//33+9Kc/FWc31KVz585NWB0AAAA7KyEDAMBOolOnTvnd736XF198Mb/85S8zYcKEvP/++1mxYkU6d+6cfffdN4cffngGDRqUgQMHNne5AAAA7ATKCnYGBAAAAAAASmDjZwAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCT/H28R1YIirC5pAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Plot infected hosts per population over time.\n", + " 'metapopulations_population_contact_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8, \n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot th isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/doctrees/nbsphinx/metapopulation_36_0.png b/docs/_build/doctrees/nbsphinx/metapopulation_36_0.png new file mode 100644 index 0000000..f781d1c Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/metapopulation_36_0.png differ diff --git a/docs/_build/doctrees/nbsphinx/metapopulation_77_0.png b/docs/_build/doctrees/nbsphinx/metapopulation_77_0.png new file mode 100644 index 0000000..79b7185 Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/metapopulation_77_0.png differ diff --git a/docs/_build/doctrees/nbsphinx/vital_dynamics.ipynb b/docs/_build/doctrees/nbsphinx/vital_dynamics.ipynb new file mode 100644 index 0000000..35ac810 --- /dev/null +++ b/docs/_build/doctrees/nbsphinx/vital_dynamics.ipynb @@ -0,0 +1,510 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Vital dynamics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Vector-borne disease with natality spreading" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simple model of a vector-borne disease with 10% host mortality spreading among hosts and vectors that have natural birth and death rates in a single population. There is no evolution and pathogen genomes don't affect spread." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " mortality_rate_host=1e-2,\n", + " # change the default host mortality rate to 10% of recovery rate\n", + " protection_upon_recovery_host=[0,10],\n", + " # make hosts immune to the genome that infected them if they recover\n", + " # [0,10] means that pathogen genome positions 0 through 9 will be saved\n", + " # as immune memory\n", + " birth_rate_host=1.5e-2,\n", + " # change the default host birth rate to 0.015 births/time unit\n", + " death_rate_host=1e-2,\n", + " # change the default natural host death rate to 0.01 births/time unit\n", + " birth_rate_vector=1e-2,\n", + " # change the default vector birth rate to 0.01 births/time unit\n", + " death_rate_vector=1e-2\n", + " # change the default natural vector death rate to 0.01 deaths/time unit\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation( # Create a new Population.\n", + " 'my_population', \n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100, \n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 66.7483164411631, event: BIRTH_HOST\n", + "Simulating time: 175.53517979111868, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 200.00318125185066 END\n" + ] + } + ], + "source": [ + "my_model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.1995853034973145s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019458293914794922s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020659446716308594s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0252227783203125s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04323148727416992s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08730292320251465s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18108701705932617s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1233 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1613 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1888 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1977 out of 1977 | elapsed: 1.1s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
443810200.0my_populationHostmy_population_120AAAAAAAAAANaNFalse
443811200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443812200.0my_populationHostmy_population_117AAAAAAAAAANaNFalse
443813200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443814200.0my_populationHostmy_population_112AAAAAAAAAANaNFalse
\n", + "

443815 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "443810 200.0 my_population Host my_population_120 AAAAAAAAAA \n", + "443811 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443812 200.0 my_population Host my_population_117 AAAAAAAAAA \n", + "443813 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443814 200.0 my_population Host my_population_112 AAAAAAAAAA \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "443810 NaN False \n", + "443811 NaN False \n", + "443812 NaN False \n", + "443813 NaN False \n", + "443814 NaN False \n", + "\n", + "[443815 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'vector-borne_birth-death_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hb5fk+8PtoD+8ZO3FiZzjOJpOEBBI2CYFAoexZRr+0DaO/QqFQSgstUEqhDVBKCbtAy0wh7BGyyHbI3tOO4z1lbZ3fH45lnaFly5Zt3Z/r4sI6S68dWzq6z3OeVxBFUQQRERERERERERERxYUm3gMgIiIiIiIiIiIiSmQMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKI4a0RERERERERERERHHEkJaIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojjSxXsA1DUOhwNbt24FAGRnZ0On4z8pERERERERUax5PB5UV1cDAMaNGweTyRTnERFRf8JEr4/bunUrpk2bFu9hEBERERERESWMdevWYerUqfEeBhH1I2x3QERERERERERERBRHrKTt47Kzs/1fr1u3Dnl5eXEcDREREREREVH/VFFR4b+TNfCzOBFRLDCk7eMCe9Dm5eVh0KBBcRwNERERERERUf/H+WCIKNbY7oCIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojhiSEtEREREREREREQURwxpiYiIiIiIiIiIiOKIIS0RERERERERERFRHDGkJSIiIiIiIiIiIoojhrREREREREREREREccSQloiIiIiIiIiIiCiOGNISERERERERERERxRFDWiIiIiIiIiIiIqI4YkhLREREREREREREFEcMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKo4QPaV0uF1588UWce+65yMvLg9FoRFJSEkaOHIkbb7wRq1evjug4n376KS6++GIMGjQIRqMRgwYNwsUXX4xPP/20m7+DxCGKIr45YscbO1twtNkT7+EQERERERERERHFhCCKohjvQcTL4cOHcf7552P79u0ht1u4cCH+9re/QRAExTqfz4dbb70VixcvDrr/zTffjH/+85/QaGKfiZeVlaGgoAAAcPToUQwaNCjmz9FbLNlvw5u7bAAAvQZ49owspBoT/joDERERERER9YBE+vxNRD0vYRMut9stCWjHjx+PV155Bd9//z2++OILPPjgg7BarQCARYsW4fHHH1c9zv333+8PaCdOnIi33noL69atw1tvvYWJEycCAF588UU88MADPfBd9W/tAS0AuH3ARwda4zgaIiIiIiIiIiKi2EjYStp3330XP/7xjwEAM2bMwIoVK6DVaiXbbNy4ETNmzIDb7UZaWhqqq6uh0+n86/fs2YMxY8bA4/FgypQpWL58Ocxms399a2srZs+ejQ0bNkCn02Hnzp0YPnx4TL+PRLqSd/nSKsnjsZl6/HZ6epxGQ0RERERERIkkkT5/E1HPS9hK2sBes/fdd58ioAWAyZMnY/78+QCAhoYG7Ny5U7L+6aefhsfT1ht10aJFkoAWACwWCxYtWgQA8Hg8eOqpp2L6PSQ6rUbZfoKIiIiIiIiIiKivSdiQ1uVy+b8eOnRo0O2GDRumuo8oiliyZAkAoKSkBNOnT1fdf/r06Rg5ciQAYMmSJUjQwuVuoWVGS0RERERERERE/UDChrTtwSkAHDhwIOh2+/fvBwAIgoARI0b4lx88eBDHjh0DAMyePTvkc7WvLy8vx6FDhzo7ZJJhIS0REREREREREfUHuvCb9E9XXnklHnjgATQ1NeHxxx/HvHnzFC0PSktLsXTpUgDAVVddhZSUFP+6HTt2+L8uKSkJ+VyB63fu3ImioqKIx1lWVhZyfUVFRcTH6i2e3NiIdced/sePnJKOEel6yTYtbh/e32uD3SNiwTALBliVv6qVrV4890MTvD4RWo0Aj0/EnAIzxmcZuv17ICIiIiIiIiIiipWEDWmzsrLw+uuv48orr8SqVaswdepU3HnnnSguLkZLSwtWrVqFJ598Ei6XC5MmTcKTTz4p2T8wPA3XLLy9sTjQ1lw8GoH79heBAS0A/GVjI/55VpZk2TOlTSitbmsvsaXGhUWnZyqOc7TZi6PNXsmyNRVOPDk7A3kqoS4REREREREREVFvlNBJ1oUXXoiNGzfiySefxOLFi3H99ddL1ufm5uLhhx/GLbfcAovFIlnX3Nzs/zopKSnk81itVv/XLS0tMRh5/9Lg9CmWtQe0AFBj96G0yqXYRo1XBP6904ZfTUmN2fiIiIiIiIiIiIi6U0KHtC6XC6+99lrQCb0qKyvxxhtvoKioCBdeeKFkncPh8H9tMIS+vd5oNPq/ttvtUY0xXOVtRUUFpk2bFtUxezu1f4vjrV6VLdWtr3SG34iIiIiIiIiIiKiXSNiQ1mazYe7cuVixYgW0Wi3uuece3HjjjRg6dCgcDgfWrl2LP/zhD1i5ciUuuugi/OUvf8Evf/lL//4mk8n/tcsVusrT6ewIDc1mc1TjDNdKoT9SRrSAzaWstiUiIiIiIiIiIuoPNPEeQLw89NBDWLFiBQBg8eLFePzxx1FSUgKDwYCUlBScffbZ+Pbbb3H66adDFEXcfffd+OGHH/z7Jycn+78O18LAZrP5vw7XGoEAn0pK2+xWi26Da1RpoUBERERERERERNQbJWRIK4oiXnrpJQBAcXGxohdtO51Oh4cffhgA4PP58Morr/jXBVa4Bk4ipiawZUF/nAgsFnwBLQ5Uuh1EHboeaHR3dUhEREREREREREQ9IiFD2srKStTV1QEAJk6cGHLbyZMn+7/etWuX/+vRo0erLlcTuH7UqFFRjTVR/GZlPT7YZ4MoiqrtDtYej67P7GPrG7G2whF+QyIiIiIiIiIiojhLyJBWp+toxevxeEJu63Z3VGQG7ldUVIT8/HwAwHfffRfyGMuXLwcADBw4EIWFhdEONyEcbPLg7d02LC93qLY76IynNjXhuC30vy8REREREREREVG8JWRIm5GRgZSUFADA999/HzKoDQxgi4qK/F8LgoAFCxYAaKuUXbNmjer+a9as8VfSLliwAIIgdHn8fZ1RG3zd3noP1GtpoycC2FXHtgdERERERERERNS7JWRIq9FocP755wMAjh07hj/+8Y+q29XX1+PXv/61//H8+fMl6++8805otW2J48KFC2G32yXr7XY7Fi5cCKCtCvfOO++M1bfQp905MTXoOh/EmFXSAkCzK4YHIyIiIiIiIiIi6ga68Jv0Tw8++CCWLFmC1tZWPPTQQ9i4cSOuv/56DB06FA6HA2vWrMHTTz+NI0eOAADOPPNMnHPOOZJjFBcX4+6778Zjjz2GDRs2YObMmfj1r3+NYcOGYf/+/Xj88cdRWloKALj77rsxYsSIHv8+e6NJuUY8PScDq485sWS/DU5vwEpRfeKwa0qSkGbSoMXlQ53Dh4JkLQRBgFknwKAR0OjyIdWowZMbGuHwdhyg2R3dhGNEREREREREREQ9LWFD2pKSEixZsgRXXnklampq8NFHH+Gjjz5S3faMM87AO++8o7ruj3/8I6qqqvDSSy+htLQUV1xxhWKbm266CY888khMx9/X5Vl1uGSEDs0uHz49JK1AVotVTx1kQpoxfOH3nAITPgs4XpOLIS0REREREREREfVuCdnuoN1ZZ52FXbt24fHHH8ecOXOQnZ0NvV4Ps9mMoqIiXHbZZfjwww/x1VdfIT09XfUYGo0GixcvxtKlS7FgwQLk5+fDYDAgPz8fCxYswCeffIIXX3wRGk1C/6ijolZJq4mwlW+KQfpzbmZIS0REREREREREvVzCVtK2y8zMxD333IN77rmnS8eZN28e5s2bF6NRJa4V5Q5sqHQqlkcacScbpGluE3vSEhERERER9Si3z4tfrvsfPj66A4VJGXhm+sUYkz4g3sMiIurVWN5JvYrLBzSqBKtChJW0yaykJSIiIiIiiqt/7voez+xchUMt9Vh2fD+uXv5mvIdERNTrMaSluEqNoM+sUSvAqI0spbXqpcdr5cRhREREREREPeqTsl2Sxz/UHYPH5w2yNRERAQxpKc5OHWhCljn0r+GCYRboImxKKyukBQtpiYiIiIiIepbd61Ysc3o9cRgJEVHfkfA9aSm+ssxaPDU7Ewca3XCpXFgdYNUix6KN+HgGWcWt28eetERERERERD3JoFF+hnN4PbDqjXEYDRFR38CQluLOoBVQkmGIzbFkFbceH+ATRWgibWpLREREREREXWLUKqMGBytpiYhCYrsD6lf0Kr1r2ZaWiIiIiIio55hUQ1plCwQiIurASlrqV/Qqlx1u+qIaSXoNLh5uwbmFlp4fFBERERERUQL4+OgO3Ll2CfY31yrWDX/vMRg0Wtw6cjr+e/AHVDlaAABaoe1DXMPVDyOJ7RCIKIGxkpb6FXlPWqCtkrbe6cNL21tQ5+CMokRERERERLHm8Xlx7fK3VAPadi6fF8/sXOUPaAHAK/rgFXn7IxERQ1rqV+Q9aeWONLMPEhERERERUawda21Cg8se72EQEfVZDGmpX9GF+Y12sZCWiIiIiIgo5pycGIyIqEsY0lK/ohGEkEGt0yv23GCIiIiIiIgShNOnDGk/PfvmiPc3a/WxHA4RUZ/DkJb6nVAtDxjSEhERERERxZ7LK71t0aDR4pScwoj2PTl7MLQaxhNElNj4Kkj9jl5l8rB2DGmJiIiIiIhiT15Ja9TqYNFFVh1rYRUtERFDWup/DCF+q10MaYmIiIiIiGJKFEX8v3UfSZYZNFroNNqI9jdHGOYSEfVnDGmp39GHanfgYUhLREREREQUS7saq/B99WHJMqNWF/H+Fp0h1kMiIupzGNJSvzPAGvxqLTNaIiIiIiKi2NrXVKNYNjw5CwBgiiCsbd+WiCiRMaSlfufykVZkm/mrTURERERE1BN8orIa5s9TzwcAfHXuT0PuOyVrEO4YPatbxkVE1JdEfv8BUR9RmKLHotMz0eQS8czmJmypccV7SERERERERP2WPKIdlpyJk7OHAABm5hZBvPEvsLmdaHY7AbS1QnB6PTBodcgwWnp4tEREvRNDWuqXBEFAqlFAmpEVtURERERERN1JXkmrEZTzhFj1Rlj1xp4aEhFRn8MEixKKy8umtERERERE1Dd5fT40uuzw+LzxHoqEiPAhLRERhcaQlhLK54ftWH3MEe9hEBERERERRaXO2YrZnz6HtH//FtM++juOtTbGe0gAAFEUcf2KtyXLBDCkJSKKFkNaSjhv7mqJ9xCIiIiIiIii8sb+jVhVdQgAUFpXjhd2r4nvgE744tge2DzSeUAY0RIRRY8hLfVr+UlaxbJquy8OIyEiIiIiIuq8O9YukTz+/eYv4zQSqS/L9yiWlaTmxGEkRER9G0Na6tfOKzQjz6oMauWN7YmIiIiIiCh6q09U9wZ6Yur8nh8IEVEfx5CW+jWzToN7pqQqlvuY0RIREREREXWJw+PGxtoyybLPz7kFw1Ky4jQiIqK+iyEt9XtajbIjEkNaIiIiIiKirtlUWw6Xz+t/LEDAydmD4zgiIqK+iyEt9Xtqv+RetjsgIiIiIqI+zhMQkMbDvw9skjwemz4AqQZznEZDRNS3MaSlfk+lkJaVtERERERE1OdNXPIU6pytcXnuX637CM/tWi1ZdkrOkLiMhYioP2BIS/2eViWk9TKkJSIiIiKiPiJYxey2huN499CWHh4NUOdsxVM7liuWn5JT2ONjISLqLxjSUr+nEdiTloiIiIiI+i6bxxV0XXlrYw+OpM1RWwN8shZyFp0eZ+cX9/hYiIj6C4a01O9pVH7L5ScUREREREREvZXb5wu6zuFx9+BI2jS67Iplr596FfIsKT0+FiKi/oIhLfV7ar/krKQlIiIiIqK+wh1igjCH19ODI2nT4HJIHhcmpeNHheN6fBxERP0JQ1rq97QqM4exJy0REREREfUVnlCVtHEJaaWVtGkGc4+PgYiov9HFewBE3U29kpYpLRERERH1Tm6viN31bjS7fTBoBIzJ1MOkY31NImn1uLCy8iAaT1SsVjlagm5b6WiO6Jj1zlasqT6M0Wm5qHW0Yn9zLTyiDy1uJ9IMZlh1BszKLYIIESsrD6L1RBuFYcmZGJ2Wi1VVh1DnbAUALD9+QHLsVIOpM98mEREFYEhL/Z5W5Xy2utWHPGvPj4WIiIiIKBSPT8Tv19Rjb0NHdaRFJ+DPp2Yg26KN48iop7S4nZj+8d+xvaEyou2XHNmOMlsDBlnTgm5zoLkWpyx9BpX20IGuVtBAhBh1UQsraYmIuo6XY6nfUzY7ADZXO3t8HERERERE4eypd0sCWgBo9Yh4b68tTiOinvZp2a6IA9p27xzaEnL9q/s2hA1oAcAr+jp112GqnpW0RERdxZCW+j1BUMa0OpU+tURERERE8dbsUu89urnaBZEtuxLCUVtD1PvUOkKH+It2rOzkaCJzSk5htx6fiCgRsN0BJYSSDD121bn9j308vyUiIiKiXijY9FD1Th/KWrwoSOZHuP5OPilXit6EgZYU/+OS1Bx8cGRbVMd0+bwxGZt8PEatDvMLRuPm4pNjdnwiokTFd3hKCHlWrSSk9bIKgYiIiIh6oxCnqVuqXQxpE0DDicnC2l1WNAH/mvljybIrl72Btw9ujviYYqhfrChdN3wyFk2/OGbHIyKiNmx3QAlBK+tu4A1WokBEREREFEehTlO31Lh6bBwUP/JK2jRD1/u9dqbPbDB55pTwGxERUdR4GZYSglbWl/bzw3ZMzjVAKwgob/Eg3aTFhGwDjPI0l4iIiIj6NVEUsaXGBQECxmXpVeczCKe61YutNS64fSKseg1OyjEgSd/JepgQWdqOWhdcXhEGnrP2S6IoorS2HK/v3yhZnmYwd+p4x1ob8UX5HtQ6bXB4PeF3iFCeJTlmxyIiog4MaSkhqM0T9qd1jZLHozL0+N30tE6dmBMRERFR3/T8lmYsK2u7vfyswSbcMi66KsGyZg8eWF0Pu6cjXc2zavHYrHSYdNEHtaEqaV0+YHe9G+OyDFEfl3q/p3eswC/X/U+xPD2CkPbVfRvwyOS5/seHmusw9aO/ocYZekKxzmAlLRFR92C7A0oI3gju7tlZ50aFLXYN9YmIiIiod2ty+fwBLQB8dcSBVnd0fbFWlDskAS0AVNi82FbrDrJHaJ4wM9zuqe/ccal38/p8+MPmL1XXqVXSamSFJWWt0gKUD45s65aAFgDyLAxpiYi6A0NaSgimCG8Ja/VwQjEiIiKiRFFjV16gb3JFF9JWtqpf5G90dm4ShPKW0EUD8kCY+odtDccVvWgBQCdocGruUMVyeY/ZLKNV8rjK3tLlMd1aPB3DkjMly/LMKRiTltvlYxMRkRLbHVBCmJxrwP8OtIbdLob99ImIiIiol1O7jB/t6WB9kDDWEcmtXCqONofuHepgSNsvraw8qFh28eCx+NmoU1CQlKZY95vxZ+Ltg5v9j2ucNji9Hhi1bR/x7d7QFdezBwzFYGs6Ug0mPLNzlWL9RYPH4qmTL0S5rRF/+OFLHLU1YKAlFfeNPwM6jTa6b46IiCLCkJYSgnziMCIiIiKiWKh3qFe+djZMlYe06UaNJAh2hWmHQH3TqqpDksfXDZuMV0+7Muj2BdY0xbJjrY0oOlH52upxqe53yZBxePeM6yXLBlpScd/GTyTL/jHjR7DoDBiRmo3XT7sqgu+AiIi6iu0OKCFoI/xN5ykvERERUWKLJgMVRRF1jiCVtJ0IaVvdPtTKjjc8Td/l41LvJ6+knZlbFHL7VIMJFp30d6PM1tGXttWjXkmbYjAplrl8yurtZL0x5PMTEVHsJWQl7Zw5c/Ddd99Ftc+3336LOXPmqK779NNP8cILL2D9+vWorq5GdnY2pk6diltvvRVz585V3Yd6libCQtrPDrUi25yEdBNv4SHqrURRxIdHtuGHumOKCyupehMuKRyHIUkZcRkbERH1LfJAFAA+OdiKVKMGKQYNStL12F3vhsfX0b6gJEOPOocPFTYPPD4g2Dxj35U7YNELGJtpwIh0veo2Hp+INRVOHLO1hWStbuk7m1YAilJ1WF/p9C870uzBf/d09BsVACQbNNAIwOBkHUoyDNH8CKgXONJSj6O2BsmyWbmFIfcRBAEDLanY21TjX7Zo50qsqT6MFL0J/z6wSXW/FL1KSOtVVoNbdPw9IiLqaQkZ0kZLo9FgxIgRiuU+nw+33norFi9eLFleXl6O8vJyfPjhh7j55pvxz3/+ExoNi5bjKdJ2B6uOObG73o0nT8uESccWCUS90YOln+ORH74Kuv73m7/Ezh/djXxLag+OioiI+hqb24cnNjQqln91xBGT4zc6fXh7tw0CbPjNtDSMz1aGXi9ua8a3R4M/X55VC6teek5aYfPivb3qcy0IAO6alIKT85RBHPVe8lYH6QYzSlJzwu43SBbSvnNoC945tCXkPmoVsk6VSlqB7eKIiHpcQoa0L7/8Mmw2W8htduzYgcsvvxwAcOaZZ2LgwIGKbe6//35/QDtx4kTcc889GDZsGPbv348///nPKC0txYsvvojs7Gz86U9/iv03QhEzaCM/yaix+7Cr3oWTsnmLD1Fv9OaB0pDrm9wOPLdzNR6ZzDsZiIgouJ11oSdWihURwJdH7IqQVhRFrCoPHQgPTNLBHEXhgAjguR+aGdL2MVvrKySPZ+QMgUYIX+QzSKUvbThpKu0OilOyoz4OERHFXkKGtEVFofv7AMDrr7/u//q6665TrN+zZw/+8pe/AACmTJmC5cuXw2w2AwCmTp2KCy+8ELNnz8aGDRvwxBNP4Cc/+QmGDx8eo++AopVj1iDPqkWFTX1iBzmbi72+iHqrJlf4CqeVVcoZkomIiALZ3T13vvdDtXISJ68IuIK0SmiXY9FiTKYBek3wtgpy7W0ZqO9weKWVrAPMKRHtt2DwGLy+f2PEz6MVNDgnf6Ri+TXDJuOeDUvR4LIDAG4fNSviYxIRUewkZEgbjs/nw7///W8AQFJSEn70ox8ptnn66afh8bS9mS5atMgf0LazWCxYtGgRZsyYAY/Hg6eeegrPPvts9w+eVAmCgAdOTsMnB1vR6hHh8orwiYDTK2JrjUtx0uvkyS1Rr+UVpX+wpw8YBkEQ8E3FPv+ytdVH4PJ6YNDybY6IiNT5VKaMnZRjwJFmD2rsESaiJ/YxagUcafagvEW9IEDt3NITwQxl5xeZkW7S4sHp6VhWZoctIFj2+iDpVUt9l8cn/X2LtFXbJYXj8ebsq/FJ2U4sP34AR2R9bduNTM3GzJwiXDNsEsZl5CnWm3V6rL/gDjy3azXyzSm4fTRDWiKieOCnVxVff/01ysvLAQCXXnopLBaLZL0oiliyZAkAoKSkBNOnT1c9zvTp0zFy5Ejs3r0bS5YswTPPPMPePnGUZdbiutHJquv+sKYe22s7bnljSEvUe3lkIe0fJ8/FyNQcZL75oH+Zw+tBaV05Ts4e0tPDIyKiPkKekQ5L1eHXU9Pwxs4WfHRAveermp+OS0aaSYvSKiceW6/scdtOFEXJZwFPmNNNrQCkGttueS9O16NYNvmYKIq47rPqsNW41PvJL0DropjP5MqhE3Hl0In4ycr/4OW96xXr35x9Na4cOjHscYanZOGv0y6M+HmJiCj2OJuVitdee83/tVqrg4MHD+LYsWMAgNmzZ4c8Vvv68vJyHDp0KHaDpJgyynrWuiKobCCi+JB/kNEKGmQYLRiTlitZvrKSLQ+IiCg4+eme5sTpYK5FG9VxtCd2tOpDf7SyyVJZT5hwNcusgSZEgYcgCMgyRzdW6p3Uzm2iZdSo118FW05ERL0PX7FlWlpa8MEHHwAAhgwZgjlz5ii22bFjh//rkpKSkMcLXL9z586I+uEGKisrC7m+oqIi5HqKjHxisZ7sUUZEkfP6fGj1SCd6af8gMzOnCNsbKv3Ln9+1Bv9v7JxuGYfD48Y/dn+Pemcrrh42CSNDzMD81bE9+PjoTjhl/ebSDGZcM2wSxqQP6JYxEhH1Vz5RxLdHHahz+HB6ganTQaUypG07H8yxRBeQtZ9GJulD3zF30xc1GJupx12TUpFk0OBosyfk9pF8XzkWLY5FOOdCT/P4RLy2owWfH7ajJEOPuye3fd8EbKopw9sHN6PZ7USawYzS2nLJel0nQlqDRv33xcTWT0REfQZfsWXee+892Gw2AMA111yj2p4gMDgdNGhQyOMVFBT4vz569GjU4wncn7qPvJL2g/2tuKIkKU6jIaJgflv6mWJZ+y2Bs3KL8MKeNf7l+5prcKy1EfmW1JiP44aV/8F/Dm4GADy/+3tsvehXyDUr26l8dWwPzv78haDHeXbXKuz50a8xwBLZBCFERAS8ucvmb0fwzVE7npqdAZMu+lDLJ0pT2q5W0kYSQG6rdeOmL2uw+JwsPLK2IeS2kYS02b24kvbpTY1YX9k2Ydquurbv+z/nB7+omSj2NdVg1ifPwu51B90mmnYH7YxBwthgy4mIqPfhpUyZcK0OAKC5udn/dVJS6CDParX6v25paeni6Ki7GDTSkJadg4l6pw8Pb1Mss+oMAICZuYWKdZ+V7Y75GOweN949tMX/uNphw+I961S3DdxOTbPbia8q9sZ0fERE/d3qYw7/13UOHz4/bO/UceTtBtqv2UdTmasVAN2J/ay6yM8g/70z/OeCbHP4j2rRVv32pPaANlCjkw10vzy2J2RAC7Sda0QrRW9SXZ6sN0Z9LCIiio/e+64eB2VlZVi2bBmAtkm/iouLVbdzODpODA0GQ8hjGo0db4p2e/QnkEePHg3537p16sEARacgWXoyLgKwh2sURkQ9rsWj/MA3LDkTADD0xP8DHWttivkYtjccV/SOe+tAqeq2ZbbgE8i0q3bYYjIuIqJEUeuQvgZ/c8QRZMvQGmSBYcqJSbp0GgGnDVQPvOSm5Br9lbRaTeQh7YZKZ8j1WgGYNiD8GKbk9q0AjpPzAja38lxGbqA1+ruAzi8YBb2s5UFhUjomZg6M+lhERBQfvPchwBtvvAGfr+1k7frrrw+6ncnUccLkcoV+k3U6O07AzGZz1GMK106BYuP0AjNe2i6taKhq9WFICq9jEPUmLp+0796/T7tK0pbmx4Xj8U5A9epxe+xD2s11xxTLtjUcR0VrE/JkbQsqZM9/Zt4IHLHVY29TjX9ZnTPyGcSJiBKdKCpDvuOtXoiiqNqmLJR6p/Q9Jd3Ycd730/HJGJGug90j4vQCM3bUulBh82JYqh67611odonIs2pxxuDoz+8BoMkl/T50GuD2k1Kwq94NnSDg5DwjhqSE/6iWn6TDgmEWLNnf8V4yKKn3tkDwcHJeeMTwhSCnDxge9XEnZg7E8rk/wweHt8LmcWGAOQU3jJiiCG6JiKj3Ykgb4PXXXwfQVv16+eWXB90uObmj72C4Fgbt/W2B8K0RKH4MWgEZJg3qAiozKlu9EZ0cE1HPcctC2kGyShP5BF7H7c2ItR9UQloA+OjoDtw6crpkWUWr9PnvGnMqPjq6QxLS1jpZSUtEFCl3kHzrmM2LgUnRnbfVyypy040dYZZOI+CcIRb/4+l5HUUa47ND30nXGTeNScbJeSacnBdZBW+gYanS77s35KDyfr8dy3t4IL2Q/G4cNUn6zv2OTc8Zguk5Qzq1LxERxR/LBE/YsGEDduzYAQCYP38+0tPTg24bWN0aOImYmsDJwjgJWO+WI5skorK1d86US5TIXF7p36W8OmSAbPKuim4IadUqaQFlv1yvz4cqh/RCXp45BRlGi2RZnbNzvRSJiBKRw6Oe8m2tCX8LuZy83UGaKX4fjQYld74wQCOrIO4NQWiwrmGeIOFtIokopNX1rTYWREQUGywTPCFwwrBQrQ4AYPTo0f6vd+3aFXLbwPWjRo3q5OioJ+RatNhV19Gk/42dLfD4RFww1AJdFD3GiEjdh4e34atje3DagKE42FyHDbVl/kobrSDgtNyh+NmoU6ARNBBFEa/sW48vyvfA7fNiQkY+5heMRotH2sMvXEi7pa4Cl3zzKgBgXPoA3DPudOg1Wvx123dYX3MU4onnPiWnEAtHzYI2zGzKDo8bKysPqq77qmKv/7mAtqpf+QexPEsKMgzSkLa0tjzkcxIRUQdHkJ6mL29vQVGKHt9XOBQ9awEgz6rFgmEWrDvuxMFGD6bnGVUqabse0uo1wat9QxnYhRYF8tPUYFWsPckVJCn+9Yp6zMgzIsOkwQVDLUg3Jc6t+G6fF4/88BX+sPnLsNsmcbIvIqKExJAWgNvtxttvvw0AyM7Oxty5c0NuX1RUhPz8fBw7dgzfffddyG2XL18OABg4cCAKCwtjMl7qHrkW5Uni27ttaHT6cMOYZJU9iChSX5TvxsXfvAIAeHbXatVt3jm0BXavG3ePOx2v79+In6z8r3/de4e34sHSzxX7hAtpWzxOvH94KwDg/cNbcaC5DjmmJDy5Xfra/c6hLbB5XLh/wlkhv4/Llr0edJ3b5/U/lxqNICDHlKSopN3TVN2pXopERIkoWCUtADz4fX3IfQP7tn5+WHkXQ3oMKmmTDdL2WZFIM2pg1Xf+uRUhbaePFDueEBOEfV/RdsF1R60bj52a0VNDirsHNn6KP29bFtG2SbrYt9QgIqLej+0OAHz66aeorq4GAFx11VXQ6UJn14IgYMGCBQDaKmXXrFmjut2aNWv8lbQLFizgB/BeLtus/udQWhX97XNEJHXLqnci2u6LY3sAAJ+X745o+1S9tHffYGvwVjUA8GnZLrx3eIvquo+P7gz7fFvqKyIal5p8cwq0Gg1yzMr+5IdbQgcLRETUpjXYffQxkBqDStpTB0bfU7arE31pZZ8x3CEC0p7S4g4/hoNNHjS5ekOk3DP+uUf9M6OcVWeAUctaKiKiRMSQFtJWB9ddd11E+9x5553QattOqBYuXAi7XXo13m63Y+HChQAAnU6HO++8MzaDpW6j16qH6I0JdPJI1F2O2Boi2s7h9QAAmt3OMFsCs3KLMCRJGsoWJKXhzLwRQfepcdpwKEggWmFvCvl8oiiiUtbj1qTVKXoBBnPjiKkAgNMHDFOss3l4MYiIKBKNzu47LzPGoL3VgmEWJOujO86Zg81des4kg/T5WtwixDi3PChr8US0XajK6P6m0eWIaLvrhk9mcQ8RUYJK+Et09fX1+PjjjwEAY8eOxaRJkyLar7i4GHfffTcee+wxbNiwATNnzsSvf/1rDBs2DPv378fjjz+O0tJSAMDdd9+NESOChwbUOwQ7FbJ7RHh8IvvSEvUAj6/tw3d7WBvKJ2ffpPohZsmZN+C/h37AUVsDGlwOPLV9eUTPfdzeHLLtgM3jUoxry4L/B7vXjc/Kd8PhdavuJ0DAuPQ8LBg8BgBgVekz5/JxokIiokg0uSIP9X5cbMWH+2wR94jVxaB8xarX4C+zM7Gh0okvDttxuCn0+9nvpqdhdGbXbm1PMUgH7hWBVo8Ia5RhcSwdbY7sfc3ZC6p+4+m+8Wcg3WCG/cQ5RElqDi4ZMj7OoyIionhJ+JD2P//5D5zOtoqtSKto2/3xj39EVVUVXnrpJZSWluKKK65QbHPTTTfhkUceiclYKX5aXD6kJdDEBkTx0j7Rlj1I4Nlu3qASJOvVbym16o24ccQ0AEC1oyXikNbp9aDR5UCaUb2iqdrRoliWa05GisGE8Rn5ET2Hf4w6g6R61hlBKE1ERJHf4SQAuHSEFSvKHDjeGj4w1GkQs+rFNKMGZw02Y3+DO2xI29WAFmjrgyvX7PJ1qc9tV0VaSetKkJA2WGXzLcUnoyg5s4dHQ0REvVXCtzt4/fW2SWC0Wi2uvvrqqPbVaDRYvHgxli5digULFiA/Px8GgwH5+flYsGABPvnkE7z44ovQhJktnHqHUKflTRH01SKiruuopA0d0mablH1d1aQECXKDOS5rZxCo2mGTPDZotEju5OzL8l5zTh9DWiKiSDRF2O6g/QaojAgnA9N3wx1T3dg+V8KoFSDPaaOpOO4OZc2Rva8lSiVta5C2RmatvodHQkREvVnCV9KuWrWqy8eYN28e5s2bF4PRUG919/I6AECuRYsRaTr8uNiKAdaE//OhBLf06A68tHc9xqYPwP3jz4ThRPC4u7EKj/zwVdDer6HsbqrCqZ88ix0NlSG3yzZZIzqeUauDUauLuFJ1R0MljFotflf6BQ621EnWra85KhtDUqerrowaWUjLSloiorA2Vzvx+WF7+A0BCFGHtJ0dVXBuX88FkMkGDWodHanwsRYPitOVAWCj04f/7G5BeUtbdfGu+hO32Qdsm2rUYF6RGSUZnavy3VjpRFlLZO0O+nslbbPbgd9u+hxLg0xOamJIS0REAZgyEUWhstWLylYvDjZ58ORpGWzqTwlrb2M1LvjqZYgQ8f7hrQCA3088F6IoYu4XLyoCzki1etxYWXkw7HaRVtICQKrehCqvslWBmh8vew2jU3OxreF4BGOILChWY9BK26ewJy0RUWg1di8eX98Y8fbtZ2iZ5sjaVXVPJW3PBZApspD2H1uaMadA2b7nmc1N2FKjrOpsD2vbba524vkzs2CJMr2uavXizxsi/3fq75W0t6/5EK/s2xB0vUnLj+NERNSB9+ETnTAkJfKTpPIWr+REmCjR3L3hY4jo+GD1h81fAgCOtTZ1OqCNRoE1LeJt8ywpwdeZpet8ohhRQAtEFxTLWXXS6qQ6Z2unj0VElAh21rkRTeaZdCJczLFEFtKq9XXtqpPzQrfcGZwcu4Au1agcv1oAurNO/bZ75b7AwTD9dNXsrg/drkj5PP07pF0e4sJz+90+RERE7RjSEp0wwKrDyQMi7y953MbKN0pc31bsV10ebW/Vc/KLMS49L6p9ipIyMG9QScTb3zZyhurySwvH4+5xc6J67kD5IcLfcIqSMiSP9zfXdvpYRESJINJetO3OHNxWRTotN7Jzu7MGq08a2RXTBxgxMKktJBYA/GRMEjJPtF/Qa4BrR3f+Yp/cnAJlIHywURqYiqIIdxQ/xs5UAgdrX2DUqlcqt3r6d0gbqsf+wlEzeVceERFJ8NIdUYA7J6VgS40LRq0Ai06Db47a8dkh9d5nla1ejO3h8RH1Fk1uh+pyt8pt+89MvxhaQUCNoxVraw7j5KwhyDJZUGBNw9n5xXB4Pfji2G7UyCbmAoBkvQlCwPOlGcw4Z+BIpBoi/zD905IZmJQ5EJtqy/3Vv4OsaThv4Eh4RRG/XPe/oPumGcy4ZtgkPLNT2b+8KyHt8JQsyeO9TTWdPhYRUSJocinTxZfOyUKTy4d1x51odPqQd2K+gEHJWn+P1RSjBg+cnIZH1jYo9j8p24ApuUYUpeowPC32vUH1WgF/mpmBbbUuZJu1GJKiw8yBJuysdWNgkhb5SbH7KDYjz4RFQhMCM9K9DR5JX9loi1Y7061BrQ9vrkWDB6enY1edG4s2N0nW2fr55Lzy86LzBo7E0ORMXFo4HnMGDIvTqIiIqLdiSEsUQCMIOCm7o+LizAJzyJCWiKQ8PuWH6J+VnBKyUsSg1eHSwgndOSxMzR6MqdmDFct1AAaYk3Hc3qy6X2FSOu4ff6Z6SGvuQkibnCl5vI8hLRFRSPKQ9twhZlj1Glj1GiwYFvojTbC2AhcOs2BMZucmx4qUSSdgSkA1b5Jeg6lR3LkVjTkFJnx9pOMi6r4GaRVntJWxnelE4FY5PXZ5gSyzFrMGarG52okV5U7/Ons/r6SV95z/7YSzcUpuYXwGQ0REvR7bHRCFEuIOpCqGtEQK8ooRnaDp9bfyDQ7R3zbPnIIBlhSMkFW+AqF73YYjr6RlSEtEFFqzLKSNpodsskGA2t32Fl3vfn+K1ghZNfBeWX/YaFodAJ2rpHWp7BQYDlt00n+31mgH1ce4vNLzIr2GH7+JiCg4VtISdRIraak/E0URf9m2DG8d2AyTVodfjj0NlxZOwJGWely34i3VfUa+97ii95quD3wYGZyUjnU1R1XXtQexp+YOVbQk6Eq7A3noW++yo/i9xyCcuDKUrDfixhFT8fNRMzv9HERE/cn6SumEVymGyANWjSDApBMUt9Zb9L3/PSoa8pC21uHDO3ts+HGxFUD0lbRPbmzEuUPMuGZUEgxBesrKVduV58eB+bpFLz3O10cdmJJrxKQIewf3NfJKWgMnCiMiohD4LkEUgi3E1f1KThxG/djSsp24Z8NS/+PLvn0Dh388BDevegffHT+gus+epmrFMr0mslm146kgZCVtMgBgbPoAxbquhLRDktKhEzTwiB2vMfIQeGNtGcan5+HUAUM7/TxERP2B2mRUKVFU0gJtE1cpQtp+Vkmbn6SFWSdIWgi8u9eGc4eYkWLU4GhL9Oeunx+2I9mg8Qe94Xx7VNmz3i2ppFX+zP+ysREvnJWFpCj/TXs7n+iDV5R+ljD0gfMiIiKKn/71TkgUY+0TUKixeUQ4+nkfLUpc31cdljwWIWJN9WF8eWxPVMfJMcVu5uruMjIlO+i6YSltvWMvHiydJtCqMyCvCz1pdRotSlJzwm63PkiFLxFRIilr8SiWZVuiC7tKMqRVpiat0O9CWo0gIFmv/J4+O9QKAGhwdK7AYE+9K/xGJ5hUKm4vCwh4M83KfzevCBxsUv4b93XyVgdA37h4TURE8cOQliiENKMGpw8yBV3f0s/7aFHiqne1KpZVO1qiPs6vxs6OxXC61aWF4zE8WdlzdmRqNi46Ec4WJmfgtpIZ/nX3jJvT5VsW7x1/hr+9QTDyHr9ERIlIXgELAENTo3sNnltogTEgQJw/1AKtpn+FtAAwp8CsWFZ1ogVBqG4HBclaLDwpBWo/kmZXZEUJLW4fHCpVz2cEjGlitgGDkpRBpVq1dF/n9CmDZ6OGN7ISEVFwfJcgCuOn45NxbqEZeo2Au1fUSU5wm1w+ZKlUBBD1dfVOu2JZeWuT6ran5hbhrjGnKZaPS89TTJDVG2WarChdcBe+rzqMFk/bjNPJeiNmZA+BVd/RI++5GZfg5hEnw6jVYYxK+4NoXT1sEmbkDMGWugqIaHtheXzrt1hbfcS/jdvHC0FERPLJpbLNGmiinJSyOF2Pv5+eif0NbmSbtShI7p/nb+OyDPjvHptkmevE9T55DlqYosM1o5IgoO3nY9AKGJWhxzt7bZK2Bc0RFiWoTaq7+GxpGwOLXoNHZ2Xg2s+kLZLUJhzr65xelZBW2z9/74iIKDYY0hKFIQgCilLbbpFLNmjQ6Ow4UZXPNEzUX9S7lCFtma1BddvLi07CxUPGdfOIuleS3oizBxaH3W5S1qCYPu/Q5EwMTc70P37zQKkkpPWIrKQlIpJX0kbbj7ZdmlGDyf10gqp2atF1e09Y+cRhFp2AcVkGybJMsxanDzJLQ9oIK2nlIW2WWaPaZ9agFVCYosOhgBYH7v5YSavS7sDIicOIiCgEtjsgioJ8JuFIT1qJ+pp6p7LdQbBKWvZXix35z9LDSloiIthkcwBYVfquUhuPqDw3bW8lIJ9KQRvkk2Cy7HzX6RUjakcgD2lzQtxtJs9u+2Pdg8PrVixjuwMiIgqF7xJEUUjWawB0nICykpb6E5fXg/+3/iO8d2grKuzKQPbb4/tU9+NMxbGjE6SfWv+y/Ts8u2s1AMCk1eGCgtF4dsaPFGHum/s34Q8/fIlKe/C+wWatHpcWjseT0y5gsE5EfYJPFPHmLhs+OiC9cGjRs84kGLXOBPsb2ypW5ZW0uiAtI9Qqla/9rBpWnQARQGtA2nvPlFR/dXJVq/TJc0JM7maQTTDWl3rS2txO3LF2CVZUHsT5BaPw+JTzFe+rr+3bgOtXvK3Y18B2B0REFAJDWqIoJMtOWhnSUn/y5oFSPLNzVdD1PpXqHICVtLGk00hfY5xej6Sn3b/2rEWBNQ2/Pels/7JqRwuuX/E2PGLo16MG2LFo50pMzhyI60dMje3AiYi6wfrjTkVACwBWHStpg/GohJ32E6GqV/Y2EayS1qJvm9ZSfiR5RTMA/HlDI/49Nxs6jeCfoKxdqJBWr1FW6/YVL+5Zh8V71wEA9myvxrSsAlwxdKJ//fb64/jJyv8q9tNrtNAIvMBARETB8V2CKAoW2e119j50QkkUzvLKA53ab5A1NcYjSVwDLeF/li/uWQtfQCC7qbY8bEAbaH3N0U6NjYiopx1pVk68BADZIcK/RDciXa9Y1l606pVdbNUGqaTVCILinDeU9jYHgfM2AG09aYORFz7sb1D/t+6N7ly3RPL4p6vfkzxevHcdvCrvywXWtO4cFhER9QMMaYmiILvoj344ES0lsN2N1eE3kjl34EicklMY+8EkqJuLp2FwmA9xR2wNWFV5yP842IRuwVQ7bOE3IiLqpQZYtJg9yBTvYfRayQYNTsqWTgbWfr7qkeWGuhCfBOWVrqG0F9jaZU9gCfEEY7OkYfLWGlefnTysyd0xyZrH58W/929SbKMRBDx00jk9OSwiIuqD2O6AKAoa2Zy5DGmpP9ndWCV5fO+4M3BT8TQ4vR40uOz+5T5RhNvnRb4lFSNTsyEEqcSh6A1JysDeS+7FlvoKSZuDW1a9g50B/z5v7N+EUwcMBQCU2Rolxzg1twiPTp7nf/zOoS34244V/sfVjuB9a4mIerNciwZPzs6ALooAMRFdMyoJm6vr/I9FAKIoQp6Bhvo5qrX9nTbAiHXHnYrlvhMnxK2ydgjmEG0pTso2QkCzv6WCwytiZ70b47MMQffpC74o34Mq2fvs4pmXYcHgMcg0WeM0KiIi6isY0hJFQVlJy5SW+odahw21Tmnfv5+MmIrhKVlxGlHiMmh1mJJVIFl27fDJ+M3GT/2P3zn0AxZNvwgGrQ5lrdKQdmz6AMzMLfI/PthSJ1lf41T2dyQi6gsKU/QMaCOgVfkR+US1icOCH0Pt51ySrlcNab3+Slrp8UO1TEg1ajAsTYd9AW0OSqucfT6kfW3/Rsnjk7MH4yfF0+I0GiIi6mvY7oAoCmx3QL2ZKIpweT3+/9w+b/idTpC3OtBrtChKzoj1EKmTrgqYkAQA6l12fHR0B1xeD4601EvWDbKkSR5nGaWVO1WOFsnvSeB/ouzCk8vrgdfng9vnVWzri6IPLhFROKIowuNr+48XwbtGLcd2+US4ZSeu2igrafOT1HsBe0XA7RUV7RRCVdICwMQco+RxaZUr5Pa9WYvbiRqHDR8e2SZZft2wyXEaERER9UWspCWKgvxctrwl8hCMqDu9tGcdfr1hKWqcHf1GBQiYlVuIt+dcg/wwE1J9UrZT8nhYciZ0Gk7M0lsMScrAqblFWFF50L/s0m9fU91WPpFbtilJ8rjS3gzja/eq7ptrTsZfp16AUWm5uOq7f2OXrAVGoCyjFfeOPx3/b+ycCL8LIiJ1myqdeGFrM+qdvPgTCxqVNkQ3fF6jWBaqJ628KhYA8pPUPzrurHNhgMpkbuZQTwBgUo4B7+zpOG+psHmxt96NarsXr+1ogUEr4KfjkzEms/dU1zo8btXlyW/cr1im12hxedFJ3TwiIiLqT1hJSxQF+Unv7nr1EzWintTgtONna96XBLQAIELEisqD+NMPX4c9xot710kej0zNjukYqeuuHjopou0GWuQhbeQ98Crtzbh51Tv4v9XvhgxoAaDGacPd65eitLY84uMTEcl5fSKe39LEgDaGIu0IoQ3RU15tDq9ss/pHxzd32dAqL6MFYAlTSVuYokOaUXrMTw+1+gP7ylYvXtzarLjLI55WVx2KeNsLCkazDy0REUWFIS1RFFrd0hPQnCAnq0Q9aXvDcckkU3Jra46EPUaGwSx57OWt7L3Oj4smwKQNfQOMAAGj03Ily3LNydAJkb9W2b1urKs5GtG2IkR8cHhrxMcmIpI70uxBoyuyEC6L510RSTFoYIjgRxUsdAWgqF4dnqaDRhBwdYkydNRrlJW3WkG9ZUIgjSAo+ueuO+6UHOuYzQt3LzolqXNF3tf9huFTunEkRETUH/FMhygKk3OlvbOa3b3nyj4lrqO2hpDr9zbVhK1CaXJLJwK5rPCkLo6KYi3DaME/ZlwCq079tk+NIOCBCWciz5IiWW7U6jA5a1C3jeuz8t3ddmwi6v/2NkR+V9K8Iks3jqT/MGgFXFWSpDqBWLvidD1mDTQFXX/RMAsyTW0fFS26tuMBwJxBZtXt5SGtWSdACFGp2+6UfOkY1AJZeS/deIqkqFcjCLil+GTMLxjd/QMiIqJ+hT1piaKQK+u3Zfe0TXDBmYYpnuQh7ZCkdBwOmEyq0eVArbMVWSFuuWtyOySPhyVnxnSMFBs3jJiKy4tOQplKMJ9jTkKqQf3D86m5RVhbLa2oTtYbsfGCOwEAxe8/HtHzvzTrMpi0elz13b/9yzbUlKHGYQv5+0VEFMze+uB3ggT651lZilvjKbi5RRacXmBGvVM5f4JRKyDDFLrv/KBkHZ45IxM1dh8yTBr/uW6KUYM/zUzHb1ZJJ61UC2kjEUl1tMsrwqqP6HA9Tq/RYvtFv5IsyzRZkWHkBQUiIooeQ1qiKKSofDhodvmQHuZEl6g7HbU1Sh7PyinCsdYmuH0dH8z2NlUHDdF8og/NskraFINRdVuKP7NOjxFR9gw+NXco/rLtO8kyo0bnP45W0ETU4mJs2gCMz8iHRadH64nJU0SI+PLYHlw5dGJUYyIiAiKvpE0x8IJ4tEw6AXm6zn/c0wgCclQmBJMXyIoAWhUhbWSBuiGCQofe1O5AhPT7HJ6cGfV7MhERUTC8HE0UhSS9APmp5NEWL+od3l41qQH1Lz7Rhyp7M8psDaiyN0vWiaIoqZoFgMKkdBQlZUiWrak+gjJbA8psDah3SvuptbhdiudM0Qe/BZL6npk5hYplgRPNhZo8JlCG0QKjVocz8oZLli85sh1ltgbJhQEiSlyiKOJYa6Pi/Uau2eVDhS2y1w355K0UP/J/CVEE7LKJw8JNGtbOGKonwwkurwhRFFHv8KLW3vaf68TMZh6f2KPn4HWy3+lIWjoQERFFipW0RFHQCAKS9IKkF+0f1zYAaJt84d6paRiUzD8rip1dDVUY9cGfJcsmZQ7E0rNuQpWjBWd9/k9UO2yS9QXWNIxIycKepmr/sl+u+x9+ue5//sfzC0bhnTnXodXrxsQlf1U8L0Pa/iXc7NJaQQMgfFCSaWw7zrn5I/Hx0Z3+5f85uBn/ObgZyXojFs+8DD8umtCl8RJR37W9/jjO/2qx/wLigsFj8J8518KoMvHhkxsbFcuo7/GKwOpj0jtyIm13YIggpH17tw1Hmj2obO14n9JrgIFJOhy3eeEVRdw6LhmnBemXGwsNTjsWfP0yllce6LbnICIiYiUtUZSSg0yXW2334d29NtV1RJ017eO/KZZtqi3Hop2r8PAPXykCWqAtpB2ekhXyuB8f3Yn3Dm/Fv3avwRGV/qbJerY76G/SgvSrBdpD2vDa22CcN6hEdX2z24k71i7hnQVECez3m7+Q3OGx5Mh2fHh4m2K7RqcPO+ukrQ6Gp6lf6I4gx6MepPbPIf+3NOsjDWnDb7O+0ikJaIG2FgiHmjxweEW4fcCrO1rg6cYJxl7et141oOWvJhERxRJDWqIoDU4JXilb3sJbfSm25L1i2+1vrsW7h7aorhufkYdpWQVhj722+gj2Ndcqlo9MzYZWw7eH/ua1U6+QPL6l+GT/18WpoUN9oK0freZEmDs8JQvj0vNUt6uwN8HFtgdECWtfk/J9ZX3NUcWylcccimXDUvUYmqo8zzqvsPsqJCl62Sp9auUineQtknYHkWhxi2hwdl/z2hd2r1Fdvr2hstuek4iIEg8/hRNF6fJiKwYlqZ+c2nrTzAbUrzm8wSdaGWRNwyWF48MeY2djJVo9yn60z07/UZfGRr3T/ILR+OnI6TBotJicOQi/GX+mf93fT74o5L75lhQsmi7d5qVZl6EkNacbRkpEfZnT51Es29VYpVimFs2lGDW4fnQSAuecKk7T4YKhlhiOkLrKqtdgco4h5DbnF0X2b5YZw8l3u7OqtdrRorp8TFpuNz4rERElGjbPJIpSfpIOT87OhN3jw556N/60rqOfms3NW3ypZzi8yg/BAHDD8CkAAKNWh1m5RVhZeTDoMXY2VCEpS9rW4PcTz8GZ+SNiN1DqNQRBwPOnXIp/zLhEMdHJzNwibF7wS5yk0p/463N/itPzhiv2mZJVgB0X343S2nJM/ujp7hw6EfUhTpX3p92N1YplaoFasl5ASYYB/57bdgHI7RWhZ6+DXumqkiRsrKpTXTch24Asc+zC10h5u/E03COqF2KMDXJXCRERUWewkpaok8w6jeLqv8Mrdms/LEosofp6Bquk1QT0Fs03p4Q8fnlrIyrtzZJlFm3oyhjq+4LNRJ1rSlJfbk4Ouo8gCEg1cJI5IuqgFtIeaKlVLFd7WUmS9f1nQNt7ZZmDf4ycmB35uUSQt5dO8XVjP3RvkPN7TSy/ASIiSnispCXqAqvKpAg2t4hUI0/YSEkURexrqkGz24lUgwlDkzMl4ZfT60GNw4ZccxJ0Gi0aXPagx6p1tKouD/ywkGcJHdICwOa6Y5LHFp0+7D7UP2UHCWk7M4lcaW05SlJzkGZkH0mi/sTjE1He4oUIEaIItMdWWkFAQbIWoiiirLVRsZ9PFLH06E4UJqXD7RPR6PJhf6NVsZ1FF9vzp+OtTfCIPgyypsXkeD7Rh2OtTcg2JcGoTeyPUSadBkl6AS0qd5FNDNMKobsE5qg+UcRxmxdpRg0s+rZAuf331yuKyDJrkaIyGfCRlno0uhwoScuBVhCwu7Eado8bLR71OQI0nDqMiIhiKLHPLoi6yKpXntwt2tyIB05Oj8NoqDezuZ0494t/YVXVIf+ys/OL8dFZP4FRq8Oh5jqc88UL2NtUg2lZBXj/jBsw6X9PBT3etobjqssDPyzkRxDS2mUVuWaGtAkr2GRx4UJatSrbGUsXQSMIeH7GJbhl5PSYjI+I4utoswcPr21AY5DJmfQ6G76ueyvo/pd8+6rksQANpqXMwxDTaP8ycwxD2p9//z6e27UaQNtEiS/M/HGXjmdzO3HW5y9gTfVhDE3OxOfn3ILhKeEnXezPssxatLilFdJ5Vi0GWOPzEXNluQOXjUxCi9uHR9Y04GCTB1oB+L/xyRiaqscjaxtQH/D7e8VIKy4e3naxQBRFXL38Tbx1oBQAoBM0EAQB7jATYbKSloiIYontDoi6wKAVIM9pt9a4Ud3Kmc1J6n9Hd0gCWgD48tgefHVsDwBg0c6V2NtUAwBYV3MUV373BqqCTFIRSuBnhUhCWjmzliFtIss0Kid66UwlLdBWxXT/pk9Dtu0gor5j6YHWoAEtAJQ2lOK4Q71HqRoRPmxrWSFZlqRy8bszVlYe9Ae0APCvPWuxI8jFzUg9t2s11lQfBgAcaK7F87u+79Lx+gO1lgcnRdHqINbe29d2l9HqYw4cbGoLj70i8PZuGz451CoJaAHg3b02OE80si2tLfcHtEBbD9pwAS3QvZOVERFR4mFIS9RFRSnKaoFqO0NaktrbpJw0BQAONLd9oP3r9uWS5StCTPgVypi0Af6vp2YVKNaPSs0Juf/4DE6AkcguHDxG8nh0Wi50mtCTvxRY05CkUw9yqx22oJPcEVHfUusIfW7T5K2N+pitPmlf9Pyk2Ew29Z+DmxXLNtSUdemY92xYKnn85PbvunS8/mBYqvLC7oy86PqUpxs1sMaogrq9hXFplUuyvNbhQ6VN+fvr8QHNrrbgdl9zTaeec0z6gPAbERERRYghLVEX3TJOWa3o8LByjKTqnOr9ZZvd6j3OgknRm2DQaGFQCc6uHTYZtxSf7H88MjUHT069AHnmFKQaTLhpxDSsOv8XuHLoRCTrjf7jGDRa5JlT8MSU+Ridxg8bieyRSefhzLwRMGv1GJ+eh5dnXR52H71GizdOuxLDk7OgV/m9dPkY0hL1B+HmRbV7m1WX6wQ9NNBCJ2ghyD56iOiobJyUY4jJreM+0Yf3Dm1VLN9W37VKWlKaW2TG9DwjTFoBmSYNrilJwsiM6O7I0WoELJyYgjxr5AH98DSd4k42oK1q1ieKcHmVv6yNLvUq8PZN65zqvf7bCbKa2WS9EVcUnYRfjJoZ2aCJiIgiwJ60RF00OEWHQUlalLV0XKG3q5wcUmKrddpUlze5HRHdDv7AhLPw8KTzon7eX46djV+OnS1Z9ubsq6M+DiWGfEsqvjrvp1Hvt2DIWCwYMhZV9mbkvv17yTpXBLeLElHvFyyk1WsAtw+wy6piZ6ZejIHGEf7HZw82490DR/F53UuS7URRhCAIuGSEciKxzlhddRgV9ibF8liHtDqBtS5mnQZ3TUrt8nEm5hgxMUd6R8Z9K+twoFF5kW9ekRnXj04GAFS1erHwW2kFt8srQq1WIlirDu+JX+z6EJO1Am19jf8589KQ2xAREXUVzy6IYsAku02LlbQkF6xCo9ntRE2QADdQjikp1kMiijmDRnnt1+VlSEvUHwQLaU/JN8En+mD3SfuomzXJkscun6ioRgQ6qmmzzLFpdfDuoS2qy4NNuBmJZrdDsWxEgk8a1t1SDOofUzNMHb8napu4fB3Ba6Aml/ovsC/CSloiIqKewEpaohiQz0bsYCUtBWhyOfBJ2S7Vdbsbq/HOwR/CHoMhLfUFBq0yZKl3tWKgteuVVkQk5fR6sKHmqKJtTrrRjEmZg1TbjwCAx+dFaW05aqMIpRqdPiyrbEG6LhcCBNR7KuET2y7A+LRWlDnrIEJ67mPRSkPa6lavot0BAFS4DkADLVZX1SraHSTpjZiSOQgmXdst9OW2RmxrOK64A8WqM2BKVgGMWi3+tkM6GVm7o7YGLDm8DZkmq+SYaipam7C1vgK+E89zuKVesY1By49R3SnVGCyk7Vhu0CpD/2aXL6rz8PLWRmxvqmE7DCIi6hV4dkEUAyYtK2lJ3Y6G4zj1k+eCrv+6Yi++rtgb9jg5Zoa01PsZVSppx334JKqufAjZvNBAFDMNTjtmffIMtjdUqq6flVuEb8/7P8XEfz7Rh3lfLsaXx/bEbCwr1iuXaaCBUbBIlu2oc0Oj0iJgVeMHbcf5Sv34I1OzsXLeL/B5+W5cu/wtRRjcbnhyFnSa0DcJXvTNKwCAktQcrDr/F8gwWhTbfFq2Exd9/UrYVi0/1B3Dm/s34aphk0JuR52TGqSSNjNMSPvL7+oifo4jjp2Y8cnHQX+niIiIehrbHRDFANsdUDD/2r02JrfQZZti06uPqDtpNRpoVUKYV/duiMNoiPqvj47uCBrQAsDKyoP4umKfYvmqykMxDWiDMWuSIahMAqZWSRvO7sZqvH94Kx7f+m3IMG1fcw12NVZFdMxdjVX44LBycjEA+NOWbyLupf2HH76MaDuKXkrQStqOCw9aAdB0Ya65na1rIg5oYzCnHRERUVgMaYliQCs7c/NGMBEUJYbjdvXZrqORbjCjOCU7BqMh6n6TMgcqlm2oLYvDSIj6r+MqE2PJba4tVywrrVMu6w6Z+nzV5WZNEkya6C86VrQ2oczW0MVRSZW3NiqWiaKIH+qORXyM3Y3VsMnaTVBsjEhT3pmRadIgy9zx8VUQBAxN7fyNoa3e8H9H7SZmKN/biIiIYo3tDoiIupFXVM4mfEbecFTam9Hokk5EUnbiA2OqwYRkXdssxwXWNPxp8lz2vqM+443TrsLI9x+XLIsm9CCi8Dyy9xaTVgedoEWLpyMw3KlSVbqzQbrMqjMg3WAO+jxeEah1OOESlRNnAUC2MQnGE72o7R4RLi+QZRiAi/PPxS1j07Cn3o1lZQ7UOXywe0QIgoBTUi/ClpbvYPM2nhi7AIteOqVYrbMVdq/b/9jh9aA14DHQ1qvd5nHB5nEFHX/Nlb/HHWuXYGXVQVQ7WtDq6TiGza3cr8LepOjxm29JgQYCRKgHu7sbqzEpa1DQMVDnjEzX47rRSfjmiB12j4gssxbXjkpS9C3++YQU3BVFi4N2oijCLUr/rXPNybB73GhyO1BgTYMoijBp9bhw8GjcVDytS98PERFRJPipnygGeAcUBSOvqv79xHPw4EnnxGk0RN2vODUba+YvxPSPF/mX7Wmqht3jhjnERD1EFDmPTxrSzh1YgtMGDMVd6/7nX7ZTpR3CDtmyByachXvHnxH0ebbUuPCL5ZuwovFd1fUbL7wTBUlpQfcvyTDgwmFWfLDPhrd32wAAWfqBOCP9KkzPM+KuSeqTCt608r94ae86/2ObxwWn1yPZZtnc27B4zzo8uf071WOsmPdzZJqseGP2VQCA/1v9Lv65e43kmHK7VELso5c9IOmlO+zdR3Ggudb/eEdjJUPabiAIAs4vsuD8ImXf4ED5STrcMDoJr+xoier48oAWANbNvx2Dk9KjOg4REVEssd0BUSzIUlo2O6B28kpatX6dRP3N2LQBCKyL84kittVXxHFERP2L4r1Fo8GotFzJsp2NVRBlFwrlIe2o1JyQz1Nr90IvGFTXWXR6DLSmRDpkhRFpwS/atFfntqt3KXu7W3R6JOnVx5ZvScEpOUNk20u3VQtpdzdVSx4Xp2QrJjuT/8zkP1PqeclBJhkLRS2kTQtRVU5ERNQTWEl7wpEjR7B48WIsXboUhw8fRnNzM7Kzs1FYWIjTTz8dl112GcaOHRt0/08//RQvvPAC1q9fj+rqamRnZ2Pq1Km49dZbMXfu3B78Tige5JW0bElLoihiTfVhLDmyXbKcIS0lAqveiBEpWdgTEHg8tWMFXj/1SmjDzL5ORMGJoojVVYfw0t71kuU6QaMID5vdTjy3azWS9W3tcxxeD2qcNsk2o2XBriiK2Fnnhs0twuUT8fZuG3Qao+pYRqgEmMHYVSZUDRXSmrTSddvqjyu2segM/u9N7pIh4xVjs8pC2p2NVXht3wbkmJJwet5wGDRavLpPOslhSZoyxB6dloulZTv9jz8v340/TZ4X9Hvp71o9LnxbsQ+1sklSs01WzBkwvEfuoEgyRH9Pm8snbeGhEYSgoT8REVFPYUgLYNGiRbjvvvtgs0lPXMvKylBWVoaVK1eiqakJTz/9tGJfn8+HW2+9FYsXL5YsLy8vR3l5OT788EPcfPPN+Oc//wkNP5gSJYx7NyzFn7ctUyyXTzJH1F9NyMiThLRvHSiFBoL/1mMiit7d6z9Wvb1fp9FgkDUVFp1e0nf1F2s+CHoso1aHouQMybJFm5uw6pi0wjBYJe3IKCa03N/gViwrCjHhk0nWh32zSl9rq86AZL1Jdf/Liiaobh9obfURrK0+AgCYPWAoZuYU+R+3U/se5cH2ptpyrK8+gqnZg1XH0p+5vB6c+smz2KQySR0AnJw9GCvm/Rx6jVZ1fawk67teSZtmMEd80YGIiKi7JPw70SOPPILbb78dNpsNxcXFeOKJJ7Bs2TKUlpbiq6++whNPPIFTTjklaMB6//33+wPaiRMn4q233sK6devw1ltvYeLEiQCAF198EQ888ECPfU/U8+Sxm4+VtAnN4/PimV2rVNd19wcVot5ifLpydvd/H9iEoy0NPT8Yon7A4XGHfG/RCBqUhGlfEKg4JRu6gPek4zaPIqAFAL2gXq1anBp5SJufpAxkDdrgFy3N2tDVlwIEmLQ61UpatVYHAJCkC14l+d3xA/jTlq8Vy9V+nqNUqmuf2an+79Lfrao6FDSgBdqC8PXVR7t9HLFod5AaJPAnIiLqSQldSfv111/jt7/9LQDguuuuw4svvgi9XnpSeOaZZ+JXv/oVXC5l36o9e/bgL3/5CwBgypQpWL58Oczmtl5GU6dOxYUXXojZs2djw4YNeOKJJ/CTn/wEw4cP7+bviuJBL/ug4WFKm9AaXA5JJVOgGSofHIn6o3mDSvDb0s8UyzfWloWcaIiI1B2xNSgmz2p3Sk4hAOC8gSUhQ7NA5w4sljzeWaf+vqUXjNBCBy+kz51tskb0PAAwM9+ILw7b/Y+vKUkKuX379xP0eLmF0AgazMgeAo0gwBfQZ+qnI6erVkTOzC2KeLzt5uQNUyw7KWOgYtnG2rKoj90fHLc3h91G3mKjO2SZNcg2a1Bt94Xf+ASvKP195sSWRETUGyRsSOvz+XDbbbcBACZMmIDFixdDpwv+4zAYlFffn376aXg8bW/wixYt8ge07SwWCxYtWoQZM2bA4/HgqaeewrPPPhvD74J6C6MspHUxpE1oDS67Ytm0rAL8fNRMnJzNkJYSw6SsQXj9tCtx7fK3JMtL68px0ZDgPd6JSN3hlnrFshnZQzC/YDR+MmIqAOC3E86C0+vB8soDisnF2mkFDWbmFOL3E8+VLHeo9I0FAEEQYNWmoclbI1ku7xsbSkmGAbeNT8b3FU4MS9PhvMLQEzSdmT8C/zzlUvx7/ya0eKQVjyWpOXhs8vkAgMLkDHxwxg1YtHMlmt1OnJ1fjPvGn6l6zImZA/Hv067Ci3vWotHtwJ7GGsWxAz0340fINScrlhu1Ovz95Itw+9oP/ct2NVbD4XHDlGBBX4tb+vOz6gzwiD7JxQS3z9vt49AIAu6Zkob/7rGhxu6FUStgTKYe7+1TTjgHALeOS8Zv1kn/Pgy804mIiHqBhA1pv/jiC+zduxcA8Otf/zpkQKtGFEUsWbIEAFBSUoLp06erbjd9+nSMHDkSu3fvxpIlS/DMM89AYE/Kfkevkf6bOrv/fJR6MXlIa9BosWb+7fzbp4RzzbDJKK0tx1+3L/cvK42wyo+IpI7YpCHthIx8rJ6/ULLMpNPjL9Mu6NTxW9zBqxCTVEPa6M6d5xSYMacgdDgb6NaR03HrSPXz60AXDh6DCwePieiYVw2bhKuGTQIAXPT1y4rJPQOdP2hU0HU3jJiCO9YugYi2YNsr+rC9oRKTswZFNI7+osUjvdPwlJxCHGttxPaGSv+ynghpAWBwig6/mpLaMTa3L2hIOzRVBx+k42JIS0REvUHC9qR95513ALRVB8yfP9+/vK6uDnv37kVdXV3I/Q8ePIhjx9omMZg9e3bIbdvXl5eX49ChQ10YNfVWRtl5ncvLStpEVu+UhrRpBjMDWkpYEzOltwYzpCXqHHkl7RBrekyPX+sIHtJatamKZdGGtL1NrklZJRtIF2LC32S9CcNTMiXLNtcl3mubWiWtvPe+2xd5C4JYCvUh16rXKEJaHUNaIiLqBfr22VUXrFmzBgBQWFiI5ORkvPnmm3j00Uexbds2/zbFxcW45ZZbsHDhQhiN0okJduzY4f+6pKQk5HMFrt+5cyeKiqLviUW9m6LdAUPaPmVN1WG8daAU6UYzknRtf+tajQan5AyJqj3BgeZafFa2SzE7dJoh8sohov5moqx/Y1lrI/70w9dIN5oxb1AJhiRJZ5f3iT7878gOCAAuGDyas21TQvD6fFhathN7Gqv9y3SatrYEDS4Hfqg7hod/+Eqyz5Ck2Ia0Zc3q/W4BIEmrfK5o2h30Rrnm0H1xdWFeeyZk5GNvU0d18Rv7N0ku0moEAVOyBuG0Acq+tl0hiiI+ProDHtGHCwvGQBsiTA7n+6pD+L7qsKSnbyhaTVsf4Okn+uvvDvh9BYAkvTKk3VRbhmuHT+70GDtLqwl+cdyiF2D3tki3FxjSEhFR/CVkSOvz+bBr1y4AQFZWFu644w78/e9/V2y3Z88e3H333fjggw+wdOlSpKWl+deVlXVMEDBoUOhbmwoKCvxfHz0a3Qyngc+jpqKiIqrjUfeQz1DsZEjbZ7yydz1uXPmfoOvfmn01rhg6MexxdjdWYepHf0OzW9nfLt3IkJYS18jUbJi0OjgCehTev+lTAEC6wYxNF96FwuSOoPaa5W/hrQOlAIDrh0/BK6de0bMDJoqDn695H//cvSaqfYbEcAI+j0/E3oZQIa3yufp8Ja1Kv9lA4SorT8rIx7uHtvgfLzu+H8uO71ds9/yMS/DTkhmdG6SK/1v9Hl7Y0/a7cmnheLxz+nWdOs6re9fjhhDnP6H8+7SrMCdvGP59YJNkeZLOqAhpn96xAgsGj8GcvJ6dPDlUdO3xObGz9XvJMlFkSEtERPGXkOUpjY2N8J249Wbr1q34+9//jry8PLzxxhuoq6tDa2srvvvuO3+f2dWrV+MnP/mJ5BjNzR2zmSYlhb4Sb7V2zH7b0tISYkulgoKCkP9NmzYtquNR92BI23eFCmgB4KW96yM6zjsHt6gGtEBbEEWUqHQaLcan56muq3fZ8f7hrf7H5bZGf0ALAK/u24Bmt6Pbx0gUT16fD6/t2xj1foNj2O7gu7LQf2dq7Q7MfbySdkCYkDZcj9KTMvIjep7nd38ffqMI2dxOf0ALAO8e2oIyW0OnjvXqvg2dHsfivevwadkuxfIUvVH19+L1/ZsUy7qbNsin3GyzBl9X7FUs9/kY0hIRUfwlZEhrs9n8XzscDlgsFnz77be4+uqrkZ6eDrPZjNNOOw3ffPMNJkyYAAD44IMPsHbtWsl+7QwGQ8jnC2yVYLcrZ32nvk+W0cLHjLbfqHJEdmHlmL0x6LpzBo6M1XCI+qQfDRkXdF1Za8ffzraG44r1LW6XYhlRf+IVfbB73VHvl6w3ht8oQivLQ4e0ydoMDDR39GBNM5j7/CRZswcMCxo0T8sqQFKYn+/sAcMiugi7q7EK3hj1Za13KT9HHGlp6NSxGrtwAayitUnRfx8Azsovxpn5yorZWqdNsay7aQQB47OUn9FuHJOM8lblOduE9KE9MSwiIqKQ+vZ9Sp1kMpkkj2+++WaMHKkMUcxmM/74xz/6Jxb7z3/+g5NPPllxDJcr9AdIp7Ojus5sjq6iLlx7hIqKClbT9gIa2aRQzGj7jyZXZB9iah3SGYSHJWdiVFoOTh8wHHeMntUdQyPqM341dg60ggbfVe7HjoYqHGiu9a+rsreoft0u0l6JRH1VZ3/D5beVd0WTK3SIeMOYZDyaeSse3/oN3D4v7hh9Kiy60EUKvV2WyYqvz/spnt25WhIiDk/Jwn3jzwi7f5LeiG/O+z88tX255IKuVxTx5bE9/scOrwdHbPUoSs5UO0xUPCphb6gJzkLxyl5bx6fnId+SorptrbMV62s6PpM0uBxwi17FdmcPLMYZecPxtx0rUWnvuOvQ7on+IkQs3DEpBR/steGbow4Upuhw5mAzJucasaRcGRqfnTs1DiMkIiKSSsiQNjlZenvTOeecE3TbM888EzqdDh6PB+vXd9z2HHiMcC0MAit3w7VGkAvX75Z6B/ncBAwV+o+mCCtN6lzSkPa2khn4f2PndMOIiPoerUaDX42bg1+Nm4Mntn6LezYs9a8LDDeqHM2Kfd0+ZRBAROFvx49Go1MZ/j1xWgYGJwd+VLDghZk/jtlz9gYzcgoxI6ew0/uflDkQr552pWSZKIpIf/O3aAy4yLu7sTo2Ia2oEtJ2cnJF+bnqvePPwJVBevCvrT6M6R8v8j+ud7UqXpsvHjwWQNvr/YMTzsLP13zgX9eZSvFYSNJrcO3oZFw7WvrZr0ZW2TvUNAFhrlMQERH1iIRsd2A0GpGdne1/HDixl5zJZEJWVhYAoLq6YwbTwPA03ORegdWwoZ6L+i75HxLbHfQNkdx+2OR2QowgdJdX0mYYLZ0eF1F/lmOSXqyUhLQqlbRqoQRRfxLJe4yaWFbSNruVY0jIDwkxIAgCRqZkS5btbqwOsnV01C5adb6SVvraqpXdFRYo3SA9p3F4PYpWNIG/j2adtI1EvELaYGoc0pDWqLHAwfkkiIioF0jISloAGDNmDJYtWwYA8HpDV+m0r9fpOn5co0eP9n+9a5eycX6gwPWjRo2KdqjUB8jPa6vtDBV6i31NNfjo6A6clJGP0/OGY09jNd459AMaXY6IKvTcPi8e+eErNLudKExKx7XDJyNZ39HupMzWgLcOlKK0rlyyX6bRKj8UEQHIMUtD2gPNtbhn/ccAgCe2LVNsz0pa6qu8Ph/ePFCKrfUVIbdzeD2dOn6sQtpgITEzq84bmZqDdQHtAd44sFG1D6qcRhAwI3sI8i0p+Lhsp6JNQLVKn/ynti9HtikJOo0Gp+UOxXmDSiIaozyklbfuCpRuVLZr+7x8t+Rx4O+jSdbrd0NNGZ7duQpHWur97T1GpGThmmGTFYFuT6h1Si+sGzVmVLTwvYaIiOIvYUPa0047zR/SHjhwABMnqt/e09TUhJqaGgDAwIED/cuLioqQn5+PY8eO4bvvvgv5XMuXL/fvX1hY2PXBU68jb3cAAM0uH5INrEOJpyMt9ThpyV9h87RVe/zt5AX4XekXaFCZeCOUB0s/93/94ZHt+OLcWwEArR4XTln6DI6qzKycyUpaIlU5Jultp81up2o42+7f+zfhkclzu3lURLF394aP8dT25d12fH0nKyjlmlzqaaybtwV1WklqjuTxhpoybKgJfeddZ72yb4P/60fxDd447SpcPWxS2P3k7Q60IdompKlMkLZFdvEhsKJXbUK2XwS0P2j3xbE9eOf068KONdbklbQGwYzSahdcXhEG+WzAREREPShhE6RLLrnE//UHHyhPGgLXtVcYnHrqqf7lgiBgwYIFANoqZdesWaO6/5o1a/yVtAsWLIAQ4io19V1qJ3Q763rXrV2J6E9bvvYHtABwx9olUQe0cl8e24P6ExUYa6oOqwa0AJBtiq7/NFGiGGBODr9RgFVVh7pnIETd7I39G7v1+NYYTdxVYVOv5E3S85y1s+QhbU96PcLfO/kkZBoE//fWa7RINZiCrgcAS0BFbIreGNEYPjy8Da5OVpJ3hbKStu1728VzdyIiirOEDWnHjx+PuXPbKnPeeustfP3114ptjh8/jgceeAAAYDAYcOONN0rW33nnndBq227tWbhwIex2afhjt9uxcOFCAG2tEu68885YfxvUSwxLVVYMOD2sQIm39w9vjXqfJF34DxatJ24/bHY7VdePTsvFiJSsqJ+bKBEMtKZiSlbkk2KatAl70w/1YQ6PG9UO5QzykQqsREw3mHGPbCLKUak5GBqDiagA4GCjMiQbnqbDACv/9jrrrPwRSFepPu0J+5tqI9quVdYn1qoPHfpfWDAm5Pr5gzpawZ2cPRhZEbR98oi+uLS0CbyADwA6oe17r3Ww5QEREcVXQp99Pf300/j+++/R0NCA+fPn484778S8efNgNpuxbt06PProo/5JwR5++GFJuwMAKC4uxt13343HHnsMGzZswMyZM/HrX/8aw4YNw/79+/H444+jtLQUAHD33XdjxIgRPf49Us8waAWYtAInHehjBpiTcXZ+sb/q5Nbi6bitZAYm/u+pkPu193FTm9Do/vFn4uejZrJqniiET86+Gc/sXIXDLfUAgA8Ob0OT26G6rbeTkyoRxVOFvUmx7JphkyS3lNc4bFhatlN1/+/m3oY39m+CUavDtcMmY2z6AJSk5WBl5SHkW1JwW8mMmL3PHGpShrS/mZYWk2MnqhSDCavO/wVe3LNWUbWp5lBLHb47fkB13bj0PEzK7PgM0upx4Z1DWwAAlxedBLvHjf8d3e5ff9hWD6/PB22YdhgtsgvN4Sqz/3nKpRiXPgDbGyoly40aHeYXjMK8go55N6x6I1ad/wuMfP/xkMcEAB96/jVeGdK2XRRpcHJOCSIiiq+EDmmLi4vx0Ucf4dJLL0VlZSUee+wxPPbYY5JtBEHA/fffj3vuuUf1GH/84x9RVVWFl156CaWlpbjiiisU29x000145JFHuuV7oN5jgFUr+aAjxuGkk6SEELfuAW0ffF477Uq8dtqV/mWR3HbX3sdNfqvgmLRc9s4kikC2KQm/n3iu//GhlueCBhTyyW2I+oKK1mbJY5NWh9dOvVISrJbWlquGtBpBwNTswZiaPViy/MYR03DjiGkxH+tBWUh7w+gkWPUJe7NdzIxKy8WT0y6MaNslh7cFfQ28rHACHjjprKD7Vtqb8b+3O0Jat8+LY61NKEhKC7qPT/T57wpqF+5OIrNOj7vHnR5ym0DFqdlI0hnR4lG/66hjLD17vuz2eRXVu9oTIW0jQ1oiIoqzhD8DmzVrFrZv347f/e53mDBhAlJSUmAymVBUVIQbb7wRGzduxMMPPxx0f41Gg8WLF2Pp0qVYsGAB8vPzYTAYkJ+fjwULFuCTTz7Biy++CE2MJneg3kseBzKi7f1CzWQcSrBKWl2MZtomSjShbtuWXwwh6guO2Rslj/MtqYrKV0OQ94xwFxhjyeUVUdYsDWmLUhO6hiMuDNrg5w/h2hDkmJIk/WAB4GBL6JYHdo9bUUwQ7nk6I5LzrJ4OaVtlVbRARyVtPUNaIiKKM56FAcjMzMRDDz2Ehx56qNPHmDdvHubNmxe7QVGfIz8PPdocuq9Vi8uHzw7bUe/wYnKOEZNyI5tkgcJ779AWfF6+G1WOlpDbaTsZ0g5/r63iXt5XUxdiZmQiCm5YiJB2eaV6dRlRb7ansUbyOE9lwrxgIW1nLyB2xof7bAjs1CQAGJLCjwc9zaAJ/jMP14ZAEAQUJmVgR0AbggdLP0dhUkbQfZwqdw0lxWgiOunYwm9j97qRHmabOmcrntm5EtUOG64dNhnTZFXmoTg8bjy7axW21h9vez6PcnKw9kraNRVONDp9SDUGtCWxe/HVYTvSTRqcNdgMrYbtrIiIqPvwLIyom3x0oBUXDrMgxaAe3D25sRE7Tswi+9URB+6bloqTshnUdtU7B3/AZctej2hbbRdD1Q01ZZLHOlbME3VKjikp5Pp11Uei+lBOFG/3b/pU8jjfkqLYJlj1ZE9FQKVVTry3T9ovdYBVC7OO72U9LVhgD4QPaQGgSBbSfnf8AL5DdBe4InmeaGki+G3+xfcf4P0zbwi5zY++ecXfDuJfe9Zix8V3Rzxx3s/WvI+X964PuU17JS0APLquAY+d2hZwu70i7ltZhyZX25WMylYvrhutvOBCREQUKzwLI4oRo1Z5IrqnXnm1HgBa3T5/QNtubUXonl0UmQ+PbIt4W7UPJFpBE/LDUijJeobsRJ0xMXNgyPXvnZgkh6gv8KjMVp9usCiWJetNqvt3R1im5uMDygmtCllFGxcpBvXfBQDIMJrD7j88JatLz2/U6mCWtUyIhUh+l789vj/k+iaXQ9Kv1+n14L8Hf4h4DB8f3RFyvRY6aNBx3newyYM6R9vf8JrjTn9ACwBLD9ojfl4iIqLOYEhLFCMz8pQBndOr3mfLpbLc5mYX21gI1+Ig0KWF4xXLtBoNLlFZHokfF07o1H5EiW5y5iBMyMgPun5XY3UPjoaoa+pdyiBn3qASxbIMowVn5Y9QLO+p95JttcoLyTkW9laPh7FpA1CSmqNYnmdOwam5Q8Puf0XRSV1quXR54QRouqFl02VF4X+X5ZN4yTW5HYpluxurIh5Dszt0EURx0ihFv+j2c/IKW/jJZImIiGKJl8uJYuScIWa8tF0aEPqC5K4eleVscRUbtQ5pZdDUrALsbarBydmDMT49DwCg12hxRt5wnKny4RgAXpp5Gc7IG449J4KhTKMF9278RHXbcweOxMSMgZiVW4jzC0bH8DshShyCIGD53J/h1X0bkKI3YndTNR7d8o1//c7GyhB7E/Uu8vchADhPJaQFgPfPuB6v79uIQy31AIAxabm4atikbh1fKOlG1m/Eg1ajwXdzb8O/D5SiorUJAJBlsuKKopOQFMFdOtNzhmDV+b/Ax0d3wKHSbzaUkanZuHbY5E6NO5w/T5mPSZmD8EPdMQBArjkJQ5Mz8aNvXvVv0+pxQxRFRVAauF7uuL05oucXRRFOrzQEvmH4FGSfaLFTkpqD+YNOwsJvGyTb2E+cqJtU7pLziWKP9o0mIqLEwpCWKEYEQUBRig4HmzpOjoPNWOtRSW9VzgOpE2qdNsnjByachQsHj4nqGCadHjcXnyxZFiyk/XHheNwk25aIopdiMGHh6FkA2nrQBoa0B5rr4PR6YNTytIV6vzqnNKS16gxBf3eT9Sb8bNTMnhhWRDJMDGnjJcecjLvGnNbp/adlD+51vbu1Gg2uHjYJVwdceDjQXCvZRoQIh9cTtN1Cq8elWFZma4zo+T2iDyKk59z3jj8DI2VVy6lGDRqdPv9jR3tIq1OenLd6RCTpedJORETdg2diRDGklf1FBaukVeuCwNliY6NW9uE406jsAxhL4W7TI6LojUzNljz2ij7sa6qJ02iIolPnkr4PZXTz+1BniEEuIqeb2O6AupdFqwxjbSpBbDu1StqDLXVBf4cDOVWqio0a5QUTecWs3dMW2JrlJ/YA7GxPRkRE3YglKUQxJD+Ve35LM2YPMvlvi7J7fHh/bytWHlP216Kua/W4FCf6mUZrtz6niyEtUcylGszIt6Tg2InbfgHghpVvI6sLf89DkzPxm/FnYqA1Nep9HR43Ht36DTbUHA16h0Qow5Iz8ZsJZyLf0vbcr+3bgA8Ob4PDqz65pF6jxTn5xfj5qJlBbwGm3mVzbTme2r4cVY4WVMhuxe7ui4XR2FrjwrKjdslkSIHY7oC6m0VlMrFapw1ZJitEUcSbB0rx1bE9OCu/GPMLRuFna95XbG/zuHDuF/9CgTUNvxo7G1pBg4VrPsAXx/bglJxCpJxoEeH2+RT7qlW1m2UVs44T1RQGlWsWrSeqbF1eER/ut6HO4cO8IgsGJ6t/rD7S5MHHB1uhATB/qAWDgmxHREQEMKQliimNSjXso+sacP/J6QCAF7c2Y+Ux9QkMOvG5n2TuWf+xYlmmiZW0RH3RqNRcSUi7oaasy8dcU30YGy+8K+r97tmwFIt2ruzSc6+rOYp1F9yB/x3ZjutXvB12+4+O7oBeo8VPS2Z06Xmp+9ncTpz+2fNoUJkwDOg9lbTlLR48vr4BbmVu5ZfGkJa6mUWlrcHNq97Bink/x9Kynbhm+ZsAgFf2bYBRq1OthgWAL4/tAQB8dHQ7PD6ff8K+1VWHQj6/Wkgrb2vgUJs84oT2KttXdjTj6yNtRRdrKpx4/swsxXFcXhF/WFOP5hPVt5uqXXjujEzoePccEREFwTMxohhSaV2FLTXugK+D384l75lF0VtTfUSxLN1g7tbnnJpV0K3HJ0pUY9JyY37MTbXlqHHYwm8o81n5ri4/9/qao2hxO/HB4a1RPO/uLj8vdb9VVYeCBrQAkGdO6cHRBLfsqCNkQGvQAHo2yKduptMoy1PbJ2r9xZoPJMuDBbSBqh02f0Abjl6jhVWlktesaHfQdk6ultW2r2sPaNuXfXlYOYZ9DW5/QAsAjU4fjrXw4j4REQXHkJYohowhPtyIooiWEH2sgvWvpcgdtTVIHhdY01Q/DHTGvePOUCybllWAU3OHxuT4RCR1w4ipMKv0Luwq+eSCkahojWwm8XC8og9b6isif157U/iNKO72huiXrBU0uGHElB4cTXCbq9Xv5Gl3wbDeUfFL/d802QXu9tZRh1vqu/V5rx46MbJK2hPtDpwqKa3avBIAUG5TBspVrcpA1sNb54iIKAS2OyCKIbVZYNs5vSKD2G5kcztR5WiRLFt61k0xO/6fJs/FnLxhaHTZkaI3odHlwILBY9gvkqibTMwciNIFd+HL8j1wRFBNFcxvSz+T7F8nm1wwHJvbiRaPNNy6b/wZyDCEDrQa3Q488sNXkmUenw/bGyoly34xaiaGWNta4uxqrMLivev86ypaGdL2BfKQdkrWIFxeeBL0Gi3m5A3DhIz8OI2sQ53DiyPN0sBoflHbnSaVrT6cNdiECdnKCkOi7vD8KZdi0v+e8j9ucjsimghs4ahZGJKUhl+ptLeS++OkuTAEXKgfnpKF8wtGqW4brN2BXSWR9QY5mXepbFttV4a0/CxAREShMKQliqFQIa0tzGywPGnrmkMq1RdDkzNidnxBEHDuwJExOx4RhTcyNQcjU3O6dIy/71wpqbKPNqStlF38Adoq61MMppD7ldsaFSHt3qYaxe27vzvpHGSZ2iZEW1d9RBLSHrc3QxRFXgzq5fY2VUsezxs0Cr8aNyc+gwlic5W03ZJVJ+CqkiRo2RuT4iBN9vrpE0XFxK9q/jrtAug0Wry0dz12yC54yf1yzGkwqfS/VSOfOKy9pYFab9pg7WrVQtqqVmV/ERbSEhFRKGx3QBRDphDtDmwhJiEAwI60XXSwpU7yOMeUBOuJ2X2JKHHJJ22qjTaktUtbHZi0OiR38rVF3uog35LiD2gBZe9Sl88bca9Fip89jdJK2hEpWXEaSXCbq6UB2LhsAwNaipsUvfIiV5PbobJlh2S90d/CKpLXYE0UF7fkPWn97Q6iqKR1qrSaVauk5fk+ERGFwkpaohgKVkn7zh4bvGEunfPKeuR+qDuGh0q/wBFbW/XsUVsDqmWTARXFsIqWiPquTFlIe/2Kt/Gfg5tx//izcEpuoeo+NrcT9278BGuqD6PeKQ1JB5iTO13Z+rvSzyWPx6fnSR7nmpMU+xxrbVQEzWrjvW/jp/i++hB8J95MzFo9flw4AbePnoUf6o7hz9uWYXdjFQAg3WDBz0edgouHjJMcp9ntwK83LMX6mqPwiSLMWj1+NGQc7hpzWkJV87a4fHhjVwuqWr04vcCMUwcGr5p2+7zY19y7QlqXV8R7e234cH/bBYmiFB3KWqQV3CextQHFkdqdCOd8/kLIfQJfB2Md0hpl5+9rKpx4dF0DalRC1h+qXRicrPwIvaXGhcuXtr3GDkzSwqARFH93APyv0UQulwstLS2w2WxwuVzw+ULM7EhEvYZGo4HBYIDVakVSUhIMhtieUzGkJYqhYJW07+4NP1ENT9ki4xN9mPflizgWpldjURJDWiJSVtICwCdlu7Cy8hAqrngQFpWZvu/b+Cme2blK9Xi55uROj+W4rCpX3qvUoNUh02iRVPv+Zdt3eOXUK0Ie9zcbP8WinSsVy1dVHcIAczLu3/Qp9jfXStZ9U7EPey75NYYHBIq/XPcRXtyzVnGMAmsaflw0IfQ314+8sLUZa4+39SHeXuvGwCQthqaq3zb90p51imUjUrK7dXzhLD3Y6g9oAeBgkzIoYkhL8aTXaGHW6mH3uv3L5P265dINZv/XybrwIa1WiPyGUXm7A0BZfd5u5TEnvq8IPQlfeYtKWe0JPN8nURRRU1ODmprgk04SUe/WfpGlsrIS2dnZyMzMjFlBA0NaohhKN2rDbxSEO9h0sSRxuKU+bEALACVd7GNJRP3DIEuq6vImtwMba8pw6oChinXLKw8EPV6kF4BSDEZoBCFk1dTEjIGKZS2yvoyRVF2tqDwYdN2DpZ8rAloAECHi+6rDkpD2+6pDqsdYXXUooULa9oC23bKjjqAhbXlro2JZuMrn7vb27tAXhgtTdEg3df58hSgW8i0pqq9NwQyydryW51tSQmwJpBpMUX1YDtWuTE1XTtlZSEsVFRVobJS+dwiCAK2Wr8tEfYHX65VMdlldXQ2Xy4X8/NhMFMuQliiGJuZEXpkyOkOPHXUdFQQtbt7iEgmnN3h1QrssoxXXDZ/cA6Mhot7uxhFTsXjvOjS7lZVPagEbADQG6QNr1OpwW8mMiJ43WW/CDcOn4qW9ykpLoO1C0oWDxyiWD7GmY0/ARFRq45YL1ctxj2xSq0DNsv08ovr7kMsX/nW3P6uwBf/+g/3MerOrSqzhNyLqZneMPhW3r/0wom11ggY/L5npf/yTEdPw6r6NaPGovz7ePmpWVGPpyf7MnCg4sTkcDklAm5mZiZSUFBiNxoRqK0TUl4miCKfTiaamJtTWtl1sbGxsRGZmJozGrs+Jw5CWKIaSDBq8fE4Wvj7qwBs7lTOCtxubqcdZQ8yykJZnbZFwRxAWbL/4V8jpwi3JRNR/jM/Ix64f3YMVxw/iiu/ekKw7amtQ3afRJQ0v7x9/Jkan5eKUnEIURtHv+oVTLsX1wyfjUEu9ZHmq3oQz8ofDrDLz+M9KTsGd65b4H4ebTAeILMhVI6/aDVbh5UnwPnmeEKmKvNL5mmGTuns4ITW71P+tpuYacXKeEaMz9Mg0s1qL4m/h6Fk4NbcIW+uPQwxoAuDx+XDU1oAhSenQCAK0ggYnZw+WVP1PyhqEXT+6BysrD8Lpa2vncdzeDLvHjbmDSjA1qyCqsQSZUqLLzi8yY+lB6UU/nu0ntoaGBv/XOTk5yMzMjN9giKhTBEGAyWSCyWSCVqtFVVVbP/L6+noMGDCgy8dnSEsUYxa9BhcMtSDDpMHfS9Vvy586wIhkvbRXFitpIxMupE3RmxjQEpFEviUVlw89CZ+W78Kr+zb4l5fZlJW0oiiiSRZ6Xlo4HidlKlsThKPVaHDagGE4LYp9UgzSK/CRBLCdDmll+4lB4oO+WC0aS9GEtALiWwkVrOp3RLou5ARoRPFwUubATr22AsBAa9vreizouqmSdkK2AauPOVHv7HgNZbuDxNba2tEvPC0tLX4DIaKYSEtL84e0gX/fXRF5R3UiioolxGX5/CQdkvTS9S0ukTO+RsAthg5ptbxViIiCkPenLVNpd9DqccErCyXVZiLvLvJZy8NV0np8XsnkO9GItP+tJ8HbHYS6hioPtqOZUb47VNiUk4QBgKEHb+cm6muibEkbxXEFyP/0fKylTWjeE23bdDode9AS9QNardb/t+yNoC1jJFhJS9RNLLrg10Dyrco3ZRGA3SPCqucHqVDcYW67jWY2XyJKLAXWNMnjj4/uQMF/HpYs86oElan6ngtpU2TPtbepRjHGQGof+ItTskP2om33wu41eG3vZji9bVGj3avepuedQ1vwTcU+/2OzTo9LhozHHyefB02Ur7n1Di9e3NaMg40dYaJFL+C8QgvOGtw2e/vRlgbc9v17KK0rl0wU2R6yG7Q6zB04Ek9OuxBGbexOZbfVV+COtUvwfU3HLPNWbSpma2bh07JKPFT6hWLiygZZa4x4hrRNTh+e+6FZdZ2hu1Ioon6guypptRpA/pLAegwiov4l1v2kGdISdRNzkLDVqBWQYdLApXKhZXutG9MGdL3ZdH8Wrt2BTsOQlojUBc4ODrRNiKVWTSvXk5W08pDWJ4oRjTHQzNzCiEJam8cFG1xht7N73YoxPLb1G4xKy8F1w6dENbaXtrdgQ6X0OWsdwL+2NqM4XY/ByTrcuvodfFa+W7Fv4Bie3bUaQ5Mz8cuxs6N6/lCu+u5NbK2vkCyz+5rxwfF38N7xyKojNHFsd7Bos3qLJYCVtEShaLvp1FErKBugMKQlIqJQmGYQdZMMk/pHtSHJWmgEAUaVO1yCTfhBHcKFtLnsR0tEQYxMzYl6nwHmZOg1PXdLorzaN1qpBhPOyBuuui5LP6hLx5YrrS2Pep/9DcFbM+w+MZnmhpqyiI61qupQ1M8fjMfnVQS07XyI/Pa1eL0H7axzYUtN8MA93cRTfqJg0o3d8/eRbtSotDsgIiIKjmdsRN0kSa/BuYVmyTKtAFw03ApAvSze6eXl9XBcIUJaAQLuHXd6D46GiPqS4SlZuGroxKj2uX/8md00GnUDram4Icrq1ED3jTsDlwwZj4kZ0sl4pmYWYkbKhUjSpnd1iH6decdyhHifq7G3vb7bPOGrewHgqK2hEyNQ5wnTSicSueZk3DhiagxGE71399iCrivJ0KMkQ9+DoyHqW3ItWkzP69ydbDPyjDCptBOZmW9EtkWraIESYh5CIiIitjsg6k43jE7C2YPNqLF7IQjA4GQd0k0dFVmTcgzYVNXxYZQhbXjyStpkvRHvnH4dAGBc+gDkyyYGIiIK9PppV+KecaejojX4reHtSlJzUJic0QOjknpp1uX45ZjZKI+yzcGIlCwMS8kCAHw/fyE21pShye1AjikJoicLf97YhHMzbkSduwIeMXhF66Mz8zExcwA21Zajxe30L//bjhWqbQiiEep9rtruhU/0RTwRWkxDWjHykHaQJRX/mvljyTKjVoepWQVI0vd8y6JddS5sq5X+zCblGHDuEDOSDBoUpeigZbsDoqAEQcAdE1Nw8XAPGpw+pBg0+M9uGzZXSy8YXTHSisIUnf9OufwkHXIsWtjcPhxo9CDfqkWrR4RPBAqS28735X96an3PiYiI2jGkJepGgiBgULIOg5LV/9SMsivvLoa0YblksyYOsabj3IEj4zQaIuprNIIGEzLyMSEjP95DCUoQBIzLyMO4jLxOH8Oo1eGU3EL/488PtQIAtIIO2YaCkPuOSs2ERafFrNwiyfL3D2/t9HgAwOsT4QmRhdbYfbB7IgtoAaDS3gKX1wNDDCYP80YR0uaak3HeoJIuP2esvLtXWkWbbtTgrkmpnCyMKAoaQUBhSkfF+ZRcoyKknZFnxACr8vXGqtdgXJYBAJCpOK70MStpiYgoFLY7IIoj+QcoVtKGJ293YND2XK9IIqK+qsYeeQjp8HTPe1G497gauxetEVbRAoAIEcciqIiOhFp1W5pOvYdxShyqZYPZVefC1hrpz2zBMAsDWqIu0ql8Su7M35Wi3QGb0lIv4HK58NZbb+G6665DSUkJMjMzodfrkZWVhcmTJ+O2227DV199BR9/YYl6HCtpieJIXkm79KAdSw/acfvEFMzM77nZxPsSl88jeWzQ8GWMiKid3ePDP35oxg/VLngCgkdvFJ+z7vquDreflIKZA0O/D/19x0os2rEaAGDWWDEp9VTcOGIKrhuVpHp7/aEmD3a3rsfu1nVw+Ryqx3wxxJxhKXoTPKIXrQHVtif976/Yf8l9ePNAKR7f+i2qHS0AAK8Y7Szqyo0LjCVo8FQpx2HoHe/Pnx5sxSs7WiTL0o0anDnYHGQPIoqUTuU1zNCJtiHyXNfXqW7eRLHz/vvv4//9v/+HQ4cOKdbV1taitrYWmzZtwvPPP4/i4mL89a9/xfnnn9/zA01whYWFOHz4MK6//nq88sor8R5Or7Ns2TKcfnrbXDTffvst5syZE98BxRDTDaI4koe07f5e2oSJ2QZY9Cx2l5NX0uo1/BkREbX75KAda487w28YxrM/NGFSrgHmgHIyeUseESJEnJjsy9eElfWfIPPAMIzJNGDaAGW16eMbD+GHlm9DPm+ooh29RoM8UzJ2N1b7lzW6HPjp6nfxXhdbMagZaByBbbYVEGWhSoo+/iHtcZtHEdACwIWsoiWKidhV0kofR3PBjCjWHn74YTz44IP+x2effTYuvPBCjB49Gmlpaairq8Pu3bvx0Ucf4csvv8SePXtw//33M6Ql6kEMaYniKNscPGD8vsLJahgVDq+0ktYYg16ERET9xaEmT/iNIuAVgQqbF0NTO96nrLrkkPuIENHkrcWe+gxFSOv1idjfcqxLY3pi6nx8fHSnJKQF0C0BrU4wIEmbhhz9YFS6D0vWDY3DZHJyR5u9imVpRg3O4nkDUUyMzTRIHmeYNOhM7YRew9Zm1Du8/PLL/oA2JycH//3vfzF79mzFdmeddRZ+/vOfY9u2bbjrrrtQXV2t2IaIug9L0IjiaGa+CYUp6iFjd/UE7OtaPdJJHKw6Q5AtiYgST4srdmVa8km+5g+cgiRtetj9KmzKoLisxYtWr73TYzkjbzguLzoJvxl/ZqePEY2x1lnQCFpMTD4LJo3Fv3x4chZuLj65R8YQikell8PPJiSzipYoRpINGlxWbIUAQK8BrhhphSBE//dl1Uv3aXHz/J56Xnl5OX7xi18AAKxWK7777jvVgDbQ2LFj8fnnn+NXv/pVTwyRiE5gSEsUR0kGDR6blY5ci/JPUe0DGAE2WUhrYUhLROQnDwAuL7bi0VnpeHRWOgYnKydafGxWOl47LxuvnputWCefTCtJm4y5GTfj3Iyf4Oz063Bl/o3KC2WiiOM2ZZXnvgY3nD5pSHtm3gg8M/X/cHb6df7/fpR7AzZccAc2XnAnGq9+BPZrH8Wxyx/El+feCovOgMlZg7Bm/sKQP4M0XYbkmE9P+j8sOf0XWHL6L3B53o2SdYH/nZtxHZac/gv8b859KLZMAQCk6DIxP/NnKL3wLmy76FfY9aN7MMiaFvL5e4L8luk8qxYTsnvPhGZE/cElI6x44ews/POsLMwe1Lkq9SRZ+a3NzX4H1POeeuoptLa2AgD+8Ic/oKSkJKL9NBoNrrnmGtV1K1euxLXXXovCwkKYTCakpaVh4sSJeOCBB0JW3y5btgyCIEAQBCxbtgyiKGLx4sWYNWsWMjMzkZKSgmnTpuH111+X7OdyufD8889j+vTpyMjIQHJyMmbOnIn//ve/QZ/r0KFD/udq7+v6zjvv4KyzzkJOTg7MZjNKSkpw3333oaGhIeTPYtu2bXjkkUdw7rnnYtCgQTAajUhKSsKIESNw/fXXY82aNSH3f+ihh/xjAYDGxkY8/PDDmDhxItLS0vxjnDNnDgRBwOHDbXfxvPrqq/792v8L7L+q9j2+//77OOecc5CTkwOr1YoJEyZg0aJFcLs7evqLoog333wTc+bMQU5ODiwWCyZNmoTnn38eYgQ5RGNjIx599FHMnDkT2dnZMBgMyMvLwwUXXIB333035DHax/vQQw8BANavX48rr7zS/3MdOHAgrr32WuzcuVOxb/v3296PFgBOP/10xc+oL/fx5X3CRHEmCALyrTpUtkrDR3kFE7UJnDAGACxafZxGQkTU+8gDgMIUHYamtr1OFqfrcUR2m3xRasdraKpBQKOr46Ra/j7U6vFBEASk6rIAACOS9dDXSINfESKOt3rhE0XJrOb7G91witKQdlhyJi4pKsTyw3WBB0C2IQODA+4yydNJX+dHpuSofu/ttDAiXT/A//j8IekYntZ2jO/L6iB61VtCZJs1uLAwC1WtXryxo9a/XCNoMCotN2gf+Xjw+KQffsy63jM2ov4kxdC1mqYkVtJSnImiiFdffRVAWxXtLbfc0qXj+Xw+3H777Xj22Wcly51OJzZv3ozNmzfjmWeewTvvvIOzzz475LHcbjcWLFiAjz76SLJ8/fr1uO6667Bhwwb87W9/Q319PS666CIsX75cst3q1auxevVq7Nu3D7/5zW/Cjv2mm27CSy+9JFm2e/duPPbYY3jttdfw9ddfqwbYgZNUBXK5XNi3bx/27duH1157Dffeey8effTRsOPYu3cvzjnnHNXJ27rqZz/7Gf7xj39Ilm3ZsgW33347li1bhv/+97/weDy45ppr8O6770q2Ky0txW233YZNmzbhhRdeCPocX3/9NS6//HLU1tZKlh8/fhwff/wxPv74Y8ybNw//+c9/kJSUFHK8zz33HO644w54PB3nZseOHcMbb7yB999/H59++ilOO+20SL/9foGVtES9gNrpmlcU4fSKaHX74EvAqtoWtxONLrvivwaX9EM+2x0QEXWQBwBJAQGDvDeinFa2vvVE4CuKbe9FTbJWCmadIAliAcAjutDqceJAow2NLjuaXG64vR7sqG2Bwyed6CrLZEWuRavoz76lRnrRUi7NaEaaIXhVmyBIg+MMU8fxQ7UDyDBpg25T7/Ci1e2Do4tXUNt/ll3pS+kTRTS7pPv3ovyYiAJYY1xJ6/D44PV1/XOBKIqKiz3UP23fvh01NTUAgFNPPRXJyaH7y4dz7733+gPaoqIiPP/881i3bh2+/fZb3HXXXdDr9WhsbMT8+fPxww8/hDzWb3/7W3z00Ue4+uqrsXTpUmzcuBFvvfUWRo4cCQD4+9//jq+++go33HADVq9ejdtuuw1ffPEFNm7ciMWLFyM/Px8A8OCDD2L79u0hn+u5557DSy+9hGnTpuGtt97Chg0b8Mknn+Cyyy4D0BYMnnvuuWhublbs6/F4YLVacdlll+H555/HsmXLsGnTJnz22Wd48sknMWTIEADAY489hpdffjnsz/DSSy9FeXk5Fi5ciC+//BIbNmzwf98vv/wytm7d6v/eFixYgK1bt0r+C/Yczz//PP7xj39g3rx5eP/997Fx40Z8+OGHOPnktjZN77//Pl5++WXcfffdePfdd3HVVVfh448/xsaNG/H222/7A+p//etf+Oyzz1SfY9WqVZg7dy5qa2uRm5uLRx55BB999BE2btyIjz76yF95/cknn+D6668P+XP4/PPPsXDhQowZMwYvvfQS1q9fj+XLl+Ouu+6CRqNBa2srrr32WrhcHeeFAwcOxNatWyVh+0svvaT4GV100UVh/x16K1bSEvVS7+1txXt7225LSdILuGlsMk7Jj/+M0t2t3NaIH33zCtbVHI1oe7Y7ICJqU+/wKsK/wCqucCGtvBjzr5uaADRBrwHUcgWzXoD8iCsa3wMAfPhB+PFmGi0QBAHjswz4+qjDv/z1nS347x4bLiu2Yv5Qi+q+RUkZKK0rV12nQUdIqxHaJtRqZwjxM2gPc03KrhC4Y1lHtW9hig6/mpyKbIvKhiFsrnLiuR+a0OgSIQAYl2XAXZNS0OTySY7/8CnpKE5Xv0tkY6UT/9zSJKl4BgBdmH9bIoqPJENsKmkrW734y4ZGHGn2wKQVcMVIK+YWqb8+hvPStmZ8frit6CHHrMHfTs9UXHCj/iMwKJ08eXKXjrV161Y8+eSTANp61q5YsQJpaWn+9XPmzME555yD888/Hy6XC7feeivWrl0b9Hhr167F008/jTvuuMO/bNKkSZgzZw6Ki4vR3NyMq666CjU1NXj//fclwdukSZMwZcoUTJw4EV6vFy+88AL+9re/BX2u9evXY968eViyZAl0uo4YbO7cuRg7diwefPBBHDlyBA8//DD+/Oc/S/Y96aSTUFZWJvle25177rn4xS9+gfnz5+PLL7/E73//e1x33XXQaoOfI2zbtg2ffvopzjnnHP8y+b+NXt92HpCWloaxY8cGPVagtWvX4s4778RTTz3lXzZp0iScffbZGD16NA4fPox7770XdXV1qj/32bNn+3/u//jHP3DeeedJju92u3HNNdfA7XbjvPPOw3vvvQeLxSI5xvz583Haaafh1ltvxfvvv48vv/wyaEX1mjVrMG/ePHzwwQcwGDo+05966qnIzMzEAw88gCNHjmDp0qW4+OKL/T+XsWPH+i88AG0XCyL9GfUFrKQl6gXCna61uEW8uK05Ia54/3Ld/yIOaAHAomO7AyIiAPhgX6tiWWA/RH2YTFFeSdsuWOGXWSdAGdNGLstkBQCMy1ZebHN6RbyxswU1dmV/WwAoSs4IelxtQCVtmlEjCR+MIX4GmSdC2nCTbx1q8uC9fbaQ28iJYtv7eHu4KqKtYvjrIw68vF1aYfy77+uDHuNfW5sVAS3ASlqi3krek7azkzu+s8eGI81ttwM7vCJe39miuLshEg6Pzx/QAkCV3Ydtte4Qe1BfF3hLek5O6HZB4fzjH/+Az9f2e/fiiy+qhpbnnXcefvKTnwAA1q1bh/Xr1wc93sknnywJCtsNGDDAH8pVV1fjsssuU62MHD9+PGbNmgUAWLFiRcixG41G/Otf/5IEtO3uv/9+f8i3ePFiSeUmAGRlZal+r+0MBgOeeOIJAMDhw4exefPmkGO54YYbJAFtrBQUFCgCZgCwWCz+qtba2tqIfu5qP8+3334bhw4dgslkwmuvvSYJaAPdcsstmDZtGgCE7A1rMpnw8ssvSwLadrfffrt/ebh/2/6GIS1RL1CQFL4ax+YW0ejs341qHR43Pi7bEdU+I1Kyumk0RER9y9FmZa/VwCquMwukLQLk1Zq5UVaG5ll1IcPScEaltn1YHJtpUI16RQAryh0qa4CJGQODHteqTfN/nWmSnuoOsAa/iay9D65GEML+LCpUJkcLpcklotqufA+vsHmwuVr6YTDY9ViXD6gPch6Qa43u346IeoZJdgXF3cmCiwqb9PXdK6q/5oeztUYZyH59xK6yJfUXgbfvW63WLh3rq6++AgCMGTPGfwu9msC+t+37qLniiiuCrpswYUJU2x04cCDoNgBwzjnn+FsIyGk0Gn+IWVdXh02bNoU8ltPpxJEjR7Bjxw5s27YN27Ztk0yUFa7Nw9VXXx1yfWf96Ec/8lfgygX+PC+//PKgx2jfrr6+XjGZ2v/+9z8AwOzZs5GdrZxwNlB7H9nvv/8+6DZnn3120AsHycnJGDFiBIDw/7b9DUNaol7g/CC3c8rZPP27knZl1UHFxGChXFAwGgsG959bG4iIOksURRxqkn5gn5FnlFSRZpq1uKzYCgFtk4RdOVL6Ye3ykVZJ/9ZQSjL0OL3AhCemzkeWMboPfQIE/HTkdEzJKgAAJBs0konCAjUHqRT7v5IZmJ49RLE8RZuFkZZp/sc5srB1XpEZQ1Sea2K2AdPzOloKXT86CZYQk3FF2xOyslU91I2mPWWw58y3arFgWNc+eBNR99DKXlI729Zabb9gdxqEohYS9/cikEQX2IPWZovuLpBATqcTe/fuBYCQAS0ATJw40R8Wbtu2Leh2xcXFQdcFVq5Gsp1aL9lAU6dODbm+vfITaGvrIGez2fDoo49iwoQJsFqtGDJkCMaMGYNx48Zh3LhxmDhxon/bwFvx1YwfPz7k+s6K5c8TUP5MN2zYAKCtl6wgCCH/+8tf/gKgbTKxYNQmaQuUkZGhOo7+jj1piXqBDJMWt41Pxj+2hH4Bau3iZAO93adluySPJ2cOwodn3qC6rVVnQLqxc724iIj6myq7D62yC3nXjFLOqHvJCCsuHm6BAECQ9SAcmqrHc2dkot7pw4Or61UrP/8wIx15SVr/jOezBwxD5ZW/Q0VrM3yiDz/7pq236sbmL1Dh2i/Z1yiYcXbGDRiaYsHfTsmTrBudocfhJmVVWLAJtrJMVnw/fyGqHS1wej247etaaAQNjIJF8n3JK2IzTFr8+dQMNDp90GoAUQQESCdYA4DJuUa8eHYWGk6EF2uPO/Hqjo62BNEGLcdt6hVv0VTVqT3lo7PSUZSiU/xbElHvoJX9bXZ2MmC1lmc1Kq/R4ag9vaOfF4EkuszMTP/XlZWVnT5OfX1HK55wbRP0ej0yMzNx/Phx1NXVBd0u2O3yQFt1azTbtbdhCCbcmHNzc/1fy8d86NAhnHHGGTh48GDIY7Sz20NXp6enp0d0nGjF8ucJAF6v9EJQVVVV1GMK9bMINY7AscjH0d8xpCXqJcL1wAPaWh70Z5+V75Y8nl8wCoOsafEZDBFRH3KwUXoXQrJeUNzq3y7UBDGCICDDpMUFQy14SdYrFQAyzRp/QNtxPA0GWlMBAAVWL2odPli1KSrPq4VFmwyrSj+40ZkGfHpIeSIfLjzINiVBFEVYtC7V9fJK2napxvAVw1qNgEyzVnV7T5RBy/EglbTRhL1qeW6GScuAlqgXU1TSdvJUXq1OozOVtGqvI44gF8Oofwi8zT3cbfyR6ovvO10Z87XXXouDBw9CEATceOONuOKKKzBq1ChkZ2fDYDBAEAT4fD7/ZGFimHOEUJOK9WbtYencuXNVe99SbDCkJeoljBGEtK39OKQ91FyHHQ3Sq7tzB4W+BYKIKJG1uHzw+ESkmbQ41Cit1CxK7Vp15fQ8k2pIG+6tqv2Co1GjvP1eONFlS68yQVlJhnoPtV31btTavcg0a9Hg9EErtFXX6jQC0k4Ep80h3huj7bMbjLzzgccHNDh90ABIiSDwrQzSw1beZzJwuUYQkG3umPhMLVwJMtcbEfUS8kraVrcInyjC5QXqnV4kGzQwagTUOKSvEQLaLjK1//2rVdJWBbn4I9fg9CFJL6DO4UOdU7kPK2n7tzFjxiArKws1NTVYsWIFmpqakJKivJAaTmD1Z7iKXI/H45+wrP2W9XgLN+bA9YFj3rVrF1auXAkA+M1vfoNHHnlEdf9QFcP9RWZmJo4dOwaXy+WfaI1ijyEtUS8RSSXttloXTh1kCrtdX7Ol7hgmLPmrZFmG0YIpmQVxGhERUe8liiJe3NaMr460Tao1Idug6FdamKIeekYq1ahBYYpO0edWHjjItU+oZdIob2HTCG1hpk4l05RX57arsfvws29qVddNzjFgwTArHvy+XnU9ELySNlo6WRpaYfPip1+19ZybnmfE7SelQBsiMQ1WSVvWor78zmVtH/bSjRr8ZloaBqfosLxMWWnMkJaod5Of3osArvykOqJ904wa3Dc1FTkWLWodylLabbVuHGh0Y2iq+uu9w+PDnzc0Yntt6PkeWEnbvwmCgP/P3n2HR1GubQC/Z3s2vUIKvTfpTUBAwIIUsSBgoYoHFDt61E/FemzHo6JSBEUUkY5iUBCpIr33XkMo6X3rfH+EbDI7syXJpt+/6+K6dqftu0uy2b3nmecdPXo0/vvf/yI7Oxtz5szB888/X+zj6PV6NGnSBKdOncKOHTvcbrtv3z5YLPk/d5UlzNu1a5fX64uO+ciRI47b7ibcKujX6iuVsVq5ffv2uHLlCnbv3g2z2QydTldhY6mMr4+vcOIwokpC58U3rW2JpnIYSfl794B81s87YppCreJbFBGRs0uZNkdACwAHbphx2OlLeIPg0p+HvzVGL1vm6U9VbEB+KGooZiUtUPyq1z3XzW4DWgBeT4TmiVKwXGB7oglHU9yHIK4mDvMk1WTH8tPZsIsiFhyXT/jCv5JElZsXNRgupZnsWHY6B1sS8lxus+yU64mgtieaPAa0QMn75FLV8dxzzzn6f77xxhs4fvy4hz3y2e12LFiwwHG/f//+APKDy507d7rcb86cObJ9KtratWuRmJiouM5ut+P7778HkF8x3KFDB8c6q7XwZLW7iddmzpzpo5HmMxjyC7NMpsrz/X/IkCEAgPT0dHz33XcVOpaC1weoXK+RL/CzHVElEROghqfPcRF+1fNX9nCqfNbHB+u3VdiSiIgSXFwiX1SdwNKHtP3r+sGvyHX+oXoVjFr3f6nuqOcHAAjWRMrWBarzLx90rkotML61fKKz0mgconHbf7c4QvXuA2R3lx3bRRGZ5pKHINdybIr7a1SQ/P8QUeXjrsLeG0m5NpeV+ABwxUU1PpA/4aE3utSWn5Cj6iU2NhZffvklgPygsXfv3ti0aZPbfY4ePYq77roLH3/8sWPZpEmTHJM5TZw4ERkZGbL91q5di7lz5wIAunTpgs6dO/vqaZSKyWTCE088oTgJ1QcffIBDhw4BAMaNGwe9vvB3okmTJo7b8+bNUzz2jBkz8Msvv/h0vNHR+ROsnjlzxsOW5Wf06NGoUyf/StcXX3wRmzdvdrv933//7fHnrKQKXh+gcr1GvsB2B0SVRKBOhfGtAzHncKbLbbKqaU/aK7nSP/DtwmIwrF7luDSGiKiyyfIi8Iv0K/1l/v5aFSa3DcJ3RzKhFoDxrQM9hp594gw4mmzBwaRQDKzdD+uu/Q2zaEKIJgptA/oAAHQuhnZLhA6DGxqx6mxOqccO5I/XV+IC1fDXCi4n8DS5uVy4tJN+5lpFJOfJv1Q+3yG4Wl/uR1QdlKaSFsjvRZ3r5j0kW2lGsZtYIEtFjR07FpcvX8Ybb7yB69evo0+fPrjjjjswdOhQtGjRAiEhIUhJScHJkycRHx+PP/74AzabTTLxWJs2bfDCCy/g448/xoEDB9ChQwe8/PLLaN++PbKzs7Fq1Sp88cUXsNls0Ol0mDVrVgU+Y6lOnTph1apV6NGjB5577jk0adIE169fx/fff4+ff/4ZABAXF4fXX39dsl/79u3RunVrHD58GLNmzUJqaioeffRRREdH4/Lly/jxxx+xdOlS9OjRA1u3bvXZeG+99VZs2LABu3btwgcffIC7774b/v75Vyn5+fkhNjbWZ4/lLb1ej8WLF6NPnz7IysrC7bffjhEjRuDee+9FgwYNYLfbkZiYiD179mDFihU4dOgQpk+fjt69e/t8LHXr1kVcXBwuX76MTz75BHFxcWjWrJljUrZatWohMNB3nwPLE0NaokpkQD0/9K9rQMF3vfMZVry2tfBSziyzHaIoVqsvZdkWE9LN0su4FvV5tFo9RyIiX8py86UcAAK1Agw+qrDsUluPzrV0Xr8nGzQqPN8x+Oa9u/Gfnd2w93oeVEJhMuuqklYQBDzSIgCPtAiAKIrIsYoYtzbJ67GqBGDB3ZE3b/v2b4hKENAiTIvd18yK692HtO7/vwDg0RYBGNjAD3YROJRkxge70h3rcqwiUp36UYbqVehYi9VvRJVdcSppBQBP3BKImQcLCzZEALlu3l+yLKLL7wau2r10rqXHrmuFVbbpJs/vUVQ9vP7662jVqhVeeOEFnD9/HmvXrsXatWtdbt+qVSt89NFHkmUffPABsrOz8fXXX+PMmTOYOHGibL/g4GAsXrwY7dq18/VTKLEnn3wSmzZtwrx58zBixAjZ+ujoaKxZswbBwcGS5YIg4IcffsDtt9+O1NRULF68GIsXL5Zs06ZNGyxZsgQxMTE+G++kSZMwY8YMpKSk4JVXXsErr7ziWNe7d29s3LjRZ49VHN26dcPGjRsxfPhwXLp0CQsWLJC0xHBWkknqvPXqq69i8uTJOHfuHIYOHSpZ991332HMmDFl9thlqXpeO01UhQmCAI0q/5/zRCo20f0XwaooMVdeORxtrJpnvYiIykOm2f0X6ggfVNEWVZqTZs3DdJKAFgC0Xnz6FAQB/loVGod4X09QNzC/vYGvA9oCLcNcT5Bh9hCieBKkyx+3RiUgwOkFyrXYkeIU0vqq1y4Rla3iVNIG6QTZRMJ2UUSu1fV7iE2Ey/XBeuX3Cef31TRT9fpuQe7dd999OHHiBBYsWIBHHnkEzZo1Q2hoKDQaDcLCwtChQwdMnjwZ69evx6FDh3DHHXdI9lepVPjqq6+wefNmPPzww6hbty70ej2CgoLQrl07vPrqqzh16pRsv8rgu+++w08//YQ+ffogPDwcer0eTZs2xUsvvYQjR46gZcuWivu1a9cO+/fvx7/+9S/Uq1cPWq0WYWFh6NKlCz755BPs3LlTcvm9L8TGxmLnzp0YP348GjduLOnBWtG6deuGU6dOYebMmbjnnnsQExMDnU4Hg8GAOnXq4I477sB7772H48eP47HHHiuzcUyaNAnLli3DHXfcgaioKGg01aMGtXo8ixLw9guHN2cpfv/9d8yePRu7du3CjRs3EBkZic6dO2PixIm4++67fTBaqqkCFHr/Xc+1o26gCla7iIuZVqgA+GlV8NPIQ92q4EpOuuR+oFaPQG3l+SNERFTZeAr9Ios5AVdZahoqn3XcXow8oHmoFqfTPPfgBYC4gLJ93i3DlWdQB4BjKRZY7SI0KgFZFjsuZ1phF/Orey+76RlZoGgw49xn1mwH9t+Q9pYMM1Se/2Micq1YIa1eJaugEsX8EzXuZFlEGBXenlydsKrr1LM83cOJP6p+dDodRo0ahVGjRpX4GL169UKvXr2KvV+fPn0getGLY8yYMV5VQk6bNg3Tpk3z+vFHjhyJkSNHer19gbp162LGjBlut3H3vIo7TgBo1KiRZBI2JfXr1/fq9fT1667X6/HEE0/giSee8LitM2/GAcCrauH77rsP9913X7HHUJnV2JDWF+x2OyZOnOhojF0gISEBCQkJWLlyJSZMmIBZs2Y5GmwTFYefRoBKkH6hnbo5Bf+6JRDLTmXjRq70Q9VzHYLQLbpqBZzT9kkvsYkxlt0lEURE1cGmy65n+gaAyEo0yWSjYHlycDHTu9AVAJqF6fDbuVyvto3zwWRp7tQL0sBfIyBboWrtWIoFz25MxuCGRnx7JMvtcQK0gixoLxqlKE3O5txmgZW0RFVDcdodBOtUcM5V7SJw0sOJqiyLHVGQn7hZdVZ5JvpQp/ePDJMddlEss6sQiIjIezU+pJ00aRImT57scn1Bc2Ylr732miOgbd++PV566SU0atQIZ86cwUcffYR9+/Zhzpw5iIyMxPvvv+/zsVP1l3+5pyCb1blor6qi5hzOrHIh7Yar0tkYa/ux1QERkSt5Vs8VT75ud1AaSr1xQ/Xej6+ZQiWuK3EBZfuxViUIaBHuui/tjVy7x4AWyP//ybJIQ5eir5NzJa0ShrREVUNx2oMH6VWyoNSbNmdKV1eYbSJMCkX8KkHeBkEEkGkWEaxnSEtEVNFqfEgbFRWF1q2LP4v8yZMn8cknnwDInylw8+bN8PPzAwB07twZQ4YMQe/evbF79258/PHHGDduHBo3buzTsVPN0DBYiwM3lL8QOnMOcys7pUsdArWcCIWIyJU0LyZ4UWoxUJEeaOKPpacKK7r61PH+ZGKwXoWmIRqPlWRqAWhSDs+7W22Dy5DWW83DtLCLhRXFgVpB0u/W4MX10eXxXImo9Pw0AiL8VEjK9fze3TBYixCnADU5z/N+VoUgN9XF34p+dfzgr9AYPM8mIlhheyIiKl88DV9Cn332GazW/A/X06dPdwS0BYxGI6ZPnw4AsFqt+N///lfuY6TqYXzr6ltZalcIaV+7pX8FjISIqGpQKqRtG6mDv0ZApJ8Ko5r7o1Fw5ToHP7ihH3rHGRDtr8bQRka0j3Q9AZeSibcEIdq/sPq2YbAG0f5q+GsE+GsERPurMemWIFm4URZ6xuoxtJERoaV4rAeb+GNS20A0DdWifpAGU9oHQVskmPU0b8KDTf3RMowhLVFVIAgCnm7nOv4M1AkI1qvQN86AO+v5oX6QxmMfW+dqe6Vi29Q8eRltmwgthjfzV5y80d3kh0REVH4q16f4KkIURfzyyy8AgObNm6Nbt26K23Xr1g3NmjXDiRMn8Msvv+DLL78s1QzJVDPVMqrxfIcgfLo3o6KH4nM2UZ42hOmNFTASIqKqweo065ZaAF7tElIxg/GSQaPC5LYl7zdeJ1CDz/qE+3BEJScIAkY1D8Co5gEAgPlHMxHvZc9cAOgerUeAToUAnQrv3BrqcrvYADUSFCYcu7OeHx5o4roVFxFVPs3CtHiiTSBmHZK2K3uhYzC61JZfQVYvSIOz6a6vHtA4haxKRQ/pTpW0tYwq/F/XwvccrQooOh8ZQ1oiosqBIW0JnDt3DleuXAEA9O7d2+22vXv3xokTJ5CQkIDz58+jQYMG5TFEqmaK08i/KjX+V/pQqa4iYyciqgjOk3xrijEpDflecV99b/+/XG3lPOEPEVUNWoXffVdvB41DtO5DWkFAfifZfIqVtE4hbYhTL3CdWoClyEk/s50hLVU/9evXV2yvR1SZ1fhPekuWLEHLli1hNBoRGBiIJk2aYPTo0diwYYPLfY4ePeq43bx5c7fHL7r+2LFjpR8w1UjFyS29mFOmwuVZLdiQeBq/XT4qW1dVAmYiovJyLceGXVdNuJptlfWkda6oovJV3L9ZOi//v1wdlxOGEVVNGoX5El39NjcOcV9H5fy+fyFDHug6V+I7t4PRqYo/QRkREZW9Gl9JWzRwBYDTp0/j9OnTmD9/Pu69917MmzcPwcHSPkKXL1923I6Li3N7/Dp16jhuX7p0qdjjK/pYShITE4t9TKp6ivMV0GoXofNi0pGKkmu1oEf8l9iXkqC4Xi3wCygRUYHNl3Px1YFMl+uVqrOo/BT3vKK3lbSuNgs1KCQ9RFTpFaeStkmI+57Tzu8jK8/kwKARMKxxfiuUK1lWrL0gbcMiC2mdvitY5N1ViIioAtTYkNZoNGLIkCHo168fmjdvjoCAANy4cQObNm3CzJkzkZycjJUrV2Lo0KH4888/odUW/rHMzCz8shQQEOD2cfz9C/uGZWVlFXucRUNeqrmKF9KW2TB84s8rJ10GtACgUTGkJSIqsOJ0jtv1ShPAUPkpbkbu7UlUlyFtOUyORkS+p/RerXLxi1775sSI2Vbl6lalwPfXMzkY2sgIlSBg0+U82fpgWUgrXc+etERElUONDWkTEhIQEhIiWz5gwABMmTIFd999N/bt24dNmzZhxowZePrppx3b5OUV/uHT6dzPUKzXFzaDz831fmIJoqKMWu+/BebZRJR8epaydzEr1eU6P7UWkQb3Jz6IiGqSK9nuy5sae6i4orJV3EpmT5cxF2gULO9JGawTEOPPSlqiqqhBkBZqobB/rFoA6gcpvx+oBAHto3T4+4pJti42QI1W4VpczJS+P+RYReRYRQRoBdmkYQDQIkz6t0LjdBmAjX07iYgqhRob0ioFtAVq1aqFpUuXonnz5rBYLJg+fbokpDUYDI7bZrPZ7eOYTIV/XP38/Io9Tk8tEhITE9GlS5diH5eqFudLlNzJdXHWvbJIMbuuCutRqz60Kn4BJSLy1rhWgRU9hBpN76EyNtyggk4tQK8W0C1aj64KM7krGdXcHxa7iJOpFog3j/NQswCo2d6CqEoK0qvwQsdg/Hom/3PwkEZGBLlpUj26Zf57+9l0q2OKsNpGNR5uEYBIPxUyzHZsdQpxs8x2BGhVsDoFrno10DJcWljk/FbCQloiosqhxoa0njRs2BADBgzA6tWrcfr0aVy5cgUxMTEAgMDAwi9EnloYZGdnO257ao2gxFPPW6oZnGdkdSe3kvc7SDG5rijvU7tROY6EiKhqG9XcH0G8/L1CuQtp3+wWIgtGvGXUqjCpbWW+LoaIiqtjLT061vLuRE2QXoUp7YNdrp/SLgg7r96ApcjH/kyziNr+8tZn9zQwyvZ3fuuyM6QlIqoU+MnejZYtWzpuJyQU9tAsGpx6mtiraCUs+8tSSRk03lfOVPpKWpPrSlqGtERE3nOenZvKn7tzqGEGfswmorIhCAICnBrdZt1MbJ1DWqUKfJVTuwOGtERElQMrad0QXEzZWzS8PX78uNtjFF3fokUL3wyMyI3KHtKmumh34KfWonMET2QQEXnL20moqOy4q6QNM7B9DxGVnUCdgNQiHQ+2XslDuEGNXdekbRCU3qacc9s1F3IQF6hG81AtBEGA2SZi/tEsJGZb0ShEi0g/NaKMKrSJ0MkCXiIi8h2GtG4cPXrUcbug1QEANGjQADExMbhy5Qo2bdrk9hibN28GAMTGxqJ+/fplMk6ioip7SOuq3UGPWvWhU/MtiYjIW576oVLZcxWUB+kEhuhEVKbyK2kLJ5fckmDClgT5ZGMahUpa55z1UqYN07alYXhTf9zX2IhH/7jhWHc42eK43a+uARPbsBULEVFZ4XVYLpw7dw5//vknAKBRo0aIjY11rBMEAUOHDgWQXym7fft2xWNs377dUUk7dOhQl5W5RL6UbancPWlTXbQ7YKsDIiIpu4fZthnSVjw/F+2IWEVLRGUt0M3EY0VpFTa7nGlV3HbthVysPud6/oiNl/Jg5ixjRERlpkaGtKtWrYLVqvyHCQCuXbuG+++/H2azGQAwefJk2TbPPvss1Or8D+BTpkxBbq70j1lubi6mTJkCANBoNHj22Wd9NHqqqZ7ycgKRlLzKHdJaRfn4DGoNRjRoV/6DISKqxPLcXBmhUQFNQrXlOBpSUj9IC4NCWH5LRMkmDCMi8pa3J+rqBMqvVMtzEbSmm+z45Uy24joAsImVvyCEiKgqq5HXFk+ZMgUWiwX3338/unfvjvr168PPzw9JSUnYuHEjZs2ahaSkJABAz5498eSTT8qO0bRpU0ydOhUffPABdu/ejR49euDll19Go0aNcObMGXz44YfYt28fAGDq1Klo0qRJuT5Hqn56xOpxJduI5afzK1Gbh2oRoBOw+5pZsl1yJQ9pnSvDNIIKv/Qbi0ZBERU0IiKiyilHIaSNC1Aj2l+Nu+obEaKvkefaKxWDRsBrXUPw29kcpJvsUAn54fmDTfwremhEVM3pvCzYbxUuP2mU31dW/jfGmxpZEytpiYjKTI0MaQHgypUrmD59OqZPn+5ym/vvvx9z5syBXq9XXP/ee+/h+vXr+Pbbb7Fv3z6MGDFCts348ePx7rvv+mzcVHOpBAEPNQvAQ80CJMvXXsjB3MNZjvspeTbnXSsV55B2Rb8xuCO2WQWNhoio8lIKaT++LYyTtlQyTUO1eL5jcEUPg4hqGG/6XveIUf4eq9Cm1sHuIYN1VYVLRESlVyNLML7//nu89dZbuOuuu9C0aVOEhYVBo9EgJCQEbdq0wRNPPIF//vkHS5cuRUhIiMvjqFQqzJ07F/Hx8Rg6dChiYmKg0+kQExODoUOHYvXq1ZgzZw5Uqhr5MlM5CXfqe5ecW8kraZ3O0avAsIGISEmO0yWlfhqBAS0REQEAdO6S1puauWiL4y7fzbK4D2HdteIhospHEAQIgoBp06ZV9FDICzWykrZ3797o3bu3z443cOBADBw40GfHIyqOcD/pSYBUkx1Wu6g4k2tFyrGasfjcAVzISpUsZ+BARCSXa7XLJm8xupikioiIah5vKmldh7TK7Q7gcmmh+HO5iPHXIKgULXfOpFlwJNmMxiFatFRox0DkKxs3bkTfvn1ly9VqNYKCghAcHIw6deqgY8eO6NmzJwYPHgydjj+TVHFqZEhLVJ1EKMwgfTjJjHZRypc3VZT713+PPxJOyJYzpCUikvtoVzqOplgky/wY0hIR0U3eVNIqTRoGuG934MnOqyYcTzHj8z7hMGqLH9QeTjLjvZ1pjrYKT7UNQq84Q8kHRFQCNpsNqampSE1Nxfnz57FlyxZ89tlniIyMxNNPP41///vf0GgYl1H543X4RFWcv1b+KeuY0xf7inY1J0MxoAUAvZp//IiIikrOtckCWgAIKMGXYSIiqp48TRwWblBB7SKNbR6mXGHrrQyziPhzOSXaN/5cjqTv7eaEvFKNhchbkyZNwqFDhxz/tm3bhtWrV+ODDz7AgAEDIAgCbty4gddffx09evTAjRs3KnrIVAPx0z5RFScoVKJaPXX8L2eXstMUl4fq/NAxPK58B0NEVMnluuj31y6Kl98REVE+T1ejPdYywOW64U39Sz0rxIZLJQtX9143S+4fTDK72JLIt6KiotC6dWvHv27duuHuu+/Gyy+/jLVr1+Lw4cNo3749AGDnzp0YNmwYzGb+fFL5YkhLVA3cFiu9RMhkq6CBuHA1N1O27F/NumPT3ZMRoK1cbRmIiCqa0vSPY1oGYGgjY7mPhYiIKid3Ge3T7YPQtbbrz9i1/TV4q3so7qznp7g+UOc5wk3Oq9yTFRMVV8uWLbF161ZHULt161Z89dVXFTwqqmkY0hJVA0FOH6TMlayS9lpeluR+p4g4zLj1frQJi66gERERVV6i01u4AODuBkb28CYiIgd3X+R7xBgUr7YrqlmYFuNaB6JfHXk/2H/dEoRF90Rh0T1R6BXru4KKHIs82NV7MQEaUXnx8/PDDz/84Pj9+eSTT2CxKLcSvHr1Kl577TV06tQJYWFh0Ov1qFOnDoYPH45169a5fZzU1FR89913eOSRR9CyZUsEBARAp9Ohdu3auPPOOzF79myvq3h/+ukn9OnTB6GhoQgICEDr1q3x5ptvIi0trVjPnSoHNoMkqgb0TpPJ5Lm4VLaiXM2RVtLW9gusoJEQEVV+olNKW5oJXoiIqHry1Xm7cD95c9uic14YNa7jYFEUPYbBRV3LkV/uF25g3RhVLq1atcKAAQOwdu1aXLlyBbt27cKtt94q2WbBggV44oknkJ2dLVl++fJlLFmyBEuWLMH48eMxc+ZMxQnI2rdvjwsXLsiWX7t2DWvXrsXatWsxc+ZMrF69GrVr11Ycp9VqxahRo7BkyRLJ8iNHjuDIkSP48ccfPYbFVPnwHZGoGnA+A73jqgl51oq9BCk5LxvvHVgH4/xX8Pq+PyTravsFVdCoiIgqP+d3bxbQEhGRM1+dwAvRyyOBohNVGhUmKS5wJNn7yYovZVrxxb4M2fIMM9smUOXTv39/x+0tW7ZI1i1evBiPPvoosrOz0bBhQ3z66af4448/sGfPHixbtgwDBw4EAMydOxcvvfSS4vFtNhu6du2Kd955B7/99ht27dqFrVu34scff8Rdd90FANi3bx9GjBjhcowvvviiI6Bt1qwZ5s6di127dmHdunV44okncP78eTz00EOleh2o/LGSlqga0Cl8Svt8XwZe7hxS/oNB/ln1u/78BruTLiuuZyUtEZFrSu0OiIiIivLV3waDRn6kopW0/m4qad/ZkYavbw9XrMYtKiXPhtf/SVWcGDPLIsIuimzpc5Mo2mE3JVf0MMqVSh8OQahc9YMdOnRw3D558qTjdlJSEiZOnAhRFDFu3DjMmjVLUinboUMH3HfffXjttdfw/vvv4/PPP8cTTzyBZs2aSY6/fv16NGnSRPa4t956Kx5++GF89913GDduHDZt2oS//voL/fr1k2x36NAhTJ8+3fGYmzZtQkBA4WSB/fr1w6233orRo0eX7oWgcseQlqga8Fc4w73vuhlmmwhdBfR5Op2R5DKgBYAog+vZZomIajrnr7Bsd0BERM5c9XKtZXQfmDqL9ZdvX7SS1tMkYgeTzOhbR3kCsgKHk8yKAW2Bc+lWNArRehhpzWA3JeP6z1EVPYxyFTXiOtSGyIoehkR4eLjjdmpqquP2jBkzkJ6ejtjYWHz99deKrQwA4K233sL333+PhIQEzJ8/H++9955kvVJAW9TYsWPxxRdfYP/+/Vi5cqUspJ05cybs9vwq9NmzZ0sC2gKPPfYYfv75Z/z+++/unyxVKpXrdAURlUjrCJ1smQjAbKuY3rSnM5Pcrjdq+CGMiMgV57kfBdbSEhGRk+ZhOsVCjcfbFO+KtXpBGjQKLgyautTWS4o8bonUweCm6CPL4vn7hruAFgDSTGx5QJVL0dAzM7NwfpVff/0VADBo0CDo9a4n1dNoNOjevTsAYNu2bW4fSxRFXL16FSdPnsThw4cd/2JjYwEABw4ckO1T0Gu2TZs26Nixo8tjjxs3zu1jU+XDSlqiaiDMoMbrXUPwzo40yfKKmj/sbGaK2/U6Fd96iIhckbU7YEZLREROgvUqvN09FH8n5OFIshk6tYD7mvijVbi8eMMdQRDwf11D8OfFXOhUAvrVlVbFhhnUeOfWUPx9JQ9ZFjv+upgnWZ/rxTwYnupGMtmXliqZosFsUFD+fCo2mw379+8HAMyaNQuzZs3y6lhXr15VXB4fH48ZM2Zg8+bNksdzlpQkLYAymUw4deoUAKBz585uH7tLly5ejZEqDyYlRNVEg2D5r7PNuRyrnJzNdN9HSa8u3mVYREQ1iejU8IDtDoiISElcoAYjmpe+jZhRq8LQRv4u19cN0mBUUP7jWO3ApsuFQW2eF1UhVg/fSTh5GFU2RYPRsLAwAEBKSgqsVmuxj5WTkyO5L4oiHn/8ccydO9er/XNzcyX3U1NTId48ox8V5b41Rq1atYoxUqoMGNISVRNKVyFVULcDVtISEZWC83dZ9qYiIqLKwug00ZinVgaAN5W0FfSlpRJS6cMRNeJ6RQ+jXKn04Z43Kmf79u1z3C6Y9MtmszmWTZgwAc8884xXx9LppNXt3377rSOgbdeuHZ599ll07doVsbGxMBqNUN8saHrsscfwww8/OAJZJQIvt6p2mJQQVRNqhTdoT2etS0MURcw7vQvrrpyCxW5DhsWEQ6mJ6BFVH5uvnXW7LytpiYjkbHYRq8/nYtWZbMlyfv4mIqLKwuAU0q6/lAd/rQo3cm0QAET4qWEXRSTn5VfHCgAO3jC7PeavZ3NwPdeGJ9sGVcikx5WJIKgq3SRaNdGff/7puN2zZ08AhRW1QP534datW5fo2N988w0AoHHjxvjnn3/g56c88V5KinLhU0hIiOP2tWvX3D6Wp/VU+TCkJaom1AqlVtdybIgJKJtf8+9O7cL4rYtly5ecP+hxX1bSEhHJLT6ZjZVncmTLWSVBRESVhZ9G/jdp1Vn5367i2p5owqRbRICTZVIFO3z4MP766y8AQJ06ddCpUycA+RWxrVq1wpEjR7B169YSH//IkSMAgCFDhrgMaEVRxN69exXXGQwGNGnSBKdOncKuXbvcPpan9VT58Ao6ompCpfAlPjHbprClb8RfPlbifYN1Bh+OhIioeth51aS43N2s2kREROWJf5OoOsvNzcVjjz3maDHw4osvQqMpLDAaMmQIAOD48eNYs2ZNiR6joK9tdna2y21++eUXJCYmulzfv39/AMChQ4ckrRmcffvttyUaI1UchrRE1ZitDHvwp5hKdsa8RXAU2oXF+Hg0RERVm10UcSNX+cRazxh9OY+GiIhImdoHs1l2iNIhUMuwlyqXo0ePomfPno7Qs3fv3pg0aZJkm2eeeQYBAfmT6I0dO9ZRFetKfHw8Dh6UXmnapEkTAMCqVasUWxqcOXMGTz75pNvjPvHEE44rrSZOnKgY+C5YsACrV692exyqfHjNMVE10qW2XlKJlWMtu5Q23Zzndv3rbfujbkAoTqRfx9LzBzG0bms0C47Eg/XbQqNiT1oioqLSTHZYnN6y+9U1oF2kHp1r6ZR3IiIiKme+KKQNN6gxtmcgdl41Sb6vKM2xQeQr169fx+HDhx33s7OzkZqaioMHD+Kvv/7Cn3/+6aig7datG5YuXQqtVis5Rq1atfD999/jgQceQGJiIjp16oQxY8bg7rvvRlxcHCwWCy5fvoydO3di6dKlOHv2LFatWoVbbrnFcYzHHnsMU6dOxZUrV9C9e3e8/PLLaN26NfLy8rB+/Xp89tlnMJlM6NChg8uWB23btsWTTz6JL7/8Ert370anTp3w8ssvo02bNkhPT8eSJUswe/ZsdOrUCbt37y6DV5PKCkNaomrE+Yx0tqXsJg5Lt7gOaQ1qDd7ucJfj/sedB5fZOIiIqoNrOdIqWq0KeLx1IPvREhFRpeKDQlqoVUCUUY1BDY2lPxiRl2bMmIEZM2a43SYyMhLPPvssXnrpJUmbg6Luu+8+/PLLLxgzZgxSUlIwc+ZMzJw5U3FblUoFf39/ybJnnnkGf/75J9auXYuTJ09i/PjxkvV+fn6YP38+4uPjXYa0APDpp5/iypUrWL58OY4fP46xY8dK1jdo0ACLFi1Co0aN3D5nqlwY0hJVI0attINJ2VbS5rpcF6jlpblERMVx3SmkjTKqGdASEVGl44tqV7a1pYqmUqkQGBiI4OBg1KtXDx07dkSvXr0waNAg6HSer2AaPHgwzp07h2+++QarV6/GkSNHkJKSAo1Gg9q1a6NVq1a4/fbb8cADD6BOnTqSfbVaLeLj4zFjxgzMnz8fR48ehSiKiI2NRf/+/fHMM8+gefPmiI+PdzsGrVaLZcuW4ccff8Ts2bNx8OBBWCwW1KtXD8OGDcOLL76I0NDQUr1OVP4qbUh75swZJCUloX79+qhVq1ZFD4eoSvB3qqTdkmDCXfUtaByidbFHyYiiiGQ3PWkDtZwYjIioOJxD2lpGtoUhIqLKxxcBq8YX5bhEXujTp4+jhYGvBQUF4YUXXsALL7xQ7H01Gg2mTJmCKVOmuNxm3rx5mDdvnsdjPfLII3jkkUdcri+r509lo9wnDrt+/Tq+/vprfP3110hPT5etP336NDp27IimTZvi1ltvRWxsLO6//36kpqaW91CJqhyjRv6B590daTDZfPvGfDlb/rtbFCtpiYiK51qO9MqHKIa0RERUCfkiX1X4ykJERKiAkHb58uV46qmn8PnnnyM4OFiyzmQy4e6778b+/fshiiJEUYTdbsfKlSsxdOjQ8h4qUZXjp/CJJ9cq4ny61aePs/3GBbfraxkCfPp4RETV3eVM6fs0Q1oiIqqM/LWljxD8deUeQxARVQnl/u64du1aCIKAYcOGydbNmzcPZ86cAQAMGTIEn3/+OQYPHgxRFLF161YsWrSovIdLVKW46l/o60ra63lZrscAARObdfPp4xERVWcWm4iLTiFt/aBK25GKiIhqsKahWtQJLN2JxC61eNUdEZGScv8GcOLECQBAt27yEOenn34CANx+++1YuXIlAGDKlCm44447sG7dOvz888946KGHym2sRNWFr0Paq7mZkvt9azfCv5p3R4opB90i66FdeKxPH4+IqDq7mGmF89t0A4a0RERUCenUAt7uHor9N8xIybNDowIEAGEGNUINKpxLt8Iuioj21+Bajg1zDku/N7zSORiRvFqEiEhRuX8DuHHjBgAgLi5Osjw3Nxfbt2+HIAiYOHGiZN24ceOwbt067N27t9zGSVSdmO1lG9K2DKmF4Q3a+fQxiIhqirNOLWmi/dUw+uByUiIiorJg1Kpwa4zyRMFFJyxec14+0XBcIE9CEhG5Uu7fANLS0vIfWCV96O3bt8NisUAQBPTv31+yrkGDBgDyJx0jouIz+7iSNjEnQ3K/tl+QT49PRFSTnEm3SO43DOYXWCIiqvpyrPLvIP5azhpGRORKuYe0AQH5EwpdvXpVsnzjxo0AgJYtWyI0NFSyTqvNPxun0fBLC1FJ7L1u9unxnCtpaxsDfXp8IiJXTDYR849mYtq2VPx5IRei6NuTUOXNbBOx4VKeZFmjYK2LrYmIiKqOXIWQ1qBmSEtE5Eq5h7TNmzcHAPzxxx+S5cuWLYMgCOjdu7dsn4JAt1atWmU/QKJqaOdVE/Ksdp8dzzmkjfZjSEtE5SP+bA7iz+XiWIoFcw5n4kSqxfNOldgvZ+SXgjZgJS0REVUDORZ5SOtqomMiIqqAkPaee+6BKIqYPXs2ZsyYgcOHD+PFF1/E0aNHAQD33XefbJ+CXrSxsZyMiMidQJ3rDz0XM20+e5xUszRUCNf7++zYRETuLDqZLbm/4rQ85KxKDifJr3RgSEtERNVBt2i95D7brRMRuVfu3wKeeuopfP3110hMTMRTTz0lWde9e3f07dtXts+qVasgCAI6d+5cXsMkqpJahunQMFgjm4QG8G1fWpvT5cUaFT9xEVHFOJLs23Yu5UkURVzMlL5fxwWo4afheyoREVV9LcO1aBGmxbEUC9QC8GQ7zmNBROROuYe0wcHBWLduHR599FFHhSwA9OrVCwsXLpRtf+DAAezatQuCIGDAgAHlOVSiKkenFvBW91CcSLXg3R1pknU+DWnt0tYJaoGBAhGVPatd/j6msKjKSM6zyyZVeaVLSMUMhoiIyMdUgoDXu4bgTLoVwXoVahnVFT0kIqJKrUKup2vRogV2796Nc+fO4erVq4iOjkb9+vVdbv/dd98BAG6//fZyGiFR1aVTC2gToUOMvxpXsgtbHJh9mGQ4V9Kq2VuKiMpBSp68t3ZVDmkvZEiraI0aAeEGnvQiIqLqQ60S0DSUE2ISEXmjQpueNWjQAA0aNHC7Tdu2bdG2bdtyGhFR9aFzmjnVV5W0oihChHNIy1CBiMre9Rx5b20RQI7FDmMVbHTn3OqgbpCGE6oQEREREdVQ5R7Svv322wCAyZMnIyIiwqt9UlNTMX36dADAG2+8UWZjI6pOnPOK8xlW3OaD4/50dp9smYqhAhGVgWMpZvxwNAsqAQjRq7DrmnL/2cPJFnSprVdcV5msOZ+D38/nIsucXxGc53TyrF4gJwwjIiIiIqqpyv3bwLRp0yAIAh544AGvQ9qUlBTHfgxpibzjXDcbfy4Xj7UMLNUxk/Ky8cjmn2TLWUlLRL5mF0VM35eBZIUWB86+PpCBLrUjy2FUJXcp04pvj2S53aYOQ1oiIiIiohqLyQpRNXU6zep5o2I6mHJFtkwlCIgyBPj8sYioZjufYfUqoAWAPKuIDJN321YU5/6zShqFMKQlIiIiIqqpqkRIa7FYAABaLRuOE5WGKJauL22mxSRb9lzL2xCi9yvVcYmInOVYvH+/EgEcuKHcCqGysHt4/+0WrUeDIIa0REREREQ1VZX4NrB//34AQGRk5b6Ukaiys9oBrbrk+2dapSFtkNaAT7oMLuWoiIjk3E12GKpXIcJPhVNFrhjYd8OEXnGG8hhaididnk60vxoT2+S3oAnSqRAboOakYURERERENViZh7Tz589XXP7LL79g9+7dbvc1mUw4c+YMvv32WwiCgM6dO5fFEIlqDItdhFZd8hAgy6mStk1o7dIOiYhIkclNSNsyXIsWYTqcSst0LDtwwwy7KFbaiQydn42/VkDLcF2FjIWIiIiIiCqfMg9px4wZI6sMEUUR//d//+f1MURRhEqlwjPPPOPr4RHVKNZStmx0bncQoK38s6kTUfkraK1SmsrQLDftDnRqAe2jpAFnlkXE6TQrmoZWrtZIoihCBOCcOVfOKJmIiIiIytKYMWPw/fffo169ejh//nxFD4cqmXLpSSuKouOf0jJ3/7RaLXr06IFff/0VvXv3Lo/hElVbj69Lwie709xeRuxK/KWjeGl3vGRZgIZVYEQktT0xD1M2JGPiuiT8dTG3RMfIMtsx53Cmy/U6lYAIPzXiAqT9W3446nqfsrTuYi6eWJeEqZuTcT7d4li+IzEPk9cnY+TqG/jmkHRslbXil4iIiKi62LhxIwRBcPx76KGHPO5TUGjINlRUEcq8kvbcuXOO26IoomHDhhAEAWvWrEGTJk1c7icIAgwGA8LDw6FWl6KJJhFJ7LpmxpaEPPSr6/1kXza7HWO2LJItD2QlLREVkWGy4+sDmY5WBXMPZ6JTLT2C9cU7J/zb2Ry363U327a0j9LjclbhtifTrBBFsVw/VKfm2fDt4UzYRCDNBHx/NAtvdg+FxSZi5sFM5FiVT4qp+LmfiIiIqFwtWbIE//d//4c2bdpU9FCIFJV5SFuvXj3F5TExMS7XEVHpPdUuCF/uz1Bc98f5nGKFtMmmbCSZsmXLGwVGlHh8RFT97LhqkvSStYnAqTQLOtUq3gmdS1lWt+ujjPmhb5MQ+ceYPJsIP035JaB/XsiVtDI4mpJfSXsj1+YyoAWACL9yuZiJiIiIiG4SRRFvvvkmli9fXmFjmDdvHubNm1dhj0+VW7l/Q7Db7bDZbGjZsmV5PzRRjdLZTShyLad4zWnzbPLApH5AKCY07VLscRFR9bU9MU+27HyG+8BVSZ6bcLNJiAY9YgwAgGZh8pYrllL23i6upDzlB0w3ux5IqF6FoY38y2pIREREROQkIiK/wGjFihXYt29fBY+GSFmZV9ISUcUwaAQsHBiJxSezseK09NJhu1i8nrRKIe2J+16GTs23ECLKl26y40iyRba8aI9Wb5mc+mbf08AP/er6Qa8WEG5QOdoZaBVONVtK0HO7NNJNymFshtPyCD8VXu0SApUA1DKq2ZOWiIiIqBw9/fTTeO+992AymfDGG29g1apVFT0kIpkKudYuJycHOTmu+81Nnz4dvXr1QosWLTBw4ED+8hCVkEoQUDdQHqQWN8PIs0lDFpUgQKtir2giKrTzqglKby0lqaR1DmkbBGsRG6BBhJ9a0m9Wq9DY1WIv35A2zUVI61xJG6ZXITZAg2h/DQNaIiIionJWp04dTJw4EQDw22+/YefOncU+ht1ux/r16/Hiiy+iR48eiIiIgFarRUhICNq1a4cXX3wRFy9edHuMgonJ6tevL1n+9ttvOyYsO3XqlMex3HnnnRAEAdHR0bDZbIrbrFy5Eg8++CDq1q0Lg8GAkJAQdOrUCW+99RZSU1O9ft5Ufso9pF21ahUCAwMRHR2NzEz5LMzjxo3Ds88+i3/++QcnTpzAmjVrcO+99+I///lPuY3x5ZdflswAuHHjRo/7/P777xg2bBji4uKg1+sRFxeHYcOG4ffffy/7ARO5EaST/5oXN8NwrqQ1qDWc7ZKIJP65Im91AAA3cu3ILmYPAueQ1qBWfr/RKHyKsZZzuwOlStq0PBsuZkg/LAcVc/I0IiIiIvKtV155BX5++XOzvP7668Xe/+2330a/fv3w3//+F//88w+Sk5NhtVqRnp6OAwcO4L///S9atGiBFStWFPvYo0aNctz+6aef3G577do1/PXXXwCAESNGQK2WFlClpqaiX79+GDZsGJYuXYpLly7BZDIhPT0de/bswbRp09C8eXNs37692OOkslXu3xjWrFkDURQxZMgQBAYGStb9/fffjgbKRqMR7du3h8FggCiKeOONN3D48OEyH9/+/fvx6aefer293W7HhAkTMHDgQKxcuRIJCQkwm81ISEjAypUrMXDgQDz++OOw28v5WyPRTYEKIS0A/HgsC6KXbQ+cK2kNam2px0VE1ce6i7mOCbOUjFubhCseJgMrYBdFWd9svYuQViUIcF5VnpW013NsSFUIaZ/4Kxl/XsyVLFM6YUZERERE5Sc6OhqTJk0CAKxduxZ///13sfa3Wq2Ijo7G5MmT8cMPP2Dr1q3Ys2cPVq5ciZdeegkBAQHIycnBqFGjcOzYsWIdu3HjxujatSsAzyHtokWLHNWzDz/8sGSdyWRC//79sX79eqjVajz66KNYuHAhtm/fji1btuC9995DeHg4rl+/joEDB+LChQvFGieVrXJvKLl9+3YIgoC+ffvK1s2ePRsAEBMTg23btiEuLg6XLl1Cz549cfnyZcyaNQvTp08vs7HZ7XZMnDgRVqsVUVFRuH79usd9XnvtNcydOxcA0L59e7z00kto1KgRzpw5g48++gj79u3DnDlzEBkZiffff7/Mxk7kSpBOOdxYdTYHt9cxICbA89uAUiUtERGQP0vugmNZHrdbfjoHT7UL8rjdUYW+tgaN68p9jUqArUjlrXMVbln67azr1k3OXLVFICIiIipgF0Vkmcu3dVNFC9AJ5doK6uWXX8asWbOQnZ2NN954A+vXr/d63wkTJuDNN9+EVistWurQoQOGDh2KKVOmoFu3bkhISMD777+PH374oVhje/jhh7Fjxw6cPHkSu3fvRqdOnRS3KwhxmzZtKtvm7bffxt69exESEoJ169ahY8eOkvU9e/bEww8/jO7duyMxMRGvvvoqFixYUKxxUtkp96SlIPhs1qyZbN0ff/wBQRAwZcoUxMXFAcjvGzJlyhS89NJL2LRpU5mO7YsvvsCuXbvQvHlzDBs2zGOLhZMnT+KTTz4BAHTq1AmbN292lM537twZQ4YMQe/evbF79258/PHHGDduHBo3blymz4HIWbCbS2yvZttKGNKykpaI8tlEIMfq+cvEtRzlXlnOLmXKK25rG133wA7Vq3C1yLFPpVrRPEzn1WOV1poLuZ43uinDzJCWiIiI3Msyi3h8XVJFD6NcfdM/AkH68gtpo6Ki8NRTT+HDDz/Ehg0bsGHDBsUiQiXOfWSdxcXFYerUqXj22Wfx66+/QhTFYrUJfOihh/Dcc8/BZrNhwYIFiiHtmTNnsGPHDgDyKtqsrCx89dVXAIB33nlHFtAWqFevHl5//XVMnjwZS5YswezZs+Hv7+/1OKnslPu1dzdu3AAAWauDI0eOICkp/81o6NChknUFP5hlWYZ98eJFR0+SmTNnQqfz/AXvs88+g9Wa/2Vy+vTpjoC2gNFodFT+Wq1W/O9///PxqIk8UwkCnm2vXL3m7WXB8nYHrKQlonxKPWBf7BissJ137zfOE24B7vu5toqQnjTaf8Pk1eOUNzY7ICIiIqocpk6d6sikStKbtkBGRgbOnTuHI0eO4PDhwzh8+DCMRqNkXXFERUVhwIABAPJbGii1zSzaCqFoH1sA2LRpE9LT0wEADzzwgNvHuu222wAAFosFe/bsKdY4qeyU+3eGgobGKSkpkuUFvUAiIyNlVbahoaEAgLw85UlJfOHJJ59EVlYWRo8ejd69e3vcXhRF/PLLLwCA5s2bo1u3borbdevWzfF8fvnlF697gBL5UvcYg+Jyb+fyca6k1asY0hJRPrvC37WGwRo87dTawNuQNsOpLcCd9fxcbJmvXaRecv94qgV5XlT2lpU3u4Vg7oAI+QpOtkhERERUKYSHh+PZZ58FAGzduhVr1qzxet8LFy5gypQpqF+/PoKDg9GwYUO0bt0abdq0QZs2bTBx4kTHtgWFiMVRUB2bmJio2IqhIKTt2rWr7Ert3bt3O25HR0dDEASX/1q3bu3Y9urVq8UeJ5WNcg9pY2NjAeRP0FVUfHw8BEFAr169ZPsUnAmIiFD40uMDixcvxm+//YawsDBH+wJPzp07hytXrgCAx1C3YH1CQgLOnz9fqrES+ZL3lbTsSUtEypTyULUAaJw+YXh7Usi5ktZdFS0AtA7XSiYPs9qBo8lm7x6sDATqVAhQmCSMlbRERERElcfzzz+PkJAQAMCbb77p1T6///47WrZsiS+//NKrK71zc71vjVXg3nvvdVTjOveK3bt3L44fPw5A3uoAgFfzKinJyfF+ngUqW+WetPTq1QunTp3Cl19+iUceeQQRERHYtWsX/vjjDwDAnXfeKdunYFa82rVr+3w8aWlpeOaZZwAAH374oddB8NGjRx23mzdv7nbbouuPHTuGBg0alGCkRL5XNKTNs4pIM9lQy6iW9c1huwMicsWucLJHrRKgUUnfR5Qqae2iiGs5NslkXzdypSFtsELgWZRRq0LTUC2OpRS+T+2/YUaHWno3e5Udl/WyLKQlIiIiDwJ0Ar7pXzbFaZVVgIuJrstaSEgInn/+ebzxxhvYsWMHfvvtNwwaNMjl9klJSRg1ahRycnIQEBCAF198EXfeeScaNWqE4OBgR8vM9evXo1+/fgBQoiupAwICMHToUCxcuBDLly/HjBkzYDDkXxlbUEWrVqvx0EMPyfa12Qrnadi7d69sgjNXCuaEoopX7knL5MmTMW/ePJw7dw4NGzZE06ZNcfToUVitVoSFhSn+oK1fvx6CIKBly5Y+H89LL72Eq1evokePHhg/frzX+12+fNlx29MPdJ06dRy3L126VKzxFX0cJYmJicU6HlFRBZVtu66a8Pm+dFjsQNMQDV7tGgK/ImVwnDiMiFxxVUmrdQppb+TakWW2O6pMc612vLM9DWfS5ROFFRXkxQf3tpE6SUh7MKniKmldFQwzoyUiIiJPVIJQrpNo1XTPPvssPv/8cyQnJ+PNN990G9IuXboUaWlpAIAVK1agf//+its5t/YsiYcffhgLFy5ERkYGfvvtNzzwwAOw2+34+eefAQADBgxAVFSUbL/w8HDH7cjISIavVVC5X33XoUMHfPzxxxAEAVlZWdi7dy/y8vKg1WrxzTffyCYUS09PR3x8PACgT58+Ph3Lli1bMGfOHGg0GsycObNYs+5lZmY6bgcEBLjdtugseVlZWcUaY506ddz+69KlS7GOR1SU+Wb12qKTWY7A9mSaFTsSpRPvOFfS6llJS0Q3KVXIqgRB1u4AALYk5EluewpoASDYQ7sDID+kLSox24aUPJuLrX3D1fFNLvrhGtT8wkVERERUmQQGBmLq1KkA8itPV6xY4XLbI0eOAADCwsJcBrSAtC9sSd15552Oq7wLqmc3bdqEhIQEAMqtDgCgffv2jttbt24t9Tio/FVIi7TnnnsO+/btw+uvv47HH38cb7zxBg4ePIhhw4bJtt24cSM6d+6M2267ze1ZjeIym82YOHEiRFHEc889J2ma7I2ik5gVlLW7otcXXnJZkp4kRL5wS4T85zTzZu/HS5nSsGHXNWlIa3WaVVKrYndFIsrn/P5hUAvQq4HYAPnJnBu5hdseT7HI1jtTC0BcoOeTQvWDNHDOQJ0nIPO1pFzl4zcIzh/v7XWkEzaObO7+hC4RERERlb+nnnrKUZX65ptvumxRYLXmFxfk5eXBblf+HJiTk4Mffvih1GPSaDQYPnw4AGD16tVIS0tzhLVGoxH33nuv4n79+/d39LP94osvOHF9FVRhSUubNm3w1ltvYdasWZg2bRqaNWumuN3QoUOxYcMGbNiwAbVq1fLZ47///vs4fvw46tat63WT6KIKeoIA+YGvOyZTYeDl5+d+lmpnly5dcvtv586dxRs41VhjW8kDgpQ8O2yKfSKl9523EHjhLhHddCZNGrY2CtFAEAQE61XQOn3KyCvSe/acUxWtAEAlFP4LN6jwxC2BCHA+iAKVIEDnlNKayraQVrGCeGqnYEcv3vub+KN1uBbhBhVGNPNH3UB12Q6IiIiIiIrN398fL7/8MgDg0KFDWL16teJ2TZo0AZAfxC5evFi23mazYcKECY4J5kuroFrWZDLhp59+wrJlywDkZ2SuruYOCQnBU089BQD4559/8Nxzz7kMlAHg2rVrmDNnjk/GS75RI69ZPn78OP7zn/8AAKZPny5pR+Ctom0ZPLUwyM7Odtz21BrBGXuIkK/EBGgwpmUA5h0t/HlNybMj16Z0qbL0vvMZOFUxWoMQUfV2yimkbRxS2LP67vpG/Hq2cLbYglYAORY7rmRLU9T3eoSiUUjJ+13r1QJyi7QaMCmEqL5kdfq8G6pXoVORycoi/NR4vVtomY6BiIiIiEpv0qRJ+OSTT5CYmIikpCTFbYYPH45XX30VJpMJY8eOxf79+zFgwAAEBwfjyJEjmD59Ovbs2YMePXr4pNXArbfeigYNGuDcuXN47bXXHP1wXbU6KPD2229j06ZN2LFjBz7//HNs3LgRjz/+ONq1awd/f3+kpqbiyJEjWLduHX7//Xe0adMGEyZMKPV4yTcqRUgriiLOnj3raLAcFhaGhg0bFqtHbHH873//g9lsRsOGDZGTk+NovlzU4cOHHbfXr1+Pq1evAgAGDx4Mf39/SXjqaXKvopOFFZ1EjKi8hRmkFWkpeTbkWuRBhnOlrN2plrasfjeJqGqxi6Ksr2zRkFavca5uzX8vOZ8h3UctAHW9aGvgjs6p4NascALKlyxOIbBSD14iIiIiqvz8/Pzw6quvYsqUKS63iYuLw4wZMzBhwgTk5eXhww8/xIcffijZ5qGHHsLjjz/utmdtcYwaNQrvvfeeI6CNiIjAnXfe6XYfvV6PP//8E2PGjMHy5ctx4MABR3WtkqCgIJ+MlXyjQkPaNWvW4Msvv8TGjRuRk5MjWWc0GtG3b1889dRTuOOOO3z6uAXtB86ePYuRI0d63P6dd95x3D537hz8/f3RsmVLx7Ljx4+73b/o+hYtWhR3uEQ+E2qQXm57I9eOTIv88gebU+WscysbRrRENVu6yY4LmVak5dkk1asA0Dik8KOFXtaCIH9b52C3bqAG2lJOrOXc7qAsQ1q7KOJkqrSCWON8CQIRERERVRmPP/44PvroI0mRnbOxY8eiWbNm+Pjjj7F161akpaUhIiICbdu2xdixYzF8+HBs3LjRZ2N6+OGH8d577znuDx8+HBqN5xgvMDAQy5Ytw99//43vv/8eW7ZswZUrV5Cbm4ugoCA0atQIXbp0wT333OPzvI1Kp0JCWrPZjDFjxmDRokUA5JdSA/ktAuLj4xEfH4+HHnoI8+bN8zhBV3lq0KABYmJicOXKFWzatMnttps3bwYAxMbGon79+uUwOiJlzpW0APDK36myZXuvm5GWZ0PIzVB37qkdkvXsSUtUc+26asKne9NlvauB/PeYsCIngwxOwWnezQ4H59KlAWfD4NJ/HHEVCPuaxSbi3R1pOC4Lacvk4YiIiIiohPr06eP15Fl6vR4XL170uN2tt96KFStWlPgx582bh3nz5nk1phYtWpRq8q+ePXuiZ8+eJd6fyl+FfKUYNWoUFi1aBFEUoVarcffdd2PatGmYOXMmZs6ciWnTpmHgwIHQaDQQRRGLFi3CI4884rPHnzdvHkRRdPuv6GRiGzZscCwvCFkFQcDQoUMB5FfKbt++XfGxtm/f7qikHTp0KC8TpwoVold5Ha9uTSyc8O5GXrabLYmoJvn1TLZiQAtIWx0AgN5prqyC4PSCU7uDBsEl70Vb+FjlE9IeS7HIAloA0PDvOxERERERlUK5V9LGx8dj+fLlEAQBffv2xbfffot69eopbnvx4kWMGzcO69evx7Jly7B69WoMHDiwnEfs2rPPPovZs2fDZrNhypQp2Lx5M/z8/Bzrc3NzHT1NNBoNnn322QoaKVE+jUqAt7FFWl5hGwSDWoM8W2Go4tyjlohqjjST6xli20VKr3iRBac3WyNkO/XCjjKW/pyxv1Z6jHQ34ywNV8dt4INqYCIiIiIiqrnKvZK2oKy7bdu2+OOPP1wGtABQt25d/P7772jXrh0A4LvvviuHEXqvadOmmDp1KgBg9+7d6NGjBxYtWoTdu3dj0aJF6NGjB3bv3g0AmDp1Kpo0aVKRwyUCAAxv6u/VdkX70lrs0lDi2Za9fDomIqo6nE/R+GsFRPqpMLCBH3rHGSTrXE0cZnYqxXXuJ1sS8okRyyakFRVOUnWtrcfDzQPK5PGIiIiIiKhmKPeyj+3bt0MQBLzwwgvQaj1f3qjVavHiiy/ikUcecdlSoCK99957uH79Or799lvs27cPI0aMkG0zfvx4vPvuuxUwOiK5pqHeXVZccKWwXbTDJkrDjgBt5ekPTUTlyzminNIuCO2j9IrbynvS3gxpnVoRaH0w6Vb5hbRS9YM0eL5jcJk8FhERERER1RzlXkl748YNAEDLli293qd58+YAgKSkpDIZU2moVCrMnTsX8fHxGDp0KGJiYqDT6RATE4OhQ4di9erVmDNnDlQqzihClUOg1rswxHYz33CuogUAraCWLSOimsF57gJ37yhKfWJFUYTF6W2lbCppbaU+pjfYiZaIiIiIiHyh3Ctp/f39kZaWhuTkZK/3SU3Nn33eaDSW1bBkpk2bhmnTpnm9/cCBAytVv1wiVwJ03p0w2JaYh4ea+cMimmXrdGqGtEQ1ldV51jA3KaVzSGsXgeu58hM/Xr4tuRVmkL4vJWR5DmnNNhHHUszIMBc+J50KaBWhQ4DWu0FxvjAiIiIiIvKFcg9pmzVrhh07dmDRokXo37+/V/ssWrTIsS8RlY63wUOWRcTzm5KxP3ehbJ1WxZCWqCay2ESkm6UhrbuM0qCRr316g/wkrS8qaUOdKmlFAEm5NkT4Kb9fWe0i3t6eilNpVtk6nQr4oFcYYgPkH5OuZZdPhS4REREREdUs5X4N/pAhQyCKIr777jvHJGLu/PDDD/j2228hCALuvffeMh8fUXWnV3t/ee6VnBTsTr4oP4aKs5gT1URbEvJky9RuSkmde9K6UhbtDgBgx1WTy+1Pp1kUA1oAMNuBxSezFdddzJTu41xYTEREREREVBLlHtJOmTIF0dHREEUR48ePx6BBg7B8+XIkJCTAYrHAarUiISEBy5cvx6BBgzBmzBjY7XbExMTgqaeeKu/hElU7giAgws+7X/08MUe2rElQBML05dd6hIgqj8PJ8vYn9YNcn7QxalWoE+i+8j7GX+11hb87fhr5MfKsrhPUTLP7dPXgDbO8tQOAcKfK3PMZykEvERERERFRcZR7SOvv74/ffvsNISEhEEURv//+Ox588EHUrVsXBoMBer0edevWxYMPPojff/8doigiNDQUv/32W7n2pCWqzp5uL5+JvHW4FmNaBkiW2UX5Zb2/9BsLgU0YiWocURRxNNkiWda1tt5jn+sXOsrfb4p6sZP79cXRPFQruZ/rJqS1Oc2A5pzx5lhFnEyVPl9A3pO3d5yhmKMkIiIiIiKSK/eQFgDat2+PQ4cO4f7774dKpYIoior/VCoVHnjgARw8eBBt27atiKESVUtRRnll2131jbi7gRH96xYGDs4hbYwxCC1CapX5+Iio8knMtiHVJJ30a0Qzf4/7RftrcH9j5ZOs4QaVYt/XkqrnVNWbY5VPUlbA5pTf1jaqZVXB+2/IK4edDxmg5UkrIiIiIiIqvQprLBkTE4MlS5YgMTERGzduxOHDh5GSkgIACAsLQ+vWrdGnTx9ER0dX1BCJqi2Fq4IdVWVF+0vaIQ1p2YuWqOY64lRFG6pXIdrfu0kEA11U22pUvg04jU4TlbmrpLU7ha0alYD2kTpJ+4J9180Y1Vy6nXMlra+fAxERERER1UwVnrhER0dj5MiRFT0MohpFqxAqFOQORQNckz1Xso1eXeFvGURUBkRRxKEkCy45TYp1LccGk01E3UANtiVKJw1rGa71uvVJkIuQ1getaCX8nKpacy3KIe3JVAtWnZP23FYJQLsoHVacKVx+MdOKlaezJe+Zl7KkJ6+UTnoREREREREVFxMXohpIKRgpuPS3oJJWFEXsyvxdso1O5V3VHBFVLUtOZWPZKflEge60Ctd5vW2g3lVI69sqVD8vKmk3XMrFzIOZsuUaAWgSooW/VkB2kXB34Ylst4+pYY9uIiIiIiLygTINaS9evOjzY9atW9fnxySqaVQKoUKgLn+Z7mYOm269IdvGqPE+lCGiquOvi3meN3LSMlzreaObgnTKQaZe7euQVhoGZyv0pF1/Sfm5alQC1CoBt0TosC3R5PVj6nz8HIiIiIiIqGYq05C2fv36Pp0FXhAEWK1WzxsSkUcdo3TYcz1/UpxQvQq3ROQHsC3DdcCpHJhEeVVd3+hG5TpGIip7dlFEmsn1BFtKWoZpUVthAkJX6gRoEKpXySYeaxXhfdDrjUCndgdZZnklbbrJJlsGAK1vvgcOqOfndUgroHhhNRERERERkStl3u5AFF1P2kFEFefJdkFYfiobuVYRQxoZHdW1rcJ1GNjAD98ct8j2eav9neU9TCIqYzkKfVvrBqpxMVMaZtYyqlHLqEK9IC0GNvAr1klYtUrA/3UNwa9nc5CaZ4NKENAsVIuhjYylHn9RQU5tFTLMdoiiKBmr8/PVqoD7m/hjSMP8sbQK1+G5DkHYesWEPIVK3AIGjQq3xRrQMJghLRERERERlV6ZhrSjR492uz4tLQ2//PILBEHAY489VpZDISIn/loVHm0ZqLiuV6wBM49JQ9rWIbWhZU9aomonyyIPIse2CsRb29MkywbU9cPgUoSqcYEaTG4bVOL9vRHo1HDbJgI5VhH+2sJe2zlOfWrfvjVUFrR2izagW7ShTMdKRERERERUVJmGtN99953b9UeOHMEvv/zi1bZEVH50KgFWUdpaxJ/9aImqpWynylK1AET4yU/IiKj8V8Y4V9ICQKbZDv+b4a3FXjhJYgGjhj1liYiIiIio4ilPt0xENZpGBVhFaSWtn4aX9BJVRzdypW0N/LUCArTy4FKh4LbS0asF6Jw+2VzPtWPthRz8dDwLPx3Pku3jPNkYERERERHVHIIgQBAETJs2raKHUvY9aYmo6tGqBJzJ3SdZZlAzpCWqbkRRxP/2ZkiWBWhV8FOoLrXaK38lLZBfTZuUW5gov7cjze32rKQlIiIiqp42btyIvn37Kq7z8/NDeHg42rZti/vuuw8PP/ww9Hp9OY+QSIrlI0Qko1UJUDm9PZhsyjOiE1HVdTlL/nsdqFMpTgoWE1A1zusGaL3/aKNXA1o1Q1oiIiKimiY3NxeXL19GfHw8xo8fj44dO+L8+fMVPSyq4RjSEpGMVg1oVNKziGY7Q1qi6uZyplW2rGOt/P7Td9X3cywL0gnoVrtqVBYUp3tBh6iq8ZyIiIiIqHQmTZqEQ4cOOf799ddf+PzzzxEXFwcgf86kIUOGwMbiJKpAVaMshojKlVYlQBSlf5zuq9u+gkZDRGVFqZJ2cEMjAODRFgGoZVQjzWTHgLp+1aLi1F8joH1UfggdF6jB3fWNFTwiIiIiIioPUVFRaN26tWTZ7bffjrFjx+KWW27B+fPncejQIaxYsQIPPPBABY2SajpW0hKRjFoA7JDOEqSCfLZ3IqraErKklbR31/eD6marA41KwMAGRoxqHoBIY/X4/W8UosWU9sGY0j4Ywxr7w8B+tEREREQ1WmBgIP7v//7PcX/dunUVOBqq6RjSEpGMIAgQnUJaCHy7IKpunEPa2CrSd7akIo18HyMiIiIiqTZt2jhuX7p0yeV2GzZswOjRo9GwYUMYjUYEBQWhTZs2mDp1Kq5cueLVY23duhUTJkxAs2bNEBQUBJ1Oh7i4OAwaNAhfffUV0tLSXO67atUqPPDAA4iLi4Ner0d4eDi6d++ODz74AFlZWYr7NGrUCIIgoEePHh7HlpCQALVaDUEQ8NJLLyluk56ejv/85z/o0aMHIiMjodPpEB0djcGDB2Pp0qUQRdeTDQuCAEEQMG3aNADA+vXr8eCDD6JOnTrQarWoX7++bJ+rV6/itddeQ6dOnRAWFga9Xo86depg+PDhXgfqP/30E/r06YPQ0FAEBASgdevWePPNN92+1hWlen8bI6JiScrLxtfHt+JCVhpybJmSdQeuW2G1i9CoWHlGVB3YRRGJ2dJ2B7EB1aNi1pVIv+r9/IiIiIio+HQ6neO2VquVrc/Ly8PYsWPx888/y9YdPnwYhw8fxowZM7Bw4UIMHjxY8TFyc3Mxfvx4LFy4ULYuISEBCQkJiI+Px40bNxwhZtHHHzVqFFasWCFZnpKSgu3bt2P79u2YPn064uPj0a5dO8k2o0aNwrvvvott27bh/PnzikFogYULF8Juzy/Wevjhh2Xr//rrLzz00ENITk6WLL969Sp+++03/Pbbbxg4cCAWLVqEgIAAl48DAK+99href/99t9ssWLAATzzxBLKzsyXLL1++jCVLlmDJkiUYP348Zs6cCY1GHm9arVaMGjUKS5YskSw/cuQIjhw5gh9//LHSVU6XaUj79ttvu11//fp1r7ct8MYbb5RqTETk2j1/zsHOJOUzh6fSbJh/NAvjWgeW86iIqCxcz7HB4lQwHxdY9c/dujuNxJCWiIiIiJwdO3bMcds5xBRFEQ888ADi4+MBAIMHD8bw4cPRsGFDqFQq7Ny5E//9739x8eJFPPDAA9i6dSs6deokOYbdbsfQoUPx559/AgCaNGmCyZMno1OnTjAajUhMTMQ///yDxYsXK45v9OjRjoC2bdu2eOGFF9CiRQukpKTg559/xrx583DlyhX069cPBw8eRGxsrGPfhx9+GO+++y5EUcRPP/2EV1991eXr8NNPPwEAWrVqhbZt20rWbd26FXfffTcsFgtq1aqFKVOmoG3btoiJicGVK1ewaNEi/Pjjj1i9ejVGjx6NZcuWuXyc5cuX49ChQ2jTpg2ee+45tG7dGrm5udi/f79jm8WLF+PRRx+FKIpo2LAhnnrqKbRs2RKRkZE4f/485s6di9WrV2Pu3LkICgrCp59+KnucF1980RHQNmvWDC+99BJuueUWpKenY8mSJfjmm2/w0EMPuRxnRRBEd7XIpaRSqSAIvq2640x7UpcvX0adOnUA5JflF8xMSFRciTkZiFnk+mRJ75CH0Cq4Ab66PaIcR0VEZeVgkhnv7Uhz3PfXCvj2jsiKG5CPvLM9FYeTLcrrbg1F01B5dQQRERGRN0rz/fvUqVOwWq3QaDRo0qSJ4jZ20Y5kU45PxlpVhOuNUJVRa72NGzeib9++AIA333xTVqEK5GdMnTt3xr59+wAAW7ZsQc+ePR3rv/nmG0ycOBFarRa//vor7rrrLtkxUlNT0atXLxw5cgQ9evTA33//LVn/xRdf4JlnngEADBs2DAsXLoRer5cdx263IzExURKyxsfHY9CgQQCAfv36YfXq1ZLK36JjBIDhw4dj0aJFkvUdO3bE3r170apVKxw+fFjxtTp+/DhatGgBAHj//ffxyiuvONZZLBY0bdoU58+fx1133YVly5bBaJRPwFt0HGvXrsWAAQMk64vmg/369UN8fLzi65CUlITGjRsjPT0d48aNw6xZsxQrZQuqcVUqFY4ePYpmzZo51h06dAjt2rWD3W5Hhw4dsGnTJll17/z58zF69GjHfVc/I+5483tdHGVeMuPLDNjXgS8RFUo2Zbtc56cKQLg2BmZbmZ3TIaJyZrNLf5/9qskkWl2j9YohbbS/Go1Dqn6lMBEREVVfyaYcRC2cVtHDKFfXR05DpMH9pfFl4caNGzh06BDeeOMNR0D7wAMPSAJaURTx4YcfAgCefvppxYAWAEJDQ/Hxxx9j4MCB2Lp1K06dOuUI7Ox2Oz7++GMAQFxcHObPn68YTAL5hY5FA1oA+OqrrwDkt2H47rvvZAEtADz++ONYvHgx1q1bh+XLlyMxMRHR0dGO9Q8//DD27t2LI0eO4MCBA7IqWSC/tQCQn7uNGjVKsu7nn3/G+fPnYTAYMH/+fMWAtmAcc+bMwc6dOzFv3jxZSFv0ec6ZM8fl6zBjxgykp6cjNjYWX3/9tWJACwBvvfUWvv/+eyQkJGD+/Pl47733HOtmzpzpaN0we/ZsxfYLjz32GH7++Wf8/vvvisevCGX6bWXDhg1leXgi8qE0c57kvl6lQa+ITriWrUM9Q0toBC3Kru6eiMqbU0YLdfXIaDGgrh9C9WqcSLXAfvNNK1ivQu84P6h4speIiIioRnrrrbfw1ltvKa4zGo3417/+hQ8++ECy/OjRozhz5gyA/ADXndtuu81xe9u2bY6Qdv/+/bh8+TKA/BDTU6/WoqxWKzZt2gQAuOOOOxxV3Eoef/xxrFu3DlarFRs3bsTIkSMd60aMGIGpU6fCbrfjp59+UgxpC3rl9ujRA/Xq1ZOs+/XXXwEAvXv3RmSk+yvvbrvtNuzcuRPbtm1zuU2PHj3c9sYteLxBgwa5DHIBQKPRoHv37li6dKns8Qp6zbZp0wYdO3Z0eYxx48bVnJC2d+/eZXl4IvKhdHOu5H6UXwC+6D4E07alOZY5hzpEVHU5F8ZXlwBTEAR0rq1H59quP9ARERERERVo164dnn76admkYbt373bc7t69u9fHu3r1quN2QZUuAPTq1atY4zp79ixycvLbX3Tt2tXttkXXO7c0iImJQd++ffHXX39h4cKF+OCDDyRXqu/YscMRRitNGFbwOqxZs8brK9yLvgbObrnlFpfrbDabozftrFmzMGvWrGI/nslkwqlTpwAAnTt3drtfly5dvDp+eSmbxh9EVOWkO1XSBmsNUDlNweM0xxARVWE2p9J4VfXIaImIiIiIZCZNmoRDhw7h0KFD2LdvH1atWoXRo0dDpVLhn3/+QZ8+fXDjxg3JPkUnuy+OgmAVyO+vWqBoCwJvpKSkOG5HRUW53bZ27dqK+xUoCF8vXbqEzZs3S9YVtDrQarV48MEHZfuW5HXIzc11uS40NNTlupSUFFit1mI/XtHXPDU11dF61dPrVqtWrWI/VlliczYiAgCkW5xCWp0BzifJcq0spSWqjLIsdqw8nYOtV/IQ6adGXIAaAxsYEReo/Gf+eIoZX+3PkCyrLu0OiIiIiKqqcL0R10dOq+hhlKtwvXJ/U1+LiopC69atHffbtWuHQYMGoW/fvhgzZgzOnz+PCRMm4JdffnFsU3Ti+lWrVrm9RN/5sXyttHM03X///Zg8eTLy8vLw008/Oa58t9lsWLx4MQDgrrvuQnh4uGzfgtfh7rvvxkcffVSqcQCAWq12ua7oaz5hwgTHhGueKPXqBare3FYMaYkIADDrxHbJ/RCdn2JlnV0Uq81l0UTVxed7M3AwyQwASMmz40SqBbuvmfB1vwhonH6Rr+fY8P7ONFicSuP5e01ERERUsVSCqkIm0arJRo8ejVWrVmHZsmX49ddfsX79etx+++0AIAksQ0JCJCGvtyIiIhy3ExMT0bx5c6/3DQsLc9y+du2a222LXu5fdL8CQUFBGDRoEJYuXYqlS5fiyy+/hFarxV9//eU4tlKrAyD/dbhy5QrMZnOJXoPiKDp2URRL9HghISGO255eN0/ryxvbHRARAKBhgPSNPMtqUpzt/VqOTbaMiCqO2SY6Atqi0s0iLmbKLxX6OyEPJoVfY6PC7zsRERERUXX3/vvvO6o7X331Vcfy9u3bO25v3bq1RMfu0KGD47ZzmwFPGjZsCKMxv9J4x44dbrfduXOn47arYLMghE1JSXFMllXQ6iAwMBBDhgxR3K/gddi9ezfMZvn3Dl/S6XRo1aoVgJK/5gaDwTFx265du9xu62l9eWNIS0QAALNdmtroVRrE+MsvQzA5zzZERBXK7OZ3Mk+hRcmxFOUPVr3jDD4bExERERFRVdG0aVMMHz4cQH4Y+ueffwLID1jj4uIAALNnz0ZeXp7LY7jStm1b1KlTBwAwZ84cZGVleb2vRqNxtCX4888/cfnyZZfbzpkzx7FPnz59FLcZOHCgox/sggULkJeXhxUrVgAAhg0bBj8/P8X9CsLb9PR0fPfdd16Pv6QKHu/48eNYs2ZNiY7Rv39/AHD0IHbl22+/LdHxywpDWiICAGRbpcHNoDotFfu3WDl7GFGlYrW7DmktTuusdhEnUi2SZU1DNHirewj61FH+UEZEREREVN29+uqrju+/7777LgBApVI5KmvPnj2Lxx57DCaTyeUxMjIy8OWXX0qWqVQqTJ06FQBw+fJlPPbYYy6rUe12O65cuSJZ9uSTTwIAzGYzxo8fD4vFItvv22+/xdq1awEA9913n8sJynQ6HR544AEA+T12f/rpJ2RmZgJw3eoAyG8JURA0v/jiix4rgv/++29s2rTJ7TbuPPPMMwgIyG/7MXbsWBw5csTt9vHx8Th48KBk2RNPPOH4/5w4cSKys7Nl+y1YsACrV68u8TjLAkNaIgKQ396gKH9NfuNtf600qHUOfYioYrmbz8+57+yZNKus1cHUziFoHqbcaJ+IiIiIqCZo3bq1o4Jz8+bN+PvvvwEA//rXvzBs2DAAwJIlS9CqVSt8/PHH2LRpE/bv34/Nmzdj9uzZGDVqFGJiYjBt2jTZsZ988kkMGDAAALBixQq0adMGn3/+ObZu3Yp9+/bh999/x5tvvonmzZtj9uzZkn3vuecePPjggwCAtWvXolu3bliwYAH27NmDdevWYcKECZgwYQKA/H6un376qdvnWRDG5ubm4oUXXgAA1KpVC/369XO5j16vx+LFi6HX65GVlYXbb78djzzyCJYuXYo9e/Zg165d+PXXX/Hmm2/illtuQa9evXDo0CG343CnVq1a+P777yEIAhITE9GpUydMmjQJv/76K/bu3YsdO3Zg2bJlePnll9GoUSMMGjQIFy9elByjbdu2joB79+7d6NSpE+bNm4c9e/Zg/fr1mDRpEh577DF06tSpxOMsC5w4jIgAANkW6dm8AG1+aKNVCQAKUyALW9ISVSruTpxYnFohHHVqdVA3UI0gHc/XEhERERG99tpr+OWXXwAA77zzDtasWQNBELBo0SI888wzmDlzJs6cOYOXXnrJ5TGioqJky1QqFVauXInRo0dj6dKlOHnyJJ599lmvxzV//nxYrVasWLECe/fuxSOPPCLbJiYmBvHx8YiNjXV7rNtuuw116tTBpUuXkJaWBgAYMWKEoyevK926dcPGjRsxfPhwXLp0CQsWLHD0s1USFBTk+Ym5cd999+GXX37BmDFjkJKSgpkzZ2LmzJmK26pUKvj7+8uWf/rpp7hy5QqWL1+O48ePY+zYsZL1DRo0wKJFi9CoUaNSjdWX+M2MiADI2x0UVNJqnd4lWElLVPFyrXbMO5KJh+Kv49mNKS63Mzv9vh5Nll4e1TKcFbRERERERADQuXNnR8Xr2rVrHZNKabVafP311zhw4ACmTJmCNm3aIDg4GGq1GsHBwWjXrh3Gjx+PpUuX4tixY4rHNhqNWLJkCdavX49HH30UDRo0gJ+fH3Q6HerUqYPBgwdj1qxZjurWogwGA5YvX45ff/0V9913H2JiYqDT6RAaGoquXbviP//5D06cOIF27dp5fI6CIGDkyJGSZe5aHRTVrVs3nDp1CjNnzsQ999zjGIfBYECdOnVwxx134L333sPx48fx2GOPeXVMdwYPHoxz587hk08+we23345atWpBq9XCz88PDRo0wKBBg/Dpp5/i/Pnz6Nu3r2x/rVaLZcuW4YcffkCvXr0QHBwMo9GIFi1a4NVXX8WePXvQsGHDUo/TlwRRFJm4VGGXL1929Aa5dOmSo6k1UXGF//QGUkw5jvsb756E3rUb4dmNyUjMLiyffb5DELpGc4Ihooo0+2AG/rrkeeKCCa0DMaBefq9Zm13E2LVJksn/+PtMRERE5L3SfP8+deoUrFYrNBqNY+Z5IqrafP17zUpaIoIoisi0SHvSBmj0AJQqactrVETkijcBLZBfcVsg3WyXBLQA0CRU69NxERERERERUckwpCUi5FjNsNilzWZDdPnVdRqVdOIwG4vviaqMDHPh76tSpxKDWpAvJCIiIiIionLHkJaIkGaWV+WF6o0AAI1ThmNlJS1RlZFmKvyFVTq/ohIY0hIREREREVUGDGmJCKnmHNmyYK1yJa2VE4cRVUr3NTZiVHPprKbpRUNahX1UzGiJiIiIiIgqBU1FD4CIKp5zJW2Q1gC1Kv8cjsbpVA4raYkqJz+NgCCd9Bc23Vz4C2tXKKVlRktERERERFQ5MKQlqiGWnz+E+zd8DwCo52fC+80SEKq1Yt6VJtiYHIDHYpPwSGwyjmf5YXZCS9htychL/xoPRCVCMA/CgYxOAABrkaAnJc+Gbw9n4nyGFQBg0AjoG+eHgQ38ILi4jPpIshmLT2QjJc+GxqFajG8ViABd9Szq33olD7+dzcHZ9PzXp22kDo+2CECdQL71Uskpha0A4KdRIVjvFNKaioa08n3Y7YCIiIiIiKhyYFJAVANkWvIcAS0AfNriEvpFZAIA2gYdxL27G+OLVpcAAF1CcqBRJyAvfQYsuRtRWwf8q8EpTD08A1m2IEkl7ZxDmdhz3Sx5rPnHstAgWIOW4TrZOKx2EZ/sTkeONT8tup5rgkEt4Ilbgnz9lCtcUq4N0/dlSC4xP3DDjHRTBj7sFVZh46Kqb0eiSXG5QSMgxCmkzTDbYRdFqASB7Q6IiIiIiIgqsepZvkZEEj+e2VvknugIaAHAX23Hn11PSrYfFX0WltwNjvtqwY7eEX8CkPakLagQdXbGxfKr2TZHQFvgVJrFq+dQ1VzIsCqGYuczrMixsGcEldxJF78z4QYVAp2q0u0ikHvzd06pAJcZLRERERERUeXAkJaoBsgo0nPWX12ygNBfkwUAsBUJeswuJhFzNbmYTWFxjqV6TkTmbn41s9ILQeSl5Fz573DLMC2ahWphUMtjV9PNnzel33xXbUmIiIiIiIiofLHdAVENoFEVno8J09pKdAxRzD9G0QDW1SRirpbbFEr5nCtrqwt3zyqPIS2VQnKe9He4V6wBk24JhFolQK+Wb19wUsD514+tDoiIiIiIiCoPVtIS1QBaVWFyE6pVbkXgiXjzwuiiAazLilmXFbbyZblW0eX2VZnoYnIngCEtlY5zJW33aD3UNxNXjUrewiDPEdJKf+6Y0RIREREREVUeDGmJagCNUPirXtKQ1u5USWsXRcX2BQDgqjhWqZIWKOyZWVOYSvZfQASrXUSaSRrShhsKf78FQYDeqeWB+WbhrfM5ElbSEhERERERVR41st1BRkYGVq9ejV27dmH37t1ISEjAjRs3kJubi5CQELRs2RIDBw7E+PHjER4e7vF4//zzD77++mts2bIF165dQ0hICNq2bYsxY8Zg5MiR5fCMiNyL1l5A2h37SnWMu2qtQpugffg5YTTGrW2DbDe9ZAuC3DyrHTMPZuLADTP0agH1gpTfcsb/mYTaRjVGNPdH92iD12M6n2HBrIOZuJxpRYBOhcENjehbx4D3d6ThZFphEuqnEWCzizBqVehf14AHmvhDEATsvmbCx7vTHdvd39iIB5v6l6hP58lUC745lImr2fmP665Y9o1tqehSW49JtwTCqOW5MvJeap5d1koj3E/a40CvESTV2m9tT4UK8hYczGiJiIiIiIgqjxoZ0u7cudNleHrjxg1s2rQJmzZtwscff4wff/wRd955p8tjTZs2De+88w7s9sIapWvXrmHt2rVYu3YtFixYgKVLl8Jg8D54IvIlUbTjdr+5PjlWrN9lTKj3JV468jXcFeIXtDWIP5eLbYkmAPm9Z1NvmF3uczXHhq/2Z6B9pB4GjXfx0ayDmTibnh+KpuTZ8f3RLCRkWSUBLVBYqWs22bH0VA5aR+jQMFiLz/amS7ZbdjoH7aL0aBqq9erxC4iiiC/3Z+Bajvf9fndeNSHWX40RzQOK9VhUszn3o9WpgACt9PdF7/Sr6apHNCcNIyIiIiIiqjxqbAlXnTp18Nhjj+Hzzz/H8uXLsW3bNmzduhWLFi3Cgw8+CLVajaSkJAwZMgQHDhxQPMasWbPw1ltvwW63o1GjRpg7dy527tyJlStXom/fvgCA+Ph4jBs3rjyfGpGEaE/z6fGCtekI0GS63aagkvZCRvGu67fYgSvZ3u0jiiLOpcu3XXcxz+O+FzOsuJRphUUhvDqTZvHq8YvKtYrFCmgLnC/m60Pk3I823E8tC1sjjQqzhykIM9TYjwBERERERESVTo2spO3bty8uXrzocv3w4cOxcuVKDBs2DGazGW+99RaWL18u2SYlJQUvv/wyAKBu3brYvn07IiIiHOsHDRqEYcOGYdWqVVi4cCEmTpyIPn36lMnzIXJHtGf4/JhqwX0gab3Ze9ZSggnBzF5OqpVrFWWXb3vLJgKJ2crPIdPsouzQjYwS7AMAuZxAjIopyamSNlwhaL2vsT9Op6XB5ObXVC0Aw5v6+3p4REREREREVEI1MqRVqz1XGd17771o1qwZTpw4gS1btsjWz5kzB+np+ZdKf/jhh5KAtuAxvv76a6xevRo2mw0ff/wxQ1qqEJ4qaf0jvwIAZN940utjegxpb2aW3gauRZm9LEjNKcVkYzY7HL1jnaWXKKSVjkWrAqZ1DwWQPzlTmEGNlDwbNl/Ow+/ncx3b1bQJ06j0lCppnbWO0OGbAZFIyLLC1XmSGH81+yETERERERFVIjUypPVWYGAgACAvT3759MqVKwEAQUFBuO+++xT3j4uLQ//+/bFmzRr89ddfyMzMdByTqLyI9nSX61TqaGh0zYt9TLXg/jL9gnYHJSkwNXkZ7GYp9SrwklUUXVbSppuKH5w6V98G6VRoHCLtaxuiVyElzy4JaXNK8RyoZnLuSRvhomWBXi2gYXDxeisTERERERFRxWEZjQsnTpzA/v37AQDNm0tDLLPZjJ07dwIAunfvDp1O5/I4vXv3BgCYTCbs3r27bAZLNZ7FbkOWxQSzTR6e2m1pLvcT1BEu17njKaS12POraC0lqKTNMNuRZy385+oYOZaSV6Fa7cr9bAHgRq40BBNFEXlWO+yi68dzbncQqFN+a/VzmhAtqxTPgbxjv/n/l2e1w1aC9huVicUmIiHLqd2BQiUtERERERERVT2spC0iJycHCQkJWLVqFT766CNYrfkhzrPPPivZ7uTJk7DZ8r8oOwe4zoquP3bsmGNCMW9dvnzZ7frExMRiHY+qF7toxzM7fsE3J3fAZLNCI6jwUIN2+LbncGiQjsyrw93uryphSBukSUci6rhcv/+GGY/+caNEx559KBOzDxVOTCYA6FhLhyntgmEoEnJmlyLgXHoqx+W68xlWTN2cjMltg5BtEfH1gQwk59nhrxHwSIsA3F7XT7L9rqsmzDwonUgtyMuQNtcqYtmpbNzfhL1BizqfYcEX+zKQnGvHkEbGEr8+ay/kYOHxbEdrDL0aGFjfiBHNA3w53DKXZxUxfX869lwzy/owK/WkJSIiIiKi8nX48GF88MEH2LRpE65duwaLJX9C6n379qFdu3YVO7hKbMyYMfj+++9Rr149nD9/vqKHU+FqfEg7b948jB071uX6f//73xg1apRkWdHgNC4uzu3x69QpDLIuXbpU7PEV3Z/I2earZ/Hlsa2O+1bRjgVn92JwnZYYGr7L4/4lraTtG/EnTmS1LtG+xSUC2H3NdMq6ugAAsFhJREFUjI2Xc3FXfaNjeXYZtgq4mGnD7EOZyLWKSM7Lf5xsq4jvjmSiW7Te0cvTLor45pB8YrYgnSBbBgBGjXz54pPZ6BGjR23/Gv927LDgWJajYnTxyWx0i9YjNqB4r0+W2Y55R7JQtBDbZANWnMlB9xgD6gVVndd70+Vc7L5mVlzHSloiIiIiImUbN250FMq9+eabmDZtWpk8zp49e9CrVy/k5uZ63pjIDZbguNCuXTvs3LkT//nPfyAI0mAlM7Owai4gwH1Flr9/YQVYVlaWbwdJNd7x9OuKy09m3IAp62eP+wuqYMdtXYD7qtuizHbXLT7KyrEUi+R+XglaKRTH2XSrrG+t2Q5czCxsk5BtEZFulo/DVaAYZlBDr5CpXcr0cra0GsAuijiYJP2/3npF3hfck4QsG1z9iJzPsCivqKROpSmPV68WUMvIkJaIiIiIqCK98soryM3NRVBQEL7++mvs3LkThw4dwqFDhzxefV1epk2bBkEQZPkWVS5Vp5SojNx7773o1KkTACA3NxdnzpzB4sWLsWLFCowcORKfffYZBg0aJNmn6ERi7vrRAoBer3fcLslZFU/Vt4mJiejSpUuxj0vVQ65CD1oAEGUXRSsThMKfX33A/TBnLfZyPxH96hpwLduGw8kWNA7R4HSa+z61pXXeqYestYLm3LqabUPzsPzbFoUep9H+avR3aolQQKfOb5kw97D0hE1pJkGrbpJy5a+FyVqCydzcvKYpeVXr9b6SJQ/xtSrg0RYB0Kn5IYuIiIiIqKJYLBZs2rQJADBx4kRMmjSpgkdEVVmND2lDQkIQEhLiuN+5c2eMGDECP/zwA0aPHo2hQ4di7ty5GDNmjGMbg8HguG02K1+CWsBkMjlu+/kpBzfueGqnQDVbnk25ws7NHFdSRUJalToCQTF/AmIuRHsmzNmrXFbjdo/W447wIIiiCJsIqIX8lgSf7El3+VB6tYD/3pafbj61IdntsL7sG46ELCv+s6vweFdzbMix2B2tBpwD0lbhWky6JchxX6sCrCKgEoAQvQrj1iYhVyHsm9U/AgFaARa7iLe3p+GsiwnFChStrjUrlGp+1CvMbXB2Rz0jtl4x4XiRymBOIFYoIUv++pfk1ckwuQ5iU6tQSCuKIq44VXQ/3iYQt8UaGNASEREREVWwpKQkRy7UtGnTCh4NVXVsd+DCo48+igcffBB2ux1PPfUUUlJSHOsCAwMdtz21MMjOznbc9tQagai4cq0uQlpvK2mhld4XVBBU/lBpakOlqetyv4JsSBAEaFT5l0z4a90HRpF+KkQa1Yj04vLsSKMarcJ1cM6gzmcUBnjOlbQB2sLjRxrVCDGoEeGnRphBDZUgoFmo9LkC+ZOSBenyn4OfRoXb63g+kSINaeXH03rxrhqql26UZa46oWFZU6oaTXMTuLqS4eY1TcmrOu0l0k122cmFWyJ0DGiJiIiIiCqBooV5Wq38OydRcTCkdWPo0KEA8oPWP/74w7G8aHVr0UnElBRtV8BJwMjXcl1U0uZaUr07gOD6j4igMrhcB8gDMKVJsYoK0Rfv7UarFhAXKC32P51mcbQGMDlVsWo8HL55mPy5GrUCVEV68rSJ8PxH9XKRSk+zUzWvVgWvevwE6pxCWrY7cFCqpL2RY8O1HBusCu0lihJFEUm5+dtey3EdxJZ3u4PUvMIxKf1z/v9PN9mRlGuDKIo4lyF9PbQqIMKPf7qJiIiIiEpj48aNjh6tGzduBAAsXrwY/fr1Q2RkJPz8/NCsWTO89NJLkqK9AgU9Xhs0aOBYNnbsWMcxBUFQnKgsLy8PX375Jfr164fatWtDp9MhKioK/fv3x9y5c2G1em4jaDKZMHv2bNxzzz2IjY2FXq+Hv78/WrVqhQkTJmDNmjUQb15eO2/ePAiCgLfeesuxf9ExFvw7f/687HFsNhu+//57DBo0CDExMdDr9QgPD0fPnj3x6aefetXS89ixYxgzZgzq1KkDg8GAOnXqYNSoUdi1y/NE5zVRjW934E5kZKTj9oULFxy3mzZtCrVaDZvNhuPHj7s9RtH1LVq08P0gqca6kJWCTw5vkixTQcTXrS9gRMw+r45RtCetfKW7kFbO6KGENNjLkLZogWD9IA0uFAmpFhzPxk/HsxHup5L1LtWo3IejLRRCWucR1fbXIMpPhesKfVELJGTZcPCGGbdE6mTtDrytbgxwqjpmu4NCf12STxJ2Ms2Kpzckw6AW8FS7IHSurZdtcy3Hhvd3pOGqm3C2QHmFtFkWOz7cmYaTHvo1CwBur2vAYy0C8d896TiY5LqNTrS/WnJigYiIiIiISsdut+PRRx/Fjz/+KFl+8uRJfPzxx1ixYgW2bNmC2rVrl+pxDhw4gKFDh0ryJQC4ceMG/vrrL/z111+YNWsWVq1ahVq1aikeY//+/bjvvvtw7tw5yXKz2YyjR4/i6NGjmDt3Ls6dO4f69euXeKwXL17EkCFDcODAAcnylJQUbN26FVu3bsWMGTMQHx/vss3D4sWL8dhjj0mqjS9fvoyFCxdiyZIlmDlzZonHV12xHMeNhIQEx+2irQp0Op1jsq5t27a57Utb0EBar9c7Jigj8oX/HdkiW9YlJBsjYrysogXcV9IK8iCsgCgqVNJ6aHfgbUhbtCK3QZD8PJII5cmlPLUZaBQsf64GherfNhHuJwMEgG+PZAKQ96TVegiKCwRo2e5Aic1DpWyeTcSPx5RbzPxyJturgBbIb5/gqSrXFzZdzvMY0AL5P9N/XczD4pNZbgNaAIj257lVIiIiIiJfev311/Hjjz/i3nvvxfLly7Fnzx6sXr0a99xzDwDg9OnTeO655yT7TJ48GYcOHcKaNWscy959910cOnTI8W/y5MmOdadPn0bv3r1x4cIFBAUF4ZVXXsGKFSuwe/durFmzBk8++SQ0Gg127dqFoUOHwmKRXzV77Ngx9OrVyxHQDhs2DIsWLcKuXbuwfft2zJ8/H4888gj8/f0d+9x77704dOiQZEKzomMs+BcbG+tYn5ycjJ49e+LAgQPQ6/V46qmnsGTJEuzatQsbNmzAK6+8AqPRiNOnT+Puu+9Gerp8bppdu3bh4Ycfhslkgl6vx7///W9s3rwZO3bswBdffIGIiAhMmjQJ+/fvL+b/VvXGb3tuLFmyxHG7TZs2knX33nsvtm3bhoyMDCxfvhwjRoyQ7X/58mWsW7cOANCvXz9JL1ui0jqWdk22rI7BfcDjzF3fWXfrAHkY5q8R3Fah1i8SuHaupcOua8pjndy2cPIv53YH7hg99DvQqgV0jNJhz/XCx20ZLg9ku0TrFas5iyqYlMq5IjNA511I6xwOO7duqKm8qSi+mmODXRRl1aSnUpVbfygRkd+2on5Q2faMSlTor+vOHhe/E0U1VeitTERERETVgyjaIdozKnoY5UpQBUEQKrZ+8J9//sG7776L1157TbL8rrvuwl133YW1a9di6dKl+OKLLxxXXEdFRSEqKkpS0BcbG4vWrVsrPsbo0aORnp6O9u3bY+3atYiIiJCsv+OOOzBo0CDcc8892LFjB+bNm4fHH39css0jjzyCrKwsqFQqLFiwQJZDde3aFY8++iiSk5NhNBoBACEhIQgJCUFUVJRjO1djLPD000/j0qVLqFevHjZs2CBp6QAAffr0wYMPPohevXrh7Nmz+Oijj/Dee+9Jtpk8eTKsViu0Wi3Wrl2L2267zbGuS5cuuO+++9CtWzdZpW5NVyND2nnz5mHEiBEwGFxfzv2///0Pq1evBgA0aNAAvXr1kqyfMGEC3n//faSnp+Pf//43BgwYgPDwcMd6m82GyZMnw2bL/5I+derUMngmVJMlmbI9b1TEzjQjuoTkOO7rg8ZBrYlxub1KHQa1tgVslmPylaI8TBIEAY+3CcKsQxmSSle1AHSL1qN7dOHv26jmAbiWk4HLWVbUCdRALeRPyNUzxoBbIguDU+cJtty5p4HnSb8eaxmATHMGTqVZ0TBYgweb+Mu2aRepx5CGRvx5MVc2YVOBvJuh6nWnys1aXkyKBsirftmSNl+u82xwLuRZRUnlttUuIsFFIKpVAbfFGXDghlnyc3kuvexD2hwvn0+B67nuQ92OUTr0q1u8NiREREREVHWI9gxkXr2/oodRrgJrL4OgDqnQMXTs2BGvvvqqbLkgCHj++eexdu1aWK1WbNu2DUOGDCn28bds2YJ//vkHAPD999/LAtoCd911Fx544AEsXrxYFtKuXbsWe/fuBZAfoioVChYomk0V1/nz57Fo0SIAwJdffikLaAu0b98eTz75JD766CPMmzdPEtLu2rULu3fvBgA88cQTkoC2QGxsLP773//ioYceKvFYq6MaGdJOmzYNL7zwAu6//3707NkTjRo1QkBAADIzM3Ho0CEsWLAAW7duBZDf2mD27NlQq6XhS1hYGD788EP861//woULF9C1a1e89tpraNOmDa5cuYLPPvsMGzZsAACMHDkSffr0Ke+nSdVcUp40pP2131j0C0uAJf1D2bZvnozBDdVd6NP8wZsTbKkhCJ4DRX3gCOSkvClbLiqEtABwS6QOX92e/wfHLoqw2gGVIO8XGxOgwce3hcFmF6F20yIgzOB9SOtNO4Xa/hq80yMMVrvotoftwy0CMKKZPwoKXK/n2PDC5sJm8TYxPxi8lluykNb5scvj0vuqIM+polgAMKNfOP71V7Jkea5VhLFIvpqQZYNzMfKs/hEwagSoBUCtEvDpnnQk5Rb2QjqXbkXfMp7LMcepMnh4U38Mbmh03P/6QAa2JRaOyd2PwcQ2gehX1/OJCCIiIiIiKp5Ro0a5nAC6Y8eOjttnz54t0fF//fVXAECzZs1kV2k7u+2227B48WLs2rULVqsVGk1+bPfbb785tnn22WdLNA5vxMfHw2azwWg04u677/Y41o8++ghXrlzBxYsXUbdu/tW4BVeUA/mTqbkybNgwhISEIC0tzSdjrw5qZEgL5Dc7/uabb/DNN9+43CYuLg7ffvst+vfvr7j+iSeewJUrV/DOO+/gzJkzGDdunGybgQMH4ttvv/XZuIkKOFfSRhoCoFGp4Oqi71CdH7Rqz/1WJQQXbxEuQtqiVIIAnYfM0l1ACwB+GgF6NWDy4qpxV39UlXiaZAzIH1vB8JV615ptIq5ll7SS1jmk9Wq3ai/PqXLZTyMohu/OFc4XM6R9XyP9VAhx2q9BsAY7rhYGomfTvW+PUFLZTuMM0qkkk8sV5yREx1que0QTEREREVHJNW/e3OW6sLAwx+3MzMwSHb+gqvTEiRNef2+1WCxISUlxtCnYty9/cvC6deuiXr16JRqHNwrGmpOT4wiIvXH16lVHSHvo0CEA+UWPbdu2dbmPVqtF+/btHQWOVEND2jVr1iA+Ph5bt27F6dOnce3aNSQnJ8PPzw9RUVFo164dBg0ahOHDhzv6eLjy1ltv4c4778RXX32FLVu24Nq1awgJCUHbtm0xduxYjBw5spyeFVUHdtGOY2nXEWsMRoheuWpOFEUcSk1EjlUaMkUY5JfuF2VQF//SbgHK+4guo2DfEgQBIXo1rnk5IVRZ0avlf0iPJFtwJl0aDkZ5XUkrvW9hJS0AeUhr0AhQCQL0akHSt/dAkhkhehXUqvwq2u1XpT2E6yr0Mm4YLF12IcMKm128ORGdDeEGNbQ3/5/NNhEXM60wqAXEBKihEgRkmPMnGwszKP8f28X8lgtqIb96PMMsIt3p7ILRKex3DpJdaRSs8XpbIiIiIiIqHne5j0pV+Dm8oJ1lcV2/fr1E++XkFLYrTEpKAgBER0eX6Fje8sVYU1Lyr0INCwuTXZXurFatWiV6vOqqRoa0zZo1Q7NmzfD888/75Hi33norbr31Vp8ci2qudHMu+v0xC3uSL0MtqLDgtlF4qGE7yTaiKOL+9d9jxcXDsv0j9P5K83nl7wfAoC7Br7vgItj1opLWV0INqkoZ0n6yRz6DJdsdlM6hJOnPleHm627USEPa+UezMP9olsvj1AuS/6w3CJb+LJvtwJEUC749nInEbBtiA9R4vWsIUk12vLsjDdk3WxU0CdGgbx0/fHckExY7cFd9P4xtJZ0EMs8q4t0dqTiVJg3tnRXtowt416IDANpHFbMCnoiIiIiqJEEVhMDayyp6GOVKUAV53qiKKwh327Ztix9//NHr/WJjY8tqSC4VjDUiIqJYFa5KvWuLc7Ur5auRIS1RZbT0/EHsSb4MALCJdkzbv1YW0u5KuqQY0KoFFYJ1BlhylcO+bJsKET4MaV31pC0L3kweFqQr2zd/54m+lAgAIv1KVkmbZ8sP4Gv6H7F/ivRnBQrbTPhpBKSalPZQVlchpA3SqRDhp5JMHvbF3nRk3gxjE7Js2JyQh/MZVkdACwCn0qw4lVZ4WdMf53MxtJFRUlG7+5rJY0Bb8DyK8rY6tn0UWx0QERER1QSCoKrwSbTI9wom8srKykLr1q1LdIyCycYSExN9Ni4lBWPNzMxEixYtPFbCKgkNDQUAJCcnw2azuT3GtWvXSjbQaorXTxJVEkvOH5TcP54uv8xAaRkAdAiPhSAIEMU82bo8m4AliWFoFxZT7DGpNXWheC5HLJ92BwDQOMRzm4YhDd23eigtQRDgr3UfoIqA43J5TyKcLpk32URcyqrYauHKIEgn/ZN04+bEbPWDi3eCwVVFc1yA9DiZThN7rTidg0Qv/h8SnLa5nOU5oFULQB2nNgwNgjz/bNcyqmWtGoiIiIiIqOpo3749gPyJx65evVqiY3To0AEAcPHiRVy4cKHY+3tbEFQwVpPJ5OhPW1wFk6OZzWYcOHDA5XZWqxX79+8v0WNUVwxpiSqJbKvn6tTEnAzZsq6RdTG3x/D8O3b5JeAvn2yOfzXvh3vqtCj2mASVP/xCX5GvKMdK2jvq+aF3nAGBLkLSaH817qhf9rPeP9nW/WU4Y1oGeH2sSKMakX7St98jSeX3mlZWRVsaAMDwpvnh+6MtAtAmwvueyv4uSp89TdSlUwHpZs+zuDln8cm5yvsIyG/ZEO2vxlPtgmTjCvJQSdswWIMp7YKgquEV1kREREREVdmQIUMA5F89+fnnn5foGIMHD3bc/t///lfs/Q0Gg+O2yeT6MsXBgwc7At3PPvus2I8DAP3793fc/v77711ut2LFCqSmppboMaorhrRElUSu1XN16hWnkHZ0407YPuhptAnLbx4u2rMl67V+t2Ne/y/xYedBUAkl+3XXGfvAP/IryTIR5Rco6tQCJrcNwpw7IrHonijZv8/6hCv2jPU1pT6nRXlT8VtUq3Bpn9HDyQxpnUPagvYRYQY1/q9rKD7sGerVcfw1yj8PoR5C2pgADdJNnkNaq9MmyXnK1bdxgWp8f1ckPusTjltjDIrbdIuWtzL4d+dgLLonCv/pGYYmocWf8I+IiIiIiCqPO+64A126dAEAfPzxx1i8eLHb7Q8dOoRVq1ZJlvXv3x8dO3YEAEyfPh0///yzy/2Tk5ORm5srWVZ0wrEzZ8643LdZs2Z48MEHAQA///wzPv30U7djPXfuHBYuXChZ1qVLF0fl74wZM/D333/L9ktMTMSLL77o9tg1EUNaokoi1+Y5pE3MlYa00X7S6k5RlIa0gsr76k53BMFp4iLRDFGsWZNdqTzkwLpiBsWtnULaY8kW2GvYa+rMZJU+/5KG784TdBUIM7jvpyQAsHnxX+A80ZurStoci+eDGcrhBAMREREREVWsn376CWFhYbDZbHjooYcwZMgQLFiwADt37sSePXvw+++/4/3330f37t1xyy23YNOmTbJj/PDDDwgICIDdbsfIkSNx//33Y8mSJdizZw927tyJn376CWPGjEG9evVkvV6LTnb/3HPPYfPmzTh16hROnz6N06dPw2otbOE2Y8YMNGzYEADwwgsvoHfv3pg7dy62b9+Offv2Yd26dfjvf/+LAQMGoHHjxli2TD7Z3ddffw2NRgOLxYIBAwbg1Vdfxd9//41du3bhyy+/RMeOHZGYmIi2bdv66iWuFtjojqiCJeZkYE/yZZzOSJKt+/XiEcn9Y2nSnrTRRuks86JTuwNB8FGvVueQFiJEexoEtXJloyjaYLOchkodBpU60jdjqGCeojRvJhcrqpXT5fvZVhHnM6yobVTjdJoVMQFqRHg5EVlVcjXbistFerpqVPlVyAFaFfKcElKDc0WsF3mmn0Zw2R4gzEN7gcRs7/oCn0i1wKgVEG5Q42KmFVdzlPdLzvNclasURLO7ARERERFR9dKoUSNs27YN999/Pw4fPoxVq1bJqmWLCgqSt9tr0aIFNm7ciGHDhuHSpUtYvnw5li9f7tXjN27cGMOHD8fixYuxdu1arF27VrL+3LlzqF+/PgAgLCwMW7duxfDhw7FlyxZs3rwZmzdvLtZYu3btivnz52PMmDHIy8vDf/7zH/znP/9xrNdoNPj666+xdetWt31raxqGtEQVaE3CCQxe9y0sduWQZ+hf37nd37mS1pK7XnJfUPkmpBXgHNICmVdHIaDWN1Br4iTLRdGG7KTnYTMfBgQ9jGFvQmvo6pNxVCRPuVlxK2nDDGpE+6slweCGS3nYddWE1JuX3I9rFYA76xuLO9RK64/zOfjuiLxvcqBWwBvdQmVVrCWppHU3wZundgepXrQ6AICVZ3Kw8kxOscbliiyIhldZNBERERERVTFNmzbF/v37sXjxYixbtgy7du3CjRs3YLPZEB4ejmbNmqFnz54YNmyYo12As44dO+LEiROYM2cOVq5cicOHDyMlJQUGgwENGjRA9+7d8dBDDzkC16J+/PFHdOrUCUuXLsWJEyeQmZkJu135O1Dt2rWxefNmxMfHY+HChdi2bRuuXr0Ki8WCkJAQNGnSBN27d8eQIUNw2223KR5j5MiRaNu2LT744AP89ddfSEpKQmRkJHr06IHnn38eXbt2xdatW0v8elZHDGmJKtBnRza7DGi9EW10P5kVBB9NqCWrpAUAMyzZf0AdPEGy1Jq3Iz+gBQDRhNy0z6CtvVBh/6rF0+RNOk/9EBS0DtchMbuwV9DaC9K+QT8cy0KfOn7l0nO3PKw6qxxsZlpELD+dLVvu/Ly9mUDLqHEdxHpqd+Br3lRXK/3fcqIwIiIiIqLS69Onj8s2fe7WOXO3Xf369YvVClCtVmPkyJEYOXKk1/s48/Pzw5QpUzBlypRi7afVajF16lRMnTrV633uuece3HPPPcUdokPLli0xf/58l+vnzZuHefPmlfj41Q170hJVoMTczBLva9Ro0S4sxnFf6Q+Dz3rSqoIhqGvLlttt8hYN5pw1kvui7bpsm6ooUCcgwk/5LTPKT4VAXfGDtWZh7ieFstiBgzeqz4RiaW4qVbclSmcY9dMICHVqTxBtVHvs4do01PW5xyCdgGj/8gtq723suZK9idOEcyrB8yR1REREREREVP3wmyBRBTLZrC7XNQoMd7ku2hiEN9oOQIC26Mzw8mOptc1KMzwHQRDgHzYNWTf+JVkuinkK21bP2egFQcALHYOx8HgWzqRZkW0VEW5QITZAjYebB0AoQfVjvUDPb8G7rpnQubbe43ZVgc27bgIAgA5ROqidqpO1agFTOwVj2alsJOfZoVcLSDfZ4K9VQUR+b9tRzV2fmBAEAc93CMYPxzJxLSd/MNdu9pOtZSwa3oqO9c70asDkovi9Q5QO0f5qnEy1oGGwFkMaem5V0SZCi0daBGBLQh70KmBoY38E6Xj+lIiIiIiIqKZhSEtUgZxD2l/7jcXguq1KdjBRHtIKgu+qBtW6JjAEPYG8jFlFHlPp8vXq+7bSMFiL17oqT5ZWEjEBaqgFyHqxFrX3mgk2uygLLKsauyjC+4uAgK4ugunWETq0jlBqv+GdukEar/4P/7mSh8/3ZUiWPd8hCLuumbAlwSTb/qVOwehYq/hhuiAIGNzQiMFeBLpERERERERUfbFch6gC5TmFtHp1aQJOpfI+3wamgkoaJIlirsJG1Tek9TWNSkBsgPsgPdMi4kSqpZxGVHasxaii1auBdlEVWz2sNAGZn0blsspVW8VDdCIiIiIiIqpYTFOIysHl7DRsvHpGFspmWKTtAgylCGnt9nT5Ql8Hpk4TkdnMRyGKVgiCBqI9B1bTAVicetICgChaqm0bhNKqE6jBxUz3k8f9djYHidn524QZVGgToYOmioWCtmI0028Xqa/wydL8FWb9MmgEBOuVQ1o385URERERERERecSQlqiMHUm9ilvjv5QFskpKWkkr2rOQdX2iwhrfTpIkOIW0AJCT8h6MoS8h6/q/YLcluBhgHsCQVlG9IA22XpFfPl/Unutm7LleOIFYp1o6TO0UUsYj863i9KPtGl3xPXiNGnlIrBLgspK2qoXmREREREREVLkwpCUqYwvO7vUqoAUAP3XJgkyraU9+EOpEEEreu1OJoJLPVm/N2wxTVgPXAS0A0Z4DQRXo07FUF3W9mDzM2e5rZiTl2hDh59sQvixZ7d5V0mpV+RNwVTQ/hZDWoBYQ7CKk5VxfREREREREVBr8WklUxhJzMjxvBCBcb0SLkFolegy7LVW2TKVtBEElr3wtDbW2KZTO7Zizlrvdz2675tNxVCfNQrWKgaAnKXnFKE2tBPIUZkcLVWgd0CvWAL9K0Dsg1KBGw+DCn/VofzViA9RoGqqFcyeEAK2AuBKE7UREREREREQF+K2SqIxlWKSXstfxD0GcMViyLNY/GK+0uR1aVQkrI0X55fL+YW+V7FhuCCo/+Ed8jOyk55xWqAE3hZJ26xVAf4vPx1MdGLUqvNolBL+cyUaGKT94DdSp0Lm2HmfSrLiQkT9p2LkMKyxFctlsSxULaa3SHxABwBvdQrD0VDZu5NggCAKahWpxXxOj8gEqwAsdg7H4ZDZsdhEPNvWHIAgI0Al4tUsI4s/lIMNkR6hBjXsbG9nugIiIiIiIiEqFIS1RGct0CmmfadkTL7Tu49PHEJ1CWo2hF1SaaJ8+RgG1ro3SUrf72G2JZTKW6qJpqFaxx2zfOoW3p25OlkwwlmX2fiKuyiDXqZLWTyMgJkCDp9sHu9ij4kX4qTG5bZBsectwHVqGV3xLBiIiIiIiIqo+Kv6aUqJqzjmkDdIafP4YopgruS8Ivn+MwmMLkL11CB5CWitD2tIKcLrGPquKV9KWpMUDERERERERUWUhir4tnmIlLVEZ237jguR+oLbkM9eLoghr3jaIYha0fn0AqGHN+wfmrMWS7QSh5I/hHRWAoiEhK2nLmr9TSJtmKnz97aKIPdfMuJxlVdw3yqhGl1p6aNUVF4w6h7T6ChwLEREREVF5U6vVsFqtsFqtsNlsUKurziTARCRns9lgs+Vf7eqr32eGtERlaG/SZdmy0lTS5mXMgjlrCQDAnL0Kam1TmLNXyjcsl5C2yMNB5a4lLStpfSBAKw01V57JwcjmAQCAhcez8evZHLf7d62tx/MdK661wIbLeZL7rKQlIiIioprEaDTCZMq/yjItLQ3h4eEVPCIiKo20tDTHbaPRN3OrMKQlKkOLzx+QLQvR+ZXoWKIoOgJaALCZj8JmPqq4raAq48mXBJV0ojAP7Q5EeypE0QxBYB/PkvLXykPNHIsdRq0KmxLyFPaQ2nnVhDyrHQZNxXS5Sc2rWu0ZiIiIiIh8KSQkBKmpqQCA69evw2azISgoCHq9/mZLOSKq7ERRhMlkQkZGBpKTkx3LQ0NDfXJ8hrREZeh6XpZsWYfw2JIdTJQfyxWNvmPJHsNLgioIoq0wGBTt2R73Ee0ZENQRZTmsaq1NhA6/nZP2Hk7Oyw9ps8yeA1ARQJ4NMFTQu77RqXI2y1K1Jj4jIiIiIioNg8GA4OBgpKenAwCSk5ORnJwMQRDY+oCoirDZbLI+tMHBwdDrfXM1M0NaojKUbpZWOD5Y/xYYNNoSHctuS/a8EQCtX29o9G1K9BjeUqnCYbNdd9wX7c5jEwCnBgiiPRNgSFti7aLkb/qpeXbEBoiwOeWdrcO10KoE7Lthliy3+7ipeXFYnR57aKMyrvYmIiIiIqpkoqOjodPpcOPGDccyURRhtSrPLUFElVtkZKRPW5cwpCUqQ84hbfeo+iU+lmhP9Wo7rV//Ej+GtwR1KGBxvV4XMBzm7N8AsbDCVrRnlvm4qru6gRpczCz8AJeSZ4PZJn8bf+KWIARoBYxdmyRZbq/A4lWLU7GvTsVLuoiIiIioZhEEAREREQgKCkJWVhays7NhNptht7M1GFFVoFKpoNPp4O/vj4CAAOh0vm3pyJCWqAxlWKQhbZC25CXw3lbSlnk/WgAqVZj7MQhaCKoAiDaGtL4UZlDhYpGXMSXPDqVOBzq1AJVCX6uKDGmtTg+u4RVdRERERFRD6XQ6hIWFISzM/fcqIqpZGNISlSHnStpgnaHExxJtKV5tJwhlH9IKak/l/BoIqkCItmuOJTmpH0FvfQg64wCo1JFlO8BqKtQgnfRr0clsZDqXqALQqQClQtUlJ7MlE5Dp1AI6RunRLKxkLTiKQxbScnIEIiIiIiIiIgeGtERlSF5JW/KQ1m73LqSFyr/Ej+EtQe1+5kJByA9pJcQsmDLmwpwdj8Ba30MQ+PZTXGFOIS0A/H979x0nR1n/AfzzzMz2vZbk0kMSUkjokYQWegkCQgwoYKFJExRB/SEKVhRFBBUiIhCahSJFqihICRBKCEQpSUgCSSC9Xd86M8/vj73bu9mZ3Z3d273du/u8Xy9e3M4888xz2Zvdme985/v8M2MyMSAVfHUKgb68IWZb9uTHEfzsoAZMbShvoFbPiCV77L8KERERERER0aDFy2SiMmpLxi2vexOkdZ9JGy56H24pSn2eQQSgKHWOq6SxGUbiw9IPahAY6s9fI8CjAKpIZdJqLj7hTQks2RLP37AXdFOiLaMug1dlJi0RERERERFRFwZpicooblhn6fSrxWePusmkVb17Q1Gdg6OlpHr3zrHWC823HzT/oVlbSGnP/qT8Zgz3wpcnuDlzhA9CCAiRKmXgRodDyYRSWtmUtNTOFQDG1jCTmoiIiIiIiKgLr5KJysSUJnSZmT1Y/GxJbjJpQ0OvKbr/QmQLBHvDX4QncARUzzionnGINv08Sw9G+QY3gA3xq7jm4Hpc+UqT4/pZI3y4eJ/a9OtL9qnFlIYoNrVbbxasatbxSVv3skSZ3473tycsryfUaqj18h4hERERERERURcGaYnKJGHYI18+pfhDLm+QVvjsdWD7kKKNR6Du65ZlQm2ENLbZG8tkH41q4JlQ68GXdgvh/g87bOs+t2vAkmnr1wRO2tU+kdyDH7Zbg7QZk3qV2nsZQdo9h3nLuj8iIiIiIiKi/oapTERlkjDtQVpvkUFaKROQsi1Po/I+sp6PlO7rmkoGaXtlcn3vJvnKrAebMMoXpI0kTaxusWby7jWsvJOUEREREREREfU3zKQlKrGkaWD+slfxrw32ybF8RZY7kIbz4+1WlQ3SQsYKaKznb0JZ7VqnQQAoNrSaGaT9cGf5gubLdibRM1FXU4BpQ5hJS0RERERERNQTg7REJXbV2//EDe8vdFxXbCatfdIwD4DMwFp5H1nPp5BMWshE/jaUVdCjYExYxfr24orJehVrkLZDl9gZMzDEX3zN5GwySx3s1uDJO/kZERERERER0WDDcgdEJfbM+hWOyzWhIKAV95i3NFstr4VSB0XbxbLMGzy+qL6LJZQh1v0HjrK3EX7HbWVBWbfkZIpDyQO3wc+wx95uRZmyade1WrOm9xjKLFoiIiIiIiKiTAzSEpVY1HB+lP/UCXvDpxaZvJ5Zb1Z44K+7GEBnsE344a05o7i+ixRouCLv/j2BIx23lUZz+QY2SBwxzo+eCbFjwip2qXH397WHw8Rd8TLVpW2JW/92R4VKn61LRERERERE1N+x3AFRiekZE4Z9ZugYXDr9EHxp1xm96NUaQBMAPP79EWq8GUZiJTT/TKja6F70X7jU/ufDSHyYdf++mrOgenZFZOdPLcvt5RuoUNOGePGLgxvw320JhDwCB4/yQ1XcZdLWehUM9SvYEesOoOplKmnckrB2XOvlvUEiIiIiIiKiTAzSEpWYnpH1et1+J+LYMVN72WtmBC0V6NK8u0Pz7t7LvouneadD807Pul4IAU/gUPhqv4Z4613p5e4mQqN8JtV7MMmh7IEbI0NqRpC29Jm0uinRkbT2W+djkJaIiIiIiIgoE6+WiUpMN60BVU3hYaYoDZbX0mSQttK0jKzbclQ7aE3Y03MZpCUiIiIiIiKyYyYtUYnNbtiB44dtwrutAfxx3XBowl1QSkoD0abrkIy+AADwBOfAV3Mm9OgixFr/ZG3sss9qIVTrJGNGciVaNhwNiCA8/v0hzQ4ACjTfXvCGT4MQrFtabplzjP1leTs8CnDs+AAU4a5sQj6tGfVoBZwnLSMiIiKi/kVKiWT0P9Bji6H59oUneAJEic4hiYgGKwZpiUrISK7F3XstAwCcNqoJEsJ1Jm287f50gBYAkpFnkYw8m6V1/zoBUpQhzitkBMnoS+mXevxNABp8NV/sk3ENZpmZtABw1wft8KkCR4wLlGQftnq0PqVkAWAiIiIiqhw9vgTRpusAAMnoCxBKGJ7A4RUeFRFR/9a/0vGIqly05Y+W19futgEexV1WaLztbtf7ESJU0LgqTaiNrtvG2+8v40ioS7b5u259t61k+2jPqEdbwyxaIiIiogEh1jzf8jrafEuFRkJENHAwSEtUQkZihW1Zvbc0WYk9eUPHl7zPclLUBmj+w1y1lWZLmUdDADA6XP4HKZIZhW69mTUWiIiIiKhfMo0NltfS3FGhkRARDRwM0hKVkJRx27KGEgZpVc9UhBrnwxs6sWR99pXgkKsQHHJNpYdBnT47ofQ3DzIlM+YNcyqxQEREREREREQM0hKVlIBuW1bKTFpfzVegeXcvWX99SQgPPIHZEOqIvG2lTPTBiAa3kEfB8EB5vwJ005pJ6+E3DhEREREREZEjXjITlZnqcuIwN4QSLllflZP/30MafFyqL4yv9ZS1fz0jk9bDTFoiIiIiIiIiR4M2SLtkyRJcc801mDNnDsaOHQufz4dwOIypU6fi3HPPxauvvlpQf8888wzmzZuX7mvs2LGYN28ennnmmTL9BlRt9Pj/HJe3bTkfHTt+DCP5qW2dqW9By4aj0bLhaFf76G8ThjkRyB+oi7V1Tx4mpYFY6z1o33ox2rdegljb3yClmWNrcmtiXe/r0iYNib8ub8fVi3bivhXtMEyJTR06bljSgr+uaLe01QbtNw4RERHRwJGMvuK4vG3LBWjbehEiTTdAmu2ObYiIKLvyzxxThQ477DC88or9iyWRSGDVqlVYtWoV7rnnHpx11lm444474PV6s/ZlmiYuvPBC3HnnnZblGzZswIYNG/DYY4/h/PPPx2233QalhBmVVF2k2YGO7Vc6rjP1NTD1NYjoG1EzYoFlXduWLxe0n4GRSZs/SJuMPA09eBw03x5IRp5BvO0v6XVG8kMo6nB4g8eWc5CDwoRa56+AlriJOp+7z6un1kTw5McRAMDqZh21XgWvbIhhbau99Adr0hIRERH1b6axDZGdP3Vep3+c+n9yNQAg2PB/fTUsIqIBYVBGDTdu3AgAGD16NC677DI8/PDDWLx4MV5//XX89re/xZgxYwAAf/7zn3HOOefk7Ovqq69OB2hnzJiB+++/H4sXL8b999+PGTNmAAAWLFiAH/7wh+X7hajiktEXASRztjH1NZBmNP1aSqPAvWgQSn3BY6s6wt29oWTkWQCAHn/Xts5IfFDSIQ1W2TJp17XZA6zZPPhhh+X10q1xxwAtANR5B+VXDhEREdGAYSSWu2qXjDxf5pEQEQ08gzKTdtq0afjlL3+JU089FaqqWtYdeOCBOPPMMzF79mysXLkS999/P77+9a/jsMMOs/WzcuVK3HDDDQCAmTNn4uWXX0YgkJokatasWTj55JNx+OGHY8mSJfjNb36Dr33ta5g8eXL5f0Hqc9LsyN8IgEQSAoHObdoK2oc39DkIpXSTkFWKUGpctUvGF8MvJUxju22dNCOlHtagNMSv4oixfry0PmZZnjRkli2sDFMis+X7O5xvVgQ0gaPG+YsZJhERERFVCffXMJwImIioUIMyrempp57CaaedZgvQdhk2bBhuvPHG9OuHH37Ysd3vf/976HoqY2z+/PnpAG2XYDCI+fPnAwB0Xcfvfve7UgyfqpBQXNaKld0ZhtJsdWziqzkHNSPuQ3j47Qg0XI1Aw9UINf4B/rpvlmKoFec2SCuNrTD1TyDNnfZ1kkHaUrlob/v7EXMZpN3QYc8GHxWyf66es3sYvz98CCbUlXeiMiIiIiIqr2zXMERE1HuDMkjrxpFHHpn++aOPPrKtl1Li8ccfB5DKzD3wwAMd+znwwAOx2267AQAef/xxSOku+EH9jNsJvWR3lqHTXWjFMwX+2jOhaCOgeibBGzwK3uBR0LzTIcTAqOfpNkgLAHpsMUxjh205M2lLRxECkzLKHiRcBmk/arZnzfpU+9/pAaN8qPc73xQjIiIiov4jc0IwoQzN0nJgXLsQEfUlBmmziMfj6Z+dMm7XrFmTrm17+OGH5+yra/2GDRuwdu3a0g2SqoYQ2SeX60miZ5DWfhdaDIJDUgj3Qdpk7GXAIWuWmbSllRlYjenugrQft9hrzzoFeNUBcoOBiIiIaLDLTDTR/DMd2w2IuTSIiPrYoKxJ68bChQvTP0+fPt22ftmyZemfp02blrOvnuuXL1+OiRMnuh7H+vXrc67ftGmT676qRdvmsyBlByB88AQOhb/2QgjR37PsXGZIy9xB2sFw36SQTFojscxxuZlchbbNX4UnOAe+mjMHTJZxpWQGae9b0Y69G71Y8F4bNrTrGBFUcc4eNZhUby1X8Oy6KDJtciiBoPDtISIiIuqXpJRIdDyCRPsTkDJqK0WmqMOctzObYOpbocffQbz975BmC4TSAF/Nl+ANHt0XQyci6ncYpHVgmiauu+669OvTTjvN1qZn8HTs2LE5+xs3blz6508//bSgsfTcdqAwzWZApibaSrQ/3PlY/5zKDqrX7IEpRz2DtNKh6H6/D1bnV0iQNhfT2IR4271QvbvB4z+gJH0OVt6MIG3CBL6zsPsEvCWh46alrbjpiCHpgPjKJucJwpxuVzBIS0RERNQ/GckPEWu5Net6IcIQ6ihIw5481LHjKpj6mvRraTYj2vQraL4ZUNQhZRkvEVF/NvDT9orwu9/9DosXLwYAnHLKKdhvv/1sbdraugNs4XA4Z3+hUHe90vb29hwtB4nOAG0XI/FhhQZSOlK6C9JK2V1GQ5ox23pf+AslG1O1UrRRuderowvqz0iu7s1wCMCwQP6vgi0RA9EeZRDWtdpLHTjxq8KxTi0RERERVb9812qKNgqBuosc1/UM0HaTMJL2OV+IiIiZtDYLFy7E97//fQDA8OHDceutzncNY7HuAJvXm7seqc/nS/8cjdofD84lX+btpk2bsP/++xfUZ7VxmkCr35H2gKtjM0stVdO2XvMfVKIBVS/NNwOqd08Yifd7LFUBGPCGToU3eAzat38HkC6PFYdgNxXmmF0CeHpN/n/vhCER7Kx4YLicBPHzk4PQmEpLRERE1C/JjAQbKy803yxAeKB694GR+J/LTjm/BBGREwZpe/jggw8wb9486LoOv9+Phx56CMOHD3ds6/f70z8nEomc/fachCwQCBQ0pnylFPojzXcA9Pib6dfOtVn7l54ZsjnbmT1PcqxBLs1/KIQY+IekEF6Ehv0WZvJjQHihaLtAmjsgZQKqlsqirR31SOdd++4MZUWbAGm2oGPHDy2PU7n9t6fsRoc1fGa4F+9szfNZ1uO+Qub8YDVegctn1FmWjQypGBYY+CU8iIiIiAYqaWZ/ErR21EMQSuq6ODTsRiQiTyHW/HsXfRaWuERENFgM/IiQS2vWrMGcOXPQ1NQEVVXxwAMP4LDDDsvavqamu65mvhIGHR3dgbl8pREGA09gdkaQtv9n0uqGu7vB1jvR1kza/j95mntCqFC9U7pfZ0w4IIQPmm9v+4ZqAzz+A5Ho+Ed6kXSZxUy5BbT82a7xHpFZMyNIu2udB3sOy/1UARERERH1M6ZzJq1QhkAo3de2QgionqmuupTMpCUicsSatAA2btyIY445Bhs3boQQAnfddRfmzp2bc5ueGa49JxFz0rNkwUCcCKxQQqm1vB4IQdqYnusxoB6ynOSk8JFwN4TwWxcwSFsSisj/95ewBGmtUVqWnSUiIiIaeKR0TkhSNPs8EkJ4XPbJTFoiIieDPpN2+/btOPbYY/Hxxx8DAObPn4+zzjor73a77757+ucVK1bkbNtz/fTp04sc6cAhlBrLa9PYgLbNX4W//lvw+Ku/vq6pb0Gk6RcwEisg1XG4etU0jBBLcdnE/NvG2x+Er+aM1AuZWZOW90xcET7LS5Y7KA03QdarFzXhl7MbEPII3LfCesOBZWeJiIiIBh6ZJcnEKUgLuAvSxlvvQrz1rvRrzX8Qgg3ft2TmEhENRoM6KtTS0oLjjjsOy5YtAwBcd911+MY3vuFq24kTJ2L06NQX08KFC3O2ffnllwEAY8aMwYQJE4of8ACRGaQFANPYhGjTryFtgcvqE2tdACOxDIAJYazD54e8goDqbtzSbIVp7Ox6VbYxDmQiI0gLBmlLwm0m7N0ftOGvy+0ZFW4ycYmIiIiof8k2cZiijrEtE6K40ld67HXE2x8talsiooFk0AZpI5EITjzxRLzzzjsAgKuvvhpXXnml6+2FEOmSCCtWrMAbb7zh2O6NN95IZ9LOnTsXgoEMKOoIOCVxS7O5X5Q+SEZfsrzevz4Cr+I+4Grq6wAAEsykLUrGyR8zaUvD7QRfq5p1rGnVbcuH+vn3S0RERDTQSNO5fqzqmWRbJtR6AMUFao3kmqK2IyIaSAblVXUikcC8efOwaNEiAMBll12GX/ziFwX3c/nll0NVU4GNSy+9FNGotbZONBrFpZdeCgDQNA2XX3557wY+QAglDF/t2VnWGn06luLYs2azHUhCbbQt657NNCOwywC+K/ZaV/aAIRXuqHF+jA27C9Q2xezHwPETg6UeEhERERFVmNMkvZrvAGj+WbblQvjgrz0XRYUZmHhBRDQ4a9J+6UtfwrPPPgsAOOqoo3Deeefh/fffz9re6/Vi6lT7TJVTp07FFVdcgeuuuw5LlizB7NmzceWVV2LSpEn46KOP8Otf/xpLly4FAFxxxRWYMmWKrY/Byl/zZXgDR6Bty5kZa6q73IGUzkHkoGpd7g2dDF/4dAh1BNq3XgBT774z3P3IUGb2LYO07mR8bEkGaUuh3q/ihsOGYEvEQLLzMEyaEj94tcnW1sj4073piCEYEXQX4CUiIiKifiQjSBtouBLe4JyszX01p8EbOgGtm+wTcdeM+AvatnwNQNK+GwZpiYgGZ5D20Ue769288MIL2HvvvXO2Hz9+PNauXeu47tprr8XWrVtx1113YenSpTjjjDNsbc4777yiMnUHOqHU2hdWeU1aaTrPbhrWMsftgaKNBAAIJZTRR7Trh4xtGKR1JSOTVkr7SR4VRwiBkaHCvxYa/AzQEhEREQ1EUlqfFlW0cXm3EUoYQhkKae7I2HY0hNoAaWx12BGDtEREg7LcQSkpioI777wTTz/9NObOnYvRo0fD6/Vi9OjRmDt3Lv75z39iwYIFUBT+U9s5BXaqPUjb6rg8nGPiMCGsj4FLcwdMo9l2V5qHoztCWIOI0tgO02iBlJyIrRICmoDP7axjRERERIOYlImyT5QszXaYRjOkTLhoG021NWOQUredU5tGiy14KoTf5Uicn3YTjteAgGls5fk8EQ16gzKTthwf/ieccAJOOOGEkvc7oAl7UNI0m6FgZAUG445pbHZcHsood9CzvqxQrEHaeNtfEW/7q60PwUxalzKCtLINbZtPSb8ONf4Bmnd6Xw9q0Krz8uYCERERUT6x1rsQb/s7hBJAoOEH8Pj3L2n/prENHTt+BDO5qnOJF76aL8Nfm1leDpBSR7TpeiSjLyIzSUYowxCovwSxtr/BTH5k29ZtkDbr027COQQhzR2pJBYRcNU/EdFAxKtrqiD7n1+i46kKjMO9ZPQVx+X2cgc9Aq7C7YRKDNK6Yps4zCrWsqCPBjI4NAZyf03U+fg1QkRERJSLoW9AvO1vAJKQZitizX8o+T7ibQ/1CNACQALxtntgGttsbfXYYiSjz8PpKUZpbkdk5zWOAVoAgMsgrVDCWdbkPpcnIhrMeHVNFeR0F7W6H3HJrC/bJZyRSSt6/G6qi7pNQKpGE+WXWe4gk5H4b98MZJA4f6+anOt3qRmUD2QQERERuabHllhem8aGrBMSF8s0Njgv1+3LTf3TovYhlFrneUUceEOfs7zW/IcCAAL1lxS1byKiwYBBWqoYIQQUbRfrwhKfrJSecw0pWyat0v2Yjjd0AlTfZ3L2qnr3gTd0Yq9HNzhwkqq+tM8wL4b4nb8qdqnRMHeS20xxIiIiosHK4RoiY0KuXstS69ap7IAsZpIuEYK/7lII4e5c3Bs6Cao3NUG3oo6Bv/ZcAJ3XPcETwVAEEZEdU6Coojz+QxBvv6/HkioP0mY5+anJCNKKHrWUhBJGeNhvIM0Ox5MkITxZM3TJQZ5MWiotIQRuPXoYDFOiI9md6a4oQNjDk2siIiKivBzOX6UZyVESoBhZrqMcg7SFBYgDDd+HJ3CU6wAtAChKLcKNv4M0o4DwQ3TO2SGEgkDDdxBo+E7nWBKQZiS1ketJyYiIBiZGO6iyROYkUM6zgFYPd7OxCoeC90IJsepsCQh+bFWEqgjU+vgXTERERFQo4VCHVcpISfeRvXyCwwReBWbSKtq4ggK0PQkl90RgQnghVG9RfRMRDTRMg6IKy/yyr/JMWrdBWoWPgJeNixNEKbPXNpYyDtNoydmGiIiIiKh07Nc4pQzSSilh6usd15lGk0P7WEH9Ky7r0BIRUe8wSEsVZbsjW+2ZtG5r5vJRnTLKn0nbvu1imGarbbke/wBtm7+Mts2nINr0KwZqiYiIiKjsnEqeJdofL0nfptGC9m1fhzS3O66PtcxHvO3vGQMqLEjrdrIwIiLqHQZpqcIysyKrO0gre1HugErERU1aM7kKyciztuWx1tshzWYAQDL6PIzk8lKPjoiIiIjISiZsi5LR/5QkYSAZ+TfM5OqcbWKtd0Ga3YHZnj/npwKC82cQEfUFBmmpooRSY3ltGjsrNBKXXD6WpGjjyzyQwUtRG11lKhvJjyyvpRmFkXjfskyPLSnp2IiIiIiIMkmnurAASpGgYhpbXLRKwjR3FLffHpN+ERFReTFISxWlaKMsr01jU1U/gm4aLXnb+MJnQFHr+mA0g5MQXgQbroRQh0MoQ+ENn+7YztQ3W14biWUOffnKMkYiIiIiojSHcgep5fYM25L1ncnsTjZx+3RgqnFhpRGIiKh4nCadKkpRrUFayBik2QyhNlRmQHlIM3+Q1lvjHDSk0vEEDoMncFj6daDuQiSjryCy86fpZaZhDdLqifds/RR0gkpEREREVIwsgVQpExDoXSmBzCxdb/iLCNR9HS0b5wKyvce+oj02KmSy5mqf2JmIaOBgJi1VlFCHIbMubWZwrZpIh8moMgnWbKoIRR1peS2NbZZJGvS4PUjbM6OAiIiIiKgcnCYOS60oRSattXSBgCf1fyWYMYYeQVomKhARVSVm0lJFCaFCUUfCNDakl5n6JsA7vSLjkVLC1NdDCA+EEoKR/BhSGljf0YpPYvXYG81572wIkTkZGvWFzNIZgEQy8jwUbQQADUbiv7Ztuk5WTX0jIDyperc5mMZ2GMm1ne+xgq4TXEUbD0Ud0uvfgYiIiIhKQ8oEjMQqSNkGaUag9HhSzzSaAJmEUGqg+fYGRAim/gkg4xDqMJj6us6WHqjeqRDC26uxmPp6x+XJ2KtQPbumXyva2Lzno5lsAWDRGaQVfvQsIhff8TgM0QohVJhmYfOAxDe9UFD7YnlHHAahMERBRIMXPwGp4hRtlCVIG2tdAG/wqIqMJdZyMxIdT9iWD+n8j6qXUMKACFse64o2/ybnNlJGEG25HYn2BwEo8Nd9A77w5x3bJjqeQbT5hmx7R6DhSniDxxY3eCIiIiIqGVPfjPZtl0Ga2121VzyTYGZMOttFKMMQbrwJijbScX0+sbb7oMffdF7X8kfbMn/dZfCFT3bdvx57xbqgM0grDWu2rIE3kWz9D2JL3kHwyMOz9ieTSQiPx7Js57+Pdj2e3hjxlbbUOT0R0SDFcgdUcfbH1N3MUFp6ptHsGKDNZVOM9zmqSaEnz6a+oTNACwAmYq13QErnx79irQty9CQRb/tbQfsmIiIiovJIRJ5xHaAFkDVACwDS3I5E5JmixiGljnjbfQVtE2/7S1H76iI6S8mZ7fYSckpNDbSRuc+Xzda2Xu2fiIiKxyAtVZxweKRHmlGHluUlzR0FtW9JKrh7/TDLMm/wxFIOiQpU6ONhRuJ96wIZA6S9Tq2UBqTZnLMv02gqaN9EREREVB6mUdjj/PnIYs/zZDT1XyGbmDuz17B15Ml4LVL9JJ33qwzN/nygsWMn9PUbrMt28hyXiKivMA2QKs4bPhnxtrsty6TZBKEE+nQchZ0MAetjAbwXOxhRbSeCcjlUz1T4as8r0+jIDaHU97oPKaMQyHjMytWkDjJ/EyIiIiLqA9UxMZbMmNTL/YaxdNmC/Ky/q+bbN9WFnoQ9gAso4RrHXoymduhrtkNGBfRPtkFprIOMJaB/tA2Kf3gBg+8N0Uf7ISKqTgzSUsUJUQPAC6A7EGYaTVC00X07kAKDtPs0fgb/nPaNMg2GiqGUIkhrRoCMud+kjPW6XyIiIiLqI9JwXKz5D7XXcC0r+zi8oVOR6Hgk51bSjEIozsFUh9bWl6LzYVnd+dpGCYYBWIPHgYbvwzvmWGBPhw2clhERUVmw3AFVnBACosdsq0Aqk7bPFRik7fMgMuUl1Ppe9yGdHkljkJaIiIioH3HOpBXCX1RvRT8v5RAsFi4yZB3PR7O3ztxD566zPQlmz+4VwlfA/oiIqFyYSUtVQVEaYPSYMMzsRZBWSgkzuQqm2QrNuyeE4u5kTKKwIK3KIG3VKUm5A7MZUuow4v+DabZ0Lmt3sWFHr/dNRERERClSxmEklkFRR0PRRmRtZyQ/gpH8FEASqmdXqJ5JyBqkVYJFjSUZeRrtLW0QMgwhR6Yn58pHohXIiH8mm1fmvQqPrX8cisxfYkBCB3zWIG1s/b+gyCGAKKDkA4O0RERVgUFaqgpCHYKeMdKii/MDiLfdg3jbXwEAimcywo03u7s7XGgmrcogbbUpRZA2suNqKNo4mPqnBW+bjC2Gx79/r8dARERENJhJM4r2bZfA1D8BhA+hoddC882wtYu33Y9Y6wLLMn/t+UhGX3TsV4jigrQAYHheTv1/ZxPiby91tY0IBhGYfaBlWWzNQ/BOmZRzu45V18HYuCl354oC//77QfFZyyK0LbkCsiMC797u6xQI4XXdloiIyoflDqgqCKU05Q6kNBBvfyj92kyuhh572+W28YL2xXIH1acUNWkBFBWgBYBEx+Ml2T8RERHRYJaI/icVoAUAGUes9S+O7WJtD9iXZQRtexI5MnLdUoc0QKl1WS9WOEyEZTrXy7Xso64ubxuloR5KjcM4OhNrZcx9ua7UHCFERFRpDNJSVcisDyVlthpKecgYkBFsNZIrXW1qGltd70ZRR0OofTXLKbkl1PwntOUkjZaK7p+IiIhoIEi0/d3y2kj8z9ZGShOQ2UpSOVzmigC8gWMg1FG9Hp/wuSwPoFiDtNI0Yba02pZlklkm/bKMwWOvbSsTCchoqp6t/ul6d2MEoHhyZ/YSEVHfYLkDqg4i409R2gvau+GcDeuuHpOp2x8punf9ULzeMgrnjNmCCUEDIwM10Dyj4K89H0LwHke1EUqt43LVu3vnLLkhCOGDlHFIM1VDVsoopLG5iJ2FHS4MCqj9RURERESOpMPkVvZGuZI6rOdkQh2JYMP3IZQAwsN+i7YtX8q6pVBHQNHGAACM+DuObdSa8RDJkXmHKEKZ1zgCitgF+ppWKMP8gAkYmyNQh/uhNHQnrSj+Rmj1gZx9KyH7vBv66nZodXukXydXt0Ab2QARDgJwDmgHGq6EcMr4JSKiPscgLVUF+yynxQVpHU/WpMsgrbHR8vqnK0fh92tHYuHxF+Owkby73B9kqz0cbpyfc7u2LefB1Ne62ofqmY7w8D8AABKR5xBtui69TiL/42tERERElIfMf05VSKmy8LAboWipoKqiDUd4+D1o33qOpY3mOwChYb+0LGvZcLRzf/v9BL7QSXn3q8c/QMf2b6VfCy2Mxs+/YG20OxBt+i0SkafTiwKTvoLAft/M2Xei41+INv8m/Vr17Ia6Y/+YtX3H9qugx9+0LVc9U/P9GkRE1EeYCkhVwnq/QJYwk9Zt4Cwzk3Zt1AevomL/YbsUNRbqR4S7GXoBQNHG9niVsZ2LCwoiIiIiysd+LSBt51kFlEfLmBhLKKG8bXIyIy4bWn8Pke2c07bczTllZiJKnkv7LL+fqwmWiYioTzCTlqpDRrkDPfYqYq1/BWBCKGEAgKKOgOqZCD3+X0jZXQhf0cZC881MlR9wuqPe2dbQNyDeeg8UdSQUz3hIM1UPypAmljVtwRTV+sj7mogP+zfuAr9mr/dEA437+1WKZ1z658wTbVNfg2T0FWj+AwqaJVeaUSRjr0OabdB8e0L1TIKUJvT424BMdvZnP6k39A3Q4+9AiBp4/AdAKLkfiyMiIiLqa3rbWiQ2PQepR3O2k5CQWmqOCBmy1/lvX/UjCH0EoO6AVFsBoQP2J/4dRT68GwLd5/QSBpAxlYHRugYdW262Lswy3UG8/e/Q/AdD7XFeKKUOPfYGpEzA498/dQ1jCyxnSwwo5sa/tL7MU7IgazCWQVoioqrBIC1VBeHwpxhvu9v19t7QPATqv+k44Vii4wl4Q6fYHmnqaYrD+dLaqBeXTJzoegzUf4ksJ8yafzb02CLLMjVXJi2AyM6fOj4ul42UJjq2XwEjubxziYLg0J9Dj72JRMcT6XGEhl5j2c5IrEb79m+lb0wkPNMQapzPWslERERUNZLNy7Hj6QMgk21523r3mA5tdPZJvczQmzA7OqCEHLJg82h76wpAWoOawWOPso5162J0LP9zzjZdpNmM9q0XItT4W2je6QCAyM5fQI+9AgCIa+MRbrzFXls3cx6ONOv5m3Qxz4G9Te5zwGxBWmbSEhFVD17NU3Uo5PEiB4nIM5DStGTY9hRr+UNB/cUMgRZdw2Ejdu3VuKgSrH9Lqme3/JvYaiIDgApv0F6HTFHH9NjO+e9Wj78JU9+af78AjOSKHgFaADARb/1LOkALAHpsEUxju2W7ROQpS+a4kVwBU1/jap9EREREfSG25gFXAVp4PDkDtF2KCdBK07QFaJ2Y7c4Ta2WXQDLyfGpbY1s6QAsApr4OicizDpMhuyt30DXBbU62eTfyTP7l+MSVYCYtEVEVYZCWqoLm2wu9+nOUMQB6uoRBJj2+pKDu/KrErjVDcTgnDOt3Ag3ftrz2112UdxvNt49tmSdwFDTfTEB0P0cn1OFQPN3Z1apnt6wntqa5w9V4jeRHDstW2PszrEFfPbHM1kaaLi6CiIiIiPqIGd2cvxEAJeCybkExY2hqdlyub+ieNFjqOvSNm2xtEqvs52k9STMV2DUSq2zrkpFnIaU12OpYCxeAqo2xvHY6F7Tv3PoEoX0iZivNaz/fVb17QWTN7iUior7GT2SqCqpnVwSH/AyJyL+hx14trhOpQ5r2+lXFeKV1Lzxx9LkIsB5tv+MJHANpRmEkPoDmP9AxAJvJV3MmABVG4n1ISGje3eELfwFCCSE07AYk2h8BoMFX82VLbVhFrUNo6PVIdPwDyehLlj6z3TDIZCY/dtVOGs09+o7CTDpkzXLiMiIiIqoiZtJ6PqSGJ0CtsT+pJgpPkM2+z54JsXFAbh0C7yiHsgUtgOkF4AHM7Rq8ww+3t4kDxmZACXqh1k6BiQ8yGqQydLPddDcybqoLEXYcs+rd09qrsRWmvhWKNtyxfWrPGWXe8mTEegIHI1B/BZLRlyGRgKqNha/mrJzbEBFR32KQlqqGJ3AwPIGDEW/7O2KttxW8vUTpgrTHjN0f/pqRJemL+pYQCnzhuQDmFrCNBn+t80mq5p0ObcgPs26r+faE5tsTbVvWWcoNuA3SGm6DtGZzj21WwT6jL+x1z4iIiIgqSGYEaYO7fR3hva60tUtE/oNo0696ta/w8HssE3mVQ6xlAeLt9/dYkj1IC8BSvgoAhFLr2E7RdgFEGJDdEWY98T68mnNN3NSurRMmu6kt6w19Ft7QZ/O2IyKiymC5A6o6Qm0obsMSZtIKUb5HrmhgyjzpdhOklVLCcMqIdWD2DNImsjwCx0xaIiIiqiJmwnpuLjzOQUppNPV6X0JkqfdaSrYJWlM3zc3kapebO2fSCqFA8+5hWWYkMrN2rWRGkLa3c3wQEVHlMZOWqo5Q6oraLt52H/T4u6UZAwvoU4Eyg7TJ6KuQZjs03z7QfPs6biONrYB0MTEEgET7Y/CFz4A0tmTNNDeSK+AJHOx6zHr8A+jxtwHoMPWtqbq3MoZAw3eherrrMRv6RujRlyFlJL1M0cbDEziiby6IiIiIqKTMeDOia+6DGdmYv3EvGK3W4KXitZ/nSzOKeNvfSrC3vjgnyZycy0Qy+hpMw17P1nFrpSbrOtW3J/T4m+nXiY7HoKgj4AkckS57IGUcych/UnMmmNYJk3n9QkTU/zFIS1VHUeqL2i7R8Y/SDYKZtFSgzCCtkXgXRuJdxNuA4JAfwxOw1zkzdHdZtAAgzR2INt8IPfZa1jbxtr9B8x0AzbdH1jZdkrHFiOy4Cl2P6fXUvvVChBtvheqdCtPYgfatF1sev0uPP/EBAvXfcv07EBERUeVJKbHzuTlIbn+rz/ftlEkb2fkTSFmCyU/75MaxNUibjC5EMrrQ/dZZyh0AgObdExm5sYi13oZ4+8OoGXEXIELo2H5FjgxbZtISEfV3LHdAVafocgelHIMIVHoI1M8oan3WdYnI847Ls5YtyCIZ+VfeMgrJ2Mvu+oouhFOAtkuk+bed7RY5BmhT43nB1b6IiIioehitqyoSoAUAxWs9zzeNls6nekqgDx73l2Ykf6McspU7AADVuxuccqikuQN6/L8wEstylkBgJi0RUf/HIC1VHaEMg+KZkqeVB4o6ptf7emF7DZa2ZARkRQiqb0/nDYiy0HwHwP4IXErPSb960uP/Lf1AMh59y0aaucssmMlVqf/r67P3IdsgZfZALxEREVUfM7a1IvtV/MPhGbqfdWFmXdUMmm8WVG/+83LVMw1KjizVknGRresNnQqhDHHePEcgVQgfvEHnSb1MsylvjdpcpRSIiKh/YLkDqjpCCISG/hKJ9kcgYcAXmgcjuRrJ2CJAJiBECJ7gHKie8Yi3P5wliKRBT7wLaWxx3McHbX78e/sQrDePgCpMbDeXY49agQm1E+ANndA3J3k0oGi+PRAc+kskowth6uthJN5Pr5OmPRNVmjEYieWWZZ7A0UjdO9OheqYAShCx5t8XNA6ZIzvWKumqlWnkq1WXBB+vIyIi6j9sk3lpQfjGnVzWfaqBkQjudjGElllSzH7eIpRaaL79oGhj4Qt/AVIaSHQ8AlNPnZNIMwI9/iZU7x5Q1OFQ1JHwhk8p6/i7qJ6pOdcr6hj4674Ob+gExFr+BD2embGcO8jrr/s6FM8ExFr+YF1htsPMM0FyrlIKRETUPzBIS1VJUYfAX3dB92ttBDyB2bZ2/tpzsvZhJNeifet5juu+8t9dEfLtgvfnOa8nKobHvz88/v07673+IL3cKUirJ94HoPdYoiBQfzmEEuzeTiZzBml9NedAmm1IdDzSY6npbrBSz9/EjKQviLI3inM2YSIion5EJq3BPjU8EQ2H31+h0djVjPib5XxIAPDXfq1yA7Jwfmqqizf8eQihQPVMQKD+W2jbcmZB2wslAF94HozEMiSj3WWlpNkBaezIsy2DtERE/R3LHdDAJTxZVxlSYLg/e00oot7IfNxMOk26lVHqQPXsZrkgAQAhPIDI/neqqMMAkfkx7i5IK2X+TFpD/zRvkFbmeUyRiIiIqostk9ZbV6GRDEQ9zstyXIvkk1m7Vsp2mHmDtCx3QETU3zGTlgYskePP25BAI4O0VCYiM7Aq42jZeDI0754I1H8TijYa8faHLU003wzHvhS1HqbuPHGXUIcC+ieWZaa+uXu3ZhSJjidh6OshhBeewOz0fozk6ry/R8e2S/K2MRIroQSG5W1HREREKVKPIfLhn5BsWVa+nSgGEG4FNPtNWRnfCe/03SBNE8a2HVA8DNK6JUTuTFhrpmzxTxoJEbK81mPvwMxSxi29DTNpiYj6PQZpaeDKcfdalwKN/lDW9US9IRSHvy3ZAT3+Jtq2vIlQ4x+QWRM2W5BWKPUAnCfvUtRhEBkPRBiJ/0FKHUJoiDT9GnrslfS6RMfjCA37LRRtDCBzTxzmPBifbYKPyM4foWbko1BUXuARERG50fL6RYh+9Oey7sM3az+o9c7fzaLGAwWpCXg9u4yDuSHg2K4vSJlwWJovEFrFejzhJEqYSWsaG1xswyAtEVF/x3IHNHCJ3Jm0o4I8kaHySD1ulv3jNbrzl7Zlqm8Px7a5ygkoaiMgMifgAIzECkgpocfeyFhjQo+9CT2j1IJbQoQAYQ9AG4n3iuqPiIhoMIp98lh5d+DxZA3QOlFqKxcUNY1N9oUi9+Ra1UwIX48XTtci7iZ4Td2kL4TKIC0R0QDAIC0NWAK5M2k/v8uefTgaGkyE8EDz2ye662Ia9jqvlpN6S2PnUgdAKhjs8R/g0P8WpGrTOjziKBOQxWTRAlA9E+EJHO7QZ7So/oiIiAYbaRqQyday7kOohQU5lZrRZRqJG/agpajiCUkVz5TsK0Uo48mo4oPNmn+m443xbDyBwyD6cXCbiIhSWO6ABq4cmbSmFNijYWQfDoYGm+CQHyDRsS9iLfPztvUEjsy6TgscikT7323LveEvAgBU71RABAEZSa+TxlYARpYeTVvJAts+fTOhx5fYlvtqzoTqnYZk5J/WFVLP2R8RERGlSN1+ozQw5WsQWgnnSlATAFZal7UPAWRnxqw3Cvi6zxsUfwUnnJIxy0uhDq/QQNxR1BFZ14Ub56eeckpzylB2N8Grog5DuHE+ktEXIM3uv5lExz9sbb2hefDXXeiqXyIiqm4M0tIAlv3Pe98hY/twHDQYCeGDL/x56PG3ocdey91WHVpw/z0vAjyBQ5GM/Dv92jS2ATJbkDZ3CQUACA37Ndq3XQYj8b51nMIPITxQvXta1kkwSEtEROSGTLbZltXOvAGKr6Fk+zCSn6J96znWfUy9L10jNd7+mOUmsjQr90RM5jmJUKq7xr0QKoSogZTW99FfeyFUz/jM1r3al+oZD9VzrmWZkVxtKzPlqzmzqrOPiYjIPZY7oAErNfuqc6DWp2V5tJyoAoqpIZaqe5tizdroDNJmzdQwAcdJOjL6F0GHhV31bzOOK2bSEhERuSJ1exkjoZV6Mlunc4DuR+GFsE4UVmwZpFKwBWmzlX+qIo7nbQ5zBKSuRTK5q0mbjczIPE6Np4RZ2EREVFGDNpN269atWLx4MRYvXoy33noLb731Fnbs2AEAOPvss3HPPfcU1N8zzzyD22+/HW+99Ra2bduGxsZGzJo1CxdeeCGOP/74MvwG5IrQHANIfrX6TwBpgJD2urCZhCj8McOe2ygZjwYa8fcQ2Xmt43bJ2JsQbmqkOcxI3HXhJDJKicgcdXOJiIiqXbLpPXQsnw8zurXs+5LJFusCxQuhljoL0h6kFaI7N0coGTdii8ikNZKfItHxKKTZCs1/ILzBYwvaXkqJROQpxJp/nzHO6j9HF0otYGzIWBbI0jqD7F2QFg7zALAWLRHRwDFog7QjRmSvJ1QI0zRx4YUX4s4777Qs37BhAzZs2IDHHnsM559/Pm677TYoChOX+1qHLhFyOG8JMpOW+oh0k7WqFBGk7ZHFITIyaaVsgx5/03k8xmZXORzCIUiLrgunjCBtvO0e+GvPdNErERFRdTGTHdjxryMg4zsrsn/hKX0WpKlvzliScQ1iy6SNoBBSGujY/n+Q5nYAQDL6EoTwwxM41HUfycjTtgBtamzVf47ulEkrHDJpnfU2kzZ3ySoiIurfGDUEsMsuu2DOnDlFbXv11VenA7QzZszA/fffj8WLF+P+++/HjBmp2T0XLFiAH/7whyUbL7m3M2l/zKhVVzDUX+rHyoicKVr+G0JKjpq0jmUHAChqQ4+fRxU+sCw0/+xUn1pmXbWeWSL2rw7Z28wQIiKiCkhseaViAVoAUHzDSt6naWzJXGJ5JRTrebB0yM7M2b/+aTpA20WPv11QH8mYfYLS1NgKLwHV14Rqf8/c1tJVPBN6te/MyWYVbWKv+iMiouoyaIO0P/7xj/Hkk09i8+bNWLduHW677baC+1i5ciVuuOEGAMDMmTOxaNEinHHGGZg1axbOOOMMvPrqq5g5cyYA4De/+Q1Wr15d0t+B8ntks/0k6qFNQ/GliTMqMBoajLzB43KuV9QxUL27Z13vCRxiq3OmeveGoo3u7kMbC9W7Z+8GmuoJvtDczv0eCfQIEHsCx6YnpdB8M+2bSpY8ICKi/kdvWVbR/Qcnn136TvM8xZNZkxYyBpljwlF7//ZSYgVneDoGhhV4A0cX1k8FeIPHoGeN39S53HTntuHT0j+r3j2heaf1ft89zgt94VN61R8REVWXQVvu4Gc/+1mv+/j9738PXU+dpMyfPx+BgPWEJxgMYv78+TjooIOg6zp+97vf4ZZbbun1fsm96z8ehdd2erFHTRQCwPDQNHx2yjnYZ+jYSg+NBgnNty/CjX9C+7avO64PNc631XjtSfVMRLjxT9DjiyFlDIraCI/f+jihEAKhodchGV0I09xh70QmOk/oMzJphA+abxYgE9AT70Hz7gnVO7Vzv+MQHv4n6LE3IJShqWBxJ2/oBMRabrb0ZepboHoLL9tARERUSXrLCstrz7AD4N/l5D7Ys4A2ZF/4xny25D1Ls9Xy2hM4wrpnp6d0ZBQQbksvODw9U0iQF/ZyUEIdidCQn6TPQ6qZ5tsb4cY/Qo+/A6GEoPkPSd/IzuSvvRCady9IGYEncFiv9616JiHceCv0+BKonl2h+fbtdZ9ERFQ9Bm2QtreklHj88ccBANOmTcOBBx7o2O7AAw/Ebrvthg8//BCPP/44/vCHP2SZ6ZPKIWGYeHZ7HZ7dnnoE6b9zv4Z9hozOsxVRaaneKdB8M6HHrY/2CWUoFDX/43GqZxxUz7icbYQSgDdU/IWe6p1iX6aNgRo+1b4v4YFQhlkedTSNzVAxuej9ExERVYLevNzy2j/hVIT3vKJCoykNMyNIm/kovm3iMADSjEAovQjSorAgLTIyb/01X+kXAdouqncyVG/+8x4hBDyBg0u7b88uUD27lLRPIiKqDoO23EFvrVmzBhs3bgQAHH744Tnbdq3fsGED1q5dW+6hUSdTmtClNXPQq3D2U6oMp8nBMmvC9SeKNtLy2l7/joiIqPrpLdYgrVbn/Nh6f5KZSWs7B8ksd4DCJw+zb28vgZC7fUZJhn4wYRgREVG5MZO2SMuWddevmjYtd22hnuuXL1+OiRPdF3hfv359zvWbNm1y3ddgkzRN2zIPg7RUIc4zAffjIK06AgbeT7+OtfwRyehLljaqNhG+2vNcZQsT9QdmohVt71yN5M53AE6WR9T/SRMybi0TVO4gbSLyApKRf0PKKFTPJPhrzysgg9UdI/5fy+vMcxAh1FQZJBlLL8sM0kqZRLz1XuiJ95BZLkma9nqyeuxV1+NLRhfC1NdkjIlBWiIiIgZpi9QzeDp2bO76puPGdT+m/Omnnxa0n57bUmESpv2OPjNpqVKcM2kdasL1E4o6wrbMSCyzvTbNnQgN/UVfDYuorFoXX4bo6nsqPQwiKhfFBzU8oWzd64kViDZdm35tJD6ANDsQHHJVyfYhpQEp2yzLnG8UByF7BmlNa5A23vZXxNvvL2jfyejr8AQOytnGSH6EyM5r7Cuy1HQlIiIaTFjuoEhtbd0nP+Fw7rvfoVB3tlx7O2dA7ysJw14bi0FaqhRFHW5bJpQhFRhJibi8mDLi7+dvRNRPJDa9WOkhEFEZafW7Q5TxXNGIv2tbpifsy3rD1DfalinqMNsyIfzWBRk1YvUivr/d/C56/D3H5YpSX/D+iIiIBhpm0hYpFuu+8+z15g5W+Hzdj+9Eo/bHg3LJl3m7adMm7L///gX1OVgkTIcgrco/eaoMzX8whPoXSGNb5xIPvKETKjqm3lC97h4HlUiWeSREfceMb8/fiIj6rdAe3y5r/1J22BeaMfuyXrE/SaZ697I3E5m5OhllwjKCtq6Y+evaStOesKJ6pkPxcPJRIiIiRqyK5Pd3331OJBI5WgLxePdJTiBgL9SfS75SCpQdyx1QNVHUBoQbb4MefweQCai+vaBqoys9rKIpakOWNRosF4iywNmeiaqUNOKQujXAUvOZa6H47VnyRNTPCAWeIZ+BZ+i+Zd2NUy1XidzXEYXvxP69K4TTJV/uIG3mTVZP8HhoGTdoo82/A9Bdn1vK/MkotkC1CCM07AYIW9CYiIho8GGQtkg1Nd31JfOVMOjo6D4ZyVcagUqH5Q6o2ihqHbzBIys9jBJx/voQIpBRC49BWhoYzIzJhQAgOPVCKH77Y8RERE4cg5gyDiklhBAl2kvmxLmeLO2sQVEpMzNprcFjzTcT3uAR1j0ZTYi33d2jDxdB2oxMWm/wGAjFn6U1ERHR4MJblkXqmeHacxIxJz1LFnAisL7jVO7AwyAtUWk4ZuUAUDKfFjDtF35E/ZA9SCsgvNkyyomIHMhs5QBKVxpIZt4cFdnOfTODwjLjpXVMQtiDvSLzO1+6KN2QkUkrlFCWhkRERIMPM2mLtPvuu6d/XrFiRc62PddPn+6ujiP1zpq2HTju2TssyzyKWsIsBaLBTWTNpPVlXuahfctZSF8MKkF4g8fDF/58zv6TsSWIt/0FkAZ8NafDEzi012MuljTbEW3+A4zEMgASijYK/rqLoXomVmxMuZhGC2It82EkVsJ20Q0AQoHq3ROBum/aL7A7SSOBtrevRHzDvyHNEj+K2w+oo2qhDAtBJnToa5uAuA5pWIMPwltf1gmGiGhgMY0WJKMvOa+UcdcTcmaTjL6KeNsDMNO177tkycnJCN7GWm5BvO3P0Hwz4K+7GDIjSAunIG3G5GN6/B20b/0GvOG5MBIrocffBqTeubsG+Gq+DGlmBGkFg7RERERdGKQt0sSJEzF69Ghs3LgRCxcuzNn25ZdfBgCMGTMGEyZM6IPR0Zkv348NkRbLMpY6ICqhbJm0mbNFAzCNTd0vDCDWMh+qZxI0n8NEJkjV7Ivs/Ek6Iyey8xrUjHwQijqk18MuRqzlDiSjz6Vfm8ZGRHZeg/Dwu6ryxk+s5Y9IRl/M2cbU10MoYQTqLnZc37F8PjqW/b4Mo6t+6vBGaOPHp16EvIBIIv7W27Z2im9oH4+MiPqzWMstWddJGYdATdb1+ZjGTkR2/gz2UgeAgLtMWmk2Q5rNSOifQij1QEatXKdMWgj7jT4juQLRJocEFmMjIjt+AkUbae1CYSk4IiKiLix3UCQhBObOnQsglSn7xhtvOLZ744030pm0c+fOrcoL+oHore2f2paNCBR/8ktEVqmLKvsFm6qNh5uvFiO5Mse6VRmPTJqpZRWiJz+0LTP1TyDN1gqMJj8jsdxlu+xPgSS3Ly7VcPodbcJ4y2u1vs6xnRoe77iciMhJrs/czNICBfed/BhOAVoAEGq943JFcV4OpMYqzYzSBQ43YRW10JrcOkw9o0ycQ6CXiIhosGKQthcuv/xyqGrq7vSll16KaNRaLD8ajeLSSy8FAGiahssvv7yvhzgomdJ0rEf7vT2P6PvBEA1QQvjgDc/LWBiCL/xFeEMn5+8gxwWpNJscFlbwkfssY5WmfSKpaiDd1ATM007q2eomDnCKArWu1r5czchEUzwI7fGdvhkTEQ0IEnqOdb2t3Z69b1/4NMfl3vCpyPZQpTRbYMukVew3rFTvHlC9zk/FuJVZMoGIiGgwG7TlDl599VWsXr06/Xr79u3pn1evXo177rnH0v6cc86x9TF16lRcccUVuO6667BkyRLMnj0bV155JSZNmoSPPvoIv/71r7F06VIAwBVXXIEpU6aU5Xchq7hhD9A+O+dCHDtmagVGQzRw+WsvhDc4B6a+CRAaVO80KEot/J5vwhs6Aaa+Jd023nYfjGR3hqeU2S8oTcMe/JQyXtrBFyJLkNY0dkD17NrHg8kv89/KV3s+VG08jMQyxNvv79Ew+7+pNKw3HQNTzod/3EklHWc1MrEOSTxmW15/+L3djyILBZ4hM6CGxvTt4Iiof5P289Pudb0M0mZsL5QGBOq/A9UzEYo2ynETj38Wakbel64dm+j4R3qdaWyxtVcU+w0sIVSEht0AI/EhOrZ/q6ihM0hLRETUbdAGaRcsWIB7773Xcd2iRYuwaNEiyzKnIC0AXHvttdi6dSvuuusuLF26FGeccYatzXnnnYdf/OIXvR4zuRM37MGf6fXDKzASooFNCAHVM9E2gVZq+SSonknpZcnofyxB2lxZP9LY6bCwcpm02bKfpEMwuSpkZMh6fPtB9U5NTRLTI0ibM5M2I0jrGTYT/l1cZEj3c9HmPwId9uXeUbOheib0+XiIaCDJ/r0H5AjgupIRpBVBeAIH591KUYdCCRwEKaNAjyCtNJszWwJZJvgSQoPm2wOKNgGmvrbAcQMQvsK3ISIiGqBY7qCXFEXBnXfeiaeffhpz587F6NGj4fV6MXr0aMydOxf//Oc/sWDBAigK/6n7Sty0nwT7VYfJDoioD2XcE8yVSWvag7SyCssdmFVY7iCVoZzxb9uZpWTLVsqsN9izH90apBXq4KgZqMffdFyeORs5EVHBcmXS9rrcQUbforDJcvNlswqlzsW8GsXNuyEYpCUiIkobtJm099xzj62kQW+ccMIJOOGEE0rWH+X35rZ1uOT1R7GyZbtlebtuf4TXl1lPkIj6Vsas0PH2+7sfvc+cNMThMfxYy58Qa10AyFTwUNF2gb/2fHgCs8syXADQ4+8i2jwf0iFoDJQmk1ZKE7HWBUhGngOEB77waVDU4Yi13gHT2Na5nxiQjEPfsBX6uo3pbbWJY6CNagRUFULL/hm3/bEZkPEERE0I/pl79Nh3G5rXHeG4jWefGqiRmUgs+xCyrQ1C6z9BWtPYiWjTb6AnPkBhgQ9py0Lu0rH9/wDhheabgWDDdyEUTkTZX0kzimjzjdBjS7JmySvq8M62LdbyIbLr5oUKCK/DciDceCsAINr8e5j6Rmj+/RCo/y6EEsw5rmR0EWKtd0EoIQTqv217QoH6Pynbsq5r3/ZNZObOCKUWvvBp8IU/DykTiDb/DnrsDcjOG4eqZyIC9f8H1TMe0hYALiw5JF+g1KkerUOjgvbZvR2DtERERF0GbZCW+r8zX74fq1q3528IwKfwT52okgRy3CiR0ezr0pKWjFZT/wSRpmtR6/9HWbJwpDQRafolZGeg1IlpuPv8yUWPvYFE+4Pp17GW+bY2QgHg88Kz61gYO7bAbG6BMqQBngnuaqKaiVZA14GEPWCZK7ir1tbCt8d0xN5Y3K8yaWOtd0GPLy5xrwlAJqDHXkGsbTQCdReWuH/qK/H2h5CMvpizjamvy9OLkfVzq33bxZbHvpPRl6BoY+GvPTdrb9KMIdL0y/RNgmjz7xFuvCnPGKg/MY2W3A0cbk5KI4pYy3xo/llIRp5HMvKsZb2RWIZo8287/1YyP98LDJi6yKR10Ulh++zaikFaIiKiND6DT/1S3NBdB2gBwKMwk5aokoRahrrQMg5T35i/XTFdm805A7SpNk293o+RXJ2/UQ9KOJz6f03YVXuZ1AE9lWEl4wlIs7BHapWaMCAE1NAuBW1XSUZyZXn7T3xY1v6pvIzkR2XfR2ZdzmTsjZztk9GFlixuI/F+OYZFFWTqa4rfNrk6640FI9nVb8Zne4FZrYqW+zs62+RjljbK0IL2meKFUN0EgImIiAYHBmmpX0o41J3NJX8dLSIqJ2/oOCjq6NJ3nKO2ba+6Ndvzt8mXGeVmPzkm73KkpD7LhOauznby448BKVMvdB36uk8K2x8A/8RToTXsVfB2lSKN5vL2X4LgPFWQQ8Zi2XdptuZejwrW3KY+Ic2Iw1J3l2FG8lOYepbP7q567TJj4rBcT684jURthDfkPDmkUOrhC38hbx++mi/ZyxcB8AQ/m32b2q8yk5aIiKgHPgNO/VLSIRvs6r2PxrXvPm9bfun0Q/piSESUg6I2IjziHpjJNWjfdpG9gQgjNOxX1kUiCMgEJHTE2x6EHnvVtpns9YzYzqS0B2kDDVci2vTr9GvTNvt1MTsqLEjradwfdXs+hITxBAzTeZIrAPCon4cqpiOwZxjYM2OXsgVSOgeYJZJIGHdZltUeNL/f3OiSUkKa1t8tUH8FFI/7TGABLxTProCMw9DXwUh8iFjLzd37MJxrFFP/kDkJoTd8GjyBQyHNDkR2fD/LVgoyMxWFOhzBIT9Cx7ZvwzZZn22n5fmcov4j84acok1EuPF3MPRPbW2jzTfB7PGURdLhu69bElJK2CYOKyIPJ1B/GXzhMzImxVSheiZC9KzBnIXm2wu1Ix+Goa9F1/GiqI1Q1Ea0RP6V0dqDmpH3QVGHFDxOIiKigYxBWuqXkqb9gufwkZMcg7Q1Ht6hJ6oGQqhQvZMhRI1tAhVFqYPm3T3rtrpnvGOQtmed2lKSpnV8QhkK1TM1o1EHpExCCHdZrY77KTBIq/jq4R1+IPSdL8DIUcrXN/QkqJ4JRYzHQGLjXRlLC8z2rSTZgcyAmebbF4o2svC+RACad5oty0vKtl6/71RBGZm0qrYLNO/uObPnhVILmXFTRoggNO/uEErYts6+T2bKDnrSmkkrhB9CqXH83lOUBsstATO5Kk/nOqSt3EFxZb4UbQQUjChqWwAQih+ad1redppvXwZoiYiIHDBIS/1GwtBhdD6225a0P644PtzguF3Yk//uPxH1IaEBMmORkrvGavZJS/TOzDiZZX1GPw6PVaZmxbYG9jKzMYVS4zgGabZAqMMy+tORmdWU7XFOabqZNK0HBZAynvfx6WIJoaYmkOkRPJbS6THd6uSU3exuwpvshGIPJEizGUJt7FW/pSZlHIC34lnPfRXAdjpuUxMXeYAc5QNsN0bSx2b2oJZQ6u2BWKF19pf/RpGUbaljPVud0Cx9pDIkzdRxSf2aaftOCWZv7FAyIBdptjvcCKjyina8yUVEROSIQVqqeu3JOL768n146tPlMGT2SW9GBWugCQV6RpsajZm0RFXF4eJMKDW5N8kSaOvY/n/FDUFpgL/uEhiJD5Do+CdyBXVS7cMQSi1SQaDugLAeexPe0IkAUsHZaNMNnRO8WINHijoGgSFXQ/PuZlmux14uaNwysBatG09w0bL4C3QhgpZAlnMtxeqUjGQ8TSF8EEphAY9Mqb9N6+PubZvPQHjEn6FqY3rVdykYiZWINP0Gpv4xhDIMgYb/g8c/q8/HYRrbEdn5cxiJ96GoYxAc8kOo3qn5N3SQ6PgXYq23Q4ggAg3fg+bb27I+1vY3xNsesGUnFiP9GHeOiZacPn8EOj/HXNa4bd30uYLGlYwtRrTpRkgZhS88D/7acwvanqqDoa9HZOfPLeULAOQMxArFX9A+2jY71Yut7iCtm/IJREREg1F1f4MTAbhz5WI8/skHOQO0AOBTNIwK1tqWh1nugKiqpIMbPZflzaStL+kYpNmEaNO1SHQ8hnwB2tT+wxBC7QzUdos2z0//nIy+gmT0OTjVpzSNDYi13JKxbHsxQ3ep+GxKkRk8kB29HEvfkFIi3vZny7LeZtECgBAKhGJ/UiPemlkWojIizTfC1D8GAEhzO6LNv+3MwOxb8bb7YSTeB5D6e49m/L27Jc02RFtuhjRbYBqbEG2+2bLe0Dek/u1LleGdzqTNfkqsqPUO23XlOZRn8sJo068hze2A7EC87a/Q4++WZT9UXrGWO+0BWjh8zlrWZQ/SOn0WOfdR5Zd4DNISERE5qvJvcCLgvaZNeduMDtbCo6jYo95eR2ty7TCHLYioUhRtlMOysTm3UbVx5RqOK13jswf9jM7HzAEj/t+cfRjJjyzBMyP5cSmH2IMKRR1a9NaZgWjT2JGlZXVxKgGhOJQqKIZTfd/yvX/umfoWWwBIGlsLnpCuFFI3PLp1BWwLlYy+bMlONfU1kD1u0prJNUX1m42ije78SYNQnI8bzbcfMm98KGqqznGg/nslHU+XzPIKiY6ny7IfKq9s9WRzfecpOTL0PcFjIETuJ08AQKhF1OEuI81nze73hb9YoZEQERFVNwZpqertjOfOlglqHvx21skQQuCaGcdhRKD75PXMSfvhoMbx5R4iERXAV3uuJTNW8UyCNzQ35zaKNgK+8JfKPLLsfKFTAQD+um9krDFhdAaNjOTK3J3ImCX7Txo7czY3IxHE3nwLRmuu+rMCnuAJ8IZPR+orXYO/9vzc9Q7z6A5adY5Dz3+jrBpI056Z7K+7uCR9+xweNS9XXeBC6Ann7Mq+riNcysxdp7rCPYO2mZP6FU+BN3RqumSFECL195JRP1rzHwxP8Fj4as5C12mzUIfDV/NlAIAncCg038wSjSk7PfFB2fdBpSWldHxiQvFMSZfJceINHgfVYUIx1TMd/pozOz/XsmeiCnUUfDWnFzXmcvHVnpWu7+0NnQrVs2uFR0RERFSdWJOWqt7OhPVi8yf7HouzJndfEI0J1sGnpv6UZzXugg2n/QifdjSj1uvHEF/xgQoiKg/NOw01I/8OaWwDhAqhDHM12ZG/7nz4ar6E1k0nO6731ZwNb/AY23IjuQ6RnT/M27/q+wxUbTwSHf+w9hv+MhRtOADA458JRR0N09iYXm8mP4L07GrLrAw0XIlo068ty0xjJ1QlBCBVcsGyrq0N8f+9h8DELyOw28UQNQ0QIwWklBCaAcVrLwmRmtAsdWPKX/MVAEqva7BmZjqbRv8I0mZm/AqlDppvz5L0rXmnI9T4R3RsuyS9TJptqfemghN16Vmyt6UZAXqRTV2oUgasnYKwUsYgEHBcr3r3hObbD/G2e23bhYffmbX2pVBqbWVWvMEj4QnMhuwKrIlgutSBv/Ys+MJfgDTbINTh6fddKEEEh14HIAnIeHp8iY6nEW9/wNJ/cMjPHINTUibQvvU8x3Gm2xibYJqtUBR7WSeqTlK2AbBOChcadjNU7+45PzeEUoNw4/zUZ1rXDQrhSz8h4Q0dB0/wyO6/UwvV8vdZLTTv7qgZ+QAAg/VoiYiIcmCQlqrezrh19vMptY3YtSb7xaeqKJhQU5pHXImoPIRQIbTCH8cUSig14YqM2tepDbYsUMBhNvesYwpD0XZxWGH9qlS9U2FGu4O0RvIjKMlJyKxN6fHPRlSELDVdpbkDQKp0g2lkBmnbIaMxKL6J8NYVnpknOoO/vaWoGUHa/pJJmxGwEGpjSftXbHWRjdR7K3LXUy4nI/4/x+V9nUlr6uvtC0VxN0kdM2UtmbTWgLCiDoOiOpc1UrSxEKKwU10hvBAOnyNAKiDrlKWeCoh5AeFN3zRRvdPs41GHZ/mMyl8XGwCM+LtQAoe4akuV5xREVb1TXQdQc5WtyfV3Wq2EUAGolR4GERFRVWOQlqpWTE9iS6wN22LtluVDfL3LEiOi/s65Uo/IWsHHXWUfaSQgk4ZtuZlog96+rscC64WzHnsXUrd+nQplJIzIdghRA9kjSJtsfwdmPLUPI/6Rdf/xVKBG8eSvN1hO9nIHayGlXnCwqycpE5AZQelshDoEQtgnl8sn87FiJUt90WJl1uoFACO5Boo6vIi+gulgnlvSjFgCmKbZlDXL2dQ3wOwRVBZKKO/kfOn9SAOAtLzfUhpZsvZSjOSKLOPY0j0GtdHVZEZOWbmmsRWKNhJSmraMdaHUAln/XioXEHKc7FD0bjzJ2JtQPVMglDoIJfvkUr0lpeyctMx5wtZUFnL5z8WyjUOoQzP+PmXnDTBAKENzBkFz/W5CHQJp7IRQG0qS7Wkk11r7V+qL+mwjIiKiwYNBWqpKf1rxGi5f/ATihn3WZJYwIBrcBBQ4V8DMFgByFxiJr30UHev/AP8B1izWjvd/g5a1l3bvZdhQ+Gfsk35tGmtgGtbJjJIb/ott70+Ab78ZUId0z8adiP0NiP3Ncf8ykQrSiooHae0Tu7VuPA7BodfC4z+w4P4SkecQbf69+8mshB/Bhh/AU2DGYObEStmyK4sm/AA86Pn4csf2y4vuzhM4GoGG77sKXMZa7kC8/e8AnINmmaJN12YsUeEJHodA/XdyBrD0+AeI7PwZpLkD3vBpCNRdhGT0dUSbry+8pIGMoG3Ll9MvhTIEwaG/gObdLfsmUkKPvWZb3rH926nMaDPW+Qh5t1Sw2ynwpVT0kW+nIK2U9nOaQiQj/0Qy8k8AHvhrvwZfzWm96s+JoW9AZPv3LSVd7BT4wqfBX3dByfffxdQ3o2PHD2Dqn9hXigCCDd+HJ3AITH1LZ7vUjTRFG4/QsF9DccikN/WNnW0dMr8t/fsQqL8c3uCcosYupYlo0/VIRp+zdlvqzyQiIiIacDhxGFWdqJ7E/731lGOAFgCGeBmkJRrUsmajZflKM9w9SixNEzIRt6/ICKLJtvwTF5mdk33JuEN/2fafDtJWtuZkaoZ7e9Ar1nJbwX1JaSDW8kf3AVoAkDFEW24paDIqKQ3bxGGlDogIIQrOfs0lGX0eRpaasj2Z+ubO2qbuArTODCQj/4QeX5yzVaz1znRGYqL97zCSHxcXoHUgzZ2It96ds40eez379sY2W4AWAISoyZKdWNnHqp0yr3uWbchoXWDvScRaF0CaHfmbFijedn+eAC0AmIi3P2DJlC75ONofdA7QAoCMItpya2e7h9MBWgAw9XWItfzJuc+2B/MHaAFAxhFr/mNnVnnhjMT7tgAtUPrsfiIiIhp4GKSlqvNJRxM6dOegSo3Hh3Gh+r4dEBFVFUUbW9ByM56ANPJfbMuOCGQ8kQ6WprfPCMrKeAJmJHfNT2Nnc+e27TnbWfeTaqvVTXe9TTkIoUCoDbblpv4JZJbHn7ORZntRAT5pbIU0trpubySW25aVY/Zw1TOxpP3piQ/ytjGNzaXbX+ytnOuNhLXGbcf2K0s6KVi+30WPvVFwn4pnomMt6WyfB31FKLVQ1B6lQ0QAatYsYg2i4LIZBkxjW7HDy8rUP3XfNm8wt3hGcl3O9dLYDCkNx6BrMvoapGmvW27oa2zLsvYv2xxrn7uRWeagi+qdUlR/RERENHgwSEtVZ1vMOTNkmC+EWw86FX6N9byIBjN/3SXWya2ED97QqVC9zsFNAQWJ5R/agq9dpJTQt22DvnETICUSy1ZAJhKQpgl9/UaYO3batkks/xBmzJ4VJw0DyTVrIdtTAVd9wwYY23fkzAqVhoHkx2uAuER476uh1e+e69fvEyJbFqIsMHOvkAzaDEbyQ9dt9bg9+Kj5Dyp639n46y6Coo0rWX+Z9VWd5cso9kD17gVFyx9A1hPvuRpXes+m/W+/V/JkJuqJdwvqzhs6CZpvBhRtLHw1Z3WWpACEOhyB+m8VPcxSEELAX38ZhDocQqlDoP5yCOHL2jZQ/+3OLHYnWU7Xe1k+wbHLArJz3U54Vtw4XNwckLEsk+QlkHTIyjaNwv6ei82k7cpG70n17gtv6JSi+iMiIqLBgzVpqepsjVozzyaEG/De5/8PQc0DxUXtPiIa2DTvbqgZ+dfuTCnhyTmplZQGjE2bEd20GVBVwDQx4kvNkEgAUgJCgxjhAfbouY0EoEOM9ACfydavtAchhRdilAockNk2kT1A1bmNmO2HUKrjazlb8MU0W6EW8Mi/dAjS1o56HE6Ponfs/BGM+NL0ayOxEp7AYa72k5kh6g2f3jmTeGmpnkmoGXGPY5aeG4nIc4i13JR+bepugrRWQqlFzYj7eizQ0o/7SzOGnkFdPfEBIjuu7N5f8mNIs931JGKZ/PWXwxs4JsfgNAAK0Pn3o8cXI7LzmvRqiexBL9PYYcviFMpQx4AXAAQaroI3eHT32GrPhq/mq6l9C39F69F28fhnwjPyfpdt94c28sGMzxQBofjTnzWtm0+1lEyQKEOQVlrPwYJDfgrNl6rT3b71Qmv2rEyiXKTZbHkdqP8/RJtvsLaRcUjT+amGZPRleINH9WgrIQ3r31Jo2A1QPVPRuukLAJw+84oL0poZkyR6gp9FsOGKovoiIiKiwaU6rgaJetgWs14gjAjUIOxxzj4hosHL9eziZo9AhmEAEFC8par7WtlJvspFZqmdKc389Xit/WQGaT1ZA4SaZ5o1SJtc5WofptEMI7nSuhf/rILGWahiZ7ZXvVMtr019A6QZLbA/JWt7ofgtrzXf3rBOdmZCTyyDx79/Afvr4oE3cKS7sYrONiKjhnyOzEQ9bi21ABGC5tsHyegLzrtwqEMrhNq9735ICOE4/u7lGoAex2ZZMmmt52BCGdL9nmdkApcrk1ZKE9JssSxzzGCXMcgsJQn02JvWY0u2IzMQq6ijIJQQFG2Upa5tt2Izaa0Zu4o6oqh+iIiIaPBhkJaqhm4aWN68Ff9rstY4G+4vLuOHqC8YHethRDdVehiUg96S8dh8GTIsB5wsQdqu2q8CChTP+KyPb3f3Yw3SCuHP0tBer9FIfAgpZd6MSD3+NiwlAYQfqnfP3OOqEFWbgNSj6121fSWSsVdzllAwklkmT3JBCC9U724wEu+nlyWjrzpPapWHJ3BwwRm4trIZMg49saKzXuuo9Htrmq1ItD9kaap597QFBTN7H2yEUGGtnFLaIK2Uhq0Oa8/3XAivZZ2ReA+6NtraHgoUbVxBNx5Mowmm0WMSMhlF5kR5itpo205PrMhx4yhV8qArm9Y07BnZQh2S6lsb4xykzQiCp2rgfgpFG237t7C0MzKDtJwwjIiIiNxhkJaqwqZIK4545lasbLVPgtHIIC1VqZbXvo7IysJnvKcKq5KSAtXN+THmWMsful+IEELDroPmzV5D15ZJq+QI0nqskypJ2QZpbIHQRuYcaWapA803wzHLshoIxd8ZEOp+rD/adF1Z96l597IGaSNPIxl5uuB+PLnKHGSTcUNEyjZ0bPtGalz+gxEc8lMkI//pfIzdGpTTfPvANHLdABt8QdpUVnQ3WeJM2kTH47ZllsB8xnGV6HgCiY4n7B0JP0JDfwHNNyPvPmNt9yHeemfedkJtSNUc7vGZEm26Nuc20aZrofn2hRBBtG89z9qfqEkHWi01znvo2PkzhBtvhRACpr4F7du+BWluh1CGIjTsRqge55srpmktdyAU+0SMRERERE5Y4JOqwp0rFzsGaAGg0R/q49EQ5ae3r2OAtp8qR63SgSZb0MJCdiDelqfeZgGZtEIdASGs5SOM5Oq8w9AT1sfkNV95Sx30lurZtZc9FBacVH29zyoWSi20okpIZD/W9NhrMBLLEGu9E5kBWgBQffsgdy7BIAzSZn52lbgmbMwhWJorkzYrGUOs9S/5m8kE4i7aQQQghDfn50c2sda7kYy9Zu+yM4sWAFTPeMdtzeSq9ASGsdY7Ic3tqXGbO5DoeMRxm1TtW2smbc99EREREeXCIC1VhQ9bt2Zdt9/QsX04EiJ3zMjG/I2oKmn11fkofDXxBD/rqp2pb8i53jbBVq4grRBQPBOs/fd8BDrrPqyzwGeWTag2qnffXm2f+W+Uj+bdq6jyBj15gscVlZ2seHZBrlNNI7HCcWIwoY6E6pkC1TMxR98TCh5Pf5f5PmbWPu2N1ORkTmVOugOzhWSEmnr+Mh2purP569qqnlQtZ6WIGxx69BWYyY/sfXq7M/c1/wHI9ndqJFdBShPJ6POW5cnoy847lBFklqFQlPpChkxERESDGJ/5pKqwJWqdqEITCuq9AXxl0mcwbzwDKtRPqP13wprBwtOwJ+pmL6j0MKqeL3wqTH0NktGXuhcKHyBN9CyFkBkgzZRZ7iBfJpyiDrNM1WMa2/MPNmPyIgGX2X4V4g19FkbyQ+jRRZAuAlTdBFTPrgjUXVbQ/oQSQqDh+4i13mUps+AoM0gnQvD494e/9tyC9tlFUWoRaPge4q33wjR3dmZ+dmfNOk0Op3qmwl/3DQihwhOcAz3xIfToy+l/K6HUwRc+Hao2pqgx9WeKOhxmj+xy08h+g7tgMgZLbWcAgYYfWmpCK5rTTXMBCK/DZ0MTpEzmDu47lmvwAul9CqjaRATqv5UaT923EG2+HkbyY9tYFXU4/HVfh6lvQazl5u5dyDYkIv+x7cVfe16PbYchUP9tRJtvtLUzk5861qvNnNise7m9Rm5vb5IQERHR4MEgLVWFLVHrSe2dh5yGsybPrNBoiNywXiAKTy1GfsX5oo2ovxFKAMEhPwLwI8tyI7ES7dsuTr+WZmvuyb0yJyFymLnesj5jgh3pMNmPZb00YHtUvkrr0XYRwotgwxVAwxV9tk+P/wB4/Af02f568gaPhTd4LAAgsvMXSEZfTK/LDNIKtRHh4bd2vxYeBBu+AzR8p28GW+UUdYTltannzzR3S8oO2zLN9xnr/h2CtJpvP4SG/RrSbEPrps9b+zR25KwpLS23ZFJqRz+RNbCresYh3Dg/a39dkpFnYSRXdO/HtN7s8deeD0UdZlnmDZ0Ab+gExFrvQbytuwSDqX8KPf5fx/2YZisUW3Zz5o0rFcjzuUdERETUheUOqCpszgjSjgjUZGlJRESVIpS6jCUG4BDc6WKbOCxfJq1iDZzkzaR1qMlZrZOGkf3vJ/OR+MwgJFkp6nDL61Jm0kozYlsmlKDltao5TZTVWSdXhG3Ht2k4zzXQvVOnTNre1wz3BA7LuV5kBGh7UrRdLK8N/VPo8f85tnUq95KZSSuUmuw3sYiIiIgyMJOWKs4wTWyNWcsdjPCHs7QmsjM61iPZ9C4gZf7GJaK3LMtYwoswGvicHttNRl9JzbzuwEhaHxMWSu4gbWYmrWlsQjL2Rtb20ozZFzJIW7XsQX4rBmlzUzTrv4+R+B/02NtQvbtZJvgCAGl2pGr+wmlyMQWqZzIUdQikTMJIrICRXJnRxmu74eGUSSvNZgCdNaXVYTD19el1ydjrUL1TYSbXQajDIZRAakydGfamvtk2LiF6nz/iCRyGWOvtWdcramPWdZmBaGlshu5QwgBIffZllj0w4u9bXrPUARERERWCQVqquP/ttE/AxExaciu69mE0Lzy9sx4eEZWV8APwoGftyWjzDe43d1GTtidpbEVkx9WFjBCo8pq0g1m+gFVmpihZCYcgdseO70EotQgNuwmqJ5UFaujr0bHtsnQA1bkzH4INP0Ks7R5Lndv06ows2tQy+2P7Zo+SJEJtBHoEaRPtDyLR/mCuXylD77NoAUDRRkH1THUIPKeIHEFaeyBaArLdsa2b308oPJ8lIiIi91jugCruLx+9bXktINDoD1VoNNTfdLx/fXUEaEuQ/UNU7YQQebMhc3eQL5M2+2PIrnchGKStVvn+doTGTNpcsgWxpdmKROSZ9Otkx79yB2gBQMYR2flDxwAtkL9+dJeuwDBgL1dSMFG63BEtR8mDzJtBliEoAYgS3iwQgk+GERERkXuMKlDFZZY6kJDQlNJkU9DAZ7SvrfQQAACeoZ/J34hoAFC904veVvNOy7leUUdAKENztsm5vTbOMduPqoOW529H8+7VRyPpn4TSAMWxLiwgjab0z6bZ5NimENmOc3/thZbX3vBp6Z81X+/eP9UztVfb9+QNHOV4U0jxTIEQvpzbar59SzYO1bt7yfoiIiKigY/lDqji1rTttLy+dPohFRoJ9TdSSphx69+PEhgFofRtJp02ZG/UHpB/xmmigSBQ/y1EmwEjuQqAuzrQQvjgCRwJzZ9nQh+hIjj0Z4i13A7TKGzmekUbg0Dd1wvahvqWoo1EoOEHiLc/DGm2ppcLpQa+0FyongmVG1w/IIRAcMiPEG35E4z4OxlrezxRkjkhlwh11qw1IXNO5uWBUIdB806Fv+4bji28obkwjW0wEivgCcyG5tuve+vgZ2Ho65Fo/7uL38ZrqWWtahMQqP+Wi+3cUbQRCDZcjXj7g+kJzFRtHPx138y7rb/264BMQE98iK5/VwENmn8/CKUGyeir9kkRM3S199WclrMdERERUU8M0lLFfdxuDbLNGVO6TAoa2GSyFZCGZdnQE1+HFh5foRERDXyKOgShoT8tW/+adzrCjb8rW/9UWd7gMfAGj6n0MPot1TMJ4WG/Qaz1bsTb/tpjjZHlZ8AX/jz8tV+DlDpaN55gW5/u27s7wo2/zbl/ofgRqHcOdAqhIlB3EZKR5yDzZPNq/pkIDf15zja95QkcDE/g4IK3U9Q6BIf8KOt6f+3XejMsIiIioqxY7oAqqiMZx5aoddbcXWuGVGg01N9kZtECgOLj3w8REQ101rJQsscNS5mZSduZkyGEBkUbk6NPUZqhCU9p+iEiIiIaZJhJSxW1tt2eaTEhzCBbtTCiW5HY/BKk3lHpoTgyOj6xLhAahMZJOoiIaIAT1iCtaWxCouNf6Z+ztVW08TD1jO/OdLvS5G4IeFwWQiEiIiKinhikpYr6uG2H5fXIQA2CGmfmrgZ6+zrseGp/mLGtlR6Ka4pvKIQoUSYQERFRlRIZD8OZydWINv8mS9vuIK3qGQ899kqWdqUaHM/jiIiIiIrBcgdUUesyMmknMou2asTWPtyvArQASx0QEdEgUUhJgR5tFS1XzXY1x7oCducqSFuafRERERENJAzSUkXFDGvdtDqvv0IjoUwykXvSj2rkHXlEpYdARERUdqp3j6Laar59ke1BukL6zL2/PfO20by7l2RfRERERAMJyx1QRSWldYZhj8LMimolfEOg1Uyu9DCcCQWeYfuj5jO/rPRIiIiIyk7zTkeg4ftIRp6FNCPOjZQgvMHjoHmndS9ShyA49Fok2h+BNFtTC4UKzbs3fDVfKsnY/HXnAULASCyDkVgFIAkAUD3TAKFB882AN3xqSfZFRERENJAwSEsVpZum5bVWokkrqPR8o49Dw+H3VXoYREREBMAbPBbe4LEFb+fxz4THP7MMI0oRwodA3cVl65+IiIhooGJEjCoqaTKTloiIiIiIiIiIBjdm0lJFZdak1RTeNwAAKSXinz4JvWV5xcaQ2PpaxfZNRERERERERDSYMEhLFfWb91+yvGYmbUrbO1eh473rKj0MIiIiIiIiIiLqA0xbpIoxpWlbZjgsG2yklIisuLXSw7ARCu/pEBERERERERGVA4O0VDFJ0x6Q3b1+RAVGUl3MyHrIZEulh2HjHXV0pYdARERERERERDQgMTWOKsYpa/b0ifv2/UCqjN6cUYdW8cE3uvDZm0tFqF74xnwWgUlnVWwMREREREREREQDGYO0VDFOQVpViAqMpLrozcssrz1D9sWQY56s0GiIiIiIiIiIiKjcWO6AKsYwpW2ZKvgnmWyxBmm1+t0rNBIiIiIiIiIiIuoLzKQtoXXr1uHmm2/G008/jU8//RQ+nw+TJk3Caaedhm984xsIBoOVHmLVaI5H8dsPFtqWR5f9Dq1or8CIqkdiw7OW11r99AqNhIiIiIiIiIiI+gKDtCXy5JNP4qtf/SpaW1vTyyKRCJYsWYIlS5ZgwYIFePrppzF58uQKjrJ6nPifO/Ha1rW25bH3f4MOEe37AVUxrY6ZtEREREREREREAxmfLS+BpUuX4vTTT0drayvC4TCuvfZavPbaa3j++edxwQUXAABWrlyJE088EW1tbRUebeV90t7kGKAFAB+Mvh1MP8ByB0REREREREREAxszaUvgsssuQzQahaZpePbZZ3HQQQel1x111FGYMmUKvve972HlypW48cYb8dOf/rRyg60CW6LOgeqD8QlqRKKPR1PdPMP2hxqeUOlhEBERERERERFRGTFI20uLFy/GK6+8AgA477zzLAHaLt/97ndx9913Y/ny5bjppptw9dVXw+Px9PVQq8bOhL2cwY/HBHHGhifSr5XgWPjGzOnLYVUdNTgOoemXQghR6aEQEREREREREVEZMUjbS4899lj653PPPdexjaIoOOuss/CDH/wAzc3NePHFFzFnzuANQO6MRyyv96gfgf8bEUf7xnh6mWfYTNTPvrOvh0ZERERERERERNTnWJO2l1599VUAQCgUwn777Ze13eGHH57+edGiRWUfVzXbEeuwvB7iCwKmtcyBULx9OSQiIiIiIiIiIqKKYSZtLy1fvhwAMHnyZGha9n/OadOm2bZxY/369TnXb9q0yXVf1eLSNx+zvK5pW45Y4iVrI2XwloMgIiIiIiIiIqLBhUHaXojFYti+fTsAYOzYsTnbNjQ0IBQKoaOjA59++qnrfYwbN65XY+wPaiKroUc/sCxjJi0REREREREREQ0WLHfQC21tbemfw+Fw3vahUAgA0N7eXrYx9QcqTMvr4eiwtRGe2r4aDhERERERERERUUUxk7YXYrFY+mevN3/mp8/nAwBEo1HX+8iXdbtp0ybsv//+rvurBiEk0YrUv4UXOk7ESmsDoSIw4dQKjIyIiIiIiIiIiKjvMUjbC36/P/1zIpHI0TIlHo8DAAKBgOt95Cuj0B99Y2QNYoaOgAIcV+PHvsGvpdcJxQff2OPhbTyggiMkIiIiIiIiIiLqOwzS9kJNTU36ZzclDDo6Uo/1uymNMJD98vhfVnoIREREREREREREVYM1aXvB7/dj6NChAID169fnbNvU1JQO0g6GycCIiIiIiIiIiIjIHQZpe2n33XcHAKxevRq6rmdtt2LFivTP06dPL/u4iIiIiIiIiIiIqH9gkLaXDjnkEACpUgZvv/121nYLFy5M/zx79uyyj4uIiIiIiIiIiIj6BwZpe+nzn/98+ue7777bsY1pmvjzn/8MAKivr8eRRx7ZF0MjIiIiIiIiIiKifoBB2l7af//9ceihhwIA7rzzTrz++uu2NjfeeCOWL18OALjsssvg8Xj6dIxERERERERERERUvbRKD2AguOmmmzB79mxEo1HMmTMHV111FY488khEo1E88MADuP322wEAU6dOxXe/+90Kj5aIiIiIiIiIiIiqCYO0JTBjxgw8+OCD+OpXv4rW1lZcddVVtjZTp07F008/jZqamgqMkIiIiIiIiIiIiKoVyx2UyEknnYR3330X3/72tzF16lQEg0HU19dj5syZ+PWvf42lS5di8uTJlR4mERERERERERERVRkhpZSVHgQVb/369Rg3bhwA4NNPP8XYsWMrPCIiIiIiIiKigYfX30RUTsykJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogrdIDoN7RdT3986ZNmyo4EiIiIiIiIqKBq+c1d89rcSKiUmCQtp/btm1b+uf999+/giMhIiIiIiIiGhy2bduGCRMmVHoYRDSAsNwBERERERERERERUQUJKaWs9CCoeLFYDO+99x4AoLGxEZpW/cnRmzZtSmf9Ll68GKNGjarwiKhQfA/7P76H/Rvfv/6P72H/x/ew/+N72L/x/ev/+uN7qOt6+mnWvfbaC36/v8IjIqKBpPojepST3+/HrFmzKj2Moo0aNQpjx46t9DCoF/ge9n98D/s3vn/9H9/D/o/vYf/H97B/4/vX//Wn95AlDoioXFjugIiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKkhIKWWlB0FEREREREREREQ0WDGTloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpqU+tW7cO3/3udzFt2jSEQiEMGTIEs2bNwm9+8xtEIpFKD29QWrJkCa655hrMmTMHY8eOhc/nQzgcxtSpU3Huuefi1VdfzdvHPffcAyGEq//uueee8v9Sg4zbf/sjjjgib1/PPPMM5s2bl/5bGDt2LObNm4dnnnmm/L/IIHXEEUe4fg+7/nvppZcsffAYLJ+tW7fiqaeewo9//GMcf/zxGDZsWPrf8pxzzim4v1IcY7qu409/+hMOPfRQNDY2IhAIYNKkSbjooovwwQcfFDymga4U72EkEsGjjz6Kiy++GLNmzUJDQwM8Hg+GDh2Kgw46CD/96U+xefPmvP0UcrxTt1K8h6X+nIxEIrj++usxa9YsDBkyBKFQCNOmTcN3v/tdrFu3rne/8ADU2/dw7dq1BX9XTpgwwbEvHoeFK8X1Qk/8LiQiykIS9ZEnnnhC1tbWSgCO/02dOlWuWrWq0sMcVA499NCs70fP/8466ywZj8ez9nP33Xe76geAvPvuu/vuFxwk3P7bH3744Vn7MAxDnnfeeTm3P//886VhGH33iw0Shx9+uOv3EIBUFEWuX7/e0gePwfLJ9W959tlnu+6nVMfYtm3b5KxZs7L24fP55B133NHL33pg6e17+L///U+Gw+G8x1Ztba184IEHcvZVyPFO3UpxHJbyc3LVqlVyypQpOf8Wnnzyyd7/4gNIb9/DNWvWFPRdCUDOmTPHsS8eh4Up1fWClPwuJCLKRwNRH1i6dClOP/10RKNRhMNh/OAHP8CRRx6JaDSKBx54AHfccQdWrlyJE088EUuWLEFNTU2lhzwobNy4EQAwevRofPGLX8Shhx6KXXbZBYZh4PXXX8eNN96IDRs24M9//jOSySTuu+++vH3++9//xujRo7OuHzt2bMnGT1YXX3wxLrnkkqzrQ6FQ1nVXX3017rzzTgDAjBkz8L3vfQ+TJk3CRx99hOuvvx5Lly7FggUL0NjYiF/+8pclH/tgdvfdd6OjoyNnm2XLluH0008HABx99NEYM2ZM1rY8Bstnl112wbRp0/Dss88WvG0pjjHDMDBv3jy89dZbAIBTTjkFF1xwAYYMGYI333wTv/jFL7B161ZcdNFFGDNmDI4//vjif9kBqpj3sLW1Fe3t7QCA2bNn43Of+xxmzpyJoUOHYtu2bXj00Udxxx13oLW1FV/5yldQW1ub999+5syZuPvuu3v1uwxWvTkOu/Tmc7KtrQ0nnngiVq1aBQC44IILcMYZZyAQCODFF1/Er371K7S2tuL000/HokWLsO+++xY9zoGqmPdwzJgxeO+99/K2+9WvfpU+Xz377LNztuVx6E4prxf4XUhElEelo8Q0OHTdgdU0Tb722mu29ddff336zudPfvKTvh/gIHXiiSfKBx98UOq67rh+27ZtcurUqen3ZuHChY7temanrFmzpowjJie9PXY+/PBDqWmaBCBnzpwpI5GIZX1HR4ecOXNm+hhmxnvf+973vpd+n//yl7/Y1vMYLJ8f//jH8sknn5SbN2+WUlqzudxm8JXqGLvzzjvT+77kkkts61etWpV+YmXy5MkymUwW9ssOUL19DxctWiRPO+00+cEHH2Rt89hjj0khhAQgJ02aJE3TdGzXlcGX68kGsivFcViqz8kf/ehH6X6uv/562/pFixalj3e+z91K8R7mo+u6HD16tAQga2pqbJ+1XXgcFqZU1wv8LiQiyo9BWiq7N998M/1FetFFFzm2MQxDTp8+XQKQ9fX1MpFI9PEoKZsnn3wy/f5deumljm0YIKqs3gZpL7744nQfr7/+umOb119/PecJMZWPYRhyzJgxEoAMh8Oyo6PD1obHYN8pJrBQqmOs63tyyJAhjn8HUkr5q1/9Kt3P3//+d1fjG2zKERySUspTTz013e/bb7/t2IbBodKoVJA2kUjIuro6CUBOnz496yPZF110UXpfixcvLmpfA105jsN//etf6T7PPffcrO14HJaem+sFfhcSEeXHicOo7B577LH0z+eee65jG0VRcNZZZwEAmpub8eKLL/bF0MiFI488Mv3zRx99VMGRUDlIKfH4448DAKZNm4YDDzzQsd2BBx6I3XbbDQDw+OOPQ0rZZ2Mc7J5//nls2LABAPCFL3wBwWCwwiOiQpTqGFu5ciWWL18OADjttNOy/h30nIDnH//4R2+HTwXg9+XA9+KLL6KlpQVA6lF6RXG+lOJxWBl//vOf0z/nK3VApZXv84/fhURE7jBIS2XXNdtnKBTCfvvtl7Xd4Ycfnv550aJFZR8XuROPx9M/q6pawZFQOaxZsyZda6znMeika/2GDRuwdu3acg+NOvW86Oy6mUX9R6mOsZ4zZ+fqZ+TIkZg6dSoAfpf2NX5fDnxuj8OZM2emg0c8DvtGW1tbOjFkwoQJOOywwyo7oEEm3+cfvwuJiNxhkJbKrutu5+TJk6Fp2eeqmzZtmm0bqryFCxemf54+fXre9ueeey5Gjx4Nr9eLYcOG4cADD8QPf/jDdCYglc9DDz2E3XffHcFgEDU1NZgyZQrOPvvsnJnpy5YtS//c8xh0wmO077W3t6czQMaPH48jjjgi7zY8BqtLqY6xYvr59NNP805KR6VTyPflihUrcMABB6C+vh5+vx9jx47F3Llz0xPvUHkV+znp9jjUNA2TJ08GwO/LvvLwww8jEokAAM4880wIIfJuw+OwdPJ9/vG7kIjIHQZpqaxisRi2b98OIP+M4g0NDenZ5z/99NOyj43yM00T1113Xfr1aaedlnebl156CZs2bUIymcSOHTvw5ptv4tprr8XkyZNx2223lXO4g96yZcuwfPlyRKNRtLe3Y/Xq1fjzn/+Mo446CvPmzUs/otnT+vXr0z/nO0bHjRuX/pnHaN945JFH0hcWX/3qV11ddPIYrC6lOsaK6UdKadmOyud///sfnn76aQDAXnvtlTdIu2XLFixevBgtLS2Ix+PYsGEDnnjiCZx99tnYd999Gdgrs2I/J7uOp1AohPr6+pz76DoOt23bZskypPIo5qkTHoel4eZ6gd+FRETuZE9rJCqBtra29M/hcDhv+1AohI6ODrS3t5dzWOTS7373OyxevBgAcMopp+QsV7HrrrvilFNOwUEHHZQ+Kfr444/xyCOP4OGHH0YsFsPXv/51CCFw4YUX9sn4B4tgMIiTTz4ZRx99NKZNm4ZwOIxt27Zh4cKF+NOf/oQdO3bgsccew9y5c/Hcc8/B4/Gkty3kGO26iQKAx2gfKeSik8dgdSrVMcZjtXrF43Gcf/75MAwDAHDttddmbasoCo4++miccMIJ2GeffTB06FC0tbXhnXfewW233Ybly5dj2bJlOPLII7F48WLssssuffVrDAq9/ZzsOg7dntN2aW9vh8/nK9FvQZk++eSTdCbnwQcfnM5izobHYWm5uV7gdyERkTsM0lJZxWKx9M9erzdv+64T2Gg0WrYxkTsLFy7E97//fQDA8OHDceutt2ZtO2/ePJx99tm2LL9Zs2bh9NNPx1NPPYVTTjkFyWQS3/72t3HyySdj5MiRZR3/YLJhwwbHjJ5jjz0Wl156KY4//ngsXboUCxcuxK233opvfetb6TaFHKM9LzB5jJbf+vXr8dJLLwFITaTRVVvNCY/B6lWqY4zHavX65je/iSVLlgBITVZ00kknZW376KOPOn5eH3roobjkkktwwQUX4N5778WWLVtw+eWX49FHHy3XsAedUnxOdh2HhZzTAjwOy+2vf/1reoIpN1m0PA5Lx+31Ar8LiYjcYbkDKiu/35/+OZFI5G3f9ThYIBAo25govw8++ADz5s2Druvw+/146KGHMHz48Kzt6+rqcj6G/bnPfQ4//vGPAQCRSAR33nlnycc8mOV65HLEiBF4+OGH09mz8+fPt6wv5Bjt+bgmj9Hy++tf/wrTNAHkn6Wax2D1KtUxxmO1Ov3qV7/CggULAKSCfbfcckvO9rk+rz0eDxYsWJCe2fwf//gHa0mXUCk+J7uOw0LOaQEeh+X2l7/8BUAqKHf66afnbc/jsDQKuV7gdyERkTsM0lJZ1dTUpH9285hJV+1FN4+RUXmsWbMGc+bMQVNTE1RVxQMPPFCSGXIvvPDC9MVRz8kFqPx23XVXHHvssQCA1atXp2fXBQo7RntOusBjtPwKvejMh8dgZZTqGOOxWn1uu+02XHXVVQBSE9T885//tDxeWwxN03DeeeelX/NY7Vv5Pie7jsNCzmkBHofltHjxYqxYsQIAcPLJJ+etFewGj8P8Cr1e4HchEZE7DNJSWfn9fgwdOhQA8hZsb2pqSn+Z9iwYT31n48aNOOaYY7Bx40YIIXDXXXdh7ty5Jel7+PDh6b8FZiT0vd133z39c89//56TLuQ7RntO3sBjtLyWLFmSnsH4c5/7HBoaGnrdJ4/ByijVMVZMP0KIvBOrUHHuv/9+XHLJJQCA8ePH47nnnsOwYcNK0ne2z2sqv3yfk13HU0dHB5qbm3P21XUcNjY2sh5tGRUzYZgbPA6zK+Z6gd+FRETuMEhLZdd1krN69Wroup61XdddcAB5Z0Wm0tu+fTuOPfZYfPzxxwBSj8WX8mQXgKuZ6ak8sv3b97wI6XkMOuEx2nd6XnTmK3VQCB6Dfa9Ux1gx/YwbN67XmZ1k98QTT+Css86CaZoYNWoUnn/++ZIGAHicVlauf3+3x6Gu6/joo48A8PuynJLJJB544AEAqQD7Zz/72ZL1zePQWbHXC/wuJCJyh0FaKrtDDjkEQCrr4O23387aruejRLNnzy77uKhbS0sLjjvuuHTm3nXXXYdvfOMbJd3Htm3bsH37dgDA6NGjS9o35df13gLWf/+JEyemX+d7nO/ll18GAIwZMwYTJkwo/SAJgPWis7GxEccff3xJ+uUxWBmlOsa6vkvz9bN582asXLkSAL9Ly+H555/HaaedBl3XMXToUDz33HOYNGlSSfeR7fOayi/f56Tb43DJkiXpp8N4HJbP008/jR07dgAAvvzlL0PTSjcnNo9Du95cL/C7kIjIHQZpqew+//nPp3++++67HduYppnOHKuvr8eRRx7ZF0MjpCbHOPHEE/HOO+8AAK6++mpceeWVJd/P7bffnp559/DDDy95/5TdmjVr8NxzzwEAJk2ahDFjxqTXCSHSj6itWLECb7zxhmMfb7zxRjojYe7cucwwKaNnnnkG27ZtA1Dai04eg5VRqmNs6tSp6Yyiv//974hEIo793HPPPemf582b19vhUw+vvfYa5s6di3g8jrq6Ovz73//GHnvsUdJ96LqOu+66K/26FDXhyb18n5NHHHEE6urqAAD33ntvum0mHod9o1xPnfA4tOvt9QK/C4mIXJJEfeDQQw+VAKSmafK1116zrb/++uslAAlA/uQnP+n7AQ5S8XhczpkzJ/1vf9lllxXcx5o1a+Q777yTs82TTz4pvV6vBCADgYBcv359kSOmTE888YRMJpNZ12/evFnOmDEj/R7feOONtjYffvihVFVVApAzZ86UkUjEsj4SiciZM2emj+GVK1eW/Pegbqeeemr6/Xr77bfztucx2LfWrFmTfn/OPvtsV9uU6hi788470/v+xje+YVu/evVqWVtbKwHIyZMn5/xsGMyKeQ+XLl0q6+vrJQAZCoXkq6++WvB+X3jhBdnU1JR1fSKRkGeffXZ6bCeddFLB+xgsCn0PS/k5+aMf/Si97+uvv962/rXXXpOapkkA8vDDD3fz6wxKxRyHPe3YsSP9fu21116ut+NxWLhSXC9Iye9CIiI3SvdMCFEON910E2bPno1oNIo5c+bgqquuwpFHHoloNIoHHngAt99+O4DU3dHvfve7FR7t4PGlL30Jzz77LADgqKOOwnnnnYf3338/a3uv14upU6dalq1duxZHHnkkDjroIJx00knYZ599MHz4cADAxx9/jIcffhgPP/xwOtvkhhtusGRyUu9ceumlSCaTOPXUU3HQQQdhwoQJCAQC2L59O1566SXcdttt6Uc3DznkEMfH0qZOnYorrrgC1113HZYsWYLZs2fjyiuvxKRJk/DRRx/h17/+NZYuXQoAuOKKKzBlypQ+/R0Hk6amJjz11FMAgD333BOf+cxn8m7DY7C8Xn31VaxevTr9uut4AlK11ntm6wDAOeecY+ujVMfY2WefjbvuuguLFi3CLbfcgs2bN+OCCy5AQ0MDFi9ejJ///OdobW2Foii4+eabS/rob3/W2/fwo48+wnHHHZeeKOoXv/gF6urqcn5fDh8+PH0cdrn33ntx8skn4+STT8YRRxyB3XbbDbW1tWhvb8fbb7+N22+/Pf0Y8fDhw3HTTTcV8dsOTL19D0v5OXnFFVfgwQcfxMqVK/G9730Pq1evxhlnnIFAIIAXX3wRv/zlL6HrOgKBAH7/+9/3/pcfIErxWdrTAw88gEQiAaCwLFoeh4UrxfUCwO9CIiJXKhwkpkHkiSeeSN/VdPpv6tSpctWqVZUe5qCS7b3I9t/48eNtfbz44ouutg0Gg/K2227r+19ygBs/fryrf/9TTz01Z+aIYRjya1/7Ws4+zjvvPGkYRt/9coPQrbfemjNDywmPwfLqmVHl5r9sSnWMbdu2Tc6aNStrHz6fT95xxx2l/mfo13r7Ht59990Ff186PRXkdhx77bWX/OCDD/rgX6b/6O17WOrPyVWrVskpU6Zk7ae2tlY++eST5fin6LdK9Vna5YADDpAApKqqctOmTSUfB4/DboV+/jldL3ThdyERUW68rUR95qSTTsK7776Lm266CU8//TTWr18Pr9eLyZMn44tf/CK++c1vIhgMVnqYVKD99tsPf/3rX/H6669jyZIl2LRpE7Zv3w5d19HQ0IA99tgDRx99NM4//3xbVhH13r333ouFCxfi9ddfx8cff4zt27ejtbUV4XAY48aNw8EHH4yzzz4bBx10UM5+FEXBnXfeiVNPPRW333473nrrLWzfvh3Dhg3DrFmzcNFFF5VsAivK7i9/+QsAQFVVfOUrX3G1DY/B/qFUx9iwYcPw2muv4Y477sB9992H5cuXo6OjA6NHj8bRRx+Nyy67rOR1Uqk0rrzySuy77754/fXXsWzZMmzbtg07d+6Ez+fDiBEjMHPmTHzhC1/AvHnzoKpqpYc7oJT6c3Ly5MlYunQpbrnlFjz00ENYvXo1EokExo0bhxNOOAGXXXYZxo8f3we/2eC0atUqvPnmmwCAY489FiNHjnS9LY/DyuJ3IRFRbkLKLBXviYiIiIiIiIiIiKjslEoPgIiIiIiIiIiIiGgwY5CWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiKhI99xzD4QQEEJg7dq1lR4OERERERH1UwzSEhER0aCzdu3adHC1N/8RERERERGVAoO0RERERERERERERBUkpJSy0oMgIiIi6kvJZBIffvhh1vV77bUXAGDmzJm4++67s7bbc889Sz42IiIiIiIafLRKD4CIiIior3k8HlcB1lAoxEAsERERERGVHcsdEBEREREREREREVUQg7RERERERbrnnnvSk4itXbvWtv6II46AEAJHHHEEAGD16tX4+te/jl133RWBQAATJkzAeeedh3Xr1lm2e//993Huuedi1113hd/vx7hx43DxxRdj69atrsb12GOP4Ytf/CJ22WUX+P1+1NfXY+bMmfjZz36Gpqam3v7aRERERERUYix3QERERNQH/vOf/+CUU05BW1tbetm6detw11134amnnsLChQsxbdo03H///TjnnHOQSCTS7davX48//elPeOaZZ/Daa69h9OjRjvtoamrCF77wBbzwwguW5fF4HG+//Tbefvtt/PGPf8Tjjz+OAw88sDy/KBERERERFYyZtERERERltnHjRpx22mmor6/H/Pnz8eabb+KVV17B5ZdfDiEEtm7divPPPx9vvfUWzjrrLEyaNAkLFizA4sWL8eKLL+LMM88EkArqfuc733HcRzwexzHHHIMXXngBqqrizDPPxP3334833ngDr7zyCq699loMHToUW7duxQknnGDL3iUiIiIiosphJi0RERFRma1atQpTpkzBokWL0NjYmF5+yCGHQNM03HDDDVi0aBFOPPFE7L///njuuecQDAbT7Y444gjEYjE89NBDeOSRR7Bt2zZLPwBwzTXX4J133kF9fT3+85//YL/99rOsP+SQQ/CVr3wFBx10EDZt2oSrrroKf/vb38r7ixMRERERkSvMpCUiIiLqAzfffLMtsAoAl1xySfrn7du3Y8GCBZYAbZeLL74YAKDrOl5//XXLuvb2dtxyyy0AgJ///Oe2AG2X8ePH40c/+hEA4KGHHkJHR0dxvwwREREREZUUg7REREREZVZfX4/jjjvOcd3EiRNRU1MDANh7770xffp0x3b77LNP+uePP/7Ysm7hwoVoaWkBAHzhC1/IOZbDDjsMAJBMJvH222+7+wWIiIiIiKisWO6AiIiIqMymTJkCIUTW9fX19Whra8PUqVNztunSc/IxAFiyZEn651GjRrke1+bNm123JSIiIiKi8mEmLREREVGZOZUv6ElRlLztutoAgGEYlnVbt24talyRSKSo7YiIiIiIqLSYSUtERETUz/UM2r7zzjvweDyuths7dmy5hkRERERERAVgkJaIiIionxs6dGj658bGRgZfiYiIiIj6GZY7ICIiIurnZsyYkf550aJFFRwJEREREREVg0FaIiIion7umGOOSdezvfnmmyGlrPCIiIiIiIioEAzSEhEREfVz9fX1+OY3vwkAeO211/Dtb38bpmlmbb9lyxYsWLCgr4ZHRERERER5sCYtERER0QBwzTXXYOHChXjzzTdx00034aWXXsIFF1yAfffdF6FQCE1NTfjggw/wn//8B8888wz22msvnH/++ZUeNhERERERgUFaIiIiogHB5/PhueeewznnnINHH30U//vf/9LZtU5qa2v7cHRERERERJQLg7REREREA0RNTQ0eeeQRvPrqq7j33nvxyiuvYOPGjYhGo6itrcWkSZOw//7748QTT8ScOXMqPVwiIiIiIuokJGeWICIiIiIiIiIiIqoYThxGREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEFMUhLREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEF/T8CDHwDuccc8gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = my_model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'vector-borne_birth-death_example.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe containing model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/doctrees/nbsphinx/vital_dynamics_23_0.png b/docs/_build/doctrees/nbsphinx/vital_dynamics_23_0.png new file mode 100644 index 0000000..327d26b Binary files /dev/null and b/docs/_build/doctrees/nbsphinx/vital_dynamics_23_0.png differ diff --git a/docs/_build/doctrees/opqua.doctree b/docs/_build/doctrees/opqua.doctree new file mode 100644 index 0000000..04dd6eb Binary files /dev/null and b/docs/_build/doctrees/opqua.doctree differ diff --git a/docs/_build/doctrees/opqua.internal.doctree b/docs/_build/doctrees/opqua.internal.doctree new file mode 100644 index 0000000..c29aa0e Binary files /dev/null and b/docs/_build/doctrees/opqua.internal.doctree differ diff --git a/docs/_build/doctrees/requirements_and_installation.doctree b/docs/_build/doctrees/requirements_and_installation.doctree new file mode 100644 index 0000000..37ad9cb Binary files /dev/null and b/docs/_build/doctrees/requirements_and_installation.doctree differ diff --git a/docs/_build/doctrees/tutorials.doctree b/docs/_build/doctrees/tutorials.doctree new file mode 100644 index 0000000..695c930 Binary files /dev/null and b/docs/_build/doctrees/tutorials.doctree differ diff --git a/docs/_build/doctrees/usage.doctree b/docs/_build/doctrees/usage.doctree new file mode 100644 index 0000000..239f19c Binary files /dev/null and b/docs/_build/doctrees/usage.doctree differ diff --git a/docs/_build/doctrees/vital_dynamics.doctree b/docs/_build/doctrees/vital_dynamics.doctree new file mode 100644 index 0000000..759c37f Binary files /dev/null and b/docs/_build/doctrees/vital_dynamics.doctree differ diff --git a/docs/_build/html/.buildinfo b/docs/_build/html/.buildinfo new file mode 100644 index 0000000..6f6019f --- /dev/null +++ b/docs/_build/html/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: a61e2259a22d403b6ea51ce3e28bfa62 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/_build/html/API.html b/docs/_build/html/API.html new file mode 100644 index 0000000..70910b0 --- /dev/null +++ b/docs/_build/html/API.html @@ -0,0 +1,202 @@ + + + + + + + API — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

API

+
+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_images/basic_usage_15_0.png b/docs/_build/html/_images/basic_usage_15_0.png new file mode 100644 index 0000000..063bc81 Binary files /dev/null and b/docs/_build/html/_images/basic_usage_15_0.png differ diff --git a/docs/_build/html/_images/events.png b/docs/_build/html/_images/events.png new file mode 100644 index 0000000..b88a5dc Binary files /dev/null and b/docs/_build/html/_images/events.png differ diff --git a/docs/_build/html/_images/evolution_26_1.png b/docs/_build/html/_images/evolution_26_1.png new file mode 100644 index 0000000..4d7247e Binary files /dev/null and b/docs/_build/html/_images/evolution_26_1.png differ diff --git a/docs/_build/html/_images/evolution_29_1.png b/docs/_build/html/_images/evolution_29_1.png new file mode 100644 index 0000000..03eabb2 Binary files /dev/null and b/docs/_build/html/_images/evolution_29_1.png differ diff --git a/docs/_build/html/_images/evolution_32_0.png b/docs/_build/html/_images/evolution_32_0.png new file mode 100644 index 0000000..ce44dde Binary files /dev/null and b/docs/_build/html/_images/evolution_32_0.png differ diff --git a/docs/_build/html/_images/evolution_62_1.png b/docs/_build/html/_images/evolution_62_1.png new file mode 100644 index 0000000..771c170 Binary files /dev/null and b/docs/_build/html/_images/evolution_62_1.png differ diff --git a/docs/_build/html/_images/evolution_64_1.png b/docs/_build/html/_images/evolution_64_1.png new file mode 100644 index 0000000..42d3c38 Binary files /dev/null and b/docs/_build/html/_images/evolution_64_1.png differ diff --git a/docs/_build/html/_images/evolution_67_0.png b/docs/_build/html/_images/evolution_67_0.png new file mode 100644 index 0000000..244c1c2 Binary files /dev/null and b/docs/_build/html/_images/evolution_67_0.png differ diff --git a/docs/_build/html/_images/fitness_function_mutation_example_clustermap.png b/docs/_build/html/_images/fitness_function_mutation_example_clustermap.png new file mode 100644 index 0000000..381bdd5 Binary files /dev/null and b/docs/_build/html/_images/fitness_function_mutation_example_clustermap.png differ diff --git a/docs/_build/html/_images/fitness_function_mutation_example_composition.png b/docs/_build/html/_images/fitness_function_mutation_example_composition.png new file mode 100644 index 0000000..f1bc1dd Binary files /dev/null and b/docs/_build/html/_images/fitness_function_mutation_example_composition.png differ diff --git a/docs/_build/html/_images/intervention_47_1.png b/docs/_build/html/_images/intervention_47_1.png new file mode 100644 index 0000000..1693392 Binary files /dev/null and b/docs/_build/html/_images/intervention_47_1.png differ diff --git a/docs/_build/html/_images/intervention_49_0.png b/docs/_build/html/_images/intervention_49_0.png new file mode 100644 index 0000000..5210716 Binary files /dev/null and b/docs/_build/html/_images/intervention_49_0.png differ diff --git a/docs/_build/html/_images/intervention_examples_compartments.png b/docs/_build/html/_images/intervention_examples_compartments.png new file mode 100644 index 0000000..123a6cb Binary files /dev/null and b/docs/_build/html/_images/intervention_examples_compartments.png differ diff --git a/docs/_build/html/_images/metapopulation_36_0.png b/docs/_build/html/_images/metapopulation_36_0.png new file mode 100644 index 0000000..f781d1c Binary files /dev/null and b/docs/_build/html/_images/metapopulation_36_0.png differ diff --git a/docs/_build/html/_images/metapopulation_77_0.png b/docs/_build/html/_images/metapopulation_77_0.png new file mode 100644 index 0000000..79b7185 Binary files /dev/null and b/docs/_build/html/_images/metapopulation_77_0.png differ diff --git a/docs/_build/html/_images/metapopulations_migration_example.png b/docs/_build/html/_images/metapopulations_migration_example.png new file mode 100644 index 0000000..fab7e8f Binary files /dev/null and b/docs/_build/html/_images/metapopulations_migration_example.png differ diff --git a/docs/_build/html/_images/opqua_logo.png b/docs/_build/html/_images/opqua_logo.png new file mode 100644 index 0000000..c1d0b1f Binary files /dev/null and b/docs/_build/html/_images/opqua_logo.png differ diff --git a/docs/_build/html/_images/simulation.png b/docs/_build/html/_images/simulation.png new file mode 100644 index 0000000..1488a2a Binary files /dev/null and b/docs/_build/html/_images/simulation.png differ diff --git a/docs/_build/html/_images/vector-borne_birth-death_example.png b/docs/_build/html/_images/vector-borne_birth-death_example.png new file mode 100644 index 0000000..b29ba22 Binary files /dev/null and b/docs/_build/html/_images/vector-borne_birth-death_example.png differ diff --git a/docs/_build/html/_images/vital_dynamics_23_0.png b/docs/_build/html/_images/vital_dynamics_23_0.png new file mode 100644 index 0000000..327d26b Binary files /dev/null and b/docs/_build/html/_images/vital_dynamics_23_0.png differ diff --git a/docs/_build/html/_modules/index.html b/docs/_build/html/_modules/index.html new file mode 100644 index 0000000..1f72fbd --- /dev/null +++ b/docs/_build/html/_modules/index.html @@ -0,0 +1,116 @@ + + + + + + Overview: module code — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+ +
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/internal/data.html b/docs/_build/html/_modules/opqua/internal/data.html new file mode 100644 index 0000000..adc305b --- /dev/null +++ b/docs/_build/html/_modules/opqua/internal/data.html @@ -0,0 +1,833 @@ + + + + + + opqua.internal.data — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.internal.data

+
+"""Contains data wrangling methods."""
+
+import numpy as np # handle arrays
+import pandas as pd # data wrangling
+import copy as cp
+import joblib as jl
+import textdistance as td
+import scipy.spatial.distance as sp_dist
+
+
+[docs] +def saveToDf(history,save_to_file,n_cores=0,verbose=10, **kwargs): + """Save status of model to dataframe, write to file location given. + + Creates a pandas Dataframe in long format with the given model history, with + one host or vector per simulation time in each row, and columns: + + - Time - simulation time of entry + - Population - ID of this host/vector's population + - Organism - host/vector + - ID - ID of host/vector + - Pathogens - all genomes present in this host/vector separated by ';' + - Protection - all genomes present in this host/vector separated by ';' + - Alive - whether host/vector is alive at this time, True/False + + Writing straight to a file and then reading into a pandas dataframe was + actually more efficient than concatenating directly into a pd dataframe. + + Arguments: + history (dict): dictionary containing model state history, with `keys`=`times` and + `values`=`Model` objects with model snapshot at that time point. + save_to_file (String): file path and name to save model data under. + + Keyword arguments: + n_cores (int): number of cores to parallelize file export across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. + + Returns: + pandas DataFrame with model history as described above. + """ + + print('Saving file...') + + if not n_cores: + n_cores = jl.cpu_count() + + new_df = ','.join( + ['Time','Population','Organism','ID','Pathogens','Protection','Alive'] + ) + '\n' + '\n'.join( jl.Parallel( + n_jobs=n_cores, verbose=verbose, **kwargs) ( + jl.delayed( lambda d: ''.join(d) ) ( + '\n'.join( [ + '\n'.join( [ ','.join( [ + str(time), str(pop.id), 'Host', str(host.id), '"' + + ';'.join( host.pathogens.keys() ) + + '"', '"' + ';'.join( host.protection_sequences ) + + '"', 'True' + ] ) for host in pop.hosts ] ) + '\n' + + '\n'.join( [ ','.join( [ + str(time), str(pop.id), 'Vector', str(vector.id), '"' + + ';'.join( vector.pathogens.keys() ) + + '"', '"' + ';'.join( vector.protection_sequences ) + + '"', 'True' + ] ) for vector in pop.vectors ] ) + '\n' + + '\n'.join( [ ','.join( [ + str(time), str(pop.id), 'Host', str(host.id), '"' + + ';'.join( host.pathogens.keys() ) + '"', '"' + + ';'.join( host.protection_sequences ) + '"', 'False' + ] ) for host in pop.dead_hosts ] ) + '\n' + + '\n'.join( [ ','.join( [ + str(time), str(pop.id), 'Vector', str(vector.id), '"' + + ';'.join( vector.pathogens.keys() ) + '"', '"' + + ';'.join( vector.protection_sequences ) + '"', 'False' + ] ) for vector in pop.dead_vectors ] ) + for id,pop in model.populations.items() + ] ) + ) for time,model in history.items() + ) ) + + new_df = new_df.replace( + '\n\n','\n' + ).replace('\n\n','\n').replace('\n\n','\n') + + file = open(save_to_file,'w') + file.write(new_df) + file.close() + + new_df = pd.read_csv(save_to_file) + + print('...file saved.') + + return new_df
+ + +
+[docs] +def populationsDf( + data, compartment='Infected', hosts=True, vectors=False, + num_top_populations=-1, track_specific_populations=[], save_to_file=""): + """Create dataframe with aggregated totals per population. + + Creates a pandas Dataframe in long format with dynamics of a compartment + across populations in the model, with one time point in each row and columns + for time as well as each population. + + Arguments: + data (pandas DataFrame) dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + compartment (String): subset of hosts/vectors to count totals of, can be either + 'Naive','Infected','Recovered', or 'Dead'. Defaults to 'Infected'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_populations (int): how many populations to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all populations in model. Defaults to -1. + track_specific_populations (list of Strings): contains IDs of specific populations to have + as a separate column if not part of the top num_top_populations + populations. Defaults to []. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + + Returns: + pandas DataFrame with model population dynamics as described above. + """ + + dat = cp.deepcopy( data ) + + if not hosts: + dat = dat[ dat['Organism'] != 'Host' ] + if not vectors: + dat = dat[ dat['Organism'] != 'Vector' ] + + if num_top_populations < 0: + num_top_populations = len( pd.unique( dat['Population'] ) ) + + dat['Infected'] = ( dat['Pathogens'].fillna('').str.len() > 0 ) + dat['Protected'] = ( dat['Protection'].fillna('').str.len() > 0 ) + + grouped = dat.groupby( [ + 'Time','Population','Alive','Infected','Protected' + ] ).size().reset_index(name='Number') + + compartment_names = ['Naive','Infected','Recovered','Dead'] + + grouped['Compartment'] = compartment_names[3] + grouped.loc[ + ( grouped['Alive'] == True ) & ( grouped['Infected'] == False ) + & ( grouped['Protected'] == False ), 'Compartment' + ] = compartment_names[0] + grouped.loc[ + ( grouped['Alive'] == True ) & ( grouped['Infected'] == True ), + 'Compartment' + ] = compartment_names[1] + grouped.loc[ + ( grouped['Alive'] == True ) & ( grouped['Infected'] == False ) + & ( grouped['Protected'] == True ), 'Compartment' + ] = compartment_names[2] + + grouped = grouped[ grouped['Compartment'] == compartment ] + + grouped = grouped.groupby( + ['Time','Population','Compartment'] + ).sum().reset_index() + + grouped = grouped.drop( + columns=['Alive','Infected','Protected','Compartment'] + ) + + grouped = grouped.pivot( + columns='Population', values='Number', index='Time' + ).fillna(0).reset_index('Time') + + for pop in pd.unique(data['Population']): + if pop not in grouped.columns: + grouped[pop] = 0 + + if len(grouped.columns)-1 < num_top_populations: + num_top_populations = len(grouped.columns)-1 + + populations_to_drop = list(grouped.columns)[ num_top_populations+1: ] + for pop in track_specific_populations: + if pop in populations_to_drop: + populations_to_drop.remove(pop) + + grouped['Other'] = 0 + if len(populations_to_drop) > 0: + grouped['Other'] = grouped[populations_to_drop].sum(axis=1) + + if grouped['Other'].sum() == 0: + populations_to_drop = populations_to_drop + ['Other'] + + grouped = grouped.drop( columns=populations_to_drop ) + + if len(save_to_file) > 0: + grouped.to_csv(save_to_file, index=False) + + return grouped
+ + + +
+[docs] +def compartmentDf( + data, populations=[], hosts=True, vectors=False, save_to_file=""): + """Create dataframe with number of naive, susc., inf., rec. hosts/vectors. + + Creates a pandas Dataframe with dynamics of all compartments (naive, + infected, recovered, dead) across selected populations in the model, + with one time point in each row and columns for time as well as each + compartment. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + populations (list of Strings): IDs of populations to include in analysis; if empty, uses all + populations in model. Defaults to []. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + + Returns: + pandas DataFrame with model compartment dynamics as described above. + """ + + if len(populations) > 0: + dat = cp.deepcopy( data[ data['Population'].isin( populations ) ] ) + else: + dat = cp.deepcopy( data ) + + if not hosts: + dat = dat[ dat['Organism'] != 'Host' ] + + if not vectors: + dat = dat[ dat['Organism'] != 'Vector' ] + + dat['Infected'] = ( dat['Pathogens'].fillna('').str.len() > 0 ) + dat['Protected'] = ( dat['Protection'].fillna('').str.len() > 0 ) + + grouped = dat.groupby( [ + 'Time','Alive','Infected','Protected' + ] ).size().reset_index(name='Number') + + compartment_names = ['Naive','Infected','Recovered','Dead'] + + grouped['Compartment'] = compartment_names[3] + grouped.loc[ + ( grouped['Alive'] == True ) & ( grouped['Infected'] == False ) + & ( grouped['Protected'] == False ), 'Compartment' + ] = compartment_names[0] + grouped.loc[ + ( grouped['Alive'] == True ) & ( grouped['Infected'] == True ) + & ( grouped['Protected'] == True ), 'Compartment' + ] = compartment_names[1] + grouped.loc[ + ( grouped['Alive'] == True ) & ( grouped['Infected'] == True ) + & ( grouped['Protected'] == False ), 'Compartment' + ] = compartment_names[1] + '_2' + grouped.loc[ + ( grouped['Alive'] == True ) & ( grouped['Infected'] == False ) + & ( grouped['Protected'] == True ), 'Compartment' + ] = compartment_names[2] + + grouped = grouped.drop( columns=['Alive','Infected','Protected'] ) + grouped = grouped.pivot( + columns='Compartment', values='Number', index='Time' + ).fillna(0).reset_index('Time') + + if ( compartment_names[1] in grouped.columns + and compartment_names[1] + '_2' in grouped.columns ): + grouped[compartment_names[1]] = ( grouped[ compartment_names[1] ] + + grouped[ compartment_names[1] + '_2' ] ) + grouped = grouped.drop( columns=[ compartment_names[1] + '_2' ]) + elif ( compartment_names[1] + '_2' in grouped.columns ): + grouped[compartment_names[1]] = grouped[ compartment_names[1] + '_2' ] + grouped = grouped.drop( columns=[ compartment_names[1] + '_2' ]) + + for comp_name in compartment_names: + if comp_name not in grouped.columns: + grouped[comp_name] = 0 + + + if len(save_to_file) > 0: + grouped.to_csv(save_to_file, index=False) + + return grouped
+ + + +
+[docs] +def compositionDf( + data, populations=[], type_of_composition='Pathogens', hosts=True, + vectors=False, num_top_sequences=-1, track_specific_sequences=[], + genomic_positions=[], count_individuals_based_on_model=None, + save_to_file="", n_cores=0, **kwargs): + """Create dataframe with counts for pathogen genomes or resistance. + + Creates a pandas Dataframe with dynamics of the pathogen strains or + protection sequences across selected populations in the model, + with one time point in each row and columns for pathogen genomes or + protection sequences. + + Of note: sum of totals for all sequences in one time point does not + necessarily equal the number of infected hosts and/or vectors, given + multiple infections in the same host/vector are counted separately. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + populations (list of Strings): IDs of populations to include in analysis; if empty, uses all + populations in model. Defaults to []. + type_of_composition (String): field of data to count totals of, can be either + 'Pathogens' or 'Protection'. Defaults to 'Pathogens'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_sequences (int): how many sequences to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all genomes in model. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to have + as a separate column if not part of the top num_top_sequences + sequences. Defaults to []. + genomic_positions (list of lists of int): list in which each element is a list with loci + positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] extracts + positions 0, 1, 2, and 5 from each genome); if empty, takes full genomes. Defaults to []. + count_individuals_based_on_model (None or Model): Model object with populations and + fitness functions used to evaluate the most fit pathogen genome in each + host/vector in order to count only a single pathogen per host/vector, as + opposed to all pathogens within each host/vector; if None, counts all + pathogens. Defaults to None. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize processing across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. + + Returns: + pandas DataFrame with model sequence composition dynamics as described above. + """ + + if len(populations) > 0: + dat = cp.deepcopy( data[ data['Population'].isin( populations ) ] ) + else: + dat = cp.deepcopy( data ) + + dat[ + (dat[type_of_composition] != "") & (~dat[type_of_composition].isna()) + ] + + if len(genomic_positions) > 0: + print('Extracting genomic locations...') + def extractSeq(ind): + seqs = [ p[ genomic_positions[0]:genomic_positions[1] ] + for p in ind['Pathogens'].split(';') ] + + return ';'.join(seqs) + + pathogens = np.array( jl.Parallel(n_jobs=n_cores, verbose=1, **kwargs) ( + jl.delayed( extractSeq ) (ind) for ind in dat + ) ) + dat['Pathogens'] = pathogens + + if count_individuals_based_on_model is not None: + print('Collapsing infections to individuals...') + model = count_individuals_based_on_model + if type_of_composition != 'Pathogens': + raise ValueError("Computing count_individuals_based_on_model=True is only allowed for type_of_composition='Pathogens'.") + + dat['patpop'] = dat['Pathogens'].fillna('') + ':::' + dat['Population'] + unique_patpop = dat['patpop'].unique() + + for i,combination in enumerate(unique_patpop): + print( str(i) + ' / ' + str(len(unique_patpop)) + ' combinations' ) + gen_str,pop = combination.split(':::') + if gen_str != '': + genomes = gen_str.split(';') + values = np.array( [ + model.populations[pop].fitnessHost(p) + for p in genomes ] ) + dominant_pathogen = genomes[ np.argmax(values) ] + dat['patpop'] = dat['patpop'].replace( + combination, dominant_pathogen + ) + else: + dat['patpop'] = dat['patpop'].replace( combination, '' ) + + dat['Pathogens'] = dat['patpop'] + + if not hosts: + dat = dat[ dat['Organism'] != 'Host' ] + if not vectors: + dat = dat[ dat['Organism'] != 'Vector' ] + + all_sequences = pd.Series( + ';'.join( dat[type_of_composition].dropna() ).split(';') + ).str.strip() + top_sequences = all_sequences.value_counts(ascending=False) + + if num_top_sequences < 0: + num_top_sequences = len( top_sequences ) + + if len(top_sequences) < num_top_sequences: + num_top_sequences = len(top_sequences) + + # genomes_to_track = list(top_sequences[0:num_top_sequences].index) + genomes_to_track = track_specific_sequences + for genome in list(top_sequences[0:num_top_sequences].index): + if genome not in genomes_to_track: + genomes_to_track.append(genome) + + genome_split_data = [] + other_genome_data = pd.DataFrame( + np.zeros( len( pd.unique( data['Time'] ) ) ), + index=pd.unique( data['Time'] ), columns=['Other'] + ) + c = 0 + + if len( ''.join(top_sequences.index) ) > 0: + for genome in top_sequences.index: + dat_genome = dat[ dat[type_of_composition].str.contains( + genome, na=False, regex=False + ) ] + grouped = dat_genome.groupby('Time').size().reset_index(name=genome) + grouped = grouped.set_index('Time') + + if genome in genomes_to_track: + genome_split_data.append(grouped) + else: + other_genome_data = other_genome_data.join( + grouped, how='outer' + ).fillna(0) + other_genome_data['Other'] = ( other_genome_data['Other'] + + other_genome_data[genome] ) + other_genome_data = other_genome_data.drop(columns=[genome]) + + c += 1 + print( + str(c) + ' / ' + str( len(top_sequences.index) ) + + ' genotypes processed.' + ) + + + if other_genome_data['Other'].sum() > 0: + genome_split_data += [other_genome_data] + genomes_to_track += ['Other'] + + + times = pd.DataFrame( + np.zeros( len( pd.unique( data['Time'] ) ) ), + index=pd.unique( data['Time'] ), columns=['*None*'] + ) + composition = times.join( genome_split_data, how='outer' ) + composition = composition.drop(columns=['*None*']).fillna(0) + + new_order = [] + for seq in track_specific_sequences: + new_order.append(seq) + if seq not in composition.columns: + composition[seq] = 0 + + for seq in composition.columns: + if seq not in new_order: + new_order.append(seq) + + composition = composition[new_order] + + composition = composition.reset_index() + composition.columns = ['Time'] + list( composition.columns )[1:] + + if len(save_to_file) > 0: + composition.to_csv(save_to_file, index=False) + + return composition
+ + + +
+[docs] +def getPathogens(data, save_to_file=""): + """Create Dataframe with counts for all pathogen genomes in data. + + Returns sorted pandas DataFrame with counts for occurrences of all pathogen + genomes in data passed. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + + Returns: + pandas DataFrame with Series as described above. + """ + + out = pd.Series( ';'.join( + data['Pathogens'].dropna() + ).split(';') ).str.strip().value_counts(ascending=False).reset_index() + out.columns = ['Pathogens','Counts'] + + if len(save_to_file) > 0: + out.to_csv(save_to_file, index=False) + + return out
+ + +
+[docs] +def getProtections(data, save_to_file=""): + """Create Dataframe with counts for all protection sequences in data. + + Returns sorted pandas DataFrame with counts for occurrences of all + protection sequences in data passed. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + + Returns: + pandas DataFrame with Series as described above. + """ + + out = pd.Series( ';'.join( + data['Protection'].dropna() + ).split(';') ).str.strip().value_counts(ascending=False).reset_index() + out.columns = ['Protection','Counts'] + + if len(save_to_file) > 0: + out.to_csv(save_to_file, index=False) + + return out
+ + +
+[docs] +def pathogenDistanceDf( + data, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], + save_to_file="", n_cores=0): + """Create DataFrame with pairwise Hamming distances for pathogen sequences + in data. + + DataFrame has indexes and columns named according to genomes or argument + `seq_names`, if passed. Distance is measured as percent Hamming distance from + an optimal genome sequence. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + num_top_sequences (int): how many sequences to include in matrix; if <0, + includes all genomes in data passed. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include in matrix + if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list of Strings): list with names to be used for sequence labels in matrix must + be of same length as number of sequences to be displayed; if empty, + uses sequences themselves. Defaults to []. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize distance compute across, if 0, all + cores available are used. Defaults to 0. + + Returns: + pandas DataFrame with distance matrix as described above. + """ + + sequences = getPathogens(data)['Pathogens'] + + if num_top_sequences > 0: + sequences = sequences[0:num_top_sequences] + sequences = sequences.append( + pd.Series(track_specific_sequences) + ).unique() + + # Fix — non parallelized + dis_mat = np.array([[td.hamming(s1, s2) / max(len(s1),1) + for s2 in sequences] for s1 in sequences]) + # Added the max() to avoid division by zero error triggered when + # getPathogenDistanceHistoryDf calls this method with an empty + # dataframe (for a timepoint with no pathogens) + + # For some reason, this code triggers a full rerun of the simulation. + # Possible joblib bug? + # if not n_cores: + # n_cores = jl.cpu_count() + # + # dis_mat = np.array( jl.Parallel(n_jobs=n_cores, verbose=1) ( + # jl.delayed( lambda s1: [ + # td.hamming(s1, s2) / max(len(s1),1) for s2 in sequences + # ] ) (s1) for s1 in sequences + # ) ) + + names = sequences + if len(seq_names) > 0: + new_names = seq_names * int( np.ceil( len(names) / len(seq_names) ) ) + names = new_names[0:len(names)] + + dis_df = pd.DataFrame( dis_mat, index=names, columns=names ) + + if len(save_to_file) > 0: + dis_df.to_csv(save_to_file, index=True) + + return dis_df
+ + +
+[docs] +def getPathogenDistanceHistoryDf( + data, samples=1, num_top_sequences=-1, track_specific_sequences=[], + seq_names=[], save_to_file="", n_cores=0): + """Create DataFrame with pairwise Hamming distances for pathogen sequences + in data. + + DataFrame has indexes and columns named according to genomes or argument + `seq_names`, if passed. Distance is measured as percent Hamming distance from + an optimal genome sequence. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function + + Keyword arguments: + samples (int): how many timepoints to uniformly sample from the total + timecourse; if <0, takes all timepoints. Defaults to 1. + num_top_sequences (int): how many sequences to include in matrix; if <0, + includes all genomes in data passed. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include in matrix + if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list of Strings): list with names to be used for sequence labels in matrix must + be of same length as number of sequences to be displayed; if empty, + uses sequences themselves. Defaults to []. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize distance compute across, if 0, all + cores available are used (default 0; int) + + Returns: + pandas DataFrame with distance matrix as described above. + """ + + if samples > 0: + samples = np.linspace( + 0, len(pd.unique(data['Time']))-1, samples + ).astype(int) + sampled_times = pd.unique(data['Time'])[samples] + data = data[ data['Time'].isin(sampled_times) ] + + grouped = data.groupby('Time') + dis_df = grouped.apply( + lambda d: pd.melt( + pathogenDistanceDf( + d, num_top_sequences=num_top_sequences, + track_specific_sequences=track_specific_sequences, + seq_names=seq_names, save_to_file="", n_cores=n_cores + ).reset_index(), + id_vars=['Pathogens'], var_name='Pathogen_2', + value_name='Distance' + ) + ).reset_index() + + dis_df.columns = ['Time','drop','Pathogen_1','Pathogen_2','Distance'] + dis_df = dis_df.drop(columns='drop') + + if len(save_to_file) > 0: + dis_df.to_csv(save_to_file, index=False) + + return dis_df
+ + +
+[docs] +def getGenomeTimesDf( + data, samples=1, save_to_file="", n_cores=0, **kwargs): + """Create DataFrame with times genomes first appeared during simulation. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + samples (int): how many timepoints to uniformly sample from the total + timecourse; if <0, takes all timepoints. Defaults to 1. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize across, if 0, all cores available + are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. + + Returns: + pandas DataFrame with genomes and times as described above. + """ + + if samples > 0: + samples = np.linspace( + 0, len(pd.unique(data['Time']))-1, samples + ).astype(int) + sampled_times = pd.unique(data['Time'])[samples] + data = data[ data['Time'].isin(sampled_times) ] + + his_dat = pd.DataFrame() + + his_dat['Sequence'] = pd.Series( + ';'.join( dat['Pathogens'].dropna() ).split(';') + ).str.strip() + + def getTime(seq): + t = his_dat['Sequence'].searchsorted(seq, side='left') + return t + + his_dat['Time_emergence'] = jl.Parallel( + n_jobs=n_cores, verbose=1, **kwargs + ) ( + jl.delayed( getTime ) (seq) for seq in his_dat['Sequence'] + ) + + if len(save_to_file) > 0: + dis_df.to_csv(save_to_file, index=False) + + return his_dat
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/internal/gillespie.html b/docs/_build/html/_modules/opqua/internal/gillespie.html new file mode 100644 index 0000000..21ef96a --- /dev/null +++ b/docs/_build/html/_modules/opqua/internal/gillespie.html @@ -0,0 +1,783 @@ + + + + + + opqua.internal.gillespie — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.internal.gillespie

+
+"""Contains class Population."""
+
+import copy as cp
+import pandas as pd
+import numpy as np
+import joblib as jl
+
+from opqua.model import *
+
+
+[docs] +class Gillespie(object): + """Class contains methods for simulating model with Gillespie algorithm. + + Class defines a model's events and methods for changing system state + according to the possible events and simulating a timecourse using the + Gillespie algorithm. + + Attributes: + model (Model object): the model this simulation belongs to. + """ + + # Event ID constants: + + MIGRATE_HOST = 0 + MIGRATE_VECTOR = 1 + POPULATION_CONTACT_HOST_HOST = 2 + POPULATION_CONTACT_HOST_VECTOR = 3 + POPULATION_CONTACT_VECTOR_HOST = 4 + CONTACT_HOST_HOST = 5 + CONTACT_HOST_VECTOR = 6 + CONTACT_VECTOR_HOST = 7 + RECOVER_HOST = 8 + RECOVER_VECTOR = 9 + MUTATE_HOST = 10 + MUTATE_VECTOR = 11 + RECOMBINE_HOST = 12 + RECOMBINE_VECTOR = 13 + KILL_HOST = 14 + KILL_VECTOR = 15 + DIE_HOST = 16 + DIE_VECTOR = 17 + BIRTH_HOST = 18 + BIRTH_VECTOR = 19 + + EVENT_IDS = { # must match above + 0:'MIGRATE_HOST', + 1:'MIGRATE_VECTOR', + 2:'POPULATION_CONTACT_HOST_HOST', + 3:'POPULATION_CONTACT_HOST_VECTOR', + 4:'POPULATION_CONTACT_VECTOR_HOST', + 5:'CONTACT_HOST_HOST', + 6:'CONTACT_HOST_VECTOR', + 7:'CONTACT_VECTOR_HOST', + 8:'RECOVER_HOST', + 9:'RECOVER_VECTOR', + 10:'MUTATE_HOST', + 11:'MUTATE_VECTOR', + 12:'RECOMBINE_HOST', + 13:'RECOMBINE_VECTOR', + 14:'KILL_HOST', + 15:'KILL_VECTOR', + 16:'DIE_HOST', + 17:'DIE_VECTOR', + 18:'BIRTH_HOST', + 19:'BIRTH_VECTOR' + } + + def __init__(self, model): + """Create a new Gillespie simulation object. + + Arguments: + model (Model object): the model this simulation belongs to. + """ + + super(Gillespie, self).__init__() # initialize as parent class object + + # Event IDs + self.evt_IDs = [ + self.MIGRATE_HOST, self.MIGRATE_VECTOR, + self.POPULATION_CONTACT_HOST_HOST, + self.POPULATION_CONTACT_HOST_VECTOR, + self.POPULATION_CONTACT_VECTOR_HOST, + self.CONTACT_HOST_HOST, self.CONTACT_HOST_VECTOR, + self.CONTACT_VECTOR_HOST, + self.RECOVER_HOST, self.RECOVER_VECTOR, + self.MUTATE_HOST, self.MUTATE_VECTOR, + self.RECOMBINE_HOST, self.RECOMBINE_VECTOR, + self.KILL_HOST, self.KILL_VECTOR, + self.DIE_HOST, self.DIE_VECTOR, + self.BIRTH_HOST, self.BIRTH_VECTOR + ] + # event IDs in specific order to be used + + self.total_population_contact_rate_host = 0 + self.total_population_contact_rate_vector = 0 + + self.model = model + +
+[docs] + def getRates(self,population_ids): + """Wrapper for calculating event rates as per current system state. + + Arguments: + population_ids (list of Strings): list with IDs for every population in the model. + + Returns: + Matrix with rates as values for events (rows) and populations (columns). + Populations in order given in argument. + """ + + rates = np.zeros( [ len(self.evt_IDs), len(population_ids) ] ) + # rate array size of event space + + # Contact rates assume scaling area: large populations are equally + # dense as small ones, so contact is constant with both host and + # vector populations. If you don't want this to happen, modify each + # population's base contact rate accordingly. + + # Now for each population... + for i,id in enumerate(population_ids): + # Calculate the rates: + rates[self.MIGRATE_HOST,i] = ( + self.model.populations[id].total_migration_rate_hosts + * self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].MIGRATION + ].sum() + ) + + rates[self.MIGRATE_VECTOR,i] = ( + self.model.populations[id].total_migration_rate_vectors + * self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].MIGRATION + ].sum() + ) + + rates[self.POPULATION_CONTACT_HOST_HOST,i] = ( + np.sum([ list( + self.model.populations[id].neighbors_contact_hosts_hosts.values() + ) ]) + * np.multiply( + self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].POPULATION_CONTACT + ], + self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].INFECTED + ] + ).sum() / max( len( self.model.populations[id].hosts ), 1) + * np.sum([ + neighbor.neighbors_contact_hosts_hosts[self.model.populations[id]] + * neighbor.coefficients_hosts[ + :, neighbor.RECEIVE_POPULATION_CONTACT + ].sum() + for neighbor in self.model.populations[id].neighbors_contact_hosts_hosts + ]) + ) + + rates[self.POPULATION_CONTACT_HOST_VECTOR,i] = ( + np.sum([ list( + self.model.populations[id].neighbors_contact_hosts_vectors.values() + ) ]) + * np.multiply( + self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].POPULATION_CONTACT + ], + self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].INFECTED + ] + ).sum() / max( len( self.model.populations[id].hosts ), 1) + * np.sum([ + neighbor.neighbors_contact_vectors_hosts[self.model.populations[id]] + * neighbor.coefficients_vectors[ + :, neighbor.RECEIVE_POPULATION_CONTACT + ].sum() + for neighbor in self.model.populations[id].neighbors_contact_hosts_vectors + ]) + ) + + rates[self.POPULATION_CONTACT_VECTOR_HOST,i] = ( + np.sum([ list( + self.model.populations[id].neighbors_contact_vectors_hosts.values() + ) ]) + * np.multiply( + self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].POPULATION_CONTACT + ], + self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].INFECTED + ] + ).sum() + * np.sum([ + neighbor.neighbors_contact_hosts_vectors[self.model.populations[id]] + * neighbor.coefficients_hosts[ + :, neighbor.RECEIVE_POPULATION_CONTACT + ].sum() / max( len( neighbor.hosts ), 1) + for neighbor in self.model.populations[id].neighbors_contact_vectors_hosts + ]) + ) + + rates[self.CONTACT_HOST_HOST,i] = ( + self.model.populations[id].contact_rate_host_host + * np.multiply( + self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].CONTACT + ], + self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].INFECTED + ] + ).sum() + * self.model.populations[id].transmission_efficiency_host_host + * np.sum( self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].RECEIVE_CONTACT + ] ) + / max( len( self.model.populations[id].hosts ), 1) + ) + + rates[self.CONTACT_HOST_VECTOR,i] = ( + self.model.populations[id].contact_rate_host_vector + * np.multiply( + self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].CONTACT + ], + self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].INFECTED + ] + ).sum() + * self.model.populations[id].transmission_efficiency_host_vector + * np.sum( self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].RECEIVE_CONTACT + ] ) + / max( len( self.model.populations[id].hosts ), 1) + ) + + rates[self.CONTACT_VECTOR_HOST,i] = ( + self.model.populations[id].contact_rate_host_vector + * np.multiply( + self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].CONTACT + ], + self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].INFECTED + ] + ).sum() + * self.model.populations[id].transmission_efficiency_vector_host + * np.sum( self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].RECEIVE_CONTACT + ]) + / max( len( self.model.populations[id].hosts ), 1) + ) + + rates[self.RECOVER_HOST,i] = ( + self.model.populations[id].recovery_rate_host + * self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].RECOVERY + ].sum() + ) + + rates[self.RECOVER_VECTOR,i] = ( + self.model.populations[id].recovery_rate_vector + * self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].RECOVERY + ].sum() + ) + + rates[self.MUTATE_HOST,i] = ( + self.model.populations[id].mutate_in_host + * self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].MUTATION + ].sum() + ) + + rates[self.MUTATE_VECTOR,i] = ( + self.model.populations[id].mutate_in_vector + * self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].MUTATION + ].sum() + ) + + rates[self.RECOMBINE_HOST,i] = ( + self.model.populations[id].recombine_in_host + * self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].RECOMBINATION + ].sum() + ) + + rates[self.RECOMBINE_VECTOR,i] = ( + self.model.populations[id].recombine_in_vector + * self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].RECOMBINATION + ].sum() + ) + + rates[self.KILL_HOST,i] = ( + self.model.populations[id].mortality_rate_host + * self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].LETHALITY + ].sum() + ) + + rates[self.KILL_VECTOR,i] = ( + self.model.populations[id].mortality_rate_vector + * self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].LETHALITY + ].sum() + ) + + rates[self.DIE_HOST,i] = ( + self.model.populations[id].death_rate_host + * len(self.model.populations[id].hosts) + ) + + rates[self.DIE_VECTOR,i] = ( + self.model.populations[id].death_rate_vector + * len(self.model.populations[id].vectors) + ) + + rates[self.BIRTH_HOST,i] = ( + self.model.populations[id].birth_rate_host + * self.model.populations[id].coefficients_hosts[ + :, self.model.populations[id].NATALITY + ].sum() + ) + + rates[self.BIRTH_VECTOR,i] = ( + self.model.populations[id].birth_rate_vector + * self.model.populations[id].coefficients_vectors[ + :, self.model.populations[id].NATALITY + ].sum() + ) + + return rates
+ + +
+[docs] + def doAction(self,act,pop,rand): + """Change system state according to act argument passed + + Arguments: + act (int): defines action to be taken, one of the event ID constants. + pop (Population object): where the population action will happen in. + rand (number 0-1): random number used to define event. + + Returns: + Boolean indicationg whether or not the model has changed state. + """ + + changed = False + + if act == self.MIGRATE_HOST: + rand = rand * pop.total_migration_rate_hosts + r_cum = 0 + for neighbor in pop.neighbors_hosts: + r_cum += pop.neighbors_hosts[neighbor] + if r_cum > rand: + pop.migrate(neighbor,1,0, rand=( + ( rand - r_cum + pop.neighbors_hosts[neighbor] ) + / pop.neighbors_hosts[neighbor] ) ) + changed = True + break + + elif act == self.MIGRATE_VECTOR: + rand = rand * pop.total_migration_rate_vectors + r_cum = 0 + for neighbor in pop.neighbors_vectors: + r_cum += pop.neighbors_vectors[neighbor] + if r_cum > rand: + pop.migrate(neighbor,0,1, rand=( + ( rand - r_cum + pop.neighbors_vectors[neighbor] ) + / pop.neighbors_vectors[neighbor] ) ) + changed = True + break + + elif act == self.POPULATION_CONTACT_HOST_HOST: + neighbors = list( pop.neighbors_contact_hosts_hosts.keys() ) + neighbor_rates = [ + pop.neighbors_contact_hosts_hosts[neighbor] + * neighbor.neighbors_contact_hosts_hosts[pop] + * neighbor.coefficients_hosts[ + :, neighbor.RECEIVE_POPULATION_CONTACT + ].sum() + / max( len( pop.hosts ), 1) # technically unnecessary + for neighbor in neighbors + ] + rand = rand * np.sum(neighbor_rates) + r_cum = 0 + for neighbor_i,neighbor_r in enumerate(neighbor_rates): + r_cum += neighbor_r + if r_cum > rand: + changed = pop.populationContact( + neighbors[neighbor_i], + ( rand - r_cum + neighbor_r ) / neighbor_r, + host_origin=True, host_target=True + ) + break + + elif act == self.POPULATION_CONTACT_HOST_VECTOR: + neighbors = list( pop.neighbors_contact_hosts_vectors.keys() ) + neighbor_rates = [ + pop.neighbors_contact_hosts_vectors[neighbor] + * neighbor.neighbors_contact_vectors_hosts[pop] + * neighbor.coefficients_vectors[ + :, neighbor.RECEIVE_POPULATION_CONTACT + ].sum() + / max( len( pop.hosts ), 1) # technically unnecessary + for neighbor in neighbors + ] + rand = rand * np.sum(neighbor_rates) + r_cum = 0 + for neighbor_i,neighbor_r in enumerate(neighbor_rates): + r_cum += neighbor_r + if r_cum > rand: + changed = pop.populationContact( + neighbors[neighbor_i], + ( rand - r_cum + neighbor_r ) / neighbor_r, + host_origin=True, host_target=False + ) + break + + elif act == self.POPULATION_CONTACT_VECTOR_HOST: + neighbors = list( pop.neighbors_contact_vectors_hosts.keys() ) + neighbor_rates = [ + pop.neighbors_contact_vectors_hosts[neighbor] + * neighbor.neighbors_contact_hosts_vectors[pop] + * neighbor.coefficients_hosts[ + :, neighbor.RECEIVE_POPULATION_CONTACT + ].sum() + / max( len( neighbor.hosts ), 1) # necessary! + for neighbor in neighbors + ] + rand = rand * np.sum(neighbor_rates) + r_cum = 0 + for neighbor_i,neighbor_r in enumerate(neighbor_rates): + r_cum += neighbor_r + if r_cum > rand: + changed = pop.populationContact( + neighbors[neighbor_i], + ( rand - r_cum + neighbor_r ) / neighbor_r, + host_origin=False, host_target=True + ) + break + + elif act == self.CONTACT_HOST_HOST: + changed = pop.contactHostHost(rand) + + elif act == self.CONTACT_HOST_VECTOR: + changed = pop.contactHostVector(rand) + + elif act == self.CONTACT_VECTOR_HOST: + changed = pop.contactVectorHost(rand) + + elif act == self.RECOVER_HOST: + pop.recoverHost(rand) + changed = True + + elif act == self.RECOVER_VECTOR: + pop.recoverVector(rand) + changed = True + + elif act == self.MUTATE_HOST: + pop.mutateHost(rand) + changed = True + + elif act == self.MUTATE_VECTOR: + pop.mutateVector(rand) + changed = True + + elif act == self.RECOMBINE_HOST: + pop.recombineHost(rand) + changed = True + + elif act == self.RECOMBINE_VECTOR: + pop.recombineVector(rand) + changed = True + + elif act == self.KILL_HOST: + pop.killHost(rand) + changed = True + + elif act == self.KILL_VECTOR: + pop.killVector(rand) + changed = True + + elif act == self.DIE_HOST: + pop.dieHost(rand) + changed = True + + elif act == self.DIE_VECTOR: + pop.dieVector(rand) + changed = True + + elif act == self.BIRTH_HOST: + pop.birthHost(rand) + changed = True + + elif act == self.BIRTH_VECTOR: + pop.birthVector(rand) + changed = True + + self.model.global_trackers['num_events'][self.EVENT_IDS[act]] += 1 + + return changed
+ + +
+[docs] + def run(self,t0,tf,time_sampling=0,host_sampling=0,vector_sampling=0, + print_every_n_events=1000): + """Simulate model for a specified time between two time points. + + Simulates a time series using the Gillespie algorithm. + + Arguments: + t0 (number): initial time point to start simulation at. + tf (number): initial time point to end simulation at. + + Keyword arguments: + time_sampling (int): how many events to skip before saving a snapshot of the + system state (saves all by default), if <0, saves only final state. Defaults to 0. + host_sampling (int): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. + print_every_n_events (int>0): number of events a message is printed to console. Defaults to 1000. + + Returns: + dictionary containing model state history, with `keys`=`times` and + `values`=`Model` objects with model snapshot at that time point. + """ + + # Simulation variables + self.model.t_var = t0 # keeps track of time + history = { 0: self.model.copyState( + host_sampling=host_sampling, + vector_sampling=vector_sampling + ) } + intervention_tracker = 0 + # keeps track of what the next intervention should be + self.model.interventions = sorted( + self.model.interventions, key=lambda i: i.time + ) + + print_counter = 0 # only used to track when to print + sampling_counter = 0 # used to track when to save a snapshot + + while self.model.t_var < tf: # repeat until t reaches end of timecourse + population_ids = list( self.model.populations.keys() ) + r = self.getRates(population_ids) # get event rates in this state + r_tot = np.sum(r) # sum of all rates + + # Time handling + if r_tot > 0: + dt = np.random.exponential( 1/r_tot ) # time until next event + + if (intervention_tracker < len(self.model.interventions) + and self.model.t_var + dt + >= self.model.interventions[intervention_tracker].time): + # if there are any interventions left and if it is time + # to make one, + while ( intervention_tracker < len(self.model.interventions) + and (self.model.t_var + dt + >= self.model.interventions[intervention_tracker].time + or r_tot == 0) and self.model.t_var < tf ): + # carry out all interventions at this time point, + # and additional timepoints if no events will happen + self.model.t_var = self.model.interventions[ + intervention_tracker + ].time + self.model.interventions[ + intervention_tracker + ].doIntervention() + intervention_tracker += 1 # advance the tracker + + # save snapshot at this timepoint + sampling_counter = 0 + history[self.model.t_var] = self.model.copyState() + + # now recalculate rates + population_ids = list( self.model.populations.keys() ) + r = self.getRates(population_ids) + # get event rates in this state + r_tot = np.sum(r) # sum of all rates + + if r_tot > 0: # if no more events happening, + dt = np.random.exponential( 1/r_tot ) + # time until next event + else: + self.model.t_var = tf # go to end + + self.model.t_var += dt # add time step to main timer + + # Event handling + if self.model.t_var < tf: # if still within max time + u = np.random.random() * r_tot + # random uniform number between 0 and total rate + r_cum = 0 # cumulative rate + for e in range(r.shape[0]): # for every possible event, + for p in range(r.shape[1]): + # for every possible population, + r_cum += r[e,p] + # add this event's rate to cumulative rate + if u < r_cum: + # if random number is under cumulative rate + + # print every n events + print_counter += 1 + if print_counter == print_every_n_events: + print_counter = 0 + print( + 'Simulating time: ' + + str(self.model.t_var) + ', event: ' + + self.EVENT_IDS[e] + ) + + changed = self.doAction( + e, self.model.populations[ + population_ids[p] + ], ( u - r_cum + r[e,p] ) / r[e,p] + ) # do corresponding action, + # feed in renormalized random number + + if changed: # if model state changed + # update custom condition trackers + for condition in self.model.custom_condition_trackers: + if self.model.custom_condition_trackers[condition](self.model): + self.model.global_trackers['custom_conditions'][condition].append(self.model.t_var) + + if time_sampling >= 0: + # if state changed and saving history, + # saves history at correct intervals + sampling_counter += 1 + if sampling_counter > time_sampling: + sampling_counter = 0 + history[self.model.t_var] = self.model.copyState( + host_sampling=host_sampling, + vector_sampling=vector_sampling + ) + + break # exit event loop + + else: # if the inner loop wasn't broken, + continue # continue outer loop + + break # otherwise, break outer loop + else: # if no events happening, + if intervention_tracker < len(self.model.interventions): + # if still not done with interventions, + while (intervention_tracker < len(self.model.interventions) + and self.model.t_var + <= self.model.interventions[intervention_tracker].time + and self.model.t_var < tf): + # carry out all interventions at this time point + self.model.t_var = self.model.interventions[ + intervention_tracker + ].time + self.model.interventions[ + intervention_tracker + ].doIntervention() + intervention_tracker += 1 # advance the tracker + else: + self.model.t_var = tf + + print( 'Simulating time: ' + str(self.model.t_var), 'END') + history[tf] = self.model.copyState( + host_sampling=host_sampling, + vector_sampling=vector_sampling + ) + history[tf].history = None + history[tf].global_trackers = cp.deepcopy( self.model.global_trackers ) + + return history
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/internal/host.html b/docs/_build/html/_modules/opqua/internal/host.html new file mode 100644 index 0000000..a9d1f26 --- /dev/null +++ b/docs/_build/html/_modules/opqua/internal/host.html @@ -0,0 +1,510 @@ + + + + + + opqua.internal.host — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.internal.host

+
+"""Contains class Host."""
+
+import numpy as np
+import copy as cp
+
+
+[docs] +class Host(object): + """Class defines main entities to be infected by pathogens in model. + + Attributes: + population (Population object): the population this host belongs to. + id (String): unique identifier for this host within population. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). Defaults to + False. + """ + + def __init__(self, population, id, slim=False): + """Create a new Host. + + Arguments: + population (Population object): the population this host belongs to. + id (String): unique identifier for this host within population. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). Defaults to + False. + """ + super(Host, self).__init__() + self.id = id + + if not slim: + # if not slimmed down for data storage, save other attributes + self.pathogens = {} # Dictionary with all current infections in this + # host, with keys=genome strings, values=fitness numbers + self.protection_sequences = [] # A list of strings this host is + # immune to. If a pathogen's genome contains one of these + # values, it cannot infect this host. + self.population = population + self.sum_fitness = 0 + # sum of all pathogen fitnesses within this host + self.coefficient_index = population.coefficients_hosts.shape[0] + # index in population's coefficient array, not same as id + + population.coefficients_hosts = np.vstack( ( + population.coefficients_hosts, + population.healthyCoefficientRow() + ) ) # adds a row to coefficient array + +
+[docs] + def copyState(self): + """Returns a slimmed-down representation of the current host state. + + Returns: + Host object with current pathogens and protection_sequences. + """ + + copy = Host(None, self.id, slim=True) + copy.pathogens = self.pathogens.copy() + copy.protection_sequences = self.protection_sequences.copy() + + return copy
+ + +
+[docs] + def acquirePathogen(self, genome): + """Adds given genome to this host's pathogens. + + Modifies event coefficient matrix accordingly. + + Arguments: + genome (String): the genome to be added. + """ + self.pathogens[genome] = self.population.fitnessHost(genome) + old_sum_fitness = self.sum_fitness + self.sum_fitness += self.pathogens[genome] + sum_fitness_denom = self.sum_fitness if self.sum_fitness > 0 else 1 + self.population.coefficients_hosts[self.coefficient_index,:] = ( + self.population.coefficients_hosts[ + self.coefficient_index,: + ] + * old_sum_fitness / sum_fitness_denom ) + ( np.array([ + # positions dependent on class constants + 0, + self.population.contactHost(genome), + self.population.receiveContactHost(genome), + self.population.mortalityHost(genome), + self.population.natalityHost(genome), + self.population.recoveryHost(genome), + self.population.migrationHost(genome), + self.population.populationContactHost(genome), + self.population.receivePopulationContactHost(genome), + self.population.mutationHost(genome), + self.population.recombinationHost(genome) + ]) * self.pathogens[genome] / sum_fitness_denom ) + + self.population.coefficients_hosts[ + self.coefficient_index,self.population.RECOMBINATION + ] = self.population.coefficients_hosts[ + self.coefficient_index,self.population.RECOMBINATION + ] * ( len(self.pathogens) > 1 ) + + self.population.coefficients_hosts[ + self.coefficient_index,self.population.INFECTED + ] = 1 + + if self not in self.population.infected_hosts: + self.population.infected_hosts.append(self) + self.population.healthy_hosts.remove(self)
+ + +
+[docs] + def infectHost(self, host): + """Infect given host with a sample of this host's pathogens. + + Each pathogen in the infector is sampled as present or absent in the + inoculum by drawing from a Poisson distribution with a mean equal to the + mean inoculum size of the organism being infected weighted by each + genome's fitness as a fraction of the total in the infector as the + probability of each trial (minimum 1 pathogen transfered). Each pathogen + present in the inoculum will be added to the infected organism, if it + does not have protection from the pathogen's genome. Fitnesses are + computed for the pathogens' genomes in the infected organism, and the + organism is included in the poplation's infected list if appropriate. + + Arguments: + vector (Vector object): the vector to be infected. + + Returns: + Boolean indicating whether or not the model has changed state. + """ + + changed = False + + genomes = list( self.pathogens.keys() ) + fitness_weights = [ + self.pathogens[g] / self.sum_fitness for g in genomes + ] + + genomes_inoculated = np.unique( np.random.choice( + genomes, p=fitness_weights, + size=max( + np.random.poisson( self.population.mean_inoculum_host ), 1 + ) + ) ) + for genome in genomes_inoculated: + if genome not in host.pathogens.keys() and not any( + [ p in genome for p in host.protection_sequences ] + ): + host.acquirePathogen(genome) + changed = True + + return changed
+ + +
+[docs] + def infectVector(self, vector): + """Infect given host with a sample of this host's pathogens. + + Each pathogen in the infector is sampled as present or absent in the + inoculum by drawing from a Poisson distribution with a mean equal to the + mean inoculum size of the organism being infected weighted by each + genome's fitness as a fraction of the total in the infector as the + probability of each trial (minimum 1 pathogen transfered). Each pathogen + present in the inoculum will be added to the infected organism, if it + does not have protection from the pathogen's genome. Fitnesses are + computed for the pathogens' genomes in the infected organism, and the + organism is included in the poplation's infected list if appropriate. + + Arguments: + vector (Vector object): the vector to be infected. + + Returns: + Boolean indicating whether or not the model has changed state. + """ + + changed = False + + genomes = list( self.pathogens.keys() ) + fitness_weights = [ + self.pathogens[g] / self.sum_fitness for g in genomes + ] + + genomes_inoculated = np.unique( np.random.choice( + genomes, p=fitness_weights, + size=max( + np.random.poisson( self.population.mean_inoculum_vector ), 1 + ) + ) ) + for genome in genomes_inoculated: + if genome not in vector.pathogens.keys() and not any( + [ p in genome for p in vector.protection_sequences ] + ): + vector.acquirePathogen(genome) + changed = True + + return changed
+ + +
+[docs] + def recover(self): + """Remove all infections from this host. + + If model is protecting upon recovery, add protecion sequence as defined + by the indexes in the corresponding model parameter. Remove from + population infected list and add to healthy list. + """ + + if self in self.population.infected_hosts: + if self.population.protection_upon_recovery_host: + for genome in self.pathogens: + seq = genome[ + self.population.protection_upon_recovery_host[0] + :self.population.protection_upon_recovery_host[1] + ] + if seq not in self.protection_sequences: + self.protection_sequences.append(seq) + + self.pathogens = {} + self.sum_fitness = 0 + self.population.coefficients_hosts[ + self.coefficient_index,: + ] = self.population.healthyCoefficientRow() + + self.population.infected_hosts.remove(self) + self.population.healthy_hosts.append(self)
+ + +
+[docs] + def die(self): + """Add host to population's dead list, remove it from alive ones.""" + + if self in self.population.infected_hosts: + self.population.infected_hosts.remove(self) + else: + self.population.healthy_hosts.remove(self) + + for h in self.population.hosts[self.coefficient_index:]: + h.coefficient_index -= 1 + + self.population.coefficients_hosts = np.delete( + self.population.coefficients_hosts, self.coefficient_index, 0 + ) + self.population.hosts.remove(self)
+ + +
+[docs] + def birth(self, rand): + """Add a new host to population based on this host.""" + + host_list = self.population.addHosts(1) + host = host_list[0] + + if self.population.vertical_transmission_host > rand: + self.infectHost(host) + + if self.population.inherit_protection_host > np.random.random(): + host.protection_sequences = self.protection_sequences.copy()
+ + +
+[docs] + def applyTreatment(self, resistance_seqs): + """Remove all infections with genotypes susceptible to given treatment. + + Pathogens are removed if they are missing at least one of the sequences + in resistance_seqs from their genome. Removes this organism from + population infected list and adds to healthy list if appropriate. + + Arguments: + resistance_seqs (list of Strings): contains sequences required for treatment resistance. + """ + + genomes_remaining = [] + for genome in self.pathogens: + for seq in resistance_seqs: + if seq in genome: + genomes_remaining.append(genome) + break + + if len(genomes_remaining) == 0: + self.recover() + else: + self.pathogens = {} + self.sum_fitness = 0 + self.population.coefficients_hosts[ + self.coefficient_index,: + ] = self.population.healthyCoefficientRow() + for genome in genomes_remaining: + self.acquirePathogen(genome)
+ + +
+[docs] + def mutate(self,rand): + """Mutate a single, random locus in a random pathogen. + + Creates a new genotype from a de novo mutation event. + """ + + genomes = list( self.pathogens.keys() ) + weights = [ + self.population.mutationHost(g) + * self.population.fitnessHost(g) for g in genomes + ] + index_genome,rand = self.getWeightedRandomGenome( rand,weights ) + + old_genome = genomes[index_genome] + mut_index = int( rand * self.population.num_loci ) + if old_genome[mut_index] != self.population.CHROMOSOME_SEPARATOR: + new_genome = old_genome[0:mut_index] + np.random.choice( + list(self.population.possible_alleles[mut_index]) + ) + old_genome[mut_index+1:] + if new_genome not in self.pathogens: + self.acquirePathogen(new_genome) + + if new_genome not in self.population.model.global_trackers['genomes_seen']: + self.population.model.global_trackers['genomes_seen'].append(new_genome)
+ + +
+[docs] + def recombine(self,rand): + """Recombine two random pathogen genomes at random locus. + + Creates a new genotype from two random possible pathogens. + """ + + genomes = list( self.pathogens.keys() ) + weights = [ + self.population.recombinationHost(g) + * self.population.fitnessHost(g) for g in genomes + ] + index_genome,rand = self.getWeightedRandomGenome( rand,weights ) + index_other_genome,rand = self.getWeightedRandomGenome( rand,weights ) + + if index_genome != index_other_genome: + num_evts = np.random.poisson( self.population.num_crossover_host ) + loci = np.random.randint( 0, self.population.num_loci, num_evts ) + + children = [ genomes[index_genome], genomes[index_other_genome] ] + + for l in loci: + temp_child_0 = children[0] + children[0] = children[0][0:l] + children[1][l:] + children[1] = children[1][0:l] + temp_child_0[l:] + + children = [ + genome.split(self.population.CHROMOSOME_SEPARATOR) + for genome in children + ] + parent = np.random.randint( 0, 2, len( children[0] ) ) + + children = [ + self.population.CHROMOSOME_SEPARATOR.join([ + children[ parent[i] ][i] + for i in range( len( children[0] ) ) + ]), + self.population.CHROMOSOME_SEPARATOR.join([ + children[ not parent[i] ][i] + for i in range( len( children[1] ) ) + ]) + ] + + for new_genome in children: + if new_genome not in self.pathogens: + self.acquirePathogen(new_genome) + + if new_genome not in self.population.model.global_trackers['genomes_seen']: + self.population.model.global_trackers['genomes_seen'].append(new_genome)
+ + +
+[docs] + def getWeightedRandomGenome(self, rand, r): + """Returns index of element chosen from weights and given random number. + + Arguments: + rand (number 0-1): random number. + r (numpy array): array with weights. + + Returns: + new 0-1 random number. + """ + + r_tot = np.sum( r ) + u = rand * r_tot # random uniform number between 0 and total rate + r_cum = 0 + for i,e in enumerate(r): # for every possible event, + r_cum += e # add this event's rate to cumulative rate + if u < r_cum: # if random number is under cumulative rate + return i, ( ( u - r_cum + e ) / e )
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/internal/intervention.html b/docs/_build/html/_modules/opqua/internal/intervention.html new file mode 100644 index 0000000..4802d11 --- /dev/null +++ b/docs/_build/html/_modules/opqua/internal/intervention.html @@ -0,0 +1,148 @@ + + + + + + opqua.internal.intervention — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.internal.intervention

+
+"""Contains class Intervention."""
+
+
+[docs] +class Intervention(object): + """Class defines a new intervention to be done at a specified time. + + Attributes: + time (number): time at which intervention will take place. + method_name (String): intervention to be carried out, must correspond to the + name of a method of the Model object. + args (array-like): contains arguments for function in positinal order. + model (Model object): Model object this intervention is associated to. + """ + + def __init__(self, time, method_name, args, model): + """Create a new Intervention. + + Arguments: + time (number): time at which intervention will take place. + method_name (String): intervention to be carried out, must correspond to the + name of a method of the Model object. + args (array-like): contains arguments for function in positinal order. + model (Model object): Model object this intervention is associated to. + """ + super(Intervention, self).__init__() + self.time = time + self.intervention = method_name + self.args = args + self.model = model + +
+[docs] + def doIntervention(self): + """Execute intervention function with specified arguments.""" + + getattr(self.model, self.intervention)(*self.args)
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/internal/plot.html b/docs/_build/html/_modules/opqua/internal/plot.html new file mode 100644 index 0000000..e735c2b --- /dev/null +++ b/docs/_build/html/_modules/opqua/internal/plot.html @@ -0,0 +1,508 @@ + + + + + + opqua.internal.plot — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.internal.plot

+
+"""Contains graphmaking methods."""
+
+### Imports ###
+import copy as cp
+import numpy as np # handle arrays
+import pandas as pd # data wrangling
+import matplotlib.pyplot as plt # plots
+import seaborn as sns # pretty plots
+import scipy.cluster.hierarchy as sp_hie
+import scipy.spatial as sp_spa
+
+from opqua.internal.data import saveToDf, populationsDf, compartmentDf, \
+    compositionDf, pathogenDistanceDf
+
+CB_PALETTE = ["#E69F00", "#56B4E9", "#009E73",
+              "#F0E442", "#0072B2", "#D55E00", "#CC79A7", "#999999"]
+    # www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette
+    # http://jfly.iam.u-tokyo.ac.jp/color/
+DEF_CMAP = sns.cubehelix_palette(start=.5, rot=-.75, as_cmap=True, reverse=True)
+
+
+
+[docs] +def populationsPlot( + file_name, data, compartment='Infected', hosts=True, vectors=False, + num_top_populations=7, track_specific_populations=[], + save_data_to_file="", x_label='Time', y_label='Infected hosts', + legend_title='Population', legend_values=[], figsize=(8, 4), dpi=200, + palette=CB_PALETTE, stacked=False): + """Create plot with aggregated totals per population across time. + + Creates a line or stacked line plot with dynamics of a compartment + across populations in the model, with one line for each population. + + Arguments: + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + compartment (String): subset of hosts/vectors to count totals of, can be either + 'Naive','Infected','Recovered', or 'Dead'. (default 'Infected') + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_populations (int): how many populations to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all populations in model. Defaults to 7. + track_specific_populations (list of Strings): contains IDs of specific populations to have + as a separate column if not part of the top num_top_populations + populations. Defaults to []. + save_data_to_file (String): file path and name to save model plot data under, no + saving occurs if empty string. Defaults to "". + x_label(String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population IDs. + Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. Defaults to False. + + Returns: + axis object for plot with model population dynamics as described above. + """ + + pops = populationsDf( + data, compartment=compartment, hosts=hosts, vectors=vectors, + num_top_populations=num_top_populations, + track_specific_populations=track_specific_populations, + save_to_file=save_data_to_file + ) + + if pops.shape[1] > 0: + plt.figure(figsize=figsize, dpi=dpi) + ax = plt.subplot(1, 1, 1) + + if stacked: + if len(legend_values) > 0: + labs = legend_values + else: + labs = pops.drop(columns='Time').columns + + ax.stackplot( + pops['Time'], pops.drop(columns='Time').transpose(), + labels=labs, colors=palette + ) + else: + if len(legend_values) > 0: + labs = legend_values + else: + labs = pops.drop(columns='Time').columns + + for i,c in enumerate(pops.columns[1:]): + ax.plot( + pops['Time'], pops[c], label=labs[i], color=palette[i] + ) + + plt.xlabel(x_label) + plt.ylabel(y_label) + + box = ax.get_position() + ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) + + handles, labels = ax.get_legend_handles_labels() + plt.legend( + handles, labels, loc='center left', bbox_to_anchor=(1, 0.5), + title=legend_title + ) + + plt.savefig(file_name, bbox_inches='tight') + else: + ax = None + print('Nothing to plot! Check your data.') + + return ax
+ + + +
+[docs] +def compartmentPlot( + file_name, data, populations=[], hosts=True, vectors=False, + save_data_to_file="", x_label='Time', y_label='Hosts', + legend_title='Compartment', legend_values=[], figsize=(8, 4), dpi=200, + palette=CB_PALETTE, stacked=False): + """Create plot with num. of naive, susc., inf., rec. hosts/vectors vs. time. + + Creates a line or stacked line plot with dynamics of all compartments + (naive, infected, recovered, dead) across selected populations in the model, + with one line for each compartment. + + Arguments: + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + populations (list of Strings): IDs of populations to include in analysis; if empty, uses all + populations in model. Defaults to []. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + save_data_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population IDs. + Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. + Defaults to False. + + Returns: + axis object for plot with model compartment dynamics as described above. + """ + + comp = compartmentDf(data, populations=populations, hosts=hosts, + vectors=vectors, save_to_file=save_data_to_file) + + if comp.shape[1] > 0: + plt.figure(figsize=figsize, dpi=dpi) + ax = plt.subplot(1, 1, 1) + + if stacked: + if len(legend_values) > 0: + labs = legend_values + else: + labs = comp.drop(columns='Time').columns + + ax.stackplot( + comp['Time'], comp.drop(columns='Time').transpose(), + labels=labs, colors=palette + ) + else: + if len(legend_values) > 0: + labs = legend_values + else: + labs = comp.drop(columns='Time').columns + + for i,c in enumerate(comp.columns[1:]): + ax.plot( + comp['Time'], comp[c], label=labs[i], color=palette[i] + ) + + plt.xlabel(x_label) + plt.ylabel(y_label) + + box = ax.get_position() + ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) + + handles, labels = ax.get_legend_handles_labels() + plt.legend( + handles, labels, loc='center left', bbox_to_anchor=(1, 0.5), + title=legend_title + ) + + plt.savefig(file_name, bbox_inches='tight') + else: + ax = None + print('Nothing to plot! Check your data.') + + return ax
+ + +
+[docs] +def compositionPlot( + file_name, data, composition_dataframe=None, + populations=[], type_of_composition='Pathogens', + hosts=True, vectors=False, num_top_sequences=7, + track_specific_sequences=[], genomic_positions=[], + count_individuals_based_on_model=None, save_data_to_file="", + x_label='Time', y_label='Infections', legend_title='Genotype', + legend_values=[], figsize=(8, 4), dpi=200, palette=CB_PALETTE, + stacked=True, remove_legend=False, population_fraction=False, **kwargs): + """Create plot with counts for pathogen genomes or resistance across time. + + Creates a line or stacked line plot with dynamics of the pathogen strains or + protection sequences across selected populations in the model, + with one line for each pathogen genome or protection sequence being shown. + + Of note: sum of totals for all sequences in one time point does not + necessarily equal the number of infected hosts and/or vectors, given + multiple infections in the same host/vector are counted separately. + + Arguments: + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + composition_dataframe (Pandas DataFrame): output of compositionDf() if already computed. + Defaults to None. + populations (list of Strings): IDs of populations to include in analysis; if empty, uses all + populations in model. Defaults to []. + type_of_composition (String): field of data to count totals of, can be either + 'Pathogens' or 'Protection'. Defaults to 'Pathogens'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_sequences (int): how many sequences to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all genomes in model. Defaults to 7. + track_specific_sequences (list of Strings): contains specific sequences to have + as a separate column if not part of the top num_top_sequences + sequences. Defaults to []. + genomic_positions (list of lists of int): list in which each element is a list with loci + positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] extracts + positions 0, 1, 2, and 5 from each genome); if empty, takes full genomes. Defaults to []. + count_individuals_based_on_model (None or Model): Model object with populations and + fitness functions used to evaluate the most fit pathogen genome in each + host/vector in order to count only a single pathogen per host/vector, as + opposed to all pathogens within each host/vector; if None, counts all + pathogens. Defaults to None. + save_data_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population IDs. + Defaults to []. + figsize (int): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. Defaults to False. + remove_legend (Boolean): whether to print the sequences on the figure legend instead + of printing them on a separate csv file. Defaults to True. + population_fraction (Boolean): whether to graph fractions of pathogen population + instead of pathogen counts. Defaults to False. + **kwargs: additional arguents for joblib multiprocessing. + + Returns: + axis object for plot with model sequence composition dynamics as described. + """ + + if composition_dataframe is None: + comp = compositionDf( + data, populations=populations, + type_of_composition=type_of_composition, + hosts=hosts, vectors=vectors, num_top_sequences=num_top_sequences, + track_specific_sequences=track_specific_sequences, + genomic_positions=genomic_positions, + count_individuals_based_on_model=count_individuals_based_on_model, + save_to_file=save_data_to_file, **kwargs + ) + else: + comp = composition_dataframe + + if population_fraction: + total_infections = comp.drop(columns=['Time']).sum(axis=1) + for col in comp.columns[1:]: + print('corrected '+col) + comp[col] = comp[col] / total_infections + + if comp.shape[1] > 1: + plt.figure(figsize=figsize, dpi=dpi) + ax = plt.subplot(1, 1, 1) + + if stacked: + if len(legend_values) > 0: + labs = legend_values + else: + labs = comp.drop(columns='Time').columns + + ax.stackplot( + comp['Time'], comp.drop(columns='Time').transpose(), + labels=labs, colors=palette + ) + else: + if len(legend_values) > 0: + labs = legend_values + else: + labs = comp.drop(columns='Time').columns + + for i,c in enumerate(comp.columns[1:]): + ax.plot( + comp['Time'], comp[c], label=labs[i], color=palette[i] + ) + + plt.xlabel(x_label) + plt.ylabel(y_label) + + box = ax.get_position() + ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) + + if remove_legend: + pd.DataFrame( + labs, columns=['Groups'] + ).to_csv(file_name.split('.')[0]+'_labels.csv') + else: + handles, labels = ax.get_legend_handles_labels() + plt.legend( + handles, labels, loc='center left', bbox_to_anchor=(1, 0.5), + title=legend_title + ) + + plt.savefig(file_name, bbox_inches='tight') + else: + ax = None + print('Nothing to plot! Check your data.') + + return ax
+ + +
+[docs] +def clustermap( + file_name, data, num_top_sequences=-1, track_specific_sequences=[], + seq_names=[], n_cores=0, method='weighted', metric='euclidean', + save_data_to_file="", legend_title='Distance', legend_values=[], + figsize=(10,10), dpi=200, color_map=DEF_CMAP): + """Create a heatmap and dendrogram for pathogen genomes in data passed. + + Arguments: + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + num_top_sequences (int): how many sequences to include in matrix; if <0, + includes all genomes in data passed. Deafults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include in matrix + if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list of Strings): list with names to be used for sequence labels in matrix must + be of same length as number of sequences to be displayed; if empty, + uses sequences themselves. Defaults to []. + n_cores (int): number of cores to parallelize distance compute across, if 0, all + cores available are used. Defaults to 0. + method (String): clustering algorithm to use with seaborn clustermap. Defaults to 'weighted'. + metric (String): distance metric to use with seaborn clustermap. Defaults to 'euclidean'. + save_data_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + legend_title (String): legend title. Defaults to 'Distance'. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + color_map (cmap object): color map to use for traces. Defaults to `DEF_CMAP`. + + Returns: + figure object for plot with heatmap and dendrogram as described. + """ + + dis = pathogenDistanceDf( + data, num_top_sequences=num_top_sequences, + track_specific_sequences=track_specific_sequences, seq_names=seq_names, + n_cores=n_cores, save_to_file=save_data_to_file + ) + + lin = sp_hie.linkage( + sp_spa.distance.squareform(dis), method='weighted', + optimal_ordering=True + ) + + g = sns.clustermap( + dis, method=method, metric=metric, cbar_kws={'label': legend_title}, + cmap=color_map, figsize=figsize + ) + + g.savefig(file_name, dpi=dpi, bbox_inches='tight') + + return g
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/internal/population.html b/docs/_build/html/_modules/opqua/internal/population.html new file mode 100644 index 0000000..8966ef7 --- /dev/null +++ b/docs/_build/html/_modules/opqua/internal/population.html @@ -0,0 +1,1460 @@ + + + + + + opqua.internal.population — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.internal.population

+
+"""Contains class Population."""
+
+import numpy as np
+import copy as cp
+import random
+
+from opqua.internal.host import Host
+from opqua.internal.vector import Vector
+
+
+[docs] +class Population(object): + """Class defines a population with hosts, vectors, and specific parameters. + + **CONSTANTS:** These all denote positions in coefficients_hosts and coefficients_vectors + + - `INFECTED` -- position of "infected" Boolean values for each individual inside + coefficients array. + - `CONTACT` -- position of intra-population aggregated contact rate for each + individual inside coefficients array. + - `RECEIVE_CONTACT` -- position of intra-population aggregated receiving contact + rate for each individual inside coefficients array. + - `LETHALITY` -- position of aggregated death rate for each individual inside + coefficients array. + - `NATALITY` -- position of aggregated birth rate for each individual inside + coefficients array. + - `RECOVERY` -- position of aggregated recovery rate for each individual inside + coefficients array. + - `MIGRATION` -- position of aggregated inter-population migration rate for each + individual inside coefficients array. + - `POPULATION_CONTACT` -- position of inter-population aggregated contact rate + for each individual inside coefficients array. + - `RECEIVE_POPULATION_CONTACT` -- position of inter-population aggregated + receiving contact rate for each individual inside coefficients array. + - `MUTATION` -- position of aggregated mutation rate for each individual inside + coefficients array. + - `RECOMBINATION` -- position of aggregated recovery rate for each individual + inside coefficients array. + - `NUM_COEFFICIENTS` -- total number of types of coefficients (columns) in + coefficient arrays. + - `CHROMOSOME_SEPARATOR` -- character reserved to denote separate chromosomes in + genomes. + + Attributes: + model (Model object): parent model this population is a part of. + id (String): unique identifier for this population in the model. + setup (String): setup object with parameters for this population. + num_hosts (int): number of hosts to initialize population with. + num_vectors (int): number of hosts to initialize population with. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). + Defaults to False. + """ + + INFECTED = 0 + CONTACT = 1 + RECEIVE_CONTACT = 2 + LETHALITY = 3 + NATALITY = 4 + RECOVERY = 5 + MIGRATION = 6 + POPULATION_CONTACT = 7 + RECEIVE_POPULATION_CONTACT = 8 + MUTATION = 9 + RECOMBINATION = 10 + + NUM_COEFFICIENTS = 11 + + CHROMOSOME_SEPARATOR = '/' + + def __init__(self, model, id, setup, num_hosts, num_vectors, slim=False): + """Create a new Population. + + Arguments: + model (Model object): parent model this population is a part of. + id (String): unique identifier for this population in the model. + setup (String): setup object with parameters for this population. + num_hosts (int): number of hosts to initialize population with. + num_vectors (int): number of hosts to initialize population with. + + Keyword arguments: + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). + Defaults to False. + """ + super(Population, self).__init__() + + self.model = model + self.id = id + + if not slim: + # if not slimmed down for data storage, save other attributes + + # Each element in these following arrays contains the sum of all + # pathogen rate coefficients within a host, weighted by fitness + # and normalized to sum_fitness to obtain coefficient that + # modifies the respective population-wide rate. Order given by + # constants in Population class. Each host is one row. + self.coefficients_hosts = np.zeros((1,self.NUM_COEFFICIENTS)) + # all weighted event rate coefficient modifiers for hosts + # in population, first row is a dummy placeholder row + self.coefficients_vectors = np.zeros((1,self.NUM_COEFFICIENTS)) + # all weighted event rate coefficient modifiers for vectors + # in population, first row is a dummy placeholder row + + self.hosts = [ + Host( + self, self.id + '_' + str(id) + ) for id in range(int(num_hosts)) + ] + # contains all live hosts + self.vectors = [ + Vector( + self, self.id + '_' + str(id) + ) for id in range(int(num_vectors)) + ] + # contains all live vectors + + self.infected_hosts = [] + # contains live, infected hosts (also in hosts list) + self.healthy_hosts = self.hosts.copy() + # contains live, healthy hosts (also in hosts list) + self.infected_vectors = [] + # contains live, infected vectors (also in vectors list) + self.dead_hosts = [] # contains dead hosts (not in hosts list) + self.dead_vectors = [] # contains dead vectors (not in vectors list) + + self.neighbors_hosts = {} # dictionary with neighboring populations, + # keys=Population, values=migration rate from this population to + # neighboring population, for hosts only + self.neighbors_vectors = {} # dictionary with neighbor populations, + # keys=Population, values=migration rate from this population to + # neighboring population, for vectors only + self.total_migration_rate_hosts = 0 # sum of all migration rates + # from this population to neighbors, hosts only + self.total_migration_rate_vectors = 0 # sum of all migration rates + # from this population to neighbors, vectors only + + self.neighbors_contact_hosts_hosts = {} # dictionary with + # neighboring populations, keys=Population, values=population + # contact rate from this population to neighboring population, + # for hosts towards hosts only + self.neighbors_contact_hosts_vectors = {} # dictionary with + # neighboring populations, keys=Population, values=population + # contact rate from this population to neighboring population, + # for hosts towards vectors only + self.neighbors_contact_vectors_hosts = {} # dictionary with neighbor + # populations, keys=Population, values=population contact rate + # from this population to neighboring population, for vectors + # for vectors towards hosts only + self.population_contact_rate_host = 0 # weighted sum of all host + # population contact rates from this population to neighbors + self.population_contact_rate_vector = 0 # weighted sum of all vector + # population contact rates from this population to neighbors + + self.setSetup(setup) + + self.setHostMigrationNeighbor(self,0) + self.setVectorMigrationNeighbor(self,0) + self.setHostHostPopulationContactNeighbor(self,0) + self.setHostVectorPopulationContactNeighbor(self,0) + self.setVectorHostPopulationContactNeighbor(self,0) + +
+[docs] + def copyState(self,host_sampling=0,vector_sampling=0): + """Returns a slimmed-down version of the current population state. + + Arguments: + host_sampling (int): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. + + Returns: + Population object with current host and vector lists. + """ + + copy = Population(self.model, self.id, None, 0, 0, slim=True) + if host_sampling > 0: + host_sample = random.sample( + self.hosts, int( len(self.hosts) / (host_sampling+1) ) + ) + dead_host_sample = random.sample( + self.dead_hosts, int( len(self.dead_hosts) / (host_sampling+1) ) + ) + copy.hosts = [ h.copyState() for h in host_sample ] + copy.dead_hosts = [ h.copyState() for h in dead_host_sample ] + else: + copy.hosts = [ h.copyState() for h in self.hosts ] + copy.dead_hosts = [ h.copyState() for h in self.dead_hosts ] + + if vector_sampling > 0: + vector_sample = random.sample( + self.vectors, int( len(self.vectors) / (vector_sampling+1) ) + ) + dead_vector_sample = random.sample( + self.dead_vectors,int(len(self.dead_vectors)/(vector_sampling+1)) + ) + copy.vectors = [ v.copyState() for v in vector_sample ] + copy.dead_vectors = [ v.copyState() for v in dead_vector_sample ] + else: + copy.vectors = [ v.copyState() for v in self.vectors ] + copy.dead_vectors = [ v.copyState() for v in self.dead_vectors ] + + return copy
+ + +
+[docs] + def setSetup(self, setup): + """Assign parameters stored in Setup object to this population. + + Arguments: + setup (Setup object): the setup to be assigned. + """ + + self.setup = setup + + self.num_loci = setup.num_loci + self.possible_alleles = setup.possible_alleles + + self.fitnessHost = setup.fitnessHost + self.contactHost = setup.contactHost + self.receiveContactHost = setup.receiveContactHost + self.mortalityHost = setup.mortalityHost + self.natalityHost = setup.natalityHost + self.recoveryHost = setup.recoveryHost + self.migrationHost = setup.migrationHost + self.populationContactHost = setup.populationContactHost + self.receivePopulationContactHost = setup.receivePopulationContactHost + self.mutationHost = setup.mutationHost + self.recombinationHost = setup.recombinationHost + self.updateHostCoefficients() + + self.fitnessVector = setup.fitnessVector + self.contactVector = setup.contactVector + self.receiveContactVector = setup.receiveContactVector + self.mortalityVector = setup.mortalityVector + self.natalityVector = setup.natalityVector + self.recoveryVector = setup.recoveryVector + self.migrationVector = setup.migrationVector + self.populationContactVector = setup.populationContactVector + self.receivePopulationContactVector = setup.receivePopulationContactVector + self.mutationVector = setup.mutationVector + self.recombinationVector = setup.recombinationVector + self.updateVectorCoefficients() + + self.contact_rate_host_vector = setup.contact_rate_host_vector + self.contact_rate_host_host = setup.contact_rate_host_host + # contact rate assumes fixed area--large populations are dense + # populations, so contact scales linearly with both host and vector + # populations. If you don't want this to happen, modify the + # population's contact rate accordingly. + self.transmission_efficiency_host_vector = setup.transmission_efficiency_host_vector + self.transmission_efficiency_vector_host = setup.transmission_efficiency_vector_host + self.transmission_efficiency_host_host = setup.transmission_efficiency_host_host + self.mean_inoculum_host = setup.mean_inoculum_host + self.mean_inoculum_vector = setup.mean_inoculum_vector + self.recovery_rate_host = setup.recovery_rate_host + self.recovery_rate_vector = setup.recovery_rate_vector + self.mortality_rate_host = setup.mortality_rate_host + self.mortality_rate_vector = setup.mortality_rate_vector + self.recombine_in_host = setup.recombine_in_host + self.recombine_in_vector = setup.recombine_in_vector + self.num_crossover_host = setup.num_crossover_host + self.num_crossover_vector = setup.num_crossover_vector + self.mutate_in_host = setup.mutate_in_host + self.mutate_in_vector = setup.mutate_in_vector + self.death_rate_host = setup.death_rate_host + self.death_rate_vector = setup.death_rate_vector + self.birth_rate_host = setup.birth_rate_host + self.birth_rate_vector = setup.birth_rate_vector + self.vertical_transmission_host = setup.vertical_transmission_host + self.vertical_transmission_vector = setup.vertical_transmission_vector + self.inherit_protection_host = setup.inherit_protection_host + self.inherit_protection_vector = setup.inherit_protection_vector + self.protection_upon_recovery_host \ + = setup.protection_upon_recovery_host + self.protection_upon_recovery_vector \ + = setup.protection_upon_recovery_vector
+ + +
+[docs] + def addHosts(self, num_hosts): + """Add a number of healthy hosts to population, return list with them. + + Arguments: + num_hosts (int): number of hosts to be added. + + Returns: + list containing new hosts. + """ + + new_hosts = [ + Host( + self, self.id + '_' + str( i + len(self.hosts) ) + ) for i in range(num_hosts) + ] + self.hosts += new_hosts + self.healthy_hosts += new_hosts + + return new_hosts
+ + +
+[docs] + def addVectors(self, num_vectors): + """Add a number of healthy vectors to population, return list with them. + + Arguments: + num_vectors (int): number of vectors to be added. + + Returns: + list containing new vectors + """ + + new_vectors = [ + Vector( + self, self.id + '_' + str( i + len(self.vectors) ) + ) for i in range(num_vectors) + ] + self.vectors += new_vectors + + return new_vectors
+ + +
+[docs] + def newHostGroup(self, hosts=-1, type='any'): + """Return a list of random hosts in population. + + Keyword arguments: + hosts (number): number of hosts to be sampled randomly: if <0, samples from + whole population; if <1, takes that fraction of population; if >=1, + samples that integer number of hosts. Defaults to -1. + type (String = {'healthy', 'infected', 'any'}): whether to sample healthy hosts + only, infected hosts only, or any hosts. Defaults to 'any'. + + Returns: + list containing sampled hosts. + """ + + possible_hosts = [] + + if type=='healthy': + possible_hosts = self.healthy_hosts + elif type=='infected': + possible_hosts = self.infected_hosts + elif type=='any': + possible_hosts = self.hosts + else: + raise ValueError( + '"' + str(type) + + '" is not a type of host for newHostGroup.' + ) + + num_hosts = -1 + if hosts < 0: + num_hosts = len(possible_hosts) + elif hosts < 1: + num_hosts = int( hosts * len(possible_hosts) ) + else: + num_hosts = hosts + + if len(possible_hosts) >= num_hosts: + return np.random.choice(possible_hosts, num_hosts, replace=False) + else: + raise ValueError( + "You're asking for " + str(num_hosts) + + '"' + type + '" hosts, but population ' + str(self.id) + + " only has " + str( len(self.healthy_hosts) ) + "." + )
+ + +
+[docs] + def newVectorGroup(self, vectors=-1, type='any'): + """Return a list of random vectors in population. + + Keyword arguments: + vectors (number): number of vectors to be sampled randomly: if <0, samples from + whole population; if <1, takes that fraction of population; if >=1, + samples that integer number of vectors. Defaults to -1. + type (String = {'healthy', 'infected', 'any'}): whether to sample healthy vectors + only, infected vectors. Defaults to 'any'. + + Returns: + list containing sampled vectors. + """ + + possible_vectors = [] + if type=='healthy': + for vector in self.vectors: + if vector not in self.infected_vectors: + possible_vectors.append(vector) + elif type=='infected': + possible_vectors = self.infected_vectors + elif type=='any': + possible_vectors = self.vectors + else: + raise ValueError( + '"' + str(type) + + '" is not a type of vector for newVectorGroup.' + ) + + num_vectors = -1 + if vectors < 0: + num_vectors = len(possible_vectors) + elif vectors < 1: + num_vectors = int( vectors * len(possible_vectors) ) + else: + num_vectors = vectors + + if len(possible_vectors) >= num_vectors: + return np.random.choice(possible_vectors, num_vectors, replace=False) + else: + raise ValueError( + "You're asking for " + str(num_vectors) + + '"' + type + '" vectors, but population ' + str(self.id) + + " only has " + + str( len(self.vectors) - len(self.infected_vectors) ) + + "." + )
+ + +
+[docs] + def removeHosts(self, num_hosts_or_list): + """Remove a number of specified or random hosts from population. + + Arguments: + num_hosts_or_list (int or list of Host objects): number of hosts to be sampled randomly for removal + or list of hosts to be removed, must be hosts in this population. + """ + + if isinstance(num_hosts_or_list, list): + for host_removed in num_hosts_or_list: + if host_removed in self.hosts: + if host_removed in self.infected_hosts: + self.infected_hosts.remove( host_removed ) + else: + self.healthy_hosts.remove( host_removed ) + + self.hosts.remove( host_removed ) + for h in self.hosts: + if h.coefficient_index > host_removed.coefficient_index: + h.coefficient_index -= 1 + + self.coefficients_hosts = np.delete( + self.coefficients_hosts, + host_removed.coefficient_index, 0 + ) + else: + for _ in range(num_hosts_or_list): + host_removed = np.random.choice(self.hosts) + if host_removed in self.infected_hosts: + self.infected_hosts.remove( host_removed ) + else: + self.healthy_hosts.remove( host_removed ) + + self.hosts.remove( host_removed ) + for h in self.hosts: + if h.coefficient_index > host_removed.coefficient_index: + h.coefficient_index -= 1 + + self.coefficients_hosts = np.delete( + self.coefficients_hosts, + host_removed.coefficient_index, 0 + )
+ + +
+[docs] + def removeVectors(self, num_vectors_or_list): + """Remove a number of specified or random vectors from population. + + Arguments: + num_vectors_or_list (int or list of Vector objects): number of vectors to be sampled randomly for + removal or list of vectors to be removed, must be vectors in this + population. + """ + + if isinstance(num_vectors_or_list, list): + for vector_removed in num_vectors_or_list: + if vector_removed in self.vectors: + if vector_removed in self.infected_vectors: + self.infected_vectors.remove( vector_removed ) + + self.vectors.remove( vector_removed ) + for v in self.vectors: + if v.coefficient_index>vector_removed.coefficient_index: + v.coefficient_index -= 1 + + self.coefficients_vectors = np.delete( + self.coefficients_vectors, + vector_removed.coefficient_index, 0 + ) + else: + for _ in range(num_vectors): + vector_removed = np.random.choice(self.vectors) + if vector_removed in self.infected_vectors: + self.infected_vectors.remove( vector_removed ) + + self.vectors.remove( vector_removed ) + for v in self.vectors: + if v.coefficient_index > vector_removed.coefficient_index: + v.coefficient_index -= 1 + + self.coefficients_vectors = np.delete( + self.coefficients_vectors, + vector_removed.coefficient_index, 0 + )
+ + +
+[docs] + def addPathogensToHosts(self, genomes_numbers, hosts=[]): + """Add specified pathogens to random hosts, optionally from a list. + + Arguments: + genomes_numbers (dict with keys=Strings, values=int): dictionary conatining + pathogen genomes to add as keys and number of hosts each one will be + added to as values. + + Keyword arguments: + hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from + whole population. Defaults to []. + """ + + if len(hosts) == 0: + hosts = self.hosts + + for genome in genomes_numbers: + if len(genome) == self.num_loci and genomes_numbers[genome]>0 and all( [ + allele in self.possible_alleles[i] + self.CHROMOSOME_SEPARATOR + for i,allele in enumerate(genome) + ] ): + rand_hosts = np.random.choice( + hosts, int(genomes_numbers[genome]), replace=False + ) + + for host in rand_hosts: + host.acquirePathogen(genome) + + if genome not in self.model.global_trackers['genomes_seen']: + self.model.global_trackers['genomes_seen'].append(genome) + + elif genomes_numbers[genome]>0: + raise ValueError('Genome ' + genome + ' must be of length ' + + str(self.num_loci) + + ' and contain only the following characters at each ' + + 'position: ' + str(self.possible_alleles) + + ', or the chromosome separator character "' + + self.CHROMOSOME_SEPARATOR + '" .')
+ + +
+[docs] + def addPathogensToVectors(self, genomes_numbers, vectors=[]): + """Add specified pathogens to random vectors, optionally from a list. + + Arguments: + genomes_numbers (dict with keys=Strings, values=int): dictionary conatining + pathogen genomes to add as keys and number of vectors each one will be + added to as values. + + Keyword arguments: + vectors (list of Vector objects): list of specific vectors to sample from, if empty, samples + from whole population. Defaults to []. + """ + + if len(vectors) == 0: + vectors = self.vectors + + for genome in genomes_numbers: + if len(genome) == self.num_loci and genomes_numbers[genome]>0 and all( [ + allele in self.possible_alleles[i] + self.CHROMOSOME_SEPARATOR + for i,allele in enumerate(genome) + ] ): + rand_vectors = np.random.choice( + vectors, int(genomes_numbers[genome]), replace=False + ) + + for vector in rand_vectors: + vector.acquirePathogen(genome) + + if genome not in self.model.global_trackers['genomes_seen']: + self.model.global_trackers['genomes_seen'].append(genome) + + elif genomes_numbers[genome]>0: + raise ValueError('Genome ' + genome + ' must be of length ' + + str(self.num_loci) + + ' and contain only the following characters at each ' + + 'position: ' + self.possible_alleles + + self.CHROMOSOME_SEPARATOR + ' .')
+ + +
+[docs] + def treatHosts(self, frac_hosts, resistance_seqs, hosts=[]): + """Treat random fraction of infected hosts against some infection. + + Removes all infections with genotypes susceptible to given treatment. + Pathogens are removed if they are missing at least one of the sequences + in resistance_seqs from their genome. Removes this organism from + population infected list and adds to healthy list if appropriate. + + Arguments: + frac_hosts (number 0-1): fraction of hosts considered to be randomly selected. + resistance_seqs (list of Strings): contains sequences required for treatment resistance. + + Keyword arguments: + hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from + whole population. Defaults to []. + """ + + hosts_to_consider = self.hosts + if len(hosts) > 0: + hosts_to_consider = hosts + + possible_infected_hosts = [] + for host in hosts_to_consider: + if len( host.pathogens ): + possible_infected_hosts.append( host ) + + treat_hosts = np.random.choice( + possible_infected_hosts, + int( frac_hosts * len( possible_infected_hosts ) ), replace=False + ) + for host in treat_hosts: + host.applyTreatment(resistance_seqs)
+ + +
+[docs] + def treatVectors(self, frac_vectors, resistance_seqs, vectors=[]): + """Treat random fraction of infected vectors agains some infection. + + Removes all infections with genotypes susceptible to given treatment. + Pathogens are removed if they are missing at least one of the sequences + in resistance_seqs from their genome. Removes this organism from + population infected list and adds to healthy list if appropriate. + + Arguments: + frac_vectors (number 0-1): fraction of vectors considered to be randomly selected. + resistance_seqs (list of Strings): contains sequences required for treatment resistance. + + Keyword arguments: + vectors (list of Vector objects): list of specific vectors to sample from, if empty, samples + from whole population. Defaults to []. + """ + + vectors_to_consider = self.vectors + if len(vectors) > 0: + vectors_to_consider = vectors + + possible_infected_vectors = [] + for vector in vectors_to_consider: + if len( vector.pathogens ): + possible_infected_vectors.append( vector ) + + treat_vectors = np.random.choice( + possible_infected_vectors, + int( frac_vectors * len( possible_infected_vectors ) ), + replace=False + ) + for vector in treat_vectors: + vector.applyTreatment(resistance_seqs)
+ + +
+[docs] + def protectHosts(self, frac_hosts, protection_sequence, hosts=[]): + """Protect a random fraction of infected hosts against some infection. + + Adds protection sequence specified to a random fraction of the hosts + specified. Does not cure them if they are already infected. + + Arguments: + frac_hosts (number 0-1): fraction of hosts considered to be randomly selected. + protection_sequence (String): sequence against which to protect. + + Keyword arguments: + hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from + whole population. Defaults to []. + """ + + hosts_to_consider = self.hosts + if len(hosts) > 0: + hosts_to_consider = hosts + + protect_hosts = np.random.choice( + self.hosts, int( frac_hosts * len( hosts_to_consider ) ), + replace=False + ) + for host in protect_hosts: + host.protection_sequences.append(protection_sequence)
+ + +
+[docs] + def protectVectors(self, frac_vectors, protection_sequence, vectors=[]): + """Protect a random fraction of infected vectors against some infection. + + Adds protection sequence specified to a random fraction of the vectors + specified. Does not cure them if they are already infected. + + Arguments: + frac_vectors (number 0-1): fraction of vectors considered to be randomly selected. + protection_sequence (String): sequence against which to protect. + + Keyword arguments: + vectors (list of Vector objects): list of specific vectors to sample from, if empty, samples + from whole population. Defaults to []. + """ + + vectors_to_consider = self.vectors + if len(vectors) > 0: + vectors_to_consider = vectors + + protect_vectors = np.random.choice( + self.vectors, int( frac_vectors * len( vectors_to_consider ) ), + replace=False + ) + for vector in protect_vectors: + vector.protection_sequences.append(protection_sequence)
+ + +
+[docs] + def wipeProtectionHosts(self, hosts=[]): + """Removes all protection sequences from hosts. + + Keyword arguments: + hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from + whole population. Defaults to []. + """ + + hosts_to_consider = self.hosts + if len(hosts) > 0: + hosts_to_consider = hosts + + for host in hosts_to_consider: + host.protection_sequences = []
+ + +
+[docs] + def wipeProtectionVectors(self, vectors=[]): + """Removes all protection sequences from vectors. + + Keyword arguments: + vectors (list of Vector objects): list of specific vectors to sample from, if empty, samples from + whole population. Defaults to []. + """ + + vectors_to_consider = self.vectors + if len(vectors) > 0: + vectors_to_consider = vectors + + for vector in vectors_to_consider: + vector.protection_sequences = []
+ + +
+[docs] + def setHostMigrationNeighbor(self, neighbor, rate): + """Set host migration rate from this population towards another one. + + Arguments: + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. + """ + + if neighbor in self.neighbors_hosts: + self.total_migration_rate_hosts -= self.neighbors_hosts[neighbor] + + self.neighbors_hosts[neighbor] = rate + self.total_migration_rate_hosts += rate
+ + +
+[docs] + def setVectorMigrationNeighbor(self, neighbor, rate): + """Set vector migration rate from this population towards another one. + + Arguments: + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. + """ + + if neighbor in self.neighbors_vectors: + self.total_migration_rate_vectors -= self.neighbors_vectors[neighbor] + + self.neighbors_vectors[neighbor] = rate + self.total_migration_rate_vectors += rate
+ + +
+[docs] + def migrate(self, target_pop, num_hosts, num_vectors, rand=None): + """Transfer hosts and/or vectors from this population to another. + + Arguments: + target_pop (Population objects): population towards which migration will occur. + num_hosts (int): number of hosts to transfer. + num_vectors (int): number of vectors to transfer. + + Keyword arguments: + rand (number 0-1): uniform random number from 0 to 1 to use when choosing + individuals to migrate; if None, generates new random number to + choose (through numpy), otherwise, assumes event is happening + through Gillespie class call and migrates a single host or vector. Defaults to None. + """ + + if rand is None: + migrating_hosts = np.random.choice( + self.hosts, num_hosts, replace=False, + p=self.coefficients_hosts[:,self.MIGRATION] + ) + migrating_vectors = np.random.choice( + self.vectors, num_vectors, replace=False, + p=self.coefficients_vectors[:,self.MIGRATION] + ) + elif num_hosts == 1: + index_host,rand = self.getWeightedRandom( + rand, self.coefficients_hosts[:,self.MIGRATION] + ) + migrating_hosts = [self.hosts[index_host]] + migrating_vectors = [] + else: + index_vector,rand = self.getWeightedRandom( + rand, self.coefficients_vectors[:,self.MIGRATION] + ) + migrating_hosts = [] + migrating_vectors = [self.vectors[index_vector]] + + + for host in migrating_hosts: + genomes = { g:1 for g in host.pathogens } + self.removeHosts([host]) + new_host_list = target_pop.addHosts(1) # list of 1 + target_pop.addPathogensToHosts(genomes,hosts=new_host_list) + host = None + + for vector in migrating_vectors: + genomes = { g:1 for g in vector.pathogens } + self.removeVectors([vector]) + new_vector_list = target_pop.addVectors(1) # list of 1 + target_pop.addPathogensToVectors(genomes,vectors=new_vector_list) + vector = None
+ + +
+[docs] + def setHostHostPopulationContactNeighbor(self, neighbor, rate): + """Set host-host contact rate from this population towards another one. + + Arguments: + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. + """ + + self.neighbors_contact_hosts_hosts[neighbor] = rate
+ + +
+[docs] + def setHostVectorPopulationContactNeighbor(self, neighbor, rate): + """Set host-vector contact rate from this population to another one. + + Arguments: + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. + """ + + self.neighbors_contact_hosts_vectors[neighbor] = rate
+ + +
+[docs] + def setVectorHostPopulationContactNeighbor(self, neighbor, rate): + """Set vector-host contact rate from this population to another one. + + Arguments: + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. + """ + + self.neighbors_contact_vectors_hosts[neighbor] = rate
+ + +
+[docs] + def populationContact( + self, target_pop, rand, host_origin=True, host_target=True): + """Contacts hosts and/or vectors from this population to another. + + Arguments: + target_pop (Population object): population towards which migration will occur. + rand (number): uniform random number from 0 to 1 to use when choosing + individuals to contact. + + Keyword arguments: + host_origin (Boolean): whether to draw from hosts in the origin population + (as opposed to vectors). Defaults to True. + host_target (Boolean): whether to draw from hosts in the target population + (as opposed to vectors). Defaults to True. + """ + + if host_origin: + index_host,rand = self.getWeightedRandom( + rand, np.multiply( + self.coefficients_hosts[:,self.POPULATION_CONTACT], + self.coefficients_hosts[:,self.INFECTED] + ) + ) + origin = self.hosts[index_host] + else: + index_vector,rand = self.getWeightedRandom( + rand, np.multiply( + self.coefficients_vectors[:,self.POPULATION_CONTACT], + self.coefficients_vectors[:,self.INFECTED] + ) + ) + origin = self.vectors[index_vector] + + if host_target: + index_host,rand = target_pop.getWeightedRandom( + rand, + target_pop.coefficients_hosts[ + :,target_pop.RECEIVE_POPULATION_CONTACT + ] + ) + origin.infectHost(target_pop.hosts[index_host]) + else: + index_vector,rand = target_pop.getWeightedRandom( + rand, + target_pop.coefficients_vectors[ + :,target_pop.RECEIVE_POPULATION_CONTACT + ] + ) + origin.infectVector(target_pop.vectors[index_vector])
+ + +
+[docs] + def contactHostHost(self, rand): + """Contact any two (weighted) random hosts in population. + + Carries out possible infection events from the first organism into the + second. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individuals to contact. + + Returns: + Boolean indicating whether or not the model has changed state. + """ + + index_host,rand = self.getWeightedRandom( + rand, np.multiply( + self.coefficients_hosts[:,self.CONTACT], + self.coefficients_hosts[:,self.INFECTED] + ) + ) + index_other_host,rand = self.getWeightedRandom( + rand, self.coefficients_hosts[:,self.RECEIVE_CONTACT] + ) + + changed = self.hosts[index_host].infectHost( + self.hosts[index_other_host] + ) + + return changed
+ + +
+[docs] + def contactHostVector(self, rand): + """Contact a (weighted) random host and vector in population. + + Carries out possible infection events from the first organism into the + second. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individuals to contact. + + Returns: + Boolean indicating whether or not the model has changed state. + """ + + index_host,rand = self.getWeightedRandom( + rand, np.multiply( + self.coefficients_hosts[:,self.CONTACT], + self.coefficients_hosts[:,self.INFECTED] + ) + ) + index_vector,rand = self.getWeightedRandom( + rand, self.coefficients_vectors[:,self.RECEIVE_CONTACT] + ) + changed = self.hosts[index_host].infectVector( + self.vectors[index_vector] + ) + + return changed
+ + +
+[docs] + def contactVectorHost(self, rand): + """Contact a (weighted) random vector and host in population. + + Carries out possible infection events from the first organism into the + second. + + Arguments: + rand (number) uniform random number from 0 to 1 to use when choosing + individuals to contact. + + Returns: + Boolean indicating whether or not the model has changed state. + """ + + index_vector,rand = self.getWeightedRandom( + rand, np.multiply( + self.coefficients_vectors[:,self.CONTACT], + self.coefficients_vectors[:,self.INFECTED] + ) + ) + index_host,rand = self.getWeightedRandom( + rand,self.coefficients_hosts[:,self.RECEIVE_CONTACT] + ) + + changed = self.vectors[index_vector].infectHost( + self.hosts[index_host] + ) + + return changed
+ + +
+[docs] + def recoverHost(self, rand): + """Remove all infections from host at this index. + + If model is protecting upon recovery, add protecion sequence as defined + by the indexes in the corresponding model parameter. Remove from + population infected list and add to healthy list. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual to recover. + """ + + index_host,rand = self.getWeightedRandom( + rand,self.coefficients_hosts[:,self.RECOVERY] + ) + + self.hosts[index_host].recover()
+ + +
+[docs] + def recoverVector(self, rand): + """Remove all infections from vector at this index. + + If model is protecting upon recovery, add protecion sequence as defined + by the indexes in the corresponding model parameter. Remove from + population infected list and add to healthy list. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual to recover. + """ + + index_vector,rand = self.getWeightedRandom( + rand,self.coefficients_vectors[:,self.RECOVERY] + ) + + self.vectors[index_vector].recover()
+ + +
+[docs] + def killHost(self, rand): + """Add host at this index to dead list, remove it from alive ones. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual to kill. + """ + + index_host,rand = self.getWeightedRandom( + rand, self.mortality_rate_host + * self.coefficients_hosts[:,self.LETHALITY] + ) + + self.dead_hosts.append(self.hosts[index_host]) + self.hosts[index_host].die()
+ + +
+[docs] + def killVector(self, rand): + """Add host at this index to dead list, remove it from alive ones. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual to kill. + """ + + index_vector,rand = self.getWeightedRandom( + rand, self.mortality_rate_vector + * self.coefficients_vectors[:,self.LETHALITY] + ) + + self.dead_vectors.append(self.vectors[index_vector]) + self.vectors[index_vector].die()
+ + +
+[docs] + def dieHost(self, rand): + """Remove host at this index from alive lists. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual to kill. + """ + + index_host,rand = self.getWeightedRandom( + rand, np.ones( self.coefficients_hosts.shape[0] ) + ) + + self.hosts[index_host].die()
+ + +
+[docs] + def dieVector(self, rand): + """Remove vector at this index from alive lists. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual to kill. + """ + + index_vector,rand = self.getWeightedRandom( + rand, np.ones( self.coefficients_vectors.shape[0] ) + ) + + self.vectors[index_vector].die()
+ + +
+[docs] + def birthHost(self, rand): + """Add host at this index to population, remove it from alive ones. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual to make parent. + """ + + index_host,rand = self.getWeightedRandom( + rand,self.coefficients_hosts[:,self.NATALITY] + ) + + self.hosts[index_host].birth(rand)
+ + +
+[docs] + def birthVector(self, rand): + """Add host at this index to population, remove it from alive ones. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual to make parent. + """ + + index_vector,rand = self.getWeightedRandom( + rand,self.coefficients_vectors[:,self.NATALITY] + ) + + self.vectors[index_vector].birth(rand)
+ + +
+[docs] + def mutateHost(self, rand): + """Mutate a single, random locus in a random pathogen in the given host. + + Creates a new genotype from a de novo mutation event in the host given. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual in which to choose a pathogen to mutate. + """ + + index_host,rand = self.getWeightedRandom( + rand,self.coefficients_hosts[:,self.MUTATION] + ) + host = self.hosts[index_host] + + host.mutate(rand)
+ + +
+[docs] + def mutateVector(self, rand): + """Mutate a single, random locus in a random pathogen in given vector. + + Creates a new genotype from a de novo mutation event in the vector + given. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual in which to choose a pathogen to mutate. + """ + + index_vector,rand = self.getWeightedRandom( + rand,self.coefficients_vectors[:,self.MUTATION] + ) + vector = self.vectors[index_vector] + + vector.mutate(rand)
+ + +
+[docs] + def recombineHost(self, rand): + """Recombine 2 random pathogen genomes at random locus in given host. + + Creates a new genotype from two random possible pathogens in the host + given. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual in which to choose pathogens to recombine. + """ + + index_host,rand = self.getWeightedRandom( + rand,self.coefficients_hosts[:,self.MUTATION] + ) + host = self.hosts[index_host] + + host.recombine(rand)
+ + +
+[docs] + def recombineVector(self, rand): + """Recombine 2 random pathogen genomes at random locus in given vector. + + Creates a new genotype from two random possible pathogens in the vector + given. + + Arguments: + rand (number): uniform random number from 0 to 1 to use when choosing + individual in which to choose pathogens to recombine. + """ + + index_vector,rand = self.getWeightedRandom( + rand,self.coefficients_vectors[:,self.MUTATION] + ) + vector = self.vectors[index_vector] + + vector.recombine(rand)
+ + +
+[docs] + def updateHostCoefficients(self): + """Updates event coefficient values in population's hosts.""" + self.coefficients_hosts = np.zeros( self.coefficients_hosts.shape ) + self.coefficients_hosts[ 1:, self.RECEIVE_CONTACT ] = 1 + self.coefficients_hosts[ 1:, self.RECEIVE_POPULATION_CONTACT ] = 1 + self.coefficients_hosts[ 1:, self.NATALITY ] = 1 + self.coefficients_hosts[ 1:, self.MIGRATION ] = 1 + + for h in self.hosts: + genomes = h.pathogens.keys() + h.pathogens = {} + h.sum_fitness = 0 + for g in genomes: + h.acquirePathogen(g)
+ + +
+[docs] + def updateVectorCoefficients(self): + """Updates event coefficient values in population's vectors.""" + self.coefficients_vectors = np.zeros( self.coefficients_vectors.shape ) + self.coefficients_vectors[ 1:, self.RECEIVE_CONTACT ] = 1 + self.coefficients_vectors[ 1:, self.RECEIVE_POPULATION_CONTACT ] = 1 + self.coefficients_vectors[ 1:, self.NATALITY ] = 1 + self.coefficients_vectors[ 1:, self.MIGRATION ] = 1 + + for v in self.vectors: + genomes = v.pathogens.keys() + v.pathogens = {} + v.sum_fitness = 0 + for g in genomes: + v.acquirePathogen(g)
+ + +
+[docs] + def healthyCoefficientRow(self): + """Returns coefficient values corresponding to a healthy host/vector.""" + + v = np.zeros((1,self.NUM_COEFFICIENTS)) + v[ 0, self.RECEIVE_CONTACT ] = 1 + v[ 0, self.RECEIVE_POPULATION_CONTACT ] = 1 + v[ 0, self.NATALITY ] = 1 + v[ 0, self.MIGRATION ] = 1 + + return v
+ + +
+[docs] + def getWeightedRandom(self, rand, r): + """Returns index of element chosen from weights and given random number. + + Since sampling from coefficient arrays which contain a dummy first row, + index is decreased by 1. + + Arguments: + rand (number): 0-1 random number. + r (numpy array): array with weights. + + Returns: + new 0-1 random number. + """ + + r_tot = np.sum( r ) + u = rand * r_tot # random uniform number between 0 and total rate + r_cum = 0 + for i,e in enumerate(r): # for every possible event, + r_cum += e # add this event's rate to cumulative rate + if u < r_cum: # if random number is under cumulative rate + return i-1, ( ( u - r_cum + e ) / e )
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/internal/setup.html b/docs/_build/html/_modules/opqua/internal/setup.html new file mode 100644 index 0000000..3d6f180 --- /dev/null +++ b/docs/_build/html/_modules/opqua/internal/setup.html @@ -0,0 +1,454 @@ + + + + + + opqua.internal.setup — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.internal.setup

+
+"""Contains class Intervention."""
+
+
+[docs] +class Setup(object): + """Class defines a setup with population parameters. + + Attributes: + id (String): key of the Setup inside model dictionary. + num_loci (int>0): length of each pathogen genome string. + possible_alleles (String or list of Strings with num_loci elements): set of possible + characters in all genome string, or at each position in genome string. + fitnessHost (callable, takes a String argument and returns a number >= 0): function + that evaluates relative fitness in head-to-head competition for different genomes + within the same host. + contactHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given host being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given host being chosen to be + the infected in a contact event, based on genome sequence of pathogen. + mortalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given host, based on genome sequence + of pathogen. + natalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given host, based on genome sequence + of pathogen. + recoveryHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given host based on genome sequence + of pathogen. + migrationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given host based on genome sequence + of pathogen. + populationContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given host based on + genome sequence of pathogen. + mutationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given host based on genome sequence + of pathogen. + recombinationHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given host based on genome + sequence of pathogen. + fitnessVector (callable, takes a String argument and returns a number >=0): function that + evaluates relative fitness in head-to-head competition for different genomes within + the same vector. + contactVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given vector being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given vector being chosen to be the + infected in a contact event, based on genome sequence of pathogen. + mortalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given vector, based on genome sequence + of pathogen. + natalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given vector, based on genome sequence + of pathogen. + recoveryVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given vector based on genome sequence + of pathogen. + migrationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given vector based on genome sequence + of pathogen. + populationContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given vector based on + genome sequence of pathogen. + mutationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given vector based on genome sequence + of pathogen. + recombinationVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given vector based on genome + sequence of pathogen. + contact_rate_host_vector (number >= 0): rate of host-vector contact events, not necessarily + transmission, assumes constant population density; evts/time. + transmission_efficiency_host_vector (float): fraction of host-vector contacts + that result in successful transmission. + transmission_efficiency_vector_host (float): fraction of vector-host contacts + that result in successful transmission. + contact_rate_host_host (number >= 0): rate of host-host contact events, not + necessarily transmission, assumes constant population density; evts/time. + transmission_efficiency_host_host (float): fraction of host-host contacts + that result in successful transmission. + mean_inoculum_host (int >= 0): mean number of pathogens that are transmitted from + a vector or host into a new host during a contact event. + mean_inoculum_vector (int >= 0) mean number of pathogens that are transmitted + from a host to a vector during a contact event. + recovery_rate_host (number >= 0): rate at which hosts clear all pathogens; + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + mortality_rate_host (number 0-1): rate at which infected hosts die from disease. + mortality_rate_vector (number 0-1): rate at which infected vectors die from + disease. + recombine_in_host (number >= 0): rate at which recombination occurs in host; + evts/time. + recombine_in_vector (number >= 0): rate at which recombination occurs in vector; + evts/time. + num_crossover_host (number >= 0): mean of a Poisson distribution modeling the number + of crossover events of host recombination events. + num_crossover_vector (number >= 0): mean of a Poisson distribution modeling the + number of crossover events of vector recombination events. + mutate_in_host (number >= 0): rate at which mutation occurs in host; evts/time. + mutate_in_vector (number >= 0): rate at which mutation occurs in vector; evts/time. + death_rate_host (number >= 0): natural host death rate; 1/time. + death_rate_vector (number >= 0): natural vector death rate; 1/time. + birth_rate_host (number >= 0): infected host birth rate; 1/time. + birth_rate_vector (number >= 0): infected vector birth rate; 1/time. + vertical_transmission_host (number 0-1): probability that a host is infected by its + parent at birth. + vertical_transmission_vector (number 0-1): probability that a vector is infected by + its parent at birth. + inherit_protection_host (number 0-1): probability that a host inherits all + protection sequences from its parent. + inherit_protection_vector (number 0-1): probability that a vector inherits all + protection sequences from its parent. + protection_upon_recovery_host (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to host protection sequences + after recovery. + protection_upon_recovery_vector (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to vector protection sequences + after recovery. + """ + + def __init__( + self, + id, + num_loci, possible_alleles, + fitnessHost, contactHost, receiveContactHost, mortalityHost, + natalityHost, recoveryHost, migrationHost, + populationContactHost, receivePopulationContactHost, + mutationHost, recombinationHost, + fitnessVector, contactVector, receiveContactVector, mortalityVector, + natalityVector,recoveryVector, migrationVector, + populationContactVector, receivePopulationContactVector, + mutationVector, recombinationVector, + contact_rate_host_vector, + transmission_efficiency_host_vector, + transmission_efficiency_vector_host, + contact_rate_host_host, + transmission_efficiency_host_host, + mean_inoculum_host, mean_inoculum_vector, + recovery_rate_host, recovery_rate_vector, + mortality_rate_host,mortality_rate_vector, + recombine_in_host, recombine_in_vector, + num_crossover_host, num_crossover_vector, + mutate_in_host, mutate_in_vector, death_rate_host,death_rate_vector, + birth_rate_host, birth_rate_vector, + vertical_transmission_host, vertical_transmission_vector, + inherit_protection_host, inherit_protection_vector, + protection_upon_recovery_host, protection_upon_recovery_vector): + """Create a new Setup. + + Arguments: + id (String): key of the Setup inside model dictionary. + num_loci (int>0): length of each pathogen genome string. + possible_alleles (String or list of Strings with num_loci elements): set of possible + characters in all genome string, or at each position in genome string. + fitnessHost (callable, takes a String argument and returns a number >= 0): function + that evaluates relative fitness in head-to-head competition for different genomes + within the same host. + contactHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given host being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given host being chosen to be + the infected in a contact event, based on genome sequence of pathogen. + mortalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given host, based on genome sequence + of pathogen. + natalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given host, based on genome sequence + of pathogen. + recoveryHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given host based on genome sequence + of pathogen. + migrationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given host based on genome sequence + of pathogen. + populationContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given host based on + genome sequence of pathogen. + mutationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given host based on genome sequence + of pathogen. + recombinationHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given host based on genome + sequence of pathogen. + fitnessVector (callable, takes a String argument and returns a number >=0): function that + evaluates relative fitness in head-to-head competition for different genomes within + the same vector. + contactVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given vector being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given vector being chosen to be the + infected in a contact event, based on genome sequence of pathogen. + mortalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given vector, based on genome sequence + of pathogen. + natalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given vector, based on genome sequence + of pathogen. + recoveryVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given vector based on genome sequence + of pathogen. + migrationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given vector based on genome sequence + of pathogen. + populationContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given vector based on + genome sequence of pathogen. + mutationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given vector based on genome sequence + of pathogen. + recombinationVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given vector based on genome + sequence of pathogen. + contact_rate_host_vector (number >= 0): rate of host-vector contact events, not necessarily + transmission, assumes constant population density; evts/time. + transmission_efficiency_host_vector (float): fraction of host-vector contacts + that result in successful transmission. + transmission_efficiency_vector_host (float): fraction of vector-host contacts + that result in successful transmission. + contact_rate_host_host (number >= 0): rate of host-host contact events, not + necessarily transmission, assumes constant population density; evts/time. + transmission_efficiency_host_host (float): fraction of host-host contacts + that result in successful transmission. + mean_inoculum_host (int >= 0): mean number of pathogens that are transmitted from + a vector or host into a new host during a contact event. + mean_inoculum_vector (int >= 0) mean number of pathogens that are transmitted + from a host to a vector during a contact event. + recovery_rate_host (number >= 0): rate at which hosts clear all pathogens; + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + mortality_rate_host (number 0-1): rate at which infected hosts die from disease. + mortality_rate_vector (number 0-1): rate at which infected vectors die from + disease. + recombine_in_host (number >= 0): rate at which recombination occurs in host; + evts/time. + recombine_in_vector (number >= 0): rate at which recombination occurs in vector; + evts/time. + num_crossover_host (number >= 0): mean of a Poisson distribution modeling the number + of crossover events of host recombination events. + num_crossover_vector (number >= 0): mean of a Poisson distribution modeling the + number of crossover events of vector recombination events. + mutate_in_host (number >= 0): rate at which mutation occurs in host; evts/time. + mutate_in_vector (number >= 0): rate at which mutation occurs in vector; evts/time. + death_rate_host (number >= 0): natural host death rate; 1/time. + death_rate_vector (number >= 0): natural vector death rate; 1/time. + birth_rate_host (number >= 0): infected host birth rate; 1/time. + birth_rate_vector (number >= 0): infected vector birth rate; 1/time. + vertical_transmission_host (number 0-1): probability that a host is infected by its + parent at birth. + vertical_transmission_vector (number 0-1): probability that a vector is infected by + its parent at birth. + inherit_protection_host (number 0-1): probability that a host inherits all + protection sequences from its parent. + inherit_protection_vector (number 0-1): probability that a vector inherits all + protection sequences from its parent. + protection_upon_recovery_host (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to host protection sequences + after recovery. + protection_upon_recovery_vector (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to vector protection sequences + after recovery. + """ + + super(Setup, self).__init__() + + self.id = id + + self.num_loci = num_loci + if isinstance(possible_alleles, list): + self.possible_alleles = possible_alleles + else: + self.possible_alleles = [possible_alleles] * self.num_loci + # possible_alleles must be a list with all available alleles for + # each position + + self.fitnessHost = fitnessHost + self.contactHost = contactHost + self.receiveContactHost = receiveContactHost + self.mortalityHost = mortalityHost + self.natalityHost = natalityHost + self.recoveryHost = recoveryHost + self.migrationHost = migrationHost + self.populationContactHost = populationContactHost + self.receivePopulationContactHost = receivePopulationContactHost + self.mutationHost = mutationHost + self.recombinationHost = recombinationHost + + self.fitnessVector = fitnessVector + self.contactVector = contactVector + self.receiveContactVector = receiveContactVector + self.mortalityVector = mortalityVector + self.natalityVector = natalityVector + self.recoveryVector = recoveryVector + self.migrationVector = migrationVector + self.populationContactVector = populationContactVector + self.receivePopulationContactVector = receivePopulationContactVector + self.mutationVector = mutationVector + self.recombinationVector = recombinationVector + + self.contact_rate_host_vector = contact_rate_host_vector + self.contact_rate_host_host = contact_rate_host_host + # contact rates assumes scaling area--large populations are equally + # dense as small ones, so contact is constant with both host and + # vector populations. If you don't want this to happen, modify the + # population's contact rate accordingly. + # Examines contacts between infected hosts and all hosts + self.transmission_efficiency_host_vector = transmission_efficiency_host_vector + self.transmission_efficiency_vector_host = transmission_efficiency_vector_host + self.transmission_efficiency_host_host = transmission_efficiency_host_host + self.mean_inoculum_host = mean_inoculum_host + self.mean_inoculum_vector = mean_inoculum_vector + self.recovery_rate_host = recovery_rate_host + self.recovery_rate_vector = recovery_rate_vector + self.mortality_rate_host = mortality_rate_host + self.mortality_rate_vector = mortality_rate_vector + + self.recombine_in_host = recombine_in_host + self.recombine_in_vector = recombine_in_vector + self.num_crossover_host = num_crossover_host + self.num_crossover_vector = num_crossover_vector + self.mutate_in_host = mutate_in_host + self.mutate_in_vector = mutate_in_vector + + self.death_rate_host = death_rate_host + self.death_rate_vector = death_rate_vector + self.birth_rate_host = birth_rate_host + self.birth_rate_vector = birth_rate_vector + + self.vertical_transmission_host = vertical_transmission_host + self.vertical_transmission_vector = vertical_transmission_vector + self.inherit_protection_host = inherit_protection_host + self.inherit_protection_vector = inherit_protection_vector + + self.protection_upon_recovery_host = protection_upon_recovery_host + self.protection_upon_recovery_vector = protection_upon_recovery_vector
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/internal/vector.html b/docs/_build/html/_modules/opqua/internal/vector.html new file mode 100644 index 0000000..ac74264 --- /dev/null +++ b/docs/_build/html/_modules/opqua/internal/vector.html @@ -0,0 +1,509 @@ + + + + + + opqua.internal.vector — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.internal.vector

+
+"""Contains class Vector."""
+
+import numpy as np
+import copy as cp
+
+
+[docs] +class Vector(object): + """Class defines vector entities to be infected by pathogens in model. + + These can infect hosts, the main entities in the model. + + Attributes: + population (Population object): the population this vector belongs to. + id (String): unique identifier for this vector within population. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). Defaults to False. + """ + + def __init__(self, population, id, slim=False): + """Create a new Vector. + + Arguments: + population (Population object): the population this vector belongs to. + id (String): unique identifier for this vector within population. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). Defaults to False. + """ + super(Vector, self).__init__() + self.id = id + + if not slim: + # if not slimmed down for data storage, save other attributes + self.pathogens = {} # Dictionary with all current infections in this + # vector, with keys=genome strings, values=fitness numbers + self.protection_sequences = [] # A list of strings this vector is + # immune to. If a pathogen's genome contains one of these + # values, it cannot infect this vector. + self.population = population + self.sum_fitness = 0 + # sum of all pathogen fitnesses within this vector + self.coefficient_index = population.coefficients_vectors.shape[0] + + population.coefficients_vectors = np.vstack( ( + population.coefficients_vectors, + population.healthyCoefficientRow() + ) ) # adds a row to coefficient array + +
+[docs] + def copyState(self): + """Returns a slimmed-down representation of the current vector state. + + Returns: + Vector object with current pathogens and protection_sequences. + """ + + copy = Vector(None, self.id, slim=True) + copy.pathogens = self.pathogens.copy() + copy.protection_sequences = self.protection_sequences.copy() + + return copy
+ + +
+[docs] + def acquirePathogen(self, genome): + """Adds given genome to this vector's pathogens. + + Modifies event coefficient matrix accordingly. + + Arguments: + genome (String): the genome to be added. + + Returns: + Boolean indicating whether or not the model has changed state. + """ + + self.pathogens[genome] = self.population.fitnessVector(genome) + old_sum_fitness = self.sum_fitness + self.sum_fitness += self.pathogens[genome] + sum_fitness_denom = self.sum_fitness if self.sum_fitness > 0 else 1 + self.population.coefficients_vectors[self.coefficient_index,:] = ( + self.population.coefficients_vectors[ + self.coefficient_index,: + ] + * old_sum_fitness / sum_fitness_denom ) + ( np.array([ + # positions dependent on class constants + 0, + self.population.contactVector(genome), + self.population.receiveContactVector(genome), + self.population.mortalityVector(genome), + self.population.natalityVector(genome), + self.population.recoveryVector(genome), + self.population.migrationVector(genome), + self.population.populationContactVector(genome), + self.population.receivePopulationContactVector(genome), + self.population.mutationVector(genome), + self.population.recombinationVector(genome) + ]) * self.pathogens[genome] / sum_fitness_denom ) + + self.population.coefficients_vectors[ + self.coefficient_index,self.population.RECOMBINATION + ] = self.population.coefficients_vectors[ + self.coefficient_index,self.population.RECOMBINATION + ] * ( len(self.pathogens) > 1 ) + + self.population.coefficients_vectors[ + self.coefficient_index,self.population.INFECTED + ] = 1 + + if self not in self.population.infected_vectors: + self.population.infected_vectors.append(self)
+ + +
+[docs] + def infectHost(self, host): + """Infect given host with a sample of this vector's pathogens. + + Each pathogen in the infector is sampled as present or absent in the + inoculum by drawing from a Poisson distribution with a mean equal to the + mean inoculum size of the organism being infected weighted by each + genome's fitness as a fraction of the total in the infector as the + probability of each trial (minimum 1 pathogen transfered). Each pathogen + present in the inoculum will be added to the infected organism, if it + does not have protection from the pathogen's genome. Fitnesses are + computed for the pathogens' genomes in the infected organism, and the + organism is included in the poplation's infected list if appropriate. + + Arguments: + vector (Vector object): the vector to be infected. + + Returns: + Boolean indicating whether or not the model has changed state. + """ + + changed = False + + genomes = list( self.pathogens.keys() ) + fitness_weights = [ + self.pathogens[g] / self.sum_fitness for g in genomes + ] + + genomes_inoculated = np.unique( np.random.choice( + genomes, p=fitness_weights, + size=max( + np.random.poisson( self.population.mean_inoculum_host ), 1 + ) + ) ) + for genome in genomes_inoculated: + if genome not in host.pathogens.keys() and not any( + [ p in genome for p in host.protection_sequences ] + ): + host.acquirePathogen(genome) + changed = True + + return changed
+ + +
+[docs] + def infectVector(self, vector): + """Infect given host with a sample of this vector's pathogens. + + Each pathogen in the infector is sampled as present or absent in the + inoculum by drawing from a Poisson distribution with a mean equal to the + mean inoculum size of the organism being infected weighted by each + genome's fitness as a fraction of the total in the infector as the + probability of each trial (minimum 1 pathogen transfered). Each pathogen + present in the inoculum will be added to the infected organism, if it + does not have protection from the pathogen's genome. Fitnesses are + computed for the pathogens' genomes in the infected organism, and the + organism is included in the poplation's infected list if appropriate. + + Arguments: + vector (Vector object): the vector to be infected. + + Returns: + Boolean indicating whether or not the model has changed state. + """ + + changed = False + + genomes = list( self.pathogens.keys() ) + fitness_weights = [ + self.pathogens[g] / self.sum_fitness for g in genomes + ] + + genomes_inoculated = np.unique( np.random.choice( + genomes, p=fitness_weights, + size=max( + np.random.poisson( self.population.mean_inoculum_vector ), 1 + ) + ) ) + for genome in genomes_inoculated: + if genome not in vector.pathogens.keys() and not any( + [ p in genome for p in vector.protection_sequences ] + ): + vector.acquirePathogen(genome) + changed = True + + return changed
+ + +
+[docs] + def recover(self): + """Remove all infections from this vector. + + If model is protecting upon recovery, add protection sequence as defined + by the indexes in the corresponding model parameter. Remove from + population infected list and add to healthy list. + """ + + if self in self.population.infected_vectors: + if self.population.protection_upon_recovery_vector: + for genome in self.pathogens: + seq = genome[ + self.population.protection_upon_recovery_vector[0] + :self.population.protection_upon_recovery_vector[1] + ] + if seq not in self.protection_sequences: + self.protection_sequences.append(seq) + + self.pathogens = {} + self.sum_fitness = 0 + self.population.coefficients_vectors[ + self.coefficient_index,: + ] = self.population.healthyCoefficientRow() + + self.population.infected_vectors.remove(self)
+ + +
+[docs] + def die(self): + """Add vector to population's dead list, remove it from alive ones.""" + + if self in self.population.infected_vectors: + self.population.infected_vectors.remove(self) + + for v in self.population.vectors[self.coefficient_index:]: + v.coefficient_index -= 1 + + self.population.coefficients_vectors = np.delete( + self.population.coefficients_vectors, self.coefficient_index, 0 + ) + self.population.vectors.remove(self)
+ + +
+[docs] + def birth(self, rand): + """Add vector to population based on this vector.""" + + vector_list = self.population.addVectors(1) + vector = vector_list[0] + + if self.population.vertical_transmission_vector > rand: + self.infectVector(vector) + + if self.population.inherit_protection_vector > np.random.random(): + vector.protection_sequences = self.protection_sequences.copy()
+ + +
+[docs] + def applyTreatment(self, resistance_seqs): + """Remove all infections with genotypes susceptible to given treatment. + + Pathogens are removed if they are missing at least one of the sequences + in resistance_seqs from their genome. Removes this organism from + population infected list and adds to healthy list if appropriate. + + Arguments: + resistance_seqs (list of Strings): contains sequences required for treatment resistance. + """ + + genomes_remaining = [] + for genome in self.pathogens: + for seq in resistance_seqs: + if seq in genome: + genomes_remaining.append(genome) + break + + if len(genomes_remaining) == 0: + self.recover() + else: + self.pathogens = {} + self.sum_fitness = 0 + self.population.coefficients_vectors[ + self.coefficient_index,: + ] = self.population.healthyCoefficientRow() + for genome in genomes_remaining: + self.acquirePathogen(genome)
+ + +
+[docs] + def mutate(self,rand): + """Mutate a single, random locus in a random pathogen. + + Creates a new genotype from a de novo mutation event. + """ + + genomes = list( self.pathogens.keys() ) + weights = [ + self.population.mutationVector(g) + * self.population.fitnessVector(g) for g in genomes + ] + index_genome,rand = self.getWeightedRandomGenome( rand,weights ) + + old_genome = genomes[index_genome] + mut_index = int( rand * self.population.num_loci ) + if old_genome[mut_index] != self.population.CHROMOSOME_SEPARATOR: + new_genome = old_genome[0:mut_index] + np.random.choice( + list(self.population.possible_alleles[mut_index]) + ) + old_genome[mut_index+1:] + if new_genome not in self.pathogens: + self.acquirePathogen(new_genome) + + if new_genome not in self.population.model.global_trackers['genomes_seen']: + self.population.model.global_trackers['genomes_seen'].append(new_genome)
+ + +
+[docs] + def recombine(self,rand): + """Recombine two random pathogen genomes at random locus. + + Creates a new genotype from two random possible pathogens. + """ + + genomes = list( self.pathogens.keys() ) + weights = [ + self.population.recombinationVector(g) + * self.population.fitnessVector(g) for g in genomes + ] + index_genome,rand = self.getWeightedRandomGenome( rand,weights ) + index_other_genome,rand = self.getWeightedRandomGenome( rand,weights ) + + if index_genome != index_other_genome: + num_evts = np.random.poisson( self.population.num_crossover_vector ) + loci = np.random.randint( 0, self.population.num_loci, num_evts ) + + children = [ genomes[index_genome], genomes[index_other_genome] ] + + for l in loci: + temp_child_0 = children[0] + children[0] = children[0][0:l] + children[1][l:] + children[1] = children[1][0:l] + temp_child_0[l:] + + children = [ + genome.split(self.population.CHROMOSOME_SEPARATOR) + for genome in children + ] + parent = np.random.randint( 0, 2, len( children[0] ) ) + + children = [ + self.population.CHROMOSOME_SEPARATOR.join([ + children[ parent[i] ][i] + for i in range( len( children[0] ) ) + ]), + self.population.CHROMOSOME_SEPARATOR.join([ + children[ not parent[i] ][i] + for i in range( len( children[1] ) ) + ]) + ] + + for new_genome in children: + if new_genome not in self.pathogens: + self.acquirePathogen(new_genome) + + if new_genome not in self.population.model.global_trackers['genomes_seen']: + self.population.model.global_trackers['genomes_seen'].append(new_genome)
+ + +
+[docs] + def getWeightedRandomGenome(self, rand, r): + """Returns index of element chosen from weights and given random number. + + Arguments: + rand (number): 0-1 random number. + r (numpy array): array with weights. + + Returns: + new 0-1 random number. + """ + + r_tot = np.sum( r ) + u = rand * r_tot # random uniform number between 0 and total rate + r_cum = 0 + for i,e in enumerate(r): # for every possible event, + r_cum += e # add this event's rate to cumulative rate + if u < r_cum: # if random number is under cumulative rate + return i, ( ( u - r_cum + e ) / e )
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/opqua/model.html b/docs/_build/html/_modules/opqua/model.html new file mode 100644 index 0000000..d12319f --- /dev/null +++ b/docs/_build/html/_modules/opqua/model.html @@ -0,0 +1,2230 @@ + + + + + + opqua.model — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for opqua.model

+
+"""Contains class Model; main class user interacts with."""
+
+import numpy as np
+import pandas as pd
+import textdistance as td
+import itertools as it
+import copy as cp
+import seaborn as sns
+import joblib as jl
+
+from opqua.internal.host import Host
+from opqua.internal.vector import Vector
+from opqua.internal.population import Population
+from opqua.internal.setup import Setup
+from opqua.internal.intervention import Intervention
+from opqua.internal.gillespie import Gillespie
+from opqua.internal.data import saveToDf, getPathogens, getProtections, \
+    getPathogenDistanceHistoryDf
+from opqua.internal.plot import populationsPlot, compartmentPlot, \
+    compositionPlot, clustermap
+
+
+[docs] +class Model(object): + """Class defines a Model. + + This is the main class that the user interacts with. + + The Model class contains populations, setups, and interventions to be used + in simulation. Also contains groups of hosts/vectors for manipulations and + stores model history as snapshots for each time point. + + **CONSTANTS:** + + - `CB_PALETTE`: a colorblind-friendly 8-color color scheme. + - `DEF_CMAP`: a colormap object for Seaborn plots. + + Attributes: + populations: dictionary with keys=population IDs, values=Population + objects. + setups: dictionary with keys=setup IDs, values=Setup objects. + interventions: contains model interventions in the order they will occur. + groups: dictionary with keys=group IDs, values=lists of hosts/vectors. + history: dictionary with keys=time values, values=Model objects that + are snapshots of Model at that timepoint. + t_var: variable that tracks time in simulations. + """ + + ### CONSTANTS ### + ### Color scheme constants ### + CB_PALETTE = ["#E69F00", "#56B4E9", "#009E73", + "#F0E442", "#0072B2", "#D55E00", "#CC79A7", "#999999"] + # www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette + # http://jfly.iam.u-tokyo.ac.jp/color/ + + DEF_CMAP = sns.cubehelix_palette( + start=.5, rot=-.75, as_cmap=True, reverse=True + ) + + + ### CLASS CONSTRUCTOR ### + + def __init__(self): + """Create a new Model object.""" + super(Model, self).__init__() + self.populations = {} + # dictionary with keys=population IDs, values=Population objects + self.setups = {} + # dictionary with keys=setup IDs, values=Setup objects + self.interventions = [] + # contains model interventions in the order they will occur + self.groups = {} + # dictionary with keys=group IDs, values=lists of hosts/vectors + self.history = {} + # dictionary with keys=time values, values=Model objects that are + # snapshots of Model at that timepoint + self.global_trackers = { + # dictionary keeping track of some global indicators over all + # the course of the simulation + 'num_events' : { id:0 for id in Gillespie.EVENT_IDS.values() }, + # tracks the number of each kind of event in the simulation + 'last_event_time' : 0, + # time point at which the last event in the simulation happened + 'genomes_seen' : [], + # list of all unique genomes that have appeared in the + # simulation + 'custom_conditions' : {} + # dictionary with keys=ID of custom condition, values=lists of + # times; every time True is returned by a function in + # custom_condition_trackers, the simulation time will be stored + # under the corresponding ID inside + # global_trackers['custom_condition'] + } + self.custom_condition_trackers = {} + # dictionary with keys=ID of custom condition, values=functions that + # take a Model object as argument and return True or False; every + # time True is returned by a function in custom_condition_trackers, + # the simulation time will be stored under the corresponding ID + # inside global_trackers['custom_condition'] + + self.t_var = 0 # used as time variable during simulation + + ### MODEL METHODS ### + + ### Model initialization and simulation: ### + +
+[docs] + def setRandomSeed(self, seed): + """Set random seed for numpy random number generator. + + Arguments: + seed (int): int for the random seed to be passed to numpy. + """ + + np.random.seed(seed)
+ + +
+[docs] + def newSetup( + self, name, preset=None, + num_loci=None, possible_alleles=None, + fitnessHost=None, contactHost=None, receiveContactHost=None, + mortalityHost=None, natalityHost=None, + recoveryHost=None, migrationHost=None, + populationContactHost=None, receivePopulationContactHost=None, + mutationHost=None, + recombinationHost=None, fitnessVector=None, + contactVector=None, receiveContactVector=None, mortalityVector=None, + natalityVector=None, recoveryVector=None, + migrationVector=None, populationContactVector=None, + receivePopulationContactVector=None, + mutationVector=None, recombinationVector=None, + contact_rate_host_vector=None, + transmission_efficiency_host_vector=None, + transmission_efficiency_vector_host=None, + contact_rate_host_host=None, + transmission_efficiency_host_host=None, + mean_inoculum_host=None, mean_inoculum_vector=None, + recovery_rate_host=None, recovery_rate_vector=None, + mortality_rate_host=None, mortality_rate_vector=None, + recombine_in_host=None, recombine_in_vector=None, + num_crossover_host=None, num_crossover_vector=None, + mutate_in_host=None, mutate_in_vector=None, + death_rate_host=None, death_rate_vector=None, + birth_rate_host=None, birth_rate_vector=None, + vertical_transmission_host=None, vertical_transmission_vector=None, + inherit_protection_host=None, inherit_protection_vector=None, + protection_upon_recovery_host=None, + protection_upon_recovery_vector=None): + """Create a new `Setup`, save it in setups dict under given name. + + Two preset setups exist: "vector-borne" and "host-host". You may select + one of the preset setups with the preset keyword argument and then + modify individual parameters with additional keyword arguments, without + having to specify all of them. + + **"host-host":** + + - `num_loci` = 10 + - `possible_alleles` = 'ATCG' + - `fitnessHost` = (lambda g: 1) + - `contactHost` = (lambda g: 1) + - `receiveContactHost` = (lambda g: 1) + - `mortalityHost` = (lambda g: 1) + - `natalityHost` = (lambda g: 1) + - `recoveryHost` = (lambda g: 1) + - `migrationHost` = (lambda g: 1) + - `populationContactHost` = (lambda g: 1) + - `receivePopulationContactHost` = (lambda g: 1) + - `mutationHost` = (lambda g: 1) + - `recombinationHost` = (lambda g: 1) + - `fitnessVector` = (lambda g: 1) + - `contactVector` = (lambda g: 1) + - `receiveContactVector` = (lambda g: 1) + - `mortalityVector` = (lambda g: 1) + - `natalityVector` = (lambda g: 1) + - `recoveryVector` = (lambda g: 1) + - `migrationVector` = (lambda g: 1) + - `populationContactVector` = (lambda g: 1) + - `receivePopulationContactVector` = (lambda g: 1) + - `mutationVector` = (lambda g: 1) + - `recombinationVector` = (lambda g: 1) + - `contact_rate_host_vector` = 0 + - `transmission_efficiency_host_vector` = 0 + - `transmission_efficiency_vector_host` = 0 + - `contact_rate_host_host` = 2e-1 + - `transmission_efficiency_host_host` = 1 + - `mean_inoculum_host` = 1e1 + - `mean_inoculum_vector` = 0 + - `recovery_rate_host` = 1e-1 + - `recovery_rate_vector` = 0 + - `mortality_rate_host` = 0 + - `mortality_rate_vector` = 0 + - `recombine_in_host` = 1e-4 + - `recombine_in_vector` = 0 + - `num_crossover_host` = 1 + - `num_crossover_vector` = 0 + - `mutate_in_host` = 1e-6 + - `mutate_in_vector` = 0 + - `death_rate_host` = 0 + - `death_rate_vector` = 0 + - `birth_rate_host` = 0 + - `birth_rate_vector` = 0 + - `vertical_transmission_host` = 0 + - `vertical_transmission_vector` = 0 + - `inherit_protection_host` = 0 + - `inherit_protection_vector` = 0 + - `protection_upon_recovery_host` = None + - `protection_upon_recovery_vector` = None + + **"vector-borne":** + + - `num_loci` = 10 + - `possible_alleles` = 'ATCG' + - `fitnessHost` = (lambda g: 1) + - `contactHost` = (lambda g: 1) + - `receiveContactHost` = (lambda g: 1) + - `mortalityHost` = (lambda g: 1) + - `natalityHost` = (lambda g: 1) + - `recoveryHost` = (lambda g: 1) + - `migrationHost` = (lambda g: 1) + - `populationContactHost` = (lambda g: 1) + - `receivePopulationContactHost` = (lambda g: 1) + - `mutationHost` = (lambda g: 1) + - `recombinationHost` = (lambda g: 1) + - `fitnessVector` = (lambda g: 1) + - `contactVector` = (lambda g: 1) + - `receiveContactVector` = (lambda g: 1) + - `mortalityVector` = (lambda g: 1) + - `natalityVector` = (lambda g: 1) + - `recoveryVector` = (lambda g: 1) + - `migrationVector` = (lambda g: 1) + - `populationContactVector` = (lambda g: 1) + - `receivePopulationContactVector` = (lambda g: 1) + - `mutationVector` = (lambda g: 1) + - `recombinationVector` = (lambda g: 1) + - `contact_rate_host_vector` = 2e-1 + - `transmission_efficiency_host_vector` = 1 + - `transmission_efficiency_vector_host` = 1 + - `contact_rate_host_host` = 0 + - `transmission_efficiency_host_host` = 0 + - `mean_inoculum_host` = 1e2 + - `mean_inoculum_vector` = 1e0 + - `recovery_rate_host` = 1e-1 + - `recovery_rate_vector` = 1e-1 + - `mortality_rate_host` = 0 + - `mortality_rate_vector` = 0 + - `recombine_in_host` = 0 + - `recombine_in_vector` = 1e-4 + - `num_crossover_host` = 0 + - `num_crossover_vector` = 1 + - `mutate_in_host` = 1e-6 + - `mutate_in_vector` = 0 + - `death_rate_host` = 0 + - `death_rate_vector` = 0 + - `birth_rate_host` = 0 + - `birth_rate_vector` = 0 + - `vertical_transmission_host` = 0 + - `vertical_transmission_vector` = 0 + - `inherit_protection_host` = 0 + - `inherit_protection_vector` = 0 + - `protection_upon_recovery_host` = None + - `protection_upon_recovery_vector` = None + + Arguments: + name (String): name of setup to be used as a key in model setups dictionary. + + Keyword arguments: + preset (None or String): preset setup to be used: "vector-borne" or "host-host", if + None, must define all other keyword arguments. Defaults to None. + num_loci (int>0): length of each pathogen genome string. + possible_alleles (String or list of Strings with num_loci elements): set of possible + characters in all genome string, or at each position in genome string. + fitnessHost (callable, takes a String argument and returns a number >= 0): function + that evaluates relative fitness in head-to-head competition for different genomes + within the same host. + contactHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given host being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given host being chosen to be + the infected in a contact event, based on genome sequence of pathogen. + mortalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given host, based on genome sequence + of pathogen. + natalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given host, based on genome sequence + of pathogen. + recoveryHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given host based on genome sequence + of pathogen. + migrationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given host based on genome sequence + of pathogen. + populationContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given host based on + genome sequence of pathogen. + mutationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given host based on genome sequence + of pathogen. + recombinationHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given host based on genome + sequence of pathogen. + fitnessVector (callable, takes a String argument and returns a number >=0): function that + evaluates relative fitness in head-to-head competition for different genomes within + the same vector. + contactVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given vector being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given vector being chosen to be the + infected in a contact event, based on genome sequence of pathogen. + mortalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given vector, based on genome sequence + of pathogen. + natalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given vector, based on genome sequence + of pathogen. + recoveryVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given vector based on genome sequence + of pathogen. + migrationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given vector based on genome sequence + of pathogen. + populationContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given vector based on + genome sequence of pathogen. + mutationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given vector based on genome sequence + of pathogen. + recombinationVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given vector based on genome + sequence of pathogen. + contact_rate_host_vector (number >= 0): rate of host-vector contact events, not necessarily + transmission, assumes constant population density; evts/time. + transmission_efficiency_host_vector (float): fraction of host-vector contacts + that result in successful transmission. + transmission_efficiency_vector_host (float): fraction of vector-host contacts + that result in successful transmission. + contact_rate_host_host (number >= 0): rate of host-host contact events, not + necessarily transmission, assumes constant population density; evts/time. + transmission_efficiency_host_host (float): fraction of host-host contacts + that result in successful transmission. + mean_inoculum_host (int >= 0): mean number of pathogens that are transmitted from + a vector or host into a new host during a contact event. + mean_inoculum_vector (int >= 0) mean number of pathogens that are transmitted + from a host to a vector during a contact event. + recovery_rate_host (number >= 0): rate at which hosts clear all pathogens; + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + mortality_rate_host (number 0-1): rate at which infected hosts die from disease. + mortality_rate_vector (number 0-1): rate at which infected vectors die from + disease. + recombine_in_host (number >= 0): rate at which recombination occurs in host; + evts/time. + recombine_in_vector (number >= 0): rate at which recombination occurs in vector; + evts/time. + num_crossover_host (number >= 0): mean of a Poisson distribution modeling the number + of crossover events of host recombination events. + num_crossover_vector (number >= 0): mean of a Poisson distribution modeling the + number of crossover events of vector recombination events. + mutate_in_host (number >= 0): rate at which mutation occurs in host; evts/time. + mutate_in_vector (number >= 0): rate at which mutation occurs in vector; evts/time. + death_rate_host (number >= 0): natural host death rate; 1/time. + death_rate_vector (number >= 0): natural vector death rate; 1/time. + birth_rate_host (number >= 0): infected host birth rate; 1/time. + birth_rate_vector (number >= 0): infected vector birth rate; 1/time. + vertical_transmission_host (number 0-1): probability that a host is infected by its + parent at birth. + vertical_transmission_vector (number 0-1): probability that a vector is infected by + its parent at birth. + inherit_protection_host (number 0-1): probability that a host inherits all + protection sequences from its parent. + inherit_protection_vector (number 0-1): probability that a vector inherits all + protection sequences from its parent. + protection_upon_recovery_host (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to host protection sequences + after recovery. + protection_upon_recovery_vector (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to vector protection sequences + after recovery. + """ + + if preset == "vector-borne": + num_loci = 10 if num_loci is None else num_loci + possible_alleles = \ + 'ATCG' if possible_alleles is None else possible_alleles + fitnessHost = (lambda g: 1) if fitnessHost is None else fitnessHost + contactHost = (lambda g: 1) if contactHost is None else contactHost + receiveContactHost = \ + (lambda g: 1) if receiveContactHost is None else receiveContactHost + mortalityHost = \ + (lambda g: 1) if mortalityHost is None else mortalityHost + natalityHost = \ + (lambda g: 1) if natalityHost is None else natalityHost + recoveryHost = \ + (lambda g: 1) if recoveryHost is None else recoveryHost + migrationHost = \ + (lambda g: 1) if migrationHost is None else migrationHost + populationContactHost = \ + (lambda g: 1) if populationContactHost is None else populationContactHost + receivePopulationContactHost = \ + (lambda g: 1) if receivePopulationContactHost is None else receivePopulationContactHost + mutationHost = \ + (lambda g: 1) if mutationHost is None else mutationHost + recombinationHost = \ + (lambda g: 1) if recombinationHost is None else recombinationHost + fitnessVector = \ + (lambda g: 1) if fitnessVector is None else fitnessVector + contactVector = \ + (lambda g: 1) if contactVector is None else contactVector + receiveContactVector = \ + (lambda g: 1) if receiveContactVector is None else receiveContactVector + mortalityVector = \ + (lambda g: 1) if mortalityVector is None else mortalityVector + natalityVector = \ + (lambda g: 1) if natalityVector is None else natalityVector + recoveryVector = \ + (lambda g: 1) if recoveryVector is None else recoveryVector + migrationVector = \ + (lambda g: 1) if migrationVector is None else migrationVector + populationContactVector = \ + (lambda g: 1) if populationContactVector is None else populationContactVector + receivePopulationContactVector = \ + (lambda g: 1) if receivePopulationContactVector is None else receivePopulationContactVector + mutationVector = \ + (lambda g: 1) if mutationVector is None else mutationVector + recombinationVector = \ + (lambda g: 1) if recombinationVector is None else recombinationVector + contact_rate_host_vector = \ + 2e-1 if contact_rate_host_vector is None \ + else contact_rate_host_vector + transmission_efficiency_host_vector = \ + 1 if transmission_efficiency_host_vector is None \ + else transmission_efficiency_host_vector + transmission_efficiency_vector_host = \ + 1 if transmission_efficiency_vector_host is None \ + else transmission_efficiency_vector_host + contact_rate_host_host = \ + 0 if contact_rate_host_host is None else contact_rate_host_host + transmission_efficiency_host_host = \ + 0 if transmission_efficiency_host_host is None \ + else transmission_efficiency_host_host + mean_inoculum_host = \ + 1e2 if mean_inoculum_host is None else mean_inoculum_host + mean_inoculum_vector = \ + 1 if mean_inoculum_vector is None else mean_inoculum_vector + recovery_rate_host = \ + 1e-1 if recovery_rate_host is None else recovery_rate_host + recovery_rate_vector = \ + 1e-1 if recovery_rate_vector is None else recovery_rate_vector + mortality_rate_host = \ + 0 if mortality_rate_host is None else mortality_rate_host + mortality_rate_vector = \ + 0 if mortality_rate_vector is None else mortality_rate_vector + recombine_in_host = \ + 0 if recombine_in_host is None else recombine_in_host + recombine_in_vector = \ + 1e-4 if recombine_in_vector is None else recombine_in_vector + num_crossover_host = 0 \ + if num_crossover_host is None else num_crossover_host + num_crossover_vector = \ + 1 if num_crossover_vector is None else num_crossover_vector + mutate_in_host = 1e-6 if mutate_in_host is None else mutate_in_host + mutate_in_vector = \ + 0 if mutate_in_vector is None else mutate_in_vector + death_rate_host = 0 if death_rate_host is None else death_rate_host + death_rate_vector = \ + 0 if death_rate_vector is None else death_rate_vector + birth_rate_host = 0 if birth_rate_host is None else birth_rate_host + birth_rate_vector = \ + 0 if birth_rate_vector is None else birth_rate_vector + vertical_transmission_host = \ + 0 if vertical_transmission_host is None \ + else vertical_transmission_host + vertical_transmission_vector = \ + 0 if vertical_transmission_vector is None \ + else vertical_transmission_vector + inherit_protection_host = \ + 0 if inherit_protection_host is None \ + else inherit_protection_host + inherit_protection_vector = \ + 0 if inherit_protection_vector is None \ + else inherit_protection_vector + protection_upon_recovery_host = protection_upon_recovery_host + protection_upon_recovery_vector = protection_upon_recovery_vector + + elif preset == "host-host": + num_loci = 10 if num_loci is None else num_loci + possible_alleles = \ + 'ATCG' if possible_alleles is None else possible_alleles + fitnessHost = (lambda g: 1) if fitnessHost is None else fitnessHost + contactHost = (lambda g: 1) if contactHost is None else contactHost + receiveContactHost = \ + (lambda g: 1) if receiveContactHost is None else receiveContactHost + mortalityHost = \ + (lambda g: 1) if mortalityHost is None else mortalityHost + natalityHost = \ + (lambda g: 1) if natalityHost is None else natalityHost + recoveryHost = \ + (lambda g: 1) if recoveryHost is None else recoveryHost + migrationHost = \ + (lambda g: 1) if migrationHost is None else migrationHost + populationContactHost = \ + (lambda g: 1) if populationContactHost is None else populationContactHost + receivePopulationContactHost = \ + (lambda g: 1) if receivePopulationContactHost is None else receivePopulationContactHost + mutationHost = \ + (lambda g: 1) if mutationHost is None else mutationHost + recombinationHost = \ + (lambda g: 1) if recombinationHost is None else recombinationHost + fitnessVector = \ + (lambda g: 1) if fitnessVector is None else fitnessVector + contactVector = \ + (lambda g: 1) if contactVector is None else contactVector + receiveContactVector = \ + (lambda g: 1) if receiveContactVector is None else receiveContactVector + mortalityVector = \ + (lambda g: 1) if mortalityVector is None else mortalityVector + natalityVector = \ + (lambda g: 1) if natalityVector is None else natalityVector + recoveryVector = \ + (lambda g: 1) if recoveryVector is None else recoveryVector + mortality_rate_host = \ + 0 if mortality_rate_host is None else mortality_rate_host + mortality_rate_vector = \ + 0 if mortality_rate_vector is None else mortality_rate_vector + migrationVector = \ + (lambda g: 1) if migrationVector is None else migrationVector + populationContactVector = \ + (lambda g: 1) if populationContactVector is None else populationContactVector + receivePopulationContactVector = \ + (lambda g: 1) if receivePopulationContactVector is None else receivePopulationContactVector + mutationVector = \ + (lambda g: 1) if mutationVector is None else mutationVector + recombinationVector = \ + (lambda g: 1) if recombinationVector is None else recombinationVector + contact_rate_host_vector = \ + 0 if contact_rate_host_vector is None \ + else contact_rate_host_vector + transmission_efficiency_host_vector = \ + 0 if transmission_efficiency_host_vector is None \ + else transmission_efficiency_host_vector + transmission_efficiency_vector_host = \ + 0 if transmission_efficiency_vector_host is None \ + else transmission_efficiency_vector_host + contact_rate_host_host = \ + 2e-1 if contact_rate_host_host is None \ + else contact_rate_host_host + transmission_efficiency_host_host = \ + 1 if transmission_efficiency_host_host is None \ + else transmission_efficiency_host_host + mean_inoculum_host = \ + 1e1 if mean_inoculum_host is None else mean_inoculum_host + mean_inoculum_vector = \ + 0 if mean_inoculum_vector is None else mean_inoculum_vector + recovery_rate_host = \ + 1e-1 if recovery_rate_host is None else recovery_rate_host + recovery_rate_vector = \ + 0 if recovery_rate_vector is None else recovery_rate_vector + recombine_in_host = \ + 1e-4 if recombine_in_host is None else recombine_in_host + recombine_in_vector = \ + 0 if recombine_in_vector is None else recombine_in_vector + num_crossover_host = 1 \ + if num_crossover_host is None else num_crossover_host + num_crossover_vector = \ + 0 if num_crossover_vector is None else num_crossover_vector + mutate_in_host = \ + 1e-6 if mutate_in_host is None else mutate_in_host + mutate_in_vector = \ + 0 if mutate_in_vector is None else mutate_in_vector + death_rate_host = \ + 0 if death_rate_host is None else death_rate_host + death_rate_vector = \ + 0 if death_rate_vector is None else death_rate_vector + birth_rate_host = 0 if birth_rate_host is None else birth_rate_host + birth_rate_vector = \ + 0 if birth_rate_vector is None else birth_rate_vector + vertical_transmission_host = \ + 0 if vertical_transmission_host is None \ + else vertical_transmission_host + vertical_transmission_vector = \ + 0 if vertical_transmission_vector is None \ + else vertical_transmission_vector + inherit_protection_host = \ + 0 if inherit_protection_host is None \ + else inherit_protection_host + inherit_protection_vector = \ + 0 if inherit_protection_vector is None \ + else inherit_protection_vector + protection_upon_recovery_host = protection_upon_recovery_host + protection_upon_recovery_vector = protection_upon_recovery_vector + + self.setups[name] = Setup( + name, + num_loci, possible_alleles, + fitnessHost, contactHost, receiveContactHost, mortalityHost, + natalityHost, recoveryHost, migrationHost, + populationContactHost, receivePopulationContactHost, + mutationHost, recombinationHost, + fitnessVector, contactVector, receiveContactVector, mortalityVector, + natalityVector,recoveryVector, migrationVector, + populationContactVector, receivePopulationContactVector, + mutationVector, recombinationVector, + contact_rate_host_vector, + transmission_efficiency_host_vector, + transmission_efficiency_vector_host, + contact_rate_host_host, + transmission_efficiency_host_host, + mean_inoculum_host, mean_inoculum_vector, + recovery_rate_host, recovery_rate_vector, + mortality_rate_host,mortality_rate_vector, + recombine_in_host, recombine_in_vector, + num_crossover_host, num_crossover_vector, + mutate_in_host, mutate_in_vector, death_rate_host,death_rate_vector, + birth_rate_host, birth_rate_vector, + vertical_transmission_host, vertical_transmission_vector, + inherit_protection_host, inherit_protection_vector, + protection_upon_recovery_host, protection_upon_recovery_vector + )
+ + +
+[docs] + def newIntervention(self, time, method_name, args): + """Create a new intervention to be carried out at a specific time. + + Arguments: + time (number >= 0): time at which intervention will take place. + method_name (String): intervention to be carried out, must correspond to the + name of a method of the `Model` object. + args (array-like): contains arguments for function in positinal order. + """ + + self.interventions.append( Intervention(time, method_name, args, self) )
+ + +
+[docs] + def addCustomConditionTracker(self, condition_id, trackerFunction): + """Add a function to track occurrences of custom events in simulation. + + Adds function `trackerFunction` to dictionary `custom_condition_trackers` + under key `condition_id`. Function `trackerFunction` will be executed at + every event in the simulation. Every time True is returned, + the simulation time will be stored under the corresponding `condition_id` + key inside `global_trackers['custom_condition']`. + + Arguments: + condition_id (String): ID of this specific condition- + trackerFunction (callable): function that take a `Model` object as argument + and returns True or False. + """ + + self.custom_condition_trackers['condition_id'] = trackerFunction + self.global_trackers['custom_conditions']['condition_id'] = []
+ + +
+[docs] + def run(self,t0,tf,time_sampling=0,host_sampling=0,vector_sampling=0): + """Simulate model for a specified time between two time points. + + Simulates a time series using the Gillespie algorithm. + + Saves a dictionary containing model state history, with `keys=times` and + `values=Model` objects with model snapshot at that time point under this + model's history attribute. + + Arguments: + t0 (number >= 0): initial time point to start simulation at. + tf (number >= 0): initial time point to end simulation at. + + Keyword arguments: + time_sampling (int): how many events to skip before saving a snapshot of the + system state (saves all by default), if <0, saves only final state. Defaults to 0. + host_sampling (int >= 0): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int >= 0): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. + """ + + sim = Gillespie(self) + self.history = sim.run( + t0, tf, time_sampling, host_sampling, vector_sampling + )
+ + +
+[docs] + def runReplicates( + self,t0,tf,replicates,host_sampling=0,vector_sampling=0,n_cores=0, + **kwargs): + """Simulate replicates of a model, save only end results. + + Simulates replicates of a time series using the Gillespie algorithm. + + Saves a dictionary containing model end state state, with `keys=times` and + `values=Model` objects with model snapshot. The time is the final timepoint. + + Arguments: + t0 (number >= 0): initial time point to start simulation at. + tf (number >= 0): initial time point to end simulation at. + replicates (int >= 1): how many replicates to simulate. + + Keyword arguments: + host_sampling (int >= 0): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int >= 0): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. + n_cores (int >= 0): number of cores to parallelize file export across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. + + Returns: + List of `Model` objects with the final snapshots. + """ + + if not n_cores: + n_cores = jl.cpu_count() + + print('Starting parallel simulations...') + + def run(sim_num): + model = self.deepCopy() + sim = Gillespie(model) + mod = sim.run( + t0,tf,time_sampling=-1, + host_sampling=host_sampling,vector_sampling=vector_sampling + )[tf] + mod.history = { tf:mod } + return mod + + return jl.Parallel(n_jobs=n_cores, verbose=10, **kwargs) ( + jl.delayed( run ) (_) for _ in range(replicates) + )
+ + +
+[docs] + def runParamSweep( + self,t0,tf,setup_id, + param_sweep_dic={}, + host_population_size_sweep={}, vector_population_size_sweep={}, + host_migration_sweep_dic={}, vector_migration_sweep_dic={}, + host_host_population_contact_sweep_dic={}, + host_vector_population_contact_sweep_dic={}, + vector_host_population_contact_sweep_dic={}, + replicates=1,host_sampling=0,vector_sampling=0,n_cores=0, + **kwargs): + """Simulate a parameter sweep with a model, save only end results. + + Simulates variations of a time series using the Gillespie algorithm. + + Saves a dictionary containing model end state state, with `keys=times` and + `values=Model` objects with model snapshot. The time is the final + timepoint. + + Arguments: + t0 (number >= 0): initial time point to start simulation at. + tf (number >= 0): initial time point to end simulation at. + setup_id (String): ID of setup to be assigned. + + Keyword arguments: + param_sweep_dic -- dictionary with keys=parameter names (attributes of + Setup), values=list of values for parameter (list, class of elements + depends on parameter) + host_population_size_sweep -- dictionary with keys=population IDs + (Strings), values=list of values with host population sizes + (must be greater than original size set for each population, list of + numbers) + vector_population_size_sweep -- dictionary with keys=population IDs + (Strings), values=list of values with vector population sizes + (must be greater than original size set for each population, list of + numbers) + host_migration_sweep_dic -- dictionary with keys=population IDs of + origin and destination, separated by a colon ';' (Strings), + values=list of values (list of numbers) + vector_migration_sweep_dic -- dictionary with keys=population IDs of + origin and destination, separated by a colon ';' (Strings), + values=list of values (list of numbers) + host_host_population_contact_sweep_dic -- dictionary with + keys=population IDs of origin and destination, separated by a colon + ';' (Strings), values=list of values (list of numbers) + host_vector_population_contact_sweep_dic -- dictionary with + keys=population IDs of origin and destination, separated by a colon + ';' (Strings), values=list of values (list of numbers) + vector_host_population_contact_sweep_dic -- dictionary with + keys=population IDs of origin and destination, separated by a colon + ';' (Strings), values=list of values (list of numbers) + replicates -- how many replicates to simulate (int >= 1) + host_sampling -- how many hosts to skip before saving one in a snapshot + of the system state (saves all by default) (int >= 0, default 0) + vector_sampling -- how many vectors to skip before saving one in a + snapshot of the system state (saves all by default) + (int >= 0, default 0) + n_cores -- number of cores to parallelize file export across, if 0, all + cores available are used (default 0; int >= 0) + **kwargs -- additional arguents for joblib multiprocessing + + Returns: + DataFrame with parameter combinations, list of Model objects with the + final snapshots. + """ + + if not n_cores: + n_cores = jl.cpu_count() + + for p in host_population_size_sweep: + param_sweep_dic['pop_size_host:'+p] = host_population_size_sweep[p] + + for p in vector_population_size_sweep: + param_sweep_dic['pop_size_vector:'+p] = vector_population_size_sweep[p] + + for p in host_migration_sweep_dic: + param_sweep_dic['migrate_host:'+p] = host_migration_sweep_dic[p] + + for p in vector_migration_sweep_dic: + param_sweep_dic['migrate_vector:'+p] = vector_migration_sweep_dic[p] + + for p in host_host_population_contact_sweep_dic: + param_sweep_dic['population_contact_host_host:'+p] \ + = host_host_population_contact_sweep_dic[p] + + for p in host_vector_population_contact_sweep_dic: + param_sweep_dic['population_contact_host_vector:'+p] \ + = host_vector_population_contact_sweep_dic[p] + + for p in vector_host_population_contact_sweep_dic: + param_sweep_dic['population_contact_vector_host:'+p] \ + = vector_host_population_contact_sweep_dic[p] + + if len(param_sweep_dic) == 0: + raise ValueError( + 'param_sweep_dic, host_migration_sweep_dic, vector_migration_sweep_dic, host_host_population_contact_sweep_dic, host_vector_population_contact_sweep_dic, and vector_host_population_contact_sweep_dic cannot all be empty in runParamSweep()' + ) + + params = param_sweep_dic.keys() + value_lists = [ param_sweep_dic[param] for param in params ] + combinations = list( it.product( *value_lists ) ) * replicates + + param_df = pd.DataFrame(combinations) + param_df.columns = params + results = {} + + print('Starting parallel simulations...') + + def run(param_values): + model = self.deepCopy() + for i,param_name in enumerate(params): + if ':' in param_name: + pops = param_name.split(':')[1].split(';') + if 'pop_size_host:' in param_name: + pop = cp.deepcopy( model.populations[pops[0]] ) + add_hosts = param_values[i] - len(pop.hosts) + if add_hosts < 0: + raise ValueError( + 'Value ' + str(param_values[i]) + ' assigned to ' + pops[0] + ' in host_population_size_sweep must be greater or equal to the population\'s original number of hosts.' + ) + else: + pop.addHosts(add_hosts) + model.populations[pops[0]] = pop + pop.model = model + + elif 'pop_size_vector:' in param_name: + pop = cp.deepcopy( model.populations[pops[0]] ) + add_vectors = param_values[i] - len(pop.vectors) + if add_vectors < 0: + raise ValueError( + 'Values ' + str(param_values[i]) + ' assigned to ' + pops[0] + ' in vector_population_size_sweep must be greater or equal to the population\'s original number of vectors.' + ) + else: + pop.addVectors(add_vectors) + model.populations[pops[0]] = pop + pop.model = model + + elif 'migrate_host:' in param_name: + new_pops = [ + cp.deepcopy( model.populations[pops[0]] ), + cp.deepcopy( model.populations[pops[1]] ) + ] + new_pops[0].model = model + new_pops[1].model = model + model.populations[pops[0]] = new_pops[0] + model.populations[pops[1]] = new_pops[1] + model.linkPopulationsHostMigration( + new_pops[0],new_pops[1],param_values[i] + ) + elif 'migrate_vector:' in param_name: + new_pops = [ + cp.deepcopy( model.populations[pops[0]] ), + cp.deepcopy( model.populations[pops[1]] ) + ] + new_pops[0].model = model + new_pops[1].model = model + model.populations[pops[0]] = new_pops[0] + model.populations[pops[1]] = new_pops[1] + model.linkPopulationsVectorMigration( + pops[0],pops[1],param_values[i] + ) + elif 'population_contact_host_host:' in param_name: + new_pops = [ + cp.deepcopy( model.populations[pops[0]] ), + cp.deepcopy( model.populations[pops[1]] ) + ] + new_pops[0].model = model + new_pops[1].model = model + model.populations[pops[0]] = new_pops[0] + model.populations[pops[1]] = new_pops[1] + model.linkPopulationsHostHostContact( + pops[0],pops[1],param_values[i] + ) + model.linkPopulationsHostHostContact( + pops[1],pops[0],param_values[i] + ) + elif 'population_contact_host_vector:' in param_name: + new_pops = [ + cp.deepcopy( model.populations[pops[0]] ), + cp.deepcopy( model.populations[pops[1]] ) + ] + new_pops[0].model = model + new_pops[1].model = model + model.populations[pops[0]] = new_pops[0] + model.populations[pops[1]] = new_pops[1] + model.linkPopulationsHostVectorContact( + pops[0],pops[1],param_values[i] + ) + model.linkPopulationsHostVectorContact( + pops[1],pops[0],param_values[i] + ) + elif 'population_contact_vector_host:' in param_name: + new_pops = [ + cp.deepcopy( model.populations[pops[0]] ), + cp.deepcopy( model.populations[pops[1]] ) + ] + new_pops[0].model = model + new_pops[1].model = model + model.populations[pops[0]] = new_pops[0] + model.populations[pops[1]] = new_pops[1] + model.linkPopulationsVectorHostContact( + pops[0],pops[1],param_values[i] + ) + model.linkPopulationsVectorHostContact( + pops[1],pops[0],param_values[i] + ) + else: + setattr(model.setups[setup_id],param_name,param_values[i]) + + for name,pop in model.populations.items(): + pop.setSetup( model.setups[pop.setup.id] ) + + sim = Gillespie(model) + mod = sim.run( + t0,tf,time_sampling=-1, + host_sampling=host_sampling,vector_sampling=vector_sampling + )[tf] + mod.history = { tf:mod } + return mod + + return ( + param_df, + jl.Parallel(n_jobs=n_cores, verbose=10, **kwargs) ( + jl.delayed( run ) (param_values) + for param_values in combinations + ) + )
+ + +
+[docs] + def copyState(self,host_sampling=0,vector_sampling=0): + """Returns a slimmed-down representation of the current model state. + + Keyword arguments: + host_sampling (int >= 0): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int >= 0): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. + + Returns: + Model object with current population host and vector lists. + """ + + copy = Model() + + copy.populations = { + id: p.copyState(host_sampling,vector_sampling) + for id,p in self.populations.items() + } + + return copy
+ + +
+[docs] + def deepCopy(self): + """Returns a full copy of the current model with inner references. + + Returns: + Copied Model object. + """ + + model = cp.deepcopy(self) + for intervention in model.interventions: + intervention.model = model + for pop in model.populations: + model.populations[pop].model = model + for h in model.populations[pop].hosts: + h.population = model.populations[pop] + for v in model.populations[pop].vectors: + v.population = model.populations[pop] + + return model
+ + + + ### Output and Plots: ### + +
+[docs] + def saveToDataFrame(self,save_to_file,n_cores=0,**kwargs): + """Save status of model to dataframe, write to file location given. + + Creates a pandas Dataframe in long format with the given model history, + with one host or vector per simulation time in each row, and columns: + + - Time - simulation time of entry + - Population - ID of this host/vector's population + - Organism - host/vector + - ID - ID of host/vector + - Pathogens - all genomes present in this host/vector separated by ';' + - Protection - all genomes present in this host/vector separated by ';' + - Alive - whether host/vector is alive at this time, True/False + + Arguments: + save_to_file (String): file path and name to save model data under. + + Keyword arguments: + n_cores (int >= 0): number of cores to parallelize file export across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. + + Returns: + `pandas dataframe` with model history as described above. + """ + + data = saveToDf( + self.history,save_to_file,n_cores,**kwargs + ) + + return data
+ + +
+[docs] + def getPathogens(self, dat, save_to_file=""): + """Create Dataframe with counts for all pathogen genomes in data. + + Returns sorted pandas Dataframe with counts for occurrences of all + pathogen genomes in data passed. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + + Returns: + `pandas dataframe` with Series as described above. + """ + + return getPathogens(dat, save_to_file=save_to_file)
+ + +
+[docs] + def getProtections(self, dat, save_to_file=""): + """Create Dataframe with counts for all protection sequences in data. + + Returns sorted `pandas Dataframe` with counts for occurrences of all + protection sequences in data passed. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + + Returns: + pandas DataFrame with Series as described above. + """ + + return getProtections(dat, save_to_file=save_to_file)
+ + +
+[docs] + def populationsPlot( + self, file_name, data, compartment='Infected', + hosts=True, vectors=False, num_top_populations=7, + track_specific_populations=[], save_data_to_file="", + x_label='Time', y_label='Hosts', figsize=(8, 4), dpi=200, + palette=CB_PALETTE, stacked=False): + """Create plot with aggregated totals per population across time. + + Creates a line or stacked line plot with dynamics of a compartment + across populations in the model, with one line for each population. + + A host or vector is considered part of the recovered compartment + if it has protection sequences of any kind and is not infected. + + Arguments: + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by saveToDf function. + + Keyword arguments: + compartment (String): subset of hosts/vectors to count totals of, can be either + 'Naive','Infected','Recovered', or 'Dead'. Defaults to 'Infected'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean) whether to count vectors. Defaults to False. + num_top_populations (int): how many populations to count separately and + include as columns, remainder will be counted under column "Other"; + if <0, includes all populations in model. Defaults to 7. + track_specific_populations (list of Strings): contains IDs of specific populations to + have as a separate column if not part of the top num_top_populations + populations. Defaults to []. + save_data_to_file (String): file path and name to save model plot data under, + no saving occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population + IDs. Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. Defaults to False. + + Returns: + `axis object` for plot with model population dynamics as described above. + """ + + return populationsPlot( + file_name, data, compartment=compartment, hosts=hosts, + vectors=vectors, num_top_populations=num_top_populations, + track_specific_populations=track_specific_populations, + save_data_to_file=save_data_to_file, + x_label=x_label, y_label=y_label, figsize=figsize, dpi=dpi, + palette=palette, stacked=stacked + )
+ + +
+[docs] + def compartmentPlot( + self, file_name, data, populations=[], hosts=True, vectors=False, + save_data_to_file="", x_label='Time', y_label='Hosts', + figsize=(8, 4), dpi=200, palette=CB_PALETTE, stacked=False): + """Create plot with number of naive,inf,rec,dead hosts/vectors vs. time. + + Creates a line or stacked line plot with dynamics of all compartments + (naive, infected, recovered, dead) across selected populations in the + model, with one line for each compartment. + + A host or vector is considered part of the recovered compartment + if it has protection sequences of any kind and is not infected. + + Arguments: + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + populations (list of Strings): IDs of populations to include in analysis; if empty, uses + all populations in model. Defaults to []. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + save_data_to_file (String): file path and name to save model data under, no + saving occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population + IDs. Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int)): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked -- whether to draw a regular line plot instead of a stacked one + (default False, Boolean) + + Returns: + axis object for plot with model compartment dynamics as described above + """ + + return compartmentPlot( + file_name, data, populations=populations, hosts=hosts, + vectors=vectors, save_data_to_file=save_data_to_file, + x_label=x_label, y_label=y_label, figsize=figsize, dpi=dpi, + palette=palette, stacked=stacked + )
+ + +
+[docs] + def compositionPlot( + self, file_name, data, composition_dataframe=None, populations=[], + type_of_composition='Pathogens', hosts=True, vectors=False, + num_top_sequences=7, track_specific_sequences=[], + save_data_to_file="", x_label='Time', y_label='Infections', + figsize=(8, 4), dpi=200, palette=CB_PALETTE, stacked=True, + remove_legend=False, genomic_positions=[],population_fraction=False, + count_individuals_based_on_model=None, + legend_title='Genotype', legend_values=[], **kwargs): + """Create plot with counts for pathogen genomes or resistance vs. time. + + Creates a line or stacked line plot with dynamics of the pathogen + strains or protection sequences across selected populations in the + model, with one line for each pathogen genome or protection sequence + being shown. + + Of note: sum of totals for all sequences in one time point does not + necessarily equal the number of infected hosts and/or vectors, given + multiple infections in the same host/vector are counted separately. + + Arguments: + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. + + Keyword arguments: + composition_dataframe (pandas DataFrame): output of compositionDf() if already computed + Defaults to None. + populations (list of Strings): IDs of populations to include in analysis; if empty, uses + all populations in model. Defaults to []. + type_of_composition (String) field of data to count totals of, can be either + 'Pathogens' or 'Protection'. Defaults to 'Pathogens'. + hosts (Boolean) whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_sequences (int): how many sequences to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all genomes in model. Defaults to 7. + track_specific_sequences (list of Strings): contains specific sequences to have + as a separate column if not part of the top num_top_sequences + sequences. Defaults to []. + genomic_positions (list of lists of int): list in which each element is a list with loci + positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] + extracts positions 0, 1, 2, and 5 from each genome); if empty, takes + full genomes. Defaults to []. + count_individuals_based_on_model (None or Model): `Model` object with populations and + fitness functions used to evaluate the most fit pathogen genome in + each host/vector in order to count only a single pathogen per + host/vector, as opposed to all pathogens within each host/vector; if + None, counts all pathogens. Defaults to None. + save_data_to_file (String): file path and name to save model data under, no + saving occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population + IDs. Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. Defaults to False. + remove_legend (Boolean): whether to print the sequences on the figure legend + instead of printing them on a separate csv file. Defaults to True. + **kwargs: additional arguents for joblib multiprocessing. + + Returns: + axis object for plot with model sequence composition dynamics as described. + """ + + return compositionPlot( + file_name, data, + composition_dataframe=composition_dataframe,populations=populations, + type_of_composition=type_of_composition, hosts=hosts, + vectors=vectors, num_top_sequences=num_top_sequences, + track_specific_sequences=track_specific_sequences, + save_data_to_file=save_data_to_file, + x_label=x_label, y_label=y_label, figsize=figsize, dpi=dpi, + palette=palette, stacked=stacked, remove_legend=remove_legend, + genomic_positions=genomic_positions, + count_individuals_based_on_model=count_individuals_based_on_model, + population_fraction=population_fraction, legend_title=legend_title, + legend_values=legend_values, + **kwargs + )
+ + +
+[docs] + def clustermap( + self, + file_name, data, num_top_sequences=-1, track_specific_sequences=[], + seq_names=[], n_cores=0, method='weighted', metric='euclidean', + save_data_to_file="", legend_title='Distance', legend_values=[], + figsize=(10,10), dpi=200, color_map=DEF_CMAP): + """Create a heatmap and dendrogram for pathogen genomes in data passed. + + Arguments: + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` + function. + + Keyword arguments: + num_top_sequences (int): how many sequences to include in matrix; if <0, + includes all genomes in data passed. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include + in matrix if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list ofStrings): list with names to be used for sequence labels in matrix + must be of same length as number of sequences to be displayed; if empty, uses sequences + themselves. Defaults to []. + n_cores (int >= 0): number of cores to parallelize distance compute across, if 0, + all cores available are used. Defaults to 0. + method (String): clustering algorithm to use with seaborn clustermap. Defaults to 'weighted'. + metric (String): distance metric to use with seaborn clustermap. Defaults to 'euclidean'. + save_data_to_file (String): file path and name to save model data under, no + saving occurs if empty string. Defaults to "". + legend_title (String): legend title. Defaults to 'Distance'. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + color_map (matplotlib cmap object): color map to use for traces. Defaults to `DEF_CMAP`. + + Returns: + figure object for plot with heatmap and dendrogram as described. + """ + + return clustermap( + file_name, data, num_top_sequences=num_top_sequences, + track_specific_sequences=track_specific_sequences, + seq_names=seq_names, n_cores=n_cores, method=method, + metric=metric, save_data_to_file=save_data_to_file, + legend_title=legend_title, legend_values=legend_values, + figsize=figsize, dpi=dpi, color_map=color_map + )
+ + +
+[docs] + def pathogenDistanceHistory( + self, + data, samples=-1, num_top_sequences=-1, track_specific_sequences=[], + seq_names=[], n_cores=0, save_to_file=''): + """Create DataFrame with pairwise Hamming distances for pathogen + sequences in data. + + DataFrame has indexes and columns named according to genomes or argument + seq_names, if passed. Distance is measured as percent Hamming distance + from an optimal genome sequence. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` + function. + + Keyword arguments: + samples (int): how many timepoints to uniformly sample from the total + timecourse; if <0, takes all timepoints. Defaults to 1. + num_top_sequences (int) how many sequences to include in matrix; if <0, + includes all genomes in data passed. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include in + matrix if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list of Strings): list with names to be used for sequence labels in matrix + must be of same length as number of sequences to be displayed; if + empty, uses sequences themselves. Defaults to []. + n_cores (int >= 0): number of cores to parallelize distance compute across, if 0, + all cores available are used. Defaults to 0. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + + Returns: + pandas DataFrame with distance matrix as described above. + """ + return getPathogenDistanceHistoryDf(data, + samples=samples, num_top_sequences=num_top_sequences, + track_specific_sequences=track_specific_sequences, + seq_names=seq_names, n_cores=n_cores, save_to_file=save_to_file)
+ + +
+[docs] + def getGenomeTimes( + self, + data, samples=-1, num_top_sequences=-1, track_specific_sequences=[], + seq_names=[], n_cores=0, save_to_file=''): + """Create DataFrame with times genomes first appeared during simulation. + + Arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` + function. + + Keyword arguments: + samples (int): how many timepoints to uniformly sample from the total + timecourse; if <0, takes all timepoints. Defaults to 1. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize across, if 0, all cores + available are used. Defaults to 0. + + Returns: + pandas DataFrame with genomes and times as described above. + """ + return getGenomeTimesDf(data, + samples=samples, num_top_sequences=num_top_sequences, + track_specific_sequences=track_specific_sequences, + seq_names=seq_names, n_cores=n_cores, save_to_file=save_to_file)
+ + + +
+[docs] + def getCompositionData( + self, data=None, populations=[], type_of_composition='Pathogens', + hosts=True, vectors=False, num_top_sequences=-1, + track_specific_sequences=[], genomic_positions=[], + count_individuals_based_on_model=None, save_data_to_file="", + n_cores=0, **kwargs): + """Create dataframe with counts for pathogen genomes or resistance. + + Creates a pandas Dataframe with dynamics of the pathogen strains or + protection sequences across selected populations in the model, + with one time point in each row and columns for pathogen genomes or + protection sequences. + + Of note: sum of totals for all sequences in one time point does not + necessarily equal the number of infected hosts and/or vectors, given + multiple infections in the same host/vector are counted separately. + + Keyword arguments: + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` + function; if None, computes this dataframe and saves it under 'raw_data_'+'save_data_to_file'. + Defaults to None. + populations (list of Strings): IDs of populations to include in analysis; if empty, uses + all populations in model. Defaults to []. + type_of_composition (String): field of data to count totals of, can be either + 'Pathogens' or 'Protection'. Defaults to 'Pathogens'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_sequences (int): how many sequences to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all genomes in model. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to have + as a separate column if not part of the top num_top_sequences + sequences. Defaults to []. + genomic_positions (list of lists of int): list in which each element is a list with + loci positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] + extracts positions 0, 1, 2, and 5 from each genome); if empty, takes + full genomes. Defaults to []. + count_individuals_based_on_model (None or Model object): Model object with populations and + fitness functions used to evaluate the most fit pathogen genome in + each host/vector in order to count only a single pathogen per + host/vector, asopposed to all pathogens within each host/vector; if + None, counts all pathogens. Defaults to None. + save_data_to_file (String): file path and name to save model data under, no + saving occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize processing across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. + + Returns: + pandas DataFrame with model sequence composition dynamics as described + above. + """ + + if data is None: + data = saveToDf( + self.history,'raw_data_'+save_to_file,n_cores,verbose=verbose, + **kwargs + ) + + return compositionDf( + data, populations=populations, + type_of_composition=type_of_composition, + hosts=hosts, vectors=vectors, num_top_sequences=num_top_sequences, + track_specific_sequences=track_specific_sequences, + genomic_positions=genomic_positions, + count_individuals_based_on_model=count_individuals_based_on_model, + save_to_file=save_data_to_file, n_cores=n_cores, **kwargs + )
+ + + ### Model interventions: ### + +
+[docs] + def newPopulation(self, id, setup_name, num_hosts=0, num_vectors=0): + """Create a new Population object with setup parameters. + + If population ID is already in use, appends _2 to it + + Arguments: + id (String): unique identifier for this population in the model. + setup_name (Setup object): setup object with parameters for this population. + + Keyword arguments: + num_hosts (int >= 0): number of hosts to initialize population with. Defaults to 100. + num_vectors (int >= 0): number of vectors to initialize population with. Defaults to 100. + """ + + if id in self.populations.keys(): + id = id+'_2' + + self.populations[id] = Population( + self, id, self.setups[setup_name], num_hosts, num_vectors + ) + + for p in self.populations: + self.populations[id].setHostMigrationNeighbor(self.populations[p],0) + self.populations[id].setVectorMigrationNeighbor( + self.populations[p],0 + ) + self.populations[id].setHostHostPopulationContactNeighbor( + self.populations[p],0 + ) + self.populations[id].setVectorHostPopulationContactNeighbor( + self.populations[p],0 + ) + self.populations[id].setHostVectorPopulationContactNeighbor( + self.populations[p],0 + ) + + self.populations[p].setHostMigrationNeighbor( + self.populations[id],0 + ) + self.populations[p].setVectorMigrationNeighbor( + self.populations[id],0 + ) + self.populations[p].setHostHostPopulationContactNeighbor( + self.populations[id],0 + ) + self.populations[p].setVectorHostPopulationContactNeighbor( + self.populations[id],0 + ) + self.populations[p].setHostVectorPopulationContactNeighbor( + self.populations[id],0 + )
+ + +
+[docs] + def linkPopulationsHostMigration(self, pop1_id, pop2_id, rate): + """Set host migration rate from one population towards another. + + Arguments: + pop1_id (String): origin population for which migration rate will be specified. + pop1_id (String): destination population for which migration rate will be + specified. + rate (number >= 0): migration rate from one population to the neighbor; evts/time. + """ + + self.populations[pop1_id].setHostMigrationNeighbor( + self.populations[pop2_id], rate + )
+ + +
+[docs] + def linkPopulationsVectorMigration(self, pop1_id, pop2_id, rate): + """Set vector migration rate from one population towards another. + + Arguments: + pop1_id (String): origin population for which migration rate will be specified. + pop1_id (String): destination population for which migration rate will be + specified. + rate (number >= 0): migration rate from one population to the neighbor; evts/time. + """ + + self.populations[pop1_id].setVectorMigrationNeighbor( + self.populations[pop2_id], rate + )
+ + +
+[docs] + def linkPopulationsHostHostContact(self, pop1_id, pop2_id, rate): + """Set host-host contact rate from one population towards another. + + Arguments: + pop1_id (String): origin population for which inter-population contact rate + will be specified. + pop1_id (String): destination population for which inter-population contact + rate will be specified. + rate (number >= 0): inter-population contact rate from one population to the + neighbor; evts/time. + """ + + self.populations[pop1_id].setHostHostPopulationContactNeighbor( + self.populations[pop2_id], rate + )
+ + +
+[docs] + def linkPopulationsHostVectorContact(self, pop1_id, pop2_id, rate): + """Set host-vector contact rate from one population towards another. + + Arguments: + pop1_id (String): origin population for which inter-population contact rate + will be specified. + pop1_id (String): destination population for which inter-population contact + rate will be specified. + rate (number >= 0): inter-population contact rate from one population to the + neighbor; evts/time. + """ + + self.populations[pop1_id].setHostVectorPopulationContactNeighbor( + self.populations[pop2_id], rate + )
+ + +
+[docs] + def linkPopulationsVectorHostContact(self, pop1_id, pop2_id, rate): + """Set vector-host contact rate from one population towards another. + + Arguments: + pop1_id (String): origin population for which inter-population contact rate + will be specified. + pop1_id (String): destination population for which inter-population contact + rate will be specified. + rate (number >= 0): inter-population contact rate from one population to the + neighbor; evts/time. + """ + + self.populations[pop1_id].setVectorHostPopulationContactNeighbor( + self.populations[pop2_id], rate + )
+ + +
+[docs] + def createInterconnectedPopulations( + self, num_populations, id_prefix, setup_name, + host_migration_rate=0, vector_migration_rate=0, + host_host_contact_rate=0, + host_vector_contact_rate=0, vector_host_contact_rate=0, + num_hosts=100, num_vectors=100): + """Create new populations, link all of them to each other. + + All populations in this cluster are linked with the same migration rate, + starting number of hosts and vectors, and setup parameters. Their IDs + are numbered onto prefix given as 'id_prefix_0', 'id_prefix_1', + 'id_prefix_2', etc. + + Arguments: + num_populations (int): number of populations to be created. + id_prefix (String): prefix for IDs to be used for this population in the model. + setup_name (Setup object): setup object with parameters for all populations. + + Keyword arguments: + host_migration_rate (number >= 0): host migration rate between populations; + evts/time. Defaults to 0. + vector_migration_rate (number >= 0): vector migration rate between populations; + evts/time. Defaults to 0. + host_host_contact_rate (number >= 0): host-host inter-population contact rate + between populations; evts/time. Defaults to 0. + host_vector_contact_rate (number >= 0): host-vector inter-population contact rate + between populations; evts/time. Defaults to 0. + vector_host_contact_rate (number >= 0): vector-host inter-population contact rate + between populations; evts/time. Defaults to 0. + num_hosts (int): number of hosts to initialize population with. Defaults to 100. + num_vectors (int): number of hosts to initialize population with. Defaults to 100. + """ + + new_pops = [ + Population( + self, str(id_prefix) + str(i), self.setups[setup_name], + num_hosts, num_vectors + ) for i in range(num_populations) + ] + new_pop_ids = [] + for pop in new_pops: + if pop.id in self.populations.keys(): + pop.id = pop.id+'_2' + + self.populations[pop.id] = pop + new_pop_ids.append(pop.id) + + for p in self.populations: + pop.setHostMigrationNeighbor(self.populations[p],0) + pop.setVectorMigrationNeighbor(self.populations[p],0) + pop.setHostHostPopulationContactNeighbor(self.populations[p],0) + pop.setHostVectorPopulationContactNeighbor(self.populations[p],0) + pop.setVectorHostPopulationContactNeighbor(self.populations[p],0) + + self.populations[p].setHostMigrationNeighbor(pop,0) + self.populations[p].setVectorMigrationNeighbor(pop,0) + self.populations[p].setHostHostPopulationContactNeighbor(pop,0) + self.populations[p].setHostVectorPopulationContactNeighbor(pop,0) + self.populations[p].setVectorHostPopulationContactNeighbor(pop,0) + + for p1_id in new_pop_ids: + for p2_id in new_pop_ids: + self.linkPopulationsHostMigration( + p1_id,p2_id,host_migration_rate + ) + self.linkPopulationsVectorMigration( + p1_id,p2_id,vector_migration_rate + ) + self.linkPopulationsHostHostContact( + p1_id,p2_id,host_host_contact_rate + ) + self.linkPopulationsHostVectorContact( + p1_id,p2_id,host_vector_contact_rate + ) + self.linkPopulationsVectorHostContact( + p1_id,p2_id,vector_host_contact_rate + )
+ + +
+[docs] + def newHostGroup(self, pop_id, group_id, hosts=-1, type='any'): + """Return a list of random hosts in population. + + Arguments: + pop_id (String): ID of population to be sampled from. + group_id (String): ID to name group with. + + Keyword arguments: + hosts (number): number of hosts to be sampled randomly: if <0, samples from + whole population; if <1, takes that fraction of population; if >=1, + samples that integer number of hosts. Defaults to -1. + type (String = {'healthy', 'infected', 'any'}): whether to sample healthy hosts only, + infected hosts only, or any hosts. Defaults to 'any'. + + Returns: + list containing sampled hosts. + """ + + self.groups[group_id] = self.populations[pop_id].newHostGroup( + hosts, type + )
+ + +
+[docs] + def newVectorGroup(self, pop_id, group_id, vectors=-1, type='any'): + """Return a list of random vectors in population. + + Arguments: + pop_id (String): ID of population to be sampled from. + group_id (String): ID to name group with. + + Keyword arguments: + vectors (number): number of vectors to be sampled randomly: if <0, samples from + whole population; if <1, takes that fraction of population; if >=1, + samples that integer number of vectors. Defaults to -1. + type (String = {'healthy', 'infected', 'any'}): whether to sample healthy vectors only, infected vectors + only, or any vectors. Defaults to 'any'. + + Returns: + list containing sampled vectors. + """ + + self.groups[group_id] = self.populations[pop_id].newVectorGroup( + vectors, type + )
+ + +
+[docs] + def addHosts(self, pop_id, num_hosts): + """Add a number of healthy hosts to population, return list with them. + + Arguments: + pop_id (String): ID of population to be modified. + num_hosts (int): number of hosts to be added. + + Returns: + list containing new hosts. + """ + + self.populations[pop_id].addHosts(num_hosts)
+ + +
+[docs] + def addVectors(self, pop_id, num_vectors): + """Add a number of healthy vectors to population, return list with them. + + Arguments: + pop_id (String): ID of population to be modified. + num_vectors (int): number of vectors to be added. + + Returns: + list containing new vectors. + """ + + self.populations[pop_id].addVectors(num_vectors)
+ + +
+[docs] + def removeHosts(self, pop_id, num_hosts_or_list): + """Remove a number of specified or random hosts from population. + + Arguments: + pop_id (String): ID of population to be modified. + num_hosts_or_list (int or list of Hosts): number of hosts to be sampled randomly for removal + or list of hosts to be removed, must be hosts in this population. + """ + + self.populations[pop_id].removeHosts(num_hosts_or_list)
+ + +
+[docs] + def removeVectors(self, pop_id, num_vectors_or_list): + """Remove a number of specified or random vectors from population. + + Arguments: + pop_id (String): ID of population to be modified. + num_vectors_or_list (int or list of Vectors): number of vectors to be sampled randomly for + removal or list of vectors to be removed, must be vectors in this + population. + """ + + self.populations[pop_id].removeVectors(num_vectors_or_list)
+ + +
+[docs] + def addPathogensToHosts(self, pop_id, genomes_numbers, group_id=""): + """Add specified pathogens to random hosts, optionally from a list. + + Arguments: + pop_id (String): ID of population to be modified. + genomes_numbers (dict with keys=Strings, values=int) dictionary containing pathogen + genomes to add as keys and number of hosts each one will be added to as values. + + Keyword arguments: + group_id (String): ID of specific hosts to sample from, if empty, samples + from whole population. Defaults to "". + """ + + if group_id == "": + hosts = self.populations[pop_id].hosts + else: + hosts = self.groups[group_id] + + self.populations[pop_id].addPathogensToHosts(genomes_numbers,hosts)
+ + +
+[docs] + def addPathogensToVectors(self, pop_id, genomes_numbers, group_id=""): + """Add specified pathogens to random vectors, optionally from a list. + + Arguments: + pop_id (String): ID of population to be modified. + genomes_numbers (dict with keys=Strings, values=int): dictionary containing pathogen + genomes to add as keys and number of vectors each one will be added to as values. + + Keyword arguments: + group_id (String): ID of specific vectors to sample from, if empty, samples + from whole population. Defaults to "". + """ + + if group_id == "": + vectors = self.populations[pop_id].vectors + else: + vectors = self.groups[group_id] + + self.populations[pop_id].addPathogensToVectors(genomes_numbers,vectors)
+ + +
+[docs] + def treatHosts(self, pop_id, frac_hosts, resistance_seqs, group_id=""): + """Treat random fraction of infected hosts against some infection. + + Removes all infections with genotypes susceptible to given treatment. + Pathogens are removed if they are missing at least one of the sequences + in resistance_seqs from their genome. Removes this organism from + population infected list and adds to healthy list if appropriate. + + Arguments: + pop_id (String): ID of population to be modified. + frac_hosts (number between 0 and 1): fraction of hosts considered to be randomly selected. + resistance_seqs (list of Strings): contains sequences required for treatment resistance. + + Keyword arguments: + group_id (String): ID of specific hosts to sample from, if empty, samples + from whole population. Defaults to "". + """ + + if group_id == "": + hosts = self.populations[pop_id].hosts + else: + hosts = self.groups[group_id] + + self.populations[pop_id].treatHosts(frac_hosts,resistance_seqs,hosts)
+ + +
+[docs] + def treatVectors(self, pop_id, frac_vectors, resistance_seqs, group_id=""): + """Treat random fraction of infected vectors agains some infection. + + Removes all infections with genotypes susceptible to given treatment. + Pathogens are removed if they are missing at least one of the sequences + in resistance_seqs from their genome. Removes this organism from + population infected list and adds to healthy list if appropriate. + + Arguments: + pop_id (String): ID of population to be modified. + frac_vectors (number between 0 and 1): fraction of vectors considered to be + randomly selected. + resistance_seqs (list of Strings): contains sequences required for treatment resistance. + + Keyword arguments: + group_id (String): ID of specific vectors to sample from, if empty, samples + from whole population. Defaults to "". + """ + + if group_id == "": + vectors = self.populations[pop_id].vectors + else: + vectors = self.groups[group_id] + + self.populations[pop_id].treatVectors( + frac_vectors,resistance_seqs,vectors + )
+ + +
+[docs] + def protectHosts( + self, pop_id, frac_hosts, protection_sequence, group_id=""): + """Protect a random fraction of infected hosts against some infection. + + Adds protection sequence specified to a random fraction of the hosts + specified. Does not cure them if they are already infected. + + Arguments: + pop_id (String): ID of population to be modified. + frac_hosts (number between 0 and 1): fraction of hosts considered to be + randomly selected. + protection_sequence (String): sequence against which to protect. + + Keyword arguments: + group_id (String): ID of specific hosts to sample from, if empty, samples + from whole population. Defaults to "". + """ + + if group_id == "": + hosts = self.populations[pop_id].hosts + else: + hosts = self.groups[group_id] + + self.populations[pop_id].protectHosts( + frac_hosts,protection_sequence,hosts + )
+ + +
+[docs] + def protectVectors( + self, pop_id, frac_vectors, protection_sequence, group_id=""): + """Protect a random fraction of infected vectors against some infection. + + Adds protection sequence specified to a random fraction of the vectors + specified. Does not cure them if they are already infected. + + Arguments: + pop_id (String): ID of population to be modified. + frac_vectors (number between 0 and 1): fraction of vectors considered to be randomly selected. + protection_sequence (String): sequence against which to protect. + + Keyword arguments: + group_id (String): ID of specific vectors to sample from, if empty, samples + from whole population. Defaults to "". + """ + + if group_id == "": + vectors = self.populations[pop_id].vectors + else: + vectors = self.groups[group_id] + + self.populations[pop_id].protectVectors( + frac_vectors,protection_sequence,vectors + )
+ + +
+[docs] + def wipeProtectionHosts(self, pop_id, group_id=""): + """Removes all protection sequences from hosts. + + Arguments: + pop_id (String): ID of population to be modified. + + Keyword arguments: + group_id (String): ID of specific hosts to sample from, if empty, samples from + whole from whole population. Defaults to "". + """ + + if group_id == "": + hosts = self.populations[pop_id].hosts + else: + hosts = self.groups[group_id] + + self.populations[pop_id].wipeProtectionHosts(hosts)
+ + +
+[docs] + def wipeProtectionVectors(self, pop_id, group_id=""): + """Removes all protection sequences from vectors. + + Arguments: + pop_id (String): ID of population to be modified. + + Keyword arguments: + group_id (String): ID of specific vectors to sample from, if empty, samples + from whole population. Defaults to "". + """ + + if group_id == "": + vectors = self.populations[pop_id].vectors + else: + vectors = self.groups[group_id] + + self.populations[pop_id].wipeProtectionVectors(vectors)
+ + + ### Modify population parameters: ### + +
+[docs] + def setSetup(self, pop_id, setup_id): + """Assign parameters stored in Setup object to this population. + + Arguments: + pop_id (String): ID of population to be modified. + setup_id (String): ID of setup to be assigned. + """ + + self.populations[pop_id].setSetup( self.setups[setup_id] )
+ + + ### Utility: ### + +
+[docs] + def customModelFunction(self, function): + """Returns output of given function, passing this model as a parameter. + + Arguments: + function (callable): function to be evaluated; must take a Model object as the + only parameter. + + Returns: + output of function passed as parameter. + """ + + return function(self)
+ + + ### Preset fitness functions: ### + +
+[docs] + @staticmethod + def peakLandscape(genome, peak_genome, min_value): + """Return genome phenotype by decreasing with distance from optimal seq. + + A purifying selection fitness function based on exponential decay of + fitness as genomes move away from the optimal sequence. Distance is + measured as percent Hamming distance from an optimal genome sequence. + + Arguments: + genome (String): the genome to be evaluated. + peak_genome (String): the genome sequence to measure distance against, has + value of 1. + min_value (number 0-1): minimum value at maximum distance from optimal + genome. + + Return: + value of genome (number). + """ + + distance = td.hamming(genome, peak_genome) / len(genome) + value = np.exp( np.log( min_value ) * distance ) + + return value
+ + +
+[docs] + @staticmethod + def valleyLandscape(genome, valley_genome, min_value): + """Return genome phenotype by increasing with distance from worst seq. + + A disruptive selection fitness function based on exponential decay of + fitness as genomes move closer to the worst possible sequence. Distance + is measured as percent Hamming distance from the worst possible genome + sequence. + + Arguments: + genome (String): the genome to be evaluated. + valley_genome (String): the genome sequence to measure distance against, has + value of min_value. + min_value (number 0-1): fitness value of worst possible genome. + + Return: + value of genome (number). + """ + + distance = td.hamming(genome, valley_genome) / len(genome) + value = np.exp( np.log( min_value ) * ( 1 - distance ) ) + + return value
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/_sources/API.rst.txt b/docs/_build/html/_sources/API.rst.txt new file mode 100644 index 0000000..4079efc --- /dev/null +++ b/docs/_build/html/_sources/API.rst.txt @@ -0,0 +1,7 @@ +API +===== + +.. toctree:: + :maxdepth: 4 + + opqua diff --git a/docs/_build/html/_sources/about.md.txt b/docs/_build/html/_sources/about.md.txt new file mode 100644 index 0000000..b52c97a --- /dev/null +++ b/docs/_build/html/_sources/about.md.txt @@ -0,0 +1,206 @@ +# About + +## Opqua is an epidemiological modeling framework for pathogen population genetics and evolution. + +Opqua stochastically simulates pathogens with distinct, evolving genotypes that +spread through populations of hosts which can have specific immune profiles. + +Opqua is a useful tool to test out scenarios, explore hypotheses, make +predictions, and teach about the relationship between pathogen evolution and +epidemiology. + +Among other things, Opqua can model +- host-host, vector-borne, and vertical transmission +- pathogen evolution through mutation, recombination, and/or reassortment +- host recovery, death, and birth +- metapopulations with complex structure and demographic interactions +- interventions and events altering demographic, ecological, or evolutionary +parameters +- treatment and immunization of hosts or vectors +- influence of pathogen genome sequences on transmission and evolution, as well +as host demographic dynamics +- intra- and inter-host competition and evolution of pathogen strains across +user-specified adaptive landscapes + +## How Does Opqua Work? + +### Basic concepts + +Opqua models are composed of populations containing hosts and/or vectors, which +themselves may be infected by a number of pathogens with different genomes. + +A genome is represented as a string of characters. All genomes must be of the +same length (a set number of loci), and each position within the genome can have +one of a number of different characters specified by the user (corresponding to +different alleles). Different loci in the genome may have different possible +alleles available to them. Genomes may be composed of separate chromosomes, +separated by the "/" character, which is reserved for this purpose. + +Each population may have its own unique parameters dictating the events that +happen inside of it, including how pathogens are spread between its hosts and +vectors. + +### Events + +There are different kinds of events that may occur to hosts and vectors in +a population: + +- contact between an infectious host/vector and another host/vector in the same +population (intra-population contact) or in a different population ("population +contact") +- migration of a host/vector from one population to another +- recovery of an infected host/vector +- birth of a new host/vector from an existing host/vector +- death of a host/vector due to pathogen infection or by "natural" causes +- mutation of a pathogen in an infected host/vector +- recombination of two pathogens in an infected host/vector + +![Events](../img/events.png "events illustration") + +The likelihood of each event occurring is determined by the population's +parameters (explained in the `newSetup()` function documentation) and +the number of infected and healthy hosts and/or vectors in the population(s) +involved. Crucially, it is also determined by the genome sequences of the +pathogens infecting those hosts and vectors. The user may specify arbitrary +functions to evaluate how a genome sequence affects any of the above kinds of +rates. This is once again done through arguments of the `newSetup()` +function. As an example, a specific genome sequence may result in increased +transmission within populations but decreased migration of infected hosts, or +increased mutation rates. These custom functions may be different across +populations, resulting in different adaptive landscapes within different +populations. + +Contacts within and between populations may happen by any combination of +host-host, host-vector, and/or vector-host routes, depending on the populations' +parameters. When a contact occurs, each pathogen genome present in the infecting +host/vector may be transferred to the receiving host/vector as long as one +"infectious unit" is inoculated. The number of infectious units inoculated is +randomly distributed based on a Poisson probability distribution. The mean of +this distribution is set by the receiving host/vector's population parameters, +and is multiplied by the fraction of total intra-host fitness of each pathogen +genome. For instance, consider the mean inoculum size for a host in a given +population is 10 units and the infecting host/vector has two pathogens with +fitnesses of 0.3 and 0.7, respectively. This would make the means of the Poisson +distributions used to generate random infections for each pathogen equal to 3 +and 7, respectively. + +Inter-population contacts occur via the same mechanism as intra-population +contacts, with the distinction that the two populations must be linked in a +compatible way. As an example, if a vector-borne model with two separate +populations is to allow vectors from Population A to contact hosts in Population +B, then the contact rate of vectors in Population A and the contact rate of +hosts in Population B must both be greater than zero. Migration of hosts/vectors +from one population to another depends on a single rate defining the frequency +of vector/host transport events from a given population to another. Therefore, +Population A would have a specific migration rate dictating transport to +Population B, and Population B would have a separate rate governing transport +towards A. + +Recovery of an infected host or vector results in all pathogens being removed +from the host/vector. Additionally, the host/vector may optionally gain +protection from pathogens that contain specific genome sequences present in the +genomes of the pathogens it recovered from, representing immune memory. The user +may specify a population parameter delimiting the contiguous loci in the genome +that are saved on the recovered host/vector as "protection sequences". Pathogens +containing any of the host/vector's protection sequences will not be able to +infect the host/vector. + +Births result in a new host/vector that may optionally inherit its parent's +protection sequences. Additionally, a parent may optionally infect its offspring +at birth following a Poisson sampling process equivalent to the one described +for other contact events above. Deaths of existing hosts/vectors can occur both +naturally or due to infection mortality. Only deaths due to infection are +tracked and recorded in the model's history. + +De novo mutation of a pathogen in a given host/vector results in a single locus +within a pathogen's genome being randomly assigned a new allele from the +possible alleles at that position. Recombination of two pathogens in a given +host/vector creates two new genomes based on the independent segregation of +chromosomes (or reassortment of genome segments, depending on the field) from +the two parent genomes. In addition, there may be a Poisson-distributed random +number of crossover events between homologous parent chromosomes. Recombination +by crossover event will result in all the loci in the chromosome on one side of +the crossover event location being inherited from one of the parents, while the +remainder of the chromosome is inherited from the other parent. The locations of +crossover events are distributed throughout the genome following a uniform +random distribution. + +### Interventions + +Furthermore, the user may specify changes in model behavior at specific +timepoints during the simulation. These changes are known as "interventions". +Interventions can include any kind of manipulation to populations in the model, +including: + +- adding new populations +- changing a population's event parameters and adaptive landscape functions +- linking and unlinking populations through migration or inter-population +contact +- adding and removing hosts and vectors to a population + +Interventions can also include actions that involve specific hosts or vectors in +a given population, such as: + +- adding pathogens with specific genomes to a host/vector +- removing all protection sequences from some hosts/vectors in a population +- applying a "treatment" in a population that cures some of its hosts/vectors of +pathogens +- applying a "vaccine" in a population that protects some of its hosts/vectors +from pathogens + +For these kinds of interventions involving specific pathogens in a population, +the user may choose to apply them to a randomly-sampled fraction of +hosts/vectors in a population, or to a specific group of individuals. This is +useful when simulating consecutive interventions on the same specific group +within a population. A single model may contain multiple groups of individuals +and the same individual may be a member of multiple different groups. +Individuals remain in the same group even if they migrate away from the +population they were chosen in. + +When a host/vector is given a "treatment", it removes all pathogens within the +host/vector that do not contain a collection of "resistance sequences". A +treatment may have multiple resistance sequences. A pathogen must contain all +of these within its genome in order to avoid being removed. On the other hand, +applying a vaccine consists of adding a specific protection sequence to +hosts/vectors, which behaves as explained above for recovered hosts/vectors when +they acquire immune protection, if the model allows it. + +### Simulation + +Models are simulated using an implementation of the Gillespie algorithm in which +the rates of different kinds of events across different populations are +computed with each population's parameters and current state, and are then +stored in a matrix. In addition, each population has host and vector matrices +containing coefficients that represent the contribution of each host and vector, +respectively, to the rates in the master model rate matrix. Each coefficient is +dependent on the genomes of the pathogens infecting its corresponding vector or +host. Whenever an event occurs, the corresponding entries in the population +matrix are updated, and the master rate matrix is recomputed based on this +information. + +![Simulation](../img/simulation.png "simulation illustration") + +The model's state at any given time comprises all populations, their hosts +and vectors, and the pathogen genomes infecting each of these. A copy of the +model's state is saved at every time point, or at intermittent intervals +throughout the course of the simulation. A random sample of hosts and/or vectors +may be saved instead of the entire model as a means of reducing memory +footprint. + +### Output + +The output of a model can be saved in multiple ways. The model state at each +saved timepoint may be output in a single, raw [pandas](pandas.pydata.org/) +DataFrame, and saved as a tabular file. Other data output +types include counts of pathogen genomes or protection sequences for the +model, as well as time of first emergence for each pathogen genome and genome +distance matrices for every timepoint sampled. The user can also create +different kinds of plots to visualize the results. These include: + +- plots of the number of hosts and/or vectors in different epidemiological +compartments (naive, infected, recovered, and dead) across simulation time +- plots of the number of individuals in a compartment for different populations +- plots of the genomic composition of the pathogen population over time +- phylogenies of pathogen genomes + +Users can also use the data output formats to make their own custom plots. diff --git a/docs/_build/html/_sources/basic_usage.ipynb.txt b/docs/_build/html/_sources/basic_usage.ipynb.txt new file mode 100644 index 0000000..830cf55 --- /dev/null +++ b/docs/_build/html/_sources/basic_usage.ipynb.txt @@ -0,0 +1,408 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basic usage" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make a new model object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. \n", + "\n", + "Here, we will use the default parameter set for a host-host transmission model" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup('my_setup', preset='host-host')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation('my_population', 'my_setup', num_hosts=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the simulation for 200 time units" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 71.89423840111455, event: CONTACT_HOST_HOST\n", + "Simulating time: 136.14665780191842, event: RECOVER_HOST\n", + "Simulating time: 200.15737579926133 END\n" + ] + } + ], + "source": [ + "my_model.run(0,200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Save the model results to a table" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19414451599121096s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01929759979248047s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.013352155685424805s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01486515998840332s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 124 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02699422836303711s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.05492806434631348s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08415079116821289s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1292 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1495 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1956 out of 1956 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2AAAAAAAAAANaNTrue
30.0my_populationHostmy_population_3AAAAAAAAAANaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
195595200.0my_populationHostmy_population_95AAAAAAAAAANaNTrue
195596200.0my_populationHostmy_population_96NaNNaNTrue
195597200.0my_populationHostmy_population_97AAAAAAAAAANaNTrue
195598200.0my_populationHostmy_population_98AAAAAAAAAANaNTrue
195599200.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

195600 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 AAAAAAAAAA \n", + "3 0.0 my_population Host my_population_3 AAAAAAAAAA \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "195595 200.0 my_population Host my_population_95 AAAAAAAAAA \n", + "195596 200.0 my_population Host my_population_96 NaN \n", + "195597 200.0 my_population Host my_population_97 AAAAAAAAAA \n", + "195598 200.0 my_population Host my_population_98 AAAAAAAAAA \n", + "195599 200.0 my_population Host my_population_99 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "195595 NaN True \n", + "195596 NaN True \n", + "195597 NaN True \n", + "195598 NaN True \n", + "195599 NaN True \n", + "\n", + "[195600 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame('Basic_example.csv')\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wU9fkH8M/M9tvrhXKANEFALCBgwYK9S0yMJppoLDExicYUTYzGmKi/aExijdFE1KiJGnsUUbEjSlNEqiCduwOu320vM78/lt3bnbYze3u3Vz7v18uX7Mzs7ve2zM4883yfR5BlWQYRERERERERERERFYRY6AEQERERERERERERDWYM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRAdkLPQDqnlAohNWrVwMAampqYLfzLSUiIiIiIiLKt1gshsbGRgDAQQcdBLfbXeAREdFAwoheP7d69WrMmjWr0MMgIiIiIiIiGjSWLVuGmTNnFnoYRDSAsNwBERERERERERERUQExk7afq6mpSf172bJlGD58eAFHQ0RERERERDQwNTQ0pGaypp+LExHlA4O0/Vx6Ddrhw4dj5MiRBRwNERERERER0cDHfjBElG8sd0BERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBDfogbSQSwSOPPIJTTz0Vw4cPh8vlQnFxMQ444ABceuml+Pjjj009zoIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCgh/8CIiIiIiIiIiIi6s8EWZblQg+iULZv344zzzwTa9euNdzu6quvxr333gtBEFTrJEnClVdeiXnz5une/4orrsDDDz8MUcx/THzXrl0YNWoUAGDnzp0YOXJk3p+DiIiIiIiIaLDj+TcR9aRBm0kbjUYzArQHH3wwHn/8cXzyySd46623cPPNN8Pr9QIA7r//ftx5552aj3PjjTemArTTpk3D008/jWXLluHpp5/GtGnTAACPPPIIbrrppl74q4iIiIiIiIiIiKi/GbSZtM8//zy++c1vAgCOPPJILFq0CDabLWObTz/9FEceeSSi0SjKy8vR2NgIu92eWr9x40YceOCBiMVimDFjBj788EN4PJ7U+kAggOOOOw4rVqyA3W7H+vXrsf/+++f17+CVPCIiIiIiIqKex/NvIupJgzaTNr3W7A033KAK0ALAYYcdhrPOOgsA0NbWhvXr12esv+eeexCLxQAksm3TA7QAUFRUhPvvvx8AEIvFcPfdd+f1byAiIiIiIiIiIqL+b9AGaSORSOrf48aN091u/PjxmveRZRmvvPIKAGDSpEk44ogjNO9/xBFH4IADDgAAvPLKKxikictERERERERERESkY9AGaZOBUwDYsmWL7nabN28GAAiCgAkTJqSWb926FfX19QCA4447zvC5kuvr6uqwbdu2XIdMREREREREREREA5A9+yYD07e//W3cdNNN6OjowJ133okzzjhDVfJg5cqVmD9/PgDgwgsvRGlpaWrdunXrUv+eNGmS4XOlr1+/fj3Gjh1repy7du0yXN/Q0GD6sfoCKdKBwIa/IR7Yhbh/J+L+Xag+42MIdnehh0ZERERERERERFQQgzZIW11djSeffBLf/va3sXjxYsycORPXXnstJk6cCJ/Ph8WLF+Mvf/kLIpEIpk+fjr/85S8Z908PnmYrFp4sLA4kiotbkX7fgaLzs99k3I4H6mAvHa+zNRERERERERER0cA2aIO0AHDOOefg008/xV/+8hfMmzcPl1xyScb6oUOH4tZbb8X3v/99FBUVZazr7OxM/bu4uNjwebxeb+rfPp8vDyPvv0RnKQRHCeRo1+sX9+9kkJaIiIiIiIiIiAatQR2kjUQieOKJJ3Qbeu3ZswdPPfUUxo4di3POOSdjXSgUSv3b6XQaPo/L5Ur9OxgMWhpjtszbhoYGzJo1y9JjFpqtaCRi7etTt+MB45IOREREREREREREA9mgDdL6/X6cfvrpWLRoEWw2G66//npceumlGDduHEKhEJYuXYo//OEP+Oijj/C1r30Nf/7zn/Hzn/88dX+3u6uGaiQSMXyucDic+rfH47E0zmylFPoj0TsKSAvSSn4GaYmIiIiIiIiIaPASCz2AQrnllluwaNEiAMC8efNw5513YtKkSXA6nSgtLcXJJ5+M9957D8cffzxkWcZ1112HVatWpe5fUlKS+ne2EgZ+vz/172ylEQYDmzcz8BwPWKvTS0RERERERERENJAMyiCtLMt49NFHAQATJ05U1aJNstvtuPXWWwEAkiTh8ccfT61Lz3BNbyKmJb1kwUBsBGaVrUgRpGUmLRERERERERERDWKDMki7Z88etLS0AACmTZtmuO1hhx2W+veGDRtS/54yZYrmci3p6ydPnmxprAORzZsZqI77mUlLRERERERERESD16AM0trtXaV4Y7GY4bbRaFTzfmPHjkVtbS0A4IMPPjB8jA8//BAAMGLECIwZM8bqcAccUZFJK7FxGBERERERERERDWKDMkhbWVmJ0tJSAMAnn3xiGKhND8COHTs29W9BEDB37lwAiUzZJUuWaN5/yZIlqUzauXPnQhCEbo+/v1Nm0kqhRsRDjQUaDRERERERERERUWENyiCtKIo488wzAQD19fW4/fbbNbdrbW3Fr371q9Tts846K2P9tddeC5vNBgC4+uqrEQwGM9YHg0FcffXVABJZuNdee22+/oR+zV42EYK9KGNZdM/iAo2GiIiIiIiIiIiosAZlkBYAbr75ZhQVJQKFt9xyC8455xy88MILWLlyJT755BPcfffdOPTQQ7Fu3ToAwIknnohTTjkl4zEmTpyI6667DgCwYsUKzJ49G88++yxWrFiBZ599FrNnz8aKFSsAANdddx0mTJjQi39h3yWIDjhqjsxYFtm7qECjISIiIiIiIiIiKixBlmW50IMolLfffhvf/va30dTUZLjdCSecgOeffx4VFRWqdZIk4fvf/z4effRR3ftffvnl+Mc//gFRzH9MfNeuXRg1KlE+YOfOnRg5cmSWe/QNnStvgW/V71O3HdWzUH3W0gKOiIiIiIiIiEhffz3/JqL+YdBm0gLASSedhA0bNuDOO+/EnDlzUFNTA4fDAY/Hg7Fjx+L888/Hyy+/jLffflszQAskSifMmzcP8+fPx9y5c1FbWwun04na2lrMnTsXr7/+Oh555JEeCdD2Z86hx2TcjjZ/BinqL9BoiIiIiIiIiIiICmdQZ9IOBP31Sp4U9WHPf8oBOZ5aVnnqO3ANP6FwgyIiIiIiIiLS0V/Pv4mof2B6JxWE6CiGo2p6xrLIHtalJSIiIiIiIiKiwYdBWioYR81RGbdj7RsKNBIiIiIiIiIiIqLCYZCWCkZ0lmUuSCt9QERERERERERENFgwSEsFJGTelKXCDIOIiIiIiIiIiKiAGKSlwhEUQVqwhx0REREREREREQ0+DNJS4QiZHz9ZZpCWiIiIiIiIiIgGHwZpqYAUmbRSuDDDICIiIiIiIiIiKiAGaalg5Ghnxu3wrtcLNBIiIiIiIiIiIqLCYZCWCibc8Hahh0BERERERERERFRwDNJSwUi+Hapl8UBDAUZCRERERERERERUOAzSUsHYy6eolkWbPyvASIiIiIiIiIiIiAqHQVoqHJtLtSjawiAtERERERERERENLgzSUsEIokO1jJm0REREREREREQ02DBIS4UjqIO0seaVBRgIERERERERERFR4TBISwUj2JyqZXH/dkih5gKMhoiIiIiIiIiIqDAYpKWCcQ49VnN5rHNzL4+EiIiIiIiIiIiocBikpYIpmnAFxKJa9Qo53vuDISIiIiIiIiIiKhAGaalgBLsb1ed8rl4hS70+FiIiIiIiIiIiokJhkJYKyuaugeAsVyyVCzEUIiIiIiIiIiKigmCQlgpPyPwYysykJSIiIiIiIiKiQYRBWuoDBMVtZtISEREREREREdHgwSAtFZygyKRlTVoiIiIiIiIiIhpMGKSlwhNdGTfjvm2FGQcREREREREREVEBMEhLBeeonplxO7TjlQKNhIiIiIiIiIiIqPcxSEsF597vaxm3w/VvQY4FCjMYIiIiIiIiIiKiXsYgLRWce9RZgGDrWhAPIlz3VuEGRERERERERERE1IsYpKWCE12VcA47LmNZaMdLBRoNERERERERERFR72KQlvoEZcmD0M5XIUuxwgyGiIiIiIiIiIioFzFIS32Ce9TcjNtypBWRPYsKNBoiIiIiIiIiIqLewyAt9Qm24v1gr5yWsSza/FmBRkNERERERERERNR7GKSlPsNeMj7jthxtL9BIiIiIiIiIiIiIeg+DtNRnCM7SjNtSpKNAIyEiIiIiIiIiIuo9DNJSnyHYSzJuy7HOAo2EiIiIiIiIiIio9zBIS32G6FAEaaMM0hIRERERERER0cDHIC31GcpyBwzSEhERERERERHRYMAgLfUZynIHUpQ1aYmIiIiIiIiIaOBjkJb6DNFZnnFbCtQXZiBERERERERERES9iEFa6jPs5ZMzbsd92yCFmgs0GiIiIiIiIiIiot7BIC31GfbyKYDNnbEs2vJZgUZDRERERERERETUOxikpT5DEB1wVBySsSzatKJAoyEiIiIiIiIiIuodDNJSn+KonpFxO9r8aYFGQkRERERERERE1DsYpKU+xVF1WMbt0PYX0LHsZwhue6FAIyIiIiIiIiIiIupZDNJSn6LMpAUA/7p70Pb+eQhue64AIyIiIiIiIiIiIupZDNJSn2Ivm6xqHpYU+PKhXh4NERERERERERFRz2OQlvoUQbTDXjpRc12k4d1eHg0REREREREREVHPY5CW+hx76f6FHgIREREREREREVGvYZCW+hxbiXaQVvQM7+WREBERERERERER9TwGaanP0c2kFWy9OxAiIiIiIiIiIqJeMCiDtHPmzIEgCJb+e//993Ufb8GCBTj33HMxcuRIuFwujBw5Eueeey4WLFjQe3/UAKKXSStH23t5JERERERERERERD3PXugB9AeiKGLChAmq5ZIk4corr8S8efMyltfV1aGurg4vv/wyrrjiCjz88MMQxUEZD8+JXiatHO2ELMUhiMyoJSIiIiIiIiKigWNQBmkfe+wx+P1+w23WrVuHCy64AABw4oknYsSIEaptbrzxxlSAdtq0abj++usxfvx4bN68GX/605+wcuVKPPLII6ipqcH//d//5f8PGaDEohGAIAKypFonRVpgc9cUYFREREREREREREQ9Y1AGaceOHZt1myeffDL174svvli1fuPGjfjzn/8MAJgxYwY+/PBDeDweAMDMmTNxzjnn4LjjjsOKFStw11134bLLLsP+++vUWqUMgiCi6IAfIbDhAdW6eOdWBmmJiIiIiIiIiGhA4Rx8DZIk4d///jcAoLi4GF//+tdV29xzzz2IxWIAgPvvvz8VoE0qKirC/fffDwCIxWK4++67e3jUA0vp4fei/Nh/q5bHO7cUYDREREREREREREQ9h0FaDe+88w7q6uoAAOeddx6Kiooy1suyjFdeeQUAMGnSJBxxxBGaj3PEEUfggAMOAAC88sorkGW5B0c9sAiCCM+4C+GsPTljedzHIC0REREREREREQ0sDNJqeOKJJ1L/1ip1sHXrVtTX1wMAjjvuOMPHSq6vq6vDtm3b8jfIQcJenFmaIsZMWiIiIiIiIiIiGmAGZU1aIz6fDy+99BIAYPTo0ZgzZ45qm3Xr1qX+PWnSJMPHS1+/fv16U/Vw0+3atctwfUNDg6XH629sJeMybrPcARERERERERERDTQM0iq88MIL8Pv9AIDvfOc7EARBtU164HTkyJGGjzdq1KjUv3fu3Gl5POn3H4wYpCUiIiIiIiIiooGO5Q4UspU6AIDOzs7Uv4uLiw0fz+v1pv7t8/m6ObrBx16sCNIGdkKWogUaDRERERERERERUf4xkzbNrl278P777wNINP2aOHGi5nahUCj1b6fTafiYLpcr9e9gMGh5TNmybxsaGjBr1izLj9tfKDNpIUuI+3bAXjq+MAMiIiIiIiIiIiLKMwZp0zz11FOQJAkAcMkll+hu53a7U/+ORCKGjxkOh1P/9ng8lseUrZzCQCe6KiA4yyFH2lLL4r4tDNISEREREREREdGAwXIHaZ588kkAiezXCy64QHe7kpKS1L+zlTBI1rcFspdGIG3KbNoY69ISEREREREREdEAwiDtPitWrMC6desAAGeddRYqKip0t03Pbk1vIqYlvVzBYG8ClitVXVoGaYmIiIiIiIiIaABhkHaf9IZhRqUOAGDKlCmpf2/YsMFw2/T1kydPznF0g5syk5ZBWiIiIiIiIiIiGkgYpAUQjUbxzDPPAABqampw+umnG24/duxY1NbWAgA++OADw20//PBDAMCIESMwZsyY7g92EFKVO/AxSEtERERERERERAMHg7QAFixYgMbGRgDAhRdeCLvduJ+aIAiYO3cugESm7JIlSzS3W7JkSSqTdu7cuRAEIY+jHjzsxWMybkv+ndobEhERERERERER9UMM0iKz1MHFF19s6j7XXnstbDYbAODqq69GMBjMWB8MBnH11VcDAOx2O6699tr8DHYQEpyZ9YGlaGeBRkJERERERERERJR/gz5I29raitdeew0AMHXqVEyfPt3U/SZOnIjrrrsOQKLp2OzZs/Hss89ixYoVePbZZzF79mysWLECAHDddddhwoQJPfMHDAKCoyRzQTwEWYoWZjBERERERERERER5ZjyvfxB49tlnEQ6HAZjPok26/fbbsXfvXjz66KNYuXIlvvWtb6m2ufzyy3HbbbflZayDlagM0gKQo50QXJUFGA0REREREREREVF+DfpM2ieffBIAYLPZcNFFF1m6ryiKmDdvHubPn4+5c+eitrYWTqcTtbW1mDt3Ll5//XU88sgjEMVB/zJ3iyqTFix5QEREREREREREA8egz6RdvHhxtx/jjDPOwBlnnJGH0ZAWwV6sWtb4/BgAgGfC5bB5R8E7+acQXeW9OzAiIiIiIiIiIqI8GPRBWur7BNEGwV4EORZQrQtumgcACNe/heozuh9wJyIiIiIiIiIi6m2ch0/9guAoM1wf3fsxYp1be2k0RERERERERERE+cMgLfULtqIRWbeRQnt7YSRERERERERERET5xSAt9Qu24v2ybyRFe34gREREREREREREecYgLfULNm/2IK3MIC0REREREREREfVDDNJSvyCaCNIyk5aIiIiIiIiIiPojBmmpX2AmLRERERERERERDVQM0lK/wJq0REREREREREQ0UDFIS/2CvXhs1m1kmUFaIiIiIiIiIiLqfxikpX5BdFfDNeoc440EW+8MhoiIiIiIiIiIKI8YpKV+o2LOf1F21D/h2f97muvlmL93B0RERERERERERJQHDNJSvyHYXCiaeAXKj35Mc70c6ejlEREREREREREREXUfg7Q0YMhRBmmJiIiIiIiIiKj/sRd6AET5IjFIS0RE/Ywky3h0jQ8LdwThsQs4aT8PThjlRm0xD9GIekNnRMKCrQE4bAJOH1MEt10o9JDIQEsojje3BeF1JN4vh43vFxERDRw8A6ABg5m0RETU3zz8RSfe3xUCAARjMl7dEsA7O4J48MQqeOyc8ETUk2RZxq1L27C9IwYA2NQaxfUzyws7KNIlyTJ++3ErmoISAGCXL44fHVJa4FERERHlD4/+qV8SPcNVy1iTloiI+ptkgDZdICbj872RAoyGaHDZ3hFLBWgB4NO9EUTicgFHREa+aIykArQA8IHG/pOIiKg/Y5CW+qXSGXeplknRzgKMhIiIKP/q/PFCD4FowGsNS6plMYlB2r6qKcT3i4iIBjYGaalf8oy/CK5R52QsY7kDIiIaKMpdPEQj6mla1UwZ8uu7nBq7xVCM7xgREQ0cPAOgfsu937kZtxmkJSKigSLMKddEPU8jSsuvXt/l0mgSFmCQloiIBhAGaanfEpyZjQIkBmmJiGiACDPwQFQQEqfP91l2UStIqy6BQERE1F/ZCz0AolyJjswgbbxjEzqW/wKRPR/BOeQouMddCGf1zAKNjoiISN+uzphm07CkZzf6cWStCzUeG/60oh2rGiO48qASFNkFbGqLYtYwFyZVOg2foyUUx5vbgih2ijh9jEczwEE0mGl9I7p7feSrtigW14cwptSOY0e4IQj83uWLVvw8uO8N80Ul/HFZG75qi+GaaaU4ariLrz0REfU7DNJSvyUogrQA4F/7VwBAtGkZ/BseRM25G2AvGdvbQyMiItLli0r4zeLWrCUNbv64FTZBSDU3+sfqrgaZ87cG8adjKjG6VPtQLi7JuGlxK5r3Ndqp64zhh4eofzeJBjNBI0zbnUTa3f4Ybv64NVUyIRIHTh7tyf0BKUNMVr85wWhi2eVvNaWW3beyA8WOMhxS4+q1sREREeUDyx1QvyU4Sow3kCIIbn6idwZDRERk0uK6kKmasx0RWbP7fNIzX/p0161sjKQCtADwnkHWLtFgpZVoGepGUdon1/syatrO3xrI+bFILRmQTeeLSqj3xVTL//Jpe28MiYiIKK8YpKV+S1nuQEtkz6JeGAkREZF5X7ZG8/I4n+2N6K7bE4irlskaWWhEg5nWZPjWkPq7Y9aKPZnfyQZ/7o9FalqvZ2tYQkdEfTErzJeeiIj6IQZpqd9SNg7TYise0/MDISIisqDI3vOHXxpN0BFlfx2iDFqXLVpC/KL0VfV+dcZsa0jSLFsBAJFuZEUTEREVAoO01G8Jdm/WbURXdS+MhIiIyLxYL3SPt2nM4zZTYoFoMNFKLm8K5hakDfAqSI+r96nTY1tCkmbZCgDYpVEGgYiIqC9jkJb6LUHI/vGV46zBR0REfUu7xtTcXEk6JQy0MmkZpCXKpPX9acmx3MH2TnVAsMrNU618iUmyZhmX1rCkGWwHgG3tDNISEVH/ot0SmGigYJCWiIj6GK36iblqD0uocNsylsmyjA/q1L9/wZi1IK0sy1hcH8bW9igOH+7GxApHt8ZK1NdoJb8alTvY1hHFR3VhjCqxYXatGy9u8uOFrwI4pMaJVY36NaKp+/YG4tC6zrSxNYrF9drH+1qBcyIior6MQVoa0OR4sNBDICIiytAezl+QtimoDtK+tjWIDS3q5mT/Xu/Dr2eVm37s93aG8PDqTgDAgm1B/PnYStQW89CRBo5/b/CpljXrZNK2hOK4cXErYvu+vg+u6kyt0wvQRnuhtMlg8e5O/cSLN7drH+9v62CQloiI+hfOwaEBTQruKfQQiIiIMvii+QvctGkEfJ9arw48AcBKi5l+yQAtAMRl4I1tvPBJA0uDX6PGqU5N2v9u9KcCtGaxTG3+vLolYPk+ezTeXyIior6MQVrq18pmzzNcH2leAVmvUBUREVEB5DO5Tq8mbU9Y28zp3DRwRHVqNPtjMkIa0diNrers9Gx4CFpYvdGkkYiIKJ8YpKV+rWjCZYbr5XAz4r5tvTMYIiIiE/J58bA3QxClTh420sChV9YgsU4dpM0l3if36jeUlCyW4SYiIio4Hm1Tv+eonmW4Ptq8opdGQkRElF0+4wY9lamnlUlY6uJhIw0cjTplDQDtIG0uWZnMpC0sZtISEVF/w6Nt6v9E427T0ablvTQQIiKi3mW15KXZLF6tDvclDh420sDRFNTPpG3RWJdbJi0VktUawkRERIXGFr3U7wmC8cfYv+YuACKKJl0Fe/Ho3hkUERGRQlMwjre2B/PbTMhiFOjPn7ZjVLEdNhEIx4ETRrlRW6z+HdUK0i7cEcT5B3hZ9oAGhEaDIK1WJq3WsmwYpDWvKRjHK5sD+Lg+hBP38+CscUXd3tfISNTtFgUhP4MkIiLqYTzKpv4vSyYtAPjX3Inm12ZBjrPpCRER9b6YJOPGxa14ZbP1DuVGrIaNVuyJ4KXNATy/KYBXtwTwm8WtCGhEjVt1AlLfX9jEhpw0IDQZljvIDOBGdJqMZcOvijnJ/eNb24PwRWW8sjmA25e25emx8/IwREREvYJBWur3XLUnm9pOCu1FeNfrPTwaIiIitWW7w2gL5z9a0N2AaTAmY+GOoGp5S1g/y3Bze6xbz0nUF7QaNA5rU1yk+KgulNNzSHIik5OMfdKg3j9u64hht7/7+5pwjgF2IiKiQmCQlvq9okk/guiuSd0uPeJvEItqNbeN+3f01rCIiIhSdnUaBxtsOc7GVYYfcmmUs7lNPTa9TFrAeJo4UX8Riul/V4KKdTt9uQULZQABg+ehBL39YygtwFpkz20n2RlhKi0REfUfrElL/Z7oKEb1OV8gtP052Er2h3vk6QjXvYVw4BX1tp5hBRghERGRvuNHuXHG2CJUu0UsqguhxCliUqUDy3aHIcnAv9b5dO+rTNLTqiWbjVZg1+hxcp36TdSXGCTSqoK0ZpJhv75/Edx2Af/Z4M9Y7otIKGbTPUN6uxQBXYFZj13ICHifOtqDN7erZwEotYUl1BZ3e4hERES9gkFaGhBsRcPgnXx16rajeibCO9VBWsHBozQiIupbzhxbhFEliUOyU8cUpZaftu/fH+wKYVuHdqaZMrZh1LFej1ain9FU8AgTaWkAMJoGH8rhQsQpoz2ocNvw3EZ/RnPAzoiMYd5cRjh4xHWi4OnLfdHMbYZ5baYeu4OZtERE1I/wsi4NSM7qGdorZJ5ZEhFR7zOa8ZxtEq9RKQRlEmyzQTMkPXGtTFqD+rmRHEoqEPU1RkFaZSatGa59X1Rl1qxPozEfZYrrvETJpl/RuKx6v0pMZie390AtcCIiop7CIC0NSI4q7SBtaMfLvTsQIiIa1Da2RvHEuk4sNJiWG8syl9pMvdqYJGPh9iAeWNVhdYiqALIky4Y1aVnugPqzmCTj1S0Bw0Z+bWEJa5sjqdt6mezp3PtqppY4M7+wvgi/L9noXfdJZtJ2agS6la+zHmbSEhFRf8IgLQ1IortKc3lw06MI7Zzfy6MhIqLBaFdnDDd/3Ir5W4OGzYMCUeMgjijqByOSwY3/bQ7gkTWdOY1TWZO2MyLr1ogEgDAbIVE/9siaTjy1Xr/Oc9IflrRhS3sUzcE41rdEs24vCtqZtFoBRsqkW+5g30v31jb1RS6v6Uxa7q+IiKj/YJCWBixH9SzN5YEND/TySIiIaDD69wafqmaslgq38eGYUSwiJsmQZRnPbvTrb5SFchpxtswzxmipP3tvZ8j0tv9a58PTX1r7bimDh34GabPSy86P7ruA9NLmgGqd3eRZLMtNEBFRf8IgLQ1YJTPu0lwernujl0dCRESD0Wd7I1m3mVLpwHCvcR/XSrd+g5xATMZOX/fqrbcpShtk62Tv5NEjDTB6ueobWqL4bG/Y0mM5FV/XGGOEWSmbgiUZlVZxGMwwSMfqLERE1J/wMJsGLNewYzWXi+6aXh4JERGRthtmlWfdpsajf7jmi0pY1agfDD5upBs3H1GOWq8NQ4u0H6czKrPOLA1qEyoc8Ni1g37+LOVIlOyK4KGynAip6WW7RgyuP7nMFOtGosY2ERFRf8EgLQ1ogktdm9ZeNqUAIyEiIlJzmgg01Hj0M2l9ERlfNOpn+h1d68aBVU7cPacK9x1fjaNrXZrbtYTMZ+My5EEDzfgyO8rylCKunIbP2fbZdeo0VwsbBLjNB2lzGhIREVFBMEhLA5ocblYtE70jCjASIiKi3NQU6QdpW0LGTY28jsxAhl68ojlkPpLEmAf1V7JOVuW4MjvKXHkK0gqKTFpmcmbl06mDbdSk0MwFLoDlDoiIqH8xLoI2iOzYsQPz5s3D/PnzsX37dnR2dqKmpgZjxozB8ccfj/PPPx9Tp07Vvf+CBQvwj3/8A8uXL0djYyNqamowc+ZMXHnllTj99NN78S+hbMJ1bxZ6CDSAyPEI/OvvQ3jnqxA9w+Ee/XW4R50N/7p7Icd8KJp8DWyeIYUeJhH1spUW61gaMcqkXdNs3HW+WJEdqJdV9vdVHThxPw9m17rx3CbjRknKRmN9jSzL+GBXCH//ojO17PbZFdi/3FHAUVG+rdgTxr/WdqLYKeKSKcWYVOnU3VaSZbz4VQDP6TTYG1fmQKkzP99ZZaM/1qTVt7QhhPUtUfh1grFPrPchorPTUtb+1RNnKi0REfUjDNICuP/++3HDDTfA7888cNu1axd27dqFjz76CB0dHbjnnntU95UkCVdeeSXmzZuXsbyurg51dXV4+eWXccUVV+Dhhx+GKDJxuS+Qw80I7/5Qt2YtkRXtn/wQwa8eS90ObXs2Y31w2/OoOXc9BMFcxgcR9X+7/THcsbw963Zm9wpV7tyPH5SZtHrxisaghGe+9OMZE53sX98axCVTSnIeU09bsSeSEaAFgBsXt+Kp02rgMJl9R33bp3vCuGtF4ju2Nyjhd5+04c5jKjCmVDsQ/7JBgBYAaottpjMzs2FNWnOWNIRw92cdWbfT2yeJOsdVNiEze5YvPxER9SeDPmp422234ZprroHf78fEiRNx11134f3338fKlSvx9ttv46677sJRRx2lG2C98cYbUwHaadOm4emnn8ayZcvw9NNPY9q0aQCARx55BDfddFOv/U3UxV55qObyjuU/692B0ICVHqDVEu/4EtHGT3ppNETUF/xxWfYALQAcpVMfVslmsou5liJFM6TJlfnJJu3Lgac/f6r9+j+6tlNzOfU/89ao38sn1vl0t3/WIEALJAJ+zm58z9Ipa9Iyk1bboxrvYT4o93l9eFdFRESkMqgzad955x389re/BQBcfPHFeOSRR+BwZJ68nHjiifjlL3+JSETdOXnjxo3485//DACYMWMGPvzwQ3g8HgDAzJkzcc455+C4447DihUrcNddd+Gyyy7D/vvv38N/FaXzTrkW7R99T7U81vxZ7w+GBq14oL7QQyCiXrQ7YK4J17cOKDb9mN86wGsqyzXdCaPcqmyzE/bz4OXNAbSFuxc56quBD6NO7iv3qo/lqH/SqqG8NkvpDz0/OaQUAOCymw/S1nhENAa7xnDu/kVpa83VgR7s2nWahZlxaI1+aQu3XUBntOuxjfYJREREfc2gzaSVJAlXXXUVAOCQQw7BvHnzVAHadE6n+mDgnnvuQSwWA5AomZAM0CYVFRXh/vvvBwDEYjHcfffd+Ro+mVS0/yVwjTit0MOgQU4QBvX1MCLS8MejKzDEoCGY0tfGF+GXh5Xh5P08htvNHOrE7FoXfnxICb5/kLokgcsm4M5jKrvdJKmvBml3deoHyPt6LV0qjGNGugEkvhtm/e6ICnz7AC8mltvx02mluGCiN7VOOQufMcL8O22M/n5QWW6CX3siIupPBm2Q9q233sKmTZsAAL/61a9gt1sLosiyjFdeeQUAMGnSJBxxxBGa2x1xxBE44IADAACvvPKKbldZ6jmuUWcXegg02InmAzFENPBVukWMK7NWdkAQBMwc5sLXMjL21C6bWoJrppXh2JEe3ZqN5S4R38jyONnIfTQ/cEOrfrZswKBTPA1cRsfeU9LKfzgslDvw2AV8bX8vbp1diaNq3Rl159WPws9dvhUru7OlUZZiYZCWiIj6k0EbpH3uuecAJE56zjrrrNTylpYWbNq0CS0tLYb337p1K+rrE1OYjzvuOMNtk+vr6uqwbdu2boyaciGI5mr+ERER9YaRxblfuHEbTMm2CYkArBlegyCHGX31mvOGltymvNPAFTaoPpKeze6y8rW0UL62j35V+rUSp/4boAzK9tWsfyIiIi2Ddg7ukiVLAABjxoxBSUkJ/vOf/+CPf/wj1qxZk9pm4sSJ+P73v4+rr74aLldmoG/dunWpf0+aNMnwudLXr1+/HmPHjjU9zl27dhmub2hoMP1Yg5ZNO0jbvvRaeMZ+C84h2lnQ1LsaA3G8uT2IFXvCmDbEiZP386C2uO/uomRZRvsnPzC3bTzcw6Mh6l9CMQnztwYRics4dYwHle7+lW0eict4fWsAobiM08cUZZQOMNNQa0Q39m0egynZFW5RN3tWyevoXpMkSQbe2RFEnS+Go2rd+LIlitawhJNHezDUQhmHfMsWpJVlOSPrkQaWC+bvBQBcP6MMhw1NHP8FDDp3ZQZp8xN5zfYor2z24z8bEvWl/3ZCFao9/Wv/1xcYZdLGFfvgvlyTVpZldH76K/jX3JVaVjT5GpTOuAuCTb/uLhERDVx9NwLSgyRJwoYNGwAA1dXV+OlPf4r77rtPtd3GjRtx3XXX4aWXXsL8+fNRXl6eWpcePB05cqTh840aNSr17507d1oaa/p9KTeCza25PLD+XgS+fBA1X1sHeykbuhVSTJJx4+KWVBOJhq1BvLsjhL+fWIWibmZ79ZT2T36A4MZ/mtpWjod6eDRE/cu9Kzvw2b4mTiv2hPGnYyphy1Nn9d7wt1UdWNKQuPiytCGMvx5XmQr8PbI6e8fy7gRpjV6nKgvB7iJlC3qLXt4cwKtbAgCA+VuDqeXv7wziwROr4bQS8MqTxkBcs6FUund3hnBilrq+1LcFotmb3v1pRTt+PbMM04a4EIjqB+mGpAVIrXxmja7FGNWk/bg+lArQAsCP323G02fUmL64QokgeJHBRSZlVZO+XO7At+rWjAAtAATW3wc50oryY54o0KiIiKiQ+mb0o4e1t7dDkhIHeKtXr8Z9992H4cOH46mnnkJLSwsCgQA++OCDVJ3Zjz/+GJdddlnGY3R2dp2EFRcbd2f2eruaCfh8vnz9GWSSoJNJCwCQogjXLei9wZCmpbvDqi6/obiMhTuCOvcoPLMBWgCQo/zeEyWFYnIqQAsAu3xxrGnWryPaFyUDtABQ749jTVpX+fd2Zb8oM7KkZzLnzJY6ALqfSZsM0Cp1RmV80VSY93OXL5Z1m0fXZg+iU9/2xDpzv6n/3HfBpNMgqFvl6frOjCoxf/HEaeErnH50c+/KDtX6T/f0r/1fPnSnR0exQ0gFtWu96jcivc4w0LfLHfg+/53m8uDmJ3t5JERE1FcMyiCt3991BTsUCqGoqAjvvfceLrroIlRUVMDj8eDYY4/Fu+++i0MOOQQA8NJLL2Hp0qUZ90tyOo2no6SXSggGrQWddu7cafjfsmXLLD3eYKSXSZsUbVreSyMhPbv92gXjtndkP+HuD6TQ3kIPgajP2BNQf9+/aOzfQYp6E8HBdCN7qJSLleRYKwFdo07qWgq17w6ZSJkzmPlO/cSyPeZKCCWzqpuD+m96erOw/csdmFiRvaHfUbUuuLuZiZ6uwT8wjnWs6E52a7Gz67X/3oHqRJljRmQe9/flcgdERERKg7Lcgdud+eN9xRVX4IADDlBt5/F4cPvtt6caiz377LM4/PDDVY8RiRifXIbDXQeTHo+1E51spRTIhCyNwwRnRS8NhPS4daYY9qPZz4ak0J5CD4Goz9AK0n7Z2r+bPfkNplMreewCSpw9c43cyi7TSibt/uUOAOYvMitrQvaWSF+e10x5Y+X7BgDNIYPOYQo3HV6Oi99oVC1/+KRqfLonDLsIHF1rfPHf6qHLYPzY6l0smVTpwI2zynHrklZsbNMOXhen7bsOqXHh1qMq8N+NPtR67fjGBC+2dmT+nvTV11eW+vfvHhER9YxBmUlbUlKScfuUU07R3fbEE0+E3Z6IZS9f3pVxmf4Y2UoYpGfuZiuNQPlnWO4AgBxp652BkC6XTrdywfKpTt8kBRmkJUrarZE19lVbDH4TdSb7qoCyCKKB4RrTc/PFSllLK82zih2CpWZg2erC9pSQ4n2ocg/Kw1xSaDLIpFV+DVw2AQdXq7Npy10iTtzPg+NGerLWzzaqSavFTLPBgSau86IcXeuG0ybg1tmV0CsRrLzINbHCgZsOr8BlU0tQ5hJhU7wBffXljfu2F3oIRETUBw3Ko1eXy4WamprUbaPmXG63G9XV1QCAxsauK+vpGa7pTcS0pDcLYyOwAhCMP+YSg7QF59I54RkofTTiDNISpezWyKSVAaxr7r9ZRb59AWYz02q1aijmT8/sNIsdIkqc5h+7xULmYj5FFE/r1rkASINLU9Da59HKBQwzknsFvTqs8f57fSpnepm0pWn7Gb1GbsVZGsoqDyn1AsKFFu/cbLi+O3V7iYio/xqUQVoAOPDAA1P/jseND96S65MZtQAwZcqU1L83bNhgeP/09ZMnT7Y0TsoH44NtOdKal2eRZRmLdoXw1Hofvmrrv8GGXMU6t6Jjxa/hX3cv5Li1+pJ6UxH76tRVKdJuafvo3o/QufJmSOGWHhoRUf+xR6cG9eo8NJsKRCX8cVkbLpi/F29rNB7c2RnDU+t9WLg9iJgkQ5ZlvLcziB++3YTbl7blvO/27Wt8aCZjq7aH6tECPRWiBUqcAkotlGgoWCat4jfDMwCCtLIsIbDpMXQsvw7R5s8LPZx+Kb1RoZLWcUZ3T470PnVBnYz7cF9N9bRoY2sUT6zrxOL6kGGAUZb1G8OWptXK1ovFFme5YKSM7Urd2B1FW1ejfcnV2Pv8OHSsuB5xf13uD6YQyxKkhdz3o/fbOxK/qe/sCLL2LxFRngzKmrQAcOyxx+L9998HAGzZsgXTpk3T3K6jowNNTU0AgBEjRqSWjx07FrW1taivr8cHH3xg+Fwffvhh6v5jxozp/uDJkmxT5vOVSfv2jhAeWZPoJPz61gD+elwlhnkHx1dMjoXQ9NpMyOFmAECscwvKDr/X1H3jkoynv/RrrvukIYxr8zXIPGp9Z67l+/hW3YrwrgWoPpuN6mhw06pJCwBf5CFI+9P3m9GxL2D6z9WdcIjAcSMTteB9EQk3Lm5FeF9Qpi0swW0X8NT6RMmi1nAEXzRFcO8c6/vu5fsaGZm5rlRb3DfKHQCJYJKZ0+pEJq2FIG1QgizLec9IzCaseAPsA6CwuX/dvehc/vPEv9ffhyHf2AKbd0SWe1FSa5as7vaIOhDW3Y+N8rgz+ans0HguQF2moz+q88Vw88et+/7WIGJSSWrfq/TuzhCe26h93FeWtp9J7suVsmfSKsodGG6tLx7ci+b5R0COBQAA/jV3IbTjFdR8bS0EsfvH99kyaSHHAfTkzIvuaQ9LuGlxC5If646IhHP39xZ2UEREA8CgzaT9xje+kfr3Sy+9pLvdSy+9lLoafMwxx6SWC4KAuXMTgZoNGzZgyZIlmvdfsmRJKpN27ty5vX7CQoBYNNxwvWwxK1JPMkALJE7U394Rysvj9gehnf9LBWgBILD+PtP3/TxLV/doH8umjYcaEdljfGFGT7R5BaItq/I8IqL+Q5Zl3fqQDf54t2oztoUl1Un9g6u69stLd4czgnjPb/KnArTpXt9q3CDLKFvITMOs8WXZu8fnyuoRxkn7mWtmWuQQMpr1ZBOKywgXoOKBMiuyTCOwrFfnsq9KBmgBAFIE/i8fLNxg+qGXNwcM19d41EGwKVXObj2nMsib3GfoNTxT1lDtj57e4Mu44PPYWv1+Hf9Y3am7rsJEHels+yJVuYMcf1dC259PBWhTj9WxEeGdr+b0eEqxjizlDuJ9+zzi4/oQ0q87PKOTcEFERNYM2iDtwQcfjNNPPx0A8PTTT+Odd95RbbN7927cdNNNAACn04lLL700Y/21114Lmy1xcHf11VcjGMw8sQsGg7j66qsBJEolXHvttfn+M8gEW1EtnMNP1F0vxXrmoOLLlu5nhfUX8c6vVMvkeNjUfbPVitPLPCmU7jYByzq9jWgAC8eNMze7c00mW4B3a7t2p3Cltc3G++6AQWf5bLGAGUOdGGKhAZeeX88s01xudXr/2eOLsm5zwig3REGwHEhSlh7oDTFFAL3SLaLak3moG5eBzj72u2JFdM/iQg+h4Mx+EitcIr5s0S9hMqbUjvFl6ozIk/bzoCxt2v33plhr+qtshhrelymr942wD4CzseV7MvebeqUdjBw53AWPiRcj235OuTbXPVFM56J6ePd7OT5ipmyZtFJob16ep6ds71D/prLkARFR9w2Aw4Lc3XPPPSgvL4ckSTjrrLNwww03YNGiRVixYgUefPBBzJw5M9UU7NZbb80odwAAEydOxHXXXQcAWLFiBWbPno1nn30WK1aswLPPPovZs2djxYoVAIDrrrsOEyZM6N0/kFIqT3odxdNuhb3yUHinXpexTs5DkFbrKn2lRnbGQCW6h6iWxQPm6na5sqQ1aU1FLCQp1Jh9IwMyG9XRIBbS6xazT64ZTwCQLT5Z5TF3yOPNMpU22SRMi15c8oqpJfjBQSW4dpp2cNWqQ2u0M/2KLGS7AsDQIhvuPq4SZ471YFSJ+jdrxlAnvn9QCQDrU8Czvdc9QfmUdlHAX46tUm2nFVzoi7TqegrO0gKMpO+QZNl00M0uapcA+c6kYlwxtQS3HFmuOcPNbRdw1zGVuPTAYvx6ZhlOH5v9YkbG/RXHNdkuWBTigkZf9KNDzH22sx035isx2Vaqfd4Wa1vf7ceWZRlx3xbDbaTg7m4/T08aqtEEs1FnpgwREZk3OApm6pg4cSJeffVVnHfeedizZw/uuOMO3HHHHRnbCIKAG2+8Eddff73mY9x+++3Yu3cvHn30UaxcuRLf+ta3VNtcfvnluO2223rkbyBzBJsTJYfchJJDbkK0dS38a+7qWhkPQZYlCELu1yy0mqRUmZiyNVAINvWU2bh/F+wl47LeN9vBdke4bx3wdTezIV81kIn6o2CWYER3vu3ZwhxmY4bZptLqTVkG9LuIHz/Kndf6qIIg4KBqB1Y3ZWYJFuWQkldbbMfFU0rQEorjqneaM9bNHOpK1Xe0HKQtRCatIshvFxIBt3FldmxJy6Te2hHD1OruTWnvDbJGs0nRkZ9Af38Vt7CTiEnan9tjRrpR7jL+rpS5RJw2xlpwNsmtuGKUrDmrl2SorKU8kBllWprdxygzlbPJ9dXVOrYFgFh794O0UnC3qpSCUryPB2m1agPX+2IYmofZIkREg9ngiSLpOProo7F27Vr87ne/wyGHHILS0lK43W6MHTsWl156KT799FPceuutuvcXRRHz5s3D/PnzMXfuXNTW1sLpdKK2thZz587F66+/jkceeQSiOOhf6j5DsKuL2mc7UMpGa8p+tmysgUSW1NODJf9OU/d19LtM2u4FaeVwa55GQtT/ZGuQ050u3NlOxM0GQrLtu/06f0M0LuuWO+iJipNjStW1bb0WM2nTaU0hTn/NrGfSFiJIm3nbtm/QY0ozcxK2tetPge9L4sEG1TLBYW3q/UCjLGlhJCLJmt+9nq5LbDWTNjwAGoeZZXSRy+zbonx9sz1OzjPwJe39hBSog6yzzqysTcPQ9zNptdT7C1CMnIhogBnUmbRJVVVVuOWWW3DLLbfk/BhnnHEGzjjjjPwNinqMYFdnRsixAGDxxGdrexS//kg/4DaQ6jKF6xci+NUTiLatgXv0efBOuRaCzY3AxocR920HZHVkJR7YZeqxs71MT6734cjhbjj7SLeX7takjQfr8zSSnhMPNSKw7j4Idg+KJv8UooPdevNJkmU8usaHhTuCOHOsBxdNKk4Fkwa6bHUKc91vtoWlrE1LzAYNP6wL4YyxHozVafC1rkm7Zu3yPWGML9e+T0/0BRpdoj6EK7KYYZZOa1ZDenCpRWPGiJFCZAeqMmn3xdtVQVqL5Q4+3RPGI2s64XUIuHxqCSZX9k4WrqQRpJWl/lGqQUmSZby/M4R6fxzHjHBjdGlupyBWMmn9URmb2tSvV48HaRXfw46IjGc2+LCfzt88mDJp2/MwOypruQPF7bgMPLXehxNGuVFbbO5zJ4Wa0PHZDbrrY+1fwlEx1fAx5FgI/vX3QQq3wDv5x7B5R3Xd30SQtmPFdZBCjSia+H1E9ixCtPkzuMd8E+H6hfCtvAme8d9F2dH/KlhTaq3f6wYfg7RERN3FIC0NOtqZtNbq0vqikmGAFsjeQKa/iOxZhJa3Tknd9rV8jmjTctjLp8C/+o+694ubzKTVmx6c1BmR8dAXHbgmT7UcuyvezUza4KZHUT57Xp5Gk3+yLKPljRMQa1sDAIg0LkPliS8XdlADzONrEwFaAJi/NQhREPCdyYMjOy5bMCKXWIUsy/j9J626GTxftkRxQKUDIQvRnRsXt+L+46tQpagt3hyM4yWdbvH3ruzATw7tvXqhozUaHnXnd0fUONFPz/CzGtgsSCat4intqUzazOB5vT+OSFw2dfHvsz1h/GlFOwCgJQTc8kkb/nRMZc5BRiu0pjvL8e7N/CmU17YE8O8NiWOtN7YF8MDxVSh3W58Wna1BoBlan/V80sr01NtvAP2/Jq2Vi2v5mB2V9e3TWP/qlgDe2h7EgydWaU7TTyfLMprfPAGIh3S3ibZ8njVI2/7JDxDc/AQAILTtWdR8fSMEMbEvMpNJi3gIvlV/gG/VH1KL/Gv/nPp3cPOTkOMRVMx5Jvtj9QCtr2KDv39eRCIi6ksGz3xson0Eu7rGlNVyB68ZHGwnGU3p6k/al/xEtSy88xXDAC1gfpqWmbjJ4vqwqcfqDVJQP0hrK51o6jH6ciZUtGlZKkALJN7rvjze/ujN7cGM269u6Z9Bl1x0ZDlBzyX+sr0jZjjF8pE1HQCs7ZPjMvDvDT7V8g/r9E/aAeCBzzs0l/dESKhWo2nLMI1l3ZEeiJxd67Z030IEngKKpm7OfUe5o0szXxdJBvYEzGV8/W2V+j39x2rt9znftH5vujubo1CSAVoAiErAwh3G3yU9+Yj951C62RJlJm02nZH+fbyo1ztAK3jbajEjX0up0/gNdOjMTAnHZSzYmv33Nta2DrHW1cbbtK4xXA8gFaAFgLhvG0LbXui6bTKRIZvQtmfz8ji50PrU7jW5XyUiIn0M0tKgIwgiYMs82bSaSbuhNXstqp2dAyOwFWv9Iqf7yXFzgdWIyahMtI9kmhjVpK0+8xOI7iFZH0OOqoM/fUW8c6tqmRwPamxJ+dQaGhwnNg1Z6tXlcvqebRr+js64qe2UljSo92Gb26zXIZxa5eiR6ah2UcBpY7ouOu5XYldN67fqvAldM02GFomYMdSVuj1rmEuzbq0es43a8mm3IkBQvS8T2m0XVWP3Rc0N0KcR3P9KYwp9T5A1Gk3GWlZBHgDllL7K4bsEaGfS7qdR+sNIPpv4aclWM1VpbyCR2d1ftegGadXLjC6OKHeTF01Sz3w7uNqJyiwZ2EOLbLr1uc3MCJCj7Vm3iXd+ZfwYGhe3I3s+SP1b2UTWO/VXWZ+zr9F6fzsHSIIKEVEhsdwBDUqC3Qs5bRqT1UxaM9M4d3bGIMtywWpFFZosmQzSmjwxCcblrE3GeoNWkNZeeSgqT34DoqsS1eesQmjrM4iH9sC/+g7Nx5CjHYCrvIdHmhutJnCJms0lBRjN4LGhJYojawd+R+T6LPXq4jmk0poNtrVYDIRr7ZpqLHatnj7Eietm9FyplkumFGNiuQO+qIRjRri7/Xtz3oQi7FdiQ1tYwuxad0at5CFFNvzf7Ao8urYTq5vUAbbhXltGED4f09Kt8EclVUbi8LTM4mKHkFETubuzXXxRKeu06e6SouqMXSncBClQD5t3RI8+dz5pZVRaCfin0/pe3nJkOT6uDyMYkzIydrXcPrsip+e1wmomrYzEBQarwea+Qu8CmNUgrdI5472o9thw78rE9+DCSV6cMUbdV0LJLgqYPsSFRVlmPugRnOVZt4l1ZAnSalyMj/u2d61XBGltRbUomf5HdBrUwe1rtK4VBWMyYpLc4xdCiIgGMmbS0qCkbB5mNZPWzDTOzqiMtjw0SOi3TGfSmnu4QtQ31KIM0ladvgg156yEzTMUAGArGgbvgdfCM+5C/ccwkaVRMBrBdTnGTNqetr6lf3Sb766smbQ5fM3N7GcjcRkdeZhSXGWhhubMoS78amZ5j9a/FAUBs0e4ceqYIhTlIWAoCAIOH554vGKNKcW1xXbN+sljSu2o8WRubzJ2njfKz5aARGA5SRlQ9XWzNuaGXvjOyhHt34poy+c9/tz5pDUdvkgn0zEbZYa2AMDrEHHyaA9O2E9dzipdmVPAOI1azvlmFwXLzcnqfP139pXeBTCt4PyeLL8BSkfVuvHsmUPw7JlDMHe81/TF+lnDXNk30iEI2T8j8c6vDDPa5Vin+j7+riCtpPhuC84y2ErGWRhl4UmaBQ+0Zx8QEZF5DNLSoKRsHma1EYfZTrzbB0jJg1yYLXdgtoxBoBBzZxXkWBByNPPAW6+8gWDTr98oR3qnnmEutN43ljvoeWZKqPR3kixjd5amIrkEac10C2/N8YKZMhvUbOBFAHDBAeqpugNBtUcdqNbKnIr2cibtbkXwZ0iRmDEm5fTn7mbSrmtWzzrIN61MWqD/BWm1psNbLQmQpGw2ml5fVq8WadKhQ1w93jQsyWo2bV2WWQZ9WUvQfCatsiRJTzm42gmt61b5evflmN+wPrQU1QjS+ranArvKkgqiowyCo381ENXbxXf3AhgR0WDXP+fVEHWTKpM2qp9J2xaW8OtFLWgNS7jx8HJsbI2arm34x2XtmD7EieFeGw6qdmLakNyv7GcjhZrgX38fINjgnXItRGfPTbE1w3S5A5Mn8sE+kEkb1yh1oB+k1c/o0Tvx7guUQWgAQDeDtBtbo1jSEMK4Mgdm17oGbAmQaFzGG9uC6IxKOGW0RxXM2u2PYeF27ddyR0cM/qiENU0RbGqLYcZQJyZVOntj2D2qwR/DvZ91YEdnDBdNKs6aOf+/LX784KBSS6VNzGTSNgdzCwzsDcRRW9x1qGQ27nj0CBdG9dOpy9l4NYJP4bisCpA986Ufp43xwNPTXZr2UWbSDvNmvv7KzOAn1vtQ5BAwZ6R+mQijTLn5W4M4b4I3LxnMSeH6dxDc/CSiLZ/DPepsxDs2am7nW3kTXLUnw1kzK2/P3ZO0ypxEcvhK+iISnlY09LOlvXfZ3opDa3pvn+q2CZYuBDy30Y+3tgXw61nlGFfm6MGR5YcvKuH1fU24dupkAfujMl7e7MMrJprt5pvbLuCQGidW7FFeTMnf8UfLO2eieOqv4Bl7PmKdWxD48mHYvCNRdMBVCG1/SbW9HPNDCuyCzTtKVZNWcJYBQv8qeaS3ezRbgoiIiLQNzDMIoixEk5m0sizjB283pW7fvrTN8nN9tjdxgDh/axA3HV6Og6rzf5IgyzJa3jkb0cYlAIDI7vdRddp7eX8eS8yWOzBbk7YPTJ9S1aMVnYkDay02/YC83IeDtMoTB8B6zeZ09b4Ybv64dd+kuCCiUgmOH2U8JbW/emRNJ97flaiB91FdCPcdX5XK5AvFZPzmo1b4dS42yAD+tc6HD/bd/7UtAdxxdAXG9IOTdT3BmIRr329J3X5ifWZwxW0TEJfljGnxi+rCsIud+OHBpaafx0yQ1mrTsKQ9yiCtyfulN+AaaLQCmpG4DK1Y7F8+bcdNh/d8DVAAqiztYYr6wVqNhB76ohP+qIyzxmnXucx2UeH3S9pw5zGV1gaqI7J3CVreOil129e6ynD75tdno+brX8LeD6ZI3/+5+jfP7AXadLcva8OW9sz3Of1zly1L9uBeDNK6csgUbo/IuOGjVtx/fFVGqY6+6E/L2/Fllhkgf1rRjh0FnFE2a5hLFaTVKsGQq1jzZ2j74ALI0U50rLgOcqQVABDc8jSijZ9o3ifaugZi0UhVKRPRWQ7I/Su4qTdaZW1wIiKyhuUOaHBSZDnqBaHyXSfyfz2UTRBrW5MK0AKJIK0Uau6R5zJLqwGVFrO1ZvtCJq0cbsm4LbqqdDOwRLv+tDWt5mN9hVYAuTvlDl7eHMioWvbkenUzjYEiGaAFgOaQlNG05N2dQd0AbdIHafeX0f9fq/d3GjdtGea1aU5Pfi/L/ZTMBGnNlETQ0qSYxmum1M3sWpcqi3OgqXRnHj7OGeXRrNG6uima82tvlTIQP1QR5CrRSbM0+p5lm7a7rSOGzjxN7fWt+r21O8gxBDc/lZfn7kl677/ZslFJDf6YKkALwFKDop5u9Jau3mLt1XRvbuv9zFMrGgPxrAFaAJYDtPmeY3OYxuw1M7M0ZNnauNs/viIVoAWgG6AFgFj7+kSAVlbU0HaWQ3TXWHreQpN0LrT4mUlLRNQtDNLSoCQIyo++9oFGtiY3Vn3R1DM17GItX6iWaU3Nz4Wyfq955k7AlLUijx/l1uz6HOgLQVplloOoH4gR7B64x35bc122rsCFJEvqE6/uNA77uD4z4NbdOpD9yeq07/uODuvZRGua+3ed2mwn8W6boFsSwGytagBozxIkc9mEnOujKmvS7s1ST7HKLWo21hpovjel62902QScMtqjm62cryBmNsr3yqX4HSl3WT/kNdMAx2qwUfdx6t6wfp/6N/Py3D1JWUM2tdzid9Knk52njLmdMVZ7psZ5E7Szpfuivl6jfE8P1JU9fpR+2ZFcaTU/9JgJ0mrMKMqXeOdWxP07VMttRbWwFe8H59BjUsvc4y6EYHDBv9D0du194HCdiKhfG9ipHkR6lEFanSlG+Tr56mmx9vWqZVKoEcDkPDx6jq+ByWlbrYoT+wnlDswdX5QxTRown3HbszLHIGTJ+yg/5gkEa09Bx7JrMmq96tUZ7BMkdTCxO5m0vdw7qGC0aldmXOQZmGV4DWXr9WcTgf3LHZrB3M6ohEpb9um+MUlWTa0sc4kZ2XulTgG5JvYo/wZlc6oqt4gzxxYhLstw2wVMH+JCpbtvT1POh8OHu/G7I0Rs7YjhsCFOVHtscIjaJ+25TGvPhfLnWhmLqdJoeJaNmYwwsyV7eoKteEzBntssvV2f1V6gNp0YuzKT9ruTi7GuOYptigtjRw7Xb+bZ13h7MeM3F4051vjWMrXKgeNGunH0iJ55f86b4MXzm7r6Tmg1sVPSKvuUL3HfVsT92zOWiZ5hEPaVyKo4aQGCW56CILrgGfstNDYehHinwYV9sed6XWSjd45k5SIrERGpMUhLg5TitEEn06O/BGm1Oj0ngrTdI8tS7vVIzQZpFQfMlW4Rw712HDHchSUNXXVtg1bP6HqCxVpmgmhH0YTvQbC50PbhhanlsT4cpJVlrUza3Kdear1ikbgMZ46dvfsqrY9nekBvYP215uhl0CXZRQEHVGjX3O2MyKg0cc7eoREVvGRKMe5b2VW2IyJZz9pLUmbgKjuTXz61BIcNLdxJciFNqXJiSlVXjU+HKGgGZKO91LQ+W5BWWaLBDDOZtIUM0gr9oNGQ3quTbf+gpPc5Ur7PoiDg+FFuPLY2s4xFL/Wvywut+sl9yZ48zTI7f6IX3+jh+t1DizLfeDNNJOVwa9ZtchXv3IK4LzNIa/OOTv1bdHjhPeAHXbc9Q42DtLkmUuSB3jlSn8ipICLqx/rRIQtRPikPgLWPKHoiezPUA8HGHgvSdmOau2ziwDEuyap6dRX7pqQqSx70hXIHauZOpOylEzNux33bIJtsrNbreiGTVhmYHwi0ptMHYnKqSUkup9x9+zQ9u2z7T5sATNQN0pr7jCjr0YqCOhgXics5nzTG0gJJwZik2l8p654OZnadCy+9l0mb+Tw2RYalUZBWr5mQqUzaPOzOpHBbjvfruWBST7N6KKT3OdKqSevW+CxaqV1baN4+HlFWXqzKlbK5X09QZtA3m2giKUV0vleqUmnWxXxb1UHa4tE6WwOie4jxA0oRzZk8vUHvApWy9AwREVnDTFoanEzWpO2JTNp7PuvAkbUuHDsiP/W3pFATpECdannwq8fgnfRD3fuF6xcitPM1xNrWwVE9A95JP4LNOypjGznm17m3CSYyaVtCkuqVT04VLlIEaQvZOCzc8B7CO/+H4Jb/ZK4w+f7ZSidkLpAlxDq3wFFuvRyFFPUjsP5+SLFOeCddjWjTUkT2fAjXyDMBWUa4bgGcQ4+Fe79zTD+mLEsIbvkPYu3rEW1aplof+PIf6Fjy44xl1XNXw1Ex1fBxW0LaJ3ItobhhcEuOR+Bffz+kcDO8k34Mm3eEib+iZ+0NxPH8Jj+W7Q7jnHFFOGtcUSobWJZlvLVdO5Dd4I9jXXMU71hshgUk9kqf7Qljej/L1IxJMv63OYB1WRov2gQBJRo1AwHzQVplHdQyp6jqqh6MyYbZjk6dafoA8MKmACJx4LChTlUtQwHo8x3Ye5PeDO3emPoqyTJ2dmbub5RxOqOatIGYjGKN7EW9OqjpXtsSwLXTSyF24/c87tuW0/2UwaSYbzsCXz4E0VkOR9UMhOteh6PqMIR2vY7Qln+jeNptKD74N6ljj9CuBYg0vAMIdvjX3AkA8Ox/KVy1pyCy5wNEdn8A1+hz4T3gRwjteBFxfx2KDvgB7CVjc/5bU2PVeWnXNUfw2d4IJlY4MGtY175P7zusFc9U1iMGAI1FfdaW9u7VpG0JxXH1e82IScD9x1eh3CViwbYAgjEZp40pyqk+c7p81aQd6u2FIK3i4kwwJiMQlVBkUFJCN0hrcoaYoXgI/rV/zlhkFKS1eYZmf0wpCtic2bfLM91MWgZpiYi6hUFaGqQyj9ZVDaH26YkmRysbI1jZGEkdLHdXtGWV9vKmZYj7dsBWvJ9qXXj3h2h565TU7UjD2wh+9TiGfHMHBLErs02Odae7fPbX7r7PO1TLip2J90aZSVuoIG2kaQVa3jxBZ625sz7RWQrRMwxScHdqWbxjY05B2vbFlyK07TkAgP+L/0st96/9a9q//4KKE/8H96izTT1mYP0D6Fj2U931sVb1Z6zplYMw9CIfRIf+VMWr3mnWXK6sQ6zUvuRHCG6aBwAIbn4SQ87bBkEsXDAsEpfx60Ut8O/7DD670Y/tnTH8bHoZAOC1LUE8/aX2BY0/LW/vVtbRnSvaccPMMhyq0aW6r/rH6k58sCt7UDoZXCl1CuhQBMO0yhhoPtcXmfsQt12AUyNj7k2dIDoAeBwiIgbZ3a9uCeC1LQF8bXzm/rrKIw64sh3dofdS9EYm7bsaF0FsiqCpURA1EJVRrJHUbSaTdunuMF78KoDzujFtO+7bmtP90jvKy7EQWt48yXBqtG/lTRCdpfBOvhrh+oVoffsM1TbBrx5D8KvHUrdjX6zP+K0JbPwHhp5fB8Gu3aBLNUadt18rkLOlPYo/LGlLHT38fHopDt9XS1av+Z9W8FUrk1bsR5m0m9tj2NUZw0idxopGZFnO+O29+r1mHDnchU/2lY9a0hDGX4+r7NZFhbwFaXvhIpdWjfCWkHGQticbh2mxedXH6UlZM2kByFIYQgGCtHoXTnKtAU9ERAl9ez4NUQ9JD0QC+tO5rdZMs0JZLy1Xcd8W3XV7Xxivubzz01+rlknB3QhteyFjWbcyaTWmzStt1GgYlDxxcNvV2Q+F0L74Cv2VFk5ylCUPYh2bLI9FjodTAdps2hZdYvpxg9uetTwWAAhu/KfuOqPpd8op6qrH3RegBQApsAuhna9YH1wefbArlArQJi1pCKf+xvSmJEpGAdoZQ82dVD24Sn0xoy8zE6AFuoK0p4xWX6wye4GsXRHcbfDHLQdOZ9dmD4DLAF7anFmbmaUOMs3QyfjujZq0/1zdqVpmZca4XjBW+b3X89zGbvxWAogH6nO7n28b5HgEABDYNC9L7cqEjqXXAMjy22ZAjrQisOlR09vrxei1svCeWOfLuLx7T1ptab2sPYfG9324Roam1sWbvmzeGvVn2ozN7epjr0/S6vs3+ONY05R7pm4oJhvun6s95r94Wtnr+ea0CSh1Zj5PtiCzFNH+zXUMOSpv40pnFKR1Dj0m+wPs2wf0Nr3j8r7R6JeIqP9ikJYGJZt3ZMZtvamGuRxmlDh790TAsKmTrB0ojTZ+orlc2dBKjuZ+4tmtAC+0yh0U5tK8VhZpLpQlD3JpHhbvNJ9tJetN19MQ3fux5bEAQLT1C/11Bm+X1YC7lb+7J9T5dL5H+/7GUI7TuUcWm8uSUgYiB4pkpuPZ49QZed2ZIW+lMbrXIeAb++eWAZlLI6qB7Oxx2jNDejqTVq8pXIXG+/PDg0s0t1XWGk7qrWCDHM+tOaMcCyDatBRAIkhrRdy/I6fnBIBY+3rT2+oFVzs0XvP1ihIp6W9tQCcwqHWxZJjXjoOruy6CHTncBXcv1zv48SHan7V0RiPKVi5GT7aLoADQ4M9+EV1PIMux2IFV5i4+njOuKC8lv8yoVfzW7ujM9vdr/43u0ecBNhMdLS0S3dW665zDT4S9cprh/WWpMD0OfDoHenqlroiIyByeYdCgZCvOrKemFwTSOykw0tvZGnLceq1LXYpavd0JtMqxgG4ZCTP6QrmD7M0Ycs+kjbdbD9LGOjdbvk+hGNVzDlidC5eHZh09IdfgLJA4ge/jvWF6XPLvd9tFTKnMnN2g18jJzDYOE/vgMaV2fG9KMe46phLFOnVxsynL8X4DVYXGtGJAf0psvtTpdJqv1hjP8aM8uGFWmWp5u055DeV3fHyZ/oUVM59ZPUZNOsuPeQplRz+OoRf5UHbUI6r14fq3IcsSYi0rc35+yyzsk/WC9J1R2VLtSr3moXoXu66fUYYrDyrBVQeX4OpDS00/T74cO9KD62eUYWSxDSOLtb8bw3qgJquZo5LuHE9lm+Wwf7n+dyR5Ae2n00rx7Um5lwexar8Si0Favd+WykNRfeYSuEd/I19DAwAIzgr9dYKAqtM/RMlhd8JeeSjslYeqtpELlEmrLFOUZKY5GxER6WNNWhqUbCXjMm7HO7VLBhgFk44d4caHdeoAaW93EM4pSCvYNbNshTwGaQEZciwIwaBmqZG+EKRNryGrrTvlDnLJpM0+ldUqWYoj8Xfk9/U1CtJafS+Vn8vepveVDsVklOZYBm5ihcPSiUwwJsEzwKK66TURlVmpZuJ6WhfRbIK5ae6H1Dhx+tju1QQvd7HcgRk9nUm7VafJkldnKvWhNS4cVO3A6rQp32YzaY+sdWNzu3apIl9UVk2rNstoRoxn/EWpfxdNvByx9g0ZjYfCDW/DZbL+eP6Y/zuNspHbwxKqPOa+R3q/GyNKtO/vsAk4cT9zdXN7ymFDXThsqAuRuIzvvtGoWr9fiR0NOhcZgMSF4p7INu1Ohni25IWxpRrFnQFcOMmLueN7LzCbThWk7ciWSavzNwoiHJWHoHTWPQhtf0F7G8372QBZ/30WDYK0ACA6ilF80PUoPuh6yFIUu59QHHgUIJM2Gpd1v5PNQWbSmhWJRODz+eD3+xGJRCBJDHAT9QeiKMLpdMLr9aK4uBhOZ37rgjNIS4OSMpNWCu2BHAtAsGeetOtlbgD6J4BWptrmQy5BWsFRojMdPp9B2n331wnSZss6UgZpjd6LnhJrXW28gYWTJ1tZZpBWCjZAinZCdGSfEpkaT4e1IK0sxSCIxrt5OdqO3AO0+vczOgm0/F4WOEir9y4bBaKNFNkFDC2ywW7h87PHH8eYsoEVpE1vDmZTRMLNxPW0plpWe0RTF8qUr2QulynKXP2rxmWh9HQTma0aNTgBGAa3lFnQukFaxXdcqyFVUkdYQmmO2dV6dfG1uGpPygjSRhuXIrTlPzk9b66sXDgz2k+2KYK0Rt9DvYvmo0yWjSkkvTrZo0vtWLpbP8DWEZEt72fM7Du7MwskW7kDrTIjAHL+buTDKEUgv8EfR0yS9X8rdI9PE9uLnmGWnl90VUEK7TVYbxykzRyC+vMuS72fSdtpsGNvj8iIxGU21jQgyzKamprQ1NRU6KEQUY6SF1n27NmDmpoaVFVV5e3Cat8/siHqAfaSsaplsc6tcFQcmLq9oSWCXT79q8HKmqlJZqbaJikPYuL+Ovg3PADRVQXv5GtMdWvNFkiUIu0QnZnTO0VHKeIaQdpw3RsoPrirqVh3g7Txjo3wr7sboqsa3slXZ/w9yw1OTACgSKNxmOFBdQ+IZgvSWsmkLRkP5SlovOMriFXqWmNx/y74N/wNonsIvJN/AkF0INK0HIEND5h+PgCQQk0QPUPQvvhyBL96HMWH/h4lh96M0M75iOx+D64Rp6ouWORCkmW8syOE3f4Yjh/lwcgSu2EgNj37Ilz/NoKbn0K05XO4x3wT7hGnadyj67OwYk8Y65ojOHSIK6PmYD50hCXctqwN2ztiuH5GGQ7b1whJ7wf3kdWduGhyseXnGea1QRAES+UOdgfiGFOmnaHUl2QvEdIlPdtG+bU207TRp5HRVeoUYea8UPmWumyC5cAFM2nNeW6jH2eO9fRYJvgWnSCtkTKXIkirV+5AsR8zqmvaofMYZlgJ0jqGHA2ITiAZmJHj8K+729LzBQyaPpphVI883Wd7wnh0rX4DrJaQhPT2plrfwAvm74VdBMaVap+y9Jfa0NUeEU3BzM+IMsNTqcEfQ5nL2u+cmb3Ygm1BHDHchUmV1n9Ds2XSFutkKhQySKt8neMy8J8NPnx3crHO77v23yjHEln02S5+K4nuasMgrWDL3rwyta0gAKIrI3u26ZWDAQAVJ/4P7l7IqpdkGS9uMq6j3RKKY5iXYQY9DQ0NaG9vz1gmCAJsNh5XEPUH8Xg845ynsbERkUgEtbW1eXl87j1pUBLsRRDdQyGF9qSWxX1dQdqdnTH87pM2w8co0jkQtZJJe//nHfjFYYkAqizF0PT6kZD8OwEAsbZ1KD/auIOyFO1EeNd8w23inVshVh2asUzQyd6M7PkA4bo34RpxamJMloO0mUHI5gVdXWlj7etQPjvR2GR1UwR//cy4Y73WyfA/VnfiR4f0Xm25rJm0Fgg2F2zFozOa1MU6NsKhCNLKUhRNr82CFGwAkAh0ew/8OVreOMHyc0qhPehY/nOEtj4NAPB9/jtEm5alPjP+tX9ByYw/Gz2EKS9/FcCz+7qbv7U9iAdPrMZvP9ZvXJYM4Eb2foKWt05B8jPja10F38qb1HcQEgetK/eGcdeKxEHt/K1B/P7I8pxOMrXIsozvv92V0fCnFe249agKTKxw6DbH2NAaNfw79SQv8Fi54JCtG3VfYSXMmV7uQRlYjZuId2m9Lx67YOoqtnILlw2w2utEGegjfX/9tB03Hm4hW8wkSZaxLevUZTVVkFYnkzas+CAaZtJ2J0hr1ABUQXR44RxyFCK738/5+do/vjLn+wJApOFdxP07YfOO0t3m88Yw7lzRrrseAO7/vB1PnDYEgPHsmpgEbGyznjHdl+xXYkdTMDPjcbRO4Dlptz+OSZXWnsfshbJbPmnDncdUZh2DUraZMHrXrgpZrafIIaqC5PO3BlHjsemUvdH+G6WgfqDViOiqyul+VrW+cw4qT3sfrmHH9ejzvLApgIU7jC8sNQUlDCtMdYs+LxQKZQRoq6qqUFpaCpfL1W/2Z0SDnSzLCIfD6OjoQHNzMwCgvb0dVVVVcLnMX3jTwzMMGrRsxWMybsf9u1L/fvmr7MFJj13ApIrMzLYxpXZMH2r+i7lsdzh1QB3a8VIqQAsAwa8ey3r/oIkpjvFgvWqZXpAWyDx5M2pmokVw6GcVBjd1BZwf/kI7QDtjaFfATVnuAAA+2JXHJmkmZK0ba3Eavq10QsZtrYZ1oW3PpwK0ABD48iH4Vt2ayuCwIh6oSwVok5RB/c4Vv7T8uEnJOmrJAC0ARCTghU3G35/ktNXAl3+HqbCenKgd+dzGzMd9ar3110TPVo1Az99XJT6nlXkOxh09ItEd2spJa3Owf9Qps9Ik6ujari7ZyoC1mccJamR0HWQyu1pUPF/yPbGiLMf6o4PRF01RdHYjiKmnLSxpTqefPsT4c1Cu+E63hbU/b8psba3fJb1tLbFYtsg5/MTcnytPfKtuM1z/2Jrs++dw2oWRDS3atYWN1PZA462ecviwzGNDp5jIrjXSmENtT9FkkEdGbr+hfoNp7ieOcusGmYYWFfa90iqL8fg67b9f1qkfay/dP/Vv0V1j+rkFu/UZN4YMatB2Lv9Ffp9Lw/NZjvEAoNnqVc9BpK2tLfXvIUOGYMiQIXC79b87RNT3CIIAt9ud+g4ntbZaT97RwiAtDVrKGlDpQbC1zdlPFpw2ARdPKU4FWmwCcPnUEpw62oMSCyfvyfPLWOsa0/dJirWtz76RRlaF0cFl3L8j7Zb5k+rSmXdDLBphattGnYDTd9KmjveFUlbZGocJorUsTuXrLkXaVNvEOjaplgU3P2npeZLivu053c8svTponzca10dLljsIbnve1PMks1c2K6Y1b9LJrMqFVhZc/b6GLiOyTEm1osIl4qjaZJDWQmmUHm6+lC/K6bxJymCKyybghP26AqPKGqGtOpmN6aIar8mpYxJZUV6DYBoAVYOnueO9hgE4LY6+sJPqR4yCO7nSqn0tALhkinFQRFWTVuP7H4hKqk72VR4Rv55ZptoWAOLd+I7q7UvLjnxYc7ldccGvECJ7PzJcv9ti9n9LDh3he3NmTXcdPcKN4Wn7wTPGFkEUBJwzTr+BofLzZ4aViyFfNFmvZaqXSesUga9P0E+dLPTU92qTDeoA7QQFe/lUOIYclbpdfux/YKbkVdHka2Dz7qe7vnTWPabHZUa0+dO8Pp5Stn4SSXrHAgQEAl0zJ8rLyws3ECLKi/Tvcfr3uztY7oAGLcGeeTApR7uCtMVOAa1ZmqXaRWB8uQO3z67A+uYoDqh0YNy+mpF3HVOJJQ1htEckFDtEPGmQrRCTEo+VS6ak6DYzhUrjgMpkBqhy2pytZDy8k6+Bo+YI2IrHwL/+XkSbVsA7+Wq4R52FcN0biLdvMPXYWoanHcTrXVCWZNl0pkh3yLKMeFpGqxbLQVpFB1/t5m35E/epM3WzKZ72B0TqFyKyZ1HWbaMtn2suz9bZN3mSZy/d31RJiXhaWZKeYjSNOee+avt8c6IXo0vs2BuM4+haN1y2ZLkD848R7Uajl96klfn12CnVAIBFdSHsDsRR7bHh0BpnxvddWVfSXJA28/bQIjH12s47pRrfel3dTT2pQjEnt8wl4s/HVmLp7jBGl9gRisv43+YAvmzVv2BnY9aLJT2QSKuZcX33nMqsASFluYOOsKT6bdEKMlS7bRjuteO6GWWp0itJ3bqOImV+zsSikSg76p9wj9Sq0Q2I7qHdeDJjrpFnZi2j1BOsNhn69gFeTKjo+3W6k+yigNtnV2BRXQhlLhFH7Mus/fYkL8aW2XHvSvUMI71SO0aacsi+tUJZk3ZksQ0njPJgxjCXbiC0og+UhinXqV0sy7I6g1FRfsRWMg5VZyzOaJjnqj0JVWd+gmjjUthKxiLu24aOpdeoHr901t3wr9WuGe0YMhveKT+1+JcUVpuJ32aAmbRG4vHEa2O321mDlmgAsNlssNlsiMfjqe93dzFIS4OWcvpRepA00fjA+EuWbBA2ptSBMaWZJwoV7sw6V4vrQ7rNTRINcgTIUfX0Ic2DxzSi00yxMo0zRym3DER7+VR4p3QdhJZOvz1zPMX62QLZeB2Zf6deIDYSB9y9sOeSox3Zp6CaaOyWThmklTSDtPkLxqXXvzXLOWQ2bEWjTAVpYy2rIMvqA/ZswZhQTIYky7CVmAvSSgHjYHk+GAX+u/uOlDgEzBymLoNitxDk64EkxB6hDGyNK7On6ncns1y1KDuCt5g4wYspomKV7rQu8VleW616stUeG85M22+XOETc/In+hZRC1ljsj8JZalnm9JiKj4nHLmQE//Uo338ZgC8io9TV9blRXnCocImp7OkZQxONC9MzEbvz58mKIG3xgb/QDdACgOjpuSCtZ9x3zAVpDTLqrDQQTLJ6yWNynuqR9yavQ8Rpiv2gKAg4qtatGaTNJZN2bw9nMAZimY9/2FAXzjTIBgaMG+71FmWJkyR/VEaxYmaFHM8M0noP/AVEpzpr21lzOJw1h6duawVpBUHUzXwvURxD9wd7TWbI95cSTURE+ZDvciU8xaBBS1k/Nb1JVrEj+xfNygn6GIPGDMnjXUkrk1YyLrugzAY2TafelsaGiic0fl1s3tG5jQfqWn96z2S1A3uuzAQGBdFaYXBBUWJDCmsEgDSCnrnSqnlrSBDhqJ5lutaaHPMh3vGV5XHJAMJxGYLNXB3QeFqtZqVAnqKXyoBfuhziDRmKdbpaW8qk7SflDpSBrRqTU0zTA6wA0BmRs2YPK2IFlpo2msnsqspSL5LVDqwJ9sC+O6z4XrhMvilanebbFFeXlMGIGkVNTeVTmZ0GrEn5Wy8aZ4jaejBIKzjLTW0nG1y+yqU+r5V61gBQZOI4rb/z5ZB+nksdWyuUgeMiEwHYvrCv1AvStmhkhiob+Qk24yB0Nsp+BEmOykO79biFYDpIy0xaIqKcMUhLg5ZRuQOvibN9h4V6kkZB2mTwJf35k/a+MA7h+rdVy2O+7ej49Aa0L74063N3LL8OUUW2ol5ThNR9lv0M4YZ3YTWH0FacPUir1eQFUE8313t59e4vhVvRufJ36Fx5M+Ih/WnOZsWz1KMFkPVEWrW54uS3p8sdRJtXWNreXnEIREcxRJf5dtJ6JQ+yCURlw+YX6eL+HZq1JwHg3pUdmL8lkBFkXdccwY2LW3DB/L34ybtNWLg9qBtA+aIxgifXdWL5Hv2xSN3MpVVmiSdZqUlrFETuK75ojOCVzZknt9ka4yQpM2kB4O9fdOB3n7TiH6s78Ple9fujDFxbeT21MmlVY3KJuheLRKH/dJXvK4I9kA7+UV3mbAed6yEqdlFQXYxtVwRr1jRn1uusUXyWbYrniufw50WaVqB9yU8Q2fNhxnIhy2+L4CwHhJ6ZJqv8ndKlU0cXyF7yJt3bOxL7Z6t1t80EB/u7ZLBbkmW8tzOIp9b7sKXd+OJ9T5Q7kGMh+NbejY4Vv4Y/nFmv1UywvDdKVGWjF6Rt1QgmxhQXnwV794K09uKxmstFp3Z962xE9xDD9R0rfoVY55acHtvIV21R/G1Vp6ltzWTSylIcnStvQcPjAtoWXaIKjhMRDVYsd0CDljKTNj2TVS+oks5KkHZsmf4J1xPrfPj5YWUZmbypMQXq0PLWyag6/SM4h84GkJgW2fz6UZAC9aaeO97xJZrnH4Ga87bBlsyQlI3LHfjX3QP/untUy7M1JDBqjpD0t8/VU/oA9XQ4vZdXL1jX8s7ZiO5dDAAI1y9E1RkfdyuIImWpRwsAgmhtF9rb5Q6scu5riiE4SkzfJ9qyEi7bHNW042yCMRlFcXNBWjnSqtnYC0g0Kfu8MYIGfxxXHFSCre1R/H5JW2p9Y1DCI2s64YtKOHf/zAsz61si+L9lbT3+iuuVNbCWSZunwfSQtc0R3L6sTbXcbCat1y7AKWaWylhcn/h8bGiJ4p0dIdx4eDkOru6a4qzcFVgJ0pqpf2kTBVS4Rc2GRoMgPpR3+Z4F8UlDCB/sygzSWpnqXeYS4Yt27bjSg7ThuIwVezKDkEMUn2Vl4Mnqnxfr2Izm+Udq/x5nC9IKooUZMdYIGtO6tRjNcGi20ATsn6s70RGWLGfGDoZM2mSzvTe2BfGvdb59/w7gnjlVmvVfY5LcI9PMO1b8EoENfwMA+CrPBmxdmaFeEz9kfTmTVlljVZbikKOZ9aa7G6QV7OZmDZklFo2AFNqru96/5k8IbnoUQ765M2/Pvdsfw42LzScWBGIyAlEpVe5Ii2/VrfCt+j0AILj5CcSDu1F1ypvdHisRUX/HTFoatER7ZiBKCjV1rTMR3LMSYNmvRD9QsXR3IhAhhZt0t2n76OLUv6NNy00HaJPkWADh7S+lbhudXBmRstwvW5A2Foum/l4lZSat3juglUkb9+9KBWgBINq4BLGWVYZjySYe2JV9I4uZTIIqSNtm6f49zVlzJADAVjTC9H3inVtQ7rKe0RWMyao6jEaydYZfuCOR3fOfDdoN+J75Un0R5OWvAqYCtN0NkA4p0n59jC70eBVRQL0M8r5C7+KL2Y7agiBoZtOme/iLzOdQXrBRngtOH9L9mpXVOmOyEhCmBL0LbLm6X6OGpxXKkhcN/q5g6fs71d3dqzzG5Q6sZrt3fvYb/QumFmdp5JPNPQS2knHZtysaqbtO68KGkWc3+hG0+PkwbPY4QHRGE/XbkwFaIPF7tKhOu15+W7i78z7UZFlOBWgBIIDMi51mguXT8rAv7i6zQdrQjpdU25gN0torDs647Rx+Qte/hx6Tsc479TpTj6nFM+a8rNtI4SaEd7+f83Mo/Xej+hgqm2wXa5IB2qRI/VuQ4/oZ+kREgwWDtDRo2Uoypx/FOzal/m2mNpqVk3S3XcTxI42vZsf9O/TXpU1bkoL6V8+BRFdoLdHmzwAAsc4tGX9rPonuasP1HR362anKTFq9LFitaeux9g2qZeHd7xqOJZt4x2YTW1nbhYqKmrRypE3VeMsoi9VRPcvS81llr0ycYIiuCtgrDjF3Jzmum/VsJC7LpuvvCvYi01lqXzTpB36VzWw+bzR3MqCcBp3NUbVdtYoPrnboBmmNggzDizPvky1IXWh6J2Pjy81nmxdnKTOjbErWpkjfVp6Enz9Ru2b3xVOKNZdrGV+uHSwzUy5hMPr6/vrBjHxX7OjudQtlGaINLV37jrXN6v2IU/E1Vv5mWc0UjjTo/0YJQmEmurlGngnRXY3Swx9AtlZeymOodJ051FK1up8daOVGvnWAen8lyeogIgBsatX+nfPl8DuR7eKCclZRQMw8jtEqD/bDg0vS1gtZG4v1Brso4DiN43BlQ8NY6xrVNmZr0pbOurfr4r3oQumse1LriiZf3bWhzQPvZHWTMbO8U35mart4x5c5P4fS6qbsx0uligZsVsqeJMX92y3fh4hooGG5Axq0bKUTM25LoT2QIu0QnWWmaqNZaVIDAN8/qARTqhya9ZykcAvkcIupxxHsHt11nvEXQ46HENr2X9W6ZGZMeNcCkyO2TrB7ExlAOhmSLe0NALRP7JSNw/RovTWxdvWBaKThHeDAn5t6TC2xThMNsQSLQVpFJi1kCXK0E0JGXTLtx7R590PVae8juPlJxAP1iLWthhwLwl4xFYKtCIKjGI6Kg9Cx/OeIta2zNK4ke8n+qX9Xn70cu59QZ78IjlLI0fQMNtlUYy2vQ8hoOJJ4H9UnlDVf3wTfqj8guPnJrmeQpbwEeDqjcsZJRIlDQKdBg5vkZ9JK8OCACgd+ckgpDqkOIS4Dx4zQvzhjlIE0otiOr9q6sux8kb6dSatlaJGoaghmxEwt8HStisBwheK5xpY5cNcxlXhlsx8f7Sud8PPppTh8uPnpnwdVO7Fgmzqr0kzjscHo/IlejC61oy0s4Y1tQTT4u07S+1pZ5UmVTry2teu93dgaRUySYRcFU0FGZU1Uq5mghjMJ8plJK7o06387qg8HIKFk+u2I+3YAkOEZ/10AgHvk6ag64yNEm1bANeJUxAN16FxxfUbJo7jBjJ7OHIKFWsHIweRr44swotiOv3yaOdU+/XcgaahXe7+qbOplRiAmq4Jr6WJt61P/jsCNqJB5DFqicd/jR3lQ5bahzhfD4cNdWS/A9ZYfHFSCj+pCGRd4lA0N5Zj6GF1wmGvS6xo+B1VnfoJo4xI4h58IR/mU1DrPmG9CPPVdRJs/g3u/r8Hm1c9Ez0aweyA4K7L2NVAmAXSHmf13lduGjkjX59Uok1aKaM+EiHVshl2n0RrlVyQSwQsvvIAFCxZg2bJlaGxsREdHB8rKyjB69GjMmjUL3/jGN3DCCSdAFPvGd5hosGCQlgYte8n4RJAt7SAm1rERzuqZqkxat01QZclYqUkLJOobHjvSoxmkDTarr9wrSZEOiM5SyJJ+PVnXiNMQbVquszYx/nDdGxlLRc8wSGaaZJkgCAJEZ4Vuray2jkboBWnNNpbQDNJ2bFQti+z+AHI8AsGW2zQ7ZbZx+TFPoW3RdzKWCRaDtFpds6Vwa0bzCCncrHlfe/mBEOweFB1wpeFziGuGAzkEaQVXZcYFAEF0wFY8FnHf1oztvAf+Ar7Pf5e6LcsyZMH46H1okQ2BWObBuiQDyuhu6eH3wV66P7xTrs0I0kKWutc5fZ/GQDyjq3u5W0RnVD/TI/mc7RaywgQh8V2fM0r/YkqSUeObEcpM2lhi2mtfaMBi1qRKa989M7XA0ymnVFdqBE73K7Xj6mlluHqapYdOmVzpgCio9zvZSjMMVoIg4Ih9QfCVeyN9PEibGQiNSMCW9hgmVjg0g4wRxa5ClUlrtZyDrB+kzdY4TPtONs06tWVHPIDg5idVzcmqz1pi+HDOIUel6pTbyw4AZv4VLW8cl1ov+fVLAuWSSds6yIO0giBg1jAXhhbZsCfQ9T5qZTDqTd335fC6+6NSxu+iUqy9K0irzKIF9GdAHFzjxME1hS9zkM4mCjhltCfjwpvye5te+izJbCYtADirZ8JZPVNznWv48XANP970YxlxVByMyJ4PDLeR8tBEN8nMIVi1R8TWtNirURO7eKBOe3mnmVls1F0vvvgifvGLX2Dbtm2qdc3NzWhubsZnn32Ghx56CBMnTsRf//pXnHnmmb0/0EFuzJgx2L59Oy655BI8/vjjhR5On/P+++/j+OMT+9T33nsPc+bMKeyA8ohnGTRoCTYnbIqOq/H2RLBPWf9RK3iQz5qEvhb1dH2lVCDSIPvGVjIeok49UTkWhBwLIaIoA+AZ9x3N7XMluCp117X723XXmT3B1ToFiWtk0soxPyKNxieheuRYSFW3156WEZFiNUjrKFHVsVVmQujVJtZ8fg02z3BLYzK6n2DXyB5RBQmzZ9J6HYIquCgBGuUOktsoXtc8ZdLuVZwwZMuGTO4GlJm01R79+1nZK7hsgu72tV71NdRcsqQKaXKltUCT1WwrZVCnJwKnRQ4R+5ep3wtm0man/Gznv1pm95Q4RYxUXAzZ0JIIiGllrisv1HoUhemDMWsBMsPaizkEabUuAgKAs/ZkyHHtGqZWKGuVyzGfbjZcZw6Z/1bLHQxUVYr9mFaQVu83N5ffiGz3SS8nFRAyg7QCrF9cKzRlmSHl9zqukbTQ3cZhPUEsyn6sl88grZlvp7Jut2EmLYO0BXPrrbfiG9/4RipAe/LJJ+P+++/HO++8g08//RQLFy7EAw88gFNPPRWiKGLjxo248cYbCztookGGZxk0qNkVJQ9i++o3KTNptabhWmkcls1fd83ABsdxhtskD5Rjnfr1ZO2l+8NWVKu5To4HEdm7CHIskLZUgGfcty2P14hqSn+a9qB62nCS2cZImjVpdepuRRreBpA48b5iYSMumL8Xv/u4FYEsUzFjvq2AIqBgKxmvsaW1kxNBEFQn0pIySKtzUG0vP9DUc4ieYZbG1HU/rSCt1omJ4m+W5ayhl86IpGqyIyVSaRUPLWb+P/UcMcTi2U8RXvrKuLHFPZ914OkNvlR2R1mWhmeSnBj7+pbMCyPDdGrMAtY+EYIg6GbTKjNpgdzqDSaFYjJ+/0krLpi/N/XfuubEyX9o1wJ0LPs5QjqlUGJtG9Cx/Dr4NzwEWZYQ3PY82pdei3DDe4bPaT1Im/3VS06JDsYk1fTyyh7Kbj2oWp0NVm6hjMNgpbyOGZMSNdE7VvwK/vUPQJaM6xUmP2dtiy9Hx/LrEG3qmmqfryZkkxXZ3htaopBkGR0aGYnK4wJliR6r5Q50m4YBEETrE93EjLI5XezFoyHH9X97zdJqKKlXP9Jsve906VnXg5ky0KX1utTrvFY5lTvYd59w/UJ0LP8FQjtfy1ifnknrV2TSFmlcgO3rXBoZ8Cv2hPHUeh/WNEU0Z4L1xSCtmQvywU2PoGPFrxDzaX9PY51b0fbRZdj9VDE6P/+D4vwgIRST8eImc439lBcYPtgV0p0FpZdJG2OQtkc99thjuPnmmwEAQ4YMwfvvv4+33noLP/nJT3DCCSdg+vTpOOmkk/DjH/8Yb7zxBlatWoWTTjqpwKMmGnwYpKVBzV52QMbtWCqTNnM7reCB1XIHRrbFR+Kh8v9ik+Mo3W3i7V9CjoXQueJ63W1EVyVE9xDNdXI8qCp14KieparN212iQSZtR1g/C9jsSbfyeE+OhRDXOQAN1y/Ezs4YfvdJWyqzZ0NrFJe9pZ2tmhRX1KMV3UMgOks1trT+GVAGsaWwMkjbvUxaM9kVWmwa9zMVpEX2IG1jUFIFbCRZq17avo00MpQD257P8izAM19m7z788uYA/risDTFJzlpXWpKB336srvmmVw8wF3p1aas9NihnoHanLu2P3mnCOkWw+fdL2rBtyyK0vn0G/OvuRuvbZyBc/07GNlK4FU2vHQb/2j+jY8lVaHrlILS9/00E1t+LljdPRES3vEqizIUVZmrS/u7jVkiyrKpHC6hr0ubLVI0gbZb4PkGd6bxgqx9Nr86Af82f0LH0anR+doPufYNb/5v6nAU3PQr/2j+jaf4RiHVuAwDc/Zn+rAwrlCUPNrRE0RyUNJuSKS8kemzdDNIayNYgVItWJq29ajqAxEya7hLs6lrOTa8crFq2fLe6/m26PB46DUjVJi42fbArhJBG5nYuF/L8UQnh3R+i5a1T4F/7V7S+czZCu7qOFdNr0gaE8oz7lvSRWrNWKC+ufLY3grtWtOPVLQHcurQNW8I1qvv0xSCt2WM9/5o/ofn1oyDHM7+XciyEptdmIvjVY5Bjfvg+/x3aFl2suv/9n7fj2Y3Zj60A9QUGAHhtizrwCzCTthDq6urwk5/8BADg9XrxwQcf4LjjjBOEpk6dijfffBO//OUve2OIRLRP//t1JcojW1qjJACI+3cAUNdT0+rw3RPHpi8W/5/uurh/O0LbX8j6GNoZn4Ac9SHa/FnGMteIU/c1+3Jp3kfJzIGq6KrSXeeL6Z+dHTZUHQhRXpUH1HUN44FdUGVk7hNtWo6/f96mWi4DaAnpZ+2kn5QAgK10f83tnDnUFhMVJ9LpTbhkWdY9QDVf7iC3TFrXiDPUy0aepVqmyvCKh7OWOzh9jEd1UaMlLKnrJ6YyadUH+v6vHjN+Egt2+eJYXB8ylb2tlcU0XKMUQa60GuZ57AKcNgHFiihtrpm0kbgMv04A6ak1ezKfY82dGbf9a/+SkV2T2ZRORtsHFyKq8zpa7b5ebNC8Jml3II71LVFVk6EiuwCXMl07TyZWqPf/+5WwpH82W9ozM0U7o5nlXfxr7tK9b2Djw+qFcgz+NX9CTJJ1MzVrDEqRaDlA8d76YzK2dWhnuI5VlL1Q1aQ1ORsEyNI0DPq/40bcI8+C6B2VsaxoYqKGuXvU2ZYfL1fz1qjr7ifVeMQe+54OFFqBLi0Ld6hLWOTaOKxj6dUZy3yr/gAgUZJDCjaklgfFzGxto+aXfZWy3IHSs57fq5blVCO6h1mZNSUF6hHa8UrGstDO/0FW9EAIbX8howxLTJKxYo/5rPhqjQul/96gHeDVrUmrs5y67+6770YgkDie+8Mf/oBJkyaZup8oivjOd7RL43300Uf47ne/izFjxsDtdqO8vBzTpk3DTTfdhMZG/XIb77//fmJ2oSDg/fffhyzLmDdvHo4++mhUVVWhtLQUs2bNwpNPPplxv0gkgoceeghHHHEEKisrUVJSgtmzZ+O//1U3zE7atm1b6rmSdV2fe+45nHTSSRgyZAg8Hg8mTZqEG264AW1tbYavxZo1a3Dbbbfh1FNPxciRI+FyuVBcXIwJEybgkksuwZIlxmX2brnlltRYAKC9vR233norpk2bhvLy8tQY58yZA0EQsH17IgnpX//6V+p+yf/S669q/Y0vvvgiTjnlFAwZMgRerxeHHHII7r//fkSjXccfsizjP//5D+bMmYMhQ4agqKgI06dPx0MPPQTZRCHq9vZ2/PGPf8Ts2bNRU1MDp9OJ4cOH4+yzz8bzzz9v+BjJ8d5yyy0AgOXLl+Pb3/526nUdMWIEvvvd72L9+vWq+yb/3mQ9WgA4/vjjVa9Rf67jyyAtDWqCIjtSjocQjcvYHcgMzBw+zIVJaSdzc0a6c57idcFE/S6xDfbJuuvkeAjRNv0GY8nasvaSMXAOUwcPpXCTahqXvXQiBEEw3WW24vgXs25jKx6juy4c13/NjtdotHTVIers1agiSqs1PatrZRybO7QDW0YBumjLyozbjvKDAAAlM7qCCmJRLYrGX6L/3HoUjcxkqesAOO7blnFClOQedyFER4mph9erS5iNe8x5qmVFB/wgIzO79PD7VJna8eBuxAwKxtoE4MjhbowpzQxwrG6KQI75MpaJ9uLE/zWm7caR3wYk7+4MZTRnsWLKvmZSWqyWQSnSuEPtvkxdZY3WXDNpjcp7rLYdm3E7Ur8w43Z4t3FjknjnV4holKK4dppW5rkxs5m3TcG46kJaWQ/WiLWLAs4e13WBarjXphm4peziMPceRxre1V6+5wPDQNSVB1v73GkFmSIa+7Maj4iZQzMvZjoVwR4r11CM6tHayw+Eo2ZW1scoO7IrkC24quA98BfwjL0wtcxWNglF+18KINHwUXB0vTblc/RPaLvLqAHYdyYXGzapSmcUzP3a+L6X2ZgvJSYuVgHAzk71xQTlhbwZQ52qUkNKMUlGrPWLjGXRxk8AZF5EBoAYMvd7yu9Af6C8uKJUJ1i/QFIIgi17c9J0UUWPhliHduk0KdR14dbKhafvTSnWrdevVfIgrtd4MMsFLMqNLMv417/+BSCRRfv973+/W48nSRJ+8pOf4JhjjsFTTz2F7du3IxwOo729HZ9//jluv/12TJgwAQsXLsz6WNFoFHPnzsUVV1yBxYsXo6WlBZ2dnVi+fDkuvvhi/PSnPwUAtLa24uSTT8ZVV12FpUuXorW1FT6fDx9//DEuuOAC/N//6Sc6pbv88stx/vnn45133kFjYyNCoRC+/PJL3HHHHTjwwAOxYYN2n5j3338fBx10EH7729/irbfeQl1dHSKRCPx+P7766is88cQTOPLII3HDDfqzhNJt2rQJhx56KG6++WZ8/vnnaG/PzwwhAPjRj36Eb3zjG1i4cCEaGxsRCATwxRdf4JprrsG3vvUtxONxhMNhnH/++bjooovwwQcfoLGxEcFgECtXrsRVV12FH/zgB4bP8c4772D8+PH4zW9+g48//hhNTU2IRqPYvXs3XnvtNXzzm9/EWWedBZ/PZ/g4APDggw/iqKOOwjPPPJN6Xevr6/HUU09hxowZ+PDDD7M+xkDDVBAa1ASbYvpePIR6f1yVrTmyxIbfHF6OD3eF4LIBR49QT/sz69z9i0xPHUonx0MQdDJei6f9ASWH/DZ1u/Kk+WhacDRiaZmzUnCvaiq96E5M67J59zM1xcg14tSs29hKJ+iui8jaB3C/PbwcJRonblq1IJUnwka19owCAjaDIHu05fOM2/aqRGt474G/gL10IuL+7XCP/Zbm9M9sBEER3Ek7II3s/Ui1fdnsR+EZb765m+iwFqRwVM9E5clvadZAFB3FqJ77BUJbn4WtZDzco85EuO7NjG2kYAOiOi/DdyYVY0qVA+PLHaj3O/FJQ9d0uzVNEcSjmd8DYV8gWquucRz5DYptaInmnA1f7hIxtcqBL5rUJxNGnystWpm0o/ZlaSrLrOSaSauXRWuGHNXPiksKtn4JoDpj2YEa391saovNHZKIgoAORcDaTD3b7rhwkhfjyuzoiEg4ekTuF+kGu722/TE8rl1D3BTRBb/O9+DWoyryEjzXuuZ0x9GVqmahyv2HXka59pNoByJKZ94Nz4RLIZhoSll0wJUQvfsh3vEl3GPOh+gsRclhf4Sjajqk0B54xl0EYd9FQZt3BKrPWYnwrvmwVxwM1zDjKa75dvJ+HhxZ68KBVU7M3xrMeoGs1Cng90dW4PPGCMaU2tEckvDyV35E4jLOm+jFsd04BuvrzDZQ1LpQqPxuTKp04lsHFOPzvREcUOlArdeGyxdmHgca/axIiv1/XMjcr2eJd/ZJ2TJplUoOuzP7RgUg2MzNgEtSvpeiu1pzu3igHrZ9Gflhg2OHo2td2L/cgTe3B/GNCV4cM8KtW3+2JSShWpEhrlfuQJb0a3VT7tauXYumpsR3/5hjjkFJibnEDz2//vWv8be//Q0AMHbsWPzqV7/C9OnT4ff78b///Q8PPPAA2tvbcdZZZ2HZsmU45JBDdB/rt7/9LZYuXYqLLroIF154IYYNG4aNGzfilltuwZdffon77rsPZ599Nu6//358/PHHuOqqq3DuueeiqqoKn3/+OX7729+ivr4eN998M+bOnYsDD9Tv4fHggw9i+fLlmDVrFn72s59hwoQJ2Lt3Lx5//HH897//RX19PU499VSsWbNG9RrFYjF4vV6ceeaZOOGEEzBp0iSUlpZi7969WLt2Le677z5s374dd9xxByZOnIhLL73U8DU877zzUFdXh6uvvhrnnHMOKioqsGnTJowePRqPPfYY/H4/Tj31VNTX12Pu3Lm47bbbMu7v9WonfT300ENYunQpzjjjDFxxxRUYPXo0du7ciT/+8Y9YunQpXnzxRTz22GP44osv8Pzzz+PCCy/EhRdeiOHDh2PTpk245ZZbsGHDBvzzn//E17/+dZx22mmq51i8eDFOP/10RKNRDB06FFdffTUOOeQQ1NbWor6+Hs8++yyeeuopvP7667jkkkvwwgv6M4HffPNNLFu2DAcddBB++tOf4qCDDkIwGMRLL72Ee++9F4FAAN/97nexadMmOJ2J36ARI0Zg9erVWL58OS677DIAwKOPPoqZM2dmPPbIkeaS0PoiBmlpUFMGaeV4CLsU2QnVHjHVxfnk0dauXGs+pyDg2BFufFhnrduyHA+lTriU0gO0ACDYPSg5+Ca0vvf11DIpuBuSYmpT8iDN5t0v6/NrZedqsRsFaaGd/TLMoMbn+DI7NqdNm1VmbRp1rW6w6U/l0TuYlKJ+xNszgwiOykMBJN47937n6D6mKYppc+nTXqN7Fmesc42ai6IJxj/ySoLFIG3F8S9AdJXrrrd5hsI75ZrUbVHRmE4K7dXNpD07LdtJGXD3RWXsiI/EKGxJLUsGaQW7+nsWU5wc7ldiR4M/Zil7TSnX+9pFAUcMd2sHaa1m0moEF0cmg7R5KndgZQps8sJNkhzLHqT1N3wA4BsZy0wmy2UoM5lBJkJdkkbrIk8+iYKAo2oHbmCoJzhFQNl/q94+xVSQVnQPzcjoShJEB3w6n+d8ZTcrfxvKXKLquwio69IrZ3kYkWXtIG3RlGtMBWiT3CNPA9B1AiUIAjxjz9fc1l4yDvbJV2uu62nn7l+UmsZfYuKCissmoLbYnnHh5pgBHJhNZ/aCk1aQVvndKHYIGFViT134A4DpQ5z4bG/mlHY9yot0youlygsX/UG2TFolZYmqvkP773CNPAPhXa+rlisTMfQu6EuBrtlcRjPOzhnvxehSO04f23Wcp3fxssEfVwVpdcsaGDRUpNytWrUq9e/DDjusW4+1evVq/OUvfwGQqFm7aNEilJeXp9bPmTMHp5xyCs4880xEIhFceeWVWLp0qe7jLV26FPfcc08qYxYApk+fjjlz5mDixIno7OzEhRdeiKamJrz44ov42te+lrHdjBkzMG3aNMTjcfzjH//Avffeq/tcy5cvxxlnnIFXXnkFdnvXfvH000/H1KlTcfPNN2PHjh249dZb8ac//Snjvoceeih27dqV8bcmnXrqqfjJT36Cs846CwsXLsTvf/97XHzxxbDZ9M9v16xZgwULFuCUU05JLVO+Nw5HYp9bXl6OqVOn6j5WuqVLl+Laa6/F3XffnVo2ffp0nHzyyZgyZQq2b9+OX//612hpadF83Y877rjU6/73v/9dFaSNRqP4zne+g2g0itNOOw0vvPACioqKMh7jrLPOwrHHHosrr7wSL774IhYuXIiTTz5Zc7xLlizBGWecgZdeeikVhAUSFxOqqqpw0003YceOHZg/fz7OPffc1OsyderU1IUHIHGxwOxr1B+w3AENalpB2p2+zAOEkSazu6woNRmMyBAPQYqZz8BVTUv3b1fVAE1l0haPzvp4ZgK5gHGQNipoB7mNEhuynQgbNUTZ7piuu07v2DMx7S9tpSDCUXGQ/gAtUtU2y8ikzQzSOofOtv74FoO0VuqaAYDNU6taZiY4Ue2xpabxJ20QMg9GBIOSDsqTQ4cI09Nm880mAjOHuTRPkq1m0mqdMI4qSZY7UGbS5r/cgZJyvyFHOnS27OLf/bFqWS4n74IgmAruxmQZndHeDdKSdVrT1evt5mpr6xKdupm0+aLcnel9shwa5Q7M1HBLPIl2kNZKgLY/caXt58xkoee6rxsItC4IaBE1gnTK74ZWVq5y3xyJqI8rk/0HlEFa5cVSq+V9+gKrQVqrx1S9Rifj1FFzhObyWEfmxTFZJxgaD9an/m1U7kBrFpCeesV5lSxFIQXVF+ESK+Pm96NkWnNzV5LOkCHaDabN+vvf/w5JSuxrHnnkEc2g5WmnnZbKcFy2bBmWL9dvMnv44YdnBAqThg0blgrKNTY24vzzz88I0CYdfPDBOProowEAixYtMhy7y+XCP//5z4wAbdKNN96YCvLNmzcPkUhmWaLq6mrNvzXJ6XTirrsSZfG2b9+Ozz//3HAs3/ve9zICtPkyatQoVYAZAIqKinDJJYkyfc3NzaZed63X85lnnsG2bdvgdrvxxBNPZARo033/+9/HrFmJ0k1GtWHdbjcee+yxjABt0jXXXJNanu29HWj64c8rUf4og7RSsEGVSTuyOP9tvEst1k/0CxX4X/w8vNZ2MMI62ahKoif7j7DoMp9JayaQm3jMSt112x3TtB/b4KRNeRLQHlZ2DssM0iYCzwJicOK5kj/rPu78rQH8e70PewNxrG2O4Il1nVjaEEJwx6uZz182Kb+dfXUyaaVwK2KKmsPOIUfn8PDWpjBZbYghuCoB0QkZwArXN/Ci91bIOhkdSsps2o2OzL8vWZNWS0xQZ/AUKjBnFwSUOkUcWKV+7axm0gY0ghH7pcodZD5Ygy8G39q/ouFxAa3vn4/QrgXoWP5LBDY9DlmWEdz2AjqW/RzhhncR2bsEHct/ieCWpy0FtWJtayFLiYs5OzpjeMlxDZa4L9RpzZewpi3zfRVgfOHFiJmmOaGYjNVNmQfPhQrYkz6tepUNtkTd9RgceN/zAzy13oedWz9Ex7KfY+maD/Hkuk6sagxDimrXZovu/Qgtu3r2QD0aasm4rfed1vrIrW2O4ol1nfioLmQYaIi2rNJd198oGxJpSZ9ibmYfGexGiZb+zmy5g3RS1IfOVbehM5hZo9+rkZWrPKaKBNTNfQS7d9/jZl6kU14stXpRsi+wWu5A0KiR3xfoBVmdOkFaKVCPaNOn6FhxPfwb/q6auQUA7eJQPL97NF7Z7EeDP2bYBNBKkPaxtT7E065+ScHd0Gv4C0DdVJa6rbOz673UmyZv1ttvvw0AOPDAA3H44Yfrbpde9zZ5Hy3f+ta3dNell0kws92WLVt0twGAU045BbW16mQTINEgLRnEbGlpwWeffaa5XVI4HMaOHTuwbt06rFmzBmvWrMn43U/PXtZy0UUXGa7P1de//vVUBq5S+ut5wQUX6D5GcrvW1lZVM7X//e9/AIDjjjsONTU1yrtmOPbYRN+LTz75RHebk08+WffCQUlJCSZMSCR/ZXtvBxqWO6DBTVmTFsDOzswMl5E90MXbSkBBBvC38udRL0wFgsCm0n/gyo7sNUqVGXFKgt2bmlYuuqqyPp7ZTFo9nUINIoL2gYHRcb7yRP/5TX58M635mrImregeCrFoJP4TNW7q9c6+zsj/29J1UjN/axDfa1+NQ9O2s1ceinzSy6SNNCp+wEQXHFX6mcC6j68RpLWV7I9451eWH0vz8QUBNs9wfBg/1jAIruXgGife3N71fm1xzEQYRXAh8R4YZ9KqM3gK1SU8eZJ7xHA3VitKHmj00DLUHFSfjFTsu4hTrMi4X9UURcf6X0AAENr2HELbnkutC371GCJ7EoX1/evuzrhf24ELARysO4aNjqMxMdpVD7nz85shHXgrfvNRC6KeROOAgFCGE4J/V913l+1AvFDyx4xlThtSnWutqnKLaPAbn6DV++PY2Zm5jdlmO9R7tIK0yUzaV4p/j0Wey4EtAbwrVeNbnesxr+zXAIJ4bWsQPxGnYf+49kF988b/ACX6n+fu6lx7D+C4LnVbbzejnOUBALcubdv3ryCiUolmQ0wp1ITWt8/o/kD7iNZ3v4aKE16Be79zdMsIpWdv9sMZ8r3KZTIvID3Lse2DCxDc9QaC1VdkzILXCvgqP7e+rc+ptpGiiUYvqnIHqoul5sbal7hNDLpZHIUqaScA63X+e41eJm21ftPBptdm6D8cRNxX/iqa/aOBDX78Z4PxzD29IG2FS1Q1D5QB/HuDDxdPSRzjxf06pQ5Sg4kBGn0SKHfp9VX9fut9UZLC4TA2bUo0nTMK0ALAtGnT4HA4EI1GsWaNfuPriRMn6q5Lz1w1s116MFqLsmapUjLzE0iUdTjiiMyLHn6/H/fddx+eeeYZrF27FvG4/vFq+lR8LQcf3DPHMfl8PYHEa5p+e8WKFQAStWTNHuvv3r1bd92kSfqlCQGgsrIyNY7BpB/+vBLljzKTNg479gQyDy5G9UCQdmyZ/mMqm13tsU1Avb2rxso618kICfoZh0mCo1SVtZkuPYhrKzsg6+MlGwmYoRXY/KBIv5OoUbCtXaNTdFvaMkkxHVuwF8E59Ggsc3/bxEjV/ltyV8ZtR0Wef0TFzGCjLCUyAmPtmd1EHVXTLTeGAKBZt9g5xHrZBCNiUS3+573FcJsyjWzxKZWOjIBHXHBhu6Or5EF6kFZ0D824r/rkUDA9LTTfkn/DrKHq96dJI+hq5AhFnVNR6Apwan0vdtm1S28kA7RaWre8bDiGB8szC/r7v/g/PLfRl1Gz93/Ft2jed6H3Z6plzm5EYQ4fnv0z/8Y2dYmTXLLPqGcdNkS9L2qzjUAE7kSAdh+/WI15Zf/K2O6pkgd0HzckqC/mJEuEWKX1SY2GM7N49abnawVp0z30hfYJhW/1HabG1p+0L7kKAPBFYyTLlsAhJpoKDpb6s1rMnvQmy2bJ8QjCu15HSCiGrCiXoVXzXLl/1jyejAchS3FVXeiBUJPWTAbowqJrU/8WnH0zSKtVWsw95psQnWU5zf7a5DgazTZzM+YA/fder7Hy/K1dv9uJTFp9elnClLuqqq5knD17dEpNmNDa2pr6d7ayCQ6HI/W8LS0tutvpTZcHEtmtVrZLlmHQk23MQ4d2nXsox7xt2zYcdNBB+M1vfoMvvvjCMEALAMGgfjk+AKioUDdJzod8vp4AVH/n3r17LY/J6LUwGkf6WLK93gMNz2poUFMGadvEWtXU7aFF+S93MKZUP3gaFTLHpHVC2il0dWUtnXm3aj2QONA3qqWVfrXdUT4ZzqHH6G4LAIKF5gmls+6F8vR3h1271MExI1yaGVdJWo0LImnL4oGdGevEohGqAJ8VATGzXIPgyO9Ut+Q0wiQ5WWc4nnlya1Q2wvJzOkvhmXB59g1NshXVIiwaXyj4wUHqz22RQ8SY0swLFFscXVe104O0ZUf9I2O7mCKT1iZkn2ppE7SDxd1x4ih36iRaq2yJsk5lNkcNd2WcNP7okK7vrNZJULs43NLjA0BUsB7s/6Ipe7AFAFa5zlYt607w/PiRHlS5rd9fa1ovFdbX9teeOdFuy/4ZbrPpd+SNC+qLnN+ZlP3CpRatQGtQ8ZurG//P8SMX2f2B5nL32NwuLPamstnzNJdLgUQdy8ag+gRZ+fodVetGZZbv+Gljut+ktT/7xv7Zg2zJRkzJ5qnKY0dA+0JfheK1bxO1p/4CEqItX2QsUf4O98dMWjMzcLY4ujIEbUXmExR6k11jplXJoX9I/H+GtVlOALDbrp9Vp2QU6D7XxGdXivmybWB6LGRO+jT3bNP4zcp1xlQhdWfM3/3ud7F161YIgoDLLrsMb731Fnbu3IlQKARJkiDLckYgMVttZaOmYn1Z8m88/fTTsXr1atP/kTWcS0CDmjJI26I4MXTbBNOddq06d/8ivPRVQLU8Cg+GHH4nYm1rEfjy77BDHSzpFIegRtoG57A58B54re5ziI5SxMPNmutcI0/PuF158hsIfPUEBNGB9o+vUG1vNBVd9djDjkXVWcsQ3fMROlb8ApAlOOSQartjRrhx1cHGj6t1Ep1+YiD5M4O0Nu+oVBmHXMlIP//Ob2080ZEZTJD3HazKyhpcGoGI3AkoO/IhBDdpn2BbJRbVAuqPbsqvZ5Zh2hDtwOABlQ5sbu86AN+WHqRNO3hy73cOqk5fhGjzp/BveBDxmDqDJ9sBUKlTxG8OL8d1H+pfwU86f6IXTpuAp9YbnzxcoRF8Tme13l2F24Y7j6nEZ3vCGFVix9S0LDOth4rn8LMd0zh5z6ZTI4PdrO7UCnbYBNxxTCU+qgvhk4YwNrZqN1hSKuqP0YIBrsQp4m8nVOHH72b+BtXZDuzW40qK70CVW8ShOvubbOxiYl+fvicJCpkX5rJlzBoJRCUUKaKUsk4D0PJj/53z8/SWogmXoX2x/gU/p8Y5Z3p5osQ2Au7c9x3/1zr1/vZ7U4qxf7m1WukDzTcnejG61I7WsITpQ1xYuTeMR9dmvlapa9X7ZuNEoT7u0boAXu3J/Dy26l0QkWXEWjNrKqpmtPTDII0ZIhLHY4KjDKKrvLCD0SEIAoZ9x4/2JT9GrG09ymbPg708MW246IAfwlY8xlJZFWWWtJEyg994r0PEDw8u0Z1JAGjvA71TrwdEOwTBrjkjjLrnwAMPRHV1NZqamrBo0SJ0dHSgtNR6lnh69me2jNxYLJZqWJacsl5o2cacvj59zBs2bMBHHyXKgv3mN7/Bbbfdpnl/o4zhgaKqqgr19fWIRCKpRmuUfzyrocFNGaQVM6+YV3vEHrtSqHc1P+4eAe/kH8Mz/rsAgBjUJ58dYmK6hneKeqpxOqPAqqs2s6OkYC+Cd9IPUTTxcs1MVGVwMRtn9Qx4D7wWjspEBq0dYdU2J4xyw5blBFgriyn9xCDu25GxzubdD4Kte0Fav5B2MCGZyyg0S1A0x5L31X6DYnqXkNd6XAIE0W4p0G7E5tHLvEmYWqV/gH1AReaJwDb7DEg6P0XOoUfDO+WncI04TbMmbXvEOJBY6hJRbjKTtsot4vQs2VuXTCnO2pncaudoIJGtf/rYoowALaAdpJVyCN5HNfYh2Zit2iDK6iBqaTfrw5Y6RZwxtghH15oft9a0Xiq8ao9N9Xmos3fvoF75HZhUmXtATxAE1W9MUFQEabtR+1qrvrIcU1/hKpr0o36TleQapc6eBxLT7rVKnUQ0ZsMkv+Na9Vcnd+P9HCgEQcDhw904bUwRhhTZcOqYIkyryfx9SNb/TZVM0pgxoXX8VK1oztgqjtS+FC3HEG3NrCM5EDJpzRCROB4z2zC3UAR7EcqPfgzVZy2Bo6Lr4pcgCHArEjGy6RSzNxtOytb8ONsMRGWQ1ll7Mkpn3InS6bejZNrv89uslwAkPhPJplh+vx+PPPJITo/jcrlSjZyWLl1quO3KlSsRjSaOEftKMG/58uWm16ePee3atal/GzXcStZrzZe+eFwwbVrivH7FihWIRPJ7jmxVX3x98mWA/rwSmaPOpM0M0g7pgVIH2URtiRPE5NiUmQsA0CEmgqjZShDolTuwVxwCW5H+lFNRY51gzzHAt++E2i6rg7Rm6pll20ZZ7sDmHQXZ1r0DvPS6XHJcPe7uEFSZtP7kEyk27LvTYLQ+H+mMuncrg7QhsRS7bcZF4+0l41RTnO2CgNaQcZC2zGk+E97rELM2tFGWatBiNZPWiNYFDGUWoRlxoeeyUmxQT0vM1ytgpTFcUQ7BceodyszqbgdpFXXbu9thXpltGBDKM253p9xxvU8rSKvOIrOXmp9qXGj2cu1M6Lh/p+bvddjggo+kER3M5ULXYKD8XU02qZT3lUpSljtwiNr1lGsUQdqwWKz6zANArH0joGjMqrxA0h9r0pphk5NB2jGFHUgv0i97oWaUSQtkn32g3Acqy4BRz/jZz36Wqv958803Y8OGDVnukSBJEv79766ZHieddBKAROBy2bJluvdLDwQn71Nob731FhoaGjTXSZKEf/0rUR+/oqIC06d3lRSJxbqOdY0arz300EN5GmmC253Yr4fD+T0X7Y5zzjkHANDe3o7HHnusoGNJvj5A33qN8mHQBmkFQTD135w5c7I+1oIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCg5/8Q6hZlkHaT4+iM28qD2d4Qte/L4tk3NmXmAgCscJ8HABCdxvVSRUcJ4rDjfc+VeNV7E1rExLQ214jTDO9n82gEaR05HkSJiddQq9xBTOsMTUEri2nPM0PQ/ulvsXCbHy/Kl6DB1tX4zObdr9tB2idLHoSEZFMO9bi7Q7AXwy9U4PWi67Gw6Kf4fI8ff3/u95i3uRQveX+PNc59Gc55zKTN95VGW5H+wbxN0G+0AySm9w9RTLdMr0ur+Zgl4zQzeJQdhJVKnGLWzNckr0PIGlw0FaTNY4BB66GU5Q4abAfglsrP8OuqTdhmPwyfuebif97fYpu9qyGbXzDfnKBTqMb8ohtMbx8V1NnHGolzOcmWZZ9OOaWc+o4SxXuzznWyqfuFob0fVwdpcxtXkjJIGxQyL27qBRziJn6/HljVgYdXteOxRe/i46dm4rG3nsKbtotUzZps/SpIO0Vzedy3DZva1Jn1WnXlk2Iau3D3QE3P7Cblb9kbX+3B60tfx3++ktFgOwBRqIO0Wirdouq37t8lD8AnJBr8SBCx2H0xHl9Vhxe9t+F/3t9ity3x+VT9Dg/MGG3qovBACdKudZ6EV7y/w5eOY3W3aTNRKzypzJVlBpzOqdMF8/figvl7ccWuH2Bj2vkWg7S9Y8SIEXjggURTTr/fj+OOOw4ffKBdIz1p3bp1OO2003DXXV1Nla+66qpUM6crr7wSHR0dqvu99dZbmDcvUWJt1qxZmDnT+Di/t4TDYfzgBz/QbEJ1xx13pGqnXnbZZXC5umYnJLOHAeDxxx/XfOy///3veOWVV/I63uHDE9/LzZs35/Vxu+OSSy7BqFGJpLZf/vKX+PBD/cbFAPDRRx9l/ZzlKvn6AH3rNcoH1qTtBkmScOWVV6Z2Qkl1dXWoq6vDyy+/jCuuuAIPP/xwRpc86kPSsgIi8GCL88iM1craXXl9ap3lykzaevtk1TY7HNOx2XE4arI0tRIcpXjZ+3ssKkrUmF3q/jZuaZ6WNUirmUkr5jYFUdiXEapV7iBqJkir8RZ0iEPx8WYfXt/tBzw/xEfuS/C75sNQLDfDVrwfpKB2HV6zmuzj8K7nxzgp+EDeyx3A5sXfyl9AvV07G+kD/BBXtl+Iw/Jckzbz/90jemrhlZrhF6tU68zUbzyg0oG9dV2fh62OWTg69C/d7W0l4xEX1mUuQwz+qPHnx0rTMLc9cWFOFLSzu4YWiaYCgZ48ZtJqZSmlZ9b7hErcWdl1cHRPxeupf7/v+SGub52DYfFNWOk+19TzyQD+Vv4CdtuNM5uTkifuqjHmKUjry1LOIh0zafuukhzLX6xwn4fZoSdUy5XZ5N1N5nMKmZ8zVbkDnSeImvx4vrsrDGAq3qiYD0QBeE/BLvtBuLSjq/a7Vqf2vsqhk0kb6tiBVzYfpFquVe4gSWtNPmcjDCTKl6VdKsa/mmYAAN6qeBPf6vx5xnqHoJ3CbBcFVLpFNKfNRFnnOhl/sz2P61uPx8Kin2KB99dAEEBRIrDykecy/K55umpml9Gsmf4sGYzu6+UOzFjvmIN/liWyIN8r+hGubpuL8dElqu3aLDQlzZZJa8aD5S/ghpajMDS+GaI9t8aPZN2ll16KXbt24eabb8bevXsxZ84cnHLKKZg7dy4mT56M8vJytLS0YOPGjZg/fz7eeOMNxOPxjMZjBx10EH7xi1/grrvuwqpVqzB9+nT86le/wrRp0+D3+/Hqq6/ivvvuQzweh9PpxMMPP1zAvzjTjBkz8Oqrr2L27Nn42c9+hgkTJmDv3r3417/+hWeeeQYAMHLkSPz2t7/NuN+0adMwdepUrFmzBg8//DBaW1vx3e9+F8OHD8euXbvw1FNP4fnnn8fs2bOxePHivI33qKOOwnvvvYfly5fjjjvuwOmnnw6vN3FRw+PxYMSIEXl7LrNcLhf++9//Ys6cOfD5fDjhhBPw/+yddZgcVdrFT1W1d49LMpLMTFwIcU8IkiBBQtBgS1hskUDwD3eWxXYhyC4aHIJLkGBx4kLcPZOZjEt7VX1/9HRPV9UtaxnJ1O95AtOld3q6q26de+55p02bhnPPPRclJSXgOA6lpaVYvXo1vvrqK2zYsAGzZs3ChAkTEt6Wrl27orCwEAcPHsRzzz2HwsJC9O7dO1KUrVOnTkhJSUzUX0vT4UXaG264ATfeeKPs+vAXgcT9998fEWgHDx6Mu+++G927d8euXbvwzDPPYO3atXjzzTeRk5ODp556KuFtN4ifaIfhcpu0snJWEp20JWnkr1+QDl1MKCY0gveN6zHidl+4/okxFuXQd8rsigi0ANBAZ+Mv+1RMzh2juJ+14HR4drytuI1WgrWh6TQML50WLc5GI9E304JVZUKh9AfnPdhobRaaA5Qdi+xX4QzPf0DbOoGn468M/b3rQUz0vAxz1lD1jXVwgO0kK9CG+db5EIbS8qKlXszZoQctW9dz4dnVLHrEmvvF2DvBwu9FI6QiLalwjJie6WYsihJpyxhlgYJxFklcQgzbiBMK0rDwkLzTObXpQUJcGGhyiR0/7BFO48xoEnTlxg2KUrUNUnRPYMEbUq5bA50d+flP+xWy+3KUCd85H8JVdfJFfsQcYXprFmgBYE7Ks8TlQ3ITE6/QJUV7F4VUIMegbeBEA0CYEaLGZynPEkXagCh7U4/jmoSJqwfQ3ImXFg4j76dU4VyN9daz4abS4OBrAbQvx54pjXyNeHtPOnF5rwz5a+KEQhsWHBRew7XcQzoiSh/zAGXHT447BcsslHzRxSw7IxBpAaDU1A+HmX74WXQcAPBTDix1XicpLkV7jwDood74NkavDLNiUcoUrgJAKD6rvfOdSyg2feF6EndXnyLZroHO0XzMXiq50akaRdxvnI/iurrLjQzaFubBBx9E//79cccdd2Dv3r2YN28e5s2bJ7t9//798cwzzwiWPf3002hsbMSrr76KXbt24brrrpPsl5aWhjlz5mDQoEGJ/hVi5qabbsKCBQswe/ZsTJs2TbI+Ly8PP//8M9LShP0AiqLw/vvv4+STT0Z1dTXmzJmDOXPmCLYZMGAAPvvsM+Tna48OUeOGG27Aa6+9hqqqKtx77724997mmW4TJkzA/PnzE3YuPYwaNQrz58/HRRddhAMHDuDDDz8URGKIiaVInVbuu+8+3HjjjdizZw+mTJkiWPfOO+9g+vTpSTt3MjlGx0C1k5ubi+OOO072X0lJCXG/7du347nnngMQGpVZsmQJpk2bhuHDh2PatGlYvHgxhg0LjXA/++yz2LlzZ4v9Tgaxsd56lmRZMs1ZA7ItKHRJn0YCdHhEWfnredjUX3WKEE/Ioiy3DVStnGrrOhVManOEgHPA/ylurwTnC7laxXlpAFDgUhdhTiiQ7hct0IbZZjkRjLMQFM1IpoQDoXzSWJArkhIrtZz6tK4jpj6gZfKEteAa9GjkZ8ZVAlvxhaHlgx+LKlxGIf2Ej2I7AW0BJ1MJON+p/jfNsAk/914qBaDli0RRJjv8lLATb6VZTC6xK+ZFhoXXawc0CzAuM4ULejoxOq/5fMdlmSVtEkP6rgLAOd2a21XgYjC0U+LyXwsJImV0jMFBlWzPnebRaKTTVc+TEwzdn6oZfSPyu82jJMusTEh4SQT9sszId6orNqcVxT8oY5A8rApikRYsnYRTdN2iz7TW3Gk5TGyD4LVEpKWkA4yANGtXL3vMIwAAtDU7wYUikwtlcsDe/UrJ8mXcWOL24wn38DB/7y91uGiNqDEQctTUXfDaQZM/twCQIzNLrIbJly1OecjUD0FRn5IO1utsZdvgwp7K/bAU7igAgKKTl+feEti6XYbDon6C+HUYUrQaiaJUEwZmK2+baWMk9QdIRKJvmMT0GQy0c95552Hbtm348MMPcfnll6N3797IyMiAyWRCZmYmhgwZghtvvBG///47NmzYgFNPFRabpmkar7zyChYuXIjLLrsMXbt2hdVqRWpqKgYNGoT77rsPO3bskOzXFnjnnXfw0Ucf4cQTT0RWVhasVit69eqFu+++G5s2bUK/fuRIn0GDBmHdunX4xz/+gaKiIpjNZmRmZmLEiBF47rnnsGLFCsH0+0RQUFCAFStW4Oqrr0aPHj0EGaytzahRo7Bjxw7897//xZlnnon8/HxYLBbYbDZ06dIFp556Kp588kls3boVf/vb35LWjhtuuAFffPEFTj31VOTm5sJkaj/9KSWOjd+iFfjPf/4TCZGeNWsW7HbhQ6LD4cCsWbMwevRoBINB/Pvf/8Yrr7zSGk01UCFlyJOoX3M/Sk29JetIeWmJgqYoPD4mA1fNqxCek2kS0SiaKDYKD6LcUWqkpEKflVKfi0zRJmSfuQye3R+AtuVGRL6Y4ENvopcSPoydUaxNWNHqkGNhirgeOEKxtSv7peClddLcJCVMuScm/OGZ1lgQjFKJslDCNfBBmDMGgHUfhr3bpZHfweQqQvY5a+E79CPMmYNg6TQ+thNQNLGgHRDqwKshzm310imwdJbPSqMomijSlqSZ8cTYDGyuDGD5ER+2VgnFoMwm4fWUrnZk2WkcbmAxKs8Kp5nGzYNSMSjHiyBPHggQkycjFl7ax4luaSbU+TmML7AlXGC4fkAK/reh+UF4t3kkONCgwcHKyxcvCNNISd3OVoYS5ESGq4LXU8pOmiDMMEFZcPvPiVmwJyhTkqYoPDE2A3ctrJK4vqKZ3t+YKtmWsTLx5F9QyJz0M2oW/w3evZ8BkH6mXXGKpRYTg+j6d15aeN808fKRNw+PSsejy2piOu9u80j09/+ClOHPxbR/a5I29k2Yc0aibpn8TDQgFBmldA+3mSjMOikL/1pZg6JUE24elDy3TXtH753Fxchfq+VmMVU31S0gYeXqUS/qx5naad6BWgRLkJIfNG5POHv/A9BQbJ4HwKv0Tc/u5kCOncaEQpumOgcPjEzHFT8d1dZQLr6BPIPYsFgsuPTSS3HppZfGfIzx48dj/Hj9zxInnngieF69bzB9+nRNTshHHnkEjzzyiObzX3LJJbjkEukMWjW6du2K1157TXEbpd9LbzsBoHv37oIibCSKi4s1vZ+Jft+tViuuv/56XH/99arbitHSDgCa3MLnnXcezjvvPN1taMu0z7trK8PzfCQYuk+fPhg1SuomAkIjDL17h4S/b775RvOH0aBlYVzF8MOGxqhpxGHcweT+zRxmGl1N5YJl/qaCIhRF45DKtHi1jlI9L33gkQv0F0Nb0+HsezPsJRclpPCUWKRN15gXqlXvYSkLaGdXANLMQiC26dD1NqlwHy+0RtGXUikKp7gvRcFWNBXOvjeBtgqLRplSe8DZd0bsAi1Cn025AQQtxbXEua0+yikp4ifGTwudLzaabTqfGZNLHCghnDfT1vzhGZRjxeQSR0S4NdEUTuxix8Sudk2fjXwZ1zdFURidb8NpxY6kFK8amCMciPHQ6ShlQtONrZwGkZaWFg2Lfl9C22SBMrlQx3RWPFYd3Un1fJkqjmS9OM00pvaQH9AZX2A1nHdtnHictKytAJTJBkefmyLLxJ/p1Di/d2bIOw4BctHLMPEUF91tHhn6gVM+f1uEok1w9rkBzuPuVtxOy30+18Hg+QlZuGVwmvFdTiBORn5wQa7ewj7zYNl9rFw9WEpcwLN9PkaqfczCkSqJLhzb0lBmbVmM4mKMYkroPbi8rwunFTs0F/azMBT6qMQiAICbSgXPelS3MzAwMOhItM+7ayuzZ88eHD58GABUQ5DD6w8dOoS9e/cmu2kGMcA4i3DAPJC4zptkkRYALJSwoFYwLEZRNPaoVL1XowHSDhpLt04VVY/IneTQOEVVq7bqhz3KSSsV1GJ5jq+mcvXvpALNaBRp43DSJh95J22xTNZyNOIsxwDlAEcrZ5L5KOHn1koLi6LUEYpMicXIeOisYdp9MsiyM+jkEP4eOy2hTGkb30DaJQoKjVSmZKm4oJqfcoDPHI1aWlmkVVufLJSm7WZYjQDLtk48Im21PXRvji5c6aaEIq0rxiibMGZCUctoTLy8gJARxzVmv2kQ/LCB55TP35Zx9r0ZoBg0UunE9cZDRuKoUphNQMJJy3/v5AYX9pmGyO5j5WolmbQmKonTzZKIWs3a8NR/zl+T/MYkEUpjbBbHKIu5NGL7O2dpuD6WmvqCD7pjOr6BgYHBsUqHjzv47LPPMGfOHOzduxcMw6Bz584YM2YMpk+fjpNOOom4z+bNzVXG+/RRLrISvX7Lli2yGbdyHDx4UHF9aWmpruMZSGFcRdhjGkFc50lm3kETZtFUykBkWjeNvab4RNo6TjoN2E+3fJXD9ZYzsSfsGmpC7KaUQ6uLt5bpDNoh76Q1x+CkraKk7up40Rp34GMy0TpyugYUnLSFGnKGSQV3fIyyKC2JOxDlRNYTRNp4CvuIcSXBJauVvpkWlLmbHT0L7Nejhi7AHw7lqcY+2oW1timS5aTKzL7MsajxKmdpHTQNwGbLJJjgxQTPGxpbHz92Wt4RptWRb9B6xCPSVlmbsuEoE+qpHCy0X41aRvg5jTcb1gz5zxegLNKa4ihaxlIWbLBOxols+xVpGWcX2IovxPaDh4jrEzELxyDE/np9jmuHopOW3A8pN/WS3cfKN+CIaD2j4kJvq0TH/ZDYZRmLCroIKb7qFmpRcqDNKQBBYP3c9U94KRdSuAoM985BpxTlQXIasRlWtBQQW2Odiv7supiOb2BgYHCs0uFF2mjBFQB27tyJnTt34r333sO5556L2bNnSyr8RQunhYXy+U0A0KVLc2XQAwcO6G5f9P4GyYG252GPZSRxXaNf+eEtEVggnE4VoJum9lI09piHxXXsBpBE2pbNb1xnORuz06RZOja2GkDiCv4EKAc8thK4QHbS+mIQ3Gt4aZ5nvGiNO2ikMyH1QLYRKFq2cJiW6ADSjHhxsR4xEietSKSt9XgB0ZS9Y0Ug6JtpxvyoCuhVTFdVgTbMeus5kmUuEweaZ8FFDRh4XMejTsXN/EXK05Gf90UVMEs2dsoDgByHwfMscblB28FKxX4frTKHiiHxrB+z0r9CuamnZJt4C4eZeRUnrYZYkVh5P/U1jAu+k7TjtwTOfrfhwJH3iOso3siaTBQNAX1CmVNhcEsu7kAJHnSUiSAE007/vj4Ns+ReyPgZz/jeI/Si2w+huINayfLF9r9H/Twd9wWvVTxOrGJ8qoZaZEvsV+HcwO2QBjMZGBgYdFw6rAXF4XBg2rRpeOONN7Bo0SKsXbsW8+bNw/3334+srJAw8/XXX2PKlCkIBISdkPr65iIuLpfy7dvpbBYWGhrUpqYatAYUzeCwaQBxXRffn0k/vzjvzt8kXPp5E2oY5UEANRp5qejip1rWn/ll6r+Iy60BsvMmHmpMISctS8jXSvdt0328Wj493iZJoFVcW2HqVUTL1oQDBZ6S3j7y2e2a9rcxUsF8nek0xX0CIkHfIhJ+BvJLNZ1bjUJ2i2RZMbcxIceOlV5m/QN8ShT7FsPJCx1CDaY81DIFmo8RqcrcAth5+amQhYF1LdYOg9hQc6oqUUWHBqoP8/lEgRYAXNBXEFKMGcq5kyY2eSItAPzFyBdNbA+Ys4djtYtcubl/cFELt+bYZSS9WNf2Dsg7wGMp7rjceZVkmSmO73Zrku5X7w+66QysYZT7JW0e2gJKZSAzQDmwNvse5cOoDGTJ0U2jQ3apfXpMxzcwMDA4VumwIu2hQ4fw8ccf45prrsG4ceMwaNAgTJo0CU888QQ2bdqEwYND4fkLFiyQVPHzeps79BaL8jCh1dpcIdTj0R+MfuDAAcV/K1as0H1MAyFBjkcNLc0eTWcPYjA7P+nnN4s60gEq5BjjaOVCSilcueJ6AOAY6SCCj1J2yyWaOkJ1eQDozFRoPsZJ7lc0bVeNUGYmJ4oUoHgOeVQpugbWaj4nALCmxFea1uo88VJt11fAy9w6Lqi7Q9sBAvWSRRXhac0yiN3RNCf83oxs+B9sXLNj5G9112lri4jJDY9Jlk2pVX6ASTZpNfNh52oSdryh/u+Rwh0RLKvhM1FHx+ccz2D3x7W/HBaOLMJ1Cm5D9+DqpJzTIHGYuNjzBuua7s1+K3nA0srVwxqsivn4gHJhMACwU8kVaats5EHi9sLGygAOo5i4bkzj6y3bmGOY4VXPgeK1zwiiWXljCOerwSnuWbrOX0HlS8/RTp20edQRdPOrmzAqbeR6Fe2FAAfwGiK21gaPU1xvVRnIkqObdwHygtKBbzEHzINiOr6BgRaKi4vB8zx4nsf06dNbuzkGBprosCJtenq67LpOnTrh888/h9kcms47a5awI2OzNYtnfpXp8D5f8+ij3a5/andhYaHiv7w85QxBA3WqvJxEdDq98RncWT0JFkvyXadmTizSNlWVVdlPi9jHM9L2+xIYMRArLu4oXFyl5u3PaZQKZyQqg00CtyjJhUYQtMmKm2rOw4X1d+HSuhm4pO5W1eMFmcSLtCyvbcqil267TloSf6u7Ht2CK8AFNMwYCEq3CcjEJ4QRVx+mRNWAM6007qyehKkN9+OmmvMwxPcNeI3vdTT9/L/j1uozMdz7CcZ63sEd1RNRElwV07EShb98ATqxOxJyrDGed0H5jyKVKxMsP+BLAa9S4VmNk92vxrW/HBa2hrh8Zs2ZoGDEHbR14okLqGuaBMvIZL9mcgfB+7QP+JEwK2TOAoAdyS1qY2bad1f8hz3S96drYC0eqRwIG5IrcHckejG7MbNmsubtKcJ9NgzbuA9nNT6BkZ6P4mpTe3XSUiYH/lE7TdVl6rS271RArcWPxf0rMQwfW9wB7yvHzOrJOL3xGaSz8rPnrGbl/p+BgYFBR6N99wyTSLdu3TBpUmg6586dO3H48OHIupSU5sJLahEGjY3NHVS1aASD1qHCI+ykWXg3TnM/Dxdf1ZTnlFzMoqm8ATSJtCp9q7DjVgmWKNKq75ds8oNbwPulOVkkeJ4HhZCwq0ZlU/VjcYeTRhA864UVboz1vocRvjkY6ftE9XisSsXbWAiqlRVuwsNrCPNqJUi/QtilHKzeoL4/wUkb4JUfhiR/U5E7j7blIJvbhwmeN9EzsAQAwPtjK/pRElyFy+pvxYUN/4cuwdDvw8UpBMUKz/PwH1mAzkFtURJqZLAHwXnLkMoKnfi7G4WfN5oP4MzGp3QdW23aeKyYg9K/4wDfD7Dz9eA8RvHMtg7DxuGk5UIzP+SumxnsQXA+7QN+JJQKgwGAA9LrVRg+GP9nvhVrEsbN4YYg1pQLhboL6u/B7TWnI507AhiZ0QnDlDEARcG1KA6s1LQ9xcp/btnG/aAADPJ9o/n8FKEAFcO1V5HWCQu8GOMlZymHac2CoYnArbEWwxG3cr801m8x5ymDFW6c7n4ej1QNwX+OdsKldTdLtrPEUYDRwMDA4Fikfd99kky/fs3Tbw8dah4BjC4WFl1EjER0sTCjCFjbRCzSZrAHEO4u0C0h0opcRn6ExBK1rpWfUnfE8jRBpG0D4l9ecAv4gDaRFlzIMWzi1R8GKr2hv6VE0ONZIIYK2iyT+GgIrfXL3BodEK0BqWVU09JA1Tr1/Ukircr7woqm7NFB4feGtmVL93EnLveYrU2MSKr7vPW7wbkPoZPGvF81aLDgPGVI5YUi7Z464XUwlSuDg9MncqsVYIoVJiCdzh6eScAaIm2bh47DSVsbCA3eyBVjT+cOxS3Siu/BYhy8fOYt6zksu07z+duxQPHjXqHA7eCqMdw7p3mBjun5Bsow9lCcUzqr8TNHuM+GYRv2AWi+b2vBRJTqYnNYtjpNmfpqv78jzqKErY1WJ63c9TUMz8f2PrCN0jx9ksFES8FZAwMDg46EIdIqIFcZPFq83bp1q+Ixotf37ds3MQ0zSCiljSKRlmsW3pPtpGUbD4Fx7xEs8zeJqOpOWofqFGyOkQq5Pk7b177czeKDLQ34brdbs/tTK3nsVgTrd2valm9yajBQj3eo8IQeCMWCHoMguID+4jJHvImfgqXWGQ7jUVMtlc7B8fhxjxsfbW1AuVv4+d5RHcAHWxqw9HDsDjDS5y7ssglqEWmDJJFW+Y0RR5JQTe483+FfULfyDngPfCfZh2081NReDu7tb6Ju5V0IVIedsdWoX/cY6tc8CM6rLvIE68giKc/60bDpBdStvhdso/KgXSx4938JAAkTaQOUFWz9LqSywrgD8eBBGlcGGy//kE/CzHsi72+iYBv2o375jZLl4euBd/dHCXEzGiQPJo7CW/UBHg1+DrM3kT+LGeyhuF3ujFomLSc/oBisVe4DakHrPaEt4QlyeH9zPebtE4q0o70fwBoVD6Hl/fGXLULpbArln5eACxjxCHLwTYKiOKpGlqDC4EIMIi1DEGmDbDt1SkcGD5R/f5PMc2B7IVGD/UF/LSq+HxXq57i1DRJwvioEjkpzfwOEuhiGSGtgYGAgpH2H7SSZzZs3R37Oz28OzC8pKUF+fj4OHz6MBQsWKB5j4cKFAICCggIUFxcnpZ0G8fHlTuFUzHQ2ypnFWJEseC6IirkjYcaZguWBpq+llgzMAAdYFKKkONoKiKYgezn13MkAy+OhpdWo9oU6sqWNQVw3ILZ8VgrSbnBecAs8O9YibcwbsoMhYfgmcZXR4qRtckXzPIPoCVo0WNQuuVpPswEAe+tYBFge5gR2ILUK3vF0rt/f0hBxOP2+34NXT8mGhaFwqCGIh/6sjsQVBDgeEwr1ZxSTfoWwSKvFSUuKO9hQIS/CczxPEGkb4C9bjKp5p0HuQYtrctI2bnwO9atDxb8at8xC7oX7ULPob/AfngcA8B76ATlnKxegkhNpa5ffDM/2NwAAnl3vIfeCfaDoxNxaeZ5H/aq7ASBhcQeBJge+2oN+GlcKO6/R7d6ECT5UfHM8Ok07SnQ264XnAqiYO5K4LnrQpmbp1cg44cO4z2eQHFg2PhH94T+rcbCBLAaZ4YvbSVvBZQEKl3il70H1r2cCORpFMxne3liPiV1bPyteDy+vq8OqMuE9meaDGOd5W7CMD9SB89eBtpD7D5yvGpU/ngAAYBv2ouxDF/Kmt0PVukUIvS9+SlutBEphYJpt3Kf77AzBNRvk2qdIy7oTP6DaFvlmV2LytHkwCFQsR6BiObx7PkXOeTtA0crPEhVzRxOXk2YBtuPJBAYGBgZJwXDSyrBnzx788ssvAIDu3bujoKAgso6iKEyZMgVAyCm7bNky4jGWLVsWcdJOmTJFVYwyaBuUmXo1vwgqZ9XFg/fAt+DchyRFS8LZnFp8lD4VCw5LOEgtl6K63+LD3ohACwC/7Y/9ITvTJr3MdA5uAwAEq9ar7u9uEsAG+aROSTFVXg4sxyMourTRfBAgFD7o5/tF9Zh/libWpcdaO2nazhOHSBs9BbU+wGPhodDv8MGWBoHA+up6fU7JMCSTL90kigfrd6ruzxGmwClB+rwyXCMaNjwNJSdMeCpyWKANndyHupW3RwRaAAhWrkGwQfmhNVizibg8LNACAOc+DO+eTxWPo4doV3I6l5johqLAGgBaRNoy2Dl97nNzkyOxcdv/YmucCN+heeA8R4jrukdV5vbu/qhVC7sZKONk1fPEw7i4CsmAnJxAC4SysHlfbNnTYXqw8gM0FM/CLJPtyXpC36E0rdPPZWB57YN3bQFPkJMItAAw1LYTGZz0vXDveEv2WDULLpEs442IBDJN17i+/l81bU4H5QcX2Ib9APQ5aYOU1LSQTddo3r8tUdc0+NktsEJxO387+l6SWHc0MZnBvQLNhiS2YQ+8B5SzjIP1e8DKDGwXBDdKlqnNpDIwMDDoaHRIkfa7775DMCifo1RWVobzzz8ffn/o5nbjjdKpljNnzgTDhEYRZ8yYAY9HKLR5PB7MmDEDAGAymTBz5swEtd4gkZAe7Bup9MjPpDylRBHOuLSIRFo/H/pcaZntrua29BDErQBPY0ulcsdtS5V6tIBWchzS0fbwdEjOp/7wHqgMPUBP8LwhWXduw4OC1zyAah+HAC88pxnkrMyzG5+IiOQ0H8Rg71eSbQ43JtYpErTmq2+ExE6BPdwQut4l6u9a45N+OF1ck5tNQ/avv3yJrvOVu6XnS0clfAfnKu7HecmfL+9uaUVr3ts0ZZoi3xa1OIQBIFAjfQCJlejrD63jYVqOLHYv+vtD4nQqV664bRpbCiuvz4UTnhYeKFsUWwNFsA3NUTBnNjwZ+TmdPYihvi9FGydvQM0gPtIDu9HTr+0zYeUbkKFxQKJzcCuKgyvBx1h5PEyv4J9Ikfk+0GBBceSBOr5pEPfS+ltlj93f97OmAnxl7vbjSDxYT27rsF5DicuDCtdE3+GfJcv4oBF5QKTpc97X/wdS2ebBq2HRGcBRZAflB0zDTlqTStRHND5eGv/UiWmdgprxwjbFcAz0fY8sVn6AttLTfr6XyYLiOYzyCPtMwco1ivvwQfmi2n39v0uW+dpwDQYDAwOD1qBDirQzZsxAUVERbrnlFnz88cf4888/sW7dOvz666944IEHcNxxx2Ht2lCl8nHjxuGmm26SHKNXr1646667AACrVq3C2LFj8emnn2LVqlX49NNPMXbsWKxatQoAcNddd6Fnz54t9wsaaIYkhFn55gcEtmFvEs8eOrlZ1En2N8URBAiNo0QOE7eKkitXNEBtdL3aKz1urE4fTrTfBfVRrkZaPU6CbxL9nHw1Hq4cjAw25AC5bUgqzh0zBWZK+IBe4WHhF+Xuit3KYfLYrbi9+jScV38fbq05C70D0viSRBd1If1NCsw1kmVcAp2Bie7+VnuFDy4u7mhkKiSvItLyPK9bpBULGGnsYZg4D2ir8pR6OZGWuG2gLjRoI+Pi4hoPaMqu5QPyDyd64bnEDZYM9n6F26tPi+QKqjlpU7kjsPD6xBJHeFo4nZgsZ9qSEfl5oucl/L12Os6rvw93VU+ESZRRzfn1RTMYtBycrwLX1l4euXYrYea9yNSwHQDcWnNWaPCCi0+ktbKVuKP6VPTyL5Ss40GDl4lroJhQAZzegYW4tfpMpLOHQPNBXFX7d1xSdyum1c/E3z2347wBvXBTpyXomcphaibZkS/Oxm/LHGwgv9+5TjNSR74sWU4pFuCU3l8TeQ09puBDnxELPLireiIu4F/HrSW7MbWHi7h5VmAH+TBBb2SGghnyIu0FGWsVm5MX3AKwiXFqthYMgrijehLOr78XV9Vehb4+oUv5qKdjurq7+5cCAE50v4ZHK48X5EwDzbMIZJHpR1EmB2hwGMcJZ8Z522Mwt4GBgUES6bCZtIcPH8asWbMwa9Ys2W3OP/98vPnmm7BayULSk08+ifLycrz99ttYu3Ytpk2bJtnm6quvxhNPPJGwdhskFtIUm2j3WCy5XXoRd5L9fEhgFE+zYngfrLwbbqpZuFBz0sqtX68i0tb4pA+M3iAPl0W/YCnuqpnQfG5Ki5gTJfplcIfxcNVw5E4rB2OzAZiM7F2VggfcSg8XeQ/DiIXwaPLYbchjQ/ELB03HSdabEjyUJe6MDsm14J7hvTBnWwO+iMpHbsuzv6pFTtq0KFcP+CB4ngMl40hlG/aBcx8GtMXqAZCKtNnsXoDzg3bkKRYN4rzlmoVO3l+jWok8ULUW1vyJysdRcJDoJoEi7VmNT8HJ10ReW+CFjauFl04jbp/OHdHtpHWEj5+oTF4u6loB4Hj/j/Lb+msBR15CzmuQWDhvBSzwYqT3Y/zkvEdxWzeVjhJ2pabj2sOF7eJ00vJBD9K5alxedyMeyha6PjnKJDvwFJ09XRJchUeqhki2SZ/wCewlF+MEAKHk1c747ZejqPMLL/DtSqStJ7/f2XYGjKNAspwyKYi0jBUQieAJvYYeQ/BRgxEp/FGc0ZWGq98olLuHAweFA4iZ7H7QLPl9jM5jFc/kimbUgFPw+cIq2fUW3p3QgcTWwsHXYrw3lKVcauqLLdbme/zRduRwTyQ31l5IzCAOw3mVZ+LIDWx1vjw08Ju/oxHY3jwIrBbBZmBgYNDR6JBO2nfffRePPvooTj/9dPTq1QuZmZkwmUxIT0/HgAEDcP3112Pp0qX4/PPPkZ6eLnscmqbx1ltvYe7cuZgyZQry8/NhsViQn5+PKVOm4IcffsCbb74Jmu6Qb3O7IEDof0U7aYOt4KQNNLlAxW0z8z5JtXV3QLlj4xWXbG/icCOLcoXOJ8lJG+tIt1hspPjm82rp4POcsjMzS5R5W+Fl4Ze8d9qmQnOQisaJdtKKO6M2U+j4tOg8ieyzJjquU/z5SONEuaEK7prA0aW6zyf+rGZx+8BzftB2ZVGO8x4FpzGvkvPXqIo9WiIPEuqk5RP3AExyziq5aWNx0ka2j9PZGEbPtGcuYDhp2yrhwl7i4n8k6ukcZHL6Yob4OD9vfFNURipPdt7LCQ5aMKX2liyzEgpRljYm5jvTEshlBGfaaOL9WlGkNZy02hHfn6jQIIGZ8LXKYXcDnB88obAXG5W/rjSA3cnBwG6S7/9Q4ACufTtpxWSywmvP0Q4Yd2DnahQFWiB2kTaMTXQNNERaAwMDAyEd0kk7YcIETJgwIWHHmzx5MiZPnpyw4xm0HKSiABZB3ME+8DyflKJv4elCYidDXYDCR1sbcEDkVjHBF8p8jIpbfXV9Hd7pnCN7DqXiU+uP+jGpqLnKap2Pww973aARKjal51gkVpX5sLnSj921wt8jXGAKABrWPQzzKd+DNsvbKnnSQ0CUuJtlZ4Coqc+VHk6Sg6s0pS8alkq+SCuOOwh3VsXPWYmMOwBCxV7iKUYWjdhJKxb7PLvfh73nNcTvjdaoA57n8WepD7tqAlh0SPj3y2L3AZwfjC1X8Ricp1yQa6pEsGYj6lYpu/zqV90FZ5+bQJnkK7HzAf3F2PwVK+Hd8ylMGQNg735Fsws5gS4lUi5zGleOcvQibA1kMB6Ydea8hnNzldzNWgjW7YB72+vw7PlE8z68vyaucxokh0DlWvA6RFqeYjTHHYTx7p0DTJDmTGuB53mBkzOL3YtKpli4UTwibZr0+0USaX/b78Xf+6fA1A7KnMvFJZloCn7Se0VJHzWCdTvQuOVlYpa0Z9/nMGcNjrud7RmeC8C95RWwnlJYC86A79BP8B38QbgRFernkD4zOezu0HFYLyha2L+KniGmJNLSFNAlxYTt1eT7EAWO3D9rx4gHiI56uKQ9AySCWh+Hx5ZV42ADi3tHpGFQTmjmJ8vx+ONgbNctJyfvng7DqcQdBCqUZ0NYReL/hooAXlpbC5qiwFDAVf1dsCV6GpuBgYFBO6JDirQGBmHIcQdR7i3WA857FIxdWQzSC8/zcG95CQDZ5fnNLuk0YzPvhY0XVlt3B3l8uKUBl/UlZ5IpiXLrjvoiIi3P83h8eTX2yxQEAeTzbUmsLvPh2VVkZxsdFYDgPzIfNQsuQuZEhQJQhKmm0aP02XZhR67SyyLNqj3uIJogwUmbaMSO5PADOyPqjyYy7oAH8Op6/eKhHOJMWrFIW7v0OoCxw9H9csm+/jJ5kZbjedBND0OLDnnxikybs9j94Fk/KJNyZgLnq0DlD2MVtwnTuOkFTdvVLLocGSd9IX9OnVN1g/V7Qm1sEmT5QD2cfW8O/ZzkvD+5YkkAYLfZwfljdM/ryAKW7BuoR8XcUeB96g+Kgv2MTNo2B9t4CBXfNUcA8JAWkSSRpVOkBc/Cs2cO7CUX6dsPkNxfigJrJCJtPE5akovUJuNOfHJ5DR4enUFc11b4coeyuz1cTC2ahrUPIGXg/ZHXXKAeFd8NBy/jfm/86ylY806BNe/k+BrbjqlbcRvcW18BADRufIa4DRURaaXrstmmwUnWA4gGwQVOWsgPxFEAipREWr59irSkgsFhxE5aH8ujPsAjNYaor2TD8zyu+7V5QPSfK2rxz3EZ6JZmxre73fhkW2wF+Jy8BpFWwUnLespQv+ouxf3FTloAWHK4+Vr8t37kZxoDAwODjoIxTGXQoSHFHXQPrhC8ZuvIxRfiOu/R5ZGftbo8TbyvOYMvim93k3MjOZ5XFGn3RDlc99YFFQVaAGhQKVIWzRsb5AVBWjSNynfwB3AB+c4kZU6VHsPcnKOZZRM++Fd7OVSJRESrxmnbBUFpFep6f2ILR0jiDpo6q2LHbo0vceet93NYcUQ5NkIPkkxacdwBgNpFV0iWcd5KBKv/kj1u9ECAnEALhDJpec6vWqQMPBsptpIovPu+jDzksY0HpRvodL96dr0n2Kdu+YzmlQmKO7BT5Adp0t8tsk/X82I+H6dTYI3GvfVV3QItYDhp2yL16x4SvOZkcqqj6e/7WZOTVlyErG6ZtMCrFsTT8wf6hAVtGN4vG7nDq2RYk+5dADAkl1znYHNV28/3/HQ7+V5anBryfJjS+6kew7PjHVmBNkzjxuf0N+4YIizQKhGsD/VNSbN9ugVCfUyOEBkTLhoGKA9gUxTQNVV+YIUC1y4LhynF6KRxpYJILgCS/mRbYRtBPP9gS2iQOFaBFgBcGpy0Su9h/Zr7ZdeFkRuoCkPQcA0MDAw6FIZIa9ChIcUdjLBtFrwO1m6WbBMvwZrmCs9aXZ5m+GDntbvF3AFeMde0zs9FxCYtFWwrCTm1cohFvGgcXI10oYJTibZKnUW0LSvys3hE3s/x2Cp62C0IkitqR2hypPQOLJCs2idTJCVWxDHBTNMDVpcU4cSGfXXBmHK6AoR9xO9HvEgzaVUq/TbhK/0N4SzmK+r+IVmvJY7BxtWiMLgB4PyRrMsWp0lU9e79XLKKcZXoOpTv8C+SZWHxR5zNeE7DI7LHmVBok113dSdylW6xayjM5X1dcA34P1AW7a6+Qd5vIj/H4zz0HfpJdRvncdJYilb7LBjI4i9bJHhNiju4q+ok0E1ZmzQfxMmeV+GAuhv97EZhQdaYIzZErroB/h/R1dKcYz3a+758xrJKXnrauHeIy88olo9LaY9QaHa+WTqNJ24T7V70l6vnkvsOyRcJPNZRcnoKtguGBuhNNIVx+c3Cfw//EnQJrg9tQxi8ir4+M2Bhp6SfYytDgaYopFrkHxNp8AnNTW8plDKPGbCS2g+JiolKNFWEPvmmygDq4jQWKGXVRyM3SO478B1xuWvw45Gf063K8gPdRuMlDAwSyfTp00FRFIqLi1u7KQZtECPuwKBDQ4w7SO8Db82G5m2qVQS+GIieKqRUXVfQLmc+0uwuoEbbOWpVOmoBDvCxgM0UyrVSo0JjlVu1BwxHVIX55n3kjy3uCKYME079s4hE2koPB7eoU90tsExyXNfgJ0Bb0mDvdilYzxH4D82DOWcUrmhw4f0tzZ34vbWJFWlZ0WcuPFWxZ7oJNNUcc8DywM6aAPpnWXQd30MQafUI7GpwPC9x+aYqODKjiRYkB/m+xfv4r2C9loeh430/wAR/yEmr4MBOJjznB8VY4Nn3mXSlzocLxtkVAQgjINiG/TClFEscqZM7VaBXnzR8u9uNQTkWjOxsxYYKPwpTTBiQbcGkrnZsrw5gQI4FFhpYW+5HUaoJJXUe4mUji9tLbNNZJXZQlAM5526EZX4Qfl69q3B5/c1Rv4A35hw/tlG9aBTjKoIl72T4S3+PLIs3B9cg8YinvnOEuIO+w/6Bp3Ot2FhrR3dmF7o0ToOl8/9gWQ7I3cLu6boGeau/Ia+MExo8/q9wCX5fvwh2vg6DfV8Bzi7EbUmDEdlTNsBf+htMmYNg7UyufeAw03hybAbuX6KtqGFb54mxGeiRHooKkv3Oc36ACQuJiZ2dcqzBa4zMiY7SuHFgKo7P8aJy2W0Y2vBupBwbaVaDOKLgtsyv8VTlxYJl4QlKSo5HHlQ7ddIqv782vh4epEdee1QK9LYWcm7TnTLxFADw8klZWFXmQ66Dwc6aAL7cKZ2Jl5M/FOmdPoC1cDJql8+Ad/eHxGPxgXpQjHRWACkKgUnpBtfxzQ7bTJuySGs4aQ0Szfz583HSSSdFXl900UX49NNPFfeZPn063n33XQDaB88MDBKFIdIadGjEcQcZVhqm9P4AmsWXaNdroojObNTqpLU6c5GaWQDUkOMNxGgZTa/zc7CZGFRqqGBboXHKV51KjiXRSSuuWhy9SvQgTJmEWVVm0XO/WKC18I3oEpROsbcXXwBTWqjyNm3NhLlpmmY/q7CDe8TNwhPkYE9QEQOxhhrujNpMNIpSTNhT1/xebKuKQaTV6foIsDzMOnrE9X6pQztNpip6NDzPwx8l0jJgYaaCCEQJgOK8XhJDfV+GfmD94HyxZ5/GBRcA23gQAZIjTGfcAWWWZq8FazaGRFq/8AGbtudjeGcrhndufjAqjHJg98wwo2dGc67yGSWhdT5vOvHc2exeybICFxMRWhhHPuzmo/CrfKcHZwZgEhQT4kPfaUIhPjW0iLSUyQlz5iChSOs1RNq2Bs8K71UkJ62z7ww4ARRlAcCApn+A01wBP2HwsE+GGf0zKcQeqKGO3QSM886OvOZl7k8kkdaU3h/mjONUz5ElI1K05SJFcoQFWiX4YGOzoKMhgkaPi/9Yg/NqnBUQFbfB0BQmFNpRTv0GNipCi/NLBwLEA9+5ZmmfMtyPsIvD8qOoYfLbZyatSnFPGy8Ucduqk1bObbqjhtwHybbTyHEwOKMkJO43ykSY5RaMhL2pXoWr/52yIi0XqANty9bUVtdx9wiua+lWWmBKENMO6icatHM+++wzPPDAAxgwYEBrN8XAgIgRd2DQoRE7ac00mkTaZpIt0po0ZtJaaHL2mBx1ogfcTg5GMjodzlvVIsBqiUQAgNJGZeepgyc8NCgJW6IHCooRTuu2qLwnJYGVYEBoE6HiNAAUukySDuK+usS5aYOizxwTdbI+mcKHXVLmmBoeHdnBgHI0BXF70WeFApBCqRclY+t3CqpKA9IHwPDDkNyIdQpXjh6BkOuU53ytJszxnB/efeTiYYqfZdL2/jrJsvA1R+yCoq2Zuo4dhrKkE5eT4g7E1w0tFZYHEpoVS+QBz/Mhx50KFG0GbRU+HBpO2rZHeDp25LWOLqf4OhlZzvPJF/DE9waZuAPJdF/GpllgZWTuW21TDoqf6AxLLQURaUua6jbHKrxf2xAEaQaSOB6K9xHc2qJrrIugsYfH+O0KTtoKpkTT9bqtocVJG4144L+tINf1lRNp853C65qcyBvtcqVEReeiIfVd5GCaDBHR55aLPKApBUe+gUGC4HkeDz/8cKu2Yfbs2eB5Hnv37m3Vdhi0TQyR1qBDI86kNTOURKTlPKXgfNVgvUdRv+YBNPz1T8nDpx54LgjP7g8ir2nwMGlw05ppCqyMePXsqhpwUevq/JykeFeahUKKKF8s7Lat0CDAas01PdIoL/jShLwvAAhUrJTdJ1C5SvBaPL1KHHcgpjsh6qDpQMTFFoZCoUu4LlxkjeN5/LzXjQ+2NKiK0XKIzaLRz0C9M4RPS+uO+vHZ9ka4dQiveh8oZvxRiXKFKIuD9UF8sKUBv+zzgON5adEwKw2GJr+XtctvhffA9wCk2au0vTNsZuFDQ7hwmJwJfJD3WzAItTVYvSHuB0TKHKMQwAXgIeTRhtfpgVRAJ1gdKmAnLqAVq0hLy4i0JkjbWi+a2qn0kB5mYLb0KT8WkZZzH9K0Hc+zEgdPsgV7PuhGw8bnULfqHgTr9yb1XMcMos+AlsJhYcSfwzBBjpxTDgDefV9pb5sClOjewHnLEazfI91QPMuDkc+FFiP3tfpgS4OmmS1A6CHzt/0efLClAQebstODHI/vdofuUUdE96hdNQF8sKUBiw55W3zqZu2fN8C96wPwPC8YpJaDC9TDX74UdSvvhHvHO6hf+zBKZ1MonU2hbvV9ugfD2hOaCy+SRFqL8B7B+avgO/wrapfPhHffVwjW74bv4FzBNhQjP1tHrcBTe3TScgqZtABgFfVR4814TRZy3+ANFeTvRq5DeP11iwskNBEtnlImeZG2ZsnfUb3g0tB3ctX/gec52e+lKbWXZJlc5IERdWCQbLKzQ/3Hr776CmvXkms2GBi0NkbcgUGHRlxkyUxTMKX2AGizQGwJ1mxC7Z//iDjc/BUrkHlybA+E9av/T7LMwnsQpJQf8MwMBTmtblWZH48tq8EjozPA8zyeXF4jechNtdLwsjxqosw/ESetxofCPw97MTpfuZ1KIq2T8oDU/6qZfyEsFx0C48gXLCc+dNMikVbFSds98Cd5hcLDRXGqGfvrm3+PsJN2zrZGfLUrJND/ut+D107J0h2DIM6kjXZU9c6Uil2f72jEzpoA7h2Rrun4sUzNm/FHJd4/PUcieDcEONy3pAq+prei1s8hQ+R+yLDSoGgr8YHBveUluLe8hMxJP0lEWmv+JNh4GtH5hJ6mh4YGmYeiIb7EiDAAYMmfBD7YSI4sUIFt2IdA+RLiOrmp0XJwAakbJVATEmmT7aTVghaRtnOKDeJSI959X8LZ+3pd5wrWbtO2Ic+2uJO2dvmt8Ox4EwDg2fkuci/cR8zjM5BHj5NWjiDHg5Zx0lb/cR7ST/wc9uLz4zsJLe0aV3w/DJ0uPAjK1Fz0SxLFQ2v/PMg5aefu8eDPUh9ePilLdpsw3+5246OtIYfqT3vdePWUbHyytQG/HQi1a+lhL16YkAmbicaRxiAeXFodGST0syk4pWvLFTDzHZwbEgdZDzivemEi3leJyh/HC6b0h2nc8E/wviqkjfkvYc/2j3aRVvreUKIBDN+BuahfdTcAwL3lReJhlK5jatd/La7otoaqk5YTrp+zvRHn95QXK1sLudkGclhF/bt6mRijDJs2kTZYtRbBqpDA1bjxX6BoM+y9riFuS9s7S89jZQDCLDejaJhBsrnlllvw5JNPwufz4aGHHsJ335GL3RkYtCaGk9agQ9MoEjKtDAWKNsOU2lOw3LP7I0HsgW//1+DlKj6rnXPT85JlFl7dmWtlKPRUyH7b0uR0LW1ksZcwPT/FQksq9R5sYMHzPLFKLIn/rFWf3nRUQfB1UPLuusYtL0uWVc+/SLJM7PqwKjxEmGigZ24n4jol4ao4VfiQfqAh9H6GBVogJIb+uk+/W1AstEc3P9PGINsuvSyvO+qXFS7FuGMscrHokPR3+WG3OyLQAsBn2xsjwn6YNCsNKDhxAMCz97OIOzSMpfPJEpdO+FxyQnNxcBVxeSw4e98Ik6tbTPv6yxdD1seSgLgDtm5H6FA+YTYhZUmskxYAShhhBMXYfOED+5Bc5b9t7wyzQLgKU/fnP7Q3sAm2geBWJGBK6yN10nqkxUoSBR90RwRaAOC8ZfDLiPQG8hQFVmvedkw+WTga3smqeO2uWXSFrjaRcq1JwgTvq4JnzyfCZaywMFoinLRAqGr7Fg0zV8ICLRC6r3y5oxGLDzePwlZ6Ofy8L9TGr3a6BbM4Xt+gHlETK6bMwbLrapfdrN31ThAhw7i3/09vs9oNWpzGAGDJHSNZJh7I85ctUD0ORVtxXJawbzmsU+i6ryTSdgssA1hthW/bEmqZtIdtw6X7tMGiQT4NGf7RHCeqb1CSSvZppVm0ibRiGv56AlzjfuI6UnyBnJPWbCgTBkmmS5cuuO666wAA33//PVasWKH7GBzH4ffff8edd96JsWPHIjs7G2azGenp6Rg0aBDuvPNO7N9P/j6EmT59OiiKQnFxsWD5Y489BoqiQFEUduzYodqW0047DRRFIS8vDyxLfgb/+uuvceGFF6Jr166w2WxIT0/HsGHD8Oijj6K6+tgoYnqsYVwKDTo0pSLXZ06TQCYWQ4I1QoEJQEKzuEgFfMTk2BlVwYTneVTKCK42gsi77qgfnqC0EFQ8NCiIhFlm+Q59oHyxdCHJlSjKC8yy0bLZXL3SzcgaLXWPMM4iMPZc2bbki+IO5NzBu+v0T7kUTzFziHqkOXZydMDBBm2DAtU+ba5oMZsrpZ/nzQShQGzeMNEApXIr8ex4S/J9oe25kr8b3yR8kgwif++yn+jCjgVz7hhYu5wNaBBVzLnjJMuCddvld9D5MMcR4g74YCO4QKPUSWvL0nXsMBRjgSmDXBzhquM7R95XhgImlzgE608tciDN0vzOD8m1RLY30cD1x6eAosmDR3ofbLU4yMxZw2DOHgHanic8V7ABnMrDd6z4y6TXpmDt1qSc61jCLBKRhls2CAahpvWWFwAmFNok33e7icLpxXZQtAm2bpeRd9QpGon/trQtF+asIcRtxd97sdhDmVM0n1fNJRvLFOstVQGJcLPwYGjwLZZ8cy1YCber1OHPye/A+SUF5QyEaCmeCAD2btIBCTmXuRKUJQ2X93VF7scMBZzdLXQfMNEUceAYAE50/5dYmKytw4vjDii6Of6KtiJgkQ7sJ7KPnCiqNZorACDfyWBgjvD5YWCOBZ1EEQgnd7EJrk0UbYK9x3TN52EbpKJU2pg3iNtmyXyusmT6wAYGieTee++F3R4yGDz44IO693/sscdwyimn4Pnnn8fSpUtRWVmJYDCI2tparF+/Hs8//zz69u2Lr77SPwPw0ksvjfz80UcfKW5bVlaG3377DQAwbdo0MIzw+1NdXY1TTjkFU6dOxeeff44DBw7A5/OhtrYWq1evxiOPPII+ffpg2TKZaECDVsOIOzDo0IhzRfNcoa8EZRIKFRyh+ALP+iTbxUoXF4WdKppvgYsBQ1O4bkCKrAumzs+jRqbjZmEoDMy1CNyg++qCOFAfm6gnR4NCfmq2Rf5BUesDrjgv0ERT6ORgJII7AByfY4HJVYSc83agfvW98O77HM5+M5Ey9F+K5+jsFJ6jIcATnayxmCvEIrbTLHxYF7udwxxsYNFHg5GyRmchMKX9SE4N4q+sMj2NSe0pKBwT2oWRiDDh95N0jgnZdVB7HEwb/z5qFZx0tK0TXIMehr3bpaBoRuKEk0AxyDr1Fxz5QOgUZet2Kuyk70MhV3yDbdgLcMLCROK8QT1kn70W9avvgXfvZ6Fj2Tsj/YQPkZfaBU87A9hUFUDfTDO6pQkFV5uJwjMnZOHPw150djIYnGvF1io/dlQHMTjXggKXfDciWLsF5vR+mtuo5YE/8/T5oChKEo0CAJz7MGhRgZJE4Cv9TbJM8qBvIIG2CgcVUnv+DU/3ycSSw15k2ZiIW4/EoBwrHh2dge01AViZUBbtsE5WpNtC1+b0ce/iiEzVcT34yxYJXls6jQ8NANBWyfdP7CoTDwroEWnVcMncB5QgZZeHZ8skwp3mJcxw+Oc46TXJmncyQiUlZa6FCg5ZA4B1q4u0jr63gjJJBxljKapHW9JRkmbG0+MysbHSjz4ZZnSPGtDPd5pQ4RF2UMe738Tx/h/B8e2vwJs47sBaeCZcxz+AwNFlsOSdgrSNVlT7hc8GPpaHSUfh3pZAa19vej8XTii0SQaGGJrCU2Mz8dsBDzZW+DG+wIZxBdLPVNqYN2DpfBJqF1+pei7SAINDJgIhkzTCg1CRYwODZJOXl4cbbrgBL7zwAubNm4fFixdj3DipKUOOYDCIvLw8TJ06FaNHj0a3bt1gs9lw4MABLF26FK+++ioaGhpw6aWXYs2aNejbt6/mY/fo0QMjR47E8uXL8dFHHykWOPv0008j7tnLLhMOXvt8PkycOBFr1qwBwzC49NJLMXnyZJSUlCAQCGDhwoV44YUXUF5ejsmTJ2Pt2rUoKirS3E6D5GKItAYdGrGwl98kzklEWoJ4IKnsHAfdu43HH1uVxdJw2+REPCDk+KyScVKaaQq90s1wmChBcanFh/VP2VdCHCERTY5dvpOreVoVofhMnpMs0g7IDokAptQeyDjpM23HR8jNSlNCR+cRQnEtnZFg4HheEkcgFmlTLOT3KFwYRo1YRVpS5IVfg32Eivqv7DbmFKkYSRJpw/8Xqd8MBVAyxcmicXS/XFGkTRv9GmxFUyOvOU+p8gEpBpTJBkvnE+E/Mj+yOFivJNJqh+c58IRMWoDs1Iw1kxYIvX+pw58jutyK08woTpOPUkm30jgjymHbJ9OCPpnKrn4A8B9ZqEukJVYiF0E3VZumTA5QlnTw/prIOtZ9GKakiLS/SpapfnYMpIWNKAYpFhqnF2sb3OydaSbmdAPargdakIq0J4CiKNC2bEkhO/E9Svzdpc2pus7NUPIOPXF2uRYaZWJiShtZ1QKbWqjySu+BWTJTlq2FkyUFqtRg0vqANRzqEjeiKeN4BKv/EixjCBmfQGz3iLD7tijVhCLCFPgCF4O/RAkVPQMhBzofqAXPBUERcpzbKuLCYZTJBUvOCFhyRgAA0q01kn18LA+n/C2yVRAXcSUxsatNcO8W47LQmNLdiSnd5fvfFG2Co8ffULd8hmx/JYx4gMHe8++y22bIXDsMkTYEz3OSyKtjHdqaBUpHgdF4ueeee/C///0PjY2NeOihh/D7779r3veaa67Bww8/DLNZeGEYMmQIpkyZghkzZmDUqFE4dOgQnnrqKbz//vu62nbZZZdh+fLl2L59O1atWoVhw4YRtws7bXv16iXZ5rHHHsOaNWuQnp6OX3/9FUOHDhWsHzduHC677DKMHj0apaWluO+++/Dhh/EPfhskhvZzVzUwSDB+lkeFR9jJyZMTaQnTcHkucSJt13QHAOWpumGXr9KzVpk7KDsFysKERs4HZFuw/Ehz20lZpPGg5KTNccj3crWLtNIOXJ5TusxhotAtLbZLnImmkGOnUeZu/l20iqRKeIK8xFvkElmcUmSdtBrjDnRMgYuGJO6SRFrpEooonAv28VUTBRuxATeszYpbQlFSB3UsMK5iwWvOrSy0hR88aZtw+iPnPqywl3ZxJeQulqliX7tF3BpQlvblWvKXLYSzj/ZsWr1TZxlHPoICkfaQ/MYxwnkrEayUVv9lFT8DBgAATvydb1sJW6z7CFjRgIul03gAoYdFsUhLS0Ta+Jy0JhqQiY+LaXq1XB75XxV+1QKbWhAP5DlMFGwyhTPFhf20wNg7GyItAE7kRrTmT5SItHLEFneQrrieNFuCRvMHl/NXg7Hl6D5vayH+3tKi722aVfqZ1jJg3dLIzZqLRsnUoRsN12+xk5ZxdpXdVi6T1hBpQ3C+SpR/Ih/LdiySO628Ra8lubm5uPnmm/Gvf/0Lf/zxB/744w+cdNJJmvYV58iKKSwsxF133YWZM2fi22+/Bc/zxGxmOS6++GLcdtttYFkWH374IVGk3bVrF5YvXw5A6qJtaGjAK6+8AgB4/PHHJQJtmKKiIjz44IO48cYb8dlnn+H111+H09n2CiV2RAyR1qDDcqSRlcgjEZGWEY08k6ZF63TScv46NG6ZRVzXJdUKNZE2XJmVUegnLTrkky30EBbABucKRVq5Ik2xwPO8opM2N8Ulv6/WjF+CWJdPeIjon2WJq0psZ6cJZe7mNr32l/Tvo9fsRHpvJE5amXmpB+tZ1Po4/LzXjX31QWytCsAT5NEvywwrQyHNQqNHullzETgx7iAPb5CLPHS7AxzKPdJjfbZdHFsAqDlp2YY9oMxCgZGiTZK9Zm9uQNdUEz7eKnK6AMS/u14YV4mwXRqctAC5MrEcPOsDF6hH4+b/AFwAzn4zZd1NvF+aRxtG7KSlrBkt6jBIBP6yhbo6ppqrmjdBOwqAms3N+xOEU9/hX1Cz+O/g3AcBAClDnoTzuHs0OzF9R/4ASUg3nLRkeC6Axi0vg/MckTqQE/AdTiT+cqGLljKnwpRxPABICtMBkGRYc6LZAXpFWoaSjwSIxUkrt8c7m8jRHBfPDRXbu6Kvq6kfwOOMEkdk4HBZqRc7qgMY2smKox5Wchw5kQWILT9bnDPd0eC5INxbXwHbKCzmaMmbiMZNLwiWyQ1IUbE4aa3Kwm6BS/l7y/uqAJGwwvM8PDvfQbBmC+w9/gazTCZ6S8MFGuHeKixSS5mF/VKSsOnVIdKuLvNhS1UAg3IsOC67ecYJz/NYdMiL3bVBjMm3oVdGfNbcrRpypltcpBW5wBlnF9ltM21G3IFB63PXXXfh1VdfRX19PR588EEsXkyoj6KBuro6VFZWwu12R2YDOhyOyLo9e/agWzftxYpzc3MxadIk/PTTT/j000/x/PPPg6aF38HovNroHFsAWLBgAWprQ88YF1xwgeK5TjjhBABAIBDA6tWrI68NWhdDpDXosIjzaDNtdESg0pI1q1lUbKJm8XT49pMDxB1mGqkWCnV+9Y4gKRcuzF8VfonoFyY8XV9cPCCReIK8onDZKS0dct1KrRmPJKGK5KQ9Lju+DnBnB4P1KttIfbHKNIpcxjQVKugWTVAm6Lbax+GBJVUS4XRDRfM7+tuB+FzRpY0sStJC7+8tf2ibZhUSUNVFOF5cIIvgpAWAx5bVSJbRFIAETKekrenCNkW5MEmEHTeMXVpIRI5AxQpU/3EB/IfnAQB8B39E9tkridtyClMHxY6yePJoWwvOfQhswx6YUrR1THm9Tlq7MJdW7G71ly1C1bxTBcvq19wPnvUiZfBjms7hPyyNOiCdyyBE3YqZcG99lbguEW74ROI/slDw2pI7NiLeE52goixVPih20uqMO1DQPBI4dqrK+1ua771/HfXj8bGZWHrYixfXhq5P3+8hZ3enExyHYWJ10nZk6lffi8ZN0jgac+ZgyTK2YTfxGGqCKwm1zy3JSVtDN197SVOyGze9gPpVd4Z+3jILuRfsBeNo/b9vzUJpwUHKJBRpbQSjg19j6YbVZT48syrU1/lutxuPj8mIiLG/H/BG6kn8tNeDFyZkEg0GWiDlT5NIZPozRTGqPV5x3IGSSEt6nwGgE6E/b2CQLLKysjBz5kw8/vjjWLJkCX7++Wecdtppmvbdt28fnnvuOXz33XfYt2+f4rYVFRW6RFog5I796aefUFpait9//x0TJ04UrA+LtCNHjkSPHj0E61atWhX5OS9P+wDokSNHdLXRIHm0L1uOgUECOSoSuzpHjd5SGqq+63HScr4aWYE2TLZCRdMe6c0duRyVUWY5J+uArJA4m2lj0CUlOZ0gtYrUGS55oUk8BU22MjxFykyTLhuQHZ8YrWU0X2/hMPHfxmmiJC5Dn8LTOcnZmkj21oUGLup8HOoVHNHR0BQALoYoCMoESsWBG8bHAhSlLLqHp2zaSqYR15PcsPbu8vm1gn11Tr8KC7QAEKhchUCNOLoghPgzH02wdpuwDTE8fLck5izyVKpA1TrNx1DLXzNnCad7if+mnLdc8Lpu5Z3E4zSsf1xzmwJVa4jLOe9RzcfoSMgJtAASMtASjdJUWi0EqzcIXls6NRcNsRaeKdleXPyQD4hmFZj1TREc1Vm+nxGLkzYRbK8JotrL4r9/KWdPAsChBnnliuhEVoHWMRgGhDIbjyVIAi1oM2i7dMqztWAy8RjiYn1aUMuTTSXk5Hdmm+9PpBkQYYG2aQM0/PWk7nYlGj7ohe/AN5LlYgd8d0JMFqmIKglxUd83ol5/G1W0lwfw7W43YuXLndr2LSFkDMeKrfhi1W140WeBcciLtHJkKzj0DQySwe2334709HQAUCzSFc2PP/6Ifv364eWXX1YVaAHA41EpVEzg3HPPjbhxxVmxa9aswdatITOHOOoAAMrLyyXLtOB2x35dMkgshpPWoMMinr7kjJ5mrsElqyeTNlAt78m097q26fzygtV1A5qdDsWpJhS4GMUHJDGpFgqDc5tFyzQLjQNQ3p+hAIeZQn2UuzdfZYRbnPErOSZjgqPXdXBvf12yTlxxV64CNOlBON1KY0iuBWvKQ3+3QTkW1baqoTSVM4z+uAPh7+RMRMntBLKjOoCTuth1FR/LdzExZYFS5hTIxBkSUZs+6+xzEwAgZdCj8O75RLLeNfAh6T79boNnzxxJFXfpyeNzZXOeUiBdWtlVqfig+PtAMfa42pBsUkf/F5VzRwO8ULBnG9Q7r0BoUEbRnUqbkTpKNE1VNOOBZ4VO8kDFCk3nVoJUrRrQP5PCQOpYi5e0MW+g6hex40V7xA3rETpGmJTukZ/tJdMk1czZRuFUXvDCeSEUrW9g8LyeDiw+7CVGDrVmBGZDgIdM/VEB4vtZNLSjQNc5U0e9KnvPl4MP1Le7nG69hAvppI2bjdrF0wEAlCUDtuILydvbOoUGsvn4M/TDUBSF83o4IsJgDn8QJYHma6tSbE8Y/9GlCWtPrIi/72HEgwODCLPNtGbSivtO+6NqGYiLz/5xwIt/HK/PfR/mrwr1+08nB43ecUYqROMa8H+hvruOex+t4KQFgOn9XJi9ubmvM77ACiYB+dnHArQ1C7nTYhPa2iuxDDIlgvT0dNx+++146KGHsHz5cnz//fc466yzZLevqKjApZdeCrfbDZfLhTvvvBOnnXYaunfvjrS0NFgsoWvI77//jlNOOQWAgvFIAZfLhSlTpuDjjz/Gl19+iddeew02W2hwN+yiZRgGF18sHUBhowLv16xZIylwJkdhYaHudhokB0OkNeiwiGMDoqfecBqqjCsJLGJIhWfCpAwMjdqJp70DwPBOVlzc24kuKc1fVZqi8NiYDCw55MXP+zyqYu2AbDNuOD4VjihBUC2r9Yq+LgzKCWXXzonKIFXLJqvwqD/ZpY56lSzSSuIOZERamQf924ekYWFTEbTxBTZdAe0k0jWItKzOm26D2ElLEuZbsX+6rSnjzB3U/rBcnGrW1WkPQ1vSYNbYGU+xUKCtZDero/c/YMk7GbaiUOaSKa0Xcs7dgsatsxCs3gDangd7jythK5Q6j8xZg5F91nL4j8wHz/lRv+pucgPizILlWZn3R8/7psXd34pYsoch++xVqPh2kGC5ZpHWVyl5P5zH3wcEPaCdhbB2PgnmLOG0X4qxCg+i4/3kg27VWBue9YPzlJFXcup5gAZCaJ1xAGpYC06Fc8C9aNzwz8gyxlWkeX/OK/zb0rZmxyLFWGDveTU8O96KLGMb9gq250UzCCidgzmZNgbPjM/EyjIf3tssvP+pXYI5ngdN6R8o1IJcATIxcpmSgPI0ZzEZE3+ArfAMuHe8o3kfoEkcPNZF2qZCYI4eV4JxFCBYsxnWLmeDIbhrAYCiGTDOLmAb9iS0HRf1cqIo1YRaH4c+m+4HIygcVqN+gFhm2yQYTkakFcfmUBSFLBuNyqh8f61OWjni3V9MpUpfe3o/F8YV2BIqeDLOAuRM3YqjX/bSNAhAWTNBq8wuOKPEgXQrjc92NOKkLnacWdK2B6NbEoqi21VBvvbOzJkz8eKLL6KyshIPP/ywokj7+eefo6amBgDw1VdfSWIIwlRV6auzQOKyyy7Dxx9/jLq6Onz//fe44IILwHEcPvkkZEaZNGkScnOl94OsrGbBOycnxxBf2yFty8ZlYNCCSETaKJGU86tfWPWItIpTfpnQiBspn2nmkFSBQBvGZaZxWrED53RTz849o9iBLFGUglq/7axuDhQSzqvWzazQULRKrmAPJ576La4MHt7fTBZpzQyFU7racUpXOywEwVsvSnl7YXRomQCkD78kJ20iNdqe6frG4Q42sGgMcBIxWYniGKfTUeZUzU7abBsDykQWKVOGPQt78YUCUd6U3gdpo15B1hkLkXHip0SBNow5cyCc/W6FOXukUmu1NVQGXuZ6oseNKREk2yDmzIFwHX+/YJm4CI4cUhcthZRBjyB1xAtw9b9dItACAETORT3XZDlXlbBNhyB71ePZmJwRHRm9hbW0YM07RfCaD2qbqsezPkkmtdhRZ84aIngtFmklQgUhikeNXAeDM0sc6JcpFHjVBgAb/Mr57/GgdZBOKVNXzzRnW+EZAPTPFuDEOefHINGFwKz5E+HsdwtMKSUKewCMqzjx7aAojMqz4bRiB1Kswj6cJG+eRBsY1JIr9kg78iXL0kT9v3hF1rJGcn9WLSJMDrU+2hklDqQksmhYE6aUEqSPf0/TtlqvAaPzbXhhQhbO7uaIq9ivgUE8pKSk4K677gIQcp5+9ZV8ROGmTZsAAJmZmbICLSDMhY2V0047DdnZofigsHt2wYIFOHQoNIORFHUAAIMHN/eZlyxZEnc7DFoeQ6Q16LCIO116nbR6XFuBKnknbThr00oQFtW0Rj0VZ/UcN4ze7lKFW3sEgxhJ3IGMk5ZO8JRZOTSJtHHHHZDe4cR1UtXyi0nsqA6gXuODg9NEIccew22EokGZnIpF8KLJUjgHLSPa62+SvAuOVKxOD7JZq3IOW1Ib2riTNozYyajVSSuOzKBtuarORKmTVkdOuJv8wC5ok0zUQfNBWl94aE8kQ6SVRF5oFGnF+cUAwNiEIq1Y7FJz0saTuSsWPFmVS3BNjOKOFuRy7fUQSwwBZdIn0mqZZt/eoa3yOf5yJEOkjSac/x6G0/B34BMYvxArcgNzjF1aVEfcH9cadyCHuFBxmL21rf++6IVxKQ8SRLbT4aY3MGgL3HzzzRFX6sMPPyw7EB8Mhr63Xq8XHEe+F7vdbrz//vtxt8lkMuGiiy4CAPzwww+oqamJiLUOhwPnnnsucb+JEydG8mxfeuklw1TQDjFEWoMOi1jgjO6UyTnfogln0voO/4K6VXfDe/DHyLpA9SbUrbwTlT+fgtplMxCs/kv2OFTYSUtQTtWm7EfnxepB6wwo8ek3VQbw/uZ6rDziw+GGIP61sgZX/nQUP+91g+N5HNUQdyAH768R3ER4XuZYLSRW2U00UTiPJqjTyiR2P7hITtoEGglyFYrRybG5KoDPtjeqbwigKNVE/IyqZU9S5lRQFCXJaJNDi2AeN3KfNwDx3io5Txkat8xC3co7EKzZ2nxKPU5auu07aQGAcQpF2mDVWrAN+8E2HkDd6ntRMXc0apffAn/ZIsF2nMhJSzvVMy3F70kgqhCUbMREE6QH9kDFatStvAPuHe+gccsrqFmgXCjFyKXVB2XSV1hL2zHFIm0D/GWLVfdjxTEWlAmUqDifWOzivOUREbjhr6cFBQIBgIrBSRs5l+g6+t6WBvy23yP7YFWrIzdcL+9vEQ+YklG6VcUSNyR7z5fBs+fjdvfgGazfg7pVd6Nh4/PgmwZ5+KAHDRsJRcPQHHegBz2RH7FAiwR499ZXUbfidvjLl8nuIxsb04LIxR2QBhTEfb93Nzegyiv8fPI8jxVHfHh/cz2+2dWID2S+N36Wl+3rvLCmFlw7+wwzKk7uyHaGSGvQznA6nbjnnnsAABs2bMAPP/xA3K5nz54AQkLsnDlzJOtZlsU111yDw4cV6izoIOyW9fl8+Oijj/DFF18AAKZMmQKXi/y8lZ6ejptvvhkAsHTpUtx2222ygjIAlJWV4c0330xIew0Sg5FJa9BhSUQmra90PqrmnQoAaNz4LDIn/Qxz1hBUfD8MaCpi4y/9XflATW4xUtyBGg0KhTvCkI4aqynAE+Tx/R4Pvt8jrFL59qYG1Po5QYZXLASr1sOcNSj0Qi7uoAWnQ6VbaZQpCIl6RdpG0TRSh0KxuEQQi5P2m13aK3sWE6ogAwDtLARbu5W4DmjOplR6b6NpCZFWXLk9kURXtnZvfwu5F+wBbc3QJ/K1UyctAJR/XgTamg3OVwEACBxdBvfWV5F99mqYMwcCkDppxTmB5JOJ4g78NeB8NaCt6TjyvrKoLX5gDzbsQ8XckSpivfgghpNWD8lwg5NyhSt/HI/sc9bDnHm87H5i0Yi250oc8+IBByD0OQlUrET9mnulB43DSUuKfnl9Qz3q/RzO7SEVt5Mp0uopHJlQgvqqX7u3vgpb13NhzZ+UpAYlFj7oQeWP4yIDUmzdDqSN+S9qV9wKz/Y3iPu0ByctH2xA4+Z/o3Hzf5AzdQtMab0l+/CBOvA836L9NzGsTNwBqU3iyCyWBx5YUo2XT86KTMlfccSHF9bUqZ739Q11MMk4IzxBHl/saMSFvVpmhlgiiM7uVoJxdk1ySwwMEs8NN9yA5557DqWlpaioqCBuc9FFF+G+++6Dz+fDVVddhXXr1mHSpElIS0vDpk2bMGvWLKxevRpjx45NSNTAmDFjUFJSgj179uD++++P5OHKRR2Eeeyxx7BgwQIsX74cL774IubPn49rr70WgwYNgtPpRHV1NTZt2oRff/0VP/74IwYMGIBrrrkm7vYaJAbDSWvQYRFPPbdHiaS24gvUD8B6UPvnPwSLapb8HQ0bn40ItJpoct/0SNdfhbWXhn1IfUOl6ezd0qKLlGlvyxc73KjSKNKas0cQl9cuv7n5RRuYHpehUjxMbyat+MHaRRBpSRmvsRZTiCmKQAdhjZoyC50o9uKLFPcLO1dOLdL2e6U2ZatZRdmy1i5na9pfCzThgcLSaTwAIFC1JmHn4QO18Ox8N/RCj5NW51Tg1kLOPRMWaCPwLBq3vtK83ntUsJq2d1Y9F0n0a9xEdqSptadh3SP6BFoAPKtPVOro0LbshB9TzrVf++f1ivtJi4Z1kmxDm52grcI2c+5DqF18JbktOguHRSN20ob5eBt58OhQQ+vfH4fkKg+EmHPH6Doek9ZLdxuq5yvfa9oS7u1vCGYMuLf/DzzHygq0gDCTViu0WXvUhK1kWgKPz6N+zf0y64BgzWbd50okpOgdcd8lDCnOtdLLYWNF88CcFoEWABYd8in2jT/foX1gXAsDcyzqG8WBVqHdcNIatEfsdjvuu+8+xW0KCwvx2muvgaZpeL1e/Otf/8LEiRMxfPhwTJ8+HatXr8bFF1+MRx99NGHtuvTSSwEgItBmZ2fjtNNOU9zHarXil19+wXnnnQcAWL9+PW6++WaMGzcOgwcPxsknn4wZM2bgm2++gd/vR2pqYou7GsSHIdIadFjKRVPzs6IEOWe/mar7c/5asHXbhMvchyTTeJWw97wm0uEZmGNBl5Rm5+NZGoS54Z3Vp0BnEqa8exSyQKf3a84NtOisDKtUXCH690kdOYu4TaC8ecRRUkgMgLP/7braEy/5TmUnql5D8hFR8YhOBKfrkFyL4LzndnfgrG4OpFn0O1AyrIzkc3R6sT2SScxQwHUDYs+JDH+OUoY2V1enrdlwHneX4n5Uk5P2xEI7CIkP0u2b2usa8H8A1fTeUCakDHpMf6NlMKf3lSxLHfkygMRnH3oPfBM6ro5MWpKrr02iwy3pP/Rz8wuRK1WL65IWOboAwH9UfsqtAJEg6zs4V9t+UXAeaa6pARlb8cWSadKJgLZ3JgotAZXPgfhvx9ilIi1AcA0G5KMAxIKuHiw6Jz1sqGj9qI2zVQqXpg57DlDJ846+rpmzhulug7j4W1vGe/B7yTK2fpfiPlrzP6PRHBvB2JEy+HHdx1fKG/bu+0I2goJzH9R9rkQSjIrDCZM68iXitnJCZI0vtkgvpT53LFgVrhfTeic+VkZM6ogXVbehDZHWoJ1y7bXXoksX5c/vVVddhUWLFuHcc89FTk4OzGYz8vLycPrpp+PTTz/FJ598AobRP5tRDrFr9qKLLoLJpD57JyUlBV988QUWLVqEa665Br1790ZKSgpMJhMyMzMxfPhw3HTTTfjhhx/wyy+/JKy9BvHTZuMOdu3ahYqKChQXF6NTJ3Ln2cAgVjxBTpLnGi2YmVK6IWfqNhz9SjptK4yccMPrcNGmjf5v5GeaovD4mAwsPOhFioXG6Dx1AdbCUBhfYMWiQ/IFc0i5pHIdxtF5VvSOqjKtlsmqxjPjM7Gt2g+XWfj7WHJGIGvyElT+MFZ2Xz4gdSmkDNPmkksUXVMSd4n0sbwkDiLPKT0+TVF4cmwGFh3yItVKY1RnKyiKwuNjM3HLHzIFqGRIt9K4ol8Ksu0Mft7nwSW9nRiZZ8OEQhu2VgVwXJYF1hhiNsQ4+9wAxlUMtm57SIwxu5B91qpQ7AeBsFhTlGrCk2Mzsbbch3IPi94ZZgzItuCG34S/Z/iZz9JpPLLOXIZA2WJY8k+BOWNA3G2PpvPljahdfiuCVeuQNvatyHTpsKgsxtbtUqQMfFjxOkEiUmhFh5PWlNJd1zlaD+2fp+iHOHFhGUrD1HHaInWZ8YF6bTmVvPC7qLXgVDSs5whi9052HGh7HtJP+CApx6YoCuasIfAf+UPXflInLXkKLyUqTMhJClxGHyNHVxuiEU+vVsId4LCzJj4n7ZNjM3D/Eg0FUmUY2dmKVJUYGkvuaGSftRJ1K26Dv2whcZvU0a9GfpYTxsy540DRJlAmF3wEoZPnubiLO7YEweqNkmUBhXoFAGBK7an7PFrfi5xz1sGU2kP38UmDY9HwhAF2QF/fONFw3kpworiD1JEvwdHjb8Tt5b6Nap95ORoSXOhP7IfolmaCiQKuPi4FxWnJvys5+s4Az3pQv/r/ZLcxnLQGbYkTTzxRc4a51WrF/v37VbcbM2YMvvrqq5jPOXv2bMyePVtTm/r27RtXBvu4ceMwbty4mPc3aHlaXKQtLy/H559/DiA0KpCWJhyR3blzJy6++GKsW7cOQKjTNmXKFLz55pvIyNAfoG9gQKLcLe0wZYvETFNaL5jSj0OwRtqxBgBOzsGho8I4RQvPaTfROK1Y2Z0iJsumPFJHyroV5/GGKRJNtY9XwMuw0ji1iPz7mHNGKe4rFmkpS3qL55l1SaBIK3bRAkBnGaeuwyz9HHRyMJhcYscPe7RPsXY1uW/PKHHgjJLm43VLM6NbU0deHPsRK7bCMwCcEXmtVCQoWvQsSjVJPndioqN/LdnDYMnW77jSAmVyIH0saeop+fviOv5+mGKYosvWbQfPsboyaZkYHqZbAz3fUcFDHCcSnTQUYRIXegKaskY1ZMXyor9pLJnEYqHPgIyjzw2aRPdYiUWkFRcOo+WctKLrmKKTNh6RVseslU2VAcGn10wD53R34Asd06ZjiVeKJlMlCiiMOWsInAPulRVpGXuecAFFSwZQsieHZifVLhXGS4VhG/bBpLGYUWsiFgkBKBaVBWITadXcywDg6HtLTPcuQD4iIAznIxfe5bzkfMeWICB20dJWOHrfILu93G0s/D3VW4+gXqWf5Wd5zQM1PM9LorZuOD4VXVX6UYmEoijYu1+pINJSYBzqxT8NDAwMDMi0+NDzl19+iZtvvhkvvviiRKD1+Xw444wzsG7dOvA8D57nwXEcvv76a0yZMqWlm2pwDFMuKliUaaOJHSSlaV1y0+xa2i1gjsHt6pGJJRAP0tnidNIqibxqbg/OLxRpaRk3YzJR6/TqGdQsbRSKUFkynzklOussBEZrEMzsJkqH91E73X6n4QAApIhJREFUlFlepNWTmQfoj5VIODz5AYuWycNUPVywEWzdDvCs9gEdU0q3mM7VlokuiiN20mopwkRy0rKN+8FrGSiT+ZvqQa5auIGQZBQMi8acNZS4XMl1oiWTFpB+x3lFJ622gjok9NwLxFEHvTPMGJ3XsoUF9VyTaaV7gTh7WuF7Kdcfa+2sUy1wMuJ+oEpZpI2lcJiW2Qy0OfaYIzUnLScqAhlZ7m29eJhgjVCkNaX3jWngKPy511p/IYx45p4YLUWAw5C676TCg8mGtmXJr7N3BsUkNxvXwMDA4FimxS/r8+bNA0VRmDp1qmTd7NmzsWtXKJ/pnHPOwYsvvoizzz4bPM9jyZIl+PTTT1u6uQbHKOKq8qRIAACKGXqe3eTpmy0u0sbwLZYzAYgXxxN3QIFcfEEr4ilzVBwPFbGSqvIL6HlQLRU5afNU8m5JdIphHzVoiopZBFX6dCg6aS36BPc4ZvgkBF5GOFD6HdXwHZ6ns3CYPod9uyDKPSt2lFFanLTEzxEPaMj69ex4C3Ur71IVSZQwRFptUExyi96Zs4YQl4uL0QGh73Lj1lfhL/1dsFzWSSuKO2jc8C/Zdojza/WgdK/9emcjvtjRiAoPi8+2N+DnfcLZFMdlW1DoSvy9QQk912T56ySly30s1x8L1mwiLud81ahf+zDq1z9OzLhPNjzPo2HTCyidTaHsQ3L/Rc1Jmyzi6U8pmRcAIFC5iri8fs19KJ1NoXQ2hfr1T+oapIwXsZNWLSpJ7tvI88BfR/3495rE5tQ3BpS/UFVeFq+ur8PFc8tx2Y/S65pJZ/2IREDRZtlrnhF1YGBgYBAfLR53sG1bqNDSqFHSqc4fffQRAODkk0/G119/DQCYMWMGTj31VPz666/45JNPcPHFF7dYWw2OXcRO2lwZh6LatC4SLdnxBPQX91JC3E0kRSVoxWai4oonkMQdtIKTVh3tT6pSkVb/5Vevk7Y10Rp3oIXEprnFQuJF2roVt8J53D0x738swDfFEnDeSmlRFw0uJzk3vhYnLec9isZNz6Fxy0vIvWCPemMJiKfMd3SC9eT3MdlOWkZmSjjnPgjGLnS3Nm7+D+pX3iE9hmzcgSiT1ic/ZTue+53SffzjbaEojjnbyZEcA7ItoCgKvTLM2F6tHvXR0lAMeYCJtuXocjPK9cfknLRVv5yGQMVKAIC/bBGyTp2n+VyJwL3lJeJnLRq2IbZrjzLq/ZJ4RFq1AoD+ihWqx2hY+wDYhr0y8UKJR3x/McUo0m6rDuCz7Y0Jn92jFDvF8TweWlqNox75bWIxayQC2poNljCr0BBpDQwMDOKjxS/rR4+GRgALCwsFyz0eD5YtWwaKonDdddcJ1v39738HAKxZs6ZlGmlwzFPtE2We2eW+Cvq7YrxPW3EnypKYjGUlB06uzO81NJc8DalEnEkbh5NW71R+MVyg9eMOAGBAdmKKMJQ2CKdz58XgfBLnJiuRr8N12y8ztt+xd4bCfrT8VDe9Vd67pLSuOG3OHkFewYSK4cmJRGoEqrTd00wZx8d0/LZOOJO3fr20wjhFx/690zVQxvlRv/q+mM7T2tXK2xoNhL8jkHwnrZxYzxKcznKimdbCYXLEk0cLANYYLRN2E4VuaaGdT+2q730O7xcL3dN1iKsyswBI75m1q3CWHe3Ibz6OzAwMtmGvZFmgemNEoAUA/+FfJBFKyaZuxcy49rcVnR/TfoyGIpPmjIExHRsAaJW+q/+wtgrhnh1vxlUIRw/B2m2C16b04xS3lxszWVXmS0r8Up1CHMLqMr+iQAu0jpMWAGgrOfKANvJoDQwMDOKixUXampqa0Ilp4amXLVuGQCAAiqIwceJEwbqSklBBgPLy1sszMji24EQdQ7kOTjIdQKkjX0rIceSKTwHAU+PIeWYX9HJKMqzynQwGi8TbeERaLRcXa5dzJMt4LuQ4lRYOax2R9qr+KZB7G3Rl0orc23pE1DAmmsLErsLPJKlpFIBrB2h3ypzYJbbP+fgC+f2UXGW0uFiMiLO7NT/UF7oYDMxu3Wwze8nFYFzFgmWOXtdHfkeXgiPW0mm87DpND7MUjbTR/9XUzraCs99t2jZsctJ6dr4jWUUR8mZJmNL7C14zqb3Bs9qL6wGA79CP6hsxdqQMfVqwKFi/S9d5jnX8ZQvIK5LspAWA9AmEOCwNsRdh5IQnNUEqjGvgg5rPRUKtAKgc2XY6kj0+Jt8qGWglMWNQ6F56Vf8UWTFKiRw7jbH5Ov6mMiI6SbxNHfIUEBb1KRrp42Y3by/jyCU559mGfdINNRQUbEukDH8+pv3MGVIB0tG7ueiaOXsEzLljYm4XZbIrDkqQYkbkt03+cx0XaATvrxYsU8t4d8hYU3fXBonL46XCIy0s23xO9c9tazlp5Qax4pllZGBgYGDQCnEHLpcLtbW1OHJE6HCYP38+AKBfv37IyBB2is3mkKPGZGrx5hoco4jFNbkHFbUCCbHg6HMjbF3PgzX/lIQcr1jmoWxcvhUpMpmq3dLMeHJsBjZXBlDr45BpozG+wCYpNBVP4TAtMz/TRv8X5Qe+FSzjvEfBODpLXC+tFXdQ4DLh2RMysbbcj78q/Fh/tPnBX6tG2+DnJIUjlMR1Ja4+LgV9MizwsBxOKLDhQD2L7dUBHJ9jAc8Dmyr96JVhRncd1bsnFNqRY2dwqIHFr/s92FsnfBAZmmvBztogan0cGCrkwLprWLpq0bpOl9UTs/iYKHcUicv6ONE9zYQ6P4fxBba4phEnAoo2I/vs1XBvfxO+0t9g734F7CWXRNY7el0NymRHzcLLJPumjXsPwZqNqP7t7JjOnX3WStnMzbZKyvDnYc4egZqFlyhuF447EA/IAABty9Z2rmHPofrXM5qP6a8BglKR1tH3Fri3kAfGxK59YUOsSB3+LKx5k8DzQUE1a859GFygUbEwUkeClxHBKFNynbQAYC+5CDULhHFY4mJ0cu0D5O8vlFVdpHX2vwPOvjM0tFKeHB2zJATnjlJnGJrCg6PSsfiQFw4zje5pJqw96kf3NBN2VAfx2wEPLu3jwojOoRkAvTLMeGpsBrZUBZBhpfH1LjcONQRxUS8njsu2YFNlAAfrg+iRbsb4Ahs2VPhR5WUxNt+m07kn18GS3qNM6X2QffZq+Et/hTlrOCy5zdFosoPmhL8rH5RGQyj9/dsa1sIzYXIVxbx/58sbUfXrmeA5PzIn/gjK7IIldxy4QD3s3a+I+57KpHTXJcbKwdbvko0aSRSkGQ+0o5CwZTMOmagvmpKv6RAPSiJtrU898Km1nLRyLnmqaZaRgYGBgUFstLjq2adPHyxfvhw//fQTJk+eHFn+xRdfgKIoTJgwQbJPWNDt1Cm5N3KDjoPWPlYyRoNThz2b0CJADjONXDuNctF0qH5Zyu7D4lQzilOVhTxrHJm0WvakbbkAxQB8cweV8xwG4+gsEW5aK+4ACAm1BS4T8p2MQKTVijiPlqFifyinKQrjC5sfVntm0OgZFTvQVYOTikS/LAv6ZYVEXrFIOyjXgruHp+tvq9mF0CdB+I1TmwpHURRG63FqtQC0NROuAXfDNeBu4nprF7IIy7iKYEophr3XtfBs15u/R7U7gRYI/f3s3abBvf11+I/8Ib8h5wfrJhffoq3aRFpGVB2e8x0FFxRWUqfMaaAU4jegUOzRNeCeiADHB93SXRt2g1bJN+wwyMRMJDuTNowp/TgEazY2LxCJckqF3uQyOmkNjm5b0QXaGqiAfOSSMi6z8E7rNNM4rbi5f5HvCt0P+mRacHZ3ab+jJM2MkrTQ/UN8ze2WJuwfDO8co/AiIwjKfSfN6X1hTu8r3V5G7OcJBRh50TUAgK5Cja0NoyIiqkGZHMg6XXjttXeXDiLGCpPSHYGjy+I+TrB+FyxxuHq1wDYeELymLBmqA2tOM/kzm4h0BitD4fRiO77Z1Xw/UYozqPWri7RxpovFjJy7XfF+a2BgYGCgSotPkDjzzDPB8zxef/11vPbaa9i4cSPuvPNObN4cCv4/77zzJPuEs2gLCoyMG4PkINe/SYZIm4wq7UUEYS5VxkWrBwutTWwloWVgn6IZ0CKRhXUfBkAqHBZ7oYtkobW/XtooFD1zHUyrOR/UIHX24ypOR5jqyqjEHbRHKFoqYFDWrGbHUkxPdy2T15cs1K6fPBeAv3wJcZ1WJ634+gGekz6Um+wxO3ui96NMDskAA1u3M6bjHovIZQEnO5M2gsiZKXbSso3yGcIUTR40ozU4aRNxT5ebXq26nzi3qE2i3UmreBSZzxHJIUt20rYfkZYTTc9va6jFBWilJa6f4u8941QXwF0y38dE3JE7OWjJIH08TloTHV/RwniQvfYZTloDAwODuGhxJ+3NN9+MV199FaWlpbj55psF60aPHo2TTjpJss93330HiqIwfPjwlmqmwTGOWC+R69+0l1ylolQzVpYJH0BSLPF32iiKgoWh4GOTJxYxjnxw7kOR16z7EPzly+Dd94WwLa3opI20Qedb6gly+GGPR1KVOy/GqIOWgCEIsvFkE4ud0qFFx6DLgjR1N7VX1Kv2LbjGhJoIwwUQKF9M3lWjk5a25YQGAvjmB9naRVcItqEYu2IhO+UTCPczpfSAP+p6Vf3HeXD0vQWc+zCY1J6wd7sE5g7grOV5Ht49HyNQuRq2ogtgyR1NzAYFWs5JS9GiLq1IvGOj/m5aoa3qTtqWiHOQI5CMudcthF63nexAi0h85Vkf6tc9ItlMV0HBVqati7RaipNpoWH9Y2jY+AxcA/4PruPuTsp3KVi7WfCacXZR3cch46RNBLkORuKcjxZpa3wcftrrhpmmcFqRXVWkbaHaa0Rk4w4MJ62BgYFBXLT4EHxaWhp+/fVXDBkyBDzPR/6NHz8ec+bMkWy/fv16rFwZqtA6adKklm6uwTGKuE/Tkk7aZEAqQpUIJy0gLbKmFa3mS9ouzCf1l/6Byp9OkG7XSoXDlFB7a/69pk4i0AJtXKQlOWnjEmnbg9MrfkhOFlNqz6hX7VdMiRVKRaTlOT/8ZXIirbbCYRTNqAq6bOOBmB8axcIQk9pDso17y0vw7vscjRv+icofT0CwA7hrPTvfQc3Cy9C46QVU/jguVD29jTlpwQmdtJyCk1YOSkPhsJYSoUkcVXDgtRl4mWJLOr+TcpmyvKhAXO3S68D7qiTbube/rut8rQnvr2ntJijCuEoSdzDWi4Z1j6CakOmeCBo3Pit4Le5zknAmsRJXSKQV9gHr/Dx8bOh5+PFl1fhqpxtztjdi1ro61KiItEn0UKhiiLQGBgYGyaFVnp779u2LVatWYdeuXViyZAl2796NBQsWID+ffON855138Pbbb+Pkk09u4ZYaHKuIhUe5qUKmzOMTel5bt0sTerww3dKlpvg0a2K+3gH1OCwilMagBHGmpHfvp8RCIG3BScuIPidBhc6xN8jL5td2crRlkVb6d1MrEKaEs/cNgtem9H4xH6u9Ye1yVuRnS+5Y3fvbii9MZHNaHGvBGYrreX8tgnXbiOv0uK0lkQeSEwVjdmiJBTg1cYL316B26XUxnas9Ubv02uYXPIeGTc8TBWwAoO25LdImceSIuCAc6ykl72ciVygHNDppE3RvGl+gf4rwuDaW3U1CbrBbbRBHjGxMjqi/4Nn1HnEzucKBbRG5jPO2gnAAMjH49n8Fno+xwykD65Z+53kNLmW5wmFy6Nk61y510gJAtZdFuYfDwYbmgZd1R/3QEEnbasgOwLXiwJWBgYHBsUCrWpxKSkowevRoFBcXy24zcOBAXHnllbjyyithNuvr0BkYyOEXmU+sMpqZJTuBERuUCc6+tybueFHkOU0YlNMsaozobE2qE0ALWqPyKLP8A7Jwu9YXaV2iCIkGPyfrNPYr2BsS5XJOBqRpfvE019lvJhDVkU8Z/ETsB2vjOPvfEfnZlN4Ptq7NGev2bpepVpR2HndXxHlMmRzt/r2yl0xTXB+s30Wcguzsf6eu86iKtBq3IcE4hRXWtbgm/Uf+QKBqfUznazeIxBTfge9gzhom2cxWfKFmV3S8MM6ugtds/S7Ba47grgSA1JHy4h2t4qS15p8G2pKmsYXKnNPdqasAkN1EYWRe289+lPv7683yZVxdYck/VbJcT9Ys6ynTdc54YFJ7x7yvo+e16hu1IowjD9bCs1S3s3Q+MfmNUcC7/xvJMi2fFz0x/BSAO4amCYTX0Qrfy4IUE2wMJfmuu4M86tuyIktCHDETXqwhy9vAwMDAQJ4Wz6R97LHHAAA33ngjsrO1Zc5VV1dj1qxZAICHHnooaW0z6Dh4RQKaUuZm58sbUb3wcnDug0if8An8RxagdsnfNZ8rdcSL4HkW1s4nwpw1OOY2q3HH0DQsOuQFTQHjC1p/FFtrYSytU2HpNlA4LE2kVrI84A7wEvEWAPwKWYH2JOadxQupqnE8mbSMqytypmyA98C3MGcNgbXzhHia16ZJGfYMzFnDwPkqYe9+uaAYEcVYkXPOWnj2fIy65bdId6ZMcA18GLauUxGoXAVr/qkwpfWSbteOoEw25E4rR/3q+8DW74Sz30xU/35u8wasR7KPc8C9SBnypK7ziN34xG1irJYudodSlDYXfP3aB5F5yrcxnbOtwxMGpiiTAxBl0jLOIqSf8GFLNQuMyN0XrNsheE1y0GWeOg/WfPkoLTUHdsbE73S0UJmuKSY8PT4Ta8p8KPew6J5mxu8HPNhZQ44LeHpcBjJtbXdWRjQZp3yL6t/OESyLJU4q85RvUbvsJnh2vNW8MMpJy3My0QpN+A79BEePK3WfNxb4YIPufaxdpiB1xL/BOGIbVGpJMk76HJ5d7wMA/EcWwLP7A8k26SfOgW//t/Dseh/B+l3g3PojR+LBu/8r6UKN13AtjOxsxeQSO/pkWtAn04wlh73IsjEY1smCAdlevL6hXrJPVxcDiqLgMFOo9zdfS90BXpc43DYgj+DT1qwWboeBgYHBsUWLi7SPPPIIKIrCBRdcoFmkraqqiuxniLQGiUDsclQSoSiTA5knfxl5bUrphvq1D2nqbGae9huseS0T02FhKJzStfUKmIjRbOTVOC2qLThpSQ7YWj8HF2G5kpO2LVfkthG+C3Fl0gIwpXaHq/9tcR2jPUBRNOzd5N2jtC0bzr4ziCKtOWsIaLMTltzRsOSOTmYzWxTGloP0sW8ACIl7lMmlKF7Yu12qu1I1be+kvo2Git4kxO5MrRnLvgPfwV++DJbcUTGdty3D+yolyyjGLnFFO3r/Q/eU9ngQT8FmRSKt2EmbOuI/igKtGs4B9yb89+uaYkLXlOau+bqjfgBS4fHSPk50drZ4Fz5mJN8jxJZbSTFWOHvfIBBpo52RasXBfAd/bDmRNqBPpE0Z8iRcx9+XpNYkHoqxwtHrGgAA27ifvA1thaPX1XD0ujqyrGxOF/n+M8/ryw5QgPPVwF/6e2IOJsM1A1Ii/cIUC43Ti5vd4b0zpNcGh4mKRJE5TDTqo6b1NQY4mNuZSkvJ3A8NkdbAwMAgPtquUmBgkER8OkRaElqn6Js6QJVvObR2NrVmRbYFkdbMUJKsMrnKu0pZvnadeWctCckBbWlnDw7tEUun8a3dhKRDURQYNXdwDC4nLVEGoTxL/Z9jSjSdU8/U6vq19+s+X3uAKMjQFul7w7TsVHyJSNt4AHzQG3nNiZy0WoqCKdESswLksjGLU9uPQAsAtENac4ILSF2GmhDnVXOBZnc3pyLSHv5Z1W2bCHie1+2kNaX1TVJrko/sTAXC9dwkk12daHwH58oXrUsADhOFFIVZUaR+XradiQxCimctuYO8ZJZfm0fmfk21UMSNgYGBwbFKuxBpA4HQVCYjk9YgUcQr0tIapunR9s5gbDm6jnsskfC4A0vri7SAtCDbo8tqcPHccuytC12nDtQH8d7menyxo1H2GG1bpJUui9dJa6BORxBpAcCkktMoFkW1oCXugGIsmhy3arAN+zRv6y/9HUc+SAEflMY6JAou0IiGDc+gbvW9YBsPxX08ngugcfOLqFv1fwjW75Gs95cvRfX8iyTLg1VrEaxcK1jW0hW+xXEHAI9gVC4tL3LSxpuVa46hGKBeSBnhAFCc2r76wyRnHR+ojelYFCX+3Xlw7kOoW3M/6tc+rLgv76+B/8gfMZ1XF6wP4Fn17aJozyIt7SggLifFwzAp3TUfl+dY1K95AKWzKZTOplA9fxo4n3rhLwDw7v9a5qDqQqgWrbSzk1Gc9UHq5+VE5daKB2DcQR67a5M/gJBQ5Jy0cQ6AGRgYGHR02sVQ/Lp16wAAOTkdV/AySCxikVavCKVUDTpMR3bRAtrjDrSKtFQbyKQFQpEHpY3Sh697FlXjlZOz8MCSalU3hN7KwS0JSVyXK6xnkDgsueNauwktgik18U5arS57xlEIznNE+3EJhY3Yhr2a9wdCuZQV3w1FztTNuvbTSt2f/4hkQXp3f4yc83cJspB1H2/lXXBveREA4N7xJjpdeBCUKRRJE6jZgsofJ8i60zhfheA11cJOWtrsAm3PA+dprujO1u2AOaN/U/tEIm2cQgKtcUZNPJCEngwrLRksbOuQpkVz/thEWomTFkDF3NGa806r5p2KvOnJdSzqzqOlTGBStYuXbQ1GRqQF4Vpk0iHS1q99AI0bno689u79FMG67cg5Z43ifnzQC9+hH+XWqp63UWkqVBOdHMrXWZuMkzaMQ9RJrvCw+GFP8gb0kgLhfk1Z0mMabDUwMDAwaCbpV9H33nuPuPybb77BqlWrFPf1+XzYtWsX3n77bVAUheHDhyejiQYdDI7nJVPRSTmcSli7nAl/2QLFbczp/fU2rU1yXJYZGysD6huKMGt8T7VUSwfQotmGSig9HM+cX6kYcxCG1HlvKxS6pLcFw0mbfGhbx8hwE09JlxCDSGtKUZ4+a+l8EoCmKdfSOFVZ7D2kBSKtBafDd/B7Xe0L1m4J5fHqzNpVg2d9gmI9bOM+BCqWw5I7JuZjhgVaIJQ969k7B44efwMAePd8rG/6cAuLtEDIpScQad0HAITyKcXCmdbcRFNaXwRrtwiWWQsnx9lSbTgJUxu6trOoAzlsBWfEtB+pL6C3IBXP+pI6iMDpzKNlUrq3mT5OLNBOGZFWt5NWKKBGC7RhglVrEazfC1NKsexRgg27wQfJs5ksnU9UOH+IdA2DIJ2dyvcqmnC9H5jTPMDgFPUD251AC/LgC23VVm/GwMDAwECepPf0pk+fLnkw4XkeDzzwgOZj8DwPmqZx6623Jrp5Bh0QsYsW0B934Oh9I+pX3a24jRa3bXvgsr4uPLCkWjD9a0KhDV1cJnywVf5BJEOr00fDg4mjz83ajtUCpBGKhIXRItAC5M57W6Eo1YQ+mWZsrQoJ8ycW2tp0e9sjrsGPo2Htg5HXKcOea8XWtCxqWXUUFUPcQVpvmHNGIXB0GXF96oh/AwBoS5rmY1LmFKQMkk6dtpVchLrl8tejjJO/RvXv5xLW8EhYRZwmgjVSdy7rLiVsGTts/c7Iz77S33TtS7fCPVDsbuXZUE5uoHq9eEMwKd00HTNtzP9Q+eMJgmWpI1+OvZE6SCXcR5VyMNsyaWPeQO3SawGErgP2WAt4JSBGg+eCSRVp9TppaWv7nh4uN+BBEvEYR17c51ONyuDIxgLa1gmOXtepHr+z04R+mWZsrpI3KEQX+JPjjGI7ftzriWw/OLf5s5ut4sTVytndpDM+WgzS31fjddXA4Fhl48aNePrpp7FgwQKUlZVFYjvXrl2LQYMGtW7j2jDTp0/Hu+++i6KiIuzdu7e1m9PqtMhwPE/I/yEtI2GxWDB8+HDce++9mDAh+UUaDI59fISYMN2ZtGYnci86jPI5oWIYtL2zdBptDI6wtki3NDP+OS4Ta8p9KHez6JNpxviCkHCX52Jw1M3CE+Tx6XahayHLpu33V5sWZc4ahtSRLypu05KkWuN7QD6tSFu8Q2ty/4h0LDjohZUBxhVoczobaCdl4AOgrdlo3PQcXMc/ELtY0Q6h1WJLYok7oChknvorGjc8jYa/npCsN2cODG2nQzTMOXcTaJvUEcTYcpAy/AXUr7xdsi7z9PnEKvYAElq1PEygah1hqcaRIgI8J705Rr9n5sxBCJQv1Xw8rQU2E4pYwGsqJCXOyzWl9wdFmDZPwtJpPLLOWonGDU+DMjnhGvgATCklCWmuGqTBTr39lbaCo9c1YJxdEKzdBlvReTELkwlxnCaxoBQA8AQnbeqo12BK7Y6qeadK1lEa6hy0ZUhirBy0LTf+E6rl/RKeMVNHvgRb8UWgzdre63tHpOPuRVXEeCtAW/G+v/VzoWe6GQ0BLtJvDqMWlwAA+U4GZ3dzYFSeFXvrgthXF8TgXAsO1LP4cGsDJhXZcWZJa4q0hDiLNOXceQOD1mD+/Pk46aTQrKqHH34YjzzySFLOs3r1aowfPx4eT/tzxhu0LZIu0u7Z01x4gud5dOvWDRRF4eeff0bPnvLTHimKgs1mQ1ZWFhjm2BC7DNoGRCdtDNPPGUdeJNfMX7YYlT+KCv/o6LS2dYpSTSgidEiHdQo5Uf44IL0ZZdq1/v7K772z30xdDwDJRslJqwWXpe0/YFsYCpPagZjcnnH2+Qecff7R2s1ocdSE0liz7GizE44+NxBF2sixNYqG9m6Xg3F2kV0fFn3FWHJGg/OWyeyV+AxMkkjLx5rzCbL7L1o8oq366gK0xmwScbGyiJO2SijSmjMH6zquJXsYLCd9Hl/jYoA07bo9z2ywFpwGa8Fp8R1Eh5OWsmbClNpL6rLnkizSiqM1bJ3g7PMP+I8uJ27f3kVaPSiLtNquk3JRBrLHoc1w9p2h6dhhLAyFU4vseHcz2RWtFncAhL6rY2UGurWItGeU2HFy11BfrF+WBf2yLE3nNmF455aPk5EivT6p5s4bGBzD3HvvvfB4PEhNTcXTTz+NYcOGwW4PfYd79FCO5mopHnnkETz66KMAtJsmDVqepIu0RUVFxOX5+fmy6wwMkglJpNVa5EoOxlUsWSYuUnIsQyo2lWXT9qbyrPJoI21PgOsigZCmn+qBlDFoYNBRUC0AGNcMBGXxSmvxQc6vXD2ctqSTj89YANm4hsR3hINV6yXLYi7GBIAP1EuWCYRtndXqW8VJK3LH8lxYpF0nWG7O0ifSthYZhPuoOxi7W/pYQI+TlqKtAC99v/gWdtKqfRc6kkhLyVw/9cAFdIq0MU5jkDOt59jpuAdLOmsQadPbeNVWkoHCcNIadFQCgQAWLAjVq7nuuutwww03tHKLDNozLa4WcBwHlmXRr1+/lj61Zu655x5QFBX5N3/+fNV9fvzxR0ydOhWFhYWwWq0oLCzE1KlT8eOPctVFDVqSxgCH/6ypxcVzy/HpNmHn2crE70yh7dKMLb2FLNozJOFba9yBmiMiIVPjEki8TlpnO80TNDBIBKrCXRJFWq1dHrUBNsqiME1bxglcv+4R1K99JGGDdzzPE4tXqmY1EvCXLUHlz6eg/DOpe7hxy0vgg+6mc+oUaVtBeBI7acH5wXrKEKz+S7DYnDmo5RoVBw7CLB9PsIM7X/SItIyNKNI2/PUU6tbcr5jhHKzdhrpVd6Nx2//AE46hBCdy0ja7ysnXqA4l0ir0t0kDRcTt1Jy0EndYbP0uue9aAaHAql5SLBTsKrP44u1vJhuWMHPElGqItAYdk4qKCvj9oYHhXr0MR7lBfBwbJWITyLp16/DCCy9o3p7jOFx33XV46623BMsPHTqEQ4cO4euvv8Y111yD//3vf6Dptn2zPZZ55M9q7K8PPWCuKvML1iWicj1FS4UFtrHjiLS1PukDDMkBRCIsAMjR1kTa1LhFWuM6YNBxUcukjTXuAADA+RVXsw17NR2G99corpdz0gLyhc8a/3oKAOA/8geyzpCKq3rx7P6QuJxTabuYQPVGVP44TnZ9sHINahZdgYyTvtDvpG0LcQecH+WfF0u2M2WQIyvaGiRBy93BRVqKokNxUhqEUz5QD57wfXVveQkA4N39EXLO3yVxBHK+GlR8NzQiBnKeI8RCgvLnlXHSygiUx4ZISyHeGQPVCy5B1qk/q26nVpiNF7cjRiOGXB5tgSt+hytFUejkYLC3Tt7Vna6xH91asHU7JctoZ2ErtMTAoPXx+XyRn83mBGSnG3RoWuXq73a74XbLCzOzZs3C+PHj0bdvX0yePBnfffddi7QrLLgGg0Hk5moThu6///6IQDt48GB8/PHHWLFiBT7++GMMHhyaTvfmm2/igQceSFq7DZQ56mYjAi0JW5KKcNi6npOU47ZFSgh5taQIBBKm9P6K60nFe1qTeDvNiejcGxi0Wxi7QiQAdLnkxKi5dK35EzUdx1Z8gfJ5LGnyK1VEZn/ZQgRqtmhqhxK1i64gLicVLFKiYf1jqtt4930JnguCZ32q20ajWiQuGTDCnEa2YS/AeoXbUAxoS2rLtSnBDMnVnsl6zKLR2cr5KmDrcpbserZhL/xliyXLGzf/R+DWbFj3iL7mscJnHMoUKu5EyT12qcQ+tQfsPa8SvGYUsknlIg/8h+eB89WonkvdcZsYJ+1xWeTv2sCcxHwH1XJpU9t4DQNL55Mky9pSDQkDAy3Mnz9fMnt6zpw5OOWUU5CTkwO73Y7evXvj7rvvRlWVdDbUI488AoqiUFLSXFD0qquuEszKJhUq83q9ePnll3HKKaegc+fOsFgsyM3NxcSJE/HWW28hGFSP5fH5fHj99ddx5plnoqCgAFarFU6nE/3798c111yDn3/+OZI7O3v2bFAUFcmjBSBoY/jf3r17JedhWRbvvvsuzjrrLOTn58NqtSIrKwvjxo3DCy+8oKlQ2pYtWzB9+nR06dIFNpsNXbp0waWXXoqVK1eq7tsRafEr6XfffYeUlBTk5eWhvl56k/373/+OmTNnYunSpdi2bRt+/vlnnHvuufjnP/+Z9La99NJLWLlyJfr06YOrr75adfvt27fjueeeAwAMGzYMS5YswbRp0zB8+HBMmzYNixcvxrBhwwAAzz77LHbulI44GiSf+oByZ96RIGdj+oRPIj9T5jTYu/8tIcdtDxyfY0EnR/P7eEFP7a4QS+cJiusTUsk5gbjMNIZ3iq1gw/HZZuQnYJqcgUF7haIoMC5yHr0p4/i4vu+0NRMm0TT2jJO/jvxsLZwscOanjngRaWPelBzH0es6xfMoPYTKOWmjCYqKWCUUndOyvXs/03ZYfw14v/aoBsqSDsrU8sUHKUZY6ZzzEfKFdTqCW5sbBzaL3U4ThZO6GEUd9eDsN1NxPeerkCwLVK2J76Si72FYnKWsmeTNk5BZ3dK4Bj4UGoRrInXov2S3JV13w7Ae+QiKMKqxMaLCcLHO0BjaySIRSrulmXB8dsuItGaNZofWwtb1XNC25oKSqaNebcXWGBjED8dxuOKKK3DxxRfj999/R0VFBbxeL7Zv345nn30WI0eOxJEjR+I+z/r169GnTx/MmDEDv//+O8rKyhAIBHD06FH89ttvuOaaazBmzBiUlckVow3N/u7bty+uv/56/PDDDzh8+DD8fj/cbjc2b96Mt956C6effjr27dsXV1v379+PoUOHYvr06Zg7dy5KS0vh9/tRVVWFJUuW4I477sDxxx+P7du3yx5jzpw5GDx4MN59910cPHgQPp8PBw8exMcff4wxY8ZIZqQbtELcQVjRP+ecc5CSInRZLF68OKLyOxwO9OrVC1u3boXH48FDDz2Es88+G8cdd1xS2rV//348+OCDAID//ve/+OOPP1T3+c9//hMZ5Zg1a1akel8Yh8OBWbNmYfTo0QgGg/j3v/+NV155JfGNN1BErXChUyUTSiv2kotB2zohWP0XrIVngulAU35MNIWnxmZi8WEvMqw0RuioOktRNFJHvYK6ZTdJ1tm7X5nIZiaMmUNScdmPR3Xtc92AFJwgU+XXwKAjYUrpAbZ+l2S5VqerEtlnLkf9+kfhOzAXqSP+DWtes9OHNqcg+5y18O79HExKd1gLJ4dEY2cXNG77L0ypPeHodV1M125b8YVNJ9Eg0tZu03187SRH7OF8VeC8UjFLDsbROve/sGMxgthF2w6ZUGhHho3Bofoghne2xh2509GgrZmgbbngvOXE9QwpUiluIZ883T5a0IqmVVznCcbkKkLOlA3wHfgOpqwhsHY+QXZbe/H5wAkfombhZZJ1ob9TXwAAbc0miuicr1K5MeK/n4bBMxIOM42nx2Vi+REfdtUE0CvDjBMKbYq5unro5FQWadu4Rgvamo7ss9fAu/9rMCk9YCs8vbWbZGAQFw8++CCWLl2Kc889F3/7299QVFSEsrIyvPLKK5g7dy527tyJ2267DR9//HFknxtvvBEXXHABDh8+jNNOOw0A8MQTT2DKlCmRbaJnaO/cuRMTJkxAbW0tUlNTcdNNN2HEiBHo0qULKisr8e233+J///sfVq5ciSlTpmDRokWS+IQtW7Zg/PjxaGgIzZ6aOnUqpk2bhm7duoFlWWzfvh3z5s3DV199Fdnn3HPPxbBhw/Dqq6/itddeAwBs2LBB8h4UFBREfq6srMS4ceNw4MABWK1WXHvttZgwYQKKi4vR0NCAefPm4cUXX8TOnTtxxhlnYM2aNUhLE842W7lyJS677DIEg0FYrVbcdtttmDx5MqxWK5YvX46nnnoKN9xwQ5uuV9UatLhIu2zZMlAUhZNOkk6ReP311wEA+fn5+PPPP1FYWIgDBw5g3LhxOHjwIP73v/9h1qxZSWnXTTfdhIaGBlx55ZWYMGGCqkjL8zy++eYbAECfPn0watQo4najRo1C7969sW3bNnzzzTd4+eWXE3ZzN9CG2iNrIgs5WfNOhDXvxIQdrz3hstA4vdihviEByiwz9bSNfle0RjmE6ZtpxildDfeTgQEAMKndgcPS5Za8+EVairEgdciTwJAnyed25MPZ7xbBMmvBqbAWnBrfecPTdzUUPmufIm0lUSyRo7UGKcXZnpzGQkRtneOzLQlz73VEzDmj4TvwDXmluNgcoNuRLt2fPN1eLnuWYo6N/oEptTtM/Wdq2taSP4m4nPM2D4DzMoMsvIqTlhc7aeMoSJllZzC5JLa+rRpqTtp4ixq3BIyzEM6+N7d2M445OJ5Hg7/9O+z14LJQrf6ZX7p0KZ544gncf//9guWnn346Tj/9dMybNw+ff/45XnrpJeTkhAbdcnNzkZubC5erOXKroKBA1lh45ZVXora2FoMHD8a8efOQnS2M9Tv11FNx1lln4cwzz8Ty5csxe/ZsXHvttYJtLr/8cjQ0NICmaXz44YeYNm2aYP3IkSNxxRVXoLKyEg5H6PqVnp6O9PR0gWCsZn685ZZbcODAARQVFeGPP/4QRDoAwIknnogLL7wQ48ePx+7du/HMM8/gySeF/e8bb7wRwWAQZrMZ8+bNwwknNA/gjRgxAueddx5GjRqF9evXK7alo9HiIm15eWgku3dvafXHn376CRRFYcaMGSgsDHXwu3TpghkzZuDuu+/GggXxF9sgMWfOHHz//ffIzMyMxBeosWfPHhw+HHrKnDBBebr2hAkTsG3bNhw6dAh79+6VfMANkgunco9LVNyBQezIVuqN90GpjZBmNT5jBgZhmJQe0oW0GZZO8s6rtg5tyQCgLY8vWLs1eQ1RmzoSI3qdtHQbcdLywWNDpDWID8bVVdf2fJKctLImDZJQfIxDUeRom2jHs5xIq+6kFWU5xlOQMomoibQGHZcGP49rf9V+zz0WeGNiNlKtrSvSDh06FPfdd59kOUVRuP322zFv3jwEg0H8+eefOOcc/bVnFi1ahKVLlwIA3n33XYlAG+b000/HBRdcgDlz5khE2nnz5mHNmlAkzy233CIRaKPJysrS3cYwe/fuxaeffgoAePnll2X1q8GDB+Omm27CM888g9mzZwtE2pUrV2LVqlUAgOuvv14g0IYpKCjA888/j4svvjjmth6LtLhycPRoaIRUHHWwadMmVFSELkbR9nAAkVzXeDM1SNTU1ODWW28FAPzrX/+S/bKI2bx5c+TnPn36KG4bvX7LFn0FQw4ePKj4r7RUPbupoxNUUWkT6aQ1iA3ZYjfHikhrTE81MIhgSpWKtJacMaDN7bfCOS1TCIdEsG5bpJBDotGTbcnruL5y/iqwDXs0b99mnLRugmXboP2jszgR41QSaYXfGdZ7FP7Dv0i2ClSuQf3ah1G//glwagX6ZJy0crS17P2WgGLIwnTjhmfANh5C6WxKKrY2IRZpPXs/Q+n7DlTMHY1g7faExR0km2y70Tc0MGhLXHrppbKDaUOHDo38vHv37piO/+233wIImRUHDBiguG1Y0Fy5cqWgiNj3338f+XnmzJkxtUMLc+fOBcuycDgcOOOMMxS3Dbf18OHD2L9/f2T5r7/+Gvn5qquukuwXZurUqUhPT4+vwccYLX7XYpjQqKG4Ot7ixaHqqjk5ORKXbUZGyKHi9SY+W+zuu+/GkSNHMHbsWE3FwsIcPHgw8nPY9StHly5dIj8fOHBAV/ui9zWIjYCKSNsY6FjTSdoick5aHseISGs4aQ0MIjAp3SXLzLmjW6EliYNqctJqgvWC85SBcXROQku0389U3WhR+Et/19mO1hn8lGTSGhyTUJYM8Do+v8oibTM8z6PqR/LsuIrvmh/QA2WLkXnqT0pHEr1W+T50QCctZIRptnEfyj9Tfq6KvnZ59n6GmvkXAQACR5fh6Fe9kX7Cx4Lt44k7SCatPbXbwMBAiJLxLjOzufBjfX1ss3TCrtJt27Zpjr8MBAKoqqqKxBSsXRsqPtu1a1cUFZEL8SaCcFvdbjdMJu2S4ZEjR9C1a+ieG868tVgsGDhwoOw+ZrMZgwcP1lQTqqPQ4spBOIx43bp1guVz584FRVEYP368ZJ/a2loA0Oxy1cqiRYvw5ptvwmQy4b///a+urNjoL2d0BgkJp7PZ2REOeDZoOQIqOl/P9I7nYGhrmLMGE5dbcse1cEuSgyHSGhg0Y3J1k2S32grPbKXWJAZzpnznk0SwdrP6RrGgo1AW5yEXUiLh2TlbulDBnWbJHav52ImElss3j4JxJu+hxqBlcPTUZqowZ4Vm4jFOecMDH/REfvaXLUSwVn3Gm+/wz+D8tQpbkOMOZNup8/pxTBCHu5WLyqStXXqdZL17xxvCBW007sDAwKBtEc5vJUHTzc9yLBtbJE449lMvbrc78nN45nleXl5Mx9JKItoaNmVmZmZGjJpydOrUKabzHau0+F1r/Pjx2LFjB15++WVcfvnlyM7OxsqVK/HTT6ER6XBVvGjCEQGdOyfOdeL3+3HdddeB53ncdtttqsHJYqJdvRaL8gi41dpc6d7j8ShsKUXNeVtaWooRI0boOmZHQ8lJazdRGJLbAR0MbQxrwRlgUnqArd8ZWUbb8+DoMb31GqXCBT0d+HyHW31DAFbGcEsYGIShTDbYu10Gz673AISK+phzx7Ryq/Th6HUd3NtDxU7NOaNgzmkuHursfwcaNz2vuH+wZjOseScnvF2sjun9vL86rnOlDH4c9WvulSxnXCWwKFR2TyamjONVt0kZrq32gEHbJWXQI2jc+Izqdqkj/gOgOTOaBNvYHKXG1u/S3Aae82veNprMU+ehap6wUKEl75SYjtWeiaeIMu+vAc+xoGgGvL9Gsj5QuVZ0srYr0l47IAVvbJC68s4sOTaKyRnEhstC4Y2JiTWntXVclmP/WSks7g4cOBAffPCB5v3CJseWJNzW7OxsXQ5XUnZtPNf7jkqL37VuvPFGzJ49G3v27EG3bt3Qq1cvbN68GcFgEJmZmcTQ4N9//x0URaFfv34Ja8dTTz2FrVu3omvXrnj44Yd172+z2SI/+/3KHTWfzxf52W7Xd9NVi1IwUCcoM9h1eV8XhnWyIMveNqdBdSQo2oTss1bAs/sjBCpWwpw9FLbii0GZ2m4n9cJeLqRZaby1Ud0db0TSGhgISRv7Fix5J4MPumHvfrmmglttidTRr8HS6QRwgXo4evxN0AFNGfasukirwa0nB8/K9znYRu2RShxB3NCDo/f1MGUOAlu7FbaSi+AvXwrOUwp7yaWtlrHJODpLBvzE2IsvaMEWGSQDtb4Bk9oTGSd8DHN2KKKAsqTJbsvWN2ct80FtA6+A8hR6aeZ08/XBmj8JGRN/QPWvk0E7CpAzdYvxAKsbHry/GpSNLGJRtFngZabottvPn9jVDitDYc62BrgsNAIcj9OKHJjY1aa+s8ExC01RrV5EyyDxhAt5NTQ06DYIhgnPLE92XaJwW+vr69G3b19VJyyJcGRpZWUlWJZVPEZZWVlsDT1GaXGRdsiQIXj22Wdx1113oaGhIVKdzmw244033pAUFKutrcXcuXMBACeeeGJC2rB161b885//BADMmjVLEEegleh2qkUYNDY2522qRSMYJB6/jJP27G5Gdl1bgrZmwNn3ptZuhi5OLXJoEmlNtNHRMjCIhqJNcPS4srWbETMURcPe/TKZderf92BN7HEHfEA+C43zlILngqA0TO+NV6QFRcNWeDpQeDqAtiN+WjqNg0dBpDU4tsmbLu3zKRX2iy6Ip0ekVc6ZVc6ktRWeQWyngXY4XyVoGZFWkvHbhp20ADC+wIbxBYYoa2BwrDN48GAsXboUu3fvxpEjR2KaJT5kyBAsXrwY+/fvx759+3Tn0modFBw8eDA++ugj+Hw+rFq1CiNHjtTd1gEDBuCTTz6B3+/H+vXrMWTIEOJ2wWBQEoXa0WkV68ptt92GtWvX4sEHH8S1116Lhx56CH/99RemTp0q2Xb+/PkYPnw4TjjhBJx11lkJOf+///1v+P1+dOvWDW63G5988onk38aNGyPb//7775HlYcE12uEaXUSMRHRkgVEIrOUJqhQOMzAwMDAwaEniEWm5oMLAEM+B82hzV8QbdyDOFW4rWDpJaxsYdHAYeQFMINKyeiLJlPqW+jJpDfQTnUsrRuLkNzJpDQwM2gDnnHMOgNBsixdffDGmY5x99tmRn//973/r3j96Nnj0bG/SecKC7n/+8x/d5wGAiRMnRn5+9913Zbf76quvUF0dZ5/0GKPV7loDBgzAgAEDVLebMmUKpkyZktBzhz+Qu3fvxiWXXKK6/eOPPx75ec+ePXA6nYLoha1btyruH72+b9++eptrEAc8z2PePn05wAYGiYY1xgkMDAyi4Lzl8B6YC1sX7QXTeC4A97b/wnfwR8XtKn86CeBZOHpdB2e/W0GZpLNGgrXbULf8Ft3tjqatRlQoFZykFLJJDY5dlJxD/rJF4HkOFEWDDzbKbieGdZeibsVMeHa9D9fgJ+AacHezOKgQd2CQGDhfpfxKkSirFE1hYGBg0FKceuqpGDFiBFasWIFnn30WgwcPxkUXXSS7/YYNG7B3716BMDtx4kQMHToUq1evxqxZszBq1ChMmzaNuH9lZSUcDocgbjO64NiuXbtk40R79+6NCy+8EHPmzMEnn3yC4cOH4/bbb5dt6549e7Bs2TKBtjZixAgMGTIEa9aswWuvvYYLL7wQ48YJ+2ilpaW48847ZY/bUWmbPex2QElJCfLz8wEACxYsUNx24cKFAEKhz8XFxclumkEUP+z14GBDbBUYDQwSBSt5YDMwMOjoVP92FgLVmzRvX7/mftQtvwW+Q8oiLVu/C2zDXtSvuQ81i/4mWc/5alDx3TDd7ZXSNoUnJrWn7DpKwVFp0HFxb5kFQF/cQeUPo+HZ9T4AoGHtA6hbfmvUWuE938icTTwN6x+TX8mK3GFtPO7AwMCg4/DRRx8hMzMTLMvi4osvxjnnnIMPP/wQK1aswOrVq/Hjjz/iqaeewujRo3H88ccTdab3338fLpcLHMfhkksuwfnnn4/PPvsMq1evxooVK/DRRx9h+vTpKCoqkmS9jhnTXKj3tttuw8KFC7Fjxw7s3LkTO3fuRDAYjKx/7bXX0K1bNwDAHXfcgQkTJuCtt97CsmXLsHbtWvz66694/vnnMWnSJPTo0QNffPGFpK2vvvoqTCYTAoEAJk2ahPvuuw+LFy/GypUr8fLLL2Po0KEoLS3FwIEDE/UWHxO0ibsWz/PYvXs3qqpCU1cyMzPRrVu3pHVqZs+ejdmzZytu88gjj+DRRx8FAPzxxx+SPFyKojBlyhS89tpr2Lp1K5YtW4ZRo0ZJjrNs2bKIk3bKlClGR62F+XYXucM9MMdCXG5gkAw6OwwXh4FBR8LS6QT4yxaqble/6k5kTlIWXcM0bnxWdzu8+76IVEGPHGfrK+CVIhO00kanEIf6WRRI09HtPaa3dHMMkoQpawiClWsEy2xFseUi162YCWe/W3WJtOJsaPe215A2+tWmlZxoa8MTQ8KUcTyC1X/FtG+gYqXsOnEkjJaMbgMDA4OWoHv37vjzzz9x/vnnY+PGjfjuu+/w3XffyW6fmpoqWda3b1/Mnz8fU6dOxYEDB/Dll1/iyy+/1HT+Hj164KKLLsKcOXMwb948zJs3T7B+z549EVNhZmYmlixZgosuugiLFi3CwoULI+ZDrW0dOXIk3nvvPUyfPh1erxf//Oc/I7WhAMBkMuHVV1/FkiVLsH79ek2/Q0egVXsNP//8M84++2ykpqaiV69eGDVqFEaNGoVevXohNTUV55xzjuSD05aYOXNmpErdjBkz4PEIp9V7PB7MmDEDQOgDOHPmzJZuYoenxifuKIeY1lt/sTgDAxJnlUirTGfami+tPdNNKElrnUrnBgYGrUP6hI81bec7rK2Pw7P+mNvCiwqEBavWxXysaCS5j22IzNP/IC5PGfw4cblB+yN1+AuSZSlDn5LffvR/FY/HcwHwnHw+nx54TvR9ZQxjAInU4c8B8camEPbn/bWibYyBcgMDg7ZDr169sG7dOnz00Uc4//zz0bVrV9jtdlgsFuTl5eHEE0/EAw88gNWrV+Ohhx4iHmPo0KHYtm0bXnrpJZx88snIzc2FyWSCy+XCgAEDcN111+G3334jzuL+4IMP8Mwzz2DEiBFIS0sDTctfhzt37oyFCxfi+++/x2WXXYZu3brB4XDAbDYjJycHY8aMwR133IEFCxbg7bffJh7jkksuwdq1a3HFFVcgPz8fFosFBQUFuOiii7B48WJce+21Mb2PxzKtMrTo9/sxffp0fPrppwBCTloxjY2NmDt3LubOnYuLL74Ys2fPhsXStjo5vXr1wl133YWnn34aq1atwtixY3HPPfege/fu2LVrF/71r39h7dq1AIC77roLPXvKT8EzaDkKXQy6GaKZQYK4vK8L3dPN2FkTgMtMo1+WGb0yzFhy2AdvkMcJhcb0WgODjgbjyEf2lI2o+OY45Q0ljjsybOMB9Y1k4PzVoG1ZzQtkRBFLpxNg73UNbF2non7N/XBveUn2mM7j7om5PS2BtfMEZE1egpolV4Ot3QomtTeyTv9d4Cg2aN9YO09A1lkr0LjpBdDmVDj73w6TQtSFs/f1oK3ZqF9zH9i67ZL1wZrN4AMJcJgDgEikpei29fzSVrDmT0LWGUvgP/on6leSsw4pkwOpo/+H2kVXSNbxHEu+hvKimDMj7sDAoENz4oknEvUmtXVilLYrLi7WfBwAYBgGl1xyiab6SHLY7XbMmDEjYgrUitlsxl133YW77rpL8z5nnnkmzjxTex0FMf369cN7770nu17LTPeORKvctS699FJ89dVX4HkeJpMJkyZNwsiRI9G5c2cAwJEjR7BixQr88ssvCAQC+PTTTxEMBjFnzpzWaK4iTz75JMrLy/H2229j7dq1xODmq6++Gk888UQrtM6ARFGq0VkzSBwURWFMvg1j8oVi7PgCQ5w1MOjImDP6J+xYbMNe2XXWgtPhL1ssG2EgqYIuI9KmDHkClk7jAQCOXtcoirTtYfqwJXcMcqduae1mGCQRS/ZwWDS61gHAXnw+bEXn4ci70u9AoGIVOG95Qtoldr5TtDUhxz0WseSOgiV3FBr+egK8+FoFIGXwk3B0v5ws0rLaCgO3h+uVgYGBgYFBmBa/a82dOxdffvklKIrCSSedhLfffhtFRUXEbffv34+///3v+P333/HFF1/ghx9+wOTJk1u4xcrQNI233noL559/Pl5//XWsXLkSFRUVyM7OxvDhw3H99dfjjDPOaO1mdljSrbQk8uCoR5tzycDAwMDAoC2gJNLS9s6w5J0M34Fviet5f7VwgYxISzsKdbTIyNc3aJ/I1YYIVCZQpBXHJhhxB6rQ1iywBJGWMsvHk2nOEDbiDgwMDAwM2hEtLtKGbcwDBw7ETz/9BLNZftp5165d8eOPP2LkyJFYv3493nnnnRYTaR955BE88sgjmrefPHlymxOQOzo8zxMzaQ/VBwlbGxgYGBgYtDyctwK0LVtxG0WR1poJc/ZwWZG2YcO/EGzYi7o//6F4DsaRr9rWCEYRVINjjEDlanCexIi0kDhpDZFWDdqaBRY7JMspxiG7j3aR1nDSGhgYGBi0H1q8cNiyZctAURTuuOMORYE2jNlsxp133gme57Fs2bIWaKHBscLqcnKhlcag9rwYAwMDAwODZFL588mqOWZKIi1lyYQ1/zTZ9f4jf6gKtLQtFxRjTMk26LgEKlbKRoZQ1izicjmkhcOM75YatMx7TJkURFpWm0hrZFEbGBgYGLQnWlykPXr0KIBQeLBW+vTpAwCoqKhISpsMjk1mb6onLjeyQg0MDAwMWgJ797+pbhOs3oBgzUbFbVjPYdl1tCUNptTuutsmOIa9s3CByvRgPqgtC9LAoL1jKzoP9m6X69pHnJVqZNKqQ1szySsYu/xOrFfbwSmjWLCBgYGBQfuhxUVapzOULVRZWal5n+rqUJ6awyE/mmpgIEYue/bkLoZIa2BgYGCQfFyDH1MWGZrg/TXKG3AB+XV0SIBIHfWKjpYJoURtZGydVLY3RCeD9ouz/53aNqQYpAx5CikDH9B1fHEBLNqaoWv/DomMkE015fmmDHtWsk5coE320CpxMgYGBgYGBm2JFhdpe/fuDQD49NNPNe8T3ja8r4GBGjVelrh8ag8H+mUZ2WAGBgYGBsnH5CpCzpQNSB3+b5jSj5PdjjKnKR6H5+Sz1KmmQmCO3jcgY+IPMbWTEhU2oqyZsqIJAFAm+WI+BgZtnZRhzyB9wieq2+VM2QhTWm/QtmzYis5T3T78PeV8QiOK3FR+g2YompwbSzUNQtm7XyFZx/mlhcZI0HblQScDAwMDA4O2RIuLtOeccw54nsc777wTKSKmxPvvv4+3334bFEXh3HPPTXr7DI4NdtWSH2h7phtTngwMDAwMWg5Tanc4+8+EtcvZ8hvJCBQReKWCl6EiXhRFwVZ4BtJP+Eh/I0WFjSiKUiwkJnbeGhi0JyiKgr3kYtD2PNltaHseTOl9ml87uqgel///9u47PKoqceP4O5NeCKFDSKQ3BQUJCCICotgoG0TsFAFZLIu7LrI/3bUX1LWt69KLWEAp0gIriBIloCGAihQpghIIHSnpk8zvDzbXDFPSZnKTzPfzPHmeO/eee+bMTM5M5s2559gyJBHSlonVzd/n/3tvsgY7j0YuyC7ZNHjW0PplbhYAABWtwkPaRx55RI0aNZLdbteoUaPUv39/LV68WIcOHVJeXp5sNpsOHTqkxYsXq3///hoxYoQKCgoUExOjhx9+uKKbiypq3xnXl4ZaWZAaAGACdyPFJEnFLBxm9zTdgcXxT7mAiEtK06z/VeEckFg9hLQKJKRF1edpRLglKKrU9dltGbLb7Sq4aLoDi7v5VmGwWDyPpLUEBMsSVMPh2MVhuDsBhLQAgCqkmKEb3hcREaEVK1bo+uuv1+nTp7Vq1SqtWrXKbXm73a5atWppxYoVzEkLt9LO2bQuLVsNIwJ0XVyo9v3metRRps3zF2EAACra2U1/UWSHiQqMaq2MXe/KGlJXIY36Kmv/PBVkpct26jsPZ18U0kaWPqR1NYotILyx3EXDnlZcB6oKS1Ck22PWiwLBkjiz8Y8KCGskFTjOlcpI2hJw90+sIu9N1uDays/7fVHgvBObSlY1IS0AoAqp8JBWkjp16qRt27Zp/PjxWrJkifLzXc8fGhAQoISEBL355ptq3LhxBbcSVcX53AI9kXxKOf/7NTqTU+B2JO2ZHNeLiQEAYJbcw6t16vBqh33n3JR1ctFIWk+XcLuvwnmu9oBw9393Md0BqgPPI2lLH9LmHFzucj8hbQm4GUmrgt+/I+ZnHXE4lL1/XomqtoYR0gIAqg5TQlpJiomJ0YIFC5Senq5169bpxx9/1KlTFy4Pql27ttq3b6/evXurUaPSf9mAf1nxc6YR0ErSJ7sz3JaNjTTtVx4A4MeC6l7lm4otjvP4eJxWwY3gRtc77fM03UFgTRZyRdVnDXQ/kvbi6Q6C63dX5s63y3AvljJNneBvgutdJVd/vVuLThVRkFOmuq0hdcvWKAAATGB6YtWoUSPdddddZjcDVdheN6NmL9YoIkDt67JwGACg4oU0vkkBUW2Uf/Ynr9ZrKefyAtawRgpvOdxpv6eRtEG1OpTrPoHKwBrh/nf84oXzQpvcVsY7CZTFwoIIxQmJ7e/0/hjcsE/Zpm+5CCP/AQBViekhLVBe+SWYweD+yyLVo3GorPyhDAAwgcUaoLr9v1XWvg909lsvLoRqKV1IG9npOQWENZQlOFoFWUcU2uxOWVwsBGZ1E9I2vDerTM0EKpuAiCYejsU53LZYAyVrsNN8s8Xj786SMN4f985RzuHPFRo3QGEt7vNO5S7m3AYAoLLyaUj766+/er3OSy4p/39UUb0UtxZYQstw3diURU4AAOayBtdURLuHdHbTY2W+dNdJaUPay/9eopF9F48klKTwNn+UJTC0VPcHVFYBke5DWmtErPO+0PoqyEwr5b0Q0paUNbimIi4dr4hLx3uvUotVFmuA9+oDAMDHfBrSNm3a1KuX+FgsFtlsNq/Vh+ohv8BzStuiJv9BBwBUIl69qqN0dZX07zJX0x0UZB8v1X0BlZnHkbThziGtpSwjMkv5TxR4mYtFEQEAqMx8Pt2B3V7MMEegHOx2u/ad8Rzct4hmVg8AQOVhsVjltb+OfBQCuZoCgZAW1YmnkbQBLkbSqgyL8jEfrbkshLQAgCrGp+nV8OHOC1EU9dtvv2np0qWyWCwaNmyYL5uCamrFfs9z49UKsap2KJc5AQAqEy8GNxU4Uo+QFtWJyyC28JiLkeQWS1m+NjGS1kyEtACAqsanIe3s2bM9Ht++fbuWLl1aorKAKx/sPO/xeLOajKIFAFQyZQp73FTlxbqcXLRQUmiTwb67L6CCuZu+wBJSR5ZA57UMQmJvle3MztLeSVmaBm8JYA5tAEDVwl8OqNZqBPMrDgCoXKyhdbxXl4sFvmpePcNl2bDm95aq7uhrPzK2LUE1FN76gdI1Dqjkgupe5bTP1Xy0khTZYaIswdHGbauL0bYXswSElLltcBTZ6YVSnxNYs7UPWgIAqG4sFossFoueeeYZs5tCSIvqLdjKXGAAgMrFGlrfa3UFRFzitC+89SiFNr/baX/k5U+Wqu6wprep9k1Jiur6tuoO2KKASOf7AqqyyI5POe1zNw2CNbSu6g36QVFd31btfmtU//aDiu75gQLrXKnIjs8oIKqN80mM5PSasOZ3uT1W48qXXO4Pqt3RR60BUFWsW7fOCOAu/gkPD1dcXJz69++vWbNmKScnx+zmAr5fOAwwUxDT0QIAKhlvhrTW0Hou94c07KPsnz9y2GcJiih1/SENr1VIw2vL1DagsrNYnP9QdDeSVpICIuIUcemfjNthLe5RWIt7JEkhjW/SycRujifYC7zTUCggoolkDZEKHEOU4AY9Fdywt8tzAglpAXiQlZWltLQ0paWlKTExUW+88YZWrFihpk2bmt00+DFG0qLKKrAXvzZ2ECNpAQCVjDdDWnerx9sLbM5lA0sf0gLVmos5Y60RcWWqKqhWB6d9BZmHylQXnFmsAQqMauW03xoWI3eLMQbVusLHrQJQlYwbN07btm0zftauXau3335bsbEX/jm3fft2DRw4UPn5+Sa3FP6MkBZVVrat+JD2txxGMAAAKhdXo/e8zk5ICxTP+auQu+kOiuNqsTF4V2BN5yklAsJjJLn+ez+wZlsftwhAVVK/fn21b9/e+Lnuuuv0pz/9STt27DBGz27btk2ffvqpuQ2FXyOkRZWVVYKQ9ngm/wUDAFQuBXlnfH4f9oI8553WYJ/fL1CluBhJ62m6A5grwEVIaw2PcTuthCWA9zwAxatRo4b+/ve/G7c///xzE1sDf0dIiyqrJCFtl4asqgsAqFxCYm/xSj1hLYa5PRZU63Knfe6mRgD8lotwzxreqMzVhbUc6XA7uAHzOXtTYA3n6Q4CwhrJ6iJYD6jRoiKaBKCa6NDh9ylrDh486Lbcl19+qeHDh6t58+YKDw9XVFSUOnTooAkTJujw4cMluq/k5GSNHj1abdq0UVRUlIKDgxUbG6v+/fvr3Xff1W+//eb23OXLl2vIkCGKjY1VSEiI6tSpo+7du2vSpEk6f/68y3NatGghi8WiHj16FNu2Q4cOKSAgQBaLRY8//rjLMmfOnNHLL7+sHj16qF69egoODlajRo00YMAALVy4UHYP01IWLtr2zDPPSJK++OIL3X777YqLi1NQUJDL+YCPHDmiJ598UvHx8apdu7ZCQkIUFxenoUOHljhQ/+ijj9S7d2/VqlVLkZGRat++vZ5++mmPz7VZWDgMVVZmMSFteKBF3RsR0gIAKpfQSwbrXOgEFWQf9VguIKKJAiIvUe7Rr50PWkMUeYXzyvSFghtdp8Do9rL99qMkKeKyx8rVZqBasjtfcWUJCCtzdTWufFHZBz6R3ZYhSQpvM67MdcGZq8UPLSG1FFijqSwhtWXPOWXsj+75QUU2DUAVFxz8+8j7oKAgp+PZ2dkaOXKk5s+f73Tsxx9/1I8//qjJkydr3rx5GjBggMv7yMrK0qhRozRv3jynY4cOHdKhQ4eUmJio48ePGyFm0fu/++67naZiOHXqlL755ht98803euedd5SYmKiOHTs6lLn77rv1wgsvaOPGjTpw4IDHhdHmzZungoIL/8C85557nI6vXbtWd9xxh06ePOmw/8iRI1qxYoVWrFihW265RR9//LEiIyPd3o8kPfnkk3rppZc8lvnwww81duxYZWRkOOxPS0vTggULtGDBAo0aNUpTpkxRYKBzvGmz2XT33XdrwYIFDvu3b9+u7du364MPPqh0I6d9GtI+99xzHo8fO3asxGULPfWU+y8k8C9ZNufRD8MvjdSxzHzVDw9Q5wYhqhVaAfP+AQBQCtagCNUd+J2yD3yisynjXZaxBEaq7oBUWULq6PzWfyjrwELV7D5FFmuQck+kKDT2VgVGuR8pZrFYVOeWZGX9/IGsIXUV2vR2Xz0coFqxWJ2/nJdUQHgj1R30o7J/Xayg2h0V0ug6L7YMFovza2MNipIkNRh6WGc3/UW5R9erZo8ZCq7bpaKbB6AK27lzp7F9cYhpt9s1ZMgQJSYmSpIGDBigoUOHqnnz5rJarUpJSdHrr7+uX3/9VUOGDFFycrLi4+Md6igoKNCgQYO0Zs0aSVKrVq304IMPKj4+XuHh4UpPT9eGDRv0ySefuGzf8OHDjYD2iiuu0GOPPaZ27drp1KlTmj9/vubMmaPDhw+rb9+++uGHH9S4cWPj3HvuuUcvvPCC7Ha7PvroIz3xxBNun4ePPvpIknTZZZfpiiscF19MTk7WzTffrLy8PDVo0ECPPPKIrrjiCsXExOjw4cP6+OOP9cEHH2jlypUaPny4Fi1a5PZ+Fi9erG3btqlDhw7685//rPbt2ysrK0vfffedUeaTTz7RfffdJ7vdrubNm+vhhx/WpZdeqnr16unAgQOaOXOmVq5cqZkzZyoqKkpvvPGG0/389a9/NQLaNm3a6PHHH9fll1+uM2fOaMGCBZo+fbruuOMOt+00g8XuaSxyOVmtVq9fWsdKe47S0tIUF3dhFdqDBw8aKxP6g2/Ss/XmlrPG7UYRAXqrdx0TWwQAQOmkz3H9d1KNK19U5OXu/4gGUH45h1br1JobHfbVH5qugPCGJrUInmQfXK7Tawc67Ks76AcF1erg5gzA+8rz/XvPnj2y2WwKDAxUq1bO03dIUoG9QCdzMr3S1qqiTki4rC7mCPeGdevWqU+fPpKkp59+2mmEqnQhY+rSpYu2bt0qSfr66691zTXXGMenT5+uBx54QEFBQVq2bJluuukmpzpOnz6tnj17avv27erRo4fWr1/vcPxf//qXxo+/8I/5hIQEzZs3TyEhzlf9FhQUKD093SFkTUxMVP/+/SVJffv21cqVKx1G/hZtoyQNHTpUH3/8scPxzp07a8uWLbrsssv0448/unyudu3apXbt2kmSXnrpJf3f//2fcSwvL0+tW7fWgQMHdNNNN2nRokUKD3deMLNoO1avXq0bbrjB4XjRfLBv375KTEx0+TycOHFCLVu21JkzZ3T//fdr6tSpLkfKFo7GtVqt2rFjh9q0+X3u8m3btqljx44qKCjQlVdeqaSkJKfRvXPnztXw4cON2+5+RzwpSb8uDZ9Pd+DNDJi51FDUxXPShgXy+wEAqB4sgc6X9QLwNufvKeUZSQvfsufnOO2z/G8kLVBdnMzJVP15z5jdjAp17K5nVC/U86XxvnD8+HFt27ZNTz31lBHQDhkyxCGgtdvteuWVVyRJf/rTn1wGtJJUq1Ytvfbaa7rllluUnJysPXv2GIFdQUGBXnvtNUlSbGys5s6d6zKYlC4MdCwa0ErSu+++K+nCNAyzZ892CmglacyYMfrkk0/0+eefa/HixUpPT1ejRr/PsX7PPfdoy5Yt2r59u77//nunUbLShakFpAu529133+1wbP78+Tpw4IBCQ0M1d+5clwFtYTtmzJihlJQUzZkzxymkLfo4Z8yY4fZ5mDx5ss6cOaPGjRvrP//5j8uAVpKeffZZvffeezp06JDmzp2rF1980Tg2ZcoUY+qGadOmuZx+YdiwYZo/f75WrVrlsn4z+DSk/fLLL31ZPfyY3W7XZweyHPaFE9ICAKqLgFCzWwBUey4Hk1hZsqOysudnOe2zBtU0oSUAqqJnn31Wzz77rMtj4eHh+uMf/6hJkyY57N+xY4f27dsn6UKA68m11/6+WOTGjRuNkPa7775TWlqapAshZnFztRZls9mUlJQkSerXr58xituVMWPG6PPPP5fNZtO6det01113GcfuvPNOTZgwQQUFBfroo49chrSFc+X26NFDTZo0cTi2bNkySVKvXr1Ur149j22+9tprlZKSoo0bN7ot06NHD49z4xbeX//+/d0GuZIUGBio7t27a+HChU73VzjXbIcOHdS5c2e3ddx///3+E9L26tXLl9XDj63+JUv7z9oc9jGSFgBQXRRkHjK7CYAfcBHS+uiSW5Sf3eZ8CbglqIYJLQFQ3XTs2FF/+tOfnBYNS01NNba7d+9e4vqOHDlibBeO0pWknj17lqpdP//8szIzL7z3XXXVVR7LFj1+8ZQGMTEx6tOnj9auXat58+Zp0qRJDleqf/vtt0YY7WrBsMLn4bPPPivxFe5Fn4OLXX755W6P5efnG3PTTp06VVOnTi31/eXk5GjPnj2SpC5dPM9R3rVr1xLVX1H4KwRV0qzt5532hQXy6wwAqB6C6nUzuwlAtRcY2cxpn8XqfBkpKofAmu2c9lmsLBIMoGTGjRunbdu2adu2bdq6dauWL1+u4cOHy2q1asOGDerdu7eOHz/ucE7Rxe5LozBYlS7Mr1qo6BQEJXHq1Clju379+h7LNmz4+3zqRc8rVBi+Hjx4UF999ZXDscKpDoKCgnT77c6LzZblecjKcr76oVCtWrXcHjt16pRsNpvb4+4Ufc5Pnz5tXC1T3PPWoEGDUt+XL3E9D6oNRtICAKqaiMufUMYPLznss4bHKqQhq8IDvhYY3VbBDXsr98g6SVJYi+GyBLi/rBLmCm7QU4G1Lpft9A+SpIhL/2xyiwDvqxMSrmN3PWN2MypUnRDX85t6W/369dW+fXvjdseOHdW/f3/16dNHI0aM0IEDBzR69GgtXbrUKFN04frly5d7vET/4vvytvKu0XTbbbfpwQcfVHZ2tj766CPjyvf8/Hx98sknkqSbbrpJdeo4L8Ze+DzcfPPNevXVV8vVDkkKCHD/D7aiz/no0aONBdeK42quXqnqrW1FSItqgzlpAQBVTdSVLyogPE4Z219XUJ0rFdzgGoU2vUOWQOakBSpC7etXKuvnDyRriMKaO1/iicrDYrGozi3rlbXvA1lDaiu06VCzmwR4ndViNWURLX82fPhwLV++XIsWLdKyZcv0xRdf6LrrLvyzvGhgGR0d7RDyllTdunWN7fT0dLVt27bE59auXdvYPnr0qMeyRS/3L3peoaioKPXv318LFy7UwoUL9e9//1tBQUFau3atUberqQ6kC8/D4cOHlZubW6bnoDSKtt1ut5fp/qKjo43t4p634o5XNK4PR7URFkRICwCoeiLa/lH1b9ujWr0/VkS7RxQQ5v3RFwBcswSGKbz1GIW3HMal81WANaiGItqOU1izO6rc6CgAlddLL71kjO584oknjP2dOnUytpOTk8tU95VXXmlsXzzNQHGaN2+u8PALI42//fZbj2VTUlKMbXfBZmEIe+rUKWOxrMKpDmrUqKGBAwe6PK/weUhNTVVubm4pHkHpBQcH67LLLpNU9uc8NDTUWLht06ZNHssWd7yiEdKi2ggN4A81AAAAAABQcq1bt9bQoRdG53/77bdas2aNpAsBa2xsrCRp2rRpys7OLnXdV1xxheLi4iRJM2bM0PnzzuvruBMYGGhMS7BmzRqlpaW5LTtjxgzjnN69e7ssc8sttxjzwX744YfKzs7Wp59+KklKSEhQWFiYy/MKw9szZ85o9uzZJW5/WRXe365du/TZZ5+VqY7rr79ekow5iN2ZNWtWmer3FUJaVBkZeQVasPu8/vTlCZfHw1k4DAAAAAAAlNITTzxhjNB/4YUXJElWq9UYWfvzzz9r2LBhysnJcVvH2bNn9e9//9thn9Vq1YQJEyRJaWlpGjZsmNvRqAUFBTp8+LDDvoceekiSlJubq1GjRikvL8/pvFmzZmn16tWSpMGDB7tdoCw4OFhDhgyRdGGO3Y8++kjnzp2T5H6qA+nClBCFQfNf//rXYkcEr1+/XklJSR7LeDJ+/HhFRl6Y9mPkyJHavn27x/KJiYn64YcfHPaNHTvWeD0feOABZWRkOJ334YcfauXKlWVupy+QaqHKeHXTGS3ck6mjmQUuj4cwJy0AAAAAACil9u3bGyM4v/rqK61fv16S9Mc//lEJCQmSpAULFuiyyy7Ta6+9pqSkJH333Xf66quvNG3aNN19992KiYnRM88841T3Qw89pBtuuEGS9Omnn6pDhw56++23lZycrK1bt2rVqlV6+umn1bZtW02bNs3h3FtvvVW33367JGn16tXq1q2bPvzwQ23evFmff/65Ro8erdGjR0u6MJ/rG2+84fFxFoaxWVlZeuyxxyRJDRo0UN++fd2eExISok8++UQhISE6f/68rrvuOt17771auHChNm/erE2bNmnZsmV6+umndfnll6tnz57atm2bx3Z40qBBA7333nuyWCxKT09XfHy8xo0bp2XLlmnLli369ttvtWjRIk2cOFEtWrRQ//799euvvzrUccUVVxgBd2pqquLj4zVnzhxt3rxZX3zxhcaNG6dhw4YpPj6+zO30BRYOQ5VwKjtfu047/8eoqHy7vYJaAwAAAAAAqpMnn3xSS5culSQ9//zz+uyzz2SxWPTxxx9r/PjxmjJlivbt26fHH3/cbR316zuvLWC1WrVkyRINHz5cCxcu1O7du/Xoo4+WuF1z586VzWbTp59+qi1btujee+91KhMTE6PExEQ1btzYY13XXnut4uLidPDgQf3222+SpDvvvNOYk9edbt26ad26dRo6dKgOHjyoDz/80JjP1pWoqKjiH5gHgwcP1tKlSzVixAidOnVKU6ZM0ZQpU1yWtVqtioiIcNr/xhtv6PDhw1q8eLF27dqlkSNHOhxv1qyZPv74Y7Vo0aJcbfUmRtKiSjiR5Xr0bFGBLB4AAAAAAADKoEuXLsaI19WrVxuLSgUFBek///mPvv/+ez3yyCPq0KGDatasqYCAANWsWVMdO3bUqFGjtHDhQu3cudNl3eHh4VqwYIG++OIL3XfffWrWrJnCwsIUHBysuLg4DRgwQFOnTjVGtxYVGhqqxYsXa9myZRo8eLBiYmIUHBysWrVq6aqrrtLLL7+sn376SR07diz2MVosFt11110O+zxNdVBUt27dtGfPHk2ZMkW33nqr0Y7Q0FDFxcWpX79+evHFF7Vr1y4NGzasRHV6MmDAAO3fv1///Oc/dd1116lBgwYKCgpSWFiYmjVrpv79++uNN97QgQMH1KdPH6fzg4KCtGjRIr3//vvq2bOnatasqfDwcLVr105PPPGENm/erObNm5e7nd5ksdsZfliVpaWlGXODHDx40JjUurrZeDhbb20967HM37rUVKf6IRXUIgAAAACAPynP9+89e/bIZrMpMDDQWHkeQNXm7X7NSFpUCSUZSWtlIC0AAAAAAACqIEJaVAknsvOLLRNISgsAAAAAAIAqiJAWVcKJrOJD2gAyWgAAAAAAAFRBhLSoEkq0cBgjaQEAAAAAAFAFEdKiSjidU3xIWzuUX2cAAAAAAABUPaRaqBKy8jyHtFfWD1bt0IAKag0AAAAAAADgPYFmNwAoTn6BXbkuMtp2tYPUpWGIwgIsujY2tOIbBgAAAAAAAHgBIS0qvex8u9O+d6+ro7phjJwFAAAAAABA1cd0B6j0smzOIW1YIIuEAQAAAAAAoHrwy5D27Nmzmj9/vh577DH16tVLLVu2VM2aNRUcHKz69eurd+/eevXVV3Xy5MkS1bdhwwbde++9atKkiUJDQ9WwYUPdeOONmjdvno8fiX/IdhHShgYQ0gIAAAAAAKB68MvpDlJSUnTXXXe5PHb8+HElJSUpKSlJr732mj744APdeOONbut65pln9Pzzz6ug4PdJU48eParVq1dr9erV+vDDD7Vw4UKFhjJnalldPJI22CoFWAlpAQAAAAAAUD345UhaSYqLi9OwYcP09ttva/Hixdq4caOSk5P18ccf6/bbb1dAQIBOnDihgQMH6vvvv3dZx9SpU/Xss8+qoKBALVq00MyZM5WSkqIlS5aoT58+kqTExETdf//9FfnQqp3zeY6rhoUF+e2vLQAAAAAAAKohvxxJ26dPH/36669ujw8dOlRLlixRQkKCcnNz9eyzz2rx4sUOZU6dOqWJEydKki655BJ98803qlu3rnG8f//+SkhI0PLlyzVv3jw98MAD6t27t08eT3V3LDPf4Xa9MEJaAAAAAAAAVB9+mXYFBAQUW+YPf/iD2rRpI0n6+uuvnY7PmDFDZ86ckSS98sorDgFt4X385z//Me7rtddeK2+z/dbRi0La+uHFv34AAAAAAABAVeGXIW1J1ahRQ5KUnZ3tdGzJkiWSpKioKA0ePNjl+bGxsbr++uslSWvXrtW5c+d809Bq7uKRtA3CCGkBAAAAAABQfRDSuvHTTz/pu+++kyS1bdvW4Vhubq5SUlIkSd27d1dwcLDbenr16iVJysnJUWpqqm8aW80dzXSck5aRtAAAAAAAAKhO/HJOWncyMzN16NAhLV++XK+++qpsNpsk6dFHH3Uot3v3buXnXxjdeXGAe7Gix3fu3GksKFZSaWlpHo+np6eXqr6qxm63O42kJaQFAAAAAABAdeL3Ie2cOXM0cuRIt8f/9re/6e6773bYVzQ4jY2N9Vh/XFycsX3w4MFSt6/o+f7oXK5d2fl2h32EtAAAAAAAAKhO/D6kdadjx46aNm2aunTp4nSs6NyykZGRHuuJiIgwts+fP++9BvqJixcNC7BIdUKZpQMAAAAAAADVh9+HtH/4wx8UHx8vScrKytK+ffv0ySef6NNPP9Vdd92lt956S/3793c4p+hCYp7mo5WkkJAQYzsrK6vU7Stu9G16erq6du1a6nqrimNZjiFt3bAABVgtJrUGAAAAAACgarBYLuQnTz/9tJ555hlzG4Ni+X1IGx0drejoaON2ly5ddOedd+r999/X8OHDNWjQIM2cOVMjRowwyoSGhhrbubm5HuvPyckxtsPCwkrdvuKmU6juLp6PtkE4o2gBAAAAAIBn69atc7kuUEBAgKKiolSzZk3FxcWpc+fOuuaaazRgwIBiB+IBvkTi5cZ9992n22+/XQUFBXr44Yd16tQp41iNGjWM7eKmMMjIyDC2i5saAc4unu6A+WgBAAAAAEBZ5efn6/Tp0zpw4IC+/vprvfXWWxoyZIhiY2P1wgsvGIvIAxWNkNaDQYMGSboQtP73v/819hcd3Vp0ETFXik5X4O+LgJXFxSNpCWkBAAAAAEBpjBs3Ttu2bTN+Nm7cqJUrV2rSpEm64YYbZLFYdPz4cf3jH/9Qjx49dPz4cbObDD/k99MdeFKvXj1j+5dffjG2W7durYCAAOXn52vXrl0e6yh6vF27dt5vZDWVm2/Xyv2Z2n4yz2F/A0JaAAAAAABQCvXr11f79u2d9t98882aOHGiduzYoXvvvVdbt25VSkqKEhIS9MUXXzD9ASoUI2k9OHTokLFddKqC4OBgY7GujRs3epyXNikpSdKFBcQKFyhD8ab8cFbzfspw2s9IWgAAAAAA4E2XXnqpkpOT1alTJ0lScnKy3n33XZNbBX9DSOvBggULjO0OHTo4HPvDH/4gSTp79qwWL17s8vy0tDR9/vnnkqS+ffs6zGUL9/IL7Eo+nOPyWP0wQloAAAAAAOBdYWFhev/992WxWCRJ//znP5WXl+ey7JEjR/Tkk08qPj5etWvXVkhIiOLi4jR06FAjB3Ln9OnTmj17tu69915deumlioyMVHBwsBo2bKgbb7xR06ZNK3aR+kIfffSRevfurVq1aikyMlLt27fX008/rd9++61Ujx2Vg1+GtHPmzFF2drbHMm+++aZWrlwpSWrWrJl69uzpcHz06NGqWbOmJOlvf/ubTp486XA8Pz9fDz74oPLzL8ypOmHCBG81v9o7mV3gcr9FUniQpWIbAwAAAAAA/MJll12mG264QZJ0+PBhbdq0yanMhx9+qJYtW+qll17S5s2bdfr0aeXm5iotLU0LFizQDTfcoNGjR7tdgKxTp066//779eGHH2rnzp3KyMhQXl6ejh49qtWrV2vs2LHq1q2bjhw54radNptNQ4cO1T333KOkpCT99ttvysjI0Pbt2/Xcc8+pc+fO2r9/v3eeFFQYvwxpn3nmGTVu3FgPPPCA5s6dq+TkZH3//fdav369Jk+erGuuuUZ/+ctfJF2Y2mDatGkKCHAcwVm7dm298sorki7MV3vVVVdp9uzZSk1N1bJly3TDDTdo+fLlkqS77rpLvXv3rtDHWJUdych3uT8s0CKrhZAWAAAAAAD4xvXXX29sf/311w7HPvnkE913333KyMhQ8+bN9cYbb+i///2vNm/erEWLFumWW26RJM2cOVOPP/64y/rz8/N11VVX6fnnn9eKFSu0adMmJScn64MPPtBNN90kSdq6davuvPNOt23861//alz93aZNG82cOVObNm3S559/rrFjx+rAgQO64447yvU8oOL57cJhp06d0vTp0zV9+nS3ZWJjYzVr1iyHDlrU2LFjdfjwYT3//PPat2+f7r//fqcyt9xyi2bNmuW1dvuDI5mu/9sUFkhACwAAAAConuz2AtkLzprdjAplsUbJYqlc4wevvPJKY3v37t3G9okTJ/TAAw/Ibrfr/vvv19SpUxUYGOhw3uDBg/Xkk0/qpZde0ttvv62xY8eqTZs2DvV/8cUXatWqldP9Xn311brnnns0e/Zs3X///UpKStLatWvVt29fh3Lbtm3TO++8Y9xnUlKSwzpKffv21dVXX63hw4eX74lAhfPLkPazzz5TYmKikpOTtXfvXh09elQnT55UWFiY6tevr44dO6p///4aOnSowsPDPdb17LPP6sYbb9S7776rr7/+WkePHlV0dLSuuOIKjRw5UnfddVcFParqw91I2rwCewW3BAAAAACAimEvOKtzR24zuxkVqkbDRbIERJvdDAd16tQxtk+fPm1sT548WWfOnFHjxo31n//8xyGgLerZZ5/Ve++9p0OHDmnu3Ll68cUXHY67CmiLGjlypP71r3/pu+++05IlS5xC2ilTpqig4MI0kdOmTXMIaAsNGzZM8+fP16pVqzw/WFQqfhnStmnTRm3atDGmNCivq6++WldffbVX6oJ0NNN1SHs2l5AWAAAAAAD4TtHQ89y5c8b2smXLJEn9+/dXSEiI2/MDAwPVvXt3LVy4UBs3bvR4X3a7XUePHtXZs2cdFgtr3LixvvvuO33//fdO5xQuTNahQwd17tzZbd33338/IW0V45chLSo3dyNpAQAAAAAAfKloMBsVFSXpwjyy3333nSRp6tSpmjp1aonqcrf4V2JioiZPnqyvvvrK4f4uduLECYfbOTk52rNnjySpS5cuHu+7a9euJWojKg9CWlQqefl2pbsJaa+Ocf+fKgAAAAAAgPIqGozWrl1b0oV1jWw21+vneJKZmelw2263a8yYMZo5c2aJzs/KynK4ffr0adntF64yrl+/vsdzGzRoUIqWojIgpEWlcvC8TfkuZjWwSOodG1rh7QEAAAAAoCJYrFGq0XCR2c2oUBZrlNlNcLJ161Zju3DRr/z83weTjR49WuPHjy9RXcHBwQ63Z82aZQS0HTt21KOPPqqrrrpKjRs3Vnh4uAICAiRdmFP2/fffNwJZVywWFlevbghpUans+835P1P3totU6+ggtakdZEKLAAAAAADwPYvFWukW0fJHa9asMbavueYaSb+PqJUujIZt3759meqePn26JKlly5basGGDwsLCXJY7deqUy/3R0dHG9tGjRz3eV3HHUflYzW4AUNT+M3kOt3vEhGhA83ACWgAAAAAA4FM//vij1q5dK0mKi4tTfHy8pAsjYi+77DJJUnJycpnr3759uyRp4MCBbgNau92uLVu2uDwWGhqqVq1aSZI2bdrk8b6KO47Kh5AWlcrPZxxH0jarSTgLAAAAAAB8KysrS8OGDTOmGPjrX/+qwMDfL0AfOHCgJGnXrl367LPPynQfhfPaZmRkuC2zdOlSpaenuz1+/fXXS5K2bdvmMDXDxWbNmlWmNsI8hLSoNPLy7fr1nGNI26ImM3IAAAAAAADf2bFjh6655hoj9OzVq5fGjRvnUGb8+PGKjIyUJI0cOdIYFetOYmKifvjhB4d9haNgly9f7nJKg3379umhhx7yWO/YsWON+WgfeOABl4Hvhx9+qJUrV3qsB5UPCRgqjV/POS8a1jSKX1EAAAAAAFB2x44d048//mjczsjI0OnTp/XDDz9o7dq1WrNmjTGCtlu3blq4cKGCghyv7G3QoIHee+89DRkyROnp6YqPj9eIESN08803KzY2Vnl5eUpLS1NKSooWLlyon3/+WcuXL9fll19u1DFs2DBNmDBBhw8fVvfu3TVx4kS1b99e2dnZ+uKLL/TWW28pJydHV155pdspD6644go99NBD+ve//63U1FTFx8dr4sSJ6tChg86cOaMFCxZo2rRpio+PV2pqqg+eTfgKCRgqjcMZ+Q63G4YHKDyIwd4AAAAAAKDsJk+erMmTJ3ssU69ePT366KN6/PHHHaY5KGrw4MFaunSpRowYoVOnTmnKlCmaMmWKy7JWq1UREREO+8aPH681a9Zo9erV2r17t0aNGuVwPCwsTHPnzlViYqLbkFaS3njjDR0+fFiLFy/Wrl27NHLkSIfjzZo108cff6wWLVp4fMyoXAhpUWlk2QocbkeHENACAAAAAADvsVqtqlGjhmrWrKkmTZqoc+fO6tmzp/r376/g4OBizx8wYID279+v6dOna+XKldq+fbtOnTqlwMBANWzYUJdddpmuu+46DRkyRHFxcQ7nBgUFKTExUZMnT9bcuXO1Y8cO2e12NW7cWNdff73Gjx+vtm3bKjEx0WMbgoKCtGjRIn3wwQeaNm2afvjhB+Xl5alJkyZKSEjQX//6V9WqVatczxMqnsVeOJ4bVVJaWprR6Q8ePKjY2FiTW1R2S/dl6KNdv8+l0rFesP6va7R5DQIAAAAA4H/K8/17z549stlsCgwMNOYlBVC1ebtfM1QRlUaWzfH/BWGBFpNaAgAAAAAAAFQcQlpUGtmEtAAAAAAAAPBDhLSoNDIJaQEAAAAAAOCHCGlRaVw8kjaUkBYAAAAAAAB+gJAWlUbaeZvD7YhAfj0BAAAAAABQ/ZGCoVI4fN6mQ+fzHfa1qhVkUmsAAAAAAACAikNIi0ph09Ech9vRIVa1jA40qTUAAAAAAABAxSGkRaWQesQxpI1vECyrhTlpAQAAAAAAUP0R0sJ0p7Pztfs3x/louzQMMak1AAAAAAAAQMUipIXpUo/mOtwOC7SofZ1gk1oDAAAAAAAAVCxCWpgu9aL5aDvVD1aglakOAAAAAAAAUDnZ7Xav1kdIC9P9ctZxqoPO9ZnqAAAAAABQfQQEBEiSbDab8vPzTW4NgPLKz883+nJh/y4vQlqYLv+i/zxEh/BrCQAAAACoPsLDw43t3377zbyGAPCKov24aP8uj0Cv1AKUw8Wjw5npAAAAAABQnURHR+v06dOSpGPHjik/P19RUVEKCQmRxcKXYKAqsNvtysnJ0dmzZ3Xy5Eljf61atbxSPyEtTFdgdgMAAAAAAPCh0NBQ1axZU2fOnJEknTx5UidPnpTFYvHapdIAfCs/P99pHtqaNWsqJMQ703YS0sJ8jKQFAAAAAFRzjRo1UnBwsI4fP27ss9vtstlsHs4CUFnVq1dPderU8Vp9hLQwVXqGTRk2766GBwAAAABAZWOxWFS3bl1FRUXp/PnzysjIUG5urgoKuL4UqAqsVquCg4MVERGhyMhIBQcHe7V+QlqYJstWoP9bf9ppv5X5eAAAAAAA1VRwcLBq166t2rVrm90UAJWI1ewGwH/990CWslyMog0gowUAAAAAAIAfIaSFafafcT3vTqMIJk0HAAAAAACA/yCkhWny7c6jaBuGByg8iF9LAAAAAAAA+A/SMJjG5mJu9GY1mSYZAAAAAAAA/oWQFqZxNZKWkBYAAAAAAAD+hpAWpsnNd97XLCqo4hsCAAAAAAAAmIiQFqb59ZzzwmFNGUkLAAAAAAAAP0NIC9M0iXIOZKOC+ZUEAAAAAACAfyERg2na1WZqAwAAAAAAAICQFqYJslocbsc3CDapJQAAAAAAAIB5CGlhGvtFty2yuCwHAAAAAAAAVGeEtDCN/aKU1kJGCwAAAAAAAD9ESAsTOaa0ZLQAAAAAAADwR4S0MI3TdAektAAAAAAAAPBDhLQwzblcx5g2gJAWAAAAAAAAfoiQFqbZdSrP4fYlNQJNagkAAAAAAABgHkJamCIjr0AHz9kc9rWtHWRSawAAAAAAAADzENLCFLtP5znMSRtklVrUJKQFAAAAAACA/yGkhSkunuqgRXSQgpiUFgAAAAAAAH7Ib0Pa1NRUPffcc+rXr59iY2MVEhKiyMhItW7dWiNHjtT69etLVd+qVauUkJBg1BUbG6uEhAStWrXKR4+gars4pG1bi1G0AAAAAAAA8E9+uVLTtddeq6+//tppf25urvbs2aM9e/Zozpw5GjZsmKZPn67g4GC3dRUUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIOcvPt2nvmopCW+WgBAAAAAADgp/wyNTx8+LAkKSYmRuPHj9fChQuVkpKijRs36o033lDjxo0lSXPnztWIESM81vXkk08aAW2nTp00b948paSkaN68eerUqZMkacaMGfr73//uuwdUxRzOsMlW4LivNSNpAQAAAAAA4KcsdrvdXnyx6qV///4aNmyYbrvtNgUEBDgdP3HihHr06KHdu3dLkpKSknTttdc6ldu9e7cuu+wy2Ww2xcfH66uvvlJYWJhxPDMzU7169VJqaqoCAwO1c+dOtWzZ0quPJS0tTXFxcZKkgwcPKjY21qv1+8KWozl6JfWMcTs6xKqp19c1sUUAAAAAAHhWFb9/A6g6/HIk7YoVKzR06FCXAa0k1a1bV6+//rpxe+HChS7LvfXWW7LZbJKkd955xyGglaTw8HC98847kiSbzaY333zTG82v8k5mOw6jrRPql7+GAAAAAAAAgCQ/DWlLok+fPsb2vn37nI7b7XYtXbpUktS2bVt169bNZT3dunVTmzZtJElLly6VHw5cdnIyO9/hdu1Q12E5AAAAAAAA4A8Iad3Iyckxtl2NuN2/f78xt22vXr081lV4/NChQzpw4ID3GllFnbp4JG0Yv4YAAAAAAADwX4FmN6CySkpKMrbbtWvndHzHjh3Gdtu2bT3WVfT4zp071axZsxK3Iy0tzePx9PT0EtdVWZzMchxJy3QHAAAAAAAA8GeEtC4UFBRo0qRJxu2hQ4c6lSkanhY3WXjhxOLShcnFS6PoudWF85y0THcAAAAAAAAA/8UQRhfefPNNpaSkSJIGDx6szp07O5U5d+6csR0ZGemxvoiICGP7/PnzXmpl1WS323Xqojlpme4AAAAAAAAA/oyRtBdJSkrS3/72N0lS/fr1NXnyZJflsrOzje3g4GCPdYaEhBjbWVlZpWpPcSNv09PT1bVr11LVaaYMm105jhktC4cBAAAAAADArxHSFrF9+3YlJCTIZrMpNDRUCxYsUP369V2WDQ0NNbZzc3M91lt0EbKwsLBStam4qRSqmkCLRQ93jNLJrHydyi7Qyex81WZOWgAAAAAAAPgxQtr/2b9/v/r166fTp08rICBA8+fP17XXXuu2fI0aNYzt4qYwyMjIMLaLmxqhugsNtKhn49DiCwIAAAAAAAB+giGMkg4fPqzrr79ehw8flsVi0axZszRo0CCP5xQd4Vp0ETFXik5ZUB0XAgMAAAAAAABQdn4f0p44cUI33HCDfv75Z0nSO++8o2HDhhV73qWXXmps79q1y2PZosfbtWtXxpYCAAAAAAAAqI78OqQ9c+aMbrzxRu3YsUOSNGnSJD300EMlOrdZs2aKiYmRdGGxMU+++uorSVLjxo3VtGnTsjcYAAAAAAAAQLXjtyFtZmambr31Vm3ZskWS9OSTT2rixIklPt9isRhTIuzatUvffPONy3LffPONMZJ20KBBslgs5Ww5AAAAAAAAgOrEL0Pa3NxcJSQkKDk5WZI0fvx4vfDCC6Wu59FHH1VAQIAk6ZFHHlFWVpbD8aysLD3yyCOSpMDAQD366KPlazgAAAAAAACAaifQ7AaY4a677tLq1aslSdddd51GjRqlH3/80W354OBgtW7d2ml/69atNWHCBE2aNEmpqanq0aOHJk6cqBYtWmjfvn165ZVXtHXrVknShAkT1KpVK988IAAAAAAAAABVlsVut9vNbkRFK+2UA02aNNGBAwdcHisoKNCYMWM0a9Yst+ePGjVK06ZNk9Xq/YHLaWlpiouLkyQdPHhQsbGxXr8PAAAAAAD8Hd+/AfiSX0534E1Wq1UzZ85UYmKiBg0apJiYGAUHBysmJkaDBg3SypUrNWPGDJ8EtAAAAAAAAACqPr+c7sAXg4dvueUW3XLLLV6vFwAAAAAAAED1xvBOAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIr8NaY8dO6YVK1boqaee0s0336y6devKYrHIYrFoxIgRpa5v1apVSkhIUGxsrEJCQhQbG6uEhAStWrXK+40HAAAAAAAAUG0Emt0AszRo0MAr9RQUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIAAAAAAAAA3CA1lHTJJZeoX79+ZTr3ySefNALaTp06ad68eUpJSdG8efPUqVMnSdKMGTP097//3WvtBQAAAAAAAFB9+O1I2qeeekpdunRRly5d1KBBAx04cEDNmjUrVR27d+/WP//5T0lSfHy8vvrqK4WFhUmSunTpooEDB6pXr15KTU3Va6+9pvvvv18tW7b0+mMBAAAAAAAAUHX57UjaZ599Vv379y/XtAdvvfWWbDabJOmdd94xAtpC4eHheueddyRJNptNb775ZtkbDAAAAAAAAKBa8tuQtrzsdruWLl0qSWrbtq26devmsly3bt3Upk0bSdLSpUtlt9srrI0AAAAAAAAAKj9C2jLav3+/Dh8+LEnq1auXx7KFxw8dOqQDBw74umkAAAAAAAAAqhC/nZO2vHbs2GFst23b1mPZosd37txZqrlv09LSPB5PT08vcV0AAAAAAAAAKh9C2jIqGp7GxsZ6LBsXF2dsHzx4sFT3U/RcAAAAAAAAANUP0x2U0blz54ztyMhIj2UjIiKM7fPnz/usTQAAAAAAAACqHkbSllF2draxHRwc7LFsSEiIsZ2VlVWq+ylu5G16erq6du1aqjoBAAAAAAAAVB6EtGUUGhpqbOfm5nosm5OTY2yHhYWV6n6Km0oBAAAAAAAAQNXGdAdlVKNGDWO7uCkMMjIyjO3ipkYAAAAAAAAA4F8Iacuo6AjXoouIuVJ0ygIWAgMAAAAAAABQFCFtGV166aXG9q5duzyWLXq8Xbt2PmsTAAAAAAAAgKqHkLaMmjVrppiYGElSUlKSx7JfffWVJKlx48Zq2rSpr5sGAAAAAAAAoAohpC0ji8WiQYMGSbowUvabb75xWe6bb74xRtIOGjRIFoulwtoIAAAAAAAAoPIjpC2HRx99VAEBAZKkRx55RFlZWQ7Hs7Ky9Mgjj0iSAgMD9eijj1Z0EwEAAAAAAABUcoFmN8As69ev1969e43bJ06cMLb37t2rOXPmOJQfMWKEUx2tW7fWhAkTNGnSJKWmpqpHjx6aOHGiWrRooX379umVV17R1q1bJUkTJkxQq1atfPJYAAAAAAAAAFRdFrvdbje7EWYYMWKE3nvvvRKXd/c0FRQUaMyYMZo1a5bbc0eNGqVp06bJavX+wOW0tDTFxcVJkg4ePKjY2Fiv3wcAAAAAAP6O798AfInpDsrJarVq5syZSkxM1KBBgxQTE6Pg4GDFxMRo0KBBWrlypWbMmOGTgBYAAAAAAABA1ee3I2mrC/6TBwAAAACA7/H9G4AvMbwTAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJDWi3755Rc99thjatu2rSIiIlS7dm116dJFr732mjIzM81uHgAAAAAAAIBKKNDsBlQXy5cv17333quzZ88a+zIzM5WamqrU1FTNmDFDiYmJatmypYmtBAAAAAAAAFDZMJLWC7Zu3ao77rhDZ8+eVWRkpF588UVt2LBBa9eu1ZgxYyRJu3fv1q233qpz586Z3FoAAAAAAAAAlQkjab1g/PjxysrKUmBgoFavXq3u3bsbx6677jq1atVKjz/+uHbv3q3XX39dzzzzjHmNBQAAAAAAAFCpMJK2nFJSUvT1119LkkaNGuUQ0BZ67LHH1K5dO0nS22+/rby8vAptIwAAAAAAAIDKi5C2nJYsWWJsjxw50mUZq9WqYcOGSZJ+++03ffnllxXRNAAAAAAAAABVACFtOa1fv16SFBERoc6dO7st16tXL2M7OTnZ5+0CAAAAAAAAUDUwJ2057dy5U5LUsmVLBQa6fzrbtm3rdE5JpKWleTyenp5e4roqi892PSyrcs1uBgAAAACgkrimxZsKC4owuxkAYBpC2nLIzs7WiRMnJEmxsbEey9aqVUsRERHKyMjQwYMHS3wfcXFx5WpjZdQubLdqBuab3QwAAAAAQCVhK2DtFgD+jekOyuHcuXPGdmRkZLHlIyIu/Ffw/PnzPmsTAAAAAAAAgKqFkbTlkJ2dbWwHBwcXWz4kJESSlJWVVeL7KG7UbXp6urp27Vri+gAAAAAAAABULoS05RAaGmps5+YWP8dqTk6OJCksLKzE91HcNApV0Y7sbpK4lAUAAAAAcEHvBsUPfAKA6oyQthxq1KhhbJdkCoOMjAxJJZsaoTq7qc1zZjcBAAAAAAAAqDSYk7YcQkNDVadOHUlSWlqax7KnT582QtrquBgYAAAAAAAAgLIhpC2nSy+9VJK0d+9e2Ww2t+V27dplbLdr187n7QIAAAAAAABQNRDSltM111wj6cJUBps3b3ZbLikpydju0aOHz9sFAAAAAAAAoGogpC2nP/zhD8b27NmzXZYpKCjQ3LlzJUnR0dHq06dPRTQNAAAAAAAAQBVASFtOXbt2Vc+ePSVJM2fO1MaNG53KvP7669q5c6ckafz48QoKCqrQNgIAAAAAAACovALNbkB18Pbbb6tHjx7KyspSv3799MQTT6hPnz7KysrS/PnzNW3aNElS69at9dhjj5ncWgAAAAAAAACVCSGtF3Tq1Ekff/yx7r33Xp09e1ZPPPGEU5nWrVsrMTFRNWrUMKGFAAAAAAAAACorpjvwkgEDBuiHH37Qn//8Z7Vu3Vrh4eGKjo5WfHy8XnnlFW3dulUtW7Y0u5kAAAAAAAAAKhmL3W63m90IlF1aWpri4uIkSQcPHlRsbKzJLQIAAAAAoPrh+zcAX2IkLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkCzW4Aysdmsxnb6enpJrYEAAAAAIDqq+h37qLfxQHAGwhpq7jjx48b2127djWxJQAAAAAA+Ifjx4+radOmZjcDQDXCdAcAAAAAAAAAYCKL3W63m90IlF12dra2bdsmSapXr54CAyv/4Oj09HRj1G9KSooaNWpkcotQWryGVR+vYdXG61f18RpWfbyGVR+vYdXG61f1VcXX0GazGVezdujQQaGhoSa3CEB1UvkTPXgUGhqqLl26mN2MMmvUqJFiY2PNbgbKgdew6uM1rNp4/ao+XsOqj9ew6uM1rNp4/aq+qvQaMsUBAF9hugMAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARBa73W43uxEAAAAAAAAA4K8YSQsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdKiQv3yyy967LHH1LZtW0VERKh27drq0qWLXnvtNWVmZprdPL+Umpqq5557Tv369VNsbKxCQkIUGRmp1q1ba+TIkVq/fn2xdcyZM0cWi6VEP3PmzPH9g/IzJX3ue/fuXWxdq1atUkJCgvG7EBsbq4SEBK1atcr3D8RP9e7du8SvYeHPunXrHOqgD/rOsWPHtGLFCj311FO6+eabVbduXeO5HDFiRKnr80Yfs9lsmjJlinr27Kl69eopLCxMLVq00NixY7V9+/ZSt6m688ZrmJmZqcWLF2vcuHHq0qWLatWqpaCgINWpU0fdu3fXM888oyNHjhRbT2n6O37njdfQ2++TmZmZevXVV9WlSxfVrl1bERERatu2rR577DH98ssv5XvA1VB5X8MDBw6U+rOyadOmLuuiH5aeN74vFMVnIQC4YQcqyLJly+xRUVF2SS5/Wrdubd+zZ4/ZzfQrPXv2dPt6FP0ZNmyYPScnx209s2fPLlE9kuyzZ8+uuAfoJ0r63Pfq1cttHfn5+fZRo0Z5PH/06NH2/Pz8intgfqJXr14lfg0l2a1Wqz0tLc2hDvqg73h6LocPH17ierzVx44fP27v0qWL2zpCQkLs06dPL+ejrl7K+xp+//339sjIyGL7VlRUlH3+/Pke6ypNf8fvvNEPvfk+uWfPHnurVq08/i4sX768/A+8Ginva7h///5SfVZKsvfr189lXfTD0vHW9wW7nc9CAChOoIAKsHXrVt1xxx3KyspSZGSk/u///k99+vRRVlaW5s+fr+nTp2v37t269dZblZqaqho1apjdZL9w+PBhSVJMTIxuv/129ezZU5dccony8/O1ceNGvf766zp06JDmzp2rvLw8ffTRR8XW+dlnnykmJsbt8djYWK+1H47GjRunBx980O3xiIgIt8eefPJJzZw5U5LUqVMnPf7442rRooX27dunV199VVu3btWMGTNUr149vfTSS15vuz+bPXu2MjIyPJbZsWOH7rjjDklS37591bhxY7dl6YO+c8kll6ht27ZavXp1qc/1Rh/Lz89XQkKCNm3aJEkaPHiwxowZo9q1a+vbb7/VCy+8oGPHjmns2LFq3Lixbr755rI/2GqqLK/h2bNndf78eUlSjx491L9/f8XHx6tOnTo6fvy4Fi9erOnTp+vs2bO65557FBUVVexzHx8fr9mzZ5frsfir8vTDQuV5nzx37pxuvfVW7dmzR5I0ZswY3XnnnQoLC9OXX36pl19+WWfPntUdd9yh5ORkdezYscztrK7K8ho2btxY27ZtK7bcyy+/bPy9Onz4cI9l6Ycl483vC3wWAkAxzE6J4R8K/wMbGBho37Bhg9PxV1991fjP59NPP13xDfRTt956q/3jjz+222w2l8ePHz9ub926tfHaJCUluSxXdHTK/v37fdhiuFLevvPTTz/ZAwMD7ZLs8fHx9szMTIfjGRkZ9vj4eKMPM+K94j3++OPG6/z+++87HacP+s5TTz1lX758uf3IkSN2u91xNFdJR/B5q4/NnDnTuO8HH3zQ6fiePXuMK1Zatmxpz8vLK92DrabK+xomJyfbhw4dat++fbvbMkuWLLFbLBa7JHuLFi3sBQUFLssVjuDzdGUDnHmjH3rrffIf//iHUc+rr77qdDw5Odno77zOv/PGa1gcm81mj4mJsUuy16hRw+m9thD9sHS89X2Bz0IAKB4hLXzu22+/NT5Ix44d67JMfn6+vV27dnZJ9ujoaHtubm4FtxLuLF++3Hj9HnnkEZdlCIjMVd6Qdty4cUYdGzdudFlm48aNHv8ghu/k5+fbGzdubJdkj4yMtGdkZDiVoQ9WnLIEC97qY4Wfk7Vr13b5e2C32+0vv/yyUc8nn3xSovb5G1+EQ3a73X7bbbcZ9W7evNllGcIh7zArpM3NzbXXrFnTLsnerl07t5dkjx071rivlJSUMt1XdeeLfvjf//7XqHPkyJFuy9EPva8k3xf4LASA4rFwGHxuyZIlxvbIkSNdlrFarRo2bJgk6bffftOXX35ZEU1DCfTp08fY3rdvn4ktgS/Y7XYtXbpUktS2bVt169bNZblu3bqpTZs2kqSlS5fKbrdXWBv93dq1a3Xo0CFJ0pAhQxQeHm5yi1Aa3upju3fv1s6dOyVJQ4cOdft7UHQBnk8//bS8zUcp8HlZ/X355Zc6c+aMpAuX0lutrr9K0Q/NMXfuXGO7uKkO4F3Fvf/xWQgAJUNIC58rXO0zIiJCnTt3dluuV69exnZycrLP24WSycnJMbYDAgJMbAl8Yf/+/cZcY0X7oCuFxw8dOqQDBw74umn4n6JfOgv/mYWqw1t9rOjK2Z7qadiwoVq3bi2Jz9KKxudl9VfSfhgfH2+ER/TDinHu3DljYEjTpk117bXXmtsgP1Pc+x+fhQBQMoS08LnC/3a2bNlSgYHu16pr27at0zkwX1JSkrHdrl27YsuPHDlSMTExCg4OVt26ddWtWzf9/e9/N0YCwncWLFigSy+9VOHh4apRo4ZatWql4cOHexyZvmPHDmO7aB90hT5a8c6fP2+MAGnSpIl69+5d7Dn0wcrFW32sLPUcPHiw2EXp4D2l+bzctWuXrrrqKkVHRys0NFSxsbEaNGiQsfAOfKus75Ml7YeBgYFq2bKlJD4vK8rChQuVmZkpSbrvvvtksViKPYd+6D3Fvf/xWQgAJUNIC5/Kzs7WiRMnJBW/onitWrWM1ecPHjzo87aheAUFBZo0aZJxe+jQocWes27dOqWnpysvL08nT57Ut99+qxdffFEtW7bU1KlTfdlcv7djxw7t3LlTWVlZOn/+vPbu3au5c+fquuuuU0JCgnGJZlFpaWnGdnF9NC4uztimj1aMRYsWGV8s7r333hJ96aQPVi7e6mNlqcdutzucB9/5/vvvlZiYKEnq0KFDsSHt0aNHlZKSojNnzignJ0eHDh3SsmXLNHz4cHXs2JFgz8fK+j5Z2J8iIiIUHR3t8T4K++Hx48cdRhnCN8py1Qn90DtK8n2Bz0IAKBn3wxoBLzh37pyxHRkZWWz5iIgIZWRk6Pz5875sFkrozTffVEpKiiRp8ODBHqeraN68uQYPHqzu3bsbfxT9/PPPWrRokRYuXKjs7Gz98Y9/lMVi0QMPPFAh7fcX4eHhGjhwoPr27au2bdsqMjJSx48fV1JSkqZMmaKTJ09qyZIlGjRokNasWaOgoCDj3NL00cJ/okiij1aQ0nzppA9WTt7qY/TVyisnJ0ejR49Wfn6+JOnFF190W9Zqtapv37665ZZbdMUVV6hOnTo6d+6ctmzZoqlTp2rnzp3asWOH+vTpo5SUFF1yySUV9TD8QnnfJwv7YUn/pi10/vx5hYSEeOlR4GK//vqrMZLz6quvNkYxu0M/9K6SfF/gsxAASoaQFj6VnZ1tbAcHBxdbvvAP2KysLJ+1CSWTlJSkv/3tb5Kk+vXra/LkyW7LJiQkaPjw4U6j/Lp06aI77rhDK1as0ODBg5WXl6c///nPGjhwoBo2bOjT9vuTQ4cOuRzRc8MNN+iRRx7RzTffrK1btyopKUmTJ0/Wn/70J6NMafpo0S+Y9FHfS0tL07p16yRdWEijcG41V+iDlZe3+hh9tfJ6+OGHlZqaKunCYkUDBgxwW3bx4sUu36979uypBx98UGPGjNF7772no0eP6tFHH9XixYt91Wy/4433ycJ+WJq/aSX6oa998MEHxgJTJRlFSz/0npJ+X+CzEABKhukO4FOhoaHGdm5ubrHlCy8HCwsL81mbULzt27crISFBNptNoaGhWrBggerXr++2fM2aNT1eht2/f3899dRTkqTMzEzNnDnT6232Z54uuWzQoIEWLlxojJ595513HI6Xpo8WvVyTPup7H3zwgQoKCiQVv0o1fbDy8lYfo69WTi+//LJmzJgh6ULY9+6773os7+n9OigoSDNmzDBWNv/000+ZS9qLvPE+WdgPS/M3rUQ/9LX3339f0oVQ7o477ii2PP3QO0rzfYHPQgAoGUJa+FSNGjWM7ZJcZlI492JJLiODb+zfv1/9+vXT6dOnFRAQoPnz53tlhdwHHnjA+HJUdHEB+F7z5s11ww03SJL27t1rrK4rla6PFl10gT7qe6X90lkc+qA5vNXH6KuVz9SpU/XEE09IurBAzcqVKx0ury2LwMBAjRo1yrhNX61Yxb1PFvbD0vxNK9EPfSklJUW7du2SJA0cOLDYuYJLgn5YvNJ+X+CzEABKhpAWPhUaGqo6depIUrETtp8+fdr4MC06YTwqzuHDh3X99dfr8OHDslgsmjVrlgYNGuSVuuvXr2/8LjAioeJdeumlxnbR57/oogvF9dGiizfQR30rNTXVWMG4f//+qlWrVrnrpA+aw1t9rCz1WCyWYhdWQdnMmzdPDz74oCSpSZMmWrNmjerWreuVut29X8P3inufLOxPGRkZ+u233zzWVdgP69Wrx3y0PlSWBcNKgn7oXlm+L/BZCAAlQ0gLnyv8I2fv3r2y2WxuyxX+F1xSsasiw/tOnDihG264QT///LOkC5fFe/OPXUklWpkevuHuuS/6JaRoH3SFPlpxin7pLG6qg9KgD1Y8b/WxstQTFxdX7pGdcLZs2TINGzZMBQUFatSokdauXevVAIB+ai5Pz39J+6HNZtO+ffsk8XnpS3l5eZo/f76kCwH7TTfd5LW66YeulfX7Ap+FAFAyhLTwuWuuuUbShVEHmzdvdluu6KVEPXr08Hm78LszZ87oxhtvNEbuTZo0SQ899JBX7+P48eM6ceKEJCkmJsardaN4ha+t5Pj8N2vWzLhd3OV8X331lSSpcePGatq0qfcbCUmOXzrr1aunm2++2Sv10gfN4a0+VvhZWlw9R44c0e7duyXxWeoLa9eu1dChQ2Wz2VSnTh2tWbNGLVq08Op9uHu/hu8V9z5Z0n6YmppqXB1GP/SdxMREnTx5UpJ09913KzDQe2ti0w+dlef7Ap+FAFAyhLTwuT/84Q/G9uzZs12WKSgoMEaORUdHq0+fPhXRNOjC4hi33nqrtmzZIkl68sknNXHiRK/fz7Rp04yVd3v16uX1+uHe/v37tWbNGklSixYt1LhxY+OYxWIxLlHbtWuXvvnmG5d1fPPNN8aIhEGDBjHCxIdWrVql48ePS/Lul076oDm81cdat25tjCj65JNPlJmZ6bKeOXPmGNsJCQnlbT6K2LBhgwYNGqScnBzVrFlTn332mS677DKv3ofNZtOsWbOM296YEx4lV9z7ZO/evVWzZk1J0nvvvWeUvRj9sGL46qoT+qGz8n5f4LMQAErIDlSAnj172iXZAwMD7Rs2bHA6/uqrr9ol2SXZn3766YpvoJ/Kycmx9+vXz3jux48fX+o69u/fb9+yZYvHMsuXL7cHBwfbJdnDwsLsaWlpZWwxLrZs2TJ7Xl6e2+NHjhyxd+rUyXiNX3/9dacyP/30kz0gIMAuyR4fH2/PzMx0OJ6ZmWmPj483+vDu3bu9/jjwu9tuu814vTZv3lxsefpgxdq/f7/x+gwfPrxE53irj82cOdO474ceesjp+N69e+1RUVF2SfaWLVt6fG/wZ2V5Dbdu3WqPjo62S7JHRETY169fX+r7/eKLL+ynT592ezw3N9c+fPhwo20DBgwo9X34i9K+ht58n/zHP/5h3Perr77qdHzDhg32wMBAuyR7r169SvJw/FJZ+mFRJ0+eNF6vDh06lPg8+mHpeeP7gt3OZyEAlIT3rgkBPHj77bfVo0cPZWVlqV+/fnriiSfUp08fZWVlaf78+Zo2bZqkC/8dfeyxx0xurf+46667tHr1aknSddddp1GjRunHH390Wz44OFitW7d22HfgwAH16dNH3bt314ABA3TFFVeofv36kqSff/5ZCxcu1MKFC43RJv/85z8dRnKifB555BHl5eXptttuU/fu3dW0aVOFhYXpxIkTWrdunaZOnWpcunnNNde4vCytdevWmjBhgiZNmqTU1FT16NFDEydOVIsWLbRv3z698sor2rp1qyRpwoQJatWqVYU+Rn9y+vRprVixQpLUvn17XXnllcWeQx/0rfXr12vv3r3G7cL+JF2Ya73oaB1JGjFihFMd3upjw4cP16xZs5ScnKx3331XR44c0ZgxY1SrVi2lpKTo+eef19mzZ2W1WvWvf/3Lq5f+VmXlfQ337dunG2+80Vgo6oUXXlDNmjU9fl7Wr1/f6IeF3nvvPQ0cOFADBw5U79691aZNG0VFRen8+fPavHmzpk2bZlxGXL9+fb399ttleLTVU3lfQ2++T06YMEEff/yxdu/erccff1x79+7VnXfeqbCwMH355Zd66aWXZLPZFBYWprfeeqv8D76a8MZ7aVHz589Xbm6upNKNoqUflp43vi9IfBYCQImYHBLDjyxbtsz4r6arn9atW9v37NljdjP9irvXwt1PkyZNnOr48ssvS3RueHi4ferUqRX/IKu5Jk2alOj5v+222zyOHMnPz7fff//9HusYNWqUPT8/v+IenB+aPHmyxxFartAHfavoiKqS/LjjrT52/Phxe5cuXdzWERISYp8+fbq3n4Yqrbyv4ezZs0v9eenqqqCStqNDhw727du3V8AzU3WU9zX09vvknj177K1atXJbT1RUlH358uW+eCqqLG+9lxa66qqr7JLsAQEB9vT0dK+3g374u9K+/7n6vlCIz0IA8Ix/K6HCDBgwQD/88IPefvttJSYmKi0tTcHBwWrZsqVuv/12PfzwwwoPDze7mSilzp0764MPPtDGjRuVmpqq9PR0nThxQjabTbVq1dJll12mvn37avTo0U6jilB+7733npKSkrRx40b9/PPPOnHihM6ePavIyEjFxcXp6quv1vDhw9W9e3eP9VitVs2cOVO33Xabpk2bpk2bNunEiROqW7euunTporFjx3ptASu49/7770uSAgICdM8995ToHPpg1eCtPla3bl1t2LBB06dP10cffaSdO3cqIyNDMTEx6tu3r8aPH+/1eVLhHRMnTlTHjh21ceNG7dixQ8ePH9epU6cUEhKiBg0aKD4+XkOGDFFCQoICAgLMbm614u33yZYtW2rr1q169913tWDBAu3du1e5ubmKi4vTLbfcovHjx6tJkyYV8Mj80549e/Ttt99Kkm644QY1bNiwxOfSD83FZyEAeGax293MeA8AAAAAAAAA8Dmr2Q0AAAAAAAAAAH9GSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAFBGc+bMkcVikcVi0YEDB8xuDgAAAIAqipAWAAD4nQMHDhjhanl+AAAAAMAbCGkBAAAAAAAAwEQWu91uN7sRAAAAFSkvL08//fST2+MdOnSQJMXHx2v27Nluy7Vv397rbQMAAADgfwLNbgAAAEBFCwoKKlHAGhERQRALAAAAwOeY7gAAAAAAAAAATERICwAAUEZz5swxFhE7cOCA0/HevXvLYrGod+/ekqS9e/fqj3/8o5o3b66wsDA1bdpUo0aN0i+//OJw3o8//qiRI0eqefPmCg0NVVxcnMaNG6djx46VqF1LlizR7bffrksuuUShoaGKjo5WfHy8nn32WZ0+fbq8DxsAAACAlzHdAQAAQAX4/PPPNXjwYJ07d87Y98svv2jWrFlasWKFkpKS1LZtW82bN08jRoxQbm6uUS4tLU1TpkzRqlWrtGHDBsXExLi8j9OnT2vIkCH64osvHPbn5ORo8+bN2rx5s/7zn/9o6dKl6tatm28eKAAAAIBSYyQtAACAjx0+fFhDhw5VdHS03nnnHX377bf6+uuv9eijj8pisejYsWMaPXq0Nm3apGHDhqlFixaaMWOGUlJS9OWXX+q+++6TdCHU/ctf/uLyPnJycnT99dfriy++UEBAgO677z7NmzdP33zzjb7++mu9+OKLqlOnjo4dO6ZbbrnFafQuAAAAAPMwkhYAAMDH9uzZo1atWik5OVn16tUz9l9zzTUKDAzUP//5TyUnJ+vWW29V165dtWbNGoWHhxvlevfurezsbC1YsECLFi3S8ePHHeqRpOeee05btmxRdHS0Pv/8c3Xu3Nnh+DXXXKN77rlH3bt3V3p6up544gl9+OGHvn3gAAAAAEqEkbQAAAAV4F//+pdTsCpJDz74oLF94sQJzZgxwyGgLTRu3DhJks1m08aNGx2OnT9/Xu+++64k6fnnn3cKaAs1adJE//jHPyRJCxYsUEZGRtkeDAAAAACvIqQFAADwsejoaN14440ujzVr1kw1atSQJF1++eVq166dy3JXXHGFsf3zzz87HEtKStKZM2ckSUOGDPHYlmuvvVaSlJeXp82bN5fsAQAAAADwKaY7AAAA8LFWrVrJYrG4PR4dHa1z586pdevWHssUKrr4mCSlpqYa240aNSpxu44cOVLisgAAAAB8h5G0AAAAPuZq+oKirFZrseUKy0hSfn6+w7Fjx46VqV2ZmZllOg8AAACAdzGSFgAAoIorGtpu2bJFQUFBJTovNjbWV00CAAAAUAqEtAAAAFVcnTp1jO169eoRvgIAAABVDNMdAAAAVHGdOnUytpOTk01sCQAAAICyIKQFAACo4q6//npjPtt//etfstvtJrcIAAAAQGkQ0gIAAFRx0dHRevjhhyVJGzZs0J///GcVFBS4LX/06FHNmDGjopoHAAAAoBjMSQsAAFANPPfcc0pKStK3336rt99+W+vWrdOYMWPUsWNHRURE6PTp09q+fbs+//xzrVq1Sh06dNDo0aPNbjYAAAAAEdICAABUCyEhIVqzZo1GjBihxYsX6/vvvzdG17oSFRVVga0DAAAA4AkhLQAAQDVRo0YNLVq0SOvXr9d7772nr7/+WocPH1ZWVpaioqLUokULde3aVbfeeqv69etndnMBAAAA/I/FzsoSAAAAAAAAAGAaFg4DAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAm+n+hmsAdrAogIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "graph = my_model.compartmentPlot('Basic_example_compartment.png', data)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/_sources/evolution.ipynb.txt b/docs/_build/html/_sources/evolution.ipynb.txt new file mode 100644 index 0000000..61558f8 --- /dev/null +++ b/docs/_build/html/_sources/evolution.ipynb.txt @@ -0,0 +1,1424 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evolution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Fitness function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single population scenario, illustrating pathogen evolution through _de novo_ mutations and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector), the pathogen with the most fit genome has a higher probability of being transmitted to another host (or vector). In this case, the transmission rate does NOT vary according to genome. Once an event occurs, however, the pathogen with higher fitness has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal genome and every other genome is less fit, but fitness functions can be defined in any arbitrary way (accounting for multiple peaks, for instance, or special cases for a specific genome sequence)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define an optimal genome" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # The genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # Minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='host-host',\n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function).\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " mutate_in_host=5e-2\n", + " # Modify de novo mutation rate of pathogens when in host to get some\n", + " # evolution!\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a suboptimal pathogen genome, _BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, _BEST_, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 84.9205322047209, event: CONTACT_HOST_HOST\n", + "Simulating time: 139.4831216243728, event: CONTACT_HOST_HOST\n", + "Simulating time: 199.83533163204655, event: RECOVER_HOST\n", + "Simulating time: 200.0243380253218 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19662265031018072s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019941329956054688s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020781755447387695s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016440391540527344s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02756667137145996s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.051561594009399414s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 560 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Done 1024 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0886225700378418s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1822 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2156 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2270 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2384 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2560 out of 2560 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1BADDNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
255995200.0my_populationHostmy_population_95NaNNaNTrue
255996200.0my_populationHostmy_population_96NaNNaNTrue
255997200.0my_populationHostmy_population_97NaNNaNTrue
255998200.0my_populationHostmy_population_98BESTNaNTrue
255999200.0my_populationHostmy_population_99BESTNaNTrue
\n", + "

256000 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 BADD NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + "... ... ... ... ... ... ... \n", + "255995 200.0 my_population Host my_population_95 NaN NaN \n", + "255996 200.0 my_population Host my_population_96 NaN NaN \n", + "255997 200.0 my_population Host my_population_97 NaN NaN \n", + "255998 200.0 my_population Host my_population_98 BEST NaN \n", + "255999 200.0 my_population Host my_population_99 BEST NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + "... ... \n", + "255995 True \n", + "255996 True \n", + "255997 True \n", + "255998 True \n", + "255999 True \n", + "\n", + "[256000 rows x 7 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame( \n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'fitness_function_mutation_example.csv' \n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 103 genotypes processed.\n", + "2 / 103 genotypes processed.\n", + "3 / 103 genotypes processed.\n", + "4 / 103 genotypes processed.\n", + "5 / 103 genotypes processed.\n", + "6 / 103 genotypes processed.\n", + "7 / 103 genotypes processed.\n", + "8 / 103 genotypes processed.\n", + "9 / 103 genotypes processed.\n", + "10 / 103 genotypes processed.\n", + "11 / 103 genotypes processed.\n", + "12 / 103 genotypes processed.\n", + "13 / 103 genotypes processed.\n", + "14 / 103 genotypes processed.\n", + "15 / 103 genotypes processed.\n", + "16 / 103 genotypes processed.\n", + "17 / 103 genotypes processed.\n", + "18 / 103 genotypes processed.\n", + "19 / 103 genotypes processed.\n", + "20 / 103 genotypes processed.\n", + "21 / 103 genotypes processed.\n", + "22 / 103 genotypes processed.\n", + "23 / 103 genotypes processed.\n", + "24 / 103 genotypes processed.\n", + "25 / 103 genotypes processed.\n", + "26 / 103 genotypes processed.\n", + "27 / 103 genotypes processed.\n", + "28 / 103 genotypes processed.\n", + "29 / 103 genotypes processed.\n", + "30 / 103 genotypes processed.\n", + "31 / 103 genotypes processed.\n", + "32 / 103 genotypes processed.\n", + "33 / 103 genotypes processed.\n", + "34 / 103 genotypes processed.\n", + "35 / 103 genotypes processed.\n", + "36 / 103 genotypes processed.\n", + "37 / 103 genotypes processed.\n", + "38 / 103 genotypes processed.\n", + "39 / 103 genotypes processed.\n", + "40 / 103 genotypes processed.\n", + "41 / 103 genotypes processed.\n", + "42 / 103 genotypes processed.\n", + "43 / 103 genotypes processed.\n", + "44 / 103 genotypes processed.\n", + "45 / 103 genotypes processed.\n", + "46 / 103 genotypes processed.\n", + "47 / 103 genotypes processed.\n", + "48 / 103 genotypes processed.\n", + "49 / 103 genotypes processed.\n", + "50 / 103 genotypes processed.\n", + "51 / 103 genotypes processed.\n", + "52 / 103 genotypes processed.\n", + "53 / 103 genotypes processed.\n", + "54 / 103 genotypes processed.\n", + "55 / 103 genotypes processed.\n", + "56 / 103 genotypes processed.\n", + "57 / 103 genotypes processed.\n", + "58 / 103 genotypes processed.\n", + "59 / 103 genotypes processed.\n", + "60 / 103 genotypes processed.\n", + "61 / 103 genotypes processed.\n", + "62 / 103 genotypes processed.\n", + "63 / 103 genotypes processed.\n", + "64 / 103 genotypes processed.\n", + "65 / 103 genotypes processed.\n", + "66 / 103 genotypes processed.\n", + "67 / 103 genotypes processed.\n", + "68 / 103 genotypes processed.\n", + "69 / 103 genotypes processed.\n", + "70 / 103 genotypes processed.\n", + "71 / 103 genotypes processed.\n", + "72 / 103 genotypes processed.\n", + "73 / 103 genotypes processed.\n", + "74 / 103 genotypes processed.\n", + "75 / 103 genotypes processed.\n", + "76 / 103 genotypes processed.\n", + "77 / 103 genotypes processed.\n", + "78 / 103 genotypes processed.\n", + "79 / 103 genotypes processed.\n", + "80 / 103 genotypes processed.\n", + "81 / 103 genotypes processed.\n", + "82 / 103 genotypes processed.\n", + "83 / 103 genotypes processed.\n", + "84 / 103 genotypes processed.\n", + "85 / 103 genotypes processed.\n", + "86 / 103 genotypes processed.\n", + "87 / 103 genotypes processed.\n", + "88 / 103 genotypes processed.\n", + "89 / 103 genotypes processed.\n", + "90 / 103 genotypes processed.\n", + "91 / 103 genotypes processed.\n", + "92 / 103 genotypes processed.\n", + "93 / 103 genotypes processed.\n", + "94 / 103 genotypes processed.\n", + "95 / 103 genotypes processed.\n", + "96 / 103 genotypes processed.\n", + "97 / 103 genotypes processed.\n", + "98 / 103 genotypes processed.\n", + "99 / 103 genotypes processed.\n", + "100 / 103 genotypes processed.\n", + "101 / 103 genotypes processed.\n", + "102 / 103 genotypes processed.\n", + "103 / 103 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABToAAALmCAYAAABijysXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5iU5bk/8O/swtKriIBgixKxxoIRG9iPiBpMRBOPCFGJxiTGYzDxZ2KM7Xg0iUYTSVARsSucxIg1OXZEEYOFAFJXYNll68xOe9vzPL8/3nnfnd52dtp+P9fF5ezMO+88s8yO7Hfu5749SikFIiIiIiIiIiIiogpWU+oFEBEREREREREREXUXg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKK16fUC6DyoGkavvjiCwDAnnvuiT59+NIgIiIiIiIiKjTLstDS0gIAOPzww9G/f/8Sr4ioejDNIgDAF198geOOO67UyyAiIiIiIiLqNVatWoXJkyeXehlEVYNb14mIiIiIiIiIiKjisaKTANjb1R2rVq3C2LFjS7gaIiIiIiIiourU2Njo7qiM/l2ciLqPQScBQExPzrFjx2L8+PElXA0RERERERFR9eN8DKLC4tZ1IiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIKAvSEqVeAhEREREREaXBoJOIiCgLikEnERERERFRWWPQSURElAVpSkjTKvUyiIiIiIiIKAUGnURERFmQlgUrqJd6GURERERERJQCg04iIqIsSFPAChulXgYRERERERGl0KfUCyAiIqoEyhSQQpZ6GURERERERJQCKzqJiIiyIIWENNijk4iIiIiIqFwx6CQiIsqGVBA6g04iIiIiIqJyxaCTiIgoC0oqCI09OomIiIiIiMoVg04iIqIsSEtAaGapl0FEREREREQpMOgkIiLKgmLQSUREREREVNYYdBIREWVBGlZC0CktUaLVEBERERERUTwGnURERFmQloDQY4NOVngSERERERGVDwadREREWZCWRGhnW9fXhgVpcgo7ERERERFRuehT6gUQERFVBKkg9K5gU/cGAVXC9RAREREREVEMVnQSERFlQSkFJaT7teENJWxlJyIiIiIiotJh0ElERJQFJaT7BwCMjiCsgFbiVREREREREZGDW9eJiIiyoRSUVFBSwlNbA8MXKvWKiIiIiIiIKAqDTiIioiwoYYecSgHCsGCFdNT04cYIIiIiIiKictFrf0NbvXo1brvtNpx11lkYP348+vXrh8GDB2PixImYO3cu3n///YznWLx4MTweT1Z/Fi9enPF8oVAI99xzDyZPnoyRI0di0KBBOPjgg3HDDTfgq6++KsCzJiKifCmlAGlPHzI7QzA7w5CmKPGqiIiIiIiIyNErKzpPOeUUvPfeewnXG4aBTZs2YdOmTVi8eDFmz56Nhx9+GHV1dT2+ps2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjB5fCxERJVKWgJIKUAqdm5ogNBPSYtBJRERERERULnpl0Llr1y4AwLhx43DRRRfh5JNPxj777AMhBFauXInf/e53aGhowJIlS2CaJp5++umM53z99dcxbty4lLePHz8+5W1+vx/nnnuuG3JeddVVuOSSSzBgwAC89dZb+O///m90dnbi4osvxooVK/CNb3wjtydMRETdJp2gE4C07KFE0rBKvCoiIiIiIiJy9Mqg8+CDD8Zdd92Fb3/726itrY257fjjj8dll12GE088ERs3bsQzzzyDq6++Gqecckrac06cOBH77bdfXuu59957sXHjRgDAPffcg/nz57u3TZkyBdOmTcPUqVMRCoXw05/+FG+//XZej0NERPmTpgSUHXQqU0BG/hAREREREVF56JU9OpcvX45Zs2YlhJyOUaNG4Xe/+5379dKlS3tsLaZp4oEHHgAATJo0CTfccEPCMSeccAKuuOIKAMA777yDjz/+uMfWQ0REyUnTrt5UUkFaAtKwWNFJRERERERURnpl0JmNU0891b28ZcuWHnuct956Cz6fDwBw+eWXo6Ym+V/JnDlz3Mt//etfe2w9RESUnFO9qSwBZQkIw4Jg0ElERERERFQ2GHSmoOu6ezlV5WchRE93nzp1asrjjj32WAwcOBAAsGLFih5bDxERJacig4eskAFp2f05uXWdiIiIiIiofDDoTOGdd95xL0+aNCnj8XPnzsW4ceNQV1eHUaNG4fjjj8cvf/lLNDQ0pL3funXr3MsHH3xwyuP69OmDAw88EACwfv36jOshIqLCcgYRWUHd3rpuFn7ruhKyoOcjIiIiIiLqTXrlMKJMpJS4++673a9nzZqV8T7RA4La2trQ1taGjz76CL/73e9w//334wc/+EHS++3cuRMAMGjQIAwfPjztY0yYMAGff/45WlpaoOs6+vXrl/nJxD1OKo2NjVmfi4ioV1JO0KnZ1Z0KkEZhKzq1lk4MGDO8oOckIiIiIiLqLRh0JnHfffdh1apVAIALL7wQxxxzTMpjDzjgAFx44YWYMmUKJkyYAADYunUrli1bhqVLl0LTNFx99dXweDyYN29ewv39fj8AYPDgwRnXNWjQIPdyIBDIKeh01kZERPlRkaDTDOjulnVnQFGhhBq9DDqJiIiIiIjyxKAzzjvvvINf/OIXAIDRo0djwYIFKY+dOXMmLr/8cng8npjrJ0+ejIsvvhjLly/HhRdeCNM0cf311+P888/HmDFjYo7VNA0AUFdXl3Ft0cFmOBzO+jkREVH3WEHd3aZuBTUYvhAAFHzrunNeIiIiIiIiyh17dEb597//jZkzZ8KyLPTv3x8vvPACRo8enfL4YcOGJYSc0WbMmIFbbrkFABAKhfDoo48mHNO/f38AgGEYGdcXPSBpwIABGY+PtmPHjrR/nApWIiJKZPhCEJoJwA499bYAABR8GJEI6ZkPIiIiIiIioqQYdEZs27YNZ511Fjo6OlBbW4tnn30Wp5xySrfPO2/ePDcMjR5w5BgyZAgAeyt6JsFg0L2czVb3aOPHj0/7Z+zYsTmdj4io2inZNRjI8IUgdDvoNIM6RNj+cEoJWbCwU28PwIqEqURERERERJQ7Bp0Adu3ahTPOOAO7du2Cx+PBokWLcMEFFxTk3KNHj8Yee+wBAEknsI8fPx6AHWJ6vd6059qxYwcAYM8998ypPycREeVOWVFBpzeqojOgxRxnhTNX5GfDv63ZfQwiIiIiIiLKXa8POltbW3HmmWdi69atAIAHH3wQs2fPLuhjpNvefsghh7iXN2zYkPI4y7KwZcsWAMCkSZMKtzgiIkpKiq6g0wrpkLrTozN2e7koUNAZqG+B1M2YSlIiIiIiIiLKXq8OOn0+H84++2ysW7cOAHD33Xfj2muvLehjtLS0oLW1FQAwbty4hNtPOukk93Kyre2O1atXu1vXTzzxxIKukYiIEqmooBORietAYtBpFaivZuCrVgjNhNALO+CIiIiIiIiot+i1QWcoFMK5556Lf/3rXwCAm2++GT//+c8L/jgLFy6EivyCPHXq1ITbp02bhmHDhgEAHn/8cffYeIsXL3Yvz5w5s+DrJCKiWMrq6r0Z/d4cv1VdaCak1b0+nUI3obf57XMVeJI7ERERERFRb9Erg07DMDBz5kysWLECAHDdddfhjjvuyOkc9fX1WLNmTdpjli9fjttuuw2APSV97ty5CcfU1dXhJz/5CQBg/fr1+O1vf5twzMqVK92J7VOnTsXkyZNzWisREeXOCkf1y5RRH0LFfSAVbuxIqPLMlekPA8oOUQs9yZ2IiIiIiKi36FPqBZTCd7/7XbzxxhsAgNNOOw1XXHEF1q5dm/L4uro6TJw4Mea6+vp6nHrqqZgyZQrOO+88HHnkkRg9ejQAYOvWrVi6dCmWLl3qVgH99re/xd577530/PPnz8dzzz2HjRs34sYbb8TmzZtxySWXYMCAAXjrrbdw1113wbIsDBgwAPfff38BvgNERJSJCHeFlymK7QEA/q3NGHnU/t16LCcotUJ6TCUpERERERERZa9XBp3/+7//615+8803ccQRR6Q9ft9990V9fX3S21auXImVK1emvO/AgQNx3333Yd68eSmPGTJkCF5++WVMnz4dmzZtwsKFC7Fw4cKYY4YOHYqnnnoK3/jGN9KulYiICsMKRW1RT5N06u2Bbg8Qcqs4pYI0BaQlUNOntlvnJCIiIiIi6m16ZdBZCMcccwyefPJJrFy5EqtXr0ZjYyNaW1thWRZGjBiBQw89FKeffjquvPJKt9IznQMPPBBr1qzBn/70J7zwwgvYvHkzDMPAhAkTMH36dFx33XXYd999i/DMiIgIiOvFmSboNIM6INKUfGZBRW2NF4YFZUmAQScREREREVFOemXQmWrgTy6GDBmCSy+9FJdeemkBVmQbNGgQbrzxRtx4440FOycREeVHRFV0pvv/hjJFtys6o4NUaVqQlkAt+nbvnERERERERL1MrxxGRERElIkV1aMTGXLM6IrMfETfXxqCfTqJiIiIiIjywKCTiIgoCalb7mWttTPtsUp0s0en3jXhXWgGJINOIiIiIiKinDHoJCIiSsKpstRaOtG5uSmrY/Ole0PuZcMbgjS7uRWeiIiIiIioF2LQSURElITTd7NtTT2QIccUutmtsNPoCHZd9ga5dZ2IiIiIiCgPDDqJiIiSiQwI0tsDGQ8N7WyHNMyMx6WitXRtjQ/v9nHrOhERERERUR4YdBIRESWhpIKSCoYvlPHYYEM79KiqzFxpbf6uyy1+VnQSERERERHlgUEnERFREkoqGN4gzCyCTsMXgm/9rvweRymIsNH1tSWgRPd6fhIREREREfVGDDqJiIiSUFJBa/XD6AxnPNb0hhDc2Zbf41giYWq70x+UiIiIiIiIssegk4iIKAnTF7K3rWcxZMgK6bCCel6PE27uTBh25FSTEhERERERUfYYdBIRESVhBXVI3cr6eKHlN4woUN+ScJ2SCuEmX17nIyIiIiIi6q0YdBIREcWRloAUMqeqSmlmH4pGSx50SoR3+6AUe3USERERERFli0EnERFRPKUAKRHckX3fTWnl3ldTSYng9tYkJ1MwA2FYgfy2wxMREREREfVGDDqJiIjiKKEgTQGtpTP7+1gi58cxvCGYAS3xXFJCaKbdI5SIiIiIiIiywqCTiIgojhU2IC0JaWYfXkqRe0Wn3uZPGEQERIJWQ3AgERERERERUQ4YdBIRUa+Urv+l0AwoIaByCC9VHlvX9fbkQaaSCtK0YPhCUFlMfSciIiIiIiIGnURE1Eulm6guwmbSSsu0lII0chtIJPTkk9qVlJCGHXRaIfbpJCIiIiIiygaDTiIi6pVShYyAXdGZD8Mfzun4lFvjpYIwLJjeEKwgg04iIiIiIqJsMOgkIqJeRwmZsvrS7AzDCucXdAa2Nud0vEjxOEoqiLBhV3QGE4cVERERERERUaI+pV4AERFRsUnTStl/U+8IQGipqz3TMXOsvkw2cR0AlJKwgjqEZsIK57cWIiIiIiKi3oYVnURE1OtIQ6QMGfX2YMpKy4znTbMdPhkrVdApFKQpYAX1nAYiERERERER9WYMOomIqNeRpoXwbl/S28zOEKxQnkFnjpPXzUDyClBlCXcqPINOIiIiIiKi7DDoJCKiXkeaAnpbIOltQjOhtye/LRNlJR8upHcEk16faqK6EhJwgk7JoJOIiIiIiCgbDDqJiKjXEYaVcuu6MCzorf68ziuTVF+Gm7wIbEscUqSUShl0Ct0CVOQ4VnQSERERERFlhUEnERH1OtKwIELJ+19Kw4LuTV6BmUl8RadSCrs/2OhuQwfs4LLh9c9gdAQBqeJPAQAxU9+VSH4MERERERERxWLQSUREvY7QTBi+UNJt4dKwUgaQmai4Hp1acyfa19THnC+0qwNN76xPuXUeAPS2ropSZ42s7CQiIiIiIkqPQScREfU6QneCzsRAUxrJ+2xmI3rrupISTe+sgxIypqIz8FULAMAMJt86DwBaa3TQyV6dRERERERE2WDQSUREvY7QTChLJq2SFIaZ93mjt67HDDyKClQD9XbQaaWYuA4Ayuw6j7NGbmEnIiIiIiJKj0EnERH1OkKzw8zkFZ1W3ueVUVvXpSkgI8FnVEEnAl+1AgCsNBWd0dygkxWdREREREREaTHoJCKiXsXwBmH4QgCS973sztZ1JaIqMS0B6VRmRpJOaVqwgnYlpxXOrnLUCTiFnn8AS0RERERE1Bsw6CQiol5Fa/UjtLMNQPKKzu5tXY+q6LQEpGnFPE5MxWeWj+NsWReh1FvdiYiIiIiIiEEnERH1MlZQR7jJBwDQo4b+OITWva3rziAhaYio6tDIQKGo3pvO9vlMnKpTK8vjiYiIiIiIeisGnURE1KuYga7emK2rt8bcJi0BqecfKErLQuuqzQAAK6RHbV3vOr8j263ozoCj7qyLiIiIiIioN2DQSUREvYrTIxMAvOt3xgz5ybbKMhXDG4J/WwuUVJHJ7l3BphnQYnqCOtvaM3HCUScYVYrT14mIiIiIiJJh0ElERL2KFVXRqSwZG24m6dmZE6kgdBNKyITp7S0fbooJKZMNQkp6ykhVqHO+bO9HRERERETU2zDoJCKiXsWKG+pjhY2Cnl9ZAtISEFFBZ2hXBwLbW2OPyzKwdAYcMegkIiIiIiJKj0EnERH1Ks4Uc4cId1V0FmJTuDQFtN2+mIpOwxtMeIBkE9+Tns/p0WkKKKWyvh8REREREVFvw6CTiIh6NRFd0VmA/pfSFAg2tMcEndKSCSlqzlvXhYAS0q3wJCIiIiIiolgMOomIqFezCh10WgKhhnaYga4t8tIUgLL7d7oPJbPduh4ZRhQ2AamghMhwDyIiIiIiot6JQScREfVqQitsj05IhcD2VpidIfcqJ5yM7g+a69Z1M6BBScmt60RERERERCn0KfUCiIiISkkaXRWSqgAVnQBgtAdR27+u6zEi282tYFTQme3W9cgWeCugQUnFretEREREREQpsKKTiIh6t+hws4DFkqYvqqLTElAqPujM7sGskF1xagY0KCEhOXWdiIiIiIgoKQadRETUq6i4NLNQVZzxorep2xWdClZA63rcLHt0Cs2EUgoiZEBJVfit9kTUK/TUex0RERFROWHQSUREvUrC1u+oX/4LGgREF4oKASjAzGPrOpSC0ExIy566Hm70Fm6NRNRrZP2eQ0RERFTBGHQSEVGvEv/Lfsxwnx6qeHIeM3rrOnIYKiRCOqQloLcHYs9BRJSC88GN+18GnURERNQLMOgkIqJeRehmzNdWuGsrePRgooKKZJqmP5zX3c2gDsiuyk4iokykbg8ycwaaMegkIiKi3oBBJxER9SpCiws6oyok40PQQpKWcAcL5cr0a+45pJl70MnefES9j/N+5gSeDDqJiIioN2DQSUREvUp80BkdHMbfVkhSt6DyrMY02gMAAGWKvCo6DW8o80FEVFWcYFMYZszXRERERNWMQScREfUqzjZOR/Qv/yLccxPNhW5Gpq/nTmvzA7BDWZVHRafW7MvrcYmogkUquaVuQSnFoJOIiIh6BQadRETUayghE3/ZjxoK1KMVnYYFyPyCBr3VDjr19kBk+7qV4R6xjM78eoMSUeVy3tmkJQCpoIR9jeENlm5RRERERD2MQScREfUaKknQGH2d1YMVndIUyLdTphYJOv1bmyFNkfPkddmDvUeJqEw5FZ2GgJLKfa8LfNVaylURERER9SgGnURE1GsomRg1Rld4xm9rL+hjC4l8k05nWnt4txfStHIeatSTz4uIypSyP8iRloCSEmZAgxIS4d1drSy4nZ2IiIiqDYNOIiLqNZIGnVHXJbu9sAvI8/yq67/KkrBC2Vd0SlO4W1aJqBdRgNCtyHuAhH9bsxt2Onqyip2IiIioFBh0EhFRr5Gseikm3Mw3iMz28QtwfmmKnCo6pWkPIslnWjsRVS6lFKRu2u8BQiK4vQ1WQIt5nzPZv5eIiIiqDINOIiLqPZJWdMqoyz1d0dn9U9hBZw4VnYYFKAWtxd/9ByeiiiFNuzenU9EpNANmUHc/cAnt6uBgIiIiIqo6DDqJiKjXSDaMCJWwdT2KtHIbRiRNAaMzDBHObYAREVU2p5JTmgLSkhCaBRE23Pc534aGnn/PIyIiIioyBp1ERNRrZOrRqbeXf9WjsgREyMi6t540BbSWzp7elU9EZUSawq3kNDqCkIYFoRmRCm/7GL0jyKCTiIiIqg6DTiIi6jWS9ciMrvLUmjuLuZy8KCFhhfWsqzqlaUFv9fd4/1EiKg9KSCgh3K3reps/EnSa7nUAIDQTSFblTkRERFTBGHQSEVHVk4YFwJ5YHs/9pV83YfrLfzCHtCSskJH1EBEn4HCquALbW3twdURUak6YaXiDUFJC7whC6GZkG7sFKPt9UOgmP/8gIiKiqsOgk4iIqp6zzTvZ1HWnR6fhDRVkWFBPU0JAGha01uyqT6VpT1t3qllbP97SY2sjotKTpgAUEG7yQgkFK6BB6PaHPdIQbrgpI9cRERERVRMGnUREVPWEZgJIHnQqKd3qp4qgAGFYWU9Rj+7laQV1dG5u6qmVEVEZkJYFaVro3NwUmbZuQhr2e6DhD7sf7pgBDRXx6Q4RERFRDhh0EhFR1bNCdj9LaYmE25RUUELYFZ0VwvSFYAW0rI41OiIBrlLQOwIwO8OQhpV8Aj0RVTxpCrR8tBmmL+z+nDsVnaGd7VBKwQob9nsDc04iIiKqMgw6iYio6rkVnSl6dCph97GrFFZId8PbTNwAV0WGLSlAawsk38ZPRBVPmgLNH2wE0FXFLnX7PTDc7AOkgm99Q8nWR0RERNSTGHQSEVHVE5q9fTtZRSekgjQF9LbstoKXBZWi32gSZqTyUykFbyTc0Fv9WQ8zIqLKokzh9uZ1/mtFPuyBVJCWsANPdPXuJSIiIqoWDDqJiKjqORWdzi/90ZSUkIYFvT1Q7GV1izMt3r6cOvR0gk5pCnRusvtzam2dMBh0UgYMwSpT9Puciny4I6J69SpLuu+JRERERNWGQScREVU9oTtb15P36LQ0M+uel+UiuqIz3ORLeZzltwNN/9bdkEZUn75k1a1EUaxgdu0RqLxIs2uauoiEntHBprRE19dFyLKd918iIiKiYuhT6gUQERH1NLeiM0XQKcIGrJCRcFs5i67iDG5vxcBxIxKPUQpmJKzyfbnLvT7wVStGHXdgzy+SKprpD6Pv4P6lXgblSBhdQafz4UZ0RafQDMCt1u35pFNoJmr79e3xxyEi6m2UUggGg+js7ISmaRCCH2JTZaitrUX//v0xdOhQDBo0CB6Pp6DnZ9BJRERVT2j2L/tKJPmlXikIzay44TzRz0X3xg5S0lr96D9qiB1yRLa4m76ureqs1KNsiDAr8SpRsq3rZlTFeqiho+vgHs45hW7Cu24nRh37NXhqPPDUcjMZEVEhSCmxfft2hMNsRUSVx7Is6LoOn8+HAQMGYJ999kFNTeH+jcCgk4iIqp4zjAhJeg4qWZn96qKD2fhAKrijNRJ0pvlkn/0XKYPoLdBUOWR0Radlv0+kGj7W0+8C4SYf2j/9CiOP2BeevrWoZdBJRNRtSqmEkNPj8aC2traEqyLKnhDC7QUfDoexfft27LvvvgWr7GTQSUREVcsMaKjpWwsRNqCkihng41KAFaq8Ckdn67rQTVhBHcKwUFtn/2891OjFiMMEg6peKtzsw4DRw7p1DiWkG6Y77R36DOpXiOWVPaFX9lbr6KDT+TtM+WFOD1eyd25ugtAtGJ0h1A0bCNTxVw8iou4KBoNuyFlbW4sxY8Zg8ODBBa2II+pJUkoEAgE0NTVBCIFwOIxgMIjBgwcX5Pz8SSAioqrl+3IXlJAw/RpU1CeH8SpxK7cTYOitfhi+IERUWKssidCujpjAg3qPtk+2dfscwrDcDwYMXwiGL9Ttc1YKw1vZzzVZ0Jny2CIMJVNCINTQ4VaXEhFR93R2drqXx4wZg6FDhzLkpIpSU1ODoUOHYsyYMe51fr+/cOcv2JmIiIjKjH/Lbnuqeki3f8lOVtEJILizvcgr6z4nhNI7gtDbApBxgUa4yRszlCTh/ty6XrV8XzZ2+xzSsNxej4Y3CL0jmPy4IgRlxWZ4kz/XbEUPCisFoUdvXU//9xPdz7OnSEsivNvn9gslIqLu0TS777LH4ylYBRxRKQwePNjdrl7IfrMMOomIqGoZvrDdhE4pKEumrG4y/ZXXyN15LqZfg7QEVFy1VHRQlfz+DDqrlbS6X8krTQG9PQAAsAIa/Ft2Jz0uVe/HSmakCHWzVeqev9ET1jOFiz0edEoFZQmYnaGqDMWJiErBma5eW1vLSk6qaDU1NW5vWed1XZDzFuxMREREZcYKalBKQQppb11PEXRW2sR1ICroDITtforRVWRKQRhW2q3rlficKTtOiN2dYEkallvZaHSGEahvTnqc4QtVXXVwd7fpW1FBYylE9xzOFGT2dNCppIS0Iu1Dsty6nrSXMhEREVGWGHQSEVHVUpaEFdAgQgakJVMOHarELZVOGGAFNEAlVmhKU6QNOkUFDmCiLEVC7+D2tvxPYXZVBAe3t8IKJ69SNHwhqCJsfy6m7vbsFSm+V8USHbRmqrjtyaBTSQWhW5GKznDWH65U4nA4IiIiKh8MOomIqGoppRBq7ABg/0KfKsCoxCEZTgWn6bf7NMWHCNJMX9HJMKF6OaG3f2vy7ebZkIaAkgpKSAS2t6bsO2n6qm9LcncrMoVW4orOqPe5TNWpqgBtDlKfXEEaJpSQMPxhSFNkrNZUSrnvaURERET5YNBJRERVS0nl/tJvBbWU1UuVWtEpDAv+rfaW4uig0/Tbz1VrTT29sNTba6lnmH67XYNSCv5tybebZ0OaFiAltDY/hGamrMYzfOGS96QsJLsKsXvPp5QVnW3/2hbTY9QKpf85t4Jdt0uzsKGnOwQOgDIFlBAI7kxfZRxu8iK4vbWg6yAiIqLehUEnERFVL6XcqkYroKWsPIufWF4RpELHF9vd5xddcad7g5CG5VazJiMYdFYlwxcElILe5u9Wr0lpWFBSQWvutAfKpBheZfhCVRV0Ct3s9qCuUlV0Gp1h7Fj+r5jr0lV1A7GD2KKntReC6deAqApOaUn4N+9OGyTvfm8DrDCrzYmIiCh/DDqJiKhqKaXcKk4zqKfeYluhwy+iK5+iK+6MjmDM1OxkpFF5VayUmRXUoRSgtwchwiZEhqArFRHZZqy1dNpb2KVMun3d7Ax1e3hPOZG66fY4zVepqqU7NzYmhM6Z+mJGh45OZfvOVz/t9lpCDe12FX3U41tBDVbYgOFN/noRmomOL3ZAmd3/4Km7fVaJiIiocjHoJCKi6iWjKjpDetZTfytFdAWWE2gIzYAIG5CmBZFm22q1Tcommx1gK1ghHUI3YfnTD6NJfR4LSsquoFPIpD8/QrMybkeuJEIzu/2zUaoK13xacET3zHSet+ENpjo8a7vf/xJKKjs4jtDbAml7A3duaoISsiA9X8PNvm6fg4iIYlmWhWXLlmHevHk4/PDDMXr0aPTt2xfDhg3DgQceiJkzZ+Lee+/Ftm3bSr1U6uUYdBIRUVWJrmBSUrm/NIuwmXEbZ6WJfj7O8/Z92QjADlvSBi4MOquS1uaHNAT8m5sAqWBkmLqdijQFEKnohFL2hwZJAihpWvb29iohdCvjwJzM5yhR0JnPuiPvA8KwgMjd9Y7uBZ1KKXSs3QGlVMx7UOsn2+D7clfssVHv14EddoV6ISbBay3V85okIioHf//73zFp0iR85zvfwcMPP4y1a9eipaUFlmWhs7MTW7Zswd/+9jfceOONOOCAAzBjxgysXbu21MvuUbfeeis8Hg88Hk+pl0Jx+pR6AURERIUkdBN9Bvazv1DK3aItdLPqtjMmq+h0BhCZGQIuJRSUVPDU8B9n1UTqpt2js90Oq/IN95XlbF3vGmglDQtwfrac60yRcXt0JRG62e1WFoUI6vKRTyWqcx9licjE8zCsQPemnrvDqxRgRp0r2XmtsIG+g/vb94tUoBdiOFw1he9ERKV2xx134JZbbnH/nzFt2jTMmDEDRxxxBPbYYw+EQiE0Njbi3XffxfLly1FfX4+XX34Z48ePx5///OcSr556IwadRERUNZSQMAOaG3RGV3RKw6q6SePRIZZ3XQNGfmM/d7iImSGsUFJGqrkYdFYT55cQZ4twvkGntASMzlDM/ZMNq6m2oFN2s6JTSQVlCgjdRG2/vlBCwlNbpA1U+VRpR56rknbVrt4R7Hb/Xue157wfpyO0rqDT6fVaiK3rrOgkIiqMRYsW4Ve/+hUAYK+99sKzzz6LadOmJT32oosuwv33349nn30W/+///b8irpIoFreuExFR1Qhsb4URt+1SmnY4Iw2r6rZrR4dQHf/eAWlY9qRjIGNVmhKSfTqrkBPSOdXL+Q4jUkIlBF7xW7KVVG7lZ7VQonvPx/CFIAwLHWt3uF8XSz4/zu5zVQrCsCBNETNAKB9OZaYV0NK+DymlIMJdrymnCr0gW9db/ZkPIiKitHbs2IFrr70WADB06FC8//77KUNOR21tLS699FJ89tlnOPfcc4uwSqJEDDqJiKhq+LfsTpjoq8yurevVRhhRz0nZ/RnNLIfPOFtLqco4QWekerk71XnxW4jjq0OdDxGqqaLTmTCfL73ND73Vj+D2ViipEj546VF5JZ12dbeSCiJs2B+AdHPqvBm0P2zJ1B9WGlZM9abQIq/ZblZ0SkuknOxORETZ+/3vfw9Ns9/T77zzThx44IFZ33f48OE477zzUt7e1NSEm2++GcceeyxGjhyJfv36YcKECZg1axb++c9/prxffX292xdz8eLFAIB//OMfOO+88zBmzBj069cP+++/P6655hrs3Lkz4zoNw8BDDz2EU089FXvuuSfq6uowZswYTJ8+HU8++SRkkv8nLl68GB6PB7/5zW/c65w1Rf+pr6/H559/7n599913Z1zPgw8+6B6/atWqhMd0zqvrOn7729/i6KOPxrBhwzB06FB885vfxEMPPQQhMv9/VAiBxx9/HDNmzMC4cePQr18/7LHHHjjppJPw+9//HuFwfj3eywWDTiIiqhpWUI+toFKxW9erTXyIpbcGsu6vZwZ1MOmsPu7rPBJ4OmFk7lRCZZ+0REwI5bz+uhuMlZOulg75CTd6YQY0BBs67NCzzINOpRT8W5shNBNai98OOrsZXAe3twHI3CdYaLH9UJ3WCN19fGkKQKmqqjQmIio2pRSeeOIJAMCQIUMwd+7cgp37qaeewoEHHoi77roLn3zyCTo6OmAYBnbu3IkXXngBZ555Jq688kpYVuZ/w9x0000466yzsHz5cuzevRuGYaC+vh5//vOfcfTRR2P9+vUp71tfX48jjzwS1157Ld5++220trbCNE3s3r0br776Ki677DJMnToV7e3teT/XI444ApMnTwYAPP744xmPf+yxxwAAhx56KI477rikx3R0dODEE0/E/PnzsWbNGnR2dsLv92PVqlW49tprcdpppyEQCKR8jO3bt+OYY47BnDlz8PLLL6OxsRGGYaC9vR0rVqzADTfcgCOOOAIbN27M4xmXBwadRERUNZRUCVtFpVvRWY1BZ+xz0lo7u7auZ5AphKDKFP86707Ar6zYwEmEzZgwrauis3oCJWdIV76CDe2QhgVttw/BHW1FrejMqxWFUghsa4Fvwy5I07JDRqm61dbCv2U3AGSsLrf7ocrIMlTBhji5QSlbcxAR5W3t2rVoa7M/uDr55JMxaNCggpz3+eefx2WXXYZgMIgDDjgAv//97/Haa6/hk08+wbJlyzB9+nQAwKOPPoobb7wx7bkefvhh3H333Zg6dSqefvpprF69Gv/85z8xe/ZsAEBLSwu+//3vJ71vIBDA6aefjg0bNgAAvvWtb+Hvf/87Vq9ejRdeeAFTp04FALz//vs477zzYqokv/Wtb+GLL77ANddc4173xRdfJPzZe++9AQBXXnklAGDDhg1YuXJlyufz2WefYc2aNQCQct0A8IMf/ACffPIJLr74YrzyyitYvXo1nn76aTdQfffdd3HZZZclvW9bWxtOOukkfPbZZ+jXrx9+9KMf4YUXXsDHH3+Mt956CzfddBMGDhyIzZs345xzzoHP50u5jnLGYURERFQ1lFII7+76H7KSXb88yyoMOuMrn/T2QNbVUNVY4VotpClQ07c2/TGWQE2fxGPiKzhzCY+kYaGmLvJPQ4WEoEhohr3VOTJgx3kNVVNbCCUkrKAOpRQ8ntwHdYUaOtyfwVBDB0TeFbW5Czfl/suIkgpGZwiGL4QhB+zlrl0JCU+S11c29Ha7iiTl1vXI60oYphuSKyt5Ja0z1CkXQjMjD6M4ao2IKE+ff/65e/noo48uyDlbW1sxb948KKXw/e9/H3/5y1/Qp09XJHX00UfjwgsvxM0334y77roLf/jDH/CDH/wAX//615Oe74MPPsBVV12Fv/zlLzH/zz799NNRV1eHRx55BB9++CHWrFmDo446Kua+v/nNb7B161YAwC9/+Uvcfvvt7m3HHHMMvv3tb+Oyyy7DU089hQ8++AALFy50g83hw4dj+PDhGD16tHufww47LOXz/u53v4v/+q//QjAYxGOPPYYpU6YkPW7RokUAgL59+6YMKgHg448/xl133YWbbropZs0XXXQRZsyYgddffx1/+9vf8Morr7jBseMnP/kJduzYgX333RdvvfUW9t9//5jbp02bhosuuggnn3wytm7dinvuuQd33nlnyrWUK1Z0EhFR9ZAKelsAQjOhlLK3YUa22uY7lKWSZFvNSeXNCWrSSRVUx/c3zCXQdqZlp1xXOLaHohOiOoOPqoGS0h7qlUfFs9BM6O1dQ3CssA6rSD+TSip0bmrK/X5KQeoWtOZOAF39Sbs1eT4Slqb6Hjp5ptDMrsdL8QFNPu9pbiUpt64TEeWttbXVvbznnnumPE5KibVr16b8Y5pd/6ZZsGABfD4f9t57bzz00EMxIWe03/zmN9h7770hpcSSJUtSPvbYsWPdnpbxfvazn7mX33vvvZjbdF3HI488AsDeIn7rrbcm3N/j8eChhx7CHnvsAQD44x//mHIdmQwZMgSzZs0CADz33HNJ+18ahoGnnnoKADBjxoy03/MjjjgCv/jFLxKu79OnDx555BH07Wt/QPjQQw/F3F5fX4/nnnsOgP184kNOx1FHHeUOoXL6oFYaBp1ERFQ1lJSQugmzM+z+4uyEMfGDVapRtoOIqLxl01czVSuG+MAol4DfikzLTnl7OPIBguX8bEUqOjWj230VM4WsxeIEfHoeU7tDDe0xbW+tkAFLS/89LRS9I+AG0TlRCiLynmkPJopUWHbj79O5b8r1RJLO0K6OrorOlEFn7u9pTjjane33RES9nd/f9f/BdNvWOzs7cfjhh6f809DQ4B7797//HYAd5PXr1y/lOfv06eNWPabb6v2d73wn5Xm+/vWvY/DgwQDgVm46PvnkE3i9XgDAnDlzUFubfAfD0KFD3YBy3bp1aGxsTLmWTJzt652dnVi2bFnC7S+99JLbKiDdtnUAuPzyy1PuOhk/fjzOOussAMDbb78ds+X+5ZdfhhACAwcOxDnnnJP2MU455RQAwK5du7B9+/a0x5YjBp1ERFQ1nF/SDX+4K4zpBQGng303q0M21XSpKjXj+2XmVNEZHUwlWYK9dT16wJdwj+1uUBnc0dat+xeKE7hpeQSdwYbYYQVWUC/aRHoRzq99gJKqK+BWiNm6nq9Mr1+lFIRhoXnlRreiM37wlSOfik53IBuDTiKivA0ZMsS9HAx2v9+0EAKffvopALhbzdP9Wbp0KQB7OnsqBx98cNrHHDFiBIDY0Baw+486vvnNb6Y9R/Tt0ffL1QknnIBDDjkEQNfAoWjOdWPHjs0YQjq9OFNxhhgFg8GYkHf16tUAgFAohD59+qT9/s+YMcO9X7q/g3LVa4PO1atX47bbbsNZZ52F8ePHo1+/fhg8eDAmTpyIuXPn4v3338/pfK+++ipmzpzpnmv8+PGYOXMmXn311azPYVkW/vznP+Pkk0/GnnvuiQEDBuBrX/safvCDH+Df//53rk+RiKj3ifyCbXaG3TAmfqBKNSuXqjjqpiwCGifATAik4u6bS4/OTBWBVlCHksqtjo6uPO3u9vVQY0dZfCjhfD8Nb+wvddl8H+3t312skF60yd9mZyjzQckoFfP3nqnCMuPpspnarhQ6v2y0K+/drevJv79WQLPP6fT1zKIfrFMFypyTiCh/zpZtwB7qk8rw4cPt3R5Rfy6//PKE49rb27Oaoh4vFEr9/7eBAwemvW9NjR13ibj/x0RPUY/us5nMmDFjkt4vH1dccQUA4K233kJ9fb17fWNjI1577TUAwOzZs1NWmDoyrXmvvfZyL0evubm5OdclA0j/d1CueuUwolNOOSWhTwNg90XYtGkTNm3ahMWLF2P27Nl4+OGHUVdXl/JcUkrMmzcPjz76aMz1DQ0NaGhowN/+9jdceeWV+Mtf/uL+oCXT2tqK6dOn4+OPP465fuvWrVi4cCEef/xx/PGPf3RLnomIKJHzy3D01vVehb/YV4Vsttw6gY/hDaLfHl1VF05w5MilojP6WJXkxaS3BaCEgox8eBC9Ld4M6hiQ9SMl0lr8sAIa6oYXZqprvpxgUsZ9QBLe7cOg8SPtYyLDmOLFtxwQmonafsX5p3bH2h353VEhant9dI/O/N4/9WymzCvADGqRCtIMW9cDGqQlIA0LfYcMgH9rM4ZP2jvt6U2nopM9OomI8nbkkUe6l51J4N0RHTZeeeWVuO6667K6X7osphDyGTyYr9mzZ+Omm26CYRh4/PHH8etf/xoAsGTJEvf7k2nbOpD/mp3HGDVqFN56662s75eql2c565VB565duwAA48aNcydK7bPPPhBCYOXKlfjd736HhoYGLFmyBKZp4umnn055rptvvtkNOY866ijceOON+NrXvoYtW7bgnnvuwZo1a/DII49gzz33xF133ZX0HEIIzJw50w05L7zwQlx11VUYOXIkPvroI9xxxx1obm7GD37wA+y9994ZS5mJiHorJXt50EnVIcut68KwYAb1uKAzvqIzNnxTUsFTk/wfyDF9P5MsQe8I2MNrnGrpqCrH7lZ0Gu0BmP5yCDqTb90O7/Z2BZ0yRdAZF44K3YQS/XtopV2UkPCub8h8YApdU8q7v3XdmbiejlLKboOA6MdLfMEppdzQ0vCGEoJOaQl4amvcX/iUUoBSsAJ619dERJSXww47DHvssQfa2trw3nvvIRQKZaygTGfkyJHuZaVU2inlPS16Lbt378bEiRNTHhu9bTv6fvkYNWoULrjgArzwwgt4/PHHccstt8Dj8bgDf0488cS0a8l2zbt37066ZqdK1+/3Y9KkSRkrRytZr9y6fvDBB+O5557D9u3bcf/99+Pb3/42Jk+ejOOPPx7XX389Pv30U/eF88wzz+Ddd99Nep6NGzfit7/9LQDg2GOPxYoVK3DJJZdg8uTJuOSSS/D+++/j2GOPBQDce++92Lx5c9LzPP744+5W+R/+8IdYtmwZ/uM//gPHHXccfvzjH2PFihUYOnQopJT4yU9+klfJNxFRr6C6enSWwzZYonxkk88Iw4Le6k/Ybp7YozP25yB+S3a08G5f2uOUJQEpu7auW9FBZ/emi0tLlMUwrfgKQ+c5OmEgkLoHZUI4KFXelZG5MLxByBTDqbIS9XzcnplGfu+foV1ZbOtTyt3m7wTk8cPilFQQIcO93ak2toKaW83c/ml9zNr1Vj+skAHpVA2xopOIKG8ejwf/+Z//CcAeoPP4449363x1dXU49NBDAQArVqzo9vq6Izpk/eijj9Ieu2rVqqT3A/KrrHR26G7btg1vv/02PvjgA2zYsAFAdtWcABJ2Aae6feDAgTjggAPc64866igA9tR5p19nteqVQefy5csxa9aslAn2qFGj8Lvf/c792mmEG+/+++93Q8cHH3wQAwbEbtoaOHAgHnzwQQB2/8377rsv6XmcsHTkyJG49957E24/8MADcdNNNwEANm/ejL/+9a/pnh4RUa9ndoZ7VW9OqjLZ9OjULWit/oRKyvhgLX7qut6WeshOdEiVahiPkl1b12ODzu5VdCoVteW4hOK3brsVh9FhYIpqx/iwLv5+PUVv7/6QCIcT9GbTCzOZ0M6OzI8hlRuqa5HXY/wwImlasIJ61wAsZ5K7brmVx7vf+9LtBwfYU9xFyHCrkVnRSUTUPf/1X/+F/v3tnQk33XQTtm3b1q3znX/++QCADRs24PXXX+/2+vJ1zDHHYPjw4QDsojOZ4kNJv9+P559/HgBwyCGHYOzYsTG3O98bwA4Ps3HGGWdg3333BWAPIHKGEA0ePNid8J7JE088kfL/cQ0NDXjjjTcAANOmTYvJvM477zw3nL3//vuzeqxK1SuDzmyceuqp7uUtW7Yk3K6UwosvvgjArhA9/vjjk57n+OOPx9e//nUAwIsvvpjwgty4cSPWr18PAJg1a1bKcvA5c+a4lxl0EhHFcodPOP31DItb16lixW83dzjhozSFXfEWNhIDxvhhRHFBZ7pp4obPbjavpISRoteiEtKdah39YUK3K6iVyqmfaE+Jr+h0vydRvcWSbrMWEqFdiSFfMd6HChYQK9VVyZrDEKto4WZfxmO05k5oLXZFZ/ua+pgBVw7vugZ0btkNoZnwb2tx1xXa1QGhGZCmcM/h32oPVzADGqyw0fVaZNBJRNQt++yzDx544AEAgM/nw0knnZRxaLNSCl6vN+lt1113HQYPHgwAmDt3bsaByy+//DI+//zz3BeeQb9+/dzKyrVr1+L2229POEYphR/96EdobW0FAPzoRz9KOCY6+EyWGSVTU1PjVm4uW7YMzz33HADgoosucr83mXz66adJC+Qsy8JVV10Fw7B3+1xzzTUxt3/961/HRRddBAB49tln8fvf/z7t42zbtg3PPPNMVmsqN72yR2c2ohP5ZJWf27Ztc3t9Tp06Ne25pk6dii+//BINDQ2or6+PaeYa/UaR7jxjxozBxIkTsXHjxpKXehMRlRut1Y++Qwa4vywrKbl1nSqWCCevpgtub0X/UUMiQaiKDHWJr+hM36MzXdDpbIM3OoIpAzrDG0rY1m0/cMrTZkepok0oT0vG9ozUW/0YMHpYTLiZbDu6E8rFK8ZzSva4+XL+TvPZCq+kShmQR2tbUx9bca9UTH9TZUm0fLjJ7uUZNtD+aT1GHL4PtOZOmL4QrKCOPgP7AbArib3/3omhX9sLSipYYd0NzMvi9UREVOGuuuoqNDQ04De/+Q127dqFk08+GaeddhrOO+88HH744Rg5ciSEEGhqasK//vUvPP/8826AWVtbGzNMaK+99sLjjz+O73znO2hsbMSxxx6LOXPm4JxzzsH48eNhmiZ27tyJVatWYenSpdi6dSteeuklHHHEEQV/Xrfccgv+93//F1u3bsWtt96KL774AnPnzsXYsWOxbds2/PGPf8Tbb78NAJgyZQrmzZuXcI4TTjjBvXz99dfj5ptvxtixY92qyf322w99+iRGbt///vfxm9/8Jmaaebbb1gG7beLPf/5zfPrpp5g9ezZGjx6NTZs24fe//7271f68887DjBkzEu67YMECrF69Glu3bsUNN9yAF198EbNnz8ahhx6Kfv36oa2tDZ999hlee+01vPnmm5g5cya++93vZr22csGgM4V33nnHvTxp0qSE29etW+dePvjgg9OeK/r29evXxwSduZ5n48aN2LFjB4LBIAYNyr5h/86dO9Pe3tjYmPW5iIjKjem3K5qcyiYlFCs6s8AgoPxYId0d1BItsL0Vge1t2OPo/buCHKUSemPGh3DKku6UcKEZMFJsc1ZC2sdKCcOXulem3uZHTV2fyGMV7vWjRHH6WaYjdDNhy3pXRWdUEJfkeYcbvUnPWYz3oYJ9qKO6qnTzqRIVmpHV8w1ub419WBn7fm0GNOhRgXxNXR8MP0QivNtrP07YwM5XPwUABOpbII1I0CslRMjoqkZlRScRUUHceuutOPLII/Gzn/0MW7duxZtvvok333wz5fEejwdnn3027r33XowbNy7mtgsvvBAvvvgi5syZg/b2dvz5z3/Gn//856TnqampySnzyMWQIUPwf//3fzjnnHOwYcMGLFu2DMuWLUs47sQTT8Tf//73pMVvBx54IGbNmoXnn38eb7zxhrtl3LFt2zbst99+CfcbP348zj77bLz66qsAgIkTJ+Kkk07Keu0LFy7EFVdcgWeeeSZpxeWJJ56Ip556Kul9R44ciRUrVmDWrFl477338O6776acSQMAQ4cOzXpd5YRBZxJSStx9993u18l6JUQHh+PHj097vgkTJriXd+zY0e3zKKWwc+dOd0t8NqLXQERUbZQlIA0LWov9y7GSkiFeFqRhobZf31Ivg6KEGr2wklTo7frHF7BCul3lZlh2KKVUkh6dia97YVjoM6AO/q3NXYNa4jjhkLIkrFDqPlNaWwADxw6PPFjUY3UzVJKWSLolvJiMjqD7/VPSDoid6trYoDMxzFMqRd/OYrwPFegxFLq2kDvbwnO6f559kVXUgCsgsd+rGdCghIQ0VWRtfvgiU+YNX8itBlVC2cOInNcyg04iooKZOXMmzjvvPPz1r3/F66+/jpUrV6K5uRlerxcDBw7EHnvsgcMPPxxTpkzBxRdfHFPcFe+8887Dtm3b8PDDD+OVV17Bv//9b7S3t6NPnz4YM2YMDj30UJx22mn4zne+06M5xn777YfPPvsMDz/8MF544QWsXbsWnZ2dGDlyJI466ihceuml+N73voeamtQdH5988kkce+yxWLp0Kb788kv4/f6UPT+jXXbZZW7QOXfu3JzWPWLECHzwwQe4//778dxzz2HLli1QSmHSpEmYPXs2rrnmmrQT1ceMGYN3330XL7/8Mp555hmsXLkSTU1NME0Tw4cPx0EHHYQpU6bg/PPPxymnnJLT2soFg84k7rvvPrfk98ILL8QxxxyTcIzf3/VJc6ZeCtGfQgQCgR45DxFRbyZNgWBDuxu2KKlYzZOFfPvwUc/Rmn0QuuVWYZqdYSil4N+yG6jxwOwMdwVBqisUkpZATZ9aIElYKA0LGFCHwFetCbe5x0S2uEshEya5R9Nb/RgwZphdRZhlzuk8l3SUkCWv6DR8oZgenckqPIHEvqf2lSm+AVHPKZvvQz4KGeg5Ibve5oeSEp40v9zFix8olDUVW9EZX9Eswgak6ApDvet2dlXcRrVSUNIO6d3XL4v6iYgKqk+fPrjooovcPo/dMXToUNxwww244YYbcrrffvvtl/X/9+rr6zMeU1dXh2uvvRbXXnttTutw9O3bF/Pnz8f8+fNzut/atWsB2Nv7L7/88pwft3///vjFL36BX/ziFznf13Huuefi3HPPzfv+5YxBZ5x33nnHfbGMHj0aCxYsSHqcpnVt6YnuO5FMv3793MvhcOx2sEKdJ5P4StJ4jY2NOO6443I6JxFRuZCmQOfGqBYcrOjMSjkMf6FYemsAtf37wgrqqB1Yh7Y129B/9DD7RqmgtwcQ2tkO1Hjsis6wASUlTL+GfiMGJf3HvzNBW28LpAzknNBbGhasNEGnMyXb9GtxfTlT/7yZ/jDqhmex9azEP7NCiw02pSnc7110EGf4Qhg4dkTMfVO930RfbwY01A1LPnSyWwoVdCog3OQFAOjtAUhDoLZ/9kGnSlEtnPF+Mq4/a/zTUZG/j0jlphU23Kccamh3+3UqqRDc2RbT2oGIiKjcCCGwZMkSAMA555yTMM2duo9BZ5R///vfmDlzJizLQv/+/fHCCy9g9OjRSY/t37+/e9mZapVK9GCjAQMGpD1P9Ne5nCeTTNviiYgqmbQsd/IukOQXZ0qqWBWdbrUhZaS3B9B/r6EwgzoMfxiB7W0xOVbLR5uhtwcw8sh93Unl0hR2mDhsQNIeiU7wo3cEUNs/+YeqzjHSErBCqf9d4wybMTvDUEgTTjlXSwkzoKcNOq2QblexlkXQ2VXRKS3hXmcFdSip4KnxwPSFE17TqUK16CpVK6gXPOiUkTYGhaAsYYfhsCslpWGhtn/2rS3y37quMoaSSkg3SLVfq/bxocYODN5vz8h5ZEzVcqlfT0RERMk89dRTbgvDq6++usSrqU6F3z9TobZt24azzjoLHR0dqK2txbPPPpu2H8GQIUPcy5m2kQeDXY3/47enF+o8RES9mTRFTBWaErLk1WGVoFhBZzDNlmmKZfrDkT6DFqRuItzkjelf2PH5druiMzI4RuiRoLMzDK3Fn7RKV0QmaBsdwZTVf+4WeENAhFP36HSCVLMzHBuwpQo6hUrb8xMA9I4gZNQ28VKJ2aouFZQpIHQLzSs3Qmv1u1uilVQI7miLvXOq9xvVFXY61aGFoncEEdzRVrDKRaGZXe0/hLR7weZA5hl0QqmM79fOsCwg8nqOHK6sruuVsP/Ouu7D1hxERFQeNm/ejPXr1+OJJ57A9ddfDwA48sgjMX369BKvrDqxohPArl27cMYZZ2DXrl3weDxYtGgRLrjggrT3ia6QzDTRPHrbeHwz3fjzjBo1KuN5PB4PKzSJiKIoU8SEdtlUCFEBpzVn0LllN4Z8ba+iPFalMwMa+kRN+ja8QTeojKUghbADUVNAa+1MWcEmDQtmQIsMMUp+jBkJOlWGik77GAlLxh6jUiSdSsqE4TLJ1geUtmesUsoOOiNBroxsXdeafejc2Ii6YQPtv5tB/QAoBOpbMGT/0VBKwePxpK0etCtB8694TKXj868wYK/hBTtf/Oss19YWBdu6nuwYq6sdidNPtutxu3p0RmMPYiIiKhcHHXRQzNd9+/bFggUL4PF4SrSi6tbrKzpbW1tx5plnYuvWrQCABx98ELNnz854v0MOOcS9vGHDhrTHRt8+adKkbp9nwoQJMYOJiIh6O70jGFP1pqRKO1CFbMWqoAs3eovyOJXOmaJu+EKA6uqDGd7tTXJwV+WyMgWCO9qht/sTj4NdSSh0MzKpPfljWwG7Z7g0rYw/O4YvBAgZN3U9xXMS6ae4A12BWqaAtadYQR1mZxhSs6C32t9D5QadnZCG1fU9hF31qkd6lYYa2gHYlbipiMiAn0J+sCBNy66EtUTBfo6FEVtxGh8oZqI15z6pHYA9jCibik7neUoV83pzhiCpuGBTFemDHCIiomyNGDECp59+Ot5++21MmTKl1MupWr066PT5fDj77LOxbt06AMDdd9+d9bSt/fffH+PGjQNgDzBK59133wUA7L333thvv/1ibjvppJPcy+nO09TUhI0bNwIATjzxxKzWSETUG7i/8MdUdGauIiMUrLdfJoY/7IY9lJoIG3YVp88OzfR2u6VNuMmXcKxCV4WgtARCDe1uf8V4Ure6qglTVnQ6QadIO4wIAAxvMLFiOlWPyiy2rruVgyWqwg41dsAK6dDbAzC8XdW00cGkFTbcIE3oph1CA+jc2ATA/rAlFXfLewGDN6Fbkb6VhWvTIeMqOpNXEqeWsJ0/S0qmSeAjpJBQInmvBOf7Gr/VnhWdRERULpSyd5u1t7fjn//8J0444YSc7j9nzhz3HPGZEiXqtUFnKBTCueeei3/9618AgJtvvhk///nPs76/x+Nxt7dv2LABH374YdLjPvzwQ7cS84ILLkgoTZ44caJb5fn8888jFAolPc/ixYvdyzNnzsx6nURE1U6aAiJsxFZLSYVd//yidIuiGFIzYXQm//8bdTGdqkrdBKBgeO3wzKm2jKGUu2XXChswO8Mpg04R6fVp3y15oBTaaVcmSlNk/JDADGhQUmVVoaikhAgZaftTOhV5xQre49kTxi1oLV0VifaHJV3fd2V2bekXmulWcGqt9n2cgDQZJzi2Mnwfsl5vmx+B+hb376BQQ3fig0IjTXibdF05Hu/erz2QXUVn9KCtqMP1tgD0Nn9CoJ53z1AiIiKqaL0y6DQMAzNnzsSKFSsAANdddx3uuOOOnM/z05/+FLW19sTNH//4xwiHY7cthcNh/PjHPwYA9OnTBz/96U+TnudnP/sZAKC9vR033nhjwu1btmzBf//3fwMADjzwQAadRERRpGFx+FC+ilRBJzQzbRBEtphAUwF6e5rgSHVthXbu51SAxuvc3ORutU4WJlohHZ1bdgOwf54yBZ0iZABKxVTppnopKSFhdGao6HXvXJqfYWnYQ4eiQ0glZEJwrHfYXwvdhNmpufdVUqXfuh4JOvX2QMbq1kyUlNj2wkewQro7oKdQQaeMC2GDkW352co3xPVv2Z1x+33M1vUktzX84wsYcT8v3LpORETUO/XKYUTf/e538cYbbwAATjvtNFxxxRVYu3ZtyuPr6uowceLEhOsnTpyI+fPn4+6778bq1atx4okn4uc//zm+9rWvYcuWLfif//kfrFmzBgAwf/78hAa0jssvvxyLFi3CihUr8Kc//QlNTU246qqrMGLECKxatQq33347Ojs7UVNTgwceeAB9+vTKvzYioqSkIbhFMU/F2iksdNOtTqTUrGDXlnGhmdDakvfctHVVdBqddshmdiYP2/xbmjFgzHCkatLp39rsflBgdIZjK+eSrTNs2H1wY4KtVMOIFMzOcPoQzJmgXaLPKqSVWBWuhEoIjo2OIIRuQuomrLAO069BWsIOmtOEjc4W8PgWG/no3NiE4PZWjDxyHyhLQmgmAvUt3TqnI/7DiPCujpzun++wpXCTDwPGDk9/bpG+crXji+1A3K6pfCtMiYiIqLL1ysTsf//3f93Lb775Jo444oi0x++7776or69Petudd96J5uZmLFq0CGvWrMEll1yScMwVV1yRtmK0trYWf/vb3zB9+nR8/PHHWLZsGZYtWxZzTL9+/fDHP/4R55xzTtq1EhH1NsIwGXTmqwjJkjRFZHo4KzoziR4G412/E5Y/yZb1CKW6gqVUW9ajDzZ9YTvnTHJzdKCXzXZl4QSd0VWaka30ntq4zUJKwewMJfR/jD2ktEmnEtKu1lRx18VVCOodQWjNnfbzVoB33U5I03KD5tQPoNxzxg/MyZURqRxVQsIKG/Bv3Z22mjQX8QG33h6AtARq+tRmd/88K0uVlG5rhXRri+3RGX8AEl4/3nU7MfbUQ+Gp4URbIiKi3qRXbl0vpJqaGjz66KN4+eWXccEFF2DcuHGoq6vDuHHjcMEFF+CVV17BI488gpqa9N/qUaNG4YMPPsBDDz2Ek046CXvssQf69++PAw44AFdddRU++eQTXHnllUV6VkRElUNoJrcoljEnDMu1319v40xcd7R/tj3TPdzelqmmrUdze6RGhUFOMBUdQmdTeSt0E0gIOpP3/1RSwQzoWQ2jctZTqCniWZMKhjc2LLTD+bigsz2A8G6vW6HpXd8AZUmYWfafjR9wlM3x8VW6IrL1XVoSQjPg39acsQI3X0I3k/eHTSnPoFMpaC3pX8PSkjlPgQ/v9mX1s0FERETVpVdWdKZqxN8d06dPx/Tp07t1jj59+uCaa67BNddcU6BVERFVP2dACOWhCAV0Tk/CcEsnlFSsrkpBGlbMFmRpZAh1VFcFXjYhshuYRf0bSIQN9BnULybQy2q7byTUjO7pqICk27etkG7380yzdd2dHh85xgoZ6DOwDp4MHxIXipISiAtXlZQJ4aze5kdge5vbczO0sx19hw3IulpZCZlT9fn2v6/G8EPGY9jQAe51zoAdJWTkQx4J1aeHgmEFmAEddcMHZX18XqRyv6cpTy0kDF+OVeFSIdzoQ/9RQ/NcGBEREVUiVnQSEVFFi56MTLnpiQ/+4jlVinpLZ+maMFYAqVu59VpUyq1kziYAcoLO6O3FZuRnJzrozLqXarKt60n+fqMnlafiBLZOGKqEjOlX2h3OmtJtq3Zvi652FSoxlFSAb12DWx1rhXTo7YHMW9fdc2YfdLau3oLWj7cmHi+7tsE74WChhhElk0tFZ77vJ0qqmLYNSY8REkZH7u0vwru9ea2JiIiIKheDTiIiqmhWoHtTjHuzjFWDBeBUdEoz/TCR3s4KG1lt73ZIU7hb17MZAuOGiVGVc6GGdiilYnp8ZjtQxvSHE0K4ZH+/zlbrtBWdkWpK5/mLsNHt6eRd69QgdLNr6nwS0hR2i8eYRSUf3GSF9JjvkdQt9zlmYleJZhfgBnfag4Dit7o7YaLQTPf71ZNb/c1ctq7nG3RGpsenY4Xye02IIrzHERERUXlh0ElERBXNDDLozFe2oUt3RPedLEYFaaXK9e9C6FZevRnNoO7+Pfi3tcDsTAwssxFu9sVeoVTqretIX9HpBO7OMfmGWskY3iBE2ECo0Zvx8fOVbUCthIIIZx9mA0gYXuSEydHBbdohPd2US9CZ7893Nt8/raUzr3MXoz0HERERlRcGnUREVNFkhi2PlJoVqe5LV22XSab7xgRWrOhMSaSZSp6MNMz8htBIBRGyq0fDTd60lY7pBLe3xXytVGL1IdAVdMs0rxNn8JJTfWeF9IL03hWGBSukwwxoCO3qSHscgLxDsay3rkvp/sxlcTQAQIuqtgW6vo+dm5qiDu3Brev+XCo683uMbEL+TD08U+KHK0RERL0Og04iIqpo3A6dP6e6LKftqXEy3Tc6sGJFZ2q5VhXaFZ35fT/NgAbTH4bRHoTWWqCp1EolnYrt9uhME3S6fUGlPbTICuoFqegUIR3KlNDbgwg3eVMe1xXC5vf91NsD6Q9w+oQKlVN7AgAI7YwNlAtV6ZqtYmxdt3L8nuSEbzlERES9DoNOIiKqaAw68+dUUuXb51RaIuOwkuhqrbyrsnqB3INOM+/ejFZAg+ELwQobXdPYCyBZiOcEnKkCPitsxGydl6aA6Q9DFKCiU28LQFoCwe2taYNWaQpAqryD40w/A1JIBHe02T06w0bSytdUtLiK21yD0u6ywpnfG4RuwvAG8y6ejN+eX0iKSScREVGvw6CTiIgqWw8O4qh23a3otII6zAxbW2XUluy8++z1ArkGnVK38g46TefvTamct8ynoqRKGph3TVRP/jgJW6OlPRypEJWLnZuboCyB4M72tJV9Sil7An0PVRz71u9C6ydb7UnpmpFdiOsMgo8b0iOzHBZVKDKL14cIG2j9eGt5bhMvwyURERFRz2LQSUREFY0VnfkTumn3Mcwz6BRZVASKqO3MWjODzlRyHQgkdCvvnqd2Rae9XbxgA6lU8m3VbtCpJa/sNDpDsccrBa3Nn9O6UgW+ge2tsMIGtPjBSUnWmFMvyhz5vtyFzk1NdhicxUT56BYP8e9vSvRc9WMy2UwtF5qJjrU7yjToLMM1ERERUY9i0ElERBWNQWf+pGlv6823olOaAuEM4WV0RViYFZ0pyRwDLGmYeb/29Y4gAttaABRyK3Ty/pNdFZ1JhugAib0zlV3RmW0+JY3k0+eVkLBCBvzbmiMhcuoTCs3sVp/aTJSQbqsBs1PLGB4qq2u98SFuXgOouiOLvwhpRZ5fD05/JyIiKpW3334bHo8n5Z/Bgwdj4sSJuOyyy/Dmm2/mdO76+nrU1NS453r66aezvl+ytdTU1GD48OHYd999cfzxx+Paa6/FE088gUAgQz/xiGnTpiU978CBAzF27FgceuihuPjii3Hvvfdi48aNOT3XYupT6gUQERF1R77bd8kOKkMN7Qnbz5VS8Hg8XV8LCU9t4mejVthAuDH1NGsgtiKMFZ2pxW9RzkToFjw1nswHJmF0BBD4qjVynsIEnUolrw6VkWDOGfjj+3IXRhw+wb09fhq6GdDtXq4ZAjbnNSp0EzV1if+cFboJoyMIKJVxCJbQzB4f8qNMAQ889uClDAG1NLpC7/jwsNhb17OhhLT7jpbhh04s6CQiAhoX5/fvhUowdk7p3+iDwSA2bdqETZs24cknn8Ts2bOxaNEi1NbWZrzvkiVLYv6dsmTJEnzve9/Ley1KKfh8Pvh8Pmzfvh0fffQRHnroIQwZMgRXXnklbr/9dgwaNCjn84bDYYTDYTQ1NWHdunV4/vnn8fOf/xynnnoqfv/73+PII4/Me809gUEnERFVNFYR5U9ZAmZAS5iWLTQTfQbUuV8Hd7Zj8L6jEu5vBfWuidkp6G1dnyCzR2dquVbqCd1Ebb++eT2W3h5we4IWrKIzRb/P6K3rhjfovgaUVPDUeBDa5Y05PrijLf4USTmvUaFb8PRJ/EVCaKZd7WlJO4BL8TahlLJDzh4O6aQl4amVUEJm/HBG7wh09egsdUVnFpQl7HWV5VtxWS6KiIgq1DXXXIMf/vCH7tdKKbS3t2PlypW477770NzcjCVLlmDChAm44447Mp7viSeeAAAMHjwYgUAA//znP9HY2IixY8dmvaYLLrgg5rFCoRC8Xi/WrVuHd955B8uXL4ff78d9992Hl19+GcuXL8dBBx2U8bxffPGFe9myLHi9XjQ0NODDDz/E0qVL0dTUhDfffBPHHXccHnzwQcybNy/rNfc0bl0nIqLKxpKdvElLwAomVrLFV7f5t+xOen+7kit18GJ0ht1KPiDS07MHeyFWspwDLKlyHmDk0Nu7wunCBZ3JKzqd7fVCtxDc0d5VQaoUpCmgtcaG38EdrZkfSimIyGtU6GbSkNL53sSH+PFE2ChOJaJSbnVzppYDemvUpHUZW5GqcpjYXixSSDtQLsf34nJcExERVazRo0fjsMMOc/8cfvjhmDp1Kn7xi1/grbfeQv/+/QEADzzwAAwjfb/xDz74AJs3bwYA3HfffaitrYUQAk899VROaxo+fHjMmo477jicddZZ+OlPf4q//vWv2LJlC84880wAwMaNGzFjxgx0dKTfkQUg5pzf+MY3MG3aNFx66aV48MEHUV9fj//5n/9Bnz59YBgGrrnmGixfvjyndfckBp1ERFTRCrX1tjeSlkg6TCg+/PRvTR10pgvokg2BEXqBht9UGZlHpV6+1X3RAWmhgk6lunp0Rp/f3ZKvFPxbd7vHKKVgBsIJIaPhi7we0+RTLR9thhWZXC41M2mFpHCDzq5gUG/zJxyXLOjvMc5zzWIrffQRzt+zErL4HxRkkRM6VarlGCmy4p+IiIrlkEMOwbnnngsA8Pv92LBhQ9rjlyxZAgAYNWoULr/8cpx++ukAuqo8C2WfffbBq6++6q5t48aNuPXWW7t1zn79+uHGG2901yqlxJVXXglNK4+CBgadRERU0Xq6t141U5aEkSToFKGuMFIphWBDe9JA2e3NlwJ7cmavVFuSCzeMKPlk9egQsnPL7pjbol9njq4KzOQBldBMNLz+OfSOyNR4PflQJmcIlhN0KqUQ3NmecFxRg86ITEWG8Tc7zy/c3FmmW9ftbetlubYyXBMREVWv/fff372s66n/jaHrOp5//nkAwKxZs9C3b19cdtllAIDPP/8cn376aUHXVVtbi8WLF2PgwIEAgIcffhitrZl30WRyySWX4KKLLgIA7N69G4sWLer2OQuBQScREVU0maQvIGVHWsIOm5RyAyatzR8THhveIKRuuYFQTLWekGm3ULMnZ/ZKtSW5UI/bubERVtiA4QvFhOfRQZPe6oc0LSipYAU0mElCRmcQT6owMLC9FVI3EWqwQ0uhW0mDTieYj378pEFnKT4oyVTRGdJhRU2BtwIarKCetEK6GKxw+ipsaUV+/stwGFG6D2KIiIgK7auvvnIv77PPPimPe+mll9zt4//5n/8JAJg5c6Y7KMip9iykUaNGuY8VDofxxhtvFOS8119/vXv5b3/7W0HO2V0MOomIqKJFb02lHEk74FSWhAjbwVDrR5tjegKGm+xwxQk6TX9XiOVstzb8iVWhgF2BRtlJNsinkighIXULgfqWmEAuoaJO2SFksKEDZmco4TxuRWeKMNAdZqSc3p9m0mPjw3ehmQn9QIHSBJ2ZJqeHmnwxQ5mskA7fl7ugtSZuve9pVkiHFUy/DU1o5fvaZUUnEREVy4YNG9w+lccffzz22muvlMc6QebXvvY1TJkyBQAwaNAgfOtb3wIAPP300xCi8L/jnHHGGe7l9957ryDn/OY3v4khQ4YAAFauXAnLKv2/Cxh0EhFRxVJK8RfZbpKmgBXSoSLDYVo/2RZzuxOuOFVd0T0CnTApWZ9PaQmEGzM3OidbvoOFyonW5ocZ0KBF9cJMVlGnt/kR2tXe1Y8zSqbvg1slHAk3rYCW9DFE3Hn0tkDS9woryfb5npbpPSu4vTVmS70IG/DXtyQNhnuaFdIzhvCGL5j29lLi/x+IiKiQmpubsXbtWvfPF198gffeew/33HMPTj31VITDYQwbNgz33XdfynO0tLTgtddeAwBceumlMbc5FZe7d+/G66+/XvD1H3300e7ljRs3FuScNTU1OPLIIwEAgUAAjY2NBTlvd/Qp9QKIiIjyVY4TiCuRpdlVcR1fbLenUEcVyDkVnE5gYGkGhGaitn9f6O0B+5gkQadvw67k/R/Lb3drWaiKymRpDySyImG4ksqtFI7WunobtBYf+u8xJPEUTk/NFNug3b6vkfwqtKsDQyeOTTxPfGCqVNKt1SXp0SkklFTw1HiS3i7itopbYRPSsFDTt7YYy4ulAJlm4Js0LPi3JB9WVg4yVc8SERHlYsGCBViwYEHS22pqanD11Vfj+uuvx8SJE1Oe45lnnoFp2v9vdYJNx5lnnokxY8agqakJS5YswfTp0wu3eAB77LGHezmbyev5nnfChAkFO3c+WNFJREQVi7/EFobQDCil0Prxlsg1diCkpIoJrQBAmRJmUIOSEkZkIEyygUZtcZWhlUJlmhTTE48p0w91qiQibLi9N4VmJN1W3v7ZVwjuaE86QbxrGFFyTrju/D2Fd/sSgkEAMAOJ51ZSJXyfk923xymVcmt+qjWWsjIxXUWn0RlGeHdpeodmQ/XAtj8iIqJkpJR49tlnsWDBgrSDiJxt68cddxwOOuigmNtqa2txySWXAAD+/ve/o7OzsG2gBg8e7F72+wvXEqenzpsvBp1ERFSxqqIKrgwIzYQV0BHYHukLqCKDijSjKzCKTM8WmgFpCBi+kBs6xQ9JMf1h+DaVfttKPkox3MrsDFdNdbLZGXarKVNVS0rdhLJE8nDXyf9SBIFulXBUj874ymGhmUmDdiUVAvUtsWspwfddSZkyUI+vqAYiH0SUMOhM105AWcKeul6mynltRERUeX7961/brbOi/oRCIXz++eeYP38+AoEA7r//fpxxxhkIhRJbzvz73//GJ598AiCxmtMRPTDohRdeKOj6o0PIoUOHlv1588Wgk4iIKlam6i/KjtBM+L7c5YZHSimYfg3Skm7Q6VR0WmEDyhII7/a5QVZ8RVfbp1+V5QTmVKJDJ6EVv8LP8IYgzeoIZLRI+A1kHvSjZJrnnOLl4wSTzl+ZEjKhKrPlo01JKzWVlOjc3BTz961ECSp4RfKKTqVU0kpUq+QVnam3rpegADonkj06iYiohw0YMACHH3447rnnHjz00EMAgPfffx933XVXwrFONWefPn3cys14xxxzDCZNmhRzfKG0tra6l0eOHFn2580Xg04iIqpYihWdhSEVtJauT2INXwhWQIPe5nf787lb1y0JoZsw2rsGkIi4gS5pt62XYTCiRU2HT9pXtIcZ3iBkGUyoLAS7IjESimcY9JOqDycQGz47gagSsitAd0J5IWHFhdPuwKLEk0Jr7oQWFcynDVt7SGhXe9KA0L9ld9IJ51pzp92mo0SpYroqZxEufo/TXLCik4iIiumKK65wg75FixbF3CalxFNPPQUAsCwLo0ePhsfjSfpn/fr1AOzJ6PX19QVb35o1a9zLX//61wtyTiklPv/8cwB2NeeYMWMKct7uYNBJREQVi1vXC8cMdPXZ1Fr8MP1hhBu9kIYzHCYSNkWms0dXnsmoPnjBnW0JW9nLXWhXu1spmK56racYvhBUlVR0RlceZhz0k67qN+omp+oy5ufdDToTBx6lClCVVJCGBe/6hqTrLZbOzbuThpYtH21O2nc41NAOJUTJqifT/Uwk67NaTtijk4iIiqmmpsbtu9nY2Ii2tjb3tv/7v/9DQ0NDqrsmpZTCE088UbD1/eMf/3Avn3TSSQU558qVKxEI2Dt6pkyZgtraEgxPjMOp60REVLFKMTG5WlmBru+l1twJ068htKujqz2AEx5JO+jUWrsqQKOrpgLbYnsgVgK9NQDTr6HfiEElqei0gnrVDCOKCTozbF1PF6B1bmpEsKEdg/YeCbMzhH57DIk5XimFT29bBiiV0G4gZdAZCUxDDe0Zj+1JRkcwadAZ2NaCPY7eP+F606+h79ABGb+fPSU6fJWWQE2frl9gyj3olEJCaAZq+9eVeilERNRLWFG7dKIvO9vQ+/Xrh0WLFqGmJn3d4T333IM1a9bgiSeewK9+9atur6ulpQVPP/00AGDQoEE466yzun1OALj//vvdyzNnzizIObuLQScREVUsvSOQ+SDKiunvqujU2/wwOkMI7mzr6onobF1Xyu7RuavDPT46CDF8iY3Xy53eHoDhDZYs6BSG1SuDznQfVKioyeShRi/67TEk5nipW+7flRVX0ZmyUlQpKBU7RbwUW9cjS4n9WipYYSNllboSEnpbid7vohYrDSsu6Awnu0fZkIYF068x6CQioqIIhUJYt24dALt356hRowAAgUAAf/3rXwEAZ555Jr73ve9lPFdTUxPWrFmDTZs2YeXKlZgyZUre65JSYs6cOe6ApHnz5hWkl+azzz6LpUuXAgDGjh2LOXPmdPuchcCt60REVLH0dgadhRId8Ckh0bpqi93r0GmJGAmPOjc3QZoiJmSO3h6aKegsx2DE9Ift7eNKQe8IZr5DgYmQUVHDm9LJZet6ulBZSWX/ERLhJm/C+aJfZzKuMjTVRHMlJZSUbmWoUqp07yFxa7RCul2dmqLKVVoSZmdpfnac76cVNmLWp7f5y/LnOZrULVhJBlMRERH1hFtvvRXhsP3/xrPPPtvdxr1s2TIEg/a/Mb/zne9kda5vf/vb8Hg8ALo3lGj79u34j//4D7zyyisAgIMPPhi//vWv8z4fABiGgXvvvReXXXYZAKC2thaPPvoo+vXr163zFgorOomIqCIppRKmfVPhxIdUSkooIe3t7EdYcT0Uu8KtTGFMx793YsjX9iroWrtLSQXTF4LpCyG0sy3zHQrM6Ky8KthUlFRuhpdxGFG6ppMKgFIwvEH3NRU9qCc66Izvs5muR6cV1OGJbBXr3NgYM1SrmOLX6Py8md7krwUlZOkmr0fWGtzeirphAwHYwWzrv7YlnRJfbuKHpREREeWrubkZa9eujblO0zRs2rQJS5YswWuvvQYA6N+/P2677Tb3GCeo7Nu3L84///ysHmvChAmYPHkyVq1aheeeew5/+MMfUFeXuEPB6/XGrCkcDsPr9WLdunV455138NJLL7lb6L/+9a9j+fLlGDZsWMbHjz6nEAJerxcNDQ1YuXIlli5diqamJgD2Vvw//elPOOecc7J6XsXAoJOIiCpScHtrySqceiWpoHuDdo9OI257rerq3Wdk+DvxfbkLwDE9t848KKlgeEPo3LLb7eNYzMeuptdxdBgnutNTUin378UJ06KD0+jekDI+AEw3jEg3UNPP/udv25r6/NfXXXEhr4hUHaYKvZUlShZ0OqFs4KtWDDt4HACgY+0OWH4tprdvuWJFJxERFcqCBQuwYMGCtMfsueeeePLJJ3H44YcDAHbs2IG3334bAHDaaadhxIgRWT/ed77zHaxatQodHR146aWX8O1vfzvhmBdffBEvvvhi2vMMHToUV111FW677TYMHDgwq8d21p+Kx+PB6aefjt///vcZjy02Bp1ERFSRwk2+jBVjVDhKKmjNnQDQNaAo+nYhgT61bmCTSlkOkFJ2oNZ/z6Hpqwx7gNBNmOX4PSmAjAFTpu91pG+lE3SaURWd0fdNqOhMs3Xd0gz0sXeBlaQfq7uWJD06gdQ/H8JI/JkrGrdXagcG7m3389Ja/Gl7ipaTTO9JRERE3VFXV4eRI0fi0EMPxfTp0zF37tyYMPPJJ5+EjPQETxZUpvPtb38bN954IwC7KjTT/T0eD4YMGYKhQ4di7733xtFHH40TTjgBM2fOxKBBg3J8Zl369++PYcOGYeTIkTj88MMxefJkXHDBBe6E+XLDoJOIiCqSkqpkU4h7IyVlV9AZX9EJQJp2RafMEMgoIe1j+9amPa6YlLKrVaWQmcO3AjM7w1AVEBblxv4eZgwSM3yrlVKQhgXLqehMEQIqK37revLKR6cXqjSFO1SrZBKSzkjQmeI9LdnPXLHY/VIlRNhEcEcrRhw6HoY3CBE2SjbMKRdWSIdSyu1zRkTU24ydUx19wEtl2rRp3fog/KabbsJNN92U130POOCApI+933779ciH807laaXjMCIiIqpISsqqGeBSCZRUCDfbPVGTVXQa3mBWW0SVUknvX1JKQW/1w+gIFr2iU2/zF/XxisEJHrtbMamkgtBMt2pQa0n+vUrY0p1q63rkOGkKGN4QQrs6urW+bokfRhT52Un5PSvy6zL2oRVCjV4IzURoZzuUkBBhA5Zmlq5vaA5E2GRVJxERUS/CoJOIiCpSqoEj1EOksqewA0m3q2qt/uzCBKXKbrurUnYI5tu4q+jhudZWoqnfPUialt0Ps7vbrSNTyJ3wWUsxfEyK2NdTxvcGpdD+aX1pt66nGEaUaup6SUmFwLZmSMNEqMkLYViQpohUdJb/+7AZCDPoJCIi6kUYdBIRUUWqhEqiaiJ0E+FGL4DkA1NEyMguOFJdFaHFrp5MxdnCbLQXv6LT6CjN1O+eJDSz+yEnIhWdugkou+Ix1bbubHt0Ruvc1NTt9XVLXGWzf1szgOQfIpSaUgrh3T4I3YIIGTA6gu4HG5XwPqyX4OeaiIiISoc9OomIqDJVQG+4auLf2uyGGlpr4hZiKWTW041L2W8wmZhwqYh5iDRFeVbwdZMVMgrzvJSC0Cx3+nrKw+J6dGazzVsrccsApZyfAw+UEPCua7CvF+UXyCkhYfp1N5ht+7TerpD0ADV9y/9XCaMjWBGVp0RERFQYrOgkIqKKxF9ciyvc5HUvW34t4XY7DAlndS5pCjsULZMqKxk1lKaYlV9W2EgM6aqANKyCbAu3t7+bgFIwfKkrXxMqOrN4b0j2Gi6qSEWntAS8G3a5VcVlOdxHKlhB3X2t+tbvsq9XKEjlbk+zQjr7ORMREfUiDDqJiKgy8ffWsqJE11T2TKRh2f0Wy+TvMGbqeREDERHSK2Lrbz5SbTPPibKHESmlYHSkqeiM+x6W4/bveCrSq1aZAv4tu7uuL8PXg1IqpsdlQf5ui4xb14mIiHoPBp1ERFSRZBkGAr2ZEhJ6e3aDdaRpIRTp91kOooOxolZ0VnXQ2f3hL+5AI6mgd6R+bcW/F6gKCDoh7aBTGBYCX7XGXF9ulFQxf59Cq8DBPmX4fSUiIqKewaCTiIgqkplkIA6VjpLSnRydiTQFQg3tZVF5p6SMDRuLGnQaEEb19egE7GrV7nKrHpVCaEdb6gOlitmuHt2KoFwpISFNC+Emb9lPBDe8wdgt6hWYGbKik4iIqPdg0ElERBXF8IVgBrS0w0mo+JSQWW9plaaF0K7yCDrj11DMPESEjbIbzFQoZrAAPTClvXUdSiG4qyPtodFhdSUEnVJIN/Av96peraW0g5sKIb5vq1KK4ScREVGVKv9RiURERFFCDe2oHVAHw8egs5woobKu6LRCBsLNnWURNCSErUWu6KyEYS75CO1s7/Y5tDY/tBa772um7ehKSKBvrX25AgY8KSEBBQQb2su+DYeqgOA4o7ifa6GZUKZA36EDSrQgIiIi6ims6CQioooiTWFP+O7MbsI3FYcSkUnqWQjuaCubnnkJFZ1FXJcV1iGqNOiM6TuZp/ZPv8r62Eqr6HTWG2roqIhgttLF/1wLzeSHZURERFWKFZ1ERFRRpClghYyy3+7Z21hBI+vw0qnSy1Q9qaSCp8aT8XxCN1Hbr29Wjx0voQq1SBWdQjcjW9erM+jMtro3HaMjmPWxTlWkErJsQvR0nIrOcu/PWTWkguELQUn79aGUgtCrsz8uERFRb8eKTiIiqijStLLuBUnFY/qzr7DNthpXyezC7O6ERfHrLlZFpxXSq3rrerEpYVdxVkI1J+AMI6qMtVYDpRQ6NzXBCuoI7mwHJIrbkJeIiIiKhkEnERFVFGkKiBCroMpNttvWAXvbaFayDB2tbrwetv99dczXSsiiVAtbQQNWSGdlcoE438dKCQ+lJWGF+YFNsSipEKhvARTQtqYeQjeZcxIREVUpBp1ERFRRpCkYEJShvCoTM21dzyKJUEJ2a5t0/H1F2Mi6krQ7hGawR2ABOX0uK2U7shIChpd//0WjFKyQjvZPv4J/627o7QFWdBIREVUpBp1ERFRR7K3rrOgsN93dgp3s/tlsIxe66Q70ybU6UkmVMAhGaGbRtq8bHQy6CsV5Dchsq4VLTAkJK6CVehm9hpIKWqsfLas2Q1kS4WYfwJyTiIioKjHoJCKiimIPI2JFZ7mReUyOji6oCjf7kpw0cxJheEOAUnZwlGOvTpWin2PRJq+zoqxgnMFFQq+MnqfKkllVLFNh+Lfsht7qj512z+8/ERFRVWLQSUREFUWxR2dZcobB5Etr7kw8ZxZbyA1fCEpICN3MuT9jqsE17JtZefT2AIDK2bouhWTQXURt/9oW83W4ycvvPxERUZVi0ElERBVFClkxVVu9Sl6ZQdedkvXZzGaCtuENItzktbeh5xh0pqzcLFZFJxWMHqnolBUSdCohmbMVUfwANKFxGBEREVG16lPqBRAREeVEKkijMsIMyiAqaEg2iT2bCk3DG7Krs5BdMJrVsoowjIgKy3ArOivjQxDFis6Skqbg95+IiKhKsaKTiIgqhhU2ItuUKyPMoOwJw4Tpjx3O4vTdlKb99236wwn3s4IatDY/pGHlvHU9VRVqMXp05rxWSkv32hWdRuS/5U4J6fYVpRJQikEnERFl5e2334bH40n5Z/DgwZg4cSIuu+wyvPnmmynPU19fn/Y8yf5861vfSnm+nTt34tZbb8XJJ5+MPffcE3379sWAAQMwfvx4nHLKKbjuuuuwdOlS+HxdffCnTZuW8xri/yxevLiA392ewYpOIiKqGFZQg5Ky2xO+qfxIw4LhDaLvkP7udUoqWEEdtf36oqZvH+gdQfQdMiDmflbYhOXXYIX0PCo6kwcdRQk6+RouKMuvQRoWtLZAqZeSFSUkwkn60lLxMOckot7i4pebS72EHvPcuaNLvQQEg0Fs2rQJmzZtwpNPPonZs2dj0aJFqK2t7bHHfPjhh/HTn/4UoVAo5nrLstDQ0ICGhga89957eOCBB3DxxRfj2Wef7bG1lCMGnUREVDFMvwYlFIfFVItI0iAtAaFZEPHhn1QIN3kxYOxw9FH90PT2Ohw4+5SYQ0TYgDQFzIAGDzw5Pbzvy8bkyyrC64tBZ2FJU0DoFqyAlvngMqC3ByHCHKpWUkw6iYgoR9dccw1++MMful8rpdDe3o6VK1fivvvuQ3NzM5YsWYIJEybgjjvuSHmeCy64IO3tjqFDhyZc98wzz2DevHkAgP79+2Pu3Lk4++yzMX78eCilsGvXLqxevRrLly/HmjVrYu772GOPIRhMvqPkl7/8JV588UUAwOuvv45x48YlPW78+PEZ111qDDqJiKhimH6N/ROriIIdKkrDsv9e44IHJSQ6NzWi38jB8G3YhfBuX8I5rEhYZAU01Pary3EByYOOQvX6TCch1KVuE4ZZMQFyaFd7qZdADDqJiChHo0ePxmGHHZZw/dSpU3H++efjmGOOgaZpeOCBB3DLLbegri75v02HDx+e9DyZCCHwX//1XwCAIUOG4P3338cRRxyRcNz555+P2267DevXr8cXX3zhXr///vunPPfw4cPdyxMnTsR+++2X8/rKBXt0EhFRxTD94aRDa6hCqUgfzqAeGc4Sd7OU6NzUBKGZ6Ph8e9JKS+f1YAUNKJHj1PUUQYcqQtBZKdPBK4nUk1QFlym9vTK22Fcz5pxERFRIhxxyCM4991wAgN/vx4YNGwr+GB999BGampoAAD/4wQ+ShpzRJk2ahFmzZhV8HeWOQScREVUMszOMcHNiVR9VKKWgpES4yQslZELwGGr0wvCG7EFFAS1p0OlU8AndTDVbKM3jJ7+6GIOCrDCDzkITulk5Q54YspUek04iIiqw6IpJXdcLfv7t27e7lw888MCCn79aMOgkIqKKEdrVAcmJ61VDSQUlFMK7fXZAFRc8dG62P7EWYbOr6jOOE3RK3co9PEpV0VmEHp1CY3/GQpOGBWny/YGyk6qim4iIKF9fffWVe3mfffYp+Pmjt8KvX7++4OevFgw6iYioIlghHWZnuNTLoAISugklJIzOMPQ2f0JQ6QyWMf1hWMHEik4lpHudMEzkmnSmyjmKMoyIgX3BCd2CNCqkopNKjzknEREV0IYNG7B8+XIAwPHHH4+99tqr4I9x1FFHuZf/8pe/4M033yz4Y1QDDiMiIqKKYHhDkDn2YKTyprV0os+gftBb/fagqbjk0em/afrCsEKJFZDR/RiTVXQqpeDxpJnEnqqiU/Z8AiJYeVhwImwUpb8qVQlWdBIRUY6am5uxdu1a92ulFLxerzt1PRwOY9iwYbjvvvvSnsfr9cacJ5X9998fgwYNivl6xowZWL58OTRNw+mnn47JkyfjnHPOwfHHH4/Jkydj1KhR+T/BKsGgk4iIKoIV1KEsTlyvJsGvWhFq6IAZqdyMDx6cfovhFl/abetA8inmVkBH3yH9Uz6+M7E9XjGCTlZ0Fh7791IuuHWdiIhytWDBAixYsCDpbTU1Nbj66qtx/fXXY+LEiWnP8+KLL+LFF1/M+HhvvfUWpk2bFnPdY489hunTp+Pjjz8GAHz88cfuZcCemH7WWWdh7ty5OProozM+RjXi1nUiIqoIQjMhWa1VVcLNPrSs2py0r6ISsivo3OWNud4hYyo6zYTgwugMpX18kaRKFLCnvfc09pIsvPCujlIvgSoJc04iIiogKSWeffZZLFiwoEcGETlGjRqFFStWYOHChUmDzI0bN+KPf/wjjjnmGFx22WUIBoM9tpZyxaCTiIhKrvnDTRmDH6EbrOisMsHtbYBUbl/F6EpK7/oGiEjFpRXq+seijAo6rWDX9ckqOvW2QFe1aBJmMMVtxajoZC/JgtO9ve8f8pS/EINxIiLK0a9//WsopWL+hEIhfP7555g/fz4CgQDuv/9+nHHGGQiFUn/gfvnllyecJ9mf+GpOR9++fXHVVVfhk08+QUNDA5599ln87Gc/w8knn4y+ffu6xz355JM4//zzIXpZ+y8GnUREVFKhRi92vvIpRIatvCLMis5q5VZmRuWLQjeTHhtd0WlEDadKthVcb+2E1tKZ8nGjA9SYxyhCRac9PIkKSYT5PaXsef+9syg/60REVN0GDBiAww8/HPfccw8eeughAMD777+Pu+66qyiPP27cOFx88cW499578e6776KpqQk33XQTamrsuO/NN9/EM888U5S1lIuyDTp1Xcfu3bsh+Q8QIqKqtvvd9VCWiNmGHE/opj2YpgiVdlR8TngZvfU8VQ/L6KDTjNqaLnQzJiiVlkCwoQOmL/Wn6akfo+tE0VWjheQMWqLCSfceQhTPCukIN7GvKxERFc4VV1yBkSNHAgAWLVpUkjWMHDkSd911F2688Ub3uhdeeKEkaymVogedgUAAr7zyCl555RUEAoGE21tbW/Htb38bQ4cOxbhx4zBixAjccMMNPdrjgIiISsfZPpwupNBa/LC05P0UqYpEBZ2pKh6jp2rHVHQaFqKTzuCONoSbvG6fz6TnSvFhavT1gR2tGZedK2lYHEZEVAb0tsTfRYiIiPJVU1ODgw46CADQ2NiItra2kq3lqquuci9v3ry5ZOsohaJPXV+2bBnmzp2L8ePHo76+PuY2KSXOOecc/Otf/3KrOvx+P+6//37U19dj2bJlxV4uERH1IKWUW9kmdAvSFKjpWwslJDy1Ne4xemun26+RqlgWFZ3RPToNb1e1pjSFe3fTryHU0AHDG0oIOpVS8Hg89uUUFcLR14d2tmP4wXvn9jwySDXtnYiKS+9g0ElERIVlWVbSy8U2btw497Lzb9/eougVna+//joAYObMmW7PAMdzzz2HTz75BABw9NFH4/rrr8fRRx8NpRT+9re/4bXXXiv2comIqAcpS7rb0aVhuv0Urahp2MoUCLd0xoRaVJ2iY8dUPVujB1LF999UloThDaJj7Q6Y/jCgVEJf1+it71CZg04zoBV8S3SqgJWIiktvZ9BJRESFEwqFsG7dOgB2785Ro0YV9Pwqxb9dk1m9erV7+YADDijoOspd0YPOtWvXwuPx4IQTTki4bcmSJQCAY445Bh9++CF+97vfYeXKlTjuuOMAAI8//nhR10pERD1LWsINt7S2gDscRlqWO4xGWgJacye0Vn+JVklFEwkmlVKphxFFgkslJPS22NeENC20ramH2Rlyp607FZ3OdnQnKFVSpQ4co7auC82E4Q3Z0y8ZUBJVFQadRERUSLfeeivCYbu10tlnn43a2tqCnv/VV1/FrFmzsGbNmrTHtbe34yc/+Yn79QUXXFDQdZS7om9db25uBgDsv//+Mdebpol3330XHo8H1157Lfr0sZfWt29fXH311Vi1ahVWrVpV7OUSEVEPiu63qLcFUDdsoH29VBBhA7X9+kKaAlZQhxUJrqh6SVPAt74BQw7YK+UQIeeD7NCujpjqTgDQ2/z27VK6Q4Sc15jW4seAvYa5FZ1mZyj11nUVO4yo/bOvMPqEiZCmhbrhg7rzFImojBgdwVIvgYiIKkhzczPWrl0bc52madi0aROWLFni7kLu378/brvttpTn8Xq9CedJpra2FpMmTXK/llLihRdewAsvvIAjjzwS5557LiZPnoyxY8eirq4Ozc3NeP/997Fw4UI3ezvmmGNw+eWX5/N0K1bRg8729nYAQF1dXcz1H3/8McLhMDweD/7jP/4j5raJEycCAJqamoqzSCIiKgppSTe5MjqCMdV6lm6HStJMP5Gdqod3XQOGHjQGZkCD4QunOCrSw7u+JeEWrcWPumEDYQY1t6erU9Fp+sPoM7CfW9kpdAtmZ4rHiOSnSilYQR1tn9ZjxOETYIUMBp1EVcTw2h94eGp6V+8yIiLKz4IFC7BgwYK0x+y555548skncfjhh6c85sUXX8SLL76Y8fGGDRsGr9frfj1ixAgMGjQIwWAQn332GT777LO09z/zzDPxzDPPuIWEvUXRn+3AgQPh9/vddNnx7rvvAgAOPPBA7LXXXjG3DRgwoGjrIyKi4lGWcIfO6N6g209R6hZEJNyUpnAHFlF1Czd5MWT/PWEFNBidKXqyKkDoJsJN3oSbDF8IfQbWwfRr7mtGmgJmQIOyJLQWH/pGqobNznDKAN2p6BSaCSuk28dGKouJqHooIWH4Qug3gh9gEBFRfurq6jBy5EgceuihmD59OubOnYsRI0b0yGOdeOKJaGlpwT//+U+8/fbb+OSTT7Bp0ya0tbVBCIGhQ4div/32w+TJk3HJJZdg2rRpPbKOclf0oPNrX/saPv30U7z99ts466yz3Ov/+te/wuPx4JRTTkm4T0uLXbUxevTooq2TiIh6nrSk25fT6Ai61XdWSIc0ItWdluCU6l7CChuQpkC4uRMqblp6NK25063YjLl/ULeDzUgwCdg9Xo0OO0TXO4Ko7V8HJWX63nyRoNMK6u7jKKkgjEIF7uz1SVQujPYAg04iqmrPncscpTumTZuW0xCgVPbbb7+CnGfAgAE477zzcN5553X7XNEWL16MxYsXF/ScpVL0YURnnnkmlFJ46KGH8OqrryIQCODBBx/Exx9/DABJ/7I+//xzAMC4ceOKulYiIupZVlBzh86IsOH2XJSGBWna1XZCN1MOpqHqokwBaQp0bmpMfYxS0NsDSasx7deNiLyWhHtOrc0PaVowA2EI3bSruLxpevMpe9q6E5wCgOENpuwbSkSVy/SnapNBRERElajoFZ3XXXcd/vznP8Pv92PGjBkxt02aNClp0Pnyyy/D4/HgqKOOKtYyiYioCMKN3pjiNndCdtR1ZmcY4LTrXkNr7kTn1t1pj7FChtvaIJ4TkLtfWwJaSyf6DOgHSAWhmZCWvV01FaUUQg3t7uAiAPBv2Q0rxMpiomojdPaAJiIiqiZFr+gcO3YsXnrpJYwZMwZKKffPAQccgKVLl8LjiW0GvmXLFrz33nsAgDPOOKPYyyUioh4UiuuzKK3Y7cpWSE/dq5Gqkm9TY9pt61CA0Ay3t2s8p+VB19cW9BY/rJAOpSKVw0LC8KZ5XSmF8G5fTMuE8G4fQo0dOT0XIip/3DFARERUXUoyeunkk0/Gtm3bsGLFCjQ1NWHs2LE46aSTkk6CamxsxK9+9SsAiOnpSURElU9v9cd8LeMCLt+GXRxE1NtkrN5V7pCgpHePq+g0fCEoBdQOrENtv76wQkbGretK2SF7nwF1XdcJmTJcJaLKxaCTiIioupRsxnxdXR1OPfXUjMeddNJJOOmkk4qwIiIiKjYtLuiMDzW963aiz+D+xVwSlTvlTENPvo08Piw3vCE34Kzt1xdWUIOyBIzONH35lB2mqqjQVUmVUHFMRJWPH2AQERFVl6JvXSciInLEB5v+SG9GJSSkYaFz826IMKttqItSyq7ASjG1Mj7oVEJC6BZE2IDQTIR2dUAKmbZy1L5PfNApY4JOYVgxt+f0HKJ6fxJRacVXgRMREVFlY9BJREQlkSys0lv90NsDUEIg3NwJaVgIx/XxJEq31TRZ1aXQTYiwgcBXrZCmyBg0KqkiQWfXcUooQCr3OqmZiJmklQNlMegkKhfxH44QERFRZSvZ1nUA+Oyzz/Dee+9h69at8Pv9ECL9PzQ8Hg8effTRIq2OiIh6UqpJt74vG+HxAFqzDwCgtXQWc1lU7lRiJXCMJFWWUjdhabUQIQO1/frATLdtHfbAIqnFBvHCsB9TSQVPjf11H9Uvr6dgBZP3FyWi4mPQSUREVF1KEnR++eWX+P73v48PP/ww6/sopRh0EhFVEZmiKs+3cReGHjgG4d2+Iq+IKoJSKV87qUhTwAoaUJaAtAT0tkDa482gBqHHbk0XzgT2SPiZKqjPhulPH7QSUfGw9y4REVF1KXrQ2dDQgFNOOQWtra1QkV8WBg8ejBEjRqCmhjvpiYh6C2kkD4r8W5sxaPwerHqjpISeehBROk44qoREKEM7BCuoI9zkRcNrXcc5282dIs/wrg4M2GsYPDmuQ2gmTL+W472IqKcoVnQSERFVlaIHnXfeeSdaWlrg8Xhw5ZVX4mc/+xkmTpxY7GUQEVGJpaqiUaZA56amIq+GKoXhDXUrBFdCIvhVa9pj0p4/knR2rN2BkUftl/PjG74QKzqJygi3rhMREVWXogedr732GjweD2bPno2FCxcW++GJiKgM+Lc1Y/vfP0l5e3BHWxFXQ5Uk3OTt1tRyaQqY/vRb191t6slEgk7/1ua8ZhFZIR2GN5T7HYmoR3DrOhERUXUpetC5a9cuAMDs2bOL/dBERFQGzM4wtj77Aax023dVftOsqfoFd3V06/5CMzMGlDJNkKqUvX3eDltzf50qIdl/lqiMsKKTiIiouhS9KeaIESMAAMOHDy/2QxMRURnY/tIn6UNOojS0boaE0sxiiFCSye0upbp6hOaRxyshobX5c78jEfUIxYpOIiKiqlL0oPPYY48FAGzcuLHYD01ERGVAb0+/bZgone5sW7dP0M27S+Vubc/nVEqq9EEqERWV4g4CIiKiqlL0oPMnP/kJlFLsz0lE1EsJzSz1Eojyp6J6eOYRkHQ7qCWigmPYSUREVD2KHnSeeeaZ+PnPf4633noL11xzDUyTv/ASEfUmJretUyVTKm0Pz0w4+ISozChA6lm0tCAiIqKKUPRhREuWLMGkSZNwwgknYOHChXjppZfwne98BwcffDAGDhyY8f6FGmLU3NyMVatWYdWqVfj444/x8ccfo63NnvJ7+eWXY/HixRnPsXjxYsydOzerx3vssccwZ86ctMeEQiH88Y9/xAsvvIAtW7ZA13VMmDAB5557Ln7yk59g3333zeqxiIjKlRXS2Q+NKppSqlvDspTFik6icmKFDFZ0EhERVZGiB51z5syBx+Nxv25sbMSDDz6Y1X09Hk/Bgs699tqrIOcplM2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjBKtkIio+wxfqNRLIOo25fTYzCMbkQYrx4jKCT98IyIiqi5FDzqB8uuDs88+++Dggw/GG2+8kfc5Xn/9dYwbNy7l7ePHj095m9/vx7nnnuuGnFdddRUuueQSDBgwAG+99Rb++7//G52dnbj44ouxYsUKfOMb38h7nUREpWT6wqVeAlH3xFR05v7vGcGgk6j8lNnvJkRERJS/oged27ZtK/ZDJnXLLbdg8uTJmDx5Mvbaay/U19dj//33z/t8EydOxH777ZfXfe+99153Cv0999yD+fPnu7dNmTIF06ZNw9SpUxEKhfDTn/4Ub7/9dt7rJCIqJaOTFZ1U2ZRSbkVnPtmIFWCPWiIiIqJK8fbbb+PUU09NefugQYMwbtw4fPOb38TcuXNx2mmnJT0un8zpggsuwN/+9reY62699Vb85je/STi2rq4Ow4YNw7Bhw3DQQQfh2GOPxRlnnIFTTjkl4+OkWpvH48HQoUMxbNgwjB07FscccwyOP/54zJw5E4MHD87puRRT0YPOcukzmeyFUQqmaeKBBx4AAEyaNAk33HBDwjEnnHACrrjiCvzlL3/BO++8g48//hiTJ08u9lKJiLqNFZ1U8VT01vXck85wk7ew6yEiIiJKw/PYz0q9hB6j5v621EtAMBjEpk2bsGnTJjz55JOYPXs2Fi1ahNra2qKuwzAMtLS0oKWlBZs3b8arr76K22+/HZMmTcJvfvMbXHTRRTmfUykFn88Hn8+H7du346OPPsJDDz2EIUOG4Morr8Ttt9+OQYMG9cCz6Z6SbF2nLm+99RZ8Ph8AewhSTU1N0uPmzJmDv/zlLwCAv/71rww6iagiGb5gqZdA1C3SFF0BZx4VneEmX2EXRERERERFcc011+CHP/yh+7VSCu3t7Vi5ciXuu+8+NDc3Y8mSJZgwYQLuuOOOlOe54IIL0t7uGDp0aNrbFy1a5GZDTijZ0tKC1atXY/ny5fj888+xfv16zJo1C1dccQUWLlyYMnNKtbZQKASv14t169bhnXfewfLly+H3+3Hffffh5ZdfxvLly3HQQQdlfC7FxKCzxN5//3338tSpU1Med+yxx2LgwIEIhUJYsWJFMZZGRFRwWqu/1Esg6hat1e/2Gs+157jZGYYV0ntiWURERETUw0aPHo3DDjss4fqpU6fi/PPPxzHHHANN0/DAAw/glltuQV1dXdLzDB8+POl5crX//vsnPc/MmTNx55134qWXXsL3v/99tLa24tFHH8XIkSNxzz33pD1nqrWdddZZ+OlPf4rt27fjyiuvxD/+8Q9s3LgRM2bMwIcffogRI0Z0+/kUSvoot4cJIbBs2TJcc801OPnkk3HooYfi0EMPxcknn4xrrrkGy5YtgxCVMQlx7ty5GDduHOrq6jBq1Cgcf/zx+OUvf4mGhoa091u3bp17+eCDD055XJ8+fXDggQcCANavX1+YRRMRFZGSCnoHKzqpsumtfiDPqevh3d6Cr4eIiIiISu+QQw7BueeeC8AeOL1hw4YSrwg477zz8MEHH2DIkCEA7Pkw//rXv7p1zn322Qevvvqq+1w3btyIW2+9tbtLLaiSBZ2vvfYa9t9/f8yaNQsLFy7EBx98gPXr12P9+vX44IMPsHDhQsyaNQsHHHAAXn/99VItM2tvv/02GhsbYZom2tra8NFHH+HOO+/EgQce6G45T2bnzp0A7Aa2w4cPT/sYEyZMAAC0tLRA13OrCNm5c2faP42NjTmdj4goV9K0oMzK+PCKKBXDF4qq5Mwt6dRaA4VfEBERERGVheiBPrlmNj3loIMOwt133+1+HX05X7W1tVi8eDEGDhwIAHj44YfR2tra7fMWSkm2rj/xxBOYO3euPbk08svCfvvthzFjxgAAmpqa8NVXX0EphR07duDcc8/F448/jksvvbQUy03rgAMOwIUXXogpU6a4QeTWrVuxbNkyLF26FJqm4eqrr4bH48G8efMS7u/329s4s5lYFd3kNRAIoF+/flmv01kbEVGpSFPkvNWXqNyY/jAghwPIfRaR3sGgk6gs8X9NRERUAF999ZV7eZ999inhSmLNmTMHN998M7xeL15++WWYpom+fft265yjRo3Cf/7nf2LhwoUIh8N444038L3vfa9AK+6eold0fvXVV5g3bx6klBg4cCDuuOMONDU1YevWrfjggw/wwQcfYOvWrWhqasKdd96JwYMHQ0qJq666Ctu3by/2ctOaOXMmNm/ejHvvvRcXXnghJk+ejMmTJ+Piiy/G888/j7///e/ui+f6669HU1NTwjk0TQOAlL0bokUHm+EwJxcTUeUQuglpWF1bfokqlBnQoLVFAssck06jnUEnERERUTXasGEDli9fDgA4/vjjsddee5V4RV0GDhyIE044AYA9XKi729cdZ5xxhnv5vffeK8g5C6HoFZ1/+MMfoOs6Bg8ejHfffRff+MY3kh6355574qabbsL06dNx8sknIxgM4g9/+AN+97vfFXfBaQwbNizt7TNmzMAtt9yCX/3qVwiFQnj00Udx8803xxzTv39/AIBhGBkfL7r0ecCAATmtdceOHWlvb2xsxHHHHZfTOYmIsmWFDFZ0UlUwvCGE6zryuq/OoJOIiIioYjU3N2Pt2rXu10opeL1ed+p6OBzGsGHDcN9996U9j9frjTlPKvvvv3/Mzt7uOProo/HKK68AsPtqfvOb3yzIOR0bN27s9vkKpehB5xtvvAGPx4P58+enDDmjHXnkkfjZz36GW2+9Fa+//npZBZ3ZmDdvHm655RYopfDOO+8kBJ1OU9hAIPMvP8Fg1xCPbLa6Rxs/fnxOxxMRFZII6Xa7ElZ0UoUzfSH0GRDZhZFDcG8FdYR3d/bQqoioO/ghHBERZWPBggVYsGBB0ttqampw9dVX4/rrr8fEiRPTnufFF1/Eiy++mPHx3nrrLUybNi2fpSbYY4893MsdHfl9aF+McxZC0beuO9vPo0tcMznzzDNj7ltJRo8e7f7lJ5vA7gSQwWAQXq837bmcqsw999wzp/6cRESlZoUMSEPk3tSQqAyZnXb7mFxezsIw+fonIiIiqlJSSjz77LNYsGBB2QwiihZdLOfMiinHcxZC0YNOIeyJu7W1tVnfp08fu/BUStkja+ppHo8n5W2HHHKIe3nDhg0pj7MsC1u2bAEATJo0qXCLIyIqAiukwwrpHPhAVcEKO/94zf4FLQ3RM4shIiIioqL49a9/7Q7Vdv6EQiF8/vnnmD9/PgKBAO6//36cccYZCIVCKc9z+eWXJ5wn2Z9CVXMCsUHk0KFDy/achVD0oHPvvfcGAHzwwQdZ38c5dty4cT2ypp7U0tKC1tZWAMnXf9JJJ7mX33nnnZTnWb16tbt1/cQTTyzwKomIeo6SEkIzEd7tK/VSiApDxf03C9KwemQpRERERFQ6AwYMwOGHH4577rkHDz30EADg/fffx1133VXilcVycikAGDlyZNmesxCKHnSeeuqpUErh7rvvxq5duzIev2vXLtx9993weDw47bTTirDCwlq4cKHb92fq1KkJt0+bNs0davT444+n7BG0ePFi9/LMmTMLv1Aioh4iLQlpWtAYdFK1yWErumDQSURERFTVrrjiCjfwW7RoUYlXE2vNmjXu5a9//etle85CKHrQ+eMf/xg1NTVoaWnBN7/5TSxdutTdzh5NSomlS5diypQp2L17N2pqavCjH/2o2MtNqb6+PuYvNZnly5fjtttuA2Cn/HPnzk04pq6uDj/5yU8AAOvXr8dvf/vbhGNWrlyJRx99FIAdlk6ePLm7yyciKhplCSihoHcEMx9MVEGklX1LHVZ0EhEREVW3mpoaHHTQQQCAxsZGtLW1lXhFtlAo5O6UHjx4cFaDwbPxj3/8w70cvVu51Io+df2www7D7bffjptvvhm7du3CxRdfjOHDh+Poo4/G6NGj4fF4sHv3bvzrX/+C1+t1Kxxvv/12HHbYYQVbx/vvv4/Nmze7X0eX3G7evDmmghIA5syZE/N1fX09Tj31VEyZMgXnnXcejjzySIwePRoAsHXrVixduhRLly511//b3/7W3bYfb/78+XjuueewceNG3Hjjjdi8eTMuueQSDBgwAG+99RbuuusuWJaFAQMG4P777+/+kyciKiJpCigpYfhS96khqkTSyr7vJoNOIiIioupnWVbSy6X02GOPweezd9fNmDHDnYPTHS0tLXj66acBAIMGDcJZZ53V7XMWStGDTgC46aabMGzYMNx4440IhULo6OjAm2++GXOMExAOHDgQ9957L6655pqCruGRRx7B448/nvS2FStWYMWKFTHXxQedjpUrV2LlypUpH2fgwIG47777MG/evJTHDBkyBC+//DKmT5+OTZs2YeHChVi4cGHMMUOHDsVTTz1VsOSdiKhYTL8GaQpYQa3USyEqKGUy6CSqChyUR0REBRAKhbBu3ToA9q7eUaNGlXhFwKZNm3DTTTe5X//iF7/o9jmllJgzZ447cGnevHll1aOzJEEnAPzwhz/ErFmz8Nhjj+Gf//wn1q5di/b2dgB2E9PDDjsMZ5xxBubOnVsWL454xxxzDJ588kmsXLkSq1evRmNjI1pbW2FZFkaMGIFDDz0Up59+Oq688kq30jOdAw88EGvWrMGf/vQnvPDCC9i8eTMMw8CECRMwffp0XHfdddh3332L8MyIiArL6AjA6AjyF0mqOtLMPrxkj04iIiKi6nbrrbciHA4DAM4++2zU1taWdD3Lly/H3Llz3enoN910E4488shunXP79u248sor3W3rBx98MH796193e62FVLKgEwBGjRqF+fPnY/78+UV/7MWLFydsT8/FkCFDcOmll+LSSy8t2JoGDRqEG2+8ETfeeGPBzklEVGqGLwy9I1DqZRAVnExT0amkRGhXBwaN3yNyLINOIiIiokrW3NyMtWvXxlynaRo2bdqEJUuW4LXXXgMA9O/f353XkozX6004TzK1tbWYNGlSytu3bdvmFgYqpdDZ2YmWlhasXr0aL730Ej7//HP32Hnz5uHOO+/M+JjxawuHw/B6vfj/7N15fFvllT/+z3Pv1erdcfaFJJAACSmQAKUshZmyFFqglBnaoZSllNJ2vp3CTJfh1w6kdBm6AQOdZtpSWiBtoawpaSn7koQkJCFkIZsdx/siL9qluz+/P64tWbYkS7ZW+7xfr7wiS/c+97FsS7rnnuecAwcO4K233sILL7wQW5J/4oknYuPGjbEG26WiqIFOQgghU58WkqEMUiMiMvWkC3QGjvRAj6qxQCfPonERIaTQaMkBIYSQ8a1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NDXw+X8rHv/CFL4w7xooVK/D9738fn/70p8fdNtO5VVdX49Zbb8U999wDt9ud0biFRIFOQggheaWHZOghqs9Jpp50WZr+w11wzY5f3aYanYQQQgghU4/dbkd9fT1WrlyJyy+/HDfffDPq6uoKPg+bzYbq6mrU1NTgxBNPxBlnnIFLLrlkUt3QGWOoqqpCdXU15s+fj9WrV+Occ87B1VdfjYqKihzOPrco0EkIISSvNApykikqXUanHlZidTlNzaAanYQQQggpCn7zz4o9hbJ24YUXxpplT8bixYtzMs7atWuxdu3aSY8zUq7mViryFuhcunQpACsCfPTo0TH3T8TosQghhJQ+LRgt9hQIyQsjqqV8TI+qMBTrcUPRaOk6ISXM1FNftCCEEEJIeclboLOlpQWAFZxMdv9EjB6LEEJIaeMmh9wfLPY0CMmLSLc35WN6VIWpWsETU9EokEJICYv2+OGoqyz2NAghhBCSA3kLdN54441Z3U8IIWTqUX1h8DTLewkpZ5HOQQBWNpggiQmPGREFpjqU0SlrUH2Rgs+PEJKZaLcXtSfPL/Y0CCGEEJIDeQt0/u53v8vqfkIIIVMPNWAhU5nqi0ALyejb1oh5FyV21hzO6OScI9oXQLitv0izJISMRwspxZ4CIYQQQnKEmhERQgghhExQ+192QQsnBkm4YcJUdBiqDm6YiPb4ijM5QkhG6KIcIYQQMnUIhT5gW1sb2traYBiZL2U0DCO2HyGEEEJIqfDubwcfVX9Tj1iBTzMW6PQXY2qEkAwZiga5L1DsaRBCCCEkBwoe6Fy8eDGWLl2Kw4cPZ7xPS0tLbD9CCCGEkFJiGokd1YeXwcYCnb0U6CSklGmBKMIdA8WeBiGEEEJyoOCBTgDgnBd0P0IIIcWhR9ViT4GQvBvdcMu731qBYqg6tKAMzU+NiAgpZVFPAHqE3q8IIYSQqaAogc5sDQc4BaEspksIIWRItNtX7CkQknfmqKXr4XYrM8xUdcoSI6QMcN2AIWvFngYhhBBCcqAsIofd3d0AgKqqqiLPhBBCSCZMzWrsQDXPyHTAh5auc5NDjyiIdAwCsAKd1IiIkNLHDROGTBmdhBBCyFRQtEAnY2zcbTRNw6FDh/DDH/4QAHDiiSfme1qEEEImiZs8VpPQoE62ZBowNQOcc5iqhpZn3o1lhhmqDn1UR3ZCSGkyopTRSQghhEwFUr4PIIrimPs45zjllFOyGocxhn/6p3/K1bQIIYTkGDc5mMCgBSLQAlEAVgCIkKmOGya4bqJvRzP8Bzvj92sGBToJKRO0dJ0QQgiZGvIe6EzVQCjbxkLXXnstbr/99hzMiBBCSD7oIRm2aheCzR5wc2gpLwU6yTRg6ga4YSDa5R3zmOqjRkSElIPRtXYJIYQQUp7yHui8++67E77+3ve+B8YYvvzlL2PWrFkp92OMwel0Yu7cuTjnnHNw/PHH53uqhBBCJkH1R2CrdsF/pBvuuXUA4rU6CZnSTA5DTd7MRPWFizAhQki2hmvtEkIIIaS8FSXQCQD/+q//ihUrVuT78IQQQgpE9UXgnl+PQFMP7DVuAJQhQ6YPPaxAT9LMhMo3EFIeKNBJCCGETA15D3SO9rvf/Q4AsGDBgkIfmhBCSB6p/jDCHQMwImqsLiEFech0oYdlamZCSBmjC3OEEELI1FDwQOeNN95Y6EMSQggpANUXgSF3AwD0iALOOdUnJNOG6o/AUMZmdBJCygNldBJCCCFTQ8EDnQDQ1tYGAJg9ezYcDkfabWVZhsfjAQAsWrQo73MjhBAyMaovAjVgBTb1iIJojw9GlAI/ZHqQ+4KU0UlIGaNAJyGEEDI1CIU+4Msvv4wlS5Zg1apViETGz/SJRCJYuXIlli5dijfffDP/EySEEDIhaiCCSKfVdVqPqAi3DxR5RoQUjtwXgKlS8y1CyhXXKdBJCCGETAUFD3Q+9dRT4JzjU5/6FOrq6sbdvr6+Htdccw1M08STTz5ZgBkSQgiZCEPWAM6t24oG1Uvdpsn0ofQHiz0FQsgkmJTRSQghhEwJBQ90bt26FYwxXHLJJRnvc+mll8b2JYQQUpr4iEYOpqxRfU4yrSiDoWJPgRAyCbR0nRBCSDJvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/61Jhx1q5dm3Rbh8OBWbNmYdmyZbj88stx11134e233077vWU7n2T/WlpaJvkM517Ba3QOPwnLly/PeJ8TTjgBAHDs2LF8TIkQQkgOcJPHbpuaQYEfMq1QkISQ8kZ/w4SQqcrf+bFiTyFvaua/VuwpIBwOo7GxEY2NjVi/fj1uuOEGPPLIIxBFsaDzUFUVfX196OvrQ1NTE1588UV8//vfx8knn4zvfe97+Od//ueCzqeYCh7o1HWrflU2P/ThbWVZzsucCCGE5F7U4y/2FAghhJCMjFyVQAghhCTzla98BV/96ldjX3POMTg4iK1bt+L++++Hx+PBY489hoULF+IHP/hBynGuuuqqtI8Pq66uTvv4I488gjPPPDM2F7/fj76+PuzcuRMbN27E3r17cfDgQVx77bW45ZZb8Otf/xqCEF/YvW/fvpRjX3rppejq6sK8efPw0ksvpdxu/vz5434fhVbwQGdDQwO6u7vR3NyM1atXZ7RPc3MzAKteJyGEkPJgKtSYhRBCSHngnI+/ESGEkGlt1qxZOOWUU8bcf8EFF+DKK6/EmjVrIMsyHnzwQdx1112w2+1Jx6mtrU06TraWLFmSdJyrr74aP/zhD/HCCy/gC1/4Avr7+/Hb3/4W9fX1+MlPfhLbLt0cbDZb7P9czLWQCl6j87TTTgOArBoLPfHEEwDS/xAIIYQQQgghZCJGll8hhBBCsrVixQp84hOfAAAEg0EcOnSoyDMCrrjiCrzzzjuoqqoCAPz0pz/Fe++9V+RZ5V/BA51XXXUVOOd49tln8dRTT427/Z///Gc8++yzKQuxEkIIKT6ZOk4TQggpZ5TRSQghZJKWLFkSu60oShFnErds2TLce++9sa9H3p6qCh7ovPHGG7F48WJwznHdddfhG9/4Btrb28ds197ejn//93/H5z73OTDGsHDhQnzxi18s9HQJIYSMg5smAk09xZ4GIYQQMnEU5ySEEDJJra2tsduLFi0q4kwS3XTTTaitrQUA/PWvf4WmacWdUJ4VPNBpt9vx7LPPorKyEoZh4P7778fixYuxZMkSnHPOOTjnnHOwZMkSLF68GP/zP/8DwzBQUVGB5557Dg6Ho9DTJYQQMg7VG4YeomZxhBBCyhs3qfM6IYSQiTl06BA2btwIADj77LMxe/bsIs8ozu1245xzzgEARCKRKb98veDNiACrTuf27dtx/fXXY/fu3QCsyHdbWxuAxGLga9asweOPP46TTjqpGFMlhBAyDm5ymBp1qyWEEFLeuMnBCp4GQgghpFx4PB7s378/9jXnHD6fL9Z1PRqNoqamBvfff3/acXw+X8I4qSxZsgQVFRWTnjcArF69Gn/7298AAEeOHMGHP/zhnIxbiooS6ASAk08+Gbt27cIrr7yCjRs3Yvfu3ejv7wdgdWZfvXo1rrjiCnzsYx8r1hQJIYRkgJscpm5QIwdCCCHljd7GCCGEpLFu3TqsW7cu6WOCIODLX/4y7rjjDixfvjztOBs2bMCGDRvGPd4bb7yBCy+8cCJTHWPGjBmx216vNydjlqqiBTqHXXzxxbj44ouLPQ1CCCETxTkMWYMepuXrhBBCyhenhkSEEEImyDRNPPHEE3A6nbj33ntLrvRiZWVl7HYwOLUbydLiDEIIIZPCOYfSH6RMGEIIIeWNViYQQghJ4+677wbnPOFfJBLB3r178c1vfhOhUAgPPPAALrroIkQikZTj3HjjjWPGSfYvV9mcQGJws7q6OmfjlqKSCHSapon+/n60tbXBMKjOGyGElBWTQw1Eiz0LQgghZFIoo5MQQki2XC4XVq1ahZ/85Cf45S9/CQDYvHkzfvSjHxV5ZomGS0UCQH19fRFnkn9FC3QahoHf/va3OP/88+F2uzF79mwsXboUhw8fTthu48aN+Na3voUf/vCHRZopIYSQdDgH9LBS7GkQQgghk0OBTkIIIZNwyy23xIKIjzzySJFnk2i4ETgAnHjiiUWcSf4VpUanx+PBpz71KWzfvn3cK6eLFy/GlVdeCcYYPvGJT+C0004rzCQJIYSMSxkIApyD65SNTwghpLxpQRmSu7RqqhFCCCkfgiBg2bJl2L59O7q7uzEwMJDQBKhYIpEI3nnnHQBWrc6pHlcreEanYRi44oorsG3bNjDGcO211+IXv/hFyu1POeWUWNv75557rlDTJIQQkoFQW//4GxFCCCFlQO6f2s0ZCCGE5J+u60lvF9Pvfvc7+P1+AMAnP/lJSFLR+5LnVcEDnY8++ih27NgBm82Gv/71r3jiiSfw1a9+Ne0+V155JTjn2Lx5c4FmSQghJBVTN6D6reLaelhFpNtb5BkRQgghk6cOhmK3uWFS4JMQQkhWIpEIDhw4AMCq3dnQ0FDkGQGNjY248847Y1//53/+ZxFnUxgFD3T+6U9/AmMMt912Gy699NKM9jn99NMBYEz9TkIIIYXnO9AJI6oOfcXh+6CjqPMhhBBCckENxDvkBhp7EO31F3E2hBBCys3atWsRjVpNWi+99FKIoljU+WzcuBHnnHNOrOP6nXfeiVNPPbWocyqEguer7t27F4CVpZmpWbNmAQAGBgbyMidCCCGZ833QAdesFTB1A5wDwWZPsadECCGETJrmj8Zu+w51wT2vtniTIYQQUnI8Hg/279+fcJ8sy2hsbMRjjz2Gv//97wAAp9OJe+65J+U4Pp9vzDjJiKKIk08+OeXjx44di2WNcs4RCATQ19eHnTt34oUXXojF3wDgS1/60rRp8l3wQKfP5wOArAqyGobV5KLY0XBCCCGAFoqCc0D1hq1GRIZZ7CkRQgghk6YG4oFOQ1ZhKqVRW40QQkhpWLduHdatW5d2m5kzZ2L9+vVYtWpVym02bNiADRs2jHu8mpqaWAwtmS984QvjjrFixQp8//vfx6c//elxt50qCh7orK+vh8fjQXt7e2xJ+ngaGxsBWL8whBBCikuPWMvW5YEguElBTkIIIVODNmLpuqkZMBStiLMhhJDcqJn/WrGnMKXZ7XbU19dj5cqVuPzyy3HzzTejrq6u4POw2Wyorq5GTU0NTjzxRJxxxhm45JJLcN555xV8LsVW8EDnypUr4fF4sGPHjoyXrz/55JNgjOHMM8/M8+wIIYSkww0TyoBV4yV4tBeqLzLOHoQQQkh50IIyOOdgjEH1R+CYUVnsKRFCCCmyCy+8EJzzSY+zePHinIyzdu1arF27dtLjjKelpSXvx8iXgjcj+tSnPgXOOX7xi1/A6x2/U+/TTz+NF154AQBwzTXX5Ht6hBBC0pD7AuC6lcXpP9SNUEtfkWdUWExkxZ4CIYSQPOGGCT2kALDKs9DSdUIIIaT8FDzQeeutt2LRokUIBAK45JJLcODAgaTbeTwefOc738F1110HxhhOOeUUXHvttQWeLSGEkJGCx6zGQ3KvD8pAEHpYKfKMCkdwSHDU2cHEgr91EkIIKRAtEIGhaDBklZauE0IIIWWo4EvXHQ4HNmzYgAsvvBC7du3CqlWrcOKJJ8Yev/766xEKhdDc3AzOOTjnmDFjBp555hkwRpk0hBBSTIEjPQCAwX3tRZ5J4UkuEaJNBxMYAAZuTH7pCSGEkNKiBqIQXXaAA6ZKGZ2EEEJIuSlKWsqpp56KHTt24CMf+Qg45zh06FDssT179qCpqQmmaYJzjrPOOgvbt2/HCSecUIypEkIIGSHS47P+7xq/9MhUI9gAQbDqkzJJhFRph+iyFXlWhBBCckn1RxBuHwAAGIqOSLevuBMihBBCSFYKntE57IQTTsCWLVuwefNm/OUvf8HOnTvh8XhgGAZmzJiB008/HVdeeSUuvvjiYk2REELIKObQMj5uTL9u64xxCFobwFZCkAQ4q1WoEQeMaLFnRgghJFc0fwT+g53W7WAUA7uPwT339CLPihBCCCGZylugc+/evQCAk046CXa7PeV255133rRsd08IIeVGj6owhhozcHP6BTpFmwyjeQNYzSlw1QYhRPbAXnEmVB+VVSGEkKlCGQwhcLTXuj0QQrhtAIaqQ7QXLT+EEEIIIVnI29L10047DatXr0ZTU1PC/ffccw/uuece9Pf35+vQhBBC8sB/qAvgVl3K6VifUoAMw98EwS5AUJtgRjsgIFDsaRFCCMmhaG8AMIfe4ziHoWiQPf7iTooQQgghGcvrpUnOx54Ir127Fowx/NM//RMaGhryeXhCCCE5FDjSHf9iGmZ0AhxcD0O0MRiet8CkCjAzBPecGZAHOEzNKPYECSGETJIyEBzz9fBqBkIIIYSUvrxldNpsVoOGaJSKlxFCyFSgheXYbW5Ov4xOQAfjHILNhNG1CWa4A1D7IJkfQHTRkkZCCJkKRteg5roZW81ACCGEkNKXt0Dn7NmzAQC7du3K1yEIIYQUkKnGMxanY41OcKsRkyAqAADTfxRc7gTjBgRqvk4IIYQQQgghRZe3FJSPfvSj+OMf/4hvf/vbOHr0KJYvXx7L8gSADRs2YOfOnVmPe8MNN+RymoQQQjJkaiOW7k3H5JbhQCf8MABAj8IMHoPoWgiH0wvNVkXL1wkhZCqaju95hBBCSJnKW6DzzjvvxHPPPQe/34+f/exnCY9xzvHd73436zEZYxToJISQIhmZ0TkdMa5aN5SO2H2m9zDEmeeCD/wdgv2zFOgkhBBCCCGEkCLK29L1lStX4u2338ZFF10Em80GznlCc6Lhr7P9RwghpDi4Mc2DeLIV4OShxthdXO4HNyLQjz6FCvfuYs2MEEJIXtE5CCGEEFIu8to9Yc2aNXj55Zeh6zr6+/shyzKWLl0KxhheeuklLFu2LJ+HJ4QQkkPT/VoTN62l6+bgnsQHNP/Q40qhp0QIIaQApvv7HyGEEFJOCtImVpIkzJkzJ+G+efPm4bjjjivE4QkhhOTE9D3TE102QPUCAEzvkYTHuNxn3dBDkzqGvcYBQzVhRLVJjUMIIUkxRhE7MiWZqg7Bbp3WmroBQRKLPCNCCCHFVJBA50h33303AGDWrFmFPjQhhJDJmMbnx85aE+axQ0kfMwNHrRvRrkkdw+XYC6PyRIQ6JzUMIYQkxSQBnOoITwwFiEua4g3DNbsGAKAFo3DUVRZ5RoQQQoqpaIFOQggh5WXa1UlmiAV3RdYL1XcILMlmhr8ZDIAZagfsEzuUvcYBdf/PYF/5dUBYBZjT7LkmhOQdk8RpE+hkogBumMWeBikAUzOgDgU6uWlC6Q9SoJMQQqa5vDUjIoQQMsVMs9ibYItfC2RcBjPUpNsxbgUOeNQz4WNJLgPQQjC970Ny2yY8DiGEpDSNlvPy2oocD5jb4UhumJqOaI8PUY9VK7t/RzMUb7jIsyKEEFJsBc/oHGlgYABbt25Fc3MzgsEgjAw6+t51110FmBkhhJDRuDnFsmMEljZz0lErINrH4Kizg4ebxh3OiPYDNRObiiT2QQOgd2+BeOIt0Cc2DCGEpMRtQ4HOaVCr01/hRM1AsNjTKAvcMK0MWJODCcnWLZQuQ9YQ6fEh2uODoeroenUf5l28qtjTIoQQUmRFCXR6PB7ccccdePrpp6Hr2Z3OUaCTEEIKTwtGYUSSZzSWK1eDHVFP6k7pdnYARs1KOLS/Qjv023HHY4Zs1cDTsw8IG4d+Yt1QfRDEqR2AIIQUR1+lG7PCMswqF9BvBQEFhw2mMvUaoLUzETXjXMzKBs9RSqep6QmrBUqBHlYQ6faiYuEMSG5HsaeTlUBjD5SBIAJHe+E/2Ak9rFDJAkIIIYVfuu71enHeeefhiSeegKZp4Jxn9Y8QQkjhhdoGij2F3BIYbLY+MCnJ2yAbymjRQ7BXyNA7Xsx4WMmV/QksExmMUEd8ahKdpBFCcowBb2oMcNjQU+GO3++cmqUyjmhWnc6cydEpiKGUXr4+5xxdr+2HIZdfwNu7vx2+A53QgzIG97YBwIQuNhJCSDpvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/6VMrxOjo6sHbtWpx//vmYOXMmbDYbXC4XFixYgI9+9KP4+te/jqeffhp+vz/p/osXL075/cyfPx+nnnoqbrjhBjz00EPo7CyvbqkFv6R47733oqnJWgJ4ySWX4N///d+xZs0a1NfXg7HyWi5BCCHTRbitv9hTyCnRLoLpfRDtM6CPOilyz5aghRmMvi0QZwJGKPNu6s7qALSgM6u5uGaK4G3xk1/GVDBRBDfo4h4hJEcYwzsBDde4bfBwhjkABKcNkUoXnP6ItckEM9JzTXDaYE4y6PZ+SMc/Fan5kqkbEFLUQ9UjCmyV2b1H5JseVhDpGIQeVuCoz20TH/+RbtQsn5vTMUeS+4JQhkoUyJ4AAMDMoBQaIdMN+48Xij2FvOE/v6LYU0A4HEZjYyMaGxuxfv163HDDDXjkkUcgivmrjf2b3/wGt99+OyKRSML9uq6js7MTnZ2d2LRpEx588EF85jOfwRNPPJHx2OFwGOFwGF1dXdi7dy8ef/xx3HHHHbjyyitx3333YfHixTn+bnKv4IHODRs2gDGGT3ziE/jLX/5S6MMTQgiZgKkW6BTsIqANQrCNzfiRhB6wytmAV4XR+0ZW47IJVNe0yW9hZFEAxqIQbDUwjNLL/CGElCcmMDSFdSi1NuhDeQXeWbUQOMdw2I3ZJXC9+CVKzAonMMlA51a/AlTlMqMz8wtPppYm0BmUgVkTLOacJ8pACACg+iOoWDgjZ+MGmnoQau3La6BzZO1wzq3bpRCsJ4RMXV/5ylfw1a9+NfY15xyDg4PYunUr7r//fng8Hjz22GNYuHAhfvCDH6Qc56qrrkr7+LDq6uox9/3pT3/Cl770JQCA0+nEzTffjEsvvRQLFiywsvS7urBz505s3LgRu3fvHvcY8+bNw0svvRT7WtM0eL1etLa24p133sFTTz0Fv9+P5557Dq+99hrWr1+PK64ofoA5nYIHOtvarGUF//qv/1roQxNCCJkAQ9UR7hws9jRyRnLbINgAHumEPXI/VPFfE+u4hfZDrBJhaGGYgx9kOXriyXnNzEMwul8CX3QHwl1jT76YJEI59DBGrmcwD94DYd79oJwUQkiuMFFEV9hAWHRC49Yrzgdcwgo24oKK3QZEVQg2CaZanAstgsuO/goX6geS1xANL2hAZfdg+jqMDVXwdpqAkN8KXXpESVrT0lR1wGVPuo8WjOZ1ThMR7fUBALSgnNNxA009MNX8vJOZmoEDD/4dqj+eyTQc4DQp0EkIyaNZs2bhlFNOGXP/BRdcgCuvvBJr1qyBLMt48MEHcdddd8FuT/5+UFtbm3Sc8RiGgX//938HAFRVVWHz5s340Ic+NGa7K6+8Evfccw8OHjyIffv2pR3TZrOlnMvNN9+M+++/H3fffTfuu+8+BAIBfOYzn8Hbb7+NM844I+v5F0rBa3RWVlpLImbPnl3oQxNCCJmAwJHuKZUh4agxIUochvcDGF2b4JyR+AGEBxsB3zvgkZ6sx2ZmOHEs//swerdBYJGk2zvrRTAj8eTSDLaBSVTKhRCSQ3YrwzDEGPShgpNek8MccZnFsEsQKpyAvXjNco7NqkPbiNMTvdad8HiLKIGNM7/migoAABdz9zqaLKEz0uVNum26ILEWym0wMRcCR3sBAHo4x3PjgCHnJ0PY1A1ryfqIi5TDNUY5LV0nhBTJihUr8IlPfAIAEAwGcejQoZwfY/v27ejpsc5RbrvttqRBzpFOPvlkXHvttZM6ZmVlJX7+85/j3nvvBQBEo1F88YtfnNSY+VbwQOeqVasAAK2trYU+NCGEkAkIDp0ETRWCEIQU+DOMwYMAALs9sdGS6W+EduxZcHkCDZj0YOwmkwSYipUJm2pJu83WnXyO+SvpQwiZZphdAh/q9N3HGfSh2JDX4NBG1MeP2iXoFQ68U19bhFkCYAzf6VIQHBFUHHQkZkzuUzngsCGyoAGCyw4IzPofVvMhJgl4R7EG4LlsRoTEZdIAoAWiUH3hMduZaeqCaoHSyug0VB2RDut9Sg8rabflnMPUMw8ictOEEbWCj5nsZ2SRRZwso9fUrP25biaMNRxc5ibVvSaE5N+SJUtitxUl/evqRAyvkAaAE044Iefjp/Otb30LH/7whwEAe/bswd/+9reCHj8bBQ903nbbbeCc4/HHHy/0oQkhhEyAkuRErpwJRh+0pifBuHXixfS+EQ8yGKF2QJvY98z1eFdDJgoww8MdClOcYAX3J72biXRCRgjJDW1GFfShLMgtYRPa0MuLXzcRHsroFCqd6BMlmIKAB7uKE4wzZ1bjUEiDfzgmxoBWxK/6MJuIR7sj0B02rIswHJpVDyYwNM+qBwDw+kowtxPyUEBLl3KYmcr5mK7k3DTh/aBj7PeRJqineEvr/TTc1h8LGmrjBDpVbzirzux6RIUetTI6lf7gOFtnVws8aemCod9rUzdiY5mqjsHdLUO3y6+rPCGk/IxM6Fu0aFHOxx+5FP7gwYM5Hz8dxhi+/vWvx75+/vnnC3r8bBQ80Hnttdfic5/7HJ577rlY6ishhJDSleu6XcXG5c7Er5V4VqXokMCyaDoxhuoFk6y3VkESYAbjV12H7x/J7H836TBMmDqlAgghxfW+zYHA0InRxv6oFehsqML+sA7vUL3OQF0VFDCYjKFNLk59ziaXC4C1pJ5JAgSXA206B7NZwc7IrFr0KSa2Opw4ENZwV2cUwbkzcGBougMuJ3SnDf6hlNWILbdL8Ee/F3KDw7u3bej2UCMck6ft9K76IzAUbUx2aKGMzmoMNntit8dbui73BdLXRh3FiKixpeuKN5w2Y1QZDEHuC2Q8Nk8TTJY9AfgPdQEABve1QQ1EYeoGDIUa/BFC8uvQoUPYuHEjAODss8/OS7nG008/PXb7V7/6FV5//fWcHyOdiy66KHZ706ZNBT12NgpehOftt9/GLbfcgmPHjuE73/kOnn32WVx33XU46aST4Ha7x93/ox/9aAFmSQghZFixmlLkjTnqZGvkcnNhcjXduNyPyjkygp12CDYGZsafu8rZUQQ748swmSRC79qDZEdkjAKdhJDceNij4N9mW689XtWEzIEPKiqwozOIf6ixYw2Ag0xEJQCDMcgGILgL35CoZ+hlTzU5Buc1IMgEtIQM9M+dgZkeLwaGMjQPyCaORXQEdI5nVAcczArehZkAl92GYyErCPZnheFLLjvM6OTrROphBd7edrhmxzumc9NEuH0A/iPdkFx2VCycAdnjh5kiGMgNE9EePwbfb0XFoga459ZOel7Z0oJR2Gus8y1ucgy+3xJ7bLyl66ZmZBXo1CMKjKHnXu4LwF7tglQxtnkTN0wce2obKhc1ZD52NHV2Zrh9AMJQcDzU0gfZE4DvQCcqF+WuozwhZPryeDzYvz++IotzDp/PF+u6Ho1GUVNTg/vvvz/tOD6fL2GcVJYsWYKKodrTw19/8pOfxMaNGyHLMj72sY/hzDPPxGWXXYazzz4bZ555JhoaMn89zdbMmTOxYMECdHR0oKmpKW/HmayCBzovvPBCsBH1gHbt2oVdu3ZltC9jDLo+xU64CSGkxGVzYlNsUoUdekRL3jlimDYqa0RP3ihoIkzfQQjC0wCug2iL38+0TiDcAuDjsfscdRJYa/KsFAp0EkJy5UhYQ5MeDzBFTY7AUCbnnoiOaxmwM2Li/AoB3uHl3k47UOBAZ//Qy6FX53g4BHQoKryaiRrRgS9UOqENXRbqVs1YndG/9Mm4tMEJAFAABAURgaFzhRf6ZHxyUR3mtE6+zrRn6xFUL58LwDqpZYyBG9YkOl/agxmnL0HFwhkIdwzAVp08cSPS7QPXDXi2NWKOTcx7oJObfMzFO9UXga3KBSYwBI50Q/XF3//GC3RaY6Z/bxp5TD2sQB9a6q6HZCi+CNzz68fs0/nSHoRb+2Gvco17/NhcI+PXEwWshlHRHj88Ww6jYuFHMh6fEEJSWbduHdatW5f0MUEQ8OUvfxl33HEHli9fnnacDRs2YMOGDeMe74033sCFF16YcN/vfvc7XH755dixYwcAYMeOHbHbALB8+XJccskluPnmm7F69epxj5GtGTNmoKOjA7quIxAIoLq6OufHmKyCL10HrDefif4jhBBSWOVUwL+iYj8kty3l40wUoDU9kXAf1+M109gkm/SagWMw+q2Ld6ItfiJmdLwAmIkZKHa7Bykx6hpLCMmNgM6xPxwPWkZNDt/QS0yPYsCcWYNO1UC/AVx5JAQAMBy5yYUY7pDOJCFp+Y6Rdoes18gW2cCT3RFsGVRwIKhhb1iDZrNhOC+zPapDHzonaI0aCAxFPVUAHRBwOGRt2Skb6OS5OdWRPQGYQ0ufh5v3KIPWcxXt9iHa67Me6/albEakeq3t5V4/DCX/9SL9hzqh+hMv5Kn+CDpf3gPOOfp2HE14bLyl3VogCq6nD3R697Yi1NaPUFs/lMEQuGZYHdIHw2MaN2khGVpQRu87R6zjJwmspyqdY4wT6AQfGj8QBThHuH0gZalsQgjJFdM08cQTT2DdunV5aUQ0rKGhAVu2bMGvf/3rpIHMI0eO4Be/+AXWrFmDz3/+8wiHc1sfurKyMnY7GBy/BnMxFDyj84033ij0IQkhhExGOV1k4ipEB4Oe4v086Ym2HhqxweSnYIa7ITSIEJgPw6e7ZrAVQs2yxA0N/5h949MwAFDrdUJIbuwKxJdvR0wO31A2YtTgaHa50OKV0V8RPy1Q7DY4c3Bc5rSBqzrYUL1MrqdeRu5RrSDa0UhiEPBIWIdaZ48FOltkYyjQab1g+4eCbzJn+LNXhcHjL+S5vGQ0vAzbu78dFQtnINrtjT2mDAwFMT0BVCTJWgQSMyYLcQFRCyto/+tuHH/dubH7lP4APO8cgeSyw3+4K2F7bqR/tqKeACqPS78c0rO9CZLbAXNEINeIapD7A7DXxZdecs6h+SMINPUCw8/FqM8anHMo3hBsVWN/E/VI+nIEnHOreRLV5SSE5Njdd9+NtWvXJtwXjUbR1NSExx9/HPfffz8eeOAB7Ny5Ey+99FLK8ow33ngjfv/73094HjabDbfeeituvfVWdHV1YdOmTdi5cye2b9+Obdu2QdOs1+H169ejq6sLL7/8MkQxN+cWI4ObpZjNCRQh0HnBBRcU+pCEEEKmONFlgxHVwE0VNqeKVNdQBWlsJJOrYYg1NitTZbIpnQAY53D2fR2s7kvxY8gD4NyErdoBLWDNjhnplszrqJpvItiZi1ADIWTaGnpJa43Gg1hPdMdfe6IGR4cJHApp6K6JZ8OHRDEngc7Guhp8UFWDK5UwBFUHUjR0Z5KA9wIKAIY+JTFr0KMYkAUB6lAA06uaGHlVaotXgVDrxF7FxGv9iRmARg7T+PShxjq+g52Yd/EqRLrigU4tJIMbJiKdg6hdMT/p/glBtwJcQDRVHb797dCCcixY6P2gA1w30fnS3rE7cMCQNYjO5KsiNH8EpmHCUDQYshar9QlYz0nNifMQbh3bOV3uD0DuD8I5sxrhjkFULKhH37ZGuGbVoG97Y/zwo56TcNsA/Ic6E2p3yv1BOBuqxu/+zjmiPb7EpkXldNGWEFJWXC4XVq1ahZ/85CdYtmwZvvSlL2Hz5s340Y9+hB/84Ad5P/68efPwmc98Bp/5zGcAAIODg/jZz36GH//4xzBNE6+//jr+9Kc/4frrr8/J8fr7rdd6SZJQVVWVkzFzrShL1wkhhJSPcigbYq8aOuk1VQhmW8rtmJgk0KmHIDoESG4pF3FOa8xwN0zP24nHNjU4q0bWB02dacKgg/nfSrsMnxBCxsOEsR/1FdP6BwAy5wgM3e4cEWD0sdycIigA2hUDA24XuJQ6k4RJIjhP/QIcYQxKireigM7xak0t9obGBr+MHL59GVEVeliB0h9E8Ghv4hJ1zhFs9sCQtZRZhOaIoFshMjpNbWip/VDmqeINI9rtS7uPFkgRiYZVn5MbJgJNvQnbhdr60f36/pQZoX3bGgGTQ/VF0P3GB/Dua0f7xt0YeL8loUYoRj0nvZsOonfLESje+KqL4S73hpo+0GkoOkLtA4nzT7sHIYTkxi233IL6eiuz/5FHHinKHOrr6/GjH/0I3/rWt2L3PfXUUzkZ2+PxoKvLWhFw4okn5mTMfKBAJyGEkPTK4OxAtA1l8Rgy+MCmMY8Pd2AVkgU6tQBEO4fo4HDqz+ZsTlpXYqBT63gVjPtGHDj1MkGm90HveAnOOjk2d0IIyYrArH9pRA0O31CNyx3+eC78I14Ngn3yC788ptVc6BgEGJIIwWVPnOLwsuQ0QVAACCN1oBMAvnMsiHd9Y3P5gzns66ZHVYTarSwW3wcdCY9xzuE/ZJ34maPqbxpDmaCTyS7UJ9A53lSt4ykD1hLDUEvfuPuogdQrDTjn4LqBUEsftHA8c7bzpT0wNRPKYPKaMd6h5yra44P/cBeOPbUV4ByD77eOGj9+O3C0F76DXeC6gfYX3rPm5gsjeMwDPaxA9aZvIqj6ItBG1SflKWqnEkJILgmCgGXLrHJV3d3dGBgYGGeP/Ln11ltjt3PVIf2VV16J3T7vvPNyMmY+5HXp+j333JPzMe+6666cj0kIISSNMsjoZJABuK1AZ7R3zLubvUaC3G+AJXnX40oAok0Fgw7tyPrczWl0IFMLgRnxk0OeJtBpDmwHD3dDjL4He815kPvpBI0Qkp1MApVRw0SvZkUD/Vr8tf7lPhnfOb4WFR1jlyJnI2AAA5qJTh04VRQRmFmD2jYr4Ca47DBcDrCgDIjpcy9C3Mo+TUVLEdDcEzFw2YRnn8iIarGMwvCIZesAAA4EmnoAxAOMwyJdXrjn10OPxgOg2WR0cpMj1NKH2pOTL4lPZTij0xyqYTrucm+Mk9FpmDBkDao3BD1UE7tf9YYBxuDZcjjFRHhsfyD+vQ9/HT/AUKf0bi+Ort8c+9p/qAt97zYh2uOHqRnwHeiA/1Bn2u+D68aY4LDiDcM1pzbtfoQQkgu6rie9XWjz5s2L3WY5WLbGOceDDz4Y+/rqq6+e9Jj5ktdA59q1a3PyhI5EgU5CCCkMQ9EgOmyxk6RSJqgtqJq/DOax/TBVL1CZ+LjkiAIQINnUsc0ptBAEBAGzAF0DzSiYJKJq9iAQGEy5md71ujW1pvWQVp2Z/3kRQqYeuw3Q018kMTjDDn/ybMFNkHCZTZxUJpzGOQY0E22qCdUpoJ2JqK9xw/RHoFe7YAoCJABcEpBu+YDfBMITWO79llfGnZP8HoYZsgbfASvAJvcmNpPTQnLsGIaWeFKrR1REe3yxzE4gu0Cn3BeAHk7efTzlXBUttrSe6wa4aWbU6V1NEeg0dQNcN6HLGlR/NDYfLSRb37vJMbgvddmYjHAOQ1bR9Pu3xmTFdvx1NwS7BFPV0flyMGVn+9hQpjkmsKt6c9t1mBBCkolEIjhw4AAAq3ZnQ0P6Jm7Z4pxnHGPbuXNn7PbSpUsnfewf//jHePfddwEAq1evxqWXXjrpMfMl70vXOec5+0cIIaRw+t49Crk/OOaEoxSZ3vfBj/4MRt8ucH8zpIpRyyO5lUHEWPITHWYMAvIkT9IywI0wqmaHoL37ZfDgsdQbatY8edQDhtJ//gkhJSiDpesA0BxJnm2yI6SD1yTvFpvp8YMGR59q4EhEx4Aowm8C5tAy9acFF/ShGqLmOJ1gfQZHk5z9Rbc+xQQqXdnPPRnOYarWczU6G3FkIHV4m2F6REGky5cYeMvivMbUjKwXVvTvaB4R6DRhagYinakvrg1LldEZbuuH4g0P1SmVoYUUGKqOpsfethr5mRzmJDucc9Na/q8FxwZ1Tc2AHlZi/48/mFVTdaSRgWZCCMmXtWvXIhq1XksvvfTSnHU6H/biiy/i2muvxe7du9NuNzg4iH/7t3+LfX3VVVdN+JihUAjf+MY3cOeddwIA3G43Hn744QmPVwh5zeh844038jk8IYSQPBrY2VzsKWROD8AMd8W+dFQb0MOAs8EBeVAFQgcAzAYbm88JAOCRZvBIR9LHcjvPIMzm/7GOqXjH2XiYCoCaEhFCsmPYJIiTSBTY7FUQXOhAFSaQ7c4YmCjAZ3D0qwZUk2NHjQ0DholzBQY+uxb/1xHCZYudcAIwkjRNGumwbOD9wMQu+iguO+yZvtzmQLJApzoYTgi8ZZPRaWr6mEY94wm3DyDU4rH2NwxwkyN4zDPufqMDndwwrZ/jwU7oIRl6RLX+hWUc+9M7iHSMHzzNlGmY8B/uztl4o5eup2oSRQgh2fB4PNi/f3/CfbIso7GxEY899hj+/ve/AwCcTmfaUo4+n2/MOMmIooiTTz459rVpmnjqqafw1FNP4dRTT8UnPvEJnHnmmZg7dy7sdjs8Hg82b96MX//61/B4rNf9NWvW4MYbb0x5DE3TEuaiaRp8Ph9aWlrwzjvv4Omnn4bP5wMA1NTU4A9/+ANOP/30cedeTHkNdF5wwQX5HJ4QQkgecNOEEdUg9wUQyuDEqNiYKMAM9oLL8VpyIusF0ACx426IdXfD6N0MVnURrKDhWEbH3wFbVd7nyuU+GP17rNtKZsXJGVQAFXmcFSFkKhpwO1AjCUj1ujfu/qqJHlHCRF4Zo/PqURGMYJtfBecMfo3jv1us7tlfXChh0GFHQNfgF0RUAdDHyTx9tid17cjxBCQJuV04mN7oQKfmjyLS40vMeMwiAC33+rPuCWioWiwzkusmot1eGJHxfw9GNiNSfWF4P+iAc0YVAo29AKyGQqaqQ/VFMmpulA1umFByubx8VHBY9dHSdULI5K1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NTSzICAB1dXWoqKhAOBzGnj17sGfPnrT7X3zxxfjTn/4ESUod+uvq6ko7VwCQJAlXXnkl7rvvPhx33HHjzrvY8hroJIQQUn64wRHpttJfMlnqVmySS4LZPSobM7QPwD8AihdMAMB1iA4BMJOf6JnRPkDx5Xuq4Er8xNCMZniSaGZXm40QQgArlhaVJEw00AkATTqwLNudBIY/6yI+XVOJpr6x3bE5Y4gO1Rfr5QIWigL0cZoRTUY/Ewob6BxVP1LxhRHt9UMc0Rwqm4xOPapCdE48q9/UTQSPZfZ+MzKjs297E4LNHnDDhDrUwXz4s4HsCUx4PqlwwxwTJM4lua8AdbgJKVH851cUewpTmt1uR319PVauXInLL78cN998M+rq6vJyrHPPPRd9fX149dVX8eabb2LXrl1obGzEwMAADMNAdXU1Fi9ejDPPPBOf/exnceGFF2Z9DLfbjZqaGjQ0NODUU0/FWWedhWuuuSahuVGpo0AnIYSQBHpEQbTbBwBJa2WVGsHOAC2UcB8PNAH4B5haBIIkwAy2Q5wvgCkpOrXqUQATzxjKmDri5FDP7HhsKNDJJMGqhUYIIRngDOhlk6sN1qpm/5ojVDjwUFsYs5cmzwUN2W3o4lZg87bGAN6rEqDnuHnpSDsVjhVDDZAKwRgRrOOGiXD7ALhmQB8RAE3Ve0D1hWGvTczg1yMqBHt2p2wJy+QNA4EjmS0J10JyrAamZ1vTmBrd+tBnAj2SQZ3MLFkNk/L3Hqdl2dCJEEKGXXjhhTnpGbN48eKcjONyuXDFFVfgiismF8BuaWmZ9FxKVd6bERFCCCkvqj8Sy9ooB0KS83huDAcROWwVGqBHYXNHwZXiLsXnfAIncUOBTtGe22LmhJCpjYPhg0n2MhucwMUV3eUAALziS55Jup+JeC8yIutRFKAjf4HOzT4VPIOmTLkyMisxeMyTfMl4koxOLRCF6hsbjDWiSrqG9Ekpg+ERt0MId2RWKgUmR6itH12v7y94I0JujO2UntPx6UIhIYRMG5TRSQghJIHqi0Duy/2ytHyxiY1j+5LrEcDGwPUwRDYIE4Cot8JUirwUP+MGRHHcsE58RYcAvTAJSYSQMsdEATKA90KTWwocMrKLsPUtmoXHQhyAjre9MpAkgPnjtghCI7qWmxUO5LNNzK6AAlQULrdjONCp+lPXsUy2dD3S5QWTxs5Tj6hZ1fT0HeiAHopnL4Za+rMKlIbb+tG/42jmO+QIN3hel65zgwKdhBAyXVCgkxBCSALVF4YaKMAy7lxRusbcxfUIbJV2MEMFDCtoy5UemIHCn7yNZGoTiFQaVmaO6KCTNELI+JhNBBMEtJkMjZHJZchlu8LuLY3h5YHo0L7Jsyi7lMQalq0VbuQzX51zBs4KGOgcWqLu3ddmBSmTT2rMXZEeL5wzxi731yNqxksdvfvacezPW8c9Vjqhlr6iZD+amp7XYCQFOgkhZPqYtkvXPR4PNm7ciLvuuguXXXYZGhoawBgDYww33XRT1uO9+OKLuPrqq7FgwQI4HA4sWLAAV199NV588cWMx9B1Hf/3f/+H888/HzNnzoTL5cLxxx+P2267DR988EHWcyKEkGyZugEtGIUeyn39rbwxxtbd4noYNpd1csc0K4uSR9ph+BoLOrXRuB4af6PRhvYRxShYHht2EEKmBuayAwLDppCO5skGOoGMX3cEu4SDUQODo5rxjOcdBdg88X5JGTEFBiYKSTMmc34sTQfnHAO7W1LWsgx3DMDU48+TqeqI9viT1sXWI0pGwcpAYzean3xn0gG9cEdxVj7kM5sTsGqAEkIImR6mbUbn7NmzczKOaZr40pe+hN/+9rcJ93d2dqKzsxPPP/88vvjFL+JXv/oVBCH1h6v+/n5cfvnl2LFjR8L9zc3N+PWvf41HH30Uv/jFL/DFL34xJ/MmhJBkor1+mJqZfRpPMRljs0+5GoEgGOAAuNpv3Rc4CsazOwHPNWZkfzbPhxotMUQgOlzQI3SyRghJzbRL8NVW4tnGCJItHc9GUOdAtQvwhsff2C6hOaqnzORMxW9w/KUvv41iuMDA6yqt97aBPHff5oB3b5vV1C9Fk6VIpxeDe1rRsGYpACDQ3AvVF4ExZ2xg2oiOn9HJTRPtG3cnrf2Z9fSLlfmY748d3Pre6IIhIYRMffRKD2DRokW45JJLJrTvd77znViQ8/TTT8ef/vQnvPvuu/jTn/6E008/HQDw8MMP47vf/W7KMQzDwNVXXx0Lcn7605/Giy++iO3bt+PBBx/ErFmzoCgKbrvttqwyRAkhJFvRbh8wkYY5RcSjY7vJcj0ECa0AANNnZcQb/uJmc06Y6gMAMDMKwSYABWyqQQgpP5pNwp19ucmO2xdUYdoyzIsQBTSGs88gDRkcHiW/F6FMJmCr2w2eJukglzpf3gsAaetde7Ycid2OtA9C9vjBR9VE5YYJPaom3M9NDlM3EjIU+3c0l1Vt7WIxafk6IYRMC9M20HnXXXfhhRdeQE9PD1pbW/GrX/0q6zGOHDmCn/3sZwCAM844A1u2bMFnP/tZnHnmmfjsZz+LzZs344wzzgAA/PSnP0VTU1PScR599FFs3rwZAPDVr34VzzzzDD7+8Y/jrLPOwte+9jVs2bIF1dXVME0T//Zv/wZdz+/SDkLI9KUFo0mbJJQyrWvTmPuYqUPd+U0AgNEzVK9ML6O6oyPovdvARAFcPgYmAa6ZtmJPiRBSwoI2G3ak6HierYjBoUmZVdA0JRHyBOKVx6L5z7T32iX8+9Eg8p82aFGHMmB5mmX8cn88s1SPqlbH8VHvv9797YDJE7qRR3v98O5vjzU6Un1hdL60J5fTn7KMFKUECCGETC3TNtD5ve99D5/85CcntYT9gQceiAUdH3roIbhcroTH3W43HnroIQBW/c37778/6TjDwdL6+nr89Kc/HfP4CSecgDvvvBMA0NTUhOeee27CcyaEkHSMqFpWgU7BJoIlqdE5pehROOptMAd2QLLrsEmeYs+IEFLCPDluvCOLGQY6J7gk+Mgk64hm4hdeE5ppZbsKjtK4WMR1I1an01Cs52B0HUnPVivrc2Stz2iPD33bGjHwfis452h55t2EQChJTQtToJMQQqaDaRvonCzOOTZs2AAAOOmkk3D22Wcn3e7ss8/GiSeeCADYsGHDmBo7R44cwcGDBwEA1157Ldxud9JxRjZIokAnISQf9KiKSI+vrDqTiq7pUWrabu+DMXgQghAGMybQ0IgQMm0053jhT3Sc5d6C0wY+sxpBp31C43vV/L/n/K3Pyug/55iCn1bU5v14mTIVHYasQhnK7hx5oVHxhhBuGwCQGOhUBq375b4AvPvaETzaW9hJl7HQMQ/CnYMpm0QByLjDPSGEkNJFgc4JOnbsGLq6ugAAF1xwQdpthx/v7OxES0tLwmPDS9bHG2fOnDlYvnw5AGDLli0TmTIhhKTl298OU9Fz0sygUERHsWdQIINvAIoXDDKAPLcnJoSUtX05XgoeGq+hkcOGt5xuHOSZZX4W2+FI6ZSAMhQNymAYkS4vgMQgm/9QV3y7SPx1P7atYaLrlb0FmunUMLC7Bb1vH0p/Qbd8PgIRQghJYXqkwuTBgQMHYrdPOumktNuOfPzgwYNYsmTJhMc5cuQI2tvbEQ6HUVFRkfF8Ozo60j7e3T22mQchZHoJHO0FN8yyKtZvt/dgOizYU48+BQbAOPBDSCfcWOzpEEJKFKurwIt9ua1HHB6ni7ppE/HHPgUfri6NJeHjORBSgdlVYIFI2hqahWDIGnwHO+OBNyN5oFP1R2DIGiLdXqheK6s/0jlIQbksRbt9iPb4seDy09JsxRHp8sE9r65Q0yKEEJJjFOicoJGBwwULFqTdduHChbHb7e3tkx6Hc46Ojo7YkvhMjJwDIYQko/kjMA0TplY62S5pMYD3/rXYsygIxq2TcTPUAajeIs+GEFKSGMPPmBshPZLTYY1xommmIMCnmfDp5RF1kw2gp9KNuaYJDDUNKhZD1jC4pzX29XCNTkPVETwWr8esBaLwvHMYodZ+mMPB2fJ4uksP52NqoY6kh1X0vH0QSz97TgEnRQghJJdo6foEBYPxTomVlZVptx2ZeRkKJdZWy9U4hBAyWao/YmV0quUR6HTPtkFrf6nY0yg4U+kDm2DTD0LI1OVf2IA/dec2yAkA6d4RhEononYbfLqJ3cHyya/fpTNoE6wpmkvhjoFYfU4gXosz2NQDricG43reOohAYw9Uf24zdqcjPaLGGkAN46YJxRuG/0gXoj2+4kyMEEJITlBG5wTJcrzLr92e/oOSwxEvIheNJn44ydU44xmdSTpad3c3zjrrrKzGJIRMHYaiQfVH4KivLJtApygGwc3ymGtORT2w1dqg+ql7LCEkLpjjbuvD0i3u5nYJYVGAVzNglFETl21BDRdVsqKfCEU6BxO+9h/phqnpCcvWhw1ncnK9uMvtp4LBPa2oWTYX1cvmxO7zH+5G8JgHktM+JshMCCGkvBT7/b1sOZ3O2G1VTd8YQlHiJ6MulyvtOCO/zmac8Yy3LJ4QMr1wk4MJ8bprcl8A4Nb9RpkEOlna0++py4x0QZprQPUXeyaEkGIyZ9dCCkVhRhSAA+Z4TYMmyOAABGY1qmNIWDLNBYZtugDOGQK6CeRpDrm2yavArCp+N7toT+ILuanoCDT1wn+Eaufn08B7xyC57LFAJzdMDOxqRrClDw1rllLn9SLgnIOx8nj9IISUPlr7NkFVVVWx2+MtIw+H4/V/Ri9Pz9U4hBCSDdWXWJcs2mudbHGTw1TLJYBYHgHZXDNDHRDF4taVI4QU32a7E0p1BQS3FbDLVw6aDsBsqAYACPbEhkNRpx33NFtLr/k4TYtKSUjnMEsgqKKF5TH3yR4/tAAtT88nI6Ii2ByvgRrp9iLqCcCIqIj2+MBNCnQWmhFNnzhECCHZoEDnBI3MkByvo/nIZeOjmwJNZBzGGGVoEkImRe4LJH7tGfqa85Jfui7YRDBJBHj51IPLKT0KQW0u9iwIIUWmcEAXGLRKF1hdBfrzFJvRONDmcgGMAc4RgU4G9Inl0Wk9GaMEAp2mMvb9NtLtK/xEpqFI5yD0qArFG4LvYGcsuBzuGAQoo7Pg9BCV4yGE5A4FOidoxYoVsduHDh1Ku+3Ix08++eRJj7Nw4cKExkSEEJIteVTzg/5dVuCMG2a8o2uJcs804ZohgEWPFnsqRaO3PgmpsviNNAghxdOrc2iCgG6nA2t6gC83BsffaQI0DhwxgPZFs2DY41WvIvMb0FLGpQxLIdDJjbFP4MjmRCR/DFlDuK0fh375CnreOBC7yGtEVcroLDAtGEXwmGf8DQkhJEMU6JygJUuWYN68eQCAt956K+22b7/9NgBg/vz5WLx4ccJj5513Xux2unF6enpw5MgRAMC55547kSkTQkiM3Bc/ker8+x4YEWvJkKHoJZ/JwJgCJnDoXdOv4/oww3cEjqoyjjAQQiatTzOhMYZ8v2KrHGhWTDziM/CW023dObMaO5iEA3L5vg6V6iU9xUulSQrFs7URejhJJiEFOgsq1NqPYHNvsadBCJlCKNA5QYwxXHXVVQCsTMtt27Yl3W7btm2xTMyrrrpqTJHl5cuXx7I8//znPyMSiSQd5/e//33s9tVXXz3Z6RNCprnhGp1aSEb/rmOx+8uhmytDBIIQhTl4sNhTKRrGOUTWU+xpEEKKqFc14WMCXozmNyijco4dARUb+yJY22LVkz/qdqNb52iRS/89I5W2PHWpnyyqVVg4gRRNnwxFo4ZEBRRuH4g15jLkaVqWiBCSU6X5Dl8mbr/9doiiCAD42te+hmg0sXB4NBrF1772NQCAJEm4/fbbk47zjW98AwAwODiIb33rW2MeP3r0KP77v/8bAHDCCSdQoJMQMmnDGQz+w10ln8E5hhEAM2mJE1O7ij0FQkgRdSsGNoZM+PT8voYrHAgbHJwzhHQOJgnoMIF22UTEKLP3jxH+r1cplybxpMC4YVLNyAKKdA5Cl60AvzKYvjkvIcXw5ptvgjGW8l9lZSWWL1+Oz3/+83j99dfH7J9u30z/tbS0pJ2LJEmor6/HkiVL8NGPfhR33HEHnnnmGahqZhfPFi9enPJ7mz9/Pk499VTccMMNeOihh9DZ2ZnLpzcvpPE3mZo2b96Mpqam2Nf9/f2x201NTQkZlABw0003jRlj+fLl+OY3v4l7770XO3fuxLnnnotvf/vbOP7443H06FH8+Mc/xu7duwEA3/zmN7Fs2bKkc7nxxhvxyCOPYMuWLfjf//1f9PT04NZbb0VdXR3effddfP/730cgEIAgCHjwwQchSdP2x0YIyQE9osAcytwMtfQVeTbZY0YQ0OmDMI+2A/hQ1vs5GxyQ+xUwSSyLDF5CSJw5uwZPMCc+AwXtnTqOhDV8cqYrr8fc2C+jQ443zWE2CW2alc2plduFshHe86vAgmpgVHM+QgAg1NaPupXjN3/lpgk9rEByO8BEyiHKluoLI9w+EMugjXR74Z5XV+RZTT0Hbpy6V3VWPFr896FwOIzGxkY0NjZi/fr1uOGGG/DII4/EkuIKwTAMeL1eeL1etLS0YNOmTXjggQcwc+ZM/Nu//Rv+8z//c0JxpHA4jHA4jK6uLuzduxePP/447rjjDlx55ZW47777xpRmLBXTNmL28MMP49FHH0362JYtW7Bly5aE+5IFOgHghz/8ITweDx555BHs3r0bn/3sZ8dsc8stt+AHP/hByrmIoojnn38el19+OXbs2IFnnnkGzzzzTMI2DocDv/jFL3DZZZeN850RQkh6I+tz6pHyWyLHTQU80lHsaRQdV/wT2s8eeAxs5g0wNED1UaCTkHIy6HDgvsYQPrS8CgHdei3X8nyO1xQe1RmcAX7dxJGIhrmOwp3E5cMxtwtLQIFOMlbnS3tQe9K8cYOXhqyhf9cxNKxeAlt1fi86TEV6WIk1wTQ1Hf5DXWhYs7TIsyIkta985Sv46le/Gvuac47BwUFs3boV999/PzweDx577DEsXLgwFgPat29fyvEuvfRSdHV1Yd68eXjppdT9B+bPnz/uXEKhELxeL/bu3YvXXnsNr776Kvr6+vBf//VfeOGFF7Bx40bMnDkz7fc3eh6apsHr9aK1tRXvvPMOnnrqKfj9fjz33HN47bXXsH79elxxxRVpxyyGaRvozBVBEPDb3/4W11xzDX79619jx44d6O/vR0NDA84880zcdtttGQUnGxoa8M477+A3v/kN/vjHP+LgwYMIh8OYN28ePvaxj+HrX/86Vq5cWYDviBAy1SmDwVih/bKsBWYoMPt3FXsWxaf5M1526Z5jgxZm0CM6tPaXIKkBsNlfRRn+9AmZ1oJDdSUfHYjXsZML3ThFFOFRObyqCaPMm7a8FuX4YrEnQUqS0h9E/85mzPzwCWMeM1Qdot06jdZCMgbfb0HN8rkU6JwAQ41fSNEjKsIdAzBkFaLTXsRZEZLarFmzcMopp4y5/4ILLsCVV16JNWvWQJZlPPjgg7jrrrtgt9uTbj/MZrPF/k+3XTZzueyyy/Dtb38bBw4cwPXXX4/du3fj3XffxdVXX43XX38ddnvqv69087j55ptx//334+6778Z9992HQCCAz3zmM3j77bdxxhlnZDX3fJu2+fW///3vwTnP+N94Lr/8cjz//PPo7OyEoijo7OzE888/n1UGpiRJ+MpXvoJNmzahv78f0WgUR48exa9//WsKchJCcobrJgzFOknWyzHQaSowA8fG326K44ovo+0EuwRx8I+wuQEmMECPQu98HUykbE5Cys1w1cA3BuTYfZ0FbgjUV1eFVwasuvSBPNcHzbc/dkfApGl7OkTG4d3XNuY+UzfgOxBfVeLd2wY9rCB4jGqHT4TcG1+dokcUcM2EFpDT7EFI6VqxYgU+8YlPAACCwWCsKXUx57NlyxacfvrpABArlTgZlZWV+PnPf457770XgNWX5otfLL1LhvTOTggh09BwJme5ZXQySQCPlH4B7ELgqi+j7ezVIozutwHGASGeAsqYnmYvQkgp8vOxadzHooXtUnzPgA7NLOgh8yagc2gza4o9DVKigi19Yy4Ia/4IAo094KYJzjkG3m+BoegINnvAzcwSZMoR5xw8DxnckW5v7LYeVsA5hxaMptmDkNK2ZMmS2G1FKX5TM5fLhccffxyMWZ8ffvazn0HTJv+54Vvf+hY+/OEPAwD27NmDv/3tb5MeM5co0EkIIdOQqRnghgmul9fZqqPWBr11Y7GnURLMETU6RZcNUkXyZSiCZIDL/QA4KhriH7gETKzGJyGkeHZHx2ZvFjihE1sGi3/ilkuDdluxp0BKlcnh29+ecJcWlKH6wvDua4d3XzvUwTC4bkALRBE65oHqCxdpsvkVbu1HpHMwp2OamoFob7xGbrhjEEZUhRaijE5SvlpbW2O3Fy1aVMSZxK1cuRIXX3wxAKCrqws7duyY9JiMMXz961+Pff38889PesxcokAnIYRMU3pULY3MA4aMa01Kjql1gj0ZXIufHNirGER78ieRCVYwmzEAPY/HH1CooRMh5SZY5kvFS1EfnQ6RNAZ2tyR8rYVk6CEFvZsPo+uVeIMRU9PRv6sZykCowDMsjME9rQgc7cnpmKamQ+6Lf5YZ3GMFiCijk5SrQ4cOYeNGKyHj7LPPxuzZs4s8o7iLLroodnvTpk0lO2auUDMiQgiZZgzZWq6gBaJACQQ6a2q3Q93/ANTjn4Ihp19OLZidoMqSFsY5mCRAkARg9zVgpz4be8w1045on7XcTgy9ChOAyPqhtY3o5qj0AmwVUPxfAUJIhoIG/cHmmre8FjaQAot0e9Hz1gHMuWAFAOsz1Mjg3DBT1RFo7EHtigWFnmJembqB3s2HEe4chNuozenYvg86EkooDdfr1IKU0UlKl8fjwf79+2Nfc87h8/liXdej0Shqampw//33F3GWY61evTp2+8iRIzkZc+bMmViwYAE6OjrQ1NSUkzFzhQKdhBAyzaiBCABAGQyVREYnV/oAALYKcdxAJx/YWogplQ0mCrBVikO34z9Lu3gEeuVyaCEVRu871p39LyXurIfBBAZOgRNCykbAoKhcrgXpKSVpcIOjb3sTDFnD/EtPBU/xN2goOgxFK88mj2l0vPg+Bve0QnI7cj724N6xzZ4AyugkpW3dunVYt25d0scEQcCXv/xl3HHHHVi+fHmBZ5bejBkzYre9Xm+aLbMft6OjA7quIxAIoLq6OmdjTwat1SCEkGnEUHXoIWv5txaUi57Nx0QBXLXebO3OATjqU3+QdjY4oLX9tVBTKwuCJEByWCcEgjDi5EvxwFkTgGATYQ5+AABQWzYk7Kt3vDK0np0QUi6ORaiJWK5RlixJhxsmuMnR89ZB+A52wlCSN/EwoipgchiRqRPoVH1h9G1thBFRoQyEEj4yTraOpqkbKTvVU41OUq5M08QTTzyBdevWlUQjopEqKytjt4PBYMmPO1kU6CSEkGlE6Q/C1IcWf/PidwcVnRLAh+bjewuiPXVqjWRXwAz68DsSExlEs8u6zeKL+rWOv4AhDNEVX7jBRv2suTxQmEkSQnJCqHKis9Cdh6YBfx46SZMphPNYFmf36/vHrcGZKhBajuT+EUELzhPKHYXb+mFqE7/wogyEgBR/e7TShJSyu+++G3zoHGr4XyQSwd69e/HNb34ToVAIDzzwAC666CJEIpFiTzdmZBAyl1mX+Rp3sijQSQgh00i01x/7wG5qetFrdDqqDXDNOmnQjj0HJqT+0Cyw0vmwUCrcjl0w2p8GAIjhtwEAFXMlcN9RwAhDzP1KM0JIkbTV1xR7CmXDIWV+iuPTKKhC0hv+3BTp9MK7L/ly62GmMjWyrrlhjq1FOuIzozIQguqb+OeytN3pS6CsEiHZcLlcWLVqFX7yk5/gl7/8JQBg8+bN+NGPflTkmcX19/fHbtfX1+d8XEmSUFVVlbNxJ4sCnYQQMo0Ej3liGZ2hln7wImeySOYR6D3brC+0MAQ2lAmRZEU1M0tnOUSpUN//IYze7dbtA7+Ec4YDkvYeAIAZAYjS1DjhIoQARwwqNZGplbNsGW/rpbqnZBymHv8dGW7omIqhTo2MTrkvgEBTb8J9xoggrtwfSFmvNBPp9p3MuIQU2y233BILJD7yyCNFnk3c7t27Y7dPPPHEnIzp8XjQ1dWV0zFzhQKdhBAyjUQ6BmMdLoMtnuLW6GSA3vRbMD5yKaY1NyaMOqEXGKAPFm5uZcru7IXR9bL1heqDxDrH2YMCJ4SMxsQS+HjcUIXIghkQ3PbYXXTZInMrZmkY/TaSilcz6aWQpMWNzEtGlGNGZ7KL3tFeP0Kjamia6ohAZ18wYb9sgpPDdU9TMSnQScqYIAhYtmwZAKC7uxsDA6VRKuqVV16J3T7vvPNKdsxcKYFPcoQQQgrFUDRoQ82ITKW4S9dFhwQzcCzhPsatxjpShT3hxNM5ww4ebS/k9MoSizbB6NsFAODqALR9P0y7vWinjwGEjDY4v6HYU8BmVwU+elRGpC6+DKyR6nNmbFmdHy6bmNG2UQMQ7NL4G5LpK4uPSoZaXoFOznnSZeSGrI3JXh3+mpsmIl1ecM5h6gaiPb7Eep7jiHT7EO5IffFaHUxfB5WQUqfretLbxbJ//3689tprAICFCxfijDPOmPSYnHM8+OCDsa+vvvrqSY+ZS3SGQwgh04weLoEugAywVY09CR0OdIo2QHLFlx7a7b0w/YcKNr1ypXfEu9Lrfe+Cy/1ptgYECnQSkmhmNbabOfy7mGCmIB/aURXic9kZnBpLYgvh+DoPXLbMnvy2qAYI9FpIcqPcmhFpgWjS5fjJMi4NRbcCm70BK7vT5OAmh+9AZ/qam6NEe33w7U998dqQtazGI6SURCIRHDhwAIBVu7OhobgXT6PRKG644YZYA9pvfOMbkKTJX9z78Y9/jHfffRcAsHr1alx66aWTHjOX6F2dEEKmEVM3wPXiZwVVz/OBvf/pMfebPX8HAEiOKCS39RbFRAEschhGz9aCzrEcmd54MJj7m8fdXqAkJkIS9LmcaFVyt2xSqKmY4J7WCYnCGIRKJ4RqF1ojxc8KKRdLq9vgtmV2mhPQqfEJyR0tEIUeURBq64fvQEexp5OWoWgINsdrt4c7B2PBkGTL9U1VQ9er+xBusy6i6mEFAzubEWrtgxaUE8eW1ZTH9R/shDJO1mY2GaKElJK1a9ciGrUSNy699FKIYmarC/LhwIEDOO+882L1OS+44AJ85StfmdSYoVAI3/jGN3DnnXcCANxuNx5++OFJzzXX6BSHEEKmkVKoHeWeY4O682tJE530jtfgWv0VMBaGaLPmKjpE8GhXYSc5TQgi1cEiZKR+JqAjhxlZstsB+wQyk4ZDb1HGwO0SuqsqEB2g5ZyZWlx9NOOMTgBUo5PkjOqPwH+kGx0bd2PepR8q9nTS0kIyfB90YNY5ywEAvv3tcM2uAZNEmNrYQKcha/Af6oKzwSqpEWzuRd+7RyE6bag6Xhk1tgLBbhtTc10LRuE7NP5nuvECoYQUi8fjwf79+xPuk2UZjY2NeOyxx/D3v1tJG06nE/fcc09B5xIOh+H1erF371689tpreOWVV2IXL84++2w8/fTTsNnSN+vTNC1hTE3T4PP50NLSgnfeeQdPP/00fD4fAKCmpgZ/+MMfcPrpp+f+m5skCnQSQsg0wU0Tplb8QKfoexLcTD0Pu/ImTOk0MEEEIEKwCzAHx2uqQyaCCRToJASMAZyD1Vfir0ED7/pVMJsArptgkvX/hIYVBQQlCTMmsO9woPM3Xh1r3RK2qIBGf64ZOW2uA24phPOOU3C4L7N9WmfW4bgBP8yQPP7GhKRjcrQ8vR0weUlcXE5H6Qsi3N4PLbgQ4fYBhFr6rKZCkpg00GioOoSoCt9B6zNZ75YjAOcwVR2qLwJT1WP1bg1ZhdwXADiHrcYN2ROA6JAQ9QSANI2IhsmeQG6/WUJyZN26dVi3bl3abWbOnIn169dj1apVJTGX22+/Hd/61rcyWrLe1dU17rwlScKVV16J++67D8cdd1xWcy4UCnQSQsg0YchacbusD5M9aR9WDqyD47TvwrBZHQsFCTCjPYWY2TRUCr8QhBQXkwRwzUDY7cTzLRHIBqDMr4W9axDMaQefYPCLSQJ8TJhUoHO7X4VaZccWX3nV/Sumi4+3AiTXnbQNBzwXYGvb+HWp9+kMlfXVqKNAJ8mFoUCeWeKNifyN3TAUHd797QDn0EIyuG6C20z4DybJujS51Wxp+AVqREPLcFs/tJAMR30lAECPqAi3diHcOYjqZXMQbhuAVOFAxcLMXhHTNSsi2VvxKH3eyye73Y76+nqsXLkSl19+OW6++WbU1dUVdA6CIKCqqgo1NTU47rjjsGbNGpx//vn45Cc/CbvdPuFx3W43ampq0NDQgFNPPRVnnXUWrrnmGsybNy+Hs889CnQSQsg0kazYfDGYwba0jzNuQN3/c0in/x9s1Q6Idg1GsJ1WFuYDPamEgNklgHP8b4RhuLH5YZsdqwCEaivgzjL4FV7QgCp/GBAY+jnD8RnuJzgkwCbBDMsID2VvDqomBiQJW320jDNTH55r1Sc+tWEnLjthJba2VY2zB/BMv4xlc5wo7GkpmepKvQN7sKkXpqbDf6gL3ORgAoNpmIi29EOPJL9AkCp4G+nxJQQ6jagKz9YjMGQNoZY+OGdWw3+kG476zOoWR7q94IYJJsZr7Q7PkZBCu/DCC2NLwHOtpaWlJOaS7TxKHTUjIoSQaWJ0ofhisFU7YAaOjb+hFgJDEG7bdggsCGakLmpPJo5RRichiNRWAlUuvDwQf43sNxjAgCNC+lpWyexhNrxUUwNPTSV6smh00zlnBgyXHUwU8aov/pr3lkzL1rPhEK2LepKgo8Ke2XtHl2Kgj55jkmOlnNFpKBrk/gDAYS1X5xzcMMF1w8rwTCXVS5rJoY+4KGTqRuwCu6nqMDUdpqIheDT9qp7YYTQDUY8/8RAl/HwSQkoLBToJIWSa0ILRYk8BjsrxlxAO04/8DObgLjCT6jTlDRvbbICQ6WYTs8GURChG/Ax+wDAhOO1oy/ZPhAGbwjp+2BrCqxpDRxYRynVeA6YogFU4sGkw/lq5vjeS5STKW7YJW05JiO0nCQwuW/y9ziVmtpJhUDXQTd3XSY6VQl30VKK9/qRBS1Mz4PsgTaAzDS0QjTUxGr2KaLjWcfBYZoFOAAi39id8beSwURwhZGqjQCchhEwTWgnUHhPN1oy35b6j0Pt2genePM5oehPM3mJPgZCie92vQbbbEBkR6OzTOAYaahAysgt+CRVO7AtqCOkcm3waepXMAp3MJuKl/ggMQUC40pXwWF+GY0wVC2uzqyX2Lx+ynp/lDQ4sqbdjpjPegWhRVWb1nQ3O4M/yZ03IeEq5GVGqpen+w10TXgEU7hyEd59Vnsi7LzFYOjK7M1OerY3gIxoXlUoJJkJI6aNAJyGETAOcc+glsHTdHHw3ux0UL8yBbfmZDAGCeyHYxWLPgpCi6lENDIzqRNqjmvirJqBXM8HqKiFUODIaS6t0oi1qncgfDKnoVTNLCeU1bhicQRMEeDLoijqVnVCf+rFqp/V6Ve+WwBhw6lwHLlp8FABw2lwdJ9RzOMX4e93yuiMZZ4gGKNBJcswo4YzOVEHY/nePTnjM4NFe9O86hmivH+G2yWdjyn0B+D7oiI8RpTJGhJDMUKCTEEKmgXDbACLdxc+MNAbfz3ofvf2V3E+EAADMwb1wNUyvbDFCRjsW0bHfSIyGdSo63g9q+ENXBGt6OJ6rqQObUQWhypl2rGaHM5YZGtA5uuXMAp1Rh5XFKAsCDhvTt9nGybMc+IfF8QDJqXMTA8zXfUhDlUPETy8+hkuX2XHHh4+g1hEEAMyviuLU2QHMcnXGtp/l6sJJMzMLUvtp6TrJsVLO6EyVtakMTrzxmeqLQPWF4TvYOeYxbkzss0bgqJWV3fbCLii+8ITnRgiZXijQSQgh08DgnlaE2weKOgfBIYHLvqLOgSQyvAchMMqQINOXYJcQ0jleGEj8O2iXjYQMv9f9KvoqXYhWudOO90wgMbDZq+pABnHLsGhlKnIGbAuVbnAk3/7fma04rsZ6rxIFhn9ckhh0WVrrx0eXCDi14SD+3+p3sXrWHlQ7rDrOdU4Znzz+XTCWGLBcMSuzYHNAp4s+JLdKuUanmqegITdMBI/mriyO3BdE6/M70be1ccLBUkLI9EOBTkIImQa8H7RDD2feCCjXbFV2SE4RMIs3B5KEHoUg74etKrEmnuic3ktnydTCpPjH3f5FsxIfdFm/+9t9ia9NA6qJ3YH4fVsGFWzXBfTYbMCMqqTHESqdeKY3MXhgcAbBHc8oFOzxvy1mEwGBoW/RLHymxWo4JINhb2B6XnyosIv4p+OfQ7UtjFVzHDh/sR0nz+jFytnx5++sOQfxD8f1Yn5FC86b9yYWVTZjWfVBLKyx45SGdpxS/96Ycc9b2I3FdePX/fRRoJPkmFFiGZ0j62Oqgfw0qDSTdEufjNAxD/rfbbLGpq7rhJAMUaCTEEKmOC0YLWp9TiYyOKpUCHaA68WvE0oSGd2vw1md2NXZXkV1O8nUIY6oQ9s16qOv4bCl3I/zxFTMvwwo+HuEw+9OvnzdU189Zh8A0IeaCzFRAEYEPZnDBsFpx5MRDr9mZSEOcIbBLDq1TyX/eLwAh6RAEnTceno7vnjaASyrbce/nGI1F5pXbcNpDe+ixhGBXYgHoZ1SFP/f+a1YWNmWdNyzZn8Al238tFqvOj2fd5I/pZbRqQXjwU09mJ9AJ9eNvNXSLIWmmoSQ8kApG4QQMsWFWvvH3yiPKuaYEBCCgx2CyjNbQkgKx+jbCfv8I2DiKeCGCccMB0R7FCOvhTpnOCAPUDYuKU+iU4QesRphdBjAaQ4bzKHGGIpNApBZMOK9gIK9QRWNtQ78XBLAdRO9x83G7NZevLpgDp72JP8b+W9FwncaqiA7bLCrOhhjAOfgNhH+Sjfe7Y036dgpmwhM01qRH5lvvVfNcA7i1BN2wSlagRgOBsbOxiUnWD+nuRUDEIXE95LPLHsKJk+ev3FS3V44pUvhtgkQBIaQkvx9yKebAF3jITlUajU6VX8UjqGMdC1Pq3xM3QDy9BKmU6CTEJIhyugkhJApbuC9Y0U9vqgeAKBDb32qqPMgqXEjCsklQXTZYOu6BwzxQAATBUi990KwUQSAlKkRvWg6NBPhhurY11Ex899rzhk0E3hzUAGGsjT3GwxMEvCd5gB2+pNnMT3XG8VudwW8kg2GJFpL6Rlg2iS8ZojoG9GZ/d1A9p2Jp4o6p5VZ3uD0oNIWhCTokAQd8ys6MLfKhjqn9fwurGwfs6/ATEhC8qCSwEw4JOD0eTYsm5E6xyNC9f9IjplaaV3cVQaC4NyKQuatg3ker9MUswQTIaS8UKCTEEKmMEPR4D/SXZiDCWOXBoouG4zOv4EZfpiDBwozjzLFnFVgjgpAKEJAUfHAUSPDbfwBRv/7ADSAMQh2EZVzFBi978JZb82LifGfs+iyJf25E1IqHHUOmHYDgkMCkwSoJsc2Fq/XGGYT+/0NDQU6IybAaypgJFmyPtIfBzV0gUEVRTBRABME6KKI/+sMo39EoHN/cGrW52TM+pfOvAqrCVGdoy/h/gZnNxbVCrCLViByfkVL1sd3SsCX1xyCmObMR+cZTJKQLHDDLJkGOqo/Au/+dhgRFdzk0PMV6Mwj1Z+f5faEkKmHAp2EEDKFmYoOmIVZBmmvHtvsQXIJMPreA/e/X5A5lLOjp1yG7pMvAqudV/Bjm4FGsIHnoR97DgDAgtvhnGGHs56BKYes+0Qr08xeE/852yoEOGrGb/JBSLE4HUcQYTZU1h2Dc4aEXtVE54imM/5MWqIn8bRmfYSOmBzBEXU3U2mL6jikcHhFEdxlBwQGXWAYUM2Eup5KacREcs5tE1EzTpOzeZXWRbnRy9JFwUCD20SV3crmSpW5mc6ps8O4YvGGcbcbeSGHkFwwSqSBTs9bBxFo7MHA7mPQI0rBPhvmUqTba82dEELGQYFOQgiZorjJY0uU8o4x2FzWh3nBJoJJQ1mJQ+eMeucbhZlHmWLuWvxX1UL8uP4EaFUzC358Y2AfjK63Yl9rTX+Ag+2BjTeCe60uxoxZwQfJqUGqtIKbgmTC7vaOO75UQcFQUni2Sjt0pQ0BbT+4fxdsYjfaZRMDWvx1cdCcWGDrl+0hCDVuBE2OdmH8kvcBw0TU5OjiDJrTDiYK0KdRNnSVQ8AMt5iQAC4KDE7JOhVhDKh3pK4n3eDWUeWYeIDjllUvAgBOnaNg1ZzUgWmWLuWTkAkohU7hekRB/65mAIBna2NCU6KyYnIEGnuKPQtCSBmgd3NCCJmiAk09QIECnc4GG0TBCnhVzArCUWcFOiW7lQXIo56CzKNcReetxPsceNkEIhX1YHZ3YSeghRJ/RloY6vvfg37sURiBRgAAg/WzFOGB5LSiFYIoA52PjTt8hY0C3eVIdKXuSF4ObBXAzsrVMMJNONRwHgLcg5aohv4RdfMGjYm9RhqcYVtNDdplE73G+AFLn2YiYgKHVI7DdgcgCAgUo0xFgVU5rO9xeYOAOhfw4YXxIOMX15hYOdv6Hat1Spjh7E05zgyXAqc48UDnosqjAICff/QBrL/i6ZTb6bWVEz4GIcmUQqAz0u0DH3rdU71hBI6Ub7CQOq8TQjJBgU5CCJmiBt47VpA4p2ATYbd7wJQWgAG89dcQbUNBMZb6xHXKyEFNN0OMB5S8rjrAXTvpMXPBjHhgBjsBDAU6GcCgQ5CMofsMcMWfdgwmMiiHHqaszjIkucr7YyKXOLbJtXgTK/FkcCbe0SsQ0jl6lMkHOgHgv9vDGNBNDGRQg08zgUHNxEsDCp726YDI0JOiS/hUMrNCBGPA6XPCmOHiuOA4P6ocIpY3OHD76mdR57Ke/3p3+qBvnVOGU8pNwOi4qqOYWZE8iN/uHL8MASHZKIVAp+aPJHw98H5LcSZCCCEFMvU/YRFCyDTEDRP+Q13QApHxN54kqUICM0Pg4RZUzJFg9G6HyMLWg3Jb3o9faExKPBF+49wvTrqu5i3z18RuX161CKazalLj5YziBTOGsid4GK7eW6HuuAOiKA+VJdDB1fRL1x11djBDhrOWsjDKjWizglDuORJsleUXqA7ZOLyajp/0LgfTvfiDfy4AoEsxIThtYDYRG/smvoSzXTawzavg3pZQRtu/4IniUEjDC54oIAjwlWCNPFFgqHONvxQ/U9et8uG5a/fj+NpBzKtSUe+K4vh6CWcvVDG3oh0LqjVr2bor/Tj1rjDqnYGczevUuckvUL0/ouk9s4lAQ3XOjjkdaXPriz2FojNLoBnR6CxIuTf9BUpCCCl3FOgkhJApKNTWD1PVEekcv37iZDEGwIiCR3shhl+27jR91v/R9rwfv+BEyeqOPkQXBPDJLDVnDEdHnQfpzhJcPtn/JqBZAR2GCARJBIMGMzqYdje7w3pcjL6X7xmSHGNDTV8EQYXoKL96kqrejH7V+uNq19zYHqwFAHhUHUa1G/1zZ6A1aqQZIX+4wFB6YU5gYY0NFfbcnR6IAkedw4/ZFT4sqQ2i1hGGXQKqHdbv1nE1IbgkATMr0j8bM5wBLKjoyNm8Tm5IfhFwcyCefeefU4+Qs/wC/KXCmF2L92yUIVsKDEUbfyNCCJlCKNBJCCFThDpiaVK02wcAiHTlP9AJBsCMwJQ9UA89Yt2lelA5j0Freyn/xy8Q5qoG5iwHJAfgrAKrqAerqIcGhmjtXECcWD1DfdFqjD7l1hylF+hUW16I3WZmAJWOv4Hpg4AWhK06TXMPxaqNpx7+DTCNmq+UO9EpQUQrAEBgEQi2/AYEK+cBTMrtx9JgtA19Q4HOTYHa2P2cM/iddvwmWLxQIxeFggc6bUMdxUdmbDpGPOdOScD8aob7LtmXs2POqQigxuHFbHc/PnfSRly88A3MrjQxy2296l1/0kYcV2dDnTP98t6PzNmKhZXNOZvXhQsbY42QRtrslcEkAYLThl1cQlCc+nVUh43biElgVpZrhj5wuNCuFT+bsegK1RQyDSOiFnsKucOBSGf8Aqvqj5REeQBCSGmhQCchhEwR4fYByP1BANbSdQCIdBcmo5PrEYCbYNwKhnC5EyLvAFRf3o9fKHrDYnTOWwk4q8AdlQgsOh16/UIYADbNPhlsAnU1masGPzn+o2PuV6XSy4IZ/tkCANQ+GN1vwey1Mnhd7saU+3F5qE6rGoCQ40AWyR9HLYPGhrKAzACESTSCyYSovA9bZe6aHzFRwNvGcejWnAAAjsQgexcT8UxvOGfHy5YuiQUPdNY4rSDVRxbFn4u5VfGg54IaGxwScMbMnTk7ptumoM7Rj9muLsxw9qLOOYAPzxvAihlWduZMVzc+fkIIVY70gYpquw+SkLtgxrK6JiysHfv7ppkAr61EdEYVQibHAKbPxRnmTP/3x2rcYPbMyxqY4DiqUKCzFFK3FW/xXutyTQtF0fHSntjXvVsOw9SKk5lPCClddMZBCCFThB5REDjSDUPRwIcyCGRP7mqaDauar8cay4hOCRAA07MZPBJvPGQGmwGlK+fHLqZQ1Ww8WLsEhrMSL5x0Md6YtRzNc06GxgTcL1WhbfnYgOV4mldeiqeNsW/FquSAuvTDAMbWBC0FRverMCM90DvfBADoh/8n+YYMML3x7DDJnbvafyS/JNELWbD+zhVRANMO5vV4QQRgr8xdTeHKOSqe8h+HXjV58Oa+HhmcFy+IpYoi5AIHQBZUi3DZBKyeE6/Pt7gu/hwsm8FhFzlq7IO56LEGxgCJGaix+zDL1R27/4qlb2PNrHgpi48uOIKPHXdk8gfMwnx3C+alKIXc53bib9yOt/wqegxY9Vyn8EUaZhPBRAGmO/17TdTtBMbL+hzBAMOhsHWxJJNandlki6Y1auWAMBTALdbPkJdARqfcn/vPgsUSPOpBsNkDLShDDyvof/co9OgUylglJInFixeDMYabbrqp2FMpG1P3XZsQQqYZPazAf6Qb/sPdsaVSPA9F8Nngi7F6fe4ZEYiSDqPvPXB5ILaN6T0MM3Qs58cupoCzCi+aDLqjEv8puLFbdGJj1RxEmIg2DqyvXpj1mO9UzoKSJKAgS3b8adFZkJedC33uSTmYfW4Zfe8BeryJCw91QbCPPUmtmCPC8OyIfe1yHCjI/EgOcAXKUDbbgDQDaiR11m4uvCWtgM6CORlLdNlg7PsPNMvOMZmcw94PFLdmnSKI2BUs3HJLgQFXnzSAsxfaUGm3ggKnzXVgYbV1e2aFDStnhiAJHKJgoMY5+YsSdlFAhc16nRCFeMbVcVVNqHP0xb6e4RrExxa8POnjZUMUDFTYkwegNukCnuuX8eagghbVRPPsGeC1pVdOJFeYw4beBQ0YcDnTbmcyBp5FoHPQ5DgU0gCB4Y+mNG7pEm1GbprwCSMCtkwS0DHbCrIaORo/a0WOc0Z7fFAHp05GpyGrgMnh/aAd3W8egKnqCDb1FHtaZJrx+/343//9X1x++eVYvHgx3G43ampqsHz5cnzuc5/Dk08+CcOgTONiotQKQgiZIvSwgmCzB9w0UbmoIS/HkNw2mL7DgAsAY2BQIfr+htHhVC4PwOjelJc5FIvJBBgAApXWc3sUAtpMhn9hHODALjY20GcsOg2RinpU9xwG93aOeXyz4MCYJw9AwObCLsGOXQvPxn/1H8bM9j1jNyox9moJcr8xVMuAg4kChL5HE749dd+9EBf9DoZM9bRKnwaPUIkFAIIQUSUmD4IwUbAylibRQdxW7cCW6Ayc7gwg23CSvdYB1a8m1MGrqOtCVFkMHi3dZcdBQcAbg7nLYE1HEhjsIsO/nPQ3BNVPwS5af3/XrOhHq78KksBw7nFAjVPBRxZYgckGtwhfNPu/0+UNDhzpV2AXGZySgGr7+B3pT6g5DIEVfomzQ0p+zEe7I+hXrRPUv3hkbHUI+L96CWNygwWW/e89Q9EDX2MIDN/t1XDLLCdmpNmMA+CCFehkojDuhdQ+nUMzrcDja14VN9W4wVMsoRYqneh3ODAny6kzm2jNY8TPQa9wQBjqMu6fOwO9nGGewNDhdGERitFtvLg/cO/+qdUU0tSt37u+7U1QBqyLY75DXZh59jJowShsVa5iTq9k7fr/nij2FPJmzY8+W9Dj/eY3v8Gdd96JgYGBhPuj0SgCgQAaGxvxoorWFQABAABJREFUxz/+EStWrMCvfvUrnHfeeUnHuemmm/Doo4/iuOOOQ0tLSwFmPr1QRichhEwRelgB1w0Em3qhBaLj7zAB7rp+GH27AACOWjsADq3pyaTbcrk/L3MoFk2wApnv1cwHAOwygT5wNMK6/4gJgCW+rf7y+Atw9uzT0bNo9ZjxmOTA1hTnidtd9XjNBF4zgeBkOroXkM1hnUDaq+0QHBKqnC9Ab/1r4kZaCKJz+jT3KGdhWxX26g1wzXQgHNqLqJi8+3TlHBk29+RqazqrgjgcZmjWsg+sOaWdEB2jfqfkFtwofH1Sc8q3XRoQMQoTADl1rh0nzrRhlqsLq+e0wj6UXXnarGasaOjHBUtsOG9hL46v7cW/fuh3AIDlDRMLPP6/M9tgFxluXM2xZr6IU2fsGHcftzR+MDQfXCkCnZ2ygeHSkl2KgT0BDcmqHKhz6rJeDi2UYBd33WXHe34VO6Pps48GRAlcFCDUVoDXVow7bvdQI7De+mocCGqIVKTIGGUMv62ogWcCpSS8c+vBRsxFnVePXmf8OO9DxNthE9F59XhXLU7Asdgr1wNNveNvVEaGGw/JvX7woaBnoLEb0V4/Bve0FnNqZBr4xje+gS996UsYGBiAJEm4/vrr8ec//xnbt2/Hpk2b8PDDD+Mf//EfAQAHDhzARRddhKeffrrIs56eKNBJCCFThB6JNwtR8xToxOBbAABB4rC5oyh2pkIhqYK1COIxW3XC/e8NLY01ALDq2fEHmIDuoSxPRRp7cmvMPgGpFs/+hcUDR0Fb+uWEpYLByqBxVnpRoayDdmR9kWdEJoqJDD1CDSK6BqnvIQyaNgwKyZd98vZfQRo/5pEWZ4AGhvZoKOvAEQ/sHVM24XDlyXg/XKRlqhl6rl8u2LHWzJNx/nFWJt2Zs96DXdRQ5RBRYw/gjNmHcN4iL/5x4XYsr413NT9zni/r40gCw4n1bTj3ODuuWb4L3/zw1oQl66XGmSLQmUyyd7qwKCE0Z/zakwnjuEsv0NnvtJZ6vzrO72STAZgCQ2tNJeQMAradivWzf9Bn/d8jJl9IeGTRbPxvWwgtE/hV+ZsqwFfhsl43BIa1IRYruQEAm0M6/twTxqOKiDf9RSpXUcRIp6npCR3Kp4KkHdY50PHi+1AGinPRhEwPv/zlL/Hzn/8cALBgwQLs2LEDjz/+OP75n/8ZZ511Fs477zzccssteO211/CHP/wBdrsdiqLg+uuvx/vvv1/cyU9DFOgkhJApQgvGT1K0QO6XRNprHTB6rOXoQut3IYbeAdP7xtlr6lCGMjp3j1qq2Dviy/bjz47dZnYXhqtGGUyAfMK5Cfsdm7sy5bGaRpx/+4Yy6ViVtWR+It3dC8KMQHBIMJsfgt75erFnQyahco6KiO816Eon9M43EIGE+0NnjNlOctsQcjkhsL2TOl6zNA+HIm68r9RDdEgQsujs/ErtP0CsTPyb3K7NmtR8CuFAsHBBl9s+9DLOmNMGwOpyXmFTcN+lrfjQjF2Y6+7E7IoAllYfxgk18Rq6//qhx/ChOdk1QptVKaHaHsTjn/glzp69CR+Z83ZOv49cWz0780w3ztiYZjmaALxiZlcFLOIsreZyQo0blx+xguDtsgGhKvWFtQ6NIypJ+J9+DX4p8fvuPs66yBde0AA0VAMNVdjktT6TvNhn/d9kMKjz4oFhwWWH4LLjS81WcMqrZ59FvCOooVcQ8eqcWVBn1+LlPhkjw7UfhHQoJvBwRxj7g0VqWFPE68FaUM5LrfZiSvX9BI50Fz17lkxdra2t+I//+A8AQEVFBV577TWcdtppKbe/7rrr8MgjjwAAFEXB5z//+ZJoTDadUKCTEEKmCC0Yz+JU/bnP6HRW9MMMdQwdLAy953WYnjdyfpxSpQjjn9DqbMQ2kgPHTCuzJCw58MyC0xO2HcxwSbpXtLI7tfrjAABmTbZVzAqDGWE4qkWYoalVD2w6YpFd0JgNYVhBdhMMPm3sB3R7Dcf/Oq6BIk5u6fpwItcbwRlgAoNgFyBk2IF5izwTED0J9w3qpZc1V0wznD04tSEexKx2hFFlty6G2QQFVfaxmXx2UcE1Jw+g3p15IG9mhYCZTg8qbblpKpVvly9+DdI4DXKGcQDMlfh7pYPFlmdnqlea3N9KrvXXJKZjR6tSvy8ZAAZFCa1RHZ4RWZORBTPwwKCVZfcHVcALdjfWS27wUUvRd4UN/EqN/z6ZFQ60z6pDSLdeW8wJLF1XTeDFkIlHemVslawgsjzipapXiWf/hXQ+bkOk/ChecINPIHhMCBnrgQcegCxb75V33XUXli9fPu4+n/vc5/Dxj38cALB//35s3LgRALB27VowxvDoo48CsIKojLEx/9I5fPgwbr31VixevBgOhwOzZ8/G1VdfjW3btmX0/TQ1NeGOO+7AqlWrUFNTA5fLhaVLl+Kmm27Czp07U+735ptvxub35ptvwjRNPPLII/iHf/gHzJ49G4IglExneAp0EkLIFMANM2HpuhHNQ+ZCcFf8eFoY5uBB6B2v5f44JapdGr/AfXTEEnXursFw+OVR92z0Mgmsbn7scZ+UWWbPwFDw1FO/EGACBhuWZj7pQjJCsCl/B5cHxt+WlCTRZQVhjM6XEIUDIVMCc1TgtehC+A0JbETHZcEmgkkRPNY3H6+wVZM6rmYcBQD4dBtMQYCz1gtblfV7z0QhaYbn8BL3XeFKRI14ZrnktiGkjG38NV0xBtQ6vDiuqil235kzt+Kj86xsS4coo8qWfAXAKQ3t+PCCzE8VFtWaaHCVT/fjeqcHV6/ILKDOGcPgUOd1odp6L/CC4eUBGWzU7ydL05m8y0Ta8gyCK79BesFlhzzfajnEJAH/F0wMwvXY4oFYJgoQauKBT4NzHDCANllHx4jVww+GBWzxylDn1eM3HSH8oCWAB1rHLiF+pjeMx7pCuL2iHv/mrochifh5v5YwfqaYJOD2inq8H1DweFcYh0MaXhi0PvfIsBogCW77mAs0gqPwgeZiJnHJA+Vx0YGQUsY5x2OPPQYAcLlcuO222zLe9/bbb4/d/t3vfpeT+Tz33HNYvXo1Hn74YbS2tkJVVXg8Hjz//PM477zz8OSTyXsnDPvZz36GFStW4IEHHsD+/fsRCAQgyzKOHTuGRx99FGeddRbuuuuucechyzIuvfRS3HLLLXjzzTfh8XhKKmuVAp2EEDIFaMFo/pMGtPgHZq4XpltwKYmw8d8yPbb4SaFcMy92+wAHVMbQtuTD8cczfAvuG8okDdrcYFUz8cqMJZlOuaC40gft6NTt6jkdOGo4mCTC8B2GDhEhQ8LW5V/F24FaDBq2hACNrVKCX6yCAQEebXINppgcrw0JgcE0uoZqAAO2Khsk19jxJZf1dxExTBwRGmL3i04BplmkJaolKFnGolOKxhoAOUQZdQ5f0n1PqD2KD8/PvL7fmXPLrxbgf569MaOszj2ChHcM6/ewrc6q07xb4WiXDbTMTexVzpypg2ltOgeQ/HiC0wa9Or/N5yL1VbipVwdmVuOVObPwbE/i6o9Denxu3nkzoI2oxalw4O2ABoMzHFXiBTWPRDTIBrARdnDOYKTIzOScgXOGzYMK3vEq2GF34u3B+AXabHIPmShi86ASaxoFAMO9hiImEKyvQrC+esx+PM3PJm+KeOI/uLulaMcmZKr44IMPMDhovb+df/75qKmpyXjfiy66CC6XdXFs8+bNAICvfvWr2LdvH6666ioAwLx587Bv374x/5LZt28frrvuOsyePRu/+MUvsG3bNmzduhVr166F0+mEYRj40pe+hL6+5KXFfvrTn+Kb3/wmNE3Dhz70Iaxbtw6vvvoqdu7ciT/84Q/4yEc+As45vv/97+PBBx9M+719+9vfxquvvoorr7wSzz77LHbt2oW//e1vuOyyyzJ+fvIpu8IyhBBCStLI+pz5YkZGLEnW89TsqEQxZxW8TBw3mNwp2sFq5oD7e9BbMzd2f6sJBAUBH3XVYVFFPf665locFR0ZBaePDgVEfTYnwnNOxDuCE/9id4GrpfUz0Fv/AqiBcbdzOT6AihMKMKPMiS4bjGiRGlUUmOiUYMjJu5uLYhiuGZUw1FV4MnoS9keqsNF3LjQuIGoCkluHqhmAySE6TfShCoCCkB6e8HycMxzYoccDRVxg6BbsmCUEANRCchkwjfjHVUedA3Z3BJrC4K5oRrjzJGyTa3Di8AZ2hm2+7BrETGW2cYJ4AjOxpLox6WMLK5vxoZlLAaxIuf+8ahtmVQg45jWwYkbHZKZaFMdXH8LlJ16BvxxM//f/nWMh3DTPWub9ZNDEfwD4+4AVpPuP9iieEYVY7UDusAFhJek4H4R18Fo3mD8CriV231HqqsDAk14CE+xS8iYsaQjVbpij6nVvE2xoCsu4ntlwKDQ2229bSMfHRQHcNPE/AY7ra504HgCzSwjoJt4YsD5rvNyv4MQFVhmVw8escR5oy64RzP93LHF7I8n7IRvxvCYQx/5eR4a2e3ZQRbjWjnkSA5D4Phl1O+EOK+Ccj3n+pxrOOXyHu4o9DULK3p49e2K3V69endW+oiji1FNPxbZt29DX14euri7MmzcPs2bNQm1tLQDAZrPhlFNOyWi89957D2vWrMHrr7+O6ur4xZyzzz4bJ5xwAq6//noEAgGsX78ed9xxR8K+Bw4cwHe+8x0AwN1334277747YYn8mjVr8NnPfhY33ngj1q9fj+985zv4/Oc/j7q6uqRz2bt3L7773e/i+9//fjZPScFQRichhEwBI+tz5gtXvHk/RqkKLzodH7Dxs9ZaRDveXHUFwAS8VB3P6OQMGODAoGjD/lMuwzeFCuxEZllwWw2Aueuw21YJv7sOe00Gbe7JE/5e8iXTJevawYfiCU1FqZc2lrt++izvc89I/VrBoMJm7sV7DRfhVd8M9Kh2aHxEFmdFCGzoZ6bZeKy7cVTth6N+Yk1W7M5+POdfFL9DYNilOtAv1gIATFsQxohMUrs7BN76EEwHg/LeXYgaAjpH1OHTJQFN0fxmxZUTewZd7KvtvqT3C8xEtSP930adS8DKWRr+5UMqquzl2fF4ae34KxQCOodHM8FsIp7ujUCdW49DISs42hI1Eup3mmLy13Zml/DqgIx33RXQZlSNebzHboOSbF8GRGZmnkE0rLe2EsGFMxO/j6GY4fDcR3tjUAZq3PAvnIkXPFH8PWLtIDdUY6dfhTa0f5di4M6jQdx5NBjLqowki1SmEdATtzeTXfmrTlEyJkl5AM/QRLZ5FRyRDWyLjg1kvgEbWufOACvgEvZiLeU0ZG3KB3MJKYT+/v7Y7Tlzsq+TP3v27NjtgYHJl3d65JFHEoKcw6677jrMm2ede2zatGnM4z//+c+haRrOOOOMMUHOYYIg4KGHHoLD4UAoFMLTTz+dch7Lly/H2rVrJ/6N5BkFOgkhpIyFOwfRv+NoQTI6YWaXTVL2hj4A6MetxlPzTsX7Gayre9kU8V+2arSvvhp/5GNrrXkEO77ttj4kHchwnR5nQGT+Srwl2PFa7SL0gWP3/FMBYXLLhYvFlPsguWxw1DnGLbZeKCy43apPWSKB13xivleT3i+6bEB4L7TG3+A5OXkgnYfeBsDgqHMgIooYXiDuMZxwuDLvYD2SxvtxaGRg0q3hoGxDs2lleYbNQWgj1h8Z+mEoNgOG0Arv8ishcxHdCovVRVRprVIMY4A9SeZbNiqkcNql3U4JuHjJMVx38hbMcU/sd6DY5lZmFqDtUQyYdZXQTOBBJfH1N1Q71NSHMRgpanTq9da+93VF0etIvDDARAEHDYZQkkCnOasGASn71/sIY/har55QMzQ8TjAypHN0VVXgP/us9/tX+2X0L5qFtwU7WpMEDnNJH7XkXbBLiLhTdIEXxj7HvSMyXncHNXQqY+d7X0cYd/UoSQOleTPqKedmYRoE6Smyigkh2QkG4xf8Kisrs95/5D6BwPgrn9JZtWoVPvShDyV9jDGG00+3Gp82NzePefyFF14AAFxzzTVpP3/X1tZi1Sqr9vrWrVtTbveZz3wGYooLe6WAAp2EEFLGPFsOo/W5HYX5QMunV/dO5rQybn699Dz8BHZkUpW0DxwDHPh41WL0JclO6WQCjg3drWQRf9g3cxmaOcd/D3XBftRZD8xYNM5epYlxDsktwKFuiAWTi43LvXDXRyFMIJhQThz1DmitLyQtEWivZlAH3gCP9ODNYPKl3wO6ldXgcHXBDwfUocDEi94GaIJV3zNbLQD4iAkx+V3siNQjZA7VQ2RVUEZkU3vUDtxbcQsUpRWXem+wtlGcEJ1WhDPKqD7nsGqHNOlAp1OUsawhdYOccxaG8amlz2FR5THMdHVP6ljFUufMrPRCt2pin9PKMHyiO/EdYRO3MgRZfQXMFK9r4aFGP01hHZFRf4TazBo0ygZCSf44m50uGCnqeqYTAsP+oApeNxSEFRie6B1/9ce7GsMOn/V31C4b+HhjGH/35v/vSh6V+dg+dwZ+ERWSvl4ZSRqUjawN2qsaaEsSmPWqJvYFtKT754s5ukSBd+KlPrIR7fEV5DiETHVVVfEM/FAo+5ULI/dJlomZjZNOOint4/X11ue3kcFZwOrsPly3884770za5X3kv+HO6z09qRsMpgq4lgoKdBJCSJninMc+yGqh/Gd0cj69MjqN+kVgdjeeRu6WuLVnsPw9md866xEacQ642QR8s5ZNbBLDTZWKGGS0OwagHXkUoqNEAotGFMz/GiS3CKkyv12Pi8nu8gKqD7aKsd+jKGoYrDkRrG4RfHry3/lXbGeD2QSYagv83ITCreAHB0OTtBCCLbuPlYJDQpOSeJFGjrZhf6QSOgwwScB7Wj0iLD6fQ8JCPDEwDx/wKkSGgqFdqgOiwzp2mBcmiFAOFtSIcNkm93c+292FeVXJswAZAy467hAAoMbuhY2VZ53bunGW5w9rj+r4hSf5RcV9Q0G1/gp3ql5DCI7IQhwdNjzmcOAdv4Zk77LNBpB1LiUDAkM/tn63C2AM+uxadMrjj/SEZ2wwdG+Kpe65FDE4hBo3WF0lWH0lvter4snuCPzDy+8ZYu9bEUf61+mAZqAtmvozi2Iv3NJ1U9WsmqAmhxaMwojmJmicbkk85xyR7ulbboiQXGpoiDc8TBf4S6W3N77aYcaMGWm2HJ/bnb40jzD0PmMYia/1Ho9nQseLRFKneaSq3VkqaIEPIYSUIVM3EGz2QO6zTtDyXaNTdEowu45NIKekMFj9QvDB9vE3HGnmEmCwHTCSnwy9dvy5OHn2MvTmsLxW2wTH2jwqmVYD0FgzH2dOYKy6T1wF30svQqyaAX2wc2ITmiyfVTuIjcg2s9c4oPpHBREEBpj5r29mBBrBe7bBuWoFoPUhEMqu2Hy5ENRj0OefAVsFhzYqKYGxCMJiJYJz/xFIsQL5np4V+OxSGQcNN5j/RQisCsC5AACP4cYSl55VUydXPcc7wbkJ9/2ZnQEA4GojKmbNQEdgELKjdugbYLin/1RwMGyMLIztw8EgVgaAQTt6DbqGP+zshQq80cl91HdLIcytSv4aee0pIuZXWs1OGOOwieWZTVvrzGwpYcTgeM+f/HvsGype2QQRqwQTycJw7Wb89U4Z9bI2yBkOhzToGLtUe1/EwIlV2f1eR+Y3QB463iATUD+rBr12O8aGWMdqDI/9eXvV/K/oiBgcX9QdI55j6/9bOhQ8W+lEsLYSYVHArFYPfjJObNrgLG3N0H2iDWfNqAQfyH9dWS2kwHegE9FuL6qWzoLcF4RU4YRjONN2gkLNHlQdP9u60M0BW5X1uxPp8kJwSNACpdWwkJByNTJzcffu3VntaxgG9u7dCwCYOXNmrIZmoY0MfN51113453/+54z2q6hI/TpVysvWAQp0EkJIWVIHw+jddCjWjTTfGZ2OuuIV1M9EcNYJqMwy0BmtnQ+3roJ7kwf7wkzEhtpFQA7P7zJZ/p6pD+wV2Qc6GYNjlY4a7RKo7Z6iBToNz7bh6cTYK2Wo/lE12kQBppnfunCCXQLvPAoA4D1/h1CbusN0ueOhRmyr+xgulEIARtUI5EFEBRf+oK5JO4aAPhzUqrGIBaCNaKhlAGCO7F4jBEHGS/7EZimvhqzAJ+ccgvd5hISPwRj6RREkET7F+ui6K5TYnMXwvQywK9CspWheMg0J4Dhlpn/S48yukIFRobvV8xy4ctkHkITyDG6OVOeY/HOkDV2Q2RM1sNzJkCznpnvES9noQGdgaH8tyZ/Qdr+KT1Vl93u9DRI2Ba2LDlEAx5xO9JZ49ZmIwdGTJOO0JWrg4YYaqApHyOD41HFz8Ncjk2sg99SghuPr3agvQKDT90EHXLNrMLi3DVFPANwwYa9xTyrQyTlH/3vHUHX8bITbB+CcWR0LdPbvOIq6UxbCkMszw5qQUnPKKaegvr4eg4ODePvtt+H3+1FTk1mDuFdffTWWFXn++efnc5ppjcwkzabLezmjy96EEFKG5IEggkfjaVd6ngOdEuvK6/iT9dwc6w1727lfgDl/ZUb7dNfMx6dP/xdATFzCFjz5Y8Cc5dgouvEsz+3ytoEcxooPCdl3uWY2J4RqwH1+GPZ5M4u2fN30HbHmM+JisGiODbqyDOsLiq6J/5xsVfFJ6J2vg+u5DEcXhzS0NN1Rl/g7YkRa8H+BU8DkD1A5H6iYawUNK+cxyD1P4Ka+S/HMYPqOogMixwvBWfiy5wJ8ozceatcBmPYkkRTGEjqyu2bZ4ahzwNngwKDdPWaZ/L6IdfL/Z/8ChLV2bA3VQYUViKqs3hlbrt6mJma+ec0obFV2tKmFW5Ja6mqdKpbW9o+/4TjqnDIW1NjxiZNsqBwqN3HR8QEcV90Jm1D+JU3cthBcWZZdGE3nVkOhjX0y5FGNclh9JYRKJ9qV+N/H2rYwhKEGRvrcOjTJ1mMjn01WV4GrWTWaIzqyzc3bFzXxwtAS9IgJ/C1s4lvHJhcczLewwdGXokv4L9tDeLgjjCe6I/hslkHO0+dZrz9zquKvDa8PyGhCYbKRIp2D8B/qAtcN+Pa3I9rjQ7Rv4g1JQq39iPb4EOn0InC0F9EeH8LtA4j2+KCFZAzsbkGk21eQkka5xGylnR1Gpi/GGG64waoJHo1G8Zvf/CbjfR966KHY7ZtuumnMuIWydOnSWHB2y5YtBTtuMVGgkxBCypAykPhBP+/NiPy78jv+JLUKVsCmW3Li/UVnjLs9c9fhmLMGh0wOfWFiMe0/zDkFO5aeCw8Heko4i3VCoWcmQMZsMIFDmuMseud20Tbi+VX7xjyeSaCTiQy2yol/WBTto06sjfKv8eiotr4npzPedZNJAvzuGdgdrobpfQ8MMthQNp7ABqHY3AgY4y/06dDCaFFcCBliLOgIAAYHIsLYvxfJJcHh7Ix1tLdF/wansxmSIwp/msqDYV3DX6suQ49qh2lYvxvGwPaU2/+e/SNsbgMBvcTT1gpoae0g5lZMrC7XSDbBwEcX67j9jC349Arr+V1U5cOiymOwTYGMTrc4+UCnxjnUWbXoUgxERxV5UR12vFxbi2Y5HsYcUE38vbIKYMAz3I7n+6yg5MgcvM2VVWgfynAcyPLX+r1g/OdyRDWxviuEDMpzFpVHNaDl+M/3uDo7rlg+CAA4c0HiY/sK+ISYevxYpqJDmUSgc2BX8//P3nnHx3HW+f89ZXvRrnqXbLn3HsfpvRBSCYRywNFCuQB3v+O4O7jCUe6O0HNHOwiEEJJACAnpjXQ7cZzYce+yepdW2r475ffHSFqtd1fNkiw58369/LJ25pmZZ3dnZ+b5PJ/v90vHK4dQYwnan99H8FgHXa8fpWv7Mdqe34eWUOg/2EK8e3YL2ycj2M/c/Ngmc58vfOEL2GzGpMnXvvY1jh49OuY29913H4899hhguEKvueaatPV2uzFhG49Pf0FZSZK4+uqrAXj66ac5cODAtB/zdGMKnSYmJiZzkKHcnENMZ4iStyJM8sRD07b/U0XwV3ACiWfOv5V7JAdftxchWHMn6xa8xWjeYhotxgNLfVF6UZ9Hkfm8NZ/jM5Ab8lRoHtk92YpgzR7aaKtaiu+yd2OtWITsL+PJbmO0Z5mfRBBPbwYbqedXeL3PIzstaKFjac4/AItTxFlqGa7mLWZxfHhKB5Ask3OViTYZqfMXacv0k5NXzkGkAePBWm15EHuh8ZnKTgsHHUsBSKjd6M13Ig46JYVkByFr9krrJ3M4ptKWyHQTK2gMoA5XPx9CtIgoHX/E7reCKJAMbCd57H9IyAl6R0lLENc0vt5hOLVbEjqCJLLXlzvU6q7uSjSLRkCZ5WrODCAK4LSIbCrZzfL83ae8P4ukclFNIyvyd/H3G/8MQJmrF681QL7t1IXU043P1ot4is6aw+Ek/xw09nGyvPQ7TeYrxwfYcVIO4q/VB1FLfPygKUTPYA7MlsHYddFh5d8bU5MuXUrqgi96Rw9jV8r87A+lhM6fN4fTKpLPVjrjU//bvXl5iGJniFKPhfOq0s/VV3LkWwWG3bZTxVCaIQAlGid5CpPTgf0t9O1uJBmKEazvJHiii3BTD91vHKN7u5GGJXiia/onwKcQQRKJu43zWpBNecJk9lFbW8vtt98OGFXUL7nkEt5+++2c7X//+9/zkY98BACr1crdd9+d4eAsKzNS9XR2dmZUSZ8O/umf/glJktA0jfe85z00NzfnbKuqKvfcc8+obWY75pXExMTEZA4yVG19RujfConJuw+mG8VdQFTX+ark5oAGh3WdjqWX5GzfuPA8FLuHHYLhHjjm8KVWSjInNBgAZvu4sFNjOPRc8JVhKajI2k7y+bEtl5E9Plxb1vGxN4NEhDoSjvEJW9OJ0vAoyQM/x+6PoXW9gXRS6LNkjSC2/RBbniGeWfOyCLOBlxCYnCgtSgJK41MndWruC51q1+uIVhmlfRs2wXgQF0Q4qJUAEHJVoba+DP3bAdAjjfRLvnHte1u8JOtyRdfpVpPY89O/Q00QafDUYLH3Y/dbebLoJhrKL6BX7aZdze3g6VVk4rrxmLo77sHitnBXbE3u94xISHQykCP09Z1Etc/Kx9Ynqcs7gNty6oMnq6gyz9uMQ45Q7mxAEMBpMRyI8hkQug45C6WPm/6kzvM9Rqhw94hTUPC7uaPREBpPNhDGNThms6e5GH/SEka0yhwpzk8rANQ5InnnPn/u3HDJsnyuaEmij7iBxd/BJuc1xU2cV/EGH1gZYXPZnrR1B0PJrOlbRKvMYy7PlPZDHzlxqjPpyuvJUAwlEjeEU00HncH/dXRVSwmqs3yi9mTUAg97rYMTaBPMR2tiMlPcdtttfOELXwCgsbGRDRs28OEPf5gHHniAN954g61bt3LnnXdy6aWX8r73vY9EIoHNZuOee+5hzZo1GfvbsmULAJqm8elPf5rXXnuNo0ePDv+balauXMl3vvMdAPbv38+KFSv4h3/4B5588kl27tzJtm3buPfee/n85z9PVVUVH/rQhwgEAlPej5nCLEZkYmJiMsfQNX1GhU4teGTGjjUZWooXckCD+Ijxyt35dfy/bI0FkZ/m1bDeXcLrg+OBfZKdK4dWO32zXuAcQhdAsLrQ/eW8uORiLm1MhfWKdjdazBDs1NIKev3l6LZ+PKsF9OfhM3vK+PqSCLIwO+Y7xeBLJIONiIKGaJXQEipWnw2avova9ipy5Wdwl4tIyZ3ESC8WpPXtR3LOB5ZO+LjZQt61/mPgn5lq79OCKKDHOnEWJdBaHCQP/QSh6A4kC+wMFQJw3L6ANSVLSQ68DeIVxIUYj2rnjGv3L/RnF8gTaied8VZEWyGMKMUi5CX5VfcW/oUurHaJH7cuRRKW8J/SNhqFSk4ucjNEQEk9ou6POpB8Oi/0FGRtO0S/YKMveeo5Vj02ieA0uMtmApss8sXNLVw3/+kp26dVSlLiNHJCy6JCiduCzxaYsv3PBjZUCLx0QiKcOPXvvW3QfSlYJBq8bmjPLTa/Ek2/zvQndQ7OK+Q/WtPzKzbEVRBAdNh4eEBlYZkfua0vrY1W4uOK5gQDyhy9dk0Dy/IPU+M5ymdWh/FZe3BaLiQyqCwnNRA9drp8HpKCQGlDB6LDykChl9+2x7hqKjtyUhqcbFE4SjSB7Bg9fHuuhaOPlxaHnacGFNYCIZcDV9/cTyFjcmbygx/8gCVLlvCVr3yF3t5e7r77bu6+++6sbZcuXcrPfvaznEWILr74YjZv3sxrr73G7373O373u9+lrZ+OIrBf/OIXcblcfPGLX6S/v5/bb7992Kl6MlardTi8fi5iCp0mJiYmc4x4TxBtBl1Leqxnxo41GV70lHFygFa9kD33pODI4yFN4CEh5RhoH9k2x3azFrubAzUb+Qwu9tvdw4s9Z51P/0tPgK4TXVDGd4/7+eL8ebydLAOiPNwa5gOVblbZ3OiJ0198R+t+CwBBTOIq0gm2SNhdPST3GQnTRbUJreE+EoGDUHJnakNRQOnZjdp3IH35OJEtIU72o2mhZqRSGTU6NyvWWlwWFK0We/+zdM67koJDD+IsFpCEVrYPVjR/LrmA8vx27GoIe0KiWXbxi/bqce1/ZF7OkeixBpp0B71uP5YRv0gx9AK/772CW90NFFutHIvNB+A1bxVhPQBkDxHVR3js+pM6mhVC6ui/z6QwQK9yao+2ogAfXZvgjtfm2LVgkK9e0M9Hl94zpfu0ywnsUkp4u3KhwqK8fVN6jNPN9YvrKXJV8pudp76vpkGRfKDUT9cY49S3w5nXmV/1Jg234Qhe6o0Rr8lnv2yluyfB721WPiiJKQefAN+Iywwoc/O6NV34rUYxriJHGwDFbpkTfSk3ZYfPw/vqI7glkT+V+Dhst2MBDoWiCG4JfZqetdRYuqMz2tlP8HgnxZsX5tjCIBE4MwXA3YrAq33GfeMvmsy1lun77N+prP/WLae7C2cMn/70p7nlllv47W9/y2OPPca+ffvo6upClmVKSkrYuHEj1113HTfffDOSlPtZQhRFnn76ab797W/zyCOPcOzYMcLh8LQInCP55Cc/ybXXXsvPfvYznn76aQ4dOkQgEMBms1FRUcHKlSu57LLLuOmmmygsLJzWvkwns8PKYWJiYmIybiJtgZk9oD67Hzbrxcwqy32DzwhKzXqj4M6gc1H1Z4Z3dwNIg+LIaapCPll6qtbwnLMIALUs9d6kYhfOZZtBEInm23m8PYp9iYt/2JuKYXysAzR77hDImUQNGEnRxYG/IBAEAYRkKi+Q1ng/avdOUKJp+busHiuCpoASRXZahgvejBeB7FVpJevcfTySHXAgfwtK85PcL52PYHMjtN6BqjTTN1jh/ImBUo7ItURkL9Y8mQ7h1M+DetXHs6FS2nR32vKIbgxeDyYFemINw8vvD1TTnCXXZzbCmk5M7B2znR4/TL96alXXt9TY2FDWdEr7mCkWFNjIG5ETdUOljc+u/PWUH6fc3YVNStX9/vy6x5HE2X1fmCgXVGzj/KrGKdnXiajx2TyelOgbI2x8z0BmCPP2/szcikkN/i0o8C+NEZrjKn/oiKLnp35r/VVF/LljorXZz3xOTt1QMujilwbvFd/qURhQdNoSCvcLNr7dHmNYSpzGEGrlpIm0njfribSMfY2Lzyahc4oelwSLxBN9CdriKqLDyrP9CdT8qU0dYGIy1fh8Pv7mb/6GJ554gsbGRqLRKMFgkKNHj3Lvvfdyyy23jCpyDuHxePj617/Orl27CAaDaJqGrusZYueJEyfQdZ1f//rXo+7v17/+Nbquc+LEiVHblZSU8K//+q+88sordHV1kUwmCYVCHDp0iAceeIBbb701q8h54YUXDvfvwgsvHPP9nU7m7pO8iYmJyTuUmZ7R12e50PmIlnkrGxouXDz/QgRHHkr1WgCaSxdntO3SgYIaBFf+aa9CPlHOK1zOT3Sjz55LCpF9pQA0+8qxVhRhKa7hrnYnnXGF/bqPNwOpAfRvGkJgn9qCC5MmaZzTatd20KLYfDa0nteGV6tdbw3/LY8Qdqyu1Pux+xRkx8RELiFyMOvyLNr5nEGUVL4fOgs90s4DfZU01t2I2voyWtMfhtu0J6zc2raFvVIdFtsA9fqpz9j/qquK3WE38RF1o+0FNv5PWQPAs7Eajo2o6t4Yt/PSgH9c+46qIonux8Zs1xo79VzCy4tiFDvGFhxmA5/f1MRZVSLFbuOE3VIZnhYBckPRNrzWwPDr+d5DU36M002ps5liZ9/YDcfB0UgSId/N9xqDHBijsne2MPP+ZHY3z7PdMdrjKkfDCk0xlRdsRooI0Wnjky2Ty/l4JpLvNK4zBU4Zi5T+uVw2v49LF1gpHGzzcq9xD9F1ge81hNg1kGR/3Pj8X3ClT9pMJVoimZa3M94byigyeTLJUIzOVw9PW58mijAFBZsEWUT3Onlt0M2pO6y0xVQ67eObBDMxMTHJhSl0mpiYmMwxkgMz69oQRqmMfLoRrA6yBV73AggiGoAks6tiJQBKltD0dh2ieWVo3hJ0ee4+XEdUG87lqxHtbva5fQw4/FjLq3i83XAt/qQ+y+DZNkuEzkG0YAOCGsLmDJBsfi5rG9E2aCMRQNJTrk9Rb0WyTsxioie6sh9DnrvVOwRxsCp64QI6klZ+khzMDZVFvf1DaCFisp6DyfEJjuMhqaeKOdnk/RyMewF4PFDMI7FFaW1j2vi+r7Aq0WXNXgRpJK8mqibQ0+xUeEIUOmZ3uo4hZEnFa9Oo9omIAtjk2XutngvkWacm/2F/Uuc3VheqLvBy3/QJkI2Dgui9Xh/HI2dGUaipoMxj3Ocr8zLv9zcv+gtf2LADhyX3tefxXuM7+4djA1A4Tc5CHdR4alJI13TiPaOffw0Pbp9VldTjDhui+9Ty9wkWGU1KyRGKVUbTdfarcyu6xsTEZPZhCp0mJiYmc4xkcJqFzsGQLkeJFdEqoYZmbxhnx5Ls1dVDOiy/4G+NEHbJwv/YCxCcPhocmSG6UaDZX8Wb885i+fIbprfD08j6FwSEwjz8N1zJgYjIYSEP57uqqB/MAfdMR6YkLFhGL3ww4yQGSOz8V5LbP2aEpGdBFHXcFTre8gCJHV9KrQjtR7Ski7nSCIen1WdDkFMDX2epBT2e3bknCLNf6LTm5RDlhT4a4naeLPkAAA/3lSDk19CVvzKj6atBH4ldX2dHeOqEzn5VHU4vkIwdYduAIXTGdZGH+tLFSnWcj6FxXeT69mvGbPebnlMTOteV27iy9nVq3Efx2Ga/u7vS3UVNXoRvXfgKvX/7A76y6Senu0tzGq+1f8r29cMGQ/CfTgGyV9GIVRRwe0No7ManiXctGb89vto38fvRxXVWKvJS283Pt3J2lSEGLizIFP5rPEc5r/wveGy5hbS9QUPoVHWBFxxjTwYKsghFXiiYmCg6lKdT13UirX0okTihxu60NsFjRhGwWPcA/QdbJ7T/qUKQRY7VlCL4XQj+1OcxYJHR7Lm/X9E6dr7kziIfm5oU/A6Z8+fZ6LVaaYopHInP/nuwiYnJ7MYUOk1MTEzmGMlg9ryCU4U4OLtujT+Po4CcgtNpR5S4s3D0xP0ASBbiCPTXbuC4lN19sMuRz0Hr3M4JFVV1mu2F2JYF+dWJCL1eJxHn6AKWNBdLEopGbk1BSXfdaV3bEaX0ga3FlXrMkWw6g+lMQRCQg39GDzWTjdkudAqyhM2dvYhUZPAcfyJWO7zs2Yq/4qilNmt7wVfBsdjU5aJrTFqRbMaJtcu1Ytxi5mxgUaHCgrz9WKU4l9TN/n5Xulu4ct6utEJBJpNnZHj+XCCpw9dncRHuc2ps3Lzk6LjaSqLA5qqJO5JvXNzE6tLUBNd/XHiAAofxe1hVnDsVgX+cl7xftMfGzEUpWGVesjvZ655YhMRQwbvg8U6S/RHQoePlVDqVgSNthJoM4TPcePpc5tvKivlyU4S9Xg9tntR7bNFFNHGU66TTNmbe8z8NXro2V4ksKYzxQMQQmLXprcViYmLyDmD2P8WZmJiYvEPRlOwP/dMdui47ZSSHhcShXyIrs6+ybrxuM1rlSgaWXMRv1bFvY7pkoU2DNwrm05Aj+eL/Cg72irPM3TgJmmsK2ZXYQGdcodtr52uHRs+9KEpz7zFAkpLQeg9aIL08stqzG0FMF+UlaxKLx/heRVFDphVBFhEtIokj96D07gEMsS8N4TSHAOcoqmT1GS5OR4EIZK+uHBk8j58L5A8v+3/tG/ivwPqs7YMFy0+ho5m0RPtxOrbjrtB5dMA3pfueLjw2Ca9d4h83/RlxUOQ+q6J7jK1ODxfMs/Hch17jioVWKpwn2FC0DZecXfQ2mRhueeocnTPBgx0RnuqaOZFbFgXcE3A6X7mgm4X+EwD8zebRr6nXL5Oo9k782WZz2dssLQxz60adZcU2rql9BI81QYFTZlVR7uJS68tCFLnGdpseDCXRin0Zy8U8J+Jgjsqk18lvOmM8E5rYfSPeazhx+w+2DC8L7G8Zzt3Zu6cJXdGItPYRasieZmWqELK4LwWLhF7k5W+OBjkRVfniiTCH9dQzwwkFeh250/1oFgnRkvt8EWSRO1uM/NybKvpY6A/w69YQTovILJ1eNzExmUPMvRGOiYmJyTsEJZI9t9d0h65bXVGc+UFQomg926b1WJOhMb+WqCufbmc++jjSOIV9FXSh87zs5qCe/bbXhc7hM8BB0KtIfORNY7C1Lwi/aRyjuEGWnKWzHTGxG6X5ObS+bCJ8+pcoCkkEaSinp4aOgsVtQbJJCLqKMFjV8kjl1WnbCZxeR+eQI/JkHNbdiFYJWe7i5Pc6RFI3hoj6CBtSUhc5GnVmbV/vGIcregKEFA018BZS6BVak3OjqtOmSom6fJliZyo01GebRdWNR1CXH2d98WtcUNOFTY4jCDr5tukVQd4pGJ/n6e7F+EnO8GVqQYEVv3389wxR0KjzHEQU4PqFO5iXn30ycUGBje9f+AsqvRMXmmUhwcqiNj61+iluXGo4OD3WGJfU6aws2J1zu4urD7BpnJkutlnTI0FEm8w+n5cXPEYUyF9kOwOKTiBLYanRGApFTytCpOvDk9xaXCEZjNLyzG6C9dP3GxcsEmTJtan53exwpO4bfQkNdcRb7FE0BkaREhIWGUYLX/c6h8/h1UUNVHm7UHWBefkWYuoZ8EBmYmJyWjGFThMTE5NZSnIg3aWT6I+gxhJoyelzmwmyiKg1o5/4sdGH1pem7ViTQpJpsHuJ2tz0WrMLNyfTOOjWe1IXOKjnfng+egY8V391X4TGiOH0+0NziLHGCr2uSihekrlCTh+QKlWboNioWC+MKNgkeErSXs8EyQPGuakGjmSsEwbFP9ltHXwdQbIaywRBRUBHtmvYvem/rWe15YarcziWP+UncRRbjVyfOVyW04FkTT2eDTlSLW4revgYHudL6C33kUvo7BvlHM/G/0WyOz0ny9uRPN4uvJBQ9CB7InMjHcR1i5opdetYxVShD7/dcFtZpFP73n2Oqc0PsaG0HYB3zXt5eFmebW5UiZ8LFDjTxXn/FH9/c5m6Ag2XVUAQIM8+9uciCxp2Ocq8fBsL8w5wTrUyXBEdDIcowC/f9Re81gDl7szzONfvTxYF/vOyAPn2bq6ofop5nsNcXvsmAGeX7eYza17BnzEBkDr2puJXWVuSW1gd+f5+0h4bdm8C6C47/9IU4bvNEd6qLuWHzRGaYgoDioZolYdzFI9F/6FWdE0n1pneDy2hoCkqse4Bet9uJHS8k3j39OUo0HyutIJAQ/TZbXy3NX1ifWQcQVNc409BlZ01ZSAKGa7QuCTS73cj2i0Zn4lolYk6bAgClLgtrCvaQbXbEH5XligE1NmdPsbExGT2YwqdJiYmJrOU0IlU6GRiIErz47tIDkxvmJo93wJaFLXzDQAEdXblfhM8xfRIVurdxbxk841rmyN2oxhKFBhNIj4T6hV3xlMCXXgcjohXbOsJ+BZnLNcL6lIvBIGv2G5lIM9YphalKmer7hKU4qWn0ONJkAgY3dIzvzEdHdllxeUwwtqFyAEkiyFeiXovuq4hSRGEwFNp2/WqNhoqLkWwGOK5MOJssOq7ceYHkR0z504czrAgCNhjv0Z2WXFYXkIPt5DY9z8oLS/mdJ32JCfm+H6uP3/sRhOgIW7nfwKLed59Hj3K3HB0Vnm6uKquGXlE6gOfzRAW5vknn9JCFGB58dS6ppcVHAeMoiqp45iiwFTxrkWpc2BVqY3NVeZQaQhZBJfVKNq1oWLszyXPbkwo3bIiQJ41wNkVrXxu08Dw+so8C5urbawuNJ43rGJmwHJNjgJFDovIZ1b+Gq81gEOOIAoaHovxm13k28si/76M34Umlg3/bZPjLC7oyLpviyTw3pWpvpyIJvk6DoTBYkMJm4UTUZWWmMqnjgRpj6skNehKaPSW+tH845vgUcJx+vY0kgikT7xp8ST1920l2hYwRM9pnNwGOOh0omfJtZkU4Gg4/TvpHnStChaJZ3qi3NsW4ZOHB1CL89C9zpO2F3lNl3mzpBDBle4YTea7aZUtOGSRcq+Iz9ZLlacegGsWHGZPRJnRyUUTE5MzD/PubWJiYjJL0BQVfdCNpasawfrO4RCmxofeQAnHSPRPby42i6UPQc+e+29aEATUqlUEl16C4MhDGKN4Tjy/mt2ilcftfh5kfALC89L4nJ/vRN4Wq4m40vN4ChZ7SvyUrQwsuJq39QokqzHgDHmqEfxGzJ/myGNPwQUz2ufREIni9HWiHL8bV7mA0vokAlHDbRJvhMhxxMhOkg2PpW0X0mR+p56FUrAArXwNw45OAfRoE/qx72NxztCgSxQQZWOAbi+wopx4BGfyNyQP/QI1cGBEQx1BEtMqy0t2GTV5+t19ETXJHb3LTnc3xo1djnPNvGfTlvmsAbx2icVFkxcRfQ6Zcs/UihT59tNXlOSdwLUL9gOGxvKeZd0Uu2bwfniaGHJWjhW2Lwk6Hhu8b3k7y4rSn0UclswhZYHdEB4/vNS43l5Y+RofW/4nrltm4YblMqUegY+urh+x//TfitMisqAg+4SdLYtrUhJT2zukkf0znIZBrSat/WLfsaz7vmCehU1lqUJ1MRX2hxU+GpIQ3XaicnY3a2tM4X8GdCK28U/wtDydGV5f/4fXCexvydJ66hGtMvcFFFRRRJBF1BLf8LpoFpmgLaEheh2o+R4SIy6Nb9vshO1WBElEGHSHxgWBh3oS/O3xIEd9XqNquywiuu28ZrXz55BKmdfCJfOM88Rj6afQZWFlwQHqiiSEPPPZzcTEZPKYQqeJiYnJLEEJxejd1QBA/+E2om199B9sJRmKEWnrQ9d0et9umNY+CFovaDM3sBPyyvhd3QVsLlnD8eWXEyvLEkY9gh1ly3hIE/i9JtA3zgjdp02zU0621HTSXbIgbdnDS77CXt8G9OIlJCo2sMO+lu9d9jZ+j/FBRvIqieXVgiih+Yq5Xzr3NPQ8B/1bIbANbaAB7Y1b0HoPIOhBnMUSevAwyQM/I7H3+xBPr8a7M5LHA71lvJp/JX/Mfy/ohpNZslvQBg6h9uzGIo2vevCp4iyWEUXjN2gZzBOZrH8YkmH0cNuIljpWnwVXfkr4svkhqp5+YaYvKVIfn7pK7tON39ZHvr0zbZnP1sd1S3TOKp+8sOixiSwpHBi74ThxWkQqXfVjNzSZNGeXvYpNFllZaqPcHaDEPbuiGqaDIpfMihIb+WOE6dfkRSn3JLmi5lWWFqTCwkUBvnVpZ0Z7vy0AQInTEA0rXCfw27q468rb+dUV36HKq3Lj/IdH7Cdd6PzAao3b1m/P2hdrlnlOt5z6raXcnAIBjHvU3oF1ae2r3Mez7rs6L8GG4nQBciCpsWcgydZ8H4kcivCAovNQR5ToBIr8JfoycwGHG2euEFp3aT57gwkarVYaK4r4RkwedlI+HMp8eGqKqzzjzaPZbmNZsW1YHH81rLJHlOkvLyBYZkQJvKjpvB6IE1J03ns4yOseL33lBQT8Hr5wJMhvWyPcsiLAV8/68fD+S90iHssAq0sjRJ2ZeUNNTExMxospdJqYmJjMEjRVo/WZ3WhJlZ636lHjCr27Ggge70RXNJKhGL27c1cRPVVEq4we75hRoTNcspAG0Rhc/cBbRdThzd1YkvmDbXTHp8nEOKvsOLulGgS7F8Hq5MiKT/FPbavZalvOvpJLOepdS9BfxmXVT6FbZARXARa3lZi7FMFXhWpzUlkytrNWsMzMgEVtexG1/cX0Yyv9WJI7UHqzF6YQXAU0xu1ENYm7Qkvp1RwIquEGku0iaq/h8FLr70LMUSRoKhgqmmTR9iMIRri9oI/uzrTY4tD1+PBrSQwR0E//4LA9Oflw79OB15aZq89n7eEDy95kcX4rRS7LhKpNOwfdbS6LwPLC5jFaZ8djkyhyWdJyFK4tt5hh6tOMUw6xpdrC+TURvLYIJa7Q6e7StCOJAjcv66HcO/o5vjC/m5q8CD5bNysKj1HkslDksvDl82JcWLEdSRQoHFHJ3G8PjLq/29a/gFVK5cWVRI18p0yRy0Kx28Jn1zzBOWUvcN2yTIekNUvuTo8l83ccFdbQHjciEJ5tXw4jIkEccoQ8u4zfIVMwIneo15rEbUnPiRkbjLb55/oQrWNEk4TmyPBakEQeTwh0JFR+0p3gW50JDkcUBFlCdNr4XVvmuV8fUXi4N8G9QY3KPJ1yr3Gtf6E3zq874/w8DL9PSIg+F4/3J9OuX7tjKr8OgzJCKL5+wStp+y90gSDorCpqoyeHc9bExMRkPMyNK7GJiYnJOwBd0UgEIvS+fYJoWwBd0wi39BI83oGuasS7g+jK1IRB2vIzC8h4nC+idb2KrkydA2ks3l+xgXs141b0rCYQtLmNFVkcEwOLLzTdmVOMxxphRUU7jy78fzy5+Etc334NXzhbYU11H38bfhcPOc6ntsoYiCoONxtcv+BPeRej5eVzo/u/CftL+JuNfyZRs2XU4/x04X8ieIqn/f1oA/VoA+muZz3WRnzPt9H7s7t31LzK4b9fC+bRo9pBT2DxWBEt+rD7U+vdh9v1+rT13VksYfHaUJseRCCBNc+GEG/N2T4iexC1RpLNzw0vE+OH2ZsomLI+jRz8T4SoNrV5KacTqyRQYs8ME7XLUc4ufZHLqp7kyK23c8dV9ZR5xheS+o/n9fOeFTIbKhLM905ucupbl7Ry5NbbuWpR6jv44IoTk9qXycS4vK6TT6x8gssqn6TEGeDiOiuVeZni/Tk1tjlVpT0XRS6BL6z9BZfMG13ULXH0saqoiTxrgFUFOzhy6+0cufV2vrzhp8zzHuZDq+HorbezttzGmjIb8z2HRt3fqoIdaa9tYoIXP/RHjtx6O4c/dTvzvcb2/3XefeQ75bRCRl5b5gdvkRIZy45G1lIfqiAhLqUl4kUX0idTN1SIvPaR+3j9I7+l3GuE1K8qbsNv60pLEdk3GKc9oOh87Mjoz0jTVzZoaomV+PhBQ4iYagiVbwQSHAolESSRjsI8ClxWFhbacNskvn5JkFWlNgp9Mj1JjT+0Raj0JigcTOnSEFXZ0Z/gvrYIO0NJTuS58ToEXCOst00xjd+2Rjg2KD/4HTIL8/al9WlJYRS/rYtydw9PRM+ACpHTiCQZn62qqmia+XBsMnfRNA1VNca3Q+f1VGAKnSYmJiazBH2wymTPWydIBqPoqo4aTRA81ommTO1DjM3enrFMCzWAmoT4zOSAE9wFHD3pbQUGi8EgZgosDd7SGejVOwsNkfXFuwjpNv4QquPyhVb+9ayfcHXtC1yxQKGqSKPAHwBgl2slEU0iqkuEPPnYLBI7rEvJs/byB891uQ8iiPy6p4a3aj+AYJ35cGatcyvCKJXIo46StNddihV0DasniSif5G6exkkAQVBxeDpRu3chxI4j2XS0UPYccoLNTbvoh8gxSIYQrRKCJKA0P8KxuCvrNpNhXv7cESwny6JCa1puv1ysKDhErX98j83z8jr50qanePeCA1S4T0yqX0MaS7knnrnQZFq5sPJN/LZuBEFnif8Yt67dy6LCzA9/eXGMs6szJw3nGvP8xvl//cI3Rm0niTorCvbnXP/+ZYZw+YVNh/jqubsQhIkJVQ45ktWVWeZq4kdXHqLWl7oe5Y8zfePBgRqea1/Cjv5LAdAEX9r6v159gBJnM3nWXj66ZoCPrXqT9cW7kUWFMu/knOkBbW78UJNZChABIEs8HIVVpQIbK5J89/IGPrz0j9yyopPzaiN0Jozzpc4fwJ5lLiyoaLwQg3yHhseaOkZ48Bn3TwHjvrqgIPP+ctMi4xwS0PhZcwjBP3X3szMNu92I3tB1nVDozHeem5y5hEKh4RoVDsfUjRNModPExMRkljBUeCjU0IWWVNEVFS2hEO+ZOifnMKFdaS8FWUTt2AZ6Ei3WlX2bKSSy+AL+atNHM5bf5SxGsHuILNgCYuohWPCWcMCeN+39eqextc+Dw+nm0pUDXLjWzl1X/Q+SqFLq6uM/zrmTG5dvo9zbwsH4Jp5JLGXrR1/g8kV7edq6nh9dt4MBhxunReBRbVXOShbbVv49/3xxiC/0XkS8bF3WNtOJ2pM9ZB1AcPr5cPJjzM9PDWhfHChAOf5rJL0FUUh3COnRtpN3MSWINhkEheSufwAgefhniLKC1p0uPOhlKwCIlq8nISTRB44AIDtkZKeFpN3CnvDUDAwLXRaKXWe+S6TWP773uDBvH/P8Y6f1sMsiKwoOsdi3h0srn8IlhyhyTaz6/MJCG4VOQ/D5yPIXKPVY8Dlk/DZzMDsTLPXvxmsNALAgbz+XVz2BRdSHw6WrByuBl7sjfHjVxHKm2rMU0TmdFLks3H7B3QCsKdxOxQjnqlUS0q6NkqBS5c79fjeXvAzAtfP+zKVVT024Lw45ituSfTLpmtpH+MJZh9g8KCx/fM3Bce3zSLCYgaSNu46dDUC/WosuFoFgRI+8q+ZRwHCD3rbmbs4tfYEaj5GP+YoFmQ7R8dCrzl4nojDi/IuMyCWaN0KxTLps/Ko1THVegm+dexfvW/gAedYAn1x+D0vyu4fdrZWePlaXZuawDSoaz/bF8do0blkZZEWJDZ9DJjA4Yf90V4yKPCu1vhHPtYIdRVzAxuKtgJHGQNcFXvGkV7AXJpD/9EzH6025k9vb2xkYGDCdnSZzCk3TGBgYoL09Zb7xnPSbPxXM5BcmJiYmswR9yLU5A8/IeiQ9JNZZJKA1dKM7i9GjmW7PKaWwlhvKN9KsZb7RJzRYePbHuCzYzrzSRQitRpXpnuq1HBIsM/LZvJO4v1lls89J0i3z7orXcMhGbsoIJXgsx1EdMhZJ5trX4bOlXSzL30Vf6Bxkp0aFu411ZQUE9XL+en0bQkM+ejjTDfy2Us7/W/RnjgU+zG+abuYTvDrTbzM3kpWDESf/tGGA/3rZjq5DXBfRSUD4MHh8ac3Vvv3gnvpuWD0SAklIDA7yZQk5/iaJk8Lwny68iSv7mznhWoYldgBt8LcqWg2duVevRY1PzUBwQ4WATT7zB00FDmXcbc+pbOV3b4/uLJ+fb8FvMyaLhhxt8/NFujJrjuTkfcv7WFe0C4Bqz3EWFYqUuRXmTTIM3uTUEAQdSTRSObQFk1y/NMKPtsmsKGzEJiWB8nHvq9Qjc6JvcgLadHBODRTYO4ZfX1ircM/bxt/vWSHQEBA4PpgqWB6H8xmYdB7ZPGsvspj793hJ5XPYpQT/I67kqurHxrXPQGLQ9TZoh365+xzq3LUsdz6CQCjNdTp0/xviHzf9nj/sfT/B+MQmmrunOAJnKhFcdvR+4312Dvqd3DaJap/Ennbjs39GthPXksiijs+WuqdbpETad5tnDZJnSwDpruagqtOXVNgkw6qiZs4uj/MvL66lNZD6bleX6qwpTe07xmJCSgmFoiEyWwRjUukr9SFeyrOjhQxBVbDK6NHZ8/s5nbhcLhwOB9FoFFVVaWlpQRCEKQ39NTGZTlRVHXZyguHmdLmmzsVtCp0mJiYmswQtOf4B96kg2mT0SA9Ixuy+178brW0rmtEJ9PA0Cp2ylb9ddVNWkXOIH+kyD3kquadggPxBoXOnv5rndBlT6Zxanu2McCjsxmXXWePbA4AilHIiVsQyWyNeW4T9sdXUh+OcVXaMh3rP50+tGjeXNvBcsI4a5wC/bCrlEwseoa10Ha5jzzCw8F28Yts4fIyieQX4bL38w4b7ua7hw3zSV4kemFyBllwIVid6IjJ2w5OIFC6DIGwpP0yNbwMtA0mSqo5u96I0PYJU0JTWXu8/hpAnoKs69kIbsZ74qZ+SooBsiyLEUiGhuj2PxIH/NV4ULYCuo1Awn0NKAYdr/oM9YR9f1Z9HT/aila1ClhVk7SjN1qpT7EyKpYVhfLY4f9rnZkWJjbagSk9keq9RFkkgOcNuqOVFoxd8GsmWsrfwO67F5xCp780+2N5cFSdv0A04xL+e+zp//9xZHOiMZ91mCK9dIs8m8d7Fj1DsMCajXHKIVSURVha1UznJMHiTU0cUdFaUCLQF4doFb/KjbWexqnAPCc2KJK5GHXFPG+08rvULnOjLfRynRSSSnD6hzGkRqfFbhs/FmxanOyPPr27iD3srSWo6n137An8+dhavNhh5Gh1ydNr6BZBnHeWDAdyWIOeXv8BZ73ptVEE0hUR/Il2Ee6JlKS55AbeveoaxIuuLHa18emOE218ZPT2BKBj5JjUd+qIKzfHZJ3SKXidPeb0MqDo3DQqdzSrMz7dS5BIYqc3+V4PhHK/2ZmYbtUgp0bfY0c31C/uo8y/k849XYLeIDMRU+pIqui5Q6opxUeULuC1BhAt0fr1nNdubLVTmifz9phcpcaaeNdsTiwirLgrtABY8VqMPIUXnUIGPhaHBtlYZTKETAEEQqK6uprGxkWjU+G3quo6izMxYwsRkKnE4HFRXVyNMYeJrU+g0MTExmSUkAhMXaiaD1SuhtR8HPzgKRRJvfnN4nZ4MQXIC1qMJ0r300nEVFGrUQRuRkO64ZKPLFDmnhT+2wj9Wtht5CgUHH357AbUukX+qq8Ml9PB6wAbEeWvAwhd3G47DG8pFvncoxka/jW09Uf62qp+97jpcspWvajfzXHv+8P4fOM8Qq4scbfzNphPoj01xVXBRQsufh9C+b+y2JxFwlEEQnHKEG5aGufMtB/2qgmL1InceRgllFgMSJAldVbCJbxMTlsIo+T/Hg2STEfUO1KaHh5eptjyk5DGQZP4u75/5vvLv/LL0czTG3TwRKARAc0LSV8Pzviu5SoySPHAHj1T+2yn1ZSQOWWG+vwtwc15NlAPdDl44Pr0DqAqvZcbdblWe7nG3nec9zMfXReiK2GgbEImd5NzKs8v806Z7MnITnlP2Arcsr+PfOkcPyfrgqiT7umTybR1pyy+oPEyRsw+XbIauny6WFoZYUdTGKw3zWVuwncsWnDcsRt+0XOT3e1ICULnXQkOO8/iCml5eOJ7dseKwiCwvsfBG8+iC+KmwttzCdy5+gpv+eAU3Lovx7nmPpK0/r+J1avzz2ViRZEX+WwQTHr7NWs6tkahxZ88ZPFWMJ6enQ45kOC9zoYv5w07OITREgooNBTfjycD5rvlvcvsroxfb89plPrg6RjBu4Vdvwev9s0+Ii3gc/NOxIIKgc9PgG29KaNy4LITXGufJY4XDbUOK8T1cM+/ljP34bYb46bZJLMzbhySqLPfv5IF5/0BvVOCtFkPkFAR43+K/DFevv6jyGdojfpYW5tPQ72Jd0Wtp+z0SnIcoaCy3gyYWM89zGIt0GUlV50ASFg62U62ymap4BKIoUlNTQzgcJhgMDrs7TUzmApIk4XA48Hg8uFyuKRU5wRQ6TUxMTGYN8d4ZGMSKArI1ihrpQCiSsOhHGPlIrkW7puchUrKAmuRnRYthvGYHQUCwe9DjYU6IlvFvZzIhHmoN841FVuJCDbfX1/J4+wAWQcBvKeXGMg8vdBkPzd85EhmxjUZnTOP+piFR3IrV46B50fsIyiV8bEEql+FC3zFiQi12vYGb6/7E/rLNFHYdheJF0Hk41RFJBnXiQlq8eguqZMPJxIXOXtEPgN0S5/oF23mj9WJEQSLZ4835gCRaRLQEJI/fDd5vTfiYJ2P3aeidT6H1DX4WspWk1YsEqGWreSpQyN8W/DsvdfnJk1MDGFWQ6PIs4Ns9K7m6YCvoMf4cKMl+kBFYJYHEOFyTdlnBPSgorCttpc7v5IXj+WNsNXmuW2YhnGBUt9tkkURh2HG3tNjG0Z7EsOOu0DGxA3529QNsbT+L9tBSnjqSYEuNja0NcW5ZJfGuBUcocmTP43rlvO281HgVWxsVYoqWVR//q2Uvccdbl+A8Scg5u2wrkqBOuLiLydRx68o/cTxYx4qSxUiiyj9ufml43T9seoIH9l6OphvuvgqvQEOO02pL+X5kcRPKSVENFklgbbmF6U7hec2iTpb6d/Praz2sK3w9Y325s5GL5sX4m7VG7sql/r18bP1aziqvx2+fmUKFU0WSwpzrIloJVo4Co99zVhe8Qbn3AloH0vPz2mURQYBoUqPYJfG+Ja/SHirmV28tpTOuQrkHeoKIDivaLHAg9svGHU3XBUS7BS2WJCLpfHzRS9jlKK803YTbJnF+rcTjhxKsLLVR6z2SsZ98e4AlRTZK3DAyXeZVde281lLMgU4RXYdNVRbmeQ+nbbvE38B5Fdv54VvXp+9UcLOtu44qVx/4IazV4JFaWFhgZX9nnKf6EmypLgbAqWmMsw7VOwZBEHC73bjd05BXx8RkDmNm9DUxMTGZBei6Tt/eprEbniJWjxUBQyyxuGT0UHrYmqBNj2NLqVyJ4PTzlD7+205csrJ93XsQvMW0mHP400ZU1Xm8u4gfNdTyncOGYzOp63zz4ABfPWDj4OAArzmaOjceag3Tl1RJ6jpJXac+uQpfvsZXI1fwjYu38r0LfjD8r8ZzlI/sqiAuVGGRknyNG0Gy8OPCzxri5iBa8dKMvgnWsYc097muQxEnVx13D9UAVLrqWZ6/k/cubeKTaw6QlHK7Tm1eFdlpQe8/fsqzzxa3FWngUZSGx4eXRavPJWYxigx0ewwfy1OBQqKaRHsi9T41RPZL82lN2EjGm9G85YTUsXNzXb5wfHPcdlnBZY1wcZ2Nq2qe4vKa6c2t+p/n30+df3qcbIsLU5/bx9e2cW6N8Xp+vpX1JzmLxiLf3sk1tY/w0VWGsP7Xq49R47fy00u/y7trH865XZmzkc9veIt5fgsuq5RRu8thEVni382G8o6MHIduS3DcLjaT6aHQ0U6Jo4NrFxv5V9cXp86bBXn7KXAaBaeWFdtwyNkFaYsksLrgLWQx87qxpdrKpfN68dqmd0avzBUAYFPxqznDv8+tbKB60L3ps/XwvQt+wIbiPdPar+lA0XPnetsfXEVCXJhz/RCCoHPz8vTfnkUSuHkFfHiN8fldv3SAYnsbRc6UOzzgstNYU0pzsX+SvZ9aRk6j9wz2yZ+nsMi3l2r3Mc6qCPC5TRG+cvbT2GWR6xZnV+rzbT18+ZwjbKwYQBFrGJISVhYd5fzqFm5eoXPTcrhsfmZRyzJXC5WuE2wuH/msa0URSmiOeDkaNITpnf2bUMQ65ucbv4XXA3GuPBLmyiNhOiXTo2ViYjI+TKHTxMTE5DSjazqh+i4SfdMXMj6ExZka2Mh2Da1v4i64iSL4K+nKryZcuZLABAxJP/DP5ym7j6SvgkbTyDStdCXgd02Z+dd2BhKciIxdafrrhx20usrIKy1kdf6OtHWaUMSznRHuaJyHLjhxOy2E5l3MbwcWITh8w+06/Cszd+zwIVgdox67VS6g31poiKbCBB5rBIE21UWRy0KeNYAsKlxa8wpea5iEmFvolGnF4h48zinq7zZvEqX1WWNXg6Luy67ziMhGiHObnNuhqSKxRzHWx9QB+r114zrme5YcHbON0yKSbw9RaO/mexc9iFMO47VMg9VyEJ9DxibGWV/aMuX79tgkVpYoCIJRsGlJfhPvWWoUebp1faaoOF4uq3qKijwr+bYg1ywaO3eh19pPibOTCq+O0yJiO6l68OJCC6KgsaVs96T6YzL9FDtauWHBX7Kuqyswvs+NFYkMEXuIVaVW7HIUhyXzOrWlqp/r6l6hyDl1k41Z9NRx5bbcUpop/pe5pjav8kyQ1HPfO/7Svpzu5IJRtk59eDcv3oY04sOs8Fr48IrX+MSq51habON9i17AZQnhkGPD3/0TCZGbjgzQPksmacMjJpl/M/ioGRJSEQLvWfgXPrb8EcqcrXhsEtfWbR1cM9R/Y/t8ew/rinZz08JXiesF6KIhTi727eey6pe5dc0LfHDZm5xXsTejD/mDRdrOL986vEwX3IS1CgC6Yi4Q3LzdV8ue0CXU+TOvq+PPqGxiYvJOxxQ6TUxMTE4jmqLS9doRQo3jzxN3Ksj6cQQMd4IkB9FjmbPuU82uxRcRsLr4aMUmJpI56HENtuoSDUV1dJhC57RyYECjPpwpaLbHFJLjyEH5YEuIJlsx3zjvSWxyuivv5y3LUHX4xoEB6hNLuf3SP/Cc4zz++7JGsKQGov2ezMrF0cKlbFv8Nwheo9K1kF+b0ebGTR38P+W96IUL4aT1gie3UNi38Fp6FCvVvtSjULmzEbclTELKPUDWI4cQpaHPavKDWNltRaQLfTAPaKRyMxTWcWf/EmKCA4oXUa8X5dx+P5UcjRuCaFSy8039uuF1dQXZi2dU5lm5vPqZrI4yMNxoAB9co/GeBX9kvvcQtd4jiIKG1xrIKeCcKjcvT1Jg72BFwdgi7ET53KYwhc4EH1krcONymTJnG1vK3qKuwMYNC56Z9H5lUeEzG7opdXWwqGB8w+8l/t1U5SU4r0bHdlKMcmWeIbgu9ZtC52zFIUeodJ3Iuu5DKxoBWFHUk/OqUOs37oA3LldYXJT+Gy10RKjLO0CxK5Z129VloxfEycYHVotU5aW73dcUje3MLHRkFiR0zsH8sN2JipzrGsN5NEcrc66PCmuG/67zHuR7V3ZilYxvtswjsLF4Kwvz9rHtQ/9NXd4BnHIIpxxmc5WNeflWvtsQQtcFTow9TzgjtA6m6vA5ZO5uDSPaLLgdqXt1jecoJc5m8u2dnFurs8i3F13IRxWrQPDwZvhTJMVFOGyFOOUwS/27CSrFqBj3oDxrgFJnM8v9O6nxnqDaXQ+Cj5FSg1UyjjcyvUdL8jy+tOszw69VIZ+uuJPjoTKunr8z4310mHV2TExMxokpdJqYmJicRuLdQbp3HCewb2bcEmrLwwhJ4yFTQEdXsw+qppJddh9/dBWzbxJFWxp0nZfdxdPQK5ORvNF36udBlbeXRb5MF0dDJPW9/+0eKy5LkHrXPG6c/zCClAq1dvszw88b8lZwW8cWYvlGiGF/wbK09YK3lEJvLwVeC13+lcS81Wnrk77a7J0VJX4gXM2BmIdyb7qjz2sLEhdyiwpaYC/CoCvqVIQ/ixOINaT6KjnYU3YVeyIu3hbmodh8HEzmzon5u/75NCcN52m9bT6P96VE0Y0V2UeDF81TcMohVpVmD/U/tyaGKMAlNYcz1omChts6dmj8ZHBbjf7WeQ/kFGEng8sqcW7lITaVN/HJ1S/wdxufo9p9nApXAx9a1TtcTGay3LLocRxydLhAx3iozQtyy9I92OT091nsmiWKiMmkqPMZbuRF+U05rwv5duM7fu/iNzinOn1CyGU13Gs2KfO363fIbKyYeFqHRfn9fOviVHqaNWW2nELtmciBgdFd7sdC2YVQTayiMbZi+LVDjnBZ9cv837X1CAKUuLO7wF1yPx9c0cjSotQ973B0dhSGOTJYCb7MY1zDdaeVSk/269anVhu5W6PMp09dxDM9n+HeE5vZE7qQ9uQK3HIAgM54KVqWkk5eawCvtQ9NcKMLeaP26y8dZ6W9VnQv6EYu0bNKXmVlafq9uC1pznqbmJiMD1PoNDExMTmNxHtDRNsDRFqmNyDHU5EAUUBt34YeNEQMQetBV6YoSX5hLYIv05FHyUK+j5V7tcnfbr7HxJ0sJhPjROTUbRJl+b2IgsYz/eex6pVNw/9+UZ9yAr3YHcVudbJiUQyrFEccDEsX3EVI+RaS1WejlRkh7IFF1/ITy5X81XqRvrw67lr+HT6i3Yogp86HWP5Cqt315Ds03rIsI2JNz4cWsRdCwXzjGPm1IBuDMsHm5oGeMrpFHz+77Cdp29R5D5CU7YPtXOxa+QX0shXDIfRK2ytI8UFX1CkoncLxL5HY9wPjb6ePhOTgI+2XAvC1juVE7IW8FMpdTONA1MWRqBHu/kRicdq6L643nIrnz0v/7awr6wTg3Yt7uXmFzBULU4PULTU2/uPsn7O8xMY5Zdnzca4qlTOciBsrbRS5LGO93VG5YaExsLbJcYpcMs4sob2TYWWpTKG9h+vmPcRy/06W+3dikRJYpTifX33nKe+/0NHOfO8hrq55fOzGg9Tk9XBhxfPYZQGfQ8ZllbjrhhN885yfn3J/TE4fxc5OLJLAqoKdWKV0MWZZsY2KPCvLi4zIjbNKXqXKm0pVc9F8G9Vu47dpkzOvxR9fH8EhT0ww21BpI98e4d3z/kxFnpVlxTY2Vk5fNfdZhWBcv3f1VY3abH+O4m0BdSHPd65OW+aUwlw37yE+ulYgz5b9fumz9fGBxfdT7Eqt3xM6/RMYgizSaVU48bnf8Nh7fgVAwO2kzJU9HcnZpUa19bBawNf3fpg/NK5lIGnj54cvoC1WhsNiiPJPta3JGv7vsfQjiwoqLo7GriIpLgLBm6VjDl7pmpe2KKSV0hV3oeiGIPu5jfVp67eHTn9hJxMTk7mBKXSamJiYnEYSgekvMCG7LAh9TyHZjCTuWv8h4//O56bG0SmI1Nduoq8yM8eiLkqc6mP+7PBDmIxFT9KCLnj56v4EjZHk8L9soe8bi43csJrDcHuES1bR4/BwzLuGxvwNADTYallUGOPLG++lJW8BP++ZR22xDbxlw/tp9y3FZ+tBFHSeilShnRQ0GpOcIBoDpoS7lFjV2cYKhyGISkJmSKYoaGiWwRydrkJ+GV7D84XXgdsYFAu6jhYyCnVMNnJdtEhGMaPB4l9Kfh1x0U58MI9aUhd53HY+jfHcuUJHsjOS7popsHdhkQS+cf5zacvne42Q1Asrd5PvSFA4Ih/gyuIodjnKZ9Y34LH0Zz3ORbV9GW/57zfvocJ7ao+TNZ5UyLpNFvA5pAxBdTLkO3RKnNmroEvi1F1ZxpP3cIjl+YexSAlsskB1nsRtZ4W5uPIvZrGhOY4kKFwwz8j367Gmn1vlXp1/Of8EKwuODS9zWVKCza3r9rC66E0A7FLmeXlF7U5sWZaPxvtXtFKT1wHAWZUaF9RGme8LTGgfcxVN8IPgoDE8upuwI+YGMidp4pqT3nh6ITxZNL6vL6x7FIcl93chCholrlRuycPhBMIUXMtOhUiJH5dLxWfrJd/eiSjAQwmBYmfPqNupukhUTX0+GiK6btwBdKGAI8FC4lrue1RS91AfruRPbR9CFQoy1itC5uT41p7NqLpIUjPu2++pe5DaEdEenTpQmEU0NTExMTkJU+g0MTGZEnRdR1fHV9RB13R6324Yu+E7gERg+gsQ2fMUkicexu4fFFV6jfDiZNMzCJMQOg+c9UEE/4jcVgXVNNrz2JdnLIssOh8KawFQLaMXkjE5c+iMS9zfuZZDwdEdF79tW8SSwTyEdxZ+jF8t+w77vRvwe/p50b0R0W5HsHtQCkr40obfkW/vZJtzGbedm+Rr5z6J4iwgWb2Z4MKreMBxEQCfWvM6e9UyrIPhwHqJUcG9Ty4g7jLyeyqykyPuVQh2L0fLDefkhhwp2nSr1eiDo4AXB/z8Q8eGtLB5tcUoSCJOcgAr2UeEgEsyfe5aXhbTJwq+3bFk3Ps7GE0Nym2yiN/WxRc2x1lVsIN15SlXZ43HuO6uLnyDT6x6jkqvMSC/dIGVz6x+AoCbFzyY8zgfXvZomonVJotcXPEsH1kz+SJCF9fZyLMGhl/bZYFrl8SpyjMG2JIo4LVPLmS+0hvHZ52Z/MfjZb7XCCV2W+H6Jb387dpf4bEMnOZenYEIM3vvKXG08l8XPAqAx5YuhH1u3U7eu+ABVhakcg5eXr2VYreF5SU2Lqt8CtfghEuZOxXdsbrMxh9uPsi6wu04LRObMlzka2FLyYsArCru54Lqo9xQ9+yk3ttsRhMrQBghSgp2gtpCEkLNuLZXxTJ2hD/NqwOfB2Q0sZLeRCE9sXSh0ykbz2q13iPctvbPo+6z1J2aPNN1AcE5vgmr6UAvyuMfAzpl7hH5OP1Wft4cptAxQugUMvvYlSjLWBZVbQTZQkg3ogj+3HIuT/b8I2AFwZPWNqG7eKxlBc+2LeS+lo8T4EJ0cdBFK3iJapmO2idbjPteIGF8/rKo8OHVKedpmUfgPouDnupUSiPRaUWwTE9aFRMTk7mLKXSamJhMCVpSRYmMHRalJRWO/+4V2l/cPwO9mv3Ee6df6BRDz0MyjBQxwlEF1RCiBH1yjqbHnUVodvfwa93ioFeysMfiQqtYztXlmxgoNsKZuvKrc+3G5AyjOSbyjYNju9K+fTiCOFjV/FWlhu90LqLFW8vCvMP4CyxUF0WJla6hv7AQn80YiK0s6eZjy//EUv9uZItIt2seB+zLsOcb+9lc8jLLS0XcNgUK67i/6KMAvK7X0e00BryqaCGBhWjZWu5PrgegzJ1dPLDKEC9eQdzuR0Ukqkk8artgeL0eM/olSJO0dI5QCwWHnyZLJff1pw/M4/r4H9H0ET7Lap8FWVS4Yt4uAP56jVEkRRIFKlyG0CkKGgvz9nFhleGsvXZhM7XeIwBYpNxC9ck5LVeWWrBICRb5Jp9j+Na16cVR7DK8f8k21pYZ16eqPAtLi+RJ7fvcynoEYXbldBuq8l7s0in3BDKKd5lMDSG9klMpFjZRHHKEBXnGc43HmrquLC22cVHlM4iCNlyMBQzB7EtbOllSpKa5iy+q+Asem0SN38rvr7uHy6qeRBJV/I7MCtSjUeVpHN5vpaeXC8pfoNQ59yqnj0V97DzizB9+fSx+Pa3xWppia8a1/Yn4Fn559DwebFpHP5vZFbqat/oWEVRsIKSec4Z+twAVY+Q5LXGmh4TrU5SKYzK8aHfwam8cjzV1Xb9lxQBxDXzWIVHdiipk5kJ/vHV9xrJjoVKe7LiChqghdO4LFPNg02rCwmqSJzk0Fd0y7Ah9saOOfQOrOBI1Jhmj1NEer83Yf3IwZP1gfyFDbtuF/lRxrFqfwvaBJDfXRxD8LgD2FuUjyKbQaWJiko4pdJqYmEwJyWB0XI7Oo3e9RGB/C0rEzLMDkOifXqFTtMokDhs5mZJHf3vqOyyaxxuCBAggWRDsHjTZwvOSgydEC3+16Eq60Gl1F6NVrOCe/Hlj7tLkzODXDTGao2OH8PYlVaKUEBNq+ciq4/z9uXH0Ijd+WxcXLDrACU8dv3LfjDMvta+ra5/Gb+sCQLZZOeZbQdxXzHsWvTHcZktVH3i97Cq7hj9EF3N4xaf4c2Qe7VIxStVZKKIdDZEj7lX8qa8Ur11iVVFn1j4etlTR7FlOxOIbXvbDrkWE6y5PaydOQn8TpPRHr77ys7k7uno43+apUjEY1bcq3wiFvW7+E1glgYUF1gwRc13h69hlkXPKM6vb5kIUBCRRwCoJrCoZqqI7OddkXYGNSyqfTlu2pTrKqoIdrCk1xOS6fFhcmPt+cU6NLWcBo7NL38i6fDZQ4k7iMkXOaaMjmWeEMJ8G8mzG9+q0iFy5IHe18vctepgLqtInDxxyhNvOCvHHGx+lZIQwWWBP7SfPPvqFpyrPmlZ06IqaZ8/Y1Agvda2hT6khKS4BIY//PXwlr3Uv47HWzePa/pdHL0XVRYJJG/c3Xc99Jzazo8ew+ieEyU3Ulru60l5r0ukT4b7fbHzvebZU9M4Hlz6JKECetRdd8KOIlegn5UJXxIUcC2YWwzvQX8yxYCH3NZyTtvxgaD1hrcxw1w66Q6OqO63NoYEK7ms4H0VcyMs9l/Fc57qc/U7qEqpofA/rS97m78+N8/fnxllW2M+AojGg6HxNd3C8ppSvNEaM2UkTExOTEZhCp4mJyZSQ7I+ga2M7ZyKtxky3EjWFTgAtMb0ZKEWrOOzgJJ498fxE2F13LnsG9WytZCFtSy4maffwnAZHNdg1eAocsudxoHI1v9LMWfZ3CmOFrA8RVXW6kn7+9Ug171v4IF/d9BNWlRlOwwpXEzvFeWyTF7OuKOX089lS4ZxdBcvZ7lmOr0JiXdFrw8vXlxxjj3MFb0iLuXVLLze0X0NtmZudaiV3ed9Lu7UMFYFuvEQ0ic+fFWRjaWaVeICtyjz2idXExVT4a0iVeHQwVH4IYRJPUfZ8C9JgyjEhv4a7pEt5KpC76NBEcVuNH+iQU9BrDXD5QplrFmdW2LXJcdZXWKjLOzDu/TstIhVeC2vKrRQ6jWMs8u2lxp+9knsurJLAVQsjGfktr1+4A0HQh3MYrisLkmfLHbb7ibVHyMsS2i4KUGhvz7LF7KDaG+b8ipdOdzfOWI5HHLwVXoImZIo1002FJwDAuxaLlLhyC51ea4AVhccyll+34NVhd+gQPlsqvcH7V+W+1tb6rTz63j+m/a5y5dw9EwgknHTEy3iw7QN0qmcTUmxs66phb45CQyfTHXcN/72jp4JAwjHsQny0/eZJ9anGfTzttX4KRetOBdEq0xIznjErPKl7aKXrBIUuw/nfrpxDU3w92km5So9GswvFA0kbYcVKZ8yVtnx/fzUHgitpVy6gUzWiH55tT99Hc8RHc8TLa4GreaBxLW/1ZK96P0REM0Lny52NfHXTT/jqpp8w399FV8K4x/25I8p7Dwdpiql05rlH25WJick7EFPoNDExmRISA9ExhU5d09EU46FLT6poyVOv9DzXGW9e0/FwchitxWM9laLQWQ4g8pDTEGT6CmpoK1lMyOLgtxWZ4U1vyXaabJ6M5SYmAHc1efj58SD6YGjgqoK3AMi3dbHA386HVjYzz3s467b3SBeyoCCI4Ek/uVcXvsVBuZK8Gi9X17zAubU2bl56lEfCNdzdW8NWfRGNegENWj4WSeBDSx+nyl1/0t6NfTotGn+JVHJUSnf09Ggp4VNw+iYVGStZEtgsjSAI9BWu4dH+zDxop0KBI/O6+m/nPM66ksas7W9dd2hC+y/1iGypVllbGsNrTTkSr12cO7RWGuG4lETDEZpnl7m4OvPYS/1GOL00GCq6tqSJPFtK2PHaJeblp65tKwsO4nNkCp0rS22zLmx9JO9d/FxablKTqWXPgMgTHRZ2RxbP+LGrPUYBrJuW7MdnHz3kfJEvM41P9UlCGUC+PQAYEwTXLXib+fmZEws1fiuPvvf31HgyxdO5wUQuqAJxYQVhxcpjret5rbOGrT2bprQ3T7YuISycNeHt/Pbu4QI6NlnktF2FHKlzpNqT7hwu84gguHm+azPPtJ+FqtsACVU0onCebN2Yc7e98cz8t2/3lfNk60r+0HQFz3WehyLWsa07PR1Lx2DUwjNty8fV/T6lNGNZob0P0SpS6kkJs4IAf0ka507SzNVpYmIyiCl0mpiYTAlKOA6jCJ1qLEG4qQddSQl7Zvg6aFModDqLRexFRviRaJVxxH+DkCOkczJoFct5cTB/0keLVvCIr5pjDh/fz1K1dKcucUSyZSw3MQH47hHDnaQPnjtDgo9FSnBl9eN8dOk9ObcVvQ7+eul9zM8/kbY8zxpgdUUTayqaKHE28+iN/82NdQ8iOtx0Ja08Jy7nx8HVPKavIM8uUepsxm05yeU4GHLnkFWe7i/ks23pjpQj8VS110Pz34cgTnwIKwhhEju+iJBXQZOtmtbE1P5O6vyZhW0W5u3j6ppHs7a/dt5DE9r/+1d08tm1L+K1JbBJKVG13BPCnqU4k00WuXmFOCxMfngNnF9r5a9Wh9lc+mpG+yH3mTQoUhY5eqnNSxXNuLRO4IeX76AqzxjEF9rbWVOW7oyXRYG73pW7qNJsoNo9V8WoucHrvQrfPTLA450TcxpPBdXuRpYW27i86klqBkXPXGRcgyBrmPl872FWldr49KYkhY5u/unc45x8e/+vi/emhazPNVSxNmOZnsuRK9i4bedXaAzncSLkI6xaaQhnVvY+Vbb1XjB2oyycW6Nw43KZz2yMo0/hc9hEiLqN+1mx28Jy/660dZfODxJhKS+017Gjp4LuZC0d2uXc1fhpIsIG9vcX5dzvUB7NkQwkbbRFPewJlFAfyqchnimUJnUjvLwtOr5J8Oc6MoXr1YVvce3SGPff8MJwypKrFln4dWcMMc/J8+LM/95NTExmJ6bQeYoIgjCufxdeeOGY+3riiSe44YYbqKysxGazUVlZyQ033MATTzwx/W/ExOQUUaMJdC23aDdwtIN4T/oDvSl0Tq2jUxKDWPp/C6KAo0AnceLPSLap8xLsq1xDu27sr03XeRwLf5Czhwsd03Vew8yZZDI6OhN3X7x38VbscjRrYY2VhXtZUZAejj40xvQ54JrFCpur4hS5sh9XxwoIuCwpAW+kK/qNcN7w379JbECQJv77FTBckHFfLQf08jFaTxyrNL3pMK6o3Ua1+zgeawLLiGNZRBWXNfOxstAlc1ZFB5urDEH3E6tf4DPrd3Pz4lewibGM9kMMFVKxyzG8tpTws6QgyJbSl9hSrSIK4LYMcF5Vupj0gdUMF1cyeSci8Uq34aR8pXvmnzOKHS38+/l7EAWNxb6JOaZz4ZRDfO38t/jUqkdxymG2lO2gwJmaZNxSY+Oqmsen5FinByt96oKTlgkkhUxXn0HmBKuiTf2w9snWZVmPNRaby9v48SX/y/KijrRicTNJs2yIftcvTaQVvAK4edErJPVUpfUn2s7h/sYraI16ebjt+lM6bk/MyZu9y05pHwDbumpIiumObKcc4tKag6wufIMvnRtFFOCLG7ciiAIPurzsCk/v/c/ExGTuYI5CZwGapvGpT32KX/7yl2nLW1paaGlp4aGHHuITn/gEP/vZzxBFU5s2mZ2o0STJUIzMgBaDgSNtWDzpa4PHO3CW+aa9b7OVZCiGlpjC8H21G6X+QVz5B5DEv0PTdSxyM7mz202M1+2pwg4RDDHz2Cg66q7ZGzVqMkvQx5xvtcBJZ/CqAqPITra8cydXBQdYVqxysAscss6igj5sksL3LkgvzNXPUiQUdg4UcyQs47IqlHudqBp8+dw27t1bwf5Ohb4ECFYHIPCn3hK+5Zt4MTEhZIRmXxT7WwKhiQ+gh6grsHGsJ7OYjVOeXmGnznsQgM+vSX9msUgqVXkSPZH0a5rLIvDXS39LUv0IvdFSlvl2sdw/9sXh8uoXuGLhX1PnPYxLDgPGgPezq+9BFhXOr2rhhxf+CVlUWFZwAkg5kC6qOXEqb9FkjnPjrrMIq4bQubUnRpe2Er/UhUQUHRFRP/V81aMhCDpXVBuiY749e8GzyXBR5TNpr//5/Db+9olCrJLAdy+e26aIY4kbQYDCEZfEmLCaQ6ENrHZmhvfrWcTHsDL1br6BpI0Q63HzWtpyXSxF0IZyAGfepz605F4AluUfRRfqprRPos+JFhi7uFSTCu9fJfLt876XsW6Jfzdt6jXDr3eMyJfZGPadUv+Cio1n2xae0j6GeLX3XVw4crJAsLO8wLiHfnnDT/nyBmPx0uJz+cbxIJ8unfmcvCYmJrMTUzWbIj7zmc+wZ8+enP9+9atf5dz2K1/5yrDIuXbtWu699162b9/Ovffey9q1awH4xS9+wVe/+tUZeS8mJpNBicaJduROeD9wtIN4X7oo0PNW/Tu6KFG0rW9qhc5YCwBq30HQjYdgvfPp0baYEEFzosVkihnL6aILpx7WXe01BA+LpCOiYxEzHR/b+wt5pqeM+ohMbwLc1jjrymFpscjFla/zqXXHKPUMzg1LNjR/rfG3MLHrl2SXSRy+E8HuIaBMXuR0WES2VGWfwnBbc7skpxOLoLKqNPPzGHLEvnveX/jUurZx5810SCE+smo/TjmEXTa+Q6sk4LYYxV3WFe8fLrhU6kx3dOZZcxeAMTnz6U+kO63vbMpHxUq7UksC3+np1DRQ5jIKzHz1ggGW+nef5t5Mnqiwjtv3v5uuWHro+dOd1/DzIxeiiVWZGwmZXp3AFKcBGeL1vvNOOraPiD4i/6SQXphnJAvzDkwql/NotOSNL/Q7oMF7l+zJub43OXVF8KaL+06sRxusvg6gCz7clsz0LFfUTd2EgomJyZmBOWqdIoqLi1mxYkXOf/Pmzcu63eHDh/nOd74DwIYNG3j11Ve55ZZb2LhxI7fccguvvPIKGzYY01W33347R48enbH3ZGIyEbSEQrwn++BSCcdJ9IVJ9qfPQEfbA8RGEUfnEpMRbMNNvWM3mgB60CjeIug6RIz8b8nGqQtlOziJMGMTk9F4I5i6NwbIDHWL6qV0aStBGHSDZxlQvh7eMlzUKBvVef18ZpOGz65ww4JnuLr2LxltXuwW+Ps9Yb5zJEpXQuc9C55iQ1mAWl+CGs9Rbpz/JzZWGJMSqr+WmMsIpxTU8Vf1tritOKI/AiUK9rxR28ojcrqdU2MM3jdV2VhZavx9VpUFhyV7iF65u2vcfZpKrFKS5YW9FLnSBdzPbjRSDJS5mvjI0t+Ne392OcqVg644hxTF75B55oOvDK9f7EsN4MsczcOCapnHwsaS7ZN9GyZzEEUYTAEh2NGEQk5E0icBvn14gKRu40v73XxydwVfOHQeijC1RcBOB35bP6tKbXxu1a9Pd1dykhCN63qjcpPx/YgjK20bBXC+e/iTaIh0x3081/cl7m77Jne3fotHW5aT1CUebPs4xpA1JWRq2DmZkDI9QuczbUuJCKmii4pQwIHQWjTROO/iVPFC4O/QxeKMba1SHItNR8hP3aNEa5aASkFAKBhf5fBvdCYRbRZEr3FfFGQRClPip2i3IBS4aU9qnFf+/EnHSX1u3fHZ737UEDkcvWj4dZJ8nHLmWOPd85/HIglcOv/MGFOYmJicOqbQeZr5wQ9+gKIYg6c77rgDhyM9tNfpdHLHHXcAoCgK3//+92e8jyYm40HXQYlkhlHCYKEiQImd5EDSIdadmYh/LhJpmbhoGWkPTGkf1M4dw39rvUZ4r6BPXfy4+fhoMtW0xFLi+fFopvjXkfTx0Z0eYhgDyKBekdHmkXaZOLmLUKwpOsJ7F7/OAv8AxY5WCuwdGW0GFJ2ehEZjJElnTKPI0cbi/BacFgVB0JFElfcsNnJ/vlZwBfHB3LT6sV8gjrPKq9Wjora+bLwQRn/88tqNfdplkTuvuof1FTa+ccEr/Ot5b+O2SWwoDyLmcEaWOsYvvk4lVinJAl87F89Pd9OtKz4w/LcsTszBLg5WXrdJUc6uFlhd+MbwupHOUIuUoHhQYF1WLGRNa2BypiJyX4cRJhvWK3kusJSekxydqg4vB8p4tC3CI21h7moIkcyZaGfuIAo6/3bezoz8i7MFTSzn1w0fA+DlrrW0KJezvf/6EeuLCbJpOFQ6ocm81LmQlzvm83JnahLs6bbFNCnXoY4QElXG52qcCgIJGz89/hEGOMfop+6nOVLMmwPXAfDmwIVs615AffyirNsftssc9Bj3DEES0fKcGW0SZX6OuscWOkWXjdcDcdpK8znoN+6Zar6Hh6ypScDmknxedro5mlQzrrnqiJynXTEvc4GmcGpSIqxmiskAla4T/NUanfMqD85Ut0xMTGY5ptB5GtF1nYcffhiAJUuWsHnz5qztNm/ezOLFRm6qhx9+GH0KhQsTk6lEzeJqjPeGUKLx3Ot7zhShc+I5v2JdmeE3k0V2WdFj3cOvlc43Rmk9cQTZRrt2ehLqm5y5/LlN4+n+80gKFRwJWVGFkuF1CaGaz+y28GpPlK5kAfXJDfzwRBknP7ps700S0nIPelfm72RVwQ6unrctZ5veEcLIm4EEILGx+C3eXff28PILyp/nfSslvtW7jgabMQjXlX7crpfxVGQPI5fsKeeOJAaAwRyfYm5x1G2TKHAa68+qslDibObea+9mY9FWtpS9ws+vOcTNi15GEnQ8NomlxSkX08pSW9YiTTPBqoIDnFW6lYX5qWu6LApUTUEVaIcU5vMbXhu1zcJC47xYVHB6QvdNTg/1yXX834k4IPFyoIzP7TK+f6dswW9NCUq37UqPKAmrucON5wqLffu5pGrq0tNMNfWx89nRU4EulrCnr5yfHb2Ge09sYm/0o+yJfgwFD893XzLcPqpaCCQynZoA3z5wIyfi56ALRq7wxtiqGXkPYLgKAwk7/7LnVhSxjpjmYWvXPB5s3MDe6Ed5qGktzWEvz7RvBMHJycWLft2n8dPuBH3VxeB18LbTOezGHOJl0cruLLcR0ZGed/R4ofH+/60jwYMDKqLLRofDzg+aQoSqCkEQ+GGvwjebwnTrqfuaLhayN/pRXuq9afgz7JgjQufW7jr2Rj/K3uhHaY/X5Gz3r5vvxmOdeN5sExOTMxNT6DyN1NfX09pqFE644IILRm07tL6lpYUTJ05Md9dMTCbFyeHbuqZz9DcvEe81wkzUkx2dnDmOznBzz4S30ZWpc2FYTjICCOrU5j7tWHYZXZiTLCZTyyNtYd77eoiX+ufRFod+LZUz7ECknNd6DNHi7aCbT+yU+c7hAXRh5ODMwpuBGKqe+3HGIhkVZxfkZRa0MBDY1pMSxxojSXTBSaGjnbNLX0rbz7sXHqY+7mC7OjjYku0k990BXQ9lHtdrw5E/4jeuBgBIlqxCsfty9veqhQJVecZvbXGh0a9iRyuCoOOSQ1xd8yiLfXuQRJ2lxTKfWGfk5s13yvzd5iPD+SxnmlrvEdyWIAv8qVxpVy2W8dlOPUWHIOhsLnl51DbvW9YIwAJ/4JSPZzJ3+GObi7cDcQ4n1vFgK3TGDQfbIk8p5xetosppiDrdifT77c6gb6a7OuV4rYHT3YVRiWvGJMzx2EX0Jhy0Rz1EVSs/OnQFdxy6jO5kHY82Lx9u3xHzElWz5y6OqzJ/aDiPt0LvBcHHr49fkrXddBFTZaKqhee634OqG4JsT8LJjw5dQSDhIKlLdEQ99GpnkRTT05VFdJ2Xe+N8oDFKn8fJr7sT9OWlP7QFVJ1doXT3peiy0VycKgKplfh4/1HjmXlHf4KmmMrWAj/7VYGQovOHuESgqpDnumN0xTWWl6TO+Yg+jx8duoJ7T2ygTTkXgO743BD7WyJefnToCn506Apao0U52/lsE38ONzExOXMxhc4p4g9/+APLli3D6XTi8XhYuHAhH/nIR3j++edzbrN/f2rQtWTJklH3P3L9gQMHRmlpYnL6GApRH2LgaDuxzgHanjMqJKrxTKFzZF5PXdPQVS2jzVwg0tqHruto4xAvh97jqb5XQRZxlcm4ykVkefpmsbWKFfxn4eJp2/9UUO4wHthXef1YRnHLmcxOvntEZXe/xpFIHppQBIgcCKWcircfSfBmwLi+JEiFuCtCEaoOh8JewApkyX02Bprgzwx1JfsAMM9m/M62RosocVvQLYYrR4+dFC4uCjisOxCEBIiC8S9o5JQMOUrYmn/lcFOfQ0YSBYrdFiRR4JqFR6nJSyKJAjV5uV3fkqCzvCjBjXVPIQpw3RKViypenPD7n2rWFO5jy2Be0VuWzlwY4bXzn8Bllaj1ZqYmMJlr5B6eaIKRpkIRSlGEch5oMSYDPvqWxNYRExYl9kJ84gLOKkg5/0RBQBxM5vrbJp0prxLzjmDouzm5wnlmfkxdNz7fexsuzLqnu+qvSnvdEPKNeuTjoXyeaF3DXc1fpjM2syJdXDXuLQ82rmZ3/+qsbXridh5quZKIVpK2fCi7SVdc46vdKkfCCgdPKqYU1mD7QBxBSp37+wv9hBAQZBFBEvl8UCSpgTSYw/l4NMk3GiP8pNVwK/+hM8o/dqbE0pXFqUijkJqaRHy45UJAoDueGUI/2+mM+9DFEjRxZI5dEVPSMDExORnzqjBF7N+/nwMHDhCNRgmFQhw9epTf/OY3XHzxxdxwww3092fmi2puToWXVVZWZqwfSVVVquJgU1PThPvX3Nw86r+2traxd2JiMgaJQJhkyBhohBq6qL9vK8CwoxMt0xEY7wkOp2PoePlQzjyfsxktoZAIhNESCj1v1o/ZPni8E13VSAxM3nll9dlwlSiob96C9sb7ENTp+w3fv/BCnp7l+vMVXmMk8Ul7E4vdcyMcyyTF1p4YD7aE+Od9GnsidSSEch5vT00avB1IXRcUPeX46VSMfF03vx4hLpSRFNIHmOMhhj9jmZKl0AVAmdMQNLcH8/jE+gE0izFQ1MMtae0sLgvJt7+FQAJHgQV3mUry8N0A9Fvy+XTb2QCUeixcWgdry62cW6OzvNjK+WUv47cnWF5spcqT26EiiTqrSzrx27oo91r54vpHZoWjpdZ7hH8828gXPM878eeVyZJnDbCgQKbYdXqKMZlMHQkhMxfvEPujCwD4fsNiftW6kINBI3ph/0Cc5mhK5MmT/UTj5biGChUB1a585rkNwefh1jC6MHpRMJOTEHzoYjGaWE6vfu6IFSJvRT6S0TykGtfHxnD2z7k+lH7tzeXmHElj2MerXbXj7vJUMdQ3HYH7G9blaGPlte5quhLpYzqLmHr2fa0vTntc5f86Us9/glXmnvYIXXGN7oqUIFmvQBI4WFGMWuDhtT7jPnhWlSEyd8U12uMqJ6LGvbIzrrKjPxXNU+RMRUxFR6Rq2NlbDoJ7WLydS7zWVU1L4mx+Wv8lhlIE9LMla6FCExOTdzam0HmKOJ1ObrnlFv7v//6Pl19+mZ07d/L000/zla98hYICY9b5oYce4rrrriOZTHezBYOpG5B7jATULlfqAh4KZa9sPRpVVVWj/tu0adOE92likoEOofpOBo62c+TOF7KGqp+MllRJDkSJdQdpfW4vWnJ2JtUfjVhPEHRQQjE6XjmEnkXQHUnf3iZD/B2j3WjYXT0I7b9B0Ac/r+C+Se9rLI6IYw8+Tidei40FQj/5Vgf5Wj+r7WaI/VzlaDjJ0bCN3eFqHmvP7lLWENEFDwgutvcbonZc06mPlTCgZYqWoyPQmfRlLI3r2YXOSlf9cHXva+u2DhvC1FBLmjlMdgy9iGGVmxDa7hpeFx1R9XZjJdT5w1wyb4AKT5xPrmvEb+9hS8VR3Dao8eSewJAEnQU+I/3NRfMUajxHx367M4SAjl0W8c+w8LqwQKXA3j12Q5NZTWN8qGCKwMku7WMRGxEW8HxXgrsbck+MOkSjorSm+IednGt9Syix+yiyu5EFkRizv+r0bCImVJPET2tiEy93n4Mu+NAFH8eS7+WljhWABIJvuH1P/J0pJB8OpoeuZ6tXt2sgiThYlKizNH84quB7AXW4KntY0/l9QOFn3QnqRxSrvWrB+K5xXmsqL21MS88JqgoTvVfODqKqhe29q9nVV8be6IfQBR9/bH43OrP7OdXExGTmmXtTObOMlpYWfD5fxvLLLruM2267jauuuoqdO3fy4osv8pOf/ITPf/7zw21isVSIjdV6cghIOjZbKiQkGj09+bdMTMZD8Hgn0c7+CQmWSihG/6E2dEWdk0JnMmj8lgeOdxLvCRJq6MJe6MHiyV7VNdzSy8CxUwyv7HoMpfGp4Zd66MSp7W8UDo6S/3A28H1fCyuDb/AuKU5xzzHy8y7lHrKHlg0hIFDtdNMQOTNyxJ4p9Cc1Pv7W6EW6OpNeNm7L4wNVDr53JPX9vdLr4IoihYIJPNnogpc1f8m0Kyc0S9apYLscxS6LSKLAYt8eGiXj3ixoCqIsDV+/rOwmARA5gq5GUJpSBUNe0RYBUOK2sLwwyEXVe8i3B4irVlbk7wTg0qqn+NPh5Sz05U5Vs8DfRanTuI5cOu/4+N/0DOC3B/i7LWHKXDPn6ATIsytmxfU5jiqU8Gy3k9LyhUQ0BwOKlQJLBL9gpHu684RCnlzK1p4x0rWohsgWV9xcVLKC3kQ/9uQmKgULlV7YF/8tES2Ow4xeHzdJzYWOyIPNF7I3UMJjLT9JW9+tX8Q/7/o4P173VQAeblp5Orp52tnfX8bVBanXxa4kVy2y8sRhw21Z5rHQFkzystfLueEYN9dH8NgkzqsVefxQjP8skIkXevlRY5iIakzcvtRriPqSKPCp5b/lN29/kQInvNYYJ98pc9F8+ONew9G8tNjGggKNshHu9r6EL62P3cpy5ip7AoZL+0eHLgcuB+CWqlqcnHo+aBMTkzOH2T16nQNkEzmHKCkp4YEHHsBiMWaZ7rjjjrT1dnvK1ZFIjF44JB5PzVo7HNnFk9Foamoa9d/27dsnvE8Tk2wEj3cSn2CBITWhEG0PAIwrx+VsQxssftD7lhG23reniVhnbrEm2R+hd1fDpI9n9dlI1j+UtkxPTN/gPi7M7pGgVxvAoYYoihpiT54ytousyOagymY6AOYidzU6aY8pHAunC5QPtyVRJ5xzL3v7hJ5bLbXLInX5xnrVmoq2EOTUI5UWMKq1qyf+iD6QcloKnmJ+3DUfgLoCkTp/N/O9x/Fa+lngTc9necuyXTjl3BEcW8p2kGc1crCtKdybs93pwGPp57KaXTN+XAFwyebkxVzm8d7FNER07m0r539O+HmgzcUP640CJIpQyovdUV7pHTsPc0JJpTCptK5ilWcT6oi0FxZRIqKObjIwyaRfKaYrR37M5zrPB+CV3ut4qvN96O/QHKjHgvmMrLx+0+JdXDrPSHvisUlU+Yx7xd8dG+BERREhRed9K1W2VBrPLp0FXq5uTgyLnCOZ57dik+N8dE0nf7XSeI7cVCly27qXsEjG5/2R1R18bOUuaj3HhrdriRSk7ee5znOm7g3PMIF4ZsTF4XD2dAImJibvXExH5zQzf/58LrvsMh5//HGOHj1Ka2sr5eXGTJTH4xluN1Y4ejicmrkeK8w9G2PlADUxmSpiXaO7sbKhxRUig0LnwKE27EVeJOvcuTypCSNEP9RghBMF9jXhKM3DVVVArCeIs2xE1UxFRYnEMwo3ZUOQRXQl021md3VzclIApXff1A0pBBF0DbVqNXLHYRpPIcR+Jlge2oYv0T6sWZVFDpJvfRe9iezu9/V5+fw8+RuI62zgWvRxVpP3W+1U2x0cDAVRdQ1Fn+WJS89Q7jhmCFlPtkfSlr/cHWVAsaU92ehCHoJuTAJoQiGiHgBSefzalPQQwyHimgQ5tJTFRRL+wfQII4VOq0fA4mtDa7yXZPvbCIAWakYLGfm4BX8V7/N8m3hEpNxr4c6r7sFn7clZJf3c0tzFDAEqXCeG/55NYesADjnK2qLXZ/y4xc4oomD+LucuNr74dpiEBglNJ64ZUplVFPj3+RLH49VAkv89NrqY/dHqDxCJpYSmaHQwT+eIm2SZo4ijkV6qzJTO4yauu2iIVOcsBPRc20IA7juxHu0d7KVRdZEBNuERDtKvr+Tc0hdYX+TCa7uSn75Zxz9veYtvbV3H9qY47z0SBATOrzqBxxIGlvOuIyHUwUJOq0pt7G43nhcFAf7r4l0AfHL57zg2sJjN1TWsLB5gTeF2/vn81fzwtTxuWfQIedZeBGHo2Ubmrd70ceAL7XUz82FMA+EsExR/bt7ImkW/4Xj0LJb7Zr5PJiYms4937l1oBlm2bNnw3y0tqYIFI8XHkYWJsjGyANHIwkQmJrMFXZv84DIZjg0XLOrb10Tbs3umqlszwsm5SJPBGAOH2+jZeYKBw20Z68apqyHbs4u9QjSzkrGgKVlaTg7BYoTjPjnvbFqWX05kjPanE1kQDZFzBDY9ygf9uW9vFzkilEUPURY9TKFt/A75OqeTcx0JZFGg1D73qpWeKQz9fOJZBPiDwfQB0ICeKkQS0f0MsCBtfThHMYaYltsx9v4VzXhshvNcsaTOH6v6OnrHE6idbyComVEa4fzF7IkYAoFFEih1NucUOYERg9S5h8sy8QmvqWBV8cyGyptMLb36AnoSGkFFG/596xi/dVXIJ6oav8toFqfbSFT1pNyQggAnRSYUyBX84Kgpik+EzngFewLVYzo138ki5xBh1c8vm77MA81XIwg6TjnEe+r+yFUL+pifd4w1pUbKoyFB0yImqfU2pC1bX2HjigWpa+lnN6lcWmWkLLJKcbzWfv7+rF1sKTcmui6u2sX/29KHz9aTdv+ICKvpjp/ZxXqaI15a1St5u2/h6e6KiYnJLMG8E80AQo6wz5EC6MGDmcLFSEauX7p06dR0zMTkFFETI8S1U3D9RVsDw9tHO/rp2HqYRP9sltfS0ZKZImP/IUPoDJ1ITxqfHBj/+5IdArLLEG68pU14KwwXi9r5yin0dhw4/QhWJ9+VXPydf8HY7U8T5+cXcHF+9oT618ZeAuAHJTFcspVSu/GQLwsi7w0+NNzuW3ktGdsu9/ootDn4cmlKNLuqsIB/kHfywfAj2EWZ/3Yd4sYis5DFbON/6xMcS25kgMUA3NlUTFyoAUDBws5gIQh2wIomFPJiT3bBOqLmFjpvmP8Yq0uMXGADzlSV98SB/yXZktuF2WGvBsBllZDO8IhO1ygh99PJ5pLXTstxTSbHyVXPdwVzF0iJ6n5a49nTjZQ6jAgpqyjhtzpRVFvWdmnHTtaytTfBz1ovIMLsvc/NJpojJezuKx27oQk/PHQj27ur2N5dhS4aldQFQeezq39HqaOF86vS8yoXOvqodJ2gxJ06xz+0qgWbpFLjt+J3yPzLWb9I26bY3sbFlc9wbtmLAKzIf4tPLL83rY0qzuO3je+fjrc46/jewRuJjOO3b2Ji8s7AFDpngP379w//PRS2DjBv3rzh1y+++OKo+3jpJWPQXlFRQW1t7dR30sRkEkSaU7kQdX3yQmdipPin6aDpBE+1WM8Mki28XFc1EoEwoYautM8m3jdGAYURWKxd2H0RrD4b6vE7IfAKok1G6XxjSvqdi4GypXQvvoAOHfbMYsPLSkuMW6Tsk0TFCcMZ8e6e35JnsXBlnuHc81ltVEZSFerf1XUni9zpg+3P2Zu43mfhsmhKUF4v93NuzwNUh9+m2mHnop772CzOnXP0ncLbgTjfO2bn923GYPyRtjhN8WIAFF0kpgkE9Ro0wc2jPct4tjO7Ezqk5H488loDrChoBOBX6rkgDbpCk+FRndXdoiHirCuXKXCe4UrnacJnM4tRzB1E3o4sS1vSFc89wdCnuOmIZf/dXFS0BYDF3lIuKlmPqo2dezOpOih1ePny3gGOxgon0O93LnHNijrLixPOFnoTKbe/RspN6ZRDWKU4F1S8hCQa53Ot38qGom1YpASf29TL4GJ8tjA+e4x/v+AoZ1WJGREAFimBKGhYJCOCQBJVHHL6ZPru0GXs6KmYjrc46xhImiKniYlJCvNuNc3U19fzzDPPAFBXV0dFRepmIwgC1113HWA4Nl97LbsT4bXXXht2dF533XU5HaImJjNNuDk1qNTHCCUbjWQwM3wzWN856f3NNLqaXQ1MhmKosSSxjlShoMQoQqcgiww94QqyCL1/QQxvx+bqBzUKuoLdLyCcgqg8JpKFw/4qflS0ZPqOMUX4hTjn9j2WdZ0v3spfl+QhaXGWO+28L/ESoiCwwZPp4LvGbQwSPBYrTsnCeQNP8ZngPVj1BB8o9vPXJXmsTR4CQERjmc34/JcnDlLpmHjOZJPp5dG2CD86FuVYcgOtMZWWuI24UE1Sk9nWI/K71lK2h5by1f0xXu2JZd3Hc10iupDbXbbIdxiAo/E8ti/7ItH5F2dtJ1hSRRNeGcwHWu5R+OTaY1nbm5ic2YgMFWkJsITft1oGXZ3GZEH9KAEPHQk7oSy1Cs8vXoJFNX5biz0LcShrxt2bOncZAK0xszCdQbZhYUo01nRz/DEZNDKL53gs/WyuMj7bf9jSOBxq/ldL/0zeYNqiMlc3N9Y9yfnlr/JXKw5M6tgPNW2YZK9NTExM5jam0HkKPPLIIyhKbvdGR0cHN91003BF9c9+9rMZbb74xS8iScYM9m233UY0mi74RKNRbrvtNgBkWeaLX/ziFPXexOTUSQ6kzlddnXy19GQwU2wIHp87QqeWQ+gcCscPnugaXjSa0Ck7LXjKjM/CVayjdO9AaXkCIbwTPREGTcGS2Dp1Hc+CUrmKbsnGA9rsvz2sSh7FnaPCukWP883Of8Wqx7habmF14FkWuLx8kMzq1KvUegBWu90U2uwUxBsoix7GpoX5z+6v883Of+Xs3oeG25+L4eZbG3ia8zxzp2jWO4X+pEZjJMn651XaYwpvBiR+1jSPtoSTHxwd4Mt7B7jy1QiNkSTBLG5sMAoedam582GXuYxckG4r/HXb+fyv7aaMNoK7iGDNBcOvH+gzRJViV5z3LnzgVN6iickcxIYqFBDAyKHXk3Tx42NBWpX5dOvGxNru/tzPEQ0RmcOhzN9rrX05saSXi0qW46KGpDr+vMs1tpUA7A/O/vvdTKCJ5WmvVbGGhJgK61f0savdm2Si6dkdxv9+3suUuC18YPF9w8v8ti7cVpH/vqyPzSUvk2/vpMDewbtqH5n4gQU7bVHP2O1MTExMzkDMO/spcNttt1FTU8PnP/957r33XrZt28auXbt49tln+epXv8qKFSvYuXMnAOeeey6f+9znMvaxaNEivvSlLwGwY8cOzjnnHO6//3527NjB/fffzznnnMOOHTsA+NKXvsTChWaSZZPZgxJJVQ7XcggG4yGb0JnoC5MIjD/M+3SSy9E5RHiwGruu6cRHeU+iBNrhbyJaZcTwiwhKHD3Ugtr4ELoSRhs4Snz/j6e07ydzrGQxQXF2i3du2YrPYmf1wOgpP4ZYGjcc8Ze5FGoSmU46vxpAFkTOtYVY4kgNSApjjVj0eEb7c4LPDP9dLc6dXLLvVO5pjPLz+ghbeyfm2upKONAFF5rgJylkD/3z2IzffkviJHFFEHl73vuJyIMlnQVh2A3ltk5d4TATk7mCLjgI6YXsD/nRBT8hxbjPvNrn5c6mApJCBY2R3L+NHQHY3pvAO+iS9ludFNhc6KqRmqLKci6KMrES6tFYJSt8FewLvtMFPBFVrKYzuZqRQ8O3gleT1FNRC8lRirSZ5EbFDlkKOG0s3sr/XDWy+Kbx2X/9oiPcuvKuUfY4PmetkuO+ZWJiYvJOYHaPZucAra2t3HHHHdxxxx0529x000384he/wGbLnjvkm9/8Jp2dndx5553s3LmTW265JaPNxz/+cb7xjW9MWb9NTKYCJZwSgXRl8o7OXNsGj3dSsG7epPc7U4wldCbDMcJNPSiR+Bih66AFjuBaFEKrfx1diYESRQsaDkK1661xPt5OnhM2D/WSBWZxbs7r851UiWE8Hd1jNwZW9T8HwEbtGAuCr2esz092sDZvC5/v+EracoeavXJ0YezE8N9L1GageHwdNzktHAsnAfjqvolVAj8asWETl/HnDif/cWCAwBV9oKcL297B6uuNyfSUCIKnmPe3XcoTJX9EL11BzFnEwIDxyHVOxaHJvhUTkzlLRC+iI+GhNylRn6jjaNgCxPjUW8bv8lsHi4HMiaUhfnLcKMb37opNPNKynWvKLkdHIz7oWIsl8nJumxuJZdYPUup4HoRtoGem0XknoAs+PvPWfwPw36vD+IUX0MQyfnN8C9dXurnEvx1VrKE1OjEh2cQgpBagimfjwYjI0cVCBM14frms6kmjkeBhQF+Fl1e5fv6fRt2fIs5H1sZOf7Kj/6pT67iJiYnJHMZ0dJ4Cd911F1/72te48sorWbRoEfn5+ciyjM/nY+XKldx6661s3bqVBx54AJ/Pl3M/oijyy1/+kscee4zrrruO8vJyrFYr5eXlXHfddTz++OP84he/QBTNr8tkdqFEEsN/a6cgdOZiruTpHEvo1JIq9X94DSUcJxHI7QAUxMH9dDyIGjiMrmbPHziddEsW3prlc2DzxQE2JveP3fAkVoazF3EqidWzwZbIum4sVoW3T2o7k9nP630Q00QebTPEFwVfRhuvzXCgNcTSJzJVl1HcJCI4OFJ4Dv9nuwGAijwrW0rH50Q2MTmTaIjncyJqozsusLXPxSvZs46MiVvys8hbgqCWICrlY28wDsKKC513cJ5OITW++NWJGwGZl3rfT1yVOdBvfMatibUcGTCLNk2GZzvP5XDYSJOA4EIh83NsVS6iMbpoXPtrjq8ZV7uQkpmT3MTExOSdwuwezc5yLrjgAi644IKxG46Tq6++mquvvnrK9mdiMp1oSTUtdP1UihHlYjrzdAaPd+CZXzIl+xpv6Hq8N5TZVhBwlYqIYhjlbSOPr9IwiVxME0QorEXvPpG27LHzP80Top1Dqj7eyKhT5r3Ffn7f2Tehbcq0AJt6H53wscqih7Mudys93BR/fsL7M/Z5CIt4HUlt6oV+k9PLz44HuadRpD9p/GbjujPjoWldSQtQRVSTEKxO9IQxkfFG4VUI7ZDIK+btgJufddUyP9/Kyx/6MaIwi+3SJiZTjhVIcDhs4zM7QwCoOqijFNUrsXvoiAWz702vYHVenFjMC1NUnDOh5jFjN71ZiEYqPP1gfxEDnMX9DesB2BMo4Z/2/5Klvg6z4vokeaG9jlc7ammvKODy4j/yQOuHuLHsPmx6Kmf4weAigkkHK8ZMMSvwsyNX863lz6MJHiStAQQHMRZh198GDMdoglK64qYD18TE5J2LeccyMTGZFMlgFDWacsHp2tQP3qcrT2cyFKPthYk7AnOhjzM/abb3YvVakfofQuh/BeITE/xOhRM1mZU498gOWnWd+AyN97wWG2cJHRPezq2FEKc4tr4sOvkq2G75HewEOoNRdYZFToBEloIS7659lALnoPw5osL6tmQVF8+3ss+9kENJo3r7smIdlxya3k6bmMwyNMEQ0RojAlFVJ6rqJDSd0eZGl+ZlLwRW6vASjRfiFIunTOQEEPU89HfwkCiqlaa93tpz3rCoqSPQk3BSH8w/HV07Y0jqEg83r+Rw5Gwaw356ldq09YomciQ4dhocXSyiJ+GkIXEJB8IXAxBjEU92XsfQsP54/FK29V7O4X7TgWtiYvLO5Z17VzcxMRkXWiJVHCARCJMMGeHUyWAMNa6QDMXQFHXcYt9ECTf1THlYfLixm+DxTpRo7nBlXRvboTrkzhxv/+JZ8nNanCqJY78ncWS0xPNTz8uesvQFosRWXaJj6o25WVmXl8/dnre5bOAR7i1s4t7CJnwjhKJcXFZQwLrgS1PeH1+8ddLb/tKzlyKbGSJ2pnMw7M9YZpPj/OnmF/iPi4No3nKal/0Vv1z+XZ6KVPOdix6iQ8zj8b4iABbmZ0tbIdKhrR71uHGhBoCEkLsKvInJbKU+UcdLwXM5Gh7fM4JbtlJuq6bU4aXOU8S6/BqqnMZvb63fqACejE9NyPoQmuZiW3AFDcr6k9YIaEIWgU+YTD7QIXJMjAkeQAZhmu8lgpOkOFTYVGBX5BPc0/SetCaPNK/I2MzMzzk1/PTIJTSG8tgZWJm2vC3q51gwH10sGl7Wol5LkC1p7XaGrgfg50ev4LWepWhiJV3JeTzVupg29WrAyv0NF/CHhrW0RE/lPDUxMTGZ25hCp4mJyahEu4xCAbqqcfzerSjDQmcUdJ3gsQ4irX2oseS0HD/eFyY5MLUFAuK9IdB0+g/mFrfGU1xpSCgdEn/HIlt+TlEMI2gKgjazlZhPnFRZPVG7kWOjhBJOJQVWBz9P/paNfY9RGDvBBT2/54Ke37PZO/YA7ybpGP5Ey5T3SRAm/9439z5MhT17sTmTM4ffNWd/ZFpVsIPr6l7g1cJruEs9h+91LMTmdDDPexiPJUl80BlV4sqc6EgIFRyLuDOWp7DwnjcrSAoVfOvY/Cl4FyYmM0t73Mp3j2js7x/fM8J5xSuwkM95hes4y7+Bpe4VnFu4CQC7aMT1Klqmu/pU0DSZ57ud/PfR9HtQiAX0apmiapd61qSPpYvZxad+fS2aWEJCqJ70vsdDjIXccew2dLGUo4lb+PHhS3izJ706d1LPrK6uv4ND+6eSuCqT1CWebVvMUAY5Tazk1a5aVF1kT+hahobnR4IL6E2mJqUHOIefHr4IgO64i764k1f7buJIaAGqLvJS9yaalKs5EfKR1M3sdCYmJu9sTKHTxMRkVGJdA+i6Ttvz+wg39aAOOjyTQUN8DDV0M3CkHaZJJEsEIsMCoRKOkwzG0EccS1e1tNe5GNkm3msIDv0HDcFMU9S0CvIAakJBS44udva8VW/0a7xCZ38WoVMLjGvbqUSwuWgZuvyLEkc23sLPaiY/cJsIoiDwC/fblEcPZKz7OG9R6TBEn/mulHtEEkQKrA5qnB7O739sRvo5UT5mb+Gi/ILT3Q2TaeT3zWE6tVVZ11W56/lG3wb+HDDy/m6qMEQdvyOG0yLitIhsKd970lYSLYkSmqIy7epIV6cNXXADFsLU8nJ3lOt31PC/x4L0s3REOzNlgsnspzcpsbUnxp6B8RV8KxI3oik+bOpy9MRiSNQhJJcAYBOnx+2YVOzURyvpSBShC67h5S8HyhhQ3CA4MEQp4765tce4Xw5wzoSP1Zw4L+vy9ngNByKXoTG1Iu7JHAxv5GB/Ef/X8Pfcvv/d03osk9yEFBtRwXB1vtT73uHlvz1xDghuQKQpUoiiWwy3r2Dn9oMfTdtHa8TDA43reWzQgbu1s5afH33XTL0FExMTk1mNKXSamJiMSrzHKKDTt7cJSIWyJ4OGuBdp7SPU0DVtx4929KPGEmhJlaN3v0TDn7ajxVPux3hfGCUUH2UPBiMdp4nBEPJQYw+6plF//zaiHYG09ko4TqixO2dYeqihm5anjMTvyfDYxwcgSzi8Hm8e37ZTiFpYyzYNBKuDZPVarndV8NMZmv2/qiCfs/qyF1s6p/ePnOsxxJs1TplyhzHgLLU7ucZn5WKPiC/RPiP9nCjv6fwJN8kNp7sbJtNIXNP510PZ3ViioNGPg5BqOKGumG/kfN1cdoD3rND5yFqFVQU70rZRhGKOR+080aHyvydS++3SFhGlhJhQQVvCB8CrPVGSus5HduYzVDRlgLopfocmJlNPe0wgqevEx5EOZom3lFgij7jiJqG4UDUrSc2OotrItzmxTFdYtyDgEZZQZT2bR3tT4esxzUtbvIJ90VXEhXIQXIDMs+2LSIqL+Jc9n5pgqLmFnxzJLkSFFCevdS9D0aY3dD2QMCYRd/RUmC7N08w9Te9HF4v43YmNw8sCCQe64GBb8HO83DmPhGZjZ/j9xIRFdMTS3f9h1UpUtRBUjIiSqGrJaGNiYmLyTsX0tZuYmIxKvDdEsj9CrNMIYR8WOgcMd2K0I4AwhUUBTibS2oeWVDnxx9cJN/YA0PnaEcouXIauafQfasVdW4TFk5nfUdc0BNGYz1HCcWSHdfg9AST7Ixy/dyuBfc0Ubqwb3EZHEAWSoRhqNEGooRtvXUnGPluf2wM6KJE4+hjOz9HQQ5MvgjNZBnwVJIFExQr2lC6b0WP/tf7GqOuXi0ZBJgFY57LTFY8xz27jBmUrPdLsdkwWaz2AOcg4k3mqPQpLRUBDF1wIeioc3WURKXBKVHgFVhfuA2Bt4Xbca0I45ZPd3BYORat5qlPk5e4wV5Q6SQhVWPVmnujKx2vxc2l+GzsHHECq+vQLXREOJzbil6P0K3a8OcxfuuBB0LNXrTYxmU40oRBR7x5+rYyib0qCiKqncncu9dZBDuNnhcOPMI0TcslkAToin98V5ZKL63Dqx1G0Wh7tiHFooINfrnEjSwIIInFV5rmuG4mqVjrV8ykWnxxj7xKgkhDr6I67MHwmI3OWWokodvYHiomW5+GeRhtKUjOHfrOF7d1VeC23ZSx/rPMT/HnQpfloywajMNTUpqU1MTExOeMxHZ0mJiajEuscINGfypGpRBPoqkb/YcNZp8WVacvPaew/iZZQhh2lAKEThoM03hum+bGdJLOEhPcfbkvLidk+WGU9GYoR6x4YXh7YZzgqh3Jyhuo7jeMmFOJ9YQYOt6Xtt3d3IwCR5l4A+vadoiMz3ntq20/mkLIx+9/hr+Qt28wlq3fJVlYPvDhqmw91/phz/AV4RJUCUeGbRTE2WiNs6nuUq7pntmDTRKmN7j/dXTCZZvqSKkMh42+FVzMyfPyKhQrfvGg/j97439R4jgIgiwpL/buHXw+hCT7OeSnBz48H6UlodMU1PryrmqRQzo+Px/jojiCtCT9ffDuzSvumF5IsfFZGG8WN1ZhcdOpv1sRkEtzfOXLyzEZwFKXznKLFaa+dOfJXAlQ7yxF1V871p0pSdaAoVs4v3sD2/jKSQgUv9xTSl8xHkOahkcfr/dfSGN8AwINNRrqJtwPZ01mMJCEuIi6uIKoNFZpJFxu7tAs5MFBJULHRr0xndXOB13vMXL+ziWfbFmYs+/OIYlBHgoUcD+Xzk8HcnCYmJiYm48MUOk1MTHKi6zqxrgG0ZCpUXAnH6T/cNu68lFNBrDuYFvY91J94j+FYSmQpVtTx0oHhIkEDR9vp2Wnk0wwebYcs4y5tsGp88HgnyYEouqoRbQ8Y+UdH0P7CAbRkStztfv1oxr4mgq5ObaGlcTHowNUFkV3izOX5W+JyY1cGRm1j06P8PPI/rKeVG5XXubnr/1ij1c9QD0+NivABXPL05lczOf3ogvEd//yEBEJKsPjYypdZV7RrfPs46XVjROHF7igvBuZzMGhY2r53zEZYzS0SqXpuobMjbhbHMjkdiDzcqjI0vNAEJ305HJrz3YVU2eelLZOE3OdtvlyBqk6zY14QcGlnsaM/j2OxcgQsWLUaqizreLbjSv7Svpwn2zanbdKT8Iy526Tu5r6mDxJRB4VcYeTwy8aDLZezs9ew7IWVaRRzxUU0hs1K3CYmJiYmZz6m0GliYpKTRCCCllDQEqnQbCUSp+fNmRWeoh39aa+HigQFjxvuy2R/xMi1+fttJAJhIq19BI93EjrRha5qND3yFugQbu4h1pPpkIKUozPaNUCkrQ81niTWOUCsKyXMBes7iXX2E25KuTAjrX2n9uaUmROMAShZSFg2wvyb7D6OzUyhdf6q2Mf/qr9HYuzq8v5EKzd1/pSNfY9h06Nc1n3PDPTw1BEEnX8uHGe+VpM5i44FsHF/cwiNVD69VQU7KHWO7fDWhMLBfaQ4FEwQVXXe83rq+nRfU/Zr1fB+cvx2dcHF3+/Vsq80MRmDEAvRBd+42yeFCjTBcCG2qqt4siOC7+nVtKpr+PS+FfzkeHoKhQUew9W40FNFMraCLUULWeQdTA+j5XYzxmOLiCvTnxpEUW0cCNXxnjdcRCPziCXyicRLea7dEAmHBMkhXu+qhhGfly74SYojXXoS/3XgU7za9f/bu+84ucq6//+vM322903vnQSCJJBAAglVidIFFWk3ooJ64y0/8VZvUVHQm1u/ipUqTaXX0BNKICEkJCQQ0nuy2WR73+nn/P6YZHY322Y3s2V238/HI4/MnHOd61wzs9fMnM9c1/UZw883XAlAtXUypi1aT9A2lrUVw6PTk4GNNWPabJdpG9mlxxEwprM18PXDiW0gbBtPRUjr+oqIyOCgQKeItMtfGg0wNh/R6S+tpWZrcZ+04wgrHMEyTSrX7wGiIzr3Pv8Rlev3UvTaJ5Su3AZAxcd7KFm+NRasLF/TfoDWjEQDA6FaH3W7ywjV+AhWN2BFzFhCokPLopnCGw8eY3Cz+WOJ9G6gc/uokzjkjl74POfKpLoXAp1um4MvmZ8wquGTnj9ZH5sW3N7XTZAeZuEkaOQfvm3v8vE1ZgF1ZtYxtyPSztT1ELnUHsO6wTK4RbB36e+6eUKbT+uaRje+WprJ1vrWy9pMz5yI02bHY4uO3ix0F/K5rBmHT957Mww6kmoMZVrm6Njsh440RFxs9l3QdJ/JmDSNTPUbM1oliPmgYh4loc8B0GgOabFvWck4LFthi20YHkpCJ3TpMXxWP49PqiexvuGrAJQEj6M0OKSTo0RERAYGBTpFpF3Bw2tfBputgVmz9SBWpHdHCzVfaxPADEao3X4olvm96tN9sVGmVRv2Ubk+mv3aX1pD8dINseOqNuxrdxjUkYRCodpGfAerCFTWEz6cTb1hbznBmsbYep2+BAU6HWkurFDvJAxpmLwADBu3pY/g0OERna+bBh1PJG/tibx9vJb1CeNSM1rty3F5W20bl5rBKxkrObXiuW60OvnMrF7KnwpbrxkrA0dpeCgNZvTvP2C17gedqQyn8NWPj336qGkZbA/OppYpLbZvbhzOfl+Y9b65LKmZf8znkcHEQcSy88d90zsvetjf9o/nxo3HYRrZ3LmlKbD5qy31fFbTNMLdbtg4LX8SHlsqp+SOx2OPTtFOMU/EFpzONSOvIdCD07a7IhgYQYExL+7y920/C4guaXEoMBbTagrYHghOaVV+cdFxPLR7EaZtJPXhrBb7LAzerfw6jx28I/bvvn2/pi7ctfeMPQ1DePvgeO7dvgDLyGF99XSe3ju3S3WIiIgkKwU6RaR9h4OCR7KUA2D10lznDpjhCGWrm7KVHx14bX6/+e2IL0j9/nLaYkZMLMsiVOcn7Au2GLV5aPkWKtbuit1vLK4+1ocAQEpmFWZjaULq6oiRks2TQ4/H8GbwqWnxmT062qSDJf7aZDdsnFbxPCfULMVrb/3xcWpGSqttXruNaTXvYWNwTKV1Wz4W1rza182QHvRaWSY+MxrUqIp0vj7f0erDTj6sOPaR3BHL4N2KFP5d3HL0V3nQQcSC+/c6+MsujeyU+FlGKhHLxr/3xb929LtlYZ4sqmdt/VSKfE2BzpqQSfMlZtMcLoZ6huHEwwjvKDzkARAKewmbLnyBwm6NkO4JpuUg2IWga0PEhXU4kdLehhEt9oXM1qNUI5aNPfVZrK65kC11rROHrakYw/sl42L/1lQMp66L0/Z31eVhYiNi2SgOzef1g1NbjSwVEREZqBToFJF2HYlpHj2isq+FGwPdnj5/JGP70axwJJaEKOIL4i9ttjbnzhIOvb8ldt931FR6AJurGxdoZS9jWD0fiGgcPp1/Gk78Q6MjS14zu/fW/5NCW2yNzatTypmS1jTCJMPpZrYjunbpzMxsxqSkMz8nl+969h1j65NPbmAvdxaajPCmkabkRAPOH3f42NkYDRjs8bUO7nemNOjovFAc6iM21tWY3LGlHnCyMzQLy8hmc320fz93oIH3ynxEjMKOKxI5bIt/Co8dyGFvYxjaWRqhOdPIpvFwIr9bNpgdJs/KcHlJtSZgmENxhScQDg2sv8uKyEwAPqkeiXlkDV4jpc1A5xFP7Z3F4qLjWm3fVd96rdLq5kmPjI5Hd5q2Eeyqz47d//O2CwlEEvO+IyIikgwU6BSRDkQvWoLVDX3cjpassNl+Jo54jm1ne+326NT0sC/YclRo2MQMNEui08a5U/I7T7JzNNNX0uVjuuPNYTMosWDJ8JkAXZ6ufsQlNc/Gbl9Q+TgzU5o+Qi7LcTMhvJ8R3jQeCT7IxelhvubYzYVl9x9Dy5PXtaV/4NR0J167Li4Hmn2NIVZURv/2f7XVpGtfpQz+sKPr7xVteaPUxp6GMHVhk7CRx1dW2wmQyfvl0fp9EQsLeKd6YscViRz2zEEPt2+uJWRZWEZnQXwn9x84Hv/hz8NPawMEOvhcHps6BF8wB38wC384g1DEk8CW97311Sdi2kawpSafxkgWAJXmKdSG2h9FWR9244u0/jHsSGKi5mpCTa/H/tDCduuM2Ebzqy0/a1FHZbD1sjIiIiIDmQKdItKKGYxeKFuHL1qar9E5UJmRCDVboqNEI/7WCRQ6Y2tYCQYYbUzpble4559Xw+XlLiN6kfM3+7FNW3ObTUsYpIUqmWMcxGWzU+BO4bLgcqY0rudR51Ly/bu5wPc2p9S9e0znS3ZfsLbx+UwXF+TnsCAnl1Ozc3DaWo/8nZqexQX5OVyQn8PolK5PhZbe91559D3iwwo/axrn0MiEo0rYKTWPxzKym21zstF/Mh8kYNo6wGN7G9hWF23HS+UT2d4QZEPDMDbUBFuUu21zmJZf9/rH9GDpf7bVNc0w2BOcCrQ/GvFgZBp3bq2nPNDxrATj8MjQQvfAGsF5tLWVo1lb9yUAasK5ACyvOI1tdcM6Oixu5YHD6wEbHpaXzyJiG9uqjGkbye2bf8qBxq6vHSwiIjKQaKiJiLRSsW4Pnvx0/CXRKdrtjYIcSCL+MLU7Do+w7MZo0ci+F3EMXYA3q466A+7OD7AZhKu2xDE58Bh5M6k+fHPvMayvek5uLlmVh2L37YS5qOxBVub9D9sCMLN6CQBD2QrA5LoPun2ugeK88kc57/DtAynT2O8ez0M5c1hcXtmi3F9sbzC1fDkADxd8n580KhDV3zUPVp693MfFw4bw0PQdsW2mkc2kpXY+PXMsoxzR9X79xghOey/Yqq7uqgubHEll9h9ro7fOWd56bcVNtQECxkjcVjRJW5U1mWxjU8LaIQOE4eX1Q00/vs16N8KnZ05nqGMvNquyVfGtDenUhBqoCXX8/SDD6aYm5MdjyyTQYcnktrMuh511pwPwWc0ExhRO4OU2pqV318bqAkKjJ1MUOJ4KfwrvV17Mgqw/QrP1r18quY6DPv1YJiIiohGdItJKw4FK9r20lvp9FX3dlF5Tu+NgbCRrV7my3Jh1+3BnRLD2/h2MzsOXrgwXRqRnL/sMVwrYjv33rDy3l2+zutV2l+XneFsl13kOHPM5Broc/z7ywqVcYNtBgTuFAncKWU4P5+flMrV2eazcGQ3vxUZASfJ4r9xHdEi3B8vIpM6KJlopDzVNzy0NZbdzdM/b0DAccIDhZXFpfp+1Q/qvOmskoWY/hkUsWFebzns10w5vsWEZmWBEk/TsjPMHmUJvBplODzar6+vZJqtlhybwaulXElqnL+LkuYNX8tjus6kOeVleNgnL1tSXfcbnePXA1ISeU0REJFlpRKeItBKqaWyRjCcuNqPb62b2B8HK7q9D6vBEsABzzeUAeE90EvZBqK7t0VupQ21AOOF5yGumnUNm2Q4o243hcHPTvBv5y+ZXulzPpLRMttU3JVx60/YEQyp3tFn2upL/1+32DiZes54JdavwRupYH3wIgPVZ5zCzYkmLcmMbPmZS2kVsrW+d8Er6r4qgiWWk8tDBk/jBp03vnauqnHzO66SesWxvSAXq26+kB5293MfucybxWFE+d2yp4+tDcrFZg+eHLOlYwBjNXl820PIz68PK6HqRp2aOIGh5GfFGGlePSuNPU96nOM7E7MdnTiM1azSWOXguORoiroSO5jzirYMt19v9uO4iTkq9FwwP9+66NuHnExERSVYa0SkirUS6MbLRsA3eUWg2W8s1ylzGZlzp7T+HDv+HOIJrEt6Oj3LH8thxiwDwj/4c75rwysQFXa5nXmrLgLXT6vqapdI2u9n0XBb697RZZopXU9eTUYhsXixu2Vfu2+3DNNL5274hHAz07VeuuoiHB/b4CJgWy2o08kuabGwczgeVrZMDLSsL8GFliP3BIWxqiI4efPWQD7BRHYrvh00bBuFQBuFwaiKbLECZPzpK/OOGq9lUo5HaIiIiRwyen1dFBrlgdQOurPguNMxA1wNb0SQ8Bla448QEA5FhtHy+wrsfxTbxx2TmfEbINZfGQy33Ww27CO556ZgmKBvuNMzs4fz3tEVUY3Dfint5wpnBStNiy5k/4Pra6HTy/za6fnF5HOV8mLYMvy2VLzScQXqwd7LDDwb5/t2x20N8O2jrj+DO2r+x1HE1DeHErecoPW9PYCjLylsOc9vdEOKsVZNZX11HrqtvA9gXfGhnX2P0vejqNT42nDmNLLRW52AXNoaws8HBzzfXtdq3oTb6HrSnMY1NdTbAR3kwwrbgLNZXx/f+5DYyCESU9bsnVIXSCNmmcO+2BX3dFBERkX5FIzpFBomqz4riLhtu7HqAxe604Ri0I9FaPl9m1TZs9WsIF7+JM7y2VelIzQ6MY0gMBFA3djbvTDyDl02D5SaUTF7AysNLB7xgGrydFs1wa3Ujmppi+RnV8CmT6lby1TwvLisxWaIlmsTpCMNo+28gO3iA0d7Bs57dQPH4gbaDOeuq/VhAebBvfwTa09j0t1cXNvFH2s+oLYNHZaSAmpCBL9L+Z1JdxGBLfdNiKy+XeFlbHd8a04YxWL8X9DwLeP7g17C0rrOIiEgLCnSKDBK12w8SiXOkZrix60ly3BmhQTt93Wgjl2xw2z+IVG4itPV+DEezCz3DIFKz/ZjP+UH+JH5qb8qu+kBey7W77qFlEGNOVg4Amc6OM8KfmZtLhtk0suc/ax891qZKN4xyKziQbO7Z1XpEXH929+5MAsbovm6G9CmDB/dnU9nJV4OH90ZYUtL0g9fvt7X/t76wsGltSpthgKX3sp7yUdlIlh61bqeIiIgo0CkyaJjBMLXbDnZaLhIIYYW7nibHbhW1OQ13UDDbGPEY9mFYESx/OakFTSO5HClOjMixTUk2XF7+15FO83RR+496O28+gTbV4eIG5zYAzs3qeKTgfGcVw4N7Y/cL/DuPqa3SPfm2wbcERLLraERcf/T3XXXsCRT2dTOkD/mMsfx9Vz0HfR3/7b5b1khpoGlEcEMHf+uj3NNjt9MdbgytktVjGiKuvm6CiIhIv6RAp8ggEar3U735QOfl6ro5Tdl/ANtgHbhhdpx+1u5bFbvtSGkdDTa8GdH/XV7ieRIrJp3BoaOmvu/qYI76ienpzKldysS0TL5irmFBTi4X5ue0Kve1gmymh3YxzLet0zZIzzrL2saX8lq/RiKJtKSso7UT7ZhGXq+1RXpT9HPm3aoR1IZMPqrq/o9vWS4vKY7oDIKRKdmEg4WcP2wWQ7zpzMmbghXJSEiLRUREROKlQKfIIBGoqKduV2mn5ao+3dtpmTaZARzurk95HxAiDR3utoKVsdtOV8uyhiedVSdeiuFJx8oewcHjv9jp6R7Nn9xqW1EHa35e5DpIdvAA30wtY07Fi3zHWMvNgVdblJmclsnvyv6H8Y2fkhau6LQN0rPOLX+Mv1f8jBMzs/u6KTKA/XJTHe3lpQwYw6mIDO3dBkmv8BujAFh5+K3+s9ruf3YXeDLIcEYD5idmTyJkekgLn8nc3OMptM3GH8o85vaKiIiIdIUCnSKDgHU4SU2o1oe/ov21tSzTonzNrm6fx0ZZ3GUNRxK8/RjxzcU3Io0dFwjV4s52Y3PasYX3tdgVzh/L3e4cDk1eQEXBRL6XMwHDlQLGUc9P/jiM7BGQP477rfimAua7U3DbHCyqegqAs2tfwzAsJjeuxdEsKc6U9CyuSqsBIDsQf9Iq6Vk2TG63LSfVoemJ0jNClkWVNYmQMZyQMbzFCM59gULqI0fW9E2C92uJj+Flp68A08hhr6/ry9QcLd+dyaiU6N9Nln1UbHuGMZFwREnVREREpPdp4RyRwaDZaL/63WV4ctPbLFa77SDB6k6Cdh0wQuVAfqflPHluXL7nqA0v6va5ekNKoYNQg0GoruNpfVawvMP9od0vYOMFvLOfwKr8pMW+uowhrLfgzOxJ0Q0mhAsnUFwwkVE7V2JVFwNw1YyLOcUKc1IwvoQnKXYnr9uf5HrP1WTWlgBQ6N8BQJ5/DymhamzGfManZvB2/c+gPnqc2+p4Gr70rpOqX+e8vPk8V1bZeWGRbhi7xA0UAHDZ8FQeOG45ADsbPexssPGtEUOpM7PJNjb1YSslUbYHprPf7+Kj6hm8WFzb+QGdGO9agD+URSTnSYKBEbHtvkDBMdctIiIi0h36iV5kELDMplEb9Xvan75etnrHsZ0nVNVpmdShdowt1xPa/UK/T15kGBFSXKs6LWc1xDcK0m40Ei5+t8W2Cm9Wq3Kvjj2V5zJG4M8bE9vWiMFBw85trvimMs/LymCobxv/5drS5v6USDUTUzM4NzXc5n7pP0bbFHyW3vFWqZ8jXw1NC7bWm9y2YyIB09m3DZOEWVebQk3I1mmm9XhZVvTvZVrazMRUKCIiInKMNKJTZBA4MnUdwF9R32aZUL2fmjiysjeXPjxI3YHotFoLCwIdrO1oM/Bku7A2fhsC0YBo6hAHDQebAm3eAjcOZz2NFV4i/r4PwBm2MMFNf4bCf8S2efLd+Mui65kZDhtW2MSsi29dUyO4C8vXMtBc7GmdqOG/bamcaVgUZ41gxJhZuGoOUW/BCx0kHAL4Yl4uv6v5Aw3OHP7p/DIA55T/s93y81ItZpl74mq79J3RVAEeclxeKoMKekrPqQpFCBtDqIjkc8PHDTRGLCzgyf0O5uXN45Hpy/u6idINESOfme+P4c/Hu/ne+jpsRjSQ3ZYTc0ZT1FhBmb/t7wrNzcufxJHAeMA3Ke7lXkRERER6kkZ0igwCzQOdtJO0pvqz/e1f+bTDFmkWGLVCWP72R4t685y4PMUtAn322pewuaO/txgOG/aSP0DZ86Rl9I8pkjbqIezDsDe9VboCb8ZuO7wOsBlE6va1dXgrZtn7rbZtdbS9htkmy8ba1DzWDZvBmzMWUd9BsqEjTrOXkhEuY6hvK/NDGzot78BiZHB35w2XPjU8HF2+YIzXi8eu3yelZxWFhrK0PIuGw0FOgIqgyeuHGtHXxuRUGRnC/sYw/y4yCJgWvohFoJ3Pe7fNiePoNaLbMCIli3Hu07GO/E0oyCkiIiL9hL6xigwCEV/TGpOWabHj0fc4+G5TMNGKmJR9tLPTepzpLhypTYlRrMY9TTvNCGb1lnano7sc+6Dqgxbbgjsex50VfRtKK/QTKX6f0N7FBNb/Ak+uu61qWrE57d1KbOTN76R+m4ERjgZlbS47EH38wS334kh1kZGzFm/4adxZLgwrEtc5Q8WtR0PtsLU9JfSQZfF3Wwq3u3P4kZFGzVHXpC6bnVEp6fyjoIzH8/bjsTuY62uaZj+78pVO25NtBBgSUKCzvzuh9j0ez9vPr2zLGJOShtumYKf0nJs/dXPHltZrNQdMi6AxjKMnA5lG5+syS996qCgHgGcPdD5K02HYOCf/bABGpea0W+6k7Cn4gzmEwvF9VouIiIj0FgU6RQaB+r1NyXLC9X5qthRT9WnTdOtD72/Bd7C6wzoMu4E38BjO1KZtZs3GpjtWGLO+CHd22xc9ZulbmFUtR2oaZhinI9o2I7Q7ts2wLNzhpfE8NJzpDlyZXVs/zua0Y9v1Xy2Ctm2VMavWHr4dfatMSdmCYVk40yD42e8J7XgCt3Nz3OdtKyDaQPsjNQ9ZFrstCBhw9Kz107KyuDajkc+XPcoZFU9xTnYGk+pWxvbb6Xzq/ynBz/CG40tuJH0nLVzBGRVPcWL1mxQ67QzzKpOx9Jxl5T6K21k6ZJtvOGBvsW1xxdReaJUci8XFfgAicUzasBl2Av5xOAwb0zLGMDt3bJvlUu3R9aKto/4eRERERPqaAp0ig0DzBETB2ugaf/6yOqyIib+0loNvf9busYYjehGTXlgazR7uOHwBbBhEytZhcx6+yDGjmQ1c3pYJiRypLmwuB6F9rxGuamNKekP03FZ1y2zkgU1/azWq05HijAYnD0+RMxx23LY1ON3RNTPdOe7Y9ozh1U1tO4on14ZZu5fUlI/bfdx2t53wgXcB8KYfwuZyEPzsfwFwOkoxDk8lD2++u9064tHYwbqbHU0fPNdZytcqH47d/2HwpS6fe2b1UtwRBTqTyZWOHcxLtZFiV3IY6X2/2+EEw0bT10cbP9zgo8Ka3pfNkk5sqYsv89AZhVMZ7Z2MhY1LRi7AY/cwNe1EvHYn2a4ULhk5n7OGzADAaaT3ZJNFREREuk2BTpFBoHZHSdOdw+tyWRETX2kte55bhRU22zkSUgosMMA68AwANiM6MsSZ7sIK1ePNM7B7HFjBaIDTVt8seGiAN/AQ7mwbhhXBiARb1R8pXgIGRA62XL/SgBajOg2HjZTwP0mxL8GREg3yuDIchD65ExtleHLd2HfeSNrw6DT40OobcaS2PcXXbo8G98L7X2z3cbtSwxCsBiC49vuk5IchWBvdWdf0GI9OLtRVHaWWmZDa9oWkw7DxxZrnyQg1nXtCXefZ4Y/mtnzYaP+1l/7ni2X/4NLQKi7KTevrpsgg9EJxAxHSMI1cAELGEEoDYZ49mNvHLZP22QjFscYzwFj3zGhSIQD/LDLs+djMTE7IHs3ncsbhCMxluP3U6H5TP7aIiIhI/6RAp8gAF6ioI1jV0Oa+/S+toWFfB5nSAUd4E64MN+Hi9wAwiNblTIlgAHb240yzYzVGg6mhfc/jLXThLXSRPixMeO/LOMrva7d+s2oL3nwXlr+81b7gpr/hznWDARkZqwntfoHQ5ntISd+Jze3A7T0cwC1/G9u+H2I1lmDt+DUceCjadnfTxd2RpEcARqQseu6Kz0gdasdb6Irtd2ZER4XajUPNygdh/59j98P7Xu7wOYubYcOHgdMWHXnafASn02ZnkteO6/C+2Vk5TM+IThU8Jzeb3EB8md5l4Dmh5i2+HlrGtPSsvm6KDEJ7gqPZ5h+LZWSyPzgMgM/q9INJ/xX/mr6W1XJZjEhwFIFgFsM8QxjiGgmAP5jByNRsQIFOERER6Z8U6BQZ4FqM5jxK87U722QYhHb/C4e32dqSh6c6O+yHRzfWrsflLiNSswMAq74YPr4UPr6U8OqrAAjve6PD0zid7QdbXZ5anOluApuaAo3WoddJyy0ntPpGAEK7X8CqjiZTMis3Ej7wTrRe2y4APPluUvx/aqrUvz9201xzOXx8KZ7s6BTyFNvbuLLcUPdpi3ZEDjYlUrIaDpIIgXGnUGuzc3OBE7fNwbjUdC7Iz8FmGPy8IMIMey0X5WVwek4uDwbu53bnRwB81Wh/qQEZ+NyWj5nVS/i1a01fN0UGoZPeiTBnWYgdgUlsqfcC8HRRA5ahUcb9khHfGppeuxN/IKvFtlDES8Ry4ral4ODwPsPg1JwTCYayE9tOERERkQRRoFNkgKvdcajzQkc7vGykt8CJVb0Dm71pyrkRqjyckTwa7AuXLMc6+AyEOs/m2u7pQgfa3Wczq/Ck17eY9m427Mfc80Cn9YZ23EPacBNj49VEit+Prdlp1W1r3QZbdO1Rs3433pS9RA4t6+rD6LJXR5xIfmo6FzW8zpysTAqcDv7b9wzXFGRwSdW/mBnazpns4VZrGamhKlymnxHeNBaUP93jbZP+b6R/e183QQaxsqCL4OE1hn0Ri32hyX3cImmLFefIy2mZw9pNLGQ33FhmUyDbbY0joqnrIiIi0k/FP59FRJJO48FqarYUd/m4jKwP8YVPx+GoJQzYw7s4MqYz+On/4gWChwdFWjW7CNfsOqZ2thV4jAnsx0ZRi01mdXwBHqt6J5HVV8bupxYEaCh1Ez6wvFVZmxECHJi1O8Dmivsc3eGfcCreA59xp+HlbLfBuPK1PM7a2P47GtYBcFrlcy2O+1z1G6ym49GxMngUNm7H4Hws4lt/TySRzv+gscX9LQ0pjM50AG1nbJfeV8tk6sPeTstNyihkuHcItJOzKOib2uK+P5iTiOaJiIiI9AgFOkUGKCtisueZD7EiXV87zfIVk+J9H4vjATBL3k5081qIVKxrf19p66Bkd9kaP8abdyrmntZrlhoEwOYkUrMTy4q0cXTivDZ8JpNzx9IIjLC1TtAkEg8HIfLdXkoDjZ0XFulhDWEDy3BjWAp09hchy8mKqgygrsNyx2VMIN2ehz++5OwiIiIi/ZqmrosMUMVvf4bvYHXsvifPHf/BgUqCn/2RyM7/B0Co+N3Oj7HZMVydjxxpi1m1pd194dKPCJd+1K16jxba82SLJEMt+XFnujDMMFb1ji7XHRkZDQpTMAEAI6OQ9XOvoWbaOa3KrrF7+LpnCAAjqO3yuUSOeNL9Fq9nref1rPWM8Eanln6nMJXXs9bz9YIssl0eXs9az1UFWX3bUBnw6sIGFZFxfd2MQWW9by6Nxvh29tr55bZsfrrR12k9KfYsgn69diIiIjIwKNApMgA1FFVwaNnmFttcoSWxjOKdMRuj093NimjSG8PqfGqs4c3EyijsYks7Z1hWXOePh1VfDDVtJ3AxzDDulLJu1/3ziWdjpGTx6pSzAagdPp03vDlcVng8Rs7IpvM4PbwWMQgcXgd1ZKQba6iKHDa57gOOr3mL42veYpzXRYbTzfeq7uH4mrdYYO3kuNRUjq95i9G27q+hKxKPxgi8U6kENb1pW4OLkmDbz/mO4Ik8uree0kDnI2ztuDAtrbkpIiIiA4MCnSID0P5X1oF5VHAwWE2KY0Vcx5t1+zsvdJS6kSdgetK7fFxvC+1+pu0dVggquzdFPzJqJs+bBk/NvpKf21IxckfT4E7jGdNGsQVPz7ggVjYw8oRYkDPd6WJYqKidWkW65ibbeu7N3EFGqBSAU+re5j/tHwNwhm8V41MzcNrs3FFockehycS0zL5srgwwrx8K8YcdQbYGT2ZHcHaLfRGjIM5a4ssQPpgFjRG8UTOfN2rm89LBMH/fm0I9k5oKGF6W1sznPz6Ob3Uqp82OYbl6qLUiIiIivU9rdIoMQOF6f6ttlhUmsvtJyJpFR7lLbE57tzKob88exWinh5yiDV0+tleFWq/PGd1eTnD380cSzndJTeZQAH5heAD44/EXcVHtAY6snFhqa7p4f3f4CbHbF2SnkNZY3Y0zirR2esXTLe7nBvYxL7APgONq32Vczrkc9Nu4rvQPALybcyfbNdBTEmRZeXSK9E82eTkh08FtYw/vMLysrp/AKM8whtvXd1hHxMjDbpX0bEOT3MFQIVesatlxT80ZwkU50aR+L1TM5to1Ha/J2dzwlCywurC0jYiIiEg/pxGdIgNQWwmIrMZizPoi3NkdX9A4Urr3+8duVyp70zoZteNoGjViZMQ7wqd3hHf9CyPSvcRAVZ6MFvfvsxz8MWsMs7NyyHensNdwUDv1LIzsEfyvI4PRKdGRr1eEV5IZ1EW99I7TnFVckJsWuz/SocwjknirKwNEmv2YVmGOZ2mpky9+6OJg5AT8xtjYvkrrOErN42P/9gVHtlGjNLemOq3VtmcPmJSax7M5cDLXdSHICTA9cxxmpHWdIiIiIslKgU6RAaitQGfkYHTaustb3eGxnrTurVPZYNgocXra3W+k5VI/cR4AtdPO5kezrurWeXqKWd/9KeTlrtRW2xoycvhPx0b+lraRV0wbcwtnsmLauRyyLO51vc+41AxmVb0am2Ys0tO+WfJ//L+y/4ndP9Xc3YetkYGqLmy2CHTetTOH32+vZXdDiKlv2fiPT4Yf3uPkzBUpTFpqj/17pbT1e6k05+ab61onsFt8sIFJS+3MXRbqaMJGm3Jt0wiEFegUERGRgUOBTpEByIocdaljNE3ItjV+2v6BBph7H+zmWQ3KbO0nM6gcM5vdmcPZe9JlzCs4gaUmYB8Yq2cccjQFePPdKRgYjHSazGhYxWmVz3HjkOjF+/3ubMamZnB8zVvc4d3YV80VASDbrO7rJsgA5W/2W9um2pbJcF491EDAGIVpZFESiLTYF2z9G10f6QeJeYwULCMTy0jnSHvqGcXRH+/HytL6nCIiIjLAKNApMsBE/EHCvkCLbYa9KdBpNrafaCil0EmkZHW3zmszDEqM9gOXK3PGUO708LX00UQAH1A57ZwWZeqnnomRO7pb5++q9XOvSVhdn9pcXFsYTezyUej/uKkwlXQjQoF/JwBnBj8BYLUJX0iLXsmfUfFUws4v0h1zK1/AM0B+bJD+5fkD0bWQI0Yhyw+v3dlc4Ru55LwxAt9RUbstdf0j0vl27Sl93AI3P985i+w3xjHjvSmsaZyNaeRx956hCT1LlstLIKikZCIiIjKwKNApMsA0FFW2SjZk2Jt1dav9C0lnYHm3z2u32zhotP+W8pgjjQqbk+pm2/6SPwUjLTfaxpQs/mPI5wim53e7DfEyckZypTsP38T5CajM4AObhx9W38vY1Axclp8flP+eqbS9BMCl/reO/ZwiIv1YRdDEMjJZUTuxS1Opl5T46OuvphEjn0f29WkTMI00niyKBoiLfGEeL3KwzT+O1ZXhTo7smpNzJ2HpUkBEREQGGH27ERlgGg9UttqWnr42dtug7UCn3eMguOXebp/3JFcjO5wpGBmFLbbXTT0LI3s4n5oWfzC8LfY9adqoGHsyAJ8e/yU2WhY/Gnc6hjv+ddoMbyZG1jAANp9yJUZKNkbeGL515i0Y7QRNS0bOBOCekSe1X29qDtawqRhHrTtqDZ3aVMblJTLiBCZnZZAdPMAL5sMAeM16rij5a6zciTVL+TBtCVcVZDG1tvvBZJFES3do2qr0jPNWT+OaNf4uHVMVimAaWUdtdXLbrjMS1q62LKmZT9gYQj0TORAayeuHGvmw4bQePWdHrtswlUP+pqDmg3vquGSVxfKK1qNjuyPv8GfsUOfkhNQnIiIi0p8o0CkywDTsbxnoNOwGoa33x+5bZtuBTm+uH8Ldv4gaZpaBw8mKGYuazu1JZ9GQmewbG50GWN3GcX/JnwLA3SnRAOkbpsGqky6P+7yR3FHsGz+XLad8jcu8Q1h+4iV8OPlMlptgthPo/CBrBAAvmg5oZxRqJGsoDRlD2Dbzohbbn510ZtOd9HyWjp3DMHv0gjTf35TcxTCaxjF5zXpGNXzKhZGP435cIr1hhMfd102QAWp1lZ+qUKTzgkeJkNLiftjI5cXixAT42rO7wUatmUttJJWSgIeAafFxdd8t6/BeWesAcbE/nLD1OY/LGhW9YbWfQFBEREQkWWlxLpEBxlda0+K+J9eJta8idt+s/ITMcdOx3GOpPZAOgCPVhVH8wDGdN9OsJMvj4BZnNj89/dsYQJHdTYUFV2aOBQsKPSmU+BtbHPekaeM/p5/HSrPpCu7bzhxWjp+De+eHLU9SMB4wMKqKiBSM57Xx89lt97DEsLPjcPz2e44ssmyABbVZw8ks3gRA/ZSFpG15B4B/21LBsijD4skzbiLNDLNo61tQsp2SmRdQuOFV/Gl5NLpT+W7aCN44fHojPZ9fGx6+nDWMpTO+SLHdzV8MFzfZ4hu1NLvq1S4+qyI9a4hTv3dK//KHveMZ5hnH6Tn1jHJ8TK2Zy77GEP8sPT1W5si+RPGbcMf2XEwLDvqjwdnt9RaWkc77tSewz2fjtOxGxjrXJOyc7bN1K0Acr+OzR1DoHsoXhqUQDmX12HlERERE+ooCnSIDjBlquYaX01FEqPn+un0EP/kNuLKwDbsPT44Ndt1KuHrnMZ3XZ3cwyWWyBviR7fDU88OxywoLJqdlMjvF4J9HBToBXsub0OJ+wICzRp3G2xa4dkWDnUZaLjdMv4gRmPx0+1u8PvZUbrWlRs9htTy25PD9lwqmcNWWt1k59xr+05nNR1vewRo2lY1W0wG34wabm1Pzx5Fdsp3bcybyu3FzCDrcvJ81iiLLwkjJxmqsYu308wkBmycv5D/t6bHHmG/Vx/UcOa1A54VEepHHSHAKZ5FjdOeWWgDu/1w6o/JgS0MWFo18d31drMyZBV6em5m4c9ZHotPDm9tYG6LOGsZPN4bYUBvkBxPTuW1s4s7ZHsvI6NH6J6dNwGl4yHdm4fdpRKeIiIgMPAp0igwwVrhparrNaccqfrHtgsFq0jxvEFz/CIbZfoID38R5eLcvJzjuFCozhjB06ztYvuiFKIUTMaqKsCIhqp1epthq2q3nrLQIw6njqwU5eAyT8oidxeXRafb3G55WCZSqLDhz9Gm8F6jHdmgr/3fyVawwAWz4J57NMtNodY6j/cFyUbvgu/zNjL7VWUMms2/o9DbLlnuzyckoYFkE3hh2PHNrinjA5gULiiYvYMTGN/ihJx8six+lDqH5UqcFZut1UUWSwZm2/WQVDmNHyMH7lRWdHyDSSwKH3+NXVLb+qvp2qY9qppLF5oScqybUOuC/oTbA8yVD2FYfDYC+XhLktnGpYDUQNoZhYeC0DlBuTSfP+KzNei0jnV3BlutgjnYVUREppND2SZvHNFqJT8i3oHAaKfYU9jYWk8JYDDOCZTkTfh4RERGR/kCBTpEBxopEI3DuXDfOst8TPrii3bKhLQ/SYbjQ4eKCEaewdO/H3DZmHotN2JC7C1vRBgCWTFrI/IOfEXCnUeFwMSZcDAxts6r54c2U2PP437Jf4iCEz57BEvuN+CPh2AjMo1VZsH7USQzNH89Dpj22/cU4gpwQHd15JMgJ8Jepn+fMxraDOXUON2+ccBGWAcsND56MYew73K6LMsfxzrhTOHR4JOiOo5Y5He/fEld7RPqbS0vv4VLgxfwbeJ+eHUkm0hWNh39/K/a1/QHxYXUen89KzLmKfK2nivsiFjd/Uhu7v6k2QL01jDS2szc4nMUlKXx/xAH+e1MWDxzXdr0B8jjpnZZ1P3PKBO7aFuHN2Xag9XnLQhnQTtLA7hrpOJ1AKIOTMnbi8yc+kCoiIiLSn2hxLpEBxoqYpA8PYtt8NZHmQc52ku60xciMBit9407B8KQRHDaNj12pTE3PIpiSHSv3gjeX7Xnj+XXhDAwjzNjgjjbrc9rszK5+k1HhIhyHJ9J7I7VckJveaVvu8ebx85wJnZaLxz2Wg8dTC9rc96o3hx/You1ZjcE/7GmxfY3Ar4d9DgDjqNCwx+5gVH3bI3NEkkWmWYu9C+8RIj1tn88CXNSE2w50bq+3ETKGEzKGQ8c/2XXM8LK7Ib41Mbf78ggZwzkYcPObLXU0MoGygEnAGB1rS8gYjmVkEzEKKQ9nt6rjn/uhyBcGo+1p43v93u4/lnaEwtEET2ao7R8iRURERAYSXdWIDCCWZWGGTazdf4ZQy3Uj937ukrjrueqkr2ENnUJlah4vGk+xauSJ/C1lLW/V/4xIRvTCzRo2jTNzQqz2ZPGqCamResbXrWZ2Vk6r+sanppMSqWZO5Usttv+s9v5WZY+2wuTwlPXEeL6d0aCPmzasw7sqLFqs4wmw+HAbLshvunDNdnk4PycjFrwVSVYLKp5kmDel84IiveQvO+soMafy2qGGNvf/bFMt+W8UkP9GARjdDw4eikxiU2186ycvfN9P/hsFfPGDBgKmxbA301lW7qPwjZxYW/LfKOCp0uM5eflopr/VOkj7QnEDxf4wJu5W+xqYwIUr23683WUzDEwrOrMhGFEfFxERkYFPgU6RAcQMRcCyMENVrfY9mTmS2qlndVqH4U5jrQn/b8rnybOHGebbzKqMQk6ofguAmvQsALaNOIH5jStYYnMBkBaOnvOH9taZcCe47a22AeQG9lLoSa4Lr++F3oiN6sx1urgm8kEft0gkMVJtbfdTkb5y9+5MfJHOE2aZdP9zpD7s6vax7VldZbGzoeMfwExan/eJQ8MT3haHRmqLiIjIIKNvPyL90MG3N7baFvYFAQhUNdBQ1Dr5TfWmIsxgGJvTjlm3v9X+quxcbh46E+wdL827eeYFLM7eyGJXOg+NOxGA4ekhXJYfgGfyx3Luwlv4cd4kJtV+yIbDIx3zA/sAmFf5LFudj7DF+Wjs391Vd7Z7vs9nRBMi/M8QB1ucjzLCm9Zu2bbkuLyMTc3AwOC3hZG4AqdXF2bx6yFdOg0AJ2XmMK3mPU7MzGaD5xleC97N7KpXul6RSD+0OPDHWJ+9LL/1yGyR3va3nXWdFwLqrdxun2NlVeJ/bPvHns7b7bMyW9yvYSq3bqhtp3T3OfUDhoiIiAwyCnSK9COWZbHvxTUUv/UZltlyvra/LHoBVLx0A/V7y1rsC/uC7H3uI8INAdzZdoxIsGXFhsF11ipC6dmUHff5ds/fOPkMvp46gpnVS/l5ZimBwyNB5vk/ipUZaavjgAXz020YhoXNMHDa7KSFm5L8pIfLyQiXxf55zfpW5zriOv9r2AyDS2qeIyNcxnB310bXjPV6+GJahDsKI1xd+kf+J7Os02POMHdwTcndfC6za8Gc77k2AfAN9x5yA3tJDSvbugwcqeHKpj5rJDYZikhP2lCf1+1jS4Kdl+mqzsegwl5/Vov7NWEvcQxe7TKXTXlHRUREZHDRtx+RfqRizS7KVkUT+oTq/ASrG0gbHc2QGiivw+5yULl+L+F6P4WnTQbADIXZ9/xHhBsD1O8tw+msar1ipM3O1PpV3JHq51+5x/H9Ns5tuFK4eNhszsvNxF4e5uLS+5iZHk3Ac1zNu7FyX6x5gfF5JzGpbj0A/8rdxy/906Gby4pNqlvJ1wvOZ0jpdgB+xVIq8vL5FzN5ubztDOkpdicz0tP5vuMTcsMfM7byk1jQ8ZKSeynIvQzTMHjImsmbFdE6rirI4rHSamyGwZzapdgJc6tzPV9hVLttm5WVw385NnBl+XCGeFI5p+zfYMCi8ke792BFksT1/lc5P29ki21/jpzAB1UK7kv/8/IhO6d1krOuzJzBTl8Gc1KjSfperDydrfXw5H5fL7SwtVs32liQf3rs/qc1EaKp7xIr25Vcy8OIiIiIHCsFOkX6EV9pTex2+eqdVH6yl2k3fx6b04G/rJaqz/aDZVG7/RD1e8pwZnrZ+a8V+Iqj62PWbCkG35ZW9RoONxmhUmZWL2Fj6gltnrt6wqmkpWZwV/X/ix5jWIyrXwuAjabRXQX+nRT4d8bun1HxFFcXDO92oBPgvMhnsdvTa94B4FTjRYy821hc3jqwMjUtnRuc2zmj/KlW+wzDYn7l0wDYcyIss03gj3mVnF/+F/7J9zgxI5vs2gMAHF/3PnBlu+0a4oCFFU+Q6/ofZqe5MQLR4TZOK77EFSLJalLdSiaxssW2ZYXT0Iq00h89VdTAbybYgPZGIrv5yppUJqbbmDM1uuWvO0OsrvL3VhNb+aDCzwcVPX/+XHd6j59DREREpD9RoFOkF5jhCLXbDpI5eRiGve0VI8INAer3lsful67cRsQfovitjYz4/AlUbzoQm74OsPeFNYTqfUQam+bd1e0sITW4ulXdqVNOBJYDcLJtM1tP/ipD68vI2LQUAMPl5dEhM3jAeLHFFPR4XVr5WJePaW5O9WuttjmtAH+pvJ3y7NtYV1vLN/NdOA9fxE6NbOfsiic6rffUyud5OeN0jit7F4DPZWZzqicAh5/GrOAhbhtipwEnT9c62ddYx7m5uSytrGSkN41h9ujY2FuyG5gUbr1uqshg8vngGlKHRH8o+Xe1nYP+BqalZzHda/BUaesEaCK9pSJo0miMJcVq+hGuwprOHl8GIzz1lAZTWFsdoCQQYW3jqQBsr++BOeu97NT8iexvLGd/Q9v9b0RKFlPSTiDQN4NWRURERPqEAp0ivWDvc6upXL8XZ4aX/JMnkHfyeJxpHgCsiEnpyu0cfPszIv6mSedHbpcs30LOCaPxV7RMbuBvNvrzCDMUwQy0vOBxFozBkd00MqvBHuSSlGGMTh3Oq1uXQc5Ibp1xEbVZuYyrWtutx5ceLu+8UAe8kbYTMDitAIvclZyUn8p/l9ze5XptmBxX+27s/h3G2ywzTm5R5tsldwGwO+8O9jXCj0MvU5+1iBNdAeZFoqNjry39Q5fPLTLQnFz1MifzMgAl+b/in36Ym2Jyte9VnmJeH7dOBrtHDozgxuHFYPnASGXh8hT2Nfq4bnQWC/MBAhT5wpy1PNzXTU2YsSmTSLF72w10jkzNI+Cb1MutEhEREelbCnSK9LBD722mcv1eAEK1PoqXbuDguxvJnj6S9PGFHFq2mUB5yyCm4bBhhQ9PwTMt9jy7CsymLAWG3cBqJ2uBFWk2dMMwSD2uAIM9sU0Z4UrmZedQHjZZNvdafunMoMSEvzj2JeYBJ9gXahcnrK7ja94iLdI6QAww3BYgzeFiQt1qbsibQE6ogsn1H7VZVmSwO8/czJ7s45hOMSMaN3Ni5pdYVxMNtgz1pDLe625RviZisaFWoz6l59yzy8dlQyaQb9vAmoYT2NcY/SxcWRmg0OPp49YlTrYrhfHpBQA4rHQKXSPIce+gMtB6fc98Vx6tF+0WERERGdgU6BTpYTWbD7TaZoVNKtfvjQVAm7N7naTyDLXhC2PbjqzBCZAyxIlhmDQcjLR9wnD0YseekU/6rJEYVsup7OPq1/IUaylKOY6THZ/Ha3Pyl9wqLim7tzsPr8cN9W1LaH3j6te0uT3L8PP9PLCXhDlPyYZEOnRWxb85q9n9h4MPcAKXAnBJJvy09KctyvvsmZzi/h7lmkMrPWRvY4iasId8F6ypdgLRv7UtdUF+uzX5p6kfMStnAtnm5wHwHV7ic0bWbpaVbG5RbkxaLt7QvLgywIuIiIgMJG0vFigiCROqjz9xjSPFSYrvb4R2PIHhaLt72ssfxm4carcOK+TDO+FzZMyyMKyP2y03onEjVxZk8Vrqsn4b5OxNM8K7uL70z33dDJGklO/fQ47LC0CW0Tqo5I3UcFN2ELuhrx3Sc8KWAdgoGcD54lLsqa22OQx7i/t2w8b8nPlY+povIiIig5BGdIr0sFB9/COYUrLKCG1/GwB3lhOXu5LaA9GLGne2G6c3SPijl7H7S8H1gxbT2QGwGVjBajyjysHqfN3M/yv7WfwPZICbV/FMXzdBJKldlWNw9yGYE1jf5v5vl9zFt4EFabezrb7tJSREjsWcZSHgBGIZ5wYYu2HDG57TKrf8MPcE4DMATsoZzXj75QT8Rq+3T0RERKQ/0E+9Ij3IDIUxA/EnPjDCTSM13eZyQuv/P1yZ0bXu3CmHYP/dAERKVpM+tPWQFUeKE8OyAP+xNVxEpIsmmyUM9aTyuao3Oiyn8ItI94xJy8W0nK2226wUAFIcTo7zfh4M9TIREREZvDSiU6SHVG8+QPFb0REWrkw3HucaQsYsfGVtz6lLHWYQ3v7v2P3AZ3djWBE8kZcIch6RTXdi1hfF9kc+u5X0glNi9w3vEIKuz2NPy8WyKhVMEJFedXbVs5zgHo1hdLwq4J8d73C+MYuwZWIzDExLqwiKdOSsIdNZXbGdOTknE2pjkkggUMg1I6/Bstz4g5m930ARERGRfkSBTpEeEqisx1dchc3twFX1e0IHVwCQPnoRVuFXaShxYoVNPLluXI1PE/ro8RbHG1Y02VBo68OknXwO4eIDLYKXVmMJ4T0vtTjGPWsinmnTMVjWo49NRORoaeEK0sIVnZabXvMOp+ecw9sVFXhsDhojSgst0pGhrjHMyrFwRIa0mUTdtJz4AoW93i4RERGR/kiBThlUwo0BaneUkHP8qNi2hgOVuLNScaS6E3ouMxidsp6etobgrhVNbdj7Cux9hZSMsThGfIHAhnsJWe1kUD9S16YfYnelYgbqsWcUgGEQqSlpVS702W9JPS2bVgt4iYj0I/+f+Q5nFU7HTQMBHPy63I1PAU+RmPOGnkiOMx8AIzKSUc4CAqGMPm6ViIiISP+nQKcMChF/iJLlWyhZsRUzEMYMhck7aRxVn+1n99MfkjVlGOO+elpCz3kk0Bkuernt/bW7CW76W1xTzK36YrxTTyFYeoD0mTaCpSNo2NA60Gn5K8DSpHUR6d9mVi9hJkti91/KvINV1ZV92CKR/qXQPgu/PxuA6E+h6X3ZHBEREZGkoUCnDGhWxKTkg20cencTEV8QiK6Xue/FNTQWVVK2egdYULVhP9UnHiBryvDEnNeyiDTWkDbcIrJ6Y5ePt3kzMH212NPziNRFs6e7hoZwDQuDeQhH1pgOjm7oXqNFRPrI5e5DDMkfwopaH+WBNhYhFBlE0p1u/IEsZe4SERER6QZlXZcBy1dSw5a/L+HAa+uJ+IKkDHGQ7vgX9u1X4c52UrYqGuQ8orEoMaOJGour2HrvW/iLdxFZ/bUuH+/IGkLmqXl4Rk8nY7aFd/yJ0R3WBgwzmpXd5liLPT2v1bGGKwUsBQlEJLl8tfTP/L38p5yYltJie5rD1UctEuk7ee50ZU4XERER6SaN6JQBxzItSpZvoXjpBqywibfAhbPuaUJrnyAMYLNj3/sT3MPvJBI0AYNwQ5BI4NjWh4v4gxx4c0N0lKhpkTE82LKAzQ5mx2txOgvGkDYjAuYuvBOmg1mBe1QVztwzjkow1EDazJOo/2Rz0+OOhLF70oDGY3ocIiJ9ZbgjTKGnKdg51O3mYKDpq0rYtKgI6sccGdgKPVl93QQRERGRpKVApyS9xu0PkTLxOgDq95azb/HaaLZzp52Mgm0E1/2cEGBPzyPt+GnYPLuoW1ON7bNLYkOaPbP/RcTXvUCnZVlUrttD0WvrCTcEmu3wx26mTJuDe8h2Iv7pNG7eQbjqQIs6HJlDSJs5HowVTYmEzM8AMDCxp7bOom5zvEfGSc1ORwaB/fnA/m49DhGRvnZn6W3c2XxDoOX+Es8ETuTC3mySSK8b51xEuOPfRUVERESkHQp0SlKzwn7q1tyKPefzFL+9l8r1e8ACb4ELe9GdBPesxZaSSdoJM7F7PwLrPTAh/aTjqH6vCiscvYq2Nv8ICv7V5fM3Hqxi30tradhb3nqnGQ10ukdMxT3kE7B82N3LSJtpA07BvzdAoGgr6SeejD31I7BWtK6jCwxqcY+0H1MdIiL9WaF/B9kuD1VBf+eFRZJUxNRnuYiIiEh3KdApSS1UuQ4zUE7F62fiNtIYehyABeEyjBwLGAlmJbCsxXqcWBvJOr0ADDdg0Lg9HbN6PWboVGzOzruFFTEpXrqBQ+9vAdNqtT91mI3IzkcBSJnkarFupoEJrMI7GjyjPdEp6a2r6B7rIyUvEJEBbbTXq0CnDFinF0zBsvT1XERERKS79E1KkpsVnedthLZ049jSWIAxZeI4GqoqKHl/K0PPPK7Dw3wlNex++kN8xVWt9rky3XjMVwh99GDTaazd7cYeDRJ7sa7cBSIy0Hn0RicDWLojneiC4iIiIiLSHQp0igCYu3BnHOTQ+1vInDqclKFZbRZrKKpk631vYR21eJbhsJNeUExo/U8JhRoA8IybiWekF4OVPd16EZFB4xb7WsoLcltsCxkObi5JxUrY8HgZTBYNm8Wayq2U+Ov6tB2ZTg959un4FOgUERER6TYFOkUOs0W2kJK7gO0PvsPE6xe2Geys3X6wVZAzdagNY8+dhD5a32K7My8Tw9Y6iZCIiHTfaZXPtbn9wYxf80lt65H2Ip3JdY5kTFpVnwc6zyg4AV8gv0/bICIiIpLsbJ0XERkcbM5a2PW/WGaE7Q++Q/2+1gmGanccit12prvIyHgLc80VRMrXtyjnyB2BI62hp5ssIiKH3ejZg8eu32+l6wzsTEqdzsjU7ITWm+NO4fxhs1r8G5eWx5lDprcqO9SbQZYxM6HnFxERERmMdEUgcoT1Cc60GRihB2l0Xs/We9+i4NSJDD/neGwuB+Uf7aR+dxkAacMjmBtuJOQrjR5r2PCMOg7X8Bzs3iIwd4JV1IcPRkRkcLmg7AH+nP4rNtZW93VTJNlYDgL+cUzJ2MP+hsSNCh6RkkNa+MwW207OWYczMoF053bqQoHY9ikZI/EHMxN2bhEREZHBSoFOkWa8E0yq3n6TlJHQ6PkGpSu2Ub3pAEMXTGP/yx/jynLj4V1Cq/8Edicp0+bgyrNjOLaAtSFaidm3j0FEZLA6zRvBsrJabNvna6Q+HOybBklyOJzlPNuRw6SMQgBqgo3HNJV9bFouQzy50HK1G9zmKIIRNzOyRlEeqI1tz3PlQwAREREROUYKdIo0Z24k6/TTqH7vTdyZ27FNvIP64gb2Pv8R3gIX1ieXEzLDuIZMIPU4G5gfRo9T/gsRkT73i9JftNp2e8HPuadEgU5pn2W5ozcCs5npmQ2AJ2snj+57ttt1npp2JaGIp9V2XzCaSGuEcTEjmu9WkFNEREQkIbRGp8hRDNsKsk6fi1Wzm8hHXyEj6wPcOW5s+36OYUVIn3U6KVP3gbmtr5sqIiKdOMXc1ddNkH7Oslytt0UKul3fEG8GIbN1kFNEREREep5GdIq0wbCtIHvhTOo/rSS08c/Y+DO2nOFknpkH5nt93TwREYnTOeX/Yqsz/iQzb2dfwo2lGT3YIulP5hdMJhBMA6Pl9kAona8O+X73KrUMIprpISIiItInFOgUaY+1nrTjvYRrz6B+/UrST8wG87O+bpWIiHSBDZP0cEXc5ceEdgMn9FyDpF9Jc6RB2GhzX8RsPdJTRERERPo3BTpFOmL5cKQvI+uMfAU5RUQGgUl1q5mTtZAPqysB+GZhOgsjm2L7r6saiz8S7qvmSYJcOfp8HFY6mBn4+roxIiIiIpIwCnSKxMMs6+sWiIhIL/BGapnsinA41Rznhdcxt/LF2P4s920cUqAz6dnCo/GF0vu6GSIiIiKSYAp09jN79+7lT3/6E6+88gr79+/H7XYzfvx4Lr/8cr7zne+QkpLS100UEREZ0M6PbCBvyCQAplatarFvgtfDIX9Dj537yoIshtj8nZZb0ujl09qqHmvHQHJK3jiGe4e32BYKKlmQiIiIyECkQGc/snjxYr7+9a9TW1sb29bY2MiaNWtYs2YNDzzwAK+88goTJkzow1aKiIgMbPMrn2Z+O/vOd5WxHFuPnNdls3N75e/wRmo6LVtV8Es+re20mADjUyYT9s9osc3so7aIiIiISM9SoLOfWLduHVdccQU+n4+0tDR+/OMfs3DhQnw+H0888QT3338/27ZtY9GiRaxZs4b0dE23EhER6W1nNrzNvOzLe6Tuya4w3tLOg5wALmPwpPWelTumxf1Sfy37Gio7PGZMWi557uh3JSeZaLEBERERkcFBgc5+4uabb8bn8+FwOHjzzTeZO3dubN+ZZ57JxIkTufXWW9m2bRu///3v+cUvftF3jRURERmkRjV8wlN80tfNwGENjjGJ2S4v4+wtA8vH5RbxSMO/2z3GYdg4PfPL+EMZAPg6XwlARERERAaInpl7JV2yevVq3n//fQCuv/76FkHOI2655RamTp0KwN13300oFOrVNoqIiEj/4TEi2A0bNsPo66b0qBEpOa22+f3DyHOnYjdsbf47Z+jMWJBTRERERAYXjejsB1544YXY7euuu67NMjabjauvvpof//jHVFdX884773Duuef2UgtFRESkP/lByR38ANifOoNT6gfu94GT0s+iMdBym4WNMzO/0/5BmqcuIiIiMmhpRGc/sHz5cgBSU1M56aST2i13xhlnxG6vWLGix9slIiIi/dvIhg2MTEnr62b0IHtfN0BEREREkohGdPYDmzdvBmDChAk4HO2/JFOmTGl1TLyKioo63L9///7Y7YMHD3ap7r4ULCulquN8BCIiIgPa3anP0WDrP1O1N3km85vSY/+KaTNs1DjqCJlarkdERDpW6fJQlJ08P/w1v+YOhzUVQSSRDMuyBk/azn7I7/fj9XoBWLRoES+//HKH5dPS0mhoaGDOnDmsXLky7vMYA3wNLxEREREREZFks3r1ambPnt3XzRAZMDR1vY/V1dXFbqeldf4LVGpqKgD19fU91iYREREREREREZFko6nrfczv98duu1yuTsu73W4AfD5fl87TfGp6e+3YsmULhYWF5OfndziFvr84ePAgJ598MhD9FWzo0KF93CLpCr1+yU+vYfLTa5j89BomN71+yU+vYfLTa5j8kvE1DIfDlJWVATBjxow+bo3IwNL/o1kDnMfjid0OBoOdlg8EoqlHj0x3j9eIESM6LTNhwoQu1dmfDB06NK7HKP2TXr/kp9cw+ek1TH56DZObXr/kp9cw+ek1TH7J9BqOGTOmr5sgMiBp6nofS09Pj92OZzp6Q0MDEN80dxERERERERERkcFCgc4+5vF4yM3NBTrPjF5VVRULdI4cObLH2yYiIiIiIiIiIpIsFOjsB6ZNmwbAjh07CIfD7ZbbsmVL7PbUqVN7vF0iIiIiIiIiIiLJQoHOfmDevHlAdFr62rVr2y23bNmy2O3TTjutx9slIiIiIiIiIiKSLBTo7Acuuuii2O2HHnqozTKmafLoo48CkJWVxcKFC3ujaSIiIiIiIiIiIklBgc5+4OSTT2b+/PkAPPjgg6xcubJVmd///vds3rwZgJtvvhmn09mrbRQREREREREREenPHH3dAIm6++67Oe200/D5fJx77rn85Cc/YeHChfh8Pp544gnuu+8+ACZNmsQtt9zSx60VERERERERERHpXwzLsqy+boRELV68mK9//evU1ta2uX/SpEm88sorTJgwoZdbJiIiIiIiIiIi0r8p0NnP7N27l7vvvptXXnmFoqIiXC4XEyZM4Mtf/jLf/e53SUlJ6esmioiIiIiIiIiI9DsKdIqIiIiIiIiIiEjSUzIiERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU5JSnv37uWWW25hypQppKamkpOTw+zZs/m///s/Ghsb+7p5g9KaNWu4/fbbOffccxkxYgRut5u0tDQmTZrEddddx/Llyzut4+GHH8YwjLj+Pfzwwz3/oAaZeJ/7BQsWdFrXa6+9xsUXXxz7WxgxYgQXX3wxr732Ws8/kEFqwYIFcb+GR/69++67LepQH+w5paWlvPzyy9x222184QtfIC8vL/ZcXnvttV2uLxF9LBwOc8899zB//nzy8/Pxer2MHz+eb33rW2zcuLHLbRroEvEaNjY28txzz3HjjTcye/ZssrOzcTqd5ObmMnfuXH7xi19w6NChTuvpSn+XJol4DRP9PtnY2Mhdd93F7NmzycnJITU1lSlTpnDLLbewd+/eY3vAA8yxvn579uzp8ufkmDFj2qxLfbB7EnG90Jw+C0WkTZZIknnppZesjIwMC2jz36RJk6zt27f3dTMHlfnz57f7ejT/d/XVV1uBQKDdeh566KG46gGshx56qPce4CAR73N/xhlntFtHJBKxrr/++g6P/8Y3vmFFIpHee2CDxBlnnBH3awhYNpvNKioqalGH+mDP6ei5vOaaa+KuJ1F9rKyszJo9e3a7dbjdbuv+++8/xkc9sBzra/jJJ59YaWlpnfatjIwM64knnuiwrq70d2mSiH6YyPfJ7du3WxMnTuzwb2Hx4sXH/sAHiGN9/Xbv3t2lz0nAOvfcc9usS32w6xJ1vWBZ+iwUkY45EEki69at44orrsDn85GWlsaPf/xjFi5ciM/n44knnuD+++9n27ZtLFq0iDVr1pCent7XTR4UiouLARg2bBhf/vKXmT9/PqNGjSISibBy5Up+//vfc+DAAR599FFCoRD//ve/O63zjTfeYNiwYe3uHzFiRMLaLy3deOON3HTTTe3uT01NbXffT3/6Ux588EEATjzxRG699VbGjx/Pzp07ueuuu1i3bh0PPPAA+fn53HnnnQlv+2D20EMP0dDQ0GGZTZs2ccUVVwBw1llnMXz48HbLqg/2nFGjRjFlyhTefPPNLh+biD4WiUS4+OKL+eijjwC45JJLuOGGG8jJyWHVqlX8+te/prS0lG9961sMHz6cL3zhC91/sANUd17D2tpa6uvrATjttNP44he/yKxZs8jNzaWsrIznnnuO+++/n9raWq688koyMjI6fe5nzZrFQw89dEyPZbA6ln54xLG8T9bV1bFo0SK2b98OwA033MBXvvIVvF4v77zzDr/5zW+ora3liiuuYMWKFcycObPb7RyIuvP6DR8+nA0bNnRa7je/+U3su+o111zTYVn1wfgl8npBn4Ui0qG+jrSKdMWRXwIdDof1wQcftNp/1113xX6B+/nPf977DRykFi1aZD355JNWOBxuc39ZWZk1adKk2GuzbNmyNss1HyWxe/fuHmyxtOVY+87WrVsth8NhAdasWbOsxsbGFvsbGhqsWbNmxfqwRl73vltvvTX2Oj/22GOt9qsP9pzbbrvNWrx4sXXo0CHLslqOLIp3JFmi+tiDDz4YO/dNN93Uav/27dtjMycmTJhghUKhrj3YAepYX8MVK1ZYl19+ubVx48Z2y7zwwguWYRgWYI0fP94yTbPNckdGk3U0wl5aS0Q/TNT75M9+9rNYPXfddVer/StWrIj1d73OUYl4/ToTDoetYcOGWYCVnp7e6n32CPXBrkvU9YI+C0WkMwp0StJYtWpV7MPoW9/6VptlIpGINXXqVAuwsrKyrGAw2MutlPYsXrw49vp973vfa7OMgix961gDnTfeeGOsjpUrV7ZZZuXKlR1+qZSeE4lErOHDh1uAlZaWZjU0NLQqoz7Ye7pzgZ6oPnbkczInJ6fNvwPLsqzf/OY3sXqeeuqpuNo32PREkMWyLOvSSy+N1bt27do2yyjIkhh9FegMBoNWZmamBVhTp05td3rtt771rdi5Vq9e3a1zDWQ90Qdff/31WJ3XXXddu+XUB3tGPNcL+iwUkc4oGZEkjRdeeCF2+7rrrmuzjM1m4+qrrwagurqad955pzeaJnFYuHBh7PbOnTv7sCXSEyzL4sUXXwRgypQpzJkzp81yc+bMYfLkyQC8+OKLWJbVa20c7N566y0OHDgAwGWXXUZKSkoft0i6IlF9bNu2bWzevBmAyy+/vN2/g+aJPZ5//vljbb50gT4vB7533nmHmpoaIDo12mZr+5JM/bD3Pfroo7HbnU1bl8Tr7P1Pn4UiEg8FOiVpHMnCl5qaykknndRuuTPOOCN2e8WKFT3eLolPIBCI3bbb7X3YEukJu3fvjq291LwPtuXI/gMHDrBnz56ebpoc1vzi7cgPQpI8EtXHmme07aieIUOGMGnSJECfpb1Nn5cDX7z9cNasWbEAjPphz6urq4sNrBgzZgynn3563zZoEOrs/U+fhSISDwU6JWkc+dVtwoQJOBzt59GaMmVKq2Ok7y1btix2e+rUqZ2Wv+666xg2bBgul4u8vDzmzJnD//zP/8RGpEnPefrpp5k2bRopKSmkp6czceJErrnmmg5HSG/atCl2u3kfbIv6aO+rr6+PjUQYPXo0CxYs6PQY9cH+JVF9rDv17N+/v9NEV5I4Xfm83LJlC6eccgpZWVl4PB5GjBjBhRdeGEvmIT2ru++T8fZDh8PBhAkTAH1e9oZnnnmGxsZGAK666ioMw+j0GPXBxOrs/U+fhSISDwU6JSn4/X7Ky8uBzjP9Zmdnx7JC79+/v8fbJp0zTZPf/va3sfuXX355p8e8++67HDx4kFAoREVFBatWreKOO+5gwoQJ3HvvvT3Z3EFv06ZNbN68GZ/PR319PTt27ODRRx/lzDPP5OKLL45Nt2uuqKgodruzPjpy5MjYbfXR3vHss8/Gvpx//etfj+viTX2wf0lUH+tOPZZltThOes4nn3zCK6+8AsCMGTM6DXSWlJSwevVqampqCAQCHDhwgJdeeolrrrmGmTNnKjjWw7r7PnmkP6WmppKVldXhOY70w7Kyshaj3STxujPzQX0wceK5XtBnoYjEo/1hcSL9SF1dXex2Wlpap+VTU1NpaGigvr6+J5slcfrDH/7A6tWrAbjkkks6XHpg3LhxXHLJJcydOzf2xWLXrl08++yzPPPMM/j9fr797W9jGAbf/OY3e6X9g0VKSgoXXHABZ511FlOmTCEtLY2ysjKWLVvGPffcQ0VFBS+88AIXXnghS5Yswel0xo7tSh898kMEoD7aS7py8aY+2D8lqo+pr/ZfgUCAb3zjG0QiEQDuuOOOdsvabDbOOusszj//fE444QRyc3Opq6vj448/5t5772Xz5s1s2rSJhQsXsnr1akaNGtVbD2NQONb3ySP9MN7vtEfU19fjdrsT9CikuX379sVGE5566qmxkbTtUR9MvHiuF/RZKCLxUKBTkoLf74/ddrlcnZY/8iXQ5/P1WJskPsuWLeO///u/ASgoKODvf/97u2UvvvhirrnmmlajzWbPns0VV1zByy+/zCWXXEIoFOK//uu/uOCCCxgyZEiPtn8wOXDgQJsjS8455xy+973v8YUvfIF169axbNky/v73v/Of//mfsTJd6aPNL9LUR3teUVER7777LhBdnP/IWlNtUR/svxLVx9RX+6/vfve7rFmzBogmQfnSl77Ubtnnnnuuzffr+fPnc9NNN3HDDTfwyCOPUFJSwve//32ee+65nmr2oJOI98kj/bAr32lB/bAn/fOf/4wlrIlnNKf6YGLFe72gz0IRiYemrktS8Hg8sdvBYLDT8kem9ni93h5rk3Ru48aNXHzxxYTDYTweD08//TQFBQXtls/MzOxwSu0Xv/hFbrvtNgAaGxt58MEHE97mwayj6XOFhYU888wzsVGcf/7zn1vs70ofbT71Tn205/3zn//ENE2g8wyy6oP9V6L6mPpq//Sb3/yGBx54AIgGzP761792WL6j92un08kDDzwQyzj8/PPPa23dBErE++SRftiV77SgftiTHnvsMSAa1Lriiis6La8+mDhduV7QZ6GIxEOBTkkK6enpsdvxTBk4shZdPFOCpGfs3r2bc889l6qqKux2O0888URCsld+85vfjF1gNF+wXHreuHHjOOeccwDYsWNHLOsldK2PNl/IXX2053X14q0z6oN9I1F9TH21/7n33nv5yU9+AkSTXrz66qstpkp2h8Ph4Prrr4/dV1/tXZ29Tx7ph135Tgvqhz1l9erVbNmyBYALLrig03VT46E+GJ+uXi/os1BE4qFApyQFj8dDbm4uQKeLQFdVVcU+kJovQi29p7i4mLPPPpvi4mIMw+Af//gHF154YULqLigoiP0t6Nfx3jdt2rTY7ebPf/OF3Dvro80XhFcf7Vlr1qyJZRb94he/SHZ29jHXqT7YNxLVx7pTj2EYnSZrkO55/PHHuemmmwAYPXo0S5YsIS8vLyF1t/d+LT2vs/fJI/2poaGB6urqDus60g/z8/O1PmcP6U4SonioD3asO9cL+iwUkXgo0ClJ48iXhR07dhAOh9std+QXWaDTbKWSeOXl5Zxzzjns2rULiE5xTuSXRiCujNHSM9p77pt/mW/eB9uiPtp7ml+8dTZtvSvUB3tfovpYd+oZOXLkMY8wlNZeeuklrr76akzTZOjQobz11lsJvYhWP+1bHT3/8fbDcDjMzp07AX1e9pRQKMQTTzwBRAPUn//85xNWt/pg+7p7vaDPQhGJhwKdkjTmzZsHRH/9Xrt2bbvlmk8NOe2003q8XdKkpqaG8847LzaC7Le//S3f+c53EnqOsrIyysvLARg2bFhC65bOHXltoeXzP3bs2Nj9zqZnvffeewAMHz6cMWPGJL6RArS8eMvPz+cLX/hCQupVH+wbiepjRz5LO6vn0KFDbNu2DdBnaU946623uPzyywmHw+Tm5rJkyRLGjx+f0HO0934tPa+z98l4++GaNWtis5TUD3vGK6+8QkVFBQBf+9rXcDgSl6tXfbBtx3K9oM9CEYmHAp2SNC666KLY7YceeqjNMqZpxkYwZWVlsXDhwt5omhBdcH/RokV8/PHHAPz0pz/lRz/6UcLPc99998WyYp5xxhkJr1/at3v3bpYsWQLA+PHjGT58eGyfYRix6UZbtmzhww8/bLOODz/8MPbL+IUXXqjRDj3otddeo6ysDEjsxZv6YN9IVB+bNGlSbGTLU089RWNjY5v1PPzww7HbF1988bE2X5r54IMPuPDCCwkEAmRmZvLGG29w3HHHJfQc4XCYf/zjH7H7iVgjW+LX2fvkggULyMzMBOCRRx6JlT2a+mHP66mZD+qDbTvW6wV9FopIXCyRJDJ//nwLsBwOh/XBBx+02n/XXXdZgAVYP//5z3u/gYNUIBCwzj333Nhzf/PNN3e5jt27d1sff/xxh2UWL15suVwuC7C8Xq9VVFTUzRbL0V566SUrFAq1u//QoUPWiSeeGHuNf//737cqs3XrVstut1uANWvWLKuxsbHF/sbGRmvWrFmxPrxt27aEPw5pcumll8Zer7Vr13ZaXn2wd+3evTv2+lxzzTVxHZOoPvbggw/Gzv2d73yn1f4dO3ZYGRkZFmBNmDChw/eGwaw7r+G6deusrKwsC7BSU1Ot5cuXd/m8b7/9tlVVVdXu/mAwaF1zzTWxtn3pS1/q8jkGi66+hol8n/zZz34WO/ddd93Vav8HH3xgORwOC7DOOOOMeB7OoNOdPthcRUVF7LWaMWNG3MepD3ZPIq4XLEufhSLSucSNzRfpBXfffTennXYaPp+Pc889l5/85CcsXLgQn8/HE088wX333QdEf6W75ZZb+ri1g8dXv/pV3nzzTQDOPPNMrr/+ej777LN2y7tcLiZNmtRi2549e1i4cCFz587lS1/6EieccAIFBQUA7Nq1i2eeeYZnnnkmNurhd7/7XYsRhXJsvve97xEKhbj00kuZO3cuY8aMwev1Ul5ezrvvvsu9994bm4Y3b968NqcYTZo0iR/+8If89re/Zc2aNZx22mn86Ec/Yvz48ezcuZP//d//Zd26dQD88Ic/ZOLEib36GAeTqqoqXn75ZQCmT5/O5z73uU6PUR/sWcuXL2fHjh2x+0f6E0TXnm4+agTg2muvbVVHovrYNddcwz/+8Q9WrFjBX//6Vw4dOsQNN9xAdnY2q1ev5le/+hW1tbXYbDb+9Kc/JXQqZzI71tdw586dnHfeebHkM7/+9a/JzMzs8POyoKAg1g+PeOSRR7jgggu44IILWLBgAZMnTyYjI4P6+nrWrl3LfffdF5sSWlBQwN13392NRzswHetrmMj3yR/+8Ic8+eSTbNu2jVtvvZUdO3bwla98Ba/XyzvvvMOdd95JOBzG6/Xyxz/+8dgf/ACQiPfR5p544gmCwSDQtdGc6oPdk4jrBdBnoYjEoY8DrSJd9tJLL8V+XWvr36RJk6zt27f3dTMHlfZei/b+jR49ulUd77zzTlzHpqSkWPfee2/vP8gBbvTo0XE9/5deemmHoxgikYj1H//xHx3Wcf3111uRSKT3Htwg9Pe//73DkUJtUR/sWc1H98Tzrz2J6mNlZWXW7Nmz263D7XZb999/f6KfhqR2rK/hQw891OXPy7Zmp8TbjhkzZlgbN27shWcmeRzra5jo98nt27dbEydObLeejIwMa/HixT3xVCSlRL2PHnHKKadYgGW3262DBw8mvB3qgy119f2vreuFI/RZKCId0c8SknS+9KUv8emnn3L33XfzyiuvUFRUhMvlYsKECXz5y1/mu9/9LikpKX3dTOmik046iX/+85+sXLmSNWvWcPDgQcrLywmHw2RnZ3Pcccdx1lln8Y1vfKPV6BY5do888gjLli1j5cqV7Nq1i/Lycmpra0lLS2PkyJGceuqpXHPNNcydO7fDemw2Gw8++CCXXnop9913Hx999BHl5eXk5eUxe/ZsvvWtbyUsKY6077HHHgPAbrdz5ZVXxnWM+mBySFQfy8vL44MPPuD+++/n3//+N5s3b6ahoYFhw4Zx1llncfPNNyd83UhJjB/96EfMnDmTlStXsmnTJsrKyqisrMTtdlNYWMisWZjyAVUAAAeQSURBVLO47LLLuPjii7Hb7X3d3AEl0e+TEyZMYN26dfz1r3/l6aefZseOHQSDQUaOHMn555/PzTffzOjRo3vhkQ0+27dvZ9WqVQCcc845DBkyJO5j1Qf7nj4LRaQjhmW1s/q1iIiIiIiIiIiISJJQ1nURERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvQU6BQREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIj0sYcffhjDMDAMgz179vR1c0REREREkpICnSIiIiLdtGfPnliA8lj+iYiIiIjIsVOgU0RERERERERERJKeYVmW1deNEBEREUlGoVCIrVu3trt/xowZAMyaNYuHHnqo3XLTp09PeNtERERERAYbR183QERERCRZOZ3OuIKUqampCmaKiIiIiPQwTV0XERERERERERGRpKdAp4iIiEgf6yzr+oIFCzAMgwULFgCwY8cOvv3tbzNu3Di8Xi9jxozh+uuvZ+/evS2O++yzz7juuusYN24cHo+HkSNHcuONN1JaWhpXu1544QW+/OUvM2rUKDweD1lZWcyaNYtf/vKXVFVVHevDFhERERFJKE1dFxEREUkiS5cu5ZJLLqGuri62be/evfzjH//g5ZdfZtmyZUyZMoXHH3+ca6+9lmAwGCtXVFTEPffcw2uvvcYHH3zAsGHD2jxHVVUVl112GW+//XaL7YFAgLVr17J27Vr+9re/8eKLLzJnzpyeeaAiIiIiIl2kEZ0iIiIiSaK4uJjLL7+crKws/vznP7Nq1Sref/99vv/972MYBqWlpXzjG9/go48+4uqrr2b8+PE88MADrF69mnfeeYerrroKiAZGf/CDH7R5jkAgwNlnn83bb7+N3W7nqquu4vHHH+fDDz/k/fff54477iA3N5fS0lLOP//8VqNIRURERET6ikZ0ioiIiCSJ7du3M3HiRFasWEF+fn5s+7x583A4HPzud79jxYoVLFq0iJNPPpklS5aQkpISK7dgwQL8fj9PP/00zz77LGVlZS3qAbj99tv5+OOPycrKYunSpZx00kkt9s+bN48rr7ySuXPncvDgQX7yk5/wr3/9q2cfuIiIiIhIHDSiU0RERCSJ/OlPf2oVnAS46aabYrfLy8t54IEHWgQ5j7jxxhsBCIfDrFy5ssW++vp6/vrXvwLwq1/9qlWQ84jRo0fzs5/9DICnn36ahoaG7j0YEREREZEEUqBTREREJElkZWVx3nnntblv7NixpKenA3D88cczderUNsudcMIJsdu7du1qsW/ZsmXU1NQAcNlll3XYltNPPx2AUCjE2rVr43sAIiIiIiI9SFPXRURERJLExIkTMQyj3f1ZWVnU1dUxadKkDssc0TyhEcCaNWtit4cOHRp3uw4dOhR3WRERERGRnqIRnSIiIiJJoq2p6M3ZbLZOyx0pAxCJRFrsKy0t7Va7Ghsbu3WciIiIiEgiaUSniIiIiAAtA58ff/wxTqczruNGjBjRU00SEREREYmbAp0iIiIiAkBubm7sdn5+vgKYIiIiIpJUNHVdRERERAA48cQTY7dXrFjRhy0REREREek6BTpFREREBICzzz47tr7nn/70JyzL6uMWiYiIiIjET4FOEREREQGiGdm/+93vAvDBBx/wX//1X5im2W75kpISHnjggd5qnoiIiIhIh7RGp4iIiIjE3H777SxbtoxVq1Zx99138+6773LDDTcwc+ZMUlNTqaqqYuPGjSxdupTXXnuNGTNm8I1vfKOvmy0iIiIiokCniIiIiDRxu90sWbKEa6+9lueee45PPvkkNsqzLRkZGb3YOhERERGR9inQKSIiIiItpKen8+yzz7J8+XIeeeQR3n//fYqLi/H5fGRkZDB+/HhOPvlkFi1axLnnntvXzRURERERAcCwtMq8iIiIiIiIiIiIJDklIxIREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU4RERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvT+f+WvZVe2hlgcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'fitness_function_mutation_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_sequences=6,\n", + " # Track the 6 most represented genomes overall (remaining genotypes are\n", + " # lumped into the \"Other\" category).\n", + " track_specific_sequences=['BADD']\n", + " # Include the initial genome in the graph if it isn't in the top 6.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a heatmap and dendrogram for pathogen genomes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate a heatmap and dendrogram for the top 15 genomes, include the ancestral genome _BADD_ in the phylogeny. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPeCAYAAAARWnkoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6v0lEQVR4nOzdfZxXdZ03/tcMo0MyCAXiDKagSzqChmabN/tDYUUdSswyK6/chFo3UfcGNpUpVwajZvXaDbvWwEtuxL2sxWjZXZdcciOxLF1brbx32/byZmtG1CAZZMaU+f3hxTdH7hkO35nh+fRxHg+/57zP+b7P3DGv+XzOORWdnZ2dAQAAAPa4ynI3AAAAAH2V0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCq7uz85NP37Kk+yqp+5GnlbgEAAIA+qFuhe1Pnpj3VBwAAAPQ53QrdnZ2de6oPAAAA6HO6N9IdoRsAAAC2pZsj3aaXA5RbY2Nj2tvby90GAL1M//7909zcXO42oM/r5jXdRroByq29vT1z584tdxsA9DLTp08vdwuwT+jeSHeMdAMAAMC2GOkGAACAgnRzpFvoBgAAgG0x0g0AAAAF6Wbodk03AAAAbIvp5QAAAFAQ08sBAACgIEI3AAAAFMRzugEAAKAgRroBAACgIEI3AAAAFMTdywEAAKAgRroBAACgIN0L3Ua6AQAAYJu6N73cSDcAAABsk+nlAADs8xobG9Pe3l7uNvaqNWvWZPr06eVuY6/r379/mpuby90G+xDTywEA2Oe1t7dn7ty55W6DvWBf/EMD5WWkGwAAAArimm4AAAAoiOnlAAAAUBDTywEAAKAgppcDAABAQUwvBwAAgIJ0c3r5nmoDAAAA+h7XdAMAAEBBKruzc2cf+W93fPWrX83IkSPTv3//nHjiiXnggQe2W79u3bpcdtllqaurS3V1dY488sjceeedu/XeAAAA9A5GunfD7bffnhkzZuSmm27KiSeemBtuuCFnnXVWnnrqqQwbNmyL+ldffTVnnHFGhg0blm9+85s55JBD8swzz2Tw4MF7v3kAAAD2GqF7N3z5y1/OxRdfnKlTpyZJbrrppnzrW9/K4sWLM3PmzC3qFy9enF/96lf54Q9/mP322y9JMnLkyL3ZMgAAAGXQzenlfWPZFa+++moefPDBTJw4sbSusrIyEydOzH333bfVfe64446cfPLJueyyy3LwwQfnmGOOyZe+9KW8/vrru/juAAAA9CZGupN0dHSko6Ojy7rq6upUV1dvUfviiy/m9ddfz8EHH9xl/cEHH5wnn3xyq8f/r//6r3z3u9/NJz7xidx55535z//8z1x66aX5zW9+k1mzZu25EwEAAKBH6dZI96bOzj6xNDc3Z9CgQV2W5ubmPfUxzqZNmzJs2LDcfPPNOeGEE/Kxj30sn//853PTTTftsfcAAACg5+neSPee6qLMGhsbM2PGjC7rtjbKnSRDhw5Nv3798vzzz3dZ//zzz6e2tnar+9TV1WW//fZLv379SuuOPvrotLa25tVXX83+++/fzTMAAACgJ+reNd2dnX1iqa6uzoEHHthl2Vbo3n///XPCCSdk1apVpXWbNm3KqlWrcvLJJ291n9/7vd/Lf/7nf2bTpt/+meI//uM/UldXJ3ADAAD0Yd2cXt43ll01Y8aMLFiwILfeemueeOKJTJs2LRs2bCjdzfyTn/xkGhsbS/XTpk3Lr371q/zpn/5p/uM//iPf+ta38qUvfSmXXXZZdz78AAAA9HBupLYbPvaxj+WFF17INddck9bW1hx33HFZuXJl6eZqzz77bCorf/v3jEMPPTTf/va3M3369Lz73e/OIYcckj/90z/NVVddVa5TAAAAYC/oVuju3OUHbvUdl19+eS6//PKtblu9evUW604++eTcf//9BXcFAABAT9LNke491QYAAAD0PaaXA1tobGxMe3t7udtgJ61ZsybTp08vdxvsgv79++/RR1MCAD1X96aXy9zQJ7W3t2fu3LnlbgP6LH8kAYB9h+d0AwAAQEFMLwcAAICCmF4OAAAABTHSDQAAAAVxTTcAAAAUpJvTy410AwAAwLZ0c3r5nmoDgH3Jvv4seM9W96xyAPYdbqQGwF7nWfDs6390AGDf4UZqAAAAUBAj3QAAAFAQ13QDAABAQbo30r2nugAAAIA+yDXdAAAAUBDXdAMAAEBBXNMNAAAABTHSDQAAAAVxTTcAAAAUxEh3L9Te3p7+/fuXuw0AAAB2oLI7O2/q7BtLb7Bp06Z84QtfyCGHHJKampr813/9V5LkL/7iL7Jo0aIydwcAAMDWdCt0d3b2jaU3mDNnTpYsWZLrr78++++/f2n9Mccck4ULF5axMwAAALbF9PJe4m//9m9z88035/TTT88ll1xSWj927Ng8+eSTZewMgCI0Njamvb293G0UZs2aNZk+fXq52yhE//7909zcXO42AOghPDKsl/jFL36RUaNGbbF+06ZN+c1vflOGjgAoUnt7e+bOnVvuNtgNffWPCQDsHiPdvcTo0aPz/e9/PyNGjOiy/pvf/GaOP/74MnUFAADA9nQzdEvde8s111yTiy66KL/4xS+yadOmLF++PE899VT+9m//NitWrCh3ewAAAGyF6eW9xAc/+MH88z//c6699toMGDAg11xzTd7znvfkn//5n3PGGWeUuz0AAPYBfeF+E33hnhLuHdG7mF7ei4wbNy7/+q//Wu42AADYR7nfRM/Q2/9osK8RunuJH/3oR9m0aVNOPPHELuv/7d/+Lf369ct73/veMnUGAADAtnhOdy/5w8Fll12W5557bov1v/jFL3LZZZeVoSMAAAB2xEh3L/H444/nPe95zxbrjz/++Dz++ONl6AgAAIAdcSO1XqK6ujrPP/98jjjiiC7rW1paUlXVrU8jAAAABTG9vJf84eDMM89MY2Njfv3rX5fWrVu3Lp/73OfcvRwAAKCHMr28l/irv/qrnHrqqRkxYkSOP/74JMlPfvKTHHzwwfk//+f/lLk7AAAAtkbo7iUOOeSQPPzww/na176Wn/70p3nb296WqVOn5oILLsh+++1X7vYAAADYim6Gbql7bxowYED+6I/+qNxtAAAAsJO6F7o37ak2ep+vfvWr+Z//83+mtbU1Y8eOzd/8zd/kfe973w73W7p0aS644IJ88IMfzD/+4z/u0nv+7Gc/y9133501a9Zk06auH/xrrrlml44FAABA8Uwv3w233357ZsyYkZtuuiknnnhibrjhhpx11ll56qmnMmzYsG3u9/TTT+ezn/1sxo0bt8vvuWDBgkybNi1Dhw5NbW1tKioqStsqKiqEbgD2SY2NjWlvby93G12sWbMm06dPL3cbJf37909zc3O52wDYZwndu+HLX/5yLr744kydOjVJctNNN+Vb3/pWFi9enJkzZ251n9dffz2f+MQnMnv27Hz/+9/PunXrduk958yZky9+8Yu56qqruts+APQZ7e3tmTt3brnb6NF60h8AAPZFHhm2i384ePXVV/Pggw9m4sSJv/0gVlZm4sSJue+++7a537XXXpthw4bl05/+9G59rNeuXZvzzz9/t/YFAACgPIx0J+no6EhHR0eXddXV1amurt6i9sUXX8zrr7+egw8+uMv6gw8+OE8++eRWj3/vvfdm0aJF+clPfrLbPZ5//vm56667cskll+z2MQAAANi7hO4kzc3NmT17dpd1s2bNSlNTU7ePvX79+vzBH/xBFixYkKFDh+72cUaNGpW/+Iu/yP33359jjz12i8eE/cmf/El3W6VgPfG6w23padcjbovrFAEA6OncvTxvhKEZM2Z0Wbe1Ue4kGTp0aPr165fnn3++y/rnn38+tbW1W9T//Oc/z9NPP53JkyeX1m2+83hVVVWeeuqp/M7v/M4Oe7z55ptTU1OTe+65J/fcc0+XbRUVFUJ3L+C6wz2vN/xhAACAfZuR7mx7KvnW7L///jnhhBOyatWqnHvuuUneCNGrVq3K5ZdfvkV9fX19HnnkkS7rrr766qxfvz5f+cpXcuihh+7U+/7f//t/d6oOAACAnkPo3g0zZszIRRddlPe+97153/velxtuuCEbNmwo3c38k5/8ZA455JA0Nzenf//+OeaYY7rsP3jw4CTZYj0AAAB9i9C9Gz72sY/lhRdeyDXXXJPW1tYcd9xxWblyZenmas8++2wqK7t1Y/it+u///u/ccccdefbZZ/Pqq6922fblL395j78fAAAA3SN076bLL798q9PJk2T16tXb3XfJkiW7/H6rVq3KOeeckyOOOCJPPvlkjjnmmDz99NPp7OzMe97znl0+HgAAAMXr3nO6N3X2iaU3aGxszGc/+9k88sgj6d+/f/7+7/8+zz33XE477TTP7wYAAOihuhe6O/vG0hs88cQT+eQnP5nkjbueb9y4MTU1Nbn22mtz3XXXlbk7AAAAtqZ7Fx539pGlFxgwYEDpOu66urr8/Oc/L2178cUXy9UWAAAA2+E53b3ESSedlHvvvTdHH3103v/+9+fP//zP88gjj2T58uU56aSTyt0eAAAAW+FGar3El7/85bS1tSVJZs+enba2ttx+++1517ve5c7lAAAAPZTQ3UscccQRpf8fMGBAbrrppjJ2AwAAwM5wTXcv+cPBEUcckZdeemmL9evWresSyAEAAOg5XNPdSzz99NN5/fXXt1jf0dGRX/ziF2XoiH1RY2Nj2tvby91GyZo1azJ9+vRyt9FF//7909zcXO42AADoIbo5vbyXDBP3YnfccUfp/7/97W9n0KBBpdevv/56Vq1alZEjR5ahM/ZF7e3tmTt3brnb6NF62h8BAAAoL9d093DnnntukqSioiIXXXRRl2377bdfRo4cmb/+678uQ2cAAADsSLdCd0wvL9ymTW98kA8//PD86Ec/ytChQ8vcEQAAADvLSHcv8X//7//dYt26desyePDgvd8MAAAAO8Xdy3vJHw6uu+663H777aXX559/ft7xjnfkkEMOyU9/+tMydgYAAMC2dCt0d27q7BNLb3DTTTfl0EMPTZL867/+a77zne9k5cqVmTRpUq644ooydwcAAMDWmF7eS7S2tpZC94oVK/LRj340Z555ZkaOHJkTTzyxzN0B7HuKfoTe3ngknkfcQd+yNx7tWfTPpr7wc8nngbfq3o3UhO695u1vf3uee+65HHrooVm5cmXmzJmT5I3Htm3t+d0AFKsvPELPI+6gb/FzqWfweeCtujfS7e7le82HP/zh/I//8T/yrne9Ky+99FImTZqUJPnxj3+cUaNGlbk7AAAAtqabI92GuveWuXPnZuTIkXnuuedy/fXXp6amJknS0tKSSy+9tMzdAQAAsDVGunuJ/fbbL5/97Ge3WG/qBwAAQM/lmu4e7I477sikSZOy33775Y477thu7TnnnLOXugIAAGBndfPu5VJ3kc4999y0trZm2LBhOffcc7dZV1FR4WZqAAAAPVD3RrpNLy/Upk2btvr/AAAA9A6e090LbNq0KUuWLMny5cvz9NNPp6KiIkcccUTOO++8/MEf/EEqKirK3SL0Gp6tDPQ0fi4B9G3uXt7DdXZ25pxzzsmdd96ZsWPH5thjj01nZ2eeeOKJTJkyJcuXL88//uM/lrtN6DU8OxPoafxcAujbTC/v4ZYsWZLvfe97WbVqVSZMmNBl23e/+92ce+65+du//dt88pOfLFOHAAAAbEtld3bu7OzsE0tP9nd/93f53Oc+t0XgTpLf//3fz8yZM/O1r32tDJ0BAACwI90K3dnUR5Ye7OGHH05DQ8M2t0+aNCk//elP92JHAAAA7CyPDOvhfvWrX+Xggw/e5vaDDz44a9eu3YsdAQAAsLNc093Dvf7666mq2vanqV+/fnnttdf2YkcAAADsLHcv7+E6OzszZcqUVFdXb3V7R0fHXu4IAACAneU53T3cRRddtMMady4HAADombo5vVzqLtott9xS7hYAAADYTd2cXr6HugAAAIA+qHvTy410AwAAwDYZ6QYAAICCuKYbAAAACtLNu5cL3QAAALAtld3au7OPLLvhq1/9akaOHJn+/fvnxBNPzAMPPLDN2gULFmTcuHF5+9vfnre//e2ZOHHidusBAADoG7oXujd19o1lF91+++2ZMWNGZs2alYceeihjx47NWWedlTVr1my1fvXq1bngggty991357777suhhx6aM888M7/4xS+69eEHAACgZ+vmSHdn31h20Ze//OVcfPHFmTp1akaPHp2bbropBxxwQBYvXrzV+q997Wu59NJLc9xxx6W+vj4LFy7Mpk2bsmrVqm59+AEAAOjZPDJsF7366qt58MEH09jYWFpXWVmZiRMn5r777tupY7zyyiv5zW9+k3e84x1FtQkAAEAP4JFhSTo6OtLR0dFlXXV1daqrq7eoffHFF/P666/n4IMP7rL+4IMPzpNPPrlT73fVVVdl+PDhmThx4u43DQAAQI9nenlnZ5qbmzNo0KAuS3Nz8x76EHf1l3/5l1m6dGn+4R/+If379y/kPQAAAOgZPKc7SWNjY2bMmNFl3dZGuZNk6NCh6devX55//vku659//vnU1tZu933+6q/+Kn/5l3+Z73znO3n3u9/dvaYBAADo8bo10t3Z2dknlurq6hx44IFdlm2F7v333z8nnHBCl5ugbb4p2sknn7zNj9X111+fL3zhC1m5cmXe+973dufDDgAAQC9hpHs3zJgxIxdddFHe+9735n3ve19uuOGGbNiwIVOnTk2SfPKTn8whhxxSmqJ+3XXX5ZprrsnXv/71jBw5Mq2trUmSmpqa1NTUlO08AAAAKFY3b6S2b4buj33sY3nhhRdyzTXXpLW1Nccdd1xWrlxZurnas88+m8rK304imD9/fl599dV85CMf6XKcWbNmpampaW+2DgAAwF5kpHs3XX755bn88su3um316tVdXj/99NPFNwQAAECP073ndO+jI90AAACwM0wvBwAAgIKYXg4AAAAFMdINAAAABXFNNwAAABTE9HIAAAAoiOnlAAAAUBAj3QAAAFAQ13QDAABAQUwvBwAAgIKYXg4AAAAF6eZI96Y91AYAAAD0Pa7pBgAAgIKYXg4AAAAFcSM1AAAAKIhrugEAAKAgrukGAACAgrimGwAAAArimm4AAAAoSDenl7umGwAAALbF9HIAAAAoiLuXAwAAQEHcvRwAAAAKYqQbAAAACtK9kW7XdAMAAMA2eWQYAAAAFMT0cgAAACiIG6kBAABAQYx0AwAAQEG6OdItdAMAAMC2dG+k293LAQAAYJuMdAMAAEBBPDIMAAAACmKkGwAAAApipBsAAAAKYqQbAAAACiJ0AwAAQEEqu7V3Z2ffWHbDV7/61YwcOTL9+/fPiSeemAceeGC79cuWLUt9fX369++fY489NnfeeeduvS8AAAC9R7dCd2fnpj6x7Krbb789M2bMyKxZs/LQQw9l7NixOeuss7JmzZqt1v/whz/MBRdckE9/+tP58Y9/nHPPPTfnnntuHn300e58+AEAAOjhhO7dCN1f/vKXc/HFF2fq1KkZPXp0brrpphxwwAFZvHjxVuu/8pWvpKGhIVdccUWOPvrofOELX8h73vOe3Hjjjd358AMAANDDmV6+i9PLX3311Tz44IOZOHHibz+IlZWZOHFi7rvvvq3uc99993WpT5Kzzjprm/UAAAD0DRWdnbv/3K9jR5y2J3spm3//j7vS0dHRZV11dXWqq6u3qP3lL3+ZQw45JD/84Q9z8sknl9ZfeeWVueeee/Jv//ZvW+yz//7759Zbb80FF1xQWjdv3rzMnj07zz///B48E3ZXX/haHnbOmeVugT7ihIaacrfQbQ+ubCt3C6RvfC3RM3xqzHHlbmGPuOyv7y13C8TPpp7i+g/8ablb2Gu6dffyR565Z0/1UVZNTU2ZPXt2l3WzZs1KU1NTeRoCAACgT+hW6O4rGhsbM2PGjC7rtjbKnSRDhw5Nv379thihfv7551NbW7vVfWpra3epHgAAgL6he9d09xHV1dU58MADuyzbCt37779/TjjhhKxataq0btOmTVm1alWX6eZvdvLJJ3epT5J//dd/3WY9AAAAfYOR7t0wY8aMXHTRRXnve9+b973vfbnhhhuyYcOGTJ06NUnyyU9+Moccckiam5uTJH/6p3+a0047LX/913+dD3zgA1m6dGn+/d//PTfffHM5TwMAAICCCd274WMf+1heeOGFXHPNNWltbc1xxx2XlStX5uCDD06SPPvss6ms/O0kglNOOSVf//rXc/XVV+dzn/tc3vWud+Uf//Efc8wxx5TrFAAAANgLhO7ddPnll+fyyy/f6rbVq1dvse7888/P+eefX3BXAAAA9CSu6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAQI81ZcqUVFRUlJYhQ4akoaEhDz/8cKnmzdvfvCxdujRJsnr16tK6ysrKDBo0KMcff3yuvPLKtLS0dHm/pqamUm1VVVWGDh2aU089NTfccEM6Ojp2uX+hGwAAgB6toaEhLS0taWlpyapVq1JVVZWzzz67S80tt9xSqtm8nHvuuV1qnnrqqfzyl7/Mj370o1x11VX5zne+k2OOOSaPPPJIl7oxY8akpaUlzz77bO6+++6cf/75aW5uzimnnJL169fvUu9Vu3XGAAAAsJdUV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyq2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLdVVVVWVjjV8+PAce+yxOeOMMzJ27Nhcd911mTNnzk73bqQbAACAXqOtrS233XZbRo0alSFDhnTrWG9729tyySWX5Ac/+EHWrFmz3dr6+vpMmjQpy5cv36X3MNINAADAXtXR0bHF9dHV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7bbi/19fVJkqeffjrDhg3bYe1dd9213Zq3Erp7kMbGxrS3t5e7DQAAgEI1Nzdn9uzZXdbNmjUrTU1NW62fMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjkiRz587NxIkTu+w3fPjwHfbS2dmZ5I2bse1M7c7UvZnQ3YO0t7dn7ty55W5jn3Ts8tPK3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBaXrq2tra7vU7KwnnngiSTJy5Midqj388MN36fhCNwAAAHvV9qaS74zNj/7auHFjt/rYuHFjbr755px66qmlG7Jty5NPPpmVK1emsbFxl95D6AYAAKBH6+joSGtra5I3ppffeOONaWtry+TJk0s169atK9VsNnDgwAwYMKD0es2aNWlvb8/69evz4IMP5vrrr8+LL764xc3RXnvttbS2tmbTpk156aWXsnr16syZMyfHHXdcrrjiil3qXegGAACgR1u5cmXq6uqSvBGk6+vrs2zZsowfP75UM3Xq1C32a25uzsyZM0uvjzrqqFRUVKSmpiZHHHFEzjzzzMyYMWOLR4099thjqaurS79+/TJo0KCMHj06jY2NmTZt2i6P0AvdAAAA9FhLlizJkiVLtluz+WZo2zJ+/Pgd1mzW1NS0zRu67Q7P6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCqcjcAPcGwc84sdwvdtuaOu8rdQrf1hc8DPcMJDTXlboE+4sGVbeVugSTJT8rdwB7hZxPsm4x0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9hbGhsb097eXu42tmvNmjXlbgEAAIA9aJ8J3e3t7Zk7d26529iu6dOnl7sFAACAHmXKlCm59dZbS6/f8Y535Hd/93dz/fXX593vfneSpKKiYqv7/t3f/V0+/vGPZ/Xq1ZkwYUKpduDAgTniiCNyxhlnZPr06amrq0uSjBw5Ms8888w2e7nooouyZMmSXep/nwndAAAA9E4NDQ255ZZbkiStra25+uqrc/bZZ+fZZ58t1dxyyy1paGjost/gwYO7vH7qqady4IEH5uWXX85DDz2U66+/PosWLcrq1atz7LHH5kc/+lFef/31JMkPf/jDnHfeeaV9kuRtb3vbLvcudAMAANCjVVdXp7a2NklSW1ubmTNnZty4cXnhhRdy0EEHJXkjYG+u2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLR0reWNE/c377C43UgMAAKDXaGtry2233ZZRo0ZlyJAh3TrW2972tlxyySX5wQ9+UNg9tox0AwAAsFd1dHSko6Ojy7rq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYdtt5f6+vokydNPP51hw4bt8rnsiNDdy/WGu7L3DkPL3QAAAOwzmpubM3v27C7rZs2alaampq3WT5gwIfPnz0+SrF27NvPmzcukSZPywAMPZMSIEUmSuXPnZuLEiV32Gz58+A576ezsTLLtm7F1l9Ddy/WGu7L3Bqf/8RfL3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBZkzZ06SN671fnPNznriiSeSvHHn8iII3QAAAOxV25tKvjMqKipSWVmZjRs3dquPjRs35uabb86pp57a5SZqe5LQDQAAQI/W0dGR1tbWJG9ML7/xxhvT1taWyZMnl2rWrVtXqtls4MCBGTBgQOn1mjVr0t7envXr1+fBBx/M9ddfnxdffDHLly8vrHehGwAAgB5t5cqVqaurS/JGkK6vr8+yZcsyfvz4Us3UqVO32K+5uTkzZ84svT7qqKNSUVGRmpqaHHHEETnzzDMzY8aMHT5qrDuEbgAAAHqsJUuWZMmSJdut2XwztG0ZP378Dmv2xD5b4zndAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKUlXuBoA9Y9g5Z5a7hW5bc8dd5W6h2/rC5+HBlW3lbqHbTmioKXcL9BG+lnqGT405rtwt7BGLH/tJuVsg/p1j7zPSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwN8Fv9+/fP9OnTd2mfNWvWFNQNAAAA3SV09yDNzc27vM+uhnQAAAD2HtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAAHqsKVOmpKKiorQMGTIkDQ0Nefjhh0s1b97+5mXp0qVJktWrV5fWVVZWZtCgQTn++ONz5ZVXpqWlpcv7NTU1dTnGoEGDMm7cuNxzzz271b/QDQAAQI/W0NCQlpaWtLS0ZNWqVamqqsrZZ5/dpeaWW24p1Wxezj333C41Tz31VH75y1/mRz/6Ua666qp85zvfyTHHHJNHHnmkS92YMWNKx7jvvvvyrne9K2effXZ+/etf73LvQjcAAAA9WnV1dWpra1NbW5vjjjsuM2fOzHPPPZcXXnihVDN48OBSzealf//+XY4zbNiw1NbW5sgjj8zHP/7x/OAHP8hBBx2UadOmdamrqqoqHWP06NG59tpr09bWlv/4j//Y5d6FbgAAAHqNtra23HbbbRk1alSGDBnSrWO97W1vyyWXXJIf/OAHWbNmzVZrOjo6csstt2Tw4ME56qijdvk9qrrVIQAAAOyijo6OdHR0dFlXXV2d6urqrdavWLEiNTU1SZINGzakrq4uK1asSGXlb8eRL7jggvTr16/Lfo8//ngOO+yw7fZSX1+fJHn66aczbNiwJMkjjzxSer9XXnklAwcOzO23354DDzxwF87yDUL3PqyxsTHt7e3lbqOHGFruBgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDd9hLZ2dnkjduxrbZUUcdlTvuuCNJsn79+tx+++05//zzc/fdd+e9733vzp3k/yN078Pa29szd+7ccrfRI5z+x18sdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJktra2i41O+uJJ55IkowcObK0bv/99+9yrOOPPz7/+I//mBtuuCG33XbbLh1f6AYAAGCv2t5U8p2x+dFfGzdu7FYfGzduzM0335xTTz01Bx100HZr+/Xrt1vvJ3QDAADQo3V0dKS1tTXJG9PLb7zxxrS1tWXy5MmlmnXr1pVqNhs4cGAGDBhQer1mzZq0t7dn/fr1efDBB3P99dfnxRdfzPLly7vs99prr5WOtXl6+eOPP56rrrpql3sXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bM0uujjjoqFRUVqampyRFHHJEzzzwzM2bMSG1tbZf9HnvssdL7HXDAAfmd3/mdzJ8/P5/85Cd3uXehGwAAgB5ryZIlWbJkyXZrNt8MbVvGjx+/w5rNmpqatnlDt93hOd0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAApSVe4G6J7+/ftn+vTpu7XvmjVr9nA30D3Dzjmz3C1025o77ip3C902ad6Hy90CABTmhIaacrfAPkbo7uWam5t3e9/dDesAAADsHNPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACgx5oyZUoqKipKy5AhQ9LQ0JCHH364VPPm7W9eli5dmiRZvXp1aV1lZWUGDRqU448/PldeeWVaWlq6vN8rr7ySxsbG/M7v/E769++fgw46KKeddlr+6Z/+abf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vU3HLLLaWazcu5557bpeapp57KL3/5y/zoRz/KVVddle985zs55phj8sgjj5RqLrnkkixfvjx/8zd/kyeffDIrV67MRz7ykbz00ku71XvVbu0FAAAAe0l1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZPDgwaWabRk2bFip7sgjj8wHP/jBHH/88Zk2bVruvffeJMkdd9yRr3zlK3n/+9+fJBk5cmROOOGE3e7dSDcAAAC9RltbW2677baMGjUqQ4YM6dax3va2t+WSSy7JD37wg6xZsybJG6H+zjvvzPr16/dEu0a6AQAA2Ls6OjrS0dHRZV11dXWqq6u3Wr9ixYrU1NQkSTZs2JC6urqsWLEilZW/HUe+4IIL0q9fvy77Pf744znssMO220t9fX2S5Omnn86wYcNy88035xOf+ESGDBmSsWPH5v/7//6/fOQjH8nv/d7v7fJ5JkL3Pq1///6ZPn16udvoIYaWuwEAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48B320tnZmeSNm7Elyamnnpr/+q//yv33358f/vCHWbVqVb7yla9k9uzZ+Yu/+ItdOs9E6N6nNTc3l7uFHuP0P/5iuVsAAIB9RmNjY2bMmNFl3bZGuZNkwIABGTVqVOn1woULM2jQoCxYsCBz5sxJ8sa08DfX7KwnnngiyRvXbm+23377Zdy4cRk3blyuuuqqzJkzJ9dee22uuuqq7L///rt0fKEbAACAvWp7U8l3xuZHf23cuLFbfWzcuDE333xzTj311NIN2bZm9OjRee2119Le3i50AwAA0Ld0dHSktbU1yRvTy2+88ca0tbVl8uTJpZp169aVajYbOHBgBgwYUHq9Zs2atLe3Z/369XnwwQdz/fXX58UXX8zy5ctLNePHj88FF1yQ9773vRkyZEgef/zxfO5zn8uECRNy4IEH7nLvezR0NzY2pr29fU8eco/ZfCc6AAAAepeVK1emrq4uyRtBur6+PsuWLcv48eNLNVOnTt1iv+bm5sycObP0+qijjkpFRUVqampyxBFH5Mwzz8yMGTO6PGrsrLPOyq233prPfe5zeeWVVzJ8+PCcffbZueaaa3ar9z0autvb2zN37tw9ecg9xg3DAAAAep8lS5ZkyZIl263ZfDO0bRk/fvwOazZrbGxMY2Pjzra3Q57TDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIFXlbgB6ghMaasrdAkkeXNlW7ha6bdK8D5e7hW77l0uXl7uFbusLnweg7/nUmOPK3QJJFj/2k3K30G2+lnoXI90AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlWxyvvr4+1dXVaW1t3WLb+PHju+x/8MEH5/zzz88zzzyz2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1Sc++992bjxo35yEc+kltvvXWr73XxxRenpaUlv/zlL/NP//RPee6553LhhRfudu9CNwAAAD1adXV1amtrU1tbm+OOOy4zZ87Mc889lxdeeKFUM3jw4FLN5qV///5djrNo0aL8j//xP/IHf/AHWbx48Vbf64ADDkhtbW3q6upy0kkn5fLLL89DDz20271X7faeAAAAsJe1tbXltttuy6hRozJkyJCd3m/9+vVZtmxZ/u3f/i319fX59a9/ne9///sZN27cNvf51a9+lW984xs58cQTd7tfoRsAAIC9qqOjIx0dHV3WVVdXp7q6eqv1K1asSE1NTZJkw4YNqaury4oVK1JZ+dvJ2xdccEH69evXZb/HH388hx12WJJk6dKlede73pUxY8YkST7+8Y9n0aJFW4TuefPmZeHChens7Mwrr7ySI488Mt/+9rd3+1yF7v+nsbEx7e3t5W6DMtlv4shytwAAAPuM5ubmzJ49u8u6WbNmpampaav1EyZMyPz585Mka9euzbx58zJp0qQ88MADGTFiRJJk7ty5mThxYpf9hg8fXvr/xYsXd7k2+8ILL8xpp52Wv/mbv8nAgQNL6z/xiU/k85//fJLk+eefz5e+9KWceeaZefDBB7vU7Syh+/9pb2/P3Llzy90GZXLlt75S7hYAAGCf0djYmBkzZnRZt61R7iQZMGBARo0aVXq9cOHCDBo0KAsWLMicOXOSJLW1tV1q3uzxxx/P/fffnwceeCBXXXVVaf3rr7+epUuX5uKLLy6tGzRoUOk4o0aNyqJFi1JXV5fbb789f/iHf7jL5yp0AwAAsFdtbyr5zqioqEhlZWU2bty4U/WLFi3Kqaeemq9+9atd1t9yyy1ZtGhRl9D9VpunrO/se72V0A0AAECP1tHRUXqu9tq1a3PjjTemra0tkydPLtWsW7dui2dvDxw4MPvvv3/+z//5P7n22mtzzDHHdNn+h3/4h/nyl7+cxx57rHSt9yuvvFI6zvPPP58vfOEL6d+/f84888zd6l3oBgAAoEdbuXJl6urqkrwRpOvr67Ns2bKMHz++VDN16tQt9mtubs673vWuvPTSS/nQhz60xfajjz46Rx99dBYtWpQvf/nLSZIFCxZkwYIFSZK3v/3tefe7350777wzRx111G71LnQDAADQYy1ZsiRLlizZbk1nZ+d2t7/++uvb3Pb444+X/n/16tW70tpOqdxxCQAAALA7hG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRuAnuDBlW3lbqHbTmioKXcL3dYXzqEvmDTvw+Vuodv+5dLl5W6h24adc2a5W6CP8LO151j82E/K3QJJPjXmuHK3wD7GSDcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAIAea8qUKamoqCgtQ4YMSUNDQx5++OFSzZu3v3lZunRpqWbBggUZO3ZsampqMnjw4Bx//PFpbm4ubW9qairtV1VVlaFDh+bUU0/NDTfckI6Ojt3uX+gGAACgR2toaEhLS0taWlqyatWqVFVV5eyzz+5Sc8stt5RqNi/nnntukmTx4sX5sz/7s/zJn/xJfvKTn+QHP/hBrrzyyrS1tXU5xpgxY9LS0pJnn302d999d84///w0NzfnlFNOyfr163er96rd2gsAAAD2kurq6tTW1iZJamtrM3PmzIwbNy4vvPBCDjrooCTJ4MGDSzVvdccdd+SjH/1oPv3pT5fWjRkzZou6qqqq0jGGDx+eY489NmeccUbGjh2b6667LnPmzNnl3o10AwAA0Gu0tbXltttuy6hRozJkyJCd2qe2tjb3339/nnnmmV1+v/r6+kyaNCnLly/f5X0ToRsAAIC9rKOjIy+//HKXZXvXTa9YsSI1NTWpqanJwIEDc8cdd+T2229PZeVvI+0FF1xQqtm8PPvss0mSWbNmZfDgwRk5cmSOOuqoTJkyJd/4xjeyadOmneq3vr4+Tz/99G6dq+nlfVhjY2Pa29vL3UYvMbTcDQAAwD6jubk5s2fP7rJu1qxZaWpq2mr9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkSSZO3duJk6c2GW/4cOHJ0nq6upy33335dFHH833vve9/PCHP8xFF12UhQsXZuXKlV3C+9Z0dnamoqJid05V6O7L2tvbM3fu3HK30Suc/sdfLHcLAACwz2hsbMyMGTO6rKuurt5m/YABAzJq1KjS64ULF2bQoEFZsGBB6Trr2traLjVbc8wxx+SYY47JpZdemksuuSTjxo3LPffckwkTJmx3vyeeeCKHH374jk5rq4RuAAAA9qrq6urthuwdqaioSGVlZTZu3Ljbxxg9enSSZMOGDdute/LJJ7Ny5co0Njbu1vsI3QAAAPRoHR0daW1tTfLG9PIbb7wxbW1tmTx5cqlm3bp1pZrNBg4cmAEDBmTatGkZPnx4fv/3fz/vfOc709LSkjlz5uSggw7KySefXKp/7bXX0tramk2bNuWll17K6tWrM2fOnBx33HG54oordqt3oRsAAIAebeXKlamrq0vyRpCur6/PsmXLMn78+FLN1KlTt9ivubk5M2fOzMSJE7N48eLMnz8/L730UoYOHZqTTz45q1at6nIH9Mceeyx1dXXp169fBg0alNGjR6exsTHTpk3b7ZF5oRsAAIAea8mSJVmyZMl2azo7O7e7/bzzzst555233ZqmpqZt3sitOzwyDAAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gb2lv79+2f69Onb3L5mzZq92A0AAAD7gn0mdDc3N293+/YCOQAAAOwO08sBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKMg+85zuojQ2Nqa9vb3cbWzVmjVryt0CQFkMO+fMcrfQbWvuuKvcLXTbpHkfLncL9BGLH/tJuVsA2G1Cdze1t7dn7ty55W5jq6ZPn17uFgAAAPZpppcDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAECPNWXKlFRUVJSWIUOGpKGhIQ8//HCp5s3b37wsXbo0SbJ69ept1rS2tiZJmpqaSuuqqqoydOjQnHrqqbnhhhvS0dGx2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1S89RTT21RM2zYsNL2MWPGpKWlJc8++2zuvvvunH/++Wlubs4pp5yS9evX71bvVbu1FwAAAOwl1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSZLBgweXarZl2LBhGTx48Da3V1VVlY4xfPjwHHvssTnjjDMyduzYXHfddZkzZ84u926kGwAAgF6jra0tt912W0aNGpUhQ4YU/n719fWZNGlSli9fvlv7G+kGAABgr+ro6NjiOunq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYeVXr/zne/ssn3EiBF57LHHdthvfX197rrrrh3WbY3Q3Yf1798/06dPL3cbvcTQcjcAAAD7jObm5syePbvLulmzZqWpqWmr9RMmTMj8+fOTJGvXrs28efMyadKkPPDAAxkxYkSSZO7cuZk4cWKX/YYPH97l9fe///0MHDiw9Hq//fbbqX47OztTUVGxU7VvJXT3Yc3NzeVuodc4/Y+/WO4WAABgn9HY2JgZM2Z0WbetUe4kGTBgQEaNGlV6vXDhwgwaNCgLFiwoXWddW1vbpWZrDj/88O1e070tTzzxRA4//PBd3i8RugEAANjLtjeVfGdUVFSksrIyGzdu3INdbd2TTz6ZlStXprGxcbf2F7oBAADo0To6OkrP0167dm1uvPHGtLW1ZfLkyaWadevWlWo2GzhwYAYMGFB6vWbNmrS3t3epGTJkSGma+WuvvZbW1tZs2rQpL730UlavXp05c+bkuOOOyxVXXLFbvQvdAAAA9GgrV65MXV1dkjeCdH19fZYtW5bx48eXaqZOnbrFfs3NzZk5c2bp9VFHHbVFzX333ZeTTjopSfLYY4+lrq4u/fr1y6BBgzJ69Og0NjZm2rRpuz0yL3QDAADQYy1ZsiRLlizZbk1nZ+d2t48fP36HNU1NTdu8kVt3eE43AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCVJW7AegJTmioKXcLAF1MmvfhcrfQbf9y6fJyt9Btw845s9wtdFtf+DfuU2OOK3cL0KMsfuwn5W6h264feVq5W9hrjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgnhk2P/Tv3//TJ8+fZf3W7NmTQHdAAAA0BcI3f9Pc3Pzbu23O0EdAACAfYPp5QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlpZoFCxZk7NixqampyeDBg3P88cenubm5tL2pqWmrx6ivr+9W/1Xd2hsAAAAK1tDQkFtuuSVJ0tramquvvjpnn312nn322VLNLbfckoaGhi77DR48OEmyePHi/Nmf/Vn+1//6XznttNPS0dGRhx9+OI8++miX+jFjxuQ73/lOl3VVVd2LzUI3AAAAPVp1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSNwL25pq3uuOOO/LRj340n/70p0vrxowZs0VdVVXVNo+xu0wvBwAAoNdoa2vLbbfdllGjRmXIkCE7tU9tbW3uv//+PPPMMwV3tyWhGwAAgL2qo6MjL7/8cpelo6Njm/UrVqxITU1NampqMnDgwNxxxx25/fbbU1n520h7wQUXlGo2L5unn8+aNSuDBw/OyJEjc9RRR2XKlCn5xje+kU2bNnV5n0ceeWSLY1xyySXdOlfTy8uosbEx7e3t5W6DJPtNHFnuFgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDkyR1dXW577778uijj+Z73/tefvjDH+aiiy7KwoULs3LlylJ4P+qoo3LHHXd0OcaBBx7YrXMVusuovb09c+fOLXcbJLnyW18pdwsAALDPaGxszIwZM7qsq66u3mb9gAEDMmrUqNLrhQsXZtCgQVmwYEHmzJmT5I0p5G+u2ZpjjjkmxxxzTC699NJccsklGTduXO65555MmDAhSbL//vvv8Bi7SugGAABgr6qurt5uyN6RioqKVFZWZuPGjbt9jNGjRydJNmzYsNvH2BlCNwAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+eXKpZt25dqWazgQMHZsCAAZk2bVqGDx+e3//938873/nOtLS0ZM6cOTnooINy8sknl+pfe+21LY5RUVGRgw8+eLd7F7oBAADo0VauXJm6urokbwTp+vr6LFu2LOPHjy/VTJ06dYv9mpubM3PmzEycODGLFy/O/Pnz89JLL2Xo0KE5+eSTs2rVqi53QH/sscdK77NZdXV1t+7FJXQDAADQYy1ZsiRLlizZbk1nZ+d2t5933nk577zztlvT1NS0zRu5dYdHhgEAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRsA9owHV7aVu4VuO6GhptwtAHvQsHPOLHcL3bbmjrvK3UK3PZje/3lIflLuBvaIT405rtwt0Ef4WupdjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBV5W6gt+vfv3+mT5++W/uuWbNmD3cDAABATyJ0d1Nzc/Nu77u7YR0AAIDewfRyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPl2revP3Ny9KlS0s1CxYsyNixY1NTU5PBgwfn+OOPLz2NauTIkds8RkVFRaZMmbLb/XtkGAAAAD1aQ0NDbrnlliRJa2trrr766px99tl59tlnSzW33HJLGhoauuw3ePDgJMnixYvzZ3/2Z/lf/+t/5bTTTktHR0cefvjhPProo0mSH/3oR3n99deTJD/84Q9z3nnn5amnnsqBBx6YJHnb2962270L3QAAAPRo1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSd4I2Jtr3uqOO+7IRz/60Xz6058urRszZkzp/zcfI0ne8Y53JEmGDRtWCu3dYXo5AAAAvUZbW1tuu+22jBo1KkOGDNmpfWpra3P//ffnmWeeKbi7LRnpBgAAYK/q6OhIR0dHl3XV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7LrFmz8uEPfzgjR47MkUcemZNPPjnvf//785GPfKTLMYogdO/DGhsb097eXu42eoT9Jo4sdwsAALDPaG5uzuzZs7usmzVrVpqamrZaP2HChMyfPz9Jsnbt2sybNy+TJk3KAw88kBEjRiRJ5s6dm4kTJ3bZb/jw4UmSurq63HfffXn00Ufzve99Lz/84Q9z0UUXZeHChVm5cmWhwVvo3oe1t7dn7ty55W6jR7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3phC/uaarTnmmGNyzDHH5NJLL80ll1yScePG5Z577smECRO6cTbbJ3QDAACwV21vKvnOqKioSGVlZTZu3Ljbxxg9enSSN6arF0noBgAAoEfr6OhIa2trkjeml994441pa2vL5MmTSzXr1q0r1Ww2cODADBgwINOmTcvw4cPz+7//+3nnO9+ZlpaWzJkzJwcddFBOPvnkQnsXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bMTJw4MYsXL878+fPz0ksvZejQoTn55JOzatWqnb4D+u4SugEAAOixlixZkiVLlmy3prOzc7vbzzvvvJx33nk79X7jx4/f4fF2hed0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9iX9e/fP9OnTy/b+69Zs6Zs7w1QpBMaasrdAukbn4cHc2a5W+i2NXfcVe4Wuq/hw+XuAGC3Cd1l1NzcXNb3L2fgBwAA2BeYXg4AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAAD3WlClTUlFRUVqGDBmShoaGPPzww6WaN29/87J06dIt9n/rMnLkyO1ur6ioyNNPP73b/QvdAAAA9GgNDQ1paWlJS0tLVq1alaqqqpx99tldam655ZZSzebl3HPPzVe+8pUu695a+/3vf7/L9pNPPjkXX3xxl3WHHnrobvde1a0zBwAAgIJVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyqebP+/ftn0KBBXdZtqzZJ9t9//xxwwAHb3L6rjHQDAADQa7S1teW2227LqFGjMmTIkHK3s0NGugEAANirOjo60tHR0WVddXV1qqurt1q/YsWK1NTUJEk2bNiQurq6rFixIpWVvx1HvuCCC9KvX78u+z3++OM57LDD9nD3u0bo3of1798/06dPL3cbPcJ+E0eWuwUAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48D3f/C4Suvdhzc3N5W6hx7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3rjW+801PYXQDQAAwF61vankO6OioiKVlZXZuHHjHuyqGEI3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT55cqlm3bl2pZrOBAwdmwIABe7XXtxK6AQAA6NFWrlyZurq6JG8E6fr6+ixbtizjx48v1UydOnWL/ZqbmzNz5sy91eZWCd0AAAD0WEuWLMmSJUu2W9PZ2bnTx9tR7erVq3f6WDvDc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwNQE/wqTHHlbuFPeAn5W6g2/rG5wH2jMWP/aTcLXRb3/ie/km5G+i+hg+Xu4Nu+5dLl5e7hT1jXrkb6L6+8H3dF36+9gXXjzyt3C3sNUa6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAgB5rypQpqaioKC1DhgxJQ0NDHn744S1qP/OZz6Rfv35ZtmzZFtuampq6HGfzUl9fn6effnqr2968LFmyZLf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vUvPLKK1m6dGmuvPLKLF68eKvHGTNmTOk4m5d77703hx56aJd1f/7nf75F7cc+9rHd6r1qt/YCAACAvaS6ujq1tbVJktra2sycOTPjxo3LCy+8kIMOOihJsmzZsowePTozZ87M8OHD89xzz+XQQw/tcpyqqqrScd7qzetramq2W7srjHQDAACwV3V0dOTll1/usnR0dOzUvm1tbbntttsyatSoDBkypLR+0aJFufDCCzNo0KBMmjRpt6eD72k9bqS7sbEx7e3t5W6Dfcxn/vTccrcAAAD7jObm5syePbvLulmzZqWpqWmr9StWrEhNTU2SZMOGDamrq8uKFStSWfnGOPLPfvaz3H///Vm+fHmS5MILL8yMGTNy9dVXp6KionScRx55pHSczS688MLcdNNNe+rUttDjQnd7e3vmzp1b7jbYxzz59D3lbgEAAPYZjY2NmTFjRpd11dXV26yfMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjsnjx4px11lkZOnRokuT9739/Pv3pT+e73/1uTj/99NJxjjrqqNxxxx1djn3ggQfuqdPaqh4XugEAAOjbqqurtxuy32rAgAEZNWpU6fXChQszaNCgLFiwILNnz86tt96a1tbWVFX9NuK+/vrrWbx4cZfQvf/++3c5zt4gdAMAANCrVFRUpLKyMhs3bsydd96Z9evX58c//nH69etXqnn00UczderUrFu3LoMHDy5br0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnutdJzNKioqcvDBBxfWu9ANAABAj7Zy5crU1dUlSQYOHJj6+vosW7YsRx99dL71rW/l61//+hb7VFZW5kMf+lAWLVpUCt2PPfZY6TibVVdXF3ozb6EbAACAHmvJkiXbffzXb37zm21umzdvXun/m5qatnl39Lfaldod8ZxuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFqSp3A9ATXPbX95a7hW47oaGm3C102+LHflLuFkjyqTHHlbuFbvO1xJ7SF74f+oR55W5gz/iXS5eXu4Vue/CctnK3QF/xgXI3sPcY6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAANBjTZkyJRUVFaVlyJAhaWhoyMMPP7xF7Wc+85n069cvy5Yt22JbU1NT6RhVVVUZOnRoTj311Nxwww3p6OjoUjt+/PhSbXV1dQ455JBMnjw5y5cv3+X+hW4AAAB6tIaGhrS0tKSlpSWrVq1KVVVVzj777C41r7zySpYuXZorr7wyixcv3upxxowZk5aWljz77LO5++67c/7556e5uTmnnHJK1q9f36X24osvTktLS37+85/n7//+7zN69Oh8/OMfzx/90R/tUu9Vu3aqAAAAsHdVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSZYtW5bRo0dn5syZGT58eJ577rkceuihXY5TVVVVOs7w4cNz7LHH5owzzsjYsWNz3XXXZc6cOaXaAw44oFT7zne+MyeddFLq6+vzqU99Kh/96EczceLEnerdSDcAAAB7VUdHR15++eUuy1uneG9LW1tbbrvttowaNSpDhgwprV+0aFEuvPDCDBo0KJMmTcqSJUt26nj19fWZNGnSTk0dv+iii/L2t799l6aZG+nuwxobG9Pe3l7uNnqJoeVuAAAA9hnNzc2ZPXt2l3WzZs1KU1PTVutXrFiRmpqaJMmGDRtSV1eXFStWpLLyjXHkn/3sZ7n//vtLYfjCCy/MjBkzcvXVV6eiomKH/dTX1+euu+7aYV1lZWWOPPLIPP300zus3Uzo7sPa29szd+7ccrfRK5z+x18sdwsAALDPaGxszIwZM7qsq66u3mb9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkcWLF+ess87K0KFvDKa9//3vz6c//el897vfzemnn77Dfjo7O3cqnO9qbSJ0AwAAsJdVV1dvN2S/1YABAzJq1KjS64ULF2bQoEFZsGBBZs+enVtvvTWtra2pqvptxH399dezePHinQrdTzzxRA4//PAd1r3++uv52c9+lt/93d/d6d6FbgAAAHqVioqKVFZWZuPGjbnzzjuzfv36/PjHP06/fv1KNY8++mimTp2adevWZfDgwds81pNPPpmVK1emsbFxh+976623Zu3atTnvvPN2ulehGwAAgB6to6Mjra2tSd6YXn7jjTemra0tkydPzg033JAPfOADGTt2bJd9Ro8enenTp+drX/taLrvssiTJa6+9ltbW1mzatCkvvfRSVq9enTlz5uS4447LFVdc0WX/V155Ja2trXnttdfy3//93/mHf/iHzJ07N9OmTcuECRN2unehGwAAgB5t5cqVqaurS5IMHDgw9fX1WbZsWY4++uh861vfyte//vUt9qmsrMyHPvShLFq0qBS6H3vssdTV1aVfv34ZNGhQRo8encbGxkybNm2L6e4LFizIggULsv/++2fIkCE54YQTcvvtt+dDH/rQLvUudAMAANBjLVmyZLuP//rNb36zzW3z5s0r/X9TU9M2747+VqtXr97J7nbMc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKskfvXt6/f/9Mnz69W8dYs2bNHuoGAAAAymuPhu7m5uZuH6O7oR0AAAB6CtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIJUlbuBvqaxsTHt7e3lbiNJsmbNmnK3AADQbZ8ac1y5W9gjHjynrdwtdNuaO+4qdwvdNmneh8vdAvsYoXsPa29vz9y5c8vdRpJk+vTp5W4BAABgn2Z6OQAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPZ8mSJV22bW15+umn09TUVHpdVVWVoUOH5tRTT80NN9yQjo6OLu83fvz4Um11dXUOOeSQTJ48OcuXL9+t/oVuAAAAerSGhoa0tLSkpaUlq1atSlVVVc4+++x87GMfK61vaWnJySefnIsvvrjLukMPPTRJMmbMmLS0tOTZZ5/N3XffnfPPPz/Nzc055ZRTsn79+i7vt/kYP//5z/P3f//3GT16dD7+8Y/nj/7oj3a596o98hEAAACAglRXV6e2tjZJUltbm5kzZ2bcuHFpa2srrU+S/fffPwcccECXdZtVVVWV1g8fPjzHHntszjjjjIwdOzbXXXdd5syZU6p98zHe+c535qSTTkp9fX0+9alP5aMf/WgmTpy4070b6QYAAGCv6ujoyMsvv9xlees0721pa2vLbbfdllGjRmXIkCHd6qO+vj6TJk3aqanjF110Ud7+9rfv8jRzI919WP/+/TN9+vRyt9FLDC13AwAAsM9obm7O7Nmzu6ybNWtWmpqatlq/YsWK1NTUJEk2bNiQurq6rFixIpWV3R9Hrq+vz1133bXDusrKyhx55JF5+umnd+n4Qncf1tzcXO4Weo3T//iL5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7rVS2dnZyoqKvZ47WamlwMAALBXVVdX58ADD+yybC90DxgwIKNGjcqoUaPyu7/7u1m4cGE2bNiQBQsWdLuXJ554IocffvgO615//fX87Gc/26naNxO6AQAA6FUqKipSWVmZjRs3dus4Tz75ZFauXJnzzjtvh7W33npr1q5du1O1b2Z6OQAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+evNPHeO2119La2ppNmzblpZdeyurVqzNnzpwcd9xxueKKK7rUvvLKK2ltbc1rr72W//7v/84//MM/ZO7cuZk2bVomTJiwS70L3QAAAPRoK1euTF1dXZJk4MCBqa+vz7JlyzJ+/PidPsZjjz2Wurq69OvXL4MGDcro0aPT2NiYadOmbTG1fcGCBVmwYEH233//DBkyJCeccEJuv/32fOhDH9rl3oVuAAAAeqwlS5ZkyZIlO1W7evXqra5vamra5p3Rd/YYu8s13QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gbeqn///pk+fXq529hta9asKXcL7IYTGmrK3QJJHlzZVu4Wuq0vfC0tfuwn5W6h2z415rhytwDsQX3h51JfMWneh8vdQrf9y6XLy91Ctw0758xyt9B9Hyh3A3tPjwvdzc3N5W6hW3rzHwwAAADYs0wvBwAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAACAHmvKlCmpqKgoLUOGDElDQ0MefvjhLWo/85nPpF+/flm2bNkW25qamkrHqKqqytChQ3PqqafmhhtuSEdHR5fa8ePHd3nPgw8+OOeff36eeeaZXe5f6AYAAKBHa2hoSEtLS1paWrJq1apUVVXl7LPP7lLzyiuvZOnSpbnyyiuzePHirR5nzJgxaWlpybPPPpu77747559/fpqbm3PKKadk/fr1XWovvvjitLS05Je//GX+6Z/+Kc8991wuvPDCXe5d6AYAAKBHq66uTm1tbWpra3Pcccdl5syZee655/LCCy+UapYtW5bRo0dn5syZ+d73vpfnnntui+NUVVWltrY2w4cPz7HHHps//uM/zj333JNHH3001113XZfaAw44ILW1tamrq8tJJ52Uyy+/PA899NAu9y50AwAAsFd1dHTk5Zdf7rK8dYr3trS1teW2227LqFGjMmTIkNL6RYsW5cILL8ygQYMyadKkLFmyZKeOV19fn0mTJmX58uXbrPnVr36Vb3zjGznxxBN36phvVrXLe9BrNDY2pr29vdxt9Ar7TRxZ7hYAAGCf0dzcnNmzZ3dZN2vWrDQ1NW21fsWKFampqUmSbNiwIXV1dVmxYkUqK98YR/7Zz36W+++/vxScL7zwwsyYMSNXX311KioqdthPfX197rrrri7r5s2bl4ULF6azszOvvPJKjjzyyHz729/e1VMVuvuy9vb2zJ07t9xt9ApXfusr5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7J48eKcddZZGTp0aJLk/e9/fz796U/nu9/9bk4//fQd9tPZ2blFOP/EJz6Rz3/+80mS559/Pl/60pdy5pln5sEHH8zAgQN3+lyFbgAAAPaq6urq7YbstxowYEBGjRpVer1w4cIMGjQoCxYsyOzZs3PrrbemtbU1VVW/jbivv/56Fi9evFOh+4knnsjhhx/eZd2gQYNK7zlq1KgsWrQodXV1uf322/OHf/iHO9270A0AAECvUlFRkcrKymzcuDF33nln1q9fnx//+Mfp169fqebRRx/N1KlTs27dugwePHibx3ryySezcuXKNDY2bvc9Nx9748aNu9Sr0A0AAECP1tHRkdbW1iRvTC+/8cYb09bWlsmTJ+eGG27IBz7wgYwdO7bLPqNHj8706dPzta99LZdddlmS5LXXXktra2s2bdqUl156KatXr86cOXNy3HHH5Yorruiy/yuvvFJ6z+effz5f+MIX0r9//5x55pm71LvQDQAAQI+2cuXK1NXVJUkGDhyY+vr6LFu2LEcffXS+9a1v5etf//oW+1RWVuZDH/pQFi1aVArdjz32WOrq6tKvX78MGjQoo0ePTmNjY6ZNm7bFdPcFCxZkwYIFSZK3v/3tefe7350777wzRx111C71LnQDAADQYy1ZsmS7j//6zW9+s81t8+bNK/1/U1PTNu+O/larV6/eye52zHO6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUpKrcDfQ1/fv3z/Tp08vdRpJkzZo15W4BdskJDTXlboEknxpzXLlboI9Y/NhPyt1Ct/l+gL5n2DlnlruFbltzx13lbqH7/ubz5e5grxG697Dm5uZyt1DSU8I/AADAvsr0cgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAA6LGmTJmSioqK0jJkyJA0NDTk4Ycf3qL2M5/5TPr165dly5Ztsa2pqal0jKqqqgwdOjSnnnpqbrjhhnR0dHSpHT9+fJf33Lxccsklu9y/0A0AAECP1tDQkJaWlrS0tGTVqlWpqqrK2Wef3aXmlVdeydKlS3PllVdm8eLFWz3OmDFj0tLSkmeffTZ33313zj///DQ3N+eUU07J+vXru9RefPHFpffcvFx//fW73HvVLu8BAAAAe1F1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZNmyZRk9enRmzpyZ4cOH57nnnsuhhx7a5ThVVVWl4wwfPjzHHntszjjjjIwdOzbXXXdd5syZU6o94IADSrXdYaQbAACAvaqjoyMvv/xyl+WtU7y3pa2tLbfddltGjRqVIUOGlNYvWrQoF154YQYNGpRJkyZlyZIlO3W8+vr6TJo0KcuXL9+dU9khI919WP/+/TN9+vRyt9Er7DdxZLlbAACAfUZzc3Nmz57dZd2sWbPS1NS01foVK1akpqYmSbJhw4bU1dVlxYoVqax8Yxz5Zz/7We6///5ScL7wwgszY8aMXH311amoqNhhP/X19bnrrru6rJs3b14WLlzYZd3//t//O5/4xCd26hw3E7r7sObm5nK30Gtc+a2vlLsFAADYZzQ2NmbGjBld1lVXV2+zfsKECZk/f36SZO3atZk3b14mTZqUBx54ICNGjMjixYtz1llnZejQoUmS97///fn0pz+d7373uzn99NN32E9nZ+cW4fwTn/hEPv/5z3dZd/DBB+/U+b2Z0A0AAMBeVV1dvd2Q/VYDBgzIqFGjSq8XLlyYQYMGZcGCBZk9e3ZuvfXWtLa2pqrqtxH39ddfz+LFi3cqdD/xxBM5/PDDu6wbNGhQl/fcXUI3AAAAvUpFRUUqKyuzcePG3HnnnVm/fn1+/OMfp1+/fqWaRx99NFOnTs26desyePDgbR7rySefzMqVK9PY2FhIr0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnstra2t2bRpU1566aWsXr06c+bMyXHHHZcrrriiy/6vvPJK6T03q66uztvf/vZd6t3dywEAAOjRVq5cmbq6utTV1eXEE0/Mj370oyxbtixHH310vvWtb+W8887bYp/Kysp86EMfyqJFi0rrHnvssdTV1eWwww7L+PHj841vfCONjY35/ve/X7pR22YLFiwovefm5YILLtjl3is6Ozs7d/2UoW9xIzX4rU+NOa7cLdBHLH7sJ+Vuodt8P/QMfeFrKUkeXNlW7ha67YSGmh0X9XB94fOw5o67dlzUwz3yzD3lbmGvMdINAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAonUDh2tvbO2fNmtXZ3t5e7lZ2m3PoGZxDz+Acegbn0DM4h57BOfQMzoGtqejs7Owsd/CHvu7ll1/OoEGD8utf/zoHHnhgudvZLc6hZ3AOPYNz6BmcQ8/gHHoG59AzOAe2xvRyAAAAKIjQDQAAAAURugEAAKAgQjfsBdXV1Zk1a1aqq6vL3cpucw49g3PoGZxDz+Acegbn0DM4h57BObA1bqQGAAAABTHSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAADslGeffTbuwQuwa4RuYAuf+tSnsn79+nK3wTa89tpraWtrK3cbwC7qCz9bDz/88LzwwgvlbqNb/vZv/zYdHR3lbgPYhwjdUIANGzbkmmuuyTHHHJOampoMHDgw7373u3PttdfmlVdeKXd7O3Trrbdm48aN5W6j29avX58HH3ywFFAfeuihfPKTn8z555+fr33ta2Xubsf++Z//OUuWLOmy7otf/GJqamoyePDgnHnmmVm7dm15muuGDRs2ZPHixfnqV7+an/3sZ+VuZ6f09u/ppPefw+jRo/OrX/2q9PrSSy/Niy++WHq9Zs2aHHDAAeVobaf1hZ+tfWGUe+rUqfn1r39d7jb2iO9+97u5/PLLc/bZZ2fy5Mn5kz/5k3zve98rd1u7pC+cw5v1xn/jLr300i5/zP+7v/u7bNiwofR63bp1ef/731+O1vqOTmCP6ujo6DzhhBM6q6urO88999zOmTNndl511VWd55xzTuf+++/fedJJJ3W++uqr5W5zuyoqKjqff/75crfRLffcc0/nwIEDOysqKjrf8Y53dH7729/uHDhwYGd9fX3nmDFjOisrKztvvvnmcre5XePHj++88cYbS69/8IMfdFZWVnbOmTOn8+///u876+vrO6dPn17GDnfsmWee6Tz11FM7a2pqOidOnNj5zDPPdB555JGdFRUVnRUVFZ0HHHBA5z333FPuNrerL3xP94VzeOvPpYEDB3b+/Oc/L71ubW3trKioKEdrO60v/GytqKjoXLNmTbnb6Ja+8Hno7Ozs/MxnPlP6N+6kk07qPPHEEzvf8Y53dFZWVnZefvnl5W5vp/T2c+gL/8Z1dnZ2VlZW7vDna2VlZTla6zOqyh36oa+ZP39+/vu//zs//elPc9RRR3XZ9uSTT2b8+PG56aab8sd//Mdl6nDnrF+/Pv37999uzYEHHriXutl1V199dc4///xce+21Wbx4cT72sY/l8ssvz5e+9KUkyZw5c/LVr341F198cZk73bbHHnssX/7yl0uvv/nNb+aMM87I5z//+SRJ//7986d/+qddanqaz372s3n11Vdz00035Rvf+EbOOuusvOtd78r3vve9VFZWZtq0aWlqasp3v/vdcre6TX3he7ovnMNbdW5lxLWioqIMneya3v6zNUn+4i/+YoezCnryz6Wkd3ytbM8//MM/5JZbbsnixYtz0UUXlc5n06ZNWbJkSaZNm5Yzzjgj55xzTpk73ba+cA594d+4ZMufp1v7+Ur3VHT6qMIeddppp+WjH/1oLrvssq1u/5u/+Zt885vfzD333LOXO9t5lZWV2/2FpLOzMxUVFXn99df3Yle7ZvDgwbn//vtTX1+fV199NW9729vy0EMPZezYsUmS//zP/8zxxx/fo6+vfNvb3pannnoqhx12WJLkfe97X84///xcccUVSZJnnnkmo0eP7jIFrKepra3NHXfckfe973351a9+laFDh+YHP/hBTj755CTJT3/605x++uldpgn3NH3he7ovnENlZWVaW1szbNiwJMnAgQPz05/+NEcccUSS5Pnnn8/w4cN79M+lvvCztbKyMieffHL233//bdZUVFT06JBRWVmZY445JlVV2x97euihh/ZSR7vunHPOyZgxY9Lc3LzV7VdddVWefPLJ/NM//dNe7mzn9YVz6Av/xiV94+drT2ekG/awxx9/POPHj9/m9gkTJuTaa6/dew3tpm9+85t5xzveUe42dtvLL79c6n///ffPAQcckIEDB5a2Dxw4sMdfx3rIIYfkiSeeyGGHHZa2trb89Kc/zdy5c0vbX3rppR5/DeuaNWsyYsSIJMk73vGOHHDAATn44INL22tra3v8del94Xu6L5xDRUXFFoG1N45W9vafrckbI5Sbfznvrc4666zU1NSUu43d9tBDD+Xqq6/e5vYPf/jDOe+88/ZiR7uuL5xDX/g3jr1D6IY9bN26dRkyZMg2tw8ZMqRX3MDl937v93r1L1Vv/QV9a7+w93Tnn39+/uzP/iyf+9zncuedd6a2tjYnnXRSafu///u/bzFVuCd66+eht+kL39N94Rw6Oztz+umnl0YnN27cmMmTJ5dGXF977bVytrfTevvP1r7iiiuu6NWfhxdffDHvfOc7t7n9ne98Z1566aW92NGu6wvnkPT+f+M2u+aaa0p/yH/11VfzxS9+MYMGDUqSHj9I0RsI3bCHbdq0Kf369dvm9srKStNz9oK3/oL+yiuv9Lpf0K+55pr84he/yJ/8yZ+ktrY2t912W5evrb/7u7/L5MmTy9jhzunt/5D3he/pvnAOs2bN6vL6gx/84BY1PX1UjJ6hNwejzV599dXst99+29xeVVWVV199dS92tOv6wjkkvf/fuCQ59dRT89RTT5Ven3LKKfmv//qvLWrYfa7phj1sR9eKvfbaa3nsscd69C+4hx9+eP793/99uyNjPd3s2bN3qu6tv8izZ40fP36nfsG9++6790I3u6cvfE/3hXPoC/rCz9bDDz889957bw455JByt7Lb3nr9am9UWVmZP/qjP9rmJUavvPJKFixY0KO/p/vCOfSFf+PYO4Ru2MP6Wth78cUX8/TTT6eioiIjR47s1b8s9mY+D+XTF76n+8I5bMs999yTDRs25OSTT87b3/72crezW3rTOfTr1y8tLS29OrA+88wzOeyww3r1iHdfCHt94RxgZwndwFY99thjmTZtWn7wgx90WX/aaadl/vz5veJa4s16c2Dd3udh3rx5qa+vL1Nne8YTTzyRRYsW5a/+6q/K3Qo93HXXXZe2trZ84QtfSPLGJSSTJk3KXXfdlSQZNmxYVq1alTFjxpSzze3qC+fQF0aJR48enXvvvbd0Q7tLL7001157bYYOHZrkjZtjjRw5stdMDYY9YcOGDbnuuuuyfPny0u9Mhx9+eD7ykY/ks5/9bI+/cWtPJ3RDgXpr2Gttbc0xxxyTgw46KJdccknq6+vT2dmZxx9/PAsWLMhLL72URx99tMf/0tXb/3DQVz4Pb7Vhw4YsXbo0ixYtyv3335/Ro0fn0UcfLXdbu6w3jU6uWbNmu18nr732Wh566KG8733v24td7Zr3vOc9ueqqq/Kxj30sSbJs2bJcdNFF+dd//dccffTR+eQnP5kDDjgg3/jGN8rc6bb1hXOorKzMrbfeWrpmdVt68rOV3/qHgwMPPDA/+clPujweqa6uLps2bSpnm/QSfSGsvvrqqznllFPy6KOPZtKkSaXfN5544omsXLky73nPe/K9731vu9fgswOdwB736KOPdo4bN66zsrKyyzJhwoTOJ598stzt7dCVV17Z+Z73vKdz48aNW2x75ZVXOt/znvd0zpw5swyd7byWlpbOIUOGdNbX13fecMMNnStXruz8l3/5l86//uu/7qyvr+886KCDOp9//vlyt7ldfeHz8Gb33ntv59SpUzsHDBjQWVlZ2fnnf/7nnU888US529qhv/zLv+y8+uqrS683bdrUedZZZ3VWVFR0VlRUdB588MGdjz76aBk73LHKysouX+/HHHNM57PPPlt63dra2llZWVmO1nba4MGDOx9//PHS6ylTpnT+wR/8Qen1fffd9/+3d+8xVdZ/HMDf5xzkIrccOBDamN1gKDnAJtbC7nhEAkpjNIzINRrlllsKrbFmly3basxprgiwmBcIrUEXWQuS4cJBKzQvg2IpkuHUEA5yCfj+/nCc/Q5yOdLhPM/z8f3aWn57zh+fT99zjt/3c57n+arbb79di9KcJqGH8ff9dP/o/b1kMpkcPg9+fn7qjz/+sI+N8HlQSimbzaYKCwvVkiVLlK+vr/Lz81MxMTFq27Ztqr+/X+vynGL0HoaGhlR8fLzy8vJSaWlpqqCgQOXn56snn3xSeXp6qoSEBDU8PKx1mTMqKipSISEhk65RT58+rUJCQtSOHTs0qEwOhm4iF5MQ9mJjY1VFRcWUx/fv369iY2PdWNHNkxBYJcxDd3e32r59u4qMjFShoaFq8+bNqrm5WXl4eKiTJ09qXZ5TYmNj1YEDB+zjyspK5ePjoxobG9Xly5dVcnKyWr9+vYYVzsyZkGEymbQozWkTa46MjFS7d++2j8+ePau8vb21KM1pEnqY+F4yIgmhW0LYk9CDlLCamJiodu7cOeXxHTt2qMTERDdWJA9DN5GLSQh7gYGBqr29fcrj7e3tKjAw0H0FzYKEwCphHry9vVVWVpY6fPiwGh0dtf93I4VuKb9OGj1kLFu2TJWVlSmlrodTk8nk8B46evSoCg8P16g650joYeJVE0ZkNpvVxYsX7WM/Pz/V0dFhHxvh8yAh7EnoQUpYDQ4OnvaKrRMnTqjg4GA3ViSPWevL24mk+f7775Gfnw9vb+8bjvn4+GDLli2ora3VoDLn9fX1ISAgYMrj/v7+sNlsbqzo5nV0dCAuLm7K48uXL79hD0q9kTAPERERaGxsRENDA9ra2rQuZ1ZGRkbg5eVlH//000+4//777eOwsDBcunRJi9JuKS+//DJeeeUVbNy4EVarFStXrkR0dLT9eF1dHWJjYzWscGYSelACHgWklMKjjz6KuLg4xMXFYWBgACkpKfbx448/rnWJMzp06BAKCwsnfTZJVFQU3njjDVRVVWlQmfMk9HDq1Ck89NBDUx5/+OGHcerUKfcVNEs9PT3TPncoKCgIV69edWNF8ky+YScRzZqEsAdcD3yTnTgAgN7eXt0vvCQEVsD483DmzBkcPXoUJSUluO+++3DPPfcgKysLAAyzXc+dd96JhoYG3HHHHTh37hza2tqQmJhoP37+/HndPyTRZDLZ30tKKZhMJthsNvT29gKA/d969uKLL8JisaCmpgaJiYk3bG/2119/IScnR6PqnCOhh+zsbPj4+Ghdxn8y8f97amrqDa95+umn3VXOrDgT9t566y33FTQLEnqQElbHxsZgsVimPG42m3W9X7oR8OnlRC420x6m3d3dCA8Px8jIiJsrc57ZbJ42EI0v2vX8BWyxWNDW1oaFCxdOery7uxtRUVG67kHCPPw/m82G/fv3o6ysDE1NTVi1ahWeffZZpKWlTTlPelBcXIzNmzcjIyMDTU1NuO222xyeiP/OO+/g2LFjqKmp0bDK6U18L42/dyaOjfJeIu1UVlYiLS0Nnp6eAK6fdAoLC4PZfP3iyWvXrmHnzp3YunWrlmWKN2/ePHR2diI0NHTS4xcuXEBERASGh4fdXJnzJPRgsVjw999/T7vWCAsL0/13q9lsxtKlS+HhMfnvsSMjIzh58qTu+9Azhm4iF5MQ9o4cOeLU61atWjXHlcyehMAqYR6mMr4/d3l5Oa5cuYJ///1X65KmVVpaipqaGoSGhuLNN990WCTm5eXhsccew1NPPaVhhdOT8F6SEPYk9DDxxPJk220ZIWRMpbe3F3v37kVJSQlaWlq0LmdKEsKehB6khNVt27Y59bqJV4mQ8xi6iVxMQtiTQELIuBWMjIygurpa14GV9EFC2JPQw8Q9rv39/dHa2mqoHiZTX1+P0tJSHDp0CIGBgUhPT8euXbu0LmtKEsKehB4YVslZvKebyMXq6+u1LuE/k/BrjIQwLWEeZupheHgYv//+u5YlzuhWmAcj9DDxNwIj/mYgoQdJurq6sGfPHpSVlaGnpwf//PMP9u3bh2eeeUb3z5xwJsTp/b70W6UHozPK1R+659ZnpRORIUzcEsbf399w2wtVVFSooaEh+7izs9Nhy6r+/n61fft2LUpzmoR5YA/6IKEHCduesQd9qKqqUlarVfn6+qp169apr776Sg0NDRlqK0MJzp496/D3sjRXr15VH330kYqPj9e6lFmpq6tTWVlZav78+WrRokUqLy9P65IMjVuGEblYZWWlw0M/zp8/j7GxMfv42rVreP/997UozWlKwK8xmZmZ6OnpsY+jo6Px559/2sd9fX14/fXX3V/YTZAwD+xBHyT0QPpRW1uL6upqVFdXY2xsDD/88IN9rPctMQEgIyMDsbGxuHDhAr744gukpqbarwKRoLe3F7t378by5cu1LmVaixcvFrndYn19PTZs2IBFixbh7bffxooVK7QuyWldXV149913cdddd2H9+vXYt28fSktL0dXVpevbLYyAl5cTuVhmZqbDPXvR0dEO9+yNhz09X8YpAUMGkTy1tbUIDAwEAHvY++233wDA4SSbnknoITs722Gcm5vrMNb7pdkbN27Erl278OOPP2LDhg3IyMjAggULtC7rP5vsvnQ9k/T3spFvVQCAgwcPoqSkBA0NDbBarfjggw9gtVrh6+uLmJgYQ/SgdwzdRC7GsEdENDeMHvYA4/fw/1duGdXHH3+MoqIiVFZWorS0FK+++iqSkpKglDJcf0YPe0aocTpSwmpGRgby8/NRUVEBf39/rcsRiaGbiCYl4dcYCSTMA3vQB6P3YLQwNBkJPYy7fPkygoKCAACdnZ0oLi7G4OAgUlJS8OCDD2pc3cx8fHyQnZ2N7OxstLe3o7S0FC0tLXjggQeQnJyMdevW6XpXBSlhr7CwEPPnz5/2NR9++KGbqrl5UsKq1Ks/9IRbhhG5mITtVMafaDwdvW97Zjab8dlnn9lDRmZmJoqKihASEgLgesjIycnRfQ8zMcI8zIQ9zD0JPYwzetgDjN3DiRMnkJKSgs7OTtx99904cOAAVq9ejf7+fpjNZvT396OqqgppaWlal3rTxsbG8O233+LTTz/Fd999h6GhIa1LmpKHhwfy8/NRUFDgEPbmzZuH1tZWREdHa1idc8xmM1auXDnt/fQmkwl1dXVurOrm5ObmoqKiAkuWLHEIq0aah3EDAwP2qz+OHTuGpKQkfPPNN/j111+xdOlSrcszPIZuIheTEPYkkBQyiEhG2JPQg9VqhYeHBwoKClBeXo6vv/4aSUlJKC4uBgBs2rQJP//8M5qamjSudGaTnfwYGBhASkoKoqKi7CfP9UhC2Jv4I4VRSQyr41d/fP7557DZbIa4+kPvGLqJXExS2DPyrzGSSJgH9qAPRu5BQtiT0ENwcDDq6upw7733wmazISAgAM3NzYiPjwcAnDlzBgkJCbq+ZUHCyQ/A+GHPYrE4PHhWAmlh1UhXf+ieO/cnIyJjOH78uIqIiFBms1lFRkaqX375RYWEhCg/Pz8VEBCgLBaL+vLLL7Uu0ymXLl2y//ncuXOqsLBQbdmyRTU0NGhYlXMkzAN70AcJPQQFBanW1lallFJ9fX3KZDKplpYW+/HTp0+rwMBAjapzjoQeJOzTvXr1arV27VrV2NiocnNzVXh4uHrhhRfU6OioGh0dVXl5eWrFihVal3lT2traVEFBgQoLC1MBAQEqMzNTHTx4UOuypjXxvSTJ6OioqqmpUampqcrT01Prcpw22ZrptddeU0eOHBE7V+7C0E00R4wc9iQsSCSEDAnzwB70QUIPEsKelB4uXrxoH/v5+amOjg772Ag9SDj5MRUjhb09e/aowcHBKYOeEdZL44weViWsmfSOoZvIxSR8cUlYkEgIGRLmgT3og4QeJIQ9KT2sWbNGpaenq/T0dOXh4aGeeOIJ+3jNmjWG6MHoJz/GGTnsSVgvSehBKRlrJr3jPd1ELibhnj0JT2CXcN+hhHlgD/ogpQer1QovLy8AQE1NDR555BH4+voCAIaGhnD48GH2MMdycnKcel1ZWdkcVzJ7ZrMZ3d3dWLhwIYDrn4fjx49j8eLFAIzxeZBwX7qE9ZKEHgAZaya94z7dRC7W3Nxs/+JatmwZPvnkE+Tl5dkfsLZp0yYkJCRoXOXMJu7xaZQ9P8dduXIFoaGhAAA/Pz/4+vo67Dm5YMEC9PX1aVWe04w+DwB70Auj95Cdne0wzsrKuuE1zz33nLvKmRUJPeg5TN+M559/3n7yY3BwEC+99JLDyQ+927p1K2JiYrB3716Ul5dj7dq1SE5Odgh77733nq5Dt4T1koQeADlrJj1j6CZyMSlfXEZfkADGDxmAjHlgD/pg9B4khD0JPUgg4eSHhLAnYb0koYdxEtZMesbQTTQHjP7FJWFBAhg/ZEiYB/agDxJ6IHIVCSc/pIQ9o6+XABk9AMZfM+kd7+kmcjEJ9+xJIOG+QyIioslIuC9dwnpJQg8A10zuwNBN5GL84iIiIqK5JCHsSVgvSeiB3IOhm4iIiIjIQBj2iIyFoZuIiIiIiIhojpi1LoCIiIiIiIhIKoZuIiIiIiIiojnC0E1EREREREQ0Rxi6iYiIiIiIiOYIQzcRERERERHRHGHoJiIiIiIiIpojDN1EREREREREc4Shm4iIiIiIiGiO/A8/R108Dj/1CgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap( \n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'fitness_function_mutation_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='fitness_function_mutation_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=15,\n", + " # How many sequences to include in matrix.\n", + " track_specific_sequences=['BADD']\n", + " # Specific sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wTZf4H8M+kJ9sbvUoVAemioGIB64meHvZe7uedeHqn3tk9y6mnnu3OjmLF3gALoDRReu+9LbC9piczvz/CZjOZSTLJZjfZ3c/79eLF5plnZp5kk8nOd77zfQRJkiQQERERERERERERUUroUj0AIiIiIiIiIiIiovaMQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiFDqgdATeNyubBhwwYAQFFREQwG/kqJiIiIiIiIks3n86GsrAwAMGTIEFgslhSPiIjaEkb0WrkNGzZgzJgxqR4GERERERERUbuxfPlyjB49OtXDIKI2hOUOiIiIiIiIiIiIiFKImbStXFFRUfDn5cuXo3PnzikcDREREREREVHbdPjw4eCdrKHn4kREycAgbSsXWoO2c+fO6NatWwpHQ0RERERERNT2cT4YIko2ljsgIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFDKkegBEzcVvPwDHttchGLNhG/B/0JmyUz0kIiIiIiIiIiIiBQZpqU0S3dWo+G48/Pb9AABv5VrknfpRikdFRERERERERESkxHIH1CbVrX0kGKAFANeejyG6KlI4IiIiIiIiIiIiInUM0lKb463eDMfW/4a1SnAfnpeS8RAREREREREREUXDIC21KZIkoXb5HYDkVyxzF//Y8gMiIiIiIiIiIiKKgUFaalPcB76F59Bc9WWHfoQkSS08IiIiIiIiIiIiougYpKU2Q/K5ULvirxGXi45DcO//pgVHREREREREREREFBuDtNRmOLa9Bn/dbnmjzih7WDX/IoheewuOioiIiIiIiIiIKDoGaalNkCQJ9u2vy9qMHcbB2vc6RV/75v+00KiIiIiIiIiIiIhiY5CW2gRv2TL4a7bK2rJGPIHMIfcq+to3/Bt+Z2lLDY2IiIiIiIiIiCgqBmmpTXDufEf2WJ/VF6aOp8CQ1Rv5E3+ULZN89ahf92hLDo+IiIiIiIiIiCgiBmmp1ZN8Djj3fCxrs/a9DoIgAADMXSfB2uda2XLHttfhq9neYmMkIiIiIiIiIiKKhEFaavVc+76C5K0NaRFg63uNrE/WiMcAnbmxQfKhdtU/IElSywySiIiIiIiIiIgoAgZpqdVz7HpP9tjUZSL0Gd1lbfqM7sgY9BdZm3v/V6hefDUkn6PZx0hERERERERERBQJg7TUqkmiD97SX2Rttr7XqfbNHHIvBHO+rM21+0OUfzcOvrq9zTRCIiIiIiIiIiKi6BikpVbNV71ZkQlr6nKmal+dORc5Y15SbqNyLcpnjYT70NxmGSMREREREREREVE0DNJSq+YtXy57rM/sDb2lKGJ/a58rkXfaVxCMWbJ2yV2Jyrlno37Dv1mnloiIiIiIiIiIWhSDtNSqecKCtMbCMTHXsfS8EIXnLYc+e4B8gSSibtXfUb3wUoje+mQOk4iIiIiIiIiIKCIGaalV85aFB2lHa1rPkDsQhecvh7nHhYplrr2foWL2WPidpckYIhERERERERERUVQM0lKrJfmc8FVvlLWZimJn0jbQmbKRd9oXyBz+OABBtsxXvQn1ax5MxjCJiIiIiIiIiIiiYpCWWi2/swSQ/LI2Q97QuLYhCDpkHX8/8s6cDcGUK1vmrd7U1CESERERERERERHFxCAttVqSL7xurKCYEEwrS7dzkD3qWfn2/c4ER0ZERERERERERKQdg7TUakneOtljwZABQUj8La0I8PoYpCUiIiIiIiIioubHIC21WuGZtIIxs0nbEwxW2WMxLAhMRERERERERETUHBikpVZL8oYFaQ1NDNLqw4K0joOoX/9Uk7ZJREREREREREQUC4O01GqJ3lrZ46Zn0toUbXWr74XfXtyk7RIREREREREREUXDIC21Wt7ylbLHemunJm1Pn3mMaruvZnOTtktERERERERERBQNg7TUanmOzJc9NnU8pUnb09s6IXP4Y4p20V3ZpO0SERERERERERFFwyAttUp+Zyl81ZtkbaZOE5q83azjH4Ahf7isTXRXNXm7REREREREREREkRhSPQBqfyRJgugohrdqI3xV62Du/jvVfoLODH3WMRAEQdbutx+AY8fb8r6GDBgLRyVlfHpbV/gq1zSO16PMpBVd5RBMuRB0yfkIie5KCHorBIM1dmciIiIiIiIiImpTGKSlFuU+/DOqfr4Qkrcu2Fa36h8R+xtyByN/0o/Q27pA8rlQOfcseEoWKfqZOoyHoDMmZYw6c77scWi5A9FTi+pFV8J9cBZ0Gd2Rf8YsGPOHNml/tSv+Bvum/0AwZiNvwqcwdz2rSdsjIiIiIiIiIqLWheUOqEXprJ1lAdpYfNUbUb3wCkiiH/YtL6kGaAHA1Pm0ZA0RgilP9tjvOAQAkPweVM2/GO6DswAAov0AqhZcAsnnSHhfvuqtsG/6T2D73lrUrX4g4W0REREREREREVHrxCAttShDdl9AiC+B21OyEPUbnoRr3xfqHQR9xJIJiTBk95Hv/9BcSKIX1UtugOfwPNkyf+0O1K15KOF92be8KHvsrViZ8LaIiIiIiIiIiKh1YpCWWpSgM8KQ0z/u9erXPgJv+XJFu87WBdljXoAxd1AyhgcAMHc7X/ZYdJejat7v4Nr9oWp/++bn4SldmtC+GrJ0iYiIiIiIiIio/WJNWmpxhpxB8FVvlrXlnvoxrL0vDT72lP6Kiu9PASR/oKHh/6MEYzY6XlYGQW9K/viyesOQdzx8VeuCbe5DP0ZeQRJRveR6FP1uDQSDJa59ic7DKpvzJq2+LhERERERERERpT9m0lKLM6hkveosRbLHpg4nIXPYIxG3Ye56TrMEaBtYel4UeaGgh6XnJbImf81W1Cy7DaK3Dt6KtcE6taKrAt7qLZAkKdjXV7Md7kNz4T40F76a7YrNSz5ncp4EERERERERERG1CsykpRZnyBmgaNOZCxVtmUPuhefQPHhKFiqWWXpc0Cxja9z+hahf+4jqspyT3oS1z9WomL1XVkPWuWManDumAQD0GT2RefwDqFn6Z0D0wNLzEuRO+BT16x6NuN0Gkt8JIDtJz4SIiIiIiIiIiNIdM2mpxekzj1G06cz5ijZBp0fuKR9ACF8m6GHuek5zDQ8AYMgbCn1mb0V75vBHYet3PQSdATnj3wEilCXw2/eh5tebAdEDAHDt+xze0l9Rv/5fMffdkIVLRERERERERETtA4O01OKMhSOhz+gRfKzP6gOdratqX31GN+SeNE3WZu7+O+jMec06RkEQYO1zjazN1v8WZA59IPjYmDdY9jgW1/4vg0HbaBikJSIiIiIiIiJqXxikpRYn6IzIPfVjmDqeDFPHU5B76scQBCFif0vPC5Fz8nswFoyEuceFyDnhvy0yzswhf4e1300w5A1B5tAHkD32f4pxZg69X/P2vOUr5Q06E3S2Lop+kp9BWiIiIiIiIiKi9oQ1aSklTB1ORME5izT3t/W5GrY+VzfjiJQEgxW5496M3kenR+4pM1C96PKY2/OULZM9tva5CrnjpuHIjAJI7spgOzNpiYiIiIiIiIjaF2bSEjWRpceFyrq5akS37KExfwQAQNDbZO2Sz5m0sRERERERERERUfpjkJaoiQSDBdZjrop7PWPByKPrhwVpWe6AiIiIiIiIiKhdYZCWKAls/W6MbwVBB2P+0MCP4UFaljsgIiIiIiIiImpXGKQlSgJj/lCYOp+hub/O1jUYnBV0JvlC0ZPMoRERERERERERUZpjkJYoSXJPfi9Y9kBnLozaV7ZcFzZ/n+hL9tCIiIiIiIiIiCiNMUhLlCR6WxfknvI+Ol8noePlZVH76iyNQVpBkAdpJdHbLOMjIiIiIiIiIqL0xCAtUQrIM2mN8oUSM2mJiIiIiIiIiNoTBmmJUkDy1gZ/ZiYtEREREREREVH7xiAtUTMRjFkRlxmLTmx8oJdPHCb57M01JCIiIiIiIiIiSkMM0hI1k+zRz0VcZu11SfBnfUZ32TJ/7c5mGxMREREREREREaUfQ+wuRJQIa7+bAAjwlq+Apfel8Nfvg7dsGSzHXAFDzoBgP0POsbL1fDVbWnikRERERERERESUSgzSEjUTQRBg638T0P+mxsZ+1yv6GXIGyh77arZCkiQIgtDcQyQiIiIiIiIiojTAcgdEKRYepJV8doiO4hSNhoiIiIiIiIiIWhqDtEQpprN1hWDIlLWx5AERERERERERUfvBIC1RigmCAH1Of1mbv35vagZDREREREREREQtjkFaojSgM2TJHkt+T4pGQkRERERERERELY1BWqJ0oAubw0/ypWYcRERERERERETU4hikJUoDgs4oeyyJ3hSNhIiIiIiIiIiIWhqDtETpQAjLpBUjZ9K6jyxE9ZKbYd/6GiRJauaBERERERERERFRczPE7kJEzS6s3IEkqtek9dXuQOWPpwOSCOeOtyB5qpE59B8tMUIiIiIiIiIiImomzKQlSgM6Y7bssWv/V5AkUdHPtfczIKS9bvW9EF0VzT4+IiIiIiIiIiJqPgzSEqUBc7dzZY99lWvh2velop+3Yo2izb75+WYbFxERERERERERNT8GaYnSgKXnJTDkDpK11a99GJLol7WJbmXWrH3LS8ymJSIiIiIiIiJqxRikJUoDgk6PzGGPyNp81Zvh2vOxrM1ft1uxruStYzYtEREREREREVErxiAtUZqw9LwYhrzjZW116/4JSfTBV7sLVfMvgd++T3Vd+5aXILorW2KYRERERERERESUZAzSEqUJQdAha/ijsjZ/7Q649n6OqgV/gGvfFxHXlbx1cGx7vbmHSEREREREREREzYBBWqI0Yu7+OxgLR8vaXAdnwVepnDAsnKd0SXMNi4iIiIiIiIiImhGDtERpRBAEWHtfIWvzli1V7WvIPU722F+/t7mGRUREREREREREzYhBWqI0E55J66/bpeiTe9oXyB77P3m/+j2QJKlZx0ZERERERERERMlnSPUAiEjOkD8MEHSAJEbsYyoco1gu+RwQXWXQWzs08wiJiIiIiIiIiCiZmElLlGZ0xgwYcgbF6CVAZ+sKCPLrLCx5QERERERERETU+jBIS5SGjIWjoncQBAg6PfSZPWTNaqURiIiIiIiIiIgovTFIS5SGTEUnRl0uGDIAAIasfrJ295H5zTYmIiIiIiIiIiJqHgzSEqUhyzGXR1yms3WFzpQDADB1mShb5j4wC1KUWrZERERERERERJR+GKQlSkM6YxZ01s6qy4z5xwd/tnT/nWyZ6DwMb8WqZh0bERERERERERElF4O0RGmqoaRBOEP+sMafc/pDnz1Atty9/1tIkqRYT5IkSJLITFsiIiIiIiIiojRjiN2FiFJC0Ks2G/OOlz229LgA9o3PBB/Xr38c9RueAiQfAECfdQyMRSfCc/gniM4jsnUzhz+KrOMfTPLAiYiIiIiIiIgoHsykJUpTgk79GkpouQMAsHS/QNnpaIAWAPx1u+Ha/aEiQAsA9WsegrdyXdMGSkRERERERERETcIgLVGa8lVvUrQJhgzos/rK2oxFJ0YsjaBF3ap/JLwuERERERERERE1HYO0RGkqtPZsA2PRiRB08jIIgk4PnaVDwvvxO0sSXpeIiIiIiIiIiJqu3QdpPR4P3nrrLZx11lno3LkzzGYzMjMzMWDAAFx//fX49ddfNW3n+++/x0UXXYRu3brBbDajW7duuOiii/D999838zOgtspUdKKyreN41b46c0HC+5E81QmvS0RERERERERETdeuJw7bt28fzjvvPGzaJL+t3OPxYPv27di+fTumT5+OqVOn4sUXX4QgCIptiKKIW265BdOmTZO1FxcXo7i4GF9//TVuuukmvP7669Dp2n1MnOIg+Z2KNlPHk1X7NiVIK7rKEl43Gkn0AaIP0BkV2b8Jbc/nBPQWxedQEn2AJELQmwI/QwIgBGv6Sn53YAwCP39ERERERERElJ7abdTC6/XKArRDhw7F9OnT8dtvv2HOnDl46KGHkJERqPP58ssv4+mnn1bdzv333x8M0A4fPhwzZszA8uXLMWPGDAwfPhwA8NZbb+GBBx5ogWdFbYm3fKWizVh4gmpfwdKETFpfPSrnnpPw+mpcB2biyHtGHPnAiiPvGeCtWNOk7dUsvQ1HPshA6ec9ZduqW/sojrxvRunnPVH58+8D+3zPhCPvGeEunoPqJTfhyPsWlH3RF96qDU19WkREREREREREzUKQJElK9SBS4fPPP8cf/vAHAMCJJ56IxYsXQ6+XZ/utWrUKJ554IrxeL3Jzc1FWVgaDoTH5ePv27TjuuOPg8/kwatQoLFq0CFarNbjc4XDg1FNPxcqVK2EwGLBlyxb07Suf9KmpDh48iO7duwMADhw4gG7duiV1+5Q65bPGwlu+TNbW+Tr1j2vNstvh2PJyk/ZXdPEeGLJ6NWkbACBJEo68K7/+Y+wwDoXn/pLQ9jwli1Hx/SnBx+buk5F/xtfwOw6h9NOumrdj6XkJ8k77LKExEBERERER8fybiJpTu82kDa01e++99yoCtAAwcuRInH/++QCA6upqbNmyRbb8hRdegM/nAxDItg0N0AKAzWbDyy8HAmc+nw/PP/98Up8DtW22/jfKHmce/3DEvsa8IU3en2Pba03eBhDIzA3nLV2S8PZqfv2j7LH7wDeBbZYtU+sekWvf5wmPgYiIiIiIiIioObXbIK3H4wn+fMwxx0Ts16dPH9V1JEnCN98EgkUDBw7E2LFjVdcfO3YsBgwYAAD45ptv0E4TlykBlt6Xw9zjIkBngrnLWcg47q8R+1qPuTLQtykkb9PWP0p0lqhvXvQntD1fzRbVdsGQkdD2iIiIiIiIiIjSTbsN0jYETgFg9+7dEfvt2rULACAIAvr16xds37NnDw4dOgQAOPXUU6Puq2F5cXEx9u7dm+iQqZ3RGTORf/qX6HS1C/mTfoDOlB2xr2CwBfpe5YRgyExof5JXmQGbiEhBWtGl3h5NtIsakhR/0FcSkxOIJiIiIiIiIiJKpnYbpL388suRnR0Iej399NPw+5UBnzVr1mD27NkAgCuuuCLYHwA2b94c/HngwIFR9xW6PLxkAlEsgiBo72uwQJ8VOTM8Gl/dbnjKlsFTuhSe0qXwO0vhtx+A6K6MuI7fXqxY7o8QjPU7DsFbsVbTBF6SzwV//X7463YqlgkGW+CHBAKu3sq1UZ8PEREREREREVEqGGJ3aZsKCwvx/vvv4/LLL8eSJUswevRo3HHHHejfvz/q6+uxZMkSPPfcc/B4PBgxYgSee+452foHDx4M/hyrWHhDYXEgUFw8HqH7UXP48OG4tkdtnz6zF3xV6+Nez3N4Hipmz1Mu0JmRe/J7sPaeImsOTlamtwaW97oEACA6S1W3XzFrdOMmLR3Q8TL1YK63ahMq554F0VGsulyX0QNAYlmxFbPGQDBkIvfUGbB0Pz/u9YmIiIiIiIiImkO7DdICwAUXXIBVq1bhueeew7Rp03DttdfKlnfs2BGPPfYYbr75ZthsNtmyurq64M+ZmdFvL8/IaKydWV8f3y3loQFeIi30mb2Su0HRjbo1D8qCtL7anYEALQD4nahf+3AwSOuv2xF7k65SeCtWw1gwQrGsfsOTEQO0AABJPLqRxEoXSL561K99hEFaIiIiIiIiIkob7bbcARCYCOy9996LOKFXSUkJPvjgA8ybp8wudLlcwZ9NJlPU/ZjN5uDPTqezCSMmis3U4aSkb9Nfu132GXHu+Vi23FcdKP8hiX7FskjsDUHeMK4Y60tHyxVIfoem/ajxVqziJH5ERERERERElDbabZDWbrfjzDPPxJNPPonKykrcc8892LJlC9xuN2pqajBnzhyMHz8eK1euxIUXXoj//Oc/svUtFkvwZ4/HE3Vfbrc7+LPVao1rnAcOHIj6b/ny5XFtj9o+S8+LYTv2L9BZioJtgiETOmtnWPvfDHO3cxPbsL/xAoPkUwZIJUmE+9AciI5DmjYnOo8otyH6gRgTgonuckh+DySfXdN+IpG8tU1an4iIiIiIiIgoWdptuYNHHnkEixcvBgBFqQOTyYSJEyfitNNOw6RJkzB//nzcfffdOOOMM3D88ccDALKysoL9Y5UwsNsbg0mxSiOEi1XvliicoDMg54QXkHPCC1H7Vcw5C55DczRvV/TUQt8waZdfJSPc74Jz5zuat+d3KOsp++37tY3FeQSSN77SIWrb0JlymrQNIiIiIiIiIqJkaJeZtJIk4e233wYA9O/fX1GLtoHBYMBjjz0GABBFEdOnTw8uCw2exprcK3SyMNaYpXQh6Ixx9Xcf+hGS6AMAiCpZrH5HMVz7v9G8PV/VOjh2fQBf7U5IkgS/vRjOHW9rWtdbsRrOPTM070tN7cq7IfndsTsSERERERERETWzdplJW1JSgsrKQF3L4cOHR+07cuTI4M9bt24N/jxo0CDVdjWhy4899ti4xkrUbHTRaymHq/nlOrgPzETeaZ+rljtw7HgbEENKf+hMyBn7P9T8enPkbS6+GgBg6jIRnpLFgN8VsW+oqvkXxTV2Ne4DM3HkfQs6Xe2CoDfHXoGIiIiIiIiIqJm0y0xag6ExNu3z+aL29XobZ5APXa93797o0qULAGDhwoVRt7Fo0SIAQNeuXdGrV694h0vULIQIQVp9Vt+I67j2fQFf3R7VerDOne/KHlt6XAjrMVdoGovn0FzNAdpkq1/3WEr2S0RERERERETUoF0GafPz85GdnQ0A+O2336IGakMDsL179w7+LAgCJk+eDCCQKbt06VLV9ZcuXRrMpJ08eTIEQWjy+ImSIVK5g6zh0YOWovMw/HW7VdtDWXtfDsFgg63/LYkPsgXUr38i1UMgIiIiIiIionauXQZpdTodzjvvPADAoUOH8MQT6kGaqqoq/P3vfw8+Pv/882XL77jjDuj1egDA1KlT4XTKJ1NyOp2YOnUqgEAW7h133JGsp0DUdHr1TFpTx/HIGT894mqipxa+mm0xN2/qeDIAIGv0c7ANuBUQ4j/cWPtcDUvvy2P201k7R80AJiIiIiIiIiJKZ+0ySAsADz30EGy2wEz1jzzyCC644AJ88cUXWLNmDX777Tc8//zzGDZsGDZv3gwAOOOMMzBp0iTZNvr374+7774bALBy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eCz5AoOkFQz6QVTDmw9b0W1j7qE+r5qjcCYvQJtwy5g6CzFAAAdMZM5Jz4Cjpf60fn6yR0usYbdd1Q+sxeyDv1I2SNfCpin/xJc9Dx0kPocPEOFP1+u+ZtExERERERERGli3Y5cRgADBw4EN988w0uv/xylJeXY+bMmZg5c6Zq39NPPx2fffaZ6rInnngCpaWlePvtt7FmzRpcdtllij433ngjHn/88aSOn6jJ1DJpBR0EQyYAQJfRVXU1d/GPMTdt7DAu4jJBp/2wI+itgbHYukTsozMXhT7SvO1QkiRCSCDTl4iIiIiIiIgoGdp1VOLMM8/E1q1b8fTTT2PChAkoKiqC0WiE1WpF7969MWXKFHz99deYN28e8vLyVLeh0+kwbdo0zJ49G5MnT0aXLl1gMpnQpUsXTJ48Gd999x3eeust6HTt+qWmNKQ2cZhgzAnWTdZb1QOjnsPzYm7b1GF80wbXMJ6jQdpIYwEAnaWwyfsRHcVN3gYRERERERERUaLabSZtg4KCAtxzzz245557mrSdc889F+eee26SRkXUAlQmDtOZcoI/623qmbRamDomKUhrCJQkiZ5JWxDyILFDmq92F/QZ3RNal4iIiIiIiIioqZjeSdReqdzeLxgbg7SRyh1ooc/sHXW5beBtsTci6GA8OvmYPkKQVp/RE4LBGvK4B/TZjbWfjUUnIufk9+TrZPVRbEd0V8QeDxERERERERFRM2n3mbRE1EiWSRulxEA0lp6/D5ZMiCR71L8hmLLhr98LS48L4S39FaKnBpLfCdFVDsGYBVv/m2DMPRYAIBizAb0V8Dtl2zEdDeI2EAQB+RPnoH79ExB0RmQOvRc6WzdI3jp4jiyCpcdkmLtfgJIPM2XrSZ6qhJ4rEREREREREVEyMEhLREFCSJBWZ+2Y0Db02QNi78dgRfaIJ4KPrb3+EL2/IEBv6wJ/3S5Zu1GlrIIhqxdyx70pa8sY+CdkDPxT8LGpyyR4Ds0JPhY91THHTERERERERETUXBikJaIgXUi5AyHB+q6C3pys4ciJPkVTeCatVjpTrnzTUTJpJZ8Djp3vQTBYYT3myoRfFyIiIiIiIiKiSBhtIKKg0EzaRPlqtydhJEp++z5FmyFnYELb0pnyZI8ld+QgbeXcs+EpWQwA8Byej9yTpye0TyIiIiIiIiKiSDhxGFE7JUBZN1YwZssfh2WcamHqoCxBkAy2Af8ne6yzdYOgMvmZFoJZHqSNVO7AW7UhGKAFAOeudyGJ3oT2SUREREREREQUCYO0RO2UYMhQtoWVKsg58TV5B71V9tBYMApZo/8TstwCS/fzkzbGUNY+V8vHNvZ/CW8r/LlLPodqP1/NVkWb5LUnvF8iIiIiIiIiIjUsd0DUTgnGLJVG+SHB0msKcgUDvOXLYOl+AQy5g2Df9B/YNz8PW/9bkHn8QxCM2dCZ8uCr2Qxr78ugz+jeLOM1dTgJ+ZPmwn3wO5g6nQpz998lvC3BYJM9lvxO1X6S361s89UD5tyE901EREREREREFI5BWqJ2Si1IGz4pliAIsPa6GNZeFwfbskY8jqwRj8v62fpd1yxjDGfucibMXc5s8naEsIzgSJm0UA3SMpOWiIiIiIiIiJKLQVqidkpLJm1bFZ5Ji6OZtL7qrXDseAv6jO6w9PoDapf/RbGu5K1viSESERERERERUTvSPiIyRKSg05BJ21YpMmn9TojualT8cApEVxkAoHb5Harrij4GaYmIiIiIiIgouThxGFE7JXrrlI06U8sPJAUEg7LcQf2Gp4IB2mhEd0VzDYuIiIiIiIiI2ikGaYnaK9GnaDJ3Pj0FA2l5gj5s4jCfE86db2ta11+3qzmGRERERERERETtWPu4t5mIlARB0aTP6JGCgbQ8RSat3wFJLbNYhb92Z3MMiYiIiIiIiIjaMWbSErVbKh9/oX0cEhSZtBoDtADgq2OQloiIiIiIiIiSq31EZIhISSWTFlBra3vCM2njwUxaIiIiIiIiIko2BmmJ2ilBNZO2vQRpbbE7ReC3H4DkcyVxNERERERERETU3jFIS9ROGfIGKxsFfcsPJAUEQ1YT1pbgdxxM2liIiIiIiIiIiBikJWqnDNl9Ye5xUfBxxuC7IbSTmrQ6cy50lqKE1xdd5UkcDRERERERERG1d4ZUD4CIUidvwmdwF/8AwWCDqdOEVA+nRRlyB8NzZH5C64puBmmJiIiIiIiIKHkYpCVqxwSdHpbu56V6GClhyBuSeJDWVZbk0RARERERERFRe9Y+7m0mIgpjVKvJq0ZnhLHDOFlTzZIbILqrkz8oIiIiIiIiImqXGKQlonZJnz1AUz9T0UnQZ/ZUtNevfyzZQyIiIiIiIiKidopBWiJql4z5wzT1M3edBJ25QNFu3/SfJI+IiIiIiIiIiNorBmmJqF3SmbKROfSBqH30WcfAduxUCMasFhoVEREREREREbVHnDiMiNqtrBGPwdJ7Cvz2A9AZc2AsOgHeitXwlCyEsWAkTB1PhqAzQmdQD9KKnlroTNktPGoiIiIiIiIiamsYpCWids2YNwTGvCHBx6aiMTAVjZH1EYyZquv67QegMx3XrOMjIiIiIiIioraP5Q6IiGKQRI9qe/26f7bwSIiIiIiIiIioLWKQlogoBslbp9ru2vsZ/I4jLTwaIiIiIiIiImprGKQlIorB0n1yxGWufZ+14EiIiIiIiIiIqC1ikJaIKAZD/vGwHHOl+kJJatnBEBEREREREVGbwyAtEVEMgiAg9+T3AUE516LO0iEFIyIiIiIiIiKitoRBWiIiDQRBAARBZQkzaYmIiIiIiIioaRikJSLSSvQqmiSVNiIiIiIiIiKieDBIS0TUFAzSEhEREREREVETMUhLRKRR1ognFW2S6EnBSIiIiIiIiIioLWGQlohII2v/G5WNzKQlIiIiIiIioiZikJaISCO9pQjmLmfJ2liTloiIiIiIiIiaikFaIqJ46Izyxyx3QERERERERERNxCAtEVE8woK0zKQlIiIiIiIioqZikJaIKA6CziRvYCYtERERERERETURg7RERHEQDFbZY8nnSNFIiIiIiIiIiKitYJCWiCgOgjFL9lj01qVoJERERERERETUVjBIS0QUh/AgrcQgLRERERERERE1kSHVAyAiak10hrAgrU8ZpBW9dfAcWQRBZ4TO1gWCzgS/fR/0mb1gyO7XUkMlIiIiIiIiolaCQVoiojjEyqT11e1G2Rd9Iq6fOewRZA17uFnGRkREREREREStE8sdEBHFIVZNWvvmF6KuX7/+CU42RkREREREREQyDNISEcVBFyOT1rHl5egbEL3w1e5M9rCIiIiIiIiIqBVjkJaIKA7JmDjMV7sjWcMhIiIiIiIiojaAQVoiojjEKneghZ9BWiIiIiIiIiIKwSAtEVEcwoO08DvhKVkC0VUB14HZmrbhq90OAJBEL9yH5sJbtSHZwyQiIiIiIiKiVsSQ6gEQEbUm4TVpAaDi+/FxbcNXuwOSJKHih9PgLV0CQEDOSW/C1v/GJI2SiIiIiIiIiFoTZtISEcVBMCiDtPHy1+6Au/j7owFaAJBQ8+tNTd4uEREREREREbVODNISEcVBMGY2eRuiqwSuPR8nYTRERERERERE1BYwSEtEFAdBF3+VGEPeUEWbt2pjMoZDRERERERERG0Aa9ISETWjTtf4IOj0KP38GPjr9wTbfdUM0hIRERERERFRADNpiYiakaDTAwD02f3kC0Svoq/oroRj+1twH1nUEkMjIiIiIiIiojTBTFoiohZgyO4Hz6E5UfuUfTMEouMQACBn3DTY+t3QEkMjIiIiIiIiohRjJi0RUQswhGfSqmgI0AJA3er7m3M4RERERERERJRGGKQlIopT1ujn4l5Hn9krrv6i80jc+yAiIiIiIiKi1olBWiKiOGUMugNZI/4V1zp6W7dmGg0RERERERERtXYM0hIRxUkQdMgcei86XaOc/CsSna1rM46IiIiIiIiIiFozBmmJiBIk6LTPvaizdoh7+/Ub/g3RXRX3ekRERERERETUujBIS0TUAgQh/sNt3aq/o+LH0yFJUjOMiIiIiIiIiIjSBYO0REQtRDBkxr2Or3It/PV7mmE0RERERERERJQuGKQlImoC27FTgz8L5nxAbwk+zh7zgqxv9ujnEtqH5KlNaD0iIiIiIiIiah20F1QkIiKF7NHPw5g3FKKrFNZ+N0LyOeHc/QEMOQNg6XmJrK+1/83QWYpQt+4x6K0d4S7+QdtO4qh9S0REREREREStD8/8iYiaQNDpYet/k6wt6/gH1PsKAiw9L4Kl50UAAOfez1G94A+xdyKJTR4nEREREREREaUvljsgIkoRvbWTto4hQVrJ70H9xmdQ89ut8FasbqaREREREREREVFLYiYtEVGK6LQGadEYpK1b90/Y1/8LAODY8Q46TjkInaWwGUZHRERERERERC2FQVoiohTRWTsDgh6Q/FH7SSGZtA0BWgCA6IZj5zvIHHx3cw2RiIiIiIiSSJIk2O121NbWwuVywe+Pfi5AROlDp9PBZDIhIyMDmZmZMJlMSd0+g7RERCmiM2bAesxVcO5692iDGZC8yhq0UWrS+mp3NOMIiYiIiIgoWURRxP79++F0OlM9FCJKkMfjQX19PUpKSlBUVISCggIIgpCUbTNIS0SUQjnjpsHc/XeA6IWl18XwVa5H+axR8k5Hg7Si165YX2/p0BLDJCIiIiKiJpAkSRGgFQQBer0+haMionj4/X5IkhR8XFZWBo/Hgy5duiRl+wzSEhGlkKDTw9rr4uBjY+FICMZsSN7akF5Hg7TOw4r1dZai5h4iERERERE1kd1uDwZo9Xo9OnXqhMzMTOh0nM+dqLWQJAlutxu1tbWoqKgAANTU1KCgoABms7nJ22eQlogo3QjyP9Qq556LrGGPwFAwXKUvr7xHs7nCg38urQYAdMnQ48Gxuci38DUjIiJKd4ftPnyyzQ5BAC7tn4FOGTx1pdattrYxCaNTp07Izs5O4WiIKBGCIMBiscBisUCv16O0tBQAUFVVhU6dtE4MHhkv2RARpZuwIK3krUHtijvh2PqKomt96ERiJOPwisEALQAcsvvxwurayCsQERFRWpAkCc+urMFvh9349ZAbz6ysSfWQiJrM5XIBCAR5MjMzUzwaImqq3Nzc4M8OhyMp22SQlogozQg69dskXHs/VbTpbcmpfdMW7avzKdq2VXllNYSIiIgo/Ry2+3GwvnHG+4P1fpQ7/VHWIEp/fn/gPazX61nigKgN0Ov1wZrSDZ/vpuKRgYgozeizemvuK7ormnEkrZtfVG/3RmgnIiKi9ODwKS+o+kReZCUiovQiCEJSt8cgLRFRmjFk9dXc1+8ohiQx6qgm0qviVDnxIyIiovTBgCwREbVHDNISEaUZfXY/7Z1FL0RnSfMNphUTI5Q1cPoY1CYiIkpnal/V/PomIqK2jlNkEhGlGUM8QVoApZ8G6tIaC0Yic+j9sPS8qDmGlVRev4R3NtdhfZkHZU4RGUYBOSYdJvW04pzeNnj8Eu5fUon9dYHaPv8+OR89s2N/Ze2t8eLdzfXwS8DgAqNqHxczaYmIiNLW/ANOvLa+TtHO7FoiImrrmElLRJRm4il3EMpbsQpVC6ZAdFcmeUTJ98NeJ37a70KZM5AWY/dKOGT3Y/rmeuyp8WLOPmcwQAsA9yyO/ZwkScJLa2uxudKLbVVefLFTfYZNp58neUREROmouN6H11UCtABryhMRUdvHIC0RUZqJZ+IwBckHx/Y3kzeYZvLTAWfEZTurfXh/S72i3R8jg6bGLaK4Pvasmm4GaYmIiNLSh1vqEelb2hehjBEREVFbwSAtEVGaEUy5TVpf9NQkZyDN6Ig9cjC1zqOeKhOrSoHWKgZ+ZuIQERGlpe3V3ojLmElLlBwejwczZszANddcg4EDB6KgoABGoxGFhYUYOXIkbr31VsybNw+iyA8dUUtjkJaIKM0IQtMOzU1dvyVEi6fWRTgLS1YtOta0IyIiSk91nsjf0bHuqCGi2L788ksMGDAAV1xxBd5//31s27YNlZWV8Pl8qKiowOrVq/Haa69h4sSJOPbYYzF79uxUD7ld6tWrFwRBwHXXXZfqoaSlBQsWQBAECIKABQsWpHo4ScWJw4iIWimduRCiu1xlidDiY0mmiJm0R5ulo7c7CoL8eWo9d/NLgW2Er09ERKkV6fhOBDT+HUBEiXnsscfw0EMPBR9PnDgRF1xwAQYNGoTc3FxUVlZi27ZtmDlzJubOnYvt27fj/vvvx3nnnZfCURO1LwzSEhG1UrqM7upB2laQSRvN4mK3artXlDD/gBMzttkhihIu7JuB84+xAQC+3WXHh1vtmrb/4ppavLgG6JGlx2Mn5cFiaN2vFxFRa+f2S3h1XS1WlLhh1Quy4zu1H44Y9Qy8zKQlStg777wTDNB26NABn376KU499VRFvzPPPBN//vOfsXHjRtx5550oKytr6aEStWs8MyUiSkd6S+wuGT3UF7TyIG0kmyo8eGNDHWrcIuq8Et7fUo9Shx+VLr/mAG2o/XV+/HTA1QwjJSKieMw/4MRvh93wiQge38scsSeCpLblUJR69QDLFRElqri4GLfddhsAICMjAwsXLlQN0IYaPHgwfvzxR9x1110tMUQiOqptnskTEbVyGQNujdnHmD9UfYHU+k9srQblra77an2KkgYH63zYWhl5kpFYVh5Rz9olIqKWs7/Op2g7WK9so7atyhUrk7aFBkLUxjz//PNwOBwAgEcffRQDBw7UtJ5Op8NVV12luuyXX37B1VdfjV69esFisSA3NxfDhw/HAw88EDX7NryWqCRJmDZtGsaPH4+CggJkZ2djzJgxeP/992XreTwevPbaaxg7dizy8/ORlZWFcePG4dNPP424r7179wb3NX36dADAZ599hjPPPBMdOnSA1WrFwIEDce+996K6ujrqa7Fx40Y8/vjjOOuss9CtWzeYzWZkZmaiX79+uPbaa7F06dKo6z/yyCPBsQBATU0NHnvsMQwfPhy5ubnBMU6YMAGCIGDfvn0AgHfffTe4XsO/CRMmRH2OX375JSZNmoQOHTogIyMDxx9/PF5++WV4vY3nTJIk4aOPPsKECRPQoUMH2Gw2jBgxAq+99lqw9FA0NTU1ePLJJzFu3DgUFRXBZDKhc+fO+N3vfofPP/886jYaxvvII48AAFasWIHLL788+Lp27doVV199NbZs2aJYt+H5nnbaacG20047TfEaNbwWrRHLHRARpSHbsbfDdeBb+Ot2Rexj6T4Z9eseU7RL/vQOPIoavvg72PTYVys/QXd4leu5RQkuX+KZNfUq2yQiopblVDmOu/w8Prc3kWrSN/DwPUEUN0mS8O677wIIZNHefPPNTdqeKIq4/fbb8b///U/W7na7sXbtWqxduxb//e9/8dlnn2HixIlRt+X1ejF58mTMnDlT1r5ixQpcc801WLlyJV588UVUVVXhwgsvxKJFi2T9fv31V/z666/YuXMn7rvvvphjv/HGG/H222/L2rZt24annnoK7733Hn766SfVAPaCBQtkQcEGHo8HO3fuxM6dO/Hee+/hH//4B5588smY49ixYwcmTZqEvXv3xuwbrz/96U949dVXZW3r16/H7bffjgULFuDTTz+Fz+fDVVddhc8//1zWb82aNbj11luxevVqvPHGGxH38dNPP+HSSy9FRUWFrP3IkSOYNWsWZs2ahXPPPReffPIJMjMzo473lVdewV/+8hf4fI3nfYcOHcIHH3yAL7/8Et9//z1OOeUUrU+/TWAmLRFRGjJk9ULR77dH7SMYMmDueraiPd2DtH4NmTBelRMxu8pJvMcvoa4JqTU84SMiSj21i21NuQBHrVOs73PWpCWK36ZNm1BeHpjD4uSTT0ZWVlaTtvePf/wjGKDt3bs3XnvtNSxfvhzz58/HnXfeCaPRiJqaGpx//vlYt25d1G09+OCDmDlzJq688krMnj0bq1atwowZMzBgwAAAwEsvvYR58+bhuuuuw6+//opbb70Vc+bMwapVqzBt2jR06dIFAPDQQw9h06ZNUff1yiuv4O2338aYMWMwY8YMrFy5Et999x2mTJkCIBAYPOuss1BXV6dY1+fzISMjA1OmTMFrr72GBQsWYPXq1fjhhx/w3HPPoWfPngCAp556Cu+8807M1/CSSy5BcXExpk6dirlz52LlypXB5/3OO+9gw4YNwec2efJkbNiwQfYv0j5ee+01vPrqqzj33HPx5ZdfYtWqVfj6669xwgknAAhk2L7zzju4++678fnnn+OKK67ArFmzsGrVKnz88cfBAPWbb76JH374QXUfS5YswTnnnIOKigp07NgRjz/+OGbOnIlVq1Zh5syZwczr7777Dtdee23U1+HHH3/E1KlTcdxxx+Htt9/GihUrsGjRItx5553Q6XRwOBy4+uqr4fF4gut07doVGzZskAXb3377bcVrdOGFF8b8PaQrZtISEaUpIVZtWUEA1LJSxTQP0mrIpC11Kks2qGXYuHxSzNsjo2GmFlHb4fVLMOgQvJWQWo5PlKAXEn/tHQzSEoB6T/TfOd8T6UWUJNi9EjKNAo+7aSw0UDpy5MgmbWvDhg147rnnAARq1i5evBi5ubnB5RMmTMCkSZNw3nnnwePx4JZbbsGyZcsibm/ZsmV44YUX8Je//CXYNmLECEyYMAH9+/dHXV0drrjiCpSXl+PLL7+UBd5GjBiBUaNGYfjw4fD7/XjjjTfw4osvRtzXihUrcO655+Kbb76BwdAYBjvnnHMwePBgPPTQQ9i/fz8ee+wx/Pvf/5atO2zYMBw8eFD2XBucddZZuO2223D++edj7ty5+Oc//4lrrrkGer0+4lg2btyI77//HpMmTQq2hf9ujEYjACA3NxeDBw+OuK1Qy5Ytwx133IHnn38+2DZixAhMnDgRgwYNwr59+/CPf/wDlZWVqq/7qaeeGnzdX331VZx9tjwZyOv14qqrroLX68XZZ5+NL774AjabTbaN888/H6eccgpuueUWfPnll5g7d27EjOqlS5fi3HPPxVdffQWTyRRsP/nkk1FQUIAHHngA+/fvx+zZs3HRRRcFX5fBgwcHLzwAgYsFWl+j1oCZtERErZUkQYIyQJnumbRaTrJ8KnHXLSq1Z9/eVI/v9zoTHku1W8Qh1j0katVEScILq2tw1Q9l+NuiShyx8zPdUvyihJfW1ODK78twV4KvvcMrqtYWn7c/8WM7tU71MTJpv9jpwH/X1sDPjNqU21XtxeXfleGmueW47Lsy7K1JfH4Aal6ht6R36NChSdt69dVXIYqBz+lbb72lGrQ8++yzccMNNwAAli9fjhUrVkTc3gknnCALFDbo1KlTMChXVlaGKVOmqGZGDh06FOPHjwcALF68OOrYzWYz3nzzTVmAtsH9998fDPJNmzZNlrkJAIWFharPtYHJZMIzzzwDANi3bx/Wrl0bdSzXXXedLECbLN27d1cEmAHAZrMFs1orKio0ve5qr+fHH3+MvXv3wmKx4L333pMFaEPdfPPNGDNmDABErQ1rsVjwzjvvyAK0DW6//fZge6zfbVvDIC0RUSsl+uog6JRfapLflYLRaLe8JL2CyN/ucqR6CETUBKtKPPjtcOC4Ulzvx8zd/Ey3lPXlHiw5FHjtD9b7MWt3/IHVBQfVv7MO1vtVS99Q21UXI5MWABYXu7G5CROGUnLct6RK9vjx5dWpGQjFFHr7fkZGRpO2NW/ePADAcccdF7yFXk1o3duGddRcdtllEZcdf/zxcfXbvXt3xD4AMGnSpGAJgXA6nS4YxKysrMTq1aujbsvtdmP//v3YvHkzNm7ciI0bN8omyopV5uHKK6+MujxRv//974MZuOFCX89LL7004jYa+lVVVSkmU/v2228BAKeeeiqKioqijqWhjuxvv/0Wsc/EiRMjXjjIyspCv379AMT+3bY1DNISEaWxzKH3q7YLhkwYc4fA3PUc5ULRo2xLI/Y0m6xrfoQAARG1DtM2yuvHzdvPz3RLeTvstZ+bQPZrmUp5mwb76pgV3Z64NQblF/J7O+1oCbBTaoTWoLXb7Qlvx+12Y8eOHQAQNUALAMOHDw8GCzdu3BixX//+/SMuC81c1dJPrZZsqNGjR0dd3pD5CQTKOoSz2+148skncfzxxyMjIwM9e/bEcccdhyFDhmDIkCEYPnx4sG/orfhqhg4dGnV5opL5egLK13TlypUAArVkBUGI+u/ZZ58FEJhMLBK1SdpC5efnq46jrWNNWiKiNGY7dio8pUvgKf0NOmMWIOggSX7kjHkRgsECa99rUbvsNtk6kpjeJ7U+3qZIRElU5U68LjU1jUqp8LhFK1PelJrj1Ppo/fvAFLnUIxGFKSgoCP5cUlKS8Haqqhqzp2OVTTAajSgoKMCRI0dQWVkZsV+k2+WBQHZrPP0ayjBEEmvMHTt2DP4cPua9e/fi9NNPx549e6Juo4HTGf2CZV5enqbtxCuZrycA+P3yi6ilpaVxjynaaxFtHKFjCR9HW8cg7VH79+/HtGnTMHv2bOzbtw91dXUoKipCr169cNppp2HKlClRixF///33eOONN7BixQqUlZWhqKgIo0ePxi233IJzzlHJdCMi0kBv7YiCs+dHXK4zZiJr5FOoW/WPxkYpvW8DDK83O66LGZlGHX7c1zz1B0/pasGfh2XD45dQ6vDjb4si/7FIRETaNfdFN7VJJKntCn8/je1sxtLDyhJJRVZGaVNJ1DABLKWP0NvcY93Gr1VrnCiuKWO++uqrsWfPHgiCgOuvvx6XXXYZjj32WBQVFcFkMkEQBIiiGJwsTIrxGYk2qVg6awiWnnPOOaq1byk5GKQF8PLLL+Pee+9VpP8fPHgQBw8exC+//ILa2lq88MILinVFUcQtt9yCadOmydqLi4tRXFyMr7/+GjfddBNef/112VUJIqKk0clrD7W2TFqDTkCXzOb7Y6XIGjj2mvQCOtiSv58at4jdNV4UWfXomqlvlX+4kjrJ54SvZisMOcdCMFhSPRyitKM2yaNW5U4/rAYBjiiTSZbYGaRtT8LnDevWjH8bUOIila2qcYvIMfN8N90cd9xxKCwsRHl5ORYvXoza2lpkZ2fHvZ3Q7M9YGbk+ny84YVnDLeupFmvMoctDx7x161b88ssvAID77rsPjz/+uOr60TKG24qCggIcOnQIHo8nagIjNU27P4o+/vjjuP3222G329G/f38888wzWLBgAdasWYN58+bhmWeewUknnRQxwHr//fcHA7TDhw/HjBkzsHz5csyYMSNYl+Stt97CAw880GLPiYjaF0EIu94mpXeQdluVPNPXoAO6ZDbfNcPskBMGk149gOqKEiSIZnGxC7fMK8dTK2rwt0WVuH1+BWedbiM85StQ8klnlM8cgZLPusJbsTbVQyIVnFgqdbx+CS6V1/+ghjqyr6yrxZ9/rsANc8qj1hctcTBI2554w74/O2Wo/23Aj31q1Uaoc/LHeeWYzYkb044gCMFJsex2O956662EtmM2m4MTOS1btixq3zVr1sDrDfy9ny7BvBUrVmheHjrmTZs2BX+ONuFWQ73WZEnHpI+G+NbKlSvh8aR2DpR0fH2SpV0HaX/66Sc8+OCDAIBrrrkGGzduxF133YVTTz0Vw4YNwxlnnIG77roLS5YswVNPPaVYf/v27cGCyKNGjcKSJUtw2WWXYfTo0bjsssvwyy+/YNSoUQCAZ555Bjt37my5J0dE7Ycu7CRGTO9yB3tr5SfwBkFAl4zmy5bRMhHJmlLl7ZRa/HdtrexxqVPEipLEtkXpxb7xGUjeGgCA5K5E/aZnUzwiUlPhUg/i8WJJ89tYoX6C9t3e6EGa3TVezRM/MUjbvoR/XZsjXFjl5zu16iIEaSUA722ph4dR9LRz5513But/PvTQQ9i6daum9URRxIcffhh8fOaZZwIIBC6XL18ecb3QQHDDOqk2Z84cHD58WHWZKIp49913AQQyhkeMGBFc5vM1nrdEm3jttddeS9JIAyyWwB1cbnf6nFdccMEFAICamhq88847KR1Lw+sDpNdrlAztNkgriiJuvfVWAIE6LdOmTQvOQKjGZDIp2l544YXgh/bll1+G1WqVLbfZbHj55ZcBBD7czz//fLKGT0QUJBgyZY9FT02KRqJNr2x5ULm43od8S/N9HTk1ZMmWJzA5TaTs2y92JD5zLqUP197P5I93fxihJ6VSpM93eEYeJV9FhONmWYzA6nd7tGfaMdjTvoR/bo064LTuylIzfFukVq0n+i+gjLWk007Xrl3x3//+F0Ag0Hjqqadi4cKFUdfZvHkzzj77bDzzzDPBtltvvTV4h/Ett9yC2tpaxXpz5swJ3mk8ZswYjB49OllPo0ncbjf++Mc/qk5C9dRTT2HDhg0AgBtuuAFmszm4rCF7GACmT5+uuu1XX30V33zzTVLH27lzZwDArl27krrdprj22mvRvXt3AMBdd92FRYsWRe3/yy+/xHyfJarh9QHS6zVKhnZbk3bOnDnYsWMHAODvf/87DIb4XgpJkoIfxIEDB2Ls2LGq/caOHYsBAwZg27Zt+Oabb/Df//63TadmE1HL05kLZI9Fd0WKRqKNcuIwC3SCAL3QTCdeGraZyC3TxfXqt/QmWjqBiOIXXsOygUcEWEW4eUXKZoxUr7JBtVv7RTHG2tuX8M+zXidgSv8MzD8gz7xu7gnrKLpI5Q4aREiAphS7/vrrcfDgQTz00EMoLS3FhAkTMGnSJEyePBnHHnsscnNzUVlZie3bt2P27Nn44Ycf4Pf7ZROPDRkyBH/729/wzDPPYN26dRgxYgT+/ve/Y/jw4bDb7Zg5cyZeeukl+P1+mEwmvP766yl8xnKjRo3CzJkzMW7cONx5553o168fSktL8e677+Ljjz8GAHTr1i14p3WD4cOHY/Dgwdi4cSNef/11VFVV4eqrr0bnzp1x8OBBfPDBB/j8888xbtw4LFmyJGnjPemkkzB//nysWLECTz31FM455xxkZGQAAKxWK7p27Zq0fWllNpvx6aefYsKECaivr8fpp5+Oyy67DBdeeCF69+4NURRx+PBhrFq1Cl999RU2bNiAl19+GaeeemrSx9KjRw9069YNBw8exLPPPotu3bphwIABwUnZOnbsiKysrKTvtyW02yDtZ58FMmQEQcD5558fbK+srERFRQUKCgqiFrnes2cPDh06BAAx33Snnnoqtm3bhuLiYuzduxe9e/dOwjMgIgpodUHasBlPzYbAX/NGnQB/M0RptYQDEsm6OxgpSMsUH6IWEynTkrVqm1+kScNiBWlr4gnSxjMgavXCg69GHZBv0eOMHhb8tN8V0q+lR0ahamN8hnVMSEpbDz74II477jj87W9/w969ezFnzhzMmTMnYv/jjjsO//73v2VtTz31FOx2O1555RXs2rULt9xyi2K9nJwcfPrppxg2bFiyn0LC/vznP2PhwoWYPn06LrvsMsXyzp0748cff0ROTo6sXRAEvP/++zj99NNRVVWFTz/9FJ9++qmsz5AhQ/DZZ5+hS5cuSRvvrbfeildffRWVlZW49957ce+99waXnXrqqViwYEHS9hWPsWPHYsGCBZgyZQoOHDiADz/8UFYSI1wik9Rpdd999+FPf/oT9uzZg8mTJ8uWvfPOO7juuuuabd/Nqd2WO1i6dCkAoFevXsjKysJHH32EIUOGoKCgAP3790dBQQEGDBiAZ599VrXGxebNm4M/Dxw4MOq+Qpdv2bIlSc+AiChAZ5EHaeF3QfKl78QNFU75H/dHY7QwaixLG++f/pKGWM2vh+KvZbSuTL0eY6zbACm9OLZPQ/WSGyG6ylM9FErAYbv6bbUbKzywR0qzbQXqPCJWlbjx2yEXZu52YFd1+tUaD7/g1uCIwx8x01GUJOyv034rtF+UsLrEjcUHXa369xnKW7UB3oo1qR5GWlIGaQPf+IawoB/LYCSuuN6HXdVeSFr+OIpgR4zjkb8J26bm9/vf/x7btm3Dhx9+iKuuugoDBgxAXl4eDAYD8vPzMWLECPzpT3/Czz//jA0bNmDSpEmy9XU6Hf73v/9h0aJFuPLKK9GjRw+YzWZkZ2dj2LBhuO+++7Bjxw7FeungnXfewUcffYQJEyagoKAAZrMZ/fv3xz333INNmzZh0KBBqusNGzYMa9euxf/93/+hZ8+eMBqNyM/Px5gxY/Dss89i+fLlstvvk6Fr165Yvnw5brzxRvTt21dWgzXVxo4dix07duC1117Deeedhy5dusBkMsFisaB79+6YNGkSnnjiCWzduhXXXHNNs43j1ltvxRdffIFJkyahQ4cOcd8dn64EqSlH6FZKFEUYjUaIoojRo0fjxBNPxEsvvRSx/0knnYTZs2cjNzc32Pbaa68Fa9p+9tlnuOSSSyKu//nnn+MPf/hDcL0//vGPmsd68ODBqMsPHz6MMWPGAAAOHDiAbt26ad42EbUNorsSJTPkgdr8sxfA3Cn5t5Y01c5qL+5fUiVru2dUDkZ2NOPmuWWaApxWg6CpzmyD3x1jw1XHNtbtvXR2qWq/IqsO/z29UNM2t1R68Mhv1RGXf3B2EYy83y/tHZ4u/x0VXrgJxtxBsG9+EbXL71D073xdu/uTKa2tLXPjyeWRa3AXWHT454l5KLI138SEzeFAnQ8P/1oFe9hxbnIfG64YmBlhrZb34pqaqBe4PjynCAZd42dMkiRc9l1Zk/b5v9MLUGhtXb/PUHWrH0T9+scBALZj/4KcE15I7YDSzBXflcrKHj09Pg+9cox4d3MdvtvjlPUNf39RbN/vceDdzfWQAJzc1YzbhuXEXCfcT/udeGNDXdQ+z52Sj25ZbSNYoubgwYPBupzxnn/v2LEDPp8PBoNBVuuUmkfoXcytObOS0luyP9ftMpO2pqYGohi4Gr9hwwa89NJL6Ny5Mz744ANUVlbC4XBg4cKFwTqzv/76K2644QbZNurqGr+cMjOj/8HcUDsEAOrr6+Maa/fu3aP+awjQElH7JZhyFW329U+2/EA0+HGvU9Fm0DX8r+1kq0tGfCfoWSZt2y1ziqjXmKn1+vroJyhbqtIv643kRK/yd1i94FIAUA3QUvoJD9qEq3CJmLMvep90NP+AUxGgBYBvdjkgplFuRawJwn47LA/grilVv/sgHvMPtL7fZwNJ9MK+uXESYceWF+Gr35fCEaUXUZIUdekNETJpAWDJIZeijaKbfjRACwCLi904FKFsUzSxArQAJ24kImqKdhmktdsbZ952uVyw2WyYP38+rrzySuTl5cFqteKUU07Bzz//HCyU/dVXX2HZsmWy9RqYTKao+wudHdDpbL1/XBJRehIE5aHcfejHFIwktkXFypMq69Eo7XEF0Y+lDW4fHrm2kUUvYFTHxu3oBWBiD6usz5T+GeGrBRVrvA030i3WDapcnNk43fmqN6u0bYQk8nfXWkQqORLq293pW/olkqoo9R49afT27BAjQ3lBWEBV7fgfzmqIflHt8x2t7/fZQPLaIfnssjb3wdkpGk36Uasz23BHSpVb+cZXu+hLkandPLuponkuKJc520ZpEiKiVGi79yFEEV7P46abbsKAAQMU/axWK5544ongxGKffPIJTjjhBMU2PJ7oJwmhNW2tVmuUnkoHDhyIujy03AERUWuUaQychF03KHBXws5qLw7b/cg0CqhXmYCmU4b6V9fgAiMu7peBrpkGWA31qHL5MblvBmxGeRD7/GNsWF/mwVaVbNdk1TxMp0AKqfPb96u2S/7IQSBJ9EHQtcs/nagFRau36fZLsMQIZLaUWIfL8GQ6LROG/WN0Dh6OUkrG3HorHajylq9M9RDShlod44a3+rguFiwulmdmu1mXNi5qL1dzZbwGMnTNMfsREZFSuzzTyMrKkj2OVtT6jDPOgMFggM/nw4oVK1S3EauEQWjmbqzSCOFYY5aIEiVJEoRWMMNupkkX/P+2YfIs2Uj1Y8P1yjbgwbF5wcfh2wll1gv487BsTJ1foVimtdxBLC6ePKY9f/1e1XbJa1dtDyyrhWDOb6YRUXMwtsJ7xqJd5EmnwFSsyZvCa4eXOaNfvZrYw4o+OcaofTJb4y80Cm/FqlQPIW2off02TByWZVK5YyiNPgutgVqmcnMFaWPdbURERJG1rb90NDKbzSgqKgo+bij8rcZisaCwMDCRTFlZ42QHocHTWJN7hWbDRtsXEVEyufbMSPUQNMlIQlZYvCcaGUb1fapl7oZy+UT8tD/2LZaceTr9+SPUgnRG+dyIbmVgn1JDa23WdMk61covSlhfHvkOrZY+tuys9mLhQScWHXRie9jdB7GOu3tqA/Uuy51+/LDXEfMWaItBgFEvwBJl0sUKl5hWdXnjoxy3r2q96m3o7ZHa+6mhZn22SpC2Oiwzu94rYskhF/bXxl9ntS3ZVe3Fb4dcqHaLmLvPiX/+VoWPt9WrXoRWuyC0rdKLZYdd8DbhWHOIQVoiooS1y0xaADjuuOOwYMECAIDfH/2LpGG5wdD4cg0aNCj489atW6OuH7r82GOPjXeoREQJqV50JfyOYmQOvjvVQwGgXg8NAPRJmJ1Z7TbJaCLVPfxpvxPn9rapLhMlCY/8Vh0MPETDDJ/0FylIW7firxHXqV54BQp/tyLicmo5N80t19SvztO6Pov/XlkTdXmZ099is6YvOODEq2GTJN5wXCbO6hU4RmoJ4qwqceO/a2vhUJkILVzl0VreWSYBLmfk/m9sqMP/DY18t0Rr47fvhyGzZ6qHkXJ1HmUQ0RDMpFV+Z4fGHO1eEX9bWIlqtwi9APxtZA5Gdmx/t9svLnbhf2trFZcDNld68dVOZSmf8L+dvtvjwLubA3eIHpNjwBPj8qBL4I6sw/b2HSin9NGrVy9eCKNWp11m0gLAKaecEvx59+7dEfvV1taivDxwItC1a9dge+/evdGlSxcAwMKFC6Pua9GiRcH1e/XqleiQiYjiZt/ycqqHEFRcH39mRfidrQUW9a+teGvARjrpiBZI2Ffr0xSgBQCXhoAEpZbo1hbkC+WtWAnJ13onLmorKl1+2GNkvbdG+2p9WBtjMrS9LZgl+OZG5Szub29qLPGlElNT+PfKGk0BWgDocTT4rHZre6hFB12t9EKY+pi9pb+18DjS0yyVSf4aMmmjZVcDwLe7HMHMWr8EzGyFEwYmw8fb6iO8y9SFZy83BGgBYHeNTzE5o0utZoKKOo8Ep8a+REQk126DtBdffHHw56+++ipiv6+++ip49eXkk08OtguCgMmTJwMIZMouXbpUdf2lS5cGM2knT57cKupDElHrY+4+WbVdtB9ImyvIarfandzVotKz0Z+Ol2dLRcqeijeTFgBO6qLMsukUZbbyeDLyWO4g/Qn66O+9SHx1e5I8EorXkThupTXHCO6kk721sWdajxWsSqZIMZaGcgPJPM4JAE7qEvhM5ke4GNfAL2mbhCzdSH6XarvnyPwWHkl6+uWQW9HWcEFVEASEv/MLrY3vk9l75EHZLZWxP0ttUXmMkiLhYh1NNoaVXilxaN8+Y7RERIlpt0HaoUOH4pxzzgEAzJgxAz/99JOiz5EjR/DAAw8AAEwmE66//nrZ8jvuuAN6feCEfurUqXA65XUKnU4npk6dCiBQKuGOO+5I9tMgIgIA5I6fHnGZ5KlquYFEofYH+81DspSNIU7sbMYtQ7Jwclczpg7LxtAik2o/TwJB2psHK/cdbSvR6i/2yZHffsyJw1oBKbGaef66XUkeCDWnGEmZaUXL9bR0SNKvPXrBqqmTDg0tNGFK/wyM72LG/SfkosPRi2Qdolwsa6B2a3y6i5SF7z78cwuPpHX628gc2ePQiemSNOdnuxOrlEH4nzKlDu3fm2lwqCIiapVa0Z+uyffCCy8gNzcXoiji/PPPx7333ovFixdj5cqVeOWVVzB69OjgpGCPPfaYrNwBAPTv3x933x2o9bhy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eyT5CI2g2dORfZY19RXSY6S1t4NOp8YRGIPLMuZpabIAg4o4cVtw3LwfgoWbfxljsAAJtRh5vCArXRgiTRssaOCZuRnJm06U/SGKQVTHmyx/66yCWSqGXE8+kytqJMWi3SYdKshtqx4XHS+0/IxT2jclTWUDe2sxkX98vA1OE5GFLYeAGug7V9BWn9dTvhr9/fwqNpfTqGBe8dXiktPg/pIpE7imKt0aQgLX81REQJabcThwGBIOvMmTNxySWXoKSkBE899RSeeuopWR9BEHD//ffjnnvuUd3GE088gdLSUrz99ttYs2YNLrvsMkWfG2+8EY8//nizPAciogaG7L6q7X5XKQwY2MKjkXP6RHy/R363gSGJlwkTPRcITyIREbjleGWJB26fBL0OGFxgwuBCU9Rs3fDbc1eVevDNLjsG5Zuwvy5QQ/LUbpbgJCiUBkRtJ5umjifDfeDb4GMfM2lTLp6T/0qXiPt+qcRtw7LRJbP1/9m7ucKLyX2adx+1HhFLitVvzQeAj7bW4/TuVsXFKJMOyDHFDrDGoi2TtvVFgCSvssZvA/eR+bD1vbYFR5NetAT/MsMmD5MQCNSGtzc30V0J5673obN0gKX3pRAEHdxHFsJbtgzmbudBZymCa/dH8JQuhj67P0xFY2HufkGzl7xLpE53rCD3nH1OTO5jQ+HRCyelTmbSEhE1t9b/12oTjR8/Hps2bcLLL7+Mr7/+Gnv27IHH40Hnzp0xYcIETJ06FcOHD4+4vk6nw7Rp03DxxRfjjTfewIoVK1BeXo7CwkKMHj0af/zjH4NlFYiImpM+Sz1IK7pKWngkSs+urMHGCnmNuERmDE628Djx/lofHlhSJbt18qudDvx1RHbU2ylzzMqI80db7QDswcerS924e1Ruk8ZLSSRpmIBJb4WxYIQsSOuvZyZtqpXFESgAgF01Pty5sBL/O70gGGxordaWebC+zBOx9EtT+UQJ/1hciQpX5APehnIvNpQra36a9IKsTmiiijQEaWtbYSZtxffjIy7zHP653QZpq1x+3LO4Mma/zPCZRAHUeUUsjHBBQZKkpAdGJb8H5bNPhL92OwAgo3INTB1PQdVPFwCQULf6XkCSvzftALLHvIiMQbcndSzh1Or+x/LzAReuGRS4oyjS/AX/WFyJF04rQKZRF2cmLcO0RESJaPdBWgAoKCjAI488gkceeSThbZx77rk499xzkzcoIqI46TO6q7aLrvhnsU+mGreoCNACQEkcf+yHsxoEWT26/nnGKL0jC09sjVRL9rfDbgyIsg8tkxOtLPGg1i0iWyWgSy1PEmMHafW2ztBnHSNr423JqTdja33sTiq+3GnHLUPUJx9MB1pDGj8dcDZbkHbJIVfUAG00Rp0AmyEwwZOW5xIpoNtBQ6A3kYBUOvOULE71EFLm8x122fd5JCa9AKNOXn/W7pXw3mb140GZU9SUlR0P174vggFaAHDueAeiswTBd7yk/r50bH+j2YO0iWTSZocU7Y50s1CdV8LaUg/Gd7UoJibLMAoR98sQLRFRYnimSETURgg6A6zHXKVcIKZ2luPmyHi6fVhjoEUAcPWxmQltx6aSmaPG7ZcinsCc1dMKjZtpc4GF1kzyRb71uIFgzIbOEFa3OMIM7dRyahK81f03ldnj00mWxlnOVpU03/PYWa0hwzwCoy5QJqxTRuzAWEebTlaHNpTFoENRWKA2/Bjb2g6lUozyKv76PSm/oJoqK0o8qu02g/LipyXsgqg7Sv335pjA07nnY9lj0V0O5673Yq7nq96U9LGES6Q+b+hdQNFervXlgd+RM2wG2Jwoxywm0hIRJYZBWiKiNiTnpDcUbZKW27qbkZYMmXiN6GjG30flYHIfGx44ITfhTNpMo7ZbISUpUK823LWDMnHNoEzNtWb1rEmbNkRPjbxBUN5cJBhsgN4sa5PE9A70tVeT+9jw5sRCjO5ojtjH30aiBs15GGnKPGsNx8Hbh8fOVn70pPyoJW+ePaUAw45mC98yJAvju8gnjmx1v0sNxw1P+coWGEj6iTTR5jWDlBdfTWFv0GiTdPoTmEgrFr9KTXLBXKBp3ea+/V9t6yM7RM+4Dw3sRpt4rPPRCy+OsL/not1F1Mo+oUREaYNBWiKiNkQwWGHuFlZ6RcNt3c3JESHlKUtjgDSSER3NuGJgJgZHyMbSIlNj5poE5QnW8CITzu1tg0EnaJ4EjV+66UGSJEjeWlmbPks5G5Ogt0EIC9LCzyBtOrpiYCayTTpM6Z8RsY878QorLUJrDCdQUKB5JCNIm6ehpEtujD4Wg4B7x+Tik/M64IweVsWFMF9ry6T1q2eLhvJWrGiBkaSfSIFWtUza8KBg1CBtkqOEkuiFr3ancoHGv7GiTRyXDOHHjyyjgAv7Rj4eAoA/5HMU7fWSpMD3ZvhF92jZyq3tOgoRUbpgTVoiorYmLCPQU7IQGHJPigajzLxoUJAGE/hoDRSvLfNgbZn8JDs0CUxrwOD7vQ5cMVB75i1F5vFL+H6vAw6vhLN7WZFn0f5+chf/qCgDYsg6Bv7abbI2wWCDoJNfBBBdpfBWbYQxb3DcY5YkEc4d78BXsxXmrmfBc2QBPCWLYcgbDEv3C2Duelbc2wQAX90eOLa9Cr21C2zH/hmCTp5Z7tr3NWpX/T1YS9HU+XRkjXwaelsX2Lf8F6KrDKKjGO7i72EbcCuyRj4JnSknobGkmtYLJpFIkoTfDruxu8aHMZ3MCWfpx0uUJPx8wKmpr8sv4YMt9TiuwIjhHcyQJAmLil04UOfHSV3MOCYn8TE3Jdu/4bXP0Fr/JYFtN9hd0/QyPu7DC1D542mAYED26OcgGDPhq9oAfdYx8Nfvg7FwDKy9pzRtH4fmwn3wO3gr18bs6z2aSStJIurX/wv1ax6Etc/VyB77KnTG6MG21sQvSvj5gAslDj8mdLNEDA5aVIK04Zm0/1ldq+jTuJ8mDVPBW7FGNSNa8tao9FYSXaUQDDY4tvwXzt0fQJ/ZE9Y+18BvPwh/3S5Y+90IY95xmraldpxSvIwaPsp7an341/JqXDEgI+qFk0+22zEw36go+xTpIjzATFoiokQxSEtE1MYIOvmh3X3wO/hqtsGQMyAl44lU7iDfkvq8UrXZorU6VN+YlhctmyfU7D1OePzATUOyYnemqF5fX4tfjtYYXXLIhZdOK4h6+3QDb+U6VM07R9EePkEYAAh6q6LcAQCUfzMEna71QxDie//YNz2HupX3HP352WC7p2QRHFtfQf5ZP8Hc+fS4tin5nKiYNQaiO1DP0le/GzknvBRc7jowC1XzL5Kt4zn8MypmjYZgyoPkqZItc2x7Fd6qDSg8t3VOZBTrAkisGd8XF7vwv3WBjLdZux149pR8dMtq/j+XZ+52YHVp7GzL0P4zdwP3jcnBEbsfb28KTJ70/V4HXji1AEUJTph0sC7xOy8MR19Xk16ASQcksxx5eIbvzmofaj2ibOKjePhqtgcCtAAg+VC7/C+q/STRA1sflVrvGnhKfkHlnEmROwgGIKQckbd8OSRJQv36J1G/5kEAgHPX+/DbD6Dg7PkJjSEdfbnTgc932AEAc/Y5Ivaz6JW/2/AgbTTJLonhKV3SpPVFVynsW16CY8vLAABvxSq49n0ZXO7Y8RY6XLwHOkvs8gmhx6nZexx45uR8Reaq1k/GujIP1pV58PhJeVH7/XNptaLNHqWcFYO0RESJSf0ZMhERJZVgUAYAXfu/bvmBHBUpSDusmWYnj4exCff2HnE0Bmk7apgop8Hc/dqy5SgyUZKCAVogMIv31kptmXWqnwXBAEPOsYpmnTlPkUkb3M6+LzTtL1RDgDaS6sXXxr1N574vggFaAMEAQAP3we8irhseoG3gLf0FfvuBuMeSDmwxsuPDZycP1xD4AAJBho+32ZMxrJg+2prYft7cUBcM0AKBrP6ZuyMHvmJpSpZ/6DWvaNm0sepkqm9bOa5lhxMvPVK3+j5N/WqW3JDwPuo3PhN1eUbYHS6i8wi8ZUtRv+YBWbvnyAJIvrYzYWFDgBaIXoJEUgnzxXHDRNJLYviqNzZx/S2K43MoyVsH+5aXIi4PFXqcEqXAaxp+sVgnCHHVr/5hb/zHjTO6WyMua46awERE7QGDtEREbYxF5fbMlphZOJJIk1GcHuWP+9amd7YBfXN5c0pLqfUo31NVbm1n5L6arYo2S8+LYelxIQRTbmOjoIOl1x8g6NQnovLXKieQaSrRcTDudXyVaxRtUkgph0TrIIruyoTWawnhZUpyTI2PM406HB/lApA3zsDBhnLt2a2pUKYSdN5RnXgpgG5ZiZehCQ0IZZrUo0NGHTBlQPy37mepZMwesiee9es+/LO2jmLir6X7wLdRl2cNewT6rL6yNseOaap9/Y7WedEkXLTJqcKp9cwxx1HWJslFaUXnkSat7z78U8w+zr2fJrTtzRUelDnlEe8Cqw5WlZIRkWyqiP+9PrGnNeLkYc0xaSxRW3DddddBEAT06tUr1UOhNMUgLRFRG2Ppdi4sveSBWm8Kg7Rq50lvnFnYpCzWZLosgYBBOEEQ8OAJebhpcBbO6912gs/pqtKlTL9Sm2RGja9GXnfWWDASuSe/C31GVxSevxxZI/6FzOMfRsE5vwRKD6iUOwAA6OILZkliM81aJSjrj4qOw4379SeYgSel78xM5rDf9f8NzZY9/uuIbNw8pO18Fif1jO95WJpwbG1KHc/QMhKRSsn8a1w+emXHXzM3W6VeZpOCcCl+f+szekDQGWHrJ8/Ude35RLW/v35fSwyr2YUHEqNRq1ZQEEeZpGQHaf1NDNJ6NFwYEBO8g8GsF1DikL+2HWx6zd+LQHylJBp0ztDjyfF5uG5QpmJZpPkIiFrSggULIAhC8N+ll14ac52GIGq00khEzYlBWiKiNsg24I+yx77qzc0XJIohPHPmxM5m5GiY/bulZGicPCwWi0HAxJ5WnNmjbQSG0lmVSxlg0XJrqySJisnBskb9G8LRQKwhux8yh96LrOGPwNThRACIWO4gfIK+WER3RVz9NZOU2YR+x6HGxYkGadO4oqDdKx9beIkDi0GHM3tYceVAZeAg3meVDudogwriC2qqTbikVbLiWmrH1QyDgB7Zid1xkK2Smau1Frgqqfm/DwVj5Mn3dLauAABr32uBkNrWkq9etX9bCdIesccRpFVpi6eWfbpl0oqukph9JJ8dkj/+Mh5mg4DSsCBtR6setjjq7psSTKLvmmnAOb1t6BhWBzvapGJEqfLZZ59hw4YNqR4GUVTpc5ZMRERJY8gNmyHY74K/fg+8letweLqAw9MFOHd/3CJjWVQsDxI1dfb1ZLOqTE7SFFoCJGKSJzRpbypVgrTvbKqDM0akVrQfhOST190z5AyMuo4QIZM2fII+APDV7kD1L9ejZumf4XeWyvet8QRfipHh561YHfwMl88cBfum5xR9/I7i4M/ug7M07TfecTQnvyjhsaVVuHR2Ka75oVQWjPOLkuI22mj1T7VaVeLGpbNLY3dsBrGOB/FkwwHxZSuGjuH7PY4m1bMNpZZJa2hChq/aBGGuJmTqSSoXN5rCdfAHVC26EvXrnwqWGxGMUe7SOBqY1du6wNz13Jjbr/n1Johe9QBuqkiShIUHnXhxTQ3m7nNC0vC9djieIK3K5vLjKErblPdHKE/JL6icey7EkItfzenI+xa4D0UujXBYpcxHIJNWfszuYNMjnnn1DtTFf9wI/USHH6eYSUvpSJIkPPzwwykdw/Tp0yFJEvbu3ZvScVD6SrNTZSIiSgadpQMEs3yGYG/lGpR/Oyz4uHrR5Ypbv5PtiN2nmKhHnw6paSGaknWmRksNuN8OJT7hDQHzVCZfq3CJmLYxehDDF5ZFKxgyobN2jr4zjZm0kuhH5Y9nwrlzOhxbX0H1oitky0XnYWjhLVsWcZnotaN85sjGvhWr1Ps5A8EEX+0OTftUHUcTZzJvimmb6rDxaH1Etx+4aW7jxGhqdQ4jZcOrHWrUAj8un4R/r6xR34aG8TZVrGCSNc4rWwfq/HFP2rPwoAvTNycvCKj2O4knYBROrSZthcrFGs2aUGs2nK96K6rmnQPX7o9Qt/pe2Dc9DwCQPOrvKQAQQrJnbf1v0rSf2mW3N22gSbauzINX1tXh10NuvLWxDks1TOQWT5BW7bcbqdaxGlcSMmn9jiOomDMR7uLvm7yteFTOOVO1LrgoSXhyufJ9ZdYrM2k72PTNfrt26ObD72hgkJbSTWFhIQDgq6++wpo1ynr+ROmCQVoiojZIEARFhqBj6yuKfrWr/tGs4/hVJRjpSbMZf8PrW2o1OMItyGa9EDOw89La2oT2SQGdM9SzqRYXR7+13x9W70+f3TfmSaxgUC9foc/oLnvsLfsVfvv+4GPP4Z9kM7JrnYjLVxX5Njznrvc1bcNvD2TSug8mHlho7mNDND/tl/8eQ29bVgvSRrowIkAZZFWbuCjarOYtcbiKNcFOpIl5oimOIxgGAB9ubVqANvwzqZZJqzbJmVa5KiVycpoQ9RWMWQmvG65u3aPyx6v+Dkn0QfLZI64jhgRwzd1iZ9ICgHPnO4kNsJm8tl4+KeG0TbEnKazWOMEjAHS2KY/zXTK0l8uoSCCjPJx983+AhEvGNHXfLyjaSh1+Re1ZIFD6Izwo3UHl9Uum8I+4IpPWm15/6xHdfvvtMJsDd0c99NBDKR4NUWQM0hIRtVGCQX6rZWgAqYG35JdmHYNa1syQgsgzr6fCMTnx10g06wVcrlLvEgB0goDMJNW5JXWJ1hqUwm4X1plyY64j6IzIGHSHol1n6SB7HF7eAABEd2MGqNaJisLLMcj2Ub9H0zYaMmlFT7Wm/uo7S01gIhavStTUqIuUSSsoMu9qVQIHe2oj3/qe7LqWamIFaROpEmCPsx5knadpz/PsXvKLGfFkPGphUPkdq00mppWp8ISmDEfGV71Z0RarrmjoRVRBZ4Q+e0DSxtNSqsICrlreQ1pL/fTI0qNIJciYY9bhlK4WTdvYUd30khbuw5HLDsQmIGf8uwmv7aveomiLFOT2hDXrBaDQ2ryn+Wf2sEIXcpEzvP5trPJDRC2te/fuuOWWWwAAs2bNwvLly+PehiiK+Pnnn3HXXXdh3LhxKCwshNFoRG5uLoYNG4a77roL+/crz7dCNUxM1qtXL1n7o48+GpywbMeO2HdCnXXWWRAEAZ07d4bfr35R6uuvv8Yf/vAH9OjRAxaLBbm5uRg1ahT++c9/oqqqSvPzppbFIC0RURulmPBI5eRIFkRqBmrBhz658c/s3Zyi1Xs8s4fyZPCkLmb8++Q89I3yPNRuzaXkSbTWYHhmm2CwaVova/R/NGxc+Qey6CprXKxxoiIxwsRB8QjWpG2ByZFaWnjsUUD0IGZ4LdNalSBHXXiEI0RL5ILFCtImUsc7WVlsE3tYccVA9dqq2SYBk/vY8NhJeTi7l/yzpFYneESHpl2gu7CPfB9qWdGaCck7Rqtm24vRg7S2fjfIHmccOzVp42nNxnY246bBWXj65PyIfW49Pgv/GJ2De8fk4F/j8vB/Q7Nw2YAMRTb3gTofXE0MFIr24tidQuRO+Bw5499F9thXUPi71bD1vSbhfUt+ZVmfmghB2iqX/FhfZNXLAqih8pIwcev9Y3JxzSD5hWrWpKXW4N5774XVGjhmP/jgg3Gv/+ijj+KMM87Ac889h19//RUVFRXw+XyoqanBunXr8Nxzz+HYY4/FV199Ffe2r7iisUzWRx99FLVvSUkJfvopcBHpsssug14vP/5VVVXhjDPOwEUXXYTPP/8cBw4cgNvtRk1NDVatWoVHHnkEAwcOxNKlS+MeJzU/nkUSEbVVuvAgYsv/wayWzZVmJWmhE4SIt0tP7Kk8+T6pswWdYtxyqTbJTbj6KIEhii7RWoPKIG2UiX1C+wlCzICu6FFmJIQGabVn0ka+RVprhVT/0QluJG/s249bm/BMWoMOUUtWKIK0Kp+7aEHalhA7SBv/QTPeTNpILuyrnLUdAMZ1MePNiUW4YmAm+ucpL1ip3U2QwNOQCX8dmhJ/k5KYKa52bJD8nqjr6MyF8m2YcpI2nnQWK65+54gcTOxpjRhgBALf2cM7mDGsyIw+uUac1t2Ki/pm4OmT82UXbCQAu2ualk0rukri6m/MGwJb32uQMfBWGAuGBcYbq+55pH2rfKdEyqSt9WgvdaBWOkRNtPkYhxaZFL8jljug1qBz58649dZbAQBz5szBL7/Ed0ehz+dD586d8ac//Qnvv/8+lixZglWrVuHrr7/GPffcg8zMTDgcDlxxxRXYskWZDR9N3759ccIJgbs8YgVpP/nkk2D27JVXXilb5na7ceaZZ+Lnn3+GXq/H1VdfjRkzZmDp0qVYvHgxnnjiCRQUFKC0tBTnnnsu9u3bF9c4qfnFf48nERG1CuGZtP76var9PGXLYSoa0yxj2FypnJwlzWK0AAInF2qBEptKCpuWQEOWhlt9jzj86MuM24REy6Qtc/gVt8lKkgT75hdQv/4JWbvWIK0WavVfK+eeFfd2RGcgKOA6MBNVP10QbNdn9tZc7sBfsxXl341LaZBWdFeidtlf4K1cDWPBSGSPeRE6c17C27t0trKcBBC51EGD8CDtu5vrcUInMwqsje+R8ABHOEmSmnUCnli3BSdSNtuuMUBS7fIraouGyrfokKMS1FGrORtKLZM2drXu6MI3qVb6QitfjfaT55KPOyFr5L9g63cDXAdmoeqn3wEATF0mIveUDyHolUHa0s97Rd1m+MSeOoN6+ZxwkuiFoLgAmz5cPgkzttVjX60Pp3S14LTuluBnp9YjYnVp9OB1U5j1AnpkGWTlS3ZUezEogRJLzn1fonr+xXGvJxizlW2mHEDjxJGhRFeFom1dmbbXT+3CSgO/xpITnTL0OFCn/W6M8AkOWe4gcZIkQnQrf/9tlc5cIJtMsbn9/e9/x+uvvw673Y6HHnoIP//8s+Z1b7rpJjz88MMwGuXH4REjRmDy5MmYOnUqxo4di+LiYvzrX//C++9rm0ugwZVXXolly5Zh+/btWLlyJUaNGqXaryGI279/f0WfRx99FKtXr0Zubi7mzZuHkSNHypaPHz8eV155JU488UQcPnwY9913Hz788MO4xknNi0FaIqI2StBrOzGp+ukCdLj0UNL/QJIinAikY5A2UiatReU+ai31IbWUO5i33xm1ZAJFFi2T9pV1tXj4RHkw0HNoLupW/FXRN1lBWkn0wX3gm6Rsy7nzHWSNfFIWoAW016Nt4C39NSnjSVTt8jvg3P0BgKM1O3VG5I6bFnO9XdXKCzvRxIgVqma1v7q+Fg+c0PgeiZVJ6/JLEY8RyRArM1yfQAqq1luN39pYhzVRAj86QVCdoCvW666WSduk8gRIbiat6Dyiva+rBDVLboQ+o3swQAsEjiu1S6eqZ9nHKHegs8gzaSV/5FrUoeybX0Tm4Ls09U2Fmbvt+GFv4Db9LZVe9M4xoHdO4HvuHQ0TizVV31yjPEhbFX8mrd9+MKEALaA+IZ3OkIlECs+El6OSJAmrNAa5owVptX5uOtriC9Lawj7zLHeQONFdgdKPO8Tu2EZ0uKwUektRy+2vQwfcdtttePrppzF//nzMnz8fp512mqZ1w+vIhuvWrRvuvvtu3HHHHfj222/jvsh76aWX4s4774Tf78eHH36oGqTdtWsXli1bBkCZRVtfX4///e9/AIDHHntMEaBt0LNnTzz44IP405/+hM8++wxvvPEGMjKSl7hATcMUHiKitkpjto3oKoFoP5j03ddHyORq7sksEpFvUT+hUYuNaPlbS8us46am3vvbjkXLpN2hEuRzbH9Tta+gV6klGYkQ9h4RG/fjLUteTS9j0Ylw7novadtrikgXWrRw7vlY/njH25rWW10aPbgVLtYI1Y43G8rl75ECS/TPq9as1ETFui3YahAQb9K9Q2O5Ay2ZjfkWveLiVJfM6HkeuWblMbXQ2rTZ5i1hgfL6BEs6iN5oJUUiq5wzSdHm2vtJ/Bd7BINiHVOH8ZpW9ZavjG9fzaTSpQzemfXA5zvkweb3tzTW2N4VYyKvZFwI6ZMrf18etscfpHXsfCexnQt61YC96FK/CyAWY+5g2eNI9WjVdLA1HjB6ZMk/d2f3smJ8F3PMbZzTS73ET1GEv+HCL8xUOJlJS+nr7rvvRlZW4KJKIrVpG9TW1mLPnj3YtGkTNm7ciI0bN8Jms8mWxaNDhw6YOHEigEBJA1FUfo5CSyGE1rEFgIULF6KmpgYAcMkll0Td1ymnnAIA8Hq9WLVqVVzjpOaVfmfKRESUFIKg/WYJrZMaxUPtBPrMHhZYEpkFp5md21sZrLtuUKZqkFZLuCZfQyDa0wKzxrdFkiRFreHpFZUziEe8tTk88BpF+C3NoZlvyf38SBFLk4Qz5A+D7djbk7jvsJF4ahJfWYwvI7aBO86XslOUjDEAOKVb7JngY9V8TXSiOq0iZdLqBOD/hmbBoBNwTm9tk9w1sGscc7TD0CMn5gIIBEfP6dV4jOxk02NMp+hBHotBwHkhx1WrQcAZKhMxxqMwLJhe5kzsc+er3tikcYSLr76tgOxRzygyq/SZPWDu/jtZm1EtcCs1rcZqsqxRCe53UanVXupo/B2FH5fDJSNIG16LtcIVf6BQclfG7qRTvv8Dt2wrn0NDjfBo1H7XOpu8lm08pbNDM2lvHJwVfG17ZBlwSjcLLuqboVrGJNRxBUbFZH86AZjSX/2iROewCzdVbpElDyhtFRQU4I477gAALFmyBD/++KPmdfft24epU6eiV69eyMnJwTHHHIPBgwdjyJAhGDJkCG655ZZg3/Ly+CdobsiOPXz4sGophoYg7QknnIC+ffvKlq1c2Xghr3PnzoE5FSL8Gzy48ULQkSPa7y6h5sdyB0REbZUunkN88oMQ9Sp1Hm8eoqzXlg6GdzDjldMLsL7cgxKHH+O6WNA9y6B6gqElubAgQmZuKHcTb/1tr7xi7HeryyfJb72MNGlXHCU+BGMGEBKLkUKy8QSVE3Yt8ifNg3PPx3DueCtkw35N2xOMOSj83WoIggBbvxvg3PUe7Jv+E3UdS8/fw7XvS83jE91l0JlzNfePRfK5IBiiB+rizRi9fGD0Wp6RsuRDb0GMdVtuohPVaRV+0WFcFzPO621DhlEITlJ4+YAMjOtiwfd7HJh/MHZQsCmT9tgMAp45JV+W+XrVsZk4uasFtR4J/fMMmi62XX1sJk7pakGlS0TfPKOmCRWjCa81XeeR4PKJcV/481Wua9I4wvnrdsfsIxizUHDWfAjGTBhyBqj2yTv9G3hLl8BbtR7mbufBkNkT1YuvlWXWSxonIGxuakFatXdc6NdcrK+8JiTuB4VnxTt9EhxeEbZY9TlCaJnoq/D85Sj/9nhZm6CPcGxTCax3vLwCks8J18FZMBWOgbFgOGp+/SMc299o7CTKX+N4LuyGBqsH5pvw/Kn5KHeK6JltgEkvoFuWDs+dko/Ddj98ooR/Lq1WbEMQBNw9Kgd7anzIMAqo90rIMukillLoZNNDgPx9cKjejz656XdhnggA/vrXv+Lll19GdXU1Hn74YZx1Vux5BL7//ntccsklcDi0lahxOp1xj+vCCy+EzWaDw+HAhx9+iDPPPDO4bPXq1di6dSsAZakDACgtTSxzX+vzoZbBIC0RUVsVRyat1pnn4xE+u3iexhmFU6XAqsdp3eUZtYnm9ajdPt0tU4+D9Y1ZRcykTYyWrEaPX4ItpNpHpMBGPHWYw29PlnyNQVpJjH8yHFOn02Ducgb8jmJZkFaS/BA1TPhl7jopGGQ05h8Pb8WQmOvoLPHVuBNd5UB2v7jWib69Uugze0TtY9JS9DlE1xi33Ufilxon5Ao/VoWLlrmdDOHbtxl06BNWr1oQBPTMNmBCd4umIG2s5wRELmcxuY9NUZpAEAT0yomvhnbDOr1y4lotoiKVcgllThHds+L7bvFWRQ/S6qydIcYx0VN4vWhj4Qnwli+TtQk6M4yF6rUBg30EAaaO42Hq2JhVqc/uL++UBkFanyhhQ7nymKdWczi0JVaQNhnPTO0CablLRI84grRqk3+F0pkLYVA5LopaMnCD28gHzEDGgD8G2/SZvWR9JL/8NY5norzwoHSeRY+8sNcmy6SLWT9fJwiKY1EkJr2ADjY9SkKypwNBWtbej5fOXIAOlyUWbGuNdGETKbaU3Nxc/PWvf8VDDz2EZcuWYdasWTj//PMj9i8vL8cVV1wBh8OBzMxM3HXXXTjrrLPQp08f5OTkwGQKZJ7//PPPOOOMMwAkVjYqMzMTkydPxowZM/Dll1/i1VdfhcUSuAjUkEWr1+tx6aWXKtb1+xs/f6tXr1ZMcBZJt27d4h4nNR8GaYmI2ighzkxav7MUNb/eAl/Velj7XY/MoQ+o3ronShJmbLVjYbFLViOtyKqDQScgwyjgxsFZ+GyHvO5fhspEMulO/fnHXi9fJZjgDgvKhj9uKatK3PhgSz0kAJcNyMDYzsrsH58oYfqmeszd35gBcOvQLEzoriwLYd/2Omp/+z9ZW864t2Hrd33Sxw4Au2ti30Yfmvkoemrgr92m3jGecgdhQdrqxVehevFVAABT59M1byfoaIkEIWwMvorV8FWs1jKisIexgxCCOV/r6AAoJ64J5fFLeG19LZYcaqwhO21SITIbggN6CxB2G7i3erMsSCtJEurXPQrH9jehz+yJ3HHvYG9tR83jyzQKyDYldlzxiYBBB3j9EmLFMxsuDDh3fYi6dY9CZylCzomvw5h3XEL7BoBfil34Yocdh+zKW/bDa6+G0poRuLHCi80Vnqgz20e6fTpdLx+Z9AJyzDrZ906pw4/uWZG/63z1+1Dzy/XwlP2meD9GIvniyygKrzlq6nSKIkgLjRN5hgu/kOQ+8A0qvj8F2WNegLFgBIDAxIVV8y8JTl6YfcJ/Yet3PWqW3wHP4fkwd52E7FHPxcxiBwKfyc932LHwoAtlThE6ofE7r3NGIFNS7T0LQPVzFPp9Get91ZQa2A2MegE5JgE1IXfyVDj9yDHpcMu8xuPZvWNy8Nl2O1w+CVcdm4nhHULuXpCif8eI3loIBuV3oeSrV+kdB538PeI+OEv2OMESzC2qa6Y8SLu31ovtG71YV+bB4AIjrj0uC+Y4L8S1R4Kga9GJtNqzO+64Ay+++CIqKirw8MMPRw3Sfv7556iurgYAfPXVV7IM11CVldov2ERy5ZVXYsaMGaitrcWsWbNwySWXQBRFfPxxoN7/xIkT0aGD8sJ7QUFjwLuoqIjB11YqvdOaiIgocXFm0to3PAn3gW/gr9+D+jUPwVv2m2rXtaUefLvboZjEoswp4rDdj53VPjzyWxV2hk0SkhlHJku6SPRUIkt1ZnP5Y3cKZj72iRJeWlOLQ3Y/Dtv9eHltrWpm6i/FLlmAFgBeW1+H6rDJYnz1+xQBWgCoWXIDRE9tcgd/1KvrY2eZ7qppfO85tv4vcscmZNKG8hxW1gyLRfTWxj2GsBGFPYy9HZ0pziCtK3KQ9se9TlmAFgA+3x5yYUYlu7h+7UOyx56Sxahf+whERzG8pb+i+rc/47fD2icO65ppiGvW5FC+owEhtdqtuWFZ/y6fBNFVjuol18Nfux3e0iWoXTY1of0CQL1HxCvraiMGu6LV5syIo27nE8uro9YB/Xl//Ldhplr4pEWhNU/V1K34GzxH5msO0ALyetOJUJ0ELNEApMrn2lOyGFULLw/eIeAu/iEYoAWA2mW3oX7T83BufxP+up1wbH0Fzn2fadrd5kovPt/hQNnRSZ9Cg6yH7f6I71lAPZM29P0XKwibrG/EAquyLu2/V1bL2p5cXoOd1T4crPfjpTW1srGHZ7AqJHDnhEyEsgiCSiBf9DYGflvD3TddMuSv/aw9TszZ50SJw4+fDriwuDie+s1EzS8rKwt33303gEDm6VdffRWx76ZNmwAA+fn5EQO0gLwubKLOOussFBYWAmjMnl24cCGKi4sBqJc6AIDhw4cHf16yZEmTx0Gp0frOmImISJO4ZpyWJNg3vyBrql1xl2rXfXWxJy5Rm/zH1gozadVKHfbPi33rkCAIipOV8AmM4pioOWnKnX5ZlqlPBA7WK3+f26qUmUQSgNl75EEd155PIu7LFRI0SKZYk88E+jT+XLf6/sgdkxSkTYQxf1hgu8boNVUjCZ9FPDwjV40hp3/MPqEkb+RAu9px4Pu9gfeHJHrVb8vWyT877v1fyx7XlKyIa3ydM7RlQodPfgM01mw9EPY89IJKXUu/CNf+b2SToXmOzIckJjZx1cKDrqgTdnVQycRvkBHHxS6fiGCwTU1phIm3TuycWI3llhBeDzP89xfOU7Ys6nJVok9TXVI1gjk/+NmWbTKO8gmhpAgT8Plrt8NbHvi81K36h2J5/ZoHZI9rFl+jaX9fht0BEw+12/FrQzJaW6ImLQBFqY5Sh19x0TiUwydhY2j5hhiTHmaPDVz4yxgif92zRj6t2t/a7ybZ45wxL6r209uUGW/+msa7QLSWO7g0wsReLSFW+Zk3N8S+yErU0m677bZgVurDDz8c8YKSzxc4jrhcLoii+nerw+HA+++/3+QxGQwGTJkyBQDw3Xffobq6OhistdlsuPDCC1XXO/PMM2GzBf4+fOmll5JyhwK1PAZpiYjaKL21k+a+kko1OH/dLtW+atkyWkS7hTdd6QQB/zc0Cw13513SLyNmDbcG1wzKDGbEndzVgj458pOXVGTFqP3q1P5+i3QyqKjNGWWmcdFVFs/QNNPyqvk1v0dTE6QVzAXIGHQnAMDU4eSEtpEx6C9hG439XAxZkevLCsYc6MPqLEarteuP8od/pNvFRWdJWD95QMiH+G4JL7Bq+/39QSVoUXV01vftYRckemUbkGlSZtKqZVf6HQe1DlXGE+X92TfXgFGdIr8OZu0VOgBED2KqDeOsntbgZGXpqHe2PNC/uyZ6kFby1iSwFwlZIx5PYD1A0Nti1l2OaySeyON3H5gJQPm5aopdMV7PaGpVJgsFGi+sxboumaxYQnggvyRGtjUg/16JdtwzFoyEtVegDmTGwNuCNYMNeUNg7Xut6joZg26HztYFAGDqeErEfuauykmLJLHxzgIt5Q66ZOgxsaeyFEMs94ySF45+9MS8uLcBAD2y0/fYQRRJRkYG/v73vwMANmzYgO+++061X79+gb+RHA4HPv30U8Vyv9+Pm266CYcOHUrKuBqyZd1uNz766CN88cUXAIDJkycjM1P9An9ubi5uu+02AMCvv/6KO++8M2JAGQBKSkrw1ltvRVxOqcEjKRFRG6WzxZEJpHJ2FGnyokTrohkSvC051U7rbsWojmb4JeVt0NEM72DG/04vgNsvIc+sw7qwiVZSVZM2nNoo7BFmhhfDeuuiXAiIt66jZmFDu39MLl5bX4sKV+MbU2slCS3Zp8G+cQZpC3+3BoacAfA7DwOiN3CS7nfDb98PQ+5xEPSBbEXBFH2SGjX6zN4w5stnFo8VpLUecxUES+TJOTpcshvVv9wAf+2OYFu02379UY4DkYO0R2SPBZM8EOAX4ptgJk9jxPKYHCNyzTpUh6SvV7n9AIyKrPEB+UZUhGWfBkqCKI9f/rrdMGT2jGvMAKCLcih87KQ86KIcK9XKO3S06XD78Bzcv6RKsexAnQ+jOqpnxob/Dkd3NOGGwVmRB5cGjsmVn7rsr/PB65dgVKlzKfk9kDRMwqfG1u8G6KydUDXvvLjWa/hcJ4voqY64zHXgW2SNeByCMQuIUj86Hs3xvXSw3o8eWYaYQdhk3VwSHqQ9EqVEQwN96IcyLJPW1PEU5E/8EaK7DDprJwhH7wjQZ3RF0eT18DsOQ2/rolquAACMeUPQ4fc74HeVQZ/RI2KJFsFgg85cKKsFLoWU6fCG/W66Z+nxwAl58PgliJIEQRBQaNHJn4tGIzua8c6kQuyq8aFfrgEWtduINOiRZYCA9K1rTRTJrbfeimeffRaHDx9Gebn68XTKlCm477774Ha7cf3112Pt2rWYOHEicnJysGnTJrz88stYtWoVxo0bl5RSAyeddBJ69+6NPXv24P777w/Ww41U6qDBo48+ioULF2LZsmV48cUXsWDBAtx8880YNmwYMjIyUFVVhU2bNmHevHn4/vvvMWTIENx0001Rt0kti0FaIqI2Sm/tor2zWkakX71eYTwzDIeKlj2W7rRmz4bLMOqQcTTuFD5ZRiqCtFp/BY5IQdrws+goM42HZ0kmS/jIDLrASXlokFZzJm0zljswFgwDABiyjglpzILOUijfrqCDYMiI6/UyFo5SGWD0gKVgzoPOFCk7SoBgylMGGUQ3pKMn/w0k0Q/J74yaSSt6lMFCIPCeEL126IyB11JnDgvSIr4gbb5F+++vk00vD9K6RIiShK2V8kB0/zwj1nrlbU6/BNGrfE7+ut1A59PiGjMQOWMwz6yLGqCNRICAvrlGZJsERTZjpExaSZJkpU8A5W3i6ah3WKaeXwoEakNnkJd8LggGC0R30yZv0SdQ8kCIUG80UdEygX1VG+Cr2xMI0iZIlKTge84nSpq/I+Kxo8qLHlmGFit30DEj/kza0Bt9wjNp9Rk9IBgs0Bu6K9YT9GYYsnrF3L5gsGm7oBP2/pH8jZm04X9DGXVCXBeOY7EZdRhSmNgEdw1MegFdMvUork+sFAxRqlitVtx3332YOjVyvflu3brh1VdfxU033QSXy4Wnn34aTz8tL3Ny6aWX4uabb45aszYeV1xxBZ544olggLawsBBnnaXMug9lNpsxd+5cXHfddfjyyy+xbt26YHatmuzs+JMFqHkxSEtE1EbFk0lb/u0w1XZf/T7ZiYUoSfhuT2KTzbSGSS+aU3iQtimvh69mO8q+GhB8nH/WfJg7T4jYf/kRN55bpX6yv7LELauz6xMlbFWpSQs0ZjpJkoS6FX+DffPzEffp2vcFnDvfheRzwNTxZHjLl0GSROSc+Cqsvf4Q+cnFUK8SQNaHnadqnpMtriCtLXanBAmGzLiCtIa84xVtQozSDYIxC4LOAMGUCyksO08w2CAIAgSdPAvQX78PFd+dBG/5Slh6T4E+sxfs6/8FAFhbuA8QlAGpw9OjBxlFVwl0xkDgOjyg5Y9nskPEF6TNC+tb5Rbx3KoaRf3sAXlGbK2Uv/9dHp9i0jMA8Nfv0T5YBC4evLWxDj8fUJ88J/x9rFXDBZ9csw61HvkTOlCnDJasK3PjX8uVx4MEEvBanM2oQ+cMPQ6HZEfurvGhm/MXVP54enJ3lkhWbNIzaaOXayj74pjoy3W98G72mzhoHArMLoVeACZ0s+CmIVlYU+rBGxvq4PVLuPa4TPTNje8iiVZvbKjD/ANOxUWBcMn6C6FTWCatokyPin8urca9o3MwrINZWZNW1zyvixpFkN/vxuYKD/63rhblYRn+pjT9wPbMNjBIS63SzTffjH//+984cOBAxD7XX389BgwYgGeeeQZLlixBdXU1CgsLcfzxx+P666/HlClTsGDBgqSN6corr8QTTzwRfDxlyhQYDLH/VsrKysIXX3yBX375Be+++y4WL16MQ4cOwel0Ijs7G3369MGYMWNw3nnnYdKkSUkbLyVH2gZpd+3ahfLycvTq1QsdO3ZM9XCIiFodnaVDk7dRv+5x5I57M/h4c0X0CTWiCQ9StjfhJ1ReUZ7FFI/aFX+TPa788TR0vi5yPcC3Nka+5febXQ5cNiAjOI61ZZFvcW/IovaWLY0aoAUgu23efXBW8Oea326FpfvkiLeGRlOjMtuaIChLaWium5zCicNk2zZmAi7tdSUVpQ6AmM9FOFpKQGcugF8RpD363MJ+J85d7wV/du3+SLbMpxKg1UJ0HgEasovDUufEuDNptWd+hmecbarwKCYTKrLqkG/Rwxp2rKqv3ae6TV/dbs37B4CNFZ6IAVoA0CdYEqbh0JJr1mF/WFC2uN4HvyjJboGetrEeahLdf0s7JscgC9LuqfVi2K7bE9uYzgyE1P0MFX7RQotgkE1vAfxJmMk+St1vLeZm3BEI0B7ll4CfDrgwoqMZb6yvRc3RzOtpG+vxx6HNV+piR5SJuxoka4Kb8In/tHpyRQ0+PrdIkUkr6JqWXRqP8HIZkt+FdzfXKwK0AGBM08T3nlkG/Ar1zxRRS5swYYLmY4vZbMb+/ftj9jvppJPw1VdfJbzP6dOnY/r06ZrGdOyxxzbp2Dh+/HiMHz8+4fUpNVp84rDS0lK88soreOWVV1BTo7w6vHPnTowcORL9+/fHSSedhK5du+Liiy9GVZX6rXNERKRO0DX9OpyveqPs8SfbE7+FfWwazxjeEtSC1Ilm04YGPRtE+iOuwimqBjdDhWYaHaqPfDLd8AxqV/w19iAjkNwV8IUEcOOhdttqB6tekYEYrV5qqFjZp6F0ppzYnRIUbx1LfVYflbboGXXGorEAAkHacA11LyOXQ5BrSigltEZoeFkEhy6+1zjLpD2oWBB2K7/abO/HFwWCMYawz6rXo15jV/LWat4/ELs2Zgebtvfjeb3lEwNdPSgwgchlA5QTifglZWmVSLd/t5braOEzyNe4fIrvKs1ENzKHPSJryhn3DgAkVEagIUibO/5dWXvDRIHxyhz6QELrNVhuuVy1/ZmVNcEALRB4jxyobVpAOF5DC+UXZf40LDm33CZSk7WBR0RqM2nD63Q7D2FvhN+LMU0zaTtnpGn0mIiolWjxIO2XX36J2267DS+++CJycuR/jLvdbpxzzjlYu3YtJEmCJEkQRRFff/01Jk+e3NJDJSJq9RpONkOZu56jef3wmn5NuZo7skM7D9IalCdU4bdaN0mErC21CXXChQZpPVECnA0TijV5NvEImWuxqL39Cqx6RQagL6SjYIxy4q/TfjJp7hbfBEJxiVJPVi2DV63upSH3uIjbMHU+HeYuZwBQD9JmHBfIzNZn9Y05VAAQkfhJeGiNRb/joGxZjS7yRHTh7hieHVcWehcNgYMp/QNBzvCtRj7qxXc8jJbgnWfWqQZZ1Zzb2xaszTqmkzl4bO2Ta1S9GBb6kY52DNe1+FlBYqxhx1KnJ3L2fyw6WxfY+v8RxqITAQQ+55ZelwSWmQugNmFcNA3Zt5YeF8LSM7AdQ97xsA36S0LjM3U8GdY+18jHbClKaFvp5nfHZOCYHOX7OJX8oqTMpE3gro9EGbLlx2Bf9faIfdM1SJthbCUHEiKiNNXi5Q7mzJkDQRBw0UUXKZZNnz4du3btgiAIuOCCC3DGGWdg3rx5mDlzJpYsWYJPPvkEl156aUsPmYio1bL1uw7WPldBdFcAou/o7MF5ODxdBy0BBiksSGtKMNVqYL5RU7CwLVPLpE1k8jBJjDARkN8JwWBVXRaLKyRIGz6DdKh9RzN6RHdFQvtpEG3G8miksPdsxtFgTfhE1LJM2qhlAOIod5DkCYG0jsOQNxTest/CxqIMZqjOGC7o0fHyClkWsKCSEWztNSWwr+x+mkYbbYIvEQJ00cKaIQF6v11e961WJy9vNSjfiIfG5sIvNd7S7/JJMOuFuLPlumZGD9J2ydAjJ9IkPJECm3FetIrW+9UzCiLO+h6u0KrHv8YHMu7CA9XXD8rE0sPyiyChw4w2htZS7sASdix1+RLPALUNuBV6WycUnLsEgVdHCP4eBJ0egjkfUjzHu6OfTUFvQt5pn0ESfU26q0XQGZB78rvIGf8OIPoAQQ+/fX/MWrSJiHYDwrRJhXhxdS3Wl0cPiJ/azYIbjsvEy2trsbIket9OGXr8a1xj5qjW939z8omAFJ5JK7RcJq0hu7/ssTtKSRVTmiashl9EISKi+LT4pa5t27YBAMaOHatY9tFHgXpnp59+Or7++mtMnToV33zzDc4880xIkoSPP/64RcdKRNQWCDoD9NaO0Gd0Dc6mLhi1ZWyJ7nKI3sYSB2qBxtBJpyIJP6luj9SSS7ZUelDrESF6aoKvs+i1KyaL8YkS6r2B2eira8tRo1PWG5Z8jpCfXRDd1ZrH5vRJqPWI8ImSYgbpUFVuEQfrfKjzNe0ar99RDK9fQr1HhCRJ8NXtlpVAcPlEuHzi0edRGcz+C8/ybYjTGcICdg1xZkmSIHnV628CiKsmbbOKMg61wKnWGomCwaYs0yAqAyf6jG6BfeX0VyxTI0bJ/PUhejDbV7MVoqcWHr+EOnuVLGi4zzBC1jfPooMgCDDoBOiEwD+bUZfQ7cxFVr0imB8q+iYjfSYa20WvHaK3DhVOPw7W+VDi8Afft5IkodThx4G6KKVE4gxQNbweau3hGj7SoqcWYpTPQ5om5ilYwoJALm/iQVrD0TIhgiBAEHSK34Nq1mqUCe6EsGXJKDsU2K4Ogt4EQaeHTmMZBjHO07xomd6ZRh0cvth1ZAotOlgMOgwpjH2MMugaXnchLQK0AOB0lCvuSmnJTFp92PG+rrY4Yt90zaS1GeMbl+itizlBHhFRe9LimbRlZWUAgG7dusnanU4nli5dCkEQcMstt8iW3XDDDZg3bx5Wr17dYuMkImrLBEOmrDZkNCUf5SJ/0o8wdz4dtSr3wg/IM2J7VfQJxdr7pGFAIHgiQB7ueWVdHYA6DPT8jFtdt8Ha6w9w7nofks+BzOH/RNbxD+KI3YenVtSETJSjAwo2IEMsx+MVxwVvxhWdJdBndIOn5BdUzb8YoqsU1n43wT/i1Zhje+DXQG3QIqtOUbsz3N8WVQKFWzDeOQ2X1N8X78sAANj42zN4e9dpqPKaMMz1Da6p+2Mw+3LtqfV4f4sdOkj4g+ufGFP7Kiy9pqBy2Pt4Ylm1bDsN5/Xhby9fY1QqxsQ7cbwvw7OrkilKgCL8pB0AoHUiG0lZT0PyOZW7P1oCQWfrqmnCo2iZtB7BCpOk3EeD+jUPYfOGL/F24deoNs3GyKwvMKXuLryV8x52mE6W9c2LlNmaAL1OQCebHgcjzDoeGtwM/22s9fSHS8iERZIHON3FPwAAnLs+RNmvf8a0zNew1XR6cHn3LD3uGJ6D/66txZ4WqvepFrfxihLq1j6K+rWPQDRkA3nqt1BrnW8v1cIv+jkc5QlvS58ZPSNVb+kAf81WWZshpz981ZsT3mdTaa2V6xLiq6kbekeFmmgXGRo0BFu1BGnTMch41xIHHq74GbIiMy1YkzY0k3al+WJ8kPFKxL7p+PoBgDXa1bAwzj2fombJjZB8dmQOewRZwx5qxpEREbUOLZ5CUl1dHdhxWOGrpUuXwuv1QhAEnHnmmbJlvXv3BhCYdIyIiJpOn9lLe2fJh7qV9wBQn2xHJwAdbdEDe+Ezq7dXkU6Bt5pOh9tth2Pba5B8dgAS6tc+CtFVjtl7nLKZzBvYdYXYZxgZfOzY/gYAoG7NgxBdge9L5463sOfQTs3jK3OK2FqpLRj5i/VGlOt6at52qJ+sU1HlDZzEr7VMxg5jIDjngQUzttbCLwFeScCXxr/CDz1cez/FV5uUM+7WHp34JjyTtiHhK2oWLeKb+EnyRw48NpWvcn3EZYacAYo2zZm0KvV4dZZCZb+G27sFHQwa6tKKUYK0XiF2WYjvMu5BtT9QmmOV5WLMyrhfEaAFgFxLcu/n7ZIZOTchVrxjtVlZpgsIZMnWrrwbW/QnyQK0AHCgzo9Hlla1WIAWUI/3ry6uQP26RwFIR48v6iqcySyS3XzCM2k9grJus1b6rN5Rl6tl0hpyjo2yRvNHurVONOgQcuPa7roy9VrhDTG3bFPs7/GGz5GWGtDpWLrUI9iw0nKxrE1o0XIHgeOvBODbjOgBy0TLTzU3m8ZyB5Ikonb5HZB89QAk1K97FH4nz/WJiFr86zEzM3CL7ZEjR2TtCxYsAAAMGjQIeXnymS2NxsCXo8HQ4om/RERtUtbIp+Lq761YBUkSMbhAebLSNVOPPx8ffVbm8V2bs55n23DEMFDeIPngPjQPc/ZFDg4usP4x+HNDkNZzZIGsT93+WUkbY7hKffeE1ltrkU8G+n1G4CJAsWEw3GLjyb1Ll43ao5NJraiO/B4LP1f1N9xmHiP7VWs2ORAhozWCnHFva+4bGEiE2bsLRsHc9f/ZO+8wKaqsjb9V1TlMTsAMOeeco2AgKogJAxgx5/Ctri6ucXXX1cWVYEKMBHUVxwCiKCIISM45D2ly6Fz1/dF0T1dX6OqenpkeOL/n4aH73lu37nRXVVe999z3jAGjr7Ys4JLbB30vw7F1+5t4HAPflrSxdhAnMApPSqTPGhBxuD4VuwMtIu0uw0jR+5WW22TbBZJjxQs14SjUs1bOv7ZAJyfMMRC8VeAdBShhG8v2W+6OLNpd3TZ2kTEcObH5gz18MKq6kkmVNjiHMwaP7PogXKR1xSjSckltwZqk1jGhyIm0xtwxiu1DbWfqG5+KLYNse4Wv/6Ge/uvPhFYWUfk1MsdtIBqbYZiIImyirrD50vaC6D1rTKuzfTM6/2fshRFlnHoixUQUuQH/uHIiTNwDgK/iEHhHQXWB4IOncH0tjowgCKJhUOeX9/bt/Q+h33//vaj8888/B8MwGDZsmGSbgKCbnZ0tqSMIgiCix5AtjVoD4F/qrABfdQJyqyEHNTahXZo+mMRJjjYpNMkWCR4yDzURPFMZLcnf5PqNArXgKV+cXJO88IuOOkj9Ur2MFm9D+UjaSFFtQoRl/aEwDIvkgXNV27DmHJhbTYW5Rc2TnOpSOiOp/3/B6q1IHvQOOGszcMntkTLwbUX/RmuHe2HMGw/WnANL+3thbHKptN/0nrB1nwHWlA1D9hDYuj8rqreHCb1yqNodILbkdeGMa2FGR5lJoZrQWCV52JT21T7dvbOlIngRKzchIQDnEqEJMXpq5to4XNIsPp8ZIO9J6xWqT+ISTl5MBkLPm8Qm3O7Ay5iiuhYxOgu45PZIVjmXAsiJtIwhBfqsQbLteVfs1gv1TamMndHo5mb0zPJfg4c2MWNQYyPsBgaDGhtxWXPpcSuEZKn7xxBlcTPFKPX/TVQ4e6s63V9Sn39rmnhIVLsDhmEwvasdjWQmxUJPXW/RZunGPvloboIgiAuJOn9qHjt2LNasWYO5c+eiQ4cOGDJkCObNm4cdO3aAYRhMmjRJsk3Ai7ZJkyZ1PVyCIIjzEoZhoEvrDm/RJlF5zvUVODlf/qfBV3EQVZ6OorJ7uycFBbLLW1vwyS7pUlo9mxhZmxMd2SQvcUhsJUQZTRVO82Rlz2E+bBkoa8yISaTwMH5RjJWJKPWoiH6BZbhKkbSRiNbCwNzyBpT+LvbNNzS+BOmX/BBVP1rIvGJr9X6bT4a5+eSI27CmDKSN/Fq1DcMwsHf/G+zd5cVYzhr5XotXOaY8TPX31WiaAFfBChT9MCJY5lUReAMMbGzEjR2j89PUQmOr8rgzQryYOZbBnV3tmL2lOtJaKWq82uM3+mvc//VJRo8sbUvXtRJpFEoRvwDAazxv6pvwSFoAcDEWWASpfYkhZzjSL/s55n3JRdoyrAHmZpPhOb1KUse7CmPeV10xpb0Vl7eyYt72cnx3qPoaGC7Sd880YFqn6vPQpGNwf4/qqH5B5ngJ9TVWi1wf1TR+ExPRomOBj0f7v9dr8iMvr69rkdbU4hq4//xXxHb6BI1EBoCO6Qa8PjwdR8u9ePTXomC5T/AfNwzDwCMj0jaE84cgCKK2qfNI2nvvvReNGjWC2+3Gvffei27duuHf//43AGDAgAEYMWKEZJslS5aAYRj06dOnrodLEARx3sLoZCI1FMTUKiYZWwsKcaRc7FkY6j3mUEg64mkg0Vn1jRAiyAoAzrDNsfKsulDFhyw790KPg2fOooqptgU4w7XAyarYfSaTDIxq8qbw6DXGkKzQUp1TunbwgYNPJmq2QNcemwzj5Pd/7tgKz1NyrLgEPx04hS1n3dhgvBylrPyS5mgiaQGA0UmFBd55Jqo+zgfUImlDRVoAYA0poveVrPJy+wC6WprUUYukDSczLIFega6DbFy28+jXqGDScVAX/T1qbSz3VgquO6jrjUK2KXYYRsk3gPJy90QjPJIWAMpY+dV2vqrjNdqXbCQta1BMJsU7E19kMpw7SCJ5h0ZaTi83+Rp6DKlNzspZitQV0UaMc9bYbH1ihTVnw82lRGynwSK43pE7hgL3ikWnt6KAay+6j3AeWlxXQyMIgkhY6jySNjk5GT/++CNuvPHGYIQsAAwZMgSffvqppP3mzZuxbt06MAyDiy++uC6HShAEcV4T8D6LxGFdD8xKXgjncaknqFVf/RB2uA6T45yPOEKSvHxr+QuWWR8ETqlvE3i4cTB2zEz5CifW8rCnrcJdJddgo3ECllkfqlEem6Z2HU6piLy+sEhaLSLtEV032fI3Ur5BD9dXkvIPk2Yp9hX407gwMeCww4w5OwHADCT5LQqml1yLDh5xRF20Iq0ccRFpGS7oGdoQ4FVuH8M9acOPiUomPWL/USQHjwprFCaOWTKeih/bZ+KG8vtEZev+/Ayz07dCUPHpVaI2Ev8oibRvpOZH3LahiLRy4vbLab/h6cI+SOfFCQb5qhM12pecSAvWAEZBpBU8pTXaX10QWP1iiXA+hNvIaEFrNLaWxGKJAsPW7VgZhoXHEjl6N1HtDkKRu8bdtvQMpnfw4V33K3Cl2dHSswZ3lVwNPVxwnYj/qhSCIIiGRr3MwXXo0AHr16/H/v37sWrVKhw4cAC//PILGjeWX4L1/vvv47333sNFF10kW08QBEFED2dtpqndz+a74GTlkzZZQtQUpczPLZPJj1YLB/X+SDw3TFhuuVfTNgFP2lWmaTih6wQAKGez8LXtac19qNEsSYdDKuJ7eEQlX3k0Yp8rzbfKlh/R98RXtmdl65RIMvgfABlPccS2c1I+k5SxhshRnZHQJbeP3CgC0SQlSwTUEhJ5IBZppZG0kZPwhIvutU2KTLR4mklatt50tShSHQCWWh6MSaAFaieStiY92vSJL/oAfjsKOVaZp0rbJrWt0b5kRVqGVYykZS3KdhJ1j/znFNBmrRG+71gmESIJvwFyVKxHEgldapd62a/P3CJim0S2OwhgkDlXfWDw1k4dXKx/pdABfX/sNQyu66ERBEEkLPW6UKJFixYYMGAAmjdvrtimW7dumDp1KqZOnQq9Pr4JJAiCIC5kbF2fQuhDnLnNLWAYFrpUcaTjMZ38Q4pZx4gSQwzLlU86NrRJ5GzvFwo3hCQnCsfC+4VGB5uk6vkZSjOPf0XKN7a/isp3GS6S+MXGQpcM9aRd4XYHWqJKi9ncGo0plAfO+SMy5btj2t7a+dGot7F0uF/03tzy+pj2HUpy//+K3tt7vljjPmuCPkN56b6h0Uj1xGFhdgeMIQWcvXXwfSUTWaSV8xyNFy2SpOeWXOIupSjCSrY6ElgAsN8gn0AqEmYdoykDerTUxP97cpvIyYoSmZ9kJqZs3f4q01I7crZADMOA4eQ9VZP6/LtG+9OKMXeMpEyX1h1J/d8Kvncz8qtlzOfOr1bJNf+N6JdT7anMMsDFYefS3d2klj3tUvW1eo4DwMRWyiuFuob8rvXNkXpCN/VsDL62tJGfVKxtfMaMiG0agt2BRePEz0bj5QAAxhh5pQVBEMT5Tp1f3v/+97/j73//O86e1Z5YpLi4OLgdQRAEER909uZIHvIB9Om9YGp+VVAYShn6cbCNGyYUctKI29YpOjzcK1kUydEhTY8b2tuCyxhTjCwua26WPLRdyFzczIxLmpllo4sD2ZzVlpKHk8RH8ENQwazwkJxqZNHIyuHqtlZ0y1QXacOFYE4mqtTc9nbRey1Zq7XQv5ERHdP9++c4bWIXDwam5ldDn94byUPmQ2fTFk0eir37szC1nAIuqR2snR6FudWNUfcRjiFnOOy9/gFdek9Y2t4BS4f7Im9Ui6QMng9Do1HQpXRCUv+3kDpyCfQZfWFsMhrJA2aDh/LnHbA7MDS+BIBf0EodvgCG7CEAgAoNkbRKx2Y8eLp/iuj9kCZGjG+pzfoFALyoPicqmMhCihxy1894cmPL6Gw8WibrML2LHY1tDSO6UQu6lI6wdXsaprwJNexJLqGjDoxeeh3jktrB1EyaALk2SOr/Foy51V7dhkYjkTL4A1ja3AJrp4ehS+sOByNvPxOIdm2apMNtnZV9z8e0iPzbPbWjDX2yDWiVrMODPZIkK2oGNTbh8hDBtGOaHtO7xj8pYDgTWlkwLNeElsk63NTBhrEtzMi2cOieacAdXar3f3Mn6cRpYPLR2vEhWNreIamvC3g28u9kQ7A7YDVOGqX4CsCassGZc2p5RARBEIlPnd+NzZgxAwzDYPLkycjI0HZzW1RUFNzumWeeqeUREgRBXDhYWt0IS5jIpE/tFHx9hmspWcr7waUZMMmYRjIMg/GtLBivEsFyoWPSMbj13EPx7M1l+PlYtZjiYvwPi2oCWDjGvHFgT0gzjCuRZvBh1sWNAABbz7rx/B8lovqbOtowtoX27y88kpbV2xHurJoycC4srW5E4XdDAQBORjmaWCuDGhtFWcZ1Gj0DPY0mInX4ghrtmzWmIDVkIiMeMAwLW5fHYevyeFz7jRVdSnukX7pMVGbKqxaEmLTeil7HgcRhupBl5vr0nkgf/SsAwLkkctby2oyys+pZLBgrn0hOC6E+zKd10Wd9f7JvMrplSqP34kmu2Q1A2wqGMS3MmNqx9kWzuiLj8i3Qx3WJusyBzurA6KTXseT+b4Jh6+bRSmdrhrRRS2Trkvr4zzH+t7cBGYvcUJuDi5uZUeHh8dnuSlEbI+f3JI9EupnDo71TlMfJMpjS3oYpKqtIagOLnsXd3cTWJDd1lLZLM3F4vHcyXllf/UFVsmlIHblEdM2ra3hOg0jbAOwOtJLMFyD72pP1PQyCIIiEoAEslCAIgiDqg2K2CVZY7hSVpfqOygq0RPSEC1FFXB526kfgNBeF8MOZYGp6uebmGfpqUdguswwxKYrESgBQzmZgs2EMjnF+YZ/hTHDBgp364TjNtaxuyBrhgw579ENwRtdaobfY0WmMpC2PMfKREMPLCFQBthsuAQ8WDCcvElawKRH7Nyew+OCFAQVcO2wxjMYyywNRbx9N8rJYYSVTJcqUuKJMdZ/gyImnNULwQgBwQNcHB3R9IABgGA6Mzuq3u9D3w0Fdb/++w/yX6xuHIH8Ohh+DcmJssyS95ijIho49LPq3kk0Fo5f34a8rfGzkyVK94K6DkdQcK8ojthFIkiAIggjSINY1eTweACBPWoIgiDrikK4XZiUvhIsVP/Cm8AX1NKLzD4NQhVBP4K3GMdhqlPoMqsGwRphyLwcKtbVP56qjhcIfTAGAi/I56QfrY8HXV5U/ioH8cbyW+j1O6dqBE1y4pexWNALAcEZ8aH8Lm0zaBWU1wjOIc0phnWFsEnqjftLAnF8cg3Kis72GwZiT/CkeZbfK1lciJWL/Zk7b91kfrDDfWaPjuC6Sc3FQTvYXTomjYQg9WmH0cRZpeR++sL0YTHg4pOodTGd0AOPDQts/sdrsX4kyouot3FbPwl44VUoibdgEoZxIm6zudHNeEZ7DzMNY4OWSULvx7ur4uMgiLcdXAqjbCOVYSGJKUSmoR+vvNFBycIIgiAANYtpq06ZNAIDMTJkMqwRBEETc+db6fxKBFgCO6zrJtCZiQVe+vcZ9CKwRhpzhmtun4XTwtU0nFcKsvtg9bn+y3Iv1psk4pWsHAPAxRnxifx0AUOozx02gBYBs3wHRe62i1AFBWVwktLOfV4/23m0Yjv1sV9m6SiaykKWv2hfTuOqCmh7HVtYTp5Eow0Qh0mb4DtfiSOoeXkMEYjRUCsagQAsAKy23oYqxoYK3BgVaAPjZcncwW32i4FQQac1homSGWfo42JI9WBtDSkhsrEtSVoH6Fdx5NrIfsM5XVgcjqTnJcp4bYewwXlwHIyEIgmgY1Hok7fz582XLv/rqK6xfv151W5fLhf379+O9994DwzDo00c52zBBEAQRP/YYhsqWu+OU9IkAWjN7AHSuUR9e6HHSqX2+NcV7NPha7ytBS/dqHDAMAAAk+06glWcvAHEyrevKHsCnSW9E7LuQa471hjwgJGdRJeu3F6gyNIOsOWKMDCh/C8A7wfcctEUDGviquI3hQsaMyoht9povRg+Zcg9jVvSzDdCcPQJAXuStS4ZWvY1fLbdHbhgFFr4QQG5c+wyHE7SLtENKXwGwsPYGU8e4YEI8192V6/IAFInKSrmmcIIHUCIqr+CykEi/kDwjFWnbuVeA8Y0FQhJTCZ5y9HYuxHrT1QAAvVCFniWzALxdV0OtVyx8EcI9nF0abFlqE7cGT2kToksQWF/o+MrQRUMEQRBEBGpdpJ02bRqYME8jQRDw17/+VXMfgiCAZVk88ED03l8EQRAEkYi05qKLFmzvXo5dhpGiMhfPYf1J7cuVk9z7g69551ncVH4X8q3/BzdjwaWVr4GDNDlnH9dCVFak4UfLfahi01T7Z3UmANJIQW+cF+4kc2KRkNUqSiV1iOs4LlQ81jZAhCAur8ItJs9EXkRsQXEsw4o74ypfiEmkTfadQBf39/jNfIuofETVW+DdV4Kz1q5Iq/V8mFZ6K3KztScqTCT+frYznsnYJil3+eK7AJyVEZd8ggCdTIXLm1g2HQInPdemlN8PwT0I0FeLtN6SbZhY8QyMQiVK2CYY5piLJGPiL6OPG+5CGIQU0SS0s54npF1CZL8JC9MwJh19Pk8DMVgkiJqxbds2vPzyy/jll19w6tSpoGXnxo0b0b179/odXAIzbdo0fPDBB2jWrBkOHTpU38NJCOrE7kAQhOA/uTK1f3q9HoMGDcLXX3+NYcOG1cVwCYIgCBUEXntSGkIZwVOBHs4vI7YbWTUTr5/Jxp2lU9DNJc7m7RJ0WHdKulRTCZtzZ/A17ypECl+A68sfwM1lt6Oxbyd4jzTalQWPixxv4cXCDujqylft38fLixSeOB4ybd2/AIz49sXr0yaO8Ky2jPeEOi4h8hO3W+E74Vl1kbaF5w8I7sRYxmuAQ9M5Gs4A54cYU/mSpDyJPwXeVSSzRXzRYv8x2PEeuru/AWfOrvXx1AZJwhn860wTSblT47VAK3IiLS/IH98VngRLwhaWvK+3cyGS+VPg3eJJEE/xVliFYlxV8X+4vexGtPWshKdEKoCfr/CuQph4cXIrRz3f5jiFyPHgBsFRByOpOT66ZyTqkRUrVoBhGDAMgxkzZtTafv7880/07dsXH3/8MY4dOxYUaAkiFmp9XuvgwWpPI0EQ0LJlSzAMgx9++AFt2ih7wzEMA5PJhPT0dHAaszYTBEEQ0VHp4fFHgQtZFg6dM/yRG0pCW4DS32+HIWcYTM2uBBuWpMVbcRjuEz9C4N0A74YhZzj0ad1qbfwNEU/hRngKN8BTtBEpfGSBxMyXBF/7k41V81VhG8hFriphK12Nop8mwZA1CKwpQ1JftuZe8M6zYHVWGJtOgM7eUlTPQF2EkEsUX+T04ZPdFZrHGAkGApwHPoG3x/PQ2VsAADy8NnHEJRiwvdCN01U+9Mk2wiaTPE0LO4vcOFjqRdcMA3Jlku7EwlmHD5vPuNEiWYeWyfWbKJUXBKw76UKJi0efHCMsOhZrCpywG1j0zDKg0hd5fJ6Q64iXF/DHSRcOlXpx0JOjup2JL4fgiZwNvCY4Dn2OkhWTYcgZDnvvV2HI6K3YNhYhxCA4YBKkx7ybMaNy2yvwVRySvX7GC1aIfE1gBb9w4i3bg6q978GUN0H2mpDIcPBCJzjhDVnW/91BBzql61HlFdAxXY9G4VmhooRlpCqtTwCcMlGz+0u86JheNxm3BEHApjNuFDl5MACsegZ9coxgGQbHyr3YXezBCU+KaBvmnM+I4C4JlvmqTqBs9V2S/vnKo/A5z4AzRc4H4jq+FL6qEzA1vxKsXurL6y3dA9fx7+GrOgZD1iAY8yZIVlnWBu4zf8BbsgPGJpeBdxXCdfwH6JLbwZg7Nrh/QRDgOPAxTMJtKEP1tSn/oAOZZg6NbfUTAqolkpbhG4bdgaAxJuzzvZUwcgzGtYyvrzRB1AV/+ctf4HA4kJSUhJdffhm9e/eG2ez3lm7dunU9j87PjBkz8OyzzwKAKHiSSDxq/ZenWbNmsuWNGzdWrCMIgiBqH7dPwOMri3DW4Re4butsx8XNzHhvu7JAYhCq4Nj3/rl/85B+2c/BOl/lMZxd0guCq7B6A1aP9Et/hiF7UK39HQ0J14kfUbTsMuCcQJJijuy7aRGqo1t1Qs0ysdv4s3Ad+RKuIwrRgYIXFRv9dkTMpr8h4/It4Q1U+z9cJo3gu2t5oUzLmuAfw5nPWyLrqiPgrHkiQVCN3SU+/H1NCQBgsbkS/x6WDgMXnViw6rgT/9nkj/TUs8DfB6bWWFQtdPjw2K9FqPIKYBngid7J6J5Vf7nFP9hRge8P+cXJL/dVQccCZ85dJya1tuBQVeSI5B+POHF7F3/yndlbyrDyuLaIb5NQAd5beyJt5c6ZKPvjfgCA++QKFH7TB6mjvoMp9zLZ9uETI1owCA6wMhMabsYC17Fv4Tr2reT6GU+qNv8NMC5SbcOei7Z1n1wB98kVKLc0RubEXbIiWyLjDfNdXXbEgWVH/MeukWPw4qDUuE2kBOAFAS6ZSNqPdlWgW6YBTZNqX9hbvLcKi/eKbV9G5plwUVMznv69GP5LYoqoPjDJxp8TaXlXMc5+0wdK1/WqXW/B3v1vquOo2PYqytc/7n+99WVkXrENDFv993uKNvv3wfsnDirxKqydHkVSn1e1/aEx4jj8BUp+ngy5v83W7RnYe/iFisrt/4Rj3zyYUq4Vtdl8xo2HfynC3wemom1q3U+aaVmtAF/ii7SCIIDXaEi7cE8l7HoSaYmGh8fjwS+//AIAuOOOO3DXXdKJL4KIhjqxOwiF53n4fD507NixrndNEARBhLDimCMo0ALAO9vKIQgCVh5XvvFv414ZfO0+uQLeiurM4M6jS8QCLQDwHjj2fxi/QTdwytY+GBRoASDFdyLiNla+enn0Pv2AGu2fg/Zlh4KnDM4Dn4rKPIiccbq20YVECZZv9HvoJrPRR+qedfCqx7oSXx+oFu08vF+0rSlf7qtC1bnIPF7wi6T1ybLD1dGjxS4+KNACwBf7ohMt3T4Bv2kUaAHAKFTUaiRtQKANpWrXfyVlgSgTA6KPpNUL8sdEuu9I8LX75Ar4Ko7ItqspbMWuyG3CLBH4qhOo2vOOQuuGicsn4KejNVsS7pWZAOIFZVuF0OtDbRIu0ALA8qNOvL6hFEpzVsy5Yzog0roKfgRfpfwbpFYXICDQAoCvbDecR74S1ZetfTAo0Aao2j0LglC71hAlv1wLJfE59J6kcsfrAAAe0lWbAoDvD9WP72uVL3IkrdAQRFpvBRr7pNcjCy9v++JOMMcQgtDC2bNn4Xb7gyjatm1bz6MhzgfqXKQlCIIgEoM/T0mjMgX4E68ocWXFk6L3vONU8LVj/3zZbar2zIlpfOcj3pLtovd6RBavWnlWB1+f0cW+ZGqw472ot/EUbUJoWuYk/rRq+2Z1EEHW1vNr8LVj3zwAQCfDYSRrELzD2VYYfWTyobBo4ViE3nDChaQTlfXr4RdPW88KDx8h/lqMHi7AV7OI8WhxHftGUhaYcLLxZ6PujztnQTLY8W6wzMSXobdzsagdHz6pFQcEQUASfxqNvDtV29lkRBLX8e/iPp7aIJplmvkHaybSVnjk9+VVEJPicT2oCaETKuEE7WrOiXuhv99y8N7oJ4s8Z34XvXefXCFpI3gra22CIgivbPnhq6i24gsI0SVcI9m2q05on2CKJ4Ue8UqKyypfAReykubSylcbiEhbhVFVr4vGPqbyZdwq/EO2vVyEOkEkOi5X9XVCr69fuyri/KBeRNqqqipUVSnPTM6cORNDhgxBhw4dMGbMGCxZskSxLUEQBBEbSol9lOjA7kQaf0xUJoQkmtKn9YjLuIhq+js+gk3Qnmhosvl72fKxlS/i8ooZUe/fU7wZpmaTgu/7Oj9TbR/Jz1gr4yv+Llt+Zfn/YajjbUk5I7jxQMl49HEuAAC0c6/AmMqXcVX5o6r70ctlBYqSWH1tQ2noz6WPFF+sWFelIHIpwQluCHztCCOCinATjrfiEIDIExONrNLvPyCGXVExA2MrXsBgx7t4qGS0JCpX8NZClJ7gAwPgjtIpGFo1F72di9DX8amkmV3m72LYBvJw6dMuvKaZanZ+lsmE9nkFwKcgFOsTOPwlcFwKPv/5xbuliSJF+GI4DxlteUR8Zbuj77sWGV6VWJPJZ93ic7GZZwMeLBmLgY55uKLiGVxS9e+GIdL6nEjmT+OBknEY5HgfEyv+iiu7tsegsYn1eRMXJqFJxVasWAEAWLhwIUaOHInMzEyYzWa0a9cOjz/+OIqKpPfiM2bMAMMwaNGiRbDs5ptvDvaplKzM6XTizTffxMiRI5GTkwODwYCsrCyMGjUK7777LrzeyMk/XS4X5s6di7Fjx6JJkyYwGo2wWq3o1KkTbrvtNvzwww/BCc158+aBYZigHy0A0RgD/w4dOiTZj8/nwwcffIBx48ahcePGMBqNSE9Px+DBg/Haa6/B4Yj8e7xz505MmzYNeXl5MJlMyMvLw5QpU7Bu3bqI216o1Lkb+pIlS3DFFVfAZrPh2LFjsNvF3le33HILPvjgAwD+mfI9e/bghx9+wPPPP4+//OUvdT1cgiCI85ZoIxYm9OwPblU70cMVH5KAhLMp+Iwz9ZN4o2Gg/h30HXg3sPSR4HsTXwonm6zY/qqLbsLifLH4Mjz1OC4+80ZMo/OV7YHO1iKkRH28lVEKckr0cn2OJbZnRGWDHO9jiPN9ccPAscV7kMYfw/Xl9+P68vthan4NUod/hmKnD4tUPHENUYq0vIwwkxQHkbYh09G1DHnecO/iaqpkEiypwcHjTzxYC/jKD0ZuFGgbFGnVow2f6puKe38WH2Oc4H/A0sGNix3/UdxW8NWOSAsAqfwJTKp8GgCwzXAJ1pqvEzWTFZ+ZhiHS8h7tEZ6pxhqKtDLZEH28AJ9CwKotgVXaapHWL+6FJhCTIyYRUKNI6y3dDWOTS6Pvv5ZQS4pZ4ebjMhmnFaeXR7lX/Dmm8UeR7duHvIqQa20DEGnh9Qs4Tb2b0bRiMwDA2vYtMKwOlzYz44fDYoHn5k61k0yRICLB8zxuvPFGfPTRR6LyPXv24NVXX8WXX36JlStXIidHPflpJDZv3ozLL78chw8fFpWfOXMGy5cvx/LlyzFnzhwsWbIE2dnyyYU3bdqESZMm4eBB8T2N2+3Gjh07sGPHDrz77rs4ePAgmjdvHvNYjxw5ggkTJmDz5s2i8qKiIqxatQqrVq3CrFmzkJ+fr2jzsHDhQtx0002iaONjx47h008/xaJFizB79uyYx3c+U+dPzgFVf8KECRKB9rfffgsq/RaLBW3btsWuXbvgcDjwzDPPYPz48ejcuXNdD5kgCOK8JHzZNgB8tFP54TfLwoE1JItcTV3HvoW5+VUAAG/ZPvkNhcgzwhcu6iJheE4rPVyI9rGMF2rwcCnwEosGNYplBA01THwZnGySpNzOn5GUORnlhEbhop7WiEC9Nj0hSKHMUuKdRR7M216OPLsOJS4eXTIMcUk0s/RwFS7KM0PHMqjy8Fh2xAEDy2BUUzP0KsnONp12YX+pF72yDGiukNDsZKUXv51woZGVw8BGRlGm9Wgz/mb6DgCQn0CY8u1pdEqP7rPQCW44D3wCT5f/gz61S1TbRsJbquzVKgiC6HNwHvJbEyTxJ1X7NMp8F+F+r0oULb1ENWlZTMh4fXKCNIJY7hwLTfiUyAhRLMPfX+rFX34rQvs0PSw6Fo2tHM46fZrOJQAolYuk5f02HnLYDTWPzq8tAsnsytc/Cl/5flTtnqXa3nUsH57ibdCnVj97uU7+AnfBTzA2vhj6TKlHOhMyKSt4lSOsPIV/Rjv8uFL8yxR4zq4NvhdUFpeeqvLVqUgrZ3eT6jsmKUvkSFrBW4Wq3XPhOLRQXMFwweuMnD2S/QKf9CTqj6effhq///47rrjiCtx0001o1qwZTp06hf/+97/Iz8/Hvn378NBDD+HTT6tXptx9992YPHkyTpw4gUsv9U86Pf/887j88suDbbKysoKv9+3bh2HDhqG0tBRJSUm455570LdvX+Tl5aGwsBBff/015syZg3Xr1uHyyy/HypUrJfYJO3fuxJAhQ1BR4f8dnDhxIq699lq0bNkSPp8Pe/bswdKlS/Hll9UJgq+44gr07t0bb731FmbN8l/3t27dKvkMmjRpEnxdWFiIwYMH4+jRozAajbj99tsxbNgwNG/eHBUVFVi6dCneeOMN7Nu3D6NHj8aGDRuQnCy+B1y3bh2uv/56eL1eGI1GPPTQQxgzZgyMRiP++OMPvPjii7jrrrsoV5UMdX43tmbNGjAMgxEjRkjq5s6dCwBo3LgxVq9ejdzcXBw9ehSDBw/GsWPHMGfOHMycObOuh0wQBHHeUeL0yS6xVvPvy7RwqDCIf4Ad++bB0v5ucLbmcOxVTjrjqzoJzlKz2efzkSI2T7U+PFpLLrlJJNQePrXgq6z2DmSicheNjFGogBNikVYvVMkmOJMVaQMTAOHL2M+JtJHkkmjtDp7+vVi2/LtD1efNoj2VcckI/u62Chwo8WJ6Vzue+6MEB0r9f+uuYg8e6ikfTf1HgROvbSgDAHyxrxKvDElDE5v4Vq/czeOJlcXBxEclThvGhmTTXnYkOg/PDJ8/ksPGF0pEWp8AbDmr3WIAqPZzLcwfgMyJu8BZc6PaXg2vyhLryu3/hK3zYwAAT/F2OA/5rTOSI0TSygn9rEpUXjjFP45G6ogvYGo2UfM2agiC9NxxsdLoNPlI2gYi0kYRSQsAB0q9wfMnlN3FHjyocC4FKJcRaT28gMV75aOgEzmSNnQlhJxAyxozwLvEHsxnv+6BzEl7oLO3gOvkLyj64SJA4FGx+e9Iu2SpdBchkbSlq5UznDv2z0fKkA9i+Bvig/Og2AKkQNdBse2pKh9apdRdlPnLa0tE75N8p2CQmZ5NZJG2ZOVUOA8vllaEXJ/kRNpoV7ecr/CCgAp3A/dBigKbgQHL1O93//vvv+P555/HU089JSq/7LLLcNlll2Hp0qVYvHgx/vOf/yAzMxOAX4DNysqCzVb9G9ukSRPFoMKpU6eitLQUPXr0wNKlS5GRkSGqv+SSSzBu3DiMHTsWf/zxB+bNm4fbb79d1OaGG25ARUUFWJbFxx9/jGuvvVZU369fP9x4440oLCyExeK/t0tJSUFKSopIMI4U+Hj//ffj6NGjaNasGX7++WeRpQMADB8+HFdddRWGDBmCAwcO4JVXXsELL7wganP33XfD6/VCr9dj6dKlGDp0aLCub9++mDRpEvr37y+J1CXqQaQ9fdp/U9iuXTtJ3ffffw+GYXDfffchN9d/U56Xl4f77rsPjz/+OH755Zc6HStBEMT5yv/2R7/M1sgxKCnZISl3Hc0H71QXMpyHFsDa8YGo93m+ExC4lMiycABnCi5r7OBejvWmq2XbWnXyN7gtzOU1G2QIeqFmSXjC6er6Fistt4nKurvkfehb+5S9q8K9Rhn2XGbsCDf9hghRdKGUOH2aIoUFAG9vLcOrQ9M1963Ez8ecGNnULBKY1hS44OMFcDIPszM3lQVfe3lgwe5KPNxLLEL9fNQhykw/f2eFSKSNNlFOGn8UANDYtxNndS2j2lYO3bkEM4K3Eq5j38LS7o4a9xlALZLWeeR/QZHWdeKHYLlRUBcE5YT+NN/RqMZV/Mt1aHRTnAQXGZE2O7M1wnMUWmS8rhuKJ200kbRqrC5w4U6vAJPCtROQ96TdV6I88WBNYJGWlYmyFsGZpGWCF2Vr7kbaxd/BsecdUaR28U9XSNsz1X+/Y7+6CCv4XGA4o2qbuqK5Zx3+NF0pW1fojG6FSE3gBQFlYeJcMi+fFDNRRVqB98F55H8R2+XZpTJEpjlxz5+6pMIt4PYfo09a2VB5e1QGkoz1K9L26tULTz75pKScYRg8/PDDWLp0KbxeL1avXo0JEyZE3f/KlSvx++/+xIoffPCBRKANcNlll2Hy5MlYuHChRKRdunQpNmzYAMAvooYLtKGkp8d+D3ro0CEsWOCfqH7zzTclAm2AHj164J577sErr7yCefPmiUTadevWYf369QCA6dOniwTaAE2aNMG//vUvXHPNNTGP9Xylzq+EZ874l1eFWx1s374dZ8/6L0ahIeIA0Lt3bwCQeHcQBEEQsbHuVHRCzBWt/CIO75I+2Au8C1W71T2F3Gf+iGp/FwqtPauR7CuQrWtq16F1ig4pg6sfdC+t/JdiX7d38f+uXtXWGixLMjAY0Vz+RlARFU/BRr5dSPcdiq4/BQY73sPYqhcl5deY/Rnmr6h4Olhm1jEY2V4a6cQaz/1t4R6m58QmU4TAY7te+0OBMwoP5yPlUqFMjcZW5YHKCUIKK60l5ZvOSM/zrWfV/V4LZJbaqtHC4xfPezk/j2q7HO8usDJWKIFIWgDwVUmX+NYEb6lyJG1oEq/QZdqRjhAdy2BAo2qhqZnnTzT2BSazGNh7vhjZpzOeidJkhLjO3W9Anr16DH2dn4KViYpn4xi1XJuERtJOKbu3Rn2ddagf7+GCGQDsLVYWaesiEFDOG1sLRqFStV6fLp/803Xcn5DScUDs1aiW+C5iUjKo2yHUNe09K6AX5P8eb5wSYmqh0MFLzsz27hWybRNWpPWUabK5MnIMhjSpnhjIs3Oy0bUEURdMmTJFZHkUSq9evYKvDxw4EFP/X3/9NQB/oGKXLupWTgFBc926daIkYt98803w9YMPPhjTOLSQn58Pn88Hi8WC0aNHq7YNjPXEiRM4cqR65d2PP/4YfH3zzTcrbj9x4kSkpKTUbMDnIXV+JeQ4/01ieIa83377DQCQmZkpibJNTU0F4M+ERxAEQdQcZxTJfO7oYseIPP+NtLHJpXCFRUj4KiNHjcUr8qkhIwiCX6wJiXTTwY1HvfdgW7uvkGaxYGBjE3455oTDy2NkUzMYhoG5xdVg9HZ4CjcgLXswpq99BnO4v0v6DyzHvLK1Bdlmv+/isFwTjJGipwAk9fsPeFcx9Gnd4DrxI6p2vSnbjoMPj9rfx1+qnpWt10qndD1uyW4Nvuz/8M+cKjy63j8J8K+haWhsWoSqPXMwHjo0SzajwMFicBMTssx3oqx8M6r2VGeFFs49zkojaf2fRaRI2WiW10UTdRstcr6mAU5WSUUkv2gQeTyMTBu5v8PtE2Dg/N63pVH6ClsEvxijj8IteVgTI25MOoXH9uSi2Cdeis8J1SKyr0p+AiNW1CJpwYeKCuLr41D3p/jVIE68BSDot3tv9yR0SHPAUXECAx1rYMy5GwxngjF3HIyNRsCQPQTOI/9D5XblSZa4IRNJy1mbYMaAVCw/4oCZAzqueFR2U1avvvQ/UeBDfk/6uhbhoO8yrObGxdTXqSofcmUi+gLInQ8FMudkXRLN73cokaLCdUnt4IL8SgYA4JLawFe2V30n544/d8HPEccjxHNyooZk+g7igZLx2Nv2XXxb2Fw04VWXIq3csTWm6mX5xgkq0vKessiNzjG9ix1tUnRw+oTgPQ9B1Aft27dXrEtLSwu+Li+PbXVaIKp09+7dmo9zj8eDoqKioE3Bxo0bAQBNmzZFs2YKyZrjQGCsVVVV0Om0y4UnT55E06ZNAVR73hoMBnTr1k1xG71ejx49euDnnyP/ZlxI1LlI26RJE+zbtw+bNm3C8OHDg+X5+flgGAZDhgyRbFNa6n8AUAoLJwiCIKJDa1SgiWMwsqk5+F7wSiNxnIe/iNhPtB6C5yW8RyKgZE7ag0ZJbRCaE/XiZmaEY8odDVOufzZ74JihmPODNOlPQOhjGAZDcqujU3wagpUM2UOhT/PfRLlPr1JuyJnRYtib0P9QqBjNqYXxLS2wZk0GANgBLBgbWquDrdPDAICBYduZW10vEmmDUYMST1q/3QHLMDByDFwKx3s0EWm1+eioNoqTMpGtWkUDuag+ueX5RU4fcqw6WUFYK4yMOCjH/T2SMKixCcBVyCwoQnGJOOJKh2qRlnfIL/ONBd55FoKrULmByvgNlnTI5QILfJY6lsGlzS0AWgOQTmAYsgfDkD0YnDUPZWsfjG7gUSLnScswHGx6Fpe3skIQeJxUSGwmNJAkj+G/JwOYn7AasYm0pyMc83KetOUqXpF1IedFE9UfSsSEdozyAkuB90Gf2kWDSOv/vFwFP6q3AwBf4oi0AJDr3YaeXZrh7C6jyPYl3Bu+NimoEH9HLZJYMNKfewAJHEmrIYo6gJ4LXDsJon4J+LfKwbLV10afL7b7pIDlZ7RUVVVH+AdWnTdq1CimvrQSj7EGAjLT0tKCQZpKZGdnx7S/85k6F2mHDBmCvXv34s0338QNN9yAjIwMrFu3Dt9/719KE8iMF8rOnTsBADk5lHSGIAgiGhxeHvf9XIhyt4Bcm38p2YBGJng1PnSEZ6qWXd6oQQV0n6QZUrnPjtFZZVqqo+SfaFC8B9IQcamvtiBiOKlIHECf2hkM6xd8tPizKhG7b6N4O8HtT+QlhNkdhHprmnVqIm2Mw4gzauMoqJQKK1oD6aq8Aq7JP42n+6Wgc4ZfuJY79wsq/SJttFYHoWhNlhUqEqebOSBcpA2JpHUd/x6lf9yPqp0zYcwdC95xEp7CP6HPGoS0i/4H1qR98l7N6sBfvxOCIJyLcBF/wHLWAEAMwr2KCFa++TnYOj+uyaNTEAQ49r4Lz9l1MDWfDGPji4N1nsI/o9qvCL6BiLRhKzOSOE/M6uihMi8EQcDK407sKvagd5YRPbP934EgCLKetGqETqBsPevG6hNOtEzRY2SeKeYowd1FHry9rQxHy324ob0N5ihsWkLxIYLnsIotx8n52h4ZK7Y8D1/VcTj2vR+xreBzompP4Di+UnQc1xcMawAX9j3FGLgcE+ETZY2syp97woq0UUTSEvLYDAzeHnXhBKfZDOd/BHVA3O3WrRs++uijCK2radKkSW0NSZHAWDMyMqKKcJXzrqXo+Nioc5H27rvvxrx583Dw4EG0bNkSbdu2xY4dO+D1epGWliZrHPzTTz+BYRh07NixrodLEATRoJn2Q3XigWMVPhyr8EWVGChcTBO0hGUq4CnaHIzWvBARfDIiLRe/CBLFrMjhfq0yiEVameQx5+CS/DG/dgOD4hoEQSkLyhGQEZsEr1NidwDOEHxZoiImR/Psfais9gQstYjeU1XS8ctF0laoiEnP/VGC14enoZFVhwqZEOj/bCzD+5dm1kikZTSLtNWv00zS7zPUkxYCj6qdMwEArmP5wWLP6VU4++1AZE3ao3l8qlYH53DsmwdLG6l3mtLfFv2zh7JYWrHxGfCO00juPzNiL46976L0d38ykao9c5ExfiP06d3BOwtR/ONY6QYi8U1l0A00ktau9wGRL3OyrDjmRNdMA/672b+EdfkRJ/4+IBXt0vRw+oSoVwwEzs0j5V48/0eJv8+jTgiC/CqJSJyp8uGZ1cXB9x/tin1Vio+pm8c+LQItAFTtmYPK7a8FXweO43qFNUDHiq+DdWp3UNHwRdpo7A4IeViGqfdEWkR8CSTyqqioQOfOnWPqI7CqvKAgvlZQ4QTGWl5ejg4dOkSMhJUjYFdaWFgIn8+n2sepU+rJpy9E6jxxWM+ePfHqq6+CYRhUVFRgw4YNcDqd0Ov1ePvttyUJxUpLS5Gf778xD7VHIAiCINQRYkwuEkqKUfwzYWo6Mea+HAcX1HQ4DRr5SNr4ibScgkgbKsAqEepFyRpVMsKeE3wHNFIWcrWQaoxNpZX7WzzFmyV2BwyjLUt9NKfIwdLaFGmjay+XzEgt4zwAbDjl/+7klm8HrDKKnNGJtBa+WjzK0JhQLjSSNlUms1toJK0avrK94D3qiZBC8VaIk30whlRJm6o9c/0vePHnYGHkxZBok0RFOhc1LREHggJtgPLNfouFiq0vye+XrZ60UItqERpIJK2v6rjovUWv7XyXw8gxmLlRLCp9sMMv2Fao2BooETi9Ptgu9i0M9Bkt+QeVk3NFSwvP+uBrS3tpwjXWlBm3fWkhINAGKFv3cJ3uXw6GM0ojaevQ7qAobFIxy6LyW5moIm3Y+UkQBNCjhz8x44EDB3Dy5MmY+ujZsycA4MiRIzh8+HDU22uNag2M1eVyBf1poyWQHM3tdmPz5s2K7bxeLzZt2hTTPs5n6lykBYCHHnoIGzduxNNPP43bb78dzzzzDLZs2YKJE6UP/ytWrECfPn0wdOhQjBsXm98UQRDEhYgjDmv0hueJxThruztj7stbuKGmw2nQSPx8GQ5gYxMX7u4mFnsubqococUakmFqIU16FIBLagMmJPLUmDtGsW0gynZMCzNSjbHdQvRvZERyjNvqUmRW1PBuid2B1s81mmdvbxwmPZRQsmNQ4rBMVG+kiL/ycw0qPNJ9uc/tP1yMyLVVCwRmGZuNG8rvCb5O448hz7NRfRAAkkK+e7l8aRahJGIfAaIRA/gqsb+tuflVkjaewj8heB2S5fTdDftk+8wwRzfZYGx8CVhTlnKDGEUXz+nfAQDuUysldawlF4xOfH2wtL9bvqMGEkkbbumgT+2E8S1jm/By+wRJRP3+cxMynhgiKANRl9sKxZMmsXp4y53rsdLG4z8+GGMa7N1nwNzmlmCdscloGDL7xW1fEjRYbnjO/hGXXfGuosiNZDC1nAKG1UEXNlRfLV77w/GE/RaYdQysnR+XbZuokbSeImVBhiAuVCZMmADAH0DzxhtvxNTH+PHjg6///e9/R729yVT9TOdyKS+HGz9+fFDQff3116PeDwCMGjUq+PqDDz5QbPfll1+iuLhYsf5CpV5EWsCvrj/77LOYM2cOZsyYgXbt2sm2u/zyy/Hzzz/j559/JlNhgiCIKChyan8q7JNtkC0Pj5hkTRkwyYgbmohj1GhDJDySltFZYvZqGpZrxtP9UtAlQ4+7u9lxa2ebavuUIR8iZfgiGHKGS+qSB74jes9Zc5WFpHPLZU06Fv8cmobWKcpLMce2MOPRXsm4v3sSPrwsEw/2TMKDPZLwQI8k9T9OBYZhJQ/7giBII2k5+eM5nGiizV21aEwYbbZ2OeEmUhI0L+//e+UiaQOJiMJFqT45Rrw0OBV3dLHj1SFpmH9ZJi5uakaujcP9+n+io3u5qP2DJWNxfXurrI1BgBRDdZ3ckC18ierfEUp4RKUafJV4eSBna4HMKw+ENfL4hVqPOOqxkcmBAY2kXrFZUYq0nCUHGePXg0tqI1svse3QSCAin3dIlwzqUzpJypL6/gcpwxfJ7D/xRVqB98FbJJ4M0Kf3wvXtrXi8dzIuyjPh2nZWzaKt2lkTi7Dqjt0xRBZLBP/ZS6OwUEgf+TWSB76DzCt2gDWlI3nAXKSM+BwpQz9F6kVfQpfcoabDlYWzt0L62DUaPNjjs7zbWyY/qaKGselEpAz5EIA/EaCovzqMpA2/ButYBvZeLyN15BLJ7zeJtATRcLjkkkvQt29fAMCrr76KhQsXqrbfunUrlixZIiobNWoUevXqBQCYOXMmPvvsM8XtCwsL4XCILepCE47t379fcdt27drhqqv8z3qfffYZXnvtNcW2AHDw4EF8+umnorK+ffsGI39nzZqF3377TbJdQUEBHn30UdW+L1TqTaQlCIIgahc1L85wrm4nFfnkotwAgLM2i2k88Vza3xCRiLQ19KPtnGHAX/ulYliuOaLYy7AczM0nI7n/LJk6adSpTsk7OMTb0mZgMUolgtekY9Anx4hBTUwwcAwGNDJhQGMT2BomEWAMKWElglTc0mh3EE2gnCvO4ksAQRCiztZ+uEwq5kXqocLDw+kTILcrn+CPAAwXI3Qsg5bJeoxsakamhYORY3BbFzv+NSwdHfXSG3wOPkxoZcVzA6VWAoDfHiA0QUiljPphEbRHwYVHx6rhc4jbspbG0NlbQJcqPtbdp1eBDxNpGb0drVKkx5TqUmQFOGseLG3vkK+MUSQNiF8+h3QJpS5V6n0XuB5Y2k4XVzSASFpv6S7JtVSf3gsMw6BXthHTuyZhYmsrbuhgw7xLa5Z4J5ZI2li2UcMSHtYZglXH4KaONjS2ajsOTXnjYGl7KzizP+iFYTmYm02CueW1YDgjWKP8eVtTkgfMhiGjj2pisnMDisv+fOXiaxNnbxVxG2uHe/2TgADCFw3UaSRt2CVRzzJgGAamvHEwt7lVVJeIIq0gCPAWb6nvYRBEQvLJJ58gLS0NPp8P11xzDSZMmICPP/4Ya9euxZ9//onvvvsOL774IgYMGICuXbvil19+kfTx4Ycfwmazged5XHfddbjyyiuxaNEi/Pnnn1i7di0++eQTTJs2Dc2aNZN4vQ4cODD4+qGHHsKvv/6KvXv3Yt++fdi3bx+83up7gFmzZqFly5YAgEceeQTDhg3Du+++izVr1mDjxo348ccf8a9//QsXX3wxWrdujc8//1wy1rfeegs6nQ4ejwcXX3wxnnzySfz2229Yt24d3nzzTfTq1QsFBQXo1u3CzVeiRJ0nDpNDEAQcOHAARUX+G/O0tDS0bNmSssERBEHUgOIoRFq5q61JQaXVkn1cfh8N85ruqzyO8g1/geB1wNbjWejlltzLwDsLUb7xr/BVHYe10yOSxGH1IlrLPgRLvxdWxq8TAJiwh2y1CFCjkspfY8T9lm94Cp7Tq8QtNNodRPPoHa2Q+tdVRShx8Tjj8J+HPTINEOAXSzulG3B1Wyt0LAMvD1nhVI09JV74eEHkQxxJR9h+1o1yFY/NBbsrg7YHAWQcDqpRSUKk9N0nG1iRSF8pY71grYVIWsHrhLd4q6iMs/gjSgxZA+Etro78cp/+HeFHBqOzQc5GOTsGkRaAJPI7WOw8haq982BpMy2q7rwl23F2SR+Aly5f1KWoJChhxd9h1a7/wtzqxtpd9l5Dwq0OWEsuOLN85L+JY8Ax0Z9fAFDo8OH1DaVRbxfvJFNqkbTdswzQsUxcrI2CcGagBglC5dBn9PG/iCTCRhJxNeKVEWnDhVsJIeckFzbMVSdcsOnLccbhQ69sI0bmmcAwDHy8gPyDVdhe6EH3TAMubW6WnYT08gIW763EwVIvhuaaMKixsqd7+OS6PuQjCU/q6S3ejKJlo+E6/n2wLKnfm7C0vysoOGuFd5fh9OLmENzFYK15yJq0N6Z7PV/FIQiUOIwgZGnVqhVWr16NK6+8Etu2bcOSJUsk0bKhJCVJV5516NABK1aswMSJE3H06FF88cUX+OKLLzTtv3Xr1rj66quxcOFCLF26FEuXLhXVHzx4EM2bNwfg1+NWrVqFq6++GitXrsSvv/6KX3/9Naqx9uvXD/Pnz8e0adPgdDrx0ksv4aWXqr3zdTod3nrrLaxatUrVt/ZCpF5F2h9++AFvvvkmVqxYgaoq8cOrxWLBiBEjcO+99+KSSy6ppxESBEE0XIqjSAIkK9IqKTRcbEmj+HBP1gZCya/XBb0e3WdWI+uqI5oegMrWPQzH/vkAANfxH5DU7z+i+voRaWW+U5kyxYezMFHnrEP5GKstkZYBI5LQwgVaAIBGu4PoImmjE0L2loijEjeeqfbN3VfihYFjMLmNFUcrYoteXLinEte1r46AjzQlc9rBo1Rl4ubrA9IERXq1zFgqQriiSBvmRSwn0uqgLXEYoF2kLd/ynKSMNTcGABiyBqFqd3WEufv0KuhTu4jb6u2yQliWJbbIP0ElYrV01c3QJbeFIWugbL2SJYKnUD65h1wkbRAZob3oh1HIvvZUwq58CP879Rm9FdsyDAOrnpFNtKcGA+CNjWXBCZZocPOQTHbUBKvKTEnvbP91Op4iLaOzQIhRpGV0FtkEmazhXGLKiL+b8fnNCBdkdfZWEa8qob7m4YnDAOCHw/7PZMNpNzLNLLplGrHqhBMf7/Lf12w640aGmUOfHOlv55IDVfhyX1WwXRMrh+bJ0uvnoVLpuR16DQ4XaQGIBFoAKPvjXnC2ZjDlRZfHpfD7YRDcfl9IvvIoildcjbSRX0XVBwB4yeqAIFRp27YtNm3ahIULF+Lzzz/HunXrcObMGfh8PqSnp6Ndu3YYPHgwJk6cGLQLCKdXr17YvXs33nnnHfzvf//Dtm3bUFRUBJPJhBYtWmDAgAG45pprgoJrKB999BF69+6NxYsXY/fu3SgvLwfPy//W5eTk4Ndff0V+fj4+/fRTrF69GidPnoTH40FKSgratGmDAQMGYMKECRg6dKhsH9dddx26deuGl19+GcuXL8fZs2eRmZmJQYMG4eGHH0a/fv2wapXMffwFTr2ItG63G9OmTcOCBf5M33KecJWVlcjPz0d+fj6uueYazJs3DwaDtocugiAIQj5BkBIsA7RP02NXUfVDwtgW8g/pnFriGxUaYnSF4HOLkvHwVcfhPrUSxpxhEbcNCLT+Dd1w7H1PVF8fIohchCxrkvq9K3lmGnPHit73zjHim4PyD/Qd02vnN1uSJEyOECGrfaoeu4rlha1opI14Ci8AsOWMG5PbWFFQGZuPwpkwgVyL4HxARgRQQ68S2MbJZYLn/PYXegUtJlzz7ZZpwMrj1Ut2003RiTS+8gORGwGo3PKidCznoi/1mX1F5YKrEL7Ko6IyRm9HtwwDPoF4osmkshRdDWOjUajY+IxivfvUSkWRlneXRLUvNZ9RRi/1CBW8FXAc+BSWtrfKbFH/eEt3id7r03qots8wcyhzRz8RslvhmhGJSg8ve54prUyJhFFBpOUYoHum/xp7RWsLPtstPjbtBkYUOT88V9vkqr3H8yhbc1dMY2UMKVJbH311dBXDcOrX3LjZHRwUvefsLSNuo0upnpiJdFp/uLMC3TKNeGuz2Bbli32VsiJt+Hczd2s5XhycJmm3p0R63CSFeHjLibRylKy8CTlTokue5i3aJHrvOvp1VNsH8JRsV603NpUmCSeI2mT48OGK+QfU6sJRa9e8efOochxwHIfrrrsO112nnNQ3EmazGffddx/uu+++qLbT6/V47LHH8Nhjj2neZuzYsRg7dmzkhgp07NgR8+fPV6yfN28e5s2bF3P/5yP14kk7ZcoULFiwAIIggOM4jB49GjNmzMDs2bMxe/ZszJgxA2PGjIFOp4MgCFiwYAFuuOGG+hgqQRBEgyXaVZdXtrYGxZVsC4uRTeUfCIx5E8Ba81T7snV7WjoedwPM3ikT8SZ4KmQahm8mFS7Do/5q6kkbC6wpA6YW1TeFxrzx0NmbS9qZW0wBaxT7OeqzBsPY5DJRWbtUvWzyMLueQVN77cwDm1vdFLGNPq178PUNHZSTqkVzUx2t3UEkAom+YrU7DD+/tfwt5VFM3ACA3aB8m2huNVVSln7JMgD+CEY5oaNHpkHyPifEMuCK1laA1b7E1lu6U3PbcAKCB2vOkdT5Ko+J2+ptaJakQ5eM6ui3WzqpJ+tTQ5/ZH4ZGoxTreZUJLSEKkdbS4QGwMkJsAHOLa+X375QmIEsUfBWHRO91ChNKAcY0j/46a6jBqnsvD+wvkf5uWCMkAFNC6bSe3MYKy7kf7HAB1sgxmNE/FbZz+0w2MJjYWtvnYG51PThb85jGysicuwwX6luu/tgZ7RJ9JXxV4kkWztYMKcMXi8p06dURaqaW14t+Bzm1FQQAjpX7J8jCv5oDpdomA/YrtPPIzNeF+l5rFWmFerzX8oVNohgaXxJMRMoY02Hv+UJ9DIsgCKJBUeeRtPn5+fjiiy/AMAxGjBiB9957D82aySehOXLkCG655Rb89NNP+Pzzz/Htt99izJgxdTxigiCIhkk0yS5YBuiaacA/h6bhZJUP7VMNinYHnCUHmRM2w3XyZwiecvjKD4CztYAxdzS8pbvB6qzQZ/SCLrkjSn6tFgQFV8MTaWWFLw1+6XLLsBm9Xfy+npYTpwyZD3fb2wHBB0O2/PIkXVIrZFyxHe5Tv0BwFYOzt4IhZ6jEK55l/GLA1rNuFFT5UOjwIc+uwzCNUVuxYOv6F1TtelO1DRsS5dkmVQ8D61+GHE5UdgdhS4qHNjGha4YBKSYWAoAX/ijR3hkAw7nIOl7mGOucrse2QvVIvvCttPwplVGmq7crhcQC0Kd3R9ZVx+A89g18ZftgaTcduqTW1eORGdCgJuLjwmZg8dLgVGwv9CDTwqJ5kh4VPZ9D+frHNY3PV3EQgtcJRhf98cacSy7H6Gz+CD4h5LMJ83ZldHYwDIO/9EnBjiIP7AYGzZO0+R7L75tB2sXfwX3qVzD6JJT8PBm+ysPBeiEscVko0UTSJvX9t2q9LqWT0gg176MuEQQevorDorJIguKQXBOaJ+twsNQD3Tnx7fO9lThWoRzBbuCYqOxN9Kw44dPOImm0f6yOBOGb2fUMnhmQijxbtXiXauLw7sUZ+PmYE0kGBoMbm8CxDP41NA1Hyn1olqSTWI0owertyLh8G9ynfgVnzoav4og/4prRg+FM4GzN4Cr4EaUrZSbLWJnVEywn/1p+75rGqIYg8JJJFs6SB0NWf+gmbIZj/4cwt74J+tQucJ9dB/ic0GcNFrVX9eKG3wpK7rpdU4cfb1ifoZNC/h3U3u9qvAiPdDfljYNpyIfwFm+GLqULOIt0UowgCIIQU+cibSCUuVu3bvj++++h1yvf5DZt2hTfffcd+vXrh82bN+P9998nkZYgCEIjvujt9JBj1SHHGvmngTWmwtxskqQ8kDUa8GdPD4V3Rbf8LjGQe7LWINKGLZf2dyUWBQIZ2esahtXB2GhExHacOQvm5ldFbKfnGPTMji2ZXCwwusgRjOGfbYaZwwkZW4FooljDRZue2QYMaOR/aN5dFP3S6MC+w4Xilsk65Nl1kUXasO20CM4VUXpzJqlE0gIAZ20Ca7vpsnVyGpecUGTRs6IlwnJR6IoIPLxle6BP66p9mwDnPHUZhvEv01a5PrHnJlg4lkGXjPjYePjPw4sAAKbmV6Jy+2vBOjWRVmskrTF3XMQEvMqRi4kp0vJVBUCY3QlnaxFxuzy7/5wKcKrKJ1mCHoqJY1AehRlKloXD8RDRd6fM9cAbYyR++HndPk0vu0rBZmAxvqV44i/FxCHFFH1YMKu3wpQ7GgCgD4k4DWBpdSMqd7wOb+EGUTkj5wUuSgYWKXFYzUVa3nlGeoycW/mjT+sKfdqrwXJDIKFZeB8RviqLjkGRU3qDpbbyQAvesC7DLTK0RtICgMB7wbB1+5gvCIJEpNUltwdnzgJnvrhOx0IQBNGQqXORds2aNWAYBo888oiqQBtAr9fj0UcfxQ033IA1a9bUwQgJgiDOD6KJEpTLSFxTWKPY/1TwlMJ95o+EzBzOOwtRsupmuI5WZ1nNnLRH1q9Vy5JMX9UxaVnZXnE/CZqYJ9HRIm6Ht1FavRrNPEa4SBv6AB3L6bOjyINr8k9LyllGW1TsHyddWHfSBbuBwce7KrFHg4fmryH+r1qwG+J7XVBLghQg2qRFrhM/qIq0Ai8fMcmERPWx+mT4VERaRh+7tYEWGJ04yt5x4GN4i7eBNWUiqf9/obO3gPvsOpStfUg+UZ4MrCEl5vGUb/gLyjf8BdlTSsEa/J6i7tOrUbbuYfDOszC3ngZb1ycjisD+bR6Br+oYjI0vRXK/mTFFPQcItzoAZwJrll6jI9EsghVLtAnDssNEWjk/+EqvgKdWFcHEMbi5kx25MmPYfMaFF9eWAgCyzCxu7WzHwj1iMTnSZ15XmJqMQUW4SCtndxAizEb87YzD3yaZIGU4WUsTNdQSLAJAoZPHbzLX0mgsqv+zsRRbz7qDSe2e6pci+a7DbReiEWl9lUehs/snMHhXCcrWPghP8RZYWk+FpcP9gM+Fsj//D1U731Dtx3n4S1RseRGewvVgTZnQZ/T1X5Ns0lWwfNUJCF6xHZQuub3mMRMEQRB+6tyT9syZMwD8BsJaad/ef4E/e/ZsrYyJIAjifCQau4PagDVIE2MU5vePyge0rij78/9EAi0AFC0bLYl+9RP5QZKXi6QN74VE2phgWC6YoEq+ASdZdqtTUGmjORTDPWmNISJtVZQ2Amqw0D6uf/5ZipfWlmoSaGOhppFh4WgRmOSyw6tR/udfVOudhxZG7CPciiTa+prCGJLEBbwHnsL1cB3/DmV/3AtBEFCy4mrNAq2/z5Qaj6t01c0A/EvIi1dcDc+ZNfCV70PFxr/CfWKZ6rb+ba6C58xq8JVH4dj7Dip3qNsvRCJcpOWszWISLZslxTdGJVWjlcC+Ei+2FXowZ4vUc9jlE4ICLQCcdvB4aV2ppF0Eu9Q6IzyJJAD45LyMQy0OmNq3Owj/7WUtjUUTMloo03A9/1QmErtcYaWC3GTXqhOuoEALyNvlhP8ORCXSlu8Pvq7Y/ioc+z+At2ijX6w9uw5V+96PKNDyzkL/eV+4/tz7M3Ady0fZH/fLtg+PomV0VrCWJprHTBAEQfipc5HWavVHtxQWFmreprjY72NosdADLUEQhFa0rq5kmfhHzAFiX9BQQh8eEoXAQ0govvL9Yp/KcwgyZZJtHScjthH42hHWLgRYFdGMs+RKhJtRTeVF3XAPQDW8YaHp+hC1pFVK7P6k4Ryr8GFIE+0P4/FOaBaKkrithQ5petX3Shiyh0S1n0iRlJ6z6yRljFE8gRQpARmrT1Ktrylqx7Pr2LcQ3KXSKNJIfWoUaXWpylHIzsNfAAD4quPgw1YHuE/9qtovX3UCfJg3t/v075rGpNinSxyswYVZ6mglzRTb48+YFtLrSOsUHRxRnoN7SryS68n2s1IfWzmS4zxxEit6GasAvvIoDI0vEZXZujwZfB0pojX8GIsFT/EW0XtdDEnQhkZx/Q3F5RMk3ysApMVgOQEAu8Im31hjuuZtfeUHgq8rt7woqitf/xjK1twdsY/yzX+XTZ7qOvq1/D7DznfO3jJuyeAIgiAuJOr8ytmuXTsAwIIFCzRvE2gb2JYgCIKIjNzDghyjm5thjmadnkZk/ekACLy2h9G6RFDIpi6EJRDyFyonnAnAOyOv/DCEJSshtKO2/NzW7WlJWf9GRuTapA/K4cnAohpDiH4Zz4jTNBOL1ik6dEqPn/BbH0xoaQkm0tGzwBUas8sbm1wW1X4En7qFA+88IylL6iOO6IxkoRGPqFTV/nXqkbqxXDO1jtnW7a8R2/gc0gjJSBHPvFyG+Rp6ZAq+8IRuKhH1KsQSfds6RYfr2tnQJ1v8u3ZFKys8MUyUVIRlMtR6Kbq4WWx/c7xRik6193wezDkxUZ/RD+aW1clDbV2eqPVxec78IXovJyZHom2qHl3Dk3ZpxCHzRca6eCg8b2M0x7s3RKQNJ3yyQwm5yWs1BI848ps1pCq0JAiCINSoc0/aCRMmYM2aNXj//fcxaNAgTJs2TbX9hx9+iPfeew8Mw+CKK66okzESBEGcD4QnobDrGZTLeOXd2KH2/Bb1GX3hObtWXKghErWuEdzyIi3vli431SbSSoWhcAw5wyO2IeRRSx5maXurpMxuYPGPIWl4aW2JKCFXPKNQp3a04YMdYj++a9tZ0SfbCDcvYOlhB34+GtkTtnumAQzD4Ol+KThc7sWZKh5eQUCnNAP+t78S+Qe1eba+MTwN3x504IfD0Xm8xoue2UbMHpWBo+Ve5Nl1EZOQBWAVBPj00b9B8FVB8Fah+Kcrqit8MhMpIYSfi5YO98HSWpyZnjVmwKeSkKu2E/BI7A7CiUGk1RpJa25+FQzXnMTpBfJRjry7FLxT6p3MR0hgJpsosoZWNxKxmo09iVv7ND12aUz49+rQNDS2ctCxDB7plYzjFT6UuHjk2nVIMbJYKnOO3d3Njrc2KyeAK/cISAkJ2NRqT5QXwU+3vjFk9EHWpD3wVRVAl9wWDFstdpqaXg59Rj94zv6h0kPsCIIA99lwkTZ6D3yWYfCXvik4XuHDo79Gl/DU4RVgN4SXxXbPYwtXaQHYe7+K8vWPRdxWdcWSxvPGVxbdqqfw+yXGkBzV9gRBEISfOo+kve+++9CoUSMIgoBbb70V48aNwxdffIHjx4/D4/HA6/Xi+PHj+OKLLzBu3DhMmzYNPM+jcePGuPfee+t6uARBEA2W8Ic+k0LSntpMRCK7PC8BRVpeKZJWRojQYlOgJVKFs+ZGbEPIE0siJx3LoGO6+OE0PBlYTbDLPFB3Sjcg165Dy2S95uX+xnPnKcMwaJ6kR58cIwY0MiHJyILTeK62TtEhx6qDWUOirtokycCiU7pBs0CrhiF7EIyNLwZnbSoqD4+uDMfnEou0+rTukjZK1ix1hZrdARCbNUo00b+cimWEt2wveJlIWt5VCEEQFO1fBFmRNvIElyrhkbQ1EGmjOSSb2nVB6w+GYZBr16FzhgEp57xo3TKrVnpkSZNohVIeFklbJTOB2lBhjWnQp3YSCbTBOnOW6rZa7ISk2/g/O1/5Pslxp48xUSnLMMiz60QJIrXg8AoQBAF8yP1XrN9tkowNlaK9S9i54K1QjqSV+17k4OU8hlUQwkRaVk8iLUEQRCzU+XSs1WrFN998g1GjRqG4uBjfffcdvvvuO8X2giAgNTUV33zzDXnSEgRBREF48Ibco4YxNqs0zcgJBYJHObqoPhB8LsVItcJvB0rKSlZMhrPZJCQPfBesMUV2Oy12B7UdnXc+oxZJq4Yx7IFbq0i7o9ANVwR9ySBzLoU+ZLMaEs4BUBUFtD7qBzwQa+Ipm7BwYeKX4IUg8Ireh+GRtHKCLGvKiNvwYoGJ5HkbUyRtfASSwm/6yI7PdfRrnPzA/5nrUjohZfgi6FM6BOvl7A4ief9GwhWWrIwJPxaiIJ7nhlvmOhJpfuRouVc0aXS4TOr9eX6iro6f/MB/7UoZ+onIKiEU59FvUPbHffBVHIbaVZE1ZUsmdaIlzcTiRKX2yYXHVxbByDFw+wS0TdXjgR5JqIzRVsfIST8rTsHXl7O3hC8kcZdPxe5Azqc7WgrmMUi7bAWMOcOCZbyHImkJgiDiQb24effo0QNbt27FlVdeCZZlz83ES/+xLIvJkydjy5Yt6NatW30MlSAIosES7kkrFzErt5wunsgJBVW7Z9fqPqPFW7Ij6m2ch79A1d53ZesEQdBkd0DEjtKS+EhIRFoND8+CIGDOFunEQnjwnNz5FepVqzVgXSniHdCe2T2Qbf581GgZVkaYU/ClFQQBvEO8VJ81yoi0RhWRNoqM6rHC1HMkbSSUPLsDeEu2o3ztQ6IyObuDmiSNFAQhrsvkT0YhvEVCTqTVRzj5lhwQe/rWly1JnaPxQljy6xTZ417wuVG66tZzifTUr9/6zP41XimUYY5+JtvlEyAA2F3swXN/lMS8b7mJP9YkH0nL6MSBTIK7RN5yJI6UrhJbC4VH0pJISxAEERv1lnKxcePGWLRoEY4cOYKPP/4Yf/nLXzB9+nRMnz4df/nLX/Dxxx/jyJEjWLhwIZo0aVJfwyQIgmiwFDrFobQj8qRiwy2d1cWBmmJqNklaWIPop9rA5yiIabvy9Y8qdOgC5BKOhWDtpLAtoQmf46RsuS6lo+p29rDlo+HniBwun4CTVVJBJzzyrWOaHqEacLqJhSVEcDVoXDZrVZk4kTuH5Qhkr2+dEnu09sVN6y9BEWtupFgnl+SL91YqtBYk56Kc/6u1s7LHY02W1GslkkgbSyStztYiqvbWzjVL6uQqEEe5ykXSclGOSdSfjIWMp3hrzP0VxFGkvb69eNJoYGMjdCygdsqHin8nKrRF0bZPTaxkgvY+/xK9t/V4PuI2bBSrINynfpOUeYu3ynoky6FP7aJ5X0pMbqOeVDASNTnOxrWUriDl7C1kPWVZfTIQtprAV34w5n1rwVe+HwJf/feR3QFBEER8qPe1lo0aNcJ118kvZyEIgiBiw+0TJJFCXTIMOFDqxdqTftGCAdAjs3YFCNnkWDFEhdUm8bZfELwVEdtYOz0c131eaOjT+8Bz+ndJeVLf11W3a2QV3/YUOnk4vYJq9KpSzpdwz2ebgcU17az4dFclDBxwQwebKIor4F8ZiV5ZyudkI6sO/RsZsaZAfRIg9ZxI2yk99vN7QOP6m0xJu+QHnP2qa/B9yvBFwddyCbEEdwkg5ysrm4xJ+l3rUzqAMabJ+6jWAWwEuwNeIbGhap8mGT9wFawd7oFj37yofSiDhHmJyn2WQoTJKzXkLGRYk7q/qRosA8TLkrpLhgF9sg1Yd8qNbAuHK1tbwTAMbHoGpW75nYQemj9pSCgIAFe3q5lgGG8srafBeWgxPGdWQ5feE5Y2t0TchktqrX0HMv60vFv7ORoxIZ8G2qbqMCLXhJ+PafuO4kWOhUOLJOljOqu3w97zBUnyMIF3g7M2PRdh7MdbcQD6jF61PNLqA5nsDgiCIOJDvYu0BEEQRPw5UeGVLATMtXF4pFcyKtw83LyAVCNbq0nDAH+CCmvXJ1G55cVgWSxLd2uTeIu0vIb+OItypCARGUNmf1TtfENUljL0YxgbX6y6XSMrBwbiRbIFlV60SFaOUAu3DQkgJ/Bc3sqKS5qZwYCRCL9aRVqTTr3dQz2TUeXhUejkwQB4f3s5thWKz6lQT9rumQZsOhN9JGZ9Jh3Tp3ZBzk1eeEu2Q5fUFoyuOoKY0ZkA1iiKkA3PKl6N9EtiFLyBc64rhK+qAKcXNo7YR7yJ5K0qeJT+PnmMTa+IegycNQ9ZVx9D6apb4Nj/YdTbhyO31DpSkjc1BJlIWtaYFnN/OhbwxSmYVs8xeKRXMhxeAQaO0eR3G5AfvbyAX49Ftjq4vr21RpMutQFrTEP66JUQPOVg9HYwbGRrAF1SG+07kPGZ9lWd0L65TNR9tDAMgzu7JeGGjjbctvRsHVwNgH8OTUOeXfkR3db5UalI6630+9KGiLS+8gNR3W8xxnQIrsIoR1v9iYTbolAkLUEQRGzUqkh75MiRuPfZtGnNDOAJgiAuBI5WiJ8+M81sUPyxxSHTejQwjFgAi+RvWNcInsiRr5r74n3+qD6iVuGsUhskLR6cBo5BhpnFGUd1hNaRcrFIW+nh4eWB5HOiqkchkpZXKDcriKxaRVotWPQsLOdsEVql6CUibWrIvmK1na5vO1uG5aBP6ypbxxpSRBGfcuec4HPBV3VcpmPlvyxRJ0/4KK+ZgqL9gzoMqwNrDhepY0PO7kDwVEAQhJgmB30yPt/hPpzRwDLh0zU1g2EYWPTiv0stYRR/LpR242m3YrRtKDnWxIyrYVgOjEICTTm4pLbRdC4p8lUe0755HETaADY9i0ZWLqokYuFwGqO31QRaJQRvJbj03gB+Cpb5yg9AiCIKnzVmwBe1SHtu/7wHvEt8zlMkLUEQRGzU6i9+8+bN4xqlxTAMvN4LJfspQRBEbBQ5fXhzk/jGPJab/njBcOLoH9exfJz5X2dkXrGtnkYkxnF4UeRGGqjc/jrK1j8GCPQ7VduwFhmveo0RQ01sOpxxVEeWvrW5HHqWQd8cI97cVIbV56wEWibr8ESfFHhll8wDfJQCj1ZP2miRC/QNeNLWZL+1HGRfI8LFOdeJH2FsPCr4vmrP2yj94wHAJxehGOUfpvD91yWlK2+Kqn1NJp7Cr9exImsdwbtQtOxSpA5fJJtUUo3wBHAAwHCx+ybXxeGtZJUCAPtK/L8TPx0VH6NtU/XYUyy9lmWY6y2NSFyJJpKWkRFpebmJF6Xt4yjSAv6JtpqItG1T9dhZpP47FXrtjgbBWwWdvaWozFt+QGJBoNqHrypyo/BtPJUo/u0muI4ukdRFe44TBEEQfmr9F18QhLj+IwiCINT59qBUmMi11WMUDitdSu4t2Q5P0ZZ6GIwUOW/TaOFdJSj783ESaOsITibaT+tS6kZW6ZLceTsqsOmMOyjQAsCBUi+WHa5SjKRNlFsSOT/dUKuCSFnmlVCyBUgEfBXihDiV2/4RfC343Chb+5CCQIuo1WdGrz3RUcIgI25pRfBGL9QEtw3xEJWLpAUA94llcBz8LOq+5ZJFyfkTa0XNhzpe2PTq+9hf4pFYkVykkBwwyxzZSqAhEI1wJ8h40vqq6ieSFgBSYhRQA3TOiDwB0lzGh1YLDKsHFybS+ioOSJJ5qRGLPYHz6FeyAi0AMGR3QBAEERO1+tQ+depU1fqSkhJ89dVXYBgGN90UXZQAQRAEIc9pmUz0besxKzTDyS9Jrdj8HFJHxCeKNVb8D4E1X/bqKlimOZJTNpkaERWMzgRdald4i88J/axeFEmpRptUPb47JBbwSl089spEr52s9Cl60o5qGn0U35AmJqw8rpyAZlrH6AXBoU1MWLSnenl7xzS9aBVTY1v04o6OBfLsDVMU4p2nVJf7c5Zc1e2tXf4PlVtfDr5P7v9W3MamhrnVTXDsnx/1dkl934C3dCeqds8Oltl7PB/zONwnf4l5W/jcwDn/YDlP2gBlq++Etd30qLqW+05NzSZFN74QbutsxyvrIwtYE1vFbqlwbTsb3tmm7FH+7w2lokh4PQsMaGTE+lMurD8lFm+tEQTfhoSx6US4jnwZsZ1cpHQ0oiPDyQvesZJZQ6G8TYoOndOl9jShXNlGm7Bs7fyEaHIqqe/rYPR2URvBUwGB1+5Hbu3yBEpX3qi5PQCUb3hKsS7enz9BEMSFQq2KtO+//75q/fbt2/HVV19paksQBEFoIzzrPAD0VMkYX9soZViOOYt4HPF7WcYm0BqbXBZ8zTAaf05ZI+y9X4lpf4SYpH4zUbryJvDuEth7vaw5iVC/HCN6Zhmw4bT44fWUzOSGm5dfstwlQx+Tt/PkNhYcK/fiRKUPOgao8grBo693tgHDcqN/qM2ycJjS3oov9lYh1cTixjCh9+KmZmw545YIA5c1N6N5kg4f7qxApUd8DtzfPemcZ2fDI1JENaNTF9etHe6H5/Tv8BSuh6n51TDmjo3n8BSxdftrVCIto7PC0OgimFvdBN5TCk/RJniLt8LceioM2UNiHochZxg8hetj2lbg3WBgOufNHV2ys4jIiE26tB4xd9ct04DGYR6jRo6B65xpqIEFWqfocVnz2C0VhjQxYvMZN9adkj8mQ72xAX8UpUnH4vr2Nqw/VS1yP9UvpdaTfNYl9p4vwFe+D77y/bC0v08kNoYiJ8xHE+nNyKziqQk1nexONXK4voMNr64vRZHT/91nmFn4eKDCw2NsCwtap2jbh7XjA/CcWQ1P4Z/+61ST0XCfXhXWStC85MPS/l4Yc0aoN+JMgE88yajqf12DiH6CIIgLmcR0oScIgiBiJjzwb0p7K7gYlzzHA6UldL7Ko3U8Eilq0V6hGBtfCkOji1D+5xPVhUxIVI1Gb8SsK/eCs+ZFM0RCAWPOUGRddSjq7XQsg8d6J+O6b8WJiGRFWp8AT9gJZdMz+Gu/1Kj3C/iT/7w8JPaM9Epc3sqKy1vJR2BZ9Cye7p8Kt0+ATxDAMQxYBsEM9MNyTeAFaMpI3xCIJnJMDs7SCOmjaxBNGiO6pDZIHfElin+eGLEto7cj5/pq33HWmIKMsavjM5CaWCXwfjFS8JQinkm5/H2LJxks7e6skXCpYxn8e3g6BEGAyycEE2vGE5OOxaO9/b9/5W4ety07q9q+5bkEho1tOiwYmxX38SQK+pQOyLy82u5IUaT1SKOQhTAbk+SBc1H6+x3yO4q3SKsgoLKMvDd4OElGFilGFrNGZtR4LLLXqbBz179SSH1gupTOyLxiKwD55HwBbN1nwNb1rzg5XywdsPpk+JSSpZJISxBEAyFwP/G3v/0NM2bMqN/BoA48aQmCIIi6pcQljs6p74g4pQy/vorDNepX8DrhrTgMwRe7KMNrzWTMsJIHDm/prhCRV5sgIfCxJx0h4gfLMCLfVkDeJsTlEyR2B7F6vNY3Bo6BWcfCwDEiQZZlmPNCoPVVFQAABLVzOs6iTdzReq2W8eqMGxptW2Q5dy3WOvkVsbvK43Cf/h2C1yEV3+P0XTIMUysCbTh6DbtolXKBxs4oTHIKXmkCvPBIWtaco9it5hUuGkkyskiX8aVNMWo7fuy1blkh7l9wFUZeWRBiScAwyucUw5nBsJzE55dR8YVOZF9z4sJhxYoVYBhG9p/FYkFeXh7GjRuH9957Dy6XttwGBFHbkEhLEARxHvHbcScOlIqTV9VSUnnNsHp5u4OaRFp5Kw7jzNfdcGZxc5zN7wefTOZvLWgWE2REWl/5fpz6NB3OI18DGpNWUWKxxMESJtJWeKTHo1+kFZdpEVuIuuf0wsYoWn4FCr8bqthGzuMyodAYeSaXUClehEesRretX0it2j0nYtuydY+q1lds+ydOL8pF4beDcPIjC7wlO0X1DFt/Fj6xoGUipFVygk8i1BKMTt7313nkK0lZuEirek7XwqRMtkXqSxuwLohEba9oYmSuH0U/RLAwYEOEbJXPK2BPxSjez8kNiH4sicTG4XDg2LFjyM/Px6233opevXrh0KFD9T0sgiCRliAI4nxBEAR8sksaeVLfQXJKkbQ1oXLry/CV7QEAeIs2wbFvXkz9CFGItAwjnzSk9Pc7gst8iYZDeCStHC6fAHdYJO35EHV6vuI6KhV1QuGs6knD6hu55d1y6GzNa20M4ZFyUXFusqpy+z8jNq3c/i9FyxuB96F8/WOiMs/p38SNEj0qOoxIk6VmHRNTkr/zAc7cSLbceWihpCzc7kBdpI1/ZHIbGV/athoioOtkci8WUTRkGzUP30AC2PD7Od6tdg9Fv5VEYnHXXXdh69atwX/Lly/HG2+8gdxc/73B9u3bMWHCBPh8tOqNqF9IpCUIgjhPqPAIKJSJ6NAiRtUmnLUpGJmkTqylccx9hmYyByD2io0CreKqLrWLoijgzybvkK0LhbM2A2dvFdX4iNpDi21BmZuXREnZY0gYRsQXa5f/i2m7pL7/ifNI4kukpckBzK2n1doYrB0fiHlbwefU/DcAgOv497LlvqpjEbdVXqGRmETyz22VrKt3a6L6InnALE3tBN4HwVMmKmMMyTA2lfdx1tla1nhs4VzSzIxQd4zO6Xp0zzJG3K5/o8htakpASI0Gz+nfq9+oiLSm5lcBADiT2CuZV8stQJG0RIKRlZWFzp07B/9ddNFFuP/++7Fjxw40b94cALB161Z8+eWX9TtQ4oKHrp4EQRDnCXKJjwAguZ5FJYbVIXXopzLltf/QEhFB/JnpM/rC2vEhsKZsMDobGEMqTM0mw9bl/1QjdgSFxBm6lM7QJXeALq0HUoZ+eF5l6G7oaAmILXcLOF4htqiQW+5K1C3GRqOi3sbU4joYGkVY+lvvaLs+WDvcW2sj4CyNkTzoPXBJ7VTbGbKHScoEnxO+quNR7E3+7/VVHIq4JWuqefKluuaatspRyp3SG5Z9QzzRZw2CrcdzEdvJ/c6yxjQk9/+vbHtGZ5ItrwkZZg53dklCYyuH9ml63NzJjjEtzBjU2IhMM4vxLS2Y3sUuOrK7Zhgwpb0t7mMJh5WZDI+EudWNwddK9yf23q/6J6oBcLYWUfRO9ztEw8But+Ovf/1r8P2PP/5Yj6MhCBJpJTzxxBMiQ+kVK1ZE3Oa7777DxIkTkZubC6PRiNzcXEycOBHfffdd7Q+YIAjiHCcrFURajUktahNjk0uQOupbUVlNvA/jhcTbkdUjqe9ryL72JHJuKEfOlCKkjlgEVm8XJdgIJ1yYMDa5DI2mCci8YisyJ+5A5oQNMGQPqY0/gYgRra4Fu4vEx2kWibT1j4L1iByctSkaTROQOuwTWc/Ghoa954uKHp7xwtLmZmRN2qVYnz76V6SPXgHGmC4qF3xORQsDeRRE2vKDEbdkjQ1PpO2epSzEds64cEVahmFg7/bXiO3kEn2yhlRwFnm7hNpiSK4J/x6ejmcHpCLXroNZx+L+Hsl486IM3NDBhouamvHZ2CwsOPfvqX4pSDPV/u+G3IqlSLCmbNV6S7s7Yev8aFDA5exRRCfTpDTRgOjSpUvw9dGjyr9jP//8M6ZOnYqWLVvCYrEgKSkJXbp0wWOPPYYTJ05o2teqVatw2223oV27dkhKSoLBYEBubi7GjRuH//73vygpKVHcdsmSJZg8eXJQd0pPT8eAAQPw8ssvo6JCankHAK1atQLDMBg0aFDEsR0/fhwcx4FhGDz++OOybUpLS/HSSy9h0KBByMzMhMFgQKNGjTB+/HgsXrwYgqCccySgsc2YMQMA8NNPP+Gqq65CXl4e9Hp9MKI5lJMnT+Kpp55C7969kZaWBqPRiLy8PFx99dWaBfVPPvkEw4cPR2pqKmw2Gzp37oy//e1vqp91fXKBphGVZ9OmTXjttdc0t+d5HnfccQfeffddUfnx48dx/Phx/O9//8Ntt92GOXPmgGUb/oMBQRCJzcbT8stME0GkBaR+Z7yGJa0AwDvPwlu2B7qUTmCV/G1jjMr1lYqFCDURJxqRtka+jkSdwGl8gDxWIZ78yCGRtv6J4uFf8DlrcSBxRsvflQBerKylCQC/H2joo5jr2Deo3P4vzf0IvAe+ymPwVRyGPr1XMPLRV6FBpDVlRjXmRMCoYExr4hi0TKZHskhIEn1yZjC6BE8GWIfEdN8RaeKKER+XnD2KSNrzYFKMuHAwGKonyvR66e+s0+nEzTffjM8++0xSt23bNmzbtg2zZs3Cp59+ivHjx8vuw+Fw4NZbb8Wnn0pXFwb0o/z8fJw5cyYoYobuf8qUKRIrhqKiIqxZswZr1qzBzJkzkZ+fj+7du4vaTJkyBc8//zxWr16NQ4cOyQqhAT799FPwvD+A5frrr5fUL1++HNdccw0KC8WTZidPnsQ333yDb775BmPGjMGCBQtgs6mvIHjqqafw4osvqrb5+OOPMX36dFRWVorKjx07hkWLFmHRokW49dZbMXv2bOh00t9Rr9eLKVOmYNGiRaLy7du3Y/v27fjoo48SMnK6Vu8I/v73v6vWnz5dnY07UtsAzzzzTI3GpERAcPV6vcjKyhKNTYmnnnoqKND26NEDjz/+OFq1aoX9+/fjlVdewcaNG/HOO+8gMzMz4gFIEARRE74/VIXfTsiLtEmJ4qEpIy44Di6EucXVipt4S3ah8Pvh4J2nwFmbIn3Mb+CseZJ2agKqElV73kHljtfDO1LeQGUfzoPiGy4SaROfWPN/USRtw6JBibQq0ScBGKb+xTzO7PcTD7/uRiPQAkDZmrtQtuZuAAJ0ad2RMWY1GJ1Jm0jbACNplUTaDml6SkiogYqt4mcpNiyS+0InNjsl9WtO+OS6Lgq7A4bsDogGxM6dO4Ovw0VMQRAwefJk5OfnAwDGjx+Pq6++Gi1btgTLsli7di3+9a9/4ciRI5g8eTJWrVqF3r17i/rgeR6XX345li1bBgBo06YN7r77bvTu3RsWiwUFBQX4/fffsXChNGEiAEydOjUo0Hbr1g2PPPIIOnTogKKiInz22WeYN28eTpw4gZEjR2LLli1o0qRJcNvrr78ezz//vD/B9Cef4Mknn1T8HD755BMAQKdOndCtWzdR3apVqzB69Gh4PB5kZ2fjvvvuQ7du3dC4cWOcOHECCxYswEcffYRvv/0WU6dOxeeff664ny+++AJbt25Fly5d8NBDD6Fz585wOBzYtGlTsM3ChQtx4403QhAEtGzZEvfeey86qIf7TAAAceRJREFUduyIzMxMHDp0CO+++y6+/fZbvPvuu0hKSpINtnz00UeDAm27du3w+OOPo2vXrigtLcWiRYvw9ttv45prrlEcZ31Rq3d6M2bMiPiDEah/9tlnNfVZWyLtf/7zH6xbtw7t27fHxIkT8dJLL6m237NnD/75T3/22t69e+PXX3+F2eyfze3Tpw8mTJiAYcOGYf369Xj11Vdxyy23oHXr1rUydoIgiPe3yy9xARInG72cB23JL9eoirTlW54D7zwFAPBVHkHF1pdl/ecYLvpI2rJ1j0jKBN6t2D6aJca1vRyZqDnSFHvayLaSSFvfsDrt/o6Cp7wWRxJfFFcKhJIA0WmBiNf4RDH6RSJv0Sa4jn8PU7MrNHnSMqaGJ9AZFH6LO13AVgehsJZcyQobQRCCz4quo0tEdbzrbPC1PnMAPGdW1/4gzzcE9Sz2rDlH9D46u4P6v1Y1VHiBR6Grqr6HUWekGy1g6/F48fl8ePXVV4PvJ0+eLKp/5513kJ+fD71ej6+//hqXXXaZqL5///648cYbMWTIEGzfvh0PPvggfvvtN1GbN998MyjQTpw4EZ9++imMRvGzy9ixY/Hcc8+hoKBAVJ6fnx8Ub0eOHIlvv/1WFPl7ySWXYMCAAbjjjjtQVFSEhx9+GAsWLAjWt2/fHj179sSGDRtURdpdu3Zh48aNAKRRtB6PBzfccAM8Hg8uu+wyfP7557BYqp91evbsiXHjxmHo0KG444478MUXX2DZsmW4+OKLZfe1detWjBw5Evn5+aLPYejQoQCAs2fP4o477oAgCLjlllswZ84cUaRsz549MWnSpGA07htvvIHp06ejXbt2on3MnDkz2P6XX34RRfeOHDkSAwcOxNSpU2XHWJ/U+nS8midFtNRWwpUjR47g6aefBgDMnj0bP//8c8RtXn/9dXi9/mQiM2fODAq0ASwWC2bOnIkBAwbA6/Xi3//+N/77X3lje4IgiNqil4oHXl2jS+0c9TbOA5+I3lftektBpI0+kjY8SzQQluk4DH1qN8U6yXgokjbhifVxINmQGJMeFzK69B5RtI7ffWhtY8wbB8aYBiF8WXc9YWl7B6r2zBWVmVpOCb7Wct01tbhOstJACcehBX6R1nlGtR2X1LZBRtIqOZ91SKt/C4tEILnff1D88yRxoeAFGL28h31IlHxyv5k4+0115Jqt29O1NcyExtL+HlTtiuJ5Mywy39T8KjgPnVsWzBphaTddVM+aNfr/sgYweg2TToQsha4qZH06o76HUWecvm4GMk21n1wvnDNnzmDr1q145plnguLk5MmTMXjw4GAbQRDwj3/8AwBw//33SwTaAKmpqXj11VcxZswYrFq1Cnv37kWbNm0A+KNoAyJwbm4u5s+fLxFoA7AsK4qCBRDUkPR6Pd5//32RQBvg9ttvx8KFC/Hjjz/iiy++QEFBARo1qj5fr7/+emzYsAHbt2/H5s2bJVGygN9aAPBrblOmTBHVffbZZzh06BBMJhPmz58vEmjDx/HOO+9g7dq1mDdvnqJIy7Is3nnnHcXPYdasWSgtLUWTJk3w1ltvyVoZAP5Azw8++ADHjx/H/Pnz8cILLwTrZs+eHbRumDt3rqz9wk033YTPPvss4XJJ1apIq0XsTATuueceVFRUYOrUqRg2bFjEcQuCgK+++gqAf2aif//+su369++Pdu3aYffu3fjqq6/w5ptvUmZvgiDqjKZ2Drd3sdf3MIKwevkbsNBImZiJUqQVvA7Zcls35dUarDEFqaO+Q/GPoyP2T5G0iU+GmQMgffBPMbIoccnH2T7cM4l+xxMAhmGRPmY1Cr8dELltAxIKGFaPtFHfojBf/r4SAAw5w+psPPZe/4Ag+ODY67f2Mre6EfZerwTrtYi0KUM/QmV6L5SvfzRi24DPrOA8q9oudcQX59V52Mxe/xYWiYAuvaekTPC5wLB68E5p0rBQ9Bm9kDzoXTj2fQBdWjfYuvxfbQ0zobH3eA6CzwVf2V6wlsaiCRJ7r3+g/M8nRO3Dz+Gkfm+CYY3wOQpg6/J/kuh+reedLqk1GJZWnRCJxbPPPqu4ettiseDOO+/Eyy+/LCrfsWMH9u/fD0AaYRtOIAoUAFavXh0UaTdt2oRjx/yrBG6//faIXq2heL1e/PLLLwD8EbN5eVLLtwC33347fvzxR3i9XqxYsQLXXXddsO7aa6/FY489Bp7n8cknn8iKtAGv3EGDBqFZs2aiuq+//hoAMGzYMGRmqnvCDx06FGvXrsXq1cqrGwYNGqTqjRvY37hx4xSFXADQ6XQYMGAAFi9eLNlfwGu2S5cu6NWrl2Ift9xyy4Ul0g4bVnc3krGycOFCfPPNN0hLSwvaF0Ti4MGDwex9kf7GYcOGYffu3Th+/DgOHTqEFi2iMFwnCIKoAS8MSoNBwQMvkRC8FWD0NROTo42k5d3FsuVyfrehmHIvQ6NpAgrmRbDyoUjahCfTLB/W9uKgVNz9k7wg0DaVIt4SBUOWspApIsJy3kTDkNkPhkYXwV3wk2x9XV5bWGMKUga9g5RB78g34NTtDnTJHcAwLGydH4Gt8yM4+UkqBHeJYnuG4SAIPHi3ciQxZ28FfWonLcNPOOR+NVKMLPQN4He6LmBYmZU/5yyIeJc0upo1ZYveW9rcAkubW2plbA0F1piKlEFvVxcMq16NxLvLZERasfjBmbOQMvTDGo+DS2oXuRFBJBDdu3fH/fffL0katn79+uDrAQMiTwwHOHnyZPB1IEoXAIYMGRLVuA4cOICqKr/1Rb9+/VTbhtZv27ZNVNe4cWOMGDECy5cvx6effoqXX35ZNOnyxx9/BMVouYRhgc/hhx9+0DxZE/oZhNO1a1fFOp/PF/SmnTNnDubMmRP1/lwuF/bu3QvAb0WqRt++fTX1X5dc0GYxJSUleOCBBwAA//jHP5CRoW3p1I4dO4Kv27dvr9o2tD7UkJogCKK2aQgCLSDO2Ow+vRqVO2eicscbcBzQtkQWALzFW+A49DkEb1WwH+fhLyF45ZMGuU+tlC1nDKlRjFwZiqRNfDIVEoApJfcBAKv+gr5tapAIXmW/7kSFURE/E+naEmlyjAlL7KRLaqPa3nFoMQRXMSAoO0YrTbA1VFomUxRtADlvecHnT4jKy0RXM1o8nIkgsiJ4DFZRWtAlta2VfgmiJtx1113YunUrtm7dio0bN2LJkiWYOnUqWJbF77//juHDh+PMGfGEkJZk8nIEhFXA768aINSCQAtFRdXPSFlZWaptc3KqPaRDtwsQEF+PHj2KX3/9VVQXsDrQ6/W46qqrJNvG8jk4HPKrFgG/PYQSRUVFQVvRaAj9zIuLi4O2q5E+t+zsbNX6+uCCvjN4/PHHcfLkSQwaNAi33nqr5u0C4eqA31dEjdCQ9KNHj0Y9xtB9yRFuLE0QBNHQEFxFgK0ZKnfPQdnqOyO3P/fQFk7Jiskw5IyAqekVKFvrn4DTp/dC+ri1YEISEjiPfY+SX66V7YM1psXwF0ihSNrEJ90cvUhLGi1RF6iLtIlzbVEbJyDNDB8e+RgOX3UMpavvUG2TKH69sSB3ZSGRNgQZETHwe+8+vUpSl0jnQoOAla4EkUvoGg90yRRJWxPSjRacvm5GfQ+jzkg31s3kY1ZWFjp3rs6P0b17d4wbNw4jRozAtGnTcOjQIdx2221BW0vAH9UZYMmSJapL9MP3FW9qavNz5ZVX4u6774bT6cQnn3wSXBHu8/mCickuu+wypKdLE3MGPofRo0fjlVdekdRHC8cp26GEfua33XZbMKgyEnJevUDt5bWqTS7YO4OVK1finXfegU6nw+zZs6P68srLqzMFR/IUsVqrbyAqKqKP5lDzHSEIglDCrEvMHyQuqR18ZbtFZYHIqKrdszX1Ub5phmKd++TPcJ+s9hX3FP4J17HvYMobGywrW3OX8vgsjTWNIRI1tW8gap8chUhanYoQ2xBv9M5nGH2SbALAUHQpDW9pPKPg3w0kViRtJHQpHUTv9em94Dr2jeo2zsNfqNbrMxJvWaJWWJnrR4e0xEnuWd/IRdIG7Q4qpUEr+ozekjJCGTmP2EgWT7FCkbQ1g2XYekmkdaEydepULFmyBJ9//jm+/vpr/PTTT7jooosAQCRYpqSkiERerYSu1i4oKIi4EjuUtLTq4JFTp06ptg1d7h+6XYCkpCSMGzcOixcvxuLFi/Hmm29Cr9dj+fLlwb7lrA4A/+dw4sQJuN3umD6DaAgduyAIMe0vJSUl+DrS5xapvj64IGNC3G437rjjDgiCgIceeijqL97prF4+q6TYBwg1OlYL+SYIgogVl0+avfzK1okZYWJtf7ekLBAp46vUttogPNt4JNynfhG991UcUmzLaXywsPf6h2q9IXOgpn6I+iNLRqS9t5s/MVh7yrbeILB0uDdim6Q+/6qDkcQXQ84I2XLWmCGJTq1PvCVbVettXf8qem/t9FCN92nv+WKN+6gvTDoGrVOq42NybRw6pifO91nvMDqExxsLvP/+gNFL72nsKok+CXmMueOCr1lzIxhzx0Tdh6mF/EqkUBhDStT9EkR98uKLLwajO5988slgeY8ePYKvV62SRvRroWfP6qSI4TYDkWjZsiUsFv/k7B9//KHadu3atcHXSvpWQIQtKioKJssKWB3Y7XZMmDBBdrvA57B+/Xq43e4o/oLoMRgM6NTJP8Ee62duMpmCidvWrVun2jZSfX1wQYq0L774Inbt2oWmTZvib3/7W9Tbm0zV/j2RDlKXq3pZrtmsvixMjqNHj6r+Cz0ZCYK4MCl3S/37RuTVjs9YTZEVVc5FyjCMtkzAgifaVQnaoh8zJ+3RHClp7fSwaj1nbaKpH6J+eXVI9Wz9oMZGDG7in1h9rDd5HTYE7N1nQJfWQ7ZOn94bKUM+grHJpXU8qppjbnUjkvrNhKHxJcEyztYCmRMTK7eBuaV8xA0ApF2yDJxF7L3HGpKRPlreD1wLyYPehbHxyJi3TwQe65WMi5uacVGeCY/1TpaNrr1QYRhGYnkQmMQVeI+onLO3BGdVt5wjpKQMmQ9Lhwdgbn0z0i9bAYaNflFt8sDIE+WJNJlEEFpo27Ytrr76agB+MXTZsmUA/AJrwN5y7ty5omA9rXTr1i24Ovqdd96JanW1TqcL2hIsW7ZM1QrznXfeCW4zfPhw2TZjxowJ+sF+/PHHcDqd+PLLLwEAEydOVNSrAuJtaWkp3n//fc3jj5XA/nbt2oUffvghpj5GjRoFAEEPYiXee++9mPqvTS44kXbXrl146aWXAAAzZ84U2RFoxW6vXsYa6SSrrKwMvo5kjSBHbm6u6r9ozacJgjj/qAgTaRkAFn1iPvgxDAtdsngJrHBOpA38HxGt7ar3GrGFtcv/RUxqI+qR1cHe5zX5OrI6aDA0TdJhwdgsLBibhft7JAdFehuZzzYIGFaPpF4vy9aljFgMcytlETGRYRgG1g73Iv2SH9BomoBG0wRkTT4A1qQtwW2doeBnyVmbwth4lGydIXswOHsr7bswZQU/A0ubW2IaZiKRYuJwWxc7pndNQo71gnWdU0RieRD4vQ8TaY1NLqujEZ1fsMZUJPd7HSmD34MuOTZLAlZvl0TJSxvRsU00PJ588sngfeDzzz8PAGBZNhhZe+DAAdx0002iILxwysrK8Oabb4rKWJbFY489BsCfb+imm25SDPTjeR4nTpwQld1zzz0A/MGBt956Kzwej2S79957D0uXLgUATJo0SVEjMhgMmDx5MgC/x+4nn3wStPJUsjoA/JYQAaH50UcfjRgR/Ntvv+GXX35RbaPGAw88ENTObr75Zmzfvl21fX5+PrZs2SIqmz59evD7vOOOO0S6XICPP/4Y3377bczjrC0uuCvov//9b7jdbrRs2RJVVVX47LPPJG22bdsWfP3TTz8F/T3Gjx8Pq9UqShYWKbFXaLIw8pclCKI2KPeI7Q5seiaxo3PCH8J850RaX/Sz05pgIgtukRLgyKFX8Lpk9BSFSRB1BaOTP3eZWspaTlSjFC0Xaakza86Br3y/1p1EOSqiIcNwRggh+kMgktZ55KuwhhSpWZ8k3IQRQcSBzp07Y8KECfjqq6/w66+/4rfffsPgwYNx5513YtmyZfjyyy+xaNEibNiwAdOnT0ffvn2RnJyMsrIy7Nq1CytWrMDXX38Nk8mEe+8Vrxy85557sGTJkmA/Xbp0wd13343evXvDYrHg5MmTWLNmDT799FNMmTIFM2bMCG47duxYXHXVVVi0aBGWLl2K/v374+GHH0b79u1RXFyMzz77LBgNmpaWhtdekw8iCXD99dfj7bffhsPhwCOPPAIAyM7OxsiRyitVjEYjFi5ciOHDh6OiogIXXXQRrr32WlxxxRVo0aIFeJ5HQUEB/vzzT3z55ZfYunUrZs6cGYwCjpbs7Gx88MEHmDx5MgoKCtC7d29MmzYNo0ePRm5uLjweD44dO4a1a9di8eLFOHDgAJYsWYKuXbsG++jWrRvuuecevPnmm1i/fj169+6NJ554Al26dEFpaSkWLVqEuXPnonfv3li/fn1M46wtLjiRNjDzceDAAVx33XUR2z/33HPB1wcPHoTVakXHjh2DZbt27VLdPrS+Q4cOKi0JgiBiIzyS1mZI7IdaJmw5o/vUSphaTgFqTaSNLFjHIugoJSRSS/pDEEScUZhgIZG2DmDl8zKwEURazpwNaRyQAhptcIjzhPBjinejcvcc8I4CUTEtp69fWFOmegPBp15PEAnKU089ha++8k8KPffcc/jhhx/AMAwWLFiABx54ALNnz8b+/fvx+OOPK/aRlZUlKWNZFv/73/8wdepULF68GHv27MGDDz6oeVzz58+H1+vFl19+iQ0bNuCGG26QtGncuDHy8/PRpIm65drQoUORl5eHo0ePoqSkBABw7bXXBj15lejfvz9WrFiBq6++GkePHsXHH38c9LOVIykpKfIfpsKkSZPw1VdfYdq0aSgqKsLs2bMxe7Z8kmmWZWVXyL/22ms4ceIEvvjiC+zatQs333yzqL5FixZYsGABWrXSvsKnLkjsJ/kEpUWLFmjc2J8BPFIYdyAUvEmTJmjevHltD40giAuQSq80kjaREbxVove8pzRihvaawGj4qYtFWGUtjWXLjY0uirovIvFoZOVU3xOJgVIUPKOwFJ+IH3LJnACAMabLlgcw5Gi/Rmr1KifOD8LtDgSfC5XbXpE25NQTNxO1SySRltHRZDXRMOnTpw8uvvhiAMDSpUuDSaX0ej3eeustbN68Gffddx+6dOmC5ORkcByH5ORkdO/eHbfeeisWL16MnTvl/eMtFgsWLVqEn376CTfeeCNatGgBs9kMg8GAvLw8jB8/HnPmzAlGt4ZiMpnwxRdf4Ouvv8akSZPQuHFjGAwGpKamol+/fnjppZewe/dudO/ePeLfyDCMJFhRzeoglP79+2Pv3r2YPXs2xo4dGxyHyWRCXl4eLrnkErzwwgvYtWsXbrrpJk19qjF+/HgcPHgQ//znP3HRRRchOzsber0eZrMZLVq0wLhx4/Daa6/h0KFDGDFCmnRVr9fj888/x4cffoghQ4YgOTkZFosFHTp0wJNPPok///wTLVu2rPE44w0jCII0LfgFzowZM/Dss88CAH7++WdZ4+W7774bs2bNAgCsXr0a/fv3l7RZs2YNBgwYEGz/3//+N+5jPXbsWNBG4ejRoyIrBoIgLgy+P1SF97dX+2N3TNPjbwNS63FE6hTME4vIlnZ3wtzmVhR+06dW9pfUfxas7e9U3D/gTxoWjSdtgMLvR8B9coWoLOvqAnCWnKj7IhKLbw5U4cOd1efVLZ1suLS5pR5HRMjBu4px6tM0SXnOVF5zIkAiNnyVR3F6UVNJefKg92FpM01xO8HrwOnFzcE7T0fchz5rIDLGxJbdmWh4nPmyI7yl1QJHyvCFKFlxtaSdrdvfYO8xow5HRoTiKdyEs0vkkzYasochffSKuh1QHVOT5++9e/fC6/VCp9MFs88TBNGwifd5TZG0MfLggw8GQ8Lvu+8+OBwOUb3D4cB9990HwJ9hL5pwdoIgiGjwid0OwCX4ld3a8UHRe4F3w1e6u9b2J7iLQ/YlvwQvFoEWANIu/h6m5lf53zAsMi7fSgLtecLYFmbc2dWOi/JMuLubHZc0i963mKh9lPxPSaCtfTirfK4FNYEW8PsIp4/9A9bOTyCp7+uAytJ1XRRJxojzgDC7A77qhEI7sjuoT5QiaW09/o7UkV/X8WgIgiDOLy44T9p40bZtWzz22GN4+eWXsX79egwaNAhPPPEEWrVqhf379+Mf//gHNm7cCAB47LHHaKaMIIhawxe2IIJLdHEifBmyzw1vqbq/d00IjdYS3CVx7ZvhjEgdvjCufRKJAcMwGJFnxog8EmcTGRJj6xfGkBLTdVVnb46k3i8DALzlB1C18z+y7TgSaS8owu0OvCXyy4bJk7Z+UUocZu/2dB2PhCAI4vyDRNoa8MILL+D06dN47733sHHjRlx77bWSNrfeeiuef/75ehgdQRDnC6tPOLG3xINumQbsL/HCywu4rIUFSecShP15yi1qzyW4ZsGEeck5DnwEfdbAWttf5Y7X4as6DlfBcgiuolrbD0EQxIUGwxpQc9805R8tEmkvLMJF2qo9c2Tb8a7CuhgOoUD490QQBEHEDxJpawDLsnj33Xdx5ZVXYu7cuVi3bh3Onj2LjIwM9OnTB9OnT8fo0aPre5gEQTRgfjvuxMxN/qRa+QerbVXWn3bjlSFp2HbWjV3F4jzZbKJHlslkBPec/r1Wd+k8tKhW+ycIoh7hzIDPEbkdEX9krufRohYNzVko18IFhcbjyVuLFkkEQRAEUZ+QSCvDjBkzMGPGDM3tx4wZgzFjxtTegAiCuGBZvLdStvxwmRcFlV6sOuGU1OkS3JOWYeinhyCI+GFpexuqds4MvueS2tXjaC4szM0no3LH68H3jN4edR+MzqpYp0um7/JCguFMmtoZcykIhiAIgjg/SfBHeYIgiAubgkr5RFcA4PEBZx3Sej2b2JG0hkYX1fcQRCQPmV/fQyAIogbYujwpEvrs3WfU32AuMKxd/k8kzCYPmBt1H8amlyvWcZZGMY2LaJiwhtSIbRhjGkxNJ9bBaAg1rJ0fF723dX+2nkZCEARxfkHhTARBEA0Uf8SsVJDVJ/j0my65fdz6MuQMh/vkihr1YWl1Y3wGQxBEvcBZcpBxxXa4Dn8JXVpXGBNsIuh8hjNnI+PyrXAd+Qq61C4wNhoRdR+GjD7+Ze682F/d3uvleA2TaCAwxnT1ekMqMsb9Cc6cVUcjIpRI6v0PcOZGqNj+Kmxd/wpLuzvre0gEQRDnBQn+KE8QBEGoIWflp0vwSFotWZnlksUYc8dKyswtb4CtBlFznK15zNsSBJE46GzNYO30IAm09YDO1gzWjvfHJNAGMOQMk5Rpiaokzi9YY5pqva3z49DZm9fNYIiIWDs9iOyrj8Pa/i5Vb2mCIAhCOxRJSxAEkYDwgiBKFCaHAGDzGbekPNE9aaFBpGU4s7TMkCIt01nAmjJjHgqjs8S8LUEQBBEfWH2SpIzR2+phJER9wkaKpNXoWUsQBEEQDRUSaQmCIBKQ5Uec+GhnhWqb/SUe2fJE96QFw0VsIgheSRmrINIyPlfsQ1FJWEMQBEHUDXIJx+j6fOERSaQFibQEQRDEeQ6JtARBEAnIL8fUo2gBYMtZaRQtAHAJHkmrZUmcr3SXpIw1ZkjLTJlgTdkxj0Wf0SfmbQmCIIj4wJpzpGUm8h290Ii0MobhjHU0EoIgCIKoHxL8UZ4gCOLCZG+JNJI0nDMOvg5GkjiYWlwNQ06156EurTv0GX2hz+wrK+BqwdLm9ngNjyAIgogRc8spYHTV9ga6tB40iXYBoktqo1pPIi1BEARxvkORtARBEA2UQodPvkKo23HEG2PTK+A68j9JOWtIRdqofLiOfw+B98CYOxoM6/8Zy5x8EBUbn0bljtcj74A1wtJ6GqxdHofO3jK+gycIgiCiRp/aBRmXb4W7YDkYvQ3G3DHB6ztx4cBacyM0IJGWIAiCOL+hux+CIIgGSqFTPpK2ocfXcjLLXgGAYQ1gdGaYmk2U1LF6G6wdH9Ik0qYM/Qjm5pNrOkyCIAgijujszaGz31rfwyDqEYZRX+TJcIY6GglBEARB1A9kd0AQBNFA4ZUiZhtCJK3Kg5iidUGkZY4avG79u9ZrakcQBEEQRB3DKMcQMRRJSxAEQZznkEhLEASRYLh9NVNZG4JGC4ZTrGJN8iItw0aKoNEm0iJiPwRBEARB1Ae65HbKlfT7TRAEQZznkEhLEASRYBQ5FbxmNdIzK/EjTSxtblOs46zNYGg0UloRIQJWa/KwyGIvQRAEQRD1gbXz44p1lDiMIAiCON8hkZYgCCLBOFkZu0jbM8uAtqmJbzduaX8XGH2ypFyX1h3GJpcgqe/ronJrp0fBRLAzYHQm2Lo/G3zPJbeXb6e3Rz9ggiAIgiBqHXPL66HP7C9bR5OsBEEQxPlO4j/JEwRBXGAURCnS3trZhvapBrh5AS2TdRHFzERAn9oFWVfuh/vsWujsLeGrOg6AgSGzPxidGfrUzsi+9gwchxbDkNEH+oxemvq1d38GpmZXAoIPvqoTKP5xtKQNibQEQRAEkZgwLIf00b+hYssLqNj0N3ElRdISBEEQ5zkUSUsQBJFgnKqKTqQdnmtG0yQdWqfowTYAgTYAa0qHKXc0dMntYGx0EYyNRoDRmUPqM2Btf6dmgTaAPrUT9GldwbDyvrcsibQEQRAEkbAwLAdjoxEy5RRJSxAEEQ0Mw4BhGMyYMaO+h0JohCJpCYIgEoxoImntBgYGruEIs3WL/DwkRdISBEEQRIIjJ8iy9OhKEIR2VqxYgREjpBM+HMchKSkJycnJyMvLQ69evTB48GCMHz8eBgNNBhH1C0XSEgRBJBjRRNKmm+SjRQkAjPxnw+hsdTwQgiAIgiCiQTZqlvfW/UAIgjjv8Pl8KC4uxqFDh7By5Uq8/vrrmDx5MnJzc/H888/D66VrDVF/0HQkQRBEglHh5mXLkwwMytyCqKzYJd+WADhrE2kha1C0QSAIgiAIIjHQJbcTF7B6cLZm9TMYgiAaPHfddRfuvvvu4PuKigoUFxdjy5YtWL58OX788UecOXMGTz/9NJYsWYJvvvkGmZmZ9Thi4kKFImkJgiASDDnZNdfG4fr20gjQvtmUREMJzt4a5lY3isqSB75dT6MhCIIgCEIrjM4Ce5/X/KtiGBZJvV4BQ4nDCIKIkaysLHTu3Dn4r3///hg9ejSeeOIJLF26FNu2bUOPHj0AAGvXrsXEiRPhdrvredTEhQhF0hIEQSQYgjhYFvf3SEK/HCOOVUiX3jRLosu4EgzDIGXIfNh6PAdfxWHoU7uANabW97AIgiAIgtCArdNDMLe6AQDAmSiijSCI2qNjx45YtWoVBg0ahI0bN2LVqlX473//i4ceeqi+h0ZcYFAkLUEQRAIghCizTp9Ypc00c9CxDNKM0mX65QrWCEQ1OlszGHOGkkBLEARBEA0MzpRJAi1BEHWC2WzGhx9+CIbxJ2X+5z//CY/HI9v25MmTeOqpp9C7d2+kpaXBaDQiLy8PV199NX788UfV/RQXF+P999/HDTfcgI4dO8Jms8FgMCAnJweXXnop5s6dqzmK95NPPsHw4cORmpoKm82Gzp07429/+xtKSkqi+tuJxIFCsAiCIOqR9adcmLOlDD4emNjGirUnXeDDImmZc//bDIxk+zISaQmCIAiCIAiCIGpMp06dcPHFF2Pp0qU4ceIE1q1bh4EDB4rafPzxx5g+fToqKytF5ceOHcOiRYuwaNEi3HrrrZg9ezZ0Oqnk1qNHDxw+fFhSfurUKSxduhRLly7F7Nmz8e233yInJ0d2nF6vF1OmTMGiRYtE5du3b8f27dvx0UcfRRSLicSEImkJgiDqCV4Q8M7WcpS5BVR6BXy0swJ7iqWztecmc8EyUpHWE67oEgRBEARBEARBEDExatSo4OuVK1eK6hYuXIgbb7wRlZWVaNmyJV577TV8//33+PPPP/H5559jzJgxAIB3330Xjz/+uGz/Pp8P/fr1w3PPPYdvvvkG69atw6pVq/DRRx/hsssuAwBs3LgR1157reIYH3300aBA265dO7z77rtYt24dfvzxR0yfPh2HDh3CNddcU6PPgagfKJKWIAiinihx8Sh2RY6EZUO02d7ZBqw/Vb38ZWRTc20MjSAIgiAIgiCIOkYQeAh8WX0Po85g2CQwTGLFDvbs2TP4es+ePcHXZ8+exR133AFBEHDLLbdgzpw5okjZnj17YtKkSXjqqafw4osv4o033sD06dPRrl07Uf8//fQT2rRpI9nvwIEDcf311+P999/HLbfcgl9++QXLly/HyJEjRe22bt2KmTNnBvf5yy+/wGarTjA9cuRIDBw4EFOnTq3ZB0HUCyTSEgRB1BMlGgRaoNruAACuamvF0XIfTlX5cGkzM1pQ4jCCIAiCIAiCOC8Q+DKUn7yyvodRZ9hzPgfDpdT3MESkp6cHXxcXFwdfz5o1C6WlpWjSpAneeustWSsDAHj22WfxwQcf4Pjx45g/fz5eeOEFUb2cQBvKzTffjP/85z/YtGkT/ve//0lE2tmzZ4Pn/c+Rc+fOFQm0AW666SZ89tln+O6779T/WCLhoKd7giCIeqJUq0gbotI2T9Lj9eFpAOTtDwiCIAiCIAiCIIjYCBU9y8vLg6+//vprAMC4ceNgNBoVt9fpdBgwYAAWL16M1atXq+5LEAScOnUKZWVlomRhTZo0waZNm7B582bJNgGv2S5duqBXr16Kfd9yyy0k0jZASKQlCIKoIW6fALdPgM3gX6pT4eZh5BjoORkPWZ/ff7bKw2N7oXy20HBYiPshcZYgCIIgCIIgCCL+hAqzSUlJAPw+sps2bQIAzJkzB3PmzNHU18mTJ2XL8/PzMWvWLPz666+i/YVz9uxZ0XuXy4W9e/cCAPr06aO67759+2oaI5FYkEhLEARRAzaeduH1DWVw+QSMbWFGoZPH6gIXUo0sHu+TjJbJ+mDbI2VePLayKPqdkCZLEARBEARBEARR64QKo2lp/hWMRUVF8Hq9UfdVVVUlei8IAm6//Xa8++67mrZ3OByi98XFxRAEf+LorKws1W2zs7OjGCmRKJBISxAEUQM+210Jp8//Q/nNweof0WIXj6/2V+GhnsnBsv/tr4xpH15eqNkgCYIgCIIgCIJIeBg2Cfacz+t7GHUGwybV9xAkbNy4Mfg6kPTL5/MFy2677TY88MADmvoyGAyi9++9915QoO3evTsefPBB9OvXD02aNIHFYgHHcQD8nrIffvhhUJCVg6HVleclJNISBEHUgENlyjOqawpcoverTrgUWipj5Bjk2uhSTRAEQRAEQRDnOwzDJlwirQuNZcuWBV8PHjwYQHVELeCPhu3cuXNMfb/99tsAgNatW+P333+H2WyWbVdUJL/6MiUlJfj61KlTqvuKVE8kJmx9D4AgCIKQJ9PM4q5udhhkvG0JgiAIgiAIgiCI+LFt2zYsX74cAJCXl4fevXsD8EfEdurUCQCwatWqmPvfvn07AGDChAmKAq0gCNiwYYNsnclkQps2bQAA69atU91XpHoiMSGRliAIIkZ4leUn4Ti8fNT9v3lRBgY0MkW9HUEQBEEQBEEQBKEdh8OBm266KWgx8Oijj0Knq17ROGHCBADArl278MMPP8S0j4CvbWWlsg3eV199hYKCAsX6UaNGAQC2bt0qsmYI57333otpjET9QiItQRBEDJS7efxxUrt9QZEzepGWIAiCIAiCIAiCqF127NiBwYMHB0XPYcOG4a677hK1eeCBB2Cz2QAAN998czAqVon8/Hxs2bJFVBaIgl2yZImspcH+/ftxzz33qPY7ffr0oB/tHXfcISv4fvzxx/j2229V+yESEzI6JAiCiJI9xR48/XtxVNsUkkhLEARBEARBEARR55w+fRrbtm0Lvq+srERxcTG2bNmC5cuXY9myZcEI2v79+2Px4sXQ6/WiPrKzs/HBBx9g8uTJKCgoQO/evTFt2jSMHj0aubm58Hg8OHbsGNauXYvFixfjwIEDWLJkCbp27Rrs46abbsJjjz2GEydOYMCAAXjiiSfQuXNnOJ1O/PTTT3j99dfhcrnQs2dPRcuDbt264Z577sGbb76J9evXo3fv3njiiSfQpUsXlJaWYtGiRZg7dy569+6N9evX18KnSdQmJNISBEFEyYLdFVFvU+TwRW5EEARBEARBEARBxJVZs2Zh1qxZqm0yMzPx4IMP4vHHHxfZHIQyadIkfPXVV5g2bRqKioowe/ZszJ49W7Yty7KwWq2isgceeADLli3D0qVLsWfPHtx6662ierPZjPnz5yM/P19RpAWA1157DSdOnMAXX3yBXbt24eabbxbVt2jRAgsWLECrVq1U/2Yi8SCRliAIIkq2FXqi3uZkVXQi7aim5EVLEARBEARBEAQRT1iWhd1uR3JyMpo1a4ZevXphyJAhGDduHAwGQ8Ttx48fj4MHD+Ltt9/Gt99+i+3bt6OoqAg6nQ45OTno1KkTLrroIkyePBl5eXmibfV6PfLz8zFr1izMnz8fO3bsgCAIaNKkCUaNGoUHHngA7du3R35+vuoY9Ho9Pv/8c3z00UeYO3cutmzZAo/Hg2bNmmHixIl49NFHkZqaWqPPiagfGEGIIvMNkXAcO3YseOIfPXoUubm59Twigjj/uSb/tOa2C8ZmAQD+vaEUawrUPWzv7GrHD4ccaGTjcHMnO5IMZBtOEARBEARBEIlCTZ6/9+7dC6/XC51OF/QmJQiiYRPv85oiaQmCIGoRQRDAMAxOVkaOpB2RZ8aIPHMdjIogCIIgCIIgCIIgiESCRFqCIIha5McjTuhY4FCZV1SeaWZxxkHJxAiCIAiCIAiCIAiCIJGWIAgiKqJ1iHlnW7lsea5NhzMOdzyGRBAEQRAEQRAEQRBEA4cMDwmCIKLAFV3+L1n0LNA2VV/zjgiCIAiCIAiCIAiCOC8gkZYgCCIKnN6aWxQ0snK4rLkZ+pAr8JAmphr3SxAEQRAEQRAEQRBEw4TsDgiCIKLA4ZPaHfTJNqJNqg6bTruxo8gTsY8cqw4WPYu/9kvBNweqkGricF07a20MlyAIgiAIgiAIgiCIBgCJtARBEFHg8IpFWo4BHumVBIZhcHkrK67JPx2xj0ZWDgDQPs2A9mmGWhknQRAEQRAEQRAEQRANB7I7IAiCiAJnmEhr0jFgGCaqPgIiLUEQBEEQBEEQBEEQBEAiLUEQRFSER9KaddEJtACQQyItQRAEQRAEQRAEQRAhkEhLEAQRBZJIWk4s0iYbI19WG1lIpCUIgiAIgiAIgiAIohoSaQmCIKIgPHFYeCTt7Z3tqtu3TtEhxUQiLUEQBEEQBEEQBEE0ZARBmli8JlDiMIIgiCiIZHfQO9uAO7rYMXdrOQC/KGtgGVj0DLIsHC5vZa2zsRIEQRAEQRAEkRhwHAev1wufzwee58GyFDNHEA0Zn88Hn88HwH9+xwMSaQmCIKLA6eVF70068c0VwzAY2dSMkU3NdTksgiAIgiAIgiASGJPJBJfLBUEQUFFRgaSkpPoeEkEQNaCkpCT42mKxxKVPmrohCIKIgngkDiMIgiAIgiAI4sIiVJQ9efIkysrKwPO8yhYEQSQagiDA6XTi9OnTOH36dLA8NTU1Lv1TJC1BEEQUREocRhAEQRAEQRAEEY7VaoXZbIbD4YDP58Px48fBMEzclkkTBFH7+Hw+iQ9tcnIyjEZjXPonkZYgCCIKnGGJw0wUSUsQBEEQBEEQRAQYhkHTpk1x5MgROBwOAP6oPK/XW88jIwgiVjIzM5Ge/v/t3Xl8lOW9///3LJksk40tQgiLBCKgqJSgILK5YBWVIop2EeSgtdrF9vhVe/R0OVarpfXXqg+PG4hLW7GidedUq4gKCAapVhbZkbAmELJNktnu3x8xQyYzk5kkM7mTzOv5ePhwZu7rvuaaTK4Z5p1rPlefuPVHSAsAbdCiJK1SKBoDAAAAIAZWq1VDhgxRbW2tqqurA6tqAXQPVqtVDodDTqdTmZmZcjgcce2fkBYA2sDX4qsNNgsraQEAAADExmKxKDMzU5mZmWYPBUAXwxowAGiDlitp7byKAgAAAACADiJeAIA2+FeZO+i6zcpKWgAAAAAA0DGEtAAQo/WHGkJuY98wAAAAAADQUYS0ABCj5dtrQ25jJS0AAAAAAOgoQloAiNHeKm/IbaykBQAAAAAAHUVICwAdwEpaAAAAAADQUYS0ABCjbEdoIMtKWgAAAAAA0FGEtAAQg01H3apyGyG3u7yhtwEAAAAAALQFIS0ARFHj9uvedcfDHqto8HfuYAAAAAAAQI9DSAsAUXx8qEG+CAtmz+jr6NzBAAAAAACAHoeQFgCiqGxltWxhrr0TRwIAAAAAAHoiQloAiCIzJfzuYL+emCurhZ3DAAAAAABAxxDSAkAU7ggLaftn2Dp3IAAAAAAAoEfie7oAktaO4x49+lmVSmt8kqTzB6Xp3X31gePfPsWpbw13qt4bPqXNSeXvXAAAAAAAoOMIaQEkJb9h6KGNVTrs8gVuax7QStLzX9ZqcJZd9d7wu4ZR6gAAAAAAAMQDIS2ApLS/xhcU0Eay+kC9UmyhYew38hyJGBYAAAAAAEhCfFcXQFI6UOONqd2/j3pU1RBa7mBWYUa8hwQAAAAAAJIUIS2ApPRVdfRVtJJU2eDX5mOeoNvmFjk1sjcraQEAAAAAQHwQ0gJISvuqY1tJK0l1LWrS5mfa4j0cAAAAAACQxKhJCySxjw/W67ktNXJYLbrx9KykWh3alpC2pWwHf98CAAAAAADxQ9IAJCm3z9Bjn1ervM6vA7U+Lf6i2uwhdRqPz9DB2tjKHYSTRUgLAAAAAADiiKQBSFL/LncHfY1/X7VPXr/Ryhk9R43Hr4480txUXjoBAAAAAED8kDQAScqXHHlsWA0dePAZdouyUixxHA0AAAAAAEh2hLRAkjKM5E1p3f72n9vfaZPFQkgLAAAAAADih5AWSFLhItokqXYgd4uVtNY2ZK4nZdjiPBoAAAAAAJDsCGmBJBUuj/UkSUrbMqR12mNPafs7CWkBAAAAAEB8EdICSSpctYPPytydPxATtKxJ67BZNKp3Skzn9mclLQAAAAAAiDNCWiBJOcNsflXZ0IFird1Iy5W0DptF143OjOnc3mmEtAAAAAAAIL4IaYEk5Q2Tx/qSo9qB3L7g6w6bRUNzUjS3yKlUm5TvtGlWYUbYc9PaUBoBAAAAAAAgFnazBwDAHHXe0ETWF64GQg/kblF7N/XrP1fNGeHUFcMzZLE0BrF9061a8kVNUFtCWgAAAAAAEG+spAWSVLiQNty+YQ0+Q0dcPnm/Pujy+PVVtVfH608sR633+nXE5ZM/wSGv12/oUK1Xng4u+Q1X7qBJU0ArSam20EA2LcxtAAAAAAAAHcFKWiBJ1ccQ0h6s9eredcdVVufXsBy7vpHn0PLtrsDxq4ucOqOfQ/d9clzVbkOn9UnRz8fnKiUBQWZVg1+/WVehr6p9yku36lcTe6lvevvqw4bbOCwcu5WQFgAAAAAAJB4raYEkVecLLUrra5HSrthdp7K6xna7Kr1BAa0kvbCtVk9tqla1u/G8L4569Hm5OyHjXbW/Xl9VN67ePVLn12s7XVHOiKxluYOUMGGsJDnDlDZIpdwBAAAAAACIM0JaIEn5w2wcVt9ihek/9tZF7WfHcW/Q9Q2HGzo0rkje2h0cysYytkhcnuDHmREheB3dx6HMlBPHBmfZwpZAAAAAAAAA6AhCWgABLcPL9nCmJOZlpWWJAkmqdodJmmNQ0+JxOlPCB68Om0U/OjNbg7NsKsyx6wenZ7fr/gAAAAAAAFpDTVoAAa5mdWqNdm4ClqCMVjkOq2o9vqDbvqzwqPik1Db35fIEh7utBctj81I1Nq/t9wEAAAAAABArVtICCHB5/c0uty+kDbfiNZwjLp+2HnPLbxg6UOPVV1VeHXH5tP5Qgz4vd8vdop9qT+iq2a3HPCG3GYah3ZUefVV1ogxDZYNfm4+6Ve89UV+3uUgraQEAAAAAADoDK2kBBDQvd1BR375SAm/srtO1o7NabbPuYL0e3Fil1vLcQVk23T2xlzJSrPL4jMDmZM1tPRa6SdnSTTWBerVXjsjQ2QPSdPfHFap2G+qdZtXMkzNU0RD7SloAAAAAAIBEI5kAklS4fLT56tlj7QxpJanO2/q5b+xytRrQStK+ap8+K28MYY83hO9vV6VX/mZlGVwev9756sSGYsu3u/TmLlcg4D1W79dzW2pC+mElLQAAAAAAMBMhLZCkwoWkwSGtL7RBjLZXeFs9vu1468ebHP86KG658rWJzwjeBKzS7Ze/xeN6v7Q+6v30SbPFNB4AAAAAAIBEIKQFkpS3ZZqp4A21IgWjsdhaEVqGoD08X4+xopXAuNp9YpxWS/tWxPZ3EtICAAAAAADzJG1IW1JSorvvvlszZsxQQUGBUlNTlZmZqaKiIi1YsEAfffRRm/pbsWKFZs+eHeiroKBAs2fP1ooVKxL0CICOCbeS1uM/Ed5GKndw2bCMqH1/GWZDryaGEfuGZE35a2uBcfOQti19N+ewUe4AAAAAAACYJyk3DpsyZYo+/PDDkNvdbre2b9+u7du36+mnn9a8efP05JNPyuFwROzL7/fr+9//vpYsWRJ0+/79+7V//3698soruv766/X444/Lak3aTBxdULiVtFLj5mFWq6G399aFPV6YE/1lY/txr7x+Q3ZrY/j5VbVXe6sa68furoyt1IEkuX2Gthxz650IY5GkV3a4dMUIi/bXeFVyuCHmvgEAAAAAALqKpAxpDxw4IEnKz8/XVVddpcmTJ2vw4MHy+Xxau3atHnjgAe3fv1/PPvusPB6P/vrXv0bs66677goEtGPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W875fEBsYi0cVd5vU9/KKmMeF5OqlV90qw62srGYg0+Q3urvCrMTdG6g/X6/z6tatcYX93p0qs7Xa222Vjm1say+JRXAAAAAAAAMIPFaO/3g7uxSy+9VPPmzdOcOXNks4XWoiwvL9ekSZO0bds2SdKqVas0ZcqUkHbbtm3TqaeeKq/Xq+LiYn3wwQdKT08PHHe5XJo6dapKSkpkt9u1ZcsWDR8+PK6PpbS0VIMGDZIk7du3TwUFBXHtHz3XQxsrtfpA6MrT8wen6d2vIm+2dd+5vfT81hp9Xh65pIEkzRmRoatGOHXL+8d02NX+TcgSrSDTpgem9jF7GAAAAAC6OD5/A0ikpPz+/RtvvKG5c+eGDWglqW/fvnrggQcC15cvXx623Z/+9Cd5vY1f3X744YeDAlpJysjI0MMPPyxJ8nq9+uMf/xiP4QNx4Y2wELa1gDYrxaLBWXZlOkJfOsblBZcF+aC0XrurvF06oJWk24pzzB4CAAAAAABIckkZ0sZi+vTpgcs7d+4MOW4Yhl599VVJ0siRIzVhwoSw/UyYMEGnnHKKJOnVV19t98ZGQLz52vi7ODTbrv+ekCu71aJUa+hGWxcOCf4jRVmdX0u/qI7a76T8VD08vY/mFjkVptuwzugXuU50W1w3OlP9nUlZ9QUAAAAAAHQhhLQRNDSc+Bp4uBW3u3fvDtS2nTp1aqt9NR3fv3+/9uzZE79BAh0QaSVtJLcV52hodookyWELTVNP6ZWiwVnBc2Xb8cibhA1w2vTCzDz9ZGyO8jJsmjPCqfsm9YppLPNGZWpukbMNow9137m9dPHJGR3qAwAAAAAAIB5YQhbBqlWrApdHjRoVcnzz5s2ByyNHjmy1r+bHt2zZopNPPjkOIwQi21Pl0SeH3DpW75PdalGazaI0u0Vn909VWZ1P2yo8+lcbN9tKt58IZsOFtA6bRdMK0vXslpqY+stJDf0bUX9n+BIkLfVOsyo1zBjaoleY+wcAAAAAADADIW0Yfr9f999/f+D63LlzQ9qUlpYGLkcrFt5UWFxqLC7eFs3vJ5yDBw+2qT/0fF9Ve/XfqyvkCbNS9m/batvdb/OQNjVMlmq3WjR5YJr+srVGvhgqKeSGCUnT7NGD01Rb41g6GtJmh6mrCwAAAAAAYAZC2jD++Mc/av369ZKkK664QuPGjQtpU119otZmZmZmq/05nSe+ll1TE9sqwybNA14gFh8frA8b0HaU1XIiFB2cFf6lIzvVqm/kOfTJ4eirdE/rE76u7KjeKdpyzBPxvByHVRZL4+rgjrDFWgAXAAAAAAAgwVhK1sKqVav085//XJKUl5enRx99NGy7+vr6wGWHo/VNjFJTUwOX6+rq4jBKILIjLl/c+5xakBZ0vfikVPVNP/HyMb3Z8ZG9Y9vUq2Wf0W5vYv86XLXHVhkhrIuHpkdvBAAAAAAA0ElYSdvMpk2bNHv2bHm9XqWlpenFF19UXl5e2LZpaSeCJLe79VWDzTchS09vWzgUrTzCwYMHddZZZ7WpT/RsZa72L6OdWpAm/9elClKsUorVon7pNn2zRahps1r0m3N66e09dcp0WIOOh6s1K0kLT8vUs5trZJH0+ym9w9a1bRpDut2iXZVeZTuseq5FjduGr2sp2C1tXwl7Tn6qinJTdOEQQloAAAAAANB1ENJ+bffu3ZoxY4YqKipks9m0bNkyTZkyJWL7rKyswOVoJQxqa0/UAY1WGqGlaPVugZbK6tq3knbKwDTdfEZ2zO17p9l0zcjQ3+dIIe2Yvg79+eLwf/RozmqxaMKANE0YILl9RkhIe7S+MYRuT7WDG8dkK81OmQMAAAAAANC1ENJKOnDggC644AIdOHBAFotFTz31lGbNmtXqOc3D02ibezVfDUuNWbTFZ2UN+leZW6f2cWhcnkOWVlaP/qusQWsONARCzLbKdMQnvMyNsCFXr3C7jUURabWtJNnaUaylHUMAAAAAAABIuKQPacvLy3XhhRdq165dkqSHH35Y8+bNi3re6NGjA5e3bt3aatvmx0eNGtXOkSLZbDnm1n3rK2VIemt3nW4vztG4k1LDtt16zK37v27bXrZ2lA8IJzvCStr2rmDNSrGo2hP6yOq8bX+0rYXcAAAAAAAAZknqjcMqKyt10UUXafPmzZKk+++/Xz/84Q9jOvfkk09Wfn6+pMbNxlrzwQcfSJIGDhyooUOHtn/ASCprDzQEha6LSiojtv30iLtDAa0kFebG52822XFakdukZf3YwVmNy2FPymjbslhnCgEtAAAAAADompI2pHW5XJo5c6Y+/fRTSdJdd92lO+64I+bzLRZLoCTC1q1b9fHHH4dt9/HHHwdW0s6aNYuVfIjZmoP1Ibf5jfBRbFVD+zcLa3J2//CrdNvKarHo3PzgvuaPblst5uZmFWYot9nq3GkFjaHtkGy7BmZGDmqnFaQps1kw++1T2j8GAAAAAACARLIYRoTUpwdzu9267LLL9Pbbb0uSbrnlFv3pT39qcz/btm3T6NGj5fP5VFxcrA8++EDp6SdW/dXV1WnKlCkqKSmR3W7X5s2bNWLEiHg9DEmN9XCb6tzu27ePjcZ6kN+XHFfJYXfQbQ9M6a2CrNAVr+HatsVTM/rKmRK/v9n4DUNv7q7T+/vqdOUIpybmp3Wov+MNfq0+UK/+Gbagkg81Hr9W769XlsOqb+Q59M5X9frkUINmDEnXOfmpqmzwa+3BBg1w2jQ2Lz4hNAAAAIDkxOdvAImUlDVpv/3tbwcC2vPOO08LFy7UF198EbG9w+FQUVFRyO1FRUW67bbbdP/996ukpESTJk3SHXfcocLCQu3cuVO/+93vtHHjRknSbbfdFveAFj1b77TQVaJbKzxhQ9oad/v/1tI7zRrXgFZqXE172bAMXTYsIy795aZaNfPk0L4yU6y6aOiJ21veZ680my4Jcx4AAAAAAEBXkpQh7csvvxy4/N577+n0009vtf2QIUO0Z8+esMfuvfdeHTlyRE899ZQ2btyoa665JqTNwoULdc8993RozEg+Db7Q4HXrMY8uGJwecnu1p/3lDjLauaEXAAAAAAAA4iNpa9LGi9Vq1ZIlS/Tmm29q1qxZys/Pl8PhUH5+vmbNmqW33npLixcvltXKjxpts6o0tCbt1mPhSxrUuDsQ0sZ5FS0AAAAAAADaJilX0iaiDO8ll1yiSy65JO79InmdlGHTYZcv6LayOr+q3H5lO04Eq+V1PlV2oNzBOQOo1QoAAAAAAGAmltABXZQ9wuzcW+UNur7hcEO776N/hk3nhymfAAAAAAAAgM6TlCtpge7AH2Fx7N4qr8b0dQSubzgSXAKhqFeKphakaWCmTQ1eQ7JIo3s79FmZW0frfbJZLEqzW+SwSmf0S5XDRk1aAAAAAAAAMxHSAl2UL0JK23wlbZ3Xr01Hg0PaS4ama2J+Wsh54/tT1gAAAAAAAKArotwB0AUZhqEjdeE3A9tbfSKk/bzMLW+zZjaLdEY/R5izAAAAAAAA0FUR0gJd0OZjnojHSqu98n69yrZlqYNT+6QoI4VpDQAAAAAA0J2Q5gBd0L9ahK/N+Qyp2t24fLblJmJj8yhpAAAAAAAA0N0Q0gJd0K7KyCtpJampWu0Rly/o9oIsykwDAAAAAAB0N4S0QBfjNwztrPS22sYwpFqPXy5v8OZieelMaQAAAAAAgO6GRAfoYg7V+lTXInxtyVDoKlqLpL7ptsQNDAAAAAAAAAlBSAt0MbtarKJNt1tC2tz50TGVHG4Iuq13mlV2a2hbAAAAAAAAdG2EtEAXs+lo8KZhhTmhdWYr3YaWb3cF3ZaXwSpaAAAAAACA7oiQFuhCyut8+mB/fdBto/s45EyJvkI2P5OQFgAAAAAAoDsipAW6kJe318rrP3HdbpWmFqRpbpEz6rnTCtITODIAAAAAAAAkCiEt0EUcqvVqZWnwKtoLB6erb7pN3xyaocUX9o147ul9HSrqlZLoIQIAAAAAACABCGmBLuKl7S75jRPXHVbpW4UZgetZDquGhalPK0lXjoi+0hYAAAAAAABdEyEt0AXsr/Hqwxa1aC8amqHctOA6s7mpoVP29L4pOqU3q2gBAAAAAAC6K0JaoAtYua9ezRbRKs1m0eXNVtE26e8M3RxsDqtoAQAAAAAAujVCWqALOOzyBV2fPihN2Y7Q6TmqtyPo+pi+KRrZ4jYAAAAAAAB0L4S0QBfgN4yg6zlhyhpIUvFJDk3KT5VF0uAsm24+I7sTRgcAAAAAAIBECr8LEYBO5fUHX7dZwrezWiz6ydgc3XS6oZRIjQAAAAAAANCtsJIW6AJarqS1WVoPYAloAQAAAAAAeg5CWqAL8AVntLKSwQIAAAAAACQNQlqgCwgpd8DMBAAAAAAASBpEQUAXUF7nC7qe5WBqAgAAAAAAJAuSIMBk9V6/jtYHL6Ud6GRPPwAAAAAAgGRBSAuY7EBt8Cpai6T+Tps5gwEAAAAAAECnI6QFEqjG49eeKo+8fkMNPkN7q7zyG8G7hO2vCQ5p8zJsctjYOQwAAAAAACBZ8J1qIEH2VHl077rjqnIbslslw5B8hjQ4y657JvVS6tdB7P4ab9B5AzNZRQsAAAAAAJBMWEkLJMjbe+tU5W5cNev1Nwa0kvRVtVdrDtQH2h1sUe4gn1IHAAAAAAAASYWQFkiQd7+qj3jsi3J34HK9N7j8QU4q0xIAAAAAACCZkAYBJmgey7asUWuzUI8WAAAAAAAgmRDSAiZo8J0IZr3+4GM2ZiUAAAAAAEBSYeMwII52VXq0r9qrzJTWk9aqhhPJrD94IS0raQEAAAAAAJIMIS0QJ6/trNVfttbG1Lba02wlbUi5g7gOCwAAAAAAAF0cX6wG4sDl8ccc0EpSRb0/UIvWR7kDAAAAAACApEYcBMTB6gMNbWpf7zN0xOWTJHla1DtwWFlKCwAAAAAAkEwIaYE4eG9fXZvP2V3plRS8iZgkOah3AAAAAAAAkFQIaYEO2lPp0a6vA9e22F3VeI6bkBYAAAAAACCpsXEYTOHzG/r4YIMsFuns/qmyRfmKf7Xbr08ONahvuk1j+qbIYumcIHN3pUfbj3t0el+H+jvDT5e/bK2Jqa98p00Han2B6yWHG5Rms6jSHRzSphLSAgAAAAAAJBVCWpjiwY1VWneosY7rpPxU/WRsTsS2x+t9+u81FSqra9xh69pRmbp0WEbCx/h5uVv3rjsuSXJYpTvG5+q0vo6gNtsqPPq83BNTf8Ny7EEh7f4an17YFrrZmMPW/jEDAAAAAACg+6HcATpdeZ0vENBKjZtuuTz+sG39hqFHPqsKBLSS9OrOWvkNI2z7eHp1x4kA1e2X/rChUnurTpQ1cPsMPfpZVcz9je7jiN5IrKQFAAAAAABINoS06HR7qkLrtx5vCB/SvrHLFbJStcptaHtF22vAtkWN26/Nx4Lvt85r6L71x1Ve17gadvn22qCVsS31STsxvTLsFk0emKZhOdEXrxPSAgAAAAAAJBfKHaDTHXGFBpvV7tCVsTuOe7Tsy9ByAJK04UiDTumdEvexNe/fH2axbkWDX/etP655ozP12k5XyPEbxmRpV6VHZ/R1aNxJqXpzt0tH6/z65tB0OWwW3VGco1d2ulT2ddBbctgd0ocjSn1eAAAAAAAA9CyEtOh0pTWhq2CrW5Q7cHn8emhjlXwRqhqUHG7Qd0ZmJmJ4kqRPDoWGp01Ka3z67frKoNtsFun+yb01OMsuKT1w+6xCZ1C73DSbrjs1K3D91lVHVVoTHFo7WEkLAAAAAACQVAhp0en2V4eupF2x26V/HTkRjO6r9upwmBW3gT5qfHrs8yrlpds0eWCa+mXEb7etBp+hz8oagm5LtUkNkYejK0c4vw5o2yY31RoS0qZQhAQAAAAAACCpENKiUxmGoX1hVtJ+cdSjL456wpzRqCjXrsN1flU2q127cl/91/+v0++n9FaaPT7p5udlbrmbLey1SPqfib30u08qVRGmdu7QbLsuL8xo1331SrNJCn7cFgsraQEAAAAAAJIJa/bQqSrdhmo9EWoYRJBht+jHY3M0Ls8R9viROn+r5Qnaasfx4NB0VO8UnZyTov86K1fp9uAA1WaRbjojS/Z21pEd0zdxdXUBAAAAAADQPRDSolOVVoeuom2NRdL3T89SXoZNF5+cEbEUwKaj8Qtpq93Bq2UHfV3GYEi2Xf9vXI6aL9i9+hSnhma3P2idlJ+mfuknOrzk5PRWWgMAAAAAAKAnotwBOlVBll0/OjNb+6u9emuPSw0+acaQ8MFkilUad1KqTu3TuIJ2cJZdd5/TSx8fbNCrO11BbTcfi19IW9NipW9myolVsqf1degPU3przYEGDc6ya3z/1A7dl91q0T2TemvlvjrlOKyaNiitQ/0BAAAAAACg+yGkRafKTbVq8sDGIPKakZltPn9YToqG5aTonPxU3fFhReD2wy6/yut86pve8Q3EajzBK2mdjuDluwOcds0ZEb+pk5tq1ezhzrj1BwAAAAAAgO6FcgfolgZn2YNWuErxKXlQWu3VphYbmLW8HwAAAAAAACCeCGnRLVktFo3qHbyRWMtwta28fkN3rzsecntmpEK4AAAAAAAAQByQPqHbGt0neMOutm5K1tJX1V5VNvhDbs9NZZoAAAAAAAAgcUif0G31ahGe1vuMCC1jU+cNPX9Itl0n51C6GQAAAAAAAIlDSItuK80eXCu2PkzI2hbuMCHvrybkymqhJi0AAAAAAAASh5AW3VaqrUVI28GVtC1D2gFOm5zUowUAAAAAAECCkUCh20qP90raFuVoU6ysoAUAAAAAAEDiEdKi22pZ7sBnSF5/+4Laeq+hjw/WB93msLV7aAAAAAAAAEDM2BEJ3ZbTHvo3hiMun/Iz2/ZrfajWqwc2VOqral/Q7dkO/oYBAAAAAACAxCOFQreV5bCoV2rwr/DO49429fGvIw2686OKkIDWIumCwekdHSIAAAAAAAAQFSEtui2LxaLC3OBVszsqPTGdaxiG/r6jVvd/UqnaFrVsM+wW3V6co3EnpcZtrAAAAAAAAEAklDtAtzY8N0Ulh92B6zuORw9pXR6//vezan1yuCHkWEGmTf+vOEcDnEwNAAAAAAAAdA6SKHRrhbkpQdf3VHnl9RuyWy1h25fX+XTvuuM6UOsLOXZ2/1TdfEaW0sLUugUAAAAAAAAShZAW3VphTvCvsNcv7ar0qqhXSkhbwzD08L+qQgJai6Rvj3Tq8mEZsljCh7sAAAAAAABAorBkEN2aM8WqfKct6LY1B+rDti057NbWY8HlEDJTLLrzrFzNKnQS0AIAAAAAAMAUhLTo9s4eELzB10f76+X1B28G5vMb+uvWmqDb+qRZdd+5vXV6P0fCxwgAAAAAAABEQkiLbm9aQVrQ9WqPoQ0tNgVbWVofUubgOyMzlZcRvAoXAAAAAAAA6GyEtOj2+jvtGtU7uAbt+6UnSh7Ue/3627baoOMnZ9t1Tn7wClwAAAAAAADADIS06BFarqbdeMStinqffH5DC94uV2WDP+j490ZlykoNWgAAAAAAAHQBhLToESYMSFWq7UToakh6a3ed/rG3Ti3K0+rMfg6d1pc6tAAAAAAAAOgaCGnRI6TZrZrYYgOxt/a49PbeupC23xmZ2VnDAgAAAAAAAKIipEWPMaswQ80W08rrlw622Czs9L4pGpJt7+SRAQAAAAAAAJER0qLHyM+065tD01ttc+u43M4ZDAAAAAAAABAjQlr0KFeOcCrHEX5DsNP6pCjNzmZhAAAAAAAA6FoIadGjZKRYdc0p4WvOntGPzcIAAAAAAADQ9RDSoseZNihNw3JC686e0S81TGsAAAAAAADAXIS06HGsFouuG50VdNtJGTYNzrKZNCIAAAAAAAAgMkJa9Ein9E7RwtMy5UyxKC/dqh+cniWLhXq0AAAAAAAA6HpCvxMO9BAzhmTowsHpMtS4uhYAAAAAAADoighp0aNZLBYRzwIAAAAAAKAro9wBAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESFtHO3du1e33nqrRo4cKafTqd69e2v8+PH6/e9/L5fLZfbwAAAAAAAAAHRBdrMH0FO8/vrr+t73vqeqqqrAbS6XSyUlJSopKdHixYv15ptvavjw4SaOEgAAAAAAAEBXw0raONi4caOuvvpqVVVVKTMzU/fee6/WrFmjd999VzfccIMkadu2bZo5c6aqq6tNHi0AAAAAAACAroSVtHFwyy23qK6uTna7XW+//bYmTpwYOHbeeedpxIgRuv3227Vt2zY98MAD+vWvf23eYAEAAAAAAAB0Kayk7aD169frww8/lCQtXLgwKKBtcuutt2rUqFGSpAcffFAej6dTxwgAAAAAAACg6yKk7aBXXnklcHnBggVh21itVs2bN0+SdPz4ca1cubIzhgYAAAAAAACgGyCk7aCPPvpIkuR0OjVu3LiI7aZOnRq4vHr16oSPCwAAAAAAAED3QE3aDtqyZYskafjw4bLbI/84R44cGXJOLEpLS1s9fvDgwZj76gpq3JVau+s2s4cBAAAAAOgi/ErVRSMfNnsYAGAqQtoOqK+vV3l5uSSpoKCg1ba9evWS0+lUbW2t9u3bF/N9DBo0qENj7Gq8PrfOytpp9jAAAAAAAF3EMQ/RBABQ7qADqqurA5czMzOjtnc6nZKkmpqahI0JAAAAAAAAQPfCn6s6oL6+PnDZ4XBEbZ+amipJqquri/k+oq26PXjwoM4666yY+wMAAAAAAADQtRDSdkBaWlrgstvtjtq+oaFBkpSenh7zfUQro9DdOOzp+qCGUBkAAAAA8DVLqk42ewwAYDJC2g7IysoKXI6lhEFtba2k2Eoj9FQZKZn65in3mT0MAAAAAAAAoMugJm0HpKWlqU+fPpKk0tLSVttWVFQEQtqethkYAAAAAAAAgPYjpO2g0aNHS5J27Nghr9cbsd3WrVsDl0eNGpXwcQEAAAAAAADoHghpO+jcc8+V1FjKYMOGDRHbrVq1KnB50qRJCR8XAAAAAAAAgO6BkLaDvvWtbwUuL126NGwbv9+vZ599VpKUm5ur6dOnd8bQAAAAAAAAAHQDhLQddNZZZ2ny5MmSpCVLlmjt2rUhbR544AFt2bJFknTLLbcoJSWlU8cIAAAAAAAAoOuymz2AnuDBBx/UpEmTVFdXpxkzZujOO+/U9OnTVVdXp2XLlumJJ56QJBUVFenWW281ebQAAAAAAAAAuhJC2jgYO3asXnjhBX3ve99TVVWV7rzzzpA2RUVFevPNN5WVlWXCCAEAAAAAAAB0VZQ7iJPLLrtMn3/+uX72s5+pqKhIGRkZys3NVXFxsX73u99p48aNGj58uNnDBAAAAAAAANDFWAzDMMweBNqvtLRUgwYNkiTt27dPBQUFJo8IAAAAAICeh8/fABKJlbQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmsps9AHSM1+sNXD548KCJIwEAAAAAoOdq/pm7+WdxAIgHQtpurqysLHD5rLPOMnEkAAAAAAAkh7KyMg0dOtTsYQDoQSh3AAAAAAAAAAAmshiGYZg9CLRffX29/v3vf0uS+vXrJ7u96y+OPnjwYGDV7/r16zVgwACTR4S24jns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz6HXq838G3WMWPGKC0tzeQRAehJun6ih1alpaVp/PjxZg+j3QYMGKCCggKzh4EO4Dns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz2HlDgAkCiUOwAAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMZDEMwzB7EAAAAAAAAACQrFhJCwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0qJT7d27V7feeqtGjhwpp9Op3r17a/z48fr9738vl8tl9vCSUklJie6++27NmDFDBQUFSk1NVWZmpoqKirRgwQJ99NFHUft4+umnZbFYYvrv6aefTvyDSjKx/uynTZsWta8VK1Zo9uzZgd+FgoICzZ49WytWrEj8A0lS06ZNi/k5bPrv/fffD+qDOZg4R44c0RtvvKFf/vKXuvjii9W3b9/Az/K6665rc3/xmGNer1ePPfaYJk+erH79+ik9PV2FhYW68cYbtWnTpjaPqaeLx3Pocrn08ssv66abbtL48ePVq1cvpaSkqE+fPpo4caJ+/etf69ChQ1H7act8xwnxeA7j/Trpcrm0aNEijR8/Xr1795bT6dTIkSN16623au/evR17wD1QR5/DPXv2tPm9cujQoWH7Yh62XTw+LzTHeyEARGAAneS1114zsrOzDUlh/ysqKjK2b99u9jCTyuTJkyM+H83/mzdvntHQ0BCxn6VLl8bUjyRj6dKlnfcAk0SsP/upU6dG7MPn8xkLFy5s9fzrr7/e8Pl8nffAksTUqVNjfg4lGVar1SgtLQ3qgzmYOK39LOfPnx9zP/GaY2VlZcb48eMj9pGammo8+eSTHXzUPUtHn8PPPvvMyMzMjDq3srOzjWXLlrXaV1vmO06IxzyM5+vk9u3bjREjRrT6u/D66693/IH3IB19Dnfv3t2m90pJxowZM8L2xTxsm3h9XjAM3gsBIBq7gE6wceNGXX311aqrq1NmZqb+67/+S9OnT1ddXZ2WLVumJ598Utu2bdPMmTNVUlKirKwss4ecFA4cOCBJys/P11VXXaXJkydr8ODB8vl8Wrt2rR544AHt379fzz77rDwej/76179G7fMf//iH8vPzIx4vKCiI2/gR7KabbtLNN98c8bjT6Yx47K677tKSJUskSWPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W/jPvZktnTpUtXW1rbaZvPmzbr66qslSeeff74GDhwYsS1zMHEGDx6skSNH6u23327zufGYYz6fT7Nnz9Ynn3wiSbriiit0ww03qHfv3lq3bp3uueceHTlyRDfeeKMGDhyoiy++uP0Ptodqz3NYVVWlmpoaSdKkSZN06aWXqri4WH369FFZWZlefvllPfnkk6qqqtJ3v/tdZWdnR/3ZFxcXa+nSpR16LMmqI/OwSUdeJ6urqzVz5kxt375dknTDDTfommuuUXp6ulauXKn77rtPVVVVuvrqq7V69WqdeeaZ7R5nT9We53DgwIH697//HbXdfffdF/j36vz581ttyzyMTTw/L/BeCABRmJ0SIzk0/QXWbrcba9asCTm+aNGiwF8+f/WrX3X+AJPUzJkzjRdeeMHwer1hj5eVlRlFRUWB52bVqlVh2zVfnbJ79+4EjhjhdHTufPnll4bdbjckGcXFxYbL5Qo6XltbaxQXFwfmMCveO9/tt98eeJ6fe+65kOPMwcT55S9/abz++uvGoUOHDMMIXs0V6wq+eM2xJUuWBO775ptvDjm+ffv2wDdWhg8fbng8nrY92B6qo8/h6tWrjblz5xqbNm2K2OaVV14xLBaLIckoLCw0/H5/2HZNK/ha+2YDQsVjHsbrdfIXv/hFoJ9FixaFHF+9enVgvvM8nxCP5zAar9dr5OfnG5KMrKyskNfaJszDtonX5wXeCwEgOkJaJNy6desCb6Q33nhj2DY+n88YNWqUIcnIzc013G53J48Skbz++uuB5+/HP/5x2DYERObqaEh70003BfpYu3Zt2DZr165t9R/ESByfz2cMHDjQkGRkZmYatbW1IW2Yg52nPcFCvOZY0/tk7969w/4eGIZh3HfffYF+/va3v8U0vmSTiHDIMAxjzpw5gX43bNgQtg3hUHyYFdK63W4jJyfHkGSMGjUq4leyb7zxxsB9rV+/vl331dMlYh7+3//9X6DPBQsWRGzHPIy/WD4v8F4IANGxcRgS7pVXXglcXrBgQdg2VqtV8+bNkyQdP35cK1eu7IyhIQbTp08PXN65c6eJI0EiGIahV199VZI0cuRITZgwIWy7CRMm6JRTTpEkvfrqqzIMo9PGmOzeffdd7d+/X5J05ZVXKiMjw+QRoS3iNce2bdumLVu2SJLmzp0b8feg+QY8f//73zs6fLQB75c938qVK1VZWSmp8av0Vmv4j1LMQ3M8++yzgcvRSh0gvqK9/vFeCACxIaRFwjXt9ul0OjVu3LiI7aZOnRq4vHr16oSPC7FpaGgIXLbZbCaOBImwe/fuQK2x5nMwnKbj+/fv1549exI9NHyt+YfOpj9mofuI1xxrvnN2a/30799fRUVFkngv7Wy8X/Z8sc7D4uLiQHjEPOwc1dXVgYUhQ4cO1ZQpU8wdUJKJ9vrHeyEAxIaQFgnX9NfO4cOHy26PvFfdyJEjQ86B+VatWhW4PGrUqKjtFyxYoPz8fDkcDvXt21cTJkzQf//3fwdWAiJxXnzxRY0ePVoZGRnKysrSiBEjNH/+/FZXpm/evDlwufkcDIc52vlqamoCK0CGDBmiadOmRT2HOdi1xGuOtaefffv2Rd2UDvHTlvfLrVu36uyzz1Zubq7S0tJUUFCgWbNmBTbeQWK193Uy1nlot9s1fPhwSbxfdpbly5fL5XJJkq699lpZLJao5zAP4yfa6x/vhQAQG0JaJFR9fb3Ky8slRd9RvFevXoHd5/ft25fwsSE6v9+v+++/P3B97ty5Uc95//33dfDgQXk8Hh09elTr1q3Tvffeq+HDh+vxxx9P5HCT3ubNm7VlyxbV1dWppqZGO3bs0LPPPqvzzjtPs2fPDnxFs7nS0tLA5WhzdNCgQYHLzNHO8dJLLwU+WHzve9+L6UMnc7Bridcca08/hmEEnYfE+eyzz/Tmm29KksaMGRM1pD18+LDWr1+vyspKNTQ0aP/+/Xrttdc0f/58nXnmmQR7Cdbe18mm+eR0OpWbm9vqfTTNw7KysqBVhkiM9nzrhHkYH7F8XuC9EABiE3lZIxAH1dXVgcuZmZlR2zudTtXW1qqmpiaRw0KM/vjHP2r9+vWSpCuuuKLVchXDhg3TFVdcoYkTJwb+UbRr1y699NJLWr58uerr6/WDH/xAFotF3//+9ztl/MkiIyNDl19+uc4//3yNHDlSmZmZKisr06pVq/TYY4/p6NGjeuWVVzRr1iy98847SklJCZzbljna9EcUSczRTtKWD53Mwa4pXnOMudp1NTQ06Prrr5fP55Mk3XvvvRHbWq1WnX/++brkkkt0xhlnqE+fPqqurtann36qxx9/XFu2bNHmzZs1ffp0rV+/XoMHD+6sh5EUOvo62TQPY/03bZOamhqlpqbG6VGgpa+++iqwkvOcc84JrGKOhHkYX7F8XuC9EABiQ0iLhKqvrw9cdjgcUds3/QO2rq4uYWNCbFatWqWf//znkqS8vDw9+uijEdvOnj1b8+fPD1nlN378eF199dV64403dMUVV8jj8ehnP/uZLr/8cvXv3z+h408m+/fvD7ui58ILL9SPf/xjXXzxxdq4caNWrVqlRx99VD/5yU8CbdoyR5t/wGSOJl5paanef/99SY0baTTVVguHOdh1xWuOMVe7rh/96EcqKSmR1LhZ0WWXXRax7csvvxz29Xry5Mm6+eabdcMNN+iZZ57R4cOH9dOf/lQvv/xyooaddOLxOtk0D9vyb1qJeZhof/7znwMbTMWyipZ5GD+xfl7gvRAAYkO5AyRUWlpa4LLb7Y7avunrYOnp6QkbE6LbtGmTZs+eLa/Xq7S0NL344ovKy8uL2D4nJ6fVr2Ffeuml+uUvfylJcrlcWrJkSdzHnMxa+8rlSSedpOXLlwdWzz788MNBx9syR5t/XZM5mnh//vOf5ff7JUXfpZo52HXFa44xV7um++67T4sXL5bUGPY98sgjrbZv7fU6JSVFixcvDuxs/ve//51a0nEUj9fJpnnYln/TSszDRHvuueckNYZyV199ddT2zMP4aMvnBd4LASA2hLRIqKysrMDlWL5m0lR7MZavkSExdu/erRkzZqiiokI2m03Lli2Lyw653//+9wMfjppvLoDEGzZsmC688EJJ0o4dOwK760ptm6PNN11gjiZeWz90RsMcNEe85hhztet5/PHHdeedd0pq3KDmrbfeCvp6bXvY7XYtXLgwcJ252rmivU42zcO2/JtWYh4m0vr167V161ZJ0uWXXx61VnAsmIfRtfXzAu+FABAbQlokVFpamvr06SNJUQu2V1RUBN5MmxeMR+c5cOCALrjgAh04cEAWi0VPPfWUZs2aFZe+8/LyAr8LrEjofKNHjw5cbv7zb77pQrQ52nzzBuZoYpWUlAR2ML700kvVq1evDvfJHDRHvOZYe/qxWCxRN1ZB+zz//PO6+eabJUlDhgzRO++8o759+8al70iv10i8aK+TTfOptrZWx48fb7WvpnnYr18/6tEmUHs2DIsF8zCy9nxe4L0QAGJDSIuEa/pHzo4dO+T1eiO2a/oruKSouyIj/srLy3XhhRdq165dkhq/Fh/Pf+xKimlneiRGpJ998w8hzedgOMzRztP8Q2e0UgdtwRzsfPGaY+3pZ9CgQR1e2YlQr732mubNmye/368BAwbo3XffjWsAwDw1V2s//1jnodfr1c6dOyXxfplIHo9Hy5Ytk9QYsH/zm9+MW9/Mw/Da+3mB90IAiA0hLRLu3HPPldS46mDDhg0R2zX/KtGkSZMSPi6cUFlZqYsuuiiwcu/+++/XD3/4w7jeR1lZmcrLyyVJ+fn5ce0b0TU9t1Lwz//kk08OXI/2db4PPvhAkjRw4EANHTo0/oOEpOAPnf369dPFF18cl36Zg+aI1xxrei+N1s+hQ4e0bds2SbyXJsK7776ruXPnyuv1qk+fPnrnnXdUWFgY1/uI9HqNxIv2OhnrPCwpKQl8O4x5mDhvvvmmjh49Kkn6zne+I7s9fntiMw9DdeTzAu+FABAbQlok3Le+9a3A5aVLl4Zt4/f7AyvHcnNzNX369M4YGtS4OcbMmTP16aefSpLuuusu3XHHHXG/nyeeeCKw8+7UqVPj3j8i2717t9555x1JUmFhoQYOHBg4ZrFYAl9R27p1qz7++OOwfXz88ceBFQmzZs1ihUkCrVixQmVlZZLi+6GTOWiOeM2xoqKiwIqiv/3tb3K5XGH7efrppwOXZ8+e3dHho5k1a9Zo1qxZamhoUE5Ojv7xj3/o1FNPjet9eL1ePfXUU4Hr8agJj9hFe52cNm2acnJyJEnPPPNMoG1LzMPOkahvnTAPQ3X08wLvhQAQIwPoBJMnTzYkGXa73VizZk3I8UWLFhmSDEnGr371q84fYJJqaGgwZsyYEfjZ33LLLW3uY/fu3cann37aapvXX3/dcDgchiQjPT3dKC0tbeeI0dJrr71meDyeiMcPHTpkjB07NvAcP/DAAyFtvvzyS8NmsxmSjOLiYsPlcgUdd7lcRnFxcWAOb9u2Le6PAyfMmTMn8Hxt2LAhanvmYOfavXt34PmZP39+TOfEa44tWbIkcN8//OEPQ47v2LHDyM7ONiQZw4cPb/W1IZm15zncuHGjkZuba0gynE6n8dFHH7X5ft977z2joqIi4nG3223Mnz8/MLbLLruszfeRLNr6HMbzdfIXv/hF4L4XLVoUcnzNmjWG3W43JBlTp06N5eEkpfbMw+aOHj0aeL7GjBkT83nMw7aLx+cFw+C9EABiEb/vhACtePDBBzVp0iTV1dVpxowZuvPOOzV9+nTV1dVp2bJleuKJJyQ1/nX01ltvNXm0yePb3/623n77bUnSeeedp4ULF+qLL76I2N7hcKioqCjotj179mj69OmaOHGiLrvsMp1xxhnKy8uTJO3atUvLly/X8uXLA6tN/vCHPwSt5ETH/PjHP5bH49GcOXM0ceJEDR06VOnp6SovL9f777+vxx9/PPDVzXPPPTfs19KKiop022236f7771dJSYkmTZqkO+64Q4WFhdq5c6d+97vfaePGjZKk2267TSNGjOjUx5hMKioq9MYbb0iSTjvtNH3jG9+Ieg5zMLE++ugj7dixI3C9aT5JjbXWm6/WkaTrrrsupI94zbH58+frqaee0urVq/XII4/o0KFDuuGGG9SrVy+tX79ev/nNb1RVVSWr1aqHHnoorl/97c46+hzu3LlTF110UWCjqHvuuUc5OTmtvl/m5eUF5mGTZ555Rpdffrkuv/xyTZs2Taeccoqys7NVU1OjDRs26Iknngh8jTgvL08PPvhgOx5tz9TR5zCer5O33XabXnjhBW3btk233367duzYoWuuuUbp6elauXKlfvvb38rr9So9PV1/+tOfOv7ge4h4vJY2t2zZMrndbkltW0XLPGy7eHxekHgvBICYmBwSI4m89tprgb9qhvuvqKjI2L59u9nDTCqRnotI/w0ZMiSkj5UrV8Z0bkZGhvH44493/oPs4YYMGRLTz3/OnDmtrhzx+XzGf/zHf7Tax8KFCw2fz9d5Dy4JPfroo62u0AqHOZhYzVdUxfJfJPGaY2VlZcb48eMj9pGammo8+eST8f4xdGsdfQ6XLl3a5vfLcN8KinUcY8aMMTZt2tQJP5nuo6PPYbxfJ7dv326MGDEiYj/Z2dnG66+/nogfRbcVr9fSJmeffbYhybDZbMbBgwfjPg7m4Qltff0L93mhCe+FANA6/qyETnPZZZfp888/14MPPqg333xTpaWlcjgcGj58uK666ir96Ec/UkZGhtnDRBuNGzdOf/7zn7V27VqVlJTo4MGDKi8vl9frVa9evXTqqafq/PPP1/XXXx+yqggd98wzz2jVqlVau3atdu3apfLyclVVVSkzM1ODBg3SOeeco/nz52vixImt9mO1WrVkyRLNmTNHTzzxhD755BOVl5erb9++Gj9+vG688ca4bWCFyJ577jlJks1m03e/+92YzmEOdg/xmmN9+/bVmjVr9OSTT+qvf/2rtmzZotraWuXn5+v888/XLbfcEvc6qYiPO+64Q2eeeabWrl2rzZs3q6ysTMeOHVNqaqpOOukkFRcX68orr9Ts2bNls9nMHm6PEu/XyeHDh2vjxo165JFH9OKLL2rHjh1yu90aNGiQLrnkEt1yyy0aMmRIJzyy5LR9+3atW7dOknThhReqf//+MZ/LPDQX74UA0DqLYUSoeA8AAAAAAAAASDir2QMAAAAAAAAAgGRGSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAANBOTz/9tCwWiywWi/bs2WP2cAAAAAB0U4S0AAAg6ezZsycQrnbkPwAAAACIB0JaAAAAAAAAADCRxTAMw+xBAAAAdCaPx6Mvv/wy4vExY8ZIkoqLi7V06dKI7U477bS4jw0AAABA8rGbPQAAAIDOlpKSElPA6nQ6CWIBAAAAJBzlDgAAAAAAAADARIS0AAAA7fT0008HNhHbs2dPyPFp06bJYrFo2rRpkqQdO3boBz/4gYYNG6b09HQNHTpUCxcu1N69e4PO++KLL7RgwQINGzZMaWlpGjRokG666SYdOXIkpnG98soruuqqqzR48GClpaUpNzdXxcXF+p//+R9VVFR09GEDAAAAiDPKHQAAAHSCf/7zn7riiitUXV0duG3v3r166qmn9MYbb2jVqlUaOXKknn/+eV133XVyu92BdqWlpXrssce0YsUKrVmzRvn5+WHvo6KiQldeeaXee++9oNsbGhq0YcMGbdiwQf/7v/+rV199VRMmTEjMAwUAAADQZqykBQAASLADBw5o7ty5ys3N1cMPP6x169bpww8/1E9/+lNZLBYdOXJE119/vT755BPNmzdPhYWFWrx4sdavX6+VK1fq2muvldQY6v7nf/5n2PtoaGjQBRdcoPfee082m03XXnutnn/+eX388cf68MMPde+996pPnz46cuSILrnkkpDVuwAAAADMw0paAACABNu+fbtGjBih1atXq1+/foHbzz33XNntdv3hD3/Q6tWrNXPmTJ111ll65513lJGREWg3bdo01dfX68UXX9RLL72ksrKyoH4k6e6779ann36q3Nxc/fOf/9S4ceOCjp977rn67ne/q4kTJ+rgwYO688479Ze//CWxDxwAAABATFhJCwAA0AkeeuihkGBVkm6++ebA5fLyci1evDgooG1y0003SZK8Xq/Wrl0bdKympkaPPPKIJOk3v/lNSEDbZMiQIfrFL34hSXrxxRdVW1vbvgcDAAAAIK4IaQEAABIsNzdXF110UdhjJ598srKysiRJp59+ukaNGhW23RlnnBG4vGvXrqBjq1atUmVlpSTpyiuvbHUsU6ZMkSR5PB5t2LAhtgcAAAAAIKEodwAAAJBgI0aMkMViiXg8NzdX1dXVKioqarVNk+abj0lSSUlJ4PKAAQNiHtehQ4dibgsAAAAgcVhJCwAAkGDhyhc0Z7Vao7ZraiNJPp8v6NiRI0faNS6Xy9Wu8wAAAADEFytpAQAAurnmoe2nn36qlJSUmM4rKChI1JAAAAAAtAEhLQAAQDfXp0+fwOV+/foRvgIAAADdDOUOAAAAurmxY8cGLq9evdrEkQAAAABoD0JaAACAbu6CCy4I1LN96KGHZBiGySMCAAAA0BaEtAAAAN1cbm6ufvSjH0mS1qxZo5/97Gfy+/0R2x8+fFiLFy/urOEBAAAAiIKatAAAAD3A3XffrVWrVmndunV68MEH9f777+uGG27QmWeeKafTqYqKCm3atEn//Oc/tWLFCo0ZM0bXX3+92cMGAAAAIEJaAACAHiE1NVXvvPOOrrvuOr388sv67LPPAqtrw8nOzu7E0QEAAABoDSEtAABAD5GVlaWXXnpJH330kZ555hl9+OGHOnDggOrq6pSdna3CwkKdddZZmjlzpmbMmGH2cAEAAAB8zWKwswQAAAAAAAAAmIaNwwAAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIn+f55wLxEAZEGGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'fitness_function_example_reassortment_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## B. Transmissibility function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single\n", + "population scenario, illustrating pathogen evolution through independent\n", + "reassortment/segregation of chromosomes, increased transmissibility,\n", + "and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector),\n", + "the pathogen with the most fit genome has a higher probability of being\n", + "transmitted to another host (or vector). In this case, the transmission rate\n", + "**DOES** vary according to genome, with more fit genomes having a higher\n", + "transmission rate. Once an event occurs, the pathogen with higher fitness also\n", + "has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal\n", + "genome and every other genome is less fit, but fitness functions can be defined\n", + "in any arbitrary way (accounting for multiple peaks, for instance, or special\n", + "cases for a specific genome sequence)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define an optimal genome\n", + "`/` denotes separators between different chromosomes, which are segregated and recombined independently of each other (this model has no recombination)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST/BEST/BEST/BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # the genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom transmission function for the host\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence gets 1/20 of the fitness of the optimal genome. There is no middle ground between the optimal and the rest, in this case." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostContact(genome):\n", + " return 1 if genome == my_optimal_genome else 0.05" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='host-host', \n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " contact_rate_host_host = 2e0,\n", + " # Rate of host-host contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " contactHost=myHostContact,\n", + " # Assign the contact function we created (could be a lambda function)\n", + " # In general, a function that returns coefficient modifying probability of a \n", + " # given host being chosen to be the infector in a contact event, based on genome \n", + " # sequence of pathogen. It should be a functions that recieves a String as \n", + " # an argument and returns a number.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function)\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " recombine_in_host=1e-3,\n", + " # Modify \"recombination\" rate of pathogens when in host to get some\n", + " # evolution! This can either be independent segregation of chromosomes\n", + " # (equivalent to reassortment), recombination of homologous chromosomes,\n", + " # or a combination of both.\n", + " num_crossover_host=0\n", + " # By specifying the average number of crossover events that happen\n", + " # during recombination to be zero, we ensure that \"recombination\" is\n", + " # restricted to independent segregation of chromosomes (separated by\n", + " # \"/\").\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population\n", + "We will start off the simulation with a suboptimal pathogen genome, _BEST/BADD/BEST/BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add pathogens to hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BEST/BADD/BEST/BADD':10}\n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a second suboptimal pathogen genome. _BADD/BEST/BADD/BEST_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts(\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD/BEST/BADD/BEST':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 500 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 500, # Final time point.\n", + " time_sampling=100 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 out of 8 | elapsed: 0.3s remaining: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 3 out of 8 | elapsed: 0.3s remaining: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 4 out of 8 | elapsed: 0.3s remaining: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 5 out of 8 | elapsed: 0.3s remaining: 0.2s\n", + "[Parallel(n_jobs=8)]: Done 6 out of 8 | elapsed: 0.3s remaining: 0.1s\n", + "[Parallel(n_jobs=8)]: Done 8 out of 8 | elapsed: 0.3s finished\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
795500.0my_populationHostmy_population_95NaNNaNTrue
796500.0my_populationHostmy_population_96NaNNaNTrue
797500.0my_populationHostmy_population_97NaNNaNTrue
798500.0my_populationHostmy_population_98NaNNaNTrue
799500.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

800 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 NaN NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + ".. ... ... ... ... ... ... \n", + "795 500.0 my_population Host my_population_95 NaN NaN \n", + "796 500.0 my_population Host my_population_96 NaN NaN \n", + "797 500.0 my_population Host my_population_97 NaN NaN \n", + "798 500.0 my_population Host my_population_98 NaN NaN \n", + "799 500.0 my_population Host my_population_99 NaN NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + ".. ... \n", + "795 True \n", + "796 True \n", + "797 True \n", + "798 True \n", + "799 True \n", + "\n", + "[800 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'transmissibility_function_reassortment_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 2 genotypes processed.\n", + "2 / 2 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiQAAALmCAYAAADCCvxNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADO8UlEQVR4nOzdd3hUddrG8XtCD6E3gaDAIorY6EUFXERFKSLYFUUR69rWuroqtte2gmV1bUgREUFUOohIC4TQBCFSJISS3uv0Oe8fbGYJ6cnMnCTz/VwX105mzvzOnclElvPM73kshmEYAgAAAAAAAAAA8KMQswMAAAAAAAAAAIDaj4IEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6trdgBUjc1m0++//y5JatOmjerW5UcKAAAAAICvuVwupaSkSJIuuOACNWzY0OREAADUPFy9ruF+//139e/f3+wYAAAAAAAEjaioKPXr18/sGAAA1Di0bAIAAAAAAAAAAH7HDokark2bNt7bUVFRat++vYlpAAAAAAConRISErwdCk79tzgAACg/ChI13KkzI9q3b6/w8HAT0wAAAAAAUPsxvxEAgMqhZRMAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAOADhtthdgQAAAAAAIBqjYIEAABV5Ezfrdw9r5kdAwAAAAAAoFqjIAEAQBUYhqGsyAdlPTxHhmGYHQcAAAAAAKDaoiABAEAVWP+cKWfyZrlzY+VM3mx2HAAAAAAAgGqLggQAAJXksWcqZ8cz3q+tMXNNTAMAAAAAAFC9UZAAAKCScnY9L48txfu1LXaBDI/LxEQAAAAAAADVFwUJAAAqwZm2U/kH/lPoPo89Vfa4VSYlAgAAAAAAqN4oSAAAUEGGYShry4OS4SnyGG2bAAAAAAAAikdBAgCACrIe+kLO1K3FPmY//pM8ztwAJwIAAAAAAKj+KEgAAFABHnu6snc8V+LjhitftmM/Bi4QAAAAAABADUFBAgCACsjZ8ZwMe1qpx9ho2wQAAAAAAFAEBQkAAMrJkRKl/ENflHmcPf5nua3JAUgEAAAAAABQc1CQAACgHAzDo+zI4gdZFz3YLVvsfP+HAgAAAAAAqEEoSAAAUA75Bz6VM21HuY+3HqZtEwAAAAAAwKkoSAAAUAaPLVU5O5+v0HOcqVvlyv7TT4kAAAAAAABqHgoSAACUIXvHMzIcGRV+njXmGz+kAQAAAAAAqJkoSAAAUApH8hZZD31VqedSkAAAAAAAAPgfChIAAJTA8LiVFfmQJKNSz3dnH5AztfxzJwAAAAAAAGozChIAAJQg/8AncqXvqtIa1hiGWwMAAAAAAEgUJAAAKJbbmqycnS9UeR3rkW9lGB4fJAIAAAAAAKjZKEgAAFCMnO1PyXBmVXkdjzVBjoS1PkgEAAAAAABQs1GQAADgNI6kjbIenu2z9WjbBAAAAAAAQEECAIBCDI/rv4Osfcd2dJEMl82nawIAAAAAANQ0FCQAADhF/h8fyZXxu0/XNJzZsp1Y4tM1AQAAAAAAahoKEgAA/Jc7P0E5v73kl7Wth2nbBAAAAAAAghsFCQAA/it7+5MynNl+Wdset0Iee4Zf1gYAAAAAAKgJKEgAACDJnrBOtphv/HcCj0O22AX+Wx8AAAAAAKCaoyABAAh6hsel7K2+HWRdHGsMbZsAAAAAAEDwoiABAAh6edHT5cqM9vt5HEkb5c495vfzAAAAAAAAVEcUJAAAQc2dF6fc36YG6GyGrEfmBehcAAAAAAAA1QsFCQBAUMve9oQMV27Azmf155wKAAAAAACAaoyCBAAgaNnj18gW+11Az+nK2CNnxt6AnhMAAAAAAKA6oCABAAhKhtuhrMiHTTk3w60BAAAAAEAwoiABAAhKefvekzv7gCnntsV8I8MwTDk3AAAAAACAWShIAACCjjv3mHL3vGre+fOOyZm8ybTzAwAAAAAAmIGCBAAg6GRve1yGK9/UDNbDtG0CAAAAAADBhYIEACCo2ONWyXZ0kdkxZD26QIbHaXYMAAAAAACAgKEgAQAIGobbbtog69MZ9nTZT6wwOwYAAAAAAEDAUJAAAASN3L3vyJ3zp9kxvKwxtG0CAAAAAADBg4IEACAouHJilbvnDbNjFGI7vkQeZ47ZMQAAAAAAAAKCggQAIChkRz0qua1mxyjMba0W8ywAAAAAAAACgYIEAKDWsx1fJvvxxWbHKBZtmwAAAAAAQLCgIAEAqNUMl03ZUY+YHaNEjoS1cluTzI4BAAAAAADgdxQkAAC1Wu7vb8qdE2N2jJIZbtmOfGt2CgAAAAAAAL+jIAEAqLVc2YeVu/cts2OUibZNAAAAAAAgGARtQWL79u165ZVXdOWVVyo8PFwNGjRQWFiYunfvrkmTJmnTpk0VWm/FihUaN26cd63w8HCNGzdOK1as8NN3AAAoS3bUI5LbZnaMMjlTt8mVfcjsGAAAAAAAAH5lMQzDMDtEoA0ZMkQbN24s87iJEyfq888/V/369Us8xuPxaMqUKfryyy9LPGby5Mn69NNPFRLi+/rPiRMn1KlTJ0nS8ePHFR4e7vNzAEBNZDv2kzLWXmd2jHILu+glNen1stkxAAAAUAL+/Q0AQNUF5Q6J+Ph4SVKHDh306KOPauHChYqKitKWLVv03nvvqWPHjpKk2bNn66677ip1reeff95bjOjVq5fmzZunqKgozZs3T7169ZIkffHFF3rhhRf89w0BAAoxXFZlb33U7BgVQtsmAAAAAABQ2wXlDolRo0Zp4sSJGj9+vOrUqVPk8dTUVF1yySU6ePCgJGn9+vUaMmRIkeMOHjyonj17yuVyqW/fvtqwYYMaNWrkfTw/P19Dhw7V9u3bVbduXf3xxx/q1q2bT78XPqEBAEXl7HxBuXteNztGhbW6dqvqt+lvdgwAAAAUg39/AwBQdUG5Q2Lp0qW68cYbiy1GSFLr1q31r3/9y/v1woULiz1u+vTpcrlckqQPP/ywUDFCkkJDQ/Xhhx9Kklwul6ZNm+aL+ACAUriyDyl377tmx6gUdkkAAAAAAIDaLCgLEuVx+eWXe28fPny4yOOGYeinn36SJJ177rkaOHBgsesMHDhQ55xzjiTpp59+UhBuSAGAgMqO/JvksZsdo1JsR+bL8LjNjgEAAAAAAOAXFCRKYLf/72JWcTspjhw54p1FMXTo0FLXKng8Li5OsbGxvgsJACjEGvu97PGrzI5RaR5bkhwJa8yOAQAAAAAA4Bd1zQ5QXa1fv957u0ePHkUej46O9t4+99xzS13r1Mf/+OMPdenSpdw5Tpw4UerjCQkJ5V4LAGozjzNP2dseNztGlVlj5qpBx6vMjgEAAAAAAOBzFCSK4fF49Oabb3q/vvHGG4scc2qhoKxBVgVDr6STg68q4tTnAgBKlrv7VXnyKvbf2OrIdvQHGYPyZakbanYUAAAAAAAAn6JlUzGmTZumqKgoSdL111+vPn36FDkmJyfHezssLKzU9Ro3buy9nZub66OUNV9insvsCEC15c5PVMa6G+VIjjQ7So3gytyvvOj3zI7hE4YrV7Zji82OAQAAAAAA4HPskDjN+vXr9eyzz0qS2rZtq08++aTY42w2m/d2/fr1S12zQYMG3ttWq7VCecraUZGQkKD+/ftXaM3qIiLervFn8xYEiuNMiZQtdoFssQtUr81ANe75hBqeeb0sIUVn2kDK2vqw5HGaHcNnrEe+UaOuN5sdAwAAAAAAwKe4GnyKffv2ady4cXK5XGrYsKEWLFigtm3bFntsw4YNvbcdDkep6546ILtRo0YVylRWO6iabHO8TePPblz2gUAQcqT8b2eEMyVSmetuVJ2wzgrt8YhCu09WSL0mJqarXqxH5suR8IvZMXzKHrdSHluaQhq2MjsKAAAAAACAz9Cy6b+OHDmiK6+8UhkZGapTp46+/fZbDRkypMTjmzT538XAstow5eXleW+X1d4pmCTkufVnZu35RDPgS87UrUXuc+fGKmfbE0r+LlzZUU/IlXvUhGTVi8eZq+xtT5gdw/c8TlljF5idAgAAAAAAwKcoSEiKj4/XFVdcofj4eFksFs2YMUNjx44t9Tmn7lw4dcB1cU5tu8SQ6sIi4m1lHwQEGcPjljN1e8mPO7OVFz1NKd//RRm/3hDUcyZyf3tZnvx4s2P4hTVmrtkRAAAAAAAAfCroCxKpqakaMWKEYmJiJEkffvihJk6cWObzzjvvPO/t/fv3l3rsqY/36NGjkklrpy3xdnkMw+wYQLXiytwnw1X6zitJkuGW7ehCpS0fpNRlg2SNXSDD4/Z/wGrCmbFPedHvmx3Db5zJEeyCAQAAAAAAtUpQFySysrJ01VVXKTo6WpL05ptv6qGHHirXc7t06aIOHTpIOjkIuzQbNmyQJHXs2FGdO3eufOBaKMPuUXQabZuAUxXXrqnM5/x3zkTKom7K3feePI5sPySrXrIjH5IMl9kx/MiQLeYbs0MAAAAAAAD4TNAWJPLz83Xttddq586dkqTnn39ezzzzTLmfb7FYvG2d9u/fr8jI4lumREZGendIjB07VhaLpYrJa59NtG0CCjl1oHVFnZwz8XclL+h0cs5ETqzvglUj1sNz5UgqvRhcG9C2CQAAAAAA1CZBWZBwOBwaN26cIiIiJEmPPvqoXnvttQqv89hjj6lOnTqSpL/97W+yWq2FHrdarfrb3/4mSapbt64ee+yxqgWvpaIS7HJ5aNsEFHCmVHyHxOm8cyYWdfvvnIktPkhWPXgc2cre/qTZMQLClblPzvTdZscAAAAAAADwibpmBzDDLbfcotWrV0uS/vrXv+qee+7R3r17Szy+fv366t69e5H7u3fvrqeeekpvvvmmtm/frksuuUTPPPOM/vKXv+jw4cN66623tGvXLknSU089pbPPPts/31ANl+cytCvZoX5nNDA7CmA6jyNbrqw/fLfgf+dM2I4uVL02A9X4vMfV8KzxsoTU8d05Aixn14vyWBPNjhEw1pi5qtfyIrNjAAAAAAAAVJnFMIJvonBF2yadddZZio2NLfYxj8eje++9VzNmzCjx+ffcc48+++wzhYT4fkPKiRMn1KlTJ0nS8ePHFR4e7vNz+Muty5Pl/u+7b1D7BnqsdzNzAwHVgD3+F6WvvsKv56jT+CyFnveIQs+erJD6Tf16Ll9zpu9R6pLekhE8w7tDQsPV9oajsliCclMjAABAtVGT//0NAEB1wdWNKgoJCdGXX36pZcuWaezYserQoYPq16+vDh06aOzYsVq+fLm++OILvxQjapMdSXbZXB6zYwCmq8xA64py5x3975yJcGVHPV5j5kwYhqGsyIeCqhghSZ78E3IkbjA7BgAAAAAAQJUFZcsmf2wKueaaa3TNNdf4fN1g4fBIUYl2DQlvZHYUwFRVGWhdUYYzR3nR05X3x4dqeOY4Ne75uOq3HRyw81eU9fBsOZM3mR3DFNaYuWrQfpjZMQAAAAAAAKqEj+2j2oiIt5sdATCdLwZaV9h/50ykLb9EqcsGyXrkOxme6rULwWPPVM72p82OYRrb0YUy3A6zYwAAAAAAAFQJBQlUG7+nOpRtp20Tgpcr54g8tmRTMzhTIpW5/ialfP8X5e79lzyObFPzFMjZ9YLpr42ZDEem7CeWmx0DAAAAAACgSihIoNpwG9KWBJvZMQDTmLI7ogTuvKPK2f5ktZgz4UzbpfwD/zHt/NWFNWau2REAAAAAAACqhIIEqhXaNiGYBWKgdUUVzJlIWdRNGb9OkCN5c2DPbxjKinww6AZZF8d2Ymm12bECAAAAAABQGRQkUK0czHAqJZ8LjwhOgRxoXWGGW7aj35+cM7F0oKxH5gdkzoT10Aw5q/PrEkhum2xHvzc7BQAAAAAAQKVRkEC1YkiKiKdtE4KP4XbImbbL7Bjl4kzdqsz1N58yZyLLL+fx2NOVs+NZv6xdU9G2CQAAAAAA1GQUJFDtUJBAMHKm/yZ5albLsv/NmeikrK2PyZVzxKfr5+z4hzz2VJ+uWdM5En+VOz/e7BgAAAAAAACVQkEC1c6xHLeO57jMjgEEVHWcH1FehjNH+X+8r5RFZ5+cM5EUUeU1HanblH/ocx+kq2UMj6xHvjU7BQAAAAAAQKVQkEC1FBHHLgkEl2o9P6K8CuZMrLi0SnMmDMOj7C0PSobHDyFrPto2AQAAAACAmoqCBKol2jYh2DhTau4OieL8b85EV+XufbdCcybyD34uZ9p2P6ar2VxpO+XK3G92DAAAAAAAgAqjIIFqKdnq0cEMp9kxgIDw2FLlzjlsdgy/cOcdU872p8o9Z8JjS1XOzn8EKF3NxS4JAAAAAABQE1GQQLW1ibZNCBKOWrY7ojiF50yML3HORPaOZ2XY0wOcruaxHvnG7AgAAAAAAAAVRkEC1VZkgk0ewzA7BuB3NXmgdYUZbtmOLvrvnIkBssZ8K8Nzcoi9I2WrrIdmmBywZnDnxMiRvMXsGAAAAAAAABVCQQLVVpbD0O+pDrNjAH5XKwZaV4IzNUqZG25Ryvd/Ue7ed5UV+aAkipDlZY1hlwQAAAAAAKhZKEigWouIt5sdAfArwzDkTIkyO4apCuZMuNJ2mh2lRrHFzvfuLgEAAAAAAKgJKEigWotKtMvh5hPTqL3cWQdkOLPMjoEayGNLkT3+Z7NjAAAAAAAAlBsFCVRrVpehncnskkDtFaztmuAb1pi5ZkcAAAAAAAAoNwoSqPY2xVGQQO0VVAOt4XP2Yz/K48wzOwYAAAAAAEC5UJBAtfdbil35To/ZMQC/YIcEqsJw5cl+/CezYwAAAAAAAJQLBQlUe06PtDWRXRKofQxXvlwZv5sdAzUcbZsAAAAAAEBNQUECNUJEvM3sCIDPOVK3S4bb7Bio4exxq+W2pZgdAwAAAAAAoEwUJFAj7EtzKtPGhVvULsyPgE8YLtmOfGd2CgAAAAAAgDJRkECN4DGkzQm0bULt4kyhIAHfoG0TAAAAAACoCShIoMagbRNqGwZaw1ecKVvkyokxOwYAAAAAAECpKEigxvgz06WkfNo2oXZw58XJkx9ndgzUItaYb8yOAAAAAAAAUCoKEqhRNsWxSwK1A7sj4Gu0bQIAAAAAANUdBQnUKLRtQm3BQGv4mjtrv5xpu8yOAQAAAAAAUCIKEqhR4nLdis1ymh0DqDIGWsMf2CUBAAAAAACqMwoSqHEi4u1mRwCqxPC45UzbbnYM1ELWI/NkGB6zYwAAAAAAABSLggRqnM0JNhmGYXYMoNJcGb/LcOWbHQO1kCc/Xo7EdWbHAAAAAAAAKBYFCdQ4qVaP9mfQtgk1FwOt4U+0bQIAAAAAANUVBQnUSBFxtG1CzcVAa/iTLfZ7GW7+GwkAAAAAAKofChKokSITbHJ5aNuEmomB1vAnw5kl2/GlZscAAAAAAAAogoIEaqQcp6HfUx1mxwAqzOPIkitrv9kxUMvRtgkAAAAAAFRHFCRQY22Ks5kdAagwZ2qUJHb3wL/sJ5bLY880OwYAAAAAAEAhFCRQY21Pcsju5sIuahYGWiMgPHbZji40OwUAAAAAAEAhFCRQY9nchrYnMbgVNQvzIxAotG0CAAAAAADVDQUJ1GgRtG1CDUNBAoHiSFwvd94Js2MAAAAAAAB4UZBAjbY71aFcp8fsGEC5uLIPy2NPNTsGgoYh65F5ZocAAAAAAADwoiCBGs3lkbYm0LYJNYMzld0RCCxrzDdmRwAAAAAAAPCiIIEabxNtm1BDMNAageZK/03OzGizYwAAAAAAAEiiIIFa4I90p9JtbrNjAGVifgTMwHBrAAAAAABQXVCQQI1nSIqIp20TqjfDbZcz/TezYyAI2WK+kWEYZscAAAAAAACgIIHaYXM8bZtQvTnTdkkeh9kxEITcubFyJm82OwYAAAAAAAAFCdQOMVkuxee6zI4BlIiB1jATbZsAAAAAAEB1QEECtUYEuyRQjTHQGmayxn4nw+M0OwYAAAAAAAhyFCRQazBHAtUZA61hJsOeJnvcKrNjAAAAAACAIEdBArVGQp5bhzP5BDCqH7c1We7cI2bHQJCjbRMAAAAAADAbBQnUKrRtQnXE/AhUB/bji+Vx5podAwAAAAAABDEKEqhVtiTY5TEMs2MAhTA/AtWB4cqX7dgPZscAAAAAAABBjIIEapV0m0fRabRtQvXC/AhUF7bDtG0CAAAAAADmoSCBWoe2TahODMMjZ+o2s2MAkiR7whq5rclmxwAAAAAAAEGKggRqna2Jdrk8tG1C9eDK/EOGM9vsGMBJhlu22PlmpwAAAAAAAEGKggRqnTynod9SHGbHACQx0BrVj5W2TQAAAAAAwCQUJFArbYqjbROqBwZao7pxpm6VK/tPs2MAAAAAAIAgREECtdLOZLtsLo/ZMQAGWqNassZ8Y3YEAAAAAAAQhChIoFayu6VtibRtgrk8zjy5MveZHQMowhpD2yYAAAAAABB4FCRQa22Kp20TzOVM3SYZbrNjAEW4sw/Kkbrd7BgAAAAAACDIUJBArfV7qkPZDto2wTwMtEZ1ZmOXBAAAAAAACDAKEqi13IYUmcAuCZiHgdaozqxHvpXhYQcPAAAAAAAIHAoSqNUi4uxmR0AQY6A1qjOPNVGOxLVmxwAAAAAAAEGEggRqtQMZTqVa+QQwAs+dd1wea4LZMYBSWQ/TtgkAAAAAAAQOBQnUaoakCIZbwwS0a0JNYDu2SIbLanYMAAAAAAAQJChIoNaLiKdtEwKPdk2oCQxnjmzHl5gdAwAAAAAABAkKEqj1jma7dCLHZXYMBBl2SKCmsMZ8Y3YEAAAAAAAQJChIIChsom0TAsjwuORM22l2DKBc7HEr5LFnmB0DAAAAAAAEAQoSCAqbKUgggFzpuyU3fflRQ3gcssUuMDsFAAAAAAAIAhQkEBSS8j06mOE0OwaChCOV+RGoWawxc82OAAAAAAAAggAFCQQNdkkgUBhojZrGkbRR7txjZscAAAAAAAC1HAUJBI0tCXZ5DMPsGAgCDLRGzWPIemSe2SEAAAAAAEAtR0ECQSPT7tHeVNo2wb889gy5sw+ZHQOoMNo2AQAAAAAAf6MggaCyibZN8DNHylZJ7MRBzePK+F3OjN/NjgEAAAAAAGoxChIIKlGJdjncXCyG/zgZaI0azHqYXRIAAAAAAMB/KEggqFhdhnYl282OgVqMgdaoyWxH5slg1g4AAAAAAPATChIIOhHxFCTgPw52SKAGc+cdkyNpo9kxAAAAAABALUVBAkFnZ7Jd+U6P2TFQC7myD8mwp5sdA6gSG8OtAQAAAACAn1CQQNBxek7OkgB8zZESaXYEoMqsRxfK8DjNjgEAAAAAAGohChIIShHxNrMjoBZifgRqA8OeLvuJFWbHAAAAAAAAtRAFCQSlvWlOZdpp2wTfcrJDArWElbZNAAAAAADADyhIICh5DGkLuyTgQ4bLJmfGHrNjAD5hO75EHmeO2TEAAAAAAEAtQ0ECQYu2TfAlZ/pOib77qC3cVtmOLjI7BQAAAAAAqGUoSCBoHcp0KTnfbXYM1BIMtEZtQ9smAAAAAADgaxQkENQ2xbFLAr7BQGvUNo6EtXLnJ5odAwAAAAAA1CIUJBDUaNsEX2GgNWodwy3bkW/NTgEAAAAAAGoRChIIaidy3Tqa7TI7Bmo4d36i3HnHzI4B+BxtmwAAAAAAgC9RkEDQY5cEqsqZSrsm1E7OtO1yZR00OwYAAAAAAKglKEgg6G2Ot8kwDLNjoAZjoDVqM3ZJAAAAAAAAX6EggaCXYvXoQIbT7BiowRhojdqMggQAAAAAAPAVChKApIh4u9kRUEMZhkfO1G1mxwD8xp1zWA6KbgAAAAAAwAcoSACSIhNscnto24SKc2Xuk+HKNTsG4FfWmG/MjgAAAAAAAGoBChKApGyHoT2pDrNjoAaiXROCge3IfBket9kxAAAAAABADUdBAviviHib2RFQAzHQGsHAY0uSI2GN2TEAAAAAAEANR0EC+K9tiQ453LRtQsWwQwLBguHWAAAAAACgqihIAP9lcxvakcRwa5Sfx5kjV1a02TGAgLAd/UGGK9/sGAAAAAAAoAajIAGcYhNtm1ABztRtkuExOwYQEIYrV7Zji82OAQAAAAAAajAKEsApfktxKM/JBWaUj5P5EQgytG0CAAAAAABVQUECOIXLI0Um0LYJ5eNgfgSCjD1+lTy2NLNjAAAAAACAGoqCBHCaCNo2oZwYaI2g43HKGvud2SkAAAAAAEANRUECOE10mlPpNrfZMVDNuXJi5bElmR0DCDjaNgEAAAAAgMqiIAGcxpC0JZ62TSidM5XdEQhOzuTNcuXEmh0DAAAAAADUQBQkgGJsom0TysBAawQvQ7Yj35gdAgAAAAAA1EAUJIBixGS5lJDnMjsGqjEGWiOY0bYJAAAAAABUBgUJoASb4mjbhOIZHqec6bvMjgGYxpUZLWf6brNjAAAAAACAGoaCBFCCzbRtQgmc6b9Jbt4fCG7skgAAAAAAABVFQQIoQXyeWzFZTrNjoBpy0q4JkDVmngzDY3YMAAAAAABQg1CQAEoREcen4FGUg4HWgDz5J+RI3GB2DAAAAAAAUINQkABKsTnBLo9hmB0D1Qw7JICTaNsEAAAAAAAqgoIEUIp0m0d/pNO2Cf/jsaXJnfOn2TGAasF2dKEMt93sGAAAAAAAoIagIAGUIYLh1jiFI5XdEUABw5Ep+4nlZscAAAAAAAA1BAUJoAxbE+xyeWjbhJNo1wQURtsmAAAAAABQXhQkgDLkOg3tTnGYHQPVBAOtgcJsx5fK48gyOwYAAAAAAKgBgrYgkZycrKVLl+rFF1/UyJEj1bp1a1ksFlksFt11113lWmPmzJne55T1Z+bMmX79fuBfm2jbBEmGYciZGmV2DKB68dhlO/q92SkAAAAAAEANUNfsAGZp166d2RFQg+xIssvmMtSwrsXsKDCRO+uADEem2TGAascaM1ehZ99tdgwAAAAAAFDNBW1B4lRnnnmmzj33XK1evbrSa6xatUodOnQo8fHw8PBKrw3z2d3S9iS7Lu3Y0OwoMBEDrYHiORLXyZ0frzqhJf89CAAAAAAAELQFiRdffFH9+vVTv3791K5dO8XGxqpLly6VXq979+7q3Lmz7wKi2omIt1GQCHIMtAZKYHhkPfKtwno+YXYSAAAAAABQjQVtQWLq1KlmR0ANszvFoRyHR03qB+3olaDHQGugZNaYuRQkAAAAAABAqbiyCpST25AiE+xmx4BJDJdVrozfzY4BVFuutJ1yZe43OwYAAAAAAKjGKEgAFbAp3mZ2BJjEmbZdMlxmxwCqNWvMXLMjAAAAAACAaixoWzb52qRJk3TgwAGlpqaqadOm6tatm6644go98MAD6tixY6XXPXHiRKmPJyQkVHptVNyBdKdSrW61blTH7CgIMAfzI4AyWY98oya9XzU7BgAAAAAAqKYoSPjIunXrvLfT0tKUlpamrVu36l//+pemT5+u++67r1LrdurUyUcJ4QuGpM3xNo35S2OzoyDAGGgNlM2dEyNH8hbVbzvI7CgAAAAAAKAaoiBRRV27dtX111+vQYMGeYsHMTEx+v7777Vw4ULZbDbdf//9slgsmjJlislp4QsR8XYKEkGIgdZA+eT+/n9qMfQ7Weo2NDsKAAAAAACoZihIVMG4ceN05513ymKxFLq/X79+uummm7R06VJdf/31cjqdevzxxzVmzBidccYZFTrH8ePHS308ISFB/fv3r3B2VF5stksnclwKb8KvT7Bw58fLk196+zQAJ9mPL1Hq8sFqMWyB6jb9i9lxAAAAAABANcJQ6ypo1qxZkWLEqUaNGqUXX3xRkpSfn68vv/yywucIDw8v9U/79u0rnR+VF8Fw66DC7gigYlzpu5S6pLesRxeZHQUAAAAAAFQjFCT8bMqUKd6ixfr1601OA1+JiLebHQEBxPwIoOIMZ7Yyfx2vrK2PyfA4zY4DAAAAAACqAQoSfta2bVu1atVKkhQXF2dyGvhKUr5bf2ZygS1YONkhAVRa/h/vK23FELnzSm9BCAAAAAAAaj8KEgFQWlsn1Fyb4mjbFAwMj1vOtB1mxwBqNGdKpFIW95LtxAqzowAAAAAAABNRkPCzlJQUpaamSpI6dOhgchr40pYEuzyGYXYM+Jkrc68MV57ZMYAaz7CnKWPNtcre+bwMj9vsOAAAAAAAwAQUJPzss88+k/Hfi9ZDhw41OQ18KdPu0d402jbVdgy0BnzJUN6eN5S++gq58xPNDgMAAAAAAAKMgkQlxcbGateuXaUes3TpUr3yyiuSpEaNGmnSpEmBiIYA2kzbplqPgdaA7zkS1yl1SS/ZE9aZHQUAAAAAAARQXbMDmGXTpk36888/vV8XtFWSpD///FMzZ84sdPxdd91V6OvY2FhdfvnlGjRokEaPHq2LLrpIbdu2lSTFxMRo4cKFWrhwoXd3xLvvvquOHTv655uBaaIS7brnfEP16jAnpLZioDXgHx5rotJXX6Gwi6cq7MJ/MG8JAAAAAIAgELQFiS+++EKzZs0q9rGIiAhFREQUuu/0gkSBLVu2aMuWLSWeJzQ0VNOmTdOUKVMqnRXVV57L0K4Uh/qf0cDsKPADjyNLrqz9ZscAai/DrdxdL8iZvEnNL/taIQ1bmZ0IAAAAAAD4UdAWJKqqT58++vrrr7VlyxZt375dCQkJSk1NlcvlUosWLdSzZ08NHz5ckydP9u6cQO20Kc5GQaKWcqZuk8TgcsDf7HErlbKkl1oM/U712w40Ow4AAAAAAPATi1HQUwg10okTJ9SpUydJ0vHjxxUeHm5yovK7dXmy3LXg3VcvRPp8RGs1qstIltomZ/dryt31T7NjAMEjpJ6a9HlLYT0fNzsJAABAETX5398AAFQXXEEFqsjpOTlLArUPA62BAPM4lbPtCWX8Ol4eR5bZaQAAAAAAgI9RkAB8ICKegkRt5EylIAGYwXZ0kVKX9JEzbZfZUQAAAAAAgA9RkAB8YG+qQ1l2j9kx4EOunBh5bClmxwCCljvnsFKXD1begU/NjgIAAAAAAHyEggTgA25D2pJgMzsGfMiZEml2BABum7K33K+MDbfL48wzOw0AAAAAAKgiChKAj0TEUZCoTRzMjwCqDVvMXKUt6y9nZrTZUQAAAAAAQBVQkAB85GCmS8n5brNjwEcYaA1UL67MaKUt7a/8w1+bHQUAAAAAAFQSBQnAhyLi2SVRGxhuu5zpDNMFqhvDlaesjXcoc/MUGS7+ewsAAAAAQE1DQQLwIQoStYMz/TfJ4zA7BoASWA9+rtTlg+XKPmx2FAAAAAAAUAEUJAAfOp7j1rFsl9kxUEUMtAaqP1f6LqUu6S3r0UVmRwEAAAAAAOVEQQLwsU3skqjxGGgN1AyGM1uZv45XdtTjMjxOs+MAAAAAAIAyUJAAfGwzBYkaz5lKQQKoSfKipyttxRC5846bHQUAAAAAAJSirtkBgNomxerRgXSnzmlZz+woqAS3LUXunBizYwCoIGdKpFIW91Lzy+aoYfhIs+MAAACUyGazKTMzU/n5+XK73WbHAQCgkDp16ig0NFTNmzdXw4YNfb4+BQnADyLibRQkaign7ZqAGsuwpyljzbVqfOFzanLxK7KE1DE7EgAAgJdhGEpISFBWVpbZUQAAKJHL5ZLdbldGRoaaNWum9u3by2Kx+Gx9ChKAH0Qm2HTneWGqE+K7X1YEBgOtgZrOUN6eN+RM3qzmQ+apTugZZgcCAACQJKWlpRUpRtSty2UZAED14nK5vLezsrJUv359tW7d2mfr8zcf4AdZDkO/pzp0cdsGZkdBBTHQGqgdHInrlLqkl5oPmacG7YeZHQcAAAQ5h8OhlJQU79dt27ZV8+bNVacOOzoBANWL2+1WZmamkpOTJUkpKSlq2rSp6tev75P1GWoN+ElEvN3sCKggwzDkTN1mdgwAPuKxJip99RXK2f26DMMwOw4AAAhiubm53tutWrVSq1atKEYAAKqlOnXqeP+uKnDq32NVRUEC8JNtSXY53FwAq0lcWX/IcNLPFahVDLdyd72gjDXXymNLMzsNAAAIUnl5ed7bTZs2NTEJAADlc+rfV6f+PVZV1bYgYbfblZSUJI/HY3YUoFKsLkM7ktklUZMw0BqovexxK5SypJccycyJAQAAgedwOCRJFotFDRrQ2hcAUP01aNDAO8y64O8xXwh4QSI3N1fLly/X8uXLi93qkZqaqvHjx6tp06bq0KGDWrRoob///e+y27mwi5onIs5mdgRUAAOtgdrNk3dcaSuHKHffNLOjAACAIFPwYcs6dep4L+4AAFCdWSwWb3tBX24aCPhQ6++//16TJk1SeHi4YmNjCz3m8Xg0cuRI7dy509vrOScnR9OnT1dsbKy+//77QMcFquS3FIfynB41rldtNyPhFAy0BoKAx6mcbU/ImbxJzS6ZoZD6zcxOBAAAAABA0Aj4VdJVq1ZJksaNG6eQkMKnnz9/vnbs2CFJ6t27tx5//HH17t1bhmHoxx9/1MqVKwMdF6gSp0eKSmR3T03gcebJlbnX7BgAAsR2dJFSl/SRM+03s6MAAAAAABA0Al6Q2Lt3rywWiwYPHlzksdmzZ0uS+vTpo8jISP3rX//Sli1b1L9/f0nSrFmzApoV8IVNtG2qEZxp2yXDbXYMAAHkzjms1OWDlH/gM7OjAAAAAAAQFAJekEhOTpYkdenSpdD9TqdTGzZskMVi0UMPPaS6dU92k6pXr57uv/9+GYahqKioQMcFqmxfmlOZNi50V3cMtAaClNumrC33KXPDHfI488xOAwAAAABArRbwgkR6erokqX79+oXu37Ztm6xWqyTp6quvLvRY9+7dJUmJiYkBSAj4liEpIoG2TdWdg4HWQFCzxnyttGX95cyMNjsKAAAAAAC1VsALEqGhoZL+t1OiwIYNGyRJ3bp1U7t27Qo91qhRo8CEA/wkgrZN1Z4zlR0SQLBzZUYrbWl/5R/+2uwoAAAAAADUSgEvSPzlL3+RJK1bt67Q/T/88IMsFouGDBlS5DkpKSmSpLZt2/o9H+APh7NcSsxzmR0DJXDnHZcnP97sGACqAcOVp6yNdyhr830y3OxuAwAAQM3jcrn0/fffa8qUKbrgggvUtm1b1atXT82aNVO3bt00btw4vfPOOzpy5IjZUQEEoYAXJEaMGCHDMPTxxx9rxYoVys3N1Ycffqht27ZJkkaPHl3kOXv27JEkdejQIaBZAV+KiOfCVnXlYH4EgNPkH/xMqcsGyZV92OwoAAAAQLktXrxYPXr00IQJE/T5559r7969SklJkcvlUnZ2tg4fPqwff/xRTz/9tLp27apRo0Zp7969Zsf2q5dfflkWi0UWi8XsKAAk1Q30CR999FH95z//UU5OjkaNGlXosR49ehRbkFi2bJksFot69eoVqJiAz22Ks2n82Y3NjoFiMNAaQHFc6buUuqSPml06Q43Out7sOAAAAECpXnvtNb344osyDEOSNGzYMI0aNUoXXnihWrVqpfz8fCUkJGjDhg1aunSpYmNjtWzZMoWHh+s///mPyekBBIuAFyTat2+vJUuW6Oabb1ZCQoL3/q5du2rhwoVFqpWHDx/Wxo0bJUlXXHFFQLMCvhSf59aRLKe6NKtndhSchoHWAEpiOLOU+et4Oc97TE36vi1LCP8NBwAAQPUzY8YM/fOf/5QktWvXTt9++62GDRtW7LE33HCDpk+frm+//Vb/+Mc/ApgSAEwoSEjSZZddpiNHjigiIkKJiYlq3769Lr30UtWtWzROQkKC9z+oV155ZaCjAj4VEW+nIFHNGB6XnGk7zI4BoJrLi54uR0qkWgz7TnUadzI7DgAAAOB1/PhxPfTQQ5Kkpk2batOmTerWrVupz6lTp45uu+02XXvttd4PAgNAIAR8hkSB+vXr6/LLL9ctt9yiYcOGFVuMkKRLL71UL730kl566SWFhoYGOCXgW5vjbd6tk6geXBl7JLfV7BgAagBnSqRSFveS7cRKs6MAAAAAXu+9955sNpsk6fXXXy+zGHGq5s2bF9s+vUBiYqKef/559e3bVy1btlSDBg3UqVMn3XjjjVqzZk2Jz4uNjfXObZg5c6Yk6eeff9bo0aN1xhlnqEGDBurSpYseeOABnThxosycDodDH3/8sS6//HK1adNG9evX1xlnnKFrrrlGX3/9tTweT5HnzJw5UxaLRVOnTvXeV5Dp1D+xsbHas2eP9+s333yzzDwffvih9/ioqKgi5yxY1263691331Xv3r3VrFkzNW3aVAMGDNDHH38st9td5nncbrdmzZqlUaNGqUOHDmrQoIFatWqlSy+9VO+9956sVq5noOaxGFwdrdFOnDihTp1OflLz+PHjCg8PNzlR+d26PFnuIHz3vTSwuc5rVd/sGPivvP2fKDvyQbNjAKhRLAq78B8Ku3iqLCF1zA4DAAACpCr//j506JBcLpfq1q2rs88+218REYQMw1CbNm2UlpamJk2aKCEhQY0b+2Z+5dy5c3XfffcpLy+vxGPuuece/ec//ynyQePY2Fh16dJFkvTVV1/pwIEDJV7ob9OmjdavX68ePXoU+3hsbKxGjhyp/fv3l5jj0ksv1U8//aSWLVt675s5c6YmTZpU4nMKHDlyRJ07d1b//v21bds2nXvuufrjjz9KfU7v3r21a9cu9ezZs9BQ8FPPuXPnTt17773asaP4rgxDhgzRsmXLFBYWVuzjx44d05gxY7R79+4Sc3Tr1k3Lli1T9+7dy/o2gUrxx99fpu2QAIJVRLzN7Ag4hZP5EQAqzFDunteVvnqE3PmJZocBAABAENu7d6/S0tIknWyR7qtixHfffac77rhDeXl56tq1q9577z2tXLlSO3bs0Pfff69rrrlGkvTll1/q6aefLnWtzz//XG+++aaGDh2qb775Rtu3b9eaNWs0ceJESVJKSoruvvvuYp+bm5ur4cOHe4sR1113nRYvXqzt27drwYIFGjp0qCRp06ZNGj16dKFdB9ddd51+//13PfDAA977fv/99yJ/OnbsKEmaPHmyJGn//v3asmVLid/P7t27tWvXLkkqMbck3XfffdqxY4duuukmLV++XNu3b9c333yjfv36SZI2bNigO+64o9jnpqWl6dJLL9Xu3bvVoEEDPfzww1qwYIG2bdumX3/9Vc8995xCQ0P1559/auTIkcrKyioxB1DdmDJDosDu3bu1ceNGxcTEKCcnp8ytShaLRV9++WWA0gH+sTXBrkk9DdUNsZR9MPzOkbLV7AgAaihH4q9KXdJLzYfMU4P2w8yOAwAAgCC0Z88e7+3evXv7ZM3U1FRNmTJFhmHo7rvv1qefflpoB0Tv3r11/fXX6/nnn9cbb7yh999/X/fdd5/OOeecYtfbvHmz7r33Xn366aeyWP53LWT48OGqX7++vvjiC0VGRmrXrl3q1atXoedOnTpVMTExkqQXXnhBr776qvexPn36aPz48brjjjs0d+5cbd68WZ999pm3ANG8eXM1b95cbdu29T7n/PPPL/H7vuWWW/TEE08oLy9PX331lQYNGlTscTNmzJAk1atXr8SCgiRt27ZNb7zxhp577rlCmW+44QaNGjVKq1at0o8//qjly5d7CzwFHnnkER0/flxnnXWWfv31V+9ukwLDhg3TDTfcoMsuu0wxMTF6++239frrr5eYBahOTClIHDhwQHfffbciI8v/yWTDMChIoFbIcRraneJQn3YNzI4S9Dz2TLmzD5odA0AN5rEmKn31FQq7eKrCLvxHoX9gAQAAAP6Wmprqvd2mTZsSj/N4PIqOji7x8XPOOUf16tWTJH3yySfKyspSx44d9fHHH5c493Xq1KmaNWuW4uLiNHv27BIviLdv3947c+F0Tz75pL744gtJ0saNGwsVJOx2u/exnj176uWXXy7yfIvFoo8//lgrV65UWlqaPvroo0I7IiqiSZMmuvHGG/XVV19p/vz5ev/999WoUaNCxzgcDs2dO1eSNGrUqFJf8wsvvFDPPvtskfvr1q2rL774Ql27dpXT6dTHH39cqCARGxur+fPnS5I++uijIsWIAr169dJDDz2kt99+WzNnzqQggRoj4C2b4uLiNGTIEEVGRsowDBmGocaNGys8PFxnnnlmiX/OOussnXnmmYGOC/gFbZuqB2fqVklBOMgEgG8ZbuXuekEZa66Vx5ZmdhoAAAAEkZycHO/t0to1ZWdn64ILLijxT1xcnPfYxYsXSzp5wb1Bg5I/TFm3bl3vLoLSWhxNmDChxHXOOecc7wyFgp0QBXbs2KHMzExJ0l133aU6dYqf39a0aVPdeOONkqTo6GglJCSUmKUsBW2bsrOz9f333xd5fMmSJd4WWaW1a5KkO++8s8QPLIWHh+vKK6+UJK1bt65Q15hly5bJ7XYrNDRUI0eOLPUcQ4YMkSTFx8fr2LFjpR4LVBcBL0i8/vrrSklJkXTyl3z//v3Kzs7W0aNHdeTIkTL/ALXB9iSH7ME40buaoV0TAF+yx61QypJeciQzmwYAAACB0aRJE+/t0oZPl5fb7dZvv/0mSd4WS6X9WbhwoSQpMbHk2Wrnnntuqeds0aKFpMLFFUmFhkUPGDCg1DVOffzU51XU4MGDdd5550k6OYz7dAX3tW/fvsxiQcGsiJL0799f0smf26nFmO3bt0uS8vPzVbdu3VJf/1GjRnmfV9rPAKhOAl6QWLlypSwWiyZOnKjPPvuMKfAISna3oe2JdrNjBD0GWgPwNU/ecaWtHKK8fdPNjgIAAIAg0KpVK+/tgg8AF6d58+beTiUFf+68884ix6Wnp8vlclU4R35+fomPhYaGlvrckJCTlydPny2bnp7uvX3qHIjinHHGGcU+rzLuueceSdKvv/6q2NhY7/0JCQlauXKlJGnixIkl7tgoUFbmdu3aeW+fmjk5ObmikSWV/jMAqpOAz5CIj4+XdPIXFwhmm+JtuqRjQ7NjBDVHapTZEQDURh6nsrc9LkfyJjW7ZIZC6jc1OxEAAABqqYsuush7e9euXVVe79SiwOTJk/Xoo4+W63n169ev8rlLE8hZbRMnTtRzzz0nh8OhWbNm6aWXXpIkzZ492/v6lNWuSap85oJztG7dWr/++mu5n1fSrAmgugl4QaJFixZKTk5W8+bNA31qoFrZneJQrsOjsPoB36gESa7sP2XY6fUOwH9sR7+XM/03tRi2UPVaXWx2HAAAANRC559/vlq1aqW0tDRt3LhR+fn5Ze5IKE3Lli29tw3D0Pnnn++LmFXOkpSUVGqXlVPbFZ36vMpo3bq1xo4dqwULFmjWrFl68cUXZbFYNHPmTEnSJZdcUq6OL2VlTkpKKjZzwa6XnJwc9ejRo8ydGEBNE/AroX379pUkHTx4MNCnBqoVtyFF0rbJNI7kCLMjAAgC7pzDSl0+SPkHPjM7CgAAAGohi8Wi22+/XdLJQcyzZs2q0nr169dXz549JUkREeb+u/nUYsjWraXPgIyK+l8HhNOLKJXZqVAw3PrIkSNat26dNm/erP3790sq3+4ISdq2bVu5Hg8NDVXXrl299/fq1UuSZLfbvfMkgNok4AWJRx55RIZh6LPP+Ic5EBFnMztCUHLnHlPO9mfMjgEgWLhtytpynzI33CGPs+qDBgEAAIBTPfHEE2rY8GRL6Oeee05Hjhyp0npjxoyRJO3fv1+rVq2qcr7K6tOnj7fDyqxZs+TxeIo9LicnR999950k6bzzzlP79u0LPV7w2kgnL/KXxxVXXKGzzjpL0slB1gXDrMPCwnTjjTeWa405c+bIMIxiH4uLi9Pq1aslScOGDSu0C2L06NHeIsr06dPLdS6gJgl4QWLEiBF65pln9Ouvv+qBBx6Q0+kMdASg2vgj3ak0q7vsA+EzHmeu0n8ZLY8tqeyDAcCHrDFfK21Zfzkz/zA7CgAAAGqRM888Ux988IEkKSsrS5deeqk2bdpU6nMMw1BmZmaxjz366KMKCwuTJE2aNEn79u0rda1ly5Zpz549FQ9ehgYNGnh3Kuzdu1evvvpqkWMMw9DDDz+s1NRUSdLDDz9c5JhTCxSHDx8u17lDQkK8OyG+//57zZ8/X5J0ww03eF+bsvz222965513itzvcrl07733yuFwSJIeeOCBQo+fc845uuGGGyRJ3377rd57771Sz3PkyBHNmzevXJmA6iDgMyRmz56tHj16aPDgwfrss8+0ZMkSTZgwQeeee265etwxDBu1iSFpc7xdo/9S+f6OKD/D8Chzw21yZfj+/ygBQHm4MqOVtrSfmg36VI3+cpvZcQAAAFBL3HvvvYqLi9PUqVMVHx+vyy67TH/96181evRoXXDBBWrZsqXcbrcSExO1c+dOfffdd95CQ506dQoNpW7Xrp1mzZqlCRMmKCEhQX379tVdd92lkSNHKjw8XE6nUydOnFBUVJQWLlyomJgYLVmyRBdeeKHPv68XX3xRixYtUkxMjF5++WX9/vvvmjRpktq3b68jR47oo48+0rp16yRJgwYN0pQpU4qsMXjwYO/txx9/XM8//7zat2/v3YXQuXNn1a1b9BLp3XffralTpyo/P7/QfeXVt29fPfPMM/rtt980ceJEtW3bVocOHdJ7773nbTE1evRojRo1qshzP/nkE23fvl0xMTH6+9//rp9++kkTJ05Uz5491aBBA6WlpWn37t1auXKl1q5dq3HjxumWW24pdzbATBajpL1DfhISElLpKfMWi0Uul8vHiWq2EydOqFOnTpKk48ePKzw83ORE5Xfr8mS5A/ruq546N62rty6r2sAllE/29qeVt7fopxMAwAyh3aeo6YAPZKnTwOwoAACgHKry7+9Dhw7J5XKpbt26Ovvss/0VEdAPP/ygJ598UjExMWUea7FYdNVVV+mdd94pdnj1kiVLdNdddyk9Pb3UdUJCQrRmzRpdfvnl3vtiY2PVpUsXSSdbHt11110lPr9z5846evSo7rzzTu/g6FPFxsZq5MiR3hkOxbnkkku0ePHiEgda33TTTd62Tqc7cuSIOnfuXOxj11xzjVasWCFJ6t69uw4cOFBiBkmaOXOmJk2aJEnauXOn7rnnHu3atavEzCtWrFCTJk2KfTwxMVE33nijNm7cWOo5pZM7WWbMmFHmcUBF+ePvr4DvkJBUYv80IBjFZrsUn+tShzBTfh2DRv6hmRQjAFQr+Qc/kyN1m1oMW6C6Tf9idhwAAADUAuPGjdPo0aP1ww8/aNWqVdqyZYuSk5OVmZmp0NBQtWrVShdccIEGDRqkm266yVs0KM7o0aN15MgRff7551q+fLn27dun9PR01a1bV2eccYZ69uypv/71r5owYYK3WOcPnTt31u7du/X5559rwYIF2rt3r7Kzs9WyZUv16tVLt912m2699VaFhJTcmf7rr79W3759tXDhQh04cEA5OTklzqQ41R133OEtSBQUGsqrRYsW2rx5s6ZPn6758+fr8OHDMgxDPXr00MSJE/XAAw8Umh1xujPOOEMbNmzQsmXLNG/ePG3ZskWJiYlyOp1q3ry5zj77bA0aNEhjxozRkCFDKpQNMFPAd0gcPXq0Ss8vGCiDk9ghUTuMPztUN3YvXw9CVJwjaaPSVl0heRxmRwGAIiz1mqnZpTPU6KzrzY4CAABKwQ4JIPg8//zzeuONN1SnTh0dP368yMDs0526Q6K0nRdATVErdkhQUACK2hxvpyDhJ66cI8pYez3FCADVluHMUuav4+U873E16fuWLCH1zI4EAAAABD23263Zs2dLkkaOHFlmMQJA+ZS8lwlAwCTkufVnptPsGLWOx5GtjF9GyWNPNTsKAJQpL3qa0lYMlTvvuNlRAAAAgKA3d+5cnThxQpJ0//33m5wGqD1oWg9UExHxNnVrzqdifcXwuJW5/ia5MqPNjgIA5eZM2aKUxb3U/LKv1TD8arPjAAAAAEHlzz//lNPp1Pbt2/X4449Lki666CJdc801JicDag9TCxJut1s//vij1qxZo7179yo9PV2S1LJlS51//vm64oordN1115U64AWoLbbE23VHjzCFWCxmR6kVsrf9Xfa4lWbHAIAKM+xpylhzjcIu/IfCLp4qSwj/PwgAAAAIhNN75NerV0+ffPKJLFyrAXzGtILEypUrNWXKFMXFxXnvK5ivbbFYtHnzZn322WcKDw/XZ599pquuusqsqEBAZNg9ik5z6vzW9c2OUuPlHfhU+X+8b3YMAKgCQ7l7XpcjebOaD/lGdULPMDsQAAAAEDRatGih3r1765VXXtGgQYPMjgPUKqbMkJgzZ45GjRqluLg4GYYhwzB01llnaeDAgRo4cKB38LVhGDp+/LiuvfZazZ0714yoQEBtireZHaHGsyesVXbkw2bHAACfcCT+qtQlvWRPXG92FAAAAKDWK7hOmZ6erjVr1mjw4MEVev5dd93lXaNz587+CQnUcAEvSBw9elRTpkyRx+NRaGioXnvtNSUmJiomJkabN2/W5s2bFRMTo8TERL3++usKCwuTx+PRvffeq2PHjgU6LhBQUQl2uTyG2TFqLFf2IWX8OkEyXGZHAQCf8VgTlb5quHL3vOHdTQoAAAAAQE0U8ILE+++/L7vdrrCwMG3cuFH/+Mc/1LZt2yLHtWnTRs8995w2btyosLAw2e12vf8+LVhQu+W5DO1Kdpgdo0by2DOUvmaUDEeG2VEAwPcMt3J2Pq+MX0bJY083Ow0AAAAAAJUS8ILE6tWrZbFY9NRTT+niiy8u8/iLLrpITz75pAzD0KpVq/wfEDBZBG2bKszwuJSx7ga5sw+aHQUA/Mp+YrlSF/eSIznS7CgAAAAAAFRYwAsSBW2XrrjiinI/Z8SIEYWeC9RmO5Lssrk8ZseoUbK3/k2OhF/MjgEAAeHOO6a0lUOUt2+62VEAAAAAAKiQgBck3G63JKlOnTrlfk7dunUlSR4PF2lR+zk8UlSi3ewYNUZe9AfKP/Afs2MAQGB5nMre9rgyfp0gjyPb7DQAAAAAAJRLwAsSHTt2lCRt3ry53M8pOLZDhw5+yQRUNxHxFCTKw3ZipbK3PWF2DAAwje3o90pd0lvOtN/MjgIAAAAAQJkCXpC4/PLLZRiG3nzzTcXHx5d5fHx8vN58801ZLBb99a9/DUBCwHy/pzqUbWdHUGmcmdHKXH+TZLjNjgIApnLnHFbq8kHKP/i52VEAAAAAAChVwAsSf/vb3xQSEqKUlBQNGDBACxcu9LZxOpXH49HChQs1aNAgJSUlKSQkRA8//HCg4wKmcBvSlgSGW5fEY0tVxi+jZThpUwIAkiS3TVmbpyhz40R5nHlmpwEAAAAAoFh1A33C888/X6+++qqef/55xcfH66abblLz5s3Vu3dvtW3bVhaLRUlJSdq5c6cyMzNlGIYk6dVXX9X5558f6LiAaSLi7bqqc6jZMaodw+1Qxq/Xy50TY3YUAKh2rIfnyJm2Q82HLVS95j3MjgMAAAAAQCEBL0hI0nPPPadmzZrp6aefVn5+vjIyMrR27dpCxxQUIkJDQ/XOO+/ogQceMCMqYJqDGU6l5LvVJrT8A+CDQVbkA3IkbTQ7BgBUW67MaKUt7admgz5Vo7/cZnYcAAAAAAC8At6yqcCDDz6o2NhYvfXWWxoxYoTOOOMM1a9fX/Xr19cZZ5yhESNG6K233lJsbCzFCAQlQ1JEPG2bTpW7911ZD80wOwYAVHuGK0+ZG29X1ub7ZbjtZscBAAAAAECSSTskCrRu3VpPPfWUnnrqKTNjANVWRLxN13VrbHaMasF2fIlydjxjdgwAqFHyD34qR2qUWly+UHWbdDU7DgAAAAAgyJm2QwJA2Y7luHU8x2V2DNM50/coc/2tkuExOwoA1Diu9F1KXdxbtqM/mB0FAAAAABDkKEgA1VxEXHC3bXJbk5Txy2gZrlyzowBAjWU4s5Tx6/XKjnpChsdpdhwAAAAAQJCiIAFUc8E8R8Jw25WxdpzcecfMjgIAtUJe9DSlrRgqd95xs6MAAAAAAIKQ32ZIdO16sk+xxWLR4cOHi9xfGaevBQSDZKtHBzOc6t6intlRAi4z4h45U7aYHQMAahVnyhalLO6l5pd9rYbhV5sdBwAAFCNhpsXsCH7T/i7D7+dYt26dLr/88hIfb9y4sTp06KABAwZo0qRJ+utf/1rutWNjY9W1a1cZxsnvY+7cubr11lvL9bwuXboUud9isahp06Zq1qyZ2rdvrz59+mjgwIEaN26cwsLCylx32LBhWr9+fZH7GzVqpGbNmqlly5Y6//zz1bdvX40dO1bdu3cvx3dZ2ObNm3XJJZcoJCRESUlJat26tTd7SRo2bKjWrVvr4osv1g033KBbb71VdeuWfBmyc+fOOnr0aLkzNWvWTJmZmcU+lpeXpzlz5mjx4sXavXu30tLSZBiGmjZtqs6dO+uCCy7QoEGDdPXVV6tTp06SpJdffllTp04t9/mLc+edd2rmzJnFPjZlyhR9/vnnGjNmjH766SdJ0syZMzVp0qRij7dYLAoLC9OZZ56pSy65RFOmTFGfPn0qlGf9+vUaNmyY9+uIiAgNHjy4zOeV9PtTp04d73u1U6dO6tOnjy699FKNHj1a9evXL3Pdkn7GjRs3VrNmzdS6dWtddNFF6tevn66//np17NixzDVP98033+i2225Ty5YtlZycrDp16pT4u1cgNDRUbdu2Vd++fXXbbbfpuuuuK/Ucpb3vi3PRRRfpt99+K/axtLQ0ffXVV1q5cqX27t2rjIwMWSwWtWjRQp07d9bFF1+swYMH66qrrlLbtm0lSXfddZdmzZpVoQyne+mll/Tyyy9XaY2q8FtBIjY2VlLRH1LB/ZVR0R84UFtsirMFXUEiZ/frssXMNTsGANRKhj1NGWuuUdiF/1DYxVNlCaljdiQAAICAycvL06FDh3To0CF9/fXXmjhxombMmKE6dcr+/0SzZ8/2FiMKvi5PQaIkhmEoKytLWVlZOnbsmLZu3aqPP/5YTZo00eTJk/Xqq6+qcePGFV7XarXKarUqMTFR0dHR+u677/TMM8/o8ssv13vvvaeLLrqo3GstWbJEkjRo0CBvMaIsNptNJ06c0IkTJ7R06VK9//77Wr58udq1a1fh76UitmzZoptvvlnHjhXttJCamqrU1FRt375dX331ldq1a6fExES/5pFO/oyXLl0qSRo9enS5n5OTk6N9+/Zp3759+vzzz/Xss8/qjTfeKPd5T79oPXv27HIVJEridruVkZGhjIwMxcbGauPGjZo+fbratGmjRx55RM8++2ypRaeS5OXlKS8vT/Hx8dqzZ4/mzJmjxx9/XGPGjNF7772nzp07l3utgvfqyJEjy/X7LEn5+fmKjY1VbGysFi5cqCuvvFKLFi2q1O9dRSxevFh333230tLSijyWmJioxMRERUZG6j//+Y8GDBigyMhIv+YJJL8VJO68884K3Q+gZJEJNt3VM0whQVKUs8Z+r9xd/zQ7BgDUcoZy97wuR/JmNR86T3Ua+fcfhwAAAGZ44IEH9OCDD3q/NgxD6enp2rJli6ZNm6bk5GTNnj1bnTp10muvvVbmenPmzJEkhYWFKTc3V2vWrFFCQoLat29f7kxjx44tdK78/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wy1/3999+9t10ulzIzMxUXF6fIyEgtXLhQiYmJWrt2rfr3768PP/xQU6ZMKVfegou8JV1M79u3r7766qtC9+Xm5mrv3r366KOPtHv3bu3cuVMTJkzQxo0bSz1Xhw4dtGrVqjIzFXex+eDBg7rqqquUk5MjSRozZowmTJig7t27q379+kpNTdXu3bv1888/69dffy303AcffFATJkwo9lw//fSTXnjhBUnSa6+9prFjxxZ7XIsWLYq9f8eOHUpISJDFYtG1115b7DGnr+vxeJSSkqJ169Zp+vTpys3N1f/93/+pa9eumjx5crFrnMpqtWrhwoWS/vde/e677/T++++rQYMGZT6/wOm/P7m5ucrIyNCePXv0yy+/aM2aNUpJSdE///lPLVmyREuXLlWbNm1KXfP0n7HT6VRGRoaOHj2qzZs3a8GCBcrKytIPP/ygX375RV9//XW5Cjkul0srV66UVPJ79fTfPUnKysrSjh07NH36dB05ckSrV6/Wfffdp6+//rrU8xX3vi9Oo0aNity3ceNGTZgwQU6nU3Xq1NEtt9yi0aNHq0uXLqpTp46SkpK0c+dOrVy5Ups3by703Ndff11PPvlksef6+OOP9cknn0iSZsyYoX79+hV7XMFuC7P4rSBR0g+kPD8oAIVlOQz9nurQRW3K/5dGTeVM3aGsTRMl+X8bLwBAciT+qtTFF6v50G/V4IyhZscBAADwqbZt2+r8888vcv/QoUM1ZswY9enTRzabTR988IFefPHFUlvPbN68WX/++ackadq0abr//vvldrs1d+7cEi8QFqd58+bFZrryyiv12GOP6dixY5o8ebJ+/vlnHTx4UKNGjVJkZGSJF7wLFLemJN12221699139f777+v555+Xw+HQAw88oA4dOmjUqFGlrnnkyBHt27dPUskXeRs3blzsuQcOHKjbbrtNvXv31v79+7Vp0yZt2bJFgwYNKvF89erVK/H7KMvzzz/vLUZ89dVXuuuuu4ocM2LECD355JNKSUnRd999572/bdu2JV6k3b59u/d2x44dK5yvoKDTt2/fEgtXJa07fPhwDRs2TCNGjJBhGHrnnXfKVZD44YcfvK/FBx98oLvvvlsZGRlasmRJiYWX4pT0+zNy5Eg988wzio6O1u23365du3YpKipK48aN09q1a0v9PSrtZzxp0iRNmzZNL730kt577z1lZ2frpptu0oYNG9S3b99Ss27cuFGZmZmqV6+err66+Na0Jf3uXXLJJbrpppt0wQUXKCUlRd98843efvttdejQocTzlfS+L48nnnjCW4xYuXKlrrjiiiLHjBw5Us8//7yOHj2qX375xXt/x44dS2xndep7uEuXLpXO528MtQZqiIh4u9kR/M6dH6/0tWNluPLNjgIAQcVjTVT6quHK3fNGoRYEAAAAtdl5553n/cR6Tk6O9u/fX+rxs2fPliS1bt1ad955p4YPHy7pf7smfOXMM8/UihUrvNkOHjxY5X7vDRo00NNPP+3N6vF4NHnyZNlstlKfV3AxvWvXrjrvvPMqfN5GjRrpoYce8n69bdu2Cq9RHm63W8uWLZN08sJ/ccWIU7Vp06ZQLn8qeA3LKv6UZPjw4erdu7ekk++F7OzsMp9T8F698MILNWnSJJ1zzjmF7veV8847TxEREerVq5ekk3Mq/v3vf1dpzbCwMP3rX//Sm2++Kenkbo/yFGEKXudLL71UzZo1q/B527Vrp4kTJ0o6uZPq1EKUL8XHx3vXHjduXLHFiFOdddZZuvvuu/2SxSwBL0gcO3ZMx44dk9vtLvdz3G6393lAsIpKtMvhrr0XiQyXVRm/jJUnP87sKAAQnAy3cnY+r4xfRsljTzc7DQAAQECcOuzWbi/5g4B2u937ifobb7xR9erV0x133CFJ2rNnT4lDayurTp06mjlzpkJDQyVJn3/+uVJTU6u87s0336wbbrhBkpSUlKQZM2aUenzB7IPKXkyXyv8aV0VKSoqsVqskqVu3bn45R2XExcVp165dkso/P6I4FXkNExIStGbNGknS7bffXuh/V65cqZSUlErnKE6jRo00Z84c7+zfd999V06ns8rrPv300xowYIAkaffu3Vq+fHmpx1d0TkdxAvFePfX6dnV6rwZSwAsSnTt3VteuXXXgwIFyPyc2Ntb7PCBYWV2GdibXzl0ShmEoc9Odcqb5p/oMACg/+4nlSl3cS46UrWZHAQAA8LujR496b5955pklHrdkyRJlZGRI+t/F3XHjxnkH3/r6k+fSyZ0YBeeyWq1avXq1T9Z9/PHHvbd//PHHEo/LycnR+vXrJVXtIm95X+OqOLVF0B9//OGXc1RGwUXy8PBw7y6Cyih4DRs1alTmjIa5c+fK7XYrJCTEO3D9tttuk8VikdPp1Lx58yqdoyQ9e/bUiBEjJJ3cAeCLnTAWi0WPPvqo9+vS3qsHDhzQoUOHJPFerQlMadlU2VYAtBBAsKutbZtyf3tJttgFZscAAPyXO++Y0lZcprzo982OAgAA4Df79+/3XjAeOHCg2rVrV+KxBQWHv/zlL94ZCI0bN9Z1110nSfrmm28q1A2kvE5t51LWQOjyGjBggJo0aSJJ2rJli1wuV7HHrVq1Sg6HQ02bNtXQoZWbNWa1Wr0tfBo3blxme5rKatmypc466yxJJz9N/9Zbb8nj8fjlXBVR1XZNkrRu3Trt2LFD0slB3WUpaMs1bNgw76yBLl26aPDgwZL8UzyT/PNeLe+aBa/zueeeW+ldBwUD7iWpU6dO3jZZvtajRw81bNhQkrR48WLNnTvXL+epzvw21NqXCgoRISGMvEBw25VsV77To9B6ted3wRozT7m7XzU7BgDgdB6nsqMekyNpo5pdMkMh9ZuanQgAAKDCkpOTtXfvXu/XhmEoMzNTW7Zs0bRp02S1WtWsWTNNmzatxDVSUlK0cuVKSSc/aX6q22+/XXPnzlVSUpJWrVqla665xqf5T70oevDgQZ+sGRISoosuukibNm1Sbm6uEhIS1KlTpyLHFVzkvfLKK1WvXr0S18vLyyv0GktSfn6+fv/9d/373/9WdHS0LBaL3n77bbVq1arUbE6ns8haxSluCPXf/vY373DxZ599Vv/5z380ZswYDR48WP379y/UjicQrFar1q5dK6nsgkRcXFyh79vj8Sg1NVXr16/X9OnT5fF41LFjR7322mulrvPbb79pz549kv63k6fA7bffroiICO3YsUPR0dGVmglSGn+8V9u0aaPw8HCdOHHCO1C+OOUt/GRmZhZ5f2VnZ2vnzp16//33lZSUpPr16+vDDz8s9T0vFf++L054eLiaN2/u/bpRo0aaPHmyPvroIxmGodtvv11vvPGGRo0apUGDBql///6lDtOuDWpEQSIhIUGSvNVbIFg5PdLWRLsu79TI7Cg+4UjZqsyI2jWYBwBqG9vR7+VM360WwxaoXquLzY4DAABQIZ988ok++eSTYh8LCQnR/fffr8cff1zdu3cvcY158+Z5e+KffpF3xIgROuOMM5SYmKjZs2f7vCBx6gX8gpZR/lj39IKEx+PRihUrJJXdAmf79u264IILSnz8yiuv1LPPPqvLL7+8zFzx8fGlrlXgpZdeKjLo+/HHH1d0dLR3LkZsbKw++OADffDBB5JODi0eNmyYbrvtNo0aNco788Bf1qxZI6vVqtDQUO8A9JK88MILeuGFF4p9rEGDBnrmmWf0yCOPlHmhuuAT/o0aNdL48eMLPXbjjTfq0UcflcPh0OzZs71Do33Fn+/VEydOyOVyKTs7W02bFv6gVEZGhjZv3iyp7PfqTz/9pJ9++qnEx2+66SY99dRT6tOnT5m5ynrfF/jqq6+KDFl/++23dfjwYe/vWHR0tKKjo72Pn3nmmRo+fLgmTpyoYcOGlXmOmsa0j1mX55fe6XRq//79ev311yXJOxEeCGYR8TazI/iEO++4MtZeJ7lrx/cDALWZO+dPpS4fpPyDn5sdBQAAwGc8Ho++/fZbffLJJ6UOsC24yNu/f3+dffbZhR6rU6eObr75Zkkn269kZ2f7NGNYWJj3dk5OTsDWjYyMVEpKikJCQqpcZPn111/14Ycf6vjx41VapywhISH68ssvtXr1al199dWqW7fw57CTkpI0f/58jRkzRv3799fhw4f9mqfgU/tXXHGFt0VPZdjtds2aNUszZswotQ2Vy+XSN998I+nkhfnTL9y3bNnS+7OcO3euz1tamfVeXbFihVwul1q2bKlLLrmkSudasmSJPvroI2VmZlZpnbI0atRIy5Yt0/z583XZZZcVuU5+7NgxffXVV7r88st19dVX+3wQudn8XpCoU6dOoT/Sye1x559/fpHHTv/TsGFD9ezZUz///LMsFosmTJjg77hAtbcvzalMm+/7UgaSx5mn9DWj5bEmmh0FAFBebpuyNk9R5saJ8jjzzE4DAABQLi+99JIMwyj0Jz8/X3v27NFTTz2l3NxcTZ8+XVdccYXy8/OLPH/fvn3e/v2n744ocOrg6QULfDsf8dQLsKdfYPbnugUX0wcNGqTWrVuXutbQoUOLvMYOh0NHjhzRv//9bzVr1kw//PCDBg4cqP3795e61llnnVVkreL+nL474lQjRozQihUrlJaWpuXLl2vq1KkaPXq0mjVr5j1m+/btuuyyy7xdWXzNMAzvfJLyDFn+6quvinyPOTk5ioqK0uTJk5WYmKh//vOfuummm0osJKxatUpJSUmSyn6vnjhxQr/++mtlvrUSmf1eHTlypPfac0nuvPPOIq+zzWbTgQMH9MYbb8hisWjmzJm65JJLvK9lSYp73xf35/TdEQUsFotuvPFGbdiwQcnJyfrxxx/1/PPPa8SIEWrU6H+dUVatWqXLL79cubm5peapSfxekDj9h1DS/WX9ueGGG/TYY4/5Oy5Q7XkMaUtCzR1ubRgeZW64Ta6M3WZHAQBUgvXwHKUt6y9n5h9mRwEAAKiURo0a6YILLtDbb7+tjz/+WJK0adMmvfHGG0WOLdgdUbduXe9OiNP16dNHPXr0KHS8r6Smpnpvt2zZMmDrVnUYc7169dS5c2c9+OCDWrdunerVq6f4+HhNnjy5coEroWnTpho5cqRefPFFLV68WElJSZoxY4ZatGgh6WSL+H/+859+OfeOHTuUkJAgi8Wia6+9tlJrhIWFqV+/fvr888/1j3/8Q5K0cOFCb0uq0xW891q1aqWrr7662GNGjRrlnWdQ096rdevWLdLO3+Vyeee7VPa92qBBA3Xv3l3PPfecFi1aJOlkC6W///3vVUhdMa1bt9bYsWP12muvafXq1UpOTta7777r3Vmzb98+TZ8+PWB5/M3vMyReeumlQl9PnTpVFotF999/f5HhM6eyWCxq2LCh2rdvr8GDB+svf/mLv6MCNcameJtGdgk1O0al5Ox4TvbjJffrAwBUf67MaKUt7admgz9To663mh0HAACg0u655x49++yzSk9P14wZMwoNDfZ4PJo7d66kkxc+S7uOVWDjxo2KjY1V586dfZJv165d3tu+amXu8Xi8g4+bNm2qM844o9DjsbGx2rdvn6Tyfbq/LD179tQ111yjn376SRERETp48GCpMzv8pUGDBpo0aZI6dOjgvWC/aNEiffbZZwoJ8e1ntgt2R/Tp00ft27ev8np///vf9eabb8rj8WjGjBlFCjtZWVlavHixJCktLU3169cvc81Fixbp448/VuPGjaucT/LPezU5OVnx8fElrrlp0yZlZmaqbt26JRZhKuLKK6/URRddpN27d+u7777Tp59+6rPXpyLCwsL097//XWFhYbr//vslSQsWLChxzkhNY0pBQpIeeughn09zB4LFn5kuJeW71S609K1o1U3+n7OUt/dts2MAAHzAcOUpc8NtciRuUNMB78tSp4HZkQAAACosJCREZ599trZu3aqEhASlpaV5h/P+8ssviouLq9B6hmFozpw5Pvvk/c8//+y9femll/pkzS1btnjbvwwaNKhIm5uC3RFdunRRz549fXLOc8891ztM+PfffzelIFHgqquuUqdOnXT8+HFlZGQoLS1Nbdq08ek5Cl5DXxR0pJM7Dtq0aaOkpCT9/vvvRR7/7rvvZLNVbEZnbm6uFi1apDvuuMMnGf3xXi1rzYLX+bLLLvPu/Kiqc889V7t37/bONi7PgGt/mTRpkh5++GG5XC79+eefpuXwNb8XJE731VdfSZLCw8MDfWqgVtkUZ9P4swNfpa0sR9ImZW2eYnYMAICP5R/8VI7UKLW4fKHqNulqdhwAAIAKc7lcxd4uaGnToEEDzZgxo8xP0b/99tvatWuXzwoSKSkp3iHFjRs31pVXXlnlNSUVav0ybty4Io/7+mK6VPJrbJYOHTp4h2yfPlC4quLi4rRz505J/nkNi3v9Ct6r7du313vvvVfmWk899ZROnDih2bNn+6QgsXfvXv3yyy+SpE6dOqlv375VXtMwDH3wwQfer4PxvVq/fn21atVKSUlJPn+fmingBYk777wz0KcEaqWI+JpTkHDlHFHG2nGSx2F2FACAH7jSdyl1cW81v/QrNTyr6D8UAAAAqqv8/HxFR0dLOjlbomCAc25urn744QdJJ4ck33pr2W0qExMTtWvXLh06dEhbtmzRoEGDKp3L4/Horrvu8g7anjJlik/68n/77bdauHChpJMXr08fuJuTk6P169dL8u1F3u3bt3tvd+rUyWfrVsapP/OmTZt6d8T4SkG7pvDwcPXq1csna8bGxiotLU1S0dfvyJEjioiIkCSNHz++xFknp4qMjNT777+vtWvXKi4uTh07dqx0NqvVqokTJ3pnBz/55JOqW7fql5zfeustRUVFSZJ69+6tq666qtDjBw4c0KFDhyT57r1qGIZ3iL3kn/eqYRjlLi4cP35cycnJkqSuXWvPh7/8PtS6OMeOHdOxY8dkt5c9mNdms3mPB/A/cbluxWY7zY5RJo8jWxm/jJbHnlr2wQCAGstwZinj1+uVHfWEDE/1//sJAABAkl5++WVZrVZJJ1v5FLQv+v7775WXlydJmjBhQrnWGj9+vPdCY1UGBh87dkxXX321li9fLulkC5nTW6JXlMPh0DvvvOP9NHydOnX05ZdfqkGDwm03V61aJYfDoSZNmmjo0KFVOmeBZcuWeYscrVu3Vv/+/X2y7qlyc3M1YMAALV26VB6Pp8TjPB6P/va3vyknJ0eSNGbMGJ9/8rzgU/uVHWZ9Oo/Ho2effdb79enrzp4921sMKO97teA4j8ejr7/+utLZoqOjdemll3rnRwwdOlQPPPBApdeTTv4sn3zyST333HOSpNDQUH3xxRdFjit4nc855xx169atSucs8PHHHys2NlaSdPHFF6tDhw4+WfdU0dHRuvLKK7Vhw4ZSj7PZbJoyZYr3Zzt27FifZzFLwHdIrF69WiNHjlRYWJhiY2OL/IfvdPn5+erZs6esVqvWrFmjYcOGBSYoUANExNnVuWk9s2OUyPC4lbn+Zrky95kdBQAQIHnR0+RI3aoWQ+erTmNadAIAAHMlJydr7969he6z2Ww6dOiQZs+erZUrV0qSGjZsqFdeecV7TEFBoV69ehozZky5ztWpUyf169dPUVFRmj9/vt5///1ihwtnZmYWymS1WpWZmano6GitX79eS5Ys8baKOeecc7R06VI1a9aszPOfuqbb7VZmZqbi4uK0ZcsWLVy4UImJiZJOtqD697//rZEjRxZZo+DT/VdddZXq1Svf9Ya8vLwir7HT6VRcXJyWLVtW6GLy//3f/5X66Xmn01lkrZJ069ZNDRs29H4dFRWl0aNHq2PHjrruuus0aNAgnXXWWWrSpIkyMzO1a9cuzZgxwzuDoVmzZnr11VfLda7yslqtWrt2raSKfWo/Li6uyPedl5en6Ohoff7559qyZYskqVWrVnrmmWcKHTdnzhxJUtu2bXXZZZeV63yDBw9W+/btlZCQoDlz5hRZs8Dpvz95eXnKyMjQnj179Msvv+jnn3/2XjAfOHCgFi5cWOb75vSfsdPpVGZmpmJjY7V582YtXLhQmZmZkk7+jObOnVvsTpOC92pFXufTf/ekk8W62NhYLVy4UPPmzZN0crbMW2+9Vepaxb3vS3Leeed5W74ZhqGff/5ZP//8s7p166axY8dqwIABCg8PV2hoqFJTUxUVFaXPP/9cR44ckSSdeeaZevLJJ8v9fVZ3AS9ILFiwQIZh6LrrrlOLFi3KPL5ly5YaP368Zs+erfnz51OQAE6xOcGmW89tXG37yGVv+7vscSvMjgEACDBn8malLu6lZpfNUcPwq82OAwBAjdP+LsPsCLXGJ598ok8++aTUY9q0aaOvv/5aF1xwgaSTbVLWrVsnSfrrX/9arutXBSZMmKCoqChlZGRoyZIlGj9+fJFjfvrpJ++A55I0bdpU9957r1555RWFhoaW69wF+UtisVg0fPhwvffee8Ue6/F4vLsyKnKRd/v27WWeu169enrttdc0efLkUo+Lj48vc60Cu3bt0sUXXyxJqlu3rs444wwlJiYqLi5O//73v/Xvf/+7xOeeffbZmjdvnjp37lyuc5XXmjVrZLVaFRoaquHDh5f7eS+88IJeeOGFUo/p0qWLFi5cqDPOOMN7X0REhA4fPizp5IyFsuacFAgJCdG4ceP08ccfa9++fdqxY0exw5vL+/vz2GOP6emnny5Xq6by/Izr1q2rMWPG6L333tNZZ51V5PGMjAxvm6qKvFfL87sXFhamTz75pMyZLeV53xfIyMjwDt1u3LixWrRooYyMDP3555/617/+Vepz+/btq/nz55erKFlTBLwgsWXLFlkslgoN4rnqqqs0e/ZsbzUQwEmpVo/2ZzjVo2XRT1yYLf/AZ8r/432zYwAATOKxpypjzTUKu/AfCrt4qiwhdcyOBAAAIOnkoNiWLVuqZ8+euuaaazRp0qRCRYevv/7a2/anuIJCacaPH6+nn35a0sldFmU932KxqEmTJmratKk6duyo3r17a/DgwRo3bpwaN6783MiGDRuqWbNmatmypS644AL169dPY8eO1dlnn13icyIjI5WSkqKQkBBdc801lT63dLIlVLNmzdStWzddfvnlmjx5ss/a6hSnYcOGiouLU2RkpNasWaPIyEgdOHBASUlJstlsaty4sTp06KCLLrpIY8eO1fjx44vdvVJVBW2ErrjiikK7NyqjYcOGat26tS666CKNGTNGt99+e5Hi1KmtwSrzXv3444+96xRXkDhVSEiImjRpombNmumss85Snz59dNlll2nUqFFVei1DQ0PVrFkz7/fav39/jR8/vtR2SStWrJDL5VLLli11ySWXVPrc0sliWbNmzdSjRw+NGDFC99xzj19aNRXo0qWLkpKStGHDBq1du1ZRUVE6ePCgUlJS5HQ6FRYWpk6dOql3794aP368rr322nIXmmoKi1GwryZAwsLCZLVaFRkZqX79+pXrOdu2bdOAAQPUpEkTZWVl+TlhzXLixAnvgJXjx48rPLzmtEa4dXmy3Hzoo8pGnNlIky9oYnaMQuwJvyr956skeogDACTVP+NyNR86T3UatTM7CgAAlVaVf38fOnRILpdLdevWLfWCMGCm5557Tm+++aYGDx7s/fQ5ys8wDIWHhys+Pl6fffaZ7r33XrMj1Vq33HKLvv32W916662aO3eu2XFqNX/8/RXw8kpBD7yCIUHlUXCszWbzSyagJotMtMntqT6VHVf2IWWsm0AxAgDg5Uj8VamLL5Y9cb3ZUQAAAFCCyvTkx//s3LlT8fHxslgsGjVqlNlxai2Xy+Wd/cJ7tWYKeMum1q1bKyEhQTExMerdu3e5nhMTEyPp5DwJAIXlOAztSXWoV9vSB8QHgseeqfQ1o2XY082OAgCoZjzWRKWvGq4mvV5V4wuerbbzjwAAAIKRw+HQhAkTNH78eN1yyy1mx6mR3G63XnrpJbVo0ULt27c3O06tlZ6erkcffVSSih3Mjuov4AWJiy++WAkJCZo/f74mTJhQrud8++23kqTzzz/fn9GAGmtTnM30goThcSlj3Q1yZx8wNQcAoBoz3MrZ+Q85kjep+WVzFNKAD5sAAABUB/Xr19dLL71kdowarX///urfv7/ZMWq9tm3b6uWXXzY7Bqog4C2bxo4dK8MwtGjRIi1YsKDM47/77jstWrRIFotF1113nf8DAjXQ9iSH7CYP5Mje+ogcCWtMzQAAqBnsJ5YrdXEvOVK2mh0FAAAAABBAAS9I3HnnnercubMMw9Ctt96qJ598UsePHy9y3PHjx/XEE0/otttuk8ViUadOnTR58uRAxwVqBJvb0PYku2nnz/vjQ+Uf+MS08wMAah533jGlrbhMedHvmx0FAAAAABAgAW/ZVL9+fS1atEhDhgxRbm6upk2bpmnTpunMM8/09ldLSEjQsWPHJJ2cUB8WFqYffvhBDRqY3yMfqK42x9t0SYeGAT+vPW6VsqMeD/h5AQC1gMep7KjH5EjaqGaXzFBI/aZmJwIAAAAA+FHAd0hIJ+dIbN26Vb169ZJhGDIMQ0ePHtXWrVu1detWHT161Ht/nz59FBUVpV69epkRFagxfktxKNfpCeg5nZl/KGPdTZLhDuh5AQC1i+3o90pd0kfO9N1mRwEAAAAA+FHAd0gU6NGjh3bs2KGff/5ZS5cu1a5du5SamipJat26tXr37q3Ro0dr+PDhZkUEahSXR9qaYNfwMxsF5HweW5oyfhktw5kVkPMBAGo3d86fSl02UM0GfKDQ7veaHQcAAAAA4AemFSQKjBgxQiNGjDA7BlArbIqzBaQgYXicyvj1erlzDvv9XACAIOK2KWvzFDmSNqnZoE9kqRtqdiIAAAAAgA+Z0rIJgH/8ke5Uus3/7ZOyttwvR9IGv58HABCcrIdnK3Vpfzkz/zA7CgAAAADAh6pFQcLj8Sg1NVXHjh2T200veqCyDEmb4+1+PUfu3ndlPTTDr+cAAMCVuU9pS/vJGvON2VEAAAAAAD5iWkHC7Xbryy+/1GWXXabQ0FC1a9dOXbt21YEDBwodt3TpUj399NN6/fXXTUoK1CwR8Ta/rW07vlQ5O57x2/oAAJzKcOUpc8Ntytp8vwy3fwvuAAAAAAD/M2WGRHJysq677jpt3bpVhmGUemznzp01ZswYWSwWXXvttbr44osDExKooWKyXIrPdalDmG9/vZ0Zvytzw62S4fHpugAAlCX/4KdypG1Ti2ELVLdJV7PjAAAAAAAqKeA7JNxut0aPHq3IyEhZLBbdeOON+uijj0o8/vzzz9eAAQMkST/88EOgYgI1mq93SbitycpYM1qGM8en6wIAUF6utJ1KXdJHtqM/mh0FAAAAAFBJAS9IzJo1S9u2bVO9evW0bNkyffvtt3rwwQdLfc6YMWNkGIY2bdoUoJRAzRbhwzkShtuujF/HyZ131GdrAgBQGYYjUxm/jlN21BMyPE6z4wAAAAAAKijgBYl58+bJYrHovvvu01VXXVWu5/Tq1UuSisyXAFC8hDy3YrJ8c6EmK2KynMmbfbIWAAC+kBc9TWkrh8mdd8LsKAAAAACACgh4QWLPnj2STu56KK+2bdtKktLS0vySCaiNNsVVvW1T7p43ZI352gdpAADwLWfyZqUu7iXbiZVmRwEAAAAAlFPACxKZmZmSpFatWpX7OW63W5JUp04df0QCaqUtCXZ5yhgaXxrr0UXK2fmCDxMBAOBbHnuqMtZco5yd/5RheMyOAwAAAAAoQ8ALEi1btpQkHT9+vNzPOXTokCSpTZs2fskE1EbpNo+i0yrXtsmZtlNZG++QVPmCBgAAgWEod89rSl89Qm5rktlhAAAAAAClCHhBomfPnpKkbdu2lfs58+fPl8ViUb9+/fwVC6iVIuIr3rbJnZ+g9F/GyHDl+yERAAD+4UhYq9TFvWRPXG92FAAAYLJ169bJYrGU+CcsLEzdu3fXHXfcobVr15a4TmxsbKnrFPfnuuuuK3G9EydO6OWXX9Zll12mNm3aqF69emrUqJHCw8M1ZMgQPfroo1q4cKGysrK8zxk2bFiFM5z+Z+bMmSVm6t69uywWi6ZNm+a976677ipxrbp166ply5YaOHCg/vnPf+rEiYrP9Jo6dap3vWbNmslmK9+1i5dffrnYTA0aNFDbtm119tln65prrtGLL76oDRs2lGvNkn7GISEhat68uc466ywNHDhQDz30kObMmaPc3NwKf7+SNGXKFFksFo0dO9Z738yZM0t8nUNCQtS0aVOdf/75uu+++7Rjx45S1y/rPV/cn8cee6zE9Q4ePKinnnpK/fv3V8uWLVWvXj01btxYnTt31vDhw/X0009r2bJlys//37Wjzp07V/m9um7dumLz2O12NWnSRBaLRT/88IP3/tJ+P+rVq6c2bdpoyJAhevPNN5Wenl6+H9YpJk2a5F3vnHPOKffzSvodatiwodq1a6dzzjlH48aN0+uvv66dO3eWa82SfsYFv5NdunTRkCFD9Pjjj+v777+Xw+Go8PcbKHUDfcLrrrtOa9eu1UcffaQnnnhCLVq0KPX4hQsXasmSJbJYLBo/fnyAUgK1w9ZEu+4531DdEEu5jjdcVmX8Mkae/Dg/JwMAwPc81gSlrxquJr1eVeMLnpXFUr6//wAAqG5uWpZsdgS/mX9tW7MjKC8vT4cOHdKhQ4f09ddfa+LEiZoxY4ZfW4V//vnneuyxxwpdwJUkl8uluLg4xcXFaePGjfrggw9000036dtvv/VblgIHDhzwdiUZPXp0uZ7jdruVkZGhrVu3auvWrZo+fbpmzZql66+/vtznnT17tvd2dna2fvzxR918880VC38Kh8OhlJQUpaSk6M8//9SKFSv06quvqkePHpo6dapuuOGGCq9pGIaysrKUlZWlY8eOaevWrfr444/VpEkTTZ48Wa+++qoaN25c7rWWLl0qqfyvs2EYysnJ0b59+7Rv3z59/vnnevbZZ/XGG29U+HupqKlTp+q1116Ty+UqdL/L5dLRo0d19OhRrV27Vu+8846eeeYZvfnmm37PtG7dOuXm5qpBgwYaMWJEuZ7jcrmUmpqqjRs3auPGjZo2bZoWLVqkSy65pFzPz8/P18KFC71fHzx4UJGRkRo4cGClvgfpZGElOTlZycnJOnjwoH788Ue98MIL6tevn9566y1dfvnlFV6z4HcyIyNDsbGx2rhxo6ZPn642bdrokUce0bPPPqu6dQNeAihVwNPce++9evfdd3X8+HFdeeWVmjVrls4777wixyUnJ+v999/XO++8I4vFovPPP1833nijz3IkJycrKipKUVFR2rZtm7Zt2+Ydmn3nnXeWWj0uzooVK/TZZ59p27ZtSklJUZs2bdSvXz9NmTJFI0eO9FluoCLynIZ+S3Gob7sGZR5rGIYyN90pZ9r2ACQDAMBPDLdydv5DjuRNan7ZHIU0aGl2IgAAYKIHHnhADz74oPdrwzCUnp6uLVu2aNq0aUpOTtbs2bPVqVMnvfbaayWuM3bs2FIfL9C0adMi982bN09TpkyRJDVs2FCTJk3SVVddpfDwcBmGofj4eG3fvl1Lly7Vrl27Cj33q6++Ul5eXrHneuGFF/TTTz9JklatWqUOHToUe1x4eHix9y9ZskSSdO6556pbt27FHnP6uk6nUydOnNDChQu9OwZuvvlm7d69Wz169Ch2jVNt2rRJMTExkqSwsDDl5uZq9uzZFS5IzJgxw9tJpaB4kJKS4n0d9+zZoz/++EM33nij7rnnHn322WcKCSm9UczpP+P8/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wys+7YsUMJCQmyWCy69tpriz3mtddeK7R7wuPxKCUlRevWrdP06dOVm5ur//u//1PXrl01efLkUs93+nu+JK1bty5y35tvvqmXX35ZktSsWTPdd999Gjp0qNq3by+Hw6ETJ05o69atWrJkifbv31/ouatXry7xU/mTJk3S9u0nrzf9/vvvJWbq0qVLsfcXvFcvv/xyhYWFFXvM6es6HA7FxMRozpw5Wrx4sZKTkzV69GgdOHCgXGMBFi1a5N0R07hxY+Xl5Wn27NkVLkic+jvk8XiUmZmppKQkRUZG6scff1RMTIy2bdumK664Qi+88IKmTp1a5pqn/4xzc3OVkZGhPXv26JdfftGaNWuUkpKif/7zn1qyZImWLl1arUYhBLwg0aBBA/30008aNmyYduzYoQsuuKDQlpfbb79dubm5iomJkWEYMgxDrVq10vfff+/TT7m1a9fOJ+t4PB5NmTJFX375ZaH7C6rbP/74oyZPnqxPP/20zP/wAf6wKc5WroJE7m8vyxa7IACJAADwP/uJ5Upd3EvNh32n+m0GmB0HAACYpG3btjr//POL3D906FCNGTNGffr0kc1m0wcffKAXX3xR9evXL3ad5s2bF7tOWdxut5544glJUpMmTbRp0yZdeOGFRY4bM2aMXnnlFf3xxx+FLqyWdIG2IFOB7t27q3PnzhXKVnCRt7RP7Re3bq9evTR69Gh17txZr7zyipxOp6ZPn65PP/20zHMW7I5o166dHnvsMT333HNavXq1kpKSKnStrkuXLsX+PAra4CxZskR33323UlNT9eWXX6ply5Z6++23S12zpJ/xlVdeqccee0zHjh3T5MmT9fPPP+vgwYMaNWqUIiMjy+z+UvA69+3bV+3bty/2mI4dOxZ77uHDh2vYsGEaMWKEDMPQO++8U2ZBoqT3fFlSU1O9F8PDw8O1efNmderUqdAxAwYM0Pjx4/X2228rKirK++Fu6eR7pSSn7iapTLbyvFeLW7d3796aMGGC7rzzTs2ePVsZGRn64osv9Nxzz5V5zoL3ap8+fTRgwAB9/PHHmj9/vqZPn17ifyeKU9Lv5g033KB33nlHs2bN0sMPP6z8/Hy98sorateuXZkFpZJ+xiNHjtQzzzyj6Oho3X777dq1a5eioqI0btw4rV27tkK5/cmUK+QXXXSRtm3bpkGDBskwjEIVtd27d+vPP/+Ux+ORYRjq37+/tm7dWmKl1hfOPPNMXXnllZV67vPPP+8tRvTq1Uvz5s1TVFSU5s2bp169ekmSvvjiC73wwgs+ywtUxM5ku2wuT6nHWGPmKXf3KwFKBABAYLjzjiltxWXKi/7A7CgAAKAaOu+887yfWM/JySnyiW9f2Lp1qxITEyVJ9913X7HFiFP16NHDpx1CSpKRkaGIiAhJ0qhRoyq1xpNPPum9XZ5ZsTabTQsWnPwg5E033aQ77rhDISEhcrvdmjt3bqUylGT06NHavHmzmjRpIkl65513yt2rvyRnnnmmVqxY4X3PHDx40LuboDQFF9Mr+zoPHz5cvXv39p4zOzu7UuuUZfXq1d55Hs8++2yRYsTp+vfvH5CuMHv27NGxY8ckVf41fOqpp7y3y/NejY+P1y+//CJJuu2223T77bdLktLT073tt3whJCREkyZN0qpVq7xtlZ544gklJCRUad3zzjtPERER3mvTERER+ve//13lvL5i2kf2u3XrpoiICG3YsEFPPvmkhg0bph49eqh79+4aPHiwHnroIa1atUqRkZHq2rWrz8//4osvasmSJUpMTNTRo0fLVcU93cGDB/Xuu+9KOlnljIiI0M0336x+/frp5ptv1qZNm9S3b19JJ//D9+eff/r0ewDKw+6WtiWWPMjGkRKlzIi7A5gIAIAA8jiVHfWoMn69QR6Hf/7xBgAAaq5TdyDY7Xafr19wIVWSXz9sW1ErVqyQ2+1Wy5Yty91T/3RNmjTxtv0pz2u3ePFiZWZmSjrZIaVjx47envmnzpXwlbPPPrvQfANfzDqoU6eOZs6cqdDQUEknZ4OkpqaWeHxcXJy3DVd550cUx9/vU6n6vlcLCgAXXnihzjzzzEqtUdHX7+uvv5bH41GdOnV0yy23aNCgQd7XxB/v1UsvvVSPP/64N9+pQ+Yrq1GjRpozZ46349C7774rp9NZ5XV9wW8FiT179mjPnj1lTvS+9NJL9fbbb2vt2rXau3ev/vjjD23atEkffvhhuYeUVMbUqVM1atSoKrVumj59unfAy4cffqhGjRoVejw0NFQffvihpJODVHzxZgIqIyLeVuz97rzjylg7VnIX/zgAALWF7ehCpS7tK2f6brOjAACAauTo0aPe25W92FmaU1uk/PHHHz5fv7IKPrU/cuTISg/zzsvL87bsKc9rV3Ah95xzzvHOfyj45Pnu3btLnS1QWXfddZe3tdWyZct8ckG2devW3txWq1WrV68u8diCi+nh4eHeT6tXRsH7tFGjRn6bBVDd36tVKehU9Pd8zpw5kk7uTjnjjDMkndwpIUnLly8v1KrKVx555BFvu/8ff/zRJ2v27NnTe309Pj6+XLtDAsFvBYmLL75YvXv3LrIr4JVXXtErr7xSavWwJjAMwzs46Nxzzy1xoMnAgQO9MzJ++uknGYYRsIxAgT2pDmU7Crdt8jjzlP7LGHmsiSalAgAgsNzZh5S6bKDyD35udhQAAFAN7N+/33vBeODAgT6bN3qqUy9Cf/rpp1q7dq3Pz1FRLpdLK1eulFS1i7zvvvuu9zrXqQOZi5OcnKxVq1ZJ+t+FXUkaP3689wO+s2bNqnSWkoSGhmrw4MGSTg6prmrbpgJXXHGF9/bGjRtLPK6q7Zokad26ddqxY4ekk7NG/KWgLZQkvfHGG9q92/wP8iQnJysqKkpS1d6r77zzjvd2We/VnTt3au/evZL+VzA79bbT6dS8efMqnaUk4eHhOvfccyVJhw4d8rZ6q6ryvlcDya9DrYu7+P7yyy/LYrFowoQJxU5zrymOHDmi+Ph4SScHIZVm6NChOnDggOLi4hQbG1vqQCLAH9yGFJlg05VnndxSaBiGMjfeLlf6b+YGAwAg0Nw2ZW2eIkfSJjUb9IksdUPNTgQAAPwoOTnZe3FR+u+/hzMztWXLFk2bNk1Wq1XNmjUrs6tFZmZmoXVK0qVLl0IDfLt06aJRo0Zp6dKlstlsGj58uPr166eRI0dq4MCB6tevX8Cvj23cuFGZmZmqW7eurr766lKPPXjwoHJzc71fu1wunThxQj/88INmzpwpSRoyZIgmTZpU6jrffPONt8vIqRd5mzRpojFjxmj+/Pn65ptv9NZbb1V6x0ZJevfureXLl3u/nwEDBvhkzQIHDx4s9hir1eotQJVVkIiLiyv0/vJ4PEpNTdX69es1ffp0eTwedezYUa+99lqZ2U5/z5fknHPOUb169bxfDxkyRBdeeKH27NmjlJQU9erVS0OHDtWIESM0cOBA9enTR82aNStzXV9atmyZPB6P2rZtq/79+5d67Onfs8PhUGxsrL7++mv98MMPkk7OLinrPV+wkyc0NFTjxo3z3t+tWzcNGDBAW7du1ezZs/Xwww9X5lsqVe/evRUdHS3pZFGiYHdGVdcsUNJ7NdD8VpCoV6+eXC6XrFarv05hqoI3hyRv9er/27vz8Cirg/3j94Q1JEBERUUQlUWkUkUILoCAIgi0IlJxK5uIvu62VNHXVix9axWtVq3VsqO+gkIVSFgkbIGwL4oga2QRCEImC1lmksnMnN8fvJlfQvZkJs/M5Pu5rlzXkOeZM3fiyZjMPc85ZSl6fN++fRQSsMSGk/m+QiJ7x8vK/2mhtYEAALCQ88dPVJC2Qxf0XaD6MeX/LgcAAELXRx99pI8++qjUYxEREfqv//ov/e53v1PHjh3LHWfRokW+lTLKs2bNGvXt27fY52bNmqXBgwf7lkvZtm1bsaVTOnbsqAEDBmjs2LHFXjwMlMKrQnr37l3hC8wDBw4s81irVq00ceJEPf7442rUqFG54xS+yHvrrbeWeF1s5MiR+uKLL3Tq1CklJCRU+IJxVV144YW+2xkZGbU25sqVK+V0OtWkSRPdcccd5Y73xz/+UX/84x9LPdaoUSNNnDhRzz77rFq1alVhtvLmfFFHjhzRlVde6ft3RESE/vOf/2jQoEFKTk6WMUZr167V2rVrJUk2m03XXXedBg0apHHjxlX4M+MPhXN1yJAhvr0QytKlS5cyj11zzTV66aWXNHr06HLHcLvdvqsf7rnnHkVHRxc7PnLkSG3ZskXbtm3T/v37K3xNuKqsmqu1LWBLNhVe5lZ4SVG4OXHihO9269atyz236K70x48fr/LjlPdR013XUXccyCiQ3emRI3mOcve8aXUcAAAs5878Qfb4WDkP+/+SawAAEPy8Xq/mzZunjz76KGAbBUvn9hzYsGGDpk6dWmrhcPDgQf3zn/9Ut27dNHLkSOXm5gYsi+SfNfmlc2vST5s2zfeicVn27Nnj29i56NURhQYOHOjbF6Fw7X5/KvqicnZ2dq2NWfh97t+/vxo3blztx8rPz9ecOXM0c+ZMeb3eiu9QA+3bt9euXbs0ZcqUEoWDMUa7d+/WlClT1LlzZ02YMMF31Usg5Ofn+/bnqOlcPXDggP79739r3bp15Z63fPlynTlzRlLpc/X+++/3XVUSTnO1tgXsConbbrtNn3/+uSZOnKgff/xRHTt2LHYZ0KJFi7R9+/Yqjztq1Ch/xqy2ov8Bz2/Lzlf0Ur2il7lVRtEyI9y0i8qTly01atXeg+vUYddjVscAACBoGHeOMtc9JNfpdWrW4x+y1Sv/3X0AACC0TJo0Sa+99lqxzzmdTiUnJ+vTTz/Vu+++q3/84x/avn27vvnmGzVpUvpyjqNHj/YtUVQdDRo00Pjx4zV+/HilpKRo/fr12r59u7Zs2aLNmzf7Nlv+7LPPlJKSohUrVvh96SLp3Auzhw4dklS5F3nPfxe9MUYZGRnaunWr3njjDSUmJuq+++7Tu+++q+eee67UMQr3hmjQoIFGjBhR4nj9+vV1//3365///KcWLlyo7OxsNW3atBpfXemKvobXrFmzWhnTGOMrairzfZ41a5bGjBlT7HM5OTnat2+fpk6dqunTp+tPf/qTdu3apS+++MK3+XFpSpvzVdGkSRO98MILeuGFF/Tjjz9q48aN2rFjhzZt2qTt27fL6/XK4/HonXfekd1uD8jeH9K5vTNycnLUqFEj38bM5Tl/64DCZa+SkpI0efJkbd68WQMGDND//u//6je/+U2pYxR+LS1btiz1MS+66CINHDhQ8fHx+uyzz/Q///M/FV65URVWzFUrBKyQePnll/X111/r7Nmzevvtt4sdM8aUeRlSeWw2W9AUEnl5eb7bRXehL03Ry9bCdQmr6njyaDvJBK5JRSmOWh0AAIDg5DjwsVz2rbqg73zVb3q11XEAAEAARUZGqkuXLpoyZYo6dOigxx57TElJSXr99dcrtUZ/TbVq1Ur333+/7r//fklSenq63n77bb355pvyer1avXq15s6dW+o7tGuq8F3711xzjdq3b1/l+9tsNrVo0UJ33XWX7rzzTvXr10/r16/XhAkTNHDgwBJL2Hg8Hn3++eeSpEGDBhVbPqaokSNH6p///KccDocWLFhQ4Z4UVWG32323W7RoUStj7tixQ6dOnZLNZtOQIUOq9RjR0dGKjY1VbGysWrZsqddff10LFizQzJkz9eijj1Y7e1W0a9dO7dq108iRIyWd2+vitdde0/Tp0yWdW4pr/Pjx6tWrl98fu3Cu9u3bt8I3g5cmIiJCLVu21L333qsBAwaoW7duOnjwoB555BHdfvvtJf67ZWZm+h7zgQceUP36pb9sPnLkSMXHx+unn37S2rVr1a9fvypnK4sVc9UKAVuy6Re/+IXWrVun/v37q0GDBjLGFGuqCv9d1Y9gUfRSK5fLVe65RS/7i4yMrNLjHD9+vNyPwp3mAQAAUDPutJ2yx3VT3rGFVkcBAAC1ZNy4cb4X6WbOnGlJhhYtWuj111/Xiy++6Pvc/PnzA/JYVXnXfkXq1aun3//+95LOFQ+F+0QUtXLlSqWkpEiSFi9eLJvNVupH0Y2mSxunJgqXi5LOFTG1MWbh97lbt2667LLLavx4EyZM8F0VYdU8laTLL79c06ZN0wMPPOD7XCjM1ejoaD3xxBOSzl0xsGDBghLnfPHFF77XcN9///0y52phkSgFdq76a4+OQMz/mgrYFRLSuR+6FStWyO12y263Ky8vT1dffbVsNpu++eYbdejQIZAPH1BFLx2raBmmomv/VbXRq2h/CgAAAPiPcWUqY80wRXX+nZp2f1O2iAYV3wkAAISsiIgIdejQQVu2bNGpU6eUlpZW5rv4A238+PF64403JEnJycl+Hz8jI0MbNmyQ5J8XeSUVuyJi9+7dJY5X5wXbxMRE/fTTT7riiitqlE2SHA6HNm7cKOnca3I33HBDjceUpISEBN/t0q4O8Nc+HYVatGihiy++WKdPny71+1zbxo8fr3nz5kkKzFzdvXu3jh07Jim45+p//vMfffjhh2Uu9VYVx48f14EDBySdKw4K91WpqYrmqhUCWkj4HqR+fV166aXFPteqVSu1bdu2Nh4+IIoWBUU3uC5N0Y2sw3lPCAAAgHCRu/dduexbdEGfL1QvijeIAAAQzopuzBvITXor0qpVK99tf65LX2jZsmVyu91q0aKFevbs6Zcxy/veZWdna+HChZKkO+64o8JlhrKysvT444/LGKNPP/1Ur7zySo3zzZo1S2fPnpUk/epXvypzGZ6qSE1N9S1DFRUVpQEDBhQ7fvLkSe3cuVOS/15Ml/7/99fKOVoo0HO1sND55S9/6ZdiSip/rhbulSGdW65p6NCh5Y51+PBhvfLKK8rOztbXX3+thx9+uMb53n//fd+m5cOGDavxeNK5DeVXrVol6dxr0t27d/fLuDVVK4VEUZMmTZJ0bnOQUNa5c2ff7f3795d7btHj1157bcAyAQAAwH8KzmyUfXFXxdz2mRpdPtDqOAAAIAAcDof27t0r6dwy2xdddJFfxzfGVPoF2+3bt/tuX321//e0KnyRd9CgQX7bMLto5vPfhLtgwQI5HA5J0hNPPKHhw4dXON6//vUv7dq1yy+FxKFDh/Tyyy/7/v3SSy/VaDzp3EbJY8aM8X1djz32WIl1+QuXGmrdurW6du1a48eUpKNHjyotLU1S4N7sHIxz1Z+FTnlztejVEX/4wx/UrVu3csdyu9165513lJaWpk8++aTGhURSUpL+8Y9/SDq3TcDzzz9fo/Gkc/sYjxo1yrcFwh/+8Ae/FHL+ELA9JMoyadIkTZo0ye9P8LXtqquu8rWBiYmJ5Z67bt06SefWWbvyyisDHQ0AAAB+4s23K33lYGXv/JOM8VodBwAA+Nlrr70mp9MpSRo4cKDfXqgvtGzZMo0YMaLYOu6lSU9P17PPPuv7d0Xv0K4qt9ut5cuXSzp3pYA/ZGRk6G9/+5vv3+dv3lz4Im+TJk00aNCgSo35m9/8RpJ04MABbdmypdrZ4uPjdeuttyo7O1uS9PLLL+v666+v9niS9NNPP+muu+7S0qVLJZ1bAqjwjddFFb6YXt3NrM/n9XqLlSn+Gvd806ZN02OPPVbhEkzHjh0rVhb5e66eOXPGt2euv+bqsWPH9OGHH/r+PXjwYN9tY4w+++wzSdKVV15ZYRkhnVsN6J577pEkrVq1SqdOnapWLq/Xq9mzZ2vgwIG+qzbee+89XXLJJdUar9DevXvVq1cv3/NOnz59fHtoBIPgqEVCkM1m09ChQ/XRRx9p//792rx5s26++eYS523evNl3hcTQoUMDchkTAAAAAsh4lfP9/8iVulExt32uepE1+wMBAADUnjNnzmjPnj3FPpeXl6dDhw7pk08+8b1I37hxY02ePLnMcTIzM0uMU5p69eoVWx3D6/Vq/vz5mj9/vq6//noNGTJEsbGxuuyyy9SwYUOdOXNGSUlJmjp1qs6cOSPp3J6so0ePrs6XW6akpCRlZmaqfv36uuuuuyp9v4MHDxbbO9UYo8zMTG3ZskUffPCBfvrpJ0lS7969dffdd/vO++mnn3xv4B00aFCl19gfPny4/vSnP0k6V2gU3ey6qCNHjvje7GyMUVZWllJTU7V9+3bFxcXp+++/95372GOP6a9//WuFj33+f2On06nMzEzt3btXiYmJiouL871ofM011yg+Pl7NmzcvNobT6dTq1aslVe3d/SdPniwxv3Jzc7V3715NmzZNmzZtkiRdeOGFmjhxYrljlTbnSxMZGal27dr5/u1yuTRt2jRNmzZNPXv21IABA9StWzddcsklioiI0MmTJ7VmzRpNnz7dV/QMHTpUd9xxR6W/zspYunSpvF6vWrZsqR49elT6fud/zV6vV2lpaVq/fr3ef/993xUmDz/8cLG9RJKSknT48GFJqtRVPIWGDx+uGTNmyOPx6LPPPtMLL7xQ6nlFf4a8Xq/Onj2rn3/+WVu2bNHXX3/te+yIiAhNmjRJjz32WIWPff5/49zcXGVkZOj777/XqlWrlJCQ4Lsy4uabb9aCBQvUoEHw7I1naSGRlpamTZs26fDhw8rOzpbH46nwPq+++motJKuc559/XlOnTpXH49EzzzyjdevWKTIy0nfc6XTqmWeekXSuOfPH5TYAAACwhuvU6nNLOPWZq0aX9rE6DgAAqISPPvpIH330UbnnXHzxxfrss8/UpUuXMs9ZtGiRFi1aVOHjNW/eXJmZmb5/X3DBBYqKilJubq527dqlXbt2lXv/O++8U3PnzvX70iqF79rv3bu3YmJiKn2/gQMrXrayX79+WrBgQbE34X766ae+F0QLr3qojGuvvVadO3fW3r179cUXX+jdd99Vw4YNS5z3yCOPVDhW586d9Ze//EX33ntvpR67Mv+NmzVrpvHjx2vy5MmlliwrV66U0+lUkyZNqvRC/R//+Ef98Y9/LPecq666SgsWLCixT+/5KjPnJen666/Xd9995/t3y5Yt1bBhQ7lcLm3YsMG3AXpZHnroIU2fPr3Cx6mqoleYRERUfnGf8n5+C91///2aMWNGsc8VXa6pKnO1f//+iomJUWZmpj799NMyC4nK/Az16NFDU6ZMUZ8+lfsbo7LPa88//7xefPHFoFmqqZAlac6cOaPf/e53WrBgQZU3YvFXIZGUlFTsEiS73e67nZycrNmzZxc7f8yYMSXG6Nixo1544QW98cYb2r59u3r27KmJEyeqXbt2+vHHH/Xmm2/6Lo154YUX1KFDB79kBwAAgDW8zlNK/+YONe36P4rqMpGrXwEAAfHFkNDedzPYNWzYUC1atNAvfvELDR48WGPHjtUFF1wQkMfq2bOnUlNTtXLlSq1du1Y7duzQoUOHlJaWJo/Ho2bNmunKK69UbGysHnjgAfXt2zcgOfy5Jn90dLQuu+wyxcbG6sEHH9SQIUNK/E706aefSpIaNWpU5SWGhg8frr179yotLU1LliypcIPfBg0aqFmzZmrevLmuueYade/eXQMGDFCvXr2q9oUVYbPZ1LRpUzVr1kyXX365brzxRt16660aNmyYoqKiyrxf4fe5f//+aty4cbUfXzp31c5FF12k66+/Xnfffbd++9vfVvpKk+oYMWKEBg4cqBUrVigxMVE7d+7U4cOHlZGRIelcGdO+fXvdcsstevjhhyu1tFFV5efna8WKFZJqPldtNpuio6PVpk0b3XLLLRo1apRuu+22Yufk5eVp/vz5ks4ttV/WFTmladCggX7961/r008/1e7du/Xtt99WuGdIw4YN1bx5c8XExKhz586KjY3VkCFDil2xUVURERFq2rSpmjdvrrZt26pbt27q3bu3fvWrX5Va5gUDmymsK2tJRkaGbrrpJv3444+qzkMX7jZeU2PGjNGcOXMqfX5ZWb1er8aPH6+ZM2eWed9x48Zp6tSpVWr1KuvEiRO+jViOHz+u1q1b+/0xAuXUnAaSqVohBQAAECwatR6imN6fKKJRi4pPBgCEvJr8/X3o0CG53W7Vr1+fNyui1h04cECdOnWSdG75GOZgYBhj1Lp1a6WkpGjq1KkaP3681ZFCzjfffKO77rpLjRo1kt1uV3R0tNWR6rxA/P+r1je1fuONN5ScnCxjjAYMGKDly5crNTVVHo9HXq+3wo9gExERoRkzZmjJkiUaOnSoWrVqpYYNG6pVq1YaOnSoli5dqunTpwekjAAAAIB18k8skX3xjXKlbrU6CgAAQJni4+Mlndv3gDIicHbu3KmUlBTZbDa/bcZc1xTO1b59+1JGhLFaX7Jp0aJFstlsGjJkiBYvXlzbD+8ze/bsEssy1cTgwYOL7dAOAACA8OfJPaa0Zb3UrPvbiur8rNVxAAAASmjTpo0mTZpU4XIyqBmPx6NJkybpggsu0GWXXWZ1nJDUpUsXTZo0Sf369bM6CgKo1guJn376SZL01FNP1fZDAwAAAP7nLVDW1ufkOr1ezXvOUETDZlYnAgAA8BkxYoTVEeqEHj16qEePHlbHCGmPPfaY1RFQC2p9HaHCy20uueSS2n5oAAAAIGDyji2QPb67CtJ3WR0FAAAAAIJSrRcSXbp0kSQdO3asth8aAAAACChP1iHZl9wsx8HpVkcBAAAAgKBT64XE448/LmOMPv3009p+aAAAACDwPHk6u3G8MtePlnE7rE4DAAAAAEGj1guJESNG6OGHH9bXX3+tN954o7YfHgAAAKgVzh8/kT2+h9yZ+62OAgAAAABBodY3tV63bp3GjRunI0eO6JVXXtFXX32lhx56SJ06dVKTJk0qvP9tt91WCykBAACAmnNn/iB7fKya3zpVkVc/aHUcAAAAALBUrRcSffv2lc1m8/17x44d2rFjR6Xua7PZ5Ha7AxUNAAAA8DvjzlHmuofkOr1OzXr8Q7Z6jayOBAAAAACWqPUlmyTJGFPtDwAAACAUOQ58LPvSW+XOPmx1FAAAAACwRK1fIbFmzZrafkgAAAAgKLjTdsoe100xPWepcdt7rI4DAAAAALWq1guJPn361PZDAgAAAEHDuDKVsWaYon7xezXt9qZsEbX+KzkAoJbVq1dPbrdbHo9HXq9XERGWLFgBAECleb1eeTweSef+P+Yv/B8QAAAAsEDuD+8obXkfeXJPWB0FABBgjRs3lnRuCeucnByL0wAAULGcnBzfFgqRkZF+G5dCAgAAALBIwZmNsi/uqvyT31gdBQAQQM2aNfPd/vnnn5WVlSWv12thIgAASuf1epWVlaWff/7Z97mmTZv6bfyAXh8+efJkv4/56quv+n1MAAAAwCrefLvSVw5W9C9fUfQNr8lm4z1DABBuoqKiFBkZKafTKY/Ho5MnT8pms/l1CQwAAPzB4/H4royQzl0dERUV5bfxbabo6H4WEREhm83m1zEL163COSdOnFCbNm0kScePH1fr1q0tTlR5p+Y0kIzb6hgAAABBo+Fltyvmts9VL/ISq6MAAM5T07+/vV6vfvrpJzmdzkDEAwDA7yIjI3XFFVf4de+jgO+g58++w9/lBgAAABBMXKdWy764q2L6zFOjS2+zOg4AwI8iIiLUtm1b5ebmKjs723e1BAAAwaRevXqKjIxU06ZNFRUV5ffX5ANaSKxZsyaQwwMAAABhx+s8pfRvblfTrv+jqC4TeVMOAIQRm82m6OhoRUdHWx0FAABLBLSQ6NOnTyCHBwAAAMKT8Sh758tynUlSTO9PFNGohdWJAAAAAKDG2DEPAAAACFL5J5bIvvhGuVK3Wh0FAAAAAGqMQgIAAAAIYp7cY0pb1ku5e9+3OgoAAAAA1AiFBAAAABDsvAXK2vqcMtaOkNeVZXUaAAAAAKgWCgkAAAAgROQdnS97fHcVpO+yOgoAAAAAVBmFBAAAABBCPFmHZF9ysxwHp1sdBQAAAACqhEICAAAACDWePJ3dOF6Z60fLuB1WpwEAAACASqGQAAAAAEKU88dPZI+/Se7M/VZHAQAAAIAKUUgAAAAAIcyduUf2+Fg5D8+1OgoAAAAAlItCAgAAAAhxxp2jzHUP6eymJ2Q8+VbHAQAAAIBSUUgAAAAAYcJx4GOlLe0pd/YRq6MAAAAAQAkUEgAAAEAYKUjbIXvcjco7ttDqKAAAAABQDIUEAAAAEGaMK1MZa4Ypa9sEGa/b6jgAAAAAIIlCAgAAAAhbuT+8o7TlfeTJPWF1FAAAAACgkAAAAADCWcGZjbIv7qr8kyusjgIAAACgjqOQAAAAAMKcN9+u9JWDlP3tqzLGa3UcAAAAAHUUhQQAAABQFxivcnb9Rekr7pTHedrqNAAAAADqIAoJAAAAoA5xnVp9bgmnn9dZHQUAAABAHUMhAQAAANQxXucppX9zu3K+f0PGGKvjAAAAAKgjKCQAAACAush4lL3zZWWsulve/HSr0wAAAACoAygkAAAAgDos/0S87ItvlCt1q9VRAAAAAIQ5CgkAAACgjvPkHlPast7K3fu+1VEAAAAAhDEKCQAAAACS16Wsrc8pY+0IeV1ZVqcBAAAAEIYoJAAAAAD45B2dL3t8dxWk77I6CgAAAIAwQyEBAAAAoBhP1iHZl9wsx8EZVkcBAAAAEEYoJAAAAACU5MnT2Y2PKnP9GBm3w+o0AAAAAMIAhQQAAACAMjl/nCN7/E1yZ+63OgoAAACAEEchAQAAAKBc7sw9ssfHynl4rtVRAAAAAIQwCgkAAAAAFTLuHGWue0hnNz0h48m3Og4AAACAEEQhAQAAAKDSHAc+VtrSnnJnH7E6CgAAAIAQQyEBAAAAoEoK0nbIHnej8n5aZHUUAAAAACGEQgIAAABAlRlXpjJW36OsbX+Q8bqtjgMAAAAgBFBIAAAAAKi23B/+rrTlfeTJPWF1FAAAAABBjkICAAAAQI0UnNko++Kuyj+5wuooAAAAAIIYhQQAAACAGvPm25W+cpCyv31VxnitjgMAAAAgCFFIAAAAAPAP41XOrr8ofcUAeZxnrE4DAAAAIMhQSAAAAADwK9epVbLHdZXr9HqrowAAAAAIIhQSAAAAAPzO60hR2vJ+yvn+DRljrI4DAAAAIAhQSAAAAAAIDONR9s6XlbHqbnnz061OAwAAAMBiFBIAAAAAAir/RLzsi2+UK3Wr1VEAAAAAWIhCAgAAAEDAeXKPKW1Zb+Xu+8DqKAAAAAAsQiEBAAAAoHZ4Xcra8qwy1t4vb0G21WkAAAAA1DIKCQAAAAC1Ku/ol7LHdVNB+vdWRwEAAABQiygkAAAAANQ6T9Yh2ZfcLMfBGVZHAQAAAFBLKCQAAAAAWMPj1NmNjypz/RgZt8PqNAAAAAACjEICAAAAgKWcP86RPf4muTP3Wx0FAAAAQABRSAAAAACwnDtzj+zxsXIenmd1FAAAAAABQiEBAAAAICgYd44y1z2os5uelPHkWx0HAAAAgJ9RSAAAAAAIKo4DHyltaU+5s49YHQUAAACAH1FIAAAAAAg6BWk7ZI+7UXk/LbI6CgAAAAA/oZAAAAAAEJSMK1MZq+9R1rY/yHjdVscBAAAAUEMUEgAAAACCWu4Pf1fa8r7y5J60OgoAAACAGqCQAAAAABD0Cs5skD2uq/JTEqyOAgAAAKCaKCQAAAAAhARvXqrSE+5S9reTZIzX6jgAAAAAqohCAgAAAEDoMF7l7Jqs9BUD5HGesToNAAAAgCqgkAAAAAAQclynVske11Wu0+utjgIAAACgkigkAAAAAIQkryNFacv7Kef7N2SMsToOAAAAgApQSAAAAAAIXcaj7J0vK2PV3fLmZ1idBgAAAEA5KCQAAAAAhLz8E/GyL+4ql32b1VEAAAAAlIFCAgAAAEBY8OQeU9rSXsrd94HVUQAAAACUgkICAAAAQPjwupS15VllrL1f3oJsq9MAAAAAKIJCAgAAAEDYyTv6pexx3VSQ/r3VUQAAAAD8HwoJAAAAAGHJk3VI9iU3y3FoptVRAAAAAIhCAgAAAEA48zh1dsM4ZSaNlXE7rE4DAAAA1GkUEgAAAADCnjN5tuzxN8l99oDVUQAAAIA6i0ICAAAAQJ3gztwje1x3OQ/PszoKAAAAUCdRSAAAAACoM4w7R5nrHtTZTU/KePKtjgMAAADUKRQSAAAAAOocx4GPlLa0p9zZR6yOAgAAANQZFBIAAAAA6qSCtB2yx92ovJ8WWR0FAAAAqBMoJAAAAADUWcaVqYzV9yhr2wsyXrfVcQAAAICwRiEBAAAAoM7L/eFtpS3vK0/uSaujAAAAAGGLQgIAAAAAJBWc2SB7XFflpyRYHQUAAAAISxQSAAAAAPB/vHmpSk+4S9nfTpIxXqvjAAAAAGGFQgIAAAAAijJe5eyarPQVA+VxnrE6DQAAABA2KCQAAAAAoBSuUytlj+sq1+n1VkcBAAAAwgKFBAAAAACUwetIUdry25Wz+00ZY6yOAwAAAIQ0CgkAAAAAKI9xK3vHS8pYPVTe/Ayr0wAAAAAhi0ICAAAAACoh/3ic7Iu7ymXfZnUUAAAAICRRSAAAAABAJXlyjyltaS/l7vvA6igAAABAyKGQAAAAAICq8LqUteVZZay9X96CbKvTAAAAACGDQgIAAAAAqiHv6Jeyx3VXQfr3VkcBAAAAQgKFBAAAAABUkyfroOxLbpbj0EyrowAAAABBj0ICAAAAAGrC49TZDeOUmTRWxu2wOg0AAAAQtCgkAAAAAMAPnMmzZY+/Se6zB6yOAgAAAAQlCgkAAAAA8BN35h7Z47rLeXie1VEAAACAoEMhAQAAAAB+ZNw5ylz3oM5ufkrG47I6DgAAABA0KCQAAAAAIAAc+/+ltKU95c4+YnUUAAAAIChQSAAAAABAgBSkbZc97kbl/bTY6igAAACA5SgkAAAAACCAjCtTGauHKmvbCzJet9VxAAAAAMtQSAAAAABALcj94W2lLe8rT+5Jq6MAAAAAlqCQAAAAAIBaUnBmg+xxXZWfkmB1FAAAAKDWUUgAAAAAQC3y5qUqPeEuZX87ScZ4rY4DAAAA1BoKCQAAAACobcarnF2Tlb5ioDzOM1anAQAAAGoFhQQAAAAAWMR1aqXscV3lOr3e6igAAABAwFFIAAAAAICFvI4UpS2/XTm735Qxxuo4AAAAQMBQSAAAAACA1Yxb2TteUsbqofLmZ1idBgAAAAgICokastlslfro27ev1VEBAAAABLn843Gyx90ol32b1VEAAAAAv6OQAAAAAIAg4sk5qrSlvZS7759WRwEAAAD8qr7VAcLFE088oSeffLLM41FRUbWYBgAAAEBI87qUteUZuU6vV/Oe0xXRoKnViQAAAIAao5Dwk5YtW+q6666zOgYAAACAMJJ39EsVpH+nC/rOV4MWv7Q6DgAAAFAjLNkEAAAAAEHMk3VQ9iU3y3FoptVRAAAAgBqhkAAAAACAYOdx6uyGccpMGivjdlqdBgAAAKgWCgkAAAAACBHO5NmyL7lJ7rMHrI4CAAAAVBl7SPjJ/Pnz9eWXX+ro0aOqV6+eLr30Ut16660aM2aM+vXrV+1xT5w4Ue7xU6dOVXtsAAAAAKHHnbFb9vhYNb91miKvut/qOAAAAECl2YwxxuoQocxms1V4zj333KPZs2erefPmARm/0PHjx9W6desqP4ZVTs1pIBm31TEAAACAkNWk05NqFvuubPUaWh0FCHsnTpxQmzZtJIXe398AAAQLrpCooSZNmujuu+/WHXfcoU6dOik6OlqpqalKTEzUxx9/rLS0NC1cuFBDhw5VQkKCGjRoYHVkAAAAAGHCsf9fKkjdqpi+X6p+06usjgMAAACUiyskaigzM1MxMTGlHjt9+rQGDRqkb7/9VpL03nvv6dlnn63S+JVZsqlHjx6SQu8dGlwhAQAAAPiHrWGMYnrNUeMr7rY6ChC2uEICAICao5AIsMOHD6tTp04qKChQ+/btdejQIb+OH8q/EFFIAAAAAP5kU9QvJqhpt7/JFsHF8IC/hfLf3wAABIsIqwOEu6uvvlp33nmnJCk5OVkpKSkWJwIAAAAQnoxyf3hbacv7yZN70uowAAAAQAkUErWgc+fOvtsnT/KHAQAAAIDAKTiTJHtcV+WnJFgdBQAAACiGQqIW2Gw2qyMAAAAAqEO8ealKT7hL2d9OkjFeq+MAAAAAkigkasXevXt9t1u1amVhEgAAAAB1hvEqZ9dkpa8YKE9eqtVpAAAAAAqJQDty5IgSEs5dKt2uXTtdfvnlFicCAAAAUJe4Tq2UffENcp1OsjoKAAAA6jgKiRqIi4uT2+0u8/jp06c1fPhwuVwuSdKTTz5ZW9EAAAAAwMfrSFHa8n7K2T1Fxhir4wAAAKCOqm91gFD2zDPPqKCgQMOHD9ctt9yiK6+8UpGRkbLb7Vq7dq3+/e9/y263S5J69eqlp556yuLEAAAAAOos41b2jolynUlSTK85imh0gdWJAAAAUMdQSNRQSkqKPvjgA33wwQdlnjN8+HBNnz5djRo1qsVkAAAAAFBS/vE42eNuVEzfL9Xwolir4wAAAKAOoZCogTlz5igxMVGbNm3S4cOHZbfblZWVpejoaLVp00a33nqrRo8erVtuucXqqAAAAADg48k5qrSlvdQs9u+KuvZpq+MAAACgjqCQqIE+ffqoT58+VscAAAAAgKrzupS15Rm5Tq9X857TFdGgqdWJAAAAEObY1BoAAAAA6rC8o1/KHtddBRm7rY4CAACAMEchAQAAAAB1nCfroOzxN8lxaJbVUQAAABDGKCQAAAAAAJLHqbMbHlFm0lgZt9PqNAAAAAhDFBIAAAAAAB9n8mzZl9wk99kDVkcBAABAmKGQAAAAAAAU487YLXt8rJxHvrA6CgAAAMIIhQQAAAAAoARTkK3MxAd0dvPTMh6X1XEAAAAQBigkAAAAAABlcuz/UGlLe8qdfdTqKAAAAAhxFBIAAAAAgHIVpG2XPe5G5R2PszoKAAAAQhiFBAAAAACgQsaVoYxVQ5W17QUZr9vqOAAAAAhBFBIAAAAAgEoyyv3hbaUt7ydP7kmrwwAAACDEUEgAAAAAAKqk4EyS7HFdlZ+y0uooAAAACCEUEgAAAACAKvPmpSo9YaCyv31NxnitjgMAAIAQQCEBAAAAAKge41XOrj8rPeEuefJSrU4DAACAIEchAQAAAACoEVdKguyLb5DrdJLVUQAAABDEKCQAAAAAADXmdaQobXk/5eyeImOM1XEAAAAQhCgkAAAAAAD+YdzK3jFRGauHypufYXUaAAAABBkKCQAAAACAX+Ufj5M97ka57NutjgIAAIAgQiEBAAAAAPA7T85RpS3tqdx9H1odBQAAAEGCQgIAAAAAEBhel7K2PK2MtQ/IW5BtdRoAAABYjEICAAAAABBQeUe/kD2uuwoydlsdBQAAABaikAAAAAAABJwn66Ds8TfJcWiW1VEAAABgEQoJAAAAAEDt8Dh1dsMjykx6RMbttDoNAAAAahmFBAAAAACgVjmTZ8m+5Ca5zx60OgoAAABqEYUEAAAAAKDWuTN2yx7fXc4jX1odBQAAALWEQgIAAAAAYAlTkK3MxPt1dvPTMh6X1XEAAAAQYBQSAAAAAABLOfZ/qLSlPeXOPmp1FAAAAAQQhQQAAAAAwHIFadtlj7tRecfjrI4CAACAAKGQAAAAAAAEBePKUMaqocra/qKM1211HAAAAPgZhQQAAAAAIIgY5e55S+nf3C6PI8XqMAAAAPAjCgkAAAAAQNBxnV4v++IblJ+y0uooAAAA8BMKCQAAAABAUPLmpSo9YaCyv31NxnitjgMAAIAaopAAAAAAAAQv41XOrj8rPeEuefJSrU4DAACAGqCQAAAAAAAEPVdKguyLb5DrdJLVUQAAAFBNFBIAAAAAgJDgdaQobXk/5ex5S8YYq+MAAACgiigkAAAAAAChw7iVvf1FZay+R978DKvTAAAAoAooJAAAAAAAISf/+GLZ426Uy77d6igAAACoJAoJAAAAAEBI8uQcVdrSnsrd96HVUQAAAFAJFBIAAAAAgNDldSlry9PKWPuAvAU5VqcBAABAOSgkAAAAAAAhL+/oF7LHdVdBxm6rowAAAKAMFBIAAAAAgLDgyToge/xNchyabXUUAAAAlIJCAgAAAAAQPjxOnd0wVplJj8i4nVanAQAAQBEUEgAAAACAsONMniX7kpvkPnvQ6igAAAD4PxQSAAAAAICw5M7YLXt8dzmPfGl1FAAAAIhCAgAAAAAQxkxBtjIT79fZzU/LeFxWxwEAAKjTKCQAAAAAAGHPsf9DpS3rJXf2UaujAAAA1FkUEgAAAACAOqHAvk32uBuVdzzO6igAAAB1EoUEAAAAAKDOMK4MZawaqqztL8p43VbHAQAAqFMoJAAAAAAAdYxR7p63lP7N7fI4UqwOAwAAUGdQSAAAAAAA6iTX6fWyL75B+SkrrY4CAABQJ1BIAAAAAADqLG9eqtITBir7uz/LGK/VcQAAAMIahQQAAAAAoG4zXuV895rSE+6SJy/V6jQAAABhi0ICAAAAAABJrpQE2Rd3let0ktVRAAAAwhKFBAAAAAAA/8frOKm05f2Us+ctGWOsjgMAABBWKCQAAAAAACjKuJW9/UVlrL5H3vwMq9MAAACEDQoJAAAAAABKkX98sexxN8pl3251FAAAgLBAIQEAAAAAQBk8OUeVtrSXcvd9aHUUAACAkEchAQAAAABAebz5ytrytDISH5S3IMfqNAAAACGLQgIAAAAAgErIOzJP9rjuKsjYbXUUAACAkEQhAQAAAABAJXmyDsgef5Mch2ZbHQUAACDkUEgAAAAAAFAVHqfObhirzKRHZNxOq9MAAACEDAoJAAAAAACqwZk8S/YlN8t99qDVUQAAAEIChQQAAAAAANXkzvhe9vjuch750uooAAAAQY9CAgAAAACAGjAF2cpMvF9nNz8t43FZHQcAACBoUUgAAAAAAOAHjv0fKm1ZL7mzj1odBQAAIChRSAAAAAAA4CcF9m2yx92ovONxVkcBAAAIOhQSAAAAAAD4kXFlKGPVUGVtnyjjdVsdBwAAIGhQSAAAAAAA4HdGuXumKP2b2+VxpFgdBgAAIChQSAAAAAAAECCu0+tlX9xV+SkrrY4CAABgOQoJAAAAAAACyJt3RukJA5X93Z9ljNfqOAAAAJahkAAAAAAAINCMVznfvab0hLvkyUu1Og0AAIAlKCQAAAAAAKglrpQE2Rd3lev0BqujAAAA1DoKCQAAAAAAapHXcVJpy/sqZ8/bVkcBAACoVRQSAAAAAADUNuNW9vYXlL5qqLz5mVanAQAAqBUUEgAAAAAAWCT/+GLZ426Uy77d6igAAAABRyEBAAAAAICFPDlHlLa0l3L3fWh1FAAAgICikAAAAAAAwGrefGVteVoZiQ/KW5BjdRoAAICAoJAAAAAAACBI5B2ZJ3tcdxVk7LE6CgAAgN9RSAAAAAAAEEQ8WQeUtuQmOZLnWB0FAADArygkAAAAAAAIMsbt0NmkMcpMekTG7bQ6DgAAgF9QSAAAAAAAEKScybNkX3Kz3GcPWh0FAACgxigkAAAAAAAIYu6M72WP7y7nkS+tjgIAAFAjFBIAAAAAAAQ5U5CtzMT7dXbzMzIel9VxAAAAqoVCAgAAAACAEOHY/0+lLestd84xq6MAAABUGYUEAAAAAAAhpMC+VfbFXZV3PN7qKAAAAFVCIQEAAAAAQIgxrgxlrLpbWdsnynjdVscBAACoFAoJAAAAAABCklHunilK/+Z2eRwpVocBAACoEIUEAAAAAAAhzHV6veyLuyo/ZaXVUQAAAMpFIQEAAAAAQIjz5p1ResJAZX83WcZ4rY4DAABQKgoJAAAAAADCgfEq57tJSk8YJE9eqtVpAAAASqCQAAAAAAAgjLhSVsi+uKtcpzdYHQUAAKAYCgkAAAAAAMKM13FSacv7KmfP21ZHAQAA8KGQAAAAAAAgHBm3sre/oPRVQ+XNz7Q6DQAAAIUEAAAAAADhLP/4YtnjblSBfYfVUQAAQB1HIQEAAAAAQJjz5ByRfWlP5e7/l9VRAABAHUYhAQAAAABAXeDNV9bmp5SR+JC8BTlWpwEAAHUQhQQAAAAAAHVI3pG5ssd1V0HGHqujAACAOoZCAgAAAACAOsaTdUBpS26SI3mO1VEAAEAdQiEBAAAAAEAdZNwOnU0ao8ykR2TcTqvjAACAOoBCAgAAAACAOsyZPEv2JTfLnXXI6igAACDMUUgAAAAAAFDHuTO+lz2um5xH51sdBQAAhDEKCQAAAAAAIFOQrcy1I3R28zMyHpfVcQAAQBiikAAAAAAAAD6O/f9U2rLecuccszoKAAAIMxQSAAAAAACgmAL7VtkXd1Xe8XirowAAgDBCIQEAAAAAAEowrgxlrLpbWdtfkvF6rI4DAADCAIUEAAAAAAAog1HunjeV/s3t8jhSrA4DAABCHIUEAAAAAAAol+v0OtkXd1V+yiqrowAAgBBGIQEAAAAAACrkzTuj9IQByv5usozxWh0HAACEIAoJAAAAAABQOcarnO8mKT1hkDx5qVanAQAAIYZCAgAAAAAAVIkrZYXsi7vKdXqD1VEAAEAIoZAAAAAAAABV5nWcVNryvsrZ87bVUQAAQIigkAAAAAAAANVj3Mre/oLSV90jb36m1WkAAECQo5Dwo2PHjmnChAnq1KmToqKi1KJFC8XGxuqtt96Sw+GwOh4AAAAAAAGRf3yR7HE3qsC+w+ooAAAgiFFI+ElcXJx++ctf6p133tGBAwfkcDiUkZGh7du368UXX1TXrl2VnJxsdUwAAAAAAALCk3NE9qU9lbv/X1ZHAQAAQYpCwg++/fZb3X///crKylJ0dLT++te/auPGjVq1apXGjx8vSTp48KCGDBmi7Oxsi9MCAAAAABAg3nxlbX5KGYkPyVuQY3UaAAAQZOpbHSAcPPfcc3I6napfv75WrFihW265xXfs9ttvV4cOHfTiiy/q4MGD+vvf/67XXnvNurAAAAAAAARY3pG5KkjbqQv6LVCDC66zOg4AAAgSXCFRQ1u3btX69eslSePGjStWRhSaMGGCrr32WknSe++9p4KCglrNCAAAAABAbfNkHVDakpvkSJ5jdRQAABAkKCRqaOHChb7bY8eOLfWciIgIjRo1SpKUmZmpNWvW1EY0AAAAAAAsZdwOnU0ao8wN42TcTqvjAAAAi1FI1FBSUpIkKSoqSt26dSvzvD59+vhub9iwIeC5AAAAAAAIFs5DM2VfcrPcWYesjgIAACzEHhI1tG/fPklS+/btVb9+2d/OTp06lbhPZZw4caLc48ePH/fdPnXqVKXHDQan041krE4BAAAAAKgV6d/r+LGuahr7tiLb/MrqNFVW9G9ut9ttYRIAAEIXhUQN5OXlyW63S5Jat25d7rkXXHCBoqKilJubW6xEqEibNm0qfW6PHj0qfS4AAAAAALUvV9IT//cRulJTU3XllVdaHQMAgJDDkk01kJ2d7bsdHR1d4flRUVGSpJycnIBlAgAAAAAAAAAgGHGFRA3k5eX5bjds2LDC8xs1aiRJcjorv5FXRVdT5OXlaf/+/brkkkt08cUXl7tsVLA4deqU72qOrVu36rLLLrM4EVB9zGeEG+Y0wgnzGeGE+YxwE4pz2u12KzU1VZLUpUsXi9MAABCagv/V6yDWuHFj322Xy1Xh+fn5+ZKkyMjISj9GRUtBSef2rwhVl112WaW+RiAUMJ8RbpjTCCfMZ4QT5jPCTSjNaZZpAgCgZliyqQaaNm3qu12ZZZhyc3MlVW55JwAAAAAAAAAAwgmFRA00btxYF154oSTpxIkT5Z6bkZHhKySqslE1AAAAAAAAAADhgEKihjp37ixJSk5OltvtLvO8/fv3+25fe+21Ac8FAAAAAAAAAEAwoZCooV69ekk6txzTjh07yjwvMTHRd7tnz54BzwUAAAAAAAAAQDChkKihe+65x3d71qxZpZ7j9Xr1ySefSJJiYmLUr1+/2ogGAAAAAAAAAEDQoJCooR49eqh3796SpBkzZmjTpk0lzvn73/+uffv2SZKee+45NWjQoFYzAgAAAAAAAABgtfpWBwgH7733nnr27Cmn06kBAwbov//7v9WvXz85nU7NmzdPU6dOlSR17NhREyZMsDgtAAAAAAAAAAC1z2aMMVaHCAdxcXH67W9/q6ysrFKPd+zYUUuWLFH79u1rORkAAAAAAAAAANajkPCjY8eO6b333tOSJUt04sQJNWzYUO3bt9d9992np59+Wk2aNLE6IgAAAAAAAAAAlqCQAAAAAAAAAAAAAcem1gAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBKoVceOHdOECRPUqVMnRUVFqUWLFoqNjdVbb70lh8NhdTyEuTNnzig+Pl6vvvqqBg0apIsuukg2m002m01jxoyp8njLli3TsGHD1Lp1azVq1EitW7fWsGHDtGzZskqP4Xa79fHHH6t37966+OKLFRkZqXbt2unxxx/XDz/8UOVMqDu2b9+uyZMna8CAAb45GB0drY4dO2rs2LFKSkqq0njMZ1gpKytL8+bN04QJE9SnTx+1b99ezZs3V8OGDdWyZUv17dtXU6ZMUVpaWqXG27hxo37729+qbdu2aty4sS699FINHDhQc+fOrVKuuXPnasCAAbr00kvVuHFjtW3bVr/97W+1adOm6nyZgCZOnOj73cNms2nt2rUV3ofnZ1it6Jwt76Nv374VjsV8BgAAMkAtWbx4sWnWrJmRVOpHx44dzaFDh6yOiTBW1tyTZEaPHl3pcTwejxk3bly54z366KPG4/GUO05qaqqJjY0tc4xGjRqZadOm1fCrRjjq3bt3ufOv8GPUqFEmPz+/3LGYzwgGCQkJlZrTF110kVm+fHm5Y02aNMlERESUOcaQIUOM0+ksdwyHw2EGDx5c5hgRERHmtdde8+e3AHXAt99+a+rXr19sLq1Zs6bM83l+RrCozPOzJNOnT58yx2A+AwCAQhQSqBU7d+40kZGRRpKJjo42f/3rX83GjRvNqlWrzPjx44uVEllZWVbHRZgq+sfKFVdcYQYMGFCtQuKll17y3a9r165m7ty5ZuvWrWbu3Lmma9euvmMvv/xymWO43W7Tq1cv37n33nuvWbZsmdmyZYt5//33TcuWLX0vei1dutQPXz3CSbt27Ywk06pVK/Pcc8+ZBQsWmK1bt5pNmzaZd955x1x++eW+ufXggw+WOxbzGcEgISHBtGnTxowaNcq899575quvvjKbNm0yGzZsMF988YW57777TL169Ywk07BhQ/Pdd9+VOs7HH3/sm4ft2rUzM2bMMFu3bjULFy40/fr1q/TPxQMPPOA7t1+/fmbhwoVm69atZsaMGb6fP0nm3//+dyC+HQhDHo/H9yJq4XNiRYUEz88IFoXz54knnjC7d+8u8+Pw4cNljsF8BgAAhSgkUCsK381bv359s3HjxhLHp0yZ4vvFctKkSbUfEHXCq6++auLi4szPP/9sjDHmyJEjVS4kDhw44Ht3Y/fu3Y3D4Sh2PDc313Tv3t0338u66mfGjBm+x37yySdLHD906JDviqL27dubgoKCqn2xCGtDhgwxX3zxhXG73aUeT01NNR07dvTNscTExFLPYz4jWJQ1l4v6+uuvffNs2LBhJY6npaWZ5s2b+0rn1NTUEo/x61//usIXgletWuU759e//nWJbKmpqeaKK64wkkxMTIxJT0+v/BeKOuvdd981kkynTp3Myy+/XOE85PkZwaSmf6cxnwEAQFEUEgi4LVu2+H5xfPzxx0s9x+PxmGuvvdb3x73L5arllKiLqlNIPPHEE777bNq0qdRzNm3aVO4fS8YY33xv0aKFyc3NLfWcv/3tb75xvvzyy0rlAwrFxcX55s8zzzxT6jnMZ4Saa665xkjnlm4635tvvumbY3Pnzi31/sePH/ddaTF48OBSzxk0aJDvRbHjx4+Xes7cuXN9jzVlypTqf0GoE44dO2aio6ONJLN27VozadKkCgsJnp8RTGpaSDCfAQBAUWxqjYBbuHCh7/bYsWNLPSciIkKjRo2SJGVmZmrNmjW1EQ2oEmOMFi1aJEnq1KmTbr755lLPu/nmm3XNNddIkhYtWiRjTLHjBw8e1L59+yRJI0aMUJMmTUodp+hG219//XVN46OO6devn+/2jz/+WOI48xmhqGnTppKkvLy8EscKf99o1qyZ7r333lLv37p1a/Xv31+StGrVKmVnZxc7np2drVWrVkmS+vfvr9atW5c6zr333qtmzZpJYj6jYk899ZRycnI0evRo9enTp8LzeX5GOGE+AwCA81FIIOCSkpIkSVFRUerWrVuZ5xX9A23Dhg0BzwVU1ZEjR5SSkiJJFb6gUHj85MmTOnr0aLFjhT8TFY1z6aWXqmPHjpL4mUDV5efn+27Xq1evxHHmM0LNgQMH9N1330k696JWUS6XS1u3bpUk3XLLLWrYsGGZ4xTO0/z8fG3fvr3YsW3btsnlchU7rzQNGzb0vai2bds2FRQUVO2LQZ3x5ZdfKj4+Xi1atNDbb79dqfvw/IxwwnwGAADno5BAwBW+k6V9+/aqX79+mecVfXGh8D5AMNm7d6/v9vkvhp2vvPlcnXGOHz+u3NzcSmcFEhMTfbevvfbaEseZzwgFDodDhw4d0jvvvKM+ffrI7XZLkp5//vli5x08eFAej0dS7c9nt9utQ4cOlf+FoE7KzMzUc889J0l68803ddFFF1Xqfjw/I1jNnz9fnTt3VpMmTdS0aVN16NBBo0ePLvfqduYzAAA4H4UEAiovL092u12Sylz2oNAFF1ygqKgoSed+eQSCzYkTJ3y3K5rPbdq08d0+fz5XZxxjTLH7AeXxer164403fP8eMWJEiXOYzwhWs2fPls1mk81mU1RUlDp27KgJEybo9OnTkqSXXnpJDz30ULH7WDmfSxsHkKQXX3xRP//8s3r27Klx48ZV+n48PyNY7d27V/v27ZPT6VROTo6Sk5P1ySef6Pbbb9ewYcN09uzZEvdhPgMAgPOV/XZ1wA+Krs0cHR1d4flRUVHKzc1VTk5OIGMB1VKV+VxYrkkqMZ/9NQ5Qlnfffde3fM29995b6nJ5zGeEmhtuuEFTp05VbGxsiWPMZwSb9evXa/r06apfv74+/vhj2Wy2St+X+Yxg06RJE919992644471KlTJ0VHRys1NVWJiYn6+OOPlZaWpoULF2ro0KFKSEhQgwYNfPdlPgMAgPNRSCCgim46Wd56zoUaNWokSXI6nQHLBFRXVeZz4VyWSs5nf40DlCYxMVEvvfSSJKlly5b66KOPSj2P+Yxgdc8996h79+6Szs2TH3/8UV9++aW+/vprPfjgg/rHP/6hX/3qV8Xuw3xGMHG5XHrsscdkjNHvfvc7XXfddVW6P/MZwebkyZOKiYkp8fk777xTzzzzjAYNGqRvv/1WiYmJ+uijj/Tss8/6zmE+AwCA87FkEwKqcePGvtuFm0SWp3AT1sjIyIBlAqqrKvO56IbC589nf40DnO+HH37QsGHD5Ha71bhxY82fP18tW7Ys9VzmM4JVTEyMrrvuOl133XWKjY3VAw88oK+++kqffPKJDh8+rKFDh2r27NnF7sN8RjB5/fXXtX//fl1xxRWaNGlSle/PfEawKa2MKHTJJZdowYIFvqsiPvjgg2LHmc8AAOB8FBIIqKZNm/puV+Zy2cJNxyqzvBNQ26oyn4tuoHf+fPbXOEBRR44c0YABA5SRkaF69epp3rx5uu2228o8n/mMUDNy5Ejdd9998nq9evrpp5Wenu47xnxGsNi/f7/+9re/STr3wmzRpWMqi/mMUHP11VfrzjvvlCQlJycrJSXFd4z5DAAAzkchgYBq3LixLrzwQkmqcEOxjIwM3y+PRTc0A4JF0Q30KprPRTfiO38+V2ccm81W4QZ+qLtSUlLUv39/paSkyGazaebMmRo6dGi592E+IxQVzuvc3FwtX77c93kr53Np46Duevfdd+VyuXT11VfL4XBo3rx5JT727NnjO3/16tW+zxf+HszzM0JR586dfbdPnjzpu818BgAA52MPCQRc586dtX79eiUnJ8vtdqt+/dKn3f79+323r7322tqKB1Ra0T+0is7X0pQ3n88f54YbbqhwnDZt2lTrXZYIf3a7XXfeeacOHz4s6dw7ckeNGlXh/ZjPCEUXX3yx7/axY8d8tzt27Kh69erJ4/H4dT5XZpz69eurQ4cOFYdHnVC4VMzhw4f14IMPVnj+X/7yF9/tI0eOKCoqiudnhKSyNm5nPgMAgPNxhQQCrlevXpLOvZtxx44dZZ6XmJjou92zZ8+A5wKq6qqrrlKrVq0kFZ+vpVm3bp0k6fLLL9eVV15Z7Fjhz0RF4/z88886ePCgJH4mULqzZ89q4MCB2rt3ryTpjTfe0FNPPVWp+zKfEYqKvuu26DIcDRs2VI8ePSRJmzZtKnd98cJ52qhRI9/m2YViY2N9m6WWN59dLpc2b97su0/h2umAP/D8jFBU+LuIJN/8lZjPAACgJAoJBNw999zjuz1r1qxSz/F6vfrkk08knds0rV+/frURDagSm83mWy5k//79vhejzrd582bfO7OGDh1a4h1jHTt29L3r68svv5TD4Sh1nKKbtg4bNqym8RFmHA6HhgwZop07d0qSXnnlFU2cOLHS92c+IxTNnz/fd7tLly7FjhX+vpGVlaWvvvqq1PufOHFCK1eulCTdcccdxdYkl86tUX7HHXdIklauXFnmsiBfffWVsrKyJDGfUdzs2bNljCn3o+hG12vWrPF9vvAFWJ6fEWqOHDmihIQESVK7du10+eWX+44xnwEAQAkGqAW9e/c2kkz9+vXNxo0bSxyfMmWKkWQkmUmTJtV+QNRJR44c8c270aNHV+o+Bw4cMPXq1TOSTPfu3Y3D4Sh23OFwmO7du/vm+8GDB0sdZ8aMGb7Hfuqpp0ocT05ONs2aNTOSTPv27U1BQUGVvz6Er/z8fDNgwADfHHruueeqNQ7zGcFi1qxZxul0lnvOO++845tnV111lXG73cWOp6WlmebNmxtJpm3btsZutxc77na7za9//WvfGGvWrCn1cVatWuU75+677y7xOKmpqeaKK64wkkxMTIxJT0+v+heMOm3SpEkVzkOenxEsFi9eXO68+Pnnn03Xrl198+zvf/97iXOYzwAAoCgKCdSKnTt3msjISCPJREdHm9dff91s2rTJrF692jz22GO+Xyw7duxosrKyrI6LMLV+/Xoza9Ys38dbb73lm3s9e/YsdmzWrFlljvPSSy/57te1a1czb948s23bNjNv3rxif5C9/PLLZY7hdrtNz549fecOHz7cLF++3GzZssV88MEHpmXLlkaSiYiIMEuXLg3AdwOh7N577/XNndtvv918//33Zvfu3WV+HDhwoMyxmM8IBm3btjUtWrQw48ePN3PmzDFJSUnmu+++M+vXrzf/+te/is2vhg0bmoSEhFLH+fjjj33ntWvXzsycOdNs27bNLFq0yPTr18937MEHHyw3zwMPPOA7t1+/fmbRokVm27ZtZubMmaZdu3a+Y//+978D8e1AmKtMIWEMz88IDm3btjWtWrUyzzzzjPn888/Nxo0bzbfffmsSEhLMK6+8Yi666CLf/OrVq5fJy8srdRzmMwAAKEQhgVqzePFi3ztWSvvo2LGjOXTokNUxEcZGjx5d5vwr7aMsHo/HPPLII+Xed9y4ccbj8ZSbJzU11cTGxpY5RqNGjcy0adP8/W1AGKjKPC58t3hZmM8IBm3btq3UXG7durVZsWJFuWO9+uqrxmazlTnG4MGDK7waw+FwmMGDB5c5RkREBFd0otoqW0jw/IxgUNnn5+HDh5uMjIwyx2E+AwCAQjZjjBFQS44dO6b33ntPS5Ys0YkTJ9SwYUO1b99e9913n55++mk1adLE6ogIY2PGjNGcOXMqfX5FT49Lly7V1KlTtW3bNtntdl100UWKjY3V448/rkGDBlXqMdxut6ZNm6bPP/9c+/btU25urlq1aqU77rhDzz33nH7xi19UOi/qjvPXVa5I27ZtdfTo0XLPYT7DSgcOHNCSJUu0YcMGJScn6/Tp00pLS1NkZKRatmypG264Qb/61a80YsSISv2usHHjRn344Ydav369Tp8+rZiYGF1//fUaO3asHnzwwUrn+vzzzzV79mzt2rVLmZmZuuSSS9S7d289/fTTuuWWW2ryJaMOe+211/TnP/9Z0rk9JPr27Vvu+Tw/w0qJiYlKTEzUpk2bdPjwYdntdmVlZSk6Olpt2rTRrbfeqtGjR1f6OZH5DAAAKCQAAAAAAAAAAEDARVgdAAAAAAAAAAAAhD8KCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAACAapo9e7ZsNptsNpuOHj1qdRwAAAAAAIIahQQAAKhzjh496isSavIBAAAAAAAqj0ICAAAAAAAAAAAEnM0YY6wOAQAAUJsKCgp04MCBMo936dJFktS9e3fNmjWrzPOuu+46v2cDAAAAACBc1bc6AAAAQG1r0KBBpcqEqKgoSgcAAAAAAPyEJZsAAAAAAAAAAEDAUUgAAABU0+zZs30bXB89erTE8b59+8pms6lv376SpOTkZP3Xf/2Xrr76akVGRurKK6/UuHHjdOzYsWL327Nnj8aOHaurr75ajRs3Vps2bfTEE0/ozJkzlcq1cOFC3XfffbriiivUuHFjxcTEqHv37vrzn/+sjIyMmn7ZAAAAAABUC0s2AQAA1IKVK1fq3nvvVXZ2tu9zx44d08yZMxUfH6/ExER16tRJc+fO1ZgxY+RyuXznnThxQh9//LGWLVumjRs3qlWrVqU+RkZGhn7zm99o9erVxT6fn5+vHTt2aMeOHfrXv/6lRYsW6eabbw7MFwoAAAAAQBm4QgIAACDAUlJSNGLECMXExOiDDz7Qli1btH79ej3//POy2Ww6c+aMHn30UW3btk2jRo1Su3btNH36dG3dulVr1qzRyJEjJZ0rMH7/+9+X+hj5+fnq37+/Vq9erXr16mnkyJGaO3euNm/erPXr1+uvf/2rLrzwQp05c0aDBw8ucVUGAAAAAACBxhUSAAAAAXbo0CF16NBBGzZs0MUXX+z7fK9evVS/fn29/fbb2rBhg4YMGaIePXooISFBTZo08Z3Xt29f5eXlaf78+frPf/6j1NTUYuNI0uTJk7Vz507FxMRo5cqV6tatW7HjvXr10sMPP6xbbrlFp06d0n//93/rf//3fwP7hQMAAAAAUARXSAAAANSC999/v0SJIElPPvmk77bdbtf06dOLlRGFnnjiCUmS2+3Wpk2bih3LycnRhx9+KEn6y1/+UqKMKNS2bVv96U9/kiTNnz9fubm51ftiAAAAAACoBgoJAACAAIuJidHAgQNLPXbVVVepadOmkqRf/vKXuvbaa0s97/rrr/fdPnz4cLFjiYmJOnv2rCTpN7/5TblZbrvtNklSQUGBduzYUbkvAAAAAAAAP2DJJgAAgADr0KGDbDZbmcdjYmKUnZ2tjh07lntOoaIbY0vS9u3bfbcvu+yySuf6+eefK30uAAAAAAA1xRUSAAAAAVbaEkxFRUREVHhe4TmS5PF4ih07c+ZMtXI5HI5q3Q8AAAAAgOrgCgkAAIAQV7Sg2Llzpxo0aFCp+7Vu3TpQkQAAAAAAKIFCAgAAIMRdeOGFvtsXX3wxRQMAAAAAICixZBMAAECI69q1q+/2hg0bLEwCAAAAAEDZKCQAAABCXP/+/X37T7z//vsyxlicCAAAAACAkigkAAAAQlxMTIyefvppSdLGjRv1u9/9Tl6vt8zzT58+renTp9dWPAAAAAAAJLGHBAAAQFiYPHmyEhMTtWXLFr333ntau3atxo8frxtuuEFRUVHKyMjQDz/8oJUrV2rZsmXq0qWLHn30UatjAwAAAADqEAoJAACAMNCoUSMlJCRozJgx+uqrr7Rr1y7fVROladasWS2mAwAAAACAQgIAACBsNG3aVP/5z3+UlJSkOXPmaP369UpJSZHT6VSzZs3Url079ejRQ0OGDNGAAQOsjgsAAAAAqGNshl0PAQAAAAAAAABAgLGpNQAAAAAAAAAACDgKCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAAAAAAAAAAAQcBQSAAAAAAAAAAAg4CgkAAAAAAAAAABAwFFIAAAAAAAAAACAgKOQAAAAAAAAAAAAAUchAQAAAAAAAAAAAo5CAgAAAAAAAAAABNz/AzuTh3g5cPjbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'transmissibility_function_reassortment_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data\n", + " # Dataframe with model history\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a heatmap and dendrogram for pathogen genomes \n", + "Generate a heatmap and dendrogram for the top 24 genomes. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcsUlEQVR4nO3deZzVdb0/8NcwCKggIsgi+BN3VNwXEhVcMJfCLLdME7Vr4lriQqSCS4p6b6LXTHMBUskdSy01wy0VU3EjEbKruAUKKLKDMOf3hzjXkRmcw/AN5T6f93Eel+/2Pp851ffMaz7Lt6JUKpUCAAAALHeNVnQDAAAAYGUldAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgII0bcvH4iY8vr3asUF0691zRTQAAAGAl1KDQXVWqWl7tAAAAgJVOg0J3qVRaXu0AAACAlU7DerojdAMAAEBdGtjTbXg5wMpkwIABmTdv3opuBgAFadasWQYPHryimwH/pzRwTvf/3Z7uq6++Ov/5n/+ZyZMnZ+utt85VV12VnXbaqc7zp0+fnrPPPjsjR47Mhx9+mPXWWy9XXHFF9t9//39jqwGWbt68eRkyZMiKbgYABTnttNNWdBPg/5yG9XTn/2ZP9+23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzl+wYEH23nvvtG3bNnfddVc6duyYt956K2uuuea/v/EAAAD82+jpXgaXX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vyhQ4fmww8/zNNPP51VVlklSdK5c+d/Z5MBAABYARo15OLSSvJ/8+fPz4wZM2q85s+fX+vPvGDBgowZMya9evX63w+xUaP06tUro0ePrvWae++9NzvvvHNOOumktGvXLl27ds3FF1+cRYsWNeTjBwAA4CuuQaG7qlRaKV6DBw9Oy5Yta7zqWmBi6tSpWbRoUdq1a1djf7t27TJ58uRar3njjTdy1113ZdGiRfnTn/6Uc889N7/85S/zi1/8oiEfPwAAAF9xDRxevnLM6R4wYED69etXY1/Tpk2XW/2qqqq0bds21113XSorK7P99tvnvffey3/+539m0KBBy+19AAAA+Gpp4EJqK8ec7qZNm9Y7ZLdp0yaVlZV5//33a+x///330759+1qv6dChQ1ZZZZVUVlZW79tss80yefLkLFiwIE2aNFn2xgMAAPCVZXh5mYvBNWnSJNtvv31GjRr1v59DVVVGjRqVnXfeudZrdtlll/zzn/9MVdX/jgz4xz/+kQ4dOgjcAAAAKzGhu8zQnST9+vXL9ddfn9/+9rd57bXXcsIJJ2T27NnVq5kfddRRGTBgQPX5J5xwQj788MP85Cc/yT/+8Y/88Y9/zMUXX5yTTjqpIR8/AAAAX3Ge070MDjvssEyZMiUDBw7M5MmTs8022+TBBx+sXlzt7bffTqNG//v3jHXXXTcPPfRQTjvttGy11Vbp2LFjfvKTn6R///4r6kcAAADg38BzupfRySefnJNPPrnWY4899tgS+3beeec888wzBbcKAACArxKhGwAAAApi9XIAAAAoiJ5uAAAAKEjDQreebgAAAKhTw4aX6+kGAACAOhleDgAAAAUxvBwAAAAKoqcbAAAACmJONwAAABTE8HIAAAAoiOHlAAAAUBDDywEAAKAghpcDAABAQRo4vHx5NQMAAABWPuZ0AwAAQEEaNqfb8HIAAACok55uAAAAKIjQDQAAAAVp4PByAAAAoC56ugEAAKAgQjcAAAAUpGGhe3m1AgAAAFZCDZvTracbAAAA6tTA4eXLqxkAAACw8jGnGwAAAArSwEeGCd0AAABQF8PLAQAAoCCGlwMAAEBBGrh6+fJqBgAAAKx8PKcbAAAACmJ4OQAAABTE8HIAAAAoiJ5uAAAAKIg53QAAAFCQBg4v19MNAAAAdWng8PLl1QwAAABY+VhIDQAAAApiITUAAAAoiJ5uAAAAKIg53QAAAFCQhvV0L69WAAAAwErInG4AAAAoiDndAAAAUBBzugEAAKAgeroBAACgIOZ0AwAAQEEaNeTiUmnleC2Lq6++Op07d06zZs3SrVu3PPvss/W67rbbbktFRUUOPPDAZXtjAAAAvjYaFLqrSivHq1y33357+vXrl0GDBuWFF17I1ltvnX322ScffPDBUq+bOHFizjjjjOy2227L+Il/at68eQ26HgAAgH8PPd3LELovv/zyHHfccTnmmGOy+eab59prr81qq62WoUOH1nnNokWLcsQRR+T888/PBhtsUPZ7VlVV5cILL0zHjh3TvHnzvPHGG0mSc889NzfeeGP5PwQAAACFE7pLyfz58zNjxowar/nz59f6My9YsCBjxoxJr169/vdDbNQovXr1yujRo+v8rC644IK0bds2P/rRj5bps/7FL36R4cOH57LLLkuTJk2q93ft2jU33HDDMtUEAACgWIaXl5LBgwenZcuWNV6DBw+u9WeeOnVqFi1alHbt2tXY365du0yePLnWa5588snceOONuf7665f5s77pppty3XXX5YgjjkhlZWX1/q233jrjx49f5roAAAAUxyPDkgwYMCD9+vWrsa9p06bLpfbMmTPzwx/+MNdff33atGmzzHXee++9bLTRRkvsr6qqyieffNKQJgIAAFCQBobulSN1N23atN4hu02bNqmsrMz7779fY//777+f9u3bL3H+//zP/2TixInp3bt39b6qqqokSePGjTNhwoRsuOGGX/q+m2++ef76179mvfXWq7H/rrvuyrbbbluvtgMAAPDv1cDndC+vZnx9NGnSJNtvv31GjRpV/divqqqqjBo1KieffPIS53fp0iVjx46tse+cc87JzJkzc+WVV2bdddet1/sOHDgwffr0yXvvvZeqqqqMHDkyEyZMyE033ZT777+/wT8XAAAAy5/h5cugX79+6dOnT3bYYYfstNNOueKKKzJ79uwcc8wxSZKjjjoqHTt2zODBg9OsWbN07dq1xvVrrrlmkiyxf2m+853v5L777ssFF1yQ1VdfPQMHDsx2222X++67L3vvvfdy+9kAAABYfoTuZXDYYYdlypQpGThwYCZPnpxtttkmDz74YPXiam+//XYaNWrQGnW12m233fLwww8v97oAAAAUQ+heRieffHKtw8mT5LHHHlvqtcOHDy/7/Z577rlUVVWlW7duNfb/7W9/S2VlZXbYYYeyawIAAFAsz+n+mvzh4KSTTso777yzxP733nsvJ5100gpoEQAAAF/GQmpfE+PGjct22223xP5tt90248aNWwEtAgAA4Mvo6f6a/OGgadOmSzymLEkmTZqUxo0b9LcTAAAACiJ0f01C9ze/+c0MGDAgH3/8cfW+6dOn5+c//7nVywEAAL6iLKT2NfFf//Vf6dGjR9Zbb71su+22SZKXXnop7dq1y80337yCWwcAAEBtGhi6pe5/l44dO+aVV17JiBEj8vLLL2fVVVfNMccck8MPPzyrrLLKim4eAAAAtWhY6K5aXs2gPlZfffX8+Mc/XtHNAAAAoJ4ML/8aef311/Poo4/mgw8+SFVVzb94DBw4cAW1CgAAgLoI3V8T119/fU444YS0adMm7du3T0VFRfWxiooKoRsAAOArSOj+mvjFL36Riy66KP3791/RTQEAAKCehO6viY8++iiHHHLIim4GAAAAZfCc7q/JHw4OOeSQ/PnPf17RzQAAAKAMVi//mthoo41y7rnn5plnnsmWW265xGPCTj311BXUMgAAAOpiePnXxHXXXZfmzZvn8ccfz+OPP17jWEVFhdANAADwFSR0f028+eabK7oJAAAAlEnoBgAAgIII3V8j7777bu699968/fbbWbBgQY1jl19++QpqFQAAAHVp4EJqUve/y6hRo3LAAQdkgw02yPjx49O1a9dMnDgxpVIp22233YpuHgAAALXwyLCvyd8NBgwYkDPOOCNjx45Ns2bNcvfdd+edd95Jz549Pb8bAADgK6pBoTulleT1NfDaa6/lqKOOSpI0btw4c+fOTfPmzXPBBRfk0ksvXcGtAwAAoDae0/01sfrqq1fP4+7QoUP+53/+J1tssUWSZOrUqSuyaQAAANTBQmpfE9/4xjfy5JNPZrPNNsv++++f008/PWPHjs3IkSPzjW98Y0U3DwAAgFoI3V8Tl19+eWbNmpUkOf/88zNr1qzcfvvt2Xjjja1cDgAA8BXVoND9dZkPvTLYYIMNqv+9+uqr59prr12BrQEAAKA+GrZ6edXK8fo62GCDDTJt2rQl9k+fPr1GIAcAAOCro4HDy3V1/7tMnDgxixYtWmL//Pnz8957762AFgEAAPBlzOn+irv33nur//3QQw+lZcuW1duLFi3KqFGj0rlz5xXQMgAAAL5Mw+Z0f02GZn+dHXjggUmSioqK9OnTp8axVVZZJZ07d84vf/nLFdAyAAAAvoye7q+4qqpP/7Kx/vrr57nnnkubNm1WcIsAAACoL6uXf028+eabS+ybPn161lxzzX9/YwAAAKiXBq5eXlopXl8Hl156aW6//fbq7UMOOSRrrbVWOnbsmJdffnkFtgwAAIC6NCx0l1aO19fBtddem3XXXTdJ8vDDD+cvf/lLHnzwwey3334588wzV3DrAAAAqI3h5V8TkydPrg7d999/fw499NB885vfTOfOndOtW7cV3DoAAABq08Dh5SvH6+ugVatWeeedd5IkDz74YHr16pXk02el1/b8bgAAAFa8BvZ06+r+d/ne976XH/zgB9l4440zbdq07LfffkmSF198MRtttNEKbh0AAAC1adgjw74mvcQrgyFDhqRz58555513ctlll6V58+ZJkkmTJuXEE09cwa0DAACgNuZ0f02sssoqOeOMM5bYf9ppp62A1gAAAFAfDevpNry8UPfee2/222+/rLLKKrn33nuXeu4BBxzwb2oVAAAA9dWwnm7Dywt14IEHZvLkyWnbtm0OPPDAOs+rqKiwmBoAAMBXUAN7updXM6hNVVVVrf8GAADg68Hq5V8DVVVVGT58eEaOHJmJEyemoqIiG2ywQQ466KD88Ic/TEVFxYpuIgAAALVo0HO6U7WSvL7CSqVSDjjggPzHf/xH3nvvvWy55ZbZYostMnHixBx99NH57ne/u6KbCAAAQB0spPYVN3z48DzxxBMZNWpU9thjjxrHHnnkkRx44IG56aabctRRR62gFgIAAFAXPd1f8Z7uW2+9NT//+c+XCNxJsueee+ZnP/tZRowYsQJaBgAAwJdpUOgulUorxeur7JVXXsm+++5b5/H99tsvL7/88r+xRQAAANSXR4Z9xX344Ydp165dncfbtWuXjz766N/YIgAAAOqrYcPLS6WV47UMrr766nTu3DnNmjVLt27d8uyzz9Z57vXXX5/ddtstrVq1SqtWrdKrV6+lnv95ixYtSuPGdf9tpLKyMgsXLiy7/QAAABTPc7qXwe23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzn/sscdy+OGHp3v37mnWrFkuvfTSfPOb38yrr76ajh07LvW9SqVSjj766DRt2rTW4/Pnz18uPxMAAADLXwOHl//fTN2XX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vwvLnR2ww035O67786oUaO+dNXxPn36fGl7rFwOAADw1dSw0L2SZO758+cv0WPctGnTWnuXFyxYkDFjxmTAgAHV+xo1apRevXpl9OjR9Xq/OXPm5JNPPslaa631pecOGzasXjUBAAD46mnY6uVVpZXiNXjw4LRs2bLGa/DgwbX+zFOnTs2iRYuWWNysXbt2mTx5cr0+t/79+2edddZJr169GvLxAwAA8BWnpzvJgAED0q9fvxr76ppD3VCXXHJJbrvttjz22GNp1qxZIe8BAADAV4M53al7KHlt2rRpk8rKyrz//vs19r///vtp3779Uq/9r//6r1xyySX5y1/+kq222mqZ2wsAAMDXQ8OGl5dKK8WrHE2aNMn222+fUaNGVe+rqqrKqFGjsvPOO9d53WWXXZYLL7wwDz74YHbYYYdl/swBAAD4+jC8fBn069cvffr0yQ477JCddtopV1xxRWbPnl29mvlRRx2Vjh07Vs8Lv/TSSzNw4MD87ne/S+fOnavnfjdv3jzNmzdfYT8HAAAAxTK8fBkcdthhmTJlSgYOHJjJkydnm222yYMPPli9uNrbb7+dRo3+dxDBNddckwULFuTggw+uUWfQoEE577zz/p1NBwAA4N+ogT3d/zdDd5KcfPLJOfnkk2s99thjj9XYnjhxYvENAgAA4CunQaG79H+0pxsAAADqw5xuAAAAKIjh5QAAAFAQC6kBAABAQRo2p1tPNwAAANRJTzcAAAAUxJxuAAAAKIiebgAAACiIOd0AAABQEMPLAQAAoCCGlwMAAEBB9HQDAABAQczpBgAAgIIYXg4AAAAFMbwcAAAACqKnGwAAAApiTjcAAAAUxPByAAAAKIjh5QAAAFCQBvZ0Vy2nZgAAAMDKx5xuAAAAKIjh5QAAAFAQC6kBAABAQczpBgAAgIKY0w0AAAAFMacbAAAACmJONwAAABSkgcPLzekGAACAuhheDgAAAAWxejkAAAAUxOrlAAAAUBA93QAAAFCQhvV0m9MNAAAAdfLIMAAAACiI4eUAAABQEAupAQAAQEH0dAMAAEBBGtjTLXQDAABAXRrW0231cgAAAKiTnm4AAAAoiEeGAQAAQEH0dAMAAEBB9HQDAABAQfR0AwAAQEGEbgAAACiI4eUAAABQkEYNubhUqlopXsvi6quvTufOndOsWbN069Ytzz777FLPv/POO9OlS5c0a9YsW265Zf70pz8t0/sCAADw9SF0L0Povv3229OvX78MGjQoL7zwQrbeeuvss88++eCDD2o9/+mnn87hhx+eH/3oR3nxxRdz4IEH5sADD8zf//73hnz8AAAAfMU1KHSnVFo5XmW6/PLLc9xxx+WYY47J5ptvnmuvvTarrbZahg4dWuv5V155Zfbdd9+ceeaZ2WyzzXLhhRdmu+22y69+9asGffwAAAB8tTVsIbWqlWMhtfnz52f+/Pk19jVt2jRNmzZd4twFCxZkzJgxGTBgQPW+Ro0apVevXhk9enSt9UePHp1+/frV2LfPPvvk97//fcMbDwAAwFdWg0L32LceX17tWKHOO++8nH/++TX2DRo0KOedd94S506dOjWLFi1Ku3btauxv165dxo8fX2v9yZMn13r+5MmTG9ZwAAAAvtIatnr5SmLAgAFL9ETX1ssNAAAA5RC6U/dQ8tq0adMmlZWVef/992vsf//999O+fftar2nfvn1Z5wMAALByaNhCav8HNWnSJNtvv31GjRpVva+qqiqjRo3KzjvvXOs1O++8c43zk+Thhx+u83wAAABWDhWl0jIs3/1/3O23354+ffrkN7/5TXbaaadcccUVueOOOzJ+/Pi0a9cuRx11VDp27JjBgwcn+fSRYT179swll1ySb33rW7ntttty8cUX54UXXkjXrl1X8E9DXbZcr+eKbgIABbvz8QtWdBMAKFCXziv+d3rDy5fBYYcdlilTpmTgwIGZPHlyttlmmzz44IPVi6W9/fbbadTofwcRdO/ePb/73e9yzjnn5Oc//3k23njj/P73vxe4AQAAVnJ6uqEOeroBVn56ugFWbl+Fnm5zugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAJLnpppsyf/785VpT6AYAAGClNH/+/MyYMaPGa2mh+phjjsnHH3+8XNvQeHkWGzBgQObNm7c8SwIAAMAyGTx4cM4///wa+wYNGpTzzjuv1vNLpdJyb8NyDd3z5s3LkCFDlmdJWGG2HNlzRTcBAABogAEDBqRfv3419jVt2nSp11RUVCzXNizX0A0AAABfFU2bNv3SkP1Fe+21Vxo3XnpUfuGFF+pdT+gGAACAxfbZZ580b958udUTugEAAGCxM888M23btl1u9axeDgAAAFn+87kToRsAAACSFLN6udANAAAASd58882svfbaS+xfuHBhZs2atUw1hW4AAABI8sorr+S3v/1tjX0XXXRRmjdvnjXXXDPf/OY389FHH5VVU+gGAACAJL/85S8ze/bs6u2nn346AwcOzLnnnps77rgj77zzTi688MKyalq9HAAAAJKMGzcu3bt3r96+6667svfee+fss89OkjRr1iw/+clPcvnll9e7pp5uAAAASDJz5sy0bt26evvJJ5/MXnvtVb29xRZb5F//+ldZNYVuAAAASNKxY8e89tprSZJZs2bl5ZdfrtHzPW3atKy22mpl1RS6AQAAIMkhhxySn/70p7n55ptz3HHHpX379vnGN75Rffz555/PpptuWlZNc7oBAAAgycCBA/Pee+/l1FNPTfv27XPLLbeksrKy+vitt96a3r17l1VT6AYAAIAkq666am666aY6jz/66KNl1zS8HAAAAJJ88MEHSz2+aNGiPPvss2XVFLoBAAAgSYcOHWoE7y233DLvvPNO9fbUqVOz8847l1VT6AYAAIAkpVKpxvbEiRPzySefLPWcLyN0AwAAQD1VVFSUdb7QDQAAAAWxejkAAADk017smTNnplmzZimVSqmoqMisWbMyY8aMJKn+/+UQugEAACCfztfeZJNNamxvu+22NbbLHV4udAMAAECW7TncX0boBgAAgCQ9e/Zc7jWFbgAAAKhDqVTKo48+mrlz56Z79+5p1apVWddbvRwAAACSTJ8+PX369MmWW26Z4447LjNmzMhuu+2WXr16pXfv3tlss83yyiuvlFVT6AYAAIAkZ5xxRkaPHp3vf//7GTt2bPbdd98sWrQoo0ePzt/+9rdsttlmOfvss8uqaXg5AAAAJHnggQfyu9/9Lj179szRRx+dddddN4888ki6deuWJLn00ktzwAEHlFVTTzcAAAAkef/996sfGdaxY8c0a9Ys6667bvXx//f//l+mTJlSVk2hGwAAAJJUVVWlsrKyeruysrLGc7nLfUZ3Yng5AAAAVLvhhhvSvHnzJMnChQszfPjwtGnTJkkyc+bMsusJ3QAAAJBPh49ff/311dvt27fPzTffvMQ55RC6AQAAIMnEiROXe01zugEAACDJUUcdlbvvvjuzZ89ebjWFbgAAAEiy0UYb5eKLL06bNm2y33775Zprrsl7773XoJpCNwAAACQZOHBgxowZk9dffz29e/fO73//+2y44YbZfvvtc8EFF+Sll14qu6bQDQAAAJ/TqVOnnHjiiXnooYcyZcqU9O/fPxMmTMiee+6Z9dZbLyeffHJeffXVetUSugEAAKAOLVq0yKGHHpoRI0ZkypQpGTp0aCorKzN69Oh6XW/1cgAAAPiCqVOnZuLEiamoqEjnzp3TunXrVFZWZq+99spee+1V7zp6ugEAAGCxV199NT169Ei7du3SrVu37LTTTmnbtm323HPPjB8/vux6eroBAAAgyeTJk9OzZ8+svfbaufzyy9OlS5eUSqWMGzcu119/fXr06JG///3vadu2bb1rCt0AAACQZMiQIVlvvfXy1FNPpVmzZtX7991335xwwgnZddddM2TIkAwePLjeNQ0vBwAAgCQPP/xw+vfvXyNwf2bVVVfNmWeemYceeqismkI3AAAAJHnjjTey3Xbb1Xl8hx12yBtvvFFWTaEbAAAAksycOTNrrLFGncdbtGiRWbNmlVXTnG4AAABYbObMmbUOL0+SGTNmpFQqlVVP6AYAAIAkpVIpm2yyyVKPV1RUlFVT6AYAAIAkjz766HKvKXQDAABAkp49ey73mkI3AAAAfM7HH3+chx9+OBMnTkxFRUXWX3/99OrVa6mLrNVF6AYAAIDFbrnllpx88smZMWNGjf0tW7bMtddem8MOO6yseh4ZBgAAAEleeOGFHHPMMTnwwAPz4osvZu7cuZkzZ06ef/759O7dOz/84Q/z8ssvl1VTTzcAAAAkueqqq3LggQdm+PDhNfZvt912uemmmzJnzpxceeWVGTp0aL1r6ukGAACAJE899VSOP/74Oo/37ds3Tz75ZFk1hW4AAABI8q9//Wupz+neZJNN8t5775VVU+gGAACAJHPmzEmzZs3qPN60adPMmzevrJrmdAMAAMBiDz30UFq2bFnrsenTp5ddT+gGAACAxfr06bNc6wndAAAAkKSqqmq51zSnGwAAAOqhqqoq999/f1nX6OkGAACApfjnP/+ZoUOHZvjw4ZkyZUo++eSTel+rpxsAAAC+YO7cubnpppvSo0ePbLrppnn66aczcODAvPvuu2XV0dMNAAAAiz333HO54YYbctttt2XDDTfMEUcckaeffjq//vWvs/nmm5ddT+gGAACAJFtttVVmzJiRH/zgB3n66aezxRZbJEl+9rOfLXNNw8sBAAAgyYQJE9KjR4/ssccey9SrXRuhGwAAAJK88cYb2XTTTXPCCSekU6dOOeOMM/Liiy+moqJimWsK3QAAAJCkY8eOOfvss/PPf/4zN998cyZPnpxddtklCxcuzPDhw/OPf/yj7JpCNwAAAHzBnnvumVtuuSWTJk3Kr371qzzyyCPp0qVLttpqq7LqCN0AAABQh5YtW+bEE0/M888/nxdeeCG77757WddbvRwAAACWYsGCBVmwYEG22Wab/Pd//3dZ1+rpBgAAgMWGDRuWU045JSNGjEiSDBgwIC1atEjLli2z9957Z9q0aWXVE7oBAAAgyUUXXZSTTjop48ePz6mnnpoTTjghw4cPzwUXXJBLLrkk48ePzznnnFNWTcPLAQAAIMnw4cNz44035vDDD8/zzz+fbt265Y477shBBx2UJOnatWv69u1bVk093QAAAJDk7bffzq677pok2WGHHdK4ceN07dq1+vhWW22VSZMmlVVT6AYAAIAkn3zySZo2bVq93aRJk6yyyirV240bN86iRYvKqml4OQAAACw2bty4TJ48OUlSKpUyfvz4zJo1K0kyderUsusJ3QAAALDYXnvtlVKpVL397W9/O0lSUVGRUqmUioqKsuoJ3QAAAJDkzTffXO41hW4AAABIMmrUqBxwwAFp06bNcqtpITUAAABIcsstt6RTp07p3r17Lr300rz22msNril0AwAAQJJHHnkkkyZNyoknnpgxY8akW7du2XjjjXP66afniSeeSFVVVdk1hW4AAABYrFWrVjnyyCNzxx13ZOrUqbnqqqsyd+7cHHHEEWnbtm2OOuqo3HXXXZk9e3a96gndAAAAUIsmTZpk3333za9//eu88847efDBB9O5c+dceOGFufzyy+tVw0JqAAAAkGSDDTbIc889l9atW9d6fIcddsgOO+yQCy64IJ988km9aurpBgAAgCQTJ07MokWL6nXuKqusUq/zhG4AAAAoiOHlAAAAsNhDDz2Uli1bLvWcAw44oN71hG4AAABYrE+fPks9XlFRUe8h6Inh5QAAAFBt8uTJqaqqqvNVTuBOhG4AAABI8mkv9vImdAMAAECSUqm03GsK3QAAAJBP53Ovuuqqy7WmhdQAAAAgyXXXXZeqqqoa+95///1ce+21mT17dg444IDsuuuuZdUUugEAACDJj3/84zRp0iS/+c1vkiQzZ87MjjvumHnz5qVDhw4ZMmRI/vCHP2T//fevd03DywEAACDJU089lYMOOqh6+6abbsqiRYvy+uuv5+WXX06/fv3yn//5n2XVFLoBAAAgyXvvvZeNN964envUqFE56KCD0rJlyySfzvl+9dVXy6opdAMAAECSZs2aZe7cudXbzzzzTLp161bj+KxZs8qqKXQDAABAkm222SY333xzkuSvf/1r3n///ey5557Vx//nf/4n66yzTlk1LaQGAAAASQYOHJj99tsvd9xxRyZNmpSjjz46HTp0qD5+zz33ZJdddimrptANAAAASXr27JkxY8bkz3/+c9q3b59DDjmkxvFtttkmO+20U1k1hW4AAABYbLPNNstmm21W67Ef//jHZdczpxsAAACSnHjiiTUWSrv11lsze/bs6u3p06eX9YzuROgGAACAJMlvfvObzJkzp3r7+OOPz/vvv1+9PX/+/Dz00ENl1RS6AQAAIEmpVFrq9rIQugEAAKAgQjcAAAAUxOrlAAAAsNjAgQOz2mqrJUkWLFiQiy66KC1btkySGvO960voBgAAgCQ9evTIhAkTqre7d++eN954Y4lzyiF0AwAAQJLHHntsudc0pxsAAAAKInQDAADAYq+//nruvvvuvPnmm0mSP/7xj+nRo0d23HHHXHTRRWU/RszwcgAAAEhyzz335NBDD02jRo1SUVGR6667Lscff3x23333rLHGGjnvvPPSuHHj9O/fv9419XQDAABAkosuuihnnXVW5s2bl2uuuSZ9+/bN4MGD88ADD+T+++/P1VdfneHDh5dVU+gGAACAJBMmTMixxx6bioqK9OnTJwsWLEivXr2qj3/zm9/MW2+9VVZNoRsAAACSzJ49Oy1atEiSNGrUKKuuumr1M7uTZNVVV838+fPLqil0AwAAQJKKiopUVFTUub0sLKQGAAAASUqlUjbZZJPqoD1r1qxsu+22adSoUfXxcgndAAAAkGTYsGHLvabQDQAAAEl22223bLDBBsu1pjndAAAAkGSrrbZK165d8/Of/zzPPvvscqkpdAMAAECSqVOnZvDgwfnggw9ywAEHpEOHDjnuuONy3333Zd68ectUU+gGAACAJM2aNUvv3r1zww03ZNKkSbn77rvTunXr9O/fP23atMmBBx6YoUOHZsqUKfWuKXQDAADAF1RUVKR79+655JJLMm7cuLz44ovZbbfdMnz48HTq1ClXX311vepYSA0AAAC+xMYbb5zTTz89p59+eqZNm5YPP/ywXtcJ3QAAAPA5jzzySEaOHJmJEyemoqIi66+/fg4++OD06NEjSdK6deu0bt26XrUMLwcAAIDF+vbtm169euXWW2/NtGnTMmXKlIwYMSJ77LFHTjnllLLrCd0AAACQ5J577smwYcMydOjQTJ06NaNHj84zzzyTKVOm5Prrr891112Xe++9t6yaQjcAAAAkGTZsWPr165ejjz46FRUV1fsbNWqUY489Nj/96U9z4403llVT6AYAAIAkL7zwQr773e/Wefx73/texowZU1ZNoRsAAACSTJ06NZ06darzeKdOnTJt2rSyagrdAAAAkGTBggVZZZVV6jzeuHHjLFiwoKyaHhkGAAAAi5177rlZbbXVaj02Z86csusJ3QAAAJCkR48emTBhwpeeUw6hGwAAAJI89thjy72mOd0AAABQEKEbAAAAFps9e3YGDhyYrl27pnnz5mnRokW22mqrXHDBBeZ0AwAAwLJasGBBevbsmb///e/Zb7/90rt375RKpbz22mu56KKL8sADD+SJJ55Y6grnXyR0AwAAQJJrrrkm7777bl5++eVsuummNY6NHz8+u+++e6699tqccsop9a5peDkAAAAkGTlyZM4999wlAneSdOnSJWeffXbuuuuusmoK3QAAAJBk3Lhx2X333es8vscee2TcuHFl1RS6AQAAIMn06dPTunXrOo+3bt06H3/8cVk1hW4AAABIUlVVlcrKyjqPN2rUKIsWLSqrpoXUAAAAIEmpVMpee+2Vxo1rj8oLFy4su6bQDQAAAEkGDRr0peccdNBBZdUUugEAACD1C93lMqcbAAAAvsSMGTNyzTXXZIcddijrOj3dAAAAUIdHH300Q4cOzciRI9OyZct897vfLet6oRsAAAA+57333svw4cMzbNiwTJ8+PR999FF+97vf5dBDD01FRUVZtQwvBwAAgCR333139t9//2y66aZ56aWX8stf/jL/+te/0qhRo2y55ZZlB+5ETzcAAAAkSQ477LD0798/t99+e1q0aLFcaurpBgAAgCQ/+tGPcvXVV2fffffNtddem48++qjBNYVuAAAASPKb3/wmkyZNyo9//OPceuut6dChQ77zne+kVCqlqqpqmWoK3QAAALDYqquumj59+uTxxx/P2LFjs/nmm6ddu3bZZZdd8oMf/CAjR44sq57QDQAAALXYeOONM3jw4LzzzjsZMWJE5syZk8MPP7ysGkI3AAAAfM60adOq//3OO+/kvPPOy+OPP55+/frlnXfeKauW0A0AAABJxo4dm86dO6dt27bp0qVLXnrppey4444ZMmRIrrvuuuy55555+umny6opdAMAAECSs846K1tuuWWeeOKJ7L777vn2t7+db33rW/n444/z0Ucf5fjjj88ll1xSVk3P6QYAAIAkzz33XB555JFstdVW2XrrrXPdddflxBNPTKNGn/ZXn3LKKfnGN75RVk093QAAAJDkww8/TPv27ZMkzZs3z+qrr55WrVpVH2/VqlVmzpxZVk2hGwAAABarqKhY6na5DC8HAACAxY4++ug0bdo0STJv3rz07ds3q6++epJk/vz5ZdcTugEAACBJnz59amwfeeSRS5xz1FFHlVVT6AYAAIAkw4YNW+41zekGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgjRe0Q2Ar6o7H79gRTcBgIId0nPgim4CAAUa+9bjK7oJeroBAACgKEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCNF7RDQAAAIAizJ8/P/Pnz6+xr2nTpmnatOlSr/v444/z8MMPZ+LEiamoqMj666+fXr16ZY011ii7Dcs1dDdr1iynnXba8iwJK8zxPzlwRTcBAABogMGDB+f888+vsW/QoEE577zz6rzmlltuycknn5wZM2bU2N+yZctce+21Oeyww8pqQ0WpVCqVdQX8HzF+4uMrugkAFOyQngNXdBMAKNDz//hzWT3dL7zwQrp165Yjjjgip512Wrp06ZJSqZRx48bliiuuyG233ZbnnnsuW2+9db3bIHRDHYRugJWf0A2wchv7Vnm/0x9zzDGZNWtW7rzzzlqPH3zwwVljjTUydOjQete0kBoAAAAkeeqpp3L88cfXebxv37558skny6opdAMAAECSf/3rX9lkk03qPL7JJpvkvffeK6um0A0AAABJ5syZk2bNmtV5vGnTppk3b15ZNT0yDAAAABZ76KGH0rJly1qPTZ8+vex6QjcAAAAs1qdPn6Uer6ioKKue0A0AAABJqqqqlntNc7oBAACgIHq6AQAA4HMeeeSRjBw5MhMnTkxFRUXWX3/9HHzwwenRo0fZtfR0AwAAwGJ9+/ZNr169cuutt2batGmZMmVKRowYkT322COnnHJK2fWEbgAAAEhyzz33ZNiwYRk6dGimTp2a0aNH55lnnsmUKVNy/fXX57rrrsu9995bVk2hGwAAAJIMGzYs/fr1y9FHH11jlfJGjRrl2GOPzU9/+tPceOONZdUUugEAACDJCy+8kO9+97t1Hv/e976XMWPGlFVT6AYAAIAkU6dOTadOneo83qlTp0ybNq2smkI3AAAAJFmwYEFWWWWVOo83btw4CxYsKKumR4YBAADAYueee25WW221Wo/NmTOn7HpCNwAAACTp0aNHJkyY8KXnlEPoBgAAgCSPPfbYcq9pTjcAAADUw2uvvZYzzjijrGuEbgAAAKjD7Nmzc+ONN6Z79+7ZYost8uCDD5Z1vdANAAAAX/DUU0/l2GOPTbt27fLjH/843bt3z7hx4/L3v/+9rDpCNwAAACT54IMPctlll6VLly45+OCDs+aaa+axxx5Lo0aNcuyxx6ZLly5l17SQGgAAACRZb731cvDBB+fKK6/M3nvvnUaNGt5PracbAAAA8mnofvLJJ/PEE0/kH//4x3KpKXQDAABAkvHjx+eWW27JpEmTsuOOO2b77bfPkCFDkiQVFRXLVFPoBgAAgMV22WWXDB06NJMmTUrfvn1z5513ZtGiRTnxxBNz/fXXZ8qUKWXVE7oBAADgC5o3b57jjjsuTz/9dF599dVst912Oeecc7LOOuuUVUfoBgAAgKXYbLPN8stf/jLvvfdebr/99rKutXo5AAAA1KFUKuXRRx/N3Llz071793zve98r63o93QAAAJBk+vTp6dOnT7bccsscd9xxmTFjRnbbbbf06tUrvXv3zmabbZZXXnmlrJpCNwAAACQ544wzMnr06Hz/+9/P2LFjs++++2bRokUZPXp0/va3v2WzzTbL2WefXVZNw8sBAAAgyQMPPJDf/e536dmzZ44++uisu+66eeSRR9KtW7ckyaWXXpoDDjigrJp6ugEAACDJ+++/n0022SRJ0rFjxzRr1izrrrtu9fH/9//+n0eGAQAAwLKoqqpKZWVl9XZlZWUqKiqqtz//7/oyvBwAAAAWu+GGG9K8efMkycKFCzN8+PC0adMmSTJz5syy61WUSqXScm0hrCTGT3x8RTcBgIId0nPgim4CAAUa+1Z5v9N37ty5Xr3Zb775Zr1r6ukGAACAJBMnTlzuNc3pBgAAgCRHHXVU7r777syePXu51RS6AQAAIMlGG22Uiy++OG3atMl+++2Xa665Ju+9916DagrdAAAAkGTgwIEZM2ZMXn/99fTu3Tu///3vs+GGG2b77bfPBRdckJdeeqnsmkI3AAAAfE6nTp1y4okn5qGHHsqUKVPSv3//TJgwIXvuuWfWW2+9nHzyyXn11VfrVUvoBgAAgCRvv/12vviArxYtWuTQQw/NiBEjMmXKlAwdOjSVlZUZPXp0vWpavRwAAACSrL/++pk0aVLatm1b6/HKysrstdde2WuvvepdU083AAAAJEv0ci8PQjcAAAAsVlFRsVzrGV4OAAAAi5177rlZbbXVlnrO5ZdfXu96QjcAAAAsNnbs2DRp0qTO4+X2hAvdAAAAsNg999xT50Jqy8KcbgAAAMjyn8+dCN0AAACQxOrlAAAAUJhhw4alZcuWy7Wm0A0AAABJdt5557z88ss19o0aNSp77LFHdtppp1x88cVl1xS6AQAAIEn//v1z//33V2+/+eab6d27d5o0aZKdd945gwcPzhVXXFFWTauXAwAAQJLnn38+Z511VvX2iBEjsskmm+Shhx5Kkmy11Va56qqr8tOf/rTeNfV0AwAAQJKpU6emU6dO1duPPvpoevfuXb29++67Z+LEiWXVFLoBAAAgyVprrZVJkyYlSaqqqvL888/nG9/4RvXxBQsWlL3CudANAAAA+bQn+8ILL8w777yTK664IlVVVdl9992rj48bNy6dO3cuq6Y53QAAAJDkoosuyt5775311lsvlZWV+e///u+svvrq1cdvvvnm7LnnnmXVFLoBAAAgSefOnfPaa6/l1Vdfzdprr5111lmnxvHzzz+/xpzv+hC6AQAAYLHGjRtn6623rvVYXfuXxpxuAAAASLL55pvnww8/rN4+8cQTM3Xq1OrtDz74IKuttlpZNYVuAAAASDJ+/PgsXLiwevuWW27JjBkzqrdLpVLmzZtXVk2hGwAAAGpR2+PBKioqyqohdAMAAEBBhG4AAADIp73YX+zJLrdn+4usXg4AAAD5dDj5XnvtlcaNP43Kc+fOTe/evdOkSZMkqTHfu76EbgAAAEgyaNCgGtvf+c53ljjnoIMOKqum0A0AAABZMnQvD+Z0AwAAwFIsWLAgs2bNWqZrhW4AAABYbNiwYTnllFMyYsSIJMmAAQPSokWLtGzZMnvvvXemTZtWVj2hGwAAAJJcdNFFOemkkzJ+/PiceuqpOeGEEzJ8+PBccMEFueSSSzJ+/Picc845ZdU0pxsAAACSDB8+PDfeeGMOP/zwPP/88+nWrVvuuOOO6sXTunbtmr59+5ZVU083AAAAJHn77bez6667Jkl22GGHNG7cOF27dq0+vtVWW2XSpEll1RS6AQAAIMknn3ySpk2bVm83adIkq6yySvV248aNs2jRorJqGl4OAAAAi40bNy6TJ09OkpRKpYwfP7565fKpU6eWXU/oBgAAgMX22muvlEql6u1vf/vbSZKKioqUSqVUVFSUVU/oBgAAgCRvvvnmcq8pdAMAAECSUaNG5YADDkibNm2WW00LqQEAAECSW265JZ06dUr37t1z6aWX5rXXXmtwTaEbAAAAkjzyyCOZNGlSTjzxxIwZMybdunXLxhtvnNNPPz1PPPFEqqqqyq4pdAMAAMBirVq1ypFHHpk77rgjU6dOzVVXXZW5c+fmiCOOSNu2bXPUUUflrrvuyuzZs+tVT+gGAACAWjRp0iT77rtvfv3rX+edd97Jgw8+mM6dO+fCCy/M5ZdfXq8aFaXPr4UOVBs/8fEV3QQACnZIz4ErugkAFGjsW8X9Tv/JJ59klVVW+dLz9HQDAADAYrNnz87AgQPTtWvXNG/ePC1atMhWW22VCy64IHPmzKk+rz6BO/HIMAAAAEiSLFiwID179szf//737Lfffundu3dKpVJee+21XHTRRXnggQfyxBNP1DtwJ0I3AAAAJEmuueaavPvuu3n55Zez6aab1jg2fvz47L777rn22mtzyimn1Lum4eUAAACQZOTIkTn33HOXCNxJ0qVLl5x99tm56667yqopdAMAAECScePGZffdd6/z+B577JFx48aVVVPoBgAAgCTTp09P69at6zzeunXrfPzxx2XVFLoBAAAgSVVVVSorK+s83qhRoyxatKismhZSAwAAgCSlUil77bVXGjeuPSovXLiw7JpCNwAAACQZNGjQl55z0EEHlVVT6AYAAIDUL3SXS+gGAACAL5g6dWomTpyYioqKdO7ceakLrC2NhdQAAABgsVdffTU9evRIu3bt0q1bt+y0005p27Zt9txzz0yYMKHsenq6AQAAIMnkyZPTs2fPrL322rn88svTpUuXlEqljBs3Ltdff3122223/P3vf0/btm3rXVPoBgAAgCRDhgzJeuutl6eeeirNmjWr3r/vvvvmhBNOyK677pohQ4Zk8ODB9a5peDkAAAAkefjhh9O/f/8agfszq666as4888w89NBDZdUUugEAACDJG2+8ke22267O4zvssEPeeOONsmoK3QAAAJBk5syZWWONNeo83qJFi8yaNausmuZ0AwAAwGIzZ86sdXh5ksyYMSOlUqmsekI3AAAAJCmVStlkk02WeryioqKsmkI3AAAAJHn00UeXe02hGwAAAJL07NnzS8/58MMPy6ppITUAAAD4En/+859z6KGHpmPHjmVdJ3QDAABALd56660MGjQonTt3ziGHHJJGjRrlpptuKquG4eUAAACw2IIFCzJy5MjccMMNeeqpp9KrV6+8++67efHFF7PllluWXU9PNwAAACQ55ZRTss466+TKK6/Md7/73bz77ru57777UlFRkcrKymWqqacbAAAAklxzzTXp379/fvazn6VFixbLpaaebgAAAEhy880359lnn02HDh1y2GGH5f7778+iRYsaVFPoBgAAgCSHH354Hn744YwdOzZdunTJSSedlPbt26eqqirjxo1bpppCNwAAAHzO+uuvn/PPPz8TJ07MLbfckoMOOihHHnlkOnXqlFNPPbWsWuZ0AwAAQC0qKiqyzz77ZJ999sm0adNy8803Z9iwYWXV0NMNAAAAX6J169b56U9/mpdffrms64RuAAAAWOz111/P3XffnTfffDNJ8sc//jE9evTIjjvumIsuuiilUqmseoaXAwAAQJJ77rknhx56aBo1apSKiopcd911Of7447P77rtnjTXWyHnnnZfGjRunf//+9a6ppxsAAACSXHTRRTnrrLMyb968XHPNNenbt28GDx6cBx54IPfff3+uvvrqDB8+vKyaQjcAAAAkmTBhQo499thUVFSkT58+WbBgQXr16lV9/Jvf/GbeeuutsmoK3QAAAJBk9uzZadGiRZKkUaNGWXXVVbPaaqtVH1911VUzf/78smoK3QAAAJBPHxFWUVFR5/aysJAaAAAAJCmVStlkk02qg/asWbOy7bbbplGjRtXHyyV0AwAAQJJhw4Yt95pCNwAAACTZbbfdssEGGyzXmuZ0AwAAQJKtttoqXbt2zc9//vM8++yzy6Wm0A0AAABJpk6dmsGDB+eDDz7IAQcckA4dOuS4447Lfffdl3nz5i1TTaEbAAAAkjRr1iy9e/fODTfckEmTJuXuu+9O69at079//7Rp0yYHHnhghg4dmilTptS7ptANAAAAX1BRUZHu3bvnkksuybhx4/Liiy9mt912y/Dhw9OpU6dcffXV9aojdAMAAECSY489NjNnzqz12MYbb5zTTz89TzzxRP71r3/lm9/8Zr1qCt0AAACQ5Le//W3mzp37pee1bt06G2+8cb1qCt0AAACQpFQqLfeantMNAAAAi82cOTPNmjVb6jlrrLFGvesJ3QAAALDYJptsUuexUqmUioqKLFq0qN71hG4AAABY7K677spaa6213OoJ3QAAALDYLrvskrZt2y63ehZSAwAAgIII3QAAAJBkvfXWS2Vl5XKtaXg5AAAAJHnzzTdr3f/4449n9uzZ2XnnndOqVauyagrdAAAAkOTSSy/NrFmzcuGFFyb5dLXy/fbbL3/+85+TJG3bts2oUaOyxRZb1Lum4eUAAACQ5Pbbb0/Xrl2rt++666488cQT+etf/5qpU6dmhx12yPnnn19WTaEbAAAA8unw8q222qp6+09/+lMOPvjg7LLLLllrrbVyzjnnZPTo0WXVFLoBAAAgycKFC9O0adPq7dGjR6d79+7V2+uss06mTp1aVk2hGwAAAJJsuOGGeeKJJ5Ikb7/9dv7xj3+kR48e1cfffffdtG7duqyaFlIDAACAJCeddFJOPvnk/PWvf80zzzyTnXfeOZtvvnn18UceeSTbbrttWTWFbgAAAEhy3HHHpbKyMvfdd1969OiRQYMG1Tj+r3/9K8ccc0xZNStKpVJpeTYSVhbjJz6+opsAQMEO6TlwRTcBgAKNfWvF/05vTjcAAAAkueOOO7JgwYLq7XfffTdVVVXV23PmzMlll11WVk2hGwAAAJIcfvjhmT59evX25ptvnokTJ1Zvz5w5MwMGDCirptANAAAASb44+3p5zMYWugEAAKAgQjcAAAAUxCPDAAAAYLGHHnooLVu2TJJUVVVl1KhR+fvf/54kNeZ715dHhkEdPDIMYOXnkWEAK7dyHxnWqNGXDwavqKjIokWL6l1TTzcAAAAkNR4PtrwI3QAAAPA506ZNS+vWrZMk77zzTq6//vrMmzcvvXv3zm677VZWLQupAQAAQJKxY8emc+fOadu2bbp06ZKXXnopO+64Y4YMGZLf/OY32WOPPfL73/++rJpCNwAAACQ566yzsuWWW+aJJ57I7rvvnm9/+9v51re+lY8//jgfffRRjj/++FxyySVl1bSQGtTBQmoAKz8LqQGs3MpdSK1NmzZ55JFHstVWW2XWrFlZY4018txzz2X77bdPkowfPz7f+MY3ylrFXE83AAAAJPnwww/Tvn37JEnz5s2z+uqrp1WrVtXHW7VqlZkzZ5ZVU+gGAACAxSoqKpa6XS6rlwMAAMBiRx99dJo2bZokmTdvXvr27ZvVV189STJ//vyy6wndAAAAkKRPnz41to888sglzjnqqKPKqil0AwAAQJJhw4Yt95rmdAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBKkqlUmlFNwKAFW/+/PkZPHhwBgwYkKZNm67o5gCwnLnPw4ohdAOQJJkxY0ZatmyZjz/+OGusscaKbg4Ay5n7PKwYhpcDAABAQYRuAAAAKIjQDQAAAAURugFIkjRt2jSDBg2yuA7ASsp9HlYMC6kBAABAQfR0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBlYKRx99dCoqKqpfrVu3zr777ptXXnlliXOPP/74VFZW5s4771zi2HnnnVddo3HjxmnTpk169OiRK664IvPnz69x7u677159btOmTdOxY8f07t07I0eOrLWNc+fOzeqrr55//vOfGT58eI32Nm/ePNtvv/0S137+PT7/6tu3b/U5jz/+ePbcc8+stdZaWW211bLxxhunT58+WbBgwRKfyxdfnTt3rvF+e+yxR2644YZMnDixxnlNmjTJRhttlF/84hep7aEX7777bpo0aZKuXbvW+rN/vtbqq6+ejTfeOEcffXTGjBlT47zHHnus+rxGjRqlZcuW2XbbbXPWWWdl0qRJtdY+//zzc+SRRyZJOnfuXH19ZWVl1llnnfzoRz/KRx99VOt7fPE1efLkJMmcOXMyYMCAbLjhhmnWrFnWXnvt9OzZM3/4wx+W+Gxqew0fPrzWtgLLrj73+br+N3nbbbdVn3P99ddn6623TvPmzbPmmmtm2223zeDBg5PUvIfU9jr66KOr6yzLPf0zt956ayorK3PSSSctcayc+2A531mfKfc+//n3+PyrS5cu1ee8+eab+cEPfpB11lknzZo1S6dOnfKd73wn48ePX+Kzqe01ceLE6lrl3tM/r0uXLmnatGn1vfzzyvnOru93FtSX0A2sNPbdd99MmjQpkyZNyqhRo9K4ceN8+9vfrnHOnDlzctttt+Wss87K0KFDa62zxRZbZNKkSXn77bfz6KOP5pBDDsngwYPTvXv3zJw5s8a5xx13XCZNmpT/+Z//yd13353NN9883//+9/PjH/94iboPP/xw1ltvvWy00UZJkjXWWKO6vS+++GL22WefHHrooZkwYUKt7/H512WXXZYkGTduXPbdd9/ssMMOeeKJJzJ27NhcddVVadKkSRYtWpQrr7yyxnVJMmzYsOrt5557rvp9Pvzwwzz11FPp3bt39b6//OUvmTRpUl5//fWcf/75ueiii2r93IYPH55DDz00M2bMyN/+9rdaP9fP3vfVV1/N1VdfnVmzZqVbt2656aabljh3woQJ+de//pXnnnsu/fv3z1/+8pd07do1Y8eOXeLcP/zhDznggAOqty+44ILq//xGjBiRJ554Iqeeemqt7/HFz7Vt27ZJkr59+2bkyJG56qqrMn78+Dz44IM5+OCDM23atKy77ro1rjn99NOr/zvz2euwww6r9TMAGqY+9/nP3+M+ex144IFJkqFDh+anP/1pTj311Lz00kt56qmnctZZZ2XWrFlJkueee676mrvvvjtJzXvFlVdeWf0+y3pPT5Ibb7wxZ511Vm699dbMmzev1p+1vvfBcr6zlvU+/8V73KRJk/Lkk08mST755JPsvffe+fjjjzNy5MhMmDAht99+e7bccstMnz49hx12WI3rdt555yW+19Zdd93q91rWe/qTTz6ZuXPn5uCDD85vf/vbWj/Tcr6zy/nOgi9VAlgJ9OnTp/Sd73ynxr6//vWvpSSlDz74oHrf8OHDS9/4xjdK06dPL6222mqlt99+u8Y1gwYNKm299dZL1H/ttddKTZo0KZ199tnV+3r27Fn6yU9+ssS5Q4cOLSUpPfzwwzX2H3vssaX+/fuXSqVSadiwYaWWLVvWOL5o0aLSKqusUrrjjju+9D0+M2TIkFLnzp3rPP5FSUr33HNPrcduuummUrdu3UqlUqn05ptvlpKUXnzxxRrn7LXXXqUTTzyxxr6qqqrSBhtsUHrwwQdL/fv3Lx133HH1ft+jjjqq1KJFi9KHH35YKpVKpUcffbSUpPTRRx/VOG/OnDmlTTfdtLTLLrvU2P/222+XmjRpUvr4449LpVKptN5665WGDBlS45wLL7ywtPnmm1dv1/Uen9eyZcvS8OHD6zz+eXX9dwZYvupzn1/aPa5UKpW+853vlI4++uh6vd+X3SuW5Z5eKpVKb7zxRmnVVVctTZ8+vdStW7fSiBEj6vW+td0Hy/nOKpWW7T7/Zfe4F198sZSkNHHixDrP+bylfa8tyz39M0cffXTpZz/7WemBBx4obbLJJvV+39q+s+v7nQX1pacbWCnNmjUrt9xySzbaaKO0bt26ev+NN96YI488Mi1btsx+++1X72HAXbp0yX777VfnUMHP69OnT1q1alXj3Kqqqtx///35zne+U+s1ixYtqv7L/HbbbVevNiVJ+/btM2nSpDzxxBP1vqYu9957b53tS5Lnn38+Y8aMSbdu3Wrsf/TRRzNnzpz06tUrRx55ZG677bbMnj27Xu952mmnZebMmXn44YeXet6qq66avn375qmnnsoHH3xQo82777571lhjjVqve++993Lfffct0eYv0759+/zpT39aopcI+Oqo6z6/NO3bt88zzzyTt956q0Hv3ZB7+rBhw/Ktb30rLVu2zJFHHpkbb7yxXu9Z132wNnV9Zy3rfX5p1l577TRq1Ch33XVXFi1aVO/rarOs9/SZM2fmzjvvzJFHHlnd6/7Xv/61Xu9Z23d2Xer7nQVfJHQDK437778/zZs3T/PmzdOiRYvce++9uf3229Oo0ae3utdffz3PPPNM9dDfI488MsOGDat1jnJtunTpUmPeWV0aNWqUTTbZpMa5zzzzTJLU+EXh448/rm5vkyZNcsIJJ+S6667LhhtuWKPer3/96+rzPnuNGDEiSXLIIYfk8MMPT8+ePdOhQ4d897vfza9+9avMmDGjXj/TZ+bPn58HH3ywxpC+JOnevXt1+3bccccceuihOeqoo2qcc+ONN+b73/9+Kisr07Vr12ywwQa1zpevzWdzAuvzudZ27heHISZJ//7907x586y66qrp1KlTKioqcvnlly9Rr1OnTjU+0y222KL62HXXXZenn346rVu3zo477pjTTjstTz31VL1+JqA4X3afT5LDDz98iXvm22+/nSQZNGhQ1lxzzXTu3Dmbbrppjj766Nxxxx2pqqoqqx3Lek+vqqrK8OHDq+csf//738+TTz6ZN998s17vW+498/PnNeQ+P3bs2CU+08/WFunYsWP++7//OwMHDkyrVq2y55575sILL8wbb7xRr5/p85b1nn7bbbdl4403zhZbbJHKysp8//vfr/cfM2r7zq5LOZ8/fJ7QDaw09thjj7z00kt56aWX8uyzz2afffbJfvvtV92jMXTo0Oyzzz5p06ZNkmT//ffPxx9/nEceeaRe9UulUioqKpbp3D/84Q/59re/XeMXwxYtWlS398UXX8zFF1+cvn375r777qtR64gjjqg+77PXZ7+UVFZWZtiwYXn33Xdz2WWXpWPHjrn44our59/V1yOPPJK2bdvWCJ5Jcvvtt+ell17Kyy+/nDvuuCN/+MMf8rOf/az6+PTp0zNy5MjqXyCTlNVz89kfPOrzuX7x3BkzZuTxxx9f4he0M888My+99FJeeeWVjBo1KknyrW99a4kemL/+9a81PtM//elP1cd69OiRN954I6NGjcrBBx+cV199NbvttlsuvPDCev1cQDG+7D6fJEOGDFninrnOOuskSTp06JDRo0dn7Nix+clPfpKFCxemT58+2XfffcsK3st6T3/44Ycze/bs7L///kmSNm3aZO+9965zjZEvKvee+fnzlvU+nySbbrrpEp/pBRdcUH38pJNOyuTJkzNixIjsvPPOufPOO7PFFluU1SPckHv60KFDl/geuvPOO+s9Wqm+3+/lfP5Qwwob2A6wHNU212/hwoWl1VdfvXT22WeXFi5cWOrQoUOpoqKiVFlZWf1KUvrBD35Qfc3S5q717t27tMUWW1Rv1zU/bOHChaVWrVqVTjrppOp9Xbp0Kf3+97+v3q5t/l+pVCrts88+Nebrfdmc7tp8+OGHpTZt2pQGDhy4xLHUMU+tb9++pZ/+9KfV23XN9Rs8eHCpcePGpblz55ZKpVLp6quvLiWp8Zk2atSolKQ0YcKEL33fMWPGlJKU7rzzzlKptPQ5lL/85S9rzN287bbbSttss02Nc2qb/zd69Oga8/XqM6e7NhdeeGFplVVWKc2fP7/GfnO64d/jy+7zpdKXz+muzWfzwh955JEa+5d2r1jWe/ohhxyyxD2zoqKitO6665YWLVr0pe/7xftgOd9Zy3qfX5Z7XFVVVWnvvfcu9ejRY4ljdX2vLes9/dVXXy0lKTVq1GiJ7/frrrvuS9+3tu/s+n5nQX3p6QZWWp89bmXu3LnV83NffPHFGn+pv/XWWzNy5MhMnz59qbU+W8H6oIMO+tL3/e1vf5uPPvqo+tzXX389b731Vvbee+8vvbaysjJz586t189Xl1atWqVDhw71nlddKpVy3333LXWe3+fbt3DhwixYsCDJp0PLTz/99Bqf6csvv5zddtutXj03V1xxRdZYY4306tVrqefNnTs31113XXr06JG11147yac9TfVt82c1GmLzzTfPwoUL61xpGPj3+/x9flltvvnmSVLve+ay3tOnTZuWP/zhD7nttttq3DNffPHFfPTRR/nzn/+81Fq13Qfr8sXvrIbc55fFZ48Uq+9nmiz7Pf3GG29Mjx498vLLL9f4XPv161evUVdf/M5emvp+Z8EXNV7RDQBYXubPn1/9bM6PPvoov/rVrzJr1qz07t07V1xxRb71rW9l6623rnHN5ptvntNOOy0jRoyofl7qwoULM3ny5FRVVWXatGl57LHH8otf/CLbbLNNzjzzzBrXz5kzJ5MnT87ChQvz7rvv5p577smQIUNywgknZI899kjy6S8SvXr1ymqrrVbj2lKpVN3euXPn5uGHH85DDz2UgQMH1voen9e0adO0atUqv/nNb/LSSy/lu9/9bjbccMPMmzcvN910U1599dVcddVV9frcxowZkzlz5mTXXXdd4ti0adOqf76xY8fmyiuvzB577JE11lgjL730Ul544YWMGDGixvNak0/nVF5wwQX5xS9+kcaNP/2qmT59eiZPnpz58+fnH//4R37zm9/k97//fW666aasueaaNa7/4IMPMm/evMycOTNjxozJZZddlqlTp1YvdLNw4cI88MADOeOMM5Zo88yZMzN58uSUSqW88847Oeuss7L22mune/futb7H57Vu3TqrrLJKdt999xx++OHZYYcd0rp164wbNy4///nPq392YMVY2n3+M5/daz6vRYsWWX311XPCCSdknXXWyZ577plOnTpl0qRJ+cUvfpG11147O++8c73asKz39JtvvjmtW7fOoYceusTw5P333z833nhj9t133+p9X3Yf/Ex9vrOW9T7/xff4vIqKirRr1y4vvfRSBg0alB/+8IfZfPPN06RJkzz++OMZOnRo+vfvX6/PdFnv6Z988kluvvnmXHDBBenatWuN6/7jP/4jl19+eV599dXqIfX1+c7+TDnfWfClVmQ3O8Dy0qdPn1KS6leLFi1KO+64Y+muu+4qTZ48udS4ceMlHtvymRNOOKG07bbblkqlT4fRfVajsrKytNZaa5V23XXX0pAhQ0rz5s2rcV3Pnj2rz23SpEmpQ4cOpW9/+9ulkSNH1jhv1113LV1//fU19g0bNqxGe5s2bVraZJNNShdddFFp4cKFtb7H51/77LNPqVQqlV544YXSkUceWVp//fVLTZs2LbVu3brUo0eP0r333lvrz5pahsydc845pSOOOKLGvs+GHX7+s+jUqVPpuOOOqx7WePLJJ9f62JZSqVSaNGlSqVGjRqU//OEP1e/72atZs2alDTfcsNSnT5/SmDFjalz32bDKJKWKiopSixYtSltvvXXpzDPPLE2aNKn6vL/85S+lTp06LfG+6623Xo33WnvttUv7779/jeGTn3+PL75Gjx5dKpVKpYsvvri08847l9Zaa61Ss2bNShtssEHp1FNPLU2dOnWJ9zS8HP49lnaf/0xd/9sePHhwqVQqle66667S/vvvX+rQoUOpSZMmpXXWWad00EEHlV555ZUl3q+uYd7Lek/fcsstl3jk4mduv/32UpMmTUpTpkyp932wVKr/d9ay3ue/+B5f/BlLpVJpypQppVNPPbXUtWvXUvPmzUstWrQobbnllqX/+q//qh4y/3m1DfNe1nv6XXfdVWrUqFFp8uTJtX6um222Wem0006rft/6fGeXSvX/zoL6qiiV6rlsLwBlmzp1ajp06JB333037dq1W9HNqdVWW22Vc845J4ceeuiKbkq9nXrqqVm4cGF+/etfr+imAP+HfB3u6bX5qt/n3dNZ2RleDlCgDz/8MJdffvlX9pezBQsW5KCDDsp+++23optSlq5du9Z7KCjA8vJVv6fX5utwn3dPZ2WnpxsAAAAKYvVyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoyP8HDFrZf5rgVMQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap(\n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'transmissibility_function_reassortment_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='transmissibility_function_reassortment_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=24\n", + " # How many sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXsAAALmCAYAAAAT90eJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADa5ElEQVR4nOzdd3hUZfrG8fvMTHohJHRC74LSi4sISFEQQRQRcRVU0B8qq66iiwWwo667KqjIUi00EUREBFG60kFpoSOEDoH0NjPn90fMkCGTAGGSkOH7ua5cnJzznvd9ZhAwd948xzBN0xQAAAAAAAAAoESzFHcBAAAAAAAAAIArR9gLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA+wFXcBuDqkpaVp69atkqSyZcvKZuM/DQAAAAAAvM1ut+vUqVOSpOuvv16BgYHFXBEAX0KiB0nS1q1b1apVq+IuAwAAAACAa8a6devUsmXL4i4DgA+hjQMAAAAAAAAA+AB29kJSVuuGbOvWrVPFihWLsRoAAAAAAHzTsWPHXD9Zm/NrcQDwBsJeSJJbj96KFSsqOjq6GKsBAAAAAMD38bwcAN5GGwcAAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4gGs27D158qS+//57jRgxQt26dVOZMmVkGIYMw9DAgQMve76FCxeqd+/eio6OVkBAgKKjo9W7d28tXLjwkuew2+0aN26c2rVrp7JlyyooKEi1atXSY489pu3bt192TQAAAAAAAACuHbbiLqC4lC9f3ivzOJ1OPfroo5o4caLb+SNHjujIkSP69ttvNWjQIH322WeyWPLO1k+fPq3u3btr/fr1buf379+v8ePHa+rUqRo7dqwGDRrklboBAAAAAAAA+JZrdmdvTlWrVlXXrl0LdO9LL73kCnqbNm2q6dOna926dZo+fbqaNm0qSZowYYJefvnlPOdwOBzq3bu3K+i96667tHDhQq1du1YfffSRypUrp/T0dD322GOXtVMYAAAAAAAAwLXDME3TLO4iisPIkSPVsmVLtWzZUuXLl9fBgwdVo0YNSdKAAQM0ZcqUi86xe/duNWzYUHa7XS1atNCKFSsUFBTkup6SkqL27dtrw4YNstls2rlzp2rXrp1rnkmTJumRRx6RJD3++OP6+OOP3a7v3btXzZs3V0JCgmrXrq2dO3fKZvPupuzY2FhVqVJFknT48GFFR0d7dX4AAAAAAMDX3wAK1zW7s/fVV19Vjx49rqidwwcffCC73S5JGjNmjFvQK0nBwcEaM2aMpKx+vP/97389zvPvf/9bkhQZGan33nsv1/XatWtr+PDhkrKC37lz5xa4ZgAAAAAAAAC+6ZoNe6+UaZqaN2+eJKl+/fpq06aNx3Ft2rRRvXr1JEnz5s3ThRupd+/erZ07d0qS+vbtq+DgYI/z5HxoHGEvAAAAAAAAgAsR9hbQgQMHdPToUUlS+/bt8x2bff3IkSM6ePCg27VVq1blGudJhQoVVLduXUnS6tWrC1IyAAAAAAAAAB/m3cav15AdO3a4juvXr5/v2JzXd+7c6eoNXJB5du/ercOHDys5OVkhISGXXG9sbGy+148dO3bJcwEAAAAAUFxMR7rsCbtlP7dT9vidf/0ao5BGzyq41gPFXR4AFCvC3gLKGZ5erJl6duN1Kav5+pXOY5qmYmNjXe0hLkXOGgAAAAAAuNo5M+LPB7rxWYGu/dxOOZL2S6Yz13h73BaJsBfANY6wt4ASExNdx6GhofmOzbkDNykpqVDmAQAAAACgpDFNU87UYzlC3RjXbl1n6uX9BKr93M5CqhIASg7C3gJKS0tzHfv7++c7NiAgwHWcmppaKPNczIU7ii907NgxtWrV6rLmBAAAAADgUphOhxxJ+10tF3K2XzAz472yhj0+xivzAEBJRthbQIGBga7jjIyMfMemp6e7joOCgvKdJ+fnlzPPxVysRQQAAAAAAFfKtKfKHr/rfKCbHeom7Jac+X/tfLkswdGyRTSQrdRfHxHXeXV+ACiJCHsLKCwszHV8sZYKycnJruMLWzVcOE9+YW9+8wAAAAAAUFSc6XGuHro5Q11H0kFJpvcWMqyyhtU+H+q6wt16sviFXfx+ALjGEPYWUM6dsjkfsuZJzhYKFz4o7cJ5ypQpc9F5DMNgpy4AAAAAoFCZpilnypEcLRfO/+pMO+nVtQxbsKyl6ufYpdtAtlL1ZQurLcOaf8tDAMB5hL0FdN115388JCYm/75AOa83aNAg33maNGly0XmqVKni9rA2AAAAAAAKynTa5Ujcl2uXrj0+Rqbduw8HtwSUce3OdYW7EQ1kDakiw7B4dS0AuBYR9hZQjRo1VKlSJR09elTLly/Pd+yKFSskSZUrV1b16tXdrt10002u4+XLl6tfv34e5zh+/Lh2794tSWrbtu0VVA4AAAAAuBY5M5PlSNiVO9RN3Cs5M726ljWk2vnduTnaL1gC8/5pVgDAlSPsLSDDMNSrVy99+umniomJ0Zo1a9SmTZtc49asWePakdurVy8ZhuF2vW7dumrQoIF27typWbNm6f3331dwcHCueaZMmeI67t27t3dfDAAAAADAZzjTTntovRAjR/Kf3l3I4idbeJ3zgW72Lt3werL48dOoAFAcCHuvwNNPP63x48fL4XBo6NChWrFihYKCglzXU1NTNXToUEmSzWbT008/7XGe5557To888oji4uL0/PPPa+zYsW7X9+3bp7fffluSVLt2bcJeAAAAALjGmaZTjuTDrkDXER/jCnad6ae9upZhC80KdF0PR/sr1A2rKcPi59W1AABX5poNe1etWqW9e/e6Pj99+vw/hnv37nXbSStJAwcOzDVH3bp1NWzYMI0ePVobNmxQ27Zt9cILL6hWrVrat2+f3nnnHW3evFmSNGzYMNWpU8djLQMGDNCkSZO0evVqffzxxzp+/LgGDx6s0qVLa926dXr99deVkJAgi8Wijz76SDbbNfvbBgAAAADXFNORIXviXtnjY9zaLzjiY2TaU7y6liWwnFvLBVfrheDKuX5KFQBwdTJM0zSLu4jiMHDgQE2dOvWSx+f1NjmdTg0ePFiTJk3K895HHnlE48ePl8WSd7P506dPq3v37lq/fr3H6wEBARo7dqwGDRp0yTVfjtjYWFWpUkWSdPjwYUVHRxfKOgAAAACA3JyZibLH78rVfsGRuE8y7V5cyZA1tHquXbq2UvVlCYj04jrIC19/AyhMbBG9QhaLRRMnTtTdd9+t8ePHa/369Tp9+rTKlCmjli1b6rHHHlO3bt0uOk+ZMmX066+/6n//+5+mTZumnTt3Kjk5WZUqVVKnTp301FNPqWHDhkXwigAAAAAAhcE0TTnTTrkHutmtF1JivbuYxV+28Lq5Q93wujJsQRe/HwBQIl2zO3vhju8sAgAAAIB3mKZTjqQ/PYa6ZsZZr65l+IV7aL1QX9bQGjIs7O+6GvH1N4DCxN/8AAAAAAAUgOlIlz1hT67WC/aEXZIjzatrWYIq5tilW98V7FqCKtJPFwDgQtgLAAAAAEA+nBnxuR6QZo+P+aufrtN7CxkWWUNrunbnutovlKovS0CE99YBAPgswl4AAAAAwDXPNE05U49f0HohRvb4nXKmHPXuYpYA2UrVy91+IayODFugd9cCAFxTCHsBAAAAANcM0+mQI+lAjlA35nw/3cx4r65l+Ee4B7p/HVtDqsmwWL26FgAAEmEvAAAAAMAHmfZU2RN2uwe68Ttlj98tOdO9upYluLLHUNcSWI5+ugCAIkXYCwAAAAAosZzpZ91252aHuo7EA5JM7y1kWGUNq5W79UJ4PVn8w723DgAAV4CwFwAAAABwVTNNU86Uo+d35547/6sz7YR3F7MGZT0cLecu3VL1ZQuvI8Pq7921AADwMsJeAAAAAMBVwXTa5Ujcn2uXrj0+RmZmolfXMgKiLmi9UF+2Ug1kDa0qw7B4dS0AAIoKYS8AAAAAoEiZ9hTZ43flDnUT9kjOTK+uZQ2pev7BaH8FuraIBrIGlvXqOgAAXA0IewEAAAAAhcKZdiZ364X4GDmS/pR3++naZAuv4xbo+pVqIGuperL4hXpvHQAArnKEvQAAAACAAjNNU87kw7kCXXv8TjnTTnl1LcMWcr7lQo6eutbwWjIsfl5dCwCAkoiwFwAAAABwUaYzU/aEva5Q1/FXoGuPj5FpT/bqWpbAcq4euq5QN6KBLMHRMgzDq2sBAOBLCHsBAAAAAC7OzCTXzlx7fIxrt64jYa9k2r24kiFraLULHpKWtWvXEhjlxXUAALh2EPYCAAAAwDXGNE05007lCnTt8TvlTD7s3cUsfrKF1/UQ6taVYQv27loAAFzjCHsBAAAAwEeZplOOpD/P79TNEeqa6XFeXcvwCzsf5Eac36VrDaspw8KXngAAFAX+xQUAAACAEs50ZMiesMcV5J4PdXdJjlSvrmUJqpAr0LWVaiBLcCX66QIAUMwIewEAAACghHBmJHjcpetI3C+ZDu8tZFhkDa2RI9Stf76fbkBp760DAAC8irAXAAAAAK4ipmnKmXrCwy7dGDlTjnh3MUuAbKXqnd+hm71bN7yuDFugd9cCAACFjrAXAAAAAIqB6XTIkXTwfKib40FpZsY5r65l+EfkDnRLNZA1tLoMi9WrawEAgOJD2AsAAAAAhci0p8mesDtXoGtP2C050ry6liW48vmWCzlCXUtQefrpAgBwDSDsBQAAAAAvcKafOx/o5mi/4Eg6IJlO7y1kWGQNq+UKcnM+KM3iH+69dQAAQIlD2AsAAAAAl8g0TTlTjp4PdHOEus7U495dzBp0vp9ujl26tvDaMqwB3l0LAAD4BMJeAAAAALiA6bTLkXTgfMuFHA9JMzMTvLqWERDpYZduA1lDq8owLF5dCwAA+DbCXgAAAADXLNOeKnv8rly7dO0JeyRnhlfXsoRUuSDUzeqtawksSz9dAADgFYS9AAAAAHyeMz0ux+7cnP10/5Rkem8hwyZreG1XD123frp+od5bBwAAwAPCXgAAAAA+IaufbqzH1gvOtJNeXcuwhchWqr6sf+3OdYW6YbVkWP29uhYAAMClIuwFAAAAUKKYzkw5Evad36UbH/NXsBsj057k1bUsgWVd7RZyhrqWkGj66QIAgKsOYS8AAACAq5IzM1mO+Bhlxu+UIz7m/G7dxL2SM9Ora1lDqp3fnZvjIWmWwCivrgMAAFCYCHsBAAAAFCtH2inZz10Q6MbvlCP5kHcXsvjJFl4n1y5dW6l6MmzB3l0LAACgGBD2AgAAACh0pumUI+lQVsuFCx6SZqaf8epahl+Yx9YL1rCaMix8CQQAAHwX/6cDAAAAwGtMR4bsiXtzPBwtK9R1JOySaU/x6lqWwPIeWi/UlyW4sgzD8OpaAAAAJQFhLwAAAIDL5sxMzPFgtBytFxL3SabDiysZsobVuGCXbtauXUtAaS+uAwAAUPIR9gIAAADwyDRNOdNO5tqla4/fKWfKEe8uZgmQrVTd86FuqfpZwW54XRm2IO+uBQAA4KMIewEAAIBrnOl0yJH8p4dQN0ZmxlmvrmX4lXJrueDqpxtaQ4bF6tW1AAAArjWEvQAAAMA1wnSky56w+4LWCzGyJ+ySHGleXcsSXMnjQ9IsQRXopwsAAFBICHsBAAAAH+PMiM+xSzfm/EPSkvZLptN7CxkWWUNr5tipe76nrsW/lPfWAQAAwCUh7AUAAABKINM05Uw9dn53bo72C87UY95dzBooW3i986Fu9q/hdWRYA7y7FgAAAAqMsBcAAAC4iplOhxxJ+7MC3QvaL5iZ8V5dy/Av7WGXbgNZQ6rSTxcAAKAEIOwFAAAArgKmPdW9n252qJuwW3JmeHUtS3C059YLgeXopwsAAFCCEfYCAAAARciZfjbH7tydOfrpHpRkem8hwyprWO0LWi/Uzwp1/cK8tw4AAACuGoS9AAAAgJeZpilnyhH3UPevX51pJ726lmELlrVU/fO7dEvVzwp2w2rLsPp7dS0AAABc3Qh7AVwyZ2aSUndPkD0+RrbIxvKv0EG2UvX5cU8AwDXLdNrlSNyXu/VCfIxMe5JX17IElDnfQzc73I1oIGtIFRmGxatrAQAAoGQi7AVwUaYzUym7Jyhpy6typp1wu2YJLC//Ch3kX6GDAip0kLVUPcJfAIDPcWYmy5GwK0eoG5P1a8IeyZnp1bWsIdVytFw4/5A0S2AZr64DAAAA30PYCyBPpmkq7c/ZStz4ohyJez2OcaadUNrBmUo7OFNSjvC3Yses8De8LuEvAKDEcKaddtud6+qnm/yndxey+MkWXud8oJu9Sze8nix+Id5dCwAAANcMwl4AHqUfW6rEjS8o8/T6y7ovV/gbVCHHzt+OsobXIfwFABQr03TKkXw4K8TNDnT/CnWd6ae9upZhCz3fQzdnqBtWU4bFz6trAQAAAIS9ANxkntmixI3/UvrRRXmO8SvbRo7kw3KmHLnofM7U40o7MENpB2ZIkixBFV0tH/wrdCD8BQAUGtORIXvi3qwdujl66jriY2TaU7y6liWwnFvLBVfrheDK/DsHAACAIkPYC0CSZE88oMTNryht/1d5jvEr00phzd9RQMUOMk1TjsT9yji+TOnHlyrj+LJLDH+PKe3AdKUdmC5JsgRXcg9/w2rzRTEA4LI4M5PcWi64Wi8k7pNMuxdXMmQNre6+S/evXbuWgEgvrgMAAAAUDGEvcI1zpJ1S0u9vKmXXJ3k+YMYaXldhzd5SYLW7XEGsYRiyhdeSLbyWgus+8lf4u++v8HeZMo4vlTPl6EXXd6YcVdr+aUrbP03SheFvR1nDahH+AgBkmqacaafcA93s1gspsd5dzOIvW3jdHKFudl/dujJswd5dCwAAAPAiwl7gGuXMTFbyjv8qedu7MjMTPY6xBFVQWJNXFVTnoYv2FcwKf2vLFl5bwXUH/RX+7j0f/h5bKmfqsYvXlSv8rXzBzl/CXwDwZabplCPpz9yhbnyMzPQ4r65l+IXnaLlQ/3w/3dAaMiz8bzIAAABKHv4vFrjGmM5MpeyeqKTfX5Uz9bjHMYZfuEKvf0HBDZ4q8BPBs8LfOrKF11Fw3cHnw99jS//a+bvsEsPfI0rb/5WrvYQlONoV/GaFvzUJfwGgBDId6bIn7Lkg1I2RPX6X5Ej16lqWoIruge5foa4lqCL/hgAAAMCnEPYC1wjTNJX25zdK3PSiHAl7PA+y+Cuk/hMKveFFWQLLeHV9t/C33qNZ4W/CHveev3mEzzk5U2KVuv9Lpe7/Mqvk7PC3Yses8De0Bl+4A8BVxJmR4CHQ3SlH4n7JdHhvIcMia2hNVw/dnD11LQER3lsHAAAAuIoR9gLXgPRjy5S48QVlnl6XxwhDQbX+rtAmr8kWVr1IajIMQ7ZSdWUrVTdH+Lvbtes349hSOdNOXHSeXOFvSJUcO387yhpanfAXAAqZaZpyph7PEerGuNovXEr/9stiCZCtVL0c7Rf++jWsjgxboHfXAgAAAEoYwl7Ah2XG/a7EjcOVfmRhnmMCKndTWPO35RfZuAgryy0r/K0nW6l6Cqn3WFb4G7/rfPh7fNmlhb/Jh5W67wul7vtCkmQNqepq+eBfoYNsYTUK+6UAgM8ynQ45kg6c36F77vxD0szMeK+uZfhHuAe62f10Q6rJsFi9uhYAAADgKwh7AR9kTzyopC0jlLrvS0mmxzF+ZVoqrPk7CqjYsWiLu0SGYcgWUV+2iPoKqf9/F4S/f7V9SDt50XkcyYeUuu9zpe77XJJkDal2QfhbvZBfCQCUPKY9VfaE3e6BbvxO2eN3S850r65lCa7sMdS1BJbjJzMAAACAy0TYC/gQZ9ppJf3xlpJjPpacGR7HWMPrKKzZWwqsdneJ+iLaU/hrj49x7fq99PD3T6Xum6rUfVMlXRD+VuwoW2i1wn4pAHDVcKafPd9yIUeo60g8oLy+WVgghlXWsFq5Wy+E15PFP9x76wAAAADXOMJewAc4M5OVvOMDJW97V2ZmgscxlsDyCm0ySsF1H5Fh8SviCr3PMAz5RTSQX0QDhdQf8lf4u/OC8PfURefJFf6GVnff+Uv4C6CEM01TzpSj53fn5mi9cCntcS6LNcjjA9Js4XVkWP29uxYAAACAXAh7gRLMdGYqZc8kJW0ZJWfqcY9jDL8whTR6QSHXPS2LX0gRV1h0ssLf6+QXcZ1C6j9+Pvw9tvR8+Jt++qLzOJIOKnXvFKXunSJJsobWcAW/ARU6yBpatZBfCQAUjOm0y5G4P9cuXXt8jMzMRK+uZQRE5dilW98V7FpDq8owLF5dCwAAAMClI+wFSiDTNJX25xwlbnpRjoTdngdZ/BRS/wmF3PCirIFli7bAq4Bb+Nvgiazw99yOv4Lfpco4vvwSw98DSt17QKl7J0vKEf5W7JgV/oZUKeyXAgBuTHuK7PG7Lgh1Y2RP2JNnC5+CsoZUzQpxc+7WjWhwTf67AgAAAJQEhL1ACZN+fLkSNzyvzNPr8hhhKKjm/Qpt+ppsYTWKtLarmWEY8ivdUH6lG/4V/jpzhL/LlH58mcz0MxedJ1f4G1ZLoY2eV1DdwSWqBzKAq58z7cwFrReyeus6kv6Ud/vp2mQLr+MW6PqVaiBrqXqy+IV6bx0AAAAAhY6wFyghMuP+UOKm4UqP/SHPMQGVb1NYs7flF9Wk6AoroQzDIr/SjeRXupFCGjz5V/i7PUf4u/zSwt/EfYr/7THZE3YprMW/CXwBXBbTNOVMPpwr0LXH77ykvuOXw7CFnG+5kKOnrjW8lk/0cgcAAABA2Atc9exJfypp8wil7vtCee3k8otqobAW7yig4i1FW5wPyQp/r5df6esV0mCoW/ibfmypMk4sl5kel+f9ydv/I9ORpvDWY+hXCSAX05kpe8LerJ258TFu7RdMe7JX17IElj3/cLQcrRcswdF8QwoAAADwcYS9wFXKmXZGSVvfUvLOsXn2YLSG1VZY87cUWK0PX8B7mcfw9+w2V8sHT+FvSswnMh0ZKnXjOBkWazFVDqA4OTOT/tqdG+PWU9eRsFcy7V5cyZA1tFquXbq2UvVlCYzy4joAAAAAShLCXuAqY9pTlLzjQyVtHS0zM8HjGEtgeYU2GanguoP40dsiYhgW+UXeIL/IGxRy3T9kmk6l7vtC8asflkyna1zqngmSM12l2k6SYeGvWMAXmaYpZ9qpXIGuPX6nnMmHvbuYxU+28LoeQt26MmzB3l0LAAAAQIlHEgFcJUynXal7Jytx80g5U495HGPYQhVy/fMKue4ZHppTzAzDouDaA2TYgnVueX+3HXup+76Q6UhXxM1fEsYDJZhpOuVIOnTBQ9KyPvJr61IQhl9Y7tYLperLGlaTbxwBAAAAuGR89QAUM9M0lXZorhI3vihHwi7Pgyx+Cq73uEIbvyRrYNmiLRD5Cqp+jwxLgM4uu8et3UbawVk660hX6Q4zZVgDirFCABdjOjJkT9jjIdTdJTlSvbqWJahCrkDXVqqBLMGVaMcDAAAA4IoR9gLFKP34CiVueF6Zp9fmOSaw5v0Ka/qabGE1i7AyXI7Aqj1V+pZ5Oru0t+RIc51PPzxPZ3/prdIdv5FhCyrGCgFIkjMjwWPrBUfifsl0eHElQ9awmufD3BzBriWgtBfXAQAAAAB3hL1AMcg8u1WJG4crPXZBnmMCKt2qsOZvyy+qaRFWhoIKjL5NkZ2+19lfesq0p7jOpx9ZqLife6r0Ld/K4hdSjBUC1wbTNOVMPXHBLt2sgNeZcsS7i1kCZCtVz7U71xXqhteVYQv07loAAAAAcAkIe4Ei5Eg6pMTNI5S673NJpscxflHNFdb8HQVU6lS0xeGKBVTqpMguPyrup+4y7Umu8xnHlujsku4q3fl7WfzCirFCwHeYToccSQf/CnXdd+uaGee8upbhV+p8kJvjIWnW0OoyLFavrgUAAAAAV4KwFygCzrQzStr6tpJ3jpWc6R7HWMNqKazZWwqs3keGYSniCuEt/uXbKbLrT4r76TaZmfGu8xknVihu8a2K7LJQFv9SxVghULKY9jTZE3bnbr+QsNutbYo3WIIreXhIWgNZgsrTTxcAAABAiUDYCxQi056i5B0fKWnraLfgLydLYDmFNhmp4DqDZFj9i7hCFAb/cm0UdevPOvNTV5npca7zmad+U9yizorsukiWgMhirBC4epn2VKXsHq/0o0uy+ukmHZBMp/cWMCyyhtXyEOrWl8U/3HvrAAAAAEAxIOwFCoHptCt17xQlbhkpZ8pRj2MMW6hCGg1TSMN/yuIXWsQVorD5lWmuqFuXKm5xZznTTrnOZ57ZoDM/3qLIW3+SNbBsMVYIXF1M01T6oW+VsP6fciQdvPIJrUF/9dN1D3Rt4XVkWAOufH4AAAAAuAoR9gJelBVWzFPCpuFyxMd4HmTxU3C9/1PoDS/LGlSuaAtEkfKLvEGRty1T3KJOcqYed523n/1dcT92UGTXn2UNrlCMFQJXB/u5GMWve0oZRxdf9r1GQOQFu3Tr/9VPtxotcQAAAABccwh7AS/JOLFSCRteUOap3/IcE1jjPoU1fV228FpFWBmKk1/EdYrqtkJnfrxFzpRY13n7uR0682N7Rd36s6wh0cVYIVB8nJmJStrympJ3fCCZ9nzHWkKqnA91S9V37da1BJalny4AAAAA/IWwF7hCmWe3KXHTi0o/PD/PMf6Vuiq8+dvyi2pWhJXhamELr6OobisUt+gWtx9PdyTs1pmFNyvy1l9kC6tebPUBRc00TaXu/0qJG56XM/WYxzH+5dsrqO4j5/vp0u4GAAAAAC6KsBcoIEfSISVuGanUfZ/n+fAgW1QzhTd/RwGVOhdxdbja2MJqKOq25TqzqJMciXtd5x1JBxT3Y3tF3vqzbOG1i7FCoGhkntmi+LVPKvPkao/XLcGVFd7yfQVW78uOXQAAAAC4TIS9wGVypscp6Y+3lbxzjORM9zjGGlZTYc3eUmD1e+gZCRdraFVFdfsr8M3R09mRfCirpUPXn2WLqF+MFQKFx5kep8RNLytl92eev0Fm8VdIw2cVesOL7OIFAAAAgAIi7AUukWlPVfLOj5T0x9syM+M9jrEEllVo45EKrjtYhtW/iCtESWANrqSo25YrbnFn2c9udZ13phzVmb92+PqVblSMFQLeZTodStkzQYmbXpKZfsbjmIDo7gpv9YFs4XWKuDoAAAAA8C2EvcBFmE67UvdOVeKWkXKmHPE4xrCFKKTRMIU0/KcsfmFFXCFKGmtQOUXdulRnfuoq+5lNrvPOtJM682MHRXX9SX5RTYuxQsA7Mk7+qvi1Q93+O8/JGlZL4a0+UGCVHkVcGQAAAAD4JsJeIA+maSr98HdK3Dhc9vidngcZNgXX+z+FNn5Z1qDyRVsgSjRLYJSiuv6suJ9uU+bpta7zZvoZnVl0iyK7LpZ/mZbFWCFQcI6U40rc+EJWT3NPrEEKveElhTZ8VoYtsGiLAwAAAAAfRtgLeJBxYpUSNr6gzJO/5jkmsEY/hTV9nYdqocAsARGK7LpYcUtuV+bJVa7zZsY5xS3qpMjOC+Vfvm0xVghcHtOZqeSdY5S0ZZTMzESPYwKr36PwFv+WNbRqEVcHAAAAAL6PsBfIIfPsdiVuelHph7/Lc4x/xc4Kbz5afmWaF2Fl8FUW/3BFdlmosz/3VMbxpa7zZmai4n66VaU7fa+Aih2Kr0DgEqUfXaKEtf/I8ychbBHXKbz1GAVUvKWIKwMAAACAawdhLyDJkXxYiVtGKXXvFM9PiZdki2yq8BbvKKBSl6ItDj7P4heqyM4LdPaX3ko/ush13rQnK25JN0XeMk8BlbsWY4VA3uxJfypx/bNK+/Mbj9cNv3CFNXlVwQ2ekGHxK+LqAAAAAODaQtiLa5oz/aySto5W8s6PJEeaxzHWsJoKa/qmAmv0lWFYirhCXCsMW5BK3/Ktzi7vq/TD889fcKQp7uc7VLrjNzzEClcV056qpG3vKWnraMmR6nFMUO2BCms+mp7mAAAAAFBECHtxTTLtqVl9Jbe+LTPjnMcxlsCyCm08QsF1H5Vh9S/aAnFNMmyBKt1hts6t6O++S9KZobNL71JE+xkKqnZX8RUI6PzDKxPWPSNH0gGPY/yimiu89Vj5l2tTxNUBAAAAwLWNsBfXFNNpV+q+z5W4eYScKUc8jjFsIQpp+JxCGj0ri19YEVeIa51h9VdE+xk6t2qA0vZPO3/Bmalzy/pK7b5UUM1+xVcgrmn2+F1KWPuUW7uRnIyAKIU3f1tBtR+WYbEWcXUAAAAAAMJeXBOydqLNV+Km4bKf2+F5kGFTcL3HFNr4FX7kGMXKsNgUcdPnirf4Z/WRzmY6dG7l/TKd6QquPaDY6sO1x5mZqKTf31Dyjv9KzszcAwyLgusNUVjT12QJiCz6AgEAAAAAkgh7cQ3IOLFaCRtfUObJ1XmOCax+r8KavSFbeO0irAzIm2GxqlTbiTIsAUrZ/dn5C6ZT8asekpwZCq47uPgKxDXBNE2lHZiuhA3D5Ew56nGMf/l2Cm89Rn6RjYu4OgAAAADAhQh74bMyz+1Q4sYXlX54Xp5j/CveorDm78i/TIsirAy4NIZhUfiNn0rWAKXs/CjHFVPxvz4q05GukAZPFlt98G2ZcX8oYe2Tyjix0uN1S3Alhbd4T4E17pNhGEVcHQAAAADAE8Je+BxHcqwSt4xS6t7Jkun0OMYW2UThzd+Rf6UuhBS4qhmGofBWH8iwBih523tu1xLWDpXpSFdoo2eLqTr4Imf6WSVuHqGUXZ94/jvU4qeQ6/6p0MYv0dccAAAAAK4yhL3wGc70s0ra+o6Sd34oOdI8jrGG1lBYszcUWKOfDMNSxBUCBWMYhsKavyPDGqik3193u5a44TmZjjSFNX6pmKqDrzCdDqXunaTEjS/KmX7a45iAyrcpvNUHspWqV8TVAQAAAAAuBWmXl2RkZGjChAm69dZbVbFiRQUEBCg0NFT16tXTQw89pF9//fWS5lm4cKF69+6t6OhoBQQEKDo6Wr1799bChQsL+RWUXKY9TUnb/q2T39RS8rZ3PAa9loAyCm/9kcr2jlFQzf4EvShxDMNQWNPXFNr0jVzXkja/rMRNr8g0zWKoDL4g49RanVnQRvG/Puox6LWG1lDpW+apdOcfCHoBAAAA4CpmmKQDV+zPP//U7bffru3bt+c7bujQofrwww89tg1wOp169NFHNXHixDzvHzRokD777DNZLN4PKmNjY1WlShVJ0uHDhxUdHe31NbzNdDqUuu8LJW4ZIWfyYY9jDFuIQho+q5CGz8riH17EFQKFI2nb+0rc8Fyu8yGNhmXtAL4GW5OY9hQ5Uo/LmX5G1pCqsgaVL+6SSgRH6gklbvyXUvdO8TzAGqjQG15UaMPnZNiCirQ2AAAAX1USv/4GUHLQxuEKZWZmugW9N9xwg/75z3+qXr16SkxM1KpVq/T+++8rOTlZY8aMUaVKlfSvf/0r1zwvvfSSK+ht2rSpnn/+edWqVUv79u3Tu+++q82bN2vChAkqW7as3nrrrSJ9jVcb0zSVHvu9EjcOl/1cHgG7YVNwvUcVesMrsgZXKNoCgUIW2uhZGdZAJax1fzhb8rb3ZDrSFN7K8zeVShrTmSln6kk5U49nBbk5fnWmHpcz7YTrczMz0e1ev3I3KahmfwVW7yNrYNliegVXL9OZqZSdHytxy0iZmQkexwRWu1thLd+XLbRaEVcHAAAAACgodvZeodmzZ+uee+6RJN14441auXKlrFar25iNGzfqxhtvVGZmpiIiInTq1CnZbOdz9t27d6thw4ay2+1q0aKFVqxYoaCg8zuoUlJS1L59e23YsEE2m007d+5U7dq1vfo6StJ3Fk3T1JkFNyrz9FqP1wOr91VYszdkC69TxJUBRStl9/8U/+tjktz/Gg+u+6jCb/z0qmxXYppOmelxHsNbtyA39USefWMvi2FVQKUuCqxxnwKr3skOf0npx35Rwtp/5PnNMmup+irVeowCKnUu4soAAACuDSXp628AJQ87e69Qzl68w4cPzxX0SlLz5s3Vo0cPzZ07V+fOndPOnTt1/fXXu65/8MEHstvtkqQxY8a4Bb2SFBwcrDFjxujGG2+U3W7Xf//7X3388ceF9IqufoZhKKzFO4r7sYPbef8KHRXW4h35l2lZPIUBRSy47mDJEqD41Q9JptN1PmX3eJmOdJVqO1GGJfffSd5mmqbMzMRcu209B7knJdNe6DWdL86h9CM/Kv3Ij4q3Biow+nYF1uyvwMrdZdgCi66Oq4Aj6ZASNjyntINfe7xu+IUptPFIhTQYKsPqX8TVAQAAAAC8gbD3CmVkZLiOa9asmee4WrVqebzHNE3NmzdPklS/fn21adPG4/1t2rRRvXr1tGvXLs2bN09jx471iR/TLqiACu0VEN1d6bE/yFa6scJbvCP/Sl2v6fcE16bg2g/KsAbo3Ir7JdPhOp+6b6pMZ4Yi2n0uw1Kwv+pNe5ocaScuCGxPeAxy5Uj11ku6QoYu3Ons4khT2p/fKO3Pb2T4hSuwam8F1bxP/hU7Ffg9KglMe5qStr+vpD/ezPP3KajWgwprPlrW4IpFXB0AAAAAwJt896vbIlKv3vmnku/fv18NGzb0OG7fvn2Ssnal1qlzvr3AgQMHdPToUUlS+/bt812rffv22rVrl44cOaKDBw+qRo0aV1p+iRbW/B0F1eivwJr3XZU/rg4UlaAa98qw+Ovs8nslZ6brfNqB6TrnzFDEzdNcOzVNp0POtFOed96muQe5Zsa5YnpFFzBssgSVkyWogqxBFWT568Oa89fA8rIEVZBhDVD6kUVKPTBdaYfm5RlumpkJSt03Van7psoSWFaB1e9RUI375Ffubz7190na4e+VsO4pORL3e7xui2yqUm3Gyr/c34q4MgAAAABAYSDsvUL33XefXn75ZSUkJOidd95R9+7dc7Vy2Lx5sxYsWCBJ6t+/v8LDz/eM3LFjh+u4fv36+a6V8/rOnTsvK+yNjY3N9/qxY8cuea6rhV/pRvIr3ai4ywCuCoHVeqt0x7k6u/RuyZnuOp/25zc6Pb+pZPhlBbvpp9xaPhQnS0AZWYLK5wpvLwxyjYDIywpgA6v2VGDVnnJmJin98HdK3T9d6UcXuQXhOTnTTikl5hOlxHwia0hVBdbop6Aa98kW2bjE/rSAPWGPEtY9rfTYHzxeNwIiFdbsLQXXGVQkrT4AAAAAAEWDsPcKlSlTRl988YXuu+8+rV69Wi1bttTTTz+tunXrKikpSatXr9b777+vjIwMNWvWTO+//77b/TlD2Is1Zc9u4C5lNXG/HDnvBeCbAqvcrshO3ynulzvddrTaz+3I+yYvM/zC3IPbv3bcWnMFuuVkWPwKtRaLX6iCavZXUM3+cqbHKe3Pb5S6f7oyji9TXq0eHMmHlLztXSVve1fWUvUVVOM+BdW8r8Q88NGZmaSkP95S8vb3JWdG7gGGRcF1H1NY09dlCYwq+gIBAAAAAIWKsNcLevbsqY0bN+r999/XxIkTNWDAALfr5cuX1+uvv67BgwcrODjY7VpiYqLrODQ0NN91QkJCXMdJSUleqByArwmo3FWRnX/Q2Z97yLQne2dSi7/HXbfZu3Ldgl2/kIvPVwwsAZEKrjtYwXUHy5FyVGkHZin1wDRlnl6f5z2O+BglbRmppC0j5RfVXIE17lNQjXtlDbn6npZsmqbSDsxUwobn5Ew54nGMX7m2KtV6jPyimhZxdQAAAACAokLY6wUZGRn6/PPPNW/ePJlm7t1iJ06c0JdffqkaNWqoZ8+ebtfS0tJcx/7++T/9PCAgwHWcmnp5D0O62E7gY8eOqVWrVpc1J4CrU0DFDorsulhxP3WTmZngeZBhkSWgbJ7tE7LDXGtQBRn+ESW2nYEn1uBKCmn4tEIaPi17wl6lHpihtAPT890BnXlmozLPbFTihmHyL3+zAmvep6Bqfa6K3bGZZ7cqYc1QZZxY7vG6JaiCwlq8p6Ca9/vU7yMAAAAAIDfC3iuUnJysbt26aeXKlbJarXr++ef10EMPqWbNmkpLS9PatWv12muvadWqVbrzzjv173//W//85z9d9wcGBrqOMzI8/MhtDunp5/twBgUFXVadF2sRAcC3+Jf7m8r22qrU/dMkw8gd5AaUoVerJFt4bYU1flmhN7wk+9mtWQ922z9djuQ/87jDVMaJ5co4sVwJa55UQOWuCqxxnwKr9pLFL6xIa3emn1PilhFKiflEMh25Bxg2hVz3tEIbvyKLf3ju6wAAAAAAn0PYe4VGjRqllStXSlKuFg7+/v7q0qWLOnbsqK5du2rp0qUaNmyYOnXqpMaNG0uSwsLOhwMXa82QnHz+R7Iv1vIBAKyhVRV6w7+Ku4wSwTAM+UXeIL/IGxTW7C1lnvpNqfunK+3gLDnTTnq+ybQrPfYHpcf+oHhrkAKr9FBQjfsUULmbDFug53u8wDSdSt0zWYmbhsuZdsrjGP9KXVSq1UeyReT/4E8AAAAAgG+59MebIxfTNDVp0iRJUt26dXP16s1ms9n0+uuvS5KcTqemTJniupZzx23Oh7V5krMVAw9cA4DCYRiG/Mv9TaXajFG5vkcU2XWxgmo/JMMvn92xjlSlHfxaZ5fepRMzK+jcqoeVfvQnmU67V2vLOLVOZxa0UfyvgzwGvdaQairdcY4iuywi6AUAAACAaxA7e6/AiRMnFBcXJ0lq2jT/B940b97cdRwTE+M6vu666zye9yTn9QYNGlxWrQCAy2dYbAqo1EUBlbrIbPOJ0o8szGr1cHi+5EjzeI+ZGa/UvZOVuneyLIHlFFi9r4Jq3ie/sjcWuGeuI/WkEjcNV+qeSZ4HWAMV2ugFhV7/ggzb5bX5AQAAAAD4DsLeK2CznX/77Pb8d29lZmZ6vK9GjRqqVKmSjh49quXLPT9cJ9uKFSskSZUrV1b16tULUDEAoKAMW6ACq/VWYLXecmYmKu3QPKUdmK70I4sl0/O/Ac60k0qJGauUmLGyhlRTYI1+Cqp5n2ylb7ik4Nd02pUS84kSN4+QmRnvcUxA1d4Kb/kf2cKqX8nLAwAAAAD4ANo4XIHIyEiFh2f9WO9vv/2Wb+CbM8itUaOG69gwDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr14onqAFCMLH5hCq71d0V2XqDy9x5T+I3j5F/+Zkl5/93sSP5Tydve0envmuj0vEZK/P0N2RP25Tk+/dgynf6uqRLWPeUx6LWG11Nkl0WKvGUOQS8AAAAAQBJh7xWxWCy6/fbbJUlHjx7Vm2++6XHc2bNn9cILL7g+79Gjh9v1p59+WlarVZI0dOhQpaamul1PTU3V0KFDJWXtCn766ae99RIAAFfIElhGIfUeU1S35Sp3zyGFtfi3/KKa53uP/dwOJW1+Rafm1Nbp71spaft/5Ug5KklyJMfq7LJ+ilvUUfZz23Lda9hCFdbiXZXt9YcCKnctlNcEAAAAACiZDNM0zeIuoiSLiYlR8+bNlZKSIkm64447NGDAANWsWVNpaWlas2aNPvjgAx06dEiS1KlTJy1ZsiTXPMOHD9fo0aMlZfX/feGFF1SrVi3t27dP77zzjjZv3uwa99Zbb3n9dcTGxroe+nb48GG3B8cBAC6fPX63Ug/MUOr+aXIk7LqEOwz5lfub7HGbZdpTPI4IrHm/wlu8K2twJe8WCwAAgCLD198AChNhrxcsWbJE9913n06fPp3vuFtuuUWzZ89W6dKlc11zOp0aPHiwJk3K4+E7kh555BGNHz9eFov3N2Tzjw0AFA7TNGWP26LUA9OVemCGnMmHL3sOW+nGKtVmrPzL31QIFQIAAKAo8fU3gMJE2OslZ86c0cSJE7Vw4UJt375d586dk81mU4UKFdSyZUv1799fPXv2vGiv3R9++EHjx4/X+vXrdfr0aZUpU0YtW7bUY489pm7duhVa/fxjAwCFzzSdyjz5q1IPTFfagVlypuf/TULDv7TCmr2h4LqPybBYi6hKAAAAFCa+/gZQmAh7IYl/bACgqJnOTKUf/VlpB6Yr7dBcmZmJOa4aCq77qMKavSFLYJliqxEAAADex9ffAAqTrbgLAADgWmRY/BQYfZsCo2+TaR+ntNgflB77vSRDIfWfkF+Z/B/yBgAAAADAhQh7AQAoZoYtSEHV71ZQ9buLuxQAAAAAQAnm/Sd9AQAAAAAAAACKHGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4ANsxV0AAAAAAAAALp1pmkpOTlZCQoLS0tLkcDiKuyQAl8hiscjf318hISEKDQ2Vv7+/V+cn7AUAAAAAACghnE6nDh06pNTU1OIuBUABZWRkKCkpSSdOnFDZsmUVFRUlwzC8MjdhLwAAAAAAQAlgmmauoNcwDFmt1mKsCsDlcDgcMk3T9fmpU6eUkZGhSpUqeWV+wl4AAAAAAIASIDk52RX0Wq1WVahQQaGhobJYeCQTUFKYpqn09HQlJCTozJkzkqT4+HhFRUUpICDgiufnbwMAAAAAAIASICEhwXVcoUIFhYeHE/QCJYxhGAoMDFS5cuVUrlw51/mzZ896ZX7+RgAAAAAAACgB0tLSJGWFRaGhocVcDYArFRER4TpOSUnxypyEvQAAAAAAACWAw+GQlNXCgR29QMlntVpdPbez/3xfKf5mAAAAAAAAAIBiYBiGV+cj7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAuGQZGRmaPn26HnzwQdWvX19RUVHy8/NTmTJl1Lx5cw0ZMkRLliyR0+ks7lKBaw5hLwAAAAAAAC7JnDlzVK9ePfXv319ffPGFdu3apbi4ONntdp05c0abNm3SuHHj1KVLFzVo0EALFiwo7pKvSdWrV5dhGBo4cGBxl3JVWrZsmQzDkGEYWrZsWXGX41W24i4AAAAAAAAAV7/XX39dI0aMcH3epUsX9ezZU9ddd50iIiIUFxenXbt2af78+frpp5+0e/duvfTSS7r99tuLsWrg2kLYCwAAAAAAgHxNnjzZFfSWK1dOs2bNUvv27XON69y5s5544glt27ZNzzzzjE6dOlXUpQLXNMJeAAAAAAAA5OnIkSN68sknJUkhISFavny56tevn+89jRo10qJFizRt2rSiKBHAX+jZCwAAAAAAgDz997//VUpKiiTptddeu2jQm81isejvf/+7x2urVq3SAw88oOrVqyswMFARERFq2rSpXn755Xx3A1/Ya9U0TU2cOFE33XSToqKiFB4erlatWumLL75wuy8jI0Pjxo1TmzZtFBkZqbCwMLVt21azZs3Kc62DBw+61poyZYok6euvv1bnzp1Vrlw5BQUFqX79+ho+fLjOnTuX73uxbds2vfHGG7r11lsVHR2tgIAAhYaGqk6dOhowYIDWrFmT7/2jRo1y1SJJ8fHxev3119W0aVNFRES4auzQoYMMw9Cff/4pSZo6darrvuyPDh065Psa58yZo65du6pcuXIKCQlR48aNNWbMGGVmZrruM01T06ZNU4cOHVSuXDkFBwerWbNmGjdunEzTzPe1ZNf/9ttvq23btipbtqz8/f1VsWJF3XHHHZo9e3a+c2TXO2rUKEnS+vXrdd9997ne18qVK+uBBx7Qzp07c92b/Xo7duzoOtexY8dc71H2e1EimYBpmocPHzYlmZLMw4cPF3c5AAAAAAD4pCv5+nv37t3mjh07zN27dxdSdbk5nU6zTJkypiQzJCTETEhIuKL5HA6H+cQTT7jeA08fpUqVMhcvXuzx/qVLl7rGLV682LzjjjvynOcf//iHaZqmGRcXZ9588815jnvzzTc9rnXgwAHXmMmTJ5sPP/xwnnNUqlTJ3Llz50Vrzu/jX//6V57v28iRI13jdu/ebVavXj3X/ZMnTzbbt29/0XXat2+f52scMmRInvfdddddpt1uN9PS0sw+ffrkOW7w4MH5/jewZMkSMyoqKt8au3fvbiYmJnq8P3vMyJEjzY8//ti02Wwe5wgODjaXL1+e5+9pfh+TJ0/O9zV4k7f/XLOzFwAAAAAAAB5t375dp0+fliS1a9dOYWFhVzTfv/71L3388ceSpBo1amjcuHFat26dli5dqmeeeUZ+fn6Kj49Xjx499Pvvv+c71yuvvKL58+fr/vvv14IFC7Rx40ZNnz5d9erVkyR99NFHWrJkiQYOHKhff/1VQ4YM0eLFi7Vx40ZNnDhRlSpVkiSNGDFC27dvz3etTz75RJMmTVKrVq00ffp0bdiwQT/88IP69u0rSTp69KhuvfVWJSYm5rrXbrcrJCREffv21bhx47Rs2TJt2rRJP/74o95//31Vq1ZNkjR69GhNnjz5ou9hnz59dOTIEQ0dOlQ//fSTNmzY4HrdkydP1tatW12vrVevXtq6davbR15rjBs3Tp9++qm6d++uOXPmaOPGjfr222/VunVrSVk7fidPnqxhw4Zp9uzZ6t+/v77//ntt3LhRM2bMcO34/t///qcff/zR4xqrV69Wt27ddObMGZUvX15vvPGG5s+fr40bN2r+/PmuneA//PCDBgwYkO/7sGjRIg0dOlQNGzbUpEmTtH79eq1YsULPPPOMLBaLUlJS9MADDygjI8N1T+XKlbV161ZNmjTJdW7SpEm53qM777zzor8PVy2vRMYo8djZCwAAAABA4StpO3u//PJLV70vvfTSFc31xx9/mBaLxZRkNmrUyDx79myuMQsXLnSNadWqVa7rF+6S/eCDD3KNOXbsmBkWFmZKMsuWLWsahmHOnTs317jff//dtVb2LuCcLtwF2r17dzMzMzPXuNdee801ZtiwYbmunzp1yuNrzZaenm526dLFlGRWq1bNtNvtucbk3NlrsVjMRYsW5TmfaZpmtWrVTEnmgAED8h134Wt8+umnc41JTk52zRcVFWUahnHR971nz565rmdkZLh2JN92221mcnKyx5rGjx/vtnv7Qhf+nqSnp+ca88Ybb7jGzJkzJ9f1nP8dLV261GMdRYWdvQAAAAAAACgSZ86ccR2XK1fuiub69NNP5XQ6JUkTJkxQRERErjG33XabHn74YUnSunXrtH79+jzna926tZ566qlc5ytUqKDevXtLkk6dOqW+fft63Kl5ww036KabbpIkrVy5Mt/aAwIC9L///U82my3XtZdeekmNGjWSJE2cONFtJ6kklSlTxuNrzebv76/33ntPkvTnn39qy5Yt+dYycOBAde3aNd8xBVGlShW9++67uc4HBwe7dtmeOXPmkt53T+/njBkzdPDgQQUGBurzzz9XcHCwxzoGDx6sVq1aSVK+vXMDAwM1efJk+fv757r2j3/8w3X+Yr+3voawFwAAAAAAAB7lbEsQEhJyRXMtWbJEktSwYUNXawBPBg8enOseT/r165fntcaNG1/WuP379+c5RpK6du3qao1wIYvF4gpD4+LitGnTpnznSk9P16FDh7Rjxw5t27ZN27Ztc3sg2cXaV9x///35Xi+ou+66S35+fh6v5Xw/77333jznyB539uzZXA+t++677yRJ7du3V9myZfOt5eabb5Yk/fbbb3mO6dKlS57fgAgLC1OdOnUkXfz31tfk/nYEAAAAAAAAILn16E1OTi7wPOnp6dqzZ48k5Rv0SlLTpk3l5+enzMxMbdu2Lc9xdevWzfNazp20lzLOU6/dnFq2bJnv9eydqJK0detWtWnTxu16cnKyPvroI82YMUPbt2+Xw+HIc67sHsl5ueGGG/K9XlDefD+lrPc05+cbNmyQlNVr1zCMS6rp+PHjeV7L7hGcl8jISFcd1xLCXgAAAAAAAHgUFRXlOj5x4kSB5zl79qzr+GLtIPz8/BQVFaXjx48rLi4uz3F5tQGQsnbbXs647PYSeblYzeXLl3cdX1jzwYMHdcstt+jAgQP5zpEtNTU13+ulS5e+pHkulzffT0m5Au2TJ09edk35vRf51ZGzlvyCdV9E2AsAAAAAAACPcv74/sXaE1yqS93VeTW5kpofeOABHThwQIZh6KGHHlK/fv3UoEEDlS1bVv7+/jIMQ06nU1arVZLcWjp4kj2upMkOXbt16+axNzC8g7AXAAAAAAAAHjVs2FBlypTR6dOntXLlSiUkJCg8PPyy58m5G/ViO4TtdrvrwXDZP4pf3C5Wc87rOWuOiYnRqlWrJEkvvvii3njjDY/357eD2VdERUXp6NGjysjIcD3QDt7HA9oAAAAAAADgkWEYroePJScna8KECQWaJyAgwPXArLVr1+Y7dvPmzcrMzJSkqyYUXL9+/SVfz1nz9u3bXcf5Pdgsu5+tt1yNu6ebNm0qKeu1ZmRkFGstV+P74y2EvQAAAAAAAMjTM8884+qPOmLECMXExFzSfU6nU1999ZXr886dO0vKCkDXrVuX5305A+Xse4rb4sWLdezYMY/XnE6npk6dKilrB3OzZs1c1+x2u+s4vwfcjRs3zkuVZgkMDJSU9WC8q0XPnj0lSfHx8Zo8eXKx1pL9/khX13vkDYS9AAAAAAAAyFPlypU1duxYSVmBZfv27bV8+fJ879mxY4duu+02vffee65zQ4YMcT0069FHH1VCQkKu+xYvXqyJEydKklq1aqWWLVt662VckfT0dD322GMeH/Y1evRobd26VZL08MMPKyAgwHUtezezJE2ZMsXj3J9++qnmzZvn1XorVqwoSdq3b59X570SAwYMUJUqVSRJzz33nFasWJHv+FWrVl30v7OCyn5/pKvrPfIGevYCAAAAAAAgXw899JBiY2M1YsQInTx5Uh06dFDXrl3Vq1cvNWjQQBEREYqLi9Pu3bu1YMEC/fjjj3I4HG4PeLv++uv17LPP6r333tPvv/+uZs2a6YUXXlDTpk2VnJys+fPn66OPPpLD4ZC/v78+++yzYnzF7lq0aKH58+erbdu2euaZZ1SnTh2dPHlSU6dO1YwZMyRJ0dHReuWVV9zua9q0qRo1aqRt27bps88+09mzZ/XAAw+oYsWKio2N1ZdffqnZs2erbdu2Wr16tdfq/dvf/qalS5dq/fr1Gj16tLp166aQkBBJUlBQkCpXruy1tS5VQECAZs2apQ4dOigpKUm33HKL+vXrpzvvvFM1atSQ0+nUsWPHtHHjRs2dO1dbt27VmDFj1L59e6/XUrVqVUVHRys2Nlb//ve/FR0drXr16rkefle+fHmFhYV5fd2iQNgLAAAAAACAi3rllVfUsGFDPfvsszp48KAWL16sxYsX5zm+YcOGevfdd93OjR49WsnJyfrkk0+0b98+Pfroo7nuK1WqlGbNmqUmTZp4+yUU2BNPPKHly5drypQp6tevX67rFStW1KJFi1SqVCm384Zh6IsvvtAtt9yis2fPatasWZo1a5bbmOuvv15ff/21KlWq5LV6hwwZok8//VRxcXEaPny4hg8f7rrWvn17LVu2zGtrXY42bdpo2bJl6tu3rw4fPqyvvvrKrdXHhQryMMBL9eKLL+rxxx/XgQMH1KtXL7drkydP1sCBAwtt7cJEGwcAAAAAAABckrvuuku7du3SV199pb///e+qV6+eSpcuLZvNpsjISDVr1kyPP/64fvnlF23dulVdu3Z1u99isejjjz/WihUrdP/996tq1aoKCAhQeHi4mjRpohdffFF79uzJdd/VYPLkyZo2bZo6dOigqKgoBQQEqG7dunr++ee1fft2XXfddR7va9KkibZs2aL/+7//U7Vq1eTn56fIyEi1atVK//73v7Vu3Tq3tgLeULlyZa1bt06PPPKIateu7dajtri1adNGe/bs0bhx43T77berUqVK8vf3V2BgoKpUqaKuXbvqzTffVExMjB588MFCq2PIkCH65ptv1LVrV5UrV042m2/siTVM0zSLuwgUv9jYWFfflMOHDys6OrqYKwIAAAAAwPdcydffe/bskd1ul81mc+sFi8Jx8OBB1ahRQ1LJ3umJq5u3/1yzsxcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADAB9iKuwAAAAAAAADgalO9enWZplncZQCXhZ29AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDs9bJDhw5p5MiRatGihcqWLavAwEBVqVJF7dq104gRI7Rt27Z871+4cKF69+6t6OhoBQQEKDo6Wr1799bChQuL6BUAAAAAAAAAKIl4QJsXjRkzRsOHD1dycrLb+djYWMXGxmrVqlVKSEjQBx98kOtep9OpRx99VBMnTnQ7f+TIER05ckTffvutBg0apM8++0wWCxk9AAAAAAAAAHeEvV7yxhtv6JVXXpEk1a1bV4MHD1bLli1VqlQpnTlzRps3b9bcuXPzDGpfeuklV9DbtGlTPf/886pVq5b27dund999V5s3b9aECRNUtmxZvfXWW0X2ugAAAAAAAACUDIZpmmZxF1HS/fzzz+rcubMk6cEHH9SECRPk5+fncWxGRob8/f3dzu3evVsNGzaU3W5XixYttGLFCgUFBbmup6SkqH379tqwYYNsNpt27typ2rVre/U1xMbGqkqVKpKkw4cPKzo62qvzAwAAAACAK/v6e8+ePbLb7bLZbKpTp05hlQigCHn7zzX9AK6Q0+nUkCFDJEmNGzfWxIkT8wx6JeUKeiXpgw8+kN1ul5TVCiJn0CtJwcHBGjNmjCTJbrfrv//9r7fKBwAAAAAAAOAjCHuv0OLFi7Vnzx5J0gsvvCCb7fI6Y5imqXnz5kmS6tevrzZt2ngc16ZNG9WrV0+SNG/ePLEhGwAAAAAAAEBOhL1X6Ouvv5YkGYahHj16uM7HxcVpz549iouLy/f+AwcO6OjRo5Kk9u3b5zs2+/qRI0d08ODBK6gaAAAAAAAAgK/hAW1XaM2aNZKk6tWrKywsTNOmTdPbb7+tbdu2ucZkP7Bt6NChCggIcLt/x44druP69evnu1bO6zt37lSNGjUuuc7Y2Nh8rx87duyS5wIAAAAAAABw9SHsvQJOp1MxMTGSpDJlyuipp57SRx99lGvc7t27NWzYMM2dO1cLFixQRESE61rOEPZiTdmzG7hLWU3cL0fOewEAAAAAAAD4Hto4XIH4+Hg5nU5J0tatW/XRRx+pYsWK+vLLLxUXF6eUlBQtX77c1Yf3119/1cMPP+w2R2Jious4NDQ03/VCQkJcx0lJSd56GQAAAAAAAAB8ADt7r0BycrLrOC0tTcHBwVq6dKnrQWqSdPPNN+uXX37RjTfeqN9//11z587V2rVr1bp1a9d92fz9/fNdL2cLiNTU1Muq9WI7gY8dO6ZWrVpd1pwAAAAAAAAoOgMHDtTUqVNVrVo1nucEj9jZewUCAwPdPh80aJBb0JstKChIb775puvzmTNnepwjIyMj3/XS09Pd5rwc0dHR+X5UrFjxsuYDAAAAAADwZcuWLZNhGK6Pe++996L3DBw40DUeKA6EvVcgLCzM7fOuXbvmObZTp06y2bI2Uq9fv97jHBdrzZBzJ/HFWj4AAAAAAADAe77++mtt3bq1uMsA8kXYewUCAgJUtmxZ1+f5PQQtMDBQZcqUkSSdOnXKdT7nQ9lyPqzNk5ytGHjgGgAAAAAAQNExTVMjR44s1hqmTJki0zRp4YA8EfZeoYYNG7qOHQ5HvmOzr2fv8JWk6667znUcExOT7/05rzdo0OCy6gQAAAAAAEDBZG/gmzt3rjZv3lzM1QB5I+y9QjfffLPreP/+/XmOS0hI0OnTpyVJlStXdp2vUaOGKlWqJElavnx5vmutWLHCdX/16tULWjIAAAAAAAAuwz/+8Q8FBARIkkaMGFHM1QB5I+y9QnfffbfreO7cuXmOmzt3rkzTlCS1a9fOdd4wDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr1otE3AAAAAABAEalSpYoeffRRSdL333+vdevWXfYcTqdTv/zyi5577jm1bdtWZcqUkZ+fnyIiItSkSRM999xzOnToUL5zZD8A7sJNgK+99prrwXB79uy5aC233nqrDMNQxYoV8/xJ9W+//Vb33HOPqlatqsDAQEVERKhFixZ69dVXdfbs2Ut+3ShahL1X6IYbblC3bt0kSdOnT9fPP/+ca8zx48f18ssvS5L8/f310EMPuV1/+umnZbVaJUlDhw5Vamqq2/XU1FQNHTpUUlYLiKefftrbLwMAAAAAAAD5GD58uIKCgiRJr7zyymXf/9prr6lTp056//339euvv+rMmTOy2+2Kj4/X77//rvfff18NGjTIdzNhXvr37+86njZtWr5jT5w44cqv+vXr58qksp09e1adOnVS7969NXv2bB0+fFjp6emKj4/Xxo0bNWrUKNWvXz/PDYsoXoS9XvDBBx8oIiJCTqdTPXr00PDhw7Vy5Upt2LBBn3zyiVq2bOl6+Nrrr7/u1sZBkurWrathw4ZJkjZs2KC2bdtq5syZ2rBhg2bOnKm2bdtqw4YNkqRhw4apTp06RfsCAQAAAAAArnEVK1bUkCFDJEmLFy/WqlWrLut+u92uihUr6vHHH9cXX3yh1atXa+PGjfr222/1/PPPKzQ0VCkpKerfv7927tx5WXPXrl1brVu3lnTxsHfmzJmu3bz333+/27X09HR17txZv/zyi6xWqx544AFNnz5da9as0cqVK/Xmm28qKipKJ0+eVPfu3fXnn39eVp0ofLaLD8HF1K1bV/Pnz1efPn104sQJjR49WqNHj3YbYxiGXnrpJT3//PMe53jzzTd18uRJTZo0SZs3b1a/fv1yjXnkkUf0xhtvFMprAAAAAAAAJZ9pOuVMP1PcZRQZS0CUDKPo9jK+8MIL+uyzz5ScnKwRI0bol19+ueR7Bw0apJEjR8rPz8/tfLNmzdSrVy8NHTpUbdq00ZEjR/TWW2/piy++uKza7r//fq1du1a7d+/Whg0b1KJFC4/jssPgunXr5hrz2muvadOmTYqIiNCSJUvUvHlzt+s33XST7r//ft144406duyYXnzxRX311VeXVScKF2Gvl9x0003avn27xowZo2+//VYHDhxQRkaGKlasqA4dOmjo0KFq2rRpnvdbLBZNnDhRd999t8aPH6/169fr9OnTKlOmjFq2bKnHHnvM1S4CAAAAAADAE2f6GZ2cUa64yygy5fqdlDWwbNGtV66cnnzySb3zzjtaunSpli5dqo4dO17SvRf22b1QdHS0hg0bpqefflrfffedTNO8rGc23XvvvXrmmWfkcDj01VdfeQx79+3bp7Vr10rKvas3KSlJH3/8saSsn0y/MOjNVq1aNb3yyit6/PHH9fXXX2v8+PEKCQm55DpRuAh7vSgqKkqjRo3SqFGjCjxH9+7d1b17d+8VBQAAAAAAAK8ZNmyYPvnkEyUmJuqVV1657HYO2RISEnTmzBmlpKTINE1JUnBwsOvagQMHVLNmzUuer1y5curSpYt+/PFHzZw5U++//74sFvddzzlbPOTs8ytJy5cvV3x8vCSpT58++a518803S5IyMzO1ceNG1+cofvTsBQAAAAAAAC5RVFSUnn76aUnS6tWrtWjRoku+988//9TQoUNVvXp1lSpVSjVr1lSjRo10/fXX6/rrr9ejjz7qGnv69OnLri17t+6xY8c8tpjIDntbt26t2rVru13Lfl6UlNWf2DCMPD8aNWrkGnv8+PHLrhOFh7AXAAAAAAAAuAz//Oc/FRERIUkaOXLkJd2zcOFCXXfddRo7duwlPdgsNTX1suu68847XbuDL+ylu2nTJsXExEjK3cJBkk6ePHnZ60lSSkpKge5D4aCNAwAAAAAAgI+wBESpXL+ChXYlkSUgqljWjYiI0D//+U+NGDFCa9eu1ffff68ePXrkOf706dPq37+/UlJSFBoaqueee0633nqratWqpVKlSsnf31+S9Msvv6hTp06S5GrtcDlCQ0PVq1cvTZ8+XXPmzNGnn36qwMBASed39VqtVt1777257nU4HK7jTZs25XqQXF6io6Mvu04UHsJeAAAAAAAAH2EYliJ9YNm17Omnn9aHH36oM2fOaOTIkfmGvbNnz9a5c+ckSXPnzlXnzp09jouLi7viuu6//35Nnz5dCQkJ+v7779WnTx85nU7NmDFDktSlSxeVK5f7IX5RUeeD87JlyxLillC0cQAAAAAAAAAuU1hYmIYNGyYpayfs3Llz8xy7fft2SVJkZGSeQa/k3je3oG699VaVKVNG0vndvMuXL9eRI0ckeW7hIElNmzZ1Ha9evfqK60DxIOwFAAAAAAAACuDJJ5907ZIdOXJknq0X7Ha7JCktLU1Op9PjmJSUFH3xxRdXXJPNZlPfvn0lST/88IPOnTvnCn2Dg4N15513eryvc+fOrn6/H330UYHaSKD4EfYCAAAAAAAABRASEqIXXnhBkrR161b98MMPHsfVqVNHUlagO2vWrFzXHQ6HBg0apKNHj3qlruzdu+np6Zo2bZq++eYbSVKvXr0UGhrq8Z6IiAg9+eSTkqRff/1VzzzzTJ7BtCSdOHFCEyZM8Eq98B7CXgAAAAAAAKCAhgwZoooVK0rKehCbJ3379lVAQIAk6aGHHtK//vUv/fzzz9qwYYOmTp2q1q1ba/r06Wrbtq1Xavrb3/6mGjVqSJJeeuklnT17VlLeLRyyvfbaa2rdurUk6cMPP1SzZs308ccfa/Xq1dqyZYuWLl2qsWPH6s4771TVqlU1btw4r9QL7+EBbQAAAAAAAEABBQUF6cUXX9TQoUPzHBMdHa1PP/1UgwYNUlpamt555x298847bmPuvfdeDR48ON+evpejf//+evPNN10PhitTpoxuvfXWfO8JCAjQTz/9pIEDB2rOnDn6/fffXbt9PQkPD/dKrfAedvYCAAAAAAAAV2Dw4MGqUqVKvmMeeughrVy5UnfeeafKli0rPz8/VaxYUbfddptmzpypGTNmyGq1eq2mC3fx9u3bVzbbxfd9hoWF6ZtvvtHKlSs1aNAg1atXT2FhYbLZbIqMjFTLli31xBNP6IcfftBPP/3ktXrhHYZ5lXZb3rdvn06fPq3q1aurfPnyxV2Oz4uNjXX9pXT48GFFR0cXc0UAAAAAAPieK/n6e8+ePbLb7bLZbK4esABKNm//uS7ynb0nT57UJ598ok8++UTx8fG5ru/du1fNmzdX3bp19be//U2VK1fW3Xff7eotAgAAAAAAAADIrcjD3jlz5ujJJ5/Uhx9+qFKlSrldS09PV7du3bRlyxaZpinTNOV0OvXtt9+qV69eRV0qAAAAAAAAAJQYRR72Ll68WIZhqHfv3rmuTZkyRfv27ZMk9ezZUx9++KHuuOMOmaap1atXa+bMmUVdLgAAAAAAAACUCEUe9u7atUuS1KZNm1zXpk2bJkm65ZZb9O2332ro0KGaN2+eOnfuLNM0NWPGjCKtFQAAAAAAAABKiiIPe0+dOiVJuRqQp6amas2aNTIMQ48++qjbtYcffliStGnTpqIpEgAAAAAAAABKmCIPe8+dO5e1sMV96TVr1igzM1OGYahz585u12rUqCEp6+FuAAAAAAAAAIDcijzsDQ0NlSQdP37c7fyyZcskSdddd51Kly7tds3Pz0+SZLPZCr9AAAAAAAAAACiBijzsrV+/viTpxx9/dDv/zTffyDAMtW/fPtc92cFw+fLlC79AAAAAAAAAACiBinyr7O233641a9Zo/PjxatCggdq1a6cpU6Zox44dMgxDd911V657snv1Vq5cuajLBQAAAAAAAIASocjD3ieffFKffPKJjh07pieffNLt2o033qiOHTvmumf+/PkyDEMtW7YsqjIBAAAAAAAAoEQp8jYOpUqV0pIlS9SsWTOZpun6aNeunWbNmpVr/O+//67169dLkrp06VLU5QIAAAAAAABAiVAsTzxr0KCBNmzYoAMHDuj48eOqWLGiqlevnuf4yZMnS5JuueWWIqoQAAAAAAAAAEqWYgl7s9WoUUM1atTId0zjxo3VuHHjIqoIAAAAAAAAAEqmIg97X3vtNUnS448/rjJlylzSPWfPntWYMWMkSSNGjCi02gAAAAAAAACgpCrysHfUqFEyDEN9+vS55LA3Li7OdR9hLwAAAAAAAADkVuQPaAMAAAAAAAAAeF+JCHszMzMlSX5+fsVcCQAAAAAAAABcnUpE2LtlyxZJUtmyZYu3EAAAAAAAAAC4ShV6z97PP//c4/l58+Zpw4YN+d6bnp6uffv2adKkSTIMQy1btiyMEgEAAAAAAACgxCv0sHfgwIEyDMPtnGmaevnlly95DtM0ZbFY9NRTT3m7PAAAAAAAAKBYbdu2TaNHj9by5ct14sQJV0vTzZs3q0mTJsVb3FVs4MCBmjp1qqpVq6aDBw8WdzlXhSJp42CapuvD07n8Pvz8/NS2bVt99913at++fVGUCwAAAAAAgGvcsmXLZBiGDMPQqFGjCm2djRs3qlWrVvrqq68UGxvrCnqBgij0nb0HDhxwHZumqZo1a8owDC1atEh16tTJ8z7DMBQYGKioqChZrdbCLhMAAAAAAAAocsOHD1dqaqrCw8M1evRotWjRQkFBQZKk2rVrF3N1WUaNGqVXX31Vktw2c+LqU+hhb7Vq1Tyer1SpUp7XAAAAAAAAAF+XmZmp5cuXS5IeffRRDRkypJgrQklX6GHvhZxOZ1EvCQAAAAAAAFx1Tp8+rYyMDElS3bp1i7ka+IIi6dkLAAAAAAAAwF16errr2M/Prxgrga8olrA3JSVFKSkpeV4fM2aM2rVrpwYNGqh79+6aP39+EVYHAAAAAAAA5C3nw9uWLVsmSZo1a5Y6deqksmXLKigoSPXq1dPzzz+vuLi4XPePGjVKhmGoRo0arnMPPfSQa868HgqXlpamsWPHqlOnTqpQoYL8/f1Vrlw5de7cWRMnTpTdbr9o7enp6Ro/frxuv/12Va5cWQEBAQoJCVHDhg01aNAgLVq0yNWXd8qUKTIMw9WvV5JbjdkfBw8ezLWOw+HQ1KlT1aNHD1WqVEkBAQGKiorSTTfdpP/85z9KTU29aK07d+7UwIEDVaVKFQUGBqpKlSrq37+/1q9ff9F7r1VF3sZh/vz5uvPOOxUaGqrY2FiFhYW5XX/44Yc1depUSVkNn3fv3q1FixbpjTfe0PDhw4u6XAAAAAAAACBPTqdTDzzwgL788ku387t379Z7772nuXPnauXKlapQocIVrfP777+rV69e+vPPP93Onzp1Sj///LN+/vlnffbZZ5o/f77Kly/vcY4tW7borrvu0oEDB9zOZ2RkaMeOHdqxY4cmTpyoAwcOqHr16gWu9dChQ+rZs6d+//13t/NxcXFavXq1Vq9erU8//VQLFizIs33FrFmz9OCDD7rtfo6NjdX06dP19ddfa9y4cQWuz5cVedib/d2Bnj175gp6V61a5fqOQXBwsOrWrauYmBilpqZqxIgRuuOOO9SoUaOiLhkAAAAAAADw6JVXXtGvv/6qO++8Uw8++KCqVaumEydO6OOPP9aCBQu0d+9ePfPMM5o+fbrrnscff1x9+vTR0aNHdeutt0qS3njjDfXq1cs1ply5cq7jvXv3qn379oqPj1d4eLieeOIJtWrVSlWqVNGZM2f03Xff6bPPPtP69evVq1cvrVy5MldbiJ07d6pdu3ZKSkqSJPXu3Vv9+vVTzZo15XA4tHv3bi1evFhz58513XPnnXeqRYsW+uSTT/Tpp59KkrZu3ZrrPahcubLr+MyZM7rpppt0+PBhBQQEaPDgwWrfvr2qV6+upKQkLV68WB9++KH27t2rbt26adOmTSpVqpTbfOvXr9f9998vu92ugIAAPfPMM+revbsCAgK0du1avfXWWxoyZIiuu+66y/798nVFHvauWbNGhmGoY8eOua6NHz9eklSpUiX99ttvio6O1uHDh3XTTTcpNjZWn332mcaMGVPUJQMAAAAAAJQITtNUUoZZ3GUUmVB/QxbDKNYafv31V73xxht66aWX3M7fdtttuu2227R48WLNnj1bH330kcqWLSspK8gtV66cQkNDXeMrV66c5ybHAQMGKD4+Xk2bNtXixYtVpkwZt+tdu3ZVjx49dPvtt2vt2rWaMmWKBg8e7Dbm73//u5KSkmSxWPTVV1+pX79+btdbt26tBx54QGfOnFFwcLAkKSIiQhEREW7B88U2Yv7jH//Q4cOHVa1aNS1dutStVYUkdejQQffcc4/atWun/fv3691339Wbb77pNubxxx+X3W6Xn5+fFi9erJtvvtl1rVWrVrrrrrvUpk2bXDuHUQxh78mTJyVJ9erVy3Xtxx9/lGEYGjp0qKKjoyVJVapU0dChQ/X8889r+fLlRVorAAAAAABASZKUYWrwktPFXUaR+V/nMgoPKN6wt3nz5nrxxRdznTcMQ//85z+1ePFi2e12/fbbb+rZs+dlz79y5Ur9+uuvkqSpU6fmCnqz3XbbberTp49mzZqVK+xdvHixNm3aJCkrjL0w6M0pKirqsmvMdvDgQc2cOVOSNHbs2FxBb7amTZvqiSee0LvvvqspU6a4hb3r16/Xhg0bJEmPPfaYW9CbrXLlynr//fd17733FrhWX1XkD2g7deqUJOVq4bB9+3adPp31l1HOLeuS1KJFC0nK1ZMEAAAAAAAAKE79+/eXkcfu4ubNm7uO9+/fX6D5v/vuO0lZGyevv/76fMdmB6Pr1693e1jb999/7zp++umnC1THpViwYIEcDoeCg4PVrVu3fMdm13r06FEdOnTIdX7JkiWu44ceeijP+3v37q2IiIgrK9gHFfnOXqvVKkm5nkS4atUqSVLZsmVz7fotXbq0pKwnDgIAAAAAAABXi/r16+d5LTIy0nWcmJhYoPmzd7nu2rUrz1D5QpmZmYqLi3O1X9i8ebMkqWrVqqpWrVqB6rgU2bWmpKTIZrv02PH48eOqWrWqpPM9gf39/dW4ceM87/Hz81PTpk21dOnSK6jY9xT5zt7shs1btmxxO79gwQIZhqF27drluic+Pl6S8tymDgAAAAAAABSH7P62nlgs56M3h8NRoPmzW6JerpSUFNdx9k/TV6xYsUBzXSpv1Jq9QTQyMtK1aTQv5cuXL9B6vqzId/a2a9dOe/bs0dixY/X3v/9dZcqU0fr16/Xjjz9KkusJhDnt3LlTklShQoUirRUAAAAAAKAkCfU39L/O185muVD/4u3XWxSyQ+LGjRvryy+/vOT7sjdcFqXsWsuUKXNZO2499fa91F3McFfkYe/jjz+uKVOm6MCBA6pZs6bq1q2rHTt2yG63KzIy0mNj5V9++UWGYei6664r6nIBAAAAAABKDIthFPsDy+Bd2Q9MS0pKUqNGjQo0R/ZPyx87dsxrdXmSXWtiYqIaNGhw0Z25nmS3cz1z5owcDke+c5w4caJghfqwIm/j0KxZM7333nsyDENJSUnatGmT0tLS5Ofnp//973+5HtwWHx+vBQsWSJI6dOhQ1OUCAAAAAAAAxaZp06aSsh7wdvz48QLN0axZM0nSoUOH9Oeff172/Ze6yza71vT0dFf/3suV/RC6jIwM/f7773mOs9vtudrEohjCXkl65plntHnzZr3yyisaPHiwRowYoT/++EO9e/fONXbZsmVq2bKlbr75ZvXo0aMYqgUAAAAAAACKR8+ePSVJpmnqww8/LNAcd9xxh+v4v//972XfHxgY6DpOT0/Pd53sYPiDDz647HUkqXPnzq7jqVOn5jlu7ty5Onv2bIHW8GXFEvZKWSn9q6++qs8++0yjRo1SvXr1PI7r1auXli5dqqVLl9J0GQAAAAAAANeUrl27qlWrVpKk9957T7Nmzcp3/NatWzV//ny3c507d1bz5s0lSWPGjNGMGTPyvP/MmTNKTU11O5fzwW779u3L89569erpnnvukSTNmDFD//nPf/Kt9cCBA5o+fbrbuVatWrl2In/66adatWpVrvuOHTum5557Lt+5r1XFFvYCAAAAAAAAuLhp06YpMjJSDodD9957r3r27KmvvvpK69at08aNG7Vw4UK99dZbuvHGG3XDDTdo+fLlueb44osvFBoaKqfTqfvuu0933323vv76a23cuFHr1q3TtGnTNHDgQFWrVi1XL9y//e1vruNnnnlGK1as0J49e7R3717t3btXdrvddf3TTz9VzZo1JUnPPvus2rdvr4kTJ2rNmjXavHmzlixZovfff19dunRR7dq19c033+Sq9ZNPPpHNZlNmZqa6dOmiF198UatWrdL69es1duxYNW/eXMeOHVPjxo299Rb7jCJ/QJsnpmlq//79iouLkyRFRkaqZs2aPHUPAAAAAAAA17xatWrpt99+0913361t27Zp/vz5uXbv5hQeHp7rXIMGDbRs2TL17t1bhw8f1pw5czRnzpxLWr927drq27evZs2apcWLF2vx4sVu1w8cOKDq1atLysr1Vq9erb59+2rlypVasWKFVqxYcVm1tm7dWp9//rkGDhyotLQ0vf3223r77bdd1202mz755BOtXr06376+16JiDXsXLVqksWPHatmyZUpJSXG7FhwcrI4dO+rJJ59U165di6lCAAAAAAAAoPjVrVtXW7Zs0axZs/TNN99o/fr1OnXqlBwOh6KiolSvXj3ddNNN6t27t6sNwoWaN2+uXbt2acKECfr222+1bds2xcXFKTAwUDVq1NCNN96oe++91xXc5vTll1+qRYsWmj17tnbt2qXExEQ5nU6P61SoUEErVqzQggULNH36dP322286fvy4MjMzFRERoTp16ujGG29Uz549dfPNN3uc47777lPjxo01evRo/fzzzzp9+rTKli2rtm3b6p///Kdat26t1atXF/j99FWGaZpmUS+akZGhgQMHaubMmZKydvZ6kr2z995779WUKVPk7+9fZDVea2JjY1WlShVJ0uHDhxUdHV3MFQEAAAAA4Huu5OvvPXv2yG63y2azqU6dOoVVIoAi5O0/18Wys7d///6aO3euTNOUzWZTly5d1Lp1a1WoUEGSdPz4ca1bt04//fSTMjMzNXPmTNnt9os2oAYAAAAAAACAa1WRh70LFizQnDlzZBiGOnbsqEmTJqlatWoexx46dEgPP/ywfvnlF33zzTf64Ycf1L179yKuGAAAAAAAAACufpaiXnDKlCmSpMaNG+vHH3/MM+iVpKpVq2rhwoVq0qSJJGny5MlFUCEAAAAAAAAAlDxFHvauWbNGhmHo2WeflZ+f30XH+/n56bnnnpNpmlqzZk0RVAgAAAAAAAAAJU+Rh72nTp2SJF133XWXfE/9+vUlSadPny6UmgAAAAAAAACgpCvysDckJESSdObMmUu+5+zZs5Kk4ODgQqkJAAAAAAAAAEq6Ig9769WrJ0maOXPmJd+TPTb7XgAAAAAAAACAuyIPe3v27CnTNDV58mTXw9ry88UXX2jSpEkyDEN33nlnodcHAAAAAAAAACVRkYe9Q4cOVcWKFWWaph555BH16NFDc+bM0ZEjR5SZmSm73a4jR45ozpw56tGjhwYOHCin06lKlSrpySefLOpyAQAAAAAAAKBEsBX1giEhIfr+++/VuXNnnT17VgsXLtTChQvzHG+apkqXLq3vv/+enr0AAAAAAAAAkIci39krSU2bNtXWrVt19913y2KxyDRNjx8Wi0V9+vTRH3/8ocaNGxdHqQAAAAAAAABQIhT5zt5slSpV0tdff61jx45p2bJl2rZtm+Li4iRJkZGRatSokTp06KCKFSsWV4kAAAAAAAAAUGIUW9ibrWLFirrvvvuKuwwAAAAAAAAAKNGKpY0DAAAAAAAAAMC7CnVn76FDh7w+Z9WqVb0+JwAAAAAAAACUdIUa9lavXl2GYXhtPsMwZLfbvTYfAAAAAAAAAPiKQu/Za5pmYS8BAAAAAAAAANe8Qg17BwwYkO/1c+fOad68eTIMQw8++GBhlgIAAAAAAAAAPq1Qw97Jkyfne3379u2aN2/eJY0FAAAAAAAAAOTNUtwFAAAAAAAAAEBJZBiGDMPQqFGjirsUSYS9AAAAAAAAQC7Lli1zBXkXfgQHB6tKlSrq0aOHJk2apPT09OIuF5BE2AsAAAAAAABcltTUVMXGxmrBggV65JFH1Lx5cx08eLC4ywIIewEAAAAAAID8DBkyRFu3bnV9/Pzzz/rwww8VHR0tKeu5VD179pTD4SjmSnGtK9QHtAEAAAAAAAAlXbly5dSoUSO3c7fccoseeugh3XDDDTp48KC2bt2quXPnqk+fPsVUJcDOXgAAAAAAAKBAwsLC9PLLL7s+X7JkSTFWAxD2AgAAAAAAAAV2/fXXu44PHz6c57ilS5dqwIABqlmzpoKDgxUeHq7rr79ew4YN09GjRy9prdWrV2vQoEGqV6+ewsPD5e/vr+joaPXo0UMff/yxzp07l+e98+fPV58+fRQdHa2AgABFRUXpxhtv1OjRo5WUlOTxnlq1askwDLVt2/aitR05ckRWq1WGYej555/3OCY+Pl5vv/222rZtq7Jly8rf318VK1bUHXfcodmzZ8s0zTznz3443qhRoyRJv/zyi+655x5VqVJFfn5+ql69eq57jh8/rpdeekktWrRQZGSkAgICVKVKFfXt2/eSg/lp06apQ4cOKl26tEJDQ9WoUSONHDky3/e6ONHGAQAAAAAAACggf39/17Gfn1+u62lpaXrooYc0Y8aMXNe2bdumbdu26dNPP9X06dN1xx13eFwjNTVVjzzyiKZPn57r2pEjR3TkyBEtWLBAp06dcoWhOdfv37+/5s6d63Y+Li5Oa9as0Zo1azRmzBgtWLBATZo0cRvTv39/vfHGG/rtt9908OBBj4FqtunTp8vpdEqS7r///lzXf/75Z9177706c+aM2/njx4/r+++/1/fff6/u3btr5syZCg0NzXMdSXrppZf01ltv5Tvmq6++0mOPPabk5GS387Gxsfr666/19ddf65FHHtG4ceNks+WOSO12u/r376+vv/7a7fz27du1fft2ffnll1flTu5CDXtfe+21fK+fPHnyksdmGzFixBXVBAAAAAAAAHjLzp07XccXhqGmaapPnz5asGCBJOmOO+5Q3759VbNmTVksFq1bt07vv/++Dh06pD59+mj16tVq0aKF2xxOp1O9evXSTz/9JEmqU6eOHn/8cbVo0ULBwcE6duyYfv31V82aNctjfQMGDHAFvY0bN9azzz6rBg0aKC4uTjNmzNCUKVN09OhRderUSX/88YcqV67suvf+++/XG2+8IdM0NW3aNL344ot5vg/Tpk2TJDVs2FCNGzd2u7Z69Wp169ZNmZmZKl++vIYOHarGjRurUqVKOnr0qGbOnKkvv/xSP/zwgwYMGKBvvvkmz3XmzJmjrVu36vrrr9czzzyjRo0aKTU1VVu2bHGNmTVrlh544AGZpqmaNWvqySef1HXXXaeyZcvq4MGDmjhxon744QdNnDhR4eHh+s9//pNrneeee84V9NarV0/PP/+8brjhBsXHx+vrr7/W//73P91777151llcDDO//dFXyGKxyDAMr87JUw0LR2xsrKpUqSIp60cOsp8mCQAAAAAAvOdKvv7es2eP7Ha7bDab6tSp43GM03TqTHqKV2otCaICgmUxCqdL6bJly9SxY0dJ0siRI3PtmJWycqqWLVtq8+bNkqSVK1fqpptucl3/3//+p0cffVR+fn767rvvdNttt+Wa4+zZs2rXrp22b9+utm3batWqVW7XP/roIz311FOSpN69e2v69OkKCAjINY/T6dSxY8fcwtoFCxaoR48ekqROnTrphx9+cNuJnLNGSerbt69mzpzpdr158+batGmTGjZsqG3btnl8r2JiYtSgQQNJ0ltvvaXhw4e7rmVmZqpu3bo6ePCgbrvtNn3zzTcKDg7ONUfOOhYvXqwuXbq4Xc+ZMXbq1EkLFizw+D6cPn1atWvXVnx8vB5++GF99tlnHnfuZu8Otlgs2rFjh+rVq+e6tnXrVjVp0kROp1PNmjXT8uXLc+02/vzzzzVgwADX53n9N3Ixl/Ln+nIUehsHb2bJ3g6OAQAAAAAAfMmZ9BSVmz6quMsoMifvG6Wygfn/yH9hOHXqlLZu3aoRI0a4gt4+ffq4Bb2maeqdd96RJP3jH//wGPRKUunSpfXee++pe/fuWr16tfbs2eMK/ZxOp9577z1JUnR0tD7//HOPAaeUtekyZ9ArSR9//LGkrPYSkydPzhX0StLgwYM1a9YsLVmyRHPmzNGxY8dUsWJF1/X7779fmzZt0vbt2/X777/n2rUrZbVMkLKyu/79+7tdmzFjhg4ePKjAwEB9/vnnHoPe7DomTJigdevWacqUKbnC3pyvc8KECXm+D59++qni4+NVuXJlffLJJx6DXkl69dVXNXXqVB05ckSff/653nzzTde1cePGuVpSjB8/3mNbiQcffFAzZszQwoULPc5fXAo17F26dGlhTg8AAAAAAAAUuldffVWvvvqqx2vBwcH6v//7P40ePdrt/I4dO7Rv3z5JWUFwfm6++WbX8W+//eYKe7ds2aLY2FhJWWHoxXrZ5mS327V8+XJJUteuXV07yj0ZPHiwlixZIrvdrmXLlum+++5zXevXr5+GDRsmp9OpadOmeQx7s3sJt23bVtWqVXO79t1330mS2rdvr7Jly+Zb880336x169bpt99+y3NM27Zt8+0dnL1ejx498gyEJclms+nGG2/U7Nmzc62X3Yv3+uuvV/PmzfOc4+GHH762wt727dsX5vQAAAAAAABAsWrSpIn+8Y9/5Ho424YNG1zHN9544yXPd/z4cddx9q5hSWrXrt1l1bV//36lpGS19GjdunW+Y3Nev7BVQ6VKldSxY0f9/PPPmj59ukaPHu320/dr1651hdqeHsyW/T4sWrTokn9qP+d7cKEbbrghz2sOh8PVu/ezzz7TZ599dtnrpaena8+ePZKkli1b5ntfq1atLmn+olQ4TU0AAAAAAAAAHzFkyBBt3bpVW7du1ebNmzV//nwNGDBAFotFv/76qzp06KBTp0653XPy5MkCrZUd0EpZ/Wez5WytcCni4uJcx+XKlct3bIUKFTzely07xD18+LBWrFjhdi27hYOfn5/uueeeXPcW5H1ITU3N81rp0qXzvBYXFye73X7Z6+V8z8+ePetqS3ux9618+fKXvVZhK/SevQAAAAAAACgaUQHBOnnfqOIuo8hEBXju/+pt5cqVU6NGjVyfN2nSRD169FDHjh01cOBAHTx4UIMGDdK8efNcYxwOh+t4/vz5+bYeuHAtb7vS52Ddfffdevzxx5WWlqZp06a5fprf4XBo1qxZkqTbbrtNUVFRue7Nfh+6deumd99994rqkCSr1ZrntZzv+aBBg1wPtrsYT72MpZL5/DDCXgAAAAAAAB9hMSzF8sCya9WAAQM0f/58ffPNN/ruu+/0yy+/6JZbbpEkt+AzIiLCLSy+VGXKlHEdHzt2TPXr17/keyMjI13HJ06cyHdszjYGOe/LFh4erh49emj27NmaPXu2xo4dKz8/P/3888+uuT21cJCy3oejR48qIyOjQO/B5chZu2maBVovIiLCdXyx9+1i14sDbRwAAAAAAACAAnrrrbdcu01ffPFF1/mmTZu6jlevXl2guZs1a+Y6vrB9wsXUrFlTwcFZO5/Xrl2b79h169a5jvMKSLPD3Li4ONdDybJbOISFhalnz54e78t+HzZs2KCMjIzLeAWXz9/fXw0bNpRU8Pc8MDDQ9YC89evX5zv2YteLA2EvAAAAAAAAUEB169ZV3759JWWFqj/99JOkrKA2OjpakjR+/HilpaVd9tyNGzdWlSpVJEkTJkxQUlLSJd9rs9lc7RZ++uknxcbG5jl2woQJrns6dOjgcUz37t1d/XK/+uorpaWlae7cuZKk3r17KygoyON92SFwfHy8Jk+efMn1F1T2ejExMVq0aFGB5ujcubMkuXo052XSpEkFmr8wEfYWkhdeeEGGYbg+li1bdtF7Fi5cqN69eys6OloBAQGKjo5W7969Xd8tAQAAAAAAwNXnxRdfdPV3feONNyRJFovFtdN3//79evDBB5Wenp7nHAkJCRo7dqzbOYvFomHDhkmSYmNj9eCDD+a5O9bpdOro0aNu55544glJUkZGhh555BFlZmbmum/SpElavHixJOmuu+7K80Fw/v7+6tOnj6SsHsTTpk1TYmKipLxbOEhZrS6yA+vnnnvuojuUV61apeXLl+c7Jj9PPfWUQkOzWpk89NBD2r59e77jFyxYoD/++MPt3GOPPeb6/Xz00UeVnJyc676vvvpKP/zwQ4HrLCyEvYVgy5Yt+s9//nPJ451OpwYNGqTu3bvr22+/1ZEjR5SRkaEjR47o22+/Vffu3TV48GA5nc5CrBoAAAAAAAAF0ahRI9eO0hUrVmjVqlWSpP/7v/9T7969JUlff/21GjZsqPfee0/Lly/Xli1btGLFCo0fP179+/dXpUqVNGrUqFxzP/HEE+rSpYskae7cubr++uv14YcfavXq1dq8ebMWLlyokSNHqn79+ho/frzbvbfffrvuueceSdLixYvVpk0bffXVV9q4caOWLFmiQYMGadCgQZKy+t1eLM/KDnVTU1P17LPPSpLKly+vTp065XlPQECAZs2apYCAACUlJemWW27R3//+d82ePVsbN27U+vXr9d1332nkyJG64YYb1K5dO23dujXfOvJTvnx5TZ06VYZh6NixY2rRooWGDBmi7777Tps2bdLatWv1zTff6IUXXlCtWrXUo0cPHTp0yG2Oxo0bu4LyDRs2qEWLFpoyZYo2btyoX375RUOGDNGDDz6oFi1aFLjOwsID2rzM6XTq0Ucfld1uV7ly5XTy5MmL3vPSSy9p4sSJkrL6mDz//POqVauW9u3bp3fffVebN2/WhAkTVLZsWb311luF/RIAAAAAAABwmV566SXNmzdPkvT6669r0aJFMgxDM2fO1FNPPaVx48Zp3759ev755/Oco1y5crnOWSwWffvttxowYIBmz56t3bt36+mnn77kuj7//HPZ7XbNnTtXmzZt0t///vdcYypVqqQFCxaocuXK+c518803q0qVKjp8+LDOnTsnSerXr5+rZ3Fe2rRpo2XLlqlv3746fPiwvvrqK1e/X0/Cw8Mv/sLycdddd2nevHkaOHCg4uLiNG7cOI0bN87jWIvFopCQkFzn//Of/+jo0aOaM2eOYmJi9NBDD7ldr1GjhmbOnKlatWpdUa3exs5eL/voo4+0fv161a9fX4888shFx+/evVv//ve/JUktWrTQ6tWr1a9fP7Vs2VL9+vXTqlWrXN8leO+997R3795CrR8AAAAAAACXr2XLlq4duIsXL3Y9vMvPz0+ffPKJfv/9dw0dOlTXX3+9SpUqJavVqlKlSqlJkyZ65JFHNHv2bO3cudPj3MHBwfr666/1yy+/6IEHHlCNGjUUFBQkf39/ValSRXfccYc+++wz127bnAIDAzVnzhx99913uuuuu1SpUiX5+/urdOnSat26td5++23t2rVLTZo0uehrNAxD9913n9u5/Fo45NSmTRvt2bNH48aN0+233+6qIzAwUFWqVFHXrl315ptvKiYmRg8++OAlzZmfO+64QwcOHNC///1v3XLLLSpfvrz8/PwUFBSkGjVqqEePHvrPf/6jgwcPqmPHjrnu///27jw+qvLu+/j3zEwmk5nJQoAASQDZQkCsooALKOKCtyvFqlVrUWrV21pv7NPWpT6tbW2tdnF9rLgvbRXXuqHeIlpEFgHFhX1fQhJIIOvMZNbz/BEyZJLJSkKSyef9euWVwznXOXMlXJnJ+eaa35WUlKTXX39d//jHP3TqqacqPT1dTqdTY8aM0a9+9St98cUXGj58+GH3s6MZpmmaXd2JRLFr1y4dffTRqq6u1n/+8x998skn+t3vfidJ+uSTT+IWuP7JT36ixx57TJK0bNkynXTSSY3aLF++XCeffHK0/aOPPtrhfS8oKIjWT9m9e3e0gDgAAAAAAOg4h3P/vXnzZoVCIdlsNo0aNaqzugjgCOron2tm9nagm266SdXV1br66qujqx02xzTN6PT+/Pz8uEGvVPuXj9GjR0uS3nrrLZHPAwAAAAAAAGiIsLeDvPLKK3r33XeVmZkZLcvQku3bt0dXSWwpHK47vmfPHu3YseOw+goAAAAAAAAg8bBAWwcoLy/XnDlzJEn33Xef+vXr16rz1q1bF93Oz89vtm394+vXr9ewYcPa1MeCgoJmjxcVFbXpegAAAAAAAAC6F8LeDnDrrbequLhYkydPbtWibHXqB7At1eipq+cj1db0aav65wMAAAAAAABIPJRxOEyLFy/WU089JZvNprlz58owjFafW1VVFd12u93NtnW5XNHt6urqtncUAAAAAAAAQEJjZu9hCAQCuv7662Wapn72s59p3LhxbTq/pqYmum2325ttm5ycHN32+Xxt66hang1cVFSkSZMmtfm6AAAAAAAAALoHwt7DcM8992jDhg0aMmSI7rrrrjaf73A4otuBQKDZtn6/P7qdkpLS5sdqqUwEAAAAAAAAgJ6NMg7ttGHDBv3pT3+SJD3yyCMxZRZaKzU1NbrdUmkGj8cT3W6p5AMAAAAAAACA3oeZve30wAMPKBAIaPjw4fJ6vZo3b16jNmvWrIluf/zxxyouLpYkXXjhhXK5XDGzbesv1hZP/TIMLLYGAAAAAAAAoCHC3naqK6uwbds2XXHFFS22v/vuu6Pb27dvl8vl0tixY6P7NmzY0Oz59Y+PGTOmrd0FAAAAAAAAkOAo49CFhg0bpuzsbEnSokWLmm376aefSpJycnJ01FFHdXbXAAAAAAAAAPQwhL3t9Nxzz8k0zWY/6i/a9sknn0T314W1hmFoxowZkmpn7i5fvjzuYy1fvjw6s3fGjBkyDKNzvzgAAAAAAAAAPQ5hbxe75ZZbZLVaJUk333yzfD5fzHGfz6ebb75ZkmSz2XTLLbcc6S4CAAAAAAAA6AEIe7tYXl6efvnLX0qSVq1apcmTJ+vll1/WqlWr9PLLL2vy5MlatWqVJOmXv/ylRo0a1ZXdBQAAAAAAANBNsUBbN/DHP/5R+/bt0zPPPKPVq1fr8ssvb9Tm2muv1R/+8Icu6B0AAAAAAACAnoCZvd2AxWLR008/rfnz52vGjBnKzs6W3W5Xdna2ZsyYoffee09PPfWULBb+uwAAAAAAAADEZ5imaXZ1J9D1CgoKNHjwYEnS7t27lZub28U9AgAAAAAg8RzO/ffmzZsVCoVks9ko8wgkiI7+uWaqKAAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAGjEMQ4Zh6Le//W1XdwWtZOvqDgAAAAAAAADdzX/+8x9Nmzat0X6r1aq0tDSlp6dr8ODBOuGEEzRlyhRdeOGFstvtXdBT4BBm9gIAAAAAAACtFA6HVVZWph07dmjx4sV68MEHdckllyg3N1d/+MMfFAqFurqL6MWY2QsAAAAAAAA048Ybb9RPfvKT6L+rq6tVVlamb775RgsXLtRHH32kkpIS/frXv9Y777yjd999V/379+/CHqO3IuwFAAAAAAAAmpGVlaVx48Y12n/uuefqtttu07p163TVVVdp9erVWrFihWbOnKmPP/6Ysg444ijjAAAAAAAAAByGsWPHasmSJRo/frwkacmSJXr00Ue7uFfojQh7AQAAAAAAgMOUkpKif/zjHzIMQ5L017/+VcFgMG7b4uJi3XnnnZowYYIyMzOVnJyswYMH67LLLtNHH33U7OOUlZXp2Wef1VVXXaWxY8fK7XbLbrdr4MCBOuecc/TEE08oEAi0qs8vvviiTj/9dPXp00dut1vjxo3TXXfdpfLy8jZ97eg+KOMAAAAAAAAAdICjjz5aZ599tj788EMVFhZq5cqVOuWUU2La/Otf/9INN9wgj8cTs7+goECvvvqqXn31VV177bWaO3eubLbG0d348eO1c+fORvv37t2rDz/8UB9++KHmzp2r9957TwMHDozbz1AopCuvvFKvvvpqzP61a9dq7dq1+uc//9li6IzuiZm9AAAAAAAAQAc566yzotuLFy+OOfbKK6/ohz/8oTwej4YPH677779fH3zwgb744gu9/vrrOu+88yRJTz/9tG699da41w+HwzrxxBN19913691339XKlSu1ZMkS/fOf/9R//dd/SZJWr16tyy+/vMk+/uIXv4gGvaNHj9bTTz+tlStX6qOPPtINN9ygHTt26Pvf//5hfR/QNZjZCwAAAAAAkCBMMyIzUtnV3ThiDEuaDKN7zWU8/vjjo9ubNm2KbpeWlur666+XaZr60Y9+pMcffzxm5u7xxx+viy++WHfeeafuuecePfTQQ7rhhhs0evTomOt//PHHGjVqVKPHPeWUU/SDH/xAzz77rH70ox9p0aJFWrhwoc4888yYdt9++60eeeSR6GMuWrRIbrc7evzMM8/UKaecoquvvvrwvhHoEoS9AAAAAAAACcKMVKqq+Htd3Y0jJnXg6zKsGV3djRh9+/aNbpeVlUW3H3vsMVVUVCgnJ0d///vf45ZokKTf/e53ev7557Vnzx698MIL+uMf/xhzPF7QW9/s2bP18MMP66uvvtKbb77ZKOydO3euIpGIJOmJJ56ICXrrzJo1S/PmzdP777/f/BeLbqd7/ekDAAAAAAAA6MHqh6dVVVXR7bfffluSdMEFFyg5ObnJ8202m04++WRJ0rJly5p9LNM0VVxcrE2bNmnNmjXRj5ycHEnS119/3eiculq8xxxzjE444YQmr/2jH/2o2cdG98TMXgAAAAAAAKCD1A9409LSJNXW2f3qq68kSY8//rgef/zxVl2ruLg47v758+frscce06effhrzeA2VlpbG/Nvv92vz5s2SpIkTJzb72JMmTWpVH9G9EPYCAAAAAAAAHaR+wJqZmSlJOnDggEKhUJuv5fV6Y/5tmqauu+46Pf3006063+fzxfy7rKxMpmlKkrKyspo9d8CAAW3oKboLwl4AAAAAAIAEYVjSlDrw9a7uxhFjWNK6uguNrF69Orpdt7haOByO7vvxj3+sOXPmtOpadrs95t/PPPNMNOg97rjjdMstt+jEE09UTk6OnE6nrFarpNqau//4xz+iwW48hmG07gtCj0LYCwAAAAAAkCAMw9LtFizrbRYsWBDdnjJliqRDM3yl2tm548aNa9e1n3zySUnSyJEjtXTpUqWkpMRtd+DAgbj7MzIyott79+5t9rFaOo7uiQXaAAAAAAAAgA6wZs0aLVy4UJI0ePBgTZgwQVLtDN2jjz5akrRkyZJ2X3/t2rWSpIsuuqjJoNc0TX355ZdxjzkcDo0aNUqStHLlymYfq6Xj6J4IewEAAAAAAIDD5PP5NGvWrGjphF/84hey2Q69qf6iiy6SJG3YsEH/+7//267HqKv76/F4mmzz1ltvqaioqMnjZ511liTp22+/jSk50dAzzzzTrj6iaxH2AgAAAAAAAIdh3bp1mjJlSjQ8nTp1qm688caYNnPmzJHb7ZYkzZ49OzpLtynz58/XN998E7OvblbuO++8E7dUw9atW3XTTTc1e90bbrghWq/3+uuvjxsc/+tf/9J7773X7HXQPVGzFwAAAAAAAGjGvn37tGbNmui/PR6PysrK9M0332jhwoVasGBBdEbvSSedpNdee01JSUkx1xgwYICef/55XXLJJSoqKtKECRN0zTXX6Nxzz1Vubq6CwaAKCgq0YsUKvfbaa9q2bZveeecdfec734leY9asWfrlL3+pwsJCnXzyybrttts0btw41dTU6OOPP9aDDz4ov9+v448/vslSDscee6xuuukm/b//9/+0atUqTZgwQbfddpuOOeYYVVRU6NVXX9UTTzyhCRMmaNWqVZ3w3URnIuwFAAAAAAAAmvHYY4/psccea7ZN//79dcstt+jWW2+NKd9Q38UXX6y33npL11xzjQ4cOKC5c+dq7ty5cdtaLBa5XK6YfXPmzNGCBQv04YcfatOmTbr22mtjjqekpOiFF17Q/Pnzmwx7Jen+++9XYWGh3njjDW3YsEGzZ8+OOT5s2DC9/PLLGjFiRLNfM7ofwl4AAAAAAACglSwWi1JTU5Wenq6hQ4fqhBNO0KmnnqoLLrhAdru9xfMvvPBCbd++XU8++aTee+89rV27VgcOHJDNZtPAgQN19NFH64wzztAll1yiwYMHx5yblJSk+fPn67HHHtMLL7ygdevWyTRN5eTk6KyzztKcOXOUn5+v+fPnN9uHpKQkvf766/rnP/+pJ554Qt98842CwaCGDh2qmTNn6he/+IX69OlzWN8ndA3DrJtjjl6toKAg+gSye/du5ebmdnGPAAAAAABIPIdz/71582aFQiHZbLZo7VYAPVtH/1yzQBsAAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAA0AVM0+zQ6xH2AgAAAAAA9ABWq1WSFA6HFYlEurg3AA5XOBxWOByWdOjn+3AR9gIAAAAAAPQADodDUu1MwOrq6i7uDYDDVV5eHt12Op0dck3CXgAAAAAAgB4gLS0tul1cXKzKykpm+AI9jGmaqqmp0b59+7Rv377o/j59+nTI9W0dchUAAAAAAAB0KpfLpZSUFPl8PoXDYe3Zs0eGYXTY278BdL5wONyoTm96erqSk5M75PqEvQAAAAAAAD2AYRgaMmSIdu3aJZ/PJ6l2lmAoFOringFor/79+6tv374ddj3CXgAAAAAAgB7CYrFo6NCh8ng8qqqqis7yBdAzWCwW2e12uVwuud1u2e32Dr0+YS8AAAAAAEAPYhiG3G633G53V3cFQDfDAm0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAArB1dQcAAOjtymrCWlrk15d7/TIM6b+OcuqELLsMw+jqrgEAAAAAehDCXgAAukB1IKLPi/1aUlijdfuDMusd+7a0Qsf1t+vqsW5lu3mpBgAAAAC0DneQAAAcITUhU1/srQ14vyoJKGw23farkoC+/fSALhju1MUjnXLYqLwEAAAAAGgeYS8AAJ0oFDH1VUlASwpr9MVev/zh1p8bNqW3tnq1eE+Nrsp365TsZEo7AAAAAACaxDShw7Rq1Sr9/ve/1/Tp05Wbm6vk5GS53W7l5eVp9uzZ+uyzz9p0vffff18zZ86MXis3N1czZ87U+++/30lfAQCgo0VMU2tKA3r8m0pd/1Gp/rKqQksLmw96HVZDp2QnKyO58UvzgZqIHv6qUr9bXq6dlaFO7DkAAAAAoCczTNNs5k2kaM5pp52mxYsXt9hu1qxZevLJJ2W325tsE4lEdP311+vpp59uss2Pf/xjPf7447JYOj6jLygo0ODBgyVJu3fvVm5uboc/BgAkMtM0taU8pCWFNVpe5FeZP9LiOUkWaXxWsiZnJ+v4rGTZrYa8wYje2OLVe9u9ccs8GJKmD03RZaNdcifxN1sAAICehvtvAJ2JMg6HobCwUJKUnZ2tSy+9VKeeeqqGDBmicDisZcuW6W9/+5v27NmjF154QcFgUC+++GKT17rzzjujQe/48eN16623asSIEdq6dav+/Oc/a/Xq1XrqqafUv39/3XPPPUfk6wMAtGx3VUhL9tRoaVGN9npbDngthnRMP7smZydr4oBkORsEts4ki64a49bpuQ49v65K35QGY46bkv53p09Li2p0xWi3pg12yEJpBwAAAACAmNl7WC644ALNmjVL3/ve92S1WhsdLy0t1eTJk7Vp0yZJ0qJFi3Taaac1ardp0yYdffTRCoVCmjBhgj799FOlpKREj3u9Xk2dOlWrVq2SzWbT+vXrNXLkyA79WvjLIgC03j5vWEsKa7S0sEa7qlpXhHd0nyRNzk7WSYMcSo9TqiEe0zS1cm9AL6yrUokvfpA8It2mH41L1ciMpFb3HwAAAF2H+28AnYmZvYfh3XffbfZ4v3799Le//U0XXnihJOm1116LG/Y++OCDCoVqazA+8sgjMUGvJDmdTj3yyCM6+eSTFQqF9MADD+jRRx/toK8CANAa5TVhLSvya0lhjTaXt65u7lFpNp2SnaxTBjnU39n4j4ItMQxDkwYm69j+dr291aO3tnoVbJD5bq0I6c4lZZqW69AV+e5WB8kAAAAAgMTDzN5O5vF45Ha7JUnnnXee5s+fH3PcNE3l5uaqsLBQ+fn5Wr9+fZPXys/P18aNG5WTk6Pdu3d36Irs/GURABrzBCNaUVwb8K4pDao1L5iDXNZowJub2rF/U93nDeuFdVVauTcQ97jTZujSPJfOGZoiq4XSDgAAAN0R998AOhMzezuZ3++Pbscr9bB9+/Zo7d+pU6c2e62pU6dq48aN2rNnj3bs2KFhw4Z1bGcBAPKHTX2xtzbg/aokoFDLZXiV6bDo5EHJmpLj0LA0W4f+Ma6+LKdVv5iQoa9K/HpubbWKPLElJLwhU8+vq9bHu32afXSqju7b9MKgAAAAAIDEQ9jbyRYtWhTdHjNmTKPj69ati27n5+c3e636x9evX9+msLegoKDZ40VFRa2+FoCeYVtFUP/ZXSNJSk+2KKPeR92/bcz+lCSFIqa+KQloSWGNVu4NyB9ueQ6vO8nQSYOSNTnbofzMpCO6SNpx/ZP119Psem+7V69v9qqmQX93V4X1++XlOnlQsq4a41a/lLaXkAAAAAAA9DyEvZ0oEono3nvvjf77sssua9Smfgjb0ls36t7mIdW+1aMt6p8LIPGtLPbrgS8r1FJm6U4yGgXAsf+2KiPZolS7cUTDzCMhYppafyCoJYU1+rzIr+pgywFvstXQpIF2Tc526Jh+9i4Ny20WQxeNcGlKjkP/Wl+tzwr9jdosK/Lry31+zRzp0gXDnEqyJtb/IQAAAAAgFmFvJ3rggQe0YsUKSdLFF1+sE044oVGbqqqq6HZdbd+muFyu6HZ1dXUH9RJAollWWKNHvqpsMeiVpOqgqepgWAXV4WbbWQwp3R4bCDcMh+s+UmxGp5UxOFymaWpbRUhLCmu0tNCvMn/LNRpsFml8/9qA9/gByUruZoFppsOqm8en6+yhAT2ztlo7K2MXj/OHpXkbPfpkd42uGevW8QOSu6inAAAAAIDORtjbSRYtWqTbb79dkpSVlaXHHnssbruamprott3efG3F5ORDN+g+n69N/WlpJnBRUZEmTZrUpmsC6H4WF9To0a8rW7WQWFtETKnMH2lVOJpkUROBsLXRPvsRCk4LqkJaWlijJYV+FXubD7YlyZB0TL8knZLt0KSByXIlWTq/k4cpP9Oue6f00YKdPr28ySNPg5nKe71h3beqQsdn2XX1WLcGuvgVAAAAAAASDXd6nWDt2rWaOXOmQqGQHA6HXn31VWVlZcVt63A4otuBQPzV1evUX+wtJSWlTX1idU8g8X28y6cnvq1qFPSO65sku9VQuT+iCn9E5f5Iq2b9tlcwIpX4IirxtRwMp9iMRjOD45WTSLdbZG1jyYQSb1hLi2oD3oazXZuSl2HTKdkOnZztUEZy9w94G7IYhs45yqmTsx16eWO1Fu6qaTQevtwX0DelB3ThMKe+O9Ilh617zVQGAAAAALQfYW8H2759u6ZPn66ysjJZrVbNmzdPp512WpPtU1NTo9stlWbweDzR7ZZKPvQGm8qCWrc/oHOHObvd26qBI+1/d3j1zNrGzyHnDE3RNUe7Y+rtRkxTnqCp8oPBb/0QuHY7HN2uCpgdPku4Pl/IlC8UVpGn+dm2hqRUe/36wta4AXGy1dDqfX4tKfRrY1mwVX0YkmrT5OxknZLtUJYzMRYyS7NbdN0xaTpzSIqeXVOlTeWxYXcoIv17q1ef7qnRVWPcOnlQcrctvQEAAAAAaD3C3g5UWFios846S4WFhTIMQ88884xmzJjR7Dn1Z9zWX6wtnvqlGHr7gmumaeqf66u1sSyoD3b4dGmeS6fnOto88w9IBPO3efXC+sZB7/nDUvTDMe5GIZ7FMJRqN5Rqt2hwaqPTYoQjpioDkZhguHE4XPvZG+q8WNiUVBkwVRkIa1dVWFLrgtymDHBaNTk7WZOzHcpNTdyXwuHpSfrdKX20eE+N/rXBo4oGZTj210T00OpKLdiZpNnjUjUkgb8XAAAAANAbcFfXQUpLS3X22Wdr27ZtkqRHHnlEs2bNavG8sWPHRrc3bNjQbNv6x8eMGdPOniaGL/YForP2yvwRPfFtld7d5tWV+W5NGGBnhhp6jTe3ePTSRk+j/TNHOPX90a7D/lmwWgz1cVjVx9HyjNdA2IwTBodV4TdVXm+2cLk/omDLFR46XJ9ki04+GPCOSLf1mucJi2Foam6KJg5I1mubPfpgh69RGY91B4K6bfEBnTM0RZfmuXpEjWIAAAAAQGOEvR2goqJC55xzjtatWydJuvfee3XTTTe16txhw4YpOztbhYWFWrRoUbNtP/30U0lSTk6OjjrqqMPqc09mmqZe2tB4FmOhJ6y/flGhvAybrhzj1pjM5he8A3oy0zT12maPXtvsbXTssjyXvjfKdcT7ZLcaynJaWyyFYJqmfKF4wXDj2cMVgYgihzFh2JVk6KSBtSUaxvZNiiln0ds4kyyaNTZVZwxO0bNrq7Rmf+zs6Igpvb/DpyWFNboy362puY5e/f0CAAAAgJ6IsPcweb1enX/++fryyy8lSXfeeaduu+22Vp9vGIZmzJihxx57TBs2bNDy5ct10kknNWq3fPny6MzeGTNm9JoZafEYhqGbjkvTSxuq9U1p47dybyoP6bfLynVCll2X57t5WzISjmmaemmjR29tbRz0Xpnv0owRRz7obQvDMORMMuRMsii7hfLjEdNUdaB+feFwk6UkqoK1qXCyVZowoHYG77H97bJR3iVGbqpN//fEDK0o9uuF9dUqbbCQXmXA1NxvqvTRLp9mH52qkRlJXdRTAAAAAEBbGaZpdubaOwktEAjowgsv1IcffihJmjNnjh588ME2X2fTpk0aO3aswuGwJkyYoE8//VQpKSnR4z6fT6eddppWrVolm82mdevWadSoUR31ZUiqrRdcVwd49+7dMbWEu7NvSgN6cX21tleG4h43JJ2W69BleS71S0mMhZfQu5mmqRfWV+u97b5Gx64Z69a5w5xd0KvuIRQxVR005U4yCHhbyR829dYWj97e5o1bWsOQNG2wQ1eMdistmdIOAAAAHaGn3n8D6BkIew/D9773Pb3xxhuSpDPOOEMPPvhgszNu7Xa78vLy4h674447dO+990qSxo8fr9tuu00jRozQ1q1bdd9992n16tXRdvfcc08HfyU9+8UmYppaXuTXvI3V2uuNXwg0ySL911FOfXeEU247gQV6pohp6pk11Vqwq3HQ++NxqTp7aEqcs4CW7fWG9cK6Kq3aG4h73GUzdNlol84eksJCmAAAAIepJ99/A+j+CHsPQ1tLKQwdOlQ7duyIeywSiei6667TM8880+T51157rZ544glZLB0fVibCi00oYmrhLp9e2+xRZSD+sHbaDH13pFPnHuWU3UpggZ4jYpp64psqfVJQE7PfkPTf30nV6YMJenH4vtrn13PrqlXkCcc9PiTVqtlHp2psX2qiAwAAtFci3H8D6L4Iew9DR4a9dd577z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999zD6G3zEunFxheK6N1tPr2zzSt/wyXnD8p0WHTpKJem5jqYpYZuLxwx9fevK/VZoT9mv8WQbjo2TVNyHF3UMySiYNjUezu8en1z08+hk7OTddUYtzIdlMcBAABoq0S6/wbQ/RD2QlJivtiU+yN6Y7NHH+3yqYm8Qjluq64Y7daEAfZevegduq9QxNTDqyv1eXFs0Gs1pDnj03TiIIJedI4DNWH9c321ljT4I0OdZKuhi0c6df4wp5J4pwQAAECrJeL9N4Dug7AXkhL7xabYE9LLmzxa2kRgIUl5fZL0g3yX8jN5azK6j2DY1IOrKxrVUbVZpP9zfLpOGJDcRT1Db7Juf0DPrq3Wrqr4C2EOcll19Vi3xmcxHgEAAFojke+/AXQ9wl5I6h0vNtsqgnpxQ7W+LQ022WbCALsuH+3W4FTbEewZ0FggbOpvX1Toq5LYoDfJIv3ihHQdR7CGIygcMfXRLp9e3uiRJxT/14YTsuyaNdatgS6ePwEAAJrTG+6/AXQdwl5I6l0vNt+UBPSvDdXaURl/lpohaWquQ5fmudQvhXqUOPJqQqb+sqpca/bH/mEi2SrdOiFD4/oxAx1do9If0byN1fp4d43i/fKQZJEuHO7Ud0e6lExpBwAAgLh60/03gCOPsBeSet+LTcQ0tazIr5c3VmuvNxK3TZJF+q+jnPruCKfcdssR7iF6K18oontXVmjDgdigN8Vm6PaJ6ZQaQbewtTyoZ9ZWaUt5/D+a9XVYNGusWycOTKYeOgAAQAO97f4bwJFF2AtJvffFJnTwrcmvb/aoMhD/R8FlMzRjpFPnHuWUnZlq6ESeYER/WlGuzQ0CNKfN0K8mZWhUn6Qu6hnQWMQ09WlBjV7cUK2KJp4/x/VN0uyjU5VLaRwAAICo3nr/DeDIIOyFJF5sfKGI3t3m1TvbfPKH4/9IZDosuizPpdNyHLJaCH3RsaoCEf3x83Jtb1BexJ1k6M4TMzQ8naAX3ZM3GNGrmz36YIdPkThPn1ZD+q+jUnTJKJecSbxLAgAAoLfffwPoXIS9kMSLTZ1yf0RvbPboo10+NZH5Ktdt1RX5bp2QZeftyegQFf6I/vB5uXZVxQa9aXZDvz6xj4akMSsS3d/uqpCeXVultfvjL4KZnmzRD/JdOjXHIQvPnQAAoBfj/htAZyLshSRebBoq9oQ0b6NHy4r8TbYZ3SdJV+a7qKGKw1JWE9bdn5drT3U4Zn+fZIv+74kZvP0dPYppmlpe7Nc/1lVrf038euh5GTbNHpfKbHUAANBrcf8NoDMR9kISLzZN2Voe1IsbqrWmiZlqkjRhgF1XjHYTyqHNSn1h3b28XMXe2KC3r8OiX5+UoUEuxhR6ppqQqTe3evTONq9CcTJfQ9IZQxy6fLRbaSyACQAAehnuvwF0JsJeSOLFpjmmaeqb0oBe3ODRjsr4K88bkk7PdejSPJf6pliPbAfRI+3zhvX75WUq8cUmYf1TLPrNSX2U5WQcoecr9oT0wrpqfbEvEPe4K8nQ9/NcOntoCqUdAABAr8H9N4DORNgLSbzYtEbENLW00K+XN1Zrny/+25OTLNK5Rzk1Y6RTbhYiQhOKPCHdvby80dvcBzqt+vVJGerHHwyQYFbv8+u5tdWNZrHXGZpm04+OdlMWBwAA9ArcfwPoTIS9kMSLTVuEIqYW7PTp9S0eVQXi//i4bIa+O9Kp/zrKKbuV2Wo4pKAqpD98Xq4yf2zQm+O26tcnZqiPg6AXiSkYNvXudq/+vcUjf/zMV1Oyk/WDMW5l8nMAAAASGPffADoTYS8k8WLTHt5gRO9u9+rdbT75w/F/jPo6LLo0z6Wpuaw+D2lXZUh3f16mygZ/JBiSatX/PbGP0pOZDY7EV+oL65/rq5tcANNhNfS9UU6dN8wpm4XnTQAAkHi4/wbQmQh7IYkXm8NRXhPW61u8WrjLpyYyX+W6rboy363js+wyCH17pW0VQf3x83JVB2MHybA0m+48MUOpLFKFXmbt/oCeXVul3VXxp/lmu6w6NcehHLdVOW6bBrqshL8AACAhcP8NoDMR9kISLzYdocgT0ssbPU3OVpOk/D5JujLfrdGZSUewZ+hqm8uC+tOKcnlCsU+3IzNs+tWkDLmo74xeKhwx9eFOn17Z5JE31PyvI1ZDGuCsDX5rA+BD2w4bP0MAAKDn4P4bQGci7IUkXmw60pbyoF7cUK21+4NNtpk4wK7LR7uVm2o7gj1DV9hwIKB7V1bI1yDIys9M0u0T05VCSAWowh/RSxur9cnumnad39dhqRcCH/qcZjd4NwUAAOh2uP8G0JkIeyGJF5uOZpqmvi4N6MUNHu2sDMVtY0iaNtihS/NcLEaUoNaUBvTnVeWNFqMa1zdJv5yQIYeNEAqob0t5UM+sqdLWivjPm23lTjLihsD9UizUUQcAAF2G+28AnYmwF5J4seksEdPUkkK/Xt5YrRJfJG6bJIt03jCnLhrhlJu38yeMr0r8+uuqCgUb/Lcf19+un5+QLruVoAmIJ2KaWlns15r9Qe2pDmlPdVjl/vjPn+1lt0jZDULgbLdNg5xWJfGzCQAAOhn33wA6E2EvJPFi09mCYVMLdvn0xmaPqoLxf+RcSYZmjnDpnKNSCAJ7uC/2+nX/lxUKNcinTsiy62fHpxMmAW3kCUa0pzocDX/rPu/zhtWRv8RYonWBY2cCZ7uscvLHOAAA0EG4/wbQmQh7IYkXmyPFG4zo3W1evbvd2+it/XX6Oiy6LM+l03IdvM24B/q8qEYPra5UuMEz64kDk/U/49Nks/B/CnSUQNhUkadxCFzkCTWaVX+4+iRbGoXAuW6r0pMt1AUGAABtwv03gM5E2AtJvNgcaWU1Yb2+2auFu32KNPETmOu26sp8t47PshMk9BCf7anRo19XNvo/nZydrJuOTZOVoBc4IiKmqX3ecDQALqwXBHtCHftrj8tmKLtBCJzjtirLaeUPdgAAIC7uvwF0JsJeSOLFpqsUVof08iaPlhf5m2yTn5mkH+S7ldcn6Qj2DG31yW6fHv+mqtFbyk/PdeiG76QS+gDdgGmaqvBHVFAv/C301H4+UNOxU4GTLNIgV10AXBcC2zTIZaVUDwAAvRz33wA6E2EvJPFi09W2lAf1r/XVWncg2GSbiQOSdUW+Szlu2xHsGVpjwU6fnlpT1Wj/2UNS9KNxboJeoAfwBiMqjFMSYq833OQ7MNrDkJQVpy5wjtsqF3WBAQDoFbj/BtCZCHshiReb7sA0TX1dEtC/Nni0qyoUt40h6YzBDl2S51Kmw3pkO4i43tvu1fPrqhvtP/eoFF091k0JDqCHC4ZNFXsbh8CF1SEFOrgucEaDusDZB+sC96EuMAAACYX7bwCdiSmCQDdhGIaOy0rWd/rbtWSPXy9vqlaJLzZJMCUt3F2jxXtqdO4wp2aMcDITrIt4ghF9sMOnVzZ5Gh2bMcKpK0a7CGeABJBkNTQ41abBqbG/MkVMU6W+SKMQeE91SNXB9v0dvdwfUbk/orX7Y9/lkWIzGs0EznZZNcBppRY4AAAAgBiEvUA3YzEMnZrr0EmDkvXhLp/+vdmjqgbBQSAivbXVq492+TRzpEvnDE2hBmQn8wYjWn8gqHX7A1p3IKjtFaFG9Xkl6ZJRTl0yiqAXSHQWw1CWs3YhtvFZh/abpqnKgBk3BN7fzrrAvpCpLeUhbSmPfdeHzSINdNaGv7n1wuBBbpuSeU0AAAAAeiXKOEASbyPpzrzBiN7e5tX8bd4m3zLc12HR90e7dGqOg/qwHcQbjGjDgaDWthDu1nf5aJdmjnQdkf4B6HlqQpGDJSBqw9+6heL2esMKd3Bd4H4plkY1gXPdNrntvBsEAICuxv03gM5E2AtJvNj0BGU1Yb2+2auFu31NLhY0ONWqK0e7NT7LzszSNqoLd9cdDHhbE+7WN2uMW+cPd3Za/wAkrlDEVHG9xeEKPXWzgcPyd2QKLCnNbjQKgXPcNvV1UBcYAIAjhftvAJ2JsBeSeLHpSQqrQ5q30aPPi/1NthmTmaQr893K65N0BHvWs3iDEW0sC2rt/trSDNvaGO5KUpJFGpWRpItGODU+K7lT+gmg94qYpg7URFRQrxRE3azgykDH/vqWbK2rC1wXAtcGwQOcVtmoCwwAQIfi/htAZyLshSRebHqizWVBvbihWusOBJtsM2lgsq4Y7VK2m/LcvtDBmbv7g1p3oDbcbWqGdFNsFikvI0lj+9p1dN8kjcxIolYygC5RFYi/OFzDhT0Pl9WQBroOBsB1n1OtynbZ5LDx/AcAQHtw/w2gM5EAAT3UqD5J+s1JGfqqJKAXN1RrV1W4UZsVxX6t2uvXtMEOXTLKpUyHtQt62jU6NtytDXhHEe4C6CZS7RblZ9qVnxm73x82VRgnBC7ytK8ucNhUtKREQ/XrAme7DtUFTkumLjAAAADQVQh7gR7MMAyNz0rWsf3t+mxPjV7e5FFpg1ldEVNauKtGiwtqdP4wpy4a4ZQzKfFuxH2hiDbWq7nb3nB3VF24m2lXXh/CXQA9S7LV0LD0JA1Ljy3jE46Y2usNNwqBCz1h+ULte5NXqS+iUl9AX5fE7k9Niq0LnH3wc78UC4uIAgAAAJ2MMg6QxNtIEkUgbGrBTp/e2OJRdTD+j7Y7ydDMkS5NH5rSo4PMmlBEG8oOztzdH9DWdoS7VqN2hvTRmbUzdwl3AfQ25sG6wHs8Ye2pqjcj2BNWhb9jS0IkW6VBrkMhcK7bqmy3TYNc1AUGAPQu3H8D6EyEvZDEi02i8QYjenurV/O3exVo4l69X4pFl+W5dGqOo0fMtKoJ1S6otm7/oZm7bX1LstWonbl7dF1Zhj5JSibcBYC4qoMR7akKq9BTvyxESPu8kTYvaNkciyENcNZfHO7Q5xRb4r0TBQAA7r8BdCbCXkjixSZRHagJ67XNHn2yu6bJWa9DUq26Mt+t4/rbZXSj0LcmZGpjWSBm5m57w926mrt5hLsAcNgCYTMmAC6sVxc42LGTgZXpsMQJgW1Ktxvd6jULAIC24P4bQGci7IUkXmwS3Z7qkOZt9GhFsb/JNmMzk3Rlvluj+iQ12aYz1YRMbSqrDXbXHghqa3mwXeHuyPrhbkYSq8UDwBESMU3tO1gXuOBgXeC6xeK87awL3BRXkqEc16HwN8dtVU6qTf2pCwwA6AG4/wbQmQh7IYkXm95iU1lQL26o1voDwSbbnDgwWZePdinb3bnrN/rD5sGyDLWzd7e0M9wdUa8sA+EuAHQ/pmmq3B9ptDjcnuqwyjq4LnCSpXFd4JyDdYGTeGcHAKCb4P4bQGfq3DQHQLeS1ydJd52Uoa9KAnpxQ7V2VYUbtfm82K+Ve/06Y7BDl4xyqY/D2iGP3aHhbr0F1Qh3AaB7MwxDfRxW9XFYNa6fPeaYNxg/BN7rDberLnAwIu2qCmlXVUjSoXezGKqtC5zdoCRErtsqZxJ1gQEAAJA4CHuBXsYwDI3PStax/e1avKdGr2zyqNQXO7MqYkof7arR4j01Om+YUxcNd7b5ZtgfPlSWYd3+oDa3N9xNt2lsX7vG9k3S6D5JcrBYDwAkDGeSRaP6WBqVEAqGTRV5G4fAhdWhdtUFNiUVe8Mq9ob15b5AzLE+ybV1gbMbLA7XJ9lCXWAAAAD0OIS9QC9lMQxNzU3RyYMc+nCnT//e4lF1MDaN9Yelf2/x6qOdPs0c6dL0oSlNvg02EI6tubulPKhQG2/ILQ3C3XzCXQDolZKshoak2jQkNfZX1YhpqtQX0Z7qkAoazAj2BNtXmazMH1GZP6I1+2NLHKXYjDiLw1k1wGmlLjAAAAC6LWr2QhI1gyB5ghG9vdWr97Z7FWgipO2fYtFleS5NyXEoFKmtAbzuQEBr97c/3B2ebtPR9WbuphDuAgDayDRNVQRM7akOqTAaAtcGwftrOrYusM0iDXI1CIFdtTOD7dQFBgC0AvffADoTYS8k8WKDQw7UhPXaJo8+3l3TZL3Evg6LKgKRwwt3M5M0OpNwFwDQuXyhQ3WBC+vNBi72hhXpwN+CDdX+UTR2JnDtttvOax0A4BDuvwF0Jso4AIiR6bDq+u+k6fzhTr20waOVe/2N2rR2llRduDs289DMXRbCAQAcSSk2i0ZmWDQyI7YucChiqtgTjpaEKKyrC+wJyd94/dIWmZL2+SLa5wtodUnssXS7ERP+1n3OdFAXGAAAAB2LsBdAXDlum34xIV2byoL614ZqbTgQbPEcQ43LMhDuAgC6I5vFUG6qTbmpNp1Yb3/ENLX/YF3g6OJwB0PhqkD7pgJXBExVHAhqXYPXUofVUHa98De3Xl1gq4UQGAAAAG1H2AugWXl9kvTbkzK0el9AL26s1u6qQ9Od6sLdsX3tOppwFwCQACyGof5Oq/o7rTouK/ZYZaBBCHxwRnCJr311gWvCprZVhLStIhSz32pIAxvWBXZble2yyWEjBAYAAEDTCHsBtMgwDB0/IFnHZdm1stivguqwhqXZlJ9JuAsA6D3S7BalZdo1JjN2f03IVKEnNgTeUx1SsSescDsmA4dNHbxG43oS/VMsym4QAue4bUqjLjAAAABE2AugDSyGoRMHOWLe7goAQG/nsBkanp6k4emN6wLv89aGtgX1QuDC6rBq2pMCSyrxRVTiC+jrBnWBU+vqAjeYEdw3xSILdYEBAAB6DcJeAAAAoBPYLIay3TZlu22aqOToftM0tb8mEg1+D80IDqminXWBqwKmNhwINqqxn2yVsl0Hy0C4bco9GAIPdFlloy4wAABAwiHsBQAAAI4gwzDUL8WqfilWHds/9lh1IBKdBVxYbzZwiS+i9sTA/rC0vTKk7ZUhSf7ofqshDXBaY2sCH/ycYqMkBAAAQE9F2AsAAAB0E267RfmZduU3qAvsD5sqqr84nKf2c5EnrFA71ocLm1KhJ6xCT1gr9wZijvV1WOqFwIeC4HS7IYOSEAAAAN0aYS8AAADQzSVbDR2VnqSjGtQFDkdM7fOFGy0Ot6c6LF+ofSUh9tdEtL8mom9KY0tCuJKMmHrAdSUh+lEXGAAAoNsg7AUAAAB6KKvF0CCXTYNcNk0YEFsXuMwfaRQCF1aHVeZvx1RgSZ6gqU1lQW0qiw2BkyyKloCoHwYPclqVZCUEBgAAOJIIewEAAIAEYxiGMh1WZTqsOqafPeaYJ9g4BN5THdY+b7hddYGDEWlnZUg7G9QFNiQNdFmV7YoNgXPcVjmTqAsMAADQGQh7AQAAgF7ElWRRXh+L8vrEloQIhE0VH6wFXFAvBC7yhBRsx2RgU1KRJ6wiT1hf7IutC9wn2dJoJnCO26qMZAt1gQEAAA4DYS8AAAAA2a2GhqTZNCQt9hYhYpra5w2rsLp+beDaINjTzrrAZf6IyvwRrdkfWxLCaTOi4W+226rcgyFwltNKXWAAAIBWIOwFAAAA0CSLYWigy6aBLpuOH3Bov2maqvBHVFAdVqEntiTEgZr21QX2hkxtLg9pc3koZn+SRRpUrxxEXY3gbJdNduoCAwAARBH2AgAAAGgzwzCU4bAqw2HVuAZ1gb3BiAo9jesC7/WGFWnHZOBgRNpVFdauqnBsHyRlOS0HQ+BDAXBOqlVu6gIDAIBeiLAXAAAAQIdyJlk0MsOikRmxdYGDYVPF3sYhcGF1SIF21gXe641orzegLxvUBU5Ptiin/uJwqTbluKzKdFAXGAAAJC7CXgAAAABHRJLV0OBUmwanNq4LXOqLNAqB91SHVB1sX13gCn9EFf6I1h2IrQucYjOU7Wq8ONwAp1VWCyEwAADo2Qh7AQAAAHQpi2Eoy1m7ENv4rNhjlf6ICuKEwPvbWRfYFzK1tSKkrRWxdYGtRmxd4Pr1gZOpCwwAAHoIwl4AAAAA3VZaskVjk+0a2zd2f03oYF3gqtrwt+BgCLzXG1a4HZOBw6ZUUB1WQXXjusD9UiyNQuAct02pduoCAwCA7oWwFwAAAECP47BZNDzdouHpsXWBQxFTe73hejOB62YDh+VvRwpsSirxRVTiC+irkthjaXZDOW6bsuuFwLlum/pSFxgAAHQRwl4AAAAACcNmMQ4GrzZJydH9EdPUgZr4dYErA+2rC1wZMFV5IKj1DeoCJ1uNg7N/rcp2HZoJPNBllY26wAAAoBMR9gIAAABIeBbDUL8Uq/qlWHVs/9hjVYH4IXCJr311gf1hU9sqQtpWEZLkj+63GtIAZ23wm+u2xswIdtgoCQEAAA4fYS8AAACAXi3VblF+pl35mbH7/WFThXFC4CJP++sCF3rCKvSEtXJv7LG+jvh1gdPsBiUhAABAqxH2AgAAAEAcyVZDw9KTNKxBXeBwo7rAtZ8LPWH5Qu0rCbG/JqL9NQF9Uxq7351kxA2B+6VYZCEEBgAADRD2AgAAAEAbWC2Gst02ZbttmlivLrBpmirzR1RQHdaeqnozgj1hVfjbVxKiOmhqY1lQG8ti6wLbLVJ2nBB4oNOqJCshMAAAvRVhLwAAAAB0AMMwlOmwKtNh1Xf62WOOVQcjKmwwE3hPdUj7vBG1Zy5wICLtqAxpR2VsXWBLtC5wbAic7bLKmURdYAAAEh1hLwAAAAB0MneSRXl9LMrrE1sSIhA2VeQ5FP7WrwscbMdk4IgpFXnCKvKEtWpvIOZYn2RLoxA4121VerKFusAAACQIwl4AAAAA6CJ2q6GhaTYNTYu9NYuYpvbFqQu8pzosbzvrApf5IyrzR7Rmf2xJCJfNUHaDEDjHbVWW00pdYAAAehjCXgAAAADoZiyGoYEumwa6bDphQGxd4HJ/JG4IXNbOusCekKnN5SFtLg/F7E+ySINcdQFwXQhs0yCXVXbqAgMA0C0R9gIAAABAD2EYhvo4rOrjsGpcg7rA3mBsCFzoqf1c7Am3qy5wMCLtqgppV1VsCGxIyopTFzjHbZWLusAAAHQpwl4AAAAASADOJItG9bFoVIO6wMGwqSJv7EzgusXi2lMX2JS01xvWXm9YX+6LrQucEacucI7bqj7UBQYA4Igg7AUAAACABJZkNTQk1aYhqY3rApf6ItpTHVJBg7IQnmD76gKX+yMq90e0tkFd4BSbETcEzkqxymohBAYAoKMQ9gIAAABAL2QxDGU5axdiG591aL9pmqoMmA1qAtdu769pX11gX8jUlvKQtjSoC2yzSAOdteFvbr0QONttoy4wAADtQNgLAAAAAIgyDEPpyYbSk+0a2zf2mC8UiZaAqF8fuNgbVqQdk4FDEamgOqyC6rA+r98HSf1SLI1mAue6bXLbqQsMAEBTCHsBAAAAAK2SYrNoRIZFIzJi6wKHIqaKPY1D4EJPSP5w2x/HlFTii6jEF9BXJbHH0u2GshuEwDlum/o6qAsMAABhLwAAAADgsNgshnJTbcqNUxd4/8G6wHsahMFVgfbVBa4ImKo4ENT6A7F1gR1WQ9lua70QuDYIHuC0ykZdYABAL0HYCwAAAADoFBbDUH+nVf2dVh3X4FhlIHJoBnC9ELjE1766wDVhU9sqQtpWEZLkj+63GtJA18EAuO5zqlXZLpscNkJgAEBiIewFAAAAABxxaXaL0jLtGpMZu78mZKrQcyj8rasRXOQJK9yOycBhUwev1bieRP26wNmuQ3WB05KpCwwA6JkIewEAAAAA3YbDZmh4epKGpzeuC7zPWxvaFjSYEVzTnhRYUqkvolJfQF83qAucmmQ0Whwu221TvxSLLNQFBgB0Y4S9AAAAAIBuz2apXZgt223TRCVH95umqQM1kZiF4Wo/h1TRzrrAVUFTG8qC2lAWWxc42SoNch0KgXMPfh7ooi4wAKB7IOwFAAAAAPRYhmGob4pVfVOs+k5/e8yx6kAkJvytXxe4PTGwPyztqAxpR2VsXWCLIQ1wWmNmAtd9TrFREgIAcOQQ9gIAAAAAEpLbbtHoTItGZ8aWhAiEY+sC76lXFzjUjvXhIqZU5AmryBPWqr2BmGOZDkucENimdLshg5IQAIAORtgLAAAAAOhV7FZDR6Ul6ai02BA4HDG1zxdWYb26wHVhsC/UvpIQB2oiOlAT0belsSUhXEmGclyHwt8ct1U5qTb1py4wAOAwEPYCAAAAACDJajE0yGXTIJdNJwyIrQtc5j9UEqKwXghc5m/HVGBJnqCpTeUhbSoPxexPsqi2NrErti7wIJdVSVZCYABA8wh7AQAAAABohmEYynRYlemw6ph+sXWBPcHYxeEKD37e6w23qy5wMCLtrAxpZ4O6wIYO1QXOdscuEudMoi4wAKAWYS8AAAAAAO3kSrIor49FeX0a1wUu9tSGwAX1wuAiT0jBdkwGNiUVe8Mq9ob1xb7YusB9kg/VBc6uVx+4T7KFusAA0MsQ9gIAAAAA0MHsVkND0mwakhZ72x0xTZX4ItpTVb8mcO22p511gcv8EZX5I1qzP7YusNNmxIS/dZ8HOK3UBQaABEXYCwAAAADAEWIxDA1w1gauxw84tN80TVUEzJjwt+7zgZr21QX2hkxtKQ9pS4O6wDaLNMjVIAR21ZaHsFMXGAB6NMLebmbnzp16+OGHNX/+fO3evVvJyckaMWKELrvsMt10001yOp1d3UUAAAAAQAczDEMZyYYyku06um9sXWBvMKJCT7hRCLzXG1akHZOBQxFpd1VYu6vCsX2Q1D/F0mAmcO22205dYADoCQzTNNv3PhF0uHfeeUdXXXWVKisr4x7Py8vT/PnzNXLkyA5/7IKCAg0ePFiStHv3buXm5nb4YwAAAAAAOk4oYqrIU7soXEGDReIC7ZsM3KR0uxET/tZ9znRQF7ituP8G0JmY2dtNrF69Wt///vfl8/nkdrt1xx13aNq0afL5fJo3b56efPJJbdq0Seeff75WrVql1NTUru4yAAAAAKAL2SyGBqfaNDjVphPr7Y+Ypkp9Ee2pDqmwOnZGcFWwffO9KgKmKg4Ete5AbF1ghzW2LnBuvbrAVgshMAAcaYS93cScOXPk8/lks9n04Ycf6uSTT44eO+OMMzRq1Cjdeuut2rRpk/72t7/pt7/9bdd1FgAAAADQbVkMQ1lOq7KcVo3Pij1W6Y+ooF74W1ceotTXvqnANWFT2ypC2lYRWxfYahyqC1w/DM522eSwEQIDQGehjEM3sGLFCp14Yu3fYW+44QbNnTu3UZtIJKJx48Zp/fr1ysjI0L59+5SUlNRhfeBtJAAAAADQe9WEDtYFrqoNfwuqwyr0hFTsCSvcwalB/brA2fXKQqT1krrA3H8D6EzM7O0G3nzzzej27Nmz47axWCyaNWuW7rjjDpWXl+uTTz7R9OnTj1APAQAAAACJzGGzaHi6RcPTYycVhSKm9nrD9RaGq5sVHJa/nSlwiS+iEl9AX5XE7k+N1gU+OBP44MzgvikWWagLDACtQtjbDXz22WeSJJfLpRNOOKHJdlOnTo1uL1mypFeHveFISAdq9nZ1NwAAAAAg4dkt0rC02o86pmmq3B/RXm9Y+zwR7fWGtNcb1l5vWNWhpq/VnJqQtLW89iPm8Q0py2VRltOqAU6bBjitGuC0qF+KVbYGdYEzHQNktRB1AOi9eAbsBtavXy9JGjlypGy2pv9L8vPzG53TWgUFBc0eLyoqatP1utqBmr2yl83q6m4AAAAAQK81QNIAQ5L74MeRFDj40cCBPi+ovzPnCHcGALoPwt4uVlNTo9LSUklqsU5Pnz595HK55PF4tHv37jY9Tl09IAAAAAAAAACJqXdUP+/Gqqqqottud8t/CnW5XJKk6urqTusTAAAAAAAAgJ6Hmb1drKamJrptt9tbbJ+cnCxJ8vl8bXqclmYCFxUVadKkSW26JgAAAAAAAIDug7C3izkcjuh2IBCn4FADfr9fkpSSktKmx2mpRERPk+kYoAN9XujqbgAAAAAAuoAnGFGJN6y93sjBheFCOmmgQ1MdA7q6awDQpQh7u1hqamp0uzWlGTwej6TWlXxIZFaLjaL7AAAAANBL9Zd0VHpX9wIAuh9q9nYxh8Ohvn37SpIKCgqabVtWVhYNe1lwDQAAAAAAAEB9hL3dwNixYyVJW7ZsUSgUarLdhg0bottjxozp9H4BAAAAAAAA6DkIe7uBKVOmSKot0fDFF1802W7RokXR7cmTJ3d6vwAAAAAAAAD0HIS93cB3v/vd6Pazzz4bt00kEtELL9QuSJaRkaFp06Ydia4BAAAAAAAA6CEIe7uBSZMm6dRTT5UkPf3001q2bFmjNn/729+0fv16SdKcOXOUlJR0RPsIAAAAAAAAoHuzdXUHUOuhhx7S5MmT5fP5NH36dP3qV7/StGnT5PP5NG/ePD3xxBOSpLy8PP385z/v4t4CAAAAAAAA6G4Ie7uJ8ePH6+WXX9ZVV12lyspK/epXv2rUJi8vT/Pnz1dqamoX9BAAAAAAAABAd0YZh27kwgsv1DfffKOf/exnysvLk9PpVEZGhiZMmKD77rtPq1ev1siRI7u6mwAAAAAAAAC6IcM0TbOrO4GuV1BQoMGDB0uSdu/erdzc3C7uEQAAAAAAiYf7bwCdiZm9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACcDW1R1A9xAKhaLbRUVFXdgTAAAAAAASV/177vr34gDQEQh7IUkqKSmJbk+aNKkLewIAAAAAQO9QUlKio446qqu7ASCBUMYBAAAAAAAAABKAYZqm2dWdQNerqanRt99+K0nq37+/bLbuP+m7qKgoOgt5xYoVGjRoUBf3CGg/xjMSCeMZiYYxjUTCeEai6YljOhQKRd9de8wxx8jhcHRxjwAkku6f6OGIcDgcmjhxYld3o90GDRqk3Nzcru4G0CEYz0gkjGckGsY0EgnjGYmmJ41pSjcA6CyUcQAAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEYpmmaXd0JAAAAAAAAAMDhYWYvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS96JF27typn//858rPz5fL5VJmZqYmTpyov/zlL/J6vV3dPSS4ffv26d1339VvfvMbnXvuuerXr58Mw5BhGLrmmmvafL33339fM2fOVG5urpKTk5Wbm6uZM2fq/fffb/U1QqGQ5s6dq1NPPVX9+/dXSkqKRowYoRtuuEFr165tc5/Qe6xatUq///3vNX369OgYdLvdysvL0+zZs/XZZ5+16XqMZ3SVyspKzZs3Tz//+c81depUjRw5Uunp6bLb7crKytLpp5+uP//5z9q/f3+rrrd06VJdddVVGjp0qBwOhwYOHKhzzjlHL730Upv69dJLL2n69OkaOHCgHA6Hhg4dqquuukrLli1rz5cJSJJuu+226O8ehmHoP//5T4vn8PyMrlZ/zDb3cfrpp7d4LcYzADTDBHqYt99+20xLSzMlxf3Iy8szN2/e3NXdRAJrauxJMq+++upWXyccDpvXXntts9f78Y9/bIbD4WavU1JSYk6cOLHJayQnJ5tPPvnkYX7VSESnnnpqs+Ov7mPWrFmm3+9v9lqMZ3S1BQsWtGo89+vXz/zggw+avdZdd91lWiyWJq9x/vnnmz6fr9lreL1e87zzzmvyGhaLxfztb3/bkd8C9BKrV682bTZbzHj65JNPmmzP8zO6i9Y8R0syp06d2uQ1GM8A0DLCXvQoX375pZmSkmJKMt1ut/nHP/7RXLp0qblw4ULzuuuuiwl8Kysru7q7SFD1fxEcMmSIOX369HaFvbfffnv0vPHjx5svvfSSuWLFCvOll14yx48fHz12xx13NHmNUChkTpkyJdr24osvNt9//33z888/Nx9++GEzKysrGiq89957HfDVI5GMGDHClGRmZ2ebc+bMMV977TVzxYoV5rJly8z777/fzMnJiY6tK664otlrMZ7R1RYsWGAOHjzYnDVrlvnQQw+Zb7zxhrls2TJzyZIl5ssvv2xeeumlptVqNSWZdrvd/Oqrr+JeZ+7cudExOGLECPPpp582V6xYYb755pvmtGnTWv0zcfnll0fbTps2zXzzzTfNFStWmE8//XT0Z0+S+fjjj3fGtwMJKhwORwOquufElsJenp/RXdSNnxtvvNH89ttvm/zYtm1bk9dgPANAywh70aPUzUKz2Wzm0qVLGx3/85//HH3Rvuuuu458B9Er/OY3vzHfeecds7i42DRN09y+fXubw96NGzdGZ+VMmDDB9Hq9Mcc9Ho85YcKE6Hhvarb6008/HX3sn/zkJ42Ob968OToTfuTIkWYwGGzbF4uEdv7555svv/yyGQqF4h4vKSkx8/LyomNs0aJFcdsxntEdNDWO6/v3v/8dHWMzZ85sdHz//v1menp69I95JSUljR7jwgsvbDFgW7hwYbTNhRde2KhvJSUl5pAhQ0xJZkZGhnngwIHWf6Ho1R544AFTkpmfn2/ecccdLY5Fnp/RnRzufRrjGQBah7AXPcbnn38efVG+4YYb4rYJh8PmmDFjojdPgUDgCPcSvVF7wt4bb7wxes6yZcvitlm2bFmzv4iaphkd75mZmabH44nb5k9/+lP0Oq+88kqr+gfUeeedd6Lj5+abb47bhvGMnmT06NGmVFvOoaH77rsvOr5eeumluOfv3r07OkP4vPPOi9vm3HPPjYYNu3fvjtvmpZdeij7Wn//85/Z/Qeg1du7cabrdblOS+Z///Me86667Wgx7eX5Gd3K4YS/jGQBahwXa0GO8+eab0e3Zs2fHbWOxWDRr1ixJUnl5uT755JMj0TWgTUzT1FtvvSVJys/P10knnRS33UknnaTRo0dLkt566y2ZphlzfNOmTVq/fr0k6bLLLpPT6Yx7nfqLxv373/8+3O6jl5k2bVp0e+vWrY2OM57R06SmpkqSampqGh2r+10jLS1NF198cdzzc3NzddZZZ0mSFi5cqKqqqpjjVVVVWrhwoSTprLPOUm5ubtzrXHzxxUpLS5PEWEbr3HTTTaqurtbVV1+tqVOnttie52ckEsYzALQeYS96jLoV4V0ul0444YQm29X/5XfJkiWd3i+grbZv367CwkJJavFmre74nj17tGPHjphjdT8TLV1n4MCBysvLk8TPBNrO7/dHt61Wa6PjjGf0JBs3btRXX30lqTYsqC8QCGjFihWSpJNPPll2u73J69SNUb/fr1WrVsUcW7lypQKBQEy7eOx2ezSsWLlypYLBYNu+GPQqr7zyit59911lZmbqr3/9a6vO4fkZiYTxDACtR9iLHqPuL7AjR46UzWZrsl39m7e6c4DuZN26ddHthmFDQ82N5/ZcZ/fu3fJ4PK3uK7Bo0aLo9pgxYxodZzyju/N6vdq8ebPuv/9+TZ06VaFQSJJ0yy23xLTbtGmTwuGwpCM/lkOhkDZv3tz8F4Jeq7y8XHPmzJEk3XffferXr1+rzuP5Gd3Vq6++qrFjx8rpdCo1NVWjRo3S1Vdf3ey7MhnPANB6hL3oEWpqalRaWipJTb4dsk6fPn3kcrkk1b4wA91NQUFBdLul8Tx48ODodsPx3J7rmKYZcx7QnEgkonvvvTf678suu6xRG8YzuqPnnntOhmHIMAy5XC7l5eXp5z//ufbu3StJuv3223XllVfGnNOVYznedYA6t956q4qLizV58mRde+21rT6P52d0V+vWrdP69evl8/lUXV2tLVu26IUXXtAZZ5yhmTNnqqKiotE5jGcAaL2mp0cC3Uj9enhut7vF9i6XSx6PR9XV1Z3ZLaBd2jKe6/5wIanReO6o6wBNeeCBB6Jva7/44ovjltBhPKMnOe644/TEE09o4sSJjY4xltEdLV68WE899ZRsNpvmzp0rwzBafS5jGt2N0+nURRddpDPPPFP5+flyu90qKSnRokWLNHfuXO3fv19vvvmmZsyYoQULFigpKSl6LuMZAFqPsBc9Qv1FVJqroVcnOTlZkuTz+TqtT0B7tWU8141lqfF47qjrAPEsWrRIt99+uyQpKytLjz32WNx2jGd0R9/97nc1YcIESbVjZOvWrXrllVf073//W1dccYUefPBBXXDBBTHnMJbR3QQCAV1//fUyTVM/+9nPNG7cuDadz5hGd7Nnzx5lZGQ02n/22Wfr5ptv1rnnnqvVq1dr0aJFeuyxx/Q///M/0TaMZwBoPco4oEdwOBzR7bpFT5pTt6BQSkpKp/UJaK+2jOf6i2M1HM8ddR2gobVr12rmzJkKhUJyOBx69dVXlZWVFbct4xndUUZGhsaNG6dx48Zp4sSJuvzyy/XGG2/ohRde0LZt2zRjxgw999xzMecwltHd3HPPPdqwYYOGDBmiu+66q83nM6bR3cQLeusMGDBAr732WnQ27yOPPBJznPEMAK1H2IseITU1NbrdmrfQ1BXQb03JB+BIa8t4rr8YRMPx3FHXAerbvn27pk+frrKyMlmtVs2bN0+nnXZak+0Zz+hJfvjDH+rSSy9VJBLRT3/6Ux04cCB6jLGM7mTDhg3605/+JKk29Kr/dvLWYkyjpxk+fLjOPvtsSdKWLVtUWFgYPcZ4BoDWI+xFj+BwONS3b19JarE4fllZWfSFuX5xfqC7qL8YREvjuf6iEg3Hc3uuYxhGi4tRoPcqLCzUWWedpcLCQhmGoWeeeUYzZsxo9hzGM3qaujHt8Xj0wQcfRPd35ViOdx30bg888IACgYCGDx8ur9erefPmNfpYs2ZNtP3HH38c3V/3ezDPz+iJxo4dG93es2dPdJvxDACtR81e9Bhjx47V4sWLtWXLFoVCIdls8Yfvhg0bottjxow5Ut0DWq3+L7H1x2s8zY3nhtc57rjjWrzO4MGD2zU7CImvtLRUZ599trZt2yapdibZrFmzWjyP8Yyepn///tHtnTt3Rrfz8vJktVoVDoc7dCy35jo2m02jRo1qufPoNerePr5t2zZdccUVLba/++67o9vbt2+Xy+Xi+Rk9UlOLEDKeAaD1mNmLHmPKlCmSamfifPHFF022W7RoUXR78uTJnd4voK2GDRum7OxsSbHjNZ5PP/1UkpSTk6Ojjjoq5ljdz0RL1ykuLtamTZsk8TOB+CoqKnTOOedo3bp1kqR7771XN910U6vOZTyjp6k/U6z+23LtdrsmTZokSVq2bFmztRzrxmhycnJ0Ibg6EydOjC7609xYDgQCWr58efSc+qvOAx2B52f0RHW/i0iKjl+J8QwAbUHYix7ju9/9bnT72WefjdsmEonohRdekFS7AMC0adOORNeANjEMI/o24g0bNkRv9htavnx5dEbBjBkzGs10yMvLi85WeOWVV+T1euNep/4iRDNnzjzc7iPBeL1enX/++fryyy8lSXfeeaduu+22Vp/PeEZP8+qrr0a3jznmmJhjdb9rVFZW6o033oh7fkFBgT766CNJ0plnnhlT/1GqrQd55plnSpI++uijJt8m/MYbb6iyslISYxmNPffcczJNs9mP+ou2ffLJJ9H9deEWz8/oabZv364FCxZIkkaMGKGcnJzoMcYzALSBCfQgp556qinJtNls5tKlSxsd//Of/2xKMiWZd91115HvIHql7du3R8fd1Vdf3apzNm7caFqtVlOSOWHCBNPr9cYc93q95oQJE6LjfdOmTXGv8/TTT0cf+6abbmp0fMuWLWZaWpopyRw5cqQZDAbb/PUhcfn9fnP69OnRMTRnzpx2XYfxjO7g2WefNX0+X7Nt7r///ugYGzZsmBkKhWKO79+/30xPTzclmUOHDjVLS0tjjodCIfPCCy+MXuOTTz6J+zgLFy6MtrnooosaPU5JSYk5ZMgQU5KZkZFhHjhwoO1fMHq9u+66q8WxyPMzuou333672XFRXFxsjh8/PjrO/va3vzVqw3gGgNYh7EWP8uWXX5opKSmmJNPtdpv33HOPuWzZMvPjjz82r7/++uiLdl5enllZWdnV3UWCWrx4sfnss89GP/7yl79Ex97kyZNjjj377LNNXuf222+Pnjd+/Hhz3rx55sqVK8158+bF/LJ7xx13NHmNUChkTp48Odr2e9/7nvnBBx+Yn3/+ufnII4+YWVlZpiTTYrGY7733Xid8N9CTXXzxxdGxc8YZZ5jffPON+e233zb5sXHjxiavxXhGVxs6dKiZmZlpXnfddebzzz9vfvbZZ+ZXX31lLl682Pz73/8eM7bsdru5YMGCuNeZO3dutN2IESPMZ555xly5cqX51ltvmdOmTYseu+KKK5rtz+WXXx5tO23aNPOtt94yV65caT7zzDPmiBEjoscef/zxzvh2oBdoTdhrmjw/o3sYOnSomZ2dbd58883miy++aC5dutRcvXq1uWDBAvPOO+80+/XrFx1fU6ZMMWtqauJeh/EMAC0j7EWP8/bbb0f/0hrvIy8vz9y8eXNXdxMJ7Oqrr25y/MX7aEo4HDZ/9KMfNXvutddea4bD4Wb7U1JSYk6cOLHJayQnJ5tPPvlkR38bkADaMo7rZjo2hfGMrjZ06NBWjePc3Fzzww8/bPZav/nNb0zDMJq8xnnnndfiLGKv12ued955TV7DYrHwLiQcltaGvTw/ozto7XP09773PbOsrKzJ6zCeAaBlhmmapoAeZufOnXrooYc0f/58FRQUyG63a+TIkbr00kv105/+VE6ns6u7iAR2zTXX6Pnnn291+5aeZt977z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999xWPUYoFNKTTz6pF198UevXr5fH41F2drbOPPNMzZkzR0cffXSr+4veo6kVr5sydOhQ7dixo9k2jGd0lY0bN2r+/PlasmSJtmzZor1792r//v1KSUlRVlaWjjvuOF1wwQW67LLLWvV7wtKlS/Xoo49q8eLF2rt3rzIyMnTsscdq9uzZuuKKK1rdrxdffFHPPfecvv76a5WXl2vAgAE69dRT9dOf/lQnn3zy4XzJ6OV++9vf6ne/+52k2pq9p59+erPteX5GV1q0aJEWLVqkZcuWadu2bSotLVVlZaXcbrcGDx6sU045RVdffXWrnxcZzwDQNMJeAAAAAAAAAEgAlq7uAAAAAAAAAADg8BH2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAHSx5557ToZhyDAM7dixo6u7AwAAAKCHIuwFAABopx07dkRD2sP5AAAAAICOQNgLAAAAAAAAAAnAME3T7OpOAAAA9ETBYFAbN25s8vgxxxwjSZowYYKeffbZJtuNGzeuw/sGAAAAoPexdXUHAAAAeqqkpKRWBbUul4tAFwAAAECno4wDAAAAAAAAACQAwl4AAIAu9txzz0UXa9uxY0ej46effroMw9Dpp58uSdqyZYv++7//W8OHD1dKSoqOOuooXXvttdq5c2fMeWvWrNHs2bM1fPhwORwODR48WDfeeKP27dvXqn69+eabuvTSSzVkyBA5HA5lZGRowoQJ+t3vfqeysrLD/bIBAAAAdDDKOAAAAPQgH330kS6++GJVVVVF9+3cuVPPPPOM3n33XS1atEj5+fl66aWXdM011ygQCETbFRQUaO7cuXr//fe1dOlSZWdnx32MsrIyXXLJJfr4449j9vv9fn3xxRf64osv9Pe//11vvfWWTjrppM75QgEAAAC0GTN7AQAAeojCwkJddtllysjI0COPPKLPP/9cixcv1i233CLDMLRv3z79+Mc/1sqVKzVr1iyNGDFCTz31lFasWKFPPvlEP/zhDyXVhsP/5//8n7iP4ff7ddZZZ+njjz+W1WrVD3/4Q7300ktavny5Fi9erD/+8Y/q27ev9u3bp/POO6/RbGIAAAAAXYeZvQAAAD3E5s2bNWrUKC1ZskT9+/eP7p8yZYpsNpv++te/asmSJTr//PM1adIkLViwQE6nM9ru9NNPV01NjV599VW9/vrrKikpibmOJP3+97/Xl19+qYyMDH300Uc64YQTYo5PmTJFP/jBD3TyySerqKhIv/rVr/Svf/2rc79wAAAAAK3CzF4AAIAe5OGHH24U0ErST37yk+h2aWmpnnrqqZigt86NN94oSQqFQlq2bFnMserqaj366KOSpLvvvrtR0Ftn6NCh+vWvfy1JevXVV+XxeNr3xQAAAADoUIS9AAAAPURGRobOOeecuMeGDRum1NRUSdJ3vvMdjRkzJm67Y489Nrq9bdu2mGOLFi1SRUWFJOmSSy5pti+nnXaaJCkYDOqLL75o3RcAAAAAoFNRxgEAAKCHGDVqlAzDaPJ4RkaGqqqqlJeX12ybOvUXeZOkVatWRbcHDRrU6n4VFxe3ui0AAACAzsPMXgAAgB4iXlmG+iwWS4vt6tpIUjgcjjm2b9++dvXL6/W26zwAAAAAHYuZvQAAAJAUG/5++eWXSkpKatV5ubm5ndUlAAAAAG1A2AsAAABJUt++faPb/fv3J8QFAAAAehjKOAAAAECSNH78+Oj2kiVLurAnAAAAANqDsBcAAACSpLPOOita7/fhhx+WaZpd3CMAAAAAbUHYCwAAAElSRkaGfvrTn0qSli5dqp/97GeKRCJNtt+7d6+eeuqpI9U9AAAAAC2gZi8AAACifv/732vRokX6/PPP9dBDD+k///mPrrvuOh133HFyuVwqKyvT2rVr9dFHH+n999/XMcccox//+Mdd3W0AAAAAIuwFAABAPcnJyVqwYIGuueYavfHGG/r666+js33jSUtLO4K9AwAAANAcwl4AAADESE1N1euvv67PPvtMzz//vBYvXqzCwkL5fD6lpaVpxIgRmjRpks4//3xNnz69q7sLAAAA4CDDZOUNAAAAAAAAAOjxWKANAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJ4P8D+twzsjcgztgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'transmissibility_function_reassortment_example_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/_sources/index.md.txt b/docs/_build/html/_sources/index.md.txt new file mode 100644 index 0000000..4ffed79 --- /dev/null +++ b/docs/_build/html/_sources/index.md.txt @@ -0,0 +1,40 @@ +Opqua ![Opqua](../img/opqua_logo.png "opqua") +===== + + +[![DOI](https://zenodo.org/badge/249037110.svg)](https://zenodo.org/badge/latestdoi/249037110) + +**opqua** (opkua, upkua) +\[[Chibcha/muysccubun](https://en.wikipedia.org/wiki/Chibcha_language)\] + +* **I.** *noun*. ailment, disease, illness +* **II.** *noun*. cause, reason \[*for which something occurs*\] + +_Taken from D. F. Gómez Aldana's +[muysca-spanish dictionary](http://muysca.cubun.org/opqua)_. + +Opqua has been used in-depth to study [pathogen evolution across fitness valleys](https://github.com/pablocarderam/fitness_valleys_opqua). +Check out the peer-reviewed preprint on +[biorXiv](https://doi.org/10.1101/2021.12.16.473045), now peer-reviewed. + +Opqua is developed by [Pablo Cárdenas](https://pablo-cardenas.com) in +collaboration with Vladimir Corredor and Mauricio Santos-Vega. +Follow their science antics on Twitter at +[@pcr_guy](https://twitter.com/pcr_guy) and +[@msantosvega](https://twitter.com/msantosvega). + +Opqua is [available on PyPI](https://pypi.org/project/opqua/) and is distributed +under an [MIT License](https://choosealicense.com/licenses/mit/). + +```{eval-rst} +.. toctree:: + :maxdepth: 2 + :caption: Contents + + about + requirements_and_installation + usage + tutorials + model_documentation + API +``` \ No newline at end of file diff --git a/docs/_build/html/_sources/intervention.ipynb.txt b/docs/_build/html/_sources/intervention.ipynb.txt new file mode 100644 index 0000000..94b829c --- /dev/null +++ b/docs/_build/html/_sources/intervention.ipynb.txt @@ -0,0 +1,861 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Several interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors in a single population scenario, showing the effect of various interventions done at different time points.\n", + "\n", + "For more information on how each intervention function works, check out the documentation for each function fed into `newIntervention()`." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `my_setup_2` with the same parameters, but duplicate the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup_2', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " contact_rate_host_vector=4e-1, \n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100,\n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`my_population` starts with _AAAAAAAAAA_ genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define the interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. At time 20, adds pathogens of genomes _TTTTTTTTTT_ and _CCCCCCCCCC_ to 5 random hosts each." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 20, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'TTTTTTTTTT':5, 'CCCCCCCCCC':5, } ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. At time 50, adds 10 healthy vectors to population." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addVectors', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 10 ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. At time 50, selects 10 healthy vectors from population `my_population` and stores them under the group ID `10_new_vectors`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', '10_new_vectors', 10, 'healthy' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. At time 50, adds pathogens of genomes _GGGGGGGGGG_ to 10 random hosts in the `10_new_vectors` group (so, all 10 of them). The last `10_new_vectors` argument specifies which group to sample from (if not specified, sampling occurs from whole population)." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'GGGGGGGGGG':10}, '10_new_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. At time 100, changes the parameters of my_population to those in `my_setup_2`, with twice the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 100, \n", + " # time at which intervention will take place.\n", + " 'setSetup', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'my_setup_2' ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. At time 150, selects 100% of infected hosts and stores them under the group ID `treated_hosts`. The third argument selects all hosts available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_hosts', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7. At time 150, selects 100% of infected vectors and stores them under the group ID `treated_vectors`. The third argument selects all vectors available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_vectors', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8. At time 150, treat 100% of the `treated_hosts` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_hosts' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "9. At time 150, treat 100% of the `treated_vectors` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "10. At time 250, selects 85% of random hosts and stores them under the group ID `vaccinated`. They may be healthy or infected." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'vaccinated', 0.85, 'any' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "11. At time 250, protects 100% of the vaccinated group from pathogens with a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'protectHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'vaccinated' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 47.82778878187784, event: RECOVER_VECTOR\n", + "Simulating time: 78.3366736929209, event: RECOVER_VECTOR\n", + "Simulating time: 105.91879303271841, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 118.47279407649962, event: RECOVER_HOST\n", + "Simulating time: 131.35992383183006, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 142.51592961651278, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 155.0493103157924, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 166.15922138729405, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 178.45033758585132, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 191.46530199493813, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 202.95353967543554, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 215.14396460201561, event: RECOVER_VECTOR\n", + "Simulating time: 227.37567502659184, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 239.10997595769174, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 251.43868107426454, event: RECOVER_VECTOR\n", + "Simulating time: 270.88105008645147, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 307.90286561294283, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 357.4327138889326, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 400.04897821206066 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 400 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18432052612304692s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016484975814819336s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030623912811279297s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.043166160583496094s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04822254180908203s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08920669555664062s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.16597485542297363s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1528 tasks | elapsed: 1.4s\n", + "[Parallel(n_jobs=8)]: Done 3192 tasks | elapsed: 2.2s\n", + "[Parallel(n_jobs=8)]: Done 5368 tasks | elapsed: 3.2s\n", + "[Parallel(n_jobs=8)]: Done 7449 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8243 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8591 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8822 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 9064 out of 9079 | elapsed: 3.6s remaining: 0.0s\n", + "[Parallel(n_jobs=8)]: Done 9079 out of 9079 | elapsed: 3.6s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/opqua/model.py:1008: DtypeWarning: Columns (5) have mixed types.Specify dtype option on import or set low_memory=False.\n", + " data = saveToDf(\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0AAAAAAAAAANaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
1898145400.0my_populationVectormy_population_105GGGGGGGGGGNaNTrue
1898146400.0my_populationVectormy_population_106NaNNaNTrue
1898147400.0my_populationVectormy_population_107NaNNaNTrue
1898148400.0my_populationVectormy_population_108NaNNaNTrue
1898149400.0my_populationVectormy_population_109NaNNaNTrue
\n", + "

1898150 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 AAAAAAAAAA \n", + "1 0.0 my_population Host my_population_1 NaN \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "1898145 400.0 my_population Vector my_population_105 GGGGGGGGGG \n", + "1898146 400.0 my_population Vector my_population_106 NaN \n", + "1898147 400.0 my_population Vector my_population_107 NaN \n", + "1898148 400.0 my_population Vector my_population_108 NaN \n", + "1898149 400.0 my_population Vector my_population_109 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "1898145 NaN True \n", + "1898146 NaN True \n", + "1898147 NaN True \n", + "1898148 NaN True \n", + "1898149 NaN True \n", + "\n", + "[1898150 rows x 7 columns]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'intervention_examples.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 4 genotypes processed.\n", + "2 / 4 genotypes processed.\n", + "3 / 4 genotypes processed.\n", + "4 / 4 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAALmCAYAAABio+lSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xUVf7G8eemE3qviqiLothFBUQUUVaKigKWXQt217p21/1Z1rKuuq676+ouFhRUVFBRQUFRlKqIBUXpRVoIpNcp997z+2OSIZMpmUB6Pu/XKzJz77lnzgwjSZ588z2WMcYIAAAAAAAAAIAmJKG+FwAAAAAAAAAAQE0j/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE0O4TcAAAAAAAAAoMkh/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE1OUn0vAA2Dx+PRTz/9JEnq3LmzkpJ4awAAAAAAUNNs29bu3bslSUcccYTS0tLqeUUA0HSRcEKS9NNPP+mEE06o72UAAAAAANBsLFu2TAMGDKjvZQBAk0XbEwAAAAAAAABAk0PlNyQFWp2UW7Zsmbp3716PqwEAAAAAoGnKyMgI/uZ1xe/FAQA1j/AbkhTS47t79+7q1atXPa4GAAAAAICmj/22AKB20fYEAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgCgkTHGre8lAAAAAADQ4BF+AwDQ6PjrewEAAAAAADR4hN8AADQ2xi9jTH2vAgAAAACABo3wGwCARsYYRzLF9b0MAAAAAAAaNMJvAAAaHVeO/9f6XgQAAAAAAA0a4TcAAI2OK8e3sr4XAQAAAABAg0b4DQBAo+PK9q6o70UAAAAAANCgEX4DANDIOL41ktjwEgAAAACAWAi/AQBoZFwnS4TfAAAAAADERvgNAEAjZExJfS8BAAAAAIAGjfAbAIDGyLj1vQIAAAAAABo0wm8AABol2p4AAAAAABAL4TcAAI0S4TcAAAAAALEQfgMA0IgYQ+gNAAAAAEA8CL8BAGhkXHuHqPwGAAAAACA2wm8AABoVI+NmyRB+AwAAAAAQE+E3AACNjDF+UfkNAAAAAEBshN8AADQSgX7fjmT89b0UAAAAAAAavKT6XgAAAIiTKZHr7JSRXd8rAQAAAACgwaPyGwCAxsYtqe8VAAAAAADQ4BF+AwDQaAT6fBu3QPT8BgAAAAAgNsJvAAAaE0PoDQAAAABAPAi/AQBoVNz6XgAAAAAAAI0C4TcAAA2MMb7o52QCDU+oAAcAAAAAICbCbwAAGhoTrbrbaE+vb8JvAAAAAABiIfwGAKCOuU6ejLFjjIgcbLvObsk4ZecdmaghOQAAAAAAIPwGAKCuGZ9kPHKd/CgDHBnjRL7UzZaMt0IIDgAAAAAAIiH8BgCgjhlTKGN8sj1LI4bcxngk44l4re39TsbNlZEjKXJADgAAAAAACL8BAKhzxi2Ra2+R6+yKMsCR3/O1bN+ayif2tEsxflH5DQAAAABAdITfAADUMWOK5fg3B9qfRDrvFspf8omcsPBbKq/2NsYbY2NMAAAAAABA+A0AQB0zbokc/3pF39hyl1wnS1KEcNuUX+OPfB4AAAAAAEgi/AYAoO6ZUhk3TyZK+G2MN9D3O2JPb7d8kGh7AgAAAABAdITfAADUMdfJlnHyFD28diRTEt4WJSTwNmXV4wAAAAAAIBLCbwAA6phxcxWo4DZlG1dWPl8s4xbJdQsrn9Ge8NsRld8AAAAAAERH+A0AQB1zfOsCN4wr18kMO+/amyU5MhHOGVPeCsWw4SUAAAAAADEQfgMAUIdcJ0flFdzGlEjGGzamPOB2nezQ43Ik2cF70XqGAwAAAAAAwm8AAOqUa/+q8k0rjZsrY0rDB5Udc53dlY47gY8gWwAAAAAAILKk+l4AAADNiXELZIxHrpOtRCtdxs0LH2M8ZTc8lc8o0Ou77F6lynAAAAAAALAHld8AANQhY/yBcNsUS8YjY3wRBgVCb+OWVD4hU6FNiutk1eJKAQAAAABo3Ai/AQCoI6a8bYnxl90vjjKuvOK7cjBu5Ph+Dt5z7YxaWCUAAAAAAE0D4TcAAHXFlEpy91R7h/TvrjDM3dMH3Bi3wu3A9Xv4a36NAAAAAAA0EYTfAADUkUDLEifQ8kSSkZGMG2FgxYrvPQG5499QaT4nJBwHAAAAAAB7EH4DAFBHAhtd5u054BYpsIll5XF72qG4zu6KZyqNdCJeDwAAAAAACL8BAKg7xiPX2dOn25hCRQ6/PcHbrr2l4olKAwm/AQAAAACIhvAbAIA6YlxPpZYmUmgP7wqbYu65qOyPorCxjn+9CL8BAAAAAIisWYbfBQUFevPNN3X77bdr6NChOvjgg9W2bVulpKSoS5cuOvXUU/XEE08oOzs7rvmWLFmi3//+9+rdu7fS0tLUrVs3jRgxQtOmTavWuqZNm6YzzzxT3bp1U1pamnr37q3f//73Wrp06d48TQBAQ2O8eza73HOw0l2fKvb5Lg+8jSkNC86Nmx1+PQAAAAAAkCRZxlT+Heqmb968eTrjjDOqHNepUye99tprGjFiRNQxDz74oB5++GG5buQNx0aNGqUZM2YoLS0t6hylpaUaN26cPvroo4jnExISdP/99+uBBx6ocs17a9u2bdpvv/0kSVu3blWvXr1q7bEAoLnyFn0g27NQtve74LG0drcqteWY4H3jFqkgY6zKQ+/0DvcrucVQ+YrnyPFvkK/43ZA523T/UFZCep2sHwAAAPuO778BoO40y8pvSdpvv/106aWX6p///KfeffddLV26VIsXL9Zbb72l8ePHKzExUVlZWTr77LO1YsWKiHP873//00MPPSTXdXXQQQfppZde0rJlyzRz5kyddtppkqTZs2friiuuiLmWK664Ihh8n3baaZo5c6aWLVuml156SQcddJBc19WDDz6oSZMm1eyLAACoW8YjY/yVjlVue+JXxfYmpqwFiuvmSsYbYdLIP3wFAAAAAKC5a5aV347jKDExMeaYmTNnauzYsZKksWPH6t13QyvtcnJydOCBByo/P1/777+/vv32W3Xq1CnkMcaOHasPP/xQkjR//nydeuqpYY/z+eef6/TTT5ckjRkzRu+9917I2rKysnTcccdpy5YtateunTZu3Kj27dvv1fOOhZ88A0Dt8xROk126WI5/VfBYWts/KLXV+cH7jn+zinZdGbzfot1tSmk5Sp78F+U6WfKXfhoyZ+tu7yohsW3tLx4AAAA1gu+/AaDuNMvK76qCb0k699xzdcghh0iSFi5cGHb+xRdfVH5+viTpb3/7W0jwXf4Yzz33XPCxnnzyyYiP89RTT0mSkpKSQsaX69Spk/72t79JkvLy8vTiiy9WuXYAQANl/IEK7pBj9p6bbmnYJa4TGG9MsYwpijApld8AAAAAAETSLMPveLVu3VqS5PF4ws7NnDlTktSmTRudd955Ea/v1auXhg8fLkn67LPPVFhYGHK+sLBQn332mSRp+PDhUX/ae95556lNmzaSpPfee6/6TwQA0EDYMs7OkCMV26AYN1eVN7B0ne0yxsi4xXLt0GvLRtTCOgEAAAAAaPwIv6NYs2aNfvjhB0nSoYceGnLO5/Np2bJlkqSBAwcqJSUl6jxDhw6VJHm9Xi1fvjzk3DfffCOfzxcyLpKUlBSddNJJwWv8fn/UsQCAhstUqPLeo0L4bUpVOfyWCXyecJ0suc6OsKsd/8YaXCEAAAAAAE0H4XcFJSUlWrdunZ5++mkNHTpUth0IKW699daQcWvXrpXjBDYgqxyMV1bx/KpVq0LO/fLLLxHHxZrHtm2tW7cu9hMBADRMEcLv0MpvjyqH38Z4ys7lR9zw0ji7anaNAAAAAAA0EUn1vYD69sorr2jixIlRz99zzz26+OKLQ45t27YteLuqjSnKN7GQAhtZ1NQ8hx12WMzxlVV8rEgyMjKqNR8AYG84YUeMsztwxr9ZkpFM6BhTFniXh+Bh19P2BAAAAACAiJp9+B3N0UcfrUmTJmnAgAFh5yr27m7VqlXMeVq2bBm8XVQUulFZTc0Tj4rhOQCgvkQIv4OV3bmSkmRUqTrcLZbkBtufhE9A+A0AAAAAQCTNvu3Jueeeq59++kk//fSTli1bpmnTpmns2LH64YcfdNFFF2nWrFlh11TcADNWv29JSk1NDd4uLS2tlXkAAA2DMaaK8xHCbzev7M8iSUbGDd0c2fGvl+NfJxMt/K7cIxwAAAAAAEii8lvt2rVTu3btgvcHDBigCy+8UFOnTtVll12mc845Ry+99JIuv/zy4Ji0tLTg7fINK6Pxevf0Z23RokXIuZqaJx6VW65UlpGRoRNOOKHa8wIAKnJljGRZiRHPGmdnhIOB8Nq4RbIS2kbsC+74fonY77vs7N4uFgAAAACAJq3Zh9/RXHLJJZo1a5befvtt3XjjjTr77LPVoUMHSVLr1q2D46pqQVJcXBy8Xbm1SU3NE4+qeooDAGqCE2hPYkX+d9r2/hD1ymDltykJP+dkS/KHHS87W+1VAgAAAADQHDT7tiexnHPOOZICwfOcOXOCxysGyVVtJFmx4rpy3+2amgcA0DC4doTK7jKBjSsj9ecOHHPdHMk4Mm5B2AjH3hJ9XievmqsEAAAAAKB5IPyOoXPnzsHbv/76a/B23759lZgY+JX21atXx5yj4vl+/fqFnDvssMMijos1T1JSkn7zm99UsXIAQH0wbn6Mc56o5wLni2SMN0KYbeT6N8e4rjDqOQAAAAAAmjPC7xi2b98evF2x1UhKSkqwP/bSpUtj9uv+8ssvJQU2rDz++ONDzg0YMCC40WX5uEh8Pp+++uqr4DXJycnVfCYAgLpi3PC2JQGRP1cYuXLtTMl45bpZMqZySG7kRqgGr3geAAAAAACEI/yOYfr06cHbRxxxRMi5c889V5JUUFCgd999N+L127Zt07x58yRJp59+ekiPbynQ8/v000+XJM2bNy9q65N3331XBQWB4GPs2LHVfyIAgBpnTKQWJpLrZEYYa4IbW4aftMsCbyPjFsqY0ghjom12GXstkccSlgMAAAAAmodmGX6/8sor8nhi//r5P/7xD3300UeSpD59+mjIkCEh56+66iq1bdtWknTPPfcoOzs75LzjOPrDH/4gx3EkSXfeeWfEx7njjjskSbZt64YbbgiOL5eVlaW7775bktSuXTtdddVV8TxFAEAts73fhR0zpkSuE9732/GvUtQKbeMt2+TSke35VsbNjfRoUddhKvw3Hq4de48JAAAAAACaimYZfj/44IPq2bOnrrnmGk2ZMkWLFy/WihUrtGjRIj3//PM6+eSTddttt0kKtDiZNGlSsMd3uQ4dOuhvf/ubpEA/8BNPPFGTJ0/W8uXL9cEHH+iMM87Qhx9+KEm66KKLdOqpp0Zcy7Bhw3ThhRdKUvC6Dz74QMuXL9fkyZN10kknacuWwEZnf/vb39S+ffvaeEkAANUWHkgbt1gy/vChxi8jJ/y4JGM8Mk52YENMUyrXyYo0KsY6jCJvpBlteITKcgAAAAAAmqCk+l5AfcnJydELL7ygF154IeqYXr166eWXX9bw4cMjnr/22mu1Y8cOPfzww9qwYYOuuOKKsDEjR47Uyy+/HHMtL7/8sgoKCvTRRx9p/vz5mj9/fsj5hIQE/d///Z+uueaaOJ4ZAKBOmPDw27U3y0poFz7U+GVFCZ2N8cq4eTJuiYzxSVFC8ioWE98o45RVmQMAAAAA0PQ1y/B77ty5mj17thYvXqz169crMzNT2dnZatGihbp06aKjjz5ao0eP1oQJE5Senh5zroceekgjRozQf/7zHy1cuFCZmZlq166djjrqKE2cOFEXXXRRletp0aKFZs+erTfeeEOvvPKKVqxYoby8PHXt2lVDhgzRjTfeqIEDB9bU0wcA1AATIfw2rkeWFaFFifFFHB84VyrjFsu4RWUtUIqqtQ7X3iYZV7LiWnWgwhwAAAAAgGagWYbfhxxyiA455JBga5N9NWjQIA0aNGif57n44ot18cUX18CKAAC1L7y9iTGlgTYmxsiyrNCx0cJvuXKdLBlTKBlHxi2o1ipce6vi7/ntRm7LAgAAAABAE9Qse34DALCvXDsj/KDxyPauUOUe3Mb4Jfmiz+XsllyPjCnei5U4ij/8pvIbAAAAANB8EH4DALAXIvXONsYv19mhsM0wjT/QmiTaXG6+jHx7VZVtjKu4N7w0RjLRQ3gAAAAAAJoSwm8AAPaC698S4ahfMh65TnbwiDGu/J5lct38qHMZUywZr+IOsUNUp/LbLdtUU3Kd3L14LAAAAAAAGg/CbwAA9oKJ0MbEuAWBSmy3wqaV5aF2rKpuN7yKPP6FOGXV33EMdfPK1iPJeIJBOAAAAAAATRHhNwAAe8P4QkJnY/xyfL9IMmV9v8uOuwUKVHRH2/AysFHm3ou/8tv2rQ72FTemRKZChToAAAAAAE0N4TcAAHvBODkKCZ2Np/yGHP86uW5B2T07UJ1ddj/iXPsUfrt7qrmrYNxcGbdYjr1Njm+9TNztUgAAAAAAaHwIvwEA2AuVe3ib8vDb+OXaW2WcrLL7tiRXrrM7+mR7sdFlhYv3PHYVXDtTxi2U698sx/5Ve9djHAAAAACAxoHwGwCAveKE3vOtKbvll6mwsWSgPYqnLASPZl9D6HgruP0ypijweMYjGSq/AQAAAABNF+E3AAB7o1KY7TqZFc45Uln4bYxPxpQG2p/U2lri27jSGFvGeBWoFrcVf2gOAAAAAEDjQ/gNAMBeCfT23nPXH3LO9v1Udtsn17+xisrvfVO5pYrj37qn8rwi45fr/1XGLVEg+KbtCQAAAACg6SL8BgCgmowpC40r9NoO6bttvDL2rrLjfgVC5tqrsg7v+R3YZDN0jBNoeWL8ct0cyfjLNu0EAAAAAKBpIvwGAKC6TIlUsa+3JMf3S/C262TImCIZ42hPdXUtVlkbb6UDEcJ2UyLHt1ZGrlz/r3LtbfKVflZ7awIAAAAAoJ4RfgMAUA3GLZVjbyu745frZAVuhlVfG0lOcFNJU6kSu0bXVKnFSaCft1vpmLdsPT4ZU1x2n7YnAAAAAICmi/AbAIBqMKYoWOVtjF9uMAivHDa7Za1HykPv2tzwslLlt/HIRAq/jSPJL+MWyJiSsDUDAAAAANCUEH4DAFAN/tIlcvybJUmus13l7UVcZ0elka4CgXdZ+F2LG16asPDbCQu2XTtDRv6y8X4ZN1+B1i21V5EOAAAAAEB9IvwGAKAaXHtTMOg2Tt6etiZuYaWRJhAyl4XQRrUZMptK9yr2Gi875mRK5e1RjC0FN+Ik/AYAAAAANE2E3wAAVIMxboWg26+wjSXL2N4VZePKK799EcfVjMrtSxy5TmboEf+6CuMCPcEDwXzk9QMAAAAA0NgRfgMAUC1Gxi0K3DK2TDA8rhRAm9LAsbK2IoE2I7W1JCf8vvGHHqpw35RXfRtvsHIdAAAAAICmhvAbAIBqMZJbXHbTp0B7k0gBsivJlVGg4tu1t9biivyVjjiKVdFtnJ1la9oScxwAAAAAAI0Z4TcAAHEyxlYg7C4uu+8rq7CO0tLEODJObh0srHKVtytjPMF+41EvkxE9vwEAAAAATRXhNwAAcTKmpMJGkZKMT8YUy5RXglceL1fGya6DdXkrHbHLWrNUFWzvaeECAAAAAEBTQ/gNAEAVgm1NjB3SO9uxt5Rtahm5wtr1bwrbeLJ2FugLab1i3Lz4Ntg0jhz719pbFwAAAAAA9YjwGwCAKpUF3sarij2yjZMl45ZIxo54letkyHVrv+2JKes9HrzvFpUdqziocnW4JPlknN1VtkcBAAAAAKAxIvwGAKAqZeF2oOq74gaRjiRfoB1KpMuMXzJ10VPbDl2XsWV7loSvpRJjnLKWKfT9BgAAAAA0PYTfAABEsaeVSFk4XKnCOrD5pV+ukxNlAlvBqvHaZByVt14xxpGRX8YtqDQoUnW6W9bzm8pvAAAAAEDTQ/gNAEA0JrAZpAlWfnsqD5CMIxOltYlxCyNWXNc0x79Rxs2TMX45/jVlvckrhd0RW5uYQM9y2p4AAAAAAJogwm8AAKIwxitjnODmkcaUSmEBuCPjZEW+3i2I2g+8JlUM5QM9yP0ypjCeKyNUiAMAAAAA0DQQfgMAEIVxciQ5csvDbeOX61Su8nbl2DsiX288weC8VpnisuptI5nSQNsTZ3cc17mBQJ+2JwAAAACAJojwGwCAKIzxyLW3ybh5ZUdsVQ6KjbEjVIOXc8rC5boTqE6PtIGliXzM2FHOAQAAAADQuCXV9wIAAGiojPHI2AUybn7gvluisCpp44/QC7ycq8gbTdYGo0AbkxJVDrNNxDBcCvb8BgAAAACgCaLyGwCAaIxXxviCbU8CleAZlQa5Mm5xlOvrsqLalYyR69+05+HdksCfTrakSAG4I8feWDfLAwAAAACgjhF+AwAQRWDzSM+e6mjjkeSvNMqJ0dc7WsV1zQtUd7tynd0qr04v3/TSmCIZE6Wvt/HWzQIBAAAAAKhjhN8AAFRi3KLAn6Y08OEWyRif/N7lYWP9pV/IhAXiAY5/ba2usyJjCuX3LJbrZKq87YnjWyNj/DLGS8gNAAAAAGh26PkNAEAlxvhkSTJugWQly7g5UrTKaSnKBpN1zHjLeo+7MsF2K4F1Gbc48FwAAAAAAGhGqPwGAKCysjYmgdDbHwiPjTdGAB658rsuGdcjGTuwOWdZlbcp/9PNletsr8/lAQAAAABQ5wi/AQDNjqliI0pTHn4bvwLV027gw3iijK//ym/j5gb+NB65zo6yg77QPwEAAAAAaEYIvwEAzVAVldrl/bHLq77lSjIypjTK+Pqv/HbdXElGMm5wg85AGxRTFuIDAAAAANC8EH4DAJqfKsJgE6yUdgKbXxqnbOPLksjj3fwaXmD1Ob5VCmx0aQd7kPuLP5ZxC2V7V9Tr2gAAAAAAqA+E3wCAZscYu4oR5eG3kTHFCrQ88ZVVUkdS/5XVxskpvyVTttGl6+wMrNvNiX4hAAAAAABNFOE3AKBZMcbd0xM72hi3eM9Ye5skI9vzjRpCyB1NIKQvv1O+TiPH3tIg2rIAAAAAAFDXkup7AQAA1AXjFklWsgI/94294aVUvoGlCVZ7G/kl49biCvdNeXuWgIobcNLzGwAAAADQPBF+AwCaBdu3WgmJHZWQ2F0yscNvUxZyG7dQxslSoO2JX6GhcsNijCcQ0EuSKoT0xpVUVZsXAAAAAACaHtqeAACaD+NX1VXfknEyy/4sC76D1zbcym8ZrxTcqLMil7YnAAAAAIBmifAbANBMuDKyFQi/Ywfgjr1VxvhlTEnwWMNvHWJkIoTfxpSWPW8AAAAAAJoXwm8AQPNgbLn2zmAP79hjvXL8G1Wx0rtiEN5QufbOsGPGLZFx8up+MQAAAAAA1DPCbwBAM2HLuEVl4XdVPb+9cu1tMqZCj++ILUUaFuPmRDhYIqmhV60DAAAAAFDzCL8BAE1acPNK45b1xfaqqo0rjVssf8lnCu3x3XA3uywXqarduA2/Yh0AAAAAgNpA+A0AaOLKq55dSY6MWyxjvFVc45YFyXsC75Aq8IbKhG/I6bq59bAQAAAAAADqH+E3AKBpK9+o0vhk5Mh1MqQq+34bSXalMLkRhN8R2rk4vjX1sA4AAAAAAOof4TcAoEkzprTsT5+MWxS8XcVVMk6OQiq/3fxaWmFNCq/8luw6XwUAAAAAAA0B4TcAoEkzbomM8Uvyy7iFkoxUZQsTI9fJVMUw2fVvqcVV1pQIG3kaNrsEAAAAADRPhN8AgCbNmBLJ+OQrmSsZWzJGjn9tVRepchW1MUW1t8ga4jpZYccM4TcAAAAAoJki/AYANGnG2SVjPHL9G4IbXbpOzt7MVLMLqw2mJPxQIwjtAQAAAACoDYTfAIAmzbV3Bft+u84OxRNiO3ZjaHESpyo39wQAAAAAoGki/AYANFnGOHLdHBm3OHDALVagnUkVAXhZhTgAAAAAAGi8CL8BAE2WcXMkt0SunRG4L1vGjacNiF27CwMAAAAAALUuqb4XAABAbTHGK9fZLcvZXnbAJ8e/RjK+GNcQfAMAAAAA0BQQfgMAmi7XI8ferPI2J8Ytkb/0CyWmHB71kvgqwwEAAAAAQENH2xMAQJNl5CsLs8uruf2B426JjPFHvMb2LKmbxQEAAAAAgFpF+A0AaLqMLRmvjFtS6bg3ausTx7+uDhYGAAAAAABqG+E3AKDJ8nuWSLJlTHHYuWi9vW3vj7W8KgAAAAAAUBcIvwEATZZxcgJ/uqHht5EjyYl8jfHU9rIAAAAAAEAdIPwGADRZxpSW3Qjt722c3YoWfpdvjgkAAAAAABo3wm8AQNMVtYrbDfQDj3xRba0GAAAAAADUIcJvAECT5Tp5kiQTIdCO1vOb8BsAAAAAgKaB8BsA0GRF2uhyz0lvlONu7SwGAAAAAADUKcJvAECTVXmjy5BzovIbAAAAAICmrNmG38uXL9df/vIXnXnmmerVq5dSU1PVqlUr9e3bVxMnTtSiRYuqnOOVV16RZVlxfbzyyitVzldSUqInnnhCAwYMUIcOHdSyZUsdeuihuv322/Xrr7/WwLMGgObDdXKkWJXf0a+s8bUAAAAAAIC6l1TfC6gPp5xyihYuXBh23Ofzad26dVq3bp1eeeUVXXrppXrhhReUkpJS62tav369Ro4cqXXr1oUcX7NmjdasWaMXX3xRr7/+ukaPHl3rawGAJsH4FLuKO1rITeU3AAAAAABNQbMMv3fs2CFJ6tGjh8aPH68hQ4Zo//33l+M4Wrp0qf7+979r+/btmjJlivx+v954440q55w7d6569OgR9XyvXr2inissLNSoUaOCwffVV1+tCy+8UC1atND8+fP117/+VQUFBbrgggu0ePFiHX300dV7wgDQDJmK4bYpijDAyBgjy7IqHafyGwAAAACApqBZht+HHnqoHnvsMZ1//vlKTEwMOXfSSSfpkksu0eDBg7V27VpNmzZN1113nU455ZSYc/bt21cHHHDAXq3nySef1Nq1ayVJTzzxhO68887guYEDB+rUU0/V0KFDVVJSoltvvVVffPHFXj0OADQrxol92hRKclT5U6FR7OsAAAAAAEDj0Cx7fs+aNUsTJkwIC77LderUSX//+9+D92fMmFFra/H7/frXv/4lSerXr59uv/32sDGDBg3SlVdeKUn68ssv9c0339TaegCg6YgdYjv+TZKJtOkl4TcAAAAAAE1Bswy/43HaaacFb2/YsKHWHmf+/PnKz8+XJF122WVKSIj8V3L55ZcHb7/33nu1th4AaDKMv6oBklyZyhXiVVSMAwAAAACAxoHwOwqv1xu8Ha1CvCYsWrQoeHvo0KFRxx1//PFKT0+XJC1evLjW1gMATUXV7UuMJKdsY8yKCL8BAAAAAGgKmmXP73h8+eWXwdv9+vWrcvzEiRO1Zs0aZWVlqU2bNjr44IM1fPhwXX/99erZs2fU63755Zfg7UMPPTTquKSkJB188MH68ccftWrVqjifxR7btm2LeT4jI6PacwJAw1bFxpUmUPVtWXs+FQaqwE3tLgsAAAAAANQJwu8IXNfV448/Hrw/YcKEKq+puAlldna2srOz9fXXX+vvf/+7nnnmGV177bURrysPpVu2bKl27drFfIz99ttPP/74o3bv3i2v16vU1NSqn0yFawGgWamyfYlfgSrvCiG5Ka3FBQEAAAAAgLpE+B3BP/7xDy1btkySdN555+m4446LOvbAAw/Ueeedp4EDBwYD5o0bN+qdd97RjBkz5PF4dN1118myLF1zzTVh1xcWFkqSWrVqVeW6WrZsGbxdVFRUrfAbAJqf2JXfxvjkOruVmNRrzzG3uLYXBQAAAAAA6gjhdyVffvml7rnnHklSly5d9Pzzz0cdO3bsWF122WWyLCvk+IABA3TBBRdo1qxZOu+88+T3+/XHP/5RZ599trp16xYy1uPxSJJSUlKqXFvFsLu0tHrViVu3bo15PiMjQyeccEK15gSAhsp1C6oOso23rNI70ObEuCUyVH4DAAAAANBksOFlBT///LPGjh0r27aVlpam6dOnq0uXLlHHt23bNiz4rmj06NG6//77JUklJSV66aWXwsakpaVJkny+yhuuhau4CWeLFi2qHF9Rr169Yn507969WvMBQEPmeFfIsX+NOcYYv4xbKmMCFeKOf1OEzS8bqqp/YAoAAAAAQHNH+F1m06ZNOvPMM5Wbm6vExES9+eabOuWUU/Z53muuuSYYkFfcRLNc69atJQXamFSluHhPFWM8bVIAoLkyxpaMv4pRjozxSLLLr5Kp8pqGwVhp9b0EAAAAAAAaPMJvSTt27NDw4cO1Y8cOWZall19+Weecc06NzN2lSxd17NhRkrR9+/aw8716BXrNFhcXKy8vL+Zc5a1LOnfuTL9vAIgpjvDbOAoE4OW/VeMqsAlmw2eUKDqXAQAAAAAQW7MPv7OysnTGGWdo48aNkqR///vfuvTSS2v0MWK1RjnssMOCt1evXh11nG3b2rBhgySpX79+Nbc4AGhijDGScWWCFd1Rxrllv3Fj9owzjaTtSbHpItuK3pYLAAAAAAA08/A7Pz9fI0aM0C+//CJJevzxx3XDDTfU6GPs3r1bWVlZkqQePXqEnT/55JODtyO1RSm3fPnyYNuTwYMH1+gaAaBp8Sueyu9AyxNJcsr+dGXcktpcWI3xuCkqNm3rexkAAAAAADRozTb8Likp0ahRo/Tdd99Jku677z7dfffdNf44kyZNClQhSho6dGjY+VNPPVVt2wYCjFdffTU4trJXXnkleHvs2LE1vk4AaDKMX0auVEXlt4wnEICbQPjtOrsl0zjC71y7hV7dRuU3AAAAAACxNMvw2+fzaezYsVq8eLEk6ZZbbtEjjzxSrTk2b96s77//PuaYWbNm6S9/+YskqUWLFpo4cWLYmJSUFN18882SpFWrVumpp54KG7N06VK99NJLkgIB+oABA6q1VgBoToyxZdyCwKaXMbhuvuSWSnJljFt2TWMIvy25RspvHO3JAQAAAACoN81yt6yLLrpIn3zyiSRp2LBhuvLKK7Vy5cqo41NSUtS3b9+QY5s3b9Zpp52mgQMHasyYMTrqqKPUpUugCm/jxo2aMWOGZsyYEazkfuqpp9SzZ8+I899555166623tHbtWt11111av369LrzwQrVo0ULz58/XY489Jtu21aJFCz3zzDM18AoAQNMUCLwdOb7VsqyWscc62XLsLUpMPUoyXhknR7Iaz2bC2b7IvykEAAAAAAACmmX4/e677wZvf/755zryyCNjju/du7c2b94c8dzSpUu1dOnSqNemp6frH//4h6655pqoY1q3bq3Zs2dr5MiRWrdunSZNmqRJkyaFjGnTpo1ef/11HX300THXCgDNmyspsJmllZhWxVi/jJsrKRAiG7mSKa3d5cUtUXt6kVdmKcufIjdKmywAAAAAABDQLMPvmnDcccfptdde09KlS7V8+XJlZGQoKytLtm2rffv2Ovzww3X66afrqquuClaEx3LwwQfr+++/13/+8x9Nnz5d69evl8/n03777aeRI0fqlltuUe/evevgmQFAI2YcSW5ZP+8qen5Lcu1dgfEygT/dhhJ+Jyl6+C2tKkyUUxb0AwAAAACAyJpl+B1tU8nqaN26tX73u9/pd7/7XQ2sKKBly5a66667dNddd9XYnADQvBgZ45UxPllVbXgpSbIlY2RMsWRc2b6fan2F8TBWiiwjSd5KZ1LkWm1V6kguhd8AAAAAAMTULDe8BAA0HcZUrIA2kvFLcsqqwKu62FZgw0ufJFeuk1U7i6wmo2TJSgw/YSXJVgvCbwAAAAAA4kD4DQBo5PakwMaUKND2xJXiaAsSCLuNZFwZN68B9fxO0L3rjtdW+9hKxy0ZifAbAAAAAIA4EH4DABo5J1j9bVxPWcW3UcVQPDp/2ThbxpTfrn9Gllbk+1XsJFU6HjiX7zcyDWStAAAAAAA0VITfAIBGz7iFZTe8MnJljEfxVH4HQ3Ljj3N83XCUph2lthxjRTiboA3F8fQzBwAAAACgeSP8BgA0bsZVoHLbyHW2K1AJHn/7EuOWyBi/jFtSa0usrmK3tbaXOvKb0E/TRqkyZa1PqPsGAAAAACA2wm8AQIMXaEkSjStjvJLxyPauDGxiabwy8Wx4Kcm4uYHxbl6NrLUmFLup8hujEif007StdBmTIEPyDQAAAABAlQi/AQANnnFyo59zCyW3SMb4ZNx82d5vFQjE46vkNnJle79TfdRSe63eksJbm2wtTZckrSpKqnTGkltW+e0QgAMAAAAAEBPhNwCgwTOmOMrxQIuTwOaPfhlTLMe/ueykN87JHdn+1TWyzura5OmqSOH3Dk8g9N4aIb83SpCRkUv4DQAAAABATITfAIBGINpmlGbPeeOX62QFx7r2jrjndv1byja9rBuu1UlSkrL9yRHPe8uS7dIICffivC76Ntcrn2sUKTgHAAAAAAABhN8AgIYvav9uN/BhPDLGloynwlg7zsldyfhkFF+P8JrgUysZq7UcEzm89riB44V2aPhtZGmXN0Fe18jjSnwaBwAAAAAgusrNRAEAaHCM8UQ54cq4JTLGK0v+sk0uo1WJR+bau2Tkyopzg8yaUOqma5fTQf4orUuKynL7b3N9lc5Y8rnlY1wFwu+6WzcAAAAaBmOMiouLVVBQII/HI8fha0IAjVNiYqLS0tLUpk0btWzZUpZVs7/hTPgNAGjwjFssY/yyrMptQmxJTiAAT/BLsuU62dWb2xQHWp5YKTW13NisFip2UrXV00KusSQrTaq0OWdWWea90xNavR7o9x2Q63MkK7FO27UAAACg/rmuqy1btqi0tLS+lwIA+8y2bXm9XuXn56tFixbaf//9lZBQc7/lTPgNAGjwjCmVcXJkJXUN3Hc9shLSykJxr2RKAyGwseU6G6s5uU+ST1Jaja87Ep86q9BO1nd5Serb2pVHXZSmzSFjtpQEKncK/aFV7K5JDG50me1zJCXWwYoBAADQUBhjwoJvy7KUmMjXhQAaJ8dxZEzZvlelpdqyZYt69+5dYxXghN8AgIbPlMp1c5WgrjJuqYxbKCshTa6bI+PmSTKBCm5F6SMSg+NbE3gIU712KXuryG2tJbktlOE1OriVpQKnjdIq/VA7r6wfSmBFlsqfl5HklD1Fv2vkU3ulqLhO1g0AAID6V1xcHAy+ExMT1a1bN7Vq1apGqyQBoC65rquioiLt3LlTjuOotLRUxcXFatWqVY3Mz7+OAIAGz7glMm5B2e28QLW3JOMWybgFMsYr4xaruv2+Jcl1tpffqqHVxlbkpGpFnqt8v1GJbclnwn8Oneev2LOx4nlLZUXhso3kMS1rda0AAABoWAoKCoK3u3XrpjZt2hB8A2jUEhIS1KZNG3Xr1i14rLCwsObmr7GZAACoJUY+GbcocNt4tWeTRyPjlsjxb5Rr79jHB4myqWaNSpRjLNkKVHGvKVKwjUlFOb49QXyRDgjeNpJe3BzoD+5zjYxqdiMQAAAANGweT+BrVsuyaqwqEgAaglatWgVbndTkngaE3wCARqLi5o9libFx5DpZgarwsmrwvVf7ld/GSpffJMrvSD7HaKfXjRhg5/r2VH57Teqe65UQ3AQz0AKF3o4AAADNieMEvk5MTEyk4htAk5KQkBDcv6D837oambfGZgIAoLYYI+OW/9qTkUzgE6Hj3yDX3i7X3iYjRzLV7/ldl1yl6fv8FsrwOJqxvVg7St0Ild+pKrT3BPHG7AnH15Z0DBm53du6FlcLAAAAAEDjRvgNAGgUjPHKGEeBCu2ycNh4ZNx8GeOTZGT2YsPLuuQoTUWOtL2setsxRm6lym/XSg+9X3beWC3Dnt12T3KtrRUAAAAAgMaO8BsA0Ag4krFlTLFcJ1emLPw2xiPX2R2oCjeO1MDDb79JU6EtbSr2S5IcI7kmNPx2FLqJZfn5ArN/WGH71lI+jQMAAAAAEA3fNQMAGgFXkiO5xWUbUwbCb9fZJckvmZJA3+866Nu9L/KcVsrx7bm/sdgfUvkdqbrbKftUnelrHfbsvI4kNr0EAAAAACCipPpeAAAAVTKuZFkycmWMT5YJtA1x7R2S8UsyMqZIMnbseepZtj9Vef49Efa2UlteZ8+Glq5aqXKY7ZRVfm8sSVVypZzbY1Q2vmFXvAMAAAAAUB+o/AYANAJGtnelZGz5ij+UMZ7AUTdfe/p/O5Jqbkfo2uBxEjRnpyfkWKkb+FRsWz3kV3rYNX4T2O06y5egfDs0/Z76a6n4VA4AAAAAQGRUfgMAGgXj5kvGJ9feURZ6BzbBDJ43XjX0ticeN0G7vHbYMUkqdNspxfJJVuhzyLeTpGRpt1dqW6n0+9cSv2h7AgAAANQd27b1/vvva+7cuVq6dKkyMzOVm5ur9PR0de7cWUcccYQGDRqkcePGqU+fPvW9XKDZo1wMANBIGHkKXpRkl/X6lqQKQbLxRbqojsUOor1u+PnVhYHK7gKnhSRLXtMi5PwXWSmSpOV5tn7IjxDuW/wcGwAAAKgLH3zwgfr166dx48bphRde0MqVK7V7927Ztq2CggJt2LBBM2fO1F133aUDDzxQo0eP1sqVK+t72bXqwQcflGVZsiyKctAw8R0zAKARMDJucdnmkK6Mk1N22K4wwl8/SwuRoED/7cgV6J4I4XdB2VPI9aeofVKCPG5KyPn1xYG5sryuNhWHt3UxSqD2GwAAAKhljzzyiO6//34ZE9hv59RTT9Xo0aN15JFHqmPHjiopKVFGRoYWLFigWbNmafPmzZo9e7Z69eql//73v/W8eqD5IvwGADR4Rq6MmyVZCTLGrdDupEIY3CAqvxMlK1kyxRHPeiO0JN9RGvji2eNaKnJaaLevhaQ9fcG/zfVKspTldbShOFLAzy9xAQAAALXp5Zdf1v/93/9Jkrp27ao333xTp556asSx48eP1zPPPKM333xTf/rTn+pwlQAiIfwGADQCpuwPb9ltR8aEBsHGya3zVVVmWx2UIJ8SFCn8TtK83SbsqFP23IrtRNkmQfl2Ysj5XJ+Ra3XUDo8ddm0A4TcAAABQW7Zu3aobbrhBktSmTRstWrRIBx98cMxrEhMT9bvf/U6jRo3SwoUL62KZAKLgO2YAQMNnAq0/ghXfxoS0PAkcKqzrVYXxmtYqNp0injNWut7cWhR23C3Lw3f7ElTiJCnfH9rEJNtna7PvAJU64cG5FGh7AgAAAKB2PP300/J4Ar+Z+eijj1YZfFfUrl07jRkzJur5nTt36r777tPxxx+vDh06KDU1Vfvtt58mTJigefPmRb1u8+bNwT7br7zyiiTp008/1ZgxY9StWzelpqaqT58+uv7667Vt27Yq1+nz+fTcc8/ptNNOU+fOnZWSkqJu3bpp5MiReu211+S64W0dX3nlFVmWpYceeih4rHxNFT82b96sH3/8MXj/8ccfr3I9//73v4Pjly1bFvaY5fN6vV499dRTOvbYY9W2bVu1adNGJ554op577jk5ToRfu63EcRy9+uqrGj16tHr06KHU1FR17NhRJ598sp5++mmVlpZWOQcaPr5jBgA0eI5/TeCG8UrGI8lUaH3ScNhKUp7dKvy41UNGKRGukPyu5FidleuXvstvoUxv6Kdm10iritKjPmaO02vfFg0AAAAgImOMpk6dKklq3bq1Jk6cWGNzv/766zr44IP12GOP6dtvv1Vubq58Pp+2bdum6dOn64wzztBVV10l2472G6B73HvvvTrzzDM1a9YsZWZmyufzafPmzfrvf/+rY489VqtWrYp67ebNm3XUUUfphhtu0BdffKGsrCz5/X5lZmbq448/1iWXXKKhQ4cqJydnr5/rkUceqQEDBkiSXn311SrHT548WZJ0+OGH64QTTog4Jjc3V4MHD9add96p77//XgUFBSosLNSyZct0ww03aNiwYSoqCi8+KrdlyxYdd9xxuvzyyzV79mxlZGTI5/MpJydHixcv1u23364jjzxSa9eu3YtnjIaE8BsA0OC5TnbZrUDLE8lIpqQeVxSZbRLkdRPDjntMS5ko21IWOa6KTQdl+aSNJdLPBaEV3kYmrBq8onwnbd8WDQAAACCilStXKjs78L3IkCFD1LJlyxqZ9+2339Yll1yi4uJiHXjggXr66ac1Z84cffvtt3rnnXc0cuRISdJLL72ku+66K+ZcL7zwgh5//HENHTpUb7zxhpYvX6558+bp0ksvlSTt3r1bV1xxRcRri4qKdPrpp2v16tWSpHPPPVcffPCBli9frunTp2vo0KGSpEWLFmnMmDEh1dTnnnuufvrpJ11//fXBYz/99FPYR8+ePSVJV111lSRp9erVWrp0adTns2LFCn3//feSFHXdknTttdfq22+/1QUXXKCPPvpIy5cv1xtvvBEM2RcsWKBLLrkk4rXZ2dk6+eSTtWLFCqWmpurGG2/U9OnT9c0332j+/Pm69957lZ6ervXr1+uss85Sfn5+1HWg4aPnNwCgQXOdfEmh1Q6umyPjRv8pfn35Kq+j2iU7OrhSkbejREX7eXOmx1WO3Uqbil2tLfTr54LKFe2WHlwVPeh3TPRgPOJ4q6sSTWa1rgEAAACaox9//DF4+9hjj62RObOysnTNNdfIGKMrrrhC//vf/5SUtCeeO/bYY3Xeeefpvvvu02OPPaZ//vOfuvbaa3XIIYdEnG/JkiW6+uqr9b///U+Wted7g9NPP10pKSl68cUX9dVXX+n777/XMcccE3LtQw89pI0bN0qS/vznP+vhhx8OnjvuuON0/vnn65JLLtHrr7+uJUuWaNKkScGwu127dmrXrp26dOkSvKZ///5Rn/dFF12k2267TcXFxZo8ebIGDhwYcdzLL78sSUpOTo4aXkvSN998o8cee0z33ntvyJrHjx+v0aNHa+7cuZo5c6Y++uij4A8Tyt18883aunWrevfurfnz56tPnz4h50899VSNHz9eQ4YM0caNG/XEE0/o0UcfjboWNGxUfgMAGjZTIlXe3NItkuvW8waXVouwQ4W2pe/ykqRKLU4ckyg3ys+bNxT5VeIkaUuJrQLbVaTO3vn+6P3q3MitwKPyK1ILlWpOAgAAADQDWVlZwdudO3eOOs51Xa1cuTLqh9+/5/uZ559/Xvn5+erZs6eee+65kOC7ooceekg9e/aU67qaMmVK1Mfu3r17sEd2ZXfccUfwduWNN71er1588UVJgfYiDz74YNj1lmXpueeeU8eOHSVJzz77bNR1VKV169aaMGGCJOmtt96K2E/b5/Pp9ddflySNHj065mt+5JFH6p577gk7npSUpBdffFHJycmSpOeeey7k/ObNm/XWW29JCjyfysF3uWOOOSa40Wl5X3U0ToTfAIAGzZgSmUrht+tfJ9eueuOW2pTrhn+RlOuXXthcKsdqH3LcNokqcttGnsfvKMefpN1eR6VO+EYykuSLkXA7UdqpRJYgr6FNCgAAABCPwsLC4O1YLU8KCgp0xBFHRP3Yvn17cOwHH3wgKRDupqamRp0zKSkpWB0dq03IuHHjos5zyCGHqFWrwJ5E5RXe5b799lvl5eVJki6//HIlJoa3b5SkNm3aBEPrX375RRkZGVHXUpXy1icFBQV65513ws5/+OGHwTYzsVqeSNJll10WMfCXpF69eunMM8+UJH3xxRch7Vpmz54tx3GUnp6us846K+ZjnHLKKZKkHTt2aMuWLTHHouEi/AYANGiBkDt8kxfb+0OdryXk8U3lLw4tfZXjyHGNcp0uMtaeL463eVup1I284aUkbShO0k6PHTXkjlWXneevTgezBHnd5LLb0dcDAAAAIFCtXK64uHif53McRz/88IMkBduUxPqYMWOGJGnnzp1R5zz00ENjPmb79oHCnIpBvhToZ17uxBNPjDlHxfMVr6uuQYMG6bDDDpO0Z1PLisqPde/evcpgury3dzTlG2UWFxeHBP/Lly+XJJWUlCgpKSnm6z969OjgdbH+DtCwEX4DABo0x78xrO1J4PimeljNHn4TGjobq5Xe31Esv5G+yGkvv8qrvy19lZMsf1hYvseaIiOva+R1qt9+JNObKMVd/Z0gX9m6XatVtR8LAAAAaE7K231IgY0jo2nXrp2MMSEfl112Wdi4nJwc2XZ4YU9VSkqi7wGUnh6preEeCQmB6K9i9XP5WspV7NsdSbdu3SJetzeuvPJKSdL8+fO1efPm4PGMjAzNmTNHknTppZdGrUQvV9Wau3btGrxdcc27du2q7pIlxf47QMPGhpcAgAbNuMWSIrQDMeE94urSdm8L9ajwdeYO+2BJUq7P0bI8aXTnwKdYY7WRx429MWWePxB6e6rbwFuSMZYCP8uO3hc8yEqQx0mUEiVXabKstrIMO5cDAAAAkRx11FHB299///0+z1cxgL7qqqt0yy23xHVdSkrt/tZmtPYhteHSSy/VvffeK5/Pp1dffVUPPPCAJGnKlCnB16eqlifS3q+5/DE6deqk+fPnx31dtN7gaPgIvwEADZpxiyIfN946XkmoPH9oJcIuX5okj/zGaJfHlW0C7UVcpcpfRfid6YkjuI4isEVmfOG3UaJ8JlD54VeqLDlKFOE3AAAAEEn//v3VsWNHZWdna+HChSopKamy0jqWDh06BG8bY9S/f/+aWOY+ryUzM1N9+/aNOrZiy4+K1+2NTp066ZxzztH06dP16quv6v7775dlWcFNJQcPHhxzLfGuOTMzM+Kay6v5CwsL1a9fvyorzNH40fYEANCgRd3Ysp4rv7/PT1DFdiNfZO2pxrCNUbHbQlIgcPa40o8F0b9IzvBE3ugyHkblld9V2+0cpLXFqco1h+m7wh5l1wIAAACIxLIs/f73v5cU2KTx1Vdf3af5UlJSdPjhh0uSFi9evM/r2xcVg/evv/465thly5ZFvE7auwrs8o0vN23apC+++EJLlizR6tWrJcVX9S1J33zzTVzn09PTdeCBBwaPH3PMMZIkr9cb7P+Npo3wGwDQYBljy9RzyB3NukJXFTeNXFe8J8Au9Bvt9AY2vHSVqPVFjopjFGb/Wuzb63UU2pKs+D6de9wk5fgs+UyySp0E8WUAAAAAENttt92mtLQ0SdK9996rTZv2be+hs88+W5K0evVqzZ07d5/Xt7eOO+44tWvXTpL06quvynUjF+QUFhbq7bffliQddthh6t69e8j58tdGCgTK8Rg+fLh69+4tKbDJZflGl61atdKECRPimmPq1KkyJnLbyO3bt+uTTz6RJJ166qkh1d1jxowJBvbPPPNMXI+Fxo3vegEADZZrZ8gYT30vI6IvszwqsXoG78/YVlzhXKmW5aVISpCjFH2YUSw7Rjvv4r3Y6LLc5M1exbvh5c9FLbXTIxU5ycr1WzJ8GQAAAADEtP/+++tf//qXJCk/P18nn3yyFi1aFPMaY4zy8vIinrvlllvUqlVg8/mJEyfq559/jjnX7Nmz9eOPP1Z/4VVITU0NVmCvXLlSDz/8cNgYY4xuvPFGZWVlSZJuvPHGsDEVw/ANGzbE9dgJCQnBCu933nlHb731liRp/PjxwdemKj/88IOefPLJsOO2bevqq6+WzxcoMLr++utDzh9yyCEaP368JOnNN9/U008/HfNxNm3apGnTpsW1JjRM9PwGADRgtuLayLEe5PsdOWV9vSWpctGB35WkRDkmscL9mlfquDKy4oq/S+wEbSx2tN2Tpmyfpd12Z/VIjNJWBgAAAIAk6eqrr9b27dv10EMPaceOHRoyZIiGDRumMWPG6IgjjlCHDh3kOI527typ7777Tm+//XYw1E5MTAzZsLJr16569dVXNW7cOGVkZOj444/X5ZdfrrPOOku9evWS3+/Xtm3btGzZMs2YMUMbN27Uhx9+qCOPPLLGn9f999+vd999Vxs3btSDDz6on376SRMnTlT37t21adMmPfvss/riiy8kSQMHDtQ111wTNsegQYOCt//4xz/qvvvuU/fu3YPV1QcccICSksLjxyuuuEIPPfSQSkpKQo7F6/jjj9fdd9+tH374QZdeeqm6dOmidevW6emnnw62aRkzZoxGjx4ddu3zzz+v5cuXa+PGjbr99tv1/vvv69JLL9Xhhx+u1NRUZWdna8WKFZozZ44+//xzjR07VhdddFHca0PDQvgNAGi4jC2Zhhl+O8bIZ5KDRddGoem3bSRZFcLvvS/ujqnUMYqv8jtBRY7RslyfTuzQQr8UumqV1Ea/71I76wIAAACakgcffFBHHXWU7rjjDm3cuFGff/65Pv/886jjLcvSiBEj9OSTT6pHjx4h58477zy9//77uvzyy5WTk6P//ve/+u9//xtxnoSEBLVs2bJGn0u51q1b67PPPtNZZ52l1atX65133tE777wTNm7w4MH64IMPIm4OefDBB2vChAl6++239cknnwTbjZTbtGmTDjjggLDrevXqpREjRujjjz+WJPXt21cnn3xy3GufNGmSrrzySk2bNi1iZfbgwYP1+uuvR7y2Q4cOWrx4sSZMmKCFCxdqwYIFWrBgQdTHatOmTdzrQsND+A0AaLCMKZFUSyXT+yRVjpG2e1upbYseSjI7VDnbdkxgs0vXBFqL+Gqt8ju+8NtYLbQoy2i319bWUinH58p2EySxuzkAAAAQj7Fjx2rMmDF67733NHfuXC1dulS7du1SXl6e0tPT1bFjRx1xxBEaOHCgLrjgAvXp0yfqXGPGjNGmTZv0wgsv6KOPPtLPP/+snJwcJSUlqVu3bjr88MM1bNgwjRs3Tvvtt1+tPacDDjhAK1as0AsvvKDp06dr5cqVKigoUIcOHXTMMcfod7/7nS6++GIlJERvmfjaa6/p+OOP14wZM7RmzRoVFhZG7SFe0SWXXBIMvydOnFitdbdv315LlizRM888o7feeksbNmyQMUb9+vXTpZdequuvvz5iWF+uW7duWrBggWbPnq1p06Zp6dKl2rlzp/x+v9q1a6ff/OY3GjhwoM4++2ydcsop1VobGhbCbwBAgxXo911LJdP7wFhJMpJ2epPVJ62VWisQdlcUuJ8ktyyYLt2Hvt6xlDiu4tnCw6iFfirwqdQx2lHqaGupI9skifAbAAAAiF9SUpLGjx8f7Bu9L9q0aaPbb79dt99+e7WuO+CAA6Ju9ljZ5s2bqxyTkpKiG264QTfccEO11lEuOTlZd955p+68885qXbdy5UpJgdYwl112WbUfNy0tTffcc4/uueeeal9bbtSoURo1atReX4+Gj52uAAANl/HLuIX1vYoQxmqnrf5DJEle15KJUnX9/MYiOWoRPF9g1856vK6RrdZVjst1u2m3N7CIQttofaGvbBPO+DbLBAAAAICa4jiOpkyZIkk666yzQjbOBGoS4TcAoAEzamhtTxyla6c3TZLkc8rD7/Dq6WyfK6NEOWVtT34trr3e5X6TVulIhPX401VQ1ni8yDYqcYxKHEkW4TcAAACAuvX6669r27ZtkqTrrruunleDpoy2JwCABssYf30vIcxH2QdrRb4lqVQljmRkyVitIo41SgiG33MySyKOqQl5TiulV8i7/VZ3JZvdkrzBY9/nt5DfFEiSFmeXSpI+3+XXbfsTfgMAAACofevXr5ff79fy5cv1xz/+UZJ01FFHaeTIkfW8MjRlhN8AgIbLeKseU8f8rqVNJYFq9Fy/5HOTZaJspGJkyTYJqu2+5aVuUkixt6MkJVsJVT6szzXyq4NofQIAAACgtv3mN78JuZ+cnKznn39eFr+NilpE2xMAQINlVEuNsveBI2lVgU+SlOOTcvxpivbp1ChRXrf2N5QsdUIfw29SZOL4FF9gu9rm6y43zs1yAAAAAGBftW/fXqeffrq++OILDRw4sL6XgyaOym8AQMPVAENZY6S1RYHw+5tcv0Z3S5Ib5dNppr+D1pe0kFS7m3YWVwq/XSUqUt/vykocI6+bIMdYcYwGAAAAgL1n9vH7u8svv1yXX355zSwGzQaV3wCABqxhbXYpBTqJOGVfs/1U4FWpkyCvaR1x7ObSFtpUXPu/wlf5VQr0Ga/6U7zfdZVvJ8nf8H7GAAAAAADAPiP8BgAgGqtF2P2KObHXMfK6llaVdI54eZ4/QSvyaz/Ad41V6X6CvGofcsyJEHD7XSnblyjX8OUAAAAAAKDp4btdAEADVr+V30ZJqtg+xCglpBOLzw2E31tLI7c92VJiaXupU8urlLxuaPjtKEF+kxxyrDjCMvzGaJc3QS6V3wAAAACAJojwGwDQgNVvKutRZwW2xwh8unSVojz/nvNGkm2k3d7IrU12e41y/bUf4Of7K346T5ZtLBU5LVRxa4+SSOG3a7Sx2DTE1uoAAAAAAOwzwm8AQMNl/FWPqRWBT4+lbgu5VmvJSpEUCL8rs11L2VGWWeJKmR671lYZfBzHkhT4cKx28rjJ8prQanRfhAze6xqtyK/99QEAAAAAUB8IvwEADZZxi+rnca2WkiSPm6xct5uMAi1EHKWENWIpcoyyvJFLp/2uUZav9tueFNlSIPxOUrbTXbt8yfK6iSFjIrU2cYz0ZVZpra8PAAAAAID60GDDb6/Xq8zMTLlu/fZ7BQA0RZHblJQzSpUkedwk+dxEuUqTJHlNaliLkLmZrorsyOH397l1U7m+osCVKducs9hJke0m6Ovc0M066WwCAAAAAGhu6jz8Lioq0kcffaSPPvpIRUXhFX1ZWVk6//zz1aZNG/Xo0UPt27fX7bffLq/XW9dLBQA0WZE3qCznlIXfJU6SXCXIY9pKkmyTGBYif7SzWEVO5B/U/lhQN5+7fszzy6iFJEsFdrJKXEvzdlWuOCf+BgAAAAA0L7G/+68F77zzjiZOnKhevXpp8+bNIedc19VZZ52l7777TqastK6wsFDPPPOMNm/erHfeeaeulwsAaCI8Vh8lq0iJZrdkJcfsJ+4oRcmStnmS1TLRVqFaqmWiZJskrS8OD7oL/fUbLK8r8smU9fyenZmifq2NFlZoZ2KsNmXnAQAAAABoPuq88nvu3LmSpLFjxyohIfTh33rrLX377beSpGOPPVZ//OMfdeyxx8oYo5kzZ2rOnDl1vVwAQBPhNalyFGgFUt7DOxq/CZzf5U2Q3yQoxw60PSl1k7TLEyH8jtL2pK54XSOjQI/vtUWOih1LuX5H5e1dHKWHtWsBAAAAAKCpq/PK75UrV8qyLA0aNCjs3JQpUyRJxx13nJYsWaKkpCT5/X4NGTJE33zzjV599VX99re/reslAwDqia/kkxqYJVGSI6MEOUqUlKBSdVK68qNeUeqmqXWCVOJIpU6iNpcm67DUFHmcRM3JLAkb/32epwbWuW98StdOp4d8ruQry+eN1UqWyVWpaav8eg7oAQAAAACoa3Ve+b1r1y5JUp8+fUKO+/1+LViwQJZl6YYbblBSUiCXT05O1nXXXSdjjJYtW1bXywUA1CNjwveGqDYrRZLkGks+kyYpUTKxW4C4ZRXTflfKtxO1qjBwP9OXsu/rqSU+k6pSJ1GuMcHu3j61kZSsPLulNhdX7gEOAAAAAEDTVufhd05OjiQpJSU0QPjmm29UWhroT1q5urtv376SpJ07d9bBCgEADYExRjL7vmGkKdu80jaJ2u1rJSlBporNH92ycHyHx2hLaYK2lQZKqT/fXeefNuNW6qTINgmyjeSWPb0Mfye5Vmv9XNRScyNUrAMAAAAA0JTV+Xfx6enpkvZUgJdbsGCBJOnggw9W165dQ861aNGibhYHAGhAaqJNR4L8al02myWfSZAsS1V9+sv0tZCUoF8KbK0pLGsjYiU26E0jfyhsKyMp1+cEw2+PE+gDvqqw4Yb2AAAAAADUljrv+X3QQQfphx9+0BdffKEzzzwzePy9996TZVk65ZRTwq7ZvXu3JKlLly51tk4AQH2rifA7UTl2B3VL3CrHWLJdS5Ilu4pPf9/lp+iYFsna5XW0tTShbDUpyveHb3bZUHy00+j6PtKP+T6d2yNQ7V7qBnqc/1xAyxMAAABgX9m2rffff19z587V0qVLlZmZqdzcXKWnp6tz58464ogjNGjQII0bNy6s3W80K1as0Lvvvqv58+dr8+bNwQysXbt2+s1vfqPjjz9eZ599tk455RQlJMRX1JKXl6c333xTn332mX744QdlZWWpqKhIbdq0UY8ePXT00Udr2LBhGjt2rNq1axfXnMYYzZ07Vx999JEWLVqkHTt2KCcnR6mpqerYsaMOP/xwnXjiiRo3bpwOO+ywuOaUpA0bNujtt9/WZ599pvXr1ysrK0u2batt27bq06ePjj32WI0aNUpnnnmmkpOT45qztLRU06dP16effqrly5dr165dKigoUKtWrdS1a1cdddRRGjJkiMaNG6du3brFvdbFixfr/fff15dffqlt27YpOztbiYmJat++vfr166fjjz9e5513ngYMGBD3nBkZGXrrrbc0b948rVq1Srt375bH41Hbtm2133776ZhjjtGIESM0evToYEFxVWrjfSrVznu1LljGmDrdAeuee+7RE088oTZt2mjatGkaMmSIJk+erFtuuUWWZem9997T2WefHXLNU089pbvuuksDBw7U4sWLa2Qdy5cvD/4P+8svv2j37t1KTk5Wjx49NHjwYF155ZU6+eST457v448/1qRJk/TNN99o9+7d6ty5swYMGKBrrrlGZ511Vlxz2LatF198Ua+//rpWr16toqIi9ejRQ8OHD9fNN9+sww8/fG+fbpW2bdum/fbbT5K0detW9erVq9YeCwDiYYxfBTv2cZNjq4VWlByto1os1XrfABU4STomfZWynP3UOeGnqJc9uHGo7jhwh4Ysbq/D2yTLMdLzR+bqqh/aa96uhtk+5NTO6Xq0n63BC3wa3iVd83aV6Ldd0/X60et04Q+/0acx2p7kXvQXtUuL7wspAAAA7Jt9+f573bp1sm1bSUlJ+s1vflPl+IxXGu5vLu6r7pfX7YbuH3zwgW6//XatX78+rvGjRo3S448/rv79+0c8v23bNt18882aOXOm4onmDjjgAD3wwAO6/PLLo45xXVdPPvmkHn/8ceXl5VU5Z2pqqq6++mo98MAD6tSpU9Rxixcv1k033aTvv/++yjkl6eSTT9bjjz+uwYMHRx2Tl5en22+/XVOmTJFt21XO2aVLF91999265ZZblJiYGHXcSy+9pP/7v/9TRkZGlXMmJibqoosu0iOPPKLevXtHHffLL7/ohhtu0BdffFHlnJJ0xBFH6NFHH9WYMWOijvF6vfrzn/+s//znP8E20LG0bt1at956q+65556YIXhNv0+l2nmvRlPdf+PiUefhd0ZGhvr166fCwsKQ48YYHXbYYfrpp59kWaH/OJ922mlasGCBrr/+ej377LP7vIZTTjlFCxcurHLcpZdeqhdeeCGsP3lFruvqmmuu0UsvvRR1zFVXXaX//e9/MX/qkZWVpZEjR+qbb76JeD41NVXPPvusrrrqqirXvTcIvwE0NMb4VLAjvh8eRp3Daqn5+cdoWJtFWuk5SaVOgo5ttUGZdg/1SIz+hdvd60/RHw4o1oglCTqqbYocIz3dv1TjliVrbZFvn9ZUWzqlJGrGick6daFHh7VJ1S8FXiVaUuaZGTprWR99k+uJei3hNwAAQN0h/K4ZdRl+P/LII7r//vuDwd+pp56q0aNH68gjj1THjh1VUlKijIwMLViwQLNmzdLmzZslSddee63++9//hs337bffasyYMcGAtlevXrrgggs0ePBgdevWTcnJydq1a5d+/PFHzZkzRwsWLJAxRqmpqfJ4In9dX1paqosuukjvv/++JCk5OVnnnXeezjjjDB144IFq166dcnNz9euvv+qzzz7TrFmzlJ+fL0maNm2aLrzwwojzvvLKK7rmmmvk9/slSccdd5zOPfdcHXfccercubP8fr927typpUuXavbs2frll18kSSNGjNCcOXMizrlx40aNHDlSa9askSR16NBBF110kU455RT16NFD6enp2r17t1avXq25c+fq008/DQbkGRkZEau1XdfVH/7wB/3vf/+TJFmWpVGjRum3v/2tDj30ULVv316FhYXavn275s+frw8//FCZmZmSpL/+9a+65557Iq51zpw5mjBhQjDHPOSQQzRu3DiddNJJ6ty5syzLUmZmZrDIdvny5cFxq1evjjhnVlaWzj77bC1dulSS1LJlS02YMEHDhg3T/vvvr9atWys7O1vr16/Xp59+qo8//jgYkC9dulQnnXRSxHlr+n0q1c57NZbaCL/rvO1J9+7d9eGHH+rCCy8M+SnMgQceqBkzZoQF3xs2bAgG1cOHD6+RNezYsUOS1KNHD40fP15DhgzR/vvvL8dxtHTpUv3973/X9u3bNWXKFPn9fr3xxhtR57rvvvuCwfcxxxyju+66SwcddJA2bNigJ554Qt9//71efPFFde7cWY899ljEORzH0dixY4PB93nnnaerr75aHTp00Ndff61HHnlEu3bt0rXXXquePXvGXUkOAI3bvn8x66itCuwEGautRiz26ZmjWunoVsnym9i/gmUkTdnaSqVOkRZllarEMcqzU7XbW3VFQn3J8jkqdQM/rPU6gfYsjpHy3U5aHiP4BgAAABDdyy+/rP/7v/+TJHXt2lVvvvmmTj311Ihjx48fr2eeeUZvvvmm/vSnP0Uck5GRoVGjRgWD1/vvv19/+tOflJqaGjZ25MiRuueee/Tjjz/qz3/+sz755JOo67z22muDwfdJJ52kN954I2pLi4kTJ6qgoEDPPvusHnnkkahzzps3T1deeaVc11WrVq00efJkjRs3LuLYsWPH6oknntDs2bOjBsmSVFxcrNGjRweD76uvvlpPPfWU2rRpEzZ2xIgRuuWWW7Rp0yY9/PDDmjx5ctR5H3zwwWDw3bdvX7399ts66qijIo69+OKL5fF4Qv5uI1m5cqXOP/98lZSUKDk5Wc8884yuu+66iMWtY8aM0UMPPaRFixbp3nvvDbYEqcxxHI0fPz4YfJ999tl64YUXIrZ6Hj58uK677jplZmbqySef1DPPPBN1rTX9PpVq771a1+q88rucz+fT4sWLtXPnTnXv3l0nn3yykpLCs/hFixbps88+kyTdeeedcfe3iWX06NG69NJLdf7550f8VYmsrCwNHjxYa9eulSR9+eWXEXuRr127Vocffrhs29bxxx+vBQsWhGzOWVJSoqFDh2r58uVKSkrSqlWrdPDBB4fN8/LLL+vKK6+UJP3hD3/Qf/7zn5Dz69ev13HHHaeCggIdfPDBWrVqVcTXal9Q+Q2goTGuRwUZo/ZpjiL9RpO39dClvTLV+5MWmnRMa43qvEObPJ3UP+2rqNfdse4U5flcvb+jRLYxMpI+HdxC533tVaHdcPt+TzuhtS5aVqiuqUnKLAvq1w531Hde9F8LlKj8BgAAqEtUfteMuqj83rp1q/r27SuPx6M2bdro22+/jZjrRJKXl6eFCxeGtb4YPXq0Zs+eLUn629/+prvuuivu9UydOlWXXHJJ2PEZM2Zo/PjxkgKV2QsXLgzJp2Ipb7t7/PHHhxwvLi7WgQceqF27dikpKUlffvmlBg0aFNecHo9HH374YXBNFd14443B3CtSBhbLhx9+qCFDhoT1KV+2bJlOOukkGWO033776fvvv1fHjh3jmnP79u1as2aNhg0bFnLcGKOjjjpKP/0UaJf51ltvacKECXHN6bqupk2bpt/97ndh55566indeeedkgLvhffffz/u/thLly5Vly5ddNBBB4Ucr433afn6avq9WpUmUfldLiUlRaeddlqV404++eRq9d6Ox6xZs2Ke79Spk/7+978H/+JnzJgRMfx+5plngr928e9//zvsH5b09HT9+9//1sCBA2Xbtv7xj39E/J/6qaeekhT4NY8nn3wy7PzBBx+se++9V/fee6/Wr1+v9957L+I/IADQtOx7lfU2b3v9dU2hvKarpAIZWcqx2+jL7FT17xn9OmOkj3aWyF/h58OlboK8br38vDhu3+QG/iy292xwmeNPk+SvnwUBAAAAjdjTTz8dbN3w6KOPxh0oSoFNACsHiitWrAiGiQMGDAiGoPGKFiaWdxqwLEuTJ0+OO/iWpEMPPTTi8RdffFG7du2SJN1yyy1xB9+SlJaWFjG3yszMDHZP2G+//YJ5WLyi9dD+61//Gmz18dxzz8UdfEtSz5491bNn+DeHH3zwQTD4Pv/88+MOviUpISEhYvDt9Xr197//XVIgM3zppZeqtTHkwIEDIx6v6fepVHvv1frQcLbebGAqBvMbNmwIO2+MCf46yaGHHhq1385JJ52kQw45RJL0/vvvhzWGX7t2rVatWiVJmjBhQtTK9opN4t977734nwgANFLGOFUPqkKWP0V+Vyoty9H9Jr5mKq6RSp3QkR7Xkq+Bh987PIH1FVdY++Lc+L/wBQAAABBgjNHUqVMlBTYbnDhx4j7P+eqrrwZv33TTTWGtf/fGjz/+GNyI8rTTTtMRRxyxz3NKe9ZqWZZuuummGpnzrbfeCoa0V199dbVC+mjy8vL0wQcfSJIOOuggjRq1b789XK7i39Utt9xSI3POnTtXO3fulCRdeOGFEVudVFdtvE+l2nmv1hfC7yi8Xm/wdqTWKJs2bQr2Dh86dGjMucrPb9++PdhMvtyiRYvCxkXSrVs39e3bV1Jgl10AaPr2PfxeV5QovzFaUxRIvwvLQvCqImwTYYzHafif7D1loXfFtS/ObrhtWgAAAICGauXKlcrOzpYkDRkyRC1bttznOb/88svg7d/+9rf7PF9tzZmfn68VK1ZIkvr166fevXvXyLy1sdaFCxfKdQPf84wYMaJGQlpjjBYsWCApECgPHjx4n+eUauf518b7VKqdtdaXemt7IgVK6BcuXKiNGzeqsLBQjhM76LAsK/jrEbWt4l9yv379ws6X714rRf8VkUjnV61aFbLhQHXnWbt2rbZu3ari4uJqvaG3bdsW83zFzUcBoEEw+972ZENxIAZeUxCY69tcRyO7qMr0+7tcX9ixPH/DD7/9EbbxKGnAPcoBAACAhurHH38M3j722GNrdM5evXqpc+fONTqnVHPrXLlyZTBQrqk5pT1rTUhIiLoZ5d7OKdXcWnfs2BEMlI866qhqtSaJpTbfUzU5Z8V5a/K9Wl/qJfxes2aNrrjiCn31VfTNxiozxtRZ+O26rh5//PHg/Uh9fSqGyVVtTlG+kYUUaEK/r/MYY7Rt27ZgO5V4VFwDADQGxpTs8xybSgI/VPWbwBdum0scSVWH2BuKw8Pvon3P4mudEyHnLnEadqsWAAAAoCHKysoK3o4V/rmuG1LYWNkhhxyi5ORk5efnB/eNqypM3LJliwoKCiKe69KlS0i7jHjXWVhYqF9//TXiuZSUlGC3gerMKQWKPKMVs/bp0yekcLN83rZt2yolJSXqnDt37gxZQ0Xt27cP6dEd71o9Ho/Wr18f9Xz//v2rPacUaJVcWloa8VyvXr1CNueMd97s7OyoRaotW7YMKaqt6feppFp7r9aXOg+/t2/frlNOOUVZWVnB/tetWrVS+/bta+wnKfvqH//4h5YtWyZJOu+883TccceFjSksLAzebtWqVcz5Kv6PXlRUVCvzAECTYyoG0AmSql/BvL008EWYKQu8t5XaOmtJgsb0iB0IRwqMfY2ggPqzXeFfdOU0hoUDAAAADUzFvCbWb94XFBTE7LO9adMmHXDAAXHPJ0k333xzcJ+5yh544AE9+OCD1V7nZ599prFjx0Y817t375A2vdVZ68CBA5Wfnx/x3Pz583XqqaeGzVvVnI8//rj++c9/Rjx32WWX6ZVXXqn2WlevXq1jjjkm6vmKe/RV5/mff/75wRYxlU2ePDlkD7945506dar++Mc/Rjw3dOhQffHFF9WeM973aXXmlKr3Xq0vdR5+P/roo9q9e7csy9JVV12lO+64I+SnS/Xtyy+/1D333CMp8BOK559/PuK48gb9kmL+tEqSUlNTg7cr/zSopuapSuWK88oyMjJ0wgknVGtOAKgzVppU7UrwRG0t8Uva0+Vkt9eWE9zM0lLk/icJEY/u8jX8CupIbU82RahiBwAAABBb69atg7eLi4sb3Hy1OW9trjUvL69ZP/+K87Zp06bG56wJtfX860udl1rPmTNHlmXp0ksv1aRJkxpU8P3zzz9r7Nixsm1baWlpmj59etTy/LS0tOBtny92sFBx88zKO9nW1DxV6dWrV8yP7t27V2s+AKhLPnWs9jWu1UHZlaqeywu6fy12AoF6BMaK/O/rcxsKIx5v6IppewIAAABUW8eOe74H2b17d9Rx7dq1kzEm5OOyyy4LG9e2bVslJSVVOZ8kzZw5M2S++fPn7/M6zz333LB1RtvIMt45JSkvLy9kzgceeKDKtebn58fMwJ555pmQOTdt2lTlnFWt9eijjw57/kOHDt2nOSXphx9+CJlz8uTJ+7zWW2+9NWyt+zpnvO9Tqfbeq/WlzsPvHTt2SJIuvfTSun7omDZt2qQzzzxTubm5SkxM1JtvvqlTTjkl6viKPwWpqgVJxZ+SVG5tUlPzAEBTYkxoaG324tNVxWuK7dAedJleRybKLz+t9x5W7ccCAAAA0LRU3JDx+++/r5E5jzzySEmB/d+i9bSurtpYZ//+/YOtiWtqTmnPWl3XDdmosSbmlGpurT179gyGyitWrAhu/rmvamOttTGnVDvv1fpS5+F3+/btJSmk4Xt927Fjh4YPH64dO3bIsiy9/PLLOuecc2JeU3FzyoqbVkZSseVI5Y0n92Yey7Kq3BwTABo1E9rayWsiV2nHnEKJwduVK8DXFvqiht83/1Qve0EDAAAAaED69+8fDEAXLlyokpLqtmEMV7HSeM6cOfs8X23N2a5du2CoumrVKm3ZsqVG5q2NtQ4ZMiQY1M+dOzdmlXS8LMsKFsQWFhZqyZIl+zynVDvPvzbep1LtrLW+1Hn4ffzxx0uS1q5dW9cPHVFWVpbOOOMMbdy4UZL073//O66q9MMO21MZuHr16phjK57v16/fPs+z3377VdlwHgAaM9v3s4z2VGuXuqmSlR739V6rt9wY21q4UtTw22F/SAAAAKDZsyxLv//97yUFNgt89dVX93nOinnTs88+WyNB7ZFHHqmjjz5akvT555/rl19+2ec5pT1rdV1X//nPf2pkzgsuuCC4n90LL7wQsg/e3mrXrp3GjBkjSVq/fn2NBbUV/67+/e9/18icI0aMUNeuXSVJb775ZpUtReJRG+9TqXbeq/WlzsPvm2++WcYYTZo0qa4fOkx+fr5GjBgR/Ifh8ccf1w033BDXtX369FGPHj0kBTbJjGXBggWSAr82Ub5zarmTTz45eDvWPDt37gz+wGDw4MFxrREAGivX3iGZPeG3z02SrXZxX59jt5dbxae4aOG3rxF/UgcAAABQc2677bbgXm333ntvzN7T8Tj66KN11llnSZK+/vpr/eMf/9jnNUqBtUmSMUaXX355jYTKV199tTp37ixJ+sc//qGvv/56n+fs2rWrrrjiCknSli1bdNddd+3znFLg+VuWJUm6/vrrlZOTs89znnPOOTr88MMlSW+//bbefffdfZ4zNTVVt912m6RAa+Orr766Rlqq1PT7VKq992p9qPPw+4wzztDdd9+t+fPn6/rrr5ff76/rJUiSSkpKNGrUKH333XeSpPvuu09333133NdblhVsjbJ69Wp99dVXEcd99dVXwYrtc845J/g/Y7m+ffsGq8HffvvtqL+e8MorrwRvjx07Nu51AkDj5ChQnx3gcRNVbOLfCds2CVX2CbeVGvG4j8pvAAAAAJL2339//etf/5IUKKA8+eSTtWjRopjXGGOUl5cX9fwLL7wQDJXvuOMOPfzwwzE3f5Sk3NzcmOcnTJigiy++WJL0zTff6IwzztCvv/4a85qSkhJ5vd6o51u2bKmpU6cqISFBfr9fZ555pmbOnBlzznjW+re//U2HHHKIpEBF9R/+8Icq98Cras4TTzwx+AOAX3/9VSeffLJWrlwZ8xrbtmM+rmVZev3119WiRQtJ0oUXXqhJkyZVGVZXtdbbbrst2FLl/fff17hx46rsqV3VnLXxPpVq571aH+q8semUKVPUr18/DRo0SJMmTdKHH36ocePG6dBDD1V6etW/0l4TG2X6fD6NHTtWixcvliTdcssteuSRR6o9z6233qpJkybJcRzddNNNWrBgQfB/CkkqLS3VTTfdJElKSkrSrbfeGnGeO+64Q1deeaVycnJ011136dlnnw05v2HDBv31r3+VJB188MGE3wCaPhO6QWWJkyS/SZKsKOMrcWXJNbEHmyiT+R0qvwEAAAAEXH311dq+fbseeugh7dixQ0OGDNGwYcM0ZswYHXHEEerQoYMcx9HOnTv13Xff6e2339bPP/8sSUpMTFRKSkrIfD179tSsWbN09tlnKzMzU/fff79efPFFXXjhhRo8eLC6du2q1NRU5eXlac2aNfr44481a9as4PXRsrMXXnhB+fn5mj17thYtWqS+fftq3LhxOuOMM3TggQeqbdu2Ki0t1ZYtW7RkyRJNmzZNu3btijnniBEj9L///U9/+MMfVFBQoLFjx2rAgAEaO3asjjvuuGCv6aysLK1YsULvvvtuSIV4xYysXOvWrTVr1iyNHDlS69at0/PPP6/p06froosu0imnnKIePXqoZcuWKigo0Pr16zVv3ryQqutoa/3LX/6izMxMvfTSS1q1apWOOuoojR49WmeddZYOOeQQtW/fXj6fT9u3b9eyZcv05ptvavPmzVHXKQU2k5w+fbouvPBCFRUV6dprr9Uzzzyj8ePH68QTT1Tnzp2VlJSknJwc/fzzz/rggw/02WefxVxrUlKSpk+frjFjxmjZsmV677339Omnn+rCCy/Uaaedpv3331+tW7dWcXGxNm7cqAULFuitt96q8vnX9PtUqr33al2zTB03bUlISAirfo6XZVmybXuf13D++ecH/8cZNmyYnnnmmZhrSklJUd++fSOeu/fee/X4449Lko455hjdfffdOuigg7Rhwwb97W9/C+60eu+99+qxxx6LOIfjOBo6dGgwjD///PN19dVXq3379lq2bJkefvhh7dq1SwkJCZo1a1bw1w5q0rZt24KbcW7dupUNNQHUC2McWVaiPIXTlJTST8VZt0uSlpcMUqcUrw5I+jaOWRK10X+MuiTnq9cnraKOyhiRrxZmY9jxIxedoC0l9fNbSfUl96K/qF1aw/jCBAAAoKnbl++/161bJ9u2lZSUpN/85jdVjs94Ze/yl8ag++V1W7Ty3nvv6Y477gjuGReLZVkaMWKEnnzySfXv3z/imC1btuimm27SBx98ENfj9+7dWw888IAuv/zyqBmW67r661//qieffFL5+flVzpmWlqaJEyfqL3/5izp16hR13IIFC3TzzTdrxYoVca114MCBeuKJJ0Ja/VaWm5urP/7xj3rttdfkOE7UceW6dOmiu+66SzfffLOSk5Ojjps0aZLuv/9+ZWZmVjlnUlKSxo0bp8cff1y9e/eOOu6nn37SjTfeGGxrXJXDDz9cjz32mM4+++yoYzwej/70pz/p+eefj6tNTZs2bXTjjTfqT3/6U8x9AGv6fSrVzns1mur+GxePegm/95ZlWXH9DxHPPNXRu3fv4E+DKnNdV1dffbVefvnlqNdfeeWVmjRpUsznnpWVpZEjR+qbb76JeD41NVXPPvusrrrqqmqtPV6E3wAaAmP8sqxkefJfVEJSN5XmBfqKfVMySO2S/PpNSuR/I0NYafqp9Gh1SSnRIfMSow7bMaJA6WZD2PFDFwzQTs++/6C1MSH8BgAAqDuE3zWjrsNvKdAq47333tPcuXO1dOlS7dq1S3l5eUpPT1fHjh11xBFHaODAgbrgggvUp0+fuOb84Ycf9M4772j+/PnavHmzsrOzJUnt27dXnz59NGDAAI0ePVrDhg2LO1PLy8vTtGnTNG/ePK1YsUJZWVkqLi5W27Zt1bVrVx1zzDE65ZRTNGHCBLVr1y6uOY0xmjNnTrCyPCMjQ7m5uUpNTVWHDh102GGH6YQTTtD48eNjBqmVrV+/Xm+99ZY+//xzrVu3TtnZ2XIcR+3atdP++++v448/XmeeeaZGjRoVM/SuqLS0VG+//bY++eQTLV++XLt371ZhYaFatWqlzp076+ijj9bgwYN1wQUXqFu3bnGvdeHChXr//fe1YMECbdu2TdnZ2UpKSlL79u3Vt29fnXDCCTrnnHM0cODAuOfMyMjQtGnT9Nlnn+mXX35RVlaWvF6v2rVrpx49eui4447TsGHDNHbs2LgrqWvjfSrVznu1siYRflfVc6gqsX4SE6+aDL/LffTRR5o0aZK++eYbZWVlqVOnThowYICuvfbauCu1bdvWCy+8oDfeeEOrVq1ScXGxevToodNPP1233HJLsNF+bSD8BtAQGOOVZaWqOOsuSUmyvYFfmfumeJBaJ9k6NHVZhKsSVLE/uLFaa07uMeqUYuuMRaVRHyta+H3g/OOU429ejb8JvwEAAOpOXYbfANCY1Ma/cXXe87smwut9VRt5/8iRIzVy5Mh9miMpKUnXX3+9rr/++hpaFQA0MsaVLMnxrZWV1HXPYUlet2IVd8XAu/LtRG0psdQyMfZPmrP9bZUe4bOgx6XnNwAAAAAATcHe9yABAKDGuTLGL2MKZZy84FHbWCp1K3zKslIrXFPxt3kSZGRpl08qcWL/ls9uf6oifRr0sOElAAAAAABNAuE3AKDBcJ3dkvEG7pT/KckxlmwTCLMdq6sctalwVcVPZYlylab1RY5Kqwi/bdeSVLlnXKKaV8MTAAAAAACarjpve1KR4ziaOXOm5s2bp5UrVyonJ0eS1KFDB/Xv31/Dhw/Xueeeq8TE6BuWAQCaDmM8MmWht9GeTSeNJLsslXaVLKtiRG0lBgZIkpUgV4kqto08buzw22cSQq+VZKwWNfAsAAAAAABAQ1Bv4fecOXN0zTXXaPv27cFj5b24LcvSkiVLNGnSJPXq1UuTJk3SiBEj6mupAIA6YpxMmYSyqm6zZ7NKI+mlX41OPbKlfCZNKVb5uQT51U7JKpEkuWohowS5MvI4sR/L41gySpSlVEnlgXtazT4hAAAAAABQb+ql7cnUqVM1evRobd++XcYYGWPUu3dvnXTSSTrppJOCm2IaY7R161aNGjVKr7/+en0sFQBQh4wxIe1O9hwPBOCO2shRkkzw01eCAj2/y3+WmyijBBX4jTxV9C8pcSy5SpOswFzGaimH8BsAAAAAgCajzsPvX3/9Vddcc41c11V6eroeeeQR7dy5Uxs3btSSJUu0ZMkSbdy4UTt37tSjjz6qVq1ayXVdXX311dqyZUtdLxcAUKdsyfgjnjHGUr7bUR43RSa4yWUg/Hat1pKVJkfJck2S1hb5VFpl5bfkVRuVb5hZYrrJr9TYFwEAAAAAgEajzsPvf/7zn/J6vWrVqpUWLlyoP/3pT+rSpUvYuM6dO+vee+/VwoUL1apVK3m9Xv3zn/+s6+UCAOqS8cl1c8MPS/ox36ttntb6aFd7GQX2gvBbncsqwtNllCxbqVpV0kXFtltl25N825LfJFcI0i35TEqNPh0AAAAAAFB/6jz8/uSTT2RZlu68804dffTRVY4/6qijdMcdd8gYo7lz59b+AgEA9ca4xTJOTthxx1jaVmrrp8IUTdrslW0CbU6K3UDltqtEGSXJNilamJMsx0hVZN/K9hn53GSVfyo0slTiUPkNAAAAAEBTUefhd3nrkuHDh8d9zRlnnBFyLQCgaTKmWMbNCz1otVSxE6jO/mino2LbDVZo7/C1kc8ENrk0Stb0nd3kc03ZZLEfq8CWvCZJpqzVSZGTriInuSafDgAAAAAAqEd1Hn47TqAWLzExMe5rkpICFX6uW8XuZQCARs0Yr4zxhRxzla6SsvB7ZYFProwKnMDGlFm+ZPlMsgLV30lamu3K51pl18WW7zcyJnCdJBU4qcr3E34DAAAAANBU1Hn43bNnT0nSkiVL4r6mfGyPHj1qZU0AgIbBtbfI8a0JOWYrTc9u8EqSMj22XFfa4QmE3wW2pQxvK7lKkKtk5fgdPbW2QJK0pjB245MPM0q0LK9VoH+4laatnhTl2PH/YBYAAAAAADRsdR5+n3baaTLG6PHHH9eOHTuqHL9jxw49/vjjsixLw4YNq4MVAgDqS6DqO7RfSaHbVkV2oI7b5xp5XFcZnkC19k5PgnwmQbZJkt+kqNC/59ocf+zwu9DvarfPklGCJEuOsfRLQZ1/WgQAAAAAALWkzr/Lv+mmm5SQkKDdu3frxBNP1IwZM4KtUCpyXVczZszQwIEDlZmZqYSEBN144411vVwAQB0xxi/j5Kly+P1dQXsVlgXZRlK2z1VJ2aeNL7JslTgJ8ptkFbnp8jh7rv0q2xP78SR9leOUhd+S15EmbSquoWcDAAAAAADqW1JdP2D//v318MMP67777tOOHTt0wQUXqF27djr22GPVpUsXWZalzMxMfffdd8rLy5MxgSDj4YcfVv/+/et6uQCAumL8kvwyblHI4Ty/pXw7tIN3ecS9qsCvXd409W6RrAI7RV5TxS6XlRQ7RkaWjFK125egAj97SwAAAAAA0FTUefgtSffee6/atm2ru+66SyUlJcrNzdXnn38eMqY89E5PT9eTTz6p66+/vj6WCgCoI8b4JWPLNTkhx3N8lpxKmbZbdn+X11Gu31KJk6zdvmQ5buhmmVUptl0ZJchRmnJ8gTAcAAAAAAA0DfUSfkvSH/7wB02YMEGTJ0/WvHnztHLlSuXkBAKPDh06qH///ho+fLgmTpyoTp061dcyAQB1xXgCVd+WFXL458LwauzyIyWOq62l0pfZLXRgevWrtn/K98nIkpSgjSVUfQMAAAAA0JTUW/gtSZ06ddKdd96pO++8sz6XAQBoAIzxyci3p6y7zObi8H0hAiMS5Bhpt9dVvl/av0X1H7PQdmWMJddKVJ6Pqm8AAAAAAJqSOt/wEgCAyBzJeCXtaV1iW91UaIeH0vf8VChjpUuSlmZ7tTjbpzVFCdqb+NrIkt+kya1mv3AAAAAAANCw1WvlNwAAQcYOO+QoVV43PJT2GyMpWZKU73dVaLvyumkq3Yue3baSVOKkKby+HAAAAAAANGZUfgMAGgSj8PDbY1rIHyXQdsvC7yLbldc1KvQb5fmrH2Hn+Fvqje1tVGjT8xsAAABAbF9++aUsywp+LFmyZK/neuihh4LztG3bVh6PZ5/WdtpppwXnO/PMM/dpruLiYrVu3To432OPPbZP89Xk6ybx2u2Lmn7tGrpaq/w+8MADJUmWZWnDhg1hx/dG5bkAAE2ICQ+uS5w05UYJtB2lSpI8ZZXhuX6jCB1SqmSbBK0scOTZi6pxAAAAoCG7YPau+l5CrXlrVJd6edxXX3015P6UKVM0aNCgvZprypQpwdsFBQWaOXOmLrzwwr2a69dff9WXX34ZvP/ZZ59px44d6tGjx17N984776ioqCh4f+rUqfrTn/60V3NJNfu6lV9fjteuemrytWsMaq3ye/PmzcGPaMf35gMA0FSFh9zFTrKyfJHD72y7Y+h9n5EdoUVKVVwjrSr0E34DAAAAiKm0tFQzZsyQJLVq1UqS9Pbbb8vr9VZ7rkWLFmnjxo0hc1UMJatr6tSpMsYoNTVVSUlJcl1Xr7322l7PV76W8rWtXr1ay5Yt26u5avJ1k3jtGtJr1xjUWuX3ZZddVq3jAIDmy7F3ROz57cqKes3G0paSSoL3l+V4tDeNS3L9yfI4fll7tV0mAAAAgObivffeU2FhoSTpX//6l6644grl5ubqww8/1Lhx46o1V3ng2LVrV916662699579cknnygzM1Ndu3at9tqmTp0qSRo9erRKS0v10UcfaerUqbrrrruqPde2bds0f/58SdKDDz6oRx99VLm5uZoyZYpOOOGEas9Xk6+bxGvXkF67xqDWKr8nT54c/Ih2fG8+AABNj3HzZSJUfseKo7eXJobcj1YhXpWd3kT5XDfixpoAAAAAUK48ODzyyCM1ceJEHXLIISHH4+XxeDR9+nRJ0gUXXKBLLrlECQkJchxHr7/+erXX9dVXX2nt2rWSpN/97nf6/e9/L0lauXKlvvvuu2rP99prr8l1XSUlJenSSy/V+PHjJUlvvvmm/H5/teerqddN4rVrSK9dY8GGlwCA+mdcyYT/2paJkUdP3RpeKb43Cm1LOz2Odnr2LjwHAAAA0PRlZGRo3rx5khQMSMv/nDNnjnbv3h33XB988IHy8vKCc/Ts2VOnnXaapL0LNcuvad++vUaNGqVzzz1XrVu33uv5yiuhzzzzTHXu3FmXXHKJJCk7O1uzZ8+u1lw1+bpJvHYN6bVrLOo8/N6yZYu2bNkix4k/ZHAcJ3gdAKBpMm5+2LFYbU9WFfhq5HF3egMV5tR9AwAAAIjm9ddfl+M4SkhI0MUXXywpUClsWZb8fr+mTZsW91zlQeMhhxyiAQMGSNoTaq5YsUI//fRT3HP5fD699dZbkqTx48crJSVFLVq00HnnnSdJmjZtmmw7/sKh5cuX65dffglZ0+DBg9WnT5+QtcerJl+3io/Pa1e/r11jUufh9wEHHKADDzxQa9asifuazZs3B68DADRFrowpDTsaK5De2zYnlT22uqBG5gEAAADQdJVX9J566qnq2bOnJKlPnz4aNGiQpPiDzV27dmnu3LmSAkFmufPPP18tWrSQJL366qtxr2vWrFnKycmRtCfIrHh7165dmjNnTtzzlT+P1q1b65xzzpEkWZYVDF9nz54dfLx41NTrJvHaSQ3ntWtM6qXtiYn1e+y1cB0AoGEzxhtofVKJ102MMBoAAAAA6s4PP/ygH3/8UVJoSFrx/rfffhus+o3ljTfeCFYTV5yrdevWOvvss4Nj4u2YUB6AHnDAATr55JODx4cNG6YePXqEjKmK3+/Xm2++KUkaO3as0tPTg+fK1+rz+YJjqlKTr5vEa1d5vvp87RqTRtHzuzz0TkhoFMsFAFSXKY644WWhzb/7AAAAAOpXeQDaokULnX/++SHnJkyYoJSUlJBx8cw1aNCgYDuMcuX9oTMyMvTpp59WOVd2drY++ugjSdLFF18sy9rTNrJiq4wPP/ww2Os5lo8//jjYR7py4HrooYfq+OOPD3kOVanJ163iOF67+n3tGptGkSpkZGRIUrDhPACgaTHGyDhZ9b2M5suK3lsdAAAAaM5s29Ybb7whSRozZozatGkTcr5Dhw4aOXKkpECPZtcN/43WcitXrtT3338vKTwglaQRI0aoc+fOkva0vIhl2rRp8vv9UecrP+bxeDR9+vQq5ysPSLt3767TTz896nxff/211q1bF3OumnzdJF67iur7tWts6i38tuL4Rtvv92v16tV69NFHJQUasgMAmiIj195e34totgzbfQIAAAARzZ07V5mZmZIiB4cVj2/btk3z58+POld5T+Xk5GRNmDAh7HxSUpIuuOACSdLMmTNVWFgYc23l8x177LHq169f2PmjjjpK/fv3l1R1hXBubq4+/PBDSdJFF10UsfvCRRddpMTExLjmq8nXTeK1q6w+X7vGptbD78TExJAPKVDh179//7BzlT/S0tJ0+OGH69NPP5VlWRo3blxtLxcAUMeMcWTcHBk3/BPscxsJZQEAAADUn/KgsmPHjvrtb38bcczo0aPVrl27kPGVOY4TrOY966yz1LFjx4jjyltQlJSUaMaMGVHXtWrVKi1fvlxS9IC04nyLFy/Wpk2boo5788035fP5Ys7XpUsXnXnmmZKk1157LebefDX1ukm8dpHU12vXGNV6+G2MCfmIdryqj/Hjx+vWW2+t7eUCAOqa8QU+IlQff5/nq/v1AAAAAICk/Px8ffDBB5ICPaJTUlJkWVbYR1paWrAv9Lvvvqvi4uKwuebNm6cdO3ZIkj744IOI81iWpRNPPDF4TaxQs+K52267Lep8d999t6RADhfvfMcee2zU+T7++GNJ0ubNm7VgwYJaf9147RrWa9cYJdX2AzzwwAMh9x966CFZlqXrrrtOXbp0iXpd+V9k9+7dNWjQIB100EG1vVQAQD0w8ssoco+yXV67jlcDAAAAAAFvv/22PB5Pta4pKirSu+++G6ykLbc3geKXX36pLVu2aP/99w857rquXn/99WrPN3Xq1LCcTpLWrVunr776qtrzTZkyRUOHDg07XpOvW/njVBev3Z7Hqa5or11jVS/htyTdcMMNOuyww2r74QEADZgxRjJ+ybgyciqdbRR7MgMAAABooipuYvj0009XOf7OO+/Utm3bNGXKlJAgsrCwUDNnzpQknX766brqqqtizlNQUKBrr71WxhhNnTpV9913X8j5+fPna+vWrZKkm266SYMGDYo539dff61nnnlGGzZs0OLFizV48OCIz1OSnn/++WA7jWgmT56sTz75RDNmzNCzzz6rFi1aRJxvX183ideuKnX52jVWtR5+VzZ58mRJUq9ever6oQEADY5d1vLEL+PkVjpH+A0AAACgfmzatEmLFy+WJJ1//vm68MILq7zmq6++0j//+U99/vnn2r59u3r27ClJmjFjhkpKSiRJ119/vc4///wq53ruuee0YsWKiCFkeUCamJioP//5zzE7K0jS8OHD9eyzz8q2bU2ZMiUkwDXG6LXXXpMk9e/fX9ddd12Va0tLS9Mnn3yigoICzZw5UxdddFHwXE2+bhKvXVXq8rVrrOo8Wbjssst02WWXqU2bNnX90ACAhsY4MjIybomMm1/ppFUvSwIAAACAKVOmBPeuGzduXFzXlI9zXTcYipbPJUnp6ek666yzqjXXmjVr9PXXXwePFxcX691335UkDRkypMrwVpI6deoUbLHx9ttvy+v1Bs8tWLBAmzdvDnnMqvz2t79Vq1atJIW31ajJ163i/Lx2kdXVa9eY1UtZ3ZYtW7Rly5aQN0w0Ho8nOB4A0LQY45HkypgSSZX7e1P5XWdi7DQOAAAANEdTp06VJHXp0kVDhgyJ65pBgwape/fuIddv2bJFX375pSTprLPOUnp6elxzVazSrRiSvvvuuyoqKgobE+98eXl5wQ0VK88d73xpaWkaOXKkJOnTTz/Vzp07g+dq6nWTeO3iUVevXWNW58nCJ598oj59+uiII44Ilt7HUlJSosMPP1wHHnigvvjii9pfIACgDvklY2Sc3eGnLMJvAAAAAHVv8eLF2rBhgyRp7NixSkiI73uT/2fvvuPlLOv8/7/uaaef9ARCAqGDgIIUG4rdFRDEdUFld5UV11XXtquu/nSxl11cZRUbX1RQEUR6WZpIMRFCCDUQ0vtJcnqbdt/3dV2/P+45c86cM6fXJO/n4xEyc5frvmYyOUPe85nPFYvFuOCCCwB44YUXWL16Nb/97W9HXc0LcPzxxxfXyvvDH/6A7/tAbyDpeR7vec97Rjzee97znuLj6Bkjm81y0003AXDsscdy4oknjni8nsdijCkuIDmRzxug524Epuq525dNec/vP/7xjzjnePe7382cOXOGPX7u3Ln87d/+Lb/5zW/4wx/+wBvf+MbJn6SIiEwNZwCLs9mBu6b+LUpEREREZL/yh3OGb+sgA42lorfv8T/96U+L49x3330AVFRUcM4554x6rBdffJGWlhbuvvtuzjjjDP785z8D8JrXvIbFixePeKxFixbxute9jr/85S/ce++9NDU18ac//YnOzs7itUbj7LPPpqqqimw2y29+8xv+/d//fUKft1NPPbVYyaznbmiT/dz1hOv7Ks+5qf2u84knnsjatWv5zW9+w8UXXzyic66//nouvvhiXv7yl/PMM89M7gQPUDt37mTp0qUA7NixQwuSisiUCP2XcKaZXNdvscHGkn3Om8Wc+46YppkdWFrf/3XmVNZM9zREREREDgjj+ff3hg0bCMOQRCLB0UcfPVlTFBGZFpPxM27Kv1Pe0wj+mGOOGfE5Rx11FBCteioiIvsHazpwNuq3huvf7xsc8SmekYiIiIiIiIjsT6Y8/A7DKOCIx0ceavQcm8vlJmVOIiIy9UywHhvu6rk3YL8lNbUTEhEREREREZH9ypSH3/Pnzwdg8+bNIz6n59i5c+dOypxERGQauBDnunHOx5n2AbuNwm8RERERERERGYcpD79PPvlkIFoxdKRuuOEGgFGtnCoiIjOdwYYN4PI41zVgr8ObhjmJiIiIiIiIyP5iysPv888/H+cct9xyC3/84x+HPf7GG2/klltuwfM83v3ud0/+BEVEZEqYYAM2bMC5/IB9oXfwNMxIRERERERERPYnUx5+f/CDH2TZsmU45/jABz7A5z73OXbs2DHguB07dvBv//ZvXHzxxXiex9KlS7n00kuneroiIjJJnO3CuTTOtg3Yl3O1oMpvERERERERERmHxFRfMJVKccstt/CGN7yB7u5ufvjDH/LDH/6QQw89lIMPjir9du/ezfbt2wFwzlFbW8utt95KRUXFVE9XREQmjcUGm3Cpkwbs2ZGfw6EVLdMwJxERERERERHZX0x55TdEfb9XrlzJKaecgnMO5xzbtm1j5cqVrFy5km3bthW3n3rqqTzxxBOccsop0zFVERGZJM4Fhd/9AfvSJoEqv0VERERERERkPKa88rvH8ccfz+rVq3nggQe46667ePrpp2lubgZg/vz5vPKVr+Rd73oXb3nLW6ZriiIiMomc7Sj83t5nawywrGpPcly1wu/B1Ccr6Qxy0z0NERERERERkRlt2sLvHm9729t429veNt3TEBGRKeZsNvrd9O35HQcs9+0NefWc+cCBGfAmvBihs4PuP6xmHntyHTTluqdwViIiIiIiIiL7lmlpeyIiIoKLgu2eCnAAvARQwTPtOR5oSk7PvGaAVDw+5P65FfUsrZ43RbMRERERERER2TfNiPDbWktzczPbt2/HGDPd0xERkSnQ0+vbud7q5ZA5OK+K9sDyXMeB+35Qn6ykOjF4+F8dr+b4uhOncEYiIiIiIiIi+55pC7+NMfzyl7/k9a9/PdXV1SxatIgjjjiCdevWlRx311138YUvfIFvf/vb0zRTERGZHC76b2HhS4CQJIYqAHZmD9zwOxlLkPTKV397eCS8OAlXN8WzEhEREREREdm3TEvP78bGRt797nezcuVKnHNDHrts2TLOO+88PM/jnHPO4eSTT56aSYqIyNRwYfFmh5nNzlwNkKXVH7zn9f6uOp7ijQvfR7N7gnsaVpfs8zyYHV+M5yqmaXYiIiIiIiIi+4Ypr/w2xvCud72Lxx9/HM/zuPDCC7nyyisHPf7EE0/kVa96FQC33nrrVE1TREQmXc+Hn73ht3Ex2oOo4jkdHriV3wdXzcMPqkl5pa1PYp5HVTxJzEvi8KZpdiIiIiIiIiL7hikPv6+99lpWrVpFMpnk7rvv5oYbbuDjH//4kOecd955OOdYvnz5FM1SREQmX0+43fsNoJyNs7ojemtqOYArvw+pWIYjTiKWKtlem6jg0Jp54BKg8FtERERERERkSFMefl9//fV4nsdHP/pR3vGOd4zonFNOOQVgQD9wERHZ91jTDICz6QH7uk0CO0w7rANBrFDxXe3NKtnuATE8sFUo/BYREREREREZ2pSH38899xwQVXOP1MKFCwFoaWmZlDmJiMjUMX70QaZzA8PvzjCOdQp1PRe1folTX7rd84h5Hs6lyp0mIiIiIiIiIn1Mefjd3t4OwLx580Z8jjHRV+Pj8fhkTElERKaIc5Yg+xecK9/PuykfxxxAhd+vmLOUmDcw7PeoBMDampLts1PVxL1YoVOMPiQQERERERERGcqUh99z584FYMeOHSM+Z8OGDQAsWLBgUuYkIiJTxWDNbvouctlXs++RtQdO+n1Y9SHld7io7UkYVpdsrowlicfiOPp2ShcRERERERGRchJTfcETTjiBxsZGVq1aNeLWJ3/4wx/wPI/TTz99kmcnIiKTygWAxQRbYED1d4xHmw07s+Wrwvcny2rnsahyFlXxmvIH9ITfNoWHhytE3Z7ncWzNceSzdVTG2kr2iYiIiIjI5PJ9n5tvvpl77rmHJ554gqamJjo7O5k1axaHHXYYZ5xxBn/7t3/Lm9/8ZmKxoetNn3zySW6++WYeeughduzYQXNzMxUVFSxYsIBTTjmFt73tbVx00UXMnj172Hk1Nzdz/fXXc//99/PCCy/Q3NxMPp9nzpw5HHfccbzuda/j/e9/PyeeeOKwY1lrueuuu7j77rv561//yt69e2lra6Ouro5DDjmE008/nfPOO49zzjmHZDI57Hhr167lxhtv5MEHH2TLli00NzcTj8eZN28eL3/5y3nTm97EBz7wAQ466KBhx0qn09xwww3cd999PP300zQ1NZHJZJg9ezZHHnkkr3nNa7jwwgt59atfPexYAA899BC33347jz76KA0NDbS2tlJdXc1BBx3Eqaeeyjvf+U7e8573UF1dPexY27dv54YbbuCBBx5gw4YNNDU1Ya1l7ty5nHjiibz+9a/n4osv5vDDDx92rIl8ncHEvtb2RZ5zU7uy2JVXXsmnPvUpZs2axebNm5kzZw4AsVgMz/N4/vnnednLXlY8/qabbuLCCy/E8zx+//vfc9FFF03ldA8YO3fuZOnSpUBUlb9kyZJpnpGI7I+saSXTchkVde8j0/rV0p1eJe95+pWsbsvTEdjpmeAUOW3eMg6pOpiqWA237XqYnCmthP+HxR8nH9YC8ED7j2nzswCcMHsxp846nVz2WCqTHdyw+2p8O/4PC1rf/3XmVA4SxIuIiIjIhBrPv783bNhAGIYkEgmOPvroYY/3fv25Mc9zpnOXfH9Kr3fLLbfw7//+72zdunXYY4855hh+8IMfcM455wzYt23bNv71X/+Vu+66a9hxqqqq+OxnP8tXvvIVqqqqBuy31vKd73yH//7v/6arq2vY8d72trdxxRVXlORufT3yyCN88pOf5Pnnnx92rMWLF/Ptb3+bD33oQ2X3t7a28pnPfIbrrrsOa4f+910ikeDSSy/l29/+drFjRH+/+MUvuOyyy2hsbBx2bqeffjpXXHEFr33ta8vuf+655/jEJz7B8uXLhx1rzpw5fPnLX+azn/1s2aA5l8vxpS99iZ/97Gfk8/khx/I8j7/7u7/j+9//fvFnQH8T9TqDiX2tTZXR/owbiSkPv/P5PMceeyw7duzgla98Jddeey0ve9nLBoTfjY2N/O///i+XX345xhhOPPFEnnnmGbwyvVFl/BR+i8hUMGED2dZvk6o5j2z7f5fsc14d568+iUebs9M0u6nzjoNPZlHySAI6ebZjDS927C7Z/4GDPk1oKwBocLezvClaJPSUuYdxYu0ryeeOJpXo5tbGq0mH/rjno/BbREREZOoo/J4YUxl+f/Ob3+Syyy4r3n/b297Geeedx8te9jJmz55Na2sr69at48477+SBBx7AWssrXvEKnnnmmZJxnnzySc4991z27t0LwLJly3j/+9/Pa1/7WhYtWoTv++zcuZM//elP3HrrrbS0tADw9NNPc/LJJ5eMlc1mueiii7jzzjsBSKVSXHTRRbztbW9j2bJlVFdXs3fvXp588kluvfXW4lw+/elPc8UVVwx4jL/+9a/56Ec/ShAEALz61a/mPe95DyeffDLz5s2jo6ODTZs28X//93/cfffd+L7PrFmzimv79bV582be+c53sn79egAWLlzIBz7wAd7whjdw8MEH43keDQ0NPPzww9x8883s2rULgFtvvZV3v/vdJWNZa/nYxz7GVVddBUTFs+effz5nn302Rx11FPX19TQ1NfH8889z++23FwPt888/n9tuu23A3O655x4uvPBCuru7gahDxUUXXcTpp5/OggULSKfTbNu2jXvvvZc77rijeFxbW9uAyujm5mbe9a538fjjjwNQV1fHBz7wAd785jezZMkSkskke/bsYcWKFdxyyy3Fts4//OEP+cxnPjNgbhP1OoOJfa1NpckIv6e87UlFRQW33347b3zjG1m9ejUnnXQSxx57bHH/3//939Pd3c3mzZtxzuGcY968edx8880KvkVE9nUuB1hgYLWyI0m7v39XfAMsrZnD/ORiYlQSJ8/8illAb/gd8zyMTfa531td4AFe4b61KRZU1pHubpmqqYuIiIiIHHB+/etfFwPJhQsXcuONN3LWWWcNOO6tb30rn/jEJ1izZg2f/exnaWpqKtm/Z8+ekjDyK1/5Cv/5n/9JKpUaMNZFF13ED37wA/7nf/6H73znO2Xn9bGPfawYfL/qVa/ihhtuYNmyZQOOO/vss7nsssu46667ygauAA8++CCXXnop1lpqamq45ppreO973zvguDe96U1ceumlbN26lS9+8Yvce++9A47JZDK8613vKgbfH/7wh/nhD39IXV3dgGMvuOACLr/8cn7+85/z5S9/uezcvv71rxeD76OPPpqbbrqJl7/85QOOe8c73sHnPvc5VqxYwac+9amyY73wwgu8973vJZPJkEgkuOKKK/jYxz5WtqL7H/7hH2hqauLrX/86P/nJTwbst9Zy4YUXFoPvc889l1/+8pcsXLhwwLHvete7+M53vsN1113H5z5X/gOpiXqdwcS/1vZ1Ux5+A7ziFa9g1apVfPCDH+Sxxx7jpZdeKu579tln6VuMfsYZZ/D73/+eI444YjqmKiIiE8rhsDjbOWCPJcWuXDANc5pax9QtIeEW4vCIe/VUxUu/UlaTSOH6rEcdLwm/PTwXByC0CRZWzmKrwm8RERERkUmxa9cu/vVf/xWAmpoaHnnkEY477rghzznxxBO57777+P3vf1+y/aMf/WgxjPzmN7/JV77ylSHHqaur42tf+xpvectbmDVrVsm+W2+9lWuvvRaAl7/85Tz44IPU1Az9Tc5zzz2XM888k0cffbRkeyaT4e///u+x1hKLxbj77rvLhq59LVu2jBtuuIHf/OY3A/Z96Utf4sUXXwTg0ksv5f/9v/835FipVIpPfepTvOUtbyGXy5XsW716Nd/61reAqM3K8uXLy4bLfb3uda/jr3/9K7fffnvJduccF198MZlMBojC5r//+78fcqwFCxZw5ZVX8qY3vWlAf/P//d//5aGHHgKi4P3WW28lkRg8Zo3FYvzDP/wDb3rTm4ofDPSYyNcZTOxrbX8wLeE3wFFHHcWKFStYvnw5d9xxB08++SSNjY0YY5g3bx6nnHIK5513Hm9729sm5fqNjY088cQTPPHEE6xatYpVq1YVS/w/+MEPcs011ww7xjXXXMMll1wyouv9+te/HrQPUo9MJsOVV17JH//4RzZt2kQ+n2fp0qWcc845fOpTn+Kwww4b0bVERGYsZwBH6L9Qstl4C3HEad/Pe30nvBgJLw4uSWiqiMfjJZXdAHNTpf/TmohFb9VH1S1gYeU8TLigsCfG7OTA6gkREREREZkYP/zhD4th6Te+8Y1hA8kesVisJFhds2YNd9xxBwAnn3wyX/rSl0Y8h9e//vUDtvWt0P31r389bPDdY/bs2Zx33nkl2371q1+xZ88eAD7xiU8MG3z39Y//+I8l95uamoph98EHH1y2vcpgTjjhhAHbvvvd7xb7hf/4xz8eNvjuUVFRwYUXXliy7e677+bZZ58Fokrs4YLvvv72b/+25L7v+3z/+1HbncrKSn71q18NGXz3tWTJkgGtjibqdQYT/1rbH0xa+P3cc88BcNxxx5Utq+9x5plncuaZZ07WNAa1aNGiKb/mUDZu3MjZZ59d7P/TY926daxbt46rr76a6667jnPPPXeaZigiMn6OEJzDmr0l231qiRNipnQViqk3t6KauJfA2iSBqSQe84lRGn5XxksrCuKF/UuqF1Adr8HP9/6P7azEnMmftIiIiIjIAcg5V6yurqmp4SMf+ciYx/r1r39dvP3JT36SeDw+5rGef/55nnzySSAKK1/5yleOeay+c/M8j09/+tPjGuuGG24gm43WcLr00ktHHMqX097eXuzZvWzZsgG9wEer75/BYO1fRuq+++6joaEBgL/7u79j8eLFYx5rIl9nMLGvtf3FpIXfJ598MrFYjOeee65kFdlvfOMbAHz84x9n/vz5k3X5UTn00EM57rjjuP/++8c8xn333Tfki32oBSy6uro455xzisH3Rz7yEd73vvdRVVXFQw89xHe/+106Ozu56KKLWLFixbQ2nhcRGRfngBBcrN/mGNYb2GdtfzMnVcOc5ELy2WoA8kEtiVT0VvyKOUtpznfiUbq+RU+P74MrlmBdSN/PB6q88iuhi4iIiIjI+Lzwwgs0NzcDUchcrmf1SD3yyCPF2+ecc8645jWRY3V2dhYXSzz22GM58sgjxzXeRM5t+fLlGBOtFfU3f/M3Zftyj8Zf/vIXIAqYR1PdXs5EPs6JfJ1N9Nz2F5Pa9qRv7+4eX/va1/A8j/e+973TGn5fdtllnH766Zx++uksWrSIrVu3cvjhh495vGOOOabswgIjcfnllxf7/fz3f/83n//854v7XvOa1/DGN76Rs846i0wmw2c+8xkefvjhMc9TRGR6OZxN48VK+1xbPGD//0R6TqqOBNUEhWpuR4wKrxKApdUHkTN+SY9vgJSXLPw+G+vlyffZ51FJzPOwZd5vRURERERk7HpaZACceuqp4xqrpzvCIYccMu5OBBM5r+eff77YVmS8Y0Hv3GKx2LgLNyfyce7atau4MOTJJ5887mroiZzbRI4FE/ta219MWpldTyP4nq87zDRf//rXOffcc6f9hRAEAT/60Y8AOP744/n3f//3Ace89rWv5cMf/jAQfYKzatWqKZ2jiMjEsTiXx5qBizRat/9Xfh9UuRBcZcm2ithsACpj1RxStYDaZOkHA7Pj0YLPLpxLzJa2OcnmlgwIy0VEREREZPx61oUDRtxrupzOzk6CIBj3OBM9r4keq+94s2bNoqKiYkLGgpn7OCdivIkca6Jfa/uLSfsXc0+ovHr16sm6xH7hoYceoqOjA4gW2hzsaxx9F8u89dZbp2JqIiITzjkfXB6cX7I9JIGZvjWYp0xFrApnaku2xVz0P4UJL0k8Fqc2UV16ko2quwNTRRjUDxgzofBbRERERGTCdXV1FW+Pp3f1RI0zGeNN1twOlMc5EePN1LH2J5OWNLzhDW/g97//Pf/xH//Bpk2bOOaYY4rV4AC33357sUH/aPRfSXZft3z58uLtoXoOnXbaaVRXV5PJZFixYsVUTE1EZMI52wUEA7bnTKrQ+mT/liBFrl+A7RXD72pixKhPzqJvb5MwrCEVi2NsEkPpYpgAqVicrBn4nIqIiIiIyNj17b2cTqenfZzJGG8y5tbW1nZAPM6+49XXDyxSGutYEzkviUxa+P2lL32JW2+9lY6ODr7//e+X7HPO8ZWvfGXUY3qeN2PD70suuYR169bR3NxMfX09Rx11FG9961v52Mc+xiGHHDLoeS+++GLx9nHHHTfocYlEgqOOOornnnuOtWvXjnp+O3fuHHL/7t27Rz2miMjo2bJbu0wK4zzKBeP7i1QsTtwuGfAIHR5xL0bcVTA/tRicKznGuCSHVM9hMPFxLvwiIiIiIiIDzZs3r3h77969Yx6nvr6eZDJJEATjGmei5zXRY/WM19bWRkdHB/l8flytT2b64+w73njC74mc20S/1vYXk/Yv5hNOOIFHH32Ut771rSSTSZxzJQtg9twf7a+Z6uGHH2b37t0EQUBLSwsrV67k29/+NkcddRS/+MUvBj2vJ5Suqalh9uzZQ15j6dKlADQ1NZHP54c8tty5Q/0644wzRjWeiMhYOJcpu73bJMjb/XvBy7pkJTl/YIjt4TG/ogaPFEm7gASzS/Zbl+CwmsHXp0h6+/fzJiIiIiIyHV7xilcUbz/11FPjGuvlL385AA0NDeMOJSdyXieddFKx/e54x4LeuVlreeaZZyZkLBj/3A455BDmz58PRAtMGmNmzNwmciyY2Nfa/mJSy8VOPfVU7r//frq7u2loaGDz5s1AVMF9//33s2XLllH96jl/JjniiCP43Oc+x80338wTTzzBE088wQ033MDf/d3f4XkeuVyOf/mXf+Gqq64qe35PP57a2tqy+/vq26+nu7t7Yh6AiMgUMcFmsOUWQY7jgGc6U1M9pSlVESv/ZStrk5ww+zCsqcHYKvL5gwYcc3DFoYOOe+LsZRM1RRERERERKTjhhBOKgelf/vIXOjs7xzxW3za3d99997jmNZFj1dfXc/LJJwOwbt06Nm7cOK7xJnJuZ555JvF4VOhzzz33YG35bxGP1Bve8AYgagfyyCOPjGusiXycE/k6m+i57S+m5LvSiUSCgw46iGXLlhW3LV68mMMOO2zUv2aSCy64gI0bN3L55Zfznve8h9NPP53TTz+diy66iBtvvJE77rij2Of8s5/9LHv27BkwRi6XAyCVGj706ft1kWy2XIA0uB07dgz564knnhjVeCIio+VcDkeZT9i9CozzeKlr5n67ZyIkYuUrtANTzZzkXEJTjbEprBsYkieoLnNmpCpeOWFzFBERERGRiOd5fPCDHwSiwPTqq68e81gf+tCHird//OMfjyvIPemkkzjttNOAKCwdb7XwJZdcAkQdGn70ox+Na6z3ve99VFVVAXD11VePq+/07Nmzefe73w3Atm3buO2228Y1t57HCXDFFVeMa6x3vOMdLF68GIA//vGP7Nq1a8xjTeTrDCb2tba/mPJGoV/96le57LLLWLhw4VRfesLNmjULzxt8gbZzzz2Xyy67DIBMJsMvf/nLAcdUVkahhe/7w16vb6uTnh8mI7VkyZIhfx188MGjGk9EZLScacXZjoHbifp9P9W+//b7BqhLlA+pjU2R8qoJbQpry78tZzOHDzpubOrfykVEREREDgif/exnqa6OClEuu+wyXnrppRGdZ63luuuuK94/6aSTOO+88wB45pln+M53vjPiOSxfvpwtW7aUbPv//r//r3j7kksuGXHI3N7ezp133lmy7Z/+6Z846KDo26c/+clPRlUV/dvf/rbk/oIFC/jIRz4CRGvLfeYznxnxWC+++CKrV68u2falL32p2Jblk5/8JI2NjSMaK5/Pc+ONN5ZsO+ecc4otRu68805+97vfjXhut9xyS8lznEql+NznPgdERa0f/vCHR9xKZdeuXfz5z38u2TZRrzOY+Nfa/mBawu+vfvWrxZL+/d0///M/FwPycj9AelZiHUkbk75/0UbSJkVEZCZxzgcXDtxOnHQYY2P38B8C7qtmp6qoTQ7+oWXSi9paWTvIOtRDfNCaio2u8rsqnhzV8SIiIiIiB6pDDjmEK6+8EogymbPOOmvYcPjFF1/kb/7mb7j88stLtv/iF79g0aJoLZ///M//5LLLLhuyEDKdTvP1r3+dN7/5zXR0lBYRXXDBBfzjP/4jAM899xxvectb2LZt25Dzuueeezj99NN58MEHS7ZXV1fzu9/9jlgshrWWc845h5tvvnnIsbZv38773/9+PvnJTw7Y953vfIfjjz8eiKq/P/KRjwyZeQVBwJVXXsmrXvUqduzYUbLv1FNP5Stf+QoQ9bA+88wzef7554ec22OPPcbrXvc6fv/735ds9zyP6667rhgyX3LJJfz0pz8dsjK6ubmZT33qU7z3ve8lCEqLtT796U/zpje9CYD77ruPCy64gKampkHHcs7x+9//nlNPPZXnnnuuZN9Evs5gYl9r+4NB/pUtE2XhwoXMmzeP5ubmsl+DWLJkCStXriSdTtPe3j7kopc9PwQWLFgwrhVzRUSmh8G5gYv1OuK0BzFa/H3/61gxz8OWWZz5iNqF1CVqYLCHaAoLYQ4Rcg+mIlY76HX7S3gxDquZx0udA9twiYiIiIjIQJdccgk7d+7ksssuo7GxkTe+8Y28/e1v5/zzz+f4449n9uzZtLa2sn79eu6++27uvfdejDElCxkCHHTQQdx1112ce+657N27l29+85v89re/5QMf+ACve93rWLhwIb7vFyuDb7755iHD1J/97Ge0tbVx5513snLlSo499lguvPBC3vGOd7Bs2TKqqqrYu3cvTz31FLfeeuuAquq+3vKWt3D11Vfz0Y9+lHQ6zXvf+15e/epX8973vpeTTz6ZuXPn0tHRwebNm7n33nu54447yOfzzJo1a8BYNTU13HXXXbzzne9k/fr1XH311dxxxx1cfPHFnHXWWRx88ME459i9ezePPvooN998M9u3bx90bl/96lfZs2cPV111FRs2bODkk0/m3e9+N+eccw5HHXUUdXV1NDU1sWbNGu64445iaLxkyZIBY51wwgncdNNNXHjhhXR3d/OJT3yCn/3sZ1x00UWcfvrpLFiwgHQ6zfbt27n//vu57bbbBu3BHYvFuPHGGzn33HNZuXIld955J0ceeSQXX3wxb37zm1myZAnJZJI9e/bw+OOPc/PNNw9Z0T1RrzOY+Nfavs5zbgT/Wp4kLS0tPPbYY2zevJmurq4RfUWgp43IRNu6dSuHHx59rfyDH/wg11xzzYSNvXDhQpqamnjZy17GCy+8ULLvsssu45vf/CYQfTr16le/uuwYYRgye/Zs0uk0b3jDG8bdnL+/nTt3snTpUiAK2cv9kBARGQ8/8wBhbhVBtrTSIPQO4sfbj+Xra8e3sMdMkPBiJGNxsqa0KuC1C46mPlFHvXlr2fOS8SyBGV07q+K5lS/wx5334tvh30MrYglOnnsoK5tLF5Buff/XmVNZM8hZIiIiIjKRxvPv7w0bNhCGIYlEgqOPPnrY471ff27M85zp3CXfn9Lr3XLLLfz7v/87W7duHfbYE044gR/84Ae8/e1vH7Bv27ZtfOITnxjRYoQ1NTV8/vOf54tf/GLZIkhrLd/+9re5/PLL6erqGna8c845hx/84Accc8wxZfc/8sgj/Ou//itr1qwZdqxDDz2U733ve7z//e8vu7+1tZXPfOYzXHfddcP2nU4mk3zsYx/jG9/4RtlAHeDnP/85l1122YhC2te+9rVcccUVnH766WX3P/fcc3z84x9nxYoVw441b948vvrVr/KJT3yi2IKlr1wuxxe/+EV+9rOfDdvS2PM8Lr74Yv7rv/6r2DO8v4l6ncHEvtamymh/xo3EtITfjY2NfPazn+Wmm24iDAd+BX4oI+2hM1qTFX43NTWxaNEinHO89a1v5YEHHijZf//99/OOd7wDgO9973v8x3/8R9lxHn/8cV7zmtcAUc+j0fTsGQmF3yIy2fzMAwTZFYS5v5RsD72D+cK6o/jV1uHbP810qVicZbXz2NjVVFKJ/cZFL6M6Xk1t+Oay58W8sOxClyO6ZtWL3LzzvgGBezk1iRSvnn8MD+4p/Z9Zhd8iIiIiU2cqw2+ZWL7vc9NNN3HPPfewatUqGhsb6erqor6+nmXLlhWrpd/4xjcOuUYcwKpVq7j55pt56KGH2LFjBy0tLaRSKRYuXMgrX/lK3v72t3PRRRdRX18/7Lyam5u5/vrruf/++1mzZg3Nzc34vs+cOXM47rjjOPPMM7n44ouL7UiGYq3lrrvu4q677uKvf/0re/fupb29ndraWpYsWcIZZ5zB+eefz9lnn00iMfy/YdauXcsf/vAHHnzwQbZs2UJzczPxeJz58+fzile8gje/+c184AMfGNHagN3d3dxwww3cd999PP300zQ1NZHNZpk9ezZHHnkkr33ta3nf+943aOjd35///Gduv/12Hn30URoaGmhtbaW6upqDDz6Y0047jXPOOYcLLriguF7fULZv387111/Pn/70J9avX09TUxPOOebOncuJJ57IWWedxcUXX8xhhx027FgT+TqDiX2tTbb9Ivxua2vjVa96FZs2bWIsl56sVUonK/z+9re/XexP9M1vfrN4u4fv+yxcuJCOjg6OP/54XnjhhbIv3H/5l3/hF7/4BQBPPPHEiP8ij5TCbxGZbH7mAXIdV+Fsa5+tKdo5kv94cT5/2Lnvh9+nzD2M+RWzeaF9K3Evxo5MGwAXH/pOAvKQO23Cr1mZauPWvb+hKxjYUqa/1y44mjnJWdzd8CTzKmpIxmLsyXYp/BYRERGZQgq/RUTKm4yfcVO+4OX3vvc9Nm7ciHOOt7/97dx77700NTVhjMFaO+yvmWLr1q08/fTTQx5z11138Y1vfAOAqqoqLrnkkgHHpFIpPvWpTwHRp2Hf//7Ar+089thj/PKXvwTgrLPOmvDgW0RkajicbS/d4lUR2AQZM20duCZUbaKK2Yk51CYrqE1G1QFxL0bCqyM+SctshKaKuDeyt/OaeBXJWAqAeRW1VMVTkzInERERERERkZlgyhe8vP322/E8j3POOYc77rhjqi9ftHz5cjZu3Fi839zcXLy9cePGAZXfH/rQh0rub926lTe96U285jWv4V3veheveMUril/R2Lx5MzfddBM33XRTsbr9+9//PoccckjZuXz+85/nD3/4A+vXr+cLX/gCGzdu5H3vex9VVVU89NBDfOc73yEMQ6qqqrjiiivG/+BFRKaBszn6r/joCm9Debvvhd9nLjiW5U3rSrYdXnU8LlzIa2YdxjPdfwZgcfUsPBcn4VUzGY27nIsTG8FX3eZWVLMwtQSv8Ll3baKSziAzCTMSERERERERmRmmPPzuWcH1E5/4xFRfusTVV1/NtddeW3bfihUrBjS97x9+93jsscd47LHHBr1OdXU1P/zhD/nnf/7nQY+pq6vj7rvv5uyzz2bDhg1cddVVXHXVVSXH1NfXc91113HyyScPOo6IyIzmcqV3vRoCarDEaMlPznoOk6k+WTdgm+dqCW0lsVhAfbIagKp4Cmvr8OK5AcdPhNDEqUlU0JofOsheXDWHBPU4fOZV1LCgYi6V8RSbupqHPE9ERERERERkXzXl4XdtbS35fJ5FixZN9aUn1Kmnnsrvfvc7HnvsMZ588kl2795Nc3MzYRgyZ84cTjjhBN7ylrdw6aWXjqhp/1FHHcXTTz/NT37yE/74xz+yceNGfN9n6dKlnH322Xz6058eUVN8EZGZqzTg7nCH0RpUE/Mcq9uH71c909Qn5pTeT1aSzR0MQCKeZnHlEpKxjdQmKsn5s6msbJuUeXhejMOqF7IjPfT4S6sPws8fRKqikZNmH8ZBiZNYmGzjqfiWSZmXiIiIiIiIyHSb8vD7pJNO4uGHH2bbtm3TWsV8zTXXjGtRy7q6Oi6++GIuvvjiCZtTTU0NX/jCF/jCF74wYWOKiMwU/RubGBfDOA9vwJ59Q9KrLrn/+gUnQRjdNqaKing9qVicykJf7dgkvuVWJYZffbw+PgsTJHFhPUkvAa4C58WIMXzLFBEREREREZF90ZQvePnRj34U5xy//e1vp/rSIiIynVxQcte4GBYPt4+GrzFXX7LQ5PzEMcXbgakClyQVS/Qe4yombS5Vsaphj0l6NeB55MJ6quLVhLaCmBcjHpvy/xUQERERERERmRJT/i/eCy+8kIsvvphbb72V733ve1N9eRERmSbOpUvub8rU0ewnsW7fCr/PPeQMzlxwLIE/jyNq53PcrIMACIN5JceZYBGzU1XECuF3zp8zYKyJUhErrfxeUj2bili/SvM+i2LOji8lCCvBzOMVs5ftox8/iIiIiIiIiAxtytuePProo3z4wx9my5YtfPnLX+aWW27hAx/4AMcddxzV1dXDnv+GN7xhCmYpIiITzdmukvvNQZyOwGNOMpymGY3NrPgCUhUVhH6KWamaYtuQwKRKjgtMFalYgoSXAAfWJSdtTgmv9Nq1iUq64jnytve59Vy8z+1aIIYxlcxJzWYaPgsXERERERERmXRTHn6/8Y1vxOtTfbZ69WpWr149onM9zyMM962QREREIs6WVn6HFp5scxxenQD86ZnUGHh41MWWkQWOqF7G9uyOaIfz6F9CHfdiJL3JC717r9Nb+V0ZT1CbrCSRj5ccE6NP2xUXvf074lTEKol5pceKiIiIiIiI7A+mpdTLOTfmXyIism9ytrPkft56bM+G7MhO+eew4+N5mLAegIRXQcKLk4zFS9qK9KhP1lCdqJn0KSVcDZXxBB4eB1fNIhlLUJ+sxBukoYntCb9tjMpY3aDHiYiIiIiIiOzLpjxxeOihh6b6kiIiMgM401Jyf3cO/tyY5dVzZ374nYrF8a2J7jjwwyjQ9khQl6xlfkX5gPuI6qNJUE1ukucXhnOZm6qhOd/NsXWHkTEZjqhdzM5MO0Fh3n0D7nxQV3goHnFXheep7YmIiIiIiIjsf6Y8cTjrrLOm+pIiIjKNnM3ixapwlLatag+ib/M0ZKdjVqMzK1VFU66bVCyOR2+LkLiXpDpezbyKurLnJanHI1V230QyJkXcixHzPOalDiYe7C3ZHwXfA6u7rY2DnY1D36wSERERERGR/Y9KvUREZFI524FzBpwp2d7mR4HrjuzMX8thXqoWgLpkJZ7X+7lxjBRJr5KFlXMGOTNFWGiRMpmMS5KIxfDwSJiFVMVrScZ6e3xXJRI4V+bzbs8j6w82dxEREREREZF9m8JvERGZVA4DGHD5ku2dYRR+787ZaZjVyFQnosUqZxfC7+p4KlrYssAE84iRYGHq4LLnB8FcgrBq8icK1CWrOHH2EhwJEl6CendCcd+ymvkEgUJuERERERERObBMatuTb3zjGxM+5mWXXTbhY4qIyCRyAc604FxXyWZb6LTRGZgyJ80MFbEEYcyysGI+sJHqRKqkeUg+rCaZ9EhRV7avd2gqymydHPWJGuqSteA8ElSSC2YX57qwcg6hnbq5iIiIiIiIiMwEkxp+f+1rX8PzBvYYHQ+F3yIi+xgXYkzzwM2F37vDmVf5PSdVRZufZXHVHGanapmVWAhAfbIaXN/+3jFiLkmM6umZaB9HVL2cdrOd0FSTKFSsnzHvKF7s3MHBFUsxk73qpoiIiIiIiMgMM+kLXjo3cYtoTXSQLiIik8/hgxuYvPYsstg1ReF3dSJJaC2+Hb7SvD4Zhd+zUjXUJmqIU4WHR0UshbOlC1jGqASXnKxpj5jnavDwCG2KpKsEoCKeIuHFSHo1zNz6ehEREREREZHJManh90MPPTSZw4uIyD7AmWacG7ioZVDIvM3EfUY6QCoWL4bdL599GK1+F+s791IZT5Azgy+0WZeM+nTXJWpJxZI4W0VFPE5NoppcULqAZTZ3GJWp9kl7DCNlTC2xWDy6Hc4FoCpeSUU8CWbBdE5NREREREREZFpMavh91llnTebwIiKyDzDhDmLxRYV7HhnvCKrdJvbkJ78WORGLkYjFyIQBAEkvCocXVtazPd066Hn1yaiNSX1iFhaDc9F5c5MLMGWmHU7RopZD8cNKKitrMYBz0XrWc+NLSXpbCMPK6Z2ciIiIiIiIyDSITfcERERk/2bDBihWfse5ec8SAHakg0m/dsKLc3TdQQDEPI9ELE7CizE3VTPkeRWxqLVJpVdHdWwOPW+XKeaXPX5mLCYZI8U8AIyNPtvO5w6nJlExQ+YnIiIiIiIiMrUUfouIyORyBkch6PaSbEjDVL39HD9rMYdVLwaiIHx+xSwSsRieN/T1F6SiBS49khAuJgxrOGHWIXgz/W3TRRXottCD3BHn5bNOnsYJiYiIiIjsW7Zu3Yrnefo1zb+WLVs27XOYCb+uueaa6f4rsc+b9AUvRUTkQBeAi8JvQx3p0DFVbz9zU3Oojkc9upOxBFXxKmKex3DLJ1fG5hD3opA8F9QCMeZXzMWaoSvGp1tPu5O+EuYgJr/GXkRERERmoo5db5nuKUyaWYc8ON1TEJF9gMJvERGZNM5mcC7A2XYADBWEzpH3DiZvJ3Gly4KklyRpjgIeoCpeTcJL4OGRLCwMORjPVvPKuYdhwwX0VKlXx6vxg+pJn/N45P36AdscQz9WERERERHpdcghh/D8888Puv+kk04C4LTTTuPXv/71gP3OOTyvfLnNV77yFW6//XYA7rvvPhYvXjzgmPb2dgBmz549YN+qVav4p3/6JwA+9rGP8fGPf7zsdYaawzve8Q4aGhpYvHgx9913X9ljWlpamDt3btkxfvrTn/Kzn/0MgF/96lecfvrpA44xxtDR0cHcuXMH7GtoaOAd73gHAOeffz7f+ta3ys4hlUrh+37ZfZdccglPPvkkwKB/Vq2trcyaNYt4fOC/h26//Xa+8pWvAPCtb32L888/f8AxzjlaW1uZN29e2fGHex30jDGe1wLAkiVLym6XkVP4LSIik8bZdnA5nO0ubPEIHXSaetJm8sPvilglJkxRFU9SFavG4Yh7MarjwyxQ6XksqlyAsanipmSsAoatGZ9e5YJua5PTMBMRERERkX1TMpnkxBNPHPa4mpqaER3XV99A+5hjjmHZsmWjOr+5ubl4e+HChaO+PkSPr+f3sZy/cOHC4u3DDz981GPU1tYWb8+ePXtMc6ip6f1G7ljO7wnOIfqwYyxj9J3LWM4f72tBRm6GNy8VEZF9mbPdmLABa1oBMMTJG0emT6g8mao5FGs9XrvgOLz8GVTE6piTqiYVG/r6nvOYFz+2pI1InGTZtiIznR/O7FYtIiIiIiIiIpNl3/tXvIiI7DOcS4PzcTYKvx0xLB7twdSE385W4lycOcno63YeHgsrZ1GXGNgepOQ8z8OFNRjbW0mdIIXT26aIiIiIiIjIPkP/ihcRkUnjbBow2GB7YQNY53iyY2rCb2tTOOJUu6OK15+Tqqc6tmDoE50jF9bT923So2LyJioiIiIiIiIiE049v0VEZBJZnAvBZQBweDhgY/fk9/uek6omMJXRLEzU4ztBPR7esJ27rakdsM2ZYQJzEREREREREZlRVPktIiKTyIHzAVu452EdNObtpF95Tqq62Kak53dravHwcMNk7/lgYJ/sfFA34XMUERERERERkcmj8FtERCaNsznAB8D3lpK2VezOGfJ2ciu/Xz3/KCrjyd55FGq9ja1gvvdaYlQNem5NIgXecLXhIiIiIiIiIjLTKfwWEZFJY01j8XZIitDF6Qotk134XZesIRHrXawSF4XZoUnihzVDLlx5cNWsyZ2ciIiIiIiIiEwJhd8iIjIpnHOYYFPxfrepIW/jZI3j2XZ/0q6b8GLEiZPwesPv0EYLbDqibd4QfU9eU/+3kzY3EREREREREZk6Cr9FRPYTbrhG1lPOFvp9R0IXpy1I0REYOgIzaVetS1ZQGa+kLlk9+MxsJXFvsLdAtTwRERERERER2R8o/BYR2V+49HTPoB+Hc5niPYvH3nycjsBOas/v2alqamJzWJg6aNBjcsFs6pIVZfc5Fy+7XURERERERET2LQq/RUT2E9Y097vfOq7xxl1J7gKgt8LbOUibya2qnpWsJBVLkGQOKa9yyGP7LojZl7N6axQRERERERHZH+hf+CIi+wHnQly/sNuGu8YxngPG15fbuTy40pUt2/zJDb9rkxXEvBjWVuN55cPtHoOG33prFBEREREREdkv6F/4IiL7ARvuwLnukm0m3DqO8bYPCK5Hy9lWoHcM38X4zfb8uMYsx+vTo7siliQZixOGVcRIDHleTaJ82xPr9NYoIiIiIiIisj/Qv/BFRPYDznbhbHe/bZ1jHs+aPfQNrsc0J9OG6zNG1iRY2zXx4Xci1vtWNitVQ1U8hbEJPDd05XfCK9/b21r1/BYRERERERHZHyj8FhHZDziXx0/fVbxvTRvY7NjHM23A+Hp+W9NUMofAeZgxDpnwBn+76rtvcdVCjq0+DUccb5i3uGRsYMhdl6wAb3Jbs4iIiIiIiIjI1FD4LSKyP3B5XJ/FJcHgXG7Mw1lbWrU9tjFacC49rjF6zEpVUZ8sv4BldSJVvF0Xn4Xnqgv3hm57MjtZP2DbwsqB20RERERERERk3zR0MiAiIvsE53xwfcNvN67g2Zk2cOOs/A4242x78b5vx15RfVTdIkJnWd2yFYCqeJKsCYh5HvMqaugMctQkUqTsMrL+3Oj6tnxY3mNB6mBSsRfwbe/zVpcY+hwRERERkX3JrEMenO4piIhMK4XfIiL7AxfgbBvOZvBi1dhwN86OI/zuE1qPeYx+ledd4dh7aVfHq4q351XUUBlPsCvTUWh5EgXgCS+G69Pn25ihg+y4l2ROqppWP0NgDYurZlE1yCKY+7u+i4aKiIiIiMjg3DiKhK655hquueaaMZ//xje+cVzXB9i6deu4zv/a177G1772tTGfv2zZsnE/hocffnhc53/oQx/iQx/60LjGGO9jGO9rQUZObU9ERPYLFmfbsaYRgNBfM77w203AwpQllejQmB/7W04ilqAyHoXZ8ypqqS6E1HEvRgyPWckqqhMVONcbsAemquxYPeKuhtmpaioKvb8Prp7DrETdmOe4Lxvf/7aJiIiIiIiIzEwKv0VEZjhnu4c9Jsw/A0CQ/TMm2EKYW4kNt47jogHjiURNuAv69Qxv9sc+nZSXpDIWhd81iUqq4lGf7zMXvowl1QupTlQwN1WHc6OoYHa1HFpzEPHCgpn1iRpqDtDwW0RERERERGR/pLYnIiIznDWNxGO1wxzTFP0e7iTIPY41zeOq/IYAMMMeNRgX7sH1C8/35McepidjKeJeksp4gtnJWnwbADAvuZCs6SafyJOKpUaV1zsbZ3ZiDrFC+F0Tr6bSqyUY8yxFREREREREZCZR5beIyAxnTcsIjoqC6iD7KMZ/EVye/pXXI2WCTVEluRt7+G1tO7jS6z/bHo55vBhxYngsqqxnaeJM5qRmAVDpDiYRS1KbqGF+csGoxgxNNdXuKGalqqhJpKhNzMYFR495jiIiIiIiIiIysyj8FhGZ4ZxpHsFBPT1FHM5lcc5nrG1LnM0RBefjqPy27QOub8bRRsXzPJJeJbNS1Riboi4+NxrT1FLp1QAecS8Fo1i40boYxlZSEUuQisWJk8K5A/NtcbyLtYiIiIiIiIjMRGp7IiIywzk3dPsSZ9OYYHOf+93gMn3uZ/FiQy/+WDpgLvptHGG1czlcnzlAjNCML2BN2CWcWOewfow4Uf9v31RSGV9Awmsl6dUReKMJvxP4YYKEF2d2qpoE1WRtclxzFBEREREREZGZ48AscRMR2Yc4N3gXaucMof880NtSxIYNRFXXDmezBLnHRn4tm8a5bM+9sc/XZnC2q8/WOJmxdWEpCk0VSTcf5+J4gIeHcwlwKeYkFoNLjKlyOx6LkYzFoRCoi4iIiIiIiMj+QeG3iMhMV2xp0m+z87FmNzbc029Hb6W4DXcQZP408kvZzt4q8jEumGnN3qhPeZ/znVfL2s78mMYD8IgRmEqCYC7WJcDzqIjHAQhMFUHuMLBVhCY+6rFjxKhNVOGswm8RERERERGR/YnCbxGRGcw5gwm2lN9nO8h1/L/C4pblhcE6nO0c8hr5rutJt1xG6L+Ew2HDrYXxeyu3remI2qmMZM6mFWfbcT3tU7w6ut2CcTRRgZgXvV2FpiLaECxmVrKquM24FPlgFp43+re1RCzGsbXHght9cC4iIiIiIiIiM5fCbxGRGc0UFo8cyNksJliHY/B+IjbYwXALV4b55wlzKwoV5C6q2gZs37YlLl9YRHMEXFA4NpqXpZK8S43s3EF4Pcl5oad3PqylOtEzZvRWZt3Y+nXHiJFiPtYq/BYRERERERHZnyj8FhGZ8cqH285lcKYF468b9Mww//Qg5xpCfy3OhVjbUtga4GwXrhB+B9kHAPDTd9PTQ3wkHKbQqsUU7icJ7PjWV3ZlFrKsSUxMm5J5FXMw4Zwx9QsXERERERERkZlL/9IXEZnJXAAuHGRfDrAlPb4HHGJbcX1Ca+cs1naC83GmMaoq71lQ0/nYcDvWthXOjdqWWNsRBdpDVJj3n3PfavWASiwDw+vRiJU5f15F/bjG7JHyUuA8jBtfQC8iIiIiMtnihXVvjDFYO84V5UVEZhBrLcZERXQ9P+smgsJvEZEZLPTXMljFtSuE4tY0D3p+FEL3Od9l8NN345wfLZgZ7qQn1HbOxwSbCqE6gI+zmajlSd8WKMNwLlMM0AE6TS2hG1/4TZnw++CKJeMcM1Idr8e6+JjbpoiIiIiITJXKyujbj845urtHtiaPiMi+oLu7G+ei/KKqqmrCxlX4LSIyg5hga8l9G+7A9VRm9+MKobcrhtWj4UeV3qaxt5e3yxfHBHC2G2c7ouu7ENzIKktsuLfQ9iSyLVtLOI7FJCtiCbwyb1cVzBvzmCXjuEVYLXYpIiIiIvuA+vrebz/u2bOHzs5OVYCLyD7NWktnZyd79uwpbqurq5uw8fUdbxGRGcTP3E/VrH8u3g/zz+JcpuyxJtwe3Rgu/HZ9F7x0xW3OhWDTOBtVjFjbWVLh7Ww31rYX2q6EWNtKjEXDPgYbbqFvi5QN6ST1iUFat4zAQVX1JLyKAct2mmD+mMfsK5M/aELGERERERGZbDU1NVRVVZHNZjHGsGvXLjzPm9AWASIiU8kYU6z4hqjqu6amZsLGV/gtIjKDONP7Safx1xPmn8bzBvlRXQjFe3pzD643NnbOgjOE+WcIMvcRTx7VZ5zuYiuV6H4XfvftmGADicozwA7eW7xkWv0qxAMLzUEKKF/BPpxj65cSMwsGbPfNxCx4KSIiIiKyr/A8j0MPPZTt27eTzWaBqAVKGI692EREZKaoqqri0EMPxfPG2zq1l8JvEZEZxPWp0rZmL7huHNVlj7WmqXBrmP/R7Vv57fJAgAnWYYJ1eLFaenuC2z63iY7z12DNbpztwPNSI5x/afidMbApPfYuWzXxOvJBucUt1blLRERERA48sViMww47jHQ6TVdXV7EKXERkXxSPx6mqqqKuro6ampoJDb5B4beIyIxh/A30DY6d7SzcyJc9vqddSf+wecBxxQUtA8L8U+AszkZVIjbcU3qsy/a7H/Xu9rtvoaLuwpE8Cvov0Plku+Xw6rEH1fXeMrJajFJEREREpMjzPGpra6mtrZ3uqYiIzGgKv0VEZghrdpfc7w2io/7cA9ufjHRhm6gKxNlubLgTh6GnBUkxYC+M50xj6amF8NuE20p6cA0mCtVLj2vxDePqQOjU3kRERERERERERk/ht4jIDBHknihpUWKCbcXbNtxFPHlY6QkDwug4DFgWksLilhZcgLVt0e+mpTBEnwUuTSvOdpSeil+4kWUkYXs0Xt/j4rQHlkeasoOdMiyrqm8RERERERERGQM1TBURmWIm2DRgUUgAZ9t7b/cLtsP802VGKh3DeYN95TEEHNY2Y8NdUbsUN7BPeE+Lk9KNfbeNoNLcZkvGcV4Vu7Nj7z9Yl6zAOn1OKyIiIiIiIiKjp/BbRGSK+ZkHy/fxdlFIDUQV2H2OMcGmgYf3q/LOMa/s9ZztxJlmjL8O4z+PDXfQvzVJdGD/8DtVetwgvcdLhnDdONtbTZ52B9MRjD38XlI9t+xURURERERERESGo/BbRGQMXJnK6ZGy4Taiauyye6P/mr0Y/8U+F0z3uXZhAUvT3ue8GFk7WG9sR7bjxxh/XWHsPTiXG3jlPj3HrTcfvNK3iHLnDLiSK13w8umuReTt2NPrOalajFXbExEREREREREZPYXfIiJj0Le6ebRsuAvngkHG7S4e0zeMNv763lYoLo9zBmdb+pwZJzNo+A1h7jFC/5meGeD6hOm9124v3u5y8wCv3/6R9O22UGzpEmNzZlxLXZKKJdX2RERERERERETGROG3iMhYuDxB7kkAguwjIz/NBdhwL860DLI/g3MGk3+mZHsUhAc453AEhfN7K6rz3sFcs6Nu6Gubpj63y1+/R5epxvV/ixhB5Xe0YGch/PaqGEe7bwCq49XjG0BEREREREREDlgKv0VExsC5PM40Y00HJmwY8Xk2bAB8nBukitoFONuBNc1l9oWAARdiben+nKthe2YEC1L2zmTIva1BBf3fIhzlq9UHjmsKx6fIjWZKZcS98VWOi4iIiIiIiMiBS+G3iMgoOWfIdfwMZ7vobvwnwvxTIz/XdhTG6L+4ZNTyxDmfIHN/8bjS6waF6mtDmFtVsi9vk/jj6K3dX2O+TKuREfU5NzjbCUCWuWxLj29OXr/WKyIiIiIiIiIiI6XwW0RklJxtx5rdONuBs12j7P9d6APi8gP2WNuMczlMuAPbp0VJ74XTxYrw/oH79lwtDVkDTMzikA25MhXXg/QpLznE2eJioO1hPcaNL/xW5beIiIiIiIiIjJXCbxGRUbLBNqxpx9o2wIDNDHuOcz2hty3cHxh+O9sVBdzB5n6LWUZMsA1r9uBsDuOvKdl3c0OCJ9pyOK9vj+zUiB9Tf80DC9NxjKSBdwBE4fdL6RqCcRajJ72K8Q0gIiIiIiIiIgesAzb8bmxs5K677uKyyy7jne98J/Pnz8fzPDzP40Mf+tCox7vnnnu44IILWLJkCRUVFSxZsoQLLriAe+65Z8RjhGHIz3/+c17/+tezYMECqqqqOPLII/noRz/KCy+8MOo5icjkcATg0sWKb+fSQx/vfJxtLdwuLBrpMljT0ecYV1xQ0oa7y45jwq3gTGHxSwAPSAAx1nVHgfOO4MjCrkrSHDrqxwZgvTnc3+gz4C1iJG1PnA8uwHpz2JOLkzET14pFRERERERERGQ0yjR1PTAsWrRoQsax1vLP//zP/PKXvyzZvmvXLnbt2sVtt93GpZdeyi9+8QtiscE/a2hububss89m1arSPr6bN2/mqquu4tprr+XKK6/k0ksvnZB5i8g4uBBwONsd3S38PvjxATbcSSy+oHisNS040wjxWYWDequqHWXKrgFnO6OFNgtBOl4lIXMAx58bowU0H26p4x8XgaOKBn8OR4+h+DvPHB5vyTHw89Hhw++owt2SdgtozENLfpwrXoqIiIiIiIiIjNEBW/nd16GHHsrb3/72MZ375S9/uRh8n3LKKVx//fU88cQTXH/99ZxyyikAXH311XzlK18ZdAxjDBdccEEx+H7Pe97DPffcw8qVK/nRj37EwoULyefzfPSjHx1VJbmITJYoBLamoXjf2eygR5tgPTZsBHorv51tLy4MGW3v0zql32KYre4EAILMg1F4XgjQfebz9Y1HsT7XW+Hd7EPeO5RGcygZM7bPN0MXnef6vUUUW7cMKTqm21TRFcLT7bkxzaFHyhw/rvNFRERERERE5MB1wFZ+X3bZZZx++umcfvrpLFq0iK1bt3L44YePaoz169fz/e9/H4DTTjuNRx99lKqqKgBOP/10zjvvPM466yyefPJJLr/8cv7pn/6Jo446asA41157LcuXLwfg4x//OD/5yU+K+8444wze+c53cuqpp9LZ2cmnPvUp1q5dSyJxwP7RiUy7ngUdnWnv3Wa78GJVZY+3pgUTbiscWAi/ncHaTpxzeJ7Xr6VIaauQ5qCauSmiPuAuh3NR0O67Kpa3BLz74N5FIdsDeD69hLz1CJ03psfXG373W2zS+Thn8IZchDKq9O40FQQO0uNoexL3YvhhzZjPl5HzvLG9VkRERERERERmsgO28vvrX/8655577rjan1xxxRWEYRRY/fjHPy4G3z2qq6v58Y9/DET9vH/4wx+WHacnQJ87dy6XX375gP1HHXUUX/rSlwDYuHEjt95665jnLCITwAWFG0Fxk+1pRUJvOG7CnRh/IzZswIYNOJvDFarGw/wqwvwqgsz/YcIGch29H3r1l7O9YXOQexxnowDdEOPp9hyPtCSL+3+0sZNHW5L8cCO0+KP/EW+8hTQHPYFzaSAa5lfS3fhPg55rbScUqsNb/CTPtAeDHjsSCe+AfYuaemrNLiIiIiIiIvshJQtj5Jzj9ttvB+C4447j1a9+ddnjXv3qV3PssccCcPvtt0eL2vWxfv161q5dC8CFF15IdXV12XH6LsKp8FtkejmGCXVdPlrk0jQBltB/DmcasaYJXFQZ7UwbzrTjXAAuGKKlSJzOsPebHibYiHNR25O0qQSiau++2n1He2DZmx9LNa/HM53lK9ih0Hd8sBYvLiw+N3vzcbrC8SWq8ZiqkUVERERERERk7BR+j9GWLVtoaIj6/Z511llDHtuzf9euXWzdurVkX0+7k+HGOeiggzjmmGMAWLFixVimLCITxZVbkLI36LXhLmy4Fz99D87lscEWTLAO8PscF+BcHlweCHGmueylrDeLHdk+bUZcGhtsAeCldC0A67tKF6JsDRwdvqUpP/rw2eHxYFN0ns/AD+Oc7cSEWwY52+AKvc03pj3a/OEXyBxKcsj2KiIiIiIiIiIiQ1Pj6DF68cUXi7ePO+64IY/tu3/t2rUlvcVHO8769evZsWMH6XSampqR98LduXPnkPt379494rFEDnRh/vkh95tgM/HU0dhwV9Sfu1DVHfov4ly6z5EBzuVwLsS5LgCy3hFUuc3FIzJuHnv6rRlpCwtlpk30+WWzb0v2P9nmsycfsrI1DodD1L5k8CB8t3kF23M1nFq7FUOSu3dHi292mjqqej4i9aoBG/Uct2mczeDFSsNxa1ox4Q4gSbPv2JsfyQKZg0vEFH6LiIiIiIiIyNgp/B6jvmHykiVLhjx26dKlxds7duwY9zjOOXbu3FlspzISfecgIuMT5p8us7VP5bdpJGYXY4LN4LK4wiKQYW410BsIO5vGmZaoXUihlcij7Yfwjlm94fea9EL29qvgdjYKyjeno7YgrX5pyPxSV1SZ/kx7YXFNrwav0CqlnOt2zeZbL3Xy4lsWkrMJusJovK4wxaJU4TFRhYfBIwcug7OdA8LvMP8kzjQSevPpDBzZcSx2Cer5LSIiIiIiIiLjo2RhjLq6uoq3a2trhzy2b4V2d3dpADVR44jIFHL5Mtt6q69NsIFcx1WAjwm20RN4O9tOmH+u9xSXxdpWnOvG2Q4ANqd7fyynOYovPG8Y0Dq7UD3ekIt2NA1SYR0VhKdY3nly70avkt3m5JLjtmSiuedsgkdben/O/Km577dLPFxhAUxnu7Fmb+Ex9LaAMfnncBhyrpbMOINvgFmp8msgiIiIiIiIiIiMhCq/xyiX6+1DkEqlhjy2oqKieDubLV0obqLGGU7/ivP+du/ezRlnnDGqMUUORNHClAMXvHSu9++yDXf3hsO2rdj2xJq9UFKBbQuV3zkg6o8d9ulgkrbVPNeZ55Q5ybJz6Sn4zhhbdn/gLKE3l0dbYry+rjBP4uz2qzi4z5qWHUFP+B1nZ58WK5vSveM6PLxi+J0pPl5nu/Hicwu30+AMhjg7MuPr9w2QVNsTERERERERERkHhd9jVFlZWbzt++UWv+uVz/dWiVZVVZXs6z9O3/ujGWc4w7VUEZERcrmym/PdfyBZeVp0iEvTU+3tZ/5MT1juTFvpUKYJY5rJtH4HgIx3JH1j7M6wAggJBimi9l20Y/Aia48Xs8vYlXMl2yIx0hxJtbeXQvZNZ5gg12ewHRkLVLDefwWHVewlRkgMsOEOwEHlq8h1XEXV7E/jxapwhOB88jbFuq6hfy6ORCpWPvQXERERERERERkJtT0Zo7q6uuLt4VqQpNO9C9z1b20yUeOIyNRwxZYnXr8dfmG/jW73tEFxmT4HRdXQ1pvb53xX3N4a1mP75NRdJvp80h8k3W7zh28t8kJXBaWF4R7OeeCl6DTVZN3CYouSxny8JGjvDh3Wq6MzTGBIkHazADDhdqzZiw0bsKYJcDgXFH7Pkjapcbc9qYoniXve8AeKiIiIiIiIiAxC4fcY9a2k7rtoZTl9W470X3hyLON4nqdKbpHp0hNye6X9qJ0tfHjlMjjbTu/Cln2T5ygQfqTjZcDANkd/aa0vCZ83pqPK5525/j29oxZIDzVlGM4fdoYlgTok8B04koQuToepYWc2Ct9zBrame6/VZSwBNXSHMayL4dsojDf+8zjbhZ99GOOvARzOdtIT5L/YXc14O34fU38QMb1FiYiIiIiIiMg4KFkYo5e97GXF2y+99NKQx/bdf/zxx497nKVLl5YsfikiUyeqcIZd4TEYbxEAvrc06t0NWNNaOLJ8H26A9d1xnDew69SuXGnPb+uiyufGfuG38xI4r47sCKqrX+z06Xt22s0ntB6OJIGL0Wkq2J6JHlNn6PFEa297pV2ZkJWdS/GdhyVenA+ADXcVHnMIuKiveaENS1c4/ortpdUHcXjN4eMeR0REREREREQOXAq/x+jwww9n8eLFADzyyCNDHvvoo48CcMghh7Bs2bKSfWeeeWbx9lDj7Nmzh/Xr1wPwute9bixTFpEJEQIJfripjqbwICDG2swSXGEhS2t2DzvCQ03RGP0FFpryPYF2jJ4i7L25/otHJgiYNaLZNuZDfNubqK/LLCB0Ho44oYvRGiSKPcN356At6I3Km33D/2y0OAfGxbCUht9RyxOIKr4NPYF/58D1QEdtfvxokuEx4x9IRERERERERA5YCr/HyPM8zj//fCCqyH788cfLHvf4448XK7bPP/98vH49bI855phiNfiNN95IJlO+jcE111xTvH3BBReMd/oiMlYuwPcWs7E7xHdxft/4ev7cnCLqd21xNjvMAHGe6fAJqB84NLA3HwXIzqvl2u1RFXbaOJxX0+e4OLv8g0Y85d7C8Tjbswma/Rhb8sv4zvoUL3b1LirZXaaSvCOw/GyLZUX7fIzrfctwLgMuW5iPw9k0PeF3/yYto5HwYsS9GLn8IpzTmswiIiIiIiIiMnYKv8fhM5/5DPF4HIBPfvKTZLOloVc2m+WTn/wkAIlEgs985jNlx/nc5z4HQGtrK1/4whcG7N+0aRPf/e53ATjqqKMUfotMI+dyZF0NDmgOKvjPF7tZ3tJT6txTAT240FvAnlxI4CrL7k8X+p50u4N4tr23BUmbXVZy3OPtI299lCuE2s6rIWM8GvMez3dVcVtDmk3p3sC7OxwYfncGloebMly5OSBn4332mN6g3zmcy+MKYbgZvOPLsCriCQ6qqsO6JNbFhz9BRERERERERGQQB2xZ3fLly9m4cWPxfnNzc/H2xo0bSyqtAT70oQ8NGOOYY47h85//PN/73vd48skned3rXsd//Md/cOSRR7Jp0yb+67/+i6effhqAz3/+8xx99NFl5/LBD36QX/3qV6xYsYKf/OQn7Nmzh4985CPMmTOHJ554gm9+85t0dnYSi8X40Y9+RCJxwP6xyX7Cho3EEgunexpj4mw3xnk0+5bt2RQtfo4N3VFbEhvuJNv+oyHPz7qo4jtkYLDbHji6Qgsk2evPImqxEvnljvl8/lAAD/D4t+e6RjznnHWAx/bgaL64ppt3L66mNhF99vlCR+81btyRHnBuR6ENyuMtOTKmNLA3wbrohsuCy4PNAUN1Ox/e0uq5HF9/JPhg7MBFQUVERERERERERuqATVGvvvpqrr322rL7VqxYwYoVK0q2lQu/Ab797W/T2NjIr371K55++mne9773DTjmwx/+MN/61rcGnUs8Hue2227j7LPPZtWqVdx8883cfPPNJcdUVFRw5ZVX8s53vnOYRyYy8zlXvr3PTOecwZpGjIuzJe3TlK8AYEcmAGLYcBcUen8PxhR+7IYuAf3WhVzTEdDiW/LeYpqDFH3D79/vyPL5Q3t+ZHsjWuyyR8ZE4XejX0FXmOW+vTkOr6kGYEum9xqBGzhme9AbZWdM/y8LRfusacQR4FwOiI8r/K5KVFARqxrXGCIiIiIiIiIioLYn4xaLxfjlL3/J3Xffzfnnn8/ixYtJpVIsXryY888/n//7v//j6quvJhYb+qmeP38+f/3rX/npT3/KmWeeybx586isrOSII47gIx/5CKtXr+bSSy+dokclMrmcHTognqmc2Uuu48eELkbWOBoLi1M6opYiNtw+7BjdJgrMfTvws8fN6ZBtmYDbGpdxf2NpZfiWdABeCudVEVK+ZcpgNnT5OK+On26Ofg415kMeaopatWzPDL06Zd+MPWu9ssfYcDfOtALRHO3Ic/kB5qVmUcH8sQ8gIiIiIiIiIlJwwFZ+X3PNNQNam4zH2Wefzdlnnz2uMRKJBB/72Mf42Mc+NkGzEpmZbLgVKk6c7mmMmnNRD25DHHC81NVbnxxSjwm2DjtG3iaAkJxN0L/zyd5cVIX9TIfjL83+gHMNdRgq6DCzRjXvwDkebH85f2rsrbjf0D106F2OP0j4DVHlO4Clms7RD11Unxy4EKiIiIiIiIiIyFio8ltEppzxNwy6z7mZ2/CiJ/z2bfSj84nW3gUpQ1I421m4V65XdXRO1kSJd6Pf/5g4PQXTz3eErOnM01+bXUCXrWd7rm7Uc3/vyu5CP/HInlw4xNHlDRZ+O+dDYfYBNezNj/3PsDa2EM8bLGQXERERERERERk5hd8iMqWcCwmDlwqBad/tAc524ezIF3KcKsW5Fn4PXG/7kF4ejqjk2XnJkvPz3mEYbx4AuUJwvjdf+sUb5/W2Mlndnis7j82ZenI2SWc4PT+6c4NVfrsAE+4AIO+qCMeYfce9GDFbB07ht4iIiIiIiIiMn8JvEZlSznZiwx3g+vXGcCHOZrFm1/RMbCiF0Lt/5Xdpa2uHsx2F26XBdms4h7SLwu+eftjBgCC595zBFrPsDONkTIKsmZ5w2B8k1HbOx+SfAyBwSXJjbPpdl6zAugqcO2A7comIiIiIiIjIBFL4LSJTypo9WGoJ808Xtznnk23/PuCwwXZMMPzCkVPJuUKFdyEE/+pL5X50ejgThd8+s7HefKy3AN9bSt7GaQlqoyEKR4cOQm9x8ew7Wl4x7Dw+9WyO+5qqWd46s8LvMLcSE0StbKzz2JYefUsVgPpkFTm/npy/YKxTFBEREREREREpUvgtIlPK2S4MlSWLQzrTTph/FmvbsKYJG26ZMb2/nbPF0BuiUPeFjoErOjq8YuX3mvQhGCoJqCbvqmgJKtiQqYpGKLT0aA2gxcwHKoAYu3PDB9oNuZDfbc+xsduM+3GNxWDht7VtQLTTuBgdY+h7kozFqU6kgBjOxYc9XkRERERERERkOAq/RWTKONtNkPkzljg27K3uDv01ONtGtu37WNOECXfibMs0zrSXs+2YYH3hdhaAVn9g+GxdHAo9v6/flcCQ5Oa9y8i7FB9/NmR9dwzn1bOuO2rp8aU1nTzcMof1/isw3gI2pkfWKuSlLp9tmbFVVo/XoG1PzJ7i7ZAY3eHow/njZx3MrGT1WKcmIiIiIiIiIjKAwm8RmTI23IM1e+gwszHB5ijkdgFh7q89RxBaH5zBmbZpnWuRCzDhNkJ/LdbsBpIEbmBQvTU3t3h7Y7ehw9TzTKejNagmYxyr2gx7wsN5qKk3GN6Rg/YggSXJjszIA+PN3QMrz6fC8x2WVnfCEEckCGyczmD0Pb9jeNQmasY+ORERERERERGRfhR+i8iUsbYd469hdedsbLiFfNeNOJvBhDt6jqAzCHAuiwm3TetcezgCbLAFv/s2TLAN51WUPe66nani7c7AsD5dx227smzKVJIOLLc3pLl1z2zu3J0uHtfuO3bnExgSNOVHHn6XC9+nwh93dfOPT80adL/zagidN6b5xbwYtYm68UxPRERERERERKSEwm8RmTJh7nEgwep2r3B/BWAKvbITGCpp9ONkwoAguxw/fe90ThcAZ1qw4S6sacC5NI7y4XfaRIFv6B3EtkzAL7dBYz7ktgZX7IG9M1caCneGjm0ZD99Vsik9PdXco/VCp4/15pfdl2U+oRvb20p1vJK43pJEREREREREZAIpaRCRKWP8tTivhoebogUknW3H2Q6c7QQviXEpGnIpduYSGH8tYf6paZ4x2HAXzqaxwQ6cacQOEn5vTUeV2x12Pi2+5aGmqD/43bvTFHJxHmspDbh35ywb05acTdERzIwFPofTFhgybk7Zfc92Lyou6DlaqXgSz9NClyIiIiIiIiIycRR+i8ikc65ngUZLjnk8256HQohs/HXg8vxu7xl4roWmXI7mzF4scWD6A2Fr27C2Hee6sWEDIamyxz3dngcgb6MFLfOFxLvb9FZ7P9OeKznn0aYst+7K8P4n962FHvOu/HNwz94kG9Ll9w3HA+q8JeOYlYiMVOeqz0/3FERERERERKaEwm8RmQJRVbTDkncVUU/oQpVvkFsOwM835zEuQTq0GBcWwu/p6W1dwgWFWTjAkbHlF2XsCi3gke0Jv+3AufffkreOrtCyuhCc7ytyNkUUV5fqDBwvdY2t8tsjhnPJcc5MREYi7HgRZ/eNVkszmZum9RdERERERGTkFH6LyORzUZsT6xy3710QbSr8+Alzj2G8hazpzPPh55bxQpcjb2OkbT3OTX/ld1R9HgXaxlvIEQ8MXtkceIfwqod7gv79V8YksN68wr3ewDodOh5sHH2QXxlPUJ+chbVVEzRDERlK0Pocue13FO+b9K5pnM2+y3Ssm+4piIiIiIjIMBR+i8ikC/2tOOezNbeYDd3RNp95xf3N5iAAAuvYlDbszcfYmptDY7hwOqZbwtgQQxTKhlQOeWybmUt4AFQCtgZJwsJzkvWWFrc7HPkxfF5Rk6ggTpzQDP38yuTxvLFV7Mu+xdkAZ3wwOVzQWdzu73lYVcxDGOy5CdqexVkTPaciIiIiIjIjKfwWkUmX674V46/jq+sSXLmpC4A/tR5W3P9c1ywgagOSDR0NOY/PPe/xnfXTH4bmwm7aTVSt7rvyi1322J6rpVw7kP3NS90Jum0dANc19ITfHhaPFj8c/MRB1CYqSHqVGKu2J9NlX4g9XZiZ7ins81zQhc23YIOOkuczt+NObK5xGmc2s9l8c9nt/u6HcH47Nt86xTMSEREREZGRUvgtIpPOml2E+dVkQlPc9tPNId0cDVTwux1R9LahO2BrJuDO3T5784aKmI8Jtk7PpAFnu3DhNhqDaEFKf5CFHns803FghLc37gzpCKPn5E+NIZAErxLrHI15M/TJZcyvqCNJ/QTPcv8W96DuwHi5FeV23DndU5jRXJgjaHue7NabBz3GpHfgN64AG+CCDgCClqfwG/9C2PoMuR13D3sdm2/FhdkJm/dM5Uwev3kVAKZzw4D9YdcWwq4NWL8drCq/RURERERmKoXfIjLpnAswwVba/N4F1la0ZLl+92Kcl2J5cxSk7MyG7MyGPNmWY28uZE6iCxtun65pY00rnm3h+c6oAj10Q//IbA32hfrZ8VvRkmV5aw0Q58HGLHgJLFWEzmHG8BTUJKrxXPmFRKW82qTjoIr9P4DsK/PSz6Z7CjOazTfjN/6V/M7BA+yg9Vn8PY8AELavBSC75QZspoHcjjvIbv7dsNcJO17CdG+bmEnPYC7oImx7HojawvSX33UPNt+KzTXh9onvToiIiIiIHJgUfovIhHEuKLv94fYjyYWttPmlVcHfeSmNI0GLP7BRdM46amMZch1XE+afnpT5Dsv5dNk5LG+xrEy/Ft8mhjy8O9z/W570uHFXwKrMqwicAzxCasbU77sqHpUv5/zZEzq//d3xlXt4s3/tdE9jzPIND47u+F33E7Q9V3afelWDzbdj/Q6C5ieHbA+T3fhrcltuACC/5yFs0E124zXRvk2/I2gZ/mdt11NfJrfrngmZ90zmTBab3QOAv3c5uR13FffZfBu5bTdjOteTWfczTPfWaZqliIiIiIgMR+G3iEwYZzvKbMtxz96Q3fka0v3KgtsCQ0DdoONZF7VMseHeCZ/rSDgsLUENu3KGNV1J2sOh255sz4y+5ce+alsm5LnOKLh2eISkaB1lyxMPj1mpKjwPrDvAeniMUw1dzM69ON3TGDOT2Tm649PbcGF3+aDbjb7P/P7GpLdh0tuw2d0lC1n2F3a8VOxfbbO7Md1bsLnovgs6cWH3gHOcK/1UK+zcQND41wmc/cxk/U5cmME5h+neWqwCBwjaniPsWI8LM+R3/xl/71+mcaYiIiIiIjIUhd8iMmHKhd/WNrOy1Wd5axUtZcLR9dnFg46XK2QuzuUmbI4j0VvB7mgOkvy5Mcv1O3yu2jp0QLu5+8AJ4bZnAvbkeoLIGIFL0FSmgn8or1lwFKfPPY6qWNXET3A/5gFH5h7GG+SbFjOdM3nC1meHPMb6HdhcM0HbC9igG2dyYIPoV59xbL4d07lpsqc86YJhno/+THpHyX0Xpsnv/D9MeicmvQNny38Q5YI+4baztD/yAfoud+rCDCazu+SczpWfJmheXZynzewit/NubDAwKN9XOTvw75Lp3oyzPt3PfYewcx2ZjdfgTB6A7ObrsIUPcGxmJ2FrVDFv/cE/eBARERERkemh8FtEJowz7b23CxWazqbJG8czHa7QIqPUL7cNXk3dHoDz6oAprqh2+eLv6TAOwJa0z+MtQy9qtiF9YC169nxHz59LjNAlacqPLvyvT9SR8JJ43oHTLma8Yh5UxqHO3wz7ULsPF2aLAaPp3oozQ/crd2GGsGMtNt+CSW8n7Hgp2h504pzFOYfNNRJ2rsftB5XfYduaUR1vsnvxm58Eosps67fjgk5M1was30rY/gI2SPc7p3FAyGv91pL7LugiaFpZOreOl7B+O2HHumhxx2gwspt+O6o5j4WzYb/7k/Ne4IKuAdtsrgkXZvAb7gdnwfrYQlV9T7/04rF+OybXRNi+734bQ0RERERkf6XwW0QmTDofVcI5240NC1VxYQNb0gEPN5Wv3r5m28DQocdTbQHNZhnODn7MZOipNLemmY3p6Mdki2+HDbezY1ntcR92796ot7Chhs6wctSPf15yEZWxWjwUfo9URRwWVvjU5tYTt/vOgpdhx1pMpgGA/K77sPm2IY+3fjvdL/wQf8/DhG1ryLz0UwBMejs2vROb3UvQ8hSZ9VcNG6TvC4L20YXffsOf6Fh+Cc4GBC1PYTO7cWEaF2awmQa6nvoyQeOKknMy638BNl+yzRb+TIpcSNCyumST6dqI6d5C5+ovEjQ9Xtye234rLpzc5950lVb1B61PTcp1ws6NA7bZXDM214TJ7ALAOYMrhP99W6AAOJMjv/028jvv6j+MiIiIiIhMM4XfIjJhuv3dOBcQZB/G+NHidB25neStY2P36Fs0rGrLcfOeuTTmp/ZHlTNRMJc1cR5o3PerSidbh507pvNiVFDhFhFT5fcA8UGekpq4Y1migcr8dirD3TP2YwObaykJRk12b7G6NuzaSNj23JBVvC7fQtDyJCa9A5trLG73m1YStD1LfvcD+I0rMOkdA1qA7ItsIWAdqbBjLSbbQH7HXaTXXE7QvIqwz6KLQctq0i/9pKTS29/90IjGNtneQDzs3oZJ7yC75QaCppXktt/W50CfsHP9oONkt940oHJ7tMKuzSX3/b1/GfC6GWrB07B727DHAATNq6LjCouFhh3rMZkGTNfmYqsT53dgcy09Vy0dwPjkG/6EKSyQKSIiIiIiM4fCbxGZME25PM60EfovYYINAOSDaLHKsRRF563ji2s6WdNVOZHTHJYt9C5v9hP8qTEzpdfeF3WElf2joBGJU0smt4iqWM2Ez2lflxgk1a6KhxwWrKLK30FFvoHkDH0XN+ltmGxv72ib3dMbLLavjVqa5AZfyDbs3IBN78BmdxcXZIQopDSdm/B33Y/fuAIXdmP6BaT7IlMIaUfCOYfJ7sblW8ntuJPc1hvxG5djOnqDaJvdTX7HHaUfQHSNrDe669O3OmxbA87g734Qm91dUvntTHbI5z794hXjrso36e291wtz2PSOYvV1cXuZliU9gp7WMP7A9SiK51tDvuGB6HrZxuj+7j9jurcWWp+kC9fp7H3N9mu140wmCuaHmIuIiIiIiEyPGfrPZhHZF+3MBjjbgSOGb6KKw85w/K1AMmZk1YPDVfeNVE+bldzo1m88YOVtjBe6Rr9opbOV4HlUewsmYVYz35KqkNfXbytbvX1EdZqK+MDtHpAqvD7jtpslVfmBB80AJttI2L4Wf+9fovtdm4utIlwQBZH5hj8Nen5YaANi/faSNhymayPpdT+L2p/kmqMKczO1C+JOtKD9xeIHA33ltt9RrDruy3RvK4a6+Z3/B0R9uV04cAHKvuGzHSIALjnH9VZW23zLoMfZfCv+3kejULpM6Gs61mFzTSO65mD83X+O5hRmcSaL3/gYYdcmwj5BvyksPFmO6d4SnR904sIsQftanOltX2Uyewia/krQ/AQuzBb6m7eS2fD/om8eZPcUX68AQUvUdqV/9XnYtQWbayr5loKIiIiIiMwMCr9FZMKs7fJwGDpNLc1BNQCto1wEsZyESw9/EAATlVZHc3ZO6fdIZG2cO3YPf9yg7OyJmso+pS6e5yBbvnJ2Tqy9bPW3hyNlesLvLHWxmdfv2llD2L4mWoAxE70wbK6JsHNdtL9QjTxU1bALugu/d2HzvZXfYddmTNfGqL910Bm1C7Gjb6k0k9hcc9nwOGh7tmz4bbO7cX5b4dyeSuRBWsj03e5G+Dz1+TDBDhEsY32CtudwLizb+9sGneOuhPZ3/xlnA8KuzTgbRN8EyO7G+r094+0QrUZcYYFKZ6JgO2heVfKNBBd0RMG134bJ7MJm90Sv1fYXsdm9UY/0Pu8Dxddi/0VWTRZcqPBbRERERGQGUvgtIhPi4d0beaixk+7Ms3xr/Sx+vzOqBL6vcfxdiYMRL+xnsGbwSsWRsi6ac8IO3pZBel21NcEfdw2sOh2OK9Q8B6Z6oqc0481JOV4d3sqC3HO8qn5geHd0sIKv7z2Cf018v2R7KmY4evd3i/dPCe6bMX2/ewLcoOlxulZ/MVqMsfUZgtZno0ra5lXkdz9UDBD7VhXndz/cO47fQdi5oXBMc2n4mNkFzkaLPGb34MLukr7W+5Kwa2t0w4XYTG/f8p7AO7f1j8WWG31l1v18xNfw9zxM2L0NF+bKVpeX42xvZXR+z8ODH2eyUW/sjnUDWthkNl4bheP9Fs/sYYM03WsuJ7fzXgCCthfKH5dvIfPSz8g33Edm3c8x6e2kX/xfup78Qslj7Hj8X8vPMeii88kv0PnkfxC0PY9J7yBo/Ct+42MA5HbcGQX8Jkf38/+FSW+Lqs1NbmDADWTW/SJ6nQ/yYYMLM7iw98OD/j3LRURERERk6in8FpEJsb6zmWfb83T7u/Gtw3NRELYnN/iidiPVnh9hWwMX4Oz4e3TnbRQn5iemi8p+b0PXyMPHqniSo+qiNifOJQAITXJS5jWT1SdC5ubWMDezmhjR35G+bU7qgu0kbJqD22+ntvD01Ceh2svj9emwPje/hsQMeSd3YRabb41abTiD6d6CzTVGFbTOEna8RHbjNcXQ26QLixFaU1xI0VlD0LKaoO1ZIKrqtf16PBeu1nuzT1g7onkOsdDmVMpt+yPO+FGIb01xMUXrd0Tb861le1X37YM9HNO9HUyuJNAeVp9jbXbwDwCt347N7CS75XqCQphc3FeogO6p4Ico1Ld+B84GmPQ2XJgptiUJO14qOc6F2UKI7Aja12A61hM0/jU6tmsjJru32As+7NxIvuF+THpglbpJ78Tf82gUau99BJvbS9D6DPndD2Iye6IWMu1R8O433B+10xmi1QvOFFvOlN3tTPSaLzxu07Vl8LFERERERGRKzJB/MovIvu6h3RtpyIWE1sc4i+c6saaJhuzogqlyciMMq2y4Cxh/FWiQfwHnDA3ZMk2XZYDV7SPvO31Y7TxeN+cdAARhz0KmB95b0ex4mqVNv2Z+x33UuijgfFl1a3H/3HS0sGBNdj1HV0bb31yxguPt4yXjHNp4Vdne4NPB5puLCwUCZF76CUHTSsJCwGnzrWQ3/67YpsTf8ygQtZ7Ibbm+cLuT3JY/4PKF58JZTOd6huLs6ForzYRFCZ1zxUrm3LZbwObJbbs52hdmCDvXYzO7iv3M+7Zg8oeoxu7P5psJOzcWe1WPaG59ns9ylee9g0d/jpkNvyS75XpMpvcbDD2hec9rAaIgOLftFsK2NbigOwrDM7uiMdb+GGcNzjn8PQ/jN60sBvZh63P4ex8l33BfNHZ6B6ZzHel1P8eZPEHLakznBtIv/M+AKfrNKwmaVxK2PkN2w6/wdz9E5qWfkN14TRTaN6/C3/NINL/0dvy9K4Z9fWTW/WLQfS7oIrfzbsLWZ7H5NrVBERERERGZARLTPQER2T9kCwtcdvg+i5LtZI0jyK5gU3r8YXQ4TPjdEwyZYCPx5FHjvp4J1uJsBzOjPnT/Evdi4HrC7pnSsGPqHez1VqkuCtcCL+NI9zwvxs8isFDf3RtWVng+HnB8+zU4BibdiyuyrA9Gv+DoWDiTx4tXlN+Xb8N0bsRLRHOxfjteak5vJXG/6mMXdOJMHpPZFVX72iCqrG19ZlRzCtvLt8wYjM23EKuYPapzIKow9lKziCVn4cVToz6/hMlhurdHCywWwlYbdOLvXU6scgG2EP7bIKqUdiaHl6wr2wN8KH7T4+AlcOEoAn8X4owfPcYRtJRxQSdB2/MELauJV5+Dc5awbU1x/jZIE0vW4EyW7KbfYv02knNPiSq/Cz3FnckStj1LvPYI0mt/RMUhf4PNR4tlmszOsoF00PxkSfV4/28IOBsOqJx3Ybpw3QZM5/po7D7nme7NmO5tQz5ev+mvgz8XYRp/94M4v61QBT6+BT9FRERERGT8FH6LyITIm6hacHWbZUlFE0+2gfFfpDMYf4S8N29xzsfzygdOznYAHibYRCxx2Liu5WyWvI3jbJpQC15OuKQXpyf0tjZ+wObfy7IPF2/XB1Ebi9nBZuoSbyBtPBK2t+I2iU8qDoua7ig71pLYLtYz/g99huOMj0lvJ1F/dNn9Jr2doGU1iVnHRRtsACaPzbeVPR4cNtdEbvttuLArCky9GEHzE6Oa12iPN91bSNQfOapzAPy9y4nXHkpy3mnjDr/Drk3gwmjuPQGz9Umv+zm1J/wbrqc1TPdWgngVNt9K5ZK/wQyxuGM5QWNUyezCkffkd84QdqwlOfcVxcrzoU+wuHwLQdNjVC49B+d34rdErUHC9rXYXFMx/Pb3PIQXryRedRCm46UofHYWm2siaHseYhXkd/4fzvj0tLbpqQ7vz3RvjSrTC8/fgIDc+sUFL4ub8s3RuCaL3/jXgWPbAL955ZAPd8hA2wb4TSsJmp+kItOAlzjw1jMQEREREZlpFH6LyIRozEXhyuoOx/G1Hn9qzGCsodUff4C8udviTDteYiEQhTOe11sB62yhSjJsAHq/sm/CXcQTh4zqWs5lyJgKcHmMVfg90TzPA+Kcs/h0CA+85DsVg2XVWWa3ryluq/U3cUx9hrrujbyhdjkrvNeWnPPK7mug9oODjjnP7sDjKCazRb0NujHpHbh8KyGUDcDDjnX4e/9SUrntnCFoenzAsT0y668ms/FX4Cy5nXeRnHfaqOfmTI6wc8OgoXx/Pa04bNBNLFk74uuY7i3gxUjOO3XUc+wvaF4FQH73Q3he9E2I/J5HCFpWk1rwGrx41BLI3/0guc3Xk1r8NvyKOSVVyiMV9nmtjYTLNRM0rQQbYv3BPrgYKGh/kfyeR8Fki21rgtanCQuvh57FH/2mx7FBV9T3O+ima/X/hymE0D39toOmvzJcOySbbyLf8EDxftixtt/+gXPvG5AP9rzYMr3DSwzzgUBPoJ7b8gdSi98afWMgWU+8auHQ44qIiIiIyKQ48BqtisikyIZR9Z0pJHA7syHNQQ15O/5IbnM6wPXt5e2yJfutacWGDTiXB9dbaW6DLTg3yspzFxC6GM7l8Sagf7iUinkxwGNOctF0T2VaHFzpszDWTGWwo7htVveTHOOtZX73Xzim4/dUx0t7WC/suJ9lweCL7FXYjklf9NIF3Ti/HZPeQdhWvs2I9Vuxub2Yro19zxyyWjlsX4NNR8+FSe8YVYVy7yVCgpanR3y4LVQDm65No7pM0LIa07UZJuAbIbbwnNjs7mJ1ddD8BC7fQti+prgt7FiP3/QYNreXsP1FTKZh9BdzdlRzNrkmwq7N0YcYI2h70sNmGggaV5Df+yjFBUlNjrDjRUzXJkzHumg6fhtB8ypsrhkXdOI3Lo9a4jhXbGHiwsywrwWbaSgJv/u/zmy/qu8BBn1Oxvue5QAXVZnbENO9bUwfWoiIiIiIyMRQ5beIjNuHl9/I+s5mAK7Z2k2iUND756bR9acdzK6coW8gYU0T8VhUsemcw/gv4nlVONuGK1R+h/mnybR9l7pFv8OLzxl0bOcCcCFerIquPX9PRf2HaAtT5DqvIgzmTcj8JXLC7MXMTtaBA8/NkFUaJ1jc6/0AqJyjE1s4PL+cWd2ri9uq81s4tutGarLrSIQdHD+7tIK1OreRkxouG3TMY5t/SrL+3QST+EUFm2vEdG+JWlNYH5tvJrX4bSRqe9sMlQv4XNCFHaK3Td/K4tyWP5CoP3b0k3N2VAsLms6NNN58JLUnf43k3FeM/LzMLoLWZ6k+9l9GP8d+evpTm+4tOBN9mNfz/IXta6Ne6UDQ8mTUB73piWihyLF8ODBaJkt2029wQcfwx/bhwu5C1X/pn3fYHr2eczvv7t1oe98beh530Pp0yQKZI5HbemPvOPk2nA3xYtH/2o52rMnSU+WfmHVMtJioFy98A6aXswFeLDkd0xMRERER2e+p8ltExq0h04EpVNHlrSNdSP8aR9AudiSyxoKLFstzLsT4Lxb3ObMb47+ItS0452MLleYm2AEuh7NDf23fhruwJgrurWnE2U5e6q4gDPcSTkDV+lRKeDP7R3plLEnci+GIEaP8oon7kvoyWdXcCkvVELl+rW1lbuYpvH7VpfO6lgOQCNtK+oEDeDiSYcugY1ZlN1IZH/lrNT6GbjMu6CJofQa/4U8Ebc9HVbb9FrAs1wvZBZ04v3XQcftWMhergMfChsMe4lyhh3S+BdO9vVhxPhLOGnAm6iE92m+TlFFcVNFZnF9aoRy0r8F0ri/sj65l/Tb8pseLQfJks/lmXJgZ5TktuKALkyl9Xk22gaD1GcK2Z8ue1xNS+3seGXaxyQFK/iwcLuj9cKCn0nw6OZMjaFmFKy76GkKfRUudc9h8KzbXPE0zFBERERHZ/83spERE9gmdQfkK78aJKfymI7D4+SgMsuFuTFD4arwzWNtJEOzCmTbyrp6mIEoeo0UwKQbbg8l2XIkNt+CcDxicy7KixWJcnHDfyr45vHb+dE9hSPMqZpOKVWBMBfn86Hqxz0RvTz08YNt57je8smbwnsGVroODW28asL06F7UKibs8x+z+7oD9/cPyvhI2zZEVQyzC1/dYDw6tHv1fTBt0Ena8RNixFn/vXzCd63FBuvSYfPmAfqgQ1XS8VHK/p0p2tJwd/jG5MI0z+ahVhguj0LHfYxiMzTZErTiCzmiRxXHK96mC7l/N7fItA0LgsOMlnN9WWLBxCoyi3UnxlOwegvY1BI1/LdkeNK8maHpi0DYjPc9n2PbsoAH5SJns7mhMZ0mv+/m4xpoIYdtz5LbdErXLIfrw1oXdUQU40Z99ZsOvyO9+cDqnKSIiIiKyX1P4LSLj1j1I+P1Em192+1ik/Z5AMSwE1eBsJzbcRejimHAnDf4sugMfa9qL4bfxh17szYZ7CLLLCTJR71hnmrmjIYslSd7uOwsyenjMStVM9zSGFCNGbbweY1O4/aDtyaxwK/VJmJ2KgulX1reyILOSY/xHqez38OqTUBGHxelHJ2UuC9zIekEvqgyZF+8a/sD+nC305E5HfZy7NpdU+LowU1y0cDxsdu+YzutZyDAo9CN3tkx1tslHiyAWqnBNdjfOb8WNoB+2zTVjC4s42tzY5licq/GHbV9isv3+PMcQRk8Hm9k9YJsLuwY+nkmSXX8V2a03EbavnboPCoZgCt+G8Pc8jLNB1DLIb+9deNMGOJMn7FiLzQ3+7Q4RERERERk7hd8iMm45U77lwF9bJqjvCWCC7dENF+BsFBzYsIEwt4qcq8YPu1jbXQXhdkzwEjaMwpYwH1USDrbwpbPtBNlHyHb8AoAgaKQtMBgSdA/fSWHGSMZi1CdmdvidiqVIMQvrErj94O1nQfpxDq5IszgVBZlv7vguB7XewjF7f8CsZGmgelhlB/UJy6FNv5yUudSbgaFjOUuTzcxmDCGbDUoWiHR+W0l1ctjxEnYsizH258b2l8760Ydd+R13RPfL9AC3QUdUQV3osR22vYDNt+L84Xtbh53rcYX+5GYU7VLKcXb4DwUHPpf7yNdQyv35OTtl4X36xSvoXPmp4uKh067wWgvansXfuxzTvZWgeRVh5wYAXJgFmydoXhX1dxcRERERkQm376cPIjJtbBhVQPoj6Lc7XnG7B4gWqLQmqqZztpkwv5oGfzatZj7Pd3qk7FpsuAsTFNopuKAw19KqVOfyWNtZCGtCcIWv3tsosL+3eSk37Ji4yvXJdljNPJZUHj3d0xhS3Etgw4Omexrj9tr6XbypfiOz0k+yLLaV2liG6gTM7Y76VaeCRt4Yf4C5qd7A8hj3LIdVTF4YVxcOX3V9eE2eV2Zu4FD/CQ6pGtnfWVvooexcWNpPuXt7yWKDue23jW7CE62nN3bQiTM+Jr0dF5Z++JbfeQ+5bTcV22+Yro2YzC7yDfcPO3zQtLJ4uye4HPtUs+M6X4Zms3sImp+Y7mmUsJlddK76N7qe/Rb5XfcStj4DRB+E5HfdS9C0kvzuP0/vJEVERERE9lMKv0VkzPxMFBqFdvi2AePluZ4gy8e6oBheW2d4uLmKRr+K9sCRcG2EudV9en5HgaOz7SXjmWBLVEHupUq228J1/nt9nifaJq5yfbItrp6HZ+dM9zSG5Hkefjizq9NH4vDwKU5v/zFV/g4WhBuZx17qEpbqXNTXN+7yHNH+R+Ymo3ZAHnBo+k8c5Ea5mN8oJO3wfagPje9mcftt1PlbmJ0YWQAbND0e3XCWvtXHLuwmaFldvB92rB/VfCdasa+4yeNMFpPeQdi1seSYsHMD+V339jknTX7n/5HdeO2w45s+leTjXpzQ7Ds/V/ZNbsYFyS7MELY+g7/3EWy+pc/8HEHrs7igk6D16Wmdo4iIiIjI/krht4iMWWM6WnjSuMn/Sn5zOB/nDCbcSWB9bLgbnE+eOdy4M09DPsWmboPDEeajr49nvSOwhcDO2Q5MELVtcM4SZv8CzufaPacBFQB8aM2ZNPlVAKztmvlV38lYnFnJSg6tmcuyipNghvbRPqiqDoAYM3N+oxVzIQe13gzA8Y3fZ0GwnpNSpdXA8zvu57X2TuIezKlwLGn+Da/f8ZFJm9Oyxp9SMczTe2jwNNW59Sxt+g2nhfdwdt2zzK8Y+u9u+oX/AcovWunCDKZ7O865Cen3PR4234zf9ATO5km/8ANy228tzr3PQZjuLSWbMuuvxh+mSjhsf6lkIU5nBl/Ac0RzDcbQc11GxYyzOn+yuDCLv/cvBK1Pkd1yI65PD3p/zyO0/+WD0zxDEREREZH9j8JvERkTE+7knsZKAMJB+mlPpC3ZWpzZiwmbaPAXgPOxJoPvKljfHdAVxGjMW4yLAQZIsjM/j9BV4ZzF2TQm2IZzITbchTV7cC7Pn5sMOW8xAPftzdARpoacx3SoSZSf05xUFS+fs4yFlfXganAuTsyLFumMeR7J2MwIm1OxJABJb+Y9tyPVd+nTGAGxQjudqtwWqkwjh+eXlxwfd3lm5zdQnYDKmCFus1QEk7foX8q0kxhmfdZK20rMGRK2i/nZp6izjdQnhv6QJ+zciLMhJl2+at1vXBEtgNn+wlinPiHCjnUEzStxQZqg7TlM50ZM1yaciarvnQ2i0Ln/4pY2j8u3RosRDsKZXGmrEjP2D8acs5hprpI/MMzQHunWx4VpTHoHNre3tNrb+pjsnumbm4iIiIjIfkrht4iMSZBdyc83ZwmtoSU/vkrIkbhjT5zupk/TldvEmq4arGmhPbueB1sW0RVaukJo8Q3WRQlgizuW0x8OSbs6nGnGuSy5jp9gwx1kWr+OsxlwPk+25vnXNYcASbLGkTEzIzDu6w0LTyq7/YjagziY8zix+k1k8wvIBfXMq4jaiiyoqOWouoVTOc1BVcZ7wu/6aZ7J2NUkem9Xmrbi7ZgLOH7X15mXHlg9fMTe/2VWMqA6NjWL/VXEhw78Uqa9eHtp0685pu1XvN7eTqrM/wmYbCM214zp3krYuWHQPtedT36esGNtcTHI6WK6NpJ+8X+xfjumYx1B8xP4e/9CfvdDAOQb/gSFIHwghxuiFUnQvqbYUxwYMigfTtixju7nvzPm82Uf50z0y+QIO17C3/uXkt02s3OaJiYiIiIisv9S+C0iQ3LO4AptTZwLC7/neaG7lhc706zvbMJOQduTx1sDnPPxbBM542FNEx2mmrv3RJWcq9otTfmQnI2C1r1+FAK/lJ5LkH0EG+7GuSzO5XC2A2vbyGWfoj0w7MwZdpkTAWjIJ8pPYBqlBqmYnpWsBcDa3v09xb8vn304c1K1kz21EVlaHYXwnpk1rfOYnXJUJSDmQW1ydOcuqojC0WQMUmZg0Fuffa78NeM5qqYo/E7FLB5QV+axeVCsVu9Rn36GOfm1LKwM6V8pGzSuIOx4CZzB+R24QVp1uKCL7JY/TMwDGCcXdGOzu7F9gnibb4paTTTcDwy+NoHNt0ZjlAm2c1tvwgV9eqq7AGfD4s/F0QhbnyZsf3HU58n+xwXdhF2bS7aFHeuxfuc0zUhEREREZP+k8FtEhmSDLeCi4CfMRwvcWdPC460W31oe2DU1vVVf6sqDy4MLafTBBptoC5LctCua23Xbu8kax/NdUejdEUYV3Dc1xPEzdxEGG8HlcaYJZ1vJmxx+5j7SxvFse553PhYlhs+0D9M7YhokYuWT2jnJ+QBY27u/p+3JwcnTWZCaP/mTG4GDKw6jOpEkm583rfNYUtHFwpRPMgaLUqNbdPDIWBRSLagIqcsNbFvRs9hlf/O9JhKEo5/sGByU6CQRgxOqBrZXqUkODO2TYSuL2u7ktNgqUq70+cjveYig+UnAYbN7Sha37MsFnWQ3XjNRD2FcbG4vJr0d26d1hM3uxeaayDf8qTTA7qfn8eUbHigdM0jjNy7HBR292/xO/L3LcX4Ho+HCLPld9+HC4Rcnx7R19wAAa+xJREFUlf2fSW8naCxtl4QLS16/IiIiIiIyfgq/RWRQJtiECdYT+i+R776dTOYx/MwDdPoBmTDqe/vHrc9OyVyyxgEGQ4K1XRYTbMJz3QOOu3a7xXgLachGgXDGOKxpIxf6WG8+JtgKwPrMYizJ4tg7MlHF55bM4NWhfU1WP+1XzT+y5H7Ci1HjlQ+x40QV32Gfyu/XzHs5r5p/JM4kScUqJmWOo+W5OIfXLgBvej9YSGA4LrGBw6oyxLyhq3YrC3+8cyscHrA4eJ64B4sSndRlyld5l1Pvmkl4UxN+n+bfyrLqLCdnb+GgSkOyzzv80oo087qWDzgnFTTy8pYfYhpL2y8ELU8Tdm+Nbrc9ix1iQcvxtAGZaDbXWHI/bFtDbtc9mPQOgrbB/9zC1mewQZrM2h+XbHdhGleoCu8d8zky636OzbcMO5/u576Ds6YwVoawa+NIH4rs5wZ7PfZ8w0pERERERCaGwm8RGZQJNmPN3igAz/2VpzqqCHOraM/tJh1G/XOfaN4xodeMDRmQxjEuzs6swYQNxBjYw/evLTlazSJeLOTi6zsDcGny1pB287BmL3jVPNVRiaG3xUlPFLotPbIgb3aqaoSPaHSOrD665H7M8/CoKXtsgqitibG9P8pnxQ7l+JrTsC5J0pucOY6WR5I5ybrpngZJL2Bh8BILYq14wyyIt7Aieh0sSqapTPz/7d15fBvVuT/+z4x2yfsex87qmCQQIJBwE5YGylbCDoXCLWUp26WF0pYfLS23QNsLpdAFSrnsELjfEnYSAoQSIAkhCdkJkH1xnHjfLVvbbOf3h2LFimVZtmXLUj5vXnkhz5w580jHI9vPHD0HyFR2QZaAbKkFDiX273mb0QEnhmem74Sm5zBJ2olczxoUWdyhBD4AFMl1cPp7Jl5NIoAc93IY7d+EbTf8jTC8wecZqPkk6nlH1Ezmwxa01Nw7odQtg1DbYfhqez1MbdkMvXMf1Jbwm3mGvxGHl4Qx/A1QGlbC8Nf3GY53x7PQ2rcdDE2BCCS2NjqNHIffVAlt7+cnCoiIiIiIKDomv4kojDB8ULzBReLWtVrh0xQono/w130TsLS+GR/VA7bA68iQgokk1dCjdddvBfZgkjTP1jPh+5vds1EdyMKaZj9UpEEzeibKOzQD31/vwosVwYTcroPJbLfuwi+3FMCtCvx9/0zUBQBd9Cwn8nW7ElOc5xTOifk59YdFCq/TfVLuREBEviEgCXvw/9Kht3J/YBT8/tFQNTvMknNQsZilwf2IkCUJJ+dPgmRkwWVOXCI+1yYwLd2NC+t+hLHt7+B7dT9Ghhw9YXuO/n8AgHTZg6OdTbDpzZiVth9TPW/369zT6/4bM9zPDDj2/nD692Jyx+vI7liJc9x/QJm9BaaD9c2nd8yLeqzoVmdYc++C3lkBteUrAIDatCb6iY3YrplE0Fq/QaDqgz7bKXXL4K98O6y2uaG0hxLXhzN8NdC9PcvLdPHvXwih+aB7q0KlVJSGVZz5TX1qW/EjCM2X6DCIiIiIiFIGk99EFEaITqh6cOZZva8DOz3p0AWwvlVFrV/Frk4N+7wOdGr9q5ncXbTZ3aXOXMiSBJe5Z8mOj+r9qPLb4NEFDJjhNSKXHtncFkCrGkzKt6sGABlNih2rW/zQDBXLmzR0aIDX6JmQVWNYxE6CBLNe1Ge7geh+eotswlhnGXp7tQR6Ls5pCDMMYQYkCbIRecZ4LCyyCXbT4Bb/tMlmFNuLoRt22GT7oPoajNFWN1ySBxmer5DZuQ7pns1w9TEbO0OpgEUGclGPLDTDqjagyNiNovbF/Tq3078XuR0r+m4YJ06lEmbDg6yO1RiNCphlwCwJZHo3Rj3O6FbTWm3eCBjKoeTuCCpr0l9C8/S6WGdYO7UDavP6YHthQAgBoXkQOPB+LwcYEGrPsktdAjVLIAwFEHpoxrneuS+pX0saHnrHHvirPkx0GEREREREKYPJbyIK0+bbh4W1BgytFopWh12dPmzzjYNf8+L5ig7c860bp3yu4PUDAy91MCm9oNd9BbY8HJM1GkWOrB772hUdbx/Mx3UaaXi6Ira3MEPKxqvVFlT5NATUBixr9OKFig5M+mRgyd10iw2a7kS6Jf41taVuNwZOyT8Kqu8YiMPeql1mK2yyGb5ATtS+vIH8AcdxXHYpTIOc+T0poxBOOReGYUKWedSg+hooiwxcUXcZXAgmKi0Hb+xM9v876nGSUHFsWhNOq74Vk72LkNf+CTLVfXD0srBlNJHKjQyVvPZgiRJnoAJn7Z2Lma79SDPpyOxcH/U4oR+6mdW2/OrgA33gN7hGjr5vZnW109q2oWuBT72zEoa/CWrbN70eoTb3/pqqTeuhNn4JAPB8+yh0bw10T2U/4qYjmXvtzxIdAhERERFRymDym4gAAMLwQxid8Pp3IqB5oOpu7OkMoMbTjlUtVuRYwj+G3a4OrNSBBAnjXMW97k8zpWOCawxKHKNxdFZ4u3bNwKcNwYRcm+aEFmNea4PnKFR6gjPBG9XgbGivHmtSrKdMiwOqbkN5enxnf5el50Pq9rZslg4m50V4kt5ltuKYrNHo+y3cBJtshtTr3PHe5VlzIA8y+Z1vy4YkrNCFGZKeO6i+Bh6DDpvSgDHK2rDtZsMb9Ti7Woep6grYlFrkuz8FAOT4NkMWI7fERySTlM9RZtkfc/tA7TLEnjBOLbonWONc79gLvXMfhO6LWqNb74yczBbCgO6tgr/y3dA2//4FLGVBMTNYG56IiIiIKG4G95l2IkoZhtECobegoqMJOzscqOpswVZ3B9JNAbxV5cFoe3h97FZlYLW+s6x2FJmmA9gUcb9FdsEqMqEGxuGEjFxsaVsQ2qcLoCGgAQA2ux3QRGwxnP3FoaTT1247AGVQ6b3RzlwAMsrTJmNT634YMZRKMUky9MMW4zvcf2SfBBiHZpPbZRtgALoRXjLEJMkoSyuDiGFi7lGZRajxtqIp0L+Z+pnmLERdezQG+dYiQNgghAk+Jfos9aEyxbIHVq0BZY1Phm23a3VRj8tp/wz5bcESJ5meYMmQ4ubXhibIIXTcgbswOvPcvhsaGgzFDfe6Xwx9UCOVEVxA11A7oNR+CkvuCdA7K3ptLlR3xO1a+w4Y3mr4qxaFtvn2zoc5oyy+8VLqMnou5kxERERERAPDmd9EBE3ZinbFi6bOLfimvQMdShvcSgOa/T58VOeHWxX42h3+x3h/Zk53L59R6MiEqqfDKofX655bPAOZFjtMwg7oRTAMc9gs6MOtbAa2uvtfP7c+DjkFqxy8b2hDDi4vmYOzio6N2v6ojEIUOdJDX5+SXw6L3LNeuUVKgyGsoa9d5gwAgKrbkG0N1ic3STKsshk2PbZE2tT0KTgt//iY2nYpcmTAJiZAHsCM8S6jnZmwwAVdS++78RCRAIxR1gEArGpT2L4szwZYevn2MkuASaRO8ind23vpji66twqerY9xdjIAw1cLf9UH8PexUKYRaA49FgdvbAk9gMCBRQf7OXSDRWvbEppZTtQnYUDoyfUpEyIiIiKikYrJbyKCruyAx7cD7sABvF0dgFf1YX9nO3Z0BFDpVWNaBDIaW7dEb5rZDk23wWW2hrXJk05EusUOGOkIqOkITjvuPfn6QZ0PFZ7+J7/rAoMv6WCRg7PgDT0TFvV4jLZMj9p+vGs0Sp2H6m+XOsZGrBcuhAyI4GtlkmSY4Ti43YQzCmbAJpuRZXWg0J4Fv5oZU6xWYywy5HExte0yypEFv5ITSvIPxFHppTBJDii6c8B9DJZZBsa1zgdwqNZ3l3TvN0i3RP5ecPWyPVnZ1Jo+22gtX8O355WwhO2RKlD7KfT27dBaNkdtJ7RDpXOE0gYA0D1VwYUtAaDbJz2E0tpnf0TdCYPJbyIiIiKieGDym4iwshmo97diYa2CpQ0+vFfrQYXHjX1eLS79z8wrQ6krG98vnYNJrnIAwMl5R4f259pc8CsZ+G7e2RDdZj5LUSoz1fkHFttbVYOf2WqRgsnvgJoGzbBCVbPD9h++UGSheTrGOccBAGyyGWatHEX2nslrCSaIg8lvq2wKq7lt107EhPR8jE/LR4lzdMyxBpQsQFj7bNelyJGO0Y5CAIg4Oz1WWdZsGFrGgI8frFkZdTjXtQHpB0uWRJJpjnzz5Brjb0MV1ohl+Ouhe/ZDqO19N05xgf0LAQC6tzpqO2GoMNQO6J5q+CvfhjBUqE1rwpLe3RmBpojbiSJRapYkOgQiIiIiopTA5DcRoS3QgFXNAt+2B2thNysGKjo649Z/msmFYzPL4JLGwCwFZwLnWcZBPlhUempmSXCmt54TttaeJGwDWqwxmq6a4YNhNwVrcIuDb6GaYUWezRXa7zAdStpLkKCoGbAimAguSy+AorngMPec+W3oLhgHk98usxWSOFRnXTOsGOscBZfZAbvk6nFsb4IxRn+rt8gmWGQTJEhwmmzIlaYFY+9W9Lu/42CTnNB0R7+OiaciYy9GB9ZBjlIX3ixF3lfQsXyowhrZjP5/kiIVCS1YH1+oHdHbqe3QWr6C5t6BQM2nEKoHvoo3IARfRxq83hZUJSIiIiKi/uGCl0RHOEOrxZ6ONhzwA69UHkp4b3V7oxzVPznmEshwQVVzoOmjAAA+3wR8v+R0vHFgKcbZpyDgR49SHt5AEU4rmIzPG7bFLZZ4cGkzcHh6q9iZHVpUssgRfB67OxoxPWcMdMMC3V8Gm2xGibMQ0AGL1PPtV9Md0AwrMix2TMkshd8/MWx/hn4WCux7IBlZ6FcKX/SeuB7jysHpWVfAr2aiWV6MfGsRfP48AEC6+dBCm0dnFaPB344Gf983RewmM6zIg8+IfcZ5vB3T8k+0OY6L2maStAO7cHyP7fYAk04EoI8FdYXaAe+e/4PasBqGvxGB6o8QqPkYtqI5wxQgpTKleR1iv81JRERERES94cxvoiOc4t+AtS1+WNAStn1dqz9u55BFLgAzDCP8LcchJsIsycDBhHgkRbaisFnVI4HWR1J3rKsIRfYcOEwWlDiKQtuLHBlwmoIz3w+vp22RTdD04EzvsvRCjHMcFbFvXRmNgNq/ciICh0qpdJdjc2KMMw+KFowpzZwGm3ToBsQEVykkSCh1ZcMsyT3KufQm35YOiMTdW5WlYI1vsxH9Bo5V+BCpsrxFaxyy2Ci16O07oftqIYwAfBXzAd0HI9DS94FEfdDduxMdAhERERFRSmDym+gI1+jZgc8bfaj1BcK2t6uR69YOhK7bIQw7jG5lPADAp+Qg2+YMLnDZm8BMHJ89sff9w8xltobKnXTXvSxIhjkTo+yjMMqRiSwcmn3sMFshS8EEdNeimV0yLfaDi3wC09JORsAXOfmtRngd+2IYMmRJQm63mwhW2YRpWWORZ8sL9WeTHIA4NNs7W56C0c5MnJx7AqyyBbm2KOPUzShnNgx9+G5YmLtlr11mIMsikOb5Gq7AvqjHZWr7YTcD9m73BNIsiFoqhag7pWktRKAZQmlD4MB7AAC1eUOCo6JUoDat5Y0UIiIiIqI4YPKb6AgmhIL36rPRGNCwqMYzJOcY7cyEplsRUCInTvNiSKja5J71sYdTlvVQ7epCe+RZ12OdxQCA8oxCZEgT4JJGY2b2sQhoh5LA0sH/AMAqh88ePzFnUuixohTGLXYA0HQ7Li+ZA7Nsgk0244ScsXCYLLBIFmTIxaF2FtkB4FAmWNEycFreTMiQUeocjRxrbDPO8605UIa43nf32doZlkOF4uc4NmOSvQEmocAViD5zMt+3HiU2H2ymQ8dnWeKzyCsdIYxAz228eUJxYvgaEh0CEREREVHSY/Kb6AimK7uwuM4PAaBTF322H4jJGWNgCEvE2dIAcHRGeZ99yFJ8F73srxJnTuhxljXyjOYsUykAYKyzEL5AEXz+UZDVYyG6zdKWu6VsLVL47O1Cy4TQYz3OtbINYYEUOAkWyQSH2YKxzlI4zBZYZSuEVhBqJ0GG0S1prek2mPUyABJcUhHMh5VN6U2GOQdCxNZ2oJwHq6pYZMBp1kOv7IymP2Kc/nWwjT968jvLsw65plY4TIc+5eCUuVgh9YOI3ydkiA4nDCXRIRARERERJT0mv4mOEELoEIbv0NdGJzo7FmCUtX1Iz1tgLY6636Yd22cfZql/ZT7iqciRjlJnsG53sSMT01xnRmwniTSUurJRbJ4JABCQeySxZ2bNgU0KJs+dpjQAwNziGShyZEAS2UP1FEK+k30+Lin6PkySCafkTUeefAICB+t9A4AJDgTUtLBjdN0Cs1YGXS2CWYotoW2RhnbW9yiHjkJbcMbtea61GGeuxWinhlybgE2txzGNj8bUj8O/F8f5F8Aq6RjvUjAzowEZ8tB8AoKIqN8EP4lCRERERDRYTH4THSGE8MDQqkJfa4FvUBcwIEtDO7PMjOizmNUYymPYZWefbYaKy2xHvjk4K7vYmQ1fIC9iO1134ZjMCfApub32pSgFMCNYOsQkBV+XHEsxsixO6ENcJgQAvIFCeP2jIEsmOKRs+JUsdP8xIBl2HP5jQRdmBLQ0qLoDFjm2GekShvZmRabJjxJTLQBgSvsryDWqkWfqQJ7FBwgd6Z7NMfVjEgEUdiyDRTKQIXuRL6oxxtg2hJETEcVOaNEX7SUiIiIior6ZEx0AEQ0PReuE17Ma6XoNJFM+3O3z8bstOXi7ujPu53KYLMiw2FHv74AJaX0f0AczEpf8HuMsgN8/Hj8acyFqlH1AL1UOFM2FXMdoKFEm6hmGDJ+vNFiwWsiYnV8Gk3Ahx5YORRu+52iTMmAyMnD4bQ+vvzC8mDYAIQ79mDi8VEsksiQBIv5laia4ApAhsNtjx/dbbkNVxlx8jnEoaH0fjc7/QIu1GOPEdsj9LBOQ416OY3PX4/j6P8JvKUFe++K4x05ENBBC9yc6BCIiIiKipMeZ30RHiDZFQZXXjU5Vg19TsdWThf1eDfGs9N1Vm/vY7FJMSg+WOzGM2BZJjMaUwOR3tjVY71uW7Mi25ERtaxLR4zQMM3DwNTIjDeMcEyCMdBTZi+ITbIxkkQ5xeJYbCMXWG4vU98xvl9mK7otmxkum7EGG7IHTDDiUCqSplbCbAJPhg11rhhUB2I02mHV3v/suCHwFe6AGsvBD5mKFRDRCCN3XdyMiIiIiIoqKyW+iI4RPqcTmlmZ80uTArvYa3L5Zx9rW+M4q+07BFJglGZOcR2OsYyIAQNUGX85DGIOfPT5QaVI+AEBXC+HCxKhthZ4evbNuyWWffwzM+kT4lSyYA7MHHWd/+HxFGMgHf+QYjilx5gDCPoCoorNJARShCulmAy7fTpTV/Q3pluA0/EL3xyjStiNH2QmL3v8a9pNr/gir1gCbWhfvsImIBszwNyc6BCIiIiKipMfk9yBJkhTTv9NPP73PvhYvXoxLL70UJSUlsNlsKCkpwaWXXorFi/kxfBq8pkAAb9cY6NR0SNoObHPHt9Z3sSMTY+yTMSN3AiBJkCUrJEgQYvBvM9ph9bAtcvjMYrmPGcsDlWGxQzKCNbxV3QZVjT6LPdDH/sPpum3AsQ2KJEFR+0jURyBLfY9lhsUBKdKs8kGyQMEoZRNk6dBnFcZYWwEANqUOpe4PkOtdPahzOPyVgzqeiCieNPfORIdARERERJT0mPweAQzDwE033YS5c+diwYIFqK6uhqIoqK6uxoIFCzB37lzcfPPNMIxeig0TxWBbewALazxQ9QA2t/mgingWPAEmZ5ZCaAWY4JwESUiQjUxMTM+DIQa/tIBuhCe7yzMKw77Otw3NzPB8ezp8SjYAQAgTNCN62Q/Rz3IfffU3lPQBnFuW+h5Lh8kelxseh7PDh6LO5ZC6FeqZrK0M7lOrUdT6LnLblw7qHGajY1DHExHFk9qwKtEhEBERERElPS54GSe33XYbfvKTn/S63+Vy9brv3nvvxQsvvAAAmD59On71q19h4sSJ2LNnDx555BFs2rQJzz//PPLz8/HQQw/FPXY6Mni0NgBAqfkrPLkv/otojbaOh+JPg9koAyQdAd2GE7OPhYjDqQxhCs4iP5j4LHUUYUtbTWj/KEcW6v0dkCUJ2VYnmgOeQZ3PLMnQhAG73PcCj0cSKYbkvkkyQTfiX/bEKvzI8GzE99Lnh7ZNbvxH3M9DRDRSqC2bYATaINuyEh0KEREREVHSYvI7TgoKCnDMMcf0+7idO3fiL3/5CwBgxowZ+Pzzz+FwBEs8zJw5ExdddBHmzJmD9evX49FHH8WPf/xjlJWVxTV2Sn3C8EDXmgAAkuHGly3xT37LSIOADLVbiRInCuGNU+9OswUeLViqxWUOn+ld6hyFr1oPwG4yo8iROejkd6bVgeaAByaZH47pTo7hw0IWyQxNj/9NAwEBm1qHSfWPhbale7+J+3mIiEYKoboPLnqZlehQiIiIiIiSFjM7CfbYY49B0zQAwBNPPBFKfHdxOp144oknAACapuHvf//7sMdII5cwfGFfa4FNEdt5Wu7Hzo5gSYer1vnRrMS3hM6Pxl4Ev390j+1ef3HczpF3sLTJ+LRcpEnBc01KL8BVY85CjnQsyjMKMD4tH2nmwc86HuvKAwDk27IH3VdK6aOEzfi0XFhlGwwR/3IuVhH8XncoVXHvm4hopFLqlic6BCIiIiKipMbkdwIJIbBw4UIAwOTJkzFr1qyI7WbNmoWjjjoKALBw4UKIONdqpuQkhA5d3Ru2TfF+HLFtq5qB5Q0BAEC7Gv/a8SaRDhHx7SR+bzF59uBikmlmOyCcAIBRjhzYRBEULR0TXCUYZc+DpVtdarvJPKDFMF0HE+jmGGpcH0kk4cCkjALY5Mivy5SM8bCbnENybhO0IemXiGgk0zr2JDoEIiIiIqKkxuR3AlVUVKCmJli3eM6cOVHbdu2vrq7Gvn37hjo0SgLCaIfifR9CGDD0dgCArlb0bCcCuHpDGr52B4YsFk3LHLK+uxzjPA0AYJUt8PlzIEsSMizp8AWKoRsWZJgzkWvNh0k+VJf6+OxxKLCn9/tchbYiyJIEWeJbZHe+QDGm26/H0Vk9Z/kDQL65HHZ90pCc26XXD0m/REQjmVDbEx0CEREREVFS47TGOHnzzTfxxhtvYN++fTCZTCgqKsLJJ5+M66+/HmeccUbEY7Zu3Rp6PHny5Kj9d9+/bds2jB8/vl/xVVVFLxVQW1vbr/4o8QytFkJvhhCdEEYTlMBG6IYPwvBDkg+V/jB0NyzS0CS+p2SOwrb2WhhG/MtcHE7Xgwn2LGsaYEgosmdA7rYAo1mywYIc2OUWAECRIx1lrino1Hyo87n7dS6HlI18WxpcpjRwwnFP6ZaeC/hKkCAJK/Q+SqMMxFFpXhS3fRr3fomIRjqhD92NayIiIiKiIwGT33HSPZENALt378bu3bvxyiuv4JJLLsG8efOQmRk+O7Z7QrqkpCRq/6WlpaHHBw4c6Hd83Y+n1KCr22HozdD86yGbsuF3v4AtnrGYbbRAkg/V2vZqPjjl+C9wCQD/kXEOaryvQxuG5LeiOmCTzci3FsHwAxlWR9jMbJNkh6bkINdSBAA4OnMcFN8UZFt39ftckpGHHFsaHHI2mHboKc3UM/ltlmUImKAb8V/scra2EEWt78a9XyKikc7wNyQ6BCIiIiKipMbP9A+S0+nEVVddheeeew4rVqzApk2b8PHHH+Pee+9Fbm4uAGDBggW4+OKLoapq2LEdBxcgBIC0tLSo53G5DiWbOjs74/gMKFkZeiOE0Q5d+RaqbzWE0YJ/VVnRrmjBfUIBALT5KvFV2+BSuKaDSeZs66EFWc8oPBreQD4uKv7eoPqOmSThytILYNXLAADpZgcyTd3Kb6jFUHU7zMYYAECGOVgjfJw9+qcqTJIM68FSKdeMvQAT0vLgV7JwQuYJgBq/BTtTSZ7pWBybHbxhZz74vTElcxRUNQ26Hv/kt83o38x9IqJUobv7fwOXiIiIiIgO4czvQaqurkZWVlaP7WeffTbuuOMOnHfeedi0aROWL1+Op556Cj/72c9Cbfz+Q7NxrdboM2dtNlvosc/n63ecfc0Wr62txUknndTvfilxDK0GgAFDb4QW2AyIAPZ4dDQrAg5tMSyOU2CyTERArUeNf3C1OzKtdrQEvPiP3Cn4qHYjACDbmgMEZKj+/pXgGQzFPxFCBBPVTrMdQj/0aYqAFryBFFCD/zdLB68pLXoCO9NqR6bFgRpvOxTfVIx27gIgQ1LHI6APzeKNyc4XyEWRPRdfowpW2QRNN5BjzYBm2ID+ry/aJ/ngjRwioiON7q1JdAhEREREREmNye9BipT47lJYWIi33noLkydPhqqqeOKJJ8KS33b7obrMihI9uRMIHJq563A4orSMrK+yKpQ8hDAgSTIUXYcqsmHzr4EqjcL9e07E0oZOCHUzGrQDyJCakCG5sKd9cLPGSpxZOCZzAvKsJTDBjqvG5OKLpnWwSy5oAAwR/5m+velKfAPAWPsUBHxZEdv8qPgngFyDAABFCyawT80/Ck1KO7a314W1v7DwImhaPqQMA4oGpJldgAYoTHxHVST/B64eUwCzNgnvNDwPk2QCRPzPc1x6G7Jav4l/x0REScDw1cFQPdDdOyGEBmvezESHRERERESUVFj2ZIhNmDABZ599NoBgHfCamkMzeNLT00OP+ypl4vF4Qo/7KpFCKU4Eb4QowoomLRuADp9IwxeNClQhINTdeL/ehl0eCX7386j3D3zWrMNkwYnZk5FjKYRJZEIyHLAhC8dkjocFWfF5PgOl50D08hYW0NJgMoKzwgVkTEjLQ74tDyWOAlgOljixyCaYJBmGlgNVc0DRgqWFrJItYp8UTtWdsIni4GstyaHSOPGWIzXDorcNSd9ERCOfgO6phKG0Qmv9FkLnJ2GIiIiIiPqDye9hMHXq1NDj6urq0OPus7G7L34ZSfeyJVy88simBTbB0FuxqSMXb9ZmAJCxzp2Hr93BpPj6lg4sqe9AILAD7f79+MmmgdeIP61gKjJNJdD80+D1FcIbKITPPx4Z+tkIBEbF6RkNjF/JibrfGygMPT416xJkyBNQKH0HE9LyAACn5U9BiTMrVC6li0Ue+sU7U4FuWEOvsUmSIA/Rj5NMow457uVD0jcRUTLo2PAb+PbOR/vKH0NpXJ3ocIiIiIiIkgqT38NAkiIXwe2eFN++fXvUPrrvnzJlSnwCo6SkqzthaNWoC8hYUq9CSA60q4cu5Vf269jUpqAl0I67txXDow+sFoVZkpFrKYIkgslh6bCZvYaRPFWTDMMOYTigGxbIkoxT88sx2jYeTnPPWd4OKTsBESa3QkcmhqTYN4CiwKYh6ZeIKFlo7p1QW4LrbajNGxMcDRERERFRcmHyexhs3bo19Li4+NDie+PHjw99vXx59JmNn3/+OQBg9OjRGDduXPyDpKQghIDi+xyashnbO1Q0KzrqtDI8v08Ntfl3vReVXhXb21vwr/0Dn/U9Li0XFqMUutZLmZ1ebuqMRIrmhF/JgiEskCFhom0OZLjgMEWY5a0ndkZ7MproKu31Jt9gmCRgcs0f494vEVEy0du3QzuY9PZXvpXgaIiIiIiIkguT30OsoqICS5YsAQBMnDgRo0ePDu2TJAkXX3wxgODM7i+//DJiH19++WVo5vfFF188JEkmGvmEMKAr30LRdSjez9Do74QA8Jc9mVjV7O/R/t3avuuCOs2WHrWa7SYzTi+cigJ7FvxKFlQ9tWpgT80oh6K5YOhZODZ9Vo/9qmaPcBRFk2spRqF5at8N+8nMn1BERGFEoDXRIRARERERJRWmFgZh0aJF0DSt1/319fW4/PLLoSjBJORPfvKTHm1+/vOfw2QKLsB3xx13wOfzhe33+Xy44447AABmsxk///nP4xQ9JRthdMDQG1CrFkDV/dB0FUIA2zrUiO2/jJAQP1xZeiEyLOHJ3iyrAyX2MjhMdgAyBEzxCH/EcEmjoRtWBNQ0eH1je+w3hCUBUSU5PR9ef/xnzJt5n4+IKIzub0h0CERERERESSV5ivaOQHfccQdUVcXll1+O2bNnY9y4cXA4HGhqasKyZcvwzDPPoKmpCQBw6qmn4qc//WmPPsrLy3H33Xfj4Ycfxvr163HKKafg17/+NSZOnIg9e/bgz3/+MzZtCta8vfvuuzFp0qRhfY40MgihQPG8A9k0Cgvr0nHZqFFwawIVHhWV3oH1mWdzYVrGcSh11MNmsuOdA18AAMrTS2AWaciyZAGB+D2HkcIfKDj4iPf+4iWgZA5JvznWyDd2iIiOVCLQAkP1QLa4Eh0KEREREVFSYPJ7kGpqavDEE0/giSee6LXN5Zdfjueffx42W+TyEQ8++CAaGhrw4osvYtOmTbjqqqt6tLnxxhvxP//zP3GLm5KLoTdC8S6B4bgST+71otCegRqfAlUIYADrWZolGdOzJ8Is0pBhViHDAlmS4DRZMMF+AoSwIR0TMcC8+ojGmd3xN1SfDjBLA1uslYgodQlorZthLTg50YEQERERESUFJr8H4eWXX8by5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3bUfmRZxgsvvIDLL78czz77LNatW4empibk5eVh5syZuPXWW3HeeecN07OikUjojRBGJ/a2bUGdX8MtG92D6m9adgmK5FPh86cBGAubvQalzmycnncWvL7RfR5PNBwsUu9lpYiIjlSd3z6KnO++m+gwiIiIiIiSApPfgzBnzhzMmTMnbv3NnTsXc+fOjVt/lBo0/0boejO8GAUzOqK2TbfY0KH2XqukwJ4GWZLhMNmgaI7Qdl1Pg8NkhdCy4hU20YCVufxwygEUY3+iQyEiGnEMfwN0Xz1MjsJEh0JERERENOKx6C3RCOdpuR9e/1b8tWI0FCN62zkFx/a6L9Nix6l5x2Na5jiMc5SFlaoIqGmYmjkJfjUrTlETDdy5gSfxwwNz8J3qmxIdChHRiGN4qqE2rE50GERERERESYHJb6IRTBg+QHjRogAv7/NgWbMzYrsiRwYAINc0CRkWe8Q2kzNHIw1TYZWtkLSyw/bKcOq9J86JhovNBMhChVWtg1VtTHQ4REQjju6vhzBScEVqIiIiIqIhwOQ30YimAwAkowFtqo5n9voitiq0ZwIAhOFCrs0VsU2poxR+JQs2kwNqt5InXRQt8nFEwynHqsOqt0KCgNnwJDocIqKRR/cDQk90FERERERESYE1v4lGMGF48LcDczAtw4AmAtjtUXu0kSBhYtpYHJ92JvxKBmwmS8S+0uRCeAE49eOgDHHcRAN1vGULimreS3QYREQjmjB6/j5AREREREQ9ceY30QimGioe3O7GHk/vl6rNZIJdSocvUAAhTDBFuKzz7WnQtRwAgKJFLp1CNBJk6A2waC2JDoOIaEQTavQFsImIiIiIKIjJb6IRzK8L6AL4xh15pctMix0XFX8Hmn9aaNuEtBJMSi8IfZ1mtmJu3hUIqOlDHi/RYJW3PJfoEIiIRjx/5duJDoGIiIiIKCkw+U00gql6KwDg33U9a31bZBOmZpXAidKw7TmmKRjjKoAECQAwMb0Qhoi8CCbRSGKRAbtal+gwiIhGPM78JiIiIiKKDZPfRCNYwLcWANCk9FzYKsfqRLljJnQ9fPFKn78QJbbJGO0MLoJ5VFoZZ31TUsix6nD5tic6DCKiEU/3NyQ6BCIiIiKipMDkN9EIJhm9z4Id48qDqhRAN3rO6lYDJRjjyofdZIZTKh7KEInixmXSEh0CEVFSMPyNMJR2AIDm3gPd35jgiIiIiIiIRiYmv4lGMuHtdVexvQiaYYNmWHvs0wwrbLIVZxedAK9/9FBGSBQ3LjmQ6BCIiJKD7oc4mPxWGlfBYPKbiIiIiCgic6IDIKLebXJnAgj/g1aCBIfZjCxTKXxq78cW2UoAZQp6FkwhGnmKHTryJCZviIhi1br8KkgmO3RvFWR7ASzZ0yDZcpBxwoOJDo2IiIiIaMRg8ptoBFvd0nNbusWGAns6IJxRj7VI6fBHmBVONBKlmRQ4RXuiwyAiShpq4+rQY929C4a/CZLJBjD5TUREREQUwuQ30Qj2ZbPSY9u5RbPQqXcAIvrl6/eOB6ShiowovrJkN6a0v5roMIiIkpbu3gHZVZroMIiIiIiIRhTW/CYaYYRQoCk7YGh1UIyeCwC65FHIN0+IuNBlGImZb0oeDvhg05oSHQYRUXLTA1AavoQRaA1tEpo/gQERERERESUWk99EI4we+Baepl/C734eNb6eM79VJQ9+/3goWvSyJ0TJwmkGivQdyG9bnOhQiIiSmuFvQPOHsxGo/QwAIISA0vBFgqMiIiIiIkocJr+JRhhdqwBEALqyHZoI33d0ZjFU3ZGYwIiGSKFNwZjOfyc6DCKilGH4gwsI+3a9AN/ul6G2bUtwREREREREicHkN9EIIww3AAFDr0W7qoftG+XIS0xQREMoW+7AqObXEh0GEVHK0N07AAC+Pa/At/f/wb+XayoQERER0ZGJyW+iBBBGR8Ttht6OFsWE52vnYIdyEtpUI2y/WTINR3hEw8oh+SALve+GREQUk1DZE80b/LpuWQKjISIiIiJKHCa/iRJA9a+PuF1XtmBXpw/3be3Au7U9F7S0ytahDo1o2KWL1r4bERFRzHRvFQBA69wX/H/blgRGQ0RERESUOEx+Ew0zIXQYWlXEfYGOV6GqVfDqAn/d2Rm2rzyjANnS0cMRItGwytP3JjoEIqKUIgIt0D0HIALNwa+VVnh3vZjgqIiIiIiIhh+T30TDTkAY7RH3GEYrOrXgZamK4GqX49NyAQA51gyoevrwhEg0RKwykG87VM7HaQYKvasSGBERUWpSGteGfa17DkBr3wnNvTtBERERERERDT8mv4mGnQHFuyRsi67uBwB0iCLUBcLrep+c/kMAgMvsgKbbhidEoiEyxuHHNYHfhb6e6axAaeO8xAVERJSi2pZ9P+zrQM0naPn4HDR/eGqCIiIiIiIiGn5MfhMlggiEfan6V0BTduDLthw8W6GEtrvMVqi6Hcdnl6LAWjTcURLFnUNWYDGCJX2mpbsx2b84wRERER0Z1KZ1MFQ3DH8DhKEmOhwiIiIiomFhTnQAREccYQBQIQwvJNkJANCV7RBaPZ6rCGBTmz/U1CQF708dlzELuloAPRHxEsWRQ/LBZPgAGfiu5zGMr38y0SERER0ZjACEcvDmu6ECsiWx8RARERERDQPO/CYadsFa3pqyFYZWA2F0QhidUP1r0BAwwlqmmYNlTgL+Uiiaa9gjJYqHSWk+AECh3UCxsReZnetxbsYW5HcsS2hcRERHKs+2fyY6BCIiIiKiYcHkN9GwCya/hd4EXa2EpnwbnPltNMGvH5b8ttgBAIbghzQoeeXKbQAAl0lBvvIt7Go1yrwfwxqoSWxgRERHqI6vHoARaE10GEREREREQ47Jb6JhJ/Do/jkQIgDN/yW8LQ9CSE4IKRM7O5WwlidkTUtQjJSMih1aokOIqExbAwCYYKpEed2jAIBxDU/BorclMCoioiOY7kPju0eh89u/JjoSIiIiIqIhxeQ30bATePWAD4ZeD12vAYQX1dp4NBul0AVglmSMdmYi2+qEDQWJDpaSSJmlOtEh9CAByPV/C7MEpBnNsOjtAACL3g7p4KcgiIho+Bn+Rhjekfdzg4iIiIgonpj8JoqzzY0BGKL3pJ5qABUeFUrnO9ADGwEA79ZmoGxJcOGp43PG4LT0H+OCorPh85cMS8yU/MwSMLv10USH0YPNBBS2f4CJLi9Oqr070eEQEVE3vn1vJDoEIiIiIqIhxeQ3UZx926TiswP+XvfrBxPjAakYQkoDYEanfmh/sb0QhmGGZHDWNwUV2o0+20xNa4czsAeWg+/q09LdcI2AUvF5Vg0WtRkn6f+GTeEMQyKikUQordDcexIdBhERERHRkGHymyjOfJrAi992wKdFTlh2Jb8b1Fy4RQl80hi8U3UoWW6VHYAkwa9kD0u8NPIda93RZ5vvdv4NmZ6NcJqD31+XNt2EQltgqEPr0yhLCyx6O07c/18wGb5Eh0NERN0IzQtfxauJDoOIiIiIaMgw+U0UR9WdGra1KNAFsKyX2d+6kAAAijBhS2cufr19NHZ5Di10aZFswxIrJQeTBIwJrOl1f7ZVYG76V8jrWA4AuEx+FT90LkRG53qMN1UOV5gRSQCO0lYnNAYiIorOt/dVtK+6FbqnGkrTehiKu999KPUrhyAyIiIiIqLBY/KbKI72d2ioOljD5JP9PuhGz9rfhgjOCO/UTNjYZsYrlZ1h+y1wDX2glDQkAJmBnb3uH2Nrx8zGPyDNtw0AcNyBX2Jm5S0wGx5M9C8bniB7YZKA4s6lCY2BiIii09u3w7vzWejeamhtW6B7DvS7D6XxyyGIjIiIiIho8Jj8Jopgc2MAd3/eDC1C8jrqcQ2HZnBXdepoV4KJbkMIuAPBx10zv2/5SuCx3Z6w4/8jbwKUwNjBhE4pJt+uI9O3GQCQbgHGuwLIsABZVoEylx/fr78SLt+uiMeW1f0VszJqB3xuU/BbFWdm7MJoh4Z8W9+1x7vLshrIb/twwOcnIqLh07b8B/DvXwihtIRtNwKtUY8TQsCz7XF0fv0ndH7z56EMkYiIiIio35j8JjqMZgisqglgf4eO/R1an+19mgEhBBRdYFebGrbPHTCg6MF9W1qCiXFdGMiw2LGjQ0GTEpwlLkvBLGOGJR2GsMT5GVGyMktAgbkDGZ0bkGMVSDPryDe1wyYbmGRvRJapA+mezTDrkRMTVr0Npcb2AZ3bJAUT7C4zUKjvRLbZh2Jr/z4Kn2lWYNHbB3R+IiIaXnrnPqhNa2H4myH04JoRQleg1C2HMPRej9Nav4HhOQDNvRNq6zfB47XeF/4mIiIiIhpOTH4TddOhGPigwos1dcE/+r5tUvo4AnhsoxtbW1Qs2usNlTzpUtmh4Z3dHiyv8uOTyuBif7oALi36YVi747JLAQDFphnxeBqUIo5La8INe4+CBIH7qotwvvEy/nPPNEy1VeKHe6bhmj3HAABkofbaxykVV4VmcPfH9PQm/Nh/F37VcT5O2vdj3LS3DNlSS98HdjNN3tj/ExMRUcIY3mq0Lr0Und8+AgDwVbyG1qWXQmv9ukdbzb0HANCx4Z5g293z4N/7L9S/lofOb/40fEETEREREUVhTnQARCPJgQ4NSyp98GnBciebGhScXupAhjXyfaLqTg1eTWBTg4ImX89ZUStrAlB1gXqvDr8WnAHu02SoanpYu4muCUg3u6Drjvg/KUpaGVJb2Nelbe8AACb7/92vfia5PNjeGXsteacZmOmbD4dyAGneLaHt6aIZwISY+3Hpzf0Jk4iIRohA9cdwjL8Khrcq+HXNEuidlbAWnwm1eRNEoAVKw0pYC06B7qvrcbzasgm6vxEme/5wh05EREREFIbJb6JuPKpAo+9QXeOtLSq2NSv4j1H2iO1f2dqJWo8GCcCO1p6zbzc3hs8cdysGmrxWaIYVLrMVHi2436ZPQxFOgtL7p4rpCDRa/Sbs68zOdQCAKdX396ufs31PYDvuibn9OHsnjqr4H/isY2AyfKHtDqOfZU+UPf1qT0REI4Pa8AU82/4JI9AEAOjY8GsAQM73lqN91S3Q3TsAAJ4tf4l4fODAIqiNa2AqvWB4AiYiIiIi6gWT30TdfF7ds0blN00qsu0mlGeH1+LuUAxsaVagGcA+ve/a4ADwxk4POg8ugjklsxg13laUOHOhapzxTUGnZFRhpbsEACChfwtM9sapVgEy4DADvj6+Vaemd2Kq2AAAsGqNYfts/Uh+H5XmhcnHmq9ERMkqUL0Yh1dI9Hz7KHTP/piO9+58Fqa0sbBkTwMAdH79MCRrJlyTb4t3qEREREREvWLNb6KDmnw61h6s9d3dxoZAxNrfH1f6oBqAABDQRUznWF7lx4aGYF+51iyMTytEiXP0oOKm1HKM7z0AwcUurYYnLn3alSpIANLMfSfTy8U3mNLyFACEzfoGALsRe83v8dIemETP64mIiJKD7t4VmuHdJVD1PqD7ejkiXODAIqhN60Nfe7Y/wVrgRERERDTsmPympKbGmHTuy5paPx5a2xZxX7PfQIs/PGnY4NXx3h7voM5pkS0Y4xgPp37coPqh5HNGxm6UOnuWyfmBawlyfJsAABlWgbKGf8blfBmer3C3+AVu6rwVd4tfYk5GRWgRzCKHjrvFL3G3+CVOy6hEsX8NctqXRexnQsNTuFv8EmOdkReCnZbuhs0UfDzJ+wGKm9+KS/xERJScArWfAAA6v3kEhq8ehucAmt4/CZ6t/0hwZERERER0pGDym5Jap2pANwafAF9R7Ud1Z+8FtxsPW8yyUzXgH2Ti3SY7YJOyoGjOQfVDySdfr0SWKXjzRJa6bfdvhCuwB2YJyDIrcCiVcTmfyfChuOlVFLa+h9FN/0KhvhfpFgEJwBRLBUY3/Qujm/6FYn07bHoLJET+3nYoBzC66V+YYD4AkxScnW7uFv847ECWxYAEwBXYB6vWEJf4iYgoOemd+2CoHij1ywER/F1KbVoHtWVTgiMjIiIioiMFa35TUhMI1t7Ospv6fezXjQqOzbfCr4lQKZLefNWowKMacFmC94se29i/hf8iMQVmYXBzxykZmSRgVuWPsH/CegCZ+E/7u1iGC+HWzCir+RsA4C/ewiGNYVbldTgwYS38Njsu3nNKaLvV6IRdre3z+Iv3nIwxY57A9P13wGsvw2/TVwIAprS/Al9mOmrMJbA3Hhiy+ImIKDmoDatQ/6+0HtuNQGsCoiEiIiKiIxGT35T02gaQ/FZ1gdd3dgJIQ3Wnhlgmj1d36ih2AZCAtkB8FiKkI0+ezYAsdGSjCU5zMca6F2JqbjlaLAXDFoMsVEzU1qJTDk+yZyl7kdm5IaY+sv1bAABmzQ1ZAlxmwNFZg1zjADymTFjV5rjHTUREqUHovP1PRERERMODyW9Kes0+A+My+nfMnnYVu9s0PNhLne9Illf5kGWToRqxL3BJdLhMsx8AkKNVotQ+Efm1izG3bfGwxzGj8tYe2ybW/SXm48c1PA0AsGoNsJuASfZmZNd8gam6D1Lez+AMVMQtViIiSi1Ci23RTCIiIiKiwWLym5LethYVJxbasGivF6eNtiPL1rOUfZtfR4Vbg9Msw6cZfZY5ieSL6gBMMmA3SX03JupFmhxMfpe6P4CS5UpwNPFRYvfBKgWvKWegAmM7FiU4IiIiGsn0zr3w7Z0Px4Srw7YH6pbDVjQnQVERERERUSpi8puS3if7ffhBuQuv7ehErl3GycX2Hm2e+roDDrMEQwBOs4Svm/qf/PbrAtABj8pZ3zRwmQjWOS1qfRe2FFkQcqK0C53IAgBYtBaMankrsQEREdGIZnhr4N3xTI/kt2/PK0x+ExEREVFcMflNSc+nCdy3uhWaAVR3aqHtjV4dT33thhDA1hYVFhmQADjMEjqYwKYEcYqO0ON0z1eJCySOZjX8FqopM9FhEBFRElFbNkLrqIA5fTwAIFC7FP79C9DcUQHrqDPhLL8JQmmHObM8wZESERERUTJj8ptSwt72YNJb77YO5f4ODVua1dDX6sF9isLENyWOjEM3aMyGJ4GRxE9m57pEh0BERElGqB3Q3TtDyW+9Yy9EoAVK3VLonftgH3MxdPcuJr+JiIiIaFCY/KaU4tEEPtrnxbq6ALa2qH0fQDRAdhPg12Nv/0jLUXhuzFc4o+KioQuKiIgoiXRs/gNso8+F2vot2lffEtqud1ag6b3pAASyvvMqhOaBc9INiQuUiIiIiJIWk9+UUvZ3aBAiOBPc4ARvGiISgMnOVmzxZIc+UdBXe7PRgVK5GrLoR8aciIgohRmBFigNX0Jr+xYQh/1AFcFPSnm3PwlD7YA5cwoAwJJzPCRzz/VdDic0L3TPAZgzj4KhemD462FOnwAj0ArZlh3350JEREREI5Oc6ACI4ml7i4ol+33wasx809Cxm4Hr905Gvk3ru/HB9rLQcdGeU4Y4MiIiouSht29H84ez0b7q5l7bKPWfQ2vZhOYPZ6P5w9nQ2rfG1Ld39zw0f3w2ACBQ/RHca+4EAPj2/r/BB05ERERESYPJbyKifsqyBGdvO2QN+XYDZ2dsQ5a15w0Xlxk4N+NbnOnYMNwhEhERpSTdUxV67Kt4I2IbpWEVvDueheE5APeG38C36wWoLZsQqF2KQNVi6N664Qo3qkDtZ70+ByIiIiKKDya/iYj6aZSlHQCQb2rDWGsLvrf3HORYAj3aZVo0nLfnTJy1d+5wh0hERJSSfHteDj12r/kZDH9TjzaB2qXQWjcDADzfPIxA9WIY3mp4tz8Jpf5zqC2bhi3eaPz73oJn2xOJDoOIiIgopTH5TUTUh1GO8DrdczoeAwB8t/lenNl6P0xCwQW+v4X2T0nrxI22ebgy8OBwhklERJTy/PsXQmg+GIE2GP56tHx2KbS27aH9bStvgm/PKxGPDdR+CqF5oNR/DqXhS6ht26C2bO53DEJXoHVUhG3z7XsLLZ9eBP+BRRGPUepXwF+1GACgd+5Hy6cXIVD1AYTSBiPQ1u8YKHa+va/yNSYiIjqCMflNRNSHiZaa0GObCRjb8AwAoKDtfYxqeQsAMK7hf0Nt8uQWTKn5PcbV/y+IiIgojoQO3VcLIxCc8a02fBF6DACB6n9Dd++MfKjSBgDQO/dBa98OEWiG1kvb6CH4odR+ErYtUP0RAgcWwVfxWsRjAtX/ht4ZTJjrvjoEDiyC7tkPzb0Lgdol/Y6BYqe1bYPa2v+bHERERJQazIkOgIhoJLvGuQDH7fsVxpU8iqzAdpQ0vx6xnSxUXONcgKn1f4altQ1mwzvMkRIRER0Zmt47HoAU+rpt5Y0ouGwHvDufg+Gt7vN4f+Xb8O9fCEk2I+24+xCo/QytSy9H9pzXYRt9zsE278I+9tKIx6tN69C+5mdwr/9VaJvQPMHjKl5HXdWHPY4RmheQTOjYeC8gun2izAggsP89OMZdEcMzHznc6++BtfAU2Esv7LGv4a0JMJTWiMeZnMXIv2TLkMbW+fXDcB39C7R8eiFyz/kYwghA9xyA1rYd7WtuR+65n/TdCREREaUMJr+JiHrhNAO5/q9h0duR6/8Gaf4dsKu9/1Gd498Cp3/vMEZIRER05BFqR9jXunsnlMa10Ny7APRcgLoHQwWgQuiA1vo1hO6DUNrg3T0PsrMYhrcGnm1PwJQxCQAgyVaYM8uD5/I1oPObhwHdD6H7IwSnh2aYR4xd9/XYprZtgdr6LcwZ5ZBM1r7jHyCtbTuE0CCZXTCnjx9cX+6dkEx2mNJ69qN7KgFhRD5OaYPaugWW7KMHdf7DGf4m6L7gQqbe3S/BWngqlNpPobl3Qyjt0Dv3QTFU6J2VMFQPZIur17409y4I/dBaLrItFybnKAhDByAgyan/J7QQApIk9d2QiIgoCUhCiBh+Q6RUV1VVhdLSUgDAgQMHUFJSkuCIYtPi13Hbp82JDoNS1MkZ1bhyzwmJDoOIiIgSSHaWoPDKAwAA94bfwvPNn4bkPHkXboIl9/gh6RsA6v5fOoTWCUvuici7cP2g+mr6YDbUxi8HdKzr6LuQMfMvgzr/4VqXXQn/vjcjnktt2QSl9rPQtqzT34Jj3OW99lX/ejEMX23oa+fk25E56wko9SshWdJgyTkurrGPRP6qxbCXnJfoMFJasv79TUSUjFL/tjURUT+5zIDDZGCy8lnfjYmIiCilCdUNzb0b5oyyYPmSIaK5dwxJ8ttX8QaMQHNo1rnuqYLua4DJUTCg/tTmjTC8NX037PX4DfBsfwoAYEobD3vJ9wbcl+6thX//uwhUfdDLuTZCbfkqbJu/8i1Ishn2MRf3aK80rg2rIQ8EPx3g2f4UlLplkO35sI3+HuylFwTb138Ba+GpA44/ngJ1y6G1bQUAOMZfBdmWPaB+NPcedH4dXLSdCXAiIkoFTH4TER2m2O7DaLkOx+75/xIdChERESWYUN0I1HwMc0YZtJaNQ3Ye746n4Rj/g7j2KQwVbV9cD3Qrt2L466G1fgOT48wB9enb+y/onv0DjkmpWwalbhkAwFZ60aCS356tj8Hz7SNRzrW0xzZ/xWvQPVU9kt+6tw6tn5x/sCxOtz7qP4dS/3noa++OZ5B38dcwZ05Gx6bfIfd7Pc8x3AylHa1LL4MItAAAJJMdzkk3DKgv/4H3oDashHfbP5j8JiKilMDkNxGlpOnpLZiuvB+27V/atQjoPduWOlWcrc8PfZ3h2QOnUjXUIRIREVGS0Np3QvccgNK4dsjOodQth//AIthLL0T76ttgKO0AAGv+LLim/iy0Lf2E/4E5fULvsXZWwpw2FkIPoHXZlWGJ7y6dm/8A764XAAC20efCWXZdzHEavoZ+PrPeqc0b0Lr8P2Et/A5ck/8rpmOEocP95U+QefIz8O15ZUDn1du3Q+/cD1PamNC29lU39Zj1HTkADW1LL4c5awp0T7AcTtvKm0OLnqZP/wPMGWUDiitWvr2vwpI7A+bMcnRsuh+B2k9CiW8A6PzmTwjULEHatF/D8DeFxrrre0lpWAXPtn/CNfVOeLY+HtxXcApkRxG8O54BAKgtX/V4jYiIiJIRk99ElJLGiJ04turusG1vFUdOfheZW3Fs5d09dxAREREB8Fe+DRiB4L8hI+Df/x7spRfCt3c+hBpMfsNQ4Jr6M/j2vQkRaIZrys+AKMlv/95XYS0+GzA0BA68F7FN95nMhq+uf8nvWBLEsfblrYa/Yj6E7o85+a137oNv3xtwHXM3jIOLXPb7vIEmBGr+DWf5zcE+ffUIVC+O+XitfRu09m0wucZCbf4Kvl3Ph/Y5Jl475Mlvz7Z/Iv2E/4HJNQad3z4CHLb4qu7eBd29C/aS8+GreA2BquCEEKH74Jr6M6gtXwdfd6UVgeqPAACGrxaaexcMb/XBr+ug++uZ/CYioqTHBS8JQPIuuMEFLwkALkjfAANmKJIdp9X9AgBgV6phU8P/IOpwHYenchejxmfCVc7F+NQ4F7e3XACL1gJnoCIRoRMREVHSkAAM8Z9OJjtkW97BBGTwXNZR34VszYZ//7uAMCDbCwDZ2msXQmkDZDMgmSACMfyeLJkhO4pgchRB99Uh/cSH0LHht3BOugHp0/8Qata28iYEqv8Nw98Y/5sAB5+3tfA0ZM95NWrTzq8fQsfG/4ZszwvGMkCSJR2SJRMZM/8KSBLall05gE5MkKyZYbOuJVsuJJMj9HXGjEfgmHD1gOPsrnXZD6A0rILhq4FsywUkU9QbAJI1O3gTRRjBDQdfZ6F1Br9P+pDxH/+Ea8pP4xI7hUvWv7+JiJIRZ34T0YhkkQHViLwv0ypgkQ798XlM2/NodRwX3OfZ0Guf6Z7NKCh0Q7FlIj+wGWNdM6K2JyIiIjpkGOYM6X4Y3vDSa2rLZkDooQSm4Y9f2REAgNBgeKtCSW2lfgUMbxU8256AY+KPINtyYSjt8Fe+HVPCdEAOPm+1YRW0jn0Rm0gmO0zOImgdewGIQSW+AUCoHRBqB9TmjQB6+aWzz070sMQ3AIhAc9h3StsX10OypMOcdUxom2zNgmzLOnSMEJAkKfS1oXZAtqSH9WuoHdBavwl9f8Ty/IXSGr4hwvdXNIEDi+CcdCMksz3mY2Jx+PPtixFoA2BAtuXENQ4iIjoycOY3AUjeO8+c+Z2abCZggsODbZ2uiPv/P3EXSpr+3zBHRURERHTksZXMRaDqw0SHAdlZgoIrKtHw1jgYB2ttJytz9nHIu3ADdG8VzGlj4d3xLJxH3RLa37Hxv5E2/Q+QJDlsW+fXDw57rKa0cciY9dSgFiY9XKD63zBnHQ2TK7a/OdvX/Bxay1fIPW9Z3GJItGT9+5uIKBlx5vcIU1lZiX/84x/44IMPcODAAdhsNkycOBFXXnklfvrTn8LpdCY6RKIhd4yrCWONbdDTZmBnpyNs3+yMGmTXrE9QZERERERHFqV+RaJDAAAY3ip0rP9V0ie+AUBr3YyO9XcDZgfMaRPgXv8rwGQDDia7A3VLYdo9D5AtoWMCdcsSEqveuQ+tn5wH+/irYSs5r1/H2ksvhmzN6LFdaVwD757/Q9Zp/wdJkqB76xCoXQIAcIy/GpIcnqYwvAegNKyA4W+CbM8b+JMhIqIjEpPfI8iiRYtwzTXXwO12h7Z5vV6sX78e69evx/PPP48PPvgAZWVDu4AKUaKd7n4EpY0vI7vkz9iJ60PbbSbgB3umJy4wIiIioiOMUDsSHUKIZ8tfEx1C3Hi2/j3s6/Yvrg//umHVMEbTN3/FfPgr5vfvoFNfhrPs2h6bNfcO+Pe+Cm3aPbBkHwNfxavoWHcXAMBeciGkbiVhAEBt2gAIA5p7J6xMfhMRUT8x+T1CbNq0CT/4wQ/g8/mQlpaG3/zmNzjjjDPg8/nw2muv4bnnnsPOnTtx/vnnY/369UhPT++7U6IkNN4VQGHVYgBASftC/DAnK7TPYvh7OYqIiIiIiEYSzzcPQ2n4osd25eAs9o71dyPzlBfg3fF0aJ977c8AU7ca40KH7qkMtv/q9zCljQ3tsuafDOek64ckdiIiSh1Mfo8Qd955J3w+H8xmMz7++GPMnj07tO+73/0uJk2ahF/96lfYuXMn/vrXv+KBBx5IXLBEQ6jQ1AqrFlzIKbtjFWZ2jKxZL0RERERE1DetfRu09m297g9Uf4SOTfdBd+8KbfPt+b9e2ys1H4cfX/kuHBP+E5LJOvhgiYgoZcl9N6GhtnbtWqxYEayld+ONN4YlvrvcddddmDJlCgDg8ccfh6qqwxoj0VC7w/Qo7lWuxfl1PT8aSUREREREqce3+6UBH2sEmtD47mQ0vDsF7atujWNURESUSpj8HgEWLFgQenzDDTdEbCPLMq69NpgUbGtrw9KlS4cjNKJhYTcBpU3zkN/+b6R7Nic6HCIiIiIiGg7CGNThemcF9Pbt0D374xQQERGlGia/R4AvvgjWQXO5XDjxxBN7bTdnzpzQ45UrVw55XETD5SY8DKvWlOgwiIiIiIiIiIgohbDm9wiwbVuwDlpZWRnM5t6HZPLkyT2OiVVVVVXU/QcOHAg9rq2t7VffidTq1+Ftak10GDQIFhlAxyLUcC1LIiIiIiIaAKvVD28ff/OOJN3/5tY0LYGREBGlPia/E8zv96OpKTjjtaSkJGrb7OxsuFwueDyesGR1LEpLS2Nue9JJJ/Wrb6LBejfRARARERERURJbBiD2v3lHksbGRowbNy7RYRARpSyWPUmwjo6O0OO0tLQ+27tcLgBAZ2fnkMVERERERERERERElOw48zvB/P5DtR6sVmuf7W02GwDA5/P16zx9zRT3+/3Yvn07CgsLkZ+fH7X8ykhRW1sbmqW+du1ajBo1KsERUX9xDJMbxy/5cQyTH8cw+XEMkxvHL/lxDJNfMo6hpmlobGwEAEybNi3B0RARpbaRn+FMcXa7PfRYUZQ+2wcCAQCAw+Ho13n6KqkCBGuOJ6tRo0bF9Bxp5OIYJjeOX/LjGCY/jmHy4xgmN45f8uMYJr9kGkOWOiEiGh4se5Jg6enpocexlDLxeDwAYiuRQkRERERERERERHSkYvI7wex2O3JzcwEAVX2sTt3a2hpKfvdnAUsiIiIiIiIiIiKiIw2T3yPA1KlTAQC7d++Gpmm9ttu+fXvo8ZQpU4Y8LiIiIiIiIiIiIqJkxeT3CHDqqacCCJY02bBhQ6/tli9fHnp8yimnDHlcRERERERERERERMmKye8R4JJLLgk9fumllyK2MQwDr7zyCgAgKysLZ5xxxnCERkRERERERERERJSUmPweAU466SScdtppAIAXXngBq1ev7tHmr3/9K7Zt2wYAuPPOO2GxWIY1RiIiIiIiIiIiIqJkYk50ABT0+OOP45RTToHP58M555yD3/72tzjjjDPg8/nw2muv4dlnnwUAlJeX46677kpwtEREREREREREREQjmySEEIkOgoIWLVqEa665Bm63O+L+8vJyfPDBBygrKxvmyIiIiIiIiIiIiIiSC5PfI0xlZSUef/xxfPDBB6iqqoLVakVZWRmuuOIK3H777XA6nYkOkYiIiIiIiIiIiGjEY/KbiIiIiIiIiIiIiFIOF7wkIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8pqRUWVmJu+66C5MnT4bL5UJOTg5mzpyJRx99FF6vN9HhHZEkSYrp3+mnn95nX4sXL8all16KkpIS2Gw2lJSU4NJLL8XixYuH/omkqIaGBrz//vu47777cN555yEvLy80Jtdff32/+4vHGGmahqeffhqnnXYa8vPz4XA4MHHiRNx6663YsmVLv2NKdfEYw3nz5sV8rc6bN6/P/rxeLx555BHMnDkTOTk5cLlcmDx5Mu666y5UVlYO7gmnmPXr1+MPf/gDzjnnnNB1k5aWhvLyctxwww344osv+tUfr8HhF48x5DWYOG63G6+99hruuusuzJkzB2VlZcjMzITVakVBQQFOP/10PPLII2hubo6pv1WrVuGaa67B2LFjYbfbUVRUhHPPPRfz58/vV1zz58/HOeecg6KiItjtdowdOxbXXHMNVq9ePZCnmdLiMYbLli2L+Rp84IEH+oyJ76Px8+tf/zrs9V+2bFmfx/BnIRERxUQQJZn33ntPZGRkCAAR/5WXl4tdu3YlOswjTm/jcfi/OXPm9NqHruvixhtvjHr8TTfdJHRdH74nliKivabXXXddzP3Ea4waGxvFzJkze+3DZrOJ5557bpDPOrXEYwxfeumlmK/Vl156KWpfu3btEpMmTer1+IyMDLFo0aLBP/EUcNppp8X0ml977bUiEAhE7YvXYGLEawx5DSbOkiVLYnrd8/LyxEcffRS1r/vvv1/IstxrH+eff77w+XxR+/B6vWLu3Lm99iHLsnjggQfi+RIkvXiM4dKlS2O+Bu+///6o8fB9NH42bdokzGZz2Ou3dOnSXtvzZyEREfUHk9+UVDZu3CgcDocAINLS0sSDDz4oVq1aJT799FNx8803h35RKS8vF263O9HhHlG6XvvbbrtNfPPNN73+27t3b6993HPPPaF+pk+fLubPny/Wrl0r5s+fL6ZPnx7a95vf/GYYn1lq6P6L/JgxY8Q555wT+ro/ye94jJGmaeLUU08Ntb3sssvE4sWLxZo1a8Q//vEPUVBQEPrD/8MPP4zDs08N8RjD7om3f//731Gv1dbW1l77cbvdory8PNTXzTffLD799FOxatUq8eCDD4q0tDQBQDidTrFp06a4PP9kNnHiRAFAFBcXizvvvFO89dZbYu3atWL16tXib3/7mxg9enTotbz66quj9sVrMDHiNYa8BhNnyZIlorS0VFx77bXi8ccfF++8845YvXq1WLlypXj99dfFFVdcIUwmkwAgrFar+OqrryL28/TTT4de94kTJ4oXXnhBrF27VixYsECcccYZMV/LV111VajtGWecIRYsWCDWrl0rXnjhhdD3GwDxzDPPDMXLkZTiMYbdk98vvvhi1Guwvr6+11j4Pho/uq6HEtBdr1tfyW/+LCQiov5g8puSStfMK7PZLFatWtVj/yOPPBLzbA2Kr8G+7jt27AjN+JgxY4bwer1h+z0ej5gxY0Zo/Dm7v3/uu+8+sWjRIlFXVyeEEKKioqLfidN4jdELL7wQOvdPfvKTHvt37doV+nRHWVmZUFW1f082RcVjDLsn3ioqKgYcy+9+97tQP4888kiP/StXrgx9r0T7tMeR4vzzzxevv/660DQt4v7GxsawROby5csjtuM1mDjxGkNeg4nT29h19+6774Ze10svvbTH/ubmZpGZmRm6CdnY2NjjHBdeeGGfybtPP/001ObCCy/sEVtjY6MYM2aMACCysrJES0tL7E80hcVjDLsnv6MlV/vC99H4+fvf/y4AiMmTJ4vf/OY3fY4PfxYSEVF/MflNSWPNmjWhX1BuvfXWiG10XRdTpkwJ/bGgKMowR3nkGmzy+7bbbgv1sXr16ohtVq9eHfWXVIrdQBKn8Rqjrms0JydHeDyeiG3+9Kc/hfp54403YorvSJOo5LeiKKHkz5QpU3r9SPGtt94aOtfatWsHdK4jyaJFi0Kv1x133BGxDa/BkS2WMeQ1OPIdddRRAgiWzjjcn//859BrOn/+/IjHHzhwIDT7eO7cuRHbnHfeeaHE3IEDByK2mT9/ftQbHNS7aGMYr+Q330fjo7KyMvRJlWXLlon777+/z/Hhz0IiIuovLnhJSWPBggWhxzfccEPENrIs49prrwUAtLW1YenSpcMRGg2SEAILFy4EAEyePBmzZs2K2G7WrFk46qijAAALFy6EEGLYYjzSxWuMdu7ciW3btgEArrzySjidzoj9dF/A8d133x1s+BRHS5cuRXt7OwDguuuugyxH/lWCY9g/Z5xxRujxnj17euznNTjy9TWG8cJrcGilp6cDAPx+f499Xb+LZmRk4LLLLot4fElJCc466ywAwKeffoqOjo6w/R0dHfj0008BAGeddRZKSkoi9nPZZZchIyMDAMevv6KNYTzwfTR+fvrTn6KzsxPXXXcd5syZ02d7/iwkIqKBYPKbksYXX3wBAHC5XDjxxBN7bdf9F6eVK1cOeVw0eBUVFaipqQGAPn/x7dpfXV2Nffv2DXVodFC8xqjrOu6rn6KiIpSXlwPgdTzSxDqGM2bMCP0xyTHsWyAQCD02mUw99vMaHPn6GsN44TU4dHbs2IGvvvoKQDCx1p2iKFi7di0AYPbs2bBarb320zUugUAA69evD9u3bt06KIoS1i4Sq9UaSuytW7cOqqr278kcoaKNYbzwfTQ+3njjDbz//vvIycnBX/7yl5iO4c9CIiIaCCa/KWl03Z0vKyuD2WzutV33X3S7jqHh8+abb2Lq1KlwOp1IT0/HpEmTcN1110Wdhb9169bQ477+UOH4Jka8xmgg/Rw4cAAejyfmWCk2N9xwA4qLi2G1WpGXl4dZs2bhv//7v1FdXR31uFjH0Gw2o6ysDACv1VgsX7489HjKlCk99vMaHPn6GsPD8RocGbxeL3bt2oW//e1vmDNnDjRNAwD8/Oc/D2u3c+dO6LoOYPivQU3TsGvXruhP5AgW6xge7t5778XYsWNhs9mQnZ2N6dOn4xe/+AV27twZ9Ti+jw5eW1sb7rzzTgDAn//8Z+Tl5cV0HH8WEhHRQDD5TUnB7/ejqakJAHr9eGiX7OxsuFwuAMFfUmh4bd26Fdu2bYPP50NnZyd2796NV155Bd/97ndx6aWXhj6q3V1VVVXocV/jW1paGnrM8R0+8RqjgfQjhAg7juJj2bJlqK2thaqqaG5uxpo1a/Dggw+irKwMzzzzTK/HdY2Fy+VCVlZW1HN0jWFjY2PYrFgKZxgGHn744dDXV155ZY82vAZHtljG8HC8BhNn3rx5kCQJkiTB5XKhvLwcd911F+rr6wEA99xzD/7zP/8z7JhEXoOR+jnSDWQMD7dq1Srs378fiqKgra0NX331FR577DFMmTIFDzzwQK/l9fg+Oni/+tWvUFdXh1NOOQU33nhjzMfxZyEREQ1E79NniUaQ7vUS09LS+mzvcrng8XjQ2dk5lGFRN06nExdddBHOPPNMTJ48GWlpaWhsbMTy5cvx9NNPo7m5GQsWLMDFF1+MJUuWwGKxhI7tz/h23dgAwPEdRvEaI4514k2YMAGXXXYZZs+eHfqDbu/evXj77bfx1ltvwe/347/+678gSRJuueWWHsd3jWGs78VdOjs7YbPZ4vQsUsvf//73UDmFyy67LGJpL16DI1ssY9iF1+DIdfzxx+PZZ5/FzJkze+zjNZgcoo1hl1GjRuGyyy7DqaeeigkTJsBsNmP//v14//338corr0BVVfz+97+Hoih46KGHehzPMRycFStW4Pnnn4fZbMbTTz8NSZJiPpbXIRERDQST35QUui9YE63GYpeuP+58Pt+QxUThqqurI85AO/vss3HHHXfgvPPOw6ZNm7B8+XI89dRT+NnPfhZq05/x7f6HO8d3+MRrjDjWiXXppZfiuuuu6/GH5syZM/GDH/wA77//Pi677DKoqopf/OIXuOiii1BUVBTWtmsM+/NeDHAMe7N8+XLcc889AICCggI89dRTEdvxGhy5Yh1DgNfgSHHJJZdgxowZAIKvy549e/DGG2/g3XffxdVXX43HHnsMF1xwQdgxvAZHloGMIRC81iorK8MmYQDACSecgEsuuQS33HILzjnnHLS3t+Phhx/GD37wAxx33HFhbTmGA6coCm655RYIIfCLX/wCxxxzTL+O53VIREQDwbInlBTsdnvocdciQdF0fbTX4XAMWUwULtpHrwsLC/HWW2+F/tB44oknwvb3Z3y7f2yb4zt84jVGHOvEyszMjDrD6oILLsB9990HIFhD9YUXXujRpmsM+/NeDHAMI9myZQsuvfRSaJoGu92ON998EwUFBRHb8hocmfozhgCvwZEiKysLxxxzDI455hjMnDkTV111Fd555x288sor2Lt3Ly6++GLMmzcv7BhegyPLQMYQCM7iPTzx3d1JJ52Ef/7znwCCZS66HnfHMRy4hx56CNu3b8eYMWNw//339/t4XodERDQQTH5TUkhPTw89juXjZl2LkcTykWAaHhMmTMDZZ58NANi9e3dopXagf+PbfaEZju/widcYcaxHvltuuSWUnOu+gF+XrjHsz3sxwDE8XEVFBc455xy0trbCZDLhtddew3e+851e2/MaHHn6O4ax4jWYOD/60Y9wxRVXwDAM3H777WhpaQnt4zWYHKKNYayuuuoqZGRkAIh+DQIcw/7Yvn07/vSnPwEIToTpXk4kVrwOiYhoIJj8pqRgt9uRm5sLAH0uNNLa2hr6JaX7QieUeFOnTg09rq6uDj3uvtBMX+PbfcEaju/widcYDaQfSZL6XIyI4qegoCD0ftv9Ou3SNRYejwdtbW1R++oaw/z8fNYa7qampgZnnXUWampqIEkSXnzxRVx88cVRj+E1OLIMZAxjxWswsbrG0ePx4KOPPgptT+Q1GKkf6l1vYxgrs9mM8vJyANGvQYDvo/3x97//HYqiYMKECfB6vXjttdd6/Pv2229D7T/77LPQ9q6/7fizkIiIBoI1vylpTJ06FStWrMDu3buhaRrM5sjfvtu3bw89njJlynCFRzHo7aPe3ZPi3ccvEo5vYsRrjA7v5/jjj++zn9LS0gHNDqKBi1aWYerUqXj77bcBBMdo1qxZEdtpmoY9e/YA4LXaXVNTE84++2zs3bsXQHD227XXXtvncbwGR46BjmF/8BpMnPz8/NDjysrK0OPy8nKYTCbouh7XazCWfsxmMyZNmtR38ASg9zHsj76uwS58H41dV/mQvXv34uqrr+6z/R//+MfQ44qKCrhcLv4sJCKiAeHMb0oap556KoDgLI4NGzb02q77xxNPOeWUIY+LYrd169bQ4+Li4tDj8ePHh76O9PHS7j7//HMAwOjRozFu3Lj4B0kRxWuMuq7jvvqpq6vDzp07AfA6Hm6NjY1oamoCEH6ddol1DNevXx+aqcUxDGpvb8e5554bei98+OGH8dOf/jSmY3kNjgyDGcNY8RpMrO4zfbuXOLBarTjppJMAAKtXr45aJ7hrXGw2W2hRxi4zZ84MLbAXbfwURcGXX34ZOiZanWoK19sYxkrTtND732CuQb6Pxh9/FhIR0UAw+U1J45JLLgk9fumllyK2MQwDr7zyCoDgQjhnnHHGcIRGMaioqMCSJUsAABMnTsTo0aND+yRJCn1Edfv27aE/9g735ZdfhmZfXHzxxVFn5VB8xWuMysvLQ7Nv3njjDXi93oj9dF+k6tJLLx1s+NQPzz77LIQQAIA5c+b02H/66acjMzMTAPDyyy+H2h6OYxjO6/Xi/PPPx8aNGwEA9957L37961/HfDyvwcQb7BjGitdgYr355puhx9OmTQvb1/W7qNvtxjvvvBPx+KqqKnzyyScAgDPPPDOstjAQrDV85plnAgA++eSTXksuvPPOO3C73QA4fv0VbQxj8frrr6O9vR1A5GuQ76MDM2/ePAghov7rvgjm0qVLQ9u7ktf8WUhERAMiiJLIaaedJgAIs9ksVq1a1WP/I488IgAIAOL+++8f/gCPUO+9955QVbXX/XV1dWL69OmhsfnrX//ao82OHTuEyWQSAMSMGTOE1+sN2+/1esWMGTNC479z5864P48jSUVFRWg8rrvuupiOidcYvfDCC6Fz//SnP+2xf/fu3SIjI0MAEGVlZVG/t45k/R3DiooKsXHjxqhtFi1aJKxWqwAgHA6HqKqqitjud7/7XejcjzzySI/9q1atEmazWQAQc+bMieXppLRAICDOOeec0Gt25513DqgfXoOJE48x5DWYWC+99JLw+XxR2/ztb38Lva7jx48XmqaF7W9ubhaZmZkCgBg7dqxoamoK269pmrjwwgtDfSxdujTieT799NNQm4suuqjHeRobG8WYMWMEAJGVlSVaWlr6/4RT0GDHsKWlpdcx6bJmzRqRlZUlAAhJksT69esjtuP76NC4//77+7x++LOQiIj6i8lvSiobN24UDodDABBpaWnioYceEqtXrxafffaZuOWWW0K/wJSXlwu3253ocI8YY8eOFcXFxeKOO+4Qr776qli1apXYtGmTWLJkibj33ntFXl5eaGxOPfVU4ff7I/Zzzz33hNpNnz5dvPbaa2LdunXitddeC0ue/+Y3vxnmZ5j8VqxYIV566aXQv0cffTT0ep5yyilh+1566aVe+4nHGGmaJk455ZRQ28svv1x89NFHYs2aNeKJJ54QBQUFAoCQZVl8+OGHQ/BqJKfBjuHSpUsFADF79mzx0EMPiQ8++ECsW7dOrFu3Trz++uviiiuuEJIkhfp88skne43F7XaL8vLyUNtbbrlFfPbZZ2L16tXioYceEmlpaaHk3aZNm4buRUkSl112Wei1+u53vyu+/vpr8c033/T6b8eOHb32xWswMeIxhrwGE2vs2LEiJydH3HzzzeLll18WX3zxhfjqq6/EihUrxP/+7/+GXRNWq1UsWbIkYj9PP/10qN3EiRPFiy++KNatWycWLlwozjjjjNC+q6++Omo8V111VajtGWecIRYuXCjWrVsnXnzxRTFx4sTQvmeeeWYoXo6kNNgx7LppfOyxx4r77rtPLFy4UKxdu1Zs2LBBvPvuu+LGG28M3XwCIO6+++5eY+H76NCIJfktBH8WEhFR/zD5TUnnvffeC92Fj/SvvLxc7Nq1K9FhHlHGjh3b63h0/3f55ZeL1tbWXvvRdV38+Mc/jtrHjTfeKHRdH74nlyKuu+66mMao619v4jVGjY2NYubMmb32YbPZxHPPPRfvlyGpDXYMuxJvff1zOp0xJVt27dolJk2a1Gs/GRkZYtGiRUPxUiSd/owbEJxR2hteg4kRjzHkNZhYsf6uUlJSIj7++OOofd13331hNyoO/zd37tw+Zyh7vV4xd+7cXvuQZZmfYjzMYMew+yemov0zmUzigQceEIZhRI2H76PxF2vymz8LiYioPyQheikUSDSCVVZW4vHHH8cHH3yAqqoqWK1WlJWV4YorrsDtt98Op9OZ6BCPKMuXL8fy5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3ZM/X344Yd49tlnsW7dOjQ1NSEvLw8zZ87ErbfeivPOO2+In01quv766/Hyyy/H3L6vHw3xGCNN0/Dcc8/h1VdfxbZt2+DxeFBcXIwzzzwTd955J44++uiY4z0SDHYMOzo68N5772H16tVYv349amtr0dTUBE3TkJ2djaOPPhpnnnkmbrrpJhQUFMR0Do/HgyeffBJvvvkmdu/eDUVRUFpairlz5+LOO+/E2LFj+/UcU1V/1ycYO3Ys9u3bF7UNr8HhFY8x5DWYWDt27MAHH3yAlStXYvfu3aivr0dzczMcDgcKCgpw/PHH44ILLsCVV14Z0++Rq1atwpNPPokVK1agvr4eWVlZOO6443DDDTfg6quvjjmuV199FfPmzcPmzZvR1taGwsJCnHbaabj99ttj/r3pSDHYMVQUJXQNrl27FtXV1WhqaoLf70dmZiaOOuoonH766bjppptiXlSd76Px9cADD+D3v/89gGDN79NPPz1qe/4sJCKiWDD5TUREREREREREREQpR050AERERERERERERERE8cbkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3ERERUYLNmzcPkiRBkiTs27cv0eEQERERERGlBCa/iYiIiAZo3759oaT1YP4RERERERFR/DH5TUREREREREREREQpRxJCiEQHQURERJSMVFXFjh07et0/bdo0AMCMGTPw0ksv9drumGOOiXtsRERERERERzpzogMgIiIiSlYWiyWmxLXL5WKCm4iIiIiIaJix7AkRERERERERERERpRwmv4mIiIgSbN68eaHFL/ft29dj/+mnnw5JknD66acDAHbv3o3/+q//woQJE+BwODBu3DjceOONqKysDDvu22+/xQ033IAJEybAbrejtLQUt912GxoaGmKKa8GCBbjiiiswZswY2O12ZGVlYcaMGfj973+P1tbWwT5tIiIiIiKiIcWyJ0RERERJ5JNPPsFll12Gjo6O0LbKykq8+OKLeP/997F8+XJMnjwZ8+fPx/XXXw9FUULtqqqq8PTTT2Px4sVYtWoViouLI56jtbUV3//+9/HZZ5+FbQ8EAtiwYQM2bNiA//3f/8XChQsxa9asoXmiREREREREg8SZ30RERERJoqamBldeeSWysrLwxBNPYM2aNVixYgV+/vOfQ5IkNDQ04KabbsK6detw7bXXYuLEiXj++eexdu1aLF26FD/60Y8ABJPlv/zlLyOeIxAI4KyzzsJnn30Gk8mEH/3oR5g/fz6+/PJLrFixAg8++CByc3PR0NCAuXPn9phtTkRERERENFJw5jcRERFRkti1axcmTZqElStXIj8/P7T91FNPhdlsxl/+8hesXLkS559/Pk466SQsWbIETqcz1O7000+H3+/Hm2++ibfffhuNjY1h/QDAH/7wB2zcuBFZWVn45JNPcOKJJ4btP/XUU/HDH/4Qs2fPRm1tLX7729/iX//619A+cSIiIiIiogHgzG8iIiKiJPKPf/yjR8IaAH7yk5+EHjc1NeH5558PS3x3ue222wAAmqZh9erVYfs6Ozvx5JNPAgD++Mc/9kh8dxk7dix+97vfAQDefPNNeDyegT0ZIiIiIiKiIcTkNxEREVGSyMrKwrnnnhtx3/jx45Geng4AOPbYYzFlypSI7Y477rjQ471794btW758Odrb2wEA3//+96PG8p3vfAcAoKoqNmzYENsTICIiIiIiGkYse0JERESUJCZNmgRJknrdn5WVhY6ODpSXl0dt06X7opkAsH79+tDjUaNGxRxXXV1dzG2JiIiIiIiGC2d+ExERESWJSGVMupNluc92XW0AQNf1sH0NDQ0Disvr9Q7oOCIiIiIioqHEmd9EREREBCA8Gb5x40ZYLJaYjispKRmqkIiIiIiIiAaMyW8iIiIiAgDk5uaGHufn5zOpTURERERESY1lT4iIiIgIADB9+vTQ45UrVyYwEiIiIiIiosFj8puIiIiIAABnnXVWqF74P/7xDwghEhwRERERERHRwDH5TUREREQAgKysLNx+++0AgFWrVuEXv/gFDMPotX19fT2ef/754QqPiIiIiIioX1jzm4iIiIhC/vCHP2D58uVYs2YNHn/8cSxbtgw333wzjj/+eLhcLrS2tmLLli345JNPsHjxYkybNg033XRTosMmIiIiIiLqgclvIiIiIgqx2WxYsmQJrr/+erzzzjvYvHlzaDZ4JBkZGcMYHRERERERUeyY/CYiIiKiMOnp6Xj77bfxxRdf4OWXX8aKFStQU1MDn8+HjIwMTJw4ESeddBLOP/98nHPOOYkOl4iIiIiIKCJJcCUjIiIiIiIiIiIiIkoxXPCSiIiIiIiIiIiIiFIOk99ERERERERERERElHKY/CYiIiIiIiIiIiKilMPkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3EREREREREREREaUcJr+JiIiIiIiIiIiIKOUw+U1EREREREREREREKYfJbyIiIiIiIiIiIiJKOUx+ExEREREREREREVHK+f8BeuVVcZN/SbQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot( \n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'intervention_examples_composition.png',\n", + " # Name of the file to save the plot to.\n", + " data \n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot\n", + "\n", + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5gb1dUG8HfUt1d3G9sYN9wrpto0A8ZgWsB0UxMgEEgChFBCQgmhfBBMaMH0aoohpprmAgZ3g3vvfXtXm/n+WK+8oymakUbSSnp/z0Mi3blz566s1WrOnDlXkCRJAhERERERERERERElhS3ZEyAiIiIiIiIiIiLKZAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESOZI9AYpNU1MTVqxYAQBo164dHA7+kxIRERERERFZLRAI4MCBAwCAQYMGwePxJHlGRJROGNFLcStWrMDo0aOTPQ0iIiIiIiKijLFw4UKMGjUq2dMgojTCcgdEREREREREREREScRM2hTXrl270OOFCxeiU6dOSZwNERERERERUXras2dP6E7W1ufiRERWYJA2xbWuQdupUyd07do1ibMhIiIiIiIiSn9cD4aIrMZyB0RERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERFFIIl+1K96CjVL7kKwbrtqH9++edjzugv7P+yl2se3bx72vCpgz6sCapbeDUmS4j1tIiIiIiIiShEM0hIREUVQs/BW1Cy6DfUrHkHZp6MhBX2y7f7KVSj/4gRA9CNYuxn7P+gu6xOs39G8/aD6Xx9G/eqnEjV9IiIiIiIiauMYpCUiIoqgYe2zocdi0z40bnlXtr1m0R8V+zRufjv0uGn7J4rttSr7EBERERERUWZikJaIiMikYM0G2XPf3u8VfQLVa0KPxcZ9cZ8TERERERERpS4GaYmIiGIlBpRtknjosWBP3FyIiIiIiIgo5TBIS0REFDO1RcBaBWltjoTNhIiIiIiIiFIPg7REREQmid6yyH18NaHHkq8yntOhDCB6K+Dd/S0CtZuTPRUiIiIiIooDBmmJiIh0SK3LFhzUsO55+PbN092vccNLCNRshHfvXNSv+r94TY8ygHfvXOyb3gUVs07BgQ97oe7Xh5M9JSIiIiIishiDtERERDr85UtU26t+uDrivg0bXkbNzzdZPSXKMPUrHwOCTaHndb8+BEkMJnFGRERERERkNQZpiYiIdPjLl6q2B2s3RtxXbNyLQNVKq6dEGcZfvlj2XAo0QGoVtCUiIiIiotTHIC0REZEOQYjhT6UU0N5mc0U/LpHETFoiIiIionTCIC0REZEuIeo9JVE7SCs486IelwgqtZKJiIiIiCh1MUhLRESkJ16ZtAyyUUz4/iEiIiIiSieOZE+AaPl+L95dV48tNc3BjCOLnbhpaD5Ks+xJnhkRZQLv7q9Ru/RuCM485B/1DJyF/SH661Dz0w3wHZiPYO3mqMfWy6RlkJZise+dktDj9hfugj27cxJnkxokMYi6Ff9E09b34SwdjfzRT8LmzE32tIiIiIiIADCTlpLMF5Tw5NKaUIAWAFZX+PH66rokzoqIMoUU9KLy+wvgL1sE357vUD3/OgBA3Yp/onHzmxEDtKKvOsIB9IK0rClK1qiad0Wyp5ASfHu+Qd2yexGo/BWNG15Cw9pnkz0lIiIiIqIQBmkpqfbWB9EUlBTtC/Z6kzAbIso0TTv+B8lfE3ru3/8jAKD+14cN7R+oWq27XQrqfZYxk5aMERz62Z6+Pd8maCaprerHa2XPa5fcmaSZEBEREREpMUhLSaUWoCUiShQp0BjrAM3/b3Oqbxd92ruy3AEZJGi9v8gUsWFnsqdARERERKSJQVpKKi+DtESUTIIQ0+4tNWe1gmiSTpCWNWnJKAb0iYiIiIjSH4O0lFR6QVpJYgCXiOJLiPXP4MFMWknUqC8b1AvSsiYtGcW/h0RERERE6c6R7AlQZvMGtE88gxLgiC3JjYhIn0omrZkLRMH6XQd3Ul8gTPSWa++cAdmR/soV8O7+Gq52Y+Bqf0yyp5OSJElCsGZ9sqeRcnz7f4Zv/w9wdzoZzpJhmv2CTQdg97RL4MwonvY01OCtTUuxt7E22VMhIpOyHU78Y/jpyZ4GEVFSMUhLSaVXk3b6+npc0k9/sRQiotioXAkKGq9TW/3jVcjqdblmVmywbovO3hIkSYIQY8mFtspfuQJlM0cBohcQbCg+9Su4O5+S7GmlnNqlfzXUT/TXw+bMifNsUoN37xxUfHUSIImotTlReubPcJYMV+1bNnME2p+3EYLdleBZktX8YhDHf/4fbKrVuThGRG1WiTubQVoiyngsd0BJ5dMJ0i7aq7cqOhFR7AS7R9HmK1tkaoxA1coYZpC+t7HXLPpzc4AWACQRVT9cldwJpaj6FY8Y7PfPOM8kddT8fNOhTHXRj5qFt2r2Fet3oHHr9MRMjOJqefkuBmiJiIgopTFIS0mld7OvT0zf4AURtQ323O6KNilQb2oMyV8X/QTSuC6tb/cs2XOxYWeSZpIZvLu/TvYU2oxA1SrZc9++efr9y5fGczqUIHUBnRrgRERERCmA5Q6ozdJbVIyIKG5E9fqyWqRYAq0ZUJeWEiU9y2ZYSXDmQfKr1Cq1ORM/GbKcGFZP3GN34OLDtesRE1HbkutwJ3sKRERJxyAtJZdOHFZvUTEioniRRL/JHRikpTZA4M1RkWkEsm38OpwOgmGfp8XubLx83EVJmg0RERGRefxWSkkTECXsqNXOWPOJQHljEHYBqPFL8AYktMuyodBjT+AsiSidSIFGBGo2wJ7TDTZ3kXqnBAZpJUlk/mOGE/21CNZtByDCkd836gWspAgL3vkrVwGiD86S9M4sFNUyZUPUf9sEgZm0qaQh4MOGmjJF+8awNjsvXBAREVGKYZCWkmJrjR8PLahCjU8/W/bG75QLQJxymAfXDcqP19SIKE15d81C5ffnQgo0AIINeSMfg6vdGEW/+lVPmBo3WB9DrdU0rklLkTVsfA3VP0wJPRccuSge/zVc7Zvfl5KJTOtAxXI0bHgZ2b2vVmzb86o8ONlpSnreqdKw8TVU/3it5nbJX62+gZm0KeOTbStx0Zw34Q1GLktjF3gJjIiIiFILLzFTUnyyqSFigFbLN9ubsLfeXM1IIqLaZfc1B2gBQBJRt+xeePd8r+jnL19saly9leMjyrByB1LQm+wptBmSJKF28R3ytkAd6n59KPTcX2buvVj94zWKtkDdNkWbb98PpsZNBZIkoXbJXYCk/v3AX7VGc19BYJA2Vdyz9EtDAVqAmbRERESUevjthZJid11s2WMHGjMrsEFEsfNXLJc9lwINgBh70FAzO8+QzPosE72VyZ5C2yEFITbtVzT79v8Yety09f2YD9O44RVFW/X862Met+2RIDbu0dzauPFV7V25cFjK2NFQZbjvkYUd4jcRIiIiojhgkJaSotqrHpgoctvQKSdyzdmAmJ63ahJRPCk/N6Rgk6kRCk94y6rJNB8/48odZFZQWpeokQ3Y6hZtKdgQ82EkSVljWdJbtTNVSfo/k17NXoHlDlJGMOz7n00Q4BBssv+cNjvGtOuOJ0efnaRZEhEREUWH30op4URJQo1P/UR9TCc3pgzIw73zK7G+UnvxHl8wDU8wiSjO1IK05jJpHQX9rZrMwQlkWNAy44LS2iSN2/JbL25l9iKCKlHlNY8Q0ExNEYK0AZ2F1ZhJmzICYZ8hP595M0a1OyxJsyEiIiKyFjNpKeEa/BK0YqzZzuaTU3eEZFp/hsU1iMgCagFRszVSbS5r5tIiw4K0klrAMFNpZNIKrYO0eoFFo1QD42kYpI3wu6SXlcyatKkjGHaBwWGLfPcVERERUargt1JKuCqNUgcAkO1ovm4QqZpBrUYmbmsBUcJ76+rxv82HTsz6Fztxx8gCZDt5fYIo8yg/WBrWv2BqBMFubZA2ULkC9uxOhvoGG/Zi//TOACRAsKPjpXUQHB5L56NFEoOoW/43eHfPgqNoMPJHPQGbqyCKgYIINuxF7ZI7IHrLkTv4Xrjaj7F+wikgULVCfUOrxY4kb4XpcSVJgtCqZILoUxlD1L5TJXXpf3Fo2vy29p4W1Kam+Pty51r4wy702Fu914mIiIhSHSNVlHCfbdHOZsk5mEkbKUj71tq6iMf5YkujLEALAGsq/HhtdeR9iSgNWXGLt8WZtBVfnw7J4LzKPh2FUCBKCqL8i+MtnYuehrX/Qd2vD8FftgiNG6ahZuGtuv0Ddds0toionn8dGje9Ae/Oz1Hx9XjTJSfSgSRJqPj6DI2th4JO3t1fRTG4PIjVuOFlRZdg3Rbz47ZxsZSGqFlwi4UzoXgoa6rHWd8o38t2gacyRERElD74zYbalCJP81vyjB5Zuv06ZEe+ve1NjUDu7J0W1PgjooxkcxdbPKIEf/liQz3Fhp2y50b3s0LD+v/KnjdufFW3v798ifoGMQjvzk9DTyV/LRq3To91eiknWL0OUqBefWOroJM9J4pam2FlFARHjqKLPb+P+XHbuKYt7yV7ChRHy8p3IaBS0qLUo3x/ExEREaUqBmkp4bTqyfbMd+DI4uYstREd3KGsWvUx0rCeHhHFWeyfGzZnHlydTpa1OUtHxzSmFNC+u6CtCFSvNbeDRr1VSaU+quSrimJGqU170TAArW7ftnnaRzF22O3guT0UfdTaUl2waX+yp0Bx5FP5TJnccyg6ZOUlYTZERERE8cGatJRwgbAAa6ccO6YMyMWRxS647M0npw6bgBdOLsXS/V6UNYl4b10dvK3OOxsDDNISUXI4CgfCt+fb0HNblrGaspqsKMPQ5mj8TKqLWGVeTUnB7tbbGnokiT7zg4cHgFWyD9MyMB7Na0UpIyAq38dvnnBJEmZCREREFD8M0lLCBcK+Zx/fxYOh7ZQnrE67gKM6NS+K07fIibt/rAxtY5CWiMyQIqz8boYQvlCNlI6LMMVI6/VWbc+8IK1uYL71axTNAl9hGYeSSsBcTMMgrZSWi6FRi/BSB30L2sFu4w2BRERElF4YpKWEC4adnDoMfMf22OUn8X4R+HhjPXoUODCk1KUMmgBw2QCfdXEZIjJJEoNo2vEJBMEBd7eJEBK0wIskBtC07UM0rHseNncpXB2Os7juqfzzRvLXxjhc5CClv3KFarskSaqff5bTuz2/1VwaN72BmoV/0MzUDFSvVjam6MI//spVqF18OzyHnYPsvtdH7B+o3Qrf/h/gKhmpGjhtITbuCT2OJpNWkgIINuxGzeLbIdbvQFClVEU6ZNIG6rbBt28enCUj4Czsr1liw/B4tVvhyOthzeTIcuGZtI4U/dwgIiIi0sMgLSVceD1Zh4EAQ5ZD2eeddc2LrlzYJwfn91YuHFHksWNfg9qttYAoSbAlIrBBlMGq5kxG07YPAABZva9F4bH/jbCHNWp+vgkN618MPW+Zg2XCggO+ffOsHT+Md+9cVHw5TnVb3bL7kDf8gbgeXzJYjqF6/nVo3DBNt0/V3EuV4/troppXMvmrVqPsk4EAAO+uL+DdNxdFJ7yp2T9QvQ5ln45qDujbPSg4aqr++BW/wFk8JKpMWt++H1A1+wLdPqKvKnEB/jgIVK8/+HrWADY3Sk7/PuZM2rL/DUHpxIVwFPS1aJZkpQVl22XPHbbIC8gSERERpRpehqaECy93YCSTNltnEbHvdjSqthe5tQfeVhNbxg0R6QvW75IFRxs3vATRXxf340piQBagtZKzdNTBR9YGtgRB/3ppw7rnoVXjte7XBy2dixr//h8N9YsUoNUSrNsW1X7JVPbxANnzps1v6favWfKXQxnXwSZUL7hFt3/l9+cDiC6TNlKAFgAg+iAF6k2P3VbULrvnUHBf9KJm4R9iLjsi+WtQu/RuC2ZH8bCpplz23C+qX4QnIiIiSmUM0lLChS8c5rAZyaTVfqtWNomGM71a1PtZ05YonoJ1WxVtkq867seNZ+Apu9/vmx8I1mZw2dwlutubtrxj6fHM8pUtiuv4kX7+dODd/rG8Iah+cTG0uXZT8wMLaymHExt2x23seGva+r7sub9sEWBB0K5p24cxj0HxUeqR3zG1umpfkmZCREREFD8M0lLCRZNJCwBdctUDI0FJfSExn6gdiA0vuUBEFlO9jTr+v3dSoCEu4xYc/QKyel3e/CTK22zzRz2p2q5Xn7RNiGOgEIChmrxkvWDDrmRPwVKSgbrJlLqagvJM6T8PHJukmRARERHFD4O0lHCKmrQGMmkBoMCl/XatU8mM9Qa1Ax/hgWIiSg/xCtJm970+VL8zUnkCNZ2mSMgZcKvG1jYepEXkD0wppkAug7Ta4vfeSLcgbawLh1Hb1hSU//vmOtxJmgkRERFR/GT8wmE+nw+vv/463n//ffz666+oqKiA0+lEly5dcMwxx+C6667DMcccE3GcL774Ai+++CIWLVqEAwcOoF27dhg1ahSuv/56nHHGGQn4SVJHeOxUZU0wVXqnqrU+Ee2z5dltPt0gbVsPihBRNKRgfIK0MhaXO4DJci2JJIl+SH4DJSRiXLSJNMTxvSHW74zb2OGkQCNg98R3oTKJNUoTyRcMoMKbgM/bg2r8TbLnHnvGn8IQERFRGsrobzjbtm3DmWeeiVWrVsnafT4f1q9fj/Xr1+PVV1/FzTffjH//+9+qJxeiKOL666/HtGnyBVN27dqFXbt24eOPP8a1116LF154ATYbE5cBZYDUaTCTVu9UdVW5D70KnbK2A43amV3z93hxdGePoeMSkXlqK61LcV44rGHTm6ied3lcjwHA+iBtG82kbdj4Gmp+/j2kQOR/NymmLEZm0qppWP8SRG9Z3MavXXoXsvv+FjZ3kWVjir4a7Hu7IPS8+NSv0LRjJhrWPQ9bVgcUnTQDrtACfNZiuYPEmbr6B/xlyWdoCCTv4oybQVoiIiJKQxkbNfT7/bIA7eDBg/Hqq6/ip59+wqxZs3DfffchJ6d5kYKpU6fiX//6l+o4d999dyhAO2zYMLzzzjtYuHAh3nnnHQwbNgwA8NJLL+Gee+5JwE+VGpQ1aY2doGfrpNy+tVae6VXj1b/1duFer+nFxojIOO/uWYq2ho0vx+14UtCHmgW3xG381gSLg7SSr1JzWzCB2Y6tSaIfNQtuNhSgBRBbJm2a1KSNreSDUvX86ywdT03jptctHa9u+d9kzyu+Pg0Na58BpADEhl2oXXKXpceTYSZtQtT5vfjjwv8lNUALMJOWiIiI0lPGBmk/+eSTUID26KOPxtKlS3HllVdizJgxOPXUU/H3v/8dc+bMgdPZnJ35r3/9C4GAPEtj/fr1ePzxxwEAI0eOxI8//ojJkydj1KhRmDx5Mn744QeMHDkSAPDYY49h48aNCfwJ267wTFqjC4dN6pVt+Bh7GyKfrOlUQyCiGNlcyuy8+pWPxe14/orlusFOKwUb95jqnzPgT/odbNq1FevXPWfqWFYRmw5A8tca7i+JvqiPpfZeSUWSrybux8jqfa3see6Qe2Mar2bhrTHtH65+9VO62317vrX0eK05CgfGbWw6ZEd9FQLxXkzQgD757ZI9BSIiIiLLZWyQdv78+aHHd911F+x2ZWbUiBEjMHHiRABAVVUV1qxZI9v+1FNPhQK3U6dORVZWlmx7dnY2pk6dCgAIBAJ48kn1lb0zjT/KTNq+RU6c3iMLdgPdwxcnU8NEWqJ4SnB2ZAKDBu7Op0Tsk3XEFMDmgrP0KOQc+YdQe8kZc5WddTIAhSSVApCCXnM7xBCkhZB6X0Wc7Y5WaY3/H5Wcvr+Dp+dkwOaCq8PxyO57I1wduMp9s9hff/V/V2pNSnJ5Fodgw7V9jsLYjr2SOg8iIiKieMjYe4V8vkMnlIcffrhmv169Dn0JbL2PJEn45JNPAAD9+vXDmDFjVPcfM2YM+vbti3Xr1uGTTz7BM888E9+FM1JAQIouk1YQBFw1IA9XDcjDRZ/t1+1rKEhr7LBEFJVEZ1rF/htdetZSlM0crmi35/eRPRfskbP6C497BYXHvaJod3U4HoKzAJK/+lCj7m3akf9eSJIIwepAp8mgq+mgrmzn5GflmSXYnCqt8f+rIrgKUDT2HVmbq/Op8O2bE/djW0USgxBsVtd1hqmSGzmD/oL6FY8o2gVHjpUzSktqF7jLLv57wo6f7XAhy6H2+0dERESU+jI2SNu3b9/Q482bN2PAgAGq/TZt2gSgOUDYu3fvUPuWLVuwe/duAMDYsfpZLGPHjsW6deuwa9cubN26FT179ox1+ilLkqSoa9Ka4TdQmo5BWqI4SniqugXHUw28QZnpGWtN2rAAlaQXpDVyUU8SLc9GNRt0lcTMCtKq1p9NxHte5T0q2FLrq5zkr4XgLrR+XBNBWvUgu/X1ptORGPY+FyCgxMPgNhEREZEVUuubvYUuvvhi3HPPPaipqcG//vUvTJgwQVHyYNmyZfjss88AAJdccgny8/ND21avXh163K9fP91jtd6+Zs0aU0HanTv1F43Zs8dcbcRkU6sDq7MemCl1fhG5zuZAxfID8oCBywb4ws6pWe6AKI5iCLyJ/nrsn94Zkr8GuUP/jryh9xk4ngW/0BoBmvAs1VizAAXBLg8pHwzSBpsOoG75PyD5qpBz5K1wlo5A/dpnIw8oBWHFn/NA7RbU/fowpGADXO2PNbdzMPpyB7pB6rZKdc4JyKQVVP6dtS4umCQFfSj/chz8B34CAJROXAxn6QhLxpYdx1+Dpn1z0LTtQzhLRyO7342y37HGzW+jcev7CFavg6NoIFwdxyG77w0R70KqX/mo8UkYvSBDCuHlDjL85jAiIiIiS2VskLa0tBRvvPEGLr74Yvz4448YNWoUbr31VvTp0wd1dXX48ccf8cQTT8Dn82H48OF44oknZPu3Dp527dpV91jdunULPd6xY4epebbeNx2ELxoGWJdJ+9wvNbh9ZCH2NwTxzfYm2TaXXYAv7Ng76wI4opC3zBHFR/QBq31v5YX2r1v+N7g6HAd3p5Mi7BV7NqZmFl14AFgtUGbqQGHHORjwq5pzCXx7vgEANO34H0pOnw3JWx5xuGD9Djjyj4hpSpIkofKbMxGobq693rT57Yj7+KvWwFnYv/lxxdKoj924+S3kDoywuFpbo3IRIiG1OlWyZrWyQs2qnDM5FKAFgLJPR6LjZfUQHMYX7TTCu+cbVP94DQCgcdMbEOweZPdpXhDNu/tbVM29NNQ3UL0GTVvfh2DPQnbvqyybgyBovGYpmNWdaF/sXCt7nqy62URERETpKKNTBs4++2wsWbIE1157LZYvX44rr7wSRx99NE499VTcf//9yM7OxlNPPYV58+ahQ4cOsn1raw+tep2bm6t7nJycQ7eB1dXVWftDpJjwUgeA8Zq0kawoa87k+mBDvWJbvkt5kDUVxm+NJCKzYglYyfet+OrkyHuIgRiOd5DGbeNZvS6TN8R6S3TY/pIYhCRJoQAt0JxtqFYfV03t0r/GNh8AYtP+UIDWqKrvzw89rllwc9THjjXAnBzJKXdgc+YrG7UCjiZ5t89QtPkrfrFk7Naq51+n+bxh/Qvq+/x4tbWT0PhdlyQLPkfS3Lb6StnzIAPbRERERJbJ2ExaoHkhsNdffx2ffPIJJJWTq3379uHNN99Ez549cfbZZ8u2NTUdytR0uVy6x3G73aHHjY2NpuYYKfN2z549GD16tKkxk8mqTNpbh+fjqaU1sjZvsHn8HbXKk6xCtw276+W3p1Y0peAttkQpQrVmZ1wPaMHvs0bw1XP4pfJuEYK0uYPv1j9MeCauFDC16FG4QJW54KqqKBb+ah3UlQINUR9asGdFvW/SqL6/E1DuwKF8razKpFUT04JwmoNqfzb4yxZbfzwVgk3je5sVF3vSXHhNWiIiIiKyTsYGaevr63HGGWdg3rx5sNvtuOOOO3DVVVfh8MMPR1NTExYsWIB//OMf+OGHH3DOOefg8ccfxx//+MfQ/h6PJ/TY59Ovxef1HjrJycoydzIaqZRCqvE4bLhuUB78QQkBqTmo6rGbD9Ie3ckDaRjw72XyQG1DQIJazNdlF3DW4dmYuflQIOFAA4O0RPGT4BN5C4LCqvU+AThyu8sbIizUlDf8Qf0Dhde0lYKQxOhrulrxWic1gzAFM/HUFw5L0s8RIUgruIthc5cg+4irzGddJ7hecGy/ByZovGbMpI2sPiD/N/rzQP3Fc4mIiIjIuIwN0t5///2YN28eAGDatGm48sorQ9tcLhdOPfVUnHjiiRg/fjy+//573H777Tj55JMxZMgQAEBeXl6of6QSBvX1h26/j1QaId15HAJOOcyarKnh7d2Ktga/CJvKKhYOG9ApRx4YOdCYeoEBopSR4ICVJYtPGS1jYHW5AykIxBKcsuK1TmIGoWRBPeGEi1MmrS2nG8R6c7Xr9TJpBWc+Ol7cXNc4ULU2iiBtgt8XMWSUm6H5mjGTNqI6v/yzKs+p/C5GRERERNHJyJq0kiTh5ZdfBgD06dNHFqBtzeFw4IEHHgAAiKKIV199NbStdYZr60XE1LQuWZBuC4Elk9sORdZso0YmrdMmoF22PDCytSaA5fu92Fuvf1K2tz6AebuaMHdnI7bX8ASOyIhg/XbLx/RXrUbTjpkQfdXKjVZk0kbIkD3U0dogLaQgpGD0QVorSkskN5M29W6floIqpYskCcG67ahZ9Cc0bHojqlIBWtncuvQyaQWb+uNW9Oo5W3LxwwS9TNqmbTMQqN0M0VsV+4G0XjNm0uryi0HM3LFa1pbrYJCWiIiIyCoZmUm7b98+VFRUAACGDRum23fEiBGhx2vXHlrR9sgjj1RtV9N6e//+/U3NlbQJgoBsh4A6/6ET/C+2NqpeeXDZBbTPUm7556JqOG3An0YUYJhKZu6y/V48urgarUvpXj8oDydblA1MlI58BxagccPLUe3btPNz1fbGzW+HVn235x2B0okLYHMXtzrm/KiOJ2Mw+Go4mKu1f9hxAhW/wlV6VNTjBWvWxTQfAKhf9X8xjxG1FCt3IEkSgjXrFe2B6tWomDU+9Lx28Z1of+EuSN4K44NHcQFAL5NW8lVFHLviq1NQfPr36gMkOrNUJ0hb+f15lh1G6zWzZAHCNHbJnLcUC4XlOPTXZSAiIiIi4zIyk9bhOHSCHQjofyH3+w/detd6v549e6Jz584AgDlz5uiOMXfuXABAly5d0KNHD7PTJR3hi44t2eeFQ+Vd7bQBJR71E1S/CLy6Sr1kxaxtjQhf6+zLreYWfyPKNA1rn4t638pvzlRtr1vxaOhxsHYjmnbMlG337Z0d9TFDbE7YsrtE7hdrJm1YkMNfvgSSGIcFmkxo3DAtiUdPrSBtsHazanvF12fInouNexCoWoX6dc8bGldw5kX33jK6cJjG2L59c+Dbqx6kTXSGdSwZ5abYNLI/mUmraXdDNT7Y+quiPZflDoiIiIgsk5FB2uLiYuTn5wMAfvrpJ91AbesAbM+ePUOPBUHApEmTADRnyv7888+q+//888+hTNpJkyZBUKmXStELhEVQsxzKsgYA0LfICafOAmV7NRYRq/Epgwd1/tQKKBAlWuOm11Tbne2PjWo8m6c9ApW/yI+x+W3Zc3tWx6jGlh3HmYvCY+UZwAXHvKTsGGOQNlC9Rn7c7C6JC07FiafHb6LfOcUyaUWfRmasSmkA0VuBhjVTDY1bePybulnaOYP+otoenpmtRdAodwAA3l1fqW9IcLmDRAXs7VkdYM/rpWhnJq22sqZ6RZtNEHB0++4qvYmIiIgoGhkZpLXZbDjzzOZsrd27d+Ohhx5S7VdZWYk777wz9HzixImy7bfeeivs9uaTo5tvvhmNjfIMy8bGRtx8880AmrNwb731Vqt+BDro6gF5sudS6H/kju/iiWr8oMr5YjD1yicStQmCPbrfQ0fRYOVYYdmDkmgsmGTL7qy73dX5VBQc/QLc3c5C3ohHkHXEFOWxo6kb2kp23xvkDVIgpoXDBFdRTPOxgj3viKj3taKmbkKZqaErBQED5THyj5oKd7ezdC8AuDuO09hi8OKvXjDX5oAtq5Oy3WTQMtLvV0QW1yd2dTpFfYPgQNHJM4Hw32Vm0mryqXzGfnTilTg8ryQJsyEiIiJKTxkZpAWA++67D9nZ2QCA+++/H2effTY+/PBDLFu2DD/99BOefPJJDB06FKtXNy+QcPLJJ2P8+PGyMfr06YPbb78dALB48WIce+yxeO+997B48WK89957OPbYY7F48WIAwO23347evXsn8CfMDDlO+cmpJDWXL2jtrMOzo85gDqicMIrh9Q+IyJhog3Eqv7+CPewWW4MZf4IzP8KhBGT3vR7FJ/8PuYPuhGBTCWzFmEkruApkzyXRr7tgUmvZ/W5UNop+ZVuixZJxmWpBWrUrgZpdRdX6p6VnLUOnKVLov5z+v2/+O6X33tLappMha7SfINhV/w3NLhwm2LNN9Y+ngmNeRNYRV6hvtNnhLOyPopNmyNuZSavJF5S/F/KcbkzqPjBJsyEiIiJKTxm5cBgA9OvXD5988gkuvvhilJWVYebMmZg5c6Zq35NOOgnvv/++6raHHnoI+/fvx8svv4xly5Zh8uTJij7XXHMNHnzwQUvnT81sYcEbUVIGVtVq1EYiHRyDmbREFoo6GKdykUUIC3wl8rZstcCtCYpMXNFEJm34z43E1w1VFVOgNcWCtKayPUVltiageuEBiLAoXcxBWv0AsGpAViVo2fL3URAE2eODW43NJUEEm/qiVqESEWH/Nm3id6mN8oW9F1wxfg4SERERkVLGBmkB4JRTTsHatWsxbdo0fPHFF1i1ahWqqqrgcDjQsWNHjBo1CpdccgnOPvtszUxMm82GadOm4fzzz8eLL76IRYsWoaysDKWlpRg1ahR++9vf4owzzlDdl2IX/s9S6RUxf7d8AZ7wxcW01PpE5Lls+HRzA95Yo76QGAA0BNrWSShRqvDta67xHajdgqp5VyBYuwk5/W9G7uC79PfbPUvZGBZQCmgs5hQPRmuAagrLrGza+h6ye19t7NhqgZFgU9RT8e6Zjer510W9/55XLaizniKZtIG6baiedzl8++YZ3kcStcodaLxuuoFUrWCssX8D3fet4IDkLVc0S4Ha0GN/+VKUzRwRtls2bJ72yD/qGXi6nRl1JmrDpjeR3esyWBrklSTtRdUOvhbhQXGxYRf2Te8CSCJcHU5AwTH/hc2ln32fKcLLHbgMlPEgIiIiInMy/htWSUkJ7rjjDtxxxx0xjTNhwgRMmDDBolmRUUbirw6DMYRPNjVgfPcs3QBtC1GSFFm8RASI3ird7ZIkoW753+Df/wMAoHbpX+E+bBKchUeaqk3atPMz2fNgzTrTc42W2VvAw6llS9avedrgzuqBNtFbBZu70NQ8JElC9Y9XI1i3xdR+1kuNC191y+83FaBtJqrXMNb6+6FbkkBjmwXlDvwH1Bc/bdz8DnL6N9fWr/7pd4rtUqABwbqtqP5hCtyT90WdiVo973J4Djs3qn21SJBgixCkVctyFht2AwCatk6Hq/2xyDnyFkvnlar84UFaOzNpiYiIiKyWsTVpKT04DARKSzyHTiR65Gtfl1i234ttNcZOMGu8qZH5RZRo/spfdLdLgXo0bnpD1la37G/N23xVxg8UlC/U6CgapOiSdfhlirb84Q/D3eV048dRYXMVa25ztj8u4v6Bmo2KNm9Y0FlLdp/rVdsbN75qaH8Z0d8GArRImUzaqF5jSYQ9p5ui2Z6lvsCW5Ne5SKgRoNcM3hrcHwC8Oz9VbXcUHao56i9bpLm/6C2D2FQWU9kRq9+Lnm6TYM/tob5RI5M2XM3CP1g6p1SmzKRlkJaIiIjIagzSUkrzGEiTHdXx0AJDl/TL0ewXlIC68FXHiMikCL+TKotcSaK35UHUR5WCXkVb/phnYM857NDMHLlwdz0TuUP+FvVxAI2SAwAEZwHyRzwScX9X+6OjPrYj/wjVQLAkRbF4WCLr+Oowk0GdcqQg7Hk9Fc02T0kUg5kvd+DqdHKrblF85TOzKJ0UjHHhLesyqrP73wx7dkc4CtUXttKqSUvawhcOczJIS0RERGQ5fjullJZlIEjbOpA7pJ0bIzu4sHifcpEem9Bcl9aI1Lg5lyjxItVrVb8dWji4LYZgXViQtujk/8HmKkD732xDoHbrwdqZ7SAIAlztx8BR0B+B6jXRH8+epcjm7TB5HwS7W2OHQwRHXlSHzDnyVgBA9hFXovpguYiQKF67RAVH3V3OQMFxrwAQINjdqFv+d9SvfrLVRNI5SCsqApfZB8sHqNP5mxZFuQNXx3GHukVRS1k6uKCdZGSxNNEf28JbonUXDfKG/gMANNcTCNUJZl1Vw5hJS0RERBR//HZKKc1IJm24LIf6Ca1dAOr8DL8SxSZCwE01M+/g73EMmZ2hbNyWEe2e0GNHXg/lDo6sqI8FHFzZPrzNQIC2uWO0N7EcfJ3UVqyPKtCZmOCoJPpgz+oQeq7MLE3fIK0kiYrApWqN2tBGvZq0WkExg/tEs+Bdy++rgd9NSQrEmJ1t4fsgUgCxpdwBM2kN84VdbGCQloiIiMh6/HZKKc1jNx+kdWqcz+6qC6J3ETNpicwK1G5Gw7oXYc/pCkdBf92+VXMmKxsPBqa8Oz+P6viSJEJs3CtvtOkHTAVBY0Ehw2JYODCaYBkQep0ElSBtVFmxicpgFcPvXAj7EDYwj0DVWjSsfxE2T3vkHHkLBEe2dfOLo9pFf4Lgypc36mVv6tVZ18yk1dundZDW/MWBYP1O1Cz+C+pX/iti3wMf9jI9fmtqJUuiFSlrOLSdmbSaJEnCS+sX4Id9WxCUJGyoOSDb7rLztSMiIiKyGr9hUUrTCrjq76N+QhuUgH31baNGI1GqkAINKJs5EpKvEgDgLBmp29+3b56iTRBs8O6di+r515o8dhMEhwf1K5R1YCNmtWqt+m5Y9EFawws9KXY8uJ9dJZM2mizEBAVppWBYkDb8548wD9Ffj/IvjofoLQMA+KtWouiEN62cYtwE67cB9WGNOtmbgsXlDmRByCguDvgP/AT/gZ9M7xeNmkV/sm6wSD8rM2kjemLlHNy+WH1BOYCZtERERETxwIXDKKUJggCNmKumHKf2DivLo1h8hyiDNax7MRSgBQB/+WLTY4j+WjSsf9H0ft493wIAmlQycG3OAt193V1OM3281jw9LpA9F1yFxneOOkAsHNw9X7nFHkX5hgQFaT09LwxrkX8GR8oC9u6YGQrQAkDT5resmlpSSP5qna3af5+0Mk0Fg+UONOuzthH+Az9ZcPHkoAhBWrHpYFYoM2k1fbZTv2Z3vtOju52IiIiIzGOQllLeGT3MBSdGdXRDoywtEZnkr1oV8xj27M7w7Ztrer9gw04Azdm8ijEL+urum9P/FtjcpaHnBUe/YOrYuUP+BsGRe/CZgMLjXjW8r7PdUaaOFXIwY9LZ7mjFJkfhANPDSQmoBSu4ipDV46KwxvBgoX4BmUDNOmsnlWT27G7aG/WyYlXrOcN4uQMA2X1+qzOz5LPndLdmoEgLGLZ8ZkRbeiQD1AeUC6y2dlHPIQmaCREREVHmYAoBpbzL+ufipz1eVDQpAw6/G6xcRf3wAicePKYIP+/x4uNNyuCOEUYWuibKCBZk5wmOnOh2bKl1GrZYUf5RUyNmDdpc+Sid9Cuatn0AR34f05m1jrweKD17Gby7voCzeChcHY43vK/NVWzqWCEHA3g2p/L1ilSDU1UcM2kLjnsVYtMBeA47B/acLrJtylv6I3ygptkHrrNkmM7WKMod6F1vD3tf5B/9LBrWm7sgkVBhi6xFK2LWcEsGbdSL+KU/nyj/XD2r25EYUNgRDpsNYzsejlM690nSzIiIiIjSF4O0lPJsgoAJPbLx5to6xbZsh/qJWs8CJ3oWOLGtJoBlB/SzRYhIm24NTTOiCMSFap2GBXZsnnaG9rdnd0JO/5tNH7eFI/8IOPLN7y9EWcux9W3ttuzOEBt2t9oaRSBTil8Nbk/XM2HzlKpvDA+gRfy3T9ACZ4misvBbiG7QUON3TWcfIex2fkGwQXDkQAqEF8qNr/wxz6Hm5xsi9pPCsoUdhUciULXa8vkIB8sqRF0fOgP4w4K0l/Uajgt7Dk3OZIiIiIgyBIO0lBby3eonr1kR6hp4NIK4RJQ4geq1EBt3R+4Y7mAmrRQWTNBbmCmlyYKbxj67xKYyBBv3QGzYA0CSZwzHsyatmWBjpHnEME9JEhGoXIFg/XbYc3vAUTgw6bVZBb26q7pz0whmmyh3oNkWZ4aDoWL4InMW1agNF/qMYJBWjSRJWF21T9bmYv1eIiIiorjjNy5KCwVu9ROtrAhB2GiDtOl18y1R9MIz36LhO7gAmOljtyykFJZJG9Wt/ynBXEDJt38+Kr6ZKFvYDQA6TTn4CRbXhcOMB2n9ZQt0R5Ki/MSVJAmV350H745PQm3uw85F8UkfRTWeZfQyaXWD71qvg/FyB81tSQhMGgyMh3+e6Aa0Y9HyGrTxxdSS5XfzP1S0uaK8A4CIiIiIjGMKAaWFAleUQVo7T9CIYhGo1l8BPJ6klqw7MayOZZpmfAV0FmmTVEoG1Cz4gyJACwCBmk0AgGDDLusmF85kIFD01WhvjLImbaBqlSxACwDe7TPgL1tieqxg3fao5qBGL/BocxVq76gV3NV7rVWCtPbsrtr948VucIHP8Is+cQrStpSBEHQD5pnpQFMdXlz/s6LdZWeQloiIiCjeGKSltNAl16GoP5vjFNAxR/+kQm2xMSIyTnAqF+dLlJaap1J4bdU0zaRt2vZBq2eRLzD5yxerj7N9RvMDkzVpzSzwpve+cBT2V7SJ3nLtwaLM+BUb96q2N23/2PRY3n1zo5qDKrtbc5PnsEma25wlw1Xb9epCCyqlPwqOfk5ncvEgwN3xRGT3uyliTyms3EG8gqj2vCMAQLtucgbb11iraLMJAgYXdUrCbIiIiIgyC4O0lBZcdgG3jSjAEYUOFHts6F3owB+HF8Bh0w9kHNtZ+2SZiCKzZ3VO3sFbMmjDyx2kaSatZcHnUC1f44smOtsdjaKTZgB2T8S+ucMe0K376iwepmzUDcQqM2nVMoeVQwbUN0SRnWnZAnkABJv2352sI67S3k8rY1Yvk1blFnVn+2ORO+Rv2vtYyJ7THYUnvAV7Thd4elwYeYfwTFq7fpBWcBZENa9k1yVuy/yi8nfx3bGXoX1W8i7IEREREWWKND2TpUw0uNSFwaXFpvZxRSh38MhxReiYY8eUr8pk7VHefUuUfpJYp1ASW2rSZsjCYSYDmdrDNAfCQjV9I3AUDUbpmfMBNGdmRjqSq3SUfgfVoKLOqKo/t4SI2cSSepA2bnVODRJ0MmmjusBgstyBIAjIHXQn6n75u/ljmVR6zgrYDmZVC45s0/tH+rdqN+lXHPhkECS/TrkMMsUfthBjtsOJ3/QckqTZEBEREWUWZtJSRouUaeu0WZk/RZSOkvgbcjDIqMiYTNNyB7JAZiyZgC3ZigYzaWWBMiOvbaQguVpQUTcArbLNSAkEzUzaaAKhFr7PdYK00dErd6Dx75WgQHXr4+sFp7UHiDBPuxtJ/QxKQ+FBWkfafp4SERERtT0M0lJGc0T4DdDazkRaomb+cvOLMFlF9FU1PwjLpE3bcgcWaSlzYDSTVhbQM5I5HXHRMGVQTbf0gtqiaAv/EHH+YkBZW7P58Ml9fwgGSkaYG1Avk1bjZ01U4K3V8aOpLxspk1awua0NoKtoWP/fuI7flgRFEbct/J+szWnjqQIRERFRovCbF2U0R4STO6dNALN0iLQFKpYn7diNG19pfhB+W3tGZn4Zv3TUsO7F5j1EY0Ha1oEyzcxMM3NRCSo2rH9JezSVrNmGtc+icdObuodpWKu+QFY0QXy1OURLryZtlAPqbFP/90pYTdbWr3U0P3ekIK3dhXj/ja6efz0CNRvieoy2YvrWX7CobIeszZnEkjZEREREmYZBWspoRR79X4E8F39FiNoqV6dTASjLHaitaJ8O8kY+GnocqRCLFNTOTJX81c0PdPq0FqheH3osNh2I2N9ZPDRCD+XcG9apB1SbqQd9q+dfq3sU/4GfVNuDtZt191NjaR3bCGPlDX/Y1HB67wV7didTY1mt9WJn0dSkzT7iSv0Odg/yhv1D1uTudpbseVYv+Ri5Q+6T9z/snIjz8B34OWKfdLC0fKeirVNWfhJmQkRERJSZGIGijFaapZ0hUui2wWUX4n0nJVHKktrKCnqKhcPSM/Mru8/1xjtrLJol62Iwk9bV8YTQY0fR4Ij9bW79BRxVszh1yx1Yl8XaPFzk10Yhmn00RMpize5zPex5h8vacgb/VWdA7a9yjqJBmtvCj2G18GCzzVVgegxn+2Ph6XFR8xN7FuwF/ZofC3bkj/kPBMGGrF5XwFkysvkYWR2RN+wB2Ri5Q+6BPac7AMBROBDZ/W6Sz3Po3yMHkNvKZ12ceYNBRdvdQ05OwkyIiIiIMlN6phsRmXBmzyx8tqVR0X71gNwkzIYohVgcPDNPbA4Uhwdp07QmrW6QKyyIJIW/JmpUMmnbnb8JBz7sJWtzFA4IPfZ0Px91lb9qDim4iiIf1zSLA2QRa+aqzMDgImtWsHlK0O6c1QjUrEegchWcJcPhKOijNzvNLYLOz5o37EFUzb0khplqjDv8IXh6ToYjLAgczcJhgs2JwrHvIDjsHxBcBbBndUCgdgsEmxP2nK4AAJsrHyVnzkewdjNsWR0VvyeO/CNQes5KiA27YM/pDsEhrwnsLB6M9hfuRrB+O+p+fRhNW95VmUhmXK31hV2MmNxzKM7vEfnCDBERERFZIz3PZIlM0Dr10it1kBk5NUQRGAkExvX4omqgOF3LHchFCBoZyPwMz6R1d50Am1qQtXWgL0Jg3tKyAIcOavF4UQTcRL/Fc9An2N1wFg2CUycTtoUkRvl7GEWwOhJ7Tnfk6mX9mmVzQhAEWZDakddT0U2wOeEo6KszTC5settdBbC5BiGr1xXqQdqkX5BKDG9Q/rnROZulDoiIiIgSKRPOZIl0ad162hKkVdt6y/flAICjO7nx+6H5cNgyI8uGqDXf3tlJPb5352fqt8lzoRtIEcod+MuXQwqGlTvQXNipdTAvQrAqHlnMFgfIolk0S0pwkNacKF+fOARp4ciybizBrpsJHA9ax2vc8DIkXzWyel8FmzMPQPN7onHja5BEH7KPuAqClT97HK2vPoDpW35BlU95B9GCA9tlz11pelcCERERUVvFb19EGvKckU/kf9rjxcK9B/D2hPYJmBFR2+Hd/Q0qvj4t2dNA9YKblY0ZkUkbLizbNEJ2ZdnMYYdqfR7UfDu68nOvdeAqUhkFReDXClbXA23j5Q5MizqIbf3FRSlQb91gccnKjkT9NfHtmwvfvrlo2PgKSs9aCkEQUDX3cjRtfQ8A0LTtQ5Sc9m0iJxqVvQ01OPqzqajwNhjq77bzghcRERFRInHhMMp4WqepuTrlDloLSkCdLzNuhSRqUb/mmWRPAQDQuGGaok1IgYXDXJ1OMtVfschTpGxQAwuHtQSYQkPaXBrjtmqLEBCUvOURj6tGcOrU27W7ohpTiy2ro/md2nAmreCM9pZ064O0Yv0Oy8YSbNb+uxs8qO7mQMVy+PbNgxRokP3++PZ8h0DNhnjPLmbf7dloOEALADmOJPwbEBEREWUwBmkp43kc6ieqZkoYVHkZpKXM4t3xiaF+eSMfRf5RCQ7opsAtukXj3jfVP3/kE6b6SwZq0irY3aqBMVnphDjV5nR30c7KtukFcHXY83urtjsK+pkeqy1n0tqzoryTIwmLYXl6TjbeuQ1l0rYWrFkHKaAMdAbrd8ZjQpaqCxh/HzttdpzWRbuOLxERERFZr+2fyRLFWY5KWYMpR+aGHhs5jfUGuZQYkZqswy+DLasjvLu+aK4ha4LNXYrsvr8F7FmoW36f8QBhCpQ7sLmLNbc5igYjUPmrrM1ZOiLCiGGfQVEs6ibYXIBdpS5t6yxSi4K0OYPuQv2KfxrqG6nEghZ7TjcE1bIboymf0IaDtFoKjn9Dd7tgMpPW2f44OIuHomFt9Bddisa+gwp/Hbw7P4XgLmkujxBsUp9fUjJpDbwmkgT1bwZt/3tAMOz3t0NWHiZ0VV60yHW4cVHPIRhc3DlRUyMiIiIiMEhLhGyVTNr22eZul673t/2TM6KksDkgCAKyDr/MdJDW2f4Y5A1/EACQN+Ru1K/5D2oW/D7ifqlQ7kCL4MyHu/MpiiCtMigUe7kDxbHtbtWFk+RZpNYEaYXwYLBeIDbKIG2kurxmtO2Fw4Dm94P875DiNVbsYu5mqqzDL0VOv9/FFKQFgOJTZoYe7327CJJmkDYZmbSRXxNJEtVfuzhlmVspIMrn2L+gPV4+7iKN3kRERESUaAzSUsbLdipPtvJa1aM1klhT3mRdMICorTOzOJTQktVqsyBwajSolALlDrRIog8QYg9ORVXuQCtzUYxDuYOwf0tJZ1zJVxXlQbTGTMNMWsGmEsyO9PtiLpPW5io01d8IQXBo/2skI0hr5A9+sEl9gbQ2FqSVJAnb6ipR7T8UBN9RXyXrY49iET0iIiIiip/UPZMlsohaSdp8l7mT1+d/rUWWQ8CYTh6LZkXUNgVqNqLimwnGdwhltVoQDDAaUEjhTFoEvRBUF8qKlDkbXu4giiCt1tCtskj1gqlmKLKdNbJlG7e+j4b1L2qOE6jbBkdud0W7JPrh2zdPfacoyh349s83vU9CqQVpIwUcTdakFeIQpBW9ZZrbgg27LT9eZJFfk5pFt6Fm0W0qW9rOHTVNAT/O/vYVfL17vW4/exLqEhMRERGRNl5Cp4xnV1kgLN9l/lfj3XUqmTVEaaZuxT/V63xqEA5mtUZTgkBw5MieG82oFFKgJq02CYLdwMWeSMGVKEoE+PZ8q36oVkHj8H+T6IV9xmoEf6tmX6g7Sv2qJ1XbfXvn6uxlPpjmP/Cz6X0SSW1xtUg1XQVbhHII4cdwF0XuZOS9a1Sw0bqxjIohY9qqCxhW+GrXuogBWoCZtERERERtDb+dUcbrW+SU1aXtkmtHllp6bQR76lnygNJf44aXze1wMDjrKDzS9LE8PS6QPdfMjAxnRWmFJHK2GyN7LrgKYcvqaGqMaBbb8pctAgC4DztH1p7T/5bQY0/3c02Pqyr83yjKurMNa/6t2t646XXNfaQosowdxcM0txWfPsf4OAX9TR/bCLVFwtydT9Xdx9n+GFPHcJY0L16XN/xhzT75o58yNWZbI3rLo97X5mln4Uxis62+0lC/AUUd4jwTIiIiIjKDQVrKeC67gBuH5KNjth2H5dlx/aA8CFHeAihGs2o4UTo7mNXqKOhjarfs/jfD021SlMdMjSCtPV/9NXF1PBE5A++E4C6BPe8IFB7/JoSIgefwcgfRfxblj/gXnO2PhT2nO/LHPAt7TtfQNmfJSOQO/TtsnvZwFA2J+hhGMmmlGH4G3UBs0Hy2pKSS1WnPOQx5wx+Cq8PxhscpOuVT08c2wt35FNk8Co59OeLCYTZnLmxZnQwfoyUrPrvvDfD0+A1s2V0VfbKPmGJ4vDapDWXDxqIpqHz/OwRb6D+P3YEJXfvhrsEnJ2F2RERERKQlle8JJbLMqI5ujOqofkJrJlzrFwF3asSHiBIjittpO1xSBZtLefu20d9GIUVu4XUU9EewRnlLsiAIyB/5CPJHPqKzd6TXIvoAp6OgD0on/KB+VEFA3tD7kDf0PgDAnleju6AVXv5CNfM3yuzaSCTR+MJ3IcEm2dOik/8HT7ezTA3RYfIB2Dyl5o9tgGBzoOQMvRIP6rJ6XYH6lf8ytY/NXYiicdNNHysVRJOBHhLNYn1x4g0L0p572EB8dPKU5EyGiIiIiAxLjTNZohThCzKTlqi1qLLSUyTIGrN4LtrT1jMCFf/GKvONU9BLiiaTNiDPpBXsWVEcue0t0qS+SF0GiyVIG6eLCtEIz6T1OJxJmgkRERERmcFMWqIIzMRRvEEJefGbClFGiGaRsYynKA3Qxi8YhQVpfXu+w55XBQjuEmT3uR55Q/9mOKsxWL8D9pxuxo8dRSZteLmDqIK08QzKR8vG4J1MDBc3osrQtohfDOLuJV/g2z0b4BdF7GmokW13p3idbiIiIqJMkSHpSkSJcaCx7WTSEFlNEhP1/uafpsgiBPzaen1sjUC85C1H/Yp/on7NVMDgAl9Vcy9XGUg72CYFLQjSOqLJpG17BIFBWpkYsmHrfnnAwomY88TKOXhs5WwsLd+FFZV7UOatl2332PnvTERERJQKeCZMZKEGfxsPjBDFIFi32VR/W1bH6A6kcQu2p/u50Y3XRmX1vDiOo5vPCHRHu1BbK4YXE4tQ0qJ28e2GA2a+fXMUi4z59v+o2V8SzZU7kCQJEP3yRpu8hrmn+3lhzy9QjCM4ck0dNxHcnU9VtOUceWviJ6LCUTgg4cd0tj826n19e2dbNxGTFhzYrru9Q1bbe+8RERERkRKDtEREZIiRDER7Qb/Q49yBd8q25Qz4k+y5VhBXa+Evd+fxEY+fSsIDe7GRBynDg5ZG5Bz5B/P7DLxD9rz41C8N7WekpIVkqiZt2M/vq9LuajqTVuW1DHuPZvf/QyhwK7gKkTv0fmT3+W1oe+6Qv7XJ+q/O0hGtgvMC8sf8BzkDb4c9p7usX/6YZ+Ny/PyjntbcljdCb+G8+HAW9oenx4UJP26sgjqZ46XuHFzWa0QCZ0NERERE0WJNWqIIzFQRFJlIS+nMQAZi6cRF8O2bB3tOVziLBsm25Y96HO5uZ8O3bx5y+t2Aiq9Ph9i41/DhBUeOkV6Gx0s2wRbDn+CI9U3NfxjZsjqY3id/5L/g7nomfPvmIqffjbC5i43taGRxODO3nktB+Zh65Q5MZtKqjRV+IcHd8QS0P38j/BXL4Cw9Cvas9sg/+jlk9b4ags0FZ8lQc8dMoKKTPoJ//08Q3EVwFh4JACg9ezn8FcshesvhKOwfardaTv+bUbPgFtVtnm4T43LMSArHvou9W6cn5djREsMuykzuORRnHzYAWXYnjuvQE6UeI5+dRERERJRsDNISWSj8RIkonUjByMEtmzMXnq5naG53dzwB7o4nHHxmMqBqIPtScHLpPgBR1aQV7J6oDiX/NzV8sMh9DNakBQCIQdkiWJKVNWnVxlIJMttzusKe0/VQF0GAq91oc8dKAkGwwdVBfpu/zV0Id6dxyZlQkgmCAFt2Z4gNu5M9FcOksIsyw0q64OLDhyVpNkREREQULZY7IIpAMLEiNzNpKZ2ZzkCMyGyQNvKfLMGZmbUXWwdp/OVLUfndOabHiDZIGxUD/5ZmFqqTFFm3Oh/Gpt/HamPx61N6S52MfADYUFMme55asyciIiKiFjzLILKQ+aV6iFJHoHKFtQMaueW9dXcjmbSOTMmkVQ/DeHd9hbKZIyD5q82PGLYYVjwJBr5+NGz4r4kRwz59dTJpG7e8Y2JcjbFMXLwjiqeVlXsUQVob359EREREKYlBWiILMZOW0lmgaqWl4znM1rk0UMPVWZT4FeFj4eowVvbclt05pvEqvj496n0FR1ZMxzZ3sMgB9/pfHzY+XljWrT3vcM2uNnep8XGhVTqBX5/SmbNkZLKnYNgHW39VtDltBsqJEBEREVGbw7MMIguxJi2lM8FVZOl42UdcpWjL6nWl9vFb1RzVkqUyZluW3f9m2fOcI/8Y3UAWfPYIjuyYxzB+MIu/foSVO8jqcaFm19Z1Y42JvHAYRS932APJnoJC3oh/mt/JSJ3lOKj0NiraTuigfZGCiIiIiNounmUQRen83sqABjNpKa3p3EIOAKWTlBldelwdjkXh8W+Gnru7nYWCo5+PamotkrUifLSyepyPgmNfgafHb5A36gnkDLjN4J7mb2fO6nOd5jZ3t7NNjxcTiwNa4TVpJb1FxxT1ayMNbmzhMIpO7qC/JHsKCs7C/ig6+VNT+9hzu8dpNvr8Ye/n7rlFGFrSJSlzISIiIqLYRL53lIggQLl0zFEdPfjlgA8bqw4FA5hIS+lNP0grOMwv2pXV61Jk9bo02gmlhezeU5Dde0pcj2HL7orCY15E4/qXoLYQlvns0thYnokaHkgV/dpdTQdp1T7YWfPTKoKBMibJ4Ol2pqn+UrApTjPR5xfl7/1zDhuYlHkQERERUeyYCkJkgNopul1Q/gJx4TBKV1LQh2D9Dt0+Rhb2oniJcIWoZSEhrX8jIcGBMqvfK+GZtEGfdl/RZJBW7ZOdmbQURgo0JOW4vqA8a9xp43uTiIiIKFXxmxxRlOw25QrK/11RC1+Q6bSUXupXP429b7jRtOVd/Y4M0iaOydXbhZbMT40yAAkPsMe5Jm3Dmn8b7ht5bAZpKTLJVwXv3jkJPWZZUz1e37RE1uZqo5nJRERERBQZzzKIomQXBNhU4iRL9nsTPxmiOJECDahZ+AdjnRmkbcP0g7qiryox02hhcZCzdQkDf+VK/b4m73mQVGsxs9wBKdUsinLhvyg9u/ZHRRszaYmIiIhSF7/JEUWp0G1DRZPy5P2dtfVJmA1RfAQbdhvvnIDswvxRT8b9GKkpQgZ/hOy6pm0fWjgXA0Sdhb2i0SqQWvfLgxGObTKTVqW+bVuto5ouHIWpWVc1WLslocfbUFOmaOud3y6hcyAiIiIi6zBISxQll13AxMOzFe0iVw+jDJWIW+azjrgy7sdIBYLJTE7BnqW/3ZkXy3SSr3UJA0l70TBFXyNDi8q7IwS7x9QYpK/gmJdkz4vHf52kmaQWX1D5Xj6/+6AkzISIiIiIrMBUEKIo5DmbAyTtspTXObIcvPZBGSoBQVqbuwiCuxiStyLux0ongt2tv92Rm6CZtIj+YlbHKwLY+7r860vrcgeSSuarvLPJIG2wSdlo0389yZzsPtcgu881yZ5GyvGGZaQ/OPx0eBzOJM2GiIiIiGLFaBJRFFrW7BFV4gzZTtYqpAxlS1BNWmarK0V6TSJkftqcCQ7SqtZ5NUitrEbrwGuEIK16jVkdwbBMWsEBIVHvdSId3qA8SOvi+5KIiIgopTFISxSFljBsrV95sp/jYJCWMlMiyh3QQUL454yE+rXPanePEKQVHDkWTMo4KYZMWkEQlIHaVoFXSfRFOLi5TNpg4x758VnqgNqAn/dvw5e71sna3HbeIEdERESUyvhtjigKwsEASbVXGaR1M0hLaSRQvdZ454QFaZlJG65p+ydo2vKO5vaI5Q4Snkkb47+hYJdn47YKvPr2fBfh2OaCtJXfnCnfPVBnan8iq1V6G3DyV88r2t1c0I6IiIgopTGTligKLWHY3kXK2m+BGO7iJWprgnUmVisXkhsgcHUcl9TjJ5NegBZAxBqqrk4nWzibyBx5PaPbr3DAwUfyry+SmcCrySAtZS7BXWxuh0hZ3BZZcGA7GgLKsh7FbuVipkRERESUOhikJYpCy9pgfVWCtP4gs/wojRgMvGb3uzGpdToFRw7yRz2RtOMnnrmMfcGmv5iQp9tZsUzGNEfxsKj2Kzi6OXtQ8V4zEXg1E9CVwhZmosxSeNzrpi4+SYH6hLxnqnyNirbuuUU4pXPvuB+biIiIiOKHQVqiKNgPljuwCQIu7iuv5ehXW02MKFUZDGjlj346zhNpReVW+dKzf4GzZHji5pBqIgRphQiZtlYTBAHtL9hmah9Xp5Ph6nDcwQHCg7QmbmEw0VcK1Bsfl9KOp9uZKD17KQrHTYer44mK7e4uZyjaJF9V3OdV6/cq2had9QcUMZOWiIiIKKWxeBVRFGytkthynPJrHSpriRGlLgMBLVt216Svdu/I75XU47d1kTJpEaFmbTwIrkJT/R0F/Vo9C184LD7lDiR/rfFxKS05iwbBWTQIUqARvr3fy7bZPKWK/qKvUrXdSuFB2lM790E7T4LrShMRERGR5ZhJSxQFR6vfnLAYLdZV+rGyzIcAM2opDUgGaiwKjqwEzKQ1/m6ZLXcQ6ZbtRGfSNh/T5HViodWHbdhFgZpFf4borTA0jNi0H1LQWO1Qo2NSBhCUX5kFezZg98jaRG9l3KdS42+SPc9zJv73l4iIiIisxyAtURRayh0AgNOuDJY8sKAK/15Wk8gpEcVF7eLbI/YR7IkO0pJZkTJphSRk0kYqwaDQqsyFEFbuwF+2APveKTEcVN37hhuSqJ9RK4lBlP1viLk5UtoSVIK0EGywhWWES774B2n/vvxr2XMGaYmIiIjSA4O0RFHoknsoQOCyqWe0LdzrRUUTVxGn1BVs2GOoX6KDtI6igQk9XlpQCzC1ZjZgagUTCzIBgHfnpxH7lH95kuHxmnZ8on+8Hf9TbRfcxYaPQelE/XfI5iqSPRfjXJNWUqnJ7TablU5EREREbRKDtEQGTOolX4zjN30OLRbm0PktqvPxtmxKXWLTAWMdExwgyO5zve5zUgrUbAAA5Bx5q+p206UHLCAI5ko2BOu2hh5rvTcDlb8YHs+7/WPd7U3b1YO4hce9ZvgYlEZULnRIok9Rz1kS/XGdRkClTni3nMK4HpOIiIiIEoOX3okMuKB3DkQJ2FUXwEndstAx59CvjkMjkxYARJWMF6JUYaQebTJk9boCYuNeNO34FM7iwcgb8a9kTynxTAY4s3peDADIHfYg6lc/FYcJJZar44mKRZxa2HK6QazfEXpuz++LYM06RT8p0gJiGovhubueaXyilD5UgrTZva9GdcUyeaOBxRZjERCV408+fGhcj0lEREREicEgLZEBLruAy/qrr5ysFyqJ76kaUZwZDtKaXMQqRoIgIHfQncgddGdCj5vKBGdz9r/NmaMb4EwV9pxu2hvDFgXL7n01apeovFci1KTVel+bzQCmdKH8dxccuYr6yIgU/I9RQGV8p403xhERERGlA36rI4qRTiItRCbSUgqTgl5D/Ri0avsER07kTilE7+eRRPn7VnBka3TUDqY11/3k+5paUblo1fw+DPsqnYRMWkd4oJiIiIiIUhIzaYniKMhUWkplbbTcAQFmA4jpF6TVCLxCeXFBq69auYNg/S5UzpkM//4fYpsgpR0p2KhoExw5KmUx4vuH36+SAe5gJi0RERFRWuC3OqIY6SURimAqLaUu4zVpmXHY1smCtOmQ+ax3S3lYME2wG8+krV1+HwO0pErtzgLBmYvwr9JSxDIasfl0xxpFm0OlXi4RERERpR5+qyOK0eEFTs1tLHdAKU0MGOqWO/juOE+EwgUqfzW3g2zF+bYTpHW2O1r2XHDma/bN7v+H0OOmnZ8bPoY9r6f6Btlr0ixQudLwuJRZXGHvVZunHQRHtrImbZwzaSt9DYq2ApcnrsckIiIiosRgkJYoRm67gKM7uVW3BRmkpRQmGait6OlxEVydTk7AbKg1V6dTkj0FS+SN+Cds7lIAQHa/G5HV63LtvkPvDz0W7OqfuWpsng5wlAxXtEuBOmWbpH9hIrvfjYaPS+nFUTwYWUdc1fzE5kTeyMcgCDYgPIs1zguHqc5NUXKBiIiIiFIRa9ISWeDW4QW41i/imlllsnZRYpSWUpkySOvucjoKx02HYHNBCjRCcBVw4bAkcLUbA9+eb4zvIAu4t51/L3fHsWj/mx2QRC9srgLULLxNtV+HiytgcxeGngv2LMPHEOxuFJ/yOfa/11HWLvprlZ1VsmtbcxQOMHxcSi+CYEPhcS8jb8QjEBw5sDkPlhAJz6SN88Jh4U7r0jehxyMiIiKi+GGQlsgiuU4bSrNsKGs8dILGGC2lNJVggz3vcNiceQDMZTOSxUzWoFRbJKutEBweCGi+XVsze9smLytj5r0n2N2K/QFA8tco2yIEaQWVcSiz2LPayxvCfhfb8u8aEREREbVtDNISWSg8bMJyB5TS1AJmvPLQNphdKKj1bfxtOfNZI8ClqPtpN16DU7B7AJsyqCv55EHaupVPIFi9Vn8wm8vwcSkzCGG/i2LDnrgdS5IkvL15WdzGJyIiIqLkYk1aIgvtb5QHtVaW+ZI0EyILqGY1MkjbJpgO0rYOfqZekBY2+TVlM+UOYHNDUKnZKbbKpG3c+iFqF/854lDMpCWFsAsI9asehxSni1lvbFqCpeW74jI2ERERESUfg7REcfTF1sZkT4EoapJKQNZZelQSZkJK5v5823MOCz12dxxn8VysI2hlyIYFwpwqC4FpjqmxqJKjoF/ocdXsCwyNJQWbDB+XMoPaBQOxfkdcjjVj20pFW7adFw6IiIiI0gWDtEREpE4lkzbr8EuSMBEKF36LdSSOgkOLC2X3/z1snnah5/ljnrVsXrESnPmKNlenkxU/r7vzaTEfy93pJNP72HO6x3xcSi+enpMVbcGmfXE51ra6SkXbhT2HxOVYRERERJR4rElLRETqwoK09tyeEOysydkmGAzSenpciMLjXpO12Zx5KD37VzRtex/2vCPg6XpGPGZomeJTv1I2RlFXN6v3NWjcMC30XHORMh2amb6UsbJ6nI+qsDaxqSwux9peLw/S3jFwHCYfPiwuxyIiIiKixGOQloiINMiDWK2zLynJDAZpi8a9p9puz+6InP43WzmjuFEvV2A+SCuEL/rVejE1gySRdcZJyVE0GIHKX0PPxaYDlh+jIeBDubdB1jal9yjLj0NEREREycNyB0RkiCT64StbhGDD3mRPhRJFkWnYhhecyjjp+uc7ju+xsMXHJNFveggp6LVqNpRGwi9gxSNIu6O+StHWLafQ8uMQERERUfKk61keEVlI9Neh/LOjUf7paOx/vwsat36Q7ClRIoQHaU3WQaU44r9FFOQB4Mb1/zU/hMggLSmFB2lrF//Z8mM8/Mu3sufF7mzkOt2WH4eIiIiIkodneURxJkpSsqcQM++uL+AvX9L8RBJR9+vDyZ0QJYSEsPcuA4NthtmFw1KF4Cow1i+K2rC+3V+b3kfB5ox9DEo7Nnexok0KWlsa472tv8ied8k29rtCRERERKkjPc/yiJLEqfIbFTC/Nk2b07j5bdnzQMWyJM2EEioskzZdA4MpycC/hbvzaQmYiLWye18DtKod6+52lmo/R9Eg02MHqtdEPa8W7s6nxjwGpR9HXm9Fm+SvtfQYHru8XIeDn8dEREREaYff8Igs9MAxRYq21M+jBViLNEMpatLyT0bbof9v4e56JvKPfi5Bc7GOzZWPopNmwNluDNzdzkbBUc+o9hMEaz+T7HlHRJ5bdlcIzKQlFZ7DL1G0SVEsTKenMSCvofzoqDMtHZ+IiIiIks8RuQsRGZWrkkrbXO4gtYOcgqC2ujqlP9akbbN0/i1KJvwEV/sxCZyMtTxdJ8DTdUJiD2og6OvudGICJkKpSGiV/R0iWhekDYoifGJQ1tYpK9+y8YmIiIiobeAZN5GFbCrn+WlQklaxKjplCMXCYal9sSGt6AXM+e9knhSM3IcXq0iL2t9II+8pg5qCfkVbloNZ3URERETphkFaIgupxUaumlWGy77Yj7311t76mEiBypW625u2f4IDM0egYtbpCNRuTtCsKN5EX5XsueSvT85ESEG/PjCDtGYFjXxuMZOcNKjdbWJVuYM9DTU49asXFe1ZdgZpiYiIiNINzziILGTTyGDzi8C0ldYuIpJIgSplkFY6mGUp+qpROfsiBMqXwrv7K9QsuDnR06M4qVt+v+y5v2xBciZCSnpZncykVafxmgUb9xkcgF+ZSEMcM2n/uPB/+OnANkU7g7RERERE6YdnHEQW0vuF+rVMebtiKhObDgAAGjZMA0RvqN278/NkTYkog2h/2tg9HRI4j+TxdD8/Yh9X5/GhxzlH3qrap/qnGwwdTz97mTKaWiatRTVpF5btULQVuDzIc7otGZ+IiIiI2g6ecRBZSK0mbaqTtIrqHjwBlbyVCZwNEQHQvfXenntYAieSPLlD7oUtq6N+n0F/CT3WCupK3gpjB2RNWtLQHMAP+wJgUbmD/Y11irZ7Bp8Cu41f4YmIiIjSDb/hEVkoHYO0Wieakug/+P++RM6GiADNIG1W72sTPJHkcRYPQbtz18Ke30ezj7vTiaHHgt0j32g7eLu43WBGIjNpSU94yQMx9nIHTQE/6gJeWdvXp12PPw8aF/PYRERERNT28IyDyEJpWQpS1CjT0BK81dpORHHDW++b2VwFcBQOMNg5rIan6IckSRDC27XwNSc9YZnWViwcdqBJuVjjsOIuMY9LRERERG2TykoHRBQtrYXDUlGw6QAaN70JmzNfvUNLuQMGaYmSQCtgqFGeJI0JBssQCILyK0/9ysfg3fmZsQMdXCyRSI0gOOS/fRYsHLa6Wr6onV2wocidFfO4RERERNQ2MUhLZKFIIdqmgAiPo+1nY0lBH8r+Nxxiw07tPqFMWpY7IEo4razOTAwkht9mbqJf7ZI7DR8m2LDLcF/KQOEXC2JcOEyURJw+67+ytlJPDmzM6CYiIiJKW/ymR2ShSDVpv9/RlJiJxKhx85u6AVoAoTIHzKRNT4GajcmeAunRCMYKNleCJ5JCjJY10ODfP9+iiVBaCrsIEGu5g18r9ijaOnhyYxqTiIiIiNo2BmmJLGSPEKRdV5kaAU1/2eKIfUInoGlU4oEOCdZHCNJTUknBRtV2wV2U4Jkkn+DIMdZPpdyBGVbUGKX0JYTfSyPFVnpkX1Odou3c7gNjGpOIiIiI2jYGaYksJAgC9KoZuCJFcdsKI4HXg7dyqgU+JAtWtaYkU3kP5A3/ZxImQmqkoEZWfoyBoVRkcxkMTJvIpM0/+nllYyaWkqCkqfA2KNruG3pqEmZCRERERInCIC2RxZw6NQ+cKfMbZ2CioUxa5aI9mgEkSiEq72ObsQWaKP60MmmBzAsk2tzFhvoJBmvXerqfj5y+v1VuYJCW9CgubMV2waS8qV72/PgOPVmPloiIiCjN8dsekcX0kmX1ArhtioFM2lAtWpUgrb9sAaQAA7WpTFANBvBPRpvBTNoQwepMWs1F2XiHAOmxJkjrCwawsnIP1lTvl7UXu7OjnBcRERERpYrYCrQRkYJeHHZXXaqc5EcOxgVrtwCd1LPTKr46GRAcKD7tG7g7jo3HBCnuVN7IzOJqM6SAViZt5gVpbQbr8BquSaty4QkAJGbSkglig3Lhr0gWl+3AabP+q1rqgEFaIiIiovTHM24ii9l0slB/LfMlcCbRU8+ilGvc+t7Bzhq3wEsB1P3yDwtnRYnkr/xV0SaYqOlJcabxbyHYPQmeSPLZ3CUGOxp8/2pkI9uc+QZnRJlJ/re/aftHpkd4+JdvVQO0AFDsYpCWiIiIKN0xSEtkscMLtLO1+hWlRpDLnn9ExD42V0sdSO3MvWD9DotmRInm3f21os3V6aQkzITUZPe5Tr293+8TPJPkc5aOAmyuyB21LiiFkfw1AIDcYfKLTAXHTjM9N8ocYtM+2XObp73pMXY0VGluG1bSxfR4RERERJRaGKQlstiVR+aid6FDtTZtqtwsa3MWROzTEsgI1aZV7ZQq5R0onKAS9HLk903CTEiNPbsTCo55UdaWO/ge2LM7JmlGyWNzFaDw2Jcj9hMM1Npu7tgczM3pdxM83c+HLacbcgb8Ee4u42OZJqU5d+fTZM91/zZqCIryi542QUC+04Pr+4zBb3oMjml+RERERNT2sSYtkcU65jjw4LHNWabfbm/EiytqQ9ukFFnUR5ICEfuIB4O0COqUcBAjj0NtlEqtYWpbsvtcp5lRm2myel2K6p9+BylQZ8FozZ/TNncxik78wILxKBM4igbBu/urQw1R/P0LhNU9fuP4i3FJr+GxTo2IiIiIUgQzaQ/avn07/va3v2HkyJFo164dPB4PunXrhuOPPx733XcfVq5cqbv/F198gXPPPRddu3aF2+1G165dce655+KLL75I0E9AbVH4ImJiasRoDZ1cHsqk1Q7SSsykTVmCwVvDidIOFwijaITVPJakKDJpw957Dhu/phMRERFlEqZKAZg6dSruuusu1NfXy9p37tyJnTt34ocffkBNTQ2eeuopxb6iKOL666/HtGnyWnW7du3Crl278PHHH+Paa6/FCy+8ABu/bGec8JtrUyVGKwXqI/YJVK7AgY8HIVClcwGDmbSpi0FaylQM0lIUwhdWlLwVhvddXbUXdy/5Equr5HVt7QYW8SQiIiKi9JHxQdoHH3wQ9957LwCgT58+uO666zBq1CgUFBSgvLwcy5Ytw4wZMzQDrHfffXcoQDts2DDccccd6NWrFzZt2oRHH30Uy5Ytw0svvYR27drh4YcfTtjPRW1DqmbS1v36oKF+ugFagDVpU5lqkDZF3sBEMZBSpno4tSlhJWK8u740vOt5372GddUHFO0M0hIRpSdJklBfX4+amho0NTUhGOQ5E1GqsNlscLlcyMnJQW5uLlwuAwsYm5DRQdpvv/02FKC94oor8NJLL8HplGdCnHzyyfjzn/8Mn095S/f69evx+OOPAwBGjhyJuXPnIisrCwAwatQonH322Rg7diwWL16Mxx57DFdffTWOOOKIOP9U1JaEL1STKkFasUl5shgNI7VtqW1yloxA44aX5I0MGFAbljPgNtT98kDoubN0dHQDMZOWoiA2hmXBGlxoscrbqBqgBYB2npyY50VERG2LKIrYvn07Ghsbkz0VIoqSz+dDXV0d9u3bh3bt2qGkpMT4IsURZGyQVhRF3HDDDQCAIUOGYNq0aXA4tF8Otej4U089hUCgOQg1derUUIC2RXZ2NqZOnYqjjz4agUAATz75JP7zn/9Y+FNQWxeeSStlWiYiM2lTlj2nq6JNYJCW2rCc/regcfPbCNZuguDMR/5RT0c5kjVfsCizOAqPjGo/UeN7wdHtumN0u8NimRIREbUxkiQpArSCIMBuZ5kxolQRDAZlC8IfOHAAPp8PnTt3tmT8jA3Szpo1Cxs2bAAA3HnnnboBWjWSJOGTTz4BAPTr1w9jxoxR7TdmzBj07dsX69atwyeffIJnnnnGsgg7tX3hIa1UyaS1isSatKkrLJvQnnd4kiZCZIzNU4rSs5fBX74UjrwjYM/pkuwpUQax53STN+gsqhnJ68dfjN/0GAynjSftRETppL6+PhSgtdvt6NixI3Jzc7l2DVEKkSQJXq8XNTU1KC8vBwBUV1ejpKQEbrc75vEz9tPg/fffB9B85WrixImh9oqKCmzYsAEVFfoLPmzZsgW7d+8GAIwdO1a3b8v2Xbt2YevWrTHMmlKNIpM2w4K0zKRNYYp/u4z9c0EpxObMg7vjWAZoKeEEm/yOK8lgkFZS+WJwSufe8DicKr2JiCiV1dTUhB537NgR+fn5DNASpRhBEODxeNC+fXu0b98+1F5ZWWnJ+Bn7ifDzzz8DAHr06IG8vDy8/fbbGDRoEEpKStCnTx+UlJSgb9++ePzxx+H1ehX7r169OvS4X79+usdqvX3NmjUW/QSUCsKzpn2ZlkobQyZRJhD9tahddh+q5/8OgbptyZ6OTLBhp7xBdSExIiICAIQFaUVvedRD8X4rIqL01NTUBKD5HDE3NzfJsyGiWBUWFoYeNzQ0WDJmRpY7EEURa9euBQCUlpbiD3/4A55+Wlm7bv369bj99tsxY8YMfPbZZ7J/gJ07DwUwunZV1m5srVu3Q7fA7dixw9RcWx9HzZ49e0yNR4kVfqJV1ph5C9IEajbAkd872dNocyTRj31v5YeeN6x/Ae3OW98mXqtg/U7ULLhF1sZ6tERE2sIzaRFsgiRJLHFFREQhwWDznWp2u50ZtERpwG63w263IxgMhn6/Y5WRnwzV1dUQxeZg2YoVK/D000+jU6dOePPNN1FRUYGGhgbMmTMnVGd2/vz5uPrqq2Vj1NbWhh5HugqWk3Nodd66ujpTc+3WrZvuf6NHR7l6NSVEeLkDAGjwZ1agtmnbjGRPoU1q3Py2oq122X1JmIlS7fK/KxuZSUsZQvLXRu5EFEZwZCvaAtWR757KsPtriIiIiNKK1RfkMzJIW19fH3rc1NSE7OxsfP/997j00ktRVFSErKwsnHDCCfjuu+8wZMgQAMCMGTOwYMEC2X4tXK6w7IkwrYsHt17JkdJf93xlsnqdP3VPydxdJ0buFEb0V8dhJqnPt/sbRVvTlneTMBOlxo0vKxuZSUsZQgowSEvmOQoHKNokr/76BgDQFPQr2jx21qMlIiIiykQZedbt8Xhkz6+99lr07dtX0S8rKwsPPfRQ6Pl7772nOobPp193s3VN26ysLFNz3bFjh+5/CxcuNDUeJVaJR/kr1hBo+5m0jqLBqu15Q+83P5gYiG0y6aot3wIrqbxHmUlLacBuoJyIs92YBMyE0o1gV16wl4LKNQ3CNQaUQdosLhpGRERElJEysiZtXl6e7Pn48eM1+5588slwOBwIBAJYtGiR6hiRShi0ztw1WyA8Ur1batsEQUCOQ0B94FD2bGMgBTJpJfV6KoIzF4KrEJKvyvhYovIElFIPa9JSWpAMfP6qXaQgMsCW0w1i/aG1ByQxcpC2ISyTVoAAl40XxYiIiIgyUUaedbvdbrRr1y70vPXCXuE8Hg9KS0sBAAcOHAi1tw6eRlrcq/ViYXrHovSU5ZRnTFZ5234AQNII0sLmNn3buyRFn0kbFCU0pkDmcUZgJi1lCgZpKUqCzS1vMJBJu7O+SvY8y+HgYmNEREREGSojg7QAMGDAodphkVZha9nucBxKPD7yyCNDj9euXau7f+vt/fv3NzVPSn0eu/xk66mlNXhtdS0kIxldSRKsVn9PC3a3oRp7rTWsmQrRXx+5Y5j5u5twzddluOqrMjy1tBoBse2+XmY0bfsYe98qROOmN5I9FVWBum3qG5hJS2kh8ueI5kUqoggEuzxIq1fuYFd9NYZ98n+Y+I28Bni2StkEIiIiIsoMGXvWfcIJJ4Qeb968WbNfTU0NysrKAABdunQJtffs2ROdO3cGAMyZM0f3WHPnzg3t36NHj2inTCnKZVdmxHy+pRHba9tmICBQu1VzW/gJqFFNW94x1V+UJLy8qhaNAQkSgJ/2eLFsv37t51QgSSKqF/weUhteTK1+1ZOq7YGqVQmeCVEc8GIDxVN4kFan3MHjK2djecVuRTvr0RIRUbz5fD688847uOKKK9CvXz+UlJTA6XSitLQUI0aMwA033IBvvvkGosi7i4gSLWPPVs4///zQ4xkzZmj2mzFjRijj8fjjjw+1C4KASZMmAWjOlP35559V9//5559DmbSTJk3iLWwZaE+9ejB2b33bXFCrbsXDqu323J4QXEUR98/qdaWiLVC7ydQcmgISan3yjLc1FakfpBUb90Fs2JXsaehqWPNv1XbJzxXvKfUVjHlW9jy73+/hPuxcWVvu4L8mckqURgQhLMCqs3Dmptpy1fY++e1U24mIiKzw0UcfoW/fvrjkkkvwxhtvYN26daioqEAgEEB5eTmWLl2K559/Hqeeeir69++Pzz77LNlTzkg9evSAIAiYMmVKsqfSJs2ePRuCIEAQBMyePTvZ07FUxgZpBw8ejDPOOAMA8M477+Dbb79V9Nm7dy/uueceAIDL5cJVV10l237rrbfCbm+u03jzzTejsbFRtr2xsRE333wzgOZSCbfeeqvVPwalALdKJi0ABNvo3fuSX20hPAH5R03Vv8hgcyHnyFuRf9TTym06J6pq1F6btKh2wNuoiZLK1XEcsvpcB9hccJaMRM6APyFv2N9hz+8L2NzIGXQXnIVHRh6ISI0iU1v7D5dfVP496JFbhEdHnmnxpIiIiJo98MADOP/887F161YAwKmnnoqpU6fi22+/xZIlS/D111/jmWeewWmnnQabzYb169fj7rvvTu6kiTKMI3KX9PXUU0/hp59+QlVVFSZOnIhbb70VEyZMQFZWFhYuXIh//vOfoUXBHnjgAVm5AwDo06cPbr/9djzyyCNYvHgxjj32WNx5553o1asXNm3ahH/9619YtmwZAOD2229H7969E/4zUvK5NC6FBNvo3SNSQFk/tsMlVbC58nX363hJNQSHBwCQ1fsaNG6Y1npQU3NoqwHsWLHWJVFyCTYHCo95EYXHvChrb3+efm15IkPCL2TqLEIXCNt275BT8Pdhp/GOKyIiiotXXnkF9913HwCgffv2mD59OsaOHavod8opp+Cmm27CypUrcdttt8kWTyei+MvoIG2fPn0wc+ZMXHDBBdi3bx8eeeQRPPLII7I+giDg7rvvxh133KE6xkMPPYT9+/fj5ZdfxrJlyzB58mRFn2uuuQYPPvhgXH4GavvUatICQKCNLhwmBZSZtEZq0bYEaAFAEOQfLZLJTFpR5bVpm6+WSQzSEhGlMflVWUkvSBtW56+9J5cBWiIiiotdu3bh97//PQAgJycHc+bMQb9+/XT3GThwIL766iu8/fbbiZgiER2UseUOWhx33HFYtWoV/va3v2HIkCHIz8+Hx+NBz549cdVVV2HJkiV44IEHNPe32WyYNm0aPvvsM0yaNAmdO3eGy+VC586dMWnSJHz++ed46aWXYLNl/EudsTSDtGHnbpIk4dvtjXh0URXeXluHpkBywpKq5Q5sJlebtoVd/xH9pnZv8Ct/9i+3NmLGxnoEVeoeLN3nxX+W1+DzLQ2qAd42g0FaIqK0JUQodxAURTzy63c4Y9Z/saxCXp/cwe+JREQUJ08++SQaGhoAAP/4xz8iBmhb2Gw2XHbZZarbfvjhB1x++eXo0aMHPB4PCgsLMWzYMNxzzz262bfhtUQlScK0adNw3HHHoaSkBPn5+Rg9ejTeeOMN2X4+nw/PP/88xowZg+LiYuTl5eHYY4/F9OnTNY+1devW0LFeffVVAMD777+PU045Be3bt0dWVhb69euHu+66C1VVVbqvxcqVK/Hggw/itNNOQ9euXeF2u5Gbm4vevXvjyiuv1FyjqMX9998fmgsAVFdX44EHHsCwYcNQWFgYmuO4ceMgCAK2bdsGAHjttddC+7X8N27cON2f8aOPPsL48ePRvn175OTkYMiQIZg6dSr8/kPn5JIk4e2338a4cePQvn17ZGdnY/jw4Xj++edDazLpqa6uxj//+U8ce+yxaNeuHVwuFzp16oSzzjoLH3zwge4YLfO9//77AQCLFi3CxRdfHHpdu3Tpgssvvxxr1qxR7Nvy85544omhthNPPFHxGrW8FqkoozNpW5SUlOD+++8PvUmiMWHCBEyYMMG6SVHaCGgUUw1v/3mvFy+uaF6cacl+H2q8In43RL/EQDyolTswnd0TnklrstzBtJXqi1S9u64eogSc3zsn1Lal2o9/La4GAMzdBdgF4LQe2ebmmygqNQiJiChd6Jc7eHzlbNy15HPVPR02e7wmRUREGUySJLz22msAmrNor7vuupjGE0URt9xyC/7zn//I2r1eL5YvX47ly5fjmWeewfvvv49TTz1Vdyy/349JkyZh5syZsvZFixbhiiuuwOLFi/Hvf/8blZWVOOecczB37lxZv/nz52P+/PnYuHEj/vrXyAu/XnPNNXj55ZdlbevWrcMjjzyC119/Hd9++61qAHv27NmyoGALn8+HjRs3YuPGjXj99dfxl7/8Bf/85z8jzmPDhg0YP358qDawlW688UY899xzsrZff/0Vt9xyC2bPno3p06cjEAjgsssuwwcffCDrt2zZMtxwww1YunQpXnxRXhqstW+//RYXXXQRysvli6Du3bsXn376KT799FNMmDAB7733HnJzc3Xn++yzz+IPf/gDAoFD8YLdu3fjzTffxEcffYQvvvgCJ5xwgtEfPy3wsj1RnFV51W93DK+7+t32Jtnz73fKnyeKo3hozGMINuMrXKvZU68dzPx8S4Ps+eur5Zm/L69SW/isjVBkWSlJQW8CJmKe4CpM9hSIiNo2xWe8/O//93s3ae5a5MqKw4SIiCjTrVq1CmVlZQCA448/Hnl5eTGN95e//CUUoO3Zsyeef/55LFy4EN9//z1uu+02OJ1OVFdXY+LEifjll190x7r33nsxc+ZMXHrppfjss8+wZMkSvPPOO+jbty8A4Omnn8Y333yDKVOmYP78+bjhhhswa9YsLFmyBNOmTUPnzp0BAPfddx9WrVqle6xnn30WL7/8MkaPHo133nkHixcvxueff44LL7wQQHNg8LTTTkNtrTJZKBAIICcnBxdeeCGef/55zJ49G0uXLsWXX36JJ554At27dwcAPPLII3jllVcivoYXXHABdu3ahZtvvhlff/01Fi9eHPq5X3nlFaxYsSL0s02aNAkrVqyQ/ad1jOeffx7PPfccJkyYgI8++ghLlizBxx9/jKOOOgpAc4btK6+8gttvvx0ffPABLrnkEnz66adYsmQJ3n333VCA+r///S++/PJL1WP8+OOPOOOMM1BeXo4OHTrgwQcfxMyZM7FkyRLMnDkzlHn9+eef48orr9R9Hb766ivcfPPNGDBgAF5++WUsWrQIc+fOxW233QabzYaGhgZcfvnl8Pl8oX26dOmCFStWyILtL7/8suI1OueccyL+O7RVzKQlirPOuQ7UVChv9w+G3QKwq85cIDNenCXD0bT5Lc3tuYPvQd2v8hrLRSd+JO9kiy2TVi9xty6sFMKWmrbxullFEgOGagAnWnbva5I9BSKitk2xcJj871VTUL30T4/cIpzciYvLEhGR9VoHSkeMGBHTWCtWrMATTzwBoLlm7bx581BYWBjaPm7cOIwfPx5nnnkmfD4frr/+eixYsEBzvAULFuCpp57CH/7wh1Db8OHDMW7cOPTp0we1tbW45JJLUFZWho8++kgWeBs+fDhGjhyJYcOGIRgM4sUXX8S///1vzWMtWrQIEyZMwCeffAKH49C56hlnnIGBAwfivvvuw/bt2/HAAw/g0Ucfle07dOhQ7Ny5U/aztjjttNPw+9//HhMnTsTXX3+Nv//977jiiitgt2vfIbNy5Up88cUXGD9+fKgt/N/G6WxOeiosLMTAgQM1x2ptwYIFuPXWW/Hkk0+G2oYPH45TTz0VRx55JLZt24a//OUvqKioUH3dx44dG3rdn3vuOZx++umy8f1+Py677DL4/X6cfvrp+PDDD5GdnS0bY+LEiTjhhBNw/fXX46OPPsLXX3+tmVH9888/Y8KECZgxYwZcrkPlFY8//niUlJTgnnvuwfbt2/HZZ5/h3HPPDb0uAwcODF14AJovFhh9jVIBM2mJ4qzEo/5rFl6Tts0Iy3p1dzlD9jxv+AMoPP5NAIDgLkHJmT/D0/1cWZ/whcPMZtKq1Z3V0pZL0IaTjNTmbaN1ax3FQ5I9BSKiNi7s731YuQN/2GJhv+kxGK8edxEWnvUHFLqZSUtERNZrfUt6+/btYxrrueeeg3jwb9lLL72kGrQ8/fTTcfXVVwMAFi5ciEWLFmmOd9RRR8kChS06duwYCsodOHAAF154oWpm5ODBg3HccccBAObNm6c7d7fbjf/+97+yAG2Lu+++OxTkmzZtmixzEwBKS0tVf9YWLpcLjz32GABg27ZtWL58ue5cpkyZIgvQWqVbt26KADMAZGdnh7Jay8vLDb3uaq/nu+++i61bt8Lj8eD111+XBWhbu+666zB69GgA0K0N6/F48Morr8gCtC1uueWWUHukf9t0wyAtUZxpxRvDA5FtZlHn8KzX8EXAAGT1uhSdpkjoeHEZXO2OUo4Rvo/JTNrwUhB6UihGa2wBtTYapFXUWiQiIrmwcgdSWLmDQFhd8tO79MOVvUehnUe/XhsREVG0Wt++n5OTo9Mzsm+++QYAMGDAgNAt9Gpa171t2UfN5MmTNbcNGTLEVL/Nmzdr9gGA8ePHh0oIhLPZbKEgZkVFBZYuXao7ltfrxfbt27F69WqsXLkSK1eulC2UFanMw6WXXqq7PVrnnXdeKAM3XOvX86KLLtIco6VfZWWlYjG1//3vfwCAsWPHol27drpzaakj+9NPP2n2OfXUUzUvHOTl5aF37+a7jCL926YbljsgijOtIGIgbINaCKyiKYhiT2IWE5EkEY0bX0Xdikfk8wqvL2tA+D6GMkgB7K0PYFtNQFHSINz6Sj96FzoOLmhmJutWgm/v9/DtnQtXh+Ph6nhCVD9ftCQp8uvg2zsbgjMPznZHweaMrWaUnga/iDUVfpRm2dE93wEp0ATf/h80+ytXLSciotYExcJh4eUO5BcsnVwsjIiI4qx1Ddr6euUC0UZ5vV5s2LABAHQDtAAwbNgwOJ1O+P1+rFy5UrNfnz59NLe1zlw10k+tlmxro0aN0t3ekvkJNJd1GDNmjGx7fX09nn76abz77rtYtWoVgkHtxJrWt+KrGTx4sO72aFn5egLNr2nr54sXLwbQXEvW6MLie/fu1dymtkhba8XFxaF5ZBIGaYniTOt2/ICBW/pv/LYcDx9XhMML4h9I3PtGNiAqF60SfTXmBwsvd2Agk3b5AS8eXVRtKIv23vmVOL1HFq4akGeq3EHNzzeiYd3zoefurhNRfMpMnT2sFazbHrFP5ffnAQDseb1QOnERbO4iy+fR4Bdx94+V2H1wgbZrj8zC0F+PR6BS76ovM2mJiHRFWDjs18o9sucOGy9+ERFRfJWUlIQe79u3L+pxKisrQ48jlU1wOp0oKSnB3r17UVFRodlP63Z5oDm71Uw/UdSvJRhpzh06dAg9Dp/z1q1bcdJJJ2HLli26Y7RobGzU3V5UZP35HWDt6wlAEYjev3+/6TnpvRZ682g9F72AeDpikJYozkqy1E/CwoORdpWrURKAOTub4h6k9Vf8qhqgBQDfHu1bVDSFLxxmoCbt51saTZU5+HJrI37Tx/gtO2JTuSxACwDenZ8iULcNjtzuxg8cA/8B7ds9wgVrN6F+7X+QN+Qey+exeJ83FKAFgE83HMBA3QAtILji82WCiChthAdpW9WkrfQ2KLo7eIcCERHFWevb3CPdxm+U0SzKtiSWOV9++eXYsmULBEHAVVddhcmTJ6N///5o164dXC4XBEGAKIqhxcKkCFlEeouKtWUtwdIzzjhDtfYtWYNBWqI4m3R4Nj7foryCFAy72Nc934G9DcqrRLW++K8w5tv/o6XjKRYOM5BJ+8sBX8Q+4cobjb82gdpNqu2StxxIUJBWcBWY6t+w7vm4BGkX7JUH5Pf69eshCs4CuDurr8pJREQttMsdVKgEaYcUq9fGIyIissqAAQNQWlqKsrIyzJs3DzU1NcjPzzc9Tuvsz0gZuYFAILRgWcst68kWac6tt7ee89q1a/HDD80l4f7617/iwQcfVN1fL2M4XZSUlGD37t3w+XyhhdbIeryETxRnhR47bhmm/EMYXu7A41C/umcmuzRagmDx1bzwhcMMZNJGy/DLo1EXV2qzC3XFj4FKGzIlE+ZBYO1EIiJ9OuUO/Cq3YR6e1zZOXImIKH0JghBaFKu+vh4vvfRSVOO43e7QQk4LFizQ7bts2TL4/c3nXm0lmLdo0SLD21vPedWqVaHHegtutdRrtUpbzFYeNmwYgOaf1eczn2Blpbb4+liFQVqiBDi2swdnHy6vuRK+cJjWXRFBsxG1aFgcpI124TCzJFOLhmkEisUEBmnNFNAFEK86sAGTydnOokFxmQcRUXqRf2ZLrcodBFQuCNpZ7oCIiBLgtttuC9X/vO+++7B27VpD+4miiLfeeiv0/JRTTgHQHLhcuHCh5n6tA8Et+yTbrFmzsGfPHtVtoijitddeA9CcMTx8+PDQtkDg0Dmk3sJrzz//vOa2aHg8HgDNC7a1FWeffTYAoLq6Gq+88kpS59Ly+gBt6zWyAr8dEiWIPey3LTyTVit8l4hMWmX2T6zjmS93EC3jmbQac0hoJq3Zf0zr//ElSULQdLCYiIgiUvwtPfRZG55J6xBsaZ0FQkREbUeXLl3wzDPPAGgONI4dOxZz5szR3Wf16tU4/fTT8dhjj4XabrjhhtBiTtdffz1qapQLTM+aNQvTpk0DAIwePRqjRo2y6seIidfrxW9/+1vVRageeeQRrFixAgBw9dVXw+12h7a1ZA8DwKuvvqo69nPPPYdPPvnE0vl26tQJALBpk3rJvmS48sor0a1bNwDAn//8Z8ydO1e3/w8//BDxfRatltcHaFuvkRVYk5YoQcIXBvtpjxeHbajHuUc0X9Wct6tJdb+l+32QJCkuJ3P+8qUomznC8nHDyx34y/RvL9lcHV2m7Z3zKiN3Oqhp2weq7YG6zXB1ODaq45slNplbEVPyK7/46PFX/IKqH66C2LQfeUPvR3afa0Pb9tQH8PSyGmyujl/AnIgokwlhQVrJfyjjpiEgvy3QyRIyRESUQFdddRV27tyJ++67D/v378e4ceMwfvx4TJo0Cf3790dhYSEqKiqwfv16fPbZZ/jyyy8RDAZlC48NGjQIf/rTn/DYY4/hl19+wfDhw3HnnXdi2LBhqK+vx8yZM/H0008jGAzC5XLhhRdeSOJPLDdy5EjMnDkTxx57LG677Tb07t0b+/fvx2uvvYZ3330XANC1a1fce++9sv2GDRuGgQMHYuXKlXjhhRdQWVmJyy+/HJ06dcLOnTvx5ptv4oMPPsCxxx6LH3+0bp2XY445Bt9//z0WLVqERx55BGeccQZycpoXzc7KykKXLl0sO5ZRbrcb06dPx7hx41BXV4eTTjoJkydPxjnnnIOePXtCFEXs2bMHS5YswYwZM7BixQpMnToVY8eOtXwuhx12GLp27YqdO3fi8ccfR9euXdG3b9/QomwdOnRAXl6e5cdNBAZpiRLEoZKs+t76eozs6IYvQrrs5uoAehU6dftEIy4BWgCCSpK+JImKE9gW01bWxmUerTWsU78FpXbJX5Hd6/K4Hx8AGtabqwEl+c29LjWL/ohAxTIAQPVPv4PnsHNh85QAAF5fXacboN1nPwIdghtNHY+IiFqTX0z17vwMGPkIAGD6ll9k2xw23sxGRESJde+992LAgAH405/+hK1bt2LWrFmYNWuWZv8BAwbg0UcflbU98sgjqK+vx7PPPotNmzbh+uuvV+xXUFCA6dOnY+jQoVb/CFG76aabMGfOHLz66quYPHmyYnunTp3w1VdfoaBAvtCzIAh44403cNJJJ6GyshLTp0/H9OnTZX0GDRqE999/H507W7cg6A033IDnnnsOFRUVuOuuu3DXXXeFto0dOxazZ8+27FhmjBkzBrNnz8aFF16IHTt24K233pKVxAgXzSJ1Rv31r3/FjTfeiC1btmDSpEmyba+88gqmTJkSt2PHE78hEiWIw6aeCbuyzIf31mnXtwGAxfuSV2fF1elk0/sEapW3HASq12n231UX35IDkk7dWZu7SHOb1Vwdx8V1fN+e7w49kYJo2Phy6OnS/frF3Xc7jozXtIiIMoJvn/yWPlfHQ5kjOU6XbFutP73qpxERUWo477zzsG7dOrz11lu47LLL0LdvXxQVFcHhcKC4uBjDhw/HjTfeiO+++w4rVqzA+PHjZfvbbDb85z//wdy5c3HppZfisMMOg9vtRn5+PoYOHYq//vWv2LBhg2K/tuCVV17B22+/jXHjxqGkpARutxt9+vTBHXfcgVWrVuHII9XPh4YOHYrly5fjd7/7Hbp37w6n04ni4mKMHj0ajz/+OBYuXCi7/d4KXbp0wcKFC3HNNdfgiCOOkNVgTbYxY8Zgw4YNeP7553HmmWeic+fOcLlc8Hg86NatG8aPH4+HHnoIa9euxRVXXBG3edxwww348MMPMX78eLRv3x4OR3rkoKbHT0GUAlwal0QCooSmCJm0jeGrjCVQ1hFXmt5HsKl8tOjUfk3I4mga4rWomcbBEncsADDxszUIBZE7ERGRJmfJSHh3fdGq5dDftvBS4AWutnOyRUREmcXlcuGSSy7BJZdcEvUYxx9/PI4//njT+40bNw6SgfUxpkyZYigT8v7778f9999v+PgXX3wxLr74YsP9Wxx22GF47rnndPvo/Vxm5wkAvXr1ki3CpqZHjx6GXk+rX3e3243f/va3+O1vfxuxbzgj8wBgKFv4vPPOw3nnnWd6Dm0ZM2mJEsRlV8+klQDl2VuYQIJje63ZXMXR7KRs0wlQxn9xNJ0DiPoZptZK4j9kBI0M0hIRxcSe20Pe0Opvuxj2N3BStwEJmBERERERpRIGaYkSRCtICwCREmX9Scw0Va5WbWQX40FaSZKSGqRN60xaGF9srtFWGL9pEBFlAsUCn4f+9gTDLsba4rAYKBERERGlNgZpiRLEpVGTtjEg6S7oBADzdjXFY0qGCEIUK1Db1BY5Uw9QxiP+rLiFQidTWazfYWpsb1DCxxvr8fLKWmyuNh7glQJN8O2dbepYsTMeBKgXElebl4goPcm/VkvBQ3VnRYQHafkVnIiIiIjk+A2RKEFcGrHOGRsbIu4blIDV5dbelu87sMBYxyiCtOqZtOqB0nhkCStHjFBOomaD4bFf/LUG76yrx1fbGnH/T1WobDK26FnZpyMMH8MyBzO1jNT8/TnrsnjPhogorfkrlsmeN258JfRYZCYtEREREUXAIC1Rgjg1MmmNev7XGotm0qx+1f8Z6xhNJq3drWiSNBYO21lnLMhpRnhMUmzcp9vfu+c7w2P/sPtQZpQ3KGH+bmMrdAeqVmtuc5aOMnx8LcH6XcrGg8HybbX6mdoA0D6wXrXdUTQopnkREWUK//4fNbcpgrQm7nQgIiIiosygsgQ7EcVD59zYft32NVhbz7Rp24eG+tlc+abHNlOTtiFSQd4ohAdppaB+uQgpEDmbWYuRAKjuCpY2NwqOfhG1S++Cd9eXsk2uDsZXTBWblIFoR34fAECDP/JrbId6sDyn/82G50BEROrCFw5jJi0REVF89ejRQ/88jKgNYiYtUYI4TPy29SlMxPUTY3+wBGeB6ZEFEzVpG/36wedxXT2Y3DcHF/bJQZHb2IsYvkCLJEYoFRHD4mE+I6ueaWQRZ/W6EqVnLYKzZCiKTp4Je25P+W4mgsdiU5nmtiYDc5Q0srqy+1xneA5ERKROWZOWQVoiIiIikmOQlihBzPyydYkx69ZKNpf5IC1sKvPXuIoZKZP2yBInzj0iB+f3zsHzp5Sif7FaAFhOEZOMEKSVDAZpw29XBWIL0uYMuhPOg+UEBJsDeSMflR/PX2doXgAgNh1QOzAAwGsgW1krSEtERLFjTVoiIiIiioRBWqIEMXM+5tVY6GlnbUB2y0a1V8R32xuxv8H6uq4tBKf5cgfqdWxFiJKEBXuasLHqUFA00q34jrBavm575Bey1ici2LgP/soVkMQgpKA1mbRq/yybqwORb6PRCNIKjuyw57ny3QK1huYFAKJXLZO2eV5GMmmDiBz8JiIic1r+PrAmLRERERFFwiAtUYIIJk7ItLIz/zS3Aq+ubs6uXLbfi+u/KcMLK2px8/flmLXNZF1Vg/V5BLtKfdlI+6gEaYNBPy7+/AD+b2kN7v6xEv9cWAUAaAjolztwhL1sLgNB2ltnV+CXGRNQ9slgVMw6FVJQ/7Vp2v5RxDEBQG2qlV4RL6/Sz3j17p2r2h4epLU55UFasWG3oXkBGpm0B2sgGgnSljkOh8g/CURE1jpYE52ZtEREREQUCc/IiRLEQGwxpMCl/av55dZG1PlFPLGkWtY+baXxW+MBAKp1Y60hOHIUbT+W58meLz/ggyhJEcsd2MMyaZ0GP7U+ybodAODb+z2ats3Q7RuoXGFozE3V6hm3s7Y1os6nHWyuXfwn1XbBniV/HpZJCwDBRuWCYGpUa9IeDAo0GVycbZPzaEP9iIjIGF/ZQgCsSUtEREREkTFIS5QgThNR2omHZ+tur/GKiLDeVkSuDsfFNoAOZztlsO/VHd0UbUFRPTu1tfBM2kKDi4etdZ0Uetyw9j+6fe053Q2NuWCPV3NbtU6QNlC1WrU9PHPWUdBX0Uc0GKSVDmZrydoOLtbmNVI3F8A611hD/YiISKlw3PuKNslfA4CZtEREREQUGYO0RAk0uDRy9mqh24bOuQ6celiWZp9IgU0j7NldYx9Eg2BTq0mrJAIIRii7EJ5Je1oP/QC2Ov1jSIF6Q6P4NWoFAyqLlUVQdMoXijbBofJvLgWMDahW99ZkJm344mG5wx40dmwiIoLnsHOUjaxJS0REREQGMUhLlEDd8hwR+5xymAcA0C5b+9dTL1holBQW1MsZ9BfA5o553BaCuzhin6AoqS7G1Vp4ArLRcgdmiAFjpSL0XnfR5L+Jq3SU+oawEgjh/05aJNVgbvOcjGbShgdp7TnxC+QTEaUbweaAPe9w1W3KTFp+BSciIiIiOX5DJEogI3E8+8FbID065RGsyKSFKA/qCYIDsPCkUQj7eFH70UUp8mviCMukNbjemb7wYHSwCZIYORjq0+liNpMWKourASqLrokGM2nV+plYOAwApPA/CZa82ERExJq0RERERBRJ5LQ+IrKMoSDtwTiZWydIu79RPVr44YZ6LNjrRddcO64akIc8jQXIpKAPTVvfkzcKdgiCLUJhABPCgo2SGAAEl6wtYChIK39uZn4iBKj9RDZ3McTGPfJxA/UQXPnaY0kSFuzVrkk7dd4i7LEdAQDoW+TApVkfo3j7v+EoGqS+g2ZJCHkEvm7Fv1B88seh5wFRwu++KUOtv/nnsglAx2wb3NVX4HzHWnQNrGz9UwEAtlYbDPQqbr9lkJaIKCYH74ZYVr5L1swgLRERERGFYyYtUQIZCdI6WjJpw1fMauWZ5TWq7dPX12NbTQA/7vZixkbtOqsN6/+rbLQ5IDiiqfeqwUBW7pZqv+IW0HC2GM5jl7rPUx/TXaRokyKUPPh6W6Pu9pYALQCsqwzgxW3dEKj8FU2b31Ltr8iYDc2jQfbcu+MT+MuXhZ5/u70xFKAFmt9Tu+tFbHEehdfzngsbrLnf3gaDJRPCg7SSFSnbRESZRP452rT9YwDA2ur9snYGaYmIiIgoHIO0RAl0fBdPxD4tmaPOWKKTAD7boh1U9FcsU7TZszohZ8CfZG3ubpOiPn54pupA35eKPlVeMWLgusgtD2YWqGQHa71Sux391efmq1a0RVo87OVVxurWttjpHBKhh/GP38ZNbxiax35HH/jRupRDc5DVbWwdN5QEt8meuzqdbHiOREQEBGs3yZ7bsjogoFJOJyjyIhgRERERyTFIS5RAfYocOKqj/uJc9oPBWSOLjEVNpX6pp/u5yOp1RWjRE8GRjdyBf7bskCXB7arteuVSx3fPQoFb/jHltAu4rF9uKDD7mz45KPaof5QF4VRt93Q/X1mOwW8uCGuEqPcRq1nuQCnYuNdwX7/Q6v11MJPWbzAW4JIOZfFm97kejrweho9LRESAzdNB3iD64VMJ0k46bECCZkREREREqYJBWqIEEgQBtw3Ph1PnN6+lFG08b4SUJHmQNmfAH2FzF8Oe3QntzlmDkomL0P7CPXB1OC7qYzhLR8ueB6AenA4vd3BRnxz8e1wxnhpXjKsH5Kruc1avbDxzUgmeObEEF/TOQZZGaQhRUA/SujudDMEhHztSuYNoiHplvzXKHagyUXbALxzK1pYgIihKhspsHJxU8/86slFwzAvG50dERAAAT48LZM+lQCN8QWWQtnN2QaKmRERERHG2cuVKXHbZZejWrRtcLhcEQYAgCFi+fHmyp9amTZkyBYIgoEePHsmeSpvBIC1RggmCgHZZ2gG6lpq0cV2ySZKfMAr2rFaPXXCVjoRNZxEtQ2zyAGUgbNEwoDnRMzyAaLcBHXMc6JTjgKBTs680y4522c2vo1aQNqCRSSs48yA4c2Rtol+/3EE0gjpBWsFAzd5DjAdpA2hVUkOS4DceoQ1xFKiXiSAiIn2t/54CgBRshE/l7hWX3cSFOiIiIjJt9uzZoWDp/fffH7fjLFmyBKNHj8Zbb72FnTt3wu/3x+1YlP7ieD81EWkJ6iyWZT8Yu7MiSPvp5gZIAI7q6Eb7bDvWV/qxdt8BdN7+K7q07ihY/1EgHBwzCAcWei7C/KwrFX0O7JiDpVXDZW3RLKaS5dAod6CRSSs4cyE4ciEB+MFzFb7LvgkTd1dgbNWTCHo64V97x2NzdQCX9c/FhB5ZeOYX9YXaIgkKzpj/IVe6xqPCOxZHlvnw4IKqiP39ghtVto5Y5j4H3n1HoHrLlwBGGjqW1PLax+H9QESUCQSHWpBWmUnrMlHyhoiIiNquu+66C42NjcjPz8cjjzyCkSNHIiur+fvAEUccEWHvxLj//vvx97//HQAgRVi4m5KLZ+JESRDQSYx0HKxJa8WH5xtrmm/h/3BDPa4dmIdnltdAggP2oi/xp8rT0Tm4urljPE4WD2bSvpn3HyzznKPa5aOwAC0ARLNemkcjk3ah52JcUnurytTyIDhz8WnOPfg2+2YAwBsHumF3wxx8m30pgOaspzfX1OHNNdGXQdjmGIb+/tlR7/+DZwo+yPsXEAA+MhCgBYBqWydMzf8E9bYSwNgurRx8HW3qwW0iItKnyKQNNMIbVMmktfErOBERUarz+/2YM2cOAOD666/HDTfckOQZUapjuQOiJDiyRHnrf4uWmrTZGtmh0WgMSJi6vCaU1BkU3JiR+4/Qdslfa9mxQmMGGuFDlmaAVsuGSvO3h6zT2KcwuFO1XXAVwubICQVoW3ybfYvpY+tZ4Lkkpv0/yPuX6X2+yLmjOUAbBanlT4KkDCgQEZEBdo/sqRRsYiYtERFRmiorK4PP5wMA9OnTJ8mzoXTAIC1RElzQOzsUjA3X0p7vju+v5wbX8XEd33/gJ/iErMgdw+ytV57MRlLtVU9NzhErFW2CuwT27I4JuaV/j6OfarujeJjmPva82G6J2eocpbt9aDsXhrdXv0ggHsyktWV1imkORESZSlAsCikqgrR2wQa7jV/BiYiIUp3X6w09djp5NyLFjt8QiZKgY44DDx5bpLrN3up+/9dOK4VHK5prIWexsuxArLL7/BZCFAVZoyl3oEWtJm3J6d83PzC1cJdSl9zIWVBaP3/BMS9q7pM79L6o52TEH4bl49bhBbikX45im4Tmn8mR2yOucyAiSlvhf1skEb6wcgfMoiUiIkqu1ouKzZ49GwAwffp0nHzyyWjXrh2ysrLQt29f3HHHHaioqFDsf//990MQBPTs2TPUdtVVV4XG1FqsrKmpCc888wxOPvlkdOzYES6XC+3bt8cpp5yCadOmIRCIfEej1+vFiy++iDPPPBNdunSB2+1GTk4OBgwYgGuvvRZfffVVqHTiq6++CkEQQvVoAcjm2PLf1q1bFccJBoN47bXXMHHiRHTu3BlutxslJSU47rjj8H//939obGyMONc1a9ZgypQp6NatGzweD7p164ZLLrkEixYtirhvpmJBLKIkObxA/Upb65isx2HDa6e3Q3ljEDd+Vx6/ycShBmnz4inmg7TRxKTtAhBUOZQI5YmwPeew5geKbCdzTuyahY/Xl6FO9Gj20QrSCna3zsjxC8oXBbcj29keADCpVw6W7/dhdcWhUhGh1yvGADYRUeYK+wyXJEUmrcvOIC0REVFbIYoiLr/8crz55puy9vXr1+Oxxx7DjBkzMG/ePHTs2DGm4/zyyy+YNGkStm3bJms/cOAAvv32W3z77bd44YUXMHPmTHTo0EF1jOXLl+O8887Dli1bZO0+nw+rV6/G6tWrMW3aNGzZsgU9evSIeq7bt2/H2WefjV9++UXWXlFRgR9//BE//vgjnnvuOXz22WeaZR6mT5+OK664QpZtvHPnTrzzzjt4//338fzzz0c9v3TGIC1RG6OWSeqwMr20FRE22CBCiMdCUY7sKDNpzf+sLruAxoDyWEHBCQlAua07CsU9cMAHwdGcQaq8JdUchw2wC/o/nwCtFeLinx2txg55oCD8bSWGXpPkzI+IKOUpLnIpyx0wk5aIiKjtuPfeezF//nycc845uOKKK9C9e3fs27cP//nPf/DZZ59h48aNuO222/DOO++E9rnxxhtxwQUXYPfu3TjttNMAAA8++CAmTZoU6tO+ffvQ440bN2Ls2LGorq5Gfn4+brrpJowePRrdunVDeXk5/ve//+GFF17AokWLMGnSJMybN09RPmHNmjU4/vjjUVfXvLD1ueeei8mTJ+Pwww9HMBjE+vXrMWvWLMyYMSO0zznnnIORI0fi2WefxXPPPQcAWLFiheI16NKlS+hxeXk5jjvuOOzYsQNutxvXXXcdxo4dix49eqCurg6zZs3Cv//9b2zcuBFnnHEGli5dioKCAtl4ixYtwqWXXopAIAC3243bbrsNEyZMgNvtxoIFC/Dwww/jhhtuwJFHHmn63yvdMUhL1MaoBRstXENMZmrhx7iu+jIUxSOT1p6FDc7jotjR/C5aQdpyew88VvQtdjsGwi3W4vraKeh0cEXteuSZP1Ardhtgk/wAtOvuClI0Qdrmn2OfPbbatGpsYQuC+cLSjz/OfQAnNP6XmbRERNEK+/yUJBGvbVwsa3PZ+PWbiIjUSZII0RvHOyjbGJu7BEKSzz3mz5+PBx98EHfffbes/fTTT8fpp5+OWbNm4YMPPsDTTz+Ndu3aAWgOwLZv3x65ubmh/l26dMHAgQNVj3HllVeiuroaw4YNw6xZs1BaWirbPn78eEycOBFnnnkmFixYgFdffRXXXXedrM9ll12Guro62Gw2vPXWW5g8ebJs+1FHHYXLL78c5eXlyM7OBgAUFhaisLBQFjDWmmOLW265BTt27ED37t3x/fffy0o6AMC4cePwm9/8Bscffzw2b96MRx99FA899JCsz4033ohAIACn04lZs2bhhBNOCG0bPXo0zjvvPIwZM0aRqUsM0hK1OWq37ccrk3aL8ygs9FyM8+IQpJUC9fgq54+m93NF8bO6dP6u73Y0/xHy2vLwVdYtaAkb/9zQO6ZPQIcgwBasB4R8zT52aNQU0skWFmzNpRBmZ/0u+slpsIVl0q6vUs5voedinGLXLuFARETaFCeaKkFaJxcNIyIiDaK3HPvfbR+5Y5poP3k/7J52SZ3DiBEj8Ne//lXRLggC/vjHP2LWrFkIBAL46aefcPbZZ5sef968eZg/fz4A4LXXXlMEaFucfvrpuOCCCzB9+nRFkHbWrFlYunQpgOYganiAtrWSkhLTc2yxdetWvPfeewCAZ555RhGgbTFs2DDcdNNNePTRR/Hqq6/KgrSLFi3C4sXN331++9vfygK0Lbp06YInnngCF110UdRzTVf8lkiURNcNUmZzDixxKdr0gpCx+jj3H3GpSSs27kWTTgBTyzUDcyN3CmM0iL3eNTb0+APHLaaPIz8mYItwy2q3wHLVdntOd8193F3PBACU2XtEOzVNdgOlJN7NexLZ/W6y/NhERBkhfMFK0R9VGR8iIiJKjEsuuQSCxt/qESNGhB5v3rw5qvH/97//AQD69u2LQYMG6fZtCWguWrRItojYp59+Gnp86623RjUPIz777DMEg0FkZ2fjjDPO0O3bMtfdu3dj+/btofZvvvkm9Piqq67S3P/cc89FYWFhbBNOQwzSEiXRcZ096JZ3KNB345A8eBzKPxCCIODYznqLTcUmHjVpBXsWgjA37uBSFzrmmE9vlcyXvo2ZwyYoaryG06pJa3PmaO5jc+Yg/6ipaBLMB6sjsdmN/XvYszLn6j0RkZXCF4YMBL0Qw/5ITR1zbiKnRERERDr69eunua24uDj0uLa2NqrxW7JK161bB0EQdP/7/e9/DwDw+/2oqKgIjbFs2TIAwGGHHYbu3bUTfmLVMteGhgY4HA7duU6cODG03969e0OPW2reulwuDBkyRPNYTqcTw4YNi9NPkrpY7oAoiTwOAY+fYOx2hBO6evDjbm/kjtGIR5DWkYVAeEZRBHcfVRjVsaQoFiiLVXOQVqOcQUh02VOeHheiaf3GqPbVY9dcyIyIiKwghJWL8QV9ij79C3ghjIiIqK1oqd+qxtaqRFEwqJ+go2X//v1R7dfQ0BB6XFZWBgDo1KlTVGMZZcVcW4LLxcXFsNv17zzt0KFDVMdLZwzSEqUIZ5zq0gKAYDKYamhMexaCUJZuiAcxGZm0grLGazgxypsVBMEGrxDbwmZqIs2XiIhipMik9Su6OCOUyiEiosxlc5eg/eToAmWpyOaOvn5qqmgJ7g4ZMgRvvvmm4f26dOkSrylpaplraWkpvv/+e8P7qdWu1SohQfoYpCVKEfEM0sYjkxZ2D5ps5mvSRiMJMVo4bAJskn7Qc37WFMzPmhJ63i6wEXdWnhh5cMGOJhuDtEREqcZIJi2DtEREpEUQbElfSIus1bKQV11dHQYOHBjVGC2Lje3Zs8eyealpmWttbS369+8fMRNWTVFREQCgvLwcwWBQd4x9+/ZFN9E0xpq0RCnCIcQvFCnFIZM2YNOuu2q1YEB5EhxvNrEBtojlDuQOOI7Ax7n3R+wXlAT4BO3bbqIlJCWcTUSUOZRBWmbSEhERZbKWuqubN2+W1W41Y/jw4QCA7du3Y9u2bab3N5rV2jJXr9cbqk9rVsviaD6fD7/88otmv0AggOXLl0d1jHTGIC1RiigJan8YZ4uVMY1dLhVH7mTScteZpvoXBXdEfayxgfei3jdaOY0bDNSkVfoh65qIffwmF1yLllNqTMhxiIgyhWCTlzvwBZV/J1wM0hIREWWMs88+GwAgSRL+/e9/RzXGWWedFXr85JNPmt7f4zl0Ednr1V7n5qyzzgoFdJ966inTxwGAU045JfT4tdde0+w3Y8YMVFbGFsdIRwzSEqWILKlKtf2cuvtwaoP5D+rWRGdhTPurqXGYq6FzffWlUR9rTN1/0S5gbqEtIUKpAj19fd+jk6sWNsl8kNYI0eaJ3CkK4Zm0N1WdH5fjEBFlrLBM2oCo/DvBTFoiIqLMMX78eIwePRoA8Nhjj2H69Om6/VesWIGZM2fK2k455RSMGDECADB16lS8++67mvuXl5ejsVGejNN6wbFNmzZp7tu3b1/85je/AQC8++67+L//+z/duW7ZsgXvvPOOrG306NGhzN/nnnsOP/zwg2K/PXv24M9//rPu2JmKQVqiVBH04tjGVxTN4xpfwImNL+COCgO1TrWGFmOZmDqfiRhorngAnYLroj5WjtCAP1eeistrbjC8TzT1Wc+ofwQ3VZ2L66ovB0RfVJm0xsSr/rA8SNsjsCROxyEiykxC2MJhfpWv2k4bv34TERFlkrfffhvFxcUIBoO46KKLcPbZZ+Ott97CwoULsWTJEnzxxRd4+OGHcfTRR2Pw4MGYM2eOYow33ngDubm5EEURF198Mc4//3y8//77WLJkCRYuXIi3334bU6ZMQffu3RW1Xo855pjQ49tuuw1z587Fhg0bsHHjRmzcuBGBwKHz2uf+n737Do+qTNsAfp/p6SGFEjpIFUQQBERERGVFELEAYu9rYcW17drbWr513XV1FTtWQARERRQVRUWRrhQpUgRCDenJZOr5/ggZZk6bcyZTk/t3XV5mTpt3JpNh5j7Ped6XXkKXLl0AAHfccQdGjBiB119/HcuXL8fatWvx1Vdf4V//+hfOOussHHfccZg7d65srC+++CIsFgs8Hg/OOuss3Hvvvfjhhx+wcuVKvPDCCzjppJOwf/9+9OvXL1pPcZPBicOIUoToc8Em1qquL/JtivjYXjH6vUrdPv3HzPftbtydCSbYUYvjPPKzdKq7wHgyPTq4YtnvhkkUYpKn+g38OgY738fPaVN0bs2etEREsSTtSeuBvGrWLDCkJSIiak66du2Kn376CRdeeCE2bNiATz75RFYtGyw7Wz4Bd69evfDtt99iwoQJ2LNnD+bNm4d58+bpuv/jjjsOEydOxAcffIDFixdj8eLFIet37tyJTp06AQDy8vKwbNkyTJw4Ed9//z2+++47fPfdd4bGOnjwYLz99tu46qqrUFdXhyeffBJPPvlkYL3FYsGLL76IZcuWafatbY4Y0hIlmLdyG6rWPQJr7vHIOP4OCGab4nait0YzpG2MmFTSGkgazaifWMXvroDJlmP8zo5+4TUZCJsbO4mW6HfDpPDlOxqMPHfpKm0wFMUgjCciomOkIe1GhM7QbTOZdU/eQURERE1H9+7dsW7dOnzwwQeYO3cuVq5cicOHD8Pn8yE/Px89evTAqaeeigkTJgTaBUiddNJJ2LJlC1577TV89NFH2LBhA0pLS+FwONC5c2cMHToUkyZNCgSuwd59910MHDgQH374IbZs2YKqqir4/cpBQOvWrfHdd99h4cKFmDlzJn766SccOHAAHo8Hubm56NatG4YOHYrzzjsPp512muIxLrnkEvTr1w9PPfUUvv76a5SUlKCwsBDDhg3DX//6VwwePBjLli2L+PlsqpI2pN2+fTtKSkrQqVMntGrVKtHDIYoJz5F1KPmkfgbFOgA1G59Fq0sOK25btmQ87Gk3x2Qcsaik9RiopPUdfSs6+H4uWl/uUg2qVQn1YWkk1bER87thFmPzFvrEinLd2zrESt3benW+5ftFESaGCERExgW1O/hZbIu/YEzIavajJSIiio/TTz8dosr3XK11UlrbderUSfdxAMBsNuOSSy7BJZdconsfqbS0NEydOhVTp041tJ/VasVdd92Fu+66S/c+5557Ls4919iE4MF69+6Nt99+W3X9jBkzMGPGjIiP3xTF/XqrQ4cO4cUXX8SLL76IiooK2frff/8dJ510Erp3745TTjkFbdu2xYUXXshZ36hJqlx1R8htv6sEnrKNsu3EoxOP5Pt2xWQcsaikNRL77rb0D/xcu+WlCO6s/gGY4da9i6WR/WRFnxseWCPat8Sp3g93V6UHxdX6++X6DZxr2yEcr2u7tYf0P49ERHRMcCXtfPSUrU8zR/bvBhERERE1fXEPaefNm4dbb70Vzz33HHJyQi9rdrlcOOecc7Bu3TqIoghRFOH3+/HRRx9h/Pjx8R4qUcy59y+RLfNWyifQEn31szP2cX+BHN++wPITXJ+GbDfUqX6WSkssKmkL0/RXC4nCsW2dO2cbvi/RVwcASBOrNLezB4W4nbONVTNNqL5fcqceVAj5ho7RoM6r/nz/Uak/PG7t3QyxEU1xTY5C2WsIADaXeiI+JhFRcyaYjoWwFXDI1o8q6hbP4RARERFRCol7SLt48WIIgoAJEybI1s2YMQPbt28HAJx33nl47rnnMG7cOIiiiGXLlmH2bOPhDVGqMdly5Qt99eGiGT5MLT8fpzhnYFTt85hS9ZeQzSZW34Xeri8BAOn+UvSvmw8A6ONahL+XDlO9z1hU0kYa/AZ/wdWrIcQOxw1b4HIUR1qu5raTqo5VOQ+vfQ3Dna9J7tONwZ6PjQ20YV+NdWqRa3AA7/BXYpjzTdxQcWmgn28kLC36YUjde4bGR0RE+ngVPma/OuyiBIyEiIiIiFJB3HvSbtlSXyU4ZMgQ2br3338fAHDGGWfgo48+AgBMnToVZ599Nr766ivMmjULkyZNittYiRJBKaQU/ccqQAv8f2Bi9T3K+wK4ofKykGVXVv057H0aaB+rm1v/FfshRNF4Yix69U2oJgLw+AGbGQg3N9fQuncxtO5d9WP53fCJkVWxauXXgkpMe0H1/ZhULe8fZGpMH17RB5PC822krxIRESnzSELaB4vSkWWVV9cSEREREQEJqKQ9fLh+UqR27dqFLHc6nVi+fDkEQcANN9wQsu6aa64BAKxZsyY+gyRKoIb+syHLPPonh9JiE5XDTF+4xDIC7kiTXzGCXrE6K2kBoO7ouPyNDSJ9LngR2QQwmveskvuaoJx6myJ5vgID8SuGvIxoiYgazynpW26J5+SWRERERJRy4h7SlpeX19+xKfSuly9fDo/HA0EQcOaZZ4as69y5M4D6SceImgLR50bZd5eqrDwWulWtexT7Zwg4PF8++Ugk0v2lisudGj1SI7WvJsLwUCGkjqbPd9UH1Y3NpavW/B1eX2StBjaUqE/MtadK+fELKl/uBYORqnPXh6j7Yz4OvJcL98GliseNRWU1EVFz8rrYH9+jY8gy377PIfo4MSMRERERKYt7SJuZmQkAOHDgQMjyb7/9FgDQu3dvtGjRImSd1VpfiWCxxL07A1FMuPYtRt2O9xXXiX7P0f/7UL3uoajeb55/r+LyzWXRnygq0smnxBhXGs3dVgu3T2x0SAsYD0gbvP1bteq6BduVq53VQ1pjfSUql9+Kip+nQvRUAAC8kLfX+L2cE4cREUWqWrTiUYyQLbfAD1fx5wkYERERERGlgriHtD171lcEfv556IfUuXPnQhAEjBgh/1DbEOi2atUq9gMkioPK5beqrzwa0vqqd0X1Pm1FZ2Ns9T8U17VOj+yyfS098/RPAHZB1b2Bnx3txxu+L1ubUYGfz655Nuz25S4/PBop7XHuZbrut4f7O13bRYNa99te7m90H2N0zTPw1x2Ev7Y4sOygpbtsO4spsl67REQEFCMbHoV2OF1QBl/VjgSMiIiIiIhSQdxD2nPPPReiKOKVV17BSy+9hA0bNuDOO+/Epk2bAAAXXHCBbJ+GXrRt27aN61iJEqGhkhZCtIIyAendb0Tu8LfRoyALw51vyLaIRe2qL8xBe7u+hFl0oZfrKwx0zQksF6xZhu9LsKQHfu7jDl+l5PSKgd60DYq8G2AV/CgwV2FszeOB5Rl9lCdpA4AO3vj0ybaL6pW3rXxbVdd19vwccntU7fOybcwKPW39MehRTETUXLgUAtqJ2IDh+AOiyCsViIiIiEhZ3PsH3HrrrXjxxRexf/9+3HpraDXh0KFDMXLkSNk+n3zyCQRBwKBBg+I1TKLYMmlUmTaEtKq1k/q1uSo0bCv401e4FYBnTQWW73cdu8sYhHLhDnlD5WXIOeVVOHfOgrsyaGK0CCbCEj1VgZ8dYpXGlvWcXj9ckj68lw4ZhoGt7EdvrQ5Zlz3wKeyfIf99mFTaHWT7DqDS3DrsOPTqX5SPNmPr70s6Dq1XyTkDz8SpBXXYN6sVLFAOBswKyzm1DRFR5OokH69t8OI/whf1N2Lcd52IiIiIUlfcK2lzcnLw1VdfYcCAARBFMfDf8OHD8cEHH8i2/+WXX7By5UoAwFlnnRXv4RLFhGC2qa4ToxjSqjFLDh2LiaJ8oo6DCqaQKlgAgN9Yj1UA8HuOhbxW0aWxZb06n7yS1i59UhrBpKNPrKjn+Tkq0pEJAEyWNNWAFgDMonwSm3BV0EREpM4lCWlzcOzfpWP/xhMRERERhUrITFy9evXCqlWrsHPnThw4cABt2rRBp06dVLd/8803AQBnnHFGnEZIFDueI2vhLd+kvoH/aGgWtXYHcibJsX/aX4dLetZP6rd0rxMrD7jROceC8V3TI+5PWuPRE0IKgBB6WainfAPKf7gaAJDR525Yc3vJ9vI5D6L6l0cBvw+Z/R6A6D4W0lp0hLS1HhF1kkpaRxRDWj2TeYnQH75G+lIQIABmu+Y2ZsirunZWerG/xos2GZyskYjIqHI4Qm7bg95n/a6SeA+HiIiIiFJEQr+Bd+7cGZ07d9bcpl+/fujXr1+cRkQUW35PFUo+1W7b0VBlI7qOxGwc0jzyYK0fW8s8qPH48eIv9e0CVh50wecXMbFHZkT3sa9GT0WsAEEIfRuq2/Fe4GfXvi/R8qI/IJhCg9yyJefDc3g5AMB9aBnEoEpaC8KHtB9srYFbUi3qsESzkjZ8KapfBPTm3xGPTAAEQQBMtmPhv2wT5TB92relmDmmUBboExGRtr9jVMhte9CJu9rfnkfO4P/Ge0hERERElALi3u7g0UcfxaOPPoqSEv2VBGVlZYH9iFJZ7ZaXATFMeHk0pPVWbW/UfcnaCATJsMqDt99K3Vj8hzNk2aJdTtl2emUq3IecCJjUzxX5a4vhrQydGMtXdzgQ0AKAt3wD/HWHArdtYvgxWxXS0XDtDsxZXRSXt/WsD7nd1b0MA+vmKG4bzEgb4H6Fx9pj2IrOlq3v4f5Gcb/AG7xKQAsARd6NquvWHlLfj4iIlNklV1OUBVfWmtTbHRERERFR8xb3kPbhhx/GI488gkOHDoXf+KjS0tLAfkSpzFe9K+w2gX51Gn3rHB0v0D6IYELO8HdUVw8rcsiWefzAxiOh91nrjbxZrVabhCmV9ZMGWguHyNodyPgklbG+Os3NlS7fl3IpNF0NV0mbd+ZnistPc74W+FkQ/RjhfBUjnK8i11Rfkaz2NPgN9KQ9NqEZkH3SU7L151WrnMDSkZO38W1RXVcpLTcmIqKw7Pa8kNsnozjws6A1cSgRERERNWtsOEgUT4KO8yIN7Q68NaqbpPe6DXV/zJMtb3VJKVz7voQluxus+f1V9++aa0WnbAt2VQb1yfOLgMql75GQTow1uvbfOGA+DsOcM9Dd8wMAwOQogBAmpBVlVaCNv/y+2i1/nOF60lpyesCc3R0+SWXvYNcstCrbiiM9nkFXewk6WEbDknMbninoiPVHvCjKNOOe78tkx1OrpE2zCHAGheN3npSDDOux1401vz8KJ2zGkc9PhzmzM3JHzETOwe/Qblct9taFVk837GVvfx5cez5WfWw93V9js22UbDkbHRARRcCaCbiOve9fgg2BnzlxGBERERGpSYmQ1uOp/0BrtbL6gFJd+JBWFI+GtB71kFZQmQzKZG+BtM4TdY2kbaY5NKQVjV2CH470WMd5fsQ5NaFVoIJgDV9JK/tC2/josEZSISwAsOrIz615/WUhLQB08q7BwC45sOaPDCyzAzilSKOVg8pzLV2ea5cPzJLTA60m7T92O/NytK+owN79kqrjo0+VYM1SHQcAWETl0IDtaImIjJNeKRHS+9vvhiiK9f3CiYiIiIiCpERIu27dOgBAYWFhYgdC1EiCjkpa0V0/CZbfW61+HJNySGuEdEKo+dtrG33MYNKw0aRUpWuyaPakBZSqjqKYJB/lsAi6vjALljStlYbu06fyMNySFXonF1ParmGRyZKhua+gY6IzIiLSRxrSyv79E32G/80gIiIioqYv5p8Q3377bcXlCxYswKpVqzT3dblc2L59O9544w0IgoBBgwbFYohEcVOz6d/ht9n4DLL6PwbnjvfUNzI3fuIRIz1RIyGvVpUHgYJgDtvuQDrplefImkaPTSpcq4MGglneyzcgTNgs9cSKcjw9PE+2XPpb0Tk0WegOHAtpBWum5r5qIe3Xu+swop1GME1ERDLS93FZSOv3GP43g4iIiIiavph/QrzqqqtkFWqiKOL+++/XfQxRFGEymXDbbbdFe3hEcSP6feE3Oqpu90fwVWxWXa8ZFuq0tSx2ffFK6+SP1ZTdDShZJlloCVtNJK2kde76wPB4WqWbcLBWvVrUrHMKRXNGe9V1gsEZu3dVeuHzizAHlcCWOOXPm1lnKa1SmNvw3iuEqaQ1icqvzS0xfI0QETVV4U6Cin43BPAEGBERUXNz1VVX4a233kLHjh2xa9euRA+HkpDOaKJxRFEM/Ke0TOs/q9WKYcOG4eOPP8aIESPiMVyi2JBNgKXOuf0t1XWmtDYwZ3aCo/MlkuWtDQ2nxBm7S9z3VslDP8eJT8qWCSZr2ABR1pNWJVAMNqL25ZDbF3bTvg+9z0Vat2sVl5scrWDO7Ky63586KX8Zr5O0Nih3ycfRJiNMpfFR6VaNSlpLuEra2FZVExE1JyLCtDvg5GFEREQx9+2330IQhMB/kyZNCrtPQ5Ehe8dTosS8knbnzp2Bn0VRRJcuXSAIAr744gt069ZNdT9BEOBwOJCfnw+zWV9IQZTMRB3hYgPBkq643N7hfGT1ewiCYELOKa/AW74J3rJfAACF52+KyjilIpngRKmKyJaWh+xB/0blytsBAIXn/wYAMNlytO9fEm6L3vC9cy9qdwQZWXYcdIo4u2MaHBbt8Z+jEqJKmazKY8076zMIJvX3qQu7ZeDzXU7ZcpdPREbQfIh1XvnzZtFZSZttk59za/i1hQvC2ZOWiCh6wvWklfdaJyIiolibM2cO7r//fvTt2zfRQyFSFfOQtmPHjorLi4qKVNcRNUmi/iBMMCuHtHlnzA/8bLJmonD8usaOKqw6n4i0MCGnlNKkWGYByDh+GjKOnxayXAgT0korjvSEtAX9H8CVjmPH/b1c+wtxpkLAqUihh6C9aDSs+QM0d1PreSudJExaWdsyTf/FDllKIW3D/yPsSUtERMZJQ1rZvwAMaYmIiOJOFEU89NBDmDdvXsLGMGPGDMyYMSNh90/JLy7tDoL5/X74fD707t073ndNlFgGQlpYkqdXXa3H+KXwfoVdBPnXVADq1akNRL8n0CpFFEWI3prwA5CEqZYw73R6J+eC0iRnKlXPIcNROb5LUlwtraQNVwEcTLGStuH/4XrSQn+VNxERaQvX7kB6hQgRERHFVkFBAQBg/vz5WLt2bYJHQ6Qu7iEtUfOlP6R1bn01huOop7eDgVPhEvxwfArtDtTuL1wlbcWyq3HgLRP2zxBw4C0TPId/Cj8AyWRkljAPNtz6wGEVtlNrTRFMLaS9+/tSvPhLJVw+ERtK3Hh+XWXIerUKXCVZNoWxBdodRF5JqzQJHBERqTviCr3ig+0OiIiIEusvf/kL7HY7AODBBx9M8GiI1CUkpK2trUVtrfoly88//zyGDx+OXr16YcyYMfjkk0/iODqi2PDV7kv0EEJk6KzSrI0kpFXI/NTuLVxP2kgIRitpG/FOaLJmhx+Pxrqle+uwfH8dHvu5XLZOYR4xVUqVtNVHq6BNVu1KWpegHuLO3qKjcpmIiAAATq9CACs9wceQloiIKK7at2+PG264AQDw6aefYsWKFYaP4ff7sWTJEtx5550YNmwYCgoKYLVakZubixNPPBF33nkndu/erXmMhonJOnXqFLL80UcfDUxYtm3btrBjGT16NARBQJs2beDzKRfVfPTRR7j44ovRoUMHOBwO5ObmYuDAgXjkkUdQVlam+3FTfMU9pP3kk0+QlZWFNm3aoKqqSrb+mmuuwbRp0/Djjz9iy5Yt+OKLL3D++efjySflM8MTpRJ/3eFG7Z818P+iNJJ6F3fXDu4aSPum6uE1UElrSm9r+PhhSdoShOs5W5imf3JCc07PkNuOTheFH06YSt0Xf5G/FwLAH5Ve3eMqUHgMDVWw5swumvv+Yh+nuu7bvXW6x0BE1NztrD4iW1ZkkkyA6ZNPJElERESx9fe//x1pafVtBR944AHD+z/66KMYNWoU/vWvf+HHH3/EkSNH4PV6UVFRgV9++QX/+te/0KtXL8yfPz/8wSSmTJkS+Pn999/X3PbgwYP4+uuvAQCTJ0+G2Rz6PbCsrAyjRo3ChAkT8OGHH2LPnj1wuVyoqKjA6tWr8fDDD6Nnz55Yvny54XFS7MU9pP3iiy8giiLOO+88ZGVlhaz74YcfAk2U09PT0b9/fzgcDoiiiAcffBAbNmyI93CJokbtS5k5s7Ou/dOPuzqaw8Hwtg5d2yn1lw3Hq1ABqnbJvzm9nfE7CEcS0trV7vyofoU23YfOPukpwFz/j7uj44WwtTpN134398sKv1Ej2BVaIzRk5eYM7SC8lXdLLIZERNTs1CpU0na0Sdod6OmtTkRERFHVpk0b3HTTTQCAxYsX44cffjC0v9frRZs2bXDzzTfjnXfewbJly7B69Wp89NFHuPvuu5GZmYna2lpMmTIFv/32m6FjH3fccRg8eDCA8CHt7NmzA9Wzl156acg6l8uFM888E0uWLIHZbMbll1+OmTNnYvny5fj+++/xj3/8A/n5+Th06BDGjBmDP/74w9A4KfbkU5XH2PLlyyEIAkaOHClb98orrwAAioqK8NNPP6Fdu3bYs2cPTj31VOzduxcvv/wynn/++XgPmSgqRK9ySJve40Y4d86Gt1S9gbmjyxSYHAVRHU+6Vd85Gj8iqKRVSHZVY1JT9N+GpJWrWoWsLewm2Az0fnV0GI/Wl5TC7y6DOb2N7v1GtEvD57uc2FGhvzo2XnL8B3EQPRI9DCKilFfrDa2abWFLOzp547GraRjSEhGRGr8ootodQZVMisq0CTDpnSwlCu655x68/PLLqKmpwYMPPoglS5bo3ve6667DQw89BKvVGrJ8wIABGD9+PKZOnYohQ4aguLgYTzzxBN555x1DY7v00kvx888/Y+vWrVi1ahUGDhyouF1DiNu9e3fZNo8++ijWrFmD3NxcfPXVVzjppJNC1p966qm49NJLMXToUOzfvx/33nsv3nvvPUPjpNiKe0h76NAhAECPHvJA4PPPP4cgCJg6dSratauvrmvfvj2mTp2Ku+++G0uXLo3rWImiSf3yRgGCSbuSUzCHn5wqVhQ6F4TlUepJqzZxmGACBBMgGmjAGkXh+tUqESwOmC36A9oGaTr7AEdL8/l4R0SUHKSVtOkW29GQ9hjRw5CWiIiUVbtFXP9VSaKHETevnlmAbHv8viO1bNkSt956K55++ml88803+OabbxQLCJVI+8hKtWvXDnfddRemTZuGjz/+GKIohm17F2zSpEm4/fbb4fP58N577ymGtNu3b8fPP/8MQF5FW11djf/9738AgMcee0wW0Dbo2LEjHnjgAdx8882YM2cOXnnlFWRk6GuFSLEX93YHhw/XVxJIWx1s3LgRJSX1b0bjx48PWdfw4mQpNqU0tZBWEMJWkwpmewwGpE9k7Q7kO5m0ps8SYnu+SOufRkuYVgjxGgcREaU+eUhrhWAJnZzR7y6P44iIiIgo2F133RXIoyLpTdugsrISO3fuxMaNG7FhwwZs2LAB6enpIeuMaNmyJc466ywA9S0N/H55EVNwK4TgPrYAsHTpUlRUVAAALrpIe96U006rb9nn8XiwevVqQ+Ok2Ip7SNvQ1Li0tDRkeUM/kMLCQlmVbYsWLQAAdXWcwIZSl1q7A0AAROUZGQNbhKm0jaVt5cZnoVaaa0zrJKJgsqqvjAKt+zbQ6aDR4pgHG8SaWyKiaKj1hbY7SLfYIFhDq1MqV/wlnkMiIiKiIPn5+Zg2bRoAYNmyZfjiiy907/vHH39g6tSp6NSpE3JyctClSxf06dMHffv2Rd++fXHDDTcEtm0oQjSioTp2//79iq0YGkLawYMH47jjjgtZt2rVqsDPbdq0gSAIqv/16dMnsO2BAwcMj5NiJ+4hbdu29RPYrFu3LmT5woULIQgChg8fLtun4WxAQUF0e3ISxZPoUz7JYM7sCHvbczT3teQeH4sh6TL/91rD+6QrXNafbVN/uxGssZ1US4tLKVGOkdK6+LZ06JB1rELZlKbenkFgSEtEFBVOSSVtmtkqO0lrsufHc0hEREQk8de//hW5ubkAgIceekjXPosWLULv3r3xwgsv6LrK2+lUK9JSd/755weqcaW9YtesWYPNmzcDkLc6AI61FjWqttb4932Knbj3pB0+fDi2bduGF154AZdddhkKCgqwcuVKfP755wCA0aNHy/ZpmBmvdevWcR0rUTSJfrdsmSm9LexFo2FvMwrV69T/cXB0OD8mYxrQ0oY1h+TjaqxMhUA2x64e0qZ1noyaTf+J+jgaaDWj75wT2yreYJG0jjDi/K7p+Gh7/T+yRRlm9G95rAI7o9etqFpzX2wHQETUzPkljdzNggBLbm94Dv90bGGMrx4hIqLUlWkT8OqZzac4LdOWmEsNc3Nz8de//hUPPvggfv75Z3z66acYO3as6vYlJSWYMmUKamtrkZmZiTvvvBOjR49G165dkZOTA5ut/nvXkiVLMGrUKACAGMHkLpmZmRg/fjxmzpyJefPm4aWXXoLD4QBwrIrWbDZj0qRJsn19vmNX565Zs0Y2wZmahvmgKDnEPaS9+eabMWPGDOzcuRNdunRB9+7dsWnTJni9XuTl5Sm+2JYsWQJBENC7d+94D5coevzytgEF5/4Eky0bAGBrfTrcB76VbWPO6gqTIzZVN/cMysV7v1Xj4x3RPXsm/ZIaXNGpJGvgMxGFtBnH34majc/o2vbvg3Lw5MoK2fJzO6cZvt9InVLkwIfb9E8Yk+cwdrHD5B4Z6JRjQaXLj+FtHSHhdEbfv8Oc0xPuA0tR+9t/DR2XiIj0ESVXJgiCgLTOk+Hc9vqxhb7onxwlIqKmwSQIcZ1IqzmbNm0annvuORw5cgQPPfSQZkj74Ycfory8HAAwf/58nHnmmYrbSdt6RuLSSy/FzJkzUVlZiU8//RQXXXQR/H4/Zs2aBQA466yz0LJlS9l++fnHMoPCwkKGrykq7u0OBgwYgH/+858QBAHV1dVYs2YN6urqYLVa8eqrr8omFKuoqMDChQsBAKeffnq8h0sUNaIkpHV0mQJzRvvA7eCfg1lyY3ty4tJemfjzCdFtN+CTXNVvM2tvL5jCbKAirculgM5+vWoThGlV2UZbrO9KEAQMbePA6E7pSLeaZOvSOl6AnMHPwdZG+qGC7Q6IiKJBepLSBEH275TSlTVEREQUX1lZWbjrrrsA1Feezp8/X3XbjRs3AgDy8vJUA1ogtC9spEaPHh1o9dlQPbt06VIUFxcDUG51AAD9+/cP/Lxs2bJGj4MSI+4hLQDcfvvtWLt2LR544AFcf/31ePDBB/Hrr79iwoQJsm2//fZbDBo0CKeddprmmQ2iZCaKfrj2fBKyTD4ZmHKCF+tJtYDoX4YvbfNqjlU6KQhQe96kzCrvds3xPLVgCq1sZk9aIqLokIW0giD79170VMVzSERERKTi1ltvDVSlPvTQQ6otCrxeL4D6yez9fuV5Rmpra/HOO+80ekwWiwUTJ04EAHz22WcoLy8PhLXp6ek4//zzFfc788wzA/1s//vf/0bUboESLyEhLQD07dsXjzzyCF5++WU8/PDD6NGjh+J248ePxzfffINvvvkGrVq1ivMoiRpP9Ptw4C0zvOUbQlfIwleVuFBIxZBW2pMvusc/RtBdnqoWFKsU2MZE0gTCBoP/NzcyUCAi0uOj3RtDbgsABLPkpKzohc8Z2eQeREREFD0ZGRm45557AADr16/HZ599prhdt27dANQHsR988IFsvc/nw3XXXYd9+/ZFZVwN1bIulwvvv/8+5s6dC6A+H8vMzFTcJzc3F7feeisA4Mcff8Ttt9+uGigDwMGDB/Haa69FZbwUPQkLaYmaC1fx54rLpRWy3soturaLBXtk3QZUySppY/ROU1+dpC/6VGu5ELsAWc5oFp6rMdlaY5gzOoTczvSXaG7/+S4nSpw+zW2IiAj4ev+2kNt+iIonxup2zozXkIiIiEjDTTfdhDZt2gConyBMycSJE2G32wEAV199Nf72t7/h66+/xqpVq/DWW29h8ODBmDlzJoYNGxaVMZ1yyino3LkzAOC+++5DWVkZAPVWBw0effRRDB48GADw3HPPYcCAAfjf//6HZcuWYd26dfjmm2/wwgsv4Pzzz0eHDh0wffr0qIyXoicpQlpRFLF9+3asXLkSK1euxPbt21maTU2G8/c3FZdLL3/0Ow8qbmfJHxD1MUkNaeNQXVeQZvxtQnrCTk+7g4zetxu6D3NmZ5hzekDQWUnbMcsCSZtW2ExAm8z4zZ/olabXYVx9fHR7BTdIO+6qkNvnZa8Nu8+WMvnEd0REFKprVuhEnwecVRAUrohxHVgaryERERGRhrS0NNx7772a27Rr1w4vvfQSTCYT6urq8PTTT+PMM8/EoEGDcNVVV2H16tWYNGkSHnnkkaiNa8qUKQAQmLCsoKAAo0eP1tzHbrfjyy+/xAUXXAAA+OWXX3Drrbfi1FNPRf/+/XHGGWdg6tSpWLBgAdxuN7Kzs6M2XoqOhIa0X3zxBcaNG4fs7Gx0794dQ4YMwZAhQ9C9e3dkZ2fjvPPOw+LFixM5RKLGE1T+zGSVNfIAL73nLcjoeUv0xyRhMwuY1l/5DbprjvFKXmm7Az0tBTJPfBhpXS+HObt72G1trU9Hi9Pn6A5ogfqJsx4e2iJw22IC7jgpB/Y4ltKe1Mqua7sOWWZc1TsT3XJjEyDbCgYie/DzsOT2gb3dWBx3yqO4uV8WuuSo3x/PmxERhSd9q3yg31nKLWZ8dXEZDxEREYV3/fXXo3175Ym8G1x99dX4/vvvcf7556OwsBBWqxVt2rTBn/70J8yePRuzZs2C2Ry9S1SlVbMTJ06ExRL++2FWVhbmzp2L77//Htdddx169OiBrKwsWCwW5OXlYdCgQbjlllvw2Wef4csvv4zaeCk64ldCFsTtduOqq67C7NmzAUCxarampgYLFy7EwoULMWnSJMyYMQM2m75Z3ImSi0oIKP3SpvB3kDPkhRiMR9nQIgeGFjkwd1sNPthaE1gunQRFD/nEYeH3MdmykTv8bQDAgfdbQHSXq26b/6dvDI8JAI7LtWL2uS0j2jca9LR9eO2sAmTZYn/+LKPXrcjodWvg9ogMYES7NExaqNwnkRktEZFxWVa7Ytsi0e9KwGiIiIiaj9NPP133Fdp2ux27d+8Ou90pp5yC+fPnR3yfM2bMwIwZM3SNqVevXo26wvzUU0/FqaeeGvH+lBgJCWmnTJmC+fPnQxRFWCwWnHXWWRg8eDBat24NADhw4ABWrFiBL7/8Eh6PB7Nnz4bX61Vs0EyU/JQTSmm7g2SJwaSBqsEr9I/uI5/d2ghBsBh4NpJmOq6w9LR9iOdEZoYkx8uTiCj1KIW0Poa0RERERBQq7iHtwoULMW/ePAiCgJEjR+KNN95Ax44dFbfdvXs3rrnmGixZsgRz587FZ599hjFjxsR5xESNpBLMSStrxCRJwcySlLC42htyu6zOhz9/fSRwWwDwqqT6U9qT1mK0MNTQZGnJmmrK6aooTtKH42W/AyKisHZUHZEtU5wAlO0OiIiIiEgi7j1pG0q7+/Xrh88//1w1oAWADh06YNGiRTjxxBMBAG++qTwBE1Eyc+//WnmFoSAyfrz+0DDuYG1o4jr1m9AvoCKAudtqQpZJq2+NVtLCZOD8kdFjJ5CesNrwcxUn3+5hoEBEpMUnPUOJo6cRZVfOsJKWiIiIiOTiHtIuX74cgiDgjjvugNUaPqSyWq248847IYoili9fHocREkWXYFWekEva7iCt6+Uht635J8VsTFpWHND+4uiRfwfFol3OkNvSdgfRnJvL0fGikNtZJz4actveflz07izK9LSOsCZ0Okd1m8s8iR4CEVFS211TJluWa0uDYMmQLbfmD4jHkIiIiIgohcQ9Djh8+DAAoHfv3rr36dmzJwCgpKQkJmMiiiWTvUBlRehJivRu18OU3rb+hmBG5gn3x3hkyvxRuKo9konDgmX2/qvicsGSiYzj7whZltbtaljzBwIATGltkDXgH8buLI70PA3JWklLRETa3H6fbNmggvYQTPKZnk32vHgMiYiIiIhSSNx70mZkZKC8vBxHjsh7dqkpK6uvTEhPT4/VsIhiRlTpOyftUWfJ6oSWF/wOT+k6WLK7weTIj8fwZBwWeUjoF0VD4aFPUm1rNHh0dLoQlStvD1lmLTgZeWd/CZMttDLZZMtB/phl8FXvhCmtNUy2HEP3FU/J2m+WiIgaz+2Th7R2c/1H7bTu18O59dXAclFUuCyFiIiIiJq1uFfS9ujRAwAwe/Zs3fs0bNuwbyzdc889EAQh8N+3334bdp9FixZhwoQJaNeuHex2O9q1a4cJEyZg0aJFMR8vJT/R51ReodCjTrA4YGs5JGEBLQA4FMpelVocaPFL2h0YnjhMkJ8/shYOkQW0gc3NNlhyeiR1QAuwSpaIqCmTVtLaTGYIR9/3BelHboa0RERERCQR95D2vPPOgyiKePPNNwOTiGl555138MYbb0AQBJx//vkxHdu6devw7LPP6t7e7/fjuuuuw5gxY/DRRx+huLgYbrcbxcXF+OijjzBmzBhcf/318CtMJEHNh+itVVyuONtzErArhLSLdzllE4pJzf+9Bodq67+gbpH0LzVcQao4cVjqB5yspCVKvAM1Xnyyoxa/HK7vvy2KIlYccOHTHbUor5NXQhLp5fZ7Q27bgv8tE6QfufnZkIiIiIhCxT2knTp1Ktq0aQNRFHHttddi7NixmDdvHoqLi+HxeOD1elFcXIx58+Zh7NixuOqqq+D3+1FUVIRbb701ZuPy+/244YYb4PV60bJlS1373HfffXj99dcBAP3798fMmTOxYsUKzJw5E/379wcAvPbaa7j//sT0FqXkoF5Jmzoh7bubq/HiL5Wa+83aUoP7fyzDukMu7K0ODTrMBitIBYVKWqEJVKEypCVKrNI6H/72Qxne/a0aT6yowPfFdfhkRy3+tboC7/xWjbt/KINLzwx/RArWle4LuW0zB/WilYa0rKQlIiIiIom4h7QZGRn49NNPkZubC1EUsWjRIlx88cXo0KEDHA4H7HY7OnTogIsvvhiLFi2CKIpo0aIFPv3005j2pP3vf/+LlStXomfPnrj22mvDbr9161Y888wzAICBAwdi2bJlmDx5MgYNGoTJkyfjhx9+wMCB9ZMZ/fOf/8Tvv/8es7FTcjMpzOoMQHG252RwXK5yq+pl+1xwhwkvKlx+vLahSrbcZnDmMMHskC0zpbU2dIxkpNRKgojiZ/7vtXB6j72PvbCuEu9trgncrnD5sWS3yok1ojB+rwyd4LbK4zp2gyEtEREREYUR95AWqK86Xb9+PS688EKYTCaIoqj4n8lkwkUXXYRff/0V/fr1i9l4du/ejQceeAAAMH36dNhs8l6hUv/5z3/g9dZf1vb8888jLS0tZH16ejqef/55AIDX68W///3vKI+aUoXJUShbJtjzYCs8JQGjCW9UhzTVdXXe8BVmh53yL579W4b/mwomWNJga3PmsQUmOxwdzjd0jGSUbjVhgMHnIt5uOiFLcXn7LPns5ESppqHFgZZt5Z6w2xApybCEvr97QnrUhn7k5sRhRERERCSlXDIXB0VFRZgzZw7279+Pb7/9Fhs2bEBpaSkAIC8vD3369MHpp5+ONm3axHwst9xyC6qrq3HllVdixIgR+OabbzS3F0URCxYsAAD07NkTQ4YMUdxuyJAh6NGjB7Zs2YIFCxbghRdeaBKXbJMxfk9omwBTWmvkjV4Ckz03MQMKw6JxTb7HLyLLJqDKrf9y4HaZZhyXa7y1Q4vT56B2y4vwOQ8hrcslsOTEfuLAeJg2IAef76rF+0HVe8nk9PZpeOlXeTW0UhsMotQT/nXMtiQUKa8keL240wmBnwX2pCUiIiKiMBIW0jZo06YNLrnkkoTd/wcffIBPP/0UeXl5gfYF4ezcuRP79tX3HRsxYoTmtiNGjMCWLVtQXFyMXbt2oXPnzo0eM6UW0R0a0uYOfxvW3F4JGo0+bTPNKK6WT6Dj8YsIM3+YTN+CyCpHTfZcZJ5wb0T7JjO7WcD4rhnYU+XD98V1iR6ObiLbdFIToCd/FZrAJIWUGF7JRLFp5qATlILkagRW0hIRERGRRELaHSSL8vJy3HbbbQCAp59+GgUFBbr227RpU+Dnnj17am4bvP63336LYJSU6qSVtII1O0Ej0U+tkszjh+FJdbQqcyl1GA3niZKRnotZ+JZFkZJW0lpNnDiMiIiIiPSLaSXt7t27o37MDh06RO1Yd999Nw4cOIBhw4bpmiyswd69ewM/t2vXTnPb9u3bB37es2eP4TEG35eS/fv3Gz4mxY/ocwO+0EloUiGkVes9u7XMA6/B75UMPNSkVuqZWqMlUlZaF/4NrM7giSiiBlsrDofctpiCgllJSFv3x1xg+FvxGBYRERERpYiYhrSdOnWKag9WQRACk3U11vfff4/XXnsNFosF06dPNzTOqqpj/RozMzM1t83IyAj8XF1dbXicwSEvpR5PyQrZMlMKhLRKk38BwOsb5L1Kw2ErU2U2hfQ6WZ6qLKuAKk9oUOVnvwNqAvRcCbCtjBOHUWTWle4LuW0K+WwZ+g4vepOzLzkRERERJU7M2x2IohjV/6LB7XbjhhtugCiKuP3229GnTx9D+9fVHesjabNp99u02+2Bn51Op8aW1BT53WWyZaa01gkYSXREUmDWNjPhra+T0vnHZciW/aV/cgT4N/eTj4PtDqi5KMo0h9+ISMHQlh1Dbi89sCPws+itDVknWLPiMiYiIiIiSh0xTU+uvPJKzfXl5eVYsGABBEHAFVdcEcuhhHjiiSewefNmdOjQAQ899JDh/R0OR+Bnt9utua3L5Qr8nJaWZvi+wrVI2L9/P04++WTDx6U48csn3xJMzSsAGNrGHn6jZqhluhmTe2Rg1pb6aqp+hTYMapUcz1W/QhsK0kwoCaqoZkhLRKRNWkxwXvvjAz+ndZ6E2t+eO7atPzpXhhERERFR0xHTkPbNN9/UXL9x40YsWLBA17bRsnnzZjz55JMAgOeffz6kHYFeWVnHqh/CtTCoqTl2OVu41ghKwvW8peQmIrRtgDm7e4JGkhhmATCzKa2qCcdlYIJCRW2imU0CruiViWfXHJv0jhktEZE2aVuYdIs18LNglpyo97OtBhERERGFanbXIf/73/+G2+1Gly5dUFtbi1mzZsm22bBhQ+DnJUuW4MCBAwCAcePGISMjIyQ4DTexV3AlLPvLNkOipJJWOrtzE8d8NnWZJH26WUlLRKTNLzmdJQT3oTVZQzcWvRBFMapzNxARERGRMQ2fxR566CE8/PDDiR0MmmFI29B+YMeOHbjkkkvCbv/YY48Fft65cycyMjLQu3fvwLLNmzdr7h+8vlevXkaHS6lODK2kFZpdSMsvn6lKGrAfdspbdxAlE1EU8e3eOvy034Uu2RZc1D0DFp4pojiSTp0Q/G+gYFL4yC36AKHZfRQnIiKKi2+//RYjR45UXJeWlob8/Hz069cPF1xwAS699NKQ+YSIEqV5JUZR0rlzZxQVFQEAli5dqrntd999BwBo27YtOnXqFOuhUbKRhLQQmlc/WuYjTQcraSnZbS3zYvqvVfjlsBvzt9di0a7IJuuM0hyl1Az5JS2OQk5USitpAbY8ICIiShCn04m9e/di4cKFuPbaa3HSSSdh165diR4WUfMLaWfMmAFRFDX/C55M7JtvvgksbwhZBUHA+PHjAdRXyi5fvlzxvpYvXx6opB0/fjwvaWuGRGm7g2b2J2fmSz5lbTwinxTRx6SWktgbG6tCbr/7m3bPeKJokwb8wf8ECgohrciQloiIKC5uuukmrF+/PvDf119/jeeeey7QynLjxo0477zz4PPx6kFKrOaVGEXRtGnTYDbXV0VOnToVTmdoxY7T6cTUqVMBABaLBdOmTYv3ECkZSCtpTalRSXtKUXQu9WAlbeqq9cgDWZ5nomR2oCY6H6rZpoUiJZ04LOS1pNTWQPTGeEREREQEAC1btkSfPn0C/51xxhn4y1/+gk2bNgWK8davX4/58+cndqDU7DGkjVD37t1x1113AQBWrVqFYcOGYfbs2Vi1ahVmz56NYcOGYdWqVQCAu+66C926dUvkcClRJJW0Qor8yfXJt+na7r8j8zXXmxl2pCx/+E2ImiSeXKJISScOC+1Jy0paIiKiZJOVlYX7778/cPurr75K4GiIGNI2yj/+8Q9cc801AIC1a9di8uTJGDRoECZPnoy1a9cCAK699lo8/vjjiRwmJVKK9qTVE1J0ybGgVboZZ7R3NOo4lJykFWFEzQXftihSouR9U0C4nrSspCUiIkq0vn37Bn7es2eP6nbffPMNrrzySnTp0gXp6enIzs5G3759cdddd2Hfvn267mvZsmW47rrr0KNHD2RnZ8Nms6Fdu3YYO3Ys/ve//6G8vFx1308++QQXXXQR2rVrB7vdjvz8fAwdOhRPPfUUqquV23x17doVgiBg2LBhYcdWXFwMs9kMQRBw9913K25TUVGBJ598EsOGDUNhYSFsNhvatGmDcePG4cMPP5R9FgomCAIEQcDDDz8MAFiyZAkuvvhitG/fHlarVXEOpwMHDuC+++7DwIEDkZeXB7vdjvbt22PixIm6A/X3338fp59+Olq0aIHMzEz06dMHDz30kOZznUicUrYRTCYTXn/9dVx44YV45ZVXsHLlSpSUlKCgoACDBg3CjTfeiHPOOSfRw6QEcO1fAs+RNXD+PiN0hZAa50X09JJNt9RvpDV7OkPa1MX2s8mvzivi++I6LNxZi36FNkzpmQl7M20EXecVUeeLzos2+AKA3ZVe/FHpxfEFVuQ5UuMkGyWOViWtUrsD5473YLLnwd5+HMxprWI9PCIiIlJgsx27itRqlZ9Uraurw9VXX41Zs2bJ1m3YsAEbNmzASy+9hJkzZ2LcuHGK9+F0OnHttddi5syZsnXFxcUoLi7GwoULcfjw4UCIGXz/U6ZMkbViKC0txfLly7F8+XI8//zzWLhwIU488cSQbaZMmYLHH38cP/30E3bt2qU5mf3MmTPh99cXmV166aWy9V9//TUmTZqEI0eOhCw/cOAAPv30U3z66acYM2YMZs+ejczMTNX7AYD77rsPTzzxhOY27733Hm688UbU1NSELN+7dy/mzJmDOXPm4Nprr8X06dNhscg/Z3m9XkyZMgVz5swJWb5x40Zs3LgR7777blJWTsc0pH300Uc11x86dEj3tg0efPDBRo1Jj4cfflj2h6FlzJgxGDNmTOwGRCmleuO/UbXyr8orUySk1TPJXVogpFXfhr0dU5dS3uXyiYHfOyWWXxTxtx9Ksf9oH9b9NU58vsuJmWMKm93fnSiKeHJFedSPu6HEjSdWlMMnAplWAU8Pz0NBGoNaUqfVk1ap3UHV6nvqt8toj8LzfoHJ3iK2AyQiIiKZ3377LfCzNMQURREXXXQRFi5cCAAYN24cJk6ciC5dusBkMmHFihX417/+hd27d+Oiiy7CsmXLMHDgwJBj+P1+jB8/Hl9++SUAoFu3brj55psxcOBApKenY//+/fjxxx/xwQcfKI7vyiuvDAS0/fr1wx133IFevXqhtLQUs2bNwowZM7Bv3z6MGjUKv/76K9q2bRvY99JLL8Xjjz8OURTx/vvv495771V9Ht5//30AwPHHH49+/fqFrFu2bBnOOecceDwetGrVClOnTkW/fv1QVFSEffv2Yfbs2Xj33Xfx2Wef4corr8TcuXNV72fevHlYv349+vbti9tvvx19+vSB0+nEunXrAtt88MEHuPzyyyGKIrp06YJbb70VvXv3RmFhIXbt2oXXX38dn332GV5//XVkZ2fj2Wefld3PnXfeGQhoe/TogbvvvhsnnHACKioqMGfOHLz66quYNGmS6jgTJaYh7cMPPxw27GlY/8gjj+g6ZjxCWqLGcG57XXWd6C6P30AaYX+1nksw6/92tfrOWlMjkyYFDoWKzPUlHpzcOjqTylHjrD3kDgS0wVYfdGNQM/sd7a32YXNZ+N6eelt4NLzyX/61MnCyotojYv7vNbi+b3aEo6TmQLvdgfpHbn/NHrj2LUZa5+T7okBERPHlF/044qpN9DDiJt+eDlMCC5l8Ph/++c9/Bm5fdNFFIetfe+01LFy4EFarFR9//DH+9Kc/hawfMmQILr/8cgwfPhwbN27EtGnT8MMPP4Rs88ILLwQC2gkTJmDmzJmw20M/r5977rl47LHHsH///pDlCxcuDIS3o0aNwmeffRZS+Xv22Wdj6NChuOGGG1BaWoq//vWvmD17dmB9z549MWDAAKxZs0YzpN28eXOgZae0itbj8eCyyy6Dx+PBn/70J8ydOxfp6emB9QMGDMDYsWNx2mmn4YYbbsC8efPw5Zdf4qyzzlK8r/Xr12PUqFFYuHBhyPNw2mmnAQBKSkpwww03QBRFXHPNNXj55ZdDKmUHDBiACy64IFCN+9xzz+HGG29Ejx49Qu7j+eefD2y/dOnSkOreUaNG4ZRTTsGVV16pOMZEinm7A62eFEbpqe4jSjR/3SHVdd7yjXEcSeRqveH/bhsqKrWCjz4F+iYgo+RzalsHvt1bF7LssFMeClJibFEJJTeXNr+Q9mCtvtel3hYejqPvbYecoT3Fl+6tY0hLmjQnDgvzBdTvKo3JmIiIKLUccdWi5cyHEz2MuDl0ycModGhfGh8Lhw8fxvr16/Hggw8GwsmLLroIp556amAbURTx9NNPAwD+8pe/yALaBi1atMA///lPjBkzBsuWLcO2bdsCE8f7/f5ACNyuXTu8/fbbsoC2gclkCqmCBYD//e9/AOrbMLz55pshAW2D66+/Hh988AG++uorzJs3D/v370ebNm0C6y+99FKsWbMGGzduxC+//CKrkgXqWwsA9ZnblClTQtbNmjULu3btgsPhwNtvvx0S0ErH8dprr2HFihWYMWOGakhrMpnw2muvqT4PL730EioqKtC2bVu8+OKLiq0MgPpCz7feegvFxcV4++238Y9//COwbvr06YHWDa+88opi+4UrrrgCs2bNwqJFixSPnygxDWm/+eabWB6eKDlphJbpvW6L40Bia3jb+gnD1NpAXtQtA+d3VX4Dp+SnVAXNucSSh1Wl4XNzPJlZ4/GH3wiAV99mqmEue2xTONL3SGnrEVN6O/hr96rszRcYERFRrDzyyCOqV2+np6fjz3/+M5566qmQ5Zs2bcL27dsByCtspRqqQAHgp59+CoS069atw9699f/2X3/99WF7tQbzer1YunQpgPqK2fbt26tue/311+Orr76C1+vFt99+i0suuSSwbvLkybjrrrvg9/vx/vvvK4a0Db1yhw0bho4dO4as+/jjjwEAI0aMQGFhoeaYTzvtNKxYsQI//fST6jbDhg3T7I3bcH9jx45VDXIBwGKxYOjQofjwww9l99fQa7Zv37446aSTVI9xzTXXNK+QdsSIEbE8PFFSEkWNVgFa65KInizOfDTEUwo03ji7ABnsdZDSlF4DDGmTh42tUQOq3fpemHrbHaiHtAzRSJu0klb6ijGntVYPacXwLTuIiIgo+k488UT85S9/kU0atmrVqsDPQ4cO1X28AwcOBH5uqNIFgOHDhxsa144dO1BbW9/6YvDgwZrbBq/fsGFDyLqioiKMHDkSX3/9NWbOnImnnnoqpLDj559/DoTRShOGNTwPX3zxhe6CkODnQOqEE05QXefz+QK9aV9++WW8/PLLhu/P5XJh27ZtAIBBgwZp7nfyySfrOn48MUUhija/W3WV6KtTXZdM9GQZDS1LlYIPG0vOUp7Sa0AaQFDiqP2NNce/PN2VtDpfvmqbNcfnloyRTxwm+ZitMHlYA19NcVRbhBEREdExN910E9avX4/169dj7dq1+OSTT3DllVfCZDLhxx9/xOmnn47Dhw+H7BM80b0RDcEqUN9ftUFwCwI9SkuPtUJq2bKl5ratW7dW3K9BQ/i6Z88efPfddyHrGlodWK1WXHzxxbJ9I3kenE6n6roWLdQnSi0tLYXXa7ywLfg5LysrC3ymCve8tWrVyvB9xVrMe9ISNTeiz6WxLkVCWh3bNEwYplR1ZuHpn5Sn9BrYXZkaleDNgU1hYjcAaI7FntUenRWyOpvSrjjgwi1LSmTLee6JwpGGrNLqa0Fj8rCaDU/DueMdtBg5H7bC5KvqICKi+Mi3p+PQJQ8nehhxk2+PT3u8li1bok+fPoHbJ554IsaOHYuRI0fiqquuwq5du3DddddhwYIFgW18vmPzHnzyySeal+hL7yvaGtvS7MILL8TNN9+Muro6vP/++4Gr3n0+X2Bisj/96U/Iz8+X7dvwPJxzzjn4v//7v0aNAwDMZvVLAoOf8+uuuw633aavXaRSr14gNVvBMaQliiJR9ANi6k+upOetTKvdQSq+GVJ4P+xzYWr/RI+CAOWewQDg0zs7VhMS7UpaAChxyo/JtzUKJ1y7A61KWgDw1+5D1eq/If9PS6I7MCIiShkmwZSQibSaqyuvvBKffPIJ5s6di48//hhLlizBGWecAQAhgWVubm5IyKtXQUFB4Of9+/ejZ8+euvfNy8sL/Hzw4EHNbYMv9w/er0F2djbGjh2LDz/8EB9++CFeeOEFWK1WfP3114FjK7U6AOqfh3379sHtdkf0HBgRPHZRFCO6v9zc3MDP4Z63cOsTgfVuRNHk1640zOxzV5wG0jjndgl/RrOhqozBRdPUPVc7TKDEUps4rEpnVWlTovcRNza/zmKfbQrD4w89SWuRtDuwZHULewxv1e9RHRMRERFpe+KJJwLVnffee29gef/+x6pTli1bFtGxBwwYEPhZ2mYgnC5duiA9vf57+c8//6y57YoVKwI/qwWbDSFsaWlpYLKshlYHWVlZOO+88xT3a3geVq1aBbdbvbVjNNhsNhx//PEAIn/OHQ5HYOK2lStXam4bbn0i8BsHUTSFqaK1tFBvkp1MWqWbcXH3DFhNQJZVOQyyHE1nLUxpmySryuX0lBzU8sbm+I+63vDV28iUtlc+T1yQNpcv9ESt3Rx6wVrmCffCknei5jFEb63meiIiIoqu7t27Y+LEiQDqw9Avv/wSQH3A2q5dOwDAK6+8gro6460L+/Xrh/bt2wMAXnvtNVRXV+ve12KxBNoSfPnll9i7V2Xy0aPHbtjn9NNPV9xmzJgxgX6w7733Hurq6jB//nwAwIQJE5CWlqa4X0N4W1FRgTfffFP3+CPVcH+bN2/GF198EdExzjzzTAAI9CBW88Ybb0R0/Fhqjt/niGJGFLUvu02lNgAXdcvAu+e0xPNnyPvSAMcqadl/lij+VOcXSp23mKjRm70qbTdzTCEGtlLuYSWlVr1M1MDlCz1RKw1pzZkdUHjeWrSaUo5Wk+V9jwEAPvWJNoiIiCg27r333sB39ccffxwAYDKZApW1O3bswBVXXAGXS33+mcrKSrzwwgshy0wmE+66q/5q2r179+KKK65QrUb1+/3Yt29fyLJbbrkFAOB2u3HttdfC4/HI9nvjjTewePFiAMAFF1ygOkGZzWbDRRddBKC+x+7777+PqqoqAOqtDoD6lhANQfOdd94ZtiL4hx9+wNKlSzW30XLbbbchM7O+5cfVV1+NjRs3am6/cOFC/PrrryHLbrzxxsDv84YbbkBNTY1sv/feew+fffZZxOOMFcYrRNHUBPrRSplVgmXz0cCCBZdE8ad2Oqg5/jn6VRPrUF5R3i/UJAjw6mtpqx6MEx1V5wv94uQwK0/9YLLlwORQPgEqep2yCciIiIgotvr06ROo4Pzuu+/www8/AAD+/Oc/Y8KECQCAOXPm4Pjjj8c///lPLF26FOvWrcN3332HV155BVOmTEFRUREefvhh2bFvueUWnHXWWQCA+fPno2/fvnjuueewbNkyrF27FosWLcJDDz2Enj174pVXXgnZ99xzz8XFF18MAFi8eDGGDBmC9957D6tXr8ZXX32F6667Dtdddx2A+n6uzz77rObjbAhjnU4n7rjjDgBAq1atMGrUKNV97HY7PvjgA9jtdlRXV+OMM87AZZddhg8//BCrV6/GypUr8fHHH+Ohhx7CCSecgOHDh2P9+vWa49DSqlUrvPXWWxAEAfv378fAgQNx00034eOPP8aaNWvw888/Y+7cubjnnnvQtWtXjB07Frt37w45Rr9+/QIB96pVqzBw4EDMmDEDq1evxpIlS3DTTTfhiiuuwMCBAyMeZ6xw4jCiaGqCIa1apaw5UEnbHGMhosRSC3H2VGn3xW5K/KKIRbucWHlQvTeW1y8G3qPUKm71tkFgbEbh7K2tCLltN0XyMVsE/G7AbI/OoIiIiEiX++67DwsWLAAAPPbYY/jiiy8gCAJmz56N2267DdOnT8f27dtx9913qx6jZcuWsmUmkwkfffQRrrzySnz44YfYunUrpk2bpntcb7/9NrxeL+bPn481a9bgsssuk21TVFSEhQsXom3btprHOu2009C+fXvs2bMH5eXlAIDJkycHevKqGTJkCL799ltMnDgRe/bswXvvvRfoZ6skOzs7/APTcMEFF2DBggW46qqrUFpaiunTp2P69OmK25pMJmRkZMiWP/vss9i3bx/mzZuHzZs34+qrrw5Z37lzZ8yePRtdu3Zt1FijjZW0RNEUpt1BKjKpVdKy3QFRwqgFhtvKvY3uvZoqFv/hxNubtPt6zd5y7NKmEmfo+3PDs8RKWooGt09+gkTa7kAv0cuWB0RERPE2aNCgQMXr4sWLA5NKWa1WvPjii/jll18wdepU9O3bFzk5OTCbzcjJycGJJ56Ia6+9Fh9++CF+++03xWOnp6djzpw5WLJkCS6//HJ07twZaWlpsNlsaN++PcaNG4eXX345UN0azOFwYN68efj4449xwQUXoKioCDabDS1atMDgwYPx5JNPYsuWLTjxxBPDPkZBEHDJJZeELNNqdRBsyJAh2LZtG6ZPn45zzz03MA6Hw4H27dvj7LPPxj/+8Q9s3rwZV1xxha5jahk3bhx27tyJZ555BmeccQZatWoFq9WKtLQ0dO7cGWPHjsWzzz6LXbt2YeTIkbL9rVYr5s6di3feeQfDhw9HTk4O0tPT0atXL9x7771YvXo1unTp0uhxRhsraYmiSGyClbRqHJb6lLZHng0AJzohiietHHZPlRedc5r+JFdvbgw/8cLHO2pxaa/6nlYfbFXe/rR2Dmwuk/f3ktLbVoGapw1lB2TL8uzp2juZbPVVsxKiz/jEJERERBTq9NNPN9xCqKG3q5K+ffviv//9b6PGNHLkSMVAUY9x48Zh3Lhxjbp/AHj66afx9NNPR7Sv3W7HjTfeiBtvvNHwvpG0c8rOzsYdd9yhGF7rddlllylWHzdmXLHEGjiiaNKopM0a8GQcBxJ7aUdLaPvmW9Et99j5nik95ZcaUGrqlM3zeMlK67OEL7k+ZySNPVXKJ9FGtnfo2r/pXSdB0eT0yYP+njnySx6DtRgxO1bDISIiIqIUxG/gRNGkUElrLRiMrJOehL1NZGfMksEpRXb8uE95JktBEPDQkBZYc8iFLJsJvfP1zZROye+0dg7sCrqcvE9+06/OTBVaOWySnQxOeiZBQI7dhAqXdgzL55W0uP2h//6nW6yBWYXVODqej7yzv0Lp4jNjOTQiIiIiShEMaYmiSSGkzTt7MUy2xjXOTrRw4YTVLGBwG33VaJQ6eKlF8mombWfjJs0soCLMNnzKSYs0pG1hC9Pq4Chr3okKS/lqIyIiImqO+B2cKIpEpXYHgvZMiamAgVDzJC0C4+sgeYgaIc6GI27sqgzfYzVZ+UURG0rc+KNSPhFTrJi0Cx4BAD7+AZAG6cRhNpPOf/sVqm39rhJ4K39H3R/z4as7HI3hEREREVEKYCUtURQ5f39DtkwQUv9ciI/X+TZL0uiAr4LkofUnOWtLDWZtqcFVvTNxTmd91XzJQhRFPLmiHL+WeCAAuKZPJs7uGPvHcNgZftLHH/a5MLV/zIdCKeqP6rKQ2zZz5CdoSxacEPjZ5ChE/rnLYclKvtmHiYiIiCi6Uj89Ikoi1b88Jl/YBCppW6en/mMg40ySCi9m9clDT1HnjKB+wqliS5kHv5bUVwGLAF7foPwYKt3RncbLo/NwB2vDh7nUPG2uOBRyW/f7ZZjPCP66w3DueD/CURERERFRKmFISxRjgjn1J9Ia3i603+ywInuCRkKJxNntk0dT/V2sL9HXpuFQBGFpNN63dlWkbhsJiq1WaVkht7dW6mtTYLLlwJLTS3Ob2i3TIx4XEREREaUOhrREFFanbCv+0j8bffKtGNXegWv7ZIXfiVKetE+nyFLapNF0fxWxe2DZttCPPCe3Nh7aWvU0r6VmySvpST+mXU/d+7Y4Y77mekFgdzIiIiKi5oCf+ohIl2FFDgwrcoTfkJoM9qRNXk03pI0daYuIbJvxwNXCkJZUePyh1d25tjTd+1pyeiCt6+Vwbn9Hcb1gzWjU2IiIiIgoNbCSloiIFEknHWcwmDz8TTQyj+Wjkk6AaJa+wHWw8FMTqZCGtFaT0V7u6i8uwcKQloiIiKg54NcNIiJSJC0a3F7hTcxASEZvYD5p4SEs2lkr2VfEvG01uPGrEjz0U1lE/V3j6bdSt2xZJCcMdkhev+YIPgGxkpbUrDlSHHLbcEgrqL8gPSUrIfpckQyLiIiIiFIIQ1oiIlKkFEeVOJM70GsujGSUMzZVwxt0rf+eKh9mb61BucuPzaUefLitJvoDjJC0JQEAPPxTuWxZtcf41GnSkLbWYzzpPVDDExWkbMn+30NuWzRCV0VhKruduz4wOiQiIiIiSjEMaYliyFowONFDIIqYoBDTfrqjVmFLijelMFPLb6WewM+zt1aHrFu6ty4aQ4qKarfyA/NJHrCRMatNeLds37FjnNTSputYkbRIoOYh354ecrvc7TS0v7d8k/b60l8Nj4mIiIiIUgtDWqIoEqxZIbfTu1+XoJEQNZ5SHuU1XsBIMdCY3q1uX/L2s1XLQKWhtNOr/zF4/cpBbXDgesMJ2bqOJe1rS9TA5Qu9ymBy5xMN7W9rNVxzvd9TYXRIRERERJRiGNISRZHJnh96O611gkZC1HgsGkxeatWhalKllaraMKW5ssdAKbHHLyqeXEi3Hru3XLsJ759TGPZYSZxvU4LV+TwhtztktjC0vyXrOM31opshLREREVFTx5CWKIpEv6RfoWB0dmei5KH0DwSD2+RgtKAzOKRN5pxRLUz2Sx6wkZa0Xj/gUkhX0yyhd2Y2CWiXqf2ezUpyUuL1++AVQ18cDrPF2EEs6ZqrRU+l0WERERERUYox+AmSiJT46g7j8LzuEN3lIcsFE//EKHUpBbKL/3DiQI0PvfOtqPGIGNHOgfZZfJ3Hm4Gr/QEApqAa1WS6Yt/nF7H4DyfKXH6M6pCmehJg0S4nLuyWEbjtMVDS6vGLOFInT1elIS0AWMKUHHuNNgOmJmVPlRdf73Yiw2rCuZ3TkG6tP5Xl8sknlDMa0gphQlo/K2mJiIiImjx+syaKgkOzWiqvYCUtpTC1uOrXEjd+LXEDAD7fVYv/nVGAHDsvzIinBduNTeCWrBXQM7fU4JOjk9F9tduJrjnKH0s+2FqDHi2s6FNQP8FXnYGQ1u0X8cCPZbLlSiGtOczz9NVuJ87prB2mUdNU6/HjoZ/KUOOpf+39Xu7B30/OBQB8uW+bbHuH2Wro+CZLhuZ6kT1piYiIiJo8fqsmaiRvxRb1lQxpKYWZdCR7Hj+wYHtNHEZDwfIdxv75TtaetA0BLQDUeET8WuJR3fb5dccu9y5M0//491X7FJdbFZ4UpeA22F6VY1HTt77EHQhoAWDdYXegsnrJ/t9l22dZ7cbuwJymuZqVtERERERNH0Naokby1x1SXScILFan1GXR+S/E9gr5pb4UWxlWY/98N4Wr9Mtdx1oWdM5Rr1KUVsPWqDSwVQquTylyRDQ2avoq3fI/orqjfUfK3U7ZukyDIa0193jN9Zw4jIiIiIwSBAGCIODhhx9O9FBIJyZIRI0kihozybCSllKYWW/5ZRMIAJs6I+0BUoFb4/FYTQJ8QetdKsWvZoVK8VEd0pDvMOHXEjcW7pQHb9R82RT+Oa/zicgEcLiuOmT5A/3ONH4HZpvmatFbDdHvg2Di5woiIiI9vv32W4wcOVK23Gw2Izs7Gzk5OWjfvj1OOukknHrqqRg3bhxsNu1/j4lijZW0RI2lNQsPv0xRCgtz5TcllLHQ1RU001hTiGtdmiFt6G21QFftHMSJLe24oncWRrVnVS0dY1NoWNzwOjxcF9rypUNmiwjuIfxHctFTGXYbIiIi0ubz+VBWVoZdu3bh+++/x3/+8x9cdNFFaNeuHR5//HF4vbxKkBKHlbREOvnqDsNfux+W3OMllSzqYYHASlpKYUo9O5UkIvSr84rYWelB2wwLsjlpWVjBoWaFS6P6P0VohrRmAQjqHapWRRyu5XJTaBFB0aP0LtPQ7mB71ZGQ5YV27UnAlAhC+Pcxv6cSJnskATAREVHzdtNNN+Hmm28O3K6urkZZWRl+/fVXfP311/jqq69w+PBhPPDAA/jkk0/w6aeforCwMIEjpuaKIS2RDq4D36Hs63EQPZWwtjwF+aO/gdBwaaKocaaNPWkphentSRtvB2q8eOincpS7/DALwF0Dc9C/pcFJepqZ4ur696lfS9xNYvKrZftcquvK6kJD6A+2Kk9sp1AYGUItyi6t8yHPwRNwzY3S62FvtReVvkOynrSFjkzjd6AjpPWWroMls6PxYxMRETVzLVu2RJ8+fWTLzznnHNxzzz3YtGkTLrvsMqxduxYrVqzAhAkTsGTJErY/oLhL0q/gRMmleu0DgcsMPYd+RN0fcwPrRJ96WAATQ1pKXXoraeNtyZ66wCRSPhH4aHttgkcUf0aLPP+orA9pX/1V+XJpUattS4zE6j71HjXLpv0RKNOq/Pr/jL1qmyWll+svh914btP3suWFDuOVtHp62Nft+tD4cYmIiCis3r17Y9myZejfvz8AYNmyZfjf//6X4FFRc8SQlkgH98HvQm7XbHw28LPoq1PcR7BkwpLVNabjIoql1hn6qgU9cb4u/OvdoSHZ5lJPXO8/FRWk1f8uDzmV60MTMa+Y0bsc2uZYtXSOTTlA/euAbN3HG9clXXP9WJX1n+xoficFSDmkzbSacMQlr9TunJVn+PiCnpO6YSYXIyIiosilpaXhnXfegXC0J9YzzzwDj0f5e8aBAwdw3333YeDAgcjLy4Pdbkf79u0xceJEfPXVV5r3U1ZWhjfffBOXXXYZevfujczMTNhsNrRu3RqjR4/GK6+8ArfbrWvM77//Pk4//XS0aNECmZmZ6NOnDx566CGUl5cbeuyUPFjmRxQBMajFgVJIay0YjKwBj0Mw8xJsSl0Wk4D+hTasPaz9IUFtYqZYYa9Q43xhqlY9fhGWOFdO+wy2xs0N6j2s9BrolmvBya31vedO6ZkRtmVBnsOM8V3TsaAZVmqTnNLL1S8CPsmL8bz2x8MSo0lDRS+ruImIiGLp+OOPx1lnnYXFixdj3759WLlyJU455ZSQbd577z3ceOONqKkJPVG7d+9ezJkzB3PmzMG1116L6dOnw2KRR279+/fHH3/8IVt+8OBBLF68GIsXL8b06dPx2WefoXXr1orj9Hq9mDJlCubMmROyfOPGjdi4cSPefffdsGExJSdW0hJFwh90Rk3S7sBaMBgFY5fDXnRmnAdFFH0nFIav3Ip3SEvKVX1awgWi3gTMJRYuOJYKzsKkw31oSC4eH5YXqHzQkmUTML6rvsvRR3VIMzBCasqU2nP4IcIvqQkf0bpLxPdhye2tPQYfQ1oiIqJYO/PMY9/jv/8+tK3RBx98gMsvvxw1NTXo0qULnn32WXz++edYvXo15s6dizFjxgAAXn/9ddx9992Kx/f5fBg8eDAee+wxfPrpp1i5ciWWLVuGd999F3/6058AAGvXrsXkyZNVx3jnnXcGAtoePXrg9ddfx8qVK/HVV1/hxhtvxK5duzBp0qRGPQ+UGKykJYqAGBTSSitpBbMj3sMhihk9tZWuBAR8ZEy4HD3eLSsA4y0WgjeXDtdIEbBJR5DbwBFudjFqNpRern4R8Imhb4BGXl8y4frSspKWiKjJE0U/RL/yHAJNkWDKhqBj8sx4GjBgQODnrVu3Bn4uKSnBDTfcAFEUcc011+Dll18OqZQdMGAALrjgAtx333144okn8Nxzz+HGG29Ejx49Qo6/ZMkSdOvWTXa/p5xyCi699FK8+eabuOaaa7B06VJ8/fXXGDVqVMh269evx/PPPx+4z6VLlyIz89ikpaNGjcIpp5yCK6+8snFPBCUEQ1qiSASFtM6d74euY4sDakL0hF8VLj92VnjQOcca+wGpmLGxClN6ZsLGUE1RuKrVRFTSfvS7sTYCi/9w4tKemXBYBIWQVv/v3cjXAIeFr6fmrMbjx5sbq/Hz/jq4Ff5GDtb44Jf8bZkb80VT0P5Y7tr3BUo+G4ack/8La8FJkd8PERElLdFfiaoDFyZ6GHGT1XouBHNuoocRIj8/P/BzWVlZ4OeXXnoJFRUVaNu2LV588UXFVgYA8Mgjj+Ctt95CcXEx3n77bfzjH/8IWa8U0Aa7+uqr8d///hfr1q3DRx99JAtpp0+fDr+//oPJK6+8EhLQNrjiiiswa9YsLFq0SPvBUtJJrlMWRCmioZLW7yqF59CPIetYSUtNid7w6/l18TvjrzSiRbuc+L5YeRI/Ch/Clse5HLrW48fHEUzA9dXRSeOkl54bq6TVv62Nn5KatU+21+L7YuWAFgA2lXqiWkkrhKukBeA59CPKlk5WbL9AREREjRccelZVVQV+/vjjjwEAY8eOhd2uXphlsVgwdOhQAMBPP/2keV+iKOLAgQPYunUrNmzYEPivbdu2AIBffvlFtk9Dr9m+ffvipJPUT9pec801mvdNyYmVtESRODpxmHPXHNkqhrTUlEirxNQUV/vgTcDkU8FeWV/VbHuItrCbUKYRtIarpF38Ry26t8iJ9rBU/VaqPFNuOO/8Vo2xXdJlPWljFdLq6XFLTdd8HZPGSd8jGxPSmtLbAEfCb+er+h2itwaCVV45Q0RERI0THMxmZ2cDqO8ju27dOgDAyy+/jJdfflnXsQ4cOKC4fOHChXjppZfw3XffhdyfVElJSchtl8uFbdu2AQAGDRqked8nn3yyrjFScmGNCFEkGr6U+b0K69igk5qOnnnhJw5rELe2pszNZMZ01g6nPWHeliriXEnrbeSLRdbuIOjnPIf2Rxuj5xGGtgmtlODLj4JJT4A0pt1BxvF3AuZjf8vmnJ6q23ISMSIiotgIDkbz8vIAAKWlpfB6Fb77h1FbG3rCVxRFXHfddRg7diwWLlyoGdACgNMZ+u99WVlZ4Gqali1bau7bqlUrw+OlxGMlLVFE6gMNU5r8jdHvqYj3YIhixh7+6tuA+ooyRljxII04C9PMeGt0Ia784rDi9p4ws3TVeeN76XRjK1SlhcHB1YvtMi0orXOr7mu00nFsl3T8tN8VuG3h6W0KEs1KWnvr09Bq0n54Sn+BOb0NRF8dShacoLyxj+1diIiaIsGUjazWcxM9jLgRTNmJHoLM2rVrAz83TPrl8/kCy6677jrcdtttuo5ls4UWvLzxxht4/fXXAQAnnngipk2bhsGDB6Nt27ZIT0+H2Vz/5euKK67AO++8o9neiFd8NU0MaYkicfTN0mSV/6MiuhnSUvMUt0pakhO0J7lyh/nl1IUJcaOtMR8pRVGUhdTB1bHhQlSj922VlN56/fVj4AdjAgC/5OoZcyNfFyZbDuytTwMA+GqVL5EEAJEhLRFRkyQIpqSbSKu5+fLLLwM/n3rqqQCOVdQC9Z8D+/TpE9GxX331VQDAcccdhx9//BFpacpXw5WWliouz83NDfx88OBBzfsKt56SE+tBiCLgd9fP8qh0ZsvPkJaaqXhdMF/jYRpsVLiJw+JfSRv5vnO21WgeL1w7A6PtDqyST0oigDhn2k2eKIq45/tSTFp4CF/sMj6hXCJ5pZW0UbyawOTIV10netnugIiIKNo2bNiAr7/+GgDQvn17DBw4EEB9Rezxxx8PAFi2bFnEx9+4cSMA4LzzzlMNaEVRxJo1axTXORwOdOvWDQCwcuVKzfsKt56SE0NaokiI9Zc7OLe9Ll/lLo/zYIiSQzwqaTeXql/G3pwYndjdHa7dQQqljnO3yUO84OA1XCWj8ZBWvoOHZeNRNfmzw9hVWd/n7Y2N1fi+OHWqREvrQvvTmU3R+2gtmKyq61hJS0REFF1OpxNXXHFFoBDrzjvvhMVy7OLz8847DwCwefNmfPHFFxHdR0Nf25oaedFBgwULFmD//v2q688880wAwPr160NaM0i98cYbEY2REoshLVGEfM6D8FZukS23tzsnAaMhig2LgUQrHrnVq+u1m+s3V+F+S+Em6sq1x/fjQLQbBQT3Ae2aq93JyWjPUGklLQB4fPJlFD0vrKtM9BB0K5OGtI2YOMwIhrRERETRs2nTJpx66qmB0HPEiBG46aabQra57bbbkJmZCQC4+uqrA1WxahYuXIhff/01ZFlDFewnn3yi2NJg+/btuOWWWzSPe+ONNwbabt1www2Kge97772Hzz77TPM4lJwY0hJFSPRUw2TLlS3P6HNX/AdDFCP5DhMcZn2hlnQCnVjYW810LBLhfjN9C2xhtoiuqIe0QT+P7qh86VhgW4N3rhTqso6WGnhEV8jtbKs9qsfP7Pegyhq+ComIiPQ6dOgQNmzYEPjv559/xueff47/+7//w+jRo9GnT59Ai4EhQ4bgww8/hNUaekVLq1at8NZbb0EQBOzfvx8DBw7ETTfdhI8//hhr1qzBzz//jLlz5+Kee+5B165dMXbsWOzevTvkGFdccQUAYN++fRg6dCjeeOMNrFixAt999x0efvhhnHTSSSgtLcWAAQNUH0u/fv0CQe6qVaswcOBAzJgxA6tXr8aSJUtw00034Yorrgi0aqDUwonDiCLl90CUTBiS1vVyWHN7J2hARNEnCAKeOz0PL6+vwppD2q0GeAV48mr41ZgF5X6q8f7VRfv+gnNUh8WEEwttWHdY+fVqNKRVKrzVmmmXmhe3GFrR2sKWHtXjZ574EMwZ7VHx4/WhK/gaJCIi0u2ll17CSy+9pLlNYWEhpk2bhrvvvjukzUGwCy64AAsWLMBVV12F0tJSTJ8+HdOnT1fc1mQyISMjI2TZbbfdhi+//BKLFy/G1q1bce2114asT0tLw9tvv42FCxeq9qUFgGeffRb79u3DvHnzsHnzZlx99dUh6zt37ozZs2eja9eumo+Zkg8raYkiJIreQG/aBrZWwxM0GqLYyXWYcc+gXIzroh0+MDNInHC5Y8PvRi1I98Vr1jdojyNS0uC1baZZfVuDx1YKaeP8dFGS8os+eEVPyLIWdu1KbqMEwYT07tfBZC+I6nGJiIiaK5PJhJycHHTo0AHDhw/HtGnTMHfuXOzduxf33nuvakDbYNy4cdi5cyeeeeYZnHHGGWjVqhWsVivS0tLQuXNnjB07Fs8++yx27dqFkSNHhuxrtVqxcOFC/Pe//8XAgQORnp6OtLQ0HHfccfjzn/+MNWvW4OKLLw77GKxWK+bOnYt33nkHw4cPR05ODtLT09GrVy/ce++9WL16Nbp06dKo54kSg5W0RLoIkNV++Vzw10oaegvqwQBRqgsXBEYSXImiiD+qvIAItM6wwGGJ9oXwyc8vijhU60Nhmhlmo2WeOtV4RLh9omoFa7yroKPdGkPakkCrl7JgsCet0tY8IdH06XmNuiWtDgCg2KT/wwAAn45JREFUhS26IW2A7HXLFyEREZGW008/PWZXP2VnZ+OOO+7AHXfcYXhfi8WCqVOnYurUqarbzJgxAzNmzAh7rMsuuwyXXXaZ6npe/ZV6GNIS6SJ/cyv57BTAL7mcliEtNWHhsq1FO2tx1fFZuo9X6/Hj6sUlIcvuOzkXJxRG3h+13OWP+yRYjVFa58Njy8uxr8aHXLsJ9w/ORfus8P80G/24VecTcfnnh1XXf7nbiev66v/dNVa0Py5KM1mtrN9wuwOFZfy4Gz07KjzhN4ozt0/EFRp/Lw08fvnkXbmxCmml931kNextRobfkIiIiIhSRup8kyVKNtKAFgDiNKszUSKEy7YW7XIaOt5P++VVaP+3qlx1ez1ngr/ZY2wMibZkTx321dS3TSl3+fHJjtqEjSUeE78du6/oHk/6zlvpVr8D4xOHyZexKCF63t9cneghyKw84NIVxEsraR1mCxwWq8rWjRX6Qqzd/L8Y3Q8RERERJQoTJaIoElhJS01YhTu6nTi/L5ZXoXk07kJrXYPlCsFvMpu3rSbk9tK98ufEiPFdI5+0qM4bv+RRT8hpN+tPU6VB6hKNsH7jEWOVm0rtEZjRRs/6kuSrpH1XZ3Dsl/SlTzPHKqAF/O6y0AWmyK84ICIiIqLkxJCWKJoY0lITNrSNParH8xksp9Szda2eJDeJ+KKc9o3rkg5rhP+yx/Op0/Orf3BIru7jSUNarWrZQa2MhVtsd0DJIGfwCyG3fTV72GeOiIiIqIlhSEsUhqEvQQxpqQkzUtmoh9FMUM/l+HXRTj1TREO1Z5bNhHfPaYkHBucaPoYnjrOH+XXEnDk2/R9RpBOHaclzGHufVm530DxfZ81FMv567W3/FLrA54ToOpKYwRARERFRTDCkJYom9qSlJsxitJlnlOnJEJ1xvGQ/mRnILAPccQy49fwuzQbeTqUPV+ulaonC23Qc82xKavF7IZjSi2SfMXw1e+J2/0REREQUe+GnkCZq9vR/CWNPWmrK9IRb3+114us9dch3mHBZr8yQqsVylx83flUCADi5td1w0KWnui3Fuh1ELNxzEUmcHslzV+ny4/qjv9PBre24fUC2Yg9XKT2/SyNZqjSUFSBA7b3bavBkg2IlreS21y/i/c3V2FbmQb+WdlxwXDr2Vvswe0s1rCYBU3pmomV6cv77sLXMg3nbapBpq/+bzbEJ+HK3E+9vroHTK2JYkR1X9M5Crj36JyG1+iDXeUU4LPE/MfR7uQdlLn1/DEe8+2M8mmMEkwWmtCL4a/cGlpV9ezEKz98IwRzdVjRERERElBgMaYmiiSEtNWEWHeHb/36pCvxc5fbjvsEtArcbAloAWHHA+ARf+2t84TdKIaV10Xs80t9MJJW028o96Jht7GPB9UG/058PuLDigAuD2zjC7qcnnzcZCFNlIW0UK2kVe9JKHsBH22uxcGf9ZGVby71oYTdh7rYaHKmrD/sO1frwxKl5xu44Dtw+EU+sKA9UoNd4/DinUzpe33Bs4qxl+1xw+UTcNTA36vc/7Vv1y/Xf31yNa/pkRf0+tXj9Ip74uVzXtn7Rh1+rv43peKTMmR1CQlpf1XZUr38KWSc+FNdxEBEREVFs8NpsonCMNKfze2M3DqIEyzbQIxQAfo1w1navSont98V1ER0vWX30e23Mjh1J/eHrG6rCbxTGs2sqdW0Xroq6S44FRlogS6t3O2uEzUbbdgiCIHs+pZ0hPtke+rt8ZX1VIKAFgO0V3qSc1O6H4rqQFiFrDrkx/Vf573DVQXdM7l+rYvWLP5wxuU8tqw+6UKOzZUq1r1y2LM+eHuURhbJkd5ct8xz+Oab3SURERETxw5CWKIosLY5P9BCIYiY7Bpc7K1EL8A47WUnbIBadMOPZZ1VrErg0i4Crj8/S7CsbbErPDNmyFg7116rRdgcAYJNcJCGdZE3PhHXJOKddhVsekgaHy81NjUf/L8kryk9CTes9PJrDkUnvcZN8odh8f19ERERETQ3bHRBFkWCJ76WZRE1Rc5mUKZYP0xRJv4M4Uvod33tyDsyCgKJMM/IcZt0TmY3vKg9ptUQycZjVJMAVNJ54TrIWS17meyGM5Pc+UX7lzK29T43iaORshScjo/ftqNn075jeDxERERHpIxq58loHhrREYRmYOMySFsNxEDUP9VWWyR0yUuNI31X75FvRrzB08qMICl51iaySVgA8jQtpkzHW9UX5Q2WqM/LS8CM0pE0zGTtZEClTetu43A8REUWf2WyG1+uFz+eD3++HycQLm4lSmc/ng89Xf3Wk2Ryd+Yn4rkAEQPR74Nw1B3V7Pm3UmRDBzJCWKJjWZe1qvvjDicO1jWgFkCLBk1YeVFrnw5d/OPHT/jqVQFD7MTY239x0xI0fiutQp1BqWe7yY8luJ9YeMj75WwNpJa1S5W+sQtpIKmltksFsKvXg+711qFZoF6Bm9cHIny89Sut8+O/aCnywpRo+neXoRi7vD7anyovv99ZhW5kHV39xGJMXHsK+6tTvyS7tbaxFWklrERJT9yD6Y9MvmIiIos/hqJ9cVRRFVFdXh9maiJJdeXl54Of09OjMTcBKWiIAZUvOh2vvZwCA9J63ImfI80FrDXyJNVmjOzCiFOcX68M2I5WHs7bU4JMdtXjq1Dy0TDd+RjJV6nBXqkzGVO7y428/lKHi6KRKg1rZcOfAXM1jSbOlxnQ7WLSzFjM21X9xaJtpxj+H58F8NKSs9vhx37JSlDgbd528NEdXCmRj1bLB6MRhgLwn7YKjE4XlO0z414g8XceY/msVajwixnaJ/uRSR5w+3LzkSOD2R9tr8f6Ylpr7iKKIxRFMzrXpiBv/WFEua5Vw+9JS/N/wPHTUmLQt2TWm3YE5QSGt+8A3CblfIiIyLjs7GxUVFQCAAwcOAAAyMzNZUUuUQkRRhMvlQmVlJY4cOfb5u0WLFlE5fup+kiaKEm/l9kBACwC1m19A9qB/QTDbDB/LSBUOUXPQUNC3tUw+yY6WGo+I74vrcGG3Y5cQZ9n0fYBtCIZT1eqDrkBAC9SHuTUePzKs+j/AN+bhNwS0AFBc7cPKgy4MaeMIjK2xAS0A+CUnv6L9+2qXaQGgXLlqieC+1ApTj9T58cyqCt3Heee36piEtHN/rwm57ROB4mov2maqf8wrrjZWrV5a50Oew4zXN1Sp9rJdsL0Gf+mfY+i4ycRIKwyfGPr8mRCdS9zCEuW/N9FbC8ES/dcVERFFV0ZGBtLS0uB0OuHz+VBcXAxBEKJ2mTQRxZ7P55NduZmTkwO73a6yhzEMaanZ81Zsli3zu47AnN6m/obOS6cdHS+I5rCIktKNfbPw8voq3ds39Jet9Rq/rHpHRWiw2y3XiqV768Lu5xNT+x+30jp5AubyicgIKtQP97ZkjiCIPK2tQ3H5piOeQEi7oyI6l7RLQ0+14Q5sZcMqlYpjALj1xGzF5cPbOjB7a43iukgqdPdqBJobjhg7ARELSn8XxdU+zZD2oMGWIvuq60Naredi2T4X/tLf0GGTSpbNyGtD+kcYnzND1rx+8pEwpCUiSgmCIKBDhw7YvXs3nM76q1lEUYTXm/otg4iaq8LCQuTn50fteKn8PZYoOgT5mUu/q+RYSKuDyVGInGFvRHNURElpZHsH/ABe1RnUNnQ5iKQ3baStZVN54jGzAMV+ouGeC+mjjSSILEhTrtQN7uEarWdV+njUhntLv2xcvbhE9TinFimfsS6MoE2GlrM7pkXUGiBelF4f4XozG/3zckZwoiWcbJuASrfycdtkxL+qSM97Tp7DhH4FNry5LfbjUWLNHyhbJvr55Z6IKFWYTCZ07NgRNTU1qKqqClTVElFqMJlMsNlsyMjIQGZmJmw241dga2FIS82e6JU3bffXHQ7eIuwxck55FSZb6l7iSaSXIAg4s0Oa7pDWL4b+vzH0Br0G2t8mHYtJQDSysEjaB3hULmE3ByWo0WpLIL0rtVA53WrCuC7p+GRHreJ6rRYzvfKs+K00OlWu9khKk+NI6e8r3MvI6EmQWrUeB42g9b6gd/KzaNJzjxOOS8ewIoc8pI3XS8Sk8NFdZEhLRJRKBEFAZmYmMjMzEz0UIkoy7FBNzZ7oLpctCw1pwzPZ9U0cQ9TcNASmkVbFNnD5RN3hqz/6WVLcWEyAV6mSNsxtKXME/7p7/aJi9aU5JpW0ofejddxIg2G13SJpHR5JH9t4Uno9NPZvTqrGE50DiqII19E/Zq0cNgaFu2Hpec4ECCrbxelFojBBGStpiYiIiJoGVtJSs+dXCGlrt76GtM6T6m/o+NYmWJX7IhI1dyVOH5xeP/67rtLwvqsPuTFp4SHD+0XSWiFZ1HhELNolv6y+zmBiFUm7A69fuQrZEpSSRmtyxPUloRWuWkFstM8mR/IIzCk4E92GI24MLVLuMwwYb3fw1qZqvLVJfuWJEbsqPLjnhzJd2yaiklYPQVB+7uL1ChEUWjSJriNAVqc4jYCIiIiIYoWVtNTsiW75zNzu/V+F7ecXTLBkhN+IqAlJ01laOP/3Gny8XflS9VhJhXYHvxx2Gdr+5wPGto/k6nyvX1Ss4g0+VrSyyi1loSFtjVqvBchbI+i1SaXVgSeC8M+SxJ+W1E5KfLVbe5I9I//GRYvegBZITCWtnteagPqQVjQcc0eJQruD2u1vJWAgRERERBRtSfy1gyg+RL9y+CF69M9gb87sFKXREKWGcV30zSS+6qAbS/Zoh0WN0TZTYeK/FAhpn1ghPzmk5YOtNYa21xOmSidm8vjDt5SIVbXgryXqvWO1AtxIbC0z3qfWksSVtAdqIptsJNn/TGLQAje8ME+KxQQMbWNHllX+enDEq2+xQiUt2O6AiIiIqElgSEukUk3kdx1p2EBz9+yh0yEoTeRB1ISN7piGrjmJf91f2Vs+4YIvhdsdREoaD4Vrd5BuEXBya3vIMo8/fHAXLqvMd0T/Y4UQtwvJ1SVzT9pI8+NY/JW0UzhpEqlE/B1rVcc6zAKu7J2JdKsJgiCgteQkR5Q6gYQlCAIsuX1Clhk5qUxEREREySvx37CJkpTfdQTI6qy4rmDcWpizusBkYy9aap4ybSY8PLQFLv/c2CR70dS/0Ibj822y5alQSRtr4Yr63hxdiPm/h1bnqoViwc9nuCAqFq0moh1+RTLESCZii5dI+g8DiElKG83qV5+/viVDtPog66GWC//5hCyMbJ8WsqxjtgU4EIdBKXB0noTqtRsCt/0e4z2/iYiIiCj5JPHXDqJ4Uf5WJmpU0gq2bAa01Owl+gpwQVAeQ3MIacM9RD1XXlsk4ZfHr3zg4EXhqlpjUf0Y7ZdZJEOUPlfJJNKRxeLPxB3FPz4R8f9bVru7RL/XSZkkk5WykpaIiIioaWAlLTV7nrL1isvdJatgbztaZa8k+8ZGlACJDi5MQn0VYcNEPg1SYeKwaJNmiHp+N9LJsH457MZDP8kndgqemMoV5smtcif/k58KlbQ/76/Ds2vqqyPNAvDaWQVItyoPItK/w+oo9/oFgNI6PyYtPAQAeP2sAmTajo1ZbYIzLT4R2FPpwWc7ncizm3BqWwc+21kLm1nABd0ykH30+GsPufDjPhc65VhwTqe0kOpiURTx9Z46bCn1YEArG4a2cYTch18U8fkuJ97aVK06DqWnOJFdVQRrVsht94FvcHBWK9jajEJG79tgKxys6zjOHbPg3DkL5vQiZPZ7AOb0NrEYLhERERHpxJCWmjXR54Z732LFddVr70dWv/sSMgM2USqI+DLrKGm4d5MQGsxGEgalgh0VHnTJseraVs/vRmkyrL3V8kmoluyuw8Tu9b1/P9lRG/a40b5EPRmKWONZSbu51B0IaIH61/bVi0sw+9yWittrvdprPX7VcPf1DeqhZDRc92UJZgWNuc5r/O+yxuPHgz+WB04OzN9+7PW3p8qLB4a0wB+VXjy1sn4ivu+K60PtP3U6NrHhsn0uvLq+6uj6OmQPMYW0SfnyD+2AFtBb0Ru/14g0pAUAf90h1O2cCdeej9FyYjFMthzNY7j2f4vy7y4J3PaU/YqCMT9EfaxEREREpB/bHVCz5i3fqLneV6fWbzMJUgOiZq7EWV8JKM0am2olbUPQBISv4pNWySpRye5kWgRNBmbXMS/UzkrtmeaVTnz1yVcPn9XebU8slPcj1iPbZvyjTzRfUuFOIry50Vh4qnW47RXav4tYEhH6u3ZGENIu/sOpWr294YgHXr+ItzeFXuovff6eXxfarzX47wgA3tDxfOfYk+vjsjmtleo60VsDT8mqsMeo+2NuyG3PoWUQ/Z5Gj42IiIiIIpdcnzqJ4kz0ObXXe2sRm859RNRYDdmNWVLl2FR70u4wELhpVdIObFUfbipV0iqxBm1n09Hsttaj/QtQWnuGZFKmYEoPxSwAk3tkaN7PuZ2Vj5luMX6SLZovqXBdBnaFCbmltMbmTfAfQ/DdeyIYy/4aeWV3MK9fxE6DQXS4Y0q1yTCjV15kJwRixVo4BJbcPqrrRV/4ind/3UGFhcaeGyIiIiKKLoa01KyJPrf2Bj6X8vJkuP6WKAmMbOcIv1GM9G9ZH5xIs8am2u4gWtpm1nc60ltJGzwZWDQyP6VfT+cc9e5LSu+2z5yWh85hWj/0aKG8PpJK62i+40cSVmrROpraXcWrjU/wc+2NoAVuuN+V2x/706iPn9ICjgiC/VgSTFbka7QmEH11YY8h+pXCbb53EhERESUSQ1pq3vzaIa3oVwlpiaheArOLhkv6pcWdTbXdQbSe6oa8SW8lbXC4pidfDLeN0mqt815Kq1pnhO+7YFZ5fL4Eh/jeKL9AtQJXtd9FvP5GGltJG64SOB6Vwpkq7TESHduabDmwtxujuE5UO8EcslHiWmEQERERkTJOHEZNhuj3wn1gKXy1xTBntIet1XAIJu2XuBgmpHX+PiOxUzgTJblE/nk0XIYvr6RNwGASzEhg1BBe6ulbC9Rffr/xiBu98qy6qpTDhaBKvx+t8Uc6CZlaZ4ZIKjrj2e7AKO1KWuW11e4oD0LF6kMuDGplh80sxKSS9kCND7UR9LqNBjEZqk5NduXlPhd8tQfgLV8PS96JMDsK5dso9J/1Vm2HtYV6GwUiIiIiii2GtNRklC+9BHV/fBi47eh8CVqMeF9zH2/Fb5rrazY+q7hcSHgNDVFySGTPS0sgpBUQHFUlulIy2TWEs1adlbQA8OjycgxsZdMVgM/YWI3+LVXCI0AxVNMKYpXW6Bm52sNLdDsMrYrSvVXGqxu1Ho5SyFnl9uPGr48Yvp9I/HdtJY7LteDRoS2wryb8YzMJoSG+L8wL7pHl5Y0cYfQk4lOBYFb+O/OUrkXl6rshukphcrRE/pgfYcnuGrKNq/hz2X4lC/oi76wvYG97dkzGS0RERETa2O6AmgRfzd6QgBYA6nbOhM+pMDFGEM+RNbEcFlGTd7A2cRPNeI4mUGbJv2RNNaPNtkUnBmpxdKZ6owWqqw66dVWBHqj1aYb3m47Ir2DQmo9MaZx6qmvV2jlkqVy+riXTGr0ITus5XLJHfTLLCpfyjlo5ptK6RTvDTyoVTb+Xe7GlzIMPt9aE3Vb6OohVkWzt0V+CO8V7owhm5Z7gtZv/B9FVCgDw1x1C9a+P6z5mzeYXojI2IiIiIjKOIS01Cb7qPxSX+50HNPcz2fMiu0NOHEYEAEjXO/tUDDRUJEpHkOK5i6qR7dMCP+t5iBd1S1dcfmrb+mAnK4a/O63wq04hectzqI8l0nfbTtkWxcnRTo9gsrsTCmwRjkJOq9L793L1atP9OipRpZSqhr/4Qz0IjpX9NT4ccoZP+KXBerhK2kiV1tWPpSbavSfizNZymK7tnL/PkC0zpbdT3NZX+XtjhkREREREjcCQlpoEX51yxazfXaG5n+ipisVwiJqNwrTE/TPSEOhIJ4hqqj1ppRXDIRSSzPFdMzC+azrSgmamv3tgztH2EIjpjPVa0Zf012MzITAmJZGeE8uwmvC3Qbnollvf2ckkAI8ObQGH3ma8QdQmIYuEVm9WrZeuWpsdreda6W8hmSvNpS/JSPrYGpHET4Uuad2uiXhftc8/IicUIyIiIkoY9qSlJsHvPKS4XPRUau8XcUjLSloiIDohx+iOaVh10IUjdcYSmYasTfrX2GR70hp8WDazgCk9MzGlZ6bi+ijmjjJGfgUds7U/ijRmmH0KbHi8IMIrJmJEs4+zxhOnFlYb7UmbiNpRvSdO6sPw2PeXbhhPYw6fDBfUCEJkJ8lE0a/++cjPkJaIiIgoUVhJS02CX6WSViukFUWRlbREjZXAPPRYJW3ocn+SX8EsRpgMBT+saGRXscyYRFH9cUqXhhtHMoRh0aTVZzWSX6uosZdSOJqIidO0xhhM2pM2Vt0IGsLfxjwT8td36rxQRW8N1B696PfEdzBEREREFMBKWkp5niNrUL3uYcV17kM/Iq3LlJBlorcOFT9eD+eOdxtxr6nzZYyoqWq4NNosSfGW7HFiWFvtvqOiKGLu77VY/IcTbTLMuLVfNgrTzbrv2+sX8e5v1fhpvwtdciy46YRsZNv1nfeMtGducCZUJplEKpJ3JK0WA4314E9lqHT5cUaHNEzpmaF9X2HG0dTebbX69Wq9NNSyVa3MVRrIbi3zwJWAuf5e31CtaztpT9r9NZENVhRFzcnlfFGopE01oijCX3cIh2a31tzOX7sXpV+eg9zT3ou8bz8RERERRYSVtJTyKpbforqudvP/ZMucO95tZEBLRA2ikXEcrPXBLi2h08F6NNCRXra/4YgnMHu7mj8qvZiztQYVLj82l3owd1v4meeDrS9xY9EuJ8pdfqw55Mbnu2p177u7KrLLiRue633V8v2r3MZ/E7GsUN1f40ONV8QnO2qx6UhoZZ40GAs3jFiGyYmw4oBLdZ1WaKhWjar1m5dW0r6+IbmvHvFEqaF0uKP4jr49JHnRfVR5Di1D2dfjdW3rKv4c1RueifGIiIiIiEiKIS2lPM/h5Ya295ZvVF1ncrTUd5AmFhoQRWp0x7RGH8NmFnBWBMfpnW8FABSkyStgD9RqV+DN2hIayn6zt87Qfb+yPjTsmvu7/pD2iI5Z7pU0BHjF1fLHFu7xKonXB4Avdzs114d7Nx3c2h5yuyhDf8VzMspzqD/zWuGi2kRv2pW0wduJ2FWZvP1GzQJQarAvtZpwWW/B0QkPfU1glsHswc/r2s5b8Rs8JT/rPq63fFOkQyIiIiKiCDGkpZQmisa/0Ik+9TDGVnRWY4ZD1Ox0yrHirA71AWu2TcDF3TMiOs5pbR3Ishk7+dE6o75jz4Tj0mXrPGEyyxqtxqA61Hoi3z/SnqANe3kV9o/ktFG8zjVJgzfp4w83gVnbTDNGdahvX2EzQXUitFQRcS6o1u5A530lexw5qUdk7x1Kwj3HDa/9JpDRIq3LFJjStFsYADDe20Fkb1oiIiKieGNISylN9Ojrcxeyj0/5UlNLi34w2QsaOySiZue6vll48+wC/O+MAvTOs2pu+49hLWTLRBHItJnwf8Mj63/YJceKDGto0hfusunGVtA1asKhCPdrCDe9CuemwgWdSuJ1PYC0AFQ23VKYgQiCgBv6ZuPVMwvw+tmFGCSprE1mN/TNwoh2of2RtV57mlWxass19xF1bafm5NZ2vHl2ga6/zb8PyjF+B0H6FtgatX+wcI+1YX2k/aGTicmeh5YX70XmCfdrbqd1Ujut65VI7zU1dHtOIEZEREQUd5w4jFKa6I0kpFWppBW9BibJYLsDomDp1vpzfuHCwgLFS73rk5LGnDW0mwXUBFW3esOFtI0MZ+Qzu+sXaT4cqKRVOEBkE4dFNg6jLJJfrNGetA30TsyWTDKtAqTtlrVee5FMHKYl+KUSyevOLNT/bbdXabUQrCjTgnSLgNoIq9Sj+XKsP6GhfsRjIW0TSGkBCCYzzFmdw2ylHtKaMzvK2z353I0fGBEREREZwpCWUproMTYJiuhzoW7nTOV1fiMhLRFFwqyQDDbEJFqzsYdjleR3W8s8OLGlHVvLPHhiRTnqvCIeO6UFurWwwh+F3pxuhbzji121OKtjWtiJriLNhUqO9rJVarUQyVPXmOfbiHKXH5ctOgSPHxjYyoZVB0PDn3iFxYlgEgSYJc/zIY3+wUYmATu2XH0vT1AiHMnLzhKYnC/8L8ksNO53Gc2XY2mdP3DiSEnDc9YU2h00EGy5musrNSZZBQQIptCrINwHlzZ+UERERERkSOqVpRAF8esIaT1lGwI/V66Ypr4hK2mJGi1chaq0qhA4FpQ0JuCxSHae+3stfjnswgM/lsHpFSECuP/HMhyu9WHO1hrlgzTSGxur8cGW8MeONCBeccAFr1/E27/JryAwRfCeFK93sd1VPniOhtrSgBaIX1icCIIg7yG8+pBbNVjVqtBWW6P1Jxc8oV0kvZClVdBazILy37deeoJgve7/sQx+UUStR7l6NFBJG515ypKCydqIdhOCAJjk7SY8R9ZFfkwiIiIiMowhLaU00Rt+RnXXvsWBn2u3TFfdzpLdTd/kGwAES+NntCdqiqS9YaVsCilO77z6cMDaiJS2SqG09YkVFbJlc7bVYNEuZ8T3AwBOpaawR83fHv49SYlG0V+I74uV27W0zzYbvk8jAVwspUpEG0kAaQLwh0Iof6BGuZpWerIhmHqwq28skVRwK/1dqbFbhEYFrY7GJLwSTq+IXw+78Xu58gkRve0O2mcZ/7tKFJOjMOJ9BUsGBFu2bHnw5yciIiIiir0k+YpGFCFRR0WaWg9aibRu18LWchjMGR3DbmuyNW6CFKKmqkOWdhcdi0nANcdnBm7n2ASc1bF+YiWHjr6XDbrkhN5PpVtfArWtzANnhD0zG2hktLooPc7JPTIVtpQrrlYO9/pFMOmSSRBwalHiJ+FKlZD26uOzDO8jCIBbobxcpcAzTEirvFzvq1nr0v7xXdMVl2cEnT04p5P6yckBLW1Is5girobPd5hQmBbdj6QldX64VEr7G54LrefEJADX9jH+O08US4s+Ee0nWNLhaDcW9tany9aJ3thcdUBEREREytiTllKbxmzFgU18Ll2HSut0EQAg/9yf4Nw5E67iL+BWrCJJlUiBKP60KumOy63/J2d0p3S0TDfjQI0PQ9vY4YigpLMoI7TCrV+hDb8cTo2JbqQVkb3yrOico++fY7VqykhbBvz5hGz0KajD9F+N9fduUJRhxgmFNmw64sHuqsjaOKRKt4OzOqahIM2E74vrsGyfvn9XBEG5BYioEq1qtSRQbXegM6XVCiTtKlWsvfKO9Sm9oncmuuZa8cK6SgDA5b0yYRLq9x1WVH+iJdJi2P87LS8mbS+krSYaNDzPSpW0T57aAltKPejewoquuVbZ+mNC9xUS/NlAEEzI7Pcgqn95VNf2lhYnwNFpIhwdxsOS2xMAYG05DJ5DywLbiP7UeE8lIiIiaioY0lJqE0OrykzpRbC1Hom6He8d28TglwxzehtkHv9XZB7/Vxz+6Hh4yzeFrA83OQcRKbMFldn1b6m/gvOEAht+LQn9O5ZWIsbzspDGTjYk7YOZ5zDBojOgUqritTXiwVvNAka2T4s4pP336fkAgHd/q444pE2licP6t7Qj02rSHdKaBMFQL1it15baYXRX0mrer4gsm4AqSUV68O/GJAgY3taB4W0dqseJtN1B5tGKXQGRTXCmRIB6z1mfSiVtvsOELjlWdMnRCmeTlzmjg67tcoa9ifRuV8mWW7K7h4S0YEhLREREFFfNtt3BqlWr8Oijj+Lss89Gu3btYLfbkZmZie7du+Pqq6/GDz/8YOh4ixYtwoQJEwLHateuHSZMmIBFixbF6BEQAIjSSlrBDEEy+YXoKov8DgT5FzXBxHMbRJGIPIyTxzbSCrhoBn0un4jdlV7VSYfC9bEMR1pZaRIE3f1hS5zydgfmJEg5GzOExI/eGCM5pAnKlbTbyrzYXu7BllIPdlR4UHe0BYdWSKva7kB3Ja36hj5ROWA1GwxdG/u3EU1rD7lUx+MX6ydp2ytpHxLFtrgJIVgy9G1nVg7apZ+f/O5K+OuOwLXvK7iKF8NXU9zoMRIRERGRumaZNp122mn4/vvvZcvdbje2bduGbdu2YcaMGbjiiivw6quvwmZT7/Xn9/txww034PXXXw9ZXlxcjOLiYnz00Ue47rrr8PLLL8NkaraZeMzU/TEv5LYAk+xLRu3Wl5HR925YsroYPr5gUqimEZrlnw1Ro0V6NXOdQg9ZaUWp3pBwn8qETQ3KXX488lMZ9tX4kOcw4YHBuSjKDP2bb2wl7drDoVWYFkG7F2mw1YfklW3JkIt5G/GkxOIy92QhCMrVnK9tCK1czneY8PiwFpohZ4XKJF5+nbWnWq8TvwhUuOTHNxq+H3Y2smFzFK086MbKg8qVoH4RmLWlBh9JJvpLhhMejSFYlHsLy7ZTCWlhDr3CwbntNTi3vRa8J3KGv4X0rpdHOEIiIiIi0tIsU8N9+/YBAIqKinDbbbfhww8/xIoVK/DTTz/h2WefRdu2bQEAb7/9Nq666irNY913332BgLZ///6YOXMmVqxYgZkzZ6J///4AgNdeew33339/7B5QM+bc/k7oAsEEv1teOevc9ibESJIMs0JAz0paIk2ZVuWgY2dFZJfDb1WYoT0/ypMMAfVB4+c7awNBbmmdHx9uk0+c09iQdk+VJCgWoLuSVkmdyuRI8bTygL7L/5WkWixmZLwmob6dRThH6vz4dEet5mtr8R9O5RVR6EmbpjJpX7wrS+OV19f5/PhkR61subGMNvleuXoraaFWSWsO14ZGRM2vTxobFBERERHp1ixD2p49e2L27NnYvXs3/vOf/+DCCy/EoEGDMGTIENx+++1Yt24dunfvDgCYOXMmvvvuO8XjbN26Fc888wwAYODAgVi2bBkmT56MQYMGYfLkyfjhhx8wcOBAAMA///lP/P777/F5gM2IyZ4XctvvqYTfVSLbzufcD9FVqnqcjOPvUFxuzRugaxkRHTO2i3I1V7UnfJo0qJVySDCsKHT56e1CZ5pXqgI0yu0TMV9SWafUe9RIj1ElHbJCJz07XOvTXUkbK9ZGfho41IgKylQrXmybaVZcPrpjmmxZ+ywLLu+dqeu4C3c6NYPUrWUexeV6M3q135BZAM7qIB87EHmP2UjF67VQ7REVn7dUb3dgzTsREEJfn/b24yRbCfXbKe4f/vONr2ZPZIMjIiIiorCaZUj76aefYuLEiTCblb9oFRQU4F//+lfg9ocffqi43X/+8x94vfUVXs8//zzS0kK/5KSnp+P5558HAHi9Xvz73/+OxvApiOipDLmde8qrgF9edSf66uCr3qV4jLSulyPzhPsU12UNeByOLlNgzugAU3o72NuPQ87QFxs9bqKm7NzO+i65VXLriVmKy6/snYWTW9vRPsuMK3pnonuL0FYk56oEw0boDrsaWbgq3f/09mlQKWTUpVW68r9lRtw+IKfRx4hUqnU7cKiUPY/tko7CoArvaf2zkWk1oWcL/ZNQRXICQOt1Gxy+q11NcvuAHGSqzD4X7wA93AR6I9o5MKFrFP7WVf6IjYTSia9flzM58pE7YjYs+QNgzjoOGX3/hhYj5yHzhPthzu4GS15/5I6YBXN6a8X9HZ0nhr0P0Vsjnw+AiIiIiKKC122rGDlyZODn7du3y9aLoogFCxYAqK/MHTJkiOJxhgwZgh49emDLli1YsGABXnjhhSbdfy+eRL8Xojf0UmRzTg+IokLPSV8dvJKQ1pzRES0v3iXfNojJloMWp73XyJESNS82s4CLuqXjw23yy4nDUQvAcuwm3HGSepBoj0IJnN7wNdohrdUEWBuRhkWj+q91RuOD3kil4r+IHbLM2C1pW2ExAS+cUSDb1si/+ZG8ttQCRyD0daW22aDW6pe4xzuktZqAOpW20bPPbRn4WVrxbpRasJ3qlbQAkNbpQqR1ujBkWdaAx5A14LGw+wqCCWndrpP0oZUSIXqdEKw6WysQERERkW7NspJWD5fr2CWuShW3O3fuDPS2HTFihOaxGtYXFxdj165d0RtkMyd6qmTLTNZsQCGkFX0uWSWtOatzrIZG1OzF+2RUNO5N78z0jW0BK93fLAiN6kkbjac6keFUKuZiSq/vaDyOSEJahXn1AoJXRXJsc5z/juM1cZd04sHA/afiizHKFCdMlVD6/EVEREREjcdKWhVLly4N/NyrVy/Z+k2bNgV+7tmzp+axgtf/9ttv6NxZfzi4d+9ezfX79+/Xfaxk4HMexJFPB0P0uyD63YDPjZYX74HJnmvoOH5XKQ7OzJctF2w5KiFtHZzb3wpZZs7sZOg+iUi/eGcd0eidqRZiiaIYEsqFuyS9tM6HPId6Zap0f5OARvWkjcZzHe/eo8FS8eoSpUw9Go/iSJ3xy8i1KmmdXhGTFh6KeDxxb3cQp9IBtb9hU6o1SI4FHSFt2ZLxyBv9FUxW5fY0RERERBQZhrQK/H4/nnrqqcDtiRPlPbqCw9N27dppHq99+/aBn/fsMTbhQvC+TYJggq/mj5BFot/4rOCVK6YpHRyCJROiYk/aWnjL1ocsY0hLFDvxjjqikfOpZV1rD7kxIGhCs3AViXcsLcWbowt13099SKt3lHLRyJUSWUGYirmY4ustQWFzYyu7tcT7d2OLVyVtE2530Fh6Kmk9JStQ/cvjyB74dBxGRERERNR8sN2Bgn//+99YsWIFAOCCCy7ASSedJNumqurYpV6ZmdozN2dkHOvbVV1dHaVRpibBZJMv9LsNH8e5/R3ZMnNmRwiCgMy+98jW+ap2yLfP6Gj4folIn2jmVYNaqffMbBCNcEWtuu7L3c6Q2+FCsVqt688hD2kFob6SNcsW+iCGtgn/uAFgTCMmamuQaTMZfg4n9zj2b9vwtvrGqmR3pfzEWrJTyhLjke9VueWVtt7GNknWkGuP/sfEYUWhr5Xgv+8zOqRJNweg/29BL7XnzNjfQOgxUrAgXJHfdUTXdp7SdbEdCBEREVEzxJBWYunSpfjb3/4GAGjZsiVeeuklxe3q6uoCP9tsCsFjELv92JcLp9OpsaXcnj17NP9rCJNThVJIK/qMh7RKMvs9CABwdDhffh9e+SQj9vbnRuV+iUiuMXlFcPgHAH8+IfwltdEowFPLug7V+iTbNS4Uk8ZsDa0GLu527HEPaWPHzf2ydR1vSBQCLLtZwHldj4W9LXSEc+cGhcMj2yuHa3oclxu+ci/ZxKrdQThKrQ2iVUn7t0GhE/P1zLOiTQwmlBvTOR2ds+sv5MpzmCRhv0N2n/kOEy7qFt1JqtT+1hPZ9iNZ2IvO1reh3xPbgRARERE1Q2x3EGTjxo2YMGECvF4vHA4H5syZg5YtWypu63A4Aj+73dohY/AkZGlpxr7IhmulkHKUQtoIKmmVpHe7GgAgmO3IHTEb5UsnHbsPnzwcF8yNrz4jImWNyTomHJeBoW3sKK724YQCG6w6ytuEKERkesOuxhYuynrSHv3/6E7pGNTajlqPiLaZZgiCgAld08POZG+N0iXik3tk4oz2aXD5RHj8Iv7+Q5nm9rag30uWNfJzvrEIAmNNsY9uHPI9pSJtn/E2tor6t7Tj9bMK8PMBF7rmWtAxyxKTfsEFaWY8dkoLHHb6kGs3IT3otZNrN+GZ0/Kwq9KLfIcJTq+IFg4T0nT0A+nRwootZfqCQ7WJwwgwZ+j73CkypCUiIiKKOoa0R+3cuRNnn302ysrKYDabMWvWLJx22mmq22dlHavsCtfCoKamJvBzuNYITZ1gMgOCOXRyryiFtCH3Y5FU3Sh8mRAEFpITxUpjo53WGRa0ztD/T1Qse9JKlzc+pA29HZyx5jnMyHMor1MTzTaeLdPrA9M9VcZaEDSmp24qFi8qjTke/6IonUjwNrKyO1imzYRRKi0HoiXdIsBqFlCUqfz3bTEJgerqFgaO2zNPf0irNtlaY6vkmwRBZ2W7mHptSoiIiIiSHUNaAPv27cOZZ56Jffv2QRAEvPHGGxg/frzmPsEVrsGTiCkJniysyU0EFgmTDQiqbBV9+icO89XsgXPn7LDbCWY9l/+mYDJAlCKiUdkab0v2KLejkQZjekLa/TVerDroRqdsC/oWHLuCQBRF1HhCD2DWSCn1REaxeKaNFsZaGpEUp94rRSWQjcMD8flF7K3yYu1hN7rmWNA73wZPLGcOi4FGFF1rshh4/t0qf8Qp9lTGhJ6JwwCw3QERERFRDDT7kLakpARnnXUWduyon1jq+eefxxVXXBF2v969ewd+3rx5s+a2wet79eoV4UibDsFkC20/oLOS1u8qw+EFJ0B0l4e/D7Mj7DZgJS1RzMS7OjIad/f5LuWQ9qCkJ21xdfgKsnu+L4PraOIzbUA2hrapf096ZnWFbFutfFNXSBuDJ9to6NqY4C2alcDxslfhNRCPh7GzwouXfq2Ex19/f3cPzMHc37XbYSSbWLxeAcBs4IW0cKfy33pxtU9xuR5NpghXZ0gr+llJS0RERBRtzTqlqqiowOjRo7Fp0yYAwFNPPYVbbrlF176dO3dGUVERgPrJxrR89913AIC2bduiU6dOkQ+4iZBWuertSVu75WVdAS0ACNbwEw1BSL0+iESposYjb/qYZqTUzaCcGMxCr6bMFb6hpSuoJO/5tZWBn1cdlL/feTRKc9saaPkQTQ5j09w3qi+uU6nRapKrdMvH3JhqYr0aAlqgPsCfvr6qUcdrlR7ffwdj+RSV6/i7jOUxUvHqASWydlFqRFbSEhEREUVbsw1pa2trce6552LNmjUAgPvuuw/33HOP7v0FQQi0RNi8eTOWL1+uuN3y5csDlbTjx4+PWQVJSpFMHib69IW0dXsXqq6z5PUPvZ3bJ+zxBBNDWqJYUQp/bjpBx8mTCLVMN6NHC52X6TaS0bA53CXU6RrHG1qkp3VL9GXaTIaez8aEbwp5fkqyGwy2IyF9rioaGUzeGOW/yfsH54bcbpVuRkbQ6/vczrGbsLPK3UReSAlmzuoCS478qq/0XreF3GYlLREREVH0NcuQ1u12Y8KECVi2bBkA4LbbbsPjjz9u+DjTpk2D2VwfREydOhVOZ+jlc06nE1OnTgUAWCwWTJs2rXEDbyIEc2hIq7fdgVbAnX3yv0O3DRPA5gx9Wdd9ElFk2ihUgDZMBhQrfxuUg8GtYx9qNnbiMCmTRsIZj+pMNXcNzMHE7vqq6ho3ztSrpI2H984pjOnxO2VbcHy+LfyGBvQtsOHmfvXB7+DWdvzn9Dw8ckoLnNclHdccn4lLeuis0oxAKrbNSEaCICBv9FfI7PdAoC1UzqkzYC8aFbohe9ISERERRV2z7El7ySWXYPHixQCAM844A9deey02bNigur3NZkP37t1ly7t374677roLTz31FFatWoVhw4bhnnvuQdeuXbF9+3Y8/fTTWLt2LQDgrrvuQrdu3WLzgFKNtJLWr3fiMPVzCiZ7gWyZOes4+Kp+V9xesOfrvE8iioSYgOAt3WrCpB4Z+PmA/skIIxHtGeCTNVvKsplwYbcMWE3Ae5trNLdtTBEpI1plFpOALJuAKoXWCtFwRnsdvdsjMKJdGka0Swvcbp9lwaW9MmNyX8FMvFIpaszpRcjq/yiy+j8aWFa3d1HINqLISloiIiKiaGuWIe28efMCPy9ZsgQnnHCC5vYdO3bErl27FNf94x//wKFDh/DGG29g7dq1mDx5smyba6+9NqJK3aZKkIS00NnuQGuiL5NC6CpY1C+rlPbFJaKmIVaXnPtFMRACRVJJu6XUg24tlP/JTfZoSU+bHlYxxkYsn9Y8R9Nq+ROHbhPNmiCdUIyVtERERERR1yzbHUSTyWTC66+/joULF2L8+PEoKiqCzWZDUVERxo8fj88++wyvvfYaTCY+1Q0inTjMfeAb1XUme57C/aQpbKk8BiJqGmwxSmpu++YIDtfWz/weSUj74E9luOSzw4rrkr0AUM/wGtVvnaW0qmIb0jatzyU8URBjkpBWZEhLREREFHXNspJWjPKlqgAwZswYjBkzJurHbZJk7Q7Ch7RaE1QI1ix5n1sAgkU9pJWOgYiiy6wQ2sUjjIxVJe0hpx+L/3Di0l6ZYScCM8obZr4jqymxk2vZYlxwyemeNAgCYpViN7WQVuk9J7Ykv5cmHhILguQrA0NaIiIioqhrWp/QKSXI2h3oCGn97jLVdda8E1X2qVDdR2nmYiKKnq65FuTYjqUWrdLNaGGP/T85NhOQZY1NWvLxjloA0T/RVxMmgZ1wnPpkS/lxCNpOLYpN79IG1THquRpLl/Y0NgHWX07MDrk9Mkw/2Ov61E++Fck5h4Gt9J2EzLal7kfAv/QPfT6v6JUJcxQejvS4FMQkCWlFnl4hIiIiirbU/YROKUsa0oo6etKKnirF5Zb8Acge8qLiOn9tserxzGktw94nEUXOJAi4uV82ijLMaJdpxp9PyGrcJfE6CYKAOwbmxPQ+4h0pjumchkGtlFu0/P3k3Jjff7pV30eFJ09tEXabogx5WW7H7NS7qOecTukhhZPhHvvJre04q0MaCtJMGFZkxxntNa70AHBau/oQN5KQ9sreWTilSLulT5pFgDmF+wOc3MqOszseez5Htnc0uiftWR3ScLLK3xlBNi+AKPoSNBAiIiKipiv1vhlR6pP2g/WHn4ldFtIKJrS+wqsZ+vjrDkUyOiKKkhNb2nFiy/iHHr3ybJh9buiJGJ9fxJRFyj1hG6tfoQ2/HNY5AWIE0iwm3DkwB5MWyt/T2mfF559xs4CwbR665FgDz/sPxXV4fl2lbJup/bPx9x9Cr4wQU7AprdUsYNa5+k/2Wc0CruubBaC+QnZftXoLn1y7KdC2wxJBkOowC7itfw5u619/+/Zvj2BfTWiglm5J3YAWqH8+r+2ThWuPPp9AZM9VsPrfD6kRpHUdrKQlIiIiijpW0lLcRaOSVrBkxqUqj4iahmgWDUonDkvxvCsm1N6elX4PMWgTn/S0Xo/BqyKpDpXOU6r0u8iIUUuQRIpRO2pqIEiq4FlJS0RERBR1rKSl+JNM8lX9yyNwH/gW6b2mIq3ThYHlzl1zUf7tRYqHEKyseCEi/aJ5UkdaUWriCSMZtWdE6bmSht7NgVZVcvBTFEl1qDSsVDqC3hYWqSTef4fSX6HQ5GcOk1bSeuGvKwHMaahadRfcJT/Dmtcf2YP+BZMtti1niIiIiJoqhrQUd7KJwwC4Dy6F++B3sF64HZaszvBWblcNaAGGtESUGKIo4vviupBlv5bErtVBqlKtpI3vMJKWRyOlDa4sjqiSVvLkK92TowmWnVr44ootaUgLoOKnP8OU3ha1W14CAHiPrAFEP3JPfSPeoyMiIiJqEviRluJO9KsFGiI8h38CANT89l/NY/idB8Lej6PzJYrLLS1OCLsvETU90Yilylx+OL2hsZcrXLPWMIoyk/986WltHSG3O4eZ7CtLpVJTqTC0V7414nGlqsJ0+QRqDYJfTdsr1HvXqpHmr8XV8svS18Wwh3KiHJ8vPwFM0WOyF8iWuQ8vh3NbaCDr/P3NeA2JiIiIqMlhSEtxZy8arbrO7y4HAHjLftU8hq3lKWHvJ6P3bYrLM0+4N+y+RERKvFGeK2dASxty7fr+KZ7cIyPk9i394ndFwdmd0gLVlwKAcV3TNbfv3kI5eDUJwDXHZwYC80Gt7OiU3fxC2gyrCacUKU+qJwaV0kZWSRt6u4XO11eq6xTmxIGWvgXN7zVolDm9NUwOyWR5fjdEb3ViBkRERETUBCV/+Q41OfbWp6uuE90V9T8oXFYXzNFpUtj7sRUORsuL98J9aBk8h3+CKIrI6HULLNndjAyXiJoIQZBPUtWjhRVbyjy6j+GJcgPV6w3MKD/huAz0LbDhx311GNEuDR0bEUoZ1SXHiudOz8PWci/aZ5nRJkP7vm0q6aJJEDC6UzqOz7ehxiOiW4vm+zHkmuOz8OM+l2x58CtsUGs7lu+Xb6NF2u7glCI7Fu50hixrk6FeyZuqwrXvHdTKhpUHlSuIh7ZxKC6nULkjZqP0i5GB26Jf/3snEREREYXXfL8dUcLIKjGC+BtC2jAXJgtmfV+ozBltkdZ5ItI6T9Q7PCJqopTeVTpmWwyFtNGupDVa43hcrhXH5Sam6i/XYcbJrRsX7jX8Dtpl8eOHWpVs8IkEWwQTh0kpTajV9DrShpem0bTWJz17E4HmMP+d7LMXQ1oiIiKiqGoe18BRUhEsDgjWbMV1ftdhOHfNhXv/19rH0BnSEhFpMTrJvTfKlbRCnGekT7QoZI5NhlnlyQh+hVmjUPDaBOcIUxTuYdo1nghfRCdfQt8LmsPTLJhCTxCJ3hrF7SrX3Ifara/B5zwYj2ERERERNRksZaGEMKW1gs9TKVvu3PaGbBIKJYJZuZcfEZEaQYCs3M1qMDV8bUNV9AaE5hdaNrfHq0W1kjbo5+hU0sqXNcVzA+Eek00j8I7yuZemy6Tva0PNr08AAMwZHVAw/leYbDmxHBURERFRk8FKWkoIk6NVo/YXLBnhNyIiCpJuUbjs22BYtaPCG6XRRHb/qc5oKN6UqT0VWUHl3dHoHdta4Rhdc5reRFnhXllafZSj0e6gORDMaYa299XsRt2eT2I0GiIiIqKmhyEtJYSj3TkR7yvYcmHNHxDF0RBRc3BSy9AK/I7ZFrTPbPwFJUPbRF7Z39z+Ec60NbdHrM4kCOiTLw9LBwe9noYWGWvtk22TR5WnKhzj2j6Zho6bCgRBQN8C9fB5RDv159LHjFYXc/Zxhvfxlq6NwUiIiIiImiZ+W6KEyOhzD7IG/p/h/az5A5E/+hsIlvQYjIqImrKr+2RhwnHp6F9ow+iOabh7YA7aZMqrDG/om2XouCPbR94ju7lV0lKo2wbkYFhRfSibYREwqXsGJnY/dqVItsFQ+7nT82XLzCYBjwzNDdz+64BsODQm0Uplf+mfg3M7K1d72rR60jKk1UUQTDCltzO0j+j3xWg0RERERE0Pe9JSQggmMzL73AUIZlStvENlIwvaXMmZg4koOuxmAZN7hFYQVrrlMwalW40lp6ZGJK2N2ff/27vv+Laq+//j76tty9txFhlkmSQkQCBhNKEQZlmFpC2lfCmjFOimlG5aoPQHBbpLB+XLKv22QGkZBQolQKAhCRkklJlBJtlO4njJ1jy/PxwrlnQlS7Zsxcnr+XjkEenOIx1dj7fP/Rz0f2Ueh742pVxfm9LzYx1W6VZxmpnwxld59Og5A3t+kv1cmcehSyeW6tl1rbbri12WApHURDaWl6K0B8e17K46SsHApux3MIS0AAAA2Towh1KgH0n/Sw2jZQEUgjPH4LQnZVYPjlgHfcFQV7VL6d4hm9y2+wc7wFnu3EplmHCDjEn9YxgAAABSEdKioKyMIS2TgwHoXXZfgTLcFW2rJyEt82ghX4jBuhZLE2TnZSDtQSLXn81a1/xZ2x8ZqODWub3UIgAAgAMHIS0KK8OINUbSAuhtbTbFKJ05fmd09GA8LBkt8oXSGV0Lcud9j1mu3CedM8FdakxX2goAAABxhLQoLEf6mZgdRYP6sCEADka7W1PHHw4qTp1MLJNB/ty27+xAHkn7pSMTJ2C76DDujuiOiVXpv092dvnE3MOzA9Ul4xPfi64mAzxjpP1kY7DRzRqzkd3L89wQAACAAw8hLQoq021zZVN/3octAXAwsrvLOZeQdnyVWxXe7o+ltQ7g0Y/HDfbpuMFeuRzS4dVunTqcIKw7Lh6fXfg6upy5YDucPNynIwa45XJIUwd59JGh3rTbXljr18Ac/zBzMCsadVHadaVTfyY501/n1E0GAADIjJ/oUVCZQlp3zbF92BIAByO7yCCX2HTW2PayLA5LsqmcoEPLXFrfGLHd98CNZ9v5XJa+cUx5oZvR742rdGuI36mtLZlHMB7IgX+uSj0O3XBcZVbbfmJc90Z4m6SvHgfLu295ytKu80/8mvyHf0MN8z+n1g8eTN0gFpacnt5rHAAAQD/HSFoUVKaQ1rL4eALoZTbBai5hl3PvtukmG3Nl+DJ2IJc6QH7xUcH+I8On0XLKsiy5K4+0XW0igV5qEwAAwIGBkbQoqFxnCQaAfEoeDZerjnC2fdKm1GO5MgS+hLQA+p20f0C34n9cd/iH2W5R//LHVXLUzfIOOcV2vTFGgfd+rcYl10mSvMPPl+X0Khbao0j9W3JVHiF31RSVHPlDOdz8/AgAAA48hLQoKAchLYAC6mmFxI6gtc2u1oEyj6Qlo0W2qGSA/UeaD6Nj368UzuJDbDcJbZ+n3XPO0sDZq+UsGZG6fuvL8YBWkoIfPpW4vnWbQlteUCxYp4rp93Wj7QAAAPs37idHQTl8NYVuAoCD2Mgy+79VHlWTXd1Evzvzt1FXhuGy1BBFttoiTLiUD6ePSJzUalSa6z8rB+nl6/DY15l2eCrij50lo9IfIBZSaMcC21UN8z+XVRtaV9+f1XYAAAD9DSEtCspZMkLeoWemLC877jcFaA2Ag82hZW4d2SmQnTWmfSKws0YVZVWOYFhJ5lnhqUmLfEgzUDvu85NK+6Yh/dysscUq9bRfeG6HdOnEkjwe/eC4oJ3FQ+U95GMpy4vGXdlpm8HyjpiV9hgm2ma7PNqysecNBAAA6Mcod4CCqzzlCbVtelbR5nUy4SZ5h54pz6DphW4WgIPEd6aWa9mOkHwuS5MHtAe2R9V4dceMKq3eE9bWlqieXms/4U1Xo2EdmWrSdr/JgL4+pUyLtgV12ogiTRqQ3cjvg111kVM/O7FK7+8Oa3ipS8NK+TG4OypnPq62Tf9SrOVDSZKrYqI8Q09P3OakR9T24T8V/PCfal3z58QDmHBfNRUAAKBf4adTFJzlKlLRoZ8sdDMAHKScDkvTBntTlo8oc2lEmUsvb2zt/rEzTYR+cAy8Qy+ZXOPRCUN9hW5Gv1Phc+qEoZlHwCOz9p/bPpF5G6dHRYd+UkWHflLR5g0Kbf9PfJ2Jhnq7iQAAAP0SIS0AABn0pBpoppIGhLTIlt1HhZHY6Dcc7oSnkcaVal3zFzlLRsg9cLosq399mmNtOxXc9opMJCB35SS5q48udJMAAMABgpAWAIAMehLSOjMksU0hJoNC9xHyo7+wHInlOALv36WA7pIkFR/2BZWf8AfFgvU5HTMWakg7iVlvijSt165nj1OsbUd8WenUn6pk0jf7vC0AAODA07/+dA0AQB8rcnU/Dcs0cRiQLbvPYKY/AAD7laSRtJ0FVt6tWLhZwU3/yumQwS1zetqqbmnb8FhCQCtJgfd/W5C2AACAAw+/PgIAkMHkNJMyzRpT3OW+tZVunZ/FdkAmxwxKrJl8aJlLnkwFj4H9iMNXk3F9rK1OsdCenI6ZHJT2lVhwd+qyUOoyAACA7qDcAQAAGZR57P+eOXucv8t9Tx7mUzgmPbUmkO9m4SByYa1fMWO0YndYA4uduuiwrj976GWGciXZcvpHZFxvQnskE7XZ0SdF2+z3SbO815mYzTKbtgMAAHQDIS0AADmaPba4y5GMZ48qkmVZ8jiliw7z65GVLX3UOhxoPE5Ll04sLXQzgG7pKqSNhRpSwk/PkNNUfeYctW14QvVzZ6fuVKiQ1qZKubELbgEAALqBkBYAgF7QOcKNMugOwEHKWdL1SFqjpKDTar+DwXLZjxo30TYZY2R1ozZz8n6m06hou+N1rLcsy37ULCFtr0l473HAMTZ3JNDXAA52hLQAAPSQw5JiJnnZvl80YtwaDeAg1dVI2vq5s1KWWZaz/X+XfU3v5v/+WM3//bGKx39FZcf+SpbD2WU7QjsWaM9rVyjWVqeSSd+Uf/L31LTsBgVW/E4m3Cg5vPKNnKWK6ffFzxtY839qWvptxYI7pVjY/sCxkKItm+X0H9JlG5AdE4uqcfHX1PrBn2S5ilVy5I3yT/hKoZuFvRqCMf3+v41a2xDWCUN8uvzwkoSfebqyqzWq3yxv1Mr6cMLY9FK3pXvPyFzDGgAOdEwcBgBADzlsfjfpvCzGQCvggGaJ0V/pOIuH5b5TFyNpOwRW/FbBzc9ndciG+Z9XtHGVTKheTctuUOvq+9Xy9k/aA1pJigXVtu4RBT74U/vTcJMa5n9esdat6QPavZrf/klWbUB2gpueUWDF72UiLYq11alx0VcVDWwtdLOw17/WBfRmXUiNIaN/b2jVsh2hnPZ/bFWLViQFtACAdoS0AAB0Yag/cZTWR4f5Ep5feXhqvdCTO20zsdqTsr62gptZgP7KEC9kzXL5ZHkqc9rH6R/e/n/JyHhgm064bmFWx4w0vJ/wvOnNm+y32/1fSVK0YZUUC2Z17MCK32W1HbIT2fO+zbJ3C9AS2HkyaTLU+99pymn/NQ2RfDYHAA4ohLQAAHThisNL5Xe3j5Q7d1SRhvgTA9aPDPUljKObNsijoSX7tplY7U455pWTmQgKwMGhqxGxyfyHf0OS5PBWqeSIH2bc1nQxyjWdWGCz/fJQfcL/KITU209MOLcgEH1nV1tutwvVt9nUdgYASKImLQAAXTqixqO7Tx2gSMyo2J36902fy9Jfz65RYzAmp8NSqSdxG5fD0qPnDNS2loiiRhpY5JTbye3RAA4OuYS05R+5V66ycfHnpVNulqN4iBoXfsF+B7vJvJI3yaEueCy4u/1/QtqCMTaTscUIaQ8IoahRUzjxevzG0WU6pMRlWzoKAA42hLQAAGTB47TkyRCsOixLFb7Mk9cM9vNtFzggECbkJN0EYLacqeVhHL70kwmZWBa3TtuEfunEQu0hrQkS0haMTfDOSNoDw26bUbRH1HhU5OIGXwCQCGkBAAAA9KJcQlrLSv31xG5Zh8D7v5ZMVMXjrpDlKlFg1f/KWTJSxYd9UZaj4w9n2Y+kjTauVv1/LkmpYXsgCG6dq7Z1j0oy8o36tLxDTpHUXjIi8P7vFN71RsZ6y66yWvkPv04Od/7L9YR3vqGWFb9V69q/SrHUiagaF31FsdAe+SdeK4e7JO/nxz4bmyJ6eWOrmkKpf9xIF6Y+szag9Y1hJQ9ary5yqqbIqTUNYYVtRtEWuSwCWgDohJAWAAAAQK/JqSatw+bXE7tlnQRW/FaBFb9NWBZt2aSyqbe3P8lhJK0JN6lt7V+y3r6/CO9apt0vnB4fpRpYfZ+qz3ldngFT1fTGd9Xy7i+yPM4bqjr1qby2LdqyWTufO1GKtmbcrnn5DxTZ/aYqZz6W1/Njn5ZwTDctqFcgktvkiH9+v7lb56v2EdACQGd8VQQAAABykVt+cdBzeCqz3tZypY7SdLjLcj5nyzt3xB+baFvO+x9ogptfSCwjYKIKbXlBktS26V/ZH2fTs9mVmMhB28Ynugxo9237eF7PjUTv7QrnHND2xICizGWiAOBgQ0gLAAAAoNcUjboo6209g6anLHMPmCZnyahunz/asqHb+2bDWTqmV4+fDyaSOtIxFmnZu64lhwNF8z6pWrRpTQ7nz35UNHK3J9i37++Jh/j69HwAsL+j3AEAAACAXuMbeYGqzpyr0LaXZWJhOYsGq3Hx11O2cxQPta13ajm9qj57vlrX/lVNS7+Z8/mjzetTlvknf7f92C6/PIM+qkj9W4oGNqdsF9nzvqSYXBWHS5JcFRPlcJWofu7sfRv1g+DQRIOpC6N7a7/GwgmLfaMukrPk0L07moRRyZIUa9spZ4bJ3HJuWySQ2/bGyLKYva83NCTVoR3id+rYwV69sT2oTc2pk37ZOWGIV8t2hBSMpo7IHV/l1mGVbjktaUK1R0cMSJ0oEAAOZoS0AAAAQE4IiHLlHXKyvENOliSZWNQ2pHX6R6bd31k8RCWTrpdk1LT0WzmdOzmkddecoLJjfpLYvsEfzfp4wS0vJTzPNWQsBLuSD2bvBF0mKaQtrr0m3leSFFj5B5lw4779gjvz2rZYLiN5pfayDRkmk0P3NSaNpJ1Q5dbF40vUGIxlHdLOHO7T+saItrakbn/MQI8+PiaHGtUAcJDhuxsAAADQI4S2ubAcTlmu4tRwM4vRkZYz+9ujg5tfkLPkUEUaViYsj48S7SbLVZTwPNa2XSYWkdXFBGfdEQ1sU2TP25JpH5XoKh8vZ8mILvcLRY22tkQ1oMghv9shE0sdSRttWtNeqzapHqzlcCc8d/gGKNoppI215RbSNgZj2tAU0bASpyp9+2qQRtvqFNz4VO4TtZmokn+NjbXtVHj3m4mjmi2n3NVTFAvtkQnWy1V1lCxHz2qghqJGaxvC2h6IyhipyueU6VSkOhA2cjstuTsVFfQ4LY0pd8vj7N2vE9HAFsWCu+WqODxhpHFDMKYNjZGEdqbzYVNiveFyb/sLyaXtliwVu+y37+33AAD6O0JaAAAAAH3KcpXajEDteroMy+nN+hy755xpu7zHIa2zOGXZrudPUvUZL8ly5a/GZuu6v2nPfz6TUk6h7PjfyT/+S2n3awrF9KPX6/VhU1TlXod+cFyFymxG0gY3PavgpmdTD5Ac0noHKNq0Nv68bdMz8o2cldVreHNHUD99o0GRmOS0pGunlOm4IT6F6hZp17PHZ3WMZLG2nXL6D9n3OrbM0e4Xz5X2jgxOxzPkVFWd/ny3w/TmUEw/XFCvLTYjRLtSU+TQLR+pVJWvdybKal3/d+35z/9IsZB8I2er4uS/y7Iszd/SpruWN3Z7rsNyT/s16c0lXLWkYrf99jkdBwAOQkwcBgAAAOQgmxFpyMxyl6Qus7L41SSHkbTpuHo8kjY1pA3vWKDQ9ld7dNxkze/cYVvvtvmtWzPut3Brmz5sag8SG4Ix/eX9ZvuatGlYjsQ6oZanIuF5eMfCrI/1z7UBRfa+hKiRnvigPZjvbkArSW0bn0x43vLOz7sMaCUptPUlhesWdfu8r21p61ZAK0l1rTHN35x9H+Sq+e2fxN+Dtg2PK7zjNbVFYrrvnaYefbUqi4+kzX4fh6Ril/217HEQ0gJAJoS0AAAAAPqUe8CxKctcVVO63q/q6J6fe9CMHu3vLB0ly1OZsjzauq1Hx00WS3O8WGCLjEkfvT28IrHG65t1IclE0mydyHIVy1V+WMKyyJ73Ep47iodkdSxJendXYr3bdY2RjG3PRiy0J+F5tHVr1vuGdy7p9nnXN2T3Hqazq617AW82IruWJTwPrL5fcz9sU0u4Z+/1uIr2UdW+NKFrMkvSiFKXfGnKHfjTjLAFALSj3AEAAACAPlV27K9kom0K71oqS5Y8gz6q0im3dLmfu/JwlX/kHrW8f5dMqEHR1m1y+ofJRIOKBTZndW53xcQetd1yuFV5yhPa/fzJiStiPQvxUtiMot13rrDk9NiuKvVYCkQSwzlj0zZH8SEJz53Fh6h0yi0pNXf9E7+mpqXf7nTunoWNrZEejkRPKt1gkkfROrySTQ1eST0aib25Obf+dVrto4c7tPX0decgHKjTs+sSy4kUuSwVpQlPk5W4HTp3dJEGFrcPoU1XY3ZshUu729o/p+Uehy4YW6wyryOhJm9nHTVuAQD2CGkBAAAA9Cln0UBVnfJ4t/Ytrr1KxbVXpV1vYmFte8g+wPSOuKBb50w5zuCT5B44Q+Edr+07b5ajVbNm0oehJhaUlSakLXE7tF1JAW9S20qPuV0lk7+TVTMsV3JpigzhcedTphkxu6stZvtL6JDLjVpW/EGNr6evtytJJrm+blJI6x12loJJJRF6yhijzc25hdMTqtx6p9NI4tZo34W0y4JjVBdO7KfvTCvXhCr7z0xX7ELaC2v9+sQ4v+327jRlDSoIaQEgI75KAgAAAD3ADbz7GSv9OJSs6t5me5rkCajyPJLWZBpJm6HGbKkn9TXGoklty/AepUh6zzK2q5O2NKHkrtYMYWcW/ZMc0ppoYkhrOdJPLmeirV0e305DMKaWHEfCJo9a7auRtEbSi+b8hGVjK1waX+m23yELdiNwBxSl7yu7kNaSVGbz2QQA7MNIWgAAAAB9qr4tqnvebtKahogcksZXuXXV5FL5090nnQPLsiSHu70kQIo8hkRJQacJN8Ufv7MzpB8v2iNJOmGIV18/ujzrw8bCzWpc+EWZ4K6025hoUJGY0d9WtWjJtqC2tERV7rFU4nHYjvhcssurozo3PTlgziA52A7XLdL2RwbLVXWkyk/4o7ZomO57p0lbk8oBpItyNy69XYOyPJckWd7qhPeiZcVv9YL/es3bWapwzGis85v6pL4nj9oD2HQjjCWpack3FNz4hCJNa+QqH6/yE+6Wq2yc7bbPrw/ohQ2tag7F1J18tTjps/xmXWKYbExMzW/eotY1D8lEWva+1iqVHH69ims/n/sJ9/pX8fe00TkpYdm5o4vbr4tuKrKpSTugKP1sYm6bVSUeS04mDgOAjPhTFgAAAIA+9af3mrVsR0gNwZjqgzEt3BrUY6taut4xS5YjTVDXg6Aq9RyJQWfggwfijzsCWklauDWoD5uyH2Xb8vbtal37fxm3CW6bqyXbgnpqTUBbWtpD2YZQ+lvyHyy/VyF1qsea00japMTNRBRr267QlhfUuPAL+t2bjVqxO6yGkEn41xSyTzZ3NjdnOlnKEoevJuH5KvdH9feNxdoeiGp3W0yLfZ/R3OIvdNoh/UhaSQptn6dYYItCW19Ww3z7MHRVfVgPvNuszc1RNYRMtybgsisRsL5x3x8Ogpv/reb//kjR5nWKte1QrG2Hog0r1LDgKkUa12R9nmjrjvjjkHya4/96wvqBRQ4dOyjze9IVu8umMkPpAruRtOWMogWALvGVEgAAAECfWtuQGlqub8xfuYCOkYkpHN2/5TtZrK0u4bm7sn30YiSWGujdtKA+6+OGdi7pchsTqtfv/tuY9TElaYdrbPyxo3hI1vs5iganXResfzvnfgs4qlKWFY25LO25PAM/kvB8k2tyyjabXEfEH7urj8m6LaHt/7Fd/vrWNtvl6Qzxpw4dHVOR+llb3+lzH9r2atrjhXcuzvrckfr/xh937uMOZ48q7vEI1mElTjk7HcJpSTUZRtJW+VJjBrv3CACQiJAWAAAAQJ+yq1eaZp6pbrFcxbbLHZ7KvJ3DVXVUwvNo63ZJUtDmteVSz9SEsgh0Y1GFsysNu68N1r5w1Dv0zKz38w4+Re6BM2zXJYzOzVJEqaOcS4/5Sfu5hpwq98Dp+849/HyVHn1bwrZhK3VUaMja19/FYy+XZ9BHc25XZ+/vtiuVYW9AkUPfPKZctZ1qvp48zKePDLFpZ6cAP9q0Ou0xk/8AkIkJ7xuZ3LmPO5w2oijrY6VT7Hbo42Pa32NL0v9MKJHbmT74nTbIq5Fl+0Zre52WzhttP8kYAGAfatICAAAA6FNtkdSEMcfMMaOicVcq8P5dKcsdnoq8ncM77Gy1rr4v/jwW2CLJPqTNRSy4O+F56dG3KrR9noKbn48vMyb7ELFDi6M9oPYOO1cOd/aBmeXyqfpjryhS/5aCW19S09JvxdcFrdQw/FtTy+XrFOD9ZUVzwsjpiJUY0g66uEEOT9necxWp+mOvKlL/luTwyFUxUZZlqfrshdr1rxMkSVHZhbTtQWTZcXfJcvlU9bG5iux+S7FQvUwkoPqXzs369bZGYlqXNNL7isNLNKzEJZdDGlnmUnPIKGKMorH2kNbncuhHJ1RoQ2NEXqelIX6nLMvSpGq33tm1r69CnapRRBpWpW1DrG1H2nUp20Y6hbRJo5SH+p0Zw9RcXHRYiU4ZXiSHlbkerdQe6v5keqXWN0YUjBqNLHPlpd40ABzoCGkBAACAnmAunJzEjFHQrnRqHofSWmnqklp5DGmdRUMTnkcDW2SMUVt3ZpnqJJY0ktZd8xGF6l5P2ij30hAdoywtV+4jKy2HU+7qKYolTWYWVGpIe1SNR65Ot9cfWeNJDGmTQlbLlRgYd5wrYVmnycCSQ15JCu1tR0epA8tyyF19VHy9q3yCIg3v2762ZCvrw+rcg05LOmV4kTydws4im9+iHZalUeWJJQ68SQFpeO9IWmNiijSmH0kbzSGkNeF9pT1arMSR4qV5rgM7sDj7kgVOh2Vb8gEAkB4hLQAAAJCTPN6Xf5B4qy6kd3aFFI0ZlaeZcGhHa/7G0lpOr4yk/3rO1W7nCB0T/LvKYzvyWu7AWdwe0jZaNVrq+5SaHDWqfPnPOsTbLOmTKds/8J9/y1E6Xg5v6i3pJtqmjXWbFFKRhrq+omF6W0cHn5AlyeGtTJnoa8+HL0q6Mqf2Pl5yq8aGF2pUuknVctRo1eg55+UJy5yWEgJaKXUSqeW+CzQ+NFdTg4/JqahkZR8k7nYM09ziL6Usbx9Ja8lVeUTqTpJcFftC2qCKtcR3oXY5R2h45L+asfibWhUervei46XS8VrXVpaw79gKd0JAm4vk/R5Z2aING5epVI0q83xGx7Y9Ko9aE7bZ4JqidzdVqXjOAzqhdKMcMlrUNlGNzho5TFS72oyGtbysGVX1cvuqNHd9nXzeT2tq8O/x0dIdSj38BQkA+hNCWgAAAAC9ZtHWNv1iWdeTXO0JxhQIx1Scj9uinV69WPQ1PVtygyTp5eIv6Ye7js3rSFpH0WBF5dJvKp/WTueo9oVte//ZeL5pitQkKSmU2+cQSdLK4i9LkupaRutjgZ/L4a2SlTTh2T2ha2RT2jUjYzn1y8p/6UbzO/U0qo7Kpd9U/FM7XaMTlvtcqaGgXXc+XPZrbQpM1idabpBlZRMkWmqz/Ppl5XO2a8NWkVzl49OWcXCVT5T0uCTpT2X36D3v6fF18zcv0Fr38TKWY2//JJaSmFDV/dGgduHuwtbD2h+UTtMKz0x9vvGy+LoNrin6TcU/FbU8UkiaU7dTDsXU5BiYcIwlniP1asNGefe0aGvJBEnS+tZpcpvED5/fEex22wEAfY/CMAAAAAB6zcKt2QdFK+tzr7Vqx3L69Jz/2/HnzY4aLfF9Kq81aS2nRx96jt4X0ObZMu8F7efxVCWUBGixKrTSc3K3jhmy/Ho3OqHbbbKc7aUKNrsOTwloJclvE9Kms7DokuxP7PTqA/f0lLCyQ5tVKldSiYTOXBUTJbWPou0c0ErSGs9H2gPaNHoS0hZ18X686zkjoWTE296z2gPavVocA9K+5t3OEdrq2teXC4s+q2ZHdeL5gxu702wAQIEQ0gIAAADoNS3h7MsYtPVw0q0ODm+NYlZiuPa29yw5Sw7Ny/E7tKis6426qdkxQJanQg63X77h5+07pyO1XIKdT4wrti2X3GZlP2lYMnf1MXIUDVbQKrFdf8yg1FrAw0vtb96MWD45/COzOq+r7DA1OAalXd/mKFPUf1ja9d5DPibLXaaQzURnmQwrcWrSgO6Xhzh6YOZ9jeVQs6Na/iO+L8tdrrY072u26pyJwbnbpBu1DQDYH1HuAAAAAOgJQ93HTGwnCUsjlqeytCHP0JRlQatUzpLsQsFsWaOukHbnts9o7y6NqDkk/nzjzm1a21aRsl2rVa7K0+dIknwjZ6ly5hMKbn5ekYaIlPQ+WWqvlDy2wqVRZW4dPdCjowd5NbHKox8v2pOwbdTq/shQy1Ws6rPmybz0o5R1l08s0ekjUyclG+5Pf30UnfhYdud1OBXwT864TYNnjAakWefwVqr67AVqW/6z9NUm9hru3q0xg4ZqYLFTJw3zpdTYzcWRNV59d1q5bl/SkHab8IBTVTrl/6lo9P8o+qJ9OYdsbXPVJjx3KT8j0wEAfYOQFgAAAECvCeYwOjZq8jOStsllE9I6K2U58vvrT9BRkfM+x5ds0PlH7rtN/dnFi21DWmM5FSoaoY6xqb6RF8g38gLp/XnS2n3blZpduvdc+xIGkwZ4NNW1TEsjR8eXRXItZpvEVTZWvtqrpfX7llXGtuqsUUfabu+x0pe7aHPVZD0WucU3TgqlX9/oGpZxf3fl4So+8kfS65nPM614rT595PgsW9W1KQO9mub+r5aE7d+fyMjLZVmW3BUTpbJ1ySVxcxJOGinsNBneMADAfoeQFgAAAMhBfmLEVIFwTDtao6ryOlXm7V5Vsvq2qFojRkP8ziwnZOp9uYS0dpURGoMxGUnlObwnjY6a1GVW6rKeSnfbfyYmVK/w7v/GnzuDmyUdYbttm1Wu0r2PY8ZoS3NUm0KJ5Q680QaFdy2XHC7JxGQ5vHKWjZPlcMoYI0doV0KRu6i6P5K2w65w4ohZp2mTibTKcqWOpPWagGRbeCG39y+53mqyPVb6cgiSZIxRXVvXv/5a4fb+cRYPk8OX+ZzZMCam4taVkss+pG3sNI1bXSzdWODuYSQtAPQvhLQAAABAgc39sFX3vN2k2N48c9aYYl00PrcA8J63G/XSxvbZ3UeUOvXD4yq7HfbmUyiHkPaet5s0ocqtoSXtv6Y8sqJZT6wJSJLOH1Osi7N8TxpMmaSmhGUtVpmaQjGVevL3nixuPqTrjZKEtszRzrUXx583+S6XSs+y3faptSF9frJXdYGobnm9XjtaY5ISw+Yi06idT5+ZsMxZVqvKmX/XnnmXyhH6rNQpO+1JuQNjjP74dpPmbh6RsNxhItr+yABVznxc3kMS22IFd6a0ucMr2936bJY56NK29DVnJWlPp7DTrt2/XNaoRdu6/vU3uuM/2vnPSyTLKf/k76js6Fuza6DdsQJbtev5mSqJfCztb973rB+skYeE9fTagD6I5ncSOqfJftI+AEDhFf6nNgAAAOAgZozRwytb4gGtJD2xJqCmUPYFWre2ROIBrSRtbIrq1c1tGfboO7lOBvbsuvZQtikU05N7A1pJ+ueagBqD2b0nDUH7c25ryaFAbhbWtpZ2vVESK2kstkPp2zRnY6uiMaMXNrTuDWhT+UxTyrJo4yrt+tcMRXa/KVdSjYBID0bSbmmJau6HqZ8rh6IykYCalt+Usi609QW5TSBluSQ9sy67EHGPTb8nB5C7I6mjeDusqA9r0bbszuU0e0efmqha3vqJIntWZLWfncDqexVtXKmS2M6M2925ZI9e35r/QJVyBwDQvxDSAgAAAAUUNVKDTQhVn2UgKUk7AqlB3+62/AaS3RGKGrWEcwtpd7e1v+6drdGEONNI2pnla0oXDDfmEHx3xRgjl5V78YtB0VUJzycHn5PDRNJu3xw2GV/30Mh79u0LN0rqFDruFfN0/xb+XW3279/gyEpJUrR5nV1LNCzydrfPKbWX8Uh2VPCZhOcfNqV/j9buSf/+JhscXdnpmVFw60tZ75ss2rxekjQ88t+M2zWEeqeIylBt6JXjAgB6ByEtAAAA0BM9LP2abq6sXObQCtrkU3mag6tHdnUjKO4YUWxXyzac5eHCMfsXH8gxMM6kOWwUMamd71BUjqRg1GHC8sd267TAXRobWSxZrvi/Uu3Rhc3fVGV0o+3t6S3hmKJJ2aglI7dp1fjQSzo98KuM7XQmjaQ1RZkn2MrV6PDrOr/lR+3HjjSnbhAN6lNN39Gw8Ft5Pe+U4JMJz9c3RhRL86Hf1Jw+pHXIyKHovv4JL0xYH9r+n2630UTbRx0fEnlHZ7fcrpLYzoyBfDJLRk7FUoL2Dk5l/qPDyC7CYQDA/oWatAAAAEBO8pt+pjuaySFlDUZSt90PMlrtTHOLfodvHlOu7YGo/vz+vnCvI1+1Gw2bLnxNFklz2ma7mcm6qd5mVOlfzqqRaXhPO5+alLJuyOVG0o/3/ks0a+8/Sbr0+R0JoXtz2Cia9Fm4sLZEJ8wfnFU7XUkBX7r3pjvK3TF9re78+HMTCcjEorIczn3LokENjb6vb+45XV+v2Z5yDGNMl5PcJfe604Q0LJIY+rZGjHYEohrsT/0Vd3Nz+nT/4XM6JhwbIunHCqwepYb5V8bXh7b/J6s22rY70iqp/e84ZwR+qdm1FSo96ka1RYwu+3dd2v1OPMSrrxxVntU5nlsX0IPvpYbjxbHdMqFdObcZAFA4jKQFAAAACijd6L9cQtagTXi5P4yk3dmaeehrsdtScvZl9r7ykM2u2Ya0aUfS2oTZ3bU7afhymceSy2HJcvl7dNwSd+KvaHYjaZ05/BaXPJI2nyGtXXBpooGk55lrI2fZpclnUXlsm0piiUHnusbUUarGmIwjaZN5Bn00sX2t2xRt+qA7jZSirQlPLVd73Vyfy1KVL30nluUwuZ3PZR8eW4opFiSkBYD+hJG0AAAAQJ7sCcb05/eatCcY01mjijV1kLfLfdKFVAu3BvWn95rVFIppV1tMNUVO2UW3LoeltQ2pIVRrxOiZtQEt3Nomn9PSeaOLddTArtuTT12NpPW7rJRRI2/vDOvTz+6w3f72JQ0q81gaUORUzLSXRCh1W3tH3VoaWebUZyeUqi5gf96WPI6kTT5Hpa999Kjl7llI63db2tUp17x9SUPKNs4cRnUm3yq/ZHvuE1TN39KmFza0aldK6J7ajl3PHCc59v2aGanPXI/2l8sa9I1jyuXY+5pe29ymORtb5bKk80YX68gaj/61rjVlP0vSsMjbWuE5Jb7s2bUBnTDEpwV729sUimlThlG0dpylY+QoGqJY69b4st3/Pl2Wp0yyXHIWDZZMTMEt/5azZJSKxn1OJZO/o7b1jymw8m5ZzmKVHHmDPINOVHDz84ltdvrij4f4nfH6y8lyCmmd6UJaKbL7zayP05Xw7rfUtPyHshwelR59q1zltRm3D6z6XwU+eFAmEpBn4AyVTb1Dlqs4b+0BgAMRIS0AAACQJ/e81ag3drSPXHxvd4N+O7Na1UXOjPukG9351JrEEYkbm7IfDShJ/9ncJm3e9/z93Q26+7QBOQVAPZUa6iUqdjvkyPEu8saQUWNo33uxtdO6jU0RtUXSB5H5rEn79NrE/qn0tr+vDldJj47rdzskZX7f0uRytlxKrWe6tiGs0eXurPbf1BTRb5Y32q+0CYsjDe9n3zhJS7aHtGRbUMcN8WljU0R3vbnvXO/vbtA1R5Rq3ubE0bjW3j9WJIe0q/dEtLYhrN8sb+x2uQ/LsuQZ9FG1rX80vizaskFqaX/c+SqMNq9T8/IfyoT2qOXdn8eXh3bM14DzlqYe21kUfzzE79S7u+xrzZZ78zOSVpJCdYvkqTku6+PZMSam+pfOU7RloyQp0rxWA85dmrYERGj7PDUsuDr+PLL7TVlOn8qm/bRH7QCAAx3lDgAAAIAesDqNJuwIaKX2EbKvb+t61OLWltwn1+qOqGkP5/pSUxcjV8s8DhW78/sryTu7QkqXQ7fa1LntrkNKEsP3xtDe19pptGSHkimpdWjTGVCU3ftRPP5LWW1XEtuZsmzNnuwD/zUZPjMlbocsb3XWx5rRep/t8l8sa9zbrsRzRY30nM0o2uLYHknSiPDylHWvfNiWdUBbnabkgHfIKbbL0+kc0ErtE6gFVj+Qsp2jaFD88fDS9OOlarr4w05nlWkCXX9stySp+a2fZH2sdCL1b8cDWkmK7FqWMNI4Waju9dRl21/tcTsA4EBHSAsAAAD0ErvJpZJFuleUs1vCfZMHx2Wqf/qxQ4vkc1k6eqAnr+dsjRiF0pw3n3V6k19bR+hmWZbcA6cnrCuZ9O2sj3v6iOK0IXOHidUe+Q//lhzFQ7s83oTQSynLcvnMZerDs0YVq+Twb2R9rNMDv8q43q5ZjTadOTP2d0nSxNCLKeuCOQTx5462v/2+aMylclVMzPo4dmKh3SnLPIP3hb8fGeJTjU0gP6bcpfFV2Y1ylqQRZfZh70db75UkBT/8pyINq7I+nh27usLRwJb020dSg/VYa+qkcQCARJQ7AAAAAHJg0k30ZbPclcWQiLYcR3fOGlus4SUuLdke1MKtudUXDfVhICylhoHnjCrSuAq3BhQ5Nbai/VcRf55H0vaV5AnfRnUKywac/ZraNjypSONK+Sd+XZYz+yD6sCq3fnVytb70cvpJn8q9Drm8h6rm/LcVrn9bDm+1oo2r5Swbpz2vflqRPe/Ft/WbPRpX7tTqhn0JfS4fg+RNh/id+lStXyNLXRpW6pJGfF/eQ85OKXNgIs0Jt7xLUnlsh343foG+vOIjWZ1LSg1pD6t066Kp31Ro+7Ey0TYVrzQKRPaNZs80udypw32aNdavDxrCOsTvShtwWi6fBnz8TYW2vaJY207FWrerccl1aY9r+1pCiSUi3DUnyNGpXnGZ16E7TqzSit1hte0teVLisTShyiNXDjVAHGlKDnyk7c8dLVHLe79U+Ql/yKn9nZlIS8qyWMuH0oCp9tvHUr8uRVu3yxiTtkQCAICQFgAAAMgLuzv7s5ngKZRjSDt5gEeHV3u0OxjLOaQN5/F2/2wkn25QsVMnDE0tB9BX8plRJ5cSdiZlzb6RF3T72NVFTpV6LDWF7BvckWs7vFXyDj6pfVnlpL3LUssP+D1Oda5zG81hSHHypuUeh6Yn9aG7+ii5q49K3C8WTglpJamsdHDW55JSr6uxFS45PKXyDT9XkuRfu1OBTsN9M438HVHmUk2xUzXFXZcTsBxueYee3t6uaEiNS78pmeyHoptw4oRvnUsddPC7HTomi8kFczXImTiKN/DBgyqZcoucvppuHS85cJaUUP4gdWXqyFvFgjLhRlme8m61AQAOBoS0AAAAQA7S5a6bmlPrfO4JRrWuIax3doW1riGsIX6XvM720W8uR3tIU9fadUkEO92Z/+sPbzVpWKlLYyvsb6fe1hLRf+tCCkaNqn1OTR3slXfvLFXBqNHS7cGEycCGlbh01EBPwmi+UNRo8bagFm0L6v3diTVGcxkh2Bsa0tVByFEoarQi6bVlE8jnov09TRfSpj9XLJh6m33y5k8mTUonSVU+p6YO8qZMRJU8Yjjbl2k57D9jTv8w2+W/Wd6gN+tCtus6S37tyZ8pu+sw3bbZspweOUvHKtq4Mut9Ig0rEp73dEK5XFSWVEgOtxTb+xmNtqlx4RflznICMYe3Wr7h58vhaw/8Y+HUkDa86w21rvmLoq3tZQ8cvkHyDf+4HN4K2/IIkhRr3SYHIS0ApEVICwAAAPTQluaIvvdafcryFze26cWNnQOL3Ea+2umImTIFdZncML9et06vTAlqNzVF9IMF9WrtNET08Gq3bjy+UpL006V79PbO1EmkzhtdrEsm7AugfrWsIWECtc6cBb7TeVV9WG2RmHzZ1KHI4OdvNKQsy3f+nKmFmZofC6aWSUh+31vCRn9ZkXoL+/gqt24+viLhlvTk4LSnr9NRNERSahvnb8nu2kgOWpNf2+bm9KNdezKS3FUxIaeQNtq8PuG55S7t9rlzVVlcpKJRF6t1zZ/iy9o2/ENtG/6R9TGaS3+imvPfluXypYwKlqTWNX9W65o/JyxrqZysAectSxvSRlu3y1V+WNZtAICDTf8sAAUAAADsRx5ZmRp49ZaOjMrdg8TzB/NTA+VF24IJAa0kvbsrrJ2tUe1sjdoGtJL0yqZ9kwTVt0XTBrSS5EnT5kHFffdrSTajNTOpb4vaHsOT55Q2XRDrdqSvQypJ7gHHpizLtH1nK3aHtT2QGHLuymLyu3QcxYekLLMcXZcayCT5ffHmcB2UdGf4ecd5yyd0e19JstxlPdo/F2PK3fJPur5Hx4g2faDgtlckSTGbcgd2IvVvK7x7efqRtG07etQmADjQEdICAAAAPbRoW89HyGbD77I0qrx9BKyrB5mg3XjCFruiupKawzEFwulHIHZel6l0g9sh1Vba3wJ/zRF9F2Bta8m+rqidJpv3wmm1T/iVT5Oq7Scbmzwg8yRkJUf+IOF5+UfuzWoCuw4tSa/Pn/RB25lDeY6iURclPC+uba9Re8GY4uwblOSwpM/QpC7ejw4eh3Rkltva8Q3/eLf3lRSvb9sbZg7fVyO42GXp9JE+uSsnyzfykz06biywSZJkoqnlMdIxoUaZUOrIW0kykeyPAwAHI8odAAAAADno26m32g0ocmhStUdnHVoUHzmY79vr090JHo1JMSv9q+48GdeuNvsAdFK1W58Y59eAIvtRlIdXe/T5SaW6950mSdJHhnrltCy1hGPa3BzRsBKXNjZFbEPg6UO9Om1EkVwOS/9eH1Bzp5BxYLFTL2xoTdi+rrVnIa3dRG8/OK4i7WvrrismlarC59D6hkj8M3dIiVOzx/kz7ucZME2Vpz6jto1PyD1gmorGXSHPW80p21X7HBpe6tJbO0MJfZj88hqT6vh+qjbz+TsrPfo2We4yhXcukbvqSJUccYMk6aLD/NoeiOY88Z2klDIdF9b65XNaWr0nnPA6HJY0xO9UJCYFIkZnjCxSmbf7Y5Q8A49X5cwnFFh9r4Kbno0vd5aOlatsnEykWaHt8yRJ3kPOiq+3XMXyHXqhvENP7fa5u/K5w0tV5XOovi2ms0YVx8t5lM94QK7ywxTevdx+VrYk4V3LFGvbHn8ebd37OKdw1ShGSAsA3UJICwAAAOznbj6+MmVGemeWKe3nDi/R/e+mhnTJomkGSEZimQNho/bJpRyWpd1pRllef0y5it2ZA7LTRxbp9JFFaddvaY7oulcTJ8U669AiXX74vlqftZWpkxJVeh16dNW+chTdnaitQ3JIW+q2NDHNqNee8DotXXRY9yab8g0/R77h58Sf202YNXWQV5+bVKrPvVCXMHo2Ekt8fckjh8tzKBlgOT0qPerG1OWWpa8fXa6vS/rFGw05jURPfikuh9VlcJ0vvpEXyDfygj45Vy48TksX1qZ+VhzuEpUe/f+yPs6e1z6n1g8eiD/vKE+QU7hqYjKhPfaroq22ywEA7QhpAQAAgP2c16a2QbalOLOtR9oSsQ8vo8Z0OXq4PdczWttgX7c2XS3aXNgFxdnk1Mnh9ur6sPbsHfHrcVoqdjsUjhrbcg8upyVL+yacKvM6FEwKafPx2nqb22aQb0cJhOSPVkMoFn9/jKSmpJG0pZ78vl5fjnU78j2CHPs4fAMTnkdbNioa2KZYcHeaPVLFgrsUC6XWvJakWOt2RQPbZDlcsrzVCRPUAQAIaQEAAIAeyVSvNV98NkGg0ybg8DikpExN6XKQny7do2unlMvlkO57p0kLttiPZmwKxTRvs/1EQB2eXhvQ31a1KJbmrchHjmkXNtu9B8lqihJHfgYiRte8tKtbbShxWxqYFPr2i5DWJtnsGF3bPiJ7X8f9alnmSaJKezD5lh27z3Ym2f7RAblzFA1KeB7c+KR2bHwyp2Ps+c/Fade1vHOHWt65Q5LkqpioylOflqt0dM7tBIADFROHAQAAAPsxh9U+6Zbd8mR2JQXSRVpLt4f0+tY2ra6P6MWN6UPYuR+2acn2UMY2PrIyfUArKS8j5uyyvGzyveRQtSeaw0ZrGyIJy3o6EVlfsPv8dAxgzTVjzndI63cTuu4vnEkjaXtTZM97an7rJ312PgDoDwhpAQAAgFxkMQFPPg31O21DziH+1PBxysDU2qiDip0aV2F/A932QEzbAhHbdR3CmdLXLIwuz8/Ne+Veh4qSbo0fkzSJlJ2yPIeKyQoxkVyuhvhT+2Dw3s+P3econYFFjvjEdfkyeUD29XyH5tBW5M5VOblPzxepf6tPzwcA+ztCWgAAAKCPlLgtTR2U2yRTnSfG6qy6yKlP1/rlcbSPlPzE2GJdMqFEk6rbg0unJZ06wqeJ1W5dd3TqhFrtTNoJwzq0RVNjyJIsRz9WeB26dGL3Jr9K5nJY+tzhJSp2WXJY0vShXttQGqmOHezVcYO9stQ+svrYwV4dP8QnSbp4fElKSQg7pR5Ln5tk/1nsifFVbp0+Iv2EcR3KvQ5dkeZaQH64KifLf/g3JUdu15XlqejW+aKBTd3aDwAOVNSkBQAAAPLoosP8emRlS8ryM0cW6fLDS+SwLEVjRoFI+4RcHXGn22Hpsn/XJewzptyVcaTh7HF+fXxMsYyR3HtHOP7w+Eq1RmJyWla8Xmp1kVOPnjNQdyzZo2U79pUuMJIiXYwMTp4oy2FJV00u1S+7qF168jCfvnBEaV4nB/rosCLNOMSncExZj+jMZaKpoX6nbvlIpV7a2KqHbfqwv/I4LX3jmHK1Rdr7svNkXaPK3bprZrVawpkniPO7rV6pB+uwLH1+cqkunVgil0N66L1mPbe+NWGbWWOL9elaPxNN9TLLslQ27acqPfr/yYSbU9e7irTt//wpywd9ZrdMqD7lLgPLUy7L4VIs3CRFQwrveUe7nz85vj4W2CoTC8tydD0iHgAOBoS0AAAAQB6lmwipwuuIh1xOh6VST9eBU3JAasdlk0IWuexHRqYEm0ZdjqQNRlJD2mwm7PI6rV4J1RyWJW8v3fVe5nGo1ONQte/AvK3e57LvD8uyVJLF57E3dfxBwa7mbU2RfckP9A7L6ZXl9Ga/vWXJ8lalXe9wl0puyV1xeNIao1jrNjn9w7vZUgA4sBDSAgAAAD2SGB6lG7np7EahsWxC2p74xweBLrfZ0ZqY4jqU3ejUXEaw9qZcmtERVDKZVeHYvfPJtYjRP1neasnhlWLB+LK6JybIXXOCHJ4yVc78RwFbBwCFR0gLAAAA5FG6AX/ZjD5NFu5ilGuu8jEY0bKsrALn/SaktXnRHocUsnlv/W5Hwv/oe3afUULaA4NlWXL6D1G0aW18mYm0KLT1xfYAFwAOcvz0AQAAAOSgq7Gt6QK+bEZn1lYm1mY8Zbgv22ZlpavSBlL7hGOZ+N2WSrIIMUeX7z91JpPvoJ862P5W7kpv+4aVvux/TRqYxaRbyJ7ddVLu5T3eX3gGz0x47j/8mznt7ywZnc/mAMABhe92AAAAQB7VFDk1qToxoKz0OjSlpusZ088ZVRS/3bvIZWnGIfkNaY8ZlLkNTkv66lFlGbeZOdynUWWZb8gbWOTQ0QNzmyG+N50+sij+eIjfqcsmlKgmKVz1OS1NH9r+fg8sduqIAdmFzJ+dWJq/hkJHD/SqrFN93NHlLh3axecNfafkiO9Leyf6srzV8k/KLaQtPuwa5VaEBAAOHny3AwAAAHLQVckAhyV9e1qFlu8IaldbTMUuS0fVeFSRxWRUxw/x6bYZTm1ojOjwao8GFud3AqujB3olNaVdf8eJVRpe6tLdbzWpzaYe7heOKNXJw3xpJ3G66DC/qnwOTRnoVfF+VDLgkgklOqLGo8ZgTEcP8qrE7dBt06u0bEdQLREjj8PSETUeDer0fn9raoWW7QiqMRTT+EqPfrp0T0p9Xkk6Ns2oXHTPgCKn7jixSm/uCMnrtHT0IE98wj0UnnfoaRpw3nJF6t+SZ+hpcvpqctq/6NBPynXuEoXqFkix6L4Vzvz+QQoA+iNCWgAAACCPLElep6Xjh3QvdBhd7u61UgGZanvWFDk0vLT914Mqn0NbWqIp20wb5E0b0ErSrLH+njeyFzgsS0fVJIapZV6HTh5elGYPyZPUh8cN8enptYkTre1HOfQBpcrn1Ckj0vcNCstdebjclYd3f/8Bx8g94Jg8tggADgz8WAEAAADk0f486M/lsNIGi50nNks36ZfvIJ7Aye6VH7zvBgAAyDdCWgAAACCP9vfgLl0Zgs7BrNMmpXU52kPeg5Vd+M5t+AAAIF8IaQEAAIBcpJZqTeDcz4O7kE2tWSlxlKzdgNkiZ+LCTKUTDkR2+bTz4HoLAABALyKkBQAAAHJQVZT+R2i/y9LQkvxO9pVvrRH7kPaoGk/8cW1lak3cw6oSl80c7sv4/EBTW5H6noyzeZ8AAAC6g4nDAAAAgByUeRJDWr/boVFlLlX5HJo11r/flwSorXBp1Z5IwrLTRxRpdqdJvz4zvkRG0qr6sCRpeKlLl4wvSdjnosNKZIy0ek9Yo8rc+p8J++ekYfly9CCvPnd4iRZsCSoYNRpR5tLFSe8JAABAdxHSAgAAAD1weLVHt59YVehmZK3EkzoS+LMTS+TudO++12npisNLMx7H67R0eRfbHGjOPLRYZx5aXOhmAACAAxDlDvJow4YNuv766zV+/Hj5/X5VVVVp2rRp+ulPf6pAIFDo5gEAAAC2tVX377G/AAAABz5G0ubJ008/rUsuuUSNjY3xZYFAQEuXLtXSpUt177336tlnn9XYsWML2EoAAAD0lOli4rD93f4+sRkAAMDBiJG0ebB8+XJ9+tOfVmNjo0pKSnTrrbdqwYIFeumll3TVVVdJklatWqVzzjlHTU1NBW4tAAAADmZOm98AiG0BAAAKi5G0eXDttdeqtbVVLpdLL7zwgk444YT4ulNOOUXjxo3Tt7/9ba1atUo///nPdfPNNxeusQAAADioHV7t0YItwfjzco8lF0M3AAAACoofx3po8eLFmjdvniTpyiuvTAhoO1x//fWaMGGCJOnXv/61wuFwn7YRAAAAvae/jUL9yBCvaivax2o4Leni8SWyKIEAAABQUIS0PfTkk0/GH19xxRW22zgcDl166aWSpD179mju3Ll90TQAAAAgRbHboVs+UqnfzqzW/WfU6OThRYVuEgAAwEGPkLaHXnvtNUmS3+/XMccck3a7k046Kf54/vz5vd4uAAAAIB3LslRT7JTPxQhaAACA/QE1aXvo/ffflySNHTtWLlf6t3P8+PEp+2Rj06ZNGddv3bo162PtD5pDDVq49luFbgYAAEC3HeZo1R8ntcafj/DvUWD3lgK2CAD6N8sqUlHldYVuBgAUFCFtD7S1tWnnzp2SpGHDhmXctrKyUn6/Xy0tLfrwww+zPsfw4cN71Mb9TSQa0rGlawrdDAAAgDyqV7h1XaEbAQD9luUoU5EIaQEc3Ch30ANNTU3xxyUlJV1u7/f7JUnNzc291iYAAAAAAAAA/QsjaXugra0t/tjj8XS5vdfrlSS1trZ2seU+XY263bp1q4499tisjwcAAAAAAABg/0JI2wM+ny/+OBQKdbl9MBiUJBUVZT+DbldlFPobj6tI/2kmVAYAAP2fw7J0aEmlRvgrC90UAOjfLG+hWwAABUdI2wOlpaXxx9mUMGhpaZGUXWmEA1Wxu0QfO+wnhW4GAAAAAAAAsN+gJm0P+Hw+VVdXS5I2bdqUcdv6+vp4SHugTQYGAAAAAAAAoPsIaXto4sSJkqQPPvhAkUgk7XYrVqyIP54wYUKvtwsAAAAAAABA/0BI20MzZsyQ1F7K4I033ki73auvvhp/PH369F5vFwAAAAAAAID+gZC2hy644IL44wceeMB2m1gspoceekiSVFFRoZkzZ/ZF0wAAAAAAAAD0A4S0PXTsscfqxBNPlCTdd999WrhwYco2P//5z/X+++9Lkq699lq53e4+bSMAAAAAAACA/Zer0A04EPz617/W9OnT1draqjPOOEPf//73NXPmTLW2tuqRRx7RPffcI0mqra3V9ddfX+DWAgAAAAAAANifENLmwZQpU/Too4/qkksuUWNjo77//e+nbFNbW6tnn31WpaWlBWghAAAAAAAAgP0V5Q7y5LzzztNbb72l6667TrW1tSouLlZFRYWmTp2qO+64Q8uXL9fYsWML3UwAAAAAAAAA+xnLGGMK3Qh036ZNmzR8+HBJ0ocffqhhw4YVuEUAAAAAABx4+P0bQG9iJC0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFJCr0A1Az0QikfjjrVu3FrAlAAAAAAAcuDr/zt35d3EAyAdC2n6urq4u/vjYY48tYEsAAAAAADg41NXV6dBDDy10MwAcQCh3AAAAAAAAAAAFZBljTKEbge5ra2vT22+/LUmqqamRy7X/D47eunVrfNTv4sWLNWTIkAK3CLmiD/s3+q//ow/7P/qw/6MP+zf6r/+jD/u//tiHkUgkfjfr5MmT5fP5CtwiAAeS/T/RQ0Y+n0/Tpk0rdDO6bciQIRo2bFihm4EeoA/7N/qv/6MP+z/6sP+jD/s3+q//ow/7v/7Uh5Q4ANBbKHcAAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVkGWNMoRsBAAAAAAAAAAcrRtICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0qJPbdiwQddff73Gjx8vv9+vqqoqTZs2TT/96U8VCAQK3byDkmVZWf07+eSTuzzWc889p1mzZmnYsGHyer0aNmyYZs2apeeee673X8gBaseOHXrmmWd044036qyzztKAAQPifXL55ZfnfLx89FEkEtHdd9+tE088UTU1NSoqKtKYMWN0zTXX6N133825TQe6fPThgw8+mPW1+uCDD3Z5vEAgoDvvvFPTpk1TVVWV/H6/xo8fr+uvv14bNmzo2Qs+wCxdulS33HKLzjjjjPh1U1JSotraWl1xxRV67bXXcjoe12Dfy0cfcg0WTmNjox555BFdf/31OumkkzR27FiVl5fL4/Fo4MCBOvnkk3XnnXdq165dWR1vwYIFuuSSSzRy5Ej5fD4NHjxYZ555ph5++OGc2vXwww/rjDPO0ODBg+Xz+TRy5EhdcsklWrhwYXde5gEtH334yiuvZH0N3nzzzV22ia+j+fOd73wn4f1/5ZVXutyH74UAkIYB+sg///lPU1ZWZiTZ/qutrTWrV68udDMPOun6I/nfSSedlPYY0WjUXHnllRn3//znP2+i0WjfvbADRKb39LLLLsv6OPnqo7q6OjNt2rS0x/B6veZ///d/e/iqDyz56MMHHngg62v1gQceyHis1atXm3HjxqXdv6yszDz99NM9f+EHgBNPPDGr9/zSSy81wWAw47G4BgsjX33INVg4c+bMyep9HzBggHn++eczHuumm24yDocj7THOOecc09ramvEYgUDAnH322WmP4XA4zM0335zPt6Dfy0cfzp07N+tr8KabbsrYHr6O5s/y5cuNy+VKeP/mzp2bdnu+FwJAZoS06BPLli0zRUVFRpIpKSkxt956q1mwYIF56aWXzFVXXRX/hlpbW2saGxsL3dyDSsd7/8UvftG8/fbbaf+tXbs27TG++93vxo8zZcoU8/DDD5vFixebhx9+2EyZMiW+7nvf+14fvrIDQ+cfOEeMGGHOOOOM+PNcQtp89FEkEjEzZsyIbzt79mzz3HPPmUWLFpnf/OY3ZuDAgfFfUP/1r3/l4dUfGPLRh50Don//+98Zr9X6+vq0x2lsbDS1tbXxY1111VXmpZdeMgsWLDC33nqrKSkpMZJMcXGxWb58eV5ef382ZswYI8kMHTrUXHvttebvf/+7Wbx4sVm4cKH5xS9+YQ455JD4e/mZz3wm47G4BgsjX33INVg4c+bMMcOHDzeXXnqp+fWvf20ef/xxs3DhQjN//nzz6KOPmk996lPG6XQaScbj8Zg333zT9jh33313/H0fM2aMue+++8zixYvNk08+aWbOnJn1tXzRRRfFt505c6Z58sknzeLFi819990X/7xJMn/84x974+3ol/LRh51D2vvvvz/jNbh9+/a0beHraP5Eo9F4UNrxvnUV0vK9EAAyI6RFn+gYyeJyucyCBQtS1t95551Z//Ub+dXT933lypXxv6BPnTrVBAKBhPUtLS1m6tSp8f5ntHRubrzxRvP000+bbdu2GWOMWbduXc4BX7766L777ouf+0tf+lLK+tWrV8dHy48dO9aEw+HcXuwBKh992DkgWrduXbfb8sMf/jB+nDvvvDNl/fz58+OflUyj5w8W55xzjnn00UdNJBKxXV9XV5cQuL366qu223ENFk6++pBrsHDS9V1nTzzxRPx9nTVrVsr6Xbt2mfLy8vgfy+rq6lLOcd5553UZMr300kvxbc4777yUttXV1ZkRI0YYSaaiosLs3r07+xd6AMtHH3YOaTOFgF3h62j+/PKXvzSSzPjx4833vve9LvuH74UA0DVCWvS6RYsWxb+RXnPNNbbbRKNRM2HChPgPtaFQqI9befDqaUj7xS9+MX6MhQsX2m6zcOHCjD9MIXvdCfjy1Ucd12hVVZVpaWmx3eYnP/lJ/Dh/+9vfsmrfwaZQIW0oFIqHFBMmTEh7K+E111wTP9fixYu7da6DydNPPx1/v7761a/absM1uH/Lpg+5Bvd/hx12mJHab5lPdscdd8Tf04cffth2/w8//DA+mvPss8+23eass86KB0gffvih7TYPP/xwxiAe6WXqw3yFtHwdzY8NGzbER/6/8sor5qabbuqyf/heCABdY+Iw9Lonn3wy/viKK66w3cbhcOjSSy+VJO3Zs0dz587ti6ahh4wxeuqppyRJ48eP1/HHH2+73fHHH6/DDjtMkvTUU0/JGNNnbTzY5auPVq1apffff1+SdOGFF6q4uNj2OJ0nwnriiSd62nzk0dy5c9XQ0CBJuuyyy+Rw2P8IQB/mZubMmfHHa9asSVnPNbj/66oP84VrsHeVlpZKktra2lLWdfwsWlZWptmzZ9vuP2zYMJ122mmSpJdeeklNTU0J65uamvTSSy9Jkk477TQNGzbM9jizZ89WWVmZJPovV5n6MB/4Opo/X/7yl9Xc3KzLLrtMJ510Upfb870QALJDSIte1zFrst/v1zHHHJN2u87f4OfPn9/r7ULPrVu3Tlu2bJGkLn9A61i/efNmrV+/vrebhr3y1UedZz/PdJzBgwertrZWEtfx/ibbPpw6dWr8lx76sGvBYDD+2Ol0pqznGtz/ddWH+cI12HtWrlypN998U1J7ANRZKBTS4sWLJUknnHCCPB5P2uN09EswGNTSpUsT1i1ZskShUChhOzsejyceQC1ZskThcDi3F3OQytSH+cLX0fz429/+pmeeeUZVVVX62c9+ltU+fC8EgOwQ0qLXdfy1c+zYsXK5XGm36/wDWcc+6DuPPfaYJk6cqOLiYpWWlmrcuHG67LLLMo5qfu+99+KPu/qBmv4tjHz1UXeO8+GHH6qlpSXrtiI7V1xxhYYOHSqPx6MBAwbo+OOP1w9+8ANt3rw5437Z9qHL5dLYsWMlca1m49VXX40/njBhQsp6rsH9X1d9mIxrcP8QCAS0evVq/eIXv9BJJ52kSCQiSfr617+esN2qVasUjUYl9f01GIlEtHr16swv5CCWbR8mu+GGGzRy5Eh5vV5VVlZqypQpuu6667Rq1aqM+/F1tOf27Nmja6+9VpJ0xx13aMCAAVntx/dCAMgOIS16VVtbm3bu3ClJaW8L61BZWSm/3y+p/Zsp+tZ7772n999/X62trWpubtYHH3yghx56SKeccopmzZoVv0Wzs02bNsUfd9W/w4cPjz+mf/tOvvqoO8cxxiTsh/x45ZVXtHXrVoXDYe3atUuLFi3SrbfeqrFjx+qPf/xj2v06+sLv96uioiLjOTr6sK6uLmGUIRLFYjHdfvvt8ecXXnhhyjZcg/u3bPowGddg4Tz44IOyLEuWZcnv96u2tlbXX3+9tm/fLkn67ne/q4svvjhhn0Jeg3bHOdh1pw+TLViwQBs3blQoFNKePXv05ptv6le/+pUmTJigm2++OW1ZLb6O9ty3v/1tbdu2TdOnT9eVV16Z9X58LwSA7KQf1gjkQed6XiUlJV1u7/f71dLSoubm5t5sFjopLi7Wxz/+cZ166qkaP368SkpKVFdXp1dffVV33323du3apSeffFLnn3++5syZI7fbHd83l/7tCOAl0b99KF99RF8X3ujRozV79mydcMIJ8V881q5dq3/84x/6+9//rra2Nn3hC1+QZVm6+uqrU/bv6MNsvxZ3aG5ultfrzdOrOLD88pe/jN9GPXv2bNuSPlyD+7ds+rAD1+D+66ijjtI999yjadOmpazjGuwfMvVhhyFDhmj27NmaMWOGRo8eLZfLpY0bN+qZZ57RQw89pHA4rB/96EcKhUK67bbbUvanD3tm3rx5uvfee+VyuXT33XfLsqys9+U6BIDsENKiV3Uu/J+pBliHjl9CWltbe61NSLR582bbET2nn366vvrVr+qss87S8uXL9eqrr+oPf/iDvva1r8W3yaV/O/+CSf/2nXz1EX1dWLNmzdJll12W8gvRtGnT9OlPf1rPPPOMZs+erXA4rOuuu04f//jHNXjw4IRtO/owl6/FEn2Yzquvvqrvfve7kqSBAwfqD3/4g+12XIP7r2z7UOIa3F9ccMEFmjp1qqT292XNmjX629/+pieeeEKf+cxn9Ktf/Urnnntuwj5cg/uX7vSh1H6tbdiwIWGwgCQdffTRuuCCC3T11VfrjDPOUENDg26//XZ9+tOf1pFHHpmwLX3YfaFQSFdffbWMMbruuus0adKknPbnOgSA7FDuAL3K5/PFH3dMtpBJxy19RUVFvdYmJMp0y+WgQYP097//Pf4D8V133ZWwPpf+7Xy7Jv3bd/LVR/R1YZWXl2ccsXLuuefqxhtvlNRe4+++++5L2aajD3P5WizRh3beffddzZo1S5FIRD6fT4899pgGDhxouy3X4P4plz6UuAb3FxUVFZo0aZImTZqkadOm6aKLLtLjjz+uhx56SGvXrtX555+vBx98MGEfrsH9S3f6UGofFZkc0HZ27LHH6re//a2k9tvbOx53Rh9232233aYVK1ZoxIgRuummm3Len+sQALJDSIteVVpaGn+czW0mHUXds7kVEH1j9OjROv300yVJH3zwQXxmVim3/u1csJ/+7Tv56iP6ev939dVXx0OkzhMhdejow1y+Fkv0YbJ169bpjDPOUH19vZxOpx555BF99KMfTbs91+D+J9c+zBbXYOF89rOf1ac+9SnFYjF95Stf0e7du+PruAb7h0x9mK2LLrpIZWVlkjJfgxJ9mIsVK1boJz/5iaT2ARudywhki+sQALJDSIte5fP5VF1dLUldFmyvr6+PfzPtXDAehTdx4sT4486zV3cu2N9V/3Yu/E//9p189VF3jmNZVpeTOiB/Bg4cGP96azfLfEdftLS0aM+ePRmP1dGHNTU11MLsZMuWLTrttNO0ZcsWWZal+++/X+eff37GfbgG9y/d6cNscQ0WVkc/trS06Pnnn48vL+Q1aHccpJeuD7PlcrlUW1srKfM1KPF1NBe//OUvFQqFNHr0aAUCAT3yyCMp/95555349i+//HJ8ecfvdnwvBIDsUJMWvW7ixImaN2+ePvjgA0UiEblc9h+7FStWxB9PmDChr5qHLKS7xbNzeNu5/+zQv4WRrz5KPs5RRx3V5XGGDx/erdEW6L5Mt2NPnDhR//jHPyS199Hxxx9vu10kEtGaNWskca12tnPnTp1++ulau3atpPbRRJdeemmX+3EN7j+624e54BosnJqamvjjDRs2xB/X1tbK6XQqGo3m9RrM5jgul0vjxo3ruvGQlL4Pc9HVNdiBr6PZ6ygbsHbtWn3mM5/pcvsf//jH8cfr1q2T3+/neyEAZImRtOh1M2bMkNT+V/E33ngj7Xadb0uaPn16r7cL2Xvvvffij4cOHRp/PGrUqPhzu9vKOvvPf/4jSTrkkEN06KGH5r+RsJWvPuq4jrs6zrZt27Rq1SpJXMd9ra6uTjt37pSUeJ12yLYPly5dGh/5Qh+2a2ho0Jlnnhn/Wnj77bfry1/+clb7cg3uH3rSh9niGiysziMnO9/a7PF4dOyxx0qSFi5cmLGOZUe/eL3e+ORWHaZNmxafqChT/4VCIb3++uvxfTLVUUWidH2YrUgkEv/615NrkK+j+cf3QgDIDiEtet0FF1wQf/zAAw/YbhOLxfTQQw9Jap9QYObMmX3RNGRh3bp1mjNnjiRpzJgxOuSQQ+LrLMuK35q2YsWK+C8lyV5//fX4X7PPP//8jKMckF/56qPa2tr4aIa//e1vCgQCtsfpPNnHrFmzetp85OCee+6RMUaSdNJJJ6WsP/nkk1VeXi5J+tOf/hTfNhl9mCgQCOicc87RsmXLJEk33HCDvvOd72S9P9dg4fW0D7PFNVhYjz32WPzx5MmTE9Z1/Cza2Nioxx9/3Hb/TZs26cUXX5QknXrqqQm1L6X2WpinnnqqJOnFF19Me6v1448/rsbGRkn0X64y9WE2Hn30UTU0NEiyvwb5Oto9Dz74oIwxGf91nkxs7ty58eUdISvfCwEgSwboAyeeeKKRZFwul1mwYEHK+jvvvNNIMpLMTTfd1PcNPEj985//NOFwOO36bdu2mSlTpsT75uc//3nKNitXrjROp9NIMlOnTjWBQCBhfSAQMFOnTo33/6pVq/L+Og4m69ati/fHZZddltU++eqj++67L37uL3/5yynrP/jgA1NWVmYkmbFjx2b8bB3Mcu3DdevWmWXLlmXc5umnnzYej8dIMkVFRWbTpk222/3whz+Mn/vOO+9MWb9gwQLjcrmMJHPSSSdl83IOaMFg0Jxxxhnx9+zaa6/t1nG4BgsnH33INVhYDzzwgGltbc24zS9+8Yv4+zpq1CgTiUQS1u/atcuUl5cbSWbkyJFm586dCesjkYg577zz4seYO3eu7Xleeuml+DYf//jHU85TV1dnRowYYSSZiooKs3v37txf8AGop324e/futH3SYdGiRaaiosJIMpZlmaVLl9pux9fR3nHTTTd1ef3wvRAAukZIiz6xbNkyU1RUZCSZkpISc9ttt5mFCxeal19+2Vx99dXxb7S1tbWmsbGx0M09aIwcOdIMHTrUfPWrXzV//etfzYIFC8zy5cvNnDlzzA033GAGDBgQ75sZM2aYtrY22+N897vfjW83ZcoU88gjj5glS5aYRx55JCHk/d73vtfHr7D/mzdvnnnggQfi/37605/G38/p06cnrHvggQfSHicffRSJRMz06dPj237iE58wzz//vFm0aJG56667zMCBA40k43A4zL/+9a9eeDf6p5724dy5c40kc8IJJ5jbbrvNPPvss2bJkiVmyZIl5tFHHzWf+tSnjGVZ8WP+7ne/S9uWxsZGU1tbG9/26quvNi+//LJZuHChue2220xJSUk8ZFq+fHnvvSn9xOzZs+Pv1SmnnGLeeust8/bbb6f9t3LlyrTH4hosjHz0IddgYY0cOdJUVVWZq666yvzpT38yr732mnnzzTfNvHnzzO9///uEa8Lj8Zg5c+bYHufuu++ObzdmzBhz//33myVLlpinnnrKzJw5M77uM5/5TMb2XHTRRfFtZ86caZ566imzZMkSc//995sxY8bE1/3xj3/sjbejX+ppH3b8cfOII44wN954o3nqqafM4sWLzRtvvGGeeOIJc+WVV8b/SCLJfOtb30rbFr6O9o5sQlpj+F4IAF0hpEWf+ec//xn/q6bdv9raWrN69epCN/OgMnLkyLT90fnfJz7xCVNfX5/2ONFo1Hzuc5/LeIwrr7zSRKPRvntxB4jLLrssqz7q+JdOvvqorq7OTJs2Le0xvF6v+d///d98vw39Wk/7sCMg6upfcXFxVqHA6tWrzbhx49Iep6yszDz99NO98Vb0O7n0m9Q+Qi8drsHCyEcfcg0WVrY/qwwbNsy88MILGY914403JgTqyf/OPvvsLkd8BgIBc/bZZ6c9hsPh4K6wJD3tw853oGT653Q6zc0332xisVjG9vB1NP+yDWn5XggAmRHSok+tX7/eXHfddaa2ttYUFxebiooKM3XqVHPHHXeYlpaWQjfvoPPKK6+YH/3oR+ZjH/uYqa2tNVVVVcblcpmKigozefJkc80119iWp0jn2WefNeeff74ZOnSo8Xg8ZujQoeb888/nr9g9kK+QtkM++igcDpvf//73ZsaMGaa6utr4fD4zevRoc9VVV5l33nmnJy/3gNTTPmxsbDT/93//Z7785S+b4447zowYMcIUFxcbj8djBg0aZE455RRz6623mu3bt2fdpubmZnPHHXeYqVOnmoqKClNcXGwOO+wwc91115n169fn8+X3a/kI+JJxDfatfPQh12BhrVixwvz85z83s2fPNkcccYQZNGiQcblcprS01IwZM8Z84hOfMA888EDWP0fOnz/fXHzxxWb48OHG4/GYgQMHmtNPP9389a9/zaldf/nLX8zpp59uBg4caDwejxk+fLi5+OKLc/q56WDR0z4MBoPmscceM9/4xjfMjBkzzKhRo0xpaalxu91mwIABZvr06eaGG24w69aty7pNfB3Nr2xD2g58LwQAe5YxaWYtAAAAAAAAAAD0OkehGwAAAAAAAAAABzNCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAACAbnrwwQdlWZYsy9L69esL3RwAAAAA/RQhLQAAOOisX78+Hq725B8AAAAA5AMhLQAAAAAAAAAUkGWMMYVuBAAAQF8Kh8NauXJl2vWTJ0+WJE2dOlUPPPBA2u0mTZqU97YBAAAAOPi4Ct0AAACAvuZ2u7MKWP1+P0EsAAAAgF5HuQMAAAAAAAAAKCBCWgAAgG568MEH45OIrV+/PmX9ySefLMuydPLJJ0uSPvjgA33hC1/Q6NGjVVRUpEMPPVRXXnmlNmzYkLDfO++8oyuuuEKjR4+Wz+fT8OHD9cUvflE7duzIql1PPvmkPvWpT2nEiBHy+XyqqKjQ1KlT9aMf/Uj19fU9fdkAAAAA8oxyBwAAAH3gxRdf1OzZs9XU1BRftmHDBt1///165pln9Oqrr2r8+PF6+OGHdfnllysUCsW327Rpk+6++24999xzWrBggYYOHWp7jvr6en3yk5/Uyy+/nLA8GAzqjTfe0BtvvKHf//73euqpp3T88cf3zgsFAAAAkDNG0gIAAPSyLVu26MILL1RFRYXuuusuLVq0SPPmzdPXv/51WZalHTt26POf/7yWLFmiSy+9VGPGjNG9996rxYsXa+7cufrsZz8rqT3U/cY3vmF7jmAwqNNOO00vv/yynE6nPvvZz+rhhx/W66+/rnnz5unWW29VdXW1duzYobPPPjtl9C4AAACAwmEkLQAAQC9bvXq1xo0bp/nz56umpia+fMaMGXK5XPrZz36m+fPn65xzztGxxx6rOXPmqLi4OL7dySefrLa2Nj322GP6xz/+obq6uoTjSNItt9yiZcuWqaKiQi+++KKOOeaYhPUzZszQ//zP/+iEE07Q1q1b9f3vf19/+ctfeveFAwAAAMgKI2kBAAD6wG9+85uUYFWSvvSlL8Uf79y5U/fee29CQNvhi1/8oiQpEolo4cKFCeuam5v1u9/9TpL04x//OCWg7TBy5Ej98Ic/lCQ99thjamlp6d6LAQAAAJBXhLQAAAC9rKKiQmeeeabtulGjRqm0tFSSdMQRR2jChAm22x155JHxx2vXrk1Y9+qrr6qhoUGS9MlPfjJjWz760Y9KksLhsN54443sXgAAAACAXkW5AwAAgF42btw4WZaVdn1FRYWamppUW1ubcZsOnScfk6SlS5fGHw8ZMiTrdm3bti3rbQEAAAD0HkbSAgAA9DK78gWdORyOLrfr2EaSotFowrodO3Z0q12BQKBb+wEAAADIL0bSAgAA9HOdQ9tly5bJ7XZntd+wYcN6q0kAAAAAckBICwAA0M9VV1fHH9fU1BC+AgAAAP0M5Q4AAAD6uSlTpsQfz58/v4AtAQAAANAdhLQAAAD93GmnnRavZ/ub3/xGxpgCtwgAAABALghpAQAA+rmKigp95StfkSQtWLBA1113nWKxWNrtt2/frnvvvbevmgcAAACgC9SkBQAAOADccsstevXVV7Vo0SL9+te/1iuvvKKrrrpKRx11lPx+v+rr6/Xuu+/qxRdf1HPPPafJkyfr85//fKGbDQAAAECEtAAAAAcEr9erOXPm6PLLL9fjjz+u//73v/HRtXbKysr6sHUAAAAAMiGkBQAAOECUlpbqH//4h1577TX96U9/0rx587Rlyxa1traqrKxMY8aM0bHHHqtzzjlHZ5xxRqGbCwAAAGAvyzCzBAAAAAAAAAAUDBOHAQAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAAf1/JwrsUWtU3I8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'intervention_examples_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/_sources/metapopulation.ipynb.txt b/docs/_build/html/_sources/metapopulation.ipynb.txt new file mode 100644 index 0000000..976e621 --- /dev/null +++ b/docs/_build/html/_sources/metapopulation.ipynb.txt @@ -0,0 +1,1397 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Metapopulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Migration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by migrating hosts.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population 4** (both are one-way connections). **Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a migration rate of 2e-3 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=2e-3, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " host_host_contact_rate=0, \n", + " # host-host inter-population contact rate between populations\n", + " vector_host_contact_rate=0,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration( \n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `population_A`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 83.06461341318253, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 100.06274296487011 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19491923660278324s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.027785778045654297s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.024601459503173828s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.040442705154418945s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.06669497489929199s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0938570499420166s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 606 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 714 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 793 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 810 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 829 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 848 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 869 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 890 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 918 out of 918 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2NaNNaNTrue
30.0population_AHostpopulation_A_3NaNNaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
293755100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
293756100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
293757100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
293758100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
293759100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

293760 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "293755 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "293756 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "293757 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "293758 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "293759 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 NaN NaN True \n", + "3 NaN NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "293755 NaN NaN True \n", + "293756 NaN NaN True \n", + "293757 NaN NaN True \n", + "293758 NaN NaN True \n", + "293759 NaN NaN True \n", + "\n", + "[293760 rows x 7 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_migration_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAALmCAYAAADlpH2lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUZdYG8HtKOmmkQKgBRKnSAlJUQBGWjkhRUAEbUuy4u6KLILqwn1hWERVYCFgQbEgTaQJSQzf0llATSO9tyvdHnCHztimZFub+XVeuK/PWZ94kk5nnvOccldFoNIKIiIiIiIiIiIiIiMiLqT09ACIiIiIiIiIiIiIiImsY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvB4DGkRERERERERERERE5PUY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvJ7W0wOgmqO0tBTJyckAgJiYGGi1/PUhIiIiIiIicjadToeMjAwAQNu2bREYGOjhEREREXkHzkiTzZKTk9GlSxdPD4OIiIiIiIjIZyQlJaFz586eHgYREZFXYMkpIiIiIiIiIiIiIiLyeszQIJvFxMSYv09KSkJcXJwHR0NERERERER0e0pLSzNXSKj6WZyIiMjXMaBBNqvaMyMuLg4NGjTw4GiIiIiIiIiIbn/sX0lERHQLS04REREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiNzuSdQ1/P7AOy88fhNFo9PRwiIiIiGoEracHQERERERERORLLhfmoOu6T1Bu0AMA8stLMbXVvR4eFREREZH3Y4YGERERERERkRu9f3y7OZgBAC/sX+25wRARERHVIAxoEBEREREREbnR3puXPD0EIiIiohqJAQ0iIiIiIiIiNwrS+nl6CEREREQ1EgMaRERERERERG4UrGFAg4iIiMgRDGgQERERERERuREzNIiIiIgcw4AGERERERERkRsFSWRo6Ko0CSciIiIiaQxoEBEREREREbmRVIZGQUWZB0ZCREREVLP4bEDj5s2bWLduHWbMmIH+/fsjOjoaKpUKKpUK48ePt7p/amqqeXtbv+Lj4x0eb3x8vMvPQURERERERK4nlaHBgAYRERGRdVpPD8BT6tSp4/Zz3nXXXW4/JxEREREREXmXQI34ozgDGkRERETW+WxAo6pGjRqhRYsW2LRpk8371K9fH8nJyVa3mzNnDr799lsAwLhx4xweo8nQoUPx7rvvyq739/ev9jmIiIiIiIjIdYwSyxjQICIiIrLOZwMaM2bMQOfOndG5c2fUqVMHqampaNKkic37+/n5oU2bNorb6PV6bN++HQAQGhqKhx9+uDpDBgBERERYPS8RERERERF5L53BIFqWX1HqgZEQERER1Sw+G9CYNWuWy8+xZcsWXL9+HQAwYsQIBAUFufycRERERERE5N10Rr1oGTM0iIiIiKzz2abg7rB8+XLz984oN0VEREREREQ1n1SGBgMaRERERNYxoOEiBQUFWL16NQAgPj4e999/v2cHRERERERERF5BbxR30WBAg4iIiMg6ny055Wo//PADiouLAQBPPPEEVCqVU467c+dOtG/fHhcuXIBer0edOnXQpUsXPPbYYxg6dGi1znP16lXF9WlpaQ4fm4iIiIiIiCrpDCw5RUREROQIBjRcpGq5qSeffNJpx01JSbF4nJqaitTUVKxatQo9evTAypUrUb9+fYeO3bBhQ2cMkYiIiIiIiBTojCw5RUREROQIBjRc4PLly9ixYwcAoHv37rjjjjuqfUx/f38MGTIEffv2RZs2bRAeHo7c3Fzs3bsXn3/+Oa5cuYLdu3fjoYcewt69exEeHl7tcxIREREREZHzSffQKPXASIiIiIhqFgY0XODrr7+G8a+aqM7KzkhKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGHdp/jypUriuvT0tLQpUsXu49LREREREREt0hlaOQzQ4OIiIjIKgY0XOCrr74CAAQEBGD06NFOOaZUMMMkNDQUq1atQtOmTZGdnY2FCxdi7ty58Pf3t+scDRo0qOYoiYiIiIiIyBrpDA0GNIiIiIisUXt6ALebpKQknD59GgAwZMgQxUCEM4WHh+PRRx8FABQVFeHgwYNuOS8RERERERHZR2dkU3AiIiIiRzCg4WSuagZui1atWpm/v3btmlvPTURERERERLZhDw0iIiIixzCg4UQVFRX47rvvAACxsbH429/+5tbzq1Qqt56PiIiIiIiI7CfVQ4MZGkRERETWMaDhROvXr0dWVhYAYMyYMdBq3dui5OTJk+bv69Wr59ZzExERERERkW30DGgQEREROYQBDSeqWm5q3Lhxbj13Xl6eOTskODgYCQkJbj0/ERERERER2Uay5JSOAQ0iIiIiaxjQcJLs7GysX78eANC2bVu0b9/e5n179eoFlUoFlUqF1NRU0fqNGzeipKREdv/CwkKMGjXKnB3y9NNPIyAgwK7xExERERERkXvIlZwyGo0eGA0RERFRzeHemkheZNeuXTh//rz5cWZmpvn78+fPIzEx0WL78ePHKx7vu+++Q3l5OQDnZ2fMnTsXY8eOxfDhw3HvvfeiWbNmqFWrFvLy8rBnzx588cUXuHz5MgDgrrvuwsyZM516fiIiIiIiInIeqQwNg9GIYl05Qvx4cxoRERGRHJ8NaCxevBjLli2TXLd7927s3r3bYpm1gIap3JRGo8HYsWOdMsaqsrOzsXjxYixevFh2m549e+Kbb75B7dq1nX5+IiIiIiIicg6pDA2gMkuDAQ0iIiIieT4b0HCmc+fOYf/+/QCAhx56CHXr1nXq8efNm4etW7di7969OHPmDDIzM5Gbm4vg4GDUq1cP99xzDx577DH07dsXKpXKqecmIiIiIiIi59IZ9JLLCyrK4NxPk0RERES3F58NaCQmJorKSjmqefPm1ap1un37dsX1CQkJbPJNRERERER0m1DK0CAiIiIieT4b0CAiIiIiIiLvdDI3HT9fOo7Ciso+hSoV0KF2fYyIv9ulWelGoxE/XUrGoayrULpn7WpxLi7kZ6FrbGOcy89A64i6UMH6uDQqFZqFReFMXobk+l+vnUbH6AaODp+IiIjotseABhEREREREXmNc3kZ6LL2ExTpykXrZrbvi7c79HXZuef8uQ1vHv7V5u33ZlwCAKy7csop53/r8EZ0jKqP/g1aOuV4RERERLcbtacHQERERERERGSy5soJyWAGAHx78YhLz73Cxce3xY+pyZ4eAhEREZHXYkCDiIiIiIiIvMb14nzZdTnlxS49d055iUuPb4tifYWnh0BERETktVhyioiIiIiIiLxGRmmR7LpinWsn+0sFwYSH6t2J2MBa5sdXi3OxI/2i7P6PNG6LQI2faHlKYTb23Ex12jiJiIiIfBUDGkREREREROQ1MkoLZdcV6ypgNBpd1hi8RBDQmN2xH+6JaWx+vO7KScWAxqIeIxEZECxavvLiUcmARreYxngg7g689+dW8zKjUjdyIiIiIh/HklNERERERETkNZQyNIwwokyvc8l5jUYjSgXHFmZbaKwEUvzUGruWh/oFuCw4Q0RERHQ7YkCDiIiIiIiIvIZShgYA2Ybh1VVh0MMgyI4IEgU0lD9Cywc0pPcL9QuwY4RERERExIAGEREREREReQ2lDA3AdX00hOWmACBQY1ml2XpAQ3q9UoaGEAtOEREREcljQIOIiIiIiIi8QlFFmWRgoapivWsyNITlpgAgSGuZoaFWKA+lVqmglgl4aGUzNALBglNEREREtmNAg4iIiIiIiLxCZplydgbgwgwNieOKS07Jhx+0Ctkbchkatfz8bRwdEREREQEMaBAREREREZGXEJab8lNrRGWZil3UQ0MqQ8OeklNKpaL8VHaUnDKy6BQRERGRHAY0iIiIiIiIyCsIG4JHB4QgRGuZxeCuHhpalRpaQWaFtR4acmSbgmsDoFLI+iAiIiIiSwxoEBERERERkVcQZmjEBIoDGkUuytAQlpwKFJSbApR7aChlVtjTFJyIiIiI5DGgQURERERERF5BmKERE1gLwaIMDVeVnLIMaARptaJtHC45JRvQCJQ4DktOEREREclhQIOIiIiIiIi8glSGRrDWMlOiWO+eklPChuCAclNwJVqZklNsCk5ERERkHwY0iIiIiIiIyCuIAxq1ECwILLirKbjdJacUMiuUSk6xgwYRERGR7RjQICIiIiIiIq8gLjkVIlFyyk0ZGlqpDA2FklMKlaL8VLb30GDBKSIiIiJ5DGgQERERERGRV7Cp5JTbmoLb10NDiZ9MySk2BSciIiKyDwMaRERERERE5BWkmoKHuClDQ1hyyt4eGo6VnAqESlB0yqiU6kFERETk4xjQICIiIiIiIq+QWWaZoREtUXKqyFUZGjY0BVfqoaFEtim4lk3BiYiIiOzBgAYRERERERF5XLleh7zyUotl7iw5Vap3Zckp6QwNf4lzEBEREZE8BjSIiIiIiIjI44TZGUBlySlRU3C9i5qC6wQlp+xsCq5ELqABAMKkDxacIiIiIpLHgAYRERERERF5nLAhuAoq1PYPRrDGTU3BRRkaTiw55WAghIiIiIgs8V0VEREREREReZywIXhUQDA0arU4Q8NlTcGFPTSkSk45FtBQObgfEREREVliQIOIiIiIiIg8TpihERMYAgAIEQU0XJShIQiUSJackmnu7QhT1oYKlsEOo5FFp4iIiIjkMKBBREREREREHifM0IgJrAUAoqbgRR4sOeVoDw0pUgETIiIiIlLGgAYRERERERF5nFyGhvtKTgmagkv10IDzSkcFSpS0IiIiIiJlDGgQERERERGRx9maoVGsd01AQ5yhIdFDQ+28gEaAuvL4opJTTjsDERER0e2HAQ0iIiIiIiLyuExBhka0KUND454eGqIMDakeGk4sOSVV0oqIiIiIlDGgQURERERERB4nX3JKkKGhq3BJ42xRU3CWnCIiIiLyOgxoEBEREREROdn+jEv45dJxlP1117/RaMS26+fw69VTMBgNHh6ddynVVeCXS8ex88ZFi+WmklMhgh4aeqMBFQa908dhW8kpJ2ZoaP8qOSWIkVwoyMJnp3bj+5RjKKgoxb6blr9LRERERL6Mt4QQERERERE50acnd+HF/asBAF2iG2LfoBfx2oG1+OjETgDA6Cbt8V2vxz04Qu8yfNsy/HrttGi5XFNwoDJLw9/JGQ62NAXXCKMP1SBXcio5Jw1T9/0sWt4luiH2DnoBaieWvSIiIiKqafhOiIiIiIiIyIlMwQwASMq8grVXTpqDGQCwMuUoUguyPTAy73O1KFcymAEAsTJNwQGgyAV9NEqFGRoS51UKJrSOqGPX+dpG1gUAaG0MUCRlXsGma2ftOgcRERHR7YYBDSIiIiIiIhfacPWUaNnJ3BseGIn3yS0vkVxeNygUrf4KEEhlMgiDD86gM1iWApMLNPSrf5fk8s+6DVc8/j/a9jZ/r1ap8Fa7PgCAe+s0sXmMO9IvWt+IiIiI6DbGklNEREREREQupJdoYF1mYD8EAJDq7T2maQe8cfcD0Ko1AIAAjUa0jSuun17Q20SuvNQ394/B20d+Q0FFGSL8g5BRVoQhDVuhZ91misef1aEfAjRanMvPxMS7uqJecDgAoEedJljRcyy+vnAYhboy7Ll5SbZHiNqJJa+IiIiIaiIGNIiIiIiIiFxIanKaDZ4rGWAZ0dCo1Pim51iLZWqVGn5qjcV1LNU5//oZjOKxSIkKDMF8K9kYUgI0Wszq0E9y3aNNO+DRph0AAPW+ewdpJfmS2zGcQURERL6OJaeIiIiIiIhcSCqgUS5zB76vMQqCCHIT9oGCBuCuydCwHIs3ZkOovHBMRERERO7EgAYREREREZELCXszAAxomAizIuSCCAFqy4BGqQsyXMQlp7zv47I3BlmIiIiI3Mn73qERERERERHdRlhySp6whYZcBoIoQ8MF109ccsr7ggdqFp0iIiIiH8eABhERERERkQtVGBnQkGMQZEXITdgHaNyfoaFmhgYRERGR1/G+d2hEREREREQ1lLAnBABUSJScckUPiJpInKEhvZ07MjSEPTS8MUNDxQwNIiIi8nEMaBARERERETmJsGwRIF1yqlhX4Y7heD1RDw2Zj6iBGj+Lx6V6518/cckp7/u47IUxFiIiIiK38r53aERERERERDWUsGwRIN0UvEhX7o7heD2jIEdDbsJeWHKqzMlN1Y1Go2gs3ljeyRvHRERERORODGgQERERERE5iU4ioCGdocGABiCRoWFjU3BnZ2hIZdZ4ZYYGS04RERGRj/O+d2hEREREREQ1lFSGhlRTcGZoVBL10JBrCq52bVNwqZ+bN/bQYIYGERER+ToGNIiIiIiIiJxEb7CtKXhRBQMaAGAQBBJszdBwdlNwYUNwpbG4mtJp1czQICIiIh/HgAYREREREZGTSGZoSJScYoZGJXGGhjRhDw1nZ2gIAyuAl5acYjyDiIiIfJz3vUMjIiIiIiKqoRjQsI+jPTTckaHhjQENtReOiYiIiMid+G6IiIiIiIjISaSaguukSk4xoAEAMAoCCbI9NFzcFFwqEOWN/SqE14uIiIjI1zCgQURERERE5CTSPTSYoSHHAFszNPwsHpdJXNNqjUMyQ8P7AhpS4yQiIiLyJQxoEBEREREROYlkySmJZcU652YY1FTC+Xm5DA1hySl3ZGho1N73cVlqnERERES+xPveoREREREREdVQUhPOOmZoyLI1Q0NYcsodPTTUsi3KPUdqnERERES+hAENIiIiIiIiJ5GacK5gDw1Z4h4a0sQZGs4NaEiXnPK+j8vM0CAiIiJfp7W+CREREREREdlCZxRnY0j10Kgw6FFh0MNPrXHHsLyWMJAgm6GhdnWGhlTJKW/M0GBAg2xXXl6OwsJCFBUVoby8HAaJ4CoREZGzaTQaBAYGIiwsDCEhIVA5uS+ZzwY0bt68iaSkJCQlJeHAgQM4cOAAsrKyAADjxo1DYmKi1WMkJiZiwoQJNp1v6dKlGD9+fDVGXCkzMxOffPIJVq9ejdTUVABAfHw8hg0bhpdeeglRUVHVPgcRERERETlGqil4uUwD66KKckQEBLl6SF7NKCg5JfeB1xMZGiw5RTWV0WhEZmYmMjMzPT0UIiLyQTqdDmVlZcjLy0NQUBAaNWoEtRN7k/lsQKNOnTqeHoLd9u/fj2HDhiE9Pd1ieXJyMpKTk7F48WKsXr0aXbp08dAIiYiIiIh8m9Qd9HJ31RfpGNAQZWjIBBGEPTTc0hTcQyWn5BqjA9KBFyKhtLQ05OXlWSxTqVTQaHw7I4yIiNxDr9eby4qWlJTg8uXLaNy4sdMyNXw2oFFVo0aN0KJFC2zatMnhY/z222+oV6+e7PoGDRo4fGwAuHLlCgYPHoyMjAxotVq8+uqrGDRoEABg3bp1+PDDD5GWlobBgwfj0KFD1T4fERERERHZz5476NlHAxBeLfkMDT+Lx2UyWS+Okvq5aZx4J6GzsOQUWVNaWmoRzIiKikJYWBgCAgKcXvKDiIhIisFgQGFhIdLT06HX61FSUoKioiLUqlXLKcf32YDGjBkz0LlzZ3Tu3Bl16tRBamoqmjRp4vDx7rzzTsTHxztvgAJvvvkmMjIyAADffvstRo4caV533333oVOnThg9ejRu3ryJt956y6aSWURERERE5Fz2TDgXM6Bhc4aGuOSUczM0ak7JKQY0SFlubq75+9jYWJalJiIit1Or1QgLCwMAXLt2DQBQUFDgtICG991y4iazZs3CoEGDakTpqfT0dHzzzTcAgH79+lkEM0xGjRqFfv36AQC++uorUVkqIiIiIiJyPZ0dTXeZoSHVQ0N6O2HJKXc0BZdrUO5J7KFB1hQXF5u/j4iI8NxAiIjI59WqVcucHVhSUuK04/psQKMmWbNmDQx/fTBSakJuajpuMBiwZs0adwyNiIiIiIiqsOcOegY0JDI0PNQUXPhzU6tUXlmeR29HwIx8k15fWY5Nq9WyZwYREXmUWq02/y8y/X9yynGddiRymV27dpm/79mzp+x2Vdft3r3bpWMiIiIiIiIxBjTsI8rQkGsKrnZthoatpa88jSWniIiIyNf5bA8NZ5swYQLOnDmDzMxMhIWF4Y477kCfPn0wadIk1K9fv1rHPnnyJAAgPDwcdevWld0uLi4OYWFhyM/Px6lTp6p1TiIiIiIikne9OA9Hs66jXe16qB8SjvzyUuzLuISkjCs2H2PXjRRoVMr3mGlVauiMBoT7B6JrTGNR6SVHXCnMxdHsaxahhHD/QNwT3QiBWj/Z/ZzFaDTidN5NnMvPxAHB9XIkQ8NoNCI5Jw2phTm4MywGLSJiZc9dVFGGfRmXRcGkQ1lXLR57Y0NwALhQkIU1l09YLNOoVOgU1QB1g8OQUVqIAxlXoJMIfNQJqoWEqIZe+9yIiIiIbMGAhpNs377d/H1WVhaysrKwf/9+fPDBB/j4448xceJEh4999Wrlm+sGDRpY3bZhw4Y4ceIErlyx/YOU8Dxy0tLS7D4mEREREdHt5terpzB0ayIqDHpoVGp82GUw5v75O9JK8u06zocnduLDEztt3r5jVH3sGjAVQdUIOvyQegyjt38t2QS7bWQcdg2YgjD/QIePb4vZxzbj7SObJNfJ5UWIemgYdDAajVCpVPjHwfV4//h287r3OvbH9HYPio6RXpyPbus/RWphjtUxSl0fb7Dx2hlsvHZGtNxfrcGM9g9hzp/bFDN/BjZoibV9nvLKclpEREREtmBAo5qaNm2K4cOHo1u3bmjYsCEA4OLFi/jxxx/xww8/oLS0FM8//zxUKhWee+45h85RUFAAADZ1gg8JCQEAFBYW2n0e0/iJiIiIiEjef5J/R4Whsg6w3mjAS/t/cct5D2ddw2/XzmBY4zYOH+OD4ztlJ+uTc9Lw27UzGNmkncPHt0ZvMGDe8R2y6+UyVgI1lkEcg9EIndGAcp1OdLz3j2/HP+/uDbXgWD+k/mlTMAOA+efrCY6UlSo36PHW4Y1Wt1t/9RRO5t5A60j5zH8iIiIib8aARjU8/PDDGDdunOjuls6dO2P06NFYt24dhg8fjoqKCrzyyisYMmSIYskoOaWlpQAAf39/q9sGBAQAcG7neCIiIiIiumVH+kWPnftCQWa19reWRZJZVlSt41tTbtCjoKJMdn2naOmsdK1EmSS9wYDrxfmiPhy55SXQG41QC5IQbpTaf9OXJ+SUu/aznKt/xkRERESuxOKZ1RAeHq6Yqjto0CDMmDEDAFBcXIz//e9/Dp0nMLAy5bu83HrTwLKyyg8HQUFBdp/nypUril9JSUl2H5OIiIiIyNdE+t96L15LG4BmoVFoFhqFJrVqAwDuCI02L5P6qhccJnvs68X2lbUSKnVyM217CYMPANAoJALNw6IxtmlHfNB5sOR+Uk26DTDKTs4bJbJQdAbLzIeqPxtv8mW3R2TXVf09iQkMUTxOdEAImoVGifqSSF0bIiKqNHPmTKhUKq8pzRcfHw+VSoXx48d7eihEXoMZGi723HPPYcaMGTAajdixYwfefPNNu48RGhqK4uJim8pIFRVVvqG3pTyVkC09OoiIiIiISNk/2vbGP+5+wOH9d91IwX0bPpNcl1ZS4PBxAaBMENBQQSUZZHCnHf0nIz60tuI2Us3C9UYDMkqlAxpSZbWEpZwebtwGy+9/DACgWjrNYl1ckHxQydXqBYdLLp/XeRBea9PL/Pir84fw5B8rZI/zfudBGN+8M2JXvC17nYiIgMq+sL1795ZcFxQUhJiYGHTo0AGjRo3CqFGjoNVyOpGIPIcZGi4WGxuLqKjKO36uXbvm0DFMgQZrTbsBmJuBsx8GEREREZFnhLuwqfb14rxq7V+qr7B4HChotu3qu/cdPb5UQMNgNCJDpoyUQSJIIwxoaBTuvvXkjblSzxUA/NWWPyupMlxVCX+2JszPICJ7lJSU4PLly/jll18wduxYdO/eHenp6Z4eVo3Wq1cvqFQq9OrVy9NDIaqRGNBwg+qmqbVq1QoAkJeXp/hPIy0tDfn5lSnoLVu2rNY5iYiIiIhIzJYJ+TC/6gU0lD49pBU7nqFhNBpFJafkJr1dRerq2fJxSapZeGVAw/aSU3rBMq1aY/3EHiAX0AgQ/KyUAjLArUbqKrDkFBHZbtKkSUhOTjZ/7d27F59++ini4+MBAAcOHMDQoUP5WuImqampMBqNSExM9PRQiLwGAxoulpGRgczMysZ99erVc+gY9957r/n7HTt2yG5XdV2PHj0cOhcREREREcmrMOitbhNWzQwN4QR0Vdaaeisplxi7adLb2zkjQ0MneP7WAgKeIjcuf0EARqtSDsi4O1hFRLeH2NhYtGnTxvzVtWtXTJ06FYcPH8Ydd9wBAEhKSsK6des8PFIi8lUMaLjYwoULzVHrnj17OnSMIUOGQP1XOvHSpUtltzNFa9VqNYYMGeLQuYiIiIiISF6xrsLqNmF+AS47f0FFGQoryhzaV1huCvBEhoY40KAUwDGRDGhAKUNDvEyYoSGV9WHPmFxFLTMuYUDDeoZG5c9WWDGA91QTkSMiIyPxxhtvmB9v3LjRg6MhIl/GgIaDUlNTceTIEcVt1q1bh3feeQdAZROlCRMmSG5nqp2nUqmQmpoqWl+3bl2MHTsWAPDbb7/hhx9+EG3z/fff47fffgMAPPHEE6hbt649T4eIiIiIiGxQrC+3uk21S05ZmUtPK3YsS0PYEBwAgrQ1JENDIsCgmKFhQ1NwrUJAw5OknisA+GsEGRpWe2jUjJ8tEdUcXbp0MX9/6dIli3UZGRl466230KFDB0RERCAwMBDx8fF44oknsGvXLsXjxsfHQ6VSYfz48QAqy1o99thjaNiwIQIDA9GwYUNMmDABp0+flj1GYmKi4tyaSWpqqnk7R8o4lZeXY+3atZg6dSo6d+6MyMhI+Pn5ISoqCvfccw9mzpxprtQiNH78eKhUKnOFlR07dpjHYvoylfYyEV4bOWvXrsWIESPQoEEDBAQEICoqCt26dcPcuXNRWCj9vxIQXzeDwYCFCxeie/fuiIyMREhICO6++2689957KC4ututaEbmKz+ag7tq1C+fPnzc/rvpic/78edGLmvCFIzU1Fb1790a3bt0wePBgtGvXDrGxsQCAixcv4ocffsAPP/xgzs6YN28e6tev7/B433vvPWzcuBEZGRl47LHHcPDgQQwaNAhAZeDkgw8+AADExMTg3Xffdfg8REREREQkz6YMDReWnAKA6yX5aB4eY/dxhf0zACBA0Gja1XfvS2VOOJqhoTca5DM0pEpOCZuCWwkIeIqtTcGVMkyAKhkaguVS14aIyBZ+frcCpXr9rTJ+mzZtwsiRI819XU0uXbqES5cu4euvv8aUKVPwySefmCuQyFmyZAkmTpwIne7W/6yrV68iMTERK1aswFdffYWRI0c66RnZ77nnnsOyZctEy7Ozs5GUlISkpCTMnz8fv/zyi1vKwZeWlmLMmDH4+eefRePZt28f9u3bh08//RTr169H+/btFY9VXFyMvn37YuvWrRbLTf1U1qxZg23btiEkJMTZT4PILj4b0Fi8eLHkCxAA7N69G7t377ZYJhcJ3bt3L/bu3St7nuDgYHz00Ud47rnnHB4rADRs2BBr167FsGHDkJ6ejv/85z/4z3/+Y7FN3bp1sXr1ajRo0KBa5yIiIiIiImnFOtdnaFjjaIaGVECjpvRZsLuHhlSGhkEQ0KhhPTSETcGZoUFE7pacnGz+3tQn9ujRoxg8eDDKy8vh5+eHqVOnYsiQIQgJCcGRI0cwd+5cpKSk4LPPPkNISIhoLquqo0eP4ttvv0VsbCzeeOMNdOnSBaWlpdiwYQM+/vhjlJWVYezYsWjSpAkSEhJc/nyl6HQ6NG3aFA8//DC6dOmCRo0aQavV4tKlS9iyZQuWLFmCrKwsPPzwwzh+/Lj55meg8mbladOmYcKECTh48CASEhJEpeX9/f3tGs+4cePMwYx27drhtddeQ8uWLZGdnY3vvvsOiYmJuH79Oh588EH8+eefijdbP/vss9i3bx/GjRuHUaNGoW7durh8+TL+7//+D3v37kVSUhLeffddzJkzx64xEjlbzXj36oU6deqEr7/+Gnv37sXBgweRlpaGzMxM6HQ6REZGonXr1njwwQfxzDPPWLx4Vcc999yD5ORk/Pe//8Xq1avNKXRNmjTB0KFD8fLLLyMqKsop5yIiIiIiIjFbMjRCq9lDw9o8+3WHAxqWY1dBJSpj5GqSPTRsiCvIBTQyy6QzNKSagtvTQ8OTbO+hYWuGhqCHBhM0iMgBOp3OXB0EqCyfDlRmLJSXl0Oj0WDdunXo27eveZvOnTtj5MiRuPfee3Hy5EnMmzcPTz75JFq3bi15jmPHjqFx48bYt2+fRSn1+++/H/369UPfvn1RUVGByZMnIykpyTVP1IpZs2ahadOmov5ECQkJeOSRRzB58mR0794dGRkZ+PTTTzF79mzzNvXr10f9+vXNGQ4hISFo06aNw2NZv349Vq1aBQB48MEHsWHDBouASN++fdGtWzc899xzyM7OxquvvoqVK1fKHm/Pnj346quv8Pjjj5uXdezYEf3790dCQgKOHz+ORYsWYfbs2dBqOaVMnuOd7+DcIDExEUaj0eYvodDQUIwdOxbz58/Hvn37cOnSJRQVFaGsrAzp6enYunUrpk+fblMwY/v27ebzCGvlCUVHR2P27NlITk5GQUEBCgoK8Oeff2L27NkMZhARERERuZi1DI0AjVZ0J729rJVgSitxToZGoEbr9ubXjpackpq8L9SVyQaYpD7D1ZgeGrIlpxxtCm65nCWniMgeRUVF2LFjBx566CHs27cPANC4cWOMGjUKSUlJOHDgAIDKu/urBjNMIiMjsXDhQgCAwWDAggULFM/3wQcfSPaF7d27N5599lkAlT02Dh48WK3n5ahmzZqJghlVtW3bFs888wwAYPXq1S4dy2effQagshTY0qVLJbM7nn32WfTp0wcA8NNPPyEtLU32eMOHD7cIZpgEBARg6tSpAICsrCycPHnSGcMncph3voMjIiIiIiLyQsV65QyNsGpmZ9girbjAof2ETcGlyk1JBQK8gVSj7Bsl8k1OpUpO2dNDw5PFqOQCFcKAhlalnF3DklNE5IhZs2ZZNKmuVasWevXqhe3btwMAYmNjsXr1agQEBGDLli3m/Z5++mnZY/bo0QMtW7YEAIt9hCIjIzF06FDZ9U899ZT5e6XjuFNOTg4uXLiAEydO4Pjx4zh+/DgiIiIAACdPnkRFhfXMTkfodDpzc/G+ffuiYcOGstuaAkE6nc78c5QyduxY2XWdOnUyf3/x4kU7R0vkXMwPIiIiIiIispG1DA1n9M+wNpl+vTjPoeOKMzTcP+HtzJJTN0rkAztSYZma0kNDLkNDmPmjUduYoSEsOVWNsRGR72rSpAlGjBiBadOmmauRHD9+HEBl3wdrDafvuecenDp1CufOnUN5eblkNkGHDh0USxm1b98e/v7+KC8vt+jn4W7Jycn46KOP8OuvvyI9PV12O4PBgJycHKeVoq/q4sWLKC4uBlB5bZVUXW/6mUlp0aKF7LratWubvy8ocOzGCiJnYUCDiIiIiIjIRtZ6aDgloGFloj1NYSJfibCHRoCb+2dUh3RAw74MjZrTQ0MuQ0PQFNxKhkZ1S58RkW+aNGkSJk+eDKDy/1FgYCCio6MRHh4u2jY7OxtA5WS3tZ4KpjJSRqMROTk5qFOnjmgbaxP/Wq0WtWvXRnp6uvnc7va///0Pzz//PHQ6nfWNAZSUlLhkHFWfv7XrVrWEl9J1Cw4Oll2nrpLVqNfrbRkikcvwHQ4REREREZGNrGZo+Fe/5JS1nhKONwUXZ2i4O0dBKjvAlh4aUpP86YoZGtXroWEtqORKcoEWYQN3pQyTAI3W/ByEW3lrWTEi8g6xsbF2N6p21mumJ197bXH69GlzMCM2Nhavv/46HnjgAcTHxyM0NBR+fpWZj0uWLDGX4HLHa663XzciZ2NAg4iIiIiIyEYlVntoVD9Dw5r8ilIU68oRrBWX61Ai1RRcyNXTLo5O7EgFPW6Uygc0bOqh4a0ZGjIBHlEPDYUeIFI/WyIiZzOVIcrKyoJOp1PM0jCVZlKpVIiMjJTc5saNG4rn0+l0FlkhVVXNIDAISgxWVVRUpHgOJYmJidDpdNBoNNixY4dsiSZ3ZI9Uff7WrlvVsljC60ZUE3nnOzgiIiIiIiIv5JaSUzZsk+ZAlkaZwfM9NKTY8nxVKpUoS0Oph4Z0ySnbm4J7ks09NBQCMlV/tsI7d6WyV4iIHGHK5CgvL8fRo0cVt01KSgIANG/eXLJ/BgAcPXpUsZTTsWPHUF5ebnFuk9DQUPP3OTk5ssc4e/as4jiVnDhxAgDQrl07xX4TBw8eVDyOMzIqmjZtai4RtX//fsVtTdceEF83oprIO9/BEREREREReSFrAY1wf9f30AAcKztVKhi7J+7ir85UujBzQamHhmTJKYPtJac8SbbklFpYcsqxDA1WnCIiZ+nTp4/5+yVLlshut3fvXpw8eVK0j1B2djbWrl0ru77qOYTHadKkifl7pYDCihUrZNdZYwq2KGV5pKWlYc2aNYrHCQysfK9QVlbm8Fi0Wi169uwJANi8eTOuXr0qu+3ixYvN+/Tq1cvhcxJ5C+98B0dEREREROSFrPbQcEPJKQBIK3EgoCFRcsob6m7bOobqZmiIS055/rlLsbkpuI0lp7zzWRLR7aBLly5ISEgAACxatAhbt24VbZOXl4eJEycCqCwLNWnSJMVjvvrqq5IllHbs2IGFCxcCADp16oTOnTtbrG/Tpo25nNL8+fMlgwWrVq3C999/b8Mzk9a8eXMAwLlz57Bnzx7R+uLiYowZM8ZqI/C4uDgAwMWLF6vVY2PKlCkAKjNknn76aVRUiG+6WLJkCTZt2gQAGD58uPncRDUZAxpEREREREQ2KrbWQ8MpTcGtcyhDQxDQEJYwAlxfjqg6xxcFNEqVMjTE9IJJI6/toSEb0LC9KbhSOTGWnCIiZ1q0aBH8/f2h0+kwYMAATJs2DTt27MDBgwexaNEidOzYEcnJyQCAadOmKZY8ateuHa5du4ZOnTrhs88+w4EDB7Br1y5Mnz4df/vb38x9Oj777DPRvlqt1hw4OX78OB544AH88ssvOHLkCDZu3Iinn34ajz32GLp37+7wc33iiScAVPboGDhwIP79739j586dSEpKwueff4727dtj+/bt6NGjh+JxTGO4efMmXn31VRw6dAjnz5/H+fPncenSJZvHM3DgQIwcORIAsGnTJnTt2hXffPMNDh06hC1btuCZZ57BM888A6Cyd8aHH37oyNMm8jrsFEZERERERGQjd2Ro2JKx4EgPjVK9sOSUHwoqHC934QipO1FtzSAQTvRXGPSy29bkHhpygRbheLUqjeR2gCBDw0szUYjo9tC+fXusXbsWI0eORH5+Pj744AN88MEHou2mTJmCOXPmWD3W1KlTMWnSJEydOlW03t/fH8uWLcM999wjuf9bb72F33//Hfv27cOePXswbNgwi/W9evXC/PnzHe4j0blzZ8yaNQtvv/02cnNz8eabb4q2ee2119CmTRvs3r1b9jiPPvoo5syZg4sXL+Ljjz/Gxx9/bF7XuHFjpKam2jym5cuXQ6fT4eeff8bhw4fx+OOPi7apV68e1q9fj/r169t8XCJv5p3v4IiIiIiIiLyQO5qCS2lSq7bF4+sOlJwSNwX3jvvbbC45ZcfHV1sCGko9NDwZApDL0BBSztCQLznF/Awicra+ffvi/PnzmD59Otq3b4+wsDAEBASgUaNGGDt2LP744w/Mnz8fahsCyc888wz++OMPjBo1CvXq1YO/vz/q16+PJ598EkeOHMGjjz4qu29wcDC2bduG9957D23btkVQUBDCwsLQuXNnzJ8/H1u2bEFISEi1nuuMGTOwfv169O3bF5GRkfD390eDBg0wfPhwbNq0CfPmzbN6jFq1amHPnj146aWX0LJlS3Nzb0cEBgbip59+wpo1azB8+HDzNYuMjMQ999yDOXPm4MyZM2jfvr3D5yDyNt7xDpaIiIiIiKgGsJ6h4ZqSU01Do5BSmG1+nFYs3z9CjmQPDTdP3VerKbgdmQZSZZV0BmEPDe+8v8/W56lVy2doBCmVnGJXcCIS6NWrV7VfG2JiYvDee+/hvffeq/Z4unbtipUrVzq0b1BQEKZPn47p06dLro+Pj1d8rjNnzsTMmTMVzzFgwAAMGDBAdv348eMxfvx4xWPUqVPHIjNDjq3ZGoMHD8bgwYNt2rYqW8YKWL9uRO7kne/giIiIiIiIvJD1HhpOKDklEWRoFhpl8dg5TcHFk96emKuwNahiTxNv6QwNYQ8N7yzFZGugxdYeGu4OWhERERG5EgMaRERERERENnJHDw0pzcIsAxqONQUX9tBwf8J+de7urG6GhqiHhlLJKQ8GO9Q2BiC0CqVblH62vL+WiIiIajIGNIiIiIiIiGxkvYdG9UtOSWkaatlDI7e8BCVWxiIkVXLKGzjaFFyJVIaGsOSUUkDAk6Sep1S/D6WADJuCExER0e3KO9/BEREREREReSGrGRpOKDklbN4NAM1Co0XL7C07VSYIaARotHD3XHf1emjY/vFV6jz2ZGh4kmRAQyL4ohzQYA8NIiIiuj15xy05RERERF5AbzDgRmkBogJCEOAldy4TkefoDQaczrtpEQiwVurJGSWnpDIv6gaFIkjjh5IqZaN2pl9EblmJzcfNKC2yeCw16X2lKBeHM6/aMVr7ZJQViZbZmkFgaykmADiSdQ0twmMtXsuFGSpKPSg8mdMgFajQqsQNwKWyNkwsMjQE687lZ8JoNIque6muAjnlJYgNrAWNl2avEBEREfGTOhERERGAgopS9N+0GLtvpuKO0Gj82vcZ3BEmviOaiHzD1aJc9Pr1c1woyLJ5H61K7ZQyTiUSjceDNH6oFxxmMZ4Ju1ZW6zxSY/3gxA58cGJHtY7rKvaUnJqwayVeO7AWm/s+h47RDfBn9nVcK86z2Eap5JQncxhszdBQuh5KGRqvH1yHX66cwKa+zyFIW7nd2bwMDNi8GBcKsnB/naZY99BTCHVRPxgiIqHU1FRPD4GIahDedkFEREQEYNm5g9h9MxUAcL4gE/NP7fbsgIjIoxad3W9XMAOoLDflqn4FgRot4oLDnHrMALV33N9m6xVTyqiQkl1WjLnJ2wAA7x/fLnE8+Y/DrmrubgupQEUtrb9omUqlkn0OAZpbGR0qiSu860YKVl8+bn783rEt5t/3nTcuYmXKMbvHTUREROQODGgQERERAXhh/2qLx/89+YdnBkJEXuFqUZ71jQTaRcY55dw96zazmFBvV7seArV+6Bzd0CnHN2kbWRetI+o69Zj2igsKQ4R/kE3btoqoY/fxz+VnApD+eVY93t/b9LJY91nXh+0+l7P4qTVoLsgQHNiwpeS2rWWuSdsqv4utI6W3+TM7zfz98guHLNa9vP8Xm8ZKRERE5G4MaBAREREREQkY7Sg6FKDRokt0Qyzo9ohTzh2g0eLr+x/DXeEx6FC7PhZ2HwEAmH73gxjQoAWCtX7wV2sc/qoTFIrZHf6GhOiG+Fe7Pk45piNfrSLq4Kv7H7M5q+XTrg+jW0xjBGi05mOE+wdiQvPO2DfoBXSoXV+0T1ZZMQDxz7NNRF00CIkwP57WtheGNmqN+FqRmNH+IfSoE+/YD89Jlt33KNpGxiFI44eH6t2Jdzr0k9xuyb2j0b52PfP1qB0QjBdb3othjdqYt/moyxD0iI0X7XuhIFP2/N7aMJ2IiIjIO3KMiYiIiIiIvIjRaFtAI3fsbITbmGFgj8GNWmNwo9YWy6IDQ7D+oWecep4oFxzTVe4Ii8aeQS/Irj889BXsz7iErus+NS/L/KsRukHw85zcsrvF45jAWlj94AQnjrZ6usXG489hr1ndrlN0AxwZ+qriNk1Co7Br4FR8fnoPJu/9ybz8YkG27D729CshIiIicifedkFERERERCRga35GsERvA/KcqIAQi8cl+goU68pFAQ1fnK5vGhpl8fiiQo8Ye/uVEBEREbkLAxpEREREREQCwglwKRqVGn5qjdXtyH2iBQENAMgqLRYFqNQ+WFKpaa3aFo9zykuQ81dJLiGWnCIiIiJvxXcpREREREREArb00AjW+rlhJGSPcP9A0WR8ZlkRMzQANK4VKSolJVd2igENIiIi8lZ8l0JERERERCRgSwsNlpvyPiqVClEBwRbLMkuLRAEqX+wR4a/RomGVRuiAfNkplpwiIiIib8WABhERERERkYBNGRoaZmh4o+hAy7JTWRIZGr4Y0ADEZacuyAU01JwqICIiIu/EdylEREREREQCtvTQYMkp7yTso5FZKlVyyjcDGs3Coi0ey2VoqH30+hAREZH3Y0CDiIiISIKW9cOJfJoNFadYcspLiUpOlbHklEnTUMsMDfbQICIiopqG71KIiIjI5xkl7sTmRCWRb5N6XRBihoZ3EpecKmbJqb80C42yeHyhIFNyO1+9PkREROT9GNAgIiIin1eq14mWcaKSyLfZ1kODgU9vJAxosOTULU0FAY3LRbmoMOhF22nZQ4OIiIi8FN+lEBERkc8r1JWJljFDg8i3sYdGzSVdcsqSr2YgCAMaBqMRlwpzRNux5BSR66WmpkKlUkGlUiExMdHTwyEZM2fONP+cyLW2b99uvtbbt2/39HAwfvx4qFQqxMfHe3ooJMB3KUREROTzCiskAhoaTlQS+TL20Ki5hE3Bs0qLYTAaLJb5atPr2gHBiPAPslgm1RjcVwM+REREBIwePdocXFKpVEhNTfX0kCwwoEFEREQ+r7CiXLQsQKP1wEiIyFuwh0bNJSo5JZGh4cvz9eLG4OKAhsaXLxARAfC+u+WJnIEZN9atW7cOq1at8vQwFDGgQURERD5PquSULfXziej2xQyNmisqwHoPDV/OQBA2Bj+fLxXQ4FQBERH5tsTERBiNRq/LTnClwsJCTJkyBQAQGxvr4dHI47sUIiIi8nlFOnGGhi3184no9mVTDw2WpvNKwgyNEn2F6HVe7cMfhYV9NM7k3xRt48sBHyIiIl/11ltv4fLly3jwwQfRv39/Tw9Hlu++iyMiIiL6i1TJKQY0iHybLVlazNDwTsIeGgCQUVpo8diX5+tFAY28DNE2zNAgIiLyLQcPHsSnn36KgIAALFiwwNPDUcR3KUREROTzpEpOMaBB5NtsC2gwQ8MbhfsHiibkS/U6i8e+2hQcEJecOpefKdqGPTSIHLN7924888wzuOuuuxAWFgZ/f380aNAAgwYNwmeffYbc3FybjzV+/HioVCrEx8crbpeYmGi1ce+2bdvw2GOPoUmTJggKCkJwcDAaN26Mrl27Ytq0adi2bZt529TUVKhUKvTu3du8rHfv3hYNglUqFRITEyXP9fvvv2PcuHFo2rQpgoODERYWhrZt2+L111/H9evXZZ+HsLdBXl4eZs+ejQ4dOiAiIkL2nKtXr8bIkSPRqFEjBAYGIiIiAgkJCZg1axZycnIUrx0AXL16FVOmTEHTpk0RGBiIevXqYciQIdiyZYvVfR1lusZVn9P333+PPn36IDY2FkFBQWjRogXeeOMNm35nysvLsWDBAvTu3RsxMTHw9/dH3bp1MWDAAHz99dcwGAyy+wp/z65du4ZXX30Vd955J4KDgxETE4OBAwdi48aNdj0fOfHx8VCpVBg/frzV5yVl3759eOutt9CrVy/UrVsX/v7+CAsLQ6tWrTBp0iScPHlScj/T38msWbPMy4S/08K/IVv/BpOTk/Hcc8+hefPmCA4ORmhoKFq3bo1XXnlFsVyV1HXbvHkzBg8ejLp16yIgIABNmjTBpEmTcPXqVVsvkUN0Oh2effZZGAwG/POf/8Sdd97p0vNVF7tdEhERkc8rrJAIaLCHBpFPsyWmGcSSU15JpVIhKiAYNwVZGcJtfJWwKbgUZmgQ2aekpARPP/00VqxYIVp37do1XLt2DevXr0dGRgZmzpzp1rG98sor+Pjjj0XLL1++jMuXL2P//v1ITExEZqY4uGmP0tJSTJgwAd99951o3fHjx3H8+HF8/vnnWLFiBQYPHqx4rHPnzqFv376Kk8E5OTkYMWKERTAGAMrKynDo0CEcOnQICxYswC+//IKuXbtKHuOPP/7AoEGDkJ+fb16WlpaGtWvXYu3atW77WT399NNYsmSJxbIzZ85g7ty5WL58ObZu3YoWLVpI7puamor+/fvj9OnTFstv3LiBX3/9Fb/++iu+/PJL/PLLL6hdW/n1/+DBgxg4cCBu3rxVirCkpAQbNmzAhg0b8Oqrr+KDDz5w8FlWX2JiIiZMmCBaXlFRgVOnTuHUqVNYtGgRPvnkE0yePNktY5ozZw7eeustUdDo5MmTOHnyJD7//HMsXLgQTz75pNVjvfHGG5g7d67FstTUVHzxxRf48ccfsWPHDrRs2dKp4zf58MMPcfToUTRv3hxvvPGGS87hTAxoEBERkc9jySkiEpJqIi1cxpJT3is6MEQxoOHLPSIahkRAq1JDZ5S/Y5cBDSLbGQwGDB06FJs3bwYANG/eHJMnT0ZCQgKCg4ORlpaGPXv2YNWqVW4f27p168zBjLvvvhuTJk1Cy5YtER4ejtzcXJw4cQJbtmxBUlKSeZ/69esjOTkZBw4cwFNPPQUAWLJkCTp37mxx7AYNGpi/NxqNGDFiBNavXw8AGDx4MEaNGoWmTZtCrVYjKSkJH3zwAS5fvowRI0Zg9+7dSEhIkB33iBEjcO3aNbzwwgsYMmQIIiMjce7cOTRu3BhAZdCiT58+OHz4MDQaDcaMGYMBAwagSZMmqKiowM6dO/Hhhx/i5s2bGDBgAI4cOWLe1+Ty5cvmYIZarcZzzz2HESNGIDw8HH/++Sfmzp2LmTNnKo7TGRYsWIADBw6gS5cueOWVV9C8eXPcvHkTiYmJWLVqFa5fv45+/frh+PHjCA0Ntdi3sLAQDz74IC5evAgAGDZsGJ566inUq1cPKSkpmD9/Pnbs2IFdu3Zh8ODB2LlzJzQajeQ4iouLMXLkSOTl5eGf//wnBgwYgICAAOzfvx9z5sxBWloaPvzwQzRq1AgvvfSSS6+JHJ1Oh8jISAwdOhT3338/mjdvjpCQEFy/fh2HDx/GJ598gszMTEydOhUtWrTAAw88YN532LBhSEhIwIIFC/D5558DqMysEKpfv77N41mwYAGmT58OAIiJicE//vEP9OjRA3q9Hlu2bMH777+PoqIijB8/HtHR0RgwYIDssRYtWoQ9e/agZ8+emDhxIu68807k5uZi+fLlWL58OTIyMvDUU09h7969No/PVikpKebMlQULFiAgIMDp53A2BjSIiIjI57HkFBEJCUtOBWn8RI2lWXLKe0UFBCuu9+WSU1q1Bo1rReJCQZbsNr4c8PEVRqMBhjL534HbjTogCioXBermz59vDmY8/PDDWLFihWhCcODAgZg9ezbS0tJcMgY5piBK48aNsXv3btSqVctifa9evTBlyhRkZ2ebl/n5+aFNmzYWGRtNmjRBmzZtZM+zePFirF+/Hn5+flizZg3+9re/Wazv2rUrnnjiCdx33304ceIEXn75ZezatUv2eMePH8evv/6Kvn37mpd16tTJ/P0777yDw4cPIyIiAlu2bLFYBwD33nsvxo4di27duiEtLQ3Tp0/HN998Y7HNa6+9Zs7M+Prrr/HYY4+Z1yUkJGDkyJG47777cPDgQdlxOsOBAwcwYMAA/PLLL9Bqb03T9u/fH23atMGMGTNw+fJlzJ49G//3f/9nse+sWbPMwYy33noLs2fPNq/r1KkTHnnkETzxxBP45ptvsGfPHixcuBCTJk2SHEdGRgZyc3OxZcsW3H///eblXbp0wSOPPIJ77rkHV69exZtvvokxY8YgJibGmZfBJv3798eYMWMQHGz5P75Dhw4YOHAgXnzxRdx///34888/8fbbb1sENCIiIhAREYHY2FjzMqXfaWsyMjLw+uuvAwDq1auHffv2oWHDhub1PXr0wJAhQ3DfffehqKgIzz33HFJSUuDnJ/3ecc+ePXj22Wfx5ZdfWmSRPvjgg/D398fixYuxb98+HDlyBB06dHB43FKef/55FBcX47HHHkOfPn2cemxXYUCDiIiIfJ5UhoZe4c5VIrr9CUOagRotAxo1iFRj8Kp8fb6+aWiUYkCDPTRuf4ayLNz8Ltb6hreJ2EdvQhPo/AlYg8GA999/H0BlxsLy5ctl725Wq9V23f3tDOnp6QCAjh07ioIZVVkrRaTEaDTiP//5DwDgxRdfFAUzTCIjI/H+++9jwIAB2L17N86dO4fmzZtLbjt+/HiLYEZVhYWF+OyzzwAAs2fPFgUzTBo3box//etfmDx5Mr7//nssXLgQISGV/xvS09Px888/AwAGDRpkEcwwCQ0NxcKFC3HPPfcoPPvqCwgIwKJFiyyCGSZvvvkmVq1ahePHj+N///sf3n33Xfj7V2aHlpWVYfHixQCA1q1bS5bHUqlUWLBgATZu3IisrCzMnz9fNqABABMnTrQIZpjUq1cPH3zwAUaPHo2ioiIsW7YM06ZNc/AZO87a3094eDjeeecdDBs2DLt27UJWVhaioqIU93HU0qVLUVxcDKCyXFPVYIZJhw4d8MYbb+Ctt97CtWvXzP1epMTFxeHTTz+VLIk5bdo088/6jz/+cGpA4+uvv8amTZsQHh6Ojz76yGnHdTXmkRIREZHPE05SAszQIPJ1RhvKS7HklPeKDlQOaKh9vKSSsDG4EDM0iGxz9OhRc7PeZ599VjFo4AlxcXEAgJ07d+LChQsuOcfJkyfNxx4xYoTitlUny5VK54wdO1Z23Y4dO5CXl2fX+SoqKnDo0CHz8t9//x16vR4AJHsymHTp0gWtW7dWPEd19e3bF/Xq1ZNcp1arMW7cOABAdnY2Dh8+bF536NAhc8Pw8ePHy5aSCgsLw6hRowBU/qyUsoSUrsXDDz+MiIgIAHBpw3R7FBUVITU1FSdOnDD3aamaAXHs2DGXndt0DSIiIjB8+HDZ7Z555hnRPlJGjBghGwy96667zK8tpowcZ8jKysKrr74KAPj3v/+NOnXqOO3Yrubb7+KIiIiIIFNyik3BiXya8DVAqgF4MJuCe60oKxkavlxyCrCtMTgRWXfkyBHz9/fdd58HRyLN1Ig4KysLbdq0waOPPoqlS5fi/PnzTjtH1ZJM3bp1g0qlkv2qGvAxZY9Iufvuu206X1xcnOL5qpYUqnq+qr0ThL1BhLp06aK4vrrsOX/VcR8/ftz8vbUskqrrq+5Xlb+/P9q1ayd7DD8/P3NmgFTvCXfJzMzE9OnTcddddyE0NNRcDq1t27Zo27YtBg4caLGtq5iuY8eOHWXLSAFAnTp1EB8fb7GPFLmm7yaRkZEAgIKCAjtHKu+1115DRkYGunTpgueff95px3UHBjSIiIjI57EpOBEJCV8CAjTiUhDM0PBe0YHKPTR8PQGhWWi04no9/wcS2aTqhKkpG8KbPPjgg5g/fz6CgoJQWlqKlStX4qmnnkLz5s3RoEEDPP/889W+i/3mzZsO7Wcq1yPFNHnrqvNV7RlStaeCFFfftW7P+auO257nULduXcn9qqpdu7ZslodwLHLHcLVDhw6hRYsWmDNnDs6ePSvKphUqKSlx2VhM18DatQduXX+l6ybsCyKkVldO4Zsyi6pr27ZtWLZsGTQaDb744gvz8WsK9tAgIiIin8em4EQkJGwKLvWhmT00vJe1HhrM0FDO0OD/wNufOiAKsY86NjFcE6kDXFNHvyaYMmUKRo4ciW+//RabN2/G7t27kZeXh2vXruHLL7/EwoULMX36dLz77rsOHb/qBOvatWvNd6NbozQRrDSxXvV8hw8fVrw7vqoGDRpILpfqWeBOzji/txzDlcrLyzFq1ChkZWXBz88PL7zwAoYOHYo777wTkZGR5nJNFy9eRLNmzQBIv3dzNm+/bnJMfW8SEhJw5swZnDlzRrRNSkqK+fu1a9eaG8E/+uij7hmkAgY0iIiIyOcxQ4OIhGx5DWCGhveKstpDo2ZOQDhLUys9NPg/8PanUqld0iTb10RH38p2SktLs1o2xh6mO6YNBoPidkVFRVaPFRsbi5dffhkvv/wyDAYDjh49ip9//hnz589Hbm4u3nvvPXTu3BlDhw61e5xVmy5HRERYlHlyharni4mJkQ1UKKmaAXLjxg3Jhs5V17uSteNXXV+1eXvV72/cuIE777xT9hhVy23JNYDPysqCXq9XDCaZxiI8RtW7+53x+ypl27Zt5v4RCxYssOhNUZW7skdq166NtLQ0m34/TNdf7tp7QllZ5Q19+/fvx2OPPWZ1+xdffNH8vTcENGpWPgkREVENVqIzIL/MAJ2BkwSelFdegozSQouvvHJxOvKN0gLoDM5J6SWimkeYoSGFGRrey1qGRk29o9JZwvwDFa9Rekk+9FYmpYiosn6+yc6dO5167NDQUAAwN36Wc/bsWbuOq1ar0bFjR8yePRtbt241L1+1apXFdra+Tpr6KgDA7t277RqLI5xxvrZt25q/P3DggOK21tZXlz3nrxosqvr9/v37FY+RlJQkuV9V5eXliuXHdDodjh49KnkM0+8qAOTk5MgeIzs7G1lZWYpjlXPixAnz96NHj5bdrmqPFSnO+v9vugaHDx+GTqeT3e7mzZu4dOmSxT5UfQxoEBERuVipzoA5SbkY/1smnt2Siac2ZWLzJdfV8yRpmaVF6LF+PiK++RdiV8y0+DqVJy65YDAaEfXt21hx8YjE0YjodnYuLwM70i9aLJMKcEg1CifvEG0tQ8PHS04BymWnTuTeQPSKt/FDavVq6xPd7tq1a2e+u3/x4sUoLCx02rGbNGkCoLIJsFQ5GKByEvrHH390+BwdO3Y0ZysIGygHBgaavzfdzS13DFOWxMKFC1FaWurweGzRp08fc7+BTz75xKGyQr179zZnIixbtkx2uwMHDig2cnaGTZs2IS0tTXKdwWAwjy8yMtIigNapUydEREQAqHwOcpkRBQUF5mBVq1atFHu9KF2Ln3/+2Rys6NOnj8W6yMhI81iUAgrfffedw2WgqgYN5LI8DAYDFi1apHgcW3+vrTFdg9zcXPz000+y2/3vf/8zP2fhdfOk7du3w2g0Kn6NGzfOvH1KSop5uTdgQIOIiMjF/rhWhqMZt0oalemNWHayAKU63vnoTp+d2o09N1Pt2ie/ohRT9/2MCmZqEPmUWUc3i5ZpVOKPTlq1cvNM8pyoAGtNwRnQaBam3Bg8t7wEU/b+DIOR71eI5KjVarz++usAgKtXr+LJJ59Eebm4lClQOdl6/fp1m4/ds2dP8/cffPCB5Davvvoqrl27JnuMlStXKjZGPnjwoHmS2hRAMak68X3hwgXZY6jVakyfPh1AZf+CJ598UnGiOD8/H/Pnz5ddb01ERASmTp0KANizZw9eeeUVxTJHN27cwOLFiy2WxcXFmctrrVmzRpSdAgCFhYWYOHGiw+O0VVlZGSZOnCjZ7Hnu3LlITk4GADz11FPmPhEAEBAQYC67dPz4ccyePVu0v9FoxNSpU83BKtN1k/P5559j165douXp6emYNm0agMrm1VUnuk3uv/9+AMAvv/wi+fty5swZ/Otf/1I8v5LmzZubv09MTJTc5o033sDhw4cVj2Pr77U1EyZMMAfWXnvtNcm/w2PHjuHf//43AKB+/foYNmyYw+cjS+yhQURE5GI3isVvTisMwI1iAxqH8d4Cd7lQ4Fh6c3ZZMa4X56FxLe+peUpErvVnjvhOyX+07Y0n//gO+r8mdztG1Xf3sMgOEf5BqBcchuvF+ZLrrTXF9gWdoupbzUK8WVqIYl0FavkFKG5H5MumTJmCtWvXYvPmzfj555/Rtm1bTJ48GQkJCQgODkZ6ejr27duHFStWYMyYMZg5c6ZNx+3QoQO6deuGvXv3YtGiRSgvL8e4ceMQHh6Oc+fOYeHChdi2bRu6d++OPXv2SB7jH//4B55//nkMHToU999/P+68806EhIQgKysLu3btwqeffgqgsgm3sCdBo0aN0KBBA1y9ehXz5s1DgwYNcNddd5kzG+rUqWMuNfT888+bn//333+Pw4cPY+LEiejSpQvCw8ORn5+P06dPY/v27VizZg0CAwOtTq4reeedd7Bjxw7s378f//3vf7F9+3Y8++yzaN++PUJCQpCTk4MTJ05gy5Yt+PXXX9G2bVvR8/vggw+wefNmFBQUYMyYMdixYwdGjBiBsLAw/Pnnn5g7dy7Onj2LhIQEq2WMqiMhIQFr165Fjx498Morr6B58+a4efMmli1bhu+++w5AZUNzqWDAjBkz8NNPP+HixYuYOXMmkpOTMWHCBMTFxSElJQXz58/H9u3bAQDdunXDc889JzuOmJgYBAcH46GHHsIrr7yCAQMGICAgAElJSfj3v/9tDsbNnj1bsqH75MmTsWbNGpSUlKBXr16YOXMmOnTogMLCQmzduhX//e9/ERMTA41Gg4yMDLuvU79+/RAbG4ubN2/irbfeQmpqKh5++GFER0fj/PnzWLRoEbZu3YoePXooliLr3r27+ftXXnkFb775JuLi4sw3OsTHx0OrtT5dHhMTg/fffx9TpkzB1atX0alTJ/zzn/9E9+7dodPpsGXLFrz//vsoLCyESqXCwoULbW5gT9YxoEFERORicmmZBeW849GdbKmHLyetuIABDSIfkiaYBG8QHI5RTdrhRmkh3ji0AbX9g/FB58EeGh3ZQqVS4bOuwzFh10rkVumTFKTxw/S7H0S94HAPjs47PN38Hvx69Qy2pp3z9FCIajS1Wo3Vq1dj3Lhx+OGHH3D27Fm8/PLLTjn2kiVL0LNnT/MEt7Ak0LRp09C6dWvZgAZQWRJHal+TgIAAfPHFF0hISBCtmz59OiZPnoyUlBRRw/ClS5di/PjxACpfc1euXImXXnoJX3zxBS5cuIC///3vsmOSmhC3R0BAADZv3ozx48fjp59+wrFjxxQDJGFhYaJl8fHxWLNmDYYMGYKCggIsWLAACxYssNhmxowZUKlULg1oTJkyBTt27EBiYqJks+W4uDj89ttvCA8X/98KDQ3F1q1b0b9/f5w+fRo//vijZAmyHj16YM2aNYoNv4ODg/HDDz+gf//+mDNnDubMmSPa5sUXX8Srr74quX+/fv3w4osv4pNPPsHVq1clA2Rr1qxB//79ZcegJCQkBMuXL8ewYcNQWlqKL7/8El9++aXFNr169cL8+fMVe1XccccdGDVqFFatWoVNmzZh06ZNFutTUlIQHx9v05gmT56M3Nxc/Otf/8KNGzfwyiuviLYJCAjAwoULMWDAAJuOSbZhQIOIiMjF5KbRGdBwL2Fc6YWW9+Jf7S3rmIb5VdZUjfp2Bop0t8oFyN3hS0S3nzK9DplllrWZN/Z9Flq1Bq+0vh+vtL7fQyMjew1r3AaDG7ZCdnmxeVmYXyACNPwYDAARAUHY8reJyC8vRZlBBxVUyCgtRKuf3/f00IhqnODgYHz//ff4/fffsXTpUuzatQvp6enQ6/WoU6cO2rdvj0GDBuGxxx6z67gtWrTA4cOH8d5772HDhg1IS0tDeHg4OnXqhBdeeAEDBgyQLb8DAL///jvWrl2LnTt34uzZs0hPT0dOTg6Cg4PRrFkzPPjgg5g0aRKaNm0quf+kSZNQp04dfPnllzh69Ciys7NlGyD7+flhwYIFmDRpEhYtWoTt27fj8uXLKCwsRK1atdCkSRN06tQJ/fv3x6BBg+y6DlJCQ0Px448/YteuXVi2bBn++OMPXL9+HSUlJQgLC0OzZs3QpUsXDBw4EH379pU8Rq9evXDixAnMmTPHfH0jIyORkJCAF154Af369bM5o6Y6li5dir59+2LhwoVITk5GYWEhGjdujGHDhuGf//ynuc+JlPj4eBw7dgyLFi3C999/j+PHjyM/Px+1a9dGhw4dMHbsWIwZMwZqtfXKAAkJCTh8+DDmzZuH9evX49q1awgJCUHnzp3x4osvWg1G/Pe//0XXrl3xxRdf4OjRo6ioqECjRo3w8MMPY9q0aYiKirL72lTVr18/HDx4EHPnzsW2bduQkZGBiIgItGrVCmPHjsXTTz+Ny5cvWz3O119/jYSEBPzwww84c+YMCgoKFMuWKZk+fToGDRqE+fPnY9u2bbh+/TrUajUaNWqEvn374uWXX7Y5QEK2Uxm9pZsHeb2rV6+am11duXLF3PSJiIiULT9ZgPUp4tq1T7WuhX7xyjW+yXke3/Etvrl4q6bqP9s+gDkJ0nfK9Fg/36LfxvyuD2NKyx6uHiIReYFLhdmI//7fFsuyx7yDSCs9GYhuB5cLc9D4+/csluU//i5C/QJl9iBXcfTz97lz56DT6aDVai1qzhOR90hNTTX3LKma6eIJ48ePx7Jly9C4cWOkpqZ6bBx0+3LF/yUW7iYiInIx2QyNCt5T4E7CklNK/WDjgkItHgvLzxDR7SutuMDicYBGiwj/IA+Nhsi9VGCzdCIiIvJuDGgQERG5mFwuZH4ZS065kz3ho7hgyzq710sY0CDyFcISc/WCwsyNIomIiIiIyLN8NqBx8+ZNrFu3DjNmzED//v0RHR0NlUoFlUplc6pXcXExfvrpJ0yaNAmdO3dGZGQk/Pz8EBUVhW7dumHmzJlIT093ynjj4+PN41P6Yl02IqKao6CCAQ1PUroLtZ4goMEMDSLfkSYIYAoDnES+hkWqiYiIyJv4bDe0OnXqVGv/P//8Ez169EBhYaFoXXZ2Nvbt24d9+/bho48+wsKFCzF69OhqnY+IiGouNgX3DsK2YUr3W8cFCQIaJQUyWxLR7UaUocGABhEREVWRkpKCoqIiu/eLjIxE/fr1XTAi8jVFRUVISUlxaN+77roLfn5+Th6Re/lsQKOqRo0aoUWLFti0aZPN++Tn55uDGT169MCgQYOQkJCAqKgoZGRk4KeffsKiRYuQn5+PsWPHIiwsDP3796/2WIcOHYp3331Xdr2/v3+1z0FERM4ld2djQTlveXQne662cALzenGecwdDRF5LlKERxIAG+Q5WVyMism7ChAnYsWOH3fuNGzcOiYmJzh8Q+ZwDBw6gd+/eDu2bkpJS4yv8+GxAY8aMGejcuTM6d+6MOnXqIDU1FU2aNLF5f7VajVGjRuHtt99Gq1atROv79u2L/v374+GHH4Zer8cLL7yAc+fOVbv+bkREBNq0aVOtYxARkXsxQ8M7Kf1PFk5gZpQWocKgh59a4+phEZGHMUODiIiIXCk+Pl6UPe4piYmJDLJQjeOzAY1Zs2ZVa//u3buje/fuitsMHToUw4cPx48//ogLFy7gyJEj6NixY7XOS0RENY9sU/ByA4xGI5vNuoldJackJjDTiwvQsFaEcwdFRF6HAQ0iS0a7chyJiG5/27dv9/QQyMf16tXLa4JinuCzTcHdpWr6z4ULFzw4EiIi8jYVBqBM7+lR+A57JmSiAoJF2RjCMjREdHtKK2bJKSIiIiIib8WAhouVlZWZv9doWKaCiMgXKU2ks+yU5yhlxqhUKsQFhVosE05yEtHtp1yvQ2aZZZNPZmiQL1Ep5i8SEREReR4DGi5WtUlQy5Ytq328nTt3on379ggNDUVwcDCaNGmC0aNHY/Xq1T6dakRE5M2UXp0LKhjQcBfhz8HalI2w7NR1ZmgQ3fbSSwpEy6RK0BH5En7MJCIiIm/isz003OHYsWNYv349AKBt27ZOCWikpKRYPE5NTUVqaipWrVqFHj16YOXKlahfv75Dx7569ari+rS0NIeOS0Tk8xQmAvLLGNBwF3sD//UEZWaYoUF0+xP2zwjQaBHpH+Sh0RARERERkRADGi5SVlaGZ555Bnp9ZXH09957r1rH8/f3x5AhQ9C3b1+0adMG4eHhyM3Nxd69e/H555/jypUr2L17Nx566CHs3bsX4eHhdp+jYcOG1RojERFJUwpZFJTztkdPsVZWQ5ShwYAG0W1P1BA8KEyxPB0REREREbkXAxouMnXqVBw8eBAAMG7cOAwePLhax0tKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGH1TofERE5kVKGBktOuY2o5JSVOUphI2A2BSe6/Qn/zlluinwN43dERETk7RjQcIE5c+Zg8eLFAIDOnTvjs88+q/YxpYIZJqGhoVi1ahWaNm2K7OxsLFy4EHPnzoW/v79d57hy5Yri+rS0NHTp0sWuYxIRkZUeGmwK7jZ2l5wKFpacEtfWJ6LbiyhDgwENIhgV38kQERERuRcDGk725ZdfYvr06QCAFi1aYMOGDQgJCXH5ecPDw/Hoo49iwYIFKCoqwsGDB9G9e3e7jtGgQQMXjY6IyLcxoOGdrJecCrV4zKbgRLc/UYZGEAMaRERERETeRO3pAdxOVqxYgcmTJwMAGjdujM2bNyM6Otpt52/VqpX5+2vXrrntvERE5Dj20HAfUckpawENwUTmzZJC6Ax6J4+KiLwJMzSIiIiIiLwbAxpOsmbNGjz55JMwGAyIi4vD1q1b3Z7xwIaFRETeSanSETM03MfekhnCiUwjjLhRUujMIRGRl2FAg3ydVLCft14QERGRN2FAwwm2bt2KUaNGQafTISoqCps3b0azZs3cPo6TJ0+av69Xr57bz09ERNKUJgLyGdDwGGv3AUQHhkCrsnyrxMbgRLe3tGKWnCIiIiIi8mYMaFTTnj17MHToUJSVlSE8PBy//fYbWrdu7fZx5OXl4bvvvgMABAcHIyEhwe1jICIiaUrNqJmh4T7CH4O1klNqlRp1gyz7aAgnO4no9lGu1yGzrMhiGTM0iIiIiIi8CwMa1XD06FEMHDgQRUVFCAkJwfr169GpUye7j9OrVy+oVCqoVCqkpqaK1m/cuBElJSWy+xcWFmLUqFHIysoCADz99NMICAiwexxEROQaik3BK4wwKNWkIqext+QUAMQJJjOF5WiI6PaRXlIgWiZ8DSAiIiIiIs/SenoAnrJr1y6cP3/e/DgzM9P8/fnz55GYmGix/fjx4y0eX7hwAf369UNubi4A4N1330V4eDiOHz8ue87Y2FjExsbaPda5c+di7NixGD58OO699140a9YMtWrVQl5eHvbs2YMvvvgCly9fBgDcddddmDlzpt3nICIizzAYgWKdEbX82AfJ3WxpPSUsN8OSU0S3L2HAMkCjRaR/kIdGQ+QZUv8alTJNiYikjB8/HsuWLUPjxo0lb9x1N1PP2bfffptzZkS3AZ8NaCxevBjLli2TXLd7927s3r3bYpkwoPHHH3/g5s2b5sevvPKK1XNW54UzOzsbixcvxuLFi2W36dmzJ7755hvUrl3boXMQEZFrWJsGKCg3oJYfkyZdzZEMDWG5GWZoEN2+hAHLuKBQ8wQIERERUU3Su3dvbN++HQDw0EMPYdOmTZ4dEJETcfakBpg3bx7mzp2LoUOHokWLFoiOjoZWq0VYWBhatGiBcePGYePGjfj9999Rv359Tw+XiIgErN3YWFDOOx/dwd4eGgAQFyzoocEMDaLbljBgWS843EMjISIiImvi4+OhUqlENyATcOnSJezYscP8eOvWrbh+/boHR0TkXD6boZGYmCgqK2WP8ePHO+1F0xQxlZOQkMAm30REtzE2BvcMW+67FpWcKhbX2Cei24M4oMH+GUSA9UxTIiJv52ul87766isYjUYEBARAr9dDp9Ph66+/xt///ndPD43IKbwqQ+PChQvYv38/bty44emhEBEROY21t8/5DGi4BUtOEZEScckpBjTI97DMGhFRzffVV18BAAYNGoS+fftaLCO6HbglQ+PmzZv44YcfAABjx45FeLhl+vb58+cxevRoHD16FEDlm6ihQ4di8eLFiIyMdMcQiYiIrNIZjPjmdCGS0svgr1ZBZzAiu0w+GJFbkYF9eRuQq8uU3Uaj0mDfH3dg4h1D8GKH2uZeGsUVBiw4lo8/Myugl7mjKNRPjSHNgjGgSbDiuM/nVuDLPwtwvUhn9TmqADQO02JKuzDUq+X6twnXivIwYddKnMm7iQfi7sDJ3Bs4lpNmcRdVveAw9Kl3J3bfSMGFgiwAQKDGD0MbtcbC7iMQqPWD0WjEe8e2YvG5/WgVXgeL7x0pKhdzLt/y52DLpI1UU/CM0kLEBNYCAGSXFePJnSvwe/p56AzWA1NRASGY1qYnXm3T0+q2Um6WFOCJnSvwx40U6I2OB8LUKhW6RDfC8vsfReNa7L1FYgvP7MO//9yK+sHhWHLvKNwVHuvpITmsTK/DpL0/4sfUZJTqK2S3qxD8Dd8uGRrFFQYsTC7A+dwKJNQJwOMta0Gr5qQ1ERHR7Wjfvn04e/YsgMo52NLSUmzYsAHHjx/H4cOH0bFjRw+PkKj63JKh8dNPP2Hq1Kn473//KwpmlJWVoX///jh69CiMRiOMRiMMBgNWr16NoUOHumN4RERENjlysxwbUkqQWWLA9SI9bpYYoDNA9ispfzOydTdggF72q8JYjstlJ/H9pSSsvVBsPteai8U4cKMcZXqj7PFzygxYdrIQ6VYCFV/+mY/LBTrFsZq+KgzA+VwdlpxwT2mld45uxubrZ3G5KBeJ5w8iKfMKyvQ6lBv05q/UwhwsPrsfp/JumpflV5TiqwuHsPjsfgDAwcwr+NeRjbhUmINfr53Ge8e2is4lCmjYML44iQnN15LWmr9/99gWrL96CsW6Cosxy32lleTjtQNrcSbvpn0X6i+zjm7GputnUaK37XxyX6V6HXbeuIh/Htzg0Djo9pZakI3Je3/CpcIc7LmZileT1nh6SNWy7PxBLD13APkVpYp/F8IsrrigUJkj1iybL5dgb1oZMkoM+DW1BEdulnt6SEREt5WZM2dCpVKZb5bJzc3F22+/jdatW6NWrVqoXbs2evfujRUrVlg9VmpqKl555RW0bt0aoaGhCA4ORvPmzTFx4kQkJycr7msaw8yZMwEAW7ZswZAhQxAXF4fAwEA0bdoUU6dOxbVr12x+LnK2b99u3s5aGXUpRUVFWLlyJZ555hm0b98e4eHh8PPzQ0xMDHr27Il58+ahsLBQct9evXpBpVLh0qVLAIBly5aZx2L66tWrl8U+wmsjxWAw4Ouvv8aAAQNQt25d+Pv7IyYmBr1798aCBQtQXi7//1N43UpLS/H++++jY8eOCA0NRWhoKLp06YL58+dDp7N+k1l1LF++HAAQGRmJgQMHYtiwYQgNDbVYR1TTuSWgsWnTJqhUKjz88MOidYmJibhw4QIAYMiQIfjvf/+LwYMHw2g0Yvfu3Vi5cqU7hkhERGTVspP2TfLn6TLs2DYT53Nv3Tl8pcD2N7pXCvSy6wxGIy4rrJdz1YF9HLHw7L5q7Z+ckw4AeO9PywDGgtN7RNvWF2Rs2FI+KvavTIyqqpalOZnrWJnMY9mONeU7/tfzdZaDmVedejy6PQgzgGr674mjf28tI+o4eSSe8e3pIovHn//J0nkkTy0xiVmdjEAiX5OSkoKEhAS88847OHnyJIqKipCTk4Pt27djzJgxGD16tOyE9vLly9GiRQt8/PHHOHnyJAoLC1FSUoLz589j4cKF6NChA+bMmWPTOGbNmoWHHnoIa9euRXp6OsrKypCSkoLPPvsMrVu3xh9//OHMp223gQMH4tFHH8X//vc/HDt2DPn5+dDpdMjMzMTOnTvx+uuv4+6778bp06fdMp7s7Gzcf//9eOKJJ/Drr7/ixo0bqKioQGZmJrZv344pU6agffv25iCKkhs3bqBbt274+9//jiNHjqCwsBCFhYU4cOAAXnjhBQwfPhwGGzK7HVFeXm6eRx05ciT8/f0RFBSE4cOHAwBWrFjh8oAKkTu4JaBx5swZAEDXrl1F67799lsAwAMPPIDVq1fjhRdewC+//II+ffrAaDTiu+++c8cQiYiIrMpVKC8lRW+0/c2iEUZkld46vs6OU8mVpAKAUt3t3QCv5K/yMfnlpXbve2+dJla30ajVuDsyzmKZLaWlrCmoKHNovzKDcz+ACHsGEAHAaUEGUbFOvkxTTZBfYf/rw8j4u9E5uqELRuN5RRW39/8Fqh6tSjxFwIAGke1Gjx6NlJQUPP/889iyZQsOHDiA//3vf7jzzjsBAKtWrcLrr78u2m/9+vUYP348ysrKUKtWLbz99tv4448/sHfvXnzwwQeIjo6GXq/H9OnT8fnnnyuOYf369Zg5cybuuusu/O9//8OBAwewZcsWTJw4EWq1Gnl5eRg0aBCuXLnikmtgC51Oh7Zt2+LNN9/Ezz//jP3792Pfvn1YuXIlHn30UajVaqSkpGDYsGEoLbX8P7506VIkJyejXr16AIChQ4ciOTnZ4mvp0qU2j0Wv12PQoEHYvXs3AKBnz574/vvvcfDgQaxZswbDhg0DAJw6dQoPPvigbOaIyfDhw3Hy5Em8+OKL2Lx5Mw4dOoRvv/0WLVu2BACsXbsWixYtsnl89li3bh2ys7MBAI8//rh5uen7mzdvYuPGjS45N5E7uaWHRkZG5R2qDRo0sFheUlKCffv2QaVS4bnnnrNY99RTT2HLli04fPiwO4ZIRERklb9GhQqD9ETQSx3CUDdEY36sNxqw6mfLLIeF3caiY3Q0VFDho5M78fWFW//jjDAgq0QPo9EIlUolClIMbBKEe+sHAgA+PpyPG8W3jq1XmJsqlghovN01AoFayzswz+VUYMkJ5Tfn3sgU0Ajx87e6rUFwTUP9Amw6x+QW3fH83h/NjysM8tkrL7e6D0806yRaPmnvj0jKvPWh0dGARrne8tzvdOiHgQ1a2rz/teI8DNl66wNeka4cBRWlCPULdGg8dHsSBTT05ebXppoov9zy721yi+54unkX2e2jAoPZW4Z8llYtDmg4I5BP3sdgNKKw3HcCnLX8VZIZSM524MABfPvtt3jsscfMyxISEjBy5Ejcd999OHbsGD755BM8/fTTaNOmDQCgoqICzz33HIxGI2rVqoU//vgD7du3N+/ftWtXPPLII+jWrRvS0tIwbdo0jBw5EtHR0ZJjOHjwIDp27IgdO3agVq1b2cYPPvggevTogSeffBL5+fl47bXXsGrVKtdcCCuWLl2K5s2bi5bfc889GDVqFJ5++mn069cPZ86cwTfffIOnn37avE2TJpU3Jfn5+QEAIiIizNfSEV988QX27t0LAHjyySeRmJhofs/TqVMnDB48GG+++Sb+/e9/48KFC5g9ezb+85//yB7vwIED2LRpk0XZq44dO6Jfv35o1aoVbty4gQULFmDixIkOj1mOqaRUfHw87r33XvPyBx54APXq1cP169exfPlyDBo0yOnnJnIntwQ0cnNzAQBqwZujffv2oaKiAmq1Gn369LFYZ3qBunnTsRrTREREzuavVqEI0h/8GoVq0SD01r/VIokJ6z71G6FJaBQAoEFwhMU6o9GIcgNQUGFEmL8KesHcQWywBk3DK9+0BwmCEXqZIAsAlEgENFrU9hN9oKupH2hL/rpzPFgjDmgIJ2CF9fFt/VDrp9ZYPFYKaDQICUfH6Aai5ZUNym8FNBy5YxwAygUZGneFx0ieT85dFTGiZWnFBQgNZ0CDbhEGNAxGI8r0OgRq/Tw0ouoR/r3Z+3dD5Es0EhkaOmZo3JYKy414dkum9Q1vE4v6RCMswPUBjUGDBlkEM0xCQ0OxcOFC3HPPPTAYDPjiiy8wf/58AMDPP/+M69cryyO+9dZbFsEMk8aNG+P999/H448/juLiYixdulQy08Nk4cKFFsEMkyeeeAIrVqzAr7/+ip9//hnp6emoW7eug8/WcVLBjKr69OmDIUOGYPXq1Vi9erVFQMPZPvvsMwBATEwM5s+fL3kDx6xZs/DTTz/h9OnTWLRoEd555x0EBEjfHPXCCy+IengAQO3atTFhwgTMnTsXycnJyMvLE/UZro6srCxs2FDZH2/MmDEWz0OtVmPMmDGYN28e1q5di9zcXERERDjt3ETu5paSU6YX0fR0y7rPpsZBrVq1QmRkpMU6U6RVq3VLzIWIiMgqf438Oo3gP2qJXlwaKEhzazJQI3ijbETlZEFWSeVkuU4QpNCqq7whFbzHVsrQEAY0AjTuuTvNXYp1lc35giUmWgt1lkElYYaGyqa24OK7VR2Z2BFmgzicoSEIpvir7XufFOIXIBpLOstOURU6gx7n8sUTXMX6mlt2ShjQCGNGEpEsyZJTzNAgstmECRNk13Xp0gWtW7cGUNmw28T0vUqlwlNPPSW7/8iRI80T4FX3F2rbti06dRJnDJuYzqHT6Rxq6O0KGRkZOHfuHI4fP27+iompvBHn2LFjLjvv9evXcerUKQDAqFGjzM2zhbRarflnm5OTo1hNZuzYsbLrTD8Xo9GIlJQUR4ctacWKFaioqHy/VrXclIlpWWlpKb7//nunnpvI3dwS0GjRogUAiOq0/fjjj1CpVOjZs6doH1Pwo06d26MZHxER1Xx+wkhCFcIARYlEzfmgKpPuGsEkuSl7wNRHQ5hYoalyeEGCBhQSNFAsaMYRLNzZi9XSWi8JZQochWjFGRq5ZZaTmM7L0PBcQKNMECjzVytE2WTEBYVZPE4rtq/ZPd3eUgqyJbOQTMHDmkj498aABpE8yZJTzNAgslnnzp0V13fpUlny8OzZsygvr/zfevz4cQCVlUpMk/hS/P390aFDB4t9qjMGAEhOTlbc1pV2796N0aNHIyoqCrGxsbjzzjvRtm1b85epz0Rmpusyiapex3vuuUdx26rrla6/aQ5USu3at0paFhQ49z34smXLAFSWtzL166iqXbt25tJcptJURDWVWwIaAwcOhNFoxMKFC/H555/j+PHjmDZtGk6ePAmgsmGOkCnaWb9+fXcMkYiIyCp/jfwEuDDWUSJxN3PVDA3hHZDCDA1h1oXWImXY8mTCbA6LcQgiI8JyVd7Mlh4XpuscqBFnaOSWl1g8FmZo2B7QsPxZKZWckiOcQM13VoaGxv6ARt0gyzvP2BicqhKWmzIpqsEBDeHfW5i/bf1ziHyRWqUWZTCyhwaR7WJjYxXXm27aNRqNyMnJAQBzE2dr+wIwl4cy7VOdMVg7jivNnDkT9957L1atWmV1DCUlJYrrq6Pqua1dt6qluZTGHBwcLLuuail+vd7+zxRyTp06hYMHDwKQzs4weeKJJwBUBpOcnSFC5E5uqec0depULFiwAGlpaZg6darFum7duqF3796ifdauXQuVSmU1skxEROQu/ooZGpaPhQENtUplcae/sEa10SjI0BCVnJI/l1KGRmkNDWgEafxEgQQppkwYvcTdo9YCGrZeCa3KMmjgyMSOOEPD0R4awpJTDmRoBFtmaKSXMEODbpELaBRLZJ3VFPnlLDlFZA+tWm0RvGeGxu2plr8Ki/pIN5W+HdXyd897YKn+C+7Y1xXHcZWtW7di1qxZAICmTZti2rRpuPfee9GoUSOEhISYS8/PmDEDs2fPdtu4vP26KamacfHqq6/i1VdfVdzeaDRi+fLlePvtt109NCKXcEtAIzw8HFu2bMETTzxhUWfuvvvuw4oVK0TbHzt2DAcOHIBKpcJDDz3kjiESERFZpfRx3lrJqSCNn8WbZLkeGpmmDA3ByTRq+X2VemgU19CARojWH1obJutNgSPhRD8gDmgIL5Naok64FFGGhtH+u6mc1kNDcCdXgMb+t3JxwgyNYmZo0C2nZAMaNTNDo8KgFwWYbcn+IvJlWpUaFagS0HAgM5G8n1qlckuTbF9z48YNNGzYUHE9UDl5buolaypDZFqnxFSevWrpIrlz2LJeeJyqGQQGg8HicVVFRUVWxyrHVEoqMjIS+/btky2z5Y7skarP39p1q9oXWOn6u5vBYMA333xj935fffUVAxpUY7mt43bLli1x8OBBpKSkID09HXFxcYiPj5fdfunSpQCABx54wE0jJCIiUlahEDkQNwUXBzSqEtaoNvfQKKmMZOgF2QRVszKEGRrCbS3GIQpoyEziC46pECNxi2CtnyhwI8UUOJIOaFjele1whoaoh4YjJacsJ1Dzyx0tOSXsoeFAQEOQoZHGDA2q4nTu7VVySip4yAwNImVatRpV4hnM0CCyw4EDBxQDGgcOHAAANG/eHP7+lT3g2rRpg7179yIlJQUZGRmyE/wVFRU4cuSIeR9r57BlvfA4VZti5+TkICoqSvIYZ8+eVTyHkhMnTgAAevfurdgzxFRCSY4zMiqqPv/9+/ebSzJJSUpKktzP037//XdcuXIFAPDCCy+ge/fuitvv378fH3/8MS5cuIDdu3ejR48e7hgmkVO5LaBh0qRJEzRp0kRxm3bt2qFdu3ZuGhEREZFtKhRqO4lKTgkzNLSWAQ1xyam/emiUVs4gCHp5W5acEsQkhNkcFuOoEDQF96sZd+JJNfmWYgocSQUZnNZDQ/CzcqzklOUEqiMZGkaj0Sklp4Q9NFhyikyMRuNtV3JKqrybL/XQMCoEvInkCN+jKN04QUSWli1bJtknFqgMJJiaSffp08e8vE+fPli0aBGMRiOWLl2Kv//975L7//DDD8jLyxPtL5ScnIwjR46YG4gLLVmyBACg0WjQq1cvi3VV5+sOHjyIfv36SR7ju+++kz2/NTpd5Q06SlkeR44cwf79+xWPExhY+f66rMyxG4UAoF69emjZsiVOnTqFVatWYe7cuahVq5ZoO71ej8TERACVmSUdO3Z0+JzOZio3pdFo8NZbb1ntBdKnTx/Mnz8fOp0Oy5cvZ0CDaiS3NAV/55138M477yAzM9PmfXJycsz7EREReYNyhQwN4eR4sd7ybmZhhoZwssDwV8mp7FIDDEYjdKIMDcdKTgkzNAIVGpt7kxA/f9E1klKir5Cc6AeAnPJii8dGONoUvPoZGsISN/kO9NCQOq9DPTSCBBkaLDlFf8koLUROuXTjzZpackqYDaWCyuaA6e1A6v9DzfgvQJ6kFQXyWXKKyFZr1qzBqlWrRMsLCwsxceJEAJVlnUzfA8CwYcNQr149AMB7772H5ORk0f5XrlzBtGnTAFQ2nZ4wYYLiOJ577jnJgMG3336LDRs2mM8bFxdnsb579+7mHhYfffSRZGD8/ffft8hWsFfz5s0BALt27cL58+dF6zMyMhQzJUxMY79w4YLDYwGAKVOmmM/74osvSm4za9YsnDx5EgDw7LPPIiDAO26OKCoqwk8//QSgsqy/LY3lo6Oj0bNnTwDAqlWrqhUQIvIUtwQ0Zs6ciVmzZuHmTek7vqRkZ2eb9yMiIvIGFQo35oszNCxLAwkzNORKTumNQG6ZQTFDQ9ibXOnOSWEPjeAa1ENDY0NTcIPRiAqDXiZDw1rJKduuhfBnVeFAhobwjnBHMjSkgjYO9dAItszQyCwrQrleJ7M1+RK57Ayg5pacEgYPQ/0CbO6fcztQCsQTyRH+32PJKSLbJSQkYMyYMZgyZQp+//13HDp0CEuXLkVCQoK5XNSUKVNw9913m/fx9/fHwoULoVKpkJ+fjx49emD27NnYs2cP9u/fj48++ggJCQm4fv06AGDevHmIjpZv6J6QkICDBw8iISEBiYmJOHToELZt24bJkyebAwWhoaGYN2+eaN/Y2FiMHDkSAPDbb79hyJAh2LhxI44cOYJffvkFI0aMwN///nerZY2UPPnkkwAqJ+N79uyJTz/9FHv27MGePXswb948tGvXDidPnkS3bt0Uj2Maw4EDBzB37lwcO3YM58+fx/nz53Ht2jWbx/P888+bz7V06VI8+OCD+PHHH3H48GGsX78ejzzyiLk5ebNmzfCvf/3LkaftEj/99BMKCwsBAI888ojN+5m2zc3NxZo1a1wyNiJXcnvJKSIiopqqXKHklDDIYK2HhqjkVJXsgawSA/SCc2ktmoJbnkthWOIeGjWk5FSwxh+FKtsmUIt1FaJm2YBUU3DnZGjonNAUvERfAZ1Bb1PjcxOpgIZjJafCRMtulBSiYa0Iu49Ft5fTeRmy62pqySmpgIYvUQrEE8kRZ2jwF4nIVqtWrcKDDz6IBQsWYMGCBaL1jzzyCD788EPR8oEDB2Lp0qWYOHEiCgoKMGPGDMyYMcNiG41Gg9mzZ2PSpEmKYxg4cCAGDhyIWbNmSWZyhIWFYc2aNbJ9bT/66CMcPHgQ586dw7p167Bu3TqL9Y8++iieeeYZxbJXSkaMGIEJEyZg6dKluH79uigrQqPR4KOPPkJOTg727t0re5xJkybh888/R3Z2Nt544w288cYb5nU9e/bE9u3bbRqPRqPBunXrMGTIEOzevRvbtm3Dtm3bRNu1bNkSv/76q2RJKk8xlZtSqVSypc6kDB8+HFOnToXBYMDy5cvNQSyimsJrb0+qqKj80OTn52dlSyIiIveQawquVomb0ol6aAjupBeWjTJWufsxq1QvKhNi0RRcED0RBj+qKhU1BZeexBcuddc9vXKlXypLTtkWcCjRV4iaZQNAbplyDw1bMzTEJacc6KGhFTchtjdLo0wii8LfgQyNqIBg0XNKL2HZKVLO0BCW0asphCWnwnwuoCF+NXdCD1W6zTFDg8hxTZo0waFDhzB9+nS0bNkSwcHBCA8Px/3334+vv/4aP/zwg7mkk9C4ceNw+vRpvPTSS2jZsiVCQkIQFBSEZs2a4dlnn8WRI0csJu2VzJw5Exs3bsTAgQNRp04d+Pv7Iz4+HpMnT8aJEyfMJYek1KlTB/v378c//vEPNG/eHAEBAahdu7b5OaxYsQIajf031VS1ZMkSfPXVV7jvvvsQGhqKgIAANG7cGE888QT27NmDl156yeox6tevj6SkJDz99NO44447zD01HFG7dm3s3LkTy5cvx9/+9jfUqVMHfn5+iIqKQq9evTB//nwcPXoUjRs3dvgcznbt2jVz4KVbt27msmW2qFOnjrl3xsaNG5GRIX9TC5E38toMjaNHjwIAYmJiPDsQIiIiVDZWlbvTVaothShDQ1hySpShcevgmSUGUUBDKUNDqaKIsORUkNa77mUI1vpJlrIJ0frbnL1Qoq+QDDI4qym48GelNxpgNBpFQSwlUk2ICyrKEBkQbPMxpII2jmRoqFQq1A0KxZWiXPOyNDYGJwCncxVKTlXUzIBGgU4Q0PB3fLKjJpIqOcV4BlmjVVn+b9EzQ4PILpGRkXjvvffw3nvv2b1vfHw8Pv74Y6eMo1+/frJNva2JjIzE3LlzMXfuXMn1vXr1kuyvYZKYmGhuoi3n8ccfx+OPPy67fubMmZg5c6biMZo1a4bFixcrbgNAcawmarUaTzzxhE39O4RsGStg/brZo379+tBLZKnbaufOnU4ZB5EnuCSgYUp5Evrll19w8OBBxX3Lyspw4cIFLFmyBCqVCp07d3bFEImIiOyiN8pnLUhlElgtOSXTQwMAbhaL35haZGjY1RTcchLC23poyNWyD9b62Z6hoZPJ0BD00BBeJkdLTgGVd6v6qWwPJtTSSgc07CFVVsuRgAYAxAkDGmwMTrCWoVFDS04JXgfC/HwroCEViDcYYXdQlnwLMzSIiIjIm7kkoDF+/HjRG2Sj0Yi33nrL5mMYjUao1Wqb0syIiIhcTamxqmSGhrDklNZKD40qd+rckAhoWGRoCGIASk3BRT00vCygYZCZJAnR+ouukRy5DI2c8mLBuYQlp2wjnNgBgAqDXjLQIUejViNE62+RjSKs7W+NVA8Ne8ZQlbCPRjozNHxeia4CqYU5sutraoaG8O+MJacqg7t6I+Bl/w7IiwhvKGAPDSIiIvImLqs7YTQazV9Sy5S+/Pz80KNHD6xZs0axrh8REZG7KDVWlZjvtpqhoVRySjqgcet7UckpmbEZjUZRQCPQy2awhEEGk8qSUzYGNGzO0HCwKbhEJoYjkzvCZsTV7aHhr9Y4fId1XHCoxeM09tDweefyM0R/I1XV2B4agr8zX2sKLheMlwp0EJkISz4yQ4OIiIi8iUsyNFJSUszfG41GNG3aFCqVCr/99huaN28uu59KpUJgYCCioqKq3WCIiIjImZQzNCRKTomaglvJ0KgS0JAuOXXrHMKJeLmhVRjE62wuOeWk2q5WTyOz3N4MDalyTHnlpTAYDVCr1JK1am1vCi6doWGvUL8Ai0yI6mZo+KsdfxsXJ8jQSCtmhoavUyo3BQDFOpacqonkAhcVeiDIa7spkqcJb7rQOfA/j4iIbHPt2jXk5MhnycoJCQlBkyZNXDAiIu/nkrexjRs3llxer1492XVERETezN67Wa01BRcGQareGS0VoKhaZkoYk5DLchA2BK8ch3SQwFN5G3JjD9b6iyZU5JToKlBhFE+2GGFEQUUZwv2DJM9jc1NwibJOjgQ0hBOpdvfQEGSh+Ffj5o+6QZYZGunM0PB51gIaVcul1STCvzNfawoul13IDA1Swh4aRETu8+abb2LZsmV279ezZ09s377d+QMiqgHccl+OgTU3iYiohitXmPwplQgcWMvQEE4WyPWSMG9fNUNDMM+vk9m1VGKF9/XQkC85Vd0MDQDILS9BuH+QZCkd25uCi8fhyOROdUtOCTM0AqqToREsyNBgDw2fdzovw+JxgEZrUeasuIYGNHy9hwZLTpEjhDcUKPXqIiJg5syZmDlzpqeHIZmRTER0O3JZDw0iIqLbSYXCDfmlEhNGwgyNYCtNweWLL1Wy7KFhORFva4aGRgX4edl/fuWAhm0Bh8qm4HIBjVLZ89hecso5GRrCgEZ+eTV7aFQjQyNOlKFRwA/BPu50rmWGRrvIOIvHNbbklDBDgyWn/lru5oFQjSLK0GDJKSIil0lMTLS553DVL2ZnkC9z27RGcXExiouLZdd/+umnuO+++9CyZUsMGDAAa9euddfQiIiIrKp2ySkrPTRUKuXjV20ELmoKLrOrsCF4sFblcBNpV5FrQhys9bO5KXixrkKUvWCSW14CQDqgYXPJKYlMkQoHsk/FJaeq20OjOiWnLDM0Kgx6ZJXJv0+j25vBaBCVnOoU3cDicU0tOSXsoeF7TcGllzNDg5RoVWwKTkRERN7LLQGNtWvXIjQ0FHFxcSgoEJc0eOqpp/Dyyy9jz549OHPmDH777TcMGzYMc+bMccfwiIiIrFIqOSVFVHJKq1xyCpCfLNCoYBGIEGYu2BrQsKfclLumupxSckohoJFTVhnQkDqLrVdDKkNDJ9GzwxpRySmdnSWn9M4LaNQJqiVaxj4avutKUa4oCNsxyjKgUVNLTgn/znyvh4Z8U3AiOcL3GTqWkCYiIiIv4paAxm+//Qaj0YghQ4YgNNSyxMGuXbuQmJgIAAgODkaHDh0QGBgIo9GIGTNm4Pjx4+4YIhERkSJ7J39KBOWBxBkawul0+RCCMCNDGAvRy0xYlVQIAhreVm8KgEHmeYdo/W3O0FAuOWXK0BBPxtiaoaFSqUTBFUcyNKpbckqcoeF4Dw1/jRbRASEWy9KK2UfDVwn7Z4T5BaJZaJTFshpbcqrct3toyJecYoYGyWNTcCIiIvJmbpnZ2LdvH1QqFXr37i1at3DhQgBAvXr1cOrUKRw6dAinT59Gw4YNYTAY8OWXX7pjiERERIrsLjllJUNDOEFuVMjQ0KotJ96FiRZyQysWNAUPEkZGvIBshoafnU3BrQQ0pM5ia0ADEE/uONJDQ1xyyt6AhmWQLEDjeEADkGoMzgwNXyXsn9EiPAYhWn+LZTWx5JTRaPT5HhosOUWOEJac0jOgQURERF7ELQGNmzcrPyTdddddonUbN26ESqXCCy+8gAYNKlPbGzZsiBdeeAFGoxE7duxwxxCJiIgUlcvVdZJhrYeGcIJcrpcEAGgE/62FE/E6F5Scche5RtTBGvmAhrCnRYnOlgwNx5uCA4CfsJ64EzI07O2hIWoKXo2SUwBQV6IxOPkmYf+MFuGxCBYEYUv0FZKZTt6sRF8hmoj1tR4abApOjhA3BecvDBEREXkPtwQ0MjIq09iF5aZOnDiBzMxMAMDQoUMt1iUkJAAALl265IYREhERKbN38kcU0LCSoaE0UagVBDCEiRZyWQ6lwoCGn/cFNGRLTvn5SzbjBoDIgCCLx8I7sKvK/avcTHWaggPOydAQlZyyO0NDUHJKU72ARpwgoJFWzAwNXyUKaETEIliQoQEApYKgmrcTlpsC2EPDvNzOID35FuH/X5acIiIiIm9SvVoFNtL89YE7OzvbYvmuXbsAADExMaLsjcjISABAaal9dy8SEdHtr8KgxxsHN2DD1VOypYaqCtH64/FmHTGtTS+L5tr2sLUpeLleh78fXI/ssmKL5eIeGpaTBWUGHTZkLZQ8ploFbPlBg8iAIExp0QNNgtpYrD+fq8OMPTkYcWcI7o72R2GFAUuPF2DXdcsJ86oZGjqDHm8c2oANV0+jTK+D3qCCUV8H/qpA3Ci/BAN0+P4r6ecYqg1H98jeqBMQhwa1NBjfOhSxwY5Nris2BVdL/6wi/IOQUVpkfrwy5ajs8ZecS8KqlBMo0Yl/T+wJaPgJAhqP7vgaQRo/XLcjCBDmbxnQOJR1FXP/3IZ/tO0t+Xt5qTAbr+xfg9zyEvSKa4a3j2yyWF/dDA1hyanFZ5Ow9spJZJUVIyYwBG0j4/BRlyEo1evw8v5fkFFWiCktemB8887VOq+t8spL8OK+1dibcQkqqNCjTjw+uWcYatXwO+zPZFfguzOFyCo1IDZYjcdb1EJ8uJ/s9qU6I1acKcTFPB161AtAv8ZBot+XH1P/xMcn/0DjkEjM6zwIRbpyvJz0C04JSknJuVSYY/G4RXisqOQUUPm3NqF5FwCVQdj/S96OtVdO4r46TTCzfV8EauWfh60uFWbjxX2/4ERuuk3bh/oFYPwdnfFS6/tE65acOyBa5i0lp4orDPjqVCGuFujwQKMg9G4YhEv5Onx9qhA3iq3/XwvUqtCzfiAGNLn1+7AhpRg7rpZaZOfll0tPRH9yNB8bUosxID4YPepbvyYGoxGrzhTh0M1yNAnXYnyrWgh2Yl+mHVdLsDG1BEUV0v8T/NRAQp0AjL4rxK7XbnKMMIj/ycld+ObCYacdX61SoUt0I3zadRgiA4Lt2regohQv7f8F+25eQufohvik6zCE+wdZ35GIiIhuG24JaNSvXx/nz5/H0aNH0atXL/Py9evXQ6VS4b77xB9A8vLyAADR0dHuGCIREdUgn5/egw9O2FeS8O8H16NtZBz+1qCFQ+e09W7W/578A/89+YdouajklET2QaE+V/a4+QUACoAJu1ZiefdYAJYf3s/kVOCDg3n4sk8Uvj5ZKApmAECw9tY5Pz+9F/OOC69hpuz5q8rT5WLtjR8xKOp53CjWo0iXj1ndIm3atyq5clMAEKjRimp4m0QIJi6UavsXVJTJ9qqwq+SUIHhgTyDDJFRiIvWNQxtwd2QcBjRsKVr39K7vsTXtHADg9/QLovUB1WgKDohLThXqylBYUHmtcstLcC4/E8W6cmSUFuFQ1lUAlb9/XWIaolVE3Wqd2xZvHNqA5RcOmR+fzc9AmF8gPr5nqMJe3k1nMOKDQ7nIK6/83b9RrMe8Q3n4tHeUbLB1Q0oxNqZWlk47m1OB+DAtWtS+FWy4VpSHkb9/BSOM2IUUaNVqnMnLwL4Mx7OcW4bXEZWcAoCndq3C0EZtUDsgGOuunMIbhzYAAPbcTEWjkAhMbtnD4XNWPce2tPN27fNy0i9oVzsOveLuMC+7WpSLNw//arGdv1pT7d4zzvLT+WJsu1J549bZ3AI0i/DDh4fykG5DMMNkeX4hGodp0SbaH8czy7HsZKFdYzifq8MnR/PRPNLPalB6x9VS/HyhMlB/uUAHf7UKz7QNVdzHVtcKdVhwzHrJu6uFxagTrMEDjTh57WrC9yi55SXmEo7Oci4/E/4aDZbcO9qu/d46tBFL/wpWnsq7iRA/fyzo9ohTx0ZERETezS0lp+677z4YjUbMnz/fXGLqwIED2LhxIwCgX79+on1OnToFAKhb1/UfmImIqGZJyrji0H4HM686fE65PhUAkFDn1uTi4axrktvUDbac+IkJDHF4LGfzpc9RqjciNV+H83kVkutrB976t38w07FraFJiKECxoXJS/2Ku9PmsUcquUavUiA2sJbmuQ+36Dp2vKj+1BuF2lJ6pE2jbxF10gPzPtWFIuORyU9DC1uXmMQVVbzLxjjDrN41svHbGHMwwj+u6fZPNjjog8TsqHEtNc7VAZw5mmGSUGFAoc1c6AKw8W2Tx+KtTlpPW+zIuWfTg2XTtbLX+voO1fmgaWhshWn/Jv5FDf72Ovndsi8XyKft+dvicJkajEXtupjq0b5LgOUv9/jQIiXDo2K6w9qJlFt+i5AK7ghkm5/56/U3Jd7wc2HkbXsM3X7KczN582XmT22eybf8fcjGvZpU9q6lig6T//zpbUsZlu/dZfG6/xePPT+911nCIiIiohnBLQGPy5MlQq9VISUlB06ZNkZCQgJ49e0Kn0yEyMhKjR4vvyti2bRtUKhVatWrljiESEVENUqxwR76SCqP9k0XWhGhVePiOW5PYUiWUnmreBTGCyfm6wWF4slknh86p9Dwyig0ok4i+xASp0T3uVqmeCifUwy41VE7IOVqKPV+mKfbn3YYDAB5v1hFxQZZlkfrWuxOzO/ZDs9Aox076lxda9pDsESDn9ba9rGZ0tAiPxeBGrWXXtwyvg8ENxe9rTubesHkcJmF+gZh4V1e796uqT1xzdI5uaPd+Sg3snalcL/4919fwxrRpRdJ/uzobS9oBwJUCy2MIm8WnleRXq979G20fhL9GC7VKjb+36S1an1Ne+Xd/oSDL4XPIKdKVO9yno1TQtyhPon/GP9qKn4+3SJUJRFtjer1XynizRq7MU1WXC1wXSMgps/331Z6/FXLcU827IMrOUlCOcOTvvVjn2N8KERER3T7cknPdsWNHvP/++3j99ddRWFiIw4cr62/6+flh0aJFombheXl5WL9+PQBYlKgiIiICgGLBxNX4OxLwcOO2ou3mHd+OP26kmB9XZzJUOFfUMdYfjzQPQUyQBuEBt+4PEE72Dm7YCot6jJA85tL7RuOlVvfhanGeeVl2qR5ZpZXjVAGIDdZgbvJGnKgy6a1XmKy8WaKHcG5oWLNgPHxHCAIFPTSs6RFzJx5u1MX8+N/Jq5Fdfuvu8FJD5feOzi9JNew9NvRV3F27HgAgPrQ2zjzyd+y7eRkl+grEBtZCQnQDaNUa/DnsNey7eQmFguBWk1q10SwsCvszLqOgogxf/pmPPEEN+c97NUWbSPsyQB9r2gE9YuNxLPu65HR+qF8AusY0FjV/r0qlUuHnB8Zj2oG1+LhKWbJTebb1OagqZeR01K7mZFOg1g9/DJiCpIzL2JtxCf84uN6m/YTl01xFKoNHrol8TSEf0LD9GMIJXVv6CH3ebTjqBUtnCFXVLDQKrav8bUxv9yDmHd+OnCqlZnLKKr9vFBKJLEGvoOrKKBWXTFrZ63EESvzOfXhiB3akXzQ/Fk6MCgMajUIi8Fw1g4CuJNXq4vm7QxHqb3n/2aZLJTiWcet1r+SviLLwL6NpuBaPNL8VbPfXqFAnWIPrhTqsOltkkelQbMMvoCv/8nIF/7Taxfijb+PKslI7rpYiKf1W2UClbElynpYRdXD+kTewP/OyKGhaHYezrmLW0c3mx848NhEREfkOtxWRfeWVV9CnTx/88MMPSE9PR1xcHB577DFRM3AA2L59Ozp3rmw4OWjQIHcNkYiIaogSwd15naIaYIjEnfHfpx6zCGhU565l4XSOn1qFOyKsT+x2jKoPtUS/DKCyrFLH6AboiAaKx0g8v8cyoKEwgZlRohdlaHSqE2ARzACAChuCOx2jY/Ha3e3Nj1dd2oGkzKoBjcpSOEZU3h1sb8N14YSjRqVG28g4i2WhfoF4qP6don2Dtf54oF5z2WP3/quW/u8Xs3BdMInctnasXeM0aVQrEo1q2d8rpCqNWo1xdyRYBDQuFeagqKIMITY2u25cK7LawQyTAI0W99VtCn+N7Q3GlQJqziQZ0KjGXejeQDagYcfzEmZE2RLQ6Ff/LjRxMKupW2xjbLh62vw4+68Mjca1InEk27L8XUFFqWSvGFtllFqW1/JXazAyvp3ka8svl09YBDSE/xeEGWAdoqpfqs7d2sX4o3ag5d/myaxyHMu49bhEZoY/IkCNhDri15Q6wRrsvFZqGdCwIUPDlX96OaWWrynNwrXmsZ/Psfy56mv4a0BNEhEQhH71xZ/VqyPULwBAlYCGgQENIiIisp9bu+K1bdsWbduK76AVGjp0KIYOrbkNH4mIyLWK9ZZ35cuVDhI2tdS5oVyNK6Za/NSC56EwoZxRrEeZYMYzQCOeDNTZUH5LLZhEFPZsMJWcAiqzNCROo0g44RjuH2h3UMQardq5x3OGu8JjoYLKIpvndF4GOkUrB7ZMXJEhoZEJuklx14RiucSdu+4qd+Uq6UXSk3f6arw0SV0nIWFTe3sIg2emDI0GEj1hLhXmoI0gKGkPYYZGTGAt2deEIEFzb2sZGuHVCLR4E2FwutSBlIUQreXfuy0lp1wpt8zy/1FElaxHjeClqTp/K+R5AWrLv9syidKCRERERNa4pYcGERGRMwnvxJUr8yOcpK3OneWenO4RTkbqFYIR14v0orEGSMxl2hLcEQY06ooCGrfupnakj0Z+RZnF4zAbMxTs4e/4PK7LBGn90CS0tsWyU3m299EIVihr5Shh8E+Ju7IkbssMDZmmz9XpC2BLhoY9P1+hSH/LgEb2X2WmAjXi+6IuFeY4fB5AnKERExgisyVEZahEPTREAdOgao3NWwQJZvhLHXjxDfazfG23peSUK1tXCEtORVbJStEI/g8xQ6NmCxC8bjgrQ6Om91ciuh2NHz8eKpUK8fHxnh4KgMrSryqVCjNnzvT0UIjICTwW0DAajbhw4QIOHDiAAwcO4MKFC9VqZkdERL6jRHAnbrDMHetaOzIb7GVrIoG1RtK28BcENJSyK7JLxc9ROkPDhoAGrGVo3Jp8dGSyS3QHtQsmHL0xQwMAWkVYlr2ypzG45zM0WHLKEYUVBhSUS49f7iZ7W56vLROC1cvQsPy7NPXTkBpadQMamaKARi3ZbYUBFeH/BWGPHlcETD1BmKFRYm4KbvsxggXHsKXklKsYjUZRU3ClDA17+s2Q9wkQlDcs0+vsmgOQ27ZI0E+LiMjX9OrVyxy0EX75+fkhJiYG999/P+bOnYvs7GxPD5eo2twe0Pjtt98wePBghIWF4c4770TXrl3RtWtX3HnnnQgLC8OQIUOwadMmdw+LiIhqkGLBB1e5DA2nlpyy8fO2K4LzwslIWxp6VyUZ0LDhWgiDNsIMjTKLgIb9z1tYcsolGRoS73S84QaKluF1LB6fyrW9MbhS43FHaewI/LgroFFxmwU00mX6ZwDyGRrlMnffV/0dLrehZEt1AhpyGRpS5b+qn6FhWXIqWiFDQ/h3YD1Dw7tKTjkaahWXnJL+e1Q6foifoOSUBzttF1UYRUGKyCoBDS0zNG4rwswqwLYsMxO5JuIMaBD5pvj4eKhUKowfP97TQ/FqOp0OmZmZ+OOPP/DGG2+gZcuW2L17t6eHRVQtbuuhUV5ejvHjx2PlypUApCcTioqKsH79eqxfvx6jR49GYmIi/P2l66ITEZHvKhFMXMndsa4VZTY4MUPD1u2ckCAgCmjY+Tz8JQIaUpPFQsIMDaWSU45kaIgDGs6fcJTK0KgweL4UVasIy4CGpzM0tCp7moJ7ruRUTZ7KlGsIDsjfdS7XH6FMbzRPbNsyGejUHhqmDA2JbS8V5Tp8HgDIKBNkaAQolZyys4eGl5WcCvZTOdS7Ikimh4Y9RxJnaFj/n+Kqvz1huSmAPTRuZ8IeGkBlkEJYikqO8P2fifBGFyIiIW+4ocldkpOTLR6Xl5fj4sWL+Oqrr7BmzRrcvHkTgwcPxpkzZxATE+OhURJVj9sCGmPGjMHPP/8Mo9EIrVaLhx56CPfccw/q1q0LAEhPT0dSUhI2b96MiooKrFy5EjqdDqtWrXLXEImIqIYQ9tCQawourr3t+h4arnirLCw5pdRDQ0ijkp7Ut6nklCDDxfUlp5wf0PCTeO5leqNkkMedWgpKTl0oyLJ5Usc1Jae8K0PDaDTKZGjU3NnMNJmG4ACgk/mQLdcfobDCiMC/flXKbSo5VY0eGoKSU6YMDSnOztBQLjll+Xcg/L/gjgyw6nB0XiVQ8NpV4pQeGp6b5BGWm6rlp4JflecofG3y4FDJCYQlpwD7+mjIBTSYoUFEdEubNm1Eyzp27IgRI0Zg3LhxWL58OXJycrB48WK88cYbHhghUfW5JaCxfv16/PTTT1CpVOjduzeWLFmCxo0bS257+fJlPPXUU9i2bRt+/PFHbNiwAQMGDHDHMImIqAbQGwyiO5KDtNL/zpxacspBzuihIby72pbsChPh5JeJM5qC64wV+H/2zjs8iqr/4me2pjcgQGihd+kdJL4gXUBFfMUCCKKADcXeQH4qiu1VBAWlWQEpIkUp0mtCb1JDS4BAet06vz+W3ezcuTM7W7NJ7ud5fAw77e7s1Hvu9xyT1QitSufRqP1AVGhoKf24BguPSPHHAYW0nLLwVpzLu4VWsTVdLusXyyl3MjT8mQ58B6ljvKJaTkmNOpcSNPKNVlQNtV0XlFhOufP7ksQRllPZBnuGhj8sp5SHgpPCnshyKgCCqTd4Wukktpyir0dOowzTCI+HsszQyCmRzs8AAI2oQqP8XgMY4lBwACgxKxc0isxM0GAwGAxveOWVV7BkyRIAQHJychm3hsHwnIBkaCxatAgA0KZNG/z111+SYgYA1K1bFxs2bEDbtm0BAAsXLgxACxkMBoNRXqCNzguE5RTZheILKymlkIKGOyPkpSoRlFVokKHg4tHS9hwNX1Ro+GMEtVSFRlkTpQtBrbBowWfOORpyZfF+sZxyYwR/ICo0pGyUrOXYdEreckqiQkOis7rAqQPaleWUhlOB8+KCRVZoFJgNMFkt1F/ienGepMe9EsSChvJQcNJyKhCCqTd4Gm5NWk6ZrNLHjxThRIVGiYUvM6Eg2yA8fmNDCEFDVGnp9yYx/AgtQ8OtCg0maDCClGnTpjkCmAEgJycH7733Hlq2bImIiAjExcXhnnvuwa+//upyXZcuXcKUKVPQsmVLREZGIiwsDI0bN8bTTz8tshIisbdh2rRpAIDNmzdj6NChqFmzJkJCQtCgQQM8++yzSEtLU/xdpNi2bZtjvm3btrn8XiSFhYVYunQpxo8fj7Zt2yI6OtoRXt27d298+umnKCgooC5rD8C+fPkyAGDx4sWiIOykpCTBMuS+oWG1WvHTTz9h0KBBqFGjBnQ6HapVq4Z77rkHc+bMgdEofa0h91tJSQlmzZqF9u3bIzIyEpGRkejcuTNmz54NsxtCrq+pX7++42+DwVBm7WAwvCUgFRr79u0Dx3F4+eWXodW6fgnXarWYOnUqHnvsMezbty8ALWQwGAxGeYEmaEhZTpGdtO6GaQsow1Bw0nLKzFug1BGfHM3rWIeSDA3iRSZCo0eYRisYIVnCFyECsT7J0PCLxz3l6weDoAHYcjTSinId/3bO0aAFLtsp8wqNshQ0ymmFBs/z8oKGxNeStpwq/Q1cdQZ6k58BiDM0ACBbxnbqamEOGkVV9WhbYsspuQwNwnLK6d5gsVqRbxK+pAdbhYaSaybt6k2ruiux8G5ZWJGWU4DNdipS557wxfO8V2IZIM7QiNELj1cyQ8Nd8YYRXJDPM4B00DcNScspExM0GMFDamoq7r33Xly4cMHxWWFhIbZt24Zt27Zh9erV+Pnnn6GhVJgvWbIEEyZMEHU0nz9/HufPn8cPP/yAGTNmKLIJmj59uqjzPjU1Fd988w1++ukn/Pnnn+jVq5dnX9IHDB48GNu3bxd9fvv2bezYsQM7duzAnDlzsH79ejRr1szv7cnKysLQoUNFYdm3b992/HazZ8/Ghg0bZAdpA8DNmzcxYMAAHDlyRPB5cnIykpOTsXHjRqxevRoqLyxBPcUuAgG2AeUMRnklIGfPrVu3AAAtWrRQvIz9gnX79m2/tInBYDAY5RNa8KPUiHVxhobvOkIUh4L7wXLKHessqQoNkxLLKaLtHMehRmiU4LMSi21EtUeWU0bhy5o/KjRofV/GIBE0mkcLczRO52ZIzCkkrMwzNMrOcqqc6hnIM/IoljH/l+qkNUhVaBidKjRcWE55K2jEUoTGLEOxpHjrqe2UwWIWiRByFRqk1aBzhQa5HgCI1gZPKLiVl5Ms5SErNADpSh4pSMspwLMcDV+cjmSGRixhOUXewoLk8s3wEI7jRKKGTwQNVqHBCCIefvhhpKam4plnnsHmzZuRnJyMH374AU2aNAEALFu2DK+88opouXXr1mHMmDEwGAyIiIjAe++9h507d2Lv3r347LPPULVqVVgsFrz55puYO3eubBvWrVuHadOmoWnTpvjhhx+QnJyMzZs34+mnn4ZKpUJubi6GDBmCq1ev+mUfKMFsNqN169Z46623sGrVKuzfvx/79u3D0qVL8d///hcqlQqpqakYPnw4SkqEg6AWLlyI48ePIyEhAQAwbNgwHD9+XPCfO24vFosFQ4YMcYgZvXv3xvLly5GSkoI1a9Zg+PDhAIDTp0+jT58+kpUjdh544AGcOnUKzz//PDZt2oSDBw/il19+QfPmzQEAf/75J+bPn6+4fb5k1qxZjr+HDRtWJm1gMHxBQCo0wsPDkZOTg8zMTMXLZGfbXobCwsSjwhgMBoNReSmmlOhKjVjXcJ4LASRlGQpOBvqaeeUv/3ofWk4BQPWQCFzML72fl3hjORWACg1au6RGvQeaFjHCHA1BhYZMEytFhYZEJ315tZySCwQHpO2HlFRouAoF9yYQHAB0ag3CNTpBh2G2sUjyl/BU0LhN2E0BQFU3KjScMzTI6i8AiNIFTyi4VGaKEmhVdyVmsUAiJ1Hq1TahwPnwKjRZAcW1fzYsVsBLvUycoUFaThG2gSxDo/yjV2sEVXjuWE7RBrUAQJGE0MGQx8pbkSlTcVfRqKIPg8qLTCmlJCcn45dffsEjjzzi+Kxjx4546KGH0KtXLxw9ehRfffUVxo0b5whvNplMmDBhAnieR0REBHbu3OmwYQeArl274sEHH0S3bt1w/fp1TJ06FQ899BCqVqVXRKakpKB9+/bYvn07IiJKBwf06dMHPXr0wBNPPIG8vDy8/PLLWLZsmX92hAsWLlyIxo0biz7v0qULRo4ciXHjxqF///44c+YMfv75Z4wbN84xj902ye4AExMTQw3CVsq3336LvXv3AgCeeOIJLFq0yFGB2KFDB9x3331466238OGHH+LChQuYMWMGPv74Y8n12aswnG2v2rdvj/79+6NFixa4efMm5syZg6efftrjNstx4sQJwb+NRiMuXbqEn376CatWrQJgE94GDBjgl+0zGIEgIIJG06ZNsX//fixduhR9+/ZVtMzSpUsdyzIYDAaDYYccnafhVJIjkEWWU7wXllMe4ousDZ1KeLt2R5jRS3Q2eWI5BYiDwb0RNPICkKFBsygyBv4woNI8RlihcTbvFsxWCzQqtbzlVKXI0KB3cFkDsG1/IGc3BUhXvUiNvC90I0PD2woNwFal4SxoZMl0gF0p9EzQIO2mVByHOL20yEmeB85iN5nPw4FDpB+uL57iTZWTiuOgUwFGp1NBrvqHBsdxCNNyyHeq9PEkGNzC89B6WYXIKjQqH3qVBvkoraIi82/koA1qAZjllKdkGooQ/+u0sm5GwMh4ZJps5Z+vGDJkiEDMsBMZGYl58+ahS5cusFqt+PbbbzF79mwAwKpVq5Ceng4AePvttwVihp169eph1qxZeOyxx1BUVISFCxdSKz3szJs3TyBm2Hn88cfx66+/YsOGDVi1ahVu3LiBGjVqePhtPYcmZjjTt29fDB06FKtXr8bq1asFgoav+eabbwAA1apVw+zZs6l2itOnT8fKlSvx77//Yv78+Xj//feh19OfLZ577jlRhgcAxMXFYezYsZg5cyaOHz+O3NxcREdHi1fgJa1bt5ac1rRpU7z++usYPXq0z7fLYASSgFhODR06FDzPY+HChY6AcDl+/PFHLFiwABzHOUq7GAwGg8EAxKPz5Eara4hRWN50Iikd/eq5kYg04goN5T3yvq7QqBHmQ0GDDO31g8c9rV3Bk6EhfHk0WMxIzc8CIF/pU/YVGv7ffxUtQ+OGC0HD7QoNp95sV5ZT5HXQE8gcjWxjseS1ztMKDTIQ3NVIWnEouHSFRqRWH5BRuUrx9hJE2k4VU1coLzSQtlOeWE754lIqztAgBA2iQsODZjKCDPLcZZZTjIrG2LFjJad17twZLVu2BGAL7LZj/5vjODz55JOSyz/00EOODnDn5Ulat26NDh06SE63b8NsNnsU6O0Pbt26hXPnzuHEiROO/6pVqwYAOHr0qN+2m56ejtOnTwMARo4cicjISOp8Go3G8dtmZ2fj0KFDkut89NFHJafZfxee55Gamuppsz3mzJkz+O6777Bjx46Ab5vB8CUBebJ/7rnnULNmTfA8j3HjxmHIkCFYuXIl0tLSYDKZYDabkZaWhpUrV2LIkCEYM2YMrFYrEhIS8OyzzwaiiQwGg8EoJ5Avs1KB4IC4k9Yby6myhBxhLZUvQENK0FCyDjJDAwCqh0gJGu71MvE8LxpFHa2tXIJG1ZBwVNULLXXsORpy4fL+qNBwS9AIwHlU0QQNVxUa7mZo5AsspwJQoUFUSmQZinyeoSEOBJcfRUtaTpl5q6PyjLy2+KP6yxuUWk5JSRIhhBjhboYGAIQTweCFJvfPa28vpSVmcbaMSNAgdgILBS//6JmgwajgdOrUSXZ6586dAQBnz56F0Wg7du0WQfXr13d04tPQ6XRo166dYBlv2gAAx48fl53Xn+zevRsPP/wwqlSpgvj4eDRp0gStW7d2/GfPmfBntq7zfuzSpYvsvM7T5fa/XIh5XFyc4+/8/HwlTXQbnucF/1ksFty8eRMrVqxAmzZtsG/fPvTr1w+///67X7bPYASCgAga4eHhWLt2LWJiYsDzPDZs2ICHHnoIdevWRUhICPR6PerWrYuHHnoIGzZsAM/ziI2Nxdq1a1mGBoPBYDAEFJuFL7Ohamn3RH9aTim1kvJFKDgZoKmkusKxrFSFhpJQcDcsp9zt2CqxmEXfo7JVaADyORpSVArLKYkOruD55dzDteUU/XPpDI3Sz135z/tC0IjTERUahmLJeS8X5ni0DbJCo5pMfgYgDgUHSq1rxPk8vr+2eIPZS2GOzNEoMYvTZVzdo8KIdXhiOWX1UlzIMYjPi1iXGRpebZIRBIgEDR9kaDBBgxFMxMfHy06vXt327MfzvCM7NisrS9GyABz2UPZlvGmDq/X4k2nTpqFnz55YtmyZyzYUF0s/d3iL87Zd7Tdnay65Nsv1Y6qcnrktLqpsfYVKpUJ8fDweeOAB7Nq1C02aNIHRaMSTTz5ZZr8/g+EtAcnQAIB27drh+PHjeOGFF7B69WrJE1etVuP+++/HF198gVq1agWqeQwGg8EoJxSJBA3lllOBqNDwxwByskPSbLUoHpIQ4utQcB9laNBCe/3R6UizxTEGkaDRPCYeO25edPz79B1BI/CWU8qFt0AEc1ekCg0rz+NmkbDDLlInzC+QGnUuNfJeaDnl31BwAIglLKeyDNKh4FcLc2DlrW5bPHlboQHYBI0IrZ6SzxNcgoa3RQahxHXd3QwNAAjTkpZT7t8fvbV/IvMz9GoOoRpXGRrl7xrAEKJXkRUayjv0yEEtdqSEDoY8VfRhyHhkWlk3I2BU0QdmsCwtfyEQy/pjPf5iy5YtmD59OgCgQYMGmDp1Knr27Im6desiPDwcmjuDFt59913MmDEjYO0K9v3mCyIiIjBx4kRMmTIF+fn5+P333zFhwoSybhaD4TYBEzQAICEhAcuXL8f169exbds2nDhxwqEGxsXFoVWrVkhKSkLNmjUD2SwGg8FglCPcsZwiR517laEhWlTZA68vnou9sZzyrkJD3CFJVmgYrDbrGXc76EhLGMA/nY7lrkIj946gIXOshvlB0HCn89kSAMsXqWM8EGKKr8kusYIciF4nQoNTWaXXMnczNAIdCk6Gc2cbixGhpV97TVYLrhflo1a4eyGXtw3uVWiQPvxAaWdn0FdoeHkOiSo0LLzbYnq4hrSckl6BlJDo7aUgp0Q+EBwA1MRHHugujCCDrNAokbCRosEsp3yLilMFJCS7snHz5k3UqVNHdjpg6zyPjY0FUGpDZJ8mx40bNwTLyG1DyXRyPc4VBFarVfBvZwoLC6mfK8FuJRUbG4t9+/ZJ2mwFonrA+fu72m/2fU8uV95wtsQqS8sxBsMbAipo2KlZsyYeeeSRstg0g8FgMMo55Mus3Gh1UYaGF5ZTZRkKrlOTllOBCQWnLUkKGhaYYeKNbotFZIWGTqUWdXL4gmAXNJpHCwWN0zkZNr9bmWX8YTnlDgGxnJKs0Ch/vZmk3ZReDVQLUwMCQUMiQ0PScsoKnufBcVyABA1xhUa4jJh8uSDbbUGDtJwi82VIaOeBvWNUlM+jCxXNW5Z4KwSILad4UUWdKy09jMjQkAsFlxIRvK2WICs0YkLEnWYa4nvxsAkstApCRvnAq1BwiQoNJmgwgonk5GRZQSM5ORkA0LhxY+h0tntpq1atsHfvXqSmpuLWrVuSHfwmkwmHDx92LONqG0qmk+txDsXOzs5GlSpVqOs4e/as7DbkOHnyJADgnnvukc0MSUlJkV2PLyoqnL///v378fjjj0vOe+DAAepy5Q2z2Uz9m8EoTwQkQyMYycjIwNq1a/Huu+9i4MCBqFq1KjiOA8dxGDNmjNvr27BhA+6//37Url0ber0etWvXxv33348NGzb4tN1FRUX45JNP0KlTJ8TFxSE8PBzNmjXDyy+/jMuXL/t0WwwGgxGMkLYCYXKWU2SGRhmEgvsiQ0PLkZZTyr8HTdDgeV5ZKLgCyykAKLEWeF2h4a8R1MEuaJAVGoVmI64W5sgKY5Vb0Aie304ppKBRI1wDwlVHOkNDopPZZAXsrlNGF3YtpPWeJ8TqxBUaclwudD8Y3F3LKa1KLbq+2jM0SME02ELBFVs1SXTU+MVySiYUXEq48DbPIsfgfoWGL7bLKFu8ydAolhA/mKDBCCYWL14sOS05OdkRJt23b1/H5/a/eZ7HwoULJZf//fffkZubK1qe5Pjx4w7hg8aCBQsA2Czfk5KSBNPq16/v+FtOUPjtt98kp7nC3okuV+Vx+PBh7N+/X3Y9ISG29weDweBxWxISEtC8eXMAwLJly1BQUECdz2KxYNGiRQBslSXt27f3eJtljfPvKie+MRjBTKUVNKpXr4777rsPM2bMwF9//YXMzEyP1mO1WjF+/HgMGjQIq1evRlpaGoxGI9LS0rB69WoMGjQITz31FKw+6EQ7f/482rZti9deew0pKSnIzs5GUVERzpw5g88//xx33XUX1q5d6/V2GAwGI5gpJkaRyFVo+DNDI5CDQ0WWU7z4hT5aR28QTdBQ2imsoogxoRqtyBrKYC2Cu3tW3OHoL0EjuDM0EsKiEEl0tp7OzZBdxh8ZGu4QCA97qU764PnllHOjUHi+1ghTi0adu2s5BZTmaAQkFJyaoSHdtssFngga7llOcRwnGuldLFmhEVyWU96GadMqNNw9O9yxnJKu0HBrkyKyCcupGJqgQbnZshyN8o03GRqSoeAmJmgwgoc1a9Zg2bJlos8LCgrw9NNPA7DZOtn/BoDhw4cjISEBAPDBBx9QbYCuXr2KqVOnArCFTo8dO1a2HRMmTKAKBr/88gvWr1/v2C5p+d69e3dHhsUXX3xBtUGdNWuWoFrBXRo3bgwA2LVrF86fPy+afuvWLdlKCTv2tl+4cMHjtgDA5MmTHdt9/vnnqfNMnz4dp06dAgA89dRT0OuDa7CEUi5fvoxvvvnG8e9BgwaVYWsYDM8JuOVUZmYm9u7di4sXLyI/P18yHNyZd999169tqlu3Lpo1a4aNGze6vexbb72FH374AYAt+PzVV19Fw4YNceHCBXzyySc4fPgwvv/+e1SrVg0ffvihx23Mz8/H4MGDce7cOQC2C+h///tfhIaGYuvWrfjoo4+Ql5eHhx9+GLt370bbtm093haDwWAEMyLLKTcqNAIxsjwgllMUYSZar0KJxSLy6tdT+jKV2E0B9AoNAKgeGiEQJEqshW530AUqtJfWrJIgqqzmOA4tYqpj/60rjs9O5dxEz/hEyWUqR4UG/UcqjxUaN4qEJ2VCuBpG4sB0NxQcAApMPKqEBiZDI1ZHETRkfgrPBA33KjQAm7jnfE+wW06Rgmm0Nrgsp7wN0yYFjWIPlAV3LKekcnO8FRZyiBtWLM1yijL8ztv9xyhb9MQzDcvQYFQ0OnbsiFGjRmH79u0YMWIEoqKicOzYMXz88cc4c+YMAFsH+l133eVYRqfTYd68ebjvvvuQl5eHHj164JVXXkGfPn2gVquxZ88ezJw5ExkZtkEvn376KapWrSrbhpSUFHTs2BGvvfYaWrdujdzcXPz+++/47rvvANispT799FPRsvHx8XjooYfw66+/4u+//8bQoUMxefJkVK9eHVeuXMGPP/6IFStWoHv37tizZ49H++iJJ57An3/+icLCQvTu3Ruvv/46OnToAADYs2cPPv/8c9y4cQPdunXD3r17JdfTvXt3bN26FcnJyZg5cyYGDhyI8HDbgIjQ0FDUqlVLUXueeeYZ/Pzzz9i7dy8WLlyIy5cvY9KkSahfvz6uX7+OBQsWYOXKlQCAhg0b4p133vHoewcKexWQHavViszMTOzcuRNfffWVY0D3o48+yvoOGeWWgAkaGRkZmDJlCn7//Xe3Pdr8IWi8++676NSpEzp16oTq1avj0qVLgtI6JZw9e9ZxA+jYsSN27NiB0FDbC1OnTp0wdOhQ9O7dGykpKZg1axaefPJJNGrUyKP2zpo1y+FR+Mknn+CVV15xTOvWrRuSkpLQu3dvFBUV4cUXX8S2bds82g6DwWAEOyLLKRkfd3GGhucdsXIhzXL4opCD7JCkZWioOA7VQtW4VkD69YtbYFYYKi4laNQIjcS5vNuOf5dYC923nApQaC/tFyc7k8ua5tHxAkHjdM5N+QyNylChUYEsp9ILSMspNdIJGyqzxPeSq9DIv1OhYXThP6+VCPN0B7JCI9tY7NMKDYvViiyD0MbKVYUGIPbit1tOkRUaUbrgGkXprWVSKKVCQ5Tz5OLmE6ZRbjklJSD42nJKcYUGs5wq14QQorwvMjSKJD5nMMqCZcuWoU+fPpgzZw7mzJkjmv7ggw/i888/F30+ePBgLFy4EE8//TTy8/Px7rvvivrC1Go1ZsyYgYkTJ8q2YfDgwRg8eDCmT59OreSIiorCmjVrkJiYSF3+iy++QEpKCs6dO4e1a9eKnED++9//Yvz48bK2V3KMGDECY8eOxcKFC5Geni6qilCr1fjiiy+QnZ0tK2hMnDgRc+fORVZWFt544w288cYbjmm9e/dW3C+mVquxdu1aDB06FLt378Y///yDf/75RzRf8+bNsWHDBkREuB50UZa0bt3a5TwPP/ywY3A2g1EeCYjlVHZ2Nnr27InffvsNJpPJFnbpxn/+YPr06RgyZAiqV6/uemYJvvzyS4c48/XXXzvEDDthYWH4+uuvAdg8Ar/44guPtmMymfDVV18BsF1AX375ZdE83bt3x7hx4wAA27dvdxkCxWAwGOUVcYWGtDbvT8spKfxx29Iq+B4cgGqh4pHYVEFDcYUG/TGBDAYvsRa6bT2SZxR63QayQiOYMjQAcY7GqZyblT5DQyrjpbwJGlaeR0axWNAgT0tJyymZoeiFdzqgA1KhoRc+45qsFtkR0e5maGQaCkXHvJIKDbJj1N7ZKbKc8tP1xVO8FQVD1DTLKfcIJyo0CmVDwf1ToUGGgsdSSgqpGRrl7DrAECLO0FBuOcUqNBjlgfr16+PgwYN488030bx5c4SFhSE6Ohp33303fvrpJ/z+++8OSyeS0aNH499//8ULL7yA5s2bIzw8HKGhoWjYsCGeeuopHD58WNBpL8e0adPw119/YfDgwahevTp0Oh0SExMxadIknDx5Er1795Zctnr16ti/fz9ee+01NG7cGHq9HnFxcY7v8Ouvv0Kt9u75YsGCBfjxxx/Rq1cvREZGQq/Xo169enj88cexZ88evPDCCy7XUatWLRw4cADjxo1Do0aNHJkanhAXF4cdO3ZgyZIlGDBgAKpXrw6tVosqVaogKSkJs2fPxpEjR1CvXj2Pt1FWcByHyMhItGjRAuPGjcP27dvx22+/lVvbLAYDCFCFxsyZMx2+eP369cNLL72EDh06IC4uDlwgTch9CM/z+OOPPwAAzZo1Q9euXanzde3aFU2bNsWZM2fwxx9/YPbs2W5/561btzqCn0aPHg2VxEi7MWPGOMoHV61ahU6dOrm1HQaDwSgPkKPz5Co0fGk5JRr9qnA5X9zndMTLP82OR8UB1cLELxY6iqBhUijsSFtOiQUNdzuaRZYwfgsFF7fLEGR+Jc1pgoZME8u8QiMAwqBUJ70/LN38ye1iq0isSAjX4GSm8DomJWjIiW8FdzIPXAkavggFjyMspwAg01AkOf/lgmzwPK/4+nfbIPb4rqqgQoMUtCVDwYMsQ0Oppiq196iWU8Q6Xe35MGIdRSZe8jeTaq83xW5mK498o3AFMTTLKcoXkTpfGOUDPSGyulOhIVWJwQQNRrARGxuLDz74AB988IHbyyYmJuLLL7/0STv69++P/v37e7RsbGwsZs6ciZkzZ1KnJyUlyQ5AXrRokSNEW4rHHnsMjz32mOT0adOmYdq0abLraNiwIb7//nvZeQBl1fYqlQqPP/64ovwOEiVtBVzvN09hLi2MykZAKjT++OMPcByHIUOG4K+//kK/fv1QpUqVcitmAEBqairS09MBQFbZdp6elpaGS5cuub2tXbt2idZFo2PHjggLs71w7t692+3tMBgMRnmgiKzQkA0FJ62afBgKLvG5PzpcScsYaoUGB1QLFd/WyY4v2/IKLackviWtQsPdPSuyhNH6Z4RQeazQyDYW42ZxPnVeDafyyYh7byjLUPDyVqGRTgSCh2k4ROo4US4AbZ+arTxkXIBQYLKC53nJahY7vjheonR6cMT1IEtG0Cg0G2Wnk5CB4NG6EEXtJis0SqRCwStYhUYocQB5UqERphWug4e0xZk/QsFJuykAiGWh4JUCcYWGG5ZTMhUa/nJ2YDAYDAaDEXwEpELjyhWbL/TkyZMDsbmAcOrUKcffzZo1k53Xefrp06fdzupQui2NRoNGjRrh2LFjOH36tFvbAIBr167JTr9+/brb62QwGJWXM7kZ+ODoFhSajXi2eQ/cU1NZhtC6q6fw04VDuCuuJqa2SkKR2Yh3D/2NY9nXwYPHiewbgvnl7HfIjpD0ojz0/es71NLXR4OQjgA4hGo49Kkbig7VxR3qh24asOVqMYpMvCjYN5BoCWGmyFI6ErHEWogTBbuwLz8bG26pRBkaj+7QQE+IGtcKcxVtVy5Dw5nrxot47eBS9KxZDW/e1QcRTuKExcpj9YUinMo0CsSFjdeE95Sjt4Dpe0ttasK0HPrWDUW7eOHvwvM8Nl8pQfJNA6w8j1ZVdBjaMAy3i634/VwhbhG/E5lfAAC3ii2CbQE2QahJjBYPNg6HllLV4k/qhcciRK1xjC4HgIe2/Uidt6yrMwBgV0YqkjaIPaHdQc2pcHf1BnirTR9o7nRc5xlL8N7hv3EkKx1XCnOoy5VYzNRtN42Kx7R2/VAzLEo07UZRHqYd2Yh/czNctis+JAImqxW5xmJYwcPK89h5MxUA0CW2E/rF94WaU+Hf/DM4kXcKNUNqoltcZ0l7NrLTtka4GhzHQUOcW7uuZ2LLhvWoE6nBtLb9UCciBusv5eJYwXYUWfLQOKwjqmhrCpbZeLkYKTfEooFepYfBWmrpdjrLdrzHhagwrGE46ka5//iv4lSI1YcKRAryWkwycNP3CFN4vGaWCL9HNb0yb2oyQ+ODY1uw8HwysozC9S09Y8LOy/I2WPWiNBjaMAxrLxYhNdd1B2vtSA1GNglHpE6FM1kmrL9UhDxKJz2NfDmlSgGkUJ1ZYsH2tBKJuemQllMA8OH+HGhU4s+LJQSTJafyEaH1bHwcKZ5oVEAEpU00y6mvD+cJ7BTD79wv2sYHh3VGRpGFej8CgGi9CkMahKFRTNlfy+1suVKMAzcMMDr9JmoV0LKKDsMahlGfBS7lmbDmQhGyS+jHctVQNe5vFIaEiNJzlOd57Eoz4Ngt4X5Zd/W04nvKqZyb1M8tvBVGq0UkljAYDAaDwaiYBOSOHxERAYPB4FVeRbDh3Plfu3Zt2Xnr1Knj+Pvq1asebys8PBwxMTEut3Xs2DHcunULBoPBLU8853YyGAyGN1h5KwZu/B6pBVkAgLVXT+HSQ29ROxudOZVzA0M2LwAA/JZ6BGpOhUOZaViaekRyGbkOM9JyCgC2XD8H4BzaR/BoFNYOAHAow4jPesehltOLd1qBGbMO5kpbaijs8/ZF17iO4lFrtwbZl7sWGabLAIArxaLZcOu2+DOlKLWcAoCdt45j5y2bJdgXXYY5Pl9zsQjLzortZC4VXRb8O7dEi1NZwpGXhzKM+KJ3HGqEl/4u+24Y8P2J0uqF47dN0Ko4/HO1WCTmSGGyQrQtADiZaYKZBx5rHtigP7VKhWbR8TiSle747KjT386UdX4GYBuZv/3GRa/X88/181BxHN5pey8AYNLelfj54iHZZXjw1G1vv3ERZ/IysG3gJNG0R7b/jG03Lnjd3v3ZySgyhqKGLhGbsn8HAJzIP4VbxUCTsA6K1lEz3HYuk520u3NXItt8E7gBpNy+it/ufg4vHViLC8VHAADXDGcxtOqz0KlKn+tuF1txvVCYRQMAYaoYGKylnX75xtLj/XimCXP/UwVqSqe1K2J1QkFDaqS0neTb7j/z2lESCA6IBb5zebdxLk980buap0JOkXx7T2WZsOES5SIqM//tYguebRuFDw5kwxBAzZvM0DBbbceDO5DB4gBwNkf5SHkAuJJvAeCbLx6jV1Gr91UcBxUnrLa7QBGcDmUY8TlxvygrPk7Okb0fHbllxLd9qlIrKANN8g0D5h2nVwQev22CTsVhcAOh5ZzZyuOD/TnIM8pVRJhwJtuI/yWVujIczzRh9tE8XCceCTJKCpBxo8CbrwEAKDIbmaDBYDAYDEYlISB3/NatW2Pbtm24fPky2rZtG4hN+p38/NIHv4gI+Y6P8PDSl7KCAvcf1uzbcrUd2rZYyA+DwSgLUvOzHGIGYPN435txGQ8ktpZd7p1Dfwv+/VrKOmrnuTNV9dIdX7EU33c7t0xX0Qg2QYMHcOimUSBonM02yfqDk/7jdsh8CrUP/OtpgdmF1lxEqGNwy+R5p6ErYnSh1M/rhcdKLvPlqZ0CQeNfinBAt4UQf2blgTPZJkEH1elM8fr23TAoFjNccTqrbHy4W8fWFAgaUijt6PUENacKSOC3MztulooTO296J5LsvJkKK28VVEvwPC/YhrecLUrBTaNQjDtSsEWxoGG/xkQ6jWovsuTZxIw7HMu+jm1pNx1iBgBYYcH54kNoEd5NsD4rxewtSlNVsD69qvQ8zjVYcb3QgtqR7r8C1AqLxoX8TLeX84Q64TGK5pO7/jujV/nnvDmdZcKFXLNfxAwVB0EVgjMxFGsmkjBKtYNw/Rxi9Cqq9VNZUC1U2mIsQsu56Dy32V+dyzaXuaCRb7S6vB8Vm3mk5pnQPE46AyxQuLrnncoyigSN9AKLy98DAG4WWZFtsCIuxPbbfn3YVh2q56Sfzbyh2GKC9NMJg8FgBC9paWnIzpavJKURHh7utgMMg1FRCEiGxtNPPw2e5/Hjj3T7hPJISUlpWbdOJ/8w6iwqFBcrH/lFbsvVdrzd1tWrV2X/O3DggHsNZzAYlRaad7qZd93jczgzTfRZnlHaRqNeRCwG1Ja24msZWx3d4xOp0yy8cIRnap6JmC7dTr0a6FmL7smeaxRee30Rdk3r3EuMNsDKW8G7nV6hjEaRVZFUoyF1WqvYGrLLOnv6mxWmxlbV1qJ+TuZdGCnry/Vhb2JZhc0+3bQrdAoyA55u2s3lPJ7yXfcHRZ+FqDVY9Z8xqBkqX13lKc5ZGd5m3Fh5XhSmbuGtPs3dMPBFyDHTLU9cEaHl0OvOdeOuajpH5o2ZF4t0BZSA21BdvsiSh3b+NwxpAw1ne2bUcDrU1bcQTPc09+Dppl0lp0VpQ/B+u/6inA1P0HAqjG/SRdG8Tzbu7DL0vK6+haCyxZdYeQhsejyleZy48qpnQojkCP74MDXaVJN+L9CqgLsl7lHO9K0bPNki99ajC+gA0Leu9DRnzEGQoaD0eCg2lX1bAdfB7rTpJjfS4C1Olyi7CJKgb4QQP4iMQfDzMxgMhke89dZbaN26tdv/jR07tqybzmCUGQEZwjJy5Ej8+eef+OWXXzBz5ky8/vrrgdisXwkJKX0BMBrlR7YYDKV2AKGhyh7IadtytR1vt+XKOovBYDCUkm0UC6pKQjxpdhOkrck7bfqiemgkYnSh6F+rKeL00iP9VJwKG/s9hb/TzuLl5DW4VFA68sVK2GSQnulkc6uHqTC4fhg0Kg6tqupQPYze+ZxDCDBSVQ7uwHEc6oTH4KpTrkDP2hYkhkbid2FRC95tcy+MFtt9o9Ydv347t0sKMe3IRtH6VRyHVf8Z41h/rC4UA2o3Q5SEGMNxHNrG1cKRLLEABQDXCnNQP7IKAHHdRZcaejSLU2P5NuHno5pURZ3wCPx1qRjphaW/jYnQKiyUPm9ypKiaA0a3EFY16u6MdCY7my7kmrH9WulvVlb9IT2q18ex4S9j+42LAkHoTO4tXC3MQVKNhuhcrQ66SQh0vmBcky5oE5eAq4U5aBOXgCOZ6WhbJQENIqugW3w9bEw7izyTez79JLtupuI3Jws5uYqQyc26o01cAjpXq4vU/CykFQmzXzJKCvD+kU2Cz6zg4Xxmmq3i9b/X9l5UCyk9Pniex3P7Vyv+DqEaFYyEBvFkS/kqWp2aw11VdahyZxR6pE6FD3vGYca+bJzMFl/3eMp+aV1Vh1kd43DslhEGC4+V54twvUg838RWdTHO+gJO5V5B48gEbLioFRzXngbnjmrYHs2i47H/9hWBSBSq1qJvQmPUjYjFfXVaYN+tyx6HNms4FXrVqI8WMfKiqZ17azXBseEvY8eNiw5BrNBkxW9nbJ424epo1NDVx6PNwqnVDumFFvwlYzN1b91Q1IksPaIyiixYmyqc30RcU2L0KjzQSNkIdI4DGkRr0ShGi4u5JpzPMYHnbYLFXVXlBzJN7RCNo7eMyCoRXiQ1Kg4tqmhRU0GlwojG4WhRRYdr+cqtpowWQOd9zrwDjgMaxWjRIFraTm9kk3C0rKJDWoGwnX9eLMItN622/A1Nz3iieQT+vFiEbKdqmGIfCGFlBdl0jcr2Hc1WYMlpoRsB7VuGqSNxb+xo3DRewhMtPRMb9WoNntq9nNhW+d2njPLPtGnTMG3atLJuhsf3eAaDwShv+FTQ2LFjh+S0J598EqmpqXjrrbewcuVKjBo1Cs2aNUNYmOsH/rvvvtuXzfQJkZGlFiiubKQKC0uNQpXYRkltS4ldlbfbYjAYDF+QbaAJGq47HZSM7R3fpAvqRig3FQjX6vFAYmukFeXieadOS7JC43qhBSVmK0I09NG+sXo1+ie6vmdlE2G0vhA0AKB+RJxA0LhZkof76opv42Mbd0JiZBx1Han5mVRBI0YXiqF1W7rVnkiKDVbpdrJKBQ3ivapFFS361BV3YPSqHYqm0WE4essoEDTIigxaRykZWBuh5RT9VgCwO61EKGiU4Ytg0+h4NI2OL7PtA0DHqnXQsaotU6vBnd8QsOWmPN5Ima2SHDqVmhA0Svc3ueuH1W2Fe2s1AQC0iUsQretC3m2xoEGsxESpDBvbuBPqRZSeI+4KGiEaNXIJQUPp8eZMlE6Fu2uH4iTFYUDqKIwLUSOpju2asulKMdKLxHP2qxdxR4y0ZddtvJQhqDzypvu3fdXaaF9VegBM2yq10LYKvdrKXzSPqY7mMaU5fbeLLTh4VWiN1bduKMIo4dUnbhtlBY0O1XVo5xQ0fS7bJBI0yGtUjF7l0fHQIFq+U59Ep+bQqYZ3lSccx6FlFR1aVil76yM5OM42kKAVIfLsSCsRCBpuFA74DVpV4oDEUOy5XiIQNEokgtbLA+R1Vq+y3XMNFl4kaEgRqo5AYmgrTG7u2T0vz1giFjTK7y5lMBiVnEWLFmHRokVl3QwGo1zhU0EjKSmJOrqW5ODBgzh48KCidXIcB7PZvYC6QOBczeAcEE7DOQjck+Dt2rVrY//+/SgsLEROTo5sMLh9W9WqVWP5GQwGo8wgO/UBwEIZKU2ixK4kUuv5aD5nSO95HsClPDOa3fG0Fo30U6C28DzvlwoNAKgVHi34d3pRnmAkvx2tjG2RVMi3J0HTcjYvzvkpZP8CB7pooLqzg3XEKGpy9LMSS6hQCVGKBrlLgqFDrCJDZsp4k9lBO57JjjZahYaGE54jSp5dnVG7Ob8cUtnctOOQvCZx4KgZGmT7yE1U9E4/2r7zIANdMeQ1SRcQQ18GoGwQRKCh3aNUnDiEvTwLGmSFhurOMU/7PeS+ZaSLnBc5aJdhVqHBYDAYDEblweeP3DzP+/y/YKRFi1I/4n///Vd2XufpzZs399u2zGYzLly44PF2GAwGw1d4bjnlet3hGs9GkpL5BFZeLJY7206RzVXy2l1sMYlEhhgfZGgAQAKRYSAtaEjf2lUSt/0QtfvjG+QEDWdrL3I/qjiOmmlg71TWEj2PRqJzSMlx5CoMV7hd4b+D86mj4kB2tvta0CDXR8vl0FDOEXeyH0hRxhtUd7ZOQnv+JT/jOLo1lYa41pGd+RX9GKddX6TEXFcoWYq0sdP4Uz1hCCDFyGAQpMkcD43K1s4QQqwPFsspT1ohEjRkzi/7dYt2XkZ6of7RrtlM0GAwGAwGo/Lg0wqNrVu3+nJ1QU39+vWRkJCA9PR0bN++XXZeuxVXrVq1kJiY6Pa2evbs6fh7+/bt6NqVHsqYkpLisJzq0aOH29thMBgMX+G55ZR8R5BOpYbOg853gFKhQbGiSc2TrghU0kWVQxFyfFWhkRAmFDTSinJhoow+96RCwyNBQ0Y4Sc0vrdAgW8hx9A4Ue9u0RPPJ8FFlFRpuCBrEv4N0HEWFQU0cN94EdtMEOmUVGuLlVBynOPfBl93VKo6+PquCjjkO9A488vtxd+Z0rLuCH+PuVGj4otiGvEaRVWYM/xGMe5q8R2nuHGSknWV5rtCwEse8/ZCX+z2KKCHoUV4JGmLY/ZvBYDAYjMqDTwWN3r17+3J1QQ3HcRg2bBjmzp2Lf//9F/v27aMKDfv27XNUVQwbNsxtWwPAZuUVHR2N3NxcLF68GK+++ip1Pc6ee/fff7/b22EwGAxfQavQoI2UJnF1iYzw0G4KAPQq4S3PAoqg4Vyh4cE2aIJGtI8qNGqFiS2nzBRRRk7QkNq/oRr3LafUnPR2BJZT5KhyAFbKsWBvmo6s0CCGgiqq0PBG0FC8JMMTVMQeF2RokJZKLn5Gjy2nqBUayjFQKqM8RcVxVFGC5sNPtW+jWE6R+0Vsq1axj3K3BA1XK1NwYJiIn4AS1cHwE8F4bJPnrl3HqMiWUw5Bg2oDZSOPLLcEEKnzrSTFKjQYDAaDwag8sEduL3jxxRehVts6dJ577jkUFws7soqLi/Hcc88BADQaDV588UXqesaMGQOO48BxHLZt2yaartPp8PzzzwMATp8+jU8//VQ0z969e/HDDz8AsAlLnTp18vRrMRgMhtdkGzzL0HBFhId2UwCgV5OWU+JOyWsFZkcHuif9IjkGYX5GhEYvsn/xFKUVGnJWUGRnsp0QTzI0ZCo0LslkaKhcVGiIMjTIUHAfZ2iQnb8VffR6WeP3DA3i6KKJflIVGkopsZhcz6QQ2/lAETQo7SbhOLE4qOZUokEv5Let6Ic4XdDwn+UUeY3SsgqNgBGMe5rUKewWZCLLKSXlhkEKeY7JW07Z/p9LETS8sWejDe6r6Nc2BoPBYDAYpfi0QqM8sWvXLpw/f97x79u3bzv+Pn/+vKDaAbCJDiRNmjTBK6+8gpkzZyIlJQU9evTAa6+9hoYNG+LChQv4+OOPcfjwYQDAK6+8gsaNG3vc3ldeeQVLly7F2bNn8eqrr+L8+fP473//i9DQUGzduhUffvghzGYzQkND8eWXX3q8HQaDwfAFHmdouOie8KZCQ6ciQ8HFHYZWHriSb0ajGHEHv5L+MLJCw1f5GYBY0Cg0G5FpKBTNFyjLKbmsjvSiPJSYTQjRaKlZJNQMDdgzNISfG4mfScmgVq8yNIJghG9FRk10YHkjaNDCuZVVaIjPEXcqaIvNvhU0aJgpVSC0aidSDKHle4iPcbeaWO4gjwFvIi2UZKuYiOHqZA4Qw3+QezoYBGmLhB1TCFmhESQZGp5AnmNKLKfyDL4VcKgZGhX94sZgMBgMBsNBpRU0vv/+eyxevJg6bffu3di9e7fgM5qgAQAffPABMjIysGDBAhw+fBj//e9/RfOMGzcO//d//+dVeyMjI7Fu3ToMGjQI586dw7x58zBv3jzBPFFRUfj555/Rtm1br7bFYDAY3uJ5hoY8/q7QAGy2U1RBQ8E2xIKGb/IzACCBsJwCgMtO4duA7QWfzChwRiVRvRHqSYWGjOUUAFwuzEbT6HixTY7EiHRHhgbRGSiu0HDdYeFVhobiJRmeIKrQ8KIHknY8kxULNKs7mhjnThe0UUJs8MRWVKpCw2gV5/nQzyXh96OJlmJbHrebWa4gf3E5fcHlT8Ysp4KaYNSORBkadxoZrJZTnmgA4lBw2//lLad8+32D8KdnMBgMBoMRQNgjt5eoVCr88MMPWLduHYYNG4aEhATodDokJCRg2LBhWL9+Pb7//nuoZDqYlNKoUSMcPnwYH3/8MTp27IiYmBiEhYWhadOmmDJlCo4dO4YhQ4b44FsxGAyGd2QbKZZTCgQNV6+7XmVoEFUIljuCRsNo4eepeSZFbaFBChqxet8JGqEaLWIJgYQUNOSqJgDpDgBfh4IDwKU7bSM7T11VaJCWU+IMDddtc0fQIDvEgqOLqeIiZzklzoiQ/x09ydDgwFGFEE8tieyYPMzVkMrQMFEFDUqFBnFdpdppidZTsRHZ4XixLo8sp4Kxl72SEAwmTmbiGmR3QBRbTpXfM1GUoSFzzNt3By1Dw5s9wCynGAwGg8Go3FTaCo1FixaJbKW8YdCgQRg0aJDf2xIeHo5XX30Vr776qkfbYjAYjEDgqeWUK2/6CI3vQsHtllNNYrW44BQGbg8Gp42GdkWOUZih4csKDcBmO+W8b8WChnzVhLTllCcVGvLdhKn5mQBo+5HegStdoSGcjxaWTBLmRoaGqEKD9Yj4FdImisy8cAdaJgx5nSErNKSEOCXWQnKUWMzQeSAMqjixKAFIVGiQ4iDlXJLOB3EKX6/gx7g7/v6+kB5IQYMUZRn+Q9SPHgTHttIKjfIsaHhkOUUTNLzYBbRtMcspBoPBYDAqD6xCg8FgMBg+xWK1Ipfo2AeUVWgUufCmj9B6bjmlIyyneFjB8zwaxwo786/km22d5pTKAlf403IKAGoRtlOXC4WChquqCV9maLjaVmq+LRic7GBQgV6hURoKLvxcZDmlJEPDHcupSmbHU9aQx6CFknHh6boAWoWGsHJCSojzVtAwUAQIJdj6OpVaTonnsxJj0mmWc6JjPBh6ff2IbzM0XEPm/LihpzK8hhRIyx5SdJfK0DCU4wwNC7GjSy2npKsmcn2docEqNBgMBoPBqNSwR24Gg8Fg+JRck1jMAOjhvCTFAazQAAALzGhM5GWYrcC1AjPlxdh115a/BQ0yGPxyQY7g31oXuRZSgoZnGRrKLKeUZmjYW0ZWaJCWU4oqNNwKBRfOyzpE/IvYcsq5csC9vU8VNCCfoSElxHlrOWWweChowPMMDYuVV1ShUdmqkMQVGv7dHrOcKjuCsUKD1CnsFRqkoFGeKzTEGRoyllN3/p/va8sp6rbK7z5lMBgMBoPhHkzQYDAYDIZPyTaI8zMAZRUaxX6s0CAzNABbgHCMXoX4UOHtMDVXLGgos5wiBY0Qd5spCxkMfqkgS/BvV5ZTUqPQPanQcLWt1AJ7hQbRBk6qQsP2G5B2LZ5UaLiVoUH8m1lW+Be5DA0SV7+iJxkakhUaXvZBl3gqaHActQvOaBVfC8nvZrLy4gwNimAjyomp4Ic4KWjIOUC5qsxRclyQIquOCRplRjBUH5HHg/12FErJ0Civ9xspyymAct2+M2uuzy2nKBUa5XN3MhgMBoPB8AAmaDAYDAbDp9DyMwDXGRpmq0U0mprEm1BwHaUD3gozNCqgfrSwQuFSntlDyyn/ZmjUIio08k0Gwb9dhYJLWk5pPKjQUGg5RQvopXXilFZoCD8n7Vwsvs7QENnxMPwJmaGhROiUgpahIRI0lFZoeGs55bGgYbO/I6FVaJDB4yareFlFFRruN7Nc4VaGhoufXZHlFPHzaeW1XoYPCUbtSCpDg6zQ4CE+dsoLolBwmd/BPmuekXbl8fxqRDt3WYUGg8FgMBiVByZoMBgMBsOnZBukBA35N3dXdlMAEKHxbYUGYIGK41A/WjjNVqHh/otxtlFYneJ7y6lo2ekuQ8Eluuf8YTl121CIApOBuhdpo2ilQ8HJDmrXbXOnQqOy2fGUNWSFBq1aR/G6KOKE6woN+jlC82N3B88rNEA96EwUQYMUOYwWseUU7RpAfreKnhPjywwNJZgs5G8QhL3slYRgOLZFFRp3LlMhFKG9pJzaTsmJhuSllAcPK8/73HKKBhM0GGXJokWLwHEcOI7DpUuXyro5DrZt2+Zo17Zt28q6OQFlzJgx4DgOiYmJZd2UCk+wHf9JSUngOA5JSUll3RSGH2GCBoPBYDB8Ctmpb8eVoOEqEBzwrkKDlqHBcbY21Y8STruUZ/aoYyTHENgKDRKXgoYvQ8FdCBqAzRKL7KtVcRxVNLDbR5CWU2SGBhlGSsOdDI3KZsdT1ohCwZ0zNNzsjKJWaIAUwIhQcIkKDW+7oL2r0FAoaFiE38Vs5WH1wHLKGxGpPCD29/fv9liGRtkRjLtaXL1gayRNaC8myznKCWTFrSvLqUIT73OxiVlOMRgMBoNRuWGCBoPBYDB8inSFhvybpqv8DMC7UHCdWtzZr+JsHYSJhOWUwcIjvVDYeajMciqwGRokrkQGqVHoHgkaLsQTwGY7RXbWSmdo3BE0RBUaQosqV8cR4G6FBjF6XfGSDE9wJ0PDFTSBjlyf0gwNr0PBKQKEEmwZGhRBg6dVaFiIf4stp0hLL4BZTsl1erv61ZUcFibScoq9XZUZwVyhoVOJj7dgqNBw1QLaLVeUUyNzzPMA8iS8tbzK0KCcnKxCg8EoG6ZNm+YYnc9g+AtWccMgcb8HQ4YGDRr4cnUAbA8rFy5c8Pl6GQwGg+EfpDI0yI5FEkWWU16Egqs4FTScSuCpbxc0YvQqxIWokFVSOi01V9geV8/oPM9TBA3fVmhUD42AiuMkR1gH0nLKVV4HAFwqyAbPVxd8xoHe6WDfv6T/PA/biFe7RuFqQKtezbnVOS2yx2D9IX7FnQwNVy/GtOni4Gzh+qXOEVfh0K4oUXD9omHrbBcfdLQMDVLQMFl5cYYG1XJK+O+KfoyLLaf8m6FBVmiQVWYM/+HteesPpDI0OI5DiIZDsZOIUUKWc5QTxFVQhOWU03QeQK5BQtDwcbsq+rWNEdyMGTMGY8aMKetmMBgMoNLZq1VWfCpoKPVKs7+AkqGgtM+ZystgMBjli2yDZ5ZT/q7QAACtSgOzxVj6AVfaQZgYpUFWSem0K/lEGrULisxGUQBxjN63goZGpUb1kEhcL86jTvc4FNyTDA0FgkZqQZaow0IlVaEBeoYGYLOd0qhsQo6r/oowN6oz7O1xho3w9C/iCg3v9jcp8IlDwRVaTnlboWFx73phR9pySnw9JEUOs1X8LK0kFLyiVyGR38/fbxIsQ6PsIE/boKjQIM9Jp1MylBA0ioOgQsMTrMSOlrWcAqj5Gb6Ag7DCjd2/GQwGg8GoPPhU0Bg9erTs9CNHjuDo0aPgeR4xMTFo164dqle3jdy8efMmjhw5guzsbHAchzZt2qBNmza+bB6DwWAwAoBUhYZPQsG9qNAAbKOzi536HTmnrq/60RocyjBSlrLPK0+OsUT0ma8rNAAgISxKRtCQr9DwqeWURLiyM6n5WahJtgFSFRr0DA3AZq0TBtfVGYB7dlP29jgTDB1iFRkyyNv5uuCJtqECJ8jNcB0KLmE55WW3t8cZGuBEogQgUaFBEU2sCiynSCGzoo9idsdyyhVKKgDIvlpK9jPDT9BMh8oaMudJ43T+hRD3t2CwnPIEd3JqeB7I9YPlFGATtJzXUT73JoPBYDAYDE/w6SP3woULJf/r1asXTp06hdq1a2Pp0qXIyMjAli1b8Msvv+CXX37Bli1bkJGRgaVLl6JOnTo4deoUevbsiYULF/qyiQwGg8HwM9KChvyrpqJQcC8rNESd8JyToBElX6XgagA3aTcFAFFehJhLkSATDO5K0ADoHXShGv9UaFyiVGhIZmjYQ8Epq7WPgFYymt+dQHB7e5xhHSL+hexw9zagmuysF1douA7NBpRlJcjhjeWU4lBwq1jQUGI5VdmC78WChozllIt1KTkuyMwEZjkVOILRTk0qQwMAQgjBvUJaThHz2jI06N/T229PPs/QxGEGI1AsWrTIkSNBcy45ePAgxo0bhyZNmiA8PBwhISGoU6cOOnTogMmTJ2PNmjWyx/Cff/6JESNGoHbt2tDr9ahSpQq6deuGmTNnoqCgwKu279u3D2+//TaSkpJQo0YN6HQ6REVFoUWLFpg4cSJOnTol+52nT5/u+My+D5z/o+0Pi8WCxYsXY8iQIUhISHB8p549e+Lzzz9HcTH9fdKZ06dPY8yYMahTp45jf44aNQrJycke7wtXbNu2zfG9tm3bBqvVivnz56N79+6Ii4tDeHg42rRpg48++gglJeLBbiQFBQWYOXMmunXrhri4OOj1etSuXRsjRozA2rVrZZdNSkoCx3FISkoCAJw5cwYTJkxA/fr1ERISgpo1a2LkyJHYt2+f4u8jh32+adOmufxeJFarFf/88w+mTp2KHj16oGrVqtBqtYiJiUHbtm0xdepUXLlyhbqsPaNl8eLFAIDLly9TjzNnyH0jxa5du/D4448jMTERISEhjoH3b7/9Nm7duiW5HG2/LVu2DH369EG1atUQGhqKpk2b4tVXX0VWVpbyHcVwC59WaEiRkpKCZ555BtWqVcO+ffuQkJBAnU+tVuOhhx5Cz5490aFDB0yaNAlt2rRBx44dA9FMBoPBYPgA6VDwYKjQEN72OK6007B+tHe3RFLQiNTqFQVnu0stmWBwJSKDiuNEwoBnFRrKLKe6hAs/s1lE0NsF0O1a7B715MhXGm5bThH/Zv0h/oXWuWzlrVApsEqiYbOwKu3otxJHV8AqNChigxKkMjTMCkLBAU8tpyr2QS7O0PDn1nhKKDgTNAJFMAbek0UXGqfjgawgDAbLKU/ueeQ5JrCcohz+eRIZGt4SjL8/g0Hjiy++wNSpU2ElnkmuXbuGa9eu4dChQ5gzZw7y8/MREREhmKekpASjRo3CqlWrBJ9nZWVh37592LdvH77++musW7cObdu2dbttixYtwtixY0Wfm0wmnD59GqdPn8b8+fPx1VdfYdKkSW6vn8aVK1cwdOhQHD16VPB5VlYWdu/ejd27d2Pu3LlYt24dmjRpQl3HsmXL8MQTT8BgMDg+u3btGn799VcsX74c3377rU/aKofRaMTgwYPx119/CT4/duwYjh07hp9++glbtmxBjRo1qMsfPnwYQ4YMQXp6uuDztLQ0rFixAitWrMADDzyAn3/+GSEhIbJt2bBhAx566CEUFhY6Prtx4waWL1+OFStW4LPPPsOLL77o2Rf1Ae+//75A+LKTm5uLo0eP4ujRo5g7dy5++ukn3H///X5vj9VqxfPPP49vvvlG8LnBYMCRI0dw5MgRzJ49G8uXL8e9997rcl2PP/44fvrpJ8HnZ8+exaxZs7Bq1Srs3LlT8jhgeE5AiqK/+OILWCwWvPnmm5JihjM1a9bEm2++CZPJhM8//zwALWQwGAyGr8g2SmRouAoFV1Kh4WXFg9gmqbRNVUJUiNR5PpLX34HgdmQrNBTYQNE6lD3L0HC9rVxjCYqtwtFJUhUa9pE1ahUHcoCz8c5wUCV9P6Fu+r2QI3qY5ZR/ITM0gNLKG0/8z92v0JAIBfc6Q8NDyyl3KjQo21BiORWMo9j9CXkOyxVMeFuZQ4oZAKBlllMBIxiPbVGFhlMbg1HQ8ASyQkN4jokt7vL8laHBsjYZ5YBjx445xIz69evjs88+w5YtW3D48GHs2LED8+fPx6hRoxAeHk5dfvTo0Q4xo02bNliyZAmSk5Px999/Y+zYseA4Dunp6ejTpw/S0tLcbp/ZbEZsbCzGjBmDBQsWYOfOnTh06BDWrl2L999/H1WrVoXFYsGzzz6Lf/75R7Ds8OHDcfz4cUycONHx2fHjx0X/1apVyzE9MzMTPXv2xNGjR6HX6/Hss89i+fLlSE5OxtatW/HGG28gLCwM58+fx8CBA5Gbmytqc3JyMh599FEYDAbo9Xq8/vrr2LFjB/bv34+vvvoKVatWxcSJE3HkyBG394c7vP322/jrr7/Qr18/rFq1CikpKVi1apWjA/zUqVO47777YKFYhqalpaFPnz5IT08Hx3EYO3Ys/v77b6SkpGDJkiUO+/2VK1e6DJtPT0/HqFGjoNFo8OGHH2LPnj3Ys2cPPvjgA0RFRcFqtWLKlClYvXq1r3eBYsxmM2rWrIlJkybhxx9/xO7du3Hw4EGsXr0ar776KiIiIlBUVIRRo0bh9OnTgmUnTZqE48ePY9iwYQCAhIQE6nHmDq+//rpDzKhfvz6+/fZbHDhwAFu3bsWUKVOg1WqRm5uLIUOGiIQ3knfeeQc//fQThg8fjpUrV+LgwYNYv349Bg8eDAA4f/48pkyZ4lb7GMoISIXGzp07AQBdunRRvEzXrl0B2EqAGAwGg1F+kK7QkH9xV1Sh4YNQcGd4pwoNjuNQP0qLY7elcjTkX5zJDI0yETQUWU6JCfVA0HAVQG4n35QDLeIF26d14DqPkNeqOFicekzsfSEWBWqDuxUazHIqsFAFDatV0bFLw6WgQVQ1SFVoeNst5rnlFEcXNJRWaHhiOeVmG8sbvs3QcG9bAKvQCCTBOEKfzHpSOx0P+gqSoSFn60a3nJLI0PCyHaJtBYOiVc7geSt4Kz2XrSLCqaLAKagw9iW///47rFYrwsPDsXfvXkeGrJ1evXph/PjxyM3NRVhYmGDaunXrsGzZMgBAnz59sH79euh0pdXq/fr1Q7du3TBhwgRkZWXhpZdewtKlS91q38CBAzFq1CjRttu1a4fBgwfj+eefx913341jx47hvffew3/+8x/HPDExMYiJiUF8fOlzfqtWrWS39/zzz+Pq1auoV68etm7divr16wumJyUl4aGHHkKvXr1w8eJFfPLJJ/jggw8E80yaNAlmsxlarRYbN27E3Xff7ZjWuXNnPPDAA+jatavLjmhvSU5OxoQJE/Ddd985PuvQoQOGDx+O8ePH44cffkBKSgq+++47UXXLiy++iOzsbADA/PnzMW7cOME6Ro4ciYEDB2Lr1q1YunQpRo8ejYEDB1Lbce7cOURHR2Pv3r1o3ry54/Nu3bph2LBh6N69O/Ly8vDss89i8ODB0Grdf+/zlvHjx+O9994Tbbt9+/YYNmwYnnvuOXTt2hVpaWn48MMP8eOPPzrmiY+PR3x8PGJiYgAAWq3W5XEmx/Hjx/HZZ58BsB2vO3fudKwbsB2D/fr1w+DBg2E0GjFhwgTs379fcn179uzB//3f/+Gtt94SfD5gwAAMGDAAGzduxO+//46vvvoK1apV87jdDDEBETTs3mPO5WCusM8r51vGYDAYjOBDKkODHClN4krQUHGcR9ZIzqhlKjQAm+2UlKDhboZGjE6+NNhT5CynlIgMtN/Bk/2qpBoEAPIsOaiiLn3RUUlWaDitWw2UOPXdOiynFPRVuJuhQdtjPM+zkZ9+glZB4MqOTg5S0CDXpTRDQy5nQQkGyug7JbhToWGiWk65ttSqbMH37mRouMKTRbUsQyNgBKOgQQ7ecC4aJCs0ym+GBmE55fQdaedMroTllK/1h/K5N8sW3pqH/BsPlnUzAkZkjRXg1DEB3eaNGzcAAE2aNBGJGc5ER4uf7+0jyLVaLRYuXCgQM+w89dRTWLZsGTZv3oyVK1fi+vXrqFmzpuL2OVdPSLXr/fffx/Dhw7Fr1y5kZmaiSpUqitfvzKVLlxyCy+zZs0Vihp127dph8uTJ+OSTT7Bo0SKBoJGcnIyUlBQAwNNPPy0QM5y/02effYaHH37Yo3YqpXr16vjiiy+o07788kusWbMGt27dwpw5cwSCRnp6uqPqZsCAAQIxw45er8eCBQvQuHFjmM1mzJ49W1LQAGxVAs5ihp2WLVvirbfewmuvvYa0tDT88ccfGDFihLtf1WsSExNlp9euXRuvvPIKXnzxRUeejL/exebOneuwf/v+++8FYoadAQMG4Mknn8T333+PAwcOIDk5GZ06daKur0OHDnjzzTdFn3Mch5deegkbN26E2WzG3r17MXToUJ9+l8pOQORpuwq1YcMGxcusX78eAFC1alW/tInBYDAYvsfKW5FrpAegueq0LDJLVUbYiNDovX6wIS2neAg7CL3J0QgKyykFo9xpYoJnllPKHiHyTMJScU6iA9c53FNHjHB2WE4p6IklO4xcQTukWKeI/6BVaEhlOig538nsC3GFhrIMDTJc1l0MFAFCCSoO1F49s+JQcLJjkWY5Vbls1dzJ0PDHq7KOWU4FDPLYDoYB+mSFhsapjaQlYnm1nCIdROU0PJ4H8iUtp7z7/qLfn929GUGIXVw4deoUDhw4oHg5s9mM7du3A7BVYtSpU0dy3qeeesqxjKtgZ1cUFhbi0qVLOHnyJE6cOIETJ04IRtV7U/Wwbt06WCwWhIWFyXbOA3AIFenp6YKw6M2bNzv+pmV/2Ln//vupHdW+ZOTIkaLKFjsREREYOXIkAODkyZMOYQuwBUrbbahoYoadxMREh32V8zIkHMdh9OjRkuuxW5MBwv1XluTl5SE1NVVwnNn3pX2av7Dvg5YtW8q6CNnPK+dlaIwaNUrynaVDhw6Ovy9evOhuUxkuCEiFxn/+8x8sWbIEn3/+OQYOHIgePXrIzr9nzx588cUX4DgOffr0CUQTGQxGkHIl34wd10pQM1yNe+qEKB5peavIgo2Xi5FVYkFChAaD64cixE1v/fKKxWrFvLP7kJqfhQitDqn5WTC5yK8g0ahUSKrREKMbdXTZqXgmNwPzzuzDzeICmHmr5AulVIZGtqEI/zu1E9OPbJLdjtJA8PQCMzZfKaaOCCwyCY+BA1mH8dj20gfMYrMVKblCYYXjOFTV1kInvrPsdtdeFfp9+k/QkKvQ8My2J1TjgaChsGT/TOEx3DTcdPz7tYM6WCGu2HQ+znRE78gfF4qwK60ERQo6f9zO0KB8ZrECUruS53nsTCvBlXwLuifo0SA68GXb5RmaoDFu1zLoVBrkm5RX8toh7wnvH92E6mciHf8+lXNTMF1KiPNWLF1x6RhS87Oo00LUGgyt2xJD67YUTZOq0Mgy5Yg+KzKb8Nj2Xxz/3pdbglyLsJJZnBNECb4Hj3+zjNiVZkAx2fsqQZVQNQYkhiIupHT9zvdZKWpHajC4fpjonPYFWSUW/HWpGJFaFQbWD4VGxaHAZMXys4WC+QItaDDLqcBB7umDGQbcLLJg/w3btaRHgl40j1bFoV28Dl1quq6ivJZvxparxcg3WlEvUou6UWocuGFAqEaFfvVCER8mPt9S84RipPMtibScOpVpxNeHS0V/FcehRRUtkmqH+GVk6u60Ehy9bRTYN17IlRdjL+WZBW0EgLPZwopaOcup388VIM9Iv3fL3dH3Xy/B4Qyjo0KTBvlYySynGMHII488go8++ggGgwE9evTAgAEDMHjwYPTs2RMtW7aUPNcvXryIoiJbLqEr63bn6SdOnHC7jbdv38bnn3+OFStW4Ny5c7Ln0u3bt91evx17ZUVRURE0GuVdkTdu3EDdunUBwJGVoNPpHDkTNLRaLdq1a4etW7d63F5XSI3Yt9O5c2dHlc3x48cdodDOv5GS33bDhg0oKirCxYsX0bhxY9E89evXlx0IXq1aNSQmJiI1NdXtrAlfcvnyZXz66af4888/cfnyZdl5b9++jQYNGvi8DQaDAefOnQPget+3a9cOWq0WJpNJ9rxq1qyZ5LS4uDjH3/n5+W62luGKgAgar7/+OpYuXQqDwYA+ffrgmWeewZgxY9CmTRvHBZzneRw9ehSLFy/G3LlzYTQaHQE/DAajcpJrsOLNXVmO0M0CkxXDGtID05yx8jze35eNjGL7m44Bl/PMeKmDdEdwRWLakY34v6Pej75YfD4FJRYTnmnWXXKeYrMJd6+fg4ySApfrk8rQGLntR2xOP+dyeSX5GUYLj2l7s5Er8fJssgq79q4WX8fPF6+7XO/lkpOoccuMqRhEnX4q5wb23RI+mPlL0KiiD4NOpaaO1lZaNUHiieWU4goNSybyLJmOf1+5Jp6H7JQmQ3VPZynPJ3A3Q4PW97jsbCEebR5BnX/TlWL8cMJ2vK9PLcL/kqqgGqVTi0GHJkovv3TMZ+tzdS2hdfgD8Los53RuBk7nZkhO/+HcAazrOw6D6gjtAKQyNGjw4PHzxUOy89DOS3KXX8u3YPGpAtFIclck3zDg895x4DgOVp7HjP3ZuFnkaiUGpBdYMLmtdGWZJ1isPN7enY3MEtv20wrNeOauKHxxMBf5JuUVGq4UDXe7lFUcvUqG4R/IYzutwIK0gtJ74+50uki69VoJXu7AoXMN6eeKErMV0/ZmO46nnYQQv+96Cb66p4rgGlRosooGU2icjgeygjCzxIpdRBt3pJWgxMxjYH36qF9P2ZlWgtlH3M9KyDaI20jirNOQR/+x29L3b6k+0/3XS/D5IddtJbUOJmcwgpFmzZrh119/xVNPPYXs7GysXbsWa9euBWBzIxkwYAAmTJiAXr16CZbLyiodJOGcUUHD3lFOLqeEgwcPon///sjMzHQ9M4DiYrq1sBIyMqSfk+SwCztA6feLi4uDWi3//C1n8eULXP0uztt3/l18/du6Woe9LampqW4fH75iw4YNGDFihOC3lMOb40wOe24J4Hq/abVaVKlSBTdu3JDdb1JVOgCgcnoul6qwYXhOQASNZs2aYfHixXjsscdgNBrx9ddf4+uvv4ZOp0NcnO3FKDMzE0ajbVQsz/PQaDRYuHChrNrFYDAqNutTixxiBgD88m+hIkEjvcDiJGbYOJhhqDS++L4QM+ysv/avrKBxKPOaIjEDoFtOlZhN2JJ+XtHycXrXL/dns02SYgYAaDnPQ8XPFEi3k/Yd4kPoHeLewnEcIrV6ZBrED4RRWtcjTqN1ISJbME8EDSk5g4PyDlo74Rph9U2YVgXAs4e+SDf9XmjXhDUXiyQFDbuYAdgyPZafK8SkNr7trK3IkL+1HGEKrNAitSG4VVLocr7S+enXABXn/0qbDWn/igSNUDUnCvb2hgjK/iWLI47cMrotZgBAeqHt3lo9TI30AosCMcNGyk33K2+UrNMuZgDA1qsleLJlJE5mijtPQ2SqQ8gR866mu5rfXUGV4R1yv60rDmcYZAWN8zlmkTjmzK1iK64VWFA3svT++S9FfHcWMSJ1ytp7KMPoc0HjSIay81CvBgxu3n5DnL6jXsOhUKGVllTxxZFb8hakdjibh6XT+pik4S6cKgqRNVaUdTMCBqcqm+e1Bx98EH379sXSpUvx999/Y+fOnbh16xZu376Nn376CT/99BNGjx6NBQsWCDpA7fjr/dVoNGLkyJHIzMyEVqvFc889h2HDhqFJkyaIjY2FXm+7Rl68eBENGzYE4F0llL1Dt2rVqm5VTtCyNoLhnd4XbQiWdfiT27dvY9SoUSgqKkJERASmTp2K/v37o2HDhoiOjnZkw/zzzz8Oh55AVNwF+35juCYgggZg85erX78+Jk2ahIMHDwKwlftcvy4eGdu+fXvMmTMHnTvL23swGIyKzfkc5aOynaGVp5uttvBFd/31KzslFnkrAlfTnaF1chdbTIo7v0c1aOdynhyJ4Ek7dUKa4arhX0XbI9Gppd/wafkfw+uJ7WV8xZA6LbD4fIro8wfrtXa57JONO+OLkzsc/360QXtoPLCqknoG7BQ5CEcK/oGRVz6yZmSisGS8R4Ke2jHkihi9Ci2ruNcx7e0VgbTeYMgTpQvBoNrNsP6a/HnYOKoq2laRD6oEgIfrt8FHx/5RvP2R9en2BEnxrXA+/4bgs+raeghTRyO1xPMKEmeKzeJjJUqvQs1wDnB/4LQIDhweShR/v3Ci5EnOIsoVhjsdle6EGReZeRgtvE9tp9ILxd/BbKXfTbolSAu9NcLUSIzS4FKe+F5WN1KDhAjhtbF2pBq1I9S4VkDfh91ltsXwPV1q6rHpSrFHuTAGF8ewkmPcRMyTR8mKaFW1VGRsU1WHCC2HAhmhROm23cWkQH9Uc8BTraLww8l8xfkeOhXQoXqpMNStph7rUpXd/6XspJS01YZ8hhLDNRynCnhIdmUlOjoaEyZMwIQJEwAAp0+fxh9//IGvv/4a6enpWLx4Mdq1a4cXXngBgNCq5ubNm9R12nHOZ3BezhX//POPw9d/zpw5GD9+PHU+X43qt4eJ5+fno3nz5i4rLGjExsYCADIzM2GxWGTX4Wq/eYur9TtPd/5dyN9WLh9FyW+r5Hva5yHX4SygWWUsqgsLlQ8eIvn999+Rk5MDAFi1ahX69u1LnS8Q1SP24wdwvd/MZrOjcsmd84oROAImaAA2j7nk5GSkpKRg8+bNOH78uOOgjY2NRevWrdG3b1+XXnQMBqNy4KkPtdTrTIGRR2hAr3qBxyoTvN2zen30jBePcHEmJfOqwLLFVZA3+fIYrtHhueY9AQB/Xj2Jk07+9bT3TJpt0rPNe6B/raa4mJ+J60X5UHEculariyF1Wsi2BYDI6qFaqIroYGqLe3Kj8W/eJVQNA2L19IfgjCIzjmbdwMHss47PtGrpF2XSTisxIhatYmu6bK+nvNf2XpGgoeI49Krh2mt0Vsch6FS1Do5lXUeT6KoY1aC9R22gjWqZ0HAYese3Q0ZJI+zPPIlCc2klSIiGQ+0IjWiEc/OYeDxCiFX96oWhSoga57JNkmPX60RooFUDl3LNsAKI0HLonhByp7rDje/h1twMX7As6XH8cvEwLkpkTtQIjcR/G7RVlAnzf+0HoE1sAo5mp8sGAmtVKvRJaIzeNRpSpz9c726cuh2BLNMNADyq6WMwunF76FVa7LndECWWYtSP1qLIUvpCd9tQiBhdiKSN1T/Xz+HA7auOf0tdT/9TV4fVMs53dfTN0LNGNdSLEot1WSUWZBusqBWhwwP1mlKvAeSocLKzsHqYGl1r0keq/3mxSNBZbL6zk8mOSK0KGHRnRLnFymMt0aGZY7BS8wY8xUzpCKX9/JPaRKKHjMjAcRze6RKDXeklyHKq+IjVq9Czlji3S8VxeK9bLHanlSCbuN/UidCge4LnVYAM92lZRYfp3WJx9JYBJitwIceEE0SVTq9aIYgLUeHfLBPOOAnQrjQDuewGO+QspFBRPUyFGH3pPSkmRI0PesRi33WDIBPqar4ZhzJKB0aQQokvINvaLE6LprGl1xR7tkijGC3qR2uQfNPgUtTQqzl0rK4XVKk81jwCDaO1uJwvFgnPZZtwymmwgmRWOHE2N4rRoGWVUmFod3oJbhdbwRF3cFfPrAxGMNG8eXM0b94cjz76KJo3b47CwkIsW7bMIWg0aNAAYWFhKCoqwv79+2XX5Rw23qpVK8VtOHnypOPvhx9+WHI+e/aFFEpHurdr1w6//PILDAYDUlJSXGYY0GjdujV+++03GI1GHD16FO3b099jzGYzjhw54vb63SE5ORmPP/647HQ7zr+L89/79++XFTTsv21YWJhkpkRqaioyMzMdghHJrVu3cOnSJdG2ASAysjR3ztmOieTs2bOS01xhP87i4uIkxQzAd8eZHHq9Ho0bN8a5c+dcnleHDx+GyWS7Z7lzXjECR5l07XXs2BEdO3Ysi00zGIxyhMbHPtSFJiuqoWJ73cuF6t6b0Bjvtu0nu/w3p3cLBA1Xo93I8bAxulB81NGWMxGnD8WrKesk5wUAI8VL8sMOAxGpwDqJRi7xdtwoRotRzUjroNZ3/pNn6cUj+O/20oc3M0V8cUzjhdPaxbkeWe4NtI7ezlXrKlpWrVLhkQbtRCKCL3i1bXM0jIoAEAFA+uFcCR2q6wWjPqXo6qVuxKqNA0+4Vo+nmnb1ybpUnAoPN2iLh9HWq/VYAdTWN0FtfRMAts6+cS1to7geQw+P1vla8lqBoGGW7GyT7oRrHX43mod3xaSmUehZy7ProisbtrqRasp10sbGy8WCTk3TnUsdKYqEa1WOdfA8j78uFwtsrXJ9LGhYKLuMdrtqU9W1xVmEToUBicrtfaJ0Kp/bATE8p0msFk3udMyvvVgkEjQGJIaiUYwWK84VCgUNF4KFWUEhE7mGQuIZpEG0WISsEa7B8EbCV/A96SVCQcOTkhOXCNfZpqoODzSm27jWjtSgdqRn3QQqjkOPWiHUq+a+6yVCQUOhcNOyik5wjbqYa7ojaAivbUzQYJRH6tSpgyZNmuDw4cOCwG2NRoPevXtjw4YN2LRpE65du4batWtT1/H99987lklKSlK8bbO5VHgsLCwUdG7bsVqtmD9/vux6QkJKn08MBoPDqorkvvvuw6uvvgqe5/Hll1/i119/VdxWO3379sVbb70FAFi8eLGkoLFq1SrZDnpfsHz5cnz88ccIDRXnJtoFKgBo0aIFatYsfWFJSkqCWq2GxWLBggULMGLECOr6r1y5gk2bNgmWocHzPJYsWYIpU6ZQpy9atMhh4UQKComJiY6/U1JS8OCDD1LX4clvZcd+nJWUlMBqtVJt1YqKivDjjz/Krsd+nBkM3lmZ9u3bF+fOncPJkydx4MABSWcg+3llX4YRfHiWHspgMBgBQEu5Z3vjp+iqxL8ikEXJVXAHcjSquxUanOBv1z3FRqt4BJ9O5bnWTlZoOI+MdBcyXNckU4ZLVmh4Gs6tFDVX9rdvWrhzefQiZfm9DEDcQe4LdyS1iuxso9+DDDLWfao757o3dk2RLqqWaOeyHQ2xqL1Cw2whr3mlf3Mch2hCRCHFZm+hDRyn9Y2Wx2sSw7fYTx3yWPZNhYZwHvI5M0JhxSBZkewPQYNcY1mcGjqF39PVo779miWu0Kj4z/mM8sfq1asddjs0rl69in//tdlwklkRkydPBmDLuhg3bpxjtLgzCxYswMaNGwEADzzwgKDj3BWNGzd2/L1o0SLqPG+88QYOHTokux7nbV64cEFyvqZNm+Khhx4CAPz222/4/PPPZdebmpoq6kjv3LmzQ8SYO3cudu3aJVru+vXrmDp1quy6fcGNGzfw8ssvU6e99NJLjhD0iRMnCqYlJCTg/vvvB2ALy168eLFoeaPRiCeffNLxmz/77LOybZkxYwbOnDkj+vz06dP44IMPANh+p2HDhgmmx8bG4q677gIALFy4kGr7tGvXLvzvf/+T3b4c9uOsqKjIIfI4Y7FYMH78eKSnp8uux36cZWRkID8/3+P2TJw40SGqTJgwAXl5Yt/XjRs34ocffgBgO+aYi1BwUmY9IteuXUNKSgp27NjhtwR7BoNRvqFZTikJKpR6nylUbspbbsk2eHc9JTvKXVVokNOdO8bIl2XammiWU1ovxABS0IhyMyBa2A6hoiY9uhowE2KHvwUHdRB00pV9C3xDRfkeDO8g+9V8IWhoiOuAVJUX7TpoR3WnqtCLS5nLIGK1zLo1HL0DUmw5JZwvmhCTyWuzt9A6Lmk2VEFwqWSUMfb7JXnfNLs4JD2znBKuNEKr7AAkB/AYPY+5kYRsa1mcGqQwq7RCg8R+dSEFS1ahwQhGvvzyS9SqVQsjR47Et99+i+3bt+PIkSPYunUrZs2ahR49ejj6w5555hnBsoMHD3YIABs3bkTXrl3x888/4+DBg9i8eTPGjx/vyL2Ii4tzKRCQ9O/fH/Hx8QCAt99+G8888wz+/vtvHDx4EEuXLkXfvn3xySefoEcP+UrV7t27O/6eMmUKduzYgXPnzuH8+fM4f/68oBJk7ty5Duukl19+Gb1798YPP/yAffv24fDhw9i8eTM+++wz3HvvvWjUqBFWrBCH1s+ZMwcajQYmkwn33nsv3nzzTezatQvJycmYPXs2OnTogOvXr6NNG3pumq/o2LEj5s6di4EDB+KPP/7AoUOH8Mcff2DAgAGYN28eAJvNFvm7AsAXX3zhyHN48skn8dRTT2Hz5s04ePAgfv75Z3Tp0gVbtmwBYMsjHjhwoGQ7GjVqBKvViq5du2LmzJnYt28f9u3bh5kzZ6Jbt27Izc0FAHz99deOAG5n7MLZzZs30atXL/z22284fPgwtmzZgpdeegl9+/b1ymFn5MiRjqqdsWPH4vXXX8eWLVuQkpKCxYsXo0uXLvj1118VH2dWqxXPPPMM9u3b5zjGzp8/r7g9rVu3dghRdtuy+fPnIyUlBdu3b8fUqVMxZMgQWCwW6HQ6fPfddx5+c4a/CajlVH5+Pj755BMsWrRIoL4dP34cLVqUeqP/9ttvWLlyJaKjo12WtzEYjIoLOZoOAErMVoRoPLOtKKwMFRpGX1douGc5JTcallZdQ3bkaTiVY0SyJ5CjgMlONXcghRWTTKcj+RJdGSo0aBU45bHvkI3gZgDia51c1YJSyOuA1PWUVqlW2o47goY3FRou1BC5VZMDzO2VLGSFBHm/JqvjfC5oUFZHq9oo+yslI5DQzjC71kYe566eb5SMgRFZThELhSus0CArF2jinK8pkwoNkaBBn8/Vt7eLsMxyilFeKCoqwvLly7F8+XLqdJVKhenTp2P48OGiaUuWLIHZbMaqVatw6NAhPPbYY6J5EhISsG7dOtSq5Z7lbXh4OJYsWYLhw4ejpKQE3333najzNikpCbNnz5bNEGjUqBFGjhyJZcuWYePGjY6KETupqakOa6O4uDjs3r0bI0eOxM6dO7Fjxw7s2LFDct1RUVGiz7p06YIlS5ZgzJgxKCkpwUcffYSPPvrIMV2j0WDOnDnYvXs3jh49qmRXeMQHH3yAzz77DH/99Rf++usv0fRmzZph7dq10GjE3a61a9fGli1bMGTIEKSnp+P7778XWBzZeeCBB6gVHM7UqlULX375JUaOHIk33nhDNF2lUuGTTz6RtJMaP348NmzYgNWrV+PUqVN45JFHBNNbt26NFStWuFX940zt2rUxd+5cjB8/HiUlJfj444/x8ccfC+Z5+OGH8dRTT8laO/3nP/9B165dsW/fPvzyyy/45ZdfBNPdcfKYOXMmCgsLMWfOHFy4cAETJkwQzRMdHY1ly5ahbdu2itfLCCwBe84/d+4c2rdvjw8//BBpaWngeV7ygOvatStWrlyJBQsWUEvIGAxG5YBWoVGsYDSXZCh4JajQkLOcUmIBpSLmkQsZt00nOgGdlie3R63QIKxWdBLeoErxqeUUEfQrJ2gEvkKj7LvpaJ0hSo6xYKPs9yQjGCBvLTRB3V3I85S8TtgxULKE7DgqNPwoaMhbTtE7WskOV/J+TVbH+d5yilVoMMTQqkrtnd/ksUwTxZxRUqFBbk5kOeWiOsoO2TYfny4AgqRCg7gUGRUKN2Rb7c8azHKKUR749ddfMW/ePIwaNQpt27ZFjRo1oNFoEBERgZYtW2LixIk4fPgw3n77beryISEhWLlyJdasWYMHHngACQkJ0Ol0iI2NRZcuXfDRRx/hzJkzHne69u/fHykpKXjssceQkJAArVaLatWqoXfv3pg3bx62bNmC8HB63o4zP/30Ez755BN07twZ0dHR1JwEOzVq1MCOHTuwdu1aPProo44AdPu2u3fvjpdffhnbt2/HggULqOt45JFHcPjwYTz++OOOfWKvhNm1axeeeuopj/aHO+h0Oqxfvx5z5sxB165dERMTg7CwMLRu3Rr/93//h0OHDiEhIUFy+Xbt2uHMmTP46KOP0KVLF8TExECn0yEhIQEPPPAA1qxZgxUrVggySqQYPHgwUlJSMHbsWNSrVw86nQ7x8fF48MEHsWvXLklrLMAmePz+++/45ptv0KlTJ4SHhyM8PBx33XUXPvjgA+zfvx81atTwaB/ZGTt2LHbu3Inhw4ejWrVq0Gq1qFmzJgYMGIClS5fit99+k8wIcW7nxo0b8fbbb6NNmzaIiIjweGCaSqXCN998gx07duDRRx9F3bp1odfrERUVhbZt2+LNN9/EuXPn0K+ffP4oo2wJSIVGSUkJBg8ejAsXLiA8PByTJ0/G3XffjSFDhlDnT0xMxD333IN//vkHa9asQc+ePQPRTAaDEWTQbk/FtCGYCqkMFRreW065W6EhRGg5RQoaris0vMnP4Hle1GnmneWUss5IQGxHRVrN+Bo1Reyj6rTNmQAA/HZJREFU7V9/Uh7FCxredniy/pOKAdmv5pMKDVLQ4KUspxRkaHgR9uJNhQbZ0WofF0CODyDn87flFM0uiNYBXTGuUgyl0ESKUssp4ec0UUww3QPLKbJCQ2mGBnmK+icUXEhZ3MNJYdbK2/Yzef1whX12UYWGzHMag+FvxowZgzFjxog+r1mzJp566imvO9jvu+8+3HfffW4vl5SU5HLkesuWLWUDmRMTE12uQ6vV4pVXXsErr7yiuG2DBw/G4MGDFc9P0qJFCyxZskRy+qJFiySzQXyFWq3GxIkTRTkZSomIiMDrr7+O119/3eu2NG/eXFIAcoVarcakSZMwadIkyXnkjgGp49+Z7t27Y9WqVZLTlRyrkZGRmDFjBmbMmCE737Zt22Sn2+nVqxd69eqlaF5nlLTVjjcZsAx5AiJozJ07F+fPn0d4eDh27typSD0eOHAgtmzZgr179/q/gQwGIyihdViUMEFDFu8tp7zL0OAEFRpCaKsiw3B1Ks8rNIrNvOiY8c5yiqjQkOiMBMQ2B5WjQoMWCl4GDfGS8thmhu8hxVufhIJzpB2KlOWU6woN0mPfHSJd+PjLZfKIQsHtGRpkKDixCn8LGrR7E+2ZwQsdiFEOoR1lDsspCfs0KZQU9VqJgQQFRuG/wxVnaIg7+i1Wnjp4wVNEFRpBYDkF2HI0XAka5FSHoOHmIBwGg8FgMBgVh4D0iKxcuRIcx+GFF15QXApnD/A5d+6cH1vGYDCCGdqLiZIKDan3mcpgOeX7Cg35fUZWBQgqNESWU0oqNDzvtcuhdJh5I2iQ/vfuWE5VjgyNikHZ70lGMEAO7PVFPyJ5HZC2nFKQoeFFg0I1nKxAI7dqqQoN8lZMdsjGEEPOaddnb6CJF3TLqYpypWIowUo5BuyHJhlw76rzW0mFhvMqrDyPIuLEUFqhQbNY9X2VBjkAJfDQvifNXsvVNy+t0GCh4AwGg8FgVFYC8h5/+vRpAHDLf6xKlSoAgJycHH80icFglANYhYb7eJ2hwZGjBN2s0ODofwPKQsF1as8LB0m7qRA1B70Xw6y1RIaGnOWUKBTc7xUaZd9JRw8FL/t2uYvXllO+aQajjCEzNHxxjokrNOjXECUVGt5kaHAcJ2s7RY5cd4bsj5XO0BDOJ6rQ8HWGBlXQEH9W/q5IDG+gPSI6LKdEx7L8uhRVaDhtr8gkHrahNEODdnr6egxOcFRoiD8zKsjGI09k+7MqCwVnMBgMBqPyEhDLqYKCAgA2fzilGAwGADYvPgaDUTmh+RuXsFBwWeQEDSUo7YCzI6rQkAkFp0F6x3tToZFHjAD2pjoDoFVoKM/QUFeGCo0KEgrufZuZpFER8IfllKhCwxNBw56h4WWDIrQccgz0afKWU2QouO3/5Ohxcr4o4vpbaOI98sqXgja6nvbMwCynKhe0oga7kCGuQJVfl6JQcKe/ac+Y4UorNCjnt79zNMomFJxuOUXiyjnKvruY5RSDwXCXs2fPwmg0ur1cfHw84uPj/dAiBoPhKQERNKpUqYIbN27g0qVLaN++vaJlTp48CQCoUaOGP5vGYDCCGNroORYKLk+20TvLKVGFhovOWnGFhkyGBmV5o8V/llPRCkdGSkFmaPDgYbFaqWKFyHLKz4JDMNiolEfxgoZUhyfP80GxnxmBQRQK7oNTWBQK7onllD1Dw8v2ROlUAOjCiazllESQMnl/JucjLacAIM9oRVyIF2EgTtA6o1mFBoNWVeqwnCIzNHxsOVVAPGNqVfTKCxpUKyYllQtuEAwVGmqVzf7O+asZFexnyQwNZjnFYDDcpF+/frh8+bLby7333nuYNm2a7xvEYDA8JiBDPO0ixo4dOxQvs2TJEnAch27duvmrWQwGI8ixUF5yvBM0Kv6LjrcVGqSgQfsNnCH7AwQVGsS6FGVoqD3v7CItTbyt0CAFDUB6hHWgQ8GDAVpfSHns/5dqsp8HxzKCjLK1nJLP0NCqxNdmd4mQs5xyI0PDEQouspwSzheh40RCiS9zNGidzfQMDZ9tklEOoGkA9nNHVKHh4nA0ShdOOXAWUMgKjXCtSrEoTootgO8tp8hdU1anBllt5olwUypoMMspBoMRWJKSksDzPHieR1JSUpm2Zdu2beB5Htu2bSvTdjAYZUVAelxGjBgBnucxb948XLlyxeX8X375pUP8eOSRR/zdPAaDEaTQtIsSV6bHkC5VLzTxLjMhyjtyFRpK3qvJDjiXFRpkyKRchQZlVeJQcM8LB/MMwg14bTlFESWkgsEDHQpOg5ZRwnCN1HnBBI3KRUAspyQqNMhKNWdUUHkVCG4nUqZiTU4sITtaHaHgZIUG0UYVx92pCikl14eCBq0TlFVoMGgihf1cFmVo+KBCw3lzZBVwhFb50afiOMq55tubkEjQKKOTg9RWlQg34goNe4YGs5xiMBjucenSJYcg4c5/rDqDwQg+AtLj8vjjj+Ouu+5CSUkJkpKSsGHDBkHHC8dx4HkeycnJePTRR/Hyyy+D4zj06tULAwcODEQTGQxGEEJ7mSz2ogSfh3eh4uUBn1douBjtRgpEch1j1AoNi+8yNMSWU76v0JASNMQVGhW/G432W5dHGyqpvmKlXa+s/6RiQGoNvsheUFqhYXBRoeFtfgYARMl4Vsmtnqy8kKzQoFy6RcHgvhQ0qKHghMCO4LDnYwQO2iAM+yFMHueuKjSUdLQLLKeIgzLCTZ848lzzteUUea8qq/u1Tys0yGusTNYZg8FgMBiMikVAMjRUKhXWrFmDnj174tKlSxgyZAjCwsIcLxlJSUnIz893BIHzPI+GDRti2bJlgWgeg8EIUmijLZUIErSOczsFJh5hWm9aFbwYLWYUmt0POXOG7Ih3VdFC7mvnpcWWU2LEFRpehIL73HKKkpUh0SFJfq7hfOMTH8zQOgrLY9+hVJMtVt43w/QZ5QJ/WE6JMjSkLKdkKzTU0PngciJrOSVzqSRHjZsdFRryllOAOMeItAX0BmqFRhBkBDDKFlp/tv1eRVYR+SJDw3kWMkMj3I0KDcBWueBcY6ugINktgqVCQyTcUPazqz3PMjQYDAaDwWAEzBOjbt26OHLkCB555BGoVCoUFhY6yrdu3bqFkpISR9XGyJEjceDAAcTHxweqeQwGIwihvWx6k6EBiD2OKxLeBoIDgErhiGI7chUaYsspP2dokBUa3lpOeVGhURaWU4GmovQVSo3grrhXCgYNf1hOqUUdqFIZGjKCBqemigXu4rnllFSFBjEfZRV+rdCgCBomi7TAzqgcyA32J89pV4KBEssn58sGmdMmJyLS0BIN9LnlFB8c54dHFRpEY9USllMV3VaWwWAwGAxGKQGp0LATFxeHn3/+GR9++CHWrVuHlJQUZGRkwGKxoEqVKmjXrh3uu+8+NGnSJJDNYjAYQYqnFRpykB7HFQlv7aYADyo0ZAUN16/LZBiuNxka5Ohf0r/dXWgVGkozNCqD5RTt9y2PllNSsAyNygX5e/tCkyQrtaQyNAwWGcspqHxjOeVhKDgpppgkKjRI4QMQ2/75PUOD/A0rzuWIoRC5qguxwGh7hpEStZWMf3G2uPK2QsPvllPEv4NH0BDP40qXkA4FZzduBoPBYDAqCwEVNOzUq1cPkyZNKotNMxiMcgSt3L9EwQue3BzkCLqKhCtBQ0lns8rN8n1RKLjT8oospyy+sZwyWnhR9U6Mt5ZTFNsoqQ5JkeWUF9ZZ5YWK7k1vVahosO6TioFfLKfIUHAPKzR8IWjI+fnLrZ6svLAHKZMDDqiWU2SFhi8tpyjnJy1Dg1G5kLts06qI5JwF3bWcElVouJ2hIfy3rx9XRRkaQRIKTjuXSUSh4PbP3cx9YzAYDAaDUXEIiKBx5coVAECtWrWgVmgnYrVace3aNQA2uyoGg1H5oGkX3lpOVeQKDV9YTqmJDjjXFRrCf3ttOeWhEEAb+eu95RStQoP+skwGUZZFhUagj2zaN5TLrylvsG6RyoXYPs/7dZLXAanAWrJSTdAOqKErS8sporfXLmSQdjhk1gbgP8spnudhoGhApMhS0UVXhhhZyynKeWThAamnDnctp8gKjQgvKzR8bjlF/Dt4KjS8CAUXVWiwOzeDwWAwGJWFgAgaiYmJUKlUOHbsGFq0aKFomdTUVDRu3BgqlQpms/SLHoPBqLhQKzSUhILLzFKRMzR8YTklrtCQ399eV2iIMjQ8uy2RI381KiCMNhzTDdScuIfOzEtYTolCwSt+hgaNiuT2wCynKhcW4tbgiwwNkeWURGebQS4UnPNNKHikh5ZTogoNqQyNAFpOSd3GLVbfi1KM8oXcIAzacW628pIVUEoeF523VkA8h4S7W6Hh9wwN4b/LrEKD/J6KBA3hMpxEhgaznGIwGAwGo/IQsB4X2shcfy7HYDDKP7QMDVahIU22wReh4L7M0CDmpUga5MhkvY8qNKJ1Kq9H53IcBy3RHskKDVGgcMUXNGijuitUhUbF+SoMBfjDckpUoSFpOSU9cIeDyieh4GEaTrKDXy1zuZIKBScHHND6bskKjTwj75PQXimLGrIDmOkZlQ93Lafk+tKVCApCyynvKjRIzdEkrXN6RLBUaIiyQiiXRVd7vrRCg1lOMRgMBoNRWQnaHhd7J5nKF6mMDAajXCKVoeFNh0iFrtAwusjQUPD2SnbEu9rX5HRO8DdRoUGznCIzNDyt0CAEDW8Dwe2QlRbSoeDCz2l2VRUNWiZLRRqDwEZ6Vi78YTklytCQtJySq9DwTSg4x3GSVRpyllNSvv5iQcN1hgYPIN/oA0FDoheaHO/AHKcqH25bTsmIFrRBNSTO1w3y+TLCzecQcUe/ny2nyugEISvOlFhOkU21XxI5jllOMRgMBoNRWQnaHpfr168DACIjI8u4JQwGo6yQKsYweOC3a6ciV2j4xHLKzYBFckS+oEKDI+cV47MMDWKIn7f5GXbICg2pDkmy87syWE7R+kJYhQajvELeb+SqFpRCWk5JiWQGi7y1qi8yNAAgUmLEuKzllESFhthySrwsTVj2he2UpKBBWk55vSVGeUNOoKBaTnlZoWGfw2jhRedEuJsVGuS55nvLqeCoYCKvZ7Tz2dV4AukKDXbjZjAYDAajshDQZ30lI0FMJhP+/fdffPDBBwCApk2b+rtZDAYjSKFVaACubafkphZW4AoNX1hOiSo0XHRQiys0pK/zdMsp/4SC+07QICo0FGZokOHqgSDQYoLcb10RYIJG5cJK/OA+sZwixQDK9YPnedkKDUA8otlTpCo05AUN4b/dqdDQqDiRiJJD85dxE6PE7hKHgnu9KUY5Q9ZySiIUnAbP8worNGz/p1X/RriZoUGe5363nAqSDA0llShkU1VSGRoSg04YDAaDwWBUPPwSCq5Wi9+8eJ5Hq1at3FoPx3EYMWKEr5rFYDDKGVIvk66CwWVDwX1gdxGs+KVCw8XLodimxTlDw/XbspEYmaxT+SYUnAyj9RSNKENDoeVUZajQoHzGKjQY5RWyY9MnllNkKDjleioVFO6MLyynAGlBQ85ySnmFBn0dUXoV8p16Zn1SoaE0Q4MpGpUOWcspWoaGxLGkRMwASp83CyjVv+5WaJCioN9DwX26duWIBA3qY5X8dy+t0CAtp9iNm8FgMBiMyoJfBA2pIG93A75HjhyJF1980QctYjAY5Q0rL901WuKV5VTFHb3lMkNDwesrOSrZVYWGXMikKBScsipRhQZFEFeC3yo0OGUe+JUxFJzWWeiLwN9ggXWMVC7EoeDer1McCi4+plzZTQFlbDlFTLPvJ7KzlWY5BdjE5TT4VtCQsp0kO6Er/lWYQSJ33aadRlLjY5SKCfZDroAYVBGm4WSFQhp+FzSIf5dZhYao6sv97+kQNNy0SWUwGAwGg1Fx8Iug8d577wn+PX36dHAch2eeeQbx8fGSy3Ech5CQENSsWRPdu3dHw4YN/dE8BsMnWKw8dqeX4FqBfE14qIZDp+p61I70y+lWYZEbHbfuYhGqhEp3fN8ulv5NMoptK84qsWB3ugH5RitO3DYiPkyN+LDSdVYJUaFnrRCcuG1EtsGKnrVC3LYP8DUnsjLwxYlDyDcZUCdCgzyjFbeKLbDyts6ks7m3ZZc/csuAX/4tcPw7TMOhS009aoaXHpsmCyFo8Dx+Pp0PjuMQo1ehR0KIQCwQV2iUTiNfNA9mXsNvFw9jZP02sPA8fr5wCOuunRbM447lVM6d3zDXaMW1fGGnoK8EDTLU94dzB7D9xkXRfDeL82WXY5Q//rpUjBi9weV8t4qtgvPKjoYDWlXVoUUVnWia2cpjx7USAMDdtUMkR7crxcrz2HfdgMt5Zqg4oHmcDndVE2+3MlFstmLHtRJklijr4MoqEd43fGE5RV4HLLwVb6SsF3xWYjG5XI/fKzRkLldkJ2tWiQUlZl6UR0WznALE1+L9NwzIc+r8DVFz6FxD/hnJ+X4NABlF9Hv85TzhfYAVaFQ+5PrGOY6DmhOKl+suFjmOUY0KuKuqDs3idKIKJCkO3bQdlzeJYzLCzeoMQHye70wzYHwr3u1Ko5OZRpy8bRSJNaSYGCwVGkduGQX/LjFbkXxT+BmJVIXG1usXRNdYKXpVr49BdZormpfB8CeXLl1C/fr1AQALFy7EmDFjyrZBDCrTpk3D9OnTAbg/UJvhHtu2bcM999wDANi6dSuSkpLKtD1jxozB4sWLUa9ePVy6dKlM28IQEjBBAwAmT56MFi1a+GOTDEbAWXyqAH9fVpZZ8MeFInzcKw7Vw3xkhF0JkMrPAIBd6a47GeU4eNOAH07kCzq6LuSKR8kuOFnaSbk+tRhf9I4TeaIHirTCXHT68yuUWEs8XsepTBP4EmEVx5qLRfj07jjEhdiOzZ9Oiztm/7hQ5Hih3nS5GJ/1jnOMPJQNBae8Lj+y/WecyL6B68X5WHDugGi6UkHDZOHx7t5s3Cyi9zr4ynKKDAX//dIxRctVhgoNFeX3rUiP99uvKT/X/rhAr45acb4Ir3SMRsfqesHnXx7KdXTYHMww4JWOMR63EwCWnS3EqvPObSjCs22j0KtWiFfrLc98kpyLU1muxQIpfKFJ0q4DM4//4/Z6fJWhESGZoaHccspgAT47mCOaT0rvjyEEjbPZJpzNFv4uf1wowid305+RjBYe7+zJxu1i1z3MN4hOZaZnVD5cDfbXqACL02GyjbjOrzxXhDc6R6NWhLJX5FNZJup1JtyDATDkIgYLj5Xni/Bg43DF60i+YcCnB3MVzRssoeAAsDe9BN0SbPerzw/liaaTS6glMjRSMq8iJfOqonaYrL2ZoMFgMBgMhhMnTpzA119/jc2bNyM9PR0RERFo1qwZHn30UYwfPx4aTXAN0g5Ij8vChQuxYMEC1K5dOxCbYzACwu505Z1dxWYeRzK864SvbJCjP33JopP5ikft2rlZZMH+G2X3G66+fMorMQMQVk/YKTTxOHZndFyRyYoz2eKRr1Ynu5D0QotgFCxpweQsaISo6Te8ny4ewi8XD1GnhWuUjSq/mGuWFDMAICbEN7c3pe0hCVVrfbJ9d+hctW5At1clJEz0WYSH+6sis++68LzNNQhHn6bcNCLHSxueHRTxZXead9eL8kxmscUrMQPwjc1TmMY314FQtW+uZzESgobcdw0hPacAHLst3rd6ynyAWNCgUWLhcUDi/vpvlkmRmEHDV5UtjPJDoxj5F21XxwQPYN91g+ygGiVIVUPJQTvX9rjxrgG4924iVVXlb0Ip1Sv/XLW1u9BkxdFb4uoM0tLOfs1Sc8HVscJgVES2bdsGjuPAcRy2bdtW1s1hMHzCtGnTHMc1w8b8+fPRoUMHzJs3DxcvXkRJSQlu376NXbt2YeLEiejRowdu35Z3BAk0ARE0Ro8ejdGjRyMqKioQm2Mw/A7Pi+0WXCHl+cygk5rn2lfcU267KWbYuUip4ggUN4rFlRPuUl2bSP3cfmwWmnhoVXrRdCMhpBQ7+RhkG4VVStHa0hHhPavXR4RGvL4rBTkoofjGh6q1SKqpzGqw2CL9G9YIU6N2hG+GNA+q7f7ovTh9GLpU87+48EXnoY6/9WoN3m7T1+/bdKZeRBx6xCc6/v2fmo0QHxoZ0Db4invrhvpt3QZCI6RlCJD+6+5gtPBUgTbPi3WWd7I8vMbbCdNwaBrrvRhRNzwWLWKqe7x8y/Ae0KuBFlV8I4y0qqqFnrg0RutVqB8t3SlYP8p1h2G1UBVqSFSgto/XK8ojyZSwiswskbf1lKNtJbddq4zc3yhc0Pk9pkWEYHr7ePEzCUmxmVccCi5Fx+ruH3ttqoqXcffdoUgqFIQgXMOhiQ+ucZ7QPE78Pa/csQ01Snzfu4h907yK7VpWU9fA9w1kMBgMBsOJRYsWgef5Cm03tX79ejzzzDMwGo2oXr06vvrqK+zfvx8bNmzAAw88AAA4cOAA7r//flgsnj+b+5qADWu4cuUKAKB69erQ6+UfJktKSpCRkQEAqFs3sCNOGQwlWHixtUrH6jqEOL21n8w0Idup44rJGe5xIUc8ArRXrRC3PCs5DqgXqcWtYovAHszTgXdl6ZeZaxSKCuGqaFTR1hLNVyNMjd61qmDWiW2iaTHaeLSI0yKtwIxcIy2cloeOE3fsWlEMoLRTwPlFP9NQKJjXedR+zbAo7Bg0CW8eXI+/0s44PqfFvT/RsAOebd4D9SLiRNNokD+FXg10qq5HXIga/RND3Q7jlOL9dv1RMzQSB25fVRR4XS0kHE817YIonf+tfl5o0QsxulCcyrmJxxq2R82wwA8aWHfvOHx5cidUHIcXW/YK+PZ9xZiWEYgLUWHpWdvx3CNBL2vHcTrLhMwSK5rFalE1VDg25Eq+xdE5A4iPVdpx5M1AWak8gWKFHVsVkVxCzAlRc4o7GCN1KvynTqikPZM7cByHTf0nYPbp3bhSkONy/voRVRClTsTfaSdQVReLvjU64j91Q2Uzo9whNkSNad1ise1qCQpNVsToVehbL1R21LpWgRoxvVus5Ai3ulEavN0lBrvTS1DidExeyTfjSn7psZstUaVECoBxISq0iLN1xHIch+uFZtQM1wjuzxwH1I/Son+i/4RKRnBSNVSND3rEYneaAbUj1bibsN0b3yoStSLUuOI0aIY8Fq08YKZcp++tG4oisxUpN40I03BoSREa1SoOLeK06F3b/WeAxGgthjUME1gYuvu8aiIEgYbRGtQMF14/fHmN84QYvQovtIvC/w6XWkvlGKzIM1ip70pTO0QjMVq4r6uGqvFe11isOt8M1iv3I91wHhbe9ht2q6lXlEvVvor4GZrBYDAYjMqGyWTCc889B6vViqioKOzevVuQZz1gwABMnjwZc+bMwa5du/Djjz8GTdZPQASNjRs3YuDAgYiIiMClS5dcChpFRUVo2bIliouLsXnz5jIPgWEwSGgjiMa2jERVp06HmQdykE0pm2Yo40KuUNAY1jAMo5pFSMwtz9+X6P727lKW3YO5JmElRE19A7SPvFc0X+caerzcIZoqaADA/Y3DsepcIXKd7Fjs38tg4aHiVNByepj4UvsPjaZE8OWdrRiyDMJ9W0Uv9HpuV6UWfrx7FKr9KsxWckbNqbCo13/dKvkkX/KjdSo81y5a8fJKUatUeLZFT5+v1xdwHIcxjTuVaRuidaF4r12/Mm2DL9CoODzQOBwPuOFVLsWKc4UCQYO8ctC6bb0RNG5JjGxXOlK3IkJ2gidEqP1yfVBCQlg0PuwwyK1lXmnb1E+tARpEa9Eg2r2R2SFqDiUSI6ejdJxLwaVFFR1aVBEKShtSi7DoVGnlYbZEVQ0pTrWqosPktqzimyFNYpQWiVH0Y1yn5jCsofA6v/JcIa7klw7OsPDiCg2dChjf2v8ViK2q6LwSNIzEAn3qhqKPHysQPaVrTT3mHIUgfP1KvhkJlOpaqQq1hjFaPH1XFJJvNkYtfWPH53O7VUFsCMssZDAYDAZDCatWrcLFixcBAG+88YZAzLAza9Ys/Prrr8jOzsasWbOCRtAIyNCM5cuXg+d5DB8+HLGxsS7nj4uLw4MPPgir1YqlS5cGoIUMhnuYKO/dvvDbZtjgeR4Xc4SWRA1lLDFcESrh7V2eyCEqNLQcXRguoh2czsupbKNXnbEPRLRbG+hVwpdf0nLKuZ80kxA04vTiXIUYF9UKcfpQt/0ryZd8X1VkMBj+xktrdhFSFRqurgUVGTKTREmOA8MzQklze4XEETlH2RLWUuRvGc1+S4aPISNqLFaIMjSUjPj3BeRmlFSGOkNe9oP13UTFcagTKXyuv5zvvq0rrbqMWfwygoHdu3dj/PjxaNq0KaKioqDT6VC7dm0MGTIE33zzDXJychSva8yYMeA4DomJibLzLVq0yJEJIGWN888//+CRRx5B/fr1ERoairCwMNSrVw9du3bF1KlT8c8//zjmvXTpEjiOwz333OP47J577nFsw/7fokWLqNvaunUrRo8ejQYNGiAsLAxRUVFo3bo1XnnlFaSnp0t+DzLbIDc3FzNmzEC7du0QExMjuc3Vq1fjoYceQt26dRESEoKYmBh07NgR06dPR3Z2tuy+A4Br165h8uTJaNCgAUJCQpCQkIChQ4di8+bNLpf1FPs+dv5Oy5cvR9++fREfH4/Q0FA0a9YMb7zxhqJjxmg0Ys6cObjnnntQrVo16HQ61KhRA4MGDcJPP/0Eq1X63YA8ztLS0vDSSy+hSZMmCAsLQ7Vq1TB48GD89ddfbn0fKRITE22D8zzsGN+3bx/efvttJCUloUaNGtDpdIiKikKLFi0wceJEnDp1irqc/TyZPn264zPymCbPIaXn4PHjxzFhwgQ0btwYYWFhiIyMRMuWLTFlyhRZuyraftu0aRPuu+8+1KhRA3q9HvXr18fEiRNx7do1pbtIMatXr3b8LfV7hIWFYeTIkQCAU6dO4ezZsz5vhycEpEJj79694DgO/fopH8XZv39/LFmyBHv37vVjyxgMzzBReqS0xGAgqU5jhmtuFFlQSIwubhjjudevOx0uHKQrMXzdEekOuURWhZSg4SrbRS4E0l55pOfCUICc0s/5Ijj771icdgQpaFShCBoalRrRuhCRbZadWJ14GVeQL/lB+s7OqISQhyJ5RtKuI95cW6QEDeOdTrlAdcQFE2SFRnQZWatUBjwdMECOoM42WMHzvEjcFv2WTNBg+Bg1cczRKjQ81O3cRixouLc8aTlFvpsEE3UjNYJsuit5ZnSr6TrjxBkt5XepxPFRjCCguLgY48aNw6+//iqalpaWhrS0NKxbtw63bt3CtGnTAtq2KVOm4MsvvxR9fuXKFVy5cgX79+/HokWLvA79LSkpwdixY/Hbb7+Jpp04cQInTpzA3Llz8euvv+K+++6TXde5c+fQr18/2c7g7OxsjBgxQiDGAIDBYMDBgwdx8OBBzJkzB3/88Qe6du1KXcfOnTsxZMgQ5OWVWuFdv34df/75J/7888+A/Vbjxo3DggULBJ+dOXMGM2fOxJIlS7BlyxY0a9aMuuylS5cwcOBA/Pvvv4LPb968iQ0bNmDDhg347rvv8McffyAuTt7iOSUlBYMHD3bEAAC2Y3v9+vVYv349XnrpJXz22WcefkvvWbRoEcaOHSv63GQy4fTp0zh9+jTmz5+Pr776CpMmTQpImz766CO8/fbbItHo1KlTOHXqFObOnYt58+bhiSeecLmuN954AzNnzhR8dunSJXz77bdYsWIFtm/fjubN3c/5lGLXrl0AgKZNm6JGjRqS8/Xu3RvfffcdAJto26RJE5+1wVMCImjYL0DufOFGjRoBAFJTU/3RJAbDK2iWU3IdxQDL0HAHsjojWq9ClRDP3yb1bnS4ROo45FHyJcqaPBNRoUEJ7waAIhdJlhqVuMPVjn1Um04lrKgwWksE9XzOmxBbTtHFiVhdqKSgQavqcIW4QsPtVTAYfsFVsRBtxK03gsbNIulzvtjMI1JX+U4O0qaIdYJ7h9wxHeapoEH8JiarTZCP0MkLGqzahuFryEH+FkqGRtlVaLi3PDngKlgrNABbvo4zVyQqNOS+gYrjoFUJK1OkgsUZDH9jtVoxbNgwbNq0CQDQuHFjTJo0CR07dkRYWBiuX7+OPXv2YNmyZQFv29q1ax1ixl133YWJEyeiefPmiI6ORk5ODk6ePInNmzfjwIEDjmVq1aqF48ePIzk5GU8++SQAYMGCBejUSWh3W7t2bcffPM9jxIgRWLduHQDgvvvuw8iRI9GgQQOoVCocOHAAn332Ga5cuYIRI0Zg9+7d6Nixo2S7R4wYgbS0NDz33HMYOnQoYmNjce7cOdSrVw+ATbTo27cvDh06BLVajVGjRmHQoEGoX78+TCYTduzYgc8//xwZGRkYNGgQDh8+7FjWzpUrVxxihkqlwoQJEzBixAhER0fj2LFjmDlzJqZNmybbTl8wZ84cJCcno3PnzpgyZQoaN26MjIwMLFq0CMuWLUN6ejr69++PEydOIDJSaIFYUFCAPn36OGyDhg8fjieffBIJCQlITU3F7NmzsX37duzatQv33XcfduzYAbWarngXFRXhoYceQm5uLl5//XUMGjQIer0e+/fvx0cffYTr16/j888/R926dfHCCy/4dZ9IYTabERsbi2HDhuHuu+9G48aNER4ejvT0dBw6dAhfffUVbt++jWeffRbNmjXDf/7zH8eyw4cPR8eOHTFnzhzMnTsXgK2ygqRWLeU5S3PmzMGbb74JAKhWrRpee+019OjRAxaLBZs3b8asWbNQWFiIMWPGoGrVqhg0SNqKdv78+dizZw969+6Np59+Gk2aNEFOTg6WLFmCJUuW4NatW3jyySd9NvC/oKAAV69eBQBJscyO8/TTp0/7ZPveEhBBw2y2PaBInTQ07POWlNA7wIKBpKQkbN++3a1ltm7d6nYmyLRp0wQlUb5eP8N9SI9aFRe4l53KAJmf0TBa47YlkTOhCkJN7YRrVcgz0kc8l+UrEilo6Di6jZMnFRrOGRoAoFcJBYYSq1C0cH7RJ0PBpcSJOH0YLhXQy31jde77OzNBg1FeofW1eCNoSGVoALYcjUhlWdgVCjaqP3B4WqFBEyayDFZRUDH7LRn+RmQ5xdtsp5wJlHMpaZ/pbrEBWZ2gdeP5N9DUIyynruabRftdCTo1JxBymKDhHlYrj8yiypP5WCVMB5WfXhpmz57tEDPuv/9+/Prrr6Ls2MGDB2PGjBm4fv26X9oghV1EqVevHnbv3o2ICGEuZVJSEiZPnoysrCzHZ1qtFq1atRJUbNSvXx+tWrWS3M7333+PdevWQavVYs2aNRgwYIBgeteuXfH444+jV69eOHnyJF588UXH6HAaJ06cwIYNGwROLx06dHD8/f777+PQoUOIiYnB5s2bBdMAoGfPnnj00UfRrVs3XL9+HW+++SZ+/vlnwTwvv/yyozLjp59+wiOPPOKY1rFjRzz00EPo1asXUlJSJNvpC5KTkzFo0CD88ccf0GhKr48DBw5Eq1at8O677+LKlSuYMWMGPvnkE8Gy06dPd4gZb7/9NmbMmOGY1qFDBzz44IN4/PHH8fPPP2PPnj2YN28eJk6cSG3HrVu3kJOTg82bN+Puu+92fN65c2c8+OCD6NKlC65du4a33noLo0aNQrVq1Xy5GxQxcOBAjBo1CmFhwn6Hdu3aYfDgwXj++edx991349ixY3jvvfcEgkZMTAxiYmIQHx/v+EzumHbFrVu38MorrwAAEhISsG/fPtSpU8cxvUePHhg6dCh69eqFwsJCTJgwAampqdBq6e4je/bswVNPPYXvvvtO0P/Vp08f6HQ6fP/999i3bx8OHz6Mdu3aedxuO84WVs7iJA3n72UXQcqagAgaVatWxfXr13Hx4kW0b99e0TL2E9JVOVR5QqVSoXHjxq5nZAQ9JqL/iNZJHLyvEMHPBaJCw90AUxJ3OlwitNLzlqVtmKhCQ8ZyipdpqFbFie3Q7vzfcOe41nFCgaHEKrS7sldolJhNKDILxScyFNyOXBWGbyo02BnHCE7I05H0Zgfc90l3RspyCrDnaASx54ifYJ3ggcNTQUOr5hCp45DvVBGZXWJBXadOTrOVRz4h0scw+zCGjxFZTln58puhQVpOBfHpUpcQNExW4LrM/UwKnYpDodOQI3LQGUOezCIj4t/bWNbNCBgZ0/uhWoR71mZKsFqtmDVrFgBbp+CSJUtEYoYdlUrl1uhvX3Djxg0AQPv27UVihjPe9L3xPI+PP/4YAPD888+LxAw7sbGxmDVrFgYNGoTdu3fj3Llzkn1kY8aMkbStLygowDfffAMAmDFjhkjMsFOvXj288847mDRpEpYvX4558+YhPNz2vnrjxg2sWrUKADBkyBCBmGEnMjIS8+bNQ5cuXWS+vffo9XrMnz9fIGbYeeutt7Bs2TKcOHECP/zwA/7v//4POp1txJLBYMD3338PAGjZsiXVHovjOMyZMwd//fUXMjMzMXv2bElBAwCefvppgZhhJyEhAZ999hkefvhhFBYWYvHixZg6daqH39hzXJ0/0dHReP/99zF8+HDs2rULmZmZqFKlil/asnDhQhQV2QZ/fv7554JOfzvt2rXDG2+8gbfffhtpaWmOvBcaNWvWxNdff00dzDt16lTHb71z506fCBr5+fmOv+WuDQAc5w1gO/+CgYA85rRt2xYA3Ar4tnvueaOW+ZuFCxfi+PHjsv85f+c+ffp4ffNytT2yBJDhH8iHZdr7NcvQ8AyLlUdqnrCTvFGMd9priFuCRnC+/eWRGRoSllM8gBKZ0WlUH+g7sxslQsFLLKSgYZsvyyis3ACkLafiZHIyYvUeVGgQ9TKsQoMRrJBnI80VztMBpQUmK4rM0gvLTavIsAyNwOFpKDgAxOqJHI0S4e+WRzHDZ+IUw9fQLaeIecpLhgb5fhLEFRpRepXIeu5KnvfB4OSgMwYjEBw5csQx0vmpp55y2TEYaGrWrAkA2LFjBy5cuOCXbZw6dcqx7hEjRsjO69xZLmed8+ijj0pO2759O3Jzc93anslkwsGDBx2fb926FRaL7aJBy2Sw07lzZ7Rs2VJ2G97Sr18/JCQkUKepVCqMHj0aAJCVlYVDhw45ph08eNARGD5mzBhJV5yoqChBqLNclZDcvrj//vsRExMDAH4NTHeHwsJCXLp0CSdPnnTktDhXQBw9etRv27bvg5iYGDzwwAOS840fP160DI0RI0ZIiqFNmzZ1XFvsBQDe4uyIZBfJpHBuV3FxscycgSMgFRrDhg3D+vXrsXLlSixfvlxSjbKzbNkyrFy5EhzHYfjw4YFookfUr1/f5Tw//vij428lATCuCGaBpzJBjoAK5heG8kZagcVRKWCnoZcVGm4JGjJ+82U16MtgMcNgFb7kSVVoAPK2U1oVpyBDQygwFJEVGndWn1kiFDQ4cIiRsI/yf4WG26tgMPyCq0ORXqHh2bbkqjMAW4ZGZcNk4VFIfG+Wu+A/wmSqGl0RF6LCldKBYcgmhChSmOKASpkJw/Av4lBw8XVaE6AqUPJK5Y7YzfO8IEsCcJ3vV9bUidQg21Bqd0TL0XC163VE3x2znGKUBYcPH3b83atXrzJsCZ0nnngCS5YsQWZmJlq1aoVhw4ahf//+6NWrlyO71lucLZm6deumeDl79QiNu+66S9H27IKNu9tzzk5wNTC4c+fOOHnypOLtuIuS7ds5fvy4I+D8xIkTjs9dVZF06dLFkRtx4sQJ6n7T6XRo06aN5Dq0Wi3atWuHrVu3UrMnAsXt27fx+eefY8WKFTh37pysQ4W3Qfdy2Pd/+/btJW2kAKB69epITEzEpUuXBL8Ziasci9jYWBQUFAgqK7whJKTUxtxolLcfNBgMjr9DQ90fkOoPAvKGN3r0aCQmJoLneYwaNQpTp06lem5dvXoVL730Eh599FFwHIc6deoIlKzyhtVqdXj0RUREyCp2jPKFJy8M7PFaGWR+RrVQFaK87IwKcTNDI9jINYoVcDlBo8jMQ8PRv4ft6wn3hzhDQ3iDKjYTGRp3XvTJ/IwYXQjUKvp25aowfJKh4fYaGAz/4KrzhVah4S9Bo4i8WVUCyEBwgI3q9yeeWk4B4mBwskIjhxA0ovQqZi/I8DnkY4vNckr4mReFSO61hczQcOPeQLvcB+EjrYB6RDD4ZU8qNIh3MGY5xSgLnDtM3elcDxR9+vTB7NmzERoaipKSEixduhRPPvkkGjdujNq1a+OZZ57xehR7RkaGR8vZ7XpoxMbG+nV7zpkhzpkKNKpXr+7R9pTizvad2+3Od6hRowZ1OWfi4uJcZh/b2yK1Dn9z8OBBNGvWDB999BHOnj0rK2YA/q0msO8DV/seKN3/cvuNzAUhUd15aLFXFnmLc8C8KxupwsLSvp9gqUILSIWGTqfDypUrcffdd6OgoABffPEFvvjiC9StW9dxwb9+/TquXLkCwDbCJCIiAqtWrZIstykPbNmyBWlpaQBspUOuDk5G+YEc/aOlXPPZK7dn+Do/A7B5H2tV9Jc9Ejnxgy8jWSrXWCL6TKeih4IDtk5MjUoFMyVdUSOboXFH0CAyNIpEllO2/2cZhJ9L5WcA8pZTLEODUZERZWhQHrpJCzWluBQ0KmGFBjmqX80B4V5UETDk8UrQCBH2tmaVyFdosEobhj8gD2ErrUKjjDI0bO3hFT3jkHZTQPBXkNeNFL5A0QQNV9+A/I4GVqHhFlXCdMiYTs8oqIhUCZO3VKnITJ48GQ899BB++eUXbNq0Cbt370Zubi7S0tLw3XffYd68eXjzzTfxf//3fx6t37mD9c8//0RiYqKi5eQ6guU61p23d+jQIdnR8c5IBR/TMgsCiS+2Hyzr8CdGoxEjR45EZmYmtFotnnvuOQwbNgxNmjRBbGyso//44sWLaNiwIQC4FDx8QbDvNymcIxGcA8JpOBcl0LJCyoKACBqALUdj//79eOyxxxwleZcvXxaIGHY6dOiAH3/80WW5TbCzZMkSx9++sJtiBA/k6J9gL+kuT5AVGg29zM+wE6LhYDK6vpnJvfyV1StSDlGhoYIaak56vxSaeGg4NQDhiyEHsVc0AFGGBmk5VWI1wMJboOZsD5UWnl6hESdTheF7yymWocEon9CEVc8rNORV2iIZ+7mKCtkJHqVjo/r9iS8FjWzCb5KstmFZKAx/QF4fLDwvytAIXIWG+DMrr+wZh7TDBYL//aQuUaHhyR1LTzzYMssp91CpOL+EZFc2qlat6vj7+vXrPu3Hso/Itlrln/mcR09LER8fjxdffBEvvvgirFYrjhw5glWrVmH27NnIycnBBx98gE6dOmHYsGFut9M5dDkmJsbvVunO26tWrZqkUCGHcwXIzZs3ZTtpb9686fb63cHV+p2nO4e3O/998+ZNNGnSRHIdznZbUgHwmZmZsFgssmKSvS3kOlROJY++OF5p/PPPP478iDlz5kg6+gSqeiQuLg7Xr19XdHzY97/Uvi8LIiMjUadOHVy9ehX//vuv7LzO05s3b+7vpikioG8GzZs3x8GDB/H333/jueeeQ8+ePdG0aVM0bdoUPXv2xPPPP49NmzYhOTm53IsZBQUFWLVqFQCgXr16SEpK8sl6+/Xrh/j4eOh0OsTHxyMpKQkzZ85Edna21+u+du2a7H9ywUGVDWWhe3RbH4Y0JgsvGp3lbX6GnVCFo9Rk7anK6EfMISo05OymAFsnppryEqtR2UYPuMrQIC2nAMDolKNRWqEhLBGWrdCQES18YjkV3O/sjEoEeSiKQ8HFFxJP+18yilmGBomoE5yN6vcauctrmBc9vXEh8qHgonB39lsy/AB5CJdphoaEoKEEitte0AsatcI19IE2AuRnIL8jbT8wGP6mffv2jr937Njh03XbLWHswc9SnD171q31qlQqtG/fHjNmzMCWLVscny9btkwwn9KR5+3atXP8vXv3brfa4gm+2F7r1q0dfycnJ8vO62q6t7izfWexyPnv/fv3y67jwIED1OWcMRqNsvZjZrMZR44coa7D2b5Irn8yKysLmZmZsm2VwjnH5OGHH5aczzljhYavKirs++DQoUMwm6VtEzMyMnD58mXBMsFCz549AQBnzpyRzbTZvn274+8ePXr4vV1KKJM3g3vvvRf/+9//sGPHDpw6dQqnTp3Cjh078OWXX6JPnz5l0SSfs2LFCofq+Nhjj/nshNm0aRNu3boFk8mEW7duYfv27XjjjTfQoEED/PHHH16tu06dOrL/OQcRVXZMRB8SbdAgGxDqPpfzzaKOvQbRvqrQUHa5k6vQKKt3pFyTsEJDp5IXNArNVmqGhtSLrd1Kyz44VsdRBA3eWdCwV2gQgkaIjGjhYfWGFEzQYJRX6BkavrGcCiNGyxfRNlbBIXMXmE2Rf/FlhkaOwSo4F9hvyQgE5PODxSq+TpdVhgagXNCgWU4Fe4aGVs0hIULeq90VLBScEQy0adPGMbr/+++/d+lF7w7169cHAOTn5+PMmTPUeYxGI1asWOHxNtq3b++oViADlJ1Dg51DgWnrsFdJzJs3DyUlYstkX9K3b1+HpftXX33lka3QPffc46hEWLx4seR8ycnJskHOvmDjxo2SA4itVqujfbGxsQIBrUOHDoiJiQFg+w5SlRH5+fkOsapFixayWS9y+2LVqlUOsaJv376CabGxsY62yAkKv/32m8c2UM6igVSVh9Vqxfz582XXo/S4doV9H+Tk5GDlypWS8/3www+O70zut7Jm+PDhjr8XLVpEnaeoqEhw/MhVAgWSIH/MKb/42m6qdevWeOedd/Dnn3/i4MGD2LdvHxYvXox+/Wyelzk5OXjwwQexYcMGr7fFcI0nllMBsO4r91zIEdpNJYSrEeajt7EQhZ0uFaFCo9DEQ6MSvyDad6XUCHJ7hYaKU4m2YXCq0LC/K5KChmxOhsw031RoMEWDERxI10DZoFVoeHJ/sPI8bhEVGomEfQfL0GCj+v2NLy2nLDyQ52QNKfotmeUUww+oKZZTFuI6Tat69QdSGRpKIC2n1Fzg2u0NdSO9G7hEDkRiggajLFCpVHjllVcA2FwvnnjiCRiNRuq8VqsV6enpitfdu3dvx9+fffYZdZ6XXnrJkd1KY+nSpbLByCkpKY5OaruAYse54/vChQuS61CpVHjzzTcB2PILnnjiCdmO4ry8PMyePVtyuitiYmLw7LPPAgD27NmDKVOmyNoc3bx5E99//73gs5o1azrstdasWSOqTgFszitPP/20x+1UisFgwNNPP00Ne545cyaOHz8OAHjyyScFOcN6vd5hu3TixAnMmDFDtDzP83j22WcdYpV9v0kxd+5c7Nq1S/T5jRs3MHXqVAC28OrRo0eL5rn77rsBAH/88Qf1eDlz5gzeeecd2e3L0bhxY8ffUp3vb7zxBg4dOiS7HqXHtSvGjh3rENZefvll6nl49OhRfPjhhwBsmRXOAkIwcP/996NBgwYAgI8++oi6P1555RXHNcJ+rQsGApahQWK1WpGVlYWioiLUqlVL1qOtvHHt2jVs27YNANC1a1ev1asXX3wR06ZNE33epUsXPPHEE/juu+/wzDPPwGKxYPz48bhw4YJAcVSKc8gLjevXr7MqjTuQLw20Uf3iT9gDtisu5BJ2Uz7KzwCUd7qQI72cKatfMJfI0NBy8ud3kYleoeEq1NL5JVCvCoXJUvoQKrScss0nspySqdCQtZzypEKD+DXKwTs7o5IispyiXEg8ydDILrGKRhHXi9LgVFapMFwpMzRY7kJA8UbQiNapwEF4jmSXWByVGGL7MHahZ/geNc1yiszQCNChRxU0FC5LWi0Fu92UnbqRGuyGdKenq/EqOpHlVOW77zGCg8mTJ+PPP//Epk2bsGrVKrRu3RqTJk1Cx44dERYWhhs3bmDfvn349ddfMWrUKGr/Do127dqhW7du2Lt3L+bPnw+j0YjRo0cjOjoa586dw7x58/DPP/+ge/fu2LNnD3Udr732Gp555hkMGzYMd999N5o0aYLw8HBkZmZi165d+PrrrwHYQrjJTIK6deuidu3auHbtGj799FPUrl0bTZs2dfTfVa9e3WE19Mwzzzi+//Lly3Ho0CE8/fTT6Ny5M6Kjo5GXl4d///0X27Ztw5o1axASEuKyc12O999/H9u3b8f+/fvxv//9D9u2bcNTTz2Ftm3bIjw8HNnZ2Th58iQ2b96MDRs2oHXr1qLv99lnn2HTpk3Iz8/HqFGjsH37dowYMQJRUVE4duwYZs6cibNnz6Jjx44ubYy8oWPHjvjzzz/Ro0cPTJkyBY0bN0ZGRgYWL16M3377DYAt0JwmBrz77rtYuXIlLl68iGnTpuH48eMYO3YsatasidTUVMyePdvRP9mtWzdMmDBBsh3VqlVDWFgY7r33XkyZMgWDBg2CXq/HgQMH8OGHHzrEuBkzZlAD3SdNmoQ1a9aguLgYSUlJmDZtGtq1a4eCggJs2bIF//vf/1CtWjWo1WrcunXL7f3Uv39/xMfHIyMjA2+//TYuXbqE+++/H1WrVsX58+cxf/58bNmyBT169JC1Iuvevbvj7ylTpuCtt95CzZo1Hc46iYmJ0Ghc90VVq1YNs2bNwuTJk3Ht2jV06NABr7/+Orp37w6z2YzNmzdj1qxZKCgoAMdxmDdvnuIA+0Ch1Wrx9ddf47777kNeXh569OiBt99+G507d0Z2djbmz5/vqADr2bMnHn/88TJucSkBFTQsFgsWLVqERYsWITk5GSaTCRzH4dixY2jRooVjvrVr12LHjh2Ijo7GW2+9Fcgm+oSffvrJoQ7TVEt3sZdtSfH0008jOTkZP/zwA9LT07FixQo8+uijbm/HkyClykp5fWkIdi6SgeA+ys8AXFReOKGXeWstu1BwokLDpeUULxpxaFvO9pnUy6HBSdCw2U7llE7jxRkaZCi4JxkaYRot9Gr3b0Xk+yo7AxlBg4uD0UwZPepJ/wuZn6FVATXDhYpspczQYBUaAYW0OXMHtYpDjF6FbKffLLvEivrRtr/FllMVZ/ATI3gQVWhYKRkaAavQ8J3llLacnC71onxdoeHV6hgMj1GpVFi9ejVGjx6N33//HWfPnsWLL77ok3UvWLAAvXv3dnRwk5ZAU6dORcuWLSUFDcDm6EFb1o5er8e3336Ljh07iqa9+eabmDRpElJTU0WB4QsXLsSYMWMA2HIJli5dihdeeAHffvstLly4gFdffVWyTbQOcXfQ6/XYtGkTxowZg5UrV+Lo0aOyAklUVJTos8TERKxZswZDhw5Ffn4+5syZgzlz5gjmeffdd8FxnF8FjcmTJ2P79u1YtGgR/vvf/4qm16xZE3///Teio6NF0yIjI7FlyxYMHDgQ//77L1asWEG1IOvRowfWrFkjO5g8LCwMv//+OwYOHIiPPvoIH330kWie559/Hi+99BJ1+f79++P555/HV199hWvXrlEFsjVr1mDgwIGSbZAjPDwcS5YswfDhw1FSUoLvvvsO3333nWCepKQkzJ49WzarolGjRhg5ciSWLVuGjRs3YuPGjYLpqampSExMVNSmSZMmIScnB++88w5u3ryJKVOmiObR6/WYN28eBg0apGidgWbQoEH49ttv8eyzz+LmzZt47rnnRPN07twZq1atCqpihIC95WVkZKBXr16YMGECdu/eDaPRCJ7nqd5piYmJ+PTTT/Huu+86AmfKEz/++CMA20ErF1TjS5zL4JzDWhj+gSxnVvLSUPm6ldyjxMzjWr7wLaSBLwUNX1hOlRG5HoSC0yynpDyg7ZdhA1Gh4Yyz5ZSZp2doyFVhhGq0CKEIF3JWVHKwDA1GsCKydCOOVZrGYPHAc4rMz6gWqkY4YdFXGTM0mKDhe+Qur6Fe2kKStlN2ccNi5VFgFJ4X7Ldk+APysc/C82WYoSH+TLGgQVaPl5MHI1eWU66+BcvQYAQTYWFhWL58Of755x88/vjjqF+/PkJDQ6HT6VCnTh3cd999+O677/Dyyy+7td5mzZrh0KFDmDhxIurVqwedTodq1aphwIABWLduHWbNmiW7/NatW/G///0PDz74IFq3bo1q1apBo9EgKioK7dq1w9SpU3Hq1CmHMEEyceJErFixAv369UN8fLzsyHWtVos5c+bg6NGjeO6559C6dWtER0dDrVYjOjoabdu2xbhx4/D777/j9OnTbu0HGpGRkVixYgV27tyJ8ePHo2nTpoiMjIRGo0FcXBw6deqEyZMnY/369di0aRN1HUlJSTh58qRg/1avXh2DBw/GX3/9henTp3vdTiUsXLgQv/zyC5KSklClShXo9Xo0adIEr776/+zdeViU5foH8O/MMAwMOwgKLqDmrhVKprnh0dzXRM/JStFSU8rS7JRmRdkpy+x3LMNES/RkpmamHrWjuGBuiWIumEsKKYqCCArIPvP7gxhn3nlnn2FYvp/r8hLe9Zlh1ud+7/v+J1JTU3UuAhcKCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4GL7Qssq3336LTz75RJNBJJVa/2Y/b948nDx5ElOmTEHLli3h7u4ODw8PtGvXDq+88grOnz9vl1YEjjRlyhScOHECU6ZMQYsWLTR/9549e2LZsmU4dOgQGjRo4Oxh6qiWDI2KigoMHz4cycnJkEqlGDt2LHr37m0wetqxY0c8/vjjOHbsGDZv3oxHH320OoZpF8ePH8e5c+cAAMOGDdM0V3I07Rc3Y/UTyT6EV0GJfWnQu8iKn6+NSrtXpnMXSSVAmJ0aggOWlJwy0hTcaT00LGsKft9EU3BTPTQAQCHVDTRol5yq+OuLvl7JKROlo/xclcgsuqe7zIpyU4B+TWn20KCaS/exKtZDw6oMjfu6M24NlTL9puD1seQUAxrVRioBbK3oJWwMfqe48u93r1RYWJB/S3IM/YDGgws3qlRfhob+MrN7aNTS7HF/Nyk85BIUWvl+pWAPDaqB+vbti759+5q1bVhYmFkNkhs3bqyXOaAtOjraYECiefPmmDlzJmbOnGnWmMQ89dRTeOqpp8zevlOnTvj8888tPk9sbKzZ5bi09ezZEz179rR4vypNmzY1ev9aOy5LPf3003j66aet2tfV1RUxMTGIiYmxeRxNmzbFkiVLTAYvDDF1O9LT0w2ui4yMNPmc6NChg+ZCcjHmPK/kcjlef/11kz0hqqoMmfLwww8jPj7e5HZC5r4GAMbvN3vo2LGjVbfBWarlm8Hq1auRnJwMuVyO7du34/vvv8eMGTOM7jNixAio1WrRZjQ1mXYzcHuUmzKXhJN51UovoGFWDw0y5nKebv+Mpl4uel9SbOFu5rGMZ2g450uSpRkahWWGSk4ZP0+pTskp3T4duiWnKrPrhBkaxkpOAYC/Qr/5t9gycwi/r9aS7+1UD5h6KIolTVgX0NDN0AhSyuAuFwQ06lnJqXKVGvmCSTFfToI7jLuLxObPn/oZGpWPa2FgSgLA25Uv9GR/UsEHCJVa/3W62npoiCwz9/3BmuzxmkAikSDUhsbg7KFBRERUP1XLt7x169ZBIpFg2rRpGDhwoFn7hIeHAwAuXLjgyKHZVVlZmaZhT2BgoNV14axRlRUCACEhIdV23vpKWJ/VnIoL/Hht3GW9/hn2TSAz1htDm7EMDSuqwtiFMEND2BRcGPgxXHJKvIeGeMkp3cwJ3ZJTQEF5CcpUuk8EU8EJsZJUfiw5RXWN8PklWC0MiAPmX4GrTdhDI1Apg1JQF6W4XG3VsWure8IGVwB82RTcYWzpn1HFz033vSr3rwyNPMHf0ttVwkw8cgixh3FJhbMyNKzvoSGcyK8tGRpA5UVM1tLvoVF/3vOIiIjqs2r5lnf69GkAlVkX5qpqEJSTk+OQMTnCzp07kZ2dDQAYP3680dqC9qbdCKdPnz7Vdt76Sq/xnhlfGvjx2jhhhkZLX/v1zwDMLzllLEPDWX/Du2XGMzT8BVe4FhoqOWW0nJZap9m9q6CHhnbJqXKVWq/cFGBOhoZ+8MJY3w1jGNCg2kKvh4adSk5lCzI0xEpOqVEZ1KgvhFf1SyWAJ6/qt52Bu9Dc91VjhCWnqgIaLB1G1UXs84NwUlzm1B4a5pacqp09NADjjcFN9tDQy9Cww4CIiIioxquWGfe8vDwAQEBAgNn7VFRUflGvSR3UTdEuN2Vuw5eEhARMmjQJAPDuu+/q1eU7c+YM3N3d8dBDDxk8Rnx8PFauXAkAaNSoEUaPHm3hyMlSwi86xq7qJ9MKylS4dV/YENy+L0/26KHhLKZ6aPgppMgsfHD/VWZoiPXQqPxfrIeGMOtIITHcFLxCBeQU6wY0XCRSeMmNl8Lyc9XP4BBbZg720KCaymTJKdGm4Jado6xCrek1UCXIXQqlXP/s98vVUNo3PlxjCSfBvV2lfG1wIHc7dEoWBuSrmoIL/5YsHUaOIpZ9oZehUU2vI7Y1Bdf9vbaUnAJMNwY3hk3BichZ0tLSUFhYaPF+fn5+aNy4sQNGRPVNYWEh0tLSrNq3TZs2kMtr95fEaglo+Pv7IysrC9euXdOUkjLl0qVLACpLN9UGubm5+O9//wugspFK586d7XLcEydO4IUXXkDfvn0xePBgdOrUCQEBASgvL8f58+exdu1a7Nq1C0Bl8Cc+Ph4eHsavkibbCa/+EcvQYFNw810RZGfIpbZ9uRFjvDeG7rklEP9z1ZSm4MIMDWEN8go1IBGZVjVWMkH4BVAhzNDQ7qEh0j/DX6E0WUvdoRkaVh2FqPrZI0Mju6hC7zUqSCmDm0jgtj710bhbyqv6q5MjMjTulqhQoVIzQ4OqjdhHI/2SU84bS/0oOSUz+NnbFJacIiJnmTRpEpKSkizeb+LEiWY1mSYyJTk5GX379rVq37S0NISFhdl3QNWsWgIaHTp0QFZWFpKTk80uO7V+/XpIJBI89thjDh6dfaxfvx4lJSUAzM/OMFdFRQUSExORmJhocJuAgAB8/fXXGD58uF3PTeLK9DI09LdhPMN8wv4Zod4udq9XLDbRJySXVjYndHORoKiGTAKq1CrcKy3RWSYXZGiIXbkqFSs5pVmkX5ZG+OVdWHKqTF0ClboCUokM5SrolZwKMCMwIdpDw8qm4Cw5RTWVqdd+8abglr3eCPtneMglUP71BHeTSVCs9XwuKqsZr2XVIU84Cc7+GQ5ll4CGoIeGGpWBKf4tqbrIRC7GEE6K14YeGtaUw60p3FykaKiU4aYgWxsQuUBMQHg72RSciGqLsLAwqGtIr7uEhAQGWajWqZaAxqhRo7B3714sXboUs2fPhp+fn9Htf/jhB2zbtg0SiQRjxoypjiHa7D//+Q+AyiyJZ555xm7HHTJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7W2385JxtblObU10OU/YENz+qW/mlMao+lLkKhMPaDjj40Z+WQnUgjMLm4L7KfQjahKRnAVDTcEB/YCGMEMDqCw75S7zRLlKjZwS3fTaADfTmWGiGRp2awrO5yDVDnbJ0LivO9nbUPngNUAp1w1o3BeLoNRRvKq/etmjKbiXqwQyiW7ZtTvFKmbbULUR64/hrAwNoPICDe33BLN7aAhiAWIXW9VkzbxdRAMapuhnaNhrRERExu3fv9/ZQ6B6LjIyssYExZyhWgIaU6ZMwaeffopr165hwIABWL16Ndq3b6+3XVZWFpYsWYJFixZBIpGgY8eOGDduXHUM0WaHDh2yar/o6GhER0cbXB8UFITJkydj8uTJVo6MHEF45ZaxZstV6u/LjGmX7wobgtv/pcncDA0AcJMBd0XWO+O94m5psd4yYckppVyid1W2WECjKmCjdwW5Wv/Lu1LmBqFSdTHc4YkKNfRLTpkRmBDbxuoMDcEzijFFqqn0m4Lrb2NpyCFLMOkT6K4V0HCR4I7WunpVcop9FxzC0MurUm77/SuVSOCrkCJHqydMbrGKwSmqNmIf4UsEk+LV1UMDEAlomLlfbc7QAIBmXjIcu2n5fgqRklNqtdpkGVQiIiKq3aoloKFQKLBlyxZERkbixIkT6NSpE9q0aaNZ/+yzz6KgoABXrlyBWl35ISQgIACbNm3ihxGqkcr0emjob2PvR+7togqcuV1qU23Ylr5yPORre/bD3RIVTmWX2KUsU6kKes1tHZGhYU4PjarAlPBqrztlmbhTdhP3s2R48k4HdPRrhNScMlwvqAzEBLrL8HCgqyYDQq1WY//NyziXdwsdfBuiT6OWAIA9mZdQpqrAwMZtdEpCqdQq/JxxAa5SGQJdQ3FTq8H3lYJc/XFKXHV+d5VJ4CG4Kvtuif7fxtAVhn/klaFIMMvqLnOBr6u7Tv+OtKLT8JD54mqJBPk5f+hsH+BmOqAhFry4lCuDuuy+yNbGXcvXnW2oZd/bqQ4Tfmw5d6cM/0t/8BjPKda/fPT3nDK4SAw/DxQyCR4OdIX/X+V5bgkCGkFaGRrCMkAnbpWgQNj4SWTMD/nK0cKG1161Wq3zumiOnOLK0kKjH1Ii2MOyj6T3y1Q4mV2quW3eCqne1b0sU+RY9ig5BVT2gdIOaBzJLMbtIganqHqIlZwqFHzQF8vicBThqQ7fKMGl3DLRbbWlCS4OEn6Wrems7Z0nzERRo/LCgdrUFJ2IiIgsVy0BDQB45JFHkJycjIkTJ+LIkSM4f/68Zt2pU6d00mS6du2K7777Di1atKiu4RFZpLob72Xkl2P+4Vy7BBCmdvJCv2bWXRUPAPdKVJh78I7O5IM9uckkCPG0/7cQcyZeqv6O2ld7pRWdQXL+TgBASgGwY+v/MLvNP3D1TlOdfZ8IUeCVcB8AwPyUn/Hh6T2ade88+iRyigvx5fnDAICnW4Tjuz4PStONT/oO69N+AwC0cu+CcK9+mnXZpboBDblEoRfoVcgkUMolyNFK5rhTrP9YMfQ4/S27FL9l6y5TuEgQoFDqBDQuFh0X3R8APF1MP6bESk7tuFwBT5cCk/uawoAG1WTfpBp/jCffKkHyrRKj23i5SvBhD38EKWXILhIGNB5MgQmvmj90owSHbhg/dpWYR7zQu4l17w/fXyjET5ctD04CQFJGMT7u6YcwMwMqJRVqvH04FxkFxmuL+Cj4wuBI9gpoVAbqHkzGij1emaFBjiI27y+8cKm6emgAVSU0H3yG23bFutfV2pahEeotPi1h6laIlf0tVanNyp4nIiKi2qtavx089NBDOHToEA4cOIA5c+YgMjIS7dq1Q+vWrfHEE08gJiYG//vf/3D06FEGM6jGUqvV+g2URT40Cy/4sqVH3ZFM+2RDAMDea0WmNzLiZHaJw4IZANDCx8Uh/RDMmXhp+tfVYdrbXik6pbONSq3GhnT9if0jN0pw/69vwP+XekBn3Uen92LFxV81v6+7chKZ9+8BAP64d1sTzACAS0UnoFI/mKQrUwsaggvKTQGAQgZ4CCYxvWT+ettVPU7NqQWtkEkQ6OZpesO/lJTpj0tIrHG4sPm4tapzsoHIGEc9EvNL1Th2s/L1IEcY0NAqOeUht34Ee67pl7gzV+JV295bvjx1z+xtL+SWmQxmAPqvi2QdQ/OC9uihAQB+ZgQrfJltQw4ilZi+KKI6e+XZ62VLpL1ajaadaajN1FcCse9gtmSzExERUe1g1wyN06dPAwDatm0LV1dXg9v17NkTPXv2tOepiapNYZlarwa6t8gXbWEKu7lN/cTPab8AQmGZbR/yC2zc35SIRqYnxq3hIpWgrZ8c542k7T/TtrKxdYcAV5y5XbmdMKAAAEUV+pN+agDFFWoo5UBRhe45ylT6E28X72UjWOmN5NvX9NapUAEpKr/YlatLddYJy00pZJWlYjoGyHH+zoPztvV4HJeKTmgaird2j0A7/8qrn9v6y01esd0hQA5Pr4dwNPtPo9tVae/T3OQ2YZ7+aOMTiAt3K9NB/F2C4SrV79VhjarbRuRsjqyUee+v8krCtwTtHkEdA1xx2MyMDCFTpakMUavVNr83XM03v5NrkZnviQ0NTJCRZdr6u+LXm7qPKamk8r3EHh4JdMX//jQcEGvqJWOGBjmMRCJBO385UnPEPx/KpUArB/R2M6RdgKsmeG3TcfwNfxeviaQSCboHK3Ak88Ftb+snN3mRk1gASKxXFREREdUtdv109uijj0IqleL06dM6Tb/ff/99AMCMGTPQoEEDe56SqNoJ+z0AgL+b4QbMVWyJSQgvNPJTSBHsYd5Ezb1Slc6VrLY2tlYJboeHXIJQK+veapNJKyfiBofZ54p9Ma929sbGi4XI/KtHRUOlDK4yCfLLVIhs4oZGf9VwH9FCCZUaOJdTip05YneY7UGdtPw76NOoJW4XF+ofXa0GJEAbPzmK7qoArQuXFbLKL6it/eTwd5NiSJgSHnIpRj9UGYw5f6fsr2wgXwQon0Ny3gkEuvrhrUf7o0NA5b79m7mjpBw4fbtE9EtfS185xrb2gARPQiaV4uCtNBSUViCnWIVylVqnybCLRI4wt45o493E5G2WSCTY+eQLWHAqEedyyhEk6aZZF+gu1WlsbC5XmQTdghUID3JMIIzIUhKRHA3ha7YKlc9VCYwH4zILK5Cr1Ry5+K/nnvAVSHvC529N3VBUrsapbPHntzbh+4O1k0BiF8M+5Oti8KrmqttvLXNfgT1tyFahB6Y97AU/Nymu3qssC+Uhl6BfM3fNe6atujRUYGonLxy7WaJ3ZXWgUoaoVh7sqUcONTPcBxsvFuCGIPPLy1WKAaHu8HWrvuDotIe94KeQ4lq++f2ItClkEvQIcUPHBrUroAEAUzp5wVchxZ/3yhHsIUNUaw+T+4hl6Jbb+mWHiIiIajy7X26iFvkAERsbC4lEgqioKAY0qNYTNnT1cZWIfpgWlvUpt6HmVIVg327BCkR38DJr3+O3SrDo+F3N77Z+xK8QPMfb+MnxxmO+Nh61evi5yTD1YW+T28mkEoxp5YExrTzw+WVAeOGwsftQ7DVQzJX8HADA7RKRgMZfZ3inmy+++N0F224+WPdwAw+sHxikt4+LVIKxrYUlovwAPKy3rVQiwfCWSgxvaaqRtwveCx+ot/Tv27NM7GdYc68AfNPz7/j0eB6Sbz3IPvlbU3c81cr0F1eimk5s3tWS12xta87lY3vagyvXi/+a7BW+nWi/BUkkEgxrocSwFqae38DJrBIsTH7w/mDtJJBYIOSVcB+DJUTKVWo8szNbdJ09sRSdfXjIpZhkxePXEv2audvU34vIFr4KKaZ0Mv35sDp4yqWY3NGxz7eaykMutfi9UqwkXgUzNIiIiOo8u+Zvy+WVVxkWFdlWR5moJhNmaPgbuGpLOJFizwwNS+ZohJuaO+Fu7ljqes898Ztn+D40t7RYWsEdABDP0IAKClnlY6igTLfsgKdLzcxE4MVwRJXEXjOsnVd3E7zAVmVoCF9nrH0ZlgkGZm2GhlggxFivHlvjDOa+3MhYpYiIqE6TSCR630VsuYiMiIiIage7ftVr2LAhAODEiRP2PCxRjXJHkKER4C7+NLJrhoZgssiSq071AhpWj6KScCLNEQ28axSJ/j1mKCikVgMqM+/hK/mVAY3s4gL940AN978eQHoBDXntKyFAVJ+IBzSse51UCJoul1SIl5yy9mVY2NPZ2vcpsUBITciOcKnr709ERKT/nYvxDCIiojrPriWnevfuje+++w5vvPEGLl++jNatW2uyNgBgy5YtOH78uMXHnTBhgj2HSWSTHEGGhp9CPEND2EPDtoCG7u8WZWgItrW95JTu7/XxCli1PTI08o1kaKhVUP4101hYrtsUvKZmaFiK3zWprhKbQ7dXhoYmoGHDe4I2e2USir2/CYMl2mwOM5j5AlIf35+IiOobF4kEJVpvDMzQICIiqvvsGtCYO3cuNm/ejLt37+LTTz/VWadWqzF//nyLjymRSBjQoBolVxDQMD9Dw/pzCmvBWlLmSb/klPXjsHUstZNld1iF2rw/dGbRPRSVlyFbtOSUGu5/zQYWCAMazNAgqtFEMzSsPJbCYMkp4fGteyG2VyahaEDDSJSlOho8SyX1IIOQiIjs+p2LiIiIage7XrvWoUMHHDhwAP3794dcLodardYpzVL1u6X/iGoSYVNwfzdDAQ1BhoYNj2VhySmZBZM09s/QqGclp0TYI0MDANIL7hhsCq6U/xXQqCU9NIiokl0zNERKTqnV+q9A1r4MCzMJK9TW9VkSLzll3ZjMYc4I636wnYiIAJHvXMzQICIiqvPsmqEBAF26dMGuXbtQXl6O27dvo7i4GC1atIBEIsH//vc/tGrVyt6nJKpWZjcFF0ym2NIUXPi53JIyGhLBlbu2xgj1xlLnJ43E7jD7BDSu5OcYLDml6aEhyNDwcGGGBlFNJvaSaG1Ggl6GRoV4ONX6klP6yyrUxstFiREG7CVwfrC7JvTwICIixxN+FxGWxyUiIqK6x2HXz7m4uKBRo0YICwvTLAsJCUFoaKjF/4hqiuJyNQrLdD8lB5iboWHD1ULCq19tydCwNQtbr4dGnc/QEGkKbiCgoYb5JacA4EzuTZSLbK+GWtNDg03BiWoXseCF3TI0ytV6QWXA+p4UYk2zrXmvEpYidGR2BmBehoalQRkiIqqdmKFBtVl6ejokEgkkEgkSEhKcPRwyIDY2VvN3Isfav3+/5r7ev3+/s4eD6OhoSCQSnbltqhnsnqEh5t133wUABAUFVcfpiBzmjqDcFGC45JTcjvVchVf929JDw9YUDf2SUzYdrs6xJEPjaPafost1Sk7p9dComSWnbP3qyM+GVFeIPZStzWQTzdAQebLZM0PDmvcq4T7WZkeo1Gq7ZXYwQ4OIqH5gDw0iIiLrXbt2DceOHUNycjKOHTuGEydO4N69ewAq5/NjY2OdO0ADqjWgQVTbCctNKV0kcDNwKapdMzRsKTll5wwNlTBbxMFX4jqbWDaGsRrzKgum9o9kGQpoqB40BWcPDaJaxa49NAQBjQo1UCbyXmLt1WJik/7WvFcJS05Zm6FRpgIU4lUcdZkxxLr+3kRERJXs2beQiHTt378fffv2BQDs27cPkZGRzh0QkR3ExsbivffeA2Bd/8C65M8//6y12Sf8ukdkAWGGhqHsDEC/2apNPTRUwgwNC0pOCRfY+Hpd/0pO6TPWFLxCGPExIqu4QPz4ajWUBnposOQUUc0m9opobdaBsOQUANwXRrhh/Yc50QwNK94jhEEQsVJW5ii1Y+Fza8dARES1i/CtkhkaRERkLwkJCVCr1UhPT3f2UBxCO6AjkUjw0EMPoXfv3k4ckfmqJUNDW05ODo4cOYIrV64gPz8fFRX6JXyE3nnnnWoYGZFp5jYEB8TSn+2YoWFJySm799CwvvxV7WRhU3Cbiy8xQ4OoNrNnhoaw5BQAFIlEHKydu7dXDw39klPWjcfcgIY5WzFDg4iofmAPDSIiIut4eXnhgw8+QNeuXREREQE/Pz+dzKyarNoCGllZWZg1axZ++OEHlJeXW7QvAxpUUwgDGoYaggNi6c/Wn1f4udyWDA1bM+r0x2Lb8Wo60ZJTRjM07BHQqOyhoVKrUFhLMjT41ZGokti7gqMDGtYeX2zS35psQr0MDSsHVGrHSSj20CAiqh+E72W2fOciIiKqTwICAvDWW285exhWqZbr13Jzc9GzZ098//33KCsrg1qttugfUU2RY0HJKb0MDRtKaQgniyy58lRY6sTWZ5TwZkjr5aSRsQwN2/Pc1VDD3UWC++VleuuYoUFU+1jftFui915SJFJLw9oPc1KJRC8obc2VrfqlCK0bT6nppF0A5r2PiVTrIiKiOkiYbcgMDXK2Q4cO4YUXXkCbNm3g7e0NV1dXNGnSBMOGDcOXX36JvLw8s48VHR0NiURissZ9QkICJBIJJBKJwdI4e/fuxdNPP43mzZvD3d0dSqUSoaGh6NatG+bMmYO9e/dqtk1PT4dEItG5Srtv376ac1T9S0hIED3Xvn37MHHiRLRo0QJKpRLe3t7o1KkTXn/9ddy4ccPg7YiNjdUcGwDu3r2LBQsWIDw8HL6+vgbP+dNPP2Hs2LFo1qwZ3Nzc4Ovri4iICLz33nvIzc01et8BQEZGBmJiYtCiRQu4ubkhJCQEI0aMQGJiosl9rVV1H2vfpo0bN6J///4ICgqCu7s72rZti7lz55r1mCktLUVcXBz69u2LwMBAuLq6olGjRhgyZAi+/fZbqIyUxhY+zq5fv47Zs2ejdevWUCqVCAwMxNChQ/Hzzz9bdHsMCQsLg0QiQXR0tMnbJebo0aOYP38+IiMj0ahRI7i6usLb2xvt27fH9OnTce7cOdH9qp4nVf0zAOg9poXPIXOfg2fOnMHUqVPRqlUrKJVKeHl5oUOHDpg1a5bRclVi99vu3bsxfPhwNGrUCAqFAs2bN8f06dORkZFh7l1UL1RLhsbChQvxxx9/AAAGDBiA2bNno0uXLvD397e6kSWRM+iVnHI3XHJK2EPDlgZ19syKsD1Do36VnBLeXsD4ZJrY9pZSq1VQukhRUFakt85TzoAGUU0m1i/D2h4aQGWWhvbkjHjJKeuP7yKVoEIrImFN7XG7ZWjYsYeGrF4G24mI6h/9Mr/OGQdRUVERnn/+eaxbt05v3fXr13H9+nVs374d2dnZiI2NrdaxzZo1C//+97/1ll+9ehVXr17Fr7/+ioSEBNy+fdum8xQXF2PSpEn4/vvv9dadPXsWZ8+exbJly7Bu3ToMHz7c6LEuXbqEAQMGGJ0Mzs3NRVRUlE4wBgBKSkpw4sQJnDhxAnFxcdiyZQu6desmeoxffvkFw4YNw7179zTLMjMzsW3bNmzbtq3a/lbPP/88vvnmG51lFy5cwMKFC7FmzRrs2bMHbdu2Fd03PT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2HX9tVS0BjS1btkAikWDo0KHYunVrdZySyCEsKjklmEuxpSm4Xt8KCyZqhJsaK5dk1lgEt6PuzxlZ1kND+LeyhgoqKF0keg3BAcDTpWaWnGLNKSLDbEmHdZNJUFhmKqBh/fFdpECJVmaENcF3e/XQKDE3oGHGZszQICKqH4RBdHuUfyWylEqlwsiRI7F7924AQKtWrTBjxgxERERAqVQiMzMThw8fxoYNG6p9bP/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc+wmTZpoflar1YiKisL27dsBAMOHD8e4cePQokULSKVSHDt2DIsXL8bVq1cRFRWFQ4cOISIiwuC4o6KicP36dbz88ssYMWIE/Pz8cOnSJYSGhgKoDFr0798fKSkpkMlkGD9+PIYMGYLmzZujrKwMBw4cwGeffYasrCwMGTIEJ0+e1Oxb5erVq5pghlQqxdSpUxEVFQUfHx+cPn0aCxcuRGxsrNFx2kNcXBySk5PRtWtXzJo1C61atUJWVhYSEhKwYcMG3LhxAwMHDsTZs2fh5eWls29BQQH69euHK1euAABGjRqFyZMnIyQkBGlpaVi6dCmSkpJw8OBBDB8+HAcOHIBMJn5h7v379zF27FjcvXsXb775JoYMGQKFQoFff/0VH330ETIzM/HZZ5+hWbNmeOWVVxx6nxhSXl4OPz8/jBw5Er1790arVq3g4eGBGzduICUlBZ9//jlu376Nl156CW3btsXf/vY3zb6jRo1CREQE4uLisGzZMgCVmRVCjRs3Nns8cXFxmDdvHgAgMDAQb7zxBnr06IGKigokJiZi0aJFKCwsRHR0NBo0aIAhQ4YYPNaKFStw+PBh9OnTB9OmTUPr1q2Rl5eHNWvWYM2aNcjOzsbkyZNx5MgRs8dXl1VLQOPq1asAgJiYmOo4HZFDlKvUuFuiO2vjZ0EPDZW68up9a67UtVc5D8D2DA39puB1e9ZINJxh5E60S4bGXz00cu7rBjRkEikUsmprfeRQrCZIdZVYkNeWwK+wj4Y9e2gAVe9VNmZoqO2ToVFm1x4adjsUERHVYHoZGvyMaTa1SoWKghxnD6PayDwDIJE65gPC0qVLNcGM0aNHY926dVAodDPrhw4digULFiAzM9MhYzCkKogSGhqKQ4cOwdPTU2d9ZGQkYmJicOfOHc0yuVyOjh076mRsNG/eHB07djR4npUrV2L79u2Qy+XYunUrBg0apLO+W7dueO6559CrVy+kpqbi1VdfxcGDBw0e7+zZs9i5cycGDBigWdalSxfNz++//z5SUlLg6+uLxMREnXUA0LNnTzzzzDPo3r07MjMzMW/ePKxdu1Znm9dee02TmfHtt9/i6aef1qyLiIjA2LFj0atXLxw/ftzgOO0hOTkZQ4YMwZYtW+Di8uD7/uDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOhn4/fr1g6urK1auXImjR4/i5MmTCA8Pt3rcdUW1zIx5enqipKQEDRs2rI7TETlEXolKb3I7wM1wySmxyZRyFeBqeBeDbMmK0M/QsI09gyu1gSUBCrXa9PZ+ru7ILdUvJaVznL96aBSUlegs95S7skwfUQ0n9gy1JeDg5mJGQMP6w+tlMlhTe1wvQ8PqHhrmnducTEM2BSciqh+EF1exh4b5KgpycPHlINMb1hGtv8iCi7f9J2BVKhUWLVoEoDJjYc2aNXrBjCpSqdSiq7/t4ebNmwCAzp076wUztJkqRWSMWq3Gxx9/DACYOXOmXjCjip+fHxYtWoQhQ4bg0KFDuHTpElq1aiW6bXR0tE4wQ1tBQQG+/PJLAMCCBQv0ghlVQkND8fbbb2PGjBnYuHEj4uPj4eHhAaDyftm8eTMAYNiwYTrBjCpeXl6Ij4/H448/buTW206hUGDFihU6wYwqb731FjZs2ICzZ8/i66+/xgcffABX18qqDSUlJVi5ciUAoEOHDqLlsSQSCeLi4vDzzz8jJycHS5cuNRjQAIBp06bpBDOqhISEYPHixfj73/+OwsJCrF69GnPmzLHyFlvP1PPHx8cH77//PkaNGoWDBw8iJycHAQEBDhnLqlWrcP/+fQDAZ599phPMqBIeHo65c+di/vz5uH79uqbfi5jg4GB88cUXonM+c+bM0fytf/nlFwY0UE1NwTt16gQA+PPPP6vjdEQOkVOkO2MjlwKecsMTJmKTKdZ+wLYlK0K4pd2bgtfxOSOxiTNjk2kVauOXNz8e2MyMk6rgJtMvOcWG4EQ1n9jLsy09NNzMyNCwreSUcCLI8mPYr4eGeduZ8z5W14PtRERUiT00yNl+++03TbPeKVOmGA0aOENwcDAA4MCBA7h8+bJDznHu3DnNsaOiooxuqz1Zbqx0zjPPPGNwXVJSEu7evWvR+crKynDixAnN8n379qGiovLDp1hPhipdu3ZFhw4djJ7DVgMGDEBISIjoOqlUiokTJwIA7ty5g5SUFM26EydOaBqGR0dHGywl5e3tjXHjxgGo/FsZyxIydl+MHj0avr6+AODQhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqoyc+q5aAhrTpk2DWq3Gf/7zn+o4HZFD3CnRnWnxd5MZvVpe2BQcsL6PhjBDQ2bBM1cvoGFrU3DBxFVdb7wq3hTc+pJT5gQ0XGWVV1KIZWjUVLwWjqiSvTM09EtO6b+R2BIw0S/V4bweGqV2LTlVt9+biIiokl5gnnVNqZqdPHlS83OvXr2cOBJxVY2Ic3Jy0LFjR/zjH//AqlWr8Mcff9jtHNolmbp37w6JRGLwn3bApyp7RMzDDz9s1vmCg4ONnk+7pJD2+bR7Jwh7gwh17drV6HpbWXJ+7XGfPXtW87OpLBLt9dr7aXN1dcUjjzxi8BhyuVyTGSDWe6K63L59G/PmzUObNm3g5eWlKYfWqVMndOrUCUOHDtXZ1lGq7sfOnTsbLCMFAA0bNkRYWJjOPmIMNX2v4ufnBwDIz8+3cKR1U7UENMaNG4dnnnkGmzdv1uvWTlRb3CkyvyE4YKjklLUZGrq/W5ShIdjW1vmi+lZySjx4YSSgYWJqv2sD0wENuazyGMKAhkdNbQhORA/YuYeGOSWnbHkZtkeGhr16K5lbcsocdf29iYiIKumXTnTOOKj+0p4wrcqGqEn69euHpUuXwt3dHcXFxVi/fj0mT56MVq1aoUmTJnjxxRdtvoo9KyvLqv2qyvWIqZq8ddT5tHuGaPdUEOPo8vmWnF973JbchkaNGonup83f399glodwLIaO4WgnTpxA27Zt8dFHH+HixYtG+5sCQFGR8XLftqi6D0zd98CD+9/Y/SbsCyIk/asHUFVmUX1XLT00Dhw4gOeffx5paWl466238OOPP2L8+PFo27atyT8YANH6bUTV7U6x7ouGsYbggHiGhrVN6vQni8zf194tF+pbQMOSDA01gAqV8W9R7X0bwtNFgYLyEoPbuEr/Cmiw5BRRrSMVCS/YkkHh8KbgjuihwQwNIiKqJvqBeWZomEvmGYDWX1g3MVwbyTwdU0e/NoiJicHYsWPx3XffYffu3Th06BDu3r2L69evY/ny5YiPj8e8efPwwQcfWHV87QnWbdu2aa5GN8XYRLCxiXXt86WkpBi9Ol5bkyZNRJc7u0+lPc5fU47hSKWlpRg3bhxycnIgl8vx8ssvY+TIkWjdujX8/Pw05ZquXLmCli1bAoDJgIc91PT7ra6qloBGZGSkzh/4xIkTOrXrjJFIJCgvL3fU0IjMllMszNAwHrkWm9Aps/LqU70ggi0lp1D5om7ti65wgt/aK3FrC0v/YqYyNILcPdHcyx9ncg3XrXT566FVm0pOWUp4L9XtRxHVKw7O0Lhv54CGMPjuzB4aJeY2BTdjM0veJ4mIqPYSfueyY7JfnSeRSh3SJLu+adCggebnzMxMk2VjLFF1RbbKxEVzhYWFJo8VFBSEV199Fa+++ipUKhV+++03bN68GUuXLkVeXh7+9a9/4bHHHsPIkSMtHqd202VfX1+dMk+OoH2+wMBAg4EKY7QzQG7duiXa0Fl7vSOZOr72eu3m7do/37p1C61btzZ4DO1yW4YawOfk5KCiosJoMKlqLMJjVD1WAfs8XsXs3btX0z8iLi5OpzeFturKHvH390dmZqZZj4+q+9/QfU+Wq7ave2q12up/RDXBHUFAw99EhoZUItGbZLKmpqtardYrE2VLU3DAtn4Hek3B6/ikkdhrkLHXJWM9NDxcXKF0cUULL+NvYrUxQ4Ov1ESVxF4SbXmZFGZoFNu95JTu71ZlaAh2sTpDw47Z0y51PNhORESVhN+LmKFB1a1z586anw8cOGDXY3t5eQGApvGzIRcvXrTouFKpFJ07d8aCBQuwZ88ezfINGzbobGfuRZBVfRUA4NChQxaNxRr2OF+nTp00PycnJxvd1tR6W1lyfu1gkfbPv/76q9FjHDt2THQ/baWlpUbLj5WXl+O3334TPUbVYxUAcnNzDR7jzp07yMnJMTpWQ1JTUzU///3vfze4nXaPFTH2yqioug9SUlKMXoiflZWFP//8U2cfsl21ZGjs27evOk5D5FDCklOmAhpAZSmPUq3P1NbVJtdf5sySU7YEV2oj8QCF4S9KFWrDf+RANw8AQHNP4wENFwM9NDzlNTegQUSVxF4SHd0U3JYP5fbooaGXoeHgHhrmbGVtUIWIiGoX/cC8c8ZB9dcjjzyCpk2b4tq1a1i5ciVee+01ncbXtmjevDmAyibAFy5cQJs2bfS2KS0txaZNm6w+R+fOneHn54fc3Fy9Bspubm6an0tKDJdM7ty5M5o0aYKMjAzEx8fjlVde0dnX3vr37w+lUon79+/j888/x7hx4yz+PNy3b1/IZDJUVFRg9erVeOqpp0S3S05ONtrI2R527dqFzMxM0R4sKpUKq1evBlCZVaIdQOvSpQt8fX2Rl5eH1atXY/bs2TqZElXy8/M1war27dsb7fWyevVqnXNo27x5syZY0b9/f511fn5+mrEYCyh8//33Vl+4rh00KCws1AmiVFGpVFixYoXR4wgf11WlqizVv39/7N69G3l5efjxxx8xbtw40e2+/vprzW0W3m9kvWr5utenTx+b/hE5m0qt1svQCHA3XnIKsE9NV9GAhgWzY2Jb2nLhUoVg57reQ0M8nGFdhkaQW+UH2xZexuu3Vn0x08/QqDslp4jqKrGXRFt6aJgqOWVrqwi9iSArvmCwhwYRETkLe2iQs0mlUrz++usAgIyMDEyYMAGlpaWi26pUKty4ccPsY2vPhy1evFh0m9mzZ+P69esGj7F+/XqjjZGPHz+umaSuCqBU0Z74vnz5ssFjSKVSzJs3D0Bl/4IJEyYYDYDcu3cPS5cuNbjeFF9fX7z00ksAgMOHD2PWrFlGyxzdunULK1eu1FkWHBysKa+1detWvewUACgoKMC0adOsHqe5SkpKMG3aNNFmzwsXLsSZM2cAAJMnT9aZfFcoFJqyS2fPnsWCBQv09ler1XjppZc0waqq+82QZcuW4eDBg3rLb968iTlz5gCobF49ceJEvW2q+h9v2bJF9PFy4cIFvP3220bPb0yrVq00PyckJIhuM3fuXKSkpBg9jrmPa1MmTZqk6Qv92muviT4PT506hQ8//BAA0LhxY4waNcrq85GuasnQIKqt7pepcDGvDPmlar3AgjkZGnLBJmXWZGiIfCi3JIggNqdz4laJTlAk2EOGxp7mvRxkFN7HnbJMqKCCn0tDSCU+5g+mFlGr1UjNuymacWEooHHmdimuFIp/eAUAV4kSx2+VoLxc/0oCbRn3b0ClVtWqDI1r+eU4fkv8Q6sEQHMfF/ib6DtDVBfYO0PDTfCCf79M9/XH1ml7e5TquF2k++XL2mDCrcIKg68j2tLvme6tVteD7UREVEkYRD+bU4Yzt0vRyleud1EAkaPExMRg27Zt2L17NzZv3oxOnTphxowZiIiIgFKpxM2bN3H06FGsW7cO48ePR2xsrFnHDQ8PR/fu3XHkyBGsWLECpaWlmDhxInx8fHDp0iXEx8dj7969eOKJJ3D48GHRY7zxxht48cUXMXLkSPTu3RutW7eGh4cHcnJycPDgQXzxxRcAKptwC3sSNGvWTJN58emnn6JJkyZo06aNpsdCw4YNNVfJv/jii5rbv3HjRqSkpGDatGno2rUrfHx8cO/ePZw/fx779+/H1q1b4ebmZnJy3Zj3338fSUlJ+PXXX7FkyRLs378fU6ZMwaOPPgoPDw/k5uYiNTUViYmJ2LlzJzp16qR3+xYvXozdu3cjPz8f48ePR1JSEqKiouDt7Y3Tp09j4cKFuHjxIiIiIkyWMbJFREQEtm3bhh49emDWrFlo1aoVsrKysHr1anz//fcAKhuaiwUD3nnnHfz444+4cuUKYmNjcebMGUyaNAnBwcFIS0vD0qVLsX//fgBA9+7dMXXqVIPjCAwMhFKpxJNPPolZs2ZhyJAhUCgUOHbsGD788ENNMG7BggWiDd1nzJiBrVu3oqioCJGRkYiNjUV4eDgKCgqwZ88eLFmyBIGBgZDJZMjOzrb4fho4cCCCgoKQlZWF+fPnIz09HaNHj0aDBg3wxx9/YMWKFdizZw969OhhtBTZE088ofl51qxZeOuttxAcHKzJ8gkLC4OLi+n5scDAQCxatAgxMTHIyMhAly5d8Oabb+KJJ55AeXk5EhMTsWjRIhQUFEAikSA+Pt7sBvbV6eeff9bpsXL+/HnNz7/99ptO8MjT0xNRUVHVOTyDGNAgMuBGQTneOZKL/FL9yR2pBPBVmFFySiqB9jX+dsvQsPGz+Wcp9/SWPdvWE8NbKo3ut/bCVezIiUepurhyHHDByJxohAfZr/FZTfHm8e345Ox+A2vF/47xZ/Jx8b7hCH9GvisWHb+Lu+XG38R23zqGib+Uo6C89jQFT8ooRlJGscH1Mgkwp4sPOjesuUEZInsQz9Cw/njCgIZeHyN7Z2hYGHg/e7sUZ3PKjB7TXOfulOHcnbvW7SzADA0iovpBrMzhB7/mIdBdig+e8IMvL6ihaiCVSvHTTz9h4sSJ+OGHH3Dx4kW8+uqrdjn2N998gz59+mgmuKvKD1WZM2cOOnToYDCgAUBTkki4bxWFQoGvvvoKEREReuvmzZuHGTNmIC0tTa9h+KpVqxAdHQ2gsgTq+vXr8corr+Crr77C5cuX8c9//tPgmMQmxC2hUCiwe/duREdH48cff8SpU6eMBki8vb31loWFhWHr1q0YMWIE8vPzERcXh7i4OJ1t3nnnHUgkEocGNGJiYpCUlISEhAT84x//0FsfHByM//3vf/Dx0b+Y1MvLC3v27MHgwYNx/vx5bNq0SbQEWY8ePbB161ajDb+VSiV++OEHDB48GB999BE++ugjvW1mzpyJ2bNni+4/cOBAzJw5E59//jkyMjJEA2Rbt27F4MGDDY7BGA8PD6xZswajRo1CcXExli9fjuXLl+tsExkZiaVLlxrtVfHQQw9h3Lhx2LBhA3bt2oVdu3bprE9LS0NYWJhZY5oxYwby8vLw9ttv49atW5g1a5beNgqFAvHx8RgyZIhZx6xuCxcuRFJSkui6LVu2YMuWLZrfQ0NDa0xAgxWGiQxIyigWDWYAlcEMc0qICCdU7JehYf5EjbmlTjZfLjRZy/Dzc79qghkAUIFyfJumn45Y2xWXl2HJ74Zvl7GSU9dLLhlcp5C6AwA8ZKazWr69nIKLd3VrmHrU4pJTFWpge9p9Zw+DyOHEXnNtCmiYuLrUlnJWgO2lOnam6z+va0JDbvbQICKqH+QG3mSzi1Q4kmk664/IXpRKJTZu3Ii9e/fiueeeQ/PmzeHu7g5XV1c0bdoUw4cPx/Lly/Haa69ZdNy2bdsiJSUF06dPR2hoKFxdXREYGIhBgwZh+/btWLRokdH99+3bhyVLlmDMmDHo1KkTAgMD4eLiAm9vb4SHh2POnDk4d+6cJjAhNH36dGzatAkDBgxAUFCQ0SvX5XI54uLicOrUKbz88svo1KkTfHx8IJPJ4OPjg0cffRTPP/88fvjhB/z+++8W3Q9ivLy8sGnTJvzyyy944YUX0KZNG3h5ecHFxQX+/v547LHHEBMTgx07dmD37t2ix4iMjERqaqrO/duwYUMMHToUP//8M9577z2bx2mOVatW4bvvvkNkZCQCAgKgUCjQunVr/POf/0Rqairat29vcN+wsDCcOnUKS5cuRZ8+fRAQEAC5XI6GDRti0KBB+M9//oMDBw7A3994L0+gMlskJSUFM2fORMuWLeHm5oaAgAAMGjQIO3bswJIlS4zuv2TJEnz33Xfo3bs3vL294e7ujjZt2uDNN99ESkoK2rVrZ/F9o23gwIE4fvw4nn32WYSEhEAulyMwMBB9+vRBfHw89uzZAw8PD5PH+fbbb/HJJ59oMojEeo+Ya968eTh58iSmTJmCli1bwt3dHR4eHmjXrh1eeeUVnD9/HhMmTLD6+CROora2G4sB77//vj0PB6AyIkrOl5GRgaZNmwIArl27hiZNmjh5RI711al72GfgivPuwQq82tn0pPQbv9zRKY0x/WEvRDZ1t2gcV/PL8fqBOzrL1g4ONPvqU5VajWmJt3HPQHBG2/J+AUavYmqzPgEX7+s2xGrpFYA/ouaaNZba4lZRPhp9b/iDixRSzGz+BiQS4HqBbqmVQ3d/wvWSi6L79fAZjcaKyrqPe3O/w+2yDKPjkECiEzxZ1fPviG71mLk3w2GSMooQdyrf4v2aecmwqHdl/5CFx/JwMvtBea7xbT0wsqXpDx5ENV1RuQpTdt/WBLBdpMCK/g2gFNYgNFNucQWm78kxGEZt5y9HbHc/6wYLIP7MPey5+uC9blCYOyZ1MF4WT9tbh+7gjzzdElBzu/rg0UDj2VjLTt3DfiNZXbZ6+3FfdGxQe4PARERknusF5ZiddEd03eiHlPhHG/s0Z3YGa79/X7p0CeXl5XBxcdGpOU9ENUd6erqmZ4l2poszREdHY/Xq1QgNDUV6errTxkF1lyPel+xecio2NlZTd8xeGNAgZxCW9VC6SODtKkVzHxezJ3s85brPhYIyy+OHeYJm5F5yiUWlNKQSCV6P8MX6CwXILtI9Vtb9Cp1JsqwildGARoVI/PNqYR4qVCrIbIho1zRlKv1mXNpUUGFmZy+4SKT49vcCZBY+2N41X/8+CpAHorVHe4T7tNG8Pg6WD8XBO3tRqi5BuPfjuHL/As4VnNbZT5gJ4uPqZu1NsqseIW64ll+BbVcqr8wOdBfPWCquUONuyYPHnHYpG2GyktTmTgBENYO7ixRzuvhg8x/3oUblZIq1wQwA8HOTYVZnb2y7cl8vMN3US4aJ7c0PPogRZlOUWZihISxRFertgkfMCCQ8084TFWrgl+uVQY2GSstLgkglQGs/ORp7ynD4RgmKytVwd5GgdxM3dAioefVpiYjI/hp7umDGI174Ob0IV+7qBtgtLaNIREREtYNDemjYM+nD3sERInMJJ+8HhLrj6baWXeHj6ao7iVVgRc2pvBLdyXVfM5qRC7X2k+PtbvpX8L6yLwc37z84fnZRBVr7GZ4EEgtolKkqcP3+XTTztP4K4Zqm1ERAAwAC3dXwlLtgbldfneVXdrsgTSvx4uOIofhnp74iRwgAoB2Zfhx+a99GXmmRwXP6yGtGQMNFKsGz7TzxbDvjz4fkmyX49MSDevjaQULh+wTL3VNd8miQAo8G2a9fzOPBbng82DHPf2GsxdLJH+H7wsiWSrM+u3m7SvHSo9546VH9esbWYIYXEVH91aeJO/o0ccfy0/ew99qD7D9r+hcSERFRzWf3gMa+ffvsfUgipxBmaFjTiFsvQ8OMsk9CeSW6s0vmNCM3V6BSqhPQyLpveCJfrVZDZSBYeSU/p04FNExlaABAUUUZPOX6E5blat2/l4vE/L+Xq9T4Fco+rpaVK3M24XNGe+JT+P2SsWsi57C1h4YwAGKi5QcREZHD6L+nOWkgRERE5FB2D2j06dPH3ockcooKwQdgmRWXkHvK7ZGhIQxoWF6Ww5AgdxmAMs3v2UWGJ/LLVIBar1BQpSv5dxAZbLdhOV1phRkBjfIy0eXlKkFAw4JSXKYDGjUjQ8NcMsFN135OCedMmaFB5BzC5tkWZ2gInsyWlEQkIiKyJ+F7mlh2ORGRPaSlpaGwsNDi/fz8/NC4cWMHjIjqm8LCQqSlpVm1b5s2bSCX1+4SvQ4pOUVUFwizEayZo7FPySlHZmjoTqBnG8nQKFUJOzo8cCU/x25jqgmEGRrC5txAZYaGmHK17r4WZWjIjL8k17qAhiDtQvtLpfCxxClQIucQBiAsnfwpF2Yz1p12SkREVMsIP3syQ4OIHGXSpElISkqyeL+JEyciISHB/gOieic5ORl9+4qVNzctLS0NYWFh9h1QNWNAg8iAmlJyKrfYcQGNygyNB4RNw7WVVqj1JvWrpBXcsduYaoIyQVDC3cUFJRUVqNAqJ2V+hob5GTUmMzRqSA8Nc1mWocGQBpEzCJuC25yhwecyERE5iV7WITM0iKiGCgsLs2v/YVskJCQwyEK1DgMaRAYIr1IVXvFjDkeUnPJzZIZGUQVUarXo5HKZCoDBHhp1K6AhLDnlKnWBFFIUlJdolhnO0HBMDw03mYvJDI6aRu8qOTYFJ6px9EtO2dhDgxkaRETkJOyhQUTVZf/+/c4eAtVzkZGRNSYo5gz82klkgH4PDcuP4ekqyNAos/zF5q4goOFjz4CGu+6xylX6AZQqxjI06nrJKblUCncX3WCCQ3poyAwHNLxrWXYGoD+xqV3GTfgoYzyDyDlsnfwRXv3KHhpEROQsLoK3IEuD9ERERFQ7MKBBZIDw8689MjSKytUWfbAurVCjUFCg3M/Nfk9bX4UUgiEiy0AfjTKV4YBGVnEBCstKRNfVRqUq/QwNd5luwyRzMzRkFmVoGM7AqG39MwD9rItyIyWnWKWGyDmEgccyGzM0rCnPSEREZA/M0CAiIqofGNAgMkB41ak1F516yfV3KrQgS0MsW8KePTQkEgkChX007hvO0NBv5fxAXeqjIZ6hYWZAQ2VDU3AjJadqY0BDWEtfjQdZGsLMSF7UTeQcej00LIhnqNVqvX5TzNAgIiJnsbWMIhEREdUODGgQGaCfoWH5MTyE6Q+wrI+GMKAhlwJKYS61jYIEfTSyisQzNEpVMJihAdStPhplgrJRohka5eWi++r10LCk5JSxgIbc3ezj1BRiZdqqSrkJnwVSFp0icgoXwcuOJZM/wmAGwAwNIiJyHmFGvdj7FBEREdV+DGgQGSD8ACyz4qpTuUwChWB2p6DU+gwNX4UUEjvX5tHL0DAQ0Cgz0kMDANLqUECjVKUbrJBLpeaXnBL20LAkQ8NID43amKEhVqat6nnFpuBENYNehoYF5TnEtmWGBhEROQszNIiIiOoHBjSIDKgQfAC29qpTT7mwMbglGRq6wQV7lpuqEqjUPWa2gR4apSq1fp0gLXWpMbhohoaw5JShpuA2ZWjUrR4aYs+Zir8eQ+yhQVQz2DL5UyHyniA8HhERUXXR66HBeAYREVGdxK+dRAboZWhYG9Bw1X2aWRTQKBZmaBi+gt9aQWZmaJSayNC4UlB3Ahp2zdAwUkZKyHjJqVoY0BC5UltTcooBDaIawZbJH9EMDT6ZiYjISZihQUREVD8woEFkgEpw5ak1JacA/cbgtpacsrdAQQ+N20UqvdsOAGUmemjUpZJT+k3BZeY3BRdmaNTrpuD6y8qrmoILlvPNiMg5bJn8EdtWrHcOERFRdbCljCIRERHVHvzaSWSAvTI0hI3BLcnQyBUGNNzs/5QVZmhUqIE7xfpjNJmhkX9Hry9CbaVfckom0hTcUIaGbjDEopJTMmMlp+pGU3CVpoeG7nIpr+omcgpbJn/Emq2yhwYRETkLMzSIiIjqBwY0iAyoEEzqWDtH4+kq7KFhfYaGnwMyNLxcJRBWssoS6aNRplJD/7r6B4oqynCrKN/Oo3MO/ZJT+gGN4grdbao4LEOjNpacEglSVH2xFGYBMZ5B5Bz2ztAQy8wiIiKqDsKMerHAOxEREdV+DGgQGSBsdio2OWsOTxsyNO5WQ8kpiUSCQDP6aJRWqE1mYKQV1I2yU3oZGjILSk7p9dCovyWnxJuCV/7PklNENYMwo6JCrR9wNESs3wYTNIiIyFmEQXVmaBAREdVNnEMiMkCv5JSVzxZPK3toqNTqaumhAQBBgj4aWff1gy6memgAlWWn6gK9DA2JBSWn9DI0zG8KLjcS0PCuhRkaYhObbApOVLPIRd5WhBmKhggnilyklUFyIiIiZxAG6dlDg4iIqG5iQIPIAOGEq7UZGl6u1mVoFJSp9YIqjgpomJuhYazkFABcyc+x57CcRj9DwwXuLrr9LZihYZpEItHL0qjKfBI+v3hVN5FziPW8KDczQ0MY+LD2fZKIiMge9Moo1pH+fkRERKSLAQ0bSSQSs/5FRkba5Xzr1q3DgAED0KhRI7i5uSE0NBTPPvssjhw5Ypfj0wMVghlXq3toCEtOlZoX0BBmZwCAj6MCGoIMjWyRHhpiTcE9XFx1fq87AQ3d2y+XSs3K0FCr1aiwpYeGrG4FNAD9slOGSk7xqm4i5xDreWHuFa3CiSLhRBIREVF1EsvQMFUyl8iZ0tPTNXNGCQkJzh4OGRAbG6v5O5Fj7d+/X3Nf79+/39nDQXR0NCQSCcLCwpw9FBLgV89aoqioCEOHDsX48eOxe/du3Lp1CyUlJbh69SrWrl2Lnj174r333nP2MOsUvZJTVr53eQhLTpnZFDyvWHdGyctVInolrT0Eueu+FIhmaIiUnHrIu4HO73Wlh0apXkBDpOSUSIaGMJgBADKLmoK7GFxXG5uCA/rNGQ01BeebEZFziGZomFlzXBj4YENwIiJyJrH3ITYGJyIiEqdSqXDgwAHMmzcPkZGRaNSoEVxdXeHt7Y2OHTtixowZOH36tLOHKcrw7BlZZPr06ZgxY4bB9R4eHjYdf/LkydixYwcAoG/fvnjllVcQEhKCM2fO4MMPP8Tly5cRGxuL4OBgTJ061aZzUdWV9rrLhBOz5vIUlJy6X65GhUpt8nh5JbqT6o4qNwXoZ2jcLlKhXKXWmegqFfk28JBXAE7duaH5va700BBmaLhKzWsKLiw3Bdiz5JS72cepSYRfLDUZGiw5RVQjiGVVmJuhIcxkdFTQnYiIyBziQXpmEBJZa//+/ejbty8AYN++fXarPELkTLGxsZoLwut7Fl9YWBiuXbumt7ysrAypqalITU3F8uXLMWfOHCxcuLBGZSkxoGEnQUFB6Nixo0OOvXfvXnz//fcAgOHDh2Pz5s2Q/VWa5rHHHsOIESPQpUsXXL16FW+88QbGjh0LPz8/h4ylvhB7SbM2Q0PYFBwACsvV8HY1fsBcQckpPwcGNIIEPTTUAO4Uq3SahZep1FALMhBaegXo/J5ReBclFeVQyGr3S0tphRkZGiIlp8QyNCwqOWUgoCGXyuBWS+/TysDdg2dUVUBDeE/VoPdFonrFlh4a5YLNOGFERETOJPY+VNm/jR80iYjIcgkJCXW6HNyNG5UXKD/00EMYM2YMevTogZCQEBQVFWHfvn34v//7P+Tm5uKTTz6BTCbDhx9+6OQRP8CvnrXAp59+CgBwcXFBXFycJphRpUGDBvj4448BAHl5eVi5cmW1j7GuEbs61fqAhv7TzJw+GncFAQ0fheGr923lIZfAXXApfZagj4ZYDw1hySk11LhakOuYQVajMrWVGRpiAQ1LMjQMBC185G41KhJuCb0eGirxpuC189YR1X5i723WZmiwKTgRETmTi8j7kLnvaURERPVN165d8fPPP+PixYtYuHAhhg8fji5duqBnz554++23kZycjMDAQADAokWLcOXKFSeP+AEGNGq4/Px87NmzBwDQv39/NGnSRHS7p556Ct7e3gCAzZs3V9v46iphfX8AkFo5UeMqk0AYizCnj4awKbgjS05JJBIECrI0hH00ykR6aPgp3OEnKIV0pQ700dBvCm5ehoZoySk7ZGjU1obggJGm4HolpzgRSuQMEolE73lqdQ8NfqokIiInEi+jWL/LiRARERly+PBhDBw40OAFtC1btsQ777wDACgvL8dPP/1UjaMzjl89a7jk5GSUlpYCAPr06WNwO1dXV3Tr1k2zT1mZ/mQrmU+seZwtEzXCLA1zMjRyi6uv5BQABCkFjcFFMjSExbikkKKFoOzUlfwch4yvOglLTtmWoWF+Zk2dDGgIytlUGGoKzngGkdMIy06VmXk1q7A0FTM0iIjImcR6FArLIxI52qFDh/DCCy+gTZs28Pb2hqurK5o0aYJhw4bhyy+/RF5entnHio6OhkQiQVhYmNHtEhISIJFIIJFIkJ6eLrrN3r178fTTT6N58+Zwd3eHUqlEaGgounXrhjlz5mDv3r2abdPT0yGRSDT9M4DKXq5V56j6Z6gUz759+zBx4kS0aNECSqUS3t7e6NSpE15//XVNiRsxsbGxmmMDwN27d7FgwQKEh4fD19fX4Dl/+uknjB07Fs2aNYObmxt8fX0RERGB9957D7m5pitIZGRkICYmBi1atICbmxtCQkIwYsQIJCYmmtzXWlX3sfZt2rhxI/r374+goCC4u7ujbdu2mDt3rlmPmdLSUsTFxaFv374IDAyEq6srGjVqhCFDhuDbb7+FSuTiyyrCx9n169cxe/ZstG7dGkqlEoGBgRg6dCh+/vlni26PIWFhYZBIJIiOjjZ5u8QcPXoU8+fP12ti3b59e0yfPh3nzp0T3a/qeVLVPwOA3mNa+Bwy9zl45swZTJ06Fa1atYJSqYSXlxc6dOiAWbNmGXxOAuL32+7duzF8+HA0atQICoUCzZs3x/Tp05GRkWHuXWRX2q8Dly9fdsoYxNTOouw10MaNG7Fhwwakp6dDJpOhUaNGeOKJJxAdHa3zx7eU9hOxbdu2Rrdt27Ytdu3ahfLycly6dAnt27e3+rx1wR937+Fcrm62QKCbFxq6e5vc9/5fGRTFqkKUqIrgLQsweAX57eJCXC3IRVNPXwS6eYpu4yGXIkcrQJF2rxy+blLcKroHT7kCHi4KvX1yiquvKTgAnQyNYtV9HLyVAzfFg+yL9MICVKjLdfaRSiRo4eWPEzkPXliPZV/F4w2a6R2/tU8gPOUPbmduyX2o1GoEuHlYNE61Wo0r+Tlwd5Ejv6wEhWWlFu1vjuziAp3fxTI0CstLkXJb9w0lS7AfYGGGhsxAQENeiwMagqfNjcIKXLlbphc0ZECDyHnkUqBE6y3nWn65WUH8W4W671PM0CAiImdyEfk8mX63DIWCSL2PqxQB7o4r50v1U1FREZ5//nmsW7dOb93169dx/fp1bN++HdnZ2YiNja3Wsc2aNQv//ve/9ZZfvXoVV69exa+//oqEhATcvn3bpvMUFxdj0qRJmh6w2s6ePYuzZ89i2bJlWLduHYYPH270WJcuXcKAAQOMTgbn5uYiKipKJxgDACUlJThx4gROnDiBuLg4bNmyRXMBsNAvv/yCYcOG4d69e5plmZmZ2LZtG7Zt21Ztf6vnn38e33zzjc6yCxcuYOHChVizZg327NljcE4wPT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2Hb8pJSUlmp+FLRCciQENOxFGAP/44w/88ccfWLNmDUaNGoWEhAT4+PhYfFztCJyhclNVmjZtqvn52rVrFgc0TEX7MjMzLTqes31y6hhWXNaPID/kHo7OXk+a3D+18DBSCw8CALxk/rhdHANfhe7f8MNTe/BWyk7N7x9HDMU/O+kHsISNwddfKMCs5K24VnIBrhJ39PAZhUDXpnr7afN1c3BA468G4KmFh5BaeAi4DXxhIvgqk0jQ3FP3DTHhj+NI+OO43rYKmQs2RD6HEc06IOFSMl48sgmlFRVY0Hkg3nqkv1ljLCovw/DEb7An85J5N8pOxAIaxRXl6LLt3yb3taiHhtRADw1BWa/aRHil3PcXCvH9hUK97RjPIHKeygyNB1HG+DP5Vh1H7MpYIiKi6iKVVH6m1L5u5rOUe3rbDWvujufae1XbuGoqtUqN8vslpjesI1yUCkgc9FlFpVJh5MiR2L17NwCgVatWmDFjBiIiIqBUKpGZmYnDhw9jw4YNDjm/Mf/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc2ztOSq1Wo2oqChs374dADB8+HCMGzcOLVq0gFQqxbFjx7B48WJcvXoVUVFROHToECIiIgyOOyoqCtevX8fLL7+MESNGwM/PD5cuXUJoaCiAyknW/v37IyUlBTKZDOPHj8eQIUPQvHlzlJWV4cCBA/jss8+QlZWFIUOG4OTJk5p9q1y9elUTzJBKpZg6dSqioqLg4+OD06dPY+HChYiNjTU6TnuIi4tDcnIyunbtilmzZqFVq1bIyspCQkICNmzYgBs3bmDgwIE4e/YsvLx0X7sKCgrQr18/TW+DUaNGYfLkyQgJCUFaWhqWLl2KpKQkHDx4EMOHD8eBAwcMTkrfv38fY8eOxd27d/Hmm29iyJAhUCgU+PXXX/HRRx8hMzMTn332GZo1a4ZXXnnFofeJIeXl5fDz88PIkSPRu3dvtGrVCh4eHrhx4wZSUlLw+eef4/bt23jppZfQtm1b/O1vf9PsO2rUKERERCAuLg7Lli0DUJlZIdS4cWOzxxMXF4d58+YBAAIDA/HGG2+gR48eqKioQGJiIhYtWoTCwkJER0ejQYMGGDJkiMFjrVixAocPH0afPn0wbdo0tG7dGnl5eVizZg3WrFmD7OxsTJ48GUeOHDF7fPaQlJSk+bm6gynGMKBhI6VSiREjRqBfv35o27YtPD09kZ2djaSkJHz11VfIycnBTz/9pHlzk8vlpg+qJT//waSCp6f41f9VPDweXOleUKB/pbgp2gGRuuyPopNoq3wcSpnhTI1SVTF+Lzys+T2/4g7WXknGu+EPJt7vl5fi/VO7dfZ75+T/MKPtEzqZCADg5ao7qX27LAPXSi5UnktdhHP3j6CPqYCGo0tOuctQpirBuULzXxwlEoleySlDSirK8XbKzxjWtB2mHNqoKc8Ue3IXXm7XE95mlFXadf1CtQczAEAuleqVnDKXzA49NLzl+hk8tYVYw2ExrFRD5Dz2yqwQuzKWiIioukgkErhIzS+dWN+V3y/B6Q9/cvYwqs3D80ZB7umYzPelS5dqghmjR4/GunXroFDofocbOnQoFixYUO0XilYFUUJDQ3Ho0CG9eaXIyEjExMTgzp0H1S3kcjk6duyok7HRvHlzdOzY0eB5Vq5cie3bt0Mul2Pr1q0YNGiQzvpu3brhueeeQ69evZCamopXX30VBw8eNHi8s2fPYufOnRgwYIBmWZcuXTQ/v//++0hJSYGvry8SExN11gFAz5498cwzz6B79+7IzMzEvHnzsHbtWp1tXnvtNU1mxrfffounn35asy4iIgJjx45Fr169cPy4/gWb9pScnIwhQ4Zgy5YtcHF5ME07ePBgdOzYEe+88w6uXr2KBQsW4JNPPtHZ97333tMEM+bPn48FCxZo1nXp0gVjxozBc889h7Vr1+Lw4cOIj4/H9OnTRceRnZ2NvLw8JCYmonfv3prlXbt2xZgxY/D4448jIyMDb731FsaPH69pFl2dBg8ejPHjx0OpVOosDw8Px9ChQzFz5kz07t0bp0+fxrvvvqsT0PD19YWvry+CgoI0y4w9pk3Jzs7G66+/DgAICQnB0aNHdeZVe/TogREjRqBXr14oLCzE1KlTkZaWZnBe+PDhw5gyZQqWL1+u09OiX79+cHV1xcqVK3H06FGcPHkS4eHhVo/bEvfv39cERBUKBUaOHFkt5zUHiwPY6Pr161i3bh1eeOEF9OzZE48++iiefPJJfPDBB0hNTdU8yJKSkjQRQEsUFxdrfnZ1dTW6rfYbZlFRkcXnqk/uq4xffZpfkQsVdD8JZ9zXrb14qygfJRW6JZhKKspx4W623vHCvHVjh3nlutvklxtvpO0hl6Ch0rGpXS19XVCsKoAa5n8D6ODbEN2DQk1v+JdL927jTkmRTq+JcrUKv2ZfNWv/a4V5Zp/Lnjr6BaOZhy+8LSz91MIrAG4y8+PGHXwbiS5/NMD8KwRqmqZepm+/ixRopGR8nchZmnra5/lnzvOdiIjIkfheRNVNpVJh0aJFACozFtasWaMXzKgilUotuvrbHm7evAkA6Ny5s9GLZE2VIjJGrVbj448/BgDMnDlTL5hRxc/PT3NfHTp0CJcuGb5YMTo6WieYoa2goABffvklAGDBggV6wYwqoaGhePvttwFUlokvLHxQKeDmzZvYvHkzAGDYsGE6wYwqXl5eiI+PNzhGe1EoFFixYoVOMKPKW2+9pZl0//rrrzU9doHKLJWVK1cCADp06CBaHksikSAuLg4BAZUXoi5dutToWKZNm6YTzKgSEhKiKTVVWFiI1atXm3fj7Kxx48Z6wQxtPj4+eP/99wEABw8eRE6O43q8rlq1Cvfv3wcAfPbZZ6IXiYeHh2Pu3LkAKuePjTXVDg4OxhdffCHaoHvOnDman3/55RcbR26+N954A1evVs7XxcTEICQkpNrObQoDGjby9fU1uK5hw4b44YcfNNG3L774wuLju7k9mEDVfuESo13XzN3d8hI1165dM/pPOwWxNpBJpJBCBin0AwEySeUkqqF/Jeq7evsUles2gS4RNI6ucvGefkBjcHN3dAtWwE0m+ev4ugGVUnWRwbE0UsoQ84i3XtNWe/N3k2HEQ/pBs6r7UPtfA4U3Pn98FJp7BeBh/xB81GUIGrl7wVUq0/knF2QcFFWUIatYP5jkZWYGQoVavKufBBK9c9vjXwOFB/7ZMRJPhrSCq8wF/+n9NB7yamDWvh18G2JNr3+IvhkZ0tTTF8u6P4UmSh+4SmXwkiswvkU4prURr/dZGzzdxgMdA+RwNfD4DnKXIuYRb7jx0m4ip4nu4InWvi6QG3lfNPZPIQPCA10xppVlPZGIiIjsbVonL4R5uxh93zLUG5HIGr/99pumfPeUKVNMVtaobsHBwQCAAwcOOKyh77lz5zTHjoqKMrqt9mS5sdI5zzzzjMF1SUlJuHv3rkXnKysrw4kTJzTL9+3bh4q/5nTEejJU6dq1Kzp06GD0HLYaMGCAwYliqVSKiRMnAgDu3LmDlJQUzboTJ05oGoZHR0cbLCXl7e2NcePGAaj8WxnLEjJ2X4wePVozB+rIhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqowcR1u7dq0mANauXTt88MEH1XJec/HyBQdr0aIFnnzySezYsQN//PEHbty4YVFES7s+nqkyUtrRZmveRE316KhtlvX6G5b1qkwv8/l2Pu6VPch2ie3mhycaBhnaFZ+eOYeDgqzCgnLd+qIlKt3sjCoXRTI03F2kmNX5Qf+NZ5JKcU7rNahcXYZVA/zhasHV/I7QqYFujNNLrsC9Z/9lcr83H/4b3nz4b3rL80qK4Pfd2zrL0vL1s1GUZpZzUkE8oDGu+SP4PvJZs45hixHNOmBEM8d+mHmx7RN4se0TDj1HdfJzk+Htbn7OHgYRGdHIwwULelh/VR4REVFNEeYjx8e9+J5G1efkyZOan3v16uXEkYibMGEC1qxZg5ycHHTs2BEjR47EwIED0atXLzz00EN2OYd2Sabu3bubvV9V9oiYhx9+2KzzVQVsLD2fdu8EYW8Qoa5duyI1NdXs81jKnPNXOXPmjKbB+dmzZzXLH3/8caPHePzxxzVVY86ePSt6v7m6uuKRRx4xeAy5XI7w8HDs27dPtPdEdbl9+zY+++wzbNq0CZcuXYLawIWvVds6StX937lzZ6PtBRo2bIiwsDCkp6fr/M2EDDV9r+Ln54eCggKd1gSOsn//fjz//PMAKrO3Nm3aZNWF847EgEY1aN++PXbs2AGgMsXIkoCGdpAhIyPDaDOia9euaX6uL/0wzCW8CEdtYGK8SnqB/qR7Ybluhoyw3FSVS/dMv2CKlU7KLS1CQ3fnNqcrqtDNQhE2wraUj6sbZBIpKrRKTF3O10/5M/7XeKBCxYK4REREREREtnJRKvDwvFHOHka1cVE6pi+h9oSpJZPr1aVfv35YunQpXn/9dRQVFWH9+vVYv349gMryPcOGDcP06dONTmSbkpWVZdV+VeV6xPj5Gb4ozh7n0+4Zot1TQUzDhg2tOp+5LDm/9rgtuQ2NGj0ob629nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUlCPL8VfdB6bue6Dy/k9PTzd6vxkrpQVUZusA0GQWOcrx48cxYsQIlJSUwNPTEzt27KhRzcCrMKBRDSwpOSPUvn17zc/nz583um3VehcXF7Rq1crqc9ZFEuj+DUxNoP9ZmKu3rKDMvICGWMkpIbGARk5JofMDGoKyWtY2wq4ikUgQoFAiq/hBdtHle/pvPOYGKrQDIzrnsW54RERERERE9ZJEKnFYk2yqWWJiYjB27Fh899132L17Nw4dOoS7d+/i+vXrWL58OeLj4zFv3jyrS8poT7Bu27YNYWFhZu1nbCLY2MS69vlSUlKMXh2vzVBVElvm7OzBHuevKcdwpNLSUowbNw45OTmQy+V4+eWXMXLkSLRu3Rp+fn6ack1XrlxBy5YtAcBo9oa91PT7zRKpqakYNGgQ8vPzoVAo8NNPP5nM/nEWBjSqwblz5zQ/W9pA5bHHHoOrqytKS0uRlJSEN998U3S70tJSHD16VLOPuS/o9YXw5cXUi9qfBXl6y/QyNAyVnLqXDbVabfBFTaVW4fr9e3rL75Q4v5G7vTM0AKCBm4duQEMkQ8NQKSkhgz006tAbCBEREREREdUODRo00PycmZlpsmyMJaquyFaZuABQu/y4IUFBQXj11Vfx6quvQqVS4bfffsPmzZuxdOlS5OXl4V//+hcee+wxjBw50uJxVjWcBir7CVQ1sXYU7fMFBgZaVT5dOwPk1q1bRquc3Lp1y+LjW8LU8bXXazdv1/751q1baN26tcFjaJfbMtQAPicnBxUVFUaDSVVjER6j6rEK2OfxKmbv3r2a/hFxcXE6vSm0VVf2iL+/PzIzM816fFTd/4bu+5rg8uXLePLJJ5GTkwMXFxesX78e/fr1c/awDGJTcAdLS0vD7t27AQAtW7ZE48aNLdrfy8tL8wBKTEzUNJsS+vHHH3HvXuUk+ejRo20Ycd0knPA2VnJKrVbjzwKxDA1BDw0DGRp3S4uRXWy438mtogKUqfRTxO6UGE63rC7CDA1ze1sY00Ch2yRWLKBhKPPC3O0YziAiIiIiIqLq1rlzZ83PBw4csOuxq3qqVjV+NuTixYsWHVcqlaJz585YsGAB9uzZo1m+YcMGne3MvXAwPDxc8/OhQ4csGos17HG+Tp06aX5OTk42uq2p9bay5PzawSLtn3/99Vejxzh27JjoftpKS0uNNtEuLy/Hb7/9JnoM7f6/ubn682lV7ty5Y3a5KCHtPiZ///vfDW6n3WNFjL0uiK26D1JSUlBeLj4/CFSWSPvzzz919qlpMjIy0L9/f2RmZkIqlWL16tVWBTerEwMaNti2bZvRB+2tW7cwZswYlJZWXtk/Y8YMvW0SEhIgkUggkUgQGxsrepw5c+YAqHzxiImJ0auXdvv2bbzxxhsAKqPhhqKU9ZlehoaRbfNKi3QaiFfR76FhuG7dRSN9NMTKTQGVJaeczVEZGtquiGVomJkGaO52RERERERERI72yCOPaK7uX7lyJQoKDF/caKnmzZsDAPLz83HhwgXRbUpLS7Fp0yarz9G5c2dNtoKwgbKb24OSZCUluhd4Co9RlSURHx+P4mL9+RR76t+/v6bfwOeff25VWaG+fftqMhFWr15tcLvk5GSjjZztYdeuXcjMzBRdp1KpNOPz8/PTCaB16dIFvr6+ACpvg6HMiPz8fE2wqn379kZ7vRi7LzZv3qwJVvTv319nnZ+fn2YsxgIK33//vdVloLTnXw1leahUKqxYscLoccx9XJtSdR/k5eXhxx9/NLjd119/rbnNwvutJsjKykL//v2Rnp4OAPjqq68wfvx45w7KDAxo2ODll19GaGgoZs6ciXXr1uHIkSP47bffkJiYiPnz56Njx444efIkAKBnz56IiYmx6jx/+9vf8I9//AMAsHXrVjz55JPYunUrjh8/jlWrVqFbt264evUqAODjjz822jypvtLroWHkBVQsOwMACsp1X+hKDZScAoBLRvpoGApo1IQMjft27qEB6GdolIpkpxgqJaW/naEMDeZoEBERERERUfWSSqV4/fXXAVRe5TxhwgTNRa1CKpUKN27cMPvYffr00fy8ePFi0W1mz56N69evGzzG+vXrjTZGPn78uGaSuiqAUkV74vvy5csGjyGVSjFv3jwAlf0LJkyYYHSi+N69e1i6dKnB9ab4+vripZdeAgAcPnwYs2bNMlrm6NatW1i5cqXOsuDgYM0V6Fu3btXLTgGAgoICTJs2zepxmqukpATTpk0Tbfa8cOFCnDlzBgAwefJkTZ8IAFAoFJoLms+ePYsFCxbo7a9Wq/HSSy9pglVV95shy5Ytw8GDB/WW37x5U3OxtVKpxMSJE/W26d27NwBgy5Ytoo+XCxcu4O233zZ6fmO0ewUnJCSIbjN37lykpKQYPY65j2tTJk2apAmsvfbaa6LPw1OnTuHDDz8EADRu3BijRo2y+nyOkJeXh4EDB2oCpv/3f/+HKVOmOHlU5mEPDRvduHEDX3zxBb744guD24wZMwYrV67UeeGx1DfffIN79+5hx44d2LdvH/bt26ezXiqV4u2338bUqVOtPkd9Ymz63FBA4355GVRqFaSSyjigoZJTAHDxruUZGnW1h0aAm9LkNiqzS04Z6qFh0ZCIiIiIiIiI7CImJgbbtm3D7t27sXnzZnTq1AkzZsxAREQElEolbt68iaNHj2LdunUYP368weocQuHh4ejevTuOHDmCFStWoLS0FBMnToSPjw8uXbqE+Ph47N27F0888QQOHz4seow33ngDL774IkaOHInevXujdevW8PDwQE5ODg4ePKiZy5LJZHrVPpo1a4YmTZogIyMDn376KZo0aYI2bdpoMhsaNmyoKTX04osvam7/xo0bkZKSgmnTpqFr167w8fHBvXv3cP78eezfvx9bt26Fm5ubycl1Y95//30kJSXh119/xZIlS7B//35MmTIFjz76KDw8PJCbm4vU1FQkJiZi586d6NSpk97tW7x4MXbv3o38/HyMHz8eSUlJiIqKgre3N06fPo2FCxfi4sWLiIiIMFnGyBYRERHYtm0bevTogVmzZqFVq1bIysrC6tWr8f333wOobGguFgx455138OOPP+LKlSuIjY3FmTNnMGnSJAQHByMtLQ1Lly7F/v37AQDdu3c3OmcYGBgIpVKJJ598ErNmzcKQIUOgUChw7NgxfPjhh5pg3IIFC0Qbus+YMQNbt25FUVERIiMjERsbi/DwcBQUFGDPnj1YsmQJAgMDIZPJkJ1t+CJgQwYOHIigoCBkZWVh/vz5SE9Px+jRo9GgQQP88ccfWLFiBfbs2YMePXoYLUX2xBNPaH6eNWsW3nrrLQQHB2tKUYWFhcHFxfR0eWBgIBYtWoSYmBhkZGSgS5cuePPNN/HEE0+gvLwciYmJWLRoEQoKCiCRSBAfH1+j+h2XlJRg6NChmjJizzzzDPr37280I8nDw0Mv8OksDGjYYPXq1UhKSsKRI0dw5coV3L59G/fu3YOnpyeaNm2KJ554AhMnTkT37t1tPpe7uzu2b9+O7777DgkJCTh16hTy8vLQsGFD9OrVCy+99JJdzlNXWTLh/Weh4Xp/98vL4CmvDEyViGQaVLloRYZGjSg5JczQsEfJKUGGhhhmaBAREREREVFtJJVK8dNPP2HixIn44YcfcPHiRbz66qt2OfY333yDPn36aCa4hSWB5syZgw4dOhgMaACVV2GL7VtFoVDgq6++QkREhN66efPmYcaMGUhLS9Orqb9q1SpER0cDqOxLsH79erzyyiv46quvcPnyZfzzn/80OCaxCXFLKBQK7N69G9HR0fjxxx9x6tQpowESb29vvWVhYWHYunUrRowYgfz8fMTFxSEuLk5nm3feeQcSicShAY2YmBgkJSUhISFBU51FW3BwMP73v//Bx8dHb52Xlxf27NmDwYMH4/z589i0aZNoCbIePXpg69atRht+K5VK/PDDDxg8eDA++ugjfPTRR3rbzJw5E7Nnzxbdf+DAgZg5cyY+//xzZGRkiAbItm7disGDBxscgzEeHh5Ys2YNRo0aheLiYixfvhzLly/X2SYyMhJLly412qvioYcewrhx47Bhwwbs2rULu3bt0lmflpaGsLAws8Y0Y8YM5OXl4e2338atW7cwa9YsvW0UCgXi4+MxZMgQs45ZXTIzM3VeN9auXYu1a9ca3adPnz6aAJmzMaBhgz59+uikAFojOjpa8wZgjvHjx9eKWmY1jSUlp9INZGgAlX00NAENoxkatbPklF6Ghj1KTrmZDmiY2xvD3ObhRERERERERNVFqVRi48aN2LdvH1atWoWDBw/i5s2bqKioQMOGDfHoo49i2LBhePrppy06btu2bZGSkoJ//etf2LFjBzIzM+Hj44MuXbrg5ZdfxpAhQwyW3wGAffv2Ydu2bThw4AAuXryImzdvIjc3F0qlEi1btkS/fv0wffp0tGjRQnT/6dOno2HDhli+fDl+++033Llzx2AvWblcjri4OEyfPh0rVqzA/v37cfXqVRQUFMDT0xPNmzdHly5dMHjwYAwbNsyi+0GMl5cXNm3ahIMHD2L16tX45ZdfcOPGDRQVFcHb2xstW7ZE165dMXToUAwYMED0GJGRkUhNTcVHH32kuX/9/PwQERGBl19+GQMHDjQ7o8YWq1atwoABAxAfH48zZ86goKAAoaGhGDVqFN58802jpeXDwsJw6tQprFixAhs3bsTZs2dx7949+Pv7Izw8HM888wzGjx8PqdR014GIiAikpKTg008/xfbt23H9+nV4eHjgsccew8yZM00GI5YsWYJu3brhq6++wm+//YaysjI0a9YMo0ePxpw5cxAQEGDxfaNt4MCBOH78OBYuXIi9e/ciOzsbvr6+aN++PZ555hk8//zzmpL8xnz77beIiIjADz/8gAsXLiA/P99o2TJj5s2bh2HDhmHp0qXYu3cvbty4AalUimbNmmHAgAF49dVXzQ6QkPkkamu7sVC9k5GRoWl2de3aNU3Tp9qg0ffv4VZRvub3xIHT0C+klei2Y/auxo9/nhFddzlqLlp4Vb4Af3pmP14//l/R7dxkLih87kNNeSpt3f/7BY5m/6m3vF9wKyQOcnx9RmNmHNmEZeePaH6f3rY74rqPsemYO679jqGJXxvd5n8DpmBA4zYmjzX72Fb8X+oBveUTWnbB6t6WfTAkIiIiIiKqqaz9/n3p0iWUl5fDxcVFp+Y8EdUc6enpmtI92pkuzhAdHY3Vq1cjNDRU0xiayJ4c8b7EpuBULwgLEqmNdNEw1EMDAArKHjS2KjHSFLy4ohwZhXdF19XoDA0HlJwyp4eGuZkXhjI5JGyiQUREREREREREVOcxoEH1gn7JKcPbGgtoFJaXan42VnIKEO+jUa6qQGbRPdHta0IPjftO6qFha8kphjOIiIiIiIiIiIjqPgY0qF4QXsBvKEOjsKwEt40EFgrKLAhoiPTRuHH/nsHJ+zslRUaPVx2c1UPD1qbgREREREREREREVPexKTjVS4amz/8sNJydAQgyNFQVRre9eO+23jJD5aYAoKC8BKUV5XCVOe9pqRfQsEOGhrfcDS4SKcqNBCPMztBQseQUERERERERETlPWloaCgstr7Lh5+eHxo0bO2BEVN8UFhYiLS3Nqn3btGkDudz2+T5nYkCD6gX9klPiE+PGyk0BlUGHKqYyNC6JlJwyFtAAKvtoNFJ6G93GkYQ9NJR2yNCQSCRo4OaBm1pN2YXMzbwwXHKKAQ0iIiIiIiIicrxJkyYhKSnJ4v0mTpyIhIQE+w+I6p3k5GT07dvXqn3T0tIQFhZm3wFVM5aconrB3KbgpgIahdolpwRNwYPcPHV+v3jXsgwNALhT6tzG4I7I0ACAAIXxxuDsoUFERERERERE9UFYWBjUajXUajWio6OdOpaEhASo1Wqkp6c7dRxElmCGBtULwpJEhubP023I0OjkF4w9mZc0v6cV3NErIXWt8K7R4zu7j4ZeU3A7ZGgApvtomJuhYW7gg4iIiIiIiIjIEfbv3+/sIVA9FxkZabD6TH3ADA2qF8y9gt9khka54abgHf0a6fxeoVYhreCOzjJTGRo5xZbXYLQnR2VoNFAYD2iYn6HBHhpERERERERERET1FQMaVC/oZWhYWXKqwEjJqYbunggUZCJcEjQGr/Elp5yWocGSU0RERERERERERGQcAxpUL+j30BD3Z6FuQCNE0KBbN0OjQmedQuqC1t6BOssu3tVtDC4MaMgkuk/BOyV1s4eG6QwNNgUnIiIiIiIiIiIi4xjQoHpBOOEtVmeupKIcN+7f01nWwVe3jFRBmeEeGgqZC1r7CAIa97J1ts8qLtBZ31awvbN7aAgzNJQurnY5boDdMjTqb31AIiIiIiIiIiKi+o4BDaqXxKbFxcpBtfdtqPO7ToaGSj+g0cq7gc4y7QyNDJHjP+IfovN7TonzemiUqSpQLsiAqK4MDVubgrOFBhERERERERERUd3HgAbVC3o9NEQmxoX9M7zlbmgsKDlVYKQpuGjJKa0eGsKAiZdcgeae/jrLnFlySpidAQDuLi52OXYDN6XR9eY3BWfJKSIiIiIiIiIiovqKAQ2qF8zpoSEMaIR5+sFTrtBZVmgsoCGT6QU0rt+/i8K/ylRdK7yrs66phy/8FboT/c4sOSXsnwHUvAwNgwENxjOIiIiIiIiIiIjqPAY0qF7Q66EhEtJIL7ij83uopx88BD0kdHpoqPSbgj8kKDkFAH/k5wDQz9Bo6uGLAEFAw5klp8QzNOwU0DDRQ8P8DA320CAiIiIiIiIiIqqv7FNPhqiGE17Bf7e0GNmCBt2XtMpDAeIBjXtlJZr9hAEAhcwF7i5yNPXw1QlenLidgRClN/7I1z2+WIZGdnGh3riM3i5IEKBQ6pXUskRpRTnulhXrNUQH7JehEWAiQ+Numf7fQ0yxSBYJwJJTRERERERERERE9QEDGlQvCCe8Jx1cb3KfUA/9klNX8nMQtC5WdHuFrPLp1No7UCeg8fyhDcAh/e2bevjoBTSu379r8PiGhCi98UPfCegeFGbRfgDwf6kHMD9lJ+6LZGfIpTK4SGUWH1OMl+B+FJqf8jPmp/xs9fEZziAiIiIiIiIiIqr7WHKK6gVrEhjCvPQzNIxRSP8KaPjol50SU1lyynjmgjlu3L+H15P/a/F+d0ruY07yNtFgBmC/7AxAvym7vTn6+EREREREREREROR8DGhQvdDCM8DifR71b4xW3g3MLmfU0rvyHF0bNDP7+KGeflDaoU/FxXvZFu+Tln/HaO8KcwMzNUELL8v/vkRERERERERERFS7MKBB9cJHEUMQ5uln1rYKmQvefqQ/HvJugIbuXvioy2Cj2QruMjk+6jIEDd29AAB/b/4oRjbrYDAQIpfK8Gr7XnjUPwTuLnJ8/vgoeLoYL8lkiqEsC2NKKsoNrmvk7oXPHhthy5CqTb/gVpjc6jFnD4OIiIiIiIiIiIgcjD00qF54xD8EV6Lm4U7JfahgOCsBALxcFHDTypp44+G/YVaH3rhbViy6vY/cDa6yB08ldxc5fuo3CfllxSgWCRp4uijgrnX851s/jgkPRSCvtMjs2/N73i302blM8/v98jKo1WqLSi+VqHTH5q9Q4vxT/wQANFB4OLyM0+DGbbG2z3iUq1UW76uUyVGiqoCLRApvVzcHjI6IiIiIiIjIcdLT09G8eXMAwKpVqxAdHe3cAZGo2NhYvPfeewAAtZEqF2S7/fv3o2/fvgCAffv2ITIy0qnjiY6OxurVqxEaGor09HSnjoV0MaBB9YZEIkGAm3U9K1xlLgiUeVq0j5fcDV5mVpOSS2UIdDP/+HeVusEVNdQoqSjXCcSYIszQcJfJLRqDPfgJmqJbwvbuI0RERERERERERPVPVlYWdu7cieTkZKSkpCAzMxO3b99GaWkp/P398fDDD2PUqFGYMGECPDxq1iwcS04R1UJifTfuV1hWdkoY0FDIqje+qTaRKUNEREREREREzrF//35IJBJIJBLs37/f2cMhsovY2FjN47q+27p1K6Kjo/Hll1/iyJEjSE9PR0FBAUpLS3Hz5k3s2rULM2bMQIcOHXDixAlnD1cHMzSIaiGlzFVvWVF5GWBBKw5hOSyFVGbrsIiIiIiIiIiIiGq9hIQEJCQkOHsYDiORSNCqVStERkYiPDwcjRs3RnBwMIqLi/Hnn3/i22+/xf/+9z/8+eefePLJJ3H27FmEhIQ4e9gAGNAgqpVEMzTKSy06hrCHhpuRxudERERERERERERUN0ycOBHPP/+86LpevXrh2Wefxb///W/MmjULubm5+PTTT/HZZ59V8yjFseQUUS0kl8ogk+g+fWtbySkiIiIiIiIiIiKqfi4upucBX3rpJXh6Vvbb/eWXXxw9JLMxoEFUC0kkErgLMiosztDQC2hUb8kpdtAgIiIiIiKiuuTQoUN44YUX0KZNG3h7e8PV1RVNmjTBsGHD8OWXXyIvL8/sY0VHR0MikSAsLMzodgkJCZqeAOnp6aLb7N27F08//TSaN28Od3d3KJVKhIaGolu3bpgzZw727t2r2TY9PR0SiQR9+/bVLOvbt6/mHFX/DJXi2bdvHyZOnIgWLVpAqVTC29sbnTp1wuuvv44bN24YvB3C3gZ3797FggULEB4eDl9fX4Pn/OmnnzB27Fg0a9YMbm5u8PX1RUREBN577z3k5uYave8AICMjAzExMWjRogXc3NwQEhKCESNGIDEx0eS+1qq6j7Vv08aNG9G/f38EBQXB3d0dbdu2xdy5c816zJSWliIuLg59+/ZFYGAgXF1d0ahRIwwZMgTffvstVCqVwX2Fj7Pr169j9uzZaN26NZRKJQIDAzF06FD8/PPPFt0eQ8LCwiCRSBAdHW3ydok5evQo5s+fj8jISDRq1Aiurq7w9vZG+/btMX36dJw7d050v6rnyXvvvadZJnxMC59D5j4Hz5w5g6lTp6JVq1ZQKpXw8vJChw4dMGvWLIPPSUD8ftu9ezeGDx+ORo0aQaFQoHnz5pg+fToyMjLMvYvsysXFBW5ubgCA4uJip4xBDC/JJqqllC5yFJSXaH6/X25hhoZK2EODLwdERERERERElioqKsLzzz+PdevW6a27fv06rl+/ju3btyM7OxuxsbHVOrZZs2bh3//+t97yq1ev4urVq/j111+RkJCA27dv23Se4uJiTJo0Cd9//73eurNnz+Ls2bNYtmwZ1q1bh+HDhxs91qVLlzBgwACjk8G5ubmIiorSCcYAQElJCU6cOIETJ04gLi4OW7ZsQbdu3USP8csvv2DYsGG4d++eZllmZia2bduGbdu2Vdvf6vnnn8c333yjs+zChQtYuHAh1qxZgz179qBt27ai+6anp2Pw4ME4f/68zvJbt25h586d2LlzJ5YvX44tW7bA39/f6DiOHz+OoUOHIisrS7OsqKgIO3bswI4dOzB79mwsXrzYyltpu4SEBEyaNElveVlZGX7//Xf8/vvvWLFiBT7//HPMmDGjWsb00UcfYf78+XpBo3PnzuHcuXNYtmwZ4uPjMWHCBJPHmjt3LhYuXKizLD09HV999RU2bdqEpKQktGvXzq7jN2XPnj2a1wZDj0Fn4AwmUS0l7KNheYZGhc7vLDlFRERERERUP6jV6hp1ta2jubm5aa78tzeVSoWRI0di9+7dAIBWrVphxowZiIiIgFKpRGZmJg4fPowNGzY45PzG/Pe//9UEMx5++GFMnz4d7dq1g4+PD/Ly8pCamorExEQcO3ZMs0/jxo1x5swZJCcnY/LkyQCAb775Bo899pjOsZs0aaL5Wa1WIyoqCtu3bwcADB8+HOPGjUOLFi0glUpx7NgxLF68GFevXkVUVBQOHTqEiIgIg+OOiorC9evX8fLLL2PEiBHw8/PDpUuXEBoaCqAyaNG/f3+kpKRAJpNh/PjxGDJkCJo3b46ysjIcOHAAn332GbKysjBkyBCcPHlSs2+Vq1evaoIZUqkUU6dORVRUFHx8fHD69GksXLgQsbGxRsdpD3FxcUhOTkbXrl0xa9YstGrVCllZWUhISMCGDRtw48YNDBw4EGfPnoWXl5fOvgUFBejXrx+uXLkCABg1ahQmT56MkJAQpKWlYenSpUhKSsLBgwcxfPhwHDhwADID1Tnu37+PsWPH4u7du3jzzTcxZMgQKBQK/Prrr/joo4+QmZmJzz77DM2aNcMrr7zi0PvEkPLycvj5+WHkyJHo3bs3WrVqBQ8PD9y4cQMpKSn4/PPPcfv2bbz00kto27Yt/va3v2n2HTVqFCIiIhAXF4dly5YBqMysEGrcuLHZ44mLi8O8efMAAIGBgXjjjTfQo0cPVFRUIDExEYsWLUJhYSGio6PRoEEDDBkyxOCxVqxYgcOHD6NPnz6YNm0aWrdujby8PKxZswZr1qxBdnY2Jk+ejCNHjpg9Pmvl5+fj2rVr2LBhg07PDGf93cVwBpOollK6uOr8XmRpDw1hhgYDGkRERERERPVCcXEx/vOf/zh7GNXmueeeg7u7u0OOvXTpUk0wY/To0Vi3bh0UCoXONkOHDsWCBQuQmZnpkDEYUhVECQ0NxaFDhzS18KtERkYiJiYGd+7c0SyTy+Xo2LGjTsZG8+bN0bFjR4PnWblyJbZv3w65XI6tW7di0KBBOuu7deuG5557Dr169UJqaipeffVVHDx40ODxzp49i507d2LAgAGaZV26dNH8/P777yMlJQW+vr5ITEzUWQcAPXv2xDPPPIPu3bsjMzMT8+bNw9q1a3W2ee211zSZGd9++y2efvppzbqIiAiMHTsWvXr1wvHjxw2O0x6Sk5MxZMgQbNmyRaenweDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOsHXfv36wdXVFStXrsTRo0dx8uRJhIeHWz1uQ2JjY3XKcWmTyWRYsmQJevbsaffzWos9NIhqKf0MDRubgrPkFBEREREREZHZVCoVFi1aBKAyY2HNmjV6wYwqUqnUoqu/7eHmzZsAgM6dO+sFM7SZKkVkjFqtxscffwwAmDlzpl4wo4qfn5/mvjp06BAuXbpk8JjR0dE6wQxtBQUF+PLLLwEACxYs0AtmVAkNDcXbb78NoLI/RWFhoWbdzZs3sXnzZgDAsGHDdIIZVby8vBAfH29wjPaiUCiwYsUK0QbNb731lmbS/euvv0Zp6YPKHCUlJVi5ciUAoEOHDqLlsSQSCeLi4hAQEACgMvhmzLRp03SCGVVCQkI0paYKCwuxevVq826cnTVu3FgvmKHNx8cH77//PgDg4MGDyMnJcdhYVq1ahfv37wMAPvvsM51gRpXw8HDMnTsXQGXpuZ9++sng8YKDg/HFF1+IZpLNmTNH83N1N+bu168fzp49i5iYmGo9rykMaBDVUkqZboaG7U3BqzegoVazLTgRERERERHVXr/99pumWe+UKVOMBg2cITg4GABw4MABXL582SHnOHfunObYUVFRRrfVniw3VjrnmWeeMbguKSkJd+/eteh8ZWVlOHHihGb5vn37UPFXGW6xngxVunbtig4dOhg9h60GDBiAkJAQ0XVSqRQTJ04EANy5cwcpKSmadSdOnNA0DI+OjjZYSsrb2xvjxo0DUPm3MpYlZOy+GD16NHx9fQHAoQ3TLVFYWIj09HSkpqZq+rRoZ0CcOnXKYeeuug98fX3x1FNPGdzuhRde0NtHTFRUlMFgaJs2bTSvLVUZOfY2Y8YMnDlzBmfOnMHRo0exatUq9O3bF3v27MHf//53/Prrrw45r7UY0CCqpdxtzNAo1gtoiL/5EREREREREZG+kydPan7u1auXE0cirqoRcU5ODjp27Ih//OMfWLVqFf744w+7nUO7JFP37t0hkUgM/tMO+FRlj4h5+OGHzTpfcHCw0fNplxTSPp927wRhbxChrl27Gl1vK0vOrz3us2fPan5+/PHHjR5De732ftpcXV3xyCOPGDyGXC7XlDoS6z1RXW7fvo158+ahTZs28PLy0pRD69SpEzp16oShQ4fqbOsoVfdj586dDZaRAoCGDRsiLCxMZx8xphpu+/n5Aajsb+EIQUFB6NixIzp27IjHH38c0dHR2Lt3Lz744AOcPn0akZGR2LVrl0PObQ3WmCGqpZQyQUCjwsIMDUEPDTeZ4RdgIiIiIiIiqjvc3Nzw3HPPOXsY1cbNzc0hx9WeMK3KhqhJ+vXrh6VLl+L1119HUVER1q9fj/Xr1wOoLN8zbNgwTJ8+3ehEtilZWVlW7VdVrkdM1eSto86n3TNEu6eCmIYNG1p1PnNZcn7tcVtyGxo1aiS6nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUVFFRkcPGUnUfmLrvgcr7Pz093ej9ZqyUFlCZrQNAk1lUXd566y1s3boVx44dw5QpU3D58mXR8mjVzfkjICKr6DUFLy83sKU49tAgIiIiIiKqnyQSicOaZFPNEhMTg7Fjx+K7777D7t27cejQIdy9exfXr1/H8uXLER8fj3nz5uGDDz6w6vjaE6zbtm3TXI1uirGJYGMT69rnS0lJMXp1vLYmTZqILhfrWVCd7HH+mnIMRyotLcW4ceOQk5MDuVyOl19+GSNHjkTr1q3h5+enKdd05coVtGzZEkD1lDqv6febPYwcORLHjh3D1atXcezYMTzxxBPOHhIDGkS1lX5TcFt7aFRvySl20CAiIiIiIqLarEGDBpqfMzMzTZaNsUTVFdkqlcrodtrNrg0JCgrCq6++ildffRUqlQq//fYbNm/ejKVLlyIvLw//+te/8Nhjj2HkyJEWj7Oq4TRQ2U9Au8yTI2ifLzAw0GCgwhjtDJBbt26JNnTWXu9Ipo6vvV67ebv2z7du3ULr1q0NHkO73JahBvA5OTmoqKgwGkyqGovwGFWPVcA+j1cxe/fu1fSPiIuL0+lNoa26skf8/f2RmZlp1uOj6v43dN/XdIGBgZqf//zzzxoR0GAPDaJaSpihcb/Csh4awpJT1d0UnIiIiIiIiKg269y5s+bnAwcO2PXYXl5eAKBp/GzIxYsXLTquVCpF586dsWDBAuzZs0ezfMOGDTrbmXvleVVfBQA4dOiQRWOxhj3O16lTJ83PycnJRrc1td5WlpxfO1ik/bOphs3Hjh0T3U9baWmp0Sba5eXl+O2330SPUfVYBYDc3FyDx7hz547Z5aKEUlNTNT///e9/N7iddo8VMfbKqKi6D1JSUlBupGJKVlYW/vzzT519apvr169rftbug+NMDGgQ1VK2Z2jo1t2r7pJTauZoEBERERERUS32yCOPaK7uX7lyJQoKCux27ObNmwOobAJ84cIF0W1KS0uxadMmq8/RuXNnTbaCsIGydt+RkpISo8eoypKIj49HcXGx1eMxR//+/TX9Bj7//HOrygr17dtXk4mwevVqg9slJycbbeRsD7t27UJmZqboOpVKpRmfn5+fTgCtS5cu8PX1BVB5GwxlRuTn52uCVe3btzfa68XYfbF582ZNsKJ///466/z8/DRjMRZQ+P77760uA6UdNDCU5aFSqbBixQqjxzH3cW1K1X2Ql5eHH3/80eB2X3/9teY2C++32kClUum8xmgHA52JAQ2iWspd2BS83MIMDb2SU8zQICIiIiIiIjKXVCrF66+/DgDIyMjAhAkTUFoqfrGhSqXCjRs3zD52nz59ND8vXrxYdJvZs2frXD0ttH79eqONkY8fP66ZpK4KoFTRnvi+fPmywWNIpVLMmzcPQGX/ggkTJhidKL537x6WLl1qcL0pvr6+eOmllwAAhw8fxqxZs4yWObp16xZWrlypsyw4OFhTXmvr1q162SkAUFBQgGnTplk9TnOVlJRg2rRpos2eFy5ciDNnzgAAJk+erOkTAQAKhUJTduns2bNYsGCB3v5qtRovvfSSJlhVdb8ZsmzZMhw8eFBv+c2bNzFnzhwAlc2rJ06cqLdN7969AQBbtmwRfbxcuHABb7/9ttHzG9OqVSvNzwkJCaLbzJ07FykpKUaPY+7j2pRJkyZpAmuvvfaa6PPw1KlT+PDDDwEAjRs3xqhRo6w+nyOsWLHCaJNxlUqF1157TRPU69Wrl9k9chyNM5hEtZTNGRpOLjklQd1vnERERERERER1W0xMDLZt24bdu3dj8+bN6NSpE2bMmIGIiAgolUrcvHkTR48exbp16zB+/HjExsaaddzw8HB0794dR44cwYoVK1BaWoqJEyfCx8cHly5dQnx8PPbu3YsnnngChw8fFj3GG2+8gRdffBEjR45E79690bp1a3h4eCAnJwcHDx7EF198AaCyCbewJ0GzZs3QpEkTZGRk4NNPP0WTJk3Qpk0bTWZDw4YNNaWGXnzxRc3t37hxI1JSUjBt2jR07doVPj4+uHfvHs6fP4/9+/dj69atcHNzMzm5bsz777+PpKQk/Prrr1iyZAn279+PKVOm4NFHH4WHhwdyc3ORmpqKxMRE7Ny5E506ddK7fYsXL8bu3buRn5+P8ePHIykpCVFRUfD29sbp06excOFCXLx4ERERESbLGNkiIiIC27ZtQ48ePTBr1iy0atUKWVlZWL16Nb7//nsAlQ3NxYIB77zzDn788UdcuXIFsbGxOHPmDCZNmoTg4GCkpaVh6dKl2L9/PwCge/fumDp1qsFxBAYGQqlU4sknn8SsWbMwZMgQKBQKHDt2DB9++KEmGLdgwQLRhu4zZszA1q1bUVRUhMjISMTGxiI8PBwFBQXYs2cPlixZgsDAQMhkMmRnZ1t8Pw0cOBBBQUHIysrC/PnzkZ6ejtGjR6NBgwb4448/sGLFCuzZswc9evQwWopMu//DrFmz8NZbbyE4OFhTiiosLAwuLqbnxwIDA7Fo0SLExMQgIyMDXbp0wZtvvoknnngC5eXlSExMxKJFi1BQUACJRIL4+HizG9hXl6lTp+K9995DVFQUunXrhtDQUCiVSuTm5uLkyZNISEjA6dOnAQDe3t748ssvnTxiLWoiM127dk2Nyl7O6mvXrjl7OPVe3O+H1PjmNc2/XtuXWrT/oz8t1tl/zaXjDhppJe1z4ZvX1P1//sqh5yMiIiIiIqqtrP3+ffHiRfW5c+fUFy9edODoSKiwsFAdFRWl+ZsZ+vfuu+9q9klLS9MsX7Vqlehxf//9d3VQUJDB482ZM0e9atUqze9paWk6+4eGhpock0KhMHj+uLg4g/sJ9yktLVVPnz5dLZFITJ6zefPmeud69913NevNce/ePfVTTz1l8lwA1H379hU9xr59+9ReXl4G93vnnXcsHpc5hH/76Ohog2MIDg5Wp6amGj1W27Ztjd7+Hj16qHNyckT3nzhxohqAOjQ0VJ2cnKxu0KCBwePMnDnT6O2aOXOmwX2bNWumPnfunOYxOXHiRL399+3bp9l+3759eut//vlntZubm8FzREZGqs+ePWvyeTVu3DiDx9B+DmnfN4b861//UkulUqPPr9WrV4vua85rQBVj95u1zHnuAFC3a9dOfeLECavP44j3JZacIqqllDaWnCrWKzkls3lMRERERERERPWNUqnExo0bsXfvXjz33HNo3rw53N3d4erqiqZNm2L48OFYvnw5XnvtNYuO27ZtW6SkpGD69OkIDQ2Fq6srAgMDMWjQIGzfvh2LFi0yuv++ffuwZMkSjBkzBp06dUJgYCBcXFzg7e2N8PBwzJkzB+fOnUN0dLTo/tOnT8emTZswYMAABAUFGb1yXS6XIy4uDqdOncLLL7+MTp06wcfHBzKZDD4+Pnj00Ufx/PPP44cffsDvv/9u0f0gxsvLC5s2bcIvv/yCF154AW3atIGXlxdcXFzg7++Pxx57DDExMdixYwd2794teozIyEikpqbq3L8NGzbE0KFD8fPPP+O9996zeZzmWLVqFb777jtERkYiICAACoUCrVu3xj//+U+kpqaiffv2BvcNCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4eJg8zrfffotPPvlEk0EklVo/PT5v3jycPHkSU6ZMQcuWLeHu7g4PDw+0a9cOr7zyCs6fP48JEyZYfXxHOnHiBD744AMMGzYMHTp0QIMGDTSvD23btsX48eOxceNGnDp1Sqd/S00g+SsiQ2RSRkaGptnVtWvXNE2fyDk2pp3CuP3/0fzezicI5576p9n7t9j4IdIK7mh+39JvEkY062DXMWqTrJqj83u/4FZIHOT4epRERERERES1jbXfvy9duoTy8nK4uLjo1JwnopojPT1d07Nk1apVBgNK1SE6OhqrV69GaGgo0tPTnTYOqrsc8b7EDA2iWspd2EOjwsKm4E7uoUFERERERERERERkCQY0iGop/ZJTFjYFF5ackrLkFBEREREREREREdVcDGgQ1VJKF1ed3y3toVFSUaHzOzM0iIiIiIiIiIiIqCbjDCZRLaUUlJwqqiiDWq2GRCIxa3+9klPS6n05UIPte4iIiIiIiIiodklLS0NhYaHF+/n5+aFx48YOGBHVN4WFhUhLS7Nq3zZt2kAul5vesAZjQIOolhJmaKjUaijWvAnzwhlAmYoZGkRERERERERElpg0aRKSkpIs3m/ixIlISEiw/4Co3klOTkbfvn2t2jctLQ1hYWH2HVA14wwmUS0lzNAA9IMUlmBAg4iIiIiIiIjIscLCwqBW14yqFQkJCQyyUK3DGUyiWipA4QEPF1cUWtgMXIxcKkMjdy87jMqw3g1b4MCtK5rf53Ts49DzERERERERERHZ2/79+509BKrnIiMja0xQzBnYFJyollLIXPB++EBIzC4yZdjbj/SHp1xhh1EZtuixYZqgyehmHTEgpI1Dz0dERERERERERER1CzM0iGqx2R37YOJDEfizINfqYzT19EWgm6cdRyWua2Az/DHmTeSXlaChu5fZzcuJiIiIiIiIiIiIAAY0iGq9ADcPBLh5OHsYZvGQK+Dh4EwQIiIiIiIiIiIiqptYcoqIiIiIiIiIiIiIiGo8BjSIiIiIiIiIiIiIiKjGY0DDRsePH8f777+PAQMGoEmTJlAoFPD09ETr1q0xadIkHDx40C7niY2NhUQiMevf/v377XJOIiIiIiIiIqo9ZDIZAKC8vBwVFRVOHg0REdVnKpVK815U9f5kD+yhYYPevXvjl19+0VteWlqKS5cu4dKlS0hISMCECROwYsUKuLq6OmGURERERERERFQfKJVKlJSUAADy8vIQEBDg5BEREVF9VVBQALVaDQBwd3e323EZ0LDBjRs3AAAhISEYO3YsevXqhWbNmqGiogJHjhzB4sWLcf36daxZswZlZWX47rvv7HLeM2fOGF3fvHlzu5yHiIiIiIiIiGoPX19f5ObmAgCysrJQUVEBb29vKBQKSCQSJ4+OiIjqA5VKhYKCAty8eVOzzMvLy27HZ0DDBm3btsWHH36IMWPG6KXNdOvWDc899xx69OiBixcvYt26dXjxxRfRu3dvm8/bsWNHm49BRERERERERHWLm5sbfHx8cPfuXQBATk4OcnJyIJFI7Frug4iIyJCKigpNZgZQmZ3h4eFht+MzoGGD//73v0bXN2jQAIsXL8bw4cMBAD/88INdAhpERERERERERGKCg4Ph6uqK7OxszTK1Wo3y8nInjoqIiOojd3d3NGvWzK5ZggxoOFjfvn01P1++fNmJIyEiIiIiIiKiuk4ikaBBgwbw9vZGQUEBCgsLUVpaCpVK5eyhERFRPSCTyeDu7g4vLy94eHjYveQhAxoOVtWMC7BvN3ciIiIiIiIiIkNcXV3h7+8Pf39/Zw+FiIjIbqTOHkBdl5SUpPm5Xbt2djnmgAEDEBQUBFdXVwQFBSEyMhILFy7UNP4iIiIiIiIiIiIiIqprmKHhQCqVCgsXLtT8Pm7cOLscd/fu3Zqfs7OzkZSUhKSkJHz88cdISEjAyJEjrTpuRkaG0fWZmZlWHZeIiIiIiIiIiIiIyFYMaDjQ//3f/+HYsWMAgKeeegpdunSx6XidOnXCqFGj0LVrV4SEhKCsrAwXLlzA2rVrsWvXLuTl5WHMmDHYtm0bBg8ebPHxmzZtatP4iIiIiIiIiIiIiIgcRaJWq9XOHkRdlJSUhP79+6O8vBxBQUE4c+YMgoKCrD5eXl4efH19Da5fvnw5XnzxRQBASEgILl++DDc3N4vOYUmDlmvXrqFJkyYWHZ+IiIiIiIiITMvIyNBcdMjv30RERA8wQ8MBUlNTMXr0aJSXl8PNzQ0bN260KZgBwGgwAwCmTZuG5ORkfP3117hx4wY2bdqEZ555xqJzXLt2zej6zMxMdO3a1aJjEhERERERERERERHZAwMadpaWloYBAwYgNzcXMpkM33//PXr37l0t5542bRq+/vprAJUZIpYGNHjFBxERERERERERERHVVFJnD6AuuXHjBvr3748bN25AIpHgm2++sbpBtzXat2+v+fn69evVdl4iIiIiIiIiIiIiIkdjQMNObt++jSeffBJXrlwBAHzxxReYMGFCtY7Bkh4YRERERERERERERES1CQMadnD37l0MHDgQ586dAwAsXLgQMTEx1T6OqvMDlY3BiYiIiIiIiIiIiIjqCgY0bHT//n0MHToUKSkpAIC33noLb7zxhlPGsnz5cs3Pffr0ccoYiIiIiIiIiIiIiIgcgQENG5SWlmL06NE4dOgQAOCVV17BBx98YPFxEhISIJFIIJFIEBsbq7f+zJkz+OOPP4weIz4+HitXrgQANGrUCKNHj7Z4HERERERERERERERENZWLswdQmz399NPYtWsXAOBvf/sbnn/+eZw9e9bg9q6urmjdurXF5zlx4gReeOEF9O3bF4MHD0anTp0QEBCA8vJynD9/HmvXrtWMQyaTIT4+Hh4eHtbdKCIiIiIiIiIiIiKiGogBDRv8+OOPmp/37t2Lhx9+2Oj2oaGhSE9Pt+pcFRUVSExMRGJiosFtAgIC8PXXX2P48OFWnYOIiIiIiIiIiIiIqKZiQKMWGDJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7e3s4RIRERERERERERER2Z1ErVarnT0Iqh0yMjLQtGlTAMC1a9fQpEkTJ4+IiIiIiIiIqO7h928iIiJxbApOREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERET/3969R3ld1/kDfw4MMDDAQUELAvOCI2pmrMDq4l2jU1hEF9tuXgJ1rVhsXXUt827mWnnh7K5bYOa2kdlFS+P8CkVEEBFl21QQL2AqEiCgyG0Y+P7+4PBdxhmYGZhhvjM8HufMOZ/5ft6f9/v91Zee73yfn/f7AwCUvPLWngAAAABAU9W880re+Z9rsnnNy42+puKgz6Vy0IUtOCsAoCUJNAAAAIA2Z9VDo1Kz6k9NuqZTnyEtNBsAYE+w5RQAAADQpmzZuKrJYQYA0PYJNAAAAIA2pVCztrWnAAC0AltOAQAAAG1KYfP6Oq/1HHZbUtZxp9d12vdDLTQjAGBPEGgAAAAAbUqhZt27XilLt8PHpaysrFXmAwDsGbacAgAAANqUQk3tFRpl5V2FGQCwFxBoAAAAAG1KnS2nOnZtnYkAAHuUQAMAAABoU94daJQJNABgryDQAAAAANqUultOdWulmQAAe5JAAwAAAGhTrNAAgL2TQAMAAABoW94daJQLNABgbyDQAAAAANqUQs26Wr9boQEAeweBBgAAANCm1H2GhkADAPYGAg0AAACgTfEMDQDYOwk0AAAAgDZFoAEAeyeBBgAAANCm1N1yqlsrzQQA2JMEGgAAAECb8u4VGrFCAwD2CgINAAAAoE2ps+WUh4IDwF5BoAEAAAC0KYWadbV+9wwNANg7CDQAAACAtqXOMzQEGgCwNxBoAAAAAG1KnS2nrNAAgL2CQAMAAABoUwQaALB3EmgAAAAAbUrBllMAsFcSaDSjV155JRdffHEGDRqUysrK7Lvvvhk6dGhuvvnmrFu3ruEOGmnKlCkZPXp0+vfvny5duqR///4ZPXp0pkyZ0mxjAAAAQKmqu0KjWyvNBADYk8pbewLtxe9+97t86Utfyttvv118bd26dZk7d27mzp2biRMn5sEHH8zAgQN3eYwtW7bk/PPPz6RJk2q9/vrrr+f111/Pfffdl7Fjx+Y///M/06GDrAoAAID2qU6gYYUGAOwVfOvdDObNm5fPfe5zefvtt9O9e/fccMMNmTVrVh566KGcd955SZKFCxdm5MiRWbNmzS6P861vfasYZgwePDiTJ0/OnDlzMnny5AwePDhJMnHixFxxxRW7/6YAAACgRBVq3rULgmdoAMBeoaxQKBRaexJt3YknnpgZM2akvLw8jz76aI477rha52+++eZceumlSZKrrroqV199dZPHWLhwYY488sjU1NRkyJAhefTRR9O16/99YFu3bl1OOumkzJ07N+Xl5Zk/f/5urQapz2uvvZYBAwYkSV599dX079+/WfsHAACAxnjj7opky8bi773PmJPOfYa24oyal7+/AaB+Vmjspjlz5mTGjBlJkjFjxtQJM5Lk4osvzuGHH54kue2227Jp06Ymj3PrrbempqYmSTJhwoRaYUaSdOvWLRMmTEiS1NTU5JZbbmnyGAAAAFDqCoUttcKMJCmzQgMA9goCjd103333FY/PPffcett06NAhZ511VpJk9erVmTZtWpPGKBQKuf/++5MkgwYNyrHHHltvu2OPPTaHHXZYkuT++++PxTcAAAC0O5s31HlJoAEAewcPBd9Njz32WJKksrIyxxxzzA7bnXTSScXjmTNnZsSIEY0eY9GiRVmyZEmdfnY0zvPPP5/XX389ixcvzkEHHdTocdqb6g0b8+pLz7T2NAAAAGhGhZq1eXv9YbVeW/vSyynrvLrBawcc8oF0rujSQjMDAFqaQGM3zZ8/P0kycODAlJfv+B/noEGD6lzTWM8991y9/TRmnKYEGq+99tpOz7/xxhuN7qsULJr735n+XE1rTwMAAIDm1vGfav/+5KIkixq87LQkhxy545sRAYDSJtDYDRs2bMiKFSuSpMEHdO2zzz6prKzM2rVr8+qrrzZpnO2DhobG2fbQsCRNHmf7a9uDzWuXJNm/tacBAAAAAEAz8AyN3bBmzZricffu3RtsX1lZmSR55513WmycbWPsyjgAAAAAAFCqrNDYDRs2/N+DyDp37txg+y5dtu7TuX79+hYbZ9sYuzJOQys63njjjQwbNqxJfQIAAAAAQHMQaOyGioqK4nF1dXWD7Tdu3Jgk6dq1a4uNs22MXRmnoe2s2poDjjguf7fp/7X2NAAAAGghHbv2Taf3DE9ZWcdGtR9wyAdaeEYAQEsSaOyGHj16FI8bs73T2rVrkzRue6pdHWfbGLsyTnvTfcBp+cCA01p7GgAAAAAANAPP0NgNFRUV6d27d5LaD+6uz6pVq4phQ1Mfvr39yomGxtl+26j29pBvAAAAAAD2XgKN3XTEEUckSV588cXU1NTssN2CBQuKx4cffvgujfHufpp7HAAAAAAAKFUCjd10/PHHJ9m61dNTTz21w3bTp08vHg8fPrxJYxx00EHp169fnX7q8+ijjyZJ3ve+9+XAAw9s0jgAAAAAAFCqBBq76ZOf/GTx+Mc//nG9bbZs2ZK77747SdKrV6+ccsopTRqjrKwso0aNSrJ1Bcbs2bPrbTd79uziCo1Ro0alrKysSeMAAAAAAECpEmjspmHDhuWEE05IkkyaNCmPP/54nTbf//73M3/+/CTJ+PHj06lTp1rnH3nkkZSVlaWsrCznnHNOveNcdNFF6dixY5Jk3LhxWb9+fa3z69evz7hx45Ik5eXlueiii3bnbQEAAAAAQEkRaDSD2267LV27dk1NTU1GjBiRG2+8MbNnz860adNywQUX5NJLL02SVFVV5eKLL96lMaqqqnLJJZckSebOnZvhw4fnnnvuydy5c3PPPfdk+PDhmTt3bpLkkksuyaGHHto8bw4AAAAAAEpAeWtPoD0YPHhw7rnnnnzpS1/K22+/nW9+85t12lRVVeXBBx9Mjx49dnmcG264IcuWLcudd96ZefPm5e///u/rtBkzZkyuv/76XR4DAAAAAABKkRUazeTjH/94/vd//zff+MY3UlVVlW7duqVXr14ZMmRIbrrppsybNy8DBw7crTE6dOiQSZMm5cEHH8yoUaPSr1+/dO7cOf369cuoUaPy+9//PhMnTkyHDv61AgAAAADQvpQVCoVCa0+CtuG1117LgAEDkiSvvvpq+vfv38ozAgAAgPbH398AUD+38gMAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACWvvLUnQNtRU1NTPH7jjTdacSYAAADQfm3/N/f2f4sDwN5OoEGjLV++vHg8bNiwVpwJAAAA7B2WL1+eAw88sLWnAQAlwZZTAAAAAABAySsrFAqF1p4EbcOGDRvy5z//OUmy3377pby89Bf4vPHGG8XVJHPmzEnfvn1beUaw69Qz7Yl6pr1R07Qn6pn2pK3Wc01NTXGXhKOOOioVFRWtPCMAKA2l/400JaOioiJDhw5t7Wnssr59+6Z///6tPQ1oFuqZ9kQ9096oadoT9Ux70tbq2TZTAFCXLacAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5AAwAAAAAAKHllhUKh0NqTAAAAAAAA2BkrNAAAAAAAgJIn0AAAAAAAAEqeQAMAAAAAACh5Ag0AAAAAAKDkCTQAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5Ag3brlVdeycUXX5xBgwalsrIy++67b4YOHZqbb74569ata+3psZebO3durr322owYMSL9+/dPly5d0r1791RVVeXcc8/NY4891qT+pkyZktGjRxf76t+/f0aPHp0pU6a00DuAxrnssstSVlZW/HnkkUcavEY9U2r+8pe/5KqrrsqQIUOy3377paKiIgMGDMgJJ5yQK6+8Ms8888xOr1fTlILq6upMnDgxH/nIR9K3b9/iZ4/DDjss5557bmbNmtWoftQzLWnZsmV54IEHcuWVV+ajH/1o+vTpU/wMcc455zS5v+ao15qamtxxxx054YQTst9++6Vr16455JBDcsEFF+TZZ59t8pwAgN1UgHbot7/9baFnz56FJPX+VFVVFV544YXWniZ7qRNOOGGHtbn9z1lnnVXYuHHjTvvavHlzYcyYMTvtZ+zYsYXNmzfvoXcH/2fevHmF8vLyWvU4bdq0HbZXz5Si22+/vVBZWbnTuhw/fny916ppSsXixYsLRx55ZIOfPcaNG1fYsmVLvX2oZ/aEndXX2Wef3eh+mqtely9fXhg6dOgO++jSpUvhRz/60W6+awCgKazQoN2ZN29ePve5z+Xtt99O9+7dc8MNN2TWrFl56KGHct555yVJFi5cmJEjR2bNmjWtPFv2RkuWLEmS9OvXL+PHj88vf/nLzJkzJ48//nh+8IMf5H3ve1+S5O67727wTrRvfetbmTRpUpJk8ODBmTx5cubMmZPJkydn8ODBSZKJEyfmiiuuaLk3BPXYsmVLzj///NTU1GT//fdv1DXqmVJz/fXX5x//8R+zdu3aVFVV5eabb84jjzySefPmZerUqbn55pvzd3/3d+nQof6P1GqaUrBp06aMHDmyeCf5Bz/4wdx11115/PHH84c//CFXXnllKisrkyQTJkzITTfdVG8/6pk97YADDsiIESN26drmqNfNmzdn9OjRefLJJ5Mkn/rUpzJlypQ88cQTuf3227P//vtn48aNueCCC6xQAoA9qbUTFWhu2+5+Ly8vL8yaNavO+X/9138t3lFz1VVX7fkJstcbOXJk4Z577inU1NTUe3758uWFqqqqYp1Onz693nbPP/988e73IUOGFNatW1fr/Nq1awtDhgwp/vdgVRJ70i233FJIUhg0aFDh8ssvb3CFhnqm1EydOrXWirnq6uodtq1vNZ2aplTce++9xVo+7rjj6v38MXfu3EKnTp0KSQq9evUqbNq0qdZ59cyecuWVVxZ+97vfFZYuXVooFAqFRYsWNXmFRnPV66RJk4pjf/WrX61z/oUXXijuCjBw4MA6/90AAC3DCg3alTlz5mTGjBlJkjFjxuS4446r0+biiy/O4YcfniS57bbbsmnTpj06R3jggQdy5plnpmPHjvWe79OnT77//e8Xf//lL39Zb7tbb701NTU1SbbeUdm1a9da57t165YJEyYk2br37y233NIc04cG/eUvf8m3v/3tJMkdd9yRzp07N3iNeqaUbNmyJRdeeGGS5Oijj86kSZPSqVOnHbavr8bVNKVi+2djXH755fV+/jjmmGNyxhlnJElWr16d+fPn1zqvntlTrrnmmpxxxhl5z3ves8t9NFe9fu9730uS7Lvvvrn55pvrnB84cGAuv/zyJMmLL76Y3/zmN7s8ZwCg8QQatCv33Xdf8fjcc8+tt02HDh1y1llnJdn6B9u0adP2xNSgSU455ZTi8UsvvVTnfKFQyP33358kGTRoUI499th6+zn22GNz2GGHJUnuv//+FAqFFpgt1Pa1r30t77zzTs4+++ycdNJJDbZXz5SaP/zhD3nhhReSbH2wfXl5eZOuV9OUkurq6uLxwQcfvMN2hxxySL3XqGfakuaq14ULFxaDvTPPPDPdunWrt5/tt4cVaADAniHQoF157LHHkiSVlZU55phjdthu+y/YZs6c2eLzgqbauHFj8bi+OykXLVpUfBZHQ18Ybzv/+uuvZ/Hixc03SajHL37xizzwwAPZd999i3c2NkQ9U2ruvffeJElZWVnxrvUkWblyZV544YWsXLlyp9eraUrJti9tk+Tll1/eYbttN1CUlZXl0EMPLb6unmlLmqtet/1d2VA/733ve1NVVZXE35UAsKcINGhXtt1FM3DgwJ3eTTlo0KA610ApmT59evF42xZp23vuueeKx9vXc33UO3vK6tWrM378+CTJTTfdlD59+jTqOvVMqZk9e3aS5MADD0yPHj3ys5/9LEcddVR69+6dqqqq9O7dO4cddli+973v1Qqgt1HTlJLPf/7z6dmzZ5Kt/2/evHlznTbz5s3Lgw8+mCT5whe+UGyfqGfaluaq113p59VXX83atWsbPVcAYNcINGg3NmzYkBUrViRJ+vfvv9O2++yzTyorK5Ns/eAJpWTLli357ne/W/z9zDPPrNPmtddeKx43VO8DBgwoHqt3WtKll16apUuXZvjw4RkzZkyjr1PPlJItW7ZkwYIFSbY+02j8+PH54he/mGeeeaZWu4ULF+aSSy7JqaeemtWrV9c6p6YpJX369Ml//dd/pVu3bpk5c2aGDh2au+++O7Nnz87UqVNzzTXX5KSTTkp1dXX+5m/+ptZzvBL1TNvSXPW6K/0UCoVa1wEALUOgQbuxZs2a4nH37t0bbL8t0HjnnXdabE6wK2655ZbMmTMnSfKpT32q3u3TmlLv22o9Ue+0nBkzZmTixIkpLy/PHXfckbKyskZfq54pJW+99Va2bNmSJPnzn/+c22+/PX379s1Pf/rTrFy5MuvWrcv06dOL+7LPmjUrX/nKV2r1oaYpNZ/4xCfy1FNPZezYsfmf//mfnH322TnuuOPy4Q9/OFdffXW6deuWW2+9NTNmzKjzMGb1TFvSXPWq7gGgdAk0aDc2bNhQPO7cuXOD7bt06ZIkWb9+fYvNCZpq+vTp+Zd/+Zckyf7775//+I//qLddU+p9W60n6p2WUV1dnfPPPz+FQiHf+MY38oEPfKBJ16tnSsn224Vs2LAh3bp1y7Rp0/LFL34x++yzT7p27ZoTTzwxDz/8cI4++ugkWx8E+8QTT9S6bhs1TSmorq7O3XffvcOHdf/1r3/NT3/600ydOrXOOfVMW9Jc9aruAaB0CTRoNyoqKorH1dXVDbbftud1165dW2xO0BTPPvtsRo8enZqamlRUVOTee+/N/vvvX2/bptT79vu7q3dawne+850sWLAgBxxwQK666qomX6+eKSXb12OSjB07ttZDlbfp2rVrbrjhhuLv99xzT719qGla29q1a3P66afnxhtvzMqVK3PppZdm/vz52bhxY95666384Q9/yPHHH5+5c+fmk5/8ZH7wgx/Uul4905Y0V72qewAoXQIN2o0ePXoUjxuz1HfbHZiN2Z4KWtqiRYsyYsSIrFq1Kh07dszPf/7znHjiiTts35R63/5uY/VOc1uwYEFuvPHGJMmECRNqbbvQWOqZUrJ9PSbJiBEjdtj2tNNOS3l5eZLkySefrLcPNU1ru/rqqzNjxowkyaRJk3LTTTdl0KBB6dy5c3r27JkPf/jDmTZtWk455ZQUCoVccskl+dOf/lS8Xj3TljRXvap7AChd5a09AWguFRUV6d27d958880GH8a2atWq4gfP7R8GB61hyZIlOf3007NkyZKUlZXlzjvvzKhRo3Z6zfYPJ2yo3rd/yKF6p7ndcsstqa6uzsEHH5x169bl5z//eZ022z9M+eGHH87SpUuTJB//+MdTWVmpnikpXbp0yX777Zfly5cn2XmdVVRUpE+fPlm6dGmxfeL/0ZSOQqGQO++8M0lSVVWVs88+u9525eXlue6663L88cdny5Ytueuuu3LLLbckUc+0Lc1Vr+/up0+fPg32U1ZW1uADxAGA3SfQoF054ogjMmPGjLz44oupqakp3jX5bgsWLCgeH3744XtqelDHihUr8uEPfzgvv/xykq13uJ911lkNXnfEEUcUj7ev5/qod1rStm0WXn755Xz+859vsP11111XPF60aFEqKyvVMyXnyCOPzCOPPJIk2bx5807bbju//WcONU2p+Otf/5qVK1cmSQYPHrzTtsccc0zxePu6VM+0Jc1Vr+/u50Mf+lCD/QwYMGCXVqoCAE1jyynaleOPPz7J1mW/Tz311A7bTZ8+vXg8fPjwFp8X1Oett97KRz7ykTz33HNJku9+97v52te+1qhrDzrooPTr1y9J7Xquz6OPPpoked/73pcDDzxw1ycMLUQ9U2q23/JvW+Bcn7fffjsrVqxIsrUmt1HTlIrtg7aampqdtt20aVO916ln2pLmqtdtf1c21M/SpUuzcOHCJP6uBIA9RaBBu/LJT36yePzjH/+43jZbtmzJ3XffnSTp1atXTjnllD0xNahl3bp1GTlyZJ5++ukkybe+9a1cdtlljb6+rKysuC3VggULMnv27HrbzZ49u3jX2KhRo1JWVrabM4fa7rrrrhQKhZ3+bP+g8GnTphVf3/blgXqm1Hz6058uHv/mN7/ZYbvf/OY3KRQKSZITTjih+LqaplTsu+++6dmzZ5Lk8ccf32mosf2XtgcddFDxWD3TljRXvVZVVRVXbfziF7/IunXr6u3nrrvuKh6PHj16d6cPADSCQIN2ZdiwYcUvFCZNmpTHH3+8Tpvvf//7mT9/fpJk/Pjx6dSp0x6dI1RXV2f06NGZOXNmkq11eP311ze5n4suuigdO3ZMkowbNy7r16+vdX79+vUZN25ckq13Wl500UW7N3FoQeqZUvLBD34wH/3oR5MkkydPzkMPPVSnzdKlS3PFFVckSTp37pxzzz231nk1TSno0KFDRo4cmWTrM7tuuOGGetutWrWq1o0VZ5xxRq3z6pm2pLnq9Z//+Z+TJCtXrsyll15a5/xLL72UG2+8MUkycOBAgQYA7CFlhW23lUE7MW/evAwfPjzr169P9+7d881vfjOnnHJK1q9fn5///Of54Q9/mGTrXTdz585Njx49WnnG7G0+/elP59e//nWS5NRTT82tt96607sYO3funKqqqnrPXX755fnud7+bZOve2JdddlkOOeSQvPTSS7npppsyb968YrvvfOc7zfxOoHGuvvrqXHPNNUm2rtA4+eST622nniklCxcuzN/+7d9m9erVqaioyEUXXZSPfexj6dq1a+bMmZMbb7yx+MDZm266qd4vu9Q0pWDBggU55phjineYf/zjH8/ZZ5+dgw8+OBs2bMjs2bNz66235i9/+UuS5LTTTsvUqVPr9KOe2RMee+yxvPjii8XfV6xYkUsuuSTJ1i2dxo4dW6v9OeecU28/zVGvmzdvzkknnVS8CenTn/50zjvvvOyzzz6ZM2dOrrvuuixbtiwdOnTIAw88UAzCAYAWVoB26Le//W2hZ8+ehST1/lRVVRVeeOGF1p4me6kd1eWOft7//vfvsK/NmzcXvvKVr+z0+jFjxhQ2b968594gvMtVV11VrMdp06btsJ16ptTMmDGj8J73vGeH9VhWVla44oordni9mqZU/PGPfyz06dOnwc8cp556amHlypX19qGe2RPOPvvsJn1O3pHmqtfly5cXhg4dusM+unTpUvjRj37U3P8YAICdsEKDduuVV17JbbfdlgcffDCvvfZaOnfunIEDB+azn/1svv71r6dbt26tPUX2Uk3dU/r9739/Fi9evNM2v//97/PDH/4wTz75ZFasWJE+ffpk6NChueCCC9wtRqtr7AqNbdQzpeTNN9/MhAkTct9992XRokWprq5O3759c/LJJ2fcuHEZPHhwg32oaUrBm2++mUmTJmXKlCl59tlns3r16pSXl+e9731vhg4dmi984Qv5xCc+0eDnFPVMSzrnnHPyk5/8pNHtG/o6oznqtaamJj/60Y/ys5/9LPPnz8/atWvTr1+/nHbaaRk/fnyOPPLIRs8XANh9Ag0AAAAAAKDkeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAJe6uu+5KWVlZysrKsnjx4taeDgAAALQKgQYAQAtZvHhxMYjYnR8AAABAoAEAAAAAALQBZYVCodDakwAAaI82bdqU559/fofnjzrqqCTJkCFD8uMf/3iH7T7wgQ80+9wAAACgrSlv7QkAALRXnTp1alQYUVlZKbQAAACABthyCgAAAAAAKHkCDQCAEnfXXXcVHxC+ePHiOudPPvnklJWV5eSTT06SvPjii/mHf/iHHHzwwenatWsOPPDAjBkzJq+88kqt65555pmce+65Ofjgg1NRUZEBAwbkwgsvzLJlyxo1r/vuuy+f/exnc8ABB6SioiK9evXKkCFDcs0112TVqlW7+7YBAACgFltOAQC0I1OnTs2nPvWprFmzpvjaK6+8kjvvvDMPPPBApk+fnkGDBmXy5Mk555xzUl1dXWz32muv5Y477siUKVMya9as9OvXr94xVq1alc985jN5+OGHa72+cePGPPXUU3nqqafy7//+77n//vtz7LHHtswbBQAAYK9jhQYAQDuxZMmSnHnmmenVq1cmTJiQJ554IjNmzMhFF12UsrKyLFu2LGPHjs2TTz6Zs846K4ccckgmTpyYOXPmZNq0afnyl7+cZGsA8k//9E/1jrFx48acfvrpefjhh9OxY8d8+ctfzuTJkzN79uzMmDEjN9xwQ3r37p1ly5blYx/7WJ1VIQAAALCrrNAAAGgnXnjhhRx66KGZOXNm9ttvv+Lrxx9/fMrLy/O9730vM2fOzMiRIzNs2LD88Y9/TLdu3YrtTj755GzYsCH33ntvfvWrX2X58uW1+kmSa6+9Nk8//XR69eqVqVOn5phjjql1/vjjj88Xv/jFHHfccXnjjTfyzW9+M//93//dsm8cAACAvYIVGgAA7cjtt99eJ4RIkq9+9avF4xUrVmTixIm1woxtLrzwwiRJTU1NHn/88Vrn3nnnnfzbv/1bkuS6666rE2Zs8/73vz/f/va3kyT33ntv1q5du2tvBgAAALYj0AAAaCd69eqVj3zkI/WeO+igg9KjR48kyQc/+MEcfvjh9bY7+uiji8cvv/xyrXPTp0/PW2+9lST5zGc+s9O5nHjiiUmSTZs25amnnmrcGwAAAICdsOUUAEA7ceihh6asrGyH53v16pU1a9akqqpqp2222f7B4kkyd+7c4nHfvn0bPa+lS5c2ui0AAADsiBUaAADtRH1bSG2vQ4cODbbb1iZJNm/eXOvcsmXLdmle69at26XrAAAAYHtWaAAA0CjbBxxPP/10OnXq1Kjr+vfv31JTAgAAYC8i0AAAoFF69+5dPN5vv/0EFQAAAOxRtpwCAKBRBg8eXDyeOXNmK84EAACAvZFAAwCARjn99NOLz9+4/fbbUygUWnlGAAAA7E0EGgAANEqvXr3y9a9/PUkya9asfOMb38iWLVt22P6vf/1rJk6cuKemBwAAQDvnGRoAADTatddem+nTp+eJJ57IbbfdlkceeSTnnXdePvShD6WysjKrVq3Ks88+m6lTp2bKlCk56qijMnbs2NaeNgAAAO2AQAMAgEbr0qVL/vjHP+acc87Jr3/96/zpT38qrtqoT8+ePffg7AAAAGjPBBoAADRJjx498qtf/SqPPfZYfvKTn2TGjBlZsmRJ1q9fn549e+aQQw7JsGHDMnLkyIwYMaK1pwsAAEA7UVbwNEcAAAAAAKDEeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUvP8PEIIbP2eDbHwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Create plot with aggregated totals per population across time.\n", + " 'metapopulations_migration_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8,\n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot the isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## B. Population contact" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by \"population contact\" events between vectors and hosts, in which a vector and a\n", + "host from different populations contact each other without migrating from one population to another.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population** 4 (both are one-way connections).\n", + "\n", + "**Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup(\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A', \n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a population contact rate of 1e-2 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=0, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " vector_host_contact_rate=2e-2,\n", + " # host-host inter-population contact rate between populations\n", + " host_vector_contact_rate=2e-2,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to one of the clustered populations with a one-way population contact rate of 1e-2 for `population_A` hosts and `clustered_population_4` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'clustered_population_4',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way population contact rate of 2e-2 for `population_A` hosts and `population_B` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_B',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_A` starts with `AAAAAAAAAA` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 100.1491768759948 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19925533388085942s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.017675399780273438s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030938148498535156s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.039101600646972656s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.07192206382751465s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 453 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 528 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 545 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 562 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 581 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 611 out of 611 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2AAAAAAAAAANaNTrue
30.0population_AHostpopulation_A_3AAAAAAAAAANaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
195515100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
195516100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
195517100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
195518100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
195519100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

195520 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "195515 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "195516 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "195517 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "195518 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "195519 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 AAAAAAAAAA NaN True \n", + "3 AAAAAAAAAA NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "195515 NaN NaN True \n", + "195516 NaN NaN True \n", + "195517 NaN NaN True \n", + "195518 NaN NaN True \n", + "195519 NaN NaN True \n", + "\n", + "[195520 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_population_contact_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhkAAALmCAYAAABfB/XFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd7gU5dk/8O9sO53DoRepBhUVC00BDajEBpaoqLFiw56qyavmRYghkp8afSOSiAXskRgbYouFIggcEBBEUBCQXg+nn20zvz+W3bPzzDOzvX8/1+UlZ2d29tnZ/tzPfd+KpmkaiIiIiIiIiIiIiIiIYmTL9ACIiIiIiIiIiIiIiCg3MchARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXBhkICIiIiIiIiIiIiKiuDDIQEREREREREREREREcWGQgYiIiIiIiIiIiIiI4sIgAxERERERERERERERxYVBBiIiIiIiIiIiIiIiiguDDEREREREREREREREFBcGGYiIiIiIiIiIiIiIKC4MMhARERERERERERERUVwcmR4AJaalpQVr1qwBAHTs2BEOBx9SIiIiIiIiomTz+XzYt28fAGDAgAEoLi7O8IiIiIiyA2ekc9yaNWswdOjQTA+DiIiIiIiIqGAsW7YMQ4YMyfQwiIiIsgLLJRERERERERERERERUVyYyZDjOnbsGPr3smXL0LVr1wyOhoiIiIiIiCg/7dq1K1RJIPy3OBERUaFjkCHHhfdg6Nq1K4444ogMjoaIiIiIiIgo/7EfIhERUSuWSyIiIiIiIiIiIiIiorgwyEBERERERERERERERHFhkIGIiIiIiIiIiIiIiOLCIAMREREREREREREREcWFQQYiIiIiIiIiIiIiIooLgwxERERERERERERERBQXBhmIiIiIiIiIiIiIiCguDDIQEREREREREREREVFcGGQgIiIiIiIiIiIiIqK4MMhARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXAo2yLB371689957mDhxIs477zx06NABiqJAURSMHz8+oWM3NTWhb9++oeP17t07KWMmIiIiIiIiIiIiIsomjkwPIFM6d+6csmNPnDgRmzdvTtnxiYiIiIiIiIiIiIiyQcFmMoTr2bMnzj777KQca+XKlXjiiSdQXFyMioqKpByTiIiIiIiIiIiIiCgbFWyQYeLEiZgzZw52796NrVu34umnn074mH6/H7fccgv8fj/uv/9+tGvXLgkjJSIiIiIiIiIiIiLKTgUbZJg8eTLGjh2b1LJJ//d//4cVK1bg6KOPxh/+8IekHZeIiIiIiIiIiIiIKBsVbJAh2bZu3YqJEycCAP75z3/C5XJleERERERERERERERERKnFIEOS3HHHHWhsbMS1116LUaNGZXo4REREREREREREREQp58j0APLBv/71L7z//vuoqqrCY489ltRjb9++3XL7rl27knp7RERERPlG9dSh8dv/g692Q8R9FcUOZ6fhKD3qFigK1+NEq8mr4oMtzdjZ4Atd1q3cgTF9SlDs4HkkIuCrPW5U73HD49cM24odCm4Z0CYDoyIiIqJkYJAhQTU1Nfj1r38NAJg6dSo6duyY1OP36NEjqccjIiIiKjSHFl4D97Y5Ue/fvOlFaO4alJ/wPykcVX55clUdvtrrES51Y2udD78dVJmRMRFR9li734O/Lq813V7hVHDLgDQOiIiIiJKKy4oSdO+992LPnj0YNmwYbrnllkwPh4iIiIjCaJoK9/YPYr5ey/a5KRhNflI1Dav3iQGGgBV73dA046plIiosq0zeI4iIiCg/MJMhAQsWLMDzzz8Ph8OBf/7zn1AUJem3sW3bNsvtu3btwtChQ5N+u0RERER5we8BNF/k/QSarzEFg8lPqgZIqp8AAHwq0OLXUOJI/vdkIsodshJJRERElD8YZIiT2+3GhAkToGkafvWrX+GEE05Iye0cccQRKTkuERERUSHQNK/hstJj7oDi1Nf+9h1aB/e2d1svUI3Xo/g0ejWU8FcHUUFThRhDnzYOnNDRFfq7yM5AJBERUS7j1/04TZkyBRs2bECPHj0wefLkTA+HiIiIiGT8xhId5Sf8EfbSrrrLmre8oQsyaCpLe0RLnDwUNXk1oCQ9YyGi7KQKZdOObufEVceUZ2g0RERElGwMMsTpr3/9KwBg9OjRmDNH3kiwsbEx9P9//etfAIBOnTrhzDPPTM8giYiIiAqcJslIUGyuyJcxkyFqkYqgNHjVtIyDiLKXGIy0MXGBiIgorzDIECePJ7C6bebMmZg5c6blvvv378cvfvELAMDIkSMZZCAiIiJKF0m5JNicES+TBSdILlJj5yYfa7ETFTox1GjLyCiIiIgoVfjZTkRERER5S5OUS4ouk4HlkqIVqVxSIzMZiAqeWC7JpjCVgYiIKJ8wkyFOkVZsAUDv3r2xdetW9OrVC1u2bEn9oIiIiIhIT5aRwEyGtGr0MpOBqNCxXBIREVF+YyYDEREREeUtYwNnBYrNbtiPmQzxi5SnwCADETHIQERElN8KNpPhiy++wMaNG0N/79+/P/TvjRs3YtasWbr9x48fn6aREREREVHSiBkJklJJAKAwkyFukRJ8m3wsl0RU6IxBBkYZiIiI8knBBhmeffZZvPDCC9JtixYtwqJFi3SXMchARERElHvEYIEYTAgRL1c90DQNCifCIooUZGAmAxEZezJkaCBERESUEiyXRERERER5y1AuySTIIGsGDc2fghHln8jlkpjJQFToWC6JiIgovxVskGHWrFnQNC3q/+KxZcsWaJrGps9EREREmWLIZJCXS5IGH1gyKToRvis3MZOBqOD5GWQgIiLKawUbZCAiIiKi/Bd1JoPdGHwwNo0mmYiZDD4GGYgKHXsyEBER5TcGGYiIiIgof4mZDJJgQmADMxniFbHxM8slERU89mQgIiLKbwwyEBEREVHeEhs/S4MJYCZDIiLlKTSwXBJRwTNkMmRmGERERJQi/GwnIiIiovwlBAoUk3JJsjJKhgAFSYmTh6Jmn2ZYxUxEhUXMZ2ImAxERUX5hkIGIiIiI8pYhUGBSLkmRlktiJkOyNLEvA1FBY08GIiKi/MYgAxERERHlLzGTwaRcEjMZ4hdNlkIjSyYRFTT2ZCAiIspvDDIQERERUd4yBApMyiUpNjugCF+NGWSISjThg0Y2fyYqaMZMhsyMg4iIiFKDQQYiIiIiyl9CoEDW4DnEpt/Gxs/RkSUylDn0M4hNzGQgKmgMMhAREeU3BhmIiIiIKG+JgQLTckmQNIVmJkNUZI2fy136GURmMhAVNrFckp09GYiIiPIKgwxERERElL+ibPwMwJjJ4GcmQ7zKnPqfGezJQFTYmMlARESU3xhkICIiIqK8ZchkMOnJIN2mMZMhGmKOggKg3ClkMvgYZCAqZAwyEBER5TcGGYiIiIgof4mZDBblksSm0MxkiI7Yk0FRgFIhk6GJ5ZKICpoxyMAoAxERUT5hkIGIiIiI8pYWQ+NnRSiXxJ4M0dGEKIMCY+NnlksiKmxiTwZmMhAREeUXBhmIiIiIKH8J5ZLEbAWrbRrLJUXFUC5JkfVkYCYDUSET3wE4EUFERJRf+NlORERERHnLkMlgUS7JkMnAcklxUQCUCj0ZmtiTgaigsScDERFRfmOQgYiIiIjyltj4GZblkoRMBpZLiops8rBMbPzMcklEBY09GYiIiPIbgwxERERElL/ETAbLckliTwZmMkTD0PgZCsocLJdERK3Yk4GIiCi/MchARERERHnLkI0gBhLCMJMhPmKOgsJMBiIS+FkuiYiIKK8xyEBERERE+UvIRrDOZBCDDMxkiIa4QjnQk0H/M6PJx0wGokLGngxERET5jUEGIiIiIspbxkyGGBo/M5MhLrJMBrcf8ImzjERUMNiTgYiIKL8xyEBERERE+cuQyWBeLsmYycAgQzQMk4cAyhzGCUSWTCIqXOzJQERElN8YZCAiIiKivJVYJgPLJUVD1pNBLJcEsPkzUSFjuSQiIqL8xiADEREREeUvIcgQW08GZjJEQ1igDAWAy65AjDM0+ZjJQFSoGGQgIiLKbwwyEBEREVHeMjRvtiiXxEyG+Ij5CcrhWutlQpSBmQxEhUnTNEPGE3syEBER5RcGGYiIiIgofzGTIfUkmQwAUCr0ZWBPBqLCJHvlcyKCiIgovzgyPQAiIiIiomRQ3YfQuO4J+GrXwVuzBs72g+Cr26jfyTKTQQgy+JtTMcyc46vbiKbvnoG9vBdKj7oVis0OILA6ed72Fry2oVG3f7AMSrlTH2SYu7kJK/a4LW+r2KFgeLdiHNde/zhpvmY0rvs/aL4GlPb/JewlnRK8V0SUSvub/fhoSzMOtvjlQQYmMhAREeUVBhmIiIiIKC/UzL8cnp3/Df3tr11v2Mc6k0E/sd383TNoO3xG0saXi1RvPfbPGQTNWwcA8DftQJuBUwAAH2xpxgvrGgzXCVZBEZs/bzzkw8ZDvoi3+fm2FvxlRBV6V7Y+VocWXoeWrW8AAJq3vIGOP/82VJaJiLKLqmn405JD2NPkN92HQQYiIqL8wixFIiIiIsp5mq9FF2AwozjbWBxDWJFfzNXyTRtmhAIMAND49V9C/161T96zosgemD2sLIrvp4ZfA77e33psTVNDAQYA8NdtgHffl3Edm4hSb2eD3zLAAADFDk5FEBER5RN+shMRERFRzlN99RH3sZV2h6vTCNPt9vLewgVFCY4q9/lqvjbd5vXLeywM6xo4b8O7FiHexcrhPaI1rzFbwt+0M84jE1GqReq/cmw7J9rGGYQkIiKi7MRySURERESU8zRvo+m2kn43w1F5NEr6XAGbyzyTQQxAaL6mpI0vZynRTwSWOBTcdkIFTukSCDKc1KkIk4a1xdf7PfCp1tddttuNXY2tK5/DpyjDMylah2VR9oqIMqrZr3/BlzgUnN2rBADQscSOEd0YwCUiIso3DDIQERERUc7T/OYBgfLj74Wj8qiIx1AcJfoL2PgZUOymm8S1yr84ugyndi3WXXZMOxeOaWfebDtod6NfH2TQWo+ueiVZKgwyEGUtt0//7tC2yIarjinP0GiIiIgoHZijSEREREQ5T+ynoGOLbl2NYtcHGTRfs26yuyDFkMmQCLEJbPhp12RBBs263jsRZU6zEGQocbDLMxERUb5jkIGIiIiIcp5VuaRoS+sojlLxqIDfncCocp8i+bkQDLwkM/yiCHOQ4cVWZOWSNB+zTIiyVYvQr6XYziADERFRvmOQgYiIiIhynlW5JChRBhmETIbAcQt8MtsmKZekeqW7ioGCWIhXjZTJoPlb4r8xIkopMZOhmJkMREREeY9BBiIiIiLKeVblkpRoyyWJPRnAIIPs54KmHs7uSGIqg6FcUti/VUkmAxhkIMpaYk8GBhmIiIjyH4MMRERERJTzrMolRdskWLGL5ZIAzWeRIVEIZD0ZTEpIKYZ8hBhuRriuykwGopzVLJRLKmG5JCIiorzHIAMRERER5TzrTIboggywF0Es3FPomQyKYiyXFJzgT2VPhvCG2wwyEOWWFmYyEBERFRwGGYiIiIgo51n3ZIiyXJKiAPZi/XELvcGwJJNBO5zJkMwgg3grkcolFXrwhyibsScDERFR4WGQgYiIiIhynnW5pOiCDACgOPQlkwq+XJKkBFKoJ4O4ZyLziBY9GZjJQJRb3EK5pGKWSyIiIsp7DDIQERERUc4zLZek2KDI+gqYUOz65s8Fv2Je8xsvC07wa8nLZTBkMkToycDGz0TZS8xkKHFw2oGIiCjf8dOeiIiIiHKeabkkJcp+DMHdHQwyhNM0n/Ey08bP8ROzIMIbP8vLJTHIQJStDOWSmMlARESU9xhkICIiIqKcZ1YuKeqmz8H97SyXpKN6DReloieDIjbcDv83yyUR5RS3X9X9zZ4MRERE+Y9BBiIiIiLKeablkmLoxwAYMxlQ6JkMkiADTHoyJMIm9mSIUC6p4BtyE2UxNn4mIiIqPAwyEBEREVHOMy+XFNvXXUNPhkKfzJZmMgSyCJKaySCWSwo7OsslEeWWFkNPBgYZiIiI8h2DDERERESU88zKJcXanFhxsFxSOFkmQ0p6Moi3wcbPRDnJr2rw6KslsScDERFRAWCQgYiIiIhynmm5pBgZMhkKvFySNJPBpFySmI0QC0O5pPB/M5OBKGe4/cbALsslERER5T8GGYiIiIgo55mWS4qR2JOh0IMM0p4MwXJJSayXZJbJoGkaNG+DcVwMMhBlJbEfA8AgAxERUSFgkIGIiIiIcp5puaQYOwcYezIUdrkkaNGXS0qEIqRBBB+1QIaK8TEs9OAPUbZqkWUysFwSERFR3mOQgYiIiIhyXtLKJYk9GQp8MtuqJ0NSGz8Lf6vBTAZJqaTAGJjJQJSNxEwGpw1wiPXQiIiIKO8wyEBEREREOc+0XFKsNX0MmQyFHWSQ9mQwmeBPqPGz2JPh8OMmbfoMsPEzUZZqEYIMLJVERERUGBhkICIiIqKcpmlq0soaGXoyFHi5JGlPBpPGz4kQf5QEpylVkyADMxmIspNYLomlkoiIiAoDgwxERERElNOSmW2g2FkuSceqXJKQJCJmI8RCvC7LJRHlJjGToYSZDERERAWBQQYiIiIiymmmpZICW2M6lpjJgAIPMsh7MiR/gt9QLin4f9NMhsJ+XIiyldiTgZkMREREhYFBBiIiIiLKaZo3OU2fAUAx9GQo7HJJ0HzGy1LS+Fk/ERnMkjArlwTVC031J3EERJQMhnJJDk45EBERFQJ+4hMRERFRTtN8SQwyOFguKZw0k8GkJ0Mi65VtppkM8nJJAFLSG4KIEtPiU3V/s/EzERFRYWCQgYiIiIhymnWQIcZySYZMhsIOMsh7MqSgXJJ4G4dTGczKJaVqHESUGPZkICIiKkwMMhARERFRTktmSSOxJ0PBl0uyavwsXC6WPIqFWU8G1SKTgUEGouzTLJZLYk8GIiKigsAgAxERERHltKSWS7KzXFI4WbmkVJQpEqch1cPzlJaZDIWeZUKUhcRMBpZLIiIiKgwFG2TYu3cv3nvvPUycOBHnnXceOnToAEVRoCgKxo8fH9Uxmpqa8Oabb+L222/HkCFDUFVVBafTifbt22PYsGGYNGkSdu/endo7QkRERFTgLIMMWozlksRMhgIPMliVSzKc2gTmEg2ZDNEEGZjJQJR1DEEGZjIQEREVBEemB5ApnTt3Tuj6X3/9NUaMGIGGhgbDtoMHD2LJkiVYsmQJHn/8ccyYMQNXXHFFQrdHRERERHJJLWkk9GSA6oWm+qDYCvNrs7Txsz8FjZ+Fa0fV+JlBBqKs08yeDERERAWpMH8tCXr27IljjjkGH3/8cdTXqaurCwUYRowYgbFjx2Lw4MFo37499u3bhzfffBPPPPMM6urqcPXVV6NNmzY477zzUnUXiIiIiApWUhs/O0oNl2n+Zii2ihhHlSc0SbmkUJAhtnNrRcxkCJZLUpnJQJRTWsSeDAwyEBERFYSCDTJMnDgRQ4YMwZAhQ9C5c2ds2bIFffr0ifr6NpsNl19+OR588EEce+yxhu1nn302zjvvPPz85z+H3+/H3Xffje+//x6K+AuKiIiIiBKS3J4MJYbLNF8z4CzMIIM8k0E+uZ/It1xj4+fARCXLJRHlFvZkICIiKkwFG2SYPHlyQtcfPnw4hg8fbrnPRRddhEsuuQT/+c9/sGnTJqxcuRIDBw5M6HaJiIiISC+Z5ZLEngxA4fZl0DRN3pPhcOPn5OUxGBvFtfZkMC+XVKiPC1E2M2QysCcDERFRQSjYxs/pcsYZZ4T+vWnTpgyOhIiIiCg/JbVckjSTIYk9H3KJ5pdffrhcUkobPx/+P8slEeUW9mQgIiIqTAwypJjb3doYz263Z3AkRERERPkpqeWSbA7A5tRfWKgr5iVZDECKyiWJtxHKZGCQgShXaJpmLJfETAYiIqKCULDlktJl/vz5oX/3798/5utv377dcvuuXbtiPiYRERWu1fvcWLrLDY+qwaYoKHcq6NXGgZ92LzbtG6RpGhbuaMGP9X6M6FaEPpVO6X6Uu5btduO7Gi8GdXahfztXpodjybPnCzT/8Ipuhbt335dJvQ3FXqLrRaD5CjPIIOvHAACqpwY1C66Bv+n3ALqELm/8dhpqNq4CADgqj0HZsb+CLcpeFjbh/UcF0ODx4wPHzdhXJO+b5tx+NBx1tZbHPKadE2f2MH9/I6Lk8ajG3DH2ZCAiIioMDDKk0OrVqzF37lwAwIABA+IKMvTo0SPZwyIiogK1/qAHDy+rlRaPafZpOLd3qfR6H29txvPfNAAA3t/chL+f0R4dSpidly+W7GrB418F6t6/90MT/nJaFfpmaSDJe+hbHPjoLED1pPR2FEeprheA98ByuDqPSOltZiPTfgiqFy0/vAKtagLgaA0yePcuRIv73da/D3yFdme+GdVtGcolacD/fXUIX5fda36lBgANbvPtABbsaEGLX8OYPvL3NyJKnrX7je/NxQ4WTyAiIioE/MRPEbfbjZtvvhl+f6CW7ZQpUzI8IiIiKnRf7/eYVqefeTiIIPN82Da/Bvzn++SVpqHMm7aqdSJZA/DSOvPnQqZ5dn0ac4ChuNdlMd+O2rJf/7fHfLV8PvPVfmu5XYtQIMm9/f2ob0v8UeL2a1hzwKQnRIy+2mMdiCCi5Piuxpj9VMpMBiIiooLATIYUueuuu7B8+XIAwPXXX48LLrggruNs27bNcvuuXbswdOjQuI5NRESFxZuc+TpskEwiUO7yqvq/1x3M3sdXi7E3guIoQ/lJD8ZxQz7hOMZm0AXB0NlZT4U+o8kmNopW3dBUPxRb5MynImEistatxtiy25zYiJaIUkP2SnOxJwMREVFBYJAhBR5++GE8++yzAIAhQ4bgqaeeivtYRxxxRLKGRUREBY7TbJTzNH1ExF5xJIp7jwv9bXNWoKjnz6G5D8B74CsUHXEeHBV9Y76ZoiPO16/CV5MUocsxmhg0AFA24H9a/9jXAQjbpbj7z4DNc/VXUL1AFEEGsTlsrUc17DOq6R+wQx8EKz/ud4ZG3TsafFi+pzXjxe3nux9ROvhU/WtteLeiDI2EiIiI0o1BhiR7+umncf/99wMAjjnmGLz//vsoKyvL8KiIiIiSJ8LiZqLUESa9HW2PQ5tBD0t3dXU+Lf7bUcSvyMYJ74IgBnXKe+vP92f7gebWfUp7XwZs/rVwCA8UFEe8KbE5rCp5n7mg8c+wQ59l0qn3XbCXVukuW77HrQsyeBhkIEoL8XUrBg8pQNM0NDY2oq6uDi0tLaESy0RERKlkt9tRXFyMNm3aoKysDIrYFC1BDDIk0WuvvYY77rgDANCrVy/897//RYcOHTI8KiIiogCN0QHKcYaV9UqK2osJx5Wt6C8MQnBFOC/ihKJNlrGgRld+K9JkpE3zGgIMAKD56gF00V0mlmdxF2iMiCjdfMJrzZ7kyYt8oKoqfvzxRzQ3x1b+j4iIKFE+nw9utxu1tbUoKSlBz549YbMl7/cUgwxJ8u677+K6666Dqqro2rUrPv30U5Y6IiKirMIQA+U8YWW9okQuwxMPw3G1Ap2lNpSJsg4y2O3GnxZalI26xUwGkVNrAewlgX4ZYYELzVNn2LfIpj8WMxmI0kMVFjM4UhQHzlWaphkCDIqiwG5PzWcZERFROL/fH1p42NzcjB9//BG9evVKWkYDgwxJ8Omnn+Lyyy+Hz+dD+/bt8d///hdHHnlkpodFRERElF8MmQwpmpgRMyQKNJNBM2Qy6M+3GHqx2SQ/LZKUyeBCMxSbC7CVQnMfCDt8vWHfImEYbr8GTdOSnhJORHpij3UbX3I6jY2NoQCD3W5Hly5dUF5entRVpERERGZUVUVDQwN2794Nv9+P5uZmNDY2ory8PCnH56dZghYvXoyLLroIbrcblZWV+Oijj3DcccdlelhEREQGkdbyspwSZT0xoyBl5ZKYyQDAEFxRDOWS9O8ZdqEBM5C8TAaX1gzF7oLNWaE/vleSyWA39ndgMgNR6vlVMZOBUYZwdXWt71ddunRBmzZtGGAgIqK0sdlsaNOmDbp0aS01Wl9vXLAT9/GTdqQCtGrVKowZMwaNjY0oKyvD3LlzMWjQoEwPi4iISCpSDIGTcJTtjD0Z0pPJULA9GQxBHSGTQVy1LC2XFF0mgxgYEDm1ZsDmguJsox9DFEEGAGjhGxxRyokvM8YY9FpaWgAESiQla9UoERFRrMrLy0MZvsnsEVSw5ZK++OILbNy4MfT3/v37Q//euHEjZs2apdt//Pjxur83bdqEc845B4cOHQIA/PnPf0ZlZSXWrl1repudOnVCp06dEh47ERFRKnj8GlcdUnaLsLI+WdiT4bAImSOGngyKLRCICH+cosxkcNgUOG2A1+RUu7RAuSQxyKBJyiWJjZ+Bw30ZjIkWRJREYpCBjZ/1/P7Ae6PdbmcGAxERZYzNZoPdbofP5wt9NiVDwQYZnn32WbzwwgvSbYsWLcKiRYt0l4lBhoULF2Lv3r2hv3/zm99EvM0HH3wQkyZNinmsREREyRBpHa9HBUrTMhKiOEVYWZ887MkAyDJHrMsl2RQANicQ9mMl2nJJQKAvg1eMXBwWzGSIqlySJFjqZiYDUcoZyyVlaCBERESUdvzYJyIiKhCRyiV5JJNw7NNAWSVd5ZJszGQAYLjfYoaHoVySgkBzZt1O0ZVLAqz7MjgR6MkQTSaDwwaIR2KQgSj1WC6JiIiocBVskGHWrFnQNC3q/0Tjx4+P6fqapjGLgYiIsppsBTHn5SibRFpZnzzsyQBAEtSxLpcUymTQHSL6TAarvgyt5ZL0mQyyngyKohiO5SnQh5AonfzC72YHyyUREREVjIINMhARERWaiOWSJBEFn2QBN+MOlDERVtYnC3syHBZr42dFMWYyaMnJZHAFyyW5ImcyAECR8BAyk4Eo9fzCW4adsw1EREQFgx/7REREBSJS5SNZw1VxVSJRRqUrk0E8bqFmMsC88bOmaYaAY6BcUvyZDMUWmQzOYCaDI3JPBsDY/FkWRCWi5GLjZyIiosLFIAMREREBiD6TgShj0tX42RBkKMwXgqaKwZXW8yLrzxwol5SingxaC2B3QREyGVSPPMgglktiJgNR6okLEyzihkREMZs0aRIURYGSJQHM3r17Q1EUjB8/PtNDIcoKDDIQEREVCOO6Yz15kIETc5Q9xN4IqSqXJAYvCrYnA8zLU5kFGRS7PsigqcnJZHAhkMlgc4qZDGblkhhkIEo3lksiSr558+aFJtbF/0pLS9GrVy9cfPHFePXVV+Hz+TI9XCIqYPzYJyIiKhCRptjY+JmyXprKJSmG4xZmJoPV+ZadEZuiAIq+XFIsmQwlDvPHM9iTQXGKPRmiy2RguSSi1DNmMmTHamOifNXc3Iwff/wR77zzDq6++moMHz4cu3fvzvSwctqoUaOgKApGjRqV6aEQ5RxHpgdAREREaRJhjs0jWazNTIb8puZaz420lUti42cAludb9tyxIcFMBstySU2BngxCkEE1yWQQezIwk4Eo9cQSi8xkIEqu22+/HXfccUfo74aGBixfvhyPPfYYtmzZgurqalx00UVYsmRJ1pQUymdbtmzJ9BCIsgqDDERERAUi0hSbRxJQkPVkYNwhf+Razw1j2SI2fk4lzRBkiNyTQbPFn8kgZh+Ec2nNUOyycknR9mSIehhEFCfxfcHBSU6ipOrUqROOP/543WWnnnoqrr76agwdOhQbN27EsmXL8N577+GCCy7I0CiJqFBxbQEREVGBiBhkkPVkkKxWFsshUO7KucdSnOy3pasnQ45FY5LF0AMjcpBBsaUqk6HFpFxSPTTJ85iZDETpJ36m2BhjIEqLqqoq3HfffaG/P/zwwwyOhogKFYMMREREhSJSuaQoMxlybfU7mRObdGY9zbwRcVIxkyHAslyScXebogBCJoMWQyaDZeNnrflwuaQKYYsGzddo2L9IeGqwJwNR6rFcElHmDB06NPTvrVu36rbt27cPf/zjH3HyySejbdu2KC4uRu/evXHttdfiiy++sDxu7969oSgKxo8fDwCorq7GL37xC/To0QPFxcXo0aMHbrjhBqxfv970GLNmzQo1q7YqMbRly5bQfrNmzYp4n0Uejwdz5szBXXfdhSFDhqCqqgpOpxPt27fHKaecgkmTJmH//v3S644fPx6KomD+/PkAgPnz5xsabffu3Vt3HfHcmJkzZw4uu+wyHHHEESgqKkL79u0xbNgwTJ06FQ0NDabXE8+bqqqYMWMGhg8fjqqqKpSVleGEE07AlClT0NTUFNO5IkoFlksiIiIqEJEbPxsvk/VkYJ+G/OHLtYcyTeWSDMELZjIE6DIZJD0ZJJkMSFYmA5qh2ItgEzIZgMMlk5zlusuM5ZJy7clOlHvE9wWWSyJKH6ezNcjv97d+fn/88ccYN24c6ur05QW3bt2KrVu34uWXX8add96Jv//977DZrL9XPf/887j11lvh8/lCl23fvh2zZs3Ca6+9hpdeegnjxo1L0j2K3YQJE/DCCy8YLj948CCWLVuGZcuWYdq0aXjnnXcwYsSIlI+npaUFV111Fd566y3DeJYsWYIlS5bgySefxNy5c3HSSSdZHqupqQlnn302Pv30U93la9aswZo1a/Duu+/is88+Q1lZWbLvBlHUuLaAiIiIAJiVSzLux0yG/OGXBIyyeUrIULYoVeWSxK/IBZrJYOzJECmTASnNZIA0kyFQMsmwP4MMRGknfmdguSSi9FmzZk3o3926dQMArFq1ChdccAHq6urgdDrxm9/8Bp9//jmWLVuGp59+Gn369AEAPPXUU7pySzKrVq3Cbbfdhk6dOuHJJ5/E0qVLMX/+fPzhD39AUVER3G43rr76aixfvjx1dzICn8+Hvn374ne/+x1ef/11fPnll6iursYbb7yB2267DS6XCwcOHMDPf/5z7N27V3fdKVOmYM2aNRg8eDAAYPDgwaEJ/OB/H3/8cUzjuf7660MBhhNPPBEvvvgiqqur8dFHH+GGG26AoijYuXMnzjrrLOzYscPyWLfccgs+//xzXH/99Zg7dy5WrFiBt956C8OGDQMALFu2DH/+859jGh9RsjGTgYiIqEBEzmSQ9F+QZTLkWh1/MpVz866GHgEpCjLY2JMhQCxPFXtPhqRlMgTLJdldgK0IUN2tNyFp/ixmMrBcElHqiSX4HIwyEKWFz+fDY489Fvp71KhRAAIr+z0eD+x2O9577z2cffbZoX2GDBmCcePG4bTTTsO6devw6KOP4rrrrsNxxx0nvY3Vq1ejV69eWLJkCbp06RK6/Kc//SnOOeccnH322fB6vbjjjjuwbNmy1NzRCCZPnoy+fftCEbKoBg8ejEsvvRR33HEHhg8fjn379uHJJ5/EQw89FNqne/fu6N69eygToKyszNBkOxZz587F7NmzAQBnnXUW3n//fbhcrd+Rzj77bAwbNgwTJkzAwYMH8dvf/havv/666fEWL16Ml156Cddcc03osoEDB+K8887D4MGDsXbtWjzzzDN46KGH4HBwqpcyg5kMREREBMAkk8GkJ4Os0SrlnpwrfZWmcknMZDhMNT/fsrBLansytAD2wI9zm5DNIMtkYLkkovQTGz9bvKSJKAkaGxsxf/58/OxnP8OSJUsAAL169cLll1+OZcuWobq6GkBgFXx4gCGoqqoKM2bMAACoqorp06db3t5jjz2mCzAEnXHGGbjlllsABHo2ZCqb4cgjjzQEGMINGDAAN998MwDg7bffTulYnnrqKQCBMlYzZ87UBRiCbrnlFowePRoA8Oabb2LXrl2mx7vkkkt0AYagoqIi3HXXXQCAAwcOYN26dckYPlFcGGQgIiIqEJHiAh7JPKpZ1gLn6/JDzj2OaSqXxJ4MQVblkiQ9GZDKTIam0LEVl74vg+ZhJgNRNhBfZgwyECXX5MmTdY2Iy8vLMWrUKMybNw8A0KlTJ7z99tsoKirCJ598ErreTTfdZHrMESNGoH///gCgu46oqqoKF110ken2G2+8MfRvq+OkU01NDTZt2oRvvvkGa9euxdq1a9G2bVsAwLp16+D1Rr8QIhY+ny/UQPrss89Gjx49TPcNBmd8Pl/ocZS5+uqrTbcNGjQo9O8ffvghxtESJQ9zaIiIiApEPOWSzPov+DV+icgHsnJYGgITyLYsbNippSuTQWEmAyA531GVS0pRJgMCPRkAQHHoMxlUXxQ9GQo1TkSUJpqmGd4X7CyXRJQWffr0wWWXXYZ77rkHnTp1AgCsXbsWAOByuSI2FT7llFPw7bff4vvvv4fH45Guuj/55JMty/CcdNJJcLlc8Hg8uv4Q6bZmzRo8/vjj+OCDD7B7927T/VRVRU1NTeh8JdMPP/yApqYmAIFzayV8e/AxkznmmGNMt7Vr1y707/p643cionTh/AAREVHBsA4zyFb6yiahgUCZHXGlMOUeWWNvIBBccqWqp3Ii0tWTgZkMAZrYkyGaxs/CxIQ/uT0ZAMDGTAairCN7ifFrAlFy3X777bjjjjsAAIqioLi4GB06dEBlZaVh34MHDwIITEBHqtEfLIGkaRpqamrQuXNnwz6RJuMdDgfatWuH3bt3h2473Z577jncdttt8Pl8Ue3f3NycknGE3/9I5y28/JTVeSstLTXdZrO1LgLx+wtzYQxlBwYZiIiICkTEcknSJs/yfc0yHCi3iE06gwKlcLJwdihN5ZLETAZjBkWBEM+3RSaDgsCEhzGTIYYgQ4SeDMrhngyKUwgySBo/i0Ey9mQgSi1pkIGZDERJ1alTp5ibEVv1KMjEcVJl/fr1oQBDp06dcO+99+LMM89E7969UVFRAacz8P3k+eefD5WPSkePuWw/b0TJxCADERFRgYhYLknWk8Eik4Fyn9ikM8gsuJRxaSqXZMyQKNCommW5JP2TJDSXaOjJEH25JIctsPJZnKxUND/s8LSWSxIaP6ts/EyUcbLMR2YyEGVOsITOgQMH4PP5LLMZgmWFFEVBVVWVdJ89e/ZY3p7P59NlT4QLX2mvqubfqRobGy1vw8qsWbPg8/lgt9sxf/580/JC6ciyCL//kc5beEkn8bwR5Ro2fiYiIiIA8kwGs5XuWTsJTTExexzNHvdM0wwr69OTyQCVmQwAhMbP+k3BIEMw26D1ENFnMiiKIs1mcGnNgUyJYLmkKDIZWC6JKL1YLokouwQzHjweD1atWmW577JlywAA/fr1k/ZjAIBVq1ZZliFavXo1PB6P7raDKipaFwfU1NSYHuO7776zHKeVb775BgBw4oknWvYvWL58ueVxkpF50Ldv31B5o6VLl1ruGzz3gPG8EeUaBhmIiIgKRKQpNtkknM9spTszGfKCWc8NswyHjDP0ZEhV42dmMgCxNX4ONQpPoPEzIO/L4MThmskmmQyaJJPBJZRp8arG7AsiSh5pJgPLJRFlzOjRo0P/fv755033+/LLL7Fu3TrDdUQHDx7EnDlzTLeH34Z4nD59+oT+bTXJ/9prr5luiyQYALHKhti1axfeffddy+MUFxcDANxud9xjcTgcGDlyJADgv//9L7Zv326677PPPhu6zqhRo+K+TaJswCADERFRgYg0v+aV9WQwy2QozDnXvGP2OGZrJoOxfA97MqRUDI2fQ5kMhnJJ0WcyAPIgg0sLBBnMejKoUWQyACyZRJRKspeXRS93IkqxoUOHYvDgwQCAZ555Bp9++qlhn9raWtx6660AAiWNbr/9dstj/va3v5WW/5k/fz5mzJgBABg0aBCGDBmi23788ceHSgFNmzZNOoE/e/Zs/Pvf/47insn169cPAPD9999j8eLFhu1NTU246qqrIjZ77tq1KwDghx9+SKhnw5133gkgkEly0003wes1Lrp4/vnn8fHHHwMALrnkktBtE+UqBhmIiIgIAOBhT4aCY5axkL2ZDOkpl2TIkBBvt2BYNH6GWU+GBDMZJMEBZzDIEEMmQ5FkdtNdoLEionSQBRlsbHhKlFHPPPMMXC4XfD4fzj//fNxzzz2YP38+li9fjmeeeQYDBw7EmjVrAAD33HOPZbmeE088ETt27MCgQYPw1FNPobq6Gl988QXuv/9+nHvuuaG+D0899ZThug6HIxTMWLt2Lc4880y88847WLlyJT788EPcdNNN+MUvfoHhw4fHfV+vvfZaAIGeD2PGjMFf/vIXLFiwAMuWLcM//vEPnHTSSZg3bx5GjBhheZzgGPbu3Yvf/va3WLFiBTZu3IiNGzdi69atUY9nzJgxGDduHADg448/xqmnnopXXnkFK1aswCeffIKbb74ZN998M4BAL4a//e1v8dxtoqzCxs9EREQFImK5JFlPBpMrMZMhP5j23MjSx9eqfE9SicGLQs1kMPSisCqXFPh/KjMZkEBPBoB9GYhSSbb4wMEljUQZddJJJ2HOnDkYN24c6urq8Nhjj+Gxxx4z7HfnnXfi4Ycfjnisu+66C7fffjvuuusuw3aXy4UXXngBp5xyivT6f/zjH/H5559jyZIlWLx4MS6++GLd9lGjRmHatGlx9yUYMmQIJk+ejAcffBCHDh3CAw88YNjnd7/7HY4//ngsWrTI9DhXXnklHn74Yfzwww944okn8MQTT4S29erVC1u2bIl6TC+++CJ8Ph/eeustfPXVV7jmmmsM+3Tr1g1z585F9+7doz4uUbbixz4REVGBiLQ4XdqTwSyTIVtXulNMzB7HrE1UMfRkSFG5JPErcoFmMmiGTAarcklJ6skQRyaD6jEGGZySXzksl0SUOrLPDbZkIMq8s88+Gxs3bsT999+Pk046CW3atEFRURF69uyJq6++GgsXLsS0adNgs0WeHrz55puxcOFCXH755ejWrRtcLhe6d++O6667DitXrsSVV15pet3S0lJ89tlnmDJlCgYMGICSkhK0adMGQ4YMwbRp0/DJJ5+grKwsofs6ceJEzJ07F2effTaqqqrgcrlwxBFH4JJLLsHHH3+MRx99NOIxysvLsXjxYvzqV79C//79Qw2c41FcXIw333wT7777Li655JLQOauqqsIpp5yChx9+GBs2bMBJJ50U920QZRNmMhARERGAQGNUTdOghJU3yLma/RQT00yGbA0iGcolpWi9jE0fvNAKNMhg1WhbbKIc3JKSTIZg42eTngyaz1guyaYocNkAT9hDxyADUeqInxsKWC6JKBlGjRqVUG8AAOjYsSOmTJmCKVOmJDyeU089Fa+//npc1y0pKcH999+P+++/X7q9d+/elvd10qRJmDRpkuVtnH/++Tj//PNNt48fPx7jx4+3PEbnzp11GQxmos1quOCCC3DBBRdEtW+4aMYKRD5vROnCIAMREaWNX9Xw8dZmHGhRMbpnMbqUJf9jyOvX8MGWJjR5NZzbuwRti1O10jlx+5v9+GhLMw62tE7kKYqCIysdOKd3SUI/ztfu92Dxrha4fa1fODceiryi+MlVdQi/1Y2HfNL9cqEnQ7NPxfubm7GzIXAfFAXoU+nEub1KYI9ieeWinS1Yvc+DUoeCM3uUoGeb9HxtWnfAg6/2enB0lRNDuhQl7bibDnkxf3sLGr2ts667m+RlgNIdRGr0qnh/cxN2N/rRpcyO8/qUoly2FD1NjZ8VIZPBd3AlGtf/A6VH3wpFsUFT/Wj6bgb8DZtR2u9mOCqPSsk4YqVpGlp+eBXemtUo7n05XB0GR3U9X90mNG2YDn+zvpmjd9+XaFDaY0HJTThg7wVH3bFwrqwFANS49U8Ss54M3v3VOLR4Akp6XYai7mdHHIssk8ElZDLYXEKQQZLJAARKJoWXgXt9QwPauGzoXGbHeb1LUeFiUjdRPFRNw3+3NuP7Q77QxFaDV/+9gKWSiIiICguDDERElDavrG/A3M2ByaLPtjVj+pkdpKtWE/H0mjos3OEGEJgk/r8z2mflSjpV0/CnJTXY02SczV24AzjkVvGLY8rjOvYPtV5MWXYorpI3i3a6o9rPl/0xBjy1qh7Ve/T3Z+EON2paVFzT3/rcLtzRgmmrWicuF2xvwd/PaI/yFE9KbjrkxZ+WHIIGYA6AewZVJiXQsL/Zj0lf1uhWdVtJd+PnJ76qxdf7W4NgG2q8+OMpVYb9DBkFqSqXJDlu3ZI7oLoPouLEB9Cw+k9oWP0nAEDT+n+g0+XbYXNVpmYsMWj+/lnULp4AAGj85nF0/Pl6ONocaXkdzdeCAx+cBrV5t3T7M23nYqvzcLDCDcDkPcK0JwOA5u+eQfP3z6H9eV/A1WmY5XhknwlOreXwjZg0fvY1QNNUQ8Nul10BwiY+w59j3x7w4sFhxucYEUX2xneN+M/GJst97Fn43YuIiIhSh+sLiIgobap3t05ONXo1rD0QWxmNaAQDDACwt1nF6n3Jv41k2NXolwYYgpbviW6yX2b1Pk/Ka+rnQibDqn3yc7hyb+Rzu3SXfp9Gn4bvamKrLR+PWd/U6xp0hwc6ErF2vyfqAAOQ3sbPHr+mm/wFgDX7vfDKSttYlO9JJsUpD0K5d7wPAKEAAxCY4G7a8HRKxhGrYIABAKD5UL/qwYjX8ez70jTA0KRUtgYYIig5HBwQSxm1jkeFe8dHEY8jy2Ap0Q4BQCiQY3MaAzqau8ZwWZksG+awdQe9aMnWDudEWW7F3sjfrUqSvIiEiIiIshuDDERElDb1Qip9eJmgVNljUg4m0yLVBhdLkcRCOjmbZNkeY1A1DV6TUxhNXXbZ8yYd2RvfCeWpWpL0WDbGOPh09mQwezykF4v1/e3JKycVztXpNNhKuhou1/wt0v29NatTMo5EefcsjLiPv36T6TYfjFkJZoZ1LQYAuDqPgK20u3QfTY0c4BvcpQhOtAadbJoPJ7nnwNnpNNhLuwUuK+kCQD+B6W/abjjWiG7Wz49YAm9E1KrJ7AM2zPAIrz8iIiLKLyyXREREaeFXNTQLE52HWpI7wyM2Ig1cltSbSJpINe8bvRp8qgZHFL0DROJ9PqLcjkGdW3/sF9sVnNTJha11Puxp8sPt1+CMcDvvbNKXRUh3OZ1YWZ3fSPP2mqZhb5YGp+LVIrz2upbZMTSsDJPh8U1zJoOMBg3iRLImBBlkpXmSwVbUFh3GLMHBTy+ELzyAYNIAWlGc0stzga/+B93fjsr+KOp5EQDA6y8D9un3P693SaAM0WEKgL6VjtDzyeasQIcxS9C8+XXUL79Hf+UoGmj3rHDgvrazsHzHAfhhR3/P5+jtW4F2ow+13qbdBVtJZ10Ghr9xG5ztTtQd66IjS9Gt3IEfDnnR4tfwwZZm3XZ/tn5AEGU5MTg8olsROpS0lpnrWeFgkIGIiKjAMMhARERp0SRZSZ3Ian0Z2XxRGhb1xyWaSfo6j4p2cTSuFs9qn0oHrpL0d+hbGf3E6Jr9HvxQ27rKPtvn5qzOb6SJxXqPlrQMgmwhTggdKTwnqne7sbOxNbCSznJYHpPbkj2Eml9YCZ+iIAMA2Mt7onzA73FowdVhAzB5z7LlbpDBLwQZio44H20GPQwA8LX4gU8P6LZfdlSZvCl3GHvZESg//nfw1axG86aXwrZE97w6wrEX7Zr+Hvq79KgJhp4X9rIehiCDSFEUDO1ShKFditDkVY1Bhvx6mROljfgZeW7vUhxVlbvvg0RkbsuWLZkeAhHlCJZLIiKitGiUpNbXJDmTQVZeW5bdkA3EedVypwIxl6A2ziCMOImejMbXYqJDtgcZrKoDRaoclK0lthIhZhGVOPRfAcWMmfT2ZJBfLn2Y0pTJ0Er4qqyp0FSfYS8la4MMkV/7/gZ9kMFe0Tf0b9nbZ2zvJuL5i/aNI/J+9rIeur9lQYZwsqywXOgtQ5RtVE2DW3jfljVsJyIiosLCIAMREaVFOjIZZKvXs3UOSTwdDpuCNkX6j+XaOAuGi9dKxoe9GKjI1vMapFqcukhjNyuVpGVpwCoaYrkkcUJIiDnAm85MBtNySZLLxCCDPcVBBkNjaRWar9G4ny13k4PFckn28rAgg2T/mKYSDQHOeN/zjbdqL+upP3KEIIOsIly2v48RZSNZYLjYziADERFRoWOQgYiI0qLBa5zNOZT0IIPxsmydRFKFgdkVoNIlBBniPD/ifY6jrYOBMZMhS0/sYVaNiyOtXs7HTAaxtEWRXQwyCJkMaXx4oy2XpGkaoHr1F9pSXPNbCDJomjzIkL2ZDNZUTy00t74ckiMsk0EmtsQoYeckvm/YDJkMP1ruL5sDTefznChfyMoJip8pREREVHgYZCAiorRokpRLqnWrSW28KTtWtjYoFn+j2xWgskj/I73OHd/YjUGGxH/8i/MH2Rq8CUqk8XO+NX0GImcyiCX209qTIdpMBjHAgAxkMpgEGZCjjZ/99ZuFSxTYy3uF/kq4XJIhEyTK51UU79uxlktSFMXwPsbGz0SxE3v8ACyXRERERAwyEBFRmjRKMhk0xF8SSCaXMhkMQQabgjZiJkO85ZKECbrUZDIkfsxUsgouqZp16aO8zGQQmiyIpS3ETAZJTDBlzIIM4ny0WCoJQEobPwOAogiN1zU/NK8syJCbE2w+oR+DrewIKPbW7BD5IxPLfdXvq5k1zo54GEm5pFIhyNC0PeLxDUGGLH8fI8pGbiForQBwcVaBiIio4PHrABERpYWs8TOQ3JJJuRVkMAYC2oo9GbKqXFJu9WSI1LjYanJxb3MeBhmEO1wi9mQQniPpzGQwC2gYLva7DfukvPFztJkMkiyLXOCv36T721FuXSoJiDGeYtg5dY2foXqhNu+1vo6hwXmWv5ERZSFZ+T0lRwOtRERElDwMMhARUVo0STIZAKCmJYlBBsmEUbbOIYmNie1KMjMZ9H8nJcgg3kbUk4WZEWmFslkQwqdqONCcxmX8aRK58bM4+ZryIYWYZzLoL5dlMqQ8yCA+802CDNIsixzgF5s+C/0YEm38rBjOX7zvG8ZbtZV0ARR9w21/k3XJpFwr+0aUjQxBBpZKIiIiIjDIQEREadJo0mGzJomZDLKbyNaeDGJj4kBPhlRlMiQ+AZBP5ZIA88bV+5r9WR4+iY84KWQsl6TfP609GUxuS3z2Syfy09yTQYNJJoM/N4MMvkhBhkTfPw3vPdG+p0W+XcVmh720u+6ySH0ZDJkM+fhiJ0oxsVxSsd1kRyIiIiooDDIQEVFamJVLSmYmgyqZrPRmaeUbcah2G1ApZDLUZVVPBv1Bsr2WuVXjZ8B8cjEf+zEAQHPMmQyZb/xsIM1kKJLsmDyKpFySmkuZDBECjGImgyPJmQyGveMNWpjcD5tQMklt+NHyMOKCazZ+JoqdsVwSpxSIiIiIQQYiIkoTWeNnADjkTt6krmzi2GyVdKYZGj8rijSTIZ6VxOL8emoaP2fneQ2KlMlgNrm4Nw+DDH5VM/Q9iJjJkMaH1yyWJj5EmixbwOZM/oDCyXoyeBsMu2VtkMGCpvrhb9iiu8xeLmYyGK8XW08G8adGlE+sKN9fxL4MsZZLyvZgKVE2chsy4zI0ECIiIsoqDDIQEVFaNKUhk0G2et2brUEGYVyyckl+zbzMlJXUNH62vo1sE2/j5z2N+RdkECeEAGMmgzMXMxlszjQ0G42y8bOkKXW6aVps76X+pu2A5tNdJpZLkkkskyHe93v5rRqCDDGWS2ImA1HsxB4/7MlAREREAIMMRESUJg1mjZ+T2JNBtnrdm6VLVcVh2RQYGj8D8fVlYE+GyJkMZpPoe5rysOlzFEEGcY7IJCaYEmZBBkMmgxBkSH3TZ0hW4mdx42fVG9PuYqkkxVEGW3FH3WXSckkxZTLod9aS3PEk5iADMxmIEmbMZGCQgYiIiBhkICKiNGkyWZF/KKlBBuNl6ZwsjYU4VodNgcuuoESY7Y0vyCD0ZIj5CEZioCLrgwxxZjLsbTbPZMjyu2xK7McAyMolZTCTIcrb0sRsgbQEGfR1QDSzTIYsCDJoCQYZ7BV9DZkhiVdFEzNBoj1gtOWSeur+jj2TIcrhEFGIGGQoYpCBiIiIwCADERGliVnj50NuNWn1/WWlL6IuxZJm4liDc19txb4McTR/TkW5JHEOIft7MsS+XdO0vOzJIJa2cNqMQQVjkCHlwwrxmJxyw3MsA5kMxsbP/izOZIhtDL4GMchwZFTXiy2RQdw7teWS1OZdlsEW8X3Ml+XvY0TZSPxMETPjiCh7jR8/HoqioHfv3pkeCoDA9wRFUTBp0qRMD4WIkoBBBiIiSjmP39h4NkjVgDpPkoIM0kyG7JxEMjZ+DvxfLJlUl5RySTEfwiDfyiXJAlL1Xk266j/XieWSZKUtDI2fs7Ang6Fckr0oFcPRkzV+lgUZZE2p0yzRTAaHpB+DvFxSDG8ohvOX2sbP0FT4m3aa7i/OhWZpDJooq4mfKcxkICKK3hlnnBEKrpx99tmZHg5RUjHIQEREKWfW9DnoUEtyVo/LJoziSARIC3GVdrCMh9j8OSnlkgqxJ0Mc5ZLyMYsBiG7VqSGTIY2Pr1kg0HCpOJGfjnJJ0TZ+zopMhgTLJZVHF2SIjfhci/OIJu9hSlF7wF6su0y1KJlkY+NnooSxJwMRWenduzcURcH48eMzPZSss3XrVsyfPz/096effoqdO80XRxDlGgYZiIgo5RojzFgmq/mzbMIoVxo/B3+jV7qys1xSrvVkiFQGRbZSf0+BBBlkq07FuEM2ZDKID6Exk4GNn/VjkAUZzF/8sp4MhmMKj0HsbyXCNbRo38+ie/4pihJT82dmMhAlzvCZwnJJRBQnTdOgaVrBlEt66aWXoGkaioqK4HA4oKoqXn755UwPiyhpGGQgIqKUa/RGCDK0JCnIkEvlkoS7HJzEryxKRuNn8dgxH8LAmMmQnec1iJkMrQzlkiQTQk4h8JDOhummQQbxb3EiPy2Nn/VflTVNhebN/UwG1VMH1b1fd5m8XJL+UYg5KcoQpIn3fcP8hmMJMrDxM1HimMlARBSfl156CQAwduzYUKmk4GVE+YBBBiIiSjmzps9BSctkkEx8Z2u5JHGswXlfsSdDbRz9KtLR+DnbVwDH0/g5UiZDlt9lU+Kq0xJZuaRMZjKYvEYNL+esaPycaz0Z5I+jmMUAKLCX9Yp49UQzGbQoMxnE4IYVe1lP3d+WQQY2fiZKWDTZcUREpLdkyRJ89913AICrr74a11xzDQBg7dq1+OqrrzI5NKKkYZCBiIhSrilCJsOhJAUZfJLDZGu5JEMg4PAnstiTIb7Gz6noyZBb5ZLiafycrZkMWoITodE1fhZ6MmRjJoPfrfs7LY2fc7wng1kzaF+DPshgK+0OxVFs2C/hl7nhvSfDmQzCeLL044EoqxkyGVguibLUpEmTQg12AeDQoUN48MEHcdxxx6G8vBzt2rXDGWecgddeey3isbZs2YLf/OY3OO6441BRUYHS0lL069cPt956K9asWWN53eAYgiWBPvnkE1x44YXo2rUriouL0bdvX9x1113YsWNH1PfFzLx580L7zZs3L+L9EjU2NuL111/HzTffjJNOOgmVlZVwOp3o2LEjRo4ciUcffRQNDQ3S644aNQqKomDr1q0AgBdeeCE0luB/o0aN0l1HPDcywZJC559/Prp06QKXy4WOHTvijDPOwPTp0+HxmH8HE89bS0sLHnnkEQwcOBAVFRWoqKjA0KFDMW3aNPh8vthOVoxefPFFAEBVVRXGjBmDiy++GBUVFbptRLnOkekBEBFR/muMMGOZrHJJsonvbC2XJJ4Se6hcUhJ6Mgh/J2NFAcslpZ7ZOdUQzwryVs1RNH52Ck+SdGYymDZ+jpDJkJZySTa7OAiTTAa34bJ00zRJQMEkyCBmMshKJQHGkEDC5ZKifd+I4f3FGGT40XxfYThqln4+EGUzMcjATAbKBZs3b8bPfvYzbNq0KXRZY2Mj5s2bh3nz5uHtt9/GK6+8AofDOEX24osvYsKECXC79Z/1GzduxMaNG/Hcc8/hoYcewn333RdxHJMnTzZMqG/evBlPPfUUXn75ZcyZMwenn356fHcyCcaMGaNrTBy0f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7wQixYtMown+NhNmzYNH3zwAXr1kmRkhtmzZw/OPfdcrFq1Snd5dXU1qqur8fHHH+Ptt9+GzZb8tdgejwevv/46AGDcuHFwuQLfYS+55BK88MILeO211/Doo49Kn39EuYSZDERElHIRezK4kzO5K5sY9arZOSEujsms8XOzTzNd6W1+bP3fSenJIN5G4odMqUhlUMRMBp+qYX9zZu+VWWAk0brxYmmLYnGmFbJMhixo/Cz+nYFySbJMBtVnXMGXDY2fISnZZJbJEE3TZ5mYYwxxN34WjmMR3bCV6oMMakzlkuIaDlFBM3ymMJOBcsAVV1yBzZs347bbbsMnn3yC6upqPPfcczjqqKMAALNnz8a9995ruN7cuXMxfvx4uN1ulJeX48EHH8TChQvx5Zdf4rHHHkOHDh3g9/tx//334x//+IflGObOnYtJkybh6KOPxnPPPYfq6mp88sknuPXWW2Gz2VBbW4uxY8di2zbzz7FU8/l8GDBgAB544AG89dZbWLp0KZYsWYLXX38dV155JWw2GzZv3oyLL74YLS0tuuvOnDkTa9asQbdu3QAAF110EdasWaP7b+bMmVGPxe/3Y+zYsaEAw8iRI/Hvf/8by5cvx7vvvouLL74YAPDtt9/irLPOMs2wCLrkkkuwbt06/PKXv8R///tfrFixAq+++ir69+8PAJgzZw6eeeaZqMcXi/feew8HDx4EgFCZpPB/7927Fx9++GFKbpsonRgmIyKilBODDCUORbe6Olnlkszm4n0q4BIXJGeYONZQkKHIOAFc61bRsTT6O5Cexs+JHzOVIk3Mi5OL+5v9hkntqiJb0vqFRMOsxJNfA5wJHDeaxs9i3CGdk6/mPRn0gzD0PchA42cA0LySH7FZEGSQBhQSDDIkHp9NVrkkc2Img+reD83XDMVRYthXDKbJyqYRkTXxM4WZDMmlaSpU94FMDyNtbEXtjf2PUqC6uhqvvvoqfvGLX4QuGzx4MMaNG4fTTz8dq1evxt///nfcdNNNOP744wEAXq8XEyZMgKZpKC8vx8KFC3HSSSeFrn/qqafi0ksvxbBhw7Br1y7cc889GDduHDp06CAdw/LlyzFw4EDMnz8f5eXlocvPOussjBgxAtdddx3q6urwu9/9DrNnz07NiYhg5syZ6Nevn+HyU045BZdffjluuukmnHPOOdiwYQNeeeUV3HTTTaF9+vTpAwBwOgPfWtu2bRs6l/H45z//iS+//BIAcN1112HWrFmhRQeDBg3CBRdcgAceeAB/+ctfsGnTJjz00EP461//anq8YLZCeMmmgQMH4pxzzsGxxx6LPXv2YPr06bj11lvjHrOZYDmk3r1747TTTgtdfuaZZ6Jbt27YuXMnXnzxRYwdOzbpt02UTgwyEBFRyjUJjZ+7l9ux8VBr3cuaFhWapkWsMxqJ2SStR9XgyrIfweJY7Ycnv0odChw2fTmlWk+sQYYU9GQwTM4lfMiUirUng9j0ucypoMypoCY8Mz7F85FmE/uBxzP+x7BFqM0lCzI4lOzPZDA0frZnoPGzZBxAlmQySMolRduTwVEeZbmkWMdkOH/RPq/iL5cEAP6m7XC0MU6S5FoDe6Js41M1w+tG1ueH4qe6D2Dvvzplehhp0+nKvbAXd0z57YwdO1YXYAiqqKjAjBkzcMopp0BVVfzzn//EtGnTAABvvfUWdu7cCQD44x//qAswBPXq1QuPPPIIrrnmGjQ1NWHmzJnSjIigGTNm6AIMQddeey1ee+01fPDBB3jrrbewe/dudOnSJc57Gz9ZgCHc6NGjceGFF+Ltt9/G22+/rQsyJNtTTz0FAOjYsSOmTZsm/Z04efJkvPnmm1i/fj2eeeYZ/OlPf0JRkbxn1913323oCQEA7dq1ww033ICpU6dizZo1qK2tRWVlZdLux4EDB/D+++8DAK666ird/bDZbLjqqqvw6KOPYs6cOTh06BDatm2btNsmSjeWSyIiopRrEDIZupfrY9x+DaiPUFIpGmYT39nY/Nksk0FRFEPJpNoYV9Ono1ySluoZ9wRFesjF7Xub9Oe4cwxBnWQxLZeU4KmOpvGzU3iSeNMURPJLJqyCIpVLylQmg5TqTbhBd6KkAQVp4MEPf8MW3WXRZjLEHghOTrkkq/CGzdUGilM/GWDW/Fls/JzOBudE+UD8PAFYLolyww033GC6bejQoTjuuOMABJoyBwX/rSgKbrzxRtPrjxs3LjQpHX590YABAzBo0CDT7cHb8Pl8cTVtToV9+/bh+++/x9q1a0P/dewYCAqtXr06Zbe7c+dOfPvttwCAyy+/PNQgWeRwOEKPbU1NDb766ivTY1599dWm24KPi6Zp2Lx5c7zDlnrttdfg9Qa+j4WXSgoKXtbS0oJ///vfSb1tonRjkIGIiFKuyWfMZBAdSkLzZ7PV6+maMI2FOKEcnm3QRggy1MXY/JnlkmJv/CxmMnTKRJDBolxSIqKpn+3IUONnj8XtGE6H0FxZsctXqiVXDF+VTbIG0kYaZFChCRP7atMOw76mQQbh79gzGeItlxTb88/Q/LlB3vzZ0Pg5C/v1EGUztyTljuWSKBcMGTLEcvvQoUMBAN999x08nsCihrVr1wIIlAEKTqzLuFwunHzyybrrJDIGAFizZo3lvqm0aNEiXHHFFWjfvj06deqEo446CgMGDAj9F+xbsH///pSNIfw8nnLKKZb7hm+3Ov9WjarbtWsX+nd9fX00Q4zaCy+8ACBQminY/yHciSeeGCorFSyrRJSrGGQgIqKUE3sytHHZUOHS/yhNRvNns4nlWBsnp4OhXFLY6RD7MsTas0KctxVX78Yj54IMMZZL2isEGTKRyWC2qjrRiVBx5WmJZELI2Pg5oZuMmsfiZZ8VjZ9jqBOd6ZJJZqWRxICCT+jHoDhKYSuOrjRH7IkM+vMXd7ZHhBs2BBmazDIZ9H+z8TNRbNyS71MMMlAu6NTJ+nOuc+fOAAKfUzU1NQAQatQb6boAQqWNgtdJZAyRjpNKkyZNwmmnnYbZs2dHHENzc3PKxhF+25HOW3hZKasxl5aWmm6z2Vq/r/j9if8mDfr222+xfPlyAPIshqBrr70WQCDAk+xMCqJ0KtieDHv37sWyZcuwbNkyVFdXo7q6GgcOBBosXX/99Zg1a1ZMx/vggw8wY8YMVFdXY9++fejYsSOGDBmCCRMm4LzzzkvBPSAiyh1ikKHMaUNVkQ31YTOMyWj+bBZLsFotnSmGQEDYXJwYZIg1k0GcYE9OJoP+INm+AjjSJLk4uZgNmQxm2QOJ9r+IJpPBKcylawgEYuzJePJYsAoAik+xrC6XBGS++bNJkEFTvbqsD7/Qj8Fe3te0DFLSGz9HWy4pxhs2BBlMyiWx8TNRYsSgtcNmfF1RYmxF7dHpyr2ZHkba2Irap+V2Eun7lmjPuGQfJ1U+/fRTTJ48GQDQt29f3HPPPTjttNPQs2dPlJWVweEITB9OnDgRDz30UNrGle3nzUp4ZsJvf/tb/Pa3v7XcX9M0vPjii3jwwQdTPTSilCjYIEN4lDgRqqpiwoQJeO6553SX79ixAzt27MDbb7+Nm2++GU8//bQuOkpEVEjExs9lTgVVxXb8WN86sXswleWSkrcgJWmMPRlav0BnY0+GXGuYGksmg6ZpUQUZUn2Xzc5poq8MMcggW3UqmyTyaUCqQy2W5ZLEC/zpz2RQlOjPgObPjUwGv5DJYFYqCTD2Xon9rSTeckmRjqNnE4IMqmlPBv3f2f4+RpRtovk8ocQoii0tjZALzZ49e9CjRw/L7UBgQruqqgpAawmd4DYru3fv1l3H6jai2S4eJ3wuSVVV07mlxsbGiGM1EyyDVFVVhSVLlpiWiEpHlkX4/Y903oLnXrxepqmqildeeSXm67300ksMMlDOKtggQ7iePXvimGOOwccffxzzdR944IFQgOHkk0/G73//exx55JHYtGkT/t//+39YuXIlnn32WXTs2BF/+ctfkj10IqKsp2kaGoUfpWUOBW0TLAkkY7Z63ZuFq1XFFbThv9PbFCU3yJCMBUC5Vy4p+u2NXg3NwnM0M42fzTIZklsuKZqeDEAgsyLVE0gJZTLYmckQze2LwQexXJKj4siobyLmakmG85eqngw9dX+bNn7OUFkwonwhlksqZpCBckR1dbVlkKG6uhoA0K9fP7hcge8Xxx9/PL788kts3rw5VK1Cxuv1YuXKlaHrRLqNaLaLxwlvfFxTU4P27eUZIN99953lbVj55ptvAABnnHGGZQ+KYPkfM8nIPAi//0uXLg2VE5JZtmyZ9HqZ9vnnn2PbtsD3kbvvvhvDhw+33H/p0qV44oknsGnTJixatAgjRoxIxzCJkqpggwwTJ07EkCFDMGTIEHTu3BlbtmxBnz59YjrGd999h0cffRQAMHjwYCxYsAAlJSUAAk19LrzwQowcORLLly/HI488ghtvvBE/+clPkn5fiIiyWYtfM0xIlx4ulxSuJgmZDGZzsVkZZLDINmibaONn4W+x1FE8jOWSEj5kSsXS+Hm3kMVgU4D2xenPPjSrD5/IufapmqHxuWxSSJbJkI6G6dY9GYQ7nomeDDG0L9NUd+SdUig1mQyC2Ds/CweM90kVY0+GKDMZsr3sG1G2EYPWzGSgXPHCCy/gkksukW6rrq4ONQwePXp06PLRo0fjmWeegaZpmDlzJn7/+99Lr//GG2+gtrbWcH3RmjVrsHLlylCTaNHzzz8PALDb7Rg1apRuW/hc1fLly3HOOedIj/Gvf/3L9PYj8fl8AKyzIVauXImlS5daHqe4uBgA4HbH/72oW7du6N+/P7799lvMnj0bU6dORXl5uWE/v98fKnVeVVWFgQMHxn2byRYslWS32/HHP/4xYm+J0aNHY9q0afD5fHjxxRcZZKCcVLD1eyZPnoyxY8cmVDbpiSeeCL0RP/nkk6EAQ1BpaSmefPJJAIE37Mcffzz+ARMR5SixHwMAlDsVVAmTuDXJyGQwmTDKzsbP+r/DJ3nbFOl/tMeeySD0ZIhtaFLGTIbsO6fhYimXJDZ97lBsy0iNabPASCJPX3FCCABKZJkMkrtr1iMimawCgJEbPxch5WJp/JzhcklWPRnCGXoyWAUZxKyoWMdkCHCm5jklBhk0bx1UT61xP5ZLIkqIO4oeP0TZ6N1338Xs2bMNlzc0NODWW28FEChJFPw3AFx88cXo1q0bAGDKlClYs2aN4frbtm3DPffcAyAw/3PDDTdYjmPChAnSSfxXX30V77//fuh2u3btqts+fPjwUE+Exx9/HJrke+4jjzyiW9Ufq379+gEAvvjiC2zcuNGwfd++fZYZBUHBsW/atCnusQDAnXfeGbrdX/7yl9J9Jk+ejHXr1gEAbrnlFhQVpeG7YRQaGxvx5ptvAgBOP/30qJqHd+jQASNHjgQAzJ49O6EgDVGmFGyQIVGapuGdd94BABxzzDE49dRTpfudeuqpOProowEA77zzjvTDgIgonzUJQQYFgR+lYibDoZbEGyeYTdKmY0V2rMQSOOFz2sbGz1pMk/qp6MmQa+WSIpVBCZ9cNOvHkO4+c2aBkUgBEyti/WzArFySpCdDGh7kmMol+YUfW2kol2Qs92Mhw+WSTDMZtNbLVW891JZ9us2O8ugzGWJ+TYjnL9rncqyNn0uPMFwmy2YwlkvK8jcyoixjKL/HTAbKEYMHD8ZVV12FO++8E59//jlWrFiBmTNnYvDgwaFSR3feeSdOOOGE0HVcLhdmzJgBRVFQV1eHESNG4KGHHsLixYuxdOlSPP744xg8eDB27twJAHj00UfRoUMHyzEsX74cgwcPxqxZs7BixQp89tlnuOOOO0KT9xUVFaFqGeE6deqEcePGAQA++ugjXHjhhfjwww+xcuVKvPPOO7jsssvw+9//PmJJHivXXXcdgMAE+ciRI/Hkk09i8eLFWLx4MR599FGceOKJWLduHYYNG2Z5nOAYqqurMXXqVKxevRobN27Exo0bsWPHjqjHc9ttt4Vua+bMmTjrrLPwn//8B1999RXmzp2LSy+9NNSA+sgjj8T//u//xnO3U+LNN99EQ0MDAODSSy+N+nrBfQ8dOoR33303JWMjSqWCLZeUqM2bN4c+TILRRjMjR47Ehg0bsGPHjrjKMhER5bIGYYa/1KHApihoW6SveV/jVqFpWkJ1PM0mY3MhkyH8d7rY+FkDUO/RUFkU3blJR5AhC0+pTqSJeZ9FJkMm+jEAqSmXJAsyyBs/S8aTjnJJsTR+zkS5pFgyGTLekyFyJoNYKgkA7OW9TQ+ZcCZDssolRfhcUBzFsBV31AVQ/I3b4KzS12YW42vZ/j5GlG3Engwsl0S5Yvbs2TjrrLMwffp0TJ8+3bD90ksvxd/+9jfD5WPGjMHMmTNx6623or6+HhMnTsTEiRN1+9jtdjz00EO4/fbbLccwZswYjBkzBpMnT5ZmPLRp0wbvvvsuevfuLb3+448/juXLl+P777/He++9h/fee0+3/corr8TNN99sWbLJymWXXYYbbrgBM2fOxM6dOw3ZA3a7HY8//jhqamrw5Zdfmh7n9ttvxz/+8Q8cPHgQ9913H+67777QtpEjR2LevHlRjcdut+O9997DhRdeiEWLFuGzzz7DZ599Ztivf//++OCDD6TllDIlWCpJURTTMl0yl1xyCe666y6oqooXX3wxFFgiyhUMMsQpmJIFBDIZrIRv//bbb2MKMmzfvt1y+65du6I+FlEh8Po1fLClCQ1eDef2LkG74sxMFhYyTdPw+bYWfHvQC1XTcFDotVDqDPwgFcsleVXg76vqok6xqyyy4We9StC1rPWjzGxS9JMfm/HNAesJwDZFNvysZwm6lTvgOfw8+rHOF+VoYrdPmNgOX2HbxmU8C9NX1+Gm4ytCq+zNNHhUQxPjVPRk2FLnw/ubm3BCBxc+29Ycc0mnoHqvhtX7PChzKDi5kwsOm4KTOrkwrGtxzMdq8qr4YEszdjb4sOmQ9WO3cq8Hte5afH/Iiz1N+rGbneMPtzRjxR556vL2Bj86l9rhNHkCdy6147w+pahw2dDkVfH+lmbsamgdY4XLhvYm71fRBslUTcPHW5ux8ZAvlDnZIGQSOW3yrAWbosCu6Cddn1hZi9O6FeP8PqVwRTmRpGkaPtvWgl2Nfow8ohg9KoxfNX+o9WLethY0elXsbTZ/3rz5fSM++7E59Hdz81VQKi7DEb6vcXrzc1nXk6Hh6ymoGjkbiiP2526imn94DfVf3SffGBZk8NXpyx/YSrvHNN7YyyUJ7/M1q1Gz4JrQ347y3ijt/0vYSzpB0zS0/PAq3Ls+gWfPglhvCbayHrogQ8Pqh9D8wyuBbUXtUdrvJtht/XTX2d7gw5MrW8sqdS6z49zepdL3YKJ8tXKvG2v3ezCgowsndbQuNSKWSyqSZMb5m3ahcf00+Bu2xjQOm6MclcP/GdN1iKLVp08frFixAo8++ijeeustbN26FU6nEyeeeCImTJiAq6++2vS6119/PUaOHIknnngCH3/8MX788Ueoqopu3brhzDPPxN13340BAwZENY5JkyZh2LBhePLJJ7F8+XLU1NSgW7duOP/883HffffhiCOMmXlBnTt3xtKlS/HXv/4Vb775Jn788UeUlZXh+OOPD92HaCfwzTz//PM488wzMWPGDKxatQoejwddunTBT3/6U9x1110YOnQoJk2aZHmM7t27Y9myZXj44Ycxf/58bN++HS0tLXGNp127dliwYAFeeeUVvPrqq1i5ciUOHjyINm3aYMCAAbjssstwyy23hJp1Z4MdO3aEgiHDhg0LldyKRufOnTFixAgsXLgQH374oWXDcaJsxCBDnMIn/60+CACgR4/WOrHB7vLRCr8uEUX2zNp6zN8e+BKzaGcL/j6qvaE8AqXWB1ua8cK6BtPtZYdnYdsWGSdxFu+MrfbkFzvdeOqM9nAengBdult+/U21PmyqjRwwWLijBU+d2QHPr63HvO3xfRmOV/gcrt2moMKpoD5sgnjVPg8mfVmDJ8+wfk4/ssJYhzwVmQwALB/nWDX6NHxx+PGft70FGIiYAw3TVtVhxd7oVpPvbPRjZ6O8RJdZJsOGGi821Jgfc0uEoNQ3B72YPKwKf19Zh5X7ol/1/vK3DfjLae0i7jd7QyPe2tRkuY9V/WyHDfCHnZJt9X68tqER2xt8uOukyqjG+u4PTXh1faDW8IdbmjD9zA5oE/ZaP9Tix4OLaxBNL/O1B4SV+a6LAADLMQ61tq64LssyGdzb5qB26d1oO+KZFA7IqGnTy6hdaF4jOTyToX6Fvmmlw6IfAwAs2SW8p8ZeL0n3l9q8Gy2HJ/6D3Ds/Roexy9C8cRZqF90Y1XFk7GU94TvwVehv774v4d3XutKyeeMLUIZ9r7tOvaf1fSfom/1eTB5eFfH2iPLB1/s9mFod+N7w3uZm/O8pbXF8B/P31kjlkjRNw8H/ngtfzdcxj0Upas8gA6VUVVUVpkyZgilTpsR83d69e+OJJ55IyjjOOecc08bNkVRVVWHq1KmYOnWqdPuoUaMsS3TPmjUr1CjZzDXXXINrrrnGdPukSZMiBhqOPPJIPPvss5b7AIiqnLjNZsO1114bVT8IUTRjBSKft1h0794dfn/8ZYAXLIh9oQVRtuAynTjV19eH/h0pLausrCz072BdNiJKjeVhq4z3N6v4IYqJZUquapOJ/qDgClGXXUGlK7HZ71q3io21rRNoHUoS+1ir92jYUOPFir3pb7QlTv5WSVa1H2hRsa3B/Dnd4FGx/qCxZIqs0W+sStJcEmFVlMGCIFXTLCfuK5zRj79zWeDcJ7sMxPqDXtR5VKzeH9t9E3tGmPkqisBFuVmqBYBSWc0kxPZYBAMMQCA76Z1N+uaGq/Z5ogowRLLOdRYUV5vEDxSBYi8ClOgz4tw73k/haExu88e3rXcICzLYioXGg4r1eqODQq+cWDOWbI6yiPt491dDbdkP93bzc6c4SiMex1FunSmseWvhatwQ8Tjra7xoysZGPkQp8PK3+t+mM9bUWe7vET6OxM9JtWlnXAEGIiIiyn0MMsQpPN0rUmpWeIf75uZmiz2Ntm3bZvnfsmXLYhs4UZ4T64/XJmM2i2Kyv9l6QvS07kVh/068rEi9p/UxT0YDwlq3sdxQqrUvtuHoKqfustO7y0sWuC3iZockE4Ddy+3oVpZ42bBj2jkNzbpTyRtjIwK3XzPtXVDqUHDzgApE8/ToWeFA7zaBidfhcZRsiuRQixpzj4Vo68aLZSxkRnQzv0/Du8mfc4nMt35Xow967Y3w/hAtn1KMoi6jknIsK4q9CMU9fx71/obm1Gngb7QurRk+JnF89rKelteVlUKJhav7OVCckbNgNH8LNL9J9pitCMU9Lox4jOI+VwI2p+U+xxTvjSq4neaPAKKM2Spk4InlA0VivyMxy9H0dUxERER5j+WS4lRc3Poj3eOxXuHndrf+oCspKYnpdiKVYiKiVqqmGSbj6uKsE0/xUTUNB4VzPuqIYlQW2WBTgP7tnDgxrN7vNf3L0bfSiR/ro884WbC9BTVht1FvEUjqWmbH0C7W9YW/3Nmiqwt/yK0aejuc1aMY5Smq0V3hsmF41yKUCKvIL+hbii5lDjwmlD/yWaTy1knOxeRhVQk10w4qddrw5xFVmLGmHqtNVsxXuBSc2SP6z7mFO1oMPTviJa6uBIDzepegssiGU7oUoVu5A51K7fhqrwcev4bPtzWjzqM/lwqAB09tG+o/cX6fEnQqtWPTIS9ko2z2BXogiI6qcqJ/u8Bk55wfmnRBBdljFEmzT4PHr0XsiyAGZk7tWhQq/aQA6F3pwKkWr4fg6/Hzbc26UkWasQVz1MQAxT5hAusnbR04rr0LNgU4psqJJp+GrXU+wy3u3Pcjqus6hP72wwFbUeQSUsnQ9vQX0XzEefDVtZbaUWxFKOp+Lpp/eAVN66eF7Z3+2Wl/807rHdSwwILQHLqou3W5BjEgdslPImcUhHOU90KHsUvRsvVNqN7DK6RVDxq/0TfX1DQ/ILzKXJ1HwtXtLBQfcQGc7U+KeFuujkPR4fwv0bL9vdBEZ/P3z+n6NJTbW/DnEe2wZFdLqF+J26/hwy2xLQIiKlTie4KhlKJm/DAuO/73UZWeiyZjiYiIiLIXgwxxqqioCP07UgmkxsbWUgHZ1PGeKN/IVtvWs+RBWtV5NMME/RVHl5k24LYpSszZDFvqfKgJm+RuCHuMxem9K44qwzCLldsAsLfJj73N4WW2jD+QL/5JWcSGy8mmKAqGdilCu2KbbiLeZ7EMXpzA7lJqR0USgyMdSuy4+MhS0yBDxxI7rjom+s+5PU1+Y833OLkly/2vPLoMxWHBm76VTvStDEz+r97nQZ1HH9wa27dUF0xSFAVDuhRhiMnE/MEWvzTIcEIHF8YdFSgTIwYz4gkyBK/XocT6OSiuvj6rZwlOsKitLQq+HruU2fHAotbmE4mUqBUDH/uE19fwrsUY01c/sTRc0h+v2rdHF2TQ0tL0OUBxlKC0n0mvAM2rDzIkqZ5vtDRNhdq0y3qfsJXFmiq8diOcR/HuxNNE3lF5NMpPaG1KrfmaDEEGaH5A0782inqMQfnx98Z0W84Og+DsMCj0t3vHh7ogg6b50anUjguPbC3jdMitGoMMzGQgkjIGGcRUBuNnXMWgh6HE0N+GiCgb7NixAzU1Fs3YTJSVlaFPH+sSjkT5ikGGOIVnGIQ3gZYJb/bMRs5EqSMrr8JMhvQS63fbFHmD50SUC7X1G8OaIxvm96KYD2sjTMLLggyRVpCnklitRAzihBMnsNsk2PNCOh6LLtLJPE+xzvF5JEEGq/HINsXaINtuMuEanpRS5rShLizNIqVBBuE90KL9giVD+Yv4DgPA+HwVgwwdowze2RT9KNSsqfhpWMab1ltXW/YDmj5YprjaQvMcah2R3zyTQYlQXkiNUBolLrIeF5ofmmFyMvHHWBFvSzW+v8vuEmMMRHJiZpvh80KSyRDVlzEioizzwAMP4IUXXoj5eiNHjsS8efOSPyCiHJAtv9ByzrHHHhv69/r16y33Dd/ev3//lI2JqNB5JZOM9V5OFaTTgWb9JFFVkS2ula9WxMa1DRaTttHcchshCLKv2Xi8ovQmMeiIk/pWmQy1bv028b4lg9XEdayNkpP5zBAzGRw261XXdslsaawxErvJuXCE3a7YdDveIEM0DXfFCX1Hkl57sfaQCBde3sunaob3iI5RNmtXhIktDRl8UeoYZtjSeutq0w79BYrN0GdBCyuXpAlBhkg9DCKWRomHNMigGldAJ2Pls3hb0glQyXASv2WinBDrS9rwnmDcw3ALySjZSBSPSZMmQdM0aGn+bBYFxzBp0qSMjoOIKNUYZIhTnz590K1bIJ9//vz5lvsuWLAAANC9e3f07t071UMjKljSckls/JxWB4RMhvbFyf+YKRdW5zeEZzII+0YVZBCOt79JksmQlJm1+AitGiwzGcTnu5ilkZzxWGQyJPE8xfp70CPMfBRFGIs8kyG28ZsFJey6TAb9TvWe+H7oRhOcEANQ4nMnWsl81oS/Lx9sUQ2v0ZzPZDA8Z9I7keFv0vdjsJV0MdY1D2/EKpRLUiKUS0pNkMH42Ml6MiSlvIpNSNqWBBmkdynDE1JE6RLr4oCI7wlitpAsqEhElANmzZoVChDF8h+zGKiQZckvtNyjKAouuugiAIFMhSVLlkj3W7JkSSiT4aKLLuJKDqIUkpZLYpAhrcQmvu0ilHeJh5jJkGggqVKYiG/0GSdqZave08WQyRBD4+dUBBmsMxliO1YyPxLFTIZIpZvSVS6pVJjpT1UmgyZpfG8VELIkXC2hTIawQe0VAnglDgVlYj0wE1kbZMh0uSSh6bO9pBsUu74PTXi5pFgzGcR7Y0tC/pE0eKD5jRP7SQgyiOWSpKVc+NWcCphL8rltlTEpbjL+tk1BRhIRERHlBH7qJ+DXv/417PbAN7O7774bzc36pnHNzc24++67AQAOhwO//vWv0z1EooIiCzIwkyG9xH4GKclkcJpnMsQjUmPkTGYxALH1ZBAnolNRLslq4rooygnjoGSeWY8wdxhpdWYyyiWZZQqEBx/ETIZ4+8TURciAkD0v4s9kSN4jEx4UM/RjKLFHvfjCpolBhmxZHZvZckmGTIbSblBs+kbl+p4MsWYypKAnA2Bc3awaGz8n5WeKoVySz7iL5GrMY6BCIfusbPJFH2SI2JOBmQxEREQFo2AbP3/xxRfYuHFj6O/9+/eH/r1x40bMmjVLt//48eMNxzjqqKNw7733YurUqVi+fDlGjBiBP/zhDzjyyCOxadMm/PWvf8XKlSsBAPfeey/69euXkvtCRAGySbZIE3OUXGImQ/vi1GcyNIbVYzEshI1iArMywkR8rKUEki2WngzpyGSwDDIksSdDoo2fZaszw8mGapaZYMZsb7Hxc7hEGj9bkWW4xNuTQbxaIu+i4eWS9gmZDJ1Ko39+Zm0mQ4bLJalCkMFe2s0QeNDCyiWJmQyRGz/r/05qkCF8MlJSLiklPRnY+JlIR5b11+RVTb8/RGr8LAYLk1L2jIiIiHJCwQYZnn32WdNO8YsWLcKiRYt0l8mCDAAwZcoU7N27F88//zxWrlyJK6+80rDPTTfdhD//+c8Jj5mIrImTjADQ7NPg9WtwZniiuFAcFHoytIuyqWssyoUfvg3hQQZh3+h6MkTIZMh4kEH/d2w9GZI/dstySTHOQFrNgce6IDwT5ZIURYFdgbFMUdgdKxWyO+LNropULkn2vLB6rKxIJ101LWLQTtZYMXySeq+h6XP0QUgbciSTIe09GfSNn22l3aC6D+p3Otz4WdM0QCyXZI+tJ0PSSpxJyhhpaWj8LC2XRFTAZJ97jRYZohEDj4bXcba8VxMREVGqcWlBgmw2G5577jnMnTsXF110Ebp16waXy4Vu3brhoosuwvvvv49nn30WNhtPNVGqmU2+1ss6QlPSqZqGA2nJZND/onX7wwNMsU/wlTkVy8nlSCviUy3angyqphkyd8R+E6kYT7jYAzLJC4KIQcZIWRWyJs/xrNKWZkSE92QQyyWlqPGzLMMl3p4MsonkaEYtifPqGMolRdn0GQBsiv7+a9nyFTbDvbbErAV7aXcodpNySZof4iOpKBEyGYS/k5XJIPZKgKamZAW08XbYk4EonF/y0SL2pgpnCDIYSsaJ5ZKy5L2aiIiIUq5gMxlmzZplKImUiPPPPx/nn39+0o5HRLGT9WQAgHqPhnbF0k2URPUezRDoSUlPBsnEeaNXhctul5RLinw8m6KgwmUzXSme6XJJYgkfs2Bag1csYpCangzWjZ8zd64MmQwRZkNl/QrscZwuu00xzLroejIINxTvOvfIQQbjZfH2ZJBnMphsCBMxyCCWS4opk0EYj2KLKrsi3WTZHKkklkuylXQDDD0ZDpdLErMYgIiNn42rlpMVZZBM/qeiJ4NN+KkjCTKYPt+JCoAsQN1ssTgnUnZTSjKSiIiIKCfwU5+I8oZZkCHeGugUmwNCqSSbAlSlIMhQJmkuXH84tT+eckkAUGlRVijjjZ8N5ZJMnueSIEkqejLYFMX0vMaayWB1amPuySCcl0hjkU2WxtqTATA25gb0j5mYyRCvWrdqOYEt7cmQ7kwGk+empmnwqZqhZ0vHGMqpiZkMgHGyKzMyVy5JU71QW/bqLrOXdoNiF6LqhzMZNKHpMwAoEcslCfXX4xinlE1Wxigz5ZLYk4EKmSxpwbpcUqSeDPrXmCGbiIiIiPIWgwxElDe8JqWW462BTrE5INRbryqyJW/Vaxi7TTHUuW9I8DG2mozPdE8Gp6Hxs3w/MZhW6lDinmSOPCb55UUZnEvwCK//SFkVsuBAPKfLJrmSPeyysiQFGbwq0GKRKiBbeBrvU1d2tWgm9M0qbPhU4ECLapi4jalckmTaN1LmRDoYQm5pXAKvNu+BOB0eCDIImQyHezJIMxkilUtKUU8GRfwJIstkSEW5JNWX8DGJ8ols4UJM5ZIi9WTgdAMREVHB4Kc+EeUN83JJDDKkg6HpcwqyGILEvgyNCWYyVFgEGTJdLsmQyWAyiSkGGVKRxRBkFryI9VxZ7Z1o4+eIPRkkpyeeIIM0kyHsstJ4uy9LWPVzECeK7AriLiUU7/XMMhla/Br2CqWSSh0KymI4N7LHJisyGQznKn2DEps+w+aCUtQeMPRkCJRL0iRBhkiZDOLrMGlxS0m5pHQ0fpb2ZJBguSQqFLKFC01W5ZKEvyNlMohZS0RERJS/GGQgorzBckmZZWj6HEO99ViJfRkaDv8gjqcnAwBUWvQuyHQmg6Hxs8nTWewpkYp+DEFmc8OxnivrvWOb5TP0ZIjw9HMkqVySbNI1/DETs24SYdY3BDA+L8QMmFjEm8lgllnQ4tMM/RhiyWIAAJthastYtiMzMhdkEPsx2Eu7QVEUQ7kkzaJcUsSeDOLuyUplECceJZkMhmyHeERTLim72noQpZUsk6EppkwG/QvIECzkdAMREVHB4Kc+EeUNs4VX9Rarfyl5DjTrJ29S0fQ5qFyY5W5I8DG2LpeU0KETFnVPBuEctLHoM5GoZGUyWEUZYu7JYAgyROrJEN1lkcjORfhNJ6tcEmAdMBWfF/E2fQbMHpbIj4jZc7PFr2Gf8P4QSz8GQF4uKTvCx5krl+QXmz6XdgMAKELjZ1g0flZsMfZkSFEmQ6p6MhjKJbEnA5FOrD0ZxN5AhtcPezIQEREVLAYZiChvMJMhs8Smru2KU5nJoP9ZWx/MZBD2i3Y+zCrIkPFyScIqQfNgmn5DZQbKJcXc+DkZgzlMDDJE7MkQITgQLdmpsIfdsWK7eaNsILZMB1lz7yBxoiiRfhyyld0JZzIYggwxZjIokiBDNswEZ7JcUrOQyVByOMhg0pMhrkwGcdVyjGM0Y5z8V1PSkwE2h3A7snJJTGWgwqRqmvR91LJcUsQSail4HRMREVFO4Kc+EeUN9mTILGO5pDRmMpiUS4p27shq1X9RiponRyvaTIbatPZkkF+ezEyGWBnLJcWTyZCkcklhx1EUxTKbwWpbsXAfxMc4nNgPIfmZDJH5TYbn9mvY16Tf2CnmcklZGmTIonJJwUwGmJRLMmQyKDYoESYA09mTwRhkSEKgOppMBsl9yoqnFlGKmZVfjK1ckrBDKoKFRERElBP4qU9EecPsx5JVs1RKDk3TDI2f26cyk0GYmDUrlxTtfJhVTwZnpjMZouzJIK5yr0hpT4YklUuyEGvVGXH+3RVhNlSWQJCsCVRxgt8qkFBiEQ2oEkqOWWVliQtPZT0noiXNZIjiemZNyeXlkpKRyZAF7+3iyUpruSR942d7hHJJhsbPEUolAZHrr8dNUi4pFY2fxYwJTfUlfEyifGG2aMGqXFKkPi2Gvicsl0SUVcaPHw9FUdC7d+9MDwVAYDGOoiiYNGlSpodCREnAIAMR5Q2xXEoQMxlSr96jGSY526WxJ0OjSWq/daGaVlldLkkYmt9kElOcgE5tuST55clt/BwbY7kk6/1tSSqXJHs4xAbSpRaBhFKLAESVECiybvyc4kyGKObOzQJgDR7VUE6tY2mMPRkMzUSZyWDMZOgOAKaNnyGUS1IilEoCjIGcpMUYpBkGqW/8HHVPhmwIYBGlmFnCQpPZmzmMrw3Dq5SZDEREIaNGjQoFUsT/nE4nOnbsiJ/+9KeYOnUqDh48mOnhEiWMn/pElDfMMxlUThik2H4hi0GBcYI0mcSeDA2HV93F+yi3sRhrxoMMipjJEF2QIbXlkswyGWI7jlUQKNbHUiyXFOlxk22WBR7iYRdOvVUgodiumAY3xEwGq4CpMciQSCaD8brRhGrNAmA7GvyGxzNvejJksJ6/2Pg5lMlg2pMhjkwG4e+kvauIE4+qrFxSeoIMRIUqrkyGiOWS2PiZqND17t0biqJg/PjxmR5KVvP5fNi/fz8WLlyI++67D/3798eiRYsyPSyihDgi70JElBvMejL4NaDZp1lO9FFixFXKVcU22FPYy8C0J4O4Y5RDKHMEJnplyTCuDP8+NvZkMO6jahrqhZJRVn0mEh6TyaEjlShKJTGTIVJWhWxzsuJJ4gS/VSaDXQkERGQ1sA2ZDBal38TnRSKZDLKrRhOnNevJ8GO9vkRNmUNBmTPGTAZpT4YsiDJIAjKapkkDNcmk+ZqheWp0lwUbP0MMMhwulxRPJkNmezIkP8hgKOUCk0yGxG+ZKOuZvWe3+DSomiYtj8aeDESUTIW0EHDNmjW6vz0eD3744Qe89NJLePfdd7F3715ccMEF2LBhAzp27JihURIlJqs+9Tdt2oSlS5diz549mR4KEeUgsyADYF3LnBJ3oFnsx5DajxcxyBCaYBdLe0R5PEVRTFf+x1oCKNmMPRmMz/MGj2aYFLPKzkiUrCeDw4aYA0vJjEnEHGSQ3HjSejIIx7HqyWC3KaZZF1VCXxOx70Y4sR9CIpkMshdOND8BzXoybBOCDB1jbPoM5FomQ+oH5m/eZbjMFspkKBZ2NstkiKZcknCVVPVkgJqSyUnFJqynijKToYDmPKiAmb1nawgszpGJ9J7AngxERHLHH3+87r+BAwfisssuwzvvvIPrrrsOAFBTU4Nnn302wyMlil9aggx79+7F9OnTMX36dNTW1hq2b9y4EYMGDcJRRx2F4cOHo3v37rj00ktRU1MjORoRkZxJWX4AMKzypuQ6IGQytEth02fAWC7J7dfg9Rsn2mOZDqswCTIUZXB1PiDJZJA8lWVBtNSWSzJeluzzFOskXzLKJYm9FKIhG6YYwLAMMijmYxX7mliVfjNkMiTwcMgzGSI/IGarYsX3h44lsT83ZZkMJm140kpa8isNM9Sq0PRZcZRBcVYE/m0TMxmCPRn0QQYlqsbPaerJoPoDgQadFJRLkjR+TnHSCVHWsmi9YFoySXxPYCYDEVHi7r333tC/q6urMzgSosSk5VP/zTffxF133YX/+7//Q2VlpW6b2+3Geeedh1WrVkHTNGiaBlVV8fbbb+Oiiy5Kx/CIKE94LWac2Pw5tQ4KPRnaxzGJGAsxkwEINH9OZGrPrLxQxjMZoujJIAYZyhxKYivZI41Jcux4zpPV5F4sj6WqaRBf4pHLJSUnk0E2nyxO8JdalAZy2MzHKvZk8GtAo8nq0mT2ZIg3kyHaSf94MhkUBVCEFbJZkckgfRKnIZNB0vQ5VKLJpFySJpRLii+TIbZxmoqiXJKSpnJJRIXKrCcDADSZrNyJuJhD7MmQXYUTqMBMmjQp1GQXAA4dOoQHH3wQxx13HMrLy9GuXTucccYZeO211yIea8uWLfjNb36D4447DhUVFSgtLUW/fv1w6623GsrgiIJjmDRpEgDgk08+wYUXXoiuXbuiuLgYffv2xV133YUdO3aYHkO8L2bmzZsX2m/evHkR75eosbERr7/+Om6++WacdNJJqKysDDUoHjlyJB599FE0NDRIrxtscrx161YAwAsvvGBodjxq1CjddcRzI6OqKl5++WWcf/756NKlC1wuFzp27IgzzjgD06dPh8fjMb2ueN5aWlrwyCOPYODAgaioqEBFRQWGDh2KadOmweczLkRIlz59+oT+7Xa7MzYOokSlpSfDxx9/DEVR8POf/9ywbdasWdi0aRMURcGFF16Is846C5988gnmzJmDRYsW4fXXX8cVV1yRjmESUY5juaTMOdCsP7/tU5zJIFsZ3uDVDL9+Y1mhWmlSXijjQYYoejLUik2fU1gqCZBPYBfHsXQ+WWdWNhcSV+PnJA1IPE6ZxbmxK4ppw2xZ8/Q6tyoNsonnIDM9GaKbXI+16fPhEcAGP/xovW5W9GTIVLkkk6bPgKRckuoOZKLEk8kg/J20IIMtPT0ZDBkT7MlAFGKVySDrEwTE05OB5ZIoO2zevBk/+9nPsGnTptBljY2NmDdvHubNm4e3334br7zyChwO4xTZiy++iAkTJhgmfzdu3IiNGzfiueeew0MPPYT77rsv4jgmT55smFDfvHkznnrqKbz88suYM2cOTj/99PjuZBKMGTMG8+fPN1y+f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7zQ0BB5//79ocdu2rRp+OCDD9CrVy/LY+3ZswfnnnsuVq1apbu8uroa1dXV+Pjjj/H222/DZkt/cDQYmAGAnj17pv32iZIlLa+eDRs2AABOPfVUw7ZXX30VAHDmmWfi7bffxt1334133nkHo0ePhqZp+Ne//pWOIRJRHmC5pMwRy6GkuieDw6agRJi4bZBkMsQyH2ZWXijSZHWqRdOTQazVb1b6KVlkC/MzGYwR+zEAQKRTYJdsT1a5JHGVmVXTebvN/DlWbDc+z8WAUpA4wZ/sTJboejJEd6xOcWQyAIANOZLJkJZySWImQ3iQoUjcHVC90PyxN342TCgmKTQoTv5raWr8LA0yZOYhJMo4s54MgFW5JP3fhj4thp4MzGSg7HDFFVdg8+bNuO222/DJJ5+guroazz33HI466igAwOzZs3Ula4Lmzp2L8ePHw+12o7y8HA8++CAWLlyIL7/8Eo899hg6dOgAv9+P+++/H//4xz8sxzB37lxMmjQJRx99NJ577jlUV1fjk08+wa233gqbzYba2lqMHTsW27ZtS8k5iIbP58OAAQPwwAMP4K233sLSpUuxZMkSvP7667jyyiths9mwefNmXHzxxWhpadFdd+bMmVizZg26dQt8J7nooouwZs0a3X8zZ86Meix+vx9jx44NBRhGjhyJf//731i+fDneffddXHzxxQCAb7/9FmeddZZphkXQJZdcgnXr1uGXv/wl/vvf/2LFihV49dVX0b9/fwDAnDlz8Mwzz0Q9vmR65JFHQv9mRRfKZWnJZNi3bx8A4IgjjtBd3tzcjCVLlkBRFEyYMEG37cYbb8Qnn3yCr776Kh1DJKI8YJXJUG8VgaCEaJpmKJeU6p4MAFDuVHSNCeslzY9jYR5kSOCgSRBdTwb9hZUmpZ+SRTaBHU/yRLLKJYn9GIDIwSFZA9tUxUlKLdIKHIp542e7LdCQvNnX+voya/4sPi8sKjRFJItPZDyTQdOgCOvqsyLIkLHGz0ImQ0lYkMFmDDJo/hZAExs/R9OTQf930voXSCf/U9CTwcZySURmrDMZ5Bsj9WTQmMmQMFXT0FBAi6PKXYr0O1myVVdX49VXX8UvfvGL0GWDBw/GuHHjcPrpp2P16tX4+9//jptuugnHH388AMDr9WLChAnQNA3l5eVYuHAhTjrppND1Tz31VFx66aUYNmwYdu3ahXvuuQfjxo1Dhw4dpGNYvnw5Bg4ciPnz56O8vDx0+VlnnYURI0bguuuuQ11dHX73u99h9uzZqTkREcycORP9+vUzXH7KKafg8ssvx0033YRzzjkHGzZswCuvvIKbbroptE+w5I/TGVjE0LZt29C5jMc///lPfPnllwCA6667DrNmzQot5Bk0aBAuuOACPPDAA/jLX/6CTZs24aGHHsJf//pX0+MFsxXCSzYNHDgQ55xzDo499ljs2bMH06dPx6233hr3mK2sXbtW97fH48GWLVvw8ssv46233gIQCIade+65Kbl9onRIS5Dh0KFDAGBIO1qyZAm8Xi9sNhtGjx6t2xZ8g9q7d286hkhEecCqtqzZxBwlrt6rGbJIUt2TAQj0ZdgXVqapwasmVC7JrMRQ5sslxd6TIZVNn4HkZTIk68xKMxkiBRlkl6XoobZs/GzRk8GuBHqF7GlqvUwMKAUZejIk8INdVu83qT0Z4nx/sGl+3ZMma4MM6chkaNTXbQ7PZIBYLgmAprqhGcolRZPJEKHJa7zE1c2aXzI5mYxyScJPHQYZiEKsvjebZjIIfxs/LlLQW6XANHg03PLJ/kwPI22eGd0BbYpS/1177NixugBDUEVFBWbMmIFTTjkFqqrin//8J6ZNmwYAeOutt7BzZyCo/8c//lEXYAjq1asXHnnkEVxzzTVoamrCzJkzpRkRQTNmzNAFGIKuvfZavPbaa/jggw/w1ltvYffu3ejSpUuc9zZ+sgBDuNGjR+PCCy/E22+/jbffflsXZEi2p556CgDQsWNHTJs2Tfr9dPLkyXjzzTexfv16PPPMM/jTn/6EoiJJRieAu+++29ATAgDatWuHG264AVOnTsWaNWtQW1tr6CWbDAMGDDDddvTRR+N//ud/cP311yf9donSKS2f+sE30d27d+suDzaiOfbYY1FVVaXbFox+ymriERHJWJZLYiZDyhxoFpv8AW1T3BMACKx8CtfgNWYyxPKTpdJkYj7jQQbhC7XsqWwIMmSgJ0Oyy0rFMk8rBhnsSnzlgpLV+FlkWS5JUVBscu5simLoFWJWLklcdJpIuaR41+ZbTVgFlTkVy0bYVsRySf5sqGmThtWXMoZMhtLuoX9LyyX53YA/9sbP4hlOVeNnTVPT0vgZqrGpI3syUKFKTU8GsVwSMxkoO9xwww2m24YOHYrjjjsOQKApc1Dw34qi4MYbbzS9/rhx40KT0uHXFw0YMACDBg0y3R68DZ/PF1fT5lTYt28fvv/+e6xduzb0X8eOHQEAq1evTtnt7ty5E99++y0A4PLLL0dFRYV0P4fDEXpsa2pqLCuhXH311abbgo+LpmnYvHlzvMOO24YNG/D0009jwYIFab9tomRKS5Ah2BDmww8/1F3+n//8B4qiYOTIkYbrBAMSnTt3Tv0AiSgvWDd+5pRBqhwU+jG0LbIlvR68jNj8ttFj7MkQiwqTEkNFabgvVoyNnyP3ZEh1JoOs+k/yMxmifzTdwpxGVGOR7JKsngyiMstySZEyGfTXNS2XZOjJEMXATEgnXaOY0I+mJ0N8TZ8B7XDj53DZkckgk9qBaZpm6Mmga/xsUi5J0+Jo/GzoyZAc0obMaejJICuXFG/mDlGus+rJ0GSyOCdin5ZUvI6JkmDIkCGW24cOHQoA+O677+DxBILywfI2ffr0CU2sy7hcLpx88sm66yQyBgBYs2aN5b6ptGjRIlxxxRVo3749OnXqhKOOOgoDBgwI/RfsW7B/f+oybsLP4ymnnGK5b/h2q/Nv1ai6Xbt2oX/X19dHM8SYaZqm+8/v92PPnj34z3/+gxNPPBFLlizB2WefjTfeeCMlt0+UDmn51B8zZgw0TcOMGTPwj3/8A2vXrsU999yDdevWAQg0YBEFI5Ddu3c3bCMikvFa1OqoN1n9S4k7IPRjSEepJMAYZGiQpPYrMeQyiCvGgxKZrE0GY7kk4z7pL5eUnEwG2eReUEw9GYRZj2iCDLI9ZM2gkyHexs92mzHDRnysg8T5oIQyGWQVgKK4XjQ9GeINMgCHyyWFyY539fSvg9e89dB8jbrL9OWSZEEGt6HxczSZDBGbvMYrTT0ZpMGMaDDKQAXAKpMh+sbP+r8NgTwGGShLdOrUyXJ7cHGrpmmoqakBABw8eDCq6wIIlTYKXieRMUQ6TipNmjQJp512GmbPnh1xDM3NzSkbR/htRzpv4WWlrMZcWlpqui28tLvfn57SijabDZ06dcIll1yCL774AkcddRQ8Hg9uvPHGjD3+RIlKSy2iu+66C9OnT8euXbtw11136bYNGzYMZ5xxhuE6c+bMgaIoEaO9RERBVhWRzCbmKHEHmvXntn0amj4DsnJJxsc4pp4MJhPzVhPh6SAGOTQE6qSHT/alvVyS5JzEFWRIxmBgLJcU792P72qRZyNLHIFwl2xPu6KgSPJtTEFgQrdCLJdk2vhZ7MkQcVim5JkMka8XTU+GTqXxPzcVQyZDNswES1bBa1rSntsyYhYDANhLuraOSFECTZ3VsKCC6gYMPRmsMxlk5zdV5ZJSlslgizPIQFQA4unJIGa1GcsliWXPWC4pVuUuBc+MljcOzkfi9/lUSeT7fLJ+C2T6N0Ukn376KSZPngwA6Nu3L+655x6cdtpp6NmzJ8rKykKlzCdOnIiHHnoobePK9vOWDOXl5bj99tvxm9/8BvX19XjjjTcwYcKETA+LKGZpCTJUVlbik08+wbXXXqurkXb66afjtddeM+y/evVqVFdXQ1EU/OxnP0vHEIkoD1iVS2r0avCrGuwZLn2Tjw4I5ZIylclQ71ET6rdamsisbArJVqT7VMB1+He7qmmoF8qBtUnxD7aklUuyuEoiPRnizWSwxfH+EM04bYqCEocirXFttwFOyWiCQ4k2k8HQkyGBHhnxZjJYrYoNij+TwVguKTtiDOnPZPA36Zs+K64qKI4S/WX2ImhhQQZZuaRImQyy85u6ngypafwsz5iQ7Ab9o5YNTy2iVLN6z2422Rix8TMzGRJmU5S0NEIuNHv27EGPHj0stwOBCe1gv9BgCZ3gNivBct/hZXfMbiOa7eJxwlfaq6qq+ztcY2Oj9PJoBMsgVVVVYcmSJaYlotKxyj78/kc6b+G9X63Of7YLL+eUyXJZRIlI26d+//79sXz5cmzatAmLFi3CDz/8gPnz56Nbt27S/WfOnInnn38eZ555ZrqGSEQ5TNM0y0wGAKg3WZVFiTkolEtql65MBqEEjazxcyyydZWMLPYRvvqwwWO836nvySDLZEjpTVpyxxFkkPdkSNKAJMpMSiY5TDIZgmMRs1LMgwzZkMkQRbmk0gTKJQnTW9nQk0Feki3FQQaLps9Bir1YPyJJ4+fImQzGy5JWLcnQkNmYyZCMxs+Kon9xyXoyyCT2aUKUG+LJZIjc+FkMFjKTgbJDdXV1VNv79esHlyvw+Xj88ccDADZv3ox9+/aZXtfr9WLlypW66yQyBtlxwhsfB8s5yXz33XeWt2Hlm2++AQCcccYZlj0oli9fbnmcZPymCr//S5cutdx32bJl0uvlGp/PJ/03US5J+9KCPn36YNiwYejdu7fpPieeeCKuv/56XH/99XA6I9eLJSKKpkwH+zKkhrFcUpoyGYSJ9EavCnFyLzvDBrExy2QIkk06p74ng/GyeDIZksVQLineTIY47kK0U5GlspMG854MwawrMZOh3qNJy9gYMhkS6skQXyNcfxRvsZ3izWTQNNg0/Q+uaN73U06a9pHagYnlknT9GEIX6vsyaP4WaGpsmQyyhzNlPRmgSm4xBZkMqvxHu3E1duI3TZTtrN5Dm8wyGSL0aTEG8pjJQNnhhRdeMN1WXV0dahg8evTo0OXBf2uahpkzZ5pe/4033kBtba3h+qI1a9aEghEyzz//PADAbrdj1KhRum19+vQJ/dtqkv9f//qX6bZIghPbVtkQK1eujDjpX1wcWOjgdrvjHku3bt3Qv39/AMDs2bPR0NAg3c/v92PWrFkAAhkYAwcOjPs2My38cbXKuiHKZmkpl/SnP/0JAHDHHXegQ4fo6gvW1NTgySefBBCo+UZE+emHWi/mbWs5PEEcv2gmm15c14AeFXaM7lmCbuXRvf35VQ0fb23GwRYVP+tVgk4RVuHubPDhvz82o86kbno4RQH6VjpxTq+SnC3jpGmasfFzhjIZatyqYZIzS5MTYiIrTbS7yR9a4V4rBBnKHEpCE8zRjSn1PRm21fvw5MpaOG0KBnUuwpAuxma2AHDIreLFb/U/POINMthT+IQpM0ktsCuKNEATymQQSl9pAP5vZZ0hU2FrvX7yNNGG5WL5mFfXN0QsKfbFzsg/JjuElVPTVC+avn0K3gMrQivH7WU9Udb/LtglE+diT4Zpq2pxbf8KnNWzWDfRte6AB4t3uk3LfXQsteO83qWmzd5jYzwntYtvDvREENgc5SjucwWKuhp7kUXSvOUNuLe/D031wHfgK9026bkSmj83rvkr/M07sco1Futco+FCE36q+tFWcluapmHBjhYs3+MxbEvadKGQpdCy9U1Dz4hUlEvy7l+GmnlXoPyEB+Bsd0LrbsLVnlpdj/P7lGDUEcVZm+WWTr66TWj6bgbspd1ResztUKJoGk7p4969AC2bX4PqrTfd5wd/LyzxDkaLFpj8sxW1x27bkab7N0kyGaQB7t3zcejrf0HzBxrA+mr0JT4UsS8KUYa8++67mD17Ni6//HLd5Q0NDbj11lsBBEoSBf8NABdffDG6deuGnTt3YsqUKTjvvPMwYMAA3fW3bduGe+65B0CgsfANN9xgOY4JEyZg3rx5KCsr013+6quv4v333w/dbteuXXXbhw8fDofDAZ/Ph8cffxxnn3224fPpkUce0a3qj1W/fv2wfv16fPHFF9i4cSN+8pOf6Lbv27cP1157bcTjdO3aFevXr8emTZviHgsA3Hnnnbjrrruwb98+/PKXvwwFYcJNnjwZ69atAwDccsstKCqS/17Idlu3bsVTTz0V+vv888/P4GiI4peWIMOkSZOgKAouu+yyqIMMBw8eDF2PQQai/FTT4seDi2uQqgSDUqEG+tf7Pfh6P7BwRwueOrNDVCuvX1nfgLmbAz+cPtvWjH+cZX49t1/DxC9rDPXxrSzc4cbBFhXX9C+P+jrZpN5rLFOVqZ4M0dSDz0WyCf2Ji2vw6vkdYVOUtDd9BuSZDMkOMtR6tNCk9efbW/A/QypxcifjD4epyw4ZHntnnEGW1GYymJRLsgHFFkGGCklWypJdkSfzEw00KYp+Qf5Xe40TzrEqdyq6jI76Ff+Dxm/+ZtjPvW0OOlz0teHHs1guye0Hnl1bjwavip//JPBj/cc6H/689FDEwPOa/R5MGZGMur3G89yy5d+mezd9/yw6jF0GZ/voV9o1b30Th+aNM90uy2QQyyV59szHatcYzKp8LnTZ0jovHm/yG0pYffJjC55dK5+sTFb8UiyX5Dv0jWSnFDR+BtCyZTZafnwLnS77EfbSLtKr/Vjvwz+/rkezT8P5fUoTH0cO03xN2D93KDR3oAa3v3Er2gx5LMOjoiBvzRoc/Hi0MUgXZp+9D/5W9Rf4lLD3BR8AmJcPa/RpgSb2Ye/DsiStuiW3osRvNZHITAbKDoMHD8ZVV12F+fPn47LLLkObNm3w9ddf469//Ss2bNgAIDCpfcIJrQFol8uFGTNm4IILLkBdXR1GjBiBe++9F2eddRbsdjsWL16MqVOnYu/evQCARx991HK+a/DgwVi+fDkGDx6MP/zhDxgwYABqa2vxxhtv4OmnnwYQKIv06KOPGq7bqVMnjBs3Dq+99ho++ugjXHjhhbjzzjvRuXNn/Pjjj3jppZfwn//8B8OHD8fixYvjOkfXXXcd5syZg8bGRowcORL/8z//g0GDBgEAFi9ejL/97W/YvXs3hg0bhi+//NL0OMOHD8fnn3+O6upqTJ06Feedd14oqFJSUoLu3Y1lHmVuu+02vPLKK/jyyy8xc+ZMbN26FXfccQf69OmDXbt24fnnn8ebb74JADjyyCPxv//7v3Hd73QJZssEqaqKAwcOYOHChfj73/+OAwcOAACuvvpqnHTSSRkYIVHi0hJkICKSWbXPk7IAgwKgS5kdP9QaSyPUeTRsPOTFse2t61EDCAUYgEDN/8+3NeOc3vIJh/UHPTEFGIKW73HnbJDhkCRjo20aJrkBRLUKWTZ5a+WMHsX4fFtL6O/j22d+tabTFpiIDp9I1wBsb/CjZ4UDDcJzrsJkMjuZSiRRhjKTckBW+lRG/zVkxR6PIchwsMWPzXXG17iY5SLTpcx42/FMoA7uXIQPt7S+T5g95cxKWJU4FOm5Kz6ciuCwKah0KaiN8b2lJMFG5kV2Bc2SRtWJEDPBWrbNke7nO7QWatMO2MuOaL1Q86FIk6fKV+92h4IMa/Z7osps23jIh3qPKg3ixEJxxDgBrfnh3vnfmIIM7u1zLbfbS40p9YqrreGyr4vG6P72wol1Bz0YWapvGr1ij3kQK55goozirIi8j6Ms4j6R2Bwmt6N60bBmKipPeQJA4LOiUfJ8X7nXU/BBhuatb4YCDADQ+M3fGGTIIp6dn1oGGADge+dp+gBDFFQtsHimOOyzRNbCwRahz4nizM3vt5R/Zs+ejbPOOgvTp0/H9OnTDdsvvfRS/O1vxoUPY8aMwcyZM3Hrrbeivr4eEydONCyCtdvteOihh3D77bdbjmHMmDEYM2YMJk+eLM14aNOmDd59913T0uKPP/44li9fju+//x7vvfce3nvvPd32K6+8EjfffLNlySYrl112GW644QbMnDkTO3fuxC9/+Uvddrvdjscffxw1NTWWQYbbb78d//jHP3Dw4EHcd999uO+++0LbRo4ciXnz5kU1Hrvdjvfeew8XXnghFi1ahM8++wyfffaZYb/+/fvjgw8+QHl5dr/fiFkwMldccQWee+65iPsRZausXVrg9Qa+LLEnA1H+2t0YXQPGeAzuXITRPUtMt8fbn2FbvfmY9zfHd8xoSitlqxafsRZ+qkv1BFW4bDipo3mgqGeFHd3KY0vTH92zRDdJfEYP8+dQutgUBadKSgUFnzdi48Z09EY4qq1T13ujbZENx8URkBnSpQhdy6J7jGT1oc0aU57aLXKqdK82DhxT1TrmM3oUx1Vv/qIjS3UT+nef3Ea637BuxYY175UuBce2d6FvpQNdhAn44V1b78Np3WObHGrjUjAgiiCqlfDbT5aRR+jvhxo2cSkKlt4I/e2tx8nud6T71oS9h4pNwK2I71/xsBVVwdXt7Jiuo/ljq1GseeXBFQBQnJUo7nGB4fKSPlcaLjtg72m4TJYB1mBSvvCEDk5DL5x4Ffe61DJTwdl+MOzlvRO+HVeXkbCVyLMVvAdaG2wOM3nP8GRDd/EM89dtNFymic19KWPE90oZb4wBhiDxM1b2alAs8/kUFPc2z8IiSqc+ffpgxYoVuP/++9G/f3+UlpaisrISP/3pT/Hyyy/jjTfegMMhX/xy/fXXY/369fjVr36F/v37o6ysDCUlJTjyyCNxyy23YOXKlbqJdCuTJk3Chx9+iDFjxqBz585wuVzo3bs37rjjDnzzzTcYOXKk6XU7d+6MpUuX4g9/+AP69euHoqIitGvXLnQfXnvtNdjtiZUoe/755/HSSy/h9NNPR0VFBYqKitCrVy9ce+21WLx4MX71q19FPEb37t2xbNky3HTTTfjJT34S6tEQj3bt2mHBggV48cUXce6556Jz585wOp1o3749Ro0ahWnTpmHVqlXo1atX3LeRKYqioKKiAsceeyxuuukmzJ8/H//6179ytuQTEZDFmQyrVq0CAMuu9kSU2/Y06Sfsj6pyon+7xAOLnUvtOL17MVx2Be2KbdhQ48VbG5t0+zSYTE5GIk7ohtvfrL8/3cvtGNzZ+CWhwaPi07DV8o2+QCPXpDXUTKMWYUKvOMHV07H6zcBKLNzRgn3Cua8qsuG07rFPGv+krRN/HlGF1fs8OLLSiRMsghjpdNsJbfDFzn26y4ITgV7hOZmOIE+xQ8GfR1Rh0U43NE3DsK7FcWUy2BQFU0ZU4YsdLagssqFXGweW7nKjyRfINvrmQOvqTNmqetllk4e1xTHtonvcHjilLRbsaEGRTcGI7vF9oW9XbMf/O70dVuxxo2cbB44zmdw/oYMLk4dV4ev9bnhVoMypYFjX4lCGw+ThVVi0swV1bhW92zhwStgk/zX9y9G30okf6+VNa8OFjptgRtGNx1fgmHZObG+ILhi8o8FnqOFf7lRwVs8S2AD0q3JikPB+qFnUD4cwial6ajGyeQY6+Lfii5LxWO86M7St1q2G3kPFqc+uZXYMPRyke2eT/nNAfO3Eq+qM/6Dlh1fha9gs3d6y9S346zaEXRLb7YpBCVfnn8LZaThszjYo7n0Z7GXGsgOlx9wJe3lvePZ9GTqXNXuPNfRWlp0C8XXVscSGi44sw+lxvkZkirqdhfbnfQH3jo+gqfr7Zy89AiV9r0pKLwRbURXaj1mCfW/0lmxtPf4Nx1Xg6ConXljXoPt+oDLIAFtJZ8NlmvsglOLoSuBSaomNlu1t+gWCeGEcjQOBsLfb9v6tOOlw0LbsuN/C6XDhuPYu/GnJId31mnwa2scwFkf7gSg6HHRVbC4UdRsNV+fTYzgCUWpVVVVhypQpmDJlSszX7d27N5544omkjOOcc87BOeecE9d1q6qqMHXqVEydOlW6fdSoUdBktc0OmzVrVqhRsplrrrkG11xzjen2SZMmYdKkSZbHOPLII/Hss89a7gPAcqxBNpsN1157bVT9IETRjBWIfN7iFW3WBlG+SEmQ4cUXX5Re/s477+g6psu43W5s2rQJzz//PBRFwZAhQ1IxRCLKAmKQ4fTuRTi7V3LLEpzcqQgndyrCD7U+rN7XOgEWb6Npq4WvYibDCR1cuOoYY9rmwRa/LsgABIIeYoPXXOAWTkiaej633p5Dwc96JTfboG+lE30rsyuLzmlX8JO2Dmw81DrJHCzNJa5ETrThb7TaFdtxQd/EX69lTpuuBNnFPwl8NfloS1MUQQb9na8qskUdYAACWR9WGU/R6lRqx3lRlFQ5up0TR5sEUtsW2TDG5Bg2RYk5myFRDpuCnx4R/bn5cpexUfDp3Yul74HA4Ylz1bzPgzhxpnnroAA43vMRjvCtxqT2q0Pb/BrQ4NHQpkgxTAr3buMIjWHOD026SfVkrVK3OctRevQE0+3+uo36IEOsP2KFSfiiHmNRfvy9lldRFAXFPcaiuMdYAIDHr6H2w32W1wkSX2s3HFdhCBAlg6vTMLg6DUv6cUWO8l6ArchwHpWwTIrg892vAf/8unU2luv1Aw2CRf7mXbAxyJAdVH3w2Vl1AtoMelh/2aZGYH1j6O9Ovu9xQWNgkrXjEdfD0aYfgECZvfDXv/hdOVImg6vTaYbbJiIiosKRkiDD+PHjDauPNE3DH//4x6iPoWkabDZbVOlYRJSb9gjlkjqXpm6Gukyo0W5WZiUSv8Xk0IEW/f1pXyK/PxWSFd8NHtW0Zns2EzMZiuy5dx9yhfi8CWYyiNk18TY9zjZiT4FoMhnSnUlDrRwxrjpXvXXWOwhBBtVTG/p3hbrfsPsht4o2RTZDP4bwl4PTFmgWHZS2ZvGGc5NYJoNii33CX8y0C1Iln2liGalE+3tkBWlpJuNl4tunn1EGQDF+l1GbdwNVkWtLUxqIPRFkj5f4vhgWPlObdwOHgwylQpChSSyXJH3rar1QsWVtkQQiIiJKg5TNBmmaFvpPdpnVf06nEyNGjMC7775rWZOOiHJXg0c1NFlMaZBBWN4dd5DBYsJBzGToUCJ/i3XaFUPzzHgaRmcDcTKKk7ypI9ZCbzjcV0Sce09XJkOqlQh3JJogQ15MhuYoWWzLKu6geSIEGVQxk6E1yGCHD+U2fR3yYBN6w2Ra2CDEAJwnhv4NiUkwyCCswIc99iDD3qboyl5pmoYm4XVVmgevK0UWZJBcZheetGl7imQ14xcff/PuDIyDZMSsr+iCDK3ZD/6mXaF/l4oLcgyfu8YXhK4ng+S2iYiIqHCkZLnB5s2tNWk1TUPfvn2hKAo++ugj9OvXz/R6iqKguLgY7du3T7hhDRFlt93ChIdNATqYrPxPBjGTwayxZSRmmQyqphkzGSxqB1W4FLibW48V73gyzdCTgW/dKVNueA4Hzn0mejKkgxiwapEsO2eQIXvI+o1bPRqW/RgAiBObYlCirb0FDWprOaeawykK4nu0XZfJoCB8kixZPRkiE85ErOWSkpDJsK9Z/hkjjsTtN16WH8Hj6KJg4vNYlulRcCRNntWwiWnKMCHIoEQVZGi9jhoWMAosyGnd1hRjuSQGGYgon+zYsQM1NTUxX6+srAx9+vRJwYiIsl9Kggxmnd27deuWk13fiSj5xH4MHUtsKZ0cTVa5JLPyGnUezbDNLJMBAMqdNl3mQ64GGdwsl5Q2FWImQ6hckn6/WMvWZCsxYCCurgYYZMgmthjfvyOVSxJX56phmQwAUOn0Yntryw6LTIbWf4uV6nK2XFIcmQz7TMoliXPosmBeaT6kR8VbLokxBnmQgZkM2UPMZJCULBKDZUrYYxqelSJmMoifuxHLJTHIQER55IEHHsALL7wQ8/VGjhzJhs9UsNJSOFFVc3PyjIhSJ539GIBAc9lwcTd+Nln5Kta7tiuBRq5mxFXpLJdEkZg9Z8TV2M48+Y0vBgy8auD1Fx6MZJAhe8SeyRBjuSSPGGTQv4fXmgQZwsvfOIVBJqvxc2RCn7IsKpckjkQWzMuL9/VoyyUJUQZmMkAaZGC5pCwSV7mk8EyG1qyUeBbk6DMZ2JOBssukSZMwadKkTA9DV0KciCif5cHSJCLKRWImQ+fS1P4wESdo485kMLnaASHI0K7YpqsFLjKsSvfkZjDWEGSQzTRSUhh6MhRYJgNgfL4ZG9Tya02mSIMMFs/FiEEGoVySmPnQ1qXfu+ZwkEEsl6TPZBACV+lapi6eB8mkraWklEuKMpNBOCd2xZgBkpuMz0VZnwbxEmYyAJqkJ0P4xDRllpj1FV25pNaeDOFZKWLWklguSfbOpYRfasuTVQ5ERABmzZoVdV/Z8P+YxUCFLG0/G5qamtDU1GS6/cknn8Tpp5+O/v374/zzz8ecOXPSNTQiygBjkCE3Mhn8ZpkMLWLTZ+v7Uy6Mpz5HyyUZejLkw4rXLFXhlAemxOya/JgQlAcZxMyFJiHCwkyGzLEKqsqokXoyaNaZDG2FBjCHWmIvl5S+t93EejIkpVxStJkMQgC+1KFYBotyhjSwY7xfNuE5krZkl2zGTIbsFlUmgxB8DctksGr8bMhsYrkkIiIispCWqYg5c+agoqICXbt2RX298UfljTfeiF//+tdYvHgxNmzYgI8++ggXX3wxHn744XQMj4gywBBkKEt1kEHIZPBpcaWumq1qFDMZrPoxAIHGz+Ea4sysyDRjT4Y8mIzKUuWS54ymaYZySWK5j1xVZFcMU4BikIGZNNkj2eWStLBySZrqh+Zr0G1vW6yfaD8UymQwH5chkyFNM8jGZ3Ji5ZJiDTK0+DTUmpTkEz8GxddY3gSONZ/xMlm5JCGgwkwGGCexwZ4MWUWNIsgg/G0LCxwZGz+3ErN+pY2fw99EGGQgIiIqaGkJMnz00UfQNA0XXnghKioqdNu++OILzJo1CwBQWlqKk08+GcXFxdA0DRMnTsTatWvTMUQiSiOPX8NBYeV/ujMZVM04mRIN854M+vvTvji2TIa8KZeULxNSWUh8zvgPP4fFckn5kslgUxTD80l8zbInQ/aQl0sy31/zRF8uSZNkPbQrLdH93dqTwTzo5hIG6ZUv7k8+w2R2YpkMiLFcktgzSD+SwihBpqle44XSIIP+b5WpDNJMBs1zCJqvOQODIZFYLkk20e8XHkIlvCeDe18oqGvMZNBfURpk0P3BngxERESFLC2/HJYsWQJFUXDGGWcYts2YMQMA0K1bN3z77bdYsWIF1q9fjx49ekBVVTz99NPpGCIRpZGsAWXn0tS+HYk9GYD4+jKIE7pBB1rETIYIQQZhVXp9jmYyGMolcSV5yojZL0Agm0EMfDnyJJMBMD6fmoWZEgYZsoctxued2GPBIGziTPXWGja3LSvT/d3o0+Dxa5La463E+fJ0ZTIkWi4JCWYymPVjAGSNn/O0BJksk0HyM0h8GjOTAaY9RPzNe9I8EJISntuKpC+CVeNnaCrUlr0AJEEG8bspyyURERGRhbQEGfbuDXxxOfroow3bPvzwQyiKgrvvvhtHHHEEAKBHjx64++67oWka5s+fn44hElEaiaWSKotsKE7xaslih7FgRTx9GcwmHMRMhojlkvIkk0Esl8QgQ+oU2xXDKtsGryrJZMifx0Cc4DSUS/IzyJAtZC99qzl8WXaCbnt4uSSPGGRQUFVWbrjOIbdqeI8Or7GfqXJJxpSO6G9XU32GSd5YGz/LAvuh40do/Jw3rynZRDnLJUVFMwkysGRSloimJ4PwnmMTCigFH0tDuSThM1eeyRB2KRs/ExERFbS0BBn27dsHAIZSSd988w32798PALjooot02wYPHgwA2Lp1axpGSETptDvNTZ+BQOkVsS9DPH0Q/JIVqF6/FqoHHhSxXJJLaPyco0EGlktKH0VRpM8bcaI0T6qbADBOcIrPN7EpZb6UdslF8iCD+XtspJ4M4RNn4r6Ksw3KnHZDabBDbtVQFiS8IbWhXFKmGj/HEmQQSyUBQMyZDOZ3VBxJszdPgwwSiizIYGj8zCiDsaL/4Uubd0kvp/SKplySGE+1C+8hwUbexkyGyOWSdJeyXBIREVFBS8uvcbs98GXn4MGDusu/+OILAEDHjh0NWQ5VVVUAgJaWljSMkIjSaU9j+oMMgLEvQ1yZDJKriKWSgMiZDGL5Jo8a6FWRa8RVr0V5PCGVDcTnTYNHg9haJJ/KJYkTnGJQoSVfS7vkIHEFOGCdyRCxXFLYxKYqZDIorjZQFAVti/Tvs4fcqqHHQHhcIWPlksRzE8vEtWoMMsRaLimWTAZj4C6fX1PG+ya+fbIlAyzKJTGTISsIjZ8VyUS/oVySU9/TJhgwEhfjeMXvppL3LoXlkoiIiOiwtAQZunfvDgBYtWqV7vK5c+dCURScfvrphuvU1gZ+UHbo0CHl4yOi9BLLJaUvyKD/8RRfTwbjdQ60GCc6SyN0361wGbc3pG9ZbdIYMhlYLimlDGW2vCq8/sLMZPCrGtx+6/0pfcQV4ECEckmRGj+Hl0sSejLYnJUAIAky+CWZDK3/donlktIW2E1uJkOs5ZJi6cmQt+WSpIyfuTZJuSSt0LMZWC4pu0WVySB8T3CIQYbDmQySLxDhgcfImQwMMhARERWytExFnH766dA0DdOmTQuVR6qursaHH34IADjnnHMM1/n2228BAF26dEnHEIkojcQgQ5c0BRnEVeBxBRkkV9kvTOC0L4781lrmNPaIqPfk1kSGqmmG7AsGGVJL1jBcLOGVTz0ZxF4t4T0ZxMlQIN8nRLObODkLRAgy+CL0ZAhv/CwEJBRXGwCyIIOkJ0PYuMTXRvqq1OlvN5ZJ66SUS7LKZBD+Fhu95vNrSlONzaBlH2G59cmcAqaZDCyXlA0M5ZKiafwsBBn8TYHHslTyeg8vmRSxJwODDERERAUtLUGGO+64AzabDZs3b0bfvn0xePBgjBw5Ej6fD1VVVbjiiisM1/nss8+gKAqOPfbYdAyRiNJE1TRD6YbOZblTLkmWyWBs+hz5/sh6RORaXwaP3/iDkz0ZUqtc0jBcfBrn00MgTng0h5VHEptAA/k9IZrtpD0ZLKZnxcCB7NpB5pkM+vfaQy2qYcVu+LjEBDPZ+3lKJND4OdFySc0+FfUWAXVj42cxMy+PUqNEWnRBBlmZxEKimfZkYCZDVtDEckmRgwwOZ6l+++HH0mlXICbaRl6QE974mT0ZiIiICllafjkMHDgQjzzyCBRFQUNDA7766iu0tLTA6XTimWeeMTSErq2txdy5cwEAo0aNSscQiShNDjQbV5pmqlxSfI2fjZeJPRki9WMIEieM4wl6ZJJsJTkzGVJLLLPV4FUNE6X51JNBDFqFBxZkQQYGuTJH3vjZfP+IjZ/DyiWJ/RsU1+EgQ7Exk8HQ4DQ8yGBo/JyeIIMxby2RTAYlpuaq+5oifa7oxyK+rvI5cCfLZJBl5ORgu6TkYrmk7BZP42dnme7v8P4aYrnPxrDgviwJiz0ZiIiIKChtyw1+85vfYPTo0XjjjTewe/dudO3aFb/4xS8MDZ8BYN68eRgyZAgAYOzYsekaIhGlgVgqqdiuoI0rPZMYhkwGX+yT+rI5qQNCJkP74uh+ZJW7FKCp9W+r1abZSGy6C7Dxc6qJJb/qPZoxkyGPFh6LE5xWQYYiuyKdIKT0iKVckqap0LzW5ZLCJ840j5jJYF4uSQyyWZZLMq8ilGTxN37WxEwGexGUGJ7nVv0YZEMppCADVK/hov/P3pmHx3T2b/w+M5mZLLInSFBB7ZTYahel9rVFf3QRraUoRemi2lerLW+9uuCNWlqhXoqiKFr7XsS+q5ZQa4gEWSfJnN8fYyZznrPMmclkkky+n+tymZz1mTNnzpzzfJ/7vqWLZTykQqJLDXJ2SRlkl1QscCKTQasrI5xvY33l68Uh1eayk2lzb0p2SQRBEARBKOFWTWP9+vVRv359u8v17t0bvXv3dkOLCIJwN6LQZz+tQx0mBcEVwc9SsJkMapUMbIhvSbNLYkN3OUAksydcSxkVSgZPymRQCn7OzBUHrhNFhyNKBj43HWx3FacPBm9MyV/G1i6JKTJYlAzBEkWGEEbdYPt1KJF2SYySwdHQZ9aekIVtSakqMqi1SypZ9X/XI6dkyLoLnjeB4+iHvygRZTJIdPSz57C4yJCvZBDdK0uFkQlboLhvgiAIgiBKD3RXSBCEWxEVGdxklQQUjj0Rz/NOZTIAEh3GJazIkMU8eHp7cW4rGJVW/FnLLyMPVlDiSXZJjigZPLoztASglbijZEfPWpBSMWj0QczKCnZJTzIZAlUEPwszGdjgZ3f1HhfELilLuCVHQ59JySCLpF2SxPXTbadJsUXm3sSUAz47RXoe4T6Y81hVJoNeWGTgc9NhykkDoJxfJmmXZDORo0wGopgRHx8PjjM/nyQmJhZ1c6zs3r3b2q7du3cXdXPcSmxsLDiOQ1RUVFE3xeMpbud/TEwMOI4jS3wPp8juBHiex5UrV/DgwQMAQEhICKpWrUodVATh4dxJL7oiQ2EoGTJyeVE2QajKIoM/YxNV4uySmDRMA+UxFDrsw/9Dozhalx2tXZJhQ2epyFB8kTr6skoGidBnji0yKNkl6aXtkvJ44GG28LokUDKIMhmk2+dy2HtbR+ySWCWD1tuhXSfZyWSwbYmJ50XFYwp+BvIc+Lw8EV5GyQAAeZm3ofEOdWNrCBFOZTIEiJfJvA2NrrrotzTDjl2SvX0TBEEQBFF6cPuTw++//46ePXsiICAANWrUQPPmzdG8eXPUqFEDAQEB6NWrF7Zu3eruZhEE4SaKUsnAdtCmuaCHiVUxcABCDOourSU9+Jm1S6LQ58KHDX6WCj/2JCWDKPg5j4oMxRWpQSJyRQZWmQCtt7jznLdVMjB2SU+UDGyRAQAeZAmvo1pBJoNw2Ry3+eAUQMkgkcngCHaVDDavs/N4Ucs8+XvFS2QySF0+S72Sge3EtoHCn4sekV2ShJpAlMngpQen8xcu8+SzZAfkZNixS6JMBoIonkydOtU6ip0gCgtSphAsbisyGI1GDBo0CN26dcPmzZuRnp4OnucF/9LT07Fp0yZ07doVgwYNgtFodFfzCIJwAzzPS2YyuAspJQNfwBGKbB5DkEEjGi0rh1SIb0mCDX5mO4QJ18OqX6TwpIHHvmyRwaYQR0WG4o+8XZKwyKDRBQCMr7vt6GnJ5WEuqLEWYuweNTabZe2ScorKLsmR350CZjLcY35z2RwL26ZIFS09+nslYZekleiMoUwGJSUDFRmKHKbIoMYuScMBGp/ygmmWIG9FuyTpBijumyCKktjYWGtfE3WCEkTRsnv3bvA8X+oswkobbrNLGjRoENatWwee5+Hl5YXnn38ezz77LMqXN9/g3LlzB0eOHMG2bduQk5ODlStXIjc3F6tWrXJXEwmCKGQeG3lRJ0b5IsxkMPFAVh5foE6U5Czhw12oytBnQDwqvaQFP7M2UaRkKHzYc1gKj1IyMOeU0QTkmXhoNRwVGUoAsnZJTCYDpwsQd07ZKhlkgp8Bcy7D4xz5kda235jiYpfEy3ncSyC2S1JfZEjPMYlCW8v6apGSLd1pWNqKDLyEXZLU5TOvtEsZFIoMpszbbmwIIYkTdkkaDtD6lEfeo8v5yzwpGLHFfYFdkkSBVKBkoEwGgiAIgijVuOVOYNOmTVi7di04jkP79u3xww8/oHLlypLLXr9+Ha+//jp27tyJNWvWYPPmzejWrZs7mkkQRCFzhxlRqeWAUG/3DbtmlQyAWc3gI3MlVKNyYO2SQr3VF01Ewc8lzC6J9e42eHBnVHFBr+Wg15g72+XwpI/BV+I7m5nHo4yGEwePSyUPE0WKWrskTucv7hh70nHG87xEJkN+kSHIoMGNNPkig9am11hkl1QClAwFsUtiVQwcgDAfDS7ZZPXa/s6xRQadxrOKliLILkkVSkUxsksqekR2SZJFBsYuieOg8YkQTLOoUtjfXVu7JKmvAtklEQRBEARhwS1P5PHx8QCABg0a4LfffpMtMADAU089hS1btqBhw4YAgMWLF7uhhQRBuAPWKincRyvoACpsfLw4kTO2Use+XL+C7cMaa5cU5oCSgbVLSnOBfZM7ySYlQ5HAKmBYWEuYkozUOWUpLmQydl1SBQmiaJG7ukrbJbFFhidr52WJAno5m9DSYDuFaoGSgbVLKgGZDAWxS7rHFMFDvDWiY6CkZPBkFQMASbskDSe+TyjtRQaySyrmmFTYJTF/S9klWVQpfl4KdkkS3wXOZutkl0QUN+Lj4625BImJiaL5x44dwxtvvIEaNWrAz88P3t7eqFSpEho3bozRo0djw4YNis9mGzduRL9+/VCxYkUYDAaEhoaiRYsWmDFjBtLS0grU9kOHDmHKlCmIiYlB+fLlodfrERAQgDp16mDkyJE4f/684nv+5JNPrNMsx8D2n9TxyMvLw5IlS9CjRw9ERkZa31Pr1q3x1VdfITMz0267L1y4gNjYWFSqVMl6PAcNGoSEhASnj4U9du/ebX1fu3fvhslkwsKFC9GyZUuEhITAz88PDRo0wPTp05GVlWV3e2lpaZgxYwZatGiBkJAQGAwGVKxYEf369cOvv/6quG5MTAw4jkNMTAwA4NKlSxg+fDiqVKkCb29vREREYMCAATh06JDq96OEZbmpU6fafV8sJpMJO3fuxMSJE9GqVSuEhYVBp9MhKCgIDRs2xMSJE3H9+nXJdS2ZH0uWLAEAXLt2TfI8s4U9NnLs378fr776KqKiouDt7Y2goCBER0djypQpuHfvnux6Usdt1apV6NChA8LDw+Hj44OaNWvi3XffxYMHD9QfKMIh3KJkOHToEDiOwzvvvAOdTmd3eZ1Oh4kTJ+KVV15R/PIRBFGyKMo8BsDceeCr45BuI/22fa2WXBOgf9L0ZCZkNNRH/Xvyl7BvyszlS0xnqWgkuad3SBUT/HQa0XlniycN6Jc6pzKtRQYqchV35DIZTEZGyaAPENkCWUbnslZJ5uVtlQzK11zbTAa9KJPBPJK/sEMROY79UjqvZHDELikpU1zYZ9+qcpHBgy4mEkjZJQHma6htDTOvBBX/CwUlu6QMsksqcgpglyRYRoWSQaYBNvsmuySi5PD1119j4sSJMJmE17gbN27gxo0bOH78OOLi4vD48WOUKVNGsExWVpbVDtyWBw8e4NChQzh06BDmzJmDTZs2WQfPOkJ8fDyGDBkimp6Tk4MLFy7gwoULWLhwIWbPno1Ro0Y5vH0prl+/jl69euHUqVOC6Q8ePMCBAwdw4MABzJs3D5s2bUKNGjUkt7Fq1Sq89tpryM7Ov3e5ceMGVqxYgdWrV+O7775zSVuVMBqN6N69O3777TfB9NOnT+P06dNYtmwZduzYYbVtZzlx4gR69OiBW7duCabfvHkTa9aswZo1a/DCCy/gf//7H7y9vRXbsmXLFvTv3x/p6enWaXfu3MHq1auxZs0azJo1C+PGjXPujbqATz/9VFCMsvDw4UOcOnUKp06dwrx587Bs2TL07du30NtjMpkwduxY/Pe//xVMz87OxsmTJ3Hy5EnMnTsXq1evxvPPP293W6+++iqWLVsmmP7nn39i5syZWLduHfbt2yd7HhDO45anB0u1qU6dOqrXqVWrFgDg/v37hdImV2M0GrFo0SJ07twZERERMBgMKFOmDGrWrIkhQ4bg4MGDRd1Egihy7qYzRQY35jFYYNUDSkUGudGLthYbyaySwQH7J6kQ38dOFD2KCjaTwUCdvG5BKfxZy5mLaZ6ChuNExQO5IoPHj7ougbgik4HPERcZNDZKhkCD8jXXNsiX7TPn4aZQX1HPvgNFBqb4AkeUDKx60Fcr1lQIgp+FHS0e/52SUDIA5uuoLRT8THZJxRq2yKBRUWSAvF2SOPjZAbskiX0TRHHk9OnT1gJDlSpVMGvWLOzYsQMnTpzA3r17sXDhQgwaNAh+fn6S6w8ePNhaYGjQoAGWLl2KhIQE/P777xgyZAg4jsOtW7fQoUMH3Lx50+H25ebmIjg4GLGxsfjhhx+wb98+HD9+HL/++is+/fRThIWFIS8vD2+99RZ27twpWLdPnz44c+YMRo4caZ125swZ0b8KFSpY5ycnJ6N169Y4deoUDAYD3nrrLaxevRoJCQnYtWsXPvjgA/j6+uKvv/5C165d8fCh+N4sISEBL7/8MrKzs2EwGPD+++9j7969OHz4MGbPno2wsDCMHDkSJ0+edPh4OMKUKVPw22+/oVOnTli3bh2OHj2KdevWWTulz58/j549eyIvT2y1efPmTXTo0AG3bt0Cx3EYMmQIfv/9dxw9ehRLly5FgwYNAABr165FbGysYjtu3bqFQYMGwcvLC1988QUOHjyIgwcP4vPPP0dAQABMJhPGjx+PX375xdWHQDW5ubmIiIjAqFGj8OOPP+LAgQM4duwYfvnlF7z77rsoU6YMMjIyMGjQIFy4cEGw7qhRo3DmzBn07t0bABAZGSl5njnC+++/by0wVKlSBd999x2OHDmCXbt2Yfz48dDpdHj48CF69OghKoaxfPTRR1i2bBn69OmDtWvX4tixY9i8eTO6d+8OAPjrr78wfvx4h9pHqMMtww38/PyQmpqK5ORk1eukpJgNY319fQurWS7j2rVr6N69O86dOyeYbjQa8eeff+LPP/9EfHw8xowZg2+//bbQR8wRRHFFpGQogiKD+eEp/4E53YkcBEs/jInnRSPKwxxQMhi0HLyYEZOPjaYiOS7OIPbEp2ubO1AKf/ZE/3QfL05Q0LJ0hFKRofgjX2Rg7ZL8kccqFp50bLL5DdAYBKP5g+0UGWy/EnqJa1SOiXfD98aFdkmOZDIwRfCyPhqkKgS6lLbvFM+LMxkAS6E2/1iUerskhUwGsksqetRkMrBqHEm7pCeqFDb4OTuPR56Jh1bDydRH8yeSXZJrMPEmJGdnFHUz3EaowRcakeKvcPn5559hMpng5+eHP/74A+XKlRPMb9OmDYYOHYqHDx+K+qM2bdqEVatWAQA6dOiAzZs3Q6/XW+d36tQJLVq0wPDhw/HgwQNMmDABK1eudKh9Xbt2xaBBg0T7jo6ORvfu3TF27Fi0bdsWp0+fxr/+9S8899xz1mWCgoIQFBSEsmXLWqfVq1dPcX9jx47FP//8g8qVK2PXrl2oUqWKYH5MTAz69++PNm3a4MqVK/jyyy/x+eefC5YZNWoUcnNzodPpsHXrVrRt29Y6r1mzZnjhhRfQvHlzu53DBSUhIQHDhw/H/PnzrdMaN26MPn36YOjQofj+++9x9OhRzJ8/X6QCGTdunLUfcuHChXjjjTcE2xgwYAC6du2KXbt2YeXKlRg8eDC6du0q2Y7Lly8jMDAQf/zxB2rXrm2d3qJFC/Tu3RstW7bEo0eP8NZbb6F79+6qHF9czdChQ/Gvf/1LtO9GjRqhd+/eGDNmDJo3b46bN2/iiy++wI8//mhdpmzZsihbtiyCgoIAmN1o7J1nSpw5cwazZs0CYD5f9+3bZ902YD4HO3XqhO7du8NoNGL48OE4fPiw7PYOHjyIzz77DB9++KFgepcuXdClSxds3boVP//8M2bPno3w8HCn202IcUuRoWbNmjh8+DBWrlyJjh07qlrHciGuWbNmYTatwOTk5AgKDM888wwmTJiAmjVr4vHjx9i/fz9mzZqF9PR0zJkzB5GRkXj//feLuNUEUTQUjyKDeiWD3GBTi5IhNdsk6nxwxC6J4zj46zRIyc5/gE9TSvQtZogyGTy8Q6q4UEZByaBQfyix+HhxSLHpZ7V0hLJKGk/vEC2JqA9+DgCYDgZLx5lS6DNgDn5WwrauIJVXkpMH+BT63bDrgp8dskvKEP6ehPtq8ZD5jTEJlAyl7Dslo2RgTxOyS1LIrjKmgM/Ldui8JFwMm1mjxi5JA2j1TJEh+x54U56kZWdGLi+roqTgZ9eTnJ2BsiumFnUz3EbSwKkI9y5jf0EXcueOuUBao0YNUYHBlsDAQNE0y0hrnU6HxYsXCwoMFoYNG4ZVq1Zh+/btWLt2LW7fvo2IiAjRcnLYqgzk2vXpp5+iT58+2L9/P5KTkxEaGqp6+7YkJiZa+97mzp0rKjBYiI6OxujRo/Hll18iPj5eUGRISEjA0aNHAQAjRowQFBhs39OsWbPw0ksvOdVOtZQrVw5ff/215LxvvvkGGzZswL179xAXFycoMty6dcuqTunSpYugwGDBYDDghx9+QPXq1ZGbm4u5c+fKFhkA82h62wKDhbp16+LDDz/Ee++9h5s3b2L9+vXo16+fo2+1wERFRSnOr1ixIiZNmoRx48ZZ80kKa8D0vHnzrNZlixYtEhQYLHTp0gWvv/46Fi1ahCNHjiAhIQFNmzaV3F7jxo0xefJk0XSO4zBhwgRs3boVubm5+OOPP9CrVy+XvpfSjlu6I3r16gWe57F48WJrCLQSP/74I3744QdwHIc+ffoUevsKwvr1660FhhYtWuD48eMYPHgwmjdvjueffx6ffPIJ9uzZY60O/vvf/0ZurvRDDUF4Mlm5PFKzhQ+q7s5kAKRk4I4HP+c+eVq7z4Rq6jRAgEIHsHR7xOHPJQW2k5eUDO6BzfKwxROVDGzxytIRyvpEe7p/fElErnOWVTJwksHP0pkMtqHPgP0ig619mNRXx+iOYeqiB7LCt0vieV6kZAj30UIca5xPqSsyyGUysEWGklP7LxR4hSIDQGqGIsfkRCYDAI0v0+HJm2DKShLdJwP598rSdkm2f1AmA1EysHT4nz9/HkeOHFG9Xm5uLvbs2QPArFioVKmS7LLDhg2zrmMvvNce6enpSExMxLlz53D27FmcPXtWMPq8IOqATZs2IS8vD76+vood5gCsxYNbt24JAoG3b99ufS2VJWGhb9++kp3HrmTAgAGybihlypTBgAEDAADnzp2zFpsAc2iwxUJJqsBgISoqymq9ZLsOC8dxGDx4sOx2LLZagPD4FSWPHj3C1atXBeeZ5Vha5hUWlmNQt25dPPvss7LLWb5XtutIMWjQINmCSOPGja2vr1y54mhTCTu45Yl8zJgxiIiIAM/zeOONN9CjRw+sXbsWN2/eRE5ODnJzc3Hz5k2sXbsWPXr0QGxsLEwmEyIjI/HWW2+5o4lOY5u18MEHH0CrFd/YNW7cGD169AAApKamivzMCKI0kJQh/gEu7koGOSz2RveZDpxQb63Dfvj+euFl+HEJUjKwdkkGT++QKiYo2SV5qpLBFst5l8X4x5OSpvihNpNBo1fKZGCslRxUMmjsKBly3eKF4367pPQcXlQ0KOsrDn4uzUoGXjaTQfi+S71dkp0iA+UyFC1iuyRxR784+JmDxhAmUpCZMu9ArxEX2ixFfXtfBbJLIkoKAwcOhE6nQ3Z2Nlq1aoWePXviu+++w9mzZ8ErqNeuXLmCjAyzlZVSRyg7/+zZsw638f79+5g8eTJq1qwJf39/VKlSBfXq1UP9+vVRv359q7e8ZVlnsSgQMjIy4OXlBY7jZP9Z+rQACDroLd77er3emlsghU6nQ3R0tNNtVYPcyHYLzZo1s762zQyw/YzUfrYZGRmyndRVqlRBWFiY7DbCw8OtSgJHswtcybVr1zBmzBhERUUhMDAQVatWFZxnw4cPty5bWHm52dnZuHz5MgD7xz46OtpaYFP6XlkyfqUICQmxvn78+LHscoRzuC2T4ddff0XHjh2RkpKCLVu2YMuWLbLL8zyP4OBg/Prrr8U+k8FoNFpfV61aVXa5atWqSa5DEKUF1iop2KApkqBgtoM2rQBKhmRGyRDq43gPryPtKW6I7JJIyeAWlOySPFHJwHZ0ZuSa/aGzmX4V1keaKHoKYpdk6dhk7ZI4psjgpxNn29hie1mSEru4p67rfrukJKYIzgEI8dYo6BikigweWLW0xSSXycAsVtrtkhQyGQAqMhQ5TJGBkwx+FmcycBotNN7lYMq8bZ2el3kHOo6Dr47DY2P+OhmWATnMV4FjC1AU/EyUEGrVqoUVK1Zg2LBhSElJwa+//opff/0VABAWFoYuXbpg+PDhaNOmjWC9Bw8eWF/bZh5IUb58viWZ7XpqOHbsGDp37qw60zQzM9Oh7duSlJTk1HqWYguQ//5CQkIkB93aomRP5QrsfS62+7f9XFz92drbhqUtV69edfj8cBVbtmxBv379BJ+lEgU5z5Sw5GAA9o+bTqdDaGgo7ty5o3jclPqRNZr8+1s5JQrhPG7TNEZHR+PMmTN4++238csvv8h+mFqtFn379sXXX39t14uuOGCbGXHlyhXUrVtXcrm///4bgFk2Vb16dbe0jSCKE3eKQR4D4JpMBks/zP0s4XtyJPTZAutxa/tQV9wRBT9TJ69bYNUvtnhin6CUkoG16gLo/CuOyCoZjGyRwV9k8WEZnStZkLD9m+MQZNCI7Oss2I5K5zgOOg1gW8vNkTiXXA4zMp53g13SvQz290kDLw0nVjLYtCWTqdR4upIB4MHzJnBMgUtkl1RyfpYLB3t2SRm3FecThYyK4Gf2Wmw5xzU+5QVFBstrPy8NHhvztytvl8RWHajI4ApCDb5IGji1qJvhNkINRTOo9MUXX0THjh2xcuVK/P7779i3bx/u3buH+/fvY9myZVi2bBkGDx6MH374QdApaaGwvOmNRiMGDBiA5ORk6HQ6jBkzBr1790aNGjUQHBwMg8F8H3DlyhXrQFYl9YU9LP1yYWFh2LVrl+r1pLIbCuuYOIIr2lBctlGY3L9/H4MGDUJGRgbKlCmDiRMnonPnzqhWrRoCAwOtWSM7d+5Ehw4dABTsPFNLcT9uhH3capwYGRmJ1atX4/bt29i9ezfOnj0rqHrWq1cPMTExDoXiFDUDBw7ElClT8OjRI/z73/9Gt27dRNXbEydOYNOmTQDM3mABAQFSm5Lkxo0bivNv36Ybe8I1/JmSg703skSdDEpwHFA1UIfOlX2gVRhBfSstF8supAmmFUUeAyDOZLjyMAdzTjyUXFauY2HlpTQE6DW4lCIcBRnmXXAlw9lkI344+1gyK4LjOFQJ9IKJB649ygHPm49jjyq+8H2ynZNJ2Zh3+jE4AHVDdaJtOEJkGS90q+IjGs2aZjRhc2IGkphOvaJQppRGykiEMlrw8sAbM/b8S7ibLSpaAqRkKI6YeB7G+0eR+Vc8TMZU6/S8jJuC5TQ6sV1SxqV50OgDkXbyX8yy4hBGpSID+9Ok03DIselxyykCu6Scu/uRsvcVVWsak/YLt6RaycCEPj8pgrPfkrP3838D/0oV2geVhsJd6u7+yLq2FgBQpuFUlKn3nuh+ZuOVDBy8lWX9W6/l0Ky8AdFlPT/smOd5ZFz+QXGZjEvfic5TC1rfSPjWHAUv/6gCtSMv/SbSL86FxhAG/unR2HI9F3fThb8DfjoN2lfyRpVAHc7eN+LkPSNqh+jQuFzJ+pxMOenIuPAtclLPAwA0hjD41hgGXbD0QDZTFjMKWU0mw5N7Ba1Pedh+69MvzEX27Z0wZI0D8JR1+i8nT2H/6QfI4H0A1MnfFVNk4CiTwSVoOI3bg5BLK4GBgRg+fLjVEubChQtYv3495syZg1u3bmHJkiWIjo7G22+/DUBos3L37l3FbdvaCdmuZ4+dO3daLXji4uIwdOhQyeVcNfrdEhj9+PFj1K5d264SQYrg4GAAQHJyMvLy8hS3Ye+4FRR727edb/u5sJ+tUt6Gms9Wzfu0LMNuw7aoZQlDliI9Pd3uPuT4+eefkZqaCgBYt24dOnbsKLmcO1QWlvMHsH/ccnNzrQofR75XhPsokjuBiIgIDBw4sCh27XLCwsLw448/YuDAgThw4ACaNm2KcePGoUaNGkhLS8OBAwcwa9YsGI1GNGrUCLNmzXJo+0oXN4JwFbfTc/HpoRQ449Sz72Y2HmSZ8Ept6ZthYx6Pj/9IEU0vLkqGR0Ye+29lyywtzen70hYLoU4oGVjrm5tpebiZJi9F3HdTPO1ySi4+fDYIp+8bMT0hv2Di6PsSk40rD3MwqUmQYOqsYw9x/oH4GJBdknso7ZkMt9PzcDtdXGQoDR2iJQ2TKRcPfmsHPldZhi1ll8QbU/H42PviZfXSRQY5REUGLZcvRwNw7VEuaoXoFdtXYJjiX176NeRduebcppxUMoQ/+c1l65B3M/JEdoYWSkPhzlJgAIC0k1ORl34dGu5LwTIXJH7vdv6ThSnPBqF+WCGfO0VMxsU4wKRs85qbcgq5KfKho1lXVyH8xb8lbXzUwJtycX/TszA9KU7Ou9kSl3KrSS6750YWRjcMwFfHHoIHsPEK8G6TwBJVaHh44HVkJa4STMv8eynK9rsqyqSRQioXQcouCRCHP+c+OIHcBydgCOwD6POLDFdMVXDFJB61TEoGwtOoXbs2ateujZdffhm1a9dGeno6Vq1aZS0yVK1aFb6+vsjIyMDhw4cVt2UbKF2vXj3VbTh37pz19UsvvSS7nCVLQQ61I8Kjo6OxfPlyZGdn4+jRo3Y98aWoX78+fvrpJxiNRpw6dQqNGjWSXC43NxcnT550ePuOkJCQgFdffVVxvgXbz8X29eHDhxX74Syfra+vr6xl+tWrV5GcnGwt4rDcu3cPiYmJon0DgL+/v/W1rZUQy59//ik7zx6W8ywkJES2wAC47jxTwmAwoHr16rh8+bLd79WJEyeQk2O+L3Pke0W4Dw/sjnA/vXr1wrFjxzB06FCcPHkSgwcPRosWLfD8889j6tSp8PX1xTfffIN9+/YVugcdQTjD2fs5ThUYLBxPku/MvpSSI2kBVL6IlAyBClYzBSXcicKJUoexWk7fNyIr14S4k4/sL+wgJ5KMAmlkVi4vWWAAlLMCCNeh1KHq44FVBn8V78lPxzkcuk4UPvUN1+wWGABA4x2GPJW+7hpvcYheqLf8tZctPrFnU0p24YcyaLz8XLYtqSKLFOz7sijtHFGcKVmzlThUFmcyL/+g2ibq1D3Pz1jLvimVoefYtTYv/RpyU8/ZX1CuDf9stBYYsuErW2AAgKw8HrOeFBgszCmEe6PCJPvGZtE03piCnHvijpe8TAkvdY248CVWMpj/1/pWlGxDGZO6cE89L7y+cy681hFEUVKpUiXUqFEDgDDs1svLC+3atQMAbNu2TdF1YtGiRdZ1YmJiVO87NzdfXyQ3Ut1kMmHhwoWK2/H29ra+zs6Wf1bv2bOntaP4m2++Ud1OW2w7qZcsWSK73Lp16xQ7zV3B6tWrZbMDLEUjAKhTp47AQSUmJsaqwPjhB3kF3/Xr17Ft2zbROiw8z2Pp0qWy24mPj7c+Y7Od/JZAaEC5k3/FihWy8+xhOc+ysrJk1RIZGRn48ccfFbdjOc+UzjE1WI7BuXPnBAU6Fsv3ynYdonjhQU8PRYfRaMTSpUuxfv16SZ+yu3fvYtmyZdi+fbvD2/7nn38U/yl9AQlCLQW1i2ADgG1JyRKPkAzUc4gOL5rRfzWCdSjrRECzPcJ9NKgd7Lg9katGX9/PNBVKZ1keL7SNMsp81lUDvVC+iNQppY0yeg0aynx/WkWWnNGaamlcTm+3Y7RVpLfifMI9jG2Ybwfp58Whi/9pu+vowppBW6YKkJdld1loveH9VB/R5JaRBpFiAQBqBesQwhQg2OtkhkIuj6swVOoJaAt+jnK6ABgqdFW1LDty2WIB1LScQVV2S7BBgzohBbPcK04EtZF/0GdpEaHus5L7PfQkeInvZWCbpYDWx7Ht5Dx2ug25aVetr7M0jlvIsIHmxR027F1pOm9jQ2dBFywe2cmeqpasGu+ofpLXpkbZ61S0FIjO3mB9bajQBRpDkKr1CKKo+eWXX6xWMVL8888/uHjxIgBx9sDo0aMBmPuA3njjDeuoalt++OEHbN26FQDwwgsvOGQHbpvfGR8fL7nMBx98gOPHjytux3aflnxQKWrWrIn+/fsDAH766Sd89dVXitu9evWqqHO7WbNmVvXCvHnzsH+/2ELv9u3bmDhxouK2XcGdO3fwzjvvSM6bMGGCNeh65MiRgnmRkZHo27cvAHMgslSxxGg04vXXX7d+5m+99ZZiW6ZNm4ZLly6Jpl+4cAGff/45APPn1Lt3b8H84OBgPPPMMwCAxYsXS1oW7d+/H99++63i/pWwnGcZGRnWwosteXl5GDp0KG7duqW4Hct5lpSUhMePnf+tHzlypNUmavjw4Xj0SDxAYOvWrfj+++8BmM+5pk2bOr0/ovBwu11ScnIy/vjjD1y5cgWPHz9Wleb98ccfu6FlzpGeno6uXbti37590Gq1ePfddzFkyBBUrVoVWVlZOHz4MD799FPs378fffr0wX/+8x9MmDBB9fYrVpQeYUIQroStjZX10aCFQqfdvcw8HLSx4lGKcXiYLX64+6J1iDVDwN14aThMaxmMA7ey8dCovlP+79QcVCjjJVkU8Ndr0DrSYLbhcBClztNwHw1aRnqLjrcUyRLFHAB4JkyHKoHqO4oycnhsuy4c/ZFryg8UzpUopA6o4YfOUT4U1ORGxjcKxL6bWbiXaf7cNRxQK0SHhuGeV2SILOOFz1sFI+FOtmTgc6UyXmjpgcWVkkirCt4INGjwz+NcNClngM+VFNg+bmj9q8I7akD+374V4VP1ZXAcB95OuKyhUk/4R38GXXB90bxaIXpMaxmME0nZVlVemI8GrSV+x1542hdr/8offSt37XQluuD6COt+GFn/bACf65x/rkYXAO/KLzjtbW+5OlcL0mFay2AcTzLKdpKX0XFoGeldZL/ThYFPlQHQeJdFzr2DMOWkAeBhyriFzL/FxYfuVXxQzleLv1NzYHtWnr5nxNVH+SNM89wQgFj0CN+jT7XB8K32CnQhDZB1fb3s+ZxxYY5gnlSxQi22Pv/ZnLjIEOKtwYOswlckFTkS10jJ4y9RAGLPVe2Tr7b52nToybUp/7r4LIBg4ypcyH4KeTJjEiO8HqBpuQfw4t6HV5kq8K46SP17IYgi5ptvvsHLL7+M7t2747nnnkPt2rURGBiIlJQUHD16FHPmzLGOhn/zzTcF63bv3h39+/fH6tWrsXXrVjRv3hwTJkxArVq1kJKSgp9++sk6Ej4kJMRupz1L586dUbZsWSQlJWHKlClITExE3759ERYWhr/++gsLFy7Ejh070KpVKxw4cEB2Oy1btrS+Hj9+PD788ENERERYn9eioqLg5WW+vs6bNw9Hjx7FlStX8M4772D9+vV47bXXULduXRgMBiQnJ+PUqVP47bffsHPnTvTt21dkfx4XF4fWrVsjJycHzz//PMaPH49u3brBYDDg8OHD+OKLL3D//n00aNAAp07JW+wVlCZNmmDevHm4evUq3nzzTVSqVAn//PMP5s2bh99//x2A2SKK/VwB4Ouvv8aOHTuQkpKC119/Hfv378dLL72E4OBgXLx4Ef/5z3+sdk8DBgxA167yAz+efvpp3Lt3D82bN8d7771nVbPs3r0bM2bMwMOHZovjOXPmWEOWbRk9ejRGjBiBu3fvok2bNvjoo49Qs2ZNPHjwAJs2bUJcXByaNGmCgwcPOnWcBgwYgMmTJyM7OxtDhgzByZMn8fzzzyMwMBDnzp3DnDlzcOzYMdXnmclkwptvvokxY8YgLCxfdfz000+rak/9+vXxzjvvYObMmVbLrffeew/R0dFIT0/Hxo0bMXv2bOTl5UGv12P+/PlOvW+i8HFbkSEpKQnjx4/Hzz//LJCAqaE4FxmmTp2Kffv2AQC+//57DB482DpPr9fj+eefR/v27dGpUyfs2rULkyZNQocOHdCgQYOiajJBiGCFDJFlvDColvxosfPJRqbIIP+gzXbkt4o0IMyJ7AJXEuStRfeqvkXaBgt6hcDsSv7mz+HiA6P9IoNM6Gmz8t54vrL6EYcPsvJERQbzw6m5nVIFpe5VfMkP3814e3EOfa4lnUr+XqjkT4GSJYF6YXrUe+JT/5ixStKFNERA4+kyayp3Evo3+Bd0Ic/Izn86SIeng+wXVMOZ3597MtdOV6MLeUax/e6kaqAOVR0oPnsKhogYGCJirH8b7x2RLDJwHIem5Q1oWl5YvDTmPWaKDIXW1GKLLtQ8UlUXXF+y4Gch6+pPyEuzLTLIZ03Zxcb+J5sT2vFoOaBCGa1nFRnkileSRYY0wd+cLlBywAd7rtreeupCGkAXIn4ubfLkH0F4KhkZGVi9ejVWr14tOV+j0eCTTz5Bnz59RPOWLl2K3NxcrFu3DsePH8crr7wiWiYyMhKbNm1ChQoVHGqXn58fli5dij59+iArKwvz588XdajGxMRg7ty5ip70Tz/9NAYMGIBVq1Zh69atVmWFhatXr1pteUJCQnDgwAEMGDAA+/btw969e7F3717ZbQcEBIimPfvss1i6dCliY2ORlZWF6dOnY/r0/Hs+Ly8vxMXF4cCBA4VaZPj8888xa9Ys/Pbbb/jtt99E82vVqoVff/3VWmCxpWLFitixYwd69OiBW7duYdGiRQJ7HgsvvPCCoi0UAFSoUAHffPMNBgwYgA8++EA0X6PR4Msvv8SLL74ouf7QoUOxZcsW/PLLLzh//ryoqFO/fn2sWbPGIZWMLRUrVsS8efMwdOhQZGVl4d///jf+/e9/C5Z56aWXMGzYMEVboueeew7NmzfHoUOHsHz5cixfvlwwX8rpRY4ZM2YgPT0dcXFx+Pvvv62B7LYEBgZi1apVaNiwoertEu7FLUOUUlJS0Lp1a/z000/IyckBz/MO/Suu8DxvrVLXqFFDUGCwxcvLC9OmTQNgrvDJyd4IoqgwMSPVFPq9AZjVALYoKRlSGWsKJT/50oheod6if6JyUBOofF9mNK4aWwzB8hIPp7afr1RBydF9EARROmDzGDitQnHXjpLBVYGiYYyt2/3MwlcyFAXs7TMJzQoO+1NcQKfJkoGzz2GMBU9BigycJr8gZmSKDN5aDjp7N60egpTay5QjVDJwOukBQnnMqlL3egRRmlixYgUWLFiAQYMGoWHDhihfvjy8vLxQpkwZ1K1bFyNHjsSJEycwZcoUyfW9vb2xdu1abNiwAS+88AIiIyOh1+sRHByMZ599FtOnT8elS5ec7gjt3Lkzjh49ildeeQWRkZHQ6XQIDw9Hu3btsGDBAuzYsQN+fvYzUJYtW4Yvv/wSzZo1Q2BgoNWORory5ctj7969+PXXX/Hyyy9bQ64t+27ZsiXeeecd7NmzRzazYODAgThx4gReffVV6zGpUKECBgwYgP3792PYsGFOHQ9H0Ov12Lx5M+Li4tC8eXMEBQXB19cX9evXx2effYbjx48jMjJSdv3o6GhcunQJ06dPx7PPPougoCDo9XpERkbihRdewIYNG7BmzRpB5oUc3bt3x9GjRzFkyBBUrlwZer0eZcuWxYsvvoj9+/fL2joB5iLEzz//jP/+979o2rQp/Pz84Ofnh2eeeQaff/45Dh8+jPLlyzt1jCwMGTIE+/btQ58+fRAeHg6dToeIiAh06dIFK1euxE8//SSbOWHbzq1bt2LKlClo0KABypQp47S7gUajwX//+1/s3bsXL7/8Mp566ikYDAYEBASgYcOGmDx5Mi5fvoxOnTo5tX3CPbhlWOCMGTPw119/AQA6deqECRMmoHHjxggJCSnR9hp37961+qNFR0crLtu4cWPra4u/H0EUF0SdEXaWZzuVpSx0LDxkigyBVGQQoGSXZFE5GFSoBOSUDI46OGklPh7bwoLUyE0nXKIIgigFiIoMXgUoMmhcVGTwFl7k0nN4ZOaa4ONh1dLS0P9dYBx8BtEyndl5paPKIPxT5THjGMuegtglQWNrl8QUGbw8scggd16Jp4uUDBLByyaeF63pcYeMIGSIjY1FbGysaHpERASGDRtW4E7vnj17omfPng6vFxMTY3cwbd26dRVDd6OiouxuQ6fTYdKkSZg0aZLqtnXv3h3du3dXvTxLnTp17AYeF/agW61Wi5EjR4pyF9RSpkwZvP/++3j//fcL3JbatWsrBkkrodVqMWrUKIwaNUp2GaVzQO78t6Vly5ZYt04+h0fNuerv749p06ZZB1bLsXv3bsX5Ftq0aYM2bdqoWtYWNW21UJwHs5d03FJkWL9+PTiOQ/fu3bFhwwb7K5QQbCVW9iygbAOBpKRZBFGUsM/JdpUMHPugbb5QSxUNWbukQL1ndeQUFKUig2WevdBbQN5XnFWd2ENqedvCAqtk0HIo0cVigiAKDz7PgSKDvW5xVykZJOz67meaUMnfs3+b6CqtHp43gePE5wP78+hBBj3yiB7C1RYZmBGeuQVRMsjbJZmLDPa3IXePWqJQkckgpWSQqoV5WE2VIAiCIIhigltuMa5fvw7AHF7iSYSEhFj96P744w/FQsOePXusr6tUqVLobSMIRxA9Qtp5EGMfTnjI2waQkkEZvZKS4UlfmCq7JBcpGaREE0pKBnpQJQhCDlbJgAIoGTgXFRn0Wg6BeuGFzlMtkwh7yPxAmqTv59nfU9aCxjNxssjg5SYlg5aDTsWNTrYnfMWligw5QiWDRkLJIGVpqinpBReCIAiCIIolbukeKlPGPKqiXLly7tid29BoNFYp2a1bt/D5559LLpeSkoL33nvP+nePHj3c0j6CUAtbILBvlyTh2y9RZDDxPB6xSgYqMghQtEtyRMkg00nmqJJBanGlTAby9SUIQg5HMhmk/MaZlV3RJABiNYNckbYkQ5kMBYCXLjKwHbOm0ii1d9ouqQDBzzbXBiklg17FfU6GUnhYsUPuvFKhZPCSUjKIt0c2lwRBEARBFAZu8e2pX78+du/ejWvXrnlcCvjHH3+M9evXIyMjA1OnTsWxY8cwePBgVK1aFVlZWTh06BC++eYbq5qjQ4cOFFRCFDtYTzp7z2tSDye5Jl7UGZ5m5EUFDAp+FqImk0Gr4eClUQ7YNsrMk8pYUILjxPuyzdxg20BKBoIg5HBpJoOLiwx/P8zvSL7ngUqGUtj97TCczJAKns+TnCNSMpSKg+zcm2TtkvgC2CWBz/9+SgU/q7kPycjhEWI/o7N4I1EsUJPJIJmlRaEMBEEUI/78808YjUaH1ytbtizKli1bCC0iCMJZ3FJkGDFiBHbt2oUff/wRvXv3dscu3UatWrWwfv16DBw4EPfv38fGjRuxceNGyWWfe+45rF692s0tJAj7sF07djMZpJQMEv1DqRI93wGUySBAyUvYtgBh0HIiFYEanFEaeHEcciFdWGBDvulBlSAIOVyZyeAquyQACPMRXnhLg10SXakdQNYuiVUyuKMxRYs4GNH9wc+8TZHBeSVDyf+weDVKBolMBqmAclIyEARRnOjUqROuXbvm8Hr/+te/MHXqVNc3iCAIp3FLkWHAgAHYuHEjli9fjhkzZrgkpb040bFjR1y8eBHff/89tmzZgnPnziE1NRVeXl4oX748mjZtikGDBqFXr14lP3SM8EhEtgp2lpcaNSbVAc7mMfjrOIftezwdjuNg0Er7BdvmNXhrOaTnOP6Q7KiSwbqOTXsEmQyskoE+ToIgZCjOSgZbPNEuiUVu1H6pRu6enJcuOmmY39O8UmGX5FyRAaJMhgIoGUw2RQZIKBlU9Jhn5JSg77jceaUik0G1koEuBwRBeBAxMTESRfGiYffu3UXdBIIoUlxaZNi7d6/svNdffx1Xr17Fhx9+iLVr12LQoEGoVasWfH2VRrWZadu2rSubWSiEhobi3XffxbvvvlvUTSEIhxFlMtgNflaXyUChz+rQazhkSzwF6m36wdTkMkjhlJJBw8G2Y8H2s2WLSaRkIAhCDkcyGaT8xpmVC96gJ4SLigyep2QoHo/aJROegp9tcC7cQ2SXVKBMhvzPQ0rJoKQIteAJSgapIoNJlMlAdkkEQZQ8EhMTi7oJBEG4CJcWGWJiYlSN1D927BiOHTumapscxyE3V/pmnyAI18A+f9i1S5LJZGChIoM69FoOkFApsHZJzuCMkoH9fG2l9uxzOmUyEAQhhyNKBrvBz5rCs0t6kGVCron3KKWdky43BCCrZCiNdkksahUxrF0SXGSXZOSE1xBvLQedx9klybVVIpOBVTJI2SVR8DNBEARBEG7C5XZJxUWmRBCEekxs8LOd5TWcub/Cdi2pEX2pVGRQhVwBwdZn2OCkL5EznWZs4UCQycAqGcgCjiAIGRzKZLBTZHBtJoNwWzzMhYayvq7bR9EjvFbTlVoKueBn6cFN7M9pqbBLcvI9ijIZXBT8zCoZDF4qiwwlyS5JDim7JDVKBom37kH1VIIgCIIgihEuLTLs2rXLlZsjCMJNiO2SlJfnOA5eGiBHIRAYAB4ywc+BFPosiV6uyMBkMjiDM7UJtnBg+9mKMhnoIyUIQgaHMhnsGfy4sMhQRsfBoBXa1N3PzPOwIoMQ6lN0ALV2SaWgxlAs7JJsPo9sjXCkvreWE1hLylGylAwySBYZhEoGjZdYySC6xwegoQEiBEEQBEEUAi4tMrRr186VmyMIwk04apcEmEfI59ja6EiMlCK7JHXIKhlcYpfkbCZDPnkKxSRPshchCMJ18LxJZJGimMngxuBnjuMQ5qPBzbT8EdKelsvgAV2qbkAuYJfskqw46bvFiYKfXWOXxAY/+3hxqu5zMiQsKUsaUpZyapQM7H2bMzaaBEEQBEEQaqDbDIIgRM+Qajx32T5vqUwG1i4piIoMkhhk+s5ckcngjJJBbJekoGSgGgNBEBJI2aMUF7skQCr82QPsVGygTAYVyFgBydolMb+NpcIuSVSIUXkiuTT4Wd4uydtLI7CWlMMjlAxOZjKwt+eUx0AQBEEQRGFBPX4EQYgeQNQqGWxRpWQguyRJ5O2S8l+7VcnAFpBszg/2cyYlA0EQUrB5DEDBigyuVDIAQCgT/uxpSgYWulKL4R1WMgj/lvK693hU2yW5MJPBxi7JyBYZtJwq28ZMqZvUkoaLMhkoS4sgCIIgiMKCevwIgoCJedBWV2QQ/s0qGUw8j0dsJgMpGSSRKyDYTveWkAz4eXHQ2TmkzikZWLskG1ssVnZPz6oEQUjA5jEAxSeTARArGe55mJKBhS7VUsicc7KZDKXQLslJ4y3WLom1TnOoBYpKBnXBz+klxC6JV1THqCkyiJUMrOKG7tsIgiAIgigsqMePIAixXZKaIoMoHFg4Pz2HF4UiUpFBGlklg82Ds5SlkpcGCPFW7nhzJphZXECSfm1elp5WCYIQI1lkYEY3C5a3q2Rw7e9HmDdrl+RZSoaS0aVaxMjaJUmfC+zPXamwS3I2k6EQ7JJM4GDkhIVKc/BzKbFLYq6RPG8SFxl0EkoGVq1M920EQRAEQRQS1ONHEIRoNJ6axw97SgbWKgkguyQ55PyE7QU/azXm8FIlnJHFs+vYqhfymM+ZAgQJgpCELTJo9OA0XgorKBQZOA04F1t8hPmK7ZKURxGXLDzorRQijikZ2J/q0qlkKAK7pCcZGTnwAc8UG7291NklZeR4gFKJ+VJL597YVzJQlhZBEARBEIUFdQ8RBCF6hNSo6MwRW+oI57Ohz35eHHSk0ZZEqoDAAQIrJMkiAweE2lEyOFMEUFQyMCcLq2ghCIIAxJkMylZJUM5kcLFVEiBWMhhNwOMSYqniDHSplkCuEiMT/Fwa7ZJEuRXOZjK4wC6JzWMAnigZPCr4Wb6dPFOI5XPTRMuoyWQgIQNBEARBEIUFFRkIgnAy+Fn4N+vV/5DyGFQjJfXXayEYuSuVyaDlOFF4KYuaghGLYiYDc7I4Y8dEEITnw9olFbciQ4i3RvRb50mWSc6NPy9tkF2S4xSBXZLJ/Hlkc+JriFolQ2YuX/KVSqxdEmOVBAAanVjJwN7jU/AzQRAEQRCFBXUPEQQBE/PgpcouibXUYfqHWLskKjLII5W3wI7Mk7ZLAsJ8XN/5xu7KdgAg+znTwypBEFKIigxa54sMXCEUGbQaDiHerGWSB1iqEA7gYPAzcxvDet17JM52zLPBzyYjeJOTRTzeUmQQjtK3KD7VZDKYeCC7JHxgSsebLTLksEoGDpDIvREFP9PtOEEQBEEQhQTdZhAEIWGXZH8d9iHFXiYDFRnkkSogsA/N0nZJHEK9XX9cWSWD7Wcr8valj5UgCAkcVTKwViDClQvnQsNaJt3zYCUDIYGsXZL0eVAa7ZJEZ5KTdkkAAFO2k00wF33YIoO3FweO40T3LHKUHMskOdhMBib02ctPMruGtUsi51KCIAiCIAoL6h4iCEL0nK3mGVLcES2cLyoyUOizLNJ2SfaLDF6FpGRQzGQwscvS0ypBEGIcz2RQ8CIvgJ+7EmGM3VyyBxUZnOwbLmXI2SWpC37OKw1VBtH30jm7JMD58GdeRsng88RGUu3tZUZJz1wR2SUJlQxSeQyAeHCIMzaaBFHaSExMBMeZC5nx8fFF3RxChqlTp1o/J6Jw2b17t/VY7969u6ibg9jYWHAch6ioqKJuCsFAvX4EQYhG43EqHiLZiADKZHAeqQICO006kwGFomRgR2vafrYiJQPd0xEEIYFLMxlMOS5okRi2SHvPg+ySxF3DdLFWjZxdkiiTwQ1tKXJYO03nlQxOFwtlgp+9n3wgOo9SMigUW0V2SYySQSKPARCfp6RAJQiCIIiSw9mzZzFixAhUq1YNPj4+CA8PR5s2bfDdd98hN1f6nrUoodsMgiCcDH6Wt9QBgFRGyRBERQZZJO2SNPaX4QD46jTW0XyuwhElA3n7EgQhhcOZDEp2SYUEW2TwpOBnQg1kl+Qwqu2SJJQMzoY/m+TtkgBzvoqaVmXklPQiovCEM6lWMgj/JiUDQZR8ituocoJwBaRMEbNw4UI0btwYCxYswJUrV5CVlYX79+9j//79GDlyJFq1aoX79+8XdTMFeLlyY1WrVnXl5gAAHMfh77//dvl2CYLIhwcrpba/jlJHNECZDI6gc9IuyTIoL8xHg38eu65zjC0g2VpCsMUksksiCEIKlyoZCgnWLsmTigwiJQNdqkXwMhZdau2SeAAmnvfwTlsnKylaA8xDIfLXd7bIkG+XJByp721zX6TXAtl2vr7pJULJoIDILkmlkoG9b/Pk05UgCIIoFcTHx3u8ldnmzZvx5ptvwmQyoVy5cvjwww/x7LPP4sGDB1i4cCHWrl2LI0eOoG/fvti9eze0WtfbaDuDS4sMiYmJqpazVKbYm3up6VTFIojCR2yXZB9RR7TNNnieF9slUSaDLAaJjnq2yOAtVWR4cohDvbWuLTKIrLDyX4tk93SNJghCAoczGYogqjicUTI8MvLIzuMli7olDoWMC8KCzDEyySgZJG5jTLy6gRklFmczGTgO0HoDNoWFgtolySkZAPM9abYd/6qSkcmg0EaRXZKzSganGkYQBEEQhJvIycnBmDFjYDKZEBAQgAMHDqBatWrW+V26dMHo0aMRFxeH/fv348cff0RsbGzRNdgGlxYZBg8erDj/5MmTOHXqFHieR1BQEKKjo1GuXDkAwN27d3Hy5EmkpKSA4zg0aNAADRo0cGXzCIKQwangZ7Yj2qZSkZ7Li5QNZJckj0Gi6KxKyfDkmIf6uPbYahWssFglA9klEQQhhaNKBtZv3B2wSgbAHP4cWcalt8dFgnNdw6UMmXNOTsnA2iUB5g7ckn+2KOH8mcRpvQXqBWeDn+Xskmzvi/QaDul2CpUZ7I1picOOksFLXSYDe49HEARBEETxYt26dbhy5QoA4IMPPhAUGCzMnDkTK1asQEpKCmbOnFlsigwu7R5avHix7L82bdrg/PnzqFixIlauXImkpCTs2LEDy5cvx/Lly7Fjxw4kJSVh5cqVqFSpEs6fP4/WrVtj8eLFrmwiQRASsI9laqT/4o7o/NesVRJAdklKsAUFQBwwKRXUZwlhDvN2rTSO3VeebSYDBQgSBKEChzMZiqDI4O2lQRmd8GJ7z4Mskwh7OJbJINU3y1rReB5OjEKxLOrFhD8X2C5JXsmgU3EvklkSlAxKCiRmHs9kMmhklAwmZj1PEGoRhDMcOHAAQ4cORc2aNREQEAC9Xo+KFSuiR48e+O9//4vU1FTV24qNjQXHcYiKilJcLj4+3uoxL+f6sXPnTgwcOBBVqlSBj48PfH19UblyZTRv3hwTJ07Ezp07rcsmJiaC4zi0b9/eOq19+/bWfVj+ydnI7Nq1C4MHD0bVqlXh6+uLgIAA1K9fH5MmTcKtW7dk3wfrlf/w4UNMmzYN0dHRCAoKkt3nL7/8gv79++Opp56Ct7c3goKC0KRJE3zyySdISUlRPHYAcOPGDYwePRpVq1aFt7c3IiMj0atXL2zfvt3uus5iOca272n16tXo2LEjypYtCx8fH9SqVQsffPCBqnPGaDQiLi4O7du3R3h4OPR6PcqXL49u3bph2bJlMJnk73/Z8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOKc7qw8dOoQpU6YgJiYG5cuXh16vR0BAAOrUqYORI0fi/PnzkutZvieffPKJdRp7TrPfIbXfwTNnzmD48OGoXr06fH194e/vj7p162L8+PGKTjxSx23btm3o2bMnypcvD4PBgCpVqmDkyJG4ceOG2kOkml9++cX6Wu7z8PX1xYABAwAA58+fx59//unydjiDWwbfHD16FG+++SbCw8Nx6NAhREZGSi6n1WrRv39/tG7dGo0bN8aoUaPQoEEDNGnSxB3NJIhSC/sAoqbfWJzJkL8Ntsjg48VJdqQTZtRYc0hZx1ntklysZBCFevMKSgaySyIIQoKSkMkAmMOf03LyR67fzyzpo53NkJJBBXIduiY5JYPEoiWg39q1OKJkEBYZCmqXZGSLDDa3PmryoTJKeCYDb1fJIF1kYAUcdDtOlDYyMzPxxhtvYMWKFaJ5N2/exM2bN7Fp0ybcu3cPU6dOdWvbxo8fj2+++UY0/fr167h+/ToOHz6M+Pj4Age7ZmVlYciQIfjpp59E886ePYuzZ89i3rx5WLFiBXr27Km4rcuXL6NTp06KHbQpKSno16+foEACANnZ2Th27BiOHTuGuLg4rF+/Hs2bN5fcxr59+9CjRw88evTIOu327dvYuHEjNm7c6LbP6o033sAPP/wgmHbp0iXMmDEDS5cuxY4dO1CrVi3JdRMTE9G1a1dcvHhRMP3u3bvYsmULtmzZgvnz52P9+vUICQlRbMfRo0fRvXt3JCUlWadlZmZi8+bN2Lx5MyZMmIBZs2Y5+S4LTnx8PIYMGSKanpOTgwsXLuDChQtYuHAhZs+ejVGjRrmlTdOnT8eUKVNEhZzz58/j/PnzmDdvHhYsWIDXXnvN7rY++OADzJgxQzAtMTER3333HdasWYM9e/agdu3aLmv7/v37AQA1a9ZE+fLlZZdr164d5s+fD8BcSK1Ro4bL2uAsbikyfP3118jLy8PkyZNlCwy2REREYPLkyRg7diy++uorLF++3A2tJIjSiyiTQZVdknxHNFtkIKskZZz1/8558sGF+bhYySCywpJ+DZCSgSAIaRzPZCiqIoMGifnPrx4V/kzYw7HgZzm7JI+mANkenNZbuCln7ZJ4GbskTf53Vc1AlhJvl2Qvk0Em+Fk0kIgGhxClCJPJhN69e2Pbtm0AgOrVq2PUqFFo0qQJfH19cfv2bRw8eBCrVq1ye9t+/fVXa4HhmWeewciRI1G7dm0EBgYiNTUV586dw/bt23HkyBHrOhUqVMCZM2eQkJCA119/HQDwww8/oGnTpoJtV6xY0fqa53n069cPmzZtAgD07NkTAwYMQNWqVaHRaHDkyBHMmjUL169fR79+/XDgwAHFQb79+vXDzZs3MWbMGPTq1QvBwcG4fPkyKleuDMBcSOjYsSOOHz8OrVaLQYMGoVu3bqhSpQpycnKwd+9efPXVV0hKSkK3bt1w4sQJ67oWrl+/bi0waDQaDB8+HP369UNgYCBOnz6NGTNmYOrUqYU+GDkuLg4JCQlo1qwZxo8fj+rVqyMpKQnx8fFYtWoVbt26hc6dO+Ps2bPw9/cXrJuWloYOHTpYLW/69OmD119/HZGRkbh69Srmzp2LPXv2YP/+/ejZsyf27t0rG9ybkZGB/v374+HDh3j//ffRrVs3GAwGHD58GNOnT8ft27fx1Vdf4amnnsLbb79dqMdEjtzcXAQHB6N3795o27YtqlevDj8/P9y6dQvHjx/H7Nmzcf/+fbz11luoVasWnnvuOeu6ffr0QZMmTRAXF4d58+YBMCsQWCpUqKC6PXFxcZg8eTIAIDw8HO+99x5atWqFvLw8bN++HTNnzkR6ejpiY2MRFhaGbt26yW5r4cKFOHjwINq1a4cRI0agRo0aSE1NxdKlS7F06VLcu3cPr7/+Ov744w/V7VMiLS0N//zzDwDIFrAs2M6/cOGCS/ZfUNxSZNi3bx8A4Nlnn1W9jqWiaangEARReIjtkuyvI1Yy5L9OZYoMFPqsjLMqj/zg58JVMtjaQeQxD6tqRg8SBFH6cFzJUDS9tWz4s8coGZx3uSlFOGiXpGBb6KnwBbFLEikZnLRLMsnYJWnyi0FqBjx4XPCzSiUDWwijwSHFH543gTc9sr+gh8BpAsBxhXNizp0711pg6Nu3L1asWAGDwSBYpnv37pg2bRpu375dKG2Qw1LYqFy5Mg4cOIAyZYSFwpiYGIwePRoPHjywTtPpdKhXr55A2VClShXUq1dPdj+LFi3Cpk2boNPpsGHDBnTp0kUwv3nz5nj11VfRpk0bnDt3DuPGjVPsgzt79iy2bNmCTp06Wac1btzY+vrTTz/F8ePHERQUhO3btwvmAUDr1q3x8ssvo0WLFrh9+zYmT56M//3vf4Jl3nnnHauCYdmyZRg4cKB1XpMmTdC/f3+0adMGR48elW2nK0hISEC3bt2wfv16eHnld5127doV9erVw8cff4zr169j2rRp+PLLLwXrfvLJJ9YCw5QpUzBt2jTrvMaNG+PFF1/Eq6++iv/97384ePAgFixYgJEjR0q24969e0hNTcX27dvRtm1b6/RmzZrhxRdfxLPPPosbN27gww8/xKBBgxAeHu7Kw6CKrl27YtCgQfD1Fd7vR0dHo3v37hg7dizatm2L06dP41//+pegyBAUFISgoCCULVvWOk3pnLbHvXv3MGnSJABAZGQkDh06hEqVKlnnt2rVCr169UKbNm2Qnp6O4cOH4+rVq9DpdJLbO3jwIIYNG4b58+cL3CU6dOgAvV6PRYsW4dChQzhx4gSio6OdbrcFW/sl24KhFLbvy1KYKGrcUmS4d+8eAHNVUy2WZS3rEgRReIiUDCrWEVnq2NolGZkiAykZFJHyElbzKGxRMoQWciaDrcOASMlAHVcEQUjgcCaDqque6wkVFRlIyVBqILsk+4iOkfOZDAW1S8rmhNcQ2yKDvhTYJbHXSLVKhjzmvo2UDMUf3vQIj++8WNTNcBv+5deA0wa5fLsmkwkzZ84EYO6oW7p0qajAYEGj0Tg0StoV3LlzBwDQqFEjUYHBFns2OkrwPI9///vfAICxY8eKCgwWgoODMXPmTHTr1g0HDhzA5cuXUb16dcllY2NjBQUGW9LS0vDf//4XADBt2jRRgcFC5cqV8dFHH2HUqFFYvXo1FixYAD8/c6H0zp07WLduHQCgR48eggKDBX9/fyxYsMChQczOYDAYsHDhQkGBwcKHH36IVatW4ezZs/j+++/x2WefQa/XAzD3ZS5atAgAULduXUlrJ47jEBcXh99++w3JycmYO3eubJEBAEaMGCEoMFiIjIzErFmz8NJLLyE9PR1LlizBxIkTnXzHzmPv+xMYGIhPP/0Uffr0wf79+5GcnIzQ0NBCacvixYuRkWF+Dvnqq68EHfEWoqOj8cEHH2DKlCm4efOmNT9EioiICMyZM0fSvnrixInWz3rfvn0uKTI8fvzY+lrp2gDA+r0BzN+/4oBbev4slbQtW7aoXmfz5s0AgLCwsEJpE0EQ+bDPkGoeQJSUDKxdEhUZlJH6wVKD5ZjrtJxLjzFrCWFbQGJDLknJQBCEFA4rGYqIcCbTxlOCnymTQQ1ydknS54CUXZLHFxkKciaxdklOKhnkMhkMnNH6ujRkMrBKBpNqJQMFPxOlk5MnT1pHBA8bNsxuZ527iYiIAADs3bsXf//9d6Hs4/z589Zt9+vXT3FZ2w5sJduXl19+WXbenj178PDhQ4f2l5OTg2PHjlmn79q1C3l55uu+lMe/hWbNmqFu3bqK+ygonTp1krV712g0GDx4MADgwYMHOH78uHXesWPHrKHQsbGxsjZIAQEBguBeJTWN0rHo27cvgoKCAKBQQ7EdIT09HYmJiTh37pw198NWKXDq1KlC27flGAQFBeGFF16QXW7o0KGidaTo16+fbIGyZs2a1muLRblSULKy8gdlWApXcti2KzPTyfssF+MWJcNzzz2HpUuX4quvvkLXrl3RqlUrxeUPHjyIr7/+GhzHoUOHDu5oIkEUOYkPc7DrRhbSjI5bNZT11aJLlK/THc3sHlXZJTEP21cf5WLOCfNNxYUHOYJ5VGRwHDUODLaLhHprRMUdZ2ELSPcyTZhz4iG0Gg5JjJUIPawSROkm+/ZOZF1dKerwyktLFPxdXIsMbKZNcpbJ+ltWEPx0GsRU8kbVQGnpNQAcuZON43ezrao0V5KUIewop8HLDiCTySB1b+TpdkkinLBLuqCLwWV9G1Q/uREt/CrBJyp/pOD9zDxsvZaJZIXiXnbOMJj8e+CetqpguunKYqTc/su8r8xhAJQDF689ysX3J26iWdZPqBqghW/t0eA04u+nKfsB0s9/gxupadib0wJpvLnzQGMIgldALcAJWxdT5h3kpV8HL6OSyYdHnv9/BVPK5v2FdpkLob2xCUnp2dhtbImUzCzwuQMB//wRvhVSG6Kn0YQAvQY3Hudixz+ZyDMBVx4K78m1dEtOlBJOnDhhfd2mTZsibIk0r732GpYuXYrk5GTUq1cPvXv3RufOndGmTRs8/fTTLtmHrZ1QixYtVK9nUVlI8cwzz6jan6WI4uj+bL342awJlmbNmuHcuXOq9+MoavZv4cyZM1bL97Nnz1qn21NbPPvss9YcgrNnz0oeN71ejwYNGshuQ6fTITo6Grt27ZLMMnAX9+/fx1dffYU1a9bg8uXL4BXukQoaZq6E5fg3atRI1gIJAMqVK4eoqCgkJiYKPjMWe7kIwcHBSEtLEygQCoK3d/4gDaPRqLCk0C3Ix8dHYUn34ZYiw/vvv4+VK1ciOzsbHTp0wJtvvonY2Fg0aNDAOoKX53mcOnUKS5Yswbx582A0GmEwGPD++++7o4kEUaSkZpsw9VAqMgswyur0fSM+b+WcnJINhVNnlyT8OzXbhP23pC3RKJOh8An11uLKQ3sPr+pgRwRm5vKyny0pGQii9JJz/xgebH1eNMJWipJSZDDxkL3eOcruG5n4JiYUIRKWdsfuZmPWsYIXMwjnkX34NclkMkgVGTwjwkOBggU//6lrjflBKwEAO33fgvbAi2gGDj5R/WDieXx2OBW30+2ph1oB3uKpmvt7kJWz27wv/3aAt3KRAQC23tJhN/8CJl9uici0qwh89lvRMik7++Lx3aOYGXoU6RobK4dcAOk5ouXVEfzknwq8xUGm170a4Y2Hg/GVdimStZXNT/DMU/yxZODPYw/xQdNATP0jBY9lMiikFDkE4YnYdmI60uHtLjp06IC5c+di0qRJyMzMxMqVK7Fypfl6WaFCBfTo0QMjR45U7Fy2R1JSklPrWaxmpAgOlr+WuWJ/thkUth79UpQrV86p/anFkf3bttuR91C+fHnJ9WwJCQmRVUOwbZHbRmFz7NgxdO7cGcnJyaqWL8xR95ZjYO/YA+bjn5iYqHjc2JwJFs2T0C6LAqeg2IaI27NASk/PH+RVXNRabiky1KpVC0uWLMErr7wCo9GIOXPmYM6cOdDr9QgJCQHHcUhOTrZWaXieh5eXFxYvXmy3akQQnsClB8YCFRgA4K/UXDx6MoLJUViffTWjnHwcMOMPcXEwcWmgTqi46l7OV4u7NqNTny1vsJknPsblfJ3LanDks6URcQRResm68auqAgMAcHrlDjbDU32Qff0XmZUL73Y1UM/BoAWyC8ElKTsPOJecgzYVxNfiE0nKI5NcjYFkZyK8ykRJTudllQwctJwwSDebTdX1NJjvN+eA065GH4zVZcYJpq0u8288kzgbPlH9kJSRp6LAII8fn2p97cOrL9gZOT9c0TVHyLWfRUUGU3YKjHf34pqujbDAUMRc0LfHHW0tc4FBgYsPcnA2OUe2wACQArUkwGkC4F9+TVE3w21wmoCibkKRMXr0aPTv3x/Lly/Htm3bcODAATx8+BA3b97E/PnzsWDBAkyePBmfffaZU9u37fTcuHEjoqKiVK2n1Dmr1Nltu7/jx48rjiK3RS7c1llLYVfhiv0Xl20UJkajEQMGDEBycjJ0Oh3GjBmD3r17o0aNGggODrZa+ly5cgXVqlUDoDDQw4UU9+Mmh22+hW0ItBS2Yc9S2RNFgVuKDAAwYMAAVKlSBaNGjbJ6rmVnZ0v6jjVq1AhxcXEC+RFBeDJsJ7+zGJ182E3LETagjFQSMcMzYXqU0XFIU3iQAYBggwZ1Q5W95AjgtdplsPSCuVIdZNAgpqJY7ja8vj8+O5wKHuaw6P418v1321T0xq9XhSMC3nzGH85QPUiHcB8N7mXaPzFpRBxBlF5MWepGrGkDakIX0lBxmYBG03Hv5u+AhG97YKtFzjRPFRzHoW0FH2y7XjgjqjJypK+jWW7snA7Uc6hDv8MivIJqQV++PYx3djFz5D+bYG8N7tv8NiZnmVCtkNpXHOBNTDFMq/488o7qj3spwqNzz+tp5D68CABwwh3USnjuX6iQm28J0TB7Iw55vwyeUze4Ihd6mDLvgud5QSeEKfMuACCTK16dniZOh0yNunu6dJlrjgVSoBZ/OE5TKEHIpQ3bbM/bt2+7dPCqZeSyyaT8fbMdZSxH2bJlMW7cOIwbNw4mkwknT57EunXrMHfuXKSmpuLzzz9H06ZN0bt3b4fbaRusGxQUhHr16jm8DWf3Fx4eLls8UMJWKXH37l3FjtO7d+86vH1HsLd92/m2Ad22r+/evYsaNWrIbsPWKkou5Ds5ORl5eXmKBR5LW9htWM5VwDXnqxQ7d+605hHExcUJsg5scZfKIiQkBLdv31Z1fliOf0EC1l2Nv78/KlWqhH/++QcXL15UXNZ2fu3a9hWd7sBtRQbA7GmWkJCAo0ePYvv27Thz5oz1RAsODkb9+vXRsWNHu95nBOHp+Os5PFdJ2VMtz8SLOpWdtXV+xHj5+6tQQwR5a/F5q2AcvpONdJlCg79Og5aRV/DhvwABAABJREFUBng7MDK+tNK9qi/K+2mRlJGHlpHe0EsMNasXpsdnrYJxOSUH9cP0qOiffwmPCtBhZtsQbL6agVwT0CXKB08HqRs9wqLXcvi0ZTAO3srGI6MJN9NycfSu9KhbelYliNKLKUvop6or2wr6ckLfY61PeXhXHQROo3zL6RVUC2E9j8F4ezt0oU2h9auErGtr4BVUG4bI513edluG1C2D6sFeuJlWcDnD4dvZuGOjOJMrJrBe/jWCdagd4tw1Wwk/HYcWEd5OqRxLAyEdN+POMuZ+S2F0XZi3VlBkuO8hQeGy5Al/+zmN+iKDIbIDcEJciMx99Cd43iR5mHtXYywJeB5p52YJcjKC/fzRIiIbARUnwXhrO3KSj6Jmzl6MTe2Fv8tPgLZiTwDmPLAGYXqcuW9E/Hmh3QAPDuDzwBsfgjMEWaebss3XtGxO2I6AvLtomr0SHKeDX713VB8DADDe3gXj/cPWvzWGMHgFKPutp5u8sTdT6HuuqfgCYPM2dHwGmmcuxz5fYWeOvYFLdCkgSguNGjWyvt67dy/at2/vsm1b7Ews4b5y/Pnnnw5tV6PRoFGjRmjUqBH69u2Lxo0bAwBWrVolKDKoHaEdHR1tfX3gwAG0bt3aofY4Cru/l156yeFt1K9f3/o6ISFBsciQkJDg8PYdwd72befbFnBsXx8+fFgxE+TIkSOS69liNBpx6tQpwTltS25uLk6ePCm5DVvrnZSUFNl2PHjwQLXVEYttLobSZ26b2SGFq5QH9erVw+3bt3H8+HHk5ubCy0v6GSQpKQnXrl2zrlOcaN26NVasWIFLly7hzp07AlstW/bs2WN9bS/72F24tchgoUmTJmjSROw3SRCEmWCDFoNqKXuq5UoUGXKdqDJk5/Gi0WQBenUX+PJ+XuhdrUguIx5J43IGu8s8HaSTLR485e+FN59xzei7EG8telQ1P2Qn3MmmIgNBECIsHXIWvCu/iDJ1xzu9PV1QbeiC8kfh+NUZ6/S2HEGr4dBOQj3mDEkZeYIig5wVItsR2CBcj37V/SSXJQoPzssb3pVfRNY1W2sShSKDjwaweUb39CIDbxLmk3Ba+/cpdsnLRF76P+ARKZis4SC69zUZH+Lu4U8E08K7XIGXfxUAwCNTDnKSzZ0WVXKPoo7hdwTVGihYvqK/F/bdzMLfNrlV/JPwZlP2fWhsiwxZ9wCYLZVsCTNdRc/0zwGtNyJq/cuht/vo0S6kX/va+rdP5OsIajVOcZ076bnYu1s44lNTqT9wIf9vP1MKOmV8LVFkUH4WICUDUVpo0KCBdTTwokWL8M4777jMs7xKFfM16PHjx7h06RJq1qwpWsZoNGLNGudtrxo1aoTg4GCkpKSIQnJtg2Ftg1+ltlGxYkXcuHEDCxYswNtvvy1Y19V07NgRvr6+yMjIwOzZszFgwACHO47bt28PrVaLvLw8LFmyBC+88ILkcgkJCYphva5g69atuH37tmSmh8lkwpIlSwCYB0zbFgAaN26MoKAgpKamYsmSJZgwYYJAUWDh8ePHWLVqFQCgTp06itkhS5YskS0yrFu3zlpA6Nixo2BecHCwtS1Knfw//fST0xZGubn5v6/p6emCwoYFk8mEhQsXKm6HPa8tNkuO0rFjR2zbtg2pqalYu3YtBgwYILnc999/b33P7HEravr06YMVK1YAAOLj4yWzijMyMgTnj5Jixp3QWAaCKKFIPSM4o2RgVQyAOiUDUXpQymigZ1WCKL2wSgaNd5jMkqUHVrmXJVtkEE4nn/SihDn4SkoGJij8vgpbwRINa5ekcUGRAUDew0uiWo7UV8CUIbbV1frYdMJohIMueF46mFncx2WewF7D8osMQiWDnn9iIWGSzutQgs344FRkzGgkOuWyeeG558Vng5MoiNmLeNPRjRtRStBoNJg0aRIAs6/5a6+9Zs0AZTGZTLh165bqbbdr1876etasWZLLTJgwATdv3pTdxsqVKxXDb48ePWrtOLYUNSzYdkb//fffstvQaDSYPHkyALMf/muvvaZYlHj06BHmzp0rO98eQUFBeOuttwAABw8exPjx4xUteu7evYtFi4SWmBEREVbVxoYNG6ydqLakpaVhxIgRTrdTLdnZ2RgxYoRkoO+MGTNw5ozZtu/1118XdIgbDAarZdDZs2cxbdo00fo8z+Ott96yFpAsx02OefPmYf/+/aLpd+7cwcSJEwGYA4oHDx4sWqZt27YAgPXr10ueL5cuXcJHH32kuH8lqlevbn0dHx8vucwHH3yA48ePK25H7XltjyFDhljDmt955x3J7+GpU6fwxRdfADBnIPTp08fp/RUGffv2RdWqVQEA06dPlzwekyZNsl4jLNe64kCRDUG+ceMG7ty5g4yMDDRt2hQ+Pq4ZQUYQJRFnasYajgPHrOuMxfNjxrtVywG+ZG9E2KBkd0WZDARRemGVDBoDFRm8teqKDOzvNY0uLhmIiwwermTIY5QMDtglKZH78CJMZexbl+RlCosMnD4InFf+SEeOKTLAJF1kYOEtRQbmGpZvlyRUMhj4jCcr5opyHOzCtoltswRSW88xCc89HbIh9QRhX8lgd/cE4TGMHj0aGzduxLZt27Bu3TrUr18fo0aNQpMmTeDr64s7d+7g0KFDWLFiBQYNGoSpU6eq2m50dDRatGiBP/74AwsXLoTRaMTgwYMRGBiIy5cvY8GCBdi5cydatmyJgwcPSm7jvffew5tvvonevXujbdu2qFGjBvz8/JCcnIz9+/djzpw5AMxBy6zH/VNPPWVVKPznP/9BxYoVUbNmTatnf7ly5ayjyd98803r+1+9ejWOHz+OESNGoFmzZggMDMSjR49w8eJF7N69Gxs2bIC3t7fdDm8lPv30U+zZsweHDx/Gt99+i927d2PYsGFo2LAh/Pz8kJKSgnPnzmH79u3YsmUL6tevL3p/s2bNwrZt2/D48WMMGjQIe/bsQb9+/RAQEIDTp09jxowZ+PPPP9GkSRO7FjwFoUmTJti4cSNatWqF8ePHo3r16khKSsKSJUvw008/ATCHVkt10H/88cdYu3Ytrly5gqlTp+LMmTMYMmQIIiIicPXqVcydOxe7d+8GALRo0QLDhw+XbUd4eDh8fX3x/PPPY/z48ejWrRsMBgOOHDmCL774wlogmzZtmmRo96hRo7BhwwZkZmYiJiYGU6dORXR0NNLS0rBjxw58++23CA8Ph1arxb179xw+Tp07d0bZsmWRlJSEKVOmIDExEX379kVYWBj++usvLFy4EDt27ECrVq1w4MAB2e20bNnS+nr8+PH48MMPERERYf3NjYqKkrU+siU8PBwzZ87E6NGjcePGDTRu3Bjvv/8+WrZsidzcXGzfvh0zZ85EWloaOI7DggULVIeUuwudToc5c+agZ8+eePToEVq1aoUpU6agWbNmSElJwcKFC61KqdatW+PVV18t4hbn49Yiw+PHj/Hll18iPj5eUCk+c+YM6tSpY/37p59+wtq1axEYGGhXUkMQpRmtRmi5wHo8q0Eqj8FVfniEZ0BKBoIgWHieJyWDBOz1Ui6Tge0IpNp+ESK657Fjl2TD/SzPVTLwpjyAZ4oorrBLApD76BJQQThNUqHLFBkEKgZArGSQKTKIN21RMgg7U+wqGcw7AVQGTJsXZ9QPKpQMUrfh2SbhuefFZ0krGeyckjqSTRGlCI1Gg19++QWDBw/Gzz//jD///BPjxo1zybZ/+OEHtGvXztrpbLHOsTBx4kTUrVtXtsgAwGqnw65rwWAw4LvvvpO0Gp88eTJGjRqFq1evikKhFy9ejNjYWABmn/uVK1fi7bffxnfffYe///4b7777rmybpDqpHcFgMGDbtm2IjY3F2rVrcerUKcWiRUCA2Oo3KioKGzZsQK9evfD48WPExcUhLi5OsMzHH38MjuMKtcgwevRo7NmzB/Hx8fi///s/0fyIiAj8/vvvCAwMFM3z9/fHjh070LVrV1y8eBFr1qyRtM9q1aoVNmzYoBjq7Ovri59//hldu3bF9OnTMX36dNEyY8eOxYQJEyTX79y5M8aOHYvZs2fjxo0bkkWrDRs2oGvXrrJtUMLPzw9Lly5Fnz59kJWVhfnz52P+/PmCZWJiYjB37lzF7IOnn34aAwYMwKpVq7B161Zs3bpVMP/q1auIiopS1aZRo0YhNTUVH330Ee7evYvx48V2rgaDAQsWLEC3bt1UbdPddOvWDd999x3eeust3L17F2PGjBEt06xZM6xbt07x/HE3bhvLcPnyZTRq1AhffPEFbt68CZ7nZT2/mjdvjrVr1+KHH36QlAQRBGGGfU7Ic+JZ97FR+D1Um8dAlB7Ykbm20LMqQZRO+Nw0kZUKKRnU2yWxv9ekZChKHCkyCB/iHmabYHRGRloSYK2S4GIlg4rDlsfYJWl8hMGHHKdOycAOnpFVMmTZUTIAghBqVTBtEqkvJJC6GhiZIoOckiHPzoHVkZKBKGX4+vpi9erV2LlzJ1599VVUqVIFPj4+0Ov1qFSpEnr27In58+fjnXccC3WvVasWjh8/jpEjR6Jy5crQ6/UIDw9Hly5dsGnTJsycOVNx/V27duHbb7/Fiy++iPr16yM8PBxeXl4ICAhAdHQ0Jk6ciPPnz1uLBSwjR47EmjVr0KlTJ5QtW1ZxhLdOp0NcXBxOnTqFMWPGoH79+ggMDIRWq0VgYCAaNmyIN954Az///DMuXLggux21+Pv7Y82aNdi3bx+GDh2KmjVrwt/fH15eXggJCUHTpk0xevRobN68Gdu2bZPcRkxMDM6dOyc4vuXKlUP37t3x22+/4ZNPPpFcz9UsXrwYy5cvR0xMDEJDQ2EwGFCjRg28++67OHfunGCwNEtUVBROnTqFuXPnol27dggNDYVOp0O5cuXQpUsX/Pjjj9i7dy9CQkLstqNJkyY4fvw4xo4di2rVqsHb2xuhoaHo0qULNm/ejG+//VZx/W+//RbLly9H27ZtERAQAB8fH9SsWRPvv/8+jh8/jtq1ayuub4/OnTvj6NGjeOWVVxAZGQmdTofw8HC0a9cOCxYswI4dO+DnZz97bNmyZfjyyy+tShupLAu1TJ48GSdOnMCwYcNQrVo1+Pj4wM/PD7Vr18bbb7+Nixcv4rXXXnN6++5g2LBhOHbsGIYNG4aqVataP/fWrVtj3rx5OHDgAMLCitfzl1uUDFlZWejevTv+/vtv+Pn5YfTo0Wjbti169OghuXxUVBTat2+PnTt3YsOGDWjdurU7mkkQxQa1QgKzVU3+w4RTSgajWMlAELYoKxmoY4wgSiOsigEgJQMgLspmyikZmN9rKtgWJeozGUK9xfdIyVl5iPArMgfaQoO1SgJcFPwMIPfhJfG2JZZjlQwaX9coGSyfsMOZDDArExw5DmwmAzTOKRmMJuFEymQgCMdo37492re3b9MGmPuj1ITgVqhQQTTC3pbY2FjZIkGVKlUwduxYjB07VlWbpHjhhRdkg5GlqF+/PmbPnu3wfqZOnaraSsqW1q1bF6gvr1KlSorH19l2OcrAgQMxcOBAp9bV6/UYPXo0Ro8eXeB2VKpUCd9++63dgoIc9t5HYmKi7LyYmBi734m6devixx9/lJ2v5nul0+kwadIkuxkD8fHxsvkPtjzzzDNYsGCB3eVY1F4DAOXj5grq1avn1HsoKtxyRzxv3jz89ddf8PPzw759+9CwYUO763Tt2hU7duzAH3/8UfgNJIgSCtsp4Uzw82OmyBBARQaCQSmTgZ5VCaJ0wo4AhkYPzqtM0TSmGKE++Fn4N/mkFyEO2CX56jTw8+KQbvO53s80IcL+4LwSBy+hZICLlAymjJsw5WQIpklZdbKZDKxdktpMBvEnbP7CyWUyiIsM7lUySF0OzHZJ+RcOHe9cJgMVGQiCIAiCKCzc8kizdu1acByHt99+W1WBAQAaNGgAwGyzRBCejrNCew3zoOCMYp+UDIQ9NBwHudOCnlUJonRiykoW/K3xDqM8H6gPfhZlMtDFtAhhrXSUb6ZCS0v4s6nwlAwAkJt2XbhtqSaI7JKcUzKIN27JZJBWMijaJbEZC/ZgixKqMhnERyObVTLAuUwGKmgSBEEQBFFYuOU2w+Lr1qlTJ9XrhIaGAjCH4RAEIY0ok8EpuyTKZCDsI2eZpKVORYIolbAjgCmPwYxIySBT/Wcnk11SEcL+jtm5lwpnw589tMjA5xVeJgMA5KYzRQaJ74BIyeDrKiWDdCZDnhq7JAeVDGzhQ1Umgwq7JJ2sXRIpGQiCIAiCKBrcYpeUlpYGAChTRr2MPjvbPHpGp7N/I0YQpRXXBD+TkoGwj7eXBg+N4o4UelYliNIJz4wApjwGMz7MMGFSMpQEHDv2bPjz/Uwnbr5KALyEksFVdkkAkJt2DUBT698uUTLw6ooMUkoGPjcDyMsE4GIlA7u8ikwGqTtxqUwGabsk5W1TkYEgCE/m6tWrSE9Pt78gQ3BwMCpUqFAILSJKG+np6bh69apT69asWbPE94G7pcgQGhqKO3fuIDExEY0aNVK1zrlz5wAA5cuXL8ymEUSJhh1F7kwmA2uXRJkMhBRyuQz0rEoQpRNSMkgjskvK42HieWiY32u2I1BLP73FCHt2SaVDyQBWycBpwWm00ss6QW76DeHmmfl8bib4nIeCaU5nMrBiFQklg0XFAChnMhRYycCp6DyQUjIwp5kO2eAkVAt2Mxlc9xESBEEUO4YMGYI9e/Y4vN7gwYNVBQkThD0SEhJUh8yzXL16FVFRUa5tkJtxyyONpbCwd+9e1essXboUHMehRYsWhdUsgii2qO23ZTt4nbFLIiUDoQYfGS8PsvggiNIJ62VOSgYzUgVZo4RlEvt77UXWc0UGx9512bVLEvbSJmeVDiWDK/MYACCPzWRg72kZqyQA0Pg6l8kgKmBw5ntdPjsF/BOlga06S6xksBkVW9BMBieVDNlsWDyfJbmu/UwGutYQBEHIERUVBZ7nwfM8YmNji7Qt8fHx4HkeiYmJRdoOgnAEt/Qm9uvXDzzPY8GCBbh+/brd5b/55htrQWLgwIGF3TyCKHqcTH5mRz46Gvxs4nmk5bCZDFRkIMTIKxnoYZUgSiOkZJBG6lopZZnEdgRSGGsRIvodU76ZEtsl5cHkxCCPYo+JUTK40CoJAHIzlJUMrFUStD7gdAHCdVhVgFzwMwNv3RsPkzEFAKNkgLySQVQ0sLcvtk3OZjIwN/lymQz2Bhzp6FpDEIQHs3v3bmuRwJF/pGIgXEVMTIxT5yDP8yVexQC4qcjw6quv4plnnkFWVhZiYmKwZcsW8DY3QBzHged5JCQk4OWXX8Y777wDjuPQpk0bdO3a1R1NJIgSCWuXlOegX1KakRc9nvhT8DMhAdklEQRhCykZpGHtkgAgU42SgS6mRYijRQbh41OOCXhk9LwiA5/HKBk0jikZ5Aovlqk8qwiwo2TQ+kaAY3vfnbRLst2Z6UlxwVI45SG2S7LNZBC12x7M8hxnX8kgUtcAyGbskrxAmQwEQRAEQRQv3JLJoNFosGHDBrRu3RqJiYno0aMHfH19rTeKMTExePz4sTXsmed5VKtWDatWrXJH8wiixCIKfnbwGZfNYwBIyUBII2eXRM+qBFE6ISWDNDqN+bfZ9vdYlZKBrqVFiGN2SUEGjegzvp+ZhyCDZ90/8aySQeuYkkGuszsPenjBaKMmMMMePVOmndBniDMZ5O2ShPuy/YQtBVNLsSEHPlY7JQt6W7skR5UMbBi1CiWD1L2VWMmQJalksJvJQDduBEEQBEEUEm67G37qqadw8uRJDBw4EBqNBunp6VZJyL1795CVlWVVNwwYMABHjhxB2bJl3dU8giiRsP2+jgY/s0UGHy+ORlMSkkgpGTiQXRJBlFZIySANx3EiNUMmU2TgeV40KEBLv71Fh4N2SRqOQ6h3KQh/LqCSQa6zO5czFyt49jGUVecydkls6DMA1ygZsoVFBlbFAAiVDOAd/KxZJYOKTAYpjMzx9JKxS7KvZHBq9wRBEARBEHZxi5LBQkhICP73v//hiy++wKZNm3D06FEkJSUhLy8PoaGhiI6ORs+ePVGjRg13NosgSiwaplPC0eBnNvSZVAyEHFJFBuoTI4jSCc/zEkqG0CJqTfHD24tDuk1hIZupKEipDimToShxrMgAmHMZkjLz76HuZ3pe+DOrZOBcpGTIhfR2RJkMrJKBDX2GI0oGIbYFDkvgs+WaxoY+A0Ilg+N2Sa5RMrDXEZ2cXZKdZwEaTEQQBEEQRGHh1iKDhcqVK2PUqFFFsWuCKJaIkxHUIbJLcvAZl/UQpjwGQg4fKjIQBPEE3vhQNJqX7JLyYYuyrF2SVOcrm7FEuBEnjn2ojxZAfuexJyoZ2EwGOKhkyFFSMvAQ2SXZC35WpWRgrYlk4B1UMuiQabOyo3ZJzmQyiGHtkpxVMlBBkyAIgiCIwsItRYbr168DACpUqACtVqtqHZPJhBs3bgAwWy0RBCGmoJkMpGQg1CIVZkpWSQRROmFVDADZJdlizy5JaqQxdfwVI1SoQsN9WLskz1MygFUyaBxUMsgcxjxI2yWxtxRs8LOqTIY8o2gZQErJYBv8fF/wP6tk0PMZ0Nh05rtDySB1e5XDnGI6PgvSwc/y56+Wo3s3giAIgiAKD7cUGaKioqDRaHD69GnUqVNH1TpXr15F9erVodFokJvr4M0cQZQS2JGPjtolsZkM/lRkIGSQskuSyYImCMLDYfMYoPUB5yUe/VtaYZVfWXn2lQxe1PFXhDhnl2RLaVAycFoHlQwyI1+smQycHSUDU2TQStglgS188LngeR6caNtsW9QrGQx8puBvh5UMbFHCSSUDixeyJacrDTjS040bQRAEQRCFiNt6FHkHOz8Luh5BlAa0zDfY0eBnUjIQavGRGGZLdkkEUToR5TGQikEAW5RllQx5Ej/WpGQoSoSfl5pnj1BWyZDlgUUGRskg6tC3g2zwMyzFCqYQYPMnb8qxdvpbd69CyWBeWaoIIPx8JJUMMpkMejBFhgIqGSTbzMBxnN1Cg07WLkn+/KXrDEEQBEEQhUmxvdWw3OBrNMW2iQRR5LCSZ0ftkiiTgVALKRkIgrDAKhkoj0EIa5fEBrZK2choqWpbdIhUJCqUDN5CJcNjIy/6nEs8BVQyyNkl8X5R5v9ZuySb16bMu6L1pIKfJa2HJMKfOZ6RD3FCJQNvygOf/QCAhJKBKTKwGQv2EC2vcY2RgJesXZL8Ojq6zhAEQRAEUYgU2x7827fNEll/f/8ibglBFD7yIm5lxMHPjj3gkpKBUAtlMhAEYYGUDMrYC36WVDLQ5bTIEI8Zd9wuCfA8yyTexAY/O6ZkkAt+5v2qmf9XCH5m8xjAeUFjCBVtS0oVwEsUGdigetsChynrPkzZybB87mIlA3Mc3KBkAOyrRXWQUTIoKHF0dJtPEARBEEQh4tZbDdYfU4qcnBxcvHgRn3/+OQCgZs2ahd0sgiixsA8gjisZqMhAqIP1GCcIovRCSgZl7AY/s4OqQfZzRQtz8FXYJXl7cfDXCdfzvCIDE/zsaCaDzIh63q+q+X+F4GdTBhv6XB4cJ3GPyqlVMrBFBpvFs+4JCqeuVjKI7JtUZDIA0uHPtnjx2ZKDkpSUDF50oSEIgiAIohAplOBnrVY8uofnedSrV8+h7XAch379+rmqWQThcbAPCwXNZKDgZ0IOqSKDku8vQRCeCykZlPFmjM9Fwc9MJ7ZWo24gDlFIOGGXBAChPlo8zsnvQL6fqdC7WxJh7ZIcVDLIqWtNvpUBiJUMtsUeVskgGfoM9UoGTiGTgc9Ngyn9hvVvcZGhYEoGtj1qlQz2MxmyJKcr3ZuRXRJBEARBEIVJofQo8jwv+Cc33d6//v37Y9y4cYXRRILwCMRKBvWdvlm5PJgaAwIok4GQQcouyeP8pwmCUAUpGZQR2yUJf2zZkcZeVGAoYpw7/uFM+HOyhysZ4Colg28lyekaRSWDdJFBbSYDa5fEfua5Dy9aX4vtkpjj4KiSgS1KqMxksFcP8HpS/GAXU85kULVrgiAIgiAIpygUJcO//vUvwd+ffPIJOI7Dm2++ibJly8qux3EcvL29ERERgZYtW6JatWqF0TyC8BjEmQzq12VVDADZJRHySAU/S5xCBEGUAkjJoAxblBVlMkgoGYjihLoCOpvLcM/jlQyOFhlklAyGCgDEdkmCZVglg0yRwflMBrbIcMH6WqRk4ISKAd4BJQNvygN7PnFSFk+ScKJ1bdHx2ZLTlc5eUjIQhDoSExNRpUoVAMDixYsRGxtbtA0iJJk6dSo++eQTABAMbiZcz+7du9G+fXsAwK5duxATE1Ok7YmNjcWSJUtQuXJlJCYmFmlbCCFuKzIAwOjRo1GnTp3C2CVBeBRqBzVqmQUdUTKweQxajnz3CXnIx5cgCAukZFCG/S0V2SWxSga6vhYt7E2XynupUKbI4PmZDI7ZJcnZ9uTpAsHpAhwKftbI2CU5q2RgCxxCJQNrl1QAJYPUsq5SMjwpMnCc6lOWrjUEQRAEUUL4559/cOTIESQkJODIkSM4duwYHj16BMDc5z516tSibaAMhVJkYFm8eDEAoGLFiu7YXZFy/fp1fP/999i0aROuXbuGx48fIzw8HFFRUWjfvj0GDBjgcDYFQcjBjn50xL2GVTIE6DXkCU0QBEHYhZQMyrDKL3Hws/Bvqu8XNc5lMoSxdklZHlZkYJQMcFDJIGfbk2sCvAJrAY+YIoOCXZKckgGcVA6g/eBnkV1Sqo2SAaySgSkyOKRkkCh4uCiTQc4uSQmySyIIz6C4jSonCFdAypR8rl27hqioqKJuhlO4pcgwePBgd+ymyJkzZw4++OADpKenC6bfuHEDN27cwP79+/Ho0SN88803RdNAwuNglQyO5PCySgZ/ymMgCIIg7MCb8sBnPxBMIyWDEJFdUh5rlyRc3os6/ooY55QM4SIlgwkmnofGUwZssEoGB4Of5eySck08vAJrwvT4kXD7Nq/VKhk4jjN32tt25jsY/AwApqy71tdsJoOBE26Pd0TJIFGQ4Dh1j99Kp5GGz4EWjhe1dBL5WgRBEARR0oiPj0d8fHxRN6PQsC2ycByHatWqITIyEnv37i3CVqnDLUUGwDzCHwDKlSsHg0F5JExWVhaSkpIAAE899VSht80VfPbZZ/joo48AADVq1MCwYcPQtGlTBAYGIjk5GSdOnMC6deug0dCTJOE6RMHPDlQZHhuFy1IeA0EQBGEP3pgCdqQ3KRmEiIOflZUM7IABws2Ijr9KJYO38L4pjwdSs00I8RaPri+JsEoGzsHgZ7tKhhsJwu0/+Rh43gRT5l3BPNngZ5hzGWwVA5LqAVFnv/x3TpzJUAAlg4SqQq2SQemu3DaPgVOObhCuR7f6BEEQBFHs8ff3x2effYZmzZqhSZMmCA4OFiiYijNuKTJs3boVXbt2RZkyZZCYmGi3yJCRkYG6desiMzMT27dvL/byrx07dlgLDK+99hoWLVoEnU54A9mhQwdMnDgRRqNRahME4RSi4OcCKRnoyYMgCIJQhs1jAACNIbQIWlJ8YZUMOSbzIADtk5EBeaJMBne1jJBG+HnxKntsAwwaeGmEnen3Mz2oyMAoGeAiJUOOiYc2oCZ4HBNMt3wKpqz7oiwDWbskAGCDlNUoGRQKe4WuZFCZyaBUe/RCfhi1IyVKymQgCIIgiOJPaGgoPvzww6JuhlO45bFm9erV4Hkeffr0QXBwsN3lQ0JC8OKLL8JkMmHlypVuaKHzmEwmjBw5EgDQoEEDfP/996ICgy16vWM36ETpwFnLOVaSX9BMBoIgCIJQgs1j4HT+Do9w9nTY4GdAaJmUy/zoU8dfUeOcXZKG4xDKFBSSPSn8ucBKBrkig1nJwFoWgTffl5oYqySAg8annOx+OEYZIKlksBP8bItYycBszwElg2QItQsyGWyVDI6go2sNUYo5cOAAhg4dipo1ayIgIAB6vR4VK1ZEjx498N///hepqamqtxUbGwuO4+x6psfHx4PjOHAch8TERMlldu7ciYEDB6JKlSrw8fGBr68vKleujObNm2PixInYuXOnddnExERwHCcYzdy+fXvrPiz/5Gxkdu3ahcGDB6Nq1arw9fVFQEAA6tevj0mTJuHWrVuy72Pq1KnWbQPAw4cPMW3aNERHRyMoKEh2n7/88gv69++Pp556Ct7e3ggKCkKTJk3wySefICUlRfHYAWbb8dGjR6Nq1arw9vZGZGQkevXqhe3bt9td11ksx9j2Pa1evRodO3ZE2bJl4ePjg1q1auGDDz5Qdc4YjUbExcWhffv2CA8Ph16vR/ny5dGtWzcsW7YMJpOM7A/i8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOMTGxtp9X1IcOnQIU6ZMQUxMDMqXLw+9Xo+AgADUqVMHI0eOxPnz5yXXs3xPLHkMAETnNPsdUvsdPHPmDIYPH47q1avD19cX/v7+qFu3LsaPHy/7nQSkj9u2bdvQs2dPlC9fHgaDAVWqVMHIkSNx48YNtYeoVOAWJcMff/wBjuPQqVMn1et07twZS5cuxR9//FGILSs4W7duxeXLlwEA7733Hry83OZARRCi0Y8mB6oVlMlAEARBOIopO1nwN+UxiGHtkgBz+LPfk75F1kaGbNKLFk5pyLgdwn00uJuR34F9z4OKDKySwdFMBjm7pDwTD6+ApwFOeBPLmcwd53lM6LPGO1x59D/baS9ZZBAWBpTultkig55jPlMHlAxSqgf1mQzyPkhetnZJqltDdklE6SQzMxNvvPEGVqxYIZp38+ZN3Lx5E5s2bcK9e/cwdepUt7Zt/Pjxknmd169fx/Xr13H48GHEx8fj/n2xitQRsrKyMGTIEPz000+ieWfPnsXZs2cxb948rFixAj179lTc1uXLl9GpUyfFDtqUlBT069dPUCABgOzsbBw7dgzHjh1DXFwc1q9fj+bNm0tuY9++fejRowcePcrP77l9+zY2btyIjRs3uu2zeuONN/DDDz8Ipl26dAkzZszA0qVLsWPHDtSqVUty3cTERHTt2hUXL14UTL979y62bNmCLVu2YP78+Vi/fj1CQkIU23H06FF0797daisPmM/tzZs3Y/PmzZgwYQJmzZrl5LssOPHx8RgyZIhoek5ODi5cuIALFy5g4cKFmD17NkaNGuWWNk2fPh1TpkwRFXLOnz+P8+fPY968eViwYAFee+01u9v64IMPMGPGDMG0xMREfPfdd1izZg327NmD2rVru7T9JRW39IhbLkA1atRQvc7TTz8NALh69WphNMllrF69GoD5RrBHjx7W6Q8ePEBycjJCQ0PtXjAIwlnEmQzq16VMBoIgCMJRWLskymMQw9olAcJcBnaENykZihvqB2yE+mgB5Hdq38904EasmMObmNHyDioZlOySOK0BMJQV7i/PbAHEKhmU8hgAdUoGTtTZr94uyVvDFCiKg5IBTCaDSkjJQJQ2TCYTevfujW3btgEAqlevjlGjRqFJkybw9fXF7du3cfDgQaxatcrtbfv111+tBYZnnnkGI0eORO3atREYGIjU1FScO3cO27dvx5EjR6zrVKhQAWfOnEFCQgJef/11AMAPP/yApk2bCrZdsWJF62ue59GvXz9s2rQJANCzZ08MGDAAVatWhUajwZEjRzBr1ixcv34d/fr1w4EDB9CkSRPZdvfr1w83b97EmDFj0KtXLwQHB+Py5cuoXLkyAHMhoWPHjjh+/Di0Wi0GDRqEbt26oUqVKsjJycHevXvx1VdfISkpCd26dcOJEyes61q4fv26tcCg0WgwfPhw9OvXD4GBgTh9+jRmzJiBqVOnKrbTFcTFxSEhIQHNmjXD+PHjUb16dSQlJSE+Ph6rVq3CrVu30LlzZ5w9exb+/v6CddPS0tChQwdcuXIFANCnTx+8/vrriIyMxNWrVzF37lzs2bMH+/fvR8+ePbF3715otdJ2ixkZGejfvz8ePnyI999/H926dYPBYMDhw4cxffp03L59G1999RWeeuopvP3224V6TOTIzc1FcHAwevfujbZt26J69erw8/PDrVu3cPz4ccyePRv379/HW2+9hVq1auG5556zrtunTx80adIEcXFxmDdvHgCzAoGlQoUKqtsTFxeHyZMnAwDCw8Px3nvvoVWrVsjLy8P27dsxc+ZMpKenIzY2FmFhYejWrZvsthYuXIiDBw+iXbt2GDFiBGrUqIHU1FQsXboUS5cuxb179/D6668X+wHy7sItRYbcXPPNmNyXRgrLsllZWXaWLFoOHToEwCwt8vf3x/LlyzF9+nScPXvWuowlCHrMmDF28yhY7Elvbt9mJcVEaYINizxxz4iz942oF5Y/2uxuRh5+T8zAw2zhg+8/j4UPSZTJQBDqMeWkIf38t8h9eEFyPsd5QV++HXyeji3QKNnSQNb19cj6ZwMADt5P9YZ3JekRVNl39iLrynKYctMk5+uC6sKvztvgvHwl5xOugbVLIiWDGK2Gg05jtoWx8OOFNJTRma8Ft9KFI6NJyVDUMBkaycdVrxnmI7x3Ss7yDCWDKecxcpnjoEbJ8CArD78lZiI5Mw9/P5TujD+eZERq9kPcMgwS1HP4rDtI2TtV9Luq9VUuMrCd9mmnpiE35RRyUvNtGUxpnQBtHevf5wxd8VBTXnJzWZywo8jACd9HVuJq5D76U7lNT+CND8UTOXXPw0r1AC/e9vlYffIzFTRLBiYTj+SM0pPjGOqrh6aQzs25c+daCwx9+/bFihUrRP0x3bt3x7Rp09zer2IpbFSuXBkHDhxAmTJlBPNjYmIwevRoPHjwwDpNp9OhXr16AmVDlSpVUK9ePdn9LFq0CJs2bYJOp8OGDRvQpUsXwfzmzZvj1VdfRZs2bXDu3DmMGzcO+/fvl93e2bNnsWXLFoFLSePGja2vP/30Uxw/fhxBQUHYvn27YB4AtG7dGi+//DJatGiB27dvY/Lkyfjf//4nWOadd96xKhiWLVuGgQMHWuc1adIE/fv3R5s2bXD06FHZdrqChIQEdOvWDevXrxc4lnTt2hX16tXDxx9/jOvXr2PatGn48ssvBet+8skn1gLDlClTMG3aNOu8xo0b48UXX8Srr76K//3vfzh48CAWLFhgtWFnuXfvHlJTU7F9+3a0bdvWOr1Zs2Z48cUX8eyzz+LGjRv48MMPMWjQIISHh7vyMKiia9euGDRoEHx9hc9h0dHR6N69O8aOHYu2bdvi9OnT+Ne//iUoMgQFBSEoKAhly+YPPlA6p+1x7949TJo0CQAQGRmJQ4cOoVKlStb5rVq1Qq9evdCmTRukp6dj+PDhuHr1qqzt/cGDBzFs2DDMnz9f8FzfoUMH6PV6LFq0CIcOHcKJEycQHR3tdLs9BbcUGcLCwnD79m1cuXIFjRo1UrWO5QtZnFUAJpPJKn0KCwvD22+/jdmzZ4uW+/PPPzFp0iSsW7cOmzZtQlBQkOp92H4ZCIJFqmPi8yOp+LxVMKoG6pBr4jH1jxQ8yLI/so6UDIQ9NBwgMzCx1PFwfyyyrq1RXCbz7yXgc9PgV3uMm1pV8si6sRkpO/tY/868/D1Cnv8NhgqdBcvlPDiNB793ULSpyAKQk3oWwW3/J7sMUXBIyaAOby8OOTaKwZP35DuMqOOviGEKwbkPTiAv4w60vtKd0LaE+wg7jD1FyZC69xXxRDtKBhPP4/PDqbiRplxouZWe96TQ9rRwRm46sq6Ir9/2lAxskSHn/mHk3D8smMb7NwVsPqq72mq4q62mvN0n6LXC95Obeha5qWdllrYD56V64IHSYgIlgwO7J7ukkkFyhhFl/7W1qJvhNpI+6YTwMq7PdjKZTJg5cyYA88j+pUuXyg741Gg0Do2SdgV37twBADRq1EhUYLClIP1hPM/j3//+NwBg7NixogKDheDgYMycORPdunXDgQMHcPnyZVSvXl1y2djYWFkb9LS0NPz3v/8FAEybNk1UYLBQuXJlfPTRRxg1ahRWr16NBQsWwM/PrCK7c+cO1q1bBwDo0aOHoMBgwd/fHwsWLMCzzz6r8O4LjsFgwMKFCyUt0T/88EOsWrUKZ8+exffff4/PPvvMmr+anZ2NRYsWAQDq1q0rae3EcRzi4uLw22+/ITk5GXPnzpUtMgDAiBEjBAUGC5GRkZg1axZeeuklpKenY8mSJZg4caKT79h57H1/AgMD8emnn6JPnz7Yv3+/1fWlMFi8eDEyMjIAAF999ZVkn2p0dDQ++OADTJkyBTdv3rTmh0gRERGBOXPmSP5+T5w40fpZ79u3j4oMcFPwc8OGDQHAoRBni19cQSpYhc3Dhw+t/l5nzpzB7NmzERERgWXLluHBgwfIyMjAnj17rD5zBw8etMraCMIWtuNW7QODlO+ziQdOP+nM+Cs1R1WBAQCCDPTkQSjTKtJb8Heod+k9Z7JvblG33I3NhdySkk32jU2iaVkSxyz71jZVPtjZN9R9LoTzmIzCoD5OH1xELSne+DvQmycVFE24D85L3LljvLNTYkkxwczvYEp2yS8y8Dwv+Run0QUornczLc9ugUEJPZ8hOV3rpzzgyl67lLatBke+y/bgdP72F3qClO2aBR+TeYSvoWJ3GBy4flBBkyhNnDx50uoKMWzYMMWO/KIgIsJcQN27dy/+/vvvQtnH+fPnrdvu16+f4rK2HdhKti8vv/yy7Lw9e/bg4cOHDu0vJycHx44ds07ftWsX8vLMvyVSHv8WmjVrhrp16yruo6B06tQJkZGRkvM0Gg0GDx4MwGyVfvx4vvrv2LFj1lDo2NhYWUeXgIAADBgwAID5s1JS0ygdi759+1oHMhdmKLYjpKenIzExEefOnbPmftgqBU6dOlVo+7Ycg6CgILzwwguyyw0dOlS0jhT9+vWTLVDWrFnTem2xDJQv7bilh6h3797geR5r1661ZhgosWrVKqxduxYcx6FPnz6F30AnSU9Pt77OysqCr68vdu3ahZdffhnBwcHw8fFB27ZtsXPnTjRo0AAAsG7dOhw+fFhukyL++ecfxX+2Hn1EySU7T1hlMKj0TmgQroefTsL7+cn27qSre9irEuCFCmXU25kRpZOXavjB8OQ04QAMqav+YdnTsHhH218u2/5CpRg+R2x9JGUvwctYJIlgPcQJ18MLO1EVA1lLMa0qeNtf6AktIlw/gpNQj/dTvUXTTNkPJJYUo2c6bU2eIPfjcyWzBPRlWyqudjPNgawCCaKz14snar3hHaXcUeVd5f/sbrtB9iZwvOMFkPphOoRX6SYKqXYWHxVttdAiUv4aEp39C6D1hn+TL9HSgesHuTcSpYkTJ05YX7dp06YIWyKNJWw2OTkZ9erVw//93/9h8eLF+Ouvv1y2D1s7oRYtWoDjONl/tkUYi8pCimeeeUbV/iIiIhT3ZzuY2HZ/tl78bNYES7NmzRTnFxRH9m/bblvrdHtqC9v5tuvZotfrrf2JUuh0OusIeqksA3dx//59TJ48GTVr1oS/v7/Vyqt+/fqoX78+unfvLli2sLAcx0aNGslaIAFAuXLlEBUVJVhHCrlgbwvBweYBV48fP3awpZ6JW54MBw8ejOnTpyMxMRGDBg3C4cOH8fbbb4tkK//88w++/vprqxSlUqVKgupSccPbW3jzN3ToUNSsWVO0nI+PDz7//HNrMPTKlStVS7tsQ3sIzyWLKTJIKRSkCPHW4vNWwRi3W/gwnPukDygpQ/hAFemnRdPywoeRYIMGbSp6k288YZdwXy2+bBOC40lGVAn0Qu0Q+/7MHgvT0epT/Q1ovMORc/8ojLdtR0J4QIdTISJVrOHzxCNOeZPQasYrqA4MlXrBlHELmX8vLbT2EYSzvPi0LyqW0eLqw1zZq4AXB9QJ1QtylAj3owttBI1vRZgy8nPQTFJe+hKwA8PzPOGSbxJ3xod02WM37+Ymo2Io76vFsxEG6LUcQr01SM4ywcgcIJMxFaaH51FVk4hnykcAeN86j/PyhXelXtAF11fcr1+dcTBl3EL6uf9IzveuOggN/Z7Ce8ZVOJdTHfCvAY1PeeQkHzOr5Bg0+mD41hyBcB8t2lQwwODVAaFd9yP75u/iMGwH8AqqA58qYtsPOaSuIVoOqK79GzVz2kEf8Sl0QXXwWiCPakE6QdbahWQj/kwVF33oTp8oTdh2YlpUA8WJDh06YO7cuZg0aRIyMzOxcuVKq/NHhQoV0KNHD4wcOVKxc9keSUlJTq1nsZqRwtKhWlj7s82gsPXol6JcuXJO7U8tjuzftt2OvIfy5fOtGW3XsyUkJMRuvq2lLXLbKGyOHTuGzp07Izk5WdXymZmZhdYWyzGwd+wB8/FPTExUPG5szgSLRmMeiGBR4JR23FJk0Ov1WLt2Ldq2bYu0tDR8/fXX+Prrr/HUU09ZL/i3b9/G9evXAZhlumXKlMG6descDkp2J2yCvJw3HWD+EfHy8kJubi4SEhIKu2lECcNZJQMARPh5oUMlb+z4J7+zLufJSLo7TJGhQbgeg2oVL6koUbIo7+eFblVK98hlnhf3IvnVnQBdUB2kX5jLFBkIJSSLDLnp4gUZRYgurBkCGk+H8X6CoMgg9dkQroY9xtRtJQXHcWge4Y3mxa9fg5DAUD4GmVeWWf/mc9QWGRglgwdcgngJazptmcp212OVDOruOcsAKNiAKo7j4B3VX7bI4FdzJPTlWiMagK1TcubVu0i9/LloeS+v2giv9Y5gmr5sC+jLtihQOx1F/hrS4Mk/MxqOQxtGOfVXag4+PJACFrpalwxCffVI+kS+X8HTCPUtvYX20aNHo3///li+fDm2bduGAwcO4OHDh7h58ybmz5+PBQsWYPLkyfjss8+c2r5tp+fGjRuto7btodQ5q9TZbbu/48ePK44it0VuYG1RD4J0xf6LyzYKE6PRiAEDBiA5ORk6nQ5jxoxB7969UaNGDQQHB1v7dK9cuYJq1cx5SO54Zivux81TcVtPUcOGDXH48GG88sorVunatWvXBIUFC40bN8aPP/5oV5ZS1BgMBoSHh+PevXsAlEOavb29ERYWhjt37liXJwgLWbnOKRkssB6rliIDq2Qo50uWSARRYHix5zZndR9kvrvU6a2IdJHBvpKB08g9kNLxdj90A0+UfDh9oOBvkzFV1XrsmJA8T7jmmyRGwHP2HxlZJYM7bTg5rYI9mYzVEeflI728Rl2nWHFG78BgJaL4odFwhRKEXNoICwuzvr59+7ZL+5YsI5ct+Zxy2Npry1G2bFmMGzcO48aNg8lkwsmTJ7Fu3TrMnTsXqamp+Pzzz9G0aVP07i229rOHbbBuUFBQoeed2u4vPDzcKVcOW6XE3bt3FfvY7t696/D2HcHe9m3n2wZ0276+e/cuatSoIbsNW6souZDv5ORk5OXlKRZ4LG1ht2E5VwHXnK9S7Ny505pHEBcXJ+tG4y6VRUhICG7fvq3q/LAc/4IErBNC3JraWbt2bRw7dgy///47xowZg9atW6NmzZqoWbMmWrdujbFjx2Lbtm1ISEgo9gUGC7ZhM/bkMZb5Uun0ROmGVTIohb1JwWbSydklUZGBIFyBRCeSZaSEaMSEB3Q4FSZOKhlgLTJQR4rb8YROVIJgYIsMUtkwUrB2SZ6gZICEkgGc8v2jiedxi1EyVCjjvucdxSKDzOMup5UuMnCeUGSQecKnQZ1EaaJRo0bW13v37nXpti2OFpZwXzn+/PNPh7ar0WjQqFEjTJs2DTt27LBOX7VqlWA5tSO0LT79AHDgwAGH2uIMrthf/fr5Fnn2HEAK2yHEkf3bFnBsX9vLY7XNWJUrAhmNRsWg5NzcXJw8eVJyG7buKykpYoWbhQcPHqi2OmI5d+6c9fVLL70ku5xtZocUrlIeWI7B8ePHkZsrnxeVlJSEa9euCdYhCo5biwwWnn/+eXz77bfYu3cvzp8/j/Pnz2Pv3r345ptv0KFDh6JoktO0bdvW+lopTfzRo0dWX8AKFSoUeruIkoUok8HhIoNYyZCZa8JDo3C7ZanIQBAFR0LJIB8K6Qk9ToWH00oGrXmEH0fKkSKAOcbUa0V4ABp9kOBv9UUGT7RLEg+ashfwfj/TBCPz0+hOJQO0CqO+5ZQMMkUGT1Yy0NWaKE00aNDAOgp+0aJFSEtLc9m2q1SpAsAc9Hrp0iXJZYxGI9asWeP0Pho1amQd1c+G5Npmg2Zny2fFNGrUyKomWLBgAbKyxPfdrqRjx45W//rZs2c7ZYnTvn1764j9JUuWyC6XkJCgGNbrCrZu3Yrbt29LzjOZTNb2BQcHC4pajRs3RlBQEADze5BTEDx+/NhaQKpTp45idojSsVi3bp21gNCxY0fBvODgYGtblDr5f/rpJ6ctjGw78uXUECaTCQsXLlTcjtrz2h6WY5Camoq1a9fKLvf9999b3zN73AjnKZIigyfx4osvWl+vW7dOdrl169ZZT+A2bdoUeruIkgVrl2Rw1C6JeZjIyQOSMsQ/ZlRkIAgXIFVkkLFLoowAZdRmMvCySgbRki5oFeEY1G1FlHw0OtfYJfHwgOu+hF0S7NglsSoGHy8OQQb3PWYq2yXJdLjL2CV5hJKB7JIIAhqNBpMmTQIA3LhxA6+99hqMRqPksiaTCbdu3VK97Xbt2llfz5o1S3KZCRMm4ObNm7LbWLlypWL47dGjR60dx5aihgXbzui///5bdhsajQaTJ08GYB4Q+9prryl23j569Ahz586VnW+PoKAgvPXWWwCAgwcPYvz48YoWPXfv3sWiRYsE0yIiIqzWUBs2bBCpOAAgLS0NI0aMcLqdasnOzsaIESMkHUtmzJiBM2fOAABef/11QZaswWCwWgadPXsW06ZNE63P8zzeeustawHJctzkmDdvHvbv3y+afufOHUycOBGAOaB48ODBomUsA6PXr18veb5cunQJH330keL+lahevbr1dXx8vOQyH3zwAY4fP664HbXntT2GDBliLXa98847kt/DU6dO4YsvvgBgHgTep08fp/dHCCky3x6TyYQHDx4gIyMDFSpUsJuWXlx55pln0LVrV2zZsgUrVqzAkCFDRGqMO3fuYMqUKQDMIdhDhgwpiqYSxRjX2yXxuMtYJYV4a+ihgyBcgpRdkkwmA6GIWiUDZJQMNIq+KCjhHagEIYEok0F18LN4mokXFx9KElLBz7CjZJDKY3Bn4KJSkYGTG1PnwUoGg9SJCfrJJEofo0ePxsaNG7Ft2zasW7cO9evXx6hRo9CkSRP4+vrizp07OHToEFasWIFBgwZh6tSpqrYbHR2NFi1a4I8//sDChQthNBoxePBgBAYG4vLly1iwYAF27tyJli1b4uDBg5LbeO+99/Dmm2+id+/eaNu2LWrUqAE/Pz8kJydj//79mDNnDgBz0DLrcf/UU0+hYsWKuHHjBv7zn/+gYsWKqFmzprVPrVy5clabnDfffNP6/levXo3jx49jxIgRaNasGQIDA/Ho0SNcvHgRu3fvxoYNG+Dt7W23w1uJTz/9FHv27MHhw4fx7bffYvfu3Rg2bBgaNmwIPz8/pKSk4Ny5c9i+fTu2bNmC+vXri97frFmzsG3bNjx+/BiDBg3Cnj170K9fPwQEBOD06dOYMWMG/vzzTzRp0sSuBU9BaNKkCTZu3IhWrVph/PjxqF69OpKSkrBkyRL89NNPAMyh1VId9B9//DHWrl2LK1euYOrUqThz5gyGDBmCiIgIXL16FXPnzsXu3bsBAC1atMDw4cNl2xEeHg5fX188//zzGD9+PLp16waDwYAjR47giy++sBbIpk2bJhnaPWrUKGzYsAGZmZmIiYnB1KlTER0djbS0NOzYsQPffvstwsPDodVqncqP7dy5M8qWLYukpCRMmTIFiYmJ6Nu3L8LCwvDXX39h4cKF2LFjB1q1aqVoo9WyZUvr6/Hjx+PDDz9ERESE9X4iKipKlfV8eHg4Zs6cidGjR+PGjRto3Lgx3n//fbRs2RK5ubnYvn07Zs6cibS0NHAchwULFqgOKXcnv/32myCz4+LFi9bXJ0+eFBR0ypQpg379+rmzebK4tciQl5eH+Ph4xMfHIyEhATk5OeA4DqdPn0adOnWsy/3666/Yu3cvAgMD8eGHH7qziU7xzTff4I8//kBqaip69OiBcePGoVu3bvDx8cGRI0cwffp03LhxA4D5i092SQSLSMng4NOpVPAzW2QgFQNBuAZeUslAmQxO4aSSgZPNZKDjXeiIRmlTrxVR8nHeLkk8LY8HSvQdl2Tws/I7ulmEeQyAk8HPcpkMXPHraHAUL435yiy+WtP1mihdaDQa/PLLLxg8eDB+/vln/Pnnnxg3bpxLtv3DDz+gXbt21k5n1s5m4sSJqFu3rmyRATDbuUita8FgMOC7775DkyZNRPMmT56MUaNG4erVq6JQ6MWLFyM2NhaA2ed+5cqVePvtt/Hdd9/h77//xrvvvivbJqlOakcwGAzYtm0bYmNjsXbtWpw6dUqxaBEQECCaFhUVhQ0bNqBXr154/Pgx4uLiEBcXJ1jm448/BsdxhVpkGD16NPbs2YP4+Hj83//9n2h+REQEfv/9dwQGBorm+fv7Y8eOHejatSsuXryINWvWSNpntWrVChs2bFAcdO3r64uff/4ZXbt2xfTp0zF9+nTRMmPHjsWECRMk1+/cuTPGjh2L2bNn48aNG5JFqw0bNqBr166ybVDCz88PS5cuRZ8+fZCVlYX58+dj/vz5gmViYmIwd+5cxeyDp59+GgMGDMCqVauwdetWbN26VTD/6tWriIqKUtWmUaNGITU1FR999BHu3r2L8ePHi5YxGAxYsGABunXrpmqb7mbGjBnYs2eP5Lz169dj/fr11r8rV65cbIoMbtOxJiUloU2bNhg+fDgOHDgAo9EInuclJcVRUVH4z3/+g48//tgaYFKcqVGjBjZu3Ihy5cohKysLM2bMQNu2bdG0aVNr9YzjOEyZMkXxgk6UXkRKBgftkqSCn++mU+gzQRQO4iID96QTQ/wAT53eSsgpGdh7AzaTQdZ/u6TblBAEUSRwjF0Sr1rJIL5fK/G5DBKZDHaVDOliJYNbkbXQg3yRQcYuyd57LQlwHAc93fYTBABzB+3q1auxc+dOvPrqq6hSpQp8fHyg1+tRqVIl9OzZE/Pnz8c777zj0HZr1aqF48ePY+TIkahcuTL0ej3Cw8PRpUsXbNq0CTNnzlRcf9euXfj222/x4osvon79+ggPD4eXlxcCAgIQHR2NiRMn4vz589ZiAcvIkSOxZs0adOrUCWXLllUc4a3T6RAXF4dTp05hzJgxqF+/PgIDA6HVahEYGIiGDRvijTfewM8//4wLFy44dByk8Pf3x5o1a7Bv3z4MHToUNWvWhL+/P7y8vBASEmLtJ9u8eTO2bdsmuY2YmBicO3dOcHzLlSuH7t2747fffsMnn3xS4HaqYfHixVi+fDliYmIQGhoKg8GAGjVq4N1338W5c+cEg6VZoqKicOrUKcydOxft2rVDaGgodDodypUrhy5duuDHH3/E3r17ERISYrcdTZo0wfHjxzF27FhUq1YN3t7eCA0NRZcuXbB582Z8++23iut/++23WL58Odq2bYuAgAD4+PigZs2aeP/993H8+HHUrl3b4WNjS+fOnXH06FG88soriIyMhE6nQ3h4ONq1a4cFCxZgx44d8PPzs7udZcuW4csvv7QqbTQa57usJ0+ejBMnTmDYsGGoVq0afHx84Ofnh9q1a+Ptt9/GxYsX8dprrzm9fUIajneDcWheXh5atmyJhIQEaDQa9OvXD23btsVbb70FjuNw5swZ0ZezRYsWOHLkCKZMmeK2C0hBSU5Oxpw5c/DLL7/g6tWrMBqNiIiIQExMDMaMGYPo6GiX7/PGjRvWQKN//vnHGuxDlCxG77yP+5n5HZfvNglE43IKIXYMu/7JxHenH1v/rhbohTJ6DU7dy++YG1DDDy9Wt39hJwhCGZPxIe4uDxJMK9v/H2j9KiLj0gI8/CPfI1QX3gJh3eVHMJV27vwvSLIzr/wrGYIOoOQtMTDezR/JEfDsHPjVfgs5ySdxf6PNbyvnhYjBOYXa5tJOyt5XkHXlf9a//eq/j4DG4hFVBFGSyEm9gPu/CJ9Fyr9mtOvPfz8zD6N3JgumLe4UBl929EcJIif1PO7/UlcwrfzgPGsxXYqh2+7hsTH/kXJSk0A0ceA+1hXcXuoNmMRe42G9T0MXXF803WR8hLvLxaNPDU/1Qchz8jl7JYWhW+/hcY7wMX9YfX90fEqmuEKopiDP35cvX0Zubi68vLwEPuYEQRQPEhMTrRkYtoqQoiA2NhZLlixB5cqVkZiYWGTtIDyXwvhNcstQjSVLliAhIQE6nQ4bNmxA586dASiHm/Tq1QuHDx+WDDcproSGhmLq1KmqvfwIwkJ2bsGUDGK7JFIyEEShIVmbJ7skZ5BSMgBmyyTbIgOrZJDPZKDj7X7IfoMo+Wj04s5m3vgQnHeY4npS7pYlXsnA2iVxGsUCwyOjSVBgAIpAyQCzZRIvUWSQE+57cvAz8CT8mSky0NWaIAiCIIjCxC3DbFasWAGO4zBixAhrgcEellH/ly5dKsymEUSxICuvYJkM7IA5Yx6Pe5mUyUAQhYNEJoNc8DPZ98jC87zkqFNAHP4s6jiStcag41340DEmPA82kwEwq9bsrueRdklskUF5TNotJo/BSwOU9SmKIoOMckIm7ZjT6ACprAlPKjIQBEEQBEG4EbcUGU6fPg3ArE5QiyVwJjk52c6SBFGyyTPxyGH6LL0dLjIIl7+XmQembkFKBoJwFVLBz3JFBkKePOkCAwCY2PDnPEbJoLF0JtHxdjts4UymA48gShRaH1FnuppcBqnbtbwSXlzm2UwGu6HPwuXL+2qhlUrELmTkwp85hcddqfBnTwh+BqSLDHS1JgiCIAiiMHGLXVJqaioAs52QWvLyzDesSinrBOEJsKHPgDN2ScK/2U16azkE6OnRgiBcAS81kttSZCD7HtXIWSUBAOwpGbRPlAzs8S7hnXslEXHYOUGUPDiOA6cPBJ+dP7jJZEy1u55UX3qJVzIwdkmcvdBnRslQoUwRBSfLFBnkgp8Bs2USn5smnOgpSgaJt001YYIgPJ2rV68iPT3d/oIMwcHBqFChQiG0iChtpKen4+rVq06tW7NmTeh0Jfs+xC13gSEhIUhKSsI///yjOvz48uXLAIDw8PDCbBpBFDmsVRJQcCUDS1lfLTh6siAI1yChZMjvaKUig1qUigz2lQxkl1R00DEmPBONPhB5NkUGXpVdknhaiS8yOGiXxCoZKhZBHgOgZJfkoJLBU4oMZJdEEEQpZMiQIdizZ4/D6w0ePBjx8fGubxBR6khISED79u2dWvfq1auIiopybYPcjFvskurWrQvAfLDVsnLlSnAch6ZNmxZWswiiWJCVK34adTSTgQ1+ZiGrJIJwIYp2SeyyJb23qfBQKjLYy2TI70yiThS3Izqn6TMgPAOOyWVwNpOhxNslFVDJEFlESgY5uySlIgMkigyw835LCnqJZwO6WhMEQSgTFRUFnufB8zxiY2OLtC3x8fHgeR6JiYlF2g6CcAS3FBn69OkDnucxd+5cpKSk2F3+559/xsaNGwEAL774YmE3jyCKFNYuScuJ7Y/swQY/s5TzdctXnSBKB1JFBshlMpTszqZCRbHIIFQy8CahkiE/+Jm6TAiCcA0aXaDgb7602iU5kMmQncfjfqbwN7FCkSkZZIoMCr8TnFfpUjKQqJkgCE9n9+7d1iKBI/9IxUC4ipiYGKfOQZ7nS7yKAXBTkWHYsGF46qmn8OjRI3Tq1Annz5+XXC4pKQkffvghBg0aBI7jUK9ePQwYMMAdTSSIIoO1S/LWcg5bG9mzSyrnR0oGgnAdUpkMnPB/wi6KSoY8oZKBDYnOD36WWLeEjyIu/lDwM+GZcHphkcGkIvjZE4sMrJJByS7pdlqu6BexqJQMTmUySCkZPCb4uahbQBAEQRBEacMtd4EGgwHr169HTEwMjh07hvr166NmzZrW+a+88grS0tJw5coVawUnNDQUa9asIR95wuPJZuySDA6GPgP2lQ9lyS6JIFyHol2S8PsrGRJNALBTZMhRVjJwcsHP5qVBCgd3Qsea8Aw0jF2SukwGcyKP7ZW+pBcZ2EwGJbskNo8h3EfjsOWnq5ArPnN2gp/F2/GUIgPZJREEQRAE4V7c5qHSoEEDJCQkoEWLFuB5HhcvXrTOO3XqFP766y+YTCbwPI9mzZrh8OHDePrpp93VPIIoMqSUDI5CmQwE4T54JbskttObRtXLwuYsCObZKBl43gSYcoQLaCiToeigc5rwTDid40oGQKxmMJX0674DSgY2j6FCUakYoGSX5KCSwVOKDJKZDPSbSRAEQRBE4eHWO8Gnn34aBw4cwP79+7FhwwYcPXoUSUlJyMvLQ2hoKKKjo9GrVy88//zz7mwWQRQpbCaDMyPAlOySOADhPlRkIAjXIe5Akh8pWcI7mwoTtZkMbIEBNkoGyZV5qj0UJhT8THgoGr3jmQyAuchgeyuXV8Iv+zybyaCgZLjBKBmKKo8BcC74WarI4MlKBrpcEwRBEARRmLi0yHD69GkAQK1ataDXy3cAtG7dGq1bt3blrgmixJLF2CV5O2GXpBT8HOajsat0IAjCASSVDBzzv2XZEt7bVIgo2iXl2igZ2NBn5NtiSI/KpGPuVsjWkvAQRJkMKuySALNlku11x+PskhSCn2+lC5ctsjwGANDKZPU4aJfkMUoGsksiCIIgCMLNuPROsGHDhtBoNDh9+jTq1Kljnf7pp58CAEaNGoWwsDBX7pIgSjysXZIzSgalIgJZJRGEq5HPZBB3epf03qbCQ7nIYKNkyJOwVdIoZTIQhQud04Rn4kwmA/6fvTOPb6Ja3/gzk637BgXK2oJsQlWgoohAuSKrCCqi4hWKCggoiuKG6EXxJ1y5eC+IRQpXCq6giICKlx0EZC2yCiK0YKFshZbubZL5/RETMmdmsk7SJLzfzwdNZjlzOk2mM+c9z/MAYG/bTMFeXHbRLslkFlBQFgRKBgdD67JKBgf2UMGEXqa2Qn8xCYIgCILwJarfRQkyN9ZTp04Fx3EYMmQIFRkIgoENfvZEyeAo+JlCnwlCZRwFP9Ogt8t4pWRQmrFq2cObbhFuQ595IjRQL5NBrR7VDoKLwc8XK0wwMn8OAzGTwVHwM0I5k4HskgiCIAiC8DOqBj/rdJabsoqKCjWbJYiQRg0lA89xkpl0VkjJQBAqIztLVcEuiQa8FXFVySA4UjLIjZgE+yzigIfOLxGaeJrJwN5/BXuRAWwmg8LM/nNMHkO0nkOM3PR5f6GSXVKoZDLIPU9QjYEgCIIgCF+i6p1g/fr1AQD79u1Ts1mCCGnYIkOYB0UGQDn8mYoMBKEuggO7JMpkcAMXlQyQVTKQXVJtIVGs0u+ACBG8y2Sw2y/YL/usXRIvfx+ZXyrerlFk7doMKdsluRf8HDJKBpnnArpaEwRBEAThS1S9G+zevTu++OILvPrqqzh58iRatWplUzcAwMqVK7F371632x0+fLia3SSIgEINuyTAEv5caZIuJ7skglAZGbskTnGgNdhHm3yH50oGTnFm7V97eNcxwk1o2IoIDdhMBpirIRgrwWmVBq//2k+iZAjua5DELknhenu2NHDyGAAHRQYKfr4OXa4JgiAIgvAhqhYZXn/9daxYsQLFxcX417/+JVonCAKmTJnidpscx1GRgQhp1LBLAqzhz9IH2/qRVGQgCHVhZ3LbDWBIig3BPdjkS1wuMrBKBl5vV9QhuyT/Q+eXCE3YTAYAMFcXQaNt4HA/tshgCvavCGuXpJDJcI5VMtRiHgPgqMjgZvBziBQZdDK3/1RjIAiCIAjCl6hql9SuXTts3boVvXr1gk6ngyAIIlm99b27/wgilKlSzS5JuixSyyFKbgVBEJ4jUTJwCq8JR7ga/AxGySAOfabz7Xck92X0OyBCAzaTAQAEF8KfQ80uSWDtkmSUDIIgSJQMDWtbycArZDKQXZINuloTBEEQBOFLVJ9y0qlTJ6xduxZGoxGXL19GZWUlmjdvDo7j8L///Q8tW7ZU+5AEEdRUqmSXpJV5mCAVA0H4ALbI4EjJQIVyZeQCnf/CkZKBs4U+K+7tTa8IN1G2CiOI4ILTGABNmCgvxpVcBmnwc5Bfg1i7JBklQ1GVGeXM/WttKxmgoGTg3A1+dmjHFzzI2iURBEEQBEH4EJ9NcdZqtWjQoAGSk5Ntyxo2bIhmzZq5/Y8gQhnVlAwy+1EeA0H4AImSwf5Pqfh7KNCAtyKuKhkkmQz2SgbZAW46576Fzi8RuvCMZZJrSgbx+2BXMkiCnznpvSSrYtDzQN3w2lXOepTJEMJKBk/tVwmCAPLy8sBxHDiOQ3Z2dm13h1Bg6tSptt8T4Vs2b95sO9ebN2+u7e4gIyMDHMeJxpuJwMAvUzX+8Y9/AADq1avnj8MRRFDBKhkMXgQ/s9SnIgNBqI6kcODoxjbYZ7T6EFczGeBQySA994IgkCWEX6GzTYQOnD4WqLxge2+uLnK6T6gVGQQ2k0FmZv9ZJo+hYZRWYhvlb8RWevYrHBQ/QjiTQU7JYGTnSBAEQRAEEXCYzWZs27YNP/30E3bs2IFjx47hypUrCAsLQ9OmTdG9e3c888wzuOWWW2q7qxL8WmQgCEKKWkoGWbskKjIQhPowSgaxFQMFP7uKy0oGswMlA1EL0GeaCF14fSzsh9gFF+yS2MF1U7AXl83O7ZJYJUOjWs5jABwoGRxlMsjYJYWKkkEv82NXB3sFjCAIAJZZ5T179gQAbNq0Cenp6bXbIYJQgalTp+Ltt98GgBs+mzc5ORl//vmnZHlNTQ2OHDmCI0eOYP78+Zg0aRJmzJgRUGqe0DCdJIggppIpMngqb5ZTMpBdEkH4AEd2SZI/8Df2DZIjHBUZIBghmKrBafSAyT0lA51zH0PBz0QIw+njRO9dyWQINSUDm8ngipKh1vMYAMVMBkdqQzm7pFBWMtQE/YeTIAiCIIDs7OyQtjI7d+4cAOCmm27CQw89hK5du6Jhw4aoqKjApk2b8O9//xtXr17F+++/D41Gg/fee6+We3wdv98RFhYW4pdffsGpU6dQUlICk8nkdJ+33nrLDz0jCP9jFgRUMV8BT4OfdaRkIAg/wdolXS8ycDTg6jqOigywqBk4jV6iZBAVGSiTofYJoJkzBOEtkkwGF+ySpMHPKnaoFhBYJYNMJsO5MvHNa8NAUDLwSio3B0UGOSVDqAQ/yzwXVDt/7CYIgiAIopbp3Lkz/vGPf6B3794SlcLdd9+NYcOGoUuXLrh06RJmzpyJp59+Gs2bN6+l3orx213UxYsXMXHiRHzzzTcwGo3Od7CDigxEqFJtkj6JeqpkYO2SNBxQJ6x2Q/gIIiSRKBk4hdegTAYHOFQy4K9cBkMcBEbJQHZJtQ19ponQhdOLiwxml4KfWbskVbvkf9hMBsYuqbzGjCuV4r+DgaBkkLdLchwIKhv8LPkbH5xoZR4BSMlAEARBEIHPjh07HK5v0aIF3nrrLTz33HMwGo347rvv8OKLL/qpd47xyx3h1atXcffdd+PkyZM3vLfWjU55RSnmbf3Z7f00MKGN9gQ6a/epMmlSE9EYEa2egjampVv7mSsvo+zobBhLcwFYxg/3GDviT1MjdNIfQZumbRHe/DGn7RRWmPC/0xXILZYW3DxXMojfJ4ZroJGZxUSIqchbjppLOxDWdDD09btJ1purrqDsyL9tv3NX0cXfgsibn1cOInSTmsIclJ9YBHP1VQAAb6iLiFajoItvp0r7oUrl6RWozP8egqnK+cYuYq68KF7gIFTSXHEeV7f+3eW2OU0YwpoOQliTgZ52LygQzCZUn9/kcJvinePA6aJhKj4uWm6vZJBTjhRvf9olT21NRCNEthkPTVRTF3vtOubKQpQd/Q+MpbngOB66up0R0XosON712b41Vw+h/Pf/wlx1WbSc10UjvPkw2euV2phrSlB29D+A2YjIm58Hb0hAVf4PzFb0d4YIHXjGLqn8tw8R0WIEdHU7Ke4jVTL451mnqmATKnO/Ah9WDxFtn0Vl3teoubwbgpeD5DWF+8QLOC12FVRi/8Vq1JgFlBvFPx8HICkAlLPyRQbHvwv5IoN7k+ECFbniSk3QV8AIwnO2b9+ORYsW4eeff0ZBQQEqKytRr1493HbbbejXrx8ef/xxxMXFudRWRkYGFi9ejGbNmiEvL09xu+zsbIwcORIAkJubi+TkZMk2GzduxIIFC7Bz506cP38eHMchMTERSUlJuPvuu9G/f3/87W9/AwDk5eUhJSVFtL81m8GeRYsWISMjQ7J806ZNyM7Oxs8//4zz589Dq9WiWbNm6Nu3LyZOnIiGDRvK/hysV35xcTHmzJmDb7/9Frm5uSguLpY95nfffYfPP/8cu3btwsWLFxEWFoabbroJAwcOxIQJExAfH6947gAgPz8f06dPx5o1a3Du3DkkJCQgLS0NEyZMQK9evRzu6yn259j6M3399deYP38+Dh48iJKSEjRr1gwPPPAAXn31VaefmerqaixcuBBff/01Dh8+jOLiYiQkJKBjx44YNmwYhg0bBp6Xf5ZkP2dnz57FrFmz8P333yM/Px+RkZHo3LkznnvuOfTt29fln0eJ5ORknD59GiNGjPDIimjnzp34/vvvsW3bNlFQcePGjdGjRw8899xzuPnmmyX72X9PrMj9DbP/Drn6HTx06BA+/PBDbNq0CWfPnoVGo0HTpk3Ru3dvPP/887LfSUD+vK1btw5z5szBnj17cPXqVTRs2BB9+/bFG2+8gcaNG7t2klTE/rt/8uRJvx9fCb8UGWbMmIE//vgDANC7d2+8+OKL6NSpExISEgIqoILwPSZTDXYblR/UHPGLsTMqSvbgzsovVelLZe5XqDvoIHh9jMv7XNk4GDUXt9ve7wx7DF9FWwYQN1Tfjde2d0dLwYSIFsqDioIg4N1dRRKpuRW1gp8pj8E5FbnLULTlEQBA2ZEPUPf+X6FLuFW0zdWND6D6wla3267E5zBeO4G4rgu87qep/BwK13QTheECQMXJJag3JBc8M/OSsFB5ZhWubnrQ9wfilDMZBGMpKk997lZzFSf+i4Tea2FoeK8avQtISn/9h9Ntqv5cJbtcVLiTuYeozFvmcj8qT3+DxAdPMOHd3nN10wOovnC9oF5x8lOYK84juuO7Lu1vrixE4Y/dICjMoi4/8V/UHbgPuvhUVfqrxNWND6K6YD0AoOrsGkS0fU66Ed3HESEEq2QAgMKfeiDxgePQRDaS3ac2MhlqCnNwZe29NtVB6UHXri2ecMDYDpk51xTXN4jUQOfhvauqKAY/O0CmIM3aRYUS1aEh0iAIt6ioqMBTTz2FL7+UjiGcPXsWZ8+exQ8//IBLly5h6tSpfu3bxIkT8Z///Eey/MyZMzhz5gx27dqF7OxsXL58WbqzG1RWVmLkyJH46quvJOsOHz6Mw4cPY968efjyyy8xcKDjiU4nTpxA7969HQ7sXr16FUOGDMHGjRtFy6uqqrBv3z7s27cPmZmZWLlyJe68807ZNn7++Wfcd999uHbt+t+fgoICrF69GqtXr/bb7+qpp57CJ598Ilp2/PhxzJgxA0uWLMGGDRvQpk0b2X3z8vLQr18/HDt2TLT8woULWLNmDdasWYP58+dj5cqVSEhIcNiPvXv3YsCAAbh48fpkt4qKCvz444/48ccf8eKLL2LWrFke/pTeI1coACxBxb/99ht+++03LFiwAHPmzMG4ceP80qfp06djypQpMJvFf/yOHj2Ko0ePYt68ecjKysLw4cOdtvX6669jxowZomV5eXn4+OOPsXz5cmzZsgVt27ZVtf/OqKq6PolSowmcsT+/FBlWrlwJjuMwYMAArFolP2hAEK5wWN9HtSKDqew0KvOWIaLV0y5tb666IiowAMBX0f+5vp7TYV3E82h6ZqXDIsOFcpNigQGQD3B2hSid+AEvKTJwLjSBSuWZ78TvTy8XFRnMlYUeFRisVP25EoD3RYbq85slBQYAEKqvoubSLhga9fb6GKGIdMa1b+C1kbbXnDZKlTar8n8M6SJD5Z+rPd6X010vDHOaCK/6YSo5BWPxceji1LspNFddERUYrFTm/+BykaH60i+KBQbLQWpQfW6DT4sM5poyVBdssL2vubwH5cc/lmzn7e+AIAIJ3pAoWSYYy1B9YauiUrU2igyVp1dIbY18xCGjY8VkowDIYwAgO2mI0zq+PvG6aMkyTaT/ZyP6i+axtW9rRRD+xGw2Y9CgQVi3bh0AoGXLlhg3bhzS0tIQERGBgoIC7NixA8uWuT5BRS2+//57W4HhlltuwdixY9G2bVvExsaiqKgIR44cwfr167F7927bPo0aNcKhQ4ewZ88ePPnkkwCATz75BLfffruobftZ1YIgYMiQIfjhB8tz0cCBAzF06FA0b94cPM9j9+7dmDVrFs6cOYMhQ4Zg+/btSEtLU+z3kCFDcPbsWTz33HO4//77ER8fjxMnTqBZs2YALAOfvXr1Qk5ODjQaDYYNG4b+/fsjJSUFNTU12Lp1Kz744ANcvHgR/fv3x/79+237Wjlz5oytwMDzPEaPHo0hQ4YgNjYWBw8exIwZMzB16lSH/VSDzMxM7NmzB507d8bEiRPRsmVLXLx4EdnZ2Vi2bBnOnTuHPn364PDhw4iOFv89KS0txT333INTp04BAAYPHownn3wSDRs2RG5uLubOnYstW7Zg27ZtGDhwILZu3ao4UFxeXo6HH34YxcXFeO2119C/f38YDAbs2rUL06dPR0FBAT744AM0bdoUzz//vE/PiRJGoxHx8fEYNGgQunfvjpYtWyIyMhLnzp1DTk4O5syZg8uXL+PZZ59FmzZtbOocwHJu0tLSkJmZiXnz5gGwKBBYGjWSn+whR2ZmJiZPngwASExMxKuvvoquXbvCZDJh/fr1mDlzJsrKypCRkYG6deuif//+im0tWLAAO3bsQI8ePTBmzBi0atUKRUVFWLJkCZYsWYJLly7hySefxC+//OJy/9Rgy5Ytttf+LnA4wi93GmfOnAEAjB8/3h+HI0KYMt5xhdddKnKXulFkuOp0mz90XWGu/MbhNjVOZhF5qu65MykMP+VVwCRYHnjTm3gwo+sGQ6gW/05N5QWi9+5aJLGYKy9BMNeAc8G6xWE7Dj57gqnCq7ZDGXNNiV+OE5byiO21LvFOaCKbwlR2xqs2zTWl3nYroDFXXZEsC28xHBUnlzjd1/5882F1oE/qZZtt7xFOsiHcbo65jlgR3PidyhUVJduY1bMAk8VUAdZqxHRNKsU1NJKXZxNEMBLWZABK9sVKinyOv5P+n8VvqrzgnwNxWhgjmgMOLpM9GstYDtUCvCEB+oa9UX1urW1ZePMnHO7DacMR3vzvqDj1GQBAn/Q3aGNu8mk//cnQVpFY9nsZACAxnEfnBpRpFAwIZjNMpYW13Q2/oYmqA07BLsZb5s6dayswPPDAA/jyyy9hMIi/BwMGDMC0adNQUCB//+YrrIWNZs2aYfv27YiKEk9USk9Px/jx43HlyvV7Zp1Oh/bt24uUDSkpKWjfvr3icRYuXIgffvgBOp0Oq1atktjq3HnnnXjiiSfQrVs3HDlyBC+88AK2bdum2N7hw4exZs0a9O59fZJbp07XnSreeecd5OTkIC4uDuvXrxetAyyhtY8//ji6dOmCgoICTJ48GZ9/LlZ9v/TSSzYFw2effYbHHrte5E9LS8PDDz+Mbt26Ye/evYr9VIM9e/agf//+WLlyJbTa60On/fr1Q/v27fHWW2/hzJkzmDZtGt5//33Rvm+//batwDBlyhRMmzbNtq5Tp0546KGH8MQTT+Dzzz/Hjh07kJWVhbFjx8r249KlSygqKsL69evRvXt32/LOnTvjoYcewh133IH8/Hy88cYbGDZsGBITpRMmfE2/fv0wbNgwRESIi/sdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmaPPtDMuXbqEl19+GQDQsGFD7Ny5E02aNLGt79q1K+6//35069YNZWVlGD16NHJzc6HTyY/Z7NixA6NGjcL8+fNFY3X33HMP9Ho9Fi5ciJ07d2L//v3o0KGDx/12h/LycluR0mAwYNCgQX45riv4pcgQFRWFqqoq1K9f3x+HIwIYvc6AfpHbnW/4FwXGBPxadf1mvzL8JkQ2ec3j45vKzqDy1Be299XnN8JUcQGacOefTaGGkYrL2GtohSqYKi85bsfBDLdb6no+GN0qXod3u8bjt8IapNbVo2kMzVZyhmAsE703Mw/tJqbIwBkSENFqtHKDpkqLf7mozUvQRMj7W7rcT/azJ1pJ2ndFzOLAYF29u6Gvf7eqh9DF34qwlKG297wuEnX670BF3lKYnVwL7Kk+vxk1l3ZeX6DywHegITAFoLjunyMs+REYGvZGTdFh2X04Xgd9g7/BkJQuWh7/t29RceoLmErzXDp22eF/iTy3BZX9t9nriO047vxOmRnKfFgiOF0MTCV2g/w+9n0XmO8PIP3ZwlsMhzamhU/7QRD+RBPZBHXv241LK1qLlgvmmlrqkQJOcobCkh+BJjrF4TbO4DRhMDTuD9PpugCuH69NvA6tE3TQckC7unq0q6NXbsTPxPdcjspTX8BYmgtt3M0IT3GekxZ79yLoG94LmKucFiWCjQdvikDTaC2uVJrQtWGYxFqVCExMpYX4/bl6zjcMEVp9eBHaGPUHRc1mM2bOnAnAMrN/yZIlkgKDFZ7n3ZolrQbnz58HAHTs2FFSYLDHmY2OIwRBwD//+U8AwIQJExR9++Pj4zFz5kz0798f27dvx4kTJ9CypXx2ZUZGhqjAYE9paSk++ugjAMC0adMkBQYrzZo1w5tvvolx48bh66+/RlZWFiIjLcrw8+fPY8WKFQCA++67T1RgsBIdHY2srCzccccdDn567zEYDFiwYIGowGDljTfewLJly3D48GH897//xbvvvgu93vL3sKqqCgsXLgQAtGvXTtbaieM4ZGZm4qeffkJhYSHmzp2rWGQAgDFjxogKDFYaNmyIWbNm4ZFHHkFZWRkWL16MSZMmefgTe46z709sbCzeeecdDB48GNu2bUNhYSHq1Knjk74sWrQI5eWWySEffPCBqMBgpUOHDnj99dcxZcoUnD17Ft999x0efvhh2faSkpLw4Ycfyk4GnjRpku13/fPPP/utyPDqq6+KJvMr5anUBn4ZhUxNTcXmzZtx+vRp3Hbbbf44JBGgGAwRyEi/z+Xtf71UhV93X59NVqFJREyn6R4fXzCW48KZldcHlwUzKk8vR2Qb575w7KxoTif17dULFRAqHXsmmh2E0Gm89LZuHqtD81jvZs3fSLCzxc0V4kBfdtBSF3+rw8+fYDah7Lc5ooF/c8UFr4sMjmbkC36ySwhG2LDnsMb9EXXL6z4/riayEaLavejWPiX7p4qKDG4NSAcZgiBICmfauPbgeA3CWzwOd+fE8rpoRLYe4/L25cc+Ehc5zOp+h9jriA03fqds4YOPaAxNRCNxkcFJoKm3CCZpkYFFG+/5LCOCCFS0sa2gb5CO6vObry8UAqvIYK4ucrg+os04GBpIByM8wZgrPlaHenoMvilSfuNahtdFIaK1g8kgMnC8FhE3OfdjDkY4jsPtpF4gblB+/fVX5OfnAwBGjRrlcCC/NkhKSgIAbN26FSdPnkSLFupP2jh69KgtEHbIkCEOt7UfwP7ll18UiwyPP/64YhtbtmxBcXGxW8erqanBvn37bO83bdoEk8lyby7n8W+lc+fOaNeuHY4cOeLwON7Qu3dvxcFbnucxYsQIvPzyy7hy5QpycnJs+RL79u1DUVERAEtRRskGKSYmBkOHDsW8efNw9OhRFBQU2D4XLI7OxQMPPIC4uDib2qE2igwsZWVluHTpEsrKyiD8NTHKXilw4MABkZpBTdavtyjc4+Li8OCDyvmMTz/9NKZMmWLbR6nIMGTIEMUCZevWrREVFYXS0lKbcsXXfP7555g7dy4Ai03Su+/6LpfLE3yjS2MYM2YMBEHAp59+6o/DESFEFBNQUFZjtl2kPIHTRsDQ5H7RsspcaQCSHOygmL0vuBUdKmGuKoTgYNDKUfcpP9O/OFUylIiVDJqoZIftcbwGvKEu06bCgKMbsLO+xStJyaCExE5GE7gP2hwTWBnSRQZjGdgBck7GF9tncMyNfiAqGZjgUY7XyvyB8LHxu4ySQQJ7LgkiVODE87ACLQyYtXtkYf+meEMNEzKho9nwBEEEAfv377e97tatWy32RB5r2GxhYSHat2+PRx99FIsWLcIff/yh2jHs7YS6dOkCjuMU/9kXYawqCzluueUWl46XlJTk8Hj2djj2x7P34mezJlg6d+7scL23uHN8+34fPnxdle1MbWG/3n4/e/R6PW699VbZdYBl8N46g14uy8BfXL58GZMnT0br1q0RHR1ts/JKTU1FamoqBgwYINrWV1jPY8eOHRUtkACgfv36SE5OFu0jh1Kwt5X4+HgAQEmJ762aN2/ejKeeegqAReW0fPlyhIcHhm2lFb8UGYYOHYrHH38cK1askCRyE4Qj2DDjGjNQ7eWYaridnzcAVF/YBlNZvtP92CJDjV4qY9UJVQAEhw9/fsgDJFxEMIqVDKaKC6IiFqtkcMV6gGest0wV3vsmO7ZLIiWDIoySgeOpyBAIyBXNeJmirc9gBsbVVgMpfefds0tiBjQ5LVjfd28K7i51wYUiA0dFBiJEkWQpBZhdkrOcME6r3gMnmyWm9cvTI0EQhHfYD2IqzQ6vTe655x7MnTsX4eHhqKysxNKlS/Hkk0+iZcuWaNy4MZ555hkcOHDAq2NcvOjZZDer1Ywc1gFVXx3PPoPC3qNfDl/bsbtzfPt+u/MzNGjQQHY/exISEhTVEGxflNrwNfv27UObNm0wffp0/P77706fUyoqfJcraT0Hzs49cP38OzpvbM4EC/9XpoxVgeMr9u7di/vvvx9VVVWIiorCjz/+GFCBz1b8Ype0detWPPXUU8jNzcUbb7yBb7/9FsOGDUObNm2c/sIAyHqPETcGrJIBsKgZDE4uso4wNOoLTmcf6iegIu9rRLWb6HA/c7V4oLdCK71Z0QmWi6Wp8hL4sLqS9QBgpipDwCDUiJUMMFVAMJaB01lmcrDBz86UDADAh9UHcH0GgdKsZncguyTPYO2SOE3g+EZLuKGKDNKimT+VDBynFRd7Vf4OKaqXBCMEs9GiSnCCZNY0p4E0XDYQlAyU/UOEKEyRwZ1MBn/c5pn9qGQwkpKBIPyKJqoOWn3ovRI6WNBE+caXPRgYP348Hn74YXzxxRdYt24dtm/fjuLiYpw9exbz589HVlYWJk+e7LEdiv2g5+rVq22ztp3haHDW0WC3/fFycnIcziK3p3HjxrLL5Tzw/Ykaxw+UNnxJdXU1hg4disLCQuh0Ojz33HMYNGgQWrVqhfj4eJvV0KlTp2y2YL6eLAUE/nlzhyNHjqBv374oKSmBwWDAd9995/NMEk/xy9Nhenq66Be8b98+7Nu3z6V9OY6D0RhYEmXCf0TopBeG0moBCV48O3EaA8KaDkbFycW2ZZW5S50WGdiBsUptPYD5aGphGZSxBL7KVxX9cD0lXEAQBIldEmDJUOB1URAEQaJk0Ea5omQQ35SZfa5kILskJSR2SUGkZIDJd7M7ahsz+3nmDf4tAPHMw5HKNiiOvvOCqcqlIgNb+KgNuyRXMhnILokIVQJdySA4yWTgNL5TMlCRgSB8C8fzPglCvtGoW/f6hL+CggKnlifuYJ25bDY7fg4rK5M+a7LUq1cPL7zwAl544QWYzWb8+uuvWLFiBebOnYuioiL83//9H26//XYMGjTI7X7aB+vGxcWJLIp8gf3xEhMTFYsHjrBXSly4cEE2tNd+vS9x1r79evuAbvvXFy5cQKtWrRTbsLeKUgr5LiwshMlkcljgsfaFbcP6WQXU+bzKsXHjRlseQWZmJp5++mnZ7fylskhISEBBQYFLnw/r+fcmYN3XnDx5Evfeey8KCwuh1WqxdOlS3HPPPbXdLUX8JngVBMHjf8SNC89xiNSKH2ZK2acdDwhLeVT0vubyLhgZ/30WdqC3Qiu9+TPB8lBqrlL2mCMlQ4Bgrpb1YrcqD8yVFyVBra4oGTRhYtmm7zMZSMmgiETJEDxFhtBWMog/z7zej1ZJgM/tkhyql1z9vUqUDFK7JF9XrF2yS2ILNgQRKrAqHQfZLf6eKCeYa2QnSdijaiaDiVEy0NeeIIggoGPHjrbXW7duVbXt6GiLAtca7qvE77//7la7PM+jY8eOmDZtGjZs2GBbvmzZMtF2rs7Qtvr0A8D27dvd6osnqHG81NRU2+s9e/Y43NbZem9x5/j2BRz717t27XLYxu7du2X3s6e6utqhdZbRaMSvv/4q24b1swoAV68qqyCvXLmCwsJCh31Vwj58+5FHHlHczj6zQw61lAfWc5CTk+NwwvrFixdx+vRp0T6BRn5+Pnr16oWCggLwPI/Fixd7VHD0J34pMmzatMnjfxs3bvRHF4kAJpJRM5TVeD+wYmh4DziDWJpZmbdMYWsL7OzbCo1U2lnDWQYxLUoGeQQHs09pbpj/UHpAt85CZkOfwevAhzv38/RNJgMFP3sCq2SgTIbAQGCs5/wa+gyLXZIItYOfK5QLi67+XgVBGvwsvfEOBLskGm0kQhNWyeCOXZKvcZbHAABQVclAdkkEQQQft956q20W/MKFC1FaWupkD9dJSbGo20tKSnD8+HHZbaqrq7F8+XKPj9GxY0fbrH42JDcs7PpzQ1UVo9xm2rCqCbKyslBZ6dvni169etns0OfMmePRhOGePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccTvO0H8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rwFAhcvXkSvXr2Ql5cHAPj4448xbNiw2u2UC/ilyNCjRw+v/hE3NlF68cdUDSUDx+sQ3uwh0bKK3K8c7sMOjFXwUkmV0YUiAykZAgOhRv5G0/SX8kAS+hzZzKVZuzyrZFChyCCxl7GHlAyKSOxeAljJcCNlMrCfZ86foc+AdGDcrN53SBAEmBwoGVz+vQaEksGFQVUqMhChSgDbJQlO8hgAtTMZxO8p+JkgiGCA53m8/PLLACyzgYcPH47qavkJFGazGefOnXO5bfsxqlmzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSbaZ2qtWrZKoOACgtLQUY8aM8bifrlJVVYUxY8bIBvrOmDEDhw5ZchiffPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCikeMGCHZxppxu3LlStnPy/Hjx/Hmm286PL4jWrZsaXudnZ0tu83rr7+OnJwch+24+rl2xsiRI23Frpdeekn2e3jgwAG89957AIBGjRph8ODBHh/PFxQVFaFPnz62Iua///1vjBo1qpZ75RqU2EcEPKySoVQFJQMAhKU8gvLfs2zvjVd+hbH4OLSxrWW3F4zi2eQVfKxkGyOsRQZluySqMQQGZmdKBg9CnwGpkkGN4GdHSgYKfnYAq2QI4CLDDaVkYO2S/F1kYDIRWNWANwg1JQ4tkVxXMjDf6wANfpaoQggiRAhqJQOvU9XKjJQMBEEEK+PHj8fq1auxbt06rFixAqmpqRg3bhzS0tIQERGB8+fPY+fOnfjyyy8xbNgwTJ061aV2O3TogC5duuCXX37BggULUF1djREjRiA2NhYnTpxAVlYWNm7ciLvuugs7duyQbePVV1/FM888g0GDBqF79+5o1aoVIiMjUVhYiG3btuHDDz8EYAlaZj3umzZtisaNGyM/Px//+te/0LhxY7Ru3dqmAKhfv77NJueZZ56x/fxff/01cnJyMGbMGHTu3BmxsbG4du0ajh07hs2bN2PVqlUICwtzOuDtiHfeeQdbtmzBrl27MHv2bGzevBmjRo3CbbfdhsjISFy9ehVHjhzB+vXrsWbNGqSmpkp+vlmzZmHdunUoKSnBsGHDsGXLFgwZMgQxMTE4ePAgZsyYgd9//x1paWlOLXi8IS0tDatXr0bXrl0xceJEtGzZEhcvXsTixYvx1VeWCaqNGzeWHaB/66238O233+LUqVOYOnUqDh06hJEjRyIpKQm5ubmYO3cuNm/eDADo0qULRo8erdiPxMRERERE4N5778XEiRPRv39/GAwG7N69G++9956tQDZt2jTZ0O5x48Zh1apVqKioQHp6OqZOnYoOHTqgtLQUGzZswOzZs5GYmAiNRoNLl5QnyyrRp08f1KtXDxcvXsSUKVOQl5eHBx54AHXr1sUff/yBBQsWYMOGDejatatDG6277rrL9nrixIl44403kJSUZFNzJycnQ6t1/uyRmJiImTNnYvz48cjPz0enTp3w2muv4a677oLRaMT69esxc+ZMlJaWguM4ZGVluRxS7g+qqqowYMAAmwXW448/jl69ejlU7kRGRkqKkbUFPR0SAU+UTjxlqqxaHXsYff0e4MPqiwaBK3KXIvq2t2S3NzNKhnJIB8ZsdklVDuySHIwL+dvX90ZGMMorGayfB4mSIdq1i7YmjAl+rrwEQTCD4zyb+icIAtkleYjAZjIEkV2Sy979QQibb+N/uyRm8E3FQp3TDBZXf68ydkl+D34muyTiRoYNaA+kIoMTJYOaoc+ANPhZS0UGgiCCBJ7n8d1332HEiBH45ptv8Pvvv+OFF15Qpe1PPvkEPXr0sA06s3Y2kyZNQrt27RSLDIBltrLcvlYMBgM+/vhjpKWlSdZNnjwZ48aNQ25ursSjfdGiRcjIyABg8blfunQpnn/+eXz88cc4efIkXnnlFcU+yQ1Su4PBYMC6deuQkZGBb7/9FgcOHHBYtIiJkY6pJCcnY9WqVbj//vtRUlKCzMxMZGZmirZ56623wHGcT4sM48ePx5YtW5CdnY1HH31Usj4pKQn/+9//EBsrnXwaHR2NDRs2oF+/fjh27BiWL18ua5/VtWtXrFq1ymGoc0REBL755hv069cP06dPx/Tp0yXbTJgwAS+++KLs/n369MGECRMwZ84c5OfnyxatVq1ahX79+in2wRGRkZFYsmQJBg8ejMrKSsyfPx/z588XbZOeno65c+c6zD646aabMHToUCxbtgxr167F2rVrRetzc3ORnJzsUp/GjRuHoqIivPnmm7hw4QImTpwo2cZgMCArKwv9+/d3qU1/UVBQILpufP755/j8888d7tOjRw9b0aq2IcErEfD4SsnA8RqEJT8sWlaZq+xFxw6MlXNRkm1cUTLQkHBgINQoKRksg4RGRsmg9VDJAMEEoeqK2/2z7W4sg8PBRFIyKMIWGQLZLulGUjIEnF2SmkUGJ/ZowWSXBNZuTA4KfiZCFY5RMrihePK1YtWZXZKaVkkAYJQoGVRtniAIwqdERETg66+/xsaNG/HEE08gJSUF4eHh0Ov1aNKkCQYOHIj58+fjpZdecqvdNm3aICcnB2PHjkWzZs2g1+uRmJiIvn374ocffsDMmTMd7r9p0ybMnj0bDz30EFJTU5GYmAitVouYmBh06NABkyZNwtGjR23FApaxY8di+fLl6N27N+rVq+dwhrdOp0NmZiYOHDiA5557DqmpqYiNjYVGo0FsbCxuu+02PPXUU/jmm2/w22+/uXUe5IiOjsby5cvx888/4+mnn0br1q0RHR0NrVaLhIQE3H777Rg/fjx+/PFHrFu3TraN9PR0HDlyRHR+69evjwEDBuCnn37C22+/7XU/XWHRokX44osvkJ6ejjp16sBgMKBVq1Z45ZVXcOTIEdx8882K+yYnJ+PAgQOYO3cuevTogTp16kCn06F+/fro27cvPv30U2zduhUJCVIbbpa0tDTk5ORgwoQJaNGiBcLCwlCnTh307dsXP/74I2bPnu1w/9mzZ+OLL75A9+7dERMTg/DwcLRu3RqvvfYacnJy0LZtW7fPjT19+vTB3r178fe//x0NGzaETqdDYmIievTogaysLGzYsAGRkZFO2/nss8/w/vvv25Q2PO/5TcfkyZOxf/9+jBo1Ci1atEB4eDgiIyPRtm1bPP/88zh27BiGDx/ucfuEPKorGd555x21m8Rbb8nPLCduDFglgxqZDFbCUx5F+bHrvoPG4t9gLDoMXXyqZFtJ8LMQIdnGpeBnXw8MES6hGPyspGSIck3JwIdJZ3+YKi6AD6vrXgf/wqGKAWSXpIQgCEFtlwTBBMFstMxgDzECzi6JHdD3Akd5DIDnwc/gtdLCAykZCMJnsHZJjpQM/p7X78wuSU0lg1kQYGIuNWSXRBBEMNKzZ0/07NnTpW2Tk5NdemZv1KiRZIa9PRkZGYpFgpSUFEyYMAETJkxwqU9yPPjgg3jwwQdd3j41NRVz5sxx+zhTp0512UrKnrvvvht333232/tZadKkicPz62m/3OWxxx7DY4895tG+er0e48ePx/jx473uR5MmTTB79mynBQUlnP0c1oBhOdLT051+J9q1a4dPP/1Ucb0r3yudToeXX37ZlqeiRHZ2tmL+gz233HILsrKynG7H4uo1AHB83jzBnWMHIqqPXkydOtXmmaUWVGS4sWGVDGUqKRkAQFevC/iIxjCX59uWVeYulS0ySJQMgvQhzpXg5yC+XoQUSnZJpooLEAQzTKWnRctdzWTgNHpw+njRTENL4aKdZ/10UmQguyQFZAaEAtkuiQ1+BiwD0hwvVUwFOyFtl1Th2C7JUyUDx2khcOJ+CgFQZKBMBiJkCeRMBmfBzz4MfQYo+JkgCIIgCIKQxye3iYIgqPaPIHypZOA4HuEpj4iWVShYJglMJkOZWS/ZxmaXVHVZ2XbJ084SqqKsZLgIc3mBJPTU1SIDIFUzOBt4dASroJFASgZZBEbFAADgpd/ZQEHW3iJELZPYfBtO72+7JGZgXMXgZ2dB7y4XGdjvNS8T/OzreyRSMhA3MO4oGfyNU7skrXpKBjb0GSAlA0EQBEEQBCGP6lPQNm3apHaTxA2OL5UMABCW8ijKjsyyvTeVnISxMAe6up1sywTBLJn5Xm6WJtBb7ZJgqoRgLAOnk85Clnles0GPbf5DqJFXMgjVRTBeOy5eqAkDH97A5bY14fVhsmvD2cCjI0jJ4CFsHgOCzC4JoZvLIBhr2S6JGRgXzP7LZHC1cMTaJVmUDH4OfnYlk4GKDESowtqqqViM9BZzdZHD9WpmMsjN69Fp6G6VIAiCIAiCkKJ6kaFHjx5qN0nc4ETpfadkAABdnU7QRDeHqeSUbVlF7lfiIoPMgHS5UTq4YuIMEGApFpgrL4N3s8hA+A8lJQMA1FzaLXqviWzmlg0cG/5scjbw6ADKZPAMOasXKjIEBqwqLKTskip9Y5dkGfAMPCUDR8HPRIjCcYGrZPBnJkMNG8gACn4mCIIgApfc3FyUlSk/5ysRHx+PRo0a+aBHxI1GWVkZcnNzPdq3devW0Omkk5mDCTLTJQIeVslQXiPALAjgVcr+4DjOomY4+J5tWWXeMkSn/RMcZ3mSYj3EAaDMKH98IwzQoQrmqktAdLJkPdUYAgNHRYbqSztF77XRroU+W+HDxEUGb5QMZJfkGYKMkgEBnckg7VuoFhnYzzRXy8HPatolOSsoehz8zGnBSbRutZ/JQEoGImTxJpPBxzd6Tu2SVFUykF0SQRAEETyMHDkSW7ZscXu/ESNGuBQkTBDO2LNnj8sh8yy5ublITk5Wt0N+huaiEAEPm8kgACg3qvsEF54szmUwlZ1Bjd1AMzsoZoQOVQqCihon4c+Os0bowc1fmBXskgCg5vIu0Xt38hgAqZLBm0wGskvykGCzS+I4SREkVIsM7Ge61u2SVFUy+CaTgeO1gL/tklwqMtBcFSI0CeRMBqdKBhUzGeSCn8ktiSAIgghVkpOTbfmwGRkZtdqX7OxsCIKAvLy8Wu0HQbgDPR0SAU+UTvo0U1YjIEpFFZE2PhXa2LYwFv9mW1aRuxT6encBkNp7VOqSFNuyhT9XXpZdT0PCgYEjJYO54rzovbtFBg0b/OxVJgMpGTxBEvzM8ZaB2gCG04SJ+x2yRYZatktiPwesNZEXsAVFThcLoabYbgMZhY1sQ6ySoRaCn13IZJBYTxFEqOBDxZO3OFMyQE27JEbJoOPhln0kQRAEQfiTzZs313YXiBuc9PR0JxOLQxtSMhABj0HDSWZNlVarO1RvsUwSqxkq85bZAkHZQbEKXUPFtoxOlQyO+uFKbwk1YIO8HaGJctMuSaJk8GEmA5WtZJHYJQWyVdJfsBYXoahkEMwmSYHP73ZJPspkEIyV4oICAE1UM+ZQntslSZVugaBkoCIDEZqwSga37JJ8jLkW7ZK0ZJVEEARBEARBKEBFBiLg4ThOomYoq1F/cIW1TDJXnEf1hZ8tryVFBmUlg3O7JG96SaiFIyUDi9t2SWHS4GdPq9lmZ3ZJZlIyyMLMGA9kqyQrN0SRQaa4x+tDwy5JLvTZ0yIDq2SoDbskl+xhKPiZCFUCNPhZMBudTj5QM/iZtUui0GeCIAiCIAhCCbpVJIKCSOapprRG/dnb2rg20MbfKlpWmfsVAKmSoVIrtsOxx2aXVEV2SYGM4CCTgUXjbvAzo2SAucp5toICZJfkGaySgQsCJQNuhCKDzOeZ0/rZLonNEVDJLsnE2qLxOvDhDUSLXM9kcEHJ4OOKtStKBsm5JIgQIVCVDEJ1kdNtfKlkoNBngiAIgiAIQgkqMhBBgT+UDAAQnvKo6H3l6eUQzDWSAeIKbaJiG87tkpT7To9u/sNVJQOnjQBvqOtW23yYtAjlaS6D8+IEla3kkBQZSMkQEJirZYoMfs5k8JVdEpvHwIfVk8wodtkuyVz7wc8guyTiRsaL4GfBh99NZ1ZJgG+Dn8kuiSAIgiAIglCCigxEUBCl972SAQDCUoaK3purLqO6YKPULklTR7ENW5FBScng4NnTTF5KfsPVIoMmKsXtkENeFwlOGyla5mkugzO7JHYwkvgLdoCU19dOP9xAMvs0BIsMbNGM00aA87flDhPoKsk/8BC2kMiH1/f8dypRMkiDn30dKCa4EPxMRQYiZPHRdcJbzFUuFBl8qmRQrWmCIAiCIAgixKBbRSIoiPSTkkEb3Ry6up1Fyypyl0JgZt9W8PGKbdTAiZLBwfGrTFRk8Beu2iW5m8dghbVMMnlYZJDay7AFD1IyyEFKhsCE/Tz7PfQZAOczJYP4O64Jq+f575S1cArQ4GfJuSSIEIG1SwqYTAYX7JKgYiYD2SURBEEQBEEQrkJFBiIoiGIzGap9N7AaliIOgK48/a2kYFDBxSrub+Qsg0pKRQZHSoZKmpTuN1xXMiR71D4b/qyWXRKnj2M2oA+NHAIT/AwqMgQErCqsNooMPrNLqmTtkqRKBpftkoRACH52QcnAUyYDEaJwrmcy+HPY3SW7JFWVDOL3pGQgCIIgCIIglKBbRSIoYJUMpT5SMgBAeLLYMkmoKUZl/mrRsnJOeWDMCIsti1BdJPtQ6qjnlUZSMvgLs9FVJYN7oc9WWCUD69fuKmyRgWeLDGSXJA8FPwckrJKB93ceAyC1QVEr+LlCapfk8e+ULXxwWnABGPxMdklEqBKoSgbX7JJUVDIwClvKZCAIgiAIgiCUoCIDERSwSoYyH2UyAIAmsjF09e4WLROqrojeVyBKcf8a7vpgprmyULLe0bgQ2SX5B8Fsctkb3VMlg4YJf/ZUySCZ+c0UGQSyS5KFVTIEo13SDZHJEEp2SWwmg4xdkqu/U0nhg/e/XRJcyGQguyQiZAnQTAahloOfdRoqMhAEQRAEQRDyUJHBR7z66qvgOM72b/PmzbXdpaBGqmTw7cBqeMqjDteXI0JxndUuCZAPf3YU7kxFBv8gmMpd3lYbrY6SwZNMBkEQZJQMjFUX2SXJIslkCAIlA9kl+QmOsfhRScnAqpXkgp9dVzIwdkmcxu92SaRkIG5kAlbJ4He7JAp+JgiCIAiCIFyDbhV9wK+//ooPPvigtrsRUkiVDL4dXAlLHgJwyl+PcrPyA5zVLgmQz2Ugu6TaRy70mc1QsFKrmQymCkkRQZLJQHZJsrBFBspkCAyE6gCwS2IGxgUfKRk03hQZXAl+9rFdkkuZDFRkIEIV3vVMBhZffjP9bZdkNJNdEkEQBEEQBOEaVGRQGbPZjNGjR8NoNKJevXrOdyBcIpINfvaxkkETXh/6Bj0V15eb9YrrxHZJMkUGskuqdeRCnzXRzSXLOF0MOH28R8dQI5PBzKgYAICX9IfskmQJQrukGyOTgQ0yrwW7JF59uyTBbIS5UqxcUzP4GbUQ/OyKkoGj4GciROG4wFQyuGKXxP4t8QYKfiYIgiAIgiBchW4VVWbOnDnYs2cP2rRpg6eeeqq2uxMyROnFgytVJmkYndqEpzyiuK7MrFNc59QuycExqcTgHyRKBo6HJrKpZDtNVDI4ycCea/AqZDKwA7KA1C5JrVnYoYbA+MmTXVJgEJB2SSp4rZurCsFewfmweqoFP3O1oGRgv0OykJKBCFVYuyTBBEHhO+fhbYJHsHZJfERDyTZqZjKwdkmkZCAIgiAIgiCUoCKDipw5cwZvvvkmAODjjz+GXq88251wD1bJAPg2/BkAwpo+KB2MAmAGhwqT8lenBo6VDGaqJNQ6rJKB00ZJlAeA51ZJgEUNIzpmTQkEY4VbbQjMgCw4LThtJLMRKRlkMQe/XVJoBj+Hpl2SWZK5woEPq+v57zQQgp/JLom4gZFV6QRA+DNrl6SJaCzZRs1MBknwMxUZCIK4AcjLy7Nla2ZnZ9d2dwgFpk6davs9Eb5l8+bNAZU3m5GRAY7jkJycXNtdIRioyKAi48ePR2lpKUaMGIEePXrUdndCiiid9A9HqY9zGfiwOjA0vFeyvJKLhiAZ7LmOkbPPZJAqGZRmwhH+QzCKlQycNlJSFAAATZRnoc+AfMaDu+HPrF0Sp4uWDuqRkkEWafBz4Bd9bwQlg8QuqRaUDJLBQxWCn1mlEh9WFxyvVc0uSS74WQgAuyQqMhAhC6tkAALCMom1S5KbIKFmJgMFPxMEQRAEQfiXixcvYvHixXj22Wdx1113ISUlBdHR0TAYDEhKSkKfPn0wb948lJVJbcBrG7pVVIlly5bh+++/R0JCAv71r3/VdndCDi3PwaARD7D4OpcBAMJSHpUsq+DiHO4jsktyM/iZ8A9miZIhUmJvBABaL5QMnD4WYAa2zZXu5TKwA7K8LloaSE5FBlmEIMxkuBGKDIFhl6R+oY7NXLFeT1QLfpZTMvg8+Nn5gCplMhChCidTZHAn/NlXmKuLRO/5sETJNmoqGaRFBpotShAEUdsE2qxyglADUqZcZ9WqVcjIyMBHH32EX375BXl5eSgtLUV1dTXOnz+PtWvXYty4cWjXrh327dtX290VQU+HKlBUVITnn38eAPDPf/4TdevWVa3t/Px8h+sLCgpUO1agE6XjRMHIZT5WMgBAWNNBKOb1ItuIcj7WwR7Ab7qe+DT6I8uboggc+OEsorgytNKcBACcMzcA0MhXXb6hMJacQvmxeTBVuPc9MJXmid5zOgW7pGjPlQwcx4EPrw9z2Z+2ZSU5r4MPT3Kjn6eZfsZIBkirL+3G1a1/97ifLJqIRohsMx6aqOsZFYK5BmW/zYWxMMfns6cBy+COoeG9CG8+zO19qy/vQcUf2ag48Yl4RRBkMrD+/carByW/W01kE0S2eRaayNq7hhivnUD58fkwVZx3e19TyUnR+4CwSzJXo+y3j1BzeRcED+3HTMXHRe9t1xO2uGWuwdWtj8NaMJD7fdZcOQhTaS7TZ8d2SYKxEmW/zUbN1UOy/eN1MQhv8QT09bpI1gnGcpQdnY2aoiPirjIzpjltpMRqjpQMRMjCBj8DKN7+tKz1Xk35UwDa2d7vOFeFM9eMEMxVMBYfR4LpDP6m24po3vvZZkJ1se11BReNDTUDURMRh/SKLIQJFpWmWkoGo1nA9nPigj1lMhAEQRAEUdtkZ2eHtJUZx3Fo2bIl0tPT0aFDBzRq1AhJSUmorKzE6dOn8dlnn+F///sfTp8+jXvvvReHDx9Gw4bSnK7agIoMKvDKK6/g/Pnz6Nq1q+phz02aNFG1vWAmUsejsPL6ANDOgip0qu/bgUNeHwtD4/6oOvOdbVkFn+Bwn8va5risbS5aViTEYbexky+6eMMimGtQuKYHzOWOC3GuYFEyqJvJAACasHqiIkN1wUav2uN00RbbFDvM5fmoPPW5V+2yVJ7+BokP/A6Otxzr2p6XUf7bbFWP4YyKP7IhCGZEtHC9gGIq+xOFa7rL+t4Ho5LBXHlJ9ndbeeY7JA4+WiuzPARjJQrXdIfZgwKDHLVil8Rk7VT9uRpVf65W9RjW64ncjOLKU1+Ij39mJeoOPgKO42CuvGz5DDNwvFbm9329yFC8cxwq/ljksE/lJz5B4uBD0Ma0FC0v2jHapWsIH9EIpmu/Mx2jIgMRmsipdCpPfyO7rSmmH2C4XmTIu2ZE3jWrGqk1gNY4WpaAiUX9Ve3jgtjPcKrsTiDyLvyhuxvPFj9o6btKwc+f/VYqWUZ2SQRBEARBEL5lxIgRimPL3bp1w9///nf85z//wcSJE3H16lX861//wgcffODnXspDt4pe8vPPP2PhwoXQarX4+OOPSdrjQ+IM4nN7pdI/NjHhyY+I3lfrfTeDuHEUDdi4ivHqEVUKDADAGxKgiWB/r5xXmQwAwMsEMnrVXlhdcLooVduUw1RyCsbio7b3Vfnf+/yYclT9ucq97c+tUwzW5fSOFUiBAK+Pc2k7U/ExmEpO+bYzCtRc2a9agQGwfKb9jh8sfjQRlpkkvM75585Y/JtNtVR96RcINcWSbThtFBzZJVW68l0xV6Hq3HrJ4qo/Xft+SzKKOJ7ueYiQhdNGSu0JFdAL5U63Oa3rhFLO8SQVd7jKN8Ip3Z2293/ou+Ia95d1kkrKvf0XpbksETIZaQRBEARBEIR6aLXOn1efffZZREVZxoZ+/vlnX3fJZajI4AXV1dUYPXo0BEHAxIkT0b59e9WP8eeffzr8t3v3btWPGaiEa8Uf19PXjH4JUQ5rOhjauJtt77UN0iXb6FX4JnEARtxcC9YhQYqafvXhKY9BE9kI+qRetmVhyUPB672bZR3e4nFvuyZuL+UxGBr1+2vA0beYq67YXguMj76/MFcVurW9qfyc7HJOG4mwxvep0SWfom+QDj68gUvbSmxr/IRgqlCtLW1cO2jjU1Vrz1U4bYRvD8DrEJY81PIyrA70DXs73+ev65ncdU0T3QK6Op0kwc9WJYNgNkFw8bvC5rwIglm2qMGiTbgNUbe+Cc5wfZA0/KYMl45JEMEIpw2Hockgl7a9rcq1gnglp949XhkfL1lWxUchvOWTNhWit1SYpPfYtyUGviqQIAhCju3bt+Ppp59G69atERMTA71ej8aNG+O+++7DRx99hKKiIpfbysjIAMdxSE5Odrhddna2zWM+Ly9PdpuNGzfiscceQ0pKCsLDwxEREYFmzZrhzjvvxKRJk7Bx43UlfF5eHjiOQ8+ePW3LevbsaTuG9Z+SjcymTZswYsQING/eHBEREYiJiUFqaipefvllnDsn/xwFSL3yi4uLMW3aNHTo0AFxcXGKx/zuu+/w8MMPo2nTpggLC0NcXBzS0tLw9ttv4+rVq5LtWfLz8zF+/Hg0b94cYWFhaNiwIe6//36sXy+dNKMW1nNs/zN9/fXX6NWrF+rVq4fw8HC0adMGr7/+ukufmerqamRmZqJnz55ITEyEXq9HgwYN0L9/f3z22Wcwm5WtWtnP2dmzZ/Hiiy+iVatWiIiIQGJiIgYMGICffvrJrZ9HieTkZHAch4yMDKc/lxw7d+7ElClTkJ6ejgYNGkCv1yMmJgY333wzxo4di6NHj8ruZ/2evP3227Zl7Gea/Q65+h08dOgQRo8ejZYtWyIiIgLR0dFo164dJk6cqPidBOTP27p16zBw4EA0aNAABoMBKSkpGDt2rFOLe1+h1WoRFmZRzVdWBk6WI9klecF7772HY8eOoWnTpvjHP/7hk2M0bqzuTOhg5u9to7Dr/HVv2JIaAefKTGgU5duPMacNQ52+W1CR+yV4QyLCwgYB+68P1DSK0uCFDrHYc6EKVSYBQk0pjEVHcaC8Ps4axYF8bfRnkMyfQc2VHGiEGrSq+RnR5ks412U3bqoThVbxUg9gQgnmDzKvQ2S7l9xqgeO00DfoAUNDS3Eh4Z7VqDj1KcBpEe6GTY8S4ckPg++zAdUFmyAIRuc7uNjPOvftQtWZ72BmBgy9ofz4xxDsAiXtfZ8Fo3hgObzFE+Alyg/vMV49LFJNsAGXzpCbYR/V4V1LoTC2lbfd8zm8IQ51B+xCRd4ySYGl7PC/ALvPEBts7TeYzAJOG4GIthPcbkYTnoTw5sPAuThTWE04jeMiQ1izB6GJ8ezzwmnCENb4PujqXrfHi++5HBWnPhdlwZQdmiHaT7Bez2QK53X6bQOn0UNJySBXJIho+xw4bSQqz3wHU/Gx67sYxTOu5YpVEW3GiWysNBGNEN58GHhDAuoO2I3K09+AD2+A8JTHJPsSRCgR3/1zVJz6AsaSPxxul/bnKkQWPYgTuq4wcTroE7tAV/d2rM4zQ7C7xvEtnkZkmDoF4ghdR+BP8bKYtJmIbT1YlfYBwMgUGUanRqNeBCluCYIILioqKvDUU0/hyy+/lKw7e/Yszp49ix9++AGXLl3C1KlT/dq3iRMn4j//+Y9k+ZkzZ3DmzBns2rUL2dnZuHz5slfHqaysxMiRI/HVV19J1h0+fBiHDx/GvHnz8OWXX2LgwIEO2zpx4gR69+7tcID26tWrGDJkiKhAAgBVVVXYt28f9u3bh8zMTKxcuRJ33nmnbBs///wz7rvvPly7dn2yW0FBAVavXo3Vq1f77Xf11FNP4ZNPxFl/x48fx4wZM7BkyRJs2LABbdq0kd03Ly8P/fr1w7Fjx0TLL1y4gDVr1mDNmjWYP38+Vq5ciYQEx2rHvXv3YsCAAbh48aJtWUVFBX788Uf8+OOPePHFFzFr1iwPf0rvyc7OxsiRIyXLa2pq8Ntvv+G3337DggULMGfOHIwbN84vfZo+fTqmTJkiKeQcPXoUR48exbx585CVlYXhw4c7bev111/HjBni57e8vDx8/PHHWL58ObZs2YK2bduq2n9nbNiwwXZtUPoM1gZUZPCQY8eOYfr06QCADz/8EJGRkbXco9AnMZxHQhiPK3a5DMeu1Pi8yABYLD0i2z5neXNOXCXkADSN0aJpjLUfUQAaYP7Bazj7p3jbO266GX3qN8TFZQ+Jlt/SRABvoAKDWzCDcZwmHDGdpnvVJKcNQ0SrUV61wWJI+hsMSX9TtU1d3M3Q2alr1KAq/0cY7Qb1zXbqBXZ2deTNE6Gr00HV4wNA5envREUGocr5DBd72CJD1C1vIPrWN1Tpm7/QRDVFVPtJkuXlx+aJB5NNUhsLvyCIbeo4fZzX3zt/40zJEH7TkwhrMkC14/G6KES2HiNaVnb4fXHBxnpemSKONj4VmgirukVeyWCW+Z7EdJoBThsBc1k+KuyLDIwSRaiReq5H3/YO+LA6sj+LNqYFolJflV1HEKEGpw1HRCvnWWtFFefRsigbLWu2AwAik19EZIvb8VNeBapx/flAe9MYxNRPVGrGLQxFNcCf4u9+RLPBqqkYAKDGLL7PahZDj40E4Q8EswBjeS1NJqkFtBEGcD4KlTebzRg0aBDWrVsHAGjZsiXGjRuHtLQ0REREoKCgADt27MCyZct8cnxHfP/997YCwy233IKxY8eibdu2iI2NRVFREY4cOYL169eLnCsaNWqEQ4cOYc+ePXjyyScBAJ988gluv/12Udv2E1UFQcCQIUPwww8/AAAGDhyIoUOHonnz5uB5Hrt378asWbNw5swZDBkyBNu3b0daWppiv4cMGYKzZ8/iueeew/3334/4+HicOHECzZo1A2ApJPTq1Qs5OTnQaDQYNmwY+vfvj5SUFNTU1GDr1q344IMPcPHiRfTv3x/79++37WvlzJkztgIDz/MYPXo0hgwZgtjYWBw8eBAzZszA1KlTHfZTDTIzM7Fnzx507twZEydORMuWLXHx4kVkZ2dj2bJlOHfuHPr06YPDhw8jOlqsViwtLcU999yDU6csFreDBw/Gk08+iYYNGyI3Nxdz587Fli1bsG3bNgwcOBBbt26FRiP/N7y8vBwPP/wwiouL8dprr6F///4wGAzYtWsXpk+fjoKCAnzwwQdo2rQpnn/+eZ+eEyWMRiPi4+MxaNAgdO/eHS1btkRkZCTOnTuHnJwczJkzB5cvX8azzz6LNm3a4G9/uz4+MnjwYKSlpSEzMxPz5s0DYFEgsDRq5Pokx8zMTEyePBkAkJiYiFdffRVdu3aFyWTC+vXrMXPmTJSVlSEjIwN169ZF//7KuVkLFizAjh070KNHD4wZMwatWrVCUVERlixZgiVLluDSpUt48skn8csvv7jcP08pKSnBn3/+iWXLlokyGGrr9y4H3S16yL///W9UV1ejefPmKC8vV6wKW9m4cSPOn7cMgA0cOJCKEh7AcRxax+vwS8H1m67jV2twT1N1Au5chRW0KVlSa2RWcADAS4sJgrnG637deDAzfmthRnQowTOZBVYlg2A2imbQAwBkwmzVgDOI7R/cVTKYKi6I3rtqPRQMcBo9BLvLRG0pGQSBvQIG3/fOWZGBk7lGqw8P0V8T23l1cH4V7JLM1VfEi3kDoPnr7yITACspMhilRQZ/5L4QRCjBMRkIgslyfdYLFajmrt/vV6kYJWaWcQtVc4xOEATUMJcjbfBd7gkiKDGWV+Hge9/Vdjf8xi2TB0MX5Ztni7lz59oKDA888AC+/PJLGAzia/aAAQMwbdo0FBQU+KQPSlgLG82aNcP27dtt3upW0tPTMX78eFy5cv0+T6fToX379iJlQ0pKikPb7oULF+KHH36ATqfDqlWr0LdvX9H6O++8E0888QS6deuGI0eO4IUXXsC2bdsU2zt8+DDWrFmD3r2v24F26nRdwfvOO+8gJycHcXFxWL9+vWgdANx99914/PHH0aVLFxQUFGDy5Mn4/PPPRdu89NJLNgXDZ599hsceu66eTUtLw8MPP4xu3bph7969iv1Ugz179qB///5YuXKlyCO/X79+aN++Pd566y2cOXMG06ZNw/vvvy/a9+2337YVGKZMmYJp06bZ1nXq1AkPPfQQnnjiCXz++efYsWMHsrKyMHbsWNl+XLp0CUVFRVi/fj26d+9uW965c2c89NBDuOOOO5Cfn4833ngDw4YNQ2KiOhMa3KFfv34YNmwYIiLEz1kdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmTdW9JcuXcLLL78MAGjYsCF27tyJJk2a2NZ37doV999/P7p164aysjKMHj0aubm50OnknwF37NiBUaNGYf78+aI8unvuuQd6vR4LFy7Ezp07sX//fnTooP5EzKlTp4qspOzRaDSYPXs27r77btWP6yl0u+ghVVWWB4hTp07hsccek/23fPly2/bTpk2zLb906VJtdTvoaZMg/uIfu+L/2bysmwUnmV1qQe5hj+cAjpO5eFGRwQPYJ2wKI/QGe3sU4LoFi5wHP6fxTWGPDT4WaoplBrWVYZUMoVRkYIM8hUBRMnDBZ53BaZ0U+f1RZGCLon99ziWfd1FhQcEuiVEy8IZ42w0waw3FWp9JlAycFuD1TjpPEIQIDXt9rgQgSAKh1S0ySKsMahYZTIL0Lkvno5nGBEEQvsBsNmPmzJkALDP7lyxZIikwWOF53q1Z0mpgnYDasWNHSYHBHmc2Oo4QBAH//Oc/AQATJkyQFBisxMfH287V9u3bceLECcU2MzIyRAUGe0pLS/HRRx8BsIx/sQUGK82aNcObb74JwJJ3UFZ23Urw/PnzWLFiBQDgvvvuExUYrERHRyMrK0uxj2phMBiwYMEC2RDeN954wzYQ/t///hfV1defzaqqqrBw4UIAQLt27WStnTiOQ2ZmJurUsaiH586d67AvY8aMERUYrDRs2NBmk1RWVobFixe79sOpTKNGjSQFBntiY2PxzjvvAAC2bduGwkL3shfdYdGiRSgvt9yDffDBB6ICg5UOHTrg9ddfB2CxTfvuu+8U20tKSsKHH34oKjBYmTTpugOBv8OX77nnHhw+fBjjx4/363GdQUUGIqhow2QWXCg340qlik9tLsA+1yk9c2lkvl0cB1IyqITjwTjCXThGyWC2KhmMMkUGrW+KDBxTZIBglgTVOoItMmhCqMhg8eS3o9YyGZjrrYrWHP4iIJQMTJFBULBLEm8nvsYJNrsksZKB119XBLHfVcHEZjKIiwycLlr2BpogCGU4Vt1nUzL4ssgg0w/1modR5gBUZCAIIpj49ddfbYGso0aNcjiQXxskJSUBALZu3YqTJ0/65BhHjx61tT1kyBCH29oPYDuyfXn88ccV123ZsgXFxcVuHa+mpgb79u2zLd+0aRNMJssfTDmPfyudO3dGu3btHB7DW3r37o2GDRvKruN5HiNGjAAAXLlyBTk5ObZ1+/bts4VCZ2RkKNogxcTEYOjQoQAsvytHahpH5+KBBx5AXFwcAPg0FNsdysrKkJeXhyNHjthyP+yVAgcOHPDZsa3nIC4uDg8++KDidk8//bRkHzmGDBmiWKBs3bq17dpiVa6ozbhx43Do0CEcOnQIO3fuxKJFi9CzZ09s2LABjzzyCHbt2uWT43oKFRk8JDs7G4IgOPxnHwa9adMm23JnCeiEMk1jtAjXih9yjl/17wC9wMztUnrkkrdL4uQHsKjI4D5sJgNdzryC1ynYJdWikgFw3TLJXFMmGTDlw+ur0KvAQGLHYa4tJUPo2yWB872TpEQBYjuvDq5rinZJYiUDZ7g+4439rrJFQ3MNW2QIrAdwgggGOFbJYFYoMrguzHOKTI0BvIoFQtYqCQB0wXe5JwjiBmb//v221926davFnshjDZstLCxE+/bt8eijj2LRokX4448/VDuGvZ1Qly5dwHGc4j/7IoxVZSHHLbfc4tLxkpKSHB7P3g7H/nj2Xvxs1gRL586dHa73FneOb99ve9v0O+64w2Eb9uvt97NHr9fj1ltvVWxDp9PZbHrksgz8xeXLlzF58mS0bt0a0dHRNiuv1NRUpKamYsCAAaJtfYX1PHbs2FHRAgkA6tevbxubVTr3gPNQ5fh4ywSvkhLXJ0e6Q7169dC+fXu0b98ed9xxBzIyMrBx40a8++67OHjwINLT07F27VqfHNsTKJOBCCr4v3IZfr10fYDt+JUadEnyjY+jHBKTHsVMBukyUjKoCetbRTPsvEGiZLCGDDOhz4APlQy6aMvMbbuBbKG6CEAzxX2smCsvSJaFll2SWMlg9fz2NwKrZAhGuyRN4CkZbJ95N5QM1kKrO0oGOMlk4LVUZCAIt5HLZBAEGPytZFDxNogNfQZIyUAQ/kIbYcAtkwfXdjf8hjZCfoawt9gPYlpVA4HEPffcg7lz5+Lll19GRUUFli5diqVLlwKwWM/cd999GDt2rMPBZWdcvHjRo/2sVjNyWAdUfXU8+wwKe49+OerX9+2EMneOb99vd36GBg2uP6/a72dPQkKCohqC7YtSG75m37596NOnj8s2SBUV0omMamE9B87OPWA5/3l5eQ7PmyMbKMCiagFgU+D4izfeeAOrVq3C7t27MWrUKJw8eVLW2svf1H4PCMJN2CLDsSv+HaBnn7uUlQzSZRws/nvgNGLbESoyuI9kRjU9/HqDopKBtUviND4bhOU4HpwuFoLdzGwz4zevBGuVxGkjwIXQgCk7UxYBomTggtIuKQAyGVgFiCt2SQpKBoFRMvAiJYOzTAbxjBtSMhCE+0iuz38VgXWC+PtWaVLvPkUmkkFV5JQMWioyEIRf4HjOZ0HIRGAxfvx4PPzww/jiiy+wbt06bN++HcXFxTh79izmz5+PrKwsTJ48Ge+++65H7dsPeq5evdplRw1Hg7OOBrvtj5eTk+NwFrk9jRs3ll1e2xaeahw/UNrwJdXV1Rg6dCgKCwuh0+nw3HPPYdCgQWjVqhXi4+NtVkOnTp1CixYtAFjyQnxNoJ83NRg0aBB2796NM2fOYPfu3bjrrrtqu0tUZCCCDzb8Oe+aEeU1ZkT4ScctCX5WuHbxMg9jtkW8DrD7IywIVGRwHwp+VhMlJQNrlyTxnlYZXh8Hk92gqeCiXZJJJvQ5pG4sAkTJIMlkCEW7JH8UGSTFGTPzfyuc3SsFJQNrl+ROJgNrlxRChTmC8Bcu2yWZ1Huglgt+VpMamb6SXRJBEMFE3bp1ba8LCgqcWp64g3Xmstns2AfPPtBYiXr16uGFF17ACy+8ALPZjF9//RUrVqzA3LlzUVRUhP/7v//D7bffjkGDBrndT2uoMGDxp7e3KPIF9sdLTExULB44wl4pceHCBdnQXvv1vsRZ+/br7QO67V9fuHABrVq1UmzD3ipKKeS7sLAQJpPJYYHH2he2DetnFVDn8yrHxo0bbXkEmZmZoqwDe/ylskhISEBBQYFLnw/r+fcmYL02SUxMtL0+ffp0QBQZ6HaRCDpaxOlEKgEBwIki/w3Ss49dSl8iOSWDFclMcFIyeABb7aHLmTfwegUlg6TI4BurJFv7BrEE1+VMBrbIEBY6eQxA4CgZQsIuyYndlz/sktgMGWuQvTTQ3oFdklLwsxuZDNLgZyoyEIS7sMV3wVQJQJAUGap9nMmgJmzwM88BGlIyEAQRRHTs2NH2euvWraq2HR0dDQC2cF8lfv/9d7fa5XkeHTt2xLRp07Bhwwbb8mXLlom2c3UildWnHwC2b9/uVl88QY3jpaam2l7v2bPH4bbO1nuLO8e3L+DYv3YWyrt7927Z/eyprq52GJRsNBrx66+/yrZh/awCwNWryg4BV65ccdnqiOXIkSO214888ojidvaZHXKoNUHQeg5ycnJgNBoVt7t48SJOnz4t2ifYOHv2rO11oITb06icD5k6daot7Dk9Pb22uxMyGDQcmseKRTjH/WiZJM1kkL8YyhUZREoG+zapyOA+ksE4evj1Bo6xSzIr2SX5KI/BChv+zM7SVsJcIZ6pEFJ5DAC4gFEyOBoEDw44XudYrRBAmQycK3ZJVaxdkr2SgbFLMjkJfiYlA0G4j1wmAwADWCWDevcpcpkMasLaJZGKgSCIYOPWW2+1zYJfuHAhSktLnezhOikpKQAsQa/Hjx+X3aa6uhrLly/3+BgdO3a0zepnQ3LDwq4Xt6uqlJ8JOnbsaFMTZGVlobJSmrWnJr169bL518+ZM8cjS5yePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccWRvYD+UpqCLPZjAULFjhsx9XPtTOs56CoqAjffvut4nb//e9/bT8ze96CAbPZLLrG2BfoahO6ZSSCkjYJ4gG3Y1f9WGRwOZNBusa6hB0wJCWD+0j/CFKRwRskSgabXZL4ZtTXSga2yOCqXRKrZNCEWJEBEjuO2spkECsZuCBUMgCOcxlqJ/jZel4daeWU7JLESgaRXZJEycDYJZGSgSC8Rqo0q4KckqFSVbsk1ZqShQ1+pjwGgiCCDZ7n8fLLLwMA8vPzMXz4cFRXy98/m81mnDt3zuW2e/ToYXs9a9Ys2W1efPFF0SxjlqVLlzoMv927d69t4Nha1LBiPxh98uRJxTZ4nsfkyZMBWPzwhw8f7nDw9tq1a5g7d67iemfExcXh2WefBQDs2LEDEydOdGjRc+HCBSxcuFC0LCkpyWYNtWrVKomKAwBKS0sxZswYj/vpKlVVVRgzZoxsoO+MGTNw6NAhAMCTTz5pyx0AAIPBYLMMOnz4MKZNmybZXxAEPPvss7YCkvW8KTFv3jxs27ZNsvz8+fOYNGkSAEtA8YgRIyTbdO/eHQCwcuVK2c/L8ePH8eabbzo8viNatmxpe52dnS27zeuvv46cnByH7bj6uXbGyJEjbcWul156SfZ7eODAAbz33nsALEHrgwcP9vh4vmDBggUOg6TNZjNeeuklW6GtW7duLmeu+BrKZCCCkjYJOqw+df39ias1MJoFvzwEsT64ipkMcsHP1o1JyaACZJekJmwmg1BTAsFs8r9dkt0AKeC6XZJcJkMoISlMBkomQ9AWGSKUC1h+KTIw501ByeCaXZKD4GdJJgMb/CwuMvCkZCAIt+EUlAw6SSaDesf0eSYDU2TQU5GBIIggZPz48Vi9ejXWrVuHFStWIDU1FePGjUNaWhoiIiJw/vx57Ny5E19++SWGDRuGqVOnutRuhw4d0KVLF/zyyy9YsGABqqurMWLECMTGxuLEiRPIysrCxo0bcdddd2HHjh2ybbz66qt45plnMGjQIHTv3h2tWrVCZGQkCgsLsW3bNnz44YcALEHLrMd906ZN0bhxY+Tn5+Nf//oXGjdujNatW9sUAPXr17fZ5DzzzDO2n//rr79GTk4OxowZg86dOyM2NhbXrl3DsWPHsHnzZqxatQphYWFOB7wd8c4772DLli3YtWsXZs+ejc2bN2PUqFG47bbbEBkZiatXr+LIkSNYv3491qxZg9TUVMnPN2vWLKxbtw4lJSUYNmwYtmzZgiFDhiAmJgYHDx7EjBkz8PvvvyMtLc2pBY83pKWlYfXq1ejatSsmTpyIli1b4uLFi1i8eDG++uorAJbQarkB+rfeegvffvstTp06halTp+LQoUMYOXIkkpKSkJubi7lz52Lz5s0AgC5dumD06NGK/UhMTERERATuvfdeTJw4Ef3794fBYMDu3bvx3nvv2Qpk06ZNkw3tHjduHFatWoWKigqkp6dj6tSp6NChA0pLS7FhwwbMnj0biYmJ0Gg0uHTpktvnqU+fPqhXrx4uXryIKVOmIC8vDw888ADq1q2LP/74AwsWLMCGDRvQtWtXhzZa9nkCEydOxBtvvIGkpCTbGFpycjK0WudD2ImJiZg5cybGjx+P/Px8dOrUCa+99hruuusuGI1GrF+/HjNnzkRpaSk4jkNWVpbLIeX+YvTo0Xj77bcxZMgQ3HnnnWjWrBkiIiJw9epV7N+/H9nZ2Th48CAAICYmBh999FEt9/g6VGQggpJW8eKLQLUZyC02omW87y8Ors6f18iMeVsXUSaDGjDFHlIyeAXP2CUBlkIDaiH4WdQHl+2S2CJDaGcy1J6SIfjtkgCA0yiHP3Oc/5UMgmKRgZN/bdnY8l9GycDbF+ook4EgfA97fbbaJfmyyKBeU7IYmQNog/NSTxDEDQ7P8/juu+8wYsQIfPPNN/j999/xwgsvqNL2J598gh49etgGnVk7m0mTJqFdu3aKRQbAYucit68Vg8GAjz/+GGlpaZJ1kydPxrhx45CbmysJhV60aBEyMjIAWCY5Ll26FM8//zw+/vhjnDx5Eq+88opin+QGqd3BYDBg3bp1yMjIwLfffosDBw44LFrExMRIliUnJ2PVqlW4//77UVJSgszMTGRmZoq2eeutt8BxnE+LDOPHj8eWLVuQnZ2NRx99VLI+KSkJ//vf/xAbK32Ojo6OxoYNG9CvXz8cO3YMy5cvl7XP6tq1K1atWuUw1DkiIgLffPMN+vXrh+nTp2P69OmSbSZMmIAXX3xRdv8+ffpgwoQJmDNnDvLz82WLVqtWrUK/fv0U++CIyMhILFmyBIMHD0ZlZSXmz5+P+fPni7ZJT0/H3LlzHWYf3HTTTRg6dCiWLVuGtWvXYu3ataL1ubm5Ls/WHzduHIqKivDmm2/iwoULmDhxomQbg8GArKws9O/f36U2/c3Zs2cxe/ZszJ49W3Gbtm3b4rPPPgsYqySA7JKIICVGz6NRlPhC7C/LJHbymNLkLjm7pOt+SaRk8Bp2MI6KDF7BKhkAwFxTLBmUdBaa630/4sR9cNkuSZzJEHJ2SQGSyRAKwc+ANKtARC0EP9sUIpLrmrKSQRAECKZqiQWSWMnA/JzmKlG4NKtk4HTRIAjCPSTFd3MVIMgEP6tYZPCxkEGiZNCRkoEgiCAlIiICX3/9NTZu3IgnnngCKSkpCA8Ph16vR5MmTTBw4EDMnz8fL730klvttmnTBjk5ORg7diyaNWsGvV6PxMRE9O3bFz/88ANmzpzpcP9NmzZh9uzZeOihh5CamorExERotVrExMSgQ4cOmDRpEo4ePWorFrCMHTsWy5cvR+/evVGvXj2HM7x1Oh0yMzNx4MABPPfcc0hNTUVsbCw0Gg1iY2Nx22234amnnsI333yD3377za3zIEd0dDSWL1+On3/+GU8//TRat26N6OhoaLVaJCQk4Pbbb8f48ePx448/Yt26dbJtpKen48iRI6LzW79+fQwYMAA//fQT3n77ba/76QqLFi3CF198gfT0dNSpUwcGgwGtWrXCK6+8giNHjuDmm29W3Dc5ORkHDhzA3Llz0aNHD9SpUwc6nQ7169dH37598emnn2Lr1q1ISEhQbMNKWloacnJyMGHCBLRo0QJhYWGoU6cO+vbtix9//NHhQDQAzJ49G1988QW6d++OmJgYhIeHo3Xr1njttdeQk5ODtm3bun1u7OnTpw/27t2Lv//972jYsCF0Oh0SExPRo0cPZGVlYcOGDYiMVLartfLZZ5/h/ffftylteN7zIevJkydj//79GDVqFFq0aIHw8HBERkaibdu2eP7553Hs2DEMHz7c4/Z9yb59+/Duu+/ivvvuQ7t27VC3bl3b9aFNmzYYNmwYvv76axw4cECUBxIIkJKBCFraxOtwtvT6E9vxK9UY2NzBwJFKSIOf5beTDX627kNKBhVg7ZLoAdgbLIOLHOzPq1BdXAuZDGK7JFcyGQRBCH27JFnP71pAEkwcrEUGR5kMfrg14tnzZjmvAjs/2Unws1wwuqNMBsCiZuB0lp/fXFMi3pfskgjCbSRKs7/+bkozGdQ7ps8zGZi+UiYDQRDBTs+ePdGzZ0+Xtk1OTnYpBLdRo0aSGfb2ZGRkKBYJUlJSMGHCBEyYMMGlPsnx4IMP4sEHH3R5+9TUVMyZM8ft40ydOtVlKyl77r77btx9991u72elSZMmDs+vp/1yl8ceewyPPfaYR/vq9XqMHz8e48eP97ofTZo0cTqz3RHOfo68vDzFdenp6U6/E+3atcOnn36quN6V75VOp8PLL79sy1NRIjs7WzH/wZ5bbrkFWVlZTrdjcfUaADg+b57SsWPHgCseuAopGYigpU2CeKD+2NUaly8E3uBV8LN1kSSToZasT4IZyS+CLmfewHG8ZBazUFMszWTwsZKBtUti/eblEKqLJYPuIVdkYD2/AyT4OVi/d7WtZJDcfinYJXGOMhkEAeYqsVUSAPAGx0UGews0sksiCO9RymRgiwxVKnoc+VvJoA/OejJBEARBEAThR4JzdIAgALRJENuHlFQLKChTcZqYAhKTHoUZ9HLKLptbEikZvIfsklSHtUwyV0vtkliPd/X7EMf0ocjpPmweAwBowkIrk4HsktRFscjA8czAvq86wGYyWM+ro+KpVMnAZpZw2ijR3xe5oqB94ZCCnwlCBSRKs2oAZmmRwaReZcAs0dWqC1tkICUDQRAEQRAE4QwqMhBBS2I4j3iD+CP82xXfD9azagmlxy6tnF2StSAhUTJQkcF9XI3gJlyFDX+22CWxwc8+VjIY3LdLMlWK8xg4XSw4rW8Dqv2N1C4pMIKfg9YuSSn42R+hz5A5b0rBz3bXNWlBW6pk4Jjvj1wxxb5wSEoGgvAeyfUZgGCqhh7iv5+qBj/7WMnABj/r6ImRIAiCIAiCcAJlMhBBC8dxaJOgwy8F12f0Hr9ag3ua+nYQlH2uU5rcxTvICJAoGQQqMriL4HDGL+EJEiWDnF0SG3Cpeh/iRO8FYykEs9GhTz6rZAg1qyQAAaNkCHW7JMm12WcdcM0uyaGSQZBmMvB6cXAcx+ssahO735t9ULQk+JmUDAThNqxdEgAI5ioZJYN6x/R5JgMFPxMEQRBBSG5uLsrKytzeLz4+Ho0aNfJBj4gbjbKyMuTm5nq0b+vWraHT+el51EdQkYEIalrHi4sMx/yiZHBtO9ngZ8VMBioyuA3ZJakOr5cqGcAGP/s5k8HSjyJwYXUV92GLDJoQLDIEqpIheO2SFIKfa63IYBl9FCTXNSd2SUxmCasEAizqI3vFgrVwKAhmCEbxQxgpGQjCA+SK7yZpkcEkAEazoIr1kK8TyKjIQBAEQQQjI0eOxJYtW9zeb8SIES4FCROEM/bs2eNyyDxLbm4ukpOT1e2Qn6EiAxHUtGXCny+Um3C10oT4MN8NfLmsZKBMBh/DKhnoAdhbOJ3zTAaf2yXppYOk5uoi8A6KDCaJkiHE8hgAcAGiZJBmMpCSwTMUlAxs6o/9+XXBLok3JICF0yoUGYwVYK+jpGQgCPeRt0uqhIEpMgCWXAY1igxmHyc/1zCXIm1wXuoJgiAIwi2Sk5Ml9ti1RXZ2NhU+iKCDigxEUNM0RotwLYcK4/U/BMev1uDOJN8VGViJunImg3SNbRFHSgavYbMxgnSwM5CQKBlk7ZJ8W2SAJsxiDWQ3U99Z+LO5QpzJEJJ2ScwgllBrSoYQD372V5GBF583AfJ2SZybdkmcTJGOzZ+wFg7ZPAaAlAwE4QmydkmmSomSAbAUGSJVuMz4evzDSEoGgiAIIgjZvHlzbXeBuMFJT08PmEJVbUCjckRQw3McWsWLn9Z8bZkkiRtWmEEv9zxm3ZSUDGpAwc9qI6tkYIsMPrZL4jhOYpkkMAOpLDeEXRKjZECtZTKESPBzLSsZOCUlg+SG1O66JqNkEFglg0yRAcx3VjBZBj6FmhLJpjwpGQjCfTR6ySJLkaFCsrzSqM5Dp+8zGcTvqchAEARBEARBOIOKDETQ09rfRQYXlQwaOSWD9QVlMngPZTKojqySgbFLkvWeVhl2NrYzJYPULikEiwwBq2QIztuIQM1kcGiX5Erws5xdEqM+sikZmNBncBq/fL8JItTgOF567TBVQYNq8IJRtLjapFKRQZVWlKlh+qkLznoyQRAEQRAE4UeCc3SAIOxow+Qy5F0zosLou8cvgfWwVhjb1shlMvy1MSkZ1IAyGdSG08spGZjgZ1/bJUEa/iw4tUsK/UwGBEomg2QQPDhHnlgLIdtyzk8ukux5E+TtkhwVGQSZTAZZuyRGtXE9k6GU2S5KUZlHEIRjOKZAJ5irwAESy6RKtYoMPlcykF0SQRAEQRAE4R5UZCCCnpvidNDYPfsIAE5cNSpu7y2uKxmky2xfOFIyeI/EVoQuZ97C61glwzW/2yUB0iKDuUrZLkkQzDBXXhQtC0m7JDZYtLaUDGaxkiHU7JJqT8lgKS4IjooMcsHPHikZLIOeZkbJQHkMBOE5bC6DtUDPFhmqVCoy+Nrrl4KfCYIgCIIgCHehW0Yi6DFoODSPFc8+PXbVdwNw7HOd0uQuWbskpUwGgYoM7iKdUU2z7LyF08eI3gvVxYDRz8HPADiD63ZJ5qpCiYVPSNolsUoGc21lMoSKXVItZzIw502wnlc28wKO7ZKEKrbIIKdkYL6zDpQMBEF4CFsI/kttJi0yqHM4XysZKPiZIAiCIAiCcJfgHB0gCIY2CeIBuOM+zGVwNQlA7nnMVqCQDBhSkcFtHAWkEh7hUvBzgNklsVZJAAc+LFH1PtU6PDuAVUtKhlCxS6rtTAal4GcHNnCc5BonwFzNBj97nsnAk5KBIDxGkptjVTJA/De0SqXgZx/XGCj4mSAIgiAIgnAbKjIQIQEb/nyiqEYyC8tXuJPJYH1mo0wGNWCzMehy5i3S4OdrNmsVK/6wS+JYu6RqZbskSR6DoY7fZqP7E04TGEoGwcwqGYK1yFC7Sgbw7HlTyGSAsl2SUFMq+dvBqoAA9zIZCILwDJftklS6N/V/JoNvj0cQBEEQBEEEP3TLSIQErZnw5yqTJQDaF7APdtLZpRbk7JJsHrqUyeA9ksE4mmXnLaySARCkA5FMuKUv4JnwWkdKBlPFBfG+IWiVBMgNYNWSkkFgMxmC8zai1jMZ2NsvW/HG9eBnVsUASL87gHImg1BTIt6OlAwE4Tkywc+ATJFBJSWDv4sMWlIyEARBEARBEE4IztEBgmCI0fNoFCWeGXrMR5ZJbNieopLBgV0SKRnUQNlWhPAMVskgSy3YJTnMZGCVDCFaZJD4fZurfB78KU+I2CVpFJQMXO0EPwtKSgYHwc/mqkK2UXAy32FWfWRVMphJyUAQqqFol8QUGSqDJPjZKLFL8unhCIIgCIIgiBCAbhmJkKENY5nksyID817pSyRXZLBNDCMlg/dQJoPqcLoY59v4I/iZLTJUuW6XpAnRIgMb/AygdoqTEruk4LyNqO1MBo4tzvxVXBAcFRmYa5xQJVYycPo4WWWJq5kMpGQgCM9h1WbW4GeDJPhZJSWDKq0oI7FLkrupJQiCIAiCIAg7gnN0gCBkYC2Tjl+t9slML8nQtsJzFy8jLbfuK5kta66tENdghlUy0OXMWzhe43Q2sz8yGdwJfjZJlAz1fdCjAIBVMgAQauG6IYSKkqG27ZLY65Ugr2QQ2/E5HuTjDdLQZ4AyGQjCLygoGXQCE/ysVpHB13ZJJjaTgYoMBEEQBEEQhGNoVI4IGdokiGf6XqsWUFBmUtjac9i6hdJjFykZfAxlMvgEObsV0Xp/KBmY8FrHdkk3SiaDjJLBVAvhz5JMhmAtMsh/jv0W/CwpMljPq4PiqRNLOLk8BgASi7PrmQziIgOvi3bYPkEQyrhql6RWkcHXbnk1zC2Wlp4YCYIgCIIgCCfQLSMRMtQL5xFvEH+kfWGZJAl+VsxkkK4w//VUSJkM3iNQJoNPcJbL4J/g5zjxAnOVzeKF5UbJZGAHsIDaUTKEjF0Sr5NXLfBaP/WAyWRQUDI4sktiYYtztuVskUFJyUB2SQThMZK/jb62S/J5JgMpGQiCIAiCIAj38NfTNEH4HI7j0CZBh18Krs/uXX2qHEcK1R2IO1lsFB9XYeBHVslgfcEMbhmLDuPq1r+r0Dv34Hg9DI36IDzlEb8f21vMZfnMkuAc7Aw0OJ2DIgPH+8VOhs1kAICin58AZAocxpKTovehmskAGSVD8c5xytkCCnAcD11iF0S0HiPr369ERd7XqMpfg+oLW5kGg1PJAFhyGVgrLn8FP3M8e94sfx2MRUeZ5a4XGXi9kl2SuMhgLP4NV7f+HTWX9zHbUZGBIDyFzWSwXiv1YIoMRs+LA7sKKrH/YjVqzAKOFEonpyw8VII4A4+/NQlDcqx317KSGioyEARx45KXl4eUlBQAwKJFi5CRkVG7HSJkmTp1Kt5++20A8IlNNnGdzZs3o2fPngCATZs2IT09vVb7k5GRgcWLF6NZs2bIy8ur1b4QYqjIQIQUrePFRYZzZSac84Flkj1Kz10amfE7698+VslgrryEylOfq9wz16j4YxEgCAhv/mitHN8TBEFA6cF3Rcs4UjKogiMlA6cJ98t5ligZAFSeXu7aviGaySCnZKg6851HbVWc/BTmqiuIvvUN17bPXYaiLQqFyKAuMkRI8z78ZZfEFkXNJphrylB9YYt4uTt2SUpKBjaToeqK7N8bUjIQhBcw12hT2RkA6tkl7T5fhQ9yrjncZtd5y/3vlvxKzO5ZB3EGzyZf/HpRasWno3kcBEEQBEEQtc4jjzyCZcuW2d7n5uYiOTm59jrEQLeMREjRJsFfA0TXMchJFiA/57RBpGVAjtPF+LBH7lN19sfa7oJbmEpzJcs4jUKQK+EWfFg9xXVyCgNfwPE6cEr+8k7QRDRSuTcBAqeVeOt7Q1X+925s+4PiOneVFIGEXIYBr/fTtZmxZRLM1ai5vFuymf35dXau+TD5AptiVgO7nUJwNEEQzpErjgPSIkOlh0WG/TID/0pUmgT85oWKd/8l6b4RVGUgCIIIGDZv3gyO48BxHDZv3lzb3SEIVZg6dartc03I8/3334sKDIEI3TESIUVyjBa31PVfoUHDAbc3kM4wBiwz63s1vW7v0jJOi+Z/ydcNSX8DH5bolz66gjWgMFgQakoky8KC0PIpELGcR/k/7OEp/lO7hDd/3O19DI37h+xAKcdxqp5/NvTXEYrB25owhDW9X50O1QJhKY+JF3BahDV90C/HZgckheoiSUYCAIQ1HWx7bUi6B5zS51sThrBm8n3X17sLfGQTx/0JT4K+fg+H2xAEoUxYswctxWCGcHOx6H15jWdFBncVEOVe2DJVyuxbL5weGQmCIAiCCAyys7MhCMINZZVUWlqK8ePHAwDq1VOeGFrbkF0SEVJwHIeJHWOx+3yVz22SdDyHjvX0aBGnXNR4qn002iboUWEU0L3x9YIDH1YXdQbsQmXe1zBXX/VpP+Woubgd1Rd+tr0XzEYHWwceckWRiJYja6EnoUdY4/6o028Lqs6tFwUL6+JTEZbsv0JOTOf/QJd4B4xFR1zaXhOVjIgWT/i4V7VLbJePoW/QA8biY27va7p2QmQ5ZQ3/dQV28Fuf1Av6Bj0Q1uR+6OJT3e5LoBB1y2RoY9ugpnAfOI0Bhsb9oa97u1+OzRYLzFVXIJiks4f1iZ1trzURSag7YDcqT38jKvxw2gjL7yLhFvljaSNQt/8vqMj9Cuaqy5L1vKEOwlMe8Z+KgyBCEH29u1BnwA5U5f8oukeJr2oK2N3mlXk4+M/kMKNVvA4pMVrsOl+FxHAeRVVmXKq4Hhxf7UXANBv63KtpGM0qJAiCIAiCqEWmTJmCM2fO4J577kHjxo2xePHi2u6SLFRkIEKOCB2P9Cbq2Yp4A89xuLuRNKwWALTRKYhKfcXPPbJQevA9UZEBgm8LMmojGMUDpJyhTi31JDTR1+8Gff1utdoHjtcgooX/w9ADGU6jR8RNIzzat+rs/5gig+vqJVb1EJ7yKCJaPeVRPwIJjuMQnvwQwpMf8vuxWQsjc/UVwCwuMmhlCjjamBaISn3V7eNpIhshqv1Lbu9HEITr6OveLilUJhbVANuvVxnKa8zsbi7BFhluqavHw60i8WT7aADAjN1FuFRx/RpSze7gBmwdJNbDbAeCIAiCIAjCe/bu3YsPP/wQBoMBmZmZeO+992q7S4rQXSNB3Iiwkv5gKzIwA6Scil71BBGSaMTFTm+UDBQQ7D2srZdQdVWkHAIAjtf7s0sEQfiASJ1YAVBj9kxlYBLE+7BxYHpmgZpKBh1PKgaCIIKf7du34+mnn0br1q0RExMDvV6Pxo0b47777sNHH32EoqIil9vKyMgAx3FOw1azs7NtHvNKti4bN27EY489hpSUFISHhyMiIgLNmjXDnXfeiUmTJmHjxo22bfPy8sBxHHr27Glb1rNnT9sxrP+ys7Nlj7Vp0yaMGDECzZs3R0REBGJiYpCamoqXX34Z586dU/w5WK/84uJiTJs2DR06dEBcXJziMb/77js8/PDDaNq0KcLCwhAXF4e0tDS8/fbbuHrVuZtDfn4+xo8fj+bNmyMsLAwNGzbE/fffj/Xr1zvd11Os59j+Z/r666/Rq1cv1KtXD+Hh4WjTpg1ef/11lz4z1dXVyMzMRM+ePZGYmAi9Xo8GDRqgf//++Oyzz2A2K08+YD9nZ8+exYsvvohWrVohIiICiYmJGDBgAH766Se3fh4lkpOTwXEcMjIynP5ccuzcuRNTpkxBeno6GjRoAL1ej5iYGNx8880YO3Ysjh49Kruf9Xvy9ttv25axn2n2O+Tqd/DQoUMYPXo0WrZsiYiICERHR6Ndu3aYOHGiQ6slufO2bt06DBw4EA0aNIDBYEBKSgrGjh2L/Px8V0+RRxiNRowaNQpmsxmvvfYaWrVq5dPjeQspGQjiRoTTiN8HmV0SJEUGebUIQRAWJIU4L5QMnJaKDN7C6xm7pOorgIkJdtXI5/0QBBE8yAUml9eYoddoZLZWhhUmsOP+bJGhyou5I0ZmvENLVkkEQQQxFRUVeOqpp/Dll19K1p09exZnz57FDz/8gEuXLmHq1Kl+7dvEiRPxn//8R7L8zJkzOHPmDHbt2oXs7Gxcviy1u3SHyspKjBw5El999ZVk3eHDh3H48GHMmzcPX375JQYOHOiwrRMnTqB3794OB2ivXr2KIUOGiAokAFBVVYV9+/Zh3759yMzMxMqVK3HnnXfKtvHzzz/jvvvuw7Vr12zLCgoKsHr1aqxevdpvv6unnnoKn3zyiWjZ8ePHMWPGDCxZsgQbNmxAmzZtZPfNy8tDv379cOyY2Or2woULWLNmDdasWYP58+dj5cqVSEhwnCu4d+9eDBgwABcvXrQtq6iowI8//ogff/wRL774ImbNmuXhT+k92dnZGDlSal9dU1OD3377Db/99hsWLFiAOXPmYNy4cX7p0/Tp0zFlyhRJIefo0aM4evQo5s2bh6ysLAwfPtxpW6+//jpmzJghWpaXl4ePP/4Yy5cvx5YtW9C2bVtV+2/lgw8+wK+//oqWLVvi9ddf98kx1ISKDARxA8IxRQYh6JQMjF0SFRkIwiHsd0QwVkAQBJd8ts3GMnFb2khV+3YjIpvJQEoGggg5IrTSa2yZUUCcm+2wRQYNc+02MDULNZUMWtK9E4RfEQQBlZWuTwYJdsLCfJf7YjabMWjQIKxbtw4A0LJlS4wbNw5paWmIiIhAQUEBduzYgWXLlvnk+I74/vvvbQWGW265BWPHjkXbtm0RGxuLoqIiHDlyBOvXr8fu3btt+zRq1AiHDh3Cnj178OSTTwIAPvnkE9x+u9iqr3HjxrbXgiBgyJAh+OGHHwAAAwcOxNChQ9G8eXPwPI/du3dj1qxZOHPmDIYMGYLt27cjLS1Nsd9DhgzB2bNn8dxzz+H+++9HfHw8Tpw4gWbNmgGwFBJ69eqFnJwcaDQaDBs2DP3790dKSgpqamqwdetWfPDBB7h48SL69++P/fv32/a1cubMGVuBged5jB49GkOGDEFsbCwOHjyIGTNmYOrUqQ77qQaZmZnYs2cPOnfujIkTJ6Jly5a4ePEisrOzsWzZMpw7dw59+vTB4cOHER0dLdq3tLQU99xzD06dOgUAGDx4MJ588kk0bNgQubm5mDt3LrZs2YJt27Zh4MCB2Lp1KzQKExDKy8vx8MMPo7i4GK+99hr69+8Pg8GAXbt2Yfr06SgoKMAHH3yApk2b4vnnn/fpOVHCaDQiPj4egwYNQvfu3dGyZUtERkbi3LlzyMnJwZw5c3D58mU8++yzaNOmDf72t7/Z9h08eDDS0tKQmZmJefPmAbAoEFgaNWrkcn8yMzMxefJkAEBiYiJeffVVdO3aFSaTCevXr8fMmTNRVlaGjIwM1K1bF/3791dsa8GCBdixYwd69OiBMWPGoFWrVigqKsKSJUuwZMkSXLp0CU8++SR++eUXl/vnKrm5uTaFR2ZmJgyGwJ+ERkUGgrgR4Vm7pOBSMkjskrRkl0QQjpB+RwTAXANonA9kS5QMZJfkNRK7pOoiqYUVFRkIIujR8hwMGg5VdoP+ZTXe2yXxzMC/mnZJbGyEluySCMKvVFZW4tNPP63tbviNJ554AuHhvnmWmzt3rq3A8MADD+DLL7+UDNINGDAA06ZNQ0FBgU/6oIS1sNGsWTNs374dUVHi++v09HSMHz8eV65csS3T6XRo3769SNmQkpKC9u3bKx5n4cKF+OGHH6DT6bBq1Sr07dtXtP7OO+/EE088gW7duuHIkSN44YUXsG3bNsX2Dh8+jDVr1qB37962ZZ06dbK9fuedd5CTk4O4uDisX79etA4A7r77bjz++OPo0qULCgoKMHnyZHz++eeibV566SWbguGzzz7DY489ZluXlpaGhx9+GN26dcPevXsV+6kGe/bsQf/+/bFy5UpotdfHT/r164f27dvjrbfewpkzZzBt2jS8//77on3ffvttW4FhypQpmDZtmm1dp06d8NBDD+GJJ57A559/jh07diArKwtjx46V7celS5dQVFSE9evXo3v37rblnTt3xkMPPYQ77rgD+fn5eOONNzBs2DAkJiaqeRpcol+/fhg2bBgiIiJEyzt06IABAwZgwoQJ6N69Ow4ePIh//OMfoiJDXFwc4uLiUK9ePdsyR59pZ1y6dAkvv/wyAKBhw4bYuXMnmjRpYlvftWtX3H///ejWrRvKysowevRo5ObmQqfTyba3Y8cOjBo1CvPnzxcVRO+55x7o9XosXLgQO3fuxP79+9GhQweP+y3HM888g/Lycjz22GPo1auXqm37CpqbQhA3IqxdUtApGcguiSDcQe474koug2CuAcxiGx+e7JK8hi0yAIC54qLoPSkZCCI0YHMZPAl/NjG7sJkMBqYQUOVN8DMpGQiCCAHMZjNmzpwJwDKzf8mSJYqzgHmed2uWtBqcP38eANCxY0dJgcEeZzY6jhAEAf/85z8BABMmTJAUGKzEx8fbztX27dtx4sQJxTYzMjJEBQZ7SktL8dFHHwEApk2bJikwWGnWrBnefPNNAJa8g7Ky66rp8+fPY8WKFQCA++67T1RgsBIdHY2srCzFPqqFwWDAggULRAUGK2+88YZtIPy///0vqquvK5KrqqqwcOFCAEC7du1krZ04jkNmZibq1KkDwFIQc8SYMWNEBQYrDRs2tNkklZWVYfHixa79cCrTqFEjSYHBntjYWLzzzjsAgG3btqGwsNBnfVm0aBHKy8sBWKyG7AsMVjp06GCzHjp79iy+++47xfaSkpLw4YcfyiquJk2aZHv9888/e9lzMZ999hnWrl2L2NhY/Pvf/1a1bV9Ct40EcQPCMUqGYLdLYkNtCYIQIxeOzhbr5BBqyiTLSMngPbw+XrLMVCGeQcdRJgNBhASsZVKZ0f0CgLuZDF7ZJTG7kpKBIIhg5Ndff7UFso4aNcrhQH5tkJSUBADYunUrTp486ZNjHD161Nb2kCFDHG5rP4DtyPbl8ccfV1y3ZcsWFBcXu3W8mpoa7Nu3z7Z806ZNMJksYxNyHv9WOnfujHbt2jk8hrf07t0bDRs2lF3H8zxGjBgBALhy5QpycnJs6/bt22cLhc7IyFC0QYqJicHQoUMBWH5XjtQ0js7FAw88gLi4OADwaSi2O5SVlSEvLw9Hjhyx5X7YKwUOHDjgs2Nbz0FcXBwefPBBxe2efvppyT5yDBkyRLFA2bp1a9u1xapcUYPCwkK8+OKLAID33nsP9evXV61tX0NFBoK4EaHgZ4K4sZBTMhhdUDIYSyXLKPjZezhtuOR3Yq44L96IlAwEERJEMuHP5R7YJZkZuyQ2k0FVuyRmX5nsaoIgiIBn//79ttfdunWrxZ7IYw2bLSwsRPv27fHoo49i0aJF+OOPP1Q7hr2dUJcuXcBxnOI/+yKMVWUhxy233OLS8ZKSkhwez94Ox/549l78bNYES+fOnR2u9xZ3jm/f78OHD9te33HHHQ7bsF9vv589er0et956q2IbOp3OZtMjl2XgLy5fvozJkyejdevWiI6Otll5paamIjU1FQMGDBBt6yus57Fjx46KFkgAUL9+fSQnJ4v2kUMp2NtKfLxl8lhJSYmbPVXmpZdewqVLl9C5c2c888wzqrXrDyiTgSBuRELOLokyGQjCEbKFOJeUDDJFBh0FP6sBb0iAufyc7b254oJoPdklEURowNollXlil+REyWBgigxVXtzWsfkPpGQgCP8SFhaGJ554ora74TfCwnwzWcx+ENOqGggk7rnnHsydOxcvv/wyKioqsHTpUixduhSAxXrmvvvuw9ixYx0OLjvj4sWLzjeSwWo1I4d1QNVXx7PPoLD36JfD17O73Tm+fb/d+RkaNGggu589CQkJimoIti9Kbfiaffv2oU+fPi7bIFVUOJ/s5inWc+Ds3AOW85+Xl+fwvDmygQIsqhYANgWOt2zcuBGLFy+GRqPBxx9/bGs/WKAiA0HcgHBckNslMTOwSclAEI7heC3AaUUh7y5lMhgZuyReD45XnhFCuA6vFxcZWLskV0K5CYIIfFi7pHIP7JLYIgObyaBnxh6qvLFLYoOfqcZAEH6F4zifBSETgcX48ePx8MMP44svvsC6deuwfft2FBcX4+zZs5g/fz6ysrIwefJkvPvuux61bz/ouXr1atusbWc4Gpx1NNhtf7ycnByHs8jtady4sexyOQ98f6LG8QOlDV9SXV2NoUOHorCwEDqdDs899xwGDRqEVq1aIT4+3mY1dOrUKbRo0QKAJS/E1wT6eVPCmqOSlpaG48eP4/jx45JtcnNzba9Xr15tC/t+9NFH/dNJB1CRgSBuRILcLomCnwnCfThtOISa6zJOVzIZzIxdEuUxqAcb/ixUiWf+cDxlMhBEKMDaJXmiZGDtknhf2iVJgp+D8yGdIIgbm7p169peFxQUOLU8cQfrzGKz2fH13D7QWIl69erhhRdewAsvvACz2Yxff/0VK1aswNy5c1FUVIT/+7//w+23345Bgwa53U9rqDBg8ae3tyjyBfbHS0xMVCweOMJeKXHhwgXZ0F779b7EWfv26+0Duu1fX7hwAa1atVJsw94qSinku7CwECaTyWGBx9oXtg37WfBqfF7l2Lhxoy2PIDMzU5R1YI+/VBYJCQkoKChw6fNhPf/eBKyrTVVVFQBg165dssHnLBMmTLC9DoQiQ3DpLgiCUAc+tOySQHZJBOEUthjnkpKBsUviKY9BNTiD45tZjpQMBBESREjskrwPfmaVDAamEFDN7uAGEiUDPS0SBBGEdOzY0fZ669atqrYdHR0NALZwXyV+//13t9rleR4dO3bEtGnTsGHDBtvyZcuWibZzdYa21acfALZv3+5WXzxBjeOlpqbaXu/Zs8fhts7We4s7x7cv4Ni/3rVrl8M2du/eLbufPdXV1Q6Dko1GI3799VfZNqyfVQC4evWqYhtXrlxx2eqI5ciRI7bXjzzyiOJ29pkdcqilPLCeg5ycHBiNypNpL168iNOnT4v2IbyHbhsJ4gYk2O2SKPiZINyHzS5xRcnABj+TkkE9WCWDdAMqMhBEKBDJjNKrYZfEigvUVDIYSclAEEQIcOutt9pmwS9cuBClpdKcMU9JSUkBYAl6lbMyASwDw8uXL/f4GB07drTN6mdDcu1zLKyznpXasKoJsrKyUFnp/N7fG3r16mXzr58zZ45Hljg9e/a0zdhfvHix4nZ79uxxGNarBmvXrkVBQYHsOrPZbOtffHy8qKjVqVMnxMXFAbD8DEoKgpKSElsB6eabb3aYHeLoXKxYscJWQOjVq5doXXx8vK0vjgb5v/rqK48tjOwH8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rzVJps3b4YgCA7/jRgxwrZ9bm6ubXkgQEUGgrgRkQQ/B5tdEmUyEITbsEoGo/tKBk5Loc9qweuVg/MACn4miFBBqmTw3i5Jwzu2S/Im+JntHikZCIIIRniex8svvwwAyM/Px/Dhw1FdXS27rdlsxrlz52TXydGjRw/b61mzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSTZrqFWrVklUHABQWlqKMWPGeNxPV6mqqsKYMWNkA31nzJiBQ4cOAQCefPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCiu0Hn610794dALBy5UrZz8vx48fx5ptvOjy+I1q2bGl7nZ2dLbvN66+/jpycHIftuPq5dsbIkSNtxa6XXnpJ9nt44MABvPfeewAsQeuDBw/2+HiEGMpkIIgbEUkmQ3ApGSSZDFqySyIIZ7BKBlYRJIdEyUB2SarhTMnAaSiTgSBCgUimyFCugl0SO+5vkFEyCILgtvWAWRDA9k5HSgaCIIKU8ePHY/Xq1Vi3bh1WrFiB1NRUjBs3DmlpaYiIiMD58+exc+dOfPnllxg2bBimTp3qUrsdOnRAly5d8Msvv2DBggWorq7GiBEjEBsbixMnTiArKwsbN27EXXfdhR07dsi28eqrr+KZZ57BoEGD0L17d7Rq1QqRkZEoLCzEtm3b8OGHHwKwBC2zHvdNmzZF48aNkZ+fj3/9619o3LgxWrdubVMA1K9f32aT88wzz9h+/q+//ho5OTkYM2YMOnfujNjYWFy7dg3Hjh3D5s2bsWrVKoSFhTkd8HbEO++8gy1btmDXrl2YPXs2Nm/ejFGjRuG2225DZGQkrl69iiNHjmD9+vVYs2YNUlNTJT/frFmzsG7dOpSUlGDYsGHYsmULhgwZgpiYGBw8eBAzZszA77//jrS0NKcWPN6QlpaG1atXo2vXrpg4cSJatmyJixcvYvHixfjqq68AWEKr5Qbo33rrLXz77bc4deoUpk6dikOHDmHkyJFISkpCbm4u5s6di82bNwMAunTpgtGjRyv2IzExEREREbj33nsxceJE9O/fHwaDAbt378Z7771nK5BNmzZNNrR73LhxWLVqFSoqKpCeno6pU6eiQ4cOKC0txYYNGzB79mwkJiZCo9Hg0qVLbp+nPn36oF69erh48SKmTJmCvLw8PPDAA6hbty7++OMPLFiwABs2bEDXrl0d2mjdddddttcTJ07EG2+8gaSkJNu9THJyMrRa50PYiYmJmDlzJsaPH4/8/Hx06tQJr732Gu666y4YjUasX78eM2fORGlpKTiOQ1ZWlssh5YRzqMhAEDcgHB/cdkkU/EwQ7uNRJoNRLHkluyT14PRkl0QQNwIRbPCzGnZJTJXBwApUYclW0ClnRMrC5jEAZJdEEETwwvM8vvvuO4wYMQLffPMNfv/9d7zwwguqtP3JJ5+gR48etkFn1s5m0qRJaNeunWKRAbDYucjta8VgMODjjz9GWlqaZN3kyZMxbtw45ObmSkKhFy1ahIyMDAAWn/ulS5fi+eefx8cff4yTJ0/ilVdeUeyT3CC1OxgMBqxbtw4ZGRn49ttvceDAAYdFi5iYGMmy5ORkrFq1Cvfffz9KSkqQmZmJzMxM0TZvvfUWOI7zaZFh/Pjx2LJlC7Kzs2UDdZOSkvC///0PsbGxknXR0dHYsGED+vXrh2PHjmH58uWy9lldu3bFqlWrHIY6R0RE4JtvvkG/fv0wffp0TJ8+XbLNhAkT8OKLL8ru36dPH0yYMAFz5sxBfn6+bNFq1apV6Nevn2IfHBEZGYklS5Zg8ODBqKysxPz58zF//nzRNunp6Zg7d67D7IObbroJQ4cOxbJly7B27VqsXbtWtD43NxfJycku9WncuHEoKirCm2++iQsXLmDixImSbQwGA7KystC/f3+X2iRcgwSwBHEjEmJ2SawNDEEQUljFjyuZDGaJXRIVGdTCqZKBigwEERJEalklg/t2SWyRQcM5tksCgCoPwp9rZPbRUo2BIIggJiIiAl9//TU2btyIJ554AikpKQgPD4der0eTJk0wcOBAzJ8/Hy+99JJb7bZp0wY5OTkYO3YsmjVrBr1ej8TERPTt2xc//PADZs6c6XD/TZs2Yfbs2XjooYeQmpqKxMREaLVaxMTEoEOHDpg0aRKOHj1qKxawjB07FsuXL0fv3r1Rr149hzO8dTodMjMzceDAATz33HNITU1FbGwsNBoNYmNjcdttt+Gpp57CN998g99++82t8yBHdHQ0li9fjp9//hlPP/00WrdujejoaGi1WiQkJOD222/H+PHj8eOPP2LdunWybaSnp+PIkSOi81u/fn0MGDAAP/30E95++22v++kKixYtwhdffIH09HTUqVMHBoMBrVq1wiuvvIIjR47g5ptvVtw3OTkZBw4cwNy5c9GjRw/UqVMHOp0O9evXR9++ffHpp59i69atSEhwMvEIFlVFTk4OJkyYgBYtWiAsLAx16tRB37598eOPP2L27NkO9589eza++OILdO/eHTExMQgPD0fr1q3x2muvIScnB23btnX73NjTp08f7N27F3//+9/RsGFD6HQ6JCYmokePHsjKysKGDRsQGencdvezzz7D+++/b1Pa8OysCjeYPHky9u/fj1GjRqFFixYIDw9HZGQk2rZti+effx7Hjh3D8OHDPW6fkIcTAiUdgvCI/Px8W6DRn3/+aQv2IQhHVBVswpX//c32ng9LRP1HL9Zij9zj0upOMBZe9/SLvXsxIm6iPxAE4Ygr6/qh6uxPtvfRae8jqv3LDvcp3jUB5b99aHsf3moU4u7K8lkfbySqzq3HlbX3Kq6PuXMeIts848ceEQThC86XGfH85iuiZZ/2TZQtDCjx9NpLKLGzWfrHnXG4uc71QmRpjRlPrRUHg867pw4SwtyTMhRXmTF6vbidBb3qIsZA89IIwoo3z98nTpyA0WiEVqsV+ZgTBBEY5OXl2TIw7BUhtUFGRgYWL16MZs2aIS8vr9b6QYQuvvibRHeMBHEDEux2SayXPNklEYQLaNxXMrDBzzwpGVSDMhkI4saAtUsC3FczSDIZmPqEQcbSqJqVP7iAUU7JQE+LBEEQBEEQhAvQbSNB3IhIgp+DzC7JKLZLoiIDQThHkslgdCWTgbVLci5zJVzDWSYD2SURRGgQIeM35G4ugySTgbFL0vIAe5QqD+aPyNolUSYDQRAEQRAE4QJUZCCIGxFJJkNwKRkkwc+M1zxBEFIk3xMPlAwU/KwevCHe8QYaKjIQRCig5TkYGGukshp3iwzi7VmnJY7jJPZLVR4pGaTLSMlAEARBEARBuIJyOgxBECELxwW3XZKkyEBKBoJwikTJwAaoyyBVMlCRQS04XYyl4Ktw/SUlA0GEDpE6TjToX+alXZJcnINBI1YveGSXxBQzeE6qmiAIgiCIQCU3NxdlZWVu7xcfH49GjRr5oEfEjUZZWRlyc3M92rd169bQ6XQq98i/UJGBIG5Egt0uiR0cpSIDQTiF8yCTwWwU36STkkE9OI4Dr4+Hueqy/AY8ZTIQRKgQoeVgH/1c7qaSQZrJIB34tygZrm/oWSaD+L2M0xNBEARBBCwjR47Eli1b3N5vxIgRyM7OVr9DxA3Hnj170LNnT4/2zc3NRXJysrod8jNUZCCIGxE+eO2SBEGQCX4muySCcIZHmQysXRIpGVSFMyQACkUGjuySCCJkiNTxAK7fa5XJ+RIpYBYEsOUCuZgEPbOwWiZfwRls8LOO8hgIgiCIG4jk5GTLeEMAkJ2dTYUPIuigIgNB3Ihw7FdfgCCYwXFBYLxrrpYsIrskgnABD5QMFPzsW3hDApRKvGSXRBChQ6TO80wGuVqBRuZ2jc19UCOTgfIYCIIgiGBi8+bNtd0F4gYnPT09YApVtQHdOhLEDQjH2iUBQaNmkJt9TUUGgnCOR5kMjJKBJ7skVeENCQ5WUpGBIEKFCMZ3yB27JLlagUbRLuk61R7c1tUwFQ0tKRkIgiAIgiAIF6EiA0HciMgVGcxBUmSQmX1NdkkE4RxOy3xPnCgZBEGg4Gcfw+uViwychjIZCCJUsNglXcdduyQWubF/A3Nrp0omAxUZCIIgCIIgCBehIgNB3IjwUqc0QQiO8GdZixdSMhCEU9xWMpgqAUE84kTBz+rCGeKVV5KSgSBChgidukoG2UwGNeySBFbJ4HYTBEEQBEEQxA0K3Tp6yd69e/HOO++gd+/eaNy4MQwGA6KiotCqVSuMHDkS27Ztq+0uEoSEoLZLkhkYJbskgnAOq/hxlskgGMukbZCSQVUcKhmoyEAQIUMkM1rvViaDjOjBNbskD4oMzK0gKRkIgiAIgiAIV6HgZy/o3r07fv75Z8ny6upqnDhxAidOnEB2djaGDx+OBQsWQK+nAQMiQAjiIoPE4oXXgeNlfh6CIERIlAwy+Sb2mJk8BgDgdBT8rCaOMhk4Dd0zEESoIFEyeGmXpJGzS2IKAtVyidFOYJUMOpqORhAEQRAEQbgIFRm84Ny5cwCAhg0b4uGHH0a3bt3QtGlTmEwm/PLLL5g1axbOnj2LJUuWoKamBl988UUt95gg/kLOLskcnHZJpGIgCBdxW8kgU2TQRKjapRsdzmHwM2UyEESoEMkUGdxRMvjVLonNZJBRTBAE4TkajQZGoxEmkwlmsxk8T5U8giAIwv+YzWaYTJaJxhqNepN2qcjgBW3atMF7772Hhx56SPJLufPOO/HEE0+ga9eu+P333/Hll1/imWeeQffu3WuptwRxnVCyS6IiA0G4hruZDEING/ocQaohlXGoZCC7JIIIGSIYSUB5jetKBvkig3O7pCoPbutqzJTJQBC+JCwsDFVVVRAEAaWlpYiJiantLhEEQRA3IKWlpRD+UrCGh4c72dp16NbRC77//nsMHTpUsepTt25dzJo1y/b+m2++8VfXCMIxnEx9MWiKDKySQb0LIkGEMpyW+a64qWSgPAb1cZjJQHZJBBEyRGoZJYNRsD3YOcNluyTmccSjTAZJkYGUDAShJvZFhfPnz+PatWswywWvEARBEIQPMJvNuHbtGs6fP29bFh0drVr7pGTwMT179rS9PnnyZC32hCDskFEyBKtdEkjJQBAuIadkEAQBnIIdhkTJoKMig9rwhngHK6nIQBChAmuXZDQDNWZA74I4TC5awRW7JM+KDOL3pGQgCHWJjIxEeHg4KioqYDKZcPbsWXAcp6pVBUEQBEEoYTKZRBNdwsPDERmpXu4iFRl8TFVVle013TwQgUIw2yXBSHZJBOEJEtWPYAYEI8DpZLcXjGXi/UnJoDqKmQwcD04mO4cgiOCEtUsCgLIaM/QuPBu4nMmgRvAzKRkIwqdwHIemTZvizJkzqKiwPNMIggCjMTgmexEEQRChQ3h4OJo2bao46dAT6AnWx2zZssX2um3btm7vn5+f73B9QUGB220ShFzw87U9E8HpnPuC8vpYhLcYAX1iZ9n15srLKDv6HxhL87ztpSymErEiiOySCMI15ApyRVufkL0eAIDp2h/i/bXqzXAgLPB6BSUDqRgIIqSI0Eof3hYeLkHYX+qD4mozDl2uAQDc3zwCfZLDUTfcUoAwMXZJPAfZh0EDo2Q4U2LEh/uLxdtoOdyVFIb2deWvMUamLiFTGyEIwkt4nkezZs1QVlaGkpISm6qBIAiCIHyNRqNBeHg4oqOjERkZqWqBAaAig08xm82YMWOG7f3QoUPdbqNJkyZqdokgLMgoGar+XO3y7uUnPkHi4N+gjU6WrLuycRBqLu7wpnduQUoGgnARNpMBQGXeUpd3J7sk9eF4LThdDISaa8xyKjIQRCih5TkYNByq7GQJey9Uy2676lQ59lyowgc9EsBznMQuSS6PAZDaJZVUC9h2rkqy3aY/K/F/XePRPFaqYpMoGVR+8CQIwgLHcYiKikJUFN1bEQRBEKEDzU/xIf/+97+xe/duAMCDDz6ITp061XKPCMICx3HezUo2VaL6/Ebp4ooLfi0wAACnj/Pr8QgiWOG1UbIFRpf3dxBSTHgOH15fsswVVRlBEMFFrN71AfuCMhMKyiwzm6sYvySNwsB/lM619s0CcPCSfIGjmplMTXZJBEEQBEEQhKtQkcFHbNmyBa+99hoAoF69epg3b55H7fz5558O/1mLGAThLmEpj3i1v1BTIllmKj3tVZueEJ7yqN+PSRDBCKcNR1jTQR7vT9813xDe/HGZZY/VQk8IgvAldzdyT3lZVmMpLlyuEKcxx4fJP761SdAhQWEdC1u4sFLJLA+TsXkiCIIgCIIgCDnILskHHDlyBA888ACMRiPCwsLw9ddfo169eh611bhxY5V7RxAWYrt8DH397jAWH3Np+8q8b2Aque7RLjABzABgKvtT9J7TxyOi9RjvOqoAx2mhb9ADhoa9fNI+QYQicd0+Q0Wjz2Fksk0cwfE66Bv8DYakdN917AYm6ta3oI1rh5rCHAACdPG3IizFfXtFgiACm4dbRaJJtBanrxlhP5S/70IV8kulfuzWAf9L5eJ1ieHyirQwLY9374rHjoIqlFSLCxPsMRRqDKg0ivejIgNBEARBEAThKlRkUJnc3Fz07t0bV69ehUajwVdffYXu3bvXdrcIQgLH6xBx0wiXtzdd+0NcZDBJiwxmpsigjWuHmE7TPe8kQRCqwmnDEdHq6druBmEHx3EITx6C8OQhtd0VgiB8CM9xuKthGO5qyCwHkF9aLtm+ymhVMrBFBmW1Qp1wDQY2j5AsL6oyi4oMbPaClQom+TlcKQCCIAiCIAiCIBjILklFzp07h169euHcuXPgOA6ffPIJBg3y3JqCIAIJjgmNlSsymMrFRQZNVFOf9okgCIIgCCKYMSssr/xrwP8SY5dUV0HJ4AhWkKCoZCC7JIIgCIIgCMJDqMigEpcvX8a9996LU6dOAQA+/PBDDB8+vJZ7RRDqwWmYIoMLdkmaiCY+7RNBEARBEEQoUmGyFBekSgb3iwwaJsDZpFDZqDRSkYEgCIIgCILwDCoyqEBxcTH69OmDo0ePAgBmzJiB8ePH13KvCEJlNOLAQsFUKdlEUmSIpCIDQRAEQRCEEgrORag0ChAEAZfYIkOE+49vWmYXo0B2SQRBEARBEIS6UJHBS8rLyzFgwADk5OQAAN544w28+uqrtdwrglAfiZJBzi6p7IzoPRUZCIIgCIIg3KfSJKC4WkANozrwxC5Jw4mLBUZSMhAEQRAEQRAqQ0UGL6iursYDDzyA7du3AwCef/55vPvuu7XcK4LwDWwmA5gig2Cugbm8QLSMigwEQRAEQRDKCAqqgkqjILFK0nBAQpgHSgZJJoP0mIIgUCYDQRAEQRAE4THa2u5AMPPYY49h7dq1AIC//e1veOqpp3D48GHF7fV6PVq1auWv7hGEqjjLZDCVnwMgfjilIgNBEARBEIQyCm5JqDRKrZLqhPHgOfcH/jVMXUIuk6HGLA2EDqciA0EQBEEQBOEiVGTwgm+//db2euPGjbjlllscbt+sWTPk5eX5uFcE4RtYJQNrl2Rm8higCQdnqOPrbhEEQRAEQQQtikUGk4DL5eJqgCdWSYDULklOycBaJQGUyUAQBEEQBEG4DtklEQThEk6VDDKhz5wHs+0IgiAIgiBuFBTckmSVDIkRHhYZ2OBnGSUDa5UEkF0SQRAEQRAE4TqkZPACJQ9VgghFnAU/U+gzQRAEQRCEezhSMrBFhrrhns0P0/LOlQwVjJKBA2AgJQNBEARBEAThIlRkIAjCNZzYJckpGQiCIAiCIAhlHCkZSqrFkoNED+2SWEGCnJKhglkYpuVIkUoQBEEQBEG4DBUZCIJwCU/skgiCIAiCIAhlzApFhgqjgKtV6hQZNKySQeagbCZDGKkYCIIgCIIgCDegTAaCIFyC04SJ3jtXMjT1eZ8IgiAIgiBCkatVZomFkad2SWy9QCbjWZLJQHkMBEEQBEEQhDtQkYEgCJdglQwwVYremknJQBAEQRAE4RaCQiqDXEZCXY/tkthMBufHC6ciA0EQBEEQBOEGVGQgCMIlOJlMBmv4uWCsgLnqsmg9T0UGgiAIgiAIhyhlMrDEh/GSAGdX0TBPfGSXRBAEQRAEQagNFRkIgnAJiZJBMAPmGgBSqySAlAwEQRAEQRDOcLHG4LGKAYCkOCGnZCC7JIIgCIIgCMIbqMhAEIRLsEoG4HouA1tk4HSx4HXRfukXQRAEQRBEsOKqkiHRwzwGQCaTQUbJQHZJBEEQBEEQhDdQkYEgCJeQKBlgsUkC5EKfScVAEARBEAThDFeVDIleKBlYuySjWbqNxC6JigwEQRAEQRCEG1CRgSAI15ArMliVDOVMkSGqqV+6RBAEQRAEEcz4xS5JEvzsXMlAmQwEQRAEQRCEO1CRgSAIl3DHLkkTQUoGgiAIgiAIZ/jFLkkS/Czdhs1kILskgiAIgiAIwh2oyEAQhEtwHA/wevHCv+ySzEyRgSe7JIIgCIIgCKcILmoZvFEyaBglg1Eu+JnxUArT0mMiQRAEQRAE4Tp090gQhMuwuQzXlQxnRMspk4EgCIIgCMI5LisZIrywS2KVDGSXRBAEQRAEQagMFRkIgnAZThMmeq9ol0RFBoIgCIIgCKe4UmOI0XMweDHoz2YyGM2AwBQayC6JIAiCIAiC8AYqMhAE4TJsLoNgqoS5uhhCTYloORUZCIIgCIIgnONKkcEbqyRAmskAAGbmwJVGKjIQBEEQBEEQnkNFBoIgXEZil2SskKgYAEAT0dhfXSIIgiAIgghaXLFLSvS2yCBTL2CEC1K7JCoyEARBEARBEG5ARQaCIFxHomSQFhn4sHrgtGJbJYIgCIIgCMIzEsO9e2TT8tKCgZGRMlAmA0EQBEEQBOENVGQgCMJl5JQMZspjIAiCIAiC8AjWtkgOr+2SnCgZjGZBomwguySCIP6/vTsPsqq888f/bmigoYEvCphgwBVb1KghiKPjigtWgiaiianERCRoHJM46DjqaIxrjDJq3GpmLAUlTiZqTKImOlQpigyyiCiTiQYCLqiMIiCgyNY03N8f/LhDQwPNpTfw9arqqtP3POf0p62P1L39Ps/zAMC2KG/uAoAdxyYhw5oVWbvqo1qvtRIyAADUS332ZOjeYftChrpmMqzZIN3YeBZDYrkkAAC2jZkMQL1tvPFz6lguyUwGAID6aa49GTbMFeoMGSyXBADANhAyAPVWn42fhQwAAPVTqMdchsbek2HlxmslxUwGAAC2jZABqLe6lkvaNGTYoylLAgDYaXUoL0uHNtv3kW1rezKs3GgmQ7vWZWlVJmQAAKD+hAxAvW28XFKhZnnWLJ9b6zUzGQAA6mdrGz9v76bPSVLHRIasWft/xytq1tY6ZxYDAADbSsgA1FtZ64pa369Z9l6yZmWt14QMAAANY7cO2/9xraysbJPZDDUbbAax8UyG9vZjAABgGwkZgPrbaLmkmk9m1T5f1iqt2vdowoIAAHZcTTGTIUnKN/rUt+FMho33ZDCTAQCAbSVkAOpt4+WS1nwyu9b3rdrvnrJW5U1ZEgDATqvBQoaN9lhYs8FMhhU1QgYAALaPvwYC9bbxxs9J7Q+llkoCAKi/rUxkSPf2DfNMWOuNbvPb2cvy/9quSJLM/XRNrXOWSwIAYFsJGYB62zRkqK115R5NVAkAwI6vUNhyzNC9gWYytC4ry4aRxp8Xrt7sWDMZAADYVpZLAuqtVbtdtni+dce9mqYQAICdwIFd227x/G4dGiZkaL8NwUGntj4iAgCwbbyDBOqtbY8TU9aua90nW7VN+73PatqCAAB2YKfs2T6d29YdAPT/XNsG+4P/3+5eUa9xrcqSI3q0a5CfCQDAZ4flkoB6a93+c+l26tSsnPNY1lYvKb5e1rp9KnqdljZd+zZfcQAAO5gObVrln4/ZNVM+WJUela1zUNe2+a//XZlWZckxX6hfMFAf39ivQ3p1ap23P67Z7D4QbVolh3Zvl6pd2jTYzwUA4LNByABsk/JO+6TjwVc0dxkAADuFXSpa5yt7dyh+f+IeW94DqxRlZWU5okdFjujR4LcGAADLJQEAAAAAAKURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMjSgd955J5deemn69OmTysrK7Lrrrunfv39uvfXWLF++vLnLAwAAAACABlXe3AXsLP74xz/mu9/9bj755JPia8uXL8+0adMybdq0jBw5Mk8//XR69+7djFUCAAAAAEDDMZOhAUyfPj3f+ta38sknn6Rjx4656aabMmnSpDz33HM5//zzkySzZs3KoEGDsnTp0mauFgAAAAAAGoaZDA1g+PDhWbFiRcrLy/PMM8/kyCOPLJ474YQTst9+++Xyyy/PrFmzcvvtt+e6665rvmIBAAAAAKCBmMmwnaZOnZoJEyYkSYYNG1YrYFjv0ksvzQEHHJAkueuuu7J69eomrREAAAAAABqDkGE7PfHEE8XjoUOH1jmmVatWOeecc5IkS5Ysybhx45qiNAAAAAAAaFSWS9pOL774YpKksrIy/fr12+y44447rng8ceLEDBw4sNFra4lWrliRmbNebe4yAAAAaEH6VH05Fe3bN3cZAEAJhAzbacaMGUmS3r17p7x88/85+/Tps8k19TF37twtnv/ggw/qfa+WYOasVzP1pdebuwwAAABamC8delRzlwAAlEDIsB1WrlyZhQsXJkl69uy5xbG77LJLKisrs2zZsrz33nv1/hm9evXarhoBAAAAAKCx2JNhOyxdurR43LFjx62Or6ysTJJ8+umnjVYTAAAAAAA0FTMZtsPKlSuLx23btt3q+Hbt2iVJVqxYUe+fsbVZDx988EEOP/zwet8PAAAAAAAaipBhO1RUVBSPq6urtzp+1apVSZL227CZ1daWYdrR9Kn6cnOXAAAAQAvjsyIA7LiEDNuhU6dOxeP6LIG0bNmyJPVbWmlnVdG+vc28AAAAAAB2EvZk2A4VFRXp2rVrkmTu3LlbHLt48eJiyGAzZwAAAAAAdgZChu104IEHJkneeOON1NTUbHbczJkzi8cHHHBAo9cFAAAAAACNTciwnY4++ugk65ZCeuWVVzY7bvz48cXjo46yXBAAAAAAADs+IcN2Ov3004vHDz74YJ1j1q5dm4ceeihJ0qVLlwwYMKApSgMAAAAAgEYlZNhOhx9+eI455pgkyahRozJ58uRNxtx+++2ZMWNGkmT48OFp06ZNk9YIAAAAAACNoby5C9gZ3HXXXTnqqKOyYsWKDBw4MFdddVUGDBiQFStW5JFHHsl9992XJKmqqsqll17azNUCAAAAAEDDEDI0gL59++bRRx/Nd7/73XzyySe56qqrNhlTVVWVp59+Op06dWqGCgEAAAAAoOFZLqmBnHbaafmf//mfXHLJJamqqkqHDh3SpUuXHHbYYRkxYkSmT5+e3r17N3eZAAAAAADQYMoKhUKhuYugdHPnzk2vXr2SJO+991569uzZzBUBAADAzsfnbwCom5kMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABAScqbuwC2T01NTfH4gw8+aMZKAAAAYOe14WfuDT+LA8BnnZBhB7dgwYLi8eGHH96MlQAAAMBnw4IFC7LXXns1dxkA0CJYLgkAAAAAAChJWaFQKDR3EZRu5cqV+fOf/5wk6d69e8rLW/7klA8++KA462Lq1Knp0aNHM1cEpdPP7Gz0NDsT/czORD+zs9kRe7qmpqa4msDBBx+cioqKZq4IAFqGlv8XabaooqIi/fv3b+4yStajR4/07NmzucuABqGf2dnoaXYm+pmdiX5mZ7Mj9bQlkgBgU5ZLAgAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASlJWKBQKzV0EAAAAAACw4zGTAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQgSb1zjvv5NJLL02fPn1SWVmZXXfdNf3798+tt96a5cuXN3d5kGnTpuWGG27IwIED07Nnz7Rr1y4dO3ZMVVVVhg4dmhdffHGb7jdmzJgMHjy4eK+ePXtm8ODBGTNmTCP9BrB1V1xxRcrKyopfL7zwwlav0cu0NO+++26uvfbaHHbYYenevXsqKirSq1evHHPMMbnmmmvy2muvbfF6PU1LUV1dnZEjR+aUU05Jjx49iu899t9//wwdOjSTJk2q1330NI1l/vz5eeqpp3LNNdfkK1/5Srp161Z8D3Huuedu8/0aoldrampy77335phjjkn37t3Tvn377Lvvvrngggvy+uuvb3NNAMB2KkAT+cMf/lDo3LlzIUmdX1VVVYXZs2c3d5l8hh1zzDGb7c8Nv84555zCqlWrtnivNWvWFIYNG7bF+5x33nmFNWvWNNFvB+tMnz69UF5eXqsXx40bt9nxepmW6O677y5UVlZusS+HDx9e57V6mpZkzpw5hYMOOmir7z0uuuiiwtq1a+u8h56msW2pt4YMGVLv+zRUry5YsKDQv3//zd6jXbt2hfvvv387f2sAYFuYyUCTmD59er71rW/lk08+SceOHXPTTTdl0qRJee6553L++ecnSWbNmpVBgwZl6dKlzVwtn1Xvv/9+kmT33XfP8OHD89vf/jZTp07N5MmT84tf/CJf+MIXkiQPPfTQVp/a+slPfpJRo0YlSfr27ZuHH344U6dOzcMPP5y+ffsmSUaOHJmrr7668X4h2MjatWvzgx/8IDU1Ndltt93qdY1epqX52c9+lr//+7/PsmXLUlVVlVtvvTUvvPBCpk+fnrFjx+bWW2/N3/7t36ZVq7rf5uppWorVq1dn0KBBxaeuDznkkIwePTqTJ0/OM888k2uuuSaVlZVJknvuuScjRoyo8z56mqa0xx57ZODAgSVd2xC9umbNmgwePDgvv/xykuSMM87ImDFj8tJLL+Xuu+/ObrvtllWrVuWCCy4wiwcAmlJzpxx8Nqx/Qry8vLwwadKkTc7/8z//c/HJk2uvvbbpC4RCoTBo0KDCo48+Wqipqanz/IIFCwpVVVXFXh0/fnyd4/76178WnxQ/7LDDCsuXL691ftmyZYXDDjus+P+EGTw0lTvuuKOQpNCnT5/ClVdeudWZDHqZlmbs2LG1ZpVVV1dvdmxdM870NC3JY489VuznIwXwsRQAABQ+SURBVI88ss73H9OmTSu0adOmkKTQpUuXwurVq2ud19M0hWuuuabwxz/+sTBv3rxCoVAovP3229s8k6GhenXUqFHFn/3DH/5wk/OzZ88uzp7v3bv3Jv/PAACNw0wGGt3UqVMzYcKEJMmwYcNy5JFHbjLm0ksvzQEHHJAkueuuu7J69eomrRGS5KmnnspZZ52V1q1b13m+W7duuf3224vf//a3v61z3J133pmampok6548bN++fa3zHTp0yD333JNk3Xqyd9xxR0OUD1v07rvv5qc//WmS5N57703btm23eo1epiVZu3ZtLrzwwiTJoYcemlGjRqVNmzabHV9Xj+tpWpIN91q48sor63z/0a9fv5x66qlJkiVLlmTGjBm1zutpmsL111+fU089NZ/73OdKvkdD9eptt92WJNl1111z6623bnK+d+/eufLKK5Mkb7zxRh5//PGSawYA6k/IQKN74oknisdDhw6tc0yrVq1yzjnnJFn3AWrcuHFNURpsswEDBhSP33zzzU3OFwqFPPnkk0mSPn365IgjjqjzPkcccUT233//JMmTTz6ZQqHQCNXC//nRj36UTz/9NEOGDMlxxx231fF6mZbmmWeeyezZs5Os27y8vLx8m67X07Q01dXVxeN99tlns+P23XffOq/R0+woGqpXZ82aVQzazjrrrHTo0KHO+2y4rKmQAQCahpCBRvfiiy8mSSorK9OvX7/Njtvwj14TJ05s9LqgFKtWrSoe1/XE4dtvv13c22Frf8hdf/5///d/M2fOnIYrEjbym9/8Jk899VR23XXX4hOAW6OXaWkee+yxJElZWVnxye4kWbRoUWbPnp1FixZt8Xo9TUuz/o+pSfLWW29tdtz6hxrKysqy3377FV/X0+woGqpX13+u3Np9Pv/5z6eqqiqJz5UA0FSEDDS69U+b9O7de4tPHfbp02eTa6ClGT9+fPF4/RJfG/rLX/5SPN6wp+ui52kKS5YsyfDhw5MkI0aMSLdu3ep1nV6mpZkyZUqSZK+99kqnTp3y61//OgcffHC6du2aqqqqdO3aNfvvv39uu+22WoHwenqalubb3/52OnfunGTdv89r1qzZZMz06dPz9NNPJ0m+853vFMcnepodR0P1ain3ee+997Js2bJ61woAlEbIQKNauXJlFi5cmCTp2bPnFsfusssuqaysTLLuzSC0NGvXrs0tt9xS/P6ss87aZMzcuXOLx1vr+V69ehWP9TyN5fLLL8+8efNy1FFHZdiwYfW+Ti/TkqxduzYzZ85Msm5/nOHDh+fss8/Oa6+9VmvcrFmzctlll+WEE07IkiVLap3T07Q03bp1y7//+7+nQ4cOmThxYvr375+HHnooU6ZMydixY3P99dfnuOOOS3V1db785S/X2hcq0dPsOBqqV0u5T6FQqHUdANA4hAw0qqVLlxaPO3bsuNXx60OGTz/9tNFqglLdcccdmTp1apLkjDPOqHP5r23p+fX9nuh5GseECRMycuTIlJeX5957701ZWVm9r9XLtCQff/xx1q5dmyT585//nLvvvjs9evTIr371qyxatCjLly/P+PHji+t8T5o0Kd///vdr3UNP0xJ97WtfyyuvvJLzzjsv//3f/50hQ4bkyCOPzMknn5zrrrsuHTp0yJ133pkJEyZssumunmZH0VC9qucBoOUSMtCoVq5cWTxu27btVse3a9cuSbJixYpGqwlKMX78+PzTP/1TkmS33XbLv/3bv9U5blt6fn2/J3qehlddXZ0f/OAHKRQKueSSS/LFL35xm67Xy7QkGy51sXLlynTo0CHjxo3L2WefnV122SXt27fPsccem+effz6HHnpoknWbfb700ku1rltPT9NSVFdX56GHHtrshswffvhhfvWrX2Xs2LGbnNPT7Cgaqlf1PAC0XEIGGlVFRUXxuLq6eqvj16+h3L59+0arCbbV66+/nsGDB6empiYVFRV57LHHsttuu9U5dlt6fsM1w/U8De3nP/95Zs6cmT322CPXXnvtNl+vl2lJNuzHJDnvvPNqbZq7Xvv27XPTTTcVv3/00UfrvIeepiVYtmxZTjrppNx8881ZtGhRLr/88syYMSOrVq3Kxx9/nGeeeSZHH310pk2bltNPPz2/+MUval2vp9lRNFSv6nkAaLmEDDSqTp06FY/rM011/ZOK9VlaCZrC22+/nYEDB2bx4sVp3bp1HnnkkRx77LGbHb8tPb/hk7l6noY0c+bM3HzzzUmSe+65p9aSAfWll2lJNuzHJBk4cOBmx5544okpLy9Pkrz88st13kNP0xJcd911mTBhQpJk1KhRGTFiRPr06ZO2bdumc+fOOfnkkzNu3LgMGDAghUIhl112Wf70pz8Vr9fT7Cgaqlf1PAC0XOXNXQA7t4qKinTt2jUfffTRVjfcWrx4cfHN4IYbfkFzef/993PSSSfl/fffT1lZWR544IF8/etf3+I1G25Ct7We33AzOz1PQ7rjjjtSXV2dffbZJ8uXL88jjzyyyZgNN8x9/vnnM2/evCTJaaedlsrKSr1Mi9KuXbt07949CxYsSLLlPquoqEi3bt0yb9684vjEv8+0LIVCIQ888ECSpKqqKkOGDKlzXHl5eW688cYcffTRWbt2bUaPHp077rgjiZ5mx9FQvbrxfbp167bV+5SVlW11k2gAYPsJGWh0Bx54YCZMmJA33ngjNTU1xacLNzZz5szi8QEHHNBU5UGdFi5cmJNPPjlvvfVWknVPg59zzjlbve7AAw8sHm/Y03XR8zSW9UsEvPXWW/n2t7+91fE33nhj8fjtt99OZWWlXqbFOeigg/LCCy8kSdasWbPFsevPb/ieQ0/Tknz44YdZtGhRkqRv375bHNuvX7/i8Ya9qafZUTRUr258ny996UtbvU+vXr1KmtEJAGwbyyXR6I4++ugk66asvvLKK5sdN378+OLxUUcd1eh1weZ8/PHHOeWUU/KXv/wlSXLLLbfkRz/6Ub2u3XvvvbP77rsnqd3Tdfmv//qvJMkXvvCF7LXXXqUXDI1AL9PSbLhU3foAuC6ffPJJFi5cmGRdT66np2lJNgzAampqtjh29erVdV6np9lRNFSvrv9cubX7zJs3L7NmzUricyUANBUhA43u9NNPLx4/+OCDdY5Zu3ZtHnrooSRJly5dMmDAgKYoDTaxfPnyDBo0KK+++mqS5Cc/+UmuuOKKel9fVlZWXFJp5syZmTJlSp3jpkyZUnzC6utf/3rKysq2s3L4P6NHj06hUNji14abQY8bN674+voP9HqZlubMM88sHj/++OObHff444+nUCgkSY455pji63qalmTXXXdN586dkySTJ0/eYtCw4R9T99577+KxnmZH0VC9WlVVVZzd8Jvf/CbLly+v8z6jR48uHg8ePHh7ywcA6kHIQKM7/PDDix/yR40alcmTJ28y5vbbb8+MGTOSJMOHD0+bNm2atEZIkurq6gwePDgTJ05Msq4Xf/azn23zfS6++OK0bt06SXLRRRdlxYoVtc6vWLEiF110UZJ1TyRefPHF21c4NBK9TEtyyCGH5Ctf+UqS5OGHH85zzz23yZh58+bl6quvTpK0bds2Q4cOrXVeT9NStGrVKoMGDUqybg+om266qc5xixcvrvWww6mnnlrrvJ5mR9FQvfqP//iPSZJFixbl8ssv3+T8m2++mZtvvjlJ0rt3byEDADSRssL6R72gEU2fPj1HHXVUVqxYkY4dO+aqq67KgAEDsmLFijzyyCO57777kqx7OmXatGnp1KlTM1fMZ9GZZ56Z3//+90mSE044IXfeeecWn/Zr27Ztqqqq6jx35ZVX5pZbbkmybq3lK664Ivvuu2/efPPNjBgxItOnTy+O+/nPf97Avwls3XXXXZfrr78+ybqZDMcff3yd4/QyLcmsWbPyN3/zN1myZEkqKipy8cUX56tf/Wrat2+fqVOn5uabby5uKjpixIg6/wClp2kpZs6cmX79+hWfxj7ttNMyZMiQ7LPPPlm5cmWmTJmSO++8M++++26S5MQTT8zYsWM3uY+eprG9+OKLeeONN4rfL1y4MJdddlmSdcsRnXfeebXGn3vuuXXepyF6dc2aNTnuuOOKDwWdeeaZOf/887PLLrtk6tSpufHGGzN//vy0atUqTz31VDGcBgAaWQGayB/+8IdC586dC0nq/KqqqirMnj27ucvkM2xzvbm5rz333HOz91qzZk3h+9///havHzZsWGHNmjVN9wvCBq699tpiL44bN26z4/QyLc2ECRMKn/vc5zbbj2VlZYWrr756s9fraVqSZ599ttCtW7etvuc44YQTCosWLarzHnqaxjZkyJBteo+8OQ3VqwsWLCj0799/s/do165d4f7772/o/wwAwBaYyUCTeuedd3LXXXfl6aefzty5c9O2bdv07t073/zmN/PjH/84HTp0aO4S+Qzb1jWK99xzz8yZM2eLY/7zP/8z9913X15++eUsXLgw3bp1S//+/XPBBRd4sopmVd+ZDOvpZVqSjz76KPfcc0+eeOKJvP3226murk6PHj1y/PHH56KLLkrfvn23eg89TUvx0UcfZdSoURkzZkxef/31LFmyJOXl5fn85z+f/v375zvf+U6+9rWvbfV9ip6msZx77rn55S9/We/xW/sTQ0P0ak1NTe6///78+te/zowZM7Js2bLsvvvuOfHEEzN8+PAcdNBB9a4XANh+QgYAAAAAAKAkNn4GAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAACjR6NGjU1ZWlrKyssyZM6e5ywEAAIAmJ2QAAD5z5syZUwwHtucLAAAAPuuEDAAAAAAAQEnKCoVCobmLAABoSqtXr85f//rXzZ4/+OCDkySHHXZYHnzwwc2O++IXv9jgtQEAAMCOpLy5CwAAaGpt2rSpV0BQWVkpSAAAAIAtsFwSAAAAAABQEiEDAECJRo8eXdwEes6cOZucP/7441NWVpbjjz8+SfLGG2/k7/7u77LPPvukffv22WuvvTJs2LC88847ta577bXXMnTo0Oyzzz6pqKhIr169cuGFF2b+/Pn1quuJJ57IN7/5zeyxxx6pqKhIly5dcthhh+X666/P4sWLt/fXBgAAgCLLJQEANIGxY8fmjDPOyNKlS4uvvfPOO3nggQfy1FNPZfz48enTp08efvjhnHvuuamuri6Omzt3bu69996MGTMmkyZNyu67717nz1i8eHG+8Y1v5Pnnn6/1+qpVq/LKK6/klVdeyb/+67/mySefzBFHHNE4vygAAACfKWYyAAA0svfffz9nnXVWunTpknvuuScvvfRSJkyYkIsvvjhlZWWZP39+zjvvvLz88ss555xzsu+++2bkyJGZOnVqxo0bl+9973tJ1oUS//AP/1Dnz1i1alVOOumkPP/882ndunW+973v5eGHH86UKVMyYcKE3HTTTenatWvmz5+fr371q5vMngAAAIBSmMkAANDIZs+enf322y8TJ05M9+7di68fffTRKS8vz2233ZaJEydm0KBBOfzww/Pss8+mQ4cOxXHHH398Vq5cmcceeyy/+93vsmDBglr3SZIbbrghr776arp06ZKxY8emX79+tc4fffTROfvss3PkkUfmgw8+yFVXXZX/+I//aNxfHAAAgJ2emQwAAE3g7rvv3iQYSJIf/vCHxeOFCxdm5MiRtQKG9S688MIkSU1NTSZPnlzr3Keffpp/+Zd/SZLceOONmwQM6+2555756U9/miR57LHHsmzZstJ+GQAAAPj/CRkAABpZly5dcsopp9R5bu+9906nTp2SJIccckgOOOCAOscdeuihxeO33nqr1rnx48fn448/TpJ84xvf2GItxx57bJJk9erVeeWVV+r3CwAAAMBmWC4JAKCR7bfffikrK9vs+S5dumTp0qWpqqra4pj1Ntw8OkmmTZtWPO7Ro0e965o3b169xwIAAEBdzGQAAGhkdS1/tKFWrVptddz6MUmyZs2aWufmz59fUl3Lly8v6ToAAABYz0wGAIAd3Iahw6uvvpo2bdrU67qePXs2VkkAAAB8RggZAAB2cF27di0ed+/eXXgAAABAk7FcEgDADq5v377F44kTJzZjJQAAAHzWCBkAAHZwJ510UnE/h7vvvjuFQqGZKwIAAOCzQsgAALCD69KlS3784x8nSSZNmpRLLrkka9eu3ez4Dz/8MCNHjmyq8gAAANiJ2ZMBAGAncMMNN2T8+PF56aWXctddd+WFF17I+eefny996UuprKzM4sWL8/rrr2fs2LEZM2ZMDj744Jx33nnNXTYAAAA7OCEDAMBOoF27dnn22Wdz7rnn5ve//33+9Kc/FWc31KVz585NWB0AAAA7KyEDAMBOolOnTvnd736XF198Mb/85S8zYcKEvP/++1mxYkU6d+6cfffdN4cffngGDRqUgQMHNne5AAAA7ATKCnYGBAAAAAAASmDjZwAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCT/H28R1YIirC5pAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Plot infected hosts per population over time.\n", + " 'metapopulations_population_contact_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8, \n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot th isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/_sources/model_documentation.md.txt b/docs/_build/html/_sources/model_documentation.md.txt new file mode 100644 index 0000000..f0c8dfa --- /dev/null +++ b/docs/_build/html/_sources/model_documentation.md.txt @@ -0,0 +1,173 @@ +# `Model` Documentation + +All usage is handled through the Opqua `Model` class. +The `Model` class contains populations, setups, and interventions to be used +in simulation. It also contains groups of hosts/vectors for manipulations and +stores model history as snapshots for specific time points. + +To use it, import the class as + +```python +from opqua.model import Model +``` + +You can find a detailed account of everything `Model` does in the +[Model attributes](#model-class-attributes) and +[Model class methods list](#model-class-methods-list) sections. + +## `Model` class attributes + +- `populations` -- dictionary with keys=population IDs, values=Population + objects +- `setups` -- dictionary with keys=setup IDs, values=Setup objects +- `interventions` -- contains model interventions in the order they will occur +- `groups` -- dictionary with keys=group IDs, values=lists of hosts/vectors +- `history` -- dictionary with keys=time values, values=Model objects that + are snapshots of Model at that timepoint +- `global_trackers` -- dictionary keeping track of some global indicators over all + the course of the simulation +- `custom_condition_trackers` -- dictionary with keys=ID of custom condition, + values=functions that take a Model object as argument and return True or + False; every time True is returned by a function in + custom_condition_trackers, the simulation time will be stored under the + corresponding ID inside global_trackers['custom_condition'] +- `t_var` -- variable that tracks time in simulations + +The dictionary global_trackers contains the following keys: +- `num_events`: dictionary with the number of each kind of event in the simulation +- `last_event_time`: time point at which the last event in the simulation happened +- `genomes_seen**: list of all unique genomes that have appeared in the + simulation +- `custom_conditions`: dictionary with keys=ID of custom condition, values=lists + of times; every time True is returned by a function in + custom_condition_trackers, the simulation time will be stored under the + corresponding ID inside global_trackers['custom_condition'] + +The dictionary `num_events` inside of global_trackers contains the following keys: +- `MIGRATE_HOST` +- `MIGRATE_VECTOR` +- `POPULATION_CONTACT_HOST_HOST` +- `POPULATION_CONTACT_HOST_VECTOR` +- `POPULATION_CONTACT_VECTOR_HOST` +- `CONTACT_HOST_HOST` +- `CONTACT_HOST_VECTOR` +- `CONTACT_VECTOR_HOST` +- `RECOVER_HOST` +- `RECOVER_VECTOR` +- `MUTATE_HOST` +- `MUTATE_VECTOR` +- `RECOMBINE_HOST` +- `RECOMBINE_VECTOR` +- `KILL_HOST` +- `KILL_VECTOR` +- `DIE_HOST` +- `DIE_VECTOR` +- `BIRTH_HOST` +- `BIRTH_VECTOR` + +KILL_HOST and KILL_VECTOR denote death due to infection, whereas DIE_HOST and +DIE_VECTOR denote death by natural means. + +## `Model` class methods list + +### Model initialization and simulation + +- `setRandomSeed()` -- set random seed for numpy random number +generator +- `newSetup()` -- creates a new Setup, save it in setups dict under +given name +- `newIntervention()` -- creates a new intervention executed +during simulation +- `run()` -- simulates model for a specified length of time +- `runReplicates]()` -- simulate replicates of a model, save only +end results +- `runParamSweep()` -- simulate parameter sweep with a model, save +only end results +- `copyState()` -- copies a slimmed-down representation of model state +- `deepCopy()` -- copies current model with inner references + +### Data Output and Plotting + +- `saveToDataFrame()` -- saves status of model to data frame, +writes to file +- `getPathogens()` -- creates data frame with counts for all +pathogen genomes +- `getProtections()` -- creates data frame with counts for all +protection sequences +- `populationsPlot()` -- plots aggregated totals per +population across time +- `compartmentPlot()` -- plots number of naive, infected, +recovered, dead hosts/vectors vs time +- `compositionPlot()` -- plots counts for pathogen genomes or +resistance vs. time +- `clustermap()` -- plots heatmap and dendrogram of all pathogens in +given data +- `pathogenDistanceHistory()` -- calculates pairwise +distances for pathogen genomes at different times +- `getGenomeTimes()` -- create DataFrame with times genomes first +appeared during simulation +- `getCompositionData()` -- create dataframe with counts for + pathogen genomes or resistance + +### Model interventions + +#### Make and connect populations: +- `newPopulation()` -- create a new Population object with +setup parameters +- `linkPopulationsHostMigration()` -- set host +migration rate from one population towards another +- `linkPopulationsVectorMigration()` -- set +vector migration rate from one population towards another +- `linkPopulationsHostHostContact()` -- set +host-host inter-population contact rate from one population towards another +- `linkPopulationsHostVectorContact()` -- set +host-vector inter-population contact rate from one population towards another +- `linkPopulationsVectorHostContact()` -- set +vector-host inter-population contact rate from one population towards another +- `createInterconnectedPopulations()` -- create new populations, link all of them to +each other by migration and/or inter-population contact + +#### Manipulate hosts and vectors in population: +- `newHostGroup()` -- returns a list of random (healthy or any) +hosts +- `newVectorGroup()` -- returns a list of random (healthy or + any) vectors +- `addHosts()` -- adds hosts to the population +- `addVectors()` -- adds vectors to the population +- `removeHosts](#removehosts)` -- removes hosts from the population +- `removeVectors()` -- removes vectors from the population +- `addPathogensToHosts()` -- adds pathogens with +specified genomes to hosts +- `addPathogensToVectors()` -- adds pathogens with +specified genomes to vectors +- `treatHosts()` -- removes infections susceptible to given +treatment from hosts +- `treatVectors()` -- removes infections susceptible to +treatment from vectors +- `protectHosts()` -- adds protection sequence to hosts +- `protectVectors()` -- adds protection sequence to vectors +- `wipeProtectionHosts()` -- removes all protection +sequences from hosts +- `wipeProtectionVectors()` -- removes all protection +sequences from vectors + +#### Modify population parameters: +- `setSetup()` -- assigns a given set of parameters to this population + +#### Utility: +- `customModelFunction()` -- returns output of given function run on model + +### Preset fitness functions + +- `peakLandscape()` -- evaluates genome numeric phenotype by +decreasing with distance from optimal sequence +- `valleyLandscape()` -- evaluates genome numeric phenotype by +increasing with distance from worst sequence + + +## Detailed `Model` documentation + +```{eval-rst} +.. autoclass:: opqua.model.Model + :members: +``` \ No newline at end of file diff --git a/docs/_build/html/_sources/opqua.internal.rst.txt b/docs/_build/html/_sources/opqua.internal.rst.txt new file mode 100644 index 0000000..f772a8a --- /dev/null +++ b/docs/_build/html/_sources/opqua.internal.rst.txt @@ -0,0 +1,77 @@ +opqua.internal package +====================== + +Submodules +---------- + +opqua.internal.data module +-------------------------- + +.. automodule:: opqua.internal.data + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.gillespie module +------------------------------- + +.. automodule:: opqua.internal.gillespie + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.host module +-------------------------- + +.. automodule:: opqua.internal.host + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.intervention module +---------------------------------- + +.. automodule:: opqua.internal.intervention + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.plot module +-------------------------- + +.. automodule:: opqua.internal.plot + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.population module +-------------------------------- + +.. automodule:: opqua.internal.population + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.setup module +--------------------------- + +.. automodule:: opqua.internal.setup + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.vector module +---------------------------- + +.. automodule:: opqua.internal.vector + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: opqua.internal + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/_build/html/_sources/opqua.rst.txt b/docs/_build/html/_sources/opqua.rst.txt new file mode 100644 index 0000000..d17549e --- /dev/null +++ b/docs/_build/html/_sources/opqua.rst.txt @@ -0,0 +1,29 @@ +opqua package +============= + +Subpackages +----------- + +.. toctree:: + :maxdepth: 4 + + opqua.internal + +Submodules +---------- + +opqua.model module +------------------ + +.. automodule:: opqua.model + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: opqua + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/_build/html/_sources/requirements_and_installation.md.txt b/docs/_build/html/_sources/requirements_and_installation.md.txt new file mode 100644 index 0000000..a9d2007 --- /dev/null +++ b/docs/_build/html/_sources/requirements_and_installation.md.txt @@ -0,0 +1,25 @@ +# Requirements and Installation + +Opqua runs on Python. A good place to get the latest version it if you don't +have it is [Anaconda](https://www.anaconda.com/distribution/). + +Opqua is [available on PyPI](https://pypi.org/project/opqua/) to install +through `pip`, as explained below. + +If you haven't yet, [install pip](https://pip.pypa.io/en/stable/installing/): +```bash +curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py +python get-pip.py +``` + +Install Opqua by running + +```bash +pip install opqua +``` + +The pip installer should take care of installing the necessary packages. +However, for reference, the versions of the packages used for opqua's +development are saved in `requirements.txt` + +Check out the `changelog` file for information on recent updates. \ No newline at end of file diff --git a/docs/_build/html/_sources/tutorials.rst.txt b/docs/_build/html/_sources/tutorials.rst.txt new file mode 100644 index 0000000..32ca0d1 --- /dev/null +++ b/docs/_build/html/_sources/tutorials.rst.txt @@ -0,0 +1,11 @@ +Tutorials +============= + +.. toctree:: + :maxdepth: 2 + + basic_usage + evolution + intervention + metapopulation + vital_dynamics \ No newline at end of file diff --git a/docs/_build/html/_sources/usage.md.txt b/docs/_build/html/_sources/usage.md.txt new file mode 100644 index 0000000..a89d28e --- /dev/null +++ b/docs/_build/html/_sources/usage.md.txt @@ -0,0 +1,83 @@ +# Usage + +To run any Opqua model (including the tutorials in the `examples/tutorials` +folder), save the model as a `.py` file and execute from the console using +`python my_model.py`. + +You may also run the models from a notebook environment +such as [Jupyter](https://jupyter.org/) or an integrated development environment +(IDE) such as [Spyder](https://www.spyder-ide.org/), both available through +[Anaconda](https://www.anaconda.com/distribution/). + +## Minimal example + +The simplest model you can make using Opqua looks like this: + +```python +# This simulates a pathogen with genome "AAAAAAAAAA" spreading in a single +# population of 100 hosts, 20 of which are initially infected, under example +# preset conditions for host-host transmission. + +from opqua.model import Model + +my_model = Model() +my_model.newSetup('my_setup', preset='host-host') +my_model.newPopulation('my_population', 'my_setup', num_hosts=100) +my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} ) +my_model.run(0,100) +data = my_model.saveToDataFrame('my_model.csv') +graph = my_model.compartmentPlot('my_model.png', data) +``` + +For more example usage, have a look at the `examples` folder. For an overview +of how Opqua models work, check out the Materials and Methods section on the +manuscript +[here](https://www.science.org/doi/10.1126/sciadv.abo0173). A +summarized description is shown below in the +**How Does Opqua Work?** section. +For more information on the details of each function, head over to the +**Documentation** section. + +## Example Plots + +These are some of the plots Opqua is able to produce, but you can output the +raw simulation data yourself to make your own analyses and plots. These are all +taken from the examples in the `examples/tutorials` folder—try them out +yourself! See the + +### Population genetic composition plots for pathogens +An optimal pathogen genome arises and outcompetes all others through intra-host +competition. See `fitness_function_mutation_example.py` in the +`examples/tutorials/evolution` folder. +![Compartments](../img/fitness_function_mutation_example_composition.png "fitness_function_mutation_example composition") + +### Host/vector compartment plots +A population with natural birth and death dynamics shows the effects of a +pathogen. "Dead" denotes deaths caused by pathogen infection. See +`vector-borne_birth-death_example.py` in the `examples/tutorials/vital_dynamics` +folder. +![Compartments](../img/vector-borne_birth-death_example.png "vector-borne_birth-death_example compartments") + +### Plots of a host/vector compartment across different populations in a metapopulation +Pathogens spread through a network of interconnected populations of hosts. Lines +denote infected pathogens. See +`metapopulations_migration_example.py` in the +`examples/tutorials/metapopulations` folder. +![Compartments](../img/metapopulations_migration_example.png "metapopulations_migration_example populations") + +### Host/vector compartment plots +A population undergoes different interventions, including changes in +epidemiological parameters and vaccination. "Recovered" denotes immunized, +uninfected hosts. +See `intervention_examples.py` in the `examples/tutorials/interventions` folder. +![Compartments](../img/intervention_examples_compartments.png "intervention_examples compartments") + +### Pathogen phylogenies +Phylogenies can be computed for pathogen genomes that emerge throughout the +simulation. See `fitness_function_mutation_example.py` in the +`examples/tutorials/evolution` folder. +![Compartments](../img/fitness_function_mutation_example_clustermap.png "fitness_function_mutation_example clustermap") + +For advanced examples (including multiple parameter sweeps), check out +[this separate repository](https://github.com/pablocarderam/fitness-valleys-opqua) +(preprint forthcoming). \ No newline at end of file diff --git a/docs/_build/html/_sources/vital_dynamics.ipynb.txt b/docs/_build/html/_sources/vital_dynamics.ipynb.txt new file mode 100644 index 0000000..81a9154 --- /dev/null +++ b/docs/_build/html/_sources/vital_dynamics.ipynb.txt @@ -0,0 +1,511 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Vital dynamics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Vector-borne disease with natality spreading" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simple model of a vector-borne disease with 10% host mortality spreading among hosts and vectors that have natural birth and death rates in a single population. There is no evolution and pathogen genomes don't affect spread." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " mortality_rate_host=1e-2,\n", + " # change the default host mortality rate to 10% of recovery rate\n", + " protection_upon_recovery_host=[0,10],\n", + " # make hosts immune to the genome that infected them if they recover\n", + " # [0,10] means that pathogen genome positions 0 through 9 will be saved\n", + " # as immune memory\n", + " birth_rate_host=1.5e-2,\n", + " # change the default host birth rate to 0.015 births/time unit\n", + " death_rate_host=1e-2,\n", + " # change the default natural host death rate to 0.01 births/time unit\n", + " birth_rate_vector=1e-2,\n", + " # change the default vector birth rate to 0.01 births/time unit\n", + " death_rate_vector=1e-2\n", + " # change the default natural vector death rate to 0.01 deaths/time unit\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation( # Create a new Population.\n", + " 'my_population', \n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100, \n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 66.7483164411631, event: BIRTH_HOST\n", + "Simulating time: 175.53517979111868, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 200.00318125185066 END\n" + ] + } + ], + "source": [ + "my_model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.1995853034973145s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019458293914794922s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020659446716308594s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0252227783203125s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04323148727416992s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08730292320251465s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18108701705932617s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1233 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1613 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1888 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1977 out of 1977 | elapsed: 1.1s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
443810200.0my_populationHostmy_population_120AAAAAAAAAANaNFalse
443811200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443812200.0my_populationHostmy_population_117AAAAAAAAAANaNFalse
443813200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443814200.0my_populationHostmy_population_112AAAAAAAAAANaNFalse
\n", + "

443815 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "443810 200.0 my_population Host my_population_120 AAAAAAAAAA \n", + "443811 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443812 200.0 my_population Host my_population_117 AAAAAAAAAA \n", + "443813 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443814 200.0 my_population Host my_population_112 AAAAAAAAAA \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "443810 NaN False \n", + "443811 NaN False \n", + "443812 NaN False \n", + "443813 NaN False \n", + "443814 NaN False \n", + "\n", + "[443815 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'vector-borne_birth-death_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hb5fk+8PtoD+8ZO3FiZzjOJpOEBBI2CYFAoexZRr+0DaO/QqFQSgstUEqhDVBKCbtAy0wh7BGyyHbI3tOO4z1lbZ3fH45lnaFly5Zt3Z/r4sI6S68dWzq6z3OeVxBFUQQRERERERERERERxYUm3gMgIiIiIiIiIiIiSmQMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKI4a0RERERERERERERHHEkJaIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojjSxXsA1DUOhwNbt24FAGRnZ0On4z8pERERERERUax5PB5UV1cDAMaNGweTyRTnERFRf8JEr4/bunUrpk2bFu9hEBERERERESWMdevWYerUqfEeBhH1I2x3QERERERERERERBRHrKTt47Kzs/1fr1u3Dnl5eXEcDREREREREVH/VFFR4b+TNfCzOBFRLDCk7eMCe9Dm5eVh0KBBcRwNERERERERUf/H+WCIKNbY7oCIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojhiSEtEREREREREREQURwxpiYiIiIiIiIiIiOKIIS0RERERERERERFRHDGkJSIiIiIiIiIiIoojhrREREREREREREREccSQloiIiIiIiIiIiCiOGNISERERERERERERxRFDWiIiIiIiIiIiIqI4YkhLREREREREREREFEcMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKo4QPaV0uF1588UWce+65yMvLg9FoRFJSEkaOHIkbb7wRq1evjug4n376KS6++GIMGjQIRqMRgwYNwsUXX4xPP/20m7+DxCGKIr45YscbO1twtNkT7+EQERERERERERHFhCCKohjvQcTL4cOHcf7552P79u0ht1u4cCH+9re/QRAExTqfz4dbb70VixcvDrr/zTffjH/+85/QaGKfiZeVlaGgoAAAcPToUQwaNCjmz9FbLNlvw5u7bAAAvQZ49owspBoT/joDERERERER9YBE+vxNRD0vYRMut9stCWjHjx+PV155Bd9//z2++OILPPjgg7BarQCARYsW4fHHH1c9zv333+8PaCdOnIi33noL69atw1tvvYWJEycCAF588UU88MADPfBd9W/tAS0AuH3ARwda4zgaIiIiIiIiIiKi2EjYStp3330XP/7xjwEAM2bMwIoVK6DVaiXbbNy4ETNmzIDb7UZaWhqqq6uh0+n86/fs2YMxY8bA4/FgypQpWL58Ocxms399a2srZs+ejQ0bNkCn02Hnzp0YPnx4TL+PRLqSd/nSKsnjsZl6/HZ6epxGQ0RERERERIkkkT5/E1HPS9hK2sBes/fdd58ioAWAyZMnY/78+QCAhoYG7Ny5U7L+6aefhsfT1ht10aJFkoAWACwWCxYtWgQA8Hg8eOqpp2L6PSQ6rUbZfoKIiIiIiIiIiKivSdiQ1uVy+b8eOnRo0O2GDRumuo8oiliyZAkAoKSkBNOnT1fdf/r06Rg5ciQAYMmSJUjQwuVuoWVGS0RERERERERE/UDChrTtwSkAHDhwIOh2+/fvBwAIgoARI0b4lx88eBDHjh0DAMyePTvkc7WvLy8vx6FDhzo7ZJJhIS0REREREREREfUHuvCb9E9XXnklHnjgATQ1NeHxxx/HvHnzFC0PSktLsXTpUgDAVVddhZSUFP+6HTt2+L8uKSkJ+VyB63fu3ImioqKIx1lWVhZyfUVFRcTH6i2e3NiIdced/sePnJKOEel6yTYtbh/e32uD3SNiwTALBliVv6qVrV4890MTvD4RWo0Aj0/EnAIzxmcZuv17ICIiIiIiIiIiipWEDWmzsrLw+uuv48orr8SqVaswdepU3HnnnSguLkZLSwtWrVqFJ598Ei6XC5MmTcKTTz4p2T8wPA3XLLy9sTjQ1lw8GoH79heBAS0A/GVjI/55VpZk2TOlTSitbmsvsaXGhUWnZyqOc7TZi6PNXsmyNRVOPDk7A3kqoS4REREREREREVFvlNBJ1oUXXoiNGzfiySefxOLFi3H99ddL1ufm5uLhhx/GLbfcAovFIlnX3Nzs/zopKSnk81itVv/XLS0tMRh5/9Lg9CmWtQe0AFBj96G0yqXYRo1XBP6904ZfTUmN2fiIiIiIiIiIiIi6U0KHtC6XC6+99lrQCb0qKyvxxhtvoKioCBdeeKFkncPh8H9tMIS+vd5oNPq/ttvtUY0xXOVtRUUFpk2bFtUxezu1f4vjrV6VLdWtr3SG34iIiIiIiIiIiKiXSNiQ1mazYe7cuVixYgW0Wi3uuece3HjjjRg6dCgcDgfWrl2LP/zhD1i5ciUuuugi/OUvf8Evf/lL//4mk8n/tcsVusrT6ewIDc1mc1TjDNdKoT9SRrSAzaWstiUiIiIiIiIiIuoPNPEeQLw89NBDWLFiBQBg8eLFePzxx1FSUgKDwYCUlBScffbZ+Pbbb3H66adDFEXcfffd+OGHH/z7Jycn+78O18LAZrP5vw7XGoEAn0pK2+xWi26Da1RpoUBERERERERERNQbJWRIK4oiXnrpJQBAcXGxohdtO51Oh4cffhgA4PP58Morr/jXBVa4Bk4ipiawZUF/nAgsFnwBLQ5Uuh1EHboeaHR3dUhEREREREREREQ9IiFD2srKStTV1QEAJk6cGHLbyZMn+7/etWuX/+vRo0erLlcTuH7UqFFRjTVR/GZlPT7YZ4MoiqrtDtYej67P7GPrG7G2whF+QyIiIiIiIiIiojhLyJBWp+toxevxeEJu63Z3VGQG7ldUVIT8/HwAwHfffRfyGMuXLwcADBw4EIWFhdEONyEcbPLg7d02LC93qLY76IynNjXhuC30vy8REREREREREVG8JWRIm5GRgZSUFADA999/HzKoDQxgi4qK/F8LgoAFCxYAaKuUXbNmjer+a9as8VfSLliwAIIgdHn8fZ1RG3zd3noP1GtpoycC2FXHtgdERERERERERNS7JWRIq9FocP755wMAjh07hj/+8Y+q29XX1+PXv/61//H8+fMl6++8805otW2J48KFC2G32yXr7XY7Fi5cCKCtCvfOO++M1bfQp905MTXoOh/EmFXSAkCzK4YHIyIiIiIiIiIi6ga68Jv0Tw8++CCWLFmC1tZWPPTQQ9i4cSOuv/56DB06FA6HA2vWrMHTTz+NI0eOAADOPPNMnHPOOZJjFBcX4+6778Zjjz2GDRs2YObMmfj1r3+NYcOGYf/+/Xj88cdRWloKALj77rsxYsSIHv8+e6NJuUY8PScDq485sWS/DU5vwEpRfeKwa0qSkGbSoMXlQ53Dh4JkLQRBgFknwKAR0OjyIdWowZMbGuHwdhyg2R3dhGNEREREREREREQ9LWFD2pKSEixZsgRXXnklampq8NFHH+Gjjz5S3faMM87AO++8o7ruj3/8I6qqqvDSSy+htLQUV1xxhWKbm266CY888khMx9/X5Vl1uGSEDs0uHz49JK1AVotVTx1kQpoxfOH3nAITPgs4XpOLIS0REREREREREfVuCdnuoN1ZZ52FXbt24fHHH8ecOXOQnZ0NvV4Ps9mMoqIiXHbZZfjwww/x1VdfIT09XfUYGo0GixcvxtKlS7FgwQLk5+fDYDAgPz8fCxYswCeffIIXX3wRGk1C/6ijolZJq4mwlW+KQfpzbmZIS0REREREREREvVzCVtK2y8zMxD333IN77rmnS8eZN28e5s2bF6NRJa4V5Q5sqHQqlkcacScbpGluE3vSEhERERER9Si3z4tfrvsfPj66A4VJGXhm+sUYkz4g3sMiIurVWN5JvYrLBzSqBKtChJW0yaykJSIiIiIiiqt/7voez+xchUMt9Vh2fD+uXv5mvIdERNTrMaSluEqNoM+sUSvAqI0spbXqpcdr5cRhREREREREPeqTsl2Sxz/UHYPH5w2yNRERAQxpKc5OHWhCljn0r+GCYRboImxKKyukBQtpiYiIiIiIepbd61Ysc3o9cRgJEVHfkfA9aSm+ssxaPDU7Ewca3XCpXFgdYNUix6KN+HgGWcWt28eetERERERERD3JoFF+hnN4PbDqjXEYDRFR38CQluLOoBVQkmGIzbFkFbceH+ATRWgibWpLREREREREXWLUKqMGBytpiYhCYrsD6lf0Kr1r2ZaWiIiIiIio55hUQ1plCwQiIurASlrqV/Qqlx1u+qIaSXoNLh5uwbmFlp4fFBERERERUQL4+OgO3Ll2CfY31yrWDX/vMRg0Wtw6cjr+e/AHVDlaAABaoe1DXMPVDyOJ7RCIKIGxkpb6FXlPWqCtkrbe6cNL21tQ5+CMokRERERERLHm8Xlx7fK3VAPadi6fF8/sXOUPaAHAK/rgFXn7IxERQ1rqV+Q9aeWONLMPEhERERERUawda21Cg8se72EQEfVZDGmpX9GF+Y12sZCWiIiIiIgo5pycGIyIqEsY0lK/ohGEkEGt0yv23GCIiIiIiIgShNOnDGk/PfvmiPc3a/WxHA4RUZ/DkJb6nVAtDxjSEhERERERxZ7LK71t0aDR4pScwoj2PTl7MLQaxhNElNj4Kkj9jl5l8rB2DGmJiIiIiIhiT15Ja9TqYNFFVh1rYRUtERFDWup/DCF+q10MaYmIiIiIiGJKFEX8v3UfSZYZNFroNNqI9jdHGOYSEfVnDGmp39GHanfgYUhLREREREQUS7saq/B99WHJMqNWF/H+Fp0h1kMiIupzGNJSvzPAGvxqLTNaIiIiIiKi2NrXVKNYNjw5CwBgiiCsbd+WiCiRMaSlfufykVZkm/mrTURERERE1BN8orIa5s9TzwcAfHXuT0PuOyVrEO4YPatbxkVE1JdEfv8BUR9RmKLHotMz0eQS8czmJmypccV7SERERERERP2WPKIdlpyJk7OHAABm5hZBvPEvsLmdaHY7AbS1QnB6PTBodcgwWnp4tEREvRNDWuqXBEFAqlFAmpEVtURERERERN1JXkmrEZTzhFj1Rlj1xp4aEhFRn8MEixKKy8umtERERERE1Dd5fT40uuzw+LzxHoqEiPAhLRERhcaQlhLK54ftWH3MEe9hEBERERERRaXO2YrZnz6HtH//FtM++juOtTbGe0gAAFEUcf2KtyXLBDCkJSKKFkNaSjhv7mqJ9xCIiIiIiIii8sb+jVhVdQgAUFpXjhd2r4nvgE744tge2DzSeUAY0RIRRY8hLfVr+UlaxbJquy8OIyEiIiIiIuq8O9YukTz+/eYv4zQSqS/L9yiWlaTmxGEkRER9G0Na6tfOKzQjz6oMauWN7YmIiIiIiCh6q09U9wZ6Yur8nh8IEVEfx5CW+jWzToN7pqQqlvuY0RIREREREXWJw+PGxtoyybLPz7kFw1Ky4jQiIqK+iyEt9XtajbIjEkNaIiIiIiKirtlUWw6Xz+t/LEDAydmD4zgiIqK+iyEt9Xtqv+RetjsgIiIiIqI+zhMQkMbDvw9skjwemz4AqQZznEZDRNS3MaSlfk+lkJaVtERERERE1OdNXPIU6pytcXnuX637CM/tWi1ZdkrOkLiMhYioP2BIS/2eViWk9TKkJSIiIiKiPiJYxey2huN499CWHh4NUOdsxVM7liuWn5JT2ONjISLqLxjSUr+nEdiTloiIiIiI+i6bxxV0XXlrYw+OpM1RWwN8shZyFp0eZ+cX9/hYiIj6C4a01O9pVH7L5ScUREREREREvZXb5wu6zuFx9+BI2jS67Iplr596FfIsKT0+FiKi/oIhLfV7ar/krKQlIiIiIqK+wh1igjCH19ODI2nT4HJIHhcmpeNHheN6fBxERP0JQ1rq97QqM4exJy0REREREfUVnlCVtHEJaaWVtGkGc4+PgYiov9HFewBE3U29kpYpLRERERH1Tm6viN31bjS7fTBoBIzJ1MOkY31NImn1uLCy8iAaT1SsVjlagm5b6WiO6Jj1zlasqT6M0Wm5qHW0Yn9zLTyiDy1uJ9IMZlh1BszKLYIIESsrD6L1RBuFYcmZGJ2Wi1VVh1DnbAUALD9+QHLsVIOpM98mEREFYEhL/Z5W5Xy2utWHPGvPj4WIiIiIKBSPT8Tv19Rjb0NHdaRFJ+DPp2Yg26KN48iop7S4nZj+8d+xvaEyou2XHNmOMlsDBlnTgm5zoLkWpyx9BpX20IGuVtBAhBh1UQsraYmIuo6XY6nfUzY7ADZXO3t8HERERERE4eypd0sCWgBo9Yh4b68tTiOinvZp2a6IA9p27xzaEnL9q/s2hA1oAcAr+jp112GqnpW0RERdxZCW+j1BUMa0OpU+tURERERE8dbsUu89urnaBZEtuxLCUVtD1PvUOkKH+It2rOzkaCJzSk5htx6fiCgRsN0BJYSSDD121bn9j308vyUiIiKiXijY9FD1Th/KWrwoSOZHuP5OPilXit6EgZYU/+OS1Bx8cGRbVMd0+bwxGZt8PEatDvMLRuPm4pNjdnwiokTFd3hKCHlWrSSk9bIKgYiIiIh6oxCnqVuqXQxpE0DDicnC2l1WNAH/mvljybIrl72Btw9ujviYYqhfrChdN3wyFk2/OGbHIyKiNmx3QAlBK+tu4A1WokBEREREFEehTlO31Lh6bBwUP/JK2jRD1/u9dqbPbDB55pTwGxERUdR4GZYSglbWl/bzw3ZMzjVAKwgob/Eg3aTFhGwDjPI0l4iIiIj6NVEUsaXGBQECxmXpVeczCKe61YutNS64fSKseg1OyjEgSd/JepgQWdqOWhdcXhEGnrP2S6IoorS2HK/v3yhZnmYwd+p4x1ob8UX5HtQ6bXB4PeF3iFCeJTlmxyIiog4MaSkhqM0T9qd1jZLHozL0+N30tE6dmBMRERFR3/T8lmYsK2u7vfyswSbcMi66KsGyZg8eWF0Pu6cjXc2zavHYrHSYdNEHtaEqaV0+YHe9G+OyDFEfl3q/p3eswC/X/U+xPD2CkPbVfRvwyOS5/seHmusw9aO/ocYZekKxzmAlLRFR92C7A0oI3gju7tlZ50aFLXYN9YmIiIiod2ty+fwBLQB8dcSBVnd0fbFWlDskAS0AVNi82FbrDrJHaJ4wM9zuqe/ccal38/p8+MPmL1XXqVXSamSFJWWt0gKUD45s65aAFgDyLAxpiYi6A0NaSgimCG8Ja/VwQjEiIiKiRFFjV16gb3JFF9JWtqpf5G90dm4ShPKW0EUD8kCY+odtDccVvWgBQCdocGruUMVyeY/ZLKNV8rjK3tLlMd1aPB3DkjMly/LMKRiTltvlYxMRkRLbHVBCmJxrwP8OtIbdLob99ImIiIiol1O7jB/t6WB9kDDWEcmtXCqONofuHepgSNsvraw8qFh28eCx+NmoU1CQlKZY95vxZ+Ltg5v9j2ucNji9Hhi1bR/x7d7QFdezBwzFYGs6Ug0mPLNzlWL9RYPH4qmTL0S5rRF/+OFLHLU1YKAlFfeNPwM6jTa6b46IiCLCkJYSgnziMCIiIiKiWKh3qFe+djZMlYe06UaNJAh2hWmHQH3TqqpDksfXDZuMV0+7Muj2BdY0xbJjrY0oOlH52upxqe53yZBxePeM6yXLBlpScd/GTyTL/jHjR7DoDBiRmo3XT7sqgu+AiIi6iu0OKCFoI/xN5ykvERERUWKLJgMVRRF1jiCVtJ0IaVvdPtTKjjc8Td/l41LvJ6+knZlbFHL7VIMJFp30d6PM1tGXttWjXkmbYjAplrl8yurtZL0x5PMTEVHsJWQl7Zw5c/Ddd99Ftc+3336LOXPmqK779NNP8cILL2D9+vWorq5GdnY2pk6diltvvRVz585V3Yd6libCQtrPDrUi25yEdBNv4SHqrURRxIdHtuGHumOKCyupehMuKRyHIUkZcRkbERH1LfJAFAA+OdiKVKMGKQYNStL12F3vhsfX0b6gJEOPOocPFTYPPD4g2Dxj35U7YNELGJtpwIh0veo2Hp+INRVOHLO1hWStbuk7m1YAilJ1WF/p9C870uzBf/d09BsVACQbNNAIwOBkHUoyDNH8CKgXONJSj6O2BsmyWbmFIfcRBAEDLanY21TjX7Zo50qsqT6MFL0J/z6wSXW/FL1KSOtVVoNbdPw9IiLqaQkZ0kZLo9FgxIgRiuU+nw+33norFi9eLFleXl6O8vJyfPjhh7j55pvxz3/+ExoNi5bjKdJ2B6uOObG73o0nT8uESccWCUS90YOln+ORH74Kuv73m7/Ezh/djXxLag+OioiI+hqb24cnNjQqln91xBGT4zc6fXh7tw0CbPjNtDSMz1aGXi9ua8a3R4M/X55VC6teek5aYfPivb3qcy0IAO6alIKT85RBHPVe8lYH6QYzSlJzwu43SBbSvnNoC945tCXkPmoVsk6VSlqB7eKIiHpcQoa0L7/8Mmw2W8htduzYgcsvvxwAcOaZZ2LgwIGKbe6//35/QDtx4kTcc889GDZsGPbv348///nPKC0txYsvvojs7Gz86U9/iv03QhEzaCM/yaix+7Cr3oWTsnmLD1Fv9OaB0pDrm9wOPLdzNR6ZzDsZiIgouJ11oSdWihURwJdH7IqQVhRFrCoPHQgPTNLBHEXhgAjguR+aGdL2MVvrKySPZ+QMgUYIX+QzSKUvbThpKu0OilOyoz4OERHFXkKGtEVFofv7AMDrr7/u//q6665TrN+zZw/+8pe/AACmTJmC5cuXw2w2AwCmTp2KCy+8ELNnz8aGDRvwxBNP4Cc/+QmGDx8eo++AopVj1iDPqkWFTX1iBzmbi72+iHqrJlf4CqeVVcoZkomIiALZ3T13vvdDtXISJ68IuIK0SmiXY9FiTKYBek3wtgpy7W0ZqO9weKWVrAPMKRHtt2DwGLy+f2PEz6MVNDgnf6Ri+TXDJuOeDUvR4LIDAG4fNSviYxIRUewkZEgbjs/nw7///W8AQFJSEn70ox8ptnn66afh8bS9mS5atMgf0LazWCxYtGgRZsyYAY/Hg6eeegrPPvts9w+eVAmCgAdOTsMnB1vR6hHh8orwiYDTK2JrjUtx0uvkyS1Rr+UVpX+wpw8YBkEQ8E3FPv+ytdVH4PJ6YNDybY6IiNT5VKaMnZRjwJFmD2rsESaiJ/YxagUcafagvEW9IEDt3NITwQxl5xeZkW7S4sHp6VhWZoctIFj2+iDpVUt9l8cn/X2LtFXbJYXj8ebsq/FJ2U4sP34AR2R9bduNTM3GzJwiXDNsEsZl5CnWm3V6rL/gDjy3azXyzSm4fTRDWiKieOCnVxVff/01ysvLAQCXXnopLBaLZL0oiliyZAkAoKSkBNOnT1c9zvTp0zFy5Ejs3r0bS5YswTPPPMPePnGUZdbiutHJquv+sKYe22s7bnljSEvUe3lkIe0fJ8/FyNQcZL75oH+Zw+tBaV05Ts4e0tPDIyKiPkKekQ5L1eHXU9Pwxs4WfHRAveermp+OS0aaSYvSKiceW6/scdtOFEXJZwFPmNNNrQCkGttueS9O16NYNvmYKIq47rPqsNW41PvJL0DropjP5MqhE3Hl0In4ycr/4OW96xXr35x9Na4cOjHscYanZOGv0y6M+HmJiCj2OJuVitdee83/tVqrg4MHD+LYsWMAgNmzZ4c8Vvv68vJyHDp0KHaDpJgyynrWuiKobCCi+JB/kNEKGmQYLRiTlitZvrKSLQ+IiCg4+eme5sTpYK5FG9VxtCd2tOpDf7SyyVJZT5hwNcusgSZEgYcgCMgyRzdW6p3Uzm2iZdSo118FW05ERL0PX7FlWlpa8MEHHwAAhgwZgjlz5ii22bFjh//rkpKSkMcLXL9z586I+uEGKisrC7m+oqIi5HqKjHxisZ7sUUZEkfP6fGj1SCd6af8gMzOnCNsbKv3Ln9+1Bv9v7JxuGYfD48Y/dn+Pemcrrh42CSNDzMD81bE9+PjoTjhl/ebSDGZcM2wSxqQP6JYxEhH1Vz5RxLdHHahz+HB6ganTQaUypG07H8yxRBeQtZ9GJulD3zF30xc1GJupx12TUpFk0OBosyfk9pF8XzkWLY5FOOdCT/P4RLy2owWfH7ajJEOPuye3fd8EbKopw9sHN6PZ7USawYzS2nLJel0nQlqDRv33xcTWT0REfQZfsWXee+892Gw2AMA111yj2p4gMDgdNGhQyOMVFBT4vz569GjU4wncn7qPvJL2g/2tuKIkKU6jIaJgflv6mWJZ+y2Bs3KL8MKeNf7l+5prcKy1EfmW1JiP44aV/8F/Dm4GADy/+3tsvehXyDUr26l8dWwPzv78haDHeXbXKuz50a8xwBLZBCFERAS8ucvmb0fwzVE7npqdAZMu+lDLJ0pT2q5W0kYSQG6rdeOmL2uw+JwsPLK2IeS2kYS02b24kvbpTY1YX9k2Ydquurbv+z/nB7+omSj2NdVg1ifPwu51B90mmnYH7YxBwthgy4mIqPfhpUyZcK0OAKC5udn/dVJS6CDParX6v25paeni6Ki7GDTSkJadg4l6pw8Pb1Mss+oMAICZuYWKdZ+V7Y75GOweN949tMX/uNphw+I961S3DdxOTbPbia8q9sZ0fERE/d3qYw7/13UOHz4/bO/UceTtBtqv2UdTmasVAN2J/ay6yM8g/70z/OeCbHP4j2rRVv32pPaANlCjkw10vzy2J2RAC7Sda0QrRW9SXZ6sN0Z9LCIiio/e+64eB2VlZVi2bBmAtkm/iouLVbdzODpODA0GQ8hjGo0db4p2e/QnkEePHg3537p16sEARacgWXoyLgKwh2sURkQ9rsWj/MA3LDkTADD0xP8DHWttivkYtjccV/SOe+tAqeq2ZbbgE8i0q3bYYjIuIqJEUeuQvgZ/c8QRZMvQGmSBYcqJSbp0GgGnDVQPvOSm5Br9lbRaTeQh7YZKZ8j1WgGYNiD8GKbk9q0AjpPzAja38lxGbqA1+ruAzi8YBb2s5UFhUjomZg6M+lhERBQfvPchwBtvvAGfr+1k7frrrw+6ncnUccLkcoV+k3U6O07AzGZz1GMK106BYuP0AjNe2i6taKhq9WFICq9jEPUmLp+0796/T7tK0pbmx4Xj8U5A9epxe+xD2s11xxTLtjUcR0VrE/JkbQsqZM9/Zt4IHLHVY29TjX9ZnTPyGcSJiBKdKCpDvuOtXoiiqNqmLJR6p/Q9Jd3Ycd730/HJGJGug90j4vQCM3bUulBh82JYqh67611odonIs2pxxuDoz+8BoMkl/T50GuD2k1Kwq94NnSDg5DwjhqSE/6iWn6TDgmEWLNnf8V4yKKn3tkDwcHJeeMTwhSCnDxge9XEnZg7E8rk/wweHt8LmcWGAOQU3jJiiCG6JiKj3Ykgb4PXXXwfQVv16+eWXB90uObmj72C4Fgbt/W2B8K0RKH4MWgEZJg3qAiozKlu9EZ0cE1HPcctC2kGyShP5BF7H7c2ItR9UQloA+OjoDtw6crpkWUWr9PnvGnMqPjq6QxLS1jpZSUtEFCl3kHzrmM2LgUnRnbfVyypy040dYZZOI+CcIRb/4+l5HUUa47ND30nXGTeNScbJeSacnBdZBW+gYanS77s35KDyfr8dy3t4IL2Q/G4cNUn6zv2OTc8Zguk5Qzq1LxERxR/LBE/YsGEDduzYAQCYP38+0tPTg24bWN0aOImYmsDJwjgJWO+WI5skorK1d86US5TIXF7p36W8OmSAbPKuim4IadUqaQFlv1yvz4cqh/RCXp45BRlGi2RZnbNzvRSJiBKRw6Oe8m2tCX8LuZy83UGaKX4fjQYld74wQCOrIO4NQWiwrmGeIOFtIokopNX1rTYWREQUGywTPCFwwrBQrQ4AYPTo0f6vd+3aFXLbwPWjRo3q5OioJ+RatNhV19Gk/42dLfD4RFww1AJdFD3GiEjdh4e34atje3DagKE42FyHDbVl/kobrSDgtNyh+NmoU6ARNBBFEa/sW48vyvfA7fNiQkY+5heMRotH2sMvXEi7pa4Cl3zzKgBgXPoA3DPudOg1Wvx123dYX3MU4onnPiWnEAtHzYI2zGzKDo8bKysPqq77qmKv/7mAtqpf+QexPEsKMgzSkLa0tjzkcxIRUQdHkJ6mL29vQVGKHt9XOBQ9awEgz6rFgmEWrDvuxMFGD6bnGVUqabse0uo1wat9QxnYhRYF8tPUYFWsPckVJCn+9Yp6zMgzIsOkwQVDLUg3Jc6t+G6fF4/88BX+sPnLsNsmcbIvIqKExJAWgNvtxttvvw0AyM7Oxty5c0NuX1RUhPz8fBw7dgzfffddyG2XL18OABg4cCAKCwtjMl7qHrkW5Uni27ttaHT6cMOYZJU9iChSX5TvxsXfvAIAeHbXatVt3jm0BXavG3ePOx2v79+In6z8r3/de4e34sHSzxX7hAtpWzxOvH94KwDg/cNbcaC5DjmmJDy5Xfra/c6hLbB5XLh/wlkhv4/Llr0edJ3b5/U/lxqNICDHlKSopN3TVN2pXopERIkoWCUtADz4fX3IfQP7tn5+WHkXQ3oMKmmTDdL2WZFIM2pg1Xf+uRUhbaePFDueEBOEfV/RdsF1R60bj52a0VNDirsHNn6KP29bFtG2SbrYt9QgIqLej+0OAHz66aeorq4GAFx11VXQ6UJn14IgYMGCBQDaKmXXrFmjut2aNWv8lbQLFizgB/BeLtus/udQWhX97XNEJHXLqnci2u6LY3sAAJ+X745o+1S9tHffYGvwVjUA8GnZLrx3eIvquo+P7gz7fFvqKyIal5p8cwq0Gg1yzMr+5IdbQgcLRETUpjXYffQxkBqDStpTB0bfU7arE31pZZ8x3CEC0p7S4g4/hoNNHjS5ekOk3DP+uUf9M6OcVWeAUctaKiKiRMSQFtJWB9ddd11E+9x5553QattOqBYuXAi7XXo13m63Y+HChQAAnU6HO++8MzaDpW6j16qH6I0JdPJI1F2O2Boi2s7h9QAAmt3OMFsCs3KLMCRJGsoWJKXhzLwRQfepcdpwKEggWmFvCvl8oiiiUtbj1qTVKXoBBnPjiKkAgNMHDFOss3l4MYiIKBKNzu47LzPGoL3VgmEWJOujO86Zg81des4kg/T5WtwixDi3PChr8US0XajK6P6m0eWIaLvrhk9mcQ8RUYJK+Et09fX1+PjjjwEAY8eOxaRJkyLar7i4GHfffTcee+wxbNiwATNnzsSvf/1rDBs2DPv378fjjz+O0tJSAMDdd9+NESOChwbUOwQ7FbJ7RHh8IvvSEvUAj6/tw3d7WBvKJ2ffpPohZsmZN+C/h37AUVsDGlwOPLV9eUTPfdzeHLLtgM3jUoxry4L/B7vXjc/Kd8PhdavuJ0DAuPQ8LBg8BgBgVekz5/JxokIiokg0uSIP9X5cbMWH+2wR94jVxaB8xarX4C+zM7Gh0okvDttxuCn0+9nvpqdhdGbXbm1PMUgH7hWBVo8Ia5RhcSwdbY7sfc3ZC6p+4+m+8Wcg3WCG/cQ5RElqDi4ZMj7OoyIionhJ+JD2P//5D5zOtoqtSKto2/3xj39EVVUVXnrpJZSWluKKK65QbHPTTTfhkUceiclYKX5aXD6kJdDEBkTx0j7Rlj1I4Nlu3qASJOvVbym16o24ccQ0AEC1oyXikNbp9aDR5UCaUb2iqdrRoliWa05GisGE8Rn5ET2Hf4w6g6R61hlBKE1ERJHf4SQAuHSEFSvKHDjeGj4w1GkQs+rFNKMGZw02Y3+DO2xI29WAFmjrgyvX7PJ1qc9tV0VaSetKkJA2WGXzLcUnoyg5s4dHQ0REvVXCtzt4/fW2SWC0Wi2uvvrqqPbVaDRYvHgxli5digULFiA/Px8GgwH5+flYsGABPvnkE7z44ovQhJktnHqHUKflTRH01SKiruuopA0d0mablH1d1aQECXKDOS5rZxCo2mGTPDZotEju5OzL8l5zTh9DWiKiSDRF2O6g/QaojAgnA9N3wx1T3dg+V8KoFSDPaaOpOO4OZc2Rva8lSiVta5C2RmatvodHQkREvVnCV9KuWrWqy8eYN28e5s2bF4PRUG919/I6AECuRYsRaTr8uNiKAdaE//OhBLf06A68tHc9xqYPwP3jz4ThRPC4u7EKj/zwVdDer6HsbqrCqZ88ix0NlSG3yzZZIzqeUauDUauLuFJ1R0MljFotflf6BQ621EnWra85KhtDUqerrowaWUjLSloiorA2Vzvx+WF7+A0BCFGHtJ0dVXBuX88FkMkGDWodHanwsRYPitOVAWCj04f/7G5BeUtbdfGu+hO32Qdsm2rUYF6RGSUZnavy3VjpRFlLZO0O+nslbbPbgd9u+hxLg0xOamJIS0REAZgyEUWhstWLylYvDjZ58ORpGWzqTwlrb2M1LvjqZYgQ8f7hrQCA3088F6IoYu4XLyoCzki1etxYWXkw7HaRVtICQKrehCqvslWBmh8vew2jU3OxreF4BGOILChWY9BK26ewJy0RUWg1di8eX98Y8fbtZ2iZ5sjaVXVPJW3PBZApspD2H1uaMadA2b7nmc1N2FKjrOpsD2vbba524vkzs2CJMr2uavXizxsi/3fq75W0t6/5EK/s2xB0vUnLj+NERNSB9+ETnTAkJfKTpPIWr+REmCjR3L3hY4jo+GD1h81fAgCOtTZ1OqCNRoE1LeJt8ywpwdeZpet8ohhRQAtEFxTLWXXS6qQ6Z2unj0VElAh21rkRTeaZdCJczLFEFtKq9XXtqpPzQrfcGZwcu4Au1agcv1oAurNO/bZ75b7AwTD9dNXsrg/drkj5PP07pF0e4sJz+90+RERE7RjSEp0wwKrDyQMi7y953MbKN0pc31bsV10ebW/Vc/KLMS49L6p9ipIyMG9QScTb3zZyhurySwvH4+5xc6J67kD5IcLfcIqSMiSP9zfXdvpYRESJINJetO3OHNxWRTotN7Jzu7MGq08a2RXTBxgxMKktJBYA/GRMEjJPtF/Qa4BrR3f+Yp/cnAJlIHywURqYiqIIdxQ/xs5UAgdrX2DUqlcqt3r6d0gbqsf+wlEzeVceERFJ8NIdUYA7J6VgS40LRq0Ai06Db47a8dkh9d5nla1ejO3h8RH1Fk1uh+pyt8pt+89MvxhaQUCNoxVraw7j5KwhyDJZUGBNw9n5xXB4Pfji2G7UyCbmAoBkvQlCwPOlGcw4Z+BIpBoi/zD905IZmJQ5EJtqy/3Vv4OsaThv4Eh4RRG/XPe/oPumGcy4ZtgkPLNT2b+8KyHt8JQsyeO9TTWdPhYRUSJocinTxZfOyUKTy4d1x51odPqQd2K+gEHJWn+P1RSjBg+cnIZH1jYo9j8p24ApuUYUpeowPC32vUH1WgF/mpmBbbUuZJu1GJKiw8yBJuysdWNgkhb5SbH7KDYjz4RFQhMCM9K9DR5JX9loi1Y7061BrQ9vrkWDB6enY1edG4s2N0nW2fr55Lzy86LzBo7E0ORMXFo4HnMGDIvTqIiIqLdiSEsUQCMIOCm7o+LizAJzyJCWiKQ8PuWH6J+VnBKyUsSg1eHSwgndOSxMzR6MqdmDFct1AAaYk3Hc3qy6X2FSOu4ff6Z6SGvuQkibnCl5vI8hLRFRSPKQ9twhZlj1Glj1GiwYFvojTbC2AhcOs2BMZucmx4qUSSdgSkA1b5Jeg6lR3LkVjTkFJnx9pOMi6r4GaRVntJWxnelE4FY5PXZ5gSyzFrMGarG52okV5U7/Ons/r6SV95z/7YSzcUpuYXwGQ0REvR7bHRCFEuIOpCqGtEQK8ooRnaDp9bfyDQ7R3zbPnIIBlhSMkFW+AqF73YYjr6RlSEtEFFqzLKSNpodsskGA2t32Fl3vfn+K1ghZNfBeWX/YaFodAJ2rpHWp7BQYDlt00n+31mgH1ce4vNLzIr2GH7+JiCg4VtISdRIraak/E0URf9m2DG8d2AyTVodfjj0NlxZOwJGWely34i3VfUa+97ii95quD3wYGZyUjnU1R1XXtQexp+YOVbQk6Eq7A3noW++yo/i9xyCcuDKUrDfixhFT8fNRMzv9HERE/cn6SumEVymGyANWjSDApBMUt9Zb9L3/PSoa8pC21uHDO3ts+HGxFUD0lbRPbmzEuUPMuGZUEgxBesrKVduV58eB+bpFLz3O10cdmJJrxKQIewf3NfJKWgMnCiMiohD4LkEUgi3E1f1KThxG/djSsp24Z8NS/+PLvn0Dh388BDevegffHT+gus+epmrFMr0mslm146kgZCVtMgBgbPoAxbquhLRDktKhEzTwiB2vMfIQeGNtGcan5+HUAUM7/TxERP2B2mRUKVFU0gJtE1cpQtp+Vkmbn6SFWSdIWgi8u9eGc4eYkWLU4GhL9Oeunx+2I9mg8Qe94Xx7VNmz3i2ppFX+zP+ysREvnJWFpCj/TXs7n+iDV5R+ljD0gfMiIiKKn/71TkgUY+0TUKixeUQ4+nkfLUpc31cdljwWIWJN9WF8eWxPVMfJMcVu5uruMjIlO+i6YSltvWMvHiydJtCqMyCvCz1pdRotSlJzwm63PkiFLxFRIilr8SiWZVuiC7tKMqRVpiat0O9CWo0gIFmv/J4+O9QKAGhwdK7AYE+9K/xGJ5hUKm4vCwh4M83KfzevCBxsUv4b93XyVgdA37h4TURE8cOQliiENKMGpw8yBV3f0s/7aFHiqne1KpZVO1qiPs6vxs6OxXC61aWF4zE8WdlzdmRqNi46Ec4WJmfgtpIZ/nX3jJvT5VsW7x1/hr+9QTDyHr9ERIlIXgELAENTo3sNnltogTEgQJw/1AKtpn+FtAAwp8CsWFZ1ogVBqG4HBclaLDwpBWo/kmZXZEUJLW4fHCpVz2cEjGlitgGDkpRBpVq1dF/n9CmDZ6OGN7ISEVFwfJcgCuOn45NxbqEZeo2Au1fUSU5wm1w+ZKlUBBD1dfVOu2JZeWuT6ran5hbhrjGnKZaPS89TTJDVG2WarChdcBe+rzqMFk/bjNPJeiNmZA+BVd/RI++5GZfg5hEnw6jVYYxK+4NoXT1sEmbkDMGWugqIaHtheXzrt1hbfcS/jdvHC0FERPLJpbLNGmiinJSyOF2Pv5+eif0NbmSbtShI7p/nb+OyDPjvHptkmevE9T55DlqYosM1o5IgoO3nY9AKGJWhxzt7bZK2Bc0RFiWoTaq7+GxpGwOLXoNHZ2Xg2s+kLZLUJhzr65xelZBW2z9/74iIKDYY0hKFIQgCilLbbpFLNmjQ6Ow4UZXPNEzUX9S7lCFtma1BddvLi07CxUPGdfOIuleS3oizBxaH3W5S1qCYPu/Q5EwMTc70P37zQKkkpPWIrKQlIpJX0kbbj7ZdmlGDyf10gqp2atF1e09Y+cRhFp2AcVkGybJMsxanDzJLQ9oIK2nlIW2WWaPaZ9agFVCYosOhgBYH7v5YSavS7sDIicOIiCgEtjsgioJ8JuFIT1qJ+pp6p7LdQbBKWvZXix35z9LDSloiIthkcwBYVfquUhuPqDw3bW8lIJ9KQRvkk2Cy7HzX6RUjakcgD2lzQtxtJs9u+2Pdg8PrVixjuwMiIgqF7xJEUUjWawB0nICykpb6E5fXg/+3/iO8d2grKuzKQPbb4/tU9+NMxbGjE6SfWv+y/Ts8u2s1AMCk1eGCgtF4dsaPFGHum/s34Q8/fIlKe/C+wWatHpcWjseT0y5gsE5EfYJPFPHmLhs+OiC9cGjRs84kGLXOBPsb2ypW5ZW0uiAtI9Qqla/9rBpWnQARQGtA2nvPlFR/dXJVq/TJc0JM7maQTTDWl3rS2txO3LF2CVZUHsT5BaPw+JTzFe+rr+3bgOtXvK3Y18B2B0REFAJDWqIoJMtOWhnSUn/y5oFSPLNzVdD1PpXqHICVtLGk00hfY5xej6Sn3b/2rEWBNQ2/Pels/7JqRwuuX/E2PGLo16MG2LFo50pMzhyI60dMje3AiYi6wfrjTkVACwBWHStpg/GohJ32E6GqV/Y2EayS1qJvm9ZSfiR5RTMA/HlDI/49Nxs6jeCfoKxdqJBWr1FW6/YVL+5Zh8V71wEA9myvxrSsAlwxdKJ//fb64/jJyv8q9tNrtNAIvMBARETB8V2CKAoW2e119j50QkkUzvLKA53ab5A1NcYjSVwDLeF/li/uWQtfQCC7qbY8bEAbaH3N0U6NjYiopx1pVk68BADZIcK/RDciXa9Y1l606pVdbNUGqaTVCILinDeU9jYHgfM2AG09aYORFz7sb1D/t+6N7ly3RPL4p6vfkzxevHcdvCrvywXWtO4cFhER9QMMaYmiILvoj344ES0lsN2N1eE3kjl34EicklMY+8EkqJuLp2FwmA9xR2wNWFV5yP842IRuwVQ7bOE3IiLqpQZYtJg9yBTvYfRayQYNTsqWTgbWfr7qkeWGuhCfBOWVrqG0F9jaZU9gCfEEY7OkYfLWGlefnTysyd0xyZrH58W/929SbKMRBDx00jk9OSwiIuqD2O6AKAoa2Zy5DGmpP9ndWCV5fO+4M3BT8TQ4vR40uOz+5T5RhNvnRb4lFSNTsyEEqcSh6A1JysDeS+7FlvoKSZuDW1a9g50B/z5v7N+EUwcMBQCU2Rolxzg1twiPTp7nf/zOoS34244V/sfVjuB9a4mIerNciwZPzs6ALooAMRFdMyoJm6vr/I9FAKIoQp6Bhvo5qrX9nTbAiHXHnYrlvhMnxK2ydgjmEG0pTso2QkCzv6WCwytiZ70b47MMQffpC74o34Mq2fvs4pmXYcHgMcg0WeM0KiIi6isY0hJFQVlJy5SW+odahw21Tmnfv5+MmIrhKVlxGlHiMmh1mJJVIFl27fDJ+M3GT/2P3zn0AxZNvwgGrQ5lrdKQdmz6AMzMLfI/PthSJ1lf41T2dyQi6gsKU/QMaCOgVfkR+US1icOCH0Pt51ySrlcNab3+Slrp8UO1TEg1ajAsTYd9AW0OSqucfT6kfW3/Rsnjk7MH4yfF0+I0GiIi6mvY7oAoCmx3QL2ZKIpweT3+/9w+b/idTpC3OtBrtChKzoj1EKmTrgqYkAQA6l12fHR0B1xeD4601EvWDbKkSR5nGaWVO1WOFsnvSeB/ouzCk8vrgdfng9vnVWzri6IPLhFROKIowuNr+48XwbtGLcd2+US4ZSeu2igrafOT1HsBe0XA7RUV7RRCVdICwMQco+RxaZUr5Pa9WYvbiRqHDR8e2SZZft2wyXEaERER9UWspCWKgvxctrwl8hCMqDu9tGcdfr1hKWqcHf1GBQiYlVuIt+dcg/wwE1J9UrZT8nhYciZ0Gk7M0lsMScrAqblFWFF50L/s0m9fU91WPpFbtilJ8rjS3gzja/eq7ptrTsZfp16AUWm5uOq7f2OXrAVGoCyjFfeOPx3/b+ycCL8LIiJ1myqdeGFrM+qdvPgTCxqVNkQ3fF6jWBaqJ628KhYA8pPUPzrurHNhgMpkbuZQTwBgUo4B7+zpOG+psHmxt96NarsXr+1ogUEr4KfjkzEms/dU1zo8btXlyW/cr1im12hxedFJ3TwiIiLqT1hJSxQF+Unv7nr1EzWintTgtONna96XBLQAIELEisqD+NMPX4c9xot710kej0zNjukYqeuuHjopou0GWuQhbeQ98Crtzbh51Tv4v9XvhgxoAaDGacPd65eitLY84uMTEcl5fSKe39LEgDaGIu0IoQ3RU15tDq9ss/pHxzd32dAqL6MFYAlTSVuYokOaUXrMTw+1+gP7ylYvXtzarLjLI55WVx2KeNsLCkazDy0REUWFIS1RFFrd0hPQnCAnq0Q9aXvDcckkU3Jra46EPUaGwSx57OWt7L3Oj4smwKQNfQOMAAGj03Ily3LNydAJkb9W2b1urKs5GtG2IkR8cHhrxMcmIpI70uxBoyuyEC6L510RSTFoYIjgRxUsdAWgqF4dnqaDRhBwdYkydNRrlJW3WkG9ZUIgjSAo+ueuO+6UHOuYzQt3LzolqXNF3tf9huFTunEkRETUH/FMhygKk3OlvbOa3b3nyj4lrqO2hpDr9zbVhK1CaXJLJwK5rPCkLo6KYi3DaME/ZlwCq079tk+NIOCBCWciz5IiWW7U6jA5a1C3jeuz8t3ddmwi6v/2NkR+V9K8Iks3jqT/MGgFXFWSpDqBWLvidD1mDTQFXX/RMAsyTW0fFS26tuMBwJxBZtXt5SGtWSdACFGp2+6UfOkY1AJZeS/deIqkqFcjCLil+GTMLxjd/QMiIqJ+hT1piaKQK+u3Zfe0TXDBmYYpnuQh7ZCkdBwOmEyq0eVArbMVWSFuuWtyOySPhyVnxnSMFBs3jJiKy4tOQplKMJ9jTkKqQf3D86m5RVhbLa2oTtYbsfGCOwEAxe8/HtHzvzTrMpi0elz13b/9yzbUlKHGYQv5+0VEFMze+uB3ggT651lZilvjKbi5RRacXmBGvVM5f4JRKyDDFLrv/KBkHZ45IxM1dh8yTBr/uW6KUYM/zUzHb1ZJJ61UC2kjEUl1tMsrwqqP6HA9Tq/RYvtFv5IsyzRZkWHkBQUiIooeQ1qiKKSofDhodvmQHuZEl6g7HbU1Sh7PyinCsdYmuH0dH8z2NlUHDdF8og/NskraFINRdVuKP7NOjxFR9gw+NXco/rLtO8kyo0bnP45W0ETU4mJs2gCMz8iHRadH64nJU0SI+PLYHlw5dGJUYyIiAiKvpE0x8IJ4tEw6AXm6zn/c0wgCclQmBJMXyIoAWhUhbWSBuiGCQofe1O5AhPT7HJ6cGfV7MhERUTC8HE0UhSS9APmp5NEWL+od3l41qQH1Lz7Rhyp7M8psDaiyN0vWiaIoqZoFgMKkdBQlZUiWrak+gjJbA8psDah3SvuptbhdiudM0Qe/BZL6npk5hYplgRPNhZo8JlCG0QKjVocz8oZLli85sh1ltgbJhQEiSlyiKOJYa6Pi/Uau2eVDhS2y1w355K0UP/J/CVEE7LKJw8JNGtbOGKonwwkurwhRFFHv8KLW3vaf68TMZh6f2KPn4HWy3+lIWjoQERFFipW0RFHQCAKS9IKkF+0f1zYAaJt84d6paRiUzD8rip1dDVUY9cGfJcsmZQ7E0rNuQpWjBWd9/k9UO2yS9QXWNIxIycKepmr/sl+u+x9+ue5//sfzC0bhnTnXodXrxsQlf1U8L0Pa/iXc7NJaQQMgfFCSaWw7zrn5I/Hx0Z3+5f85uBn/ObgZyXojFs+8DD8umtCl8RJR37W9/jjO/2qx/wLigsFj8J8518KoMvHhkxsbFcuo7/GKwOpj0jtyIm13YIggpH17tw1Hmj2obO14n9JrgIFJOhy3eeEVRdw6LhmnBemXGwsNTjsWfP0yllce6LbnICIiYiUtUZSSg0yXW2334d29NtV1RJ017eO/KZZtqi3Hop2r8PAPXykCWqAtpB2ekhXyuB8f3Yn3Dm/Fv3avwRGV/qbJerY76G/SgvSrBdpD2vDa22CcN6hEdX2z24k71i7hnQVECez3m7+Q3OGx5Mh2fHh4m2K7RqcPO+ukrQ6Gp6lf6I4gx6MepPbPIf+3NOsjDWnDb7O+0ikJaIG2FgiHmjxweEW4fcCrO1rg6cYJxl7et141oOWvJhERxRJDWqIoDU4JXilb3sJbfSm25L1i2+1vrsW7h7aorhufkYdpWQVhj722+gj2Ndcqlo9MzYZWw7eH/ua1U6+QPL6l+GT/18WpoUN9oK0freZEmDs8JQvj0vNUt6uwN8HFtgdECWtfk/J9ZX3NUcWylcccimXDUvUYmqo8zzqvsPsqJCl62Sp9auUineQtknYHkWhxi2hwdl/z2hd2r1Fdvr2hstuek4iIEg8/hRNF6fJiKwYlqZ+c2nrTzAbUrzm8wSdaGWRNwyWF48MeY2djJVo9yn60z07/UZfGRr3T/ILR+OnI6TBotJicOQi/GX+mf93fT74o5L75lhQsmi7d5qVZl6EkNacbRkpEfZnT51Es29VYpVimFs2lGDW4fnQSAuecKk7T4YKhlhiOkLrKqtdgco4h5DbnF0X2b5YZw8l3u7OqtdrRorp8TFpuNz4rERElGjbPJIpSfpIOT87OhN3jw556N/60rqOfms3NW3ypZzi8yg/BAHDD8CkAAKNWh1m5RVhZeTDoMXY2VCEpS9rW4PcTz8GZ+SNiN1DqNQRBwPOnXIp/zLhEMdHJzNwibF7wS5yk0p/463N/itPzhiv2mZJVgB0X343S2nJM/ujp7hw6EfUhTpX3p92N1YplaoFasl5ASYYB/57bdgHI7RWhZ6+DXumqkiRsrKpTXTch24Asc+zC10h5u/E03COqF2KMDXJXCRERUWewkpaok8w6jeLqv8Mrdms/LEosofp6Bquk1QT0Fs03p4Q8fnlrIyrtzZJlFm3oyhjq+4LNRJ1rSlJfbk4Ouo8gCEg1cJI5IuqgFtIeaKlVLFd7WUmS9f1nQNt7ZZmDf4ycmB35uUSQt5dO8XVjP3RvkPN7TSy/ASIiSnispCXqAqvKpAg2t4hUI0/YSEkURexrqkGz24lUgwlDkzMl4ZfT60GNw4ZccxJ0Gi0aXPagx6p1tKouD/ywkGcJHdICwOa6Y5LHFp0+7D7UP2UHCWk7M4lcaW05SlJzkGZkH0mi/sTjE1He4oUIEaIItMdWWkFAQbIWoiiirLVRsZ9PFLH06E4UJqXD7RPR6PJhf6NVsZ1FF9vzp+OtTfCIPgyypsXkeD7Rh2OtTcg2JcGoTeyPUSadBkl6AS0qd5FNDNMKobsE5qg+UcRxmxdpRg0s+rZAuf331yuKyDJrkaIyGfCRlno0uhwoScuBVhCwu7Eado8bLR71OQI0nDqMiIhiKLHPLoi6yKpXntwt2tyIB05Oj8NoqDezuZ0494t/YVXVIf+ys/OL8dFZP4FRq8Oh5jqc88UL2NtUg2lZBXj/jBsw6X9PBT3etobjqssDPyzkRxDS2mUVuWaGtAkr2GRx4UJatSrbGUsXQSMIeH7GJbhl5PSYjI+I4utoswcPr21AY5DJmfQ6G76ueyvo/pd8+6rksQANpqXMwxDTaP8ycwxD2p9//z6e27UaQNtEiS/M/HGXjmdzO3HW5y9gTfVhDE3OxOfn3ILhKeEnXezPssxatLilFdJ5Vi0GWOPzEXNluQOXjUxCi9uHR9Y04GCTB1oB+L/xyRiaqscjaxtQH/D7e8VIKy4e3naxQBRFXL38Tbx1oBQAoBM0EAQB7jATYbKSloiIYontDoi6wKAVIM9pt9a4Ud3Kmc1J6n9Hd0gCWgD48tgefHVsDwBg0c6V2NtUAwBYV3MUV373BqqCTFIRSuBnhUhCWjmzliFtIss0Kid66UwlLdBWxXT/pk9Dtu0gor5j6YHWoAEtAJQ2lOK4Q71HqRoRPmxrWSFZlqRy8bszVlYe9Ae0APCvPWuxI8jFzUg9t2s11lQfBgAcaK7F87u+79Lx+gO1lgcnRdHqINbe29d2l9HqYw4cbGoLj70i8PZuGz451CoJaAHg3b02OE80si2tLfcHtEBbD9pwAS3QvZOVERFR4mFIS9RFRSnKaoFqO0NaktrbpJw0BQAONLd9oP3r9uWS5StCTPgVypi0Af6vp2YVKNaPSs0Juf/4DE6AkcguHDxG8nh0Wi50mtCTvxRY05CkUw9yqx22oJPcEVHfUusIfW7T5K2N+pitPmlf9Pyk2Ew29Z+DmxXLNtSUdemY92xYKnn85PbvunS8/mBYqvLC7oy86PqUpxs1sMaogrq9hXFplUuyvNbhQ6VN+fvr8QHNrrbgdl9zTaeec0z6gPAbERERRYghLVEX3TJOWa3o8LByjKTqnOr9ZZvd6j3OgknRm2DQaGFQCc6uHTYZtxSf7H88MjUHT069AHnmFKQaTLhpxDSsOv8XuHLoRCTrjf7jGDRa5JlT8MSU+Ridxg8bieyRSefhzLwRMGv1GJ+eh5dnXR52H71GizdOuxLDk7OgV/m9dPkY0hL1B+HmRbV7m1WX6wQ9NNBCJ2ghyD56iOiobJyUY4jJreM+0Yf3Dm1VLN9W37VKWlKaW2TG9DwjTFoBmSYNrilJwsiM6O7I0WoELJyYgjxr5AH98DSd4k42oK1q1ieKcHmVv6yNLvUq8PZN65zqvf7bCbKa2WS9EVcUnYRfjJoZ2aCJiIgiwJ60RF00OEWHQUlalLV0XKG3q5wcUmKrddpUlze5HRHdDv7AhLPw8KTzon7eX46djV+OnS1Z9ubsq6M+DiWGfEsqvjrvp1Hvt2DIWCwYMhZV9mbkvv17yTpXBLeLElHvFyyk1WsAtw+wy6piZ6ZejIHGEf7HZw82490DR/F53UuS7URRhCAIuGSEciKxzlhddRgV9ibF8liHtDqBtS5mnQZ3TUrt8nEm5hgxMUd6R8Z9K+twoFF5kW9ekRnXj04GAFS1erHwW2kFt8srQq1WIlirDu+JX+z6EJO1Am19jf8589KQ2xAREXUVzy6IYsAku02LlbQkF6xCo9ntRE2QADdQjikp1kMiijmDRnnt1+VlSEvUHwQLaU/JN8En+mD3SfuomzXJkscun6ioRgQ6qmmzzLFpdfDuoS2qy4NNuBmJZrdDsWxEgk8a1t1SDOofUzNMHb8napu4fB3Ba6Aml/ovsC/CSloiIqKewEpaohiQz0bsYCUtBWhyOfBJ2S7Vdbsbq/HOwR/CHoMhLfUFBq0yZKl3tWKgteuVVkQk5fR6sKHmqKJtTrrRjEmZg1TbjwCAx+dFaW05aqMIpRqdPiyrbEG6LhcCBNR7KuET2y7A+LRWlDnrIEJ67mPRSkPa6lavot0BAFS4DkADLVZX1SraHSTpjZiSOQgmXdst9OW2RmxrOK64A8WqM2BKVgGMWi3+tkM6GVm7o7YGLDm8DZkmq+SYaipam7C1vgK+E89zuKVesY1By49R3SnVGCyk7Vhu0CpD/2aXL6rz8PLWRmxvqmE7DCIi6hV4dkEUAyYtK2lJ3Y6G4zj1k+eCrv+6Yi++rtgb9jg5Zoa01PsZVSppx334JKqufAjZvNBAFDMNTjtmffIMtjdUqq6flVuEb8/7P8XEfz7Rh3lfLsaXx/bEbCwr1iuXaaCBUbBIlu2oc0Oj0iJgVeMHbcf5Sv34I1OzsXLeL/B5+W5cu/wtRRjcbnhyFnSa0DcJXvTNKwCAktQcrDr/F8gwWhTbfFq2Exd9/UrYVi0/1B3Dm/s34aphk0JuR52TGqSSNjNMSPvL7+oifo4jjp2Y8cnHQX+niIiIehrbHRDFANsdUDD/2r02JrfQZZti06uPqDtpNRpoVUKYV/duiMNoiPqvj47uCBrQAsDKyoP4umKfYvmqykMxDWiDMWuSIahMAqZWSRvO7sZqvH94Kx7f+m3IMG1fcw12NVZFdMxdjVX44LBycjEA+NOWbyLupf2HH76MaDuKXkrQStqOCw9aAdB0Ya65na1rIg5oYzCnHRERUVgMaYliQCs7c/NGMBEUJYbjdvXZrqORbjCjOCU7BqMh6n6TMgcqlm2oLYvDSIj6r+MqE2PJba4tVywrrVMu6w6Z+nzV5WZNEkya6C86VrQ2oczW0MVRSZW3NiqWiaKIH+qORXyM3Y3VsMnaTVBsjEhT3pmRadIgy9zx8VUQBAxN7fyNoa3e8H9H7SZmKN/biIiIYo3tDoiIupFXVM4mfEbecFTam9Hokk5EUnbiA2OqwYRkXdssxwXWNPxp8lz2vqM+443TrsLI9x+XLIsm9CCi8Dyy9xaTVgedoEWLpyMw3KlSVbqzQbrMqjMg3WAO+jxeEah1OOESlRNnAUC2MQnGE72o7R4RLi+QZRiAi/PPxS1j07Cn3o1lZQ7UOXywe0QIgoBTUi/ClpbvYPM2nhi7AIteOqVYrbMVdq/b/9jh9aA14DHQ1qvd5nHB5nEFHX/Nlb/HHWuXYGXVQVQ7WtDq6TiGza3cr8LepOjxm29JgQYCRKgHu7sbqzEpa1DQMVDnjEzX47rRSfjmiB12j4gssxbXjkpS9C3++YQU3BVFi4N2oijCLUr/rXPNybB73GhyO1BgTYMoijBp9bhw8GjcVDytS98PERFRJPipnygGeAcUBSOvqv79xHPw4EnnxGk0RN2vODUba+YvxPSPF/mX7Wmqht3jhjnERD1EFDmPTxrSzh1YgtMGDMVd6/7nX7ZTpR3CDtmyByachXvHnxH0ebbUuPCL5ZuwovFd1fUbL7wTBUlpQfcvyTDgwmFWfLDPhrd32wAAWfqBOCP9KkzPM+KuSeqTCt608r94ae86/2ObxwWn1yPZZtnc27B4zzo8uf071WOsmPdzZJqseGP2VQCA/1v9Lv65e43kmHK7VELso5c9IOmlO+zdR3Ggudb/eEdjJUPabiAIAs4vsuD8ImXf4ED5STrcMDoJr+xoier48oAWANbNvx2Dk9KjOg4REVEssd0BUSzIUlo2O6B28kpatX6dRP3N2LQBCKyL84kittVXxHFERP2L4r1Fo8GotFzJsp2NVRBlFwrlIe2o1JyQz1Nr90IvGFTXWXR6DLSmRDpkhRFpwS/atFfntqt3KXu7W3R6JOnVx5ZvScEpOUNk20u3VQtpdzdVSx4Xp2QrJjuT/8zkP1PqeclBJhkLRS2kTQtRVU5ERNQTWEl7wpEjR7B48WIsXboUhw8fRnNzM7Kzs1FYWIjTTz8dl112GcaOHRt0/08//RQvvPAC1q9fj+rqamRnZ2Pq1Km49dZbMXfu3B78Tige5JW0bElLoihiTfVhLDmyXbKcIS0lAqveiBEpWdgTEHg8tWMFXj/1SmjDzL5ORMGJoojVVYfw0t71kuU6QaMID5vdTjy3azWS9W3tcxxeD2qcNsk2o2XBriiK2Fnnhs0twuUT8fZuG3Qao+pYRqgEmMHYVSZUDRXSmrTSddvqjyu2segM/u9N7pIh4xVjs8pC2p2NVXht3wbkmJJwet5wGDRavLpPOslhSZoyxB6dloulZTv9jz8v340/TZ4X9Hvp71o9LnxbsQ+1sklSs01WzBkwvEfuoEgyRH9Pm8snbeGhEYSgoT8REVFPYUgLYNGiRbjvvvtgs0lPXMvKylBWVoaVK1eiqakJTz/9tGJfn8+HW2+9FYsXL5YsLy8vR3l5OT788EPcfPPN+Oc//wkNP5gSJYx7NyzFn7ctUyyXTzJH1F9NyMiThLRvHSiFBoL/1mMiit7d6z9Wvb1fp9FgkDUVFp1e0nf1F2s+CHoso1aHouQMybJFm5uw6pi0wjBYJe3IKCa03N/gViwrCjHhk0nWh32zSl9rq86AZL1Jdf/Liiaobh9obfURrK0+AgCYPWAoZuYU+R+3U/se5cH2ptpyrK8+gqnZg1XH0p+5vB6c+smz2KQySR0AnJw9GCvm/Rx6jVZ1fawk67teSZtmMEd80YGIiKi7JPw70SOPPILbb78dNpsNxcXFeOKJJ7Bs2TKUlpbiq6++whNPPIFTTjklaMB6//33+wPaiRMn4q233sK6devw1ltvYeLEiQCAF198EQ888ECPfU/U8+Sxm4+VtAnN4/PimV2rVNd19wcVot5ifLpydvd/H9iEoy0NPT8Yon7A4XGHfG/RCBqUhGlfEKg4JRu6gPek4zaPIqAFAL2gXq1anBp5SJufpAxkDdrgFy3N2tDVlwIEmLQ61UpatVYHAJCkC14l+d3xA/jTlq8Vy9V+nqNUqmuf2an+79Lfrao6FDSgBdqC8PXVR7t9HLFod5AaJPAnIiLqSQldSfv111/jt7/9LQDguuuuw4svvgi9XnpSeOaZZ+JXv/oVXC5l36o9e/bgL3/5CwBgypQpWL58Oczmtl5GU6dOxYUXXojZs2djw4YNeOKJJ/CTn/wEw4cP7+bviuJBL/ug4WFKm9AaXA5JJVOgGSofHIn6o3mDSvDb0s8UyzfWloWcaIiI1B2xNSgmz2p3Sk4hAOC8gSUhQ7NA5w4sljzeWaf+vqUXjNBCBy+kz51tskb0PAAwM9+ILw7b/Y+vKUkKuX379xP0eLmF0AgazMgeAo0gwBfQZ+qnI6erVkTOzC2KeLzt5uQNUyw7KWOgYtnG2rKoj90fHLc3h91G3mKjO2SZNcg2a1Bt94Xf+ASvKP195sSWRETUGyRsSOvz+XDbbbcBACZMmIDFixdDpwv+4zAYlFffn376aXg8bW/wixYt8ge07SwWCxYtWoQZM2bA4/HgqaeewrPPPhvD74J6C6MspHUxpE1oDS67Ytm0rAL8fNRMnJzNkJYSw6SsQXj9tCtx7fK3JMtL68px0ZDgPd6JSN3hlnrFshnZQzC/YDR+MmIqAOC3E86C0+vB8soDisnF2mkFDWbmFOL3E8+VLHeo9I0FAEEQYNWmoclbI1ku7xsbSkmGAbeNT8b3FU4MS9PhvMLQEzSdmT8C/zzlUvx7/ya0eKQVjyWpOXhs8vkAgMLkDHxwxg1YtHMlmt1OnJ1fjPvGn6l6zImZA/Hv067Ci3vWotHtwJ7GGsWxAz0340fINScrlhu1Ovz95Itw+9oP/ct2NVbD4XHDlGBBX4tb+vOz6gzwiD7JxQS3z9vt49AIAu6Zkob/7rGhxu6FUStgTKYe7+1TTjgHALeOS8Zv1kn/Pgy804mIiHqBhA1pv/jiC+zduxcA8Otf/zpkQKtGFEUsWbIEAFBSUoLp06erbjd9+nSMHDkSu3fvxpIlS/DMM89AYE/Kfkevkf6bOrv/fJR6MXlIa9BosWb+7fzbp4RzzbDJKK0tx1+3L/cvK42wyo+IpI7YpCHthIx8rJ6/ULLMpNPjL9Mu6NTxW9zBqxCTVEPa6M6d5xSYMacgdDgb6NaR03HrSPXz60AXDh6DCwePieiYVw2bhKuGTQIAXPT1y4rJPQOdP2hU0HU3jJiCO9YugYi2YNsr+rC9oRKTswZFNI7+osUjvdPwlJxCHGttxPaGSv+ynghpAWBwig6/mpLaMTa3L2hIOzRVBx+k42JIS0REvUHC9qR95513ALRVB8yfP9+/vK6uDnv37kVdXV3I/Q8ePIhjx9omMZg9e3bIbdvXl5eX49ChQ10YNfVWRtl5ncvLStpEVu+UhrRpBjMDWkpYEzOltwYzpCXqHHkl7RBrekyPX+sIHtJatamKZdGGtL1NrklZJRtIF2LC32S9CcNTMiXLNtcl3mubWiWtvPe+2xd5C4JYCvUh16rXKEJaHUNaIiLqBfr22VUXrFmzBgBQWFiI5ORkvPnmm3j00Uexbds2/zbFxcW45ZZbsHDhQhiN0okJduzY4f+6pKQk5HMFrt+5cyeKiqLviUW9m6LdAUPaPmVN1WG8daAU6UYzknRtf+tajQan5AyJqj3BgeZafFa2SzE7dJoh8sohov5moqx/Y1lrI/70w9dIN5oxb1AJhiRJZ5f3iT7878gOCAAuGDyas21TQvD6fFhathN7Gqv9y3SatrYEDS4Hfqg7hod/+Eqyz5Ck2Ia0Zc3q/W4BIEmrfK5o2h30Rrnm0H1xdWFeeyZk5GNvU0d18Rv7N0ku0moEAVOyBuG0Acq+tl0hiiI+ProDHtGHCwvGQBsiTA7n+6pD+L7qsKSnbyhaTVsf4Okn+uvvDvh9BYAkvTKk3VRbhmuHT+70GDtLqwl+cdyiF2D3tki3FxjSEhFR/CVkSOvz+bBr1y4AQFZWFu644w78/e9/V2y3Z88e3H333fjggw+wdOlSpKWl+deVlXVMEDBoUOhbmwoKCvxfHz0a3Qyngc+jpqKiIqrjUfeQz1DsZEjbZ7yydz1uXPmfoOvfmn01rhg6MexxdjdWYepHf0OzW9nfLt3IkJYS18jUbJi0OjgCehTev+lTAEC6wYxNF96FwuSOoPaa5W/hrQOlAIDrh0/BK6de0bMDJoqDn695H//cvSaqfYbEcAI+j0/E3oZQIa3yufp8Ja1Kv9lA4SorT8rIx7uHtvgfLzu+H8uO71ds9/yMS/DTkhmdG6SK/1v9Hl7Y0/a7cmnheLxz+nWdOs6re9fjhhDnP6H8+7SrMCdvGP59YJNkeZLOqAhpn96xAgsGj8GcvJ6dPDlUdO3xObGz9XvJMlFkSEtERPGXkOUpjY2N8J249Wbr1q34+9//jry8PLzxxhuoq6tDa2srvvvuO3+f2dWrV+MnP/mJ5BjNzR2zmSYlhb4Sb7V2zH7b0tISYkulgoKCkP9NmzYtquNR92BI23eFCmgB4KW96yM6zjsHt6gGtEBbEEWUqHQaLcan56muq3fZ8f7hrf7H5bZGf0ALAK/u24Bmt6Pbx0gUT16fD6/t2xj1foNj2O7gu7LQf2dq7Q7MfbySdkCYkDZcj9KTMvIjep7nd38ffqMI2dxOf0ALAO8e2oIyW0OnjvXqvg2dHsfivevwadkuxfIUvVH19+L1/ZsUy7qbNsin3GyzBl9X7FUs9/kY0hIRUfwlZEhrs9n8XzscDlgsFnz77be4+uqrkZ6eDrPZjNNOOw3ffPMNJkyYAAD44IMPsHbtWsl+7QwGQ8jnC2yVYLcrZ32nvk+W0cLHjLbfqHJEdmHlmL0x6LpzBo6M1XCI+qQfDRkXdF1Za8ffzraG44r1LW6XYhlRf+IVfbB73VHvl6w3ht8oQivLQ4e0ydoMDDR39GBNM5j7/CRZswcMCxo0T8sqQFKYn+/sAcMiugi7q7EK3hj1Za13KT9HHGlp6NSxGrtwAayitUnRfx8Azsovxpn5yorZWqdNsay7aQQB47OUn9FuHJOM8lblOduE9KE9MSwiIqKQ+vZ9Sp1kMpkkj2+++WaMHKkMUcxmM/74xz/6Jxb7z3/+g5NPPllxDJcr9AdIp7Ojus5sjq6iLlx7hIqKClbT9gIa2aRQzGj7jyZXZB9iah3SGYSHJWdiVFoOTh8wHHeMntUdQyPqM341dg60ggbfVe7HjoYqHGiu9a+rsreoft0u0l6JRH1VZ3/D5beVd0WTK3SIeMOYZDyaeSse3/oN3D4v7hh9Kiy60EUKvV2WyYqvz/spnt25WhIiDk/Jwn3jzwi7f5LeiG/O+z88tX255IKuVxTx5bE9/scOrwdHbPUoSs5UO0xUPCphb6gJzkLxyl5bx6fnId+SorptrbMV62s6PpM0uBxwi17FdmcPLMYZecPxtx0rUWnvuOvQ7on+IkQs3DEpBR/steGbow4Upuhw5mAzJucasaRcGRqfnTs1DiMkIiKSSsiQNjlZenvTOeecE3TbM888EzqdDh6PB+vXd9z2HHiMcC0MAit3w7VGkAvX75Z6B/ncBAwV+o+mCCtN6lzSkPa2khn4f2PndMOIiPoerUaDX42bg1+Nm4Mntn6LezYs9a8LDDeqHM2Kfd0+ZRBAROFvx49Go1MZ/j1xWgYGJwd+VLDghZk/jtlz9gYzcgoxI6ew0/uflDkQr552pWSZKIpIf/O3aAy4yLu7sTo2Ia2oEtJ2cnJF+bnqvePPwJVBevCvrT6M6R8v8j+ud7UqXpsvHjwWQNvr/YMTzsLP13zgX9eZSvFYSNJrcO3oZFw7WvrZr0ZW2TvUNAFhrlMQERH1iIRsd2A0GpGdne1/HDixl5zJZEJWVhYAoLq6YwbTwPA03ORegdWwoZ6L+i75HxLbHfQNkdx+2OR2QowgdJdX0mYYLZ0eF1F/lmOSXqyUhLQqlbRqoQRRfxLJe4yaWFbSNruVY0jIDwkxIAgCRqZkS5btbqwOsnV01C5adb6SVvraqpXdFRYo3SA9p3F4PYpWNIG/j2adtI1EvELaYGoc0pDWqLHAwfkkiIioF0jISloAGDNmDJYtWwYA8HpDV+m0r9fpOn5co0eP9n+9a5eycX6gwPWjRo2KdqjUB8jPa6vtDBV6i31NNfjo6A6clJGP0/OGY09jNd459AMaXY6IKvTcPi8e+eErNLudKExKx7XDJyNZ39HupMzWgLcOlKK0rlyyX6bRKj8UEQHIMUtD2gPNtbhn/ccAgCe2LVNsz0pa6qu8Ph/ePFCKrfUVIbdzeD2dOn6sQtpgITEzq84bmZqDdQHtAd44sFG1D6qcRhAwI3sI8i0p+Lhsp6JNQLVKn/ynti9HtikJOo0Gp+UOxXmDSiIaozyklbfuCpRuVLZr+7x8t+Rx4O+jSdbrd0NNGZ7duQpHWur97T1GpGThmmGTFYFuT6h1Si+sGzVmVLTwvYaIiOIvYUPa0047zR/SHjhwABMnqt/e09TUhJqaGgDAwIED/cuLioqQn5+PY8eO4bvvvgv5XMuXL/fvX1hY2PXBU68jb3cAAM0uH5INrEOJpyMt9ThpyV9h87RVe/zt5AX4XekXaFCZeCOUB0s/93/94ZHt+OLcWwEArR4XTln6DI6qzKycyUpaIlU5Jultp81up2o42+7f+zfhkclzu3lURLF394aP8dT25d12fH0nKyjlmlzqaaybtwV1WklqjuTxhpoybKgJfeddZ72yb4P/60fxDd447SpcPWxS2P3k7Q60IdompKlMkLZFdvEhsKJXbUK2XwS0P2j3xbE9eOf068KONdbklbQGwYzSahdcXhEG+WzAREREPShhE6RLLrnE//UHHyhPGgLXtVcYnHrqqf7lgiBgwYIFANoqZdesWaO6/5o1a/yVtAsWLIAQ4io19V1qJ3Q763rXrV2J6E9bvvYHtABwx9olUQe0cl8e24P6ExUYa6oOqwa0AJBtiq7/NFGiGGBODr9RgFVVh7pnIETd7I39G7v1+NYYTdxVYVOv5E3S85y1s+QhbU96PcLfO/kkZBoE//fWa7RINZiCrgcAS0BFbIreGNEYPjy8Da5OVpJ3hbKStu1728VzdyIiirOEDWnHjx+PuXPbKnPeeustfP3114ptjh8/jgceeAAAYDAYcOONN0rW33nnndBq227tWbhwIex2afhjt9uxcOFCAG2tEu68885YfxvUSwxLVVYMOD2sQIm39w9vjXqfJF34DxatJ24/bHY7VdePTsvFiJSsqJ+bKBEMtKZiSlbkk2KatAl70w/1YQ6PG9UO5QzykQqsREw3mHGPbCLKUak5GBqDiagA4GCjMiQbnqbDACv/9jrrrPwRSFepPu0J+5tqI9quVdYn1qoPHfpfWDAm5Pr5gzpawZ2cPRhZEbR98oi+uLS0CbyADwA6oe17r3Ww5QEREcVXQp99Pf300/j+++/R0NCA+fPn484778S8efNgNpuxbt06PProo/5JwR5++GFJuwMAKC4uxt13343HHnsMGzZswMyZM/HrX/8aw4YNw/79+/H444+jtLQUAHD33XdjxIgRPf49Us8waAWYtAInHehjBpiTcXZ+sb/q5Nbi6bitZAYm/u+pkPu193FTm9Do/vFn4uejZrJqniiET86+Gc/sXIXDLfUAgA8Ob0OT26G6rbeTkyoRxVOFvUmx7JphkyS3lNc4bFhatlN1/+/m3oY39m+CUavDtcMmY2z6AJSk5WBl5SHkW1JwW8mMmL3PHGpShrS/mZYWk2MnqhSDCavO/wVe3LNWUbWp5lBLHb47fkB13bj0PEzK7PgM0upx4Z1DWwAAlxedBLvHjf8d3e5ff9hWD6/PB22YdhgtsgvN4Sqz/3nKpRiXPgDbGyoly40aHeYXjMK8go55N6x6I1ad/wuMfP/xkMcEAB96/jVeGdK2XRRpcHJOCSIiiq+EDmmLi4vx0Ucf4dJLL0VlZSUee+wxPPbYY5JtBEHA/fffj3vuuUf1GH/84x9RVVWFl156CaWlpbjiiisU29x000145JFHuuV7oN5jgFUr+aAjxuGkk6SEELfuAW0ffF477Uq8dtqV/mWR3HbX3sdNfqvgmLRc9s4kikC2KQm/n3iu//GhlueCBhTyyW2I+oKK1mbJY5NWh9dOvVISrJbWlquGtBpBwNTswZiaPViy/MYR03DjiGkxH+tBWUh7w+gkWPUJe7NdzIxKy8WT0y6MaNslh7cFfQ28rHACHjjprKD7Vtqb8b+3O0Jat8+LY61NKEhKC7qPT/T57wpqF+5OIrNOj7vHnR5ym0DFqdlI0hnR4lG/66hjLD17vuz2eRXVu9oTIW0jQ1oiIoqzhD8DmzVrFrZv347f/e53mDBhAlJSUmAymVBUVIQbb7wRGzduxMMPPxx0f41Gg8WLF2Pp0qVYsGAB8vPzYTAYkJ+fjwULFuCTTz7Biy++CE2MJneg3kseBzKi7f1CzWQcSrBKWl2MZtomSjShbtuWXwwh6guO2Rslj/MtqYrKV0OQ94xwFxhjyeUVUdYsDWmLUhO6hiMuDNrg5w/h2hDkmJIk/WAB4GBL6JYHdo9bUUwQ7nk6I5LzrJ4OaVtlVbRARyVtPUNaIiKKM56FAcjMzMRDDz2Ehx56qNPHmDdvHubNmxe7QVGfIz8PPdocuq9Vi8uHzw7bUe/wYnKOEZNyI5tkgcJ779AWfF6+G1WOlpDbaTsZ0g5/r63iXt5XUxdiZmQiCm5YiJB2eaV6dRlRb7ansUbyOE9lwrxgIW1nLyB2xof7bAjs1CQAGJLCjwc9zaAJ/jMP14ZAEAQUJmVgR0AbggdLP0dhUkbQfZwqdw0lxWgiOunYwm9j97qRHmabOmcrntm5EtUOG64dNhnTZFXmoTg8bjy7axW21h9vez6PcnKw9kraNRVONDp9SDUGtCWxe/HVYTvSTRqcNdgMrYbtrIiIqPvwLIyom3x0oBUXDrMgxaAe3D25sRE7Tswi+9URB+6bloqTshnUdtU7B3/AZctej2hbbRdD1Q01ZZLHOlbME3VKjikp5Pp11Uei+lBOFG/3b/pU8jjfkqLYJlj1ZE9FQKVVTry3T9ovdYBVC7OO72U9LVhgD4QPaQGgSBbSfnf8AL5DdBe4InmeaGki+G3+xfcf4P0zbwi5zY++ecXfDuJfe9Zix8V3Rzxx3s/WvI+X964PuU17JS0APLquAY+d2hZwu70i7ltZhyZX25WMylYvrhutvOBCREQUKzwLI4oRo1Z5IrqnXnm1HgBa3T5/QNtubUXonl0UmQ+PbIt4W7UPJFpBE/LDUijJeobsRJ0xMXNgyPXvnZgkh6gv8KjMVp9usCiWJetNqvt3R1im5uMDygmtCllFGxcpBvXfBQDIMJrD7j88JatLz2/U6mCWtUyIhUh+l789vj/k+iaXQ9Kv1+n14L8Hf4h4DB8f3RFyvRY6aNBx3newyYM6R9vf8JrjTn9ACwBLD9ojfl4iIqLOYEhLFCMz8pQBndOr3mfLpbLc5mYX21gI1+Ig0KWF4xXLtBoNLlFZHokfF07o1H5EiW5y5iBMyMgPun5XY3UPjoaoa+pdyiBn3qASxbIMowVn5Y9QLO+p95JttcoLyTkW9laPh7FpA1CSmqNYnmdOwam5Q8Puf0XRSV1quXR54QRouqFl02VF4X+X5ZN4yTW5HYpluxurIh5Dszt0EURx0ihFv+j2c/IKW/jJZImIiGKJl8uJYuScIWa8tF0aEPqC5K4eleVscRUbtQ5pZdDUrALsbarBydmDMT49DwCg12hxRt5wnKny4RgAXpp5Gc7IG449J4KhTKMF9278RHXbcweOxMSMgZiVW4jzC0bH8DshShyCIGD53J/h1X0bkKI3YndTNR7d8o1//c7GyhB7E/Uu8vchADhPJaQFgPfPuB6v79uIQy31AIAxabm4atikbh1fKOlG1m/Eg1ajwXdzb8O/D5SiorUJAJBlsuKKopOQFMFdOtNzhmDV+b/Ax0d3wKHSbzaUkanZuHbY5E6NO5w/T5mPSZmD8EPdMQBArjkJQ5Mz8aNvXvVv0+pxQxRFRVAauF7uuL05oucXRRFOrzQEvmH4FGSfaLFTkpqD+YNOwsJvGyTb2E+cqJtU7pLziWKP9o0mIqLEwpCWKEYEQUBRig4HmzpOjoPNWOtRSW9VzgOpE2qdNsnjByachQsHj4nqGCadHjcXnyxZFiyk/XHheNwk25aIopdiMGHh6FkA2nrQBoa0B5rr4PR6YNTytIV6vzqnNKS16gxBf3eT9Sb8bNTMnhhWRDJMDGnjJcecjLvGnNbp/adlD+51vbu1Gg2uHjYJVwdceDjQXCvZRoQIh9cTtN1Cq8elWFZma4zo+T2iDyKk59z3jj8DI2VVy6lGDRqdPv9jR3tIq1OenLd6RCTpedJORETdg2diRDGklf1FBaukVeuCwNliY6NW9uE406jsAxhL4W7TI6LojUzNljz2ij7sa6qJ02iIolPnkr4PZXTz+1BniEEuIqeb2O6AupdFqwxjbSpBbDu1StqDLXVBf4cDOVWqio0a5QUTecWs3dMW2JrlJ/YA7GxPRkRE3YglKUQxJD+Ve35LM2YPMvlvi7J7fHh/bytWHlP216Kua/W4FCf6mUZrtz6niyEtUcylGszIt6Tg2InbfgHghpVvI6sLf89DkzPxm/FnYqA1Nep9HR43Ht36DTbUHA16h0Qow5Iz8ZsJZyLf0vbcr+3bgA8Ob4PDqz65pF6jxTn5xfj5qJlBbwGm3mVzbTme2r4cVY4WVMhuxe7ui4XR2FrjwrKjdslkSIHY7oC6m0VlMrFapw1ZJitEUcSbB0rx1bE9OCu/GPMLRuFna95XbG/zuHDuF/9CgTUNvxo7G1pBg4VrPsAXx/bglJxCpJxoEeH2+RT7qlW1m2UVs44T1RQGlWsWrSeqbF1eER/ut6HO4cO8IgsGJ6t/rD7S5MHHB1uhATB/qAWDgmxHREQEMKQliimNSjXso+sacP/J6QCAF7c2Y+Ux9QkMOvG5n2TuWf+xYlmmiZW0RH3RqNRcSUi7oaasy8dcU30YGy+8K+r97tmwFIt2ruzSc6+rOYp1F9yB/x3ZjutXvB12+4+O7oBeo8VPS2Z06Xmp+9ncTpz+2fNoUJkwDOg9lbTlLR48vr4BbmVu5ZfGkJa6mUWlrcHNq97Bink/x9Kynbhm+ZsAgFf2bYBRq1OthgWAL4/tAQB8dHQ7PD6ff8K+1VWHQj6/Wkgrb2vgUJs84oT2KttXdjTj6yNtRRdrKpx4/swsxXFcXhF/WFOP5hPVt5uqXXjujEzoePccEREFwTMxohhSaV2FLTXugK+D384l75lF0VtTfUSxLN1g7tbnnJpV0K3HJ0pUY9JyY37MTbXlqHHYwm8o81n5ri4/9/qao2hxO/HB4a1RPO/uLj8vdb9VVYeCBrQAkGdO6cHRBLfsqCNkQGvQAHo2yKduptMoy1PbJ2r9xZoPJMuDBbSBqh02f0Abjl6jhVWlktesaHfQdk6ultW2r2sPaNuXfXlYOYZ9DW5/QAsAjU4fjrXw4j4REQXHkJYohowhPtyIooiWEH2sgvWvpcgdtTVIHhdY01Q/DHTGvePOUCybllWAU3OHxuT4RCR1w4ipMKv0Luwq+eSCkahojWwm8XC8og9b6isif157U/iNKO72huiXrBU0uGHElB4cTXCbq9Xv5Gl3wbDeUfFL/d802QXu9tZRh1vqu/V5rx46MbJK2hPtDpwqKa3avBIAUG5TBspVrcpA1sNb54iIKAS2OyCKIbVZYNs5vSKD2G5kcztR5WiRLFt61k0xO/6fJs/FnLxhaHTZkaI3odHlwILBY9gvkqibTMwciNIFd+HL8j1wRFBNFcxvSz+T7F8nm1wwHJvbiRaPNNy6b/wZyDCEDrQa3Q488sNXkmUenw/bGyoly34xaiaGWNta4uxqrMLivev86ypaGdL2BfKQdkrWIFxeeBL0Gi3m5A3DhIz8OI2sQ53DiyPN0sBoflHbnSaVrT6cNdiECdnKCkOi7vD8KZdi0v+e8j9ucjsimghs4ahZGJKUhl+ptLeS++OkuTAEXKgfnpKF8wtGqW4brN2BXSWR9QY5mXepbFttV4a0/CxAREShMKQliqFQIa0tzGywPGnrmkMq1RdDkzNidnxBEHDuwJExOx4RhTcyNQcjU3O6dIy/71wpqbKPNqStlF38Adoq61MMppD7ldsaFSHt3qYaxe27vzvpHGSZ2iZEW1d9RBLSHrc3QxRFXgzq5fY2VUsezxs0Cr8aNyc+gwlic5W03ZJVJ+CqkiRo2RuT4iBN9vrpE0XFxK9q/jrtAug0Wry0dz12yC54yf1yzGkwqfS/VSOfOKy9pYFab9pg7WrVQtqqVmV/ERbSEhFRKGx3QBRDphDtDmwhJiEAwI60XXSwpU7yOMeUBOuJ2X2JKHHJJ22qjTaktUtbHZi0OiR38rVF3uog35LiD2gBZe9Sl88bca9Fip89jdJK2hEpWXEaSXCbq6UB2LhsAwNaipsUvfIiV5PbobJlh2S90d/CKpLXYE0UF7fkPWn97Q6iqKR1qrSaVauk5fk+ERGFwkpaohgKVkn7zh4bvGEunfPKeuR+qDuGh0q/wBFbW/XsUVsDqmWTARXFsIqWiPquTFlIe/2Kt/Gfg5tx//izcEpuoeo+NrcT9278BGuqD6PeKQ1JB5iTO13Z+rvSzyWPx6fnSR7nmpMU+xxrbVQEzWrjvW/jp/i++hB8J95MzFo9flw4AbePnoUf6o7hz9uWYXdjFQAg3WDBz0edgouHjJMcp9ntwK83LMX6mqPwiSLMWj1+NGQc7hpzWkJV87a4fHhjVwuqWr04vcCMUwcGr5p2+7zY19y7QlqXV8R7e234cH/bBYmiFB3KWqQV3CextQHFkdqdCOd8/kLIfQJfB2Md0hpl5+9rKpx4dF0DalRC1h+qXRicrPwIvaXGhcuXtr3GDkzSwqARFH93APyv0UQulwstLS2w2WxwuVzw+ULM7EhEvYZGo4HBYIDVakVSUhIMhtieUzGkJYqhYJW07+4NP1ENT9ki4xN9mPflizgWpldjURJDWiJSVtICwCdlu7Cy8hAqrngQFpWZvu/b+Cme2blK9Xi55uROj+W4rCpX3qvUoNUh02iRVPv+Zdt3eOXUK0Ie9zcbP8WinSsVy1dVHcIAczLu3/Qp9jfXStZ9U7EPey75NYYHBIq/XPcRXtyzVnGMAmsaflw0IfQ314+8sLUZa4+39SHeXuvGwCQthqaq3zb90p51imUjUrK7dXzhLD3Y6g9oAeBgkzIoYkhL8aTXaGHW6mH3uv3L5P265dINZv/XybrwIa1WiPyGUXm7A0BZfd5u5TEnvq8IPQlfeYtKWe0JPN8nURRRU1ODmprgk04SUe/WfpGlsrIS2dnZyMzMjFlBA0NaohhKN2rDbxSEO9h0sSRxuKU+bEALACVd7GNJRP3DIEuq6vImtwMba8pw6oChinXLKw8EPV6kF4BSDEZoBCFk1dTEjIGKZS2yvoyRVF2tqDwYdN2DpZ8rAloAECHi+6rDkpD2+6pDqsdYXXUooULa9oC23bKjjqAhbXlro2JZuMrn7vb27tAXhgtTdEg3df58hSgW8i0pqq9NwQyydryW51tSQmwJpBpMUX1YDtWuTE1XTtlZSEsVFRVobJS+dwiCAK2Wr8tEfYHX65VMdlldXQ2Xy4X8/NhMFMuQliiGJuZEXpkyOkOPHXUdFQQtbt7iEgmnN3h1QrssoxXXDZ/cA6Mhot7uxhFTsXjvOjS7lZVPagEbADQG6QNr1OpwW8mMiJ43WW/CDcOn4qW9ykpLoO1C0oWDxyiWD7GmY0/ARFRq45YL1ctxj2xSq0DNsv08ovr7kMsX/nW3P6uwBf/+g/3MerOrSqzhNyLqZneMPhW3r/0wom11ggY/L5npf/yTEdPw6r6NaPGovz7ePmpWVGPpyf7MnCg4sTkcDklAm5mZiZSUFBiNxoRqK0TUl4miCKfTiaamJtTWtl1sbGxsRGZmJozGrs+Jw5CWKIaSDBq8fE4Wvj7qwBs7lTOCtxubqcdZQ8yykJZnbZFwRxAWbL/4V8jpwi3JRNR/jM/Ix64f3YMVxw/iiu/ekKw7amtQ3afRJQ0v7x9/Jkan5eKUnEIURtHv+oVTLsX1wyfjUEu9ZHmq3oQz8ofDrDLz+M9KTsGd65b4H4ebTAeILMhVI6/aDVbh5UnwPnmeEKmKvNL5mmGTuns4ITW71P+tpuYacXKeEaMz9Mg0s1qL4m/h6Fk4NbcIW+uPQwxoAuDx+XDU1oAhSenQCAK0ggYnZw+WVP1PyhqEXT+6BysrD8Lpa2vncdzeDLvHjbmDSjA1qyCqsQSZUqLLzi8yY+lB6UU/nu0ntoaGBv/XOTk5yMzMjN9giKhTBEGAyWSCyWSCVqtFVVVbP/L6+noMGDCgy8dnSEsUYxa9BhcMtSDDpMHfS9Vvy586wIhkvbRXFitpIxMupE3RmxjQEpFEviUVlw89CZ+W78Kr+zb4l5fZlJW0oiiiSRZ6Xlo4HidlKlsThKPVaHDagGE4LYp9UgzSK/CRBLCdDmll+4lB4oO+WC0aS9GEtALiWwkVrOp3RLou5ARoRPFwUubATr22AsBAa9vreizouqmSdkK2AauPOVHv7HgNZbuDxNba2tEvPC0tLX4DIaKYSEtL84e0gX/fXRF5R3UiioolxGX5/CQdkvTS9S0ukTO+RsAthg5ptbxViIiCkPenLVNpd9DqccErCyXVZiLvLvJZy8NV0np8XsnkO9GItP+tJ8HbHYS6hioPtqOZUb47VNiUk4QBgKEHb+cm6muibEkbxXEFyP/0fKylTWjeE23bdDode9AS9QNardb/t+yNoC1jJFhJS9RNLLrg10Dyrco3ZRGA3SPCqucHqVDcYW67jWY2XyJKLAXWNMnjj4/uQMF/HpYs86oElan6ngtpU2TPtbepRjHGQGof+ItTskP2om33wu41eG3vZji9bVGj3avepuedQ1vwTcU+/2OzTo9LhozHHyefB02Ur7n1Di9e3NaMg40dYaJFL+C8QgvOGtw2e/vRlgbc9v17KK0rl0wU2R6yG7Q6zB04Ek9OuxBGbexOZbfVV+COtUvwfU3HLPNWbSpma2bh07JKPFT6hWLiygZZa4x4hrRNTh+e+6FZdZ2hu1Ioon6guypptRpA/pLAegwiov4l1v2kGdISdRNzkLDVqBWQYdLApXKhZXutG9MGdL3ZdH8Wrt2BTsOQlojUBc4ODrRNiKVWTSvXk5W08pDWJ4oRjTHQzNzCiEJam8cFG1xht7N73YoxPLb1G4xKy8F1w6dENbaXtrdgQ6X0OWsdwL+2NqM4XY/ByTrcuvodfFa+W7Fv4Bie3bUaQ5Mz8cuxs6N6/lCu+u5NbK2vkCyz+5rxwfF38N7xyKojNHFsd7Bos3qLJYCVtEShaLvp1FErKBugMKQlIqJQmGYQdZMMk/pHtSHJWmgEAUaVO1yCTfhBHcKFtLnsR0tEQYxMzYl6nwHmZOg1PXdLorzaN1qpBhPOyBuuui5LP6hLx5YrrS2Pep/9DcFbM+w+MZnmhpqyiI61qupQ1M8fjMfnVQS07XyI/Pa1eL0H7axzYUtN8MA93cRTfqJg0o3d8/eRbtSotDsgIiIKjmdsRN0kSa/BuYVmyTKtAFw03ApAvSze6eXl9XBcIUJaAQLuHXd6D46GiPqS4SlZuGroxKj2uX/8md00GnUDram4Icrq1ED3jTsDlwwZj4kZ0sl4pmYWYkbKhUjSpnd1iH6decdyhHifq7G3vb7bPOGrewHgqK2hEyNQ5wnTSicSueZk3DhiagxGE71399iCrivJ0KMkQ9+DoyHqW3ItWkzP69ydbDPyjDCptBOZmW9EtkWraIESYh5CIiIitjsg6k43jE7C2YPNqLF7IQjA4GQd0k0dFVmTcgzYVNXxYZQhbXjyStpkvRHvnH4dAGBc+gDkyyYGIiIK9PppV+KecaejojX4reHtSlJzUJic0QOjknpp1uX45ZjZKI+yzcGIlCwMS8kCAHw/fyE21pShye1AjikJoicLf97YhHMzbkSduwIeMXhF66Mz8zExcwA21Zajxe30L//bjhWqbQiiEep9rtruhU/0RTwRWkxDWjHykHaQJRX/mvljyTKjVoepWQVI0vd8y6JddS5sq5X+zCblGHDuEDOSDBoUpeigZbsDoqAEQcAdE1Nw8XAPGpw+pBg0+M9uGzZXSy8YXTHSisIUnf9OufwkHXIsWtjcPhxo9CDfqkWrR4RPBAqS28735X96an3PiYiI2jGkJepGgiBgULIOg5LV/9SMsivvLoa0YblksyYOsabj3IEj4zQaIuprNIIGEzLyMSEjP95DCUoQBIzLyMO4jLxOH8Oo1eGU3EL/488PtQIAtIIO2YaCkPuOSs2ERafFrNwiyfL3D2/t9HgAwOsT4QmRhdbYfbB7IgtoAaDS3gKX1wNDDCYP80YR0uaak3HeoJIuP2esvLtXWkWbbtTgrkmpnCyMKAoaQUBhSkfF+ZRcoyKknZFnxACr8vXGqtdgXJYBAJCpOK70MStpiYgoFLY7IIoj+QcoVtKGJ293YND2XK9IIqK+qsYeeQjp8HTPe1G497gauxetEVbRAoAIEcciqIiOhFp1W5pOvYdxShyqZYPZVefC1hrpz2zBMAsDWqIu0ql8Su7M35Wi3QGb0lIv4HK58NZbb+G6665DSUkJMjMzodfrkZWVhcmTJ+O2227DV199BR9/YYl6HCtpieJIXkm79KAdSw/acfvEFMzM77nZxPsSl88jeWzQ8GWMiKid3ePDP35oxg/VLngCgkdvFJ+z7vquDreflIKZA0O/D/19x0os2rEaAGDWWDEp9VTcOGIKrhuVpHp7/aEmD3a3rsfu1nVw+Ryqx3wxxJxhKXoTPKIXrQHVtif976/Yf8l9ePNAKR7f+i2qHS0AAK8Y7Szqyo0LjCVo8FQpx2HoHe/Pnx5sxSs7WiTL0o0anDnYHGQPIoqUTuU1zNCJtiHyXNfXqW7eRLHz/vvv4//9v/+HQ4cOKdbV1taitrYWmzZtwvPPP4/i4mL89a9/xfnnn9/zA01whYWFOHz4MK6//nq88sor8R5Or7Ns2TKcfnrbXDTffvst5syZE98BxRDTDaI4koe07f5e2oSJ2QZY9Cx2l5NX0uo1/BkREbX75KAda487w28YxrM/NGFSrgHmgHIyeUseESJEnJjsy9eElfWfIPPAMIzJNGDaAGW16eMbD+GHlm9DPm+ooh29RoM8UzJ2N1b7lzW6HPjp6nfxXhdbMagZaByBbbYVEGWhSoo+/iHtcZtHEdACwIWsoiWKidhV0kofR3PBjCjWHn74YTz44IP+x2effTYuvPBCjB49Gmlpaairq8Pu3bvx0Ucf4csvv8SePXtw//33M6Ql6kEMaYniKNscPGD8vsLJahgVDq+0ktYYg16ERET9xaEmT/iNIuAVgQqbF0NTO96nrLrkkPuIENHkrcWe+gxFSOv1idjfcqxLY3pi6nx8fHSnJKQF0C0BrU4wIEmbhhz9YFS6D0vWDY3DZHJyR5u9imVpRg3O4nkDUUyMzTRIHmeYNOhM7YRew9Zm1Du8/PLL/oA2JycH//3vfzF79mzFdmeddRZ+/vOfY9u2bbjrrrtQXV2t2IaIug9L0IjiaGa+CYUp6iFjd/UE7OtaPdJJHKw6Q5AtiYgST4srdmVa8km+5g+cgiRtetj9KmzKoLisxYtWr73TYzkjbzguLzoJvxl/ZqePEY2x1lnQCFpMTD4LJo3Fv3x4chZuLj65R8YQikell8PPJiSzipYoRpINGlxWbIUAQK8BrhhphSBE//dl1Uv3aXHz/J56Xnl5OX7xi18AAKxWK7777jvVgDbQ2LFj8fnnn+NXv/pVTwyRiE5gSEsUR0kGDR6blY5ci/JPUe0DGAE2WUhrYUhLROQnDwAuL7bi0VnpeHRWOgYnKydafGxWOl47LxuvnputWCefTCtJm4y5GTfj3Iyf4Oz063Bl/o3KC2WiiOM2ZZXnvgY3nD5pSHtm3gg8M/X/cHb6df7/fpR7AzZccAc2XnAnGq9+BPZrH8Wxyx/El+feCovOgMlZg7Bm/sKQP4M0XYbkmE9P+j8sOf0XWHL6L3B53o2SdYH/nZtxHZac/gv8b859KLZMAQCk6DIxP/NnKL3wLmy76FfY9aN7MMiaFvL5e4L8luk8qxYTsnvPhGZE/cElI6x44ews/POsLMwe1Lkq9SRZ+a3NzX4H1POeeuoptLa2AgD+8Ic/oKSkJKL9NBoNrrnmGtV1K1euxLXXXovCwkKYTCakpaVh4sSJeOCBB0JW3y5btgyCIEAQBCxbtgyiKGLx4sWYNWsWMjMzkZKSgmnTpuH111+X7OdyufD8889j+vTpyMjIQHJyMmbOnIn//ve/QZ/r0KFD/udq7+v6zjvv4KyzzkJOTg7MZjNKSkpw3333oaGhIeTPYtu2bXjkkUdw7rnnYtCgQTAajUhKSsKIESNw/fXXY82aNSH3f+ihh/xjAYDGxkY8/PDDmDhxItLS0vxjnDNnDgRBwOHDbXfxvPrqq/792v8L7L+q9j2+//77OOecc5CTkwOr1YoJEyZg0aJFcLs7evqLoog333wTc+bMQU5ODiwWCyZNmoTnn38eYgQ5RGNjIx599FHMnDkT2dnZMBgMyMvLwwUXXIB333035DHax/vQQw8BANavX48rr7zS/3MdOHAgrr32WuzcuVOxb/v3296PFgBOP/10xc+oL/fx5X3CRHEmCALyrTpUtkrDR3kFE7UJnDAGACxafZxGQkTU+8gDgMIUHYamtr1OFqfrcUR2m3xRasdraKpBQKOr46Ra/j7U6vFBEASk6rIAACOS9dDXSINfESKOt3rhE0XJrOb7G91witKQdlhyJi4pKsTyw3WBB0C2IQODA+4yydNJX+dHpuSofu/ttDAiXT/A//j8IekYntZ2jO/L6iB61VtCZJs1uLAwC1WtXryxo9a/XCNoMCotN2gf+Xjw+KQffsy63jM2ov4kxdC1mqYkVtJSnImiiFdffRVAWxXtLbfc0qXj+Xw+3H777Xj22Wcly51OJzZv3ozNmzfjmWeewTvvvIOzzz475LHcbjcWLFiAjz76SLJ8/fr1uO6667Bhwwb87W9/Q319PS666CIsX75cst3q1auxevVq7Nu3D7/5zW/Cjv2mm27CSy+9JFm2e/duPPbYY3jttdfw9ddfqwbYgZNUBXK5XNi3bx/27duH1157Dffeey8effTRsOPYu3cvzjnnHNXJ27rqZz/7Gf7xj39Ilm3ZsgW33347li1bhv/+97/weDy45ppr8O6770q2Ky0txW233YZNmzbhhRdeCPocX3/9NS6//HLU1tZKlh8/fhwff/wxPv74Y8ybNw//+c9/kJSUFHK8zz33HO644w54PB3nZseOHcMbb7yB999/H59++ilOO+20SL/9foGVtES9gNrpmlcU4fSKaHX74EvAqtoWtxONLrvivwaX9EM+2x0QEXWQBwBJAQGDvDeinFa2vvVE4CuKbe9FTbJWCmadIAliAcAjutDqceJAow2NLjuaXG64vR7sqG2Bwyed6CrLZEWuRavoz76lRnrRUi7NaEaaIXhVmyBIg+MMU8fxQ7UDyDBpg25T7/Ci1e2Do4tXUNt/ll3pS+kTRTS7pPv3ovyYiAJYY1xJ6/D44PV1/XOBKIqKiz3UP23fvh01NTUAgFNPPRXJyaH7y4dz7733+gPaoqIiPP/881i3bh2+/fZb3HXXXdDr9WhsbMT8+fPxww8/hDzWb3/7W3z00Ue4+uqrsXTpUmzcuBFvvfUWRo4cCQD4+9//jq+++go33HADVq9ejdtuuw1ffPEFNm7ciMWLFyM/Px8A8OCDD2L79u0hn+u5557DSy+9hGnTpuGtt97Chg0b8Mknn+Cyyy4D0BYMnnvuuWhublbs6/F4YLVacdlll+H555/HsmXLsGnTJnz22Wd48sknMWTIEADAY489hpdffjnsz/DSSy9FeXk5Fi5ciC+//BIbNmzwf98vv/wytm7d6v/eFixYgK1bt0r+C/Yczz//PP7xj39g3rx5eP/997Fx40Z8+OGHOPnktjZN77//Pl5++WXcfffdePfdd3HVVVfh448/xsaNG/H222/7A+p//etf+Oyzz1SfY9WqVZg7dy5qa2uRm5uLRx55BB999BE2btyIjz76yF95/cknn+D6668P+XP4/PPPsXDhQowZMwYvvfQS1q9fj+XLl+Ouu+6CRqNBa2srrr32WrhcHeeFAwcOxNatWyVh+0svvaT4GV100UVh/x16K1bSEvVS7+1txXt7225LSdILuGlsMk7Jj/+M0t2t3NaIH33zCtbVHI1oe7Y7ICJqU+/wKsK/wCqucCGtvBjzr5uaADRBrwHUcgWzXoD8iCsa3wMAfPhB+PFmGi0QBAHjswz4+qjDv/z1nS347x4bLiu2Yv5Qi+q+RUkZKK0rV12nQUdIqxHaJtRqZwjxM2gPc03KrhC4Y1lHtW9hig6/mpyKbIvKhiFsrnLiuR+a0OgSIQAYl2XAXZNS0OTySY7/8CnpKE5Xv0tkY6UT/9zSJKl4BgBdmH9bIoqPJENsKmkrW734y4ZGHGn2wKQVcMVIK+YWqb8+hvPStmZ8frit6CHHrMHfTs9UXHCj/iMwKJ08eXKXjrV161Y8+eSTANp61q5YsQJpaWn+9XPmzME555yD888/Hy6XC7feeivWrl0b9Hhr167F008/jTvuuMO/bNKkSZgzZw6Ki4vR3NyMq666CjU1NXj//fclwdukSZMwZcoUTJw4EV6vFy+88AL+9re/BX2u9evXY968eViyZAl0uo4YbO7cuRg7diwefPBBHDlyBA8//DD+/Oc/S/Y96aSTUFZWJvle25177rn4xS9+gfnz5+PLL7/E73//e1x33XXQaoOfI2zbtg2ffvopzjnnHP8y+b+NXt92HpCWloaxY8cGPVagtWvX4s4778RTTz3lXzZp0iScffbZGD16NA4fPox7770XdXV1qj/32bNn+3/u//jHP3DeeedJju92u3HNNdfA7XbjvPPOw3vvvQeLxSI5xvz583Haaafh1ltvxfvvv48vv/wyaEX1mjVrMG/ePHzwwQcwGDo+05966qnIzMzEAw88gCNHjmDp0qW4+OKL/T+XsWPH+i88AG0XCyL9GfUFrKQl6gXCna61uEW8uK05Ia54/3Ld/yIOaAHAomO7AyIiAPhgX6tiWWA/RH2YTFFeSdsuWOGXWSdAGdNGLstkBQCMy1ZebHN6RbyxswU1dmV/WwAoSs4IelxtQCVtmlEjCR+MIX4GmSdC2nCTbx1q8uC9fbaQ28iJYtv7eHu4KqKtYvjrIw68vF1aYfy77+uDHuNfW5sVAS3ASlqi3krek7azkzu+s8eGI81ttwM7vCJe39miuLshEg6Pzx/QAkCV3Ydtte4Qe1BfF3hLek5O6HZB4fzjH/+Az9f2e/fiiy+qhpbnnXcefvKTnwAA1q1bh/Xr1wc93sknnywJCtsNGDDAH8pVV1fjsssuU62MHD9+PGbNmgUAWLFiRcixG41G/Otf/5IEtO3uv/9+f8i3ePFiSeUmAGRlZal+r+0MBgOeeOIJAMDhw4exefPmkGO54YYbJAFtrBQUFCgCZgCwWCz+qtba2tqIfu5qP8+3334bhw4dgslkwmuvvSYJaAPdcsstmDZtGgCE7A1rMpnw8ssvSwLadrfffrt/ebh/2/6GIS1RL1CQFL4ax+YW0ejs341qHR43Pi7bEdU+I1Kyumk0RER9y9FmZa/VwCquMwukLQLk1Zq5UVaG5ll1IcPScEaltn1YHJtpUI16RQAryh0qa4CJGQODHteqTfN/nWmSnuoOsAa/iay9D65GEML+LCpUJkcLpcklotqufA+vsHmwuVr6YTDY9ViXD6gPch6Qa43u346IeoZJdgXF3cmCiwqb9PXdK6q/5oeztUYZyH59xK6yJfUXgbfvW63WLh3rq6++AgCMGTPGfwu9msC+t+37qLniiiuCrpswYUJU2x04cCDoNgBwzjnn+FsIyGk0Gn+IWVdXh02bNoU8ltPpxJEjR7Bjxw5s27YN27Ztk0yUFa7Nw9VXXx1yfWf96Ec/8lfgygX+PC+//PKgx2jfrr6+XjGZ2v/+9z8AwOzZs5GdrZxwNlB7H9nvv/8+6DZnn3120AsHycnJGDFiBIDw/7b9DUNaol7g/CC3c8rZPP27knZl1UHFxGChXFAwGgsG959bG4iIOksURRxqkn5gn5FnlFSRZpq1uKzYCgFtk4RdOVL6Ye3ykVZJ/9ZQSjL0OL3AhCemzkeWMboPfQIE/HTkdEzJKgAAJBs0konCAjUHqRT7v5IZmJ49RLE8RZuFkZZp/sc5srB1XpEZQ1Sea2K2AdPzOloKXT86CZYQk3FF2xOyslU91I2mPWWw58y3arFgWNc+eBNR99DKXlI729Zabb9gdxqEohYS9/cikEQX2IPWZovuLpBATqcTe/fuBYCQAS0ATJw40R8Wbtu2Leh2xcXFQdcFVq5Gsp1aL9lAU6dODbm+vfITaGvrIGez2fDoo49iwoQJsFqtGDJkCMaMGYNx48Zh3LhxmDhxon/bwFvx1YwfPz7k+s6K5c8TUP5MN2zYAKCtl6wgCCH/+8tf/gKgbTKxYNQmaQuUkZGhOo7+jj1piXqBDJMWt41Pxj+2hH4Bau3iZAO93adluySPJ2cOwodn3qC6rVVnQLqxc724iIj6myq7D62yC3nXjFLOqHvJCCsuHm6BAECQ9SAcmqrHc2dkot7pw4Or61UrP/8wIx15SVr/jOezBwxD5ZW/Q0VrM3yiDz/7pq236sbmL1Dh2i/Z1yiYcXbGDRiaYsHfTsmTrBudocfhJmVVWLAJtrJMVnw/fyGqHS1wej247etaaAQNjIJF8n3JK2IzTFr8+dQMNDp90GoAUQQESCdYA4DJuUa8eHYWGk6EF2uPO/Hqjo62BNEGLcdt6hVv0VTVqT3lo7PSUZSiU/xbElHvoJX9bXZ2MmC1lmc1Kq/R4ag9vaOfF4EkuszMTP/XlZWVnT5OfX1HK55wbRP0ej0yMzNx/Phx1NXVBd0u2O3yQFt1azTbtbdhCCbcmHNzc/1fy8d86NAhnHHGGTh48GDIY7Sz20NXp6enp0d0nGjF8ucJAF6v9EJQVVVV1GMK9bMINY7AscjH0d8xpCXqJcL1wAPaWh70Z5+V75Y8nl8wCoOsafEZDBFRH3KwUXoXQrJeUNzq3y7UBDGCICDDpMUFQy14SdYrFQAyzRp/QNtxPA0GWlMBAAVWL2odPli1KSrPq4VFmwyrSj+40ZkGfHpIeSIfLjzINiVBFEVYtC7V9fJK2napxvAVw1qNgEyzVnV7T5RBy/EglbTRhL1qeW6GScuAlqgXU1TSdvJUXq1OozOVtGqvI44gF8Oofwi8zT3cbfyR6ovvO10Z87XXXouDBw9CEATceOONuOKKKzBq1ChkZ2fDYDBAEAT4fD7/ZGFimHOEUJOK9WbtYencuXNVe99SbDCkJeoljBGEtK39OKQ91FyHHQ3Sq7tzB4W+BYKIKJG1uHzw+ESkmbQ41Cit1CxK7Vp15fQ8k2pIG+6tqv2Co1GjvP1eONFlS68yQVlJhnoPtV31btTavcg0a9Hg9EErtFXX6jQC0k4Ep80h3huj7bMbjLzzgccHNDh90ABIiSDwrQzSw1beZzJwuUYQkG3umPhMLVwJMtcbEfUS8kraVrcInyjC5QXqnV4kGzQwagTUOKSvEQLaLjK1//2rVdJWBbn4I9fg9CFJL6DO4UOdU7kPK2n7tzFjxiArKws1NTVYsWIFmpqakJKivJAaTmD1Z7iKXI/H45+wrP2W9XgLN+bA9YFj3rVrF1auXAkA+M1vfoNHHnlEdf9QFcP9RWZmJo4dOwaXy+WfaI1ijyEtUS8RSSXttloXTh1kCrtdX7Ol7hgmLPmrZFmG0YIpmQVxGhERUe8liiJe3NaMr460Tao1Idug6FdamKIeekYq1ahBYYpO0edWHjjItU+oZdIob2HTCG1hpk4l05RX57arsfvws29qVddNzjFgwTArHvy+XnU9ELySNlo6WRpaYfPip1+19ZybnmfE7SelQBsiMQ1WSVvWor78zmVtH/bSjRr8ZloaBqfosLxMWWnMkJaod5Of3osArvykOqJ904wa3Dc1FTkWLWodylLabbVuHGh0Y2iq+uu9w+PDnzc0Yntt6PkeWEnbvwmCgP/P3n2HR1GubQC/Z3s2vUIKvTfpTUBAwIIUsSBgoYoHFDt61E/FemzHo6JSBEUUkY5iUBCpIr33XkMo6X3rfH+EbDI7syXJpt+/6+K6dqftu0uy2b3nmecdPXo0/vvf/yI7Oxtz5szB888/X+zj6PV6NGnSBKdOncKOHTvcbrtv3z5YLPk/d5UlzNu1a5fX64uO+ciRI47b7ibcKujX6iuVsVq5ffv2uHLlCnbv3g2z2QydTldhY6mMr4+vcOIwokpC58U3rW2JpnIYSfl794B81s87YppCreJbFBGRs0uZNkdACwAHbphx2OlLeIPg0p+HvzVGL1vm6U9VbEB+KGooZiUtUPyq1z3XzW4DWgBeT4TmiVKwXGB7oglHU9yHIK4mDvMk1WTH8tPZsIsiFhyXT/jCv5JElZsXNRgupZnsWHY6B1sS8lxus+yU64mgtieaPAa0QMn75FLV8dxzzzn6f77xxhs4fvy4hz3y2e12LFiwwHG/f//+APKDy507d7rcb86cObJ9KtratWuRmJiouM5ut+P7778HkF8x3KFDB8c6q7XwZLW7iddmzpzpo5HmMxjyC7NMpsrz/X/IkCEAgPT0dHz33XcVOpaC1weoXK+RL/CzHVElEROghqfPcRF+1fNX9nCqfNbHB+u3VdiSiIgSXFwiX1SdwNKHtP3r+sGvyHX+oXoVjFr3f6nuqOcHAAjWRMrWBarzLx90rkotML61fKKz0mgconHbf7c4QvXuA2R3lx3bRRGZ5pKHINdybIr7a1SQ/P8QUeXjrsLeG0m5NpeV+ABwxUU1PpA/4aE3utSWn5Cj6iU2NhZffvklgPygsXfv3ti0aZPbfY4ePYq77roLH3/8sWPZpEmTHJM5TZw4ERkZGbL91q5di7lz5wIAunTpgs6dO/vqaZSKyWTCE088oTgJ1QcffIBDhw4BAMaNGwe9vvB3okmTJo7b8+bNUzz2jBkz8Msvv/h0vNHR+ROsnjlzxsOW5Wf06NGoUyf/StcXX3wRmzdvdrv933//7fHnrKQKXh+gcr1GvsB2B0SVRKBOhfGtAzHncKbLbbKqaU/aK7nSP/DtwmIwrF7luDSGiKiyyfIi8Iv0K/1l/v5aFSa3DcJ3RzKhFoDxrQM9hp594gw4mmzBwaRQDKzdD+uu/Q2zaEKIJgptA/oAAHQuhnZLhA6DGxqx6mxOqccO5I/XV+IC1fDXCi4n8DS5uVy4tJN+5lpFJOfJv1Q+3yG4Wl/uR1QdlKaSFsjvRZ3r5j0kW2lGsZtYIEtFjR07FpcvX8Ybb7yB69evo0+fPrjjjjswdOhQtGjRAiEhIUhJScHJkycRHx+PP/74AzabTTLxWJs2bfDCCy/g448/xoEDB9ChQwe8/PLLaN++PbKzs7Fq1Sp88cUXsNls0Ol0mDVrVgU+Y6lOnTph1apV6NGjB5577jk0adIE169fx/fff4+ff/4ZABAXF4fXX39dsl/79u3RunVrHD58GLNmzUJqaioeffRRREdH4/Lly/jxxx+xdOlS9OjRA1u3bvXZeG+99VZs2LABu3btwgcffIC7774b/v75Vyn5+fkhNjbWZ4/lLb1ej8WLF6NPnz7IysrC7bffjhEjRuDee+9FgwYNYLfbkZiYiD179mDFihU4dOgQpk+fjt69e/t8LHXr1kVcXBwuX76MTz75BHFxcWjWrJljUrZatWohMNB3nwPLE0NaokpkQD0/9K9rQMF3vfMZVry2tfBSziyzHaIoVqsvZdkWE9LN0su4FvV5tFo9RyIiX8py86UcAAK1Agw+qrDsUluPzrV0Xr8nGzQqPN8x+Oa9u/Gfnd2w93oeVEJhMuuqklYQBDzSIgCPtAiAKIrIsYoYtzbJ67GqBGDB3ZE3b/v2b4hKENAiTIvd18yK692HtO7/vwDg0RYBGNjAD3YROJRkxge70h3rcqwiUp36UYbqVehYi9VvRJVdcSppBQBP3BKImQcLCzZEALlu3l+yLKLL7wau2r10rqXHrmuFVbbpJs/vUVQ9vP7662jVqhVeeOEFnD9/HmvXrsXatWtdbt+qVSt89NFHkmUffPABsrOz8fXXX+PMmTOYOHGibL/g4GAsXrwY7dq18/VTKLEnn3wSmzZtwrx58zBixAjZ+ujoaKxZswbBwcGS5YIg4IcffsDtt9+O1NRULF68GIsXL5Zs06ZNGyxZsgQxMTE+G++kSZMwY8YMpKSk4JVXXsErr7ziWNe7d29s3LjRZ49VHN26dcPGjRsxfPhwXLp0CQsWLJC0xHBWkknqvPXqq69i8uTJOHfuHIYOHSpZ991332HMmDFl9thlqXpeO01UhQmCAI0q/5/zRCo20f0XwaooMVdeORxtrJpnvYiIykOm2f0X6ggfVNEWVZqTZs3DdJKAFgC0Xnz6FAQB/loVGod4X09QNzC/vYGvA9oCLcNcT5Bh9hCieBKkyx+3RiUgwOkFyrXYkeIU0vqq1y4Rla3iVNIG6QTZRMJ2UUSu1fV7iE2Ey/XBeuX3Cef31TRT9fpuQe7dd999OHHiBBYsWIBHHnkEzZo1Q2hoKDQaDcLCwtChQwdMnjwZ69evx6FDh3DHHXdI9lepVPjqq6+wefNmPPzww6hbty70ej2CgoLQrl07vPrqqzh16pRsv8rgu+++w08//YQ+ffogPDwcer0eTZs2xUsvvYQjR46gZcuWivu1a9cO+/fvx7/+9S/Uq1cPWq0WYWFh6NKlCz755BPs3LlTcvm9L8TGxmLnzp0YP348GjduLOnBWtG6deuGU6dOYebMmbjnnnsQExMDnU4Hg8GAOnXq4I477sB7772H48eP47HHHiuzcUyaNAnLli3DHXfcgaioKGg01aMGtXo8ixLw9guHN2cpfv/9d8yePRu7du3CjRs3EBkZic6dO2PixIm4++67fTBaqqkCFHr/Xc+1o26gCla7iIuZVqgA+GlV8NPIQ92q4EpOuuR+oFaPQG3l+SNERFTZeAr9Ios5AVdZahoqn3XcXow8oHmoFqfTPPfgBYC4gLJ93i3DlWdQB4BjKRZY7SI0KgFZFjsuZ1phF/Orey+76RlZoGgw49xn1mwH9t+Q9pYMM1Se/2Micq1YIa1eJaugEsX8EzXuZFlEGBXenlydsKrr1LM83cOJP6p+dDodRo0ahVGjRpX4GL169UKvXr2KvV+fPn0getGLY8yYMV5VQk6bNg3Tpk3z+vFHjhyJkSNHer19gbp162LGjBlut3H3vIo7TgBo1KiRZBI2JfXr1/fq9fT1667X6/HEE0/giSee8LitM2/GAcCrauH77rsP9913X7HHUJnV2JDWF+x2OyZOnOhojF0gISEBCQkJWLlyJSZMmIBZs2Y5GmwTFYefRoBKkH6hnbo5Bf+6JRDLTmXjRq70Q9VzHYLQLbpqBZzT9kkvsYkxlt0lEURE1cGmy65n+gaAyEo0yWSjYHlycDHTu9AVAJqF6fDbuVyvto3zwWRp7tQL0sBfIyBboWrtWIoFz25MxuCGRnx7JMvtcQK0gixoLxqlKE3O5txmgZW0RFVDcdodBOtUcM5V7SJw0sOJqiyLHVGQn7hZdVZ5JvpQp/ePDJMddlEss6sQiIjIezU+pJ00aRImT57scn1Bc2Ylr732miOgbd++PV566SU0atQIZ86cwUcffYR9+/Zhzpw5iIyMxPvvv+/zsVP1l3+5pyCb1blor6qi5hzOrHIh7Yar0tkYa/ux1QERkSt5Vs8VT75ud1AaSr1xQ/Xej6+ZQiWuK3EBZfuxViUIaBHuui/tjVy7x4AWyP//ybJIQ5eir5NzJa0ShrREVUNx2oMH6VWyoNSbNmdKV1eYbSJMCkX8KkHeBkEEkGkWEaxnSEtEVNFqfEgbFRWF1q2LP4v8yZMn8cknnwDInylw8+bN8PPzAwB07twZQ4YMQe/evbF79258/PHHGDduHBo3buzTsVPN0DBYiwM3lL8QOnMOcys7pUsdArWcCIWIyJU0LyZ4UWoxUJEeaOKPpacKK7r61PH+ZGKwXoWmIRqPlWRqAWhSDs+7W22Dy5DWW83DtLCLhRXFgVpB0u/W4MX10eXxXImo9Pw0AiL8VEjK9fze3TBYixCnADU5z/N+VoUgN9XF34p+dfzgr9AYPM8mIlhheyIiKl88DV9Cn332GazW/A/X06dPdwS0BYxGI6ZPnw4AsFqt+N///lfuY6TqYXzr6ltZalcIaV+7pX8FjISIqGpQKqRtG6mDv0ZApJ8Ko5r7o1Fw5ToHP7ihH3rHGRDtr8bQRka0j3Q9AZeSibcEIdq/sPq2YbAG0f5q+GsE+GsERPurMemWIFm4URZ6xuoxtJERoaV4rAeb+GNS20A0DdWifpAGU9oHQVskmPU0b8KDTf3RMowhLVFVIAgCnm7nOv4M1AkI1qvQN86AO+v5oX6QxmMfW+dqe6Vi29Q8eRltmwgthjfzV5y80d3kh0REVH4q16f4KkIURfzyyy8AgObNm6Nbt26K23Xr1g3NmjXDiRMn8Msvv+DLL78s1QzJVDPVMqrxfIcgfLo3o6KH4nM2UZ42hOmNFTASIqKqweo065ZaAF7tElIxg/GSQaPC5LYl7zdeJ1CDz/qE+3BEJScIAkY1D8Co5gEAgPlHMxHvZc9cAOgerUeAToUAnQrv3BrqcrvYADUSFCYcu7OeHx5o4roVFxFVPs3CtHiiTSBmHZK2K3uhYzC61JZfQVYvSIOz6a6vHtA4haxKRQ/pTpW0tYwq/F/XwvccrQooOh8ZQ1oiosqBIW0JnDt3DleuXAEA9O7d2+22vXv3xokTJ5CQkIDz58+jQYMG5TFEqmaK08i/KjX+V/pQqa4iYyciqgjOk3xrijEpDflecV99b/+/XG3lPOEPEVUNWoXffVdvB41DtO5DWkFAfifZfIqVtE4hbYhTL3CdWoClyEk/s50hLVU/9evXV2yvR1SZ1fhPekuWLEHLli1hNBoRGBiIJk2aYPTo0diwYYPLfY4ePeq43bx5c7fHL7r+2LFjpR8w1UjFyS29mFOmwuVZLdiQeBq/XT4qW1dVAmYiovJyLceGXVdNuJptlfWkda6oovJV3L9ZOi//v1wdlxOGEVVNGoX5El39NjcOcV9H5fy+fyFDHug6V+I7t4PRqYo/QRkREZW9Gl9JWzRwBYDTp0/j9OnTmD9/Pu69917MmzcPwcHSPkKXL1923I6Li3N7/Dp16jhuX7p0qdjjK/pYShITE4t9TKp6ivMV0GoXofNi0pGKkmu1oEf8l9iXkqC4Xi3wCygRUYHNl3Px1YFMl+uVqrOo/BT3vKK3lbSuNgs1KCQ9RFTpFaeStkmI+57Tzu8jK8/kwKARMKxxfiuUK1lWrL0gbcMiC2mdvitY5N1ViIioAtTYkNZoNGLIkCHo168fmjdvjoCAANy4cQObNm3CzJkzkZycjJUrV2Lo0KH4888/odUW/rHMzCz8shQQEOD2cfz9C/uGZWVlFXucRUNeqrmKF9KW2TB84s8rJ10GtACgUTGkJSIqsOJ0jtv1ShPAUPkpbkbu7UlUlyFtOUyORkS+p/RerXLxi1775sSI2Vbl6lalwPfXMzkY2sgIlSBg0+U82fpgWUgrXc+etERElUONDWkTEhIQEhIiWz5gwABMmTIFd999N/bt24dNmzZhxowZePrppx3b5OUV/uHT6dzPUKzXFzaDz831fmIJoqKMWu+/BebZRJR8epaydzEr1eU6P7UWkQb3Jz6IiGqSK9nuy5sae6i4orJV3EpmT5cxF2gULO9JGawTEOPPSlqiqqhBkBZqobB/rFoA6gcpvx+oBAHto3T4+4pJti42QI1W4VpczJS+P+RYReRYRQRoBdmkYQDQIkz6t0LjdBmAjX07iYgqhRob0ioFtAVq1aqFpUuXonnz5rBYLJg+fbokpDUYDI7bZrPZ7eOYTIV/XP38/Io9Tk8tEhITE9GlS5diH5eqFudLlNzJdXHWvbJIMbuuCutRqz60Kn4BJSLy1rhWgRU9hBpN76EyNtyggk4tQK8W0C1aj64KM7krGdXcHxa7iJOpFog3j/NQswCo2d6CqEoK0qvwQsdg/Hom/3PwkEZGBLlpUj26Zf57+9l0q2OKsNpGNR5uEYBIPxUyzHZsdQpxs8x2BGhVsDoFrno10DJcWljk/FbCQloiosqhxoa0njRs2BADBgzA6tWrcfr0aVy5cgUxMTEAgMDAwi9EnloYZGdnO257ao2gxFPPW6oZnGdkdSe3kvc7SDG5rijvU7tROY6EiKhqG9XcH0G8/L1CuQtp3+wWIgtGvGXUqjCpbWW+LoaIiqtjLT061vLuRE2QXoUp7YNdrp/SLgg7r96ApcjH/kyziNr+8tZn9zQwyvZ3fuuyM6QlIqoU+MnejZYtWzpuJyQU9tAsGpx6mtiraCUs+8tSSRk03lfOVPpKWpPrSlqGtERE3nOenZvKn7tzqGEGfswmorIhCAICnBrdZt1MbJ1DWqUKfJVTuwOGtERElQMrad0QXEzZWzS8PX78uNtjFF3fokUL3wyMyI3KHtKmumh34KfWonMET2QQEXnL20moqOy4q6QNM7B9DxGVnUCdgNQiHQ+2XslDuEGNXdekbRCU3qacc9s1F3IQF6hG81AtBEGA2SZi/tEsJGZb0ShEi0g/NaKMKrSJ0MkCXiIi8h2GtG4cPXrUcbug1QEANGjQADExMbhy5Qo2bdrk9hibN28GAMTGxqJ+/fplMk6ioip7SOuq3UGPWvWhU/MtiYjIW576oVLZcxWUB+kEhuhEVKbyK2kLJ5fckmDClgT5ZGMahUpa55z1UqYN07alYXhTf9zX2IhH/7jhWHc42eK43a+uARPbsBULEVFZ4XVYLpw7dw5//vknAKBRo0aIjY11rBMEAUOHDgWQXym7fft2xWNs377dUUk7dOhQl5W5RL6UbancPWlTXbQ7YKsDIiIpu4fZthnSVjw/F+2IWEVLRGUt0M3EY0VpFTa7nGlV3HbthVysPud6/oiNl/Jg5ixjRERlpkaGtKtWrYLVqvyHCQCuXbuG+++/H2azGQAwefJk2TbPPvss1Or8D+BTpkxBbq70j1lubi6mTJkCANBoNHj22Wd9NHqqqZ7ycgKRlLzKHdJaRfn4DGoNRjRoV/6DISKqxPLcXBmhUQFNQrXlOBpSUj9IC4NCWH5LRMkmDCMi8pa3J+rqBMqvVMtzEbSmm+z45Uy24joAsImVvyCEiKgqq5HXFk+ZMgUWiwX3338/unfvjvr168PPzw9JSUnYuHEjZs2ahaSkJABAz5498eSTT8qO0bRpU0ydOhUffPABdu/ejR49euDll19Go0aNcObMGXz44YfYt28fAGDq1Klo0qRJuT5Hqn56xOpxJduI5afzK1Gbh2oRoBOw+5pZsl1yJQ9pnSvDNIIKv/Qbi0ZBERU0IiKiyilHIaSNC1Aj2l+Nu+obEaKvkefaKxWDRsBrXUPw29kcpJvsUAn54fmDTfwremhEVM3pvCzYbxUuP2mU31dW/jfGmxpZEytpiYjKTI0MaQHgypUrmD59OqZPn+5ym/vvvx9z5syBXq9XXP/ee+/h+vXr+Pbbb7Fv3z6MGDFCts348ePx7rvv+mzcVHOpBAEPNQvAQ80CJMvXXsjB3MNZjvspeTbnXSsV55B2Rb8xuCO2WQWNhoio8lIKaT++LYyTtlQyTUO1eL5jcEUPg4hqGG/6XveIUf4eq9Cm1sHuIYN1VYVLRESlVyNLML7//nu89dZbuOuuu9C0aVOEhYVBo9EgJCQEbdq0wRNPPIF//vkHS5cuRUhIiMvjqFQqzJ07F/Hx8Rg6dChiYmKg0+kQExODoUOHYvXq1ZgzZw5Uqhr5MlM5CXfqe5ecW8kraZ3O0avAsIGISEmO0yWlfhqBAS0REQEAdO6S1puauWiL4y7fzbK4D2HdteIhospHEAQIgoBp06ZV9FDICzWykrZ3797o3bu3z443cOBADBw40GfHIyqOcD/pSYBUkx1Wu6g4k2tFyrGasfjcAVzISpUsZ+BARCSXa7XLJm8xupikioiIah5vKmldh7TK7Q7gcmmh+HO5iPHXIKgULXfOpFlwJNmMxiFatFRox0DkKxs3bkTfvn1ly9VqNYKCghAcHIw6deqgY8eO6NmzJwYPHgydjj+TVHFqZEhLVJ1EKMwgfTjJjHZRypc3VZT713+PPxJOyJYzpCUikvtoVzqOplgky/wY0hIR0U3eVNIqTRoGuG934MnOqyYcTzHj8z7hMGqLH9QeTjLjvZ1pjrYKT7UNQq84Q8kHRFQCNpsNqampSE1Nxfnz57FlyxZ89tlniIyMxNNPP41///vf0GgYl1H543X4RFWcv1b+KeuY0xf7inY1J0MxoAUAvZp//IiIikrOtckCWgAIKMGXYSIiqp48TRwWblBB7SKNbR6mXGHrrQyziPhzOSXaN/5cjqTv7eaEvFKNhchbkyZNwqFDhxz/tm3bhtWrV+ODDz7AgAEDIAgCbty4gddffx09evTAjRs3KnrIVAPx0z5RFScoVKJaPXX8L2eXstMUl4fq/NAxPK58B0NEVMnluuj31y6Kl98REVE+T1ejPdYywOW64U39Sz0rxIZLJQtX9143S+4fTDK72JLIt6KiotC6dWvHv27duuHuu+/Gyy+/jLVr1+Lw4cNo3749AGDnzp0YNmwYzGb+fFL5YkhLVA3cFiu9RMhkq6CBuHA1N1O27F/NumPT3ZMRoK1cbRmIiCqa0vSPY1oGYGgjY7mPhYiIKid3Ge3T7YPQtbbrz9i1/TV4q3so7qznp7g+UOc5wk3Oq9yTFRMVV8uWLbF161ZHULt161Z89dVXFTwqqmkY0hJVA0FOH6TMlayS9lpeluR+p4g4zLj1frQJi66gERERVV6i01u4AODuBkb28CYiIgd3X+R7xBgUr7YrqlmYFuNaB6JfHXk/2H/dEoRF90Rh0T1R6BXru4KKHIs82NV7MQEaUXnx8/PDDz/84Pj9+eSTT2CxKLcSvHr1Kl577TV06tQJYWFh0Ov1qFOnDoYPH45169a5fZzU1FR89913eOSRR9CyZUsEBARAp9Ohdu3auPPOOzF79myvq3h/+ukn9OnTB6GhoQgICEDr1q3x5ptvIi0trVjPnSoHNoMkqgb0TpPJ5Lm4VLaiXM2RVtLW9gusoJEQEVV+olNKW5oJXoiIqHry1Xm7cD95c9uic14YNa7jYFEUPYbBRV3LkV/uF25g3RhVLq1atcKAAQOwdu1aXLlyBbt27cKtt94q2WbBggV44oknkJ2dLVl++fJlLFmyBEuWLMH48eMxc+ZMxQnI2rdvjwsXLsiWX7t2DWvXrsXatWsxc+ZMrF69GrVr11Ycp9VqxahRo7BkyRLJ8iNHjuDIkSP48ccfPYbFVPnwHZGoGnA+A73jqgl51oq9BCk5LxvvHVgH4/xX8Pq+PyTravsFVdCoiIgqP+d3bxbQEhGRM1+dwAvRyyOBohNVGhUmKS5wJNn7yYovZVrxxb4M2fIMM9smUOXTv39/x+0tW7ZI1i1evBiPPvoosrOz0bBhQ3z66af4448/sGfPHixbtgwDBw4EAMydOxcvvfSS4vFtNhu6du2Kd955B7/99ht27dqFrVu34scff8Rdd90FANi3bx9GjBjhcowvvviiI6Bt1qwZ5s6di127dmHdunV44okncP78eTz00EOleh2o/LGSlqga0Cl8Svt8XwZe7hxS/oNB/ln1u/78BruTLiuuZyUtEZFrSu0OiIiIivLV3waDRn6kopW0/m4qad/ZkYavbw9XrMYtKiXPhtf/SVWcGDPLIsIuimzpc5Mo2mE3JVf0MMqVSh8OQahc9YMdOnRw3D558qTjdlJSEiZOnAhRFDFu3DjMmjVLUinboUMH3HfffXjttdfw/vvv4/PPP8cTTzyBZs2aSY6/fv16NGnSRPa4t956Kx5++GF89913GDduHDZt2oS//voL/fr1k2x36NAhTJ8+3fGYmzZtQkBA4WSB/fr1w6233orRo0eX7oWgcseQlqga8Fc4w73vuhlmmwhdBfR5Op2R5DKgBYAog+vZZomIajrnr7Bsd0BERM5c9XKtZXQfmDqL9ZdvX7SS1tMkYgeTzOhbR3kCsgKHk8yKAW2Bc+lWNArRehhpzWA3JeP6z1EVPYxyFTXiOtSGyIoehkR4eLjjdmpqquP2jBkzkJ6ejtjYWHz99deKrQwA4K233sL333+PhIQEzJ8/H++9955kvVJAW9TYsWPxxRdfYP/+/Vi5cqUspJ05cybs9vwq9NmzZ0sC2gKPPfYYfv75Z/z+++/unyxVKpXrdAURlUjrCJ1smQjAbKuY3rSnM5Pcrjdq+CGMiMgV57kfBdbSEhGRk+ZhOsVCjcfbFO+KtXpBGjQKLgyautTWS4o8bonUweCm6CPL4vn7hruAFgDSTGx5QJVL0dAzM7NwfpVff/0VADBo0CDo9a4n1dNoNOjevTsAYNu2bW4fSxRFXL16FSdPnsThw4cd/2JjYwEABw4ckO1T0Gu2TZs26Nixo8tjjxs3zu1jU+XDSlqiaiDMoMbrXUPwzo40yfKKmj/sbGaK2/U6Fd96iIhckbU7YEZLREROgvUqvN09FH8n5OFIshk6tYD7mvijVbi8eMMdQRDwf11D8OfFXOhUAvrVlVbFhhnUeOfWUPx9JQ9ZFjv+upgnWZ/rxTwYnupGMtmXliqZosFsUFD+fCo2mw379+8HAMyaNQuzZs3y6lhXr15VXB4fH48ZM2Zg8+bNksdzlpQkLYAymUw4deoUAKBz585uH7tLly5ejZEqDyYlRNVEg2D5r7PNuRyrnJzNdN9HSa8u3mVYREQ1iejU8IDtDoiISElcoAYjmpe+jZhRq8LQRv4u19cN0mBUUP7jWO3ApsuFQW2eF1UhVg/fSTh5GFU2RYPRsLAwAEBKSgqsVmuxj5WTkyO5L4oiHn/8ccydO9er/XNzcyX3U1NTId48ox8V5b41Rq1atYoxUqoMGNISVRNKVyFVULcDVtISEZWC83dZ9qYiIqLKwug00ZinVgaAN5W0FfSlpRJS6cMRNeJ6RQ+jXKn04Z43Kmf79u1z3C6Y9MtmszmWTZgwAc8884xXx9LppNXt3377rSOgbdeuHZ599ll07doVsbGxMBqNUN8saHrsscfwww8/OAJZJQIvt6p2mJQQVRNqhTdoT2etS0MURcw7vQvrrpyCxW5DhsWEQ6mJ6BFVH5uvnXW7LytpiYjkbHYRq8/nYtWZbMlyfv4mIqLKwuAU0q6/lAd/rQo3cm0QAET4qWEXRSTn5VfHCgAO3jC7PeavZ3NwPdeGJ9sGVcikx5WJIKgq3SRaNdGff/7puN2zZ08AhRW1QP534datW5fo2N988w0AoHHjxvjnn3/g56c88V5KinLhU0hIiOP2tWvX3D6Wp/VU+TCkJaom1AqlVtdybIgJKJtf8+9O7cL4rYtly5ecP+hxX1bSEhHJLT6ZjZVncmTLWSVBRESVhZ9G/jdp1Vn5367i2p5owqRbRICTZVIFO3z4MP766y8AQJ06ddCpUycA+RWxrVq1wpEjR7B169YSH//IkSMAgCFDhrgMaEVRxN69exXXGQwGNGnSBKdOncKuXbvcPpan9VT58Ao6ompCpfAlPjHbprClb8RfPlbifYN1Bh+OhIioeth51aS43N2s2kREROWJf5OoOsvNzcVjjz3maDHw4osvQqMpLDAaMmQIAOD48eNYs2ZNiR6joK9tdna2y21++eUXJCYmulzfv39/AMChQ4ckrRmcffvttyUaI1UchrRE1ZitDHvwp5hKdsa8RXAU2oXF+Hg0RERVm10UcSNX+cRazxh9OY+GiIhImdoHs1l2iNIhUMuwlyqXo0ePomfPno7Qs3fv3pg0aZJkm2eeeQYBAfmT6I0dO9ZRFetKfHw8Dh6UXmnapEkTAMCqVasUWxqcOXMGTz75pNvjPvHEE44rrSZOnKgY+C5YsACrV692exyqfHjNMVE10qW2XlKJlWMtu5Q23Zzndv3rbfujbkAoTqRfx9LzBzG0bms0C47Eg/XbQqNiT1oioqLSTHZYnN6y+9U1oF2kHp1r6ZR3IiIiKme+KKQNN6gxtmcgdl41Sb6vKM2xQeQr169fx+HDhx33s7OzkZqaioMHD+Kvv/7Cn3/+6aig7datG5YuXQqtVis5Rq1atfD999/jgQceQGJiIjp16oQxY8bg7rvvRlxcHCwWCy5fvoydO3di6dKlOHv2LFatWoVbbrnFcYzHHnsMU6dOxZUrV9C9e3e8/PLLaN26NfLy8rB+/Xp89tlnMJlM6NChg8uWB23btsWTTz6JL7/8Ert370anTp3w8ssvo02bNkhPT8eSJUswe/ZsdOrUCbt37y6DV5PKCkNaomrE+Yx0tqXsJg5Lt7gOaQ1qDd7ucJfj/sedB5fZOIiIqoNrOdIqWq0KeLx1IPvREhFRpeKDQlqoVUCUUY1BDY2lPxiRl2bMmIEZM2a43SYyMhLPPvssXnrpJUmbg6Luu+8+/PLLLxgzZgxSUlIwc+ZMzJw5U3FblUoFf39/ybJnnnkGf/75J9auXYuTJ09i/PjxkvV+fn6YP38+4uPjXYa0APDpp5/iypUrWL58OY4fP46xY8dK1jdo0ACLFi1Co0aN3D5nqlwY0hJVI0attINJ2VbS5rpcF6jlpblERMVx3SmkjTKqGdASEVGl44tqV7a1pYqmUqkQGBiI4OBg1KtXDx07dkSvXr0waNAg6HSer2AaPHgwzp07h2+++QarV6/GkSNHkJKSAo1Gg9q1a6NVq1a4/fbb8cADD6BOnTqSfbVaLeLj4zFjxgzMnz8fR48ehSiKiI2NRf/+/fHMM8+gefPmiI+PdzsGrVaLZcuW4ccff8Ts2bNx8OBBWCwW1KtXD8OGDcOLL76I0NDQUr1OVP4qbUh75swZJCUloX79+qhVq1ZFD4eoSvB3qqTdkmDCXfUtaByidbFHyYiiiGQ3PWkDtZwYjIioOJxD2lpGtoUhIqLKxxcBq8YX5bhEXujTp4+jhYGvBQUF4YUXXsALL7xQ7H01Gg2mTJmCKVOmuNxm3rx5mDdvnsdjPfLII3jkkUdcri+r509lo9wnDrt+/Tq+/vprfP3110hPT5etP336NDp27IimTZvi1ltvRWxsLO6//36kpqaW91CJqhyjRv6B590daTDZfPvGfDlb/rtbFCtpiYiK51qO9MqHKIa0RERUCfkiX1X4ykJERKiAkHb58uV46qmn8PnnnyM4OFiyzmQy4e6778b+/fshiiJEUYTdbsfKlSsxdOjQ8h4qUZXjp/CJJ9cq4ny61aePs/3GBbfraxkCfPp4RETV3eVM6fs0Q1oiIqqM/LWljxD8deUeQxARVQnl/u64du1aCIKAYcOGydbNmzcPZ86cAQAMGTIEn3/+OQYPHgxRFLF161YsWrSovIdLVKW46l/o60ra63lZrscAARObdfPp4xERVWcWm4iLTiFt/aBK25GKiIhqsKahWtQJLN2JxC61eNUdEZGScv8GcOLECQBAt27yEOenn34CANx+++1YuXIlAGDKlCm44447sG7dOvz888946KGHym2sRNWFr0Paq7mZkvt9azfCv5p3R4opB90i66FdeKxPH4+IqDq7mGmF89t0A4a0RERUCenUAt7uHor9N8xIybNDowIEAGEGNUINKpxLt8Iuioj21+Bajg1zDku/N7zSORiRvFqEiEhRuX8DuHHjBgAgLi5Osjw3Nxfbt2+HIAiYOHGiZN24ceOwbt067N27t9zGSVSdmO1lG9K2DKmF4Q3a+fQxiIhqirNOLWmi/dUw+uByUiIiorJg1Kpwa4zyRMFFJyxec14+0XBcIE9CEhG5Uu7fANLS0vIfWCV96O3bt8NisUAQBPTv31+yrkGDBgDyJx0jouIz+7iSNjEnQ3K/tl+QT49PRFSTnEm3SO43DOYXWCIiqvpyrPLvIP5azhpGRORKuYe0AQH5EwpdvXpVsnzjxo0AgJYtWyI0NFSyTqvNPxun0fBLC1FJ7L1u9unxnCtpaxsDfXp8IiJXTDYR849mYtq2VPx5IRei6NuTUOXNbBOx4VKeZFmjYK2LrYmIiKqOXIWQ1qBmSEtE5Eq5h7TNmzcHAPzxxx+S5cuWLYMgCOjdu7dsn4JAt1atWmU/QKJqaOdVE/Ksdp8dzzmkjfZjSEtE5SP+bA7iz+XiWIoFcw5n4kSqxfNOldgvZ+SXgjZgJS0REVUDORZ5SOtqomMiIqqAkPaee+6BKIqYPXs2ZsyYgcOHD+PFF1/E0aNHAQD33XefbJ+CXrSxsZyMiMidQJ3rDz0XM20+e5xUszRUCNf7++zYRETuLDqZLbm/4rQ85KxKDifJr3RgSEtERNVBt2i95D7brRMRuVfu3wKeeuopfP3110hMTMRTTz0lWde9e3f07dtXts+qVasgCAI6d+5cXsMkqpJahunQMFgjm4QG8G1fWpvT5cUaFT9xEVHFOJLs23Yu5UkURVzMlL5fxwWo4afheyoREVV9LcO1aBGmxbEUC9QC8GQ7zmNBROROuYe0wcHBWLduHR599FFHhSwA9OrVCwsXLpRtf+DAAezatQuCIGDAgAHlOVSiKkenFvBW91CcSLXg3R1pknU+DWnt0tYJaoGBAhGVPatd/j6msKjKSM6zyyZVeaVLSMUMhoiIyMdUgoDXu4bgTLoVwXoVahnVFT0kIqJKrUKup2vRogV2796Nc+fO4erVq4iOjkb9+vVdbv/dd98BAG6//fZyGiFR1aVTC2gToUOMvxpXsgtbHJh9mGQ4V9Kq2VuKiMpBSp68t3ZVDmkvZEiraI0aAeEGnvQiIqLqQ60S0DSUE2ISEXmjQpueNWjQAA0aNHC7Tdu2bdG2bdtyGhFR9aFzmjnVV5W0oihChHNIy1CBiMre9Rx5b20RQI7FDmMVbHTn3OqgbpCGE6oQEREREdVQ5R7Svv322wCAyZMnIyIiwqt9UlNTMX36dADAG2+8UWZjI6pOnPOK8xlW3OaD4/50dp9smYqhAhGVgWMpZvxwNAsqAQjRq7DrmnL/2cPJFnSprVdcV5msOZ+D38/nIsucXxGc53TyrF4gJwwjIiIiIqqpyv3bwLRp0yAIAh544AGvQ9qUlBTHfgxpibzjXDcbfy4Xj7UMLNUxk/Ky8cjmn2TLWUlLRL5mF0VM35eBZIUWB86+PpCBLrUjy2FUJXcp04pvj2S53aYOQ1oiIiIiohqLyQpRNXU6zep5o2I6mHJFtkwlCIgyBPj8sYioZjufYfUqoAWAPKuIDJN321YU5/6zShqFMKQlIiIiIqqpqkRIa7FYAABaLRuOE5WGKJauL22mxSRb9lzL2xCi9yvVcYmInOVYvH+/EgEcuKHcCqGysHt4/+0WrUeDIIa0REREREQ1VZX4NrB//34AQGRk5b6Ukaiys9oBrbrk+2dapSFtkNaAT7oMLuWoiIjk3E12GKpXIcJPhVNFrhjYd8OEXnGG8hhaididnk60vxoT2+S3oAnSqRAboOakYURERERENViZh7Tz589XXP7LL79g9+7dbvc1mUw4c+YMvv32WwiCgM6dO5fFEIlqDItdhFZd8hAgy6mStk1o7dIOiYhIkclNSNsyXIsWYTqcSst0LDtwwwy7KFbaiQydn42/VkDLcF2FjIWIiIiIiCqfMg9px4wZI6sMEUUR//d//+f1MURRhEqlwjPPPOPr4RHVKNZStmx0bncQoK38s6kTUfkraK1SmsrQLDftDnRqAe2jpAFnlkXE6TQrmoZWrtZIoihCBOCcOVfOKJmIiIiIytKYMWPw/fffo169ejh//nxFD4cqmXLpSSuKouOf0jJ3/7RaLXr06IFff/0VvXv3Lo/hElVbj69Lwie709xeRuxK/KWjeGl3vGRZgIZVYEQktT0xD1M2JGPiuiT8dTG3RMfIMtsx53Cmy/U6lYAIPzXiAqT9W3446nqfsrTuYi6eWJeEqZuTcT7d4li+IzEPk9cnY+TqG/jmkHRslbXil4iIiKi62LhxIwRBcPx76KGHPO5TUGjINlRUEcq8kvbcuXOO26IoomHDhhAEAWvWrEGTJk1c7icIAgwGA8LDw6FWl6KJJhFJ7LpmxpaEPPSr6/1kXza7HWO2LJItD2QlLREVkWGy4+sDmY5WBXMPZ6JTLT2C9cU7J/zb2Ry363U327a0j9LjclbhtifTrBBFsVw/VKfm2fDt4UzYRCDNBHx/NAtvdg+FxSZi5sFM5FiVT4qp+LmfiIiIqFwtWbIE//d//4c2bdpU9FCIFJV5SFuvXj3F5TExMS7XEVHpPdUuCF/uz1Bc98f5nGKFtMmmbCSZsmXLGwVGlHh8RFT97LhqkvSStYnAqTQLOtUq3gmdS1lWt+ujjPmhb5MQ+ceYPJsIP035JaB/XsiVtDI4mpJfSXsj1+YyoAWACL9yuZiJiIiIiG4SRRFvvvkmli9fXmFjmDdvHubNm1dhj0+VW7l/Q7Db7bDZbGjZsmV5PzRRjdLZTShyLad4zWnzbPLApH5AKCY07VLscRFR9bU9MU+27HyG+8BVSZ6bcLNJiAY9YgwAgGZh8pYrllL23i6upDzlB0w3ux5IqF6FoY38y2pIREREROQkIiK/wGjFihXYt29fBY+GSFmZV9ISUcUwaAQsHBiJxSezseK09NJhu1i8nrRKIe2J+16GTs23ECLKl26y40iyRba8aI9Wb5mc+mbf08AP/er6Qa8WEG5QOdoZaBVONVtK0HO7NNJNymFshtPyCD8VXu0SApUA1DKq2ZOWiIiIqBw9/fTTeO+992AymfDGG29g1apVFT0kIpkKudYuJycHOTmu+81Nnz4dvXr1QosWLTBw4ED+8hCVkEoQUDdQHqQWN8PIs0lDFpUgQKtir2giKrTzqglKby0lqaR1DmkbBGsRG6BBhJ9a0m9Wq9DY1WIv35A2zUVI61xJG6ZXITZAg2h/DQNaIiIionJWp04dTJw4EQDw22+/YefOncU+ht1ux/r16/Hiiy+iR48eiIiIgFarRUhICNq1a4cXX3wRFy9edHuMgonJ6tevL1n+9ttvOyYsO3XqlMex3HnnnRAEAdHR0bDZbIrbrFy5Eg8++CDq1q0Lg8GAkJAQdOrUCW+99RZSU1O9ft5Ufso9pF21ahUCAwMRHR2NzEz5LMzjxo3Ds88+i3/++QcnTpzAmjVrcO+99+I///lPuY3x5ZdflswAuHHjRo/7/P777xg2bBji4uKg1+sRFxeHYcOG4ffffy/7ARO5EaST/5oXN8NwrqQ1qDWc7ZKIJP65Im91AAA3cu3ILmYPAueQ1qBWfr/RKHyKsZZzuwOlStq0PBsuZkg/LAcVc/I0IiIiIvKtV155BX5++XOzvP7668Xe/+2330a/fv3w3//+F//88w+Sk5NhtVqRnp6OAwcO4L///S9atGiBFStWFPvYo0aNctz+6aef3G577do1/PXXXwCAESNGQK2WFlClpqaiX79+GDZsGJYuXYpLly7BZDIhPT0de/bswbRp09C8eXNs37692OOkslXu3xjWrFkDURQxZMgQBAYGStb9/fffjgbKRqMR7du3h8FggCiKeOONN3D48OEyH9/+/fvx6aefer293W7HhAkTMHDgQKxcuRIJCQkwm81ISEjAypUrMXDgQDz++OOw28v5WyPRTYEKIS0A/HgsC6KXbQ+cK2kNam2px0VE1ce6i7mOCbOUjFubhCseJgMrYBdFWd9svYuQViUIcF5VnpW013NsSFUIaZ/4Kxl/XsyVLFM6YUZERERE5Sc6OhqTJk0CAKxduxZ///13sfa3Wq2Ijo7G5MmT8cMPP2Dr1q3Ys2cPVq5ciZdeegkBAQHIycnBqFGjcOzYsWIdu3HjxujatSsAzyHtokWLHNWzDz/8sGSdyWRC//79sX79eqjVajz66KNYuHAhtm/fji1btuC9995DeHg4rl+/joEDB+LChQvFGieVrXJvKLl9+3YIgoC+ffvK1s2ePRsAEBMTg23btiEuLg6XLl1Cz549cfnyZcyaNQvTp08vs7HZ7XZMnDgRVqsVUVFRuH79usd9XnvtNcydOxcA0L59e7z00kto1KgRzpw5g48++gj79u3DnDlzEBkZiffff7/Mxk7kSpBOOdxYdTYHt9cxICbA89uAUiUtERGQP0vugmNZHrdbfjoHT7UL8rjdUYW+tgaN68p9jUqArUjlrXMVbln67azr1k3OXLVFICIiIipgF0Vkmcu3dVNFC9AJ5doK6uWXX8asWbOQnZ2NN954A+vXr/d63wkTJuDNN9+EVistWurQoQOGDh2KKVOmoFu3bkhISMD777+PH374oVhje/jhh7Fjxw6cPHkSu3fvRqdOnRS3KwhxmzZtKtvm7bffxt69exESEoJ169ahY8eOkvU9e/bEww8/jO7duyMxMRGvvvoqFixYUKxxUtkp96SlIPhs1qyZbN0ff/wBQRAwZcoUxMXFAcjvGzJlyhS89NJL2LRpU5mO7YsvvsCuXbvQvHlzDBs2zGOLhZMnT+KTTz4BAHTq1AmbN292lM537twZQ4YMQe/evbF79258/PHHGDduHBo3blymz4HIWbCbS2yvZttKGNKykpaI8tlEIMfq+cvEtRzlXlnOLmXKK25rG133wA7Vq3C1yLFPpVrRPEzn1WOV1poLuZ43uinDzJCWiIiI3Msyi3h8XVJFD6NcfdM/AkH68gtpo6Ki8NRTT+HDDz/Ehg0bsGHDBsUiQiXOfWSdxcXFYerUqXj22Wfx66+/QhTFYrUJfOihh/Dcc8/BZrNhwYIFiiHtmTNnsGPHDgDyKtqsrCx89dVXAIB33nlHFtAWqFevHl5//XVMnjwZS5YswezZs+Hv7+/1OKnslPu1dzdu3AAAWauDI0eOICkp/81o6NChknUFP5hlWYZ98eJFR0+SmTNnQqfz/AXvs88+g9Wa/2Vy+vTpjoC2gNFodFT+Wq1W/O9///PxqIk8UwkCnm2vXL3m7WXB8nYHrKQlonxKPWBf7BissJ137zfOE24B7vu5toqQnjTaf8Pk1eOUNzY7ICIiIqocpk6d6sikStKbtkBGRgbOnTuHI0eO4PDhwzh8+DCMRqNkXXFERUVhwIABAPJbGii1zSzaCqFoH1sA2LRpE9LT0wEADzzwgNvHuu222wAAFosFe/bsKdY4qeyU+3eGgobGKSkpkuUFvUAiIyNlVbahoaEAgLw85UlJfOHJJ59EVlYWRo8ejd69e3vcXhRF/PLLLwCA5s2bo1u3borbdevWzfF8fvnlF697gBL5UvcYg+Jyb+fyca6k1asY0hJRPrvC37WGwRo87dTawNuQNsOpLcCd9fxcbJmvXaRecv94qgV5XlT2lpU3u4Vg7oAI+QpOtkhERERUKYSHh+PZZ58FAGzduhVr1qzxet8LFy5gypQpqF+/PoKDg9GwYUO0bt0abdq0QZs2bTBx4kTHtgWFiMVRUB2bmJio2IqhIKTt2rWr7Ert3bt3O25HR0dDEASX/1q3bu3Y9urVq8UeJ5WNcg9pY2NjAeRP0FVUfHw8BEFAr169ZPsUnAmIiFD40uMDixcvxm+//YawsDBH+wJPzp07hytXrgCAx1C3YH1CQgLOnz9fqrES+ZL3lbTsSUtEypTyULUAaJw+YXh7Usi5ktZdFS0AtA7XSiYPs9qBo8lm7x6sDATqVAhQmCSMlbRERERElcfzzz+PkJAQAMCbb77p1T6///47WrZsiS+//NKrK71zc71vjVXg3nvvdVTjOveK3bt3L44fPw5A3uoAgFfzKinJyfF+ngUqW+WetPTq1QunTp3Cl19+iUceeQQRERHYtWsX/vjjDwDAnXfeKdunYFa82rVr+3w8aWlpeOaZZwAAH374oddB8NGjRx23mzdv7nbbouuPHTuGBg0alGCkRL5XNKTNs4pIM9lQy6iW9c1huwMicsWucLJHrRKgUUnfR5Qqae2iiGs5NslkXzdypSFtsELgWZRRq0LTUC2OpRS+T+2/YUaHWno3e5Udl/WyLKQlIiIiDwJ0Ar7pXzbFaZVVgIuJrstaSEgInn/+ebzxxhvYsWMHfvvtNwwaNMjl9klJSRg1ahRycnIQEBCAF198EXfeeScaNWqE4OBgR8vM9evXo1+/fgBQoiupAwICMHToUCxcuBDLly/HjBkzYDDkXxlbUEWrVqvx0EMPyfa12Qrnadi7d69sgjNXCuaEoopX7knL5MmTMW/ePJw7dw4NGzZE06ZNcfToUVitVoSFhSn+oK1fvx6CIKBly5Y+H89LL72Eq1evokePHhg/frzX+12+fNlx29MPdJ06dRy3L126VKzxFX0cJYmJicU6HlFRBZVtu66a8Pm+dFjsQNMQDV7tGgK/ImVwnDiMiFxxVUmrdQppb+TakWW2O6pMc612vLM9DWfS5ROFFRXkxQf3tpE6SUh7MKniKmldFQwzoyUiIiJPVIJQrpNo1XTPPvssPv/8cyQnJ+PNN990G9IuXboUaWlpAIAVK1agf//+its5t/YsiYcffhgLFy5ERkYGfvvtNzzwwAOw2+34+eefAQADBgxAVFSUbL/w8HDH7cjISIavVVC5X33XoUMHfPzxxxAEAVlZWdi7dy/y8vKg1WrxzTffyCYUS09PR3x8PACgT58+Ph3Lli1bMGfOHGg0GsycObNYs+5lZmY6bgcEBLjdtugseVlZWcUaY506ddz+69KlS7GOR1SU+Wb12qKTWY7A9mSaFTsSpRPvOFfS6llJS0Q3KVXIqgRB1u4AALYk5EluewpoASDYQ7sDID+kLSox24aUPJuLrX3D1fFNLvrhGtT8wkVERERUmQQGBmLq1KkA8itPV6xY4XLbI0eOAADCwsJcBrSAtC9sSd15552Oq7wLqmc3bdqEhIQEAMqtDgCgffv2jttbt24t9Tio/FVIi7TnnnsO+/btw+uvv47HH38cb7zxBg4ePIhhw4bJtt24cSM6d+6M2267ze1ZjeIym82YOHEiRFHEc889J2ma7I2ik5gVlLW7otcXXnJZkp4kRL5wS4T85zTzZu/HS5nSsGHXNWlIa3WaVVKrYndFIsrn/P5hUAvQq4HYAPnJnBu5hdseT7HI1jtTC0BcoOeTQvWDNHDOQJ0nIPO1pFzl4zcIzh/v7XWkEzaObO7+hC4RERERlb+nnnrKUZX65ptvumxRYLXmFxfk5eXBblf+HJiTk4Mffvih1GPSaDQYPnw4AGD16tVIS0tzhLVGoxH33nuv4n79+/d39LP94osvOHF9FVRhSUubNm3w1ltvYdasWZg2bRqaNWumuN3QoUOxYcMGbNiwAbVq1fLZ47///vs4fvw46tat63WT6KIKeoIA+YGvOyZTYeDl5+d+lmpnly5dcvtv586dxRs41VhjW8kDgpQ8O2yKfSKl9523EHjhLhHddCZNGrY2CtFAEAQE61XQOn3KyCvSe/acUxWtAEAlFP4LN6jwxC2BCHA+iAKVIEDnlNKayraQVrGCeGqnYEcv3vub+KN1uBbhBhVGNPNH3UB12Q6IiIiIiIrN398fL7/8MgDg0KFDWL16teJ2TZo0AZAfxC5evFi23mazYcKECY4J5kuroFrWZDLhp59+wrJlywDkZ2SuruYOCQnBU089BQD4559/8Nxzz7kMlAHg2rVrmDNnjk/GS75RI69ZPn78OP7zn/8AAKZPny5pR+Ctom0ZPLUwyM7Odtz21BrBGXuIkK/EBGgwpmUA5h0t/HlNybMj16Z0qbL0vvMZOFUxWoMQUfV2yimkbRxS2LP67vpG/Hq2cLbYglYAORY7rmRLU9T3eoSiUUjJ+13r1QJyi7QaMCmEqL5kdfq8G6pXoVORycoi/NR4vVtomY6BiIiIiEpv0qRJ+OSTT5CYmIikpCTFbYYPH45XX30VJpMJY8eOxf79+zFgwAAEBwfjyJEjmD59Ovbs2YMePXr4pNXArbfeigYNGuDcuXN47bXXHP1wXbU6KPD2229j06ZN2LFjBz7//HNs3LgRjz/+ONq1awd/f3+kpqbiyJEjWLduHX7//Xe0adMGEyZMKPV4yTcqRUgriiLOnj3raLAcFhaGhg0bFqtHbHH873//g9lsRsOGDZGTk+NovlzU4cOHHbfXr1+Pq1evAgAGDx4Mf39/SXjqaXKvopOFFZ1EjKi8hRmkFWkpeTbkWuRBhnOlrN2plrasfjeJqGqxi6Ksr2zRkFavca5uzX8vOZ8h3UctAHW9aGvgjs6p4NascALKlyxOIbBSD14iIiIiqvz8/Pzw6quvYsqUKS63iYuLw4wZMzBhwgTk5eXhww8/xIcffijZ5qGHHsLjjz/utmdtcYwaNQrvvfeeI6CNiIjAnXfe6XYfvV6PP//8E2PGjMHy5ctx4MABR3WtkqCgIJ+MlXyjQkPaNWvW4Msvv8TGjRuRk5MjWWc0GtG3b1889dRTuOOOO3z6uAXtB86ePYuRI0d63P6dd95x3D537hz8/f3RsmVLx7Ljx4+73b/o+hYtWhR3uEQ+E2qQXm57I9eOTIv88gebU+WscysbRrRENVu6yY4LmVak5dkk1asA0Dik8KOFXtaCIH9b52C3bqAG2lJOrOXc7qAsQ1q7KOJkqrSCWON8CQIRERERVRmPP/44PvroI0mRnbOxY8eiWbNm+Pjjj7F161akpaUhIiICbdu2xdixYzF8+HBs3LjRZ2N6+OGH8d577znuDx8+HBqN5xgvMDAQy5Ytw99//43vv/8eW7ZswZUrV5Cbm4ugoCA0atQIXbp0wT333OPzvI1Kp0JCWrPZjDFjxmDRokUA5JdSA/ktAuLj4xEfH4+HHnoI8+bN8zhBV3lq0KABYmJicOXKFWzatMnttps3bwYAxMbGon79+uUwOiJlzpW0APDK36myZXuvm5GWZ0PIzVB37qkdkvXsSUtUc+26asKne9NlvauB/PeYsCIngwxOwWnezQ4H59KlAWfD4NJ/HHEVCPuaxSbi3R1pOC4Lacvk4YiIiIiohPr06eP15Fl6vR4XL170uN2tt96KFStWlPgx582bh3nz5nk1phYtWpRq8q+ePXuiZ8+eJd6fyl+FfKUYNWoUFi1aBFEUoVarcffdd2PatGmYOXMmZs6ciWnTpmHgwIHQaDQQRRGLFi3CI4884rPHnzdvHkRRdPuv6GRiGzZscCwvCFkFQcDQoUMB5FfKbt++XfGxtm/f7qikHTp0KC8TpwoVold5Ha9uTSyc8O5GXrabLYmoJvn1TLZiQAtIWx0AgN5prqyC4PSCU7uDBsEl70Vb+FjlE9IeS7HIAloA0PDvOxERERERlUK5V9LGx8dj+fLlEAQBffv2xbfffot69eopbnvx4kWMGzcO69evx7Jly7B69WoMHDiwnEfs2rPPPovZs2fDZrNhypQp2Lx5M/z8/Bzrc3NzHT1NNBoNnn322QoaKVE+jUqAt7FFWl5hGwSDWoM8W2Go4tyjlohqjjST6xli20VKr3iRBac3WyNkO/XCjjKW/pyxv1Z6jHQ34ywNV8dt4INqYCIiIiIiqrnKvZK2oKy7bdu2+OOPP1wGtABQt25d/P7772jXrh0A4LvvviuHEXqvadOmmDp1KgBg9+7d6NGjBxYtWoTdu3dj0aJF6NGjB3bv3g0AmDp1Kpo0aVKRwyUCAAxv6u/VdkX70lrs0lDi2Za9fDomIqo6nE/R+GsFRPqpMLCBH3rHGSTrXE0cZnYqxXXuJ1sS8okRyyakFRVOUnWtrcfDzQPK5PGIiIiIiKhmKPeyj+3bt0MQBLzwwgvQaj1f3qjVavHiiy/ikUcecdlSoCK99957uH79Or799lvs27cPI0aMkG0zfvx4vPvuuxUwOiK5pqHeXVZccKWwXbTDJkrDjgBt5ekPTUTlyzminNIuCO2j9IrbynvS3gxpnVoRaH0w6Vb5hbRS9YM0eL5jcJk8FhERERER1RzlXkl748YNAEDLli293qd58+YAgKSkpDIZU2moVCrMnTsX8fHxGDp0KGJiYqDT6RATE4OhQ4di9erVmDNnDlQqzihClUOg1rswxHYz33CuogUAraCWLSOimsF57gJ37yhKfWJFUYTF6W2lbCppbaU+pjfYiZaIiIiIiHyh3Ctp/f39kZaWhuTkZK/3SU3Nn33eaDSW1bBkpk2bhmnTpnm9/cCBAytVv1wiVwJ03p0w2JaYh4ea+cMimmXrdGqGtEQ1ldV51jA3KaVzSGsXgeu58hM/Xr4tuRVmkL4vJWR5DmnNNhHHUszIMBc+J50KaBWhQ4DWu0FxvjAiIiIiIvKFcg9pmzVrhh07dmDRokXo37+/V/ssWrTIsS8RlY63wUOWRcTzm5KxP3ehbJ1WxZCWqCay2ESkm6UhrbuM0qCRr316g/wkrS8qaUOdKmlFAEm5NkT4Kb9fWe0i3t6eilNpVtk6nQr4oFcYYgPkH5OuZZdPhS4REREREdUs5X4N/pAhQyCKIr777jvHJGLu/PDDD/j2228hCALuvffeMh8fUXWnV3t/ee6VnBTsTr4oP4aKs5gT1URbEvJky9RuSkmde9K6UhbtDgBgx1WTy+1Pp1kUA1oAMNuBxSezFdddzJTu41xYTEREREREVBLlHtJOmTIF0dHREEUR48ePx6BBg7B8+XIkJCTAYrHAarUiISEBy5cvx6BBgzBmzBjY7XbExMTgqaeeKu/hElU7giAgws+7X/08MUe2rElQBML05dd6hIgqj8PJ8vYn9YNcn7QxalWoE+i+8j7GX+11hb87fhr5MfKsrhPUTLP7dPXgDbO8tQOAcKfK3PMZykEvERERERFRcZR7SOvv74/ffvsNISEhEEURv//+Ox588EHUrVsXBoMBer0edevWxYMPPojff/8doigiNDQUv/32W7n2pCWqzp5uL5+JvHW4FmNaBkiW2UX5Zb2/9BsLgU0YiWocURRxNNkiWda1tt5jn+sXOsrfb4p6sZP79cXRPFQruZ/rJqS1Oc2A5pzx5lhFnEyVPl9A3pO3d5yhmKMkIiIiIiKSK/eQFgDat2+PQ4cO4f7774dKpYIoior/VCoVHnjgARw8eBBt27atiKESVUtRRnll2131jbi7gRH96xYGDs4hbYwxCC1CapX5+Iio8knMtiHVJJ30a0Qzf4/7RftrcH9j5ZOs4QaVYt/XkqrnVNWbY5VPUlbA5pTf1jaqZVXB+2/IK4edDxmg5UkrIiIiIiIqvQprLBkTE4MlS5YgMTERGzduxOHDh5GSkgIACAsLQ+vWrdGnTx9ER0dX1BCJqi2Fq4IdVWVF+0vaIQ1p2YuWqOY64lRFG6pXIdrfu0kEA11U22pUvg04jU4TlbmrpLU7ha0alYD2kTpJ+4J9180Y1Vy6nXMlra+fAxERERER1UwVnrhER0dj5MiRFT0MohpFqxAqFOQORQNckz1Xso1eXeFvGURUBkRRxKEkCy45TYp1LccGk01E3UANtiVKJw1rGa71uvVJkIuQ1getaCX8nKpacy3KIe3JVAtWnZP23FYJQLsoHVacKVx+MdOKlaezJe+Zl7KkJ6+UTnoREREREREVFxMXohpIKRgpuPS3oJJWFEXsyvxdso1O5V3VHBFVLUtOZWPZKflEge60Ctd5vW2g3lVI69sqVD8vKmk3XMrFzIOZsuUaAWgSooW/VkB2kXB34Ylst4+pYY9uIiIiIiLygTINaS9evOjzY9atW9fnxySqaVQKoUKgLn+Z7mYOm269IdvGqPE+lCGiquOvi3meN3LSMlzreaObgnTKQaZe7euQVhoGZyv0pF1/Sfm5alQC1CoBt0TosC3R5PVj6nz8HIiIiIiIqGYq05C2fv36Pp0FXhAEWK1WzxsSkUcdo3TYcz1/UpxQvQq3ROQHsC3DdcCpHJhEeVVd3+hG5TpGIip7dlFEmsn1BFtKWoZpUVthAkJX6gRoEKpXySYeaxXhfdDrjUCndgdZZnklbbrJJlsGAK1vvgcOqOfndUgroHhhNRERERERkStl3u5AFF1P2kFEFefJdkFYfiobuVYRQxoZHdW1rcJ1GNjAD98ct8j2eav9neU9TCIqYzkKfVvrBqpxMVMaZtYyqlHLqEK9IC0GNvAr1klYtUrA/3UNwa9nc5CaZ4NKENAsVIuhjYylHn9RQU5tFTLMdoiiKBmr8/PVqoD7m/hjSMP8sbQK1+G5DkHYesWEPIVK3AIGjQq3xRrQMJghLRERERERlV6ZhrSjR492uz4tLQ2//PILBEHAY489VpZDISIn/loVHm0ZqLiuV6wBM49JQ9rWIbWhZU9aomonyyIPIse2CsRb29MkywbU9cPgUoSqcYEaTG4bVOL9vRHo1HDbJgI5VhH+2sJe2zlOfWrfvjVUFrR2izagW7ShTMdKRERERERUVJmGtN99953b9UeOHMEvv/zi1bZEVH50KgFWUdpaxJ/9aImqpWynylK1AET4yU/IiKj8V8Y4V9ICQKbZDv+b4a3FXjhJYgGjhj1liYiIiIio4ilPt0xENZpGBVhFaSWtn4aX9BJVRzdypW0N/LUCArTy4FKh4LbS0asF6Jw+2VzPtWPthRz8dDwLPx3Pku3jPNkYERERERHVHIIgQBAETJs2raKHUvY9aYmo6tGqBJzJ3SdZZlAzpCWqbkRRxP/2ZkiWBWhV8FOoLrXaK38lLZBfTZuUW5gov7cjze32rKQlIiIiqp42btyIvn37Kq7z8/NDeHg42rZti/vuuw8PP/ww9Hp9OY+QSIrlI0Qko1UJUDm9PZhsyjOiE1HVdTlL/nsdqFMpTgoWE1A1zusGaL3/aKNXA1o1Q1oiIiKimiY3NxeXL19GfHw8xo8fj44dO+L8+fMVPSyq4RjSEpGMVg1oVNKziGY7Q1qi6uZyplW2rGOt/P7Td9X3cywL0gnoVrtqVBYUp3tBh6iq8ZyIiIiIqHQmTZqEQ4cOOf799ddf+PzzzxEXFwcgf86kIUOGwMbiJKpAVaMshojKlVYlQBSlf5zuq9u+gkZDRGVFqZJ2cEMjAODRFgGoZVQjzWTHgLp+1aLi1F8joH1UfggdF6jB3fWNFTwiIiIiIioPUVFRaN26tWTZ7bffjrFjx+KWW27B+fPncejQIaxYsQIPPPBABY2SajpW0hKRjFoA7JDOEqSCfLZ3IqraErKklbR31/eD6marA41KwMAGRoxqHoBIY/X4/W8UosWU9sGY0j4Ywxr7w8B+tEREREQ1WmBgIP7v//7PcX/dunUVOBqq6RjSEpGMIAgQnUJaCHy7IKpunEPa2CrSd7akIo18HyMiIiIiqTZt2jhuX7p0yeV2GzZswOjRo9GwYUMYjUYEBQWhTZs2mDp1Kq5cueLVY23duhUTJkxAs2bNEBQUBJ1Oh7i4OAwaNAhfffUV0tLSXO67atUqPPDAA4iLi4Ner0d4eDi6d++ODz74AFlZWYr7NGrUCIIgoEePHh7HlpCQALVaDUEQ8NJLLyluk56ejv/85z/o0aMHIiMjodPpEB0djcGDB2Pp0qUQRdeTDQuCAEEQMG3aNADA+vXr8eCDD6JOnTrQarWoX7++bJ+rV6/itddeQ6dOnRAWFga9Xo86depg+PDhXgfqP/30E/r06YPQ0FAEBASgdevWePPNN92+1hWlen8bI6JiScrLxtfHt+JCVhpybJmSdQeuW2G1i9CoWHlGVB3YRRGJ2dJ2B7EB1aNi1pVIv+r9/IiIiIio+HQ6neO2VquVrc/Ly8PYsWPx888/y9YdPnwYhw8fxowZM7Bw4UIMHjxY8TFyc3Mxfvx4LFy4ULYuISEBCQkJiI+Px40bNxwhZtHHHzVqFFasWCFZnpKSgu3bt2P79u2YPn064uPj0a5dO8k2o0aNwrvvvott27bh/PnzikFogYULF8Juzy/Wevjhh2Xr//rrLzz00ENITk6WLL969Sp+++03/Pbbbxg4cCAWLVqEgIAAl48DAK+99href/99t9ssWLAATzzxBLKzsyXLL1++jCVLlmDJkiUYP348Zs6cCY1GHm9arVaMGjUKS5YskSw/cuQIjhw5gh9//LHSVU6XaUj79ttvu11//fp1r7ct8MYbb5RqTETk2j1/zsHOJOUzh6fSbJh/NAvjWgeW86iIqCxcz7HB4lQwHxdY9c/dujuNxJCWiIiIiJwdO3bMcds5xBRFEQ888ADi4+MBAIMHD8bw4cPRsGFDqFQq7Ny5E//9739x8eJFPPDAA9i6dSs6deokOYbdbsfQoUPx559/AgCaNGmCyZMno1OnTjAajUhMTMQ///yDxYsXK45v9OjRjoC2bdu2eOGFF9CiRQukpKTg559/xrx583DlyhX069cPBw8eRGxsrGPfhx9+GO+++y5EUcRPP/2EV1991eXr8NNPPwEAWrVqhbZt20rWbd26FXfffTcsFgtq1aqFKVOmoG3btoiJicGVK1ewaNEi/Pjjj1i9ejVGjx6NZcuWuXyc5cuX49ChQ2jTpg2ee+45tG7dGrm5udi/f79jm8WLF+PRRx+FKIpo2LAhnnrqKbRs2RKRkZE4f/485s6di9WrV2Pu3LkICgrCp59+KnucF1980RHQNmvWDC+99BJuueUWpKenY8mSJfjmm2/w0EMPuRxnRRBEd7XIpaRSqSAIvq2640x7UpcvX0adOnUA5JflF8xMSFRciTkZiFnk+mRJ75CH0Cq4Ab66PaIcR0VEZeVgkhnv7Uhz3PfXCvj2jsiKG5CPvLM9FYeTLcrrbg1F01B5dQQRERGRN0rz/fvUqVOwWq3QaDRo0qSJ4jZ20Y5kU45PxlpVhOuNUJVRa72NGzeib9++AIA333xTVqEK5GdMnTt3xr59+wAAW7ZsQc+ePR3rv/nmG0ycOBFarRa//vor7rrrLtkxUlNT0atXLxw5cgQ9evTA33//LVn/xRdf4JlnngEADBs2DAsXLoRer5cdx263IzExURKyxsfHY9CgQQCAfv36YfXq1ZLK36JjBIDhw4dj0aJFkvUdO3bE3r170apVKxw+fFjxtTp+/DhatGgBAHj//ffxyiuvONZZLBY0bdoU58+fx1133YVly5bBaJRPwFt0HGvXrsWAAQMk64vmg/369UN8fLzi65CUlITGjRsjPT0d48aNw6xZsxQrZQuqcVUqFY4ePYpmzZo51h06dAjt2rWD3W5Hhw4dsGnTJll17/z58zF69GjHfVc/I+5483tdHGVeMuPLDNjXgS8RFUo2Zbtc56cKQLg2BmZbmZ3TIaJyZrNLf5/9qskkWl2j9YohbbS/Go1Dqn6lMBEREVVfyaYcRC2cVtHDKFfXR05DpMH9pfFl4caNGzh06BDeeOMNR0D7wAMPSAJaURTx4YcfAgCefvppxYAWAEJDQ/Hxxx9j4MCB2Lp1K06dOuUI7Ox2Oz7++GMAQFxcHObPn68YTAL5hY5FA1oA+OqrrwDkt2H47rvvZAEtADz++ONYvHgx1q1bh+XLlyMxMRHR0dGO9Q8//DD27t2LI0eO4MCBA7IqWSC/tQCQn7uNGjVKsu7nn3/G+fPnYTAYMH/+fMWAtmAcc+bMwc6dOzFv3jxZSFv0ec6ZM8fl6zBjxgykp6cjNjYWX3/9tWJACwBvvfUWvv/+eyQkJGD+/Pl47733HOtmzpzpaN0we/ZsxfYLjz32GH7++Wf8/vvvisevCGX6bWXDhg1leXgi8qE0c57kvl6lQa+ITriWrUM9Q0toBC3Kru6eiMqbU0YLdfXIaDGgrh9C9WqcSLXAfvNNK1ivQu84P6h4speIiIioRnrrrbfw1ltvKa4zGo3417/+hQ8++ECy/OjRozhz5gyA/ADXndtuu81xe9u2bY6Qdv/+/bh8+TKA/BDTU6/WoqxWKzZt2gQAuOOOOxxV3Eoef/xxrFu3DlarFRs3bsTIkSMd60aMGIGpU6fCbrfjp59+UgxpC3rl9ujRA/Xq1ZOs+/XXXwEAvXv3RmSk+yvvbrvtNuzcuRPbtm1zuU2PHj3c9sYteLxBgwa5DHIBQKPRoHv37li6dKns8Qp6zbZp0wYdO3Z0eYxx48bVnJC2d+/eZXl4IvKhdHOu5H6UXwC+6D4E07alOZY5hzpEVHU5F8ZXlwBTEAR0rq1H59quP9ARERERERVo164dnn76admkYbt373bc7t69u9fHu3r1quN2QZUuAPTq1atY4zp79ixycvLbX3Tt2tXttkXXO7c0iImJQd++ffHXX39h4cKF+OCDDyRXqu/YscMRRitNGFbwOqxZs8brK9yLvgbObrnlFpfrbDabozftrFmzMGvWrGI/nslkwqlTpwAAnTt3drtfly5dvDp+eSmbxh9EVOWkO1XSBmsNUDlNweM0xxARVWE2p9J4VfXIaImIiIiIZCZNmoRDhw7h0KFD2LdvH1atWoXRo0dDpVLhn3/+QZ8+fXDjxg3JPkUnuy+OgmAVyO+vWqBoCwJvpKSkOG5HRUW53bZ27dqK+xUoCF8vXbqEzZs3S9YVtDrQarV48MEHZfuW5HXIzc11uS40NNTlupSUFFit1mI/XtHXPDU11dF61dPrVqtWrWI/VlliczYiAgCkW5xCWp0BzifJcq0spSWqjLIsdqw8nYOtV/IQ6adGXIAaAxsYEReo/Gf+eIoZX+3PkCyrLu0OiIiIiKqqcL0R10dOq+hhlKtwvXJ/U1+LiopC69atHffbtWuHQYMGoW/fvhgzZgzOnz+PCRMm4JdffnFsU3Ti+lWrVrm9RN/5sXyttHM03X///Zg8eTLy8vLw008/Oa58t9lsWLx4MQDgrrvuQnh4uGzfgtfh7rvvxkcffVSqcQCAWq12ua7oaz5hwgTHhGueKPXqBare3FYMaYkIADDrxHbJ/RCdn2JlnV0Uq81l0UTVxed7M3AwyQwASMmz40SqBbuvmfB1vwhonH6Rr+fY8P7ONFicSuP5e01ERERUsVSCqkIm0arJRo8ejVWrVmHZsmX49ddfsX79etx+++0AIAksQ0JCJCGvtyIiIhy3ExMT0bx5c6/3DQsLc9y+du2a222LXu5fdL8CQUFBGDRoEJYuXYqlS5fiyy+/hFarxV9//eU4tlKrAyD/dbhy5QrMZnOJXoPiKDp2URRL9HghISGO255eN0/ryxvbHRARAKBhgPSNPMtqUpzt/VqOTbaMiCqO2SY6Atqi0s0iLmbKLxX6OyEPJoVfY6PC7zsRERERUXX3/vvvO6o7X331Vcfy9u3bO25v3bq1RMfu0KGD47ZzmwFPGjZsCKMxv9J4x44dbrfduXOn47arYLMghE1JSXFMllXQ6iAwMBBDhgxR3K/gddi9ezfMZvn3Dl/S6XRo1aoVgJK/5gaDwTFx265du9xu62l9eWNIS0QAALNdmtroVRrE+MsvQzA5zzZERBXK7OZ3Mk+hRcmxFOUPVr3jDD4bExERERFRVdG0aVMMHz4cQH4Y+ueffwLID1jj4uIAALNnz0ZeXp7LY7jStm1b1KlTBwAwZ84cZGVleb2vRqNxtCX4888/cfnyZZfbzpkzx7FPnz59FLcZOHCgox/sggULkJeXhxUrVgAAhg0bBj8/P8X9CsLb9PR0fPfdd16Pv6QKHu/48eNYs2ZNiY7Rv39/AHD0IHbl22+/LdHxywpDWiICAGRbpcHNoDotFfu3WDl7GFGlYrW7DmktTuusdhEnUi2SZU1DNHirewj61FH+UEZEREREVN29+uqrju+/7777LgBApVI5KmvPnj2Lxx57DCaTyeUxMjIy8OWXX0qWqVQqTJ06FQBw+fJlPPbYYy6rUe12O65cuSJZ9uSTTwIAzGYzxo8fD4vFItvv22+/xdq1awEA9913n8sJynQ6HR544AEA+T12f/rpJ2RmZgJw3eoAyG8JURA0v/jiix4rgv/++29s2rTJ7TbuPPPMMwgIyG/7MXbsWBw5csTt9vHx8Th48KBk2RNPPOH4/5w4cSKys7Nl+y1YsACrV68u8TjLAkNaIgKQ396gKH9NfuNtf600qHUOfYioYrmbz8+57+yZNKus1cHUziFoHqbcaJ+IiIiIqCZo3bq1o4Jz8+bN+PvvvwEA//rXvzBs2DAAwJIlS9CqVSt8/PHH2LRpE/bv34/Nmzdj9uzZGDVqFGJiYjBt2jTZsZ988kkMGDAAALBixQq0adMGn3/+ObZu3Yp9+/bh999/x5tvvonmzZtj9uzZkn3vuecePPjggwCAtWvXolu3bliwYAH27NmDdevWYcKECZgwYQKA/H6un376qdvnWRDG5ubm4oUXXgAA1KpVC/369XO5j16vx+LFi6HX65GVlYXbb78djzzyCJYuXYo9e/Zg165d+PXXX/Hmm2/illtuQa9evXDo0CG343CnVq1a+P777yEIAhITE9GpUydMmjQJv/76K/bu3YsdO3Zg2bJlePnll9GoUSMMGjQIFy9elByjbdu2joB79+7d6NSpE+bNm4c9e/Zg/fr1mDRpEh577DF06tSpxOMsC5w4jIgAANkW6dm8AG1+aKNVCQAKUyALW9ISVSruTpxYnFohHHVqdVA3UI0gHc/XEhERERG99tpr+OWXXwAA77zzDtasWQNBELBo0SI888wzmDlzJs6cOYOXXnrJ5TGioqJky1QqFVauXInRo0dj6dKlOHnyJJ599lmvxzV//nxYrVasWLECe/fuxSOPPCLbJiYmBvHx8YiNjXV7rNtuuw116tTBpUuXkJaWBgAYMWKEoyevK926dcPGjRsxfPhwXLp0CQsWLHD0s1USFBTk+Ym5cd999+GXX37BmDFjkJKSgpkzZ2LmzJmK26pUKvj7+8uWf/rpp7hy5QqWL1+O48ePY+zYsZL1DRo0wKJFi9CoUaNSjdWX+M2MiADI2x0UVNJqnd4lWElLVPFyrXbMO5KJh+Kv49mNKS63Mzv9vh5Nll4e1TKcFbRERERERADQuXNnR8Xr2rVrHZNKabVafP311zhw4ACmTJmCNm3aIDg4GGq1GsHBwWjXrh3Gjx+PpUuX4tixY4rHNhqNWLJkCdavX49HH30UDRo0gJ+fH3Q6HerUqYPBgwdj1qxZjurWogwGA5YvX45ff/0V9913H2JiYqDT6RAaGoquXbviP//5D06cOIF27dp5fI6CIGDkyJGSZe5aHRTVrVs3nDp1CjNnzsQ999zjGIfBYECdOnVwxx134L333sPx48fx2GOPeXVMdwYPHoxz587hk08+we23345atWpBq9XCz88PDRo0wKBBg/Dpp5/i/Pnz6Nu3r2x/rVaLZcuW4YcffkCvXr0QHBwMo9GIFi1a4NVXX8WePXvQsGHDUo/TlwRRFJm4VGGXL1929Aa5dOmSo6k1UXGF//QGUkw5jvsb756E3rUb4dmNyUjMLiyffb5DELpGc4Ihooo0+2AG/rrkeeKCCa0DMaBefq9Zm13E2LVJksn/+PtMRERE5L3SfP8+deoUrFYrNBqNY+Z5IqrafP17zUpaIoIoisi0SHvSBmj0AJQqactrVETkijcBLZBfcVsg3WyXBLQA0CRU69NxERERERERUckwpCUi5FjNsNilzWZDdPnVdRqVdOIwG4vviaqMDHPh76tSpxKDWpAvJCIiIiIionLHkJaIkGaWV+WF6o0AAI1ThmNlJS1RlZFmKvyFVTq/ohIY0hIREREREVUGDGmJCKnmHNmyYK1yJa2VE4cRVUr3NTZiVHPprKbpRUNahX1UzGiJiIiIiIgqBU1FD4CIKp5zJW2Q1gC1Kv8cjsbpVA4raYkqJz+NgCCd9Bc23Vz4C2tXKKVlRktERERERFQ5MKQlqiGWnz+E+zd8DwCo52fC+80SEKq1Yt6VJtiYHIDHYpPwSGwyjmf5YXZCS9htychL/xoPRCVCMA/CgYxOAABrkaAnJc+Gbw9n4nyGFQBg0AjoG+eHgQ38ILi4jPpIshmLT2QjJc+GxqFajG8ViABd9Szq33olD7+dzcHZ9PzXp22kDo+2CECdQL71Uskpha0A4KdRIVjvFNKaioa08n3Y7YCIiIiIiKhyYFJAVANkWvIcAS0AfNriEvpFZAIA2gYdxL27G+OLVpcAAF1CcqBRJyAvfQYsuRtRWwf8q8EpTD08A1m2IEkl7ZxDmdhz3Sx5rPnHstAgWIOW4TrZOKx2EZ/sTkeONT8tup5rgkEt4Ilbgnz9lCtcUq4N0/dlSC4xP3DDjHRTBj7sFVZh46Kqb0eiSXG5QSMgxCmkzTDbYRdFqASB7Q6IiIiIiIgqsepZvkZEEj+e2VvknugIaAHAX23Hn11PSrYfFX0WltwNjvtqwY7eEX8CkPakLagQdXbGxfKr2TZHQFvgVJrFq+dQ1VzIsCqGYuczrMixsGcEldxJF78z4QYVAp2q0u0ikHvzd06pAJcZLRERERERUeXAkJaoBsgo0nPWX12ygNBfkwUAsBUJeswuJhFzNbmYTWFxjqV6TkTmbn41s9ILQeSl5Fz573DLMC2ahWphUMtjV9PNnzel33xXbUmIiIiIiIiofLHdAVENoFEVno8J09pKdAxRzD9G0QDW1SRirpbbFEr5nCtrqwt3zyqPIS2VQnKe9He4V6wBk24JhFolQK+Wb19wUsD514+tDoiIiIiIiCoPVtIS1QBaVWFyE6pVbkXgiXjzwuiiAazLilmXFbbyZblW0eX2VZnoYnIngCEtlY5zJW33aD3UNxNXjUrewiDPEdJKf+6Y0RIREREREVUeDGmJagCNUPirXtKQ1u5USWsXRcX2BQDgqjhWqZIWKOyZWVOYSvZfQASrXUSaSRrShhsKf78FQYDeqeWB+WbhrfM5ElbSEhERERERVR41st1BRkYGVq9ejV27dmH37t1ISEjAjRs3kJubi5CQELRs2RIDBw7E+PHjER4e7vF4//zzD77++mts2bIF165dQ0hICNq2bYsxY8Zg5MiR5fCMiNyL1l5A2h37SnWMu2qtQpugffg5YTTGrW2DbDe9ZAuC3DyrHTMPZuLADTP0agH1gpTfcsb/mYTaRjVGNPdH92iD12M6n2HBrIOZuJxpRYBOhcENjehbx4D3d6ThZFphEuqnEWCzizBqVehf14AHmvhDEATsvmbCx7vTHdvd39iIB5v6l6hP58lUC745lImr2fmP665Y9o1tqehSW49JtwTCqOW5MvJeap5d1koj3E/a40CvESTV2m9tT4UK8hYczGiJiIiIiIgqjxoZ0u7cudNleHrjxg1s2rQJmzZtwscff4wff/wRd955p8tjTZs2De+88w7s9sIapWvXrmHt2rVYu3YtFixYgKVLl8Jg8D54IvIlUbTjdr+5PjlWrN9lTKj3JV468jXcFeIXtDWIP5eLbYkmAPm9Z1NvmF3uczXHhq/2Z6B9pB4GjXfx0ayDmTibnh+KpuTZ8f3RLCRkWSUBLVBYqWs22bH0VA5aR+jQMFiLz/amS7ZbdjoH7aL0aBqq9erxC4iiiC/3Z+Bajvf9fndeNSHWX40RzQOK9VhUszn3o9WpgACt9PdF7/Sr6apHNCcNIyIiIiIiqjxqbAlXnTp18Nhjj+Hzzz/H8uXLsW3bNmzduhWLFi3Cgw8+CLVajaSkJAwZMgQHDhxQPMasWbPw1ltvwW63o1GjRpg7dy527tyJlStXom/fvgCA+Ph4jBs3rjyfGpGEaE/z6fGCtekI0GS63aagkvZCRvGu67fYgSvZ3u0jiiLOpcu3XXcxz+O+FzOsuJRphUUhvDqTZvHq8YvKtYrFCmgLnC/m60Pk3I823E8tC1sjjQqzhykIM9TYjwBERERERESVTo2spO3bty8uXrzocv3w4cOxcuVKDBs2DGazGW+99RaWL18u2SYlJQUvv/wyAKBu3brYvn07IiIiHOsHDRqEYcOGYdWqVVi4cCEmTpyIPn36lMnzIXJHtGf4/JhqwX0gab3Ze9ZSggnBzF5OqpVrFWWXb3vLJgKJ2crPIdPsouzQjYwS7AMAuZxAjIopyamSNlwhaL2vsT9Op6XB5ObXVC0Aw5v6+3p4REREREREVEI1MqRVqz1XGd17771o1qwZTpw4gS1btsjWz5kzB+np+ZdKf/jhh5KAtuAxvv76a6xevRo2mw0ff/wxQ1qqEJ4qaf0jvwIAZN940utjegxpb2aW3gauRZm9LEjNKcVkYzY7HL1jnaWXKKSVjkWrAqZ1DwWQPzlTmEGNlDwbNl/Ow+/ncx3b1bQJ06j0lCppnbWO0OGbAZFIyLLC1XmSGH81+yETERERERFVIjUypPVWYGAgACAvT3759MqVKwEAQUFBuO+++xT3j4uLQ//+/bFmzRr89ddfyMzMdByTqLyI9nSX61TqaGh0zYt9TLXg/jL9gnYHJSkwNXkZ7GYp9SrwklUUXVbSppuKH5w6V98G6VRoHCLtaxuiVyElzy4JaXNK8RyoZnLuSRvhomWBXi2gYXDxeisTERERERFRxWEZjQsnTpzA/v37AQDNm0tDLLPZjJ07dwIAunfvDp1O5/I4vXv3BgCYTCbs3r27bAZLNZ7FbkOWxQSzTR6e2m1pLvcT1BEu17njKaS12POraC0lqKTNMNuRZy385+oYOZaSV6Fa7cr9bAHgRq40BBNFEXlWO+yi68dzbncQqFN+a/VzmhAtqxTPgbxjv/n/l2e1w1aC9huVicUmIiHLqd2BQiUtERERERERVT2spC0iJycHCQkJWLVqFT766CNYrfkhzrPPPivZ7uTJk7DZ8r8oOwe4zoquP3bsmGNCMW9dvnzZ7frExMRiHY+qF7toxzM7fsE3J3fAZLNCI6jwUIN2+LbncGiQjsyrw93uryphSBukSUci6rhcv/+GGY/+caNEx559KBOzDxVOTCYA6FhLhyntgmEoEnJmlyLgXHoqx+W68xlWTN2cjMltg5BtEfH1gQwk59nhrxHwSIsA3F7XT7L9rqsmzDwonUgtyMuQNtcqYtmpbNzfhL1BizqfYcEX+zKQnGvHkEbGEr8+ay/kYOHxbEdrDL0aGFjfiBHNA3w53DKXZxUxfX869lwzy/owK/WkJSIiIiKi8nX48GF88MEH2LRpE65duwaLJX9C6n379qFdu3YVO7hKbMyYMfj+++9Rr149nD9/vqKHU+FqfEg7b948jB071uX6f//73xg1apRkWdHgNC4uzu3x69QpDLIuXbpU7PEV3Z/I2earZ/Hlsa2O+1bRjgVn92JwnZYYGr7L4/4lraTtG/EnTmS1LtG+xSUC2H3NdMq6ugAAsFhJREFUjI2Xc3FXfaNjeXYZtgq4mGnD7EOZyLWKSM7Lf5xsq4jvjmSiW7Te0cvTLor45pB8YrYgnSBbBgBGjXz54pPZ6BGjR23/Gv927LDgWJajYnTxyWx0i9YjNqB4r0+W2Y55R7JQtBDbZANWnMlB9xgD6gVVndd70+Vc7L5mVlzHSloiIiIiImUbN250FMq9+eabmDZtWpk8zp49e9CrVy/k5uZ63pjIDZbguNCuXTvs3LkT//nPfyAI0mAlM7Owai4gwH1Flr9/YQVYVlaWbwdJNd7x9OuKy09m3IAp62eP+wuqYMdtXYD7qtuizHbXLT7KyrEUi+R+XglaKRTH2XSrrG+t2Q5czCxsk5BtEZFulo/DVaAYZlBDr5CpXcr0cra0GsAuijiYJP2/3npF3hfck4QsG1z9iJzPsCivqKROpSmPV68WUMvIkJaIiIiIqCK98soryM3NRVBQEL7++mvs3LkThw4dwqFDhzxefV1epk2bBkEQZPkWVS5Vp5SojNx7773o1KkTACA3NxdnzpzB4sWLsWLFCowcORKfffYZBg0aJNmn6ERi7vrRAoBer3fcLslZFU/Vt4mJiejSpUuxj0vVQ65CD1oAEGUXRSsThMKfX33A/TBnLfZyPxH96hpwLduGw8kWNA7R4HSa+z61pXXeqYestYLm3LqabUPzsPzbFoUep9H+avR3aolQQKfOb5kw97D0hE1pJkGrbpJy5a+FyVqCydzcvKYpeVXr9b6SJQ/xtSrg0RYB0Kn5IYuIiIiIqKJYLBZs2rQJADBx4kRMmjSpgkdEVVmND2lDQkIQEhLiuN+5c2eMGDECP/zwA0aPHo2hQ4di7ty5GDNmjGMbg8HguG02K1+CWsBkMjlu+/kpBzfueGqnQDVbnk25ws7NHFdSRUJalToCQTF/AmIuRHsmzNmrXFbjdo/W447wIIiiCJsIqIX8lgSf7El3+VB6tYD/3pafbj61IdntsL7sG46ELCv+s6vweFdzbMix2B2tBpwD0lbhWky6JchxX6sCrCKgEoAQvQrj1iYhVyHsm9U/AgFaARa7iLe3p+GsiwnFChStrjUrlGp+1CvMbXB2Rz0jtl4x4XiRymBOIFYoIUv++pfk1ckwuQ5iU6tQSCuKIq44VXQ/3iYQt8UaGNASEREREVWwpKQkRy7UtGnTCh4NVXVsd+DCo48+igcffBB2ux1PPfUUUlJSHOsCAwMdtz21MMjOznbc9tQagai4cq0uQlpvK2mhld4XVBBU/lBpakOlqetyv4JsSBAEaFT5l0z4a90HRpF+KkQa1Yj04vLsSKMarcJ1cM6gzmcUBnjOlbQB2sLjRxrVCDGoEeGnRphBDZUgoFmo9LkC+ZOSBenyn4OfRoXb63g+kSINaeXH03rxrhqql26UZa46oWFZU6oaTXMTuLqS4eY1TcmrOu0l0k122cmFWyJ0DGiJiIiIiCqBooV5Wq38OydRcTCkdWPo0KEA8oPWP/74w7G8aHVr0UnElBRtV8BJwMjXcl1U0uZaUr07gOD6j4igMrhcB8gDMKVJsYoK0Rfv7UarFhAXKC32P51mcbQGMDlVsWo8HL55mPy5GrUCVEV68rSJ8PxH9XKRSk+zUzWvVgWvevwE6pxCWrY7cFCqpL2RY8O1HBusCu0lihJFEUm5+dtey3EdxJZ3u4PUvMIxKf1z/v9PN9mRlGuDKIo4lyF9PbQqIMKPf7qJiIiIiEpj48aNjh6tGzduBAAsXrwY/fr1Q2RkJPz8/NCsWTO89NJLkqK9AgU9Xhs0aOBYNnbsWMcxBUFQnKgsLy8PX375Jfr164fatWtDp9MhKioK/fv3x9y5c2G1em4jaDKZMHv2bNxzzz2IjY2FXq+Hv78/WrVqhQkTJmDNmjUQb15eO2/ePAiCgLfeesuxf9ExFvw7f/687HFsNhu+//57DBo0CDExMdDr9QgPD0fPnj3x6aefetXS89ixYxgzZgzq1KkDg8GAOnXqYNSoUdi1y/NE5zVRjW934E5kZKTj9oULFxy3mzZtCrVaDZvNhuPHj7s9RtH1LVq08P0gqca6kJWCTw5vkixTQcTXrS9gRMw+r45RtCetfKW7kFbO6KGENNjLkLZogWD9IA0uFAmpFhzPxk/HsxHup5L1LtWo3IejLRRCWucR1fbXIMpPhesKfVELJGTZcPCGGbdE6mTtDrytbgxwqjpmu4NCf12STxJ2Ms2Kpzckw6AW8FS7IHSurZdtcy3Hhvd3pOGqm3C2QHmFtFkWOz7cmYaTHvo1CwBur2vAYy0C8d896TiY5LqNTrS/WnJigYiIiIiISsdut+PRRx/Fjz/+KFl+8uRJfPzxx1ixYgW2bNmC2rVrl+pxDhw4gKFDh0ryJQC4ceMG/vrrL/z111+YNWsWVq1ahVq1aikeY//+/bjvvvtw7tw5yXKz2YyjR4/i6NGjmDt3Ls6dO4f69euXeKwXL17EkCFDcODAAcnylJQUbN26FVu3bsWMGTMQHx/vss3D4sWL8dhjj0mqjS9fvoyFCxdiyZIlmDlzZonHV12xHMeNhIQEx+2irQp0Op1jsq5t27a57Utb0EBar9c7Jigj8oX/HdkiW9YlJBsjYrysogXcV9IK8iCsgCgqVNJ6aHfgbUhbtCK3QZD8PJII5cmlPLUZaBQsf64GherfNhHuJwMEgG+PZAKQ96TVegiKCwRo2e5Aic1DpWyeTcSPx5RbzPxyJturgBbIb5/gqSrXFzZdzvMY0AL5P9N/XczD4pNZbgNaAIj257lVIiIiIiJfev311/Hjjz/i3nvvxfLly7Fnzx6sXr0a99xzDwDg9OnTeO655yT7TJ48GYcOHcKaNWscy959910cOnTI8W/y5MmOdadPn0bv3r1x4cIFBAUF4ZVXXsGKFSuwe/durFmzBk8++SQ0Gg127dqFoUOHwmKRXzV77Ngx9OrVyxHQDhs2DIsWLcKuXbuwfft2zJ8/H4888gj8/f0d+9x77704dOiQZEKzomMs+BcbG+tYn5ycjJ49e+LAgQPQ6/V46qmnsGTJEuzatQsbNmzAK6+8AqPRiNOnT+Puu+9Gerp8bppdu3bh4Ycfhslkgl6vx7///W9s3rwZO3bswBdffIGIiAhMmjQJ+/fvL+b/VvXGb3tuLFmyxHG7TZs2knX33nsvtm3bhoyMDCxfvhwjRoyQ7X/58mWsW7cOANCvXz9JL1ui0jqWdk22rI7BfcDjzF3fWXfrAHkY5q8R3Fah1i8SuHaupcOua8pjndy2cPIv53YH7hg99DvQqgV0jNJhz/XCx20ZLg9ku0TrFas5iyqYlMq5IjNA511I6xwOO7duqKm8qSi+mmODXRRl1aSnUpVbfygRkd+2on5Q2faMSlTor+vOHhe/E0U1VeitTERERETVgyjaIdozKnoY5UpQBUEQKrZ+8J9//sG7776L1157TbL8rrvuwl133YW1a9di6dKl+OKLLxxXXEdFRSEqKkpS0BcbG4vWrVsrPsbo0aORnp6O9u3bY+3atYiIiJCsv+OOOzBo0CDcc8892LFjB+bNm4fHH39css0jjzyCrKwsqFQqLFiwQJZDde3aFY8++iiSk5NhNBoBACEhIQgJCUFUVJRjO1djLPD000/j0qVLqFevHjZs2CBp6QAAffr0wYMPPohevXrh7Nmz+Oijj/Dee+9Jtpk8eTKsViu0Wi3Wrl2L2267zbGuS5cuuO+++9CtWzdZpW5NVyND2nnz5mHEiBEwGFxfzv2///0Pq1evBgA0aNAAvXr1kqyfMGEC3n//faSnp+Pf//43BgwYgPDwcMd6m82GyZMnw2bL/5I+derUMngmVJMlmbI9b1TEzjQjuoTkOO7rg8ZBrYlxub1KHQa1tgVslmPylaI8TBIEAY+3CcKsQxmSSle1AHSL1qN7dOHv26jmAbiWk4HLWVbUCdRALeRPyNUzxoBbIguDU+cJtty5p4HnSb8eaxmATHMGTqVZ0TBYgweb+Mu2aRepx5CGRvx5MVc2YVOBvJuh6nWnys1aXkyKBsirftmSNl+u82xwLuRZRUnlttUuIsFFIKpVAbfFGXDghlnyc3kuvexD2hwvn0+B67nuQ92OUTr0q1u8NiREREREVHWI9gxkXr2/oodRrgJrL4OgDqnQMXTs2BGvvvqqbLkgCHj++eexdu1aWK1WbNu2DUOGDCn28bds2YJ//vkHAPD999/LAtoCd911Fx544AEsXrxYFtKuXbsWe/fuBZAfoioVChYomk0V1/nz57Fo0SIAwJdffikLaAu0b98eTz75JD766CPMmzdPEtLu2rULu3fvBgA88cQTkoC2QGxsLP773//ioYceKvFYq6MaGdJOmzYNL7zwAu6//3707NkTjRo1QkBAADIzM3Ho0CEsWLAAW7duBZDf2mD27NlQq6XhS1hYGD788EP861//woULF9C1a1e89tpraNOmDa5cuYLPPvsMGzZsAACMHDkSffr0Ke+nSdVcUp40pP2131j0C0uAJf1D2bZvnozBDdVd6NP8wZsTbKkhCJ4DRX3gCOSkvClbLiqEtABwS6QOX92e/wfHLoqw2gGVIO8XGxOgwce3hcFmF6F20yIgzOB9SOtNO4Xa/hq80yMMVrvotoftwy0CMKKZPwoKXK/n2PDC5sJm8TYxPxi8lluykNb5scvj0vuqIM+polgAMKNfOP71V7Jkea5VhLFIvpqQZYNzMfKs/hEwagSoBUCtEvDpnnQk5Rb2QjqXbkXfMp7LMcepMnh4U38Mbmh03P/6QAa2JRaOyd2PwcQ2gehX1/OJCCIiIiIiKp5Ro0a5nAC6Y8eOjttnz54t0fF//fVXAECzZs1kV2k7u+2227B48WLs2rULVqsVGk1+bPfbb785tnn22WdLNA5vxMfHw2azwWg04u677/Y41o8++ghXrlzBxYsXUbdu/tW4BVeUA/mTqbkybNgwhISEIC0tzSdjrw5qZEgL5Dc7/uabb/DNN9+43CYuLg7ffvst+vfvr7j+iSeewJUrV/DOO+/gzJkzGDdunGybgQMH4ttvv/XZuIkKOFfSRhoCoFGp4Oqi71CdH7Rqz/1WJQQXbxEuQtqiVIIAnYfM0l1ACwB+GgF6NWDy4qpxV39UlXiaZAzIH1vB8JV615ptIq5ll7SS1jmk9Wq3ai/PqXLZTyMohu/OFc4XM6R9XyP9VAhx2q9BsAY7rhYGomfTvW+PUFLZTuMM0qkkk8sV5yREx1que0QTEREREVHJNW/e3OW6sLAwx+3MzMwSHb+gqvTEiRNef2+1WCxISUlxtCnYty9/cvC6deuiXr16JRqHNwrGmpOT4wiIvXH16lVHSHvo0CEA+UWPbdu2dbmPVqtF+/btHQWOVEND2jVr1iA+Ph5bt27F6dOnce3aNSQnJ8PPzw9RUVFo164dBg0ahOHDhzv6eLjy1ltv4c4778RXX32FLVu24Nq1awgJCUHbtm0xduxYjBw5spyeFVUHdtGOY2nXEWsMRoheuWpOFEUcSk1EjlUaMkUY5JfuF2VQF//SbgHK+4guo2DfEgQBIXo1rnk5IVRZ0avlf0iPJFtwJl0aDkZ5XUkrvW9hJS0AeUhr0AhQCQL0akHSt/dAkhkhehXUqvwq2u1XpT2E6yr0Mm4YLF12IcMKm128ORGdDeEGNbQ3/5/NNhEXM60wqAXEBKihEgRkmPMnGwszKP8f28X8lgtqIb96PMMsIt3p7ILRKex3DpJdaRSs8XpbIiIiIiIqHne5j0pV+Dm8oJ1lcV2/fr1E++XkFLYrTEpKAgBER0eX6Fje8sVYU1Lyr0INCwuTXZXurFatWiV6vOqqRoa0zZo1Q7NmzfD888/75Hi33norbr31Vp8ci2qudHMu+v0xC3uSL0MtqLDgtlF4qGE7yTaiKOL+9d9jxcXDsv0j9P5K83nl7wfAoC7Br7vgItj1opLWV0INqkoZ0n6yRz6DJdsdlM6hJOnPleHm627USEPa+UezMP9olsvj1AuS/6w3CJb+LJvtwJEUC749nInEbBtiA9R4vWsIUk12vLsjDdk3WxU0CdGgbx0/fHckExY7cFd9P4xtJZ0EMs8q4t0dqTiVJg3tnRXtowt416IDANpHFbMCnoiIiIiqJEEVhMDayyp6GOVKUAV53qiKKwh327Ztix9//NHr/WJjY8tqSC4VjDUiIqJYFa5KvWuLc7Ur5auRIS1RZbT0/EHsSb4MALCJdkzbv1YW0u5KuqQY0KoFFYJ1BlhylcO+bJsKET4MaV31pC0L3kweFqQr2zd/54m+lAgAIv1KVkmbZ8sP4Gv6H7F/ivRnBQrbTPhpBKSalPZQVlchpA3SqRDhp5JMHvbF3nRk3gxjE7Js2JyQh/MZVkdACwCn0qw4lVZ4WdMf53MxtJFRUlG7+5rJY0Bb8DyK8rY6tn0UWx0QERER1QSCoKrwSbTI9wom8srKykLr1q1LdIyCycYSExN9Ni4lBWPNzMxEixYtPFbCKgkNDQUAJCcnw2azuT3GtWvXSjbQaorXTxJVEkvOH5TcP54uv8xAaRkAdAiPhSAIEMU82bo8m4AliWFoFxZT7DGpNXWheC5HLJ92BwDQOMRzm4YhDd23eigtQRDgr3UfoIqA43J5TyKcLpk32URcyqrYauHKIEgn/ZN04+bEbPWDi3eCwVVFc1yA9DiZThN7rTidg0Qv/h8SnLa5nOU5oFULQB2nNgwNgjz/bNcyqmWtGoiIiIiIqOpo3749gPyJx65evVqiY3To0AEAcPHiRVy4cKHY+3tbEFQwVpPJ5OhPW1wFk6OZzWYcOHDA5XZWqxX79+8v0WNUVwxpiSqJbKvn6tTEnAzZsq6RdTG3x/D8O3b5JeAvn2yOfzXvh3vqtCj2mASVP/xCX5GvKMdK2jvq+aF3nAGBLkLSaH817qhf9rPeP9nW/WU4Y1oGeH2sSKMakX7St98jSeX3mlZWRVsaAMDwpvnh+6MtAtAmwvueyv4uSp89TdSlUwHpZs+zuDln8cm5yvsIyG/ZEO2vxlPtgmTjCvJQSdswWIMp7YKgquEV1kREREREVdmQIUMA5F89+fnnn5foGIMHD3bc/t///lfs/Q0Gg+O2yeT6MsXBgwc7At3PPvus2I8DAP3793fc/v77711ut2LFCqSmppboMaorhrRElUSu1XN16hWnkHZ0407YPuhptAnLbx4u2rMl67V+t2Ne/y/xYedBUAkl+3XXGfvAP/IryTIR5Rco6tQCJrcNwpw7IrHonijZv8/6hCv2jPU1pT6nRXlT8VtUq3Bpn9HDyQxpnUPagvYRYQY1/q9rKD7sGerVcfw1yj8PoR5C2pgADdJNnkNaq9MmyXnK1bdxgWp8f1ckPusTjltjDIrbdIuWtzL4d+dgLLonCv/pGYYmocWf8I+IiIiIiCqPO+64A126dAEAfPzxx1i8eLHb7Q8dOoRVq1ZJlvXv3x8dO3YEAEyfPh0///yzy/2Tk5ORm5srWVZ0wrEzZ8643LdZs2Z48MEHAQA///wzPv30U7djPXfuHBYuXChZ1qVLF0fl74wZM/D333/L9ktMTMSLL77o9tg1EUNaokoi1+Y5pE3MlYa00X7S6k5RlIa0gsr76k53BMFp4iLRDFGsWZNdqTzkwLpiBsWtnULaY8kW2GvYa+rMZJU+/5KG784TdBUIM7jvpyQAsHnxX+A80ZurStoci+eDGcrhBAMREREREVWsn376CWFhYbDZbHjooYcwZMgQLFiwADt37sSePXvw+++/4/3330f37t1xyy23YNOmTbJj/PDDDwgICIDdbsfIkSNx//33Y8mSJdizZw927tyJn376CWPGjEG9evVkvV6LTnb/3HPPYfPmzTh16hROnz6N06dPw2otbOE2Y8YMNGzYEADwwgsvoHfv3pg7dy62b9+Offv2Yd26dfjvf/+LAQMGoHHjxli2TD7Z3ddffw2NRgOLxYIBAwbg1Vdfxd9//41du3bhyy+/RMeOHZGYmIi2bdv66iWuFtjojqiCJeZkYE/yZZzOSJKt+/XiEcn9Y2nSnrTRRuks86JTuwNB8FGvVueQFiJEexoEtXJloyjaYLOchkodBpU60jdjqGCeojRvJhcrqpXT5fvZVhHnM6yobVTjdJoVMQFqRHg5EVlVcjXbistFerpqVPlVyAFaFfKcElKDc0WsF3mmn0Zw2R4gzEN7gcRs7/oCn0i1wKgVEG5Q42KmFVdzlPdLzvNclasURLO7ARERERFR9dKoUSNs27YN999/Pw4fPoxVq1bJqmWLCgqSt9tr0aIFNm7ciGHDhuHSpUtYvnw5li9f7tXjN27cGMOHD8fixYuxdu1arF27VrL+3LlzqF+/PgAgLCwMW7duxfDhw7FlyxZs3rwZmzdvLtZYu3btivnz52PMmDHIy8vDf/7zH/znP/9xrNdoNPj666+xdetWt31raxqGtEQVaE3CCQxe9y0sduWQZ+hf37nd37mS1pK7XnJfUPkmpBXgHNICmVdHIaDWN1Br4iTLRdGG7KTnYTMfBgQ9jGFvQmvo6pNxVCRPuVlxK2nDDGpE+6slweCGS3nYddWE1JuX3I9rFYA76xuLO9RK64/zOfjuiLxvcqBWwBvdQmVVrCWppHU3wZundgepXrQ6AICVZ3Kw8kxOscbliiyIhldZNBERERERVTFNmzbF/v37sXjxYixbtgy7du3CjRs3YLPZEB4ejmbNmqFnz54YNmyYo12As44dO+LEiROYM2cOVq5cicOHDyMlJQUGgwENGjRA9+7d8dBDDzkC16J+/PFHdOrUCUuXLsWJEyeQmZkJu135O1Dt2rWxefNmxMfHY+HChdi2bRuuXr0Ki8WCkJAQNGnSBN27d8eQIUNw2223KR5j5MiRaNu2LT744AP89ddfSEpKQmRkJHr06IHnn38eXbt2xdatW0v8elZHDGmJKtBnRza7DGi9EW10P5kVBB9NqCWrpAUAMyzZf0AdPEGy1Jq3Iz+gBQDRhNy0z6CtvVBh/6rF0+RNOk/9EBS0DtchMbuwV9DaC9K+QT8cy0KfOn7l0nO3PKw6qxxsZlpELD+dLVvu/Ly9mUDLqHEdxHpqd+Br3lRXK/3fcqIwIiIiIqLS69Onj8s2fe7WOXO3Xf369YvVClCtVmPkyJEYOXKk1/s48/Pzw5QpUzBlypRi7afVajF16lRMnTrV633uuece3HPPPcUdokPLli0xf/58l+vnzZuHefPmlfj41Q170hJVoMTczBLva9Ro0S4sxnFf6Q+Dz3rSqoIhqGvLlttt8hYN5pw1kvui7bpsm6ooUCcgwk/5LTPKT4VAXfGDtWZh7ieFstiBgzeqz4RiaW4qVbclSmcY9dMICHVqTxBtVHvs4do01PW5xyCdgGj/8gtq723suZK9idOEcyrB8yR1REREREREVP3wmyBRBTLZrC7XNQoMd7ku2hiEN9oOQIC26Mzw8mOptc1KMzwHQRDgHzYNWTf+JVkuinkK21bP2egFQcALHYOx8HgWzqRZkW0VEW5QITZAjYebB0AoQfVjvUDPb8G7rpnQubbe43ZVgc27bgIAgA5ROqidqpO1agFTOwVj2alsJOfZoVcLSDfZ4K9VQUR+b9tRzV2fmBAEAc93CMYPxzJxLSd/MNdu9pOtZSwa3oqO9c70asDkovi9Q5QO0f5qnEy1oGGwFkMaem5V0SZCi0daBGBLQh70KmBoY38E6Xj+lIiIiIiIqKZhSEtUgZxD2l/7jcXguq1KdjBRHtIKgu+qBtW6JjAEPYG8jFlFHlPp8vXq+7bSMFiL17oqT5ZWEjEBaqgFyHqxFrX3mgk2uygLLKsauyjC+4uAgK4ugunWETq0jlBqv+GdukEar/4P/7mSh8/3ZUiWPd8hCLuumbAlwSTb/qVOwehYq/hhuiAIGNzQiMFeBLpERERERERUfbFch6gC5TmFtHp1aQJOpfI+3wamgkoaJIlirsJG1Tek9TWNSkBsgPsgPdMi4kSqpZxGVHasxaii1auBdlEVWz2sNAGZn0blsspVW8VDdCIiIiIiIqpYTFOIysHl7DRsvHpGFspmWKTtAgylCGnt9nT5Ql8Hpk4TkdnMRyGKVgiCBqI9B1bTAVicetICgChaqm0bhNKqE6jBxUz3k8f9djYHidn524QZVGgToYOmioWCtmI0028Xqa/wydL8FWb9MmgEBOuVQ1o385URERERERERecSQlqiMHUm9ilvjv5QFskpKWkkr2rOQdX2iwhrfTpIkOIW0AJCT8h6MoS8h6/q/YLcluBhgHsCQVlG9IA22XpFfPl/Unutm7LleOIFYp1o6TO0UUsYj863i9KPtGl3xPXiNGnlIrBLgspK2qoXmREREREREVLkwpCUqYwvO7vUqoAUAP3XJgkyraU9+EOpEEEreu1OJoJLPVm/N2wxTVgPXAS0A0Z4DQRXo07FUF3W9mDzM2e5rZiTl2hDh59sQvixZ7d5V0mpV+RNwVTQ/hZDWoBYQ7CKk5VxfREREREREVBr8WklUxhJzMjxvBCBcb0SLkFolegy7LVW2TKVtBEElr3wtDbW2KZTO7Zizlrvdz2675tNxVCfNQrWKgaAnKXnFKE2tBPIUZkcLVWgd0CvWAL9K0Dsg1KBGw+DCn/VofzViA9RoGqqFcyeEAK2AuBKE7UREREREREQF+K2SqIxlWKSXstfxD0GcMViyLNY/GK+0uR1aVQkrI0X55fL+YW+V7FhuCCo/+Ed8jOyk55xWqAE3hZJ26xVAf4vPx1MdGLUqvNolBL+cyUaGKT94DdSp0Lm2HmfSrLiQkT9p2LkMKyxFctlsSxULaa3SHxABwBvdQrD0VDZu5NggCAKahWpxXxOj8gEqwAsdg7H4ZDZsdhEPNvWHIAgI0Al4tUsI4s/lIMNkR6hBjXsbG9nugIiIiIiIiEqFIS1RGct0CmmfadkTL7Tu49PHEJ1CWo2hF1SaaJ8+RgG1ro3SUrf72G2JZTKW6qJpqFaxx2zfOoW3p25OlkwwlmX2fiKuyiDXqZLWTyMgJkCDp9sHu9ij4kX4qTG5bZBsectwHVqGV3xLBiIiIiIiIqo+Kv6aUqJqzjmkDdIafP4YopgruS8Ivn+MwmMLkL11CB5CWitD2tIKcLrGPquKV9KWpMUDERERERERUWUhir4tnmIlLVEZ237jguR+oLbkM9eLoghr3jaIYha0fn0AqGHN+wfmrMWS7QSh5I/hHRWAoiEhK2nLmr9TSJtmKnz97aKIPdfMuJxlVdw3yqhGl1p6aNUVF4w6h7T6ChwLEREREVF5U6vVsFqtsFqtsNlsUKurziTARCRns9lgs+Vf7eqr32eGtERlaG/SZdmy0lTS5mXMgjlrCQDAnL0Kam1TmLNXyjcsl5C2yMNB5a4lLStpfSBAKw01V57JwcjmAQCAhcez8evZHLf7d62tx/MdK661wIbLeZL7rKQlIiIioprEaDTCZMq/yjItLQ3h4eEVPCIiKo20tDTHbaPRN3OrMKQlKkOLzx+QLQvR+ZXoWKIoOgJaALCZj8JmPqq4raAq48mXBJV0ojAP7Q5EeypE0QxBYB/PkvLXykPNHIsdRq0KmxLyFPaQ2nnVhDyrHQZNxXS5Sc2rWu0ZiIiIiIh8KSQkBKmpqQCA69evw2azISgoCHq9/mZLOSKq7ERRhMlkQkZGBpKTkx3LQ0NDfXJ8hrREZeh6XpZsWYfw2JIdTJQfyxWNvmPJHsNLgioIoq0wGBTt2R73Ee0ZENQRZTmsaq1NhA6/nZP2Hk7Oyw9ps8yeA1ARQJ4NMFTQu77RqXI2y1K1Jj4jIiIiIioNg8GA4OBgpKenAwCSk5ORnJwMQRDY+oCoirDZbLI+tMHBwdDrfXM1M0NaojKUbpZWOD5Y/xYYNNoSHctuS/a8EQCtX29o9G1K9BjeUqnCYbNdd9wX7c5jEwCnBgiiPRNgSFti7aLkb/qpeXbEBoiwOeWdrcO10KoE7Lthliy3+7ipeXFYnR57aKMyrvYmIiIiIqpkoqOjodPpcOPGDccyURRhtSrPLUFElVtkZKRPW5cwpCUqQ84hbfeo+iU+lmhP9Wo7rV//Ej+GtwR1KGBxvV4XMBzm7N8AsbDCVrRnlvm4qru6gRpczCz8AJeSZ4PZJn8bf+KWIARoBYxdmyRZbq/A4lWLU7GvTsVLuoiIiIioZhEEAREREQgKCkJWVhays7NhNptht7M1GFFVoFKpoNPp4O/vj4CAAOh0vm3pyJCWqAxlWKQhbZC25CXw3lbSlnk/WgAqVZj7MQhaCKoAiDaGtL4UZlDhYpGXMSXPDqVOBzq1AJVCX6uKDGmtTg+u4RVdRERERFRD6XQ6hIWFISzM/fcqIqpZGNISlSHnStpgnaHExxJtKV5tJwhlH9IKak/l/BoIqkCItmuOJTmpH0FvfQg64wCo1JFlO8BqKtQgnfRr0clsZDqXqALQqQClQtUlJ7MlE5Dp1AI6RunRLKxkLTiKQxbScnIEIiIiIiIiIgeGtERlSF5JW/KQ1m73LqSFyr/Ej+EtQe1+5kJByA9pJcQsmDLmwpwdj8Ba30MQ+PZTXGFOIS0A/H979x0nR1n/AfzzzMz2vZbk0kMSUkjokYQWegkCQgwoYKFJExRB/SEKVhRFBBUiIhCahSJFqihICRBKCEQpSUgCSSC9Xd86M8/vj73bu9mZ3Z3d273du/u8Xy9e3M4888xz2Zvdme985/v8M2MyMSAVfHUKgb68IWZb9uTHEfzsoAZMbShvoFbPiCV77L8KERERERER0aDFy2SiMmpLxi2vexOkdZ9JGy56H24pSn2eQQSgKHWOq6SxGUbiw9IPahAY6s9fI8CjAKpIZdJqLj7hTQks2RLP37AXdFOiLaMug1dlJi0RERERERFRFwZpicooblhn6fSrxWePusmkVb17Q1Gdg6OlpHr3zrHWC823HzT/oVlbSGnP/qT8Zgz3wpcnuDlzhA9CCAiRKmXgRodDyYRSWtmUtNTOFQDG1jCTmoiIiIiIiKgLr5KJysSUJnSZmT1Y/GxJbjJpQ0OvKbr/QmQLBHvDX4QncARUzzionnGINv08Sw9G+QY3gA3xq7jm4Hpc+UqT4/pZI3y4eJ/a9OtL9qnFlIYoNrVbbxasatbxSVv3skSZ3473tycsryfUaqj18h4hERERERERURcGaYnKJGHYI18+pfhDLm+QVvjsdWD7kKKNR6Du65ZlQm2ENLbZG8tkH41q4JlQ68GXdgvh/g87bOs+t2vAkmnr1wRO2tU+kdyDH7Zbg7QZk3qV2nsZQdo9h3nLuj8iIiIiIiKi/oapTERlkjDtQVpvkUFaKROQsi1Po/I+sp6PlO7rmkoGaXtlcn3vJvnKrAebMMoXpI0kTaxusWby7jWsvJOUEREREREREfU3zKQlKrGkaWD+slfxrw32ybF8RZY7kIbz4+1WlQ3SQsYKaKznb0JZ7VqnQQAoNrSaGaT9cGf5gubLdibRM1FXU4BpQ5hJS0RERERERNQTg7REJXbV2//EDe8vdFxXbCatfdIwD4DMwFp5H1nPp5BMWshE/jaUVdCjYExYxfr24orJehVrkLZDl9gZMzDEX3zN5GwySx3s1uDJO/kZERERERER0WDDcgdEJfbM+hWOyzWhIKAV95i3NFstr4VSB0XbxbLMGzy+qL6LJZQh1v0HjrK3EX7HbWVBWbfkZIpDyQO3wc+wx95uRZmyade1WrOm9xjKLFoiIiIiIiKiTAzSEpVY1HB+lP/UCXvDpxaZvJ5Zb1Z44K+7GEBnsE344a05o7i+ixRouCLv/j2BIx23lUZz+QY2SBwxzo+eCbFjwip2qXH397WHw8Rd8TLVpW2JW/92R4VKn61LRERERERE1N+x3AFRiekZE4Z9ZugYXDr9EHxp1xm96NUaQBMAPP79EWq8GUZiJTT/TKja6F70X7jU/ufDSHyYdf++mrOgenZFZOdPLcvt5RuoUNOGePGLgxvw320JhDwCB4/yQ1XcZdLWehUM9SvYEesOoOplKmnckrB2XOvlvUEiIiIiIiKiTAzSEpWYnpH1et1+J+LYMVN72WtmBC0V6NK8u0Pz7t7LvouneadD807Pul4IAU/gUPhqv4Z4613p5e4mQqN8JtV7MMmh7IEbI0NqRpC29Jm0uinRkbT2W+djkJaIiIiIiIgoE6+WiUpMN60BVU3hYaYoDZbX0mSQttK0jKzbclQ7aE3Y03MZpCUiIiIiIiKyYyYtUYnNbtiB44dtwrutAfxx3XBowl1QSkoD0abrkIy+AADwBOfAV3Mm9OgixFr/ZG3sss9qIVTrJGNGciVaNhwNiCA8/v0hzQ4ACjTfXvCGT4MQrFtabplzjP1leTs8CnDs+AAU4a5sQj6tGfVoBZwnLSMiIiKi/kVKiWT0P9Bji6H59oUneAJEic4hiYgGKwZpiUrISK7F3XstAwCcNqoJEsJ1Jm287f50gBYAkpFnkYw8m6V1/zoBUpQhzitkBMnoS+mXevxNABp8NV/sk3ENZpmZtABw1wft8KkCR4wLlGQftnq0PqVkAWAiIiIiqhw9vgTRpusAAMnoCxBKGJ7A4RUeFRFR/9a/0vGIqly05Y+W19futgEexV1WaLztbtf7ESJU0LgqTaiNrtvG2+8v40ioS7b5u259t61k+2jPqEdbwyxaIiIiogEh1jzf8jrafEuFRkJENHAwSEtUQkZihW1Zvbc0WYk9eUPHl7zPclLUBmj+w1y1lWZLmUdDADA6XP4HKZIZhW69mTUWiIiIiKhfMo0NltfS3FGhkRARDRwM0hKVkJRx27KGEgZpVc9UhBrnwxs6sWR99pXgkKsQHHJNpYdBnT47ofQ3DzIlM+YNcyqxQEREREREREQM0hKVlIBuW1bKTFpfzVegeXcvWX99SQgPPIHZEOqIvG2lTPTBiAa3kEfB8EB5vwJ005pJ6+E3DhEREREREZEjXjITlZnqcuIwN4QSLllflZP/30MafFyqL4yv9ZS1fz0jk9bDTFoiIiIiIiIiR4M2SLtkyRJcc801mDNnDsaOHQufz4dwOIypU6fi3HPPxauvvlpQf8888wzmzZuX7mvs2LGYN28ennnmmTL9BlRt9Pj/HJe3bTkfHTt+DCP5qW2dqW9By4aj0bLhaFf76G8ThjkRyB+oi7V1Tx4mpYFY6z1o33ox2rdegljb3yClmWNrcmtiXe/r0iYNib8ub8fVi3bivhXtMEyJTR06bljSgr+uaLe01QbtNw4RERHRwJGMvuK4vG3LBWjbehEiTTdAmu2ObYiIKLvyzxxThQ477DC88or9iyWRSGDVqlVYtWoV7rnnHpx11lm444474PV6s/ZlmiYuvPBC3HnnnZblGzZswIYNG/DYY4/h/PPPx2233QalhBmVVF2k2YGO7Vc6rjP1NTD1NYjoG1EzYoFlXduWLxe0n4GRSZs/SJuMPA09eBw03x5IRp5BvO0v6XVG8kMo6nB4g8eWc5CDwoRa56+AlriJOp+7z6un1kTw5McRAMDqZh21XgWvbIhhbau99Adr0hIRERH1b6axDZGdP3Vep3+c+n9yNQAg2PB/fTUsIqIBYVBGDTdu3AgAGD16NC677DI8/PDDWLx4MV5//XX89re/xZgxYwAAf/7zn3HOOefk7Ovqq69OB2hnzJiB+++/H4sXL8b999+PGTNmAAAWLFiAH/7wh+X7hajiktEXASRztjH1NZBmNP1aSqPAvWgQSn3BY6s6wt29oWTkWQCAHn/Xts5IfFDSIQ1W2TJp17XZA6zZPPhhh+X10q1xxwAtANR5B+VXDhEREdGAYSSWu2qXjDxf5pEQEQ08gzKTdtq0afjlL3+JU089FaqqWtYdeOCBOPPMMzF79mysXLkS999/P77+9a/jsMMOs/WzcuVK3HDDDQCAmTNn4uWXX0YgkJokatasWTj55JNx+OGHY8mSJfjNb36Dr33ta5g8eXL5f0Hqc9LsyN8IgEQSAoHObdoK2oc39DkIpXSTkFWKUGpctUvGF8MvJUxju22dNCOlHtagNMSv4oixfry0PmZZnjRkli2sDFMis+X7O5xvVgQ0gaPG+YsZJhERERFVCffXMJwImIioUIMyrempp57CaaedZgvQdhk2bBhuvPHG9OuHH37Ysd3vf/976HoqY2z+/PnpAG2XYDCI+fPnAwB0Xcfvfve7UgyfqpBQXNaKld0ZhtJsdWziqzkHNSPuQ3j47Qg0XI1Aw9UINf4B/rpvlmKoFec2SCuNrTD1TyDNnfZ1kkHaUrlob/v7EXMZpN3QYc8GHxWyf66es3sYvz98CCbUlXeiMiIiIiIqr2zXMERE1HuDMkjrxpFHHpn++aOPPrKtl1Li8ccfB5DKzD3wwAMd+znwwAOx2267AQAef/xxSOku+EH9jNsJvWR3lqHTXWjFMwX+2jOhaCOgeibBGzwK3uBR0LzTIcTAqOfpNkgLAHpsMUxjh205M2lLRxECkzLKHiRcBmk/arZnzfpU+9/pAaN8qPc73xQjIiIiov4jc0IwoQzN0nJgXLsQEfUlBmmziMfj6Z+dMm7XrFmTrm17+OGH5+yra/2GDRuwdu3a0g2SqoYQ2SeX60miZ5DWfhdaDIJDUgj3Qdpk7GXAIWuWmbSllRlYjenugrQft9hrzzoFeNUBcoOBiIiIaLDLTDTR/DMd2w2IuTSIiPrYoKxJ68bChQvTP0+fPt22ftmyZemfp02blrOvnuuXL1+OiRMnuh7H+vXrc67ftGmT676qRdvmsyBlByB88AQOhb/2QgjR37PsXGZIy9xB2sFw36SQTFojscxxuZlchbbNX4UnOAe+mjMHTJZxpWQGae9b0Y69G71Y8F4bNrTrGBFUcc4eNZhUby1X8Oy6KDJtciiBoPDtISIiIuqXpJRIdDyCRPsTkDJqK0WmqMOctzObYOpbocffQbz975BmC4TSAF/Nl+ANHt0XQyci6ncYpHVgmiauu+669OvTTjvN1qZn8HTs2LE5+xs3blz6508//bSgsfTcdqAwzWZApibaSrQ/3PlY/5zKDqrX7IEpRz2DtNKh6H6/D1bnV0iQNhfT2IR4271QvbvB4z+gJH0OVt6MIG3CBL6zsPsEvCWh46alrbjpiCHpgPjKJucJwpxuVzBIS0RERNQ/GckPEWu5Net6IcIQ6ihIw5481LHjKpj6mvRraTYj2vQraL4ZUNQhZRkvEVF/NvDT9orwu9/9DosXLwYAnHLKKdhvv/1sbdraugNs4XA4Z3+hUHe90vb29hwtB4nOAG0XI/FhhQZSOlK6C9JK2V1GQ5ox23pf+AslG1O1UrRRuderowvqz0iu7s1wCMCwQP6vgi0RA9EeZRDWtdpLHTjxq8KxTi0RERERVb9812qKNgqBuosc1/UM0HaTMJL2OV+IiIiZtDYLFy7E97//fQDA8OHDceutzncNY7HuAJvXm7seqc/nS/8cjdofD84lX+btpk2bsP/++xfUZ7VxmkCr35H2gKtjM0stVdO2XvMfVKIBVS/NNwOqd08Yifd7LFUBGPCGToU3eAzat38HkC6PFYdgNxXmmF0CeHpN/n/vhCER7Kx4YLicBPHzk4PQmEpLRERE1C/JjAQbKy803yxAeKB694GR+J/LTjm/BBGREwZpe/jggw8wb9486LoOv9+Phx56CMOHD3ds6/f70z8nEomc/fachCwQCBQ0pnylFPojzXcA9Pib6dfOtVn7l54ZsjnbmT1PcqxBLs1/KIQY+IekEF6Ehv0WZvJjQHihaLtAmjsgZQKqlsqirR31SOdd++4MZUWbAGm2oGPHDy2PU7n9t6fsRoc1fGa4F+9szfNZ1uO+Qub8YDVegctn1FmWjQypGBYY+CU8iIiIiAYqaWZ/ErR21EMQSuq6ODTsRiQiTyHW/HsXfRaWuERENFgM/IiQS2vWrMGcOXPQ1NQEVVXxwAMP4LDDDsvavqamu65mvhIGHR3dgbl8pREGA09gdkaQtv9n0uqGu7vB1jvR1kza/j95mntCqFC9U7pfZ0w4IIQPmm9v+4ZqAzz+A5Ho+Ed6kXSZxUy5BbT82a7xHpFZMyNIu2udB3sOy/1UARERERH1M6ZzJq1QhkAo3de2QgionqmuupTMpCUicsSatAA2btyIY445Bhs3boQQAnfddRfmzp2bc5ueGa49JxFz0rNkwUCcCKxQQqm1vB4IQdqYnusxoB6ynOSk8JFwN4TwWxcwSFsSisj/95ewBGmtUVqWnSUiIiIaeKR0TkhSNPs8EkJ4XPbJTFoiIieDPpN2+/btOPbYY/Hxxx8DAObPn4+zzjor73a77757+ucVK1bkbNtz/fTp04sc6cAhlBrLa9PYgLbNX4W//lvw+Ku/vq6pb0Gk6RcwEisg1XG4etU0jBBLcdnE/NvG2x+Er+aM1AuZWZOW90xcET7LS5Y7KA03QdarFzXhl7MbEPII3LfCesOBZWeJiIiIBh6ZJcnEKUgLuAvSxlvvQrz1rvRrzX8Qgg3ft2TmEhENRoM6KtTS0oLjjjsOy5YtAwBcd911+MY3vuFq24kTJ2L06NQX08KFC3O2ffnllwEAY8aMwYQJE4of8ACRGaQFANPYhGjTryFtgcvqE2tdACOxDIAJYazD54e8goDqbtzSbIVp7Ox6VbYxDmQiI0gLBmlLwm0m7N0ftOGvy+0ZFW4ycYmIiIiof8k2cZiijrEtE6K40ld67HXE2x8talsiooFk0AZpI5EITjzxRLzzzjsAgKuvvhpXXnml6+2FEOmSCCtWrMAbb7zh2O6NN95IZ9LOnTsXgoEMKOoIOCVxS7O5X5Q+SEZfsrzevz4Cr+I+4Grq6wAAEsykLUrGyR8zaUvD7QRfq5p1rGnVbcuH+vn3S0RERDTQSNO5fqzqmWRbJtR6AMUFao3kmqK2IyIaSAblVXUikcC8efOwaNEiAMBll12GX/ziFwX3c/nll0NVU4GNSy+9FNGotbZONBrFpZdeCgDQNA2XX3557wY+QAglDF/t2VnWGn06luLYs2azHUhCbbQt657NNCOwywC+K/ZaV/aAIRXuqHF+jA27C9Q2xezHwPETg6UeEhERERFVmNMkvZrvAGj+WbblQvjgrz0XRYUZmHhBRDQ4a9J+6UtfwrPPPgsAOOqoo3Deeefh/fffz9re6/Vi6lT7TJVTp07FFVdcgeuuuw5LlizB7NmzceWVV2LSpEn46KOP8Otf/xpLly4FAFxxxRWYMmWKrY/Byl/zZXgDR6Bty5kZa6q73IGUzkHkoGpd7g2dDF/4dAh1BNq3XgBT774z3P3IUGb2LYO07mR8bEkGaUuh3q/ihsOGYEvEQLLzMEyaEj94tcnW1sj4073piCEYEXQX4CUiIiKifiQjSBtouBLe4JyszX01p8EbOgGtm+wTcdeM+AvatnwNQNK+GwZpiYgGZ5D20Ue769288MIL2HvvvXO2Hz9+PNauXeu47tprr8XWrVtx1113YenSpTjjjDNsbc4777yiMnUHOqHU2hdWeU1aaTrPbhrWMsftgaKNBAAIJZTRR7Trh4xtGKR1JSOTVkr7SR4VRwiBkaHCvxYa/AzQEhEREQ1EUlqfFlW0cXm3EUoYQhkKae7I2HY0hNoAaWx12BGDtEREg7LcQSkpioI777wTTz/9NObOnYvRo0fD6/Vi9OjRmDt3Lv75z39iwYIFUBT+U9s5BXaqPUjb6rg8nGPiMCGsj4FLcwdMo9l2V5qHoztCWIOI0tgO02iBlJyIrRICmoDP7axjRERERIOYlImyT5QszXaYRjOkTLhoG021NWOQUredU5tGiy14KoTf5Uicn3YTjteAgGls5fk8EQ16gzKTthwf/ieccAJOOOGEkvc7oAl7UNI0m6FgZAUG445pbHZcHsood9CzvqxQrEHaeNtfEW/7q60PwUxalzKCtLINbZtPSb8ONf4Bmnd6Xw9q0Krz8uYCERERUT6x1rsQb/s7hBJAoOEH8Pj3L2n/prENHTt+BDO5qnOJF76aL8Nfm1leDpBSR7TpeiSjLyIzSUYowxCovwSxtr/BTH5k29ZtkDbr027COQQhzR2pJBYRcNU/EdFAxKtrqiD7n1+i46kKjMO9ZPQVx+X2cgc9Aq7C7YRKDNK6Yps4zCrWsqCPBjI4NAZyf03U+fg1QkRERJSLoW9AvO1vAJKQZitizX8o+T7ibQ/1CNACQALxtntgGttsbfXYYiSjz8PpKUZpbkdk5zWOAVoAgMsgrVDCWdbkPpcnIhrMeHVNFeR0F7W6H3HJrC/bJZyRSSt6/G6qi7pNQKpGE+WXWe4gk5H4b98MZJA4f6+anOt3qRmUD2QQERERuabHllhem8aGrBMSF8s0Njgv1+3LTf3TovYhlFrneUUceEOfs7zW/IcCAAL1lxS1byKiwYBBWqoYIQQUbRfrwhKfrJSecw0pWyat0v2Yjjd0AlTfZ3L2qnr3gTd0Yq9HNzhwkqq+tM8wL4b4nb8qdqnRMHeS20xxIiIiosHK4RoiY0KuXstS69ap7IAsZpIuEYK/7lII4e5c3Bs6Cao3NUG3oo6Bv/ZcAJ3XPcETwVAEEZEdU6Coojz+QxBvv6/HkioP0mY5+anJCNKKHrWUhBJGeNhvIM0Ox5MkITxZM3TJQZ5MWiotIQRuPXoYDFOiI9md6a4oQNjDk2siIiKivBzOX6UZyVESoBhZrqMcg7SFBYgDDd+HJ3CU6wAtAChKLcKNv4M0o4DwQ3TO2SGEgkDDdxBo+E7nWBKQZiS1ketJyYiIBiZGO6iyROYkUM6zgFYPd7OxCoeC90IJsepsCQh+bFWEqgjU+vgXTERERFQo4VCHVcpISfeRvXyCwwReBWbSKtq4ggK0PQkl90RgQnghVG9RfRMRDTRMg6IKy/yyr/JMWrdBWoWPgJeNixNEKbPXNpYyDtNoydmGiIiIiKh07Nc4pQzSSilh6usd15lGk0P7WEH9Ky7r0BIRUe8wSEsVZbsjW+2ZtG5r5vJRnTLKn0nbvu1imGarbbke/wBtm7+Mts2nINr0KwZqiYiIiKjsnEqeJdofL0nfptGC9m1fhzS3O66PtcxHvO3vGQMqLEjrdrIwIiLqHQZpqcIysyKrO0gre1HugErERU1aM7kKyciztuWx1tshzWYAQDL6PIzk8lKPjoiIiIjISiZsi5LR/5QkYSAZ+TfM5OqcbWKtd0Ga3YHZnj/npwKC82cQEfUFBmmpooRSY3ltGjsrNBKXXD6WpGjjyzyQwUtRG11lKhvJjyyvpRmFkXjfskyPLSnp2IiIiIiIMkmnurAASpGgYhpbXLRKwjR3FLffHpN+ERFReTFISxWlaKMsr01jU1U/gm4aLXnb+MJnQFHr+mA0g5MQXgQbroRQh0MoQ+ENn+7YztQ3W14biWUOffnKMkYiIiIiojSHcgep5fYM25L1ncnsTjZx+3RgqnFhpRGIiKh4nCadKkpRrUFayBik2QyhNlRmQHlIM3+Q1lvjHDSk0vEEDoMncFj6daDuQiSjryCy86fpZaZhDdLqifds/RR0gkpEREREVIwsgVQpExDoXSmBzCxdb/iLCNR9HS0b5wKyvce+oj02KmSy5mqf2JmIaOBgJi1VlFCHIbMubWZwrZpIh8moMgnWbKoIRR1peS2NbZZJGvS4PUjbM6OAiIiIiKgcnCYOS60oRSattXSBgCf1fyWYMYYeQVomKhARVSVm0lJFCaFCUUfCNDakl5n6JsA7vSLjkVLC1NdDCA+EEoKR/BhSGljf0YpPYvXYG81572wIkTkZGvWFzNIZgEQy8jwUbQQADUbiv7Ztuk5WTX0jIDyperc5mMZ2GMm1ne+xgq4TXEUbD0Ud0uvfgYiIiIhKQ8oEjMQqSNkGaUag9HhSzzSaAJmEUGqg+fYGRAim/gkg4xDqMJj6us6WHqjeqRDC26uxmPp6x+XJ2KtQPbumXyva2Lzno5lsAWDRGaQVfvQsIhff8TgM0QohVJhmYfOAxDe9UFD7YnlHHAahMERBRIMXPwGp4hRtlCVIG2tdAG/wqIqMJdZyMxIdT9iWD+n8j6qXUMKACFse64o2/ybnNlJGEG25HYn2BwEo8Nd9A77w5x3bJjqeQbT5hmx7R6DhSniDxxY3eCIiIiIqGVPfjPZtl0Ga2121VzyTYGZMOttFKMMQbrwJijbScX0+sbb7oMffdF7X8kfbMn/dZfCFT3bdvx57xbqgM0grDWu2rIE3kWz9D2JL3kHwyMOz9ieTSQiPx7Js57+Pdj2e3hjxlbbUOT0R0SDFcgdUcfbH1N3MUFp6ptHsGKDNZVOM9zmqSaEnz6a+oTNACwAmYq13QErnx79irQty9CQRb/tbQfsmIiIiovJIRJ5xHaAFkDVACwDS3I5E5JmixiGljnjbfQVtE2/7S1H76iI6S8mZ7fYSckpNDbSRuc+Xzda2Xu2fiIiKxyAtVZxweKRHmlGHluUlzR0FtW9JKrh7/TDLMm/wxFIOiQpU6ONhRuJ96wIZA6S9Tq2UBqTZnLMv02gqaN9EREREVB6mUdjj/PnIYs/zZDT1XyGbmDuz17B15Ml4LVL9JJ33qwzN/nygsWMn9PUbrMt28hyXiKivMA2QKs4bPhnxtrsty6TZBKEE+nQchZ0MAetjAbwXOxhRbSeCcjlUz1T4as8r0+jIDaHU97oPKaMQyHjMytWkDjJ/EyIiIiLqA9UxMZbMmNTL/YaxdNmC/Ky/q+bbN9WFnoQ9gAso4RrHXoymduhrtkNGBfRPtkFprIOMJaB/tA2Kf3gBg+8N0Uf7ISKqTgzSUsUJUQPAC6A7EGYaTVC00X07kAKDtPs0fgb/nPaNMg2GiqGUIkhrRoCMud+kjPW6XyIiIiLqI9JwXKz5D7XXcC0r+zi8oVOR6Hgk51bSjEIozsFUh9bWl6LzYVnd+dpGCYYBWIPHgYbvwzvmWGBPhw2clhERUVmw3AFVnBACosdsq0Aqk7bPFRik7fMgMuUl1Ppe9yGdHkljkJaIiIioH3HOpBXCX1RvRT8v5RAsFi4yZB3PR7O3ztxD566zPQlmz+4VwlfA/oiIqFyYSUtVQVEaYPSYMMzsRZBWSgkzuQqm2QrNuyeE4u5kTKKwIK3KIG3VKUm5A7MZUuow4v+DabZ0Lmt3sWFHr/dNRERERClSxmEklkFRR0PRRmRtZyQ/gpH8FEASqmdXqJ5JyBqkVYJFjSUZeRrtLW0QMgwhR6Yn58pHohXIiH8mm1fmvQqPrX8cisxfYkBCB3zWIG1s/b+gyCGAKKDkA4O0RERVgUFaqgpCHYKeMdKii/MDiLfdg3jbXwEAimcywo03u7s7XGgmrcogbbUpRZA2suNqKNo4mPqnBW+bjC2Gx79/r8dARERENJhJM4r2bZfA1D8BhA+hoddC882wtYu33Y9Y6wLLMn/t+UhGX3TsV4jigrQAYHheTv1/ZxPiby91tY0IBhGYfaBlWWzNQ/BOmZRzu45V18HYuCl354oC//77QfFZyyK0LbkCsiMC797u6xQI4XXdloiIyoflDqgqCKU05Q6kNBBvfyj92kyuhh572+W28YL2xXIH1acUNWkBFBWgBYBEx+Ml2T8RERHRYJaI/icVoAUAGUes9S+O7WJtD9iXZQRtexI5MnLdUoc0QKl1WS9WOEyEZTrXy7Xso64ubxuloR5KjcM4OhNrZcx9ua7UHCFERFRpDNJSVcisDyVlthpKecgYkBFsNZIrXW1qGltd70ZRR0OofTXLKbkl1PwntOUkjZaK7p+IiIhoIEi0/d3y2kj8z9ZGShOQ2UpSOVzmigC8gWMg1FG9Hp/wuSwPoFiDtNI0Yba02pZlklkm/bKMwWOvbSsTCchoqp6t/ul6d2MEoHhyZ/YSEVHfYLkDqg4i409R2gvau+GcDeuuHpOp2x8punf9ULzeMgrnjNmCCUEDIwM10Dyj4K89H0LwHke1EUqt43LVu3vnLLkhCOGDlHFIM1VDVsoopLG5iJ2FHS4MCqj9RURERESOpMPkVvZGuZI6rOdkQh2JYMP3IZQAwsN+i7YtX8q6pVBHQNHGAACM+DuObdSa8RDJkXmHKEKZ1zgCitgF+ppWKMP8gAkYmyNQh/uhNHQnrSj+Rmj1gZx9KyH7vBv66nZodXukXydXt0Ab2QARDgJwDmgHGq6EcMr4JSKiPscgLVUF+yynxQVpHU/WpMsgrbHR8vqnK0fh92tHYuHxF+Owkby73B9kqz0cbpyfc7u2LefB1Ne62ofqmY7w8D8AABKR5xBtui69TiL/42tERERElIfMf05VSKmy8LAboWipoKqiDUd4+D1o33qOpY3mOwChYb+0LGvZcLRzf/v9BL7QSXn3q8c/QMf2b6VfCy2Mxs+/YG20OxBt+i0SkafTiwKTvoLAft/M2Xei41+INv8m/Vr17Ia6Y/+YtX3H9qugx9+0LVc9U/P9GkRE1EeYCkhVwnq/QJYwk9Zt4Cwzk3Zt1AevomL/YbsUNRbqR4S7GXoBQNHG9niVsZ2LCwoiIiIiysd+LSBt51kFlEfLmBhLKKG8bXIyIy4bWn8Pke2c07bczTllZiJKnkv7LL+fqwmWiYioTzCTlqpDRrkDPfYqYq1/BWBCKGEAgKKOgOqZCD3+X0jZXQhf0cZC881MlR9wuqPe2dbQNyDeeg8UdSQUz3hIM1UPypAmljVtwRTV+sj7mogP+zfuAr9mr/dEA437+1WKZ1z658wTbVNfg2T0FWj+AwqaJVeaUSRjr0OabdB8e0L1TIKUJvT424BMdvZnP6k39A3Q4+9AiBp4/AdAKLkfiyMiIiLqa3rbWiQ2PQepR3O2k5CQWmqOCBmy1/lvX/UjCH0EoO6AVFsBoQP2J/4dRT68GwLd5/QSBpAxlYHRugYdW262Lswy3UG8/e/Q/AdD7XFeKKUOPfYGpEzA498/dQ1jCyxnSwwo5sa/tL7MU7IgazCWQVoioqrBIC1VBeHwpxhvu9v19t7QPATqv+k44Vii4wl4Q6fYHmnqaYrD+dLaqBeXTJzoegzUf4ksJ8yafzb02CLLMjVXJi2AyM6fOj4ul42UJjq2XwEjubxziYLg0J9Dj72JRMcT6XGEhl5j2c5IrEb79m+lb0wkPNMQapzPWslERERUNZLNy7Hj6QMgk21523r3mA5tdPZJvczQmzA7OqCEHLJg82h76wpAWoOawWOPso5162J0LP9zzjZdpNmM9q0XItT4W2je6QCAyM5fQI+9AgCIa+MRbrzFXls3cx6ONOv5m3Qxz4G9Te5zwGxBWmbSEhFVD17NU3Uo5PEiB4nIM5DStGTY9hRr+UNB/cUMgRZdw2Ejdu3VuKgSrH9Lqme3/JvYaiIDgApv0F6HTFHH9NjO+e9Wj78JU9+af78AjOSKHgFaADARb/1LOkALAHpsEUxju2W7ROQpS+a4kVwBU1/jap9EREREfSG25gFXAVp4PDkDtF2KCdBK07QFaJ2Y7c4Ta2WXQDLyfGpbY1s6QAsApr4OicizDpMhuyt30DXBbU62eTfyTP7l+MSVYCYtEVEVYZCWqoLm2wu9+nOUMQB6uoRBJj2+pKDu/KrErjVDcTgnDOt3Ag3ftrz2112UdxvNt49tmSdwFDTfTEB0P0cn1OFQPN3Z1apnt6wntqa5w9V4jeRHDstW2PszrEFfPbHM1kaaLi6CiIiIiPqIGd2cvxEAJeCybkExY2hqdlyub+ieNFjqOvSNm2xtEqvs52k9STMV2DUSq2zrkpFnIaU12OpYCxeAqo2xvHY6F7Tv3PoEoX0iZivNaz/fVb17QWTN7iUior7GT2SqCqpnVwSH/AyJyL+hx14trhOpQ5r2+lXFeKV1Lzxx9LkIsB5tv+MJHANpRmEkPoDmP9AxAJvJV3MmABVG4n1ISGje3eELfwFCCSE07AYk2h8BoMFX82VLbVhFrUNo6PVIdPwDyehLlj6z3TDIZCY/dtVOGs09+o7CTDpkzXLiMiIiIqoiZtJ6PqSGJ0CtsT+pJgpPkM2+z54JsXFAbh0C7yiHsgUtgOkF4AHM7Rq8ww+3t4kDxmZACXqh1k6BiQ8yGqQydLPddDcybqoLEXYcs+rd09qrsRWmvhWKNtyxfWrPGWXe8mTEegIHI1B/BZLRlyGRgKqNha/mrJzbEBFR32KQlqqGJ3AwPIGDEW/7O2KttxW8vUTpgrTHjN0f/pqRJemL+pYQCnzhuQDmFrCNBn+t80mq5p0ObcgPs26r+faE5tsTbVvWWcoNuA3SGm6DtGZzj21WwT6jL+x1z4iIiIgqSGYEaYO7fR3hva60tUtE/oNo0696ta/w8HssE3mVQ6xlAeLt9/dYkj1IC8BSvgoAhFLr2E7RdgFEGJDdEWY98T68mnNN3NSurRMmu6kt6w19Ft7QZ/O2IyKiymC5A6o6Qm0obsMSZtIKUb5HrmhgyjzpdhOklVLCcMqIdWD2DNImsjwCx0xaIiIiqiJmwnpuLjzOQUppNPV6X0JkqfdaSrYJWlM3zc3kapebO2fSCqFA8+5hWWYkMrN2rWRGkLa3c3wQEVHlMZOWqo5Q6oraLt52H/T4u6UZAwvoU4Eyg7TJ6KuQZjs03z7QfPs6biONrYB0MTEEgET7Y/CFz4A0tmTNNDeSK+AJHOx6zHr8A+jxtwHoMPWtqbq3MoZAw3eherrrMRv6RujRlyFlJL1M0cbDEziiby6IiIiIqKTMeDOia+6DGdmYv3EvGK3W4KXitZ/nSzOKeNvfSrC3vjgnyZycy0Qy+hpMw17P1nFrpSbrOtW3J/T4m+nXiY7HoKgj4AkckS57IGUcych/UnMmmNYJk3n9QkTU/zFIS1VHUeqL2i7R8Y/SDYKZtFSgzCCtkXgXRuJdxNuA4JAfwxOw1zkzdHdZtAAgzR2INt8IPfZa1jbxtr9B8x0AzbdH1jZdkrHFiOy4Cl2P6fXUvvVChBtvheqdCtPYgfatF1sev0uPP/EBAvXfcv07EBERUeVJKbHzuTlIbn+rz/ftlEkb2fkTSFmCyU/75MaxNUibjC5EMrrQ/dZZyh0AgObdExm5sYi13oZ4+8OoGXEXIELo2H5FjgxbZtISEfV3LHdAVafocgelHIMIVHoI1M8oan3WdYnI847Ls5YtyCIZ+VfeMgrJ2Mvu+oouhFOAtkuk+bed7RY5BmhT43nB1b6IiIioehitqyoSoAUAxWs9zzeNls6nekqgDx73l2Ykf6McspU7AADVuxuccqikuQN6/L8wEstylkBgJi0RUf/HIC1VHaEMg+KZkqeVB4o6ptf7emF7DZa2ZARkRQiqb0/nDYiy0HwHwP4IXErPSb960uP/Lf1AMh59y0aaucssmMlVqf/r67P3IdsgZfZALxEREVUfM7a1IvtV/MPhGbqfdWFmXdUMmm8WVG/+83LVMw1KjizVknGRresNnQqhDHHePEcgVQgfvEHnSb1MsylvjdpcpRSIiKh/YLkDqjpCCISG/hKJ9kcgYcAXmgcjuRrJ2CJAJiBECJ7gHKie8Yi3P5wliKRBT7wLaWxx3McHbX78e/sQrDePgCpMbDeXY49agQm1E+ANndA3J3k0oGi+PRAc+kskowth6uthJN5Pr5OmPRNVmjEYieWWZZ7A0UjdO9OheqYAShCx5t8XNA6ZIzvWKumqlWnkq1WXBB+vIyIi6j9sk3lpQfjGnVzWfaqBkQjudjGElllSzH7eIpRaaL79oGhj4Qt/AVIaSHQ8AlNPnZNIMwI9/iZU7x5Q1OFQ1JHwhk8p6/i7qJ6pOdcr6hj4674Ob+gExFr+BD2embGcO8jrr/s6FM8ExFr+YF1htsPMM0FyrlIKRETUPzBIS1VJUYfAX3dB92ttBDyB2bZ2/tpzsvZhJNeifet5juu+8t9dEfLtgvfnOa8nKobHvz88/v07673+IL3cKUirJ94HoPdYoiBQfzmEEuzeTiZzBml9NedAmm1IdDzSY6npbrBSz9/EjKQviLI3inM2YSIion5EJq3BPjU8EQ2H31+h0djVjPib5XxIAPDXfq1yA7Jwfmqqizf8eQihQPVMQKD+W2jbcmZB2wslAF94HozEMiSj3WWlpNkBaezIsy2DtERE/R3LHdDAJTxZVxlSYLg/e00oot7IfNxMOk26lVHqQPXsZrkgAQAhPIDI/neqqMMAkfkx7i5IK2X+TFpD/zRvkFbmeUyRiIiIqostk9ZbV6GRDEQ9zstyXIvkk1m7Vsp2mHmDtCx3QETU3zGTlgYskePP25BAI4O0VCYiM7Aq42jZeDI0754I1H8TijYa8faHLU003wzHvhS1HqbuPHGXUIcC+ieWZaa+uXu3ZhSJjidh6OshhBeewOz0fozk6ry/R8e2S/K2MRIroQSG5W1HREREKVKPIfLhn5BsWVa+nSgGEG4FNPtNWRnfCe/03SBNE8a2HVA8DNK6JUTuTFhrpmzxTxoJEbK81mPvwMxSxi29DTNpiYj6PQZpaeDKcfdalwKN/lDW9US9IRSHvy3ZAT3+Jtq2vIlQ4x+QWRM2W5BWKPUAnCfvUtRhEBkPRBiJ/0FKHUJoiDT9GnrslfS6RMfjCA37LRRtDCBzTxzmPBifbYKPyM4foWbko1BUXuARERG50fL6RYh+9Oey7sM3az+o9c7fzaLGAwWpCXg9u4yDuSHg2K4vSJlwWJovEFrFejzhJEqYSWsaG1xswyAtEVF/x3IHNHCJ3Jm0o4I8kaHySD1ulv3jNbrzl7Zlqm8Px7a5ygkoaiMgMifgAIzECkgpocfeyFhjQo+9CT2j1IJbQoQAYQ9AG4n3iuqPiIhoMIp98lh5d+DxZA3QOlFqKxcUNY1N9oUi9+Ra1UwIX48XTtci7iZ4Td2kL4TKIC0R0QDAIC0NWAK5M2k/v8uefTgaGkyE8EDz2ye662Ia9jqvlpN6S2PnUgdAKhjs8R/g0P8WpGrTOjziKBOQxWTRAlA9E+EJHO7QZ7So/oiIiAYbaRqQyday7kOohQU5lZrRZRqJG/agpajiCUkVz5TsK0Uo48mo4oPNmn+m443xbDyBwyD6cXCbiIhSWO6ABq4cmbSmFNijYWQfDoYGm+CQHyDRsS9iLfPztvUEjsy6TgscikT7323LveEvAgBU71RABAEZSa+TxlYARpYeTVvJAts+fTOhx5fYlvtqzoTqnYZk5J/WFVLP2R8RERGlSN1+ozQw5WsQWgnnSlATAFZal7UPAWRnxqw3Cvi6zxsUfwUnnJIxy0uhDq/QQNxR1BFZ14Ub56eeckpzylB2N8Grog5DuHE+ktEXIM3uv5lExz9sbb2hefDXXeiqXyIiqm4M0tIAlv3Pe98hY/twHDQYCeGDL/x56PG3ocdey91WHVpw/z0vAjyBQ5GM/Dv92jS2ATJbkDZ3CQUACA37Ndq3XQYj8b51nMIPITxQvXta1kkwSEtEROSGTLbZltXOvAGKr6Fk+zCSn6J96znWfUy9L10jNd7+mOUmsjQr90RM5jmJUKq7xr0QKoSogZTW99FfeyFUz/jM1r3al+oZD9VzrmWZkVxtKzPlqzmzqrOPiYjIPZY7oAErNfuqc6DWp2V5tJyoAoqpIZaqe5tizdroDNJmzdQwAcdJOjL6F0GHhV31bzOOK2bSEhERuSJ1exkjoZV6Mlunc4DuR+GFsE4UVmwZpFKwBWmzlX+qIo7nbQ5zBKSuRTK5q0mbjczIPE6Np4RZ2EREVFGDNpN269atWLx4MRYvXoy33noLb731Fnbs2AEAOPvss3HPPfcU1N8zzzyD22+/HW+99Ra2bduGxsZGzJo1CxdeeCGOP/74MvwG5IrQHANIfrX6TwBpgJD2urCZhCj8McOe2ygZjwYa8fcQ2Xmt43bJ2JsQbmqkOcxI3HXhJDJKicgcdXOJiIiqXbLpPXQsnw8zurXs+5LJFusCxQuhljoL0h6kFaI7N0coGTdii8ikNZKfItHxKKTZCs1/ILzBYwvaXkqJROQpxJp/nzHO6j9HF0otYGzIWBbI0jqD7F2QFg7zALAWLRHRwDFog7QjRmSvJ1QI0zRx4YUX4s4777Qs37BhAzZs2IDHHnsM559/Pm677TYoChOX+1qHLhFyOG8JMpOW+oh0k7WqFBGk7ZHFITIyaaVsgx5/03k8xmZXORzCIUiLrgunjCBtvO0e+GvPdNErERFRdTGTHdjxryMg4zsrsn/hKX0WpKlvzliScQ1iy6SNoBBSGujY/n+Q5nYAQDL6EoTwwxM41HUfycjTtgBtamzVf47ulEkrHDJpnfU2kzZ3ySoiIurfGDUEsMsuu2DOnDlFbXv11VenA7QzZszA/fffj8WLF+P+++/HjBmp2T0XLFiAH/7whyUbL7m3M2l/zKhVVzDUX+rHyoicKVr+G0JKjpq0jmUHAChqQ4+fRxU+sCw0/+xUn1pmXbWeWSL2rw7Z28wQIiKiCkhseaViAVoAUHzDSt6naWzJXGJ5JRTrebB0yM7M2b/+aTpA20WPv11QH8mYfYLS1NgKLwHV14Rqf8/c1tJVPBN6te/MyWYVbWKv+iMiouoyaIO0P/7xj/Hkk09i8+bNWLduHW677baC+1i5ciVuuOEGAMDMmTOxaNEinHHGGZg1axbOOOMMvPrqq5g5cyYA4De/+Q1Wr15d0t+B8ntks/0k6qFNQ/GliTMqMBoajLzB43KuV9QxUL27Z13vCRxiq3OmeveGoo3u7kMbC9W7Z+8GmuoJvtDczv0eCfQIEHsCx6YnpdB8M+2bSpY8ICKi/kdvWVbR/Qcnn136TvM8xZNZkxYyBpljwlF7//ZSYgVneDoGhhV4A0cX1k8FeIPHoGeN39S53HTntuHT0j+r3j2heaf1ft89zgt94VN61R8REVWXQVvu4Gc/+1mv+/j9738PXU+dpMyfPx+BgPWEJxgMYv78+TjooIOg6zp+97vf4ZZbbun1fsm96z8ehdd2erFHTRQCwPDQNHx2yjnYZ+jYSg+NBgnNty/CjX9C+7avO64PNc631XjtSfVMRLjxT9DjiyFlDIraCI/f+jihEAKhodchGV0I09xh70QmOk/oMzJphA+abxYgE9AT70Hz7gnVO7Vzv+MQHv4n6LE3IJShqWBxJ2/oBMRabrb0ZepboHoLL9tARERUSXrLCstrz7AD4N/l5D7Ys4A2ZF/4xny25D1Ls9Xy2hM4wrpnp6d0ZBQQbksvODw9U0iQF/ZyUEIdidCQn6TPQ6qZ5tsb4cY/Qo+/A6GEoPkPSd/IzuSvvRCady9IGYEncFiv9616JiHceCv0+BKonl2h+fbtdZ9ERFQ9Bm2QtreklHj88ccBANOmTcOBBx7o2O7AAw/Ebrvthg8//BCPP/44/vCHP2SZ6ZPKIWGYeHZ7HZ7dnnoE6b9zv4Z9hozOsxVRaaneKdB8M6HHrY/2CWUoFDX/43GqZxxUz7icbYQSgDdU/IWe6p1iX6aNgRo+1b4v4YFQhlkedTSNzVAxuej9ExERVYLevNzy2j/hVIT3vKJCoykNMyNIm/kovm3iMADSjEAovQjSorAgLTIyb/01X+kXAdouqncyVG/+8x4hBDyBg0u7b88uUD27lLRPIiKqDoO23EFvrVmzBhs3bgQAHH744Tnbdq3fsGED1q5dW+6hUSdTmtClNXPQq3D2U6oMp8nBMmvC9SeKNtLy2l7/joiIqPrpLdYgrVbn/Nh6f5KZSWs7B8ksd4DCJw+zb28vgZC7fUZJhn4wYRgREVG5MZO2SMuWddevmjYtd22hnuuXL1+OiRPdF3hfv359zvWbNm1y3ddgkzRN2zIPg7RUIc4zAffjIK06AgbeT7+OtfwRyehLljaqNhG+2vNcZQsT9QdmohVt71yN5M53AE6WR9T/SRMybi0TVO4gbSLyApKRf0PKKFTPJPhrzysgg9UdI/5fy+vMcxAh1FQZJBlLL8sM0kqZRLz1XuiJ95BZLkma9nqyeuxV1+NLRhfC1NdkjIlBWiIiIgZpi9QzeDp2bO76puPGdT+m/Omnnxa0n57bUmESpv2OPjNpqVKcM2kdasL1E4o6wrbMSCyzvTbNnQgN/UVfDYuorFoXX4bo6nsqPQwiKhfFBzU8oWzd64kViDZdm35tJD6ANDsQHHJVyfYhpQEp2yzLnG8UByF7BmlNa5A23vZXxNvvL2jfyejr8AQOytnGSH6EyM5r7Cuy1HQlIiIaTFjuoEhtbd0nP+Fw7rvfoVB3tlx7O2dA7ysJw14bi0FaqhRFHW5bJpQhFRhJibi8mDLi7+dvRNRPJDa9WOkhEFEZafW7Q5TxXNGIv2tbpifsy3rD1DfalinqMNsyIfzWBRk1YvUivr/d/C56/D3H5YpSX/D+iIiIBhpm0hYpFuu+8+z15g5W+Hzdj+9Eo/bHg3LJl3m7adMm7L///gX1OVgkTIcgrco/eaoMzX8whPoXSGNb5xIPvKETKjqm3lC97h4HlUiWeSREfceMb8/fiIj6rdAe3y5r/1J22BeaMfuyXrE/SaZ697I3E5m5OhllwjKCtq6Y+evaStOesKJ6pkPxcPJRIiIiRqyK5Pd3331OJBI5WgLxePdJTiBgL9SfS75SCpQdyx1QNVHUBoQbb4MefweQCai+vaBqoys9rKIpakOWNRosF4iywNmeiaqUNOKQujXAUvOZa6H47VnyRNTPCAWeIZ+BZ+i+Zd2NUy1XidzXEYXvxP69K4TTJV/uIG3mTVZP8HhoGTdoo82/A9Bdn1vK/MkotkC1CCM07AYIW9CYiIho8GGQtkg1Nd31JfOVMOjo6D4ZyVcagUqH5Q6o2ihqHbzBIys9jBJx/voQIpBRC49BWhoYzIzJhQAgOPVCKH77Y8RERE4cg5gyDiklhBAl2kvmxLmeLO2sQVEpMzNprcFjzTcT3uAR1j0ZTYi33d2jDxdB2oxMWm/wGAjFn6U1ERHR4MJblkXqmeHacxIxJz1LFnAisL7jVO7AwyAtUWk4ZuUAUDKfFjDtF35E/ZA9SCsgvNkyyomIHMhs5QBKVxpIZt4cFdnOfTODwjLjpXVMQtiDvSLzO1+6KN2QkUkrlFCWhkRERIMPM2mLtPvuu6d/XrFiRc62PddPn+6ujiP1zpq2HTju2TssyzyKWsIsBaLBTWTNpPVlXuahfctZSF8MKkF4g8fDF/58zv6TsSWIt/0FkAZ8NafDEzi012MuljTbEW3+A4zEMgASijYK/rqLoXomVmxMuZhGC2It82EkVsJ20Q0AQoHq3ROBum/aL7A7SSOBtrevRHzDvyHNEj+K2w+oo2qhDAtBJnToa5uAuA5pWIMPwltf1gmGiGhgMY0WJKMvOa+UcdcTcmaTjL6KeNsDMNO177tkycnJCN7GWm5BvO3P0Hwz4K+7GDIjSAunIG3G5GN6/B20b/0GvOG5MBIrocffBqTeubsG+Gq+DGlmBGkFg7RERERdGKQt0sSJEzF69Ghs3LgRCxcuzNn25ZdfBgCMGTMGEyZM6IPR0Zkv348NkRbLMpY6ICqhbJm0mbNFAzCNTd0vDCDWMh+qZxI0n8NEJkjV7Ivs/Ek6Iyey8xrUjHwQijqk18MuRqzlDiSjz6Vfm8ZGRHZeg/Dwu6ryxk+s5Y9IRl/M2cbU10MoYQTqLnZc37F8PjqW/b4Mo6t+6vBGaOPHp16EvIBIIv7W27Z2im9oH4+MiPqzWMstWddJGYdATdb1+ZjGTkR2/gz2UgeAgLtMWmk2Q5rNSOifQij1QEatXKdMWgj7jT4juQLRJocEFmMjIjt+AkUbae1CYSk4IiKiLix3UCQhBObOnQsglSn7xhtvOLZ744030pm0c+fOrcoL+oHore2f2paNCBR/8ktEVqmLKvsFm6qNh5uvFiO5Mse6VRmPTJqpZRWiJz+0LTP1TyDN1gqMJj8jsdxlu+xPgSS3Ly7VcPodbcJ4y2u1vs6xnRoe77iciMhJrs/czNICBfed/BhOAVoAEGq943JFcV4OpMYqzYzSBQ43YRW10JrcOkw9o0ycQ6CXiIhosGKQthcuv/xyqGrq7vSll16KaNRaLD8ajeLSSy8FAGiahssvv7yvhzgomdJ0rEf7vT2P6PvBEA1QQvjgDc/LWBiCL/xFeEMn5+8gxwWpNJscFlbwkfssY5WmfSKpaiDd1ATM007q2eomDnCKArWu1r5czchEUzwI7fGdvhkTEQ0IEnqOdb2t3Z69b1/4NMfl3vCpyPZQpTRbYMukVew3rFTvHlC9zk/FuJVZMoGIiGgwG7TlDl599VWsXr06/Xr79u3pn1evXo177rnH0v6cc86x9TF16lRcccUVuO6667BkyRLMnj0bV155JSZNmoSPPvoIv/71r7F06VIAwBVXXIEpU6aU5Xchq7hhD9A+O+dCHDtmagVGQzRw+WsvhDc4B6a+CRAaVO80KEot/J5vwhs6Aaa+Jd023nYfjGR3hqeU2S8oTcMe/JQyXtrBFyJLkNY0dkD17NrHg8kv89/KV3s+VG08jMQyxNvv79Ew+7+pNKw3HQNTzod/3EklHWc1MrEOSTxmW15/+L3djyILBZ4hM6CGxvTt4Iiof5P289Pudb0M0mZsL5QGBOq/A9UzEYo2ynETj38Wakbel64dm+j4R3qdaWyxtVcU+w0sIVSEht0AI/EhOrZ/q6ihM0hLRETUbdAGaRcsWIB7773Xcd2iRYuwaNEiyzKnIC0AXHvttdi6dSvuuusuLF26FGeccYatzXnnnYdf/OIXvR4zuRM37MGf6fXDKzASooFNCAHVM9E2gVZq+SSonknpZcnofyxB2lxZP9LY6bCwcpm02bKfpEMwuSpkZMh6fPtB9U5NTRLTI0ibM5M2I0jrGTYT/l1cZEj3c9HmPwId9uXeUbOheib0+XiIaCDJ/r0H5AjgupIRpBVBeAIH591KUYdCCRwEKaNAjyCtNJszWwJZJvgSQoPm2wOKNgGmvrbAcQMQvsK3ISIiGqBY7qCXFEXBnXfeiaeffhpz587F6NGj4fV6MXr0aMydOxf//Oc/sWDBAigK/6n7Sty0nwT7VYfJDoioD2XcE8yVSWvag7SyCssdmFVY7iCVoZzxb9uZpWTLVsqsN9izH90apBXq4KgZqMffdFyeORs5EVHBcmXS9rrcQUbforDJcvNlswqlzsW8GsXNuyEYpCUiIkobtJm099xzj62kQW+ccMIJOOGEE0rWH+X35rZ1uOT1R7GyZbtlebtuf4TXl1lPkIj6Vsas0PH2+7sfvc+cNMThMfxYy58Qa10AyFTwUNF2gb/2fHgCs8syXADQ4+8i2jwf0iFoDJQmk1ZKE7HWBUhGngOEB77waVDU4Yi13gHT2Na5nxiQjEPfsBX6uo3pbbWJY6CNagRUFULL/hm3/bEZkPEERE0I/pl79Nh3G5rXHeG4jWefGqiRmUgs+xCyrQ1C6z9BWtPYiWjTb6AnPkBhgQ9py0Lu0rH9/wDhheabgWDDdyEUTkTZX0kzimjzjdBjS7JmySvq8M62LdbyIbLr5oUKCK/DciDceCsAINr8e5j6Rmj+/RCo/y6EEsw5rmR0EWKtd0EoIQTqv217QoH6Pynbsq5r3/ZNZObOCKUWvvBp8IU/DykTiDb/DnrsDcjOG4eqZyIC9f8H1TMe0hYALiw5JF+g1KkerUOjgvbZvR2DtERERF0GbZCW+r8zX74fq1q3528IwKfwT52okgRy3CiR0ezr0pKWjFZT/wSRpmtR6/9HWbJwpDQRafolZGeg1IlpuPv8yUWPvYFE+4Pp17GW+bY2QgHg88Kz61gYO7bAbG6BMqQBngnuaqKaiVZA14GEPWCZK7ir1tbCt8d0xN5Y3K8yaWOtd0GPLy5xrwlAJqDHXkGsbTQCdReWuH/qK/H2h5CMvpizjamvy9OLkfVzq33bxZbHvpPRl6BoY+GvPTdrb9KMIdL0y/RNgmjz7xFuvCnPGKg/MY2W3A0cbk5KI4pYy3xo/llIRp5HMvKsZb2RWIZo8287/1YyP98LDJi6yKR10Ulh++zaikFaIiKiND6DT/1S3NBdB2gBwKMwk5aokoRahrrQMg5T35i/XTFdm805A7SpNk293o+RXJ2/UQ9KOJz6f03YVXuZ1AE9lWEl4wlIs7BHapWaMCAE1NAuBW1XSUZyZXn7T3xY1v6pvIzkR2XfR2ZdzmTsjZztk9GFlixuI/F+OYZFFWTqa4rfNrk6640FI9nVb8Zne4FZrYqW+zs62+RjljbK0IL2meKFUN0EgImIiAYHBmmpX0o41J3NJX8dLSIqJ2/oOCjq6NJ3nKO2ba+6Ndvzt8mXGeVmPzkm73KkpD7LhOauznby448BKVMvdB36uk8K2x8A/8RToTXsVfB2lSKN5vL2X4LgPFWQQ8Zi2XdptuZejwrW3KY+Ic2Iw1J3l2FG8lOYepbP7q567TJj4rBcT684jURthDfkPDmkUOrhC38hbx++mi/ZyxcB8AQ/m32b2q8yk5aIiKgHPgNO/VLSIRvs6r2PxrXvPm9bfun0Q/piSESUg6I2IjziHpjJNWjfdpG9gQgjNOxX1kUiCMgEJHTE2x6EHnvVtpns9YzYzqS0B2kDDVci2vTr9GvTNvt1MTsqLEjradwfdXs+hITxBAzTeZIrAPCon4cqpiOwZxjYM2OXsgVSOgeYJZJIGHdZltUeNL/f3OiSUkKa1t8tUH8FFI/7TGABLxTProCMw9DXwUh8iFjLzd37MJxrFFP/kDkJoTd8GjyBQyHNDkR2fD/LVgoyMxWFOhzBIT9Cx7ZvwzZZn22n5fmcov4j84acok1EuPF3MPRPbW2jzTfB7PGURdLhu69bElJK2CYOKyIPJ1B/GXzhMzImxVSheiZC9KzBnIXm2wu1Ix+Goa9F1/GiqI1Q1Ea0RP6V0dqDmpH3QVGHFDxOIiKigYxBWuqXkqb9gufwkZMcg7Q1Ht6hJ6oGQqhQvZMhRI1tAhVFqYPm3T3rtrpnvGOQtmed2lKSpnV8QhkK1TM1o1EHpExCCHdZrY77KTBIq/jq4R1+IPSdL8DIUcrXN/QkqJ4JRYzHQGLjXRlLC8z2rSTZgcyAmebbF4o2svC+RACad5oty0vKtl6/71RBGZm0qrYLNO/uObPnhVILmXFTRoggNO/uEErYts6+T2bKDnrSmkkrhB9CqXH83lOUBsstATO5Kk/nOqSt3EFxZb4UbQQUjChqWwAQih+ad1redppvXwZoiYiIHDBIS/1GwtBhdD6225a0P644PtzguF3Yk//uPxH1IaEBMmORkrvGavZJS/TOzDiZZX1GPw6PVaZmxbYG9jKzMYVS4zgGabZAqMMy+tORmdWU7XFOabqZNK0HBZAynvfx6WIJoaYmkOkRPJbS6THd6uSU3exuwpvshGIPJEizGUJt7FW/pSZlHIC34lnPfRXAdjpuUxMXeYAc5QNsN0bSx2b2oJZQ6u2BWKF19pf/RpGUbaljPVud0Cx9pDIkzdRxSf2aaftOCWZv7FAyIBdptjvcCKjyina8yUVEROSIQVqqeu3JOL768n146tPlMGT2SW9GBWugCQV6RpsajZm0RFXF4eJMKDW5N8kSaOvY/n/FDUFpgL/uEhiJD5Do+CdyBXVS7cMQSi1SQaDugLAeexPe0IkAUsHZaNMNnRO8WINHijoGgSFXQ/PuZlmux14uaNwysBatG09w0bL4C3QhgpZAlnMtxeqUjGQ8TSF8EEphAY9Mqb9N6+PubZvPQHjEn6FqY3rVdykYiZWINP0Gpv4xhDIMgYb/g8c/q8/HYRrbEdn5cxiJ96GoYxAc8kOo3qn5N3SQ6PgXYq23Q4ggAg3fg+bb27I+1vY3xNsesGUnFiP9GHeOiZacPn8EOj/HXNa4bd30uYLGlYwtRrTpRkgZhS88D/7acwvanqqDoa9HZOfPLeULAOQMxArFX9A+2jY71Yut7iCtm/IJREREg1F1f4MTAbhz5WI8/skHOQO0AOBTNIwK1tqWh1nugKiqpIMbPZflzaStL+kYpNmEaNO1SHQ8hnwB2tT+wxBC7QzUdos2z0//nIy+gmT0OTjVpzSNDYi13JKxbHsxQ3ep+GxKkRk8kB29HEvfkFIi3vZny7LeZtECgBAKhGJ/UiPemlkWojIizTfC1D8GAEhzO6LNv+3MwOxb8bb7YSTeB5D6e49m/L27Jc02RFtuhjRbYBqbEG2+2bLe0Dek/u1LleGdzqTNfkqsqPUO23XlOZRn8sJo068hze2A7EC87a/Q4++WZT9UXrGWO+0BWjh8zlrWZQ/SOn0WOfdR5Zd4DNISERE5qvJvcCLgvaZNeduMDtbCo6jYo95eR2ty7TCHLYioUhRtlMOysTm3UbVx5RqOK13jswf9jM7HzAEj/t+cfRjJjyzBMyP5cSmH2IMKRR1a9NaZgWjT2JGlZXVxKgGhOJQqKIZTfd/yvX/umfoWWwBIGlsLnpCuFFI3PLp1BWwLlYy+bMlONfU1kD1u0prJNUX1m42ije78SYNQnI8bzbcfMm98KGqqznGg/nslHU+XzPIKiY6ny7IfKq9s9WRzfecpOTL0PcFjIETuJ08AQKhF1OEuI81nze73hb9YoZEQERFVNwZpqertjOfOlglqHvx21skQQuCaGcdhRKD75PXMSfvhoMbx5R4iERXAV3uuJTNW8UyCNzQ35zaKNgK+8JfKPLLsfKFTAQD+um9krDFhdAaNjOTK3J3ImCX7Txo7czY3IxHE3nwLRmuu+rMCnuAJ8IZPR+orXYO/9vzc9Q7z6A5adY5Dz3+jrBpI056Z7K+7uCR9+xweNS9XXeBC6Ann7Mq+riNcysxdp7rCPYO2mZP6FU+BN3RqumSFECL195JRP1rzHwxP8Fj4as5C12mzUIfDV/NlAIAncCg038wSjSk7PfFB2fdBpSWldHxiQvFMSZfJceINHgfVYUIx1TMd/pozOz/XsmeiCnUUfDWnFzXmcvHVnpWu7+0NnQrVs2uFR0RERFSdWJOWqt7OhPVi8yf7HouzJndfEI0J1sGnpv6UZzXugg2n/QifdjSj1uvHEF/xgQoiKg/NOw01I/8OaWwDhAqhDHM12ZG/7nz4ar6E1k0nO6731ZwNb/AY23IjuQ6RnT/M27/q+wxUbTwSHf+w9hv+MhRtOADA458JRR0N09iYXm8mP4L07GrLrAw0XIlo068ty0xjJ1QlBCBVcsGyrq0N8f+9h8DELyOw28UQNQ0QIwWklBCaAcVrLwmRmtAsdWPKX/MVAEqva7BmZjqbRv8I0mZm/AqlDppvz5L0rXmnI9T4R3RsuyS9TJptqfemghN16Vmyt6UZAXqRTV2oUgasnYKwUsYgEHBcr3r3hObbD/G2e23bhYffmbX2pVBqbWVWvMEj4QnMhuwKrIlgutSBv/Ys+MJfgDTbINTh6fddKEEEh14HIAnIeHp8iY6nEW9/wNJ/cMjPHINTUibQvvU8x3Gm2xibYJqtUBR7WSeqTlK2AbBOChcadjNU7+45PzeEUoNw4/zUZ1rXDQrhSz8h4Q0dB0/wyO6/UwvV8vdZLTTv7qgZ+QAAg/VoiYiIcmCQlqrezrh19vMptY3YtSb7xaeqKJhQU5pHXImoPIRQIbTCH8cUSig14YqM2tepDbYsUMBhNvesYwpD0XZxWGH9qlS9U2FGu4O0RvIjKMlJyKxN6fHPRlSELDVdpbkDQKp0g2lkBmnbIaMxKL6J8NYVnpknOoO/vaWoGUHa/pJJmxGwEGpjSftXbHWRjdR7K3LXUy4nI/4/x+V9nUlr6uvtC0VxN0kdM2UtmbTWgLCiDoOiOpc1UrSxEKKwU10hvBAOnyNAKiDrlKWeCoh5AeFN3zRRvdPs41GHZ/mMyl8XGwCM+LtQAoe4akuV5xREVb1TXQdQc5WtyfV3Wq2EUAGolR4GERFRVWOQlqpWTE9iS6wN22LtluVDfL3LEiOi/s65Uo/IWsHHXWUfaSQgk4ZtuZlog96+rscC64WzHnsXUrd+nQplJIzIdghRA9kjSJtsfwdmPLUPI/6Rdf/xVKBG8eSvN1hO9nIHayGlXnCwqycpE5AZQelshDoEQtgnl8sn87FiJUt90WJl1uoFACO5Boo6vIi+gulgnlvSjFgCmKbZlDXL2dQ3wOwRVBZKKO/kfOn9SAOAtLzfUhpZsvZSjOSKLOPY0j0GtdHVZEZOWbmmsRWKNhJSmraMdaHUAln/XioXEHKc7FD0bjzJ2JtQPVMglDoIJfvkUr0lpeyctMx5wtZUFnL5z8WyjUOoQzP+PmXnDTBAKENzBkFz/W5CHQJp7IRQG0qS7Wkk11r7V+qL+mwjIiKiwYNBWqpKf1rxGi5f/ATihn3WZJYwIBrcBBQ4V8DMFgByFxiJr30UHev/AP8B1izWjvd/g5a1l3bvZdhQ+Gfsk35tGmtgGtbJjJIb/ott70+Ab78ZUId0z8adiP0NiP3Ncf8ykQrSiooHae0Tu7VuPA7BodfC4z+w4P4SkecQbf69+8mshB/Bhh/AU2DGYObEStmyK4sm/AA86Pn4csf2y4vuzhM4GoGG77sKXMZa7kC8/e8AnINmmaJN12YsUeEJHodA/XdyBrD0+AeI7PwZpLkD3vBpCNRdhGT0dUSbry+8pIGMoG3Ll9MvhTIEwaG/gObdLfsmUkKPvWZb3rH926nMaDPW+Qh5t1Sw2ynwpVT0kW+nIK2U9nOaQiQj/0Qy8k8AHvhrvwZfzWm96s+JoW9AZPv3LSVd7BT4wqfBX3dByfffxdQ3o2PHD2Dqn9hXigCCDd+HJ3AITH1LZ7vUjTRFG4/QsF9DccikN/WNnW0dMr8t/fsQqL8c3uCcosYupYlo0/VIRp+zdlvqzyQiIiIacDhxGFWdqJ7E/731lGOAFgCGeBmkJRrUsmajZflKM9w9SixNEzIRt6/ICKLJtvwTF5mdk33JuEN/2fafDtJWtuZkaoZ7e9Ar1nJbwX1JaSDW8kf3AVoAkDFEW24paDIqKQ3bxGGlDogIIQrOfs0lGX0eRpaasj2Z+ubO2qbuArTODCQj/4QeX5yzVaz1znRGYqL97zCSHxcXoHUgzZ2It96ds40eez379sY2W4AWAISoyZKdWNnHqp0yr3uWbchoXWDvScRaF0CaHfmbFijedn+eAC0AmIi3P2DJlC75ONofdA7QAoCMItpya2e7h9MBWgAw9XWItfzJuc+2B/MHaAFAxhFr/mNnVnnhjMT7tgAtUPrsfiIiIhp4GKSlqvNJRxM6dOegSo3Hh3Gh+r4dEBFVFUUbW9ByM56ANPJfbMuOCGQ8kQ6WprfPCMrKeAJmJHfNT2Nnc+e27TnbWfeTaqvVTXe9TTkIoUCoDbblpv4JZJbHn7ORZntRAT5pbIU0trpubySW25aVY/Zw1TOxpP3piQ/ytjGNzaXbX+ytnOuNhLXGbcf2K0s6KVi+30WPvVFwn4pnomMt6WyfB31FKLVQ1B6lQ0QAatYsYg2i4LIZBkxjW7HDy8rUP3XfNm8wt3hGcl3O9dLYDCkNx6BrMvoapGmvW27oa2zLsvYv2xxrn7uRWeagi+qdUlR/RERENHgwSEtVZ1vMOTNkmC+EWw86FX6N9byIBjN/3SXWya2ED97QqVC9zsFNAQWJ5R/agq9dpJTQt22DvnETICUSy1ZAJhKQpgl9/UaYO3batkks/xBmzJ4VJw0DyTVrIdtTAVd9wwYY23fkzAqVhoHkx2uAuER476uh1e+e69fvEyJbFqIsMHOvkAzaDEbyQ9dt9bg9+Kj5Dyp639n46y6Coo0rWX+Z9VWd5cso9kD17gVFyx9A1hPvuRpXes+m/W+/V/JkJuqJdwvqzhs6CZpvBhRtLHw1Z3WWpACEOhyB+m8VPcxSEELAX38ZhDocQqlDoP5yCOHL2jZQ/+3OLHYnWU7Xe1k+wbHLArJz3U54Vtw4XNwckLEsk+QlkHTIyjaNwv6ei82k7cpG70n17gtv6JSi+iMiIqLBgzVpqepsjVozzyaEG/De5/8PQc0DxUXtPiIa2DTvbqgZ+dfuTCnhyTmplZQGjE2bEd20GVBVwDQx4kvNkEgAUgJCgxjhAfbouY0EoEOM9ACfydavtAchhRdilAockNk2kT1A1bmNmO2HUKrjazlb8MU0W6EW8Mi/dAjS1o56HE6Ponfs/BGM+NL0ayOxEp7AYa72k5kh6g2f3jmTeGmpnkmoGXGPY5aeG4nIc4i13JR+bepugrRWQqlFzYj7eizQ0o/7SzOGnkFdPfEBIjuu7N5f8mNIs931JGKZ/PWXwxs4JsfgNAAK0Pn3o8cXI7LzmvRqiexBL9PYYcviFMpQx4AXAAQaroI3eHT32GrPhq/mq6l9C39F69F28fhnwjPyfpdt94c28sGMzxQBofjTnzWtm0+1lEyQKEOQVlrPwYJDfgrNl6rT3b71Qmv2rEyiXKTZbHkdqP8/RJtvsLaRcUjT+amGZPRleINH9WgrIQ3r31Jo2A1QPVPRuukLAJw+84oL0poZkyR6gp9FsOGKovoiIiKiwaU6rgaJetgWs14gjAjUIOxxzj4hosHL9eziZo9AhmEAEFC8par7WtlJvspFZqmdKc389Xit/WQGaT1ZA4SaZ5o1SJtc5WofptEMI7nSuhf/rILGWahiZ7ZXvVMtr019A6QZLbA/JWt7ofgtrzXf3rBOdmZCTyyDx79/Afvr4oE3cKS7sYrONiKjhnyOzEQ9bi21ABGC5tsHyegLzrtwqEMrhNq9735ICOE4/u7lGoAex2ZZMmmt52BCGdL9nmdkApcrk1ZKE9JssSxzzGCXMcgsJQn02JvWY0u2IzMQq6ijIJQQFG2Upa5tt2Izaa0Zu4o6oqh+iIiIaPBhkJaqhm4aWN68Ff9rstY4G+4vLuOHqC8YHethRDdVehiUg96S8dh8GTIsB5wsQdqu2q8CChTP+KyPb3f3Yw3SCuHP0tBer9FIfAgpZd6MSD3+NiwlAYQfqnfP3OOqEFWbgNSj6121fSWSsVdzllAwklkmT3JBCC9U724wEu+nlyWjrzpPapWHJ3BwwRm4trIZMg49saKzXuuo9Htrmq1ItD9kaap597QFBTN7H2yEUGGtnFLaIK2Uhq0Oa8/3XAivZZ2ReA+6NtraHgoUbVxBNx5Mowmm0WMSMhlF5kR5itpo205PrMhx4yhV8qArm9Y07BnZQh2S6lsb4xykzQiCp2rgfgpFG237t7C0MzKDtJwwjIiIiNxhkJaqwqZIK4545lasbLVPgtHIIC1VqZbXvo7IysJnvKcKq5KSAtXN+THmWMsful+IEELDroPmzV5D15ZJq+QI0nqskypJ2QZpbIHQRuYcaWapA803wzHLshoIxd8ZEOp+rD/adF1Z96l597IGaSNPIxl5uuB+PLnKHGSTcUNEyjZ0bPtGalz+gxEc8lMkI//pfIzdGpTTfPvANHLdABt8QdpUVnQ3WeJM2kTH47ZllsB8xnGV6HgCiY4n7B0JP0JDfwHNNyPvPmNt9yHeemfedkJtSNUc7vGZEm26Nuc20aZrofn2hRBBtG89z9qfqEkHWi01znvo2PkzhBtvhRACpr4F7du+BWluh1CGIjTsRqge55srpmktdyAU+0SMRERERE5Y4JOqwp0rFzsGaAGg0R/q49EQ5ae3r2OAtp8qR63SgSZb0MJCdiDelqfeZgGZtEIdASGs5SOM5Oq8w9AT1sfkNV95Sx30lurZtZc9FBacVH29zyoWSi20okpIZD/W9NhrMBLLEGu9E5kBWgBQffsgdy7BIAzSZn52lbgmbMwhWJorkzYrGUOs9S/5m8kE4i7aQQQghDfn50c2sda7kYy9Zu+yM4sWAFTPeMdtzeSq9ASGsdY7Ic3tqXGbO5DoeMRxm1TtW2smbc99EREREeXCIC1VhQ9bt2Zdt9/QsX04EiJ3zMjG/I2oKmn11fkofDXxBD/rqp2pb8i53jbBVq4grRBQPBOs/fd8BDrrPqyzwGeWTag2qnffXm2f+W+Uj+bdq6jyBj15gscVlZ2seHZBrlNNI7HCcWIwoY6E6pkC1TMxR98TCh5Pf5f5PmbWPu2N1ORkTmVOugOzhWSEmnr+Mh2purP569qqnlQtZ6WIGxx69BWYyY/sfXq7M/c1/wHI9ndqJFdBShPJ6POW5cnoy847lBFklqFQlPpChkxERESDGJ/5pKqwJWqdqEITCuq9AXxl0mcwbzwDKtRPqP13wprBwtOwJ+pmL6j0MKqeL3wqTH0NktGXuhcKHyBN9CyFkBkgzZRZ7iBfJpyiDrNM1WMa2/MPNmPyIgGX2X4V4g19FkbyQ+jRRZAuAlTdBFTPrgjUXVbQ/oQSQqDh+4i13mUps+AoM0gnQvD494e/9tyC9tlFUWoRaPge4q33wjR3dmZ+dmfNOk0Op3qmwl/3DQihwhOcAz3xIfToy+l/K6HUwRc+Hao2pqgx9WeKOhxmj+xy08h+g7tgMgZLbWcAgYYfWmpCK5rTTXMBCK/DZ0MTpEzmDu47lmvwAul9CqjaRATqv5UaT923EG2+HkbyY9tYFXU4/HVfh6lvQazl5u5dyDYkIv+x7cVfe16PbYchUP9tRJtvtLUzk5861qvNnNise7m9Rm5vb5IQERHR4MEgLVWFLVHrSe2dh5yGsybPrNBoiNywXiAKTy1GfsX5oo2ovxFKAMEhPwLwI8tyI7ES7dsuTr+WZmvuyb0yJyFymLnesj5jgh3pMNmPZb00YHtUvkrr0XYRwotgwxVAwxV9tk+P/wB4/Af02f568gaPhTd4LAAgsvMXSEZfTK/LDNIKtRHh4bd2vxYeBBu+AzR8p28GW+UUdYTltannzzR3S8oO2zLN9xnr/h2CtJpvP4SG/RrSbEPrps9b+zR25KwpLS23ZFJqRz+RNbCresYh3Dg/a39dkpFnYSRXdO/HtN7s8deeD0UdZlnmDZ0Ab+gExFrvQbytuwSDqX8KPf5fx/2YZisUW3Zz5o0rFcjzuUdERETUheUOqCpszgjSjgjUZGlJRESVIpS6jCUG4BDc6WKbOCxfJq1iDZzkzaR1qMlZrZOGkf3vJ/OR+MwgJFkp6nDL61Jm0kozYlsmlKDltao5TZTVWSdXhG3Ht2k4zzXQvVOnTNre1wz3BA7LuV5kBGh7UrRdLK8N/VPo8f85tnUq95KZSSuUmuw3sYiIiIgyMJOWKs4wTWyNWcsdjPCHs7QmsjM61iPZ9C4gZf7GJaK3LMtYwoswGvicHttNRl9JzbzuwEhaHxMWSu4gbWYmrWlsQjL2Rtb20ozZFzJIW7XsQX4rBmlzUzTrv4+R+B/02NtQvbtZJvgCAGl2pGr+wmlyMQWqZzIUdQikTMJIrICRXJnRxmu74eGUSSvNZgCdNaXVYTD19el1ydjrUL1TYSbXQajDIZRAakydGfamvtk2LiF6nz/iCRyGWOvtWdcramPWdZmBaGlshu5QwgBIffZllj0w4u9bXrPUARERERWCQVqquP/ttE/AxExaciu69mE0Lzy9sx4eEZWV8APwoGftyWjzDe43d1GTtidpbEVkx9WFjBCo8pq0g1m+gFVmpihZCYcgdseO70EotQgNuwmqJ5UFaujr0bHtsnQA1bkzH4INP0Ks7R5Lndv06ows2tQy+2P7Zo+SJEJtBHoEaRPtDyLR/mCuXylD77NoAUDRRkH1THUIPKeIHEFaeyBaArLdsa2b308oPJ8lIiIi91jugCruLx+9bXktINDoD1VoNNTfdLx/fXUEaEuQ/UNU7YQQebMhc3eQL5M2+2PIrnchGKStVvn+doTGTNpcsgWxpdmKROSZ9Otkx79yB2gBQMYR2flDxwAtkL9+dJeuwDBgL1dSMFG63BEtR8mDzJtBliEoAYgS3iwQgk+GERERkXuMKlDFZZY6kJDQlNJkU9DAZ7SvrfQQAACeoZ/J34hoAFC904veVvNOy7leUUdAKENztsm5vTbOMduPqoOW529H8+7VRyPpn4TSAMWxLiwgjab0z6bZ5NimENmOc3/thZbX3vBp6Z81X+/eP9UztVfb9+QNHOV4U0jxTIEQvpzbar59SzYO1bt7yfoiIiKigY/lDqji1rTttLy+dPohFRoJ9TdSSphx69+PEhgFofRtJp02ZG/UHpB/xmmigSBQ/y1EmwEjuQqAuzrQQvjgCRwJzZ9nQh+hIjj0Z4i13A7TKGzmekUbg0Dd1wvahvqWoo1EoOEHiLc/DGm2ppcLpQa+0FyongmVG1w/IIRAcMiPEG35E4z4OxlrezxRkjkhlwh11qw1IXNO5uWBUIdB806Fv+4bji28obkwjW0wEivgCcyG5tuve+vgZ2Ho65Fo/7uL38ZrqWWtahMQqP+Wi+3cUbQRCDZcjXj7g+kJzFRtHPx138y7rb/264BMQE98iK5/VwENmn8/CKUGyeir9kkRM3S199WclrMdERERUU8M0lLFfdxuDbLNGVO6TAoa2GSyFZCGZdnQE1+HFh5foRERDXyKOgShoT8tW/+adzrCjb8rW/9UWd7gMfAGj6n0MPot1TMJ4WG/Qaz1bsTb/tpjjZHlZ8AX/jz8tV+DlDpaN55gW5/u27s7wo2/zbl/ofgRqHcOdAqhIlB3EZKR5yDzZPNq/pkIDf15zja95QkcDE/g4IK3U9Q6BIf8KOt6f+3XejMsIiIioqxY7oAqqiMZx5aoddbcXWuGVGg01N9kZtECgOLj3w8REQ101rJQsscNS5mZSduZkyGEBkUbk6NPUZqhCU9p+iEiIiIaZJhJSxW1tt2eaTEhzCBbtTCiW5HY/BKk3lHpoTgyOj6xLhAahMZJOoiIaIAT1iCtaWxCouNf6Z+ztVW08TD1jO/OdLvS5G4IeFwWQiEiIiKinhikpYr6uG2H5fXIQA2CGmfmrgZ6+zrseGp/mLGtlR6Ka4pvKIQoUSYQERFRlRIZD8OZydWINv8mS9vuIK3qGQ899kqWdqUaHM/jiIiIiIrBcgdUUesyMmknMou2asTWPtyvArQASx0QEdEgUUhJgR5tFS1XzXY1x7oCducqSFuafRERERENJAzSUkXFDGvdtDqvv0IjoUwykXvSj2rkHXlEpYdARERUdqp3j6Laar59ke1BukL6zL2/PfO20by7l2RfRERERAMJyx1QRSWldYZhj8LMimolfEOg1Uyu9DCcCQWeYfuj5jO/rPRIiIiIyk7zTkeg4ftIRp6FNCPOjZQgvMHjoHmndS9ShyA49Fok2h+BNFtTC4UKzbs3fDVfKsnY/HXnAULASCyDkVgFIAkAUD3TAKFB882AN3xqSfZFRERENJAwSEsVpZum5bVWokkrqPR8o49Dw+H3VXoYREREBMAbPBbe4LEFb+fxz4THP7MMI0oRwodA3cVl65+IiIhooGJEjCoqaTKTloiIiIiIiIiIBjdm0lJFZdak1RTeNwAAKSXinz4JvWV5xcaQ2PpaxfZNRERERERERDSYMEhLFfWb91+yvGYmbUrbO1eh473rKj0MIiIiIiIiIiLqA0xbpIoxpWlbZjgsG2yklIisuLXSw7ARCu/pEBERERERERGVA4O0VDFJ0x6Q3b1+RAVGUl3MyHrIZEulh2HjHXV0pYdARERERERERDQgMTWOKsYpa/b0ifv2/UCqjN6cUYdW8cE3uvDZm0tFqF74xnwWgUlnVWwMREREREREREQDGYO0VDFOQVpViAqMpLrozcssrz1D9sWQY56s0GiIiIiIiIiIiKjcWO6AKsYwpW2ZKvgnmWyxBmm1+t0rNBIiIiIiIiIiIuoLzKQtoXXr1uHmm2/G008/jU8//RQ+nw+TJk3Caaedhm984xsIBoOVHmLVaI5H8dsPFtqWR5f9Dq1or8CIqkdiw7OW11r99AqNhIiIiIiIiIiI+gKDtCXy5JNP4qtf/SpaW1vTyyKRCJYsWYIlS5ZgwYIFePrppzF58uQKjrJ6nPifO/Ha1rW25bH3f4MOEe37AVUxrY6ZtEREREREREREAxmfLS+BpUuX4vTTT0drayvC4TCuvfZavPbaa3j++edxwQUXAABWrlyJE088EW1tbRUebeV90t7kGKAFAB+Mvh1MP8ByB0REREREREREAxszaUvgsssuQzQahaZpePbZZ3HQQQel1x111FGYMmUKvve972HlypW48cYb8dOf/rRyg60CW6LOgeqD8QlqRKKPR1PdPMP2hxqeUOlhEBERERERERFRGTFI20uLFy/GK6+8AgA477zzLAHaLt/97ndx9913Y/ny5bjppptw9dVXw+Px9PVQq8bOhL2cwY/HBHHGhifSr5XgWPjGzOnLYVUdNTgOoemXQghR6aEQEREREREREVEZMUjbS4899lj653PPPdexjaIoOOuss/CDH/wAzc3NePHFFzFnzuANQO6MRyyv96gfgf8bEUf7xnh6mWfYTNTPvrOvh0ZERERERERERNTnWJO2l1599VUAQCgUwn777Ze13eGHH57+edGiRWUfVzXbEeuwvB7iCwKmtcyBULx9OSQiIiIiIiIiIqKKYSZtLy1fvhwAMHnyZGha9n/OadOm2bZxY/369TnXb9q0yXVf1eLSNx+zvK5pW45Y4iVrI2XwloMgIiIiIiIiIqLBhUHaXojFYti+fTsAYOzYsTnbNjQ0IBQKoaOjA59++qnrfYwbN65XY+wPaiKroUc/sCxjJi0REREREREREQ0WLHfQC21tbemfw+Fw3vahUAgA0N7eXrYx9QcqTMvr4eiwtRGe2r4aDhERERERERERUUUxk7YXYrFY+mevN3/mp8/nAwBEo1HX+8iXdbtp0ybsv//+rvurBiEk0YrUv4UXOk7ESmsDoSIw4dQKjIyIiIiIiIiIiKjvMUjbC36/P/1zIpHI0TIlHo8DAAKBgOt95Cuj0B99Y2QNYoaOgAIcV+PHvsGvpdcJxQff2OPhbTyggiMkIiIiIiIiIiLqOwzS9kJNTU36ZzclDDo6Uo/1uymNMJD98vhfVnoIREREREREREREVYM1aXvB7/dj6NChAID169fnbNvU1JQO0g6GycCIiIiIiIiIiIjIHQZpe2n33XcHAKxevRq6rmdtt2LFivTP06dPL/u4iIiIiIiIiIiIqH9gkLaXDjnkEACpUgZvv/121nYLFy5M/zx79uyyj4uIiIiIiIiIiIj6BwZpe+nzn/98+ue7777bsY1pmvjzn/8MAKivr8eRRx7ZF0MjIiIiIiIiIiKifoBB2l7af//9ceihhwIA7rzzTrz++uu2NjfeeCOWL18OALjsssvg8Xj6dIxERERERERERERUvbRKD2AguOmmmzB79mxEo1HMmTMHV111FY488khEo1E88MADuP322wEAU6dOxXe/+90Kj5aIiIiIiIiIiIiqCYO0JTBjxgw8+OCD+OpXv4rW1lZcddVVtjZTp07F008/jZqamgqMkIiIiIiIiIiIiKoVyx2UyEknnYR3330X3/72tzF16lQEg0HU19dj5syZ+PWvf42lS5di8uTJlR4mERERERERERERVRkhpZSVHgQVb/369Rg3bhwA4NNPP8XYsWMrPCIiIiIiIiKigYfX30RUTsykJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogrdIDoN7RdT3986ZNmyo4EiIiIiIiIqKBq+c1d89rcSKiUmCQtp/btm1b+uf999+/giMhIiIiIiIiGhy2bduGCRMmVHoYRDSAsNwBERERERERERERUQUJKaWs9CCoeLFYDO+99x4AoLGxEZpW/cnRmzZtSmf9Ll68GKNGjarwiKhQfA/7P76H/Rvfv/6P72H/x/ew/+N72L/x/ev/+uN7qOt6+mnWvfbaC36/v8IjIqKBpPojepST3+/HrFmzKj2Moo0aNQpjx46t9DCoF/ge9n98D/s3vn/9H9/D/o/vYf/H97B/4/vX//Wn95AlDoioXFjugIiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKkhIKWWlB0FEREREREREREQ0WDGTloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpqU+tW7cO3/3udzFt2jSEQiEMGTIEs2bNwm9+8xtEIpFKD29QWrJkCa655hrMmTMHY8eOhc/nQzgcxtSpU3Huuefi1VdfzdvHPffcAyGEq//uueee8v9Sg4zbf/sjjjgib1/PPPMM5s2bl/5bGDt2LObNm4dnnnmm/L/IIHXEEUe4fg+7/nvppZcsffAYLJ+tW7fiqaeewo9//GMcf/zxGDZsWPrf8pxzzim4v1IcY7qu409/+hMOPfRQNDY2IhAIYNKkSbjooovwwQcfFDymga4U72EkEsGjjz6Kiy++GLNmzUJDQwM8Hg+GDh2Kgw46CD/96U+xefPmvP0UcrxTt1K8h6X+nIxEIrj++usxa9YsDBkyBKFQCNOmTcN3v/tdrFu3rne/8ADU2/dw7dq1BX9XTpgwwbEvHoeFK8X1Qk/8LiQiykIS9ZEnnnhC1tbWSgCO/02dOlWuWrWq0sMcVA499NCs70fP/8466ywZj8ez9nP33Xe76geAvPvuu/vuFxwk3P7bH3744Vn7MAxDnnfeeTm3P//886VhGH33iw0Shx9+uOv3EIBUFEWuX7/e0gePwfLJ9W959tlnu+6nVMfYtm3b5KxZs7L24fP55B133NHL33pg6e17+L///U+Gw+G8x1Ztba184IEHcvZVyPFO3UpxHJbyc3LVqlVyypQpOf8Wnnzyyd7/4gNIb9/DNWvWFPRdCUDOmTPHsS8eh4Up1fWClPwuJCLKRwNRH1i6dClOP/10RKNRhMNh/OAHP8CRRx6JaDSKBx54AHfccQdWrlyJE088EUuWLEFNTU2lhzwobNy4EQAwevRofPGLX8Shhx6KXXbZBYZh4PXXX8eNN96IDRs24M9//jOSySTuu+++vH3++9//xujRo7OuHzt2bMnGT1YXX3wxLrnkkqzrQ6FQ1nVXX3017rzzTgDAjBkz8L3vfQ+TJk3CRx99hOuvvx5Lly7FggUL0NjYiF/+8pclH/tgdvfdd6OjoyNnm2XLluH0008HABx99NEYM2ZM1rY8Bstnl112wbRp0/Dss88WvG0pjjHDMDBv3jy89dZbAIBTTjkFF1xwAYYMGYI333wTv/jFL7B161ZcdNFFGDNmDI4//vjif9kBqpj3sLW1Fe3t7QCA2bNn43Of+xxmzpyJoUOHYtu2bXj00Udxxx13oLW1FV/5yldQW1ub999+5syZuPvuu3v1uwxWvTkOu/Tmc7KtrQ0nnngiVq1aBQC44IILcMYZZyAQCODFF1/Er371K7S2tuL000/HokWLsO+++xY9zoGqmPdwzJgxeO+99/K2+9WvfpU+Xz377LNztuVx6E4prxf4XUhElEelo8Q0OHTdgdU0Tb722mu29ddff336zudPfvKTvh/gIHXiiSfKBx98UOq67rh+27ZtcurUqen3ZuHChY7temanrFmzpowjJie9PXY+/PBDqWmaBCBnzpwpI5GIZX1HR4ecOXNm+hhmxnvf+973vpd+n//yl7/Y1vMYLJ8f//jH8sknn5SbN2+WUlqzudxm8JXqGLvzzjvT+77kkkts61etWpV+YmXy5MkymUwW9ssOUL19DxctWiRPO+00+cEHH2Rt89hjj0khhAQgJ02aJE3TdGzXlcGX68kGsivFcViqz8kf/ehH6X6uv/562/pFixalj3e+z91K8R7mo+u6HD16tAQga2pqbJ+1XXgcFqZU1wv8LiQiyo9BWiq7N998M/1FetFFFzm2MQxDTp8+XQKQ9fX1MpFI9PEoKZsnn3wy/f5deumljm0YIKqs3gZpL7744nQfr7/+umOb119/PecJMZWPYRhyzJgxEoAMh8Oyo6PD1obHYN8pJrBQqmOs63tyyJAhjn8HUkr5q1/9Kt3P3//+d1fjG2zKERySUspTTz013e/bb7/t2IbBodKoVJA2kUjIuro6CUBOnz496yPZF110UXpfixcvLmpfA105jsN//etf6T7PPffcrO14HJaem+sFfhcSEeXHicOo7B577LH0z+eee65jG0VRcNZZZwEAmpub8eKLL/bF0MiFI488Mv3zRx99VMGRUDlIKfH4448DAKZNm4YDDzzQsd2BBx6I3XbbDQDw+OOPQ0rZZ2Mc7J5//nls2LABAPCFL3wBwWCwwiOiQpTqGFu5ciWWL18OADjttNOy/h30nIDnH//4R2+HTwXg9+XA9+KLL6KlpQVA6lF6RXG+lOJxWBl//vOf0z/nK3VApZXv84/fhURE7jBIS2XXNdtnKBTCfvvtl7Xd4Ycfnv550aJFZR8XuROPx9M/q6pawZFQOaxZsyZda6znMeika/2GDRuwdu3acg+NOvW86Oy6mUX9R6mOsZ4zZ+fqZ+TIkZg6dSoAfpf2NX5fDnxuj8OZM2emg0c8DvtGW1tbOjFkwoQJOOywwyo7oEEm3+cfvwuJiNxhkJbKrutu5+TJk6Fp2eeqmzZtmm0bqryFCxemf54+fXre9ueeey5Gjx4Nr9eLYcOG4cADD8QPf/jDdCYglc9DDz2E3XffHcFgEDU1NZgyZQrOPvvsnJnpy5YtS//c8xh0wmO077W3t6czQMaPH48jjjgi7zY8BqtLqY6xYvr59NNP805KR6VTyPflihUrcMABB6C+vh5+vx9jx47F3Llz0xPvUHkV+znp9jjUNA2TJ08GwO/LvvLwww8jEokAAM4880wIIfJuw+OwdPJ9/vG7kIjIHQZpqaxisRi2b98OIP+M4g0NDenZ5z/99NOyj43yM00T1113Xfr1aaedlnebl156CZs2bUIymcSOHTvw5ptv4tprr8XkyZNx2223lXO4g96yZcuwfPlyRKNRtLe3Y/Xq1fjzn/+Mo446CvPmzUs/otnT+vXr0z/nO0bHjRuX/pnHaN945JFH0hcWX/3qV11ddPIYrC6lOsaK6UdKadmOyud///sfnn76aQDAXnvtlTdIu2XLFixevBgtLS2Ix+PYsGEDnnjiCZx99tnYd999Gdgrs2I/J7uOp1AohPr6+pz76DoOt23bZskypPIo5qkTHoel4eZ6gd+FRETuZE9rJCqBtra29M/hcDhv+1AohI6ODrS3t5dzWOTS7373OyxevBgAcMopp+QsV7HrrrvilFNOwUEHHZQ+Kfr444/xyCOP4OGHH0YsFsPXv/51CCFw4YUX9sn4B4tgMIiTTz4ZRx99NKZNm4ZwOIxt27Zh4cKF+NOf/oQdO3bgsccew9y5c/Hcc8/B4/Gkty3kGO26iQKAx2gfKeSik8dgdSrVMcZjtXrF43Gcf/75MAwDAHDttddmbasoCo4++miccMIJ2GeffTB06FC0tbXhnXfewW233Ybly5dj2bJlOPLII7F48WLssssuffVrDAq9/ZzsOg7dntN2aW9vh8/nK9FvQZk++eSTdCbnwQcfnM5izobHYWm5uV7gdyERkTsM0lJZxWKx9M9erzdv+64T2Gg0WrYxkTsLFy7E97//fQDA8OHDceutt2ZtO2/ePJx99tm2LL9Zs2bh9NNPx1NPPYVTTjkFyWQS3/72t3HyySdj5MiRZR3/YLJhwwbHjJ5jjz0Wl156KY4//ngsXboUCxcuxK233opvfetb6TaFHKM9LzB5jJbf+vXr8dJLLwFITaTRVVvNCY/B6lWqY4zHavX65je/iSVLlgBITVZ00kknZW376KOPOn5eH3roobjkkktwwQUX4N5778WWLVtw+eWX49FHHy3XsAedUnxOdh2HhZzTAjwOy+2vf/1reoIpN1m0PA5Lx+31Ar8LiYjcYbkDKiu/35/+OZFI5G3f9ThYIBAo25govw8++ADz5s2Druvw+/146KGHMHz48Kzt6+rqcj6G/bnPfQ4//vGPAQCRSAR33nlnycc8mOV65HLEiBF4+OGH09mz8+fPt6wv5Bjt+bgmj9Hy++tf/wrTNAHkn6Wax2D1KtUxxmO1Ov3qV7/CggULAKSCfbfcckvO9rk+rz0eDxYsWJCe2fwf//gHa0mXUCk+J7uOw0LOaQEeh+X2l7/8BUAqKHf66afnbc/jsDQKuV7gdyERkTsM0lJZ1dTUpH9285hJV+1FN4+RUXmsWbMGc+bMQVNTE1RVxQMPPFCSGXIvvPDC9MVRz8kFqPx23XVXHHvssQCA1atXp2fXBQo7RntOusBjtPwKvejMh8dgZZTqGOOxWn1uu+02XHXVVQBSE9T885//tDxeWwxN03DeeeelX/NY7Vv5Pie7jsNCzmkBHofltHjxYqxYsQIAcPLJJ+etFewGj8P8Cr1e4HchEZE7DNJSWfn9fgwdOhQA8hZsb2pqSn+Z9iwYT31n48aNOOaYY7Bx40YIIXDXXXdh7ty5Jel7+PDh6b8FZiT0vd133z39c89//56TLuQ7RntO3sBjtLyWLFmSnsH4c5/7HBoaGnrdJ4/ByijVMVZMP0KIvBOrUHHuv/9+XHLJJQCA8ePH47nnnsOwYcNK0ne2z2sqv3yfk13HU0dHB5qbm3P21XUcNjY2sh5tGRUzYZgbPA6zK+Z6gd+FRETuMEhLZdd1krN69Wroup61XdddcAB5Z0Wm0tu+fTuOPfZYfPzxxwBSj8WX8mQXgKuZ6ak8sv3b97wI6XkMOuEx2nd6XnTmK3VQCB6Dfa9Ux1gx/YwbN67XmZ1k98QTT+Css86CaZoYNWoUnn/++ZIGAHicVlauf3+3x6Gu6/joo48A8PuynJLJJB544AEAqQD7Zz/72ZL1zePQWbHXC/wuJCJyh0FaKrtDDjkEQCrr4O23387aruejRLNnzy77uKhbS0sLjjvuuHTm3nXXXYdvfOMbJd3Htm3bsH37dgDA6NGjS9o35df13gLWf/+JEyemX+d7nO/ll18GAIwZMwYTJkwo/SAJgPWis7GxEccff3xJ+uUxWBmlOsa6vkvz9bN582asXLkSAL9Ly+H555/HaaedBl3XMXToUDz33HOYNGlSSfeR7fOayi/f56Tb43DJkiXpp8N4HJbP008/jR07dgAAvvzlL0PTSjcnNo9Du95cL/C7kIjIHQZpqew+//nPp3++++67HduYppnOHKuvr8eRRx7ZF0MjpCbHOPHEE/HOO+8AAK6++mpceeWVJd/P7bffnp559/DDDy95/5TdmjVr8NxzzwEAJk2ahDFjxqTXCSHSj6itWLECb7zxhmMfb7zxRjojYe7cucwwKaNnnnkG27ZtA1Dai04eg5VRqmNs6tSp6Yyiv//974hEIo793HPPPemf582b19vhUw+vvfYa5s6di3g8jrq6Ovz73//GHnvsUdJ96LqOu+66K/26FDXhyb18n5NHHHEE6urqAAD33ntvum0mHod9o1xPnfA4tOvt9QK/C4mIXJJEfeDQQw+VAKSmafK1116zrb/++uslAAlA/uQnP+n7AQ5S8XhczpkzJ/1vf9lllxXcx5o1a+Q777yTs82TTz4pvV6vBCADgYBcv359kSOmTE888YRMJpNZ12/evFnOmDEj/R7feOONtjYffvihVFVVApAzZ86UkUjEsj4SiciZM2emj+GVK1eW/Pegbqeeemr6/Xr77bfztucx2LfWrFmTfn/OPvtsV9uU6hi788470/v+xje+YVu/evVqWVtbKwHIyZMn5/xsGMyKeQ+XLl0q6+vrJQAZCoXkq6++WvB+X3jhBdnU1JR1fSKRkGeffXZ6bCeddFLB+xgsCn0PS/k5+aMf/Si97+uvv962/rXXXpOapkkA8vDDD3fz6wxKxRyHPe3YsSP9fu21116ut+NxWLhSXC9Iye9CIiI3SvdMCFEON910E2bPno1oNIo5c+bgqquuwpFHHoloNIoHHngAt99+O4DU3dHvfve7FR7t4PGlL30Jzz77LADgqKOOwnnnnYf3338/a3uv14upU6dalq1duxZHHnkkDjroIJx00knYZ599MHz4cADAxx9/jIcffhgPP/xwOtvkhhtusGRyUu9ceumlSCaTOPXUU3HQQQdhwoQJCAQC2L59O1566SXcdttt6Uc3DznkEMfH0qZOnYorrrgC1113HZYsWYLZs2fjyiuvxKRJk/DRRx/h17/+NZYuXQoAuOKKKzBlypQ+/R0Hk6amJjz11FMAgD333BOf+cxn8m7DY7C8Xn31VaxevTr9uut4AlK11ntm6wDAOeecY+ujVMfY2WefjbvuuguLFi3CLbfcgs2bN+OCCy5AQ0MDFi9ejJ///OdobW2Foii4+eabS/rob3/W2/fwo48+wnHHHZeeKOoXv/gF6urqcn5fDh8+PH0cdrn33ntx8skn4+STT8YRRxyB3XbbDbW1tWhvb8fbb7+N22+/Pf0Y8fDhw3HTTTcV8dsOTL19D0v5OXnFFVfgwQcfxMqVK/G9730Pq1evxhlnnIFAIIAXX3wRv/zlL6HrOgKBAH7/+9/3/pcfIErxWdrTAw88gEQiAaCwLFoeh4UrxfUCwO9CIiJXKhwkpkHkiSeeSN/VdPpv6tSpctWqVZUe5qCS7b3I9t/48eNtfbz44ouutg0Gg/K2227r+19ygBs/fryrf/9TTz01Z+aIYRjya1/7Ws4+zjvvPGkYRt/9coPQrbfemjNDywmPwfLqmVHl5r9sSnWMbdu2Tc6aNStrHz6fT95xxx2l/mfo13r7Ht59990Ff186PRXkdhx77bWX/OCDD/rgX6b/6O17WOrPyVWrVskpU6Zk7ae2tlY++eST5fin6LdK9Vna5YADDpAApKqqctOmTSUfB4/DboV+/jldL3ThdyERUW68rUR95qSTTsK7776Lm266CU8//TTWr18Pr9eLyZMn44tf/CK++c1vIhgMVnqYVKD99tsPf/3rX/H6669jyZIl2LRpE7Zv3w5d19HQ0IA99tgDRx99NM4//3xbVhH13r333ouFCxfi9ddfx8cff4zt27ejtbUV4XAY48aNw8EHH4yzzz4bBx10UM5+FEXBnXfeiVNPPRW333473nrrLWzfvh3Dhg3DrFmzcNFFF5VsAivK7i9/+QsAQFVVfOUrX3G1DY/B/qFUx9iwYcPw2muv4Y477sB9992H5cuXo6OjA6NHj8bRRx+Nyy67rOR1Uqk0rrzySuy77754/fXXsWzZMmzbtg07d+6Ez+fDiBEjMHPmTHzhC1/AvHnzoKpqpYc7oJT6c3Ly5MlYunQpbrnlFjz00ENYvXo1EokExo0bhxNOOAGXXXYZxo8f3we/2eC0atUqvPnmmwCAY489FiNHjnS9LY/DyuJ3IRFRbkLKLBXviYiIiIiIiIiIiKjslEoPgIiIiIiIiIiIiGgwY5CWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiKhI99xzD4QQEEJg7dq1lR4OERERERH1UwzSEhER0aCzdu3adHC1N/8RERERERGVAoO0RERERERERERERBUkpJSy0oMgIiIi6kvJZBIffvhh1vV77bUXAGDmzJm4++67s7bbc889Sz42IiIiIiIafLRKD4CIiIior3k8HlcB1lAoxEAsERERERGVHcsdEBEREREREREREVUQg7RERERERbrnnnvSk4itXbvWtv6II46AEAJHHHEEAGD16tX4+te/jl133RWBQAATJkzAeeedh3Xr1lm2e//993Huuedi1113hd/vx7hx43DxxRdj69atrsb12GOP4Ytf/CJ22WUX+P1+1NfXY+bMmfjZz36Gpqam3v7aRERERERUYix3QERERNQH/vOf/+CUU05BW1tbetm6detw11134amnnsLChQsxbdo03H///TjnnHOQSCTS7davX48//elPeOaZZ/Daa69h9OjRjvtoamrCF77wBbzwwguW5fF4HG+//Tbefvtt/PGPf8Tjjz+OAw88sDy/KBERERERFYyZtERERERltnHjRpx22mmor6/H/Pnz8eabb+KVV17B5ZdfDiEEtm7divPPPx9vvfUWzjrrLEyaNAkLFizA4sWL8eKLL+LMM88EkArqfuc733HcRzwexzHHHIMXXngBqqrizDPPxP3334833ngDr7zyCq699loMHToUW7duxQknnGDL3iUiIiIiosphJi0RERFRma1atQpTpkzBokWL0NjYmF5+yCGHQNM03HDDDVi0aBFOPPFE7L///njuuecQDAbT7Y444gjEYjE89NBDeOSRR7Bt2zZLPwBwzTXX4J133kF9fT3+85//YL/99rOsP+SQQ/CVr3wFBx10EDZt2oSrrroKf/vb38r7ixMRERERkSvMpCUiIiLqAzfffLMtsAoAl1xySfrn7du3Y8GCBZYAbZeLL74YAKDrOl5//XXLuvb2dtxyyy0AgJ///Oe2AG2X8ePH40c/+hEA4KGHHkJHR0dxvwwREREREZUUg7REREREZVZfX4/jjjvOcd3EiRNRU1MDANh7770xffp0x3b77LNP+uePP/7Ysm7hwoVoaWkBAHzhC1/IOZbDDjsMAJBMJvH222+7+wWIiIiIiKisWO6AiIiIqMymTJkCIUTW9fX19Whra8PUqVNztunSc/IxAFiyZEn651GjRrke1+bNm123JSIiIiKi8mEmLREREVGZOZUv6ElRlLztutoAgGEYlnVbt24talyRSKSo7YiIiIiIqLSYSUtERETUz/UM2r7zzjvweDyuths7dmy5hkRERERERAVgkJaIiIionxs6dGj658bGRgZfiYiIiIj6GZY7ICIiIurnZsyYkf550aJFFRwJEREREREVg0FaIiIion7umGOOSdezvfnmmyGlrPCIiIiIiIioEAzSEhEREfVz9fX1+OY3vwkAeO211/Dtb38bpmlmbb9lyxYsWLCgr4ZHRERERER5sCYtERER0QBwzTXXYOHChXjzzTdx00034aWXXsIFF1yAfffdF6FQCE1NTfjggw/wn//8B8888wz22msvnH/++ZUeNhERERERgUFaIiIiogHB5/PhueeewznnnINHH30U//vf/9LZtU5qa2v7cHRERERERJQLg7REREREA0RNTQ0eeeQRvPrqq7j33nvxyiuvYOPGjYhGo6itrcWkSZOw//7748QTT8ScOXMqPVwiIiIiIuokJGeWICIiIiIiIiIiIqoYThxGREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEFMUhLREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEF/T8CDHwDuccc8gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = my_model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'vector-borne_birth-death_example.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe containing model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js b/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 0000000..8141580 --- /dev/null +++ b/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/docs/_build/html/_static/basic.css b/docs/_build/html/_static/basic.css new file mode 100644 index 0000000..30fee9d --- /dev/null +++ b/docs/_build/html/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/docs/_build/html/_static/css/badge_only.css b/docs/_build/html/_static/css/badge_only.css new file mode 100644 index 0000000..c718cee --- /dev/null +++ b/docs/_build/html/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff b/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 0000000..6cb6000 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 b/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 0000000..7059e23 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff b/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 0000000..f815f63 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 b/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 0000000..f2c76e5 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.eot b/docs/_build/html/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 0000000..e9f60ca Binary files /dev/null and b/docs/_build/html/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.svg b/docs/_build/html/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 0000000..855c845 --- /dev/null +++ b/docs/_build/html/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.ttf b/docs/_build/html/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 0000000..35acda2 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff b/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 0000000..400014a Binary files /dev/null and b/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff2 b/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 0000000..4d13fc6 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/docs/_build/html/_static/css/fonts/lato-bold-italic.woff b/docs/_build/html/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 0000000..88ad05b Binary files /dev/null and b/docs/_build/html/_static/css/fonts/lato-bold-italic.woff differ diff --git a/docs/_build/html/_static/css/fonts/lato-bold-italic.woff2 b/docs/_build/html/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 0000000..c4e3d80 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/docs/_build/html/_static/css/fonts/lato-bold.woff b/docs/_build/html/_static/css/fonts/lato-bold.woff new file mode 100644 index 0000000..c6dff51 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/lato-bold.woff differ diff --git a/docs/_build/html/_static/css/fonts/lato-bold.woff2 b/docs/_build/html/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 0000000..bb19504 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/lato-bold.woff2 differ diff --git a/docs/_build/html/_static/css/fonts/lato-normal-italic.woff b/docs/_build/html/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 0000000..76114bc Binary files /dev/null and b/docs/_build/html/_static/css/fonts/lato-normal-italic.woff differ diff --git a/docs/_build/html/_static/css/fonts/lato-normal-italic.woff2 b/docs/_build/html/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 0000000..3404f37 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/docs/_build/html/_static/css/fonts/lato-normal.woff b/docs/_build/html/_static/css/fonts/lato-normal.woff new file mode 100644 index 0000000..ae1307f Binary files /dev/null and b/docs/_build/html/_static/css/fonts/lato-normal.woff differ diff --git a/docs/_build/html/_static/css/fonts/lato-normal.woff2 b/docs/_build/html/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 0000000..3bf9843 Binary files /dev/null and b/docs/_build/html/_static/css/fonts/lato-normal.woff2 differ diff --git a/docs/_build/html/_static/css/theme.css b/docs/_build/html/_static/css/theme.css new file mode 100644 index 0000000..19a446a --- /dev/null +++ b/docs/_build/html/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/docs/_build/html/_static/doctools.js b/docs/_build/html/_static/doctools.js new file mode 100644 index 0000000..d06a71d --- /dev/null +++ b/docs/_build/html/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/docs/_build/html/_static/documentation_options.js b/docs/_build/html/_static/documentation_options.js new file mode 100644 index 0000000..e15aace --- /dev/null +++ b/docs/_build/html/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '1.0.2', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/docs/_build/html/_static/file.png b/docs/_build/html/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/docs/_build/html/_static/file.png differ diff --git a/docs/_build/html/_static/jquery.js b/docs/_build/html/_static/jquery.js new file mode 100644 index 0000000..c4c6022 --- /dev/null +++ b/docs/_build/html/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/docs/_build/html/_static/js/html5shiv.min.js b/docs/_build/html/_static/js/html5shiv.min.js new file mode 100644 index 0000000..cd1c674 --- /dev/null +++ b/docs/_build/html/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/docs/_build/html/_static/js/theme.js b/docs/_build/html/_static/js/theme.js new file mode 100644 index 0000000..1fddb6e --- /dev/null +++ b/docs/_build/html/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/docs/_build/html/_static/minus.png b/docs/_build/html/_static/minus.png new file mode 100644 index 0000000..d96755f Binary files /dev/null and b/docs/_build/html/_static/minus.png differ diff --git a/docs/_build/html/_static/nbsphinx-broken-thumbnail.svg b/docs/_build/html/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 0000000..4919ca8 --- /dev/null +++ b/docs/_build/html/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/docs/_build/html/_static/nbsphinx-code-cells.css b/docs/_build/html/_static/nbsphinx-code-cells.css new file mode 100644 index 0000000..a3fb27c --- /dev/null +++ b/docs/_build/html/_static/nbsphinx-code-cells.css @@ -0,0 +1,259 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + diff --git a/docs/_build/html/_static/nbsphinx-gallery.css b/docs/_build/html/_static/nbsphinx-gallery.css new file mode 100644 index 0000000..365c27a --- /dev/null +++ b/docs/_build/html/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/docs/_build/html/_static/nbsphinx-no-thumbnail.svg b/docs/_build/html/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 0000000..9dca758 --- /dev/null +++ b/docs/_build/html/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/docs/_build/html/_static/plus.png b/docs/_build/html/_static/plus.png new file mode 100644 index 0000000..7107cec Binary files /dev/null and b/docs/_build/html/_static/plus.png differ diff --git a/docs/_build/html/_static/pygments.css b/docs/_build/html/_static/pygments.css new file mode 100644 index 0000000..84ab303 --- /dev/null +++ b/docs/_build/html/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #008000; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #9C6500 } /* Comment.Preproc */ +.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #E40000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #008400 } /* Generic.Inserted */ +.highlight .go { color: #717171 } /* Generic.Output */ +.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #008000 } /* Keyword.Pseudo */ +.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #B00040 } /* Keyword.Type */ +.highlight .m { color: #666666 } /* Literal.Number */ +.highlight .s { color: #BA2121 } /* Literal.String */ +.highlight .na { color: #687822 } /* Name.Attribute */ +.highlight .nb { color: #008000 } /* Name.Builtin */ +.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +.highlight .no { color: #880000 } /* Name.Constant */ +.highlight .nd { color: #AA22FF } /* Name.Decorator */ +.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #0000FF } /* Name.Function */ +.highlight .nl { color: #767600 } /* Name.Label */ +.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #19177C } /* Name.Variable */ +.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #666666 } /* Literal.Number.Bin */ +.highlight .mf { color: #666666 } /* Literal.Number.Float */ +.highlight .mh { color: #666666 } /* Literal.Number.Hex */ +.highlight .mi { color: #666666 } /* Literal.Number.Integer */ +.highlight .mo { color: #666666 } /* Literal.Number.Oct */ +.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ +.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ +.highlight .sc { color: #BA2121 } /* Literal.String.Char */ +.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ +.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ +.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ +.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ +.highlight .sx { color: #008000 } /* Literal.String.Other */ +.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ +.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ +.highlight .ss { color: #19177C } /* Literal.String.Symbol */ +.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #0000FF } /* Name.Function.Magic */ +.highlight .vc { color: #19177C } /* Name.Variable.Class */ +.highlight .vg { color: #19177C } /* Name.Variable.Global */ +.highlight .vi { color: #19177C } /* Name.Variable.Instance */ +.highlight .vm { color: #19177C } /* Name.Variable.Magic */ +.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/_build/html/_static/searchtools.js b/docs/_build/html/_static/searchtools.js new file mode 100644 index 0000000..7918c3f --- /dev/null +++ b/docs/_build/html/_static/searchtools.js @@ -0,0 +1,574 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/docs/_build/html/_static/sphinx_highlight.js b/docs/_build/html/_static/sphinx_highlight.js new file mode 100644 index 0000000..8a96c69 --- /dev/null +++ b/docs/_build/html/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/docs/_build/html/about.html b/docs/_build/html/about.html new file mode 100644 index 0000000..890f8ff --- /dev/null +++ b/docs/_build/html/about.html @@ -0,0 +1,322 @@ + + + + + + + About — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

About

+
+

Opqua is an epidemiological modeling framework for pathogen population genetics and evolution.

+

Opqua stochastically simulates pathogens with distinct, evolving genotypes that +spread through populations of hosts which can have specific immune profiles.

+

Opqua is a useful tool to test out scenarios, explore hypotheses, make +predictions, and teach about the relationship between pathogen evolution and +epidemiology.

+

Among other things, Opqua can model

+
    +
  • host-host, vector-borne, and vertical transmission

  • +
  • pathogen evolution through mutation, recombination, and/or reassortment

  • +
  • host recovery, death, and birth

  • +
  • metapopulations with complex structure and demographic interactions

  • +
  • interventions and events altering demographic, ecological, or evolutionary +parameters

  • +
  • treatment and immunization of hosts or vectors

  • +
  • influence of pathogen genome sequences on transmission and evolution, as well +as host demographic dynamics

  • +
  • intra- and inter-host competition and evolution of pathogen strains across +user-specified adaptive landscapes

  • +
+
+
+

How Does Opqua Work?

+
+

Basic concepts

+

Opqua models are composed of populations containing hosts and/or vectors, which +themselves may be infected by a number of pathogens with different genomes.

+

A genome is represented as a string of characters. All genomes must be of the +same length (a set number of loci), and each position within the genome can have +one of a number of different characters specified by the user (corresponding to +different alleles). Different loci in the genome may have different possible +alleles available to them. Genomes may be composed of separate chromosomes, +separated by the “/” character, which is reserved for this purpose.

+

Each population may have its own unique parameters dictating the events that +happen inside of it, including how pathogens are spread between its hosts and +vectors.

+
+
+

Events

+

There are different kinds of events that may occur to hosts and vectors in +a population:

+
    +
  • contact between an infectious host/vector and another host/vector in the same +population (intra-population contact) or in a different population (“population +contact”)

  • +
  • migration of a host/vector from one population to another

  • +
  • recovery of an infected host/vector

  • +
  • birth of a new host/vector from an existing host/vector

  • +
  • death of a host/vector due to pathogen infection or by “natural” causes

  • +
  • mutation of a pathogen in an infected host/vector

  • +
  • recombination of two pathogens in an infected host/vector

  • +
+

Events

+

The likelihood of each event occurring is determined by the population’s +parameters (explained in the newSetup() function documentation) and +the number of infected and healthy hosts and/or vectors in the population(s) +involved. Crucially, it is also determined by the genome sequences of the +pathogens infecting those hosts and vectors. The user may specify arbitrary +functions to evaluate how a genome sequence affects any of the above kinds of +rates. This is once again done through arguments of the newSetup() +function. As an example, a specific genome sequence may result in increased +transmission within populations but decreased migration of infected hosts, or +increased mutation rates. These custom functions may be different across +populations, resulting in different adaptive landscapes within different +populations.

+

Contacts within and between populations may happen by any combination of +host-host, host-vector, and/or vector-host routes, depending on the populations’ +parameters. When a contact occurs, each pathogen genome present in the infecting +host/vector may be transferred to the receiving host/vector as long as one +“infectious unit” is inoculated. The number of infectious units inoculated is +randomly distributed based on a Poisson probability distribution. The mean of +this distribution is set by the receiving host/vector’s population parameters, +and is multiplied by the fraction of total intra-host fitness of each pathogen +genome. For instance, consider the mean inoculum size for a host in a given +population is 10 units and the infecting host/vector has two pathogens with +fitnesses of 0.3 and 0.7, respectively. This would make the means of the Poisson +distributions used to generate random infections for each pathogen equal to 3 +and 7, respectively.

+

Inter-population contacts occur via the same mechanism as intra-population +contacts, with the distinction that the two populations must be linked in a +compatible way. As an example, if a vector-borne model with two separate +populations is to allow vectors from Population A to contact hosts in Population +B, then the contact rate of vectors in Population A and the contact rate of +hosts in Population B must both be greater than zero. Migration of hosts/vectors +from one population to another depends on a single rate defining the frequency +of vector/host transport events from a given population to another. Therefore, +Population A would have a specific migration rate dictating transport to +Population B, and Population B would have a separate rate governing transport +towards A.

+

Recovery of an infected host or vector results in all pathogens being removed +from the host/vector. Additionally, the host/vector may optionally gain +protection from pathogens that contain specific genome sequences present in the +genomes of the pathogens it recovered from, representing immune memory. The user +may specify a population parameter delimiting the contiguous loci in the genome +that are saved on the recovered host/vector as “protection sequences”. Pathogens +containing any of the host/vector’s protection sequences will not be able to +infect the host/vector.

+

Births result in a new host/vector that may optionally inherit its parent’s +protection sequences. Additionally, a parent may optionally infect its offspring +at birth following a Poisson sampling process equivalent to the one described +for other contact events above. Deaths of existing hosts/vectors can occur both +naturally or due to infection mortality. Only deaths due to infection are +tracked and recorded in the model’s history.

+

De novo mutation of a pathogen in a given host/vector results in a single locus +within a pathogen’s genome being randomly assigned a new allele from the +possible alleles at that position. Recombination of two pathogens in a given +host/vector creates two new genomes based on the independent segregation of +chromosomes (or reassortment of genome segments, depending on the field) from +the two parent genomes. In addition, there may be a Poisson-distributed random +number of crossover events between homologous parent chromosomes. Recombination +by crossover event will result in all the loci in the chromosome on one side of +the crossover event location being inherited from one of the parents, while the +remainder of the chromosome is inherited from the other parent. The locations of +crossover events are distributed throughout the genome following a uniform +random distribution.

+
+
+

Interventions

+

Furthermore, the user may specify changes in model behavior at specific +timepoints during the simulation. These changes are known as “interventions”. +Interventions can include any kind of manipulation to populations in the model, +including:

+
    +
  • adding new populations

  • +
  • changing a population’s event parameters and adaptive landscape functions

  • +
  • linking and unlinking populations through migration or inter-population +contact

  • +
  • adding and removing hosts and vectors to a population

  • +
+

Interventions can also include actions that involve specific hosts or vectors in +a given population, such as:

+
    +
  • adding pathogens with specific genomes to a host/vector

  • +
  • removing all protection sequences from some hosts/vectors in a population

  • +
  • applying a “treatment” in a population that cures some of its hosts/vectors of +pathogens

  • +
  • applying a “vaccine” in a population that protects some of its hosts/vectors +from pathogens

  • +
+

For these kinds of interventions involving specific pathogens in a population, +the user may choose to apply them to a randomly-sampled fraction of +hosts/vectors in a population, or to a specific group of individuals. This is +useful when simulating consecutive interventions on the same specific group +within a population. A single model may contain multiple groups of individuals +and the same individual may be a member of multiple different groups. +Individuals remain in the same group even if they migrate away from the +population they were chosen in.

+

When a host/vector is given a “treatment”, it removes all pathogens within the +host/vector that do not contain a collection of “resistance sequences”. A +treatment may have multiple resistance sequences. A pathogen must contain all +of these within its genome in order to avoid being removed. On the other hand, +applying a vaccine consists of adding a specific protection sequence to +hosts/vectors, which behaves as explained above for recovered hosts/vectors when +they acquire immune protection, if the model allows it.

+
+
+

Simulation

+

Models are simulated using an implementation of the Gillespie algorithm in which +the rates of different kinds of events across different populations are +computed with each population’s parameters and current state, and are then +stored in a matrix. In addition, each population has host and vector matrices +containing coefficients that represent the contribution of each host and vector, +respectively, to the rates in the master model rate matrix. Each coefficient is +dependent on the genomes of the pathogens infecting its corresponding vector or +host. Whenever an event occurs, the corresponding entries in the population +matrix are updated, and the master rate matrix is recomputed based on this +information.

+

Simulation

+

The model’s state at any given time comprises all populations, their hosts +and vectors, and the pathogen genomes infecting each of these. A copy of the +model’s state is saved at every time point, or at intermittent intervals +throughout the course of the simulation. A random sample of hosts and/or vectors +may be saved instead of the entire model as a means of reducing memory +footprint.

+
+
+

Output

+

The output of a model can be saved in multiple ways. The model state at each +saved timepoint may be output in a single, raw pandas +DataFrame, and saved as a tabular file. Other data output +types include counts of pathogen genomes or protection sequences for the +model, as well as time of first emergence for each pathogen genome and genome +distance matrices for every timepoint sampled. The user can also create +different kinds of plots to visualize the results. These include:

+
    +
  • plots of the number of hosts and/or vectors in different epidemiological +compartments (naive, infected, recovered, and dead) across simulation time

  • +
  • plots of the number of individuals in a compartment for different populations

  • +
  • plots of the genomic composition of the pathogen population over time

  • +
  • phylogenies of pathogen genomes

  • +
+

Users can also use the data output formats to make their own custom plots.

+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/basic_usage.html b/docs/_build/html/basic_usage.html new file mode 100644 index 0000000..106ac6d --- /dev/null +++ b/docs/_build/html/basic_usage.html @@ -0,0 +1,411 @@ + + + + + + + Basic usage — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Basic usage

+
+
[1]:
+
+
+
from opqua.model import Model
+
+
+
+

Make a new model object

+
+
[2]:
+
+
+
my_model = Model()
+
+
+
+

Create a new set of parameters called my_setup to be used to simulate a population in the model.

+

Here, we will use the default parameter set for a host-host transmission model

+
+
[3]:
+
+
+
my_model.newSetup('my_setup', preset='host-host')
+
+
+
+

Create a new population of 100 hosts and 0 vectors called my_population. The population uses parameters stored in my_setup

+
+
[4]:
+
+
+
my_model.newPopulation('my_population', 'my_setup', num_hosts=100)
+
+
+
+

Add pathogens with a genome of AAAAAAAAAA to 20 random hosts in population my_population

+
+
[5]:
+
+
+
my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} )
+
+
+
+

Run the simulation for 200 time units

+
+
[6]:
+
+
+
my_model.run(0,200)
+
+
+
+
+
+
+
+
+Simulating time: 71.89423840111455, event: CONTACT_HOST_HOST
+Simulating time: 136.14665780191842, event: RECOVER_HOST
+Simulating time: 200.15737579926133 END
+
+
+

Save the model results to a table

+
+
[7]:
+
+
+
data = my_model.saveToDataFrame('Basic_example.csv')
+data
+
+
+
+
+
+
+
+
+Saving file...
+
+
+
+
+
+
+
+[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.
+[Parallel(n_jobs=8)]: Done   2 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.19414451599121096s.) Setting batch_size=2.
+[Parallel(n_jobs=8)]: Done   9 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done  16 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.01929759979248047s.) Setting batch_size=4.
+[Parallel(n_jobs=8)]: Done  26 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done  44 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.013352155685424805s.) Setting batch_size=8.
+[Parallel(n_jobs=8)]: Done  76 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.01486515998840332s.) Setting batch_size=16.
+[Parallel(n_jobs=8)]: Done 124 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Done 224 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.02699422836303711s.) Setting batch_size=32.
+[Parallel(n_jobs=8)]: Done 408 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.05492806434631348s.) Setting batch_size=64.
+[Parallel(n_jobs=8)]: Done 792 tasks      | elapsed:    0.6s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.08415079116821289s.) Setting batch_size=128.
+[Parallel(n_jobs=8)]: Done 1292 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 1495 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 1698 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 1793 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 1956 out of 1956 | elapsed:    0.7s finished
+
+
+
+
+
+
+
+...file saved.
+
+
+
+
[7]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2AAAAAAAAAANaNTrue
30.0my_populationHostmy_population_3AAAAAAAAAANaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
195595200.0my_populationHostmy_population_95AAAAAAAAAANaNTrue
195596200.0my_populationHostmy_population_96NaNNaNTrue
195597200.0my_populationHostmy_population_97AAAAAAAAAANaNTrue
195598200.0my_populationHostmy_population_98AAAAAAAAAANaNTrue
195599200.0my_populationHostmy_population_99NaNNaNTrue
+

195600 rows × 7 columns

+
+
+

Plot the number of susceptible and infected hosts in the model over time

+
+
[8]:
+
+
+
graph = my_model.compartmentPlot('Basic_example_compartment.png', data)
+
+
+
+
+
+
+
+_images/basic_usage_15_0.png +
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/basic_usage.ipynb b/docs/_build/html/basic_usage.ipynb new file mode 100644 index 0000000..2511ea8 --- /dev/null +++ b/docs/_build/html/basic_usage.ipynb @@ -0,0 +1,407 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basic usage" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make a new model object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. \n", + "\n", + "Here, we will use the default parameter set for a host-host transmission model" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup('my_setup', preset='host-host')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation('my_population', 'my_setup', num_hosts=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the simulation for 200 time units" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 71.89423840111455, event: CONTACT_HOST_HOST\n", + "Simulating time: 136.14665780191842, event: RECOVER_HOST\n", + "Simulating time: 200.15737579926133 END\n" + ] + } + ], + "source": [ + "my_model.run(0,200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Save the model results to a table" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19414451599121096s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01929759979248047s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.013352155685424805s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01486515998840332s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 124 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02699422836303711s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.05492806434631348s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08415079116821289s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1292 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1495 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1956 out of 1956 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2AAAAAAAAAANaNTrue
30.0my_populationHostmy_population_3AAAAAAAAAANaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
195595200.0my_populationHostmy_population_95AAAAAAAAAANaNTrue
195596200.0my_populationHostmy_population_96NaNNaNTrue
195597200.0my_populationHostmy_population_97AAAAAAAAAANaNTrue
195598200.0my_populationHostmy_population_98AAAAAAAAAANaNTrue
195599200.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

195600 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 AAAAAAAAAA \n", + "3 0.0 my_population Host my_population_3 AAAAAAAAAA \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "195595 200.0 my_population Host my_population_95 AAAAAAAAAA \n", + "195596 200.0 my_population Host my_population_96 NaN \n", + "195597 200.0 my_population Host my_population_97 AAAAAAAAAA \n", + "195598 200.0 my_population Host my_population_98 AAAAAAAAAA \n", + "195599 200.0 my_population Host my_population_99 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "195595 NaN True \n", + "195596 NaN True \n", + "195597 NaN True \n", + "195598 NaN True \n", + "195599 NaN True \n", + "\n", + "[195600 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame('Basic_example.csv')\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wU9fkH8M/M9tvrhXKANEFALCBgwYK9S0yMJppoLDExicYUTYzGmKi/aExijdFE1KiJGnsUUbEjSlNEqiCduwOu320vM78/lt3bnbYze3u3Vz7v18uX7Mzs7ve2zM4883yfR5BlWQYRERERERERERERFYRY6AEQERERERERERERDWYM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRAdkLPQDqnlAohNWrVwMAampqYLfzLSUiIiIiIiLKt1gshsbGRgDAQQcdBLfbXeAREdFAwoheP7d69WrMmjWr0MMgIiIiIiIiGjSWLVuGmTNnFnoYRDSAsNwBERERERERERERUQExk7afq6mpSf172bJlGD58eAFHQ0RERERERDQwNTQ0pGaypp+LExHlA4O0/Vx6Ddrhw4dj5MiRBRwNERERERER0cDHfjBElG8sd0BERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBDfogbSQSwSOPPIJTTz0Vw4cPh8vlQnFxMQ444ABceuml+Pjjj009zoIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCgh/8CIiIiIiIiIiIi6s8EWZblQg+iULZv344zzzwTa9euNdzu6quvxr333gtBEFTrJEnClVdeiXnz5une/4orrsDDDz8MUcx/THzXrl0YNWoUAGDnzp0YOXJk3p+DiIiIiIiIaLDj+TcR9aRBm0kbjUYzArQHH3wwHn/8cXzyySd46623cPPNN8Pr9QIA7r//ftx5552aj3PjjTemArTTpk3D008/jWXLluHpp5/GtGnTAACPPPIIbrrppl74q4iIiIiIiIiIiKi/GbSZtM8//zy++c1vAgCOPPJILFq0CDabLWObTz/9FEceeSSi0SjKy8vR2NgIu92eWr9x40YceOCBiMVimDFjBj788EN4PJ7U+kAggOOOOw4rVqyA3W7H+vXrsf/+++f17+CVPCIiIiIiIqKex/NvIupJgzaTNr3W7A033KAK0ALAYYcdhrPOOgsA0NbWhvXr12esv+eeexCLxQAksm3TA7QAUFRUhPvvvx8AEIvFcPfdd+f1byAiIiIiIiIiIqL+b9AGaSORSOrf48aN091u/PjxmveRZRmvvPIKAGDSpEk44ogjNO9/xBFH4IADDgAAvPLKKxikictERERERERERESkY9AGaZOBUwDYsmWL7nabN28GAAiCgAkTJqSWb926FfX19QCA4447zvC5kuvr6uqwbdu2XIdMREREREREREREA5A9+yYD07e//W3cdNNN6OjowJ133okzzjhDVfJg5cqVmD9/PgDgwgsvRGlpaWrdunXrUv+eNGmS4XOlr1+/fj3Gjh1repy7du0yXN/Q0GD6sfoCKdKBwIa/IR7Yhbh/J+L+Xag+42MIdnehh0ZERERERERERFQQgzZIW11djSeffBLf/va3sXjxYsycORPXXnstJk6cCJ/Ph8WLF+Mvf/kLIpEIpk+fjr/85S8Z908PnmYrFp4sLA4kiotbkX7fgaLzs99k3I4H6mAvHa+zNRERERERERER0cA2aIO0AHDOOefg008/xV/+8hfMmzcPl1xyScb6oUOH4tZbb8X3v/99FBUVZazr7OxM/bu4uNjwebxeb+rfPp8vDyPvv0RnKQRHCeRo1+sX9+9kkJaIiIiIiIiIiAatQR2kjUQieOKJJ3Qbeu3ZswdPPfUUxo4di3POOSdjXSgUSv3b6XQaPo/L5Ur9OxgMWhpjtszbhoYGzJo1y9JjFpqtaCRi7etTt+MB45IOREREREREREREA9mgDdL6/X6cfvrpWLRoEWw2G66//npceumlGDduHEKhEJYuXYo//OEP+Oijj/C1r30Nf/7zn/Hzn/88dX+3u6uGaiQSMXyucDic+rfH47E0zmylFPoj0TsKSAvSSn4GaYmIiIiIiIiIaPASCz2AQrnllluwaNEiAMC8efNw5513YtKkSXA6nSgtLcXJJ5+M9957D8cffzxkWcZ1112HVatWpe5fUlKS+ne2EgZ+vz/172ylEQYDmzcz8BwPWKvTS0RERERERERENJAMyiCtLMt49NFHAQATJ05U1aJNstvtuPXWWwEAkiTh8ccfT61Lz3BNbyKmJb1kwUBsBGaVrUgRpGUmLRERERERERERDWKDMki7Z88etLS0AACmTZtmuO1hhx2W+veGDRtS/54yZYrmci3p6ydPnmxprAORzZsZqI77mUlLRERERERERESD16AM0trtXaV4Y7GY4bbRaFTzfmPHjkVtbS0A4IMPPjB8jA8//BAAMGLECIwZM8bqcAccUZFJK7FxGBERERERERERDWKDMkhbWVmJ0tJSAMAnn3xiGKhND8COHTs29W9BEDB37lwAiUzZJUuWaN5/yZIlqUzauXPnQhCEbo+/v1Nm0kqhRsRDjQUaDRERERERERERUWENyiCtKIo488wzAQD19fW4/fbbNbdrbW3Fr371q9Tts846K2P9tddeC5vNBgC4+uqrEQwGM9YHg0FcffXVABJZuNdee22+/oR+zV42EYK9KGNZdM/iAo2GiIiIiIiIiIiosAZlkBYAbr75ZhQVJQKFt9xyC8455xy88MILWLlyJT755BPcfffdOPTQQ7Fu3ToAwIknnohTTjkl4zEmTpyI6667DgCwYsUKzJ49G88++yxWrFiBZ599FrNnz8aKFSsAANdddx0mTJjQi39h3yWIDjhqjsxYFtm7qECjISIiIiIiIiIiKixBlmW50IMolLfffhvf/va30dTUZLjdCSecgOeffx4VFRWqdZIk4fvf/z4effRR3ftffvnl+Mc//gFRzH9MfNeuXRg1KlE+YOfOnRg5cmSWe/QNnStvgW/V71O3HdWzUH3W0gKOiIiIiIiIiEhffz3/JqL+YdBm0gLASSedhA0bNuDOO+/EnDlzUFNTA4fDAY/Hg7Fjx+L888/Hyy+/jLffflszQAskSifMmzcP8+fPx9y5c1FbWwun04na2lrMnTsXr7/+Oh555JEeCdD2Z86hx2TcjjZ/BinqL9BoiIiIiIiIiIiICmdQZ9IOBP31Sp4U9WHPf8oBOZ5aVnnqO3ANP6FwgyIiIiIiIiLS0V/Pv4mof2B6JxWE6CiGo2p6xrLIHtalJSIiIiIiIiKiwYdBWioYR81RGbdj7RsKNBIiIiIiIiIiIqLCYZCWCkZ0lmUuSCt9QERERERERERENFgwSEsFJGTelKXCDIOIiIiIiIiIiKiAGKSlwhEUQVqwhx0REREREREREQ0+DNJS4QiZHz9ZZpCWiIiIiIiIiIgGHwZpqYAUmbRSuDDDICIiIiIiIiIiKiAGaalg5Ghnxu3wrtcLNBIiIiIiIiIiIqLCYZCWCibc8Hahh0BERERERERERFRwDNJSwUi+Hapl8UBDAUZCRERERERERERUOAzSUsHYy6eolkWbPyvASIiIiIiIiIiIiAqHQVoqHJtLtSjawiAtERERERERERENLgzSUsEIokO1jJm0REREREREREQ02DBIS4UjqIO0seaVBRgIERERERERERFR4TBISwUj2JyqZXH/dkih5gKMhoiIiIiIiIiIqDAYpKWCcQ49VnN5rHNzL4+EiIiIiIiIiIiocBikpYIpmnAFxKJa9Qo53vuDISIiIiIiIiIiKhAGaalgBLsb1ed8rl4hS70+FiIiIiIiIiIiokJhkJYKyuaugeAsVyyVCzEUIiIiIiIiIiKigmCQlgpPyPwYysykJSIiIiIiIiKiQYRBWuoDBMVtZtISEREREREREdHgwSAtFZygyKRlTVoiIiIiIiIiIhpMGKSlwhNdGTfjvm2FGQcREREREREREVEBMEhLBeeonplxO7TjlQKNhIiIiIiIiIiIqPcxSEsF597vaxm3w/VvQY4FCjMYIiIiIiIiIiKiXsYgLRWce9RZgGDrWhAPIlz3VuEGRERERERERERE1IsYpKWCE12VcA47LmNZaMdLBRoNERERERERERFR72KQlvoEZcmD0M5XIUuxwgyGiIiIiIiIiIioFzFIS32Ce9TcjNtypBWRPYsKNBoiIiIiIiIiIqLewyAt9Qm24v1gr5yWsSza/FmBRkNERERERERERNR7GKSlPsNeMj7jthxtL9BIiIiIiIiIiIiIeg+DtNRnCM7SjNtSpKNAIyEiIiIiIiIiIuo9DNJSnyHYSzJuy7HOAo2EiIiIiIiIiIio9zBIS32G6FAEaaMM0hIRERERERER0cDHIC31GcpyBwzSEhERERERERHRYMAgLfUZynIHUpQ1aYmIiIiIiIiIaOBjkJb6DNFZnnFbCtQXZiBERERERERERES9iEFa6jPs5ZMzbsd92yCFmgs0GiIiIiIiIiIiot7BIC31GfbyKYDNnbEs2vJZgUZDRERERERERETUOxikpT5DEB1wVBySsSzatKJAoyEiIiIiIiIiIuodDNJSn+KonpFxO9r8aYFGQkRERERERERE1DsYpKU+xVF1WMbt0PYX0LHsZwhue6FAIyIiIiIiIiIiIupZDNJSn6LMpAUA/7p70Pb+eQhue64AIyIiIiIiIiIiIupZDNJSn2Ivm6xqHpYU+PKhXh4NERERERERERFRz2OQlvoUQbTDXjpRc12k4d1eHg0REREREREREVHPY5CW+hx76f6FHgIREREREREREVGvYZCW+hxbiXaQVvQM7+WREBERERERERER9TwGaanP0c2kFWy9OxAiIiIiIiIiIqJeMCiDtHPmzIEgCJb+e//993Ufb8GCBTj33HMxcuRIuFwujBw5Eueeey4WLFjQe3/UAKKXSStH23t5JERERERERERERD3PXugB9AeiKGLChAmq5ZIk4corr8S8efMyltfV1aGurg4vv/wyrrjiCjz88MMQxUEZD8+JXiatHO2ELMUhiMyoJSIiIiIiIiKigWNQBmkfe+wx+P1+w23WrVuHCy64AABw4oknYsSIEaptbrzxxlSAdtq0abj++usxfvx4bN68GX/605+wcuVKPPLII6ipqcH//d//5f8PGaDEohGAIAKypFonRVpgc9cUYFREREREREREREQ9Y1AGaceOHZt1myeffDL174svvli1fuPGjfjzn/8MAJgxYwY+/PBDeDweAMDMmTNxzjnn4LjjjsOKFStw11134bLLLsP+++vUWqUMgiCi6IAfIbDhAdW6eOdWBmmJiIiIiIiIiGhA4Rx8DZIk4d///jcAoLi4GF//+tdV29xzzz2IxWIAgPvvvz8VoE0qKirC/fffDwCIxWK4++67e3jUA0vp4fei/Nh/q5bHO7cUYDREREREREREREQ9h0FaDe+88w7q6uoAAOeddx6Kiooy1suyjFdeeQUAMGnSJBxxxBGaj3PEEUfggAMOAAC88sorkGW5B0c9sAiCCM+4C+GsPTljedzHIC0REREREREREQ0sDNJqeOKJJ1L/1ip1sHXrVtTX1wMAjjvuOMPHSq6vq6vDtm3b8jfIQcJenFmaIsZMWiIiIiIiIiIiGmAGZU1aIz6fDy+99BIAYPTo0ZgzZ45qm3Xr1qX+PWnSJMPHS1+/fv16U/Vw0+3atctwfUNDg6XH629sJeMybrPcARERERERERERDTQM0iq88MIL8Pv9AIDvfOc7EARBtU164HTkyJGGjzdq1KjUv3fu3Gl5POn3H4wYpCUiIiIiIiIiooGO5Q4UspU6AIDOzs7Uv4uLiw0fz+v1pv7t8/m6ObrBx16sCNIGdkKWogUaDRERERERERERUf4xkzbNrl278P777wNINP2aOHGi5nahUCj1b6fTafiYLpcr9e9gMGh5TNmybxsaGjBr1izLj9tfKDNpIUuI+3bAXjq+MAMiIiIiIiIiIiLKMwZp0zz11FOQJAkAcMkll+hu53a7U/+ORCKGjxkOh1P/9ng8lseUrZzCQCe6KiA4yyFH2lLL4r4tDNISEREREREREdGAwXIHaZ588kkAiezXCy64QHe7kpKS1L+zlTBI1rcFspdGIG3KbNoY69ISEREREREREdEAwiDtPitWrMC6desAAGeddRYqKip0t03Pbk1vIqYlvVzBYG8ClitVXVoGaYmIiIiIiIiIaABhkHaf9IZhRqUOAGDKlCmpf2/YsMFw2/T1kydPznF0g5syk5ZBWiIiIiIiIiIiGkgYpAUQjUbxzDPPAABqampw+umnG24/duxY1NbWAgA++OADw20//PBDAMCIESMwZsyY7g92EFKVO/AxSEtERERERERERAMHg7QAFixYgMbGRgDAhRdeCLvduJ+aIAiYO3cugESm7JIlSzS3W7JkSSqTdu7cuRAEIY+jHjzsxWMybkv+ndobEhERERERERER9UMM0iKz1MHFF19s6j7XXnstbDYbAODqq69GMBjMWB8MBnH11VcDAOx2O6699tr8DHYQEpyZ9YGlaGeBRkJERERERERERJR/gz5I29raitdeew0AMHXqVEyfPt3U/SZOnIjrrrsOQKLp2OzZs/Hss89ixYoVePbZZzF79mysWLECAHDddddhwoQJPfMHDAKCoyRzQTwEWYoWZjBERERERERERER5ZjyvfxB49tlnEQ6HAZjPok26/fbbsXfvXjz66KNYuXIlvvWtb6m2ufzyy3HbbbflZayDlagM0gKQo50QXJUFGA0REREREREREVF+DfpM2ieffBIAYLPZcNFFF1m6ryiKmDdvHubPn4+5c+eitrYWTqcTtbW1mDt3Ll5//XU88sgjEMVB/zJ3iyqTFix5QEREREREREREA8egz6RdvHhxtx/jjDPOwBlnnJGH0ZAWwV6sWtb4/BgAgGfC5bB5R8E7+acQXeW9OzAiIiIiIiIiIqI8GPRBWur7BNEGwV4EORZQrQtumgcACNe/heozuh9wJyIiIiIiIiIi6m2ch0/9guAoM1wf3fsxYp1be2k0RERERERERERE+cMgLfULtqIRWbeRQnt7YSRERERERERERET5xSAt9Qu24v2ybyRFe34gREREREREREREecYgLfULNm/2IK3MIC0REREREREREfVDDNJSvyCaCNIyk5aIiIiIiIiIiPojBmmpX2AmLRERERERERERDVQM0lK/wJq0REREREREREQ0UDFIS/2CvXhs1m1kmUFaIiIiIiIiIiLqfxikpX5BdFfDNeoc440EW+8MhoiIiIiIiIiIKI8YpKV+o2LOf1F21D/h2f97muvlmL93B0RERERERERERJQHDNJSvyHYXCiaeAXKj35Mc70c6ejlEREREREREREREXUfg7Q0YMhRBmmJiIiIiIiIiKj/sRd6AET5IjFIS0RE/Ywky3h0jQ8LdwThsQs4aT8PThjlRm0xD9GIekNnRMKCrQE4bAJOH1MEt10o9JDIQEsojje3BeF1JN4vh43vFxERDRw8A6ABg5m0RETU3zz8RSfe3xUCAARjMl7dEsA7O4J48MQqeOyc8ETUk2RZxq1L27C9IwYA2NQaxfUzyws7KNIlyTJ++3ErmoISAGCXL44fHVJa4FERERHlD4/+qV8SPcNVy1iTloiI+ptkgDZdICbj872RAoyGaHDZ3hFLBWgB4NO9EUTicgFHREa+aIykArQA8IHG/pOIiKg/Y5CW+qXSGXeplknRzgKMhIiIKP/q/PFCD4FowGsNS6plMYlB2r6qKcT3i4iIBjYGaalf8oy/CK5R52QsY7kDIiIaKMpdPEQj6mla1UwZ8uu7nBq7xVCM7xgREQ0cPAOgfsu937kZtxmkJSKigSLMKddEPU8jSsuvXt/l0mgSFmCQloiIBhAGaanfEpyZjQIkBmmJiGiACDPwQFQQEqfP91l2UStIqy6BQERE1F/ZCz0AolyJjswgbbxjEzqW/wKRPR/BOeQouMddCGf1zAKNjoiISN+uzphm07CkZzf6cWStCzUeG/60oh2rGiO48qASFNkFbGqLYtYwFyZVOg2foyUUx5vbgih2ijh9jEczwEE0mGl9I7p7feSrtigW14cwptSOY0e4IQj83uWLVvw8uO8N80Ul/HFZG75qi+GaaaU4ariLrz0REfU7DNJSvyUogrQA4F/7VwBAtGkZ/BseRM25G2AvGdvbQyMiItLli0r4zeLWrCUNbv64FTZBSDU3+sfqrgaZ87cG8adjKjG6VPtQLi7JuGlxK5r3Ndqp64zhh4eofzeJBjNBI0zbnUTa3f4Ybv64NVUyIRIHTh7tyf0BKUNMVr85wWhi2eVvNaWW3beyA8WOMhxS4+q1sREREeUDyx1QvyU4Sow3kCIIbn6idwZDRERk0uK6kKmasx0RWbP7fNIzX/p0161sjKQCtADwnkHWLtFgpZVoGepGUdon1/syatrO3xrI+bFILRmQTeeLSqj3xVTL//Jpe28MiYiIKK8YpKV+S1nuQEtkz6JeGAkREZF5X7ZG8/I4n+2N6K7bE4irlskaWWhEg5nWZPjWkPq7Y9aKPZnfyQZ/7o9FalqvZ2tYQkdEfTErzJeeiIj6IQZpqd9SNg7TYise0/MDISIisqDI3vOHXxpN0BFlfx2iDFqXLVpC/KL0VfV+dcZsa0jSLFsBAJFuZEUTEREVAoO01G8Jdm/WbURXdS+MhIiIyLxYL3SPt2nM4zZTYoFoMNFKLm8K5hakDfAqSI+r96nTY1tCkmbZCgDYpVEGgYiIqC9jkJb6LUHI/vGV46zBR0REfUu7xtTcXEk6JQy0MmkZpCXKpPX9acmx3MH2TnVAsMrNU618iUmyZhmX1rCkGWwHgG3tDNISEVH/ot0SmGigYJCWiIj6GK36iblqD0uocNsylsmyjA/q1L9/wZi1IK0sy1hcH8bW9igOH+7GxApHt8ZK1NdoJb8alTvY1hHFR3VhjCqxYXatGy9u8uOFrwI4pMaJVY36NaKp+/YG4tC6zrSxNYrF9drH+1qBcyIior6MQVoa0OR4sNBDICIiytAezl+QtimoDtK+tjWIDS3q5mT/Xu/Dr2eVm37s93aG8PDqTgDAgm1B/PnYStQW89CRBo5/b/CpljXrZNK2hOK4cXErYvu+vg+u6kyt0wvQRnuhtMlg8e5O/cSLN7drH+9v62CQloiI+hfOwaEBTQruKfQQiIiIMvii+QvctGkEfJ9arw48AcBKi5l+yQAtAMRl4I1tvPBJA0uDX6PGqU5N2v9u9KcCtGaxTG3+vLolYPk+ezTeXyIior6MQVrq18pmzzNcH2leAVmvUBUREVEB5DO5Tq8mbU9Y28zp3DRwRHVqNPtjMkIa0diNrers9Gx4CFpYvdGkkYiIKJ8YpKV+rWjCZYbr5XAz4r5tvTMYIiIiE/J58bA3QxClTh420sChV9YgsU4dpM0l3if36jeUlCyW4SYiIio4Hm1Tv+eonmW4Ptq8opdGQkRElF0+4wY9lamnlUlY6uJhIw0cjTplDQDtIG0uWZnMpC0sZtISEVF/w6Nt6v9E427T0ablvTQQIiKi3mW15KXZLF6tDvclDh420sDRFNTPpG3RWJdbJi0VktUawkRERIXGFr3U7wmC8cfYv+YuACKKJl0Fe/Ho3hkUERGRQlMwjre2B/PbTMhiFOjPn7ZjVLEdNhEIx4ETRrlRW6z+HdUK0i7cEcT5B3hZ9oAGhEaDIK1WJq3WsmwYpDWvKRjHK5sD+Lg+hBP38+CscUXd3tfISNTtFgUhP4MkIiLqYTzKpv4vSyYtAPjX3Inm12ZBjrPpCRER9b6YJOPGxa14ZbP1DuVGrIaNVuyJ4KXNATy/KYBXtwTwm8WtCGhEjVt1AlLfX9jEhpw0IDQZljvIDOBGdJqMZcOvijnJ/eNb24PwRWW8sjmA25e25emx8/IwREREvYJBWur3XLUnm9pOCu1FeNfrPTwaIiIitWW7w2gL5z9a0N2AaTAmY+GOoGp5S1g/y3Bze6xbz0nUF7QaNA5rU1yk+KgulNNzSHIik5OMfdKg3j9u64hht7/7+5pwjgF2IiKiQmCQlvq9okk/guiuSd0uPeJvEItqNbeN+3f01rCIiIhSdnUaBxtsOc7GVYYfcmmUs7lNPTa9TFrAeJo4UX8Riul/V4KKdTt9uQULZQABg+ehBL39YygtwFpkz20n2RlhKi0REfUfrElL/Z7oKEb1OV8gtP052Er2h3vk6QjXvYVw4BX1tp5hBRghERGRvuNHuXHG2CJUu0UsqguhxCliUqUDy3aHIcnAv9b5dO+rTNLTqiWbjVZg1+hxcp36TdSXGCTSqoK0ZpJhv75/Edx2Af/Z4M9Y7otIKGbTPUN6uxQBXYFZj13ICHifOtqDN7erZwEotYUl1BZ3e4hERES9gkFaGhBsRcPgnXx16rajeibCO9VBWsHBozQiIupbzhxbhFEliUOyU8cUpZaftu/fH+wKYVuHdqaZMrZh1LFej1ain9FU8AgTaWkAMJoGH8rhQsQpoz2ocNvw3EZ/RnPAzoiMYd5cRjh4xHWi4OnLfdHMbYZ5baYeu4OZtERE1I/wsi4NSM7qGdorZJ5ZEhFR7zOa8ZxtEq9RKQRlEmyzQTMkPXGtTFqD+rmRHEoqEPU1RkFaZSatGa59X1Rl1qxPozEfZYrrvETJpl/RuKx6v0pMZie390AtcCIiop7CIC0NSI4q7SBtaMfLvTsQIiIa1Da2RvHEuk4sNJiWG8syl9pMvdqYJGPh9iAeWNVhdYiqALIky4Y1aVnugPqzmCTj1S0Bw0Z+bWEJa5sjqdt6mezp3PtqppY4M7+wvgi/L9noXfdJZtJ2agS6la+zHmbSEhFRf8IgLQ1IortKc3lw06MI7Zzfy6MhIqLBaFdnDDd/3Ir5W4OGzYMCUeMgjijqByOSwY3/bQ7gkTWdOY1TWZO2MyLr1ogEgDAbIVE/9siaTjy1Xr/Oc9IflrRhS3sUzcE41rdEs24vCtqZtFoBRsqkW+5g30v31jb1RS6v6Uxa7q+IiKj/YJCWBixH9SzN5YEND/TySIiIaDD69wafqmaslgq38eGYUSwiJsmQZRnPbvTrb5SFchpxtswzxmipP3tvZ8j0tv9a58PTX1r7bimDh34GabPSy86P7ruA9NLmgGqd3eRZLMtNEBFRf8IgLQ1YJTPu0lwernujl0dCRESD0Wd7I1m3mVLpwHCvcR/XSrd+g5xATMZOX/fqrbcpShtk62Tv5NEjDTB6ueobWqL4bG/Y0mM5FV/XGGOEWSmbgiUZlVZxGMwwSMfqLERE1J/wMJsGLNewYzWXi+6aXh4JERGRthtmlWfdpsajf7jmi0pY1agfDD5upBs3H1GOWq8NQ4u0H6czKrPOLA1qEyoc8Ni1g37+LOVIlOyK4KGynAip6WW7RgyuP7nMFOtGosY2ERFRf8EgLQ1ogktdm9ZeNqUAIyEiIlJzmgg01Hj0M2l9ERlfNOpn+h1d68aBVU7cPacK9x1fjaNrXZrbtYTMZ+My5EEDzfgyO8rylCKunIbP2fbZdeo0VwsbBLjNB2lzGhIREVFBMEhLA5ocblYtE70jCjASIiKi3NQU6QdpW0LGTY28jsxAhl68ojlkPpLEmAf1V7JOVuW4MjvKXHkK0gqKTFpmcmbl06mDbdSk0MwFLoDlDoiIqH8xLoI2iOzYsQPz5s3D/PnzsX37dnR2dqKmpgZjxozB8ccfj/PPPx9Tp07Vvf+CBQvwj3/8A8uXL0djYyNqamowc+ZMXHnllTj99NN78S+hbMJ1bxZ6CDSAyPEI/OvvQ3jnqxA9w+Ee/XW4R50N/7p7Icd8KJp8DWyeIYUeJhH1spUW61gaMcqkXdNs3HW+WJEdqJdV9vdVHThxPw9m17rx3CbjRknKRmN9jSzL+GBXCH//ojO17PbZFdi/3FHAUVG+rdgTxr/WdqLYKeKSKcWYVOnU3VaSZbz4VQDP6TTYG1fmQKkzP99ZZaM/1qTVt7QhhPUtUfh1grFPrPchorPTUtb+1RNnKi0REfUjDNICuP/++3HDDTfA7888cNu1axd27dqFjz76CB0dHbjnnntU95UkCVdeeSXmzZuXsbyurg51dXV4+eWXccUVV+Dhhx+GKDJxuS+Qw80I7/5Qt2YtkRXtn/wQwa8eS90ObXs2Y31w2/OoOXc9BMFcxgcR9X+7/THcsbw963Zm9wpV7tyPH5SZtHrxisaghGe+9OMZE53sX98axCVTSnIeU09bsSeSEaAFgBsXt+Kp02rgMJl9R33bp3vCuGtF4ju2Nyjhd5+04c5jKjCmVDsQ/7JBgBYAaottpjMzs2FNWnOWNIRw92cdWbfT2yeJOsdVNiEze5YvPxER9SeDPmp422234ZprroHf78fEiRNx11134f3338fKlSvx9ttv46677sJRRx2lG2C98cYbUwHaadOm4emnn8ayZcvw9NNPY9q0aQCARx55BDfddFOv/U3UxV55qObyjuU/692B0ICVHqDVEu/4EtHGT3ppNETUF/xxWfYALQAcpVMfVslmsou5liJFM6TJlfnJJu3Lgac/f6r9+j+6tlNzOfU/89ao38sn1vl0t3/WIEALJAJ+zm58z9Ipa9Iyk1bboxrvYT4o93l9eFdFRESkMqgzad955x389re/BQBcfPHFeOSRR+BwZJ68nHjiifjlL3+JSETdOXnjxo3485//DACYMWMGPvzwQ3g8HgDAzJkzcc455+C4447DihUrcNddd+Gyyy7D/vvv38N/FaXzTrkW7R99T7U81vxZ7w+GBq14oL7QQyCiXrQ7YK4J17cOKDb9mN86wGsqyzXdCaPcqmyzE/bz4OXNAbSFuxc56quBD6NO7iv3qo/lqH/SqqG8NkvpDz0/OaQUAOCymw/S1nhENAa7xnDu/kVpa83VgR7s2nWahZlxaI1+aQu3XUBntOuxjfYJREREfc2gzaSVJAlXXXUVAOCQQw7BvHnzVAHadE6n+mDgnnvuQSwWA5AomZAM0CYVFRXh/vvvBwDEYjHcfffd+Ro+mVS0/yVwjTit0MOgQU4QBvX1MCLS8MejKzDEoCGY0tfGF+GXh5Xh5P08htvNHOrE7FoXfnxICb5/kLokgcsm4M5jKrvdJKmvBml3deoHyPt6LV0qjGNGugEkvhtm/e6ICnz7AC8mltvx02mluGCiN7VOOQufMcL8O22M/n5QWW6CX3siIupPBm2Q9q233sKmTZsAAL/61a9gt1sLosiyjFdeeQUAMGnSJBxxxBGa2x1xxBE44IADAACvvPKKbldZ6jmuUWcXegg02InmAzFENPBVukWMK7NWdkAQBMwc5sLXMjL21C6bWoJrppXh2JEe3ZqN5S4R38jyONnIfTQ/cEOrfrZswKBTPA1cRsfeU9LKfzgslDvw2AV8bX8vbp1diaNq3Rl159WPws9dvhUru7OlUZZiYZCWiIj6k0EbpH3uuecAJE56zjrrrNTylpYWbNq0CS0tLYb337p1K+rrE1OYjzvuOMNtk+vr6uqwbdu2boyaciGI5mr+ERER9YaRxblfuHEbTMm2CYkArBlegyCHGX31mvOGltymvNPAFTaoPpKeze6y8rW0UL62j35V+rUSp/4boAzK9tWsfyIiIi2Ddg7ukiVLAABjxoxBSUkJ/vOf/+CPf/wj1qxZk9pm4sSJ+P73v4+rr74aLldmoG/dunWpf0+aNMnwudLXr1+/HmPHjjU9zl27dhmub2hoMP1Yg5ZNO0jbvvRaeMZ+C84h2lnQ1LsaA3G8uT2IFXvCmDbEiZP386C2uO/uomRZRvsnPzC3bTzcw6Mh6l9CMQnztwYRics4dYwHle7+lW0eict4fWsAobiM08cUZZQOMNNQa0Q39m0egynZFW5RN3tWyevoXpMkSQbe2RFEnS+Go2rd+LIlitawhJNHezDUQhmHfMsWpJVlOSPrkQaWC+bvBQBcP6MMhw1NHP8FDDp3ZQZp8xN5zfYor2z24z8bEvWl/3ZCFao9/Wv/1xcYZdLGFfvgvlyTVpZldH76K/jX3JVaVjT5GpTOuAuCTb/uLhERDVx9NwLSgyRJwoYNGwAA1dXV+OlPf4r77rtPtd3GjRtx3XXX4aWXXsL8+fNRXl6eWpcePB05cqTh840aNSr17507d1oaa/p9KTeCza25PLD+XgS+fBA1X1sHeykbuhVSTJJx4+KWVBOJhq1BvLsjhL+fWIWibmZ79ZT2T36A4MZ/mtpWjod6eDRE/cu9Kzvw2b4mTiv2hPGnYyphy1Nn9d7wt1UdWNKQuPiytCGMvx5XmQr8PbI6e8fy7gRpjV6nKgvB7iJlC3qLXt4cwKtbAgCA+VuDqeXv7wziwROr4bQS8MqTxkBcs6FUund3hnBilrq+1LcFotmb3v1pRTt+PbMM04a4EIjqB+mGpAVIrXxmja7FGNWk/bg+lArQAsCP323G02fUmL64QokgeJHBRSZlVZO+XO7At+rWjAAtAATW3wc50oryY54o0KiIiKiQ+mb0o4e1t7dDkhIHeKtXr8Z9992H4cOH46mnnkJLSwsCgQA++OCDVJ3Zjz/+GJdddlnGY3R2dp2EFRcbd2f2eruaCfh8vnz9GWSSoJNJCwCQogjXLei9wZCmpbvDqi6/obiMhTuCOvcoPLMBWgCQo/zeEyWFYnIqQAsAu3xxrGnWryPaFyUDtABQ749jTVpX+fd2Zb8oM7KkZzLnzJY6ALqfSZsM0Cp1RmV80VSY93OXL5Z1m0fXZg+iU9/2xDpzv6n/3HfBpNMgqFvl6frOjCoxf/HEaeErnH50c+/KDtX6T/f0r/1fPnSnR0exQ0gFtWu96jcivc4w0LfLHfg+/53m8uDmJ3t5JERE1FcMyiCt3991BTsUCqGoqAjvvfceLrroIlRUVMDj8eDYY4/Fu+++i0MOOQQA8NJLL2Hp0qUZ90tyOo2no6SXSggGrQWddu7cafjfsmXLLD3eYKSXSZsUbVreSyMhPbv92gXjtndkP+HuD6TQ3kIPgajP2BNQf9+/aOzfQYp6E8HBdCN7qJSLleRYKwFdo07qWgq17w6ZSJkzmPlO/cSyPeZKCCWzqpuD+m96erOw/csdmFiRvaHfUbUuuLuZiZ6uwT8wjnWs6E52a7Gz67X/3oHqRJljRmQe9/flcgdERERKg7Lcgdud+eN9xRVX4IADDlBt5/F4cPvtt6caiz377LM4/PDDVY8RiRifXIbDXQeTHo+1E51spRTIhCyNwwRnRS8NhPS4daYY9qPZz4ak0J5CD4Goz9AK0n7Z2r+bPfkNplMreewCSpw9c43cyi7TSibt/uUOAOYvMitrQvaWSF+e10x5Y+X7BgDNIYPOYQo3HV6Oi99oVC1/+KRqfLonDLsIHF1rfPHf6qHLYPzY6l0smVTpwI2zynHrklZsbNMOXhen7bsOqXHh1qMq8N+NPtR67fjGBC+2dmT+nvTV11eW+vfvHhER9YxBmUlbUlKScfuUU07R3fbEE0+E3Z6IZS9f3pVxmf4Y2UoYpGfuZiuNQPlnWO4AgBxp652BkC6XTrdywfKpTt8kBRmkJUrarZE19lVbDH4TdSb7qoCyCKKB4RrTc/PFSllLK82zih2CpWZg2erC9pSQ4n2ocg/Kw1xSaDLIpFV+DVw2AQdXq7Npy10iTtzPg+NGerLWzzaqSavFTLPBgSau86IcXeuG0ybg1tmV0CsRrLzINbHCgZsOr8BlU0tQ5hJhU7wBffXljfu2F3oIRETUBw3Ko1eXy4WamprUbaPmXG63G9XV1QCAxsauK+vpGa7pTcS0pDcLYyOwAhCMP+YSg7QF59I54RkofTTiDNISpezWyKSVAaxr7r9ZRb59AWYz02q1aijmT8/sNIsdIkqc5h+7xULmYj5FFE/r1rkASINLU9Da59HKBQwzknsFvTqs8f57fSpnepm0pWn7Gb1GbsVZGsoqDyn1AsKFFu/cbLi+O3V7iYio/xqUQVoAOPDAA1P/jseND96S65MZtQAwZcqU1L83bNhgeP/09ZMnT7Y0TsoH44NtOdKal2eRZRmLdoXw1Hofvmrrv8GGXMU6t6Jjxa/hX3cv5Li1+pJ6UxH76tRVKdJuafvo3o/QufJmSOGWHhoRUf+xR6cG9eo8NJsKRCX8cVkbLpi/F29rNB7c2RnDU+t9WLg9iJgkQ5ZlvLcziB++3YTbl7blvO/27Wt8aCZjq7aH6tECPRWiBUqcAkotlGgoWCat4jfDMwCCtLIsIbDpMXQsvw7R5s8LPZx+Kb1RoZLWcUZ3T470PnVBnYz7cF9N9bRoY2sUT6zrxOL6kGGAUZb1G8OWptXK1ovFFme5YKSM7Urd2B1FW1ejfcnV2Pv8OHSsuB5xf13uD6YQyxKkhdz3o/fbOxK/qe/sCLL2LxFRngzKmrQAcOyxx+L9998HAGzZsgXTpk3T3K6jowNNTU0AgBEjRqSWjx07FrW1taivr8cHH3xg+Fwffvhh6v5jxozp/uDJkmxT5vOVSfv2jhAeWZPoJPz61gD+elwlhnkHx1dMjoXQ9NpMyOFmAECscwvKDr/X1H3jkoynv/RrrvukIYxr8zXIPGp9Z67l+/hW3YrwrgWoPpuN6mhw06pJCwBf5CFI+9P3m9GxL2D6z9WdcIjAcSMTteB9EQk3Lm5FeF9Qpi0swW0X8NT6RMmi1nAEXzRFcO8c6/vu5fsaGZm5rlRb3DfKHQCJYJKZ0+pEJq2FIG1QgizLec9IzCaseAPsA6CwuX/dvehc/vPEv9ffhyHf2AKbd0SWe1FSa5as7vaIOhDW3Y+N8rgz+ans0HguQF2moz+q88Vw88et+/7WIGJSSWrfq/TuzhCe26h93FeWtp9J7suVsmfSKsodGG6tLx7ci+b5R0COBQAA/jV3IbTjFdR8bS0EsfvH99kyaSHHAfTkzIvuaQ9LuGlxC5If646IhHP39xZ2UEREA8CgzaT9xje+kfr3Sy+9pLvdSy+9lLoafMwxx6SWC4KAuXMTgZoNGzZgyZIlmvdfsmRJKpN27ty5vX7CQoBYNNxwvWwxK1JPMkALJE7U394Rysvj9gehnf9LBWgBILD+PtP3/TxLV/doH8umjYcaEdljfGFGT7R5BaItq/I8IqL+Q5Zl3fqQDf54t2oztoUl1Un9g6u69stLd4czgnjPb/KnArTpXt9q3CDLKFvITMOs8WXZu8fnyuoRxkn7mWtmWuQQMpr1ZBOKywgXoOKBMiuyTCOwrFfnsq9KBmgBAFIE/i8fLNxg+qGXNwcM19d41EGwKVXObj2nMsib3GfoNTxT1lDtj57e4Mu44PPYWv1+Hf9Y3am7rsJEHels+yJVuYMcf1dC259PBWhTj9WxEeGdr+b0eEqxjizlDuJ9+zzi4/oQ0q87PKOTcEFERNYM2iDtwQcfjNNPPx0A8PTTT+Odd95RbbN7927cdNNNAACn04lLL700Y/21114Lmy1xcHf11VcjGMw8sQsGg7j66qsBJEolXHvttfn+M8gEW1EtnMNP1F0vxXrmoOLLlu5nhfUX8c6vVMvkeNjUfbPVitPLPCmU7jYByzq9jWgAC8eNMze7c00mW4B3a7t2p3Cltc3G++6AQWf5bLGAGUOdGGKhAZeeX88s01xudXr/2eOLsm5zwig3REGwHEhSlh7oDTFFAL3SLaLak3moG5eBzj72u2JFdM/iQg+h4Mx+EitcIr5s0S9hMqbUjvFl6ozIk/bzoCxt2v33plhr+qtshhrelymr942wD4CzseV7MvebeqUdjBw53AWPiRcj235OuTbXPVFM56J6ePd7OT5ipmyZtFJob16ep6ds71D/prLkARFR9w2Aw4Lc3XPPPSgvL4ckSTjrrLNwww03YNGiRVixYgUefPBBzJw5M9UU7NZbb80odwAAEydOxHXXXQcAWLFiBWbPno1nn30WK1aswLPPPovZs2djxYoVAIDrrrsOEyZM6N0/kFIqT3odxdNuhb3yUHinXpexTs5DkFbrKn2lRnbGQCW6h6iWxQPm6na5sqQ1aU1FLCQp1Jh9IwMyG9XRIBbS6xazT64ZTwCQLT5Z5TF3yOPNMpU22SRMi15c8oqpJfjBQSW4dpp2cNWqQ2u0M/2KLGS7AsDQIhvuPq4SZ471YFSJ+jdrxlAnvn9QCQDrU8Czvdc9QfmUdlHAX46tUm2nFVzoi7TqegrO0gKMpO+QZNl00M0uapcA+c6kYlwxtQS3HFmuOcPNbRdw1zGVuPTAYvx6ZhlOH5v9YkbG/RXHNdkuWBTigkZf9KNDzH22sx035isx2Vaqfd4Wa1vf7ceWZRlx3xbDbaTg7m4/T08aqtEEs1FnpgwREZk3OApm6pg4cSJeffVVnHfeedizZw/uuOMO3HHHHRnbCIKAG2+8Eddff73mY9x+++3Yu3cvHn30UaxcuRLf+ta3VNtcfvnluO2223rkbyBzBJsTJYfchJJDbkK0dS38a+7qWhkPQZYlCELu1yy0mqRUmZiyNVAINvWU2bh/F+wl47LeN9vBdke4bx3wdTezIV81kIn6o2CWYER3vu3ZwhxmY4bZptLqTVkG9LuIHz/Kndf6qIIg4KBqB1Y3ZWYJFuWQkldbbMfFU0rQEorjqneaM9bNHOpK1Xe0HKQtRCatIshvFxIBt3FldmxJy6Te2hHD1OruTWnvDbJGs0nRkZ9Af38Vt7CTiEnan9tjRrpR7jL+rpS5RJw2xlpwNsmtuGKUrDmrl2SorKU8kBllWprdxygzlbPJ9dXVOrYFgFh794O0UnC3qpSCUryPB2m1agPX+2IYmofZIkREg9ngiSLpOProo7F27Vr87ne/wyGHHILS0lK43W6MHTsWl156KT799FPceuutuvcXRRHz5s3D/PnzMXfuXNTW1sLpdKK2thZz587F66+/jkceeQSiOOhf6j5DsKuL2mc7UMpGa8p+tmysgUSW1NODJf9OU/d19LtM2u4FaeVwa55GQtT/ZGuQ050u3NlOxM0GQrLtu/06f0M0LuuWO+iJipNjStW1bb0WM2nTaU0hTn/NrGfSFiJIm3nbtm/QY0ozcxK2tetPge9L4sEG1TLBYW3q/UCjLGlhJCLJmt+9nq5LbDWTNjwAGoeZZXSRy+zbonx9sz1OzjPwJe39hBSog6yzzqysTcPQ9zNptdT7C1CMnIhogBnUmbRJVVVVuOWWW3DLLbfk/BhnnHEGzjjjjPwNinqMYFdnRsixAGDxxGdrexS//kg/4DaQ6jKF6xci+NUTiLatgXv0efBOuRaCzY3AxocR920HZHVkJR7YZeqxs71MT6734cjhbjj7SLeX7takjQfr8zSSnhMPNSKw7j4Idg+KJv8UooPdevNJkmU8usaHhTuCOHOsBxdNKk4Fkwa6bHUKc91vtoWlrE1LzAYNP6wL4YyxHozVafC1rkm7Zu3yPWGML9e+T0/0BRpdoj6EK7KYYZZOa1ZDenCpRWPGiJFCZAeqMmn3xdtVQVqL5Q4+3RPGI2s64XUIuHxqCSZX9k4WrqQRpJWl/lGqQUmSZby/M4R6fxzHjHBjdGlupyBWMmn9URmb2tSvV48HaRXfw46IjGc2+LCfzt88mDJp2/MwOypruQPF7bgMPLXehxNGuVFbbO5zJ4Wa0PHZDbrrY+1fwlEx1fAx5FgI/vX3QQq3wDv5x7B5R3Xd30SQtmPFdZBCjSia+H1E9ixCtPkzuMd8E+H6hfCtvAme8d9F2dH/KlhTaq3f6wYfg7RERN3FIC0NOtqZtNbq0vqikmGAFsjeQKa/iOxZhJa3Tknd9rV8jmjTctjLp8C/+o+694ubzKTVmx6c1BmR8dAXHbgmT7UcuyvezUza4KZHUT57Xp5Gk3+yLKPljRMQa1sDAIg0LkPliS8XdlADzONrEwFaAJi/NQhREPCdyYMjOy5bMCKXWIUsy/j9J626GTxftkRxQKUDIQvRnRsXt+L+46tQpagt3hyM4yWdbvH3ruzATw7tvXqhozUaHnXnd0fUONFPz/CzGtgsSCat4intqUzazOB5vT+OSFw2dfHvsz1h/GlFOwCgJQTc8kkb/nRMZc5BRiu0pjvL8e7N/CmU17YE8O8NiWOtN7YF8MDxVSh3W58Wna1BoBlan/V80sr01NtvAP2/Jq2Vi2v5mB2V9e3TWP/qlgDe2h7EgydWaU7TTyfLMprfPAGIh3S3ibZ8njVI2/7JDxDc/AQAILTtWdR8fSMEMbEvMpNJi3gIvlV/gG/VH1KL/Gv/nPp3cPOTkOMRVMx5Jvtj9QCtr2KDv39eRCIi6ksGz3xson0Eu7rGlNVyB68ZHGwnGU3p6k/al/xEtSy88xXDAC1gfpqWmbjJ4vqwqcfqDVJQP0hrK51o6jH6ciZUtGlZKkALJN7rvjze/ujN7cGM269u6Z9Bl1x0ZDlBzyX+sr0jZjjF8pE1HQCs7ZPjMvDvDT7V8g/r9E/aAeCBzzs0l/dESKhWo2nLMI1l3ZEeiJxd67Z030IEngKKpm7OfUe5o0szXxdJBvYEzGV8/W2V+j39x2rt9znftH5vujubo1CSAVoAiErAwh3G3yU9+Yj951C62RJlJm02nZH+fbyo1ztAK3jbajEjX0up0/gNdOjMTAnHZSzYmv33Nta2DrHW1cbbtK4xXA8gFaAFgLhvG0LbXui6bTKRIZvQtmfz8ji50PrU7jW5XyUiIn0M0tKgIwgiYMs82bSaSbuhNXstqp2dAyOwFWv9Iqf7yXFzgdWIyahMtI9kmhjVpK0+8xOI7iFZH0OOqoM/fUW8c6tqmRwPamxJ+dQaGhwnNg1Z6tXlcvqebRr+js64qe2UljSo92Gb26zXIZxa5eiR6ah2UcBpY7ouOu5XYldN67fqvAldM02GFomYMdSVuj1rmEuzbq0es43a8mm3IkBQvS8T2m0XVWP3Rc0N0KcR3P9KYwp9T5A1Gk3GWlZBHgDllL7K4bsEaGfS7qdR+sNIPpv4aclWM1VpbyCR2d1ftegGadXLjC6OKHeTF01Sz3w7uNqJyiwZ2EOLbLr1uc3MCJCj7Vm3iXd+ZfwYGhe3I3s+SP1b2UTWO/VXWZ+zr9F6fzsHSIIKEVEhsdwBDUqC3Qs5bRqT1UxaM9M4d3bGIMtywWpFFZosmQzSmjwxCcblrE3GeoNWkNZeeSgqT34DoqsS1eesQmjrM4iH9sC/+g7Nx5CjHYCrvIdHmhutJnCJms0lBRjN4LGhJYojawd+R+T6LPXq4jmk0poNtrVYDIRr7ZpqLHatnj7Eietm9FyplkumFGNiuQO+qIRjRri7/Xtz3oQi7FdiQ1tYwuxad0at5CFFNvzf7Ao8urYTq5vUAbbhXltGED4f09Kt8EclVUbi8LTM4mKHkFETubuzXXxRKeu06e6SouqMXSncBClQD5t3RI8+dz5pZVRaCfin0/pe3nJkOT6uDyMYkzIydrXcPrsip+e1wmomrYzEBQarwea+Qu8CmNUgrdI5472o9thw78rE9+DCSV6cMUbdV0LJLgqYPsSFRVlmPugRnOVZt4l1ZAnSalyMj/u2d61XBGltRbUomf5HdBrUwe1rtK4VBWMyYpLc4xdCiIgGMmbS0qCkbB5mNZPWzDTOzqiMtjw0SOi3TGfSmnu4QtQ31KIM0ladvgg156yEzTMUAGArGgbvgdfCM+5C/ccwkaVRMBrBdTnGTNqetr6lf3Sb766smbQ5fM3N7GcjcRkdeZhSXGWhhubMoS78amZ5j9a/FAUBs0e4ceqYIhTlIWAoCAIOH554vGKNKcW1xXbN+sljSu2o8WRubzJ2njfKz5aARGA5SRlQ9XWzNuaGXvjOyhHt34poy+c9/tz5pDUdvkgn0zEbZYa2AMDrEHHyaA9O2E9dzipdmVPAOI1azvlmFwXLzcnqfP139pXeBTCt4PyeLL8BSkfVuvHsmUPw7JlDMHe81/TF+lnDXNk30iEI2T8j8c6vDDPa5Vin+j7+riCtpPhuC84y2ErGWRhl4UmaBQ+0Zx8QEZF5DNLSoKRsHma1EYfZTrzbB0jJg1yYLXdgtoxBoBBzZxXkWBByNPPAW6+8gWDTr98oR3qnnmEutN43ljvoeWZKqPR3kixjd5amIrkEac10C2/N8YKZMhvUbOBFAHDBAeqpugNBtUcdqNbKnIr2cibtbkXwZ0iRmDEm5fTn7mbSrmtWzzrIN61MWqD/BWm1psNbLQmQpGw2ml5fVq8WadKhQ1w93jQsyWo2bV2WWQZ9WUvQfCatsiRJTzm42gmt61b5evflmN+wPrQU1QjS+ranArvKkgqiowyCo381ENXbxXf3AhgR0WDXP+fVEHWTKpM2qp9J2xaW8OtFLWgNS7jx8HJsbI2arm34x2XtmD7EieFeGw6qdmLakNyv7GcjhZrgX38fINjgnXItRGfPTbE1w3S5A5Mn8sE+kEkb1yh1oB+k1c/o0Tvx7guUQWgAQDeDtBtbo1jSEMK4Mgdm17oGbAmQaFzGG9uC6IxKOGW0RxXM2u2PYeF27ddyR0cM/qiENU0RbGqLYcZQJyZVOntj2D2qwR/DvZ91YEdnDBdNKs6aOf+/LX784KBSS6VNzGTSNgdzCwzsDcRRW9x1qGQ27nj0CBdG9dOpy9l4NYJP4bisCpA986Ufp43xwNPTXZr2UWbSDvNmvv7KzOAn1vtQ5BAwZ6R+mQijTLn5W4M4b4I3LxnMSeH6dxDc/CSiLZ/DPepsxDs2am7nW3kTXLUnw1kzK2/P3ZO0ypxEcvhK+iISnlY09LOlvXfZ3opDa3pvn+q2CZYuBDy30Y+3tgXw61nlGFfm6MGR5YcvKuH1fU24dupkAfujMl7e7MMrJprt5pvbLuCQGidW7FFeTMnf8UfLO2eieOqv4Bl7PmKdWxD48mHYvCNRdMBVCG1/SbW9HPNDCuyCzTtKVZNWcJYBQv8qeaS3ezRbgoiIiLQNzDMIoixEk5m0sizjB283pW7fvrTN8nN9tjdxgDh/axA3HV6Og6rzf5IgyzJa3jkb0cYlAIDI7vdRddp7eX8eS8yWOzBbk7YPTJ9S1aMVnYkDay02/YC83IeDtMoTB8B6zeZ09b4Ybv64dd+kuCCiUgmOH2U8JbW/emRNJ97flaiB91FdCPcdX5XK5AvFZPzmo1b4dS42yAD+tc6HD/bd/7UtAdxxdAXG9IOTdT3BmIRr329J3X5ifWZwxW0TEJfljGnxi+rCsIud+OHBpaafx0yQ1mrTsKQ9yiCtyfulN+AaaLQCmpG4DK1Y7F8+bcdNh/d8DVAAqiztYYr6wVqNhB76ohP+qIyzxmnXucx2UeH3S9pw5zGV1gaqI7J3CVreOil129e6ynD75tdno+brX8LeD6ZI3/+5+jfP7AXadLcva8OW9sz3Of1zly1L9uBeDNK6csgUbo/IuOGjVtx/fFVGqY6+6E/L2/Fllhkgf1rRjh0FnFE2a5hLFaTVKsGQq1jzZ2j74ALI0U50rLgOcqQVABDc8jSijZ9o3ifaugZi0UhVKRPRWQ7I/Su4qTdaZW1wIiKyhuUOaHBSZDnqBaHyXSfyfz2UTRBrW5MK0AKJIK0Uau6R5zJLqwGVFrO1ZvtCJq0cbsm4LbqqdDOwRLv+tDWt5mN9hVYAuTvlDl7eHMioWvbkenUzjYEiGaAFgOaQlNG05N2dQd0AbdIHafeX0f9fq/d3GjdtGea1aU5Pfi/L/ZTMBGnNlETQ0qSYxmum1M3sWpcqi3OgqXRnHj7OGeXRrNG6uima82tvlTIQP1QR5CrRSbM0+p5lm7a7rSOGzjxN7fWt+r21O8gxBDc/lZfn7kl677/ZslFJDf6YKkALwFKDop5u9Jau3mLt1XRvbuv9zFMrGgPxrAFaAJYDtPmeY3OYxuw1M7M0ZNnauNs/viIVoAWgG6AFgFj7+kSAVlbU0HaWQ3TXWHreQpN0LrT4mUlLRNQtDNLSoCQIyo++9oFGtiY3Vn3R1DM17GItX6iWaU3Nz4Wyfq955k7AlLUijx/l1uz6HOgLQVplloOoH4gR7B64x35bc122rsCFJEvqE6/uNA77uD4z4NbdOpD9yeq07/uODuvZRGua+3ed2mwn8W6boFsSwGytagBozxIkc9mEnOujKmvS7s1ST7HKLWo21hpovjel62902QScMtqjm62cryBmNsr3yqX4HSl3WT/kNdMAx2qwUfdx6t6wfp/6N/Py3D1JWUM2tdzid9Knk52njLmdMVZ7psZ5E7Szpfuivl6jfE8P1JU9fpR+2ZFcaTU/9JgJ0mrMKMqXeOdWxP07VMttRbWwFe8H59BjUsvc4y6EYHDBv9D0du194HCdiKhfG9ipHkR6lEFanSlG+Tr56mmx9vWqZVKoEcDkPDx6jq+ByWlbrYoT+wnlDswdX5QxTRown3HbszLHIGTJ+yg/5gkEa09Bx7JrMmq96tUZ7BMkdTCxO5m0vdw7qGC0aldmXOQZmGV4DWXr9WcTgf3LHZrB3M6ohEpb9um+MUlWTa0sc4kZ2XulTgG5JvYo/wZlc6oqt4gzxxYhLstw2wVMH+JCpbtvT1POh8OHu/G7I0Rs7YjhsCFOVHtscIjaJ+25TGvPhfLnWhmLqdJoeJaNmYwwsyV7eoKteEzBntssvV2f1V6gNp0YuzKT9ruTi7GuOYptigtjRw7Xb+bZ13h7MeM3F4051vjWMrXKgeNGunH0iJ55f86b4MXzm7r6Tmg1sVPSKvuUL3HfVsT92zOWiZ5hEPaVyKo4aQGCW56CILrgGfstNDYehHinwYV9sed6XWSjd45k5SIrERGpMUhLg5TitEEn06O/BGm1Oj0ngrTdI8tS7vVIzQZpFQfMlW4Rw712HDHchSUNXXVtg1bP6HqCxVpmgmhH0YTvQbC50PbhhanlsT4cpJVlrUza3Kdear1ikbgMZ46dvfsqrY9nekBvYP215uhl0CXZRQEHVGjX3O2MyKg0cc7eoREVvGRKMe5b2VW2IyJZz9pLUmbgKjuTXz61BIcNLdxJciFNqXJiSlVXjU+HKGgGZKO91LQ+W5BWWaLBDDOZtIUM0gr9oNGQ3quTbf+gpPc5Ur7PoiDg+FFuPLY2s4xFL/Wvywut+sl9yZ48zTI7f6IX3+jh+t1DizLfeDNNJOVwa9ZtchXv3IK4LzNIa/OOTv1bdHjhPeAHXbc9Q42DtLkmUuSB3jlSn8ipICLqx/rRIQtRPikPgLWPKHoiezPUA8HGHgvSdmOau2ziwDEuyap6dRX7pqQqSx70hXIHauZOpOylEzNux33bIJtsrNbreiGTVhmYHwi0ptMHYnKqSUkup9x9+zQ9u2z7T5sATNQN0pr7jCjr0YqCOhgXics5nzTG0gJJwZik2l8p654OZnadCy+9l0mb+Tw2RYalUZBWr5mQqUzaPOzOpHBbjvfruWBST7N6KKT3OdKqSevW+CxaqV1baN4+HlFWXqzKlbK5X09QZtA3m2giKUV0vleqUmnWxXxb1UHa4tE6WwOie4jxA0oRzZk8vUHvApWy9AwREVnDTFoanEzWpO2JTNp7PuvAkbUuHDsiP/W3pFATpECdannwq8fgnfRD3fuF6xcitPM1xNrWwVE9A95JP4LNOypjGznm17m3CSYyaVtCkuqVT04VLlIEaQvZOCzc8B7CO/+H4Jb/ZK4w+f7ZSidkLpAlxDq3wFFuvRyFFPUjsP5+SLFOeCddjWjTUkT2fAjXyDMBWUa4bgGcQ4+Fe79zTD+mLEsIbvkPYu3rEW1aplof+PIf6Fjy44xl1XNXw1Ex1fBxW0LaJ3ItobhhcEuOR+Bffz+kcDO8k34Mm3eEib+iZ+0NxPH8Jj+W7Q7jnHFFOGtcUSobWJZlvLVdO5Dd4I9jXXMU71hshgUk9kqf7Qljej/L1IxJMv63OYB1WRov2gQBJRo1AwHzQVplHdQyp6jqqh6MyYbZjk6dafoA8MKmACJx4LChTlUtQwHo8x3Ye5PeDO3emPoqyTJ2dmbub5RxOqOatIGYjGKN7EW9OqjpXtsSwLXTSyF24/c87tuW0/2UwaSYbzsCXz4E0VkOR9UMhOteh6PqMIR2vY7Qln+jeNptKD74N6ljj9CuBYg0vAMIdvjX3AkA8Ox/KVy1pyCy5wNEdn8A1+hz4T3gRwjteBFxfx2KDvgB7CVjc/5bU2PVeWnXNUfw2d4IJlY4MGtY175P7zusFc9U1iMGAI1FfdaW9u7VpG0JxXH1e82IScD9x1eh3CViwbYAgjEZp40pyqk+c7p81aQd6u2FIK3i4kwwJiMQlVBkUFJCN0hrcoaYoXgI/rV/zlhkFKS1eYZmf0wpCtic2bfLM91MWgZpiYi6hUFaGqQyj9ZVDaH26YkmRysbI1jZGEkdLHdXtGWV9vKmZYj7dsBWvJ9qXXj3h2h565TU7UjD2wh+9TiGfHMHBLErs02Odae7fPbX7r7PO1TLip2J90aZSVuoIG2kaQVa3jxBZ625sz7RWQrRMwxScHdqWbxjY05B2vbFlyK07TkAgP+L/0st96/9a9q//4KKE/8H96izTT1mYP0D6Fj2U931sVb1Z6zplYMw9CIfRIf+VMWr3mnWXK6sQ6zUvuRHCG6aBwAIbn4SQ87bBkEsXDAsEpfx60Ut8O/7DD670Y/tnTH8bHoZAOC1LUE8/aX2BY0/LW/vVtbRnSvaccPMMhyq0aW6r/rH6k58sCt7UDoZXCl1CuhQBMO0yhhoPtcXmfsQt12AUyNj7k2dIDoAeBwiIgbZ3a9uCeC1LQF8bXzm/rrKIw64sh3dofdS9EYm7bsaF0FsiqCpURA1EJVRrJHUbSaTdunuMF78KoDzujFtO+7bmtP90jvKy7EQWt48yXBqtG/lTRCdpfBOvhrh+oVoffsM1TbBrx5D8KvHUrdjX6zP+K0JbPwHhp5fB8Gu3aBLNUadt18rkLOlPYo/LGlLHT38fHopDt9XS1av+Z9W8FUrk1bsR5m0m9tj2NUZw0idxopGZFnO+O29+r1mHDnchU/2lY9a0hDGX4+r7NZFhbwFaXvhIpdWjfCWkHGQticbh2mxedXH6UlZM2kByFIYQgGCtHoXTnKtAU9ERAl9ez4NUQ9JD0QC+tO5rdZMs0JZLy1Xcd8W3XV7Xxivubzz01+rlknB3QhteyFjWbcyaTWmzStt1GgYlDxxcNvV2Q+F0L74Cv2VFk5ylCUPYh2bLI9FjodTAdps2hZdYvpxg9uetTwWAAhu/KfuOqPpd8op6qrH3RegBQApsAuhna9YH1wefbArlArQJi1pCKf+xvSmJEpGAdoZQ82dVD24Sn0xoy8zE6AFuoK0p4xWX6wye4GsXRHcbfDHLQdOZ9dmD4DLAF7anFmbmaUOMs3QyfjujZq0/1zdqVpmZca4XjBW+b3X89zGbvxWAogH6nO7n28b5HgEABDYNC9L7cqEjqXXAMjy22ZAjrQisOlR09vrxei1svCeWOfLuLx7T1ptab2sPYfG9324Roam1sWbvmzeGvVn2ozN7epjr0/S6vs3+ONY05R7pm4oJhvun6s95r94Wtnr+ea0CSh1Zj5PtiCzFNH+zXUMOSpv40pnFKR1Dj0m+wPs2wf0Nr3j8r7R6JeIqP9ikJYGJZt3ZMZtvamGuRxmlDh790TAsKmTrB0ojTZ+orlc2dBKjuZ+4tmtAC+0yh0U5tK8VhZpLpQlD3JpHhbvNJ9tJetN19MQ3fux5bEAQLT1C/11Bm+X1YC7lb+7J9T5dL5H+/7GUI7TuUcWm8uSUgYiB4pkpuPZ49QZed2ZIW+lMbrXIeAb++eWAZlLI6qB7Oxx2jNDejqTVq8pXIXG+/PDg0s0t1XWGk7qrWCDHM+tOaMcCyDatBRAIkhrRdy/I6fnBIBY+3rT2+oFVzs0XvP1ihIp6W9tQCcwqHWxZJjXjoOruy6CHTncBXcv1zv48SHan7V0RiPKVi5GT7aLoADQ4M9+EV1PIMux2IFV5i4+njOuKC8lv8yoVfzW7ujM9vdr/43u0ecBNhMdLS0S3dW665zDT4S9cprh/WWpMD0OfDoHenqlroiIyByeYdCgZCvOrKemFwTSOykw0tvZGnLceq1LXYpavd0JtMqxgG4ZCTP6QrmD7M0Ycs+kjbdbD9LGOjdbvk+hGNVzDlidC5eHZh09IdfgLJA4ge/jvWF6XPLvd9tFTKnMnN2g18jJzDYOE/vgMaV2fG9KMe46phLFOnVxsynL8X4DVYXGtGJAf0psvtTpdJqv1hjP8aM8uGFWmWp5u055DeV3fHyZ/oUVM59ZPUZNOsuPeQplRz+OoRf5UHbUI6r14fq3IcsSYi0rc35+yyzsk/WC9J1R2VLtSr3moXoXu66fUYYrDyrBVQeX4OpDS00/T74cO9KD62eUYWSxDSOLtb8bw3qgJquZo5LuHE9lm+Wwf7n+dyR5Ae2n00rx7Um5lwexar8Si0Favd+WykNRfeYSuEd/I19DAwAIzgr9dYKAqtM/RMlhd8JeeSjslYeqtpELlEmrLFOUZKY5GxER6WNNWhqUbCXjMm7HO7VLBhgFk44d4caHdeoAaW93EM4pSCvYNbNshTwGaQEZciwIwaBmqZG+EKRNryGrrTvlDnLJpM0+ldUqWYoj8Xfk9/U1CtJafS+Vn8vepveVDsVklOZYBm5ihcPSiUwwJsEzwKK66TURlVmpZuJ6WhfRbIK5ae6H1Dhx+tju1QQvd7HcgRk9nUm7VafJkldnKvWhNS4cVO3A6rQp32YzaY+sdWNzu3apIl9UVk2rNstoRoxn/EWpfxdNvByx9g0ZjYfCDW/DZbL+eP6Y/zuNspHbwxKqPOa+R3q/GyNKtO/vsAk4cT9zdXN7ymFDXThsqAuRuIzvvtGoWr9fiR0NOhcZgMSF4p7INu1Ohni25IWxpRrFnQFcOMmLueN7LzCbThWk7ciWSavzNwoiHJWHoHTWPQhtf0F7G8372QBZ/30WDYK0ACA6ilF80PUoPuh6yFIUu59QHHgUIJM2Gpd1v5PNQWbSmhWJRODz+eD3+xGJRCBJDHAT9QeiKMLpdMLr9aK4uBhOZ37rgjNIS4OSMpNWCu2BHAtAsGeetOtlbgD6J4BWptrmQy5BWsFRojMdPp9B2n331wnSZss6UgZpjd6LnhJrXW28gYWTJ1tZZpBWCjZAinZCdGSfEpkaT4e1IK0sxSCIxrt5OdqO3AO0+vczOgm0/F4WOEir9y4bBaKNFNkFDC2ywW7h87PHH8eYsoEVpE1vDmZTRMLNxPW0plpWe0RTF8qUr2QulynKXP2rxmWh9HQTma0aNTgBGAa3lFnQukFaxXdcqyFVUkdYQmmO2dV6dfG1uGpPygjSRhuXIrTlPzk9b66sXDgz2k+2KYK0Rt9DvYvmo0yWjSkkvTrZo0vtWLpbP8DWEZEt72fM7Du7MwskW7kDrTIjAHL+buTDKEUgv8EfR0yS9X8rdI9PE9uLnmGWnl90VUEK7TVYbxykzRyC+vMuS72fSdtpsGNvj8iIxGU21jQgyzKamprQ1NRU6KEQUY6SF1n27NmDmpoaVFVV5e3Cat8/siHqAfaSsaplsc6tcFQcmLq9oSWCXT79q8HKmqlJZqbaJikPYuL+Ovg3PADRVQXv5GtMdWvNFkiUIu0QnZnTO0VHKeIaQdpw3RsoPrirqVh3g7Txjo3wr7sboqsa3slXZ/w9yw1OTACgSKNxmOFBdQ+IZgvSWsmkLRkP5SlovOMriFXqWmNx/y74N/wNonsIvJN/AkF0INK0HIEND5h+PgCQQk0QPUPQvvhyBL96HMWH/h4lh96M0M75iOx+D64Rp6ouWORCkmW8syOE3f4Yjh/lwcgSu2EgNj37Ilz/NoKbn0K05XO4x3wT7hGnadyj67OwYk8Y65ojOHSIK6PmYD50hCXctqwN2ztiuH5GGQ7b1whJ7wf3kdWduGhyseXnGea1QRAES+UOdgfiGFOmnaHUl2QvEdIlPdtG+bU207TRp5HRVeoUYea8UPmWumyC5cAFM2nNeW6jH2eO9fRYJvgWnSCtkTKXIkirV+5AsR8zqmvaofMYZlgJ0jqGHA2ITiAZmJHj8K+729LzBQyaPpphVI883Wd7wnh0rX4DrJaQhPT2plrfwAvm74VdBMaVap+y9Jfa0NUeEU3BzM+IMsNTqcEfQ5nL2u+cmb3Ygm1BHDHchUmV1n9Ds2XSFutkKhQySKt8neMy8J8NPnx3crHO77v23yjHEln02S5+K4nuasMgrWDL3rwyta0gAKIrI3u26ZWDAQAVJ/4P7l7IqpdkGS9uMq6j3RKKY5iXYQY9DQ0NaG9vz1gmCAJsNh5XEPUH8Xg845ynsbERkUgEtbW1eXl87j1pUBLsRRDdQyGF9qSWxX1dQdqdnTH87pM2w8co0jkQtZJJe//nHfjFYYkAqizF0PT6kZD8OwEAsbZ1KD/auIOyFO1EeNd8w23inVshVh2asUzQyd6M7PkA4bo34RpxamJMloO0mUHI5gVdXWlj7etQPjvR2GR1UwR//cy4Y73WyfA/VnfiR4f0Xm25rJm0Fgg2F2zFozOa1MU6NsKhCNLKUhRNr82CFGwAkAh0ew/8OVreOMHyc0qhPehY/nOEtj4NAPB9/jtEm5alPjP+tX9ByYw/Gz2EKS9/FcCz+7qbv7U9iAdPrMZvP9ZvXJYM4Eb2foKWt05B8jPja10F38qb1HcQEgetK/eGcdeKxEHt/K1B/P7I8pxOMrXIsozvv92V0fCnFe249agKTKxw6DbH2NAaNfw79SQv8Fi54JCtG3VfYSXMmV7uQRlYjZuId2m9Lx67YOoqtnILlw2w2utEGegjfX/9tB03Hm4hW8wkSZaxLevUZTVVkFYnkzas+CAaZtJ2J0hr1ABUQXR44RxyFCK738/5+do/vjLn+wJApOFdxP07YfOO0t3m88Yw7lzRrrseAO7/vB1PnDYEgPHsmpgEbGyznjHdl+xXYkdTMDPjcbRO4Dlptz+OSZXWnsfshbJbPmnDncdUZh2DUraZMHrXrgpZrafIIaqC5PO3BlHjsemUvdH+G6WgfqDViOiqyul+VrW+cw4qT3sfrmHH9ejzvLApgIU7jC8sNQUlDCtMdYs+LxQKZQRoq6qqUFpaCpfL1W/2Z0SDnSzLCIfD6OjoQHNzMwCgvb0dVVVVcLnMX3jTwzMMGrRsxWMybsf9u1L/fvmr7MFJj13ApIrMzLYxpXZMH2r+i7lsdzh1QB3a8VIqQAsAwa8ey3r/oIkpjvFgvWqZXpAWyDx5M2pmokVw6GcVBjd1BZwf/kI7QDtjaFfATVnuAAA+2JXHJmkmZK0ba3Eavq10QsZtrYZ1oW3PpwK0ABD48iH4Vt2ayuCwIh6oSwVok5RB/c4Vv7T8uEnJOmrJAC0ARCTghU3G35/ktNXAl3+HqbCenKgd+dzGzMd9ar3110TPVo1Az99XJT6nlXkOxh09ItEd2spJa3Owf9Qps9Ik6ujari7ZyoC1mccJamR0HWQyu1pUPF/yPbGiLMf6o4PRF01RdHYjiKmnLSxpTqefPsT4c1Cu+E63hbU/b8psba3fJb1tLbFYtsg5/MTcnytPfKtuM1z/2Jrs++dw2oWRDS3atYWN1PZA462ecviwzGNDp5jIrjXSmENtT9FkkEdGbr+hfoNp7ieOcusGmYYWFfa90iqL8fg67b9f1qkfay/dP/Vv0V1j+rkFu/UZN4YMatB2Lv9Ffp9Lw/NZjvEAoNnqVc9BpK2tLfXvIUOGYMiQIXC79b87RNT3CIIAt9ud+g4ntbZaT97RwiAtDVrKGlDpQbC1zdlPFpw2ARdPKU4FWmwCcPnUEpw62oMSCyfvyfPLWOsa0/dJirWtz76RRlaF0cFl3L8j7Zb5k+rSmXdDLBphattGnYDTd9KmjveFUlbZGocJorUsTuXrLkXaVNvEOjaplgU3P2npeZLivu053c8svTponzca10dLljsIbnve1PMks1c2K6Y1b9LJrMqFVhZc/b6GLiOyTEm1osIl4qjaZJDWQmmUHm6+lC/K6bxJymCKyybghP26AqPKGqGtOpmN6aIar8mpYxJZUV6DYBoAVYOnueO9hgE4LY6+sJPqR4yCO7nSqn0tALhkinFQRFWTVuP7H4hKqk72VR4Rv55ZptoWAOLd+I7q7UvLjnxYc7ldccGvECJ7PzJcv9ti9n9LDh3he3NmTXcdPcKN4Wn7wTPGFkEUBJwzTr+BofLzZ4aViyFfNFmvZaqXSesUga9P0E+dLPTU92qTDeoA7QQFe/lUOIYclbpdfux/YKbkVdHka2Dz7qe7vnTWPabHZUa0+dO8Pp5Stn4SSXrHAgQEAl0zJ8rLyws3ECLKi/Tvcfr3uztY7oAGLcGeeTApR7uCtMVOAa1ZmqXaRWB8uQO3z67A+uYoDqh0YNy+mpF3HVOJJQ1htEckFDtEPGmQrRCTEo+VS6ak6DYzhUrjgMpkBqhy2pytZDy8k6+Bo+YI2IrHwL/+XkSbVsA7+Wq4R52FcN0biLdvMPXYWoanHcTrXVCWZNl0pkh3yLKMeFpGqxbLQVpFB1/t5m35E/epM3WzKZ72B0TqFyKyZ1HWbaMtn2suz9bZN3mSZy/d31RJiXhaWZKeYjSNOee+avt8c6IXo0vs2BuM4+haN1y2ZLkD848R7Uajl96klfn12CnVAIBFdSHsDsRR7bHh0BpnxvddWVfSXJA28/bQIjH12s47pRrfel3dTT2pQjEnt8wl4s/HVmLp7jBGl9gRisv43+YAvmzVv2BnY9aLJT2QSKuZcX33nMqsASFluYOOsKT6bdEKMlS7bRjuteO6GWWp0itJ3bqOImV+zsSikSg76p9wj9Sq0Q2I7qHdeDJjrpFnZi2j1BOsNhn69gFeTKjo+3W6k+yigNtnV2BRXQhlLhFH7Mus/fYkL8aW2XHvSvUMI71SO0aacsi+tUJZk3ZksQ0njPJgxjCXbiC0og+UhinXqV0sy7I6g1FRfsRWMg5VZyzOaJjnqj0JVWd+gmjjUthKxiLu24aOpdeoHr901t3wr9WuGe0YMhveKT+1+JcUVpuJ32aAmbRG4vHEa2O321mDlmgAsNlssNlsiMfjqe93dzFIS4OWcvpRepA00fjA+EuWbBA2ptSBMaWZJwoV7sw6V4vrQ7rNTRINcgTIUfX0Ic2DxzSi00yxMo0zRym3DER7+VR4p3QdhJZOvz1zPMX62QLZeB2Zf6deIDYSB9y9sOeSox3Zp6CaaOyWThmklTSDtPkLxqXXvzXLOWQ2bEWjTAVpYy2rIMvqA/ZswZhQTIYky7CVmAvSSgHjYHk+GAX+u/uOlDgEzBymLoNitxDk64EkxB6hDGyNK7On6ncns1y1KDuCt5g4wYspomKV7rQu8VleW616stUeG85M22+XOETc/In+hZRC1ljsj8JZalnm9JiKj4nHLmQE//Uo338ZgC8io9TV9blRXnCocImp7OkZQxONC9MzEbvz58mKIG3xgb/QDdACgOjpuSCtZ9x3zAVpDTLqrDQQTLJ6yWNynuqR9yavQ8Rpiv2gKAg4qtatGaTNJZN2bw9nMAZimY9/2FAXzjTIBgaMG+71FmWJkyR/VEaxYmaFHM8M0noP/AVEpzpr21lzOJw1h6duawVpBUHUzXwvURxD9wd7TWbI95cSTURE+ZDvciU8xaBBS1k/Nb1JVrEj+xfNygn6GIPGDMnjXUkrk1YyLrugzAY2TafelsaGiic0fl1s3tG5jQfqWn96z2S1A3uuzAQGBdFaYXBBUWJDCmsEgDSCnrnSqnlrSBDhqJ5lutaaHPMh3vGV5XHJAMJxGYLNXB3QeFqtZqVAnqKXyoBfuhziDRmKdbpaW8qk7SflDpSBrRqTU0zTA6wA0BmRs2YPK2IFlpo2msnsqspSL5LVDqwJ9sC+O6z4XrhMvilanebbFFeXlMGIGkVNTeVTmZ0GrEn5Wy8aZ4jaejBIKzjLTW0nG1y+yqU+r5V61gBQZOI4rb/z5ZB+nksdWyuUgeMiEwHYvrCv1AvStmhkhiob+Qk24yB0Nsp+BEmOykO79biFYDpIy0xaIqKcMUhLg5ZRuQOvibN9h4V6kkZB2mTwJf35k/a+MA7h+rdVy2O+7ej49Aa0L74063N3LL8OUUW2ol5ThNR9lv0M4YZ3YTWH0FacPUir1eQFUE8313t59e4vhVvRufJ36Fx5M+Ih/WnOZsWz1KMFkPVEWrW54uS3p8sdRJtXWNreXnEIREcxRJf5dtJ6JQ+yCURlw+YX6eL+HZq1JwHg3pUdmL8lkBFkXdccwY2LW3DB/L34ybtNWLg9qBtA+aIxgifXdWL5Hv2xSN3MpVVmiSdZqUlrFETuK75ojOCVzZknt9ka4yQpM2kB4O9fdOB3n7TiH6s78Ple9fujDFxbeT21MmlVY3KJuheLRKH/dJXvK4I9kA7+UV3mbAed6yEqdlFQXYxtVwRr1jRn1uusUXyWbYrniufw50WaVqB9yU8Q2fNhxnIhy2+L4CwHhJ6ZJqv8ndKlU0cXyF7yJt3bOxL7Z6t1t80EB/u7ZLBbkmW8tzOIp9b7sKXd+OJ9T5Q7kGMh+NbejY4Vv4Y/nFmv1UywvDdKVGWjF6Rt1QgmxhQXnwV794K09uKxmstFp3Z962xE9xDD9R0rfoVY55acHtvIV21R/G1Vp6ltzWTSylIcnStvQcPjAtoWXaIKjhMRDVYsd0CDljKTNj2TVS+oks5KkHZsmf4J1xPrfPj5YWUZmbypMQXq0PLWyag6/SM4h84GkJgW2fz6UZAC9aaeO97xJZrnH4Ga87bBlsyQlI3LHfjX3QP/untUy7M1JDBqjpD0t8/VU/oA9XQ4vZdXL1jX8s7ZiO5dDAAI1y9E1RkfdyuIImWpRwsAgmhtF9rb5Q6scu5riiE4SkzfJ9qyEi7bHNW042yCMRlFcXNBWjnSqtnYC0g0Kfu8MYIGfxxXHFSCre1R/H5JW2p9Y1DCI2s64YtKOHf/zAsz61si+L9lbT3+iuuVNbCWSZunwfSQtc0R3L6sTbXcbCat1y7AKWaWylhcn/h8bGiJ4p0dIdx4eDkOru6a4qzcFVgJ0pqpf2kTBVS4Rc2GRoMgPpR3+Z4F8UlDCB/sygzSWpnqXeYS4Yt27bjSg7ThuIwVezKDkEMUn2Vl4Mnqnxfr2Izm+Udq/x5nC9IKooUZMdYIGtO6tRjNcGi20ATsn6s70RGWLGfGDoZM2mSzvTe2BfGvdb59/w7gnjlVmvVfY5LcI9PMO1b8EoENfwMA+CrPBmxdmaFeEz9kfTmTVlljVZbikKOZ9aa7G6QV7OZmDZklFo2AFNqru96/5k8IbnoUQ765M2/Pvdsfw42LzScWBGIyAlEpVe5Ii2/VrfCt+j0AILj5CcSDu1F1ypvdHisRUX/HTFoatER7ZiBKCjV1rTMR3LMSYNmvRD9QsXR3IhAhhZt0t2n76OLUv6NNy00HaJPkWADh7S+lbhudXBmRstwvW5A2Foum/l4lZSat3juglUkb9+9KBWgBINq4BLGWVYZjySYe2JV9I4uZTIIqSNtm6f49zVlzJADAVjTC9H3inVtQ7rKe0RWMyao6jEaydYZfuCOR3fOfDdoN+J75Un0R5OWvAqYCtN0NkA4p0n59jC70eBVRQL0M8r5C7+KL2Y7agiBoZtOme/iLzOdQXrBRngtOH9L9mpXVOmOyEhCmBL0LbLm6X6OGpxXKkhcN/q5g6fs71d3dqzzG5Q6sZrt3fvYb/QumFmdp5JPNPQS2knHZtysaqbtO68KGkWc3+hG0+PkwbPY4QHRGE/XbkwFaIPF7tKhOu15+W7i78z7UZFlOBWgBIIDMi51mguXT8rAv7i6zQdrQjpdU25gN0torDs647Rx+Qte/hx6Tsc479TpTj6nFM+a8rNtI4SaEd7+f83Mo/Xej+hgqm2wXa5IB2qRI/VuQ4/oZ+kREgwWDtDRo2Uoypx/FOzal/m2mNpqVk3S3XcTxI42vZsf9O/TXpU1bkoL6V8+BRFdoLdHmzwAAsc4tGX9rPonuasP1HR362anKTFq9LFitaeux9g2qZeHd7xqOJZt4x2YTW1nbhYqKmrRypE3VeMsoi9VRPcvS81llr0ycYIiuCtgrDjF3Jzmum/VsJC7LpuvvCvYi01lqXzTpB36VzWw+bzR3MqCcBp3NUbVdtYoPrnboBmmNggzDizPvky1IXWh6J2Pjy81nmxdnKTOjbErWpkjfVp6Enz9Ru2b3xVOKNZdrGV+uHSwzUy5hMPr6/vrBjHxX7OjudQtlGaINLV37jrXN6v2IU/E1Vv5mWc0UjjTo/0YJQmEmurlGngnRXY3Swx9AtlZeymOodJ051FK1up8daOVGvnWAen8lyeogIgBsatX+nfPl8DuR7eKCclZRQMw8jtEqD/bDg0vS1gtZG4v1Brso4DiN43BlQ8NY6xrVNmZr0pbOurfr4r3oQumse1LriiZf3bWhzQPvZHWTMbO8U35mart4x5c5P4fS6qbsx0uligZsVsqeJMX92y3fh4hooGG5Axq0bKUTM25LoT2QIu0QnWWmaqNZaVIDAN8/qARTqhya9ZykcAvkcIupxxHsHt11nvEXQ46HENr2X9W6ZGZMeNcCkyO2TrB7ExlAOhmSLe0NALRP7JSNw/RovTWxdvWBaKThHeDAn5t6TC2xThMNsQSLQVpFJi1kCXK0E0JGXTLtx7R590PVae8juPlJxAP1iLWthhwLwl4xFYKtCIKjGI6Kg9Cx/OeIta2zNK4ke8n+qX9Xn70cu59QZ78IjlLI0fQMNtlUYy2vQ8hoOJJ4H9UnlDVf3wTfqj8guPnJrmeQpbwEeDqjcsZJRIlDQKdBg5vkZ9JK8OCACgd+ckgpDqkOIS4Dx4zQvzhjlIE0otiOr9q6sux8kb6dSatlaJGoaghmxEwt8HStisBwheK5xpY5cNcxlXhlsx8f7Sud8PPppTh8uPnpnwdVO7Fgmzqr0kzjscHo/IlejC61oy0s4Y1tQTT4u07S+1pZ5UmVTry2teu93dgaRUySYRcFU0FGZU1Uq5mghjMJ8plJK7o06387qg8HIKFk+u2I+3YAkOEZ/10AgHvk6ag64yNEm1bANeJUxAN16FxxfUbJo7jBjJ7OHIKFWsHIweRr44swotiOv3yaOdU+/XcgaahXe7+qbOplRiAmq4Jr6WJt61P/jsCNqJB5DFqicd/jR3lQ5bahzhfD4cNdWS/A9ZYfHFSCj+pCGRd4lA0N5Zj6GF1wmGvS6xo+B1VnfoJo4xI4h58IR/mU1DrPmG9CPPVdRJs/g3u/r8Hm1c9Ez0aweyA4K7L2NVAmAXSHmf13lduGjkjX59Uok1aKaM+EiHVshl2n0RrlVyQSwQsvvIAFCxZg2bJlaGxsREdHB8rKyjB69GjMmjUL3/jGN3DCCSdAFPvGd5hosGCQlgYte8n4RJAt7SAm1rERzuqZqkxat01QZclYqUkLJOobHjvSoxmkDTarr9wrSZEOiM5SyJJ+PVnXiNMQbVquszYx/nDdGxlLRc8wSGaaZJkgCAJEZ4Vuray2jkboBWnNNpbQDNJ2bFQti+z+AHI8AsGW2zQ7ZbZx+TFPoW3RdzKWCRaDtFpds6Vwa0bzCCncrHlfe/mBEOweFB1wpeFziGuGAzkEaQVXZcYFAEF0wFY8FnHf1oztvAf+Ar7Pf5e6LcsyZMH46H1okQ2BWObBuiQDyuhu6eH3wV66P7xTrs0I0kKWutc5fZ/GQDyjq3u5W0RnVD/TI/mc7RaywgQh8V2fM0r/YkqSUeObEcpM2lhi2mtfaMBi1qRKa989M7XA0ymnVFdqBE73K7Xj6mlluHqapYdOmVzpgCio9zvZSjMMVoIg4Ih9QfCVeyN9PEibGQiNSMCW9hgmVjg0g4wRxa5ClUlrtZyDrB+kzdY4TPtONs06tWVHPIDg5idVzcmqz1pi+HDOIUel6pTbyw4AZv4VLW8cl1ov+fVLAuWSSds6yIO0giBg1jAXhhbZsCfQ9T5qZTDqTd335fC6+6NSxu+iUqy9K0irzKIF9GdAHFzjxME1hS9zkM4mCjhltCfjwpvye5te+izJbCYtADirZ8JZPVNznWv48XANP970YxlxVByMyJ4PDLeR8tBEN8nMIVi1R8TWtNirURO7eKBOe3mnmVls1F0vvvgifvGLX2Dbtm2qdc3NzWhubsZnn32Ghx56CBMnTsRf//pXnHnmmb0/0EFuzJgx2L59Oy655BI8/vjjhR5On/P+++/j+OMT+9T33nsPc+bMKeyA8ohnGTRoCTYnbIqOq/H2RLBPWf9RK3iQz5qEvhb1dH2lVCDSIPvGVjIeok49UTkWhBwLIaIoA+AZ9x3N7XMluCp117X723XXmT3B1ToFiWtk0soxPyKNxieheuRYSFW3156WEZFiNUjrKFHVsVVmQujVJtZ8fg02z3BLYzK6n2DXyB5RBQmzZ9J6HYIquCgBGuUOktsoXtc8ZdLuVZwwZMuGTO4GlJm01R79+1nZK7hsgu72tV71NdRcsqQKaXKltUCT1WwrZVCnJwKnRQ4R+5ep3wtm0man/Gznv1pm95Q4RYxUXAzZ0JIIiGllrisv1HoUhemDMWsBMsPaizkEabUuAgKAs/ZkyHHtGqZWKGuVyzGfbjZcZw6Z/1bLHQxUVYr9mFaQVu83N5ffiGz3SS8nFRAyg7QCrF9cKzRlmSHl9zqukbTQ3cZhPUEsyn6sl88grZlvp7Jut2EmLYO0BXPrrbfiG9/4RipAe/LJJ+P+++/HO++8g08//RQLFy7EAw88gFNPPRWiKGLjxo248cYbCztookGGZxk0qNkVJQ9i++o3KTNptabhWmkcls1fd83ABsdxhtskD5Rjnfr1ZO2l+8NWVKu5To4HEdm7CHIskLZUgGfcty2P14hqSn+a9qB62nCS2cZImjVpdepuRRreBpA48b5iYSMumL8Xv/u4FYEsUzFjvq2AIqBgKxmvsaW1kxNBEFQn0pIySKtzUG0vP9DUc4ieYZbG1HU/rSCt1omJ4m+W5ayhl86IpGqyIyVSaRUPLWb+P/UcMcTi2U8RXvrKuLHFPZ914OkNvlR2R1mWhmeSnBj7+pbMCyPDdGrMAtY+EYIg6GbTKjNpgdzqDSaFYjJ+/0krLpi/N/XfuubEyX9o1wJ0LPs5QjqlUGJtG9Cx/Dr4NzwEWZYQ3PY82pdei3DDe4bPaT1Im/3VS06JDsYk1fTyyh7Kbj2oWp0NVm6hjMNgpbyOGZMSNdE7VvwK/vUPQJaM6xUmP2dtiy9Hx/LrEG3qmmqfryZkkxXZ3htaopBkGR0aGYnK4wJliR6r5Q50m4YBEETrE93EjLI5XezFoyHH9X97zdJqKKlXP9Jsve906VnXg5ky0KX1utTrvFY5lTvYd59w/UJ0LP8FQjtfy1ifnknrV2TSFmlcgO3rXBoZ8Cv2hPHUeh/WNEU0Z4L1xSCtmQvywU2PoGPFrxDzaX9PY51b0fbRZdj9VDE6P/+D4vwgIRST8eImc439lBcYPtgV0p0FpZdJG2OQtkc99thjuPnmmwEAQ4YMwfvvv4+33noLP/nJT3DCCSdg+vTpOOmkk/DjH/8Yb7zxBlatWoWTTjqpwKMmGnwYpKVBzV52QMbtWCqTNnM7reCB1XIHRrbFR+Kh8v9ik+Mo3W3i7V9CjoXQueJ63W1EVyVE9xDNdXI8qCp14KieparN212iQSZtR1g/C9jsSbfyeE+OhRDXOQAN1y/Ezs4YfvdJWyqzZ0NrFJe9pZ2tmhRX1KMV3UMgOks1trT+GVAGsaWwMkjbvUxaM9kVWmwa9zMVpEX2IG1jUFIFbCRZq17avo00MpQD257P8izAM19m7z788uYA/risDTFJzlpXWpKB336srvmmVw8wF3p1aas9NihnoHanLu2P3mnCOkWw+fdL2rBtyyK0vn0G/OvuRuvbZyBc/07GNlK4FU2vHQb/2j+jY8lVaHrlILS9/00E1t+LljdPRES3vEqizIUVZmrS/u7jVkiyrKpHC6hr0ubLVI0gbZb4PkGd6bxgqx9Nr86Af82f0LH0anR+doPufYNb/5v6nAU3PQr/2j+jaf4RiHVuAwDc/Zn+rAwrlCUPNrRE0RyUNJuSKS8kemzdDNIayNYgVItWJq29ajqAxEya7hLs6lrOTa8crFq2fLe6/m26PB46DUjVJi42fbArhJBG5nYuF/L8UQnh3R+i5a1T4F/7V7S+czZCu7qOFdNr0gaE8oz7lvSRWrNWKC+ufLY3grtWtOPVLQHcurQNW8I1qvv0xSCt2WM9/5o/ofn1oyDHM7+XciyEptdmIvjVY5Bjfvg+/x3aFl2suv/9n7fj2Y3Zj60A9QUGAHhtizrwCzCTthDq6urwk5/8BADg9XrxwQcf4LjjjBOEpk6dijfffBO//OUve2OIRLRP//t1JcojW1qjJACI+3cAUNdT0+rw3RPHpi8W/5/uurh/O0LbX8j6GNoZn4Ac9SHa/FnGMteIU/c1+3Jp3kfJzIGq6KrSXeeL6Z+dHTZUHQhRXpUH1HUN44FdUGVk7hNtWo6/f96mWi4DaAnpZ+2kn5QAgK10f83tnDnUFhMVJ9LpTbhkWdY9QDVf7iC3TFrXiDPUy0aepVqmyvCKh7OWOzh9jEd1UaMlLKnrJ6YyadUH+v6vHjN+Egt2+eJYXB8ylb2tlcU0XKMUQa60GuZ57AKcNgHFiihtrpm0kbgMv04A6ak1ezKfY82dGbf9a/+SkV2T2ZRORtsHFyKq8zpa7b5ebNC8Jml3II71LVFVk6EiuwCXMl07TyZWqPf/+5WwpH82W9ozM0U7o5nlXfxr7tK9b2Djw+qFcgz+NX9CTJJ1MzVrDEqRaDlA8d76YzK2dWhnuI5VlL1Q1aQ1ORsEyNI0DPq/40bcI8+C6B2VsaxoYqKGuXvU2ZYfL1fz1qjr7ifVeMQe+54OFFqBLi0Ld6hLWOTaOKxj6dUZy3yr/gAgUZJDCjaklgfFzGxto+aXfZWy3IHSs57fq5blVCO6h1mZNSUF6hHa8UrGstDO/0FW9EAIbX8howxLTJKxYo/5rPhqjQul/96gHeDVrUmrs5y67+6770YgkDie+8Mf/oBJkyaZup8oivjOd7RL43300Uf47ne/izFjxsDtdqO8vBzTpk3DTTfdhMZG/XIb77//fmJ2oSDg/fffhyzLmDdvHo4++mhUVVWhtLQUs2bNwpNPPplxv0gkgoceeghHHHEEKisrUVJSgtmzZ+O//1U3zE7atm1b6rmSdV2fe+45nHTSSRgyZAg8Hg8mTZqEG264AW1tbYavxZo1a3Dbbbfh1FNPxciRI+FyuVBcXIwJEybgkksuwZIlxmX2brnlltRYAKC9vR233norpk2bhvLy8tQY58yZA0EQsH17IgnpX//6V+p+yf/S669q/Y0vvvgiTjnlFAwZMgRerxeHHHII7r//fkSjXccfsizjP//5D+bMmYMhQ4agqKgI06dPx0MPPQTZRCHq9vZ2/PGPf8Ts2bNRU1MDp9OJ4cOH4+yzz8bzzz9v+BjJ8d5yyy0AgOXLl+Pb3/526nUdMWIEvvvd72L9+vWq+yb/3mQ9WgA4/vjjVa9Rf67jyyAtDWqCIjtSjocQjcvYHcgMzBw+zIVJaSdzc0a6c57idcFE/S6xDfbJuuvkeAjRNv0GY8nasvaSMXAOUwcPpXCTahqXvXQiBEEw3WW24vgXs25jKx6juy4c13/NjtdotHTVIers1agiSqs1PatrZRybO7QDW0YBumjLyozbjvKDAAAlM7qCCmJRLYrGX6L/3HoUjcxkqesAOO7blnFClOQedyFER4mph9erS5iNe8x5qmVFB/wgIzO79PD7VJna8eBuxAwKxtoE4MjhbowpzQxwrG6KQI75MpaJ9uLE/zWm7caR3wYk7+4MZTRnsWLKvmZSWqyWQSnSuEPtvkxdZY3WXDNpjcp7rLYdm3E7Ur8w43Z4t3FjknjnV4holKK4dppW5rkxs5m3TcG46kJaWQ/WiLWLAs4e13WBarjXphm4peziMPceRxre1V6+5wPDQNSVB1v73GkFmSIa+7Maj4iZQzMvZjoVwR4r11CM6tHayw+Eo2ZW1scoO7IrkC24quA98BfwjL0wtcxWNglF+18KINHwUXB0vTblc/RPaLvLqAHYdyYXGzapSmcUzP3a+L6X2ZgvJSYuVgHAzk71xQTlhbwZQ52qUkNKMUlGrPWLjGXRxk8AZF5EBoAYMvd7yu9Af6C8uKJUJ1i/QFIIgi17c9J0UUWPhliHduk0KdR14dbKhafvTSnWrdevVfIgrtd4MMsFLMqNLMv417/+BSCRRfv973+/W48nSRJ+8pOf4JhjjsFTTz2F7du3IxwOo729HZ9//jluv/12TJgwAQsXLsz6WNFoFHPnzsUVV1yBxYsXo6WlBZ2dnVi+fDkuvvhi/PSnPwUAtLa24uSTT8ZVV12FpUuXorW1FT6fDx9//DEuuOAC/N//6Sc6pbv88stx/vnn45133kFjYyNCoRC+/PJL3HHHHTjwwAOxYYN2n5j3338fBx10EH7729/irbfeQl1dHSKRCPx+P7766is88cQTOPLII3HDDfqzhNJt2rQJhx56KG6++WZ8/vnnaG/PzwwhAPjRj36Eb3zjG1i4cCEaGxsRCATwxRdf4JprrsG3vvUtxONxhMNhnH/++bjooovwwQcfoLGxEcFgECtXrsRVV12FH/zgB4bP8c4772D8+PH4zW9+g48//hhNTU2IRqPYvXs3XnvtNXzzm9/EWWedBZ/PZ/g4APDggw/iqKOOwjPPPJN6Xevr6/HUU09hxowZ+PDDD7M+xkDDVBAa1ASbYvpePIR6f1yVrTmyxIbfHF6OD3eF4LIBR49QT/sz69z9i0xPHUonx0MQdDJei6f9ASWH/DZ1u/Kk+WhacDRiaZmzUnCvaiq96E5M67J59zM1xcg14tSs29hKJ+iui8jaB3C/PbwcJRonblq1IJUnwka19owCAjaDIHu05fOM2/aqRGt474G/gL10IuL+7XCP/Zbm9M9sBEER3Ek7II3s/Ui1fdnsR+EZb765m+iwFqRwVM9E5clvadZAFB3FqJ77BUJbn4WtZDzco85EuO7NjG2kYAOiOi/DdyYVY0qVA+PLHaj3O/FJQ9d0uzVNEcSjmd8DYV8gWquucRz5DYptaInmnA1f7hIxtcqBL5rUJxNGnystWpm0o/ZlaSrLrOSaSauXRWuGHNXPiksKtn4JoDpj2YEa391saovNHZKIgoAORcDaTD3b7rhwkhfjyuzoiEg4ekTuF+kGu722/TE8rl1D3BTRBb/O9+DWoyryEjzXuuZ0x9GVqmahyv2HXka59pNoByJKZ94Nz4RLIZhoSll0wJUQvfsh3vEl3GPOh+gsRclhf4Sjajqk0B54xl0EYd9FQZt3BKrPWYnwrvmwVxwM1zDjKa75dvJ+HhxZ68KBVU7M3xrMeoGs1Cng90dW4PPGCMaU2tEckvDyV35E4jLOm+jFsd04BuvrzDZQ1LpQqPxuTKp04lsHFOPzvREcUOlArdeGyxdmHgca/axIiv1/XMjcr2eJd/ZJ2TJplUoOuzP7RgUg2MzNgEtSvpeiu1pzu3igHrZ9Gflhg2OHo2td2L/cgTe3B/GNCV4cM8KtW3+2JSShWpEhrlfuQJb0a3VT7tauXYumpsR3/5hjjkFJibnEDz2//vWv8be//Q0AMHbsWPzqV7/C9OnT4ff78b///Q8PPPAA2tvbcdZZZ2HZsmU45JBDdB/rt7/9LZYuXYqLLroIF154IYYNG4aNGzfilltuwZdffon77rsPZ599Nu6//358/PHHuOqqq3DuueeiqqoKn3/+OX7729+ivr4eN998M+bOnYsDD9Tv4fHggw9i+fLlmDVrFn72s59hwoQJ2Lt3Lx5//HH897//RX19PU499VSsWbNG9RrFYjF4vV6ceeaZOOGEEzBp0iSUlpZi7969WLt2Le677z5s374dd9xxByZOnIhLL73U8DU877zzUFdXh6uvvhrnnHMOKioqsGnTJowePRqPPfYY/H4/Tj31VNTX12Pu3Lm47bbbMu7v9WonfT300ENYunQpzjjjDFxxxRUYPXo0du7ciT/+8Y9YunQpXnzxRTz22GP44osv8Pzzz+PCCy/EhRdeiOHDh2PTpk245ZZbsGHDBvzzn//E17/+dZx22mmq51i8eDFOP/10RKNRDB06FFdffTUOOeQQ1NbWor6+Hs8++yyeeuopvP7667jkkkvwwgv6M4HffPNNLFu2DAcddBB++tOf4qCDDkIwGMRLL72Ee++9F4FAAN/97nexadMmOJ2J36ARI0Zg9erVWL58OS677DIAwKOPPoqZM2dmPPbIkeaS0PoiBmlpUFMGaeV4CLsU2QnVHjHVxfnk0dauXGs+pyDg2BFufFhnrduyHA+lTriU0gO0ACDYPSg5+Ca0vvf11DIpuBuSYmpT8iDN5t0v6/NrZedqsRsFaaGd/TLMoMbn+DI7NqdNm1VmbRp1rW6w6U/l0TuYlKJ+xNszgwiOykMBJN47937n6D6mKYppc+nTXqN7Fmesc42ai6IJxj/ySoLFIG3F8S9AdJXrrrd5hsI75ZrUbVHRmE4K7dXNpD07LdtJGXD3RWXsiI/EKGxJLUsGaQW7+nsWU5wc7ldiR4M/Zil7TSnX+9pFAUcMd2sHaa1m0moEF0cmg7R5KndgZQps8sJNkhzLHqT1N3wA4BsZy0wmy2UoM5lBJkJdkkbrIk8+iYKAo2oHbmCoJzhFQNl/q94+xVSQVnQPzcjoShJEB3w6n+d8ZTcrfxvKXKLquwio69IrZ3kYkWXtIG3RlGtMBWiT3CNPA9B1AiUIAjxjz9fc1l4yDvbJV2uu62nn7l+UmsZfYuKCissmoLbYnnHh5pgBHJhNZ/aCk1aQVvndKHYIGFViT134A4DpQ5z4bG/mlHY9yot0youlygsX/UG2TFolZYmqvkP773CNPAPhXa+rlisTMfQu6EuBrtlcRjPOzhnvxehSO04f23Wcp3fxssEfVwVpdcsaGDRUpNytWrUq9e/DDjusW4+1evVq/OUvfwGQqFm7aNEilJeXp9bPmTMHp5xyCs4880xEIhFceeWVWLp0qe7jLV26FPfcc08qYxYApk+fjjlz5mDixIno7OzEhRdeiKamJrz44ov42te+lrHdjBkzMG3aNMTjcfzjH//Avffeq/tcy5cvxxlnnIFXXnkFdnvXfvH000/H1KlTcfPNN2PHjh249dZb8ac//Snjvoceeih27dqV8bcmnXrqqfjJT36Cs846CwsXLsTvf/97XHzxxbDZ9M9v16xZgwULFuCUU05JLVO+Nw5HYp9bXl6OqVOn6j5WuqVLl+Laa6/F3XffnVo2ffp0nHzyyZgyZQq2b9+OX//612hpadF83Y877rjU6/73v/9dFaSNRqP4zne+g2g0itNOOw0vvPACioqKMh7jrLPOwrHHHosrr7wSL774IhYuXIiTTz5Zc7xLlizBGWecgZdeeikVhAUSFxOqqqpw0003YceOHZg/fz7OPffc1OsyderU1IUHIHGxwOxr1B+w3AENalpB2p2+zAOEkSazu6woNRmMyBAPQYqZz8BVTUv3b1fVAE1l0haPzvp4ZgK5gHGQNipoB7mNEhuynQgbNUTZ7piuu07v2DMx7S9tpSDCUXGQ/gAtUtU2y8ikzQzSOofOtv74FoO0VuqaAYDNU6taZiY4Ue2xpabxJ20QMg9GBIOSDsqTQ4cI09Nm880mAjOHuTRPkq1m0mqdMI4qSZY7UGbS5r/cgZJyvyFHOnS27OLf/bFqWS4n74IgmAruxmQZndHeDdKSdVrT1evt5mpr6xKdupm0+aLcnel9shwa5Q7M1HBLPIl2kNZKgLY/caXt58xkoee6rxsItC4IaBE1gnTK74ZWVq5y3xyJqI8rk/0HlEFa5cVSq+V9+gKrQVqrx1S9Rifj1FFzhObyWEfmxTFZJxgaD9an/m1U7kBrFpCeesV5lSxFIQXVF+ESK+Pm96NkWnNzV5LOkCHaDabN+vvf/w5JSuxrHnnkEc2g5WmnnZbKcFy2bBmWL9dvMnv44YdnBAqThg0blgrKNTY24vzzz88I0CYdfPDBOProowEAixYtMhy7y+XCP//5z4wAbdKNN96YCvLNmzcPkUhmWaLq6mrNvzXJ6XTirrsSZfG2b9+Ozz//3HAs3/ve9zICtPkyatQoVYAZAIqKinDJJYkyfc3NzaZed63X85lnnsG2bdvgdrvxxBNPZARo033/+9/HrFmJ0k1GtWHdbjcee+yxjABt0jXXXJNanu29HWj64c8rUf4og7RSsEGVSTuyOP9tvEst1k/0CxX4X/w8vNZ2MMI62ahKoif7j7DoMp9JayaQm3jMSt112x3TtB/b4KRNeRLQHlZ2DssM0iYCzwJicOK5kj/rPu78rQH8e70PewNxrG2O4Il1nVjaEEJwx6uZz182Kb+dfXUyaaVwK2KKmsPOIUfn8PDWpjBZbYghuCoB0QkZwArXN/Ci91bIOhkdSsps2o2OzL8vWZNWS0xQZ/AUKjBnFwSUOkUcWKV+7axm0gY0ghH7pcodZD5Ygy8G39q/ouFxAa3vn4/QrgXoWP5LBDY9DlmWEdz2AjqW/RzhhncR2bsEHct/ieCWpy0FtWJtayFLiYs5OzpjeMlxDZa4L9RpzZewpi3zfRVgfOHFiJmmOaGYjNVNmQfPhQrYkz6tepUNtkTd9RgceN/zAzy13oedWz9Ex7KfY+maD/Hkuk6sagxDimrXZovu/Qgtu3r2QD0aasm4rfed1vrIrW2O4ol1nfioLmQYaIi2rNJd198oGxJpSZ9ibmYfGexGiZb+zmy5g3RS1IfOVbehM5hZo9+rkZWrPKaKBNTNfQS7d9/jZl6kU14stXpRsi+wWu5A0KiR3xfoBVmdOkFaKVCPaNOn6FhxPfwb/q6auQUA7eJQPL97NF7Z7EeDP2bYBNBKkPaxtT7E065+ScHd0Gv4C0DdVJa6rbOz673UmyZv1ttvvw0AOPDAA3H44Yfrbpde9zZ5Hy3f+ta3dNell0kws92WLVt0twGAU045BbW16mQTINEgLRnEbGlpwWeffaa5XVI4HMaOHTuwbt06rFmzBmvWrMn43U/PXtZy0UUXGa7P1de//vVUBq5S+ut5wQUX6D5GcrvW1lZVM7X//e9/AIDjjjsONTU1yrtmOPbYRN+LTz75RHebk08+WffCQUlJCSZMSCR/ZXtvBxqWO6DBTVmTFsDOzswMl5E90MXbSkBBBvC38udRL0wFgsCm0n/gyo7sNUqVGXFKgt2bmlYuuqqyPp7ZTFo9nUINIoL2gYHRcb7yRP/5TX58M635mrImregeCrFoJP4TNW7q9c6+zsj/29J1UjN/axDfa1+NQ9O2s1ceinzSy6SNNCp+wEQXHFX6mcC6j68RpLWV7I9451eWH0vz8QUBNs9wfBg/1jAIruXgGife3N71fm1xzEQYRXAh8R4YZ9KqM3gK1SU8eZJ7xHA3VitKHmj00DLUHFSfjFTsu4hTrMi4X9UURcf6X0AAENr2HELbnkutC371GCJ7EoX1/evuzrhf24ELARysO4aNjqMxMdpVD7nz85shHXgrfvNRC6KeROOAgFCGE4J/V913l+1AvFDyx4xlThtSnWutqnKLaPAbn6DV++PY2Zm5jdlmO9R7tIK0yUzaV4p/j0Wey4EtAbwrVeNbnesxr+zXAIJ4bWsQPxGnYf+49kF988b/ACX6n+fu6lx7D+C4LnVbbzejnOUBALcubdv3ryCiUolmQ0wp1ITWt8/o/kD7iNZ3v4aKE16Be79zdMsIpWdv9sMZ8r3KZTIvID3Lse2DCxDc9QaC1VdkzILXCvgqP7e+rc+ptpGiiUYvqnIHqoul5sbal7hNDLpZHIUqaScA63X+e41eJm21ftPBptdm6D8cRNxX/iqa/aOBDX78Z4PxzD29IG2FS1Q1D5QB/HuDDxdPSRzjxf06pQ5Sg4kBGn0SKHfp9VX9fut9UZLC4TA2bUo0nTMK0ALAtGnT4HA4EI1GsWaNfuPriRMn6q5Lz1w1s116MFqLsmapUjLzE0iUdTjiiMyLHn6/H/fddx+eeeYZrF27FvG4/vFq+lR8LQcf3DPHMfl8PYHEa5p+e8WKFQAStWTNHuvv3r1bd92kSfqlCQGgsrIyNY7BpB/+vBLljzKTNg479gQyDy5G9UCQdmyZ/mMqm13tsU1Avb2rxso618kICfoZh0mCo1SVtZkuPYhrKzsg6+MlGwmYoRXY/KBIv5OoUbCtXaNTdFvaMkkxHVuwF8E59Ggsc3/bxEjV/ltyV8ZtR0Wef0TFzGCjLCUyAmPtmd1EHVXTLTeGAKBZt9g5xHrZBCNiUS3+573FcJsyjWzxKZWOjIBHXHBhu6Or5EF6kFZ0D824r/rkUDA9LTTfkn/DrKHq96dJI+hq5AhFnVNR6Apwan0vdtm1S28kA7RaWre8bDiGB8szC/r7v/g/PLfRl1Gz93/Ft2jed6H3Z6plzm5EYQ4fnv0z/8Y2dYmTXLLPqGcdNkS9L2qzjUAE7kSAdh+/WI15Zf/K2O6pkgd0HzckqC/mJEuEWKX1SY2GM7N49abnawVp0z30hfYJhW/1HabG1p+0L7kKAPBFYyTLlsAhJpoKDpb6s1rMnvQmy2bJ8QjCu15HSCiGrCiXoVXzXLl/1jyejAchS3FVXeiBUJPWTAbowqJrU/8WnH0zSKtVWsw95psQnWU5zf7a5DgazTZzM+YA/fder7Hy/K1dv9uJTFp9elnClLuqqq5knD17dEpNmNDa2pr6d7ayCQ6HI/W8LS0tutvpTZcHEtmtVrZLlmHQk23MQ4d2nXsox7xt2zYcdNBB+M1vfoMvvvjCMEALAMGgfjk+AKioUDdJzod8vp4AVH/n3r17LY/J6LUwGkf6WLK93gMNz2poUFMGadvEWtXU7aFF+S93MKZUP3gaFTLHpHVC2il0dWUtnXm3aj2QONA3qqWVfrXdUT4ZzqHH6G4LAIKF5gmls+6F8vR3h1271MExI1yaGVdJWo0LImnL4oGdGevEohGqAJ8VATGzXIPgyO9Ut+Q0wiQ5WWc4nnlya1Q2wvJzOkvhmXB59g1NshXVIiwaXyj4wUHqz22RQ8SY0swLFFscXVe104O0ZUf9I2O7mCKT1iZkn2ppE7SDxd1x4ih36iRaq2yJsk5lNkcNd2WcNP7okK7vrNZJULs43NLjA0BUsB7s/6Ipe7AFAFa5zlYt607w/PiRHlS5rd9fa1ovFdbX9teeOdFuy/4ZbrPpd+SNC+qLnN+ZlP3CpRatQGtQ8ZurG//P8SMX2f2B5nL32NwuLPamstnzNJdLgUQdy8ag+gRZ+fodVetGZZbv+Gljut+ktT/7xv7Zg2zJRkzJ5qnKY0dA+0JfheK1bxO1p/4CEqItX2QsUf4O98dMWjMzcLY4ujIEbUXmExR6k11jplXJoX9I/H+GtVlOALDbrp9Vp2QU6D7XxGdXivmybWB6LGRO+jT3bNP4zcp1xlQhdWfM3/3ud7F161YIgoDLLrsMb731Fnbu3IlQKARJkiDLckYgMVttZaOmYn1Z8m88/fTTsXr1atP/kTWcS0CDmjJI26I4MXTbBNOddq06d/8ivPRVQLU8Cg+GHH4nYm1rEfjy77BDHSzpFIegRtoG57A58B54re5ziI5SxMPNmutcI0/PuF158hsIfPUEBNGB9o+vUG1vNBVd9djDjkXVWcsQ3fMROlb8ApAlOOSQartjRrhx1cHGj6t1Ep1+YiD5M4O0Nu+oVBmHXMlIP//Ob2080ZEZTJD3HazKyhpcGoGI3AkoO/IhBDdpn2BbJRbVAuqPbsqvZ5Zh2hDtwOABlQ5sbu86AN+WHqRNO3hy73cOqk5fhGjzp/BveBDxmDqDJ9sBUKlTxG8OL8d1H+pfwU86f6IXTpuAp9YbnzxcoRF8Tme13l2F24Y7j6nEZ3vCGFVix9S0LDOth4rn8LMd0zh5z6ZTI4PdrO7UCnbYBNxxTCU+qgvhk4YwNrZqN1hSKuqP0YIBrsQp4m8nVOHH72b+BtXZDuzW40qK70CVW8ShOvubbOxiYl+fvicJCpkX5rJlzBoJRCUUKaKUsk4D0PJj/53z8/SWogmXoX2x/gU/p8Y5Z3p5osQ2Au7c9x3/1zr1/vZ7U4qxf7m1WukDzTcnejG61I7WsITpQ1xYuTeMR9dmvlapa9X7ZuNEoT7u0boAXu3J/Dy26l0QkWXEWjNrKqpmtPTDII0ZIhLHY4KjDKKrvLCD0SEIAoZ9x4/2JT9GrG09ymbPg708MW246IAfwlY8xlJZFWWWtJEyg994r0PEDw8u0Z1JAGjvA71TrwdEOwTBrjkjjLrnwAMPRHV1NZqamrBo0SJ0dHSgtNR6lnh69me2jNxYLJZqWJacsl5o2cacvj59zBs2bMBHHyXKgv3mN7/Bbbfdpnl/o4zhgaKqqgr19fWIRCKpRmuUfzyrocFNGaQVM6+YV3vEHrtSqHc1P+4eAe/kH8Mz/rsAgBjUJ58dYmK6hneKeqpxOqPAqqs2s6OkYC+Cd9IPUTTxcs1MVGVwMRtn9Qx4D7wWjspEBq0dYdU2J4xyw5blBFgriyn9xCDu25GxzubdD4Kte0Fav5B2MCGZyyg0S1A0x5L31X6DYnqXkNd6XAIE0W4p0G7E5tHLvEmYWqV/gH1AReaJwDb7DEg6P0XOoUfDO+WncI04TbMmbXvEOJBY6hJRbjKTtsot4vQs2VuXTCnO2pncaudoIJGtf/rYoowALaAdpJVyCN5HNfYh2Zit2iDK6iBqaTfrw5Y6RZwxtghH15oft9a0Xiq8ao9N9Xmos3fvoF75HZhUmXtATxAE1W9MUFQEabtR+1qrvrIcU1/hKpr0o36TleQapc6eBxLT7rVKnUQ0ZsMkv+Na9Vcnd+P9HCgEQcDhw904bUwRhhTZcOqYIkyryfx9SNb/TZVM0pgxoXX8VK1oztgqjtS+FC3HEG3NrCM5EDJpzRCROB4z2zC3UAR7EcqPfgzVZy2Bo6Lr4pcgCHArEjGy6RSzNxtOytb8ONsMRGWQ1ll7Mkpn3InS6bejZNrv89uslwAkPhPJplh+vx+PPPJITo/jcrlSjZyWLl1quO3KlSsRjSaOEftKMG/58uWm16ePee3atal/GzXcStZrzZe+eFwwbVrivH7FihWIRPJ7jmxVX3x98mWA/rwSmaPOpM0M0g7pgVIH2URtiRPE5NiUmQsA0CEmgqjZShDolTuwVxwCW5H+lFNRY51gzzHAt++E2i6rg7Rm6pll20ZZ7sDmHQXZ1r0DvPS6XHJcPe7uEFSZtP7kEyk27LvTYLQ+H+mMuncrg7QhsRS7bcZF4+0l41RTnO2CgNaQcZC2zGk+E97rELM2tFGWatBiNZPWiNYFDGUWoRlxoeeyUmxQT0vM1ytgpTFcUQ7BceodyszqbgdpFXXbu9thXpltGBDKM253p9xxvU8rSKvOIrOXmp9qXGj2cu1M6Lh/p+bvddjggo+kER3M5ULXYKD8XU02qZT3lUpSljtwiNr1lGsUQdqwWKz6zANArH0joGjMqrxA0h9r0pphk5NB2jGFHUgv0i97oWaUSQtkn32g3Acqy4BRz/jZz36Wqv958803Y8OGDVnukSBJEv79766ZHieddBKAROBy2bJluvdLDwQn71Nob731FhoaGjTXSZKEf/0rUR+/oqIC06d3lRSJxbqOdY0arz300EN5GmmC253Yr4fD+T0X7Y5zzjkHANDe3o7HHnusoGNJvj5A33qN8mHQBmkFQTD135w5c7I+1oIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCg5/8Q6hZlkHaT4+iM28qD2d4Qte/L4tk3NmXmAgCscJ8HABCdxvVSRUcJ4rDjfc+VeNV7E1rExLQ214jTDO9n82gEaR05HkSJiddQq9xBTOsMTUEri2nPM0PQ/ulvsXCbHy/Kl6DB1tX4zObdr9tB2idLHoSEZFMO9bi7Q7AXwy9U4PWi67Gw6Kf4fI8ff3/u95i3uRQveX+PNc59Gc55zKTN95VGW5H+wbxN0G+0AySm9w9RTLdMr0ur+Zgl4zQzeJQdhJVKnGLWzNckr0PIGlw0FaTNY4BB66GU5Q4abAfglsrP8OuqTdhmPwyfuebif97fYpu9qyGbXzDfnKBTqMb8ohtMbx8V1NnHGolzOcmWZZ9OOaWc+o4SxXuzznWyqfuFob0fVwdpcxtXkjJIGxQyL27qBRziJn6/HljVgYdXteOxRe/i46dm4rG3nsKbtotUzZps/SpIO0Vzedy3DZva1Jn1WnXlk2Iau3D3QE3P7Cblb9kbX+3B60tfx3++ktFgOwBRqIO0Wirdouq37t8lD8AnJBr8SBCx2H0xHl9Vhxe9t+F/3t9ity3x+VT9Dg/MGG3qovBACdKudZ6EV7y/w5eOY3W3aTNRKzypzJVlBpzOqdMF8/figvl7ccWuH2Bj2vkWg7S9Y8SIEXjggURTTr/fj+OOOw4ffKBdIz1p3bp1OO2003DXXV1Nla+66qpUM6crr7wSHR0dqvu99dZbmDcvUWJt1qxZmDnT+Di/t4TDYfzgBz/QbEJ1xx13pGqnXnbZZXC5umYnJLOHAeDxxx/XfOy///3veOWVV/I63uHDE9/LzZs35/Vxu+OSSy7BqFGJpLZf/vKX+PBD/cbFAPDRRx9l/ZzlKvn6AH3rNcoH1qTtBkmScOWVV6Z2Qkl1dXWoq6vDyy+/jCuuuAIPP/xwRpc86kPSsgIi8GCL88iM1craXXl9ap3lykzaevtk1TY7HNOx2XE4arI0tRIcpXjZ+3ssKkrUmF3q/jZuaZ6WNUirmUkr5jYFUdiXEapV7iBqJkir8RZ0iEPx8WYfXt/tBzw/xEfuS/C75sNQLDfDVrwfpKB2HV6zmuzj8K7nxzgp+EDeyx3A5sXfyl9AvV07G+kD/BBXtl+Iw/Jckzbz/90jemrhlZrhF6tU68zUbzyg0oG9dV2fh62OWTg69C/d7W0l4xEX1mUuQwz+qPHnx0rTMLc9cWFOFLSzu4YWiaYCgZ48ZtJqZSmlZ9b7hErcWdl1cHRPxeupf7/v+SGub52DYfFNWOk+19TzyQD+Vv4CdtuNM5uTkifuqjHmKUjry1LOIh0zafuukhzLX6xwn4fZoSdUy5XZ5N1N5nMKmZ8zVbkDnSeImvx4vrsrDGAq3qiYD0QBeE/BLvtBuLSjq/a7Vqf2vsqhk0kb6tiBVzYfpFquVe4gSWtNPmcjDCTKl6VdKsa/mmYAAN6qeBPf6vx5xnqHoJ3CbBcFVLpFNKfNRFnnOhl/sz2P61uPx8Kin2KB99dAEEBRIrDykecy/K55umpml9Gsmf4sGYzu6+UOzFjvmIN/liWyIN8r+hGubpuL8dElqu3aLDQlzZZJa8aD5S/ghpajMDS+GaI9t8aPZN2ll16KXbt24eabb8bevXsxZ84cnHLKKZg7dy4mT56M8vJytLS0YOPGjZg/fz7eeOMNxOPxjMZjBx10EH7xi1/grrvuwqpVqzB9+nT86le/wrRp0+D3+/Hqq6/ivvvuQzweh9PpxMMPP1zAvzjTjBkz8Oqrr2L27Nn42c9+hgkTJmDv3r3417/+hWeeeQYAMHLkSPz2t7/NuN+0adMwdepUrFmzBg8//DBaW1vx3e9+F8OHD8euXbvw1FNP4fnnn8fs2bOxePHivI33qKOOwnvvvYfly5fjjjvuwOmnnw6vN3FRw+PxYMSIEXl7LrNcLhf++9//Ys6cOfD5fDjhhBPw/+yddZgcVdrFT1W1d49LMpLMTFwIcU8IkiBBQtBgS1hskUDwD3eWxXYhyC4aHIJLkGBx4kLcPZOZjEt7VX1/9HRPV9UtaxnJ1O95AtOld3q6q26de+55p02bhnPPPRclJSXgOA6lpaVYvXo1vvrqK2zYsAGzZs3ChAkTEt6Wrl27orCwEAcPHsRzzz2HwsJC9O7dO1KUrVOnTkhJSUzUX0vT4UXaG264ATfeeKPs+vAXgcT9998fEWgHDx6Mu+++G927d8euXbvwzDPPYO3atXjzzTeRk5ODp556KuFtN4ifaIfhcpu0snJWEp20JWnkr1+QDl1MKCY0gveN6zHidl+4/okxFuXQd8rsigi0ANBAZ+Mv+1RMzh2juJ+14HR4drytuI1WgrWh6TQML50WLc5GI9E304JVZUKh9AfnPdhobRaaA5Qdi+xX4QzPf0DbOoGn468M/b3rQUz0vAxz1lD1jXVwgO0kK9CG+db5EIbS8qKlXszZoQctW9dz4dnVLHrEmvvF2DvBwu9FI6QiLalwjJie6WYsihJpyxhlgYJxFklcQgzbiBMK0rDwkLzTObXpQUJcGGhyiR0/7BFO48xoEnTlxg2KUrUNUnRPYMEbUq5bA50d+flP+xWy+3KUCd85H8JVdfJFfsQcYXprFmgBYE7Ks8TlQ3ITE6/QJUV7F4VUIMegbeBEA0CYEaLGZynPEkXagCh7U4/jmoSJqwfQ3ImXFg4j76dU4VyN9daz4abS4OBrAbQvx54pjXyNeHtPOnF5rwz5a+KEQhsWHBRew7XcQzoiSh/zAGXHT447BcsslHzRxSw7IxBpAaDU1A+HmX74WXQcAPBTDix1XicpLkV7jwDood74NkavDLNiUcoUrgJAKD6rvfOdSyg2feF6EndXnyLZroHO0XzMXiq50akaRdxvnI/iurrLjQzaFubBBx9E//79cccdd2Dv3r2YN28e5s2bJ7t9//798cwzzwiWPf3002hsbMSrr76KXbt24brrrpPsl5aWhjlz5mDQoEGJ/hVi5qabbsKCBQswe/ZsTJs2TbI+Ly8PP//8M9LShP0AiqLw/vvv4+STT0Z1dTXmzJmDOXPmCLYZMGAAPvvsM+Tna48OUeOGG27Aa6+9hqqqKtx77724997mmW4TJkzA/PnzE3YuPYwaNQrz58/HRRddhAMHDuDDDz8URGKIiaVInVbuu+8+3HjjjdizZw+mTJkiWPfOO+9g+vTpSTt3MjlGx0C1k5ubi+OOO072X0lJCXG/7du347nnngMQGpVZsmQJpk2bhuHDh2PatGlYvHgxhg0LjXA/++yz2LlzZ4v9Tgaxsd56lmRZMs1ZA7ItKHRJn0YCdHhEWfnredjUX3WKEE/Ioiy3DVStnGrrOhVManOEgHPA/ylurwTnC7laxXlpAFDgUhdhTiiQ7hct0IbZZjkRjLMQFM1IpoQDoXzSWJArkhIrtZz6tK4jpj6gZfKEteAa9GjkZ8ZVAlvxhaHlgx+LKlxGIf2Ej2I7AW0BJ1MJON+p/jfNsAk/914qBaDli0RRJjv8lLATb6VZTC6xK+ZFhoXXawc0CzAuM4ULejoxOq/5fMdlmSVtEkP6rgLAOd2a21XgYjC0U+LyXwsJImV0jMFBlWzPnebRaKTTVc+TEwzdn6oZfSPyu82jJMusTEh4SQT9sszId6orNqcVxT8oY5A8rApikRYsnYRTdN2iz7TW3Gk5TGyD4LVEpKWkA4yANGtXL3vMIwAAtDU7wYUikwtlcsDe/UrJ8mXcWOL24wn38DB/7y91uGiNqDEQctTUXfDaQZM/twCQIzNLrIbJly1OecjUD0FRn5IO1utsZdvgwp7K/bAU7igAgKKTl+feEti6XYbDon6C+HUYUrQaiaJUEwZmK2+baWMk9QdIRKJvmMT0GQy0c95552Hbtm348MMPcfnll6N3797IyMiAyWRCZmYmhgwZghtvvBG///47NmzYgFNPFRabpmkar7zyChYuXIjLLrsMXbt2hdVqRWpqKgYNGoT77rsPO3bskOzXFnjnnXfw0Ucf4cQTT0RWVhasVit69eqFu+++G5s2bUK/fuRIn0GDBmHdunX4xz/+gaKiIpjNZmRmZmLEiBF47rnnsGLFCsH0+0RQUFCAFStW4Oqrr0aPHj0EGaytzahRo7Bjxw7897//xZlnnon8/HxYLBbYbDZ06dIFp556Kp588kls3boVf/vb35LWjhtuuAFffPEFTj31VOTm5sJkaj/9KSWOjd+iFfjPf/4TCZGeNWsW7HbhQ6LD4cCsWbMwevRoBINB/Pvf/8Yrr7zSGk01UCFlyJOoX3M/Sk29JetIeWmJgqYoPD4mA1fNqxCek2kS0SiaKDYKD6LcUWqkpEKflVKfi0zRJmSfuQye3R+AtuVGRL6Y4ENvopcSPoydUaxNWNHqkGNhirgeOEKxtSv7peClddLcJCVMuScm/OGZ1lgQjFKJslDCNfBBmDMGgHUfhr3bpZHfweQqQvY5a+E79CPMmYNg6TQ+thNQNLGgHRDqwKshzm310imwdJbPSqMomijSlqSZ8cTYDGyuDGD5ER+2VgnFoMwm4fWUrnZk2WkcbmAxKs8Kp5nGzYNSMSjHiyBPHggQkycjFl7ax4luaSbU+TmML7AlXGC4fkAK/reh+UF4t3kkONCgwcHKyxcvCNNISd3OVoYS5ESGq4LXU8pOmiDMMEFZcPvPiVmwJyhTkqYoPDE2A3ctrJK4vqKZ3t+YKtmWsTLx5F9QyJz0M2oW/w3evZ8BkH6mXXGKpRYTg+j6d15aeN808fKRNw+PSsejy2piOu9u80j09/+ClOHPxbR/a5I29k2Yc0aibpn8TDQgFBmldA+3mSjMOikL/1pZg6JUE24elDy3TXtH753Fxchfq+VmMVU31S0gYeXqUS/qx5naad6BWgRLkJIfNG5POHv/A9BQbJ4HwKv0Tc/u5kCOncaEQpumOgcPjEzHFT8d1dZQLr6BPIPYsFgsuPTSS3HppZfGfIzx48dj/Hj9zxInnngieF69bzB9+nRNTshHHnkEjzzyiObzX3LJJbjkEukMWjW6du2K1157TXEbpd9LbzsBoHv37oIibCSKi4s1vZ+Jft+tViuuv/56XH/99arbitHSDgCa3MLnnXcezjvvPN1taMu0z7trK8PzfCQYuk+fPhg1SuomAkIjDL17h4S/b775RvOH0aBlYVzF8MOGxqhpxGHcweT+zRxmGl1N5YJl/qaCIhRF45DKtHi1jlI9L33gkQv0F0Nb0+HsezPsJRclpPCUWKRN15gXqlXvYSkLaGdXANLMQiC26dD1NqlwHy+0RtGXUikKp7gvRcFWNBXOvjeBtgqLRplSe8DZd0bsAi1Cn025AQQtxbXEua0+yikp4ifGTwudLzaabTqfGZNLHCghnDfT1vzhGZRjxeQSR0S4NdEUTuxix8Sudk2fjXwZ1zdFURidb8NpxY6kFK8amCMciPHQ6ShlQtONrZwGkZaWFg2Lfl9C22SBMrlQx3RWPFYd3Un1fJkqjmS9OM00pvaQH9AZX2A1nHdtnHictKytAJTJBkefmyLLxJ/p1Di/d2bIOw4BctHLMPEUF91tHhn6gVM+f1uEok1w9rkBzuPuVtxOy30+18Hg+QlZuGVwmvFdTiBORn5wQa7ewj7zYNl9rFw9WEpcwLN9PkaqfczCkSqJLhzb0lBmbVmM4mKMYkroPbi8rwunFTs0F/azMBT6qMQiAICbSgXPelS3MzAwMOhItM+7ayuzZ88eHD58GABUQ5DD6w8dOoS9e/cmu2kGMcA4i3DAPJC4zptkkRYALJSwoFYwLEZRNPaoVL1XowHSDhpLt04VVY/IneTQOEVVq7bqhz3KSSsV1GJ5jq+mcvXvpALNaBRp43DSJh95J22xTNZyNOIsxwDlAEcrZ5L5KOHn1koLi6LUEYpMicXIeOisYdp9MsiyM+jkEP4eOy2hTGkb30DaJQoKjVSmZKm4oJqfcoDPHI1aWlmkVVufLJSm7WZYjQDLtk48Im21PXRvji5c6aaEIq0rxiibMGZCUctoTLy8gJARxzVmv2kQ/LCB55TP35Zx9r0ZoBg0UunE9cZDRuKoUphNQMJJy3/v5AYX9pmGyO5j5WolmbQmKonTzZKIWs3a8NR/zl+T/MYkEUpjbBbHKIu5NGL7O2dpuD6WmvqCD7pjOr6BgYHBsUqHjzv47LPPMGfOHOzduxcMw6Bz584YM2YMpk+fjpNOOom4z+bNzVXG+/RRLrISvX7Lli2yGbdyHDx4UHF9aWmpruMZSGFcRdhjGkFc50lm3kETZtFUykBkWjeNvab4RNo6TjoN2E+3fJXD9ZYzsSfsGmpC7KaUQ6uLt5bpDNoh76Q1x+CkraKk7up40Rp34GMy0TpyugYUnLSFGnKGSQV3fIyyKC2JOxDlRNYTRNp4CvuIcSXBJauVvpkWlLmbHT0L7Nejhi7AHw7lqcY+2oW1timS5aTKzL7MsajxKmdpHTQNwGbLJJjgxQTPGxpbHz92Wt4RptWRb9B6xCPSVlmbsuEoE+qpHCy0X41aRvg5jTcb1gz5zxegLNKa4ihaxlIWbLBOxols+xVpGWcX2IovxPaDh4jrEzELxyDE/np9jmuHopOW3A8pN/WS3cfKN+CIaD2j4kJvq0TH/ZDYZRmLCroIKb7qFmpRcqDNKQBBYP3c9U94KRdSuAoM985BpxTlQXIasRlWtBQQW2Odiv7supiOb2BgYHCs0uFF2mjBFQB27tyJnTt34r333sO5556L2bNnSyr8RQunhYXy+U0A0KVLc2XQAwcO6G5f9P4GyYG252GPZSRxXaNf+eEtEVggnE4VoJum9lI09piHxXXsBpBE2pbNb1xnORuz06RZOja2GkDiCv4EKAc8thK4QHbS+mIQ3Gt4aZ5nvGiNO2ikMyH1QLYRKFq2cJiW6ADSjHhxsR4xEietSKSt9XgB0ZS9Y0Ug6JtpxvyoCuhVTFdVgTbMeus5kmUuEweaZ8FFDRh4XMejTsXN/EXK05Gf90UVMEs2dsoDgByHwfMscblB28FKxX4frTKHiiHxrB+z0r9CuamnZJt4C4eZeRUnrYZYkVh5P/U1jAu+k7TjtwTOfrfhwJH3iOso3siaTBQNAX1CmVNhcEsu7kAJHnSUiSAE007/vj4Ns+ReyPgZz/jeI/Si2w+huINayfLF9r9H/Twd9wWvVTxOrGJ8qoZaZEvsV+HcwO2QBjMZGBgYdFw6rAXF4XBg2rRpeOONN7Bo0SKsXbsW8+bNw/3334+srJAw8/XXX2PKlCkIBISdkPr65iIuLpfy7dvpbBYWGhrUpqYatAYUzeCwaQBxXRffn0k/vzjvzt8kXPp5E2oY5UEANRp5qejip1rWn/ll6r+Iy60BsvMmHmpMISctS8jXSvdt0328Wj493iZJoFVcW2HqVUTL1oQDBZ6S3j7y2e2a9rcxUsF8nek0xX0CIkHfIhJ+BvJLNZ1bjUJ2i2RZMbcxIceOlV5m/QN8ShT7FsPJCx1CDaY81DIFmo8RqcrcAth5+amQhYF1LdYOg9hQc6oqUUWHBqoP8/lEgRYAXNBXEFKMGcq5kyY2eSItAPzFyBdNbA+Ys4djtYtcubl/cFELt+bYZSS9WNf2Dsg7wGMp7rjceZVkmSmO73Zrku5X7w+66QysYZT7JW0e2gJKZSAzQDmwNvse5cOoDGTJ0U2jQ3apfXpMxzcwMDA4VumwIu2hQ4fw8ccf45prrsG4ceMwaNAgTJo0CU888QQ2bdqEwYND4fkLFiyQVPHzeps79BaL8jCh1dpcIdTj0R+MfuDAAcV/K1as0H1MAyFBjkcNLc0eTWcPYjA7P+nnN4s60gEq5BjjaOVCSilcueJ6AOAY6SCCj1J2yyWaOkJ1eQDozFRoPsZJ7lc0bVeNUGYmJ4oUoHgOeVQpugbWaj4nALCmxFea1uo88VJt11fAy9w6Lqi7Q9sBAvWSRRXhac0yiN3RNCf83oxs+B9sXLNj5G9112lri4jJDY9Jlk2pVX6ASTZpNfNh52oSdryh/u+Rwh0RLKvhM1FHx+ccz2D3x7W/HBaOLMJ1Cm5D9+DqpJzTIHGYuNjzBuua7s1+K3nA0srVwxqsivn4gHJhMACwU8kVaats5EHi9sLGygAOo5i4bkzj6y3bmGOY4VXPgeK1zwiiWXljCOerwSnuWbrOX0HlS8/RTp20edQRdPOrmzAqbeR6Fe2FAAfwGiK21gaPU1xvVRnIkqObdwHygtKBbzEHzINiOr6BgRaKi4vB8zx4nsf06dNbuzkGBprosCJtenq67LpOnTrh888/h9kcms47a5awI2OzNYtnfpXp8D5f8+ij3a5/andhYaHiv7w85QxBA3WqvJxEdDq98RncWT0JFkvyXadmTizSNlWVVdlPi9jHM9L2+xIYMRArLu4oXFyl5u3PaZQKZyQqg00CtyjJhUYQtMmKm2rOw4X1d+HSuhm4pO5W1eMFmcSLtCyvbcqil267TloSf6u7Ht2CK8AFNMwYCEq3CcjEJ4QRVx+mRNWAM6007qyehKkN9+OmmvMwxPcNeI3vdTT9/L/j1uozMdz7CcZ63sEd1RNRElwV07EShb98ATqxOxJyrDGed0H5jyKVKxMsP+BLAa9S4VmNk92vxrW/HBa2hrh8Zs2ZoGDEHbR14okLqGuaBMvIZL9mcgfB+7QP+JEwK2TOAoAdyS1qY2bad1f8hz3S96drYC0eqRwIG5IrcHckejG7MbNmsubtKcJ9NgzbuA9nNT6BkZ6P4mpTe3XSUiYH/lE7TdVl6rS271RArcWPxf0rMQwfW9wB7yvHzOrJOL3xGaSz8rPnrGbl/p+BgYFBR6N99wyTSLdu3TBpUmg6586dO3H48OHIupSU5sJLahEGjY3NHVS1aASD1qHCI+ykWXg3TnM/Dxdf1ZTnlFzMoqm8ATSJtCp9q7DjVgmWKNKq75ds8oNbwPulOVkkeJ4HhZCwq0ZlU/VjcYeTRhA864UVboz1vocRvjkY6ftE9XisSsXbWAiqlRVuwsNrCPNqJUi/QtilHKzeoL4/wUkb4JUfhiR/U5E7j7blIJvbhwmeN9EzsAQAwPtjK/pRElyFy+pvxYUN/4cuwdDvw8UpBMUKz/PwH1mAzkFtURJqZLAHwXnLkMoKnfi7G4WfN5oP4MzGp3QdW23aeKyYg9K/4wDfD7Dz9eA8RvHMtg7DxuGk5UIzP+SumxnsQXA+7QN+JJQKgwGAA9LrVRg+GP9nvhVrEsbN4YYg1pQLhboL6u/B7TWnI507AhiZ0QnDlDEARcG1KA6s1LQ9xcp/btnG/aAADPJ9o/n8FKEAFcO1V5HWCQu8GOMlZymHac2CoYnArbEWwxG3cr801m8x5ymDFW6c7n4ej1QNwX+OdsKldTdLtrPEUYDRwMDA4Fikfd99kky/fs3Tbw8dah4BjC4WFl1EjER0sTCjCFjbRCzSZrAHEO4u0C0h0opcRn6ExBK1rpWfUnfE8jRBpG0D4l9ecAv4gDaRFlzIMWzi1R8GKr2hv6VE0ONZIIYK2iyT+GgIrfXL3BodEK0BqWVU09JA1Tr1/Ukircr7woqm7NFB4feGtmVL93EnLveYrU2MSKr7vPW7wbkPoZPGvF81aLDgPGVI5YUi7Z464XUwlSuDg9MncqsVYIoVJiCdzh6eScAaIm2bh47DSVsbCA3eyBVjT+cOxS3Siu/BYhy8fOYt6zksu07z+duxQPHjXqHA7eCqMdw7p3mBjun5Bsow9lCcUzqr8TNHuM+GYRv2AWi+b2vBRJTqYnNYtjpNmfpqv78jzqKErY1WJ63c9TUMz8f2PrCN0jx9ksFES8FZAwMDg46EIdIqIFcZPFq83bp1q+Ixotf37ds3MQ0zSCiljSKRlmsW3pPtpGUbD4Fx7xEs8zeJqOpOWofqFGyOkQq5Pk7b177czeKDLQ34brdbs/tTK3nsVgTrd2valm9yajBQj3eo8IQeCMWCHoMguID+4jJHvImfgqXWGQ7jUVMtlc7B8fhxjxsfbW1AuVv4+d5RHcAHWxqw9HDsDjDS5y7ssglqEWmDJJFW+Y0RR5JQTe483+FfULfyDngPfCfZh2081NReDu7tb6Ju5V0IVIedsdWoX/cY6tc8CM6rLvIE68giKc/60bDpBdStvhdso/KgXSx4938JAAkTaQOUFWz9LqSywrgD8eBBGlcGGy//kE/CzHsi72+iYBv2o375jZLl4euBd/dHCXEzGiQPJo7CW/UBHg1+DrM3kT+LGeyhuF3ujFomLSc/oBisVe4DakHrPaEt4QlyeH9zPebtE4q0o70fwBoVD6Hl/fGXLULpbArln5eACxjxCHLwTYKiOKpGlqDC4EIMIi1DEGmDbDt1SkcGD5R/f5PMc2B7IVGD/UF/LSq+HxXq57i1DRJwvioEjkpzfwOEuhiGSGtgYGAgpH2H7SSZzZs3R37Oz28OzC8pKUF+fj4OHz6MBQsWKB5j4cKFAICCggIUFxcnpZ0G8fHlTuFUzHQ2ypnFWJEseC6IirkjYcaZguWBpq+llgzMAAdYFKKkONoKiKYgezn13MkAy+OhpdWo9oU6sqWNQVw3ILZ8VgrSbnBecAs8O9YibcwbsoMhYfgmcZXR4qRtckXzPIPoCVo0WNQuuVpPswEAe+tYBFge5gR2ILUK3vF0rt/f0hBxOP2+34NXT8mGhaFwqCGIh/6sjsQVBDgeEwr1ZxSTfoWwSKvFSUuKO9hQIS/CczxPEGkb4C9bjKp5p0HuQYtrctI2bnwO9atDxb8at8xC7oX7ULPob/AfngcA8B76ATlnKxegkhNpa5ffDM/2NwAAnl3vIfeCfaDoxNxaeZ5H/aq7ASBhcQeBJge+2oN+GlcKO6/R7d6ECT5UfHM8Ok07SnQ264XnAqiYO5K4LnrQpmbp1cg44cO4z2eQHFg2PhH94T+rcbCBLAaZ4YvbSVvBZQEKl3il70H1r2cCORpFMxne3liPiV1bPyteDy+vq8OqMuE9meaDGOd5W7CMD9SB89eBtpD7D5yvGpU/ngAAYBv2ouxDF/Kmt0PVukUIvS9+SlutBEphYJpt3Kf77AzBNRvk2qdIy7oTP6DaFvlmV2LytHkwCFQsR6BiObx7PkXOeTtA0crPEhVzRxOXk2YBtuPJBAYGBgZJwXDSyrBnzx788ssvAIDu3bujoKAgso6iKEyZMgVAyCm7bNky4jGWLVsWcdJOmTJFVYwyaBuUmXo1vwgqZ9XFg/fAt+DchyRFS8LZnFp8lD4VCw5LOEgtl6K63+LD3ohACwC/7Y/9ITvTJr3MdA5uAwAEq9ar7u9uEsAG+aROSTFVXg4sxyMourTRfBAgFD7o5/tF9Zh/libWpcdaO2nazhOHSBs9BbU+wGPhodDv8MGWBoHA+up6fU7JMCSTL90kigfrd6ruzxGmwClB+rwyXCMaNjwNJSdMeCpyWKANndyHupW3RwRaAAhWrkGwQfmhNVizibg8LNACAOc+DO+eTxWPo4doV3I6l5johqLAGgBaRNoy2Dl97nNzkyOxcdv/YmucCN+heeA8R4jrukdV5vbu/qhVC7sZKONk1fPEw7i4CsmAnJxAC4SysHlfbNnTYXqw8gM0FM/CLJPtyXpC36E0rdPPZWB57YN3bQFPkJMItAAw1LYTGZz0vXDveEv2WDULLpEs442IBDJN17i+/l81bU4H5QcX2Ib9APQ5aYOU1LSQTddo3r8tUdc0+NktsEJxO387+l6SWHc0MZnBvQLNhiS2YQ+8B5SzjIP1e8DKDGwXBDdKlqnNpDIwMDDoaHRIkfa7775DMCifo1RWVobzzz8ffn/o5nbjjdKpljNnzgTDhEYRZ8yYAY9HKLR5PB7MmDEDAGAymTBz5swEtd4gkZAe7Bup9MjPpDylRBHOuLSIRFo/H/pcaZntrua29BDErQBPY0ulcsdtS5V6tIBWchzS0fbwdEjOp/7wHqgMPUBP8LwhWXduw4OC1zyAah+HAC88pxnkrMyzG5+IiOQ0H8Rg71eSbQ43JtYpErTmq2+ExE6BPdwQut4l6u9a45N+OF1ck5tNQ/avv3yJrvOVu6XnS0clfAfnKu7HecmfL+9uaUVr3ts0ZZoi3xa1OIQBIFAjfQCJlejrD63jYVqOLHYv+vtD4nQqV664bRpbCiuvz4UTnhYeKFsUWwNFsA3NUTBnNjwZ+TmdPYihvi9FGydvQM0gPtIDu9HTr+0zYeUbkKFxQKJzcCuKgyvBx1h5PEyv4J9Ikfk+0GBBceSBOr5pEPfS+ltlj93f97OmAnxl7vbjSDxYT27rsF5DicuDCtdE3+GfJcv4oBF5QKTpc97X/wdS2ebBq2HRGcBRZAflB0zDTlqTStRHND5eGv/UiWmdgprxwjbFcAz0fY8sVn6AttLTfr6XyYLiOYzyCPtMwco1ivvwQfmi2n39v0uW+dpwDQYDAwOD1qBDirQzZsxAUVERbrnlFnz88cf4888/sW7dOvz666944IEHcNxxx2Ht2lCl8nHjxuGmm26SHKNXr1646667AACrVq3C2LFj8emnn2LVqlX49NNPMXbsWKxatQoAcNddd6Fnz54t9wsaaIYkhFn55gcEtmFvEs8eOrlZ1En2N8URBAiNo0QOE7eKkitXNEBtdL3aKz1urE4fTrTfBfVRrkZaPU6CbxL9nHw1Hq4cjAw25AC5bUgqzh0zBWZK+IBe4WHhF+Xuit3KYfLYrbi9+jScV38fbq05C70D0viSRBd1If1NCsw1kmVcAp2Bie7+VnuFDy4u7mhkKiSvItLyPK9bpBULGGnsYZg4D2ir8pR6OZGWuG2gLjRoI+Pi4hoPaMqu5QPyDyd64bnEDZYM9n6F26tPi+QKqjlpU7kjsPD6xBJHeFo4nZgsZ9qSEfl5oucl/L12Os6rvw93VU+ESZRRzfn1RTMYtBycrwLX1l4euXYrYea9yNSwHQDcWnNWaPCCi0+ktbKVuKP6VPTyL5Ss40GDl4lroJhQAZzegYW4tfpMpLOHQPNBXFX7d1xSdyum1c/E3z2347wBvXBTpyXomcphaibZkS/Oxm/LHGwgv9+5TjNSR74sWU4pFuCU3l8TeQ09puBDnxELPLireiIu4F/HrSW7MbWHi7h5VmAH+TBBb2SGghnyIu0FGWsVm5MX3AKwiXFqthYMgrijehLOr78XV9Vehb4+oUv5qKdjurq7+5cCAE50v4ZHK48X5EwDzbMIZJHpR1EmB2hwGMcJZ8Z522Mwt4GBgUES6bCZtIcPH8asWbMwa9Ys2W3OP/98vPnmm7BayULSk08+ifLycrz99ttYu3Ytpk2bJtnm6quvxhNPPJGwdhskFtIUm2j3WCy5XXoRd5L9fEhgFE+zYngfrLwbbqpZuFBz0sqtX68i0tb4pA+M3iAPl0W/YCnuqpnQfG5Ki5gTJfplcIfxcNVw5E4rB2OzAZiM7F2VggfcSg8XeQ/DiIXwaPLYbchjQ/ELB03HSdabEjyUJe6MDsm14J7hvTBnWwO+iMpHbsuzv6pFTtq0KFcP+CB4ngMl40hlG/aBcx8GtMXqAZCKtNnsXoDzg3bkKRYN4rzlmoVO3l+jWok8ULUW1vyJysdRcJDoJoEi7VmNT8HJ10ReW+CFjauFl04jbp/OHdHtpHWEj5+oTF4u6loB4Hj/j/Lb+msBR15CzmuQWDhvBSzwYqT3Y/zkvEdxWzeVjhJ2pabj2sOF7eJ00vJBD9K5alxedyMeyha6PjnKJDvwFJ09XRJchUeqhki2SZ/wCewlF+MEAKHk1c747ZejqPMLL/DtSqStJ7/f2XYGjKNAspwyKYi0jBUQieAJvYYeQ/BRgxEp/FGc0ZWGq98olLuHAweFA4iZ7H7QLPl9jM5jFc/kimbUgFPw+cIq2fUW3p3QgcTWwsHXYrw3lKVcauqLLdbme/zRduRwTyQ31l5IzCAOw3mVZ+LIDWx1vjw08Ju/oxHY3jwIrBbBZmBgYNDR6JBO2nfffRePPvooTj/9dPTq1QuZmZkwmUxIT0/HgAEDcP3112Pp0qX4/PPPkZ6eLnscmqbx1ltvYe7cuZgyZQry8/NhsViQn5+PKVOm4IcffsCbb74Jmu6Qb3O7IEDof0U7aYOt4KQNNLlAxW0z8z5JtXV3QLlj4xWXbG/icCOLcoXOJ8lJG+tIt1hspPjm82rp4POcsjMzS5R5W+Fl4Ze8d9qmQnOQisaJdtKKO6M2U+j4tOg8ieyzJjquU/z5SONEuaEK7prA0aW6zyf+rGZx+8BzftB2ZVGO8x4FpzGvkvPXqIo9WiIPEuqk5RP3AExyziq5aWNx0ka2j9PZGEbPtGcuYDhp2yrhwl7i4n8k6ukcZHL6Yob4OD9vfFNURipPdt7LCQ5aMKX2liyzEgpRljYm5jvTEshlBGfaaOL9WlGkNZy02hHfn6jQIIGZ8LXKYXcDnB88obAXG5W/rjSA3cnBwG6S7/9Q4ACufTtpxWSywmvP0Q4Yd2DnahQFWiB2kTaMTXQNNERaAwMDAyEd0kk7YcIETJgwIWHHmzx5MiZPnpyw4xm0HKSiABZB3ME+8DyflKJv4elCYidDXYDCR1sbcEDkVjHBF8p8jIpbfXV9Hd7pnCN7DqXiU+uP+jGpqLnKap2Pww973aARKjal51gkVpX5sLnSj921wt8jXGAKABrWPQzzKd+DNsvbKnnSQ0CUuJtlZ4Coqc+VHk6Sg6s0pS8alkq+SCuOOwh3VsXPWYmMOwBCxV7iKUYWjdhJKxb7PLvfh73nNcTvjdaoA57n8WepD7tqAlh0SPj3y2L3AZwfjC1X8Ricp1yQa6pEsGYj6lYpu/zqV90FZ5+bQJnkK7HzAf3F2PwVK+Hd8ylMGQNg735Fsws5gS4lUi5zGleOcvQibA1kMB6Ydea8hnNzldzNWgjW7YB72+vw7PlE8z68vyaucxokh0DlWvA6RFqeYjTHHYTx7p0DTJDmTGuB53mBkzOL3YtKpli4UTwibZr0+0USaX/b78Xf+6fA1A7KnMvFJZloCn7Se0VJHzWCdTvQuOVlYpa0Z9/nMGcNjrud7RmeC8C95RWwnlJYC86A79BP8B38QbgRFernkD4zOezu0HFYLyha2L+KniGmJNLSFNAlxYTt1eT7EAWO3D9rx4gHiI56uKQ9AySCWh+Hx5ZV42ADi3tHpGFQTmjmJ8vx+ONgbNctJyfvng7DqcQdBCqUZ0NYReL/hooAXlpbC5qiwFDAVf1dsCV6GpuBgYFBO6JDirQGBmHIcQdR7i3WA857FIxdWQzSC8/zcG95CQDZ5fnNLuk0YzPvhY0XVlt3B3l8uKUBl/UlZ5IpiXLrjvoiIi3P83h8eTX2yxQEAeTzbUmsLvPh2VVkZxsdFYDgPzIfNQsuQuZEhQJQhKmm0aP02XZhR67SyyLNqj3uIJogwUmbaMSO5PADOyPqjyYy7oAH8Op6/eKhHOJMWrFIW7v0OoCxw9H9csm+/jJ5kZbjedBND0OLDnnxikybs9j94Fk/KJNyZgLnq0DlD2MVtwnTuOkFTdvVLLocGSd9IX9OnVN1g/V7Qm1sEmT5QD2cfW8O/ZzkvD+5YkkAYLfZwfljdM/ryAKW7BuoR8XcUeB96g+Kgv2MTNo2B9t4CBXfNUcA8JAWkSSRpVOkBc/Cs2cO7CUX6dsPkNxfigJrJCJtPE5akovUJuNOfHJ5DR4enUFc11b4coeyuz1cTC2ahrUPIGXg/ZHXXKAeFd8NBy/jfm/86ylY806BNe/k+BrbjqlbcRvcW18BADRufIa4DRURaaXrstmmwUnWA4gGwQVOWsgPxFEAipREWr59irSkgsFhxE5aH8ujPsAjNYaor2TD8zyu+7V5QPSfK2rxz3EZ6JZmxre73fhkW2wF+Jy8BpFWwUnLespQv+ouxf3FTloAWHK4+Vr8t37kZxoDAwODjoIxTGXQoSHFHXQPrhC8ZuvIxRfiOu/R5ZGftbo8TbyvOYMvim93k3MjOZ5XFGn3RDlc99YFFQVaAGhQKVIWzRsb5AVBWjSNynfwB3AB+c4kZU6VHsPcnKOZZRM++Fd7OVSJRESrxmnbBUFpFep6f2ILR0jiDpo6q2LHbo0vceet93NYcUQ5NkIPkkxacdwBgNpFV0iWcd5KBKv/kj1u9ECAnEALhDJpec6vWqQMPBsptpIovPu+jDzksY0HpRvodL96dr0n2Kdu+YzmlQmKO7BT5Adp0t8tsk/X82I+H6dTYI3GvfVV3QItYDhp2yL16x4SvOZkcqqj6e/7WZOTVlyErG6ZtMCrFsTT8wf6hAVtGN4vG7nDq2RYk+5dADAkl1znYHNV28/3/HQ7+V5anBryfJjS+6kew7PjHVmBNkzjxuf0N+4YIizQKhGsD/VNSbN9ugVCfUyOEBkTLhoGKA9gUxTQNVV+YIUC1y4LhynF6KRxpYJILgCS/mRbYRtBPP9gS2iQOFaBFgBcGpy0Su9h/Zr7ZdeFkRuoCkPQcA0MDAw6FIZIa9ChIcUdjLBtFrwO1m6WbBMvwZrmCs9aXZ5m+GDntbvF3AFeMde0zs9FxCYtFWwrCTm1cohFvGgcXI10oYJTibZKnUW0LSvys3hE3s/x2Cp62C0IkitqR2hypPQOLJCs2idTJCVWxDHBTNMDVpcU4cSGfXXBmHK6AoR9xO9HvEgzaVUq/TbhK/0N4SzmK+r+IVmvJY7BxtWiMLgB4PyRrMsWp0lU9e79XLKKcZXoOpTv8C+SZWHxR5zNeE7DI7LHmVBok113dSdylW6xayjM5X1dcA34P1AW7a6+Qd5vIj/H4zz0HfpJdRvncdJYilb7LBjI4i9bJHhNiju4q+ok0E1ZmzQfxMmeV+GAuhv97EZhQdaYIzZErroB/h/R1dKcYz3a+758xrJKXnrauHeIy88olo9LaY9QaHa+WTqNJ24T7V70l6vnkvsOyRcJPNZRcnoKtguGBuhNNIVx+c3Cfw//EnQJrg9tQxi8ir4+M2Bhp6SfYytDgaYopFrkHxNp8AnNTW8plDKPGbCS2g+JiolKNFWEPvmmygDq4jQWKGXVRyM3SO478B1xuWvw45Gf063K8gPdRuMlDAwSyfTp00FRFIqLi1u7KQZtECPuwKBDQ4w7SO8Db82G5m2qVQS+GIieKqRUXVfQLmc+0uwuoEbbOWpVOmoBDvCxgM0UyrVSo0JjlVu1BwxHVIX55n3kjy3uCKYME079s4hE2koPB7eoU90tsExyXNfgJ0Bb0mDvdilYzxH4D82DOWcUrmhw4f0tzZ34vbWJFWlZ0WcuPFWxZ7oJNNUcc8DywM6aAPpnWXQd30MQafUI7GpwPC9x+aYqODKjiRYkB/m+xfv4r2C9loeh430/wAR/yEmr4MBOJjznB8VY4Nn3mXSlzocLxtkVAQgjINiG/TClFEscqZM7VaBXnzR8u9uNQTkWjOxsxYYKPwpTTBiQbcGkrnZsrw5gQI4FFhpYW+5HUaoJJXUe4mUji9tLbNNZJXZQlAM5526EZX4Qfl69q3B5/c1Rv4A35hw/tlG9aBTjKoIl72T4S3+PLIs3B9cg8YinvnOEuIO+w/6Bp3Ot2FhrR3dmF7o0ToOl8/9gWQ7I3cLu6boGeau/Ia+MExo8/q9wCX5fvwh2vg6DfV8Bzi7EbUmDEdlTNsBf+htMmYNg7UyufeAw03hybAbuX6KtqGFb54mxGeiRHooKkv3Oc36ACQuJiZ2dcqzBa4zMiY7SuHFgKo7P8aJy2W0Y2vBupBwbaVaDOKLgtsyv8VTlxYJl4QlKSo5HHlQ7ddIqv782vh4epEdee1QK9LYWcm7TnTLxFADw8klZWFXmQ66Dwc6aAL7cKZ2Jl5M/FOmdPoC1cDJql8+Ad/eHxGPxgXpQjHRWACkKgUnpBtfxzQ7bTJuySGs4aQ0Szfz583HSSSdFXl900UX49NNPFfeZPn063n33XQDaB88MDBKFIdIadGjEcQcZVhqm9P4AmsWXaNdroojObNTqpLU6c5GaWQDUkOMNxGgZTa/zc7CZGFRqqGBboXHKV51KjiXRSSuuWhy9SvQgTJmEWVVm0XO/WKC18I3oEpROsbcXXwBTWqjyNm3NhLlpmmY/q7CDe8TNwhPkYE9QEQOxhhrujNpMNIpSTNhT1/xebKuKQaTV6foIsDzMOnrE9X6pQztNpip6NDzPwx8l0jJgYaaCCEQJgOK8XhJDfV+GfmD94HyxZ5/GBRcA23gQAZIjTGfcAWWWZq8FazaGRFq/8AGbtudjeGcrhndufjAqjHJg98wwo2dGc67yGSWhdT5vOvHc2exeybICFxMRWhhHPuzmo/CrfKcHZwZgEhQT4kPfaUIhPjW0iLSUyQlz5iChSOs1RNq2Bs8K71UkJ62z7ww4ARRlAcCApn+A01wBP2HwsE+GGf0zKcQeqKGO3QSM886OvOZl7k8kkdaU3h/mjONUz5ElI1K05SJFcoQFWiX4YGOzoKMhgkaPi/9Yg/NqnBUQFbfB0BQmFNpRTv0GNipCi/NLBwLEA9+5ZmmfMtyPsIvD8qOoYfLbZyatSnFPGy8Ucduqk1bObbqjhtwHybbTyHEwOKMkJO43ykSY5RaMhL2pXoWr/52yIi0XqANty9bUVtdx9wiua+lWWmBKENMO6icatHM+++wzPPDAAxgwYEBrN8XAgIgRd2DQoRE7ac00mkTaZpIt0po0ZtJaaHL2mBx1ogfcTg5GMjodzlvVIsBqiUQAgNJGZeepgyc8NCgJW6IHCooRTuu2qLwnJYGVYEBoE6HiNAAUukySDuK+usS5aYOizxwTdbI+mcKHXVLmmBoeHdnBgHI0BXF70WeFApBCqRclY+t3CqpKA9IHwPDDkNyIdQpXjh6BkOuU53ytJszxnB/efeTiYYqfZdL2/jrJsvA1R+yCoq2Zuo4dhrKkE5eT4g7E1w0tFZYHEpoVS+QBz/Mhx50KFG0GbRU+HBpO2rZHeDp25LWOLqf4OhlZzvPJF/DE9waZuAPJdF/GpllgZWTuW21TDoqf6AxLLQURaUua6jbHKrxf2xAEaQaSOB6K9xHc2qJrrIugsYfH+O0KTtoKpkTT9bqtocVJG4144L+tINf1lRNp853C65qcyBvtcqVEReeiIfVd5GCaDBHR55aLPKApBUe+gUGC4HkeDz/8cKu2Yfbs2eB5Hnv37m3Vdhi0TQyR1qBDI86kNTOURKTlPKXgfNVgvUdRv+YBNPz1T8nDpx54LgjP7g8ir2nwMGlw05ppCqyMePXsqhpwUevq/JykeFeahUKKKF8s7Lat0CDAas01PdIoL/jShLwvAAhUrJTdJ1C5SvBaPL1KHHcgpjsh6qDpQMTFFoZCoUu4LlxkjeN5/LzXjQ+2NKiK0XKIzaLRz0C9M4RPS+uO+vHZ9ka4dQiveh8oZvxRiXKFKIuD9UF8sKUBv+zzgON5adEwKw2GJr+XtctvhffA9wCk2au0vTNsZuFDQ7hwmJwJfJD3WzAItTVYvSHuB0TKHKMQwAXgIeTRhtfpgVRAJ1gdKmAnLqAVq0hLy4i0JkjbWi+a2qn0kB5mYLb0KT8WkZZzH9K0Hc+zEgdPsgV7PuhGw8bnULfqHgTr9yb1XMcMos+AlsJhYcSfwzBBjpxTDgDefV9pb5sClOjewHnLEazfI91QPMuDkc+FFiP3tfpgS4OmmS1A6CHzt/0efLClAQebstODHI/vdofuUUdE96hdNQF8sKUBiw55W3zqZu2fN8C96wPwPC8YpJaDC9TDX74UdSvvhHvHO6hf+zBKZ1MonU2hbvV9ugfD2hOaCy+SRFqL8B7B+avgO/wrapfPhHffVwjW74bv4FzBNhQjP1tHrcBTe3TScgqZtABgFfVR4814TRZy3+ANFeTvRq5DeP11iwskNBEtnlImeZG2ZsnfUb3g0tB3ctX/gec52e+lKbWXZJlc5IERdWCQbLKzQ/3Hr776CmvXkms2GBi0NkbcgUGHRlxkyUxTMKX2AGizQGwJ1mxC7Z//iDjc/BUrkHlybA+E9av/T7LMwnsQpJQf8MwMBTmtblWZH48tq8EjozPA8zyeXF4jechNtdLwsjxqosw/ESetxofCPw97MTpfuZ1KIq2T8oDU/6qZfyEsFx0C48gXLCc+dNMikVbFSds98Cd5hcLDRXGqGfvrm3+PsJN2zrZGfLUrJND/ut+D107J0h2DIM6kjXZU9c6Uil2f72jEzpoA7h2Rrun4sUzNm/FHJd4/PUcieDcEONy3pAq+prei1s8hQ+R+yLDSoGgr8YHBveUluLe8hMxJP0lEWmv+JNh4GtH5hJ6mh4YGmYeiIb7EiDAAYMmfBD7YSI4sUIFt2IdA+RLiOrmp0XJwAakbJVATEmmT7aTVghaRtnOKDeJSI959X8LZ+3pd5wrWbtO2Ic+2uJO2dvmt8Ox4EwDg2fkuci/cR8zjM5BHj5NWjiDHg5Zx0lb/cR7ST/wc9uLz4zsJLe0aV3w/DJ0uPAjK1Fz0SxLFQ2v/PMg5aefu8eDPUh9ePilLdpsw3+5246OtIYfqT3vdePWUbHyytQG/HQi1a+lhL16YkAmbicaRxiAeXFodGST0syk4pWvLFTDzHZwbEgdZDzivemEi3leJyh/HC6b0h2nc8E/wviqkjfkvYc/2j3aRVvreUKIBDN+BuahfdTcAwL3lReJhlK5jatd/La7otoaqk5YTrp+zvRHn95QXK1sLudkGclhF/bt6mRijDJs2kTZYtRbBqpDA1bjxX6BoM+y9riFuS9s7S89jZQDCLDejaJhBsrnlllvw5JNPwufz4aGHHsJ335GL3RkYtCaGk9agQ9MoEjKtDAWKNsOU2lOw3LP7I0HsgW//1+DlKj6rnXPT85JlFl7dmWtlKPRUyH7b0uR0LW1ksZcwPT/FQksq9R5sYMHzPLFKLIn/rFWf3nRUQfB1UPLuusYtL0uWVc+/SLJM7PqwKjxEmGigZ24n4jol4ao4VfiQfqAh9H6GBVogJIb+uk+/W1AstEc3P9PGINsuvSyvO+qXFS7FuGMscrHokPR3+WG3OyLQAsBn2xsjwn6YNCsNKDhxAMCz97OIOzSMpfPJEpdO+FxyQnNxcBVxeSw4e98Ik6tbTPv6yxdD1seSgLgDtm5H6FA+YTYhZUmskxYAShhhBMXYfOED+5Bc5b9t7wyzQLgKU/fnP7Q3sAm2geBWJGBK6yN10nqkxUoSBR90RwRaAOC8ZfDLiPQG8hQFVmvedkw+WTga3smqeO2uWXSFrjaRcq1JwgTvq4JnzyfCZaywMFoinLRAqGr7Fg0zV8ICLRC6r3y5oxGLDzePwlZ6Ofy8L9TGr3a6BbM4Xt+gHlETK6bMwbLrapfdrN31ThAhw7i3/09vs9oNWpzGAGDJHSNZJh7I85ctUD0ORVtxXJawbzmsU+i6ryTSdgssA1hthW/bEmqZtIdtw6X7tMGiQT4NGf7RHCeqb1CSSvZppVm0ibRiGv56AlzjfuI6UnyBnJPWbCgTBkmmS5cuuO666wAA33//PVasWKH7GBzH4ffff8edd96JsWPHIjs7G2azGenp6Rg0aBDuvPNO7N9P/j6EmT59OiiKQnFxsWD5Y489BoqiQFEUduzYodqW0047DRRFIS8vDyxLfgb/+uuvceGFF6Jr166w2WxIT0/HsGHD8Oijj6K6+tgoYnqsYVwKDTo0pSLXZ06TQCYWQ4I1QoEJQEKzuEgFfMTk2BlVwYTneVTKCK42gsi77qgfnqC0EFQ8NCiIhFlm+Q59oHyxdCHJlSjKC8yy0bLZXL3SzcgaLXWPMM4iMPZc2bbki+IO5NzBu+v0T7kUTzFziHqkOXZydMDBBm2DAtU+ba5oMZsrpZ/nzQShQGzeMNEApXIr8ex4S/J9oe25kr8b3yR8kgwif++yn+jCjgVz7hhYu5wNaBBVzLnjJMuCddvld9D5MMcR4g74YCO4QKPUSWvL0nXsMBRjgSmDXBzhquM7R95XhgImlzgE608tciDN0vzOD8m1RLY30cD1x6eAosmDR3ofbLU4yMxZw2DOHgHanic8V7ABnMrDd6z4y6TXpmDt1qSc61jCLBKRhls2CAahpvWWFwAmFNok33e7icLpxXZQtAm2bpeRd9QpGon/trQtF+asIcRtxd97sdhDmVM0n1fNJRvLFOstVQGJcLPwYGjwLZZ8cy1YCber1OHPye/A+SUF5QyEaCmeCAD2btIBCTmXuRKUJQ2X93VF7scMBZzdLXQfMNEUceAYAE50/5dYmKytw4vjDii6Of6KtiJgkQ7sJ7KPnCiqNZorACDfyWBgjvD5YWCOBZ1EEQgnd7EJrk0UbYK9x3TN52EbpKJU2pg3iNtmyXyusmT6wAYGieTee++F3R4yGDz44IO693/sscdwyimn4Pnnn8fSpUtRWVmJYDCI2tparF+/Hs8//zz69u2Lr77SPwPw0ksvjfz80UcfKW5bVlaG3377DQAwbdo0MIzw+1NdXY1TTjkFU6dOxeeff44DBw7A5/OhtrYWq1evxiOPPII+ffpg2TKZaECDVsOIOzDo0IhzRfNcoa8EZRIKFRyh+ALP+iTbxUoXF4WdKppvgYsBQ1O4bkCKrAumzs+jRqbjZmEoDMy1CNyg++qCOFAfm6gnR4NCfmq2Rf5BUesDrjgv0ERT6ORgJII7AByfY4HJVYSc83agfvW98O77HM5+M5Ey9F+K5+jsFJ6jIcATnayxmCvEIrbTLHxYF7udwxxsYNFHg5GyRmchMKX9SE4N4q+sMj2NSe0pKBwT2oWRiDDh95N0jgnZdVB7HEwb/z5qFZx0tK0TXIMehr3bpaBoRuKEk0AxyDr1Fxz5QOgUZet2Kuyk70MhV3yDbdgLcMLCROK8QT1kn70W9avvgXfvZ6Fj2Tsj/YQPkZfaBU87A9hUFUDfTDO6pQkFV5uJwjMnZOHPw150djIYnGvF1io/dlQHMTjXggKXfDciWLsF5vR+mtuo5YE/8/T5oChKEo0CAJz7MGhRgZJE4Cv9TbJM8qBvIIG2CgcVUnv+DU/3ycSSw15k2ZiIW4/EoBwrHh2dge01AViZUBbtsE5WpNtC1+b0ce/iiEzVcT34yxYJXls6jQ8NANBWyfdP7CoTDwroEWnVcMncB5QgZZeHZ8skwp3mJcxw+Oc46TXJmncyQiUlZa6FCg5ZA4B1q4u0jr63gjJJBxljKapHW9JRkmbG0+MysbHSjz4ZZnSPGtDPd5pQ4RF2UMe738Tx/h/B8e2vwJs47sBaeCZcxz+AwNFlsOSdgrSNVlT7hc8GPpaHSUfh3pZAa19vej8XTii0SQaGGJrCU2Mz8dsBDzZW+DG+wIZxBdLPVNqYN2DpfBJqF1+pei7SAINDJgIhkzTCg1CRYwODZJOXl4cbbrgBL7zwAubNm4fFixdj3DipKUOOYDCIvLw8TJ06FaNHj0a3bt1gs9lw4MABLF26FK+++ioaGhpw6aWXYs2aNejbt6/mY/fo0QMjR47E8uXL8dFHHykWOPv0008j7tnLLhMOXvt8PkycOBFr1qwBwzC49NJLMXnyZJSUlCAQCGDhwoV44YUXUF5ejsmTJ2Pt2rUoKirS3E6D5GKItAYdGrGwl98kzklEWoJ4IKnsHAfdu43HH1uVxdJw2+REPCDk+KyScVKaaQq90s1wmChBcanFh/VP2VdCHCERTY5dvpOreVoVofhMnpMs0g7IDokAptQeyDjpM23HR8jNSlNCR+cRQnEtnZFg4HheEkcgFmlTLOT3KFwYRo1YRVpS5IVfg32Eivqv7DbmFKkYSRJpw/8Xqd8MBVAyxcmicXS/XFGkTRv9GmxFUyOvOU+p8gEpBpTJBkvnE+E/Mj+yOFivJNJqh+c58IRMWoDs1Iw1kxYIvX+pw58jutyK08woTpOPUkm30jgjymHbJ9OCPpnKrn4A8B9ZqEukJVYiF0E3VZumTA5QlnTw/prIOtZ9GKakiLS/SpapfnYMpIWNKAYpFhqnF2sb3OydaSbmdAPargdakIq0J4CiKNC2bEkhO/E9Svzdpc2pus7NUPIOPXF2uRYaZWJiShtZ1QKbWqjySu+BWTJTlq2FkyUFqtRg0vqANRzqEjeiKeN4BKv/EixjCBmfQGz3iLD7tijVhCLCFPgCF4O/RAkVPQMhBzofqAXPBUERcpzbKuLCYZTJBUvOCFhyRgAA0q01kn18LA+n/C2yVRAXcSUxsatNcO8W47LQmNLdiSnd5fvfFG2Co8ffULd8hmx/JYx4gMHe8++y22bIXDsMkTYEz3OSyKtjHdqaBUpHgdF4ueeee/C///0PjY2NeOihh/D7779r3veaa67Bww8/DLNZeGEYMmQIpkyZghkzZmDUqFE4dOgQnnrqKbz//vu62nbZZZdh+fLl2L59O1atWoVhw4YRtws7bXv16iXZ5rHHHsOaNWuQnp6OX3/9FUOHDhWsHzduHC677DKMHj0apaWluO+++/Dhh/EPfhskhvZzVzUwSDB+lkeFR9jJyZMTaQnTcHkucSJt13QHAOWpumGXr9KzVpk7KDsFysKERs4HZFuw/Ehz20lZpPGg5KTNccj3crWLtNIOXJ5TusxhotAtLbZLnImmkGOnUeZu/l20iqRKeIK8xFvkElmcUmSdtBrjDnRMgYuGJO6SRFrpEooonAv28VUTBRuxATeszYpbQlFSB3UsMK5iwWvOrSy0hR88aZtw+iPnPqywl3ZxJeQulqliX7tF3BpQlvblWvKXLYSzj/ZsWr1TZxlHPoICkfaQ/MYxwnkrEayUVv9lFT8DBgAATvydb1sJW6z7CFjRgIul03gAoYdFsUhLS0Ta+Jy0JhqQiY+LaXq1XB75XxV+1QKbWhAP5DlMFGwyhTPFhf20wNg7GyItAE7kRrTmT5SItHLEFneQrrieNFuCRvMHl/NXg7Hl6D5vayH+3tKi722aVfqZ1jJg3dLIzZqLRsnUoRsN12+xk5ZxdpXdVi6T1hBpQ3C+SpR/Ih/LdiySO628Ra8lubm5uPnmm/Gvf/0Lf/zxB/744w+cdNJJmvYV58iKKSwsxF133YWZM2fi22+/Bc/zxGxmOS6++GLcdtttYFkWH374IVGk3bVrF5YvXw5A6qJtaGjAK6+8AgB4/PHHJQJtmKKiIjz44IO48cYb8dlnn+H111+H09n2CiV2RAyR1qDDcqSRlcgjEZGWEY08k6ZF63TScv46NG6ZRVzXJdUKNZE2XJmVUegnLTrkky30EBbABucKRVq5Ik2xwPO8opM2N8Ulv6/WjF+CWJdPeIjon2WJq0psZ6cJZe7mNr32l/Tvo9fsRHpvJE5amXmpB+tZ1Po4/LzXjX31QWytCsAT5NEvywwrQyHNQqNHullzETgx7iAPb5CLPHS7AxzKPdJjfbZdHFsAqDlp2YY9oMxCgZGiTZK9Zm9uQNdUEz7eKnK6AMS/u14YV4mwXRqctAC5MrEcPOsDF6hH4+b/AFwAzn4zZd1NvF+aRxtG7KSlrBkt6jBIBP6yhbo6ppqrmjdBOwqAms3N+xOEU9/hX1Cz+O/g3AcBAClDnoTzuHs0OzF9R/4ASUg3nLRkeC6Axi0vg/MckTqQE/AdTiT+cqGLljKnwpRxPABICtMBkGRYc6LZAXpFWoaSjwSIxUkrt8c7m8jRHBfPDRXbu6Kvq6kfwOOMEkdk4HBZqRc7qgMY2smKox5Wchw5kQWILT9bnDPd0eC5INxbXwHbKCzmaMmbiMZNLwiWyQ1IUbE4aa3Kwm6BS/l7y/uqAJGwwvM8PDvfQbBmC+w9/gazTCZ6S8MFGuHeKixSS5mF/VKSsOnVIdKuLvNhS1UAg3IsOC67ecYJz/NYdMiL3bVBjMm3oVdGfNbcrRpypltcpBW5wBlnF9ltM21G3IFB63PXXXfh1VdfRX19PR588EEsXkyoj6KBuro6VFZWwu12R2YDOhyOyLo9e/agWzftxYpzc3MxadIk/PTTT/j000/x/PPPg6aF38HovNroHFsAWLBgAWprQ88YF1xwgeK5TjjhBABAIBDA6tWrI68NWhdDpDXosIjzaDNtdESg0pI1q1lUbKJm8XT49pMDxB1mGqkWCnV+9Y4gKRcuzF8VfonoFyY8XV9cPCCReIK8onDZKS0dct1KrRmPJKGK5KQ9Lju+DnBnB4P1KttIfbHKNIpcxjQVKugWTVAm6Lbax+GBJVUS4XRDRfM7+tuB+FzRpY0sStJC7+8tf2ibZhUSUNVFOF5cIIvgpAWAx5bVSJbRFIAETKekrenCNkW5MEmEHTeMXVpIRI5AxQpU/3EB/IfnAQB8B39E9tkridtyClMHxY6yePJoWwvOfQhswx6YUrR1THm9Tlq7MJdW7G71ly1C1bxTBcvq19wPnvUiZfBjms7hPyyNOiCdyyBE3YqZcG99lbguEW74ROI/slDw2pI7NiLeE52goixVPih20uqMO1DQPBI4dqrK+1ua771/HfXj8bGZWHrYixfXhq5P3+8hZ3enExyHYWJ10nZk6lffi8ZN0jgac+ZgyTK2YTfxGGqCKwm1zy3JSVtDN197SVOyGze9gPpVd4Z+3jILuRfsBeNo/b9vzUJpwUHKJBRpbQSjg19j6YbVZT48syrU1/lutxuPj8mIiLG/H/BG6kn8tNeDFyZkEg0GWiDlT5NIZPozRTGqPV5x3IGSSEt6nwGgE6E/b2CQLLKysjBz5kw8/vjjWLJkCX7++Wecdtppmvbdt28fnnvuOXz33XfYt2+f4rYVFRW6RFog5I796aefUFpait9//x0TJ04UrA+LtCNHjkSPHj0E61atWhX5OS9P+wDokSNHdLXRIHm0L1uOgUECOSoSuzpHjd5SGqq+63HScr4aWYE2TLZCRdMe6c0duRyVUWY5J+uArJA4m2lj0CUlOZ0gtYrUGS55oUk8BU22MjxFykyTLhuQHZ8YrWU0X2/hMPHfxmmiJC5Dn8LTOcnZmkj21oUGLup8HOoVHNHR0BQALoYoCMoESsWBG8bHAhSlLLqHp2zaSqYR15PcsPbu8vm1gn11Tr8KC7QAEKhchUCNOLoghPgzH02wdpuwDTE8fLck5izyVKpA1TrNx1DLXzNnCad7if+mnLdc8Lpu5Z3E4zSsf1xzmwJVa4jLOe9RzcfoSMgJtAASMtASjdJUWi0EqzcIXls6NRcNsRaeKdleXPyQD4hmFZj1TREc1Vm+nxGLkzYRbK8JotrL4r9/KWdPAsChBnnliuhEVoHWMRgGhDIbjyVIAi1oM2i7dMqztWAy8RjiYn1aUMuTTSXk5Hdmm+9PpBkQYYG2aQM0/PWk7nYlGj7ohe/AN5LlYgd8d0JMFqmIKglxUd83ol5/G1W0lwfw7W43YuXLndr2LSFkDMeKrfhi1W140WeBcciLtHJkKzj0DQySwe2334709HQAUCzSFc2PP/6Ifv364eWXX1YVaAHA41EpVEzg3HPPjbhxxVmxa9aswdatITOHOOoAAMrLyyXLtOB2x35dMkgshpPWoMMinr7kjJ5mrsElqyeTNlAt78m097q26fzygtV1A5qdDsWpJhS4GMUHJDGpFgqDc5tFyzQLjQNQ3p+hAIeZQn2UuzdfZYRbnPErOSZjgqPXdXBvf12yTlxxV64CNOlBON1KY0iuBWvKQ3+3QTkW1baqoTSVM4z+uAPh7+RMRMntBLKjOoCTuth1FR/LdzExZYFS5hTIxBkSUZs+6+xzEwAgZdCj8O75RLLeNfAh6T79boNnzxxJFXfpyeNzZXOeUiBdWtlVqfig+PtAMfa42pBsUkf/F5VzRwO8ULBnG9Q7r0BoUEbRnUqbkTpKNE1VNOOBZ4VO8kDFCk3nVoJUrRrQP5PCQOpYi5e0MW+g6hex40V7xA3rETpGmJTukZ/tJdMk1czZRuFUXvDCeSEUrW9g8LyeDiw+7CVGDrVmBGZDgIdM/VEB4vtZNLSjQNc5U0e9KnvPl4MP1Le7nG69hAvppI2bjdrF0wEAlCUDtuILydvbOoUGsvn4M/TDUBSF83o4IsJgDn8QJYHma6tSbE8Y/9GlCWtPrIi/72HEgwODCLPNtGbSivtO+6NqGYiLz/5xwIt/HK/PfR/mrwr1+08nB43ecUYqROMa8H+hvruOex+t4KQFgOn9XJi9ubmvM77ACiYB+dnHArQ1C7nTYhPa2iuxDDIlgvT0dNx+++146KGHsHz5cnz//fc466yzZLevqKjApZdeCrfbDZfLhTvvvBOnnXYaunfvjrS0NFgsoWvI77//jlNOOQWAgvFIAZfLhSlTpuDjjz/Gl19+iddeew02W2hwN+yiZRgGF18sHUBhowLv16xZIylwJkdhYaHudhokB0OkNeiwiGMDoqfecBqqjCsJLGJIhWfCpAwMjdqJp70DwPBOVlzc24kuKc1fVZqi8NiYDCw55MXP+zyqYu2AbDNuOD4VjihBUC2r9Yq+LgzKCWXXzonKIFXLJqvwqD/ZpY56lSzSSuIOZERamQf924ekYWFTEbTxBTZdAe0k0jWItKzOm26D2ElLEuZbsX+6rSnjzB3U/rBcnGrW1WkPQ1vSYNbYGU+xUKCtZDero/c/YMk7GbaiUOaSKa0Xcs7dgsatsxCs3gDangd7jythK5Q6j8xZg5F91nL4j8wHz/lRv+pucgPizILlWZn3R8/7psXd34pYsoch++xVqPh2kGC5ZpHWVyl5P5zH3wcEPaCdhbB2PgnmLOG0X4qxCg+i4/3kg27VWBue9YPzlJFXcup5gAZCaJ1xAGpYC06Fc8C9aNzwz8gyxlWkeX/OK/zb0rZmxyLFWGDveTU8O96KLGMb9gq250UzCCidgzmZNgbPjM/EyjIf3tssvP+pXYI5ngdN6R8o1IJcATIxcpmSgPI0ZzEZE3+ArfAMuHe8o3kfoEkcPNZF2qZCYI4eV4JxFCBYsxnWLmeDIbhrAYCiGTDOLmAb9iS0HRf1cqIo1YRaH4c+m+4HIygcVqN+gFhm2yQYTkakFcfmUBSFLBuNyqh8f61OWjni3V9MpUpfe3o/F8YV2BIqeDLOAuRM3YqjX/bSNAhAWTNBq8wuOKPEgXQrjc92NOKkLnacWdK2B6NbEoqi21VBvvbOzJkz8eKLL6KyshIPP/ywokj7+eefo6amBgDw1VdfSWIIwlRV6auzQOKyyy7Dxx9/jLq6Onz//fe44IILwHEcPvkkZEaZNGkScnOl94OsrGbBOycnxxBf2yFty8ZlYNCCSETaKJGU86tfWPWItIpTfpnQiBspn2nmkFSBQBvGZaZxWrED53RTz849o9iBLFGUglq/7axuDhQSzqvWzazQULRKrmAPJ576La4MHt7fTBZpzQyFU7racUpXOywEwVsvSnl7YXRomQCkD78kJ20iNdqe6frG4Q42sGgMcBIxWYniGKfTUeZUzU7abBsDykQWKVOGPQt78YUCUd6U3gdpo15B1hkLkXHip0SBNow5cyCc/W6FOXukUmu1NVQGXuZ6oseNKREk2yDmzIFwHX+/YJm4CI4cUhcthZRBjyB1xAtw9b9dItACAETORT3XZDlXlbBNhyB71ePZmJwRHRm9hbW0YM07RfCaD2qbqsezPkkmtdhRZ84aIngtFmklQgUhikeNXAeDM0sc6JcpFHjVBgAb/Mr57/GgdZBOKVNXzzRnW+EZAPTPFuDEOefHINGFwKz5E+HsdwtMKSUKewCMqzjx7aAojMqz4bRiB1Kswj6cJG+eRBsY1JIr9kg78iXL0kT9v3hF1rJGcn9WLSJMDrU+2hklDqQksmhYE6aUEqSPf0/TtlqvAaPzbXhhQhbO7uaIq9ivgUE8pKSk4K677gIQcp5+9ZV8ROGmTZsAAJmZmbICLSDMhY2V0047DdnZofigsHt2wYIFOHQoNIORFHUAAIMHN/eZlyxZEnc7DFoeQ6Q16LCIO116nbR6XFuBKnknbThr00oQFtW0Rj0VZ/UcN4ze7lKFW3sEgxhJ3IGMk5ZO8JRZOTSJtHHHHZDe4cR1UtXyi0nsqA6gXuODg9NEIccew22EokGZnIpF8KLJUjgHLSPa62+SvAuOVKxOD7JZq3IOW1Ib2riTNozYyajVSSuOzKBtuarORKmTVkdOuJv8wC5ok0zUQfNBWl94aE8kQ6SVRF5oFGnF+cUAwNiEIq1Y7FJz0saTuSsWPFmVS3BNjOKOFuRy7fUQSwwBZdIn0mqZZt/eoa3yOf5yJEOkjSac/x6G0/B34BMYvxArcgNzjF1aVEfcH9cadyCHuFBxmL21rf++6IVxKQ8SRLbT4aY3MGgL3HzzzRFX6sMPPyw7EB8Mhr63Xq8XHEe+F7vdbrz//vtxt8lkMuGiiy4CAPzwww+oqamJiLUOhwPnnnsucb+JEydG8mxfeuklw1TQDjFEWoMOi1jgjO6UyTnfogln0voO/4K6VXfDe/DHyLpA9SbUrbwTlT+fgtplMxCs/kv2OFTYSUtQTtWm7EfnxepB6wwo8ek3VQbw/uZ6rDziw+GGIP61sgZX/nQUP+91g+N5HNUQdyAH768R3ER4XuZYLSRW2U00UTiPJqjTyiR2P7hITtoEGglyFYrRybG5KoDPtjeqbwigKNVE/IyqZU9S5lRQFCXJaJNDi2AeN3KfNwDx3io5Txkat8xC3co7EKzZ2nxKPU5auu07aQGAcQpF2mDVWrAN+8E2HkDd6ntRMXc0apffAn/ZIsF2nMhJSzvVMy3F70kgqhCUbMREE6QH9kDFatStvAPuHe+gccsrqFmgXCjFyKXVB2XSV1hL2zHFIm0D/GWLVfdjxTEWlAmUqDifWOzivOUREbjhr6cFBQIBgIrBSRs5l+g6+t6WBvy23yP7YFWrIzdcL+9vEQ+YklG6VcUSNyR7z5fBs+fjdvfgGazfg7pVd6Nh4/PgmwZ5+KAHDRsJRcPQHHegBz2RH7FAiwR499ZXUbfidvjLl8nuIxsb04LIxR2QBhTEfb93Nzegyiv8fPI8jxVHfHh/cz2+2dWID2S+N36Wl+3rvLCmFlw7+wwzKk7uyHaGSGvQznA6nbjnnnsAABs2bMAPP/xA3K5nz54AQkLsnDlzJOtZlsU111yDw4cV6izoIOyW9fl8+Oijj/DFF18AAKZMmQKXi/y8lZ6ejptvvhkAsHTpUtx2222ygjIAlJWV4c0330xIew0Sg5FJa9BhSUQmra90PqrmnQoAaNz4LDIn/Qxz1hBUfD8MaCpi4y/9XflATW4xUtyBGg0KhTvCkI4aqynAE+Tx/R4Pvt8jrFL59qYG1Po5QYZXLASr1sOcNSj0Qi7uoAWnQ6VbaZQpCIl6RdpG0TRSh0KxuEQQi5P2m13aK3sWE6ogAwDtLARbu5W4DmjOplR6b6NpCZFWXLk9kURXtnZvfwu5F+wBbc3QJ/K1UyctAJR/XgTamg3OVwEACBxdBvfWV5F99mqYMwcCkDppxTmB5JOJ4g78NeB8NaCt6TjyvrKoLX5gDzbsQ8XckSpivfgghpNWD8lwg5NyhSt/HI/sc9bDnHm87H5i0Yi250oc8+IBByD0OQlUrET9mnulB43DSUuKfnl9Qz3q/RzO7SEVt5Mp0uopHJlQgvqqX7u3vgpb13NhzZ+UpAYlFj7oQeWP4yIDUmzdDqSN+S9qV9wKz/Y3iPu0ByctH2xA4+Z/o3Hzf5AzdQtMab0l+/CBOvA836L9NzGsTNwBqU3iyCyWBx5YUo2XT86KTMlfccSHF9bUqZ739Q11MMk4IzxBHl/saMSFvVpmhlgiiM7uVoJxdk1ySwwMEs8NN9yA5557DqWlpaioqCBuc9FFF+G+++6Dz+fDVVddhXXr1mHSpElIS0vDpk2bMGvWLKxevRpjx45NSNTAmDFjUFJSgj179uD++++P5OHKRR2Eeeyxx7BgwQIsX74cL774IubPn49rr70WgwYNgtPpRHV1NTZt2oRff/0VP/74IwYMGIBrrrkm7vYaJAbDSWvQYRFPPbdHiaS24gvUD8B6UPvnPwSLapb8HQ0bn40ItJpoct/0SNdfhbWXhn1IfUOl6ezd0qKLlGlvyxc73KjSKNKas0cQl9cuv7n5RRuYHpehUjxMbyat+MHaRRBpSRmvsRZTiCmKQAdhjZoyC50o9uKLFPcLO1dOLdL2e6U2ZatZRdmy1i5na9pfCzThgcLSaTwAIFC1JmHn4QO18Ox8N/RCj5NW51Tg1kLOPRMWaCPwLBq3vtK83ntUsJq2d1Y9F0n0a9xEdqSptadh3SP6BFoAPKtPVOro0LbshB9TzrVf++f1ivtJi4Z1kmxDm52grcI2c+5DqF18JbktOguHRSN20ob5eBt58OhQQ+vfH4fkKg+EmHPH6Doek9ZLdxuq5yvfa9oS7u1vCGYMuLf/DzzHygq0gDCTViu0WXvUhK1kWgKPz6N+zf0y64BgzWbd50okpOgdcd8lDCnOtdLLYWNF88CcFoEWABYd8in2jT/foX1gXAsDcyzqG8WBVqHdcNIatEfsdjvuu+8+xW0KCwvx2muvgaZpeL1e/Otf/8LEiRMxfPhwTJ8+HatXr8bFF1+MRx99NGHtuvTSSwEgItBmZ2fjtNNOU9zHarXil19+wXnnnQcAWL9+PW6++WaMGzcOgwcPxsknn4wZM2bgm2++gd/vR2pqYou7GsSHIdIadFjKRVPzs6IEOWe/mar7c/5asHXbhMvchyTTeJWw97wm0uEZmGNBl5Rm5+NZGoS54Z3Vp0BnEqa8exSyQKf3a84NtOisDKtUXCH690kdOYu4TaC8ecRRUkgMgLP/7braEy/5TmUnql5D8hFR8YhOBKfrkFyL4LzndnfgrG4OpFn0O1AyrIzkc3R6sT2SScxQwHUDYs+JDH+OUoY2V1enrdlwHneX4n5Uk5P2xEI7CIkP0u2b2usa8H8A1fTeUCakDHpMf6NlMKf3lSxLHfkygMRnH3oPfBM6ro5MWpKrr02iwy3pP/Rz8wuRK1WL65IWOboAwH9UfsqtAJEg6zs4V9t+UXAeaa6pARlb8cWSadKJgLZ3JgotAZXPgfhvx9ilIi1AcA0G5KMAxIKuHiw6Jz1sqGj9qI2zVQqXpg57DlDJ846+rpmzhulug7j4W1vGe/B7yTK2fpfiPlrzP6PRHBvB2JEy+HHdx1fKG/bu+0I2goJzH9R9rkQSjIrDCZM68iXitnJCZI0vtkgvpT53LFgVrhfTeic+VkZM6ogXVbehDZHWoJ1y7bXXoksX5c/vVVddhUWLFuHcc89FTk4OzGYz8vLycPrpp+PTTz/FJ598AobRP5tRDrFr9qKLLoLJpD57JyUlBV988QUWLVqEa665Br1790ZKSgpMJhMyMzMxfPhw3HTTTfjhhx/wyy+/JKy9BvHTZuMOdu3ahYqKChQXF6NTJ3Ln2cAgVjxBTpLnGi2YmVK6IWfqNhz9SjptK4yccMPrcNGmjf5v5GeaovD4mAwsPOhFioXG6Dx1AdbCUBhfYMWiQ/IFc0i5pHIdxtF5VvSOqjKtlsmqxjPjM7Gt2g+XWfj7WHJGIGvyElT+MFZ2Xz4gdSmkDNPmkksUXVMSd4n0sbwkDiLPKT0+TVF4cmwGFh3yItVKY1RnKyiKwuNjM3HLHzIFqGRIt9K4ol8Ksu0Mft7nwSW9nRiZZ8OEQhu2VgVwXJYF1hhiNsQ4+9wAxlUMtm57SIwxu5B91qpQ7AeBsFhTlGrCk2Mzsbbch3IPi94ZZgzItuCG34S/Z/iZz9JpPLLOXIZA2WJY8k+BOWNA3G2PpvPljahdfiuCVeuQNvatyHTpsKgsxtbtUqQMfFjxOkEiUmhFh5PWlNJd1zlaD+2fp+iHOHFhGUrD1HHaInWZ8YF6bTmVvPC7qLXgVDSs5whi9052HGh7HtJP+CApx6YoCuasIfAf+UPXflInLXkKLyUqTMhJClxGHyNHVxuiEU+vVsId4LCzJj4n7ZNjM3D/Eg0FUmUY2dmKVJUYGkvuaGSftRJ1K26Dv2whcZvU0a9GfpYTxsy540DRJlAmF3wEoZPnubiLO7YEweqNkmUBhXoFAGBK7an7PFrfi5xz1sGU2kP38UmDY9HwhAF2QF/fONFw3kpworiD1JEvwdHjb8Tt5b6Nap95ORoSXOhP7IfolmaCiQKuPi4FxWnJvys5+s4Az3pQv/r/ZLcxnLQGbYkTTzxRc4a51WrF/v37VbcbM2YMvvrqq5jPOXv2bMyePVtTm/r27RtXBvu4ceMwbty4mPc3aHlaXKQtLy/H559/DiA0KpCWJhyR3blzJy6++GKsW7cOQKjTNmXKFLz55pvIyNAfoG9gQKLcLe0wZYvETFNaL5jSj0OwRtqxBgBOzsGho8I4RQvPaTfROK1Y2Z0iJsumPFJHyroV5/GGKRJNtY9XwMuw0ji1iPz7mHNGKe4rFmkpS3qL55l1SaBIK3bRAkBnGaeuwyz9HHRyMJhcYscPe7RPsXY1uW/PKHHgjJLm43VLM6NbU0deHPsRK7bCMwCcEXmtVCQoWvQsSjVJPndioqN/LdnDYMnW77jSAmVyIH0saeop+fviOv5+mGKYosvWbQfPsboyaZkYHqZbAz3fUcFDHCcSnTQUYRIXegKaskY1ZMXyor9pLJnEYqHPgIyjzw2aRPdYiUWkFRcOo+WctKLrmKKTNh6RVseslU2VAcGn10wD53R34Asd06ZjiVeKJlMlCiiMOWsInAPulRVpGXuecAFFSwZQsieHZifVLhXGS4VhG/bBpLGYUWsiFgkBKBaVBWITadXcywDg6HtLTPcuQD4iIAznIxfe5bzkfMeWICB20dJWOHrfILu93G0s/D3VW4+gXqWf5Wd5zQM1PM9LorZuOD4VXVX6UYmEoijYu1+pINJSYBzqxT8NDAwMDMi0+NDzl19+iZtvvhkvvviiRKD1+Xw444wzsG7dOvA8D57nwXEcvv76a0yZMqWlm2pwDFMuKliUaaOJHSSlaV1y0+xa2i1gjsHt6pGJJRAP0tnidNIqibxqbg/OLxRpaRk3YzJR6/TqGdQsbRSKUFkynzklOussBEZrEMzsJkqH91E73X6n4QAApIhJREFUlFlepNWTmQfoj5VIODz5AYuWycNUPVywEWzdDvCs9gEdU0q3mM7VlokuiiN20mopwkRy0rKN+8FrGSiT+ZvqQa5auIGQZBQMi8acNZS4XMl1oiWTFpB+x3lFJ622gjok9NwLxFEHvTPMGJ3XsoUF9VyTaaV7gTh7WuF7Kdcfa+2sUy1wMuJ+oEpZpI2lcJiW2Qy0OfaYIzUnLScqAhlZ7m29eJhgjVCkNaX3jWngKPy511p/IYx45p4YLUWAw5C676TCg8mGtmXJr7N3BsUkNxvXwMDA4FimxS/r8+bNA0VRmDp1qmTd7NmzsWtXKJ/pnHPOwYsvvoizzz4bPM9jyZIl+PTTT1u6uQbHKOKq8qRIAACKGXqe3eTpmy0u0sbwLZYzAYgXxxN3QIFcfEEr4ilzVBwPFbGSqvIL6HlQLRU5afNU8m5JdIphHzVoiopZBFX6dCg6aS36BPc4ZvgkBF5GOFD6HdXwHZ6ns3CYPod9uyDKPSt2lFFanLTEzxEPaMj69ex4C3Ur71IVSZQwRFptUExyi96Zs4YQl4uL0QGh73Lj1lfhL/1dsFzWSSuKO2jc8C/Zdojza/WgdK/9emcjvtjRiAoPi8+2N+DnfcLZFMdlW1DoSvy9QQk912T56ySly30s1x8L1mwiLud81ahf+zDq1z9OzLhPNjzPo2HTCyidTaHsQ3L/Rc1Jmyzi6U8pmRcAIFC5iri8fs19KJ1NoXQ2hfr1T+oapIwXsZNWLSpJ7tvI88BfR/3495rE5tQ3BpS/UFVeFq+ur8PFc8tx2Y/S65pJZ/2IREDRZtlrnhF1YGBgYBAfLR53sG1bqNDSqFHSqc4fffQRAODkk0/G119/DQCYMWMGTj31VPz666/45JNPcPHFF7dYWw2OXcRO2lwZh6LatC4SLdnxBPQX91JC3E0kRSVoxWai4oonkMQdtIKTVh3tT6pSkVb/5Vevk7Y10Rp3oIXEprnFQuJF2roVt8J53D0x738swDfFEnDeSmlRFw0uJzk3vhYnLec9isZNz6Fxy0vIvWCPemMJiKfMd3SC9eT3MdlOWkZmSjjnPgjGLnS3Nm7+D+pX3iE9hmzcgSiT1ic/ZTue+53SffzjbaEojjnbyZEcA7ItoCgKvTLM2F6tHvXR0lAMeYCJtuXocjPK9cfknLRVv5yGQMVKAIC/bBGyTp2n+VyJwL3lJeJnLRq2IbZrjzLq/ZJ4RFq1AoD+ihWqx2hY+wDYhr0y8UKJR3x/McUo0m6rDuCz7Y0Jn92jFDvF8TweWlqNox75bWIxayQC2poNljCr0BBpDQwMDOKjxS/rR4+GRgALCwsFyz0eD5YtWwaKonDdddcJ1v39738HAKxZs6ZlGmlwzFPtE2We2eW+Cvq7YrxPW3EnypKYjGUlB06uzO81NJc8DalEnEkbh5NW71R+MVyg9eMOAGBAdmKKMJQ2CKdz58XgfBLnJiuRr8N12y8ztt+xd4bCfrT8VDe9Vd67pLSuOG3OHkFewYSK4cmJRGoEqrTd00wZx8d0/LZOOJO3fr20wjhFx/690zVQxvlRv/q+mM7T2tXK2xoNhL8jkHwnrZxYzxKcznKimdbCYXLEk0cLANYYLRN2E4VuaaGdT+2q730O7xcL3dN1iKsyswBI75m1q3CWHe3Ibz6OzAwMtmGvZFmgemNEoAUA/+FfJBFKyaZuxcy49rcVnR/TfoyGIpPmjIExHRsAaJW+q/+wtgrhnh1vxlUIRw/B2m2C16b04xS3lxszWVXmS0r8Up1CHMLqMr+iQAu0jpMWAGgrOfKANvJoDQwMDOKixUXampqa0Ilp4amXLVuGQCAAiqIwceJEwbqSklBBgPLy1sszMji24EQdQ7kOTjIdQKkjX0rIceSKTwHAU+PIeWYX9HJKMqzynQwGi8TbeERaLRcXa5dzJMt4LuQ4lRYOax2R9qr+KZB7G3Rl0orc23pE1DAmmsLErsLPJKlpFIBrB2h3ypzYJbbP+fgC+f2UXGW0uFiMiLO7NT/UF7oYDMxu3Wwze8nFYFzFgmWOXtdHfkeXgiPW0mm87DpND7MUjbTR/9XUzraCs99t2jZsctJ6dr4jWUUR8mZJmNL7C14zqb3Bs9qL6wGA79CP6hsxdqQMfVqwKFi/S9d5jnX8ZQvIK5LspAWA9AmEOCwNsRdh5IQnNUEqjGvgg5rPRUKtAKgc2XY6kj0+Jt8qGWglMWNQ6F56Vf8UWTFKiRw7jbH5Ov6mMiI6SbxNHfIUEBb1KRrp42Y3by/jyCU559mGfdINNRQUbEukDH8+pv3MGVIB0tG7ueiaOXsEzLljYm4XZbIrDkqQYkbkt03+cx0XaATvrxYsU8t4d8hYU3fXBonL46XCIy0s23xO9c9tazlp5Qax4pllZGBgYGDQCnEHLpcLtbW1OHJE6HCYP38+AKBfv37IyBB2is3mkKPGZGrx5hoco4jFNbkHFbUCCbHg6HMjbF3PgzX/lIQcr1jmoWxcvhUpMpmq3dLMeHJsBjZXBlDr45BpozG+wCYpNBVP4TAtMz/TRv8X5Qe+FSzjvEfBODpLXC+tFXdQ4DLh2RMysbbcj78q/Fh/tPnBX6tG2+DnJIUjlMR1Ja4+LgV9MizwsBxOKLDhQD2L7dUBHJ9jAc8Dmyr96JVhRncd1bsnFNqRY2dwqIHFr/s92FsnfBAZmmvBztogan0cGCrkwLprWLpq0bpOl9UTs/iYKHcUicv6ONE9zYQ6P4fxBba4phEnAoo2I/vs1XBvfxO+0t9g734F7CWXRNY7el0NymRHzcLLJPumjXsPwZqNqP7t7JjOnX3WStnMzbZKyvDnYc4egZqFlyhuF447EA/IAABty9Z2rmHPofrXM5qP6a8BglKR1tH3Fri3kAfGxK59YUOsSB3+LKx5k8DzQUE1a859GFygUbEwUkeClxHBKFNynbQAYC+5CDULhHFY4mJ0cu0D5O8vlFVdpHX2vwPOvjM0tFKeHB2zJATnjlJnGJrCg6PSsfiQFw4zje5pJqw96kf3NBN2VAfx2wEPLu3jwojOoRkAvTLMeGpsBrZUBZBhpfH1LjcONQRxUS8njsu2YFNlAAfrg+iRbsb4Ahs2VPhR5WUxNt+m07kn18GS3qNM6X2QffZq+Et/hTlrOCy5zdFosoPmhL8rH5RGQyj9/dsa1sIzYXIVxbx/58sbUfXrmeA5PzIn/gjK7IIldxy4QD3s3a+I+57KpHTXJcbKwdbvko0aSRSkGQ+0o5CwZTMOmagvmpKv6RAPSiJtrU898Km1nLRyLnmqaZaRgYGBgUFstLjq2adPHyxfvhw//fQTJk+eHFn+xRdfgKIoTJgwQbJPWNDt1Cm5N3KDjoPWPlYyRoNThz2b0CJADjONXDuNctF0qH5Zyu7D4lQzilOVhTxrHJm0WvakbbkAxQB8cweV8xwG4+gsEW5aK+4ACAm1BS4T8p2MQKTVijiPlqFifyinKQrjC5sfVntm0OgZFTvQVYOTikS/LAv6ZYVEXrFIOyjXgruHp+tvq9mF0CdB+I1TmwpHURRG63FqtQC0NROuAXfDNeBu4nprF7IIy7iKYEophr3XtfBs15u/R7U7gRYI/f3s3abBvf11+I/8Ib8h5wfrJhffoq3aRFpGVB2e8x0FFxRWUqfMaaAU4jegUOzRNeCeiADHB93SXRt2g1bJN+wwyMRMJDuTNowp/TgEazY2LxCJckqF3uQyOmkNjm5b0QXaGqiAfOSSMi6z8E7rNNM4rbi5f5HvCt0P+mRacHZ3ab+jJM2MkrTQ/UN8ze2WJuwfDO8co/AiIwjKfSfN6X1hTu8r3V5G7OcJBRh50TUAgK5Cja0NoyIiqkGZHMg6XXjttXeXDiLGCpPSHYGjy+I+TrB+FyxxuHq1wDYeELymLBmqA2tOM/kzm4h0BitD4fRiO77Z1Xw/UYozqPWri7RxpovFjJy7XfF+a2BgYGCgSotPkDjzzDPB8zxef/11vPbaa9i4cSPuvPNObN4cCv4/77zzJPuEs2gLCoyMG4PkINe/SYZIm4wq7UUEYS5VxkWrBwutTWwloWVgn6IZ0CKRhXUfBkAqHBZ7oYtkobW/XtooFD1zHUyrOR/UIHX24ypOR5jqyqjEHbRHKFoqYFDWrGbHUkxPdy2T15cs1K6fPBeAv3wJcZ1WJ634+gGekz6Um+wxO3ui96NMDskAA1u3M6bjHovIZQEnO5M2gsiZKXbSso3yGcIUTR40ozU4aRNxT5ebXq26nzi3qE2i3UmreBSZzxHJIUt20rYfkZYTTc9va6jFBWilJa6f4u8941QXwF0y38dE3JE7OWjJIH08TloTHV/RwniQvfYZTloDAwODuGhxJ+3NN9+MV199FaWlpbj55psF60aPHo2TTjpJss93330HiqIwfPjwlmqmwTGOWC+R69+0l1ylolQzVpYJH0BSLPF32iiKgoWh4GOTJxYxjnxw7kOR16z7EPzly+Dd94WwLa3opI20Qedb6gly+GGPR1KVOy/GqIOWgCEIsvFkE4ud0qFFx6DLgjR1N7VX1Kv2LbjGhJoIwwUQKF9M3lWjk5a25YQGAvjmB9naRVcItqEYu2IhO+UTCPczpfSAP+p6Vf3HeXD0vQWc+zCY1J6wd7sE5g7grOV5Ht49HyNQuRq2ogtgyR1NzAYFWs5JS9GiLq1IvGOj/m5aoa3qTtqWiHOQI5CMudcthF63nexAi0h85Vkf6tc9ItlMV0HBVqati7RaipNpoWH9Y2jY+AxcA/4PruPuTsp3KVi7WfCacXZR3cch46RNBLkORuKcjxZpa3wcftrrhpmmcFqRXVWkbaHaa0Rk4w4MJ62BgYFBXLT4EHxaWhp+/fVXDBkyBDzPR/6NHz8ec+bMkWy/fv16rFwZqtA6adKklm6uwTGKuE/Tkk7aZEAqQpUIJy0gLbKmFa3mS9ouzCf1l/6Byp9OkG7XSoXDlFB7a/69pk4i0AJtXKQlOWnjEmnbg9MrfkhOFlNqz6hX7VdMiRVKRaTlOT/8ZXIirbbCYRTNqAq6bOOBmB8axcIQk9pDso17y0vw7vscjRv+icofT0CwA7hrPTvfQc3Cy9C46QVU/jguVD29jTlpwQmdtJyCk1YOSkPhsJYSoUkcVXDgtRl4mWJLOr+TcpmyvKhAXO3S68D7qiTbube/rut8rQnvr2ntJijCuEoSdzDWi4Z1j6CakOmeCBo3Pit4Le5zknAmsRJXSKQV9gHr/Dx8bOh5+PFl1fhqpxtztjdi1ro61KiItEn0UKhiiLQGBgYGyaFVnp779u2LVatWYdeuXViyZAl2796NBQsWID+ffON855138Pbbb+Pkk09u4ZYaHKuIhUe5qUKmzOMTel5bt0sTerww3dKlpvg0a2K+3gH1OCwilMagBHGmpHfvp8RCIG3BScuIPidBhc6xN8jL5td2crRlkVb6d1MrEKaEs/cNgtem9H4xH6u9Ye1yVuRnS+5Y3fvbii9MZHNaHGvBGYrreX8tgnXbiOv0uK0lkQeSEwVjdmiJBTg1cYL316B26XUxnas9Ubv02uYXPIeGTc8TBWwAoO25LdImceSIuCAc6ykl72ciVygHNDppE3RvGl+gf4rwuDaW3U1CbrBbbRBHjGxMjqi/4Nn1HnEzucKBbRG5jPO2gnAAMjH49n8Fno+xwykD65Z+53kNLmW5wmFy6Nk61y510gJAtZdFuYfDwYbmgZd1R/3QEEnbasgOwLXiwJWBgYHBsUCrWpxKSkowevRoFBcXy24zcOBAXHnllbjyyithNuvr0BkYyOEXmU+sMpqZJTuBERuUCc6+tybueFHkOU0YlNMsaozobE2qE0ALWqPyKLP8A7Jwu9YXaV2iCIkGPyfrNPYr2BsS5XJOBqRpfvE019lvJhDVkU8Z/ETsB2vjOPvfEfnZlN4Ptq7NGev2bpepVpR2HndXxHlMmRzt/r2yl0xTXB+s30Wcguzsf6eu86iKtBq3IcE4hRXWtbgm/Uf+QKBqfUznazeIxBTfge9gzhom2cxWfKFmV3S8MM6ugtds/S7Ba47grgSA1JHy4h2t4qS15p8G2pKmsYXKnNPdqasAkN1EYWRe289+lPv7683yZVxdYck/VbJcT9Ys6ynTdc54YFJ7x7yvo+e16hu1IowjD9bCs1S3s3Q+MfmNUcC7/xvJMi2fFz0x/BSAO4amCYTX0Qrfy4IUE2wMJfmuu4M86tuyIktCHDETXqwhy9vAwMDAQJ4Wz6R97LHHAAA33ngjsrO1Zc5VV1dj1qxZAICHHnooaW0z6Dh4RQKaUuZm58sbUb3wcnDug0if8An8RxagdsnfNZ8rdcSL4HkW1s4nwpw1OOY2q3HH0DQsOuQFTQHjC1p/FFtrYSytU2HpNlA4LE2kVrI84A7wEvEWAPwKWYH2JOadxQupqnE8mbSMqytypmyA98C3MGcNgbXzhHia16ZJGfYMzFnDwPkqYe9+uaAYEcVYkXPOWnj2fIy65bdId6ZMcA18GLauUxGoXAVr/qkwpfWSbteOoEw25E4rR/3q+8DW74Sz30xU/35u8wasR7KPc8C9SBnypK7ziN34xG1irJYudodSlDYXfP3aB5F5yrcxnbOtwxMGpiiTAxBl0jLOIqSf8GFLNQuMyN0XrNsheE1y0GWeOg/WfPkoLTUHdsbE73S0UJmuKSY8PT4Ta8p8KPew6J5mxu8HPNhZQ44LeHpcBjJtbXdWRjQZp3yL6t/OESyLJU4q85RvUbvsJnh2vNW8MMpJy3My0QpN+A79BEePK3WfNxb4YIPufaxdpiB1xL/BOGIbVGpJMk76HJ5d7wMA/EcWwLP7A8k26SfOgW//t/Dseh/B+l3g3PojR+LBu/8r6UKN13AtjOxsxeQSO/pkWtAn04wlh73IsjEY1smCAdlevL6hXrJPVxcDiqLgMFOo9zdfS90BXpc43DYgj+DT1qwWboeBgYHBsUWLi7SPPPIIKIrCBRdcoFmkraqqiuxniLQGiUDsclQSoSiTA5knfxl5bUrphvq1D2nqbGae9huseS0T02FhKJzStfUKmIjRbOTVOC2qLThpSQ7YWj8HF2G5kpO2LVfkthG+C3Fl0gIwpXaHq/9tcR2jPUBRNOzd5N2jtC0bzr4ziCKtOWsIaLMTltzRsOSOTmYzWxTGloP0sW8ACIl7lMmlKF7Yu12qu1I1be+kvo2Git4kxO5MrRnLvgPfwV++DJbcUTGdty3D+yolyyjGLnFFO3r/Q/eU9ngQT8FmRSKt2EmbOuI/igKtGs4B9yb89+uaYkLXlOau+bqjfgBS4fHSPk50drZ4Fz5mJN8jxJZbSTFWOHvfIBBpo52RasXBfAd/bDmRNqBPpE0Z8iRcx9+XpNYkHoqxwtHrGgAA27ifvA1thaPX1XD0ujqyrGxOF/n+M8/ryw5QgPPVwF/6e2IOJsM1A1Ii/cIUC43Ti5vd4b0zpNcGh4mKRJE5TDTqo6b1NQY4mNuZSkvJ3A8NkdbAwMAgPtquUmBgkER8OkRaElqn6Js6QJVvObR2NrVmRbYFkdbMUJKsMrnKu0pZvnadeWctCckBbWlnDw7tEUun8a3dhKRDURQYNXdwDC4nLVEGoTxL/Z9jSjSdU8/U6vq19+s+X3uAKMjQFul7w7TsVHyJSNt4AHzQG3nNiZy0WoqCKdESswLksjGLU9uPQAsAtENac4ILSF2GmhDnVXOBZnc3pyLSHv5Z1W2bCHie1+2kNaX1TVJrko/sTAXC9dwkk12daHwH58oXrUsADhOFFIVZUaR+XradiQxCimctuYO8ZJZfm0fmfk21UMSNgYGBwbFKuxBpA4HQVCYjk9YgUcQr0tIapunR9s5gbDm6jnsskfC4A0vri7SAtCDbo8tqcPHccuytC12nDtQH8d7menyxo1H2GG1bpJUui9dJa6BORxBpAcCkktMoFkW1oCXugGIsmhy3arAN+zRv6y/9HUc+SAEflMY6JAou0IiGDc+gbvW9YBsPxX08ngugcfOLqFv1fwjW75Gs95cvRfX8iyTLg1VrEaxcK1jW0hW+xXEHAI9gVC4tL3LSxpuVa46hGKBeSBnhAFCc2r76wyRnHR+ojelYFCX+3Xlw7kOoW3M/6tc+rLgv76+B/8gfMZ1XF6wP4Fn17aJozyIt7SggLifFwzAp3TUfl+dY1K95AKWzKZTOplA9fxo4n3rhLwDw7v9a5qDqQqgWrbSzk1Gc9UHq5+VE5daKB2DcQR67a5M/gJBQ5Jy0cQ6AGRgYGHR02sVQ/Lp16wAAOTkdV/AySCxikVavCKVUDTpMR3bRAtrjDrSKtFQbyKQFQpEHpY3Sh697FlXjlZOz8MCSalU3hN7KwS0JSVyXK6xnkDgsueNauwktgik18U5arS57xlEIznNE+3EJhY3Yhr2a9wdCuZQV3w1FztTNuvbTSt2f/4hkQXp3f4yc83cJspB1H2/lXXBveREA4N7xJjpdeBCUKRRJE6jZgsofJ8i60zhfheA11cJOWtrsAm3PA+dprujO1u2AOaN/U/tEIm2cQgKtcUZNPJCEngwrLRksbOuQpkVz/thEWomTFkDF3NGa806r5p2KvOnJdSzqzqOlTGBStYuXbQ1GRqQF4Vpk0iHS1q99AI0bno689u79FMG67cg5Z43ifnzQC9+hH+XWqp63UWkqVBOdHMrXWZuMkzaMQ9RJrvCw+GFP8gb0kgLhfk1Z0mMabDUwMDAwaCbpV9H33nuPuPybb77BqlWrFPf1+XzYtWsX3n77bVAUheHDhyejiQYdDI7nJVPRSTmcSli7nAl/2QLFbczp/fU2rU1yXJYZGysD6huKMGt8T7VUSwfQotmGSig9HM+cX6kYcxCG1HlvKxS6pLcFw0mbfGhbx8hwE09JlxCDSGtKUZ4+a+l8EoCmKdfSOFVZ7D2kBSKtBafDd/B7Xe0L1m4J5fHqzNpVg2d9gmI9bOM+BCqWw5I7JuZjhgVaIJQ969k7B44efwMAePd8rG/6cAuLtEDIpScQad0HAITyKcXCmdbcRFNaXwRrtwiWWQsnx9lSbTgJUxu6trOoAzlsBWfEtB+pL6C3IBXP+pI6iMDpzKNlUrq3mT5OLNBOGZFWt5NWKKBGC7RhglVrEazfC1NKsexRgg27wQfJs5ksnU9UOH+IdA2DIJ2dyvcqmnC9H5jTPMDgFPUD251AC/LgC23VVm/GwMDAwECepPf0pk+fLnkw4XkeDzzwgOZj8DwPmqZx6623Jrp5Bh0QsYsW0B934Oh9I+pX3a24jRa3bXvgsr4uPLCkWjD9a0KhDV1cJnywVf5BJEOr00fDg4mjz83ajtUCpBGKhIXRItAC5M57W6Eo1YQ+mWZsrQoJ8ycW2tp0e9sjrsGPo2Htg5HXKcOea8XWtCxqWXUUFUPcQVpvmHNGIXB0GXF96oh/AwBoS5rmY1LmFKQMkk6dtpVchLrl8tejjJO/RvXv5xLW8EhYRZwmgjVSdy7rLiVsGTts/c7Iz77S33TtS7fCPVDsbuXZUE5uoHq9eEMwKd00HTNtzP9Q+eMJgmWpI1+OvZE6SCXcR5VyMNsyaWPeQO3SawGErgP2WAt4JSBGg+eCSRVp9TppaWv7nh4uN+BBEvEYR17c51ONyuDIxgLa1gmOXtepHr+z04R+mWZsrpI3KEQX+JPjjGI7ftzriWw/OLf5s5ut4sTVytndpDM+WgzS31fjddXA4Fhl48aNePrpp7FgwQKUlZVFYjvXrl2LQYMGtW7j2jDTp0/Hu+++i6KiIuzdu7e1m9PqtMhwPE/I/yEtI2GxWDB8+HDce++9mDAh+UUaDI59fISYMN2ZtGYnci86jPI5oWIYtL2zdBptDI6wtki3NDP+OS4Ta8p9KHez6JNpxviCkHCX52Jw1M3CE+Tx6XahayHLpu33V5sWZc4ahtSRLypu05KkWuN7QD6tSFu8Q2ty/4h0LDjohZUBxhVoczobaCdl4AOgrdlo3PQcXMc/ELtY0Q6h1WJLYok7oChknvorGjc8jYa/npCsN2cODG2nQzTMOXcTaJvUEcTYcpAy/AXUr7xdsi7z9PnEKvYAElq1PEygah1hqcaRIgI8J705Rr9n5sxBCJQv1Xw8rQU2E4pYwGsqJCXOyzWl9wdFmDZPwtJpPLLOWonGDU+DMjnhGvgATCklCWmuGqTBTr39lbaCo9c1YJxdEKzdBlvReTELkwlxnCaxoBQA8AQnbeqo12BK7Y6qeadK1lEa6hy0ZUhirBy0LTf+E6rl/RKeMVNHvgRb8UWgzdre63tHpOPuRVXEeCtAW/G+v/VzoWe6GQ0BLtJvDqMWlwAA+U4GZ3dzYFSeFXvrgthXF8TgXAsO1LP4cGsDJhXZcWZJa4q0hDiLNOXceQOD1mD+/Pk46aTQrKqHH34YjzzySFLOs3r1aowfPx4eT/tzxhu0LZIu0u7Z01x4gud5dOvWDRRF4eeff0bPnvLTHimKgs1mQ1ZWFhjm2BC7DNoGRCdtDNPPGUdeJNfMX7YYlT+KCv/o6LS2dYpSTSgidEiHdQo5Uf44IL0ZZdq1/v7K772z30xdDwDJRslJqwWXpe0/YFsYCpPagZjcnnH2+Qecff7R2s1ocdSE0liz7GizE44+NxBF2sixNYqG9m6Xg3F2kV0fFn3FWHJGg/OWyeyV+AxMkkjLx5rzCbL7L1o8oq366gK0xmwScbGyiJO2SijSmjMH6zquJXsYLCd9Hl/jYoA07bo9z2ywFpwGa8Fp8R1Eh5OWsmbClNpL6rLnkizSiqM1bJ3g7PMP+I8uJ27f3kVaPSiLtNquk3JRBrLHoc1w9p2h6dhhLAyFU4vseHcz2RWtFncAhL6rY2UGurWItGeU2HFy11BfrF+WBf2yLE3nNmF455aPk5EivT6p5s4bGBzD3HvvvfB4PEhNTcXTTz+NYcOGwW4PfYd79FCO5mopHnnkETz66KMAtJsmDVqepIu0RUVFxOX5+fmy6wwMkglJpNVa5EoOxlUsWSYuUnIsQyo2lWXT9qbyrPJoI21PgOsigZCmn+qBlDFoYNBRUC0AGNcMBGXxSmvxQc6vXD2ctqSTj89YANm4hsR3hINV6yXLYi7GBIAP1EuWCYRtndXqW8VJK3LH8lxYpF0nWG7O0ifSthYZhPuoOxi7W/pYQI+TlqKtAC99v/gWdtKqfRc6kkhLyVw/9cAFdIq0MU5jkDOt59jpuAdLOmsQadPbeNVWkoHCcNIadFQCgQAWLAjVq7nuuutwww03tHKLDNozLa4WcBwHlmXRr1+/lj61Zu655x5QFBX5N3/+fNV9fvzxR0ydOhWFhYWwWq0oLCzE1KlT8eOPctVFDVqSxgCH/6ypxcVzy/HpNmHn2crE70yh7dKMLb2FLNozJOFba9yBmiMiIVPjEki8TlpnO80TNDBIBKrCXRJFWq1dHrUBNsqiME1bxglcv+4R1K99JGGDdzzPE4tXqmY1EvCXLUHlz6eg/DOpe7hxy0vgg+6mc+oUaVtBeBI7acH5wXrKEKz+S7DYnDmo5RoVBw7CLB9PsIM7X/SItIyNKNI2/PUU6tbcr5jhHKzdhrpVd6Nx2//AE46hBCdy0ja7ysnXqA4l0ir0t0kDRcTt1Jy0EndYbP0uue9aAaHAql5SLBTsKrP44u1vJhuWMHPElGqItAYdk4qKCvj9oYHhXr0MR7lBfBwbJWITyLp16/DCCy9o3p7jOFx33XV46623BMsPHTqEQ4cO4euvv8Y111yD//3vf6Dptn2zPZZ55M9q7K8PPWCuKvML1iWicj1FS4UFtrHjiLS1PukDDMkBRCIsAMjR1kTa1LhFWuM6YNBxUcukjTXuAADA+RVXsw17NR2G99corpdz0gLyhc8a/3oKAOA/8geyzpCKq3rx7P6QuJxTabuYQPVGVP44TnZ9sHINahZdgYyTvtDvpG0LcQecH+WfF0u2M2WQIyvaGiRBy93BRVqKokNxUhqEUz5QD57wfXVveQkA4N39EXLO3yVxBHK+GlR8NzQiBnKeI8RCgvLnlXHSygiUx4ZISyHeGQPVCy5B1qk/q26nVpiNF7cjRiOGXB5tgSt+hytFUejkYLC3Tt7Vna6xH91asHU7JctoZ2ErtMTAoPXx+XyRn83mBGSnG3RoWuXq73a74XbLCzOzZs3C+PHj0bdvX0yePBnfffddi7QrLLgGg0Hk5moThu6///6IQDt48GB8/PHHWLFiBT7++GMMHhyaTvfmm2/igQceSFq7DZQ56mYjAi0JW5KKcNi6npOU47ZFSgh5taQIBBKm9P6K60nFe1qTeDvNiejcGxi0Wxi7QiQAdLnkxKi5dK35EzUdx1Z8gfJ5LGnyK1VEZn/ZQgRqtmhqhxK1i64gLicVLFKiYf1jqtt4930JnguCZ32q20ajWiQuGTDCnEa2YS/AeoXbUAxoS2rLtSnBDMnVnsl6zKLR2cr5KmDrcpbserZhL/xliyXLGzf/R+DWbFj3iL7mscJnHMoUKu5EyT12qcQ+tQfsPa8SvGYUsknlIg/8h+eB89WonkvdcZsYJ+1xWeTv2sCcxHwH1XJpU9t4DQNL55Mky9pSDQkDAy3Mnz9fMnt6zpw5OOWUU5CTkwO73Y7evXvj7rvvRlWVdDbUI488AoqiUFLSXFD0qquuEszKJhUq83q9ePnll3HKKaegc+fOsFgsyM3NxcSJE/HWW28hGFSP5fH5fHj99ddx5plnoqCgAFarFU6nE/3798c111yDn3/+OZI7O3v2bFAUFcmjBSBoY/jf3r17JedhWRbvvvsuzjrrLOTn58NqtSIrKwvjxo3DCy+8oKlQ2pYtWzB9+nR06dIFNpsNXbp0waWXXoqVK1eq7tsRafEr6XfffYeUlBTk5eWhvl56k/373/+OmTNnYunSpdi2bRt+/vlnnHvuufjnP/+Z9La99NJLWLlyJfr06YOrr75adfvt27fjueeeAwAMGzYMS5YswbRp0zB8+HBMmzYNixcvxrBhwwAAzz77LHbulI44GiSf+oByZ96RIGdj+oRPIj9T5jTYu/8tIcdtDxyfY0EnR/P7eEFP7a4QS+cJiusTUsk5gbjMNIZ3iq1gw/HZZuQnYJqcgUF7haIoMC5yHr0p4/i4vu+0NRMm0TT2jJO/jvxsLZwscOanjngRaWPelBzH0es6xfMoPYTKOWmjCYqKWCUUndOyvXs/03ZYfw14v/aoBsqSDsrU8sUHKUZY6ZzzEfKFdTqCW5sbBzaL3U4ThZO6GEUd9eDsN1NxPeerkCwLVK2J76Si72FYnKWsmeTNk5BZ3dK4Bj4UGoRrInXov2S3JV13w7Ae+QiKMKqxMaLCcLHO0BjaySIRSrulmXB8dsuItGaNZofWwtb1XNC25oKSqaNebcXWGBjED8dxuOKKK3DxxRfj999/R0VFBbxeL7Zv345nn30WI0eOxJEjR+I+z/r169GnTx/MmDEDv//+O8rKyhAIBHD06FH89ttvuOaaazBmzBiUlckVow3N/u7bty+uv/56/PDDDzh8+DD8fj/cbjc2b96Mt956C6effjr27dsXV1v379+PoUOHYvr06Zg7dy5KS0vh9/tRVVWFJUuW4I477sDxxx+P7du3yx5jzpw5GDx4MN59910cPHgQPp8PBw8exMcff4wxY8ZIZqQbtELcQVjRP+ecc5CSInRZLF68OKLyOxwO9OrVC1u3boXH48FDDz2Es88+G8cdd1xS2rV//348+OCDAID//ve/+OOPP1T3+c9//hMZ5Zg1a1akel8Yh8OBWbNmYfTo0QgGg/j3v/+NV155JfGNN1BErXChUyUTSiv2kotB2zohWP0XrIVngulAU35MNIWnxmZi8WEvMqw0RuioOktRNFJHvYK6ZTdJ1tm7X5nIZiaMmUNScdmPR3Xtc92AFJwgU+XXwKAjYUrpAbZ+l2S5VqerEtlnLkf9+kfhOzAXqSP+DWtes9OHNqcg+5y18O79HExKd1gLJ4dEY2cXNG77L0ypPeHodV1M125b8YVNJ9Eg0tZu03187SRH7OF8VeC8UjFLDsbROve/sGMxgthF2w6ZUGhHho3Bofoghne2xh2509GgrZmgbbngvOXE9QwpUiluIZ883T5a0IqmVVznCcbkKkLOlA3wHfgOpqwhsHY+QXZbe/H5wAkfombhZZJ1ob9TXwAAbc0miuicr1K5MeK/n4bBMxIOM42nx2Vi+REfdtUE0CvDjBMKbYq5unro5FQWadu4Rgvamo7ss9fAu/9rMCk9YCs8vbWbZGAQFw8++CCWLl2Kc889F3/7299QVFSEsrIyvPLKK5g7dy527tyJ2267DR9//HFknxtvvBEXXHABDh8+jNNOOw0A8MQTT2DKlCmRbaJnaO/cuRMTJkxAbW0tUlNTcdNNN2HEiBHo0qULKisr8e233+J///sfVq5ciSlTpmDRokWS+IQtW7Zg/PjxaGgIzZ6aOnUqpk2bhm7duoFlWWzfvh3z5s3DV199Fdnn3HPPxbBhw/Dqq6/itddeAwBs2LBB8h4UFBREfq6srMS4ceNw4MABWK1WXHvttZgwYQKKi4vR0NCAefPm4cUXX8TOnTtxxhlnYM2aNUhLE842W7lyJS677DIEg0FYrVbcdtttmDx5MqxWK5YvX46nnnoKN9xwQ5uuV9UatLhIu2zZMlAUhZNOkk6ReP311wEA+fn5+PPPP1FYWIgDBw5g3LhxOHjwIP73v/9h1qxZSWnXTTfdhIaGBlx55ZWYMGGCqkjL8zy++eYbAECfPn0watQo4najRo1C7969sW3bNnzzzTd4+eWXE3ZzN9CG2iNrIgs5WfNOhDXvxIQdrz3hstA4vdihviEByiwz9bSNfle0RjmE6ZtpxildDfeTgQEAMKndgcPS5Za8+EVairEgdciTwJAnyed25MPZ7xbBMmvBqbAWnBrfecPTdzUUPmufIm0lUSyRo7UGKcXZnpzGQkRtneOzLQlz73VEzDmj4TvwDXmluNgcoNuRLt2fPN1eLnuWYo6N/oEptTtM/Wdq2taSP4m4nPM2D4DzMoMsvIqTlhc7aeMoSJllZzC5JLa+rRpqTtp4ixq3BIyzEM6+N7d2M445OJ5Hg7/9O+z14LJQrf6ZX7p0KZ544gncf//9guWnn346Tj/9dMybNw+ff/45XnrpJeTkhAbdcnNzkZubC5erOXKroKBA1lh45ZVXora2FoMHD8a8efOQnS2M9Tv11FNx1lln4cwzz8Ty5csxe/ZsXHvttYJtLr/8cjQ0NICmaXz44YeYNm2aYP3IkSNxxRVXoLKyEg5H6PqVnp6O9PR0gWCsZn685ZZbcODAARQVFeGPP/4QRDoAwIknnogLL7wQ48ePx+7du/HMM8/gySeF/e8bb7wRwWAQZrMZ8+bNwwknNA/gjRgxAueddx5GjRqF9evXK7alo9HiIm15eWgku3dvafXHn376CRRFYcaMGSgsDHXwu3TpghkzZuDuu+/GggXxF9sgMWfOHHz//ffIzMyMxBeosWfPHhw+HHrKnDBBebr2hAkTsG3bNhw6dAh79+6VfMANkgunco9LVNyBQezIVuqN90GpjZBmNT5jBgZhmJQe0oW0GZZO8s6rtg5tyQCgLY8vWLs1eQ1RmzoSI3qdtHQbcdLywWNDpDWID8bVVdf2fJKctLImDZJQfIxDUeRom2jHs5xIq+6kFWU5xlOQMomoibQGHZcGP49rf9V+zz0WeGNiNlKtrSvSDh06FPfdd59kOUVRuP322zFv3jwEg0H8+eefOOcc/bVnFi1ahKVLlwIA3n33XYlAG+b000/HBRdcgDlz5khE2nnz5mHNmlAkzy233CIRaKPJysrS3cYwe/fuxaeffgoAePnll2X1q8GDB+Omm27CM888g9mzZwtE2pUrV2LVqlUAgOuvv14g0IYpKCjA888/j4svvjjmth6LtLhycPRoaIRUHHWwadMmVFSELkbR9nAAkVzXeDM1SNTU1ODWW28FAPzrX/+S/bKI2bx5c+TnPn36KG4bvX7LFn0FQw4ePKj4r7RUPbupoxNUUWkT6aQ1iA3ZYjfHikhrTE81MIhgSpWKtJacMaDN7bfCOS1TCIdEsG5bpJBDotGTbcnruL5y/iqwDXs0b99mnLRugmXboP2jszgR41QSaYXfGdZ7FP7Dv0i2ClSuQf3ah1G//glwagX6ZJy0crS17P2WgGLIwnTjhmfANh5C6WxKKrY2IRZpPXs/Q+n7DlTMHY1g7faExR0km2y70Tc0MGhLXHrppbKDaUOHDo38vHv37piO/+233wIImRUHDBiguG1Y0Fy5cqWgiNj3338f+XnmzJkxtUMLc+fOBcuycDgcOOOMMxS3Dbf18OHD2L9/f2T5r7/+Gvn5qquukuwXZurUqUhPT4+vwccYLX7XYpjQqKG4Ot7ixaHqqjk5ORKXbUZGyKHi9SY+W+zuu+/GkSNHMHbsWE3FwsIcPHgw8nPY9StHly5dIj8fOHBAV/ui9zWIjYCKSNsY6FjTSdoick5aHseISGs4aQ0MIjAp3SXLzLmjW6EliYNqctJqgvWC85SBcXROQku0389U3WhR+Et/19mO1hn8lGTSGhyTUJYM8Do+v8oibTM8z6PqR/LsuIrvmh/QA2WLkXnqT0pHEr1W+T50QCctZIRptnEfyj9Tfq6KvnZ59n6GmvkXAQACR5fh6Fe9kX7Cx4Lt44k7SCatPbXbwMBAiJLxLjOzufBjfX1ss3TCrtJt27Zpjr8MBAKoqqqKxBSsXRsqPtu1a1cUFZEL8SaCcFvdbjdMJu2S4ZEjR9C1a+ieG868tVgsGDhwoOw+ZrMZgwcP1lQTqqPQ4spBOIx43bp1guVz584FRVEYP368ZJ/a2loA0Oxy1cqiRYvw5ptvwmQy4b///a+urNjoL2d0BgkJp7PZ2REOeDZoOQIqOl/P9I7nYGhrmLMGE5dbcse1cEuSgyHSGhg0Y3J1k2S32grPbKXWJAZzpnznk0SwdrP6RrGgo1AW5yEXUiLh2TlbulDBnWbJHav52ImElss3j4JxJu+hxqBlcPTUZqowZ4Vm4jFOecMDH/REfvaXLUSwVn3Gm+/wz+D8tQpbkOMOZNup8/pxTBCHu5WLyqStXXqdZL17xxvCBW007sDAwKBtEc5vJUHTzc9yLBtbJE449lMvbrc78nN45nleXl5Mx9JKItoaNmVmZmZGjJpydOrUKabzHau0+F1r/Pjx2LFjB15++WVcfvnlyM7OxsqVK/HTT6ER6XBVvGjCEQGdOyfOdeL3+3HdddeB53ncdtttqsHJYqJdvRaL8gi41dpc6d7j8ShsKUXNeVtaWooRI0boOmZHQ8lJazdRGJLbAR0MbQxrwRlgUnqArd8ZWUbb8+DoMb31GqXCBT0d+HyHW31DAFbGcEsYGIShTDbYu10Gz673AISK+phzx7Ryq/Th6HUd3NtDxU7NOaNgzmkuHursfwcaNz2vuH+wZjOseScnvF2sjun9vL86rnOlDH4c9WvulSxnXCWwKFR2TyamjONVt0kZrq32gEHbJWXQI2jc+Izqdqkj/gOgOTOaBNvYHKXG1u/S3Aae82veNprMU+ehap6wUKEl75SYjtWeiaeIMu+vAc+xoGgGvL9Gsj5QuVZ0srYr0l47IAVvbJC68s4sOTaKyRnEhstC4Y2JiTWntXVclmP/WSks7g4cOBAffPCB5v3CJseWJNzW7OxsXQ5XUnZtPNf7jkqL37VuvPFGzJ49G3v27EG3bt3Qq1cvbN68GcFgEJmZmcTQ4N9//x0URaFfv34Ja8dTTz2FrVu3omvXrnj44Yd172+z2SI/+/3KHTWfzxf52W7Xd9NVi1IwUCcoM9h1eV8XhnWyIMveNqdBdSQo2oTss1bAs/sjBCpWwpw9FLbii0GZ2m4n9cJeLqRZaby1Ud0db0TSGhgISRv7Fix5J4MPumHvfrmmglttidTRr8HS6QRwgXo4evxN0AFNGfasukirwa0nB8/K9znYRu2RShxB3NCDo/f1MGUOAlu7FbaSi+AvXwrOUwp7yaWtlrHJODpLBvzE2IsvaMEWGSQDtb4Bk9oTGSd8DHN2KKKAsqTJbsvWN2ct80FtA6+A8hR6aeZ08/XBmj8JGRN/QPWvk0E7CpAzdYvxAKsbHry/GpSNLGJRtFngZabottvPn9jVDitDYc62BrgsNAIcj9OKHJjY1aa+s8ExC01RrV5EyyDxhAt5NTQ06DYIhgnPLE92XaJwW+vr69G3b19VJyyJcGRpZWUlWJZVPEZZWVlsDT1GaXGRdsiQIXj22Wdx1113oaGhIVKdzmw244033pAUFKutrcXcuXMBACeeeGJC2rB161b885//BADMmjVLEEegleh2qkUYNDY2522qRSMYJB6/jJP27G5Gdl1bgrZmwNn3ptZuhi5OLXJoEmlNtNHRMjCIhqJNcPS4srWbETMURcPe/TKZderf92BN7HEHfEA+C43zlILngqA0TO+NV6QFRcNWeDpQeDqAtiN+WjqNg0dBpDU4tsmbLu3zKRX2iy6Ip0ekVc6ZVc6ktRWeQWyngXY4XyVoGZFWkvHbhp20ADC+wIbxBYYoa2BwrDN48GAsXboUu3fvxpEjR2KaJT5kyBAsXrwY+/fvx759+3Tn0modFBw8eDA++ugj+Hw+rFq1CiNHjtTd1gEDBuCTTz6B3+/H+vXrMWTIEOJ2wWBQEoXa0WkV68ptt92GtWvX4sEHH8S1116Lhx56CH/99RemTp0q2Xb+/PkYPnw4TjjhBJx11lkJOf+///1v+P1+dOvWDW63G5988onk38aNGyPb//7775HlYcE12uEaXUSMRHRkgVEIrOUJqhQOMzAwMDAwaEniEWm5oMLAEM+B82hzV8QbdyDOFW4rWDpJaxsYdHAYeQFMINKyeiLJlPqW+jJpDfQTnUsrRuLkNzJpDQwM2gDnnHMOgNBsixdffDGmY5x99tmRn//973/r3j96Nnj0bG/SecKC7n/+8x/d5wGAiRMnRn5+9913Zbf76quvUF0dZ5/0GKPV7loDBgzAgAEDVLebMmUKpkyZktBzhz+Qu3fvxiWXXKK6/eOPPx75ec+ePXA6nYLoha1btyruH72+b9++eptrEAc8z2PePn05wAYGiYY1xgkMDAyi4Lzl8B6YC1sX7QXTeC4A97b/wnfwR8XtKn86CeBZOHpdB2e/W0GZpLNGgrXbULf8Ft3tjqatRlQoFZykFLJJDY5dlJxD/rJF4HkOFEWDDzbKbieGdZeibsVMeHa9D9fgJ+AacHezOKgQd2CQGDhfpfxKkSirFE1hYGBg0FKceuqpGDFiBFasWIFnn30WgwcPxkUXXSS7/YYNG7B3716BMDtx4kQMHToUq1evxqxZszBq1ChMmzaNuH9lZSUcDocgbjO64NiuXbtk40R79+6NCy+8EHPmzMEnn3yC4cOH4/bbb5dt6549e7Bs2TKBtjZixAgMGTIEa9aswWuvvYYLL7wQ48YJ+2ilpaW48847ZY/bUWmbPex2QElJCfLz8wEACxYsUNx24cKFAEKhz8XFxclumkEUP+z14GBDbBUYDQwSBSt5YDMwMOjoVP92FgLVmzRvX7/mftQtvwW+Q8oiLVu/C2zDXtSvuQ81i/4mWc/5alDx3TDd7ZXSNoUnJrWn7DpKwVFp0HFxb5kFQF/cQeUPo+HZ9T4AoGHtA6hbfmvUWuE938icTTwN6x+TX8mK3GFtPO7AwMCg4/DRRx8hMzMTLMvi4osvxjnnnIMPP/wQK1aswOrVq/Hjjz/iqaeewujRo3H88ccTdab3338fLpcLHMfhkksuwfnnn4/PPvsMq1evxooVK/DRRx9h+vTpKCoqkmS9jhnTXKj3tttuw8KFC7Fjxw7s3LkTO3fuRDAYjKx/7bXX0K1bNwDAHXfcgQkTJuCtt97CsmXLsHbtWvz66694/vnnMWnSJPTo0QNffPGFpK2vvvoqTCYTAoEAJk2ahPvuuw+LFy/GypUr8fLLL2Po0KEoLS3FwIEDE/UWHxO0ibsWz/PYvXs3qqpCU1cyMzPRrVu3pHVqZs+ejdmzZytu88gjj+DRRx8FAPzxxx+SPFyKojBlyhS89tpr2Lp1K5YtW4ZRo0ZJjrNs2bKIk3bKlClGR62F+XYXucM9MMdCXG5gkAw6OwwXh4FBR8LS6QT4yxaqble/6k5kTlIWXcM0bnxWdzu8+76IVEGPHGfrK+CVIhO00kanEIf6WRRI09HtPaa3dHMMkoQpawiClWsEy2xFseUi162YCWe/W3WJtOJsaPe215A2+tWmlZxoa8MTQ8KUcTyC1X/FtG+gYqXsOnEkjJaMbgMDA4OWoHv37vjzzz9x/vnnY+PGjfjuu+/w3XffyW6fmpoqWda3b1/Mnz8fU6dOxYEDB/Dll1/iyy+/1HT+Hj164KKLLsKcOXMwb948zJs3T7B+z549EVNhZmYmlixZgosuugiLFi3CwoULI+ZDrW0dOXIk3nvvPUyfPh1erxf//Oc/I7WhAMBkMuHVV1/FkiVLsH79ek2/Q0egVXsNP//8M84++2ykpqaiV69eGDVqFEaNGoVevXohNTUV55xzjuSD05aYOXNmpErdjBkz4PEIp9V7PB7MmDEDQOgDOHPmzJZuYoenxifuKIeY1lt/sTgDAxJnlUirTGfami+tPdNNKElrnUrnBgYGrUP6hI81bec7rK2Pw7P+mNvCiwqEBavWxXysaCS5j22IzNP/IC5PGfw4cblB+yN1+AuSZSlDn5LffvR/FY/HcwHwnHw+nx54TvR9ZQxjAInU4c8B8camEPbn/bWibYyBcgMDg7ZDr169sG7dOnz00Uc4//zz0bVrV9jtdlgsFuTl5eHEE0/EAw88gNWrV+Ohhx4iHmPo0KHYtm0bXnrpJZx88snIzc2FyWSCy+XCgAEDcN111+G3334jzuL+4IMP8Mwzz2DEiBFIS0sDTctfhzt37oyFCxfi+++/x2WXXYZu3brB4XDAbDYjJycHY8aMwR133IEFCxbg7bffJh7jkksuwdq1a3HFFVcgPz8fFosFBQUFuOiii7B48WJce+21Mb2PxzKtMrTo9/sxffp0fPrppwBCTloxjY2NmDt3LubOnYuLL74Ys2fPhsXStjo5vXr1wl133YWnn34aq1atwtixY3HPPfege/fu2LVrF/71r39h7dq1AIC77roLPXvKT8EzaDkKXQy6GaKZQYK4vK8L3dPN2FkTgMtMo1+WGb0yzFhy2AdvkMcJhcb0WgODjgbjyEf2lI2o+OY45Q0ljjsybOMB9Y1k4PzVoG1ZzQtkRBFLpxNg73UNbF2non7N/XBveUn2mM7j7om5PS2BtfMEZE1egpolV4Ot3QomtTeyTv9d4Cg2aN9YO09A1lkr0LjpBdDmVDj73w6TQtSFs/f1oK3ZqF9zH9i67ZL1wZrN4AMJcJgDgEikpei29fzSVrDmT0LWGUvgP/on6leSsw4pkwOpo/+H2kVXSNbxHEu+hvKimDMj7sDAoENz4oknEvUmtXVilLYrLi7WfBwAYBgGl1xyiab6SHLY7XbMmDEjYgrUitlsxl133YW77rpL8z5nnnkmzjxTex0FMf369cN7770nu17LTPeORKvctS699FJ89dVX4HkeJpMJkyZNwsiRI9G5c2cAwJEjR7BixQr88ssvCAQC+PTTTxEMBjFnzpzWaK4iTz75JMrLy/H2229j7dq1xODmq6++Gk888UQrtM6ARFGq0VkzSBwURWFMvg1j8oVi7PgCQ5w1MOjImDP6J+xYbMNe2XXWgtPhL1ssG2EgqYIuI9KmDHkClk7jAQCOXtcoirTtYfqwJXcMcqduae1mGCQRS/ZwWDS61gHAXnw+bEXn4ci70u9AoGIVOG95Qtoldr5TtDUhxz0WseSOgiV3FBr+egK8+FoFIGXwk3B0v5ws0rLaCgO3h+uVgYGBgYFBmBa/a82dOxdffvklKIrCSSedhLfffhtFRUXEbffv34+///3v+P333/HFF1/ghx9+wOTJk1u4xcrQNI233noL559/Pl5//XWsXLkSFRUVyM7OxvDhw3H99dfjjDPOaO1mdljSrbQk8uCoR5tzycDAwMDAoC2gJNLS9s6w5J0M34Fviet5f7VwgYxISzsKdbTIyNc3aJ/I1YYIVCZQpBXHJhhxB6rQ1iywBJGWMsvHk2nOEDbiDgwMDAwM2hEtLtKGbcwDBw7ETz/9BLNZftp5165d8eOPP2LkyJFYv3493nnnnRYTaR955BE88sgjmrefPHlymxOQOzo8zxMzaQ/VBwlbGxgYGBgYtDyctwK0LVtxG0WR1poJc/ZwWZG2YcO/EGzYi7o//6F4DsaRr9rWCEYRVINjjEDlanCexIi0kDhpDZFWDdqaBRY7JMspxiG7j3aR1nDSGhgYGBi0H1q8cNiyZctAURTuuOMORYE2jNlsxp133gme57Fs2bIWaKHBscLqcnKhlcag9rwYAwMDAwODZFL588mqOWZKIi1lyYQ1/zTZ9f4jf6gKtLQtFxRjTMk26LgEKlbKRoZQ1izicjmkhcOM75YatMx7TJkURFpWm0hrZFEbGBgYGLQnWlykPXr0KIBQeLBW+vTpAwCoqKhISpsMjk1mb6onLjeyQg0MDAwMWgJ797+pbhOs3oBgzUbFbVjPYdl1tCUNptTuutsmOIa9s3CByvRgPqgtC9LAoL1jKzoP9m6X69pHnJVqZNKqQ1szySsYu/xOrFfbwSmjWLCBgYGBQfuhxUVapzOULVRZWal5n+rqUJ6awyE/mmpgIEYue/bkLoZIa2BgYGCQfFyDH1MWGZrg/TXKG3AB+XV0SIBIHfWKjpYJoURtZGydVLY3RCeD9ouz/53aNqQYpAx5CikDH9B1fHEBLNqaoWv/DomMkE015fmmDHtWsk5coE320CpxMgYGBgYGBm2JFhdpe/fuDQD49NNPNe8T3ja8r4GBGjVelrh8ag8H+mUZ2WAGBgYGBsnH5CpCzpQNSB3+b5jSj5PdjjKnKR6H5+Sz1KmmQmCO3jcgY+IPMbWTEhU2oqyZsqIJAFAm+WI+BgZtnZRhzyB9wieq2+VM2QhTWm/QtmzYis5T3T78PeV8QiOK3FR+g2YompwbSzUNQtm7XyFZx/mlhcZI0HblQScDAwMDA4O2RIuLtOeccw54nsc777wTKSKmxPvvv4+3334bFEXh3HPPTXr7DI4NdtWSH2h7phtTngwMDAwMWg5Tanc4+8+EtcvZ8hvJCBQReKWCl6EiXhRFwVZ4BtJP+Eh/I0WFjSiKUiwkJnbeGhi0JyiKgr3kYtD2PNltaHseTOl9ml87uqgel///9u47PKoqceP4O5NeCKFDSKQ3BQUJCCICotgoG0TsFAFZLIu7LrI/3bUX1LWt69KLWEAp0gIriBIloCGAihQpghIIHSnpk8zvDzbXDFPSZnKTzPfzPHmeO/eee+bMTM5M5s2559gyJBHSlonVzd/n/3tvsgY7j0YuyC7ZNHjW0PplbhYAABWtwkPaRx55RI0aNZLdbteoUaPUv39/LV68WIcOHVJeXp5sNpsOHTqkxYsXq3///hoxYoQKCgoUExOjhx9+uKKbiypq3xnXl4ZaWZAaAGACdyPFJEnFLBxm9zTdgcXxT7mAiEtK06z/VeEckFg9hLQKJKRF1edpRLglKKrU9dltGbLb7Sq4aLoDi7v5VmGwWDyPpLUEBMsSVMPh2MVhuDsBhLQAgCqkmKEb3hcREaEVK1bo+uuv1+nTp7Vq1SqtWrXKbXm73a5atWppxYoVzEkLt9LO2bQuLVsNIwJ0XVyo9v3metRRps3zF2EAACra2U1/UWSHiQqMaq2MXe/KGlJXIY36Kmv/PBVkpct26jsPZ18U0kaWPqR1NYotILyx3EXDnlZcB6oKS1Ck22PWiwLBkjiz8Y8KCGskFTjOlcpI2hJw90+sIu9N1uDays/7fVHgvBObSlY1IS0AoAqp8JBWkjp16qRt27Zp/PjxWrJkifLzXc8fGhAQoISEBL355ptq3LhxBbcSVcX53AI9kXxKOf/7NTqTU+B2JO2ZHNeLiQEAYJbcw6t16vBqh33n3JR1ctFIWk+XcLuvwnmu9oBw9393Md0BqgPPI2lLH9LmHFzucj8hbQm4GUmrgt+/I+ZnHXE4lL1/XomqtoYR0gIAqg5TQlpJiomJ0YIFC5Senq5169bpxx9/1KlTFy4Pql27ttq3b6/evXurUaPSf9mAf1nxc6YR0ErSJ7sz3JaNjTTtVx4A4MeC6l7lm4otjvP4eJxWwY3gRtc77fM03UFgTRZyRdVnDXQ/kvbi6Q6C63dX5s63y3AvljJNneBvgutdJVd/vVuLThVRkFOmuq0hdcvWKAAATGB6YtWoUSPdddddZjcDVdheN6NmL9YoIkDt67JwGACg4oU0vkkBUW2Uf/Ynr9ZrKefyAtawRgpvOdxpv6eRtEG1OpTrPoHKwBrh/nf84oXzQpvcVsY7CZTFwoIIxQmJ7e/0/hjcsE/Zpm+5CCP/AQBViekhLVBe+SWYweD+yyLVo3GorPyhDAAwgcUaoLr9v1XWvg909lsvLoRqKV1IG9npOQWENZQlOFoFWUcU2uxOWVwsBGZ1E9I2vDerTM0EKpuAiCYejsU53LZYAyVrsNN8s8Xj786SMN4f985RzuHPFRo3QGEt7vNO5S7m3AYAoLLyaUj766+/er3OSy4p/39UUb0UtxZYQstw3diURU4AAOayBtdURLuHdHbTY2W+dNdJaUPay/9eopF9F48klKTwNn+UJTC0VPcHVFYBke5DWmtErPO+0PoqyEwr5b0Q0paUNbimIi4dr4hLx3uvUotVFmuA9+oDAMDHfBrSNm3a1KuX+FgsFtlsNq/Vh+ohv8BzStuiJv9BBwBUIl69qqN0dZX07zJX0x0UZB8v1X0BlZnHkbThziGtpSwjMkv5TxR4mYtFEQEAqMx8Pt2B3V7MMEegHOx2u/ad8Rzct4hmVg8AQOVhsVjltb+OfBQCuZoCgZAW1YmnkbQBLkbSqgyL8jEfrbkshLQAgCrGp+nV8OHOC1EU9dtvv2np0qWyWCwaNmyYL5uCamrFfs9z49UKsap2KJc5AQAqEy8GNxU4Uo+QFtWJyyC28JiLkeQWS1m+NjGS1kyEtACAqsanIe3s2bM9Ht++fbuWLl1aorKAKx/sPO/xeLOajKIFAFQyZQp73FTlxbqcXLRQUmiTwb67L6CCuZu+wBJSR5ZA57UMQmJvle3MztLeSVmaBm8JYA5tAEDVwl8OqNZqBPMrDgCoXKyhdbxXl4sFvmpePcNl2bDm95aq7uhrPzK2LUE1FN76gdI1Dqjkgupe5bTP1Xy0khTZYaIswdHGbauL0bYXswSElLltcBTZ6YVSnxNYs7UPWgIAqG4sFossFoueeeYZs5tCSIvqLdjKXGAAgMrFGlrfa3UFRFzitC+89SiFNr/baX/k5U+Wqu6wprep9k1Jiur6tuoO2KKASOf7AqqyyI5POe1zNw2CNbSu6g36QVFd31btfmtU//aDiu75gQLrXKnIjs8oIKqN80mM5PSasOZ3uT1W48qXXO4Pqt3RR60BUFWsW7fOCOAu/gkPD1dcXJz69++vWbNmKScnx+zmAr5fOAwwUxDT0QIAKhlvhrTW0Hou94c07KPsnz9y2GcJiih1/SENr1VIw2vL1DagsrNYnP9QdDeSVpICIuIUcemfjNthLe5RWIt7JEkhjW/SycRujifYC7zTUCggoolkDZEKHEOU4AY9Fdywt8tzAglpAXiQlZWltLQ0paWlKTExUW+88YZWrFihpk2bmt00+DFG0qLKKrAXvzZ2ECNpAQCVjDdDWnerx9sLbM5lA0sf0gLVmos5Y60RcWWqKqhWB6d9BZmHylQXnFmsAQqMauW03xoWI3eLMQbVusLHrQJQlYwbN07btm0zftauXau3335bsbEX/jm3fft2DRw4UPn5+Sa3FP6MkBZVVrat+JD2txxGMAAAKhdXo/e8zk5ICxTP+auQu+kOiuNqsTF4V2BN5yklAsJjJLn+ez+wZlsftwhAVVK/fn21b9/e+Lnuuuv0pz/9STt27DBGz27btk2ffvqpuQ2FXyOkRZWVVYKQ9ngm/wUDAFQuBXlnfH4f9oI8553WYJ/fL1CluBhJ62m6A5grwEVIaw2PcTuthCWA9zwAxatRo4b+/ve/G7c///xzE1sDf0dIiyqrJCFtl4asqgsAqFxCYm/xSj1hLYa5PRZU63Knfe6mRgD8lotwzxreqMzVhbUc6XA7uAHzOXtTYA3n6Q4CwhrJ6iJYD6jRoiKaBKCa6NDh9ylrDh486Lbcl19+qeHDh6t58+YKDw9XVFSUOnTooAkTJujw4cMluq/k5GSNHj1abdq0UVRUlIKDgxUbG6v+/fvr3Xff1W+//eb23OXLl2vIkCGKjY1VSEiI6tSpo+7du2vSpEk6f/68y3NatGghi8WiHj16FNu2Q4cOKSAgQBaLRY8//rjLMmfOnNHLL7+sHj16qF69egoODlajRo00YMAALVy4UHYP01IWLtr2zDPPSJK++OIL3X777YqLi1NQUJDL+YCPHDmiJ598UvHx8apdu7ZCQkIUFxenoUOHljhQ/+ijj9S7d2/VqlVLkZGRat++vZ5++mmPz7VZWDgMVVZmMSFteKBF3RsR0gIAKpfQSwbrXOgEFWQf9VguIKKJAiIvUe7Rr50PWkMUeYXzyvSFghtdp8Do9rL99qMkKeKyx8rVZqBasjtfcWUJCCtzdTWufFHZBz6R3ZYhSQpvM67MdcGZq8UPLSG1FFijqSwhtWXPOWXsj+75QUU2DUAVFxz8+8j7oKAgp+PZ2dkaOXKk5s+f73Tsxx9/1I8//qjJkydr3rx5GjBggMv7yMrK0qhRozRv3jynY4cOHdKhQ4eUmJio48ePGyFm0fu/++67naZiOHXqlL755ht98803euedd5SYmKiOHTs6lLn77rv1wgsvaOPGjTpw4IDHhdHmzZungoIL/8C85557nI6vXbtWd9xxh06ePOmw/8iRI1qxYoVWrFihW265RR9//LEiIyPd3o8kPfnkk3rppZc8lvnwww81duxYZWRkOOxPS0vTggULtGDBAo0aNUpTpkxRYKBzvGmz2XT33XdrwYIFDvu3b9+u7du364MPPqh0I6d9GtI+99xzHo8fO3asxGULPfWU+y8k8C9ZNufRD8MvjdSxzHzVDw9Q5wYhqhVaAfP+AQBQCtagCNUd+J2yD3yisynjXZaxBEaq7oBUWULq6PzWfyjrwELV7D5FFmuQck+kKDT2VgVGuR8pZrFYVOeWZGX9/IGsIXUV2vR2Xz0coFqxWJ2/nJdUQHgj1R30o7J/Xayg2h0V0ug6L7YMFovza2MNipIkNRh6WGc3/UW5R9erZo8ZCq7bpaKbB6AK27lzp7F9cYhpt9s1ZMgQJSYmSpIGDBigoUOHqnnz5rJarUpJSdHrr7+uX3/9VUOGDFFycrLi4+Md6igoKNCgQYO0Zs0aSVKrVq304IMPKj4+XuHh4UpPT9eGDRv0ySefuGzf8OHDjYD2iiuu0GOPPaZ27drp1KlTmj9/vubMmaPDhw+rb9+++uGHH9S4cWPj3HvuuUcvvPCC7Ha7PvroIz3xxBNun4ePPvpIknTZZZfpiiscF19MTk7WzTffrLy8PDVo0ECPPPKIrrjiCsXExOjw4cP6+OOP9cEHH2jlypUaPny4Fi1a5PZ+Fi9erG3btqlDhw7685//rPbt2ysrK0vfffedUeaTTz7RfffdJ7vdrubNm+vhhx/WpZdeqnr16unAgQOaOXOmVq5cqZkzZyoqKkpvvPGG0/389a9/NQLaNm3a6PHHH9fll1+uM2fOaMGCBZo+fbruuOMOt+00g8XuaSxyOVmtVq9fWsdKe47S0tIUF3dhFdqDBw8aKxP6g2/Ss/XmlrPG7UYRAXqrdx0TWwQAQOmkz3H9d1KNK19U5OXu/4gGUH45h1br1JobHfbVH5qugPCGJrUInmQfXK7Tawc67Ks76AcF1erg5gzA+8rz/XvPnj2y2WwKDAxUq1bO03dIUoG9QCdzMr3S1qqiTki4rC7mCPeGdevWqU+fPpKkp59+2mmEqnQhY+rSpYu2bt0qSfr66691zTXXGMenT5+uBx54QEFBQVq2bJluuukmpzpOnz6tnj17avv27erRo4fWr1/vcPxf//qXxo+/8I/5hIQEzZs3TyEhzlf9FhQUKD093SFkTUxMVP/+/SVJffv21cqVKx1G/hZtoyQNHTpUH3/8scPxzp07a8uWLbrsssv0448/unyudu3apXbt2kmSXnrpJf3f//2fcSwvL0+tW7fWgQMHdNNNN2nRokUKD3deMLNoO1avXq0bbrjB4XjRfLBv375KTEx0+TycOHFCLVu21JkzZ3T//fdr6tSpLkfKFo7GtVqt2rFjh9q0+X3u8m3btqljx44qKCjQlVdeqaSkJKfRvXPnztXw4cON2+5+RzwpSb8uDZ9Pd+DNDJi51FDUxXPShgXy+wEAqB4sgc6X9QLwNufvKeUZSQvfsufnOO2z/G8kLVBdnMzJVP15z5jdjAp17K5nVC/U86XxvnD8+HFt27ZNTz31lBHQDhkyxCGgtdvteuWVVyRJf/rTn1wGtJJUq1Ytvfbaa7rllluUnJysPXv2GIFdQUGBXnvtNUlSbGys5s6d6zKYlC4MdCwa0ErSu+++K+nCNAyzZ892CmglacyYMfrkk0/0+eefa/HixUpPT1ejRr/PsX7PPfdoy5Yt2r59u77//nunUbLShakFpAu529133+1wbP78+Tpw4IBCQ0M1d+5clwFtYTtmzJihlJQUzZkzxymkLfo4Z8yY4fZ5mDx5ss6cOaPGjRvrP//5j8uAVpKeffZZvffeezp06JDmzp2rF1980Tg2ZcoUY+qGadOmuZx+YdiwYZo/f75WrVrlsn4z+DSk/fLLL31ZPfyY3W7XZweyHPaFE9ICAKqLgFCzWwBUey4Hk1hZsqOysudnOe2zBtU0oSUAqqJnn31Wzz77rMtj4eHh+uMf/6hJkyY57N+xY4f27dsn6UKA68m11/6+WOTGjRuNkPa7775TWlqapAshZnFztRZls9mUlJQkSerXr58xituVMWPG6PPPP5fNZtO6det01113GcfuvPNOTZgwQQUFBfroo49chrSFc+X26NFDTZo0cTi2bNkySVKvXr1Ur149j22+9tprlZKSoo0bN7ot06NHD49z4xbeX//+/d0GuZIUGBio7t27a+HChU73VzjXbIcOHdS5c2e3ddx///3+E9L26tXLl9XDj63+JUv7z9oc9jGSFgBQXRRkHjK7CYAfcBHS+uiSW5Sf3eZ8CbglqIYJLQFQ3XTs2FF/+tOfnBYNS01NNba7d+9e4vqOHDlibBeO0pWknj17lqpdP//8szIzL7z3XXXVVR7LFj1+8ZQGMTEx6tOnj9auXat58+Zp0qRJDleqf/vtt0YY7WrBsMLn4bPPPivxFe5Fn4OLXX755W6P5efnG3PTTp06VVOnTi31/eXk5GjPnj2SpC5dPM9R3rVr1xLVX1H4KwRV0qzt5532hQXy6wwAqB6C6nUzuwlAtRcY2cxpn8XqfBkpKofAmu2c9lmsLBIMoGTGjRunbdu2adu2bdq6dauWL1+u4cOHy2q1asOGDerdu7eOHz/ucE7Rxe5LozBYlS7Mr1qo6BQEJXHq1Clju379+h7LNmz4+3zqRc8rVBi+Hjx4UF999ZXDscKpDoKCgnT77c6LzZblecjKcr76oVCtWrXcHjt16pRsNpvb4+4Ufc5Pnz5tXC1T3PPWoEGDUt+XL3E9D6oNRtICAKqaiMufUMYPLznss4bHKqQhq8IDvhYY3VbBDXsr98g6SVJYi+GyBLi/rBLmCm7QU4G1Lpft9A+SpIhL/2xyiwDvqxMSrmN3PWN2MypUnRDX85t6W/369dW+fXvjdseOHdW/f3/16dNHI0aM0IEDBzR69GgtXbrUKFN04frly5d7vET/4vvytvKu0XTbbbfpwQcfVHZ2tj766CPjyvf8/Hx98sknkqSbbrpJdeo4L8Ze+DzcfPPNevXVV8vVDkkKCHD/D7aiz/no0aONBdeK42quXqnqrW1FSItqgzlpAQBVTdSVLyogPE4Z219XUJ0rFdzgGoU2vUOWQOakBSpC7etXKuvnDyRriMKaO1/iicrDYrGozi3rlbXvA1lDaiu06VCzmwR4ndViNWURLX82fPhwLV++XIsWLdKyZcv0xRdf6LrrLvyzvGhgGR0d7RDyllTdunWN7fT0dLVt27bE59auXdvYPnr0qMeyRS/3L3peoaioKPXv318LFy7UwoUL9e9//1tBQUFau3atUberqQ6kC8/D4cOHlZubW6bnoDSKtt1ut5fp/qKjo43t4p634o5XNK4PR7URFkRICwCoeiLa/lH1b9ujWr0/VkS7RxQQ5v3RFwBcswSGKbz1GIW3HMal81WANaiGItqOU1izO6rc6CgAlddLL71kjO584oknjP2dOnUytpOTk8tU95VXXmlsXzzNQHGaN2+u8PALI42//fZbj2VTUlKMbXfBZmEIe+rUKWOxrMKpDmrUqKGBAwe6PK/weUhNTVVubm4pHkHpBQcH67LLLpNU9uc8NDTUWLht06ZNHssWd7yiEdKi2ggN4A81AAAAAABQcq1bt9bQoRdG53/77bdas2aNpAsBa2xsrCRp2rRpys7OLnXdV1xxheLi4iRJM2bM0PnzzuvruBMYGGhMS7BmzRqlpaW5LTtjxgzjnN69e7ssc8sttxjzwX744YfKzs7Wp59+KklKSEhQWFiYy/MKw9szZ85o9uzZJW5/WRXe365du/TZZ5+VqY7rr79ekow5iN2ZNWtWmer3FUJaVBkZeQVasPu8/vTlCZfHw1k4DAAAAAAAlNITTzxhjNB/4YUXJElWq9UYWfvzzz9r2LBhysnJcVvH2bNn9e9//9thn9Vq1YQJEyRJaWlpGjZsmNvRqAUFBTp8+LDDvoceekiSlJubq1GjRikvL8/pvFmzZmn16tWSpMGDB7tdoCw4OFhDhgyRdGGO3Y8++kjnzp2T5H6qA+nClBCFQfNf//rXYkcEr1+/XklJSR7LeDJ+/HhFRl6Y9mPkyJHavn27x/KJiYn64YcfHPaNHTvWeD0feOABZWRkOJ334YcfauXKlWVupy+QaqHKeHXTGS3ck6mjmQUuj4cwJy0AAAAAACil9u3bGyM4v/rqK61fv16S9Mc//lEJCQmSpAULFuiyyy7Ta6+9pqSkJH333Xf66quvNG3aNN19992KiYnRM88841T3Qw89pBtuuEGS9Omnn6pDhw56++23lZycrK1bt2rVqlV6+umn1bZtW02bNs3h3FtvvVW33367JGn16tXq1q2bPvzwQ23evFmff/65Ro8erdGjR0u6MJ/rG2+84fFxFoaxWVlZeuyxxyRJDRo0UN++fd2eExISok8++UQhISE6f/68rrvuOt17771auHChNm/erE2bNmnZsmV6+umndfnll6tnz57atm2bx3Z40qBBA7333nuyWCxKT09XfHy8xo0bp2XLlmnLli369ttvtWjRIk2cOFEtWrRQ//799euvvzrUccUVVxgBd2pqquLj4zVnzhxt3rxZX3zxhcaNG6dhw4YpPj6+zO30BRYOQ5VwKjtfu047/8eoqHy7vYJaAwAAAAAAqpMnn3xSS5culSQ9//zz+uyzz2SxWPTxxx9r/PjxmjJlivbt26fHH3/cbR316zuvLWC1WrVkyRINHz5cCxcu1O7du/Xoo4+WuF1z586VzWbTp59+qi1btujee+91KhMTE6PExEQ1btzYY13XXnut4uLidPDgQf3222+SpDvvvNOYk9edbt26ad26dRo6dKgOHjyoDz/80JjP1pWoqKjiH5gHgwcP1tKlSzVixAidOnVKU6ZM0ZQpU1yWtVqtioiIcNr/xhtv6PDhw1q8eLF27dqlkSNHOhxv1qyZPv74Y7Vo0aJcbfUmRtKiSjiR5Xr0bFGBLB4AAAAAAADKoEuXLsaI19WrVxuLSgUFBek///mPvv/+ez3yyCPq0KGDatasqYCAANWsWVMdO3bUqFGjtHDhQu3cudNl3eHh4VqwYIG++OIL3XfffWrWrJnCwsIUHBysuLg4DRgwQFOnTjVGtxYVGhqqxYsXa9myZRo8eLBiYmIUHBysWrVq6aqrrtLLL7+sn376SR07diz2MVosFt11110O+zxNdVBUt27dtGfPHk2ZMkW33nqr0Y7Q0FDFxcWpX79+evHFF7Vr1y4NGzasRHV6MmDAAO3fv1///Oc/dd1116lBgwYKCgpSWFiYmjVrpv79++uNN97QgQMH1KdPH6fzg4KCtGjRIr3//vvq2bOnatasqfDwcLVr105PPPGENm/erObNm5e7nd5ksdsZfliVpaWlGXODHDx40JjUurrZeDhbb20967HM37rUVKf6IRXUIgAAAACAPynP9+89e/bIZrMpMDDQWHkeQNXm7X7NSFpUCSUZSWtlIC0AAAAAAACqIEJaVAknsvOLLRNISgsAAAAAAIAqiJAWVcKJrOJD2gAyWgAAAAAAAFRBhLSoEkq0cBgjaQEAAAAAAFAFEdKiSjidU3xIWzuUX2cAAAAAAABUPaRaqBKy8jyHtFfWD1bt0IAKag0AAAAAAADgPYFmNwAoTn6BXbkuMtp2tYPUpWGIwgIsujY2tOIbBgAAAAAAAHgBIS0qvex8u9O+d6+ro7phjJwFAAAAAABA1cd0B6j0smzOIW1YIIuEAQAAAAAAoHrwy5D27Nmzmj9/vh577DH16tVLLVu2VM2aNRUcHKz69eurd+/eevXVV3Xy5MkS1bdhwwbde++9atKkiUJDQ9WwYUPdeOONmjdvno8fiX/IdhHShgYQ0gIAAAAAAKB68MvpDlJSUnTXXXe5PHb8+HElJSUpKSlJr732mj744APdeOONbut65pln9Pzzz6ug4PdJU48eParVq1dr9erV+vDDD7Vw4UKFhjJnalldPJI22CoFWAlpAQAAAAAAUD345UhaSYqLi9OwYcP09ttva/Hixdq4caOSk5P18ccf6/bbb1dAQIBOnDihgQMH6vvvv3dZx9SpU/Xss8+qoKBALVq00MyZM5WSkqIlS5aoT58+kqTExETdf//9FfnQqp3zeY6rhoUF+e2vLQAAAAAAAKohvxxJ26dPH/36669ujw8dOlRLlixRQkKCcnNz9eyzz2rx4sUOZU6dOqWJEydKki655BJ98803qlu3rnG8f//+SkhI0PLlyzVv3jw98MAD6t27t08eT3V3LDPf4Xa9MEJaAAAAAAAAVB9+mXYFBAQUW+YPf/iD2rRpI0n6+uuvnY7PmDFDZ86ckSS98sorDgFt4X385z//Me7rtddeK2+z/dbRi0La+uHFv34AAAAAAABAVeGXIW1J1ahRQ5KUnZ3tdGzJkiWSpKioKA0ePNjl+bGxsbr++uslSWvXrtW5c+d809Bq7uKRtA3CCGkBAAAAAABQfRDSuvHTTz/pu+++kyS1bdvW4Vhubq5SUlIkSd27d1dwcLDbenr16iVJysnJUWpqqm8aW80dzXSck5aRtAAAAAAAAKhO/HJOWncyMzN16NAhLV++XK+++qpsNpsk6dFHH3Uot3v3buXnXxjdeXGAe7Gix3fu3GksKFZSaWlpHo+np6eXqr6qxm63O42kJaQFAAAAAABAdeL3Ie2cOXM0cuRIt8f/9re/6e6773bYVzQ4jY2N9Vh/XFycsX3w4MFSt6/o+f7oXK5d2fl2h32EtAAAAAAAAKhO/D6kdadjx46aNm2aunTp4nSs6NyykZGRHuuJiIgwts+fP++9BvqJixcNC7BIdUKZpQMAAAAAAADVh9+HtH/4wx8UHx8vScrKytK+ffv0ySef6NNPP9Vdd92lt956S/3793c4p+hCYp7mo5WkkJAQYzsrK6vU7Stu9G16erq6du1a6nqrimNZjiFt3bAABVgtJrUGAAAAAACgarBYLuQnTz/9tJ555hlzG4Ni+X1IGx0drejoaON2ly5ddOedd+r999/X8OHDNWjQIM2cOVMjRowwyoSGhhrbubm5HuvPyckxtsPCwkrdvuKmU6juLp6PtkE4o2gBAAAAAIBn69atc7kuUEBAgKKiolSzZk3FxcWpc+fOuuaaazRgwIBiB+IBvkTi5cZ9992n22+/XQUFBXr44Yd16tQp41iNGjWM7eKmMMjIyDC2i5saAc4unu6A+WgBAAAAAEBZ5efn6/Tp0zpw4IC+/vprvfXWWxoyZIhiY2P1wgsvGIvIAxWNkNaDQYMGSboQtP73v/819hcd3Vp0ETFXik5X4O+LgJXFxSNpCWkBAAAAAEBpjBs3Ttu2bTN+Nm7cqJUrV2rSpEm64YYbZLFYdPz4cf3jH/9Qjx49dPz4cbObDD/k99MdeFKvXj1j+5dffjG2W7durYCAAOXn52vXrl0e6yh6vF27dt5vZDWVm2/Xyv2Z2n4yz2F/A0JaAAAAAABQCvXr11f79u2d9t98882aOHGiduzYoXvvvVdbt25VSkqKEhIS9MUXXzD9ASoUI2k9OHTokLFddKqC4OBgY7GujRs3epyXNikpSdKFBcQKFyhD8ab8cFbzfspw2s9IWgAAAAAA4E2XXnqpkpOT1alTJ0lScnKy3n33XZNbBX9DSOvBggULjO0OHTo4HPvDH/4gSTp79qwWL17s8vy0tDR9/vnnkqS+ffs6zGUL9/IL7Eo+nOPyWP0wQloAAAAAAOBdYWFhev/992WxWCRJ//znP5WXl+ey7JEjR/Tkk08qPj5etWvXVkhIiOLi4jR06FAjB3Ln9OnTmj17tu69915deumlioyMVHBwsBo2bKgbb7xR06ZNK3aR+kIfffSRevfurVq1aikyMlLt27fX008/rd9++61Ujx2Vg1+GtHPmzFF2drbHMm+++aZWrlwpSWrWrJl69uzpcHz06NGqWbOmJOlvf/ubTp486XA8Pz9fDz74oPLzL8ypOmHCBG81v9o7mV3gcr9FUniQpWIbAwAAAAAA/MJll12mG264QZJ0+PBhbdq0yanMhx9+qJYtW+qll17S5s2bdfr0aeXm5iotLU0LFizQDTfcoNGjR7tdgKxTp066//779eGHH2rnzp3KyMhQXl6ejh49qtWrV2vs2LHq1q2bjhw54radNptNQ4cO1T333KOkpCT99ttvysjI0Pbt2/Xcc8+pc+fO2r9/v3eeFFQYvwxpn3nmGTVu3FgPPPCA5s6dq+TkZH3//fdav369Jk+erGuuuUZ/+ctfJF2Y2mDatGkKCHAcwVm7dm298sorki7MV3vVVVdp9uzZSk1N1bJly3TDDTdo+fLlkqS77rpLvXv3rtDHWJUdych3uT8s0CKrhZAWAAAAAAD4xvXXX29sf/311w7HPvnkE913333KyMhQ8+bN9cYbb+i///2vNm/erEWLFumWW26RJM2cOVOPP/64y/rz8/N11VVX6fnnn9eKFSu0adMmJScn64MPPtBNN90kSdq6davuvPNOt23861//alz93aZNG82cOVObNm3S559/rrFjx+rAgQO64447yvU8oOL57cJhp06d0vTp0zV9+nS3ZWJjYzVr1iyHDlrU2LFjdfjwYT3//PPat2+f7r//fqcyt9xyi2bNmuW1dvuDI5mu/9sUFkhACwAAAAConuz2AtkLzprdjAplsUbJYqlc4wevvPJKY3v37t3G9okTJ/TAAw/Ibrfr/vvv19SpUxUYGOhw3uDBg/Xkk0/qpZde0ttvv62xY8eqTZs2DvV/8cUXatWqldP9Xn311brnnns0e/Zs3X///UpKStLatWvVt29fh3Lbtm3TO++8Y9xnUlKSwzpKffv21dVXX63hw4eX74lAhfPLkPazzz5TYmKikpOTtXfvXh09elQnT55UWFiY6tevr44dO6p///4aOnSowsPDPdb17LPP6sYbb9S7776rr7/+WkePHlV0dLSuuOIKjRw5UnfddVcFParqw91I2rwCewW3BAAAAACAimEvOKtzR24zuxkVqkbDRbIERJvdDAd16tQxtk+fPm1sT548WWfOnFHjxo31n//8xyGgLerZZ5/Ve++9p0OHDmnu3Ll68cUXHY67CmiLGjlypP71r3/pu+++05IlS5xC2ilTpqig4MI0kdOmTXMIaAsNGzZM8+fP16pVqzw/WFQqfhnStmnTRm3atDGmNCivq6++WldffbVX6oJ0NNN1SHs2l5AWAAAAAAD4TtHQ89y5c8b2smXLJEn9+/dXSEiI2/MDAwPVvXt3LVy4UBs3bvR4X3a7XUePHtXZs2cdFgtr3LixvvvuO33//fdO5xQuTNahQwd17tzZbd33338/IW0V45chLSo3dyNpAQAAAAAAfKloMBsVFSXpwjyy3333nSRp6tSpmjp1aonqcrf4V2JioiZPnqyvvvrK4f4uduLECYfbOTk52rNnjySpS5cuHu+7a9euJWojKg9CWlQqefl2pbsJaa+Ocf+fKgAAAAAAgPIqGozWrl1b0oV1jWw21+vneJKZmelw2263a8yYMZo5c2aJzs/KynK4ffr0adntF64yrl+/vsdzGzRoUIqWojIgpEWlcvC8TfkuZjWwSOodG1rh7QEAAAAAoCJYrFGq0XCR2c2oUBZrlNlNcLJ161Zju3DRr/z83weTjR49WuPHjy9RXcHBwQ63Z82aZQS0HTt21KOPPqqrrrpKjRs3Vnh4uAICAiRdmFP2/fffNwJZVywWFlevbghpUans+835P1P3totU6+ggtakdZEKLAAAAAADwPYvFWukW0fJHa9asMbavueYaSb+PqJUujIZt3759meqePn26JKlly5basGGDwsLCXJY7deqUy/3R0dHG9tGjRz3eV3HHUflYzW4AUNT+M3kOt3vEhGhA83ACWgAAAAAA4FM//vij1q5dK0mKi4tTfHy8pAsjYi+77DJJUnJycpnr3759uyRp4MCBbgNau92uLVu2uDwWGhqqVq1aSZI2bdrk8b6KO47Kh5AWlcrPZxxH0jarSTgLAAAAAAB8KysrS8OGDTOmGPjrX/+qwMDfL0AfOHCgJGnXrl367LPPynQfhfPaZmRkuC2zdOlSpaenuz1+/fXXS5K2bdvmMDXDxWbNmlWmNsI8hLSoNPLy7fr1nGNI26ImM3IAAAAAAADf2bFjh6655hoj9OzVq5fGjRvnUGb8+PGKjIyUJI0cOdIYFetOYmKifvjhB4d9haNgly9f7nJKg3379umhhx7yWO/YsWON+WgfeOABl4Hvhx9+qJUrV3qsB5UPCRgqjV/POS8a1jSKX1EAAAAAAFB2x44d048//mjczsjI0OnTp/XDDz9o7dq1WrNmjTGCtlu3blq4cKGCghyv7G3QoIHee+89DRkyROnp6YqPj9eIESN08803KzY2Vnl5eUpLS1NKSooWLlyon3/+WcuXL9fll19u1DFs2DBNmDBBhw8fVvfu3TVx4kS1b99e2dnZ+uKLL/TWW28pJydHV155pdspD6644go99NBD+ve//63U1FTFx8dr4sSJ6tChg86cOaMFCxZo2rRpio+PV2pqqg+eTfgKCRgqjcMZ+Q63G4YHKDyIwd4AAAAAAKDsJk+erMmTJ3ssU69ePT366KN6/PHHHaY5KGrw4MFaunSpRowYoVOnTmnKlCmaMmWKy7JWq1UREREO+8aPH681a9Zo9erV2r17t0aNGuVwPCwsTHPnzlViYqLbkFaS3njjDR0+fFiLFy/Wrl27NHLkSIfjzZo108cff6wWLVp4fMyoXAhpUWlk2QocbkeHENACAAAAAADvsVqtqlGjhmrWrKkmTZqoc+fO6tmzp/r376/g4OBizx8wYID279+v6dOna+XKldq+fbtOnTqlwMBANWzYUJdddpmuu+46DRkyRHFxcQ7nBgUFKTExUZMnT9bcuXO1Y8cO2e12NW7cWNdff73Gjx+vtm3bKjEx0WMbgoKCtGjRIn3wwQeaNm2afvjhB+Xl5alJkyZKSEjQX//6V9WqVatczxMqnsVeOJ4bVVJaWprR6Q8ePKjY2FiTW1R2S/dl6KNdv8+l0rFesP6va7R5DQIAAAAA4H/K8/17z549stlsCgwMNOYlBVC1ebtfM1QRlUaWzfH/BWGBFpNaAgAAAAAAAFQcQlpUGtmEtAAAAAAAAPBDhLSoNDIJaQEAAAAAAOCHCGlRaVw8kjaUkBYAAAAAAAB+gJAWlUbaeZvD7YhAfj0BAAAAAABQ/ZGCoVI4fN6mQ+fzHfa1qhVkUmsAAAAAAACAikNIi0ph09Ech9vRIVa1jA40qTUAAAAAAABAxSGkRaWQesQxpI1vECyrhTlpAQAAAAAAUP0R0sJ0p7Pztfs3x/louzQMMak1AAAAAAAAQMUipIXpUo/mOtwOC7SofZ1gk1oDAAAAAAAAVCxCWpgu9aL5aDvVD1aglakOAAAAAAAAUDnZ7Xav1kdIC9P9ctZxqoPO9ZnqAAAAAABQfQQEBEiSbDab8vPzTW4NgPLKz883+nJh/y4vQlqYLv+i/zxEh/BrCQAAAACoPsLDw43t3377zbyGAPCKov24aP8uj0Cv1AKUw8Wjw5npAAAAAABQnURHR+v06dOSpGPHjik/P19RUVEKCQmRxcKXYKAqsNvtysnJ0dmzZ3Xy5Eljf61atbxSPyEtTFdgdgMAAAAAAPCh0NBQ1axZU2fOnJEknTx5UidPnpTFYvHapdIAfCs/P99pHtqaNWsqJMQ703YS0sJ8jKQFAAAAAFRzjRo1UnBwsI4fP27ss9vtstlsHs4CUFnVq1dPderU8Vp9hLQwVXqGTRk2766GBwAAAABAZWOxWFS3bl1FRUXp/PnzysjIUG5urgoKuL4UqAqsVquCg4MVERGhyMhIBQcHe7V+QlqYJstWoP9bf9ppv5X5eAAAAAAA1VRwcLBq166t2rVrm90UAJWI1ewGwH/990CWslyMog0gowUAAAAAAIAfIaSFafafcT3vTqMIJk0HAAAAAACA/yCkhWny7c6jaBuGByg8iF9LAAAAAAAA+A/SMJjG5mJu9GY1mSYZAAAAAAAA/oWQFqZxNZKWkBYAAAAAAAD+hpAWpsnNd97XLCqo4hsCAAAAAAAAmIiQFqb59ZzzwmFNGUkLAAAAAAAAP0NIC9M0iXIOZKOC+ZUEAAAAAACAfyERg2na1WZqAwAAAAAAAICQFqYJslocbsc3CDapJQAAAAAAAIB5CGlhGvtFty2yuCwHAAAAAAAAVGeEtDCN/aKU1kJGCwAAAAAAAD9ESAsTOaa0ZLQAAAAAAADwR4S0MI3TdAektAAAAAAAAPBDhLQwzblcx5g2gJAWAAAAAAAAfoiQFqbZdSrP4fYlNQJNagkAAAAAAABgHkJamCIjr0AHz9kc9rWtHWRSawAAAAAAAADzENLCFLtP5znMSRtklVrUJKQFAAAAAACA/yGkhSkunuqgRXSQgpiUFgAAAAAAAH7Ib0Pa1NRUPffcc+rXr59iY2MVEhKiyMhItW7dWiNHjtT69etLVd+qVauUkJBg1BUbG6uEhAStWrXKR4+gars4pG1bi1G0AAAAAAAA8E9+uVLTtddeq6+//tppf25urvbs2aM9e/Zozpw5GjZsmKZPn67g4GC3dRUUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIOcvPt2nvmopCW+WgBAAAAAADgp/wyNTx8+LAkKSYmRuPHj9fChQuVkpKijRs36o033lDjxo0lSXPnztWIESM81vXkk08aAW2nTp00b948paSkaN68eerUqZMkacaMGfr73//uuwdUxRzOsMlW4LivNSNpAQAAAAAA4KcsdrvdXnyx6qV///4aNmyYbrvtNgUEBDgdP3HihHr06KHdu3dLkpKSknTttdc6ldu9e7cuu+wy2Ww2xcfH66uvvlJYWJhxPDMzU7169VJqaqoCAwO1c+dOtWzZ0quPJS0tTXFxcZKkgwcPKjY21qv1+8KWozl6JfWMcTs6xKqp19c1sUUAAAAAAHhWFb9/A6g6/HIk7YoVKzR06FCXAa0k1a1bV6+//rpxe+HChS7LvfXWW7LZbJKkd955xyGglaTw8HC98847kiSbzaY333zTG82v8k5mOw6jrRPql7+GAAAAAAAAgCQ/DWlLok+fPsb2vn37nI7b7XYtXbpUktS2bVt169bNZT3dunVTmzZtJElLly6VHw5cdnIyO9/hdu1Q12E5AAAAAAAA4A8Iad3Iyckxtl2NuN2/f78xt22vXr081lV4/NChQzpw4ID3GllFnbp4JG0Yv4YAAAAAAADwX4FmN6CySkpKMrbbtWvndHzHjh3Gdtu2bT3WVfT4zp071axZsxK3Iy0tzePx9PT0EtdVWZzMchxJy3QHAAAAAAAA8GeEtC4UFBRo0qRJxu2hQ4c6lSkanhY3WXjhxOLShcnFS6PoudWF85y0THcAAAAAAAAA/8UQRhfefPNNpaSkSJIGDx6szp07O5U5d+6csR0ZGemxvoiICGP7/PnzXmpl1WS323Xqojlpme4AAAAAAAAA/oyRtBdJSkrS3/72N0lS/fr1NXnyZJflsrOzje3g4GCPdYaEhBjbWVlZpWpPcSNv09PT1bVr11LVaaYMm105jhktC4cBAAAAAADArxHSFrF9+3YlJCTIZrMpNDRUCxYsUP369V2WDQ0NNbZzc3M91lt0EbKwsLBStam4qRSqmkCLRQ93jNLJrHydyi7Qyex81WZOWgAAAAAAAPgxQtr/2b9/v/r166fTp08rICBA8+fP17XXXuu2fI0aNYzt4qYwyMjIMLaLmxqhugsNtKhn49DiCwIAAAAAAAB+giGMkg4fPqzrr79ehw8flsVi0axZszRo0CCP5xQd4Vp0ETFXik5ZUB0XAgMAAAAAAABQdn4f0p44cUI33HCDfv75Z0nSO++8o2HDhhV73qWXXmps79q1y2PZosfbtWtXxpYCAAAAAAAAqI78OqQ9c+aMbrzxRu3YsUOSNGnSJD300EMlOrdZs2aKiYmRdGGxMU+++uorSVLjxo3VtGnTsjcYAAAAAAAAQLXjtyFtZmambr31Vm3ZskWS9OSTT2rixIklPt9isRhTIuzatUvffPONy3LffPONMZJ20KBBslgs5Ww5AAAAAAAAgOrEL0Pa3NxcJSQkKDk5WZI0fvx4vfDCC6Wu59FHH1VAQIAk6ZFHHlFWVpbD8aysLD3yyCOSpMDAQD366KPlazgAAAAAAACAaifQ7AaY4a677tLq1aslSdddd51GjRqlH3/80W354OBgtW7d2ml/69atNWHCBE2aNEmpqanq0aOHJk6cqBYtWmjfvn165ZVXtHXrVknShAkT1KpVK988IAAAAAAAAABVlsVut9vNbkRFK+2UA02aNNGBAwdcHisoKNCYMWM0a9Yst+ePGjVK06ZNk9Xq/YHLaWlpiouLkyQdPHhQsbGxXr8PAAAAAAD8Hd+/AfiSX0534E1Wq1UzZ85UYmKiBg0apJiYGAUHBysmJkaDBg3SypUrNWPGDJ8EtAAAAAAAAACqPr+c7sAXg4dvueUW3XLLLV6vFwAAAAAAAED1xvBOAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIr8NaY8dO6YVK1boqaee0s0336y6devKYrHIYrFoxIgRpa5v1apVSkhIUGxsrEJCQhQbG6uEhAStWrXK+40HAAAAAAAAUG0Emt0AszRo0MAr9RQUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIAAAAAAAAA3CA1lHTJJZeoX79+ZTr3ySefNALaTp06ad68eUpJSdG8efPUqVMnSdKMGTP097//3WvtBQAAAAAAAFB9+O1I2qeeekpdunRRly5d1KBBAx04cEDNmjUrVR27d+/WP//5T0lSfHy8vvrqK4WFhUmSunTpooEDB6pXr15KTU3Va6+9pvvvv18tW7b0+mMBAAAAAAAAUHX57UjaZ599Vv379y/XtAdvvfWWbDabJOmdd94xAtpC4eHheueddyRJNptNb775ZtkbDAAAAAAAAKBa8tuQtrzsdruWLl0qSWrbtq26devmsly3bt3Upk0bSdLSpUtlt9srrI0AAAAAAAAAKj9C2jLav3+/Dh8+LEnq1auXx7KFxw8dOqQDBw74umkAAAAAAAAAqhC/nZO2vHbs2GFst23b1mPZosd37txZqrlv09LSPB5PT08vcV0AAAAAAAAAKh9C2jIqGp7GxsZ6LBsXF2dsHzx4sFT3U/RcAAAAAAAAANUP0x2U0blz54ztyMhIj2UjIiKM7fPnz/usTQAAAAAAAACqHkbSllF2draxHRwc7LFsSEiIsZ2VlVWq+ylu5G16erq6du1aqjoBAAAAAAAAVB6EtGUUGhpqbOfm5nosm5OTY2yHhYWV6n6Km0oBAAAAAAAAQNXGdAdlVKNGDWO7uCkMMjIyjO3ipkYAAAAAAAAA4F8Iacuo6AjXoouIuVJ0ygIWAgMAAAAAAABQFCFtGV166aXG9q5duzyWLXq8Xbt2PmsTAAAAAAAAgKqHkLaMmjVrppiYGElSUlKSx7JfffWVJKlx48Zq2rSpr5sGAAAAAAAAoAohpC0ji8WiQYMGSbowUvabb75xWe6bb74xRtIOGjRIFoulwtoIAAAAAAAAoPIjpC2HRx99VAEBAZKkRx55RFlZWQ7Hs7Ky9Mgjj0iSAgMD9eijj1Z0EwEAAAAAAABUcoFmN8As69ev1969e43bJ06cMLb37t2rOXPmOJQfMWKEUx2tW7fWhAkTNGnSJKWmpqpHjx6aOHGiWrRooX379umVV17R1q1bJUkTJkxQq1atfPJYAAAAAAAAAFRdFrvdbje7EWYYMWKE3nvvvRKXd/c0FRQUaMyYMZo1a5bbc0eNGqVp06bJavX+wOW0tDTFxcVJkg4ePKjY2Fiv3wcAAAAAAP6O798AfInpDsrJarVq5syZSkxM1KBBgxQTE6Pg4GDFxMRo0KBBWrlypWbMmOGTgBYAAAAAAABA1ee3I2mrC/6TBwAAAACA7/H9G4AvMbwTAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJDWi3755Rc99thjatu2rSIiIlS7dm116dJFr732mjIzM81uHgAAAAAAAIBKKNDsBlQXy5cv17333quzZ88a+zIzM5WamqrU1FTNmDFDiYmJatmypYmtBAAAAAAAAFDZMJLWC7Zu3ao77rhDZ8+eVWRkpF588UVt2LBBa9eu1ZgxYyRJu3fv1q233qpz586Z3FoAAAAAAAAAlQkjab1g/PjxysrKUmBgoFavXq3u3bsbx6677jq1atVKjz/+uHbv3q3XX39dzzzzjHmNBQAAAAAAAFCpMJK2nFJSUvT1119LkkaNGuUQ0BZ67LHH1K5dO0nS22+/rby8vAptIwAAAAAAAIDKi5C2nJYsWWJsjxw50mUZq9WqYcOGSZJ+++03ffnllxXRNAAAAAAAAABVACFtOa1fv16SFBERoc6dO7st16tXL2M7OTnZ5+0CAAAAAAAAUDUwJ2057dy5U5LUsmVLBQa6fzrbtm3rdE5JpKWleTyenp5e4roqi892PSyrcs1uBgAAAACgkrimxZsKC4owuxkAYBpC2nLIzs7WiRMnJEmxsbEey9aqVUsRERHKyMjQwYMHS3wfcXFx5WpjZdQubLdqBuab3QwAAAAAQCVhK2DtFgD+jekOyuHcuXPGdmRkZLHlIyIu/Ffw/PnzPmsTAAAAAAAAgKqFkbTlkJ2dbWwHBwcXWz4kJESSlJWVVeL7KG7UbXp6urp27Vri+gAAAAAAAABULoS05RAaGmps5+YWP8dqTk6OJCksLKzE91HcNApV0Y7sbpK4lAUAAAAAcEHvBsUPfAKA6oyQthxq1KhhbJdkCoOMjAxJJZsaoTq7qc1zZjcBAAAAAAAAqDSYk7YcQkNDVadOHUlSWlqax7KnT582QtrquBgYAAAAAAAAgLIhpC2nSy+9VJK0d+9e2Ww2t+V27dplbLdr187n7QIAAAAAAABQNRDSltM111wj6cJUBps3b3ZbLikpydju0aOHz9sFAAAAAAAAoGogpC2nP/zhD8b27NmzXZYpKCjQ3LlzJUnR0dHq06dPRTQNAAAAAAAAQBVASFtOXbt2Vc+ePSVJM2fO1MaNG53KvP7669q5c6ckafz48QoKCqrQNgIAAAAAAACovALNbkB18Pbbb6tHjx7KyspSv3799MQTT6hPnz7KysrS/PnzNW3aNElS69at9dhjj5ncWgAAAAAAAACVCSGtF3Tq1Ekff/yx7r33Xp09e1ZPPPGEU5nWrVsrMTFRNWrUMKGFAAAAAAAAACorpjvwkgEDBuiHH37Qn//8Z7Vu3Vrh4eGKjo5WfHy8XnnlFW3dulUtW7Y0u5kAAAAAAAAAKhmL3W63m90IlF1aWpri4uIkSQcPHlRsbKzJLQIAAAAAoPrh+zcAX2IkLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkCzW4Aysdmsxnb6enpJrYEAAAAAIDqq+h37qLfxQHAGwhpq7jjx48b2127djWxJQAAAAAA+Ifjx4+radOmZjcDQDXCdAcAAAAAAAAAYCKL3W63m90IlF12dra2bdsmSapXr54CAyv/4Oj09HRj1G9KSooaNWpkcotQWryGVR+vYdXG61f18RpWfbyGVR+vYdXG61f1VcXX0GazGVezdujQQaGhoSa3CEB1UvkTPXgUGhqqLl26mN2MMmvUqJFiY2PNbgbKgdew6uM1rNp4/ao+XsOqj9ew6uM1rNp4/aq+qvQaMsUBAF9hugMAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARBa73W43uxEAAAAAAAAA4K8YSQsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdKiQv3yyy967LHH1LZtW0VERKh27drq0qWLXnvtNWVmZprdPL+Umpqq5557Tv369VNsbKxCQkIUGRmp1q1ba+TIkVq/fn2xdcyZM0cWi6VEP3PmzPH9g/IzJX3ue/fuXWxdq1atUkJCgvG7EBsbq4SEBK1atcr3D8RP9e7du8SvYeHPunXrHOqgD/rOsWPHtGLFCj311FO6+eabVbduXeO5HDFiRKnr80Yfs9lsmjJlinr27Kl69eopLCxMLVq00NixY7V9+/ZSt6m688ZrmJmZqcWLF2vcuHHq0qWLatWqpaCgINWpU0fdu3fXM888oyNHjhRbT2n6O37njdfQ2++TmZmZevXVV9WlSxfVrl1bERERatu2rR577DH98ssv5XvA1VB5X8MDBw6U+rOyadOmLuuiH5aeN74vFMVnIQC4YQcqyLJly+xRUVF2SS5/Wrdubd+zZ4/ZzfQrPXv2dPt6FP0ZNmyYPScnx209s2fPLlE9kuyzZ8+uuAfoJ0r63Pfq1cttHfn5+fZRo0Z5PH/06NH2/Pz8intgfqJXr14lfg0l2a1Wqz0tLc2hDvqg73h6LocPH17ierzVx44fP27v0qWL2zpCQkLs06dPL+ejrl7K+xp+//339sjIyGL7VlRUlH3+/Pke6ypNf8fvvNEPvfk+uWfPHnurVq08/i4sX768/A+8Ginva7h///5SfVZKsvfr189lXfTD0vHW9wW7nc9CAChOoIAKsHXrVt1xxx3KyspSZGSk/u///k99+vRRVlaW5s+fr+nTp2v37t269dZblZqaqho1apjdZL9w+PBhSVJMTIxuv/129ezZU5dccony8/O1ceNGvf766zp06JDmzp2rvLw8ffTRR8XW+dlnnykmJsbt8djYWK+1H47GjRunBx980O3xiIgIt8eefPJJzZw5U5LUqVMnPf7442rRooX27dunV199VVu3btWMGTNUr149vfTSS15vuz+bPXu2MjIyPJbZsWOH7rjjDklS37591bhxY7dl6YO+c8kll6ht27ZavXp1qc/1Rh/Lz89XQkKCNm3aJEkaPHiwxowZo9q1a+vbb7/VCy+8oGPHjmns2LFq3Lixbr755rI/2GqqLK/h2bNndf78eUlSjx491L9/f8XHx6tOnTo6fvy4Fi9erOnTp+vs2bO65557FBUVVexzHx8fr9mzZ5frsfir8vTDQuV5nzx37pxuvfVW7dmzR5I0ZswY3XnnnQoLC9OXX36pl19+WWfPntUdd9yh5ORkdezYscztrK7K8ho2btxY27ZtK7bcyy+/bPy9Onz4cI9l6Ycl483vC3wWAkAxzE6J4R8K/wMbGBho37Bhg9PxV1991fjP59NPP13xDfRTt956q/3jjz+222w2l8ePHz9ub926tfHaJCUluSxXdHTK/v37fdhiuFLevvPTTz/ZAwMD7ZLs8fHx9szMTIfjGRkZ9vj4eKMPM+K94j3++OPG6/z+++87HacP+s5TTz1lX758uf3IkSN2u91xNFdJR/B5q4/NnDnTuO8HH3zQ6fiePXuMK1Zatmxpz8vLK92DrabK+xomJyfbhw4dat++fbvbMkuWLLFbLBa7JHuLFi3sBQUFLssVjuDzdGUDnHmjH3rrffIf//iHUc+rr77qdDw5Odno77zOv/PGa1gcm81mj4mJsUuy16hRw+m9thD9sHS89X2Bz0IAKB4hLXzu22+/NT5Ix44d67JMfn6+vV27dnZJ9ujoaHtubm4FtxLuLF++3Hj9HnnkEZdlCIjMVd6Qdty4cUYdGzdudFlm48aNHv8ghu/k5+fbGzdubJdkj4yMtGdkZDiVoQ9WnLIEC97qY4Wfk7Vr13b5e2C32+0vv/yyUc8nn3xSovb5G1+EQ3a73X7bbbcZ9W7evNllGcIh7zArpM3NzbXXrFnTLsnerl07t5dkjx071rivlJSUMt1XdeeLfvjf//7XqHPkyJFuy9EPva8k3xf4LASA4rFwGHxuyZIlxvbIkSNdlrFarRo2bJgk6bffftOXX35ZEU1DCfTp08fY3rdvn4ktgS/Y7XYtXbpUktS2bVt169bNZblu3bqpTZs2kqSlS5fKbrdXWBv93dq1a3Xo0CFJ0pAhQxQeHm5yi1Aa3upju3fv1s6dOyVJQ4cOdft7UHQBnk8//bS8zUcp8HlZ/X355Zc6c+aMpAuX0lutrr9K0Q/NMXfuXGO7uKkO4F3Fvf/xWQgAJUNIC58rXO0zIiJCnTt3dluuV69exnZycrLP24WSycnJMbYDAgJMbAl8Yf/+/cZcY0X7oCuFxw8dOqQDBw74umn4n6JfOgv/mYWqw1t9rOjK2Z7qadiwoVq3bi2Jz9KKxudl9VfSfhgfH2+ER/TDinHu3DljYEjTpk117bXXmtsgP1Pc+x+fhQBQMoS08LnC/3a2bNlSgYHu16pr27at0zkwX1JSkrHdrl27YsuPHDlSMTExCg4OVt26ddWtWzf9/e9/N0YCwncWLFigSy+9VOHh4apRo4ZatWql4cOHexyZvmPHDmO7aB90hT5a8c6fP2+MAGnSpIl69+5d7Dn0wcrFW32sLPUcPHiw2EXp4D2l+bzctWuXrrrqKkVHRys0NFSxsbEaNGiQsfAOfKus75Ml7YeBgYFq2bKlJD4vK8rChQuVmZkpSbrvvvtksViKPYd+6D3Fvf/xWQgAJUNIC5/Kzs7WiRMnJBW/onitWrWM1ecPHjzo87aheAUFBZo0aZJxe+jQocWes27dOqWnpysvL08nT57Ut99+qxdffFEtW7bU1KlTfdlcv7djxw7t3LlTWVlZOn/+vPbu3au5c+fquuuuU0JCgnGJZlFpaWnGdnF9NC4uztimj1aMRYsWGV8s7r333hJ96aQPVi7e6mNlqcdutzucB9/5/vvvlZiYKEnq0KFDsSHt0aNHlZKSojNnzignJ0eHDh3SsmXLNHz4cHXs2JFgz8fK+j5Z2J8iIiIUHR3t8T4K++Hx48cdRhnCN8py1Qn90DtK8n2Bz0IAKBn3wxoBLzh37pyxHRkZWWz5iIgIZWRk6Pz5875sFkrozTffVEpKiiRp8ODBHqeraN68uQYPHqzu3bsbfxT9/PPPWrRokRYuXKjs7Gz98Y9/lMVi0QMPPFAh7fcX4eHhGjhwoPr27au2bdsqMjJSx48fV1JSkqZMmaKTJ09qyZIlGjRokNasWaOgoCDj3NL00cJ/okiij1aQ0nzppA9WTt7qY/TVyisnJ0ejR49Wfn6+JOnFF190W9Zqtapv37665ZZbdMUVV6hOnTo6d+6ctmzZoqlTp2rnzp3asWOH+vTpo5SUFF1yySUV9TD8QnnfJwv7YUn/pi10/vx5hYSEeOlR4GK//vqrMZLz6quvNkYxu0M/9K6SfF/gsxAASoaQFj6VnZ1tbAcHBxdbvvAP2KysLJ+1CSWTlJSkv/3tb5Kk+vXra/LkyW7LJiQkaPjw4U6j/Lp06aI77rhDK1as0ODBg5WXl6c///nPGjhwoBo2bOjT9vuTQ4cOuRzRc8MNN+iRRx7RzTffrK1btyopKUmTJ0/Wn/70J6NMafpo0S+Y9FHfS0tL07p16yRdWEijcG41V+iDlZe3+hh9tfJ6+OGHlZqaKunCYkUDBgxwW3bx4sUu36979uypBx98UGPGjNF7772no0eP6tFHH9XixYt91Wy/4433ycJ+WJq/aSX6oa998MEHxgJTJRlFSz/0npJ+X+CzEABKhukO4FOhoaHGdm5ubrHlCy8HCwsL81mbULzt27crISFBNptNoaGhWrBggerXr++2fM2aNT1eht2/f3899dRTkqTMzEzNnDnT6232Z54uuWzQoIEWLlxojJ595513HI6Xpo8WvVyTPup7H3zwgQoKCiQVv0o1fbDy8lYfo69WTi+//LJmzJgh6ULY9+6773os7+n9OigoSDNmzDBWNv/000+ZS9qLvPE+WdgPS/M3rUQ/9LX3339f0oVQ7o477ii2PP3QO0rzfYHPQgAoGUJa+FSNGjWM7ZJcZlI492JJLiODb+zfv1/9+vXT6dOnFRAQoPnz53tlhdwHHnjA+HJUdHEB+F7z5s11ww03SJL27t1rrK4rla6PFl10gT7qe6X90lkc+qA5vNXH6KuVz9SpU/XEE09IurBAzcqVKx0ury2LwMBAjRo1yrhNX61Yxb1PFvbD0vxNK9EPfSklJUW7du2SJA0cOLDYuYJLgn5YvNJ+X+CzEABKhpAWPhUaGqo6depIUrETtp8+fdr4MC06YTwqzuHDh3X99dfr8OHDslgsmjVrlgYNGuSVuuvXr2/8LjAioeJdeumlxnbR57/oogvF9dGiizfQR30rNTXVWMG4f//+qlWrVrnrpA+aw1t9rCz1WCyWYhdWQdnMmzdPDz74oCSpSZMmWrNmjerWreuVut29X8P3inufLOxPGRkZ+u233zzWVdgP69Wrx3y0PlSWBcNKgn7oXlm+L/BZCAAlQ0gLnyv8I2fv3r2y2WxuyxX+F1xSsasiw/tOnDihG264QT///LOkC5fFe/OPXUklWpkevuHuuS/6JaRoH3SFPlpxin7pLG6qg9KgD1Y8b/WxstQTFxdX7pGdcLZs2TINGzZMBQUFatSokdauXevVAIB+ai5Pz39J+6HNZtO+ffsk8XnpS3l5eZo/f76kCwH7TTfd5LW66YeulfX7Ap+FAFAyhLTwuWuuuUbShVEHmzdvdluu6KVEPXr08Hm78LszZ87oxhtvNEbuTZo0SQ899JBX7+P48eM6ceKEJCkmJsardaN4ha+t5Pj8N2vWzLhd3OV8X331lSSpcePGatq0qfcbCUmOXzrr1aunm2++2Sv10gfN4a0+VvhZWlw9R44c0e7duyXxWeoLa9eu1dChQ2Wz2VSnTh2tWbNGLVq08Op9uHu/hu8V9z5Z0n6YmppqXB1GP/SdxMREnTx5UpJ09913KzDQe2ti0w+dlef7Ap+FAFAyhLTwuT/84Q/G9uzZs12WKSgoMEaORUdHq0+fPhXRNOjC4hi33nqrtmzZIkl68sknNXHiRK/fz7Rp04yVd3v16uX1+uHe/v37tWbNGklSixYt1LhxY+OYxWIxLlHbtWuXvvnmG5d1fPPNN8aIhEGDBjHCxIdWrVql48ePS/Lul076oDm81cdat25tjCj65JNPlJmZ6bKeOXPmGNsJCQnlbT6K2LBhgwYNGqScnBzVrFlTn332mS677DKv3ofNZtOsWbOM296YEx4lV9z7ZO/evVWzZk1J0nvvvWeUvRj9sGL46qoT+qGz8n5f4LMQAErIDlSAnj172iXZAwMD7Rs2bHA6/uqrr9ol2SXZn3766YpvoJ/Kycmx9+vXz3jux48fX+o69u/fb9+yZYvHMsuXL7cHBwfbJdnDwsLsaWlpZWwxLrZs2TJ7Xl6e2+NHjhyxd+rUyXiNX3/9dacyP/30kz0gIMAuyR4fH2/PzMx0OJ6ZmWmPj483+vDu3bu9/jjwu9tuu814vTZv3lxsefpgxdq/f7/x+gwfPrxE53irj82cOdO474ceesjp+N69e+1RUVF2SfaWLVt6fG/wZ2V5Dbdu3WqPjo62S7JHRETY169fX+r7/eKLL+ynT592ezw3N9c+fPhwo20DBgwo9X34i9K+ht58n/zHP/5h3Perr77qdHzDhg32wMBAuyR7r169SvJw/FJZ+mFRJ0+eNF6vDh06lPg8+mHpeeP7gt3OZyEAlIT3rgkBPHj77bfVo0cPZWVlqV+/fnriiSfUp08fZWVlaf78+Zo2bZqkC/8dfeyxx0xurf+46667tHr1aknSddddp1GjRunHH390Wz44OFitW7d22HfgwAH16dNH3bt314ABA3TFFVeofv36kqSff/5ZCxcu1MKFC43RJv/85z8dRnKifB555BHl5eXptttuU/fu3dW0aVOFhYXpxIkTWrdunaZOnWpcunnNNde4vCytdevWmjBhgiZNmqTU1FT16NFDEydOVIsWLbRv3z698sor2rp1qyRpwoQJatWqVYU+Rn9y+vRprVixQpLUvn17XXnllcWeQx/0rfXr12vv3r3G7cL+JF2Ya73oaB1JGjFihFMd3upjw4cP16xZs5ScnKx3331XR44c0ZgxY1SrVi2lpKTo+eef19mzZ2W1WvWvf/3Lq5f+VmXlfQ337dunG2+80Vgo6oUXXlDNmjU9fl7Wr1/f6IeF3nvvPQ0cOFADBw5U79691aZNG0VFRen8+fPavHmzpk2bZlxGXL9+fb399ttleLTVU3lfQ2++T06YMEEff/yxdu/erccff1x79+7VnXfeqbCwMH355Zd66aWXZLPZFBYWprfeeqv8D76a8MZ7aVHz589Xbm6upNKNoqUflp43vi9IfBYCQImYHBLDjyxbtsz4r6arn9atW9v37NljdjP9irvXwt1PkyZNnOr48ssvS3RueHi4ferUqRX/IKu5Jk2alOj5v+222zyOHMnPz7fff//9HusYNWqUPT8/v+IenB+aPHmyxxFartAHfavoiKqS/LjjrT52/Phxe5cuXdzWERISYp8+fbq3n4Yqrbyv4ezZs0v9eenqqqCStqNDhw727du3V8AzU3WU9zX09vvknj177K1atXJbT1RUlH358uW+eCqqLG+9lxa66qqr7JLsAQEB9vT0dK+3g374u9K+/7n6vlCIz0IA8Ix/K6HCDBgwQD/88IPefvttJSYmKi0tTcHBwWrZsqVuv/12PfzwwwoPDze7mSilzp0764MPPtDGjRuVmpqq9PR0nThxQjabTbVq1dJll12mvn37avTo0U6jilB+7733npKSkrRx40b9/PPPOnHihM6ePavIyEjFxcXp6quv1vDhw9W9e3eP9VitVs2cOVO33Xabpk2bpk2bNunEiROqW7euunTporFjx3ptASu49/7770uSAgICdM8995ToHPpg1eCtPla3bl1t2LBB06dP10cffaSdO3cqIyNDMTEx6tu3r8aPH+/1eVLhHRMnTlTHjh21ceNG7dixQ8ePH9epU6cUEhKiBg0aKD4+XkOGDFFCQoICAgLMbm614u33yZYtW2rr1q169913tWDBAu3du1e5ubmKi4vTLbfcovHjx6tJkyYV8Mj80549e/Ttt99Kkm644QY1bNiwxOfSD83FZyEAeGax293MeA8AAAAAAAAA8Dmr2Q0AAAAAAAAAAH9GSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAFBGc+bMkcVikcVi0YEDB8xuDgAAAIAqipAWAAD4nQMHDhjhanl+AAAAAMAbCGkBAAAAAAAAwEQWu91uN7sRAAAAFSkvL08//fST2+MdOnSQJMXHx2v27Nluy7Vv397rbQMAAADgfwLNbgAAAEBFCwoKKlHAGhERQRALAAAAwOeY7gAAAAAAAAAATERICwAAUEZz5swxFhE7cOCA0/HevXvLYrGod+/ekqS9e/fqj3/8o5o3b66wsDA1bdpUo0aN0i+//OJw3o8//qiRI0eqefPmCg0NVVxcnMaNG6djx46VqF1LlizR7bffrksuuUShoaGKjo5WfHy8nn32WZ0+fbq8DxsAAACAlzHdAQAAQAX4/PPPNXjwYJ07d87Y98svv2jWrFlasWKFkpKS1LZtW82bN08jRoxQbm6uUS4tLU1TpkzRqlWrtGHDBsXExLi8j9OnT2vIkCH64osvHPbn5ORo8+bN2rx5s/7zn/9o6dKl6tatm28eKAAAAIBSYyQtAACAjx0+fFhDhw5VdHS03nnnHX377bf6+uuv9eijj8pisejYsWMaPXq0Nm3apGHDhqlFixaaMWOGUlJS9OWXX+q+++6TdCHU/ctf/uLyPnJycnT99dfriy++UEBAgO677z7NmzdP33zzjb7++mu9+OKLqlOnjo4dO6ZbbrnFafQuAAAAAPMwkhYAAMDH9uzZo1atWik5OVn16tUz9l9zzTUKDAzUP//5TyUnJ+vWW29V165dtWbNGoWHhxvlevfurezsbC1YsECLFi3S8ePHHeqRpOeee05btmxRdHS0Pv/8c3Xu3Nnh+DXXXKN77rlH3bt3V3p6up544gl9+OGHvn3gAAAAAEqEkbQAAAAV4F//+pdTsCpJDz74oLF94sQJzZgxwyGgLTRu3DhJks1m08aNGx2OnT9/Xu+++64k6fnnn3cKaAs1adJE//jHPyRJCxYsUEZGRtkeDAAAAACvIqQFAADwsejoaN14440ujzVr1kw1atSQJF1++eVq166dy3JXXHGFsf3zzz87HEtKStKZM2ckSUOGDPHYlmuvvVaSlJeXp82bN5fsAQAAAADwKaY7AAAA8LFWrVrJYrG4PR4dHa1z586pdevWHssUKrr4mCSlpqYa240aNSpxu44cOVLisgAAAAB8h5G0AAAAPuZq+oKirFZrseUKy0hSfn6+w7Fjx46VqV2ZmZllOg8AAACAdzGSFgAAoIorGtpu2bJFQUFBJTovNjbWV00CAAAAUAqEtAAAAFVcnTp1jO169eoRvgIAAABVDNMdAAAAVHGdOnUytpOTk01sCQAAAICyIKQFAACo4q6//npjPtt//etfstvtJrcIAAAAQGkQ0gIAAFRx0dHRevjhhyVJGzZs0J///GcVFBS4LX/06FHNmDGjopoHAAAAoBjMSQsAAFANPPfcc0pKStK3336rt99+W+vWrdOYMWPUsWNHRURE6PTp09q+fbs+//xzrVq1Sh06dNDo0aPNbjYAAAAAEdICAABUCyEhIVqzZo1GjBihxYsX6/vvvzdG17oSFRVVga0DAAAA4AkhLQAAQDVRo0YNLVq0SOvXr9d7772nr7/+WocPH1ZWVpaioqLUokULde3aVbfeeqv69etndnMBAAAA/I/FzsoSAAAAAAAAAGAaFg4DAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAm+n+hmsAdrAogIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "graph = my_model.compartmentPlot('Basic_example_compartment.png', data)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/evolution.html b/docs/_build/html/evolution.html new file mode 100644 index 0000000..b1a4498 --- /dev/null +++ b/docs/_build/html/evolution.html @@ -0,0 +1,1214 @@ + + + + + + + Evolution — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Evolution

+
+

A. Fitness function

+

Host-host transmission model with susceptible and infected hosts in a single population scenario, illustrating pathogen evolution through de novo mutations and intra-host competition.

+

When two pathogens with different genomes meet in the same host (or vector), the pathogen with the most fit genome has a higher probability of being transmitted to another host (or vector). In this case, the transmission rate does NOT vary according to genome. Once an event occurs, however, the pathogen with higher fitness has a higher likelihood of being transmitted.

+

Here, we define a landscape of stabilizing selection where there is an optimal genome and every other genome is less fit, but fitness functions can be defined in any arbitrary way (accounting for multiple peaks, for instance, or special cases for a specific genome sequence).

+
+
[1]:
+
+
+
from opqua.model import Model
+
+
+
+
+

Model initialization and setup

+
+

Create a new Model object

+
+
[2]:
+
+
+
model = Model() # Make a new model object.
+
+
+
+
+
+

Define an optimal genome

+
+
[3]:
+
+
+
my_optimal_genome = 'BEST'
+
+
+
+
+
+

Define a custom fitness function for the host

+

Fitness functions must take in one argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!

+

Stabilizing selection: any deviation from the “optimal genome” sequence results in an exponential decay in fitness to the min_fitness value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness.

+
+
[4]:
+
+
+
def myHostFitness(genome):
+    return Model.peakLandscape(
+        genome,
+            # Genome to be evaluated (String), the entry for our function.
+        peak_genome=my_optimal_genome,
+            # The genome sequence to measure distance against, has value of 1.
+        min_value=1e-10
+            # Minimum value at maximum distance from optimal genome.
+        )
+
+
+
+
+
+

Define a Setup for our system

+

Create a new set of parameters called my_setup to be used to simulate a population in the model. Use the default parameter set for a host-host model.

+
+
[5]:
+
+
+
model.newSetup(     # Create a new Setup.
+    'my_setup',
+        # Name of the setup.
+    preset='host-host',
+        # Use default 'host-host' parameters.
+    possible_alleles='ABDEST',
+        # Define "letters" in the "genome", or possible alleles for each locus.
+        # Each locus can have different possible alleles if you define this
+        # argument as a list of strings, but here, we take the simplest
+        # approach.
+    num_loci=len(my_optimal_genome),
+        # Define length of "genome", or total number of alleles.
+    fitnessHost=myHostFitness,
+        # Assign the fitness function we created (could be a lambda function).
+        # In general, a function that evaluates relative fitness in head-to-head
+        # competition for different genomes within the same host. It should be a
+        # functions that recieves a String as an argument and returns a number.
+    mutate_in_host=5e-2
+        # Modify de novo mutation rate of pathogens when in host to get some
+        # evolution!
+    )
+
+
+
+
+
+

Create a population in our model

+

Create a new population of 100 hosts and 0 vectors called my_population. The population uses parameters stored in my_setup

+
+
[6]:
+
+
+
model.newPopulation(            # Create a new Population.
+    'my_population',
+        # Unique identifier for this population in the model.
+    'my_setup',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=100
+        # Number of hosts to initialize population with.
+    )
+
+
+
+
+
+

Manipulate hosts and vectors in the population

+

We will start off the simulation with a suboptimal pathogen genome, BADD. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, BEST, which outcompetes all others.

+
+
[7]:
+
+
+
model.addPathogensToHosts(    # Add specified pathogens to random hosts.
+    'my_population',
+        # ID of population to be modified.
+    {'BADD':10}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+
+
+
+

Model simulation

+
+
[8]:
+
+
+
model.run(  # Simulate model for a specified time between two time points.
+    0,      # Initial time point.
+    200     # Final time point.
+    )
+
+
+
+
+
+
+
+
+Simulating time: 84.9205322047209, event: CONTACT_HOST_HOST
+Simulating time: 139.4831216243728, event: CONTACT_HOST_HOST
+Simulating time: 199.83533163204655, event: RECOVER_HOST
+Simulating time: 200.0243380253218 END
+
+
+
+
+

Output data manipulation and visualization

+
+

Create a table with the results of the given model history

+
+
[9]:
+
+
+
data = model.saveToDataFrame(
+        # Creates a pandas Dataframe in long format with the given model history,
+        # with one host or vector per simulation time in each row.
+    'fitness_function_mutation_example.csv'
+        # Name of the file to save the data to.
+    )
+data
+
+
+
+
+
+
+
+
+Saving file...
+
+
+
+
+
+
+
+[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.
+[Parallel(n_jobs=8)]: Done   2 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done   9 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.19662265031018072s.) Setting batch_size=2.
+[Parallel(n_jobs=8)]: Done  16 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Done  25 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.019941329956054688s.) Setting batch_size=4.
+[Parallel(n_jobs=8)]: Done  36 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Done  58 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.020781755447387695s.) Setting batch_size=8.
+[Parallel(n_jobs=8)]: Done  96 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.016440391540527344s.) Setting batch_size=16.
+[Parallel(n_jobs=8)]: Done 168 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.02756667137145996s.) Setting batch_size=32.
+[Parallel(n_jobs=8)]: Done 288 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.051561594009399414s.) Setting batch_size=64.
+[Parallel(n_jobs=8)]: Done 560 tasks      | elapsed:    0.6s
+[Parallel(n_jobs=8)]: Done 1024 tasks      | elapsed:    0.8s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.0886225700378418s.) Setting batch_size=128.
+[Parallel(n_jobs=8)]: Done 1822 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Done 2156 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Done 2270 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Done 2384 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Done 2560 out of 2560 | elapsed:    0.9s finished
+
+
+
+
+
+
+
+...file saved.
+
+
+
+
[9]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1BADDNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
255995200.0my_populationHostmy_population_95NaNNaNTrue
255996200.0my_populationHostmy_population_96NaNNaNTrue
255997200.0my_populationHostmy_population_97NaNNaNTrue
255998200.0my_populationHostmy_population_98BESTNaNTrue
255999200.0my_populationHostmy_population_99BESTNaNTrue
+

256000 rows × 7 columns

+
+
+
+
+

Create a plot to track pathogen genotypes across time

+
+
[10]:
+
+
+
plot_composition = model.compositionPlot(
+        # Create a plot to track pathogen genotypes across time.
+    'fitness_function_mutation_example_composition.png',
+        # Name of the file to save the plot to.
+    data,
+        # Dataframe with model history.
+    num_top_sequences=6,
+        # Track the 6 most represented genomes overall (remaining genotypes are
+        # lumped into the "Other" category).
+    track_specific_sequences=['BADD']
+        # Include the initial genome in the graph if it isn't in the top 6.
+    )
+
+
+
+
+
+
+
+
+1 / 103 genotypes processed.
+2 / 103 genotypes processed.
+3 / 103 genotypes processed.
+4 / 103 genotypes processed.
+5 / 103 genotypes processed.
+6 / 103 genotypes processed.
+7 / 103 genotypes processed.
+8 / 103 genotypes processed.
+9 / 103 genotypes processed.
+10 / 103 genotypes processed.
+11 / 103 genotypes processed.
+12 / 103 genotypes processed.
+13 / 103 genotypes processed.
+14 / 103 genotypes processed.
+15 / 103 genotypes processed.
+16 / 103 genotypes processed.
+17 / 103 genotypes processed.
+18 / 103 genotypes processed.
+19 / 103 genotypes processed.
+20 / 103 genotypes processed.
+21 / 103 genotypes processed.
+22 / 103 genotypes processed.
+23 / 103 genotypes processed.
+24 / 103 genotypes processed.
+25 / 103 genotypes processed.
+26 / 103 genotypes processed.
+27 / 103 genotypes processed.
+28 / 103 genotypes processed.
+29 / 103 genotypes processed.
+30 / 103 genotypes processed.
+31 / 103 genotypes processed.
+32 / 103 genotypes processed.
+33 / 103 genotypes processed.
+34 / 103 genotypes processed.
+35 / 103 genotypes processed.
+36 / 103 genotypes processed.
+37 / 103 genotypes processed.
+38 / 103 genotypes processed.
+39 / 103 genotypes processed.
+40 / 103 genotypes processed.
+41 / 103 genotypes processed.
+42 / 103 genotypes processed.
+43 / 103 genotypes processed.
+44 / 103 genotypes processed.
+45 / 103 genotypes processed.
+46 / 103 genotypes processed.
+47 / 103 genotypes processed.
+48 / 103 genotypes processed.
+49 / 103 genotypes processed.
+50 / 103 genotypes processed.
+51 / 103 genotypes processed.
+52 / 103 genotypes processed.
+53 / 103 genotypes processed.
+54 / 103 genotypes processed.
+55 / 103 genotypes processed.
+56 / 103 genotypes processed.
+57 / 103 genotypes processed.
+58 / 103 genotypes processed.
+59 / 103 genotypes processed.
+60 / 103 genotypes processed.
+61 / 103 genotypes processed.
+62 / 103 genotypes processed.
+63 / 103 genotypes processed.
+64 / 103 genotypes processed.
+65 / 103 genotypes processed.
+66 / 103 genotypes processed.
+67 / 103 genotypes processed.
+68 / 103 genotypes processed.
+69 / 103 genotypes processed.
+70 / 103 genotypes processed.
+71 / 103 genotypes processed.
+72 / 103 genotypes processed.
+73 / 103 genotypes processed.
+74 / 103 genotypes processed.
+75 / 103 genotypes processed.
+76 / 103 genotypes processed.
+77 / 103 genotypes processed.
+78 / 103 genotypes processed.
+79 / 103 genotypes processed.
+80 / 103 genotypes processed.
+81 / 103 genotypes processed.
+82 / 103 genotypes processed.
+83 / 103 genotypes processed.
+84 / 103 genotypes processed.
+85 / 103 genotypes processed.
+86 / 103 genotypes processed.
+87 / 103 genotypes processed.
+88 / 103 genotypes processed.
+89 / 103 genotypes processed.
+90 / 103 genotypes processed.
+91 / 103 genotypes processed.
+92 / 103 genotypes processed.
+93 / 103 genotypes processed.
+94 / 103 genotypes processed.
+95 / 103 genotypes processed.
+96 / 103 genotypes processed.
+97 / 103 genotypes processed.
+98 / 103 genotypes processed.
+99 / 103 genotypes processed.
+100 / 103 genotypes processed.
+101 / 103 genotypes processed.
+102 / 103 genotypes processed.
+103 / 103 genotypes processed.
+
+
+
+
+
+
+_images/evolution_26_1.png +
+
+
+
+

Create a heatmap and dendrogram for pathogen genomes

+

Generate a heatmap and dendrogram for the top 15 genomes, include the ancestral genome BADD in the phylogeny. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well.

+
+
[11]:
+
+
+
plot_clustermap = model.clustermap(
+        # Create a heatmap and dendrogram for pathogen genomes in data passed.
+    'fitness_function_mutation_example_clustermap.png',
+        # File path, name, and extension to save plot under.
+    data,
+        # Dataframe with model history.
+    save_data_to_file='fitness_function_mutation_example_pairwise_distances.csv',
+        # File path, name, and extension to save data under.
+    num_top_sequences=15,
+        # How many sequences to include in matrix.
+    track_specific_sequences=['BADD']
+        # Specific sequences to include in matrix.
+    )
+
+
+
+
+
+
+
+
+/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix
+  linkage = hierarchy.linkage(self.array, method=self.method,
+
+
+
+
+
+
+_images/evolution_29_1.png +
+
+
+
+

Create a compartment plot

+

Plot the number of susceptible and infected hosts in the model over time.

+

Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter.

+
+
[12]:
+
+
+
plot_compartments = model.compartmentPlot(
+        # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.
+    'fitness_function_example_reassortment_compartments.png',
+        # File path, name, and extension to save plot under.
+    data
+        # Dataframe with model history.
+    )
+
+
+
+
+
+
+
+_images/evolution_32_0.png +
+
+
+
+
+
+
+

B. Transmissibility function

+

Host-host transmission model with susceptible and infected hosts in a single population scenario, illustrating pathogen evolution through independent reassortment/segregation of chromosomes, increased transmissibility, and intra-host competition.

+

When two pathogens with different genomes meet in the same host (or vector), the pathogen with the most fit genome has a higher probability of being transmitted to another host (or vector). In this case, the transmission rate DOES vary according to genome, with more fit genomes having a higher transmission rate. Once an event occurs, the pathogen with higher fitness also has a higher likelihood of being transmitted.

+

Here, we define a landscape of stabilizing selection where there is an optimal genome and every other genome is less fit, but fitness functions can be defined in any arbitrary way (accounting for multiple peaks, for instance, or special cases for a specific genome sequence).

+
+
[ ]:
+
+
+
from opqua.model import Model
+
+
+
+
+

Model initialization and setup

+
+

Create a new Model object

+
+
[ ]:
+
+
+
model = Model() # Make a new model object.
+
+
+
+
+
+

Define an optimal genome

+

/ denotes separators between different chromosomes, which are segregated and recombined independently of each other (this model has no recombination).

+
+
[ ]:
+
+
+
my_optimal_genome = 'BEST/BEST/BEST/BEST'
+
+
+
+
+
+

Define a custom fitness function for the host

+

Fitness functions must take in one argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!

+

Stabilizing selection: any deviation from the “optimal genome” sequence results in an exponential decay in fitness to the min_fitness value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness

+
+
[ ]:
+
+
+
def myHostFitness(genome):
+    return Model.peakLandscape(
+        genome,
+            # Genome to be evaluated (String), the entry for our function.
+        peak_genome=my_optimal_genome,
+            # the genome sequence to measure distance against, has value of 1.
+        min_value=1e-10
+            # minimum value at maximum distance from optimal genome.
+        )
+
+
+
+
+
+

Define a custom transmission function for the host

+

Stabilizing selection: any deviation from the “optimal genome” sequence gets 1/20 of the fitness of the optimal genome. There is no middle ground between the optimal and the rest, in this case.

+
+
[ ]:
+
+
+
def myHostContact(genome):
+    return 1 if genome == my_optimal_genome else 0.05
+
+
+
+
+
+

Define a Setup for our system

+

Create a new set of parameters called my_setup to be used to simulate a population in the model. Use the default parameter set for a host-host model.

+
+
[ ]:
+
+
+
model.newSetup(     # Create a new Setup.
+    'my_setup',
+        # Name of the setup.
+    preset='host-host',
+        # Use default 'host-host' parameters.
+    possible_alleles='ABDEST',
+        # Define "letters" in the "genome", or possible alleles for each locus.
+        # Each locus can have different possible alleles if you define this
+        # argument as a list of strings, but here, we take the simplest
+        # approach.
+    num_loci=len(my_optimal_genome),
+        # Define length of "genome", or total number of alleles.
+    contact_rate_host_host = 2e0,
+        # Rate of host-host contact events, not necessarily transmission, assumes
+        # constant population density.
+    contactHost=myHostContact,
+        # Assign the contact function we created (could be a lambda function)
+        # In general, a function that returns coefficient modifying probability of a
+        # given host being chosen to be the infector in a contact event, based on genome
+        # sequence of pathogen. It should be a functions that recieves a String as
+        # an argument and returns a number.
+    fitnessHost=myHostFitness,
+        # Assign the fitness function we created (could be a lambda function)
+        # In general, a function that evaluates relative fitness in head-to-head
+        # competition for different genomes within the same host. It should be a
+        # functions that recieves a String as an argument and returns a number.
+    recombine_in_host=1e-3,
+        # Modify "recombination" rate of pathogens when in host to get some
+        # evolution! This can either be independent segregation of chromosomes
+        # (equivalent to reassortment), recombination of homologous chromosomes,
+        # or a combination of both.
+    num_crossover_host=0
+        # By specifying the average number of crossover events that happen
+        # during recombination to be zero, we ensure that "recombination" is
+        # restricted to independent segregation of chromosomes (separated by
+        # "/").
+    )
+
+
+
+
+
+

Create a population in our model

+

Create a new population of 100 hosts and 0 vectors called my_population. The population uses parameters stored in my_setup.

+
+
[ ]:
+
+
+
model.newPopulation(        # Create a new Population.
+    'my_population',
+        # Unique identifier for this population in the model.
+    'my_setup',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=100
+        # Number of hosts to initialize population with.
+    )
+
+
+
+
+
+

Manipulate hosts and vectors in the population

+

We will start off the simulation with a suboptimal pathogen genome, BEST/BADD/BEST/BADD. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others.

+
+
[ ]:
+
+
+
model.addPathogensToHosts(  # Add pathogens to hosts.
+    'my_population',
+        # ID of population to be modified.
+    {'BEST/BADD/BEST/BADD':10}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+

We will start off the simulation with a second suboptimal pathogen genome. BADD/BEST/BADD/BEST. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others.

+
+
[ ]:
+
+
+
model.addPathogensToHosts(
+    'my_population',
+        # ID of population to be modified.
+    {'BADD/BEST/BADD/BEST':10}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+
+
+
+

Model simulation

+
+
[ ]:
+
+
+
model.run(              # Simulate model for a specified time between two time points.
+    0,                  # Initial time point.
+    500,                # Final time point.
+    time_sampling=100   # how many events to skip before saving a snapshot of the system state.
+    )
+
+
+
+
+
+
+
+
+Simulating time: 500 END
+
+
+
+
+

Output data manipulation and visualization

+
+

Create a table with the results of the given model history

+
+
[ ]:
+
+
+
data = model.saveToDataFrame(
+        # Creates a pandas Dataframe in long format with the given model history,
+        # with one host or vector per simulation time in each row.
+    'transmissibility_function_reassortment_example.csv'
+        # Name of the file to save the data to.
+    )
+data
+
+
+
+
+
+
+
+
+Saving file...
+
+
+
+
+
+
+
+[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.
+
+
+
+
+
+
+
+...file saved.
+
+
+
+
+
+
+
+[Parallel(n_jobs=8)]: Done   2 out of   8 | elapsed:    0.3s remaining:    0.8s
+[Parallel(n_jobs=8)]: Done   3 out of   8 | elapsed:    0.3s remaining:    0.5s
+[Parallel(n_jobs=8)]: Done   4 out of   8 | elapsed:    0.3s remaining:    0.3s
+[Parallel(n_jobs=8)]: Done   5 out of   8 | elapsed:    0.3s remaining:    0.2s
+[Parallel(n_jobs=8)]: Done   6 out of   8 | elapsed:    0.3s remaining:    0.1s
+[Parallel(n_jobs=8)]: Done   8 out of   8 | elapsed:    0.3s finished
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
795500.0my_populationHostmy_population_95NaNNaNTrue
796500.0my_populationHostmy_population_96NaNNaNTrue
797500.0my_populationHostmy_population_97NaNNaNTrue
798500.0my_populationHostmy_population_98NaNNaNTrue
799500.0my_populationHostmy_population_99NaNNaNTrue
+

800 rows × 7 columns

+
+
+
+
+

Create a plot to track pathogen genotypes across time

+
+
[ ]:
+
+
+
plot_composition = model.compositionPlot(
+        # Create a plot to track pathogen genotypes across time.
+    'transmissibility_function_reassortment_example_composition.png',
+        # Name of the file to save the plot to.
+    data
+        # Dataframe with model history
+    )
+
+
+
+
+
+
+
+
+1 / 2 genotypes processed.
+2 / 2 genotypes processed.
+
+
+
+
+
+
+_images/evolution_62_1.png +
+
+
+
+

Create a heatmap and dendrogram for pathogen genomes

+

Generate a heatmap and dendrogram for the top 24 genomes. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well.

+
+
[ ]:
+
+
+
plot_clustermap = model.clustermap(
+        # Create a heatmap and dendrogram for pathogen genomes in data passed.
+    'transmissibility_function_reassortment_example_clustermap.png',
+        # File path, name, and extension to save plot under.
+    data,
+        # Dataframe with model history.
+    save_data_to_file='transmissibility_function_reassortment_example_pairwise_distances.csv',
+        # File path, name, and extension to save data under.
+    num_top_sequences=24
+        # How many sequences to include in matrix.
+    )
+
+
+
+
+
+
+
+
+/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix
+  linkage = hierarchy.linkage(self.array, method=self.method,
+
+
+
+
+
+
+_images/evolution_64_1.png +
+
+
+
+

Create a compartment plot

+

Plot the number of susceptible and infected hosts in the model over time.

+

Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter.

+
+
[ ]:
+
+
+
plot_compartments = model.compartmentPlot(
+        # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.
+    'transmissibility_function_reassortment_example_compartments.png',
+        # File path, name, and extension to save plot under.
+    data
+        # Dataframe with model history.
+    )
+
+
+
+
+
+
+
+_images/evolution_67_0.png +
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/evolution.ipynb b/docs/_build/html/evolution.ipynb new file mode 100644 index 0000000..77f59f5 --- /dev/null +++ b/docs/_build/html/evolution.ipynb @@ -0,0 +1,1423 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evolution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Fitness function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single population scenario, illustrating pathogen evolution through _de novo_ mutations and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector), the pathogen with the most fit genome has a higher probability of being transmitted to another host (or vector). In this case, the transmission rate does NOT vary according to genome. Once an event occurs, however, the pathogen with higher fitness has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal genome and every other genome is less fit, but fitness functions can be defined in any arbitrary way (accounting for multiple peaks, for instance, or special cases for a specific genome sequence)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define an optimal genome" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # The genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # Minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='host-host',\n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function).\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " mutate_in_host=5e-2\n", + " # Modify de novo mutation rate of pathogens when in host to get some\n", + " # evolution!\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a suboptimal pathogen genome, _BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, _BEST_, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 84.9205322047209, event: CONTACT_HOST_HOST\n", + "Simulating time: 139.4831216243728, event: CONTACT_HOST_HOST\n", + "Simulating time: 199.83533163204655, event: RECOVER_HOST\n", + "Simulating time: 200.0243380253218 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19662265031018072s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019941329956054688s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020781755447387695s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016440391540527344s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02756667137145996s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.051561594009399414s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 560 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Done 1024 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0886225700378418s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1822 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2156 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2270 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2384 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2560 out of 2560 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1BADDNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
255995200.0my_populationHostmy_population_95NaNNaNTrue
255996200.0my_populationHostmy_population_96NaNNaNTrue
255997200.0my_populationHostmy_population_97NaNNaNTrue
255998200.0my_populationHostmy_population_98BESTNaNTrue
255999200.0my_populationHostmy_population_99BESTNaNTrue
\n", + "

256000 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 BADD NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + "... ... ... ... ... ... ... \n", + "255995 200.0 my_population Host my_population_95 NaN NaN \n", + "255996 200.0 my_population Host my_population_96 NaN NaN \n", + "255997 200.0 my_population Host my_population_97 NaN NaN \n", + "255998 200.0 my_population Host my_population_98 BEST NaN \n", + "255999 200.0 my_population Host my_population_99 BEST NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + "... ... \n", + "255995 True \n", + "255996 True \n", + "255997 True \n", + "255998 True \n", + "255999 True \n", + "\n", + "[256000 rows x 7 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame( \n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'fitness_function_mutation_example.csv' \n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 103 genotypes processed.\n", + "2 / 103 genotypes processed.\n", + "3 / 103 genotypes processed.\n", + "4 / 103 genotypes processed.\n", + "5 / 103 genotypes processed.\n", + "6 / 103 genotypes processed.\n", + "7 / 103 genotypes processed.\n", + "8 / 103 genotypes processed.\n", + "9 / 103 genotypes processed.\n", + "10 / 103 genotypes processed.\n", + "11 / 103 genotypes processed.\n", + "12 / 103 genotypes processed.\n", + "13 / 103 genotypes processed.\n", + "14 / 103 genotypes processed.\n", + "15 / 103 genotypes processed.\n", + "16 / 103 genotypes processed.\n", + "17 / 103 genotypes processed.\n", + "18 / 103 genotypes processed.\n", + "19 / 103 genotypes processed.\n", + "20 / 103 genotypes processed.\n", + "21 / 103 genotypes processed.\n", + "22 / 103 genotypes processed.\n", + "23 / 103 genotypes processed.\n", + "24 / 103 genotypes processed.\n", + "25 / 103 genotypes processed.\n", + "26 / 103 genotypes processed.\n", + "27 / 103 genotypes processed.\n", + "28 / 103 genotypes processed.\n", + "29 / 103 genotypes processed.\n", + "30 / 103 genotypes processed.\n", + "31 / 103 genotypes processed.\n", + "32 / 103 genotypes processed.\n", + "33 / 103 genotypes processed.\n", + "34 / 103 genotypes processed.\n", + "35 / 103 genotypes processed.\n", + "36 / 103 genotypes processed.\n", + "37 / 103 genotypes processed.\n", + "38 / 103 genotypes processed.\n", + "39 / 103 genotypes processed.\n", + "40 / 103 genotypes processed.\n", + "41 / 103 genotypes processed.\n", + "42 / 103 genotypes processed.\n", + "43 / 103 genotypes processed.\n", + "44 / 103 genotypes processed.\n", + "45 / 103 genotypes processed.\n", + "46 / 103 genotypes processed.\n", + "47 / 103 genotypes processed.\n", + "48 / 103 genotypes processed.\n", + "49 / 103 genotypes processed.\n", + "50 / 103 genotypes processed.\n", + "51 / 103 genotypes processed.\n", + "52 / 103 genotypes processed.\n", + "53 / 103 genotypes processed.\n", + "54 / 103 genotypes processed.\n", + "55 / 103 genotypes processed.\n", + "56 / 103 genotypes processed.\n", + "57 / 103 genotypes processed.\n", + "58 / 103 genotypes processed.\n", + "59 / 103 genotypes processed.\n", + "60 / 103 genotypes processed.\n", + "61 / 103 genotypes processed.\n", + "62 / 103 genotypes processed.\n", + "63 / 103 genotypes processed.\n", + "64 / 103 genotypes processed.\n", + "65 / 103 genotypes processed.\n", + "66 / 103 genotypes processed.\n", + "67 / 103 genotypes processed.\n", + "68 / 103 genotypes processed.\n", + "69 / 103 genotypes processed.\n", + "70 / 103 genotypes processed.\n", + "71 / 103 genotypes processed.\n", + "72 / 103 genotypes processed.\n", + "73 / 103 genotypes processed.\n", + "74 / 103 genotypes processed.\n", + "75 / 103 genotypes processed.\n", + "76 / 103 genotypes processed.\n", + "77 / 103 genotypes processed.\n", + "78 / 103 genotypes processed.\n", + "79 / 103 genotypes processed.\n", + "80 / 103 genotypes processed.\n", + "81 / 103 genotypes processed.\n", + "82 / 103 genotypes processed.\n", + "83 / 103 genotypes processed.\n", + "84 / 103 genotypes processed.\n", + "85 / 103 genotypes processed.\n", + "86 / 103 genotypes processed.\n", + "87 / 103 genotypes processed.\n", + "88 / 103 genotypes processed.\n", + "89 / 103 genotypes processed.\n", + "90 / 103 genotypes processed.\n", + "91 / 103 genotypes processed.\n", + "92 / 103 genotypes processed.\n", + "93 / 103 genotypes processed.\n", + "94 / 103 genotypes processed.\n", + "95 / 103 genotypes processed.\n", + "96 / 103 genotypes processed.\n", + "97 / 103 genotypes processed.\n", + "98 / 103 genotypes processed.\n", + "99 / 103 genotypes processed.\n", + "100 / 103 genotypes processed.\n", + "101 / 103 genotypes processed.\n", + "102 / 103 genotypes processed.\n", + "103 / 103 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABToAAALmCAYAAABijysXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5iU5bk/8O/swtKriIBgixKxxoIRG9iPiBpMRBOPCFGJxiTGYzDxZ2KM7Xg0iUYTSVARsSucxIg1OXZEEYOFAFJXYNll68xOe9vzPL8/3nnfnd52dtp+P9fF5ezMO+88s8yO7Hfu5749SikFIiIiIiIiIiIiogpWU+oFEBEREREREREREXUXg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKK16fUC6DyoGkavvjiCwDAnnvuiT59+NIgIiIiIiIiKjTLstDS0gIAOPzww9G/f/8Sr4ioejDNIgDAF198geOOO67UyyAiIiIiIiLqNVatWoXJkyeXehlEVYNb14mIiIiIiIiIiKjisaKTANjb1R2rVq3C2LFjS7gaIiIiIiIiourU2Njo7qiM/l2ciLqPQScBQExPzrFjx2L8+PElXA0RERERERFR9eN8DKLC4tZ1IiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIKAvSEqVeAhEREREREaXBoJOIiCgLikEnERERERFRWWPQSURElAVpSkjTKvUyiIiIiIiIKAUGnURERFmQlgUrqJd6GURERERERJQCg04iIqIsSFPAChulXgYRERERERGl0KfUCyAiIqoEyhSQQpZ6GURERERERJQCKzqJiIiyIIWENNijk4iIiIiIqFwx6CQiIsqGVBA6g04iIiIiIqJyxaCTiIgoC0oqCI09OomIiIiIiMoVg04iIqIsSEtAaGapl0FEREREREQpMOgkIiLKgmLQSUREREREVNYYdBIREWVBGlZC0CktUaLVEBERERERUTwGnURERFmQloDQY4NOVngSERERERGVDwadREREWZCWRGhnW9fXhgVpcgo7ERERERFRuehT6gUQERFVBKkg9K5gU/cGAVXC9RAREREREVEMVnQSERFlQSkFJaT7teENJWxlJyIiIiIiotJh0ElERJQFJaT7BwCMjiCsgFbiVREREREREZGDW9eJiIiyoRSUVFBSwlNbA8MXKvWKiIiIiIiIKAqDTiIioiwoYYecSgHCsGCFdNT04cYIIiIiIiKictFrf0NbvXo1brvtNpx11lkYP348+vXrh8GDB2PixImYO3cu3n///YznWLx4MTweT1Z/Fi9enPF8oVAI99xzDyZPnoyRI0di0KBBOPjgg3HDDTfgq6++KsCzJiKifCmlAGlPHzI7QzA7w5CmKPGqiIiIiIiIyNErKzpPOeUUvPfeewnXG4aBTZs2YdOmTVi8eDFmz56Nhx9+GHV1dT2+ps2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjB5fCxERJVKWgJIKUAqdm5ogNBPSYtBJRERERERULnpl0Llr1y4AwLhx43DRRRfh5JNPxj777AMhBFauXInf/e53aGhowJIlS2CaJp5++umM53z99dcxbty4lLePHz8+5W1+vx/nnnuuG3JeddVVuOSSSzBgwAC89dZb+O///m90dnbi4osvxooVK/CNb3wjtydMRETdJp2gE4C07KFE0rBKvCoiIiIiIiJy9Mqg8+CDD8Zdd92Fb3/726itrY257fjjj8dll12GE088ERs3bsQzzzyDq6++Gqecckrac06cOBH77bdfXuu59957sXHjRgDAPffcg/nz57u3TZkyBdOmTcPUqVMRCoXw05/+FG+//XZej0NERPmTpgSUHXQqU0BG/hAREREREVF56JU9OpcvX45Zs2YlhJyOUaNG4Xe/+5379dKlS3tsLaZp4oEHHgAATJo0CTfccEPCMSeccAKuuOIKAMA777yDjz/+uMfWQ0REyUnTrt5UUkFaAtKwWNFJRERERERURnpl0JmNU0891b28ZcuWHnuct956Cz6fDwBw+eWXo6Ym+V/JnDlz3Mt//etfe2w9RESUnFO9qSwBZQkIw4Jg0ElERERERFQ2GHSmoOu6ezlV5WchRE93nzp1asrjjj32WAwcOBAAsGLFih5bDxERJacig4eskAFp2f05uXWdiIiIiIiofDDoTOGdd95xL0+aNCnj8XPnzsW4ceNQV1eHUaNG4fjjj8cvf/lLNDQ0pL3funXr3MsHH3xwyuP69OmDAw88EACwfv36jOshIqLCcgYRWUHd3rpuFn7ruhKyoOcjIiIiIiLqTXrlMKJMpJS4++673a9nzZqV8T7RA4La2trQ1taGjz76CL/73e9w//334wc/+EHS++3cuRMAMGjQIAwfPjztY0yYMAGff/45WlpaoOs6+vXrl/nJxD1OKo2NjVmfi4ioV1JO0KnZ1Z0KkEZhKzq1lk4MGDO8oOckIiIiIiLqLRh0JnHfffdh1apVAIALL7wQxxxzTMpjDzjgAFx44YWYMmUKJkyYAADYunUrli1bhqVLl0LTNFx99dXweDyYN29ewv39fj8AYPDgwRnXNWjQIPdyIBDIKeh01kZERPlRkaDTDOjulnVnQFGhhBq9DDqJiIiIiIjyxKAzzjvvvINf/OIXAIDRo0djwYIFKY+dOXMmLr/8cng8npjrJ0+ejIsvvhjLly/HhRdeCNM0cf311+P888/HmDFjYo7VNA0AUFdXl3Ft0cFmOBzO+jkREVH3WEHd3aZuBTUYvhAAFHzrunNeIiIiIiIiyh17dEb597//jZkzZ8KyLPTv3x8vvPACRo8enfL4YcOGJYSc0WbMmIFbbrkFABAKhfDoo48mHNO/f38AgGEYGdcXPSBpwIABGY+PtmPHjrR/nApWIiJKZPhCEJoJwA499bYAABR8GJEI6ZkPIiIiIiIioqQYdEZs27YNZ511Fjo6OlBbW4tnn30Wp5xySrfPO2/ePDcMjR5w5BgyZAgAeyt6JsFg0L2czVb3aOPHj0/7Z+zYsTmdj4io2inZNRjI8IUgdDvoNIM6RNj+cEoJWbCwU28PwIqEqURERERERJQ7Bp0Adu3ahTPOOAO7du2Cx+PBokWLcMEFFxTk3KNHj8Yee+wBAEknsI8fPx6AHWJ6vd6059qxYwcAYM8998ypPycREeVOWVFBpzeqojOgxRxnhTNX5GfDv63ZfQwiIiIiIiLKXa8POltbW3HmmWdi69atAIAHH3wQs2fPLuhjpNvefsghh7iXN2zYkPI4y7KwZcsWAMCkSZMKtzgiIkpKiq6g0wrpkLrTozN2e7koUNAZqG+B1M2YSlIiIiIiIiLKXq8OOn0+H84++2ysW7cOAHD33Xfj2muvLehjtLS0oLW1FQAwbty4hNtPOukk93Kyre2O1atXu1vXTzzxxIKukYiIEqmooBORietAYtBpFaivZuCrVgjNhNALO+CIiIiIiIiot+i1QWcoFMK5556Lf/3rXwCAm2++GT//+c8L/jgLFy6EivyCPHXq1ITbp02bhmHDhgEAHn/8cffYeIsXL3Yvz5w5s+DrJCKiWMrq6r0Z/d4cv1VdaCak1b0+nUI3obf57XMVeJI7ERERERFRb9Erg07DMDBz5kysWLECAHDdddfhjjvuyOkc9fX1WLNmTdpjli9fjttuuw2APSV97ty5CcfU1dXhJz/5CQBg/fr1+O1vf5twzMqVK92J7VOnTsXkyZNzWisREeXOCkf1y5RRH0LFfSAVbuxIqPLMlekPA8oOUQs9yZ2IiIiIiKi36FPqBZTCd7/7XbzxxhsAgNNOOw1XXHEF1q5dm/L4uro6TJw4Mea6+vp6nHrqqZgyZQrOO+88HHnkkRg9ejQAYOvWrVi6dCmWLl3qVgH99re/xd577530/PPnz8dzzz2HjRs34sYbb8TmzZtxySWXYMCAAXjrrbdw1113wbIsDBgwAPfff38BvgNERJSJCHeFlymK7QEA/q3NGHnU/t16LCcotUJ6TCUpERERERERZa9XBp3/+7//615+8803ccQRR6Q9ft9990V9fX3S21auXImVK1emvO/AgQNx3333Yd68eSmPGTJkCF5++WVMnz4dmzZtwsKFC7Fw4cKYY4YOHYqnnnoK3/jGN9KulYiICsMKRW1RT5N06u2Bbg8Qcqs4pYI0BaQlUNOntlvnJCIiIiIi6m16ZdBZCMcccwyefPJJrFy5EqtXr0ZjYyNaW1thWRZGjBiBQw89FKeffjquvPJKt9IznQMPPBBr1qzBn/70J7zwwgvYvHkzDMPAhAkTMH36dFx33XXYd999i/DMiIgIiOvFmSboNIM6INKUfGZBRW2NF4YFZUmAQScREREREVFOemXQmWrgTy6GDBmCSy+9FJdeemkBVmQbNGgQbrzxRtx4440FOycREeVHRFV0pvv/hjJFtys6o4NUaVqQlkAt+nbvnERERERERL1MrxxGRERElIkV1aMTGXLM6IrMfETfXxqCfTqJiIiIiIjywKCTiIgoCalb7mWttTPtsUp0s0en3jXhXWgGJINOIiIiIiKinDHoJCIiSsKpstRaOtG5uSmrY/Ole0PuZcMbgjS7uRWeiIiIiIioF2LQSURElITTd7NtTT2QIccUutmtsNPoCHZd9ga5dZ2IiIiIiCgPDDqJiIiSiQwI0tsDGQ8N7WyHNMyMx6WitXRtjQ/v9nHrOhERERERUR4YdBIRESWhpIKSCoYvlPHYYEM79KiqzFxpbf6uyy1+VnQSERERERHlgUEnERFREkoqGN4gzCyCTsMXgm/9rvweRymIsNH1tSWgRPd6fhIREREREfVGDDqJiIiSUFJBa/XD6AxnPNb0hhDc2Zbf41giYWq70x+UiIiIiIiIssegk4iIKAnTF7K3rWcxZMgK6bCCel6PE27uTBh25FSTEhERERERUfYYdBIRESVhBXVI3cr6eKHlN4woUN+ScJ2SCuEmX17nIyIiIiIi6q0YdBIREcWRloAUMqeqSmlmH4pGSx50SoR3+6AUe3USERERERFli0EnERFRPKUAKRHckX3fTWnl3ldTSYng9tYkJ1MwA2FYgfy2wxMREREREfVGDDqJiIjiKKEgTQGtpTP7+1gi58cxvCGYAS3xXFJCaKbdI5SIiIiIiIiywqCTiIgojhU2IC0JaWYfXkqRe0Wn3uZPGEQERIJWQ3AgERERERERUQ4YdBIRUa+Urv+l0AwoIaByCC9VHlvX9fbkQaaSCtK0YPhCUFlMfSciIiIiIiIGnURE1Eulm6guwmbSSsu0lII0chtIJPTkk9qVlJCGHXRaIfbpJCIiIiIiygaDTiIi6pVShYyAXdGZD8Mfzun4lFvjpYIwLJjeEKwgg04iIiIiIqJsMOgkIqJeRwmZsvrS7AzDCucXdAa2Nud0vEjxOEoqiLBhV3QGE4cVERERERERUaI+pV4AERFRsUnTStl/U+8IQGipqz3TMXOsvkw2cR0AlJKwgjqEZsIK57cWIiIiIiKi3oYVnURE1OtIQ6QMGfX2YMpKy4znTbMdPhkrVdApFKQpYAX1nAYiERERERER9WYMOomIqNeRpoXwbl/S28zOEKxQnkFnjpPXzUDyClBlCXcqPINOIiIiIiKi7DDoJCKiXkeaAnpbIOltQjOhtye/LRNlJR8upHcEk16faqK6EhJwgk7JoJOIiIiIiCgbDDqJiKjXEYaVcuu6MCzorf68ziuTVF+Gm7wIbEscUqSUShl0Ct0CVOQ4VnQSERERERFlhUEnERH1OtKwIELJ+19Kw4LuTV6BmUl8RadSCrs/2OhuQwfs4LLh9c9gdAQBqeJPAQAxU9+VSH4MERERERERxWLQSUREvY7QTBi+UNJt4dKwUgaQmai4Hp1acyfa19THnC+0qwNN76xPuXUeAPS2ropSZ42s7CQiIiIiIkqPQScREfU6QneCzsRAUxrJ+2xmI3rrupISTe+sgxIypqIz8FULAMAMJt86DwBaa3TQyV6dRERERERE2WDQSUREvY7QTChLJq2SFIaZ93mjt67HDDyKClQD9XbQaaWYuA4Ayuw6j7NGbmEnIiIiIiJKj0EnERH1OkKzw8zkFZ1W3ueVUVvXpSkgI8FnVEEnAl+1AgCsNBWd0dygkxWdREREREREaTHoJCKiXsXwBmH4QgCS973sztZ1JaIqMS0B6VRmRpJOaVqwgnYlpxXOrnLUCTiFnn8AS0RERERE1Bsw6CQiol5Fa/UjtLMNQPKKzu5tXY+q6LQEpGnFPE5MxWeWj+NsWReh1FvdiYiIiIiIiEEnERH1MlZQR7jJBwDQo4b+OITWva3rziAhaYio6tDIQKGo3pvO9vlMnKpTK8vjiYiIiIiIeisGnURE1KuYga7emK2rt8bcJi0BqecfKErLQuuqzQAAK6RHbV3vOr8j263ozoCj7qyLiIiIiIioN2DQSUREvYrTIxMAvOt3xgz5ybbKMhXDG4J/WwuUVJHJ7l3BphnQYnqCOtvaM3HCUScYVYrT14mIiIiIiJJh0ElERL2KFVXRqSwZG24m6dmZE6kgdBNKyITp7S0fbooJKZMNQkp6ykhVqHO+bO9HRERERETU2zDoJCKiXsWKG+pjhY2Cnl9ZAtISEFFBZ2hXBwLbW2OPyzKwdAYcMegkIiIiIiJKj0EnERH1Ks4Uc4cId1V0FmJTuDQFtN2+mIpOwxtMeIBkE9+Tns/p0WkKKKWyvh8REREREVFvw6CTiIh6NRFd0VmA/pfSFAg2tMcEndKSCSlqzlvXhYAS0q3wJCIiIiIiolgMOomIqFezCh10WgKhhnaYga4t8tIUgLL7d7oPJbPduh4ZRhQ2AamghMhwDyIiIiIiot6JQScREfVqQitsj05IhcD2VpidIfcqJ5yM7g+a69Z1M6BBScmt60RERERERCn0KfUCiIiISkkaXRWSqgAVnQBgtAdR27+u6zEi282tYFTQme3W9cgWeCugQUnFretEREREREQpsKKTiIh6t+hws4DFkqYvqqLTElAqPujM7sGskF1xagY0KCEhOXWdiIiIiIgoKQadRETUq6i4NLNQVZzxorep2xWdClZA63rcLHt0Cs2EUgoiZEBJVfit9kTUK/TUex0RERFROWHQSUREvUrC1u+oX/4LGgREF4oKASjAzGPrOpSC0ExIy566Hm70Fm6NRNRrZP2eQ0RERFTBGHQSEVGvEv/Lfsxwnx6qeHIeM3rrOnIYKiRCOqQloLcHYs9BRJSC88GN+18GnURERNQLMOgkIqJeRehmzNdWuGsrePRgooKKZJqmP5zX3c2gDsiuyk4iokykbg8ycwaaMegkIiKi3oBBJxER9SpCiws6oyok40PQQpKWcAcL5cr0a+45pJl70MnefES9j/N+5gSeDDqJiIioN2DQSUREvUp80BkdHMbfVkhSt6DyrMY02gMAAGWKvCo6DW8o80FEVFWcYFMYZszXRERERNWMQScREfUqzjZOR/Qv/yLccxPNhW5Gpq/nTmvzA7BDWZVHRafW7MvrcYmogkUquaVuQSnFoJOIiIh6BQadRETUayghE3/ZjxoK1KMVnYYFyPyCBr3VDjr19kBk+7qV4R6xjM78eoMSUeVy3tmkJQCpoIR9jeENlm5RRERERD2MQScREfUaKknQGH2d1YMVndIUyLdTphYJOv1bmyFNkfPkddmDvUeJqEw5FZ2GgJLKfa8LfNVaylURERER9SgGnURE1GsomRg1Rld4xm9rL+hjC4l8k05nWnt4txfStHIeatSTz4uIypSyP8iRloCSEmZAgxIS4d1drSy4nZ2IiIiqDYNOIiLqNZIGnVHXJbu9sAvI8/yq67/KkrBC2Vd0SlO4W1aJqBdRgNCtyHuAhH9bsxt2Onqyip2IiIioFBh0EhFRr5Gseikm3Mw3iMz28QtwfmmKnCo6pWkPIslnWjsRVS6lFKRu2u8BQiK4vQ1WQIt5nzPZv5eIiIiqDINOIiLqPZJWdMqoyz1d0dn9U9hBZw4VnYYFKAWtxd/9ByeiiiFNuzenU9EpNANmUHc/cAnt6uBgIiIiIqo6DDqJiKjXSDaMCJWwdT2KtHIbRiRNAaMzDBHObYAREVU2p5JTmgLSkhCaBRE23Pc534aGnn/PIyIiIioyBp1ERNRrZOrRqbeXf9WjsgREyMi6t540BbSWzp7elU9EZUSawq3kNDqCkIYFoRmRCm/7GL0jyKCTiIiIqg6DTiIi6jWS9ciMrvLUmjuLuZy8KCFhhfWsqzqlaUFv9fd4/1EiKg9KSCgh3K3reps/EnSa7nUAIDQTSFblTkRERFTBGHQSEVHVk4YFwJ5YHs/9pV83YfrLfzCHtCSskJH1EBEn4HCquALbW3twdURUak6YaXiDUFJC7whC6GZkG7sFKPt9UOgmP/8gIiKiqsOgk4iIqp6zzTvZ1HWnR6fhDRVkWFBPU0JAGha01uyqT6VpT1t3qllbP97SY2sjotKTpgAUEG7yQgkFK6BB6PaHPdIQbrgpI9cRERERVRMGnUREVPWEZgJIHnQqKd3qp4qgAGFYWU9Rj+7laQV1dG5u6qmVEVEZkJYFaVro3NwUmbZuQhr2e6DhD7sf7pgBDRXx6Q4RERFRDhh0EhFR1bNCdj9LaYmE25RUUELYFZ0VwvSFYAW0rI41OiIBrlLQOwIwO8OQhpV8Aj0RVTxpCrR8tBmmL+z+nDsVnaGd7VBKwQob9nsDc04iIiKqMgw6iYio6rkVnSl6dCph97GrFFZId8PbTNwAV0WGLSlAawsk38ZPRBVPmgLNH2wE0FXFLnX7PTDc7AOkgm99Q8nWR0RERNSTGHQSEVHVE5q9fTtZRSekgjQF9LbstoKXBZWi32gSZqTyUykFbyTc0Fv9WQ8zIqLKokzh9uZ1/mtFPuyBVJCWsANPdPXuJSIiIqoWDDqJiKjqORWdzi/90ZSUkIYFvT1Q7GV1izMt3r6cOvR0gk5pCnRusvtzam2dMBh0UgYMwSpT9Puciny4I6J69SpLuu+JRERERNWGQScREVU9oTtb15P36LQ0M+uel+UiuqIz3ORLeZzltwNN/9bdkEZUn75k1a1EUaxgdu0RqLxIs2uauoiEntHBprRE19dFyLKd918iIiKiYuhT6gUQERH1NLeiM0XQKcIGrJCRcFs5i67iDG5vxcBxIxKPUQpmJKzyfbnLvT7wVStGHXdgzy+SKprpD6Pv4P6lXgblSBhdQafz4UZ0RafQDMCt1u35pFNoJmr79e3xxyEi6m2UUggGg+js7ISmaRCCH2JTZaitrUX//v0xdOhQDBo0CB6Pp6DnZ9BJRERVT2j2L/tKJPmlXikIzay44TzRz0X3xg5S0lr96D9qiB1yRLa4m76ureqs1KNsiDAr8SpRsq3rZlTFeqiho+vgHs45hW7Cu24nRh37NXhqPPDUcjMZEVEhSCmxfft2hMNsRUSVx7Is6LoOn8+HAQMGYJ999kFNTeH+jcCgk4iIqp4zjAhJeg4qWZn96qKD2fhAKrijNRJ0pvlkn/0XKYPoLdBUOWR0Radlv0+kGj7W0+8C4SYf2j/9CiOP2BeevrWoZdBJRNRtSqmEkNPj8aC2traEqyLKnhDC7QUfDoexfft27LvvvgWr7GTQSUREVcsMaKjpWwsRNqCkihng41KAFaq8Ckdn67rQTVhBHcKwUFtn/2891OjFiMMEg6peKtzsw4DRw7p1DiWkG6Y77R36DOpXiOWVPaFX9lbr6KDT+TtM+WFOD1eyd25ugtAtGJ0h1A0bCNTxVw8iou4KBoNuyFlbW4sxY8Zg8ODBBa2II+pJUkoEAgE0NTVBCIFwOIxgMIjBgwcX5Pz8SSAioqrl+3IXlJAw/RpU1CeH8SpxK7cTYOitfhi+IERUWKssidCujpjAg3qPtk+2dfscwrDcDwYMXwiGL9Ttc1YKw1vZzzVZ0Jny2CIMJVNCINTQ4VaXEhFR93R2drqXx4wZg6FDhzLkpIpSU1ODoUOHYsyYMe51fr+/cOcv2JmIiIjKjH/Lbnuqeki3f8lOVtEJILizvcgr6z4nhNI7gtDbApBxgUa4yRszlCTh/ty6XrV8XzZ2+xzSsNxej4Y3CL0jmPy4IgRlxWZ4kz/XbEUPCisFoUdvXU//9xPdz7OnSEsivNvn9gslIqLu0TS777LH4ylYBRxRKQwePNjdrl7IfrMMOomIqGoZvrDdhE4pKEumrG4y/ZXXyN15LqZfg7QEVFy1VHRQlfz+DDqrlbS6X8krTQG9PQAAsAIa/Ft2Jz0uVe/HSmakCHWzVeqev9ET1jOFiz0edEoFZQmYnaGqDMWJiErBma5eW1vLSk6qaDU1NW5vWed1XZDzFuxMREREZcYKalBKQQppb11PEXRW2sR1ICroDITtforRVWRKQRhW2q3rlficKTtOiN2dYEkallvZaHSGEahvTnqc4QtVXXVwd7fpW1FBYylE9xzOFGT2dNCppIS0Iu1Dsty6nrSXMhEREVGWGHQSEVHVUpaEFdAgQgakJVMOHarELZVOGGAFNEAlVmhKU6QNOkUFDmCiLEVC7+D2tvxPYXZVBAe3t8IKJ69SNHwhqCJsfy6m7vbsFSm+V8USHbRmqrjtyaBTSQWhW5GKznDWH65U4nA4IiIiKh8MOomIqGoppRBq7ABg/0KfKsCoxCEZTgWn6bf7NMWHCNJMX9HJMKF6OaG3f2vy7ebZkIaAkgpKSAS2t6bsO2n6qm9LcncrMoVW4orOqPe5TNWpqgBtDlKfXEEaJpSQMPxhSFNkrNZUSrnvaURERET5YNBJRERVS0nl/tJvBbWU1UuVWtEpDAv+rfaW4uig0/Tbz1VrTT29sNTba6lnmH67XYNSCv5tybebZ0OaFiAltDY/hGamrMYzfOGS96QsJLsKsXvPp5QVnW3/2hbTY9QKpf85t4Jdt0uzsKGnOwQOgDIFlBAI7kxfZRxu8iK4vbWg6yAiIqLehUEnERFVL6XcqkYroKWsPIufWF4RpELHF9vd5xddcad7g5CG5VazJiMYdFYlwxcElILe5u9Wr0lpWFBSQWvutAfKpBheZfhCVRV0Ct3s9qCuUlV0Gp1h7Fj+r5jr0lV1A7GD2KKntReC6deAqApOaUn4N+9OGyTvfm8DrDCrzYmIiCh/DDqJiKhqKaXcKk4zqKfeYluhwy+iK5+iK+6MjmDM1OxkpFF5VayUmRXUoRSgtwchwiZEhqArFRHZZqy1dNpb2KVMun3d7Ax1e3hPOZG66fY4zVepqqU7NzYmhM6Z+mJGh45OZfvOVz/t9lpCDe12FX3U41tBDVbYgOFN/noRmomOL3ZAmd3/4Km7fVaJiIiocjHoJCKi6iWjKjpDetZTfytFdAWWE2gIzYAIG5CmBZFm22q1Tcommx1gK1ghHUI3YfnTD6NJfR4LSsquoFPIpD8/QrMybkeuJEIzu/2zUaoK13xacET3zHSet+ENpjo8a7vf/xJKKjs4jtDbAml7A3duaoISsiA9X8PNvm6fg4iIYlmWhWXLlmHevHk4/PDDMXr0aPTt2xfDhg3DgQceiJkzZ+Lee+/Ftm3bSr1U6uUYdBIRUVWJrmBSUrm/NIuwmXEbZ6WJfj7O8/Z92QjADlvSBi4MOquS1uaHNAT8m5sAqWBkmLqdijQFEKnohFL2hwZJAihpWvb29iohdCvjwJzM5yhR0JnPuiPvA8KwgMjd9Y7uBZ1KKXSs3QGlVMx7UOsn2+D7clfssVHv14EddoV6ISbBay3V85okIioHf//73zFp0iR85zvfwcMPP4y1a9eipaUFlmWhs7MTW7Zswd/+9jfceOONOOCAAzBjxgysXbu21MvuUbfeeis8Hg88Hk+pl0Jx+pR6AURERIUkdBN9Bvazv1DK3aItdLPqtjMmq+h0BhCZGQIuJRSUVPDU8B9n1UTqpt2js90Oq/IN95XlbF3vGmglDQtwfrac60yRcXt0JRG62e1WFoUI6vKRTyWqcx9licjE8zCsQPemnrvDqxRgRp0r2XmtsIG+g/vb94tUoBdiOFw1he9ERKV2xx134JZbbnH/nzFt2jTMmDEDRxxxBPbYYw+EQiE0Njbi3XffxfLly1FfX4+XX34Z48ePx5///OcSr556IwadRERUNZSQMAOaG3RGV3RKw6q6SePRIZZ3XQNGfmM/d7iImSGsUFJGqrkYdFYT55cQZ4twvkGntASMzlDM/ZMNq6m2oFN2s6JTSQVlCgjdRG2/vlBCwlNbpA1U+VRpR56rknbVrt4R7Hb/Xue157wfpyO0rqDT6fVaiK3rrOgkIiqMRYsW4Ve/+hUAYK+99sKzzz6LadOmJT32oosuwv33349nn30W/+///b8irpIoFreuExFR1Qhsb4URt+1SmnY4Iw2r6rZrR4dQHf/eAWlY9qRjIGNVmhKSfTqrkBPSOdXL+Q4jUkIlBF7xW7KVVG7lZ7VQonvPx/CFIAwLHWt3uF8XSz4/zu5zVQrCsCBNETNAKB9OZaYV0NK+DymlIMJdrymnCr0gW9db/ZkPIiKitHbs2IFrr70WADB06FC8//77KUNOR21tLS699FJ89tlnOPfcc4uwSqJEDDqJiKhq+LfsTpjoq8yurevVRhhRz0nZ/RnNLIfPOFtLqco4QWekerk71XnxW4jjq0OdDxGqqaLTmTCfL73ND73Vj+D2ViipEj546VF5JZ12dbeSCiJs2B+AdHPqvBm0P2zJ1B9WGlZM9abQIq/ZblZ0SkuknOxORETZ+/3vfw9Ns9/T77zzThx44IFZ33f48OE477zzUt7e1NSEm2++GcceeyxGjhyJfv36YcKECZg1axb++c9/prxffX292xdz8eLFAIB//OMfOO+88zBmzBj069cP+++/P6655hrs3Lkz4zoNw8BDDz2EU089FXvuuSfq6uowZswYTJ8+HU8++SRkkv8nLl68GB6PB7/5zW/c65w1Rf+pr6/H559/7n599913Z1zPgw8+6B6/atWqhMd0zqvrOn7729/i6KOPxrBhwzB06FB885vfxEMPPQQhMv9/VAiBxx9/HDNmzMC4cePQr18/7LHHHjjppJPw+9//HuFwfj3eywWDTiIiqhpWUI+toFKxW9erTXyIpbcGsu6vZwZ1MOmsPu7rPBJ4OmFk7lRCZZ+0REwI5bz+uhuMlZOulg75CTd6YQY0BBs67NCzzINOpRT8W5shNBNai98OOrsZXAe3twHI3CdYaLH9UJ3WCN19fGkKQKmqqjQmIio2pRSeeOIJAMCQIUMwd+7cgp37qaeewoEHHoi77roLn3zyCTo6OmAYBnbu3IkXXngBZ555Jq688kpYVuZ/w9x0000466yzsHz5cuzevRuGYaC+vh5//vOfcfTRR2P9+vUp71tfX48jjzwS1157Ld5++220trbCNE3s3r0br776Ki677DJMnToV7e3teT/XI444ApMnTwYAPP744xmPf+yxxwAAhx56KI477rikx3R0dODEE0/E/PnzsWbNGnR2dsLv92PVqlW49tprcdpppyEQCKR8jO3bt+OYY47BnDlz8PLLL6OxsRGGYaC9vR0rVqzADTfcgCOOOAIbN27M4xmXBwadRERUNZRUCVtFpVvRWY1BZ+xz0lo7u7auZ5AphKDKFP86707Ar6zYwEmEzZgwrauis3oCJWdIV76CDe2QhgVttw/BHW1FrejMqxWFUghsa4Fvwy5I07JDRqm61dbCv2U3AGSsLrf7ocrIMlTBhji5QSlbcxAR5W3t2rVoa7M/uDr55JMxaNCggpz3+eefx2WXXYZgMIgDDjgAv//97/Haa6/hk08+wbJlyzB9+nQAwKOPPoobb7wx7bkefvhh3H333Zg6dSqefvpprF69Gv/85z8xe/ZsAEBLSwu+//3vJ71vIBDA6aefjg0bNgAAvvWtb+Hvf/87Vq9ejRdeeAFTp04FALz//vs477zzYqokv/Wtb+GLL77ANddc4173xRdfJPzZe++9AQBXXnklAGDDhg1YuXJlyufz2WefYc2aNQCQct0A8IMf/ACffPIJLr74YrzyyitYvXo1nn76aTdQfffdd3HZZZclvW9bWxtOOukkfPbZZ+jXrx9+9KMf4YUXXsDHH3+Mt956CzfddBMGDhyIzZs345xzzoHP50u5jnLGYURERFQ1lFII7+76H7KSXb88yyoMOuMrn/T2QNbVUNVY4VotpClQ07c2/TGWQE2fxGPiKzhzCY+kYaGmLvJPQ4WEoEhohr3VOTJgx3kNVVNbCCUkrKAOpRQ8ntwHdYUaOtyfwVBDB0TeFbW5Czfl/suIkgpGZwiGL4QhB+zlrl0JCU+S11c29Ha7iiTl1vXI60oYphuSKyt5Ja0z1CkXQjMjD6M4ao2IKE+ff/65e/noo48uyDlbW1sxb948KKXw/e9/H3/5y1/Qp09XJHX00UfjwgsvxM0334y77roLf/jDH/CDH/wAX//615Oe74MPPsBVV12Fv/zlLzH/zz799NNRV1eHRx55BB9++CHWrFmDo446Kua+v/nNb7B161YAwC9/+Uvcfvvt7m3HHHMMvv3tb+Oyyy7DU089hQ8++AALFy50g83hw4dj+PDhGD16tHufww47LOXz/u53v4v/+q//QjAYxGOPPYYpU6YkPW7RokUAgL59+6YMKgHg448/xl133YWbbropZs0XXXQRZsyYgddffx1/+9vf8Morr7jBseMnP/kJduzYgX333RdvvfUW9t9//5jbp02bhosuuggnn3wytm7dinvuuQd33nlnyrWUK1Z0EhFR9ZAKelsAQjOhlLK3YUa22uY7lKWSZFvNSeXNCWrSSRVUx/c3zCXQdqZlp1xXOLaHohOiOoOPqoGS0h7qlUfFs9BM6O1dQ3CssA6rSD+TSip0bmrK/X5KQeoWtOZOAF39Sbs1eT4Slqb6Hjp5ptDMrsdL8QFNPu9pbiUpt64TEeWttbXVvbznnnumPE5KibVr16b8Y5pd/6ZZsGABfD4f9t57bzz00EMxIWe03/zmN9h7770hpcSSJUtSPvbYsWPdnpbxfvazn7mX33vvvZjbdF3HI488AsDeIn7rrbcm3N/j8eChhx7CHnvsAQD44x//mHIdmQwZMgSzZs0CADz33HNJ+18ahoGnnnoKADBjxoy03/MjjjgCv/jFLxKu79OnDx555BH07Wt/QPjQQw/F3F5fX4/nnnsOgP184kNOx1FHHeUOoXL6oFYaBp1ERFQ1lJSQugmzM+z+4uyEMfGDVapRtoOIqLxl01czVSuG+MAol4DfikzLTnl7OPIBguX8bEUqOjWj230VM4WsxeIEfHoeU7tDDe0xbW+tkAFLS/89LRS9I+AG0TlRCiLynmkPJopUWHbj79O5b8r1RJLO0K6OrorOlEFn7u9pTjjane33RES9nd/f9f/BdNvWOzs7cfjhh6f809DQ4B7797//HYAd5PXr1y/lOfv06eNWPabb6v2d73wn5Xm+/vWvY/DgwQDgVm46PvnkE3i9XgDAnDlzUFubfAfD0KFD3YBy3bp1aGxsTLmWTJzt652dnVi2bFnC7S+99JLbKiDdtnUAuPzyy1PuOhk/fjzOOussAMDbb78ds+X+5ZdfhhACAwcOxDnnnJP2MU455RQAwK5du7B9+/a0x5YjBp1ERFQ1nF/SDX+4K4zpBQGng303q0M21XSpKjXj+2XmVNEZHUwlWYK9dT16wJdwj+1uUBnc0dat+xeKE7hpeQSdwYbYYQVWUC/aRHoRzq99gJKqK+BWiNm6nq9Mr1+lFIRhoXnlRreiM37wlSOfik53IBuDTiKivA0ZMsS9HAx2v9+0EAKffvopALhbzdP9Wbp0KQB7OnsqBx98cNrHHDFiBIDY0Baw+486vvnNb6Y9R/Tt0ffL1QknnIBDDjkEQNfAoWjOdWPHjs0YQjq9OFNxhhgFg8GYkHf16tUAgFAohD59+qT9/s+YMcO9X7q/g3LVa4PO1atX47bbbsNZZ52F8ePHo1+/fhg8eDAmTpyIuXPn4v3338/pfK+++ipmzpzpnmv8+PGYOXMmXn311azPYVkW/vznP+Pkk0/GnnvuiQEDBuBrX/safvCDH+Df//53rk+RiKj3ifyCbXaG3TAmfqBKNSuXqjjqpiwCGifATAik4u6bS4/OTBWBVlCHksqtjo6uPO3u9vVQY0dZfCjhfD8Nb+wvddl8H+3t312skF60yd9mZyjzQckoFfP3nqnCMuPpspnarhQ6v2y0K+/drevJv79WQLPP6fT1zKIfrFMFypyTiCh/zpZtwB7qk8rw4cPt3R5Rfy6//PKE49rb27Oaoh4vFEr9/7eBAwemvW9NjR13ibj/x0RPUY/us5nMmDFjkt4vH1dccQUA4K233kJ9fb17fWNjI1577TUAwOzZs1NWmDoyrXmvvfZyL0evubm5OdclA0j/d1CueuUwolNOOSWhTwNg90XYtGkTNm3ahMWLF2P27Nl4+OGHUVdXl/JcUkrMmzcPjz76aMz1DQ0NaGhowN/+9jdceeWV+Mtf/uL+oCXT2tqK6dOn4+OPP465fuvWrVi4cCEef/xx/PGPf3RLnomIKJHzy3D01vVehb/YV4Vsttw6gY/hDaLfHl1VF05w5MilojP6WJXkxaS3BaCEgox8eBC9Ld4M6hiQ9SMl0lr8sAIa6oYXZqprvpxgUsZ9QBLe7cOg8SPtYyLDmOLFtxwQmonafsX5p3bH2h353VEhant9dI/O/N4/9WymzCvADGqRCtIMW9cDGqQlIA0LfYcMgH9rM4ZP2jvt6U2nopM9OomI8nbkkUe6l51J4N0RHTZeeeWVuO6667K6X7osphDyGTyYr9mzZ+Omm26CYRh4/PHH8etf/xoAsGTJEvf7k2nbOpD/mp3HGDVqFN56662s75eql2c565VB565duwAA48aNcydK7bPPPhBCYOXKlfjd736HhoYGLFmyBKZp4umnn055rptvvtkNOY866ijceOON+NrXvoYtW7bgnnvuwZo1a/DII49gzz33xF133ZX0HEIIzJw50w05L7zwQlx11VUYOXIkPvroI9xxxx1obm7GD37wA+y9994ZS5mJiHorJXt50EnVIcut68KwYAb1uKAzvqIzNnxTUsFTk/wfyDF9P5MsQe8I2MNrnGrpqCrH7lZ0Gu0BmP5yCDqTb90O7/Z2BZ0yRdAZF44K3YQS/XtopV2UkPCub8h8YApdU8q7v3XdmbiejlLKboOA6MdLfMEppdzQ0vCGEoJOaQl4amvcX/iUUoBSsAJ619dERJSXww47DHvssQfa2trw3nvvIRQKZaygTGfkyJHuZaVU2inlPS16Lbt378bEiRNTHhu9bTv6fvkYNWoULrjgArzwwgt4/PHHccstt8Dj8bgDf0488cS0a8l2zbt37066ZqdK1+/3Y9KkSRkrRytZr9y6fvDBB+O5557D9u3bcf/99+Pb3/42Jk+ejOOPPx7XX389Pv30U/eF88wzz+Ddd99Nep6NGzfit7/9LQDg2GOPxYoVK3DJJZdg8uTJuOSSS/D+++/j2GOPBQDce++92Lx5c9LzPP744+5W+R/+8IdYtmwZ/uM//gPHHXccfvzjH2PFihUYOnQopJT4yU9+klfJNxFRr6C6enSWwzZYonxkk88Iw4Le6k/Ybp7YozP25yB+S3a08G5f2uOUJQEpu7auW9FBZ/emi0tLlMUwrfgKQ+c5OmEgkLoHZUI4KFXelZG5MLxByBTDqbIS9XzcnplGfu+foV1ZbOtTyt3m7wTk8cPilFQQIcO93ak2toKaW83c/ml9zNr1Vj+skAHpVA2xopOIKG8ejwf/+Z//CcAeoPP4449363x1dXU49NBDAQArVqzo9vq6Izpk/eijj9Ieu2rVqqT3A/KrrHR26G7btg1vv/02PvjgA2zYsAFAdtWcABJ2Aae6feDAgTjggAPc64866igA9tR5p19nteqVQefy5csxa9aslAn2qFGj8Lvf/c792mmEG+/+++93Q8cHH3wQAwbEbtoaOHAgHnzwQQB2/8377rsv6XmcsHTkyJG49957E24/8MADcdNNNwEANm/ejL/+9a/pnh4RUa9ndoZ7VW9OqjLZ9OjULWit/oRKyvhgLX7qut6WeshOdEiVahiPkl1b12ODzu5VdCoVteW4hOK3brsVh9FhYIpqx/iwLv5+PUVv7/6QCIcT9GbTCzOZ0M6OzI8hlRuqa5HXY/wwImlasIJ61wAsZ5K7brmVx7vf+9LtBwfYU9xFyHCrkVnRSUTUPf/1X/+F/v3tnQk33XQTtm3b1q3znX/++QCADRs24PXXX+/2+vJ1zDHHYPjw4QDsojOZ4kNJv9+P559/HgBwyCGHYOzYsTG3O98bwA4Ps3HGGWdg3333BWAPIHKGEA0ePNid8J7JE088kfL/cQ0NDXjjjTcAANOmTYvJvM477zw3nL3//vuzeqxK1SuDzmyceuqp7uUtW7Yk3K6UwosvvgjArhA9/vjjk57n+OOPx9e//nUAwIsvvpjwgty4cSPWr18PAJg1a1bKcvA5c+a4lxl0EhHFcodPOP31DItb16lixW83dzjhozSFXfEWNhIDxvhhRHFBZ7pp4obPbjavpISRoteiEtKdah39YUK3K6iVyqmfaE+Jr+h0vydRvcWSbrMWEqFdiSFfMd6HChYQK9VVyZrDEKto4WZfxmO05k5oLXZFZ/ua+pgBVw7vugZ0btkNoZnwb2tx1xXa1QGhGZCmcM/h32oPVzADGqyw0fVaZNBJRNQt++yzDx544AEAgM/nw0knnZRxaLNSCl6vN+lt1113HQYPHgwAmDt3bsaByy+//DI+//zz3BeeQb9+/dzKyrVr1+L2229POEYphR/96EdobW0FAPzoRz9KOCY6+EyWGSVTU1PjVm4uW7YMzz33HADgoosucr83mXz66adJC+Qsy8JVV10Fw7B3+1xzzTUxt3/961/HRRddBAB49tln8fvf/z7t42zbtg3PPPNMVmsqN72yR2c2ohP5ZJWf27Ztc3t9Tp06Ne25pk6dii+//BINDQ2or6+PaeYa/UaR7jxjxozBxIkTsXHjxpKXehMRlRut1Y++Qwa4vywrKbl1nSqWCCevpgtub0X/UUMiQaiKDHWJr+hM36MzXdDpbIM3OoIpAzrDG0rY1m0/cMrTZkepok0oT0vG9ozUW/0YMHpYTLiZbDu6E8rFK8ZzSva4+XL+TvPZCq+kShmQR2tbUx9bca9UTH9TZUm0fLjJ7uUZNtD+aT1GHL4PtOZOmL4QrKCOPgP7AbArib3/3omhX9sLSipYYd0NzMvi9UREVOGuuuoqNDQ04De/+Q127dqFk08+GaeddhrOO+88HH744Rg5ciSEEGhqasK//vUvPP/8826AWVtbGzNMaK+99sLjjz+O73znO2hsbMSxxx6LOXPm4JxzzsH48eNhmiZ27tyJVatWYenSpdi6dSteeuklHHHEEQV/Xrfccgv+93//F1u3bsWtt96KL774AnPnzsXYsWOxbds2/PGPf8Tbb78NAJgyZQrmzZuXcI4TTjjBvXz99dfj5ptvxtixY92qyf322w99+iRGbt///vfxm9/8Jmaaebbb1gG7beLPf/5zfPrpp5g9ezZGjx6NTZs24fe//7271f68887DjBkzEu67YMECrF69Glu3bsUNN9yAF198EbNnz8ahhx6Kfv36oa2tDZ999hlee+01vPnmm5g5cya++93vZr22csGgM4V33nnHvTxp0qSE29etW+dePvjgg9OeK/r29evXxwSduZ5n48aN2LFjB4LBIAYNyr5h/86dO9Pe3tjYmPW5iIjKjem3K5qcyiYlFCs6s8AgoPxYId0d1BItsL0Vge1t2OPo/buCHKUSemPGh3DKku6UcKEZMFJsc1ZC2sdKCcOXulem3uZHTV2fyGMV7vWjRHH6WaYjdDNhy3pXRWdUEJfkeYcbvUnPWYz3oYJ9qKO6qnTzqRIVmpHV8w1ub419WBn7fm0GNOhRgXxNXR8MP0QivNtrP07YwM5XPwUABOpbII1I0CslRMjoqkZlRScRUUHceuutOPLII/Gzn/0MW7duxZtvvok333wz5fEejwdnn3027r33XowbNy7mtgsvvBAvvvgi5syZg/b2dvz5z3/Gn//856TnqampySnzyMWQIUPwf//3fzjnnHOwYcMGLFu2DMuWLUs47sQTT8Tf//73pMVvBx54IGbNmoXnn38eb7zxhrtl3LFt2zbst99+CfcbP348zj77bLz66qsAgIkTJ+Kkk07Keu0LFy7EFVdcgWeeeSZpxeWJJ56Ip556Kul9R44ciRUrVmDWrFl477338O6776acSQMAQ4cOzXpd5YRBZxJSStx9993u18l6JUQHh+PHj097vgkTJriXd+zY0e3zKKWwc+dOd0t8NqLXQERUbZQlIA0LWov9y7GSkiFeFqRhobZf31Ivg6KEGr2wklTo7frHF7BCul3lZlh2KKVUkh6dia97YVjoM6AO/q3NXYNa4jjhkLIkrFDqPlNaWwADxw6PPFjUY3UzVJKWSLolvJiMjqD7/VPSDoid6trYoDMxzFMqRd/OYrwPFegxFLq2kDvbwnO6f559kVXUgCsgsd+rGdCghIQ0VWRtfvgiU+YNX8itBlVC2cOInNcyg04iooKZOXMmzjvvPPz1r3/F66+/jpUrV6K5uRlerxcDBw7EHnvsgcMPPxxTpkzBxRdfHFPcFe+8887Dtm3b8PDDD+OVV17Bv//9b7S3t6NPnz4YM2YMDj30UJx22mn4zne+06M5xn777YfPPvsMDz/8MF544QWsXbsWnZ2dGDlyJI466ihceuml+N73voeamtQdH5988kkce+yxWLp0Kb788kv4/f6UPT+jXXbZZW7QOXfu3JzWPWLECHzwwQe4//778dxzz2HLli1QSmHSpEmYPXs2rrnmmrQT1ceMGYN3330XL7/8Mp555hmsXLkSTU1NME0Tw4cPx0EHHYQpU6bg/PPPxymnnJLT2soFg84k7rvvPrfk98ILL8QxxxyTcIzf3/VJc6ZeCtGfQgQCgR45DxFRbyZNgWBDuxu2KKlYzZOFfPvwUc/Rmn0QuuVWYZqdYSil4N+yG6jxwOwMdwVBqisUkpZATZ9aIElYKA0LGFCHwFetCbe5x0S2uEshEya5R9Nb/RgwZphdRZhlzuk8l3SUkCWv6DR8oZgenckqPIHEvqf2lSm+AVHPKZvvQz4KGeg5Ibve5oeSEp40v9zFix8olDUVW9EZX9Eswgak6ApDvet2dlXcRrVSUNIO6d3XL4v6iYgKqk+fPrjooovcPo/dMXToUNxwww244YYbcrrffvvtl/X/9+rr6zMeU1dXh2uvvRbXXnttTutw9O3bF/Pnz8f8+fNzut/atWsB2Nv7L7/88pwft3///vjFL36BX/ziFznf13Huuefi3HPPzfv+5YxBZ5x33nnHfbGMHj0aCxYsSHqcpnVt6YnuO5FMv3793MvhcOx2sEKdJ5P4StJ4jY2NOO6443I6JxFRuZCmQOfGqBYcrOjMSjkMf6FYemsAtf37wgrqqB1Yh7Y129B/9DD7RqmgtwcQ2tkO1Hjsis6wASUlTL+GfiMGJf3HvzNBW28LpAzknNBbGhasNEGnMyXb9GtxfTlT/7yZ/jDqhmex9azEP7NCiw02pSnc7110EGf4Qhg4dkTMfVO930RfbwY01A1LPnSyWwoVdCog3OQFAOjtAUhDoLZ/9kGnSlEtnPF+Mq4/a/zTUZG/j0jlphU23Kccamh3+3UqqRDc2RbT2oGIiKjcCCGwZMkSAMA555yTMM2duo9BZ5R///vfmDlzJizLQv/+/fHCCy9g9OjRSY/t37+/e9mZapVK9GCjAQMGpD1P9Ne5nCeTTNviiYgqmbQsd/IukOQXZ0qqWBWdbrUhZaS3B9B/r6EwgzoMfxiB7W0xOVbLR5uhtwcw8sh93Unl0hR2mDhsQNIeiU7wo3cEUNs/+YeqzjHSErBCqf9d4wybMTvDUEgTTjlXSwkzoKcNOq2QblexlkXQ2VXRKS3hXmcFdSip4KnxwPSFE17TqUK16CpVK6gXPOiUkTYGhaAsYYfhsCslpWGhtn/2rS3y37quMoaSSkg3SLVfq/bxocYODN5vz8h5ZEzVcqlfT0RERMk89dRTbgvDq6++usSrqU6F3z9TobZt24azzjoLHR0dqK2txbPPPpu2H8GQIUPcy5m2kQeDXY3/47enF+o8RES9mTRFTBWaErLk1WGVoFhBZzDNlmmKZfrDkT6DFqRuItzkjelf2PH5druiMzI4RuiRoLMzDK3Fn7RKV0QmaBsdwZTVf+4WeENAhFP36HSCVLMzHBuwpQo6hUrb8xMA9I4gZNQ28VKJ2aouFZQpIHQLzSs3Qmv1u1uilVQI7miLvXOq9xvVFXY61aGFoncEEdzRVrDKRaGZXe0/hLR7weZA5hl0QqmM79fOsCwg8nqOHK6sruuVsP/Ouu7D1hxERFQeNm/ejPXr1+OJJ57A9ddfDwA48sgjMX369BKvrDqxohPArl27cMYZZ2DXrl3weDxYtGgRLrjggrT3ia6QzDTRPHrbeHwz3fjzjBo1KuN5PB4PKzSJiKIoU8SEdtlUCFEBpzVn0LllN4Z8ba+iPFalMwMa+kRN+ja8QTeojKUghbADUVNAa+1MWcEmDQtmQIsMMUp+jBkJOlWGik77GAlLxh6jUiSdSsqE4TLJ1geUtmesUsoOOiNBroxsXdeafejc2Ii6YQPtv5tB/QAoBOpbMGT/0VBKwePxpK0etCtB8694TKXj868wYK/hBTtf/Oss19YWBdu6nuwYq6sdidNPtutxu3p0RmMPYiIiKhcHHXRQzNd9+/bFggUL4PF4SrSi6tbrKzpbW1tx5plnYuvWrQCABx98ELNnz854v0MOOcS9vGHDhrTHRt8+adKkbp9nwoQJMYOJiIh6O70jGFP1pqRKO1CFbMWqoAs3eovyOJXOmaJu+EKA6uqDGd7tTXJwV+WyMgWCO9qht/sTj4NdSSh0MzKpPfljWwG7Z7g0rYw/O4YvBAgZN3U9xXMS6ae4A12BWqaAtadYQR1mZxhSs6C32t9D5QadnZCG1fU9hF31qkd6lYYa2gHYlbipiMiAn0J+sCBNy66EtUTBfo6FEVtxGh8oZqI15z6pHYA9jCibik7neUoV83pzhiCpuGBTFemDHCIiomyNGDECp59+Ot5++21MmTKl1MupWr066PT5fDj77LOxbt06AMDdd9+d9bSt/fffH+PGjQNgDzBK59133wUA7L333thvv/1ibjvppJPcy+nO09TUhI0bNwIATjzxxKzWSETUG7i/8MdUdGauIiMUrLdfJoY/7IY9lJoIG3YVp88OzfR2u6VNuMmXcKxCV4WgtARCDe1uf8V4Ure6qglTVnQ6QadIO4wIAAxvMLFiOlWPyiy2rruVgyWqwg41dsAK6dDbAzC8XdW00cGkFTbcIE3oph1CA+jc2ATA/rAlFXfLewGDN6Fbkb6VhWvTIeMqOpNXEqeWsJ0/S0qmSeAjpJBQInmvBOf7Gr/VnhWdRERULpSyd5u1t7fjn//8J0444YSc7j9nzhz3HPGZEiXqtUFnKBTCueeei3/9618AgJtvvhk///nPs76/x+Nxt7dv2LABH374YdLjPvzwQ7cS84ILLkgoTZ44caJb5fn8888jFAolPc/ixYvdyzNnzsx6nURE1U6aAiJsxFZLSYVd//yidIuiGFIzYXQm//8bdTGdqkrdBKBgeO3wzKm2jKGUu2XXChswO8Mpg04R6fVp3y15oBTaaVcmSlNk/JDADGhQUmVVoaikhAgZaftTOhV5xQre49kTxi1oLV0VifaHJV3fd2V2bekXmulWcGqt9n2cgDQZJzi2Mnwfsl5vmx+B+hb376BQQ3fig0IjTXibdF05Hu/erz2QXUVn9KCtqMP1tgD0Nn9CoJ53z1AiIiKqaL0y6DQMAzNnzsSKFSsAANdddx3uuOOOnM/z05/+FLW19sTNH//4xwiHY7cthcNh/PjHPwYA9OnTBz/96U+TnudnP/sZAKC9vR033nhjwu1btmzBf//3fwMADjzwQAadRERRpGFx+FC+ilRBJzQzbRBEtphAUwF6e5rgSHVthXbu51SAxuvc3ORutU4WJlohHZ1bdgOwf54yBZ0iZABKxVTppnopKSFhdGao6HXvXJqfYWnYQ4eiQ0glZEJwrHfYXwvdhNmpufdVUqXfuh4JOvX2QMbq1kyUlNj2wkewQro7oKdQQaeMC2GDkW352co3xPVv2Z1x+33M1vUktzX84wsYcT8v3LpORETUO/XKYUTf/e538cYbbwAATjvtNFxxxRVYu3ZtyuPr6uowceLEhOsnTpyI+fPn4+6778bq1atx4okn4uc//zm+9rWvYcuWLfif//kfrFmzBgAwf/78hAa0jssvvxyLFi3CihUr8Kc//QlNTU246qqrMGLECKxatQq33347Ojs7UVNTgwceeAB9+vTKvzYioqSkIbhFMU/F2iksdNOtTqTUrGDXlnGhmdDakvfctHVVdBqddshmdiYP2/xbmjFgzHCkatLp39rsflBgdIZjK+eSrTNs2H1wY4KtVMOIFMzOcPoQzJmgXaLPKqSVWBWuhEoIjo2OIIRuQuomrLAO069BWsIOmtOEjc4W8PgWG/no3NiE4PZWjDxyHyhLQmgmAvUt3TqnI/7DiPCujpzun++wpXCTDwPGDk9/bpG+crXji+1A3K6pfCtMiYiIqLL1ysTsf//3f93Lb775Jo444oi0x++7776or69Petudd96J5uZmLFq0CGvWrMEll1yScMwVV1yRtmK0trYWf/vb3zB9+nR8/PHHWLZsGZYtWxZzTL9+/fDHP/4R55xzTtq1EhH1NsIwGXTmqwjJkjRFZHo4KzoziR4G412/E5Y/yZb1CKW6gqVUW9ajDzZ9YTvnTHJzdKCXzXZl4QSd0VWaka30ntq4zUJKwewMJfR/jD2ktEmnEtKu1lRx18VVCOodQWjNnfbzVoB33U5I03KD5tQPoNxzxg/MyZURqRxVQsIKG/Bv3Z22mjQX8QG33h6AtARq+tRmd/88K0uVlG5rhXRri+3RGX8AEl4/3nU7MfbUQ+Gp4URbIiKi3qRXbl0vpJqaGjz66KN4+eWXccEFF2DcuHGoq6vDuHHjcMEFF+CVV17BI488gpqa9N/qUaNG4YMPPsBDDz2Ek046CXvssQf69++PAw44AFdddRU++eQTXHnllUV6VkRElUNoJrcoljEnDMu1319v40xcd7R/tj3TPdzelqmmrUdze6RGhUFOMBUdQmdTeSt0E0gIOpP3/1RSwQzoWQ2jctZTqCniWZMKhjc2LLTD+bigsz2A8G6vW6HpXd8AZUmYWfafjR9wlM3x8VW6IrL1XVoSQjPg39acsQI3X0I3k/eHTSnPoFMpaC3pX8PSkjlPgQ/v9mX1s0FERETVpVdWdKZqxN8d06dPx/Tp07t1jj59+uCaa67BNddcU6BVERFVP2dACOWhCAV0Tk/CcEsnlFSsrkpBGlbMFmRpZAh1VFcFXjYhshuYRf0bSIQN9BnULybQy2q7byTUjO7pqICk27etkG7380yzdd2dHh85xgoZ6DOwDp4MHxIXipISiAtXlZQJ4aze5kdge5vbczO0sx19hw3IulpZCZlT9fn2v6/G8EPGY9jQAe51zoAdJWTkQx4J1aeHgmEFmAEddcMHZX18XqRyv6cpTy0kDF+OVeFSIdzoQ/9RQ/NcGBEREVUiVnQSEVFFi56MTLnpiQ/+4jlVinpLZ+maMFYAqVu59VpUyq1kziYAcoLO6O3FZuRnJzrozLqXarKt60n+fqMnlafiBLZOGKqEjOlX2h3OmtJtq3Zvi652FSoxlFSAb12DWx1rhXTo7YHMW9fdc2YfdLau3oLWj7cmHi+7tsE74WChhhElk0tFZ77vJ0qqmLYNSY8REkZH7u0vwru9ea2JiIiIKheDTiIiqmhWoHtTjHuzjFWDBeBUdEoz/TCR3s4KG1lt73ZIU7hb17MZAuOGiVGVc6GGdiilYnp8ZjtQxvSHE0K4ZH+/zlbrtBWdkWpK5/mLsNHt6eRd69QgdLNr6nwS0hR2i8eYRSUf3GSF9JjvkdQt9zlmYleJZhfgBnfag4Dit7o7YaLQTPf71ZNb/c1ctq7nG3RGpsenY4Xye02IIrzHERERUXlh0ElERBXNDDLozFe2oUt3RPedLEYFaaXK9e9C6FZevRnNoO7+Pfi3tcDsTAwssxFu9sVeoVTqretIX9HpBO7OMfmGWskY3iBE2ECo0Zvx8fOVbUCthIIIZx9mA0gYXuSEydHBbdohPd2US9CZ7893Nt8/raUzr3MXoz0HERERlRcGnUREVNFkhi2PlJoVqe5LV22XSab7xgRWrOhMSaSZSp6MNMz8htBIBRGyq0fDTd60lY7pBLe3xXytVGL1IdAVdMs0rxNn8JJTfWeF9IL03hWGBSukwwxoCO3qSHscgLxDsay3rkvp/sxlcTQAQIuqtgW6vo+dm5qiDu3Brev+XCo683uMbEL+TD08U+KHK0RERL0Og04iIqpo3A6dP6e6LKftqXEy3Tc6sGJFZ2q5VhXaFZ35fT/NgAbTH4bRHoTWWqCp1EolnYrt9uhME3S6fUGlPbTICuoFqegUIR3KlNDbgwg3eVMe1xXC5vf91NsD6Q9w+oQKlVN7AgAI7YwNlAtV6ZqtYmxdt3L8nuSEbzlERES9DoNOIiKqaAw68+dUUuXb51RaIuOwkuhqrbyrsnqB3INOM+/ejFZAg+ELwQobXdPYCyBZiOcEnKkCPitsxGydl6aA6Q9DFKCiU28LQFoCwe2taYNWaQpAqryD40w/A1JIBHe02T06w0bSytdUtLiK21yD0u6ywpnfG4RuwvAG8y6ejN+eX0iKSScREVGvw6CTiIgqWw8O4qh23a3otII6zAxbW2XUluy8++z1ArkGnVK38g46TefvTamct8ynoqRKGph3TVRP/jgJW6OlPRypEJWLnZuboCyB4M72tJV9Sil7An0PVRz71u9C6ydb7UnpmpFdiOsMgo8b0iOzHBZVKDKL14cIG2j9eGt5bhMvwyURERFRz2LQSUREFY0VnfkTumn3Mcwz6BRZVASKqO3MWjODzlRyHQgkdCvvnqd2Rae9XbxgA6lU8m3VbtCpJa/sNDpDsccrBa3Nn9O6UgW+ge2tsMIGtPjBSUnWmFMvyhz5vtyFzk1NdhicxUT56BYP8e9vSvRc9WMy2UwtF5qJjrU7yjToLMM1ERERUY9i0ElERBWNQWf+pGlv6823olOaAuEM4WV0RViYFZ0pyRwDLGmYeb/29Y4gAttaABRyK3Ty/pNdFZ1JhugAib0zlV3RmW0+JY3k0+eVkLBCBvzbmiMhcuoTCs3sVp/aTJSQbqsBs1PLGB4qq2u98SFuXgOouiOLvwhpRZ5fD05/JyIiKpW3334bHo8n5Z/Bgwdj4sSJuOyyy/Dmm2/mdO76+nrU1NS453r66aezvl+ytdTU1GD48OHYd999cfzxx+Paa6/FE088gUAgQz/xiGnTpiU978CBAzF27FgceuihuPjii3Hvvfdi48aNOT3XYupT6gUQERF1R77bd8kOKkMN7Qnbz5VS8Hg8XV8LCU9t4mejVthAuDH1NGsgtiKMFZ2pxW9RzkToFjw1nswHJmF0BBD4qjVynsIEnUolrw6VkWDOGfjj+3IXRhw+wb09fhq6GdDtXq4ZAjbnNSp0EzV1if+cFboJoyMIKJVxCJbQzB4f8qNMAQ889uClDAG1NLpC7/jwsNhb17OhhLT7jpbhh04s6CQiAhoX5/fvhUowdk7p3+iDwSA2bdqETZs24cknn8Ts2bOxaNEi1NbWZrzvkiVLYv6dsmTJEnzve9/Ley1KKfh8Pvh8Pmzfvh0fffQRHnroIQwZMgRXXnklbr/9dgwaNCjn84bDYYTDYTQ1NWHdunV4/vnn8fOf/xynnnoqfv/73+PII4/Me809gUEnERFVNFYR5U9ZAmZAS5iWLTQTfQbUuV8Hd7Zj8L6jEu5vBfWuidkp6G1dnyCzR2dquVbqCd1Ebb++eT2W3h5we4IWrKIzRb/P6K3rhjfovgaUVPDUeBDa5Y05PrijLf4USTmvUaFb8PRJ/EVCaKZd7WlJO4BL8TahlLJDzh4O6aQl4amVUEJm/HBG7wh09egsdUVnFpQl7HWV5VtxWS6KiIgq1DXXXIMf/vCH7tdKKbS3t2PlypW477770NzcjCVLlmDChAm44447Mp7viSeeAAAMHjwYgUAA//znP9HY2IixY8dmvaYLLrgg5rFCoRC8Xi/WrVuHd955B8uXL4ff78d9992Hl19+GcuXL8dBBx2U8bxffPGFe9myLHi9XjQ0NODDDz/E0qVL0dTUhDfffBPHHXccHnzwQcybNy/rNfc0bl0nIqLKxpKdvElLwAomVrLFV7f5t+xOen+7kit18GJ0ht1KPiDS07MHeyFWspwDLKlyHmDk0Nu7wunCBZ3JKzqd7fVCtxDc0d5VQaoUpCmgtcaG38EdrZkfSimIyGtU6GbSkNL53sSH+PFE2ChOJaJSbnVzppYDemvUpHUZW5GqcpjYXixSSDtQLsf34nJcExERVazRo0fjsMMOc/8cfvjhmDp1Kn7xi1/grbfeQv/+/QEADzzwAAwjfb/xDz74AJs3bwYA3HfffaitrYUQAk899VROaxo+fHjMmo477jicddZZ+OlPf4q//vWv2LJlC84880wAwMaNGzFjxgx0dKTfkQUg5pzf+MY3MG3aNFx66aV48MEHUV9fj//5n/9Bnz59YBgGrrnmGixfvjyndfckBp1ERFTRCrX1tjeSlkg6TCg+/PRvTR10pgvokg2BEXqBht9UGZlHpV6+1X3RAWmhgk6lunp0Rp/f3ZKvFPxbd7vHKKVgBsIJIaPhi7we0+RTLR9thhWZXC41M2mFpHCDzq5gUG/zJxyXLOjvMc5zzWIrffQRzt+zErL4HxRkkRM6VarlGCmy4p+IiIrlkEMOwbnnngsA8Pv92LBhQ9rjlyxZAgAYNWoULr/8cpx++ukAuqo8C2WfffbBq6++6q5t48aNuPXWW7t1zn79+uHGG2901yqlxJVXXglNK4+CBgadRERU0Xq6t141U5aEkSToFKGuMFIphWBDe9JA2e3NlwJ7cmavVFuSCzeMKPlk9egQsnPL7pjbol9njq4KzOQBldBMNLz+OfSOyNR4PflQJmcIlhN0KqUQ3NmecFxRg86ITEWG8Tc7zy/c3FmmW9ftbetlubYyXBMREVWv/fff372s66n/jaHrOp5//nkAwKxZs9C3b19cdtllAIDPP/8cn376aUHXVVtbi8WLF2PgwIEAgIcffhitrZl30WRyySWX4KKLLgIA7N69G4sWLer2OQuBQScREVU0maQvIGVHWsIOm5RyAyatzR8THhveIKRuuYFQTLWekGm3ULMnZ/ZKtSW5UI/bubERVtiA4QvFhOfRQZPe6oc0LSipYAU0mElCRmcQT6owMLC9FVI3EWqwQ0uhW0mDTieYj378pEFnKT4oyVTRGdJhRU2BtwIarKCetEK6GKxw+ipsaUV+/stwGFG6D2KIiIgK7auvvnIv77PPPimPe+mll9zt4//5n/8JAJg5c6Y7KMip9iykUaNGuY8VDofxxhtvFOS8119/vXv5b3/7W0HO2V0MOomIqKJFb02lHEk74FSWhAjbwVDrR5tjegKGm+xwxQk6TX9XiOVstzb8iVWhgF2BRtlJNsinkighIXULgfqWmEAuoaJO2SFksKEDZmco4TxuRWeKMNAdZqSc3p9m0mPjw3ehmQn9QIHSBJ2ZJqeHmnwxQ5mskA7fl7ugtSZuve9pVkiHFUy/DU1o5fvaZUUnEREVy4YNG9w+lccffzz22muvlMc6QebXvvY1TJkyBQAwaNAgfOtb3wIAPP300xCi8L/jnHHGGe7l9957ryDn/OY3v4khQ4YAAFauXAnLKv2/Cxh0EhFRxVJK8RfZbpKmgBXSoSLDYVo/2RZzuxOuOFVd0T0CnTApWZ9PaQmEGzM3OidbvoOFyonW5ocZ0KBF9cJMVlGnt/kR2tXe1Y8zSqbvg1slHAk3rYCW9DFE3Hn0tkDS9woryfb5npbpPSu4vTVmS70IG/DXtyQNhnuaFdIzhvCGL5j29lLi/x+IiKiQmpubsXbtWvfPF198gffeew/33HMPTj31VITDYQwbNgz33XdfynO0tLTgtddeAwBceumlMbc5FZe7d+/G66+/XvD1H3300e7ljRs3FuScNTU1OPLIIwEAgUAAjY2NBTlvd/Qp9QKIiIjyVY4TiCuRpdlVcR1fbLenUEcVyDkVnE5gYGkGhGaitn9f6O0B+5gkQadvw67k/R/Lb3drWaiKymRpDySyImG4ksqtFI7WunobtBYf+u8xJPEUTk/NFNug3b6vkfwqtKsDQyeOTTxPfGCqVNKt1SXp0SkklFTw1HiS3i7itopbYRPSsFDTt7YYy4ulAJlm4Js0LPi3JB9WVg4yVc8SERHlYsGCBViwYEHS22pqanD11Vfj+uuvx8SJE1Oe45lnnoFp2v9vdYJNx5lnnokxY8agqakJS5YswfTp0wu3eAB77LGHezmbyev5nnfChAkFO3c+WNFJREQVi7/EFobQDCil0Prxlsg1diCkpIoJrQBAmRJmUIOSEkZkIEyygUZtcZWhlUJlmhTTE48p0w91qiQibLi9N4VmJN1W3v7ZVwjuaE86QbxrGFFyTrju/D2Fd/sSgkEAMAOJ51ZSJXyfk923xymVcmt+qjWWsjIxXUWn0RlGeHdpeodmQ/XAtj8iIqJkpJR49tlnsWDBgrSDiJxt68cddxwOOuigmNtqa2txySWXAAD+/ve/o7OzsG2gBg8e7F72+wvXEqenzpsvBp1ERFSxqqIKrgwIzYQV0BHYHukLqCKDijSjKzCKTM8WmgFpCBi+kBs6xQ9JMf1h+DaVfttKPkox3MrsDFdNdbLZGXarKVNVS0rdhLJE8nDXyf9SBIFulXBUj874ymGhmUmDdiUVAvUtsWspwfddSZkyUI+vqAYiH0SUMOhM105AWcKeul6mynltRERUeX7961/brbOi/oRCIXz++eeYP38+AoEA7r//fpxxxhkIhRJbzvz73//GJ598AiCxmtMRPTDohRdeKOj6o0PIoUOHlv1588Wgk4iIKlam6i/KjtBM+L7c5YZHSimYfg3Skm7Q6VR0WmEDyhII7/a5QVZ8RVfbp1+V5QTmVKJDJ6EVv8LP8IYgzeoIZLRI+A1kHvSjZJrnnOLl4wSTzl+ZEjKhKrPlo01JKzWVlOjc3BTz961ECSp4RfKKTqVU0kpUq+QVnam3rpegADonkj06iYiohw0YMACHH3447rnnHjz00EMAgPfffx933XVXwrFONWefPn3cys14xxxzDCZNmhRzfKG0tra6l0eOHFn2580Xg04iIqpYihWdhSEVtJauT2INXwhWQIPe5nf787lb1y0JoZsw2rsGkIi4gS5pt62XYTCiRU2HT9pXtIcZ3iBkGUyoLAS7IjESimcY9JOqDycQGz47gagSsitAd0J5IWHFhdPuwKLEk0Jr7oQWFcynDVt7SGhXe9KA0L9ld9IJ51pzp92mo0SpYroqZxEufo/TXLCik4iIiumKK65wg75FixbF3CalxFNPPQUAsCwLo0ePhsfjSfpn/fr1AOzJ6PX19QVb35o1a9zLX//61wtyTiklPv/8cwB2NeeYMWMKct7uYNBJREQVi1vXC8cMdPXZ1Fr8MP1hhBu9kIYzHCYSNkWms0dXnsmoPnjBnW0JW9nLXWhXu1spmK56racYvhBUlVR0RlceZhz0k67qN+omp+oy5ufdDToTBx6lClCVVJCGBe/6hqTrLZbOzbuThpYtH21O2nc41NAOJUTJqifT/Uwk67NaTtijk4iIiqmmpsbtu9nY2Ii2tjb3tv/7v/9DQ0NDqrsmpZTCE088UbD1/eMf/3Avn3TSSQU558qVKxEI2Dt6pkyZgtraEgxPjMOp60REVLFKMTG5WlmBru+l1twJ068htKujqz2AEx5JO+jUWrsqQKOrpgLbYnsgVgK9NQDTr6HfiEElqei0gnrVDCOKCTozbF1PF6B1bmpEsKEdg/YeCbMzhH57DIk5XimFT29bBiiV0G4gZdAZCUxDDe0Zj+1JRkcwadAZ2NaCPY7eP+F606+h79ABGb+fPSU6fJWWQE2frl9gyj3olEJCaAZq+9eVeilERNRLWFG7dKIvO9vQ+/Xrh0WLFqGmJn3d4T333IM1a9bgiSeewK9+9atur6ulpQVPP/00AGDQoEE466yzun1OALj//vvdyzNnzizIObuLQScREVUsvSOQ+SDKiunvqujU2/wwOkMI7mzr6onobF1Xyu7RuavDPT46CDF8iY3Xy53eHoDhDZYs6BSG1SuDznQfVKioyeShRi/67TEk5nipW+7flRVX0ZmyUlQpKBU7RbwUW9cjS4n9WipYYSNllboSEnpbid7vohYrDSsu6Awnu0fZkIYF068x6CQioqIIhUJYt24dALt356hRowAAgUAAf/3rXwEAZ555Jr73ve9lPFdTUxPWrFmDTZs2YeXKlZgyZUre65JSYs6cOe6ApHnz5hWkl+azzz6LpUuXAgDGjh2LOXPmdPuchcCt60REVLH0dgadhRId8Ckh0bpqi93r0GmJGAmPOjc3QZoiJmSO3h6aKegsx2DE9Ift7eNKQe8IZr5DgYmQUVHDm9LJZet6ulBZSWX/ERLhJm/C+aJfZzKuMjTVRHMlJZSUbmWoUqp07yFxa7RCul2dmqLKVVoSZmdpfnac76cVNmLWp7f5y/LnOZrULVhJBlMRERH1hFtvvRXhsP3/xrPPPtvdxr1s2TIEg/a/Mb/zne9kda5vf/vb8Hg8ALo3lGj79u34j//4D7zyyisAgIMPPhi//vWv8z4fABiGgXvvvReXXXYZAKC2thaPPvoo+vXr163zFgorOomIqCIppRKmfVPhxIdUSkooIe3t7EdYcT0Uu8KtTGFMx793YsjX9iroWrtLSQXTF4LpCyG0sy3zHQrM6Ky8KthUlFRuhpdxGFG6ppMKgFIwvEH3NRU9qCc66Izvs5muR6cV1OGJbBXr3NgYM1SrmOLX6Py8md7krwUlZOkmr0fWGtzeirphAwHYwWzrv7YlnRJfbuKHpREREeWrubkZa9eujblO0zRs2rQJS5YswWuvvQYA6N+/P2677Tb3GCeo7Nu3L84///ysHmvChAmYPHkyVq1aheeeew5/+MMfUFeXuEPB6/XGrCkcDsPr9WLdunV455138NJLL7lb6L/+9a9j+fLlGDZsWMbHjz6nEAJerxcNDQ1YuXIlli5diqamJgD2Vvw//elPOOecc7J6XsXAoJOIiCpScHtrySqceiWpoHuDdo9OI257rerq3Wdk+DvxfbkLwDE9t848KKlgeEPo3LLb7eNYzMeuptdxdBgnutNTUin378UJ06KD0+jekDI+AEw3jEg3UNPP/udv25r6/NfXXXEhr4hUHaYKvZUlShZ0OqFs4KtWDDt4HACgY+0OWH4tprdvuWJFJxERFcqCBQuwYMGCtMfsueeeePLJJ3H44YcDAHbs2IG3334bAHDaaadhxIgRWT/ed77zHaxatQodHR146aWX8O1vfzvhmBdffBEvvvhi2vMMHToUV111FW677TYMHDgwq8d21p+Kx+PB6aefjt///vcZjy02Bp1ERFSRwk2+jBVjVDhKKmjNnQDQNaAo+nYhgT61bmCTSlkOkFJ2oNZ/z6Hpqwx7gNBNmOX4PSmAjAFTpu91pG+lE3SaURWd0fdNqOhMs3Xd0gz0sXeBlaQfq7uWJD06gdQ/H8JI/JkrGrdXagcG7m3389Ja/Gl7ipaTTO9JRERE3VFXV4eRI0fi0EMPxfTp0zF37tyYMPPJJ5+EjPQETxZUpvPtb38bN954IwC7KjTT/T0eD4YMGYKhQ4di7733xtFHH40TTjgBM2fOxKBBg3J8Zl369++PYcOGYeTIkTj88MMxefJkXHDBBe6E+XLDoJOIiCqSkqpkU4h7IyVlV9AZX9EJQJp2RafMEMgoIe1j+9amPa6YlLKrVaWQmcO3AjM7w1AVEBblxv4eZgwSM3yrlVKQhgXLqehMEQIqK37revLKR6cXqjSFO1SrZBKSzkjQmeI9LdnPXLHY/VIlRNhEcEcrRhw6HoY3CBE2SjbMKRdWSIdSyu1zRkTU24ydUx19wEtl2rRp3fog/KabbsJNN92U130POOCApI+933779ciH807laaXjMCIiIqpISsqqGeBSCZRUCDfbPVGTVXQa3mBWW0SVUknvX1JKQW/1w+gIFr2iU2/zF/XxisEJHrtbMamkgtBMt2pQa0n+vUrY0p1q63rkOGkKGN4QQrs6urW+bokfRhT52Un5PSvy6zL2oRVCjV4IzURoZzuUkBBhA5Zmlq5vaA5E2GRVJxERUS/CoJOIiCpSqoEj1EOksqewA0m3q2qt/uzCBKXKbrurUnYI5tu4q+jhudZWoqnfPUialt0Ps7vbrSNTyJ3wWUsxfEyK2NdTxvcGpdD+aX1pt66nGEaUaup6SUmFwLZmSMNEqMkLYViQpohUdJb/+7AZCDPoJCIi6kUYdBIRUUWqhEqiaiJ0E+FGL4DkA1NEyMguOFJdFaHFrp5MxdnCbLQXv6LT6CjN1O+eJDSz+yEnIhWdugkou+Ix1bbubHt0Ruvc1NTt9XVLXGWzf1szgOQfIpSaUgrh3T4I3YIIGTA6gu4HG5XwPqyX4OeaiIiISoc9OomIqDJVQG+4auLf2uyGGlpr4hZiKWTW041L2W8wmZhwqYh5iDRFeVbwdZMVMgrzvJSC0Cx3+nrKw+J6dGazzVsrccsApZyfAw+UEPCua7CvF+UXyCkhYfp1N5ht+7TerpD0ADV9y/9XCaMjWBGVp0RERFQYrOgkIqKKxF9ciyvc5HUvW34t4XY7DAlndS5pCjsULZMqKxk1lKaYlV9W2EgM6aqANKyCbAu3t7+bgFIwfKkrXxMqOrN4b0j2Gi6qSEWntAS8G3a5VcVlOdxHKlhB3X2t+tbvsq9XKEjlbk+zQjr7ORMREfUiDDqJiKgy8ffWsqJE11T2TKRh2f0Wy+TvMGbqeREDERHSK2Lrbz5SbTPPibKHESmlYHSkqeiM+x6W4/bveCrSq1aZAv4tu7uuL8PXg1IqpsdlQf5ui4xb14mIiHoPBp1ERFSRZBkGAr2ZEhJ6e3aDdaRpIRTp91kOooOxolZ0VnXQ2f3hL+5AI6mgd6R+bcW/F6gKCDoh7aBTGBYCX7XGXF9ulFQxf59Cq8DBPmX4fSUiIqKewaCTiIgqkplkIA6VjpLSnRydiTQFQg3tZVF5p6SMDRuLGnQaEEb19egE7GrV7nKrHpVCaEdb6gOlitmuHt2KoFwpISFNC+Emb9lPBDe8wdgt6hWYGbKik4iIqPdg0ElERBXF8IVgBrS0w0mo+JSQWW9plaaF0K7yCDrj11DMPESEjbIbzFQoZrAAPTClvXUdSiG4qyPtodFhdSUEnVJIN/Av96peraW0g5sKIb5vq1KK4ScREVGVKv9RiURERFFCDe2oHVAHw8egs5woobKu6LRCBsLNnWURNCSErUWu6KyEYS75CO1s7/Y5tDY/tBa772um7ehKSKBvrX25AgY8KSEBBQQb2su+DYeqgOA4o7ifa6GZUKZA36EDSrQgIiIi6ims6CQioooiTWFP+O7MbsI3FYcSkUnqWQjuaCubnnkJFZ1FXJcV1iGqNOiM6TuZp/ZPv8r62Eqr6HTWG2roqIhgttLF/1wLzeSHZURERFWKFZ1ERFRRpClghYyy3+7Z21hBI+vw0qnSy1Q9qaSCp8aT8XxCN1Hbr29Wjx0voQq1SBWdQjcjW9erM+jMtro3HaMjmPWxTlWkErJsQvR0nIrOcu/PWTWkguELQUn79aGUgtCrsz8uERFRb8eKTiIiqijStLLuBUnFY/qzr7DNthpXyezC7O6ERfHrLlZFpxXSq3rrerEpYVdxVkI1J+AMI6qMtVYDpRQ6NzXBCuoI7mwHJIrbkJeIiIiKhkEnERFVFGkKiBCroMpNttvWAXvbaFayDB2tbrwetv99dczXSsiiVAtbQQNWSGdlcoE438dKCQ+lJWGF+YFNsSipEKhvARTQtqYeQjeZcxIREVUpBp1ERFRRpCkYEJShvCoTM21dzyKJUEJ2a5t0/H1F2Mi6krQ7hGawR2ABOX0uK2U7shIChpd//0WjFKyQjvZPv4J/627o7QFWdBIREVUpBp1ERFRR7K3rrOgsN93dgp3s/tlsIxe66Q70ybU6UkmVMAhGaGbRtq8bHQy6CsV5Dchsq4VLTAkJK6CVehm9hpIKWqsfLas2Q1kS4WYfwJyTiIioKjHoJCKiimIPI2JFZ7mReUyOji6oCjf7kpw0cxJheEOAUnZwlGOvTpWin2PRJq+zoqxgnMFFQq+MnqfKkllVLFNh+Lfsht7qj512z+8/ERFRVWLQSUREFUWxR2dZcobB5Etr7kw8ZxZbyA1fCEpICN3MuT9jqsE17JtZefT2AIDK2bouhWTQXURt/9oW83W4ycvvPxERUZVi0ElERBVFClkxVVu9Sl6ZQdedkvXZzGaCtuENItzktbeh5xh0pqzcLFZFJxWMHqnolBUSdCohmbMVUfwANKFxGBEREVG16lPqBRAREeVEKkijMsIMyiAqaEg2iT2bCk3DG7Krs5BdMJrVsoowjIgKy3ArOivjQxDFis6Skqbg95+IiKhKsaKTiIgqhhU2ItuUKyPMoOwJw4Tpjx3O4vTdlKb99236wwn3s4IatDY/pGHlvHU9VRVqMXp05rxWSkv32hWdRuS/5U4J6fYVpRJQikEnERFl5e2334bH40n5Z/DgwZg4cSIuu+wyvPnmmynPU19fn/Y8yf5861vfSnm+nTt34tZbb8XJJ5+MPffcE3379sWAAQMwfvx4nHLKKbjuuuuwdOlS+HxdffCnTZuW8xri/yxevLiA392ewYpOIiKqGFZQg5Ky2xO+qfxIw4LhDaLvkP7udUoqWEEdtf36oqZvH+gdQfQdMiDmflbYhOXXYIX0PCo6kwcdRQk6+RouKMuvQRoWtLZAqZeSFSUkwkn60lLxMOckot7i4pebS72EHvPcuaNLvQQEg0Fs2rQJmzZtwpNPPonZs2dj0aJFqK2t7bHHfPjhh/HTn/4UoVAo5nrLstDQ0ICGhga89957eOCBB3DxxRfj2Wef7bG1lCMGnUREVDFMvwYlFIfFVItI0iAtAaFZEPHhn1QIN3kxYOxw9FH90PT2Ohw4+5SYQ0TYgDQFzIAGDzw5Pbzvy8bkyyrC64tBZ2FJU0DoFqyAlvngMqC3ByHCHKpWUkw6iYgoR9dccw1++MMful8rpdDe3o6VK1fivvvuQ3NzM5YsWYIJEybgjjvuSHmeCy64IO3tjqFDhyZc98wzz2DevHkAgP79+2Pu3Lk4++yzMX78eCilsGvXLqxevRrLly/HmjVrYu772GOPIRhMvqPkl7/8JV588UUAwOuvv45x48YlPW78+PEZ111qDDqJiKhimH6N/ROriIIdKkrDsv9e44IHJSQ6NzWi38jB8G3YhfBuX8I5rEhYZAU01Pary3EByYOOQvX6TCch1KVuE4ZZMQFyaFd7qZdADDqJiChHo0ePxmGHHZZw/dSpU3H++efjmGOOgaZpeOCBB3DLLbegri75v02HDx+e9DyZCCHwX//1XwCAIUOG4P3338cRRxyRcNz555+P2267DevXr8cXX3zhXr///vunPPfw4cPdyxMnTsR+++2X8/rKBXt0EhFRxTD94aRDa6hCqUgfzqAeGc4Sd7OU6NzUBKGZ6Ph8e9JKS+f1YAUNKJHj1PUUQYcqQtBZKdPBK4nUk1QFlym9vTK22Fcz5pxERFRIhxxyCM4991wAgN/vx4YNGwr+GB999BGampoAAD/4wQ+ShpzRJk2ahFmzZhV8HeWOQScREVUMszOMcHNiVR9VKKWgpES4yQslZELwGGr0wvCG7EFFAS1p0OlU8AndTDVbKM3jJ7+6GIOCrDCDzkITulk5Q54YspUek04iIiqw6IpJXdcLfv7t27e7lw888MCCn79aMOgkIqKKEdrVAcmJ61VDSQUlFMK7fXZAFRc8dG62P7EWYbOr6jOOE3RK3co9PEpV0VmEHp1CY3/GQpOGBWny/YGyk6qim4iIKF9fffWVe3mfffYp+Pmjt8KvX7++4OevFgw6iYioIlghHWZnuNTLoAISugklJIzOMPQ2f0JQ6QyWMf1hWMHEik4lpHudMEzkmnSmyjmKMoyIgX3BCd2CNCqkopNKjzknEREV0IYNG7B8+XIAwPHHH4+99tqr4I9x1FFHuZf/8pe/4M033yz4Y1QDDiMiIqKKYHhDkDn2YKTyprV0os+gftBb/fagqbjk0em/afrCsEKJFZDR/RiTVXQqpeDxpJnEnqqiU/Z8AiJYeVhwImwUpb8qVQlWdBIRUY6am5uxdu1a92ulFLxerzt1PRwOY9iwYbjvvvvSnsfr9cacJ5X9998fgwYNivl6xowZWL58OTRNw+mnn47JkyfjnHPOwfHHH4/Jkydj1KhR+T/BKsGgk4iIKoIV1KEsTlyvJsGvWhFq6IAZqdyMDx6cfovhFl/abetA8inmVkBH3yH9Uz6+M7E9XjGCTlZ0Fh7791IuuHWdiIhytWDBAixYsCDpbTU1Nbj66qtx/fXXY+LEiWnP8+KLL+LFF1/M+HhvvfUWpk2bFnPdY489hunTp+Pjjz8GAHz88cfuZcCemH7WWWdh7ty5OProozM+RjXi1nUiIqoIQjMhWa1VVcLNPrSs2py0r6ISsivo3OWNud4hYyo6zYTgwugMpX18kaRKFLCnvfc09pIsvPCujlIvgSoJc04iIiogKSWeffZZLFiwoEcGETlGjRqFFStWYOHChUmDzI0bN+KPf/wjjjnmGFx22WUIBoM9tpZyxaCTiIhKrvnDTRmDH6EbrOisMsHtbYBUbl/F6EpK7/oGiEjFpRXq+seijAo6rWDX9ckqOvW2QFe1aBJmMMVtxajoZC/JgtO9ve8f8pS/EINxIiLK0a9//WsopWL+hEIhfP7555g/fz4CgQDuv/9+nHHGGQiFUn/gfvnllyecJ9mf+GpOR9++fXHVVVfhk08+QUNDA5599ln87Gc/w8knn4y+ffu6xz355JM4//zzIXpZ+y8GnUREVFKhRi92vvIpRIatvCLMis5q5VZmRuWLQjeTHhtd0WlEDadKthVcb+2E1tKZ8nGjA9SYxyhCRac9PIkKSYT5PaXsef+9syg/60REVN0GDBiAww8/HPfccw8eeughAMD777+Pu+66qyiPP27cOFx88cW499578e6776KpqQk33XQTamrsuO/NN9/EM888U5S1lIuyDTp1Xcfu3bsh+Q8QIqKqtvvd9VCWiNmGHE/opj2YpgiVdlR8TngZvfU8VQ/L6KDTjNqaLnQzJiiVlkCwoQOmL/Wn6akfo+tE0VWjheQMWqLCSfceQhTPCukIN7GvKxERFc4VV1yBkSNHAgAWLVpUkjWMHDkSd911F2688Ub3uhdeeKEkaymVogedgUAAr7zyCl555RUEAoGE21tbW/Htb38bQ4cOxbhx4zBixAjccMMNPdrjgIiISsfZPpwupNBa/LC05P0UqYpEBZ2pKh6jp2rHVHQaFqKTzuCONoSbvG6fz6TnSvFhavT1gR2tGZedK2lYHEZEVAb0tsTfRYiIiPJVU1ODgw46CADQ2NiItra2kq3lqquuci9v3ry5ZOsohaJPXV+2bBnmzp2L8ePHo76+PuY2KSXOOecc/Otf/3KrOvx+P+6//37U19dj2bJlxV4uERH1IKWUW9kmdAvSFKjpWwslJDy1Ne4xemun26+RqlgWFZ3RPToNb1e1pjSFe3fTryHU0AHDG0oIOpVS8Hg89uUUFcLR14d2tmP4wXvn9jwySDXtnYiKS+9g0ElERIVlWVbSy8U2btw497Lzb9/eougVna+//joAYObMmW7PAMdzzz2HTz75BABw9NFH4/rrr8fRRx8NpRT+9re/4bXXXiv2comIqAcpS7rb0aVhuv0Urahp2MoUCLd0xoRaVJ2iY8dUPVujB1LF999UloThDaJj7Q6Y/jCgVEJf1+it71CZg04zoBV8S3SqgJWIiktvZ9BJRESFEwqFsG7dOgB2785Ro0YV9Pwqxb9dk1m9erV7+YADDijoOspd0YPOtWvXwuPx4IQTTki4bcmSJQCAY445Bh9++CF+97vfYeXKlTjuuOMAAI8//nhR10pERD1LWsINt7S2gDscRlqWO4xGWgJacye0Vn+JVklFEwkmlVKphxFFgkslJPS22NeENC20ramH2Rlyp607FZ3OdnQnKFVSpQ4co7auC82E4Q3Z0y8ZUBJVFQadRERUSLfeeivCYbu10tlnn43a2tqCnv/VV1/FrFmzsGbNmrTHtbe34yc/+Yn79QUXXFDQdZS7om9db25uBgDsv//+Mdebpol3330XHo8H1157Lfr0sZfWt29fXH311Vi1ahVWrVpV7OUSEVEPiu63qLcFUDdsoH29VBBhA7X9+kKaAlZQhxUJrqh6SVPAt74BQw7YK+UQIeeD7NCujpjqTgDQ2/z27VK6Q4Sc15jW4seAvYa5FZ1mZyj11nUVO4yo/bOvMPqEiZCmhbrhg7rzFImojBgdwVIvgYiIKkhzczPWrl0bc52madi0aROWLFni7kLu378/brvttpTn8Xq9CedJpra2FpMmTXK/llLihRdewAsvvIAjjzwS5557LiZPnoyxY8eirq4Ozc3NeP/997Fw4UI3ezvmmGNw+eWX5/N0K1bRg8729nYAQF1dXcz1H3/8McLhMDweD/7jP/4j5raJEycCAJqamoqzSCIiKgppSTe5MjqCMdV6lm6HStJMP5Gdqod3XQOGHjQGZkCD4QunOCrSw7u+JeEWrcWPumEDYQY1t6erU9Fp+sPoM7CfW9kpdAtmZ4rHiOSnSilYQR1tn9ZjxOETYIUMBp1EVcTw2h94eGp6V+8yIiLKz4IFC7BgwYK0x+y555548skncfjhh6c85sUXX8SLL76Y8fGGDRsGr9frfj1ixAgMGjQIwWAQn332GT777LO09z/zzDPxzDPPuIWEvUXRn+3AgQPh9/vddNnx7rvvAgAOPPBA7LXXXjG3DRgwoGjrIyKi4lGWcIfO6N6g209R6hZEJNyUpnAHFlF1Czd5MWT/PWEFNBidKXqyKkDoJsJN3oSbDF8IfQbWwfRr7mtGmgJmQIOyJLQWH/pGqobNznDKAN2p6BSaCSuk28dGKouJqHooIWH4Qug3gh9gEBFRfurq6jBy5EgceuihmD59OubOnYsRI0b0yGOdeOKJaGlpwT//+U+8/fbb+OSTT7Bp0ya0tbVBCIGhQ4div/32w+TJk3HJJZdg2rRpPbKOclf0oPNrX/saPv30U7z99ts466yz3Ov/+te/wuPx4JRTTkm4T0uLXbUxevTooq2TiIh6nrSk25fT6Ai61XdWSIc0ItWdluCU6l7CChuQpkC4uRMqblp6NK25063YjLl/ULeDzUgwCdg9Xo0OO0TXO4Ko7V8HJWX63nyRoNMK6u7jKKkgjEIF7uz1SVQujPYAg04iqmrPncscpTumTZuW0xCgVPbbb7+CnGfAgAE477zzcN5553X7XNEWL16MxYsXF/ScpVL0YURnnnkmlFJ46KGH8OqrryIQCODBBx/Exx9/DABJ/7I+//xzAMC4ceOKulYiIupZVlBzh86IsOH2XJSGBWna1XZCN1MOpqHqokwBaQp0bmpMfYxS0NsDSasx7deNiLyWhHtOrc0PaVowA2EI3bSruLxpevMpe9q6E5wCgOENpuwbSkSVy/SnapNBRERElajoFZ3XXXcd/vznP8Pv92PGjBkxt02aNClp0Pnyyy/D4/HgqKOOKtYyiYioCMKN3pjiNndCdtR1ZmcY4LTrXkNr7kTn1t1pj7FChtvaIJ4TkLtfWwJaSyf6DOgHSAWhmZCWvV01FaUUQg3t7uAiAPBv2Q0rxMpiomojdPaAJiIiqiZFr+gcO3YsXnrpJYwZMwZKKffPAQccgKVLl8LjiW0GvmXLFrz33nsAgDPOOKPYyyUioh4UiuuzKK3Y7cpWSE/dq5Gqkm9TY9pt61CA0Ay3t2s8p+VB19cW9BY/rJAOpSKVw0LC8KZ5XSmF8G5fTMuE8G4fQo0dOT0XIip/3DFARERUXUoyeunkk0/Gtm3bsGLFCjQ1NWHs2LE46aSTkk6CamxsxK9+9SsAiOnpSURElU9v9cd8LeMCLt+GXRxE1NtkrN5V7pCgpHePq+g0fCEoBdQOrENtv76wQkbGretK2SF7nwF1XdcJmTJcJaLKxaCTiIioupRsxnxdXR1OPfXUjMeddNJJOOmkk4qwIiIiKjYtLuiMDzW963aiz+D+xVwSlTvlTENPvo08Piw3vCE34Kzt1xdWUIOyBIzONH35lB2mqqjQVUmVUHFMRJWPH2AQERFVl6JvXSciInLEB5v+SG9GJSSkYaFz826IMKttqItSyq7ASjG1Mj7oVEJC6BZE2IDQTIR2dUAKmbZy1L5PfNApY4JOYVgxt+f0HKJ6fxJRacVXgRMREVFlY9BJREQlkSys0lv90NsDUEIg3NwJaVgIx/XxJEq31TRZ1aXQTYiwgcBXrZCmyBg0KqkiQWfXcUooQCr3OqmZiJmklQNlMegkKhfxH44QERFRZSvZ1nUA+Oyzz/Dee+9h69at8Pv9ECL9PzQ8Hg8effTRIq2OiIh6UqpJt74vG+HxAFqzDwCgtXQWc1lU7lRiJXCMJFWWUjdhabUQIQO1/frATLdtHfbAIqnFBvHCsB9TSQVPjf11H9Uvr6dgBZP3FyWi4mPQSUREVF1KEnR++eWX+P73v48PP/ww6/sopRh0EhFVEZmiKs+3cReGHjgG4d2+Iq+IKoJSKV87qUhTwAoaUJaAtAT0tkDa482gBqHHbk0XzgT2SPiZKqjPhulPH7QSUfGw9y4REVF1KXrQ2dDQgFNOOQWtra1QkV8WBg8ejBEjRqCmhjvpiYh6C2kkD4r8W5sxaPwerHqjpISeehBROk44qoREKEM7BCuoI9zkRcNrXcc5282dIs/wrg4M2GsYPDmuQ2gmTL+W472IqKcoVnQSERFVlaIHnXfeeSdaWlrg8Xhw5ZVX4mc/+xkmTpxY7GUQEVGJpaqiUaZA56amIq+GKoXhDXUrBFdCIvhVa9pj0p4/knR2rN2BkUftl/PjG74QKzqJygi3rhMREVWXogedr732GjweD2bPno2FCxcW++GJiKgM+Lc1Y/vfP0l5e3BHWxFXQ5Uk3OTt1tRyaQqY/vRb191t6slEgk7/1ua8ZhFZIR2GN5T7HYmoR3DrOhERUXUpetC5a9cuAMDs2bOL/dBERFQGzM4wtj77Aax023dVftOsqfoFd3V06/5CMzMGlDJNkKqUvX3eDltzf50qIdl/lqiMsKKTiIiouhS9KeaIESMAAMOHDy/2QxMRURnY/tIn6UNOojS0boaE0sxiiFCSye0upbp6hOaRxyshobX5c78jEfUIxYpOIiKiqlL0oPPYY48FAGzcuLHYD01ERGVAb0+/bZgone5sW7dP0M27S+Vubc/nVEqq9EEqERWV4g4CIiKiqlL0oPMnP/kJlFLsz0lE1EsJzSz1Eojyp6J6eOYRkHQ7qCWigmPYSUREVD2KHnSeeeaZ+PnPf4633noL11xzDUyTv/ASEfUmJretUyVTKm0Pz0w4+ISozChA6lm0tCAiIqKKUPRhREuWLMGkSZNwwgknYOHChXjppZfwne98BwcffDAGDhyY8f6FGmLU3NyMVatWYdWqVfj444/x8ccfo63NnvJ7+eWXY/HixRnPsXjxYsydOzerx3vssccwZ86ctMeEQiH88Y9/xAsvvIAtW7ZA13VMmDAB5557Ln7yk59g3333zeqxiIjKlRXS2Q+NKppSqlvDspTFik6icmKFDFZ0EhERVZGiB51z5syBx+Nxv25sbMSDDz6Y1X09Hk/Bgs699tqrIOcplM2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjBKtkIio+wxfqNRLIOo25fTYzCMbkQYrx4jKCT98IyIiqi5FDzqB8uuDs88+++Dggw/GG2+8kfc5Xn/9dYwbNy7l7ePHj095m9/vx7nnnuuGnFdddRUuueQSDBgwAG+99Rb++7//G52dnbj44ouxYsUKfOMb38h7nUREpWT6wqVeAlH3xFR05v7vGcGgk6j8lNnvJkRERJS/oged27ZtK/ZDJnXLLbdg8uTJmDx5Mvbaay/U19dj//33z/t8EydOxH777ZfXfe+99153Cv0999yD+fPnu7dNmTIF06ZNw9SpUxEKhfDTn/4Ub7/9dt7rJCIqJaOTFZ1U2ZRSbkVnPtmIFWCPWiIiIqJK8fbbb+PUU09NefugQYMwbtw4fPOb38TcuXNx2mmnJT0un8zpggsuwN/+9reY62699Vb85je/STi2rq4Ow4YNw7Bhw3DQQQfh2GOPxRlnnIFTTjkl4+OkWpvH48HQoUMxbNgwjB07FscccwyOP/54zJw5E4MHD87puRRT0YPOcukzmeyFUQqmaeKBBx4AAEyaNAk33HBDwjEnnHACrrjiCvzlL3/BO++8g48//hiTJ08u9lKJiLqNFZ1U8VT01vXck85wk7ew6yEiIiJKw/PYz0q9hB6j5v621EtAMBjEpk2bsGnTJjz55JOYPXs2Fi1ahNra2qKuwzAMtLS0oKWlBZs3b8arr76K22+/HZMmTcJvfvMbXHTRRTmfUykFn88Hn8+H7du346OPPsJDDz2EIUOG4Morr8Ttt9+OQYMG9cCz6Z6SbF2nLm+99RZ8Ph8AewhSTU1N0uPmzJmDv/zlLwCAv/71rww6iagiGb5gqZdA1C3SFF0BZx4VneEmX2EXRERERERFcc011+CHP/yh+7VSCu3t7Vi5ciXuu+8+NDc3Y8mSJZgwYQLuuOOOlOe54IIL0t7uGDp0aNrbFy1a5GZDTijZ0tKC1atXY/ny5fj888+xfv16zJo1C1dccQUWLlyYMnNKtbZQKASv14t169bhnXfewfLly+H3+3Hffffh5ZdfxvLly3HQQQdlfC7FxKCzxN5//3338tSpU1Med+yxx2LgwIEIhUJYsWJFMZZGRFRwWqu/1Esg6hat1e/2Gs+157jZGYYV0ntiWURERETUw0aPHo3DDjss4fqpU6fi/PPPxzHHHANN0/DAAw/glltuQV1dXdLzDB8+POl5crX//vsnPc/MmTNx55134qWXXsL3v/99tLa24tFHH8XIkSNxzz33pD1nqrWdddZZ+OlPf4rt27fjyiuvxD/+8Q9s3LgRM2bMwIcffogRI0Z0+/kUSvoot4cJIbBs2TJcc801OPnkk3HooYfi0EMPxcknn4xrrrkGy5YtgxCVMQlx7ty5GDduHOrq6jBq1Cgcf/zx+OUvf4mGhoa091u3bp17+eCDD055XJ8+fXDggQcCANavX1+YRRMRFZGSCnoHKzqpsumtfiDPqevh3d6Cr4eIiIiISu+QQw7BueeeC8AeOL1hw4YSrwg477zz8MEHH2DIkCEA7Pkw//rXv7p1zn322Qevvvqq+1w3btyIW2+9tbtLLaiSBZ2vvfYa9t9/f8yaNQsLFy7EBx98gPXr12P9+vX44IMPsHDhQsyaNQsHHHAAXn/99VItM2tvv/02GhsbYZom2tra8NFHH+HOO+/EgQce6G45T2bnzp0A7Aa2w4cPT/sYEyZMAAC0tLRA13OrCNm5c2faP42NjTmdj4goV9K0oMzK+PCKKBXDF4qq5Mwt6dRaA4VfEBERERGVheiBPrlmNj3loIMOwt133+1+HX05X7W1tVi8eDEGDhwIAHj44YfR2tra7fMWSkm2rj/xxBOYO3euPbk08svCfvvthzFjxgAAmpqa8NVXX0EphR07duDcc8/F448/jksvvbQUy03rgAMOwIUXXogpU6a4QeTWrVuxbNkyLF26FJqm4eqrr4bH48G8efMS7u/329s4s5lYFd3kNRAIoF+/flmv01kbEVGpSFPkvNWXqNyY/jAghwPIfRaR3sGgk6gs8X9NRERUAF999ZV7eZ999inhSmLNmTMHN998M7xeL15++WWYpom+fft265yjRo3Cf/7nf2LhwoUIh8N444038L3vfa9AK+6eold0fvXVV5g3bx6klBg4cCDuuOMONDU1YevWrfjggw/wwQcfYOvWrWhqasKdd96JwYMHQ0qJq666Ctu3by/2ctOaOXMmNm/ejHvvvRcXXnghJk+ejMmTJ+Piiy/G888/j7///e/ui+f6669HU1NTwjk0TQOAlL0bokUHm+EwJxcTUeUQuglpWF1bfokqlBnQoLVFAssck06jnUEnERERUTXasGEDli9fDgA4/vjjsddee5V4RV0GDhyIE044AYA9XKi729cdZ5xxhnv5vffeK8g5C6HoFZ1/+MMfoOs6Bg8ejHfffRff+MY3kh6355574qabbsL06dNx8sknIxgM4g9/+AN+97vfFXfBaQwbNizt7TNmzMAtt9yCX/3qVwiFQnj00Udx8803xxzTv39/AIBhGBkfL7r0ecCAATmtdceOHWlvb2xsxHHHHZfTOYmIsmWFDFZ0UlUwvCGE6zryuq/OoJOIiIioYjU3N2Pt2rXu10opeL1ed+p6OBzGsGHDcN9996U9j9frjTlPKvvvv3/Mzt7uOProo/HKK68AsPtqfvOb3yzIOR0bN27s9vkKpehB5xtvvAGPx4P58+enDDmjHXnkkfjZz36GW2+9Fa+//npZBZ3ZmDdvHm655RYopfDOO+8kBJ1OU9hAIPMvP8Fg1xCPbLa6Rxs/fnxOxxMRFZII6Xa7ElZ0UoUzfSH0GRDZhZFDcG8FdYR3d/bQqoioO/ghHBERZWPBggVYsGBB0ttqampw9dVX4/rrr8fEiRPTnufFF1/Eiy++mPHx3nrrLUybNi2fpSbYY4893MsdHfl9aF+McxZC0beuO9vPo0tcMznzzDNj7ltJRo8e7f7lJ5vA7gSQwWAQXq837bmcqsw999wzp/6cRESlZoUMSEPk3tSQqAyZnXb7mFxezsIw+fonIiIiqlJSSjz77LNYsGBB2QwiihZdLOfMiinHcxZC0YNOIeyJu7W1tVnfp08fu/BUStkja+ppHo8n5W2HHHKIe3nDhg0pj7MsC1u2bAEATJo0qXCLIyIqAiukwwrpHPhAVcEKO/94zf4FLQ3RM4shIiIioqL49a9/7Q7Vdv6EQiF8/vnnmD9/PgKBAO6//36cccYZCIVCKc9z+eWXJ5wn2Z9CVXMCsUHk0KFDy/achVD0oHPvvfcGAHzwwQdZ38c5dty4cT2ypp7U0tKC1tZWAMnXf9JJJ7mX33nnnZTnWb16tbt1/cQTTyzwKomIeo6SEkIzEd7tK/VSiApDxf03C9KwemQpRERERFQ6AwYMwOGHH4577rkHDz30EADg/fffx1133VXilcVycikAGDlyZNmesxCKHnSeeuqpUErh7rvvxq5duzIev2vXLtx9993weDw47bTTirDCwlq4cKHb92fq1KkJt0+bNs0davT444+n7BG0ePFi9/LMmTMLv1Aioh4iLQlpWtAYdFK1yWErumDQSURERFTVrrjiCjfwW7RoUYlXE2vNmjXu5a9//etle85CKHrQ+eMf/xg1NTVoaWnBN7/5TSxdutTdzh5NSomlS5diypQp2L17N2pqavCjH/2o2MtNqb6+PuYvNZnly5fjtttuA2Cn/HPnzk04pq6uDj/5yU8AAOvXr8dvf/vbhGNWrlyJRx99FIAdlk6ePLm7yyciKhplCSihoHcEMx9MVEGklX1LHVZ0EhEREVW3mpoaHHTQQQCAxsZGtLW1lXhFtlAo5O6UHjx4cFaDwbPxj3/8w70cvVu51Io+df2www7D7bffjptvvhm7du3CxRdfjOHDh+Poo4/G6NGj4fF4sHv3bvzrX/+C1+t1Kxxvv/12HHbYYQVbx/vvv4/Nmze7X0eX3G7evDmmghIA5syZE/N1fX09Tj31VEyZMgXnnXcejjzySIwePRoAsHXrVixduhRLly511//b3/7W3bYfb/78+XjuueewceNG3Hjjjdi8eTMuueQSDBgwAG+99RbuuusuWJaFAQMG4P777+/+kyciKiJpCigpYfhS96khqkTSyr7vJoNOIiIioupnWVbSy6X02GOPweezd9fNmDHDnYPTHS0tLXj66acBAIMGDcJZZ53V7XMWStGDTgC46aabMGzYMNx4440IhULo6OjAm2++GXOMExAOHDgQ9957L6655pqCruGRRx7B448/nvS2FStWYMWKFTHXxQedjpUrV2LlypUpH2fgwIG47777MG/evJTHDBkyBC+//DKmT5+OTZs2YeHChVi4cGHMMUOHDsVTTz1VsOSdiKhYTL8GaQpYQa3USyEqKGUy6CSqChyUR0REBRAKhbBu3ToA9q7eUaNGlXhFwKZNm3DTTTe5X//iF7/o9jmllJgzZ447cGnevHll1aOzJEEnAPzwhz/ErFmz8Nhjj+Gf//wn1q5di/b2dgB2E9PDDjsMZ5xxBubOnVsWL454xxxzDJ588kmsXLkSq1evRmNjI1pbW2FZFkaMGIFDDz0Up59+Oq688kq30jOdAw88EGvWrMGf/vQnvPDCC9i8eTMMw8CECRMwffp0XHfdddh3332L8MyIiArL6AjA6AjyF0mqOtLMPrxkj04iIiKi6nbrrbciHA4DAM4++2zU1taWdD3Lly/H3Llz3enoN910E4488shunXP79u248sor3W3rBx98MH796193e62FVLKgEwBGjRqF+fPnY/78+UV/7MWLFydsT8/FkCFDcOmll+LSSy8t2JoGDRqEG2+8ETfeeGPBzklEVGqGLwy9I1DqZRAVnExT0amkRGhXBwaN3yNyLINOIiIiokrW3NyMtWvXxlynaRo2bdqEJUuW4LXXXgMA9O/f353XkozX6004TzK1tbWYNGlSytu3bdvmFgYqpdDZ2YmWlhasXr0aL730Ej7//HP32Hnz5uHOO+/M+JjxawuHw/B6vfj/7N15fFvllT/+z3Pv1erdcfaFJJAACSmQAKUshZmyFFqglBnaoZSllNJ2vp3CTJfh1w6kdBm6AQOdZtpSWiBtoawpaSn7koQkJCFkIZsdx/siL9qluz+/P64tWbYkS7ZW+7xfr7wiS/c+97FsS7rnnuecAwcO4K233sILL7wQW5J/4oknYuPGjbEG26WiqIFOQgghU58WkqEMUiMiMvWkC3QGjvRAj6qxQCfPonERIaTQaMkBIYSQ8a1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NDXw+X8rHv/CFL4w7xooVK/D9738fn/70p8fdNtO5VVdX49Zbb8U999wDt9ud0biFRIFOQggheaWHZOghqs9Jpp50WZr+w11wzY5f3aYanYQQQgghU4/dbkd9fT1WrlyJyy+/HDfffDPq6uoKPg+bzYbq6mrU1NTgxBNPxBlnnIFLLrlkUt3QGWOoqqpCdXU15s+fj9WrV+Occ87B1VdfjYqKihzOPrco0EkIISSvNApykikqXUanHlZidTlNzaAanYQQQggpCn7zz4o9hbJ24YUXxpplT8bixYtzMs7atWuxdu3aSY8zUq7mViryFuhcunQpACsCfPTo0TH3T8TosQghhJQ+LRgt9hQIyQsjqqV8TI+qMBTrcUPRaOk6ISXM1FNftCCEEEJIeclboLOlpQWAFZxMdv9EjB6LEEJIaeMmh9wfLPY0CMmLSLc35WN6VIWpWsETU9EokEJICYv2+OGoqyz2NAghhBCSA3kLdN54441Z3U8IIWTqUX1h8DTLewkpZ5HOQQBWNpggiQmPGREFpjqU0SlrUH2Rgs+PEJKZaLcXtSfPL/Y0CCGEEJIDeQt0/u53v8vqfkIIIVMPNWAhU5nqi0ALyejb1oh5FyV21hzO6OScI9oXQLitv0izJISMRwspxZ4CIYQQQnKEmhERQgghhExQ+192QQsnBkm4YcJUdBiqDm6YiPb4ijM5QkhG6KIcIYQQMnUIhT5gW1sb2traYBiZL2U0DCO2HyGEEEJIqfDubwcfVX9Tj1iBTzMW6PQXY2qEkAwZiga5L1DsaRBCCCEkBwoe6Fy8eDGWLl2Kw4cPZ7xPS0tLbD9CCCGEkFJiGokd1YeXwcYCnb0U6CSklGmBKMIdA8WeBiGEEEJyoOCBTgDgnBd0P0IIIcWhR9ViT4GQvBvdcMu731qBYqg6tKAMzU+NiAgpZVFPAHqE3q8IIYSQqaAogc5sDQc4BaEspksIIWRItNtX7CkQknfmqKXr4XYrM8xUdcoSI6QMcN2AIWvFngYhhBBCcqAsIofd3d0AgKqqqiLPhBBCSCZMzWrsQDXPyHTAh5auc5NDjyiIdAwCsAKd1IiIkNLHDROGTBmdhBBCyFRQtEAnY2zcbTRNw6FDh/DDH/4QAHDiiSfme1qEEEImiZs8VpPQoE62ZBowNQOcc5iqhpZn3o1lhhmqDn1UR3ZCSGkyopTRSQghhEwFUr4PIIrimPs45zjllFOyGocxhn/6p3/K1bQIIYTkGDc5mMCgBSLQAlEAVgCIkKmOGya4bqJvRzP8Bzvj92sGBToJKRO0dJ0QQgiZGvIe6EzVQCjbxkLXXnstbr/99hzMiBBCSD7oIRm2aheCzR5wc2gpLwU6yTRg6ga4YSDa5R3zmOqjRkSElIPRtXYJIYQQUp7yHui8++67E77+3ve+B8YYvvzlL2PWrFkp92OMwel0Yu7cuTjnnHNw/PHH53uqhBBCJkH1R2CrdsF/pBvuuXUA4rU6CZnSTA5DTd7MRPWFizAhQki2hmvtEkIIIaS8FSXQCQD/+q//ihUrVuT78IQQQgpE9UXgnl+PQFMP7DVuAJQhQ6YPPaxAT9LMhMo3EFIeKNBJCCGETA15D3SO9rvf/Q4AsGDBgkIfmhBCSB6p/jDCHQMwImqsLiEFech0oYdlamZCSBmjC3OEEELI1FDwQOeNN95Y6EMSQggpANUXgSF3AwD0iALOOdUnJNOG6o/AUMZmdBJCygNldBJCCCFTQ8EDnQDQ1tYGAJg9ezYcDkfabWVZhsfjAQAsWrQo73MjhBAyMaovAjVgBTb1iIJojw9GlAI/ZHqQ+4KU0UlIGaNAJyGEEDI1CIU+4Msvv4wlS5Zg1apViETGz/SJRCJYuXIlli5dijfffDP/EySEEDIhaiCCSKfVdVqPqAi3DxR5RoQUjtwXgKlS8y1CyhXXKdBJCCGETAUFD3Q+9dRT4JzjU5/6FOrq6sbdvr6+Htdccw1M08STTz5ZgBkSQgiZCEPWAM6t24oG1Uvdpsn0ofQHiz0FQsgkmJTRSQghhEwJBQ90bt26FYwxXHLJJRnvc+mll8b2JYQQUpr4iEYOpqxRfU4yrSiDoWJPgRAyCbR0nRBCSDJvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/61Jhx1q5dm3Rbh8OBWbNmYdmyZbj88stx11134e233077vWU7n2T/WlpaJvkM517Ba3QOPwnLly/PeJ8TTjgBAHDs2LF8TIkQQkgOcJPHbpuaQYEfMq1QkISQ8kZ/w4SQqcrf+bFiTyFvaua/VuwpIBwOo7GxEY2NjVi/fj1uuOEGPPLIIxBFsaDzUFUVfX196OvrQ1NTE1588UV8//vfx8knn4zvfe97+Od//ueCzqeYCh7o1HWrflU2P/ThbWVZzsucCCGE5F7U4y/2FAghhJCMjFyVQAghhCTzla98BV/96ldjX3POMTg4iK1bt+L++++Hx+PBY489hoULF+IHP/hBynGuuuqqtI8Pq66uTvv4I488gjPPPDM2F7/fj76+PuzcuRMbN27E3r17cfDgQVx77bW45ZZb8Otf/xqCEF/YvW/fvpRjX3rppejq6sK8efPw0ksvpdxu/vz5434fhVbwQGdDQwO6u7vR3NyM1atXZ7RPc3MzAKteJyGEkPJgKtSYhRBCSHngnI+/ESGEkGlt1qxZOOWUU8bcf8EFF+DKK6/EmjVrIMsyHnzwQdx1112w2+1Jx6mtrU06TraWLFmSdJyrr74aP/zhD/HCCy/gC1/4Avr7+/Hb3/4W9fX1+MlPfhLbLt0cbDZb7P9czLWQCl6j87TTTgOArBoLPfHEEwDS/xAIIYQQQgghZCJGll8hhBBCsrVixQp84hOfAAAEg0EcOnSoyDMCrrjiCrzzzjuoqqoCAPz0pz/Fe++9V+RZ5V/BA51XXXUVOOd49tln8dRTT427/Z///Gc8++yzKQuxEkIIKT6ZOk4TQggpZ5TRSQghZJKWLFkSu60oShFnErds2TLce++9sa9H3p6qCh7ovPHGG7F48WJwznHdddfhG9/4Btrb28ds197ejn//93/H5z73OTDGsHDhQnzxi18s9HQJIYSMg5smAk09xZ4GIYQQMnEU5ySEEDJJra2tsduLFi0q4kwS3XTTTaitrQUA/PWvf4WmacWdUJ4VPNBpt9vx7LPPorKyEoZh4P7778fixYuxZMkSnHPOOTjnnHOwZMkSLF68GP/zP/8DwzBQUVGB5557Dg6Ho9DTJYQQMg7VG4YeomZxhBBCyhs3qfM6IYSQiTl06BA2btwIADj77LMxe/bsIs8ozu1245xzzgEARCKRKb98veDNiACrTuf27dtx/fXXY/fu3QCsyHdbWxuAxGLga9asweOPP46TTjqpGFMlhBAyDm5ymBp1qyWEEFLeuMnBCp4GQgghpFx4PB7s378/9jXnHD6fL9Z1PRqNoqamBvfff3/acXw+X8I4qSxZsgQVFRWTnjcArF69Gn/7298AAEeOHMGHP/zhnIxbiooS6ASAk08+Gbt27cIrr7yCjRs3Yvfu3ejv7wdgdWZfvXo1rrjiCnzsYx8r1hQJIYRkgJscpm5QIwdCCCHljd7GCCGEpLFu3TqsW7cu6WOCIODLX/4y7rjjDixfvjztOBs2bMCGDRvGPd4bb7yBCy+8cCJTHWPGjBmx216vNydjlqqiBTqHXXzxxbj44ouLPQ1CCCETxTkMWYMepuXrhBBCyhenhkSEEEImyDRNPPHEE3A6nbj33ntLrvRiZWVl7HYwOLUbydLiDEIIIZPCOYfSH6RMGEIIIeWNViYQQghJ4+677wbnPOFfJBLB3r178c1vfhOhUAgPPPAALrroIkQikZTj3HjjjWPGSfYvV9mcQGJws7q6OmfjlqKSCHSapon+/n60tbXBMKjOGyGElBWTQw1Eiz0LQgghZFIoo5MQQki2XC4XVq1ahZ/85Cf45S9/CQDYvHkzfvSjHxV5ZomGS0UCQH19fRFnkn9FC3QahoHf/va3OP/88+F2uzF79mwsXboUhw8fTthu48aN+Na3voUf/vCHRZopIYSQdDgH9LBS7GkQQgghk0OBTkIIIZNwyy23xIKIjzzySJFnk2i4ETgAnHjiiUWcSf4VpUanx+PBpz71KWzfvn3cK6eLFy/GlVdeCcYYPvGJT+C0004rzCQJIYSMSxkIApyD65SNTwghpLxpQRmSu7RqqhFCCCkfgiBg2bJl2L59O7q7uzEwMJDQBKhYIpEI3nnnHQBWrc6pHlcreEanYRi44oorsG3bNjDGcO211+IXv/hFyu1POeWUWNv75557rlDTJIQQkoFQW//4GxFCCCFlQO6f2s0ZCCGE5J+u60lvF9Pvfvc7+P1+AMAnP/lJSFLR+5LnVcEDnY8++ih27NgBm82Gv/71r3jiiSfw1a9+Ne0+V155JTjn2Lx5c4FmSQghJBVTN6D6reLaelhFpNtb5BkRQgghk6cOhmK3uWFS4JMQQkhWIpEIDhw4AMCq3dnQ0FDkGQGNjY248847Y1//53/+ZxFnUxgFD3T+6U9/AmMMt912Gy699NKM9jn99NMBYEz9TkIIIYXnO9AJI6oOfcXh+6CjqPMhhBBCckENxDvkBhp7EO31F3E2hBBCys3atWsRjVpNWi+99FKIoljU+WzcuBHnnHNOrOP6nXfeiVNPPbWocyqEguer7t27F4CVpZmpWbNmAQAGBgbyMidCCCGZ833QAdesFTB1A5wDwWZPsadECCGETJrmj8Zu+w51wT2vtniTIYQQUnI8Hg/279+fcJ8sy2hsbMRjjz2Gv//97wAAp9OJe+65J+U4Pp9vzDjJiKKIk08+OeXjx44di2WNcs4RCATQ19eHnTt34oUXXojF3wDgS1/60rRp8l3wQKfP5wOArAqyGobV5KLY0XBCCCGAFoqCc0D1hq1GRIZZ7CkRQgghk6YG4oFOQ1ZhKqVRW40QQkhpWLduHdatW5d2m5kzZ2L9+vVYtWpVym02bNiADRs2jHu8mpqaWAwtmS984QvjjrFixQp8//vfx6c//elxt50qCh7orK+vh8fjQXt7e2xJ+ngaGxsBWL8whBBCikuPWMvW5YEguElBTkIIIVODNmLpuqkZMBStiLMhhJDcqJn/WrGnMKXZ7XbU19dj5cqVuPzyy3HzzTejrq6u4POw2Wyorq5GTU0NTjzxRJxxxhm45JJLcN555xV8LsVW8EDnypUr4fF4sGPHjoyXrz/55JNgjOHMM8/M8+wIIYSkww0TyoBV4yV4tBeqLzLOHoQQQkh50IIyOOdgjEH1R+CYUVnsKRFCCCmyCy+8EJzzSY+zePHinIyzdu1arF27dtLjjKelpSXvx8iXgjcj+tSnPgXOOX7xi1/A6x2/U+/TTz+NF154AQBwzTXX5Ht6hBBC0pD7AuC6lcXpP9SNUEtfkWdUWExkxZ4CIYSQPOGGCT2kALDKs9DSdUIIIaT8FDzQeeutt2LRokUIBAK45JJLcODAgaTbeTwefOc738F1110HxhhOOeUUXHvttQWeLSGEkJGCx6zGQ3KvD8pAEHpYKfKMCkdwSHDU2cHEgr91EkIIKRAtEIGhaDBklZauE0IIIWWo4EvXHQ4HNmzYgAsvvBC7du3CqlWrcOKJJ8Yev/766xEKhdDc3AzOOTjnmDFjBp555hkwRpk0hBBSTIEjPQCAwX3tRZ5J4UkuEaJNBxMYAAZuTH7pCSGEkNKiBqIQXXaAA6ZKGZ2EEEJIuSlKWsqpp56KHTt24CMf+Qg45zh06FDssT179qCpqQmmaYJzjrPOOgvbt2/HCSecUIypEkIIGSHS47P+7xq/9MhUI9gAQbDqkzJJhFRph+iyFXlWhBBCckn1RxBuHwAAGIqOSLevuBMihBBCSFYKntE57IQTTsCWLVuwefNm/OUvf8HOnTvh8XhgGAZmzJiB008/HVdeeSUuvvjiYk2REELIKObQMj5uTL9u64xxCFobwFZCkAQ4q1WoEQeMaLFnRgghJFc0fwT+g53W7WAUA7uPwT339CLPihBCCCGZylugc+/evQCAk046CXa7PeV255133rRsd08IIeVGj6owhhozcHP6BTpFmwyjeQNYzSlw1QYhRPbAXnEmVB+VVSGEkKlCGQwhcLTXuj0QQrhtAIaqQ7QXLT+EEEIIIVnI29L10047DatXr0ZTU1PC/ffccw/uuece9Pf35+vQhBBC8sB/qAvgVl3K6VifUoAMw98EwS5AUJtgRjsgIFDsaRFCCMmhaG8AMIfe4ziHoWiQPf7iTooQQgghGcvrpUnOx54Ir127Fowx/NM//RMaGhryeXhCCCE5FDjSHf9iGmZ0AhxcD0O0MRiet8CkCjAzBPecGZAHOEzNKPYECSGETJIyEBzz9fBqBkIIIYSUvrxldNpsVoOGaJSKlxFCyFSgheXYbW5Ov4xOQAfjHILNhNG1CWa4A1D7IJkfQHTRkkZCCJkKRteg5roZW81ACCGEkNKXt0Dn7NmzAQC7du3K1yEIIYQUkKnGMxanY41OcKsRkyAqAADTfxRc7gTjBgRqvk4IIYQQQgghRZe3FJSPfvSj+OMf/4hvf/vbOHr0KJYvXx7L8gSADRs2YOfOnVmPe8MNN+RymoQQQjJkaiOW7k3H5JbhQCf8MABAj8IMHoPoWgiH0wvNVkXL1wkhZCqaju95hBBCSJnKW6DzzjvvxHPPPQe/34+f/exnCY9xzvHd73436zEZYxToJISQIhmZ0TkdMa5aN5SO2H2m9zDEmeeCD/wdgv2zFOgkhBBCCCGEkCLK29L1lStX4u2338ZFF10Em80GznlCc6Lhr7P9RwghpDi4Mc2DeLIV4OShxthdXO4HNyLQjz6FCvfuYs2MEEJIXtE5CCGEEFIu8to9Yc2aNXj55Zeh6zr6+/shyzKWLl0KxhheeuklLFu2LJ+HJ4QQkkPT/VoTN62l6+bgnsQHNP/Q40qhp0QIIaQApvv7HyGEEFJOCtImVpIkzJkzJ+G+efPm4bjjjivE4QkhhOTE9D3TE102QPUCAEzvkYTHuNxn3dBDkzqGvcYBQzVhRLVJjUMIIUkxRhE7MiWZqg7Bbp3WmroBQRKLPCNCCCHFVJBA50h33303AGDWrFmFPjQhhJDJmMbnx85aE+axQ0kfMwNHrRvRrkkdw+XYC6PyRIQ6JzUMIYQkxSQBnOoITwwFiEua4g3DNbsGAKAFo3DUVRZ5RoQQQoqpaIFOQggh5WXa1UlmiAV3RdYL1XcILMlmhr8ZDIAZagfsEzuUvcYBdf/PYF/5dUBYBZjT7LkmhOQdk8RpE+hkogBumMWeBikAUzOgDgU6uWlC6Q9SoJMQQqa5vDUjIoQQMsVMs9ibYItfC2RcBjPUpNsxbgUOeNQz4WNJLgPQQjC970Ny2yY8DiGEpDSNlvPy2oocD5jb4UhumJqOaI8PUY9VK7t/RzMUb7jIsyKEEFJsBc/oHGlgYABbt25Fc3MzgsEgjAw6+t51110FmBkhhJDRuDnFsmMEljZz0lErINrH4Kizg4ebxh3OiPYDNRObiiT2QQOgd2+BeOIt0Cc2DCGEpMRtQ4HOaVCr01/hRM1AsNjTKAvcMK0MWJODCcnWLZQuQ9YQ6fEh2uODoeroenUf5l28qtjTIoQQUmRFCXR6PB7ccccdePrpp6Hr2Z3OUaCTEEIKTwtGYUSSZzSWK1eDHVFP6k7pdnYARs1KOLS/Qjv023HHY4Zs1cDTsw8IG4d+Yt1QfRDEqR2AIIQUR1+lG7PCMswqF9BvBQEFhw2mMvUaoLUzETXjXMzKBs9RSqep6QmrBUqBHlYQ6faiYuEMSG5HsaeTlUBjD5SBIAJHe+E/2Ak9rFDJAkIIIYVfuu71enHeeefhiSeegKZp4Jxn9Y8QQkjhhdoGij2F3BIYbLY+MCnJ2yAbymjRQ7BXyNA7Xsx4WMmV/QksExmMUEd8ahKdpBFCcowBb2oMcNjQU+GO3++cmqUyjmhWnc6cydEpiKGUXr4+5xxdr+2HIZdfwNu7vx2+A53QgzIG97YBwIQuNhJCSDpvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/6VMrxOjo6sHbtWpx//vmYOXMmbDYbXC4XFixYgI9+9KP4+te/jqeffhp+vz/p/osXL075/cyfPx+nnnoqbrjhBjz00EPo7CyvbqkFv6R47733oqnJWgJ4ySWX4N///d+xZs0a1NfXg7HyWi5BCCHTRbitv9hTyCnRLoLpfRDtM6CPOilyz5aghRmMvi0QZwJGKPNu6s7qALSgM6u5uGaK4G3xk1/GVDBRBDfo4h4hJEcYwzsBDde4bfBwhjkABKcNkUoXnP6ItckEM9JzTXDaYE4y6PZ+SMc/Fan5kqkbEFLUQ9UjCmyV2b1H5JseVhDpGIQeVuCoz20TH/+RbtQsn5vTMUeS+4JQhkoUyJ4AAMDMoBQaIdMN+48Xij2FvOE/v6LYU0A4HEZjYyMaGxuxfv163HDDDXjkkUcgivmrjf2b3/wGt99+OyKRSML9uq6js7MTnZ2d2LRpEx588EF85jOfwRNPPJHx2OFwGOFwGF1dXdi7dy8ef/xx3HHHHbjyyitx3333YfHixTn+bnKv4IHODRs2gDGGT3ziE/jLX/5S6MMTQgiZgKkW6BTsIqANQrCNzfiRhB6wytmAV4XR+0ZW47IJVNe0yW9hZFEAxqIQbDUwjNLL/CGElCcmMDSFdSi1NuhDeQXeWbUQOMdw2I3ZJXC9+CVKzAonMMlA51a/AlTlMqMz8wtPppYm0BmUgVkTLOacJ8pACACg+iOoWDgjZ+MGmnoQau3La6BzZO1wzq3bpRCsJ4RMXV/5ylfw1a9+NfY15xyDg4PYunUr7r//fng8Hjz22GNYuHAhfvCDH6Qc56qrrkr7+LDq6uox9/3pT3/Cl770JQCA0+nEzTffjEsvvRQLFiywsvS7urBz505s3LgRu3fvHvcY8+bNw0svvRT7WtM0eL1etLa24p133sFTTz0Fv9+P5557Dq+99hrWr1+PK64ofoA5nYIHOtvarGUF//qv/1roQxNCCJkAQ9UR7hws9jRyRnLbINgAHumEPXI/VPFfE+u4hfZDrBJhaGGYgx9kOXriyXnNzEMwul8CX3QHwl1jT76YJEI59DBGrmcwD94DYd79oJwUQkiuMFFEV9hAWHRC49Yrzgdcwgo24oKK3QZEVQg2CaZanAstgsuO/goX6geS1xANL2hAZfdg+jqMDVXwdpqAkN8KXXpESVrT0lR1wGVPuo8WjOZ1ThMR7fUBALSgnNNxA009MNX8vJOZmoEDD/4dqj+eyTQc4DQp0EkIyaNZs2bhlFNOGXP/BRdcgCuvvBJr1qyBLMt48MEHcdddd8FuT/5+UFtbm3Sc8RiGgX//938HAFRVVWHz5s340Ic+NGa7K6+8Evfccw8OHjyIffv2pR3TZrOlnMvNN9+M+++/H3fffTfuu+8+BAIBfOYzn8Hbb7+NM844I+v5F0rBa3RWVlpLImbPnl3oQxNCCJmAwJHuKZUh4agxIUochvcDGF2b4JyR+AGEBxsB3zvgkZ6sx2ZmOHEs//swerdBYJGk2zvrRTAj8eTSDLaBSVTKhRCSQ3YrwzDEGPShgpNek8MccZnFsEsQKpyAvXjNco7NqkPbiNMTvdad8HiLKIGNM7/migoAABdz9zqaLKEz0uVNum26ILEWym0wMRcCR3sBAHo4x3PjgCHnJ0PY1A1ryfqIi5TDNUY5LV0nhBTJihUr8IlPfAIAEAwGcejQoZwfY/v27ejpsc5RbrvttqRBzpFOPvlkXHvttZM6ZmVlJX7+85/j3nvvBQBEo1F88YtfnNSY+VbwQOeqVasAAK2trYU+NCGEkAkIDp0ETRWCEIQU+DOMwYMAALs9sdGS6W+EduxZcHkCDZj0YOwmkwSYipUJm2pJu83WnXyO+SvpQwiZZphdAh/q9N3HGfSh2JDX4NBG1MeP2iXoFQ68U19bhFkCYAzf6VIQHBFUHHQkZkzuUzngsCGyoAGCyw4IzPofVvMhJgl4R7EG4LlsRoTEZdIAoAWiUH3hMduZaeqCaoHSyug0VB2RDut9Sg8rabflnMPUMw8ictOEEbWCj5nsZ2SRRZwso9fUrP25biaMNRxc5ibVvSaE5N+SJUtitxUl/evqRAyvkAaAE044Iefjp/Otb30LH/7whwEAe/bswd/+9reCHj8bBQ903nbbbeCc4/HHHy/0oQkhhEyAkuRErpwJRh+0pifBuHXixfS+EQ8yGKF2QJvY98z1eFdDJgoww8MdClOcYAX3J72biXRCRgjJDW1GFfShLMgtYRPa0MuLXzcRHsroFCqd6BMlmIKAB7uKE4wzZ1bjUEiDfzgmxoBWxK/6MJuIR7sj0B02rIswHJpVDyYwNM+qBwDw+kowtxPyUEBLl3KYmcr5mK7k3DTh/aBj7PeRJqineEvr/TTc1h8LGmrjBDpVbzirzux6RIUetTI6lf7gOFtnVws8aemCod9rUzdiY5mqjsHdLUO3y6+rPCGk/IxM6Fu0aFHOxx+5FP7gwYM5Hz8dxhi+/vWvx75+/vnnC3r8bBQ80Hnttdfic5/7HJ577rlY6ishhJDSleu6XcXG5c7Er5V4VqXokMCyaDoxhuoFk6y3VkESYAbjV12H7x/J7H836TBMmDqlAgghxfW+zYHA0InRxv6oFehsqML+sA7vUL3OQF0VFDCYjKFNLk59ziaXC4C1pJ5JAgSXA206B7NZwc7IrFr0KSa2Opw4ENZwV2cUwbkzcGBougMuJ3SnDf6hlNWILbdL8Ee/F3KDw7u3bej2UCMck6ft9K76IzAUbUx2aKGMzmoMNntit8dbui73BdLXRh3FiKixpeuKN5w2Y1QZDEHuC2Q8Nk8TTJY9AfgPdQEABve1QQ1EYeoGDIUa/BFC8uvQoUPYuHEjAODss8/OS7nG008/PXb7V7/6FV5//fWcHyOdiy66KHZ706ZNBT12NgpehOftt9/GLbfcgmPHjuE73/kOnn32WVx33XU46aST4Ha7x93/ox/9aAFmSQghZFixmlLkjTnqZGvkcnNhcjXduNyPyjkygp12CDYGZsafu8rZUQQ748swmSRC79qDZEdkjAKdhJDceNij4N9mW689XtWEzIEPKiqwozOIf6ixYw2Ag0xEJQCDMcgGILgL35CoZ+hlTzU5Buc1IMgEtIQM9M+dgZkeLwaGMjQPyCaORXQEdI5nVAcczArehZkAl92GYyErCPZnheFLLjvM6OTrROphBd7edrhmxzumc9NEuH0A/iPdkFx2VCycAdnjh5kiGMgNE9EePwbfb0XFoga459ZOel7Z0oJR2Gus8y1ucgy+3xJ7bLyl66ZmZBXo1CMKjKHnXu4LwF7tglQxtnkTN0wce2obKhc1ZD52NHV2Zrh9AMJQcDzU0gfZE4DvQCcqF+WuozwhZPryeDzYvz++IotzDp/PF+u6Ho1GUVNTg/vvvz/tOD6fL2GcVJYsWYKKodrTw19/8pOfxMaNGyHLMj72sY/hzDPPxGWXXYazzz4bZ555JhoaMn89zdbMmTOxYMECdHR0oKmpKW/HmayCBzovvPBCsBH1gHbt2oVdu3ZltC9jDLo+xU64CSGkxGVzYlNsUoUdekRL3jlimDYqa0RP3ihoIkzfQQjC0wCug2iL38+0TiDcAuDjsfscdRJYa/KsFAp0EkJy5UhYQ5MeDzBFTY7AUCbnnoiOaxmwM2Li/AoB3uHl3k47UOBAZ//Qy6FX53g4BHQoKryaiRrRgS9UOqENXRbqVs1YndG/9Mm4tMEJAFAABAURgaFzhRf6ZHxyUR3mtE6+zrRn6xFUL58LwDqpZYyBG9YkOl/agxmnL0HFwhkIdwzAVp08cSPS7QPXDXi2NWKOTcx7oJObfMzFO9UXga3KBSYwBI50Q/XF3//GC3RaY6Z/bxp5TD2sQB9a6q6HZCi+CNzz68fs0/nSHoRb+2Gvco17/NhcI+PXEwWshlHRHj88Ww6jYuFHMh6fEEJSWbduHdatW5f0MUEQ8OUvfxl33HEHli9fnnacDRs2YMOGDeMe74033sCFF16YcN/vfvc7XH755dixYwcAYMeOHbHbALB8+XJccskluPnmm7F69epxj5GtGTNmoKOjA7quIxAIoLq6OufHmKyCL10HrDefif4jhBBSWOVUwL+iYj8kty3l40wUoDU9kXAf1+M109gkm/SagWMw+q2Ld6ItfiJmdLwAmIkZKHa7Bykx6hpLCMmNgM6xPxwPWkZNDt/QS0yPYsCcWYNO1UC/AVx5JAQAMBy5yYUY7pDOJCFp+Y6Rdoes18gW2cCT3RFsGVRwIKhhb1iDZrNhOC+zPapDHzonaI0aCAxFPVUAHRBwOGRt2Skb6OS5OdWRPQGYQ0ufh5v3KIPWcxXt9iHa67Me6/albEakeq3t5V4/DCX/9SL9hzqh+hMv5Kn+CDpf3gPOOfp2HE14bLyl3VogCq6nD3R697Yi1NaPUFs/lMEQuGZYHdIHw2MaN2khGVpQRu87R6zjJwmspyqdY4wT6AQfGj8QBThHuH0gZalsQgjJFdM08cQTT2DdunV5aUQ0rKGhAVu2bMGvf/3rpIHMI0eO4Be/+AXWrFmDz3/+8wiHc1sfurKyMnY7GBy/BnMxFDyj84033ij0IQkhhExGOV1k4ipEB4Oe4v086Ym2HhqxweSnYIa7ITSIEJgPw6e7ZrAVQs2yxA0N/5h949MwAFDrdUJIbuwKxJdvR0wO31A2YtTgaHa50OKV0V8RPy1Q7DY4c3Bc5rSBqzrYUL1MrqdeRu5RrSDa0UhiEPBIWIdaZ48FOltkYyjQab1g+4eCbzJn+LNXhcHjL+S5vGQ0vAzbu78dFQtnINrtjT2mDAwFMT0BVCTJWgQSMyYLcQFRCyto/+tuHH/dubH7lP4APO8cgeSyw3+4K2F7bqR/tqKeACqPS78c0rO9CZLbAXNEINeIapD7A7DXxZdecs6h+SMINPUCw8/FqM8anHMo3hBsVWN/E/VI+nIEnHOreRLV5SSE5Njdd9+NtWvXJtwXjUbR1NSExx9/HPfffz8eeOAB7Ny5Ey+99FLK8ow33ngjfv/73094HjabDbfeeituvfVWdHV1YdOmTdi5cye2b9+Obdu2QdOs1+H169ejq6sLL7/8MkQxN+cWI4ObpZjNCRQh0HnBBRcU+pCEEEKmONFlgxHVwE0VNqeKVNdQBWlsJJOrYYg1NitTZbIpnQAY53D2fR2s7kvxY8gD4NyErdoBLWDNjhnplszrqJpvItiZi1ADIWTaGnpJa43Gg1hPdMdfe6IGR4cJHApp6K6JZ8OHRDEngc7Guhp8UFWDK5UwBFUHUjR0Z5KA9wIKAIY+JTFr0KMYkAUB6lAA06uaGHlVaotXgVDrxF7FxGv9iRmARg7T+PShxjq+g52Yd/EqRLrigU4tJIMbJiKdg6hdMT/p/glBtwJcQDRVHb797dCCcixY6P2gA1w30fnS3rE7cMCQNYjO5KsiNH8EpmHCUDQYshar9QlYz0nNifMQbh3bOV3uD0DuD8I5sxrhjkFULKhH37ZGuGbVoG97Y/zwo56TcNsA/Ic6E2p3yv1BOBuqxu/+zjmiPb7EpkXldNGWEFJWXC4XVq1ahZ/85CdYtmwZvvSlL2Hz5s340Y9+hB/84Ad5P/68efPwmc98Bp/5zGcAAIODg/jZz36GH//4xzBNE6+//jr+9Kc/4frrr8/J8fr7rdd6SZJQVVWVkzFzrShL1wkhhJSPcigbYq8aOuk1VQhmW8rtmJgk0KmHIDoESG4pF3FOa8xwN0zP24nHNjU4q0bWB02dacKgg/nfSrsMnxBCxsOEsR/1FdP6BwAy5wgM3e4cEWD0sdycIigA2hUDA24XuJQ6k4RJIjhP/QIcYQxKireigM7xak0t9obGBr+MHL59GVEVeliB0h9E8Ghv4hJ1zhFs9sCQtZRZhOaIoFshMjpNbWip/VDmqeINI9rtS7uPFkgRiYZVn5MbJgJNvQnbhdr60f36/pQZoX3bGgGTQ/VF0P3GB/Dua0f7xt0YeL8loUYoRj0nvZsOonfLESje+KqL4S73hpo+0GkoOkLtA4nzT7sHIYTkxi233IL6eiuz/5FHHinKHOrr6/GjH/0I3/rWt2L3PfXUUzkZ2+PxoKvLWhFw4okn5mTMfKBAJyGEkPTK4OxAtA1l8Rgy+MCmMY8Pd2AVkgU6tQBEO4fo4HDqz+ZsTlpXYqBT63gVjPtGHDj1MkGm90HveAnOOjk2d0IIyYrArH9pRA0O31CNyx3+eC78I14Ngn3yC788ptVc6BgEGJIIwWVPnOLwsuQ0QVAACCN1oBMAvnMsiHd9Y3P5gzns66ZHVYTarSwW3wcdCY9xzuE/ZJ34maPqbxpDmaCTyS7UJ9A53lSt4ykD1hLDUEvfuPuogdQrDTjn4LqBUEsftHA8c7bzpT0wNRPKYPKaMd6h5yra44P/cBeOPbUV4ByD77eOGj9+O3C0F76DXeC6gfYX3rPm5gsjeMwDPaxA9aZvIqj6ItBG1SflKWqnEkJILgmCgGXLrHJV3d3dGBgYGGeP/Ln11ltjt3PVIf2VV16J3T7vvPNyMmY+5HXp+j333JPzMe+6666cj0kIISSNMsjoZJABuK1AZ7R3zLubvUaC3G+AJXnX40oAok0Fgw7tyPrczWl0IFMLgRnxk0OeJtBpDmwHD3dDjL4He815kPvpBI0Qkp1MApVRw0SvZkUD/Vr8tf7lPhnfOb4WFR1jlyJnI2AAA5qJTh04VRQRmFmD2jYr4Ca47DBcDrCgDIjpcy9C3Mo+TUVLEdDcEzFw2YRnn8iIarGMwvCIZesAAA4EmnoAxAOMwyJdXrjn10OPxgOg2WR0cpMj1NKH2pOTL4lPZTij0xyqYTrucm+Mk9FpmDBkDao3BD1UE7tf9YYBxuDZcjjFRHhsfyD+vQ9/HT/AUKf0bi+Ort8c+9p/qAt97zYh2uOHqRnwHeiA/1Bn2u+D68aY4LDiDcM1pzbtfoQQkgu6rie9XWjz5s2L3WY5WLbGOceDDz4Y+/rqq6+e9Jj5ktdA59q1a3PyhI5EgU5CCCkMQ9EgOmyxk6RSJqgtqJq/DOax/TBVL1CZ+LjkiAIQINnUsc0ptBAEBAGzAF0DzSiYJKJq9iAQGEy5md71ujW1pvWQVp2Z/3kRQqYeuw3Q018kMTjDDn/ybMFNkHCZTZxUJpzGOQY0E22qCdUpoJ2JqK9xw/RHoFe7YAoCJABcEpBu+YDfBMITWO79llfGnZP8HoYZsgbfASvAJvcmNpPTQnLsGIaWeFKrR1REe3yxzE4gu0Cn3BeAHk7efTzlXBUttrSe6wa4aWbU6V1NEeg0dQNcN6HLGlR/NDYfLSRb37vJMbgvddmYjHAOQ1bR9Pu3xmTFdvx1NwS7BFPV0flyMGVn+9hQpjkmsKt6c9t1mBBCkolEIjhw4AAAq3ZnQ0P6Jm7Z4pxnHGPbuXNn7PbSpUsnfewf//jHePfddwEAq1evxqWXXjrpMfMl70vXOec5+0cIIaRw+t49Crk/OOaEoxSZ3vfBj/4MRt8ucH8zpIpRyyO5lUHEWPITHWYMAvIkT9IywI0wqmaHoL37ZfDgsdQbatY8edQDhtJ//gkhJSiDpesA0BxJnm2yI6SD1yTvFpvp8YMGR59q4EhEx4Aowm8C5tAy9acFF/ShGqLmOJ1gfQZHk5z9Rbc+xQQqXdnPPRnOYarWczU6G3FkIHV4m2F6REGky5cYeMvivMbUjKwXVvTvaB4R6DRhagYinakvrg1LldEZbuuH4g0P1SmVoYUUGKqOpsfethr5mRzmJDucc9Na/q8FxwZ1Tc2AHlZi/48/mFVTdaSRgWZCCMmXtWvXIhq1XksvvfTSnHU6H/biiy/i2muvxe7du9NuNzg4iH/7t3+LfX3VVVdN+JihUAjf+MY3cOeddwIA3G43Hn744QmPVwh5zeh844038jk8IYSQPBrY2VzsKWROD8AMd8W+dFQb0MOAs8EBeVAFQgcAzAYbm88JAOCRZvBIR9LHcjvPIMzm/7GOqXjH2XiYCoCaEhFCsmPYJIiTSBTY7FUQXOhAFSaQ7c4YmCjAZ3D0qwZUk2NHjQ0DholzBQY+uxb/1xHCZYudcAIwkjRNGumwbOD9wMQu+iguO+yZvtzmQLJApzoYTgi8ZZPRaWr6mEY94wm3DyDU4rH2NwxwkyN4zDPufqMDndwwrZ/jwU7oIRl6RLX+hWUc+9M7iHSMHzzNlGmY8B/uztl4o5eup2oSRQgh2fB4PNi/f3/CfbIso7GxEY899hj+/ve/AwCcTmfaUo4+n2/MOMmIooiTTz459rVpmnjqqafw1FNP4dRTT8UnPvEJnHnmmZg7dy7sdjs8Hg82b96MX//61/B4rNf9NWvW4MYbb0x5DE3TEuaiaRp8Ph9aWlrwzjvv4Omnn4bP5wMA1NTU4A9/+ANOP/30cedeTHkNdF5wwQX5HJ4QQkgecNOEEdUg9wUQyuDEqNiYKMAM9oLL8VpyIusF0ACx426IdXfD6N0MVnURrKDhWEbH3wFbVd7nyuU+GP17rNtKZsXJGVQAFXmcFSFkKhpwO1AjCUj1ujfu/qqJHlHCRF4Zo/PqURGMYJtfBecMfo3jv1us7tlfXChh0GFHQNfgF0RUAdDHyTx9tid17cjxBCQJuV04mN7oQKfmjyLS40vMeMwiAC33+rPuCWioWiwzkusmot1eGJHxfw9GNiNSfWF4P+iAc0YVAo29AKyGQqaqQ/VFMmpulA1umFByubx8VHBY9dHSdULI5K1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NTSzICAB1dXWoqKhAOBzGnj17sGfPnrT7X3zxxfjTn/4ESUod+uvq6ko7VwCQJAlXXnkl7rvvPhx33HHjzrvY8hroJIQQUn64wRHpttJfMlnqVmySS4LZPSobM7QPwD8AihdMAMB1iA4BMJOf6JnRPkDx5Xuq4Er8xNCMZniSaGZXm40QQgArlhaVJEw00AkATTqwLNudBIY/6yI+XVOJpr6x3bE5Y4gO1Rfr5QIWigL0cZoRTUY/Ewob6BxVP1LxhRHt9UMc0Rwqm4xOPapCdE48q9/UTQSPZfZ+MzKjs297E4LNHnDDhDrUwXz4s4HsCUx4PqlwwxwTJM4lua8AdbgJKVH851cUewpTmt1uR319PVauXInLL78cN998M+rq6vJyrHPPPRd9fX149dVX8eabb2LXrl1obGzEwMAADMNAdXU1Fi9ejDPPPBOf/exnceGFF2Z9DLfbjZqaGjQ0NODUU0/FWWedhWuuuSahuVGpo0AnIYSQBHpEQbTbBwBJa2WVGsHOAC2UcB8PNAH4B5haBIIkwAy2Q5wvgCkpOrXqUQATzxjKmDri5FDP7HhsKNDJJMGqhUYIIRngDOhlk6sN1qpm/5ojVDjwUFsYs5cmzwUN2W3o4lZg87bGAN6rEqDnuHnpSDsVjhVDDZAKwRgRrOOGiXD7ALhmQB8RAE3Ve0D1hWGvTczg1yMqBHt2p2wJy+QNA4EjmS0J10JyrAamZ1vTmBrd+tBnAj2SQZ3MLFkNk/L3Hqdl2dCJEEKGXXjhhTnpGbN48eKcjONyuXDFFVfgiismF8BuaWmZ9FxKVd6bERFCCCkvqj8Sy9ooB0KS83huDAcROWwVGqBHYXNHwZXiLsXnfAIncUOBTtGe22LmhJCpjYPhg0n2MhucwMUV3eUAALziS55Jup+JeC8yIutRFKAjf4HOzT4VPIOmTLkyMisxeMyTfMl4koxOLRCF6hsbjDWiSrqG9Ekpg+ERt0MId2RWKgUmR6itH12v7y94I0JujO2UntPx6UIhIYRMG5TRSQghJIHqi0Duy/2ytHyxiY1j+5LrEcDGwPUwRDYIE4Cot8JUirwUP+MGRHHcsE58RYcAvTAJSYSQMsdEATKA90KTWwocMrKLsPUtmoXHQhyAjre9MpAkgPnjtghCI7qWmxUO5LNNzK6AAlQULrdjONCp+lPXsUy2dD3S5QWTxs5Tj6hZ1fT0HeiAHopnL4Za+rMKlIbb+tG/42jmO+QIN3hel65zgwKdhBAyXVCgkxBCSALVF4YaKMAy7lxRusbcxfUIbJV2MEMFDCtoy5UemIHCn7yNZGoTiFQaVmaO6KCTNELI+JhNBBMEtJkMjZHJZchlu8LuLY3h5YHo0L7Jsyi7lMQalq0VbuQzX51zBs4KGOgcWqLu3ddmBSmTT2rMXZEeL5wzxi731yNqxksdvfvacezPW8c9Vjqhlr6iZD+amp7XYCQFOgkhZPqYtkvXPR4PNm7ciLvuuguXXXYZGhoawBgDYww33XRT1uO9+OKLuPrqq7FgwQI4HA4sWLAAV199NV588cWMx9B1Hf/3f/+H888/HzNnzoTL5cLxxx+P2267DR988EHWcyKEkGyZugEtGIUeyn39rbwxxtbd4noYNpd1csc0K4uSR9ph+BoLOrXRuB4af6PRhvYRxShYHht2EEKmBuayAwLDppCO5skGOoGMX3cEu4SDUQODo5rxjOcdBdg88X5JGTEFBiYKSTMmc34sTQfnHAO7W1LWsgx3DMDU48+TqeqI9viT1sXWI0pGwcpAYzean3xn0gG9cEdxVj7kM5sTsGqAEkIImR6mbUbn7NmzczKOaZr40pe+hN/+9rcJ93d2dqKzsxPPP/88vvjFL+JXv/oVBCH1h6v+/n5cfvnl2LFjR8L9zc3N+PWvf41HH30Uv/jFL/DFL34xJ/MmhJBkor1+mJqZfRpPMRljs0+5GoEgGOAAuNpv3Rc4CsazOwHPNWZkfzbPhxotMUQgOlzQI3SyRghJzbRL8NVW4tnGCJItHc9GUOdAtQvwhsff2C6hOaqnzORMxW9w/KUvv41iuMDA6yqt97aBPHff5oB3b5vV1C9Fk6VIpxeDe1rRsGYpACDQ3AvVF4ExZ2xg2oiOn9HJTRPtG3cnrf2Z9fSLlfmY748d3Pre6IIhIYRMffRKD2DRokW45JJLJrTvd77znViQ8/TTT8ef/vQnvPvuu/jTn/6E008/HQDw8MMP47vf/W7KMQzDwNVXXx0Lcn7605/Giy++iO3bt+PBBx/ErFmzoCgKbrvttqwyRAkhJFvRbh8wkYY5RcSjY7vJcj0ECa0AANNnZcQb/uJmc06Y6gMAMDMKwSYABWyqQQgpP5pNwp19ucmO2xdUYdoyzIsQBTSGs88gDRkcHiW/F6FMJmCr2w2eJukglzpf3gsAaetde7Ycid2OtA9C9vjBR9VE5YYJPaom3M9NDlM3EjIU+3c0l1Vt7WIxafk6IYRMC9M20HnXXXfhhRdeQE9PD1pbW/GrX/0q6zGOHDmCn/3sZwCAM844A1u2bMFnP/tZnHnmmfjsZz+LzZs344wzzgAA/PSnP0VTU1PScR599FFs3rwZAPDVr34VzzzzDD7+8Y/jrLPOwte+9jVs2bIF1dXVME0T//Zv/wZdz+/SDkLI9KUFo0mbJJQyrWvTmPuYqUPd+U0AgNEzVK9ML6O6oyPovdvARAFcPgYmAa6ZtmJPiRBSwoI2G3ak6HierYjBoUmZVdA0JRHyBOKVx6L5z7T32iX8+9Eg8p82aFGHMmB5mmX8cn88s1SPqlbH8VHvv9797YDJE7qRR3v98O5vjzU6Un1hdL60J5fTn7KMFKUECCGETC3TNtD5ve99D5/85CcntYT9gQceiAUdH3roIbhcroTH3W43HnroIQBW/c37778/6TjDwdL6+nr89Kc/HfP4CSecgDvvvBMA0NTUhOeee27CcyaEkHSMqFpWgU7BJoIlqdE5pehROOptMAd2QLLrsEmeYs+IEFLCPDluvCOLGQY6J7gk+Mgk64hm4hdeE5ppZbsKjtK4WMR1I1an01Cs52B0HUnPVivrc2Stz2iPD33bGjHwfis452h55t2EQChJTQtToJMQQqaDaRvonCzOOTZs2AAAOOmkk3D22Wcn3e7ss8/GiSeeCADYsGHDmBo7R44cwcGDBwEA1157Ldxud9JxRjZIokAnISQf9KiKSI+vrDqTiq7pUWrabu+DMXgQghAGMybQ0IgQMm0053jhT3Sc5d6C0wY+sxpBp31C43vV/L/n/K3Pyug/55iCn1bU5v14mTIVHYasQhnK7hx5oVHxhhBuGwCQGOhUBq375b4AvPvaETzaW9hJl7HQMQ/CnYMpm0QByLjDPSGEkNJFgc4JOnbsGLq6ugAAF1xwQdpthx/v7OxES0tLwmPDS9bHG2fOnDlYvnw5AGDLli0TmTIhhKTl298OU9Fz0sygUERHsWdQIINvAIoXDDKAPLcnJoSUtX05XgoeGq+hkcOGt5xuHOSZZX4W2+FI6ZSAMhQNymAYkS4vgMQgm/9QV3y7SPx1P7atYaLrlb0FmunUMLC7Bb1vH0p/Qbd8PgIRQghJYXqkwuTBgQMHYrdPOumktNuOfPzgwYNYsmTJhMc5cuQI2tvbEQ6HUVFRkfF8Ozo60j7e3T22mQchZHoJHO0FN8yyKtZvt/dgOizYU48+BQbAOPBDSCfcWOzpEEJKFKurwIt9ua1HHB6ni7ppE/HHPgUfri6NJeHjORBSgdlVYIFI2hqahWDIGnwHO+OBNyN5oFP1R2DIGiLdXqheK6s/0jlIQbksRbt9iPb4seDy09JsxRHp8sE9r65Q0yKEEJJjFOicoJGBwwULFqTdduHChbHb7e3tkx6Hc46Ojo7YkvhMjJwDIYQko/kjMA0TplY62S5pMYD3/rXYsygIxq2TcTPUAajeIs+GEFKSGMPPmBshPZLTYY1xommmIMCnmfDp5RF1kw2gp9KNuaYJDDUNKhZD1jC4pzX29XCNTkPVETwWr8esBaLwvHMYodZ+mMPB2fJ4uksP52NqoY6kh1X0vH0QSz97TgEnRQghJJdo6foEBYPxTomVlZVptx2ZeRkKJdZWy9U4hBAyWao/YmV0quUR6HTPtkFrf6nY0yg4U+kDm2DTD0LI1OVf2IA/dec2yAkA6d4RhEononYbfLqJ3cHyya/fpTNoE6wpmkvhjoFYfU4gXosz2NQDricG43reOohAYw9Uf24zdqcjPaLGGkAN46YJxRuG/0gXoj2+4kyMEEJITlBG5wTJcrzLr92e/oOSwxEvIheNJn44ydU44xmdSTpad3c3zjrrrKzGJIRMHYaiQfVH4KivLJtApygGwc3ymGtORT2w1dqg+ql7LCEkLpjjbuvD0i3u5nYJYVGAVzNglFETl21BDRdVsqKfCEU6BxO+9h/phqnpCcvWhw1ncnK9uMvtp4LBPa2oWTYX1cvmxO7zH+5G8JgHktM+JshMCCGkvBT7/b1sOZ3O2G1VTd8YQlHiJ6MulyvtOCO/zmac8Yy3LJ4QMr1wk4MJ8bprcl8A4Nb9RpkEOlna0++py4x0QZprQPUXeyaEkGIyZ9dCCkVhRhSAA+Z4TYMmyOAABGY1qmNIWDLNBYZtugDOGQK6CeRpDrm2yavArCp+N7toT+ILuanoCDT1wn+Eaufn08B7xyC57LFAJzdMDOxqRrClDw1rllLn9SLgnIOx8nj9IISUPlr7NkFVVVWx2+MtIw+H4/V/Ri9Pz9U4hBCSDdWXWJcs2mudbHGTw1TLJYBYHgHZXDNDHRDF4taVI4QU32a7E0p1BQS3FbDLVw6aDsBsqAYACPbEhkNRpx33NFtLr/k4TYtKSUjnMEsgqKKF5TH3yR4/tAAtT88nI6Ii2ByvgRrp9iLqCcCIqIj2+MBNCnQWmhFNnzhECCHZoEDnBI3MkByvo/nIZeOjmwJNZBzGGGVoEkImRe4LJH7tGfqa85Jfui7YRDBJBHj51IPLKT0KQW0u9iwIIUWmcEAXGLRKF1hdBfrzFJvRONDmcgGMAc4RgU4G9Inl0Wk9GaMEAp2mMvb9NtLtK/xEpqFI5yD0qArFG4LvYGcsuBzuGAQoo7Pg9BCV4yGE5A4FOidoxYoVsduHDh1Ku+3Ix08++eRJj7Nw4cKExkSEEJIteVTzg/5dVuCMG2a8o2uJcs804ZohgEWPFnsqRaO3PgmpsviNNAghxdOrc2iCgG6nA2t6gC83BsffaQI0DhwxgPZFs2DY41WvIvMb0FLGpQxLIdDJjbFP4MjmRCR/DFlDuK0fh375CnreOBC7yGtEVcroLDAtGEXwmGf8DQkhJEMU6JygJUuWYN68eQCAt956K+22b7/9NgBg/vz5WLx4ccJj5513Xux2unF6enpw5MgRAMC55547kSkTQkiM3Bc/ker8+x4YEWvJkKHoJZ/JwJgCJnDoXdOv4/oww3cEjqoyjjAQQiatTzOhMYZ8v2KrHGhWTDziM/CW023dObMaO5iEA3L5vg6V6iU9xUulSQrFs7URejhJJiEFOgsq1NqPYHNvsadBCJlCKNA5QYwxXHXVVQCsTMtt27Yl3W7btm2xTMyrrrpqTJHl5cuXx7I8//znPyMSiSQd5/e//33s9tVXXz3Z6RNCprnhGp1aSEb/rmOx+8uhmytDBIIQhTl4sNhTKRrGOUTWU+xpEEKKqFc14WMCXozmNyijco4dARUb+yJY22LVkz/qdqNb52iRS/89I5W2PHWpnyyqVVg4gRRNnwxFo4ZEBRRuH4g15jLkaVqWiBCSU6X5Dl8mbr/9doiiCAD42te+hmg0sXB4NBrF1772NQCAJEm4/fbbk47zjW98AwAwODiIb33rW2MeP3r0KP77v/8bAHDCCSdQoJMQMmnDGQz+w10ln8E5hhEAM2mJE1O7ij0FQkgRdSsGNoZM+PT8voYrHAgbHJwzhHQOJgnoMIF22UTEKLP3jxH+r1cplybxpMC4YVLNyAKKdA5Cl60AvzKYvjkvIcXw5ptvgjGW8l9lZSWWL1+Oz3/+83j99dfH7J9u30z/tbS0pJ2LJEmor6/HkiVL8NGPfhR33HEHnnnmGahqZhfPFi9enPJ7mz9/Pk499VTccMMNeOihh9DZ2ZnLpzcvpPE3mZo2b96Mpqam2Nf9/f2x201NTQkZlABw0003jRlj+fLl+OY3v4l7770XO3fuxLnnnotvf/vbOP7443H06FH8+Mc/xu7duwEA3/zmN7Fs2bKkc7nxxhvxyCOPYMuWLfjf//1f9PT04NZbb0VdXR3effddfP/730cgEIAgCHjwwQchSdP2x0YIyQE9osAcytwMtfQVeTbZY0YQ0OmDMI+2A/hQ1vs5GxyQ+xUwSSyLDF5CSJw5uwZPMCc+AwXtnTqOhDV8cqYrr8fc2C+jQ443zWE2CW2alc2plduFshHe86vAgmpgVHM+QgAg1NaPupXjN3/lpgk9rEByO8BEyiHKluoLI9w+EMugjXR74Z5XV+RZTT0Hbpy6V3VWPFr896FwOIzGxkY0NjZi/fr1uOGGG/DII4/EkuIKwTAMeL1eeL1etLS0YNOmTXjggQcwc+ZM/Nu//Rv+8z//c0JxpHA4jHA4jK6uLuzduxePP/447rjjDlx55ZW47777xpRmLBXTNmL28MMP49FHH0362JYtW7Bly5aE+5IFOgHghz/8ITweDx555BHs3r0bn/3sZ8dsc8stt+AHP/hByrmIoojnn38el19+OXbs2IFnnnkGzzzzTMI2DocDv/jFL3DZZZeN850RQkh6I+tz6pHyWyLHTQU80lHsaRQdV/wT2s8eeAxs5g0wNED1UaCTkHIy6HDgvsYQPrS8CgHdei3X8nyO1xQe1RmcAX7dxJGIhrmOwp3E5cMxtwtLQIFOMlbnS3tQe9K8cYOXhqyhf9cxNKxeAlt1fi86TEV6WIk1wTQ1Hf5DXWhYs7TIsyIkta985Sv46le/Gvuac47BwUFs3boV999/PzweDx577DEsXLgwFgPat29fyvEuvfRSdHV1Yd68eXjppdT9B+bPnz/uXEKhELxeL/bu3YvXXnsNr776Kvr6+vBf//VfeOGFF7Bx40bMnDkz7fc3eh6apsHr9aK1tRXvvPMOnnrqKfj9fjz33HN47bXXsH79elxxxRVpxyyGaRvozBVBEPDb3/4W11xzDX79619jx44d6O/vR0NDA84880zcdtttGQUnGxoa8M477+A3v/kN/vjHP+LgwYMIh8OYN28ePvaxj+HrX/86Vq5cWYDviBAy1SmDwVih/bKsBWYoMPt3FXsWxaf5M1526Z5jgxZm0CM6tPaXIKkBsNlfRRn+9AmZ1oJDdSUfHYjXsZML3ThFFOFRObyqCaPMm7a8FuX4YrEnQUqS0h9E/85mzPzwCWMeM1Qdot06jdZCMgbfb0HN8rkU6JwAQ41fSNEjKsIdAzBkFaLTXsRZEZLarFmzcMopp4y5/4ILLsCVV16JNWvWQJZlPPjgg7jrrrtgt9uTbj/MZrPF/k+3XTZzueyyy/Dtb38bBw4cwPXXX4/du3fj3XffxdVXX43XX38ddnvqv69087j55ptx//334+6778Z9992HQCCAz3zmM3j77bdxxhlnZDX3fJu2+fW///3vwTnP+N94Lr/8cjz//PPo7OyEoijo7OzE888/n1UGpiRJ+MpXvoJNmzahv78f0WgUR48exa9//WsKchJCcobrJgzFOknWyzHQaSowA8fG326K44ovo+0EuwRx8I+wuQEmMECPQu98HUykbE5Cys1w1cA3BuTYfZ0FbgjUV1eFVwasuvSBPNcHzbc/dkfApGl7OkTG4d3XNuY+UzfgOxBfVeLd2wY9rCB4jGqHT4TcG1+dokcUcM2EFpDT7EFI6VqxYgU+8YlPAACCwWCsKXUx57NlyxacfvrpABArlTgZlZWV+PnPf457770XgNWX5otfLL1LhvTOTggh09BwJme5ZXQySQCPlH4B7ELgqi+j7ezVIozutwHGASGeAsqYnmYvQkgp8vOxadzHooXtUnzPgA7NLOgh8yagc2gza4o9DVKigi19Yy4Ia/4IAo094KYJzjkG3m+BoegINnvAzcwSZMoR5xw8DxnckW5v7LYeVsA5hxaMptmDkNK2ZMmS2G1FKX5TM5fLhccffxyMWZ8ffvazn0HTJv+54Vvf+hY+/OEPAwD27NmDv/3tb5MeM5co0EkIIdOQqRnghgmul9fZqqPWBr11Y7GnURLMETU6RZcNUkXyZSiCZIDL/QA4KhriH7gETKzGJyGkeHZHx2ZvFjihE1sGi3/ilkuDdluxp0BKlcnh29+ecJcWlKH6wvDua4d3XzvUwTC4bkALRBE65oHqCxdpsvkVbu1HpHMwp2OamoFob7xGbrhjEEZUhRaijE5SvlpbW2O3Fy1aVMSZxK1cuRIXX3wxAKCrqws7duyY9JiMMXz961+Pff38889PesxcokAnIYRMU3pULY3MA4aMa01Kjql1gj0ZXIufHNirGER78ieRCVYwmzEAPY/HH1CooRMh5SZY5kvFS1EfnQ6RNAZ2tyR8rYVk6CEFvZsPo+uVeIMRU9PRv6sZykCowDMsjME9rQgc7cnpmKamQ+6Lf5YZ3GMFiCijk5SrQ4cOYeNGKyHj7LPPxuzZs4s8o7iLLroodnvTpk0lO2auUDMiQgiZZgzZWq6gBaJACQQ6a2q3Q93/ANTjn4Ihp19OLZidoMqSFsY5mCRAkARg9zVgpz4be8w1045on7XcTgy9ChOAyPqhtY3o5qj0AmwVUPxfAUJIhoIG/cHmmre8FjaQAot0e9Hz1gHMuWAFAOsz1Mjg3DBT1RFo7EHtigWFnmJembqB3s2HEe4chNuozenYvg86EkooDdfr1IKU0UlKl8fjwf79+2Nfc87h8/liXdej0Shqampw//33F3GWY61evTp2+8iRIzkZc+bMmViwYAE6OjrQ1NSUkzFzhQKdhBAyzaiBCABAGQyVREYnV/oAALYKcdxAJx/YWogplQ0mCrBVikO34z9Lu3gEeuVyaCEVRu871p39LyXurIfBBAZOgRNCykbAoKhcrgXpKSVpcIOjb3sTDFnD/EtPBU/xN2goOgxFK88mj2l0vPg+Bve0QnI7cj724N6xzZ4AyugkpW3dunVYt25d0scEQcCXv/xl3HHHHVi+fHmBZ5bejBkzYre9Xm+aLbMft6OjA7quIxAIoLq6OmdjTwat1SCEkGnEUHXoIWv5txaUi57Nx0QBXLXebO3OATjqU3+QdjY4oLX9tVBTKwuCJEByWCcEgjDi5EvxwFkTgGATYQ5+AABQWzYk7Kt3vDK0np0QUi6ORaiJWK5RlixJhxsmuMnR89ZB+A52wlCSN/EwoipgchiRqRPoVH1h9G1thBFRoQyEEj4yTraOpqkbKTvVU41OUq5M08QTTzyBdevWlUQjopEqKytjt4PBYMmPO1kU6CSEkGlE6Q/C1IcWf/PidwcVnRLAh+bjewuiPXVqjWRXwAz68DsSExlEs8u6zeKL+rWOv4AhDNEVX7jBRv2suTxQmEkSQnJCqHKis9Cdh6YBfx46SZMphPNYFmf36/vHrcGZKhBajuT+EUELzhPKHYXb+mFqE7/wogyEgBR/e7TShJSyu+++G3zoHGr4XyQSwd69e/HNb34ToVAIDzzwAC666CJEIpFiTzdmZBAyl1mX+Rp3sijQSQgh00i01x/7wG5qetFrdDqqDXDNOmnQjj0HJqT+0Cyw0vmwUCrcjl0w2p8GAIjhtwEAFXMlcN9RwAhDzP1KM0JIkbTV1xR7CmXDIWV+iuPTKKhC0hv+3BTp9MK7L/ly62GmMjWyrrlhjq1FOuIzozIQguqb+OeytN3pS6CsEiHZcLlcWLVqFX7yk5/gl7/8JQBg8+bN+NGPflTkmcX19/fHbtfX1+d8XEmSUFVVlbNxJ4sCnYQQMo0Ej3liGZ2hln7wImeySOYR6D3brC+0MAQ2lAmRZEU1M0tnOUSpUN//IYze7dbtA7+Ec4YDkvYeAIAZAYjS1DjhIoQARwwqNZGplbNsGW/rpbqnZBymHv8dGW7omIqhTo2MTrkvgEBTb8J9xoggrtwfSFmvNBPp9p3MuIQU2y233BILJD7yyCNFnk3c7t27Y7dPPPHEnIzp8XjQ1dWV0zFzhQKdhBAyjUQ6BmMdLoMtnuLW6GSA3vRbMD5yKaY1NyaMOqEXGKAPFm5uZcru7IXR9bL1heqDxDrH2YMCJ4SMxsQS+HjcUIXIghkQ3PbYXXTZInMrZmkY/TaSilcz6aWQpMWNzEtGlGNGZ7KL3tFeP0Kjamia6ohAZ18wYb9sgpPDdU9TMSnQScqYIAhYtmwZAKC7uxsDA6VRKuqVV16J3T7vvPNKdsxcKYFPcoQQQgrFUDRoQ82ITKW4S9dFhwQzcCzhPsatxjpShT3hxNM5ww4ebS/k9MoSizbB6NsFAODqALR9P0y7vWinjwGEjDY4v6HYU8BmVwU+elRGpC6+DKyR6nNmbFmdHy6bmNG2UQMQ7NL4G5LpK4uPSoZaXoFOznnSZeSGrI3JXh3+mpsmIl1ecM5h6gaiPb7Eep7jiHT7EO5IffFaHUxfB5WQUqfretLbxbJ//3689tprAICFCxfijDPOmPSYnHM8+OCDsa+vvvrqSY+ZS3SGQwgh04weLoEugAywVY09CR0OdIo2QHLFlx7a7b0w/YcKNr1ypXfEu9Lrfe+Cy/1ptgYECnQSkmhmNbabOfy7mGCmIB/aURXic9kZnBpLYgvh+DoPXLbMnvy2qAYI9FpIcqPcmhFpgWjS5fjJMi4NRbcCm70BK7vT5OAmh+9AZ/qam6NEe33w7U998dqQtazGI6SURCIRHDhwAIBVu7OhobgXT6PRKG644YZYA9pvfOMbkKTJX9z78Y9/jHfffRcAsHr1alx66aWTHjOX6F2dEEKmEVM3wPXiZwVVz/OBvf/pMfebPX8HAEiOKCS39RbFRAEschhGz9aCzrEcmd54MJj7m8fdXqAkJkIS9LmcaFVyt2xSqKmY4J7WCYnCGIRKJ4RqF1ojxc8KKRdLq9vgtmV2mhPQqfEJyR0tEIUeURBq64fvQEexp5OWoWgINsdrt4c7B2PBkGTL9U1VQ9er+xBusy6i6mEFAzubEWrtgxaUE8eW1ZTH9R/shDJO1mY2GaKElJK1a9ciGrUSNy699FKIYmarC/LhwIEDOO+882L1OS+44AJ85StfmdSYoVAI3/jGN3DnnXcCANxuNx5++OFJzzXX6BSHEEKmkVKoHeWeY4O682tJE530jtfgWv0VMBaGaLPmKjpE8GhXYSc5TQgi1cEiZKR+JqAjhxlZstsB+wQyk4ZDb1HGwO0SuqsqEB2g5ZyZWlx9NOOMTgBUo5PkjOqPwH+kGx0bd2PepR8q9nTS0kIyfB90YNY5ywEAvv3tcM2uAZNEmNrYQKcha/Af6oKzwSqpEWzuRd+7RyE6bag6Xhk1tgLBbhtTc10LRuE7NP5nuvECoYQUi8fjwf79+xPuk2UZjY2NeOyxx/D3v1tJG06nE/fcc09B5xIOh+H1erF371689tpreOWVV2IXL84++2w8/fTTsNnSN+vTNC1hTE3T4PP50NLSgnfeeQdPP/00fD4fAKCmpgZ/+MMfcPrpp+f+m5skCnQSQsg0wU0Tplb8QKfoexLcTD0Pu/ImTOk0MEEEIEKwCzAHx2uqQyaCCRToJASMAZyD1Vfir0ED7/pVMJsArptgkvX/hIYVBQQlCTMmsO9woPM3Xh1r3RK2qIBGf64ZOW2uA24phPOOU3C4L7N9WmfW4bgBP8yQPP7GhKRjcrQ8vR0weUlcXE5H6Qsi3N4PLbgQ4fYBhFr6rKZCkpg00GioOoSoCt9B6zNZ75YjAOcwVR2qLwJT1WP1bg1ZhdwXADiHrcYN2ROA6JAQ9QSANI2IhsmeQG6/WUJyZN26dVi3bl3abWbOnIn169dj1apVJTGX22+/Hd/61rcyWrLe1dU17rwlScKVV16J++67D8cdd1xWcy4UCnQSQsg0YchacbusD5M9aR9WDqyD47TvwrBZHQsFCTCjPYWY2TRUCr8QhBQXkwRwzUDY7cTzLRHIBqDMr4W9axDMaQefYPCLSQJ8TJhUoHO7X4VaZccWX3nV/Sumi4+3AiTXnbQNBzwXYGvb+HWp9+kMlfXVqKNAJ8mFoUCeWeKNifyN3TAUHd797QDn0EIyuG6C20z4DybJujS51Wxp+AVqREPLcFs/tJAMR30lAECPqAi3diHcOYjqZXMQbhuAVOFAxcLMXhHTNSsi2VvxKH3eyye73Y76+nqsXLkSl19+OW6++WbU1dUVdA6CIKCqqgo1NTU47rjjsGbNGpx//vn45Cc/CbvdPuFx3W43ampq0NDQgFNPPRVnnXUWrrnmGsybNy+Hs889CnQSQsg0kazYfDGYwba0jzNuQN3/c0in/x9s1Q6Idg1GsJ1WFuYDPamEgNklgHP8b4RhuLH5YZsdqwCEaivgzjL4FV7QgCp/GBAY+jnD8RnuJzgkwCbBDMsID2VvDqomBiQJW320jDNTH55r1Sc+tWEnLjthJba2VY2zB/BMv4xlc5wo7GkpmepKvQN7sKkXpqbDf6gL3ORgAoNpmIi29EOPJL9AkCp4G+nxJQQ6jagKz9YjMGQNoZY+OGdWw3+kG476zOoWR7q94IYJJsZr7Q7PkZBCu/DCC2NLwHOtpaWlJOaS7TxKHTUjIoSQaWJ0ofhisFU7YAaOjb+hFgJDEG7bdggsCGakLmpPJo5RRichiNRWAlUuvDwQf43sNxjAgCNC+lpWyexhNrxUUwNPTSV6smh00zlnBgyXHUwU8aov/pr3lkzL1rPhEK2LepKgo8Ke2XtHl2Kgj55jkmOlnNFpKBrk/gDAYS1X5xzcMMF1w8rwTCXVS5rJoY+4KGTqRuwCu6nqMDUdpqIheDT9qp7YYTQDUY8/8RAl/HwSQkoLBToJIWSa0ILRYk8BjsrxlxAO04/8DObgLjCT6jTlDRvbbICQ6WYTs8GURChG/Ax+wDAhOO1oy/ZPhAGbwjp+2BrCqxpDRxYRynVeA6YogFU4sGkw/lq5vjeS5STKW7YJW05JiO0nCQwuW/y9ziVmtpJhUDXQTd3XSY6VQl30VKK9/qRBS1Mz4PsgTaAzDS0QjTUxGr2KaLjWcfBYZoFOAAi39id8beSwURwhZGqjQCchhEwTWgnUHhPN1oy35b6j0Pt2genePM5oehPM3mJPgZCie92vQbbbEBkR6OzTOAYaahAysgt+CRVO7AtqCOkcm3waepXMAp3MJuKl/ggMQUC40pXwWF+GY0wVC2uzqyX2Lx+ynp/lDQ4sqbdjpjPegWhRVWb1nQ3O4M/yZ03IeEq5GVGqpen+w10TXgEU7hyEd59Vnsi7LzFYOjK7M1OerY3gIxoXlUoJJkJI6aNAJyGETAOcc+glsHTdHHw3ux0UL8yBbfmZDAGCeyHYxWLPgpCi6lENDIzqRNqjmvirJqBXM8HqKiFUODIaS6t0oi1qncgfDKnoVTNLCeU1bhicQRMEeDLoijqVnVCf+rFqp/V6Ve+WwBhw6lwHLlp8FABw2lwdJ9RzOMX4e93yuiMZZ4gGKNBJcswo4YzOVEHY/nePTnjM4NFe9O86hmivH+G2yWdjyn0B+D7oiI8RpTJGhJDMUKCTEEKmgXDbACLdxc+MNAbfz3ofvf2V3E+EAADMwb1wNUyvbDFCRjsW0bHfSIyGdSo63g9q+ENXBGt6OJ6rqQObUQWhypl2rGaHM5YZGtA5uuXMAp1Rh5XFKAsCDhvTt9nGybMc+IfF8QDJqXMTA8zXfUhDlUPETy8+hkuX2XHHh4+g1hEEAMyviuLU2QHMcnXGtp/l6sJJMzMLUvtp6TrJsVLO6EyVtakMTrzxmeqLQPWF4TvYOeYxbkzss0bgqJWV3fbCLii+8ITnRgiZXijQSQgh08DgnlaE2weKOgfBIYHLvqLOgSQyvAchMMqQINOXYJcQ0jleGEj8O2iXjYQMv9f9KvoqXYhWudOO90wgMbDZq+pABnHLsGhlKnIGbAuVbnAk3/7fma04rsZ6rxIFhn9ckhh0WVrrx0eXCDi14SD+3+p3sXrWHlQ7rDrOdU4Znzz+XTCWGLBcMSuzYHNAp4s+JLdKuUanmqegITdMBI/mriyO3BdE6/M70be1ccLBUkLI9EOBTkIImQa8H7RDD2feCCjXbFV2SE4RMIs3B5KEHoUg74etKrEmnuic3ktnydTCpPjH3f5FsxIfdFm/+9t9ia9NA6qJ3YH4fVsGFWzXBfTYbMCMqqTHESqdeKY3MXhgcAbBHc8oFOzxvy1mEwGBoW/RLHymxWo4JINhb2B6XnyosIv4p+OfQ7UtjFVzHDh/sR0nz+jFytnx5++sOQfxD8f1Yn5FC86b9yYWVTZjWfVBLKyx45SGdpxS/96Ycc9b2I3FdePX/fRRoJPkmFFiGZ0j62Oqgfw0qDSTdEufjNAxD/rfbbLGpq7rhJAMUaCTEEKmOC0YLWp9TiYyOKpUCHaA68WvE0oSGd2vw1md2NXZXkV1O8nUIY6oQ9s16qOv4bCl3I/zxFTMvwwo+HuEw+9OvnzdU189Zh8A0IeaCzFRAEYEPZnDBsFpx5MRDr9mZSEOcIbBLDq1TyX/eLwAh6RAEnTceno7vnjaASyrbce/nGI1F5pXbcNpDe+ixhGBXYgHoZ1SFP/f+a1YWNmWdNyzZn8Al238tFqvOj2fd5I/pZbRqQXjwU09mJ9AJ9eNvNXSLIWmmoSQ8kApG4QQMsWFWvvH3yiPKuaYEBCCgx2CyjNbQkgKx+jbCfv8I2DiKeCGCccMB0R7FCOvhTpnOCAPUDYuKU+iU4QesRphdBjAaQ4bzKHGGIpNApBZMOK9gIK9QRWNtQ78XBLAdRO9x83G7NZevLpgDp72JP8b+W9FwncaqiA7bLCrOhhjAOfgNhH+Sjfe7Y036dgpmwhM01qRH5lvvVfNcA7i1BN2wSlagRgOBsbOxiUnWD+nuRUDEIXE95LPLHsKJk+ev3FS3V44pUvhtgkQBIaQkvx9yKebAF3jITlUajU6VX8UjqGMdC1Pq3xM3QDy9BKmU6CTEJIhyugkhJApbuC9Y0U9vqgeAKBDb32qqPMgqXEjCsklQXTZYOu6BwzxQAATBUi990KwUQSAlKkRvWg6NBPhhurY11Ex899rzhk0E3hzUAGGsjT3GwxMEvCd5gB2+pNnMT3XG8VudwW8kg2GJFpL6Rlg2iS8ZojoG9GZ/d1A9p2Jp4o6p5VZ3uD0oNIWhCTokAQd8ys6MLfKhjqn9fwurGwfs6/ATEhC8qCSwEw4JOD0eTYsm5E6xyNC9f9IjplaaV3cVQaC4NyKQuatg3ker9MUswQTIaS8UKCTEEKmMEPR4D/SXZiDCWOXBoouG4zOv4EZfpiDBwozjzLFnFVgjgpAKEJAUfHAUSPDbfwBRv/7ADSAMQh2EZVzFBi978JZb82LifGfs+iyJf25E1IqHHUOmHYDgkMCkwSoJsc2Fq/XGGYT+/0NDQU6IybAaypgJFmyPtIfBzV0gUEVRTBRABME6KKI/+sMo39EoHN/cGrW52TM+pfOvAqrCVGdoy/h/gZnNxbVCrCLViByfkVL1sd3SsCX1xyCmObMR+cZTJKQLHDDLJkGOqo/Au/+dhgRFdzk0PMV6Mwj1Z+f5faEkKmHAp2EEDKFmYoOmIVZBmmvHtvsQXIJMPreA/e/X5A5lLOjp1yG7pMvAqudV/Bjm4FGsIHnoR97DgDAgtvhnGGHs56BKYes+0Qr08xeE/852yoEOGrGb/JBSLE4HUcQYTZU1h2Dc4aEXtVE54imM/5MWqIn8bRmfYSOmBzBEXU3U2mL6jikcHhFEdxlBwQGXWAYUM2Eup5KacREcs5tE1EzTpOzeZXWRbnRy9JFwUCD20SV3crmSpW5mc6ps8O4YvGGcbcbeSGHkFwwSqSBTs9bBxFo7MHA7mPQI0rBPhvmUqTba82dEELGQYFOQgiZorjJY0uU8o4x2FzWh3nBJoJJQ1mJQ+eMeucbhZlHmWLuWvxX1UL8uP4EaFUzC358Y2AfjK63Yl9rTX+Ag+2BjTeCe60uxoxZwQfJqUGqtIKbgmTC7vaOO75UQcFQUni2Sjt0pQ0BbT+4fxdsYjfaZRMDWvx1cdCcWGDrl+0hCDVuBE2OdmH8kvcBw0TU5OjiDJrTDiYK0KdRNnSVQ8AMt5iQAC4KDE7JOhVhDKh3pK4n3eDWUeWYeIDjllUvAgBOnaNg1ZzUgWmWLuWTkAkohU7hekRB/65mAIBna2NCU6KyYnIEGnuKPQtCSBmgd3NCCJmiAk09QIECnc4GG0TBCnhVzArCUWcFOiW7lQXIo56CzKNcReetxPsceNkEIhX1YHZ3YSeghRJ/RloY6vvfg37sURiBRgAAg/WzFOGB5LSiFYIoA52PjTt8hY0C3eVIdKXuSF4ObBXAzsrVMMJNONRwHgLcg5aohv4RdfMGjYm9RhqcYVtNDdplE73G+AFLn2YiYgKHVI7DdgcgCAgUo0xFgVU5rO9xeYOAOhfw4YXxIOMX15hYOdv6Hat1Spjh7E05zgyXAqc48UDnosqjAICff/QBrL/i6ZTb6bWVEz4GIcmUQqAz0u0DH3rdU71hBI6Ub7CQOq8TQjJBgU5CCJmiBt47VpA4p2ATYbd7wJQWgAG89dcQbUNBMZb6xHXKyEFNN0OMB5S8rjrAXTvpMXPBjHhgBjsBDAU6GcCgQ5CMofsMcMWfdgwmMiiHHqaszjIkucr7YyKXOLbJtXgTK/FkcCbe0SsQ0jl6lMkHOgHgv9vDGNBNDGRQg08zgUHNxEsDCp726YDI0JOiS/hUMrNCBGPA6XPCmOHiuOA4P6ocIpY3OHD76mdR57Ke/3p3+qBvnVOGU8pNwOi4qqOYWZE8iN/uHL8MASHZKIVAp+aPJHw98H5LcSZCCCEFMvU/YRFCyDTEDRP+Q13QApHxN54kqUICM0Pg4RZUzJFg9G6HyMLWg3Jb3o9faExKPBF+49wvTrqu5i3z18RuX161CKazalLj5YziBTOGsid4GK7eW6HuuAOiKA+VJdDB1fRL1x11djBDhrOWsjDKjWizglDuORJsleUXqA7ZOLyajp/0LgfTvfiDfy4AoEsxIThtYDYRG/smvoSzXTawzavg3pZQRtu/4IniUEjDC54oIAjwlWCNPFFgqHONvxQ/U9et8uG5a/fj+NpBzKtSUe+K4vh6CWcvVDG3oh0LqjVr2bor/Tj1rjDqnYGczevUuckvUL0/ouk9s4lAQ3XOjjkdaXPriz2FojNLoBnR6CxIuTf9BUpCCCl3FOgkhJApKNTWD1PVEekcv37iZDEGwIiCR3shhl+27jR91v/R9rwfv+BEyeqOPkQXBPDJLDVnDEdHnQfpzhJcPtn/JqBZAR2GCARJBIMGMzqYdje7w3pcjL6X7xmSHGNDTV8EQYXoKL96kqrejH7V+uNq19zYHqwFAHhUHUa1G/1zZ6A1aqQZIX+4wFB6YU5gYY0NFfbcnR6IAkedw4/ZFT4sqQ2i1hGGXQKqHdbv1nE1IbgkATMr0j8bM5wBLKjoyNm8Tm5IfhFwcyCefeefU4+Qs/wC/KXCmF2L92yUIVsKDEUbfyNCCJlCKNBJCCFThDpiaVK02wcAiHTlP9AJBsCMwJQ9UA89Yt2lelA5j0Freyn/xy8Q5qoG5iwHJAfgrAKrqAerqIcGhmjtXECcWD1DfdFqjD7l1hylF+hUW16I3WZmAJWOv4Hpg4AWhK06TXMPxaqNpx7+DTCNmq+UO9EpQUQrAEBgEQi2/AYEK+cBTMrtx9JgtA19Q4HOTYHa2P2cM/iddvwmWLxQIxeFggc6bUMdxUdmbDpGPOdOScD8aob7LtmXs2POqQigxuHFbHc/PnfSRly88A3MrjQxy2296l1/0kYcV2dDnTP98t6PzNmKhZXNOZvXhQsbY42QRtrslcEkAYLThl1cQlCc+nVUh43biElgVpZrhj5wuNCuFT+bsegK1RQyDSOiFnsKucOBSGf8Aqvqj5REeQBCSGmhQCchhEwR4fYByP1BANbSdQCIdBcmo5PrEYCbYNwKhnC5EyLvAFRf3o9fKHrDYnTOWwk4q8AdlQgsOh16/UIYADbNPhlsAnU1masGPzn+o2PuV6XSy4IZ/tkCANQ+GN1vwey1Mnhd7saU+3F5qE6rGoCQ40AWyR9HLYPGhrKAzACESTSCyYSovA9bZe6aHzFRwNvGcejWnAAAjsQgexcT8UxvOGfHy5YuiQUPdNY4rSDVRxbFn4u5VfGg54IaGxwScMbMnTk7ptumoM7Rj9muLsxw9qLOOYAPzxvAihlWduZMVzc+fkIIVY70gYpquw+SkLtgxrK6JiysHfv7ppkAr61EdEYVQibHAKbPxRnmTP/3x2rcYPbMyxqY4DiqUKCzFFK3FW/xXutyTQtF0fHSntjXvVsOw9SKk5lPCClddMZBCCFThB5REDjSDUPRwIcyCGRP7mqaDauar8cay4hOCRAA07MZPBJvPGQGmwGlK+fHLqZQ1Ww8WLsEhrMSL5x0Md6YtRzNc06GxgTcL1WhbfnYgOV4mldeiqeNsW/FquSAuvTDAMbWBC0FRverMCM90DvfBADoh/8n+YYMML3x7DDJnbvafyS/JNELWbD+zhVRANMO5vV4QQRgr8xdTeHKOSqe8h+HXjV58Oa+HhmcFy+IpYoi5AIHQBZUi3DZBKyeE6/Pt7gu/hwsm8FhFzlq7IO56LEGxgCJGaix+zDL1R27/4qlb2PNrHgpi48uOIKPHXdk8gfMwnx3C+alKIXc53bib9yOt/wqegxY9Vyn8EUaZhPBRAGmO/17TdTtBMbL+hzBAMOhsHWxJJNandlki6Y1auWAMBTALdbPkJdARqfcn/vPgsUSPOpBsNkDLShDDyvof/co9OgUylglJInFixeDMYabbrqp2FMpG1P3XZsQQqYZPazAf6Qb/sPdsaVSPA9F8Nngi7F6fe4ZEYiSDqPvPXB5ILaN6T0MM3Qs58cupoCzCi+aDLqjEv8puLFbdGJj1RxEmIg2DqyvXpj1mO9UzoKSJKAgS3b8adFZkJedC33uSTmYfW4Zfe8BeryJCw91QbCPPUmtmCPC8OyIfe1yHCjI/EgOcAXKUDbbgDQDaiR11m4uvCWtgM6CORlLdNlg7PsPNMvOMZmcw94PFLdmnSKI2BUs3HJLgQFXnzSAsxfaUGm3ggKnzXVgYbV1e2aFDStnhiAJHKJgoMY5+YsSdlFAhc16nRCFeMbVcVVNqHP0xb6e4RrExxa8POnjZUMUDFTYkwegNukCnuuX8eagghbVRPPsGeC1pVdOJFeYw4beBQ0YcDnTbmcyBp5FoHPQ5DgU0gCB4Y+mNG7pEm1GbprwCSMCtkwS0DHbCrIaORo/a0WOc0Z7fFAHp05GpyGrgMnh/aAd3W8egKnqCDb1FHtaZJrx+/343//9X1x++eVYvHgx3G43ampqsHz5cnzuc5/Dk08+CcOgTONiotQKQgiZIvSwgmCzB9w0UbmoIS/HkNw2mL7DgAsAY2BQIfr+htHhVC4PwOjelJc5FIvJBBgAApXWc3sUAtpMhn9hHODALjY20GcsOg2RinpU9xwG93aOeXyz4MCYJw9AwObCLsGOXQvPxn/1H8bM9j1jNyox9moJcr8xVMuAg4kChL5HE749dd+9EBf9DoZM9bRKnwaPUIkFAIIQUSUmD4IwUbAylibRQdxW7cCW6Ayc7gwg23CSvdYB1a8m1MGrqOtCVFkMHi3dZcdBQcAbg7nLYE1HEhjsIsO/nPQ3BNVPwS5af3/XrOhHq78KksBw7nFAjVPBRxZYgckGtwhfNPu/0+UNDhzpV2AXGZySgGr7+B3pT6g5DIEVfomzQ0p+zEe7I+hXrRPUv3hkbHUI+L96CWNygwWW/e89Q9EDX2MIDN/t1XDLLCdmpNmMA+CCFehkojDuhdQ+nUMzrcDja14VN9W4wVMsoRYqneh3ODAny6kzm2jNY8TPQa9wQBjqMu6fOwO9nGGewNDhdGERitFtvLg/cO/+qdUU0tSt37u+7U1QBqyLY75DXZh59jJowShsVa5iTq9k7fr/nij2FPJmzY8+W9Dj/eY3v8Gdd96JgYGBhPuj0SgCgQAaGxvxoorWFQABAABJREFUxz/+EStWrMCvfvUrnHfeeUnHuemmm/Doo4/iuOOOQ0tLSwFmPr1QRichhEwRelgB1w0Em3qhBaLj7zAB7rp+GH27AACOWjsADq3pyaTbcrk/L3MoFk2wApnv1cwHAOwygT5wNMK6/4gJgCW+rf7y+Atw9uzT0bNo9ZjxmOTA1hTnidtd9XjNBF4zgeBkOroXkM1hnUDaq+0QHBKqnC9Ab/1r4kZaCKJz+jT3KGdhWxX26g1wzXQgHNqLqJi8+3TlHBk29+RqazqrgjgcZmjWsg+sOaWdEB2jfqfkFtwofH1Sc8q3XRoQMQoTADl1rh0nzrRhlqsLq+e0wj6UXXnarGasaOjHBUtsOG9hL46v7cW/fuh3AIDlDRMLPP6/M9tgFxluXM2xZr6IU2fsGHcftzR+MDQfXCkCnZ2ygeHSkl2KgT0BDcmqHKhz6rJeDi2UYBd33WXHe34VO6Pps48GRAlcFCDUVoDXVow7bvdQI7De+mocCGqIVKTIGGUMv62ogWcCpSS8c+vBRsxFnVePXmf8OO9DxNthE9F59XhXLU7Asdgr1wNNveNvVEaGGw/JvX7woaBnoLEb0V4/Bve0FnNqZBr4xje+gS996UsYGBiAJEm4/vrr8ec//xnbt2/Hpk2b8PDDD+Mf//EfAQAHDhzARRddhKeffrrIs56eKNBJCCFThB6JNwtR8xToxOBbAABB4rC5oyh2pkIhqYK1COIxW3XC/e8NLY01ALDq2fEHmIDuoSxPRRp7cmvMPgGpFs/+hcUDR0Fb+uWEpYLByqBxVnpRoayDdmR9kWdEJoqJDD1CDSK6BqnvIQyaNgwKyZd98vZfQRo/5pEWZ4AGhvZoKOvAEQ/sHVM24XDlyXg/XKRlqhl6rl8u2LHWzJNx/nFWJt2Zs96DXdRQ5RBRYw/gjNmHcN4iL/5x4XYsr413NT9zni/r40gCw4n1bTj3ODuuWb4L3/zw1oQl66XGmSLQmUyyd7qwKCE0Z/zakwnjuEsv0NnvtJZ6vzrO72STAZgCQ2tNJeQMAradivWzf9Bn/d8jJl9IeGTRbPxvWwgtE/hV+ZsqwFfhsl43BIa1IRYruQEAm0M6/twTxqOKiDf9RSpXUcRIp6npCR3Kp4KkHdY50PHi+1AGinPRhEwPv/zlL/Hzn/8cALBgwQLs2LEDjz/+OP75n/8ZZ511Fs477zzccssteO211/CHP/wBdrsdiqLg+uuvx/vvv1/cyU9DFOgkhJApQgvGT1K0QO6XRNprHTB6rOXoQut3IYbeAdP7xtlr6lCGMjp3j1qq2Dviy/bjz47dZnYXhqtGGUyAfMK5Cfsdm7sy5bGaRpx/+4Yy6ViVtWR+It3dC8KMQHBIMJsfgt75erFnQyahco6KiO816Eon9M43EIGE+0NnjNlOctsQcjkhsL2TOl6zNA+HIm68r9RDdEgQsujs/ErtP0CsTPyb3K7NmtR8CuFAsHBBl9s+9DLOmNMGwOpyXmFTcN+lrfjQjF2Y6+7E7IoAllYfxgk18Rq6//qhx/ChOdk1QptVKaHaHsTjn/glzp69CR+Z83ZOv49cWz0780w3ztiYZjmaALxiZlcFLOIsreZyQo0blx+xguDtsgGhKvWFtQ6NIypJ+J9+DX4p8fvuPs66yBde0AA0VAMNVdjktT6TvNhn/d9kMKjz4oFhwWWH4LLjS81WcMqrZ59FvCOooVcQ8eqcWVBn1+LlPhkjw7UfhHQoJvBwRxj7g0VqWFPE68FaUM5LrfZiSvX9BI50Fz17lkxdra2t+I//+A8AQEVFBV577TWcdtppKbe/7rrr8MgjjwAAFEXB5z//+ZJoTDadUKCTEEKmCC0Yz+JU/bnP6HRW9MMMdQwdLAy953WYnjdyfpxSpQjjn9DqbMQ2kgPHTCuzJCw58MyC0xO2HcxwSbpXtLI7tfrjAABmTbZVzAqDGWE4qkWYoalVD2w6YpFd0JgNYVhBdhMMPm3sB3R7Dcf/Oq6BIk5u6fpwItcbwRlgAoNgFyBk2IF5izwTED0J9w3qpZc1V0wznD04tSEexKx2hFFlty6G2QQFVfaxmXx2UcE1Jw+g3p15IG9mhYCZTg8qbblpKpVvly9+DdI4DXKGcQDMlfh7pYPFlmdnqlea3N9KrvXXJKZjR6tSvy8ZAAZFCa1RHZ4RWZORBTPwwKCVZfcHVcALdjfWS27wUUvRd4UN/EqN/z6ZFQ60z6pDSLdeW8wJLF1XTeDFkIlHemVslawgsjzipapXiWf/hXQ+bkOk/ChecINPIHhMCBnrgQcegCxb75V33XUXli9fPu4+n/vc5/Dxj38cALB//35s3LgRALB27VowxvDoo48CsIKojLEx/9I5fPgwbr31VixevBgOhwOzZ8/G1VdfjW3btmX0/TQ1NeGOO+7AqlWrUFNTA5fLhaVLl+Kmm27Czp07U+735ptvxub35ptvwjRNPPLII/iHf/gHzJ49G4IglExneAp0EkLIFMANM2HpuhHNQ+ZCcFf8eFoY5uBB6B2v5f44JapdGr/AfXTEEnXursFw+OVR92z0Mgmsbn7scZ+UWWbPwFDw1FO/EGACBhuWZj7pQjJCsCl/B5cHxt+WlCTRZQVhjM6XEIUDIVMCc1TgtehC+A0JbETHZcEmgkkRPNY3H6+wVZM6rmYcBQD4dBtMQYCz1gtblfV7z0QhaYbn8BL3XeFKRI14ZrnktiGkjG38NV0xBtQ6vDiuqil235kzt+Kj86xsS4coo8qWfAXAKQ3t+PCCzE8VFtWaaHCVT/fjeqcHV6/ILKDOGcPgUOd1odp6L/CC4eUBGWzU7ydL05m8y0Ta8gyCK79BesFlhzzfajnEJAH/F0wMwvXY4oFYJgoQauKBT4NzHDCANllHx4jVww+GBWzxylDn1eM3HSH8oCWAB1rHLiF+pjeMx7pCuL2iHv/mrochifh5v5YwfqaYJOD2inq8H1DweFcYh0MaXhi0PvfIsBogCW77mAs0gqPwgeZiJnHJA+Vx0YGQUsY5x2OPPQYAcLlcuO222zLe9/bbb4/d/t3vfpeT+Tz33HNYvXo1Hn74YbS2tkJVVXg8Hjz//PM477zz8OSTyXsnDPvZz36GFStW4IEHHsD+/fsRCAQgyzKOHTuGRx99FGeddRbuuuuucechyzIuvfRS3HLLLXjzzTfh8XhKKmuVAp2EEDIFaMFo/pMGtPgHZq4XpltwKYmw8d8yPbb4SaFcMy92+wAHVMbQtuTD8cczfAvuG8okDdrcYFUz8cqMJZlOuaC40gft6NTt6jkdOGo4mCTC8B2GDhEhQ8LW5V/F24FaDBq2hACNrVKCX6yCAQEebXINppgcrw0JgcE0uoZqAAO2Khsk19jxJZf1dxExTBwRGmL3i04BplmkJaolKFnGolOKxhoAOUQZdQ5f0n1PqD2KD8/PvL7fmXPLrxbgf569MaOszj2ChHcM6/ewrc6q07xb4WiXDbTMTexVzpypg2ltOgeQ/HiC0wa9Or/N5yL1VbipVwdmVuOVObPwbE/i6o9Denxu3nkzoI2oxalw4O2ABoMzHFXiBTWPRDTIBrARdnDOYKTIzOScgXOGzYMK3vEq2GF34u3B+AXabHIPmShi86ASaxoFAMO9hiImEKyvQrC+esx+PM3PJm+KeOI/uLulaMcmZKr44IMPMDhovb+df/75qKmpyXjfiy66CC6XdXFs8+bNAICvfvWr2LdvH6666ioAwLx587Bv374x/5LZt28frrvuOsyePRu/+MUvsG3bNmzduhVr166F0+mEYRj40pe+hL6+5KXFfvrTn+Kb3/wmNE3Dhz70Iaxbtw6vvvoqdu7ciT/84Q/4yEc+As45vv/97+PBBx9M+719+9vfxquvvoorr7wSzz77LHbt2oW//e1vuOyyyzJ+fvIpu8IyhBBCStLI+pz5YkZGLEnW89TsqEQxZxW8TBw3mNwp2sFq5oD7e9BbMzd2f6sJBAUBH3XVYVFFPf665locFR0ZBaePDgVEfTYnwnNOxDuCE/9id4GrpfUz0Fv/AqiBcbdzOT6AihMKMKPMiS4bjGiRGlUUmOiUYMjJu5uLYhiuGZUw1FV4MnoS9keqsNF3LjQuIGoCkluHqhmAySE6TfShCoCCkB6e8HycMxzYoccDRVxg6BbsmCUEANRCchkwjfjHVUedA3Z3BJrC4K5oRrjzJGyTa3Di8AZ2hm2+7BrETGW2cYJ4AjOxpLox6WMLK5vxoZlLAaxIuf+8ahtmVQg45jWwYkbHZKZaFMdXH8LlJ16BvxxM//f/nWMh3DTPWub9ZNDEfwD4+4AVpPuP9iieEYVY7UDusAFhJek4H4R18Fo3mD8CriV231HqqsDAk14CE+xS8iYsaQjVbpij6nVvE2xoCsu4ntlwKDQ2229bSMfHRQHcNPE/AY7ra504HgCzSwjoJt4YsD5rvNyv4MQFVhmVw8escR5oy64RzP93LHF7I8n7IRvxvCYQx/5eR4a2e3ZQRbjWjnkSA5D4Phl1O+EOK+Ccj3n+pxrOOXyHu4o9DULK3p49e2K3V69endW+oiji1FNPxbZt29DX14euri7MmzcPs2bNQm1tLQDAZrPhlFNOyWi89957D2vWrMHrr7+O6ur4xZyzzz4bJ5xwAq6//noEAgGsX78ed9xxR8K+Bw4cwHe+8x0AwN1334277747YYn8mjVr8NnPfhY33ngj1q9fj+985zv4/Oc/j7q6uqRz2bt3L7773e/i+9//fjZPScFQRichhEwBI+tz5gtXvHk/RqkKLzodH7Dxs9ZaRDveXHUFwAS8VB3P6OQMGODAoGjD/lMuwzeFCuxEZllwWw2Aueuw21YJv7sOe00Gbe7JE/5e8iXTJevawYfiCU1FqZc2lrt++izvc89I/VrBoMJm7sV7DRfhVd8M9Kh2aHxEFmdFCGzoZ6bZeKy7cVTth6N+Yk1W7M5+POdfFL9DYNilOtAv1gIATFsQxohMUrs7BN76EEwHg/LeXYgaAjpH1OHTJQFN0fxmxZUTewZd7KvtvqT3C8xEtSP930adS8DKWRr+5UMqquzl2fF4ae34KxQCOodHM8FsIp7ujUCdW49DISs42hI1Eup3mmLy13Zml/DqgIx33RXQZlSNebzHboOSbF8GRGZmnkE0rLe2EsGFMxO/j6GY4fDcR3tjUAZq3PAvnIkXPFH8PWLtIDdUY6dfhTa0f5di4M6jQdx5NBjLqowki1SmEdATtzeTXfmrTlEyJkl5AM/QRLZ5FRyRDWyLjg1kvgEbWufOACvgEvZiLeU0ZG3KB3MJKYT+/v7Y7Tlzsq+TP3v27NjtgYHJl3d65JFHEoKcw6677jrMm2ede2zatGnM4z//+c+haRrOOOOMMUHOYYIg4KGHHoLD4UAoFMLTTz+dch7Lly/H2rVrJ/6N5BkFOgkhpIyFOwfRv+NoQTI6YWaXTVL2hj4A6MetxlPzTsX7Gayre9kU8V+2arSvvhp/5GNrrXkEO77ttj4kHchwnR5nQGT+Srwl2PFa7SL0gWP3/FMBYXLLhYvFlPsguWxw1DnGLbZeKCy43apPWSKB13xivleT3i+6bEB4L7TG3+A5OXkgnYfeBsDgqHMgIooYXiDuMZxwuDLvYD2SxvtxaGRg0q3hoGxDs2lleYbNQWgj1h8Z+mEoNgOG0Arv8ishcxHdCovVRVRprVIMY4A9SeZbNiqkcNql3U4JuHjJMVx38hbMcU/sd6DY5lZmFqDtUQyYdZXQTOBBJfH1N1Q71NSHMRgpanTq9da+93VF0etIvDDARAEHDYZQkkCnOasGASn71/sIY/har55QMzQ8TjAypHN0VVXgP/us9/tX+2X0L5qFtwU7WpMEDnNJH7XkXbBLiLhTdIEXxj7HvSMyXncHNXQqY+d7X0cYd/UoSQOleTPqKedmYRoE6Smyigkh2QkG4xf8Kisrs95/5D6BwPgrn9JZtWoVPvShDyV9jDGG00+3Gp82NzePefyFF14AAFxzzTVpP3/X1tZi1Sqr9vrWrVtTbveZz3wGYooLe6WAAp2EEFLGPFsOo/W5HYX5QMunV/dO5rQybn699Dz8BHZkUpW0DxwDHPh41WL0JclO6WQCjg3drWQRf9g3cxmaOcd/D3XBftRZD8xYNM5epYlxDsktwKFuiAWTi43LvXDXRyFMIJhQThz1DmitLyQtEWivZlAH3gCP9ODNYPKl3wO6ldXgcHXBDwfUocDEi94GaIJV3zNbLQD4iAkx+V3siNQjZA7VQ2RVUEZkU3vUDtxbcQsUpRWXem+wtlGcEJ1WhDPKqD7nsGqHNOlAp1OUsawhdYOccxaG8amlz2FR5THMdHVP6ljFUufMrPRCt2pin9PKMHyiO/EdYRO3MgRZfQXMFK9r4aFGP01hHZFRf4TazBo0ygZCSf44m50uGCnqeqYTAsP+oApeNxSEFRie6B1/9ce7GsMOn/V31C4b+HhjGH/35v/vSh6V+dg+dwZ+ERWSvl4ZSRqUjawN2qsaaEsSmPWqJvYFtKT754s5ukSBd+KlPrIR7fEV5DiETHVVVfEM/FAo+5ULI/dJlomZjZNOOint4/X11ue3kcFZwOrsPly3884770za5X3kv+HO6z09qRsMpgq4lgoKdBJCSJninMc+yGqh/Gd0cj69MjqN+kVgdjeeRu6WuLVnsPw9md866xEacQ642QR8s5ZNbBLDTZWKGGS0OwagHXkUoqNEAotGFMz/GiS3CKkyv12Pi8nu8gKqD7aKsd+jKGoYrDkRrG4RfHry3/lXbGeD2QSYagv83ITCreAHB0OTtBCCLbuPlYJDQpOSeJFGjrZhf6QSOgwwScB7Wj0iLD6fQ8JCPDEwDx/wKkSGgqFdqgOiwzp2mBcmiFAOFtSIcNkm93c+292FeVXJswAZAy467hAAoMbuhY2VZ53bunGW5w9rj+r4hSf5RcV9Q0G1/gp3ql5DCI7IQhwdNjzmcOAdv4Zk77LNBpB1LiUDAkM/tn63C2AM+uxadMrjj/SEZ2wwdG+Kpe65FDE4hBo3WF0lWH0lvter4snuCPzDy+8ZYu9bEUf61+mAZqAtmvozi2Iv3NJ1U9WsmqAmhxaMwojmJmicbkk85xyR7ulbboiQXGpoiDc8TBf4S6W3N77aYcaMGWm2HJ/bnb40jzD0PmMYia/1Ho9nQseLRFKneaSq3VkqaIEPIYSUIVM3EGz2QO6zTtDyXaNTdEowu45NIKekMFj9QvDB9vE3HGnmEmCwHTCSnwy9dvy5OHn2MvTmsLxW2wTH2jwqmVYD0FgzH2dOYKy6T1wF30svQqyaAX2wc2ITmiyfVTuIjcg2s9c4oPpHBREEBpj5r29mBBrBe7bBuWoFoPUhEMqu2Hy5ENRj0OefAVsFhzYqKYGxCMJiJYJz/xFIsQL5np4V+OxSGQcNN5j/RQisCsC5AACP4cYSl55VUydXPcc7wbkJ9/2ZnQEA4GojKmbNQEdgELKjdugbYLin/1RwMGyMLIztw8EgVgaAQTt6DbqGP+zshQq80cl91HdLIcytSv4aee0pIuZXWs1OGOOwieWZTVvrzGwpYcTgeM+f/HvsGype2QQRqwQTycJw7Wb89U4Z9bI2yBkOhzToGLtUe1/EwIlV2f1eR+Y3QB463iATUD+rBr12O8aGWMdqDI/9eXvV/K/oiBgcX9QdI55j6/9bOhQ8W+lEsLYSYVHArFYPfjJObNrgLG3N0H2iDWfNqAQfyH9dWS2kwHegE9FuL6qWzoLcF4RU4YRjONN2gkLNHlQdP9u60M0BW5X1uxPp8kJwSNACpdWwkJByNTJzcffu3VntaxgG9u7dCwCYOXNmrIZmoY0MfN51113453/+54z2q6hI/TpVysvWAQp0EkJIWVIHw+jddCjWjTTfGZ2OuuIV1M9EcNYJqMwy0BmtnQ+3roJ7kwf7wkzEhtpFQA7P7zJZ/p6pD+wV2Qc6GYNjlY4a7RKo7Z6iBToNz7bh6cTYK2Wo/lE12kQBppnfunCCXQLvPAoA4D1/h1CbusN0ueOhRmyr+xgulEIARtUI5EFEBRf+oK5JO4aAPhzUqrGIBaCNaKhlAGCO7F4jBEHGS/7EZimvhqzAJ+ccgvd5hISPwRj6RREkET7F+ui6K5TYnMXwvQywK9CspWheMg0J4Dhlpn/S48yukIFRobvV8xy4ctkHkITyDG6OVOeY/HOkDV2Q2RM1sNzJkCznpnvES9noQGdgaH8tyZ/Qdr+KT1Vl93u9DRI2Ba2LDlEAx5xO9JZ49ZmIwdGTJOO0JWrg4YYaqApHyOD41HFz8Ncjk2sg99SghuPr3agvQKDT90EHXLNrMLi3DVFPANwwYa9xTyrQyTlH/3vHUHX8bITbB+CcWR0LdPbvOIq6UxbCkMszw5qQUnPKKaegvr4eg4ODePvtt+H3+1FTk1mDuFdffTWWFXn++efnc5ppjcwkzabLezmjy96EEFKG5IEggkfjaVd6ngOdEuvK6/iT9dwc6w1727lfgDl/ZUb7dNfMx6dP/xdATFzCFjz5Y8Cc5dgouvEsz+3ytoEcxooPCdl3uWY2J4RqwH1+GPZ5M4u2fN30HbHmM+JisGiODbqyDOsLiq6J/5xsVfFJ6J2vg+u5DEcXhzS0NN1Rl/g7YkRa8H+BU8DkD1A5H6iYawUNK+cxyD1P4Ka+S/HMYPqOogMixwvBWfiy5wJ8ozceatcBmPYkkRTGEjqyu2bZ4ahzwNngwKDdPWaZ/L6IdfL/Z/8ChLV2bA3VQYUViKqs3hlbrt6mJma+ec0obFV2tKmFW5Ja6mqdKpbW9o+/4TjqnDIW1NjxiZNsqBwqN3HR8QEcV90Jm1D+JU3cthBcWZZdGE3nVkOhjX0y5FGNclh9JYRKJ9qV+N/H2rYwhKEGRvrcOjTJ1mMjn01WV4GrWTWaIzqyzc3bFzXxwtAS9IgJ/C1s4lvHJhcczLewwdGXokv4L9tDeLgjjCe6I/hslkHO0+dZrz9zquKvDa8PyGhCYbKRIp2D8B/qAtcN+Pa3I9rjQ7Rv4g1JQq39iPb4EOn0InC0F9EeH8LtA4j2+KCFZAzsbkGk21eQkka5xGylnR1Gpi/GGG64waoJHo1G8Zvf/CbjfR966KHY7ZtuumnMuIWydOnSWHB2y5YtBTtuMVGgkxBCypAykPhBP+/NiPy78jv+JLUKVsCmW3Li/UVnjLs9c9fhmLMGh0wOfWFiMe0/zDkFO5aeCw8Heko4i3VCoWcmQMZsMIFDmuMseud20Tbi+VX7xjyeSaCTiQy2yol/WBTto06sjfKv8eiotr4npzPedZNJAvzuGdgdrobpfQ8MMthQNp7ABqHY3AgY4y/06dDCaFFcCBliLOgIAAYHIsLYvxfJJcHh7Ix1tLdF/wansxmSIwp/msqDYV3DX6suQ49qh2lYvxvGwPaU2/+e/SNsbgMBvcTT1gpoae0g5lZMrC7XSDbBwEcX67j9jC349Arr+V1U5cOiymOwTYGMTrc4+UCnxjnUWbXoUgxERxV5UR12vFxbi2Y5HsYcUE38vbIKYMAz3I7n+6yg5MgcvM2VVWgfynAcyPLX+r1g/OdyRDWxviuEDMpzFpVHNaDl+M/3uDo7rlg+CAA4c0HiY/sK+ISYevxYpqJDmUSgc2BX8//P3nnHx3HW+f89ZXvRrnqXbLn3HsfpvRBSCYRywNFCuQB3v+O4O7jCUe6O0HNHOwiEEJJACAnpjXQ7cZzYce+yepdW2r475ffHSFqtd1fNkiw58369/LJ25pmZZ3dnZ+b5PJ/v90vHK4dQYwnan99H8FgHXa8fpWv7Mdqe34eWUOg/2EK8e3YL2ycj2M/c/Ngmc58vfOEL2GzGpMnXvvY1jh49OuY29913H4899hhguEKvueaatPV2uzFhG49Pf0FZSZK4+uqrAXj66ac5cODAtB/zdGMKnSYmJiZzkKHcnENMZ4iStyJM8sRD07b/U0XwV3ACiWfOv5V7JAdftxchWHMn6xa8xWjeYhotxgNLfVF6UZ9Hkfm8NZ/jM5Ab8lRoHtk92YpgzR7aaKtaiu+yd2OtWITsL+PJbmO0Z5mfRBBPbwYbqedXeL3PIzstaKFjac4/AItTxFlqGa7mLWZxfHhKB5Ask3OViTYZqfMXacv0k5NXzkGkAePBWm15EHuh8ZnKTgsHHUsBSKjd6M13Ig46JYVkByFr9krrJ3M4ptKWyHQTK2gMoA5XPx9CtIgoHX/E7reCKJAMbCd57H9IyAl6R0lLENc0vt5hOLVbEjqCJLLXlzvU6q7uSjSLRkCZ5WrODCAK4LSIbCrZzfL83ae8P4ukclFNIyvyd/H3G/8MQJmrF681QL7t1IXU043P1ot4is6aw+Ek/xw09nGyvPQ7TeYrxwfYcVIO4q/VB1FLfPygKUTPYA7MlsHYddFh5d8bU5MuXUrqgi96Rw9jV8r87A+lhM6fN4fTKpLPVjrjU//bvXl5iGJniFKPhfOq0s/VV3LkWwWG3bZTxVCaIQAlGid5CpPTgf0t9O1uJBmKEazvJHiii3BTD91vHKN7u5GGJXiia/onwKcQQRKJu43zWpBNecJk9lFbW8vtt98OGFXUL7nkEt5+++2c7X//+9/zkY98BACr1crdd9+d4eAsKzNS9XR2dmZUSZ8O/umf/glJktA0jfe85z00NzfnbKuqKvfcc8+obWY75pXExMTEZA4yVG19RujfConJuw+mG8VdQFTX+ark5oAGh3WdjqWX5GzfuPA8FLuHHYLhHjjm8KVWSjInNBgAZvu4sFNjOPRc8JVhKajI2k7y+bEtl5E9Plxb1vGxN4NEhDoSjvEJW9OJ0vAoyQM/x+6PoXW9gXRS6LNkjSC2/RBbniGeWfOyCLOBlxCYnCgtSgJK41MndWruC51q1+uIVhmlfRs2wXgQF0Q4qJUAEHJVoba+DP3bAdAjjfRLvnHte1u8JOtyRdfpVpPY89O/Q00QafDUYLH3Y/dbebLoJhrKL6BX7aZdze3g6VVk4rrxmLo77sHitnBXbE3u94xISHQykCP09Z1Etc/Kx9Ynqcs7gNty6oMnq6gyz9uMQ45Q7mxAEMBpMRyI8hkQug45C6WPm/6kzvM9Rqhw94hTUPC7uaPREBpPNhDGNThms6e5GH/SEka0yhwpzk8rANQ5InnnPn/u3HDJsnyuaEmij7iBxd/BJuc1xU2cV/EGH1gZYXPZnrR1B0PJrOlbRKvMYy7PlPZDHzlxqjPpyuvJUAwlEjeEU00HncH/dXRVSwmqs3yi9mTUAg97rYMTaBPMR2tiMlPcdtttfOELXwCgsbGRDRs28OEPf5gHHniAN954g61bt3LnnXdy6aWX8r73vY9EIoHNZuOee+5hzZo1GfvbsmULAJqm8elPf5rXXnuNo0ePDv+balauXMl3vvMdAPbv38+KFSv4h3/4B5588kl27tzJtm3buPfee/n85z9PVVUVH/rQhwgEAlPej5nCLEZkYmJiMsfQNX1GhU4teGTGjjUZWooXckCD+Ijxyt35dfy/bI0FkZ/m1bDeXcLrg+OBfZKdK4dWO32zXuAcQhdAsLrQ/eW8uORiLm1MhfWKdjdazBDs1NIKev3l6LZ+PKsF9OfhM3vK+PqSCLIwO+Y7xeBLJIONiIKGaJXQEipWnw2avova9ipy5Wdwl4tIyZ3ESC8WpPXtR3LOB5ZO+LjZQt61/mPgn5lq79OCKKDHOnEWJdBaHCQP/QSh6A4kC+wMFQJw3L6ANSVLSQ68DeIVxIUYj2rnjGv3L/RnF8gTaied8VZEWyGMKMUi5CX5VfcW/oUurHaJH7cuRRKW8J/SNhqFSk4ucjNEQEk9ou6POpB8Oi/0FGRtO0S/YKMveeo5Vj02ieA0uMtmApss8sXNLVw3/+kp26dVSlLiNHJCy6JCiduCzxaYsv3PBjZUCLx0QiKcOPXvvW3QfSlYJBq8bmjPLTa/Ek2/zvQndQ7OK+Q/WtPzKzbEVRBAdNh4eEBlYZkfua0vrY1W4uOK5gQDyhy9dk0Dy/IPU+M5ymdWh/FZe3BaLiQyqCwnNRA9drp8HpKCQGlDB6LDykChl9+2x7hqKjtyUhqcbFE4SjSB7Bg9fHuuhaOPlxaHnacGFNYCIZcDV9/cTyFjcmbygx/8gCVLlvCVr3yF3t5e7r77bu6+++6sbZcuXcrPfvaznEWILr74YjZv3sxrr73G7373O373u9+lrZ+OIrBf/OIXcblcfPGLX6S/v5/bb7992Kl6MlardTi8fi5iCp0mJiYmc4x4TxBtBl1Leqxnxo41GV70lHFygFa9kD33pODI4yFN4CEh5RhoH9k2x3azFrubAzUb+Qwu9tvdw4s9Z51P/0tPgK4TXVDGd4/7+eL8ebydLAOiPNwa5gOVblbZ3OiJ0198R+t+CwBBTOIq0gm2SNhdPST3GQnTRbUJreE+EoGDUHJnakNRQOnZjdp3IH35OJEtIU72o2mhZqRSGTU6NyvWWlwWFK0We/+zdM67koJDD+IsFpCEVrYPVjR/LrmA8vx27GoIe0KiWXbxi/bqce1/ZF7OkeixBpp0B71uP5YRv0gx9AK/772CW90NFFutHIvNB+A1bxVhPQBkDxHVR3js+pM6mhVC6ui/z6QwQK9yao+2ogAfXZvgjtfm2LVgkK9e0M9Hl94zpfu0ywnsUkp4u3KhwqK8fVN6jNPN9YvrKXJV8pudp76vpkGRfKDUT9cY49S3w5nXmV/1Jg234Qhe6o0Rr8lnv2yluyfB721WPiiJKQefAN+Iywwoc/O6NV34rUYxriJHGwDFbpkTfSk3ZYfPw/vqI7glkT+V+Dhst2MBDoWiCG4JfZqetdRYuqMz2tlP8HgnxZsX5tjCIBE4MwXA3YrAq33GfeMvmsy1lun77N+prP/WLae7C2cMn/70p7nlllv47W9/y2OPPca+ffvo6upClmVKSkrYuHEj1113HTfffDOSlPtZQhRFnn76ab797W/zyCOPcOzYMcLh8LQInCP55Cc/ybXXXsvPfvYznn76aQ4dOkQgEMBms1FRUcHKlSu57LLLuOmmmygsLJzWvkwns8PKYWJiYmIybiJtgZk9oD67Hzbrxcwqy32DzwhKzXqj4M6gc1H1Z4Z3dwNIg+LIaapCPll6qtbwnLMIALUs9d6kYhfOZZtBEInm23m8PYp9iYt/2JuKYXysAzR77hDImUQNGEnRxYG/IBAEAYRkKi+Q1ng/avdOUKJp+busHiuCpoASRXZahgvejBeB7FVpJevcfTySHXAgfwtK85PcL52PYHMjtN6BqjTTN1jh/ImBUo7ItURkL9Y8mQ7h1M+DetXHs6FS2nR32vKIbgxeDyYFemINw8vvD1TTnCXXZzbCmk5M7B2znR4/TL96alXXt9TY2FDWdEr7mCkWFNjIG5ETdUOljc+u/PWUH6fc3YVNStX9/vy6x5HE2X1fmCgXVGzj/KrGKdnXiajx2TyelOgbI2x8z0BmCPP2/szcikkN/i0o8C+NEZrjKn/oiKLnp35r/VVF/LljorXZz3xOTt1QMujilwbvFd/qURhQdNoSCvcLNr7dHmNYSpzGEGrlpIm0njfribSMfY2Lzyahc4oelwSLxBN9CdriKqLDyrP9CdT8qU0dYGIy1fh8Pv7mb/6GJ554gsbGRqLRKMFgkKNHj3Lvvfdyyy23jCpyDuHxePj617/Orl27CAaDaJqGrusZYueJEyfQdZ1f//rXo+7v17/+Nbquc+LEiVHblZSU8K//+q+88sordHV1kUwmCYVCHDp0iAceeIBbb701q8h54YUXDvfvwgsvHPP9nU7m7pO8iYmJyTuUmZ7R12e50PmIlnkrGxouXDz/QgRHHkr1WgCaSxdntO3SgYIaBFf+aa9CPlHOK1zOT3Sjz55LCpF9pQA0+8qxVhRhKa7hrnYnnXGF/bqPNwOpAfRvGkJgn9qCC5MmaZzTatd20KLYfDa0nteGV6tdbw3/LY8Qdqyu1Pux+xRkx8RELiFyMOvyLNr5nEGUVL4fOgs90s4DfZU01t2I2voyWtMfhtu0J6zc2raFvVIdFtsA9fqpz9j/qquK3WE38RF1o+0FNv5PWQPAs7Eajo2o6t4Yt/PSgH9c+46qIonux8Zs1xo79VzCy4tiFDvGFhxmA5/f1MRZVSLFbuOE3VIZnhYBckPRNrzWwPDr+d5DU36M002ps5liZ9/YDcfB0UgSId/N9xqDHBijsne2MPP+ZHY3z7PdMdrjKkfDCk0xlRdsRooI0Wnjky2Ty/l4JpLvNK4zBU4Zi5T+uVw2v49LF1gpHGzzcq9xD9F1ge81hNg1kGR/3Pj8X3ClT9pMJVoimZa3M94byigyeTLJUIzOVw9PW58mijAFBZsEWUT3Onlt0M2pO6y0xVQ67eObBDMxMTHJhSl0mpiYmMwxkgMz69oQRqmMfLoRrA6yBV73AggiGoAks6tiJQBKltD0dh2ieWVo3hJ0ee4+XEdUG87lqxHtbva5fQw4/FjLq3i83XAt/qQ+y+DZNkuEzkG0YAOCGsLmDJBsfi5rG9E2aCMRQNJTrk9Rb0WyTsxioie6sh9DnrvVOwRxsCp64QI6klZ+khzMDZVFvf1DaCFisp6DyfEJjuMhqaeKOdnk/RyMewF4PFDMI7FFaW1j2vi+r7Aq0WXNXgRpJK8mqibQ0+xUeEIUOmZ3uo4hZEnFa9Oo9omIAtjk2XutngvkWacm/2F/Uuc3VheqLvBy3/QJkI2Dgui9Xh/HI2dGUaipoMxj3Ocr8zLv9zcv+gtf2LADhyX3tefxXuM7+4djA1A4Tc5CHdR4alJI13TiPaOffw0Pbp9VldTjDhui+9Ty9wkWGU1KyRGKVUbTdfarcyu6xsTEZPZhCp0mJiYmc4xkcJqFzsGQLkeJFdEqoYZmbxhnx5Ls1dVDOiy/4G+NEHbJwv/YCxCcPhocmSG6UaDZX8Wb885i+fIbprfD08j6FwSEwjz8N1zJgYjIYSEP57uqqB/MAfdMR6YkLFhGL3ww4yQGSOz8V5LbP2aEpGdBFHXcFTre8gCJHV9KrQjtR7Ski7nSCIen1WdDkFMDX2epBT2e3bknCLNf6LTm5RDlhT4a4naeLPkAAA/3lSDk19CVvzKj6atBH4ldX2dHeOqEzn5VHU4vkIwdYduAIXTGdZGH+tLFSnWcj6FxXeT69mvGbPebnlMTOteV27iy9nVq3Efx2Ga/u7vS3UVNXoRvXfgKvX/7A76y6Senu0tzGq+1f8r29cMGQ/CfTgGyV9GIVRRwe0No7ManiXctGb89vto38fvRxXVWKvJS283Pt3J2lSEGLizIFP5rPEc5r/wveGy5hbS9QUPoVHWBFxxjTwYKsghFXiiYmCg6lKdT13UirX0okTihxu60NsFjRhGwWPcA/QdbJ7T/qUKQRY7VlCL4XQj+1OcxYJHR7Lm/X9E6dr7kziIfm5oU/A6Z8+fZ6LVaaYopHInP/nuwiYnJ7MYUOk1MTEzmGMlg9ryCU4U4OLtujT+Po4CcgtNpR5S4s3D0xP0ASBbiCPTXbuC4lN19sMuRz0Hr3M4JFVV1mu2F2JYF+dWJCL1eJxHn6AKWNBdLEopGbk1BSXfdaV3bEaX0ga3FlXrMkWw6g+lMQRCQg39GDzWTjdkudAqyhM2dvYhUZPAcfyJWO7zs2Yq/4qilNmt7wVfBsdjU5aJrTFqRbMaJtcu1Ytxi5mxgUaHCgrz9WKU4l9TN/n5Xulu4ct6utEJBJpNnZHj+XCCpw9dncRHuc2ps3Lzk6LjaSqLA5qqJO5JvXNzE6tLUBNd/XHiAAofxe1hVnDsVgX+cl7xftMfGzEUpWGVesjvZ655YhMRQwbvg8U6S/RHQoePlVDqVgSNthJoM4TPcePpc5tvKivlyU4S9Xg9tntR7bNFFNHGU66TTNmbe8z8NXro2V4ksKYzxQMQQmLXprcViYmLyDmD2P8WZmJiYvEPRlOwP/dMdui47ZSSHhcShXyIrs6+ybrxuM1rlSgaWXMRv1bFvY7pkoU2DNwrm05Aj+eL/Cg72irPM3TgJmmsK2ZXYQGdcodtr52uHRs+9KEpz7zFAkpLQeg9aIL08stqzG0FMF+UlaxKLx/heRVFDphVBFhEtIokj96D07gEMsS8N4TSHAOcoqmT1GS5OR4EIZK+uHBk8j58L5A8v+3/tG/ivwPqs7YMFy0+ho5m0RPtxOrbjrtB5dMA3pfueLjw2Ca9d4h83/RlxUOQ+q6J7jK1ODxfMs/Hch17jioVWKpwn2FC0DZecXfQ2mRhueeocnTPBgx0RnuqaOZFbFgXcE3A6X7mgm4X+EwD8zebRr6nXL5Oo9k782WZz2dssLQxz60adZcU2rql9BI81QYFTZlVR7uJS68tCFLnGdpseDCXRin0Zy8U8J+Jgjsqk18lvOmM8E5rYfSPeazhx+w+2DC8L7G8Zzt3Zu6cJXdGItPYRasieZmWqELK4LwWLhF7k5W+OBjkRVfniiTCH9dQzwwkFeh250/1oFgnRkvt8EWSRO1uM/NybKvpY6A/w69YQTovILJ1eNzExmUPMvRGOiYmJyTsEJZI9t9d0h65bXVGc+UFQomg926b1WJOhMb+WqCufbmc++jjSOIV9FXSh87zs5qCe/bbXhc7hM8BB0KtIfORNY7C1Lwi/aRyjuEGWnKWzHTGxG6X5ObS+bCJ8+pcoCkkEaSinp4aOgsVtQbJJCLqKMFjV8kjl1WnbCZxeR+eQI/JkHNbdiFYJWe7i5Pc6RFI3hoj6CBtSUhc5GnVmbV/vGIcregKEFA018BZS6BVak3OjqtOmSom6fJliZyo01GebRdWNR1CXH2d98WtcUNOFTY4jCDr5tukVQd4pGJ/n6e7F+EnO8GVqQYEVv3389wxR0KjzHEQU4PqFO5iXn30ycUGBje9f+AsqvRMXmmUhwcqiNj61+iluXGo4OD3WGJfU6aws2J1zu4urD7BpnJkutlnTI0FEm8w+n5cXPEYUyF9kOwOKTiBLYanRGApFTytCpOvDk9xaXCEZjNLyzG6C9dP3GxcsEmTJtan53exwpO4bfQkNdcRb7FE0BkaREhIWGUYLX/c6h8/h1UUNVHm7UHWBefkWYuoZ8EBmYmJyWjGFThMTE5NZSnIg3aWT6I+gxhJoyelzmwmyiKg1o5/4sdGH1pem7ViTQpJpsHuJ2tz0WrMLNyfTOOjWe1IXOKjnfng+egY8V391X4TGiOH0+0NziLHGCr2uSihekrlCTh+QKlWboNioWC+MKNgkeErSXs8EyQPGuakGjmSsEwbFP9ltHXwdQbIaywRBRUBHtmvYvem/rWe15YarcziWP+UncRRbjVyfOVyW04FkTT2eDTlSLW4revgYHudL6C33kUvo7BvlHM/G/0WyOz0ny9uRPN4uvJBQ9CB7InMjHcR1i5opdetYxVShD7/dcFtZpFP73n2Oqc0PsaG0HYB3zXt5eFmebW5UiZ8LFDjTxXn/FH9/c5m6Ag2XVUAQIM8+9uciCxp2Ocq8fBsL8w5wTrUyXBEdDIcowC/f9Re81gDl7szzONfvTxYF/vOyAPn2bq6ofop5nsNcXvsmAGeX7eYza17BnzEBkDr2puJXWVuSW1gd+f5+0h4bdm8C6C47/9IU4bvNEd6qLuWHzRGaYgoDioZolYdzFI9F/6FWdE0n1pneDy2hoCkqse4Bet9uJHS8k3j39OUo0HyutIJAQ/TZbXy3NX1ifWQcQVNc409BlZ01ZSAKGa7QuCTS73cj2i0Zn4lolYk6bAgClLgtrCvaQbXbEH5XligE1NmdPsbExGT2YwqdJiYmJrOU0IlU6GRiIErz47tIDkxvmJo93wJaFLXzDQAEdXblfhM8xfRIVurdxbxk841rmyN2oxhKFBhNIj4T6hV3xlMCXXgcjohXbOsJ+BZnLNcL6lIvBIGv2G5lIM9YphalKmer7hKU4qWn0ONJkAgY3dIzvzEdHdllxeUwwtqFyAEkiyFeiXovuq4hSRGEwFNp2/WqNhoqLkWwGOK5MOJssOq7ceYHkR0z504czrAgCNhjv0Z2WXFYXkIPt5DY9z8oLS/mdJ32JCfm+H6uP3/sRhOgIW7nfwKLed59Hj3K3HB0Vnm6uKquGXlE6gOfzRAW5vknn9JCFGB58dS6ppcVHAeMoiqp45iiwFTxrkWpc2BVqY3NVeZQaQhZBJfVKNq1oWLszyXPbkwo3bIiQJ41wNkVrXxu08Dw+so8C5urbawuNJ43rGJmwHJNjgJFDovIZ1b+Gq81gEOOIAoaHovxm13k28si/76M34Umlg3/bZPjLC7oyLpviyTw3pWpvpyIJvk6DoTBYkMJm4UTUZWWmMqnjgRpj6skNehKaPSW+tH845vgUcJx+vY0kgikT7xp8ST1920l2hYwRM9pnNwGOOh0omfJtZkU4Gg4/TvpHnStChaJZ3qi3NsW4ZOHB1CL89C9zpO2F3lNl3mzpBDBle4YTea7aZUtOGSRcq+Iz9ZLlacegGsWHGZPRJnRyUUTE5MzD/PubWJiYjJL0BQVfdCNpasawfrO4RCmxofeQAnHSPRPby42i6UPQc+e+29aEATUqlUEl16C4MhDGKN4Tjy/mt2ilcftfh5kfALC89L4nJ/vRN4Wq4m40vN4ChZ7SvyUrQwsuJq39QokqzHgDHmqEfxGzJ/myGNPwQUz2ufREIni9HWiHL8bV7mA0vokAlHDbRJvhMhxxMhOkg2PpW0X0mR+p56FUrAArXwNw45OAfRoE/qx72NxztCgSxQQZWOAbi+wopx4BGfyNyQP/QI1cGBEQx1BEtMqy0t2GTV5+t19ETXJHb3LTnc3xo1djnPNvGfTlvmsAbx2icVFkxcRfQ6Zcs/UihT59tNXlOSdwLUL9gOGxvKeZd0Uu2bwfniaGHJWjhW2Lwk6Hhu8b3k7y4rSn0UclswhZYHdEB4/vNS43l5Y+RofW/4nrltm4YblMqUegY+urh+x//TfitMisqAg+4SdLYtrUhJT2zukkf0znIZBrSat/WLfsaz7vmCehU1lqUJ1MRX2hxU+GpIQ3XaicnY3a2tM4X8GdCK28U/wtDydGV5f/4fXCexvydJ66hGtMvcFFFRRRJBF1BLf8LpoFpmgLaEheh2o+R4SIy6Nb9vshO1WBElEGHSHxgWBh3oS/O3xIEd9XqNquywiuu28ZrXz55BKmdfCJfOM88Rj6afQZWFlwQHqiiSEPPPZzcTEZPKYQqeJiYnJLEEJxejd1QBA/+E2om199B9sJRmKEWnrQ9d0et9umNY+CFovaDM3sBPyyvhd3QVsLlnD8eWXEyvLEkY9gh1ly3hIE/i9JtA3zgjdp02zU0621HTSXbIgbdnDS77CXt8G9OIlJCo2sMO+lu9d9jZ+j/FBRvIqieXVgiih+Yq5Xzr3NPQ8B/1bIbANbaAB7Y1b0HoPIOhBnMUSevAwyQM/I7H3+xBPr8a7M5LHA71lvJp/JX/Mfy/ohpNZslvQBg6h9uzGIo2vevCp4iyWEUXjN2gZzBOZrH8YkmH0cNuIljpWnwVXfkr4svkhqp5+YaYvKVIfn7pK7tON39ZHvr0zbZnP1sd1S3TOKp+8sOixiSwpHBi74ThxWkQqXfVjNzSZNGeXvYpNFllZaqPcHaDEPbuiGqaDIpfMihIb+WOE6dfkRSn3JLmi5lWWFqTCwkUBvnVpZ0Z7vy0AQInTEA0rXCfw27q468rb+dUV36HKq3Lj/IdH7Cdd6PzAao3b1m/P2hdrlnlOt5z6raXcnAIBjHvU3oF1ae2r3Mez7rs6L8GG4nQBciCpsWcgydZ8H4kcivCAovNQR5ToBIr8JfoycwGHG2euEFp3aT57gwkarVYaK4r4RkwedlI+HMp8eGqKqzzjzaPZbmNZsW1YHH81rLJHlOkvLyBYZkQJvKjpvB6IE1J03ns4yOseL33lBQT8Hr5wJMhvWyPcsiLAV8/68fD+S90iHssAq0sjRJ2ZeUNNTExMxospdJqYmJjMEjRVo/WZ3WhJlZ636lHjCr27Ggge70RXNJKhGL27c1cRPVVEq4we75hRoTNcspAG0Rhc/cBbRdThzd1YkvmDbXTHp8nEOKvsOLulGgS7F8Hq5MiKT/FPbavZalvOvpJLOepdS9BfxmXVT6FbZARXARa3lZi7FMFXhWpzUlkytrNWsMzMgEVtexG1/cX0Yyv9WJI7UHqzF6YQXAU0xu1ENYm7Qkvp1RwIquEGku0iaq/h8FLr70LMUSRoKhgqmmTR9iMIRri9oI/uzrTY4tD1+PBrSQwR0E//4LA9Oflw79OB15aZq89n7eEDy95kcX4rRS7LhKpNOwfdbS6LwPLC5jFaZ8djkyhyWdJyFK4tt5hh6tOMUw6xpdrC+TURvLYIJa7Q6e7StCOJAjcv66HcO/o5vjC/m5q8CD5bNysKj1HkslDksvDl82JcWLEdSRQoHFHJ3G8PjLq/29a/gFVK5cWVRI18p0yRy0Kx28Jn1zzBOWUvcN2yTIekNUvuTo8l83ccFdbQHjciEJ5tXw4jIkEccoQ8u4zfIVMwIneo15rEbUnPiRkbjLb55/oQrWNEk4TmyPBakEQeTwh0JFR+0p3gW50JDkcUBFlCdNr4XVvmuV8fUXi4N8G9QY3KPJ1yr3Gtf6E3zq874/w8DL9PSIg+F4/3J9OuX7tjKr8OgzJCKL5+wStp+y90gSDorCpqoyeHc9bExMRkPMyNK7GJiYnJOwBd0UgEIvS+fYJoWwBd0wi39BI83oGuasS7g+jK1IRB2vIzC8h4nC+idb2KrkydA2ks3l+xgXs141b0rCYQtLmNFVkcEwOLLzTdmVOMxxphRUU7jy78fzy5+Etc334NXzhbYU11H38bfhcPOc6ntsoYiCoONxtcv+BPeRej5eVzo/u/CftL+JuNfyZRs2XU4/x04X8ieIqn/f1oA/VoA+muZz3WRnzPt9H7s7t31LzK4b9fC+bRo9pBT2DxWBEt+rD7U+vdh9v1+rT13VksYfHaUJseRCCBNc+GEG/N2T4iexC1RpLNzw0vE+OH2ZsomLI+jRz8T4SoNrV5KacTqyRQYs8ME7XLUc4ufZHLqp7kyK23c8dV9ZR5xheS+o/n9fOeFTIbKhLM905ucupbl7Ry5NbbuWpR6jv44IoTk9qXycS4vK6TT6x8gssqn6TEGeDiOiuVeZni/Tk1tjlVpT0XRS6BL6z9BZfMG13ULXH0saqoiTxrgFUFOzhy6+0cufV2vrzhp8zzHuZDq+HorbezttzGmjIb8z2HRt3fqoIdaa9tYoIXP/RHjtx6O4c/dTvzvcb2/3XefeQ75bRCRl5b5gdvkRIZy45G1lIfqiAhLqUl4kUX0idTN1SIvPaR+3j9I7+l3GuE1K8qbsNv60pLEdk3GKc9oOh87Mjoz0jTVzZoaomV+PhBQ4iYagiVbwQSHAolESSRjsI8ClxWFhbacNskvn5JkFWlNgp9Mj1JjT+0Raj0JigcTOnSEFXZ0Z/gvrYIO0NJTuS58ToEXCOst00xjd+2Rjg2KD/4HTIL8/al9WlJYRS/rYtydw9PRM+ACpHTiCQZn62qqmia+XBsMnfRNA1VNca3Q+f1VGAKnSYmJiazBH2wymTPWydIBqPoqo4aTRA81ommTO1DjM3enrFMCzWAmoT4zOSAE9wFHD3pbQUGi8EgZgosDd7SGejVOwsNkfXFuwjpNv4QquPyhVb+9ayfcHXtC1yxQKGqSKPAHwBgl2slEU0iqkuEPPnYLBI7rEvJs/byB891uQ8iiPy6p4a3aj+AYJ35cGatcyvCKJXIo46StNddihV0DasniSif5G6exkkAQVBxeDpRu3chxI4j2XS0UPYccoLNTbvoh8gxSIYQrRKCJKA0P8KxuCvrNpNhXv7cESwny6JCa1puv1ysKDhErX98j83z8jr50qanePeCA1S4T0yqX0MaS7knnrnQZFq5sPJN/LZuBEFnif8Yt67dy6LCzA9/eXGMs6szJw3nGvP8xvl//cI3Rm0niTorCvbnXP/+ZYZw+YVNh/jqubsQhIkJVQ45ktWVWeZq4kdXHqLWl7oe5Y8zfePBgRqea1/Cjv5LAdAEX9r6v159gBJnM3nWXj66ZoCPrXqT9cW7kUWFMu/knOkBbW78UJNZChABIEs8HIVVpQIbK5J89/IGPrz0j9yyopPzaiN0Jozzpc4fwJ5lLiyoaLwQg3yHhseaOkZ48Bn3TwHjvrqgIPP+ctMi4xwS0PhZcwjBP3X3szMNu92I3tB1nVDozHeem5y5hEKh4RoVDsfUjRNModPExMRkljBUeCjU0IWWVNEVFS2hEO+ZOifnMKFdaS8FWUTt2AZ6Ei3WlX2bKSSy+AL+atNHM5bf5SxGsHuILNgCYuohWPCWcMCeN+39eqextc+Dw+nm0pUDXLjWzl1X/Q+SqFLq6uM/zrmTG5dvo9zbwsH4Jp5JLGXrR1/g8kV7edq6nh9dt4MBhxunReBRbVXOShbbVv49/3xxiC/0XkS8bF3WNtOJ2pM9ZB1AcPr5cPJjzM9PDWhfHChAOf5rJL0FUUh3COnRtpN3MSWINhkEheSufwAgefhniLKC1p0uPOhlKwCIlq8nISTRB44AIDtkZKeFpN3CnvDUDAwLXRaKXWe+S6TWP773uDBvH/P8Y6f1sMsiKwoOsdi3h0srn8IlhyhyTaz6/MJCG4VOQ/D5yPIXKPVY8Dlk/DZzMDsTLPXvxmsNALAgbz+XVz2BRdSHw6WrByuBl7sjfHjVxHKm2rMU0TmdFLks3H7B3QCsKdxOxQjnqlUS0q6NkqBS5c79fjeXvAzAtfP+zKVVT024Lw45ituSfTLpmtpH+MJZh9g8KCx/fM3Bce3zSLCYgaSNu46dDUC/WosuFoFgRI+8q+ZRwHCD3rbmbs4tfYEaj5GP+YoFmQ7R8dCrzl4nojDi/IuMyCWaN0KxTLps/Ko1THVegm+dexfvW/gAedYAn1x+D0vyu4fdrZWePlaXZuawDSoaz/bF8do0blkZZEWJDZ9DJjA4Yf90V4yKPCu1vhHPtYIdRVzAxuKtgJHGQNcFXvGkV7AXJpD/9EzH6025k9vb2xkYGDCdnSZzCk3TGBgYoL09Zb7xnPSbPxXM5BcmJiYmswR9yLU5A8/IeiQ9JNZZJKA1dKM7i9GjmW7PKaWwlhvKN9KsZb7RJzRYePbHuCzYzrzSRQitRpXpnuq1HBIsM/LZvJO4v1lls89J0i3z7orXcMhGbsoIJXgsx1EdMhZJ5trX4bOlXSzL30Vf6Bxkp0aFu411ZQUE9XL+en0bQkM+ejjTDfy2Us7/W/RnjgU+zG+abuYTvDrTbzM3kpWDESf/tGGA/3rZjq5DXBfRSUD4MHh8ac3Vvv3gnvpuWD0SAklIDA7yZQk5/iaJk8Lwny68iSv7mznhWoYldgBt8LcqWg2duVevRY1PzUBwQ4WATT7zB00FDmXcbc+pbOV3b4/uLJ+fb8FvMyaLhhxt8/NFujJrjuTkfcv7WFe0C4Bqz3EWFYqUuRXmTTIM3uTUEAQdSTRSObQFk1y/NMKPtsmsKGzEJiWB8nHvq9Qjc6JvcgLadHBODRTYO4ZfX1ircM/bxt/vWSHQEBA4PpgqWB6H8xmYdB7ZPGsvspj793hJ5XPYpQT/I67kqurHxrXPQGLQ9TZoh365+xzq3LUsdz6CQCjNdTp0/xviHzf9nj/sfT/B+MQmmrunOAJnKhFcdvR+4312Dvqd3DaJap/Ennbjs39GthPXksiijs+WuqdbpETad5tnDZJnSwDpruagqtOXVNgkw6qiZs4uj/MvL66lNZD6bleX6qwpTe07xmJCSgmFoiEyWwRjUukr9SFeyrOjhQxBVbDK6NHZ8/s5nbhcLhwOB9FoFFVVaWlpQRCEKQ39NTGZTlRVHXZyguHmdLmmzsVtCp0mJiYmswQtOf4B96kg2mT0SA9Ixuy+178brW0rmtEJ9PA0Cp2ylb9ddVNWkXOIH+kyD3kquadggPxBoXOnv5rndBlT6Zxanu2McCjsxmXXWePbA4AilHIiVsQyWyNeW4T9sdXUh+OcVXaMh3rP50+tGjeXNvBcsI4a5wC/bCrlEwseoa10Ha5jzzCw8F28Yts4fIyieQX4bL38w4b7ua7hw3zSV4kemFyBllwIVid6IjJ2w5OIFC6DIGwpP0yNbwMtA0mSqo5u96I0PYJU0JTWXu8/hpAnoKs69kIbsZ74qZ+SooBsiyLEUiGhuj2PxIH/NV4ULYCuo1Awn0NKAYdr/oM9YR9f1Z9HT/aila1ClhVk7SjN1qpT7EyKpYVhfLY4f9rnZkWJjbagSk9keq9RFkkgOcNuqOVFoxd8GsmWsrfwO67F5xCp780+2N5cFSdv0A04xL+e+zp//9xZHOiMZ91mCK9dIs8m8d7Fj1DsMCajXHKIVSURVha1UznJMHiTU0cUdFaUCLQF4doFb/KjbWexqnAPCc2KJK5GHXFPG+08rvULnOjLfRynRSSSnD6hzGkRqfFbhs/FmxanOyPPr27iD3srSWo6n137An8+dhavNhh5Gh1ydNr6BZBnHeWDAdyWIOeXv8BZ73ptVEE0hUR/Il2Ee6JlKS55AbeveoaxIuuLHa18emOE218ZPT2BKBj5JjUd+qIKzfHZJ3SKXidPeb0MqDo3DQqdzSrMz7dS5BIYqc3+V4PhHK/2ZmYbtUgp0bfY0c31C/uo8y/k849XYLeIDMRU+pIqui5Q6opxUeULuC1BhAt0fr1nNdubLVTmifz9phcpcaaeNdsTiwirLgrtABY8VqMPIUXnUIGPhaHBtlYZTKETAEEQqK6uprGxkWjU+G3quo6izMxYwsRkKnE4HFRXVyNMYeJrU+g0MTExmSUkAhMXaiaD1SuhtR8HPzgKRRJvfnN4nZ4MQXIC1qMJ0r300nEVFGrUQRuRkO64ZKPLFDmnhT+2wj9Wtht5CgUHH357AbUukX+qq8Ml9PB6wAbEeWvAwhd3G47DG8pFvncoxka/jW09Uf62qp+97jpcspWvajfzXHv+8P4fOM8Qq4scbfzNphPoj01xVXBRQsufh9C+b+y2JxFwlEEQnHKEG5aGufMtB/2qgmL1InceRgllFgMSJAldVbCJbxMTlsIo+T/Hg2STEfUO1KaHh5eptjyk5DGQZP4u75/5vvLv/LL0czTG3TwRKARAc0LSV8Pzviu5SoySPHAHj1T+2yn1ZSQOWWG+vwtwc15NlAPdDl44Pr0DqAqvZcbdblWe7nG3nec9zMfXReiK2GgbEImd5NzKs8v806Z7MnITnlP2Arcsr+PfOkcPyfrgqiT7umTybR1pyy+oPEyRsw+XbIauny6WFoZYUdTGKw3zWVuwncsWnDcsRt+0XOT3e1ICULnXQkOO8/iCml5eOJ7dseKwiCwvsfBG8+iC+KmwttzCdy5+gpv+eAU3Lovx7nmPpK0/r+J1avzz2ViRZEX+WwQTHr7NWs6tkahxZ88ZPFWMJ6enQ45kOC9zoYv5w07OITREgooNBTfjycD5rvlvcvsroxfb89plPrg6RjBu4Vdvwev9s0+Ii3gc/NOxIIKgc9PgG29KaNy4LITXGufJY4XDbUOK8T1cM+/ljP34bYb46bZJLMzbhySqLPfv5IF5/0BvVOCtFkPkFAR43+K/DFevv6jyGdojfpYW5tPQ72Jd0Wtp+z0SnIcoaCy3gyYWM89zGIt0GUlV50ASFg62U62ymap4BKIoUlNTQzgcJhgMDrs7TUzmApIk4XA48Hg8uFyuKRU5wRQ6TUxMTGYN8d4ZGMSKArI1ihrpQCiSsOhHGPlIrkW7puchUrKAmuRnRYthvGYHQUCwe9DjYU6IlvFvZzIhHmoN841FVuJCDbfX1/J4+wAWQcBvKeXGMg8vdBkPzd85EhmxjUZnTOP+piFR3IrV46B50fsIyiV8bEEql+FC3zFiQi12vYGb6/7E/rLNFHYdheJF0Hk41RFJBnXiQlq8eguqZMPJxIXOXtEPgN0S5/oF23mj9WJEQSLZ4835gCRaRLQEJI/fDd5vTfiYJ2P3aeidT6H1DX4WspWk1YsEqGWreSpQyN8W/DsvdfnJk1MDGFWQ6PIs4Ns9K7m6YCvoMf4cKMl+kBFYJYHEOFyTdlnBPSgorCttpc7v5IXj+WNsNXmuW2YhnGBUt9tkkURh2HG3tNjG0Z7EsOOu0DGxA3529QNsbT+L9tBSnjqSYEuNja0NcW5ZJfGuBUcocmTP43rlvO281HgVWxsVYoqWVR//q2Uvccdbl+A8Scg5u2wrkqBOuLiLydRx68o/cTxYx4qSxUiiyj9ufml43T9seoIH9l6OphvuvgqvQEOO02pL+X5kcRPKSVENFklgbbmF6U7hec2iTpb6d/Praz2sK3w9Y325s5GL5sX4m7VG7sql/r18bP1aziqvx2+fmUKFU0WSwpzrIloJVo4Co99zVhe8Qbn3AloH0vPz2mURQYBoUqPYJfG+Ja/SHirmV28tpTOuQrkHeoKIDivaLHAg9svGHU3XBUS7BS2WJCLpfHzRS9jlKK803YTbJnF+rcTjhxKsLLVR6z2SsZ98e4AlRTZK3DAyXeZVde281lLMgU4RXYdNVRbmeQ+nbbvE38B5Fdv54VvXp+9UcLOtu44qVx/4IazV4JFaWFhgZX9nnKf6EmypLgbAqWmMsw7VOwZBEHC73bjd05BXx8RkDmNm9DUxMTGZBei6Tt/eprEbniJWjxUBQyyxuGT0UHrYmqBNj2NLqVyJ4PTzlD7+205csrJ93XsQvMW0mHP400ZU1Xm8u4gfNdTyncOGYzOp63zz4ABfPWDj4OAArzmaOjceag3Tl1RJ6jpJXac+uQpfvsZXI1fwjYu38r0LfjD8r8ZzlI/sqiAuVGGRknyNG0Gy8OPCzxri5iBa8dKMvgnWsYc097muQxEnVx13D9UAVLrqWZ6/k/cubeKTaw6QlHK7Tm1eFdlpQe8/fsqzzxa3FWngUZSGx4eXRavPJWYxigx0ewwfy1OBQqKaRHsi9T41RPZL82lN2EjGm9G85YTUsXNzXb5wfHPcdlnBZY1wcZ2Nq2qe4vKa6c2t+p/n30+df3qcbIsLU5/bx9e2cW6N8Xp+vpX1JzmLxiLf3sk1tY/w0VWGsP7Xq49R47fy00u/y7trH865XZmzkc9veIt5fgsuq5RRu8thEVni382G8o6MHIduS3DcLjaT6aHQ0U6Jo4NrFxv5V9cXp86bBXn7KXAaBaeWFdtwyNkFaYsksLrgLWQx87qxpdrKpfN68dqmd0avzBUAYFPxqznDv8+tbKB60L3ps/XwvQt+wIbiPdPar+lA0XPnetsfXEVCXJhz/RCCoHPz8vTfnkUSuHkFfHiN8fldv3SAYnsbRc6UOzzgstNYU0pzsX+SvZ9aRk6j9wz2yZ+nsMi3l2r3Mc6qCPC5TRG+cvbT2GWR6xZnV+rzbT18+ZwjbKwYQBFrGJISVhYd5fzqFm5eoXPTcrhsfmZRyzJXC5WuE2wuH/msa0URSmiOeDkaNITpnf2bUMQ65ucbv4XXA3GuPBLmyiNhOiXTo2ViYjI+TKHTxMTE5DSjazqh+i4SfdMXMj6ExZka2Mh2Da1v4i64iSL4K+nKryZcuZLABAxJP/DP5ym7j6SvgkbTyDStdCXgd02Z+dd2BhKciIxdafrrhx20usrIKy1kdf6OtHWaUMSznRHuaJyHLjhxOy2E5l3MbwcWITh8w+06/Cszd+zwIVgdox67VS6g31poiKbCBB5rBIE21UWRy0KeNYAsKlxa8wpea5iEmFvolGnF4h48zinq7zZvEqX1WWNXg6Luy67ziMhGiHObnNuhqSKxRzHWx9QB+r114zrme5YcHbON0yKSbw9RaO/mexc9iFMO47VMg9VyEJ9DxibGWV/aMuX79tgkVpYoCIJRsGlJfhPvWWoUebp1faaoOF4uq3qKijwr+bYg1ywaO3eh19pPibOTCq+O0yJiO6l68OJCC6KgsaVs96T6YzL9FDtauWHBX7Kuqyswvs+NFYkMEXuIVaVW7HIUhyXzOrWlqp/r6l6hyDl1k41Z9NRx5bbcUpop/pe5pjav8kyQ1HPfO/7Svpzu5IJRtk59eDcv3oY04sOs8Fr48IrX+MSq51habON9i17AZQnhkGPD3/0TCZGbjgzQPksmacMjJpl/M/ioGRJSEQLvWfgXPrb8EcqcrXhsEtfWbR1cM9R/Y/t8ew/rinZz08JXiesF6KIhTi727eey6pe5dc0LfHDZm5xXsTejD/mDRdrOL986vEwX3IS1CgC6Yi4Q3LzdV8ue0CXU+TOvq+PPqGxiYvJOxxQ6TUxMTE4jmqLS9doRQo3jzxN3Ksj6cQQMd4IkB9FjmbPuU82uxRcRsLr4aMUmJpI56HENtuoSDUV1dJhC57RyYECjPpwpaLbHFJLjyEH5YEuIJlsx3zjvSWxyuivv5y3LUHX4xoEB6hNLuf3SP/Cc4zz++7JGsKQGov2ezMrF0cKlbFv8Nwheo9K1kF+b0ebGTR38P+W96IUL4aT1gie3UNi38Fp6FCvVvtSjULmzEbclTELKPUDWI4cQpaHPavKDWNltRaQLfTAPaKRyMxTWcWf/EmKCA4oXUa8X5dx+P5UcjRuCaFSy8039uuF1dQXZi2dU5lm5vPqZrI4yMNxoAB9co/GeBX9kvvcQtd4jiIKG1xrIKeCcKjcvT1Jg72BFwdgi7ET53KYwhc4EH1krcONymTJnG1vK3qKuwMYNC56Z9H5lUeEzG7opdXWwqGB8w+8l/t1U5SU4r0bHdlKMcmWeIbgu9ZtC52zFIUeodJ3Iuu5DKxoBWFHUk/OqUOs37oA3LldYXJT+Gy10RKjLO0CxK5Z129VloxfEycYHVotU5aW73dcUje3MLHRkFiR0zsH8sN2JipzrGsN5NEcrc66PCmuG/67zHuR7V3ZilYxvtswjsLF4Kwvz9rHtQ/9NXd4BnHIIpxxmc5WNeflWvtsQQtcFTow9TzgjtA6m6vA5ZO5uDSPaLLgdqXt1jecoJc5m8u2dnFurs8i3F13IRxWrQPDwZvhTJMVFOGyFOOUwS/27CSrFqBj3oDxrgFJnM8v9O6nxnqDaXQ+Cj5FSg1UyjjcyvUdL8jy+tOszw69VIZ+uuJPjoTKunr8z4310mHV2TExMxokpdJqYmJicRuLdQbp3HCewb2bcEmrLwwhJ4yFTQEdXsw+qppJddh9/dBWzbxJFWxp0nZfdxdPQK5ORvNF36udBlbeXRb5MF0dDJPW9/+0eKy5LkHrXPG6c/zCClAq1dvszw88b8lZwW8cWYvlGiGF/wbK09YK3lEJvLwVeC13+lcS81Wnrk77a7J0VJX4gXM2BmIdyb7qjz2sLEhdyiwpaYC/CoCvqVIQ/ixOINaT6KjnYU3YVeyIu3hbmodh8HEzmzon5u/75NCcN52m9bT6P96VE0Y0V2UeDF81TcMohVpVmD/U/tyaGKMAlNYcz1omChts6dmj8ZHBbjf7WeQ/kFGEng8sqcW7lITaVN/HJ1S/wdxufo9p9nApXAx9a1TtcTGay3LLocRxydLhAx3iozQtyy9I92OT091nsmiWKiMmkqPMZbuRF+U05rwv5duM7fu/iNzinOn1CyGU13Gs2KfO363fIbKyYeFqHRfn9fOviVHqaNWW2nELtmciBgdFd7sdC2YVQTayiMbZi+LVDjnBZ9cv837X1CAKUuLO7wF1yPx9c0cjSotQ973B0dhSGOTJYCb7MY1zDdaeVSk/269anVhu5W6PMp09dxDM9n+HeE5vZE7qQ9uQK3HIAgM54KVqWkk5eawCvtQ9NcKMLeaP26y8dZ6W9VnQv6EYu0bNKXmVlafq9uC1pznqbmJiMD1PoNDExMTmNxHtDRNsDRFqmNyDHU5EAUUBt34YeNEQMQetBV6YoSX5hLYIv05FHyUK+j5V7tcnfbr7HxJ0sJhPjROTUbRJl+b2IgsYz/eex6pVNw/9+UZ9yAr3YHcVudbJiUQyrFEccDEsX3EVI+RaS1WejlRkh7IFF1/ITy5X81XqRvrw67lr+HT6i3Yogp86HWP5Cqt315Ds03rIsI2JNz4cWsRdCwXzjGPm1IBuDMsHm5oGeMrpFHz+77Cdp29R5D5CU7YPtXOxa+QX0shXDIfRK2ytI8UFX1CkoncLxL5HY9wPjb6ePhOTgI+2XAvC1juVE7IW8FMpdTONA1MWRqBHu/kRicdq6L643nIrnz0v/7awr6wTg3Yt7uXmFzBULU4PULTU2/uPsn7O8xMY5Zdnzca4qlTOciBsrbRS5LGO93VG5YaExsLbJcYpcMs4sob2TYWWpTKG9h+vmPcRy/06W+3dikRJYpTifX33nKe+/0NHOfO8hrq55fOzGg9Tk9XBhxfPYZQGfQ8ZllbjrhhN885yfn3J/TE4fxc5OLJLAqoKdWKV0MWZZsY2KPCvLi4zIjbNKXqXKm0pVc9F8G9Vu47dpkzOvxR9fH8EhT0ww21BpI98e4d3z/kxFnpVlxTY2Vk5fNfdZhWBcv3f1VY3abH+O4m0BdSHPd65OW+aUwlw37yE+ulYgz5b9fumz9fGBxfdT7Eqt3xM6/RMYgizSaVU48bnf8Nh7fgVAwO2kzJU9HcnZpUa19bBawNf3fpg/NK5lIGnj54cvoC1WhsNiiPJPta3JGv7vsfQjiwoqLo7GriIpLgLBm6VjDl7pmpe2KKSV0hV3oeiGIPu5jfVp67eHTn9hJxMTk7mBKXSamJiYnEYSgekvMCG7LAh9TyHZjCTuWv8h4//O56bG0SmI1Nduoq8yM8eiLkqc6mP+7PBDmIxFT9KCLnj56v4EjZHk8L9soe8bi43csJrDcHuES1bR4/BwzLuGxvwNADTYallUGOPLG++lJW8BP++ZR22xDbxlw/tp9y3FZ+tBFHSeilShnRQ0GpOcIBoDpoS7lFjV2cYKhyGISkJmSKYoaGiWwRydrkJ+GV7D84XXgdsYFAu6jhYyCnVMNnJdtEhGMaPB4l9Kfh1x0U58MI9aUhd53HY+jfHcuUJHsjOS7popsHdhkQS+cf5zacvne42Q1Asrd5PvSFA4Ih/gyuIodjnKZ9Y34LH0Zz3ORbV9GW/57zfvocJ7ao+TNZ5UyLpNFvA5pAxBdTLkO3RKnNmroEvi1F1ZxpP3cIjl+YexSAlsskB1nsRtZ4W5uPIvZrGhOY4kKFwwz8j367Gmn1vlXp1/Of8EKwuODS9zWVKCza3r9rC66E0A7FLmeXlF7U5sWZaPxvtXtFKT1wHAWZUaF9RGme8LTGgfcxVN8IPgoDE8upuwI+YGMidp4pqT3nh6ITxZNL6vL6x7FIcl93chCholrlRuycPhBMIUXMtOhUiJH5dLxWfrJd/eiSjAQwmBYmfPqNupukhUTX0+GiK6btwBdKGAI8FC4lrue1RS91AfruRPbR9CFQoy1itC5uT41p7NqLpIUjPu2++pe5DaEdEenTpQmEU0NTExMTkJU+g0MTGZEnRdR1fHV9RB13R6324Yu+E7gERg+gsQ2fMUkicexu4fFFV6jfDiZNMzCJMQOg+c9UEE/4jcVgXVNNrz2JdnLIssOh8KawFQLaMXkjE5c+iMS9zfuZZDwdEdF79tW8SSwTyEdxZ+jF8t+w77vRvwe/p50b0R0W5HsHtQCkr40obfkW/vZJtzGbedm+Rr5z6J4iwgWb2Z4MKreMBxEQCfWvM6e9UyrIPhwHqJUcG9Ty4g7jLyeyqykyPuVQh2L0fLDefkhhwp2nSr1eiDo4AXB/z8Q8eGtLB5tcUoSCJOcgAr2UeEgEsyfe5aXhbTJwq+3bFk3Ps7GE0Nym2yiN/WxRc2x1lVsIN15SlXZ43HuO6uLnyDT6x6jkqvMSC/dIGVz6x+AoCbFzyY8zgfXvZomonVJotcXPEsH1kz+SJCF9fZyLMGhl/bZYFrl8SpyjMG2JIo4LVPLmS+0hvHZ52Z/MfjZb7XCCV2W+H6Jb387dpf4bEMnOZenYEIM3vvKXG08l8XPAqAx5YuhH1u3U7eu+ABVhakcg5eXr2VYreF5SU2Lqt8CtfghEuZOxXdsbrMxh9uPsi6wu04LRObMlzka2FLyYsArCru54Lqo9xQ9+yk3ttsRhMrQBghSgp2gtpCEkLNuLZXxTJ2hD/NqwOfB2Q0sZLeRCE9sXSh0ykbz2q13iPctvbPo+6z1J2aPNN1AcE5vgmr6UAvyuMfAzpl7hH5OP1Wft4cptAxQugUMvvYlSjLWBZVbQTZQkg3ogj+3HIuT/b8I2AFwZPWNqG7eKxlBc+2LeS+lo8T4EJ0cdBFK3iJapmO2idbjPteIGF8/rKo8OHVKedpmUfgPouDnupUSiPRaUWwTE9aFRMTk7mLKXSamJhMCVpSRYmMHRalJRWO/+4V2l/cPwO9mv3Ee6df6BRDz0MyjBQxwlEF1RCiBH1yjqbHnUVodvfwa93ioFeysMfiQqtYztXlmxgoNsKZuvKrc+3G5AyjOSbyjYNju9K+fTiCOFjV/FWlhu90LqLFW8vCvMP4CyxUF0WJla6hv7AQn80YiK0s6eZjy//EUv9uZItIt2seB+zLsOcb+9lc8jLLS0XcNgUK67i/6KMAvK7X0e00BryqaCGBhWjZWu5PrgegzJ1dPLDKEC9eQdzuR0Ukqkk8artgeL0eM/olSJO0dI5QCwWHnyZLJff1pw/M4/r4H9H0ET7Lap8FWVS4Yt4uAP56jVEkRRIFKlyG0CkKGgvz9nFhleGsvXZhM7XeIwBYpNxC9ck5LVeWWrBICRb5Jp9j+Na16cVR7DK8f8k21pYZ16eqPAtLi+RJ7fvcynoEYXbldBuq8l7s0in3BDKKd5lMDSG9klMpFjZRHHKEBXnGc43HmrquLC22cVHlM4iCNlyMBQzB7EtbOllSpKa5iy+q+Asem0SN38rvr7uHy6qeRBJV/I7MCtSjUeVpHN5vpaeXC8pfoNQ59yqnj0V97DzizB9+fSx+Pa3xWppia8a1/Yn4Fn559DwebFpHP5vZFbqat/oWEVRsIKSec4Z+twAVY+Q5LXGmh4TrU5SKYzK8aHfwam8cjzV1Xb9lxQBxDXzWIVHdiipk5kJ/vHV9xrJjoVKe7LiChqghdO4LFPNg02rCwmqSJzk0Fd0y7Ah9saOOfQOrOBI1Jhmj1NEer83Yf3IwZP1gfyFDbtuF/lRxrFqfwvaBJDfXRxD8LgD2FuUjyKbQaWJiko4pdJqYmEwJyWB0XI7Oo3e9RGB/C0rEzLMDkOifXqFTtMokDhs5mZJHf3vqOyyaxxuCBAggWRDsHjTZwvOSgydEC3+16Eq60Gl1F6NVrOCe/Hlj7tLkzODXDTGao2OH8PYlVaKUEBNq+ciq4/z9uXH0Ijd+WxcXLDrACU8dv3LfjDMvta+ra5/Gb+sCQLZZOeZbQdxXzHsWvTHcZktVH3i97Cq7hj9EF3N4xaf4c2Qe7VIxStVZKKIdDZEj7lX8qa8Ur11iVVFn1j4etlTR7FlOxOIbXvbDrkWE6y5PaydOQn8TpPRHr77ys7k7uno43+apUjEY1bcq3wiFvW7+E1glgYUF1gwRc13h69hlkXPKM6vb5kIUBCRRwCoJrCoZqqI7OddkXYGNSyqfTlu2pTrKqoIdrCk1xOS6fFhcmPt+cU6NLWcBo7NL38i6fDZQ4k7iMkXOaaMjmWeEMJ8G8mzG9+q0iFy5IHe18vctepgLqtInDxxyhNvOCvHHGx+lZIQwWWBP7SfPPvqFpyrPmlZ06IqaZ8/Y1Agvda2hT6khKS4BIY//PXwlr3Uv47HWzePa/pdHL0XVRYJJG/c3Xc99Jzazo8ew+ieEyU3Ulru60l5r0ukT4b7fbHzvebZU9M4Hlz6JKECetRdd8KOIlegn5UJXxIUcC2YWwzvQX8yxYCH3NZyTtvxgaD1hrcxw1w66Q6OqO63NoYEK7ms4H0VcyMs9l/Fc57qc/U7qEqpofA/rS97m78+N8/fnxllW2M+AojGg6HxNd3C8ppSvNEaM2UkTExOTEZhCp4mJyZSQ7I+ga2M7ZyKtxky3EjWFTgAtMb0ZKEWrOOzgJJ498fxE2F13LnsG9WytZCFtSy4maffwnAZHNdg1eAocsudxoHI1v9LMWfZ3CmOFrA8RVXW6kn7+9Ug171v4IF/d9BNWlRlOwwpXEzvFeWyTF7OuKOX089lS4ZxdBcvZ7lmOr0JiXdFrw8vXlxxjj3MFb0iLuXVLLze0X0NtmZudaiV3ed9Lu7UMFYFuvEQ0ic+fFWRjaWaVeICtyjz2idXExVT4a0iVeHQwVH4IYRJPUfZ8C9JgyjEhv4a7pEt5KpC76NBEcVuNH+iQU9BrDXD5QplrFmdW2LXJcdZXWKjLOzDu/TstIhVeC2vKrRQ6jWMs8u2lxp+9knsurJLAVQsjGfktr1+4A0HQh3MYrisLkmfLHbb7ibVHyMsS2i4KUGhvz7LF7KDaG+b8ipdOdzfOWI5HHLwVXoImZIo1002FJwDAuxaLlLhyC51ea4AVhccyll+34NVhd+gQPlsqvcH7V+W+1tb6rTz63j+m/a5y5dw9EwgknHTEy3iw7QN0qmcTUmxs66phb45CQyfTHXcN/72jp4JAwjHsQny0/eZJ9anGfTzttX4KRetOBdEq0xIznjErPKl7aKXrBIUuw/nfrpxDU3w92km5So9GswvFA0kbYcVKZ8yVtnx/fzUHgitpVy6gUzWiH55tT99Hc8RHc8TLa4GreaBxLW/1ZK96P0REM0Lny52NfHXTT/jqpp8w399FV8K4x/25I8p7Dwdpiql05rlH25WJick7EFPoNDExmRISA9ExhU5d09EU46FLT6poyVOv9DzXGW9e0/FwchitxWM9laLQWQ4g8pDTEGT6CmpoK1lMyOLgtxWZ4U1vyXaabJ6M5SYmAHc1efj58SD6YGjgqoK3AMi3dbHA386HVjYzz3s467b3SBeyoCCI4Ek/uVcXvsVBuZK8Gi9X17zAubU2bl56lEfCNdzdW8NWfRGNegENWj4WSeBDSx+nyl1/0t6NfTotGn+JVHJUSnf09Ggp4VNw+iYVGStZEtgsjSAI9BWu4dH+zDxop0KBI/O6+m/nPM66ksas7W9dd2hC+y/1iGypVllbGsNrTTkSr12cO7RWGuG4lETDEZpnl7m4OvPYS/1GOL00GCq6tqSJPFtK2PHaJeblp65tKwsO4nNkCp0rS22zLmx9JO9d/FxablKTqWXPgMgTHRZ2RxbP+LGrPUYBrJuW7MdnHz3kfJEvM41P9UlCGUC+PQAYEwTXLXib+fmZEws1fiuPvvf31HgyxdO5wUQuqAJxYQVhxcpjret5rbOGrT2bprQ3T7YuISycNeHt/Pbu4QI6NlnktF2FHKlzpNqT7hwu84gguHm+azPPtJ+FqtsACVU0onCebN2Yc7e98cz8t2/3lfNk60r+0HQFz3WehyLWsa07PR1Lx2DUwjNty8fV/T6lNGNZob0P0SpS6kkJs4IAf0ka507SzNVpYmIyiCl0mpiYTAlKOA6jCJ1qLEG4qQddSQl7Zvg6aFModDqLRexFRviRaJVxxH+DkCOkczJoFct5cTB/0keLVvCIr5pjDh/fz1K1dKcucUSyZSw3MQH47hHDnaQPnjtDgo9FSnBl9eN8dOk9ObcVvQ7+eul9zM8/kbY8zxpgdUUTayqaKHE28+iN/82NdQ8iOtx0Ja08Jy7nx8HVPKavIM8uUepsxm05yeU4GHLnkFWe7i/ks23pjpQj8VS110Pz34cgTnwIKwhhEju+iJBXQZOtmtbE1P5O6vyZhW0W5u3j6ppHs7a/dt5DE9r/+1d08tm1L+K1JbBJKVG13BPCnqU4k00WuXmFOCxMfngNnF9r5a9Wh9lc+mpG+yH3mTQoUhY5eqnNSxXNuLRO4IeX76AqzxjEF9rbWVOW7oyXRYG73pW7qNJsoNo9V8WoucHrvQrfPTLA450TcxpPBdXuRpYW27i86klqBkXPXGRcgyBrmPl872FWldr49KYkhY5u/unc45x8e/+vi/emhazPNVSxNmOZnsuRK9i4bedXaAzncSLkI6xaaQhnVvY+Vbb1XjB2oyycW6Nw43KZz2yMo0/hc9hEiLqN+1mx28Jy/660dZfODxJhKS+017Gjp4LuZC0d2uXc1fhpIsIG9vcX5dzvUB7NkQwkbbRFPewJlFAfyqchnimUJnUjvLwtOr5J8Oc6MoXr1YVvce3SGPff8MJwypKrFln4dWcMMc/J8+LM/95NTExmJ6bQeYoIgjCufxdeeOGY+3riiSe44YYbqKysxGazUVlZyQ033MATTzwx/W/ExOQUUaMJdC23aDdwtIN4T/oDvSl0Tq2jUxKDWPp/C6KAo0AnceLPSLap8xLsq1xDu27sr03XeRwLf5Czhwsd03Vew8yZZDI6OhN3X7x38VbscjRrYY2VhXtZUZAejj40xvQ54JrFCpur4hS5sh9XxwoIuCwpAW+kK/qNcN7w379JbECQJv77FTBckHFfLQf08jFaTxyrNL3pMK6o3Ua1+zgeawLLiGNZRBWXNfOxstAlc1ZFB5urDEH3E6tf4DPrd3Pz4lewibGM9kMMFVKxyzG8tpTws6QgyJbSl9hSrSIK4LYMcF5Vupj0gdUMF1cyeSci8Uq34aR8pXvmnzOKHS38+/l7EAWNxb6JOaZz4ZRDfO38t/jUqkdxymG2lO2gwJmaZNxSY+Oqmsen5FinByt96oKTlgkkhUxXn0HmBKuiTf2w9snWZVmPNRaby9v48SX/y/KijrRicTNJs2yIftcvTaQVvAK4edErJPVUpfUn2s7h/sYraI16ebjt+lM6bk/MyZu9y05pHwDbumpIiumObKcc4tKag6wufIMvnRtFFOCLG7ciiAIPurzsCk/v/c/ExGTuYI5CZwGapvGpT32KX/7yl2nLW1paaGlp4aGHHuITn/gEP/vZzxBFU5s2mZ2o0STJUIzMgBaDgSNtWDzpa4PHO3CW+aa9b7OVZCiGlpjC8H21G6X+QVz5B5DEv0PTdSxyM7mz202M1+2pwg4RDDHz2Cg66q7ZGzVqMkvQx5xvtcBJZ/CqAqPITra8cydXBQdYVqxysAscss6igj5sksL3LkgvzNXPUiQUdg4UcyQs47IqlHudqBp8+dw27t1bwf5Ohb4ECFYHIPCn3hK+5Zt4MTEhZIRmXxT7WwKhiQ+gh6grsHGsJ7OYjVOeXmGnznsQgM+vSX9msUgqVXkSPZH0a5rLIvDXS39LUv0IvdFSlvl2sdw/9sXh8uoXuGLhX1PnPYxLDgPGgPezq+9BFhXOr2rhhxf+CVlUWFZwAkg5kC6qOXEqb9FkjnPjrrMIq4bQubUnRpe2Er/UhUQUHRFRP/V81aMhCDpXVBuiY749e8GzyXBR5TNpr//5/Db+9olCrJLAdy+e26aIY4kbQYDCEZfEmLCaQ6ENrHZmhvfrWcTHsDL1br6BpI0Q63HzWtpyXSxF0IZyAGfepz605F4AluUfRRfqprRPos+JFhi7uFSTCu9fJfLt876XsW6Jfzdt6jXDr3eMyJfZGPadUv+Cio1n2xae0j6GeLX3XVw4crJAsLO8wLiHfnnDT/nyBmPx0uJz+cbxIJ8unfmcvCYmJrMTUzWbIj7zmc+wZ8+enP9+9atf5dz2K1/5yrDIuXbtWu699162b9/Ovffey9q1awH4xS9+wVe/+tUZeS8mJpNBicaJduROeD9wtIN4X7oo0PNW/Tu6KFG0rW9qhc5YCwBq30HQjYdgvfPp0baYEEFzosVkihnL6aILpx7WXe01BA+LpCOiYxEzHR/b+wt5pqeM+ohMbwLc1jjrymFpscjFla/zqXXHKPUMzg1LNjR/rfG3MLHrl2SXSRy+E8HuIaBMXuR0WES2VGWfwnBbc7skpxOLoLKqNPPzGHLEvnveX/jUurZx5810SCE+smo/TjmEXTa+Q6sk4LYYxV3WFe8fLrhU6kx3dOZZcxeAMTnz6U+kO63vbMpHxUq7UksC3+np1DRQ5jIKzHz1ggGW+nef5t5Mnqiwjtv3v5uuWHro+dOd1/DzIxeiiVWZGwmZXp3AFKcBGeL1vvNOOraPiD4i/6SQXphnJAvzDkwql/NotOSNL/Q7oMF7l+zJub43OXVF8KaL+06sRxusvg6gCz7clsz0LFfUTd2EgomJyZmBOWqdIoqLi1mxYkXOf/Pmzcu63eHDh/nOd74DwIYNG3j11Ve55ZZb2LhxI7fccguvvPIKGzYY01W33347R48enbH3ZGIyEbSEQrwn++BSCcdJ9IVJ9qfPQEfbA8RGEUfnEpMRbMNNvWM3mgB60CjeIug6RIz8b8nGqQtlOziJMGMTk9F4I5i6NwbIDHWL6qV0aStBGHSDZxlQvh7eMlzUKBvVef18ZpOGz65ww4JnuLr2LxltXuwW+Ps9Yb5zJEpXQuc9C55iQ1mAWl+CGs9Rbpz/JzZWGJMSqr+WmMsIpxTU8Vf1tritOKI/AiUK9rxR28ojcrqdU2MM3jdV2VhZavx9VpUFhyV7iF65u2vcfZpKrFKS5YW9FLnSBdzPbjRSDJS5mvjI0t+Ne392OcqVg644hxTF75B55oOvDK9f7EsN4MsczcOCapnHwsaS7ZN9GyZzEEUYTAEh2NGEQk5E0icBvn14gKRu40v73XxydwVfOHQeijC1RcBOB35bP6tKbXxu1a9Pd1dykhCN63qjcpPx/YgjK20bBXC+e/iTaIh0x3081/cl7m77Jne3fotHW5aT1CUebPs4xpA1JWRq2DmZkDI9QuczbUuJCKmii4pQwIHQWjTROO/iVPFC4O/QxeKMba1SHItNR8hP3aNEa5aASkFAKBhf5fBvdCYRbRZEr3FfFGQRClPip2i3IBS4aU9qnFf+/EnHSX1u3fHZ737UEDkcvWj4dZJ8nHLmWOPd85/HIglcOv/MGFOYmJicOqbQeZr5wQ9+gKIYg6c77rgDhyM9tNfpdHLHHXcAoCgK3//+92e8jyYm40HXQYlkhlHCYKEiQImd5EDSIdadmYh/LhJpmbhoGWkPTGkf1M4dw39rvUZ4r6BPXfy4+fhoMtW0xFLi+fFopvjXkfTx0Z0eYhgDyKBekdHmkXaZOLmLUKwpOsJ7F7/OAv8AxY5WCuwdGW0GFJ2ehEZjJElnTKPI0cbi/BacFgVB0JFElfcsNnJ/vlZwBfHB3LT6sV8gjrPKq9Wjora+bLwQRn/88tqNfdplkTuvuof1FTa+ccEr/Ot5b+O2SWwoDyLmcEaWOsYvvk4lVinJAl87F89Pd9OtKz4w/LcsTszBLg5WXrdJUc6uFlhd+MbwupHOUIuUoHhQYF1WLGRNa2BypiJyX4cRJhvWK3kusJSekxydqg4vB8p4tC3CI21h7moIkcyZaGfuIAo6/3bezoz8i7MFTSzn1w0fA+DlrrW0KJezvf/6EeuLCbJpOFQ6ocm81LmQlzvm83JnahLs6bbFNCnXoY4QElXG52qcCgIJGz89/hEGOMfop+6nOVLMmwPXAfDmwIVs615AffyirNsftssc9Bj3DEES0fKcGW0SZX6OuscWOkWXjdcDcdpK8znoN+6Zar6Hh6ypScDmknxedro5mlQzrrnqiJynXTEvc4GmcGpSIqxmiskAla4T/NUanfMqD85Ut0xMTGY5ptB5GtF1nYcffhiAJUuWsHnz5qztNm/ezOLFRm6qhx9+GH0KhQsTk6lEzeJqjPeGUKLx3Ot7zhShc+I5v2JdmeE3k0V2WdFj3cOvlc43Rmk9cQTZRrt2ehLqm5y5/LlN4+n+80gKFRwJWVGFkuF1CaGaz+y28GpPlK5kAfXJDfzwRBknP7ps700S0nIPelfm72RVwQ6unrctZ5veEcLIm4EEILGx+C3eXff28PILyp/nfSslvtW7jgabMQjXlX7crpfxVGQPI5fsKeeOJAaAwRyfYm5x1G2TKHAa68+qslDibObea+9mY9FWtpS9ws+vOcTNi15GEnQ8NomlxSkX08pSW9YiTTPBqoIDnFW6lYX5qWu6LApUTUEVaIcU5vMbXhu1zcJC47xYVHB6QvdNTg/1yXX834k4IPFyoIzP7TK+f6dswW9NCUq37UqPKAmrucON5wqLffu5pGrq0tNMNfWx89nRU4EulrCnr5yfHb2Ge09sYm/0o+yJfgwFD893XzLcPqpaCCQynZoA3z5wIyfi56ALRq7wxtiqGXkPYLgKAwk7/7LnVhSxjpjmYWvXPB5s3MDe6Ed5qGktzWEvz7RvBMHJycWLft2n8dPuBH3VxeB18LbTOezGHOJl0cruLLcR0ZGed/R4ofH+/60jwYMDKqLLRofDzg+aQoSqCkEQ+GGvwjebwnTrqfuaLhayN/pRXuq9afgz7JgjQufW7jr2Rj/K3uhHaY/X5Gz3r5vvxmOdeN5sExOTMxNT6DyN1NfX09pqFE644IILRm07tL6lpYUTJ05Md9dMTCbFyeHbuqZz9DcvEe81wkzUkx2dnDmOznBzz4S30ZWpc2FYTjICCOrU5j7tWHYZXZiTLCZTyyNtYd77eoiX+ufRFod+LZUz7ECknNd6DNHi7aCbT+yU+c7hAXRh5ODMwpuBGKqe+3HGIhkVZxfkZRa0MBDY1pMSxxojSXTBSaGjnbNLX0rbz7sXHqY+7mC7OjjYku0k990BXQ9lHtdrw5E/4jeuBgBIlqxCsfty9veqhQJVecZvbXGh0a9iRyuCoOOSQ1xd8yiLfXuQRJ2lxTKfWGfk5s13yvzd5iPD+SxnmlrvEdyWIAv8qVxpVy2W8dlOPUWHIOhsLnl51DbvW9YIwAJ/4JSPZzJ3+GObi7cDcQ4n1vFgK3TGDQfbIk8p5xetosppiDrdifT77c6gb6a7OuV4rYHT3YVRiWvGJMzx2EX0Jhy0Rz1EVSs/OnQFdxy6jO5kHY82Lx9u3xHzElWz5y6OqzJ/aDiPt0LvBcHHr49fkrXddBFTZaKqhee634OqG4JsT8LJjw5dQSDhIKlLdEQ99GpnkRTT05VFdJ2Xe+N8oDFKn8fJr7sT9OWlP7QFVJ1doXT3peiy0VycKgKplfh4/1HjmXlHf4KmmMrWAj/7VYGQovOHuESgqpDnumN0xTWWl6TO+Yg+jx8duoJ7T2ygTTkXgO743BD7WyJefnToCn506Apao0U52/lsE38ONzExOXMxhc4p4g9/+APLli3D6XTi8XhYuHAhH/nIR3j++edzbrN/f2rQtWTJklH3P3L9gQMHRmlpYnL6GApRH2LgaDuxzgHanjMqJKrxTKFzZF5PXdPQVS2jzVwg0tqHruto4xAvh97jqb5XQRZxlcm4ykVkefpmsbWKFfxn4eJp2/9UUO4wHthXef1YRnHLmcxOvntEZXe/xpFIHppQBIgcCKWcircfSfBmwLi+JEiFuCtCEaoOh8JewApkyX02Bprgzwx1JfsAMM9m/M62RosocVvQLYYrR4+dFC4uCjisOxCEBIiC8S9o5JQMOUrYmn/lcFOfQ0YSBYrdFiRR4JqFR6nJSyKJAjV5uV3fkqCzvCjBjXVPIQpw3RKViypenPD7n2rWFO5jy2Be0VuWzlwY4bXzn8Bllaj1ZqYmMJlr5B6eaIKRpkIRSlGEch5oMSYDPvqWxNYRExYl9kJ84gLOKkg5/0RBQBxM5vrbJp0prxLzjmDouzm5wnlmfkxdNz7fexsuzLqnu+qvSnvdEPKNeuTjoXyeaF3DXc1fpjM2syJdXDXuLQ82rmZ3/+qsbXridh5quZKIVpK2fCi7SVdc46vdKkfCCgdPKqYU1mD7QBxBSp37+wv9hBAQZBFBEvl8UCSpgTSYw/l4NMk3GiP8pNVwK/+hM8o/dqbE0pXFqUijkJqaRHy45UJAoDueGUI/2+mM+9DFEjRxZI5dEVPSMDExORnzqjBF7N+/nwMHDhCNRgmFQhw9epTf/OY3XHzxxdxwww3092fmi2puToWXVVZWZqwfSVVVquJgU1PThPvX3Nw86r+2traxd2JiMgaJQJhkyBhohBq6qL9vK8CwoxMt0xEY7wkOp2PoePlQzjyfsxktoZAIhNESCj1v1o/ZPni8E13VSAxM3nll9dlwlSiob96C9sb7ENTp+w3fv/BCnp7l+vMVXmMk8Ul7E4vdcyMcyyTF1p4YD7aE+Od9GnsidSSEch5vT00avB1IXRcUPeX46VSMfF03vx4hLpSRFNIHmOMhhj9jmZKl0AVAmdMQNLcH8/jE+gE0izFQ1MMtae0sLgvJt7+FQAJHgQV3mUry8N0A9Fvy+XTb2QCUeixcWgdry62cW6OzvNjK+WUv47cnWF5spcqT26EiiTqrSzrx27oo91r54vpHZoWjpdZ7hH8828gXPM878eeVyZJnDbCgQKbYdXqKMZlMHQkhMxfvEPujCwD4fsNiftW6kINBI3ph/0Cc5mhK5MmT/UTj5biGChUB1a585rkNwefh1jC6MHpRMJOTEHzoYjGaWE6vfu6IFSJvRT6S0TykGtfHxnD2z7k+lH7tzeXmHElj2MerXbXj7vJUMdQ3HYH7G9blaGPlte5quhLpYzqLmHr2fa0vTntc5f86Us9/glXmnvYIXXGN7oqUIFmvQBI4WFGMWuDhtT7jPnhWlSEyd8U12uMqJ6LGvbIzrrKjPxXNU+RMRUxFR6Rq2NlbDoJ7WLydS7zWVU1L4mx+Wv8lhlIE9LMla6FCExOTdzam0HmKOJ1ObrnlFv7v//6Pl19+mZ07d/L000/zla98hYICY9b5oYce4rrrriOZTHezBYOpG5B7jATULlfqAh4KZa9sPRpVVVWj/tu0adOE92likoEOofpOBo62c+TOF7KGqp+MllRJDkSJdQdpfW4vWnJ2JtUfjVhPEHRQQjE6XjmEnkXQHUnf3iZD/B2j3WjYXT0I7b9B0Ac/r+C+Se9rLI6IYw8+Tidei40FQj/5Vgf5Wj+r7WaI/VzlaDjJ0bCN3eFqHmvP7lLWENEFDwgutvcbonZc06mPlTCgZYqWoyPQmfRlLI3r2YXOSlf9cHXva+u2DhvC1FBLmjlMdgy9iGGVmxDa7hpeFx1R9XZjJdT5w1wyb4AKT5xPrmvEb+9hS8VR3Dao8eSewJAEnQU+I/3NRfMUajxHx367M4SAjl0W8c+w8LqwQKXA3j12Q5NZTWN8qGCKwMku7WMRGxEW8HxXgrsbck+MOkSjorSm+IednGt9Syix+yiyu5EFkRizv+r0bCImVJPET2tiEy93n4Mu+NAFH8eS7+WljhWABIJvuH1P/J0pJB8OpoeuZ6tXt2sgiThYlKizNH84quB7AXW4KntY0/l9QOFn3QnqRxSrvWrB+K5xXmsqL21MS88JqgoTvVfODqKqhe29q9nVV8be6IfQBR9/bH43OrP7OdXExGTmmXtTObOMlpYWfD5fxvLLLruM2267jauuuoqdO3fy4osv8pOf/ITPf/7zw21isVSIjdV6cghIOjZbKiQkGj09+bdMTMZD8Hgn0c7+CQmWSihG/6E2dEWdk0JnMmj8lgeOdxLvCRJq6MJe6MHiyV7VNdzSy8CxUwyv7HoMpfGp4Zd66MSp7W8UDo6S/3A28H1fCyuDb/AuKU5xzzHy8y7lHrKHlg0hIFDtdNMQOTNyxJ4p9Cc1Pv7W6EW6OpNeNm7L4wNVDr53JPX9vdLr4IoihYIJPNnogpc1f8m0Kyc0S9apYLscxS6LSKLAYt8eGiXj3ixoCqIsDV+/rOwmARA5gq5GUJpSBUNe0RYBUOK2sLwwyEXVe8i3B4irVlbk7wTg0qqn+NPh5Sz05U5Vs8DfRanTuI5cOu/4+N/0DOC3B/i7LWHKXDPn6ATIsytmxfU5jiqU8Gy3k9LyhUQ0BwOKlQJLBL9gpHu684RCnlzK1p4x0rWohsgWV9xcVLKC3kQ/9uQmKgULlV7YF/8tES2Ow4xeHzdJzYWOyIPNF7I3UMJjLT9JW9+tX8Q/7/o4P173VQAeblp5Orp52tnfX8bVBanXxa4kVy2y8sRhw21Z5rHQFkzystfLueEYN9dH8NgkzqsVefxQjP8skIkXevlRY5iIakzcvtRriPqSKPCp5b/lN29/kQInvNYYJ98pc9F8+ONew9G8tNjGggKNshHu9r6EL62P3cpy5ip7AoZL+0eHLgcuB+CWqlqcnHo+aBMTkzOH2T16nQNkEzmHKCkp4YEHHsBiMWaZ7rjjjrT1dnvK1ZFIjF44JB5PzVo7HNnFk9Foamoa9d/27dsnvE8Tk2wEj3cSn2CBITWhEG0PAIwrx+VsQxssftD7lhG23reniVhnbrEm2R+hd1fDpI9n9dlI1j+UtkxPTN/gPi7M7pGgVxvAoYYoihpiT54ytousyOagymY6AOYidzU6aY8pHAunC5QPtyVRJ5xzL3v7hJ5bLbXLInX5xnrVmoq2EOTUI5UWMKq1qyf+iD6QcloKnmJ+3DUfgLoCkTp/N/O9x/Fa+lngTc9necuyXTjl3BEcW8p2kGc1crCtKdybs93pwGPp57KaXTN+XAFwyebkxVzm8d7FNER07m0r539O+HmgzcUP640CJIpQyovdUV7pHTsPc0JJpTCptK5ilWcT6oi0FxZRIqKObjIwyaRfKaYrR37M5zrPB+CV3ut4qvN96O/QHKjHgvmMrLx+0+JdXDrPSHvisUlU+Yx7xd8dG+BERREhRed9K1W2VBrPLp0FXq5uTgyLnCOZ57dik+N8dE0nf7XSeI7cVCly27qXsEjG5/2R1R18bOUuaj3HhrdriRSk7ee5znOm7g3PMIF4ZsTF4XD2dAImJibvXExH5zQzf/58LrvsMh5//HGOHj1Ka2sr5eXGTJTH4xluN1Y4ejicmrkeK8w9G2PlADUxmSpiXaO7sbKhxRUig0LnwKE27EVeJOvcuTypCSNEP9RghBMF9jXhKM3DVVVArCeIs2xE1UxFRYnEMwo3ZUOQRXQl021md3VzclIApXff1A0pBBF0DbVqNXLHYRpPIcR+Jlge2oYv0T6sWZVFDpJvfRe9iezu9/V5+fw8+RuI62zgWvRxVpP3W+1U2x0cDAVRdQ1Fn+WJS89Q7jhmCFlPtkfSlr/cHWVAsaU92ehCHoJuTAJoQiGiHgBSefzalPQQwyHimgQ5tJTFRRL+wfQII4VOq0fA4mtDa7yXZPvbCIAWakYLGfm4BX8V7/N8m3hEpNxr4c6r7sFn7clZJf3c0tzFDAEqXCeG/55NYesADjnK2qLXZ/y4xc4oomD+LucuNr74dpiEBglNJ64ZUplVFPj3+RLH49VAkv89NrqY/dHqDxCJpYSmaHQwT+eIm2SZo4ijkV6qzJTO4yauu2iIVOcsBPRc20IA7juxHu0d7KVRdZEBNuERDtKvr+Tc0hdYX+TCa7uSn75Zxz9veYtvbV3H9qY47z0SBATOrzqBxxIGlvOuIyHUwUJOq0pt7G43nhcFAf7r4l0AfHL57zg2sJjN1TWsLB5gTeF2/vn81fzwtTxuWfQIedZeBGHo2Ubmrd70ceAL7XUz82FMA+EsExR/bt7ImkW/4Xj0LJb7Zr5PJiYms4937l1oBlm2bNnw3y0tqYIFI8XHkYWJsjGyANHIwkQmJrMFXZv84DIZjg0XLOrb10Tbs3umqlszwsm5SJPBGAOH2+jZeYKBw20Z68apqyHbs4u9QjSzkrGgKVlaTg7BYoTjPjnvbFqWX05kjPanE1kQDZFzBDY9ygf9uW9vFzkilEUPURY9TKFt/A75OqeTcx0JZFGg1D73qpWeKQz9fOJZBPiDwfQB0ICeKkQS0f0MsCBtfThHMYaYltsx9v4VzXhshvNcsaTOH6v6OnrHE6idbyComVEa4fzF7IkYAoFFEih1NucUOYERg9S5h8sy8QmvqWBV8cyGyptMLb36AnoSGkFFG/596xi/dVXIJ6oav8toFqfbSFT1pNyQggAnRSYUyBX84Kgpik+EzngFewLVYzo138ki5xBh1c8vm77MA81XIwg6TjnEe+r+yFUL+pifd4w1pUbKoyFB0yImqfU2pC1bX2HjigWpa+lnN6lcWmWkLLJKcbzWfv7+rF1sKTcmui6u2sX/29KHz9aTdv+ICKvpjp/ZxXqaI15a1St5u2/h6e6KiYnJLMG8E80AQo6wz5EC6MGDmcLFSEauX7p06dR0zMTkFFETI8S1U3D9RVsDw9tHO/rp2HqYRP9sltfS0ZKZImP/IUPoDJ1ITxqfHBj/+5IdArLLEG68pU14KwwXi9r5yin0dhw4/QhWJ9+VXPydf8HY7U8T5+cXcHF+9oT618ZeAuAHJTFcspVSu/GQLwsi7w0+NNzuW3ktGdsu9/ootDn4cmlKNLuqsIB/kHfywfAj2EWZ/3Yd4sYis5DFbON/6xMcS25kgMUA3NlUTFyoAUDBws5gIQh2wIomFPJiT3bBOqLmFjpvmP8Yq0uMXGADzlSV98SB/yXZktuF2WGvBsBllZDO8IhO1ygh99PJ5pLXTstxTSbHyVXPdwVzF0iJ6n5a49nTjZQ6jAgpqyjhtzpRVFvWdmnHTtaytTfBz1ovIMLsvc/NJpojJezuKx27oQk/PHQj27ur2N5dhS4aldQFQeezq39HqaOF86vS8yoXOvqodJ2gxJ06xz+0qgWbpFLjt+J3yPzLWb9I26bY3sbFlc9wbtmLAKzIf4tPLL83rY0qzuO3je+fjrc46/jewRuJjOO3b2Ji8s7AFDpngP379w//PRS2DjBv3rzh1y+++OKo+3jpJWPQXlFRQW1t7dR30sRkEkSaU7kQdX3yQmdipPin6aDpBE+1WM8Mki28XFc1EoEwoYautM8m3jdGAYURWKxd2H0RrD4b6vE7IfAKok1G6XxjSvqdi4GypXQvvoAOHfbMYsPLSkuMW6Tsk0TFCcMZ8e6e35JnsXBlnuHc81ltVEZSFerf1XUni9zpg+3P2Zu43mfhsmhKUF4v93NuzwNUh9+m2mHnop772CzOnXP0ncLbgTjfO2bn923GYPyRtjhN8WIAFF0kpgkE9Ro0wc2jPct4tjO7Ezqk5H488loDrChoBOBX6rkgDbpCk+FRndXdoiHirCuXKXCe4UrnacJnM4tRzB1E3o4sS1vSFc89wdCnuOmIZf/dXFS0BYDF3lIuKlmPqo2dezOpOih1ePny3gGOxgon0O93LnHNijrLixPOFnoTKbe/RspN6ZRDWKU4F1S8hCQa53Ot38qGom1YpASf29TL4GJ8tjA+e4x/v+AoZ1WJGREAFimBKGhYJCOCQBJVHHL6ZPru0GXs6KmYjrc46xhImiKniYlJCvNuNc3U19fzzDPPAFBXV0dFRepmIwgC1113HWA4Nl97LbsT4bXXXht2dF533XU5HaImJjNNuDk1qNTHCCUbjWQwM3wzWN856f3NNLqaXQ1MhmKosSSxjlShoMQoQqcgiww94QqyCL1/QQxvx+bqBzUKuoLdLyCcgqg8JpKFw/4qflS0ZPqOMUX4hTjn9j2WdZ0v3spfl+QhaXGWO+28L/ESoiCwwZPp4LvGbQwSPBYrTsnCeQNP8ZngPVj1BB8o9vPXJXmsTR4CQERjmc34/JcnDlLpmHjOZJPp5dG2CD86FuVYcgOtMZWWuI24UE1Sk9nWI/K71lK2h5by1f0xXu2JZd3Hc10iupDbXbbIdxiAo/E8ti/7ItH5F2dtJ1hSRRNeGcwHWu5R+OTaY1nbm5ic2YgMFWkJsITft1oGXZ3GZEH9KAEPHQk7oSy1Cs8vXoJFNX5biz0LcShrxt2bOncZAK0xszCdQbZhYUo01nRz/DEZNDKL53gs/WyuMj7bf9jSOBxq/ldL/0zeYNqiMlc3N9Y9yfnlr/JXKw5M6tgPNW2YZK9NTExM5jam0HkKPPLIIyhKbvdGR0cHN91003BF9c9+9rMZbb74xS8iScYM9m233UY0mi74RKNRbrvtNgBkWeaLX/ziFPXexOTUSQ6kzlddnXy19GQwU2wIHp87QqeWQ+gcCscPnugaXjSa0Ck7LXjKjM/CVayjdO9AaXkCIbwTPREGTcGS2Dp1Hc+CUrmKbsnGA9rsvz2sSh7FnaPCukWP883Of8Wqx7habmF14FkWuLx8kMzq1KvUegBWu90U2uwUxBsoix7GpoX5z+6v883Of+Xs3oeG25+L4eZbG3ia8zxzp2jWO4X+pEZjJMn651XaYwpvBiR+1jSPtoSTHxwd4Mt7B7jy1QiNkSTBLG5sMAoedam582GXuYxckG4r/HXb+fyv7aaMNoK7iGDNBcOvH+gzRJViV5z3LnzgVN6iickcxIYqFBDAyKHXk3Tx42NBWpX5dOvGxNru/tzPEQ0RmcOhzN9rrX05saSXi0qW46KGpDr+vMs1tpUA7A/O/vvdTKCJ5WmvVbGGhJgK61f0savdm2Si6dkdxv9+3suUuC18YPF9w8v8ti7cVpH/vqyPzSUvk2/vpMDewbtqH5n4gQU7bVHP2O1MTExMzkDMO/spcNttt1FTU8PnP/957r33XrZt28auXbt49tln+epXv8qKFSvYuXMnAOeeey6f+9znMvaxaNEivvSlLwGwY8cOzjnnHO6//3527NjB/fffzznnnMOOHTsA+NKXvsTChWaSZZPZgxJJVQ7XcggG4yGb0JnoC5MIjD/M+3SSy9E5RHiwGruu6cRHeU+iBNrhbyJaZcTwiwhKHD3Ugtr4ELoSRhs4Snz/j6e07ydzrGQxQXF2i3du2YrPYmf1wOgpP4ZYGjcc8Ze5FGoSmU46vxpAFkTOtYVY4kgNSApjjVj0eEb7c4LPDP9dLc6dXLLvVO5pjPLz+ghbeyfm2upKONAFF5rgJylkD/3z2IzffkviJHFFEHl73vuJyIMlnQVh2A3ltk5d4TATk7mCLjgI6YXsD/nRBT8hxbjPvNrn5c6mApJCBY2R3L+NHQHY3pvAO+iS9ludFNhc6KqRmqLKci6KMrES6tFYJSt8FewLvtMFPBFVrKYzuZqRQ8O3gleT1FNRC8lRirSZ5EbFDlkKOG0s3sr/XDWy+Kbx2X/9oiPcuvKuUfY4PmetkuO+ZWJiYvJOYHaPZucAra2t3HHHHdxxxx0529x000384he/wGbLnjvkm9/8Jp2dndx5553s3LmTW265JaPNxz/+cb7xjW9MWb9NTKYCJZwSgXRl8o7OXNsGj3dSsG7epPc7U4wldCbDMcJNPSiR+Bih66AFjuBaFEKrfx1diYESRQsaDkK1661xPt5OnhM2D/WSBWZxbs7r851UiWE8Hd1jNwZW9T8HwEbtGAuCr2esz092sDZvC5/v+EracoeavXJ0YezE8N9L1GageHwdNzktHAsnAfjqvolVAj8asWETl/HnDif/cWCAwBV9oKcL297B6uuNyfSUCIKnmPe3XcoTJX9EL11BzFnEwIDxyHVOxaHJvhUTkzlLRC+iI+GhNylRn6jjaNgCxPjUW8bv8lsHi4HMiaUhfnLcKMb37opNPNKynWvKLkdHIz7oWIsl8nJumxuJZdYPUup4HoRtoGem0XknoAs+PvPWfwPw36vD+IUX0MQyfnN8C9dXurnEvx1VrKE1OjEh2cQgpBagimfjwYjI0cVCBM14frms6kmjkeBhQF+Fl1e5fv6fRt2fIs5H1sZOf7Kj/6pT67iJiYnJHMZ0dJ4Cd911F1/72te48sorWbRoEfn5+ciyjM/nY+XKldx6661s3bqVBx54AJ/Pl3M/oijyy1/+kscee4zrrruO8vJyrFYr5eXlXHfddTz++OP84he/QBTNr8tkdqFEEsN/a6cgdOZiruTpHEvo1JIq9X94DSUcJxHI7QAUxMH9dDyIGjiMrmbPHziddEsW3prlc2DzxQE2JveP3fAkVoazF3EqidWzwZbIum4sVoW3T2o7k9nP630Q00QebTPEFwVfRhuvzXCgNcTSJzJVl1HcJCI4OFJ4Dv9nuwGAijwrW0rH50Q2MTmTaIjncyJqozsusLXPxSvZs46MiVvys8hbgqCWICrlY28wDsKKC513cJ5OITW++NWJGwGZl3rfT1yVOdBvfMatibUcGTCLNk2GZzvP5XDYSJOA4EIh83NsVS6iMbpoXPtrjq8ZV7uQkpmT3MTExOSdwuwezc5yLrjgAi644IKxG46Tq6++mquvvnrK9mdiMp1oSTUtdP1UihHlYjrzdAaPd+CZXzIl+xpv6Hq8N5TZVhBwlYqIYhjlbSOPr9IwiVxME0QorEXvPpG27LHzP80Top1Dqj7eyKhT5r3Ffn7f2Tehbcq0AJt6H53wscqih7Mudys93BR/fsL7M/Z5CIt4HUlt6oV+k9PLz44HuadRpD9p/GbjujPjoWldSQtQRVSTEKxO9IQxkfFG4VUI7ZDIK+btgJufddUyP9/Kyx/6MaIwi+3SJiZTjhVIcDhs4zM7QwCoOqijFNUrsXvoiAWz702vYHVenFjMC1NUnDOh5jFjN71ZiEYqPP1gfxEDnMX9DesB2BMo4Z/2/5Klvg6z4vokeaG9jlc7ammvKODy4j/yQOuHuLHsPmx6Kmf4weAigkkHK8ZMMSvwsyNX863lz6MJHiStAQQHMRZh198GDMdoglK64qYD18TE5J2LeccyMTGZFMlgFDWacsHp2tQP3qcrT2cyFKPthYk7AnOhjzM/abb3YvVakfofQuh/BeITE/xOhRM1mZU498gOWnWd+AyN97wWG2cJHRPezq2FEKc4tr4sOvkq2G75HewEOoNRdYZFToBEloIS7659lALnoPw5osL6tmQVF8+3ss+9kENJo3r7smIdlxya3k6bmMwyNMEQ0RojAlFVJ6rqJDSd0eZGl+ZlLwRW6vASjRfiFIunTOQEEPU89HfwkCiqlaa93tpz3rCoqSPQk3BSH8w/HV07Y0jqEg83r+Rw5Gwaw356ldq09YomciQ4dhocXSyiJ+GkIXEJB8IXAxBjEU92XsfQsP54/FK29V7O4X7TgWtiYvLO5Z17VzcxMRkXWiJVHCARCJMMGeHUyWAMNa6QDMXQFHXcYt9ECTf1THlYfLixm+DxTpRo7nBlXRvboTrkzhxv/+JZ8nNanCqJY78ncWS0xPNTz8uesvQFosRWXaJj6o25WVmXl8/dnre5bOAR7i1s4t7CJnwjhKJcXFZQwLrgS1PeH1+8ddLb/tKzlyKbGSJ2pnMw7M9YZpPj/OnmF/iPi4No3nKal/0Vv1z+XZ6KVPOdix6iQ8zj8b4iABbmZ0tbIdKhrR71uHGhBoCEkLsKvInJbKU+UcdLwXM5Gh7fM4JbtlJuq6bU4aXOU8S6/BqqnMZvb63fqACejE9NyPoQmuZiW3AFDcr6k9YIaEIWgU+YTD7QIXJMjAkeQAZhmu8lgpOkOFTYVGBX5BPc0/SetCaPNK/I2MzMzzk1/PTIJTSG8tgZWJm2vC3q51gwH10sGl7Wol5LkC1p7XaGrgfg50ev4LWepWhiJV3JeTzVupg29WrAyv0NF/CHhrW0RE/lPDUxMTGZ25hCp4mJyahEu4xCAbqqcfzerSjDQmcUdJ3gsQ4irX2oseS0HD/eFyY5MLUFAuK9IdB0+g/mFrfGU1xpSCgdEn/HIlt+TlEMI2gKgjazlZhPnFRZPVG7kWOjhBJOJQVWBz9P/paNfY9RGDvBBT2/54Ke37PZO/YA7ybpGP5Ey5T3SRAm/9439z5MhT17sTmTM4ffNWd/ZFpVsIPr6l7g1cJruEs9h+91LMTmdDDPexiPJUl80BlV4sqc6EgIFRyLuDOWp7DwnjcrSAoVfOvY/Cl4FyYmM0t73Mp3j2js7x/fM8J5xSuwkM95hes4y7+Bpe4VnFu4CQC7aMT1Klqmu/pU0DSZ57ud/PfR9HtQiAX0apmiapd61qSPpYvZxad+fS2aWEJCqJ70vsdDjIXccew2dLGUo4lb+PHhS3izJ706d1LPrK6uv4ND+6eSuCqT1CWebVvMUAY5Tazk1a5aVF1kT+hahobnR4IL6E2mJqUHOIefHr4IgO64i764k1f7buJIaAGqLvJS9yaalKs5EfKR1M3sdCYmJu9sTKHTxMRkVGJdA+i6Ttvz+wg39aAOOjyTQUN8DDV0M3CkHaZJJEsEIsMCoRKOkwzG0EccS1e1tNe5GNkm3msIDv0HDcFMU9S0CvIAakJBS44udva8VW/0a7xCZ38WoVMLjGvbqUSwuWgZuvyLEkc23sLPaiY/cJsIoiDwC/fblEcPZKz7OG9R6TBEn/mulHtEEkQKrA5qnB7O739sRvo5UT5mb+Gi/ILT3Q2TaeT3zWE6tVVZ11W56/lG3wb+HDDy/m6qMEQdvyOG0yLitIhsKd970lYSLYkSmqIy7epIV6cNXXADFsLU8nJ3lOt31PC/x4L0s3REOzNlgsnspzcpsbUnxp6B8RV8KxI3oik+bOpy9MRiSNQhJJcAYBOnx+2YVOzURyvpSBShC67h5S8HyhhQ3CA4MEQp4765tce4Xw5wzoSP1Zw4L+vy9ngNByKXoTG1Iu7JHAxv5GB/Ef/X8Pfcvv/d03osk9yEFBtRwXB1vtT73uHlvz1xDghuQKQpUoiiWwy3r2Dn9oMfTdtHa8TDA43reWzQgbu1s5afH33XTL0FExMTk1mNKXSamJiMSrzHKKDTt7cJSIWyJ4OGuBdp7SPU0DVtx4929KPGEmhJlaN3v0TDn7ajxVPux3hfGCUUH2UPBiMdp4nBEPJQYw+6plF//zaiHYG09ko4TqixO2dYeqihm5anjMTvyfDYxwcgSzi8Hm8e37ZTiFpYyzYNBKuDZPVarndV8NMZmv2/qiCfs/qyF1s6p/ePnOsxxJs1TplyhzHgLLU7ucZn5WKPiC/RPiP9nCjv6fwJN8kNp7sbJtNIXNP510PZ3ViioNGPg5BqOKGumG/kfN1cdoD3rND5yFqFVQU70rZRhGKOR+080aHyvydS++3SFhGlhJhQQVvCB8CrPVGSus5HduYzVDRlgLopfocmJlNPe0wgqevEx5EOZom3lFgij7jiJqG4UDUrSc2OotrItzmxTFdYtyDgEZZQZT2bR3tT4esxzUtbvIJ90VXEhXIQXIDMs+2LSIqL+Jc9n5pgqLmFnxzJLkSFFCevdS9D0aY3dD2QMCYRd/RUmC7N08w9Te9HF4v43YmNw8sCCQe64GBb8HO83DmPhGZjZ/j9xIRFdMTS3f9h1UpUtRBUjIiSqGrJaGNiYmLyTsX0tZuYmIxKvDdEsj9CrNMIYR8WOgcMd2K0I4AwhUUBTibS2oeWVDnxx9cJN/YA0PnaEcouXIauafQfasVdW4TFk5nfUdc0BNGYz1HCcWSHdfg9AST7Ixy/dyuBfc0Ubqwb3EZHEAWSoRhqNEGooRtvXUnGPluf2wM6KJE4+hjOz9HQQ5MvgjNZBnwVJIFExQr2lC6b0WP/tf7GqOuXi0ZBJgFY57LTFY8xz27jBmUrPdLsdkwWaz2AOcg4k3mqPQpLRUBDF1wIeioc3WURKXBKVHgFVhfuA2Bt4Xbca0I45ZPd3BYORat5qlPk5e4wV5Q6SQhVWPVmnujKx2vxc2l+GzsHHECq+vQLXREOJzbil6P0K3a8OcxfuuBB0LNXrTYxmU40oRBR7x5+rYyib0qCiKqncncu9dZBDuNnhcOPMI0TcslkAToin98V5ZKL63Dqx1G0Wh7tiHFooINfrnEjSwIIInFV5rmuG4mqVjrV8ykWnxxj7xKgkhDr6I67MHwmI3OWWokodvYHiomW5+GeRhtKUjOHfrOF7d1VeC23ZSx/rPMT/HnQpfloywajMNTUpqU1MTExOeMxHZ0mJiajEuscINGfypGpRBPoqkb/YcNZp8WVacvPaew/iZZQhh2lAKEThoM03hum+bGdJLOEhPcfbkvLidk+WGU9GYoR6x4YXh7YZzgqh3Jyhuo7jeMmFOJ9YQYOt6Xtt3d3IwCR5l4A+vadoiMz3ntq20/mkLIx+9/hr+Qt28wlq3fJVlYPvDhqmw91/phz/AV4RJUCUeGbRTE2WiNs6nuUq7pntmDTRKmN7j/dXTCZZvqSKkMh42+FVzMyfPyKhQrfvGg/j97439R4jgIgiwpL/buHXw+hCT7OeSnBz48H6UlodMU1PryrmqRQzo+Px/jojiCtCT9ffDuzSvumF5IsfFZGG8WN1ZhcdOpv1sRkEtzfOXLyzEZwFKXznKLFaa+dOfJXAlQ7yxF1V871p0pSdaAoVs4v3sD2/jKSQgUv9xTSl8xHkOahkcfr/dfSGN8AwINNRrqJtwPZ01mMJCEuIi6uIKoNFZpJFxu7tAs5MFBJULHRr0xndXOB13vMXL+ziWfbFmYs+/OIYlBHgoUcD+Xzk8HcnCYmJiYm48MUOk1MTHKi6zqxrgG0ZCpUXAnH6T/cNu68lFNBrDuYFvY91J94j+FYSmQpVtTx0oHhIkEDR9vp2Wnk0wwebYcs4y5tsGp88HgnyYEouqoRbQ8Y+UdH0P7CAbRkStztfv1oxr4mgq5ObaGlcTHowNUFkV3izOX5W+JyY1cGRm1j06P8PPI/rKeVG5XXubnr/1ij1c9QD0+NivABXPL05lczOf3ogvEd//yEBEJKsPjYypdZV7RrfPs46XVjROHF7igvBuZzMGhY2r53zEZYzS0SqXpuobMjbhbHMjkdiDzcqjI0vNAEJ305HJrz3YVU2eelLZOE3OdtvlyBqk6zY14QcGlnsaM/j2OxcgQsWLUaqizreLbjSv7Svpwn2zanbdKT8Iy526Tu5r6mDxJRB4VcYeTwy8aDLZezs9ew7IWVaRRzxUU0hs1K3CYmJiYmZz6m0GliYpKTRCCCllDQEqnQbCUSp+fNmRWeoh39aa+HigQFjxvuy2R/xMi1+fttJAJhIq19BI93EjrRha5qND3yFugQbu4h1pPpkIKUozPaNUCkrQ81niTWOUCsKyXMBes7iXX2E25KuTAjrX2n9uaUmROMAShZSFg2wvyb7D6OzUyhdf6q2Mf/qr9HYuzq8v5EKzd1/pSNfY9h06Nc1n3PDPTw1BEEnX8uHGe+VpM5i44FsHF/cwiNVD69VQU7KHWO7fDWhMLBfaQ4FEwQVXXe83rq+nRfU/Zr1fB+cvx2dcHF3+/Vsq80MRmDEAvRBd+42yeFCjTBcCG2qqt4siOC7+nVtKpr+PS+FfzkeHoKhQUew9W40FNFMraCLUULWeQdTA+j5XYzxmOLiCvTnxpEUW0cCNXxnjdcRCPziCXyicRLea7dEAmHBMkhXu+qhhGfly74SYojXXoS/3XgU7za9f/bu+84ucq6//+vM322903vnQSCJJBAAglVidIFFWk3ooJ64y0/8VZvUVHQm1u/ipUqTaXX0BNKICEkJCQQ0nuy2WR73+nn/P6YZHY322Y3s2V238/HI4/MnHOd61wzs9fMnM9c1/UZw883XAlAtXUypi1aT9A2lrUVw6PTk4GNNWPabJdpG9mlxxEwprM18PXDiW0gbBtPRUjr+oqIyOCgQKeItMtfGg0wNh/R6S+tpWZrcZ+04wgrHMEyTSrX7wGiIzr3Pv8Rlev3UvTaJ5Su3AZAxcd7KFm+NRasLF/TfoDWjEQDA6FaH3W7ywjV+AhWN2BFzFhCokPLopnCGw8eY3Cz+WOJ9G6gc/uokzjkjl74POfKpLoXAp1um4MvmZ8wquGTnj9ZH5sW3N7XTZAeZuEkaOQfvm3v8vE1ZgF1ZtYxtyPSztT1ELnUHsO6wTK4RbB36e+6eUKbT+uaRje+WprJ1vrWy9pMz5yI02bHY4uO3ix0F/K5rBmHT957Mww6kmoMZVrm6Njsh440RFxs9l3QdJ/JmDSNTPUbM1oliPmgYh4loc8B0GgOabFvWck4LFthi20YHkpCJ3TpMXxWP49PqiexvuGrAJQEj6M0OKSTo0RERAYGBTpFpF3Bw2tfBputgVmz9SBWpHdHCzVfaxPADEao3X4olvm96tN9sVGmVRv2Ubk+mv3aX1pD8dINseOqNuxrdxjUkYRCodpGfAerCFTWEz6cTb1hbznBmsbYep2+BAU6HWkurFDvJAxpmLwADBu3pY/g0OERna+bBh1PJG/tibx9vJb1CeNSM1rty3F5W20bl5rBKxkrObXiuW60OvnMrF7KnwpbrxkrA0dpeCgNZvTvP2C17gedqQyn8NWPj336qGkZbA/OppYpLbZvbhzOfl+Y9b65LKmZf8znkcHEQcSy88d90zsvetjf9o/nxo3HYRrZ3LmlKbD5qy31fFbTNMLdbtg4LX8SHlsqp+SOx2OPTtFOMU/EFpzONSOvIdCD07a7IhgYQYExL+7y920/C4guaXEoMBbTagrYHghOaVV+cdFxPLR7EaZtJPXhrBb7LAzerfw6jx28I/bvvn2/pi7ctfeMPQ1DePvgeO7dvgDLyGF99XSe3ju3S3WIiIgkKwU6RaR9h4OCR7KUA2D10lznDpjhCGWrm7KVHx14bX6/+e2IL0j9/nLaYkZMLMsiVOcn7Au2GLV5aPkWKtbuit1vLK4+1ocAQEpmFWZjaULq6oiRks2TQ4/H8GbwqWnxmT062qSDJf7aZDdsnFbxPCfULMVrb/3xcWpGSqttXruNaTXvYWNwTKV1Wz4W1rza182QHvRaWSY+MxrUqIp0vj7f0erDTj6sOPaR3BHL4N2KFP5d3HL0V3nQQcSC+/c6+MsujeyU+FlGKhHLxr/3xb929LtlYZ4sqmdt/VSKfE2BzpqQSfMlZtMcLoZ6huHEwwjvKDzkARAKewmbLnyBwm6NkO4JpuUg2IWga0PEhXU4kdLehhEt9oXM1qNUI5aNPfVZrK65kC11rROHrakYw/sl42L/1lQMp66L0/Z31eVhYiNi2SgOzef1g1NbjSwVEREZqBToFJF2HYlpHj2isq+FGwPdnj5/JGP70axwJJaEKOIL4i9ttjbnzhIOvb8ldt931FR6AJurGxdoZS9jWD0fiGgcPp1/Gk78Q6MjS14zu/fW/5NCW2yNzatTypmS1jTCJMPpZrYjunbpzMxsxqSkMz8nl+969h1j65NPbmAvdxaajPCmkabkRAPOH3f42NkYDRjs8bUO7nemNOjovFAc6iM21tWY3LGlHnCyMzQLy8hmc320fz93oIH3ynxEjMKOKxI5bIt/Co8dyGFvYxjaWRqhOdPIpvFwIr9bNpgdJs/KcHlJtSZgmENxhScQDg2sv8uKyEwAPqkeiXlkDV4jpc1A5xFP7Z3F4qLjWm3fVd96rdLq5kmPjI5Hd5q2Eeyqz47d//O2CwlEEvO+IyIikgwU6BSRDkQvWoLVDX3cjpassNl+Jo54jm1ne+326NT0sC/YclRo2MQMNEui08a5U/I7T7JzNNNX0uVjuuPNYTMosWDJ8JkAXZ6ufsQlNc/Gbl9Q+TgzU5o+Qi7LcTMhvJ8R3jQeCT7IxelhvubYzYVl9x9Dy5PXtaV/4NR0J167Li4Hmn2NIVZURv/2f7XVpGtfpQz+sKPr7xVteaPUxp6GMHVhk7CRx1dW2wmQyfvl0fp9EQsLeKd6YscViRz2zEEPt2+uJWRZWEZnQXwn9x84Hv/hz8NPawMEOvhcHps6BF8wB38wC384g1DEk8CW97311Sdi2kawpSafxkgWAJXmKdSG2h9FWR9244u0/jHsSGKi5mpCTa/H/tDCduuM2Ebzqy0/a1FHZbD1sjIiIiIDmQKdItKKGYxeKFuHL1qar9E5UJmRCDVboqNEI/7WCRQ6Y2tYCQYYbUzpble4559Xw+XlLiN6kfM3+7FNW3ObTUsYpIUqmWMcxGWzU+BO4bLgcqY0rudR51Ly/bu5wPc2p9S9e0znS3ZfsLbx+UwXF+TnsCAnl1Ozc3DaWo/8nZqexQX5OVyQn8PolK5PhZbe91559D3iwwo/axrn0MiEo0rYKTWPxzKym21zstF/Mh8kYNo6wGN7G9hWF23HS+UT2d4QZEPDMDbUBFuUu21zmJZf9/rH9GDpf7bVNc0w2BOcCrQ/GvFgZBp3bq2nPNDxrATj8MjQQvfAGsF5tLWVo1lb9yUAasK5ACyvOI1tdcM6Oixu5YHD6wEbHpaXzyJiG9uqjGkbye2bf8qBxq6vHSwiIjKQaKiJiLRSsW4Pnvx0/CXRKdrtjYIcSCL+MLU7Do+w7MZo0ci+F3EMXYA3q466A+7OD7AZhKu2xDE58Bh5M6k+fHPvMayvek5uLlmVh2L37YS5qOxBVub9D9sCMLN6CQBD2QrA5LoPun2ugeK88kc57/DtAynT2O8ez0M5c1hcXtmi3F9sbzC1fDkADxd8n580KhDV3zUPVp693MfFw4bw0PQdsW2mkc2kpXY+PXMsoxzR9X79xghOey/Yqq7uqgubHEll9h9ro7fOWd56bcVNtQECxkjcVjRJW5U1mWxjU8LaIQOE4eX1Q00/vs16N8KnZ05nqGMvNquyVfGtDenUhBqoCXX8/SDD6aYm5MdjyyTQYcnktrMuh511pwPwWc0ExhRO4OU2pqV318bqAkKjJ1MUOJ4KfwrvV17Mgqw/QrP1r18quY6DPv1YJiIiohGdItJKw4FK9r20lvp9FX3dlF5Tu+NgbCRrV7my3Jh1+3BnRLD2/h2MzsOXrgwXRqRnL/sMVwrYjv33rDy3l2+zutV2l+XneFsl13kOHPM5Broc/z7ywqVcYNtBgTuFAncKWU4P5+flMrV2eazcGQ3vxUZASfJ4r9xHdEi3B8vIpM6KJlopDzVNzy0NZbdzdM/b0DAccIDhZXFpfp+1Q/qvOmskoWY/hkUsWFebzns10w5vsWEZmWBEk/TsjPMHmUJvBplODzar6+vZJqtlhybwaulXElqnL+LkuYNX8tjus6kOeVleNgnL1tSXfcbnePXA1ISeU0REJFlpRKeItBKqaWyRjCcuNqPb62b2B8HK7q9D6vBEsABzzeUAeE90EvZBqK7t0VupQ21AOOF5yGumnUNm2Q4o243hcHPTvBv5y+ZXulzPpLRMttU3JVx60/YEQyp3tFn2upL/1+32DiZes54JdavwRupYH3wIgPVZ5zCzYkmLcmMbPmZS2kVsrW+d8Er6r4qgiWWk8tDBk/jBp03vnauqnHzO66SesWxvSAXq26+kB5293MfucybxWFE+d2yp4+tDcrFZg+eHLOlYwBjNXl820PIz68PK6HqRp2aOIGh5GfFGGlePSuNPU96nOM7E7MdnTiM1azSWOXguORoiroSO5jzirYMt19v9uO4iTkq9FwwP9+66NuHnExERSVYa0SkirUS6MbLRsA3eUWg2W8s1ylzGZlzp7T+HDv+HOIJrEt6Oj3LH8thxiwDwj/4c75rwysQFXa5nXmrLgLXT6vqapdI2u9n0XBb697RZZopXU9eTUYhsXixu2Vfu2+3DNNL5274hHAz07VeuuoiHB/b4CJgWy2o08kuabGwczgeVrZMDLSsL8GFliP3BIWxqiI4efPWQD7BRHYrvh00bBuFQBuFwaiKbLECZPzpK/OOGq9lUo5HaIiIiRwyen1dFBrlgdQOurPguNMxA1wNb0SQ8Bla448QEA5FhtHy+wrsfxTbxx2TmfEbINZfGQy33Ww27CO556ZgmKBvuNMzs4fz3tEVUY3Dfint5wpnBStNiy5k/4Pra6HTy/za6fnF5HOV8mLYMvy2VLzScQXqwd7LDDwb5/t2x20N8O2jrj+DO2r+x1HE1DeHErecoPW9PYCjLylsOc9vdEOKsVZNZX11HrqtvA9gXfGhnX2P0vejqNT42nDmNLLRW52AXNoaws8HBzzfXtdq3oTb6HrSnMY1NdTbAR3kwwrbgLNZXx/f+5DYyCESU9bsnVIXSCNmmcO+2BX3dFBERkX5FIzpFBomqz4riLhtu7HqAxe604Ri0I9FaPl9m1TZs9WsIF7+JM7y2VelIzQ6MY0gMBFA3djbvTDyDl02D5SaUTF7AysNLB7xgGrydFs1wa3Ujmppi+RnV8CmT6lby1TwvLisxWaIlmsTpCMNo+28gO3iA0d7Bs57dQPH4gbaDOeuq/VhAebBvfwTa09j0t1cXNvFH2s+oLYNHZaSAmpCBL9L+Z1JdxGBLfdNiKy+XeFlbHd8a04YxWL8X9DwLeP7g17C0rrOIiEgLCnSKDBK12w8SiXOkZrix60ly3BmhQTt93Wgjl2xw2z+IVG4itPV+DEezCz3DIFKz/ZjP+UH+JH5qb8qu+kBey7W77qFlEGNOVg4Amc6OM8KfmZtLhtk0suc/ax891qZKN4xyKziQbO7Z1XpEXH929+5MAsbovm6G9CmDB/dnU9nJV4OH90ZYUtL0g9fvt7X/t76wsGltSpthgKX3sp7yUdlIlh61bqeIiIgo0CkyaJjBMLXbDnZaLhIIYYW7nibHbhW1OQ13UDDbGPEY9mFYESx/OakFTSO5HClOjMixTUk2XF7+15FO83RR+496O28+gTbV4eIG5zYAzs3qeKTgfGcVw4N7Y/cL/DuPqa3SPfm2wbcERLLraERcf/T3XXXsCRT2dTOkD/mMsfx9Vz0HfR3/7b5b1khpoGlEcEMHf+uj3NNjt9MdbgytktVjGiKuvm6CiIhIv6RAp8ggEar3U735QOfl6ro5Tdl/ANtgHbhhdpx+1u5bFbvtSGkdDTa8GdH/XV7ieRIrJp3BoaOmvu/qYI76ienpzKldysS0TL5irmFBTi4X5ue0Kve1gmymh3YxzLet0zZIzzrL2saX8lq/RiKJtKSso7UT7ZhGXq+1RXpT9HPm3aoR1IZMPqrq/o9vWS4vKY7oDIKRKdmEg4WcP2wWQ7zpzMmbghXJSEiLRUREROKlQKfIIBGoqKduV2mn5ao+3dtpmTaZARzurk95HxAiDR3utoKVsdtOV8uyhiedVSdeiuFJx8oewcHjv9jp6R7Nn9xqW1EHa35e5DpIdvAA30wtY07Fi3zHWMvNgVdblJmclsnvyv6H8Y2fkhau6LQN0rPOLX+Mv1f8jBMzs/u6KTKA/XJTHe3lpQwYw6mIDO3dBkmv8BujAFh5+K3+s9ruf3YXeDLIcEYD5idmTyJkekgLn8nc3OMptM3GH8o85vaKiIiIdIUCnSKDgHU4SU2o1oe/ov21tSzTonzNrm6fx0ZZ3GUNRxK8/RjxzcU3Io0dFwjV4s52Y3PasYX3tdgVzh/L3e4cDk1eQEXBRL6XMwHDlQLGUc9P/jiM7BGQP477rfimAua7U3DbHCyqegqAs2tfwzAsJjeuxdEsKc6U9CyuSqsBIDsQf9Iq6Vk2TG63LSfVoemJ0jNClkWVNYmQMZyQMbzFCM59gULqI0fW9E2C92uJj+Flp68A08hhr6/ry9QcLd+dyaiU6N9Nln1UbHuGMZFwREnVREREpPdp4RyRwaDZaL/63WV4ctPbLFa77SDB6k6Cdh0wQuVAfqflPHluXL7nqA0v6va5ekNKoYNQg0GoruNpfVawvMP9od0vYOMFvLOfwKr8pMW+uowhrLfgzOxJ0Q0mhAsnUFwwkVE7V2JVFwNw1YyLOcUKc1IwvoQnKXYnr9uf5HrP1WTWlgBQ6N8BQJ5/DymhamzGfManZvB2/c+gPnqc2+p4Gr70rpOqX+e8vPk8V1bZeWGRbhi7xA0UAHDZ8FQeOG45ADsbPexssPGtEUOpM7PJNjb1YSslUbYHprPf7+Kj6hm8WFzb+QGdGO9agD+URSTnSYKBEbHtvkDBMdctIiIi0h36iV5kELDMplEb9Xvan75etnrHsZ0nVNVpmdShdowt1xPa/UK/T15kGBFSXKs6LWc1xDcK0m40Ei5+t8W2Cm9Wq3Kvjj2V5zJG4M8bE9vWiMFBw85trvimMs/LymCobxv/5drS5v6USDUTUzM4NzXc5n7pP0bbFHyW3vFWqZ8jXw1NC7bWm9y2YyIB09m3DZOEWVebQk3I1mmm9XhZVvTvZVrazMRUKCIiInKMNKJTZBA4MnUdwF9R32aZUL2fmjiysjeXPjxI3YHotFoLCwIdrO1oM/Bku7A2fhsC0YBo6hAHDQebAm3eAjcOZz2NFV4i/r4PwBm2MMFNf4bCf8S2efLd+Mui65kZDhtW2MSsi29dUyO4C8vXMtBc7GmdqOG/bamcaVgUZ41gxJhZuGoOUW/BCx0kHAL4Yl4uv6v5Aw3OHP7p/DIA55T/s93y81ItZpl74mq79J3RVAEeclxeKoMKekrPqQpFCBtDqIjkc8PHDTRGLCzgyf0O5uXN45Hpy/u6idINESOfme+P4c/Hu/ne+jpsRjSQ3ZYTc0ZT1FhBmb/t7wrNzcufxJHAeMA3Ke7lXkRERER6kkZ0igwCzQOdtJO0pvqz/e1f+bTDFmkWGLVCWP72R4t685y4PMUtAn322pewuaO/txgOG/aSP0DZ86Rl9I8pkjbqIezDsDe9VboCb8ZuO7wOsBlE6va1dXgrZtn7rbZtdbS9htkmy8ba1DzWDZvBmzMWUd9BsqEjTrOXkhEuY6hvK/NDGzot78BiZHB35w2XPjU8HF2+YIzXi8eu3yelZxWFhrK0PIuGw0FOgIqgyeuHGtHXxuRUGRnC/sYw/y4yCJgWvohFoJ3Pe7fNiePoNaLbMCIli3Hu07GO/E0oyCkiIiL9hL6xigwCEV/TGpOWabHj0fc4+G5TMNGKmJR9tLPTepzpLhypTYlRrMY9TTvNCGb1lnano7sc+6Dqgxbbgjsex50VfRtKK/QTKX6f0N7FBNb/Ak+uu61qWrE57d1KbOTN76R+m4ERjgZlbS47EH38wS334kh1kZGzFm/4adxZLgwrEtc5Q8WtR0PtsLU9JfSQZfF3Wwq3u3P4kZFGzVHXpC6bnVEp6fyjoIzH8/bjsTuY62uaZj+78pVO25NtBBgSUKCzvzuh9j0ez9vPr2zLGJOShtumYKf0nJs/dXPHltZrNQdMi6AxjKMnA5lG5+syS996qCgHgGcPdD5K02HYOCf/bABGpea0W+6k7Cn4gzmEwvF9VouIiIj0FgU6RQaB+r1NyXLC9X5qthRT9WnTdOtD72/Bd7C6wzoMu4E38BjO1KZtZs3GpjtWGLO+CHd22xc9ZulbmFUtR2oaZhinI9o2I7Q7ts2wLNzhpfE8NJzpDlyZXVs/zua0Y9v1Xy2Ctm2VMavWHr4dfatMSdmCYVk40yD42e8J7XgCt3Nz3OdtKyDaQPsjNQ9ZFrstCBhw9Kz107KyuDajkc+XPcoZFU9xTnYGk+pWxvbb6Xzq/ynBz/CG40tuJH0nLVzBGRVPcWL1mxQ67QzzKpOx9Jxl5T6K21k6ZJtvOGBvsW1xxdReaJUci8XFfgAicUzasBl2Av5xOAwb0zLGMDt3bJvlUu3R9aKto/4eRERERPqaAp0ig0DzBETB2ugaf/6yOqyIib+0loNvf9busYYjehGTXlgazR7uOHwBbBhEytZhcx6+yDGjmQ1c3pYJiRypLmwuB6F9rxGuamNKekP03FZ1y2zkgU1/azWq05HijAYnD0+RMxx23LY1ON3RNTPdOe7Y9ozh1U1tO4on14ZZu5fUlI/bfdx2t53wgXcB8KYfwuZyEPzsfwFwOkoxDk8lD2++u9064tHYwbqbHU0fPNdZytcqH47d/2HwpS6fe2b1UtwRBTqTyZWOHcxLtZFiV3IY6X2/2+EEw0bT10cbP9zgo8Ka3pfNkk5sqYsv89AZhVMZ7Z2MhY1LRi7AY/cwNe1EvHYn2a4ULhk5n7OGzADAaaT3ZJNFREREuk2BTpFBoHZHSdOdw+tyWRETX2kte55bhRU22zkSUgosMMA68AwANiM6MsSZ7sIK1ePNM7B7HFjBaIDTVt8seGiAN/AQ7mwbhhXBiARb1R8pXgIGRA62XL/SgBajOg2HjZTwP0mxL8GREg3yuDIchD65ExtleHLd2HfeSNrw6DT40OobcaS2PcXXbo8G98L7X2z3cbtSwxCsBiC49vuk5IchWBvdWdf0GI9OLtRVHaWWmZDa9oWkw7DxxZrnyQg1nXtCXefZ4Y/mtnzYaP+1l/7ni2X/4NLQKi7KTevrpsgg9EJxAxHSMI1cAELGEEoDYZ49mNvHLZP22QjFscYzwFj3zGhSIQD/LDLs+djMTE7IHs3ncsbhCMxluP3U6H5TP7aIiIhI/6RAp8gAF6ioI1jV0Oa+/S+toWFfB5nSAUd4E64MN+Hi9wAwiNblTIlgAHb240yzYzVGg6mhfc/jLXThLXSRPixMeO/LOMrva7d+s2oL3nwXlr+81b7gpr/hznWDARkZqwntfoHQ5ntISd+Jze3A7T0cwC1/G9u+H2I1lmDt+DUceCjadnfTxd2RpEcARqQseu6Kz0gdasdb6Irtd2ZER4XajUPNygdh/59j98P7Xu7wOYubYcOHgdMWHXnafASn02ZnkteO6/C+2Vk5TM+IThU8Jzeb3EB8md5l4Dmh5i2+HlrGtPSsvm6KDEJ7gqPZ5h+LZWSyPzgMgM/q9INJ/xX/mr6W1XJZjEhwFIFgFsM8QxjiGgmAP5jByNRsQIFOERER6Z8U6BQZ4FqM5jxK87U722QYhHb/C4e32dqSh6c6O+yHRzfWrsflLiNSswMAq74YPr4UPr6U8OqrAAjve6PD0zid7QdbXZ5anOluApuaAo3WoddJyy0ntPpGAEK7X8CqjiZTMis3Ej7wTrRe2y4APPluUvx/aqrUvz9201xzOXx8KZ7s6BTyFNvbuLLcUPdpi3ZEDjYlUrIaDpIIgXGnUGuzc3OBE7fNwbjUdC7Iz8FmGPy8IMIMey0X5WVwek4uDwbu53bnRwB81Wh/qQEZ+NyWj5nVS/i1a01fN0UGoZPeiTBnWYgdgUlsqfcC8HRRA5ahUcb9khHfGppeuxN/IKvFtlDES8Ry4ral4ODwPsPg1JwTCYayE9tOERERkQRRoFNkgKvdcajzQkc7vGykt8CJVb0Dm71pyrkRqjyckTwa7AuXLMc6+AyEOs/m2u7pQgfa3Wczq/Ck17eY9m427Mfc80Cn9YZ23EPacBNj49VEit+Prdlp1W1r3QZbdO1Rs3433pS9RA4t6+rD6LJXR5xIfmo6FzW8zpysTAqcDv7b9wzXFGRwSdW/mBnazpns4VZrGamhKlymnxHeNBaUP93jbZP+b6R/e183QQaxsqCL4OE1hn0Ri32hyX3cImmLFefIy2mZw9pNLGQ33FhmUyDbbY0joqnrIiIi0k/FP59FRJJO48FqarYUd/m4jKwP8YVPx+GoJQzYw7s4MqYz+On/4gWChwdFWjW7CNfsOqZ2thV4jAnsx0ZRi01mdXwBHqt6J5HVV8bupxYEaCh1Ez6wvFVZmxECHJi1O8Dmivsc3eGfcCreA59xp+HlbLfBuPK1PM7a2P47GtYBcFrlcy2O+1z1G6ym49GxMngUNm7H4Hws4lt/TySRzv+gscX9LQ0pjM50AG1nbJfeV8tk6sPeTstNyihkuHcItJOzKOib2uK+P5iTiOaJiIiI9AgFOkUGKCtisueZD7EiXV87zfIVk+J9H4vjATBL3k5081qIVKxrf19p66Bkd9kaP8abdyrmntZrlhoEwOYkUrMTy4q0cXTivDZ8JpNzx9IIjLC1TtAkEg8HIfLdXkoDjZ0XFulhDWEDy3BjWAp09hchy8mKqgygrsNyx2VMIN2ehz++5OwiIiIi/ZqmrosMUMVvf4bvYHXsvifPHf/BgUqCn/2RyM7/B0Co+N3Oj7HZMVydjxxpi1m1pd194dKPCJd+1K16jxba82SLJEMt+XFnujDMMFb1ji7XHRkZDQpTMAEAI6OQ9XOvoWbaOa3KrrF7+LpnCAAjqO3yuUSOeNL9Fq9nref1rPWM8Eanln6nMJXXs9bz9YIssl0eXs9az1UFWX3bUBnw6sIGFZFxfd2MQWW9by6Nxvh29tr55bZsfrrR12k9KfYsgn69diIiIjIwKNApMgA1FFVwaNnmFttcoSWxjOKdMRuj093NimjSG8PqfGqs4c3EyijsYks7Z1hWXOePh1VfDDVtJ3AxzDDulLJu1/3ziWdjpGTx6pSzAagdPp03vDlcVng8Rs7IpvM4PbwWMQgcXgd1ZKQba6iKHDa57gOOr3mL42veYpzXRYbTzfeq7uH4mrdYYO3kuNRUjq95i9G27q+hKxKPxgi8U6kENb1pW4OLkmDbz/mO4Ik8uree0kDnI2ztuDAtrbkpIiIiA4MCnSID0P5X1oF5VHAwWE2KY0Vcx5t1+zsvdJS6kSdgetK7fFxvC+1+pu0dVggquzdFPzJqJs+bBk/NvpKf21IxckfT4E7jGdNGsQVPz7ggVjYw8oRYkDPd6WJYqKidWkW65ibbeu7N3EFGqBSAU+re5j/tHwNwhm8V41MzcNrs3FFockehycS0zL5srgwwrx8K8YcdQbYGT2ZHcHaLfRGjIM5a4ssQPpgFjRG8UTOfN2rm89LBMH/fm0I9k5oKGF6W1sznPz6Ob3Uqp82OYbl6qLUiIiIivU9rdIoMQOF6f6ttlhUmsvtJyJpFR7lLbE57tzKob88exWinh5yiDV0+tleFWq/PGd1eTnD380cSzndJTeZQAH5heAD44/EXcVHtAY6snFhqa7p4f3f4CbHbF2SnkNZY3Y0zirR2esXTLe7nBvYxL7APgONq32Vczrkc9Nu4rvQPALybcyfbNdBTEmRZeXSK9E82eTkh08FtYw/vMLysrp/AKM8whtvXd1hHxMjDbpX0bEOT3MFQIVesatlxT80ZwkU50aR+L1TM5to1Ha/J2dzwlCywurC0jYiIiEg/pxGdIgNQWwmIrMZizPoi3NkdX9A4Urr3+8duVyp70zoZteNoGjViZMQ7wqd3hHf9CyPSvcRAVZ6MFvfvsxz8MWsMs7NyyHensNdwUDv1LIzsEfyvI4PRKdGRr1eEV5IZ1EW99I7TnFVckJsWuz/SocwjknirKwNEmv2YVmGOZ2mpky9+6OJg5AT8xtjYvkrrOErN42P/9gVHtlGjNLemOq3VtmcPmJSax7M5cDLXdSHICTA9cxxmpHWdIiIiIslKgU6RAaitQGfkYHTaustb3eGxnrTurVPZYNgocXra3W+k5VI/cR4AtdPO5kezrurWeXqKWd/9KeTlrtRW2xoycvhPx0b+lraRV0wbcwtnsmLauRyyLO51vc+41AxmVb0am2Ys0tO+WfJ//L+y/4ndP9Xc3YetkYGqLmy2CHTetTOH32+vZXdDiKlv2fiPT4Yf3uPkzBUpTFpqj/17pbT1e6k05+ab61onsFt8sIFJS+3MXRbqaMJGm3Jt0wiEFegUERGRgUOBTpEByIocdaljNE3ItjV+2v6BBph7H+zmWQ3KbO0nM6gcM5vdmcPZe9JlzCs4gaUmYB8Yq2cccjQFePPdKRgYjHSazGhYxWmVz3HjkOjF+/3ubMamZnB8zVvc4d3YV80VASDbrO7rJsgA5W/2W9um2pbJcF491EDAGIVpZFESiLTYF2z9G10f6QeJeYwULCMTy0jnSHvqGcXRH+/HytL6nCIiIjLAKNApMsBE/EHCvkCLbYa9KdBpNrafaCil0EmkZHW3zmszDEqM9gOXK3PGUO708LX00UQAH1A57ZwWZeqnnomRO7pb5++q9XOvSVhdn9pcXFsYTezyUej/uKkwlXQjQoF/JwBnBj8BYLUJX0iLXsmfUfFUws4v0h1zK1/AM0B+bJD+5fkD0bWQI0Yhyw+v3dlc4Ru55LwxAt9RUbstdf0j0vl27Sl93AI3P985i+w3xjHjvSmsaZyNaeRx956hCT1LlstLIKikZCIiIjKwKNApMsA0FFW2SjZk2Jt1dav9C0lnYHm3z2u32zhotP+W8pgjjQqbk+pm2/6SPwUjLTfaxpQs/mPI5wim53e7DfEyckZypTsP38T5CajM4AObhx9W38vY1Axclp8flP+eqbS9BMCl/reO/ZwiIv1YRdDEMjJZUTuxS1Opl5T46OuvphEjn0f29WkTMI00niyKBoiLfGEeL3KwzT+O1ZXhTo7smpNzJ2HpUkBEREQGGH27ERlgGg9UttqWnr42dtug7UCn3eMguOXebp/3JFcjO5wpGBmFLbbXTT0LI3s4n5oWfzC8LfY9adqoGHsyAJ8e/yU2WhY/Gnc6hjv+ddoMbyZG1jAANp9yJUZKNkbeGL515i0Y7QRNS0bOBOCekSe1X29qDtawqRhHrTtqDZ3aVMblJTLiBCZnZZAdPMAL5sMAeM16rij5a6zciTVL+TBtCVcVZDG1tvvBZJFES3do2qr0jPNWT+OaNf4uHVMVimAaWUdtdXLbrjMS1q62LKmZT9gYQj0TORAayeuHGvmw4bQePWdHrtswlUP+pqDmg3vquGSVxfKK1qNjuyPv8GfsUOfkhNQnIiIi0p8o0CkywDTsbxnoNOwGoa33x+5bZtuBTm+uH8Ldv4gaZpaBw8mKGYuazu1JZ9GQmewbG50GWN3GcX/JnwLA3SnRAOkbpsGqky6P+7yR3FHsGz+XLad8jcu8Q1h+4iV8OPlMlptgthPo/CBrBAAvmg5oZxRqJGsoDRlD2Dbzohbbn510ZtOd9HyWjp3DMHv0gjTf35TcxTCaxjF5zXpGNXzKhZGP435cIr1hhMfd102QAWp1lZ+qUKTzgkeJkNLiftjI5cXixAT42rO7wUatmUttJJWSgIeAafFxdd8t6/BeWesAcbE/nLD1OY/LGhW9YbWfQFBEREQkWWlxLpEBxlda0+K+J9eJta8idt+s/ITMcdOx3GOpPZAOgCPVhVH8wDGdN9OsJMvj4BZnNj89/dsYQJHdTYUFV2aOBQsKPSmU+BtbHPekaeM/p5/HSrPpCu7bzhxWjp+De+eHLU9SMB4wMKqKiBSM57Xx89lt97DEsLPjcPz2e44ssmyABbVZw8ks3gRA/ZSFpG15B4B/21LBsijD4skzbiLNDLNo61tQsp2SmRdQuOFV/Gl5NLpT+W7aCN44fHojPZ9fGx6+nDWMpTO+SLHdzV8MFzfZ4hu1NLvq1S4+qyI9a4hTv3dK//KHveMZ5hnH6Tn1jHJ8TK2Zy77GEP8sPT1W5si+RPGbcMf2XEwLDvqjwdnt9RaWkc77tSewz2fjtOxGxjrXJOyc7bN1K0Acr+OzR1DoHsoXhqUQDmX12HlERERE+ooCnSIDjBlquYaX01FEqPn+un0EP/kNuLKwDbsPT44Ndt1KuHrnMZ3XZ3cwyWWyBviR7fDU88OxywoLJqdlMjvF4J9HBToBXsub0OJ+wICzRp3G2xa4dkWDnUZaLjdMv4gRmPx0+1u8PvZUbrWlRs9htTy25PD9lwqmcNWWt1k59xr+05nNR1vewRo2lY1W0wG34wabm1Pzx5Fdsp3bcybyu3FzCDrcvJ81iiLLwkjJxmqsYu308wkBmycv5D/t6bHHmG/Vx/UcOa1A54VEepHHSHAKZ5FjdOeWWgDu/1w6o/JgS0MWFo18d31drMyZBV6em5m4c9ZHotPDm9tYG6LOGsZPN4bYUBvkBxPTuW1s4s7ZHsvI6NH6J6dNwGl4yHdm4fdpRKeIiIgMPAp0igwwVrhparrNaccqfrHtgsFq0jxvEFz/CIbZfoID38R5eLcvJzjuFCozhjB06ztYvuiFKIUTMaqKsCIhqp1epthq2q3nrLQIw6njqwU5eAyT8oidxeXRafb3G55WCZSqLDhz9Gm8F6jHdmgr/3fyVawwAWz4J57NMtNodY6j/cFyUbvgu/zNjL7VWUMms2/o9DbLlnuzyckoYFkE3hh2PHNrinjA5gULiiYvYMTGN/ihJx8six+lDqH5UqcFZut1UUWSwZm2/WQVDmNHyMH7lRWdHyDSSwKH3+NXVLb+qvp2qY9qppLF5oScqybUOuC/oTbA8yVD2FYfDYC+XhLktnGpYDUQNoZhYeC0DlBuTSfP+KzNei0jnV3BlutgjnYVUREppND2SZvHNFqJT8i3oHAaKfYU9jYWk8JYDDOCZTkTfh4RERGR/kCBTpEBxopEI3DuXDfOst8TPrii3bKhLQ/SYbjQ4eKCEaewdO/H3DZmHotN2JC7C1vRBgCWTFrI/IOfEXCnUeFwMSZcDAxts6r54c2U2PP437Jf4iCEz57BEvuN+CPh2AjMo1VZsH7USQzNH89Dpj22/cU4gpwQHd15JMgJ8Jepn+fMxraDOXUON2+ccBGWAcsND56MYew73K6LMsfxzrhTOHR4JOiOo5Y5He/fEld7RPqbS0vv4VLgxfwbeJ+eHUkm0hWNh39/K/a1/QHxYXUen89KzLmKfK2nivsiFjd/Uhu7v6k2QL01jDS2szc4nMUlKXx/xAH+e1MWDxzXdr0B8jjpnZZ1P3PKBO7aFuHN2Xag9XnLQhnQTtLA7hrpOJ1AKIOTMnbi8yc+kCoiIiLSn2hxLpEBxoqYpA8PYtt8NZHmQc52ku60xciMBit9407B8KQRHDaNj12pTE3PIpiSHSv3gjeX7Xnj+XXhDAwjzNjgjjbrc9rszK5+k1HhIhyHJ9J7I7VckJveaVvu8ebx85wJnZaLxz2Wg8dTC9rc96o3hx/You1ZjcE/7GmxfY3Ar4d9DgDjqNCwx+5gVH3bI3NEkkWmWYu9C+8RIj1tn88CXNSE2w50bq+3ETKGEzKGQ8c/2XXM8LK7Ib41Mbf78ggZwzkYcPObLXU0MoGygEnAGB1rS8gYjmVkEzEKKQ9nt6rjn/uhyBcGo+1p43v93u4/lnaEwtEET2ao7R8iRURERAYSXdWIDCCWZWGGTazdf4ZQy3Uj937ukrjrueqkr2ENnUJlah4vGk+xauSJ/C1lLW/V/4xIRvTCzRo2jTNzQqz2ZPGqCamResbXrWZ2Vk6r+sanppMSqWZO5Usttv+s9v5WZY+2wuTwlPXEeL6d0aCPmzasw7sqLFqs4wmw+HAbLshvunDNdnk4PycjFrwVSVYLKp5kmDel84IiveQvO+soMafy2qGGNvf/bFMt+W8UkP9GARjdDw4eikxiU2186ycvfN9P/hsFfPGDBgKmxbA301lW7qPwjZxYW/LfKOCp0uM5eflopr/VOkj7QnEDxf4wJu5W+xqYwIUr23683WUzDEwrOrMhGFEfFxERkYFPgU6RAcQMRcCyMENVrfY9mTmS2qlndVqH4U5jrQn/b8rnybOHGebbzKqMQk6ofguAmvQsALaNOIH5jStYYnMBkBaOnvOH9taZcCe47a22AeQG9lLoSa4Lr++F3oiN6sx1urgm8kEft0gkMVJtbfdTkb5y9+5MfJHOE2aZdP9zpD7s6vax7VldZbGzoeMfwExan/eJQ8MT3haHRmqLiIjIIKNvPyL90MG3N7baFvYFAQhUNdBQ1Dr5TfWmIsxgGJvTjlm3v9X+quxcbh46E+wdL827eeYFLM7eyGJXOg+NOxGA4ekhXJYfgGfyx3Luwlv4cd4kJtV+yIbDIx3zA/sAmFf5LFudj7DF+Wjs391Vd7Z7vs9nRBMi/M8QB1ucjzLCm9Zu2bbkuLyMTc3AwOC3hZG4AqdXF2bx6yFdOg0AJ2XmMK3mPU7MzGaD5xleC97N7KpXul6RSD+0OPDHWJ+9LL/1yGyR3va3nXWdFwLqrdxun2NlVeJ/bPvHns7b7bMyW9yvYSq3bqhtp3T3OfUDhoiIiAwyCnSK9COWZbHvxTUUv/UZltlyvra/LHoBVLx0A/V7y1rsC/uC7H3uI8INAdzZdoxIsGXFhsF11ipC6dmUHff5ds/fOPkMvp46gpnVS/l5ZimBwyNB5vk/ipUZaavjgAXz020YhoXNMHDa7KSFm5L8pIfLyQiXxf55zfpW5zriOv9r2AyDS2qeIyNcxnB310bXjPV6+GJahDsKI1xd+kf+J7Os02POMHdwTcndfC6za8Gc77k2AfAN9x5yA3tJDSvbugwcqeHKpj5rJDYZikhP2lCf1+1jS4Kdl+mqzsegwl5/Vov7NWEvcQxe7TKXTXlHRUREZHDRtx+RfqRizS7KVkUT+oTq/ASrG0gbHc2QGiivw+5yULl+L+F6P4WnTQbADIXZ9/xHhBsD1O8tw+msar1ipM3O1PpV3JHq51+5x/H9Ns5tuFK4eNhszsvNxF4e5uLS+5iZHk3Ac1zNu7FyX6x5gfF5JzGpbj0A/8rdxy/906Gby4pNqlvJ1wvOZ0jpdgB+xVIq8vL5FzN5ubztDOkpdicz0tP5vuMTcsMfM7byk1jQ8ZKSeynIvQzTMHjImsmbFdE6rirI4rHSamyGwZzapdgJc6tzPV9hVLttm5WVw385NnBl+XCGeFI5p+zfYMCi8ke792BFksT1/lc5P29ki21/jpzAB1UK7kv/8/IhO6d1krOuzJzBTl8Gc1KjSfperDydrfXw5H5fL7SwtVs32liQf3rs/qc1EaKp7xIr25Vcy8OIiIiIHCsFOkX6EV9pTex2+eqdVH6yl2k3fx6b04G/rJaqz/aDZVG7/RD1e8pwZnrZ+a8V+Iqj62PWbCkG35ZW9RoONxmhUmZWL2Fj6gltnrt6wqmkpWZwV/X/ix5jWIyrXwuAjabRXQX+nRT4d8bun1HxFFcXDO92oBPgvMhnsdvTa94B4FTjRYy821hc3jqwMjUtnRuc2zmj/KlW+wzDYn7l0wDYcyIss03gj3mVnF/+F/7J9zgxI5vs2gMAHF/3PnBlu+0a4oCFFU+Q6/ofZqe5MQLR4TZOK77EFSLJalLdSiaxssW2ZYXT0Iq00h89VdTAbybYgPZGIrv5yppUJqbbmDM1uuWvO0OsrvL3VhNb+aDCzwcVPX/+XHd6j59DREREpD9RoFOkF5jhCLXbDpI5eRiGve0VI8INAer3lsful67cRsQfovitjYz4/AlUbzoQm74OsPeFNYTqfUQam+bd1e0sITW4ulXdqVNOBJYDcLJtM1tP/ipD68vI2LQUAMPl5dEhM3jAeLHFFPR4XVr5WJePaW5O9WuttjmtAH+pvJ3y7NtYV1vLN/NdOA9fxE6NbOfsiic6rffUyud5OeN0jit7F4DPZWZzqicAh5/GrOAhbhtipwEnT9c62ddYx7m5uSytrGSkN41h9ujY2FuyG5gUbr1uqshg8vngGlKHRH8o+Xe1nYP+BqalZzHda/BUaesEaCK9pSJo0miMJcVq+hGuwprOHl8GIzz1lAZTWFsdoCQQYW3jqQBsr++BOeu97NT8iexvLGd/Q9v9b0RKFlPSTiDQN4NWRURERPqEAp0ivWDvc6upXL8XZ4aX/JMnkHfyeJxpHgCsiEnpyu0cfPszIv6mSedHbpcs30LOCaPxV7RMbuBvNvrzCDMUwQy0vOBxFozBkd00MqvBHuSSlGGMTh3Oq1uXQc5Ibp1xEbVZuYyrWtutx5ceLu+8UAe8kbYTMDitAIvclZyUn8p/l9ze5XptmBxX+27s/h3G2ywzTm5R5tsldwGwO+8O9jXCj0MvU5+1iBNdAeZFoqNjry39Q5fPLTLQnFz1MifzMgAl+b/in36Ym2Jyte9VnmJeH7dOBrtHDozgxuHFYPnASGXh8hT2Nfq4bnQWC/MBAhT5wpy1PNzXTU2YsSmTSLF72w10jkzNI+Cb1MutEhEREelbCnSK9LBD722mcv1eAEK1PoqXbuDguxvJnj6S9PGFHFq2mUB5yyCm4bBhhQ9PwTMt9jy7CsymLAWG3cBqJ2uBFWk2dMMwSD2uAIM9sU0Z4UrmZedQHjZZNvdafunMoMSEvzj2JeYBJ9gXahcnrK7ja94iLdI6QAww3BYgzeFiQt1qbsibQE6ogsn1H7VZVmSwO8/czJ7s45hOMSMaN3Ni5pdYVxMNtgz1pDLe625RviZisaFWoz6l59yzy8dlQyaQb9vAmoYT2NcY/SxcWRmg0OPp49YlTrYrhfHpBQA4rHQKXSPIce+gMtB6fc98Vx6tF+0WERERGdgU6BTpYTWbD7TaZoVNKtfvjQVAm7N7naTyDLXhC2PbjqzBCZAyxIlhmDQcjLR9wnD0YseekU/6rJEYVsup7OPq1/IUaylKOY6THZ/Ha3Pyl9wqLim7tzsPr8cN9W1LaH3j6te0uT3L8PP9PLCXhDlPyYZEOnRWxb85q9n9h4MPcAKXAnBJJvy09KctyvvsmZzi/h7lmkMrPWRvY4iasId8F6ypdgLRv7UtdUF+uzX5p6kfMStnAtnm5wHwHV7ic0bWbpaVbG5RbkxaLt7QvLgywIuIiIgMJG0vFigiCROqjz9xjSPFSYrvb4R2PIHhaLt72ssfxm4carcOK+TDO+FzZMyyMKyP2y03onEjVxZk8Vrqsn4b5OxNM8K7uL70z33dDJGklO/fQ47LC0CW0Tqo5I3UcFN2ELuhrx3Sc8KWAdgoGcD54lLsqa22OQx7i/t2w8b8nPlY+povIiIig5BGdIr0sFB9/COYUrLKCG1/GwB3lhOXu5LaA9GLGne2G6c3SPijl7H7S8H1gxbT2QGwGVjBajyjysHqfN3M/yv7WfwPZICbV/FMXzdBJKldlWNw9yGYE1jf5v5vl9zFt4EFabezrb7tJSREjsWcZSHgBGIZ5wYYu2HDG57TKrf8MPcE4DMATsoZzXj75QT8Rq+3T0RERKQ/0E+9Ij3IDIUxA/EnPjDCTSM13eZyQuv/P1yZ0bXu3CmHYP/dAERKVpM+tPWQFUeKE8OyAP+xNVxEpIsmmyUM9aTyuao3Oiyn8ItI94xJy8W0nK2226wUAFIcTo7zfh4M9TIREREZvDSiU6SHVG8+QPFb0REWrkw3HucaQsYsfGVtz6lLHWYQ3v7v2P3AZ3djWBE8kZcIch6RTXdi1hfF9kc+u5X0glNi9w3vEIKuz2NPy8WyKhVMEJFedXbVs5zgHo1hdLwq4J8d73C+MYuwZWIzDExLqwiKdOSsIdNZXbGdOTknE2pjkkggUMg1I6/Bstz4g5m930ARERGRfkSBTpEeEqisx1dchc3twFX1e0IHVwCQPnoRVuFXaShxYoVNPLluXI1PE/ro8RbHG1Y02VBo68OknXwO4eIDLYKXVmMJ4T0vtTjGPWsinmnTMVjWo49NRORoaeEK0sIVnZabXvMOp+ecw9sVFXhsDhojSgst0pGhrjHMyrFwRIa0mUTdtJz4AoW93i4RERGR/kiBThlUwo0BaneUkHP8qNi2hgOVuLNScaS6E3ouMxidsp6etobgrhVNbdj7Cux9hZSMsThGfIHAhnsJWe1kUD9S16YfYnelYgbqsWcUgGEQqSlpVS702W9JPS2bVgt4iYj0I/+f+Q5nFU7HTQMBHPy63I1PAU+RmPOGnkiOMx8AIzKSUc4CAqGMPm6ViIiISP+nQKcMChF/iJLlWyhZsRUzEMYMhck7aRxVn+1n99MfkjVlGOO+elpCz3kk0Bkuernt/bW7CW76W1xTzK36YrxTTyFYeoD0mTaCpSNo2NA60Gn5K8DSpHUR6d9mVi9hJkti91/KvINV1ZV92CKR/qXQPgu/PxuA6E+h6X3ZHBEREZGkoUCnDGhWxKTkg20cencTEV8QiK6Xue/FNTQWVVK2egdYULVhP9UnHiBryvDEnNeyiDTWkDbcIrJ6Y5ePt3kzMH212NPziNRFs6e7hoZwDQuDeQhH1pgOjm7oXqNFRPrI5e5DDMkfwopaH+WBNhYhFBlE0p1u/IEsZe4SERER6QZlXZcBy1dSw5a/L+HAa+uJ+IKkDHGQ7vgX9u1X4c52UrYqGuQ8orEoMaOJGour2HrvW/iLdxFZ/bUuH+/IGkLmqXl4Rk8nY7aFd/yJ0R3WBgwzmpXd5liLPT2v1bGGKwUsBQlEJLl8tfTP/L38p5yYltJie5rD1UctEuk7ee50ZU4XERER6SaN6JQBxzItSpZvoXjpBqywibfAhbPuaUJrnyAMYLNj3/sT3MPvJBI0AYNwQ5BI4NjWh4v4gxx4c0N0lKhpkTE82LKAzQ5mx2txOgvGkDYjAuYuvBOmg1mBe1QVztwzjkow1EDazJOo/2Rz0+OOhLF70oDGY3ocIiJ9ZbgjTKGnKdg51O3mYKDpq0rYtKgI6sccGdgKPVl93QQRERGRpKVApyS9xu0PkTLxOgDq95azb/HaaLZzp52Mgm0E1/2cEGBPzyPt+GnYPLuoW1ON7bNLYkOaPbP/RcTXvUCnZVlUrttD0WvrCTcEmu3wx26mTJuDe8h2Iv7pNG7eQbjqQIs6HJlDSJs5HowVTYmEzM8AMDCxp7bOom5zvEfGSc1ORwaB/fnA/m49DhGRvnZn6W3c2XxDoOX+Es8ETuTC3mySSK8b51xEuOPfRUVERESkHQp0SlKzwn7q1tyKPefzFL+9l8r1e8ACb4ELe9GdBPesxZaSSdoJM7F7PwLrPTAh/aTjqH6vCiscvYq2Nv8ICv7V5fM3Hqxi30tradhb3nqnGQ10ukdMxT3kE7B82N3LSJtpA07BvzdAoGgr6SeejD31I7BWtK6jCwxqcY+0H1MdIiL9WaF/B9kuD1VBf+eFRZJUxNRnuYiIiEh3KdApSS1UuQ4zUE7F62fiNtIYehyABeEyjBwLGAlmJbCsxXqcWBvJOr0ADDdg0Lg9HbN6PWboVGzOzruFFTEpXrqBQ+9vAdNqtT91mI3IzkcBSJnkarFupoEJrMI7GjyjPdEp6a2r6B7rIyUvEJEBbbTXq0CnDFinF0zBsvT1XERERKS79E1KkpsVnedthLZ049jSWIAxZeI4GqoqKHl/K0PPPK7Dw3wlNex++kN8xVWt9rky3XjMVwh99GDTaazd7cYeDRJ7sa7cBSIy0Hn0RicDWLojneiC4iIiIiLSHQp0igCYu3BnHOTQ+1vInDqclKFZbRZrKKpk631vYR21eJbhsJNeUExo/U8JhRoA8IybiWekF4OVPd16EZFB4xb7WsoLcltsCxkObi5JxUrY8HgZTBYNm8Wayq2U+Ov6tB2ZTg959un4FOgUERER6TYFOkUOs0W2kJK7gO0PvsPE6xe2Geys3X6wVZAzdagNY8+dhD5a32K7My8Tw9Y6iZCIiHTfaZXPtbn9wYxf80lt65H2Ip3JdY5kTFpVnwc6zyg4AV8gv0/bICIiIpLsbJ0XERkcbM5a2PW/WGaE7Q++Q/2+1gmGanccit12prvIyHgLc80VRMrXtyjnyB2BI62hp5ssIiKH3ejZg8eu32+l6wzsTEqdzsjU7ITWm+NO4fxhs1r8G5eWx5lDprcqO9SbQZYxM6HnFxERERmMdEUgcoT1Cc60GRihB2l0Xs/We9+i4NSJDD/neGwuB+Uf7aR+dxkAacMjmBtuJOQrjR5r2PCMOg7X8Bzs3iIwd4JV1IcPRkRkcLmg7AH+nP4rNtZW93VTJNlYDgL+cUzJ2MP+hsSNCh6RkkNa+MwW207OWYczMoF053bqQoHY9ikZI/EHMxN2bhEREZHBSoFOkWa8E0yq3n6TlJHQ6PkGpSu2Ub3pAEMXTGP/yx/jynLj4V1Cq/8Edicp0+bgyrNjOLaAtSFaidm3j0FEZLA6zRvBsrJabNvna6Q+HOybBklyOJzlPNuRw6SMQgBqgo3HNJV9bFouQzy50HK1G9zmKIIRNzOyRlEeqI1tz3PlQwAREREROUYKdIo0Z24k6/TTqH7vTdyZ27FNvIP64gb2Pv8R3gIX1ieXEzLDuIZMIPU4G5gfRo9T/gsRkT73i9JftNp2e8HPuadEgU5pn2W5ozcCs5npmQ2AJ2snj+57ttt1npp2JaGIp9V2XzCaSGuEcTEjmu9WkFNEREQkIbRGp8hRDNsKsk6fi1Wzm8hHXyEj6wPcOW5s+36OYUVIn3U6KVP3gbmtr5sqIiKdOMXc1ddNkH7Oslytt0UKul3fEG8GIbN1kFNEREREep5GdIq0wbCtIHvhTOo/rSS08c/Y+DO2nOFknpkH5nt93TwREYnTOeX/Yqsz/iQzb2dfwo2lGT3YIulP5hdMJhBMA6Pl9kAona8O+X73KrUMIprpISIiItInFOgUaY+1nrTjvYRrz6B+/UrST8wG87O+bpWIiHSBDZP0cEXc5ceEdgMn9FyDpF9Jc6RB2GhzX8RsPdJTRERERPo3BTpFOmL5cKQvI+uMfAU5RUQGgUl1q5mTtZAPqysB+GZhOgsjm2L7r6saiz8S7qvmSYJcOfp8HFY6mBn4+roxIiIiIpIwCnSKxMMs6+sWiIhIL/BGapnsinA41Rznhdcxt/LF2P4s920cUqAz6dnCo/GF0vu6GSIiIiKSYAp09jN79+7lT3/6E6+88gr79+/H7XYzfvx4Lr/8cr7zne+QkpLS100UEREZ0M6PbCBvyCQAplatarFvgtfDIX9Dj537yoIshtj8nZZb0ujl09qqHmvHQHJK3jiGe4e32BYKKlmQiIiIyECkQGc/snjxYr7+9a9TW1sb29bY2MiaNWtYs2YNDzzwAK+88goTJkzow1aKiIgMbPMrn2Z+O/vOd5WxHFuPnNdls3N75e/wRmo6LVtV8Es+re20mADjUyYT9s9osc3so7aIiIiISM9SoLOfWLduHVdccQU+n4+0tDR+/OMfs3DhQnw+H0888QT3338/27ZtY9GiRaxZs4b0dE23EhER6W1nNrzNvOzLe6Tuya4w3tLOg5wALmPwpPWelTumxf1Sfy37Gio7PGZMWi557uh3JSeZaLEBERERkcFBgc5+4uabb8bn8+FwOHjzzTeZO3dubN+ZZ57JxIkTufXWW9m2bRu///3v+cUvftF3jRURERmkRjV8wlN80tfNwGENjjGJ2S4v4+wtA8vH5RbxSMO/2z3GYdg4PfPL+EMZAPg6XwlARERERAaInpl7JV2yevVq3n//fQCuv/76FkHOI2655RamTp0KwN13300oFOrVNoqIiEj/4TEi2A0bNsPo66b0qBEpOa22+f3DyHOnYjdsbf47Z+jMWJBTRERERAYXjejsB1544YXY7euuu67NMjabjauvvpof//jHVFdX884773Duuef2UgtFRESkP/lByR38ANifOoNT6gfu94GT0s+iMdBym4WNMzO/0/5BmqcuIiIiMmhpRGc/sHz5cgBSU1M56aST2i13xhlnxG6vWLGix9slIiIi/dvIhg2MTEnr62b0IHtfN0BEREREkohGdPYDmzdvBmDChAk4HO2/JFOmTGl1TLyKioo63L9///7Y7YMHD3ap7r4ULCulquN8BCIiIgPa3anP0WDrP1O1N3km85vSY/+KaTNs1DjqCJlarkdERDpW6fJQlJ08P/w1v+YOhzUVQSSRDMuyBk/azn7I7/fj9XoBWLRoES+//HKH5dPS0mhoaGDOnDmsXLky7vMYA3wNLxEREREREZFks3r1ambPnt3XzRAZMDR1vY/V1dXFbqeldf4LVGpqKgD19fU91iYREREREREREZFko6nrfczv98duu1yuTsu73W4AfD5fl87TfGp6e+3YsmULhYWF5OfndziFvr84ePAgJ598MhD9FWzo0KF93CLpCr1+yU+vYfLTa5j89BomN71+yU+vYfLTa5j8kvE1DIfDlJWVATBjxow+bo3IwNL/o1kDnMfjid0OBoOdlg8EoqlHj0x3j9eIESM6LTNhwoQu1dmfDB06NK7HKP2TXr/kp9cw+ek1TH56DZObXr/kp9cw+ek1TH7J9BqOGTOmr5sgMiBp6nofS09Pj92OZzp6Q0MDEN80dxERERERERERkcFCgc4+5vF4yM3NBTrPjF5VVRULdI4cObLH2yYiIiIiIiIiIpIsFOjsB6ZNmwbAjh07CIfD7ZbbsmVL7PbUqVN7vF0iIiIiIiIiIiLJQoHOfmDevHlAdFr62rVr2y23bNmy2O3TTjutx9slIiIiIiIiIiKSLBTo7Acuuuii2O2HHnqozTKmafLoo48CkJWVxcKFC3ujaSIiIiIiIiIiIklBgc5+4OSTT2b+/PkAPPjgg6xcubJVmd///vds3rwZgJtvvhmn09mrbRQREREREREREenPHH3dAIm6++67Oe200/D5fJx77rn85Cc/YeHChfh8Pp544gnuu+8+ACZNmsQtt9zSx60VERERERERERHpXwzLsqy+boRELV68mK9//evU1ta2uX/SpEm88sorTJgwoZdbJiIiIiIiIiIi0r8p0NnP7N27l7vvvptXXnmFoqIiXC4XEyZM4Mtf/jLf/e53SUlJ6esmioiIiIiIiIiI9DsKdIqIiIiIiIiIiEjSUzIiERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU5JSnv37uWWW25hypQppKamkpOTw+zZs/m///s/Ghsb+7p5g9KaNWu4/fbbOffccxkxYgRut5u0tDQmTZrEddddx/Llyzut4+GHH8YwjLj+Pfzwwz3/oAaZeJ/7BQsWdFrXa6+9xsUXXxz7WxgxYgQXX3wxr732Ws8/kEFqwYIFcb+GR/69++67LepQH+w5paWlvPzyy9x222184QtfIC8vL/ZcXnvttV2uLxF9LBwOc8899zB//nzy8/Pxer2MHz+eb33rW2zcuLHLbRroEvEaNjY28txzz3HjjTcye/ZssrOzcTqd5ObmMnfuXH7xi19w6NChTuvpSn+XJol4DRP9PtnY2Mhdd93F7NmzycnJITU1lSlTpnDLLbewd+/eY3vAA8yxvn579uzp8ufkmDFj2qxLfbB7EnG90Jw+C0WkTZZIknnppZesjIwMC2jz36RJk6zt27f3dTMHlfnz57f7ejT/d/XVV1uBQKDdeh566KG46gGshx56qPce4CAR73N/xhlntFtHJBKxrr/++g6P/8Y3vmFFIpHee2CDxBlnnBH3awhYNpvNKioqalGH+mDP6ei5vOaaa+KuJ1F9rKyszJo9e3a7dbjdbuv+++8/xkc9sBzra/jJJ59YaWlpnfatjIwM64knnuiwrq70d2mSiH6YyPfJ7du3WxMnTuzwb2Hx4sXH/sAHiGN9/Xbv3t2lz0nAOvfcc9usS32w6xJ1vWBZ+iwUkY45EEki69at44orrsDn85GWlsaPf/xjFi5ciM/n44knnuD+++9n27ZtLFq0iDVr1pCent7XTR4UiouLARg2bBhf/vKXmT9/PqNGjSISibBy5Up+//vfc+DAAR599FFCoRD//ve/O63zjTfeYNiwYe3uHzFiRMLaLy3deOON3HTTTe3uT01NbXffT3/6Ux588EEATjzxRG699VbGjx/Pzp07ueuuu1i3bh0PPPAA+fn53HnnnQlv+2D20EMP0dDQ0GGZTZs2ccUVVwBw1llnMXz48HbLqg/2nFGjRjFlyhTefPPNLh+biD4WiUS4+OKL+eijjwC45JJLuOGGG8jJyWHVqlX8+te/prS0lG9961sMHz6cL3zhC91/sANUd17D2tpa6uvrATjttNP44he/yKxZs8jNzaWsrIznnnuO+++/n9raWq688koyMjI6fe5nzZrFQw89dEyPZbA6ln54xLG8T9bV1bFo0SK2b98OwA033MBXvvIVvF4v77zzDr/5zW+ora3liiuuYMWKFcycObPb7RyIuvP6DR8+nA0bNnRa7je/+U3su+o111zTYVn1wfgl8npBn4Ui0qG+jrSKdMWRXwIdDof1wQcftNp/1113xX6B+/nPf977DRykFi1aZD355JNWOBxuc39ZWZk1adKk2GuzbNmyNss1HyWxe/fuHmyxtOVY+87WrVsth8NhAdasWbOsxsbGFvsbGhqsWbNmxfqwRl73vltvvTX2Oj/22GOt9qsP9pzbbrvNWrx4sXXo0CHLslqOLIp3JFmi+tiDDz4YO/dNN93Uav/27dtjMycmTJhghUKhrj3YAepYX8MVK1ZYl19+ubVx48Z2y7zwwguWYRgWYI0fP94yTbPNckdGk3U0wl5aS0Q/TNT75M9+9rNYPXfddVer/StWrIj1d73OUYl4/ToTDoetYcOGWYCVnp7e6n32CPXBrkvU9YI+C0WkMwp0StJYtWpV7MPoW9/6VptlIpGINXXqVAuwsrKyrGAw2MutlPYsXrw49vp973vfa7OMgix961gDnTfeeGOsjpUrV7ZZZuXKlR1+qZSeE4lErOHDh1uAlZaWZjU0NLQqoz7Ye7pzgZ6oPnbkczInJ6fNvwPLsqzf/OY3sXqeeuqpuNo32PREkMWyLOvSSy+N1bt27do2yyjIkhh9FegMBoNWZmamBVhTp05td3rtt771rdi5Vq9e3a1zDWQ90Qdff/31WJ3XXXddu+XUB3tGPNcL+iwUkc4oGZEkjRdeeCF2+7rrrmuzjM1m4+qrrwagurqad955pzeaJnFYuHBh7PbOnTv7sCXSEyzL4sUXXwRgypQpzJkzp81yc+bMYfLkyQC8+OKLWJbVa20c7N566y0OHDgAwGWXXUZKSkoft0i6IlF9bNu2bWzevBmAyy+/vN2/g+aJPZ5//vljbb50gT4vB7533nmHmpoaIDo12mZr+5JM/bD3Pfroo7HbnU1bl8Tr7P1Pn4UiEg8FOiVpHMnCl5qaykknndRuuTPOOCN2e8WKFT3eLolPIBCI3bbb7X3YEukJu3fvjq291LwPtuXI/gMHDrBnz56ebpoc1vzi7cgPQpI8EtXHmme07aieIUOGMGnSJECfpb1Nn5cDX7z9cNasWbEAjPphz6urq4sNrBgzZgynn3563zZoEOrs/U+fhSISDwU6JWkc+dVtwoQJOBzt59GaMmVKq2Ok7y1btix2e+rUqZ2Wv+666xg2bBgul4u8vDzmzJnD//zP/8RGpEnPefrpp5k2bRopKSmkp6czceJErrnmmg5HSG/atCl2u3kfbIv6aO+rr6+PjUQYPXo0CxYs6PQY9cH+JVF9rDv17N+/v9NEV5I4Xfm83LJlC6eccgpZWVl4PB5GjBjBhRdeGEvmIT2ru++T8fZDh8PBhAkTAH1e9oZnnnmGxsZGAK666ioMw+j0GPXBxOrs/U+fhSISDwU6JSn4/X7Ky8uBzjP9Zmdnx7JC79+/v8fbJp0zTZPf/va3sfuXX355p8e8++67HDx4kFAoREVFBatWreKOO+5gwoQJ3HvvvT3Z3EFv06ZNbN68GZ/PR319PTt27ODRRx/lzDPP5OKLL45Nt2uuqKgodruzPjpy5MjYbfXR3vHss8/Gvpx//etfj+viTX2wf0lUH+tOPZZltThOes4nn3zCK6+8AsCMGTM6DXSWlJSwevVqampqCAQCHDhwgJdeeolrrrmGmTNnKjjWw7r7PnmkP6WmppKVldXhOY70w7Kyshaj3STxujPzQX0wceK5XtBnoYjEo/1hcSL9SF1dXex2Wlpap+VTU1NpaGigvr6+J5slcfrDH/7A6tWrAbjkkks6XHpg3LhxXHLJJcydOzf2xWLXrl08++yzPPPMM/j9fr797W9jGAbf/OY3e6X9g0VKSgoXXHABZ511FlOmTCEtLY2ysjKWLVvGPffcQ0VFBS+88AIXXnghS5Yswel0xo7tSh898kMEoD7aS7py8aY+2D8lqo+pr/ZfgUCAb3zjG0QiEQDuuOOOdsvabDbOOusszj//fE444QRyc3Opq6vj448/5t5772Xz5s1s2rSJhQsXsnr1akaNGtVbD2NQONb3ySP9MN7vtEfU19fjdrsT9CikuX379sVGE5566qmxkbTtUR9MvHiuF/RZKCLxUKBTkoLf74/ddrlcnZY/8iXQ5/P1WJskPsuWLeO///u/ASgoKODvf/97u2UvvvhirrnmmlajzWbPns0VV1zByy+/zCWXXEIoFOK//uu/uOCCCxgyZEiPtn8wOXDgQJsjS8455xy+973v8YUvfIF169axbNky/v73v/Of//mfsTJd6aPNL9LUR3teUVER7777LhBdnP/IWlNtUR/svxLVx9RX+6/vfve7rFmzBogmQfnSl77Ubtnnnnuuzffr+fPnc9NNN3HDDTfwyCOPUFJSwve//32ee+65nmr2oJOI98kj/bAr32lB/bAn/fOf/4wlrIlnNKf6YGLFe72gz0IRiYemrktS8Hg8sdvBYLDT8kem9ni93h5rk3Ru48aNXHzxxYTDYTweD08//TQFBQXtls/MzOxwSu0Xv/hFbrvtNgAaGxt58MEHE97mwayj6XOFhYU888wzsVGcf/7zn1vs70ofbT71Tn205/3zn//ENE2g8wyy6oP9V6L6mPpq//Sb3/yGBx54AIgGzP761792WL6j92un08kDDzwQyzj8/PPPa23dBErE++SRftiV77SgftiTHnvsMSAa1Lriiis6La8+mDhduV7QZ6GIxEOBTkkK6enpsdvxTBk4shZdPFOCpGfs3r2bc889l6qqKux2O0888URCsld+85vfjF1gNF+wXHreuHHjOOeccwDYsWNHLOsldK2PNl/IXX2053X14q0z6oN9I1F9TH21/7n33nv5yU9+AkSTXrz66qstpkp2h8Ph4Prrr4/dV1/tXZ29Tx7ph135Tgvqhz1l9erVbNmyBYALLrig03VT46E+GJ+uXi/os1BE4qFApyQFj8dDbm4uQKeLQFdVVcU+kJovQi29p7i4mLPPPpvi4mIMw+Af//gHF154YULqLigoiP0t6Nfx3jdt2rTY7ebPf/OF3Dvro80XhFcf7Vlr1qyJZRb94he/SHZ29jHXqT7YNxLVx7pTj2EYnSZrkO55/PHHuemmmwAYPXo0S5YsIS8vLyF1t/d+LT2vs/fJI/2poaGB6urqDus60g/z8/O1PmcP6U4SonioD3asO9cL+iwUkXgo0ClJ48iXhR07dhAOh9std+QXWaDTbKWSeOXl5Zxzzjns2rULiE5xTuSXRiCujNHSM9p77pt/mW/eB9uiPtp7ml+8dTZtvSvUB3tfovpYd+oZOXLkMY8wlNZeeuklrr76akzTZOjQobz11lsJvYhWP+1bHT3/8fbDcDjMzp07AX1e9pRQKMQTTzwBRAPUn//85xNWt/pg+7p7vaDPQhGJhwKdkjTmzZsHRH/9Xrt2bbvlmk8NOe2003q8XdKkpqaG8847LzaC7Le//S3f+c53EnqOsrIyysvLARg2bFhC65bOHXltoeXzP3bs2Nj9zqZnvffeewAMHz6cMWPGJL6RArS8eMvPz+cLX/hCQupVH+wbiepjRz5LO6vn0KFDbNu2DdBnaU946623uPzyywmHw+Tm5rJkyRLGjx+f0HO0934tPa+z98l4++GaNWtis5TUD3vGK6+8QkVFBQBf+9rXcDgSl6tXfbBtx3K9oM9CEYmHAp2SNC666KLY7YceeqjNMqZpxkYwZWVlsXDhwt5omhBdcH/RokV8/PHHAPz0pz/lRz/6UcLPc99998WyYp5xxhkJr1/at3v3bpYsWQLA+PHjGT58eGyfYRix6UZbtmzhww8/bLOODz/8MPbL+IUXXqjRDj3otddeo6ysDEjsxZv6YN9IVB+bNGlSbGTLU089RWNjY5v1PPzww7HbF1988bE2X5r54IMPuPDCCwkEAmRmZvLGG29w3HHHJfQc4XCYf/zjH7H7iVgjW+LX2fvkggULyMzMBOCRRx6JlT2a+mHP66mZD+qDbTvW6wV9FopIXCyRJDJ//nwLsBwOh/XBBx+02n/XXXdZgAVYP//5z3u/gYNUIBCwzj333Nhzf/PNN3e5jt27d1sff/xxh2UWL15suVwuC7C8Xq9VVFTUzRbL0V566SUrFAq1u//QoUPWiSeeGHuNf//737cqs3XrVstut1uANWvWLKuxsbHF/sbGRmvWrFmxPrxt27aEPw5pcumll8Zer7Vr13ZaXn2wd+3evTv2+lxzzTVxHZOoPvbggw/Gzv2d73yn1f4dO3ZYGRkZFmBNmDChw/eGwaw7r+G6deusrKwsC7BSU1Ot5cuXd/m8b7/9tlVVVdXu/mAwaF1zzTWxtn3pS1/q8jkGi66+hol8n/zZz34WO/ddd93Vav8HH3xgORwOC7DOOOOMeB7OoNOdPthcRUVF7LWaMWNG3MepD3ZPIq4XLEufhSLSucSNzRfpBXfffTennXYaPp+Pc889l5/85CcsXLgQn8/HE088wX333QdEf6W75ZZb+ri1g8dXv/pV3nzzTQDOPPNMrr/+ej777LN2y7tcLiZNmtRi2549e1i4cCFz587lS1/6EieccAIFBQUA7Nq1i2eeeYZnnnkmNurhd7/7XYsRhXJsvve97xEKhbj00kuZO3cuY8aMwev1Ul5ezrvvvsu9994bm4Y3b968NqcYTZo0iR/+8If89re/Zc2aNZx22mn86Ec/Yvz48ezcuZP//d//Zd26dQD88Ic/ZOLEib36GAeTqqoqXn75ZQCmT5/O5z73uU6PUR/sWcuXL2fHjh2x+0f6E0TXnm4+agTg2muvbVVHovrYNddcwz/+8Q9WrFjBX//6Vw4dOsQNN9xAdnY2q1ev5le/+hW1tbXYbDb+9Kc/JXQqZzI71tdw586dnHfeebHkM7/+9a/JzMzs8POyoKAg1g+PeOSRR7jgggu44IILWLBgAZMnTyYjI4P6+nrWrl3LfffdF5sSWlBQwN13392NRzswHetrmMj3yR/+8Ic8+eSTbNu2jVtvvZUdO3bwla98Ba/XyzvvvMOdd95JOBzG6/Xyxz/+8dgf/ACQiPfR5p544gmCwSDQtdGc6oPdk4jrBdBnoYjEoY8DrSJd9tJLL8V+XWvr36RJk6zt27f3dTMHlfZei/b+jR49ulUd77zzTlzHpqSkWPfee2/vP8gBbvTo0XE9/5deemmHoxgikYj1H//xHx3Wcf3111uRSKT3Htwg9Pe//73DkUJtUR/sWc1H98Tzrz2J6mNlZWXW7Nmz263D7XZb999/f6KfhqR2rK/hQw891OXPy7Zmp8TbjhkzZlgbN27shWcmeRzra5jo98nt27dbEydObLeejIwMa/HixT3xVCSlRL2PHnHKKadYgGW3262DBw8mvB3qgy119f2vreuFI/RZKCId0c8SknS+9KUv8emnn3L33XfzyiuvUFRUhMvlYsKECXz5y1/mu9/9LikpKX3dTOmik046iX/+85+sXLmSNWvWcPDgQcrLywmHw2RnZ3Pcccdx1lln8Y1vfKPV6BY5do888gjLli1j5cqV7Nq1i/Lycmpra0lLS2PkyJGceuqpXHPNNcydO7fDemw2Gw8++CCXXnop9913Hx999BHl5eXk5eUxe/ZsvvWtbyUsKY6077HHHgPAbrdz5ZVXxnWM+mBySFQfy8vL44MPPuD+++/n3//+N5s3b6ahoYFhw4Zx1llncfPNNyd83UhJjB/96EfMnDmTlStXsmnTJsrKyqisrMTtdlNYWMisWZjyAVUAAAeQSURBVLO47LLLuPjii7Hb7X3d3AEl0e+TEyZMYN26dfz1r3/l6aefZseOHQSDQUaOHMn555/PzTffzOjRo3vhkQ0+27dvZ9WqVQCcc845DBkyJO5j1Qf7nj4LRaQjhmW1s/q1iIiIiIiIiIiISJJQ1nURERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvQU6BQREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIj0sYcffhjDMDAMgz179vR1c0REREREkpICnSIiIiLdtGfPnliA8lj+iYiIiIjIsVOgU0RERERERERERJKeYVmW1deNEBEREUlGoVCIrVu3trt/xowZAMyaNYuHHnqo3XLTp09PeNtERERERAYbR183QERERCRZOZ3OuIKUqampCmaKiIiIiPQwTV0XERERERERERGRpKdAp4iIiEgf6yzr+oIFCzAMgwULFgCwY8cOvv3tbzNu3Di8Xi9jxozh+uuvZ+/evS2O++yzz7juuusYN24cHo+HkSNHcuONN1JaWhpXu1544QW+/OUvM2rUKDweD1lZWcyaNYtf/vKXVFVVHevDFhERERFJKE1dFxEREUkiS5cu5ZJLLqGuri62be/evfzjH//g5ZdfZtmyZUyZMoXHH3+ca6+9lmAwGCtXVFTEPffcw2uvvcYHH3zAsGHD2jxHVVUVl112GW+//XaL7YFAgLVr17J27Vr+9re/8eKLLzJnzpyeeaAiIiIiIl2kEZ0iIiIiSaK4uJjLL7+crKws/vznP7Nq1Sref/99vv/972MYBqWlpXzjG9/go48+4uqrr2b8+PE88MADrF69mnfeeYerrroKiAZGf/CDH7R5jkAgwNlnn83bb7+N3W7nqquu4vHHH+fDDz/k/fff54477iA3N5fS0lLOP//8VqNIRURERET6ikZ0ioiIiCSJ7du3M3HiRFasWEF+fn5s+7x583A4HPzud79jxYoVLFq0iJNPPpklS5aQkpISK7dgwQL8fj9PP/00zz77LGVlZS3qAbj99tv5+OOPycrKYunSpZx00kkt9s+bN48rr7ySuXPncvDgQX7yk5/wr3/9q2cfuIiIiIhIHDSiU0RERCSJ/OlPf2oVnAS46aabYrfLy8t54IEHWgQ5j7jxxhsBCIfDrFy5ssW++vp6/vrXvwLwq1/9qlWQ84jRo0fzs5/9DICnn36ahoaG7j0YEREREZEEUqBTREREJElkZWVx3nnntblv7NixpKenA3D88cczderUNsudcMIJsdu7du1qsW/ZsmXU1NQAcNlll3XYltNPPx2AUCjE2rVr43sAIiIiIiI9SFPXRURERJLExIkTMQyj3f1ZWVnU1dUxadKkDssc0TyhEcCaNWtit4cOHRp3uw4dOhR3WRERERGRnqIRnSIiIiJJoq2p6M3ZbLZOyx0pAxCJRFrsKy0t7Va7Ghsbu3WciIiIiEgiaUSniIiIiAAtA58ff/wxTqczruNGjBjRU00SEREREYmbAp0iIiIiAkBubm7sdn5+vgKYIiIiIpJUNHVdRERERAA48cQTY7dXrFjRhy0REREREek6BTpFREREBICzzz47tr7nn/70JyzL6uMWiYiIiIjET4FOEREREQGiGdm/+93vAvDBBx/wX//1X5im2W75kpISHnjggd5qnoiIiIhIh7RGp4iIiIjE3H777SxbtoxVq1Zx99138+6773LDDTcwc+ZMUlNTqaqqYuPGjSxdupTXXnuNGTNm8I1vfKOvmy0iIiIiokCniIiIiDRxu90sWbKEa6+9lueee45PPvkkNsqzLRkZGb3YOhERERGR9inQKSIiIiItpKen8+yzz7J8+XIeeeQR3n//fYqLi/H5fGRkZDB+/HhOPvlkFi1axLnnntvXzRURERERAcCwtMq8iIiIiIiIiIiIJDklIxIREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU4RERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvT+f+WvZVe2hlgcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'fitness_function_mutation_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_sequences=6,\n", + " # Track the 6 most represented genomes overall (remaining genotypes are\n", + " # lumped into the \"Other\" category).\n", + " track_specific_sequences=['BADD']\n", + " # Include the initial genome in the graph if it isn't in the top 6.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a heatmap and dendrogram for pathogen genomes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate a heatmap and dendrogram for the top 15 genomes, include the ancestral genome _BADD_ in the phylogeny. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPeCAYAAAARWnkoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6v0lEQVR4nOzdfZxXdZ03/tcMo0MyCAXiDKagSzqChmabN/tDYUUdSswyK6/chFo3UfcGNpUpVwajZvXaDbvWwEtuxL2sxWjZXZdcciOxLF1brbx32/byZmtG1CAZZMaU+f3hxTdH7hkO35nh+fRxHg+/57zP+b7P3DGv+XzOORWdnZ2dAQAAAPa4ynI3AAAAAH2V0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCq7uz85NP37Kk+yqp+5GnlbgEAAIA+qFuhe1Pnpj3VBwAAAPQ53QrdnZ2de6oPAAAA6HO6N9IdoRsAAAC2pZsj3aaXA5RbY2Nj2tvby90GAL1M//7909zcXO42oM/r5jXdRroByq29vT1z584tdxsA9DLTp08vdwuwT+jeSHeMdAMAAMC2GOkGAACAgnRzpFvoBgAAgG0x0g0AAAAF6Wbodk03AAAAbIvp5QAAAFAQ08sBAACgIEI3AAAAFMRzugEAAKAgRroBAACgIEI3AAAAFMTdywEAAKAgRroBAACgIN0L3Ua6AQAAYJu6N73cSDcAAABsk+nlAADs8xobG9Pe3l7uNvaqNWvWZPr06eVuY6/r379/mpuby90G+xDTywEA2Oe1t7dn7ty55W6DvWBf/EMD5WWkGwAAAArimm4AAAAoiOnlAAAAUBDTywEAAKAgppcDAABAQUwvBwAAgIJ0c3r5nmoDAAAA+h7XdAMAAEBBKruzc2cf+W93fPWrX83IkSPTv3//nHjiiXnggQe2W79u3bpcdtllqaurS3V1dY488sjceeedu/XeAAAA9A5GunfD7bffnhkzZuSmm27KiSeemBtuuCFnnXVWnnrqqQwbNmyL+ldffTVnnHFGhg0blm9+85s55JBD8swzz2Tw4MF7v3kAAAD2GqF7N3z5y1/OxRdfnKlTpyZJbrrppnzrW9/K4sWLM3PmzC3qFy9enF/96lf54Q9/mP322y9JMnLkyL3ZMgAAAGXQzenlfWPZFa+++moefPDBTJw4sbSusrIyEydOzH333bfVfe64446cfPLJueyyy3LwwQfnmGOOyZe+9KW8/vrru/juAAAA9CZGupN0dHSko6Ojy7rq6upUV1dvUfviiy/m9ddfz8EHH9xl/cEHH5wnn3xyq8f/r//6r3z3u9/NJz7xidx55535z//8z1x66aX5zW9+k1mzZu25EwEAAKBH6dZI96bOzj6xNDc3Z9CgQV2W5ubmPfUxzqZNmzJs2LDcfPPNOeGEE/Kxj30sn//853PTTTftsfcAAACg5+neSPee6qLMGhsbM2PGjC7rtjbKnSRDhw5Nv3798vzzz3dZ//zzz6e2tnar+9TV1WW//fZLv379SuuOPvrotLa25tVXX83+++/fzTMAAACgJ+reNd2dnX1iqa6uzoEHHthl2Vbo3n///XPCCSdk1apVpXWbNm3KqlWrcvLJJ291n9/7vd/Lf/7nf2bTpt/+meI//uM/UldXJ3ADAAD0Yd2cXt43ll01Y8aMLFiwILfeemueeOKJTJs2LRs2bCjdzfyTn/xkGhsbS/XTpk3Lr371q/zpn/5p/uM//iPf+ta38qUvfSmXXXZZdz78AAAA9HBupLYbPvaxj+WFF17INddck9bW1hx33HFZuXJl6eZqzz77bCorf/v3jEMPPTTf/va3M3369Lz73e/OIYcckj/90z/NVVddVa5TAAAAYC/oVuju3OUHbvUdl19+eS6//PKtblu9evUW604++eTcf//9BXcFAABAT9LNke491QYAAAD0PaaXA1tobGxMe3t7udtgJ61ZsybTp08vdxvsgv79++/RR1MCAD1X96aXy9zQJ7W3t2fu3LnlbgP6LH8kAYB9h+d0AwAAQEFMLwcAAICCmF4OAAAABTHSDQAAAAVxTTcAAAAUpJvTy410AwAAwLZ0c3r5nmoDgH3Jvv4seM9W96xyAPYdbqQGwF7nWfDs6390AGDf4UZqAAAAUBAj3QAAAFAQ13QDAABAQbo30r2nugAAAIA+yDXdAAAAUBDXdAMAAEBBXNMNAAAABTHSDQAAAAVxTTcAAAAUxEh3L9Te3p7+/fuXuw0AAAB2oLI7O2/q7BtLb7Bp06Z84QtfyCGHHJKampr813/9V5LkL/7iL7Jo0aIydwcAAMDWdCt0d3b2jaU3mDNnTpYsWZLrr78++++/f2n9Mccck4ULF5axMwAAALbF9PJe4m//9m9z88035/TTT88ll1xSWj927Ng8+eSTZewMgCI0Njamvb293G0UZs2aNZk+fXq52yhE//7909zcXO42AOghPDKsl/jFL36RUaNGbbF+06ZN+c1vflOGjgAoUnt7e+bOnVvuNtgNffWPCQDsHiPdvcTo0aPz/e9/PyNGjOiy/pvf/GaOP/74MnUFAADA9nQzdEvde8s111yTiy66KL/4xS+yadOmLF++PE899VT+9m//NitWrCh3ewAAAGyF6eW9xAc/+MH88z//c6699toMGDAg11xzTd7znvfkn//5n3PGGWeUuz0AAPYBfeF+E33hnhLuHdG7mF7ei4wbNy7/+q//Wu42AADYR7nfRM/Q2/9osK8RunuJH/3oR9m0aVNOPPHELuv/7d/+Lf369ct73/veMnUGAADAtnhOdy/5w8Fll12W5557bov1v/jFL3LZZZeVoSMAAAB2xEh3L/H444/nPe95zxbrjz/++Dz++ONl6AgAAIAdcSO1XqK6ujrPP/98jjjiiC7rW1paUlXVrU8jAAAABTG9vJf84eDMM89MY2Njfv3rX5fWrVu3Lp/73OfcvRwAAKCHMr28l/irv/qrnHrqqRkxYkSOP/74JMlPfvKTHHzwwfk//+f/lLk7AAAAtkbo7iUOOeSQPPzww/na176Wn/70p3nb296WqVOn5oILLsh+++1X7vYAAADYim6Gbql7bxowYED+6I/+qNxtAAAAsJO6F7o37ak2ep+vfvWr+Z//83+mtbU1Y8eOzd/8zd/kfe973w73W7p0aS644IJ88IMfzD/+4z/u0nv+7Gc/y9133501a9Zk06auH/xrrrlml44FAABA8Uwv3w233357ZsyYkZtuuiknnnhibrjhhpx11ll56qmnMmzYsG3u9/TTT+ezn/1sxo0bt8vvuWDBgkybNi1Dhw5NbW1tKioqStsqKiqEbgD2SY2NjWlvby93G12sWbMm06dPL3cbJf37909zc3O52wDYZwndu+HLX/5yLr744kydOjVJctNNN+Vb3/pWFi9enJkzZ251n9dffz2f+MQnMnv27Hz/+9/PunXrduk958yZky9+8Yu56qqruts+APQZ7e3tmTt3brnb6NF60h8AAPZFHhm2i384ePXVV/Pggw9m4sSJv/0gVlZm4sSJue+++7a537XXXpthw4bl05/+9G59rNeuXZvzzz9/t/YFAACgPIx0J+no6EhHR0eXddXV1amurt6i9sUXX8zrr7+egw8+uMv6gw8+OE8++eRWj3/vvfdm0aJF+clPfrLbPZ5//vm56667cskll+z2MQAAANi7hO4kzc3NmT17dpd1s2bNSlNTU7ePvX79+vzBH/xBFixYkKFDh+72cUaNGpW/+Iu/yP33359jjz12i8eE/cmf/El3W6VgPfG6w23padcjbovrFAEA6OncvTxvhKEZM2Z0Wbe1Ue4kGTp0aPr165fnn3++y/rnn38+tbW1W9T//Oc/z9NPP53JkyeX1m2+83hVVVWeeuqp/M7v/M4Oe7z55ptTU1OTe+65J/fcc0+XbRUVFUJ3L+C6wz2vN/xhAACAfZuR7mx7KvnW7L///jnhhBOyatWqnHvuuUneCNGrVq3K5ZdfvkV9fX19HnnkkS7rrr766qxfvz5f+cpXcuihh+7U+/7f//t/d6oOAACAnkPo3g0zZszIRRddlPe+97153/velxtuuCEbNmwo3c38k5/8ZA455JA0Nzenf//+OeaYY7rsP3jw4CTZYj0AAAB9i9C9Gz72sY/lhRdeyDXXXJPW1tYcd9xxWblyZenmas8++2wqK7t1Y/it+u///u/ccccdefbZZ/Pqq6922fblL395j78fAAAA3SN076bLL798q9PJk2T16tXb3XfJkiW7/H6rVq3KOeeckyOOOCJPPvlkjjnmmDz99NPp7OzMe97znl0+HgAAAMXr3nO6N3X2iaU3aGxszGc/+9k88sgj6d+/f/7+7/8+zz33XE477TTP7wYAAOihuhe6O/vG0hs88cQT+eQnP5nkjbueb9y4MTU1Nbn22mtz3XXXlbk7AAAAtqZ7Fx539pGlFxgwYEDpOu66urr8/Oc/L2178cUXy9UWAAAA2+E53b3ESSedlHvvvTdHH3103v/+9+fP//zP88gjj2T58uU56aSTyt0eAAAAW+FGar3El7/85bS1tSVJZs+enba2ttx+++1517ve5c7lAAAAPZTQ3UscccQRpf8fMGBAbrrppjJ2AwAAwM5wTXcv+cPBEUcckZdeemmL9evWresSyAEAAOg5XNPdSzz99NN5/fXXt1jf0dGRX/ziF2XoiH1RY2Nj2tvby91GyZo1azJ9+vRyt9FF//7909zcXO42AADoIbo5vbyXDBP3YnfccUfp/7/97W9n0KBBpdevv/56Vq1alZEjR5ahM/ZF7e3tmTt3brnb6NF62h8BAAAoL9d093DnnntukqSioiIXXXRRl2377bdfRo4cmb/+678uQ2cAAADsSLdCd0wvL9ymTW98kA8//PD86Ec/ytChQ8vcEQAAADvLSHcv8X//7//dYt26desyePDgvd8MAAAAO8Xdy3vJHw6uu+663H777aXX559/ft7xjnfkkEMOyU9/+tMydgYAAMC2dCt0d27q7BNLb3DTTTfl0EMPTZL867/+a77zne9k5cqVmTRpUq644ooydwcAAMDWmF7eS7S2tpZC94oVK/LRj340Z555ZkaOHJkTTzyxzN0B7HuKfoTe3ngknkfcQd+yNx7tWfTPpr7wc8nngbfq3o3UhO695u1vf3uee+65HHrooVm5cmXmzJmT5I3Htm3t+d0AFKsvPELPI+6gb/FzqWfweeCtujfS7e7le82HP/zh/I//8T/yrne9Ky+99FImTZqUJPnxj3+cUaNGlbk7AAAAtqabI92GuveWuXPnZuTIkXnuuedy/fXXp6amJknS0tKSSy+9tMzdAQAAsDVGunuJ/fbbL5/97Ge3WG/qBwAAQM/lmu4e7I477sikSZOy33775Y477thu7TnnnLOXugIAAGBndfPu5VJ3kc4999y0trZm2LBhOffcc7dZV1FR4WZqAAAAPVD3RrpNLy/Upk2btvr/AAAA9A6e090LbNq0KUuWLMny5cvz9NNPp6KiIkcccUTOO++8/MEf/EEqKirK3SL0Gp6tDPQ0fi4B9G3uXt7DdXZ25pxzzsmdd96ZsWPH5thjj01nZ2eeeOKJTJkyJcuXL88//uM/lrtN6DU8OxPoafxcAujbTC/v4ZYsWZLvfe97WbVqVSZMmNBl23e/+92ce+65+du//dt88pOfLFOHAAAAbEtld3bu7OzsE0tP9nd/93f53Oc+t0XgTpLf//3fz8yZM/O1r32tDJ0BAACwI90K3dnUR5Ye7OGHH05DQ8M2t0+aNCk//elP92JHAAAA7CyPDOvhfvWrX+Xggw/e5vaDDz44a9eu3YsdAQAAsLNc093Dvf7666mq2vanqV+/fnnttdf2YkcAAADsLHcv7+E6OzszZcqUVFdXb3V7R0fHXu4IAACAneU53T3cRRddtMMady4HAADombo5vVzqLtott9xS7hYAAADYTd2cXr6HugAAAIA+qHvTy410AwAAwDYZ6QYAAICCuKYbAAAACtLNu5cL3QAAALAtld3au7OPLLvhq1/9akaOHJn+/fvnxBNPzAMPPLDN2gULFmTcuHF5+9vfnre//e2ZOHHidusBAADoG7oXujd19o1lF91+++2ZMWNGZs2alYceeihjx47NWWedlTVr1my1fvXq1bngggty991357777suhhx6aM888M7/4xS+69eEHAACgZ+vmSHdn31h20Ze//OVcfPHFmTp1akaPHp2bbropBxxwQBYvXrzV+q997Wu59NJLc9xxx6W+vj4LFy7Mpk2bsmrVqm59+AEAAOjZPDJsF7366qt58MEH09jYWFpXWVmZiRMn5r777tupY7zyyiv5zW9+k3e84x1FtQkAAEAP4JFhSTo6OtLR0dFlXXV1daqrq7eoffHFF/P666/n4IMP7rL+4IMPzpNPPrlT73fVVVdl+PDhmThx4u43DQAAQI9nenlnZ5qbmzNo0KAuS3Nz8x76EHf1l3/5l1m6dGn+4R/+If379y/kPQAAAOgZPKc7SWNjY2bMmNFl3dZGuZNk6NCh6devX55//vku659//vnU1tZu933+6q/+Kn/5l3+Z73znO3n3u9/dvaYBAADo8bo10t3Z2dknlurq6hx44IFdlm2F7v333z8nnHBCl5ugbb4p2sknn7zNj9X111+fL3zhC1m5cmXe+973dufDDgAAQC9hpHs3zJgxIxdddFHe+9735n3ve19uuOGGbNiwIVOnTk2SfPKTn8whhxxSmqJ+3XXX5ZprrsnXv/71jBw5Mq2trUmSmpqa1NTUlO08AAAAKFY3b6S2b4buj33sY3nhhRdyzTXXpLW1Nccdd1xWrlxZurnas88+m8rK304imD9/fl599dV85CMf6XKcWbNmpampaW+2DgAAwF5kpHs3XX755bn88su3um316tVdXj/99NPFNwQAAECP073ndO+jI90AAACwM0wvBwAAgIKYXg4AAAAFMdINAAAABXFNNwAAABTE9HIAAAAoiOnlAAAAUBAj3QAAAFAQ13QDAABAQUwvBwAAgIKYXg4AAAAF6eZI96Y91AYAAAD0Pa7pBgAAgIKYXg4AAAAFcSM1AAAAKIhrugEAAKAgrukGAACAgrimGwAAAArimm4AAAAoSDenl7umGwAAALbF9HIAAAAoiLuXAwAAQEHcvRwAAAAKYqQbAAAACtK9kW7XdAMAAMA2eWQYAAAAFMT0cgAAACiIG6kBAABAQYx0AwAAQEG6OdItdAMAAMC2dG+k293LAQAAYJuMdAMAAEBBPDIMAAAACmKkGwAAAApipBsAAAAKYqQbAAAACiJ0AwAAQEEqu7V3Z2ffWHbDV7/61YwcOTL9+/fPiSeemAceeGC79cuWLUt9fX369++fY489NnfeeeduvS8AAAC9R7dCd2fnpj6x7Krbb789M2bMyKxZs/LQQw9l7NixOeuss7JmzZqt1v/whz/MBRdckE9/+tP58Y9/nHPPPTfnnntuHn300e58+AEAAOjhhO7dCN1f/vKXc/HFF2fq1KkZPXp0brrpphxwwAFZvHjxVuu/8pWvpKGhIVdccUWOPvrofOELX8h73vOe3Hjjjd358AMAANDDmV6+i9PLX3311Tz44IOZOHHibz+IlZWZOHFi7rvvvq3uc99993WpT5Kzzjprm/UAAAD0DRWdnbv/3K9jR5y2J3spm3//j7vS0dHRZV11dXWqq6u3qP3lL3+ZQw45JD/84Q9z8sknl9ZfeeWVueeee/Jv//ZvW+yz//7759Zbb80FF1xQWjdv3rzMnj07zz///B48E3ZXX/haHnbOmeVugT7ihIaacrfQbQ+ubCt3C6RvfC3RM3xqzHHlbmGPuOyv7y13C8TPpp7i+g/8ablb2Gu6dffyR565Z0/1UVZNTU2ZPXt2l3WzZs1KU1NTeRoCAACgT+hW6O4rGhsbM2PGjC7rtjbKnSRDhw5Nv379thihfv7551NbW7vVfWpra3epHgAAgL6he9d09xHV1dU58MADuyzbCt37779/TjjhhKxataq0btOmTVm1alWX6eZvdvLJJ3epT5J//dd/3WY9AAAAfYOR7t0wY8aMXHTRRXnve9+b973vfbnhhhuyYcOGTJ06NUnyyU9+Moccckiam5uTJH/6p3+a0047LX/913+dD3zgA1m6dGn+/d//PTfffHM5TwMAAICCCd274WMf+1heeOGFXHPNNWltbc1xxx2XlStX5uCDD06SPPvss6ms/O0kglNOOSVf//rXc/XVV+dzn/tc3vWud+Uf//Efc8wxx5TrFAAAANgLhO7ddPnll+fyyy/f6rbVq1dvse7888/P+eefX3BXAAAA9CSu6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAQI81ZcqUVFRUlJYhQ4akoaEhDz/8cKnmzdvfvCxdujRJsnr16tK6ysrKDBo0KMcff3yuvPLKtLS0dHm/pqamUm1VVVWGDh2aU089NTfccEM6Ojp2uX+hGwAAgB6toaEhLS0taWlpyapVq1JVVZWzzz67S80tt9xSqtm8nHvuuV1qnnrqqfzyl7/Mj370o1x11VX5zne+k2OOOSaPPPJIl7oxY8akpaUlzz77bO6+++6cf/75aW5uzimnnJL169fvUu9Vu3XGAAAAsJdUV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyq2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLdVVVVWVjjV8+PAce+yxOeOMMzJ27Nhcd911mTNnzk73bqQbAACAXqOtrS233XZbRo0alSFDhnTrWG9729tyySWX5Ac/+EHWrFmz3dr6+vpMmjQpy5cv36X3MNINAADAXtXR0bHF9dHV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7bbi/19fVJkqeffjrDhg3bYe1dd9213Zq3Erp7kMbGxrS3t5e7DQAAgEI1Nzdn9uzZXdbNmjUrTU1NW62fMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjkiRz587NxIkTu+w3fPjwHfbS2dmZ5I2bse1M7c7UvZnQ3YO0t7dn7ty55W5jn3Ts8tPK3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBaXrq2tra7vU7KwnnngiSTJy5Midqj388MN36fhCNwAAAHvV9qaS74zNj/7auHFjt/rYuHFjbr755px66qmlG7Jty5NPPpmVK1emsbFxl95D6AYAAKBH6+joSGtra5I3ppffeOONaWtry+TJk0s169atK9VsNnDgwAwYMKD0es2aNWlvb8/69evz4IMP5vrrr8+LL764xc3RXnvttbS2tmbTpk156aWXsnr16syZMyfHHXdcrrjiil3qXegGAACgR1u5cmXq6uqSvBGk6+vrs2zZsowfP75UM3Xq1C32a25uzsyZM0uvjzrqqFRUVKSmpiZHHHFEzjzzzMyYMWOLR4099thjqaurS79+/TJo0KCMHj06jY2NmTZt2i6P0AvdAAAA9FhLlizJkiVLtluz+WZo2zJ+/Pgd1mzW1NS0zRu67Q7P6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCqcjcAPcGwc84sdwvdtuaOu8rdQrf1hc8DPcMJDTXlboE+4sGVbeVugSTJT8rdwB7hZxPsm4x0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9hbGhsb097eXu42tmvNmjXlbgEAAIA9aJ8J3e3t7Zk7d26529iu6dOnl7sFAACAHmXKlCm59dZbS6/f8Y535Hd/93dz/fXX593vfneSpKKiYqv7/t3f/V0+/vGPZ/Xq1ZkwYUKpduDAgTniiCNyxhlnZPr06amrq0uSjBw5Ms8888w2e7nooouyZMmSXep/nwndAAAA9E4NDQ255ZZbkiStra25+uqrc/bZZ+fZZ58t1dxyyy1paGjost/gwYO7vH7qqady4IEH5uWXX85DDz2U66+/PosWLcrq1atz7LHH5kc/+lFef/31JMkPf/jDnHfeeaV9kuRtb3vbLvcudAMAANCjVVdXp7a2NklSW1ubmTNnZty4cXnhhRdy0EEHJXkjYG+u2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLR0reWNE/c377C43UgMAAKDXaGtry2233ZZRo0ZlyJAh3TrW2972tlxyySX5wQ9+UNg9tox0AwAAsFd1dHSko6Ojy7rq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYdtt5f6+vokydNPP51hw4bt8rnsiNDdy/WGu7L3DkPL3QAAAOwzmpubM3v27C7rZs2alaampq3WT5gwIfPnz0+SrF27NvPmzcukSZPywAMPZMSIEUmSuXPnZuLEiV32Gz58+A576ezsTLLtm7F1l9Ddy/WGu7L3Bqf/8RfL3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBZkzZ06SN671fnPNznriiSeSvHHn8iII3QAAAOxV25tKvjMqKipSWVmZjRs3dquPjRs35uabb86pp57a5SZqe5LQDQAAQI/W0dGR1tbWJG9ML7/xxhvT1taWyZMnl2rWrVtXqtls4MCBGTBgQOn1mjVr0t7envXr1+fBBx/M9ddfnxdffDHLly8vrHehGwAAgB5t5cqVqaurS/JGkK6vr8+yZcsyfvz4Us3UqVO32K+5uTkzZ84svT7qqKNSUVGRmpqaHHHEETnzzDMzY8aMHT5qrDuEbgAAAHqsJUuWZMmSJdut2XwztG0ZP378Dmv2xD5b4zndAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKUlXuBoA9Y9g5Z5a7hW5bc8dd5W6h2/rC5+HBlW3lbqHbTmioKXcL9BG+lnqGT405rtwt7BGLH/tJuVsg/p1j7zPSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwN8Fv9+/fP9OnTd2mfNWvWFNQNAAAA3SV09yDNzc27vM+uhnQAAAD2HtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAAHqsKVOmpKKiorQMGTIkDQ0Nefjhh0s1b97+5mXp0qVJktWrV5fWVVZWZtCgQTn++ONz5ZVXpqWlpcv7NTU1dTnGoEGDMm7cuNxzzz271b/QDQAAQI/W0NCQlpaWtLS0ZNWqVamqqsrZZ5/dpeaWW24p1Wxezj333C41Tz31VH75y1/mRz/6Ua666qp85zvfyTHHHJNHHnmkS92YMWNKx7jvvvvyrne9K2effXZ+/etf73LvQjcAAAA9WnV1dWpra1NbW5vjjjsuM2fOzHPPPZcXXnihVDN48OBSzealf//+XY4zbNiw1NbW5sgjj8zHP/7x/OAHP8hBBx2UadOmdamrqqoqHWP06NG59tpr09bWlv/4j//Y5d6FbgAAAHqNtra23HbbbRk1alSGDBnSrWO97W1vyyWXXJIf/OAHWbNmzVZrOjo6csstt2Tw4ME56qijdvk9qrrVIQAAAOyijo6OdHR0dFlXXV2d6urqrdavWLEiNTU1SZINGzakrq4uK1asSGXlb8eRL7jggvTr16/Lfo8//ngOO+yw7fZSX1+fJHn66aczbNiwJMkjjzxSer9XXnklAwcOzO23354DDzxwF87yDUL3PqyxsTHt7e3lbqOHGFruBgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDd9hLZ2dnkjduxrbZUUcdlTvuuCNJsn79+tx+++05//zzc/fdd+e9733vzp3k/yN078Pa29szd+7ccrfRI5z+x18sdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJktra2i41O+uJJ55IkowcObK0bv/99+9yrOOPPz7/+I//mBtuuCG33XbbLh1f6AYAAGCv2t5U8p2x+dFfGzdu7FYfGzduzM0335xTTz01Bx100HZr+/Xrt1vvJ3QDAADQo3V0dKS1tTXJG9PLb7zxxrS1tWXy5MmlmnXr1pVqNhs4cGAGDBhQer1mzZq0t7dn/fr1efDBB3P99dfnxRdfzPLly7vs99prr5WOtXl6+eOPP56rrrpql3sXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bM0uujjjoqFRUVqampyRFHHJEzzzwzM2bMSG1tbZf9HnvssdL7HXDAAfmd3/mdzJ8/P5/85Cd3uXehGwAAgB5ryZIlWbJkyXZrNt8MbVvGjx+/w5rNmpqatnlDt93hOd0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAApSVe4G6J7+/ftn+vTpu7XvmjVr9nA30D3Dzjmz3C1025o77ip3C902ad6Hy90CABTmhIaacrfAPkbo7uWam5t3e9/dDesAAADsHNPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACgx5oyZUoqKipKy5AhQ9LQ0JCHH364VPPm7W9eli5dmiRZvXp1aV1lZWUGDRqU448/PldeeWVaWlq6vN8rr7ySxsbG/M7v/E769++fgw46KKeddlr+6Z/+abf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vU3HLLLaWazcu5557bpeapp57KL3/5y/zoRz/KVVddle985zs55phj8sgjj5RqLrnkkixfvjx/8zd/kyeffDIrV67MRz7ykbz00ku71XvVbu0FAAAAe0l1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZPDgwaWabRk2bFip7sgjj8wHP/jBHH/88Zk2bVruvffeJMkdd9yRr3zlK3n/+9+fJBk5cmROOOGE3e7dSDcAAAC9RltbW2677baMGjUqQ4YM6dax3va2t+WSSy7JD37wg6xZsybJG6H+zjvvzPr16/dEu0a6AQAA2Ls6OjrS0dHRZV11dXWqq6u3Wr9ixYrU1NQkSTZs2JC6urqsWLEilZW/HUe+4IIL0q9fvy77Pf744znssMO220t9fX2S5Omnn86wYcNy88035xOf+ESGDBmSsWPH5v/7//6/fOQjH8nv/d7v7fJ5JkL3Pq1///6ZPn16udvoIYaWuwEAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48B320tnZmeSNm7Elyamnnpr/+q//yv33358f/vCHWbVqVb7yla9k9uzZ+Yu/+ItdOs9E6N6nNTc3l7uFHuP0P/5iuVsAAIB9RmNjY2bMmNFl3bZGuZNkwIABGTVqVOn1woULM2jQoCxYsCBz5sxJ8sa08DfX7KwnnngiyRvXbm+23377Zdy4cRk3blyuuuqqzJkzJ9dee22uuuqq7L///rt0fKEbAACAvWp7U8l3xuZHf23cuLFbfWzcuDE333xzTj311NIN2bZm9OjRee2119Le3i50AwAA0Ld0dHSktbU1yRvTy2+88ca0tbVl8uTJpZp169aVajYbOHBgBgwYUHq9Zs2atLe3Z/369XnwwQdz/fXX58UXX8zy5ctLNePHj88FF1yQ9773vRkyZEgef/zxfO5zn8uECRNy4IEH7nLvezR0NzY2pr29fU8eco/ZfCc6AAAAepeVK1emrq4uyRtBur6+PsuWLcv48eNLNVOnTt1iv+bm5sycObP0+qijjkpFRUVqampyxBFH5Mwzz8yMGTO6PGrsrLPOyq233prPfe5zeeWVVzJ8+PCcffbZueaaa3ar9z0autvb2zN37tw9ecg9xg3DAAAAep8lS5ZkyZIl263ZfDO0bRk/fvwOazZrbGxMY2Pjzra3Q57TDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIFXlbgB6ghMaasrdAkkeXNlW7ha6bdK8D5e7hW77l0uXl7uFbusLnweg7/nUmOPK3QJJFj/2k3K30G2+lnoXI90AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlWxyvvr4+1dXVaW1t3WLb+PHju+x/8MEH5/zzz88zzzyz2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1Sc++992bjxo35yEc+kltvvXWr73XxxRenpaUlv/zlL/NP//RPee6553LhhRfudu9CNwAAAD1adXV1amtrU1tbm+OOOy4zZ87Mc889lxdeeKFUM3jw4FLN5qV///5djrNo0aL8j//xP/IHf/AHWbx48Vbf64ADDkhtbW3q6upy0kkn5fLLL89DDz20271X7faeAAAAsJe1tbXltttuy6hRozJkyJCd3m/9+vVZtmxZ/u3f/i319fX59a9/ne9///sZN27cNvf51a9+lW984xs58cQTd7tfoRsAAIC9qqOjIx0dHV3WVVdXp7q6eqv1K1asSE1NTZJkw4YNqaury4oVK1JZ+dvJ2xdccEH69evXZb/HH388hx12WJJk6dKlede73pUxY8YkST7+8Y9n0aJFW4TuefPmZeHChens7Mwrr7ySI488Mt/+9rd3+1yF7v+nsbEx7e3t5W6DMtlv4shytwAAAPuM5ubmzJ49u8u6WbNmpampaav1EyZMyPz585Mka9euzbx58zJp0qQ88MADGTFiRJJk7ty5mThxYpf9hg8fXvr/xYsXd7k2+8ILL8xpp52Wv/mbv8nAgQNL6z/xiU/k85//fJLk+eefz5e+9KWceeaZefDBB7vU7Syh+/9pb2/P3Llzy90GZXLlt75S7hYAAGCf0djYmBkzZnRZt61R7iQZMGBARo0aVXq9cOHCDBo0KAsWLMicOXOSJLW1tV1q3uzxxx/P/fffnwceeCBXXXVVaf3rr7+epUuX5uKLLy6tGzRoUOk4o0aNyqJFi1JXV5fbb789f/iHf7jL5yp0AwAAsFdtbyr5zqioqEhlZWU2bty4U/WLFi3Kqaeemq9+9atd1t9yyy1ZtGhRl9D9VpunrO/se72V0A0AAECP1tHRUXqu9tq1a3PjjTemra0tkydPLtWsW7dui2dvDxw4MPvvv3/+z//5P7n22mtzzDHHdNn+h3/4h/nyl7+cxx57rHSt9yuvvFI6zvPPP58vfOEL6d+/f84888zd6l3oBgAAoEdbuXJl6urqkrwRpOvr67Ns2bKMHz++VDN16tQt9mtubs673vWuvPTSS/nQhz60xfajjz46Rx99dBYtWpQvf/nLSZIFCxZkwYIFSZK3v/3tefe7350777wzRx111G71LnQDAADQYy1ZsiRLlizZbk1nZ+d2t7/++uvb3Pb444+X/n/16tW70tpOqdxxCQAAALA7hG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRuAnuDBlW3lbqHbTmioKXcL3dYXzqEvmDTvw+Vuodv+5dLl5W6h24adc2a5W6CP8LO151j82E/K3QJJPjXmuHK3wD7GSDcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAIAea8qUKamoqCgtQ4YMSUNDQx5++OFSzZu3v3lZunRpqWbBggUZO3ZsampqMnjw4Bx//PFpbm4ubW9qairtV1VVlaFDh+bUU0/NDTfckI6Ojt3uX+gGAACgR2toaEhLS0taWlqyatWqVFVV5eyzz+5Sc8stt5RqNi/nnntukmTx4sX5sz/7s/zJn/xJfvKTn+QHP/hBrrzyyrS1tXU5xpgxY9LS0pJnn302d999d84///w0NzfnlFNOyfr163er96rd2gsAAAD2kurq6tTW1iZJamtrM3PmzIwbNy4vvPBCDjrooCTJ4MGDSzVvdccdd+SjH/1oPv3pT5fWjRkzZou6qqqq0jGGDx+eY489NmeccUbGjh2b6667LnPmzNnl3o10AwAA0Gu0tbXltttuy6hRozJkyJCd2qe2tjb3339/nnnmmV1+v/r6+kyaNCnLly/f5X0ToRsAAIC9rKOjIy+//HKXZXvXTa9YsSI1NTWpqanJwIEDc8cdd+T2229PZeVvI+0FF1xQqtm8PPvss0mSWbNmZfDgwRk5cmSOOuqoTJkyJd/4xjeyadOmneq3vr4+Tz/99G6dq+nlfVhjY2Pa29vL3UYvMbTcDQAAwD6jubk5s2fP7rJu1qxZaWpq2mr9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkSSZO3duJk6c2GW/4cOHJ0nq6upy33335dFHH833vve9/PCHP8xFF12UhQsXZuXKlV3C+9Z0dnamoqJid05V6O7L2tvbM3fu3HK30Suc/sdfLHcLAACwz2hsbMyMGTO6rKuurt5m/YABAzJq1KjS64ULF2bQoEFZsGBB6Trr2traLjVbc8wxx+SYY47JpZdemksuuSTjxo3LPffckwkTJmx3vyeeeCKHH374jk5rq4RuAAAA9qrq6urthuwdqaioSGVlZTZu3Ljbxxg9enSSZMOGDdute/LJJ7Ny5co0Njbu1vsI3QAAAPRoHR0daW1tTfLG9PIbb7wxbW1tmTx5cqlm3bp1pZrNBg4cmAEDBmTatGkZPnx4fv/3fz/vfOc709LSkjlz5uSggw7KySefXKp/7bXX0tramk2bNuWll17K6tWrM2fOnBx33HG54oordqt3oRsAAIAebeXKlamrq0vyRpCur6/PsmXLMn78+FLN1KlTt9ivubk5M2fOzMSJE7N48eLMnz8/L730UoYOHZqTTz45q1at6nIH9Mceeyx1dXXp169fBg0alNGjR6exsTHTpk3b7ZF5oRsAAIAea8mSJVmyZMl2azo7O7e7/bzzzst555233ZqmpqZt3sitOzwyDAAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gb2lv79+2f69Onb3L5mzZq92A0AAAD7gn0mdDc3N293+/YCOQAAAOwO08sBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKMg+85zuojQ2Nqa9vb3cbWzVmjVryt0CQFkMO+fMcrfQbWvuuKvcLXTbpHkfLncL9BGLH/tJuVsA2G1Cdze1t7dn7ty55W5jq6ZPn17uFgAAAPZpppcDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAECPNWXKlFRUVJSWIUOGpKGhIQ8//HCp5s3b37wsXbo0SbJ69ept1rS2tiZJmpqaSuuqqqoydOjQnHrqqbnhhhvS0dGx2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1S89RTT21RM2zYsNL2MWPGpKWlJc8++2zuvvvunH/++Wlubs4pp5yS9evX71bvVbu1FwAAAOwl1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSZLBgweXarZl2LBhGTx48Da3V1VVlY4xfPjwHHvssTnjjDMyduzYXHfddZkzZ84u926kGwAAgF6jra0tt912W0aNGpUhQ4YU/n719fWZNGlSli9fvlv7G+kGAABgr+ro6NjiOunq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYeVXr/zne/ssn3EiBF57LHHdthvfX197rrrrh3WbY3Q3Yf1798/06dPL3cbvcTQcjcAAAD7jObm5syePbvLulmzZqWpqWmr9RMmTMj8+fOTJGvXrs28efMyadKkPPDAAxkxYkSSZO7cuZk4cWKX/YYPH97l9fe///0MHDiw9Hq//fbbqX47OztTUVGxU7VvJXT3Yc3NzeVuodc4/Y+/WO4WAABgn9HY2JgZM2Z0WbetUe4kGTBgQEaNGlV6vXDhwgwaNCgLFiwoXWddW1vbpWZrDj/88O1e070tTzzxRA4//PBd3i8RugEAANjLtjeVfGdUVFSksrIyGzdu3INdbd2TTz6ZlStXprGxcbf2F7oBAADo0To6OkrP0167dm1uvPHGtLW1ZfLkyaWadevWlWo2GzhwYAYMGFB6vWbNmrS3t3epGTJkSGma+WuvvZbW1tZs2rQpL730UlavXp05c+bkuOOOyxVXXLFbvQvdAAAA9GgrV65MXV1dkjeCdH19fZYtW5bx48eXaqZOnbrFfs3NzZk5c2bp9VFHHbVFzX333ZeTTjopSfLYY4+lrq4u/fr1y6BBgzJ69Og0NjZm2rRpuz0yL3QDAADQYy1ZsiRLlizZbk1nZ+d2t48fP36HNU1NTdu8kVt3eE43AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCVJW7AegJTmioKXcLAF1MmvfhcrfQbf9y6fJyt9Btw845s9wtdFtf+DfuU2OOK3cL0KMsfuwn5W6h264feVq5W9hrjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgnhk2P/Tv3//TJ8+fZf3W7NmTQHdAAAA0BcI3f9Pc3Pzbu23O0EdAACAfYPp5QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlpZoFCxZk7NixqampyeDBg3P88cenubm5tL2pqWmrx6ivr+9W/1Xd2hsAAAAK1tDQkFtuuSVJ0tramquvvjpnn312nn322VLNLbfckoaGhi77DR48OEmyePHi/Nmf/Vn+1//6XznttNPS0dGRhx9+OI8++miX+jFjxuQ73/lOl3VVVd2LzUI3AAAAPVp1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSNwL25pq3uuOOO/LRj340n/70p0vrxowZs0VdVVXVNo+xu0wvBwAAoNdoa2vLbbfdllGjRmXIkCE7tU9tbW3uv//+PPPMMwV3tyWhGwAAgL2qo6MjL7/8cpelo6Njm/UrVqxITU1NampqMnDgwNxxxx25/fbbU1n520h7wQUXlGo2L5unn8+aNSuDBw/OyJEjc9RRR2XKlCn5xje+kU2bNnV5n0ceeWSLY1xyySXdOlfTy8uosbEx7e3t5W6DJPtNHFnuFgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDkyR1dXW577778uijj+Z73/tefvjDH+aiiy7KwoULs3LlylJ4P+qoo3LHHXd0OcaBBx7YrXMVusuovb09c+fOLXcbJLnyW18pdwsAALDPaGxszIwZM7qsq66u3mb9gAEDMmrUqNLrhQsXZtCgQVmwYEHmzJmT5I0p5G+u2ZpjjjkmxxxzTC699NJccsklGTduXO65555MmDAhSbL//vvv8Bi7SugGAABgr6qurt5uyN6RioqKVFZWZuPGjbt9jNGjRydJNmzYsNvH2BlCNwAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+eXKpZt25dqWazgQMHZsCAAZk2bVqGDx+e3//938873/nOtLS0ZM6cOTnooINy8sknl+pfe+21LY5RUVGRgw8+eLd7F7oBAADo0VauXJm6urokbwTp+vr6LFu2LOPHjy/VTJ06dYv9mpubM3PmzEycODGLFy/O/Pnz89JLL2Xo0KE5+eSTs2rVqi53QH/sscdK77NZdXV1t+7FJXQDAADQYy1ZsiRLlizZbk1nZ+d2t5933nk577zztlvT1NS0zRu5dYdHhgEAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRsA9owHV7aVu4VuO6GhptwtAHvQsHPOLHcL3bbmjrvK3UK3PZje/3lIflLuBvaIT405rtwt0Ef4WupdjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBV5W6gt+vfv3+mT5++W/uuWbNmD3cDAABATyJ0d1Nzc/Nu77u7YR0AAIDewfRyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPl2revP3Ny9KlS0s1CxYsyNixY1NTU5PBgwfn+OOPLz2NauTIkds8RkVFRaZMmbLb/XtkGAAAAD1aQ0NDbrnlliRJa2trrr766px99tl59tlnSzW33HJLGhoauuw3ePDgJMnixYvzZ3/2Z/lf/+t/5bTTTktHR0cefvjhPProo0mSH/3oR3n99deTJD/84Q9z3nnn5amnnsqBBx6YJHnb2962270L3QAAAPRo1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSd4I2Jtr3uqOO+7IRz/60Xz6058urRszZkzp/zcfI0ne8Y53JEmGDRtWCu3dYXo5AAAAvUZbW1tuu+22jBo1KkOGDNmpfWpra3P//ffnmWeeKbi7LRnpBgAAYK/q6OhIR0dHl3XV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7LrFmz8uEPfzgjR47MkUcemZNPPjnvf//785GPfKTLMYogdO/DGhsb097eXu42eoT9Jo4sdwsAALDPaG5uzuzZs7usmzVrVpqamrZaP2HChMyfPz9Jsnbt2sybNy+TJk3KAw88kBEjRiRJ5s6dm4kTJ3bZb/jw4UmSurq63HfffXn00Ufzve99Lz/84Q9z0UUXZeHChVm5cmWhwVvo3oe1t7dn7ty55W6jR7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3phC/uaarTnmmGNyzDHH5NJLL80ll1yScePG5Z577smECRO6cTbbJ3QDAACwV21vKvnOqKioSGVlZTZu3Ljbxxg9enSSN6arF0noBgAAoEfr6OhIa2trkjeml994441pa2vL5MmTSzXr1q0r1Ww2cODADBgwINOmTcvw4cPz+7//+3nnO9+ZlpaWzJkzJwcddFBOPvnkQnsXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bMTJw4MYsXL878+fPz0ksvZejQoTn55JOzatWqnb4D+u4SugEAAOixlixZkiVLlmy3prOzc7vbzzvvvJx33nk79X7jx4/f4fF2hed0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9iX9e/fP9OnTy/b+69Zs6Zs7w1QpBMaasrdAukbn4cHc2a5W+i2NXfcVe4Wuq/hw+XuAGC3Cd1l1NzcXNb3L2fgBwAA2BeYXg4AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAAD3WlClTUlFRUVqGDBmShoaGPPzww6WaN29/87J06dIt9n/rMnLkyO1ur6ioyNNPP73b/QvdAAAA9GgNDQ1paWlJS0tLVq1alaqqqpx99tldam655ZZSzebl3HPPzVe+8pUu695a+/3vf7/L9pNPPjkXX3xxl3WHHnrobvde1a0zBwAAgIJVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyqebP+/ftn0KBBXdZtqzZJ9t9//xxwwAHb3L6rjHQDAADQa7S1teW2227LqFGjMmTIkHK3s0NGugEAANirOjo60tHR0WVddXV1qqurt1q/YsWK1NTUJEk2bNiQurq6rFixIpWVvx1HvuCCC9KvX78u+z3++OM57LDD9nD3u0bo3of1798/06dPL3cbPcJ+E0eWuwUAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48D3f/C4Suvdhzc3N5W6hx7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3rjW+801PYXQDQAAwF61vankO6OioiKVlZXZuHHjHuyqGEI3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT55cqlm3bl2pZrOBAwdmwIABe7XXtxK6AQAA6NFWrlyZurq6JG8E6fr6+ixbtizjx48v1UydOnWL/ZqbmzNz5sy91eZWCd0AAAD0WEuWLMmSJUu2W9PZ2bnTx9tR7erVq3f6WDvDc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwNQE/wqTHHlbuFPeAn5W6g2/rG5wH2jMWP/aTcLXRb3/ie/km5G+i+hg+Xu4Nu+5dLl5e7hT1jXrkb6L6+8H3dF36+9gXXjzyt3C3sNUa6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAgB5rypQpqaioKC1DhgxJQ0NDHn744S1qP/OZz6Rfv35ZtmzZFtuampq6HGfzUl9fn6effnqr2968LFmyZLf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vUvPLKK1m6dGmuvPLKLF68eKvHGTNmTOk4m5d77703hx56aJd1f/7nf75F7cc+9rHd6r1qt/YCAACAvaS6ujq1tbVJktra2sycOTPjxo3LCy+8kIMOOihJsmzZsowePTozZ87M8OHD89xzz+XQQw/tcpyqqqrScd7qzetramq2W7srjHQDAACwV3V0dOTll1/usnR0dOzUvm1tbbntttsyatSoDBkypLR+0aJFufDCCzNo0KBMmjRpt6eD72k9bqS7sbEx7e3t5W6Dfcxn/vTccrcAAAD7jObm5syePbvLulmzZqWpqWmr9StWrEhNTU2SZMOGDamrq8uKFStSWfnGOPLPfvaz3H///Vm+fHmS5MILL8yMGTNy9dVXp6KionScRx55pHSczS688MLcdNNNe+rUttDjQnd7e3vmzp1b7jbYxzz59D3lbgEAAPYZjY2NmTFjRpd11dXV26yfMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjsnjx4px11lkZOnRokuT9739/Pv3pT+e73/1uTj/99NJxjjrqqNxxxx1djn3ggQfuqdPaqh4XugEAAOjbqqurtxuy32rAgAEZNWpU6fXChQszaNCgLFiwILNnz86tt96a1tbWVFX9NuK+/vrrWbx4cZfQvf/++3c5zt4gdAMAANCrVFRUpLKyMhs3bsydd96Z9evX58c//nH69etXqnn00UczderUrFu3LoMHDy5br0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnutdJzNKioqcvDBBxfWu9ANAABAj7Zy5crU1dUlSQYOHJj6+vosW7YsRx99dL71rW/l61//+hb7VFZW5kMf+lAWLVpUCt2PPfZY6TibVVdXF3ozb6EbAACAHmvJkiXbffzXb37zm21umzdvXun/m5qatnl39Lfaldod8ZxuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFqSp3A9ATXPbX95a7hW47oaGm3C102+LHflLuFkjyqTHHlbuFbvO1xJ7SF74f+oR55W5gz/iXS5eXu4Vue/CctnK3QF/xgXI3sPcY6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAANBjTZkyJRUVFaVlyJAhaWhoyMMPP7xF7Wc+85n069cvy5Yt22JbU1NT6RhVVVUZOnRoTj311Nxwww3p6OjoUjt+/PhSbXV1dQ455JBMnjw5y5cv3+X+hW4AAAB6tIaGhrS0tKSlpSWrVq1KVVVVzj777C41r7zySpYuXZorr7wyixcv3upxxowZk5aWljz77LO5++67c/7556e5uTmnnHJK1q9f36X24osvTktLS37+85/n7//+7zN69Oh8/OMfzx/90R/tUu9Vu3aqAAAAsHdVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSZYtW5bRo0dn5syZGT58eJ577rkceuihXY5TVVVVOs7w4cNz7LHH5owzzsjYsWNz3XXXZc6cOaXaAw44oFT7zne+MyeddFLq6+vzqU99Kh/96EczceLEnerdSDcAAAB7VUdHR15++eUuy1uneG9LW1tbbrvttowaNSpDhgwprV+0aFEuvPDCDBo0KJMmTcqSJUt26nj19fWZNGnSTk0dv+iii/L2t799l6aZG+nuwxobG9Pe3l7uNnqJoeVuAAAA9hnNzc2ZPXt2l3WzZs1KU1PTVutXrFiRmpqaJMmGDRtSV1eXFStWpLLyjXHkn/3sZ7n//vtLYfjCCy/MjBkzcvXVV6eiomKH/dTX1+euu+7aYV1lZWWOPPLIPP300zus3Uzo7sPa29szd+7ccrfRK5z+x18sdwsAALDPaGxszIwZM7qsq66u3mb9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkcWLF+ess87K0KFvDKa9//3vz6c//el897vfzemnn77Dfjo7O3cqnO9qbSJ0AwAAsJdVV1dvN2S/1YABAzJq1KjS64ULF2bQoEFZsGBBZs+enVtvvTWtra2pqvptxH399dezePHinQrdTzzxRA4//PAd1r3++uv52c9+lt/93d/d6d6FbgAAAHqVioqKVFZWZuPGjbnzzjuzfv36/PjHP06/fv1KNY8++mimTp2adevWZfDgwds81pNPPpmVK1emsbFxh+976623Zu3atTnvvPN2ulehGwAAgB6to6Mjra2tSd6YXn7jjTemra0tkydPzg033JAPfOADGTt2bJd9Ro8enenTp+drX/taLrvssiTJa6+9ltbW1mzatCkvvfRSVq9enTlz5uS4447LFVdc0WX/V155Ja2trXnttdfy3//93/mHf/iHzJ07N9OmTcuECRN2unehGwAAgB5t5cqVqaurS5IMHDgw9fX1WbZsWY4++uh861vfyte//vUt9qmsrMyHPvShLFq0qBS6H3vssdTV1aVfv34ZNGhQRo8encbGxkybNm2L6e4LFizIggULsv/++2fIkCE54YQTcvvtt+dDH/rQLvUudAMAANBjLVmyZLuP//rNb36zzW3z5s0r/X9TU9M2747+VqtXr97J7nbMc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKskfvXt6/f/9Mnz69W8dYs2bNHuoGAAAAymuPhu7m5uZuH6O7oR0AAAB6CtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIJUlbuBvqaxsTHt7e3lbiNJsmbNmnK3AADQbZ8ac1y5W9gjHjynrdwtdNuaO+4qdwvdNmneh8vdAvsYoXsPa29vz9y5c8vdRpJk+vTp5W4BAABgn2Z6OQAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPZ8mSJV22bW15+umn09TUVHpdVVWVoUOH5tRTT80NN9yQjo6OLu83fvz4Um11dXUOOeSQTJ48OcuXL9+t/oVuAAAAerSGhoa0tLSkpaUlq1atSlVVVc4+++x87GMfK61vaWnJySefnIsvvrjLukMPPTRJMmbMmLS0tOTZZ5/N3XffnfPPPz/Nzc055ZRTsn79+i7vt/kYP//5z/P3f//3GT16dD7+8Y/nj/7oj3a596o98hEAAACAglRXV6e2tjZJUltbm5kzZ2bcuHFpa2srrU+S/fffPwcccECXdZtVVVWV1g8fPjzHHntszjjjjIwdOzbXXXdd5syZU6p98zHe+c535qSTTkp9fX0+9alP5aMf/WgmTpy4070b6QYAAGCv6ujoyMsvv9xlees0721pa2vLbbfdllGjRmXIkCHd6qO+vj6TJk3aqanjF110Ud7+9rfv8jRzI919WP/+/TN9+vRyt9FLDC13AwAAsM9obm7O7Nmzu6ybNWtWmpqatlq/YsWK1NTUJEk2bNiQurq6rFixIpWV3R9Hrq+vz1133bXDusrKyhx55JF5+umnd+n4Qncf1tzcXO4Weo3T//iL5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7rVS2dnZyoqKvZ47WamlwMAALBXVVdX58ADD+yybC90DxgwIKNGjcqoUaPyu7/7u1m4cGE2bNiQBQsWdLuXJ554IocffvgO615//fX87Gc/26naNxO6AQAA6FUqKipSWVmZjRs3dus4Tz75ZFauXJnzzjtvh7W33npr1q5du1O1b2Z6OQAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+evNPHeO2119La2ppNmzblpZdeyurVqzNnzpwcd9xxueKKK7rUvvLKK2ltbc1rr72W//7v/84//MM/ZO7cuZk2bVomTJiwS70L3QAAAPRoK1euTF1dXZJk4MCBqa+vz7JlyzJ+/PidPsZjjz2Wurq69OvXL4MGDcro0aPT2NiYadOmbTG1fcGCBVmwYEH233//DBkyJCeccEJuv/32fOhDH9rl3oVuAAAAeqwlS5ZkyZIlO1W7evXqra5vamra5p3Rd/YYu8s13QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gbeqn///pk+fXq529hta9asKXcL7IYTGmrK3QJJHlzZVu4Wuq0vfC0tfuwn5W6h2z415rhytwDsQX3h51JfMWneh8vdQrf9y6XLy91Ctw0758xyt9B9Hyh3A3tPjwvdzc3N5W6hW3rzHwwAAADYs0wvBwAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAACAHmvKlCmpqKgoLUOGDElDQ0MefvjhLWo/85nPpF+/flm2bNkW25qamkrHqKqqytChQ3PqqafmhhtuSEdHR5fa8ePHd3nPgw8+OOeff36eeeaZXe5f6AYAAKBHa2hoSEtLS1paWrJq1apUVVXl7LPP7lLzyiuvZOnSpbnyyiuzePHirR5nzJgxaWlpybPPPpu77747559/fpqbm3PKKadk/fr1XWovvvjitLS05Je//GX+6Z/+Kc8991wuvPDCXe5d6AYAAKBHq66uTm1tbWpra3Pcccdl5syZee655/LCCy+UapYtW5bRo0dn5syZ+d73vpfnnntui+NUVVWltrY2w4cPz7HHHps//uM/zj333JNHH3001113XZfaAw44ILW1tamrq8tJJ52Uyy+/PA899NAu9y50AwAAsFd1dHTk5Zdf7rK8dYr3trS1teW2227LqFGjMmTIkNL6RYsW5cILL8ygQYMyadKkLFmyZKeOV19fn0mTJmX58uXbrPnVr36Vb3zjGznxxBN36phvVrXLe9BrNDY2pr29vdxt9Ar7TRxZ7hYAAGCf0dzcnNmzZ3dZN2vWrDQ1NW21fsWKFampqUmSbNiwIXV1dVmxYkUqK98YR/7Zz36W+++/vxScL7zwwsyYMSNXX311KioqdthPfX197rrrri7r5s2bl4ULF6azszOvvPJKjjzyyHz729/e1VMVuvuy9vb2zJ07t9xt9ApXfusr5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7J48eKcddZZGTp0aJLk/e9/fz796U/nu9/9bk4//fQd9tPZ2blFOP/EJz6Rz3/+80mS559/Pl/60pdy5pln5sEHH8zAgQN3+lyFbgAAAPaq6urq7YbstxowYEBGjRpVer1w4cIMGjQoCxYsyOzZs3PrrbemtbU1VVW/jbivv/56Fi9evFOh+4knnsjhhx/eZd2gQYNK7zlq1KgsWrQodXV1uf322/OHf/iHO9270A0AAECvUlFRkcrKymzcuDF33nln1q9fnx//+Mfp169fqebRRx/N1KlTs27dugwePHibx3ryySezcuXKNDY2bvc9Nx9748aNu9Sr0A0AAECP1tHRkdbW1iRvTC+/8cYb09bWlsmTJ+eGG27IBz7wgYwdO7bLPqNHj8706dPzta99LZdddlmS5LXXXktra2s2bdqUl156KatXr86cOXNy3HHH5Yorruiy/yuvvFJ6z+effz5f+MIX0r9//5x55pm71LvQDQAAQI+2cuXK1NXVJUkGDhyY+vr6LFu2LEcffXS+9a1v5etf//oW+1RWVuZDH/pQFi1aVArdjz32WOrq6tKvX78MGjQoo0ePTmNjY6ZNm7bFdPcFCxZkwYIFSZK3v/3tefe7350777wzRx111C71LnQDAADQYy1ZsmS7j//6zW9+s81t8+bNK/1/U1PTNu+O/larV6/eye52zHO6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUpKrcDfQ1/fv3z/Tp08vdRpJkzZo15W4BdskJDTXlboEknxpzXLlboI9Y/NhPyt1Ct/l+gL5n2DlnlruFbltzx13lbqH7/ubz5e5grxG697Dm5uZyt1DSU8I/AADAvsr0cgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAA6LGmTJmSioqK0jJkyJA0NDTk4Ycf3qL2M5/5TPr165dly5Ztsa2pqal0jKqqqgwdOjSnnnpqbrjhhnR0dHSpHT9+fJf33Lxccsklu9y/0A0AAECP1tDQkJaWlrS0tGTVqlWpqqrK2Wef3aXmlVdeydKlS3PllVdm8eLFWz3OmDFj0tLSkmeffTZ33313zj///DQ3N+eUU07J+vXru9RefPHFpffcvFx//fW73HvVLu8BAAAAe1F1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZNmyZRk9enRmzpyZ4cOH57nnnsuhhx7a5ThVVVWl4wwfPjzHHntszjjjjIwdOzbXXXdd5syZU6o94IADSrXdYaQbAACAvaqjoyMvv/xyl+WtU7y3pa2tLbfddltGjRqVIUOGlNYvWrQoF154YQYNGpRJkyZlyZIlO3W8+vr6TJo0KcuXL9+dU9khI919WP/+/TN9+vRyt9Er7DdxZLlbAACAfUZzc3Nmz57dZd2sWbPS1NS01foVK1akpqYmSbJhw4bU1dVlxYoVqax8Yxz5Zz/7We6///5ScL7wwgszY8aMXH311amoqNhhP/X19bnrrru6rJs3b14WLlzYZd3//t//O5/4xCd26hw3E7r7sObm5nK30Gtc+a2vlLsFAADYZzQ2NmbGjBld1lVXV2+zfsKECZk/f36SZO3atZk3b14mTZqUBx54ICNGjMjixYtz1llnZejQoUmS97///fn0pz+d7373uzn99NN32E9nZ+cW4fwTn/hEPv/5z3dZd/DBB+/U+b2Z0A0AAMBeVV1dvd2Q/VYDBgzIqFGjSq8XLlyYQYMGZcGCBZk9e3ZuvfXWtLa2pqrqtxH39ddfz+LFi3cqdD/xxBM5/PDDu6wbNGhQl/fcXUI3AAAAvUpFRUUqKyuzcePG3HnnnVm/fn1+/OMfp1+/fqWaRx99NFOnTs26desyePDgbR7rySefzMqVK9PY2FhIr0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnstra2t2bRpU1566aWsXr06c+bMyXHHHZcrrriiy/6vvPJK6T03q66uztvf/vZd6t3dywEAAOjRVq5cmbq6utTV1eXEE0/Mj370oyxbtixHH310vvWtb+W8887bYp/Kysp86EMfyqJFi0rrHnvssdTV1eWwww7L+PHj841vfCONjY35/ve/X7pR22YLFiwovefm5YILLtjl3is6Ozs7d/2UoW9xIzX4rU+NOa7cLdBHLH7sJ+Vuodt8P/QMfeFrKUkeXNlW7ha67YSGmh0X9XB94fOw5o67dlzUwz3yzD3lbmGvMdINAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAonUDh2tvbO2fNmtXZ3t5e7lZ2m3PoGZxDz+Acegbn0DM4h57BOfQMzoGtqejs7Owsd/CHvu7ll1/OoEGD8utf/zoHHnhgudvZLc6hZ3AOPYNz6BmcQ8/gHHoG59AzOAe2xvRyAAAAKIjQDQAAAAURugEAAKAgQjfsBdXV1Zk1a1aqq6vL3cpucw49g3PoGZxDz+Acegbn0DM4h57BObA1bqQGAAAABTHSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAADslGeffTbuwQuwa4RuYAuf+tSnsn79+nK3wTa89tpraWtrK3cbwC7qCz9bDz/88LzwwgvlbqNb/vZv/zYdHR3lbgPYhwjdUIANGzbkmmuuyTHHHJOampoMHDgw7373u3PttdfmlVdeKXd7O3Trrbdm48aN5W6j29avX58HH3ywFFAfeuihfPKTn8z555+fr33ta2Xubsf++Z//OUuWLOmy7otf/GJqamoyePDgnHnmmVm7dm15muuGDRs2ZPHixfnqV7+an/3sZ+VuZ6f09u/ppPefw+jRo/OrX/2q9PrSSy/Niy++WHq9Zs2aHHDAAeVobaf1hZ+tfWGUe+rUqfn1r39d7jb2iO9+97u5/PLLc/bZZ2fy5Mn5kz/5k3zve98rd1u7pC+cw5v1xn/jLr300i5/zP+7v/u7bNiwofR63bp1ef/731+O1vqOTmCP6ujo6DzhhBM6q6urO88999zOmTNndl511VWd55xzTuf+++/fedJJJ3W++uqr5W5zuyoqKjqff/75crfRLffcc0/nwIEDOysqKjrf8Y53dH7729/uHDhwYGd9fX3nmDFjOisrKztvvvnmcre5XePHj++88cYbS69/8IMfdFZWVnbOmTOn8+///u876+vrO6dPn17GDnfsmWee6Tz11FM7a2pqOidOnNj5zDPPdB555JGdFRUVnRUVFZ0HHHBA5z333FPuNrerL3xP94VzeOvPpYEDB3b+/Oc/L71ubW3trKioKEdrO60v/GytqKjoXLNmTbnb6Ja+8Hno7Ozs/MxnPlP6N+6kk07qPPHEEzvf8Y53dFZWVnZefvnl5W5vp/T2c+gL/8Z1dnZ2VlZW7vDna2VlZTla6zOqyh36oa+ZP39+/vu//zs//elPc9RRR3XZ9uSTT2b8+PG56aab8sd//Mdl6nDnrF+/Pv37999uzYEHHriXutl1V199dc4///xce+21Wbx4cT72sY/l8ssvz5e+9KUkyZw5c/LVr341F198cZk73bbHHnssX/7yl0uvv/nNb+aMM87I5z//+SRJ//7986d/+qddanqaz372s3n11Vdz00035Rvf+EbOOuusvOtd78r3vve9VFZWZtq0aWlqasp3v/vdcre6TX3he7ovnMNbdW5lxLWioqIMneya3v6zNUn+4i/+YoezCnryz6Wkd3ytbM8//MM/5JZbbsnixYtz0UUXlc5n06ZNWbJkSaZNm5Yzzjgj55xzTpk73ba+cA594d+4ZMufp1v7+Ur3VHT6qMIeddppp+WjH/1oLrvssq1u/5u/+Zt885vfzD333LOXO9t5lZWV2/2FpLOzMxUVFXn99df3Yle7ZvDgwbn//vtTX1+fV199NW9729vy0EMPZezYsUmS//zP/8zxxx/fo6+vfNvb3pannnoqhx12WJLkfe97X84///xcccUVSZJnnnkmo0eP7jIFrKepra3NHXfckfe973351a9+laFDh+YHP/hBTj755CTJT3/605x++uldpgn3NH3he7ovnENlZWVaW1szbNiwJMnAgQPz05/+NEcccUSS5Pnnn8/w4cN79M+lvvCztbKyMieffHL233//bdZUVFT06JBRWVmZY445JlVV2x97euihh/ZSR7vunHPOyZgxY9Lc3LzV7VdddVWefPLJ/NM//dNe7mzn9YVz6Av/xiV94+drT2ekG/awxx9/POPHj9/m9gkTJuTaa6/dew3tpm9+85t5xzveUe42dtvLL79c6n///ffPAQcckIEDB5a2Dxw4sMdfx3rIIYfkiSeeyGGHHZa2trb89Kc/zdy5c0vbX3rppR5/DeuaNWsyYsSIJMk73vGOHHDAATn44INL22tra3v8del94Xu6L5xDRUXFFoG1N45W9vafrckbI5Sbfznvrc4666zU1NSUu43d9tBDD+Xqq6/e5vYPf/jDOe+88/ZiR7uuL5xDX/g3jr1D6IY9bN26dRkyZMg2tw8ZMqRX3MDl937v93r1L1Vv/QV9a7+w93Tnn39+/uzP/iyf+9zncuedd6a2tjYnnXRSafu///u/bzFVuCd66+eht+kL39N94Rw6Oztz+umnl0YnN27cmMmTJ5dGXF977bVytrfTevvP1r7iiiuu6NWfhxdffDHvfOc7t7n9ne98Z1566aW92NGu6wvnkPT+f+M2u+aaa0p/yH/11VfzxS9+MYMGDUqSHj9I0RsI3bCHbdq0Kf369dvm9srKStNz9oK3/oL+yiuv9Lpf0K+55pr84he/yJ/8yZ+ktrY2t912W5evrb/7u7/L5MmTy9jhzunt/5D3he/pvnAOs2bN6vL6gx/84BY1PX1UjJ6hNwejzV599dXst99+29xeVVWVV199dS92tOv6wjkkvf/fuCQ59dRT89RTT5Ven3LKKfmv//qvLWrYfa7phj1sR9eKvfbaa3nsscd69C+4hx9+eP793/99uyNjPd3s2bN3qu6tv8izZ40fP36nfsG9++6790I3u6cvfE/3hXPoC/rCz9bDDz889957bw455JByt7Lb3nr9am9UWVmZP/qjP9rmJUavvPJKFixY0KO/p/vCOfSFf+PYO4Ru2MP6Wth78cUX8/TTT6eioiIjR47s1b8s9mY+D+XTF76n+8I5bMs999yTDRs25OSTT87b3/72crezW3rTOfTr1y8tLS29OrA+88wzOeyww3r1iHdfCHt94RxgZwndwFY99thjmTZtWn7wgx90WX/aaadl/vz5veJa4s16c2Dd3udh3rx5qa+vL1Nne8YTTzyRRYsW5a/+6q/K3Qo93HXXXZe2trZ84QtfSPLGJSSTJk3KXXfdlSQZNmxYVq1alTFjxpSzze3qC+fQF0aJR48enXvvvbd0Q7tLL7001157bYYOHZrkjZtjjRw5stdMDYY9YcOGDbnuuuuyfPny0u9Mhx9+eD7ykY/ks5/9bI+/cWtPJ3RDgXpr2Gttbc0xxxyTgw46KJdccknq6+vT2dmZxx9/PAsWLMhLL72URx99tMf/0tXb/3DQVz4Pb7Vhw4YsXbo0ixYtyv3335/Ro0fn0UcfLXdbu6w3jU6uWbNmu18nr732Wh566KG8733v24td7Zr3vOc9ueqqq/Kxj30sSbJs2bJcdNFF+dd//dccffTR+eQnP5kDDjgg3/jGN8rc6bb1hXOorKzMrbfeWrpmdVt68rOV3/qHgwMPPDA/+clPujweqa6uLps2bSpnm/QSfSGsvvrqqznllFPy6KOPZtKkSaXfN5544omsXLky73nPe/K9731vu9fgswOdwB736KOPdo4bN66zsrKyyzJhwoTOJ598stzt7dCVV17Z+Z73vKdz48aNW2x75ZVXOt/znvd0zpw5swyd7byWlpbOIUOGdNbX13fecMMNnStXruz8l3/5l86//uu/7qyvr+886KCDOp9//vlyt7ldfeHz8Gb33ntv59SpUzsHDBjQWVlZ2fnnf/7nnU888US529qhv/zLv+y8+uqrS683bdrUedZZZ3VWVFR0VlRUdB588MGdjz76aBk73LHKysouX+/HHHNM57PPPlt63dra2llZWVmO1nba4MGDOx9//PHS6ylTpnT+wR/8Qen1fffd9/+3d+8xVdZ/HMDf5xzkIrccOBDamN1gKDnAJtbC7nhEAkpjNIzINRrlllsKrbFmly3basxprgiwmBcIrUEXWQuS4cJBKzQvg2IpkuHUEA5yCfj+/nCc/Q5yOdLhPM/z8f3aWn57zh+fT99zjt/3c57n+arbb79di9KcJqGH8ff9dP/o/b1kMpkcPg9+fn7qjz/+sI+N8HlQSimbzaYKCwvVkiVLlK+vr/Lz81MxMTFq27Ztqr+/X+vynGL0HoaGhlR8fLzy8vJSaWlpqqCgQOXn56snn3xSeXp6qoSEBDU8PKx1mTMqKipSISEhk65RT58+rUJCQtSOHTs0qEwOhm4iF5MQ9mJjY1VFRcWUx/fv369iY2PdWNHNkxBYJcxDd3e32r59u4qMjFShoaFq8+bNqrm5WXl4eKiTJ09qXZ5TYmNj1YEDB+zjyspK5ePjoxobG9Xly5dVcnKyWr9+vYYVzsyZkGEymbQozWkTa46MjFS7d++2j8+ePau8vb21KM1pEnqY+F4yIgmhW0LYk9CDlLCamJiodu7cOeXxHTt2qMTERDdWJA9DN5GLSQh7gYGBqr29fcrj7e3tKjAw0H0FzYKEwCphHry9vVVWVpY6fPiwGh0dtf93I4VuKb9OGj1kLFu2TJWVlSmlrodTk8nk8B46evSoCg8P16g650joYeJVE0ZkNpvVxYsX7WM/Pz/V0dFhHxvh8yAh7EnoQUpYDQ4OnvaKrRMnTqjg4GA3ViSPWevL24mk+f7775Gfnw9vb+8bjvn4+GDLli2ora3VoDLn9fX1ISAgYMrj/v7+sNlsbqzo5nV0dCAuLm7K48uXL79hD0q9kTAPERERaGxsRENDA9ra2rQuZ1ZGRkbg5eVlH//000+4//777eOwsDBcunRJi9JuKS+//DJeeeUVbNy4EVarFStXrkR0dLT9eF1dHWJjYzWscGYSelACHgWklMKjjz6KuLg4xMXFYWBgACkpKfbx448/rnWJMzp06BAKCwsnfTZJVFQU3njjDVRVVWlQmfMk9HDq1Ck89NBDUx5/+OGHcerUKfcVNEs9PT3TPncoKCgIV69edWNF8ky+YScRzZqEsAdcD3yTnTgAgN7eXt0vvCQEVsD483DmzBkcPXoUJSUluO+++3DPPfcgKysLAAyzXc+dd96JhoYG3HHHHTh37hza2tqQmJhoP37+/HndPyTRZDLZ30tKKZhMJthsNvT29gKA/d969uKLL8JisaCmpgaJiYk3bG/2119/IScnR6PqnCOhh+zsbPj4+Ghdxn8y8f97amrqDa95+umn3VXOrDgT9t566y33FTQLEnqQElbHxsZgsVimPG42m3W9X7oR8OnlRC420x6m3d3dCA8Px8jIiJsrc57ZbJ42EI0v2vX8BWyxWNDW1oaFCxdOery7uxtRUVG67kHCPPw/m82G/fv3o6ysDE1NTVi1ahWeffZZpKWlTTlPelBcXIzNmzcjIyMDTU1NuO222xyeiP/OO+/g2LFjqKmp0bDK6U18L42/dyaOjfJeIu1UVlYiLS0Nnp6eAK6fdAoLC4PZfP3iyWvXrmHnzp3YunWrlmWKN2/ePHR2diI0NHTS4xcuXEBERASGh4fdXJnzJPRgsVjw999/T7vWCAsL0/13q9lsxtKlS+HhMfnvsSMjIzh58qTu+9Azhm4iF5MQ9o4cOeLU61atWjXHlcyehMAqYR6mMr4/d3l5Oa5cuYJ///1X65KmVVpaipqaGoSGhuLNN990WCTm5eXhsccew1NPPaVhhdOT8F6SEPYk9DDxxPJk220ZIWRMpbe3F3v37kVJSQlaWlq0LmdKEsKehB6khNVt27Y59bqJV4mQ8xi6iVxMQtiTQELIuBWMjIygurpa14GV9EFC2JPQw8Q9rv39/dHa2mqoHiZTX1+P0tJSHDp0CIGBgUhPT8euXbu0LmtKEsKehB4YVslZvKebyMXq6+u1LuE/k/BrjIQwLWEeZupheHgYv//+u5YlzuhWmAcj9DDxNwIj/mYgoQdJurq6sGfPHpSVlaGnpwf//PMP9u3bh2eeeUb3z5xwJsTp/b70W6UHozPK1R+659ZnpRORIUzcEsbf399w2wtVVFSooaEh+7izs9Nhy6r+/n61fft2LUpzmoR5YA/6IKEHCduesQd9qKqqUlarVfn6+qp169apr776Sg0NDRlqK0MJzp496/D3sjRXr15VH330kYqPj9e6lFmpq6tTWVlZav78+WrRokUqLy9P65IMjVuGEblYZWWlw0M/zp8/j7GxMfv42rVreP/997UozWlKwK8xmZmZ6OnpsY+jo6Px559/2sd9fX14/fXX3V/YTZAwD+xBHyT0QPpRW1uL6upqVFdXY2xsDD/88IN9rPctMQEgIyMDsbGxuHDhAr744gukpqbarwKRoLe3F7t378by5cu1LmVaixcvFrndYn19PTZs2IBFixbh7bffxooVK7QuyWldXV149913cdddd2H9+vXYt28fSktL0dXVpevbLYyAl5cTuVhmZqbDPXvR0dEO9+yNhz09X8YpAUMGkTy1tbUIDAwEAHvY++233wDA4SSbnknoITs722Gcm5vrMNb7pdkbN27Erl278OOPP2LDhg3IyMjAggULtC7rP5vsvnQ9k/T3spFvVQCAgwcPoqSkBA0NDbBarfjggw9gtVrh6+uLmJgYQ/SgdwzdRC7GsEdENDeMHvYA4/fw/1duGdXHH3+MoqIiVFZWorS0FK+++iqSkpKglDJcf0YPe0aocTpSwmpGRgby8/NRUVEBf39/rcsRiaGbiCYl4dcYCSTMA3vQB6P3YLQwNBkJPYy7fPkygoKCAACdnZ0oLi7G4OAgUlJS8OCDD2pc3cx8fHyQnZ2N7OxstLe3o7S0FC0tLXjggQeQnJyMdevW6XpXBSlhr7CwEPPnz5/2NR9++KGbqrl5UsKq1Ks/9IRbhhG5mITtVMafaDwdvW97Zjab8dlnn9lDRmZmJoqKihASEgLgesjIycnRfQ8zMcI8zIQ9zD0JPYwzetgDjN3DiRMnkJKSgs7OTtx99904cOAAVq9ejf7+fpjNZvT396OqqgppaWlal3rTxsbG8O233+LTTz/Fd999h6GhIa1LmpKHhwfy8/NRUFDgEPbmzZuH1tZWREdHa1idc8xmM1auXDnt/fQmkwl1dXVurOrm5ObmoqKiAkuWLHEIq0aah3EDAwP2qz+OHTuGpKQkfPPNN/j111+xdOlSrcszPIZuIheTEPYkkBQyiEhG2JPQg9VqhYeHBwoKClBeXo6vv/4aSUlJKC4uBgBs2rQJP//8M5qamjSudGaTnfwYGBhASkoKoqKi7CfP9UhC2Jv4I4VRSQyr41d/fP7557DZbIa4+kPvGLqJXExS2DPyrzGSSJgH9qAPRu5BQtiT0ENwcDDq6upw7733wmazISAgAM3NzYiPjwcAnDlzBgkJCbq+ZUHCyQ/A+GHPYrE4PHhWAmlh1UhXf+ieO/cnIyJjOH78uIqIiFBms1lFRkaqX375RYWEhCg/Pz8VEBCgLBaL+vLLL7Uu0ymXLl2y//ncuXOqsLBQbdmyRTU0NGhYlXMkzAN70AcJPQQFBanW1lallFJ9fX3KZDKplpYW+/HTp0+rwMBAjapzjoQeJOzTvXr1arV27VrV2NiocnNzVXh4uHrhhRfU6OioGh0dVXl5eWrFihVal3lT2traVEFBgQoLC1MBAQEqMzNTHTx4UOuypjXxvSTJ6OioqqmpUampqcrT01Prcpw22ZrptddeU0eOHBE7V+7C0E00R4wc9iQsSCSEDAnzwB70QUIPEsKelB4uXrxoH/v5+amOjg772Ag9SDj5MRUjhb09e/aowcHBKYOeEdZL44weViWsmfSOoZvIxSR8cUlYkEgIGRLmgT3og4QeJIQ9KT2sWbNGpaenq/T0dOXh4aGeeOIJ+3jNmjWG6MHoJz/GGTnsSVgvSehBKRlrJr3jPd1ELibhnj0JT2CXcN+hhHlgD/ogpQer1QovLy8AQE1NDR555BH4+voCAIaGhnD48GH2MMdycnKcel1ZWdkcVzJ7ZrMZ3d3dWLhwIYDrn4fjx49j8eLFAIzxeZBwX7qE9ZKEHgAZaya94z7dRC7W3Nxs/+JatmwZPvnkE+Tl5dkfsLZp0yYkJCRoXOXMJu7xaZQ9P8dduXIFoaGhAAA/Pz/4+vo67Dm5YMEC9PX1aVWe04w+DwB70Auj95Cdne0wzsrKuuE1zz33nLvKmRUJPeg5TN+M559/3n7yY3BwEC+99JLDyQ+927p1K2JiYrB3716Ul5dj7dq1SE5Odgh77733nq5Dt4T1koQeADlrJj1j6CZyMSlfXEZfkADGDxmAjHlgD/pg9B4khD0JPUgg4eSHhLAnYb0koYdxEtZMesbQTTQHjP7FJWFBAhg/ZEiYB/agDxJ6IHIVCSc/pIQ9o6+XABk9AMZfM+kd7+kmcjEJ9+xJIOG+QyIioslIuC9dwnpJQg8A10zuwNBN5GL84iIiIqK5JCHsSVgvSeiB3IOhm4iIiIjIQBj2iIyFoZuIiIiIiIhojpi1LoCIiIiIiIhIKoZuIiIiIiIiojnC0E1EREREREQ0Rxi6iYiIiIiIiOYIQzcRERERERHRHGHoJiIiIiIiIpojDN1EREREREREc4Shm4iIiIiIiGiO/A8/R108Dj/1CgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap( \n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'fitness_function_mutation_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='fitness_function_mutation_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=15,\n", + " # How many sequences to include in matrix.\n", + " track_specific_sequences=['BADD']\n", + " # Specific sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wTZf4H8M+kJ9sbvUoVAemioGIB64meHvZe7uedeHqn3tk9y6mnnu3OjmLF3gALoDRReu+9LbC9piczvz/CZjOZSTLJZjfZ3c/79eLF5plnZp5kk8nOd77zfQRJkiQQERERERERERERUUroUj0AIiIiIiIiIiIiovaMQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiFDqgdATeNyubBhwwYAQFFREQwG/kqJiIiIiIiIks3n86GsrAwAMGTIEFgslhSPiIjaEkb0WrkNGzZgzJgxqR4GERERERERUbuxfPlyjB49OtXDIKI2hOUOiIiIiIiIiIiIiFKImbStXFFRUfDn5cuXo3PnzikcDREREREREVHbdPjw4eCdrKHn4kREycAgbSsXWoO2c+fO6NatWwpHQ0RERERERNT2cT4YIko2ljsgIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFDKkegBEzcVvPwDHttchGLNhG/B/0JmyUz0kIiIiIiIiIiIiBQZpqU0S3dWo+G48/Pb9AABv5VrknfpRikdFRERERERERESkxHIH1CbVrX0kGKAFANeejyG6KlI4IiIiIiIiIiIiInUM0lKb463eDMfW/4a1SnAfnpeS8RAREREREREREUXDIC21KZIkoXb5HYDkVyxzF//Y8gMiIiIiIiIiIiKKgUFaalPcB76F59Bc9WWHfoQkSS08IiIiIiIiIiIiougYpKU2Q/K5ULvirxGXi45DcO//pgVHREREREREREREFBuDtNRmOLa9Bn/dbnmjzih7WDX/IoheewuOioiIiIiIiIiIKDoGaalNkCQJ9u2vy9qMHcbB2vc6RV/75v+00KiIiIiIiIiIiIhiY5CW2gRv2TL4a7bK2rJGPIHMIfcq+to3/Bt+Z2lLDY2IiIiIiIiIiCgqBmmpTXDufEf2WJ/VF6aOp8CQ1Rv5E3+ULZN89ahf92hLDo+IiIiIiIiIiCgiBmmp1ZN8Djj3fCxrs/a9DoIgAADMXSfB2uda2XLHttfhq9neYmMkIiIiIiIiIiKKhEFaavVc+76C5K0NaRFg63uNrE/WiMcAnbmxQfKhdtU/IElSywySiIiIiIiIiIgoAgZpqdVz7HpP9tjUZSL0Gd1lbfqM7sgY9BdZm3v/V6hefDUkn6PZx0hERERERERERBQJg7TUqkmiD97SX2Rttr7XqfbNHHIvBHO+rM21+0OUfzcOvrq9zTRCIiIiIiIiIiKi6BikpVbNV71ZkQlr6nKmal+dORc5Y15SbqNyLcpnjYT70NxmGSMREREREREREVE0DNJSq+YtXy57rM/sDb2lKGJ/a58rkXfaVxCMWbJ2yV2Jyrlno37Dv1mnloiIiIiIiIiIWhSDtNSqecKCtMbCMTHXsfS8EIXnLYc+e4B8gSSibtXfUb3wUoje+mQOk4iIiIiIiIiIKCIGaalV85aFB2lHa1rPkDsQhecvh7nHhYplrr2foWL2WPidpckYIhERERERERERUVQM0lKrJfmc8FVvlLWZimJn0jbQmbKRd9oXyBz+OABBtsxXvQn1ax5MxjCJiIiIiIiIiIiiYpCWWi2/swSQ/LI2Q97QuLYhCDpkHX8/8s6cDcGUK1vmrd7U1CESERERERERERHFxCAttVqSL7xurKCYEEwrS7dzkD3qWfn2/c4ER0ZERERERERERKQdg7TUakneOtljwZABQUj8La0I8PoYpCUiIiIiIiIioubHIC21WuGZtIIxs0nbEwxW2WMxLAhMRERERERERETUHBikpVZL8oYFaQ1NDNLqw4K0joOoX/9Uk7ZJREREREREREQUC4O01GqJ3lrZ46Zn0toUbXWr74XfXtyk7RIREREREREREUXDIC21Wt7ylbLHemunJm1Pn3mMaruvZnOTtktERERERERERBQNg7TUanmOzJc9NnU8pUnb09s6IXP4Y4p20V3ZpO0SERERERERERFFwyAttUp+Zyl81ZtkbaZOE5q83azjH4Ahf7isTXRXNXm7REREREREREREkRhSPQBqfyRJgugohrdqI3xV62Du/jvVfoLODH3WMRAEQdbutx+AY8fb8r6GDBgLRyVlfHpbV/gq1zSO16PMpBVd5RBMuRB0yfkIie5KCHorBIM1dmciIiIiIiIiImpTGKSlFuU+/DOqfr4Qkrcu2Fa36h8R+xtyByN/0o/Q27pA8rlQOfcseEoWKfqZOoyHoDMmZYw6c77scWi5A9FTi+pFV8J9cBZ0Gd2Rf8YsGPOHNml/tSv+Bvum/0AwZiNvwqcwdz2rSdsjIiIiIiIiIqLWheUOqEXprJ1lAdpYfNUbUb3wCkiiH/YtL6kGaAHA1Pm0ZA0RgilP9tjvOAQAkPweVM2/GO6DswAAov0AqhZcAsnnSHhfvuqtsG/6T2D73lrUrX4g4W0REREREREREVHrxCAttShDdl9AiC+B21OyEPUbnoRr3xfqHQR9xJIJiTBk95Hv/9BcSKIX1UtugOfwPNkyf+0O1K15KOF92be8KHvsrViZ8LaIiIiIiIiIiKh1YpCWWpSgM8KQ0z/u9erXPgJv+XJFu87WBdljXoAxd1AyhgcAMHc7X/ZYdJejat7v4Nr9oWp/++bn4SldmtC+GrJ0iYiIiIiIiIio/WJNWmpxhpxB8FVvlrXlnvoxrL0vDT72lP6Kiu9PASR/oKHh/6MEYzY6XlYGQW9K/viyesOQdzx8VeuCbe5DP0ZeQRJRveR6FP1uDQSDJa59ic7DKpvzJq2+LhERERERERERpT9m0lKLM6hkveosRbLHpg4nIXPYIxG3Ye56TrMEaBtYel4UeaGgh6XnJbImf81W1Cy7DaK3Dt6KtcE6taKrAt7qLZAkKdjXV7Md7kNz4T40F76a7YrNSz5ncp4EERERERERERG1CsykpRZnyBmgaNOZCxVtmUPuhefQPHhKFiqWWXpc0Cxja9z+hahf+4jqspyT3oS1z9WomL1XVkPWuWManDumAQD0GT2RefwDqFn6Z0D0wNLzEuRO+BT16x6NuN0Gkt8JIDtJz4SIiIiIiIiIiNIdM2mpxekzj1G06cz5ijZBp0fuKR9ACF8m6GHuek5zDQ8AYMgbCn1mb0V75vBHYet3PQSdATnj3wEilCXw2/eh5tebAdEDAHDt+xze0l9Rv/5fMffdkIVLRERERERERETtA4O01OKMhSOhz+gRfKzP6gOdratqX31GN+SeNE3WZu7+O+jMec06RkEQYO1zjazN1v8WZA59IPjYmDdY9jgW1/4vg0HbaBikJSIiIiIiIiJqXxikpRYn6IzIPfVjmDqeDFPHU5B76scQBCFif0vPC5Fz8nswFoyEuceFyDnhvy0yzswhf4e1300w5A1B5tAHkD32f4pxZg69X/P2vOUr5Q06E3S2Lop+kp9BWiIiIiIiIiKi9oQ1aSklTB1ORME5izT3t/W5GrY+VzfjiJQEgxW5496M3kenR+4pM1C96PKY2/OULZM9tva5CrnjpuHIjAJI7spgOzNpiYiIiIiIiIjaF2bSEjWRpceFyrq5akS37KExfwQAQNDbZO2Sz5m0sRERERERERERUfpjkJaoiQSDBdZjrop7PWPByKPrhwVpWe6AiIiIiIiIiKhdYZCWKAls/W6MbwVBB2P+0MCP4UFaljsgIiIiIiIiImpXGKQlSgJj/lCYOp+hub/O1jUYnBV0JvlC0ZPMoRERERERERERUZpjkJYoSXJPfi9Y9kBnLozaV7ZcFzZ/n+hL9tCIiIiIiIiIiCiNMUhLlCR6WxfknvI+Ol8noePlZVH76iyNQVpBkAdpJdHbLOMjIiIiIiIiIqL0xCAtUQrIM2mN8oUSM2mJiIiIiIiIiNoTBmmJUkDy1gZ/ZiYtEREREREREVH7xiAtUTMRjFkRlxmLTmx8oJdPHCb57M01JCIiIiIiIiIiSkMM0hI1k+zRz0VcZu11SfBnfUZ32TJ/7c5mGxMREREREREREaUfQ+wuRJQIa7+bAAjwlq+Apfel8Nfvg7dsGSzHXAFDzoBgP0POsbL1fDVbWnikRERERERERESUSgzSEjUTQRBg638T0P+mxsZ+1yv6GXIGyh77arZCkiQIgtDcQyQiIiIiIiIiojTAcgdEKRYepJV8doiO4hSNhoiIiIiIiIiIWhqDtEQpprN1hWDIlLWx5AERERERERERUfvBIC1RigmCAH1Of1mbv35vagZDREREREREREQtjkFaojSgM2TJHkt+T4pGQkRERERERERELY1BWqJ0oAubw0/ypWYcRERERERERETU4hikJUoDgs4oeyyJ3hSNhIiIiIiIiIiIWhqDtETpQAjLpBUjZ9K6jyxE9ZKbYd/6GiRJauaBERERERERERFRczPE7kJEzS6s3IEkqtek9dXuQOWPpwOSCOeOtyB5qpE59B8tMUIiIiIiIiIiImomzKQlSgM6Y7bssWv/V5AkUdHPtfczIKS9bvW9EF0VzT4+IiIiIiIiIiJqPgzSEqUBc7dzZY99lWvh2velop+3Yo2izb75+WYbFxERERERERERNT8GaYnSgKXnJTDkDpK11a99GJLol7WJbmXWrH3LS8ymJSIiIiIiIiJqxRikJUoDgk6PzGGPyNp81Zvh2vOxrM1ft1uxruStYzYtEREREREREVErxiAtUZqw9LwYhrzjZW116/4JSfTBV7sLVfMvgd++T3Vd+5aXILorW2KYRERERERERESUZAzSEqUJQdAha/ijsjZ/7Q649n6OqgV/gGvfFxHXlbx1cGx7vbmHSEREREREREREzYBBWqI0Yu7+OxgLR8vaXAdnwVepnDAsnKd0SXMNi4iIiIiIiIiImhGDtERpRBAEWHtfIWvzli1V7WvIPU722F+/t7mGRUREREREREREzYhBWqI0E55J66/bpeiTe9oXyB77P3m/+j2QJKlZx0ZERERERERERMlnSPUAiEjOkD8MEHSAJEbsYyoco1gu+RwQXWXQWzs08wiJiIiIiIiIiCiZmElLlGZ0xgwYcgbF6CVAZ+sKCPLrLCx5QERERERERETU+jBIS5SGjIWjoncQBAg6PfSZPWTNaqURiIiIiIiIiIgovTFIS5SGTEUnRl0uGDIAAIasfrJ295H5zTYmIiIiIiIiIiJqHgzSEqUhyzGXR1yms3WFzpQDADB1mShb5j4wC1KUWrZERERERERERJR+GKQlSkM6YxZ01s6qy4z5xwd/tnT/nWyZ6DwMb8WqZh0bERERERERERElF4O0RGmqoaRBOEP+sMafc/pDnz1Atty9/1tIkqRYT5IkSJLITFsiIiIiIiIiojRjiN2FiFJC0Ks2G/OOlz229LgA9o3PBB/Xr38c9RueAiQfAECfdQyMRSfCc/gniM4jsnUzhz+KrOMfTPLAiYiIiIiIiIgoHsykJUpTgk79GkpouQMAsHS/QNnpaIAWAPx1u+Ha/aEiQAsA9WsegrdyXdMGSkRERERERERETcIgLVGa8lVvUrQJhgzos/rK2oxFJ0YsjaBF3ap/JLwuERERERERERE1HYO0RGkqtPZsA2PRiRB08jIIgk4PnaVDwvvxO0sSXpeIiIiIiIiIiJqu3QdpPR4P3nrrLZx11lno3LkzzGYzMjMzMWDAAFx//fX49ddfNW3n+++/x0UXXYRu3brBbDajW7duuOiii/D999838zOgtspUdKKyreN41b46c0HC+5E81QmvS0RERERERERETdeuJw7bt28fzjvvPGzaJL+t3OPxYPv27di+fTumT5+OqVOn4sUXX4QgCIptiKKIW265BdOmTZO1FxcXo7i4GF9//TVuuukmvP7669Dp2n1MnOIg+Z2KNlPHk1X7NiVIK7rKEl43Gkn0AaIP0BkV2b8Jbc/nBPQWxedQEn2AJELQmwI/QwIgBGv6Sn53YAwCP39ERERERERElJ7abdTC6/XKArRDhw7F9OnT8dtvv2HOnDl46KGHkJERqPP58ssv4+mnn1bdzv333x8M0A4fPhwzZszA8uXLMWPGDAwfPhwA8NZbb+GBBx5ogWdFbYm3fKWizVh4gmpfwdKETFpfPSrnnpPw+mpcB2biyHtGHPnAiiPvGeCtWNOk7dUsvQ1HPshA6ec9ZduqW/sojrxvRunnPVH58+8D+3zPhCPvGeEunoPqJTfhyPsWlH3RF96qDU19WkREREREREREzUKQJElK9SBS4fPPP8cf/vAHAMCJJ56IxYsXQ6+XZ/utWrUKJ554IrxeL3Jzc1FWVgaDoTH5ePv27TjuuOPg8/kwatQoLFq0CFarNbjc4XDg1FNPxcqVK2EwGLBlyxb07Suf9KmpDh48iO7duwMADhw4gG7duiV1+5Q65bPGwlu+TNbW+Tr1j2vNstvh2PJyk/ZXdPEeGLJ6NWkbACBJEo68K7/+Y+wwDoXn/pLQ9jwli1Hx/SnBx+buk5F/xtfwOw6h9NOumrdj6XkJ8k77LKExEBERERER8fybiJpTu82kDa01e++99yoCtAAwcuRInH/++QCA6upqbNmyRbb8hRdegM/nAxDItg0N0AKAzWbDyy8HAmc+nw/PP/98Up8DtW22/jfKHmce/3DEvsa8IU3en2Pba03eBhDIzA3nLV2S8PZqfv2j7LH7wDeBbZYtU+sekWvf5wmPgYiIiIiIiIioObXbIK3H4wn+fMwxx0Ts16dPH9V1JEnCN98EgkUDBw7E2LFjVdcfO3YsBgwYAAD45ptv0E4TlykBlt6Xw9zjIkBngrnLWcg47q8R+1qPuTLQtykkb9PWP0p0lqhvXvQntD1fzRbVdsGQkdD2iIiIiIiIiIjSTbsN0jYETgFg9+7dEfvt2rULACAIAvr16xds37NnDw4dOgQAOPXUU6Puq2F5cXEx9u7dm+iQqZ3RGTORf/qX6HS1C/mTfoDOlB2xr2CwBfpe5YRgyExof5JXmQGbiEhBWtGl3h5NtIsakhR/0FcSkxOIJiIiIiIiIiJKpnYbpL388suRnR0Iej399NPw+5UBnzVr1mD27NkAgCuuuCLYHwA2b94c/HngwIFR9xW6PLxkAlEsgiBo72uwQJ8VOTM8Gl/dbnjKlsFTuhSe0qXwO0vhtx+A6K6MuI7fXqxY7o8QjPU7DsFbsVbTBF6SzwV//X7463YqlgkGW+CHBAKu3sq1UZ8PEREREREREVEqGGJ3aZsKCwvx/vvv4/LLL8eSJUswevRo3HHHHejfvz/q6+uxZMkSPPfcc/B4PBgxYgSee+452foHDx4M/hyrWHhDYXEgUFw8HqH7UXP48OG4tkdtnz6zF3xV6+Nez3N4Hipmz1Mu0JmRe/J7sPaeImsOTlamtwaW97oEACA6S1W3XzFrdOMmLR3Q8TL1YK63ahMq554F0VGsulyX0QNAYlmxFbPGQDBkIvfUGbB0Pz/u9YmIiIiIiIiImkO7DdICwAUXXIBVq1bhueeew7Rp03DttdfKlnfs2BGPPfYYbr75ZthsNtmyurq64M+ZmdFvL8/IaKydWV8f3y3loQFeIi30mb2Su0HRjbo1D8qCtL7anYEALQD4nahf+3AwSOuv2xF7k65SeCtWw1gwQrGsfsOTEQO0AABJPLqRxEoXSL561K99hEFaIiIiIiIiIkob7bbcARCYCOy9996LOKFXSUkJPvjgA8ybp8wudLlcwZ9NJlPU/ZjN5uDPTqezCSMmis3U4aSkb9Nfu132GXHu+Vi23FcdKP8hiX7FskjsDUHeMK4Y60tHyxVIfoem/ajxVqziJH5ERERERERElDbabZDWbrfjzDPPxJNPPonKykrcc8892LJlC9xuN2pqajBnzhyMHz8eK1euxIUXXoj//Oc/svUtFkvwZ4/HE3Vfbrc7+LPVao1rnAcOHIj6b/ny5XFtj9o+S8+LYTv2L9BZioJtgiETOmtnWPvfDHO3cxPbsL/xAoPkUwZIJUmE+9AciI5DmjYnOo8otyH6gRgTgonuckh+DySfXdN+IpG8tU1an4iIiIiIiIgoWdptuYNHHnkEixcvBgBFqQOTyYSJEyfitNNOw6RJkzB//nzcfffdOOOMM3D88ccDALKysoL9Y5UwsNsbg0mxSiOEi1XvliicoDMg54QXkHPCC1H7Vcw5C55DczRvV/TUQt8waZdfJSPc74Jz5zuat+d3KOsp++37tY3FeQSSN77SIWrb0JlymrQNIiIiIiIiIqJkaJeZtJIk4e233wYA9O/fX1GLtoHBYMBjjz0GABBFEdOnTw8uCw2exprcK3SyMNaYpXQh6Ixx9Xcf+hGS6AMAiCpZrH5HMVz7v9G8PV/VOjh2fQBf7U5IkgS/vRjOHW9rWtdbsRrOPTM070tN7cq7IfndsTsSERERERERETWzdplJW1JSgsrKQF3L4cOHR+07cuTI4M9bt24N/jxo0CDVdjWhy4899ti4xkrUbHTRaymHq/nlOrgPzETeaZ+rljtw7HgbEENKf+hMyBn7P9T8enPkbS6+GgBg6jIRnpLFgN8VsW+oqvkXxTV2Ne4DM3HkfQs6Xe2CoDfHXoGIiIiIiIiIqJm0y0xag6ExNu3z+aL29XobZ5APXa93797o0qULAGDhwoVRt7Fo0SIAQNeuXdGrV694h0vULIQIQVp9Vt+I67j2fQFf3R7VerDOne/KHlt6XAjrMVdoGovn0FzNAdpkq1/3WEr2S0RERERERETUoF0GafPz85GdnQ0A+O2336IGakMDsL179w7+LAgCJk+eDCCQKbt06VLV9ZcuXRrMpJ08eTIEQWjy+ImSIVK5g6zh0YOWovMw/HW7VdtDWXtfDsFgg63/LYkPsgXUr38i1UMgIiIiIiIionauXQZpdTodzjvvPADAoUOH8MQT6kGaqqoq/P3vfw8+Pv/882XL77jjDuj1egDA1KlT4XTKJ1NyOp2YOnUqgEAW7h133JGsp0DUdHr1TFpTx/HIGT894mqipxa+mm0xN2/qeDIAIGv0c7ANuBUQ4j/cWPtcDUvvy2P201k7R80AJiIiIiIiIiJKZ+0ySAsADz30EGy2wEz1jzzyCC644AJ88cUXWLNmDX777Tc8//zzGDZsGDZv3gwAOOOMMzBp0iTZNvr374+7774bALBy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eCz5AoOkFQz6QVTDmw9b0W1j7qE+r5qjcCYvQJtwy5g6CzFAAAdMZM5Jz4Cjpf60fn6yR0usYbdd1Q+sxeyDv1I2SNfCpin/xJc9Dx0kPocPEOFP1+u+ZtExERERERERGli3Y5cRgADBw4EN988w0uv/xylJeXY+bMmZg5c6Zq39NPPx2fffaZ6rInnngCpaWlePvtt7FmzRpcdtllij433ngjHn/88aSOn6jJ1DJpBR0EQyYAQJfRVXU1d/GPMTdt7DAu4jJBp/2wI+itgbHYukTsozMXhT7SvO1QkiRCSCDTl4iIiIiIiIgoGdp1VOLMM8/E1q1b8fTTT2PChAkoKiqC0WiE1WpF7969MWXKFHz99deYN28e8vLyVLeh0+kwbdo0zJ49G5MnT0aXLl1gMpnQpUsXTJ48Gd999x3eeust6HTt+qWmNKQ2cZhgzAnWTdZb1QOjnsPzYm7b1GF80wbXMJ6jQdpIYwEAnaWwyfsRHcVN3gYRERERERERUaLabSZtg4KCAtxzzz245557mrSdc889F+eee26SRkXUAlQmDtOZcoI/623qmbRamDomKUhrCJQkiZ5JWxDyILFDmq92F/QZ3RNal4iIiIiIiIioqZjeSdReqdzeLxgbg7SRyh1ooc/sHXW5beBtsTci6GA8OvmYPkKQVp/RE4LBGvK4B/TZjbWfjUUnIufk9+TrZPVRbEd0V8QeDxERERERERFRM2n3mbRE1EiWSRulxEA0lp6/D5ZMiCR71L8hmLLhr98LS48L4S39FaKnBpLfCdFVDsGYBVv/m2DMPRYAIBizAb0V8Dtl2zEdDeI2EAQB+RPnoH79ExB0RmQOvRc6WzdI3jp4jiyCpcdkmLtfgJIPM2XrSZ6qhJ4rEREREREREVEyMEhLREFCSJBWZ+2Y0Db02QNi78dgRfaIJ4KPrb3+EL2/IEBv6wJ/3S5Zu1GlrIIhqxdyx70pa8sY+CdkDPxT8LGpyyR4Ds0JPhY91THHTERERERERETUXBikJaIgXUi5AyHB+q6C3pys4ciJPkVTeCatVjpTrnzTUTJpJZ8Djp3vQTBYYT3myoRfFyIiIiIiIiKiSBhtIKKg0EzaRPlqtydhJEp++z5FmyFnYELb0pnyZI8ld+QgbeXcs+EpWQwA8Byej9yTpye0TyIiIiIiIiKiSDhxGFE7JUBZN1YwZssfh2WcamHqoCxBkAy2Af8ne6yzdYOgMvmZFoJZHqSNVO7AW7UhGKAFAOeudyGJ3oT2SUREREREREQUCYO0RO2UYMhQtoWVKsg58TV5B71V9tBYMApZo/8TstwCS/fzkzbGUNY+V8vHNvZ/CW8r/LlLPodqP1/NVkWb5LUnvF8iIiIiIiIiIjUsd0DUTgnGLJVG+SHB0msKcgUDvOXLYOl+AQy5g2Df9B/YNz8PW/9bkHn8QxCM2dCZ8uCr2Qxr78ugz+jeLOM1dTgJ+ZPmwn3wO5g6nQpz998lvC3BYJM9lvxO1X6S361s89UD5tyE901EREREREREFI5BWqJ2Si1IGz4pliAIsPa6GNZeFwfbskY8jqwRj8v62fpd1yxjDGfucibMXc5s8naEsIzgSJm0UA3SMpOWiIiIiIiIiJKLQVqidkpLJm1bFZ5Ji6OZtL7qrXDseAv6jO6w9PoDapf/RbGu5K1viSESERERERERUTvSPiIyRKSg05BJ21YpMmn9TojualT8cApEVxkAoHb5Harrij4GaYmIiIiIiIgouThxGFE7JXrrlI06U8sPJAUEg7LcQf2Gp4IB2mhEd0VzDYuIiIiIiIiI2ikGaYnaK9GnaDJ3Pj0FA2l5gj5s4jCfE86db2ta11+3qzmGRERERERERETtWPu4t5mIlARB0aTP6JGCgbQ8RSat3wFJLbNYhb92Z3MMiYiIiIiIiIjaMWbSErVbKh9/oX0cEhSZtBoDtADgq2OQloiIiIiIiIiSq31EZIhISSWTFlBra3vCM2njwUxaIiIiIiIiIko2BmmJ2ilBNZO2vQRpbbE7ReC3H4DkcyVxNERERERERETU3jFIS9ROGfIGKxsFfcsPJAUEQ1YT1pbgdxxM2liIiIiIiIiIiBikJWqnDNl9Ye5xUfBxxuC7IbSTmrQ6cy50lqKE1xdd5UkcDRERERERERG1d4ZUD4CIUidvwmdwF/8AwWCDqdOEVA+nRRlyB8NzZH5C64puBmmJiIiIiIiIKHkYpCVqxwSdHpbu56V6GClhyBuSeJDWVZbk0RARERERERFRe9Y+7m0mIgpjVKvJq0ZnhLHDOFlTzZIbILqrkz8oIiIiIiIiImqXGKQlonZJnz1AUz9T0UnQZ/ZUtNevfyzZQyIiIiIiIiKidopBWiJql4z5wzT1M3edBJ25QNFu3/SfJI+IiIiIiIiIiNorBmmJqF3SmbKROfSBqH30WcfAduxUCMasFhoVEREREREREbVHnDiMiNqtrBGPwdJ7Cvz2A9AZc2AsOgHeitXwlCyEsWAkTB1PhqAzQmdQD9KKnlroTNktPGoiIiIiIiIiamsYpCWids2YNwTGvCHBx6aiMTAVjZH1EYyZquv67QegMx3XrOMjIiIiIiIioraP5Q6IiGKQRI9qe/26f7bwSIiIiIiIiIioLWKQlogoBslbp9ru2vsZ/I4jLTwaIiIiIiIiImprGKQlIorB0n1yxGWufZ+14EiIiIiIiIiIqC1ikJaIKAZD/vGwHHOl+kJJatnBEBEREREREVGbwyAtEVEMgiAg9+T3AUE516LO0iEFIyIiIiIiIiKitoRBWiIiDQRBAARBZQkzaYmIiIiIiIioaRikJSLSSvQqmiSVNiIiIiIiIiKieDBIS0TUFAzSEhEREREREVETMUhLRKRR1ognFW2S6EnBSIiIiIiIiIioLWGQlohII2v/G5WNzKQlIiIiIiIioiZikJaISCO9pQjmLmfJ2liTloiIiIiIiIiaikFaIqJ46Izyxyx3QERERERERERNxCAtEVE8woK0zKQlIiIiIiIioqZikJaIKA6CziRvYCYtERERERERETURg7RERHEQDFbZY8nnSNFIiIiIiIiIiKitYJCWiCgOgjFL9lj01qVoJERERERERETUVjBIS0QUh/AgrcQgLRERERERERE1kSHVAyAiak10hrAgrU8ZpBW9dfAcWQRBZ4TO1gWCzgS/fR/0mb1gyO7XUkMlIiIiIiIiolaCQVoiojjEyqT11e1G2Rd9Iq6fOewRZA17uFnGRkREREREREStE8sdEBHFIVZNWvvmF6KuX7/+CU42RkREREREREQyDNISEcVBFyOT1rHl5egbEL3w1e5M9rCIiIiIiIiIqBVjkJaIKA7JmDjMV7sjWcMhIiIiIiIiojaAQVoiojjEKneghZ9BWiIiIiIiIiIKwSAtEVEcwoO08DvhKVkC0VUB14HZmrbhq90OAJBEL9yH5sJbtSHZwyQiIiIiIiKiVsSQ6gEQEbUm4TVpAaDi+/FxbcNXuwOSJKHih9PgLV0CQEDOSW/C1v/GJI2SiIiIiIiIiFoTZtISEcVBMCiDtPHy1+6Au/j7owFaAJBQ8+tNTd4uEREREREREbVODNISEcVBMGY2eRuiqwSuPR8nYTRERERERERE1BYwSEtEFAdBF3+VGEPeUEWbt2pjMoZDRERERERERG0Aa9ISETWjTtf4IOj0KP38GPjr9wTbfdUM0hIRERERERFRADNpiYiakaDTAwD02f3kC0Svoq/oroRj+1twH1nUEkMjIiIiIiIiojTBTFoiohZgyO4Hz6E5UfuUfTMEouMQACBn3DTY+t3QEkMjIiIiIiIiohRjJi0RUQswhGfSqmgI0AJA3er7m3M4RERERERERJRGGKQlIopT1ujn4l5Hn9krrv6i80jc+yAiIiIiIiKi1olBWiKiOGUMugNZI/4V1zp6W7dmGg0RERERERERtXYM0hIRxUkQdMgcei86XaOc/CsSna1rM46IiIiIiIiIiFozBmmJiBIk6LTPvaizdoh7+/Ub/g3RXRX3ekRERERERETUujBIS0TUAgQh/sNt3aq/o+LH0yFJUjOMiIiIiIiIiIjSBYO0REQtRDBkxr2Or3It/PV7mmE0RERERERERJQuGKQlImoC27FTgz8L5nxAbwk+zh7zgqxv9ujnEtqH5KlNaD0iIiIiIiIiah20F1QkIiKF7NHPw5g3FKKrFNZ+N0LyOeHc/QEMOQNg6XmJrK+1/83QWYpQt+4x6K0d4S7+QdtO4qh9S0REREREREStD8/8iYiaQNDpYet/k6wt6/gH1PsKAiw9L4Kl50UAAOfez1G94A+xdyKJTR4nEREREREREaUvljsgIkoRvbWTto4hQVrJ70H9xmdQ89ut8FasbqaREREREREREVFLYiYtEVGK6LQGadEYpK1b90/Y1/8LAODY8Q46TjkInaWwGUZHRERERERERC2FQVoiohTRWTsDgh6Q/FH7SSGZtA0BWgCA6IZj5zvIHHx3cw2RiIiIiIiSSJIk2O121NbWwuVywe+Pfi5AROlDp9PBZDIhIyMDmZmZMJlMSd0+g7RERCmiM2bAesxVcO5692iDGZC8yhq0UWrS+mp3NOMIiYiIiIgoWURRxP79++F0OlM9FCJKkMfjQX19PUpKSlBUVISCggIIgpCUbTNIS0SUQjnjpsHc/XeA6IWl18XwVa5H+axR8k5Hg7Si165YX2/p0BLDJCIiIiKiJpAkSRGgFQQBer0+haMionj4/X5IkhR8XFZWBo/Hgy5duiRl+wzSEhGlkKDTw9rr4uBjY+FICMZsSN7akF5Hg7TOw4r1dZai5h4iERERERE1kd1uDwZo9Xo9OnXqhMzMTOh0nM+dqLWQJAlutxu1tbWoqKgAANTU1KCgoABms7nJ22eQlogo3QjyP9Qq556LrGGPwFAwXKUvr7xHs7nCg38urQYAdMnQ48Gxuci38DUjIiJKd4ftPnyyzQ5BAC7tn4FOGTx1pdattrYxCaNTp07Izs5O4WiIKBGCIMBiscBisUCv16O0tBQAUFVVhU6dtE4MHhkv2RARpZuwIK3krUHtijvh2PqKomt96ERiJOPwisEALQAcsvvxwurayCsQERFRWpAkCc+urMFvh9349ZAbz6ysSfWQiJrM5XIBCAR5MjMzUzwaImqq3Nzc4M8OhyMp22SQlogozQg69dskXHs/VbTpbcmpfdMW7avzKdq2VXllNYSIiIgo/Ry2+3GwvnHG+4P1fpQ7/VHWIEp/fn/gPazX61nigKgN0Ov1wZrSDZ/vpuKRgYgozeizemvuK7ormnEkrZtfVG/3RmgnIiKi9ODwKS+o+kReZCUiovQiCEJSt8cgLRFRmjFk9dXc1+8ohiQx6qgm0qviVDnxIyIiovTBgCwREbVHDNISEaUZfXY/7Z1FL0RnSfMNphUTI5Q1cPoY1CYiIkpnal/V/PomIqK2jlNkEhGlGUM8QVoApZ8G6tIaC0Yic+j9sPS8qDmGlVRev4R3NtdhfZkHZU4RGUYBOSYdJvW04pzeNnj8Eu5fUon9dYHaPv8+OR89s2N/Ze2t8eLdzfXwS8DgAqNqHxczaYmIiNLW/ANOvLa+TtHO7FoiImrrmElLRJRm4il3EMpbsQpVC6ZAdFcmeUTJ98NeJ37a70KZM5AWY/dKOGT3Y/rmeuyp8WLOPmcwQAsA9yyO/ZwkScJLa2uxudKLbVVefLFTfYZNp58neUREROmouN6H11UCtABryhMRUdvHIC0RUZqJZ+IwBckHx/Y3kzeYZvLTAWfEZTurfXh/S72i3R8jg6bGLaK4Pvasmm4GaYmIiNLSh1vqEelb2hehjBEREVFbwSAtEVGaEUy5TVpf9NQkZyDN6Ig9cjC1zqOeKhOrSoHWKgZ+ZuIQERGlpe3V3ojLmElLlBwejwczZszANddcg4EDB6KgoABGoxGFhYUYOXIkbr31VsybNw+iyA8dUUtjkJaIKM0IQtMOzU1dvyVEi6fWRTgLS1YtOta0IyIiSk91nsjf0bHuqCGi2L788ksMGDAAV1xxBd5//31s27YNlZWV8Pl8qKiowOrVq/Haa69h4sSJOPbYYzF79uxUD7ld6tWrFwRBwHXXXZfqoaSlBQsWQBAECIKABQsWpHo4ScWJw4iIWimduRCiu1xlidDiY0mmiJm0R5ulo7c7CoL8eWo9d/NLgW2Er09ERKkV6fhOBDT+HUBEiXnsscfw0EMPBR9PnDgRF1xwAQYNGoTc3FxUVlZi27ZtmDlzJubOnYvt27fj/vvvx3nnnZfCURO1LwzSEhG1UrqM7upB2laQSRvN4mK3artXlDD/gBMzttkhihIu7JuB84+xAQC+3WXHh1vtmrb/4ppavLgG6JGlx2Mn5cFiaN2vFxFRa+f2S3h1XS1WlLhh1Quy4zu1H44Y9Qy8zKQlStg777wTDNB26NABn376KU499VRFvzPPPBN//vOfsXHjRtx5550oKytr6aEStWs8MyUiSkd6S+wuGT3UF7TyIG0kmyo8eGNDHWrcIuq8Et7fUo9Shx+VLr/mAG2o/XV+/HTA1QwjJSKieMw/4MRvh93wiQge38scsSeCpLblUJR69QDLFRElqri4GLfddhsAICMjAwsXLlQN0IYaPHgwfvzxR9x1110tMUQiOqptnskTEbVyGQNujdnHmD9UfYHU+k9srQblra77an2KkgYH63zYWhl5kpFYVh5Rz9olIqKWs7/Op2g7WK9so7atyhUrk7aFBkLUxjz//PNwOBwAgEcffRQDBw7UtJ5Op8NVV12luuyXX37B1VdfjV69esFisSA3NxfDhw/HAw88EDX7NryWqCRJmDZtGsaPH4+CggJkZ2djzJgxeP/992XreTwevPbaaxg7dizy8/ORlZWFcePG4dNPP424r7179wb3NX36dADAZ599hjPPPBMdOnSA1WrFwIEDce+996K6ujrqa7Fx40Y8/vjjOOuss9CtWzeYzWZkZmaiX79+uPbaa7F06dKo6z/yyCPBsQBATU0NHnvsMQwfPhy5ubnBMU6YMAGCIGDfvn0AgHfffTe4XsO/CRMmRH2OX375JSZNmoQOHTogIyMDxx9/PF5++WV4vY3nTJIk4aOPPsKECRPQoUMH2Gw2jBgxAq+99lqw9FA0NTU1ePLJJzFu3DgUFRXBZDKhc+fO+N3vfofPP/886jYaxvvII48AAFasWIHLL788+Lp27doVV199NbZs2aJYt+H5nnbaacG20047TfEaNbwWrRHLHRARpSHbsbfDdeBb+Ot2Rexj6T4Z9eseU7RL/vQOPIoavvg72PTYVys/QXd4leu5RQkuX+KZNfUq2yQiopblVDmOu/w8Prc3kWrSN/DwPUEUN0mS8O677wIIZNHefPPNTdqeKIq4/fbb8b///U/W7na7sXbtWqxduxb//e9/8dlnn2HixIlRt+X1ejF58mTMnDlT1r5ixQpcc801WLlyJV588UVUVVXhwgsvxKJFi2T9fv31V/z666/YuXMn7rvvvphjv/HGG/H222/L2rZt24annnoK7733Hn766SfVAPaCBQtkQcEGHo8HO3fuxM6dO/Hee+/hH//4B5588smY49ixYwcmTZqEvXv3xuwbrz/96U949dVXZW3r16/H7bffjgULFuDTTz+Fz+fDVVddhc8//1zWb82aNbj11luxevVqvPHGGxH38dNPP+HSSy9FRUWFrP3IkSOYNWsWZs2ahXPPPReffPIJMjMzo473lVdewV/+8hf4fI3nfYcOHcIHH3yAL7/8Et9//z1OOeUUrU+/TWAmLRFRGjJk9ULR77dH7SMYMmDueraiPd2DtH4NmTBelRMxu8pJvMcvoa4JqTU84SMiSj21i21NuQBHrVOs73PWpCWK36ZNm1BeHpjD4uSTT0ZWVlaTtvePf/wjGKDt3bs3XnvtNSxfvhzz58/HnXfeCaPRiJqaGpx//vlYt25d1G09+OCDmDlzJq688krMnj0bq1atwowZMzBgwAAAwEsvvYR58+bhuuuuw6+//opbb70Vc+bMwapVqzBt2jR06dIFAPDQQw9h06ZNUff1yiuv4O2338aYMWMwY8YMrFy5Et999x2mTJkCIBAYPOuss1BXV6dY1+fzISMjA1OmTMFrr72GBQsWYPXq1fjhhx/w3HPPoWfPngCAp556Cu+8807M1/CSSy5BcXExpk6dirlz52LlypXB5/3OO+9gw4YNwec2efJkbNiwQfYv0j5ee+01vPrqqzj33HPx5ZdfYtWqVfj6669xwgknAAhk2L7zzju4++678fnnn+OKK67ArFmzsGrVKnz88cfBAPWbb76JH374QXUfS5YswTnnnIOKigp07NgRjz/+OGbOnIlVq1Zh5syZwczr7777Dtdee23U1+HHH3/E1KlTcdxxx+Htt9/GihUrsGjRItx5553Q6XRwOBy4+uqr4fF4gut07doVGzZskAXb3377bcVrdOGFF8b8PaQrZtISEaUpIVZtWUEA1LJSxTQP0mrIpC11Kks2qGXYuHxSzNsjo2GmFlHb4fVLMOgQvJWQWo5PlKAXEn/tHQzSEoB6T/TfOd8T6UWUJNi9EjKNAo+7aSw0UDpy5MgmbWvDhg147rnnAARq1i5evBi5ubnB5RMmTMCkSZNw3nnnwePx4JZbbsGyZcsibm/ZsmV44YUX8Je//CXYNmLECEyYMAH9+/dHXV0drrjiCpSXl+PLL7+UBd5GjBiBUaNGYfjw4fD7/XjjjTfw4osvRtzXihUrcO655+Kbb76BwdAYBjvnnHMwePBgPPTQQ9i/fz8ee+wx/Pvf/5atO2zYMBw8eFD2XBucddZZuO2223D++edj7ty5+Oc//4lrrrkGer0+4lg2btyI77//HpMmTQq2hf9ujEYjACA3NxeDBw+OuK1Qy5Ytwx133IHnn38+2DZixAhMnDgRgwYNwr59+/CPf/wDlZWVqq/7qaeeGnzdX331VZx9tjwZyOv14qqrroLX68XZZ5+NL774AjabTbaN888/H6eccgpuueUWfPnll5g7d27EjOqlS5fi3HPPxVdffQWTyRRsP/nkk1FQUIAHHngA+/fvx+zZs3HRRRcFX5fBgwcHLzwAgYsFWl+j1oCZtERErZUkQYIyQJnumbRaTrJ8KnHXLSq1Z9/eVI/v9zoTHku1W8Qh1j0katVEScILq2tw1Q9l+NuiShyx8zPdUvyihJfW1ODK78twV4KvvcMrqtYWn7c/8WM7tU71MTJpv9jpwH/X1sDPjNqU21XtxeXfleGmueW47Lsy7K1JfH4Aal6ht6R36NChSdt69dVXIYqBz+lbb72lGrQ8++yzccMNNwAAli9fjhUrVkTc3gknnCALFDbo1KlTMChXVlaGKVOmqGZGDh06FOPHjwcALF68OOrYzWYz3nzzTVmAtsH9998fDPJNmzZNlrkJAIWFharPtYHJZMIzzzwDANi3bx/Wrl0bdSzXXXedLECbLN27d1cEmAHAZrMFs1orKio0ve5qr+fHH3+MvXv3wmKx4L333pMFaEPdfPPNGDNmDABErQ1rsVjwzjvvyAK0DW6//fZge6zfbVvDIC0RUSsl+uog6JRfapLflYLRaLe8JL2CyN/ucqR6CETUBKtKPPjtcOC4Ulzvx8zd/Ey3lPXlHiw5FHjtD9b7MWt3/IHVBQfVv7MO1vtVS99Q21UXI5MWABYXu7G5CROGUnLct6RK9vjx5dWpGQjFFHr7fkZGRpO2NW/ePADAcccdF7yFXk1o3duGddRcdtllEZcdf/zxcfXbvXt3xD4AMGnSpGAJgXA6nS4YxKysrMTq1aujbsvtdmP//v3YvHkzNm7ciI0bN8omyopV5uHKK6+MujxRv//974MZuOFCX89LL7004jYa+lVVVSkmU/v2228BAKeeeiqKioqijqWhjuxvv/0Wsc/EiRMjXjjIyspCv379AMT+3bY1DNISEaWxzKH3q7YLhkwYc4fA3PUc5ULRo2xLI/Y0m6xrfoQAARG1DtM2yuvHzdvPz3RLeTvstZ+bQPZrmUp5mwb76pgV3Z64NQblF/J7O+1oCbBTaoTWoLXb7Qlvx+12Y8eOHQAQNUALAMOHDw8GCzdu3BixX//+/SMuC81c1dJPrZZsqNGjR0dd3pD5CQTKOoSz2+148skncfzxxyMjIwM9e/bEcccdhyFDhmDIkCEYPnx4sG/orfhqhg4dGnV5opL5egLK13TlypUAArVkBUGI+u/ZZ58FEJhMLBK1SdpC5efnq46jrWNNWiKiNGY7dio8pUvgKf0NOmMWIOggSX7kjHkRgsECa99rUbvsNtk6kpjeJ7U+3qZIRElU5U68LjU1jUqp8LhFK1PelJrj1Ppo/fvAFLnUIxGFKSgoCP5cUlKS8Haqqhqzp2OVTTAajSgoKMCRI0dQWVkZsV+k2+WBQHZrPP0ayjBEEmvMHTt2DP4cPua9e/fi9NNPx549e6Juo4HTGf2CZV5enqbtxCuZrycA+P3yi6ilpaVxjynaaxFtHKFjCR9HW8cg7VH79+/HtGnTMHv2bOzbtw91dXUoKipCr169cNppp2HKlClRixF///33eOONN7BixQqUlZWhqKgIo0ePxi233IJzzlHJdCMi0kBv7YiCs+dHXK4zZiJr5FOoW/WPxkYpvW8DDK83O66LGZlGHX7c1zz1B0/pasGfh2XD45dQ6vDjb4si/7FIRETaNfdFN7VJJKntCn8/je1sxtLDyhJJRVZGaVNJ1DABLKWP0NvcY93Gr1VrnCiuKWO++uqrsWfPHgiCgOuvvx6XXXYZjj32WBQVFcFkMkEQBIiiGJwsTIrxGYk2qVg6awiWnnPOOaq1byk5GKQF8PLLL+Pee+9VpP8fPHgQBw8exC+//ILa2lq88MILinVFUcQtt9yCadOmydqLi4tRXFyMr7/+GjfddBNef/112VUJIqKk0clrD7W2TFqDTkCXzOb7Y6XIGjj2mvQCOtiSv58at4jdNV4UWfXomqlvlX+4kjrJ54SvZisMOcdCMFhSPRyitKM2yaNW5U4/rAYBjiiTSZbYGaRtT8LnDevWjH8bUOIila2qcYvIMfN8N90cd9xxKCwsRHl5ORYvXoza2lpkZ2fHvZ3Q7M9YGbk+ny84YVnDLeupFmvMoctDx7x161b88ssvAID77rsPjz/+uOr60TKG24qCggIcOnQIHo8nagIjNU27P4o+/vjjuP3222G329G/f38888wzWLBgAdasWYN58+bhmWeewUknnRQxwHr//fcHA7TDhw/HjBkzsHz5csyYMSNYl+Stt97CAw880GLPiYjaF0EIu94mpXeQdluVPNPXoAO6ZDbfNcPskBMGk149gOqKEiSIZnGxC7fMK8dTK2rwt0WVuH1+BWedbiM85StQ8klnlM8cgZLPusJbsTbVQyIVnFgqdbx+CS6V1/+ghjqyr6yrxZ9/rsANc8qj1hctcTBI2554w74/O2Wo/23Aj31q1Uaoc/LHeeWYzYkb044gCMFJsex2O956662EtmM2m4MTOS1btixq3zVr1sDrDfy9ny7BvBUrVmheHjrmTZs2BX+ONuFWQ73WZEnHpI+G+NbKlSvh8aR2DpR0fH2SpV0HaX/66Sc8+OCDAIBrrrkGGzduxF133YVTTz0Vw4YNwxlnnIG77roLS5YswVNPPaVYf/v27cGCyKNGjcKSJUtw2WWXYfTo0bjsssvwyy+/YNSoUQCAZ555Bjt37my5J0dE7Ycu7CRGTO9yB3tr5SfwBkFAl4zmy5bRMhHJmlLl7ZRa/HdtrexxqVPEipLEtkXpxb7xGUjeGgCA5K5E/aZnUzwiUlPhUg/i8WJJ89tYoX6C9t3e6EGa3TVezRM/MUjbvoR/XZsjXFjl5zu16iIEaSUA722ph4dR9LRz5513But/PvTQQ9i6daum9URRxIcffhh8fOaZZwIIBC6XL18ecb3QQHDDOqk2Z84cHD58WHWZKIp49913AQQyhkeMGBFc5vM1nrdEm3jttddeS9JIAyyWwB1cbnf6nFdccMEFAICamhq88847KR1Lw+sDpNdrlAztNkgriiJuvfVWAIE6LdOmTQvOQKjGZDIp2l544YXgh/bll1+G1WqVLbfZbHj55ZcBBD7czz//fLKGT0QUJBgyZY9FT02KRqJNr2x5ULm43od8S/N9HTk1ZMmWJzA5TaTs2y92JD5zLqUP197P5I93fxihJ6VSpM93eEYeJV9FhONmWYzA6nd7tGfaMdjTvoR/bo064LTuylIzfFukVq0n+i+gjLWk007Xrl3x3//+F0Ag0Hjqqadi4cKFUdfZvHkzzj77bDzzzDPBtltvvTV4h/Ett9yC2tpaxXpz5swJ3mk8ZswYjB49OllPo0ncbjf++Mc/qk5C9dRTT2HDhg0AgBtuuAFmszm4rCF7GACmT5+uuu1XX30V33zzTVLH27lzZwDArl27krrdprj22mvRvXt3AMBdd92FRYsWRe3/yy+/xHyfJarh9QHS6zVKhnZbk3bOnDnYsWMHAODvf/87DIb4XgpJkoIfxIEDB2Ls2LGq/caOHYsBAwZg27Zt+Oabb/Df//63TadmE1HL05kLZI9Fd0WKRqKNcuIwC3SCAL3QTCdeGraZyC3TxfXqt/QmWjqBiOIXXsOygUcEWEW4eUXKZoxUr7JBtVv7RTHG2tuX8M+zXidgSv8MzD8gz7xu7gnrKLpI5Q4aREiAphS7/vrrcfDgQTz00EMoLS3FhAkTMGnSJEyePBnHHnsscnNzUVlZie3bt2P27Nn44Ycf4Pf7ZROPDRkyBH/729/wzDPPYN26dRgxYgT+/ve/Y/jw4bDb7Zg5cyZeeukl+P1+mEwmvP766yl8xnKjRo3CzJkzMW7cONx5553o168fSktL8e677+Ljjz8GAHTr1i14p3WD4cOHY/Dgwdi4cSNef/11VFVV4eqrr0bnzp1x8OBBfPDBB/j8888xbtw4LFmyJGnjPemkkzB//nysWLECTz31FM455xxkZGQAAKxWK7p27Zq0fWllNpvx6aefYsKECaivr8fpp5+Oyy67DBdeeCF69+4NURRx+PBhrFq1Cl999RU2bNiAl19+GaeeemrSx9KjRw9069YNBw8exLPPPotu3bphwIABwUnZOnbsiKysrKTvtyW02yDtZ58FMmQEQcD5558fbK+srERFRQUKCgqiFrnes2cPDh06BAAx33Snnnoqtm3bhuLiYuzduxe9e/dOwjMgIgpodUHasBlPzYbAX/NGnQB/M0RptYQDEsm6OxgpSMsUH6IWEynTkrVqm1+kScNiBWlr4gnSxjMgavXCg69GHZBv0eOMHhb8tN8V0q+lR0ahamN8hnVMSEpbDz74II477jj87W9/w969ezFnzhzMmTMnYv/jjjsO//73v2VtTz31FOx2O1555RXs2rULt9xyi2K9nJwcfPrppxg2bFiyn0LC/vznP2PhwoWYPn06LrvsMsXyzp0748cff0ROTo6sXRAEvP/++zj99NNRVVWFTz/9FJ9++qmsz5AhQ/DZZ5+hS5cuSRvvrbfeildffRWVlZW49957ce+99waXnXrqqViwYEHS9hWPsWPHYsGCBZgyZQoOHDiADz/8UFYSI1wik9Rpdd999+FPf/oT9uzZg8mTJ8uWvfPOO7juuuuabd/Nqd2WO1i6dCkAoFevXsjKysJHH32EIUOGoKCgAP3790dBQQEGDBiAZ599VrXGxebNm4M/Dxw4MOq+Qpdv2bIlSc+AiChAZ5EHaeF3QfKl78QNFU75H/dHY7QwaixLG++f/pKGWM2vh+KvZbSuTL0eY6zbACm9OLZPQ/WSGyG6ylM9FErAYbv6bbUbKzywR0qzbQXqPCJWlbjx2yEXZu52YFd1+tUaD7/g1uCIwx8x01GUJOyv034rtF+UsLrEjcUHXa369xnKW7UB3oo1qR5GWlIGaQPf+IawoB/LYCSuuN6HXdVeSFr+OIpgR4zjkb8J26bm9/vf/x7btm3Dhx9+iKuuugoDBgxAXl4eDAYD8vPzMWLECPzpT3/Czz//jA0bNmDSpEmy9XU6Hf73v/9h0aJFuPLKK9GjRw+YzWZkZ2dj2LBhuO+++7Bjxw7FeungnXfewUcffYQJEyagoKAAZrMZ/fv3xz333INNmzZh0KBBqusNGzYMa9euxf/93/+hZ8+eMBqNyM/Px5gxY/Dss89i+fLlstvvk6Fr165Yvnw5brzxRvTt21dWgzXVxo4dix07duC1117Deeedhy5dusBkMsFisaB79+6YNGkSnnjiCWzduhXXXHNNs43j1ltvxRdffIFJkyahQ4cOcd8dn64EqSlH6FZKFEUYjUaIoojRo0fjxBNPxEsvvRSx/0knnYTZs2cjNzc32Pbaa68Fa9p+9tlnuOSSSyKu//nnn+MPf/hDcL0//vGPmsd68ODBqMsPHz6MMWPGAAAOHDiAbt26ad42EbUNorsSJTPkgdr8sxfA3Cn5t5Y01c5qL+5fUiVru2dUDkZ2NOPmuWWaApxWg6CpzmyD3x1jw1XHNtbtvXR2qWq/IqsO/z29UNM2t1R68Mhv1RGXf3B2EYy83y/tHZ4u/x0VXrgJxtxBsG9+EbXL71D073xdu/uTKa2tLXPjyeWRa3AXWHT454l5KLI138SEzeFAnQ8P/1oFe9hxbnIfG64YmBlhrZb34pqaqBe4PjynCAZd42dMkiRc9l1Zk/b5v9MLUGhtXb/PUHWrH0T9+scBALZj/4KcE15I7YDSzBXflcrKHj09Pg+9cox4d3MdvtvjlPUNf39RbN/vceDdzfWQAJzc1YzbhuXEXCfcT/udeGNDXdQ+z52Sj25ZbSNYoubgwYPBupzxnn/v2LEDPp8PBoNBVuuUmkfoXcytObOS0luyP9ftMpO2pqYGohi4Gr9hwwa89NJL6Ny5Mz744ANUVlbC4XBg4cKFwTqzv/76K2644QbZNurqGr+cMjOj/8HcUDsEAOrr6+Maa/fu3aP+awjQElH7JZhyFW329U+2/EA0+HGvU9Fm0DX8r+1kq0tGfCfoWSZt2y1ziqjXmKn1+vroJyhbqtIv643kRK/yd1i94FIAUA3QUvoJD9qEq3CJmLMvep90NP+AUxGgBYBvdjkgplFuRawJwn47LA/grilVv/sgHvMPtL7fZwNJ9MK+uXESYceWF+Gr35fCEaUXUZIUdekNETJpAWDJIZeijaKbfjRACwCLi904FKFsUzSxArQAJ24kImqKdhmktdsbZ952uVyw2WyYP38+rrzySuTl5cFqteKUU07Bzz//HCyU/dVXX2HZsmWy9RqYTKao+wudHdDpbL1/XBJRehIE5aHcfejHFIwktkXFypMq69Eo7XEF0Y+lDW4fHrm2kUUvYFTHxu3oBWBiD6usz5T+GeGrBRVrvA030i3WDapcnNk43fmqN6u0bYQk8nfXWkQqORLq293pW/olkqoo9R49afT27BAjQ3lBWEBV7fgfzmqIflHt8x2t7/fZQPLaIfnssjb3wdkpGk36Uasz23BHSpVb+cZXu+hLkandPLuponkuKJc520ZpEiKiVGi79yFEEV7P46abbsKAAQMU/axWK5544ongxGKffPIJTjjhBMU2PJ7oJwmhNW2tVmuUnkoHDhyIujy03AERUWuUaQychF03KHBXws5qLw7b/cg0CqhXmYCmU4b6V9fgAiMu7peBrpkGWA31qHL5MblvBmxGeRD7/GNsWF/mwVaVbNdk1TxMp0AKqfPb96u2S/7IQSBJ9EHQtcs/nagFRau36fZLsMQIZLaUWIfL8GQ6LROG/WN0Dh6OUkrG3HorHajylq9M9RDShlod44a3+rguFiwulmdmu1mXNi5qL1dzZbwGMnTNMfsREZFSuzzTyMrKkj2OVtT6jDPOgMFggM/nw4oVK1S3EauEQWjmbqzSCOFYY5aIEiVJEoRWMMNupkkX/P+2YfIs2Uj1Y8P1yjbgwbF5wcfh2wll1gv487BsTJ1foVimtdxBLC6ePKY9f/1e1XbJa1dtDyyrhWDOb6YRUXMwtsJ7xqJd5EmnwFSsyZvCa4eXOaNfvZrYw4o+OcaofTJb4y80Cm/FqlQPIW2off02TByWZVK5YyiNPgutgVqmcnMFaWPdbURERJG1rb90NDKbzSgqKgo+bij8rcZisaCwMDCRTFlZ42QHocHTWJN7hWbDRtsXEVEyufbMSPUQNMlIQlZYvCcaGUb1fapl7oZy+UT8tD/2LZaceTr9+SPUgnRG+dyIbmVgn1JDa23WdMk61covSlhfHvkOrZY+tuys9mLhQScWHXRie9jdB7GOu3tqA/Uuy51+/LDXEfMWaItBgFEvwBJl0sUKl5hWdXnjoxy3r2q96m3o7ZHa+6mhZn22SpC2Oiwzu94rYskhF/bXxl9ntS3ZVe3Fb4dcqHaLmLvPiX/+VoWPt9WrXoRWuyC0rdKLZYdd8DbhWHOIQVoiooS1y0xaADjuuOOwYMECAIDfH/2LpGG5wdD4cg0aNCj489atW6OuH7r82GOPjXeoREQJqV50JfyOYmQOvjvVQwGgXg8NAPRJmJ1Z7TbJaCLVPfxpvxPn9rapLhMlCY/8Vh0MPETDDJ/0FylIW7firxHXqV54BQp/tyLicmo5N80t19SvztO6Pov/XlkTdXmZ099is6YvOODEq2GTJN5wXCbO6hU4RmoJ4qwqceO/a2vhUJkILVzl0VreWSYBLmfk/m9sqMP/DY18t0Rr47fvhyGzZ6qHkXJ1HmUQ0RDMpFV+Z4fGHO1eEX9bWIlqtwi9APxtZA5Gdmx/t9svLnbhf2trFZcDNld68dVOZSmf8L+dvtvjwLubA3eIHpNjwBPj8qBL4I6sw/b2HSin9NGrVy9eCKNWp11m0gLAKaecEvx59+7dEfvV1taivDxwItC1a9dge+/evdGlSxcAwMKFC6Pua9GiRcH1e/XqleiQiYjiZt/ycqqHEFRcH39mRfidrQUW9a+teGvARjrpiBZI2Ffr0xSgBQCXhoAEpZbo1hbkC+WtWAnJ13onLmorKl1+2GNkvbdG+2p9WBtjMrS9LZgl+OZG5Szub29qLPGlElNT+PfKGk0BWgDocTT4rHZre6hFB12t9EKY+pi9pb+18DjS0yyVSf4aMmmjZVcDwLe7HMHMWr8EzGyFEwYmw8fb6iO8y9SFZy83BGgBYHeNTzE5o0utZoKKOo8Ep8a+REQk126DtBdffHHw56+++ipiv6+++ip49eXkk08OtguCgMmTJwMIZMouXbpUdf2lS5cGM2knT57cKupDElHrY+4+WbVdtB9ImyvIarfandzVotKz0Z+Ol2dLRcqeijeTFgBO6qLMsukUZbbyeDLyWO4g/Qn66O+9SHx1e5I8EorXkThupTXHCO6kk721sWdajxWsSqZIMZaGcgPJPM4JAE7qEvhM5ke4GNfAL2mbhCzdSH6XarvnyPwWHkl6+uWQW9HWcEFVEASEv/MLrY3vk9l75EHZLZWxP0ttUXmMkiLhYh1NNoaVXilxaN8+Y7RERIlpt0HaoUOH4pxzzgEAzJgxAz/99JOiz5EjR/DAAw8AAEwmE66//nrZ8jvuuAN6feCEfurUqXA65XUKnU4npk6dCiBQKuGOO+5I9tMgIgIA5I6fHnGZ5KlquYFEofYH+81DspSNIU7sbMYtQ7Jwclczpg7LxtAik2o/TwJB2psHK/cdbSvR6i/2yZHffsyJw1oBKbGaef66XUkeCDWnGEmZaUXL9bR0SNKvPXrBqqmTDg0tNGFK/wyM72LG/SfkosPRi2Qdolwsa6B2a3y6i5SF7z78cwuPpHX628gc2ePQiemSNOdnuxOrlEH4nzKlDu3fm2lwqCIiapVa0Z+uyffCCy8gNzcXoiji/PPPx7333ovFixdj5cqVeOWVVzB69OjgpGCPPfaYrNwBAPTv3x933x2o9bhy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eyT5CI2g2dORfZY19RXSY6S1t4NOp8YRGIPLMuZpabIAg4o4cVtw3LwfgoWbfxljsAAJtRh5vCArXRgiTRssaOCZuRnJm06U/SGKQVTHmyx/66yCWSqGXE8+kytqJMWi3SYdKshtqx4XHS+0/IxT2jclTWUDe2sxkX98vA1OE5GFLYeAGug7V9BWn9dTvhr9/fwqNpfTqGBe8dXiktPg/pIpE7imKt0aQgLX81REQJabcThwGBIOvMmTNxySWXoKSkBE899RSeeuopWR9BEHD//ffjnnvuUd3GE088gdLSUrz99ttYs2YNLrvsMkWfG2+8EY8//nizPAciogaG7L6q7X5XKQwY2MKjkXP6RHy/R363gSGJlwkTPRcITyIREbjleGWJB26fBL0OGFxgwuBCU9Rs3fDbc1eVevDNLjsG5Zuwvy5QQ/LUbpbgJCiUBkRtJ5umjifDfeDb4GMfM2lTLp6T/0qXiPt+qcRtw7LRJbP1/9m7ucKLyX2adx+1HhFLitVvzQeAj7bW4/TuVsXFKJMOyDHFDrDGoi2TtvVFgCSvssZvA/eR+bD1vbYFR5NetAT/MsMmD5MQCNSGtzc30V0J5673obN0gKX3pRAEHdxHFsJbtgzmbudBZymCa/dH8JQuhj67P0xFY2HufkGzl7xLpE53rCD3nH1OTO5jQ+HRCyelTmbSEhE1t9b/12oTjR8/Hps2bcLLL7+Mr7/+Gnv27IHH40Hnzp0xYcIETJ06FcOHD4+4vk6nw7Rp03DxxRfjjTfewIoVK1BeXo7CwkKMHj0af/zjH4NlFYiImpM+Sz1IK7pKWngkSs+urMHGCnmNuERmDE628Djx/lofHlhSJbt18qudDvx1RHbU2ylzzMqI80db7QDswcerS924e1Ruk8ZLSSRpmIBJb4WxYIQsSOuvZyZtqpXFESgAgF01Pty5sBL/O70gGGxordaWebC+zBOx9EtT+UQJ/1hciQpX5APehnIvNpQra36a9IKsTmiiijQEaWtbYSZtxffjIy7zHP653QZpq1x+3LO4Mma/zPCZRAHUeUUsjHBBQZKkpAdGJb8H5bNPhL92OwAgo3INTB1PQdVPFwCQULf6XkCSvzftALLHvIiMQbcndSzh1Or+x/LzAReuGRS4oyjS/AX/WFyJF04rQKZRF2cmLcO0RESJaPdBWgAoKCjAI488gkceeSThbZx77rk499xzkzcoIqI46TO6q7aLrvhnsU+mGreoCNACQEkcf+yHsxoEWT26/nnGKL0jC09sjVRL9rfDbgyIsg8tkxOtLPGg1i0iWyWgSy1PEmMHafW2ztBnHSNr423JqTdja33sTiq+3GnHLUPUJx9MB1pDGj8dcDZbkHbJIVfUAG00Rp0AmyEwwZOW5xIpoNtBQ6A3kYBUOvOULE71EFLm8x122fd5JCa9AKNOXn/W7pXw3mb140GZU9SUlR0P174vggFaAHDueAeiswTBd7yk/r50bH+j2YO0iWTSZocU7Y50s1CdV8LaUg/Gd7UoJibLMAoR98sQLRFRYnimSETURgg6A6zHXKVcIKZ2luPmyHi6fVhjoEUAcPWxmQltx6aSmaPG7ZcinsCc1dMKjZtpc4GF1kzyRb71uIFgzIbOEFa3OMIM7dRyahK81f03ldnj00mWxlnOVpU03/PYWa0hwzwCoy5QJqxTRuzAWEebTlaHNpTFoENRWKA2/Bjb2g6lUozyKv76PSm/oJoqK0o8qu02g/LipyXsgqg7Sv335pjA07nnY9lj0V0O5673Yq7nq96U9LGES6Q+b+hdQNFervXlgd+RM2wG2Jwoxywm0hIRJYZBWiKiNiTnpDcUbZKW27qbkZYMmXiN6GjG30flYHIfGx44ITfhTNpMo7ZbISUpUK823LWDMnHNoEzNtWb1rEmbNkRPjbxBUN5cJBhsgN4sa5PE9A70tVeT+9jw5sRCjO5ojtjH30aiBs15GGnKPGsNx8Hbh8fOVn70pPyoJW+ePaUAw45mC98yJAvju8gnjmx1v0sNxw1P+coWGEj6iTTR5jWDlBdfTWFv0GiTdPoTmEgrFr9KTXLBXKBp3ea+/V9t6yM7RM+4Dw3sRpt4rPPRCy+OsL/not1F1Mo+oUREaYNBWiKiNkQwWGHuFlZ6RcNt3c3JESHlKUtjgDSSER3NuGJgJgZHyMbSIlNj5poE5QnW8CITzu1tg0EnaJ4EjV+66UGSJEjeWlmbPks5G5Ogt0EIC9LCzyBtOrpiYCayTTpM6Z8RsY878QorLUJrDCdQUKB5JCNIm6ehpEtujD4Wg4B7x+Tik/M64IweVsWFMF9ry6T1q2eLhvJWrGiBkaSfSIFWtUza8KBg1CBtkqOEkuiFr3ancoHGv7GiTRyXDOHHjyyjgAv7Rj4eAoA/5HMU7fWSpMD3ZvhF92jZyq3tOgoRUbpgTVoiorYmLCPQU7IQGHJPigajzLxoUJAGE/hoDRSvLfNgbZn8JDs0CUxrwOD7vQ5cMVB75i1F5vFL+H6vAw6vhLN7WZFn0f5+chf/qCgDYsg6Bv7abbI2wWCDoJNfBBBdpfBWbYQxb3DcY5YkEc4d78BXsxXmrmfBc2QBPCWLYcgbDEv3C2Duelbc2wQAX90eOLa9Cr21C2zH/hmCTp5Z7tr3NWpX/T1YS9HU+XRkjXwaelsX2Lf8F6KrDKKjGO7i72EbcCuyRj4JnSknobGkmtYLJpFIkoTfDruxu8aHMZ3MCWfpx0uUJPx8wKmpr8sv4YMt9TiuwIjhHcyQJAmLil04UOfHSV3MOCYn8TE3Jdu/4bXP0Fr/JYFtN9hd0/QyPu7DC1D542mAYED26OcgGDPhq9oAfdYx8Nfvg7FwDKy9pzRtH4fmwn3wO3gr18bs6z2aSStJIurX/wv1ax6Etc/VyB77KnTG6MG21sQvSvj5gAslDj8mdLNEDA5aVIK04Zm0/1ldq+jTuJ8mDVPBW7FGNSNa8tao9FYSXaUQDDY4tvwXzt0fQJ/ZE9Y+18BvPwh/3S5Y+90IY95xmraldpxSvIwaPsp7an341/JqXDEgI+qFk0+22zEw36go+xTpIjzATFoiokQxSEtE1MYIOvmh3X3wO/hqtsGQMyAl44lU7iDfkvq8UrXZorU6VN+YlhctmyfU7D1OePzATUOyYnemqF5fX4tfjtYYXXLIhZdOK4h6+3QDb+U6VM07R9EePkEYAAh6q6LcAQCUfzMEna71QxDie//YNz2HupX3HP352WC7p2QRHFtfQf5ZP8Hc+fS4tin5nKiYNQaiO1DP0le/GzknvBRc7jowC1XzL5Kt4zn8MypmjYZgyoPkqZItc2x7Fd6qDSg8t3VOZBTrAkisGd8XF7vwv3WBjLdZux149pR8dMtq/j+XZ+52YHVp7GzL0P4zdwP3jcnBEbsfb28KTJ70/V4HXji1AEUJTph0sC7xOy8MR19Xk16ASQcksxx5eIbvzmofaj2ibOKjePhqtgcCtAAg+VC7/C+q/STRA1sflVrvGnhKfkHlnEmROwgGIKQckbd8OSRJQv36J1G/5kEAgHPX+/DbD6Dg7PkJjSEdfbnTgc932AEAc/Y5Ivaz6JW/2/AgbTTJLonhKV3SpPVFVynsW16CY8vLAABvxSq49n0ZXO7Y8RY6XLwHOkvs8gmhx6nZexx45uR8Reaq1k/GujIP1pV58PhJeVH7/XNptaLNHqWcFYO0RESJSf0ZMhERJZVgUAYAXfu/bvmBHBUpSDusmWYnj4exCff2HnE0Bmk7apgop8Hc/dqy5SgyUZKCAVogMIv31kptmXWqnwXBAEPOsYpmnTlPkUkb3M6+LzTtL1RDgDaS6sXXxr1N574vggFaAMEAQAP3we8irhseoG3gLf0FfvuBuMeSDmwxsuPDZycP1xD4AAJBho+32ZMxrJg+2prYft7cUBcM0AKBrP6ZuyMHvmJpSpZ/6DWvaNm0sepkqm9bOa5lhxMvPVK3+j5N/WqW3JDwPuo3PhN1eUbYHS6i8wi8ZUtRv+YBWbvnyAJIvrYzYWFDgBaIXoJEUgnzxXHDRNJLYviqNzZx/S2K43MoyVsH+5aXIi4PFXqcEqXAaxp+sVgnCHHVr/5hb/zHjTO6WyMua46awERE7QGDtEREbYxF5fbMlphZOJJIk1GcHuWP+9amd7YBfXN5c0pLqfUo31NVbm1n5L6arYo2S8+LYelxIQRTbmOjoIOl1x8g6NQnovLXKieQaSrRcTDudXyVaxRtUkgph0TrIIruyoTWawnhZUpyTI2PM406HB/lApA3zsDBhnLt2a2pUKYSdN5RnXgpgG5ZiZehCQ0IZZrUo0NGHTBlQPy37mepZMwesiee9es+/LO2jmLir6X7wLdRl2cNewT6rL6yNseOaap9/Y7WedEkXLTJqcKp9cwxx1HWJslFaUXnkSat7z78U8w+zr2fJrTtzRUelDnlEe8Cqw5WlZIRkWyqiP+9PrGnNeLkYc0xaSxRW3DddddBEAT06tUr1UOhNMUgLRFRG2Ppdi4sveSBWm8Kg7Rq50lvnFnYpCzWZLosgYBBOEEQ8OAJebhpcBbO6912gs/pqtKlTL9Sm2RGja9GXnfWWDASuSe/C31GVxSevxxZI/6FzOMfRsE5vwRKD6iUOwAA6OILZkliM81aJSjrj4qOw4379SeYgSel78xM5rDf9f8NzZY9/uuIbNw8pO18Fif1jO95WJpwbG1KHc/QMhKRSsn8a1w+emXHXzM3W6VeZpOCcCl+f+szekDQGWHrJ8/Ude35RLW/v35fSwyr2YUHEqNRq1ZQEEeZpGQHaf1NDNJ6NFwYEBO8g8GsF1DikL+2HWx6zd+LQHylJBp0ztDjyfF5uG5QpmJZpPkIiFrSggULIAhC8N+ll14ac52GIGq00khEzYlBWiKiNsg24I+yx77qzc0XJIohPHPmxM5m5GiY/bulZGicPCwWi0HAxJ5WnNmjbQSG0lmVSxlg0XJrqySJisnBskb9G8LRQKwhux8yh96LrOGPwNThRACIWO4gfIK+WER3RVz9NZOU2YR+x6HGxYkGadO4oqDdKx9beIkDi0GHM3tYceVAZeAg3meVDudogwriC2qqTbikVbLiWmrH1QyDgB7Zid1xkK2Smau1Frgqqfm/DwVj5Mn3dLauAABr32uBkNrWkq9etX9bCdIesccRpFVpi6eWfbpl0oqukph9JJ8dkj/+Mh5mg4DSsCBtR6setjjq7psSTKLvmmnAOb1t6BhWBzvapGJEqfLZZ59hw4YNqR4GUVTpc5ZMRERJY8gNmyHY74K/fg+8letweLqAw9MFOHd/3CJjWVQsDxI1dfb1ZLOqTE7SFFoCJGKSJzRpbypVgrTvbKqDM0akVrQfhOST190z5AyMuo4QIZM2fII+APDV7kD1L9ejZumf4XeWyvet8QRfipHh561YHfwMl88cBfum5xR9/I7i4M/ug7M07TfecTQnvyjhsaVVuHR2Ka75oVQWjPOLkuI22mj1T7VaVeLGpbNLY3dsBrGOB/FkwwHxZSuGjuH7PY4m1bMNpZZJa2hChq/aBGGuJmTqSSoXN5rCdfAHVC26EvXrnwqWGxGMUe7SOBqY1du6wNz13Jjbr/n1Johe9QBuqkiShIUHnXhxTQ3m7nNC0vC9djieIK3K5vLjKErblPdHKE/JL6icey7EkItfzenI+xa4D0UujXBYpcxHIJNWfszuYNMjnnn1DtTFf9wI/USHH6eYSUvpSJIkPPzwwykdw/Tp0yFJEvbu3ZvScVD6SrNTZSIiSgadpQMEs3yGYG/lGpR/Oyz4uHrR5Ypbv5PtiN2nmKhHnw6paSGaknWmRksNuN8OJT7hDQHzVCZfq3CJmLYxehDDF5ZFKxgyobN2jr4zjZm0kuhH5Y9nwrlzOhxbX0H1oitky0XnYWjhLVsWcZnotaN85sjGvhWr1Ps5A8EEX+0OTftUHUcTZzJvimmb6rDxaH1Etx+4aW7jxGhqdQ4jZcOrHWrUAj8un4R/r6xR34aG8TZVrGCSNc4rWwfq/HFP2rPwoAvTNycvCKj2O4knYBROrSZthcrFGs2aUGs2nK96K6rmnQPX7o9Qt/pe2Dc9DwCQPOrvKQAQQrJnbf1v0rSf2mW3N22gSbauzINX1tXh10NuvLWxDks1TOQWT5BW7bcbqdaxGlcSMmn9jiOomDMR7uLvm7yteFTOOVO1LrgoSXhyufJ9ZdYrM2k72PTNfrt26ObD72hgkJbSTWFhIQDgq6++wpo1ynr+ROmCQVoiojZIEARFhqBj6yuKfrWr/tGs4/hVJRjpSbMZf8PrW2o1OMItyGa9EDOw89La2oT2SQGdM9SzqRYXR7+13x9W70+f3TfmSaxgUC9foc/oLnvsLfsVfvv+4GPP4Z9kM7JrnYjLVxX5Njznrvc1bcNvD2TSug8mHlho7mNDND/tl/8eQ29bVgvSRrowIkAZZFWbuCjarOYtcbiKNcFOpIl5oimOIxgGAB9ubVqANvwzqZZJqzbJmVa5KiVycpoQ9RWMWQmvG65u3aPyx6v+Dkn0QfLZI64jhgRwzd1iZ9ICgHPnO4kNsJm8tl4+KeG0TbEnKazWOMEjAHS2KY/zXTK0l8uoSCCjPJx983+AhEvGNHXfLyjaSh1+Re1ZIFD6Izwo3UHl9Uum8I+4IpPWm15/6xHdfvvtMJsDd0c99NBDKR4NUWQM0hIRtVGCQX6rZWgAqYG35JdmHYNa1syQgsgzr6fCMTnx10g06wVcrlLvEgB0goDMJNW5JXWJ1hqUwm4X1plyY64j6IzIGHSHol1n6SB7HF7eAABEd2MGqNaJisLLMcj2Ub9H0zYaMmlFT7Wm/uo7S01gIhavStTUqIuUSSsoMu9qVQIHe2oj3/qe7LqWamIFaROpEmCPsx5knadpz/PsXvKLGfFkPGphUPkdq00mppWp8ISmDEfGV71Z0RarrmjoRVRBZ4Q+e0DSxtNSqsICrlreQ1pL/fTI0qNIJciYY9bhlK4WTdvYUd30khbuw5HLDsQmIGf8uwmv7aveomiLFOT2hDXrBaDQ2ryn+Wf2sEIXcpEzvP5trPJDRC2te/fuuOWWWwAAs2bNwvLly+PehiiK+Pnnn3HXXXdh3LhxKCwshNFoRG5uLoYNG4a77roL+/crz7dCNUxM1qtXL1n7o48+GpywbMeO2HdCnXXWWRAEAZ07d4bfr35R6uuvv8Yf/vAH9OjRAxaLBbm5uRg1ahT++c9/oqqqSvPzppbFIC0RURulmPBI5eRIFkRqBmrBhz658c/s3Zyi1Xs8s4fyZPCkLmb8++Q89I3yPNRuzaXkSbTWYHhmm2CwaVova/R/NGxc+Qey6CprXKxxoiIxwsRB8QjWpG2ByZFaWnjsUUD0IGZ4LdNalSBHXXiEI0RL5ILFCtImUsc7WVlsE3tYccVA9dqq2SYBk/vY8NhJeTi7l/yzpFYneESHpl2gu7CPfB9qWdGaCck7Rqtm24vRg7S2fjfIHmccOzVp42nNxnY246bBWXj65PyIfW49Pgv/GJ2De8fk4F/j8vB/Q7Nw2YAMRTb3gTofXE0MFIr24tidQuRO+Bw5499F9thXUPi71bD1vSbhfUt+ZVmfmghB2iqX/FhfZNXLAqih8pIwcev9Y3JxzSD5hWrWpKXW4N5774XVGjhmP/jgg3Gv/+ijj+KMM87Ac889h19//RUVFRXw+XyoqanBunXr8Nxzz+HYY4/FV199Ffe2r7iisUzWRx99FLVvSUkJfvopcBHpsssug14vP/5VVVXhjDPOwEUXXYTPP/8cBw4cgNvtRk1NDVatWoVHHnkEAwcOxNKlS+MeJzU/nkUSEbVVuvAgYsv/wayWzZVmJWmhE4SIt0tP7Kk8+T6pswWdYtxyqTbJTbj6KIEhii7RWoPKIG2UiX1C+wlCzICu6FFmJIQGabVn0ka+RVprhVT/0QluJG/s249bm/BMWoMOUUtWKIK0Kp+7aEHalhA7SBv/QTPeTNpILuyrnLUdAMZ1MePNiUW4YmAm+ucpL1ip3U2QwNOQCX8dmhJ/k5KYKa52bJD8nqjr6MyF8m2YcpI2nnQWK65+54gcTOxpjRhgBALf2cM7mDGsyIw+uUac1t2Ki/pm4OmT82UXbCQAu2ualk0rukri6m/MGwJb32uQMfBWGAuGBcYbq+55pH2rfKdEyqSt9WgvdaBWOkRNtPkYhxaZFL8jljug1qBz58649dZbAQBz5szBL7/Ed0ehz+dD586d8ac//Qnvv/8+lixZglWrVuHrr7/GPffcg8zMTDgcDlxxxRXYskWZDR9N3759ccIJgbs8YgVpP/nkk2D27JVXXilb5na7ceaZZ+Lnn3+GXq/H1VdfjRkzZmDp0qVYvHgxnnjiCRQUFKC0tBTnnnsu9u3bF9c4qfnFf48nERG1CuGZtP76var9PGXLYSoa0yxj2FypnJwlzWK0AAInF2qBEptKCpuWQEOWhlt9jzj86MuM24REy6Qtc/gVt8lKkgT75hdQv/4JWbvWIK0WavVfK+eeFfd2RGcgKOA6MBNVP10QbNdn9tZc7sBfsxXl341LaZBWdFeidtlf4K1cDWPBSGSPeRE6c17C27t0trKcBBC51EGD8CDtu5vrcUInMwqsje+R8ABHOEmSmnUCnli3BSdSNtuuMUBS7fIraouGyrfokKMS1FGrORtKLZM2drXu6MI3qVb6QitfjfaT55KPOyFr5L9g63cDXAdmoeqn3wEATF0mIveUDyHolUHa0s97Rd1m+MSeOoN6+ZxwkuiFoLgAmz5cPgkzttVjX60Pp3S14LTuluBnp9YjYnVp9OB1U5j1AnpkGWTlS3ZUezEogRJLzn1fonr+xXGvJxizlW2mHEDjxJGhRFeFom1dmbbXT+3CSgO/xpITnTL0OFCn/W6M8AkOWe4gcZIkQnQrf/9tlc5cIJtMsbn9/e9/x+uvvw673Y6HHnoIP//8s+Z1b7rpJjz88MMwGuXH4REjRmDy5MmYOnUqxo4di+LiYvzrX//C++9rm0ugwZVXXolly5Zh+/btWLlyJUaNGqXaryGI279/f0WfRx99FKtXr0Zubi7mzZuHkSNHypaPHz8eV155JU488UQcPnwY9913Hz788MO4xknNi0FaIqI2StBrOzGp+ukCdLj0UNL/QJIinAikY5A2UiatReU+ai31IbWUO5i33xm1ZAJFFi2T9pV1tXj4RHkw0HNoLupW/FXRN1lBWkn0wX3gm6Rsy7nzHWSNfFIWoAW016Nt4C39NSnjSVTt8jvg3P0BgKM1O3VG5I6bFnO9XdXKCzvRxIgVqma1v7q+Fg+c0PgeiZVJ6/JLEY8RyRArM1yfQAqq1luN39pYhzVRAj86QVCdoCvW666WSduk8gRIbiat6Dyiva+rBDVLboQ+o3swQAsEjiu1S6eqZ9nHKHegs8gzaSV/5FrUoeybX0Tm4Ls09U2Fmbvt+GFv4Db9LZVe9M4xoHdO4HvuHQ0TizVV31yjPEhbFX8mrd9+MKEALaA+IZ3OkIlECs+El6OSJAmrNAa5owVptX5uOtriC9Lawj7zLHeQONFdgdKPO8Tu2EZ0uKwUektRy+2vQwfcdtttePrppzF//nzMnz8fp512mqZ1w+vIhuvWrRvuvvtu3HHHHfj222/jvsh76aWX4s4774Tf78eHH36oGqTdtWsXli1bBkCZRVtfX4///e9/AIDHHntMEaBt0LNnTzz44IP405/+hM8++wxvvPEGMjKSl7hATcMUHiKitkpjto3oKoFoP5j03ddHyORq7sksEpFvUT+hUYuNaPlbS8us46am3vvbjkXLpN2hEuRzbH9Tta+gV6klGYkQ9h4RG/fjLUteTS9j0Ylw7novadtrikgXWrRw7vlY/njH25rWW10aPbgVLtYI1Y43G8rl75ECS/TPq9as1ETFui3YahAQb9K9Q2O5Ay2ZjfkWveLiVJfM6HkeuWblMbXQ2rTZ5i1hgfL6BEs6iN5oJUUiq5wzSdHm2vtJ/Bd7BINiHVOH8ZpW9ZavjG9fzaTSpQzemfXA5zvkweb3tzTW2N4VYyKvZFwI6ZMrf18etscfpHXsfCexnQt61YC96FK/CyAWY+5g2eNI9WjVdLA1HjB6ZMk/d2f3smJ8F3PMbZzTS73ET1GEv+HCL8xUOJlJS+nr7rvvRlZW4KJKIrVpG9TW1mLPnj3YtGkTNm7ciI0bN8Jms8mWxaNDhw6YOHEigEBJA1FUfo5CSyGE1rEFgIULF6KmpgYAcMkll0Td1ymnnAIA8Hq9WLVqVVzjpOaVfmfKRESUFIKg/WYJrZMaxUPtBPrMHhZYEpkFp5md21sZrLtuUKZqkFZLuCZfQyDa0wKzxrdFkiRFreHpFZUziEe8tTk88BpF+C3NoZlvyf38SBFLk4Qz5A+D7djbk7jvsJF4ahJfWYwvI7aBO86XslOUjDEAOKVb7JngY9V8TXSiOq0iZdLqBOD/hmbBoBNwTm9tk9w1sGscc7TD0CMn5gIIBEfP6dV4jOxk02NMp+hBHotBwHkhx1WrQcAZKhMxxqMwLJhe5kzsc+er3tikcYSLr76tgOxRzygyq/SZPWDu/jtZm1EtcCs1rcZqsqxRCe53UanVXupo/B2FH5fDJSNIG16LtcIVf6BQclfG7qRTvv8Dt2wrn0NDjfBo1H7XOpu8lm08pbNDM2lvHJwVfG17ZBlwSjcLLuqboVrGJNRxBUbFZH86AZjSX/2iROewCzdVbpElDyhtFRQU4I477gAALFmyBD/++KPmdfft24epU6eiV69eyMnJwTHHHIPBgwdjyJAhGDJkCG655ZZg3/Ly+CdobsiOPXz4sGophoYg7QknnIC+ffvKlq1c2Xghr3PnzoE5FSL8Gzy48ULQkSPa7y6h5sdyB0REbZUunkN88oMQ9Sp1Hm8eoqzXlg6GdzDjldMLsL7cgxKHH+O6WNA9y6B6gqElubAgQmZuKHcTb/1tr7xi7HeryyfJb72MNGlXHCU+BGMGEBKLkUKy8QSVE3Yt8ifNg3PPx3DueCtkw35N2xOMOSj83WoIggBbvxvg3PUe7Jv+E3UdS8/fw7XvS83jE91l0JlzNfePRfK5IBiiB+rizRi9fGD0Wp6RsuRDb0GMdVtuohPVaRV+0WFcFzPO621DhlEITlJ4+YAMjOtiwfd7HJh/MHZQsCmT9tgMAp45JV+W+XrVsZk4uasFtR4J/fMMmi62XX1sJk7pakGlS0TfPKOmCRWjCa81XeeR4PKJcV/481Wua9I4wvnrdsfsIxizUHDWfAjGTBhyBqj2yTv9G3hLl8BbtR7mbufBkNkT1YuvlWXWSxonIGxuakFatXdc6NdcrK+8JiTuB4VnxTt9EhxeEbZY9TlCaJnoq/D85Sj/9nhZm6CPcGxTCax3vLwCks8J18FZMBWOgbFgOGp+/SMc299o7CTKX+N4LuyGBqsH5pvw/Kn5KHeK6JltgEkvoFuWDs+dko/Ddj98ooR/Lq1WbEMQBNw9Kgd7anzIMAqo90rIMukillLoZNNDgPx9cKjejz656XdhnggA/vrXv+Lll19GdXU1Hn74YZx1Vux5BL7//ntccsklcDi0lahxOp1xj+vCCy+EzWaDw+HAhx9+iDPPPDO4bPXq1di6dSsAZakDACgtTSxzX+vzoZbBIC0RUVsVRyat1pnn4xE+u3iexhmFU6XAqsdp3eUZtYnm9ajdPt0tU4+D9Y1ZRcykTYyWrEaPX4ItpNpHpMBGPHWYw29PlnyNQVpJjH8yHFOn02Ducgb8jmJZkFaS/BA1TPhl7jopGGQ05h8Pb8WQmOvoLPHVuBNd5UB2v7jWib69Uugze0TtY9JS9DlE1xi33Ufilxon5Ao/VoWLlrmdDOHbtxl06BNWr1oQBPTMNmBCd4umIG2s5wRELmcxuY9NUZpAEAT0yomvhnbDOr1y4lotoiKVcgllThHds+L7bvFWRQ/S6qydIcYx0VN4vWhj4Qnwli+TtQk6M4yF6rUBg30EAaaO42Hq2JhVqc/uL++UBkFanyhhQ7nymKdWczi0JVaQNhnPTO0CablLRI84grRqk3+F0pkLYVA5LopaMnCD28gHzEDGgD8G2/SZvWR9JL/8NY5norzwoHSeRY+8sNcmy6SLWT9fJwiKY1EkJr2ADjY9SkKypwNBWtbej5fOXIAOlyUWbGuNdGETKbaU3Nxc/PWvf8VDDz2EZcuWYdasWTj//PMj9i8vL8cVV1wBh8OBzMxM3HXXXTjrrLPQp08f5OTkwGQKZJ7//PPPOOOMMwAkVjYqMzMTkydPxowZM/Dll1/i1VdfhcUSuAjUkEWr1+tx6aWXKtb1+xs/f6tXr1ZMcBZJt27d4h4nNR8GaYmI2ighzkxav7MUNb/eAl/Velj7XY/MoQ+o3ronShJmbLVjYbFLViOtyKqDQScgwyjgxsFZ+GyHvO5fhspEMulO/fnHXi9fJZjgDgvKhj9uKatK3PhgSz0kAJcNyMDYzsrsH58oYfqmeszd35gBcOvQLEzoriwLYd/2Omp/+z9ZW864t2Hrd33Sxw4Au2ti30Yfmvkoemrgr92m3jGecgdhQdrqxVehevFVAABT59M1byfoaIkEIWwMvorV8FWs1jKisIexgxCCOV/r6AAoJ64J5fFLeG19LZYcaqwhO21SITIbggN6CxB2G7i3erMsSCtJEurXPQrH9jehz+yJ3HHvYG9tR83jyzQKyDYldlzxiYBBB3j9EmLFMxsuDDh3fYi6dY9CZylCzomvw5h3XEL7BoBfil34Yocdh+zKW/bDa6+G0poRuLHCi80Vnqgz20e6fTpdLx+Z9AJyzDrZ906pw4/uWZG/63z1+1Dzy/XwlP2meD9GIvniyygKrzlq6nSKIkgLjRN5hgu/kOQ+8A0qvj8F2WNegLFgBIDAxIVV8y8JTl6YfcJ/Yet3PWqW3wHP4fkwd52E7FHPxcxiBwKfyc932LHwoAtlThE6ofE7r3NGIFNS7T0LQPVzFPp9Get91ZQa2A2MegE5JgE1IXfyVDj9yDHpcMu8xuPZvWNy8Nl2O1w+CVcdm4nhHULuXpCif8eI3loIBuV3oeSrV+kdB538PeI+OEv2OMESzC2qa6Y8SLu31ovtG71YV+bB4AIjrj0uC+Y4L8S1R4Kga9GJtNqzO+64Ay+++CIqKirw8MMPRw3Sfv7556iurgYAfPXVV7IM11CVldov2ERy5ZVXYsaMGaitrcWsWbNwySWXQBRFfPxxoN7/xIkT0aGD8sJ7QUFjwLuoqIjB11YqvdOaiIgocXFm0to3PAn3gW/gr9+D+jUPwVv2m2rXtaUefLvboZjEoswp4rDdj53VPjzyWxV2hk0SkhlHJku6SPRUIkt1ZnP5Y3cKZj72iRJeWlOLQ3Y/Dtv9eHltrWpm6i/FLlmAFgBeW1+H6rDJYnz1+xQBWgCoWXIDRE9tcgd/1KvrY2eZ7qppfO85tv4vcscmZNKG8hxW1gyLRfTWxj2GsBGFPYy9HZ0pziCtK3KQ9se9TlmAFgA+3x5yYUYlu7h+7UOyx56Sxahf+whERzG8pb+i+rc/47fD2icO65ppiGvW5FC+owEhtdqtuWFZ/y6fBNFVjuol18Nfux3e0iWoXTY1of0CQL1HxCvraiMGu6LV5syIo27nE8uro9YB/Xl//Ldhplr4pEWhNU/V1K34GzxH5msO0ALyetOJUJ0ELNEApMrn2lOyGFULLw/eIeAu/iEYoAWA2mW3oX7T83BufxP+up1wbH0Fzn2fadrd5kovPt/hQNnRSZ9Cg6yH7f6I71lAPZM29P0XKwibrG/EAquyLu2/V1bL2p5cXoOd1T4crPfjpTW1srGHZ7AqJHDnhEyEsgiCSiBf9DYGflvD3TddMuSv/aw9TszZ50SJw4+fDriwuDie+s1EzS8rKwt33303gEDm6VdffRWx76ZNmwAA+fn5EQO0gLwubKLOOussFBYWAmjMnl24cCGKi4sBqJc6AIDhw4cHf16yZEmTx0Gp0frOmImISJO4ZpyWJNg3vyBrql1xl2rXfXWxJy5Rm/zH1gozadVKHfbPi33rkCAIipOV8AmM4pioOWnKnX5ZlqlPBA7WK3+f26qUmUQSgNl75EEd155PIu7LFRI0SKZYk88E+jT+XLf6/sgdkxSkTYQxf1hgu8boNVUjCZ9FPDwjV40hp3/MPqEkb+RAu9px4Pu9gfeHJHrVb8vWyT877v1fyx7XlKyIa3ydM7RlQodPfgM01mw9EPY89IJKXUu/CNf+b2SToXmOzIckJjZx1cKDrqgTdnVQycRvkBHHxS6fiGCwTU1phIm3TuycWI3llhBeDzP89xfOU7Ys6nJVok9TXVI1gjk/+NmWbTKO8gmhpAgT8Plrt8NbHvi81K36h2J5/ZoHZI9rFl+jaX9fht0BEw+12/FrQzJaW6ImLQBFqY5Sh19x0TiUwydhY2j5hhiTHmaPDVz4yxgif92zRj6t2t/a7ybZ45wxL6r209uUGW/+msa7QLSWO7g0wsReLSFW+Zk3N8S+yErU0m677bZgVurDDz8c8YKSzxc4jrhcLoii+nerw+HA+++/3+QxGQwGTJkyBQDw3Xffobq6OhistdlsuPDCC1XXO/PMM2GzBf4+fOmll5JyhwK1PAZpiYjaKL21k+a+kko1OH/dLtW+atkyWkS7hTdd6QQB/zc0Cw13513SLyNmDbcG1wzKDGbEndzVgj458pOXVGTFqP3q1P5+i3QyqKjNGWWmcdFVFs/QNNPyqvk1v0dTE6QVzAXIGHQnAMDU4eSEtpEx6C9hG439XAxZkevLCsYc6MPqLEarteuP8od/pNvFRWdJWD95QMiH+G4JL7Bq+/39QSVoUXV01vftYRckemUbkGlSZtKqZVf6HQe1DlXGE+X92TfXgFGdIr8OZu0VOgBED2KqDeOsntbgZGXpqHe2PNC/uyZ6kFby1iSwFwlZIx5PYD1A0Nti1l2OaySeyON3H5gJQPm5aopdMV7PaGpVJgsFGi+sxboumaxYQnggvyRGtjUg/16JdtwzFoyEtVegDmTGwNuCNYMNeUNg7Xut6joZg26HztYFAGDqeErEfuauykmLJLHxzgIt5Q66ZOgxsaeyFEMs94ySF45+9MS8uLcBAD2y0/fYQRRJRkYG/v73vwMANmzYgO+++061X79+gb+RHA4HPv30U8Vyv9+Pm266CYcOHUrKuBqyZd1uNz766CN88cUXAIDJkycjM1P9An9ubi5uu+02AMCvv/6KO++8M2JAGQBKSkrw1ltvRVxOqcEjKRFRG6WzxZEJpHJ2FGnyokTrohkSvC051U7rbsWojmb4JeVt0NEM72DG/04vgNsvIc+sw7qwiVZSVZM2nNoo7BFmhhfDeuuiXAiIt66jZmFDu39MLl5bX4sKV+MbU2slCS3Zp8G+cQZpC3+3BoacAfA7DwOiN3CS7nfDb98PQ+5xEPSBbEXBFH2SGjX6zN4w5stnFo8VpLUecxUES+TJOTpcshvVv9wAf+2OYFu02379UY4DkYO0R2SPBZM8EOAX4ptgJk9jxPKYHCNyzTpUh6SvV7n9AIyKrPEB+UZUhGWfBkqCKI9f/rrdMGT2jGvMAKCLcih87KQ86KIcK9XKO3S06XD78Bzcv6RKsexAnQ+jOqpnxob/Dkd3NOGGwVmRB5cGjsmVn7rsr/PB65dgVKlzKfk9kDRMwqfG1u8G6KydUDXvvLjWa/hcJ4voqY64zHXgW2SNeByCMQuIUj86Hs3xvXSw3o8eWYaYQdhk3VwSHqQ9EqVEQwN96IcyLJPW1PEU5E/8EaK7DDprJwhH7wjQZ3RF0eT18DsOQ2/rolquAACMeUPQ4fc74HeVQZ/RI2KJFsFgg85cKKsFLoWU6fCG/W66Z+nxwAl58PgliJIEQRBQaNHJn4tGIzua8c6kQuyq8aFfrgEWtduINOiRZYCA9K1rTRTJrbfeimeffRaHDx9Gebn68XTKlCm477774Ha7cf3112Pt2rWYOHEicnJysGnTJrz88stYtWoVxo0bl5RSAyeddBJ69+6NPXv24P777w/Ww41U6qDBo48+ioULF2LZsmV48cUXsWDBAtx8880YNmwYMjIyUFVVhU2bNmHevHn4/vvvMWTIENx0001Rt0kti0FaIqI2Sm/tor2zWkakX71eYTwzDIeKlj2W7rRmz4bLMOqQcTTuFD5ZRiqCtFp/BY5IQdrws+goM42HZ0kmS/jIDLrASXlokFZzJm0zljswFgwDABiyjglpzILOUijfrqCDYMiI6/UyFo5SGWD0gKVgzoPOFCk7SoBgylMGGUQ3pKMn/w0k0Q/J74yaSSt6lMFCIPCeEL126IyB11JnDgvSIr4gbb5F+++vk00vD9K6RIiShK2V8kB0/zwj1nrlbU6/BNGrfE7+ut1A59PiGjMQOWMwz6yLGqCNRICAvrlGZJsERTZjpExaSZJkpU8A5W3i6ah3WKaeXwoEakNnkJd8LggGC0R30yZv0SdQ8kCIUG80UdEygX1VG+Cr2xMI0iZIlKTge84nSpq/I+Kxo8qLHlmGFit30DEj/kza0Bt9wjNp9Rk9IBgs0Bu6K9YT9GYYsnrF3L5gsGm7oBP2/pH8jZm04X9DGXVCXBeOY7EZdRhSmNgEdw1MegFdMvUork+sFAxRqlitVtx3332YOjVyvflu3brh1VdfxU033QSXy4Wnn34aTz8tL3Ny6aWX4uabb45aszYeV1xxBZ544olggLawsBBnnaXMug9lNpsxd+5cXHfddfjyyy+xbt26YHatmuzs+JMFqHkxSEtE1EbFk0lb/u0w1XZf/T7ZiYUoSfhuT2KTzbSGSS+aU3iQtimvh69mO8q+GhB8nH/WfJg7T4jYf/kRN55bpX6yv7LELauz6xMlbFWpSQs0ZjpJkoS6FX+DffPzEffp2vcFnDvfheRzwNTxZHjLl0GSROSc+Cqsvf4Q+cnFUK8SQNaHnadqnpMtriCtLXanBAmGzLiCtIa84xVtQozSDYIxC4LOAMGUCyksO08w2CAIAgSdPAvQX78PFd+dBG/5Slh6T4E+sxfs6/8FAFhbuA8QlAGpw9OjBxlFVwl0xkDgOjyg5Y9nskPEF6TNC+tb5Rbx3KoaRf3sAXlGbK2Uv/9dHp9i0jMA8Nfv0T5YBC4evLWxDj8fUJ88J/x9rFXDBZ9csw61HvkTOlCnDJasK3PjX8uVx4MEEvBanM2oQ+cMPQ6HZEfurvGhm/MXVP54enJ3lkhWbNIzaaOXayj74pjoy3W98G72mzhoHArMLoVeACZ0s+CmIVlYU+rBGxvq4PVLuPa4TPTNje8iiVZvbKjD/ANOxUWBcMn6C6FTWCatokyPin8urca9o3MwrINZWZNW1zyvixpFkN/vxuYKD/63rhblYRn+pjT9wPbMNjBIS63SzTffjH//+984cOBAxD7XX389BgwYgGeeeQZLlixBdXU1CgsLcfzxx+P666/HlClTsGDBgqSN6corr8QTTzwRfDxlyhQYDLH/VsrKysIXX3yBX375Be+++y4WL16MQ4cOwel0Ijs7G3369MGYMWNw3nnnYdKkSUkbLyVH2gZpd+3ahfLycvTq1QsdO3ZM9XCIiFodnaVDk7dRv+5x5I57M/h4c0X0CTWiCQ9StjfhJ1ReUZ7FFI/aFX+TPa788TR0vi5yPcC3Nka+5febXQ5cNiAjOI61ZZFvcW/IovaWLY0aoAUgu23efXBW8Oea326FpfvkiLeGRlOjMtuaIChLaWium5zCicNk2zZmAi7tdSUVpQ6AmM9FOFpKQGcugF8RpD363MJ+J85d7wV/du3+SLbMpxKg1UJ0HgEasovDUufEuDNptWd+hmecbarwKCYTKrLqkG/Rwxp2rKqv3ae6TV/dbs37B4CNFZ6IAVoA0CdYEqbh0JJr1mF/WFC2uN4HvyjJboGetrEeahLdf0s7JscgC9LuqfVi2K7bE9uYzgyE1P0MFX7RQotgkE1vAfxJmMk+St1vLeZm3BEI0B7ll4CfDrgwoqMZb6yvRc3RzOtpG+vxx6HNV+piR5SJuxoka4Kb8In/tHpyRQ0+PrdIkUkr6JqWXRqP8HIZkt+FdzfXKwK0AGBM08T3nlkG/Ar1zxRRS5swYYLmY4vZbMb+/ftj9jvppJPw1VdfJbzP6dOnY/r06ZrGdOyxxzbp2Dh+/HiMHz8+4fUpNVp84rDS0lK88soreOWVV1BTo7w6vHPnTowcORL9+/fHSSedhK5du+Liiy9GVZX6rXNERKRO0DX9OpyveqPs8SfbE7+FfWwazxjeEtSC1Ilm04YGPRtE+iOuwimqBjdDhWYaHaqPfDLd8AxqV/w19iAjkNwV8IUEcOOhdttqB6tekYEYrV5qqFjZp6F0ppzYnRIUbx1LfVYflbboGXXGorEAAkHacA11LyOXQ5BrSigltEZoeFkEhy6+1zjLpD2oWBB2K7/abO/HFwWCMYawz6rXo15jV/LWat4/ELs2Zgebtvfjeb3lEwNdPSgwgchlA5QTifglZWmVSLd/t5braOEzyNe4fIrvKs1ENzKHPSJryhn3DgAkVEagIUibO/5dWXvDRIHxyhz6QELrNVhuuVy1/ZmVNcEALRB4jxyobVpAOF5DC+UXZf40LDm33CZSk7WBR0RqM2nD63Q7D2FvhN+LMU0zaTtnpGn0mIiolWjxIO2XX36J2267DS+++CJycuR/jLvdbpxzzjlYu3YtJEmCJEkQRRFff/01Jk+e3NJDJSJq9RpONkOZu56jef3wmn5NuZo7skM7D9IalCdU4bdaN0mErC21CXXChQZpPVECnA0TijV5NvEImWuxqL39Cqx6RQagL6SjYIxy4q/TfjJp7hbfBEJxiVJPVi2DV63upSH3uIjbMHU+HeYuZwBQD9JmHBfIzNZn9Y05VAAQkfhJeGiNRb/joGxZjS7yRHTh7hieHVcWehcNgYMp/QNBzvCtRj7qxXc8jJbgnWfWqQZZ1Zzb2xaszTqmkzl4bO2Ta1S9GBb6kY52DNe1+FlBYqxhx1KnJ3L2fyw6WxfY+v8RxqITAQQ+55ZelwSWmQugNmFcNA3Zt5YeF8LSM7AdQ97xsA36S0LjM3U8GdY+18jHbClKaFvp5nfHZOCYHOX7OJX8oqTMpE3gro9EGbLlx2Bf9faIfdM1SJthbCUHEiKiNNXi5Q7mzJkDQRBw0UUXKZZNnz4du3btgiAIuOCCC3DGGWdg3rx5mDlzJpYsWYJPPvkEl156aUsPmYio1bL1uw7WPldBdFcAou/o7MF5ODxdBy0BBiksSGtKMNVqYL5RU7CwLVPLpE1k8jBJjDARkN8JwWBVXRaLKyRIGz6DdKh9RzN6RHdFQvtpEG3G8miksPdsxtFgTfhE1LJM2qhlAOIod5DkCYG0jsOQNxTest/CxqIMZqjOGC7o0fHyClkWsKCSEWztNSWwr+x+mkYbbYIvEQJ00cKaIQF6v11e961WJy9vNSjfiIfG5sIvNd7S7/JJMOuFuLPlumZGD9J2ydAjJ9IkPJECm3FetIrW+9UzCiLO+h6u0KrHv8YHMu7CA9XXD8rE0sPyiyChw4w2htZS7sASdix1+RLPALUNuBV6WycUnLsEgVdHCP4eBJ0egjkfUjzHu6OfTUFvQt5pn0ESfU26q0XQGZB78rvIGf8OIPoAQQ+/fX/MWrSJiHYDwrRJhXhxdS3Wl0cPiJ/azYIbjsvEy2trsbIket9OGXr8a1xj5qjW939z8omAFJ5JK7RcJq0hu7/ssTtKSRVTmiashl9EISKi+LT4pa5t27YBAMaOHatY9tFHgXpnp59+Or7++mtMnToV33zzDc4880xIkoSPP/64RcdKRNQWCDoD9NaO0Gd0Dc6mLhi1ZWyJ7nKI3sYSB2qBxtBJpyIJP6luj9SSS7ZUelDrESF6aoKvs+i1KyaL8YkS6r2B2eira8tRo1PWG5Z8jpCfXRDd1ZrH5vRJqPWI8ImSYgbpUFVuEQfrfKjzNe0ar99RDK9fQr1HhCRJ8NXtlpVAcPlEuHzi0edRGcz+C8/ybYjTGcICdg1xZkmSIHnV628CiKsmbbOKMg61wKnWGomCwaYs0yAqAyf6jG6BfeX0VyxTI0bJ/PUhejDbV7MVoqcWHr+EOnuVLGi4zzBC1jfPooMgCDDoBOiEwD+bUZfQ7cxFVr0imB8q+iYjfSYa20WvHaK3DhVOPw7W+VDi8Afft5IkodThx4G6KKVE4gxQNbweau3hGj7SoqcWYpTPQ5om5ilYwoJALm/iQVrD0TIhgiBAEHSK34Nq1mqUCe6EsGXJKDsU2K4Ogt4EQaeHTmMZBjHO07xomd6ZRh0cvth1ZAotOlgMOgwpjH2MMugaXnchLQK0AOB0lCvuSmnJTFp92PG+rrY4Yt90zaS1GeMbl+itizlBHhFRe9LimbRlZWUAgG7dusnanU4nli5dCkEQcMstt8iW3XDDDZg3bx5Wr17dYuMkImrLBEOmrDZkNCUf5SJ/0o8wdz4dtSr3wg/IM2J7VfQJxdr7pGFAIHgiQB7ueWVdHYA6DPT8jFtdt8Ha6w9w7nofks+BzOH/RNbxD+KI3YenVtSETJSjAwo2IEMsx+MVxwVvxhWdJdBndIOn5BdUzb8YoqsU1n43wT/i1Zhje+DXQG3QIqtOUbsz3N8WVQKFWzDeOQ2X1N8X78sAANj42zN4e9dpqPKaMMz1Da6p+2Mw+3LtqfV4f4sdOkj4g+ufGFP7Kiy9pqBy2Pt4Ylm1bDsN5/Xhby9fY1QqxsQ7cbwvw7OrkilKgCL8pB0AoHUiG0lZT0PyOZW7P1oCQWfrqmnCo2iZtB7BCpOk3EeD+jUPYfOGL/F24deoNs3GyKwvMKXuLryV8x52mE6W9c2LlNmaAL1OQCebHgcjzDoeGtwM/22s9fSHS8iERZIHON3FPwAAnLs+RNmvf8a0zNew1XR6cHn3LD3uGJ6D/66txZ4WqvepFrfxihLq1j6K+rWPQDRkA3nqt1BrnW8v1cIv+jkc5QlvS58ZPSNVb+kAf81WWZshpz981ZsT3mdTaa2V6xLiq6kbekeFmmgXGRo0BFu1BGnTMch41xIHHq74GbIiMy1YkzY0k3al+WJ8kPFKxL7p+PoBgDXa1bAwzj2fombJjZB8dmQOewRZwx5qxpEREbUOLZ5CUl1dHdhxWOGrpUuXwuv1QhAEnHnmmbJlvXv3BhCYdIyIiJpOn9lLe2fJh7qV9wBQn2xHJwAdbdEDe+Ezq7dXkU6Bt5pOh9tth2Pba5B8dgAS6tc+CtFVjtl7nLKZzBvYdYXYZxgZfOzY/gYAoG7NgxBdge9L5463sOfQTs3jK3OK2FqpLRj5i/VGlOt6at52qJ+sU1HlDZzEr7VMxg5jIDjngQUzttbCLwFeScCXxr/CDz1cez/FV5uUM+7WHp34JjyTtiHhK2oWLeKb+EnyRw48NpWvcn3EZYacAYo2zZm0KvV4dZZCZb+G27sFHQwa6tKKUYK0XiF2WYjvMu5BtT9QmmOV5WLMyrhfEaAFgFxLcu/n7ZIZOTchVrxjtVlZpgsIZMnWrrwbW/QnyQK0AHCgzo9Hlla1WIAWUI/3ry6uQP26RwFIR48v6iqcySyS3XzCM2k9grJus1b6rN5Rl6tl0hpyjo2yRvNHurVONOgQcuPa7roy9VrhDTG3bFPs7/GGz5GWGtDpWLrUI9iw0nKxrE1o0XIHgeOvBODbjOgBy0TLTzU3m8ZyB5Ikonb5HZB89QAk1K97FH4nz/WJiFr86zEzM3CL7ZEjR2TtCxYsAAAMGjQIeXnymS2NxsCXo8HQ4om/RERtUtbIp+Lq761YBUkSMbhAebLSNVOPPx8ffVbm8V2bs55n23DEMFDeIPngPjQPc/ZFDg4usP4x+HNDkNZzZIGsT93+WUkbY7hKffeE1ltrkU8G+n1G4CJAsWEw3GLjyb1Ll43ao5NJraiO/B4LP1f1N9xmHiP7VWs2ORAhozWCnHFva+4bGEiE2bsLRsHc9f/ZO+8wKaqsjb9V1TlMTsAMOeeco2AgKogJAxgx5/Ctri6ucXXX1cWVYEKMBHUVxwCiKCIISM45D2ly6Fz1/dF0T1dX6OqenpkeOL/n4aH73lu37nRXVVe999z3jAGjr7Ys4JLbB30vw7F1+5t4HAPflrSxdhAnMApPSqTPGhBxuD4VuwMtIu0uw0jR+5WW22TbBZJjxQs14SjUs1bOv7ZAJyfMMRC8VeAdBShhG8v2W+6OLNpd3TZ2kTEcObH5gz18MKq6kkmVNjiHMwaP7PogXKR1xSjSckltwZqk1jGhyIm0xtwxiu1DbWfqG5+KLYNse4Wv/6Ge/uvPhFYWUfk1MsdtIBqbYZiIImyirrD50vaC6D1rTKuzfTM6/2fshRFlnHoixUQUuQH/uHIiTNwDgK/iEHhHQXWB4IOncH0tjowgCKJhUOeX9/bt/Q+h33//vaj8888/B8MwGDZsmGSbgKCbnZ0tqSMIgiCix5AtjVoD4F/qrABfdQJyqyEHNTahXZo+mMRJjjYpNMkWCR4yDzURPFMZLcnf5PqNArXgKV+cXJO88IuOOkj9Ur2MFm9D+UjaSFFtQoRl/aEwDIvkgXNV27DmHJhbTYW5Rc2TnOpSOiOp/3/B6q1IHvQOOGszcMntkTLwbUX/RmuHe2HMGw/WnANL+3thbHKptN/0nrB1nwHWlA1D9hDYuj8rqreHCb1yqNodILbkdeGMa2FGR5lJoZrQWCV52JT21T7dvbOlIngRKzchIQDnEqEJMXpq5to4XNIsPp8ZIO9J6xWqT+ISTl5MBkLPm8Qm3O7Ay5iiuhYxOgu45PZIVjmXAsiJtIwhBfqsQbLteVfs1gv1TamMndHo5mb0zPJfg4c2MWNQYyPsBgaDGhtxWXPpcSuEZKn7xxBlcTPFKPX/TVQ4e6s63V9Sn39rmnhIVLsDhmEwvasdjWQmxUJPXW/RZunGPvloboIgiAuJOn9qHjt2LNasWYO5c+eiQ4cOGDJkCObNm4cdO3aAYRhMmjRJsk3Ai7ZJkyZ1PVyCIIjzEoZhoEvrDm/RJlF5zvUVODlf/qfBV3EQVZ6OorJ7uycFBbLLW1vwyS7pUlo9mxhZmxMd2SQvcUhsJUQZTRVO82Rlz2E+bBkoa8yISaTwMH5RjJWJKPWoiH6BZbhKkbSRiNbCwNzyBpT+LvbNNzS+BOmX/BBVP1rIvGJr9X6bT4a5+eSI27CmDKSN/Fq1DcMwsHf/G+zd5cVYzhr5XotXOaY8TPX31WiaAFfBChT9MCJY5lUReAMMbGzEjR2j89PUQmOr8rgzQryYOZbBnV3tmL2lOtJaKWq82uM3+mvc//VJRo8sbUvXtRJpFEoRvwDAazxv6pvwSFoAcDEWWASpfYkhZzjSL/s55n3JRdoyrAHmZpPhOb1KUse7CmPeV10xpb0Vl7eyYt72cnx3qPoaGC7Sd880YFqn6vPQpGNwf4/qqH5B5ngJ9TVWi1wf1TR+ExPRomOBj0f7v9dr8iMvr69rkdbU4hq4//xXxHb6BI1EBoCO6Qa8PjwdR8u9ePTXomC5T/AfNwzDwCMj0jaE84cgCKK2qfNI2nvvvReNGjWC2+3Gvffei27duuHf//43AGDAgAEYMWKEZJslS5aAYRj06dOnrodLEARx3sLoZCI1FMTUKiYZWwsKcaRc7FkY6j3mUEg64mkg0Vn1jRAiyAoAzrDNsfKsulDFhyw790KPg2fOooqptgU4w7XAyarYfSaTDIxq8qbw6DXGkKzQUp1TunbwgYNPJmq2QNcemwzj5Pd/7tgKz1NyrLgEPx04hS1n3dhgvBylrPyS5mgiaQGA0UmFBd55Jqo+zgfUImlDRVoAYA0poveVrPJy+wC6WprUUYukDSczLIFega6DbFy28+jXqGDScVAX/T1qbSz3VgquO6jrjUK2KXYYRsk3gPJy90QjPJIWAMpY+dV2vqrjNdqXbCQta1BMJsU7E19kMpw7SCJ5h0ZaTi83+Rp6DKlNzspZitQV0UaMc9bYbH1ihTVnw82lRGynwSK43pE7hgL3ikWnt6KAay+6j3AeWlxXQyMIgkhY6jySNjk5GT/++CNuvPHGYIQsAAwZMgSffvqppP3mzZuxbt06MAyDiy++uC6HShAEcV4T8D6LxGFdD8xKXgjncaknqFVf/RB2uA6T45yPOEKSvHxr+QuWWR8ETqlvE3i4cTB2zEz5CifW8rCnrcJdJddgo3ECllkfqlEem6Z2HU6piLy+sEhaLSLtEV032fI3Ur5BD9dXkvIPk2Yp9hX407gwMeCww4w5OwHADCT5LQqml1yLDh5xRF20Iq0ccRFpGS7oGdoQ4FVuH8M9acOPiUomPWL/USQHjwprFCaOWTKeih/bZ+KG8vtEZev+/Ayz07dCUPHpVaI2Ev8oibRvpOZH3LahiLRy4vbLab/h6cI+SOfFCQb5qhM12pecSAvWAEZBpBU8pTXaX10QWP1iiXA+hNvIaEFrNLaWxGKJAsPW7VgZhoXHEjl6N1HtDkKRu8bdtvQMpnfw4V33K3Cl2dHSswZ3lVwNPVxwnYj/qhSCIIiGRr3MwXXo0AHr16/H/v37sWrVKhw4cAC//PILGjeWX4L1/vvv47333sNFF10kW08QBEFED2dtpqndz+a74GTlkzZZQtQUpczPLZPJj1YLB/X+SDw3TFhuuVfTNgFP2lWmaTih6wQAKGez8LXtac19qNEsSYdDKuJ7eEQlX3k0Yp8rzbfKlh/R98RXtmdl65RIMvgfABlPccS2c1I+k5SxhshRnZHQJbeP3CgC0SQlSwTUEhJ5IBZppZG0kZPwhIvutU2KTLR4mklatt50tShSHQCWWh6MSaAFaieStiY92vSJL/oAfjsKOVaZp0rbJrWt0b5kRVqGVYykZS3KdhJ1j/znFNBmrRG+71gmESIJvwFyVKxHEgldapd62a/P3CJim0S2OwhgkDlXfWDw1k4dXKx/pdABfX/sNQyu66ERBEEkLPW6UKJFixYYMGAAmjdvrtimW7dumDp1KqZOnQq9Pr4JJAiCIC5kbF2fQuhDnLnNLWAYFrpUcaTjMZ38Q4pZx4gSQwzLlU86NrRJ5GzvFwo3hCQnCsfC+4VGB5uk6vkZSjOPf0XKN7a/isp3GS6S+MXGQpcM9aRd4XYHWqJKi9ncGo0plAfO+SMy5btj2t7a+dGot7F0uF/03tzy+pj2HUpy//+K3tt7vljjPmuCPkN56b6h0Uj1xGFhdgeMIQWcvXXwfSUTWaSV8xyNFy2SpOeWXOIupSjCSrY6ElgAsN8gn0AqEmYdoykDerTUxP97cpvIyYoSmZ9kJqZs3f4q01I7crZADMOA4eQ9VZP6/LtG+9OKMXeMpEyX1h1J/d8Kvncz8qtlzOfOr1bJNf+N6JdT7anMMsDFYefS3d2klj3tUvW1eo4DwMRWyiuFuob8rvXNkXpCN/VsDL62tJGfVKxtfMaMiG0agt2BRePEz0bj5QAAxhh5pQVBEMT5Tp1f3v/+97/j73//O86e1Z5YpLi4OLgdQRAEER909uZIHvIB9Om9YGp+VVAYShn6cbCNGyYUctKI29YpOjzcK1kUydEhTY8b2tuCyxhTjCwua26WPLRdyFzczIxLmpllo4sD2ZzVlpKHk8RH8ENQwazwkJxqZNHIyuHqtlZ0y1QXacOFYE4mqtTc9nbRey1Zq7XQv5ERHdP9++c4bWIXDwam5ldDn94byUPmQ2fTFk0eir37szC1nAIuqR2snR6FudWNUfcRjiFnOOy9/gFdek9Y2t4BS4f7Im9Ui6QMng9Do1HQpXRCUv+3kDpyCfQZfWFsMhrJA2aDh/LnHbA7MDS+BIBf0EodvgCG7CEAgAoNkbRKx2Y8eLp/iuj9kCZGjG+pzfoFALyoPicqmMhCihxy1894cmPL6Gw8WibrML2LHY1tDSO6UQu6lI6wdXsaprwJNexJLqGjDoxeeh3jktrB1EyaALk2SOr/Foy51V7dhkYjkTL4A1ja3AJrp4ehS+sOByNvPxOIdm2apMNtnZV9z8e0iPzbPbWjDX2yDWiVrMODPZIkK2oGNTbh8hDBtGOaHtO7xj8pYDgTWlkwLNeElsk63NTBhrEtzMi2cOieacAdXar3f3Mn6cRpYPLR2vEhWNreIamvC3g28u9kQ7A7YDVOGqX4CsCassGZc2p5RARBEIlPnd+NzZgxAwzDYPLkycjI0HZzW1RUFNzumWeeqeUREgRBXDhYWt0IS5jIpE/tFHx9hmspWcr7waUZMMmYRjIMg/GtLBivEsFyoWPSMbj13EPx7M1l+PlYtZjiYvwPi2oCWDjGvHFgT0gzjCuRZvBh1sWNAABbz7rx/B8lovqbOtowtoX27y88kpbV2xHurJoycC4srW5E4XdDAQBORjmaWCuDGhtFWcZ1Gj0DPY0mInX4ghrtmzWmIDVkIiMeMAwLW5fHYevyeFz7jRVdSnukX7pMVGbKqxaEmLTeil7HgcRhupBl5vr0nkgf/SsAwLkkctby2oyys+pZLBgrn0hOC6E+zKd10Wd9f7JvMrplSqP34kmu2Q1A2wqGMS3MmNqx9kWzuiLj8i3Qx3WJusyBzurA6KTXseT+b4Jh6+bRSmdrhrRRS2Trkvr4zzH+t7cBGYvcUJuDi5uZUeHh8dnuSlEbI+f3JI9EupnDo71TlMfJMpjS3oYpKqtIagOLnsXd3cTWJDd1lLZLM3F4vHcyXllf/UFVsmlIHblEdM2ra3hOg0jbAOwOtJLMFyD72pP1PQyCIIiEoAEslCAIgiDqg2K2CVZY7hSVpfqOygq0RPSEC1FFXB526kfgNBeF8MOZYGp6uebmGfpqUdguswwxKYrESgBQzmZgs2EMjnF+YZ/hTHDBgp364TjNtaxuyBrhgw579ENwRtdaobfY0WmMpC2PMfKREMPLCFQBthsuAQ8WDCcvElawKRH7Nyew+OCFAQVcO2wxjMYyywNRbx9N8rJYYSVTJcqUuKJMdZ/gyImnNULwQgBwQNcHB3R9IABgGA6Mzuq3u9D3w0Fdb/++w/yX6xuHIH8Ohh+DcmJssyS95ijIho49LPq3kk0Fo5f34a8rfGzkyVK94K6DkdQcK8ojthFIkiAIggjSINY1eTweACBPWoIgiDrikK4XZiUvhIsVP/Cm8AX1NKLzD4NQhVBP4K3GMdhqlPoMqsGwRphyLwcKtbVP56qjhcIfTAGAi/I56QfrY8HXV5U/ioH8cbyW+j1O6dqBE1y4pexWNALAcEZ8aH8Lm0zaBWU1wjOIc0phnWFsEnqjftLAnF8cg3Kis72GwZiT/CkeZbfK1lciJWL/Zk7b91kfrDDfWaPjuC6Sc3FQTvYXTomjYQg9WmH0cRZpeR++sL0YTHg4pOodTGd0AOPDQts/sdrsX4kyouot3FbPwl44VUoibdgEoZxIm6zudHNeEZ7DzMNY4OWSULvx7ur4uMgiLcdXAqjbCOVYSGJKUSmoR+vvNFBycIIgiAANYtpq06ZNAIDMTJkMqwRBEETc+db6fxKBFgCO6zrJtCZiQVe+vcZ9CKwRhpzhmtun4XTwtU0nFcKsvtg9bn+y3Iv1psk4pWsHAPAxRnxifx0AUOozx02gBYBs3wHRe62i1AFBWVwktLOfV4/23m0Yjv1sV9m6SiaykKWv2hfTuOqCmh7HVtYTp5Eow0Qh0mb4DtfiSOoeXkMEYjRUCsagQAsAKy23oYqxoYK3BgVaAPjZcncwW32i4FQQac1homSGWfo42JI9WBtDSkhsrEtSVoH6Fdx5NrIfsM5XVgcjqTnJcp4bYewwXlwHIyEIgmgY1Hok7fz582XLv/rqK6xfv151W5fLhf379+O9994DwzDo00c52zBBEAQRP/YYhsqWu+OU9IkAWjN7AHSuUR9e6HHSqX2+NcV7NPha7ytBS/dqHDAMAAAk+06glWcvAHEyrevKHsCnSW9E7LuQa471hjwgJGdRJeu3F6gyNIOsOWKMDCh/C8A7wfcctEUDGviquI3hQsaMyoht9povRg+Zcg9jVvSzDdCcPQJAXuStS4ZWvY1fLbdHbhgFFr4QQG5c+wyHE7SLtENKXwGwsPYGU8e4YEI8192V6/IAFInKSrmmcIIHUCIqr+CykEi/kDwjFWnbuVeA8Y0FQhJTCZ5y9HYuxHrT1QAAvVCFniWzALxdV0OtVyx8EcI9nF0abFlqE7cGT2kToksQWF/o+MrQRUMEQRBEBGpdpJ02bRqYME8jQRDw17/+VXMfgiCAZVk88ED03l8EQRAEkYi05qKLFmzvXo5dhpGiMhfPYf1J7cuVk9z7g69551ncVH4X8q3/BzdjwaWVr4GDNDlnH9dCVFak4UfLfahi01T7Z3UmANJIQW+cF+4kc2KRkNUqSiV1iOs4LlQ81jZAhCAur8ItJs9EXkRsQXEsw4o74ypfiEmkTfadQBf39/jNfIuofETVW+DdV4Kz1q5Iq/V8mFZ6K3KztScqTCT+frYznsnYJil3+eK7AJyVEZd8ggCdTIXLm1g2HQInPdemlN8PwT0I0FeLtN6SbZhY8QyMQiVK2CYY5piLJGPiL6OPG+5CGIQU0SS0s54npF1CZL8JC9MwJh19Pk8DMVgkiJqxbds2vPzyy/jll19w6tSpoGXnxo0b0b179/odXAIzbdo0fPDBB2jWrBkOHTpU38NJCOrE7kAQhOA/uTK1f3q9HoMGDcLXX3+NYcOG1cVwCYIgCBUEXntSGkIZwVOBHs4vI7YbWTUTr5/Jxp2lU9DNJc7m7RJ0WHdKulRTCZtzZ/A17ypECl+A68sfwM1lt6Oxbyd4jzTalQWPixxv4cXCDujqylft38fLixSeOB4ybd2/AIz49sXr0yaO8Ky2jPeEOi4h8hO3W+E74Vl1kbaF5w8I7sRYxmuAQ9M5Gs4A54cYU/mSpDyJPwXeVSSzRXzRYv8x2PEeuru/AWfOrvXx1AZJwhn860wTSblT47VAK3IiLS/IH98VngRLwhaWvK+3cyGS+VPg3eJJEE/xVliFYlxV8X+4vexGtPWshKdEKoCfr/CuQph4cXIrRz3f5jiFyPHgBsFRByOpOT66ZyTqkRUrVoBhGDAMgxkzZtTafv7880/07dsXH3/8MY4dOxYUaAkiFmp9XuvgwWpPI0EQ0LJlSzAMgx9++AFt2ih7wzEMA5PJhPT0dHAaszYTBEEQ0VHp4fFHgQtZFg6dM/yRG0pCW4DS32+HIWcYTM2uBBuWpMVbcRjuEz9C4N0A74YhZzj0ad1qbfwNEU/hRngKN8BTtBEpfGSBxMyXBF/7k41V81VhG8hFriphK12Nop8mwZA1CKwpQ1JftuZe8M6zYHVWGJtOgM7eUlTPQF2EkEsUX+T04ZPdFZrHGAkGApwHPoG3x/PQ2VsAADy8NnHEJRiwvdCN01U+9Mk2wiaTPE0LO4vcOFjqRdcMA3Jlku7EwlmHD5vPuNEiWYeWyfWbKJUXBKw76UKJi0efHCMsOhZrCpywG1j0zDKg0hd5fJ6Q64iXF/DHSRcOlXpx0JOjup2JL4fgiZwNvCY4Dn2OkhWTYcgZDnvvV2HI6K3YNhYhxCA4YBKkx7ybMaNy2yvwVRySvX7GC1aIfE1gBb9w4i3bg6q978GUN0H2mpDIcPBCJzjhDVnW/91BBzql61HlFdAxXY9G4VmhooRlpCqtTwCcMlGz+0u86JheNxm3BEHApjNuFDl5MACsegZ9coxgGQbHyr3YXezBCU+KaBvmnM+I4C4JlvmqTqBs9V2S/vnKo/A5z4AzRc4H4jq+FL6qEzA1vxKsXurL6y3dA9fx7+GrOgZD1iAY8yZIVlnWBu4zf8BbsgPGJpeBdxXCdfwH6JLbwZg7Nrh/QRDgOPAxTMJtKEP1tSn/oAOZZg6NbfUTAqolkpbhG4bdgaAxJuzzvZUwcgzGtYyvrzRB1AV/+ctf4HA4kJSUhJdffhm9e/eG2ez3lm7dunU9j87PjBkz8OyzzwKAKHiSSDxq/ZenWbNmsuWNGzdWrCMIgiBqH7dPwOMri3DW4Re4butsx8XNzHhvu7JAYhCq4Nj3/rl/85B+2c/BOl/lMZxd0guCq7B6A1aP9Et/hiF7UK39HQ0J14kfUbTsMuCcQJJijuy7aRGqo1t1Qs0ysdv4s3Ad+RKuIwrRgYIXFRv9dkTMpr8h4/It4Q1U+z9cJo3gu2t5oUzLmuAfw5nPWyLrqiPgrHkiQVCN3SU+/H1NCQBgsbkS/x6WDgMXnViw6rgT/9nkj/TUs8DfB6bWWFQtdPjw2K9FqPIKYBngid7J6J5Vf7nFP9hRge8P+cXJL/dVQccCZ85dJya1tuBQVeSI5B+POHF7F3/yndlbyrDyuLaIb5NQAd5beyJt5c6ZKPvjfgCA++QKFH7TB6mjvoMp9zLZ9uETI1owCA6wMhMabsYC17Fv4Tr2reT6GU+qNv8NMC5SbcOei7Z1n1wB98kVKLc0RubEXbIiWyLjDfNdXXbEgWVH/MeukWPw4qDUuE2kBOAFAS6ZSNqPdlWgW6YBTZNqX9hbvLcKi/eKbV9G5plwUVMznv69GP5LYoqoPjDJxp8TaXlXMc5+0wdK1/WqXW/B3v1vquOo2PYqytc/7n+99WVkXrENDFv993uKNvv3wfsnDirxKqydHkVSn1e1/aEx4jj8BUp+ngy5v83W7RnYe/iFisrt/4Rj3zyYUq4Vtdl8xo2HfynC3wemom1q3U+aaVmtAF/ii7SCIIDXaEi7cE8l7HoSaYmGh8fjwS+//AIAuOOOO3DXXdKJL4KIhjqxOwiF53n4fD507NixrndNEARBhLDimCMo0ALAO9vKIQgCVh5XvvFv414ZfO0+uQLeiurM4M6jS8QCLQDwHjj2fxi/QTdwytY+GBRoASDFdyLiNla+enn0Pv2AGu2fg/Zlh4KnDM4Dn4rKPIiccbq20YVECZZv9HvoJrPRR+qedfCqx7oSXx+oFu08vF+0rSlf7qtC1bnIPF7wi6T1ybLD1dGjxS4+KNACwBf7ohMt3T4Bv2kUaAHAKFTUaiRtQKANpWrXfyVlgSgTA6KPpNUL8sdEuu9I8LX75Ar4Ko7ItqspbMWuyG3CLBH4qhOo2vOOQuuGicsn4KejNVsS7pWZAOIFZVuF0OtDbRIu0ALA8qNOvL6hFEpzVsy5Yzog0roKfgRfpfwbpFYXICDQAoCvbDecR74S1ZetfTAo0Aao2j0LglC71hAlv1wLJfE59J6kcsfrAAAe0lWbAoDvD9WP72uVL3IkrdAQRFpvBRr7pNcjCy9v++JOMMcQgtDC2bNn4Xb7gyjatm1bz6MhzgfqXKQlCIIgEoM/T0mjMgX4E68ocWXFk6L3vONU8LVj/3zZbar2zIlpfOcj3pLtovd6RBavWnlWB1+f0cW+ZGqw472ot/EUbUJoWuYk/rRq+2Z1EEHW1vNr8LVj3zwAQCfDYSRrELzD2VYYfWTyobBo4ViE3nDChaQTlfXr4RdPW88KDx8h/lqMHi7AV7OI8WhxHftGUhaYcLLxZ6PujztnQTLY8W6wzMSXobdzsagdHz6pFQcEQUASfxqNvDtV29lkRBLX8e/iPp7aIJplmvkHaybSVnjk9+VVEJPicT2oCaETKuEE7WrOiXuhv99y8N7oJ4s8Z34XvXefXCFpI3gra22CIgivbPnhq6i24gsI0SVcI9m2q05on2CKJ4Ue8UqKyypfAReykubSylcbiEhbhVFVr4vGPqbyZdwq/EO2vVyEOkEkOi5X9XVCr69fuyri/KBeRNqqqipUVSnPTM6cORNDhgxBhw4dMGbMGCxZskSxLUEQBBEbSol9lOjA7kQaf0xUJoQkmtKn9YjLuIhq+js+gk3Qnmhosvl72fKxlS/i8ooZUe/fU7wZpmaTgu/7Oj9TbR/Jz1gr4yv+Llt+Zfn/YajjbUk5I7jxQMl49HEuAAC0c6/AmMqXcVX5o6r70ctlBYqSWH1tQ2noz6WPFF+sWFelIHIpwQluCHztCCOCinATjrfiEIDIExONrNLvPyCGXVExA2MrXsBgx7t4qGS0JCpX8NZClJ7gAwPgjtIpGFo1F72di9DX8amkmV3m72LYBvJw6dMuvKaZanZ+lsmE9nkFwKcgFOsTOPwlcFwKPv/5xbuliSJF+GI4DxlteUR8Zbuj77sWGV6VWJPJZ93ic7GZZwMeLBmLgY55uKLiGVxS9e+GIdL6nEjmT+OBknEY5HgfEyv+iiu7tsegsYn1eRMXJqFJxVasWAEAWLhwIUaOHInMzEyYzWa0a9cOjz/+OIqKpPfiM2bMAMMwaNGiRbDs5ptvDvaplKzM6XTizTffxMiRI5GTkwODwYCsrCyMGjUK7777LrzeyMk/XS4X5s6di7Fjx6JJkyYwGo2wWq3o1KkTbrvtNvzwww/BCc158+aBYZigHy0A0RgD/w4dOiTZj8/nwwcffIBx48ahcePGMBqNSE9Px+DBg/Haa6/B4Yj8e7xz505MmzYNeXl5MJlMyMvLw5QpU7Bu3bqI216o1Lkb+pIlS3DFFVfAZrPh2LFjsNvF3le33HILPvjgAwD+mfI9e/bghx9+wPPPP4+//OUvdT1cgiCI85ZoIxYm9OwPblU70cMVH5KAhLMp+Iwz9ZN4o2Gg/h30HXg3sPSR4HsTXwonm6zY/qqLbsLifLH4Mjz1OC4+80ZMo/OV7YHO1iKkRH28lVEKckr0cn2OJbZnRGWDHO9jiPN9ccPAscV7kMYfw/Xl9+P68vthan4NUod/hmKnD4tUPHENUYq0vIwwkxQHkbYh09G1DHnecO/iaqpkEiypwcHjTzxYC/jKD0ZuFGgbFGnVow2f6puKe38WH2Oc4H/A0sGNix3/UdxW8NWOSAsAqfwJTKp8GgCwzXAJ1pqvEzWTFZ+ZhiHS8h7tEZ6pxhqKtDLZEH28AJ9CwKotgVXaapHWL+6FJhCTIyYRUKNI6y3dDWOTS6Pvv5ZQS4pZ4ebjMhmnFaeXR7lX/Dmm8UeR7duHvIqQa20DEGnh9Qs4Tb2b0bRiMwDA2vYtMKwOlzYz44fDYoHn5k61k0yRICLB8zxuvPFGfPTRR6LyPXv24NVXX8WXX36JlStXIidHPflpJDZv3ozLL78chw8fFpWfOXMGy5cvx/LlyzFnzhwsWbIE2dnyyYU3bdqESZMm4eBB8T2N2+3Gjh07sGPHDrz77rs4ePAgmjdvHvNYjxw5ggkTJmDz5s2i8qKiIqxatQqrVq3CrFmzkJ+fr2jzsHDhQtx0002iaONjx47h008/xaJFizB79uyYx3c+U+dPzgFVf8KECRKB9rfffgsq/RaLBW3btsWuXbvgcDjwzDPPYPz48ejcuXNdD5kgCOK8JHzZNgB8tFP54TfLwoE1JItcTV3HvoW5+VUAAG/ZPvkNhcgzwhcu6iJheE4rPVyI9rGMF2rwcCnwEosGNYplBA01THwZnGySpNzOn5GUORnlhEbhop7WiEC9Nj0hSKHMUuKdRR7M216OPLsOJS4eXTIMcUk0s/RwFS7KM0PHMqjy8Fh2xAEDy2BUUzP0KsnONp12YX+pF72yDGiukNDsZKUXv51woZGVw8BGRlGm9Wgz/mb6DgCQn0CY8u1pdEqP7rPQCW44D3wCT5f/gz61S1TbRsJbquzVKgiC6HNwHvJbEyTxJ1X7NMp8F+F+r0oULb1ENWlZTMh4fXKCNIJY7hwLTfiUyAhRLMPfX+rFX34rQvs0PSw6Fo2tHM46fZrOJQAolYuk5f02HnLYDTWPzq8tAsnsytc/Cl/5flTtnqXa3nUsH57ibdCnVj97uU7+AnfBTzA2vhj6TKlHOhMyKSt4lSOsPIV/Rjv8uFL8yxR4zq4NvhdUFpeeqvLVqUgrZ3eT6jsmKUvkSFrBW4Wq3XPhOLRQXMFwweuMnD2S/QKf9CTqj6effhq///47rrjiCtx0001o1qwZTp06hf/+97/Iz8/Hvn378NBDD+HTT6tXptx9992YPHkyTpw4gUsv9U86Pf/887j88suDbbKysoKv9+3bh2HDhqG0tBRJSUm455570LdvX+Tl5aGwsBBff/015syZg3Xr1uHyyy/HypUrJfYJO3fuxJAhQ1BR4f8dnDhxIq699lq0bNkSPp8Pe/bswdKlS/Hll9UJgq+44gr07t0bb731FmbN8l/3t27dKvkMmjRpEnxdWFiIwYMH4+jRozAajbj99tsxbNgwNG/eHBUVFVi6dCneeOMN7Nu3D6NHj8aGDRuQnCy+B1y3bh2uv/56eL1eGI1GPPTQQxgzZgyMRiP++OMPvPjii7jrrrsoV5UMdX43tmbNGjAMgxEjRkjq5s6dCwBo3LgxVq9ejdzcXBw9ehSDBw/GsWPHMGfOHMycObOuh0wQBHHeUeL0yS6xVvPvy7RwqDCIf4Ad++bB0v5ucLbmcOxVTjrjqzoJzlKz2efzkSI2T7U+PFpLLrlJJNQePrXgq6z2DmSicheNjFGogBNikVYvVMkmOJMVaQMTAOHL2M+JtJHkkmjtDp7+vVi2/LtD1efNoj2VcckI/u62Chwo8WJ6Vzue+6MEB0r9f+uuYg8e6ikfTf1HgROvbSgDAHyxrxKvDElDE5v4Vq/czeOJlcXBxEclThvGhmTTXnYkOg/PDJ8/ksPGF0pEWp8AbDmr3WIAqPZzLcwfgMyJu8BZc6PaXg2vyhLryu3/hK3zYwAAT/F2OA/5rTOSI0TSygn9rEpUXjjFP45G6ogvYGo2UfM2agiC9NxxsdLoNPlI2gYi0kYRSQsAB0q9wfMnlN3FHjyocC4FKJcRaT28gMV75aOgEzmSNnQlhJxAyxozwLvEHsxnv+6BzEl7oLO3gOvkLyj64SJA4FGx+e9Iu2SpdBchkbSlq5UznDv2z0fKkA9i+Bvig/Og2AKkQNdBse2pKh9apdRdlPnLa0tE75N8p2CQmZ5NZJG2ZOVUOA8vllaEXJ/kRNpoV7ecr/CCgAp3A/dBigKbgQHL1O93//vvv+P555/HU089JSq/7LLLcNlll2Hp0qVYvHgx/vOf/yAzMxOAX4DNysqCzVb9G9ukSRPFoMKpU6eitLQUPXr0wNKlS5GRkSGqv+SSSzBu3DiMHTsWf/zxB+bNm4fbb79d1OaGG25ARUUFWJbFxx9/jGuvvVZU369fP9x4440oLCyExeK/t0tJSUFKSopIMI4U+Hj//ffj6NGjaNasGX7++WeRpQMADB8+HFdddRWGDBmCAwcO4JVXXsELL7wganP33XfD6/VCr9dj6dKlGDp0aLCub9++mDRpEvr37y+J1CXqQaQ9fdp/U9iuXTtJ3ffffw+GYXDfffchN9d/U56Xl4f77rsPjz/+OH755Zc6HStBEMT5yv/2R7/M1sgxKCnZISl3Hc0H71QXMpyHFsDa8YGo93m+ExC4lMiycABnCi5r7OBejvWmq2XbWnXyN7gtzOU1G2QIeqFmSXjC6er6Fistt4nKurvkfehb+5S9q8K9Rhn2XGbsCDf9hghRdKGUOH2aIoUFAG9vLcOrQ9M1963Ez8ecGNnULBKY1hS44OMFcDIPszM3lQVfe3lgwe5KPNxLLEL9fNQhykw/f2eFSKSNNlFOGn8UANDYtxNndS2j2lYO3bkEM4K3Eq5j38LS7o4a9xlALZLWeeR/QZHWdeKHYLlRUBcE5YT+NN/RqMZV/Mt1aHRTnAQXGZE2O7M1wnMUWmS8rhuKJ200kbRqrC5w4U6vAJPCtROQ96TdV6I88WBNYJGWlYmyFsGZpGWCF2Vr7kbaxd/BsecdUaR28U9XSNsz1X+/Y7+6CCv4XGA4o2qbuqK5Zx3+NF0pW1fojG6FSE3gBQFlYeJcMi+fFDNRRVqB98F55H8R2+XZpTJEpjlxz5+6pMIt4PYfo09a2VB5e1QGkoz1K9L26tULTz75pKScYRg8/PDDWLp0KbxeL1avXo0JEyZE3f/KlSvx++/+xIoffPCBRKANcNlll2Hy5MlYuHChRKRdunQpNmzYAMAvooYLtKGkp8d+D3ro0CEsWOCfqH7zzTclAm2AHj164J577sErr7yCefPmiUTadevWYf369QCA6dOniwTaAE2aNMG//vUvXHPNNTGP9Xylzq+EZ874l1eFWx1s374dZ8/6L0ahIeIA0Lt3bwCQeHcQBEEQsbHuVHRCzBWt/CIO75I+2Au8C1W71T2F3Gf+iGp/FwqtPauR7CuQrWtq16F1ig4pg6sfdC+t/JdiX7d38f+uXtXWGixLMjAY0Vz+RlARFU/BRr5dSPcdiq4/BQY73sPYqhcl5deY/Rnmr6h4Olhm1jEY2V4a6cQaz/1t4R6m58QmU4TAY7te+0OBMwoP5yPlUqFMjcZW5YHKCUIKK60l5ZvOSM/zrWfV/V4LZJbaqtHC4xfPezk/j2q7HO8usDJWKIFIWgDwVUmX+NYEb6lyJG1oEq/QZdqRjhAdy2BAo2qhqZnnTzT2BSazGNh7vhjZpzOeidJkhLjO3W9Anr16DH2dn4KViYpn4xi1XJuERtJOKbu3Rn2ddagf7+GCGQDsLVYWaesiEFDOG1sLRqFStV6fLp/803Xcn5DScUDs1aiW+C5iUjKo2yHUNe09K6AX5P8eb5wSYmqh0MFLzsz27hWybRNWpPWUabK5MnIMhjSpnhjIs3Oy0bUEURdMmTJFZHkUSq9evYKvDxw4EFP/X3/9NQB/oGKXLupWTgFBc926daIkYt98803w9YMPPhjTOLSQn58Pn88Hi8WC0aNHq7YNjPXEiRM4cqR65d2PP/4YfH3zzTcrbj9x4kSkpKTUbMDnIXV+JeQ4/01ieIa83377DQCQmZkpibJNTU0F4M+ERxAEQdQcZxTJfO7oYseIPP+NtLHJpXCFRUj4KiNHjcUr8qkhIwiCX6wJiXTTwY1HvfdgW7uvkGaxYGBjE3455oTDy2NkUzMYhoG5xdVg9HZ4CjcgLXswpq99BnO4v0v6DyzHvLK1Bdlmv+/isFwTjJGipwAk9fsPeFcx9Gnd4DrxI6p2vSnbjoMPj9rfx1+qnpWt10qndD1uyW4Nvuz/8M+cKjy63j8J8K+haWhsWoSqPXMwHjo0SzajwMFicBMTssx3oqx8M6r2VGeFFs49zkojaf2fRaRI2WiW10UTdRstcr6mAU5WSUUkv2gQeTyMTBu5v8PtE2Dg/N63pVH6ClsEvxijj8IteVgTI25MOoXH9uSi2Cdeis8J1SKyr0p+AiNW1CJpwYeKCuLr41D3p/jVIE68BSDot3tv9yR0SHPAUXECAx1rYMy5GwxngjF3HIyNRsCQPQTOI/9D5XblSZa4IRNJy1mbYMaAVCw/4oCZAzqueFR2U1avvvQ/UeBDfk/6uhbhoO8yrObGxdTXqSofcmUi+gLInQ8FMudkXRLN73cokaLCdUnt4IL8SgYA4JLawFe2V30n544/d8HPEccjxHNyooZk+g7igZLx2Nv2XXxb2Fw04VWXIq3csTWm6mX5xgkq0vKessiNzjG9ix1tUnRw+oTgPQ9B1Aft27dXrEtLSwu+Li+PbXVaIKp09+7dmo9zj8eDoqKioE3Bxo0bAQBNmzZFs2YKyZrjQGCsVVVV0Om0y4UnT55E06ZNAVR73hoMBnTr1k1xG71ejx49euDnnyP/ZlxI1LlI26RJE+zbtw+bNm3C8OHDg+X5+flgGAZDhgyRbFNa6n8AUAoLJwiCIKJDa1SgiWMwsqk5+F7wSiNxnIe/iNhPtB6C5yW8RyKgZE7ag0ZJbRCaE/XiZmaEY8odDVOufzZ74JihmPODNOlPQOhjGAZDcqujU3wagpUM2UOhT/PfRLlPr1JuyJnRYtib0P9QqBjNqYXxLS2wZk0GANgBLBgbWquDrdPDAICBYduZW10vEmmDUYMST1q/3QHLMDByDFwKx3s0EWm1+eioNoqTMpGtWkUDuag+ueX5RU4fcqw6WUFYK4yMOCjH/T2SMKixCcBVyCwoQnGJOOJKh2qRlnfIL/ONBd55FoKrULmByvgNlnTI5QILfJY6lsGlzS0AWgOQTmAYsgfDkD0YnDUPZWsfjG7gUSLnScswHGx6Fpe3skIQeJxUSGwmNJAkj+G/JwOYn7AasYm0pyMc83KetOUqXpF1IedFE9UfSsSEdozyAkuB90Gf2kWDSOv/vFwFP6q3AwBf4oi0AJDr3YaeXZrh7C6jyPYl3Bu+NimoEH9HLZJYMNKfewAJHEmrIYo6gJ4LXDsJon4J+LfKwbLV10afL7b7pIDlZ7RUVVVH+AdWnTdq1CimvrQSj7EGAjLT0tKCQZpKZGdnx7S/85k6F2mHDBmCvXv34s0338QNN9yAjIwMrFu3Dt9/719KE8iMF8rOnTsBADk5lHSGIAgiGhxeHvf9XIhyt4Bcm38p2YBGJng1PnSEZ6qWXd6oQQV0n6QZUrnPjtFZZVqqo+SfaFC8B9IQcamvtiBiOKlIHECf2hkM6xd8tPizKhG7b6N4O8HtT+QlhNkdhHprmnVqIm2Mw4gzauMoqJQKK1oD6aq8Aq7JP42n+6Wgc4ZfuJY79wsq/SJttFYHoWhNlhUqEqebOSBcpA2JpHUd/x6lf9yPqp0zYcwdC95xEp7CP6HPGoS0i/4H1qR98l7N6sBfvxOCIJyLcBF/wHLWAEAMwr2KCFa++TnYOj+uyaNTEAQ49r4Lz9l1MDWfDGPji4N1nsI/o9qvCL6BiLRhKzOSOE/M6uihMi8EQcDK407sKvagd5YRPbP934EgCLKetGqETqBsPevG6hNOtEzRY2SeKeYowd1FHry9rQxHy324ob0N5ihsWkLxIYLnsIotx8n52h4ZK7Y8D1/VcTj2vR+xreBzompP4Di+UnQc1xcMawAX9j3FGLgcE+ETZY2syp97woq0UUTSEvLYDAzeHnXhBKfZDOd/BHVA3O3WrRs++uijCK2radKkSW0NSZHAWDMyMqKKcJXzrqXo+Nioc5H27rvvxrx583Dw4EG0bNkSbdu2xY4dO+D1epGWliZrHPzTTz+BYRh07NixrodLEATRoJn2Q3XigWMVPhyr8EWVGChcTBO0hGUq4CnaHIzWvBARfDIiLRe/CBLFrMjhfq0yiEVameQx5+CS/DG/dgOD4hoEQSkLyhGQEZsEr1NidwDOEHxZoiImR/Psfais9gQstYjeU1XS8ctF0laoiEnP/VGC14enoZFVhwqZEOj/bCzD+5dm1kikZTSLtNWv00zS7zPUkxYCj6qdMwEArmP5wWLP6VU4++1AZE3ao3l8qlYH53DsmwdLG6l3mtLfFv2zh7JYWrHxGfCO00juPzNiL46976L0d38ykao9c5ExfiP06d3BOwtR/ONY6QYi8U1l0A00ktau9wGRL3OyrDjmRNdMA/672b+EdfkRJ/4+IBXt0vRw+oSoVwwEzs0j5V48/0eJv8+jTgiC/CqJSJyp8uGZ1cXB9x/tin1Vio+pm8c+LQItAFTtmYPK7a8FXweO43qFNUDHiq+DdWp3UNHwRdpo7A4IeViGqfdEWkR8CSTyqqioQOfOnWPqI7CqvKAgvlZQ4QTGWl5ejg4dOkSMhJUjYFdaWFgIn8+n2sepU+rJpy9E6jxxWM+ePfHqq6+CYRhUVFRgw4YNcDqd0Ov1ePvttyUJxUpLS5Gf778xD7VHIAiCINQRYkwuEkqKUfwzYWo6Mea+HAcX1HQ4DRr5SNr4ibScgkgbKsAqEepFyRpVMsKeE3wHNFIWcrWQaoxNpZX7WzzFmyV2BwyjLUt9NKfIwdLaFGmjay+XzEgt4zwAbDjl/+7klm8HrDKKnNGJtBa+WjzK0JhQLjSSNlUms1toJK0avrK94D3qiZBC8VaIk30whlRJm6o9c/0vePHnYGHkxZBok0RFOhc1LREHggJtgPLNfouFiq0vye+XrZ60UItqERpIJK2v6rjovUWv7XyXw8gxmLlRLCp9sMMv2Fao2BooETi9Ptgu9i0M9Bkt+QeVk3NFSwvP+uBrS3tpwjXWlBm3fWkhINAGKFv3cJ3uXw6GM0ojaevQ7qAobFIxy6LyW5moIm3Y+UkQBNCjhz8x44EDB3Dy5MmY+ujZsycA4MiRIzh8+HDU22uNag2M1eVyBf1poyWQHM3tdmPz5s2K7bxeLzZt2hTTPs5n6lykBYCHHnoIGzduxNNPP43bb78dzzzzDLZs2YKJE6UP/ytWrECfPn0wdOhQjBsXm98UQRDEhYgjDmv0hueJxThruztj7stbuKGmw2nQSPx8GQ5gYxMX7u4mFnsubqococUakmFqIU16FIBLagMmJPLUmDtGsW0gynZMCzNSjbHdQvRvZERyjNvqUmRW1PBuid2B1s81mmdvbxwmPZRQsmNQ4rBMVG+kiL/ycw0qPNJ9uc/tP1yMyLVVCwRmGZuNG8rvCb5O448hz7NRfRAAkkK+e7l8aRahJGIfAaIRA/gqsb+tuflVkjaewj8heB2S5fTdDftk+8wwRzfZYGx8CVhTlnKDGEUXz+nfAQDuUysldawlF4xOfH2wtL9bvqMGEkkbbumgT+2E8S1jm/By+wRJRP3+cxMynhgiKANRl9sKxZMmsXp4y53rsdLG4z8+GGMa7N1nwNzmlmCdscloGDL7xW1fEjRYbnjO/hGXXfGuosiNZDC1nAKG1UEXNlRfLV77w/GE/RaYdQysnR+XbZuokbSeImVBhiAuVCZMmADAH0DzxhtvxNTH+PHjg6///e9/R729yVT9TOdyKS+HGz9+fFDQff3116PeDwCMGjUq+PqDDz5QbPfll1+iuLhYsf5CpV5EWsCvrj/77LOYM2cOZsyYgXbt2sm2u/zyy/Hzzz/j559/JlNhgiCIKChyan8q7JNtkC0Pj5hkTRkwyYgbmohj1GhDJDySltFZYvZqGpZrxtP9UtAlQ4+7u9lxa2ebavuUIR8iZfgiGHKGS+qSB74jes9Zc5WFpHPLZU06Fv8cmobWKcpLMce2MOPRXsm4v3sSPrwsEw/2TMKDPZLwQI8k9T9OBYZhJQ/7giBII2k5+eM5nGiizV21aEwYbbZ2OeEmUhI0L+//e+UiaQOJiMJFqT45Rrw0OBV3dLHj1SFpmH9ZJi5uakaujcP9+n+io3u5qP2DJWNxfXurrI1BgBRDdZ3ckC18ierfEUp4RKUafJV4eSBna4HMKw+ENfL4hVqPOOqxkcmBAY2kXrFZUYq0nCUHGePXg0tqI1svse3QSCAin3dIlwzqUzpJypL6/gcpwxfJ7D/xRVqB98FbJJ4M0Kf3wvXtrXi8dzIuyjPh2nZWzaKt2lkTi7Dqjt0xRBZLBP/ZS6OwUEgf+TWSB76DzCt2gDWlI3nAXKSM+BwpQz9F6kVfQpfcoabDlYWzt0L62DUaPNjjs7zbWyY/qaKGselEpAz5EIA/EaCovzqMpA2/ButYBvZeLyN15BLJ7zeJtATRcLjkkkvQt29fAMCrr76KhQsXqrbfunUrlixZIiobNWoUevXqBQCYOXMmPvvsM8XtCwsL4XCILepCE47t379fcdt27drhqqv8z3qfffYZXnvtNcW2AHDw4EF8+umnorK+ffsGI39nzZqF3377TbJdQUEBHn30UdW+L1TqTaQlCIIgahc1L85wrm4nFfnkotwAgLM2i2k88Vza3xCRiLQ19KPtnGHAX/ulYliuOaLYy7AczM0nI7n/LJk6adSpTsk7OMTb0mZgMUolgtekY9Anx4hBTUwwcAwGNDJhQGMT2BomEWAMKWElglTc0mh3EE2gnCvO4ksAQRCiztZ+uEwq5kXqocLDw+kTILcrn+CPAAwXI3Qsg5bJeoxsakamhYORY3BbFzv+NSwdHfXSG3wOPkxoZcVzA6VWAoDfHiA0QUiljPphEbRHwYVHx6rhc4jbspbG0NlbQJcqPtbdp1eBDxNpGb0drVKkx5TqUmQFOGseLG3vkK+MUSQNiF8+h3QJpS5V6n0XuB5Y2k4XVzSASFpv6S7JtVSf3gsMw6BXthHTuyZhYmsrbuhgw7xLa5Z4J5ZI2li2UcMSHtYZglXH4KaONjS2ajsOTXnjYGl7KzizP+iFYTmYm02CueW1YDgjWKP8eVtTkgfMhiGjj2pisnMDisv+fOXiaxNnbxVxG2uHe/2TgADCFw3UaSRt2CVRzzJgGAamvHEwt7lVVJeIIq0gCPAWb6nvYRBEQvLJJ58gLS0NPp8P11xzDSZMmICPP/4Ya9euxZ9//onvvvsOL774IgYMGICuXbvil19+kfTx4Ycfwmazged5XHfddbjyyiuxaNEi/Pnnn1i7di0++eQTTJs2Dc2aNZN4vQ4cODD4+qGHHsKvv/6KvXv3Yt++fdi3bx+83up7gFmzZqFly5YAgEceeQTDhg3Du+++izVr1mDjxo348ccf8a9//QsXX3wxWrdujc8//1wy1rfeegs6nQ4ejwcXX3wxnnzySfz2229Yt24d3nzzTfTq1QsFBQXo1u3CzVeiRJ0nDpNDEAQcOHAARUX+G/O0tDS0bNmSssERBEHUgOIoRFq5q61JQaXVkn1cfh8N85ruqzyO8g1/geB1wNbjWejlltzLwDsLUb7xr/BVHYe10yOSxGH1IlrLPgRLvxdWxq8TAJiwh2y1CFCjkspfY8T9lm94Cp7Tq8QtNNodRPPoHa2Q+tdVRShx8Tjj8J+HPTINEOAXSzulG3B1Wyt0LAMvD1nhVI09JV74eEHkQxxJR9h+1o1yFY/NBbsrg7YHAWQcDqpRSUKk9N0nG1iRSF8pY71grYVIWsHrhLd4q6iMs/gjSgxZA+Etro78cp/+HeFHBqOzQc5GOTsGkRaAJPI7WOw8haq982BpMy2q7rwl23F2SR+Aly5f1KWoJChhxd9h1a7/wtzqxtpd9l5Dwq0OWEsuOLN85L+JY8Ax0Z9fAFDo8OH1DaVRbxfvJFNqkbTdswzQsUxcrI2CcGagBglC5dBn9PG/iCTCRhJxNeKVEWnDhVsJIeckFzbMVSdcsOnLccbhQ69sI0bmmcAwDHy8gPyDVdhe6EH3TAMubW6WnYT08gIW763EwVIvhuaaMKixsqd7+OS6PuQjCU/q6S3ejKJlo+E6/n2wLKnfm7C0vysoOGuFd5fh9OLmENzFYK15yJq0N6Z7PV/FIQiUOIwgZGnVqhVWr16NK6+8Etu2bcOSJUsk0bKhJCVJV5516NABK1aswMSJE3H06FF88cUX+OKLLzTtv3Xr1rj66quxcOFCLF26FEuXLhXVHzx4EM2bNwfg1+NWrVqFq6++GitXrsSvv/6KX3/9Naqx9uvXD/Pnz8e0adPgdDrx0ksv4aWXqr3zdTod3nrrLaxatUrVt/ZCpF5F2h9++AFvvvkmVqxYgaoq8cOrxWLBiBEjcO+99+KSSy6ppxESBEE0XIqjSAIkK9IqKTRcbEmj+HBP1gZCya/XBb0e3WdWI+uqI5oegMrWPQzH/vkAANfxH5DU7z+i+voRaWW+U5kyxYezMFHnrEP5GKstkZYBI5LQwgVaAIBGu4PoImmjE0L2loijEjeeqfbN3VfihYFjMLmNFUcrYoteXLinEte1r46AjzQlc9rBo1Rl4ubrA9IERXq1zFgqQriiSBvmRSwn0uqgLXEYoF2kLd/ynKSMNTcGABiyBqFqd3WEufv0KuhTu4jb6u2yQliWJbbIP0ElYrV01c3QJbeFIWugbL2SJYKnUD65h1wkbRAZob3oh1HIvvZUwq58CP879Rm9FdsyDAOrnpFNtKcGA+CNjWXBCZZocPOQTHbUBKvKTEnvbP91Op4iLaOzQIhRpGV0FtkEmazhXGLKiL+b8fnNCBdkdfZWEa8qob7m4YnDAOCHw/7PZMNpNzLNLLplGrHqhBMf7/Lf12w640aGmUOfHOlv55IDVfhyX1WwXRMrh+bJ0uvnoVLpuR16DQ4XaQGIBFoAKPvjXnC2ZjDlRZfHpfD7YRDcfl9IvvIoildcjbSRX0XVBwB4yeqAIFRp27YtNm3ahIULF+Lzzz/HunXrcObMGfh8PqSnp6Ndu3YYPHgwJk6cGLQLCKdXr17YvXs33nnnHfzvf//Dtm3bUFRUBJPJhBYtWmDAgAG45pprgoJrKB999BF69+6NxYsXY/fu3SgvLwfPy//W5eTk4Ndff0V+fj4+/fRTrF69GidPnoTH40FKSgratGmDAQMGYMKECRg6dKhsH9dddx26deuGl19+GcuXL8fZs2eRmZmJQYMG4eGHH0a/fv2wapXMffwFTr2ItG63G9OmTcOCBf5M33KecJWVlcjPz0d+fj6uueYazJs3DwaDtocugiAIQj5BkBIsA7RP02NXUfVDwtgW8g/pnFriGxUaYnSF4HOLkvHwVcfhPrUSxpxhEbcNCLT+Dd1w7H1PVF8fIohchCxrkvq9K3lmGnPHit73zjHim4PyD/Qd02vnN1uSJEyOECGrfaoeu4rlha1opI14Ci8AsOWMG5PbWFFQGZuPwpkwgVyL4HxARgRQQ68S2MbJZYLn/PYXegUtJlzz7ZZpwMrj1Ut2003RiTS+8gORGwGo3PKidCznoi/1mX1F5YKrEL7Ko6IyRm9HtwwDPoF4osmkshRdDWOjUajY+IxivfvUSkWRlneXRLUvNZ9RRi/1CBW8FXAc+BSWtrfKbFH/eEt3id7r03qots8wcyhzRz8RslvhmhGJSg8ve54prUyJhFFBpOUYoHum/xp7RWsLPtstPjbtBkYUOT88V9vkqr3H8yhbc1dMY2UMKVJbH311dBXDcOrX3LjZHRwUvefsLSNuo0upnpiJdFp/uLMC3TKNeGuz2Bbli32VsiJt+Hczd2s5XhycJmm3p0R63CSFeHjLibRylKy8CTlTokue5i3aJHrvOvp1VNsH8JRsV603NpUmCSeI2mT48OGK+QfU6sJRa9e8efOochxwHIfrrrsO112nnNQ3EmazGffddx/uu+++qLbT6/V47LHH8Nhjj2neZuzYsRg7dmzkhgp07NgR8+fPV6yfN28e5s2bF3P/5yP14kk7ZcoULFiwAIIggOM4jB49GjNmzMDs2bMxe/ZszJgxA2PGjIFOp4MgCFiwYAFuuOGG+hgqQRBEgyXaVZdXtrYGxZVsC4uRTeUfCIx5E8Ba81T7snV7WjoedwPM3ikT8SZ4KmQahm8mFS7Do/5q6kkbC6wpA6YW1TeFxrzx0NmbS9qZW0wBaxT7OeqzBsPY5DJRWbtUvWzyMLueQVN77cwDm1vdFLGNPq178PUNHZSTqkVzUx2t3UEkAom+YrU7DD+/tfwt5VFM3ACA3aB8m2huNVVSln7JMgD+CEY5oaNHpkHyPifEMuCK1laA1b7E1lu6U3PbcAKCB2vOkdT5Ko+J2+ptaJakQ5eM6ui3WzqpJ+tTQ5/ZH4ZGoxTreZUJLSEKkdbS4QGwMkJsAHOLa+X375QmIEsUfBWHRO91ChNKAcY0j/46a6jBqnsvD+wvkf5uWCMkAFNC6bSe3MYKy7kf7HAB1sgxmNE/FbZz+0w2MJjYWtvnYG51PThb85jGysicuwwX6luu/tgZ7RJ9JXxV4kkWztYMKcMXi8p06dURaqaW14t+Bzm1FQQAjpX7J8jCv5oDpdomA/YrtPPIzNeF+l5rFWmFerzX8oVNohgaXxJMRMoY02Hv+UJ9DIsgCKJBUeeRtPn5+fjiiy/AMAxGjBiB9957D82aySehOXLkCG655Rb89NNP+Pzzz/Htt99izJgxdTxigiCIhkk0yS5YBuiaacA/h6bhZJUP7VMNinYHnCUHmRM2w3XyZwiecvjKD4CztYAxdzS8pbvB6qzQZ/SCLrkjSn6tFgQFV8MTaWWFLw1+6XLLsBm9Xfy+npYTpwyZD3fb2wHBB0O2/PIkXVIrZFyxHe5Tv0BwFYOzt4IhZ6jEK55l/GLA1rNuFFT5UOjwIc+uwzCNUVuxYOv6F1TtelO1DRsS5dkmVQ8D61+GHE5UdgdhS4qHNjGha4YBKSYWAoAX/ijR3hkAw7nIOl7mGOucrse2QvVIvvCttPwplVGmq7crhcQC0Kd3R9ZVx+A89g18ZftgaTcduqTW1eORGdCgJuLjwmZg8dLgVGwv9CDTwqJ5kh4VPZ9D+frHNY3PV3EQgtcJRhf98cacSy7H6Gz+CD4h5LMJ83ZldHYwDIO/9EnBjiIP7AYGzZO0+R7L75tB2sXfwX3qVzD6JJT8PBm+ysPBeiEscVko0UTSJvX9t2q9LqWT0gg176MuEQQevorDorJIguKQXBOaJ+twsNQD3Tnx7fO9lThWoRzBbuCYqOxN9Kw44dPOImm0f6yOBOGb2fUMnhmQijxbtXiXauLw7sUZ+PmYE0kGBoMbm8CxDP41NA1Hyn1olqSTWI0owertyLh8G9ynfgVnzoav4og/4prRg+FM4GzN4Cr4EaUrZSbLWJnVEywn/1p+75rGqIYg8JJJFs6SB0NWf+gmbIZj/4cwt74J+tQucJ9dB/ic0GcNFrVX9eKG3wpK7rpdU4cfb1ifoZNC/h3U3u9qvAiPdDfljYNpyIfwFm+GLqULOIt0UowgCIIQU+cibSCUuVu3bvj++++h1yvf5DZt2hTfffcd+vXrh82bN+P9998nkZYgCEIjvujt9JBj1SHHGvmngTWmwtxskqQ8kDUa8GdPD4V3Rbf8LjGQe7LWINKGLZf2dyUWBQIZ2esahtXB2GhExHacOQvm5ldFbKfnGPTMji2ZXCwwusgRjOGfbYaZwwkZW4FooljDRZue2QYMaOR/aN5dFP3S6MC+w4Xilsk65Nl1kUXasO20CM4VUXpzJqlE0gIAZ20Ca7vpsnVyGpecUGTRs6IlwnJR6IoIPLxle6BP66p9mwDnPHUZhvEv01a5PrHnJlg4lkGXjPjYePjPw4sAAKbmV6Jy+2vBOjWRVmskrTF3XMQEvMqRi4kp0vJVBUCY3QlnaxFxuzy7/5wKcKrKJ1mCHoqJY1AehRlKloXD8RDRd6fM9cAbYyR++HndPk0vu0rBZmAxvqV44i/FxCHFFH1YMKu3wpQ7GgCgD4k4DWBpdSMqd7wOb+EGUTkj5wUuSgYWKXFYzUVa3nlGeoycW/mjT+sKfdqrwXJDIKFZeB8RviqLjkGRU3qDpbbyQAvesC7DLTK0RtICgMB7wbB1+5gvCIJEpNUltwdnzgJnvrhOx0IQBNGQqXORds2aNWAYBo888oiqQBtAr9fj0UcfxQ033IA1a9bUwQgJgiDOD6KJEpTLSFxTWKPY/1TwlMJ95o+EzBzOOwtRsupmuI5WZ1nNnLRH1q9Vy5JMX9UxaVnZXnE/CZqYJ9HRIm6Ht1FavRrNPEa4SBv6AB3L6bOjyINr8k9LyllGW1TsHyddWHfSBbuBwce7KrFHg4fmryH+r1qwG+J7XVBLghQg2qRFrhM/qIq0Ai8fMcmERPWx+mT4VERaRh+7tYEWGJ04yt5x4GN4i7eBNWUiqf9/obO3gPvsOpStfUg+UZ4MrCEl5vGUb/gLyjf8BdlTSsEa/J6i7tOrUbbuYfDOszC3ngZb1ycjisD+bR6Br+oYjI0vRXK/mTFFPQcItzoAZwJrll6jI9EsghVLtAnDssNEWjk/+EqvgKdWFcHEMbi5kx25MmPYfMaFF9eWAgCyzCxu7WzHwj1iMTnSZ15XmJqMQUW4SCtndxAizEb87YzD3yaZIGU4WUsTNdQSLAJAoZPHbzLX0mgsqv+zsRRbz7qDSe2e6pci+a7DbReiEWl9lUehs/snMHhXCcrWPghP8RZYWk+FpcP9gM+Fsj//D1U731Dtx3n4S1RseRGewvVgTZnQZ/T1X5Ns0lWwfNUJCF6xHZQuub3mMRMEQRB+6tyT9syZMwD8BsJaad/ef4E/e/ZsrYyJIAjifCQau4PagDVIE2MU5vePyge0rij78/9EAi0AFC0bLYl+9RP5QZKXi6QN74VE2phgWC6YoEq+ASdZdqtTUGmjORTDPWmNISJtVZQ2Amqw0D6uf/5ZipfWlmoSaGOhppFh4WgRmOSyw6tR/udfVOudhxZG7CPciiTa+prCGJLEBbwHnsL1cB3/DmV/3AtBEFCy4mrNAq2/z5Qaj6t01c0A/EvIi1dcDc+ZNfCV70PFxr/CfWKZ6rb+ba6C58xq8JVH4dj7Dip3qNsvRCJcpOWszWISLZslxTdGJVWjlcC+Ei+2FXowZ4vUc9jlE4ICLQCcdvB4aV2ppF0Eu9Q6IzyJJAD45LyMQy0OmNq3Owj/7WUtjUUTMloo03A9/1QmErtcYaWC3GTXqhOuoEALyNvlhP8ORCXSlu8Pvq7Y/ioc+z+At2ijX6w9uw5V+96PKNDyzkL/eV+4/tz7M3Ady0fZH/fLtg+PomV0VrCWJprHTBAEQfipc5HWavVHtxQWFmreprjY72NosdADLUEQhFa0rq5kmfhHzAFiX9BQQh8eEoXAQ0govvL9Yp/KcwgyZZJtHScjthH42hHWLgRYFdGMs+RKhJtRTeVF3XAPQDW8YaHp+hC1pFVK7P6k4Ryr8GFIE+0P4/FOaBaKkrithQ5petX3Shiyh0S1n0iRlJ6z6yRljFE8gRQpARmrT1Ktrylqx7Pr2LcQ3KXSKNJIfWoUaXWpylHIzsNfAAD4quPgw1YHuE/9qtovX3UCfJg3t/v075rGpNinSxyswYVZ6mglzRTb48+YFtLrSOsUHRxRnoN7SryS68n2s1IfWzmS4zxxEit6GasAvvIoDI0vEZXZujwZfB0pojX8GIsFT/EW0XtdDEnQhkZx/Q3F5RMk3ysApMVgOQEAu8Im31hjuuZtfeUHgq8rt7woqitf/xjK1twdsY/yzX+XTZ7qOvq1/D7DznfO3jJuyeAIgiAuJOr8ytmuXTsAwIIFCzRvE2gb2JYgCIKIjNzDghyjm5thjmadnkZk/ekACLy2h9G6RFDIpi6EJRDyFyonnAnAOyOv/DCEJSshtKO2/NzW7WlJWf9GRuTapA/K4cnAohpDiH4Zz4jTNBOL1ik6dEqPn/BbH0xoaQkm0tGzwBUas8sbm1wW1X4En7qFA+88IylL6iOO6IxkoRGPqFTV/nXqkbqxXDO1jtnW7a8R2/gc0gjJSBHPvFyG+Rp6ZAq+8IRuKhH1KsQSfds6RYfr2tnQJ1v8u3ZFKys8MUyUVIRlMtR6Kbq4WWx/c7xRik6193wezDkxUZ/RD+aW1clDbV2eqPVxec78IXovJyZHom2qHl3Dk3ZpxCHzRca6eCg8b2M0x7s3RKQNJ3yyQwm5yWs1BI848ps1pCq0JAiCINSoc0/aCRMmYM2aNXj//fcxaNAgTJs2TbX9hx9+iPfeew8Mw+CKK66okzESBEGcD4QnobDrGZTLeOXd2KH2/Bb1GX3hObtWXKghErWuEdzyIi3vli431SbSSoWhcAw5wyO2IeRRSx5maXurpMxuYPGPIWl4aW2JKCFXPKNQp3a04YMdYj++a9tZ0SfbCDcvYOlhB34+GtkTtnumAQzD4Ol+KThc7sWZKh5eQUCnNAP+t78S+Qe1eba+MTwN3x504IfD0Xm8xoue2UbMHpWBo+Ve5Nl1EZOQBWAVBPj00b9B8FVB8Fah+Kcrqit8MhMpIYSfi5YO98HSWpyZnjVmwKeSkKu2E/BI7A7CiUGk1RpJa25+FQzXnMTpBfJRjry7FLxT6p3MR0hgJpsosoZWNxKxmo09iVv7ND12aUz49+rQNDS2ctCxDB7plYzjFT6UuHjk2nVIMbJYKnOO3d3Njrc2KyeAK/cISAkJ2NRqT5QXwU+3vjFk9EHWpD3wVRVAl9wWDFstdpqaXg59Rj94zv6h0kPsCIIA99lwkTZ6D3yWYfCXvik4XuHDo79Gl/DU4RVgN4SXxXbPYwtXaQHYe7+K8vWPRdxWdcWSxvPGVxbdqqfw+yXGkBzV9gRBEISfOo+kve+++9CoUSMIgoBbb70V48aNwxdffIHjx4/D4/HA6/Xi+PHj+OKLLzBu3DhMmzYNPM+jcePGuPfee+t6uARBEA2W8Ic+k0LSntpMRCK7PC8BRVpeKZJWRojQYlOgJVKFs+ZGbEPIE0siJx3LoGO6+OE0PBlYTbDLPFB3Sjcg165Dy2S95uX+xnPnKcMwaJ6kR58cIwY0MiHJyILTeK62TtEhx6qDWUOirtokycCiU7pBs0CrhiF7EIyNLwZnbSoqD4+uDMfnEou0+rTukjZK1ix1hZrdARCbNUo00b+cimWEt2wveJlIWt5VCEEQFO1fBFmRNvIElyrhkbQ1EGmjOSSb2nVB6w+GYZBr16FzhgEp57xo3TKrVnpkSZNohVIeFklbJTOB2lBhjWnQp3YSCbTBOnOW6rZa7ISk2/g/O1/5Pslxp48xUSnLMMiz60QJIrXg8AoQBAF8yP1XrN9tkowNlaK9S9i54K1QjqSV+17k4OU8hlUQwkRaVk8iLUEQRCzU+XSs1WrFN998g1GjRqG4uBjfffcdvvvuO8X2giAgNTUV33zzDXnSEgRBREF48Ibco4YxNqs0zcgJBYJHObqoPhB8LsVItcJvB0rKSlZMhrPZJCQPfBesMUV2Oy12B7UdnXc+oxZJq4Yx7IFbq0i7o9ANVwR9ySBzLoU+ZLMaEs4BUBUFtD7qBzwQa+Ipm7BwYeKX4IUg8Ireh+GRtHKCLGvKiNvwYoGJ5HkbUyRtfASSwm/6yI7PdfRrnPzA/5nrUjohZfgi6FM6BOvl7A4ief9GwhWWrIwJPxaiIJ7nhlvmOhJpfuRouVc0aXS4TOr9eX6iro6f/MB/7UoZ+onIKiEU59FvUPbHffBVHIbaVZE1ZUsmdaIlzcTiRKX2yYXHVxbByDFw+wS0TdXjgR5JqIzRVsfIST8rTsHXl7O3hC8kcZdPxe5Azqc7WgrmMUi7bAWMOcOCZbyHImkJgiDiQb24effo0QNbt27FlVdeCZZlz83ES/+xLIvJkydjy5Yt6NatW30MlSAIosES7kkrFzErt5wunsgJBVW7Z9fqPqPFW7Ij6m2ch79A1d53ZesEQdBkd0DEjtKS+EhIRFoND8+CIGDOFunEQnjwnNz5FepVqzVgXSniHdCe2T2Qbf581GgZVkaYU/ClFQQBvEO8VJ81yoi0RhWRNoqM6rHC1HMkbSSUPLsDeEu2o3ztQ6IyObuDmiSNFAQhrsvkT0YhvEVCTqTVRzj5lhwQe/rWly1JnaPxQljy6xTZ417wuVG66tZzifTUr9/6zP41XimUYY5+JtvlEyAA2F3swXN/lMS8b7mJP9YkH0nL6MSBTIK7RN5yJI6UrhJbC4VH0pJISxAEERv1lnKxcePGWLRoEY4cOYKPP/4Yf/nLXzB9+nRMnz4df/nLX/Dxxx/jyJEjWLhwIZo0aVJfwyQIgmiwFDrFobQj8qRiwy2d1cWBmmJqNklaWIPop9rA5yiIabvy9Y8qdOgC5BKOhWDtpLAtoQmf46RsuS6lo+p29rDlo+HniBwun4CTVVJBJzzyrWOaHqEacLqJhSVEcDVoXDZrVZk4kTuH5Qhkr2+dEnu09sVN6y9BEWtupFgnl+SL91YqtBYk56Kc/6u1s7LHY02W1GslkkgbSyStztYiqvbWzjVL6uQqEEe5ykXSclGOSdSfjIWMp3hrzP0VxFGkvb69eNJoYGMjdCygdsqHin8nKrRF0bZPTaxkgvY+/xK9t/V4PuI2bBSrINynfpOUeYu3ynoky6FP7aJ5X0pMbqOeVDASNTnOxrWUriDl7C1kPWVZfTIQtprAV34w5n1rwVe+HwJf/feR3QFBEER8qPe1lo0aNcJ118kvZyEIgiBiw+0TJJFCXTIMOFDqxdqTftGCAdAjs3YFCNnkWDFEhdUm8bZfELwVEdtYOz0c131eaOjT+8Bz+ndJeVLf11W3a2QV3/YUOnk4vYJq9KpSzpdwz2ebgcU17az4dFclDBxwQwebKIor4F8ZiV5ZyudkI6sO/RsZsaZAfRIg9ZxI2yk99vN7QOP6m0xJu+QHnP2qa/B9yvBFwddyCbEEdwkg5ysrm4xJ+l3rUzqAMabJ+6jWAWwEuwNeIbGhap8mGT9wFawd7oFj37yofSiDhHmJyn2WQoTJKzXkLGRYk7q/qRosA8TLkrpLhgF9sg1Yd8qNbAuHK1tbwTAMbHoGpW75nYQemj9pSCgIAFe3q5lgGG8srafBeWgxPGdWQ5feE5Y2t0TchktqrX0HMv60vFv7ORoxIZ8G2qbqMCLXhJ+PafuO4kWOhUOLJOljOqu3w97zBUnyMIF3g7M2PRdh7MdbcQD6jF61PNLqA5nsDgiCIOJDvYu0BEEQRPw5UeGVLATMtXF4pFcyKtw83LyAVCNbq0nDAH+CCmvXJ1G55cVgWSxLd2uTeIu0vIb+OItypCARGUNmf1TtfENUljL0YxgbX6y6XSMrBwbiRbIFlV60SFaOUAu3DQkgJ/Bc3sqKS5qZwYCRCL9aRVqTTr3dQz2TUeXhUejkwQB4f3s5thWKz6lQT9rumQZsOhN9JGZ9Jh3Tp3ZBzk1eeEu2Q5fUFoyuOoKY0ZkA1iiKkA3PKl6N9EtiFLyBc64rhK+qAKcXNo7YR7yJ5K0qeJT+PnmMTa+IegycNQ9ZVx9D6apb4Nj/YdTbhyO31DpSkjc1BJlIWtaYFnN/OhbwxSmYVs8xeKRXMhxeAQaO0eR3G5AfvbyAX49Ftjq4vr21RpMutQFrTEP66JUQPOVg9HYwbGRrAF1SG+07kPGZ9lWd0L65TNR9tDAMgzu7JeGGjjbctvRsHVwNgH8OTUOeXfkR3db5UalI6630+9KGiLS+8gNR3W8xxnQIrsIoR1v9iYTbolAkLUEQRGzUqkh75MiRuPfZtGnNDOAJgiAuBI5WiJ8+M81sUPyxxSHTejQwjFgAi+RvWNcInsiRr5r74n3+qD6iVuGsUhskLR6cBo5BhpnFGUd1hNaRcrFIW+nh4eWB5HOiqkchkpZXKDcriKxaRVotWPQsLOdsEVql6CUibWrIvmK1na5vO1uG5aBP6ypbxxpSRBGfcuec4HPBV3VcpmPlvyxRJ0/4KK+ZgqL9gzoMqwNrDhepY0PO7kDwVEAQhJgmB30yPt/hPpzRwDLh0zU1g2EYWPTiv0stYRR/LpR242m3YrRtKDnWxIyrYVgOjEICTTm4pLbRdC4p8lUe0755HETaADY9i0ZWLqokYuFwGqO31QRaJQRvJbj03gB+Cpb5yg9AiCIKnzVmwBe1SHtu/7wHvEt8zlMkLUEQRGzU6i9+8+bN4xqlxTAMvN4LJfspQRBEbBQ5fXhzk/jGPJab/njBcOLoH9exfJz5X2dkXrGtnkYkxnF4UeRGGqjc/jrK1j8GCPQ7VduwFhmveo0RQ01sOpxxVEeWvrW5HHqWQd8cI97cVIbV56wEWibr8ESfFHhll8wDfJQCj1ZP2miRC/QNeNLWZL+1HGRfI8LFOdeJH2FsPCr4vmrP2yj94wHAJxehGOUfpvD91yWlK2+Kqn1NJp7Cr9exImsdwbtQtOxSpA5fJJtUUo3wBHAAwHCx+ybXxeGtZJUCAPtK/L8TPx0VH6NtU/XYUyy9lmWY6y2NSFyJJpKWkRFpebmJF6Xt4yjSAv6JtpqItG1T9dhZpP47FXrtjgbBWwWdvaWozFt+QGJBoNqHrypyo/BtPJUo/u0muI4ukdRFe44TBEEQfmr9F18QhLj+IwiCINT59qBUmMi11WMUDitdSu4t2Q5P0ZZ6GIwUOW/TaOFdJSj783ESaOsITibaT+tS6kZW6ZLceTsqsOmMOyjQAsCBUi+WHa5SjKRNlFsSOT/dUKuCSFnmlVCyBUgEfBXihDiV2/4RfC343Chb+5CCQIuo1WdGrz3RUcIgI25pRfBGL9QEtw3xEJWLpAUA94llcBz8LOq+5ZJFyfkTa0XNhzpe2PTq+9hf4pFYkVykkBwwyxzZSqAhEI1wJ8h40vqq6ieSFgBSYhRQA3TOiDwB0lzGh1YLDKsHFybS+ioOSJJ5qRGLPYHz6FeyAi0AMGR3QBAEERO1+tQ+depU1fqSkhJ89dVXYBgGN90UXZQAQRAEIc9pmUz0besxKzTDyS9Jrdj8HFJHxCeKNVb8D4E1X/bqKlimOZJTNpkaERWMzgRdald4i88J/axeFEmpRptUPb47JBbwSl089spEr52s9Cl60o5qGn0U35AmJqw8rpyAZlrH6AXBoU1MWLSnenl7xzS9aBVTY1v04o6OBfLsDVMU4p2nVJf7c5Zc1e2tXf4PlVtfDr5P7v9W3MamhrnVTXDsnx/1dkl934C3dCeqds8Oltl7PB/zONwnf4l5W/jcwDn/YDlP2gBlq++Etd30qLqW+05NzSZFN74QbutsxyvrIwtYE1vFbqlwbTsb3tmm7FH+7w2lokh4PQsMaGTE+lMurD8lFm+tEQTfhoSx6US4jnwZsZ1cpHQ0oiPDyQvesZJZQ6G8TYoOndOl9jShXNlGm7Bs7fyEaHIqqe/rYPR2URvBUwGB1+5Hbu3yBEpX3qi5PQCUb3hKsS7enz9BEMSFQq2KtO+//75q/fbt2/HVV19paksQBEFoIzzrPAD0VMkYX9soZViOOYt4HPF7WcYm0BqbXBZ8zTAaf05ZI+y9X4lpf4SYpH4zUbryJvDuEth7vaw5iVC/HCN6Zhmw4bT44fWUzOSGm5dfstwlQx+Tt/PkNhYcK/fiRKUPOgao8grBo693tgHDcqN/qM2ycJjS3oov9lYh1cTixjCh9+KmZmw545YIA5c1N6N5kg4f7qxApUd8DtzfPemcZ2fDI1JENaNTF9etHe6H5/Tv8BSuh6n51TDmjo3n8BSxdftrVCIto7PC0OgimFvdBN5TCk/RJniLt8LceioM2UNiHochZxg8hetj2lbg3WBgOufNHV2ys4jIiE26tB4xd9ct04DGYR6jRo6B65xpqIEFWqfocVnz2C0VhjQxYvMZN9adkj8mQ72xAX8UpUnH4vr2Nqw/VS1yP9UvpdaTfNYl9p4vwFe+D77y/bC0v08kNoYiJ8xHE+nNyKziqQk1nexONXK4voMNr64vRZHT/91nmFn4eKDCw2NsCwtap2jbh7XjA/CcWQ1P4Z/+61ST0XCfXhXWStC85MPS/l4Yc0aoN+JMgE88yajqf12DiH6CIIgLmcR0oScIgiBiJjzwb0p7K7gYlzzHA6UldL7Ko3U8Eilq0V6hGBtfCkOji1D+5xPVhUxIVI1Gb8SsK/eCs+ZFM0RCAWPOUGRddSjq7XQsg8d6J+O6b8WJiGRFWp8AT9gJZdMz+Gu/1Kj3C/iT/7w8JPaM9Epc3sqKy1vJR2BZ9Cye7p8Kt0+ATxDAMQxYBsEM9MNyTeAFaMpI3xCIJnJMDs7SCOmjaxBNGiO6pDZIHfElin+eGLEto7cj5/pq33HWmIKMsavjM5CaWCXwfjFS8JQinkm5/H2LJxks7e6skXCpYxn8e3g6BEGAyycEE2vGE5OOxaO9/b9/5W4ety07q9q+5bkEho1tOiwYmxX38SQK+pQOyLy82u5IUaT1SKOQhTAbk+SBc1H6+x3yO4q3SKsgoLKMvDd4OElGFilGFrNGZtR4LLLXqbBz179SSH1gupTOyLxiKwD55HwBbN1nwNb1rzg5XywdsPpk+JSSpZJISxBEAyFwP/G3v/0NM2bMqN/BoA48aQmCIIi6pcQljs6p74g4pQy/vorDNepX8DrhrTgMwRe7KMNrzWTMsJIHDm/prhCRV5sgIfCxJx0h4gfLMCLfVkDeJsTlEyR2B7F6vNY3Bo6BWcfCwDEiQZZlmPNCoPVVFQAABLVzOs6iTdzReq2W8eqMGxptW2Q5dy3WOvkVsbvK43Cf/h2C1yEV3+P0XTIMUysCbTh6DbtolXKBxs4oTHIKXmkCvPBIWtaco9it5hUuGkkyskiX8aVNMWo7fuy1blkh7l9wFUZeWRBiScAwyucUw5nBsJzE55dR8YVOZF9z4sJhxYoVYBhG9p/FYkFeXh7GjRuH9957Dy6XttwGBFHbkEhLEARxHvHbcScOlIqTV9VSUnnNsHp5u4OaRFp5Kw7jzNfdcGZxc5zN7wefTOZvLWgWE2REWl/5fpz6NB3OI18DGpNWUWKxxMESJtJWeKTHo1+kFZdpEVuIuuf0wsYoWn4FCr8bqthGzuMyodAYeSaXUClehEesRretX0it2j0nYtuydY+q1lds+ydOL8pF4beDcPIjC7wlO0X1DFt/Fj6xoGUipFVygk8i1BKMTt7313nkK0lZuEirek7XwqRMtkXqSxuwLohEba9oYmSuH0U/RLAwYEOEbJXPK2BPxSjez8kNiH4sicTG4XDg2LFjyM/Px6233opevXrh0KFD9T0sgiCRliAI4nxBEAR8sksaeVLfQXJKkbQ1oXLry/CV7QEAeIs2wbFvXkz9CFGItAwjnzSk9Pc7gst8iYZDeCStHC6fAHdYJO35EHV6vuI6KhV1QuGs6knD6hu55d1y6GzNa20M4ZFyUXFusqpy+z8jNq3c/i9FyxuB96F8/WOiMs/p38SNEj0qOoxIk6VmHRNTkr/zAc7cSLbceWihpCzc7kBdpI1/ZHIbGV/athoioOtkci8WUTRkGzUP30AC2PD7Od6tdg9Fv5VEYnHXXXdh69atwX/Lly/HG2+8gdxc/73B9u3bMWHCBPh8tOqNqF9IpCUIgjhPqPAIKJSJ6NAiRtUmnLUpGJmkTqylccx9hmYyByD2io0CreKqLrWLoijgzybvkK0LhbM2A2dvFdX4iNpDi21BmZuXREnZY0gYRsQXa5f/i2m7pL7/ifNI4kukpckBzK2n1doYrB0fiHlbwefU/DcAgOv497LlvqpjEbdVXqGRmETyz22VrKt3a6L6InnALE3tBN4HwVMmKmMMyTA2lfdx1tla1nhs4VzSzIxQd4zO6Xp0zzJG3K5/o8htakpASI0Gz+nfq9+oiLSm5lcBADiT2CuZV8stQJG0RIKRlZWFzp07B/9ddNFFuP/++7Fjxw40b94cALB161Z8+eWX9TtQ4oKHrp4EQRDnCXKJjwAguZ5FJYbVIXXopzLltf/QEhFB/JnpM/rC2vEhsKZsMDobGEMqTM0mw9bl/1QjdgSFxBm6lM7QJXeALq0HUoZ+eF5l6G7oaAmILXcLOF4htqiQW+5K1C3GRqOi3sbU4joYGkVY+lvvaLs+WDvcW2sj4CyNkTzoPXBJ7VTbGbKHScoEnxO+quNR7E3+7/VVHIq4JWuqefKluuaatspRyp3SG5Z9QzzRZw2CrcdzEdvJ/c6yxjQk9/+vbHtGZ5ItrwkZZg53dklCYyuH9ml63NzJjjEtzBjU2IhMM4vxLS2Y3sUuOrK7Zhgwpb0t7mMJh5WZDI+EudWNwddK9yf23q/6J6oBcLYWUfRO9ztEw8But+Ovf/1r8P2PP/5Yj6MhCBJpJTzxxBMiQ+kVK1ZE3Oa7777DxIkTkZubC6PRiNzcXEycOBHfffdd7Q+YIAjiHCcrFURajUktahNjk0uQOupbUVlNvA/jhcTbkdUjqe9ryL72JHJuKEfOlCKkjlgEVm8XJdgIJ1yYMDa5DI2mCci8YisyJ+5A5oQNMGQPqY0/gYgRra4Fu4vEx2kWibT1j4L1iByctSkaTROQOuwTWc/Ghoa954uKHp7xwtLmZmRN2qVYnz76V6SPXgHGmC4qF3xORQsDeRRE2vKDEbdkjQ1PpO2epSzEds64cEVahmFg7/bXiO3kEn2yhlRwFnm7hNpiSK4J/x6ejmcHpCLXroNZx+L+Hsl486IM3NDBhouamvHZ2CwsOPfvqX4pSDPV/u+G3IqlSLCmbNV6S7s7Yev8aFDA5exRRCfTpDTRgOjSpUvw9dGjyr9jP//8M6ZOnYqWLVvCYrEgKSkJXbp0wWOPPYYTJ05o2teqVatw2223oV27dkhKSoLBYEBubi7GjRuH//73vygpKVHcdsmSJZg8eXJQd0pPT8eAAQPw8ssvo6JCankHAK1atQLDMBg0aFDEsR0/fhwcx4FhGDz++OOybUpLS/HSSy9h0KBByMzMhMFgQKNGjTB+/HgsXrwYgqCccySgsc2YMQMA8NNPP+Gqq65CXl4e9Hp9MKI5lJMnT+Kpp55C7969kZaWBqPRiLy8PFx99dWaBfVPPvkEw4cPR2pqKmw2Gzp37oy//e1vqp91fXKBphGVZ9OmTXjttdc0t+d5HnfccQfeffddUfnx48dx/Phx/O9//8Ntt92GOXPmgGUb/oMBQRCJzcbT8stME0GkBaR+Z7yGJa0AwDvPwlu2B7qUTmCV/G1jjMr1lYqFCDURJxqRtka+jkSdwGl8gDxWIZ78yCGRtv6J4uFf8DlrcSBxRsvflQBerKylCQC/H2joo5jr2Deo3P4vzf0IvAe+ymPwVRyGPr1XMPLRV6FBpDVlRjXmRMCoYExr4hi0TKZHskhIEn1yZjC6BE8GWIfEdN8RaeKKER+XnD2KSNrzYFKMuHAwGKonyvR66e+s0+nEzTffjM8++0xSt23bNmzbtg2zZs3Cp59+ivHjx8vuw+Fw4NZbb8Wnn0pXFwb0o/z8fJw5cyYoYobuf8qUKRIrhqKiIqxZswZr1qzBzJkzkZ+fj+7du4vaTJkyBc8//zxWr16NQ4cOyQqhAT799FPwvD+A5frrr5fUL1++HNdccw0KC8WTZidPnsQ333yDb775BmPGjMGCBQtgs6mvIHjqqafw4osvqrb5+OOPMX36dFRWVorKjx07hkWLFmHRokW49dZbMXv2bOh00t9Rr9eLKVOmYNGiRaLy7du3Y/v27fjoo48SMnK6Vu8I/v73v6vWnz5dnY07UtsAzzzzTI3GpERAcPV6vcjKyhKNTYmnnnoqKND26NEDjz/+OFq1aoX9+/fjlVdewcaNG/HOO+8gMzMz4gFIEARRE74/VIXfTsiLtEmJ4qEpIy44Di6EucXVipt4S3ah8Pvh4J2nwFmbIn3Mb+CseZJ2agKqElV73kHljtfDO1LeQGUfzoPiGy4SaROfWPN/USRtw6JBibQq0ScBGKb+xTzO7PcTD7/uRiPQAkDZmrtQtuZuAAJ0ad2RMWY1GJ1Jm0jbACNplUTaDml6SkiogYqt4mcpNiyS+0InNjsl9WtO+OS6Lgq7A4bsDogGxM6dO4Ovw0VMQRAwefJk5OfnAwDGjx+Pq6++Gi1btgTLsli7di3+9a9/4ciRI5g8eTJWrVqF3r17i/rgeR6XX345li1bBgBo06YN7r77bvTu3RsWiwUFBQX4/fffsXChNGEiAEydOjUo0Hbr1g2PPPIIOnTogKKiInz22WeYN28eTpw4gZEjR2LLli1o0qRJcNvrr78ezz//vD/B9Cef4Mknn1T8HD755BMAQKdOndCtWzdR3apVqzB69Gh4PB5kZ2fjvvvuQ7du3dC4cWOcOHECCxYswEcffYRvv/0WU6dOxeeff664ny+++AJbt25Fly5d8NBDD6Fz585wOBzYtGlTsM3ChQtx4403QhAEtGzZEvfeey86qIf7TAAAceRJREFUduyIzMxMHDp0CO+++y6+/fZbvPvuu0hKSpINtnz00UeDAm27du3w+OOPo2vXrigtLcWiRYvw9ttv45prrlEcZ31Rq3d6M2bMiPiDEah/9tlnNfVZWyLtf/7zH6xbtw7t27fHxIkT8dJLL6m237NnD/75T3/22t69e+PXX3+F2eyfze3Tpw8mTJiAYcOGYf369Xj11Vdxyy23oHXr1rUydoIgiPe3yy9xARInG72cB23JL9eoirTlW54D7zwFAPBVHkHF1pdl/ecYLvpI2rJ1j0jKBN6t2D6aJca1vRyZqDnSFHvayLaSSFvfsDrt/o6Cp7wWRxJfFFcKhJIA0WmBiNf4RDH6RSJv0Sa4jn8PU7MrNHnSMqaGJ9AZFH6LO13AVgehsJZcyQobQRCCz4quo0tEdbzrbPC1PnMAPGdW1/4gzzcE9Sz2rDlH9D46u4P6v1Y1VHiBR6Grqr6HUWekGy1g6/F48fl8ePXVV4PvJ0+eLKp/5513kJ+fD71ej6+//hqXXXaZqL5///648cYbMWTIEGzfvh0PPvggfvvtN1GbN998MyjQTpw4EZ9++imMRvGzy9ixY/Hcc8+hoKBAVJ6fnx8Ub0eOHIlvv/1WFPl7ySWXYMCAAbjjjjtQVFSEhx9+GAsWLAjWt2/fHj179sSGDRtURdpdu3Zh48aNAKRRtB6PBzfccAM8Hg8uu+wyfP7557BYqp91evbsiXHjxmHo0KG444478MUXX2DZsmW4+OKLZfe1detWjBw5Evn5+aLPYejQoQCAs2fP4o477oAgCLjlllswZ84cUaRsz549MWnSpGA07htvvIHp06ejXbt2on3MnDkz2P6XX34RRfeOHDkSAwcOxNSpU2XHWJ/U+nS8midFtNRWwpUjR47g6aefBgDMnj0bP//8c8RtXn/9dXi9/mQiM2fODAq0ASwWC2bOnIkBAwbA6/Xi3//+N/77X3lje4IgiNqil4oHXl2jS+0c9TbOA5+I3lftektBpI0+kjY8SzQQluk4DH1qN8U6yXgokjbhifVxINmQGJMeFzK69B5RtI7ffWhtY8wbB8aYBiF8WXc9YWl7B6r2zBWVmVpOCb7Wct01tbhOstJACcehBX6R1nlGtR2X1LZBRtIqOZ91SKt/C4tEILnff1D88yRxoeAFGL28h31IlHxyv5k4+0115Jqt29O1NcyExtL+HlTtiuJ5Mywy39T8KjgPnVsWzBphaTddVM+aNfr/sgYweg2TToQsha4qZH06o76HUWecvm4GMk21n1wvnDNnzmDr1q145plnguLk5MmTMXjw4GAbQRDwj3/8AwBw//33SwTaAKmpqXj11VcxZswYrFq1Cnv37kWbNm0A+KNoAyJwbm4u5s+fLxFoA7AsK4qCBRDUkPR6Pd5//32RQBvg9ttvx8KFC/Hjjz/iiy++QEFBARo1qj5fr7/+emzYsAHbt2/H5s2bJVGygN9aAPBrblOmTBHVffbZZzh06BBMJhPmz58vEmjDx/HOO+9g7dq1mDdvnqJIy7Is3nnnHcXPYdasWSgtLUWTJk3w1ltvyVoZAP5Azw8++ADHjx/H/Pnz8cILLwTrZs+eHbRumDt3rqz9wk033YTPPvss4XJJ1apIq0XsTATuueceVFRUYOrUqRg2bFjEcQuCgK+++gqAf2aif//+su369++Pdu3aYffu3fjqq6/w5ptvUmZvgiDqjKZ2Drd3sdf3MIKwevkbsNBImZiJUqQVvA7Zcls35dUarDEFqaO+Q/GPoyP2T5G0iU+GmQMgffBPMbIoccnH2T7cM4l+xxMAhmGRPmY1Cr8dELltAxIKGFaPtFHfojBf/r4SAAw5w+psPPZe/4Ag+ODY67f2Mre6EfZerwTrtYi0KUM/QmV6L5SvfzRi24DPrOA8q9oudcQX59V52Mxe/xYWiYAuvaekTPC5wLB68E5p0rBQ9Bm9kDzoXTj2fQBdWjfYuvxfbQ0zobH3eA6CzwVf2V6wlsaiCRJ7r3+g/M8nRO3Dz+Gkfm+CYY3wOQpg6/J/kuh+reedLqk1GJZWnRCJxbPPPqu4ettiseDOO+/Eyy+/LCrfsWMH9u/fD0AaYRtOIAoUAFavXh0UaTdt2oRjx/yrBG6//faIXq2heL1e/PLLLwD8EbN5eVLLtwC33347fvzxR3i9XqxYsQLXXXddsO7aa6/FY489Bp7n8cknn8iKtAGv3EGDBqFZs2aiuq+//hoAMGzYMGRmqnvCDx06FGvXrsXq1cqrGwYNGqTqjRvY37hx4xSFXADQ6XQYMGAAFi9eLNlfwGu2S5cu6NWrl2Ift9xyy4Ul0g4bVnc3krGycOFCfPPNN0hLSwvaF0Ti4MGDwex9kf7GYcOGYffu3Th+/DgOHTqEFi2iMFwnCIKoAS8MSoNBwQMvkRC8FWD0NROTo42k5d3FsuVyfrehmHIvQ6NpAgrmRbDyoUjahCfTLB/W9uKgVNz9k7wg0DaVIt4SBUOWspApIsJy3kTDkNkPhkYXwV3wk2x9XV5bWGMKUga9g5RB78g34NTtDnTJHcAwLGydH4Gt8yM4+UkqBHeJYnuG4SAIPHi3ciQxZ28FfWonLcNPOOR+NVKMLPQN4He6LmBYmZU/5yyIeJc0upo1ZYveW9rcAkubW2plbA0F1piKlEFvVxcMq16NxLvLZERasfjBmbOQMvTDGo+DS2oXuRFBJBDdu3fH/fffL0katn79+uDrAQMiTwwHOHnyZPB1IEoXAIYMGRLVuA4cOICqKr/1Rb9+/VTbhtZv27ZNVNe4cWOMGDECy5cvx6effoqXX35ZNOnyxx9/BMVouYRhgc/hhx9+0DxZE/oZhNO1a1fFOp/PF/SmnTNnDubMmRP1/lwuF/bu3QvAb0WqRt++fTX1X5dc0GYxJSUleOCBBwAA//jHP5CRoW3p1I4dO4Kv27dvr9o2tD7UkJogCKK2aQgCLSDO2Ow+vRqVO2eicscbcBzQtkQWALzFW+A49DkEb1WwH+fhLyF45ZMGuU+tlC1nDKlRjFwZiqRNfDIVEoApJfcBAKv+gr5tapAIXmW/7kSFURE/E+naEmlyjAlL7KRLaqPa3nFoMQRXMSAoO0YrTbA1VFomUxRtADlvecHnT4jKy0RXM1o8nIkgsiJ4DFZRWtAlta2VfgmiJtx1113YunUrtm7dio0bN2LJkiWYOnUqWJbF77//juHDh+PMGfGEkJZk8nIEhFXA768aINSCQAtFRdXPSFlZWaptc3KqPaRDtwsQEF+PHj2KX3/9VVQXsDrQ6/W46qqrJNvG8jk4HPKrFgG/PYQSRUVFQVvRaAj9zIuLi4O2q5E+t+zsbNX6+uCCvjN4/PHHcfLkSQwaNAi33nqr5u0C4eqA31dEjdCQ9KNHj0Y9xtB9yRFuLE0QBNHQEFxFgK0ZKnfPQdnqOyO3P/fQFk7Jiskw5IyAqekVKFvrn4DTp/dC+ri1YEISEjiPfY+SX66V7YM1psXwF0ihSNrEJ90cvUhLGi1RF6iLtIlzbVEbJyDNDB8e+RgOX3UMpavvUG2TKH69sSB3ZSGRNgQZETHwe+8+vUpSl0jnQoOAla4EkUvoGg90yRRJWxPSjRacvm5GfQ+jzkg31s3kY1ZWFjp3rs6P0b17d4wbNw4jRozAtGnTcOjQIdx2221BW0vAH9UZYMmSJapL9MP3FW9qavNz5ZVX4u6774bT6cQnn3wSXBHu8/mCickuu+wypKdLE3MGPofRo0fjlVdekdRHC8cp26GEfua33XZbMKgyEnJevUDt5bWqTS7YO4OVK1finXfegU6nw+zZs6P68srLqzMFR/IUsVqrbyAqKqKP5lDzHSEIglDCrEvMHyQuqR18ZbtFZYHIqKrdszX1Ub5phmKd++TPcJ+s9hX3FP4J17HvYMobGywrW3OX8vgsjTWNIRI1tW8gap8chUhanYoQ2xBv9M5nGH2SbALAUHQpDW9pPKPg3w0kViRtJHQpHUTv9em94Dr2jeo2zsNfqNbrMxJvWaJWWJnrR4e0xEnuWd/IRdIG7Q4qpUEr+ozekjJCGTmP2EgWT7FCkbQ1g2XYekmkdaEydepULFmyBJ9//jm+/vpr/PTTT7jooosAQCRYpqSkiERerYSu1i4oKIi4EjuUtLTq4JFTp06ptg1d7h+6XYCkpCSMGzcOixcvxuLFi/Hmm29Cr9dj+fLlwb7lrA4A/+dw4sQJuN3umD6DaAgduyAIMe0vJSUl+DrS5xapvj64IGNC3G437rjjDgiCgIceeijqL97prF4+q6TYBwg1OlYL+SYIgogVl0+avfzK1okZYWJtf7ekLBAp46vUttogPNt4JNynfhG991UcUmzLaXywsPf6h2q9IXOgpn6I+iNLRqS9t5s/MVh7yrbeILB0uDdim6Q+/6qDkcQXQ84I2XLWmCGJTq1PvCVbVettXf8qem/t9FCN92nv+WKN+6gvTDoGrVOq42NybRw6pifO91nvMDqExxsLvP/+gNFL72nsKok+CXmMueOCr1lzIxhzx0Tdh6mF/EqkUBhDStT9EkR98uKLLwajO5988slgeY8ePYKvV62SRvRroWfP6qSI4TYDkWjZsiUsFv/k7B9//KHadu3atcHXSvpWQIQtKioKJssKWB3Y7XZMmDBBdrvA57B+/Xq43e4o/oLoMRgM6NTJP8Ee62duMpmCidvWrVun2jZSfX1wQYq0L774Inbt2oWmTZvib3/7W9Tbm0zV/j2RDlKXq3pZrtmsvixMjqNHj6r+Cz0ZCYK4MCl3S/37RuTVjs9YTZEVVc5FyjCMtkzAgifaVQnaoh8zJ+3RHClp7fSwaj1nbaKpH6J+eXVI9Wz9oMZGDG7in1h9rDd5HTYE7N1nQJfWQ7ZOn94bKUM+grHJpXU8qppjbnUjkvrNhKHxJcEyztYCmRMTK7eBuaV8xA0ApF2yDJxF7L3HGpKRPlreD1wLyYPehbHxyJi3TwQe65WMi5uacVGeCY/1TpaNrr1QYRhGYnkQmMQVeI+onLO3BGdVt5wjpKQMmQ9Lhwdgbn0z0i9bAYaNflFt8sDIE+WJNJlEEFpo27Ytrr76agB+MXTZsmUA/AJrwN5y7ty5omA9rXTr1i24Ovqdd96JanW1TqcL2hIsW7ZM1QrznXfeCW4zfPhw2TZjxowJ+sF+/PHHcDqd+PLLLwEAEydOVNSrAuJtaWkp3n//fc3jj5XA/nbt2oUffvghpj5GjRoFAEEPYiXee++9mPqvTS44kXbXrl146aWXAAAzZ84U2RFoxW6vXsYa6SSrrKwMvo5kjSBHbm6u6r9ozacJgjj/qAgTaRkAFn1iPvgxDAtdsngJrHBOpA38HxGt7ar3GrGFtcv/RUxqI+qR1cHe5zX5OrI6aDA0TdJhwdgsLBibhft7JAdFehuZzzYIGFaPpF4vy9aljFgMcytlETGRYRgG1g73Iv2SH9BomoBG0wRkTT4A1qQtwW2doeBnyVmbwth4lGydIXswOHsr7bswZQU/A0ubW2IaZiKRYuJwWxc7pndNQo71gnWdU0RieRD4vQ8TaY1NLqujEZ1fsMZUJPd7HSmD34MuOTZLAlZvl0TJSxvRsU00PJ588sngfeDzzz8PAGBZNhhZe+DAAdx0002iILxwysrK8Oabb4rKWJbFY489BsCfb+imm25SDPTjeR4nTpwQld1zzz0A/MGBt956Kzwej2S79957D0uXLgUATJo0SVEjMhgMmDx5MgC/x+4nn3wStPJUsjoA/JYQAaH50UcfjRgR/Ntvv+GXX35RbaPGAw88ENTObr75Zmzfvl21fX5+PrZs2SIqmz59evD7vOOOO0S6XICPP/4Y3377bczjrC0uuCvov//9b7jdbrRs2RJVVVX47LPPJG22bdsWfP3TTz8F/T3Gjx8Pq9UqShYWKbFXaLIw8pclCKI2KPeI7Q5seiaxo3PCH8J850RaX/Sz05pgIgtukRLgyKFX8Lpk9BSFSRB1BaOTP3eZWspaTlSjFC0Xaakza86Br3y/1p1EOSqiIcNwRggh+kMgktZ55KuwhhSpWZ8k3IQRQcSBzp07Y8KECfjqq6/w66+/4rfffsPgwYNx5513YtmyZfjyyy+xaNEibNiwAdOnT0ffvn2RnJyMsrIy7Nq1CytWrMDXX38Nk8mEe+8Vrxy85557sGTJkmA/Xbp0wd13343evXvDYrHg5MmTWLNmDT799FNMmTIFM2bMCG47duxYXHXVVVi0aBGWLl2K/v374+GHH0b79u1RXFyMzz77LBgNmpaWhtdekw8iCXD99dfj7bffhsPhwCOPPAIAyM7OxsiRyitVjEYjFi5ciOHDh6OiogIXXXQRrr32WlxxxRVo0aIFeJ5HQUEB/vzzT3z55ZfYunUrZs6cGYwCjpbs7Gx88MEHmDx5MgoKCtC7d29MmzYNo0ePRm5uLjweD44dO4a1a9di8eLFOHDgAJYsWYKuXbsG++jWrRvuuecevPnmm1i/fj169+6NJ554Al26dEFpaSkWLVqEuXPnonfv3li/fn1M46wtLjiRNjDzceDAAVx33XUR2z/33HPB1wcPHoTVakXHjh2DZbt27VLdPrS+Q4cOKi0JgiBiIzyS1mZI7IdaJmw5o/vUSphaTgFqTaSNLFjHIugoJSRSS/pDEEScUZhgIZG2DmDl8zKwEURazpwNaRyQAhptcIjzhPBjinejcvcc8I4CUTEtp69fWFOmegPBp15PEAnKU089ha++8k8KPffcc/jhhx/AMAwWLFiABx54ALNnz8b+/fvx+OOPK/aRlZUlKWNZFv/73/8wdepULF68GHv27MGDDz6oeVzz58+H1+vFl19+iQ0bNuCGG26QtGncuDHy8/PRpIm65drQoUORl5eHo0ePoqSkBABw7bXXBj15lejfvz9WrFiBq6++GkePHsXHH38c9LOVIykpKfIfpsKkSZPw1VdfYdq0aSgqKsLs2bMxe7Z8kmmWZWVXyL/22ms4ceIEvvjiC+zatQs333yzqL5FixZYsGABWrXSvsKnLkjsJ/kEpUWLFmjc2J8BPFIYdyAUvEmTJmjevHltD40giAuQSq80kjaREbxVove8pzRihvaawGj4qYtFWGUtjWXLjY0uirovIvFoZOVU3xOJgVIUPKOwFJ+IH3LJnACAMabLlgcw5Gi/Rmr1KifOD8LtDgSfC5XbXpE25NQTNxO1SySRltHRZDXRMOnTpw8uvvhiAMDSpUuDSaX0ej3eeustbN68Gffddx+6dOmC5ORkcByH5ORkdO/eHbfeeisWL16MnTvl/eMtFgsWLVqEn376CTfeeCNatGgBs9kMg8GAvLw8jB8/HnPmzAlGt4ZiMpnwxRdf4Ouvv8akSZPQuHFjGAwGpKamol+/fnjppZewe/dudO/ePeLfyDCMJFhRzeoglP79+2Pv3r2YPXs2xo4dGxyHyWRCXl4eLrnkErzwwgvYtWsXbrrpJk19qjF+/HgcPHgQ//znP3HRRRchOzsber0eZrMZLVq0wLhx4/Daa6/h0KFDGDFCmnRVr9fj888/x4cffoghQ4YgOTkZFosFHTp0wJNPPok///wTLVu2rPE44w0jCII0LfgFzowZM/Dss88CAH7++WdZ4+W7774bs2bNAgCsXr0a/fv3l7RZs2YNBgwYEGz/3//+N+5jPXbsWNBG4ejRoyIrBoIgLgy+P1SF97dX+2N3TNPjbwNS63FE6hTME4vIlnZ3wtzmVhR+06dW9pfUfxas7e9U3D/gTxoWjSdtgMLvR8B9coWoLOvqAnCWnKj7IhKLbw5U4cOd1efVLZ1suLS5pR5HRMjBu4px6tM0SXnOVF5zIkAiNnyVR3F6UVNJefKg92FpM01xO8HrwOnFzcE7T0fchz5rIDLGxJbdmWh4nPmyI7yl1QJHyvCFKFlxtaSdrdvfYO8xow5HRoTiKdyEs0vkkzYasochffSKuh1QHVOT5++9e/fC6/VCp9MFs88TBNGwifd5TZG0MfLggw8GQ8Lvu+8+OBwOUb3D4cB9990HwJ9hL5pwdoIgiGjwid0OwCX4ld3a8UHRe4F3w1e6u9b2J7iLQ/YlvwQvFoEWANIu/h6m5lf53zAsMi7fSgLtecLYFmbc2dWOi/JMuLubHZc0i963mKh9lPxPSaCtfTirfK4FNYEW8PsIp4/9A9bOTyCp7+uAytJ1XRRJxojzgDC7A77qhEI7sjuoT5QiaW09/o7UkV/X8WgIgiDOLy44T9p40bZtWzz22GN4+eWXsX79egwaNAhPPPEEWrVqhf379+Mf//gHNm7cCAB47LHHaKaMIIhawxe2IIJLdHEifBmyzw1vqbq/d00IjdYS3CVx7ZvhjEgdvjCufRKJAcMwGJFnxog8EmcTGRJj6xfGkBLTdVVnb46k3i8DALzlB1C18z+y7TgSaS8owu0OvCXyy4bJk7Z+UUocZu/2dB2PhCAI4vyDRNoa8MILL+D06dN47733sHHjRlx77bWSNrfeeiuef/75ehgdQRDnC6tPOLG3xINumQbsL/HCywu4rIUFSecShP15yi1qzyW4ZsGEeck5DnwEfdbAWttf5Y7X4as6DlfBcgiuolrbD0EQxIUGwxpQc9805R8tEmkvLMJF2qo9c2Tb8a7CuhgOoUD490QQBEHEDxJpawDLsnj33Xdx5ZVXYu7cuVi3bh3Onj2LjIwM9OnTB9OnT8fo0aPre5gEQTRgfjvuxMxN/qRa+QerbVXWn3bjlSFp2HbWjV3F4jzZbKJHlslkBPec/r1Wd+k8tKhW+ycIoh7hzIDPEbkdEX9krufRohYNzVko18IFhcbjyVuLFkkEQRAEUZ+QSCvDjBkzMGPGDM3tx4wZgzFjxtTegAiCuGBZvLdStvxwmRcFlV6sOuGU1OkS3JOWYeinhyCI+GFpexuqds4MvueS2tXjaC4szM0no3LH68H3jN4edR+MzqpYp0um7/JCguFMmtoZcykIhiAIgjg/SfBHeYIgiAubgkr5RFcA4PEBZx3Sej2b2JG0hkYX1fcQRCQPmV/fQyAIogbYujwpEvrs3WfU32AuMKxd/k8kzCYPmBt1H8amlyvWcZZGMY2LaJiwhtSIbRhjGkxNJ9bBaAg1rJ0fF723dX+2nkZCEARxfkHhTARBEA0Uf8SsVJDVJ/j0my65fdz6MuQMh/vkihr1YWl1Y3wGQxBEvcBZcpBxxXa4Dn8JXVpXGBNsIuh8hjNnI+PyrXAd+Qq61C4wNhoRdR+GjD7+Ze682F/d3uvleA2TaCAwxnT1ekMqMsb9Cc6cVUcjIpRI6v0PcOZGqNj+Kmxd/wpLuzvre0gEQRDnBQn+KE8QBEGoIWflp0vwSFotWZnlksUYc8dKyswtb4CtBlFznK15zNsSBJE46GzNYO30IAm09YDO1gzWjvfHJNAGMOQMk5Rpiaokzi9YY5pqva3z49DZm9fNYIiIWDs9iOyrj8Pa/i5Vb2mCIAhCOxRJSxAEkYDwgiBKFCaHAGDzGbekPNE9aaFBpGU4s7TMkCIt01nAmjJjHgqjs8S8LUEQBBEfWH2SpIzR2+phJER9wkaKpNXoWUsQBEEQDRUSaQmCIBKQ5Uec+GhnhWqb/SUe2fJE96QFw0VsIgheSRmrINIyPlfsQ1FJWEMQBEHUDXIJx+j6fOERSaQFibQEQRDEeQ6JtARBEAnIL8fUo2gBYMtZaRQtAHAJHkmrZUmcr3SXpIw1ZkjLTJlgTdkxj0Wf0SfmbQmCIIj4wJpzpGUm8h290Ii0MobhjHU0EoIgCIKoHxL8UZ4gCOLCZG+JNJI0nDMOvg5GkjiYWlwNQ06156EurTv0GX2hz+wrK+BqwdLm9ngNjyAIgogRc8spYHTV9ga6tB40iXYBoktqo1pPIi1BEARxvkORtARBEA2UQodPvkKo23HEG2PTK+A68j9JOWtIRdqofLiOfw+B98CYOxoM6/8Zy5x8EBUbn0bljtcj74A1wtJ6GqxdHofO3jK+gycIgiCiRp/aBRmXb4W7YDkYvQ3G3DHB6ztx4cBacyM0IJGWIAiCOL+hux+CIIgGSqFTPpK2ocfXcjLLXgGAYQ1gdGaYmk2U1LF6G6wdH9Ik0qYM/Qjm5pNrOkyCIAgijujszaGz31rfwyDqEYZRX+TJcIY6GglBEARB1A9kd0AQBNFA4ZUiZhtCJK3Kg5iidUGkZY4avG79u9ZrakcQBEEQRB3DKMcQMRRJSxAEQZznkEhLEASRYLh9NVNZG4JGC4ZTrGJN8iItw0aKoNEm0iJiPwRBEARB1Ae65HbKlfT7TRAEQZznkEhLEASRYBQ5FbxmNdIzK/EjTSxtblOs46zNYGg0UloRIQJWa/KwyGIvQRAEQRD1gbXz44p1lDiMIAiCON8hkZYgCCLBOFkZu0jbM8uAtqmJbzduaX8XGH2ypFyX1h3GJpcgqe/ronJrp0fBRLAzYHQm2Lo/G3zPJbeXb6e3Rz9ggiAIgiBqHXPL66HP7C9bR5OsBEEQxPlO4j/JEwRBXGAURCnS3trZhvapBrh5AS2TdRHFzERAn9oFWVfuh/vsWujsLeGrOg6AgSGzPxidGfrUzsi+9gwchxbDkNEH+oxemvq1d38GpmZXAoIPvqoTKP5xtKQNibQEQRAEkZgwLIf00b+hYssLqNj0N3ElRdISBEEQ5zkUSUsQBJFgnKqKTqQdnmtG0yQdWqfowTYAgTYAa0qHKXc0dMntYGx0EYyNRoDRmUPqM2Btf6dmgTaAPrUT9GldwbDyvrcsibQEQRAEkbAwLAdjoxEy5RRJSxAEEQ0Mw4BhGMyYMaO+h0JohCJpCYIgEoxoImntBgYGruEIs3WL/DwkRdISBEEQRIIjJ8iy9OhKEIR2VqxYgREjpBM+HMchKSkJycnJyMvLQ69evTB48GCMHz8eBgNNBhH1C0XSEgRBJBjRRNKmm+SjRQkAjPxnw+hsdTwQgiAIgiCiQTZqlvfW/UAIgjjv8Pl8KC4uxqFDh7By5Uq8/vrrmDx5MnJzc/H888/D66VrDVF/0HQkQRBEglHh5mXLkwwMytyCqKzYJd+WADhrE2kha1C0QSAIgiAIIjHQJbcTF7B6cLZm9TMYgiAaPHfddRfuvvvu4PuKigoUFxdjy5YtWL58OX788UecOXMGTz/9NJYsWYJvvvkGmZmZ9Thi4kKFImkJgiASDDnZNdfG4fr20gjQvtmUREMJzt4a5lY3isqSB75dT6MhCIIgCEIrjM4Ce5/X/KtiGBZJvV4BQ4nDCIKIkaysLHTu3Dn4r3///hg9ejSeeOIJLF26FNu2bUOPHj0AAGvXrsXEiRPhdrvredTEhQhF0hIEQSQYgjhYFvf3SEK/HCOOVUiX3jRLosu4EgzDIGXIfNh6PAdfxWHoU7uANabW97AIgiAIgtCArdNDMLe6AQDAmSiijSCI2qNjx45YtWoVBg0ahI0bN2LVqlX473//i4ceeqi+h0ZcYFAkLUEQRAIghCizTp9Ypc00c9CxDNKM0mX65QrWCEQ1OlszGHOGkkBLEARBEA0MzpRJAi1BEHWC2WzGhx9+CIbxJ2X+5z//CY/HI9v25MmTeOqpp9C7d2+kpaXBaDQiLy8PV199NX788UfV/RQXF+P999/HDTfcgI4dO8Jms8FgMCAnJweXXnop5s6dqzmK95NPPsHw4cORmpoKm82Gzp07429/+xtKSkqi+tuJxIFCsAiCIOqR9adcmLOlDD4emNjGirUnXeDDImmZc//bDIxk+zISaQmCIAiCIAiCIGpMp06dcPHFF2Pp0qU4ceIE1q1bh4EDB4rafPzxx5g+fToqKytF5ceOHcOiRYuwaNEi3HrrrZg9ezZ0Oqnk1qNHDxw+fFhSfurUKSxduhRLly7F7Nmz8e233yInJ0d2nF6vF1OmTMGiRYtE5du3b8f27dvx0UcfRRSLicSEImkJgiDqCV4Q8M7WcpS5BVR6BXy0swJ7iqWztecmc8EyUpHWE67oEgRBEARBEARBEDExatSo4OuVK1eK6hYuXIgbb7wRlZWVaNmyJV577TV8//33+PPPP/H5559jzJgxAIB3330Xjz/+uGz/Pp8P/fr1w3PPPYdvvvkG69atw6pVq/DRRx/hsssuAwBs3LgR1157reIYH3300aBA265dO7z77rtYt24dfvzxR0yfPh2HDh3CNddcU6PPgagfKJKWIAiinihx8Sh2RY6EZUO02d7ZBqw/Vb38ZWRTc20MjSAIgiAIgiCIOkYQeAh8WX0Po85g2CQwTGLFDvbs2TP4es+ePcHXZ8+exR133AFBEHDLLbdgzpw5okjZnj17YtKkSXjqqafw4osv4o033sD06dPRrl07Uf8//fQT2rRpI9nvwIEDcf311+P999/HLbfcgl9++QXLly/HyJEjRe22bt2KmTNnBvf5yy+/wGarTjA9cuRIDBw4EFOnTq3ZB0HUCyTSEgRB1BMlGgRaoNruAACuamvF0XIfTlX5cGkzM1pQ4jCCIAiCIAiCOC8Q+DKUn7yyvodRZ9hzPgfDpdT3MESkp6cHXxcXFwdfz5o1C6WlpWjSpAneeustWSsDAHj22WfxwQcf4Pjx45g/fz5eeOEFUb2cQBvKzTffjP/85z/YtGkT/ve//0lE2tmzZ4Pn/c+Rc+fOFQm0AW666SZ89tln+O6779T/WCLhoKd7giCIeqJUq0gbotI2T9Lj9eFpAOTtDwiCIAiCIAiCIIjYCBU9y8vLg6+//vprAMC4ceNgNBoVt9fpdBgwYAAWL16M1atXq+5LEAScOnUKZWVlomRhTZo0waZNm7B582bJNgGv2S5duqBXr16Kfd9yyy0k0jZASKQlCIKoIW6fALdPgM3gX6pT4eZh5BjoORkPWZ/ff7bKw2N7oXy20HBYiPshcZYgCIIgCIIgCCL+hAqzSUlJAPw+sps2bQIAzJkzB3PmzNHU18mTJ2XL8/PzMWvWLPz666+i/YVz9uxZ0XuXy4W9e/cCAPr06aO67759+2oaI5FYkEhLEARRAzaeduH1DWVw+QSMbWFGoZPH6gIXUo0sHu+TjJbJ+mDbI2VePLayKPqdkCZLEARBEARBEARR64QKo2lp/hWMRUVF8Hq9UfdVVVUlei8IAm6//Xa8++67mrZ3OByi98XFxRAEf+LorKws1W2zs7OjGCmRKJBISxAEUQM+210Jp8//Q/nNweof0WIXj6/2V+GhnsnBsv/tr4xpH15eqNkgCYIgCIIgCIJIeBg2Cfacz+t7GHUGwybV9xAkbNy4Mfg6kPTL5/MFy2677TY88MADmvoyGAyi9++9915QoO3evTsefPBB9OvXD02aNIHFYgHHcQD8nrIffvhhUJCVg6HVleclJNISBEHUgENlyjOqawpcoverTrgUWipj5Bjk2uhSTRAEQRAEQRDnOwzDJlwirQuNZcuWBV8PHjwYQHVELeCPhu3cuXNMfb/99tsAgNatW+P333+H2WyWbVdUJL/6MiUlJfj61KlTqvuKVE8kJmx9D4AgCIKQJ9PM4q5udhhkvG0JgiAIgiAIgiCI+LFt2zYsX74cAJCXl4fevXsD8EfEdurUCQCwatWqmPvfvn07AGDChAmKAq0gCNiwYYNsnclkQps2bQAA69atU91XpHoiMSGRliAIIkZ4leUn4Ti8fNT9v3lRBgY0MkW9HUEQBEEQBEEQBKEdh8OBm266KWgx8Oijj0Knq17ROGHCBADArl278MMPP8S0j4CvbWWlsg3eV199hYKCAsX6UaNGAQC2bt0qsmYI57333otpjET9QiItQRBEDJS7efxxUrt9QZEzepGWIAiCIAiCIAiCqF127NiBwYMHB0XPYcOG4a677hK1eeCBB2Cz2QAAN998czAqVon8/Hxs2bJFVBaIgl2yZImspcH+/ftxzz33qPY7ffr0oB/tHXfcISv4fvzxx/j2229V+yESEzI6JAiCiJI9xR48/XtxVNsUkkhLEARBEARBEARR55w+fRrbtm0Lvq+srERxcTG2bNmC5cuXY9myZcEI2v79+2Px4sXQ6/WiPrKzs/HBBx9g8uTJKCgoQO/evTFt2jSMHj0aubm58Hg8OHbsGNauXYvFixfjwIEDWLJkCbp27Rrs46abbsJjjz2GEydOYMCAAXjiiSfQuXNnOJ1O/PTTT3j99dfhcrnQs2dPRcuDbt264Z577sGbb76J9evXo3fv3njiiSfQpUsXlJaWYtGiRZg7dy569+6N9evX18KnSdQmJNISBEFEyYLdFVFvU+TwRW5EEARBEARBEARBxJVZs2Zh1qxZqm0yMzPx4IMP4vHHHxfZHIQyadIkfPXVV5g2bRqKioowe/ZszJ49W7Yty7KwWq2isgceeADLli3D0qVLsWfPHtx6662ierPZjPnz5yM/P19RpAWA1157DSdOnMAXX3yBXbt24eabbxbVt2jRAgsWLECrVq1U/2Yi8SCRliAIIkq2FXqi3uZkVXQi7aim5EVLEARBEARBEAQRT1iWhd1uR3JyMpo1a4ZevXphyJAhGDduHAwGQ8Ttx48fj4MHD+Ltt9/Gt99+i+3bt6OoqAg6nQ45OTno1KkTLrroIkyePBl5eXmibfV6PfLz8zFr1izMnz8fO3bsgCAIaNKkCUaNGoUHHngA7du3R35+vuoY9Ho9Pv/8c3z00UeYO3cutmzZAo/Hg2bNmmHixIl49NFHkZqaWqPPiagfGEGIIvMNkXAcO3YseOIfPXoUubm59Twigjj/uSb/tOa2C8ZmAQD+vaEUawrUPWzv7GrHD4ccaGTjcHMnO5IMZBtOEARBEARBEIlCTZ6/9+7dC6/XC51OF/QmJQiiYRPv85oiaQmCIGoRQRDAMAxOVkaOpB2RZ8aIPHMdjIogCIIgCIIgCIIgiESCRFqCIIha5McjTuhY4FCZV1SeaWZxxkHJxAiCIAiCIAiCIAiCIJGWIAgiKqJ1iHlnW7lsea5NhzMOdzyGRBAEQRAEQRAEQRBEA4cMDwmCIKLAFV3+L1n0LNA2VV/zjgiCIAiCIAiCIAiCOC8gkZYgCCIKnN6aWxQ0snK4rLkZ+pAr8JAmphr3SxAEQRAEQRAEQRBEw4TsDgiCIKLA4ZPaHfTJNqJNqg6bTruxo8gTsY8cqw4WPYu/9kvBNweqkGricF07a20MlyAIgiAIgiAIgiCIBgCJtARBEFHg8IpFWo4BHumVBIZhcHkrK67JPx2xj0ZWDgDQPs2A9mmGWhknQRAEQRAEQRAEQRANB7I7IAiCiAJnmEhr0jFgGCaqPgIiLUEQBEEQBEEQBEEQBEAiLUEQRFSER9KaddEJtACQQyItQRAEQRAEQRAEQRAhkEhLEAQRBZJIWk4s0iYbI19WG1lIpCUIgiAIgiAIgiAIohoSaQmCIKIgPHFYeCTt7Z3tqtu3TtEhxUQiLUEQBEEQBEEQBEE0ZARBmli8JlDiMIIgiCiIZHfQO9uAO7rYMXdrOQC/KGtgGVj0DLIsHC5vZa2zsRIEQRAEQRAEkRhwHAev1wufzwee58GyFDNHEA0Zn88Hn88HwH9+xwMSaQmCIKLA6eVF70068c0VwzAY2dSMkU3NdTksgiAIgiAIgiASGJPJBJfLBUEQUFFRgaSkpPoeEkEQNaCkpCT42mKxxKVPmrohCIKIgngkDiMIgiAIgiAI4sIiVJQ9efIkysrKwPO8yhYEQSQagiDA6XTi9OnTOH36dLA8NTU1Lv1TJC1BEEQUREocRhAEQRAEQRAEEY7VaoXZbIbD4YDP58Px48fBMEzclkkTBFH7+Hw+iQ9tcnIyjEZjXPonkZYgCCIKnGGJw0wUSUsQBEEQBEEQRAQYhkHTpk1x5MgROBwOAP6oPK/XW88jIwgiVjIzM5Ge/v/t3Xl8lOW9///3LJksk40tQgiLBCKgqJSgILK5YBWVIop2EeSgtdrF9vhVe/R0OVarpfXXqg+PG4hLW7GidedUq4gKCAapVhbZkbAmELJNktnu3x8xQyYzk5kkM7mTzOv5ePhwZu7rvuaaTK4Z5p1rPlefuPVHSAsAbdCiJK1SKBoDAAAAIAZWq1VDhgxRbW2tqqurA6tqAXQPVqtVDodDTqdTmZmZcjgcce2fkBYA2sDX4qsNNgsraQEAAADExmKxKDMzU5mZmWYPBUAXwxowAGiDlitp7byKAgAAAACADiJeAIA2+FeZO+i6zcpKWgAAAAAA0DGEtAAQo/WHGkJuY98wAAAAAADQUYS0ABCj5dtrQ25jJS0AAAAAAOgoQloAiNHeKm/IbaykBQAAAAAAHUVICwAdwEpaAAAAAADQUYS0ABCjbEdoIMtKWgAAAAAA0FGEtAAQg01H3apyGyG3u7yhtwEAAAAAALQFIS0ARFHj9uvedcfDHqto8HfuYAAAAAAAQI9DSAsAUXx8qEG+CAtmz+jr6NzBAAAAAACAHoeQFgCiqGxltWxhrr0TRwIAAAAAAHoiQloAiCIzJfzuYL+emCurhZ3DAAAAAABAxxDSAkAU7ggLaftn2Dp3IAAAAAAAoEfie7oAktaO4x49+lmVSmt8kqTzB6Xp3X31gePfPsWpbw13qt4bPqXNSeXvXAAAAAAAoOMIaQEkJb9h6KGNVTrs8gVuax7QStLzX9ZqcJZd9d7wu4ZR6gAAAAAAAMQDIS2ApLS/xhcU0Eay+kC9UmyhYew38hyJGBYAAAAAAEhCfFcXQFI6UOONqd2/j3pU1RBa7mBWYUa8hwQAAAAAAJIUIS2ApPRVdfRVtJJU2eDX5mOeoNvmFjk1sjcraQEAAAAAQHwQ0gJISvuqY1tJK0l1LWrS5mfa4j0cAAAAAACQxKhJCySxjw/W67ktNXJYLbrx9KykWh3alpC2pWwHf98CAAAAAADxQ9IAJCm3z9Bjn1ervM6vA7U+Lf6i2uwhdRqPz9DB2tjKHYSTRUgLAAAAAADiiKQBSFL/LncHfY1/X7VPXr/Ryhk9R43Hr4480txUXjoBAAAAAED8kDQAScqXHHlsWA0dePAZdouyUixxHA0AAAAAAEh2hLRAkjKM5E1p3f72n9vfaZPFQkgLAAAAAADih5AWSFLhItokqXYgd4uVtNY2ZK4nZdjiPBoAAAAAAJDsCGmBJBUuj/UkSUrbMqR12mNPafs7CWkBAAAAAEB8EdICSSpctYPPytydPxATtKxJ67BZNKp3Skzn9mclLQAAAAAAiDNCWiBJOcNsflXZ0IFird1Iy5W0DptF143OjOnc3mmEtAAAAAAAIL4IaYEk5Q2Tx/qSo9qB3L7g6w6bRUNzUjS3yKlUm5TvtGlWYUbYc9PaUBoBAAAAAAAgFnazBwDAHHXe0ETWF64GQg/kblF7N/XrP1fNGeHUFcMzZLE0BrF9061a8kVNUFtCWgAAAAAAEG+spAWSVLiQNty+YQ0+Q0dcPnm/Pujy+PVVtVfH608sR633+nXE5ZM/wSGv12/oUK1Xng4u+Q1X7qBJU0ArSam20EA2LcxtAAAAAAAAHcFKWiBJ1ccQ0h6s9eredcdVVufXsBy7vpHn0PLtrsDxq4ucOqOfQ/d9clzVbkOn9UnRz8fnKiUBQWZVg1+/WVehr6p9yku36lcTe6lvevvqw4bbOCwcu5WQFgAAAAAAJB4raYEkVecLLUrra5HSrthdp7K6xna7Kr1BAa0kvbCtVk9tqla1u/G8L4569Hm5OyHjXbW/Xl9VN67ePVLn12s7XVHOiKxluYOUMGGsJDnDlDZIpdwBAAAAAACIM0JaIEn5w2wcVt9ihek/9tZF7WfHcW/Q9Q2HGzo0rkje2h0cysYytkhcnuDHmREheB3dx6HMlBPHBmfZwpZAAAAAAAAA6AhCWgABLcPL9nCmJOZlpWWJAkmqdodJmmNQ0+JxOlPCB68Om0U/OjNbg7NsKsyx6wenZ7fr/gAAAAAAAFpDTVoAAa5mdWqNdm4ClqCMVjkOq2o9vqDbvqzwqPik1Db35fIEh7utBctj81I1Nq/t9wEAAAAAABArVtICCHB5/c0uty+kDbfiNZwjLp+2HnPLbxg6UOPVV1VeHXH5tP5Qgz4vd8vdop9qT+iq2a3HPCG3GYah3ZUefVV1ogxDZYNfm4+6Ve89UV+3uUgraQEAAAAAADoDK2kBBDQvd1BR375SAm/srtO1o7NabbPuYL0e3Fil1vLcQVk23T2xlzJSrPL4jMDmZM1tPRa6SdnSTTWBerVXjsjQ2QPSdPfHFap2G+qdZtXMkzNU0RD7SloAAAAAAIBEI5kAklS4fLT56tlj7QxpJanO2/q5b+xytRrQStK+ap8+K28MYY83hO9vV6VX/mZlGVwev9756sSGYsu3u/TmLlcg4D1W79dzW2pC+mElLQAAAAAAMBMhLZCkwoWkwSGtL7RBjLZXeFs9vu1468ebHP86KG658rWJzwjeBKzS7Ze/xeN6v7Q+6v30SbPFNB4AAAAAAIBEIKQFkpS3ZZqp4A21IgWjsdhaEVqGoD08X4+xopXAuNp9YpxWS/tWxPZ3EtICAAAAAADzJG1IW1JSorvvvlszZsxQQUGBUlNTlZmZqaKiIi1YsEAfffRRm/pbsWKFZs+eHeiroKBAs2fP1ooVKxL0CICOCbeS1uM/Ed5GKndw2bCMqH1/GWZDryaGEfuGZE35a2uBcfOQti19N+ewUe4AAAAAAACYJyk3DpsyZYo+/PDDkNvdbre2b9+u7du36+mnn9a8efP05JNPyuFwROzL7/fr+9//vpYsWRJ0+/79+7V//3698soruv766/X444/Lak3aTBxdULiVtFLj5mFWq6G399aFPV6YE/1lY/txr7x+Q3ZrY/j5VbVXe6sa68furoyt1IEkuX2Gthxz650IY5GkV3a4dMUIi/bXeFVyuCHmvgEAAAAAALqKpAxpDxw4IEnKz8/XVVddpcmTJ2vw4MHy+Xxau3atHnjgAe3fv1/PPvusPB6P/vrXv0bs66677goEtGPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W875fEBsYi0cVd5vU9/KKmMeF5OqlV90qw62srGYg0+Q3urvCrMTdG6g/X6/z6tatcYX93p0qs7Xa222Vjm1say+JRXAAAAAAAAMIPFaO/3g7uxSy+9VPPmzdOcOXNks4XWoiwvL9ekSZO0bds2SdKqVas0ZcqUkHbbtm3TqaeeKq/Xq+LiYn3wwQdKT08PHHe5XJo6dapKSkpkt9u1ZcsWDR8+PK6PpbS0VIMGDZIk7du3TwUFBXHtHz3XQxsrtfpA6MrT8wen6d2vIm+2dd+5vfT81hp9Xh65pIEkzRmRoatGOHXL+8d02NX+TcgSrSDTpgem9jF7GAAAAAC6OD5/A0ikpPz+/RtvvKG5c+eGDWglqW/fvnrggQcC15cvXx623Z/+9Cd5vY1f3X744YeDAlpJysjI0MMPPyxJ8nq9+uMf/xiP4QNx4Y2wELa1gDYrxaLBWXZlOkJfOsblBZcF+aC0XrurvF06oJWk24pzzB4CAAAAAABIckkZ0sZi+vTpgcs7d+4MOW4Yhl599VVJ0siRIzVhwoSw/UyYMEGnnHKKJOnVV19t98ZGQLz52vi7ODTbrv+ekCu71aJUa+hGWxcOCf4jRVmdX0u/qI7a76T8VD08vY/mFjkVptuwzugXuU50W1w3OlP9nUlZ9QUAAAAAAHQhhLQRNDSc+Bp4uBW3u3fvDtS2nTp1aqt9NR3fv3+/9uzZE79BAh0QaSVtJLcV52hodookyWELTVNP6ZWiwVnBc2Xb8cibhA1w2vTCzDz9ZGyO8jJsmjPCqfsm9YppLPNGZWpukbMNow9137m9dPHJGR3qAwAAAAAAIB5YQhbBqlWrApdHjRoVcnzz5s2ByyNHjmy1r+bHt2zZopNPPjkOIwQi21Pl0SeH3DpW75PdalGazaI0u0Vn909VWZ1P2yo8+lcbN9tKt58IZsOFtA6bRdMK0vXslpqY+stJDf0bUX9n+BIkLfVOsyo1zBjaoleY+wcAAAAAADADIW0Yfr9f999/f+D63LlzQ9qUlpYGLkcrFt5UWFxqLC7eFs3vJ5yDBw+2qT/0fF9Ve/XfqyvkCbNS9m/batvdb/OQNjVMlmq3WjR5YJr+srVGvhgqKeSGCUnT7NGD01Rb41g6GtJmh6mrCwAAAAAAYAZC2jD++Mc/av369ZKkK664QuPGjQtpU119otZmZmZmq/05nSe+ll1TE9sqwybNA14gFh8frA8b0HaU1XIiFB2cFf6lIzvVqm/kOfTJ4eirdE/rE76u7KjeKdpyzBPxvByHVRZL4+rgjrDFWgAXAAAAAAAgwVhK1sKqVav085//XJKUl5enRx99NGy7+vr6wGWHo/VNjFJTUwOX6+rq4jBKILIjLl/c+5xakBZ0vfikVPVNP/HyMb3Z8ZG9Y9vUq2Wf0W5vYv86XLXHVhkhrIuHpkdvBAAAAAAA0ElYSdvMpk2bNHv2bHm9XqWlpenFF19UXl5e2LZpaSeCJLe79VWDzTchS09vWzgUrTzCwYMHddZZZ7WpT/RsZa72L6OdWpAm/9elClKsUorVon7pNn2zRahps1r0m3N66e09dcp0WIOOh6s1K0kLT8vUs5trZJH0+ym9w9a1bRpDut2iXZVeZTuseq5FjduGr2sp2C1tXwl7Tn6qinJTdOEQQloAAAAAANB1ENJ+bffu3ZoxY4YqKipks9m0bNkyTZkyJWL7rKyswOVoJQxqa0/UAY1WGqGlaPVugZbK6tq3knbKwDTdfEZ2zO17p9l0zcjQ3+dIIe2Yvg79+eLwf/RozmqxaMKANE0YILl9RkhIe7S+MYRuT7WDG8dkK81OmQMAAAAAANC1ENJKOnDggC644AIdOHBAFotFTz31lGbNmtXqOc3D02ibezVfDUuNWbTFZ2UN+leZW6f2cWhcnkOWVlaP/qusQWsONARCzLbKdMQnvMyNsCFXr3C7jUURabWtJNnaUaylHUMAAAAAAABIuKQPacvLy3XhhRdq165dkqSHH35Y8+bNi3re6NGjA5e3bt3aatvmx0eNGtXOkSLZbDnm1n3rK2VIemt3nW4vztG4k1LDtt16zK37v27bXrZ2lA8IJzvCStr2rmDNSrGo2hP6yOq8bX+0rYXcAAAAAAAAZknqjcMqKyt10UUXafPmzZKk+++/Xz/84Q9jOvfkk09Wfn6+pMbNxlrzwQcfSJIGDhyooUOHtn/ASCprDzQEha6LSiojtv30iLtDAa0kFebG52822XFakdukZf3YwVmNy2FPymjbslhnCgEtAAAAAADompI2pHW5XJo5c6Y+/fRTSdJdd92lO+64I+bzLRZLoCTC1q1b9fHHH4dt9/HHHwdW0s6aNYuVfIjZmoP1Ibf5jfBRbFVD+zcLa3J2//CrdNvKarHo3PzgvuaPblst5uZmFWYot9nq3GkFjaHtkGy7BmZGDmqnFaQps1kw++1T2j8GAAAAAACARLIYRoTUpwdzu9267LLL9Pbbb0uSbrnlFv3pT39qcz/btm3T6NGj5fP5VFxcrA8++EDp6SdW/dXV1WnKlCkqKSmR3W7X5s2bNWLEiHg9DEmN9XCb6tzu27ePjcZ6kN+XHFfJYXfQbQ9M6a2CrNAVr+HatsVTM/rKmRK/v9n4DUNv7q7T+/vqdOUIpybmp3Wov+MNfq0+UK/+Gbagkg81Hr9W769XlsOqb+Q59M5X9frkUINmDEnXOfmpqmzwa+3BBg1w2jQ2Lz4hNAAAAIDkxOdvAImUlDVpv/3tbwcC2vPOO08LFy7UF198EbG9w+FQUVFRyO1FRUW67bbbdP/996ukpESTJk3SHXfcocLCQu3cuVO/+93vtHHjRknSbbfdFveAFj1b77TQVaJbKzxhQ9oad/v/1tI7zRrXgFZqXE172bAMXTYsIy795aZaNfPk0L4yU6y6aOiJ21veZ680my4Jcx4AAAAAAEBXkpQh7csvvxy4/N577+n0009vtf2QIUO0Z8+esMfuvfdeHTlyRE899ZQ2btyoa665JqTNwoULdc8993RozEg+Db7Q4HXrMY8uGJwecnu1p/3lDjLauaEXAAAAAAAA4iNpa9LGi9Vq1ZIlS/Tmm29q1qxZys/Pl8PhUH5+vmbNmqW33npLixcvltXKjxpts6o0tCbt1mPhSxrUuDsQ0sZ5FS0AAAAAAADaJilX0iaiDO8ll1yiSy65JO79InmdlGHTYZcv6LayOr+q3H5lO04Eq+V1PlV2oNzBOQOo1QoAAAAAAGAmltABXZQ9wuzcW+UNur7hcEO776N/hk3nhymfAAAAAAAAgM6TlCtpge7AH2Fx7N4qr8b0dQSubzgSXAKhqFeKphakaWCmTQ1eQ7JIo3s79FmZW0frfbJZLEqzW+SwSmf0S5XDRk1aAAAAAAAAMxHSAl2UL0JK23wlbZ3Xr01Hg0PaS4ama2J+Wsh54/tT1gAAAAAAAKArotwB0AUZhqEjdeE3A9tbfSKk/bzMLW+zZjaLdEY/R5izAAAAAAAA0FUR0gJd0OZjnojHSqu98n69yrZlqYNT+6QoI4VpDQAAAAAA0J2Q5gBd0L9ahK/N+Qyp2t24fLblJmJj8yhpAAAAAAAA0N0Q0gJd0K7KyCtpJampWu0Rly/o9oIsykwDAAAAAAB0N4S0QBfjNwztrPS22sYwpFqPXy5v8OZieelMaQAAAAAAgO6GRAfoYg7V+lTXInxtyVDoKlqLpL7ptsQNDAAAAAAAAAlBSAt0MbtarKJNt1tC2tz50TGVHG4Iuq13mlV2a2hbAAAAAAAAdG2EtEAXs+lo8KZhhTmhdWYr3YaWb3cF3ZaXwSpaAAAAAACA7oiQFuhCyut8+mB/fdBto/s45EyJvkI2P5OQFgAAAAAAoDsipAW6kJe318rrP3HdbpWmFqRpbpEz6rnTCtITODIAAAAAAAAkCiEt0EUcqvVqZWnwKtoLB6erb7pN3xyaocUX9o147ul9HSrqlZLoIQIAAAAAACABCGmBLuKl7S75jRPXHVbpW4UZgetZDquGhalPK0lXjoi+0hYAAAAAAABdEyEt0AXsr/Hqwxa1aC8amqHctOA6s7mpoVP29L4pOqU3q2gBAAAAAAC6K0JaoAtYua9ezRbRKs1m0eXNVtE26e8M3RxsDqtoAQAAAAAAujVCWqALOOzyBV2fPihN2Y7Q6TmqtyPo+pi+KRrZ4jYAAAAAAAB0L4S0QBfgN4yg6zlhyhpIUvFJDk3KT5VF0uAsm24+I7sTRgcAAAAAAIBECr8LEYBO5fUHX7dZwrezWiz6ydgc3XS6oZRIjQAAAAAAANCtsJIW6AJarqS1WVoPYAloAQAAAAAAeg5CWqAL8AVntLKSwQIAAAAAACQNQlqgCwgpd8DMBAAAAAAASBpEQUAXUF7nC7qe5WBqAgAAAAAAJAuSIMBk9V6/jtYHL6Ud6GRPPwAAAAAAgGRBSAuY7EBt8Cpai6T+Tps5gwEAAAAAAECnI6QFEqjG49eeKo+8fkMNPkN7q7zyG8G7hO2vCQ5p8zJsctjYOQwAAAAAACBZ8J1qIEH2VHl077rjqnIbslslw5B8hjQ4y657JvVS6tdB7P4ab9B5AzNZRQsAAAAAAJBMWEkLJMjbe+tU5W5cNev1Nwa0kvRVtVdrDtQH2h1sUe4gn1IHAAAAAAAASYWQFkiQd7+qj3jsi3J34HK9N7j8QU4q0xIAAAAAACCZkAYBJmgey7asUWuzUI8WAAAAAAAgmRDSAiZo8J0IZr3+4GM2ZiUAAAAAAEBSYeMwII52VXq0r9qrzJTWk9aqhhPJrD94IS0raQEAAAAAAJIMIS0QJ6/trNVfttbG1Lba02wlbUi5g7gOCwAAAAAAAF0cX6wG4sDl8ccc0EpSRb0/UIvWR7kDAAAAAACApEYcBMTB6gMNbWpf7zN0xOWTJHla1DtwWFlKCwAAAAAAkEwIaYE4eG9fXZvP2V3plRS8iZgkOah3AAAAAAAAkFQIaYEO2lPp0a6vA9e22F3VeI6bkBYAAAAAACCpsXEYTOHzG/r4YIMsFuns/qmyRfmKf7Xbr08ONahvuk1j+qbIYumcIHN3pUfbj3t0el+H+jvDT5e/bK2Jqa98p00Han2B6yWHG5Rms6jSHRzSphLSAgAAAAAAJBVCWpjiwY1VWneosY7rpPxU/WRsTsS2x+t9+u81FSqra9xh69pRmbp0WEbCx/h5uVv3rjsuSXJYpTvG5+q0vo6gNtsqPPq83BNTf8Ny7EEh7f4an17YFrrZmMPW/jEDAAAAAACg+6HcATpdeZ0vENBKjZtuuTz+sG39hqFHPqsKBLSS9OrOWvkNI2z7eHp1x4kA1e2X/rChUnurTpQ1cPsMPfpZVcz9je7jiN5IrKQFAAAAAABINoS06HR7qkLrtx5vCB/SvrHLFbJStcptaHtF22vAtkWN26/Nx4Lvt85r6L71x1Ve17gadvn22qCVsS31STsxvTLsFk0emKZhOdEXrxPSAgAAAAAAJBfKHaDTHXGFBpvV7tCVsTuOe7Tsy9ByAJK04UiDTumdEvexNe/fH2axbkWDX/etP655ozP12k5XyPEbxmRpV6VHZ/R1aNxJqXpzt0tH6/z65tB0OWwW3VGco1d2ulT2ddBbctgd0ocjSn1eAAAAAAAA9CyEtOh0pTWhq2CrW5Q7cHn8emhjlXwRqhqUHG7Qd0ZmJmJ4kqRPDoWGp01Ka3z67frKoNtsFun+yb01OMsuKT1w+6xCZ1C73DSbrjs1K3D91lVHVVoTHFo7WEkLAAAAAACQVAhp0en2V4eupF2x26V/HTkRjO6r9upwmBW3gT5qfHrs8yrlpds0eWCa+mXEb7etBp+hz8oagm5LtUkNkYejK0c4vw5o2yY31RoS0qZQhAQAAAAAACCpENKiUxmGoX1hVtJ+cdSjL456wpzRqCjXrsN1flU2q127cl/91/+v0++n9FaaPT7p5udlbrmbLey1SPqfib30u08qVRGmdu7QbLsuL8xo1331SrNJCn7cFgsraQEAAAAAAJIJa/bQqSrdhmo9EWoYRJBht+jHY3M0Ls8R9viROn+r5Qnaasfx4NB0VO8UnZyTov86K1fp9uAA1WaRbjojS/Z21pEd0zdxdXUBAAAAAADQPRDSolOVVoeuom2NRdL3T89SXoZNF5+cEbEUwKaj8Qtpq93Bq2UHfV3GYEi2Xf9vXI6aL9i9+hSnhma3P2idlJ+mfuknOrzk5PRWWgMAAAAAAKAnotwBOlVBll0/OjNb+6u9emuPSw0+acaQ8MFkilUad1KqTu3TuIJ2cJZdd5/TSx8fbNCrO11BbTcfi19IW9NipW9myolVsqf1degPU3przYEGDc6ya3z/1A7dl91q0T2TemvlvjrlOKyaNiitQ/0BAAAAAACg+yGkRafKTbVq8sDGIPKakZltPn9YToqG5aTonPxU3fFhReD2wy6/yut86pve8Q3EajzBK2mdjuDluwOcds0ZEb+pk5tq1ezhzrj1BwAAAAAAgO6FcgfolgZn2YNWuErxKXlQWu3VphYbmLW8HwAAAAAAACCeCGnRLVktFo3qHbyRWMtwta28fkN3rzsecntmpEK4AAAAAAAAQByQPqHbGt0neMOutm5K1tJX1V5VNvhDbs9NZZoAAAAAAAAgcUif0G31ahGe1vuMCC1jU+cNPX9Itl0n51C6GQAAAAAAAIlDSItuK80eXCu2PkzI2hbuMCHvrybkymqhJi0AAAAAAAASh5AW3VaqrUVI28GVtC1D2gFOm5zUowUAAAAAAECCkUCh20qP90raFuVoU6ysoAUAAAAAAEDiEdKi22pZ7sBnSF5/+4Laeq+hjw/WB93msLV7aAAAAAAAAEDM2BEJ3ZbTHvo3hiMun/Iz2/ZrfajWqwc2VOqral/Q7dkO/oYBAAAAAACAxCOFQreV5bCoV2rwr/DO49429fGvIw2686OKkIDWIumCwekdHSIAAAAAAAAQFSEtui2LxaLC3OBVszsqPTGdaxiG/r6jVvd/UqnaFrVsM+wW3V6co3EnpcZtrAAAAAAAAEAklDtAtzY8N0Ulh92B6zuORw9pXR6//vezan1yuCHkWEGmTf+vOEcDnEwNAAAAAAAAdA6SKHRrhbkpQdf3VHnl9RuyWy1h25fX+XTvuuM6UOsLOXZ2/1TdfEaW0sLUugUAAAAAAAAShZAW3VphTvCvsNcv7ar0qqhXSkhbwzD08L+qQgJai6Rvj3Tq8mEZsljCh7sAAAAAAABAorBkEN2aM8WqfKct6LY1B+rDti057NbWY8HlEDJTLLrzrFzNKnQS0AIAAAAAAMAUhLTo9s4eELzB10f76+X1B28G5vMb+uvWmqDb+qRZdd+5vXV6P0fCxwgAAAAAAABEQkiLbm9aQVrQ9WqPoQ0tNgVbWVofUubgOyMzlZcRvAoXAAAAAAAA6GyEtOj2+jvtGtU7uAbt+6UnSh7Ue/3627baoOMnZ9t1Tn7wClwAAAAAAADADIS06BFarqbdeMStinqffH5DC94uV2WDP+j490ZlykoNWgAAAAAAAHQBhLToESYMSFWq7UToakh6a3ed/rG3Ti3K0+rMfg6d1pc6tAAAAAAAAOgaCGnRI6TZrZrYYgOxt/a49PbeupC23xmZ2VnDAgAAAAAAAKIipEWPMaswQ80W08rrlw622Czs9L4pGpJt7+SRAQAAAAAAAJER0qLHyM+065tD01ttc+u43M4ZDAAAAAAAABAjQlr0KFeOcCrHEX5DsNP6pCjNzmZhAAAAAAAA6FoIadGjZKRYdc0p4WvOntGPzcIAAAAAAADQ9RDSoseZNihNw3JC686e0S81TGsAAAAAAADAXIS06HGsFouuG50VdNtJGTYNzrKZNCIAAAAAAAAgMkJa9Ein9E7RwtMy5UyxKC/dqh+cniWLhXq0AAAAAAAA6HpCvxMO9BAzhmTowsHpMtS4uhYAAAAAAADoighp0aNZLBYRzwIAAAAAAKAro9wBAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESFtHO3du1e33nqrRo4cKafTqd69e2v8+PH6/e9/L5fLZfbwAAAAAAAAAHRBdrMH0FO8/vrr+t73vqeqqqrAbS6XSyUlJSopKdHixYv15ptvavjw4SaOEgAAAAAAAEBXw0raONi4caOuvvpqVVVVKTMzU/fee6/WrFmjd999VzfccIMkadu2bZo5c6aqq6tNHi0AAAAAAACAroSVtHFwyy23qK6uTna7XW+//bYmTpwYOHbeeedpxIgRuv3227Vt2zY98MAD+vWvf23eYAEAAAAAAAB0Kayk7aD169frww8/lCQtXLgwKKBtcuutt2rUqFGSpAcffFAej6dTxwgAAAAAAACg6yKk7aBXXnklcHnBggVh21itVs2bN0+SdPz4ca1cubIzhgYAAAAAAACgGyCk7aCPPvpIkuR0OjVu3LiI7aZOnRq4vHr16oSPCwAAAAAAAED3QE3aDtqyZYskafjw4bLbI/84R44cGXJOLEpLS1s9fvDgwZj76gpq3JVau+s2s4cBAAAAAOgi/ErVRSMfNnsYAGAqQtoOqK+vV3l5uSSpoKCg1ba9evWS0+lUbW2t9u3bF/N9DBo0qENj7Gq8PrfOytpp9jAAAAAAAF3EMQ/RBABQ7qADqqurA5czMzOjtnc6nZKkmpqahI0JAAAAAAAAQPfCn6s6oL6+PnDZ4XBEbZ+amipJqquri/k+oq26PXjwoM4666yY+wMAAAAAAADQtRDSdkBaWlrgstvtjtq+oaFBkpSenh7zfUQro9DdOOzp+qCGUBkAAAAA8DVLqk42ewwAYDJC2g7IysoKXI6lhEFtba2k2Eoj9FQZKZn65in3mT0MAAAAAAAAoMugJm0HpKWlqU+fPpKk0tLSVttWVFQEQtqethkYAAAAAAAAgPYjpO2g0aNHS5J27Nghr9cbsd3WrVsDl0eNGpXwcQEAAAAAAADoHghpO+jcc8+V1FjKYMOGDRHbrVq1KnB50qRJCR8XAAAAAAAAgO6BkLaDvvWtbwUuL126NGwbv9+vZ599VpKUm5ur6dOnd8bQAAAAAAAAAHQDhLQddNZZZ2ny5MmSpCVLlmjt2rUhbR544AFt2bJFknTLLbcoJSWlU8cIAAAAAAAAoOuymz2AnuDBBx/UpEmTVFdXpxkzZujOO+/U9OnTVVdXp2XLlumJJ56QJBUVFenWW281ebQAAAAAAAAAuhJC2jgYO3asXnjhBX3ve99TVVWV7rzzzpA2RUVFevPNN5WVlWXCCAEAAAAAAAB0VZQ7iJPLLrtMn3/+uX72s5+pqKhIGRkZys3NVXFxsX73u99p48aNGj58uNnDBAAAAAAAANDFWAzDMMweBNqvtLRUgwYNkiTt27dPBQUFJo8IAAAAAICeh8/fABKJlbQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmsps9AHSM1+sNXD548KCJIwEAAAAAoOdq/pm7+WdxAIgHQtpurqysLHD5rLPOMnEkAAAAAAAkh7KyMg0dOtTsYQDoQSh3AAAAAAAAAAAmshiGYZg9CLRffX29/v3vf0uS+vXrJ7u96y+OPnjwYGDV7/r16zVgwACTR4S24jns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz6HXq838G3WMWPGKC0tzeQRAehJun6ih1alpaVp/PjxZg+j3QYMGKCCggKzh4EO4Dns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz2HlDgAkCiUOwAAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMZDEMwzB7EAAAAAAAAACQrFhJCwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0qJT7d27V7feeqtGjhwpp9Op3r17a/z48fr9738vl8tl9vCSUklJie6++27NmDFDBQUFSk1NVWZmpoqKirRgwQJ99NFHUft4+umnZbFYYvrv6aefTvyDSjKx/uynTZsWta8VK1Zo9uzZgd+FgoICzZ49WytWrEj8A0lS06ZNi/k5bPrv/fffD+qDOZg4R44c0RtvvKFf/vKXuvjii9W3b9/Az/K6665rc3/xmGNer1ePPfaYJk+erH79+ik9PV2FhYW68cYbtWnTpjaPqaeLx3Pocrn08ssv66abbtL48ePVq1cvpaSkqE+fPpo4caJ+/etf69ChQ1H7act8xwnxeA7j/Trpcrm0aNEijR8/Xr1795bT6dTIkSN16623au/evR17wD1QR5/DPXv2tPm9cujQoWH7Yh62XTw+LzTHeyEARGAAneS1114zsrOzDUlh/ysqKjK2b99u9jCTyuTJkyM+H83/mzdvntHQ0BCxn6VLl8bUjyRj6dKlnfcAk0SsP/upU6dG7MPn8xkLFy5s9fzrr7/e8Pl8nffAksTUqVNjfg4lGVar1SgtLQ3qgzmYOK39LOfPnx9zP/GaY2VlZcb48eMj9pGammo8+eSTHXzUPUtHn8PPPvvMyMzMjDq3srOzjWXLlrXaV1vmO06IxzyM5+vk9u3bjREjRrT6u/D66693/IH3IB19Dnfv3t2m90pJxowZM8L2xTxsm3h9XjAM3gsBIBq7gE6wceNGXX311aqrq1NmZqb+67/+S9OnT1ddXZ2WLVumJ598Utu2bdPMmTNVUlKirKwss4ecFA4cOCBJys/P11VXXaXJkydr8ODB8vl8Wrt2rR544AHt379fzz77rDwej/76179G7fMf//iH8vPzIx4vKCiI2/gR7KabbtLNN98c8bjT6Yx47K677tKSJUskSWPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W/jPvZktnTpUtXW1rbaZvPmzbr66qslSeeff74GDhwYsS1zMHEGDx6skSNH6u23327zufGYYz6fT7Nnz9Ynn3wiSbriiit0ww03qHfv3lq3bp3uueceHTlyRDfeeKMGDhyoiy++uP0Ptodqz3NYVVWlmpoaSdKkSZN06aWXqri4WH369FFZWZlefvllPfnkk6qqqtJ3v/tdZWdnR/3ZFxcXa+nSpR16LMmqI/OwSUdeJ6urqzVz5kxt375dknTDDTfommuuUXp6ulauXKn77rtPVVVVuvrqq7V69WqdeeaZ7R5nT9We53DgwIH697//HbXdfffdF/j36vz581ttyzyMTTw/L/BeCABRmJ0SIzk0/QXWbrcba9asCTm+aNGiwF8+f/WrX3X+AJPUzJkzjRdeeMHwer1hj5eVlRlFRUWB52bVqlVh2zVfnbJ79+4EjhjhdHTufPnll4bdbjckGcXFxYbL5Qo6XltbaxQXFwfmMCveO9/tt98eeJ6fe+65kOPMwcT55S9/abz++uvGoUOHDMMIXs0V6wq+eM2xJUuWBO775ptvDjm+ffv2wDdWhg8fbng8nrY92B6qo8/h6tWrjblz5xqbNm2K2OaVV14xLBaLIckoLCw0/H5/2HZNK/ha+2YDQsVjHsbrdfIXv/hFoJ9FixaFHF+9enVgvvM8nxCP5zAar9dr5OfnG5KMrKyskNfaJszDtonX5wXeCwEgOkJaJNy6desCb6Q33nhj2DY+n88YNWqUIcnIzc013G53J48Skbz++uuB5+/HP/5x2DYERObqaEh70003BfpYu3Zt2DZr165t9R/ESByfz2cMHDjQkGRkZmYatbW1IW2Yg52nPcFCvOZY0/tk7969w/4eGIZh3HfffYF+/va3v8U0vmSTiHDIMAxjzpw5gX43bNgQtg3hUHyYFdK63W4jJyfHkGSMGjUq4leyb7zxxsB9rV+/vl331dMlYh7+3//9X6DPBQsWRGzHPIy/WD4v8F4IANGxcRgS7pVXXglcXrBgQdg2VqtV8+bNkyQdP35cK1eu7IyhIQbTp08PXN65c6eJI0EiGIahV199VZI0cuRITZgwIWy7CRMm6JRTTpEkvfrqqzIMo9PGmOzeffdd7d+/X5J05ZVXKiMjw+QRoS3iNce2bdumLVu2SJLmzp0b8feg+QY8f//73zs6fLQB75c938qVK1VZWSmp8av0Vmv4j1LMQ3M8++yzgcvRSh0gvqK9/vFeCACxIaRFwjXt9ul0OjVu3LiI7aZOnRq4vHr16oSPC7FpaGgIXLbZbCaOBImwe/fuQK2x5nMwnKbj+/fv1549exI9NHyt+YfOpj9mofuI1xxrvnN2a/30799fRUVFkngv7Wy8X/Z8sc7D4uLiQHjEPOwc1dXVgYUhQ4cO1ZQpU8wdUJKJ9vrHeyEAxIaQFgnX9NfO4cOHy26PvFfdyJEjQ86B+VatWhW4PGrUqKjtFyxYoPz8fDkcDvXt21cTJkzQf//3fwdWAiJxXnzxRY0ePVoZGRnKysrSiBEjNH/+/FZXpm/evDlwufkcDIc52vlqamoCK0CGDBmiadOmRT2HOdi1xGuOtaefffv2Rd2UDvHTlvfLrVu36uyzz1Zubq7S0tJUUFCgWbNmBTbeQWK193Uy1nlot9s1fPhwSbxfdpbly5fL5XJJkq699lpZLJao5zAP4yfa6x/vhQAQG0JaJFR9fb3Ky8slRd9RvFevXoHd5/ft25fwsSE6v9+v+++/P3B97ty5Uc95//33dfDgQXk8Hh09elTr1q3Tvffeq+HDh+vxxx9P5HCT3ubNm7VlyxbV1dWppqZGO3bs0LPPPqvzzjtPs2fPDnxFs7nS0tLA5WhzdNCgQYHLzNHO8dJLLwU+WHzve9+L6UMnc7Bridcca08/hmEEnYfE+eyzz/Tmm29KksaMGRM1pD18+LDWr1+vyspKNTQ0aP/+/Xrttdc0f/58nXnmmQR7Cdbe18mm+eR0OpWbm9vqfTTNw7KysqBVhkiM9nzrhHkYH7F8XuC9EABiE3lZIxAH1dXVgcuZmZlR2zudTtXW1qqmpiaRw0KM/vjHP2r9+vWSpCuuuKLVchXDhg3TFVdcoYkTJwb+UbRr1y699NJLWr58uerr6/WDH/xAFotF3//+9ztl/MkiIyNDl19+uc4//3yNHDlSmZmZKisr06pVq/TYY4/p6NGjeuWVVzRr1iy98847SklJCZzbljna9EcUSczRTtKWD53Mwa4pXnOMudp1NTQ06Prrr5fP55Mk3XvvvRHbWq1WnX/++brkkkt0xhlnqE+fPqqurtann36qxx9/XFu2bNHmzZs1ffp0rV+/XoMHD+6sh5EUOvo62TQPY/03bZOamhqlpqbG6VGgpa+++iqwkvOcc84JrGKOhHkYX7F8XuC9EABiQ0iLhKqvrw9cdjgcUds3/QO2rq4uYWNCbFatWqWf//znkqS8vDw9+uijEdvOnj1b8+fPD1nlN378eF199dV64403dMUVV8jj8ehnP/uZLr/8cvXv3z+h408m+/fvD7ui58ILL9SPf/xjXXzxxdq4caNWrVqlRx99VD/5yU8CbdoyR5t/wGSOJl5paanef/99SY0baTTVVguHOdh1xWuOMVe7rh/96EcqKSmR1LhZ0WWXXRax7csvvxz29Xry5Mm6+eabdcMNN+iZZ57R4cOH9dOf/lQvv/xyooaddOLxOtk0D9vyb1qJeZhof/7znwMbTMWyipZ5GD+xfl7gvRAAYkO5AyRUWlpa4LLb7Y7avunrYOnp6QkbE6LbtGmTZs+eLa/Xq7S0NL344ovKy8uL2D4nJ6fVr2Ffeuml+uUvfylJcrlcWrJkSdzHnMxa+8rlSSedpOXLlwdWzz788MNBx9syR5t/XZM5mnh//vOf5ff7JUXfpZo52HXFa44xV7um++67T4sXL5bUGPY98sgjrbZv7fU6JSVFixcvDuxs/ve//51a0nEUj9fJpnnYln/TSszDRHvuueckNYZyV199ddT2zMP4aMvnBd4LASA2hLRIqKysrMDlWL5m0lR7MZavkSExdu/erRkzZqiiokI2m03Lli2Lyw653//+9wMfjppvLoDEGzZsmC688EJJ0o4dOwK760ptm6PNN11gjiZeWz90RsMcNEe85hhztet5/PHHdeedd0pq3KDmrbfeCvp6bXvY7XYtXLgwcJ252rmivU42zcO2/JtWYh4m0vr167V161ZJ0uWXXx61VnAsmIfRtfXzAu+FABAbQlokVFpamvr06SNJUQu2V1RUBN5MmxeMR+c5cOCALrjgAh04cEAWi0VPPfWUZs2aFZe+8/LyAr8LrEjofKNHjw5cbv7zb77pQrQ52nzzBuZoYpWUlAR2ML700kvVq1evDvfJHDRHvOZYe/qxWCxRN1ZB+zz//PO6+eabJUlDhgzRO++8o759+8al70iv10i8aK+TTfOptrZWx48fb7WvpnnYr18/6tEmUHs2DIsF8zCy9nxe4L0QAGJDSIuEa/pHzo4dO+T1eiO2a/oruKSouyIj/srLy3XhhRdq165dkhq/Fh/Pf+xKimlneiRGpJ998w8hzedgOMzRztP8Q2e0UgdtwRzsfPGaY+3pZ9CgQR1e2YlQr732mubNmye/368BAwbo3XffjWsAwDw1V2s//1jnodfr1c6dOyXxfplIHo9Hy5Ytk9QYsH/zm9+MW9/Mw/Da+3mB90IAiA0hLRLu3HPPldS46mDDhg0R2zX/KtGkSZMSPi6cUFlZqYsuuiiwcu/+++/XD3/4w7jeR1lZmcrLyyVJ+fn5ce0b0TU9t1Lwz//kk08OXI/2db4PPvhAkjRw4EANHTo0/oOEpOAPnf369dPFF18cl36Zg+aI1xxrei+N1s+hQ4e0bds2SbyXJsK7776ruXPnyuv1qk+fPnrnnXdUWFgY1/uI9HqNxIv2OhnrPCwpKQl8O4x5mDhvvvmmjh49Kkn6zne+I7s9fntiMw9DdeTzAu+FABAbQlok3Le+9a3A5aVLl4Zt4/f7AyvHcnNzNX369M4YGtS4OcbMmTP16aefSpLuuusu3XHHHXG/nyeeeCKw8+7UqVPj3j8i2717t9555x1JUmFhoQYOHBg4ZrFYAl9R27p1qz7++OOwfXz88ceBFQmzZs1ihUkCrVixQmVlZZLi+6GTOWiOeM2xoqKiwIqiv/3tb3K5XGH7efrppwOXZ8+e3dHho5k1a9Zo1qxZamhoUE5Ojv7xj3/o1FNPjet9eL1ePfXUU4Hr8agJj9hFe52cNm2acnJyJEnPPPNMoG1LzMPOkahvnTAPQ3X08wLvhQAQIwPoBJMnTzYkGXa73VizZk3I8UWLFhmSDEnGr371q84fYJJqaGgwZsyYEfjZ33LLLW3uY/fu3cann37aapvXX3/dcDgchiQjPT3dKC0tbeeI0dJrr71meDyeiMcPHTpkjB07NvAcP/DAAyFtvvzyS8NmsxmSjOLiYsPlcgUdd7lcRnFxcWAOb9u2Le6PAyfMmTMn8Hxt2LAhanvmYOfavXt34PmZP39+TOfEa44tWbIkcN8//OEPQ47v2LHDyM7ONiQZw4cPb/W1IZm15zncuHGjkZuba0gynE6n8dFHH7X5ft977z2joqIi4nG3223Mnz8/MLbLLruszfeRLNr6HMbzdfIXv/hF4L4XLVoUcnzNmjWG3W43JBlTp06N5eEkpfbMw+aOHj0aeL7GjBkT83nMw7aLx+cFw+C9EABiEb/vhACtePDBBzVp0iTV1dVpxowZuvPOOzV9+nTV1dVp2bJleuKJJyQ1/nX01ltvNXm0yePb3/623n77bUnSeeedp4ULF+qLL76I2N7hcKioqCjotj179mj69OmaOHGiLrvsMp1xxhnKy8uTJO3atUvLly/X8uXLA6tN/vCHPwSt5ETH/PjHP5bH49GcOXM0ceJEDR06VOnp6SovL9f777+vxx9/PPDVzXPPPTfs19KKiop022236f7771dJSYkmTZqkO+64Q4WFhdq5c6d+97vfaePGjZKk2267TSNGjOjUx5hMKioq9MYbb0iSTjvtNH3jG9+Ieg5zMLE++ugj7dixI3C9aT5JjbXWm6/WkaTrrrsupI94zbH58+frqaee0urVq/XII4/o0KFDuuGGG9SrVy+tX79ev/nNb1RVVSWr1aqHHnoorl/97c46+hzu3LlTF110UWCjqHvuuUc5OTmtvl/m5eUF5mGTZ555Rpdffrkuv/xyTZs2Taeccoqys7NVU1OjDRs26Iknngh8jTgvL08PPvhgOx5tz9TR5zCer5O33XabXnjhBW3btk233367duzYoWuuuUbp6elauXKlfvvb38rr9So9PV1/+tOfOv7ge4h4vJY2t2zZMrndbkltW0XLPGy7eHxekHgvBICYmBwSI4m89tprgb9qhvuvqKjI2L59u9nDTCqRnotI/w0ZMiSkj5UrV8Z0bkZGhvH44493/oPs4YYMGRLTz3/OnDmtrhzx+XzGf/zHf7Tax8KFCw2fz9d5Dy4JPfroo62u0AqHOZhYzVdUxfJfJPGaY2VlZcb48eMj9pGammo8+eST8f4xdGsdfQ6XLl3a5vfLcN8KinUcY8aMMTZt2tQJP5nuo6PPYbxfJ7dv326MGDEiYj/Z2dnG66+/nogfRbcVr9fSJmeffbYhybDZbMbBgwfjPg7m4Qltff0L93mhCe+FANA6/qyETnPZZZfp888/14MPPqg333xTpaWlcjgcGj58uK666ir96Ec/UkZGhtnDRBuNGzdOf/7zn7V27VqVlJTo4MGDKi8vl9frVa9evXTqqafq/PPP1/XXXx+yqggd98wzz2jVqlVau3atdu3apfLyclVVVSkzM1ODBg3SOeeco/nz52vixImt9mO1WrVkyRLNmTNHTzzxhD755BOVl5erb9++Gj9+vG688ca4bWCFyJ577jlJks1m03e/+92YzmEOdg/xmmN9+/bVmjVr9OSTT+qvf/2rtmzZotraWuXn5+v888/XLbfcEvc6qYiPO+64Q2eeeabWrl2rzZs3q6ysTMeOHVNqaqpOOukkFRcX68orr9Ts2bNls9nMHm6PEu/XyeHDh2vjxo165JFH9OKLL2rHjh1yu90aNGiQLrnkEt1yyy0aMmRIJzyy5LR9+3atW7dOknThhReqf//+MZ/LPDQX74UA0DqLYUSoeA8AAAAAAAAASDir2QMAAAAAAAAAgGRGSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAANBOTz/9tCwWiywWi/bs2WP2cAAAAAB0U4S0AAAg6ezZsycQrnbkPwAAAACIB0JaAAAAAAAAADCRxTAMw+xBAAAAdCaPx6Mvv/wy4vExY8ZIkoqLi7V06dKI7U477bS4jw0AAABA8rGbPQAAAIDOlpKSElPA6nQ6CWIBAAAAJBzlDgAAAAAAAADARIS0AAAA7fT0008HNhHbs2dPyPFp06bJYrFo2rRpkqQdO3boBz/4gYYNG6b09HQNHTpUCxcu1N69e4PO++KLL7RgwQINGzZMaWlpGjRokG666SYdOXIkpnG98soruuqqqzR48GClpaUpNzdXxcXF+p//+R9VVFR09GEDAAAAiDPKHQAAAHSCf/7zn7riiitUXV0duG3v3r166qmn9MYbb2jVqlUaOXKknn/+eV133XVyu92BdqWlpXrssce0YsUKrVmzRvn5+WHvo6KiQldeeaXee++9oNsbGhq0YcMGbdiwQf/7v/+rV199VRMmTEjMAwUAAADQZqykBQAASLADBw5o7ty5ys3N1cMPP6x169bpww8/1E9/+lNZLBYdOXJE119/vT755BPNmzdPhYWFWrx4sdavX6+VK1fq2muvldQY6v7nf/5n2PtoaGjQBRdcoPfee082m03XXnutnn/+eX388cf68MMPde+996pPnz46cuSILrnkkpDVuwAAAADMw0paAACABNu+fbtGjBih1atXq1+/foHbzz33XNntdv3hD3/Q6tWrNXPmTJ111ll65513lJGREWg3bdo01dfX68UXX9RLL72ksrKyoH4k6e6779ann36q3Nxc/fOf/9S4ceOCjp977rn67ne/q4kTJ+rgwYO688479Ze//CWxDxwAAABATFhJCwAA0AkeeuihkGBVkm6++ebA5fLyci1evDgooG1y0003SZK8Xq/Wrl0bdKympkaPPPKIJOk3v/lNSEDbZMiQIfrFL34hSXrxxRdVW1vbvgcDAAAAIK4IaQEAABIsNzdXF110UdhjJ598srKysiRJp59+ukaNGhW23RlnnBG4vGvXrqBjq1atUmVlpSTpyiuvbHUsU6ZMkSR5PB5t2LAhtgcAAAAAIKEodwAAAJBgI0aMkMViiXg8NzdX1dXVKioqarVNk+abj0lSSUlJ4PKAAQNiHtehQ4dibgsAAAAgcVhJCwAAkGDhyhc0Z7Vao7ZraiNJPp8v6NiRI0faNS6Xy9Wu8wAAAADEFytpAQAAurnmoe2nn36qlJSUmM4rKChI1JAAAAAAtAEhLQAAQDfXp0+fwOV+/foRvgIAAADdDOUOAAAAurmxY8cGLq9evdrEkQAAAABoD0JaAACAbu6CCy4I1LN96KGHZBiGySMCAAAA0BaEtAAAAN1cbm6ufvSjH0mS1qxZo5/97Gfy+/0R2x8+fFiLFy/urOEBAAAAiIKatAAAAD3A3XffrVWrVmndunV68MEH9f777+uGG27QmWeeKafTqYqKCm3atEn//Oc/tWLFCo0ZM0bXX3+92cMGAAAAIEJaAACAHiE1NVXvvPOOrrvuOr388sv67LPPAqtrw8nOzu7E0QEAAABoDSEtAABAD5GVlaWXXnpJH330kZ555hl9+OGHOnDggOrq6pSdna3CwkKdddZZmjlzpmbMmGH2cAEAAAB8zWKwswQAAAAAAAAAmIaNwwAAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIn+f55wLxEAZEGGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'fitness_function_example_reassortment_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## B. Transmissibility function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single\n", + "population scenario, illustrating pathogen evolution through independent\n", + "reassortment/segregation of chromosomes, increased transmissibility,\n", + "and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector),\n", + "the pathogen with the most fit genome has a higher probability of being\n", + "transmitted to another host (or vector). In this case, the transmission rate\n", + "**DOES** vary according to genome, with more fit genomes having a higher\n", + "transmission rate. Once an event occurs, the pathogen with higher fitness also\n", + "has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal\n", + "genome and every other genome is less fit, but fitness functions can be defined\n", + "in any arbitrary way (accounting for multiple peaks, for instance, or special\n", + "cases for a specific genome sequence)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define an optimal genome\n", + "`/` denotes separators between different chromosomes, which are segregated and recombined independently of each other (this model has no recombination)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST/BEST/BEST/BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # the genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom transmission function for the host\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence gets 1/20 of the fitness of the optimal genome. There is no middle ground between the optimal and the rest, in this case." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostContact(genome):\n", + " return 1 if genome == my_optimal_genome else 0.05" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='host-host', \n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " contact_rate_host_host = 2e0,\n", + " # Rate of host-host contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " contactHost=myHostContact,\n", + " # Assign the contact function we created (could be a lambda function)\n", + " # In general, a function that returns coefficient modifying probability of a \n", + " # given host being chosen to be the infector in a contact event, based on genome \n", + " # sequence of pathogen. It should be a functions that recieves a String as \n", + " # an argument and returns a number.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function)\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " recombine_in_host=1e-3,\n", + " # Modify \"recombination\" rate of pathogens when in host to get some\n", + " # evolution! This can either be independent segregation of chromosomes\n", + " # (equivalent to reassortment), recombination of homologous chromosomes,\n", + " # or a combination of both.\n", + " num_crossover_host=0\n", + " # By specifying the average number of crossover events that happen\n", + " # during recombination to be zero, we ensure that \"recombination\" is\n", + " # restricted to independent segregation of chromosomes (separated by\n", + " # \"/\").\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population\n", + "We will start off the simulation with a suboptimal pathogen genome, _BEST/BADD/BEST/BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add pathogens to hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BEST/BADD/BEST/BADD':10}\n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a second suboptimal pathogen genome. _BADD/BEST/BADD/BEST_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts(\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD/BEST/BADD/BEST':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 500 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 500, # Final time point.\n", + " time_sampling=100 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 out of 8 | elapsed: 0.3s remaining: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 3 out of 8 | elapsed: 0.3s remaining: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 4 out of 8 | elapsed: 0.3s remaining: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 5 out of 8 | elapsed: 0.3s remaining: 0.2s\n", + "[Parallel(n_jobs=8)]: Done 6 out of 8 | elapsed: 0.3s remaining: 0.1s\n", + "[Parallel(n_jobs=8)]: Done 8 out of 8 | elapsed: 0.3s finished\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
795500.0my_populationHostmy_population_95NaNNaNTrue
796500.0my_populationHostmy_population_96NaNNaNTrue
797500.0my_populationHostmy_population_97NaNNaNTrue
798500.0my_populationHostmy_population_98NaNNaNTrue
799500.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

800 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 NaN NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + ".. ... ... ... ... ... ... \n", + "795 500.0 my_population Host my_population_95 NaN NaN \n", + "796 500.0 my_population Host my_population_96 NaN NaN \n", + "797 500.0 my_population Host my_population_97 NaN NaN \n", + "798 500.0 my_population Host my_population_98 NaN NaN \n", + "799 500.0 my_population Host my_population_99 NaN NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + ".. ... \n", + "795 True \n", + "796 True \n", + "797 True \n", + "798 True \n", + "799 True \n", + "\n", + "[800 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'transmissibility_function_reassortment_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 2 genotypes processed.\n", + "2 / 2 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiQAAALmCAYAAADCCvxNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADO8UlEQVR4nOzdd3hUddrG8XtCD6E3gaDAIorY6EUFXERFKSLYFUUR69rWuroqtte2gmV1bUgREUFUOohIC4TQBCFSJISS3uv0Oe8fbGYJ6cnMnCTz/VwX105mzvzOnclElvPM73kshmEYAgAAAAAAAAAA8KMQswMAAAAAAAAAAIDaj4IEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6trdgBUjc1m0++//y5JatOmjerW5UcKAAAAAICvuVwupaSkSJIuuOACNWzY0OREAADUPFy9ruF+//139e/f3+wYAAAAAAAEjaioKPXr18/sGAAA1Di0bAIAAAAAAAAAAH7HDokark2bNt7bUVFRat++vYlpAAAAAAConRISErwdCk79tzgAACg/ChI13KkzI9q3b6/w8HAT0wAAAAAAUPsxvxEAgMqhZRMAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAOADhtthdgQAAAAAAIBqjYIEAABV5Ezfrdw9r5kdAwAAAAAAoFqjIAEAQBUYhqGsyAdlPTxHhmGYHQcAAAAAAKDaoiABAEAVWP+cKWfyZrlzY+VM3mx2HAAAAAAAgGqLggQAAJXksWcqZ8cz3q+tMXNNTAMAAAAAAFC9UZAAAKCScnY9L48txfu1LXaBDI/LxEQAAAAAAADVFwUJAAAqwZm2U/kH/lPoPo89Vfa4VSYlAgAAAAAAqN4oSAAAUEGGYShry4OS4SnyGG2bAAAAAAAAikdBAgCACrIe+kLO1K3FPmY//pM8ztwAJwIAAAAAAKj+KEgAAFABHnu6snc8V+LjhitftmM/Bi4QAAAAAABADUFBAgCACsjZ8ZwMe1qpx9ho2wQAAAAAAFAEBQkAAMrJkRKl/ENflHmcPf5nua3JAUgEAAAAAABQc1CQAACgHAzDo+zI4gdZFz3YLVvsfP+HAgAAAAAAqEEoSAAAUA75Bz6VM21HuY+3HqZtEwAAAAAAwKkoSAAAUAaPLVU5O5+v0HOcqVvlyv7TT4kAAAAAAABqHgoSAACUIXvHMzIcGRV+njXmGz+kAQAAAAAAqJkoSAAAUApH8hZZD31VqedSkAAAAAAAAPgfChIAAJTA8LiVFfmQJKNSz3dnH5AztfxzJwAAAAAAAGozChIAAJQg/8AncqXvqtIa1hiGWwMAAAAAAEgUJAAAKJbbmqycnS9UeR3rkW9lGB4fJAIAAAAAAKjZKEgAAFCMnO1PyXBmVXkdjzVBjoS1PkgEAAAAAABQs1GQAADgNI6kjbIenu2z9WjbBAAAAAAAQEECAIBCDI/rv4Osfcd2dJEMl82nawIAAAAAANQ0FCQAADhF/h8fyZXxu0/XNJzZsp1Y4tM1AQAAAAAAahoKEgAA/Jc7P0E5v73kl7Wth2nbBAAAAAAAghsFCQAA/it7+5MynNl+Wdset0Iee4Zf1gYAAAAAAKgJKEgAACDJnrBOtphv/HcCj0O22AX+Wx8AAAAAAKCaoyABAAh6hsel7K2+HWRdHGsMbZsAAAAAAEDwoiABAAh6edHT5cqM9vt5HEkb5c495vfzAAAAAAAAVEcUJAAAQc2dF6fc36YG6GyGrEfmBehcAAAAAAAA1QsFCQBAUMve9oQMV27Azmf155wKAAAAAACAaoyCBAAgaNnj18gW+11Az+nK2CNnxt6AnhMAAAAAAKA6oCABAAhKhtuhrMiHTTk3w60BAAAAAEAwoiABAAhKefvekzv7gCnntsV8I8MwTDk3AAAAAACAWShIAACCjjv3mHL3vGre+fOOyZm8ybTzAwAAAAAAmIGCBAAg6GRve1yGK9/UDNbDtG0CAAAAAADBhYIEACCo2ONWyXZ0kdkxZD26QIbHaXYMAAAAAACAgKEgAQAIGobbbtog69MZ9nTZT6wwOwYAAAAAAEDAUJAAAASN3L3vyJ3zp9kxvKwxtG0CAAAAAADBg4IEACAouHJilbvnDbNjFGI7vkQeZ47ZMQAAAAAAAAKCggQAIChkRz0qua1mxyjMba0W8ywAAAAAAAACgYIEAKDWsx1fJvvxxWbHKBZtmwAAAAAAQLCgIAEAqNUMl03ZUY+YHaNEjoS1cluTzI4BAAAAAADgdxQkAAC1Wu7vb8qdE2N2jJIZbtmOfGt2CgAAAAAAAL+jIAEAqLVc2YeVu/cts2OUibZNAAAAAAAgGARtQWL79u165ZVXdOWVVyo8PFwNGjRQWFiYunfvrkmTJmnTpk0VWm/FihUaN26cd63w8HCNGzdOK1as8NN3AAAoS3bUI5LbZnaMMjlTt8mVfcjsGAAAAAAAAH5lMQzDMDtEoA0ZMkQbN24s87iJEyfq888/V/369Us8xuPxaMqUKfryyy9LPGby5Mn69NNPFRLi+/rPiRMn1KlTJ0nS8ePHFR4e7vNzAEBNZDv2kzLWXmd2jHILu+glNen1stkxAAAAUAL+/Q0AQNUF5Q6J+Ph4SVKHDh306KOPauHChYqKitKWLVv03nvvqWPHjpKk2bNn66677ip1reeff95bjOjVq5fmzZunqKgozZs3T7169ZIkffHFF3rhhRf89w0BAAoxXFZlb33U7BgVQtsmAAAAAABQ2wXlDolRo0Zp4sSJGj9+vOrUqVPk8dTUVF1yySU6ePCgJGn9+vUaMmRIkeMOHjyonj17yuVyqW/fvtqwYYMaNWrkfTw/P19Dhw7V9u3bVbduXf3xxx/q1q2bT78XPqEBAEXl7HxBuXteNztGhbW6dqvqt+lvdgwAAAAUg39/AwBQdUG5Q2Lp0qW68cYbiy1GSFLr1q31r3/9y/v1woULiz1u+vTpcrlckqQPP/ywUDFCkkJDQ/Xhhx9Kklwul6ZNm+aL+ACAUriyDyl377tmx6gUdkkAAAAAAIDaLCgLEuVx+eWXe28fPny4yOOGYeinn36SJJ177rkaOHBgsesMHDhQ55xzjiTpp59+UhBuSAGAgMqO/JvksZsdo1JsR+bL8LjNjgEAAAAAAOAXFCRKYLf/72JWcTspjhw54p1FMXTo0FLXKng8Li5OsbGxvgsJACjEGvu97PGrzI5RaR5bkhwJa8yOAQAAAAAA4Bd1zQ5QXa1fv957u0ePHkUej46O9t4+99xzS13r1Mf/+OMPdenSpdw5Tpw4UerjCQkJ5V4LAGozjzNP2dseNztGlVlj5qpBx6vMjgEAAAAAAOBzFCSK4fF49Oabb3q/vvHGG4scc2qhoKxBVgVDr6STg68q4tTnAgBKlrv7VXnyKvbf2OrIdvQHGYPyZakbanYUAAAAAAAAn6JlUzGmTZumqKgoSdL111+vPn36FDkmJyfHezssLKzU9Ro3buy9nZub66OUNV9insvsCEC15c5PVMa6G+VIjjQ7So3gytyvvOj3zI7hE4YrV7Zji82OAQAAAAAA4HPskDjN+vXr9eyzz0qS2rZtq08++aTY42w2m/d2/fr1S12zQYMG3ttWq7VCecraUZGQkKD+/ftXaM3qIiLervFn8xYEiuNMiZQtdoFssQtUr81ANe75hBqeeb0sIUVn2kDK2vqw5HGaHcNnrEe+UaOuN5sdAwAAAAAAwKe4GnyKffv2ady4cXK5XGrYsKEWLFigtm3bFntsw4YNvbcdDkep6546ILtRo0YVylRWO6iabHO8TePPblz2gUAQcqT8b2eEMyVSmetuVJ2wzgrt8YhCu09WSL0mJqarXqxH5suR8IvZMXzKHrdSHluaQhq2MjsKAAAAAACAz9Cy6b+OHDmiK6+8UhkZGapTp46+/fZbDRkypMTjmzT538XAstow5eXleW+X1d4pmCTkufVnZu35RDPgS87UrUXuc+fGKmfbE0r+LlzZUU/IlXvUhGTVi8eZq+xtT5gdw/c8TlljF5idAgAAAAAAwKcoSEiKj4/XFVdcofj4eFksFs2YMUNjx44t9Tmn7lw4dcB1cU5tu8SQ6sIi4m1lHwQEGcPjljN1e8mPO7OVFz1NKd//RRm/3hDUcyZyf3tZnvx4s2P4hTVmrtkRAAAAAAAAfCroCxKpqakaMWKEYmJiJEkffvihJk6cWObzzjvvPO/t/fv3l3rsqY/36NGjkklrpy3xdnkMw+wYQLXiytwnw1X6zitJkuGW7ehCpS0fpNRlg2SNXSDD4/Z/wGrCmbFPedHvmx3Db5zJEeyCAQAAAAAAtUpQFySysrJ01VVXKTo6WpL05ptv6qGHHirXc7t06aIOHTpIOjkIuzQbNmyQJHXs2FGdO3eufOBaKMPuUXQabZuAUxXXrqnM5/x3zkTKom7K3feePI5sPySrXrIjH5IMl9kx/MiQLeYbs0MAAAAAAAD4TNAWJPLz83Xttddq586dkqTnn39ezzzzTLmfb7FYvG2d9u/fr8jI4lumREZGendIjB07VhaLpYrJa59NtG0CCjl1oHVFnZwz8XclL+h0cs5ETqzvglUj1sNz5UgqvRhcG9C2CQAAAAAA1CZBWZBwOBwaN26cIiIiJEmPPvqoXnvttQqv89hjj6lOnTqSpL/97W+yWq2FHrdarfrb3/4mSapbt64ee+yxqgWvpaIS7HJ5aNsEFHCmVHyHxOm8cyYWdfvvnIktPkhWPXgc2cre/qTZMQLClblPzvTdZscAAAAAAADwibpmBzDDLbfcotWrV0uS/vrXv+qee+7R3r17Szy+fv366t69e5H7u3fvrqeeekpvvvmmtm/frksuuUTPPPOM/vKXv+jw4cN66623tGvXLknSU089pbPPPts/31ANl+cytCvZoX5nNDA7CmA6jyNbrqw/fLfgf+dM2I4uVL02A9X4vMfV8KzxsoTU8d05Aixn14vyWBPNjhEw1pi5qtfyIrNjAAAAAAAAVJnFMIJvonBF2yadddZZio2NLfYxj8eje++9VzNmzCjx+ffcc48+++wzhYT4fkPKiRMn1KlTJ0nS8ePHFR4e7vNz+Muty5Pl/u+7b1D7BnqsdzNzAwHVgD3+F6WvvsKv56jT+CyFnveIQs+erJD6Tf16Ll9zpu9R6pLekhE8w7tDQsPV9oajsliCclMjAABAtVGT//0NAEB1wdWNKgoJCdGXX36pZcuWaezYserQoYPq16+vDh06aOzYsVq+fLm++OILvxQjapMdSXbZXB6zYwCmq8xA64py5x3975yJcGVHPV5j5kwYhqGsyIeCqhghSZ78E3IkbjA7BgAAAAAAQJUFZcsmf2wKueaaa3TNNdf4fN1g4fBIUYl2DQlvZHYUwFRVGWhdUYYzR3nR05X3x4dqeOY4Ne75uOq3HRyw81eU9fBsOZM3mR3DFNaYuWrQfpjZMQAAAAAAAKqEj+2j2oiIt5sdATCdLwZaV9h/50ykLb9EqcsGyXrkOxme6rULwWPPVM72p82OYRrb0YUy3A6zYwAAAAAAAFQJBQlUG7+nOpRtp20Tgpcr54g8tmRTMzhTIpW5/ialfP8X5e79lzyObFPzFMjZ9YLpr42ZDEem7CeWmx0DAAAAAACgSihIoNpwG9KWBJvZMQDTmLI7ogTuvKPK2f5ktZgz4UzbpfwD/zHt/NWFNWau2REAAAAAAACqhIIEqhXaNiGYBWKgdUUVzJlIWdRNGb9OkCN5c2DPbxjKinww6AZZF8d2Ymm12bECAAAAAABQGRQkUK0czHAqJZ8LjwhOgRxoXWGGW7aj35+cM7F0oKxH5gdkzoT10Aw5q/PrEkhum2xHvzc7BQAAAAAAQKVRkEC1YkiKiKdtE4KP4XbImbbL7Bjl4kzdqsz1N58yZyLLL+fx2NOVs+NZv6xdU9G2CQAAAAAA1GQUJFDtUJBAMHKm/yZ5albLsv/NmeikrK2PyZVzxKfr5+z4hzz2VJ+uWdM5En+VOz/e7BgAAAAAAACVQkEC1c6xHLeO57jMjgEEVHWcH1FehjNH+X+8r5RFZ5+cM5EUUeU1HanblH/ocx+kq2UMj6xHvjU7BQAAAAAAQKVQkEC1FBHHLgkEl2o9P6K8CuZMrLi0SnMmDMOj7C0PSobHDyFrPto2AQAAAACAmoqCBKol2jYh2DhTau4OieL8b85EV+XufbdCcybyD34uZ9p2P6ar2VxpO+XK3G92DAAAAAAAgAqjIIFqKdnq0cEMp9kxgIDw2FLlzjlsdgy/cOcdU872p8o9Z8JjS1XOzn8EKF3NxS4JAAAAAABQE1GQQLW1ibZNCBKOWrY7ojiF50yML3HORPaOZ2XY0wOcruaxHvnG7AgAAAAAAAAVRkEC1VZkgk0ewzA7BuB3NXmgdYUZbtmOLvrvnIkBssZ8K8Nzcoi9I2WrrIdmmBywZnDnxMiRvMXsGAAAAAAAABVCQQLVVpbD0O+pDrNjAH5XKwZaV4IzNUqZG25Ryvd/Ue7ed5UV+aAkipDlZY1hlwQAAAAAAKhZKEigWouIt5sdAfArwzDkTIkyO4apCuZMuNJ2mh2lRrHFzvfuLgEAAAAAAKgJKEigWotKtMvh5hPTqL3cWQdkOLPMjoEayGNLkT3+Z7NjAAAAAAAAlBsFCVRrVpehncnskkDtFaztmuAb1pi5ZkcAAAAAAAAoNwoSqPY2xVGQQO0VVAOt4XP2Yz/K48wzOwYAAAAAAEC5UJBAtfdbil35To/ZMQC/YIcEqsJw5cl+/CezYwAAAAAAAJQLBQlUe06PtDWRXRKofQxXvlwZv5sdAzUcbZsAAAAAAEBNQUECNUJEvM3sCIDPOVK3S4bb7Bio4exxq+W2pZgdAwAAAAAAoEwUJFAj7EtzKtPGhVvULsyPgE8YLtmOfGd2CgAAAAAAgDJRkECN4DGkzQm0bULt4kyhIAHfoG0TAAAAAACoCShIoMagbRNqGwZaw1ecKVvkyokxOwYAAAAAAECpKEigxvgz06WkfNo2oXZw58XJkx9ndgzUItaYb8yOAAAAAAAAUCoKEqhRNsWxSwK1A7sj4Gu0bQIAAAAAANUdBQnUKLRtQm3BQGv4mjtrv5xpu8yOAQAAAAAAUCIKEqhR4nLdis1ymh0DqDIGWsMf2CUBAAAAAACqMwoSqHEi4u1mRwCqxPC45UzbbnYM1ELWI/NkGB6zYwAAAAAAABSLggRqnM0JNhmGYXYMoNJcGb/LcOWbHQO1kCc/Xo7EdWbHAAAAAAAAKBYFCdQ4qVaP9mfQtgk1FwOt4U+0bQIAAAAAANUVBQnUSBFxtG1CzcVAa/iTLfZ7GW7+GwkAAAAAAKofChKokSITbHJ5aNuEmomB1vAnw5kl2/GlZscAAAAAAAAogoIEaqQcp6HfUx1mxwAqzOPIkitrv9kxUMvRtgkAAAAAAFRHFCRQY22Ks5kdAagwZ2qUJHb3wL/sJ5bLY880OwYAAAAAAEAhFCRQY21Pcsju5sIuahYGWiMgPHbZji40OwUAAAAAAEAhFCRQY9nchrYnMbgVNQvzIxAotG0CAAAAAADVDQUJ1GgRtG1CDUNBAoHiSFwvd94Js2MAAAAAAAB4UZBAjbY71aFcp8fsGEC5uLIPy2NPNTsGgoYh65F5ZocAAAAAAADwoiCBGs3lkbYm0LYJNYMzld0RCCxrzDdmRwAAAAAAAPCiIIEabxNtm1BDMNAageZK/03OzGizYwAAAAAAAEiiIIFa4I90p9JtbrNjAGVifgTMwHBrAAAAAABQXVCQQI1nSIqIp20TqjfDbZcz/TezYyAI2WK+kWEYZscAAAAAAACgIIHaYXM8bZtQvTnTdkkeh9kxEITcubFyJm82OwYAAAAAAAAFCdQOMVkuxee6zI4BlIiB1jATbZsAAAAAAEB1QEECtUYEuyRQjTHQGmayxn4nw+M0OwYAAAAAAAhyFCRQazBHAtUZA61hJsOeJnvcKrNjAAAAAACAIEdBArVGQp5bhzP5BDCqH7c1We7cI2bHQJCjbRMAAAAAADAbBQnUKrRtQnXE/AhUB/bji+Vx5podAwAAAAAABDEKEqhVtiTY5TEMs2MAhTA/AtWB4cqX7dgPZscAAAAAAABBjIIEapV0m0fRabRtQvXC/AhUF7bDtG0CAAAAAADmoSCBWoe2TahODMMjZ+o2s2MAkiR7whq5rclmxwAAAAAAAEGKggRqna2Jdrk8tG1C9eDK/EOGM9vsGMBJhlu22PlmpwAAAAAAAEGKggRqnTynod9SHGbHACQx0BrVj5W2TQAAAAAAwCQUJFArbYqjbROqBwZao7pxpm6VK/tPs2MAAAAAAIAgREECtdLOZLtsLo/ZMQAGWqNassZ8Y3YEAAAAAAAQhChIoFayu6VtibRtgrk8zjy5MveZHQMowhpD2yYAAAAAABB4FCRQa22Kp20TzOVM3SYZbrNjAEW4sw/Kkbrd7BgAAAAAACDIUJBArfV7qkPZDto2wTwMtEZ1ZmOXBAAAAAAACDAKEqi13IYUmcAuCZiHgdaozqxHvpXhYQcPAAAAAAAIHAoSqNUi4uxmR0AQY6A1qjOPNVGOxLVmxwAAAAAAAEGEggRqtQMZTqVa+QQwAs+dd1wea4LZMYBSWQ/TtgkAAAAAAAQOBQnUaoakCIZbwwS0a0JNYDu2SIbLanYMAAAAAAAQJChIoNaLiKdtEwKPdk2oCQxnjmzHl5gdAwAAAAAABAkKEqj1jma7dCLHZXYMBBl2SKCmsMZ8Y3YEAAAAAAAQJChIIChsom0TAsjwuORM22l2DKBc7HEr5LFnmB0DAAAAAAAEAQoSCAqbKUgggFzpuyU3fflRQ3gcssUuMDsFAAAAAAAIAhQkEBSS8j06mOE0OwaChCOV+RGoWawxc82OAAAAAAAAggAFCQQNdkkgUBhojZrGkbRR7txjZscAAAAAAAC1HAUJBI0tCXZ5DMPsGAgCDLRGzWPIemSe2SEAAAAAAEAtR0ECQSPT7tHeVNo2wb889gy5sw+ZHQOoMNo2AQAAAAAAf6MggaCyibZN8DNHylZJ7MRBzePK+F3OjN/NjgEAAAAAAGoxChIIKlGJdjncXCyG/zgZaI0azHqYXRIAAAAAAMB/KEggqFhdhnYl282OgVqMgdaoyWxH5slg1g4AAAAAAPATChIIOhHxFCTgPw52SKAGc+cdkyNpo9kxAAAAAABALUVBAkFnZ7Jd+U6P2TFQC7myD8mwp5sdA6gSG8OtAQAAAACAn1CQQNBxek7OkgB8zZESaXYEoMqsRxfK8DjNjgEAAAAAAGohChIIShHxNrMjoBZifgRqA8OeLvuJFWbHAAAAAAAAtRAFCQSlvWlOZdpp2wTfcrJDArWElbZNAAAAAADADyhIICh5DGkLuyTgQ4bLJmfGHrNjAD5hO75EHmeO2TEAAAAAAEAtQ0ECQYu2TfAlZ/pOib77qC3cVtmOLjI7BQAAAAAAqGUoSCBoHcp0KTnfbXYM1BIMtEZtQ9smAAAAAADgaxQkENQ2xbFLAr7BQGvUNo6EtXLnJ5odAwAAAAAA1CIUJBDUaNsEX2GgNWodwy3bkW/NTgEAAAAAAGoRChIIaidy3Tqa7TI7Bmo4d36i3HnHzI4B+BxtmwAAAAAAgC9RkEDQY5cEqsqZSrsm1E7OtO1yZR00OwYAAAAAAKglKEgg6G2Ot8kwDLNjoAZjoDVqM3ZJAAAAAAAAX6EggaCXYvXoQIbT7BiowRhojdqMggQAAAAAAPAVChKApIh4u9kRUEMZhkfO1G1mxwD8xp1zWA6KbgAAAAAAwAcoSACSIhNscnto24SKc2Xuk+HKNTsG4FfWmG/MjgAAAAAAAGoBChKApGyHoT2pDrNjoAaiXROCge3IfBket9kxAAAAAABADUdBAviviHib2RFQAzHQGsHAY0uSI2GN2TEAAAAAAEANR0EC+K9tiQ453LRtQsWwQwLBguHWAAAAAACgqihIAP9lcxvakcRwa5Sfx5kjV1a02TGAgLAd/UGGK9/sGAAAAAAAoAajIAGcYhNtm1ABztRtkuExOwYQEIYrV7Zji82OAQAAAAAAajAKEsApfktxKM/JBWaUj5P5EQgytG0CAAAAAABVQUECOIXLI0Um0LYJ5eNgfgSCjD1+lTy2NLNjAAAAAACAGoqCBHCaCNo2oZwYaI2g43HKGvud2SkAAAAAAEANRUECOE10mlPpNrfZMVDNuXJi5bElmR0DCDjaNgEAAAAAgMqiIAGcxpC0JZ62TSidM5XdEQhOzuTNcuXEmh0DAAAAAADUQBQkgGJsom0TysBAawQvQ7Yj35gdAgAAAAAA1EAUJIBixGS5lJDnMjsGqjEGWiOY0bYJAAAAAABUBgUJoASb4mjbhOIZHqec6bvMjgGYxpUZLWf6brNjAAAAAACAGoaCBFCCzbRtQgmc6b9Jbt4fCG7skgAAAAAAABVFQQIoQXyeWzFZTrNjoBpy0q4JkDVmngzDY3YMAAAAAABQg1CQAEoREcen4FGUg4HWgDz5J+RI3GB2DAAAAAAAUINQkABKsTnBLo9hmB0D1Qw7JICTaNsEAAAAAAAqgoIEUIp0m0d/pNO2Cf/jsaXJnfOn2TGAasF2dKEMt93sGAAAAAAAoIagIAGUIYLh1jiFI5XdEUABw5Ep+4nlZscAAAAAAAA1BAUJoAxbE+xyeWjbhJNo1wQURtsmAAAAAABQXhQkgDLkOg3tTnGYHQPVBAOtgcJsx5fK48gyOwYAAAAAAKgBgrYgkZycrKVLl+rFF1/UyJEj1bp1a1ksFlksFt11113lWmPmzJne55T1Z+bMmX79fuBfm2jbBEmGYciZGmV2DKB68dhlO/q92SkAAAAAAEANUNfsAGZp166d2RFQg+xIssvmMtSwrsXsKDCRO+uADEem2TGAascaM1ehZ99tdgwAAAAAAFDNBW1B4lRnnnmmzj33XK1evbrSa6xatUodOnQo8fHw8PBKrw3z2d3S9iS7Lu3Y0OwoMBEDrYHiORLXyZ0frzqhJf89CAAAAAAAELQFiRdffFH9+vVTv3791K5dO8XGxqpLly6VXq979+7q3Lmz7wKi2omIt1GQCHIMtAZKYHhkPfKtwno+YXYSAAAAAABQjQVtQWLq1KlmR0ANszvFoRyHR03qB+3olaDHQGugZNaYuRQkAAAAAABAqbiyCpST25AiE+xmx4BJDJdVrozfzY4BVFuutJ1yZe43OwYAAAAAAKjGKEgAFbAp3mZ2BJjEmbZdMlxmxwCqNWvMXLMjAAAAAACAaixoWzb52qRJk3TgwAGlpqaqadOm6tatm6644go98MAD6tixY6XXPXHiRKmPJyQkVHptVNyBdKdSrW61blTH7CgIMAfzI4AyWY98oya9XzU7BgAAAAAAqKYoSPjIunXrvLfT0tKUlpamrVu36l//+pemT5+u++67r1LrdurUyUcJ4QuGpM3xNo35S2OzoyDAGGgNlM2dEyNH8hbVbzvI7CgAAAAAAKAaoiBRRV27dtX111+vQYMGeYsHMTEx+v7777Vw4ULZbDbdf//9slgsmjJlislp4QsR8XYKEkGIgdZA+eT+/n9qMfQ7Weo2NDsKAAAAAACoZihIVMG4ceN05513ymKxFLq/X79+uummm7R06VJdf/31cjqdevzxxzVmzBidccYZFTrH8ePHS308ISFB/fv3r3B2VF5stksnclwKb8KvT7Bw58fLk196+zQAJ9mPL1Hq8sFqMWyB6jb9i9lxAAAAAABANcJQ6ypo1qxZkWLEqUaNGqUXX3xRkpSfn68vv/yywucIDw8v9U/79u0rnR+VF8Fw66DC7gigYlzpu5S6pLesRxeZHQUAAAAAAFQjFCT8bMqUKd6ixfr1601OA1+JiLebHQEBxPwIoOIMZ7Yyfx2vrK2PyfA4zY4DAAAAAACqAQoSfta2bVu1atVKkhQXF2dyGvhKUr5bf2ZygS1YONkhAVRa/h/vK23FELnzSm9BCAAAAAAAaj8KEgFQWlsn1Fyb4mjbFAwMj1vOtB1mxwBqNGdKpFIW95LtxAqzowAAAAAAABNRkPCzlJQUpaamSpI6dOhgchr40pYEuzyGYXYM+Jkrc68MV57ZMYAaz7CnKWPNtcre+bwMj9vsOAAAAAAAwAQUJPzss88+k/Hfi9ZDhw41OQ18KdPu0d402jbVdgy0BnzJUN6eN5S++gq58xPNDgMAAAAAAAKMgkQlxcbGateuXaUes3TpUr3yyiuSpEaNGmnSpEmBiIYA2kzbplqPgdaA7zkS1yl1SS/ZE9aZHQUAAAAAAARQXbMDmGXTpk36888/vV8XtFWSpD///FMzZ84sdPxdd91V6OvY2FhdfvnlGjRokEaPHq2LLrpIbdu2lSTFxMRo4cKFWrhwoXd3xLvvvquOHTv655uBaaIS7brnfEP16jAnpLZioDXgHx5rotJXX6Gwi6cq7MJ/MG8JAAAAAIAgELQFiS+++EKzZs0q9rGIiAhFREQUuu/0gkSBLVu2aMuWLSWeJzQ0VNOmTdOUKVMqnRXVV57L0K4Uh/qf0cDsKPADjyNLrqz9ZscAai/DrdxdL8iZvEnNL/taIQ1bmZ0IAAAAAAD4UdAWJKqqT58++vrrr7VlyxZt375dCQkJSk1NlcvlUosWLdSzZ08NHz5ckydP9u6cQO20Kc5GQaKWcqZuk8TgcsDf7HErlbKkl1oM/U712w40Ow4AAAAAAPATi1HQUwg10okTJ9SpUydJ0vHjxxUeHm5yovK7dXmy3LXg3VcvRPp8RGs1qstIltomZ/dryt31T7NjAMEjpJ6a9HlLYT0fNzsJAABAETX5398AAFQXXEEFqsjpOTlLArUPA62BAPM4lbPtCWX8Ol4eR5bZaQAAAAAAgI9RkAB8ICKegkRt5EylIAGYwXZ0kVKX9JEzbZfZUQAAAAAAgA9RkAB8YG+qQ1l2j9kx4EOunBh5bClmxwCCljvnsFKXD1begU/NjgIAAAAAAHyEggTgA25D2pJgMzsGfMiZEml2BABum7K33K+MDbfL48wzOw0AAAAAAKgiChKAj0TEUZCoTRzMjwCqDVvMXKUt6y9nZrTZUQAAAAAAQBVQkAB85GCmS8n5brNjwEcYaA1UL67MaKUt7a/8w1+bHQUAAAAAAFQSBQnAhyLi2SVRGxhuu5zpDNMFqhvDlaesjXcoc/MUGS7+ewsAAAAAQE1DQQLwIQoStYMz/TfJ4zA7BoASWA9+rtTlg+XKPmx2FAAAAAAAUAEUJAAfOp7j1rFsl9kxUEUMtAaqP1f6LqUu6S3r0UVmRwEAAAAAAOVEQQLwsU3skqjxGGgN1AyGM1uZv45XdtTjMjxOs+MAAAAAAIAyUJAAfGwzBYkaz5lKQQKoSfKipyttxRC5846bHQUAAAAAAJSirtkBgNomxerRgXSnzmlZz+woqAS3LUXunBizYwCoIGdKpFIW91Lzy+aoYfhIs+MAAACUyGazKTMzU/n5+XK73WbHAQCgkDp16ig0NFTNmzdXw4YNfb4+BQnADyLibRQkaign7ZqAGsuwpyljzbVqfOFzanLxK7KE1DE7EgAAgJdhGEpISFBWVpbZUQAAKJHL5ZLdbldGRoaaNWum9u3by2Kx+Gx9ChKAH0Qm2HTneWGqE+K7X1YEBgOtgZrOUN6eN+RM3qzmQ+apTugZZgcCAACQJKWlpRUpRtSty2UZAED14nK5vLezsrJUv359tW7d2mfr8zcf4AdZDkO/pzp0cdsGZkdBBTHQGqgdHInrlLqkl5oPmacG7YeZHQcAAAQ5h8OhlJQU79dt27ZV8+bNVacOOzoBANWL2+1WZmamkpOTJUkpKSlq2rSp6tev75P1GWoN+ElEvN3sCKggwzDkTN1mdgwAPuKxJip99RXK2f26DMMwOw4AAAhiubm53tutWrVSq1atKEYAAKqlOnXqeP+uKnDq32NVRUEC8JNtSXY53FwAq0lcWX/IcNLPFahVDLdyd72gjDXXymNLMzsNAAAIUnl5ed7bTZs2NTEJAADlc+rfV6f+PVZV1bYgYbfblZSUJI/HY3YUoFKsLkM7ktklUZMw0BqovexxK5SypJccycyJAQAAgedwOCRJFotFDRrQ2hcAUP01aNDAO8y64O8xXwh4QSI3N1fLly/X8uXLi93qkZqaqvHjx6tp06bq0KGDWrRoob///e+y27mwi5onIs5mdgRUAAOtgdrNk3dcaSuHKHffNLOjAACAIFPwYcs6dep4L+4AAFCdWSwWb3tBX24aCPhQ6++//16TJk1SeHi4YmNjCz3m8Xg0cuRI7dy509vrOScnR9OnT1dsbKy+//77QMcFquS3FIfynB41rldtNyPhFAy0BoKAx6mcbU/ImbxJzS6ZoZD6zcxOBAAAAABA0Aj4VdJVq1ZJksaNG6eQkMKnnz9/vnbs2CFJ6t27tx5//HH17t1bhmHoxx9/1MqVKwMdF6gSp0eKSmR3T03gcebJlbnX7BgAAsR2dJFSl/SRM+03s6MAAAAAABA0Al6Q2Lt3rywWiwYPHlzksdmzZ0uS+vTpo8jISP3rX//Sli1b1L9/f0nSrFmzApoV8IVNtG2qEZxp2yXDbXYMAAHkzjms1OWDlH/gM7OjAAAAAAAQFAJekEhOTpYkdenSpdD9TqdTGzZskMVi0UMPPaS6dU92k6pXr57uv/9+GYahqKioQMcFqmxfmlOZNi50V3cMtAaClNumrC33KXPDHfI488xOAwAAAABArRbwgkR6erokqX79+oXu37Ztm6xWqyTp6quvLvRY9+7dJUmJiYkBSAj4liEpIoG2TdWdg4HWQFCzxnyttGX95cyMNjsKAAAAAAC1VsALEqGhoZL+t1OiwIYNGyRJ3bp1U7t27Qo91qhRo8CEA/wkgrZN1Z4zlR0SQLBzZUYrbWl/5R/+2uwoAAAAAADUSgEvSPzlL3+RJK1bt67Q/T/88IMsFouGDBlS5DkpKSmSpLZt2/o9H+APh7NcSsxzmR0DJXDnHZcnP97sGACqAcOVp6yNdyhr830y3OxuAwAAQM3jcrn0/fffa8qUKbrgggvUtm1b1atXT82aNVO3bt00btw4vfPOOzpy5IjZUQEEoYAXJEaMGCHDMPTxxx9rxYoVys3N1Ycffqht27ZJkkaPHl3kOXv27JEkdejQIaBZAV+KiOfCVnXlYH4EgNPkH/xMqcsGyZV92OwoAAAAQLktXrxYPXr00IQJE/T5559r7969SklJkcvlUnZ2tg4fPqwff/xRTz/9tLp27apRo0Zp7969Zsf2q5dfflkWi0UWi8XsKAAk1Q30CR999FH95z//UU5OjkaNGlXosR49ehRbkFi2bJksFot69eoVqJiAz22Ks2n82Y3NjoFiMNAaQHFc6buUuqSPml06Q43Out7sOAAAAECpXnvtNb344osyDEOSNGzYMI0aNUoXXnihWrVqpfz8fCUkJGjDhg1aunSpYmNjtWzZMoWHh+s///mPyekBBIuAFyTat2+vJUuW6Oabb1ZCQoL3/q5du2rhwoVFqpWHDx/Wxo0bJUlXXHFFQLMCvhSf59aRLKe6NKtndhSchoHWAEpiOLOU+et4Oc97TE36vi1LCP8NBwAAQPUzY8YM/fOf/5QktWvXTt9++62GDRtW7LE33HCDpk+frm+//Vb/+Mc/ApgSAEwoSEjSZZddpiNHjigiIkKJiYlq3769Lr30UtWtWzROQkKC9z+oV155ZaCjAj4VEW+nIFHNGB6XnGk7zI4BoJrLi54uR0qkWgz7TnUadzI7DgAAAOB1/PhxPfTQQ5Kkpk2batOmTerWrVupz6lTp45uu+02XXvttd4PAgNAIAR8hkSB+vXr6/LLL9ctt9yiYcOGFVuMkKRLL71UL730kl566SWFhoYGOCXgW5vjbd6tk6geXBl7JLfV7BgAagBnSqRSFveS7cRKs6MAAAAAXu+9955sNpsk6fXXXy+zGHGq5s2bF9s+vUBiYqKef/559e3bVy1btlSDBg3UqVMn3XjjjVqzZk2Jz4uNjfXObZg5c6Yk6eeff9bo0aN1xhlnqEGDBurSpYseeOABnThxosycDodDH3/8sS6//HK1adNG9evX1xlnnKFrrrlGX3/9tTweT5HnzJw5UxaLRVOnTvXeV5Dp1D+xsbHas2eP9+s333yzzDwffvih9/ioqKgi5yxY1263691331Xv3r3VrFkzNW3aVAMGDNDHH38st9td5nncbrdmzZqlUaNGqUOHDmrQoIFatWqlSy+9VO+9956sVq5noOaxGFwdrdFOnDihTp1OflLz+PHjCg8PNzlR+d26PFnuIHz3vTSwuc5rVd/sGPivvP2fKDvyQbNjAKhRLAq78B8Ku3iqLCF1zA4DAAACpCr//j506JBcLpfq1q2rs88+218REYQMw1CbNm2UlpamJk2aKCEhQY0b+2Z+5dy5c3XfffcpLy+vxGPuuece/ec//ynyQePY2Fh16dJFkvTVV1/pwIEDJV7ob9OmjdavX68ePXoU+3hsbKxGjhyp/fv3l5jj0ksv1U8//aSWLVt675s5c6YmTZpU4nMKHDlyRJ07d1b//v21bds2nXvuufrjjz9KfU7v3r21a9cu9ezZs9BQ8FPPuXPnTt17773asaP4rgxDhgzRsmXLFBYWVuzjx44d05gxY7R79+4Sc3Tr1k3Lli1T9+7dy/o2gUrxx99fpu2QAIJVRLzN7Ag4hZP5EQAqzFDunteVvnqE3PmJZocBAABAENu7d6/S0tIknWyR7qtixHfffac77rhDeXl56tq1q9577z2tXLlSO3bs0Pfff69rrrlGkvTll1/q6aefLnWtzz//XG+++aaGDh2qb775Rtu3b9eaNWs0ceJESVJKSoruvvvuYp+bm5ur4cOHe4sR1113nRYvXqzt27drwYIFGjp0qCRp06ZNGj16dKFdB9ddd51+//13PfDAA977fv/99yJ/OnbsKEmaPHmyJGn//v3asmVLid/P7t27tWvXLkkqMbck3XfffdqxY4duuukmLV++XNu3b9c333yjfv36SZI2bNigO+64o9jnpqWl6dJLL9Xu3bvVoEEDPfzww1qwYIG2bdumX3/9Vc8995xCQ0P1559/auTIkcrKyioxB1DdmDJDosDu3bu1ceNGxcTEKCcnp8ytShaLRV9++WWA0gH+sTXBrkk9DdUNsZR9MPzOkbLV7AgAaihH4q9KXdJLzYfMU4P2w8yOAwAAgCC0Z88e7+3evXv7ZM3U1FRNmTJFhmHo7rvv1qefflpoB0Tv3r11/fXX6/nnn9cbb7yh999/X/fdd5/OOeecYtfbvHmz7r33Xn366aeyWP53LWT48OGqX7++vvjiC0VGRmrXrl3q1atXoedOnTpVMTExkqQXXnhBr776qvexPn36aPz48brjjjs0d+5cbd68WZ999pm3ANG8eXM1b95cbdu29T7n/PPPL/H7vuWWW/TEE08oLy9PX331lQYNGlTscTNmzJAk1atXr8SCgiRt27ZNb7zxhp577rlCmW+44QaNGjVKq1at0o8//qjly5d7CzwFHnnkER0/flxnnXWWfv31V+9ukwLDhg3TDTfcoMsuu0wxMTF6++239frrr5eYBahOTClIHDhwQHfffbciI8v/yWTDMChIoFbIcRraneJQn3YNzI4S9Dz2TLmzD5odA0AN5rEmKn31FQq7eKrCLvxHoX9gAQAAAP6Wmprqvd2mTZsSj/N4PIqOji7x8XPOOUf16tWTJH3yySfKyspSx44d9fHHH5c493Xq1KmaNWuW4uLiNHv27BIviLdv3947c+F0Tz75pL744gtJ0saNGwsVJOx2u/exnj176uWXXy7yfIvFoo8//lgrV65UWlqaPvroo0I7IiqiSZMmuvHGG/XVV19p/vz5ev/999WoUaNCxzgcDs2dO1eSNGrUqFJf8wsvvFDPPvtskfvr1q2rL774Ql27dpXT6dTHH39cqCARGxur+fPnS5I++uijIsWIAr169dJDDz2kt99+WzNnzqQggRoj4C2b4uLiNGTIEEVGRsowDBmGocaNGys8PFxnnnlmiX/OOussnXnmmYGOC/gFbZuqB2fqVklBOMgEgG8ZbuXuekEZa66Vx5ZmdhoAAAAEkZycHO/t0to1ZWdn64ILLijxT1xcnPfYxYsXSzp5wb1Bg5I/TFm3bl3vLoLSWhxNmDChxHXOOecc7wyFgp0QBXbs2KHMzExJ0l133aU6dYqf39a0aVPdeOONkqTo6GglJCSUmKUsBW2bsrOz9f333xd5fMmSJd4WWaW1a5KkO++8s8QPLIWHh+vKK6+UJK1bt65Q15hly5bJ7XYrNDRUI0eOLPUcQ4YMkSTFx8fr2LFjpR4LVBcBL0i8/vrrSklJkXTyl3z//v3Kzs7W0aNHdeTIkTL/ALXB9iSH7ME40buaoV0TAF+yx61QypJeciQzmwYAAACB0aRJE+/t0oZPl5fb7dZvv/0mSd4WS6X9WbhwoSQpMbHk2Wrnnntuqeds0aKFpMLFFUmFhkUPGDCg1DVOffzU51XU4MGDdd5550k6OYz7dAX3tW/fvsxiQcGsiJL0799f0smf26nFmO3bt0uS8vPzVbdu3VJf/1GjRnmfV9rPAKhOAl6QWLlypSwWiyZOnKjPPvuMKfAISna3oe2JdrNjBD0GWgPwNU/ecaWtHKK8fdPNjgIAAIAg0KpVK+/tgg8AF6d58+beTiUFf+68884ix6Wnp8vlclU4R35+fomPhYaGlvrckJCTlydPny2bnp7uvX3qHIjinHHGGcU+rzLuueceSdKvv/6q2NhY7/0JCQlauXKlJGnixIkl7tgoUFbmdu3aeW+fmjk5ObmikSWV/jMAqpOAz5CIj4+XdPIXFwhmm+JtuqRjQ7NjBDVHapTZEQDURh6nsrc9LkfyJjW7ZIZC6jc1OxEAAABqqYsuush7e9euXVVe79SiwOTJk/Xoo4+W63n169ev8rlLE8hZbRMnTtRzzz0nh8OhWbNm6aWXXpIkzZ492/v6lNWuSap85oJztG7dWr/++mu5n1fSrAmgugl4QaJFixZKTk5W8+bNA31qoFrZneJQrsOjsPoB36gESa7sP2XY6fUOwH9sR7+XM/03tRi2UPVaXWx2HAAAANRC559/vlq1aqW0tDRt3LhR+fn5Ze5IKE3Lli29tw3D0Pnnn++LmFXOkpSUVGqXlVPbFZ36vMpo3bq1xo4dqwULFmjWrFl68cUXZbFYNHPmTEnSJZdcUq6OL2VlTkpKKjZzwa6XnJwc9ejRo8ydGEBNE/AroX379pUkHTx4MNCnBqoVtyFF0rbJNI7kCLMjAAgC7pzDSl0+SPkHPjM7CgAAAGohi8Wi22+/XdLJQcyzZs2q0nr169dXz549JUkREeb+u/nUYsjWraXPgIyK+l8HhNOLKJXZqVAw3PrIkSNat26dNm/erP3790sq3+4ISdq2bVu5Hg8NDVXXrl299/fq1UuSZLfbvfMkgNok4AWJRx55RIZh6LPP+Ic5EBFnMztCUHLnHlPO9mfMjgEgWLhtytpynzI33CGPs+qDBgEAAIBTPfHEE2rY8GRL6Oeee05Hjhyp0npjxoyRJO3fv1+rVq2qcr7K6tOnj7fDyqxZs+TxeIo9LicnR999950k6bzzzlP79u0LPV7w2kgnL/KXxxVXXKGzzjpL0slB1gXDrMPCwnTjjTeWa405c+bIMIxiH4uLi9Pq1aslScOGDSu0C2L06NHeIsr06dPLdS6gJgl4QWLEiBF65pln9Ouvv+qBBx6Q0+kMdASg2vgj3ak0q7vsA+EzHmeu0n8ZLY8tqeyDAcCHrDFfK21Zfzkz/zA7CgAAAGqRM888Ux988IEkKSsrS5deeqk2bdpU6nMMw1BmZmaxjz366KMKCwuTJE2aNEn79u0rda1ly5Zpz549FQ9ehgYNGnh3Kuzdu1evvvpqkWMMw9DDDz+s1NRUSdLDDz9c5JhTCxSHDx8u17lDQkK8OyG+//57zZ8/X5J0ww03eF+bsvz222965513itzvcrl07733yuFwSJIeeOCBQo+fc845uuGGGyRJ3377rd57771Sz3PkyBHNmzevXJmA6iDgMyRmz56tHj16aPDgwfrss8+0ZMkSTZgwQeeee265etwxDBu1iSFpc7xdo/9S+f6OKD/D8Chzw21yZfj+/ygBQHm4MqOVtrSfmg36VI3+cpvZcQAAAFBL3HvvvYqLi9PUqVMVHx+vyy67TH/96181evRoXXDBBWrZsqXcbrcSExO1c+dOfffdd95CQ506dQoNpW7Xrp1mzZqlCRMmKCEhQX379tVdd92lkSNHKjw8XE6nUydOnFBUVJQWLlyomJgYLVmyRBdeeKHPv68XX3xRixYtUkxMjF5++WX9/vvvmjRpktq3b68jR47oo48+0rp16yRJgwYN0pQpU4qsMXjwYO/txx9/XM8//7zat2/v3YXQuXNn1a1b9BLp3XffralTpyo/P7/QfeXVt29fPfPMM/rtt980ceJEtW3bVocOHdJ7773nbTE1evRojRo1qshzP/nkE23fvl0xMTH6+9//rp9++kkTJ05Uz5491aBBA6WlpWn37t1auXKl1q5dq3HjxumWW24pdzbATBajpL1DfhISElLpKfMWi0Uul8vHiWq2EydOqFOnTpKk48ePKzw83ORE5Xfr8mS5A/ruq546N62rty6r2sAllE/29qeVt7fopxMAwAyh3aeo6YAPZKnTwOwoAACgHKry7+9Dhw7J5XKpbt26Ovvss/0VEdAPP/ygJ598UjExMWUea7FYdNVVV+mdd94pdnj1kiVLdNdddyk9Pb3UdUJCQrRmzRpdfvnl3vtiY2PVpUsXSSdbHt11110lPr9z5846evSo7rzzTu/g6FPFxsZq5MiR3hkOxbnkkku0ePHiEgda33TTTd62Tqc7cuSIOnfuXOxj11xzjVasWCFJ6t69uw4cOFBiBkmaOXOmJk2aJEnauXOn7rnnHu3atavEzCtWrFCTJk2KfTwxMVE33nijNm7cWOo5pZM7WWbMmFHmcUBF+ePvr4DvkJBUYv80IBjFZrsUn+tShzBTfh2DRv6hmRQjAFQr+Qc/kyN1m1oMW6C6Tf9idhwAAADUAuPGjdPo0aP1ww8/aNWqVdqyZYuSk5OVmZmp0NBQtWrVShdccIEGDRqkm266yVs0KM7o0aN15MgRff7551q+fLn27dun9PR01a1bV2eccYZ69uypv/71r5owYYK3WOcPnTt31u7du/X5559rwYIF2rt3r7Kzs9WyZUv16tVLt912m2699VaFhJTcmf7rr79W3759tXDhQh04cEA5OTklzqQ41R133OEtSBQUGsqrRYsW2rx5s6ZPn6758+fr8OHDMgxDPXr00MSJE/XAAw8Umh1xujPOOEMbNmzQsmXLNG/ePG3ZskWJiYlyOp1q3ry5zj77bA0aNEhjxozRkCFDKpQNMFPAd0gcPXq0Ss8vGCiDk9ghUTuMPztUN3YvXw9CVJwjaaPSVl0heRxmRwGAIiz1mqnZpTPU6KzrzY4CAABKwQ4JIPg8//zzeuONN1SnTh0dP368yMDs0526Q6K0nRdATVErdkhQUACK2hxvpyDhJ66cI8pYez3FCADVluHMUuav4+U873E16fuWLCH1zI4EAAAABD23263Zs2dLkkaOHFlmMQJA+ZS8lwlAwCTkufVnptPsGLWOx5GtjF9GyWNPNTsKAJQpL3qa0lYMlTvvuNlRAAAAgKA3d+5cnThxQpJ0//33m5wGqD1oWg9UExHxNnVrzqdifcXwuJW5/ia5MqPNjgIA5eZM2aKUxb3U/LKv1TD8arPjAAAAAEHlzz//lNPp1Pbt2/X4449Lki666CJdc801JicDag9TCxJut1s//vij1qxZo7179yo9PV2S1LJlS51//vm64oordN1115U64AWoLbbE23VHjzCFWCxmR6kVsrf9Xfa4lWbHAIAKM+xpylhzjcIu/IfCLp4qSwj/PwgAAAAIhNN75NerV0+ffPKJLFyrAXzGtILEypUrNWXKFMXFxXnvK5ivbbFYtHnzZn322WcKDw/XZ599pquuusqsqEBAZNg9ik5z6vzW9c2OUuPlHfhU+X+8b3YMAKgCQ7l7XpcjebOaD/lGdULPMDsQAAAAEDRatGih3r1765VXXtGgQYPMjgPUKqbMkJgzZ45GjRqluLg4GYYhwzB01llnaeDAgRo4cKB38LVhGDp+/LiuvfZazZ0714yoQEBtireZHaHGsyesVXbkw2bHAACfcCT+qtQlvWRPXG92FAAAAKDWK7hOmZ6erjVr1mjw4MEVev5dd93lXaNz587+CQnUcAEvSBw9elRTpkyRx+NRaGioXnvtNSUmJiomJkabN2/W5s2bFRMTo8TERL3++usKCwuTx+PRvffeq2PHjgU6LhBQUQl2uTyG2TFqLFf2IWX8OkEyXGZHAQCf8VgTlb5quHL3vOHdTQoAAAAAQE0U8ILE+++/L7vdrrCwMG3cuFH/+Mc/1LZt2yLHtWnTRs8995w2btyosLAw2e12vf8+LVhQu+W5DO1Kdpgdo0by2DOUvmaUDEeG2VEAwPcMt3J2Pq+MX0bJY083Ow0AAAAAAJUS8ILE6tWrZbFY9NRTT+niiy8u8/iLLrpITz75pAzD0KpVq/wfEDBZBG2bKszwuJSx7ga5sw+aHQUA/Mp+YrlSF/eSIznS7CgAAAAAAFRYwAsSBW2XrrjiinI/Z8SIEYWeC9RmO5Lssrk8ZseoUbK3/k2OhF/MjgEAAeHOO6a0lUOUt2+62VEAAAAAAKiQgBck3G63JKlOnTrlfk7dunUlSR4PF2lR+zk8UlSi3ewYNUZe9AfKP/Afs2MAQGB5nMre9rgyfp0gjyPb7DQAAAAAAJRLwAsSHTt2lCRt3ry53M8pOLZDhw5+yQRUNxHxFCTKw3ZipbK3PWF2DAAwje3o90pd0lvOtN/MjgIAAAAAQJkCXpC4/PLLZRiG3nzzTcXHx5d5fHx8vN58801ZLBb99a9/DUBCwHy/pzqUbWdHUGmcmdHKXH+TZLjNjgIApnLnHFbq8kHKP/i52VEAAAAAAChVwAsSf/vb3xQSEqKUlBQNGDBACxcu9LZxOpXH49HChQs1aNAgJSUlKSQkRA8//HCg4wKmcBvSlgSGW5fEY0tVxi+jZThpUwIAkiS3TVmbpyhz40R5nHlmpwEAAAAAoFh1A33C888/X6+++qqef/55xcfH66abblLz5s3Vu3dvtW3bVhaLRUlJSdq5c6cyMzNlGIYk6dVXX9X5558f6LiAaSLi7bqqc6jZMaodw+1Qxq/Xy50TY3YUAKh2rIfnyJm2Q82HLVS95j3MjgMAAAAAQCEBL0hI0nPPPadmzZrp6aefVn5+vjIyMrR27dpCxxQUIkJDQ/XOO+/ogQceMCMqYJqDGU6l5LvVJrT8A+CDQVbkA3IkbTQ7BgBUW67MaKUt7admgz5Vo7/cZnYcAAAAAAC8At6yqcCDDz6o2NhYvfXWWxoxYoTOOOMM1a9fX/Xr19cZZ5yhESNG6K233lJsbCzFCAQlQ1JEPG2bTpW7911ZD80wOwYAVHuGK0+ZG29X1ub7ZbjtZscBAAAAAECSSTskCrRu3VpPPfWUnnrqKTNjANVWRLxN13VrbHaMasF2fIlydjxjdgwAqFHyD34qR2qUWly+UHWbdDU7DgAAAAAgyJm2QwJA2Y7luHU8x2V2DNM50/coc/2tkuExOwoA1Diu9F1KXdxbtqM/mB0FAAAAABDkKEgA1VxEXHC3bXJbk5Txy2gZrlyzowBAjWU4s5Tx6/XKjnpChsdpdhwAAAAAQJCiIAFUc8E8R8Jw25WxdpzcecfMjgIAtUJe9DSlrRgqd95xs6MAAAAAAIKQ32ZIdO16sk+xxWLR4cOHi9xfGaevBQSDZKtHBzOc6t6intlRAi4z4h45U7aYHQMAahVnyhalLO6l5pd9rYbhV5sdBwAAFCNhpsXsCH7T/i7D7+dYt26dLr/88hIfb9y4sTp06KABAwZo0qRJ+utf/1rutWNjY9W1a1cZxsnvY+7cubr11lvL9bwuXboUud9isahp06Zq1qyZ2rdvrz59+mjgwIEaN26cwsLCylx32LBhWr9+fZH7GzVqpGbNmqlly5Y6//zz1bdvX40dO1bdu3cvx3dZ2ObNm3XJJZcoJCRESUlJat26tTd7SRo2bKjWrVvr4osv1g033KBbb71VdeuWfBmyc+fOOnr0aLkzNWvWTJmZmcU+lpeXpzlz5mjx4sXavXu30tLSZBiGmjZtqs6dO+uCCy7QoEGDdPXVV6tTp06SpJdffllTp04t9/mLc+edd2rmzJnFPjZlyhR9/vnnGjNmjH766SdJ0syZMzVp0qRij7dYLAoLC9OZZ56pSy65RFOmTFGfPn0qlGf9+vUaNmyY9+uIiAgNHjy4zOeV9PtTp04d73u1U6dO6tOnjy699FKNHj1a9evXL3Pdkn7GjRs3VrNmzdS6dWtddNFF6tevn66//np17NixzDVP98033+i2225Ty5YtlZycrDp16pT4u1cgNDRUbdu2Vd++fXXbbbfpuuuuK/Ucpb3vi3PRRRfpt99+K/axtLQ0ffXVV1q5cqX27t2rjIwMWSwWtWjRQp07d9bFF1+swYMH66qrrlLbtm0lSXfddZdmzZpVoQyne+mll/Tyyy9XaY2q8FtBIjY2VlLRH1LB/ZVR0R84UFtsirMFXUEiZ/frssXMNTsGANRKhj1NGWuuUdiF/1DYxVNlCaljdiQAAICAycvL06FDh3To0CF9/fXXmjhxombMmKE6dcr+/0SzZ8/2FiMKvi5PQaIkhmEoKytLWVlZOnbsmLZu3aqPP/5YTZo00eTJk/Xqq6+qcePGFV7XarXKarUqMTFR0dHR+u677/TMM8/o8ssv13vvvaeLLrqo3GstWbJEkjRo0CBvMaIsNptNJ06c0IkTJ7R06VK9//77Wr58udq1a1fh76UitmzZoptvvlnHjhXttJCamqrU1FRt375dX331ldq1a6fExES/5pFO/oyXLl0qSRo9enS5n5OTk6N9+/Zp3759+vzzz/Xss8/qjTfeKPd5T79oPXv27HIVJEridruVkZGhjIwMxcbGauPGjZo+fbratGmjRx55RM8++2ypRaeS5OXlKS8vT/Hx8dqzZ4/mzJmjxx9/XGPGjNF7772nzp07l3utgvfqyJEjy/X7LEn5+fmKjY1VbGysFi5cqCuvvFKLFi2q1O9dRSxevFh333230tLSijyWmJioxMRERUZG6j//+Y8GDBigyMhIv+YJJL8VJO68884K3Q+gZJEJNt3VM0whQVKUs8Z+r9xd/zQ7BgDUcoZy97wuR/JmNR86T3Ua+fcfhwAAAGZ44IEH9OCDD3q/NgxD6enp2rJli6ZNm6bk5GTNnj1bnTp10muvvVbmenPmzJEkhYWFKTc3V2vWrFFCQoLat29f7kxjx44tdK78/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wy1/3999+9t10ulzIzMxUXF6fIyEgtXLhQiYmJWrt2rfr3768PP/xQU6ZMKVfegou8JV1M79u3r7766qtC9+Xm5mrv3r366KOPtHv3bu3cuVMTJkzQxo0bSz1Xhw4dtGrVqjIzFXex+eDBg7rqqquUk5MjSRozZowmTJig7t27q379+kpNTdXu3bv1888/69dffy303AcffFATJkwo9lw//fSTXnjhBUnSa6+9prFjxxZ7XIsWLYq9f8eOHUpISJDFYtG1115b7DGnr+vxeJSSkqJ169Zp+vTpys3N1f/93/+pa9eumjx5crFrnMpqtWrhwoWS/vde/e677/T++++rQYMGZT6/wOm/P7m5ucrIyNCePXv0yy+/aM2aNUpJSdE///lPLVmyREuXLlWbNm1KXfP0n7HT6VRGRoaOHj2qzZs3a8GCBcrKytIPP/ygX375RV9//XW5Cjkul0srV66UVPJ79fTfPUnKysrSjh07NH36dB05ckSrV6/Wfffdp6+//rrU8xX3vi9Oo0aNity3ceNGTZgwQU6nU3Xq1NEtt9yi0aNHq0uXLqpTp46SkpK0c+dOrVy5Ups3by703Ndff11PPvlksef6+OOP9cknn0iSZsyYoX79+hV7XMFuC7P4rSBR0g+kPD8oAIVlOQz9nurQRW3K/5dGTeVM3aGsTRMl+X8bLwBAciT+qtTFF6v50G/V4IyhZscBAADwqbZt2+r8888vcv/QoUM1ZswY9enTRzabTR988IFefPHFUlvPbN68WX/++ackadq0abr//vvldrs1d+7cEi8QFqd58+bFZrryyiv12GOP6dixY5o8ebJ+/vlnHTx4UKNGjVJkZGSJF7wLFLemJN12221699139f777+v555+Xw+HQAw88oA4dOmjUqFGlrnnkyBHt27dPUskXeRs3blzsuQcOHKjbbrtNvXv31v79+7Vp0yZt2bJFgwYNKvF89erVK/H7KMvzzz/vLUZ89dVXuuuuu4ocM2LECD355JNKSUnRd999572/bdu2JV6k3b59u/d2x44dK5yvoKDTt2/fEgtXJa07fPhwDRs2TCNGjJBhGHrnnXfKVZD44YcfvK/FBx98oLvvvlsZGRlasmRJiYWX4pT0+zNy5Eg988wzio6O1u23365du3YpKipK48aN09q1a0v9PSrtZzxp0iRNmzZNL730kt577z1lZ2frpptu0oYNG9S3b99Ss27cuFGZmZmqV6+err66+Na0Jf3uXXLJJbrpppt0wQUXKCUlRd98843efvttdejQocTzlfS+L48nnnjCW4xYuXKlrrjiiiLHjBw5Us8//7yOHj2qX375xXt/x44dS2xndep7uEuXLpXO528MtQZqiIh4u9kR/M6dH6/0tWNluPLNjgIAQcVjTVT6quHK3fNGoRYEAAAAtdl5553n/cR6Tk6O9u/fX+rxs2fPliS1bt1ad955p4YPHy7pf7smfOXMM8/UihUrvNkOHjxY5X7vDRo00NNPP+3N6vF4NHnyZNlstlKfV3AxvWvXrjrvvPMqfN5GjRrpoYce8n69bdu2Cq9RHm63W8uWLZN08sJ/ccWIU7Vp06ZQLn8qeA3LKv6UZPjw4erdu7ekk++F7OzsMp9T8F698MILNWnSJJ1zzjmF7veV8847TxEREerVq5ekk3Mq/v3vf1dpzbCwMP3rX//Sm2++Kenkbo/yFGEKXudLL71UzZo1q/B527Vrp4kTJ0o6uZPq1EKUL8XHx3vXHjduXLHFiFOdddZZuvvuu/2SxSwBL0gcO3ZMx44dk9vtLvdz3G6393lAsIpKtMvhrr0XiQyXVRm/jJUnP87sKAAQnAy3cnY+r4xfRsljTzc7DQAAQECcOuzWbi/5g4B2u937ifobb7xR9erV0x133CFJ2rNnT4lDayurTp06mjlzpkJDQyVJn3/+uVJTU6u87s0336wbbrhBkpSUlKQZM2aUenzB7IPKXkyXyv8aV0VKSoqsVqskqVu3bn45R2XExcVp165dkso/P6I4FXkNExIStGbNGknS7bffXuh/V65cqZSUlErnKE6jRo00Z84c7+zfd999V06ns8rrPv300xowYIAkaffu3Vq+fHmpx1d0TkdxAvFePfX6dnV6rwZSwAsSnTt3VteuXXXgwIFyPyc2Ntb7PCBYWV2GdibXzl0ShmEoc9Odcqb5p/oMACg/+4nlSl3cS46UrWZHAQAA8LujR496b5955pklHrdkyRJlZGRI+t/F3XHjxnkH3/r6k+fSyZ0YBeeyWq1avXq1T9Z9/PHHvbd//PHHEo/LycnR+vXrJVXtIm95X+OqOLVF0B9//OGXc1RGwUXy8PBw7y6Cyih4DRs1alTmjIa5c+fK7XYrJCTEO3D9tttuk8VikdPp1Lx58yqdoyQ9e/bUiBEjJJ3cAeCLnTAWi0WPPvqo9+vS3qsHDhzQoUOHJPFerQlMadlU2VYAtBBAsKutbZtyf3tJttgFZscAAPyXO++Y0lZcprzo982OAgAA4Df79+/3XjAeOHCg2rVrV+KxBQWHv/zlL94ZCI0bN9Z1110nSfrmm28q1A2kvE5t51LWQOjyGjBggJo0aSJJ2rJli1wuV7HHrVq1Sg6HQ02bNtXQoZWbNWa1Wr0tfBo3blxme5rKatmypc466yxJJz9N/9Zbb8nj8fjlXBVR1XZNkrRu3Trt2LFD0slB3WUpaMs1bNgw76yBLl26aPDgwZL8UzyT/PNeLe+aBa/zueeeW+ldBwUD7iWpU6dO3jZZvtajRw81bNhQkrR48WLNnTvXL+epzvw21NqXCgoRISGMvEBw25VsV77To9B6ted3wRozT7m7XzU7BgDgdB6nsqMekyNpo5pdMkMh9ZuanQgAAKDCkpOTtXfvXu/XhmEoMzNTW7Zs0bRp02S1WtWsWTNNmzatxDVSUlK0cuVKSSc/aX6q22+/XXPnzlVSUpJWrVqla665xqf5T70oevDgQZ+sGRISoosuukibNm1Sbm6uEhIS1KlTpyLHFVzkvfLKK1WvXr0S18vLyyv0GktSfn6+fv/9d/373/9WdHS0LBaL3n77bbVq1arUbE6ns8haxSluCPXf/vY373DxZ599Vv/5z380ZswYDR48WP379y/UjicQrFar1q5dK6nsgkRcXFyh79vj8Sg1NVXr16/X9OnT5fF41LFjR7322mulrvPbb79pz549kv63k6fA7bffroiICO3YsUPR0dGVmglSGn+8V9u0aaPw8HCdOHHCO1C+OOUt/GRmZhZ5f2VnZ2vnzp16//33lZSUpPr16+vDDz8s9T0vFf++L054eLiaN2/u/bpRo0aaPHmyPvroIxmGodtvv11vvPGGRo0apUGDBql///6lDtOuDWpEQSIhIUGSvNVbIFg5PdLWRLsu79TI7Cg+4UjZqsyI2jWYBwBqG9vR7+VM360WwxaoXquLzY4DAABQIZ988ok++eSTYh8LCQnR/fffr8cff1zdu3cvcY158+Z5e+KffpF3xIgROuOMM5SYmKjZs2f7vCBx6gX8gpZR/lj39IKEx+PRihUrJJXdAmf79u264IILSnz8yiuv1LPPPqvLL7+8zFzx8fGlrlXgpZdeKjLo+/HHH1d0dLR3LkZsbKw++OADffDBB5JODi0eNmyYbrvtNo0aNco788Bf1qxZI6vVqtDQUO8A9JK88MILeuGFF4p9rEGDBnrmmWf0yCOPlHmhuuAT/o0aNdL48eMLPXbjjTfq0UcflcPh0OzZs71Do33Fn+/VEydOyOVyKTs7W02bFv6gVEZGhjZv3iyp7PfqTz/9pJ9++qnEx2+66SY99dRT6tOnT5m5ynrfF/jqq6+KDFl/++23dfjwYe/vWHR0tKKjo72Pn3nmmRo+fLgmTpyoYcOGlXmOmsa0j1mX55fe6XRq//79ev311yXJOxEeCGYR8TazI/iEO++4MtZeJ7lrx/cDALWZO+dPpS4fpPyDn5sdBQAAwGc8Ho++/fZbffLJJ6UOsC24yNu/f3+dffbZhR6rU6eObr75Zkkn269kZ2f7NGNYWJj3dk5OTsDWjYyMVEpKikJCQqpcZPn111/14Ycf6vjx41VapywhISH68ssvtXr1al199dWqW7fw57CTkpI0f/58jRkzRv3799fhw4f9mqfgU/tXXHGFt0VPZdjtds2aNUszZswotQ2Vy+XSN998I+nkhfnTL9y3bNnS+7OcO3euz1tamfVeXbFihVwul1q2bKlLLrmkSudasmSJPvroI2VmZlZpnbI0atRIy5Yt0/z583XZZZcVuU5+7NgxffXVV7r88st19dVX+3wQudn8XpCoU6dOoT/Sye1x559/fpHHTv/TsGFD9ezZUz///LMsFosmTJjg77hAtbcvzalMm+/7UgaSx5mn9DWj5bEmmh0FAFBebpuyNk9R5saJ8jjzzE4DAABQLi+99JIMwyj0Jz8/X3v27NFTTz2l3NxcTZ8+XVdccYXy8/OLPH/fvn3e/v2n744ocOrg6QULfDsf8dQLsKdfYPbnugUX0wcNGqTWrVuXutbQoUOLvMYOh0NHjhzRv//9bzVr1kw//PCDBg4cqP3795e61llnnVVkreL+nL474lQjRozQihUrlJaWpuXLl2vq1KkaPXq0mjVr5j1m+/btuuyyy7xdWXzNMAzvfJLyDFn+6quvinyPOTk5ioqK0uTJk5WYmKh//vOfuummm0osJKxatUpJSUmSyn6vnjhxQr/++mtlvrUSmf1eHTlypPfac0nuvPPOIq+zzWbTgQMH9MYbb8hisWjmzJm65JJLvK9lSYp73xf35/TdEQUsFotuvPFGbdiwQcnJyfrxxx/1/PPPa8SIEWrU6H+dUVatWqXLL79cubm5peapSfxekDj9h1DS/WX9ueGGG/TYY4/5Oy5Q7XkMaUtCzR1ubRgeZW64Ta6M3WZHAQBUgvXwHKUt6y9n5h9mRwEAAKiURo0a6YILLtDbb7+tjz/+WJK0adMmvfHGG0WOLdgdUbduXe9OiNP16dNHPXr0KHS8r6Smpnpvt2zZMmDrVnUYc7169dS5c2c9+OCDWrdunerVq6f4+HhNnjy5coEroWnTpho5cqRefPFFLV68WElJSZoxY4ZatGgh6WSL+H/+859+OfeOHTuUkJAgi8Wia6+9tlJrhIWFqV+/fvr888/1j3/8Q5K0cOFCb0uq0xW891q1aqWrr7662GNGjRrlnWdQ096rdevWLdLO3+Vyeee7VPa92qBBA3Xv3l3PPfecFi1aJOlkC6W///3vVUhdMa1bt9bYsWP12muvafXq1UpOTta7777r3Vmzb98+TZ8+PWB5/M3vMyReeumlQl9PnTpVFotF999/f5HhM6eyWCxq2LCh2rdvr8GDB+svf/mLv6MCNcameJtGdgk1O0al5Ox4TvbjJffrAwBUf67MaKUt7admgz9To663mh0HAACg0u655x49++yzSk9P14wZMwoNDfZ4PJo7d66kkxc+S7uOVWDjxo2KjY1V586dfZJv165d3tu+amXu8Xi8g4+bNm2qM844o9DjsbGx2rdvn6Tyfbq/LD179tQ111yjn376SRERETp48GCpMzv8pUGDBpo0aZI6dOjgvWC/aNEiffbZZwoJ8e1ntgt2R/Tp00ft27ev8np///vf9eabb8rj8WjGjBlFCjtZWVlavHixJCktLU3169cvc81Fixbp448/VuPGjaucT/LPezU5OVnx8fElrrlp0yZlZmaqbt26JRZhKuLKK6/URRddpN27d+u7777Tp59+6rPXpyLCwsL097//XWFhYbr//vslSQsWLChxzkhNY0pBQpIeeughn09zB4LFn5kuJeW71S609K1o1U3+n7OUt/dts2MAAHzAcOUpc8NtciRuUNMB78tSp4HZkQAAACosJCREZ599trZu3aqEhASlpaV5h/P+8ssviouLq9B6hmFozpw5Pvvk/c8//+y9femll/pkzS1btnjbvwwaNKhIm5uC3RFdunRRz549fXLOc8891ztM+PfffzelIFHgqquuUqdOnXT8+HFlZGQoLS1Nbdq08ek5Cl5DXxR0pJM7Dtq0aaOkpCT9/vvvRR7/7rvvZLNVbEZnbm6uFi1apDvuuMMnGf3xXi1rzYLX+bLLLvPu/Kiqc889V7t37/bONi7PgGt/mTRpkh5++GG5XC79+eefpuXwNb8XJE731VdfSZLCw8MDfWqgVtkUZ9P4swNfpa0sR9ImZW2eYnYMAICP5R/8VI7UKLW4fKHqNulqdhwAAIAKc7lcxd4uaGnToEEDzZgxo8xP0b/99tvatWuXzwoSKSkp3iHFjRs31pVXXlnlNSUVav0ybty4Io/7+mK6VPJrbJYOHTp4h2yfPlC4quLi4rRz505J/nkNi3v9Ct6r7du313vvvVfmWk899ZROnDih2bNn+6QgsXfvXv3yyy+SpE6dOqlv375VXtMwDH3wwQfer4PxvVq/fn21atVKSUlJPn+fmingBYk777wz0KcEaqWI+JpTkHDlHFHG2nGSx2F2FACAH7jSdyl1cW81v/QrNTyr6D8UAAAAqqv8/HxFR0dLOjlbomCAc25urn744QdJJ4ck33pr2W0qExMTtWvXLh06dEhbtmzRoEGDKp3L4/Horrvu8g7anjJlik/68n/77bdauHChpJMXr08fuJuTk6P169dL8u1F3u3bt3tvd+rUyWfrVsapP/OmTZt6d8T4SkG7pvDwcPXq1csna8bGxiotLU1S0dfvyJEjioiIkCSNHz++xFknp4qMjNT777+vtWvXKi4uTh07dqx0NqvVqokTJ3pnBz/55JOqW7fql5zfeustRUVFSZJ69+6tq666qtDjBw4c0KFDhyT57r1qGIZ3iL3kn/eqYRjlLi4cP35cycnJkqSuXWvPh7/8PtS6OMeOHdOxY8dkt5c9mNdms3mPB/A/cbluxWY7zY5RJo8jWxm/jJbHnlr2wQCAGstwZinj1+uVHfWEDE/1//sJAABAkl5++WVZrVZJJ1v5FLQv+v7775WXlydJmjBhQrnWGj9+vPdCY1UGBh87dkxXX321li9fLulkC5nTW6JXlMPh0DvvvOP9NHydOnX05ZdfqkGDwm03V61aJYfDoSZNmmjo0KFVOmeBZcuWeYscrVu3Vv/+/X2y7qlyc3M1YMAALV26VB6Pp8TjPB6P/va3vyknJ0eSNGbMGJ9/8rzgU/uVHWZ9Oo/Ho2effdb79enrzp4921sMKO97teA4j8ejr7/+utLZoqOjdemll3rnRwwdOlQPPPBApdeTTv4sn3zyST333HOSpNDQUH3xxRdFjit4nc855xx169atSucs8PHHHys2NlaSdPHFF6tDhw4+WfdU0dHRuvLKK7Vhw4ZSj7PZbJoyZYr3Zzt27FifZzFLwHdIrF69WiNHjlRYWJhiY2OL/IfvdPn5+erZs6esVqvWrFmjYcOGBSYoUANExNnVuWk9s2OUyPC4lbn+Zrky95kdBQAQIHnR0+RI3aoWQ+erTmNadAIAAHMlJydr7969he6z2Ww6dOiQZs+erZUrV0qSGjZsqFdeecV7TEFBoV69ehozZky5ztWpUyf169dPUVFRmj9/vt5///1ihwtnZmYWymS1WpWZmano6GitX79eS5Ys8baKOeecc7R06VI1a9aszPOfuqbb7VZmZqbi4uK0ZcsWLVy4UImJiZJOtqD697//rZEjRxZZo+DT/VdddZXq1Svf9Ya8vLwir7HT6VRcXJyWLVtW6GLy//3f/5X66Xmn01lkrZJ069ZNDRs29H4dFRWl0aNHq2PHjrruuus0aNAgnXXWWWrSpIkyMzO1a9cuzZgxwzuDoVmzZnr11VfLda7yslqtWrt2raSKfWo/Li6uyPedl5en6Ohoff7559qyZYskqVWrVnrmmWcKHTdnzhxJUtu2bXXZZZeV63yDBw9W+/btlZCQoDlz5hRZs8Dpvz95eXnKyMjQnj179Msvv+jnn3/2XjAfOHCgFi5cWOb75vSfsdPpVGZmpmJjY7V582YtXLhQmZmZkk7+jObOnVvsTpOC92pFXufTf/ekk8W62NhYLVy4UPPmzZN0crbMW2+9Vepaxb3vS3Leeed5W74ZhqGff/5ZP//8s7p166axY8dqwIABCg8PV2hoqFJTUxUVFaXPP/9cR44ckSSdeeaZevLJJ8v9fVZ3AS9ILFiwQIZh6LrrrlOLFi3KPL5ly5YaP368Zs+erfnz51OQAE6xOcGmW89tXG37yGVv+7vscSvMjgEACDBn8malLu6lZpfNUcPwq82OAwBAjdP+LsPsCLXGJ598ok8++aTUY9q0aaOvv/5aF1xwgaSTbVLWrVsnSfrrX/9arutXBSZMmKCoqChlZGRoyZIlGj9+fJFjfvrpJ++A55I0bdpU9957r1555RWFhoaW69wF+UtisVg0fPhwvffee8Ue6/F4vLsyKnKRd/v27WWeu169enrttdc0efLkUo+Lj48vc60Cu3bt0sUXXyxJqlu3rs444wwlJiYqLi5O//73v/Xvf/+7xOeeffbZmjdvnjp37lyuc5XXmjVrZLVaFRoaquHDh5f7eS+88IJeeOGFUo/p0qWLFi5cqDPOOMN7X0REhA4fPizp5IyFsuacFAgJCdG4ceP08ccfa9++fdqxY0exw5vL+/vz2GOP6emnny5Xq6by/Izr1q2rMWPG6L333tNZZ51V5PGMjAxvm6qKvFfL87sXFhamTz75pMyZLeV53xfIyMjwDt1u3LixWrRooYyMDP3555/617/+Vepz+/btq/nz55erKFlTBLwgsWXLFlkslgoN4rnqqqs0e/ZsbzUQwEmpVo/2ZzjVo2XRT1yYLf/AZ8r/432zYwAATOKxpypjzTUKu/AfCrt4qiwhdcyOBAAAIOnkoNiWLVuqZ8+euuaaazRp0qRCRYevv/7a2/anuIJCacaPH6+nn35a0sldFmU932KxqEmTJmratKk6duyo3r17a/DgwRo3bpwaN6783MiGDRuqWbNmatmypS644AL169dPY8eO1dlnn13icyIjI5WSkqKQkBBdc801lT63dLIlVLNmzdStWzddfvnlmjx5ss/a6hSnYcOGiouLU2RkpNasWaPIyEgdOHBASUlJstlsaty4sTp06KCLLrpIY8eO1fjx44vdvVJVBW2ErrjiikK7NyqjYcOGat26tS666CKNGTNGt99+e5Hi1KmtwSrzXv3444+96xRXkDhVSEiImjRpombNmumss85Snz59dNlll2nUqFFVei1DQ0PVrFkz7/fav39/jR8/vtR2SStWrJDL5VLLli11ySWXVPrc0sliWbNmzdSjRw+NGDFC99xzj19aNRXo0qWLkpKStGHDBq1du1ZRUVE6ePCgUlJS5HQ6FRYWpk6dOql3794aP368rr322nIXmmoKi1GwryZAwsLCZLVaFRkZqX79+pXrOdu2bdOAAQPUpEkTZWVl+TlhzXLixAnvgJXjx48rPLzmtEa4dXmy3Hzoo8pGnNlIky9oYnaMQuwJvyr956skeogDACTVP+NyNR86T3UatTM7CgAAlVaVf38fOnRILpdLdevWLfWCMGCm5557Tm+++aYGDx7s/fQ5ys8wDIWHhys+Pl6fffaZ7r33XrMj1Vq33HKLvv32W916662aO3eu2XFqNX/8/RXw8kpBD7yCIUHlUXCszWbzSyagJotMtMntqT6VHVf2IWWsm0AxAgDg5Uj8VamLL5Y9cb3ZUQAAAFCCyvTkx//s3LlT8fHxslgsGjVqlNlxai2Xy+Wd/cJ7tWYKeMum1q1bKyEhQTExMerdu3e5nhMTEyPp5DwJAIXlOAztSXWoV9vSB8QHgseeqfQ1o2XY082OAgCoZjzWRKWvGq4mvV5V4wuerbbzjwAAAIKRw+HQhAkTNH78eN1yyy1mx6mR3G63XnrpJbVo0ULt27c3O06tlZ6erkcffVSSih3Mjuov4AWJiy++WAkJCZo/f74mTJhQrud8++23kqTzzz/fn9GAGmtTnM30goThcSlj3Q1yZx8wNQcAoBoz3MrZ+Q85kjep+WVzFNKAD5sAAABUB/Xr19dLL71kdowarX///urfv7/ZMWq9tm3b6uWXXzY7Bqog4C2bxo4dK8MwtGjRIi1YsKDM47/77jstWrRIFotF1113nf8DAjXQ9iSH7CYP5Mje+ogcCWtMzQAAqBnsJ5YrdXEvOVK2mh0FAAAAABBAAS9I3HnnnercubMMw9Ctt96qJ598UsePHy9y3PHjx/XEE0/otttuk8ViUadOnTR58uRAxwVqBJvb0PYku2nnz/vjQ+Uf+MS08wMAah533jGlrbhMedHvmx0FAAAAABAgAW/ZVL9+fS1atEhDhgxRbm6upk2bpmnTpunMM8/09ldLSEjQsWPHJJ2cUB8WFqYffvhBDRqY3yMfqK42x9t0SYeGAT+vPW6VsqMeD/h5AQC1gMep7KjH5EjaqGaXzFBI/aZmJwIAAAAA+FHAd0hIJ+dIbN26Vb169ZJhGDIMQ0ePHtXWrVu1detWHT161Ht/nz59FBUVpV69epkRFagxfktxKNfpCeg5nZl/KGPdTZLhDuh5AQC1i+3o90pd0kfO9N1mRwEAAAAA+FHAd0gU6NGjh3bs2KGff/5ZS5cu1a5du5SamipJat26tXr37q3Ro0dr+PDhZkUEahSXR9qaYNfwMxsF5HweW5oyfhktw5kVkPMBAGo3d86fSl02UM0GfKDQ7veaHQcAAAAA4AemFSQKjBgxQiNGjDA7BlArbIqzBaQgYXicyvj1erlzDvv9XACAIOK2KWvzFDmSNqnZoE9kqRtqdiIAAAAAgA+Z0rIJgH/8ke5Uus3/7ZOyttwvR9IGv58HABCcrIdnK3Vpfzkz/zA7CgAAAADAh6pFQcLj8Sg1NVXHjh2T200veqCyDEmb4+1+PUfu3ndlPTTDr+cAAMCVuU9pS/vJGvON2VEAAAAAAD5iWkHC7Xbryy+/1GWXXabQ0FC1a9dOXbt21YEDBwodt3TpUj399NN6/fXXTUoK1CwR8Ta/rW07vlQ5O57x2/oAAJzKcOUpc8Ntytp8vwy3fwvuAAAAAAD/M2WGRHJysq677jpt3bpVhmGUemznzp01ZswYWSwWXXvttbr44osDExKooWKyXIrPdalDmG9/vZ0Zvytzw62S4fHpugAAlCX/4KdypG1Ti2ELVLdJV7PjAAAAAAAqKeA7JNxut0aPHq3IyEhZLBbdeOON+uijj0o8/vzzz9eAAQMkST/88EOgYgI1mq93SbitycpYM1qGM8en6wIAUF6utJ1KXdJHtqM/mh0FAAAAAFBJAS9IzJo1S9u2bVO9evW0bNkyffvtt3rwwQdLfc6YMWNkGIY2bdoUoJRAzRbhwzkShtuujF/HyZ131GdrAgBQGYYjUxm/jlN21BMyPE6z4wAAAAAAKijgBYl58+bJYrHovvvu01VXXVWu5/Tq1UuSisyXAFC8hDy3YrJ8c6EmK2KynMmbfbIWAAC+kBc9TWkrh8mdd8LsKAAAAACACgh4QWLPnj2STu56KK+2bdtKktLS0vySCaiNNsVVvW1T7p43ZI352gdpAADwLWfyZqUu7iXbiZVmRwEAAAAAlFPACxKZmZmSpFatWpX7OW63W5JUp04df0QCaqUtCXZ5yhgaXxrr0UXK2fmCDxMBAOBbHnuqMtZco5yd/5RheMyOAwAAAAAoQ8ALEi1btpQkHT9+vNzPOXTokCSpTZs2fskE1EbpNo+i0yrXtsmZtlNZG++QVPmCBgAAgWEod89rSl89Qm5rktlhAAAAAAClCHhBomfPnpKkbdu2lfs58+fPl8ViUb9+/fwVC6iVIuIr3rbJnZ+g9F/GyHDl+yERAAD+4UhYq9TFvWRPXG92FAAAYLJ169bJYrGU+CcsLEzdu3fXHXfcobVr15a4TmxsbKnrFPfnuuuuK3G9EydO6OWXX9Zll12mNm3aqF69emrUqJHCw8M1ZMgQPfroo1q4cKGysrK8zxk2bFiFM5z+Z+bMmSVm6t69uywWi6ZNm+a976677ipxrbp166ply5YaOHCg/vnPf+rEiYrP9Jo6dap3vWbNmslmK9+1i5dffrnYTA0aNFDbtm119tln65prrtGLL76oDRs2lGvNkn7GISEhat68uc466ywNHDhQDz30kObMmaPc3NwKf7+SNGXKFFksFo0dO9Z738yZM0t8nUNCQtS0aVOdf/75uu+++7Rjx45S1y/rPV/cn8cee6zE9Q4ePKinnnpK/fv3V8uWLVWvXj01btxYnTt31vDhw/X0009r2bJlys//37Wjzp07V/m9um7dumLz2O12NWnSRBaLRT/88IP3/tJ+P+rVq6c2bdpoyJAhevPNN5Wenl6+H9YpJk2a5F3vnHPOKffzSvodatiwodq1a6dzzjlH48aN0+uvv66dO3eWa82SfsYFv5NdunTRkCFD9Pjjj+v777+Xw+Go8PcbKHUDfcLrrrtOa9eu1UcffaQnnnhCLVq0KPX4hQsXasmSJbJYLBo/fnyAUgK1w9ZEu+4531DdEEu5jjdcVmX8Mkae/Dg/JwMAwPc81gSlrxquJr1eVeMLnpXFUr6//wAAqG5uWpZsdgS/mX9tW7MjKC8vT4cOHdKhQ4f09ddfa+LEiZoxY4ZfW4V//vnneuyxxwpdwJUkl8uluLg4xcXFaePGjfrggw9000036dtvv/VblgIHDhzwdiUZPXp0uZ7jdruVkZGhrVu3auvWrZo+fbpmzZql66+/vtznnT17tvd2dna2fvzxR918880VC38Kh8OhlJQUpaSk6M8//9SKFSv06quvqkePHpo6dapuuOGGCq9pGIaysrKUlZWlY8eOaevWrfr444/VpEkTTZ48Wa+++qoaN25c7rWWLl0qqfyvs2EYysnJ0b59+7Rv3z59/vnnevbZZ/XGG29U+HupqKlTp+q1116Ty+UqdL/L5dLRo0d19OhRrV27Vu+8846eeeYZvfnmm37PtG7dOuXm5qpBgwYaMWJEuZ7jcrmUmpqqjRs3auPGjZo2bZoWLVqkSy65pFzPz8/P18KFC71fHzx4UJGRkRo4cGClvgfpZGElOTlZycnJOnjwoH788Ue98MIL6tevn9566y1dfvnlFV6z4HcyIyNDsbGx2rhxo6ZPn642bdrokUce0bPPPqu6dQNeAihVwNPce++9evfdd3X8+HFdeeWVmjVrls4777wixyUnJ+v999/XO++8I4vFovPPP1833nijz3IkJycrKipKUVFR2rZtm7Zt2+Ydmn3nnXeWWj0uzooVK/TZZ59p27ZtSklJUZs2bdSvXz9NmTJFI0eO9FluoCLynIZ+S3Gob7sGZR5rGIYyN90pZ9r2ACQDAMBPDLdydv5DjuRNan7ZHIU0aGl2IgAAYKIHHnhADz74oPdrwzCUnp6uLVu2aNq0aUpOTtbs2bPVqVMnvfbaayWuM3bs2FIfL9C0adMi982bN09TpkyRJDVs2FCTJk3SVVddpfDwcBmGofj4eG3fvl1Lly7Vrl27Cj33q6++Ul5eXrHneuGFF/TTTz9JklatWqUOHToUe1x4eHix9y9ZskSSdO6556pbt27FHnP6uk6nUydOnNDChQu9OwZuvvlm7d69Wz169Ch2jVNt2rRJMTExkqSwsDDl5uZq9uzZFS5IzJgxw9tJpaB4kJKS4n0d9+zZoz/++EM33nij7rnnHn322WcKCSm9UczpP+P8/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wys+7YsUMJCQmyWCy69tpriz3mtddeK7R7wuPxKCUlRevWrdP06dOVm5ur//u//1PXrl01efLkUs93+nu+JK1bty5y35tvvqmXX35ZktSsWTPdd999Gjp0qNq3by+Hw6ETJ05o69atWrJkifbv31/ouatXry7xU/mTJk3S9u0nrzf9/vvvJWbq0qVLsfcXvFcvv/xyhYWFFXvM6es6HA7FxMRozpw5Wrx4sZKTkzV69GgdOHCgXGMBFi1a5N0R07hxY+Xl5Wn27NkVLkic+jvk8XiUmZmppKQkRUZG6scff1RMTIy2bdumK664Qi+88IKmTp1a5pqn/4xzc3OVkZGhPXv26JdfftGaNWuUkpKif/7zn1qyZImWLl1arUYhBLwg0aBBA/30008aNmyYduzYoQsuuKDQlpfbb79dubm5iomJkWEYMgxDrVq10vfff+/TT7m1a9fOJ+t4PB5NmTJFX375ZaH7C6rbP/74oyZPnqxPP/20zP/wAf6wKc5WroJE7m8vyxa7IACJAADwP/uJ5Upd3EvNh32n+m0GmB0HAACYpG3btjr//POL3D906FCNGTNGffr0kc1m0wcffKAXX3xR9evXL3ad5s2bF7tOWdxut5544glJUpMmTbRp0yZdeOGFRY4bM2aMXnnlFf3xxx+FLqyWdIG2IFOB7t27q3PnzhXKVnCRt7RP7Re3bq9evTR69Gh17txZr7zyipxOp6ZPn65PP/20zHMW7I5o166dHnvsMT333HNavXq1kpKSKnStrkuXLsX+PAra4CxZskR33323UlNT9eWXX6ply5Z6++23S12zpJ/xlVdeqccee0zHjh3T5MmT9fPPP+vgwYMaNWqUIiMjy+z+UvA69+3bV+3bty/2mI4dOxZ77uHDh2vYsGEaMWKEDMPQO++8U2ZBoqT3fFlSU1O9F8PDw8O1efNmderUqdAxAwYM0Pjx4/X2228rKirK++Fu6eR7pSSn7iapTLbyvFeLW7d3796aMGGC7rzzTs2ePVsZGRn64osv9Nxzz5V5zoL3ap8+fTRgwAB9/PHHmj9/vqZPn17ifyeKU9Lv5g033KB33nlHs2bN0sMPP6z8/Hy98sorateuXZkFpZJ+xiNHjtQzzzyj6Oho3X777dq1a5eioqI0btw4rV27tkK5/cmUK+QXXXSRtm3bpkGDBskwjEIVtd27d+vPP/+Ux+ORYRjq37+/tm7dWmKl1hfOPPNMXXnllZV67vPPP+8tRvTq1Uvz5s1TVFSU5s2bp169ekmSvvjiC73wwgs+ywtUxM5ku2wuT6nHWGPmKXf3KwFKBABAYLjzjiltxWXKi/7A7CgAAKAaOu+887yfWM/JySnyiW9f2Lp1qxITEyVJ9913X7HFiFP16NHDpx1CSpKRkaGIiAhJ0qhRoyq1xpNPPum9XZ5ZsTabTQsWnPwg5E033aQ77rhDISEhcrvdmjt3bqUylGT06NHavHmzmjRpIkl65513yt2rvyRnnnmmVqxY4X3PHDx40LuboDQFF9Mr+zoPHz5cvXv39p4zOzu7UuuUZfXq1d55Hs8++2yRYsTp+vfvH5CuMHv27NGxY8ckVf41fOqpp7y3y/NejY+P1y+//CJJuu2223T77bdLktLT073tt3whJCREkyZN0qpVq7xtlZ544gklJCRUad3zzjtPERER3mvTERER+ve//13lvL5i2kf2u3XrpoiICG3YsEFPPvmkhg0bph49eqh79+4aPHiwHnroIa1atUqRkZHq2rWrz8//4osvasmSJUpMTNTRo0fLVcU93cGDB/Xuu+9KOlnljIiI0M0336x+/frp5ptv1qZNm9S3b19JJ//D9+eff/r0ewDKw+6WtiWWPMjGkRKlzIi7A5gIAIAA8jiVHfWoMn69QR6Hf/7xBgAAaq5TdyDY7Xafr19wIVWSXz9sW1ErVqyQ2+1Wy5Yty91T/3RNmjTxtv0pz2u3ePFiZWZmSjrZIaVjx47envmnzpXwlbPPPrvQfANfzDqoU6eOZs6cqdDQUEknZ4OkpqaWeHxcXJy3DVd550cUx9/vU6n6vlcLCgAXXnihzjzzzEqtUdHX7+uvv5bH41GdOnV0yy23aNCgQd7XxB/v1UsvvVSPP/64N9+pQ+Yrq1GjRpozZ46349C7774rp9NZ5XV9wW8FiT179mjPnj1lTvS+9NJL9fbbb2vt2rXau3ev/vjjD23atEkffvhhuYeUVMbUqVM1atSoKrVumj59unfAy4cffqhGjRoVejw0NFQffvihpJODVHzxZgIqIyLeVuz97rzjylg7VnIX/zgAALWF7ehCpS7tK2f6brOjAACAauTo0aPe25W92FmaU1uk/PHHHz5fv7IKPrU/cuTISg/zzsvL87bsKc9rV3Ah95xzzvHOfyj45Pnu3btLnS1QWXfddZe3tdWyZct8ckG2devW3txWq1WrV68u8diCi+nh4eHeT6tXRsH7tFGjRn6bBVDd36tVKehU9Pd8zpw5kk7uTjnjjDMkndwpIUnLly8v1KrKVx555BFvu/8ff/zRJ2v27NnTe309Pj6+XLtDAsFvBYmLL75YvXv3LrIr4JVXXtErr7xSavWwJjAMwzs46Nxzzy1xoMnAgQO9MzJ++uknGYYRsIxAgT2pDmU7Crdt8jjzlP7LGHmsiSalAgAgsNzZh5S6bKDyD35udhQAAFAN7N+/33vBeODAgT6bN3qqUy9Cf/rpp1q7dq3Pz1FRLpdLK1eulFS1i7zvvvuu9zrXqQOZi5OcnKxVq1ZJ+t+FXUkaP3689wO+s2bNqnSWkoSGhmrw4MGSTg6prmrbpgJXXHGF9/bGjRtLPK6q7Zokad26ddqxY4ekk7NG/KWgLZQkvfHGG9q92/wP8iQnJysqKkpS1d6r77zzjvd2We/VnTt3au/evZL+VzA79bbT6dS8efMqnaUk4eHhOvfccyVJhw4d8rZ6q6ryvlcDya9DrYu7+P7yyy/LYrFowoQJxU5zrymOHDmi+Ph4SScHIZVm6NChOnDggOLi4hQbG1vqQCLAH9yGFJlg05VnndxSaBiGMjfeLlf6b+YGAwAg0Nw2ZW2eIkfSJjUb9IksdUPNTgQAAPwoOTnZe3FR+u+/hzMztWXLFk2bNk1Wq1XNmjUrs6tFZmZmoXVK0qVLl0IDfLt06aJRo0Zp6dKlstlsGj58uPr166eRI0dq4MCB6tevX8Cvj23cuFGZmZmqW7eurr766lKPPXjwoHJzc71fu1wunThxQj/88INmzpwpSRoyZIgmTZpU6jrffPONt8vIqRd5mzRpojFjxmj+/Pn65ptv9NZbb1V6x0ZJevfureXLl3u/nwEDBvhkzQIHDx4s9hir1eotQJVVkIiLiyv0/vJ4PEpNTdX69es1ffp0eTwedezYUa+99lqZ2U5/z5fknHPOUb169bxfDxkyRBdeeKH27NmjlJQU9erVS0OHDtWIESM0cOBA9enTR82aNStzXV9atmyZPB6P2rZtq/79+5d67Onfs8PhUGxsrL7++mv98MMPkk7OLinrPV+wkyc0NFTjxo3z3t+tWzcNGDBAW7du1ezZs/Xwww9X5lsqVe/evRUdHS3pZFGiYHdGVdcsUNJ7NdD8VpCoV6+eXC6XrFarv05hqoI3hyRv9er/27vz8Cirg/3j94Q1JEBERUUQlUWkUkUILoCAIgi0IlJxK5uIvu62VNHXVix9axWtVq3VsqO+gkIVSFgkbIGwL4oga2QRCEImC1lmksnMnN8fvJlfQvZkJs/M5Pu5rlzXkOeZM3fiyZjMPc85ZSl6fN++fRQSsMSGk/m+QiJ7x8vK/2mhtYEAALCQ88dPVJC2Qxf0XaD6MeX/LgcAAELXRx99pI8++qjUYxEREfqv//ov/e53v1PHjh3LHWfRokW+lTLKs2bNGvXt27fY52bNmqXBgwf7lkvZtm1bsaVTOnbsqAEDBmjs2LHFXjwMlMKrQnr37l3hC8wDBw4s81irVq00ceJEPf7442rUqFG54xS+yHvrrbeWeF1s5MiR+uKLL3Tq1CklJCRU+IJxVV144YW+2xkZGbU25sqVK+V0OtWkSRPdcccd5Y73xz/+UX/84x9LPdaoUSNNnDhRzz77rFq1alVhtvLmfFFHjhzRlVde6ft3RESE/vOf/2jQoEFKTk6WMUZr167V2rVrJUk2m03XXXedBg0apHHjxlX4M+MPhXN1yJAhvr0QytKlS5cyj11zzTV66aWXNHr06HLHcLvdvqsf7rnnHkVHRxc7PnLkSG3ZskXbtm3T/v37K3xNuKqsmqu1LWBLNhVe5lZ4SVG4OXHihO9269atyz236K70x48fr/LjlPdR013XUXccyCiQ3emRI3mOcve8aXUcAAAs5878Qfb4WDkP+/+SawAAEPy8Xq/mzZunjz76KGAbBUvn9hzYsGGDpk6dWmrhcPDgQf3zn/9Ut27dNHLkSOXm5gYsi+SfNfmlc2vST5s2zfeicVn27Nnj29i56NURhQYOHOjbF6Fw7X5/KvqicnZ2dq2NWfh97t+/vxo3blztx8rPz9ecOXM0c+ZMeb3eiu9QA+3bt9euXbs0ZcqUEoWDMUa7d+/WlClT1LlzZ02YMMF31Usg5Ofn+/bnqOlcPXDggP79739r3bp15Z63fPlynTlzRlLpc/X+++/3XVUSTnO1tgXsConbbrtNn3/+uSZOnKgff/xRHTt2LHYZ0KJFi7R9+/Yqjztq1Ch/xqy2ov8Bz2/Lzlf0Ur2il7lVRtEyI9y0i8qTly01atXeg+vUYddjVscAACBoGHeOMtc9JNfpdWrW4x+y1Sv/3X0AACC0TJo0Sa+99lqxzzmdTiUnJ+vTTz/Vu+++q3/84x/avn27vvnmGzVpUvpyjqNHj/YtUVQdDRo00Pjx4zV+/HilpKRo/fr12r59u7Zs2aLNmzf7Nlv+7LPPlJKSohUrVvh96SLp3Auzhw4dklS5F3nPfxe9MUYZGRnaunWr3njjDSUmJuq+++7Tu+++q+eee67UMQr3hmjQoIFGjBhR4nj9+vV1//3365///KcWLlyo7OxsNW3atBpfXemKvobXrFmzWhnTGOMrairzfZ41a5bGjBlT7HM5OTnat2+fpk6dqunTp+tPf/qTdu3apS+++MK3+XFpSpvzVdGkSRO98MILeuGFF/Tjjz9q48aN2rFjhzZt2qTt27fL6/XK4/HonXfekd1uD8jeH9K5vTNycnLUqFEj38bM5Tl/64DCZa+SkpI0efJkbd68WQMGDND//u//6je/+U2pYxR+LS1btiz1MS+66CINHDhQ8fHx+uyzz/Q///M/FV65URVWzFUrBKyQePnll/X111/r7Nmzevvtt4sdM8aUeRlSeWw2W9AUEnl5eb7bRXehL03Ry9bCdQmr6njyaDvJBK5JRSmOWh0AAIDg5DjwsVz2rbqg73zVb3q11XEAAEAARUZGqkuXLpoyZYo6dOigxx57TElJSXr99dcrtUZ/TbVq1Ur333+/7r//fklSenq63n77bb355pvyer1avXq15s6dW+o7tGuq8F3711xzjdq3b1/l+9tsNrVo0UJ33XWX7rzzTvXr10/r16/XhAkTNHDgwBJL2Hg8Hn3++eeSpEGDBhVbPqaokSNH6p///KccDocWLFhQ4Z4UVWG32323W7RoUStj7tixQ6dOnZLNZtOQIUOq9RjR0dGKjY1VbGysWrZsqddff10LFizQzJkz9eijj1Y7e1W0a9dO7dq108iRIyWd2+vitdde0/Tp0yWdW4pr/Pjx6tWrl98fu3Cu9u3bt8I3g5cmIiJCLVu21L333qsBAwaoW7duOnjwoB555BHdfvvtJf67ZWZm+h7zgQceUP36pb9sPnLkSMXHx+unn37S2rVr1a9fvypnK4sVc9UKAVuy6Re/+IXWrVun/v37q0GDBjLGFGuqCv9d1Y9gUfRSK5fLVe65RS/7i4yMrNLjHD9+vNyPwp3mAQAAUDPutJ2yx3VT3rGFVkcBAAC1ZNy4cb4X6WbOnGlJhhYtWuj111/Xiy++6Pvc/PnzA/JYVXnXfkXq1aun3//+95LOFQ+F+0QUtXLlSqWkpEiSFi9eLJvNVupH0Y2mSxunJgqXi5LOFTG1MWbh97lbt2667LLLavx4EyZM8F0VYdU8laTLL79c06ZN0wMPPOD7XCjM1ejoaD3xxBOSzl0xsGDBghLnfPHFF77XcN9///0y52phkSgFdq76a4+OQMz/mgrYFRLSuR+6FStWyO12y263Ky8vT1dffbVsNpu++eYbdejQIZAPH1BFLx2raBmmomv/VbXRq2h/CgAAAPiPcWUqY80wRXX+nZp2f1O2iAYV3wkAAISsiIgIdejQQVu2bNGpU6eUlpZW5rv4A238+PF64403JEnJycl+Hz8jI0MbNmyQ5J8XeSUVuyJi9+7dJY5X5wXbxMRE/fTTT7riiitqlE2SHA6HNm7cKOnca3I33HBDjceUpISEBN/t0q4O8Nc+HYVatGihiy++WKdPny71+1zbxo8fr3nz5kkKzFzdvXu3jh07Jim45+p//vMfffjhh2Uu9VYVx48f14EDBySdKw4K91WpqYrmqhUCWkj4HqR+fV166aXFPteqVSu1bdu2Nh4+IIoWBUU3uC5N0Y2sw3lPCAAAgHCRu/dduexbdEGfL1QvijeIAAAQzopuzBvITXor0qpVK99tf65LX2jZsmVyu91q0aKFevbs6Zcxy/veZWdna+HChZKkO+64o8JlhrKysvT444/LGKNPP/1Ur7zySo3zzZo1S2fPnpUk/epXvypzGZ6qSE1N9S1DFRUVpQEDBhQ7fvLkSe3cuVOS/15Ml/7/99fKOVoo0HO1sND55S9/6ZdiSip/rhbulSGdW65p6NCh5Y51+PBhvfLKK8rOztbXX3+thx9+uMb53n//fd+m5cOGDavxeNK5DeVXrVol6dxr0t27d/fLuDVVK4VEUZMmTZJ0bnOQUNa5c2ff7f3795d7btHj1157bcAyAQAAwH8KzmyUfXFXxdz2mRpdPtDqOAAAIAAcDof27t0r6dwy2xdddJFfxzfGVPoF2+3bt/tuX321//e0KnyRd9CgQX7bMLto5vPfhLtgwQI5HA5J0hNPPKHhw4dXON6//vUv7dq1yy+FxKFDh/Tyyy/7/v3SSy/VaDzp3EbJY8aM8X1djz32WIl1+QuXGmrdurW6du1a48eUpKNHjyotLU1S4N7sHIxz1Z+FTnlztejVEX/4wx/UrVu3csdyu9165513lJaWpk8++aTGhURSUpL+8Y9/SDq3TcDzzz9fo/Gkc/sYjxo1yrcFwh/+8Ae/FHL+ELA9JMoyadIkTZo0ye9P8LXtqquu8rWBiYmJ5Z67bt06SefWWbvyyisDHQ0AAAB+4s23K33lYGXv/JOM8VodBwAA+Nlrr70mp9MpSRo4cKDfXqgvtGzZMo0YMaLYOu6lSU9P17PPPuv7d0Xv0K4qt9ut5cuXSzp3pYA/ZGRk6G9/+5vv3+dv3lz4Im+TJk00aNCgSo35m9/8RpJ04MABbdmypdrZ4uPjdeuttyo7O1uS9PLLL+v666+v9niS9NNPP+muu+7S0qVLJZ1bAqjwjddFFb6YXt3NrM/n9XqLlSn+Gvd806ZN02OPPVbhEkzHjh0rVhb5e66eOXPGt2euv+bqsWPH9OGHH/r+PXjwYN9tY4w+++wzSdKVV15ZYRkhnVsN6J577pEkrVq1SqdOnapWLq/Xq9mzZ2vgwIG+qzbee+89XXLJJdUar9DevXvVq1cv3/NOnz59fHtoBIPgqEVCkM1m09ChQ/XRRx9p//792rx5s26++eYS523evNl3hcTQoUMDchkTAAAAAsh4lfP9/8iVulExt32uepE1+wMBAADUnjNnzmjPnj3FPpeXl6dDhw7pk08+8b1I37hxY02ePLnMcTIzM0uMU5p69eoVWx3D6/Vq/vz5mj9/vq6//noNGTJEsbGxuuyyy9SwYUOdOXNGSUlJmjp1qs6cOSPp3J6so0ePrs6XW6akpCRlZmaqfv36uuuuuyp9v4MHDxbbO9UYo8zMTG3ZskUffPCBfvrpJ0lS7969dffdd/vO++mnn3xv4B00aFCl19gfPny4/vSnP0k6V2gU3ey6qCNHjvje7GyMUVZWllJTU7V9+3bFxcXp+++/95372GOP6a9//WuFj33+f2On06nMzEzt3btXiYmJiouL871ofM011yg+Pl7NmzcvNobT6dTq1aslVe3d/SdPniwxv3Jzc7V3715NmzZNmzZtkiRdeOGFmjhxYrljlTbnSxMZGal27dr5/u1yuTRt2jRNmzZNPXv21IABA9StWzddcsklioiI0MmTJ7VmzRpNnz7dV/QMHTpUd9xxR6W/zspYunSpvF6vWrZsqR49elT6fud/zV6vV2lpaVq/fr3ef/993xUmDz/8cLG9RJKSknT48GFJqtRVPIWGDx+uGTNmyOPx6LPPPtMLL7xQ6nlFf4a8Xq/Onj2rn3/+WVu2bNHXX3/te+yIiAhNmjRJjz32WIWPff5/49zcXGVkZOj777/XqlWrlJCQ4Lsy4uabb9aCBQvUoEHw7I1naSGRlpamTZs26fDhw8rOzpbH46nwPq+++motJKuc559/XlOnTpXH49EzzzyjdevWKTIy0nfc6XTqmWeekXSuOfPH5TYAAACwhuvU6nNLOPWZq0aX9rE6DgAAqISPPvpIH330UbnnXHzxxfrss8/UpUuXMs9ZtGiRFi1aVOHjNW/eXJmZmb5/X3DBBYqKilJubq527dqlXbt2lXv/O++8U3PnzvX70iqF79rv3bu3YmJiKn2/gQMrXrayX79+WrBgQbE34X766ae+F0QLr3qojGuvvVadO3fW3r179cUXX+jdd99Vw4YNS5z3yCOPVDhW586d9Ze//EX33ntvpR67Mv+NmzVrpvHjx2vy5MmlliwrV66U0+lUkyZNqvRC/R//+Ef98Y9/LPecq666SgsWLCixT+/5KjPnJen666/Xd9995/t3y5Yt1bBhQ7lcLm3YsMG3AXpZHnroIU2fPr3Cx6mqoleYRERUfnGf8n5+C91///2aMWNGsc8VXa6pKnO1f//+iomJUWZmpj799NMyC4nK/Az16NFDU6ZMUZ8+lfsbo7LPa88//7xefPHFoFmqqZAlac6cOaPf/e53WrBgQZU3YvFXIZGUlFTsEiS73e67nZycrNmzZxc7f8yYMSXG6Nixo1544QW98cYb2r59u3r27KmJEyeqXbt2+vHHH/Xmm2/6Lo154YUX1KFDB79kBwAAgDW8zlNK/+YONe36P4rqMpGrXwEAAfHFkNDedzPYNWzYUC1atNAvfvELDR48WGPHjtUFF1wQkMfq2bOnUlNTtXLlSq1du1Y7duzQoUOHlJaWJo/Ho2bNmunKK69UbGysHnjgAfXt2zcgOfy5Jn90dLQuu+wyxcbG6sEHH9SQIUNK/E706aefSpIaNWpU5SWGhg8frr179yotLU1LliypcIPfBg0aqFmzZmrevLmuueYade/eXQMGDFCvXr2q9oUVYbPZ1LRpUzVr1kyXX365brzxRt16660aNmyYoqKiyrxf4fe5f//+aty4cbUfXzp31c5FF12k66+/Xnfffbd++9vfVvpKk+oYMWKEBg4cqBUrVigxMVE7d+7U4cOHlZGRIelcGdO+fXvdcsstevjhhyu1tFFV5efna8WKFZJqPldtNpuio6PVpk0b3XLLLRo1apRuu+22Yufk5eVp/vz5ks4ttV/WFTmladCggX7961/r008/1e7du/Xtt99WuGdIw4YN1bx5c8XExKhz586KjY3VkCFDil2xUVURERFq2rSpmjdvrrZt26pbt27q3bu3fvWrX5Va5gUDmymsK2tJRkaGbrrpJv3444+qzkMX7jZeU2PGjNGcOXMqfX5ZWb1er8aPH6+ZM2eWed9x48Zp6tSpVWr1KuvEiRO+jViOHz+u1q1b+/0xAuXUnAaSqVohBQAAECwatR6imN6fKKJRi4pPBgCEvJr8/X3o0CG53W7Vr1+fNyui1h04cECdOnWSdG75GOZgYBhj1Lp1a6WkpGjq1KkaP3681ZFCzjfffKO77rpLjRo1kt1uV3R0tNWR6rxA/P+r1je1fuONN5ScnCxjjAYMGKDly5crNTVVHo9HXq+3wo9gExERoRkzZmjJkiUaOnSoWrVqpYYNG6pVq1YaOnSoli5dqunTpwekjAAAAIB18k8skX3xjXKlbrU6CgAAQJni4+Mlndv3gDIicHbu3KmUlBTZbDa/bcZc1xTO1b59+1JGhLFaX7Jp0aJFstlsGjJkiBYvXlzbD+8ze/bsEssy1cTgwYOL7dAOAACA8OfJPaa0Zb3UrPvbiur8rNVxAAAASmjTpo0mTZpU4XIyqBmPx6NJkybpggsu0GWXXWZ1nJDUpUsXTZo0Sf369bM6CgKo1guJn376SZL01FNP1fZDAwAAAP7nLVDW1ufkOr1ezXvOUETDZlYnAgAA8BkxYoTVEeqEHj16qEePHlbHCGmPPfaY1RFQC2p9HaHCy20uueSS2n5oAAAAIGDyji2QPb67CtJ3WR0FAAAAAIJSrRcSXbp0kSQdO3asth8aAAAACChP1iHZl9wsx8HpVkcBAAAAgKBT64XE448/LmOMPv3009p+aAAAACDwPHk6u3G8MtePlnE7rE4DAAAAAEGj1guJESNG6OGHH9bXX3+tN954o7YfHgAAAKgVzh8/kT2+h9yZ+62OAgAAAABBodY3tV63bp3GjRunI0eO6JVXXtFXX32lhx56SJ06dVKTJk0qvP9tt91WCykBAACAmnNn/iB7fKya3zpVkVc/aHUcAAAAALBUrRcSffv2lc1m8/17x44d2rFjR6Xua7PZ5Ha7AxUNAAAA8DvjzlHmuofkOr1OzXr8Q7Z6jayOBAAAAACWqPUlmyTJGFPtDwAAACAUOQ58LPvSW+XOPmx1FAAAAACwRK1fIbFmzZrafkgAAAAgKLjTdsoe100xPWepcdt7rI4DAAAAALWq1guJPn361PZDAgAAAEHDuDKVsWaYon7xezXt9qZsEbX+KzkAoJbVq1dPbrdbHo9HXq9XERGWLFgBAECleb1eeTweSef+P+Yv/B8QAAAAsEDuD+8obXkfeXJPWB0FABBgjRs3lnRuCeucnByL0wAAULGcnBzfFgqRkZF+G5dCAgAAALBIwZmNsi/uqvyT31gdBQAQQM2aNfPd/vnnn5WVlSWv12thIgAASuf1epWVlaWff/7Z97mmTZv6bfyAXh8+efJkv4/56quv+n1MAAAAwCrefLvSVw5W9C9fUfQNr8lm4z1DABBuoqKiFBkZKafTKY/Ho5MnT8pms/l1CQwAAPzB4/H4royQzl0dERUV5bfxbabo6H4WEREhm83m1zEL163COSdOnFCbNm0kScePH1fr1q0tTlR5p+Y0kIzb6hgAAABBo+Fltyvmts9VL/ISq6MAAM5T07+/vV6vfvrpJzmdzkDEAwDA7yIjI3XFFVf4de+jgO+g58++w9/lBgAAABBMXKdWy764q2L6zFOjS2+zOg4AwI8iIiLUtm1b5ebmKjs723e1BAAAwaRevXqKjIxU06ZNFRUV5ffX5ANaSKxZsyaQwwMAAABhx+s8pfRvblfTrv+jqC4TeVMOAIQRm82m6OhoRUdHWx0FAABLBLSQ6NOnTyCHBwAAAMKT8Sh758tynUlSTO9PFNGohdWJAAAAAKDG2DEPAAAACFL5J5bIvvhGuVK3Wh0FAAAAAGqMQgIAAAAIYp7cY0pb1ku5e9+3OgoAAAAA1AiFBAAAABDsvAXK2vqcMtaOkNeVZXUaAAAAAKgWCgkAAAAgROQdnS97fHcVpO+yOgoAAAAAVBmFBAAAABBCPFmHZF9ysxwHp1sdBQAAAACqhEICAAAACDWePJ3dOF6Z60fLuB1WpwEAAACASqGQAAAAAEKU88dPZI+/Se7M/VZHAQAAAIAKUUgAAAAAIcyduUf2+Fg5D8+1OgoAAAAAlItCAgAAAAhxxp2jzHUP6eymJ2Q8+VbHAQAAAIBSUUgAAAAAYcJx4GOlLe0pd/YRq6MAAAAAQAkUEgAAAEAYKUjbIXvcjco7ttDqKAAAAABQDIUEAAAAEGaMK1MZa4Ypa9sEGa/b6jgAAAAAIIlCAgAAAAhbuT+8o7TlfeTJPWF1FAAAAACgkAAAAADCWcGZjbIv7qr8kyusjgIAAACgjqOQAAAAAMKcN9+u9JWDlP3tqzLGa3UcAAAAAHUUhQQAAABQFxivcnb9Rekr7pTHedrqNAAAAADqIAoJAAAAoA5xnVp9bgmnn9dZHQUAAABAHUMhAQAAANQxXucppX9zu3K+f0PGGKvjAAAAAKgjKCQAAACAush4lL3zZWWsulve/HSr0wAAAACoAygkAAAAgDos/0S87ItvlCt1q9VRAAAAAIQ5CgkAAACgjvPkHlPast7K3fu+1VEAAAAAhDEKCQAAAACS16Wsrc8pY+0IeV1ZVqcBAAAAEIYoJAAAAAD45B2dL3t8dxWk77I6CgAAAIAwQyEBAAAAoBhP1iHZl9wsx8EZVkcBAAAAEEYoJAAAAACU5MnT2Y2PKnP9GBm3w+o0AAAAAMIAhQQAAACAMjl/nCN7/E1yZ+63OgoAAACAEEchAQAAAKBc7sw9ssfHynl4rtVRAAAAAIQwCgkAAAAAFTLuHGWue0hnNz0h48m3Og4AAACAEEQhAQAAAKDSHAc+VtrSnnJnH7E6CgAAAIAQQyEBAAAAoEoK0nbIHnej8n5aZHUUAAAAACGEQgIAAABAlRlXpjJW36OsbX+Q8bqtjgMAAAAgBFBIAAAAAKi23B/+rrTlfeTJPWF1FAAAAABBjkICAAAAQI0UnNko++Kuyj+5wuooAAAAAIIYhQQAAACAGvPm25W+cpCyv31VxnitjgMAAAAgCFFIAAAAAPAP41XOrr8ofcUAeZxnrE4DAAAAIMhQSAAAAADwK9epVbLHdZXr9HqrowAAAAAIIhQSAAAAAPzO60hR2vJ+yvn+DRljrI4DAAAAIAhQSAAAAAAIDONR9s6XlbHqbnnz061OAwAAAMBiFBIAAAAAAir/RLzsi2+UK3Wr1VEAAAAAWIhCAgAAAEDAeXKPKW1Zb+Xu+8DqKAAAAAAsQiEBAAAAoHZ4Xcra8qwy1t4vb0G21WkAAAAA1DIKCQAAAAC1Ku/ol7LHdVNB+vdWRwEAAABQiygkAAAAANQ6T9Yh2ZfcLMfBGVZHAQAAAFBLKCQAAAAAWMPj1NmNjypz/RgZt8PqNAAAAAACjEICAAAAgKWcP86RPf4muTP3Wx0FAAAAQABRSAAAAACwnDtzj+zxsXIenmd1FAAAAAABQiEBAAAAICgYd44y1z2os5uelPHkWx0HAAAAgJ9RSAAAAAAIKo4DHyltaU+5s49YHQUAAACAH1FIAAAAAAg6BWk7ZI+7UXk/LbI6CgAAAAA/oZAAAAAAEJSMK1MZq+9R1rY/yHjdVscBAAAAUEMUEgAAAACCWu4Pf1fa8r7y5J60OgoAAACAGqCQAAAAABD0Cs5skD2uq/JTEqyOAgAAAKCaKCQAAAAAhARvXqrSE+5S9reTZIzX6jgAAAAAqohCAgAAAEDoMF7l7Jqs9BUD5HGesToNAAAAgCqgkAAAAAAQclynVske11Wu0+utjgIAAACgkigkAAAAAIQkryNFacv7Kef7N2SMsToOAAAAgApQSAAAAAAIXcaj7J0vK2PV3fLmZ1idBgAAAEA5KCQAAAAAhLz8E/GyL+4ql32b1VEAAAAAlIFCAgAAAEBY8OQeU9rSXsrd94HVUQAAAACUgkICAAAAQPjwupS15VllrL1f3oJsq9MAAAAAKIJCAgAAAEDYyTv6pexx3VSQ/r3VUQAAAAD8HwoJAAAAAGHJk3VI9iU3y3FoptVRAAAAAIhCAgAAAEA48zh1dsM4ZSaNlXE7rE4DAAAA1GkUEgAAAADCnjN5tuzxN8l99oDVUQAAAIA6i0ICAAAAQJ3gztwje1x3OQ/PszoKAAAAUCdRSAAAAACoM4w7R5nrHtTZTU/KePKtjgMAAADUKRQSAAAAAOocx4GPlLa0p9zZR6yOAgAAANQZFBIAAAAA6qSCtB2yx92ovJ8WWR0FAAAAqBMoJAAAAADUWcaVqYzV9yhr2wsyXrfVcQAAAICwRiEBAAAAoM7L/eFtpS3vK0/uSaujAAAAAGGLQgIAAAAAJBWc2SB7XFflpyRYHQUAAAAISxQSAAAAAPB/vHmpSk+4S9nfTpIxXqvjAAAAAGGFQgIAAAAAijJe5eyarPQVA+VxnrE6DQAAABA2KCQAAAAAoBSuUytlj+sq1+n1VkcBAAAAwgKFBAAAAACUwetIUdry25Wz+00ZY6yOAwAAAIQ0CgkAAAAAKI9xK3vHS8pYPVTe/Ayr0wAAAAAhi0ICAAAAACoh/3ic7Iu7ymXfZnUUAAAAICRRSAAAAABAJXlyjyltaS/l7vvA6igAAABAyKGQAAAAAICq8LqUteVZZay9X96CbKvTAAAAACGDQgIAAAAAqiHv6Jeyx3VXQfr3VkcBAAAAQgKFBAAAAABUkyfroOxLbpbj0EyrowAAAABBj0ICAAAAAGrC49TZDeOUmTRWxu2wOg0AAAAQtCgkAAAAAMAPnMmzZY+/Se6zB6yOAgAAAAQlCgkAAAAA8BN35h7Z47rLeXie1VEAAACAoEMhAQAAAAB+ZNw5ylz3oM5ufkrG47I6DgAAABA0KCQAAAAAIAAc+/+ltKU95c4+YnUUAAAAIChQSAAAAABAgBSkbZc97kbl/bTY6igAAACA5SgkAAAAACCAjCtTGauHKmvbCzJet9VxAAAAAMtQSAAAAABALcj94W2lLe8rT+5Jq6MAAAAAlqCQAAAAAIBaUnBmg+xxXZWfkmB1FAAAAKDWUUgAAAAAQC3y5qUqPeEuZX87ScZ4rY4DAAAA1BoKCQAAAACobcarnF2Tlb5ioDzOM1anAQAAAGoFhQQAAAAAWMR1aqXscV3lOr3e6igAAABAwFFIAAAAAICFvI4UpS2/XTm735Qxxuo4AAAAQMBQSAAAAACA1Yxb2TteUsbqofLmZ1idBgAAAAgICokastlslfro27ev1VEBAAAABLn843Gyx90ol32b1VEAAAAAv6OQAAAAAIAg4sk5qrSlvZS7759WRwEAAAD8qr7VAcLFE088oSeffLLM41FRUbWYBgAAAEBI87qUteUZuU6vV/Oe0xXRoKnViQAAAIAao5Dwk5YtW+q6666zOgYAAACAMJJ39EsVpH+nC/rOV4MWv7Q6DgAAAFAjLNkEAAAAAEHMk3VQ9iU3y3FoptVRAAAAgBqhkAAAAACAYOdx6uyGccpMGivjdlqdBgAAAKgWCgkAAAAACBHO5NmyL7lJ7rMHrI4CAAAAVBl7SPjJ/Pnz9eWXX+ro0aOqV6+eLr30Ut16660aM2aM+vXrV+1xT5w4Ue7xU6dOVXtsAAAAAKHHnbFb9vhYNb91miKvut/qOAAAAECl2YwxxuoQocxms1V4zj333KPZs2erefPmARm/0PHjx9W6desqP4ZVTs1pIBm31TEAAACAkNWk05NqFvuubPUaWh0FCHsnTpxQmzZtJIXe398AAAQLrpCooSZNmujuu+/WHXfcoU6dOik6OlqpqalKTEzUxx9/rLS0NC1cuFBDhw5VQkKCGjRoYHVkAAAAAGHCsf9fKkjdqpi+X6p+06usjgMAAACUiyskaigzM1MxMTGlHjt9+rQGDRqkb7/9VpL03nvv6dlnn63S+JVZsqlHjx6SQu8dGlwhAQAAAPiHrWGMYnrNUeMr7rY6ChC2uEICAICao5AIsMOHD6tTp04qKChQ+/btdejQIb+OH8q/EFFIAAAAAP5kU9QvJqhpt7/JFsHF8IC/hfLf3wAABIsIqwOEu6uvvlp33nmnJCk5OVkpKSkWJwIAAAAQnoxyf3hbacv7yZN70uowAAAAQAkUErWgc+fOvtsnT/KHAQAAAIDAKTiTJHtcV+WnJFgdBQAAACiGQqIW2Gw2qyMAAAAAqEO8ealKT7hL2d9OkjFeq+MAAAAAkigkasXevXt9t1u1amVhEgAAAAB1hvEqZ9dkpa8YKE9eqtVpAAAAAAqJQDty5IgSEs5dKt2uXTtdfvnlFicCAAAAUJe4Tq2UffENcp1OsjoKAAAA6jgKiRqIi4uT2+0u8/jp06c1fPhwuVwuSdKTTz5ZW9EAAAAAwMfrSFHa8n7K2T1Fxhir4wAAAKCOqm91gFD2zDPPqKCgQMOHD9ctt9yiK6+8UpGRkbLb7Vq7dq3+/e9/y263S5J69eqlp556yuLEAAAAAOos41b2jolynUlSTK85imh0gdWJAAAAUMdQSNRQSkqKPvjgA33wwQdlnjN8+HBNnz5djRo1qsVkAAAAAFBS/vE42eNuVEzfL9Xwolir4wAAAKAOoZCogTlz5igxMVGbNm3S4cOHZbfblZWVpejoaLVp00a33nqrRo8erVtuucXqqAAAAADg48k5qrSlvdQs9u+KuvZpq+MAAACgjqCQqIE+ffqoT58+VscAAAAAgKrzupS15Rm5Tq9X857TFdGgqdWJAAAAEObY1BoAAAAA6rC8o1/KHtddBRm7rY4CAACAMEchAQAAAAB1nCfroOzxN8lxaJbVUQAAABDGKCQAAAAAAJLHqbMbHlFm0lgZt9PqNAAAAAhDFBIAAAAAAB9n8mzZl9wk99kDVkcBAABAmKGQAAAAAAAU487YLXt8rJxHvrA6CgAAAMIIhQQAAAAAoARTkK3MxAd0dvPTMh6X1XEAAAAQBigkAAAAAABlcuz/UGlLe8qdfdTqKAAAAAhxFBIAAAAAgHIVpG2XPe5G5R2PszoKAAAAQhiFBAAAAACgQsaVoYxVQ5W17QUZr9vqOAAAAAhBFBIAAAAAgEoyyv3hbaUt7ydP7kmrwwAAACDEUEgAAAAAAKqk4EyS7HFdlZ+y0uooAAAACCEUEgAAAACAKvPmpSo9YaCyv31NxnitjgMAAIAQQCEBAAAAAKge41XOrj8rPeEuefJSrU4DAACAIEchAQAAAACoEVdKguyLb5DrdJLVUQAAABDEKCQAAAAAADXmdaQobXk/5eyeImOM1XEAAAAQhCgkAAAAAAD+YdzK3jFRGauHypufYXUaAAAABBkKCQAAAACAX+Ufj5M97ka57NutjgIAAIAgQiEBAAAAAPA7T85RpS3tqdx9H1odBQAAAEGCQgIAAAAAEBhel7K2PK2MtQ/IW5BtdRoAAABYjEICAAAAABBQeUe/kD2uuwoydlsdBQAAABaikAAAAAAABJwn66Ds8TfJcWiW1VEAAABgEQoJAAAAAEDt8Dh1dsMjykx6RMbttDoNAAAAahmFBAAAAACgVjmTZ8m+5Ca5zx60OgoAAABqEYUEAAAAAKDWuTN2yx7fXc4jX1odBQAAALWEQgIAAAAAYAlTkK3MxPt1dvPTMh6X1XEAAAAQYBQSAAAAAABLOfZ/qLSlPeXOPmp1FAAAAAQQhQQAAAAAwHIFadtlj7tRecfjrI4CAACAAKGQAAAAAAAEBePKUMaqocra/qKM1211HAAAAPgZhQQAAAAAIIgY5e55S+nf3C6PI8XqMAAAAPAjCgkAAAAAQNBxnV4v++IblJ+y0uooAAAA8BMKCQAAAABAUPLmpSo9YaCyv31NxnitjgMAAIAaopAAAAAAAAQv41XOrj8rPeEuefJSrU4DAACAGqCQAAAAAAAEPVdKguyLb5DrdJLVUQAAAFBNFBIAAAAAgJDgdaQobXk/5ex5S8YYq+MAAACgiigkAAAAAAChw7iVvf1FZay+R978DKvTAAAAoAooJAAAAAAAISf/+GLZ426Uy77d6igAAACoJAoJAAAAAEBI8uQcVdrSnsrd96HVUQAAAFAJFBIAAAAAgNDldSlry9PKWPuAvAU5VqcBAABAOSgkAAAAAAAhL+/oF7LHdVdBxm6rowAAAKAMFBIAAAAAgLDgyToge/xNchyabXUUAAAAlIJCAgAAAAAQPjxOnd0wVplJj8i4nVanAQAAQBEUEgAAAACAsONMniX7kpvkPnvQ6igAAAD4PxQSAAAAAICw5M7YLXt8dzmPfGl1FAAAAIhCAgAAAAAQxkxBtjIT79fZzU/LeFxWxwEAAKjTKCQAAAAAAGHPsf9DpS3rJXf2UaujAAAA1FkUEgAAAACAOqHAvk32uBuVdzzO6igAAAB1EoUEAAAAAKDOMK4MZawaqqztL8p43VbHAQAAqFMoJAAAAAAAdYxR7p63lP7N7fI4UqwOAwAAUGdQSAAAAAAA6iTX6fWyL75B+SkrrY4CAABQJ1BIAAAAAADqLG9eqtITBir7uz/LGK/VcQAAAMIahQQAAAAAoG4zXuV895rSE+6SJy/V6jQAAABhi0ICAAAAAABJrpQE2Rd3let0ktVRAAAAwhKFBAAAAAAA/8frOKm05f2Us+ctGWOsjgMAABBWKCQAAAAAACjKuJW9/UVlrL5H3vwMq9MAAACEDQoJAAAAAABKkX98sexxN8pl3251FAAAgLBAIQEAAAAAQBk8OUeVtrSXcvd9aHUUAACAkEchAQAAAABAebz5ytrytDISH5S3IMfqNAAAACGLQgIAAAAAgErIOzJP9rjuKsjYbXUUAACAkEQhAQAAAABAJXmyDsgef5Mch2ZbHQUAACDkUEgAAAAAAFAVHqfObhirzKRHZNxOq9MAAACEDAoJAAAAAACqwZk8S/YlN8t99qDVUQAAAEIChQQAAAAAANXkzvhe9vjuch750uooAAAAQY9CAgAAAACAGjAF2cpMvF9nNz8t43FZHQcAACBoUUgAAAAAAOAHjv0fKm1ZL7mzj1odBQAAIChRSAAAAAAA4CcF9m2yx92ovONxVkcBAAAIOhQSAAAAAAD4kXFlKGPVUGVtnyjjdVsdBwAAIGhQSAAAAAAA4HdGuXumKP2b2+VxpFgdBgAAIChQSAAAAAAAECCu0+tlX9xV+SkrrY4CAABgOQoJAAAAAAACyJt3RukJA5X93Z9ljNfqOAAAAJahkAAAAAAAINCMVznfvab0hLvkyUu1Og0AAIAlKCQAAAAAAKglrpQE2Rd3lev0BqujAAAA1DoKCQAAAAAAapHXcVJpy/sqZ8/bVkcBAACoVRQSAAAAAADUNuNW9vYXlL5qqLz5mVanAQAAqBUUEgAAAAAAWCT/+GLZ426Uy77d6igAAAABRyEBAAAAAICFPDlHlLa0l3L3fWh1FAAAgICikAAAAAAAwGrefGVteVoZiQ/KW5BjdRoAAICAoJAAAAAAACBI5B2ZJ3tcdxVk7LE6CgAAgN9RSAAAAAAAEEQ8WQeUtuQmOZLnWB0FAADArygkAAAAAAAIMsbt0NmkMcpMekTG7bQ6DgAAgF9QSAAAAAAAEKScybNkX3Kz3GcPWh0FAACgxigkAAAAAAAIYu6M72WP7y7nkS+tjgIAAFAjFBIAAAAAAAQ5U5CtzMT7dXbzMzIel9VxAAAAqoVCAgAAAACAEOHY/0+lLestd84xq6MAAABUGYUEAAAAAAAhpMC+VfbFXZV3PN7qKAAAAFVCIQEAAAAAQIgxrgxlrLpbWdsnynjdVscBAACoFAoJAAAAAABCklHunilK/+Z2eRwpVocBAACoEIUEAAAAAAAhzHV6veyLuyo/ZaXVUQAAAMpFIQEAAAAAQIjz5p1ResJAZX83WcZ4rY4DAABQKgoJAAAAAADCgfEq57tJSk8YJE9eqtVpAAAASqCQAAAAAAAgjLhSVsi+uKtcpzdYHQUAAKAYCgkAAAAAAMKM13FSacv7KmfP21ZHAQAA8KGQAAAAAAAgHBm3sre/oPRVQ+XNz7Q6DQAAAIUEAAAAAADhLP/4YtnjblSBfYfVUQAAQB1HIQEAAAAAQJjz5ByRfWlP5e7/l9VRAABAHUYhAQAAAABAXeDNV9bmp5SR+JC8BTlWpwEAAHUQhQQAAAAAAHVI3pG5ssd1V0HGHqujAACAOoZCAgAAAACAOsaTdUBpS26SI3mO1VEAAEAdQiEBAAAAAEAdZNwOnU0ao8ykR2TcTqvjAACAOoBCAgAAAACAOsyZPEv2JTfLnXXI6igAACDMUUgAAAAAAFDHuTO+lz2um5xH51sdBQAAhDEKCQAAAAAAIFOQrcy1I3R28zMyHpfVcQAAQBiikAAAAAAAAD6O/f9U2rLecuccszoKAAAIMxQSAAAAAACgmAL7VtkXd1Xe8XirowAAgDBCIQEAAAAAAEowrgxlrLpbWdtfkvF6rI4DAADCAIUEAAAAAAAog1HunjeV/s3t8jhSrA4DAABCHIUEAAAAAAAol+v0OtkXd1V+yiqrowAAgBBGIQEAAAAAACrkzTuj9IQByv5usozxWh0HAACEIAoJAAAAAABQOcarnO8mKT1hkDx5qVanAQAAIYZCAgAAAAAAVIkrZYXsi7vKdXqD1VEAAEAIoZAAAAAAAABV5nWcVNryvsrZ87bVUQAAQIigkAAAAAAAANVj3Mre/oLSV90jb36m1WkAAECQo5Dwo2PHjmnChAnq1KmToqKi1KJFC8XGxuqtt96Sw+GwOh4AAAAAAAGRf3yR7HE3qsC+w+ooAAAgiFFI+ElcXJx++ctf6p133tGBAwfkcDiUkZGh7du368UXX1TXrl2VnJxsdUwAAAAAAALCk3NE9qU9lbv/X1ZHAQAAQYpCwg++/fZb3X///crKylJ0dLT++te/auPGjVq1apXGjx8vSTp48KCGDBmi7Oxsi9MCAAAAABAg3nxlbX5KGYkPyVuQY3UaAAAQZOpbHSAcPPfcc3I6napfv75WrFihW265xXfs9ttvV4cOHfTiiy/q4MGD+vvf/67XXnvNurAAAAAAAARY3pG5KkjbqQv6LVCDC66zOg4AAAgSXCFRQ1u3btX69eslSePGjStWRhSaMGGCrr32WknSe++9p4KCglrNCAAAAABAbfNkHVDakpvkSJ5jdRQAABAkKCRqaOHChb7bY8eOLfWciIgIjRo1SpKUmZmpNWvW1EY0AAAAAAAsZdwOnU0ao8wN42TcTqvjAAAAi1FI1FBSUpIkKSoqSt26dSvzvD59+vhub9iwIeC5AAAAAAAIFs5DM2VfcrPcWYesjgIAACzEHhI1tG/fPklS+/btVb9+2d/OTp06lbhPZZw4caLc48ePH/fdPnXqVKXHDQan041krE4BAAAAAKgV6d/r+LGuahr7tiLb/MrqNFVW9G9ut9ttYRIAAEIXhUQN5OXlyW63S5Jat25d7rkXXHCBoqKilJubW6xEqEibNm0qfW6PHj0qfS4AAAAAALUvV9IT//cRulJTU3XllVdaHQMAgJDDkk01kJ2d7bsdHR1d4flRUVGSpJycnIBlAgAAAAAAAAAgGHGFRA3k5eX5bjds2LDC8xs1aiRJcjorv5FXRVdT5OXlaf/+/brkkkt08cUXl7tsVLA4deqU72qOrVu36rLLLrM4EVB9zGeEG+Y0wgnzGeGE+YxwE4pz2u12KzU1VZLUpUsXi9MAABCagv/V6yDWuHFj322Xy1Xh+fn5+ZKkyMjISj9GRUtBSef2rwhVl112WaW+RiAUMJ8RbpjTCCfMZ4QT5jPCTSjNaZZpAgCgZliyqQaaNm3qu12ZZZhyc3MlVW55JwAAAAAAAAAAwgmFRA00btxYF154oSTpxIkT5Z6bkZHhKySqslE1AAAAAAAAAADhgEKihjp37ixJSk5OltvtLvO8/fv3+25fe+21Ac8FAAAAAAAAAEAwoZCooV69ekk6txzTjh07yjwvMTHRd7tnz54BzwUAAAAAAAAAQDChkKihe+65x3d71qxZpZ7j9Xr1ySefSJJiYmLUr1+/2ogGAAAAAAAAAEDQoJCooR49eqh3796SpBkzZmjTpk0lzvn73/+uffv2SZKee+45NWjQoFYzAgAAAAAAAABgtfpWBwgH7733nnr27Cmn06kBAwbov//7v9WvXz85nU7NmzdPU6dOlSR17NhREyZMsDgtAAAAAAAAAAC1z2aMMVaHCAdxcXH67W9/q6ysrFKPd+zYUUuWLFH79u1rORkAAAAAAAAAANajkPCjY8eO6b333tOSJUt04sQJNWzYUO3bt9d9992np59+Wk2aNLE6IgAAAAAAAAAAlqCQAAAAAAAAAAAAAcem1gAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBKoVceOHdOECRPUqVMnRUVFqUWLFoqNjdVbb70lh8NhdTyEuTNnzig+Pl6vvvqqBg0apIsuukg2m002m01jxoyp8njLli3TsGHD1Lp1azVq1EitW7fWsGHDtGzZskqP4Xa79fHHH6t37966+OKLFRkZqXbt2unxxx/XDz/8UOVMqDu2b9+uyZMna8CAAb45GB0drY4dO2rs2LFKSkqq0njMZ1gpKytL8+bN04QJE9SnTx+1b99ezZs3V8OGDdWyZUv17dtXU6ZMUVpaWqXG27hxo37729+qbdu2aty4sS699FINHDhQc+fOrVKuuXPnasCAAbr00kvVuHFjtW3bVr/97W+1adOm6nyZgCZOnOj73cNms2nt2rUV3ofnZ1it6Jwt76Nv374VjsV8BgAAMkAtWbx4sWnWrJmRVOpHx44dzaFDh6yOiTBW1tyTZEaPHl3pcTwejxk3bly54z366KPG4/GUO05qaqqJjY0tc4xGjRqZadOm1fCrRjjq3bt3ufOv8GPUqFEmPz+/3LGYzwgGCQkJlZrTF110kVm+fHm5Y02aNMlERESUOcaQIUOM0+ksdwyHw2EGDx5c5hgRERHmtdde8+e3AHXAt99+a+rXr19sLq1Zs6bM83l+RrCozPOzJNOnT58yx2A+AwCAQhQSqBU7d+40kZGRRpKJjo42f/3rX83GjRvNqlWrzPjx44uVEllZWVbHRZgq+sfKFVdcYQYMGFCtQuKll17y3a9r165m7ty5ZuvWrWbu3Lmma9euvmMvv/xymWO43W7Tq1cv37n33nuvWbZsmdmyZYt5//33TcuWLX0vei1dutQPXz3CSbt27Ywk06pVK/Pcc8+ZBQsWmK1bt5pNmzaZd955x1x++eW+ufXggw+WOxbzGcEgISHBtGnTxowaNcq899575quvvjKbNm0yGzZsMF988YW57777TL169Ywk07BhQ/Pdd9+VOs7HH3/sm4ft2rUzM2bMMFu3bjULFy40/fr1q/TPxQMPPOA7t1+/fmbhwoVm69atZsaMGb6fP0nm3//+dyC+HQhDHo/H9yJq4XNiRYUEz88IFoXz54knnjC7d+8u8+Pw4cNljsF8BgAAhSgkUCsK381bv359s3HjxhLHp0yZ4vvFctKkSbUfEHXCq6++auLi4szPP/9sjDHmyJEjVS4kDhw44Ht3Y/fu3Y3D4Sh2PDc313Tv3t0338u66mfGjBm+x37yySdLHD906JDviqL27dubgoKCqn2xCGtDhgwxX3zxhXG73aUeT01NNR07dvTNscTExFLPYz4jWJQ1l4v6+uuvffNs2LBhJY6npaWZ5s2b+0rn1NTUEo/x61//usIXgletWuU759e//nWJbKmpqeaKK64wkkxMTIxJT0+v/BeKOuvdd981kkynTp3Myy+/XOE85PkZwaSmf6cxnwEAQFEUEgi4LVu2+H5xfPzxx0s9x+PxmGuvvdb3x73L5arllKiLqlNIPPHEE777bNq0qdRzNm3aVO4fS8YY33xv0aKFyc3NLfWcv/3tb75xvvzyy0rlAwrFxcX55s8zzzxT6jnMZ4Saa665xkjnlm4635tvvumbY3Pnzi31/sePH/ddaTF48OBSzxk0aJDvRbHjx4+Xes7cuXN9jzVlypTqf0GoE44dO2aio6ONJLN27VozadKkCgsJnp8RTGpaSDCfAQBAUWxqjYBbuHCh7/bYsWNLPSciIkKjRo2SJGVmZmrNmjW1EQ2oEmOMFi1aJEnq1KmTbr755lLPu/nmm3XNNddIkhYtWiRjTLHjBw8e1L59+yRJI0aMUJMmTUodp+hG219//XVN46OO6devn+/2jz/+WOI48xmhqGnTppKkvLy8EscKf99o1qyZ7r333lLv37p1a/Xv31+StGrVKmVnZxc7np2drVWrVkmS+vfvr9atW5c6zr333qtmzZpJYj6jYk899ZRycnI0evRo9enTp8LzeX5GOGE+AwCA81FIIOCSkpIkSVFRUerWrVuZ5xX9A23Dhg0BzwVU1ZEjR5SSkiJJFb6gUHj85MmTOnr0aLFjhT8TFY1z6aWXqmPHjpL4mUDV5efn+27Xq1evxHHmM0LNgQMH9N1330k696JWUS6XS1u3bpUk3XLLLWrYsGGZ4xTO0/z8fG3fvr3YsW3btsnlchU7rzQNGzb0vai2bds2FRQUVO2LQZ3x5ZdfKj4+Xi1atNDbb79dqfvw/IxwwnwGAADno5BAwBW+k6V9+/aqX79+mecVfXGh8D5AMNm7d6/v9vkvhp2vvPlcnXGOHz+u3NzcSmcFEhMTfbevvfbaEseZzwgFDodDhw4d0jvvvKM+ffrI7XZLkp5//vli5x08eFAej0dS7c9nt9utQ4cOlf+FoE7KzMzUc889J0l68803ddFFF1Xqfjw/I1jNnz9fnTt3VpMmTdS0aVN16NBBo0ePLvfqduYzAAA4H4UEAiovL092u12Sylz2oNAFF1ygqKgoSed+eQSCzYkTJ3y3K5rPbdq08d0+fz5XZxxjTLH7AeXxer164403fP8eMWJEiXOYzwhWs2fPls1mk81mU1RUlDp27KgJEybo9OnTkqSXXnpJDz30ULH7WDmfSxsHkKQXX3xRP//8s3r27Klx48ZV+n48PyNY7d27V/v27ZPT6VROTo6Sk5P1ySef6Pbbb9ewYcN09uzZEvdhPgMAgPOV/XZ1wA+Krs0cHR1d4flRUVHKzc1VTk5OIGMB1VKV+VxYrkkqMZ/9NQ5Qlnfffde3fM29995b6nJ5zGeEmhtuuEFTp05VbGxsiWPMZwSb9evXa/r06apfv74+/vhj2Wy2St+X+Yxg06RJE919992644471KlTJ0VHRys1NVWJiYn6+OOPlZaWpoULF2ro0KFKSEhQgwYNfPdlPgMAgPNRSCCgim46Wd56zoUaNWokSXI6nQHLBFRXVeZz4VyWSs5nf40DlCYxMVEvvfSSJKlly5b66KOPSj2P+Yxgdc8996h79+6Szs2TH3/8UV9++aW+/vprPfjgg/rHP/6hX/3qV8Xuw3xGMHG5XHrsscdkjNHvfvc7XXfddVW6P/MZwebkyZOKiYkp8fk777xTzzzzjAYNGqRvv/1WiYmJ+uijj/Tss8/6zmE+AwCA87FkEwKqcePGvtuFm0SWp3AT1sjIyIBlAqqrKvO56IbC589nf40DnO+HH37QsGHD5Ha71bhxY82fP18tW7Ys9VzmM4JVTEyMrrvuOl133XWKjY3VAw88oK+++kqffPKJDh8+rKFDh2r27NnF7sN8RjB5/fXXtX//fl1xxRWaNGlSle/PfEawKa2MKHTJJZdowYIFvqsiPvjgg2LHmc8AAOB8FBIIqKZNm/puV+Zy2cJNxyqzvBNQ26oyn4tuoHf+fPbXOEBRR44c0YABA5SRkaF69epp3rx5uu2228o8n/mMUDNy5Ejdd9998nq9evrpp5Wenu47xnxGsNi/f7/+9re/STr3wmzRpWMqi/mMUHP11VfrzjvvlCQlJycrJSXFd4z5DAAAzkchgYBq3LixLrzwQkmqcEOxjIwM3y+PRTc0A4JF0Q30KprPRTfiO38+V2ccm81W4QZ+qLtSUlLUv39/paSkyGazaebMmRo6dGi592E+IxQVzuvc3FwtX77c93kr53Np46Duevfdd+VyuXT11VfL4XBo3rx5JT727NnjO3/16tW+zxf+HszzM0JR586dfbdPnjzpu818BgAA52MPCQRc586dtX79eiUnJ8vtdqt+/dKn3f79+323r7322tqKB1Ra0T+0is7X0pQ3n88f54YbbqhwnDZt2lTrXZYIf3a7XXfeeacOHz4s6dw7ckeNGlXh/ZjPCEUXX3yx7/axY8d8tzt27Kh69erJ4/H4dT5XZpz69eurQ4cOFYdHnVC4VMzhw4f14IMPVnj+X/7yF9/tI0eOKCoqiudnhKSyNm5nPgMAgPNxhQQCrlevXpLOvZtxx44dZZ6XmJjou92zZ8+A5wKq6qqrrlKrVq0kFZ+vpVm3bp0k6fLLL9eVV15Z7Fjhz0RF4/z88886ePCgJH4mULqzZ89q4MCB2rt3ryTpjTfe0FNPPVWp+zKfEYqKvuu26DIcDRs2VI8ePSRJmzZtKnd98cJ52qhRI9/m2YViY2N9m6WWN59dLpc2b97su0/h2umAP/D8jFBU+LuIJN/8lZjPAACgJAoJBNw999zjuz1r1qxSz/F6vfrkk08knds0rV+/frURDagSm83mWy5k//79vhejzrd582bfO7OGDh1a4h1jHTt29L3r68svv5TD4Sh1nKKbtg4bNqym8RFmHA6HhgwZop07d0qSXnnlFU2cOLHS92c+IxTNnz/fd7tLly7FjhX+vpGVlaWvvvqq1PufOHFCK1eulCTdcccdxdYkl86tUX7HHXdIklauXFnmsiBfffWVsrKyJDGfUdzs2bNljCn3o+hG12vWrPF9vvAFWJ6fEWqOHDmihIQESVK7du10+eWX+44xnwEAQAkGqAW9e/c2kkz9+vXNxo0bSxyfMmWKkWQkmUmTJtV+QNRJR44c8c270aNHV+o+Bw4cMPXq1TOSTPfu3Y3D4Sh23OFwmO7du/vm+8GDB0sdZ8aMGb7Hfuqpp0ocT05ONs2aNTOSTPv27U1BQUGVvz6Er/z8fDNgwADfHHruueeqNQ7zGcFi1qxZxul0lnvOO++845tnV111lXG73cWOp6WlmebNmxtJpm3btsZutxc77na7za9//WvfGGvWrCn1cVatWuU75+677y7xOKmpqeaKK64wkkxMTIxJT0+v+heMOm3SpEkVzkOenxEsFi9eXO68+Pnnn03Xrl198+zvf/97iXOYzwAAoCgKCdSKnTt3msjISCPJREdHm9dff91s2rTJrF692jz22GO+Xyw7duxosrKyrI6LMLV+/Xoza9Ys38dbb73lm3s9e/YsdmzWrFlljvPSSy/57te1a1czb948s23bNjNv3rxif5C9/PLLZY7hdrtNz549fecOHz7cLF++3GzZssV88MEHpmXLlkaSiYiIMEuXLg3AdwOh7N577/XNndtvv918//33Zvfu3WV+HDhwoMyxmM8IBm3btjUtWrQw48ePN3PmzDFJSUnmu+++M+vXrzf/+te/is2vhg0bmoSEhFLH+fjjj33ntWvXzsycOdNs27bNLFq0yPTr18937MEHHyw3zwMPPOA7t1+/fmbRokVm27ZtZubMmaZdu3a+Y//+978D8e1AmKtMIWEMz88IDm3btjWtWrUyzzzzjPn888/Nxo0bzbfffmsSEhLMK6+8Yi666CLf/OrVq5fJy8srdRzmMwAAKEQhgVqzePFi3ztWSvvo2LGjOXTokNUxEcZGjx5d5vwr7aMsHo/HPPLII+Xed9y4ccbj8ZSbJzU11cTGxpY5RqNGjcy0adP8/W1AGKjKPC58t3hZmM8IBm3btq3UXG7durVZsWJFuWO9+uqrxmazlTnG4MGDK7waw+FwmMGDB5c5RkREBFd0otoqW0jw/IxgUNnn5+HDh5uMjIwyx2E+AwCAQjZjjBFQS44dO6b33ntPS5Ys0YkTJ9SwYUO1b99e9913n55++mk1adLE6ogIY2PGjNGcOXMqfX5FT49Lly7V1KlTtW3bNtntdl100UWKjY3V448/rkGDBlXqMdxut6ZNm6bPP/9c+/btU25urlq1aqU77rhDzz33nH7xi19UOi/qjvPXVa5I27ZtdfTo0XLPYT7DSgcOHNCSJUu0YcMGJScn6/Tp00pLS1NkZKRatmypG264Qb/61a80YsSISv2usHHjRn344Ydav369Tp8+rZiYGF1//fUaO3asHnzwwUrn+vzzzzV79mzt2rVLmZmZuuSSS9S7d289/fTTuuWWW2ryJaMOe+211/TnP/9Z0rk9JPr27Vvu+Tw/w0qJiYlKTEzUpk2bdPjwYdntdmVlZSk6Olpt2rTRrbfeqtGjR1f6OZH5DAAAKCQAAAAAAAAAAEDARVgdAAAAAAAAAAAAhD8KCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAACAapo9e7ZsNptsNpuOHj1qdRwAAAAAAIIahQQAAKhzjh496isSavIBAAAAAAAqj0ICAAAAAAAAAAAEnM0YY6wOAQAAUJsKCgp04MCBMo936dJFktS9e3fNmjWrzPOuu+46v2cDAAAAACBc1bc6AAAAQG1r0KBBpcqEqKgoSgcAAAAAAPyEJZsAAAAAAAAAAEDAUUgAAABU0+zZs30bXB89erTE8b59+8pms6lv376SpOTkZP3Xf/2Xrr76akVGRurKK6/UuHHjdOzYsWL327Nnj8aOHaurr75ajRs3Vps2bfTEE0/ozJkzlcq1cOFC3XfffbriiivUuHFjxcTEqHv37vrzn/+sjIyMmn7ZAAAAAABUC0s2AQAA1IKVK1fq3nvvVXZ2tu9zx44d08yZMxUfH6/ExER16tRJc+fO1ZgxY+RyuXznnThxQh9//LGWLVumjRs3qlWrVqU+RkZGhn7zm99o9erVxT6fn5+vHTt2aMeOHfrXv/6lRYsW6eabbw7MFwoAAAAAQBm4QgIAACDAUlJSNGLECMXExOiDDz7Qli1btH79ej3//POy2Ww6c+aMHn30UW3btk2jRo1Su3btNH36dG3dulVr1qzRyJEjJZ0rMH7/+9+X+hj5+fnq37+/Vq9erXr16mnkyJGaO3euNm/erPXr1+uvf/2rLrzwQp05c0aDBw8ucVUGAAAAAACBxhUSAAAAAXbo0CF16NBBGzZs0MUXX+z7fK9evVS/fn29/fbb2rBhg4YMGaIePXooISFBTZo08Z3Xt29f5eXlaf78+frPf/6j1NTUYuNI0uTJk7Vz507FxMRo5cqV6tatW7HjvXr10sMPP6xbbrlFp06d0n//93/rf//3fwP7hQMAAAAAUARXSAAAANSC999/v0SJIElPPvmk77bdbtf06dOLlRGFnnjiCUmS2+3Wpk2bih3LycnRhx9+KEn6y1/+UqKMKNS2bVv96U9/kiTNnz9fubm51ftiAAAAAACoBgoJAACAAIuJidHAgQNLPXbVVVepadOmkqRf/vKXuvbaa0s97/rrr/fdPnz4cLFjiYmJOnv2rCTpN7/5TblZbrvtNklSQUGBduzYUbkvAAAAAAAAP2DJJgAAgADr0KGDbDZbmcdjYmKUnZ2tjh07lntOoaIbY0vS9u3bfbcvu+yySuf6+eefK30uAAAAAAA1xRUSAAAAAVbaEkxFRUREVHhe4TmS5PF4ih07c+ZMtXI5HI5q3Q8AAAAAgOrgCgkAAIAQV7Sg2Llzpxo0aFCp+7Vu3TpQkQAAAAAAKIFCAgAAIMRdeOGFvtsXX3wxRQMAAAAAICixZBMAAECI69q1q+/2hg0bLEwCAAAAAEDZKCQAAABCXP/+/X37T7z//vsyxlicCAAAAACAkigkAAAAQlxMTIyefvppSdLGjRv1u9/9Tl6vt8zzT58+renTp9dWPAAAAAAAJLGHBAAAQFiYPHmyEhMTtWXLFr333ntau3atxo8frxtuuEFRUVHKyMjQDz/8oJUrV2rZsmXq0qWLHn30UatjAwAAAADqEAoJAACAMNCoUSMlJCRozJgx+uqrr7Rr1y7fVROladasWS2mAwAAAACAQgIAACBsNG3aVP/5z3+UlJSkOXPmaP369UpJSZHT6VSzZs3Url079ejRQ0OGDNGAAQOsjgsAAAAAqGNshl0PAQAAAAAAAABAgLGpNQAAAAAAAAAACDgKCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAAAAAAAAAAAQcBQSAAAAAAAAAAAg4CgkAAAAAAAAAABAwFFIAAAAAAAAAACAgKOQAAAAAAAAAAAAAUchAQAAAAAAAAAAAo5CAgAAAAAAAAAABNz/AzuTh3g5cPjbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'transmissibility_function_reassortment_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data\n", + " # Dataframe with model history\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a heatmap and dendrogram for pathogen genomes \n", + "Generate a heatmap and dendrogram for the top 24 genomes. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcsUlEQVR4nO3deZzVdb0/8NcwCKggIsgi+BN3VNwXEhVcMJfCLLdME7Vr4lriQqSCS4p6b6LXTHMBUskdSy01wy0VU3EjEbKruAUKKLKDMOf3hzjXkRmcw/AN5T6f93Eel+/2Pp851ffMaz7Lt6JUKpUCAAAALHeNVnQDAAAAYGUldAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgII0bcvH4iY8vr3asUF0691zRTQAAAGAl1KDQXVWqWl7tAAAAgJVOg0J3qVRaXu0AAACAlU7DerojdAMAAEBdGtjTbXg5wMpkwIABmTdv3opuBgAFadasWQYPHryimwH/pzRwTvf/3Z7uq6++Ov/5n/+ZyZMnZ+utt85VV12VnXbaqc7zp0+fnrPPPjsjR47Mhx9+mPXWWy9XXHFF9t9//39jqwGWbt68eRkyZMiKbgYABTnttNNWdBPg/5yG9XTn/2ZP9+23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzl+wYEH23nvvtG3bNnfddVc6duyYt956K2uuuea/v/EAAAD82+jpXgaXX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vyhQ4fmww8/zNNPP51VVlklSdK5c+d/Z5MBAABYARo15OLSSvJ/8+fPz4wZM2q85s+fX+vPvGDBgowZMya9evX63w+xUaP06tUro0ePrvWae++9NzvvvHNOOumktGvXLl27ds3FF1+cRYsWNeTjBwAA4CuuQaG7qlRaKV6DBw9Oy5Yta7zqWmBi6tSpWbRoUdq1a1djf7t27TJ58uRar3njjTdy1113ZdGiRfnTn/6Uc889N7/85S/zi1/8oiEfPwAAAF9xDRxevnLM6R4wYED69etXY1/Tpk2XW/2qqqq0bds21113XSorK7P99tvnvffey3/+539m0KBBy+19AAAA+Gpp4EJqK8ec7qZNm9Y7ZLdp0yaVlZV5//33a+x///330759+1qv6dChQ1ZZZZVUVlZW79tss80yefLkLFiwIE2aNFn2xgMAAPCVZXh5mYvBNWnSJNtvv31GjRr1v59DVVVGjRqVnXfeudZrdtlll/zzn/9MVdX/jgz4xz/+kQ4dOgjcAAAAKzGhu8zQnST9+vXL9ddfn9/+9rd57bXXcsIJJ2T27NnVq5kfddRRGTBgQPX5J5xwQj788MP85Cc/yT/+8Y/88Y9/zMUXX5yTTjqpIR8/AAAAX3Ge070MDjvssEyZMiUDBw7M5MmTs8022+TBBx+sXlzt7bffTqNG//v3jHXXXTcPPfRQTjvttGy11Vbp2LFjfvKTn6R///4r6kcAAADg38BzupfRySefnJNPPrnWY4899tgS+3beeec888wzBbcKAACArxKhGwAAAApi9XIAAAAoiJ5uAAAAKEjDQreebgAAAKhTw4aX6+kGAACAOhleDgAAAAUxvBwAAAAKoqcbAAAACmJONwAAABTE8HIAAAAoiOHlAAAAUBDDywEAAKAghpcDAABAQRo4vHx5NQMAAABWPuZ0AwAAQEEaNqfb8HIAAACok55uAAAAKIjQDQAAAAVp4PByAAAAoC56ugEAAKAgQjcAAAAUpGGhe3m1AgAAAFZCDZvTracbAAAA6tTA4eXLqxkAAACw8jGnGwAAAArSwEeGCd0AAABQF8PLAQAAoCCGlwMAAEBBGrh6+fJqBgAAAKx8PKcbAAAACmJ4OQAAABTE8HIAAAAoiJ5uAAAAKIg53QAAAFCQBg4v19MNAAAAdWng8PLl1QwAAABY+VhIDQAAAApiITUAAAAoiJ5uAAAAKIg53QAAAFCQhvV0L69WAAAAwErInG4AAAAoiDndAAAAUBBzugEAAKAgeroBAACgIOZ0AwAAQEEaNeTiUmnleC2Lq6++Op07d06zZs3SrVu3PPvss/W67rbbbktFRUUOPPDAZXtjAAAAvjYaFLqrSivHq1y33357+vXrl0GDBuWFF17I1ltvnX322ScffPDBUq+bOHFizjjjjOy2227L+Il/at68eQ26HgAAgH8PPd3LELovv/zyHHfccTnmmGOy+eab59prr81qq62WoUOH1nnNokWLcsQRR+T888/PBhtsUPZ7VlVV5cILL0zHjh3TvHnzvPHGG0mSc889NzfeeGP5PwQAAACFE7pLyfz58zNjxowar/nz59f6My9YsCBjxoxJr169/vdDbNQovXr1yujRo+v8rC644IK0bds2P/rRj5bps/7FL36R4cOH57LLLkuTJk2q93ft2jU33HDDMtUEAACgWIaXl5LBgwenZcuWNV6DBw+u9WeeOnVqFi1alHbt2tXY365du0yePLnWa5588snceOONuf7665f5s77pppty3XXX5YgjjkhlZWX1/q233jrjx49f5roAAAAUxyPDkgwYMCD9+vWrsa9p06bLpfbMmTPzwx/+MNdff33atGmzzHXee++9bLTRRkvsr6qqyieffNKQJgIAAFCQBobulSN1N23atN4hu02bNqmsrMz7779fY//777+f9u3bL3H+//zP/2TixInp3bt39b6qqqokSePGjTNhwoRsuOGGX/q+m2++ef76179mvfXWq7H/rrvuyrbbbluvtgMAAPDv1cDndC+vZnx9NGnSJNtvv31GjRpV/divqqqqjBo1KieffPIS53fp0iVjx46tse+cc87JzJkzc+WVV2bdddet1/sOHDgwffr0yXvvvZeqqqqMHDkyEyZMyE033ZT777+/wT8XAAAAy5/h5cugX79+6dOnT3bYYYfstNNOueKKKzJ79uwcc8wxSZKjjjoqHTt2zODBg9OsWbN07dq1xvVrrrlmkiyxf2m+853v5L777ssFF1yQ1VdfPQMHDsx2222X++67L3vvvfdy+9kAAABYfoTuZXDYYYdlypQpGThwYCZPnpxtttkmDz74YPXiam+//XYaNWrQGnW12m233fLwww8v97oAAAAUQ+heRieffHKtw8mT5LHHHlvqtcOHDy/7/Z577rlUVVWlW7duNfb/7W9/S2VlZXbYYYeyawIAAFAsz+n+mvzh4KSTTso777yzxP733nsvJ5100gpoEQAAAF/GQmpfE+PGjct22223xP5tt90248aNWwEtAgAA4Mvo6f6a/OGgadOmSzymLEkmTZqUxo0b9LcTAAAACiJ0f01C9ze/+c0MGDAgH3/8cfW+6dOn5+c//7nVywEAAL6iLKT2NfFf//Vf6dGjR9Zbb71su+22SZKXXnop7dq1y80337yCWwcAAEBtGhi6pe5/l44dO+aVV17JiBEj8vLLL2fVVVfNMccck8MPPzyrrLLKim4eAAAAtWhY6K5aXs2gPlZfffX8+Mc/XtHNAAAAoJ4ML/8aef311/Poo4/mgw8+SFVVzb94DBw4cAW1CgAAgLoI3V8T119/fU444YS0adMm7du3T0VFRfWxiooKoRsAAOArSOj+mvjFL36Riy66KP3791/RTQEAAKCehO6viY8++iiHHHLIim4GAAAAZfCc7q/JHw4OOeSQ/PnPf17RzQAAAKAMVi//mthoo41y7rnn5plnnsmWW265xGPCTj311BXUMgAAAOpiePnXxHXXXZfmzZvn8ccfz+OPP17jWEVFhdANAADwFSR0f028+eabK7oJAAAAlEnoBgAAgIII3V8j7777bu699968/fbbWbBgQY1jl19++QpqFQAAAHVp4EJqUve/y6hRo3LAAQdkgw02yPjx49O1a9dMnDgxpVIp22233YpuHgAAALXwyLCvyd8NBgwYkDPOOCNjx45Ns2bNcvfdd+edd95Jz549Pb8bAADgK6pBoTulleT1NfDaa6/lqKOOSpI0btw4c+fOTfPmzXPBBRfk0ksvXcGtAwAAoDae0/01sfrqq1fP4+7QoUP+53/+J1tssUWSZOrUqSuyaQAAANTBQmpfE9/4xjfy5JNPZrPNNsv++++f008/PWPHjs3IkSPzjW98Y0U3DwAAgFoI3V8Tl19+eWbNmpUkOf/88zNr1qzcfvvt2Xjjja1cDgAA8BXVoND9dZkPvTLYYIMNqv+9+uqr59prr12BrQEAAKA+GrZ6edXK8fo62GCDDTJt2rQl9k+fPr1GIAcAAOCro4HDy3V1/7tMnDgxixYtWmL//Pnz8957762AFgEAAPBlzOn+irv33nur//3QQw+lZcuW1duLFi3KqFGj0rlz5xXQMgAAAL5Mw+Z0f02GZn+dHXjggUmSioqK9OnTp8axVVZZJZ07d84vf/nLFdAyAAAAvoye7q+4qqpP/7Kx/vrr57nnnkubNm1WcIsAAACoL6uXf028+eabS+ybPn161lxzzX9/YwAAAKiXBq5eXlopXl8Hl156aW6//fbq7UMOOSRrrbVWOnbsmJdffnkFtgwAAIC6NCx0l1aO19fBtddem3XXXTdJ8vDDD+cvf/lLHnzwwey3334588wzV3DrAAAAqI3h5V8TkydPrg7d999/fw499NB885vfTOfOndOtW7cV3DoAAABq08Dh5SvH6+ugVatWeeedd5IkDz74YHr16pXk02el1/b8bgAAAFa8BvZ06+r+d/ne976XH/zgB9l4440zbdq07LfffkmSF198MRtttNEKbh0AAAC1adgjw74mvcQrgyFDhqRz58555513ctlll6V58+ZJkkmTJuXEE09cwa0DAACgNuZ0f02sssoqOeOMM5bYf9ppp62A1gAAAFAfDevpNry8UPfee2/222+/rLLKKrn33nuXeu4BBxzwb2oVAAAA9dWwnm7Dywt14IEHZvLkyWnbtm0OPPDAOs+rqKiwmBoAAMBXUAN7updXM6hNVVVVrf8GAADg68Hq5V8DVVVVGT58eEaOHJmJEyemoqIiG2ywQQ466KD88Ic/TEVFxYpuIgAAALVo0HO6U7WSvL7CSqVSDjjggPzHf/xH3nvvvWy55ZbZYostMnHixBx99NH57ne/u6KbCAAAQB0spPYVN3z48DzxxBMZNWpU9thjjxrHHnnkkRx44IG56aabctRRR62gFgIAAFAXPd1f8Z7uW2+9NT//+c+XCNxJsueee+ZnP/tZRowYsQJaBgAAwJdpUOgulUorxeur7JVXXsm+++5b5/H99tsvL7/88r+xRQAAANSXR4Z9xX344Ydp165dncfbtWuXjz766N/YIgAAAOqrYcPLS6WV47UMrr766nTu3DnNmjVLt27d8uyzz9Z57vXXX5/ddtstrVq1SqtWrdKrV6+lnv95ixYtSuPGdf9tpLKyMgsXLiy7/QAAABTPc7qXwe23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzn/sscdy+OGHp3v37mnWrFkuvfTSfPOb38yrr76ajh07LvW9SqVSjj766DRt2rTW4/Pnz18uPxMAAADLXwOHl//fTN2XX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vwvLnR2ww035O67786oUaO+dNXxPn36fGl7rFwOAADw1dSw0L2SZO758+cv0WPctGnTWnuXFyxYkDFjxmTAgAHV+xo1apRevXpl9OjR9Xq/OXPm5JNPPslaa631pecOGzasXjUBAAD46mnY6uVVpZXiNXjw4LRs2bLGa/DgwbX+zFOnTs2iRYuWWNysXbt2mTx5cr0+t/79+2edddZJr169GvLxAwAA8BWnpzvJgAED0q9fvxr76ppD3VCXXHJJbrvttjz22GNp1qxZIe8BAADAV4M53al7KHlt2rRpk8rKyrz//vs19r///vtp3779Uq/9r//6r1xyySX5y1/+kq222mqZ2wsAAMDXQ8OGl5dKK8WrHE2aNMn222+fUaNGVe+rqqrKqFGjsvPOO9d53WWXXZYLL7wwDz74YHbYYYdl/swBAAD4+jC8fBn069cvffr0yQ477JCddtopV1xxRWbPnl29mvlRRx2Vjh07Vs8Lv/TSSzNw4MD87ne/S+fOnavnfjdv3jzNmzdfYT8HAAAAxTK8fBkcdthhmTJlSgYOHJjJkydnm222yYMPPli9uNrbb7+dRo3+dxDBNddckwULFuTggw+uUWfQoEE577zz/p1NBwAA4N+ogT3d/zdDd5KcfPLJOfnkk2s99thjj9XYnjhxYvENAgAA4CunQaG79H+0pxsAAADqw5xuAAAAKIjh5QAAAFAQC6kBAABAQRo2p1tPNwAAANRJTzcAAAAUxJxuAAAAKIiebgAAACiIOd0AAABQEMPLAQAAoCCGlwMAAEBB9HQDAABAQczpBgAAgIIYXg4AAAAFMbwcAAAACqKnGwAAAApiTjcAAAAUxPByAAAAKIjh5QAAAFCQBvZ0Vy2nZgAAAMDKx5xuAAAAKIjh5QAAAFAQC6kBAABAQczpBgAAgIKY0w0AAAAFMacbAAAACmJONwAAABSkgcPLzekGAACAuhheDgAAAAWxejkAAAAUxOrlAAAAUBA93QAAAFCQhvV0m9MNAAAAdfLIMAAAACiI4eUAAABQEAupAQAAQEH0dAMAAEBBGtjTLXQDAABAXRrW0231cgAAAKiTnm4AAAAoiEeGAQAAQEH0dAMAAEBB9HQDAABAQfR0AwAAQEGEbgAAACiI4eUAAABQkEYNubhUqlopXsvi6quvTufOndOsWbN069Ytzz777FLPv/POO9OlS5c0a9YsW265Zf70pz8t0/sCAADw9SF0L0Povv3229OvX78MGjQoL7zwQrbeeuvss88++eCDD2o9/+mnn87hhx+eH/3oR3nxxRdz4IEH5sADD8zf//73hnz8AAAAfMU1KHSnVFo5XmW6/PLLc9xxx+WYY47J5ptvnmuvvTarrbZahg4dWuv5V155Zfbdd9+ceeaZ2WyzzXLhhRdmu+22y69+9asGffwAAAB8tTVsIbWqlWMhtfnz52f+/Pk19jVt2jRNmzZd4twFCxZkzJgxGTBgQPW+Ro0apVevXhk9enSt9UePHp1+/frV2LfPPvvk97//fcMbDwAAwFdWg0L32LceX17tWKHOO++8nH/++TX2DRo0KOedd94S506dOjWLFi1Ku3btauxv165dxo8fX2v9yZMn13r+5MmTG9ZwAAAAvtIatnr5SmLAgAFL9ETX1ssNAAAA5RC6U/dQ8tq0adMmlZWVef/992vsf//999O+fftar2nfvn1Z5wMAALByaNhCav8HNWnSJNtvv31GjRpVva+qqiqjRo3KzjvvXOs1O++8c43zk+Thhx+u83wAAABWDhWl0jIs3/1/3O23354+ffrkN7/5TXbaaadcccUVueOOOzJ+/Pi0a9cuRx11VDp27JjBgwcn+fSRYT179swll1ySb33rW7ntttty8cUX54UXXkjXrl1X8E9DXbZcr+eKbgIABbvz8QtWdBMAKFCXziv+d3rDy5fBYYcdlilTpmTgwIGZPHlyttlmmzz44IPVi6W9/fbbadTofwcRdO/ePb/73e9yzjnn5Oc//3k23njj/P73vxe4AQAAVnJ6uqEOeroBVn56ugFWbl+Fnm5zugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAJLnpppsyf/785VpT6AYAAGClNH/+/MyYMaPGa2mh+phjjsnHH3+8XNvQeHkWGzBgQObNm7c8SwIAAMAyGTx4cM4///wa+wYNGpTzzjuv1vNLpdJyb8NyDd3z5s3LkCFDlmdJWGG2HNlzRTcBAABogAEDBqRfv3419jVt2nSp11RUVCzXNizX0A0AAABfFU2bNv3SkP1Fe+21Vxo3XnpUfuGFF+pdT+gGAACAxfbZZ580b958udUTugEAAGCxM888M23btl1u9axeDgAAAFn+87kToRsAAACSFLN6udANAAAASd58882svfbaS+xfuHBhZs2atUw1hW4AAABI8sorr+S3v/1tjX0XXXRRmjdvnjXXXDPf/OY389FHH5VVU+gGAACAJL/85S8ze/bs6u2nn346AwcOzLnnnps77rgj77zzTi688MKyalq9HAAAAJKMGzcu3bt3r96+6667svfee+fss89OkjRr1iw/+clPcvnll9e7pp5uAAAASDJz5sy0bt26evvJJ5/MXnvtVb29xRZb5F//+ldZNYVuAAAASNKxY8e89tprSZJZs2bl5ZdfrtHzPW3atKy22mpl1RS6AQAAIMkhhxySn/70p7n55ptz3HHHpX379vnGN75Rffz555/PpptuWlZNc7oBAAAgycCBA/Pee+/l1FNPTfv27XPLLbeksrKy+vitt96a3r17l1VT6AYAAIAkq666am666aY6jz/66KNl1zS8HAAAAJJ88MEHSz2+aNGiPPvss2XVFLoBAAAgSYcOHWoE7y233DLvvPNO9fbUqVOz8847l1VT6AYAAIAkpVKpxvbEiRPzySefLPWcLyN0AwAAQD1VVFSUdb7QDQAAAAWxejkAAADk017smTNnplmzZimVSqmoqMisWbMyY8aMJKn+/+UQugEAACCfztfeZJNNamxvu+22NbbLHV4udAMAAECW7TncX0boBgAAgCQ9e/Zc7jWFbgAAAKhDqVTKo48+mrlz56Z79+5p1apVWddbvRwAAACSTJ8+PX369MmWW26Z4447LjNmzMhuu+2WXr16pXfv3tlss83yyiuvlFVT6AYAAIAkZ5xxRkaPHp3vf//7GTt2bPbdd98sWrQoo0ePzt/+9rdsttlmOfvss8uqaXg5AAAAJHnggQfyu9/9Lj179szRRx+dddddN4888ki6deuWJLn00ktzwAEHlFVTTzcAAAAkef/996sfGdaxY8c0a9Ys6667bvXx//f//l+mTJlSVk2hGwAAAJJUVVWlsrKyeruysrLGc7nLfUZ3Yng5AAAAVLvhhhvSvHnzJMnChQszfPjwtGnTJkkyc+bMsusJ3QAAAJBPh49ff/311dvt27fPzTffvMQ55RC6AQAAIMnEiROXe01zugEAACDJUUcdlbvvvjuzZ89ebjWFbgAAAEiy0UYb5eKLL06bNm2y33775Zprrsl7773XoJpCNwAAACQZOHBgxowZk9dffz29e/fO73//+2y44YbZfvvtc8EFF+Sll14qu6bQDQAAAJ/TqVOnnHjiiXnooYcyZcqU9O/fPxMmTMiee+6Z9dZbLyeffHJeffXVetUSugEAAKAOLVq0yKGHHpoRI0ZkypQpGTp0aCorKzN69Oh6XW/1cgAAAPiCqVOnZuLEiamoqEjnzp3TunXrVFZWZq+99spee+1V7zp6ugEAAGCxV199NT169Ei7du3SrVu37LTTTmnbtm323HPPjB8/vux6eroBAAAgyeTJk9OzZ8+svfbaufzyy9OlS5eUSqWMGzcu119/fXr06JG///3vadu2bb1rCt0AAACQZMiQIVlvvfXy1FNPpVmzZtX7991335xwwgnZddddM2TIkAwePLjeNQ0vBwAAgCQPP/xw+vfvXyNwf2bVVVfNmWeemYceeqismkI3AAAAJHnjjTey3Xbb1Xl8hx12yBtvvFFWTaEbAAAAksycOTNrrLFGncdbtGiRWbNmlVXTnG4AAABYbObMmbUOL0+SGTNmpFQqlVVP6AYAAIAkpVIpm2yyyVKPV1RUlFVT6AYAAIAkjz766HKvKXQDAABAkp49ey73mkI3AAAAfM7HH3+chx9+OBMnTkxFRUXWX3/99OrVa6mLrNVF6AYAAIDFbrnllpx88smZMWNGjf0tW7bMtddem8MOO6yseh4ZBgAAAEleeOGFHHPMMTnwwAPz4osvZu7cuZkzZ06ef/759O7dOz/84Q/z8ssvl1VTTzcAAAAkueqqq3LggQdm+PDhNfZvt912uemmmzJnzpxceeWVGTp0aL1r6ukGAACAJE899VSOP/74Oo/37ds3Tz75ZFk1hW4AAABI8q9//Wupz+neZJNN8t5775VVU+gGAACAJHPmzEmzZs3qPN60adPMmzevrJrmdAMAAMBiDz30UFq2bFnrsenTp5ddT+gGAACAxfr06bNc6wndAAAAkKSqqmq51zSnGwAAAOqhqqoq999/f1nX6OkGAACApfjnP/+ZoUOHZvjw4ZkyZUo++eSTel+rpxsAAAC+YO7cubnpppvSo0ePbLrppnn66aczcODAvPvuu2XV0dMNAAAAiz333HO54YYbctttt2XDDTfMEUcckaeffjq//vWvs/nmm5ddT+gGAACAJFtttVVmzJiRH/zgB3n66aezxRZbJEl+9rOfLXNNw8sBAAAgyYQJE9KjR4/ssccey9SrXRuhGwAAAJK88cYb2XTTTXPCCSekU6dOOeOMM/Liiy+moqJimWsK3QAAAJCkY8eOOfvss/PPf/4zN998cyZPnpxddtklCxcuzPDhw/OPf/yj7JpCNwAAAHzBnnvumVtuuSWTJk3Kr371qzzyyCPp0qVLttpqq7LqCN0AAABQh5YtW+bEE0/M888/nxdeeCG77757WddbvRwAAACWYsGCBVmwYEG22Wab/Pd//3dZ1+rpBgAAgMWGDRuWU045JSNGjEiSDBgwIC1atEjLli2z9957Z9q0aWXVE7oBAAAgyUUXXZSTTjop48ePz6mnnpoTTjghw4cPzwUXXJBLLrkk48ePzznnnFNWTcPLAQAAIMnw4cNz44035vDDD8/zzz+fbt265Y477shBBx2UJOnatWv69u1bVk093QAAAJDk7bffzq677pok2WGHHdK4ceN07dq1+vhWW22VSZMmlVVT6AYAAIAkn3zySZo2bVq93aRJk6yyyirV240bN86iRYvKqml4OQAAACw2bty4TJ48OUlSKpUyfvz4zJo1K0kyderUsusJ3QAAALDYXnvtlVKpVL397W9/O0lSUVGRUqmUioqKsuoJ3QAAAJDkzTffXO41hW4AAABIMmrUqBxwwAFp06bNcqtpITUAAABIcsstt6RTp07p3r17Lr300rz22msNril0AwAAQJJHHnkkkyZNyoknnpgxY8akW7du2XjjjXP66afniSeeSFVVVdk1hW4AAABYrFWrVjnyyCNzxx13ZOrUqbnqqqsyd+7cHHHEEWnbtm2OOuqo3HXXXZk9e3a96gndAAAAUIsmTZpk3333za9//eu88847efDBB9O5c+dceOGFufzyy+tVw0JqAAAAkGSDDTbIc889l9atW9d6fIcddsgOO+yQCy64IJ988km9aurpBgAAgCQTJ07MokWL6nXuKqusUq/zhG4AAAAoiOHlAAAAsNhDDz2Uli1bLvWcAw44oN71hG4AAABYrE+fPks9XlFRUe8h6Inh5QAAAFBt8uTJqaqqqvNVTuBOhG4AAABI8mkv9vImdAMAAECSUqm03GsK3QAAAJBP53Ovuuqqy7WmhdQAAAAgyXXXXZeqqqoa+95///1ce+21mT17dg444IDsuuuuZdUUugEAACDJj3/84zRp0iS/+c1vkiQzZ87MjjvumHnz5qVDhw4ZMmRI/vCHP2T//fevd03DywEAACDJU089lYMOOqh6+6abbsqiRYvy+uuv5+WXX06/fv3yn//5n2XVFLoBAAAgyXvvvZeNN964envUqFE56KCD0rJlyySfzvl+9dVXy6opdAMAAECSZs2aZe7cudXbzzzzTLp161bj+KxZs8qqKXQDAABAkm222SY333xzkuSvf/1r3n///ey5557Vx//nf/4n66yzTlk1LaQGAAAASQYOHJj99tsvd9xxRyZNmpSjjz46HTp0qD5+zz33ZJdddimrptANAAAASXr27JkxY8bkz3/+c9q3b59DDjmkxvFtttkmO+20U1k1hW4AAABYbLPNNstmm21W67Ef//jHZdczpxsAAACSnHjiiTUWSrv11lsze/bs6u3p06eX9YzuROgGAACAJMlvfvObzJkzp3r7+OOPz/vvv1+9PX/+/Dz00ENl1RS6AQAAIEmpVFrq9rIQugEAAKAgQjcAAAAUxOrlAAAAsNjAgQOz2mqrJUkWLFiQiy66KC1btkySGvO960voBgAAgCQ9evTIhAkTqre7d++eN954Y4lzyiF0AwAAQJLHHntsudc0pxsAAAAKInQDAADAYq+//nruvvvuvPnmm0mSP/7xj+nRo0d23HHHXHTRRWU/RszwcgAAAEhyzz335NBDD02jRo1SUVGR6667Lscff3x23333rLHGGjnvvPPSuHHj9O/fv9419XQDAABAkosuuihnnXVW5s2bl2uuuSZ9+/bN4MGD88ADD+T+++/P1VdfneHDh5dVU+gGAACAJBMmTMixxx6bioqK9OnTJwsWLEivXr2qj3/zm9/MW2+9VVZNoRsAAACSzJ49Oy1atEiSNGrUKKuuumr1M7uTZNVVV838+fPLqil0AwAAQJKKiopUVFTUub0sLKQGAAAASUqlUjbZZJPqoD1r1qxsu+22adSoUfXxcgndAAAAkGTYsGHLvabQDQAAAEl22223bLDBBsu1pjndAAAAkGSrrbZK165d8/Of/zzPPvvscqkpdAMAAECSqVOnZvDgwfnggw9ywAEHpEOHDjnuuONy3333Zd68ectUU+gGAACAJM2aNUvv3r1zww03ZNKkSbn77rvTunXr9O/fP23atMmBBx6YoUOHZsqUKfWuKXQDAADAF1RUVKR79+655JJLMm7cuLz44ovZbbfdMnz48HTq1ClXX311vepYSA0AAAC+xMYbb5zTTz89p59+eqZNm5YPP/ywXtcJ3QAAAPA5jzzySEaOHJmJEyemoqIi66+/fg4++OD06NEjSdK6deu0bt26XrUMLwcAAIDF+vbtm169euXWW2/NtGnTMmXKlIwYMSJ77LFHTjnllLLrCd0AAACQ5J577smwYcMydOjQTJ06NaNHj84zzzyTKVOm5Prrr891112Xe++9t6yaQjcAAAAkGTZsWPr165ejjz46FRUV1fsbNWqUY489Nj/96U9z4403llVT6AYAAIAkL7zwQr773e/Wefx73/texowZU1ZNoRsAAACSTJ06NZ06darzeKdOnTJt2rSyagrdAAAAkGTBggVZZZVV6jzeuHHjLFiwoKyaHhkGAAAAi5177rlZbbXVaj02Z86csusJ3QAAAJCkR48emTBhwpeeUw6hGwAAAJI89thjy72mOd0AAABQEKEbAAAAFps9e3YGDhyYrl27pnnz5mnRokW22mqrXHDBBeZ0AwAAwLJasGBBevbsmb///e/Zb7/90rt375RKpbz22mu56KKL8sADD+SJJ55Y6grnXyR0AwAAQJJrrrkm7777bl5++eVsuummNY6NHz8+u+++e6699tqccsop9a5peDkAAAAkGTlyZM4999wlAneSdOnSJWeffXbuuuuusmoK3QAAAJBk3Lhx2X333es8vscee2TcuHFl1RS6AQAAIMn06dPTunXrOo+3bt06H3/8cVk1hW4AAABIUlVVlcrKyjqPN2rUKIsWLSqrpoXUAAAAIEmpVMpee+2Vxo1rj8oLFy4su6bQDQAAAEkGDRr0peccdNBBZdUUugEAACD1C93lMqcbAAAAvsSMGTNyzTXXZIcddijrOj3dAAAAUIdHH300Q4cOzciRI9OyZct897vfLet6oRsAAAA+57333svw4cMzbNiwTJ8+PR999FF+97vf5dBDD01FRUVZtQwvBwAAgCR333139t9//2y66aZ56aWX8stf/jL/+te/0qhRo2y55ZZlB+5ETzcAAAAkSQ477LD0798/t99+e1q0aLFcaurpBgAAgCQ/+tGPcvXVV2fffffNtddem48++qjBNYVuAAAASPKb3/wmkyZNyo9//OPceuut6dChQ77zne+kVCqlqqpqmWoK3QAAALDYqquumj59+uTxxx/P2LFjs/nmm6ddu3bZZZdd8oMf/CAjR44sq57QDQAAALXYeOONM3jw4LzzzjsZMWJE5syZk8MPP7ysGkI3AAAAfM60adOq//3OO+/kvPPOy+OPP55+/frlnXfeKauW0A0AAABJxo4dm86dO6dt27bp0qVLXnrppey4444ZMmRIrrvuuuy55555+umny6opdAMAAECSs846K1tuuWWeeOKJ7L777vn2t7+db33rW/n444/z0Ucf5fjjj88ll1xSVk3P6QYAAIAkzz33XB555JFstdVW2XrrrXPdddflxBNPTKNGn/ZXn3LKKfnGN75RVk093QAAAJDkww8/TPv27ZMkzZs3z+qrr55WrVpVH2/VqlVmzpxZVk2hGwAAABarqKhY6na5DC8HAACAxY4++ug0bdo0STJv3rz07ds3q6++epJk/vz5ZdcTugEAACBJnz59amwfeeSRS5xz1FFHlVVT6AYAAIAkw4YNW+41zekGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgjRe0Q2Ar6o7H79gRTcBgIId0nPgim4CAAUa+9bjK7oJeroBAACgKEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCNF7RDQAAAIAizJ8/P/Pnz6+xr2nTpmnatOlSr/v444/z8MMPZ+LEiamoqMj666+fXr16ZY011ii7Dcs1dDdr1iynnXba8iwJK8zxPzlwRTcBAABogMGDB+f888+vsW/QoEE577zz6rzmlltuycknn5wZM2bU2N+yZctce+21Oeyww8pqQ0WpVCqVdQX8HzF+4uMrugkAFOyQngNXdBMAKNDz//hzWT3dL7zwQrp165Yjjjgip512Wrp06ZJSqZRx48bliiuuyG233ZbnnnsuW2+9db3bIHRDHYRugJWf0A2wchv7Vnm/0x9zzDGZNWtW7rzzzlqPH3zwwVljjTUydOjQete0kBoAAAAkeeqpp3L88cfXebxv37558skny6opdAMAAECSf/3rX9lkk03qPL7JJpvkvffeK6um0A0AAABJ5syZk2bNmtV5vGnTppk3b15ZNT0yDAAAABZ76KGH0rJly1qPTZ8+vex6QjcAAAAs1qdPn6Uer6ioKKue0A0AAABJqqqqlntNc7oBAACgIHq6AQAA4HMeeeSRjBw5MhMnTkxFRUXWX3/9HHzwwenRo0fZtfR0AwAAwGJ9+/ZNr169cuutt2batGmZMmVKRowYkT322COnnHJK2fWEbgAAAEhyzz33ZNiwYRk6dGimTp2a0aNH55lnnsmUKVNy/fXX57rrrsu9995bVk2hGwAAAJIMGzYs/fr1y9FHH11jlfJGjRrl2GOPzU9/+tPceOONZdUUugEAACDJCy+8kO9+97t1Hv/e976XMWPGlFVT6AYAAIAkU6dOTadOneo83qlTp0ybNq2smkI3AAAAJFmwYEFWWWWVOo83btw4CxYsKKumR4YBAADAYueee25WW221Wo/NmTOn7HpCNwAAACTp0aNHJkyY8KXnlEPoBgAAgCSPPfbYcq9pTjcAAADUw2uvvZYzzjijrGuEbgAAAKjD7Nmzc+ONN6Z79+7ZYost8uCDD5Z1vdANAAAAX/DUU0/l2GOPTbt27fLjH/843bt3z7hx4/L3v/+9rDpCNwAAACT54IMPctlll6VLly45+OCDs+aaa+axxx5Lo0aNcuyxx6ZLly5l17SQGgAAACRZb731cvDBB+fKK6/M3nvvnUaNGt5PracbAAAA8mnofvLJJ/PEE0/kH//4x3KpKXQDAABAkvHjx+eWW27JpEmTsuOOO2b77bfPkCFDkiQVFRXLVFPoBgAAgMV22WWXDB06NJMmTUrfvn1z5513ZtGiRTnxxBNz/fXXZ8qUKWXVE7oBAADgC5o3b57jjjsuTz/9dF599dVst912Oeecc7LOOuuUVUfoBgAAgKXYbLPN8stf/jLvvfdebr/99rKutXo5AAAA1KFUKuXRRx/N3Llz071793zve98r63o93QAAAJBk+vTp6dOnT7bccsscd9xxmTFjRnbbbbf06tUrvXv3zmabbZZXXnmlrJpCNwAAACQ544wzMnr06Hz/+9/P2LFjs++++2bRokUZPXp0/va3v2WzzTbL2WefXVZNw8sBAAAgyQMPPJDf/e536dmzZ44++uisu+66eeSRR9KtW7ckyaWXXpoDDjigrJp6ugEAACDJ+++/n0022SRJ0rFjxzRr1izrrrtu9fH/9//+n0eGAQAAwLKoqqpKZWVl9XZlZWUqKiqqtz//7/oyvBwAAAAWu+GGG9K8efMkycKFCzN8+PC0adMmSTJz5syy61WUSqXScm0hrCTGT3x8RTcBgIId0nPgim4CAAUa+1Z5v9N37ty5Xr3Zb775Zr1r6ukGAACAJBMnTlzuNc3pBgAAgCRHHXVU7r777syePXu51RS6AQAAIMlGG22Uiy++OG3atMl+++2Xa665Ju+9916DagrdAAAAkGTgwIEZM2ZMXn/99fTu3Tu///3vs+GGG2b77bfPBRdckJdeeqnsmkI3AAAAfE6nTp1y4okn5qGHHsqUKVPSv3//TJgwIXvuuWfWW2+9nHzyyXn11VfrVUvoBgAAgCRvv/12vviArxYtWuTQQw/NiBEjMmXKlAwdOjSVlZUZPXp0vWpavRwAAACSrL/++pk0aVLatm1b6/HKysrstdde2WuvvepdU083AAAAJEv0ci8PQjcAAAAsVlFRsVzrGV4OAAAAi5177rlZbbXVlnrO5ZdfXu96QjcAAAAsNnbs2DRp0qTO4+X2hAvdAAAAsNg999xT50Jqy8KcbgAAAMjyn8+dCN0AAACQxOrlAAAAUJhhw4alZcuWy7Wm0A0AAABJdt5557z88ss19o0aNSp77LFHdtppp1x88cVl1xS6AQAAIEn//v1z//33V2+/+eab6d27d5o0aZKdd945gwcPzhVXXFFWTauXAwAAQJLnn38+Z511VvX2iBEjsskmm+Shhx5Kkmy11Va56qqr8tOf/rTeNfV0AwAAQJKpU6emU6dO1duPPvpoevfuXb29++67Z+LEiWXVFLoBAAAgyVprrZVJkyYlSaqqqvL888/nG9/4RvXxBQsWlL3CudANAAAA+bQn+8ILL8w777yTK664IlVVVdl9992rj48bNy6dO3cuq6Y53QAAAJDkoosuyt5775311lsvlZWV+e///u+svvrq1cdvvvnm7LnnnmXVFLoBAAAgSefOnfPaa6/l1Vdfzdprr5111lmnxvHzzz+/xpzv+hC6AQAAYLHGjRtn6623rvVYXfuXxpxuAAAASLL55pvnww8/rN4+8cQTM3Xq1OrtDz74IKuttlpZNYVuAAAASDJ+/PgsXLiwevuWW27JjBkzqrdLpVLmzZtXVk2hGwAAAGpR2+PBKioqyqohdAMAAEBBhG4AAADIp73YX+zJLrdn+4usXg4AAAD5dDj5XnvtlcaNP43Kc+fOTe/evdOkSZMkqTHfu76EbgAAAEgyaNCgGtvf+c53ljjnoIMOKqum0A0AAABZMnQvD+Z0AwAAwFIsWLAgs2bNWqZrhW4AAABYbNiwYTnllFMyYsSIJMmAAQPSokWLtGzZMnvvvXemTZtWVj2hGwAAAJJcdNFFOemkkzJ+/PiceuqpOeGEEzJ8+PBccMEFueSSSzJ+/Picc845ZdU0pxsAAACSDB8+PDfeeGMOP/zwPP/88+nWrVvuuOOO6sXTunbtmr59+5ZVU083AAAAJHn77bez6667Jkl22GGHNG7cOF27dq0+vtVWW2XSpEll1RS6AQAAIMknn3ySpk2bVm83adIkq6yySvV248aNs2jRorJqGl4OAAAAi40bNy6TJ09OkpRKpYwfP7565fKpU6eWXU/oBgAAgMX22muvlEql6u1vf/vbSZKKioqUSqVUVFSUVU/oBgAAgCRvvvnmcq8pdAMAAECSUaNG5YADDkibNm2WW00LqQEAAECSW265JZ06dUr37t1z6aWX5rXXXmtwTaEbAAAAkjzyyCOZNGlSTjzxxIwZMybdunXLxhtvnNNPPz1PPPFEqqqqyq4pdAMAAMBirVq1ypFHHpk77rgjU6dOzVVXXZW5c+fmiCOOSNu2bXPUUUflrrvuyuzZs+tVT+gGAACAWjRp0iT77rtvfv3rX+edd97Jgw8+mM6dO+fCCy/M5ZdfXq8aFaXPr4UOVBs/8fEV3QQACnZIz4ErugkAFGjsW8X9Tv/JJ59klVVW+dLz9HQDAADAYrNnz87AgQPTtWvXNG/ePC1atMhWW22VCy64IHPmzKk+rz6BO/HIMAAAAEiSLFiwID179szf//737Lfffundu3dKpVJee+21XHTRRXnggQfyxBNP1DtwJ0I3AAAAJEmuueaavPvuu3n55Zez6aab1jg2fvz47L777rn22mtzyimn1Lum4eUAAACQZOTIkTn33HOXCNxJ0qVLl5x99tm56667yqopdAMAAECScePGZffdd6/z+B577JFx48aVVVPoBgAAgCTTp09P69at6zzeunXrfPzxx2XVFLoBAAAgSVVVVSorK+s83qhRoyxatKismhZSAwAAgCSlUil77bVXGjeuPSovXLiw7JpCNwAAACQZNGjQl55z0EEHlVVT6AYAAIDUL3SXS+gGAACAL5g6dWomTpyYioqKdO7ceakLrC2NhdQAAABgsVdffTU9evRIu3bt0q1bt+y0005p27Zt9txzz0yYMKHsenq6AQAAIMnkyZPTs2fPrL322rn88svTpUuXlEqljBs3Ltdff3122223/P3vf0/btm3rXVPoBgAAgCRDhgzJeuutl6eeeirNmjWr3r/vvvvmhBNOyK677pohQ4Zk8ODB9a5peDkAAAAkefjhh9O/f/8agfszq666as4888w89NBDZdUUugEAACDJG2+8ke22267O4zvssEPeeOONsmoK3QAAAJBk5syZWWONNeo83qJFi8yaNausmuZ0AwAAwGIzZ86sdXh5ksyYMSOlUqmsekI3AAAAJCmVStlkk02WeryioqKsmkI3AAAAJHn00UeXe02hGwAAAJL07NnzS8/58MMPy6ppITUAAAD4En/+859z6KGHpmPHjmVdJ3QDAABALd56660MGjQonTt3ziGHHJJGjRrlpptuKquG4eUAAACw2IIFCzJy5MjccMMNeeqpp9KrV6+8++67efHFF7PllluWXU9PNwAAACQ55ZRTss466+TKK6/Md7/73bz77ru57777UlFRkcrKymWqqacbAAAAklxzzTXp379/fvazn6VFixbLpaaebgAAAEhy880359lnn02HDh1y2GGH5f7778+iRYsaVFPoBgAAgCSHH354Hn744YwdOzZdunTJSSedlPbt26eqqirjxo1bpppCNwAAAHzO+uuvn/PPPz8TJ07MLbfckoMOOihHHnlkOnXqlFNPPbWsWuZ0AwAAQC0qKiqyzz77ZJ999sm0adNy8803Z9iwYWXV0NMNAAAAX6J169b56U9/mpdffrms64RuAAAAWOz111/P3XffnTfffDNJ8sc//jE9evTIjjvumIsuuiilUqmseoaXAwAAQJJ77rknhx56aBo1apSKiopcd911Of7447P77rtnjTXWyHnnnZfGjRunf//+9a6ppxsAAACSXHTRRTnrrLMyb968XHPNNenbt28GDx6cBx54IPfff3+uvvrqDB8+vKyaQjcAAAAkmTBhQo499thUVFSkT58+WbBgQXr16lV9/Jvf/GbeeuutsmoK3QAAAJBk9uzZadGiRZKkUaNGWXXVVbPaaqtVH1911VUzf/78smoK3QAAAJBPHxFWUVFR5/aysJAaAAAAJCmVStlkk02qg/asWbOy7bbbplGjRtXHyyV0AwAAQJJhw4Yt95pCNwAAACTZbbfdssEGGyzXmuZ0AwAAQJKtttoqXbt2zc9//vM8++yzy6Wm0A0AAABJpk6dmsGDB+eDDz7IAQcckA4dOuS4447Lfffdl3nz5i1TTaEbAAAAkjRr1iy9e/fODTfckEmTJuXuu+9O69at079//7Rp0yYHHnhghg4dmilTptS7ptANAAAAX1BRUZHu3bvnkksuybhx4/Liiy9mt912y/Dhw9OpU6dcffXV9aojdAMAAECSY489NjNnzqz12MYbb5zTTz89TzzxRP71r3/lm9/8Zr1qCt0AAACQ5Le//W3mzp37pee1bt06G2+8cb1qCt0AAACQpFQqLfeantMNAAAAi82cOTPNmjVb6jlrrLFGvesJ3QAAALDYJptsUuexUqmUioqKLFq0qN71hG4AAABY7K677spaa6213OoJ3QAAALDYLrvskrZt2y63ehZSAwAAgIII3QAAAJBkvfXWS2Vl5XKtaXg5AAAAJHnzzTdr3f/4449n9uzZ2XnnndOqVauyagrdAAAAkOTSSy/NrFmzcuGFFyb5dLXy/fbbL3/+85+TJG3bts2oUaOyxRZb1Lum4eUAAACQ5Pbbb0/Xrl2rt++666488cQT+etf/5qpU6dmhx12yPnnn19WTaEbAAAA8unw8q222qp6+09/+lMOPvjg7LLLLllrrbVyzjnnZPTo0WXVFLoBAAAgycKFC9O0adPq7dGjR6d79+7V2+uss06mTp1aVk2hGwAAAJJsuOGGeeKJJ5Ikb7/9dv7xj3+kR48e1cfffffdtG7duqyaFlIDAACAJCeddFJOPvnk/PWvf80zzzyTnXfeOZtvvnn18UceeSTbbrttWTWFbgAAAEhy3HHHpbKyMvfdd1969OiRQYMG1Tj+r3/9K8ccc0xZNStKpVJpeTYSVhbjJz6+opsAQMEO6TlwRTcBgAKNfWvF/05vTjcAAAAkueOOO7JgwYLq7XfffTdVVVXV23PmzMlll11WVk2hGwAAAJIcfvjhmT59evX25ptvnokTJ1Zvz5w5MwMGDCirptANAAAASb44+3p5zMYWugEAAKAgQjcAAAAUxCPDAAAAYLGHHnooLVu2TJJUVVVl1KhR+fvf/54kNeZ715dHhkEdPDIMYOXnkWEAK7dyHxnWqNGXDwavqKjIokWL6l1TTzcAAAAkNR4PtrwI3QAAAPA506ZNS+vWrZMk77zzTq6//vrMmzcvvXv3zm677VZWLQupAQAAQJKxY8emc+fOadu2bbp06ZKXXnopO+64Y4YMGZLf/OY32WOPPfL73/++rJpCNwAAACQ566yzsuWWW+aJJ57I7rvvnm9/+9v51re+lY8//jgfffRRjj/++FxyySVl1bSQGtTBQmoAKz8LqQGs3MpdSK1NmzZ55JFHstVWW2XWrFlZY4018txzz2X77bdPkowfPz7f+MY3ylrFXE83AAAAJPnwww/Tvn37JEnz5s2z+uqrp1WrVtXHW7VqlZkzZ5ZVU+gGAACAxSoqKpa6XS6rlwMAAMBiRx99dJo2bZokmTdvXvr27ZvVV189STJ//vyy6wndAAAAkKRPnz41to888sglzjnqqKPKqil0AwAAQJJhw4Yt95rmdAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBKkqlUmlFNwKAFW/+/PkZPHhwBgwYkKZNm67o5gCwnLnPw4ohdAOQJJkxY0ZatmyZjz/+OGusscaKbg4Ay5n7PKwYhpcDAABAQYRuAAAAKIjQDQAAAAURugFIkjRt2jSDBg2yuA7ASsp9HlYMC6kBAABAQfR0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBlYKRx99dCoqKqpfrVu3zr777ptXXnlliXOPP/74VFZW5s4771zi2HnnnVddo3HjxmnTpk169OiRK664IvPnz69x7u677159btOmTdOxY8f07t07I0eOrLWNc+fOzeqrr55//vOfGT58eI32Nm/ePNtvv/0S137+PT7/6tu3b/U5jz/+ePbcc8+stdZaWW211bLxxhunT58+WbBgwRKfyxdfnTt3rvF+e+yxR2644YZMnDixxnlNmjTJRhttlF/84hep7aEX7777bpo0aZKuXbvW+rN/vtbqq6+ejTfeOEcffXTGjBlT47zHHnus+rxGjRqlZcuW2XbbbXPWWWdl0qRJtdY+//zzc+SRRyZJOnfuXH19ZWVl1llnnfzoRz/KRx99VOt7fPE1efLkJMmcOXMyYMCAbLjhhmnWrFnWXnvt9OzZM3/4wx+W+Gxqew0fPrzWtgLLrj73+br+N3nbbbdVn3P99ddn6623TvPmzbPmmmtm2223zeDBg5PUvIfU9jr66KOr6yzLPf0zt956ayorK3PSSSctcayc+2A531mfKfc+//n3+PyrS5cu1ee8+eab+cEPfpB11lknzZo1S6dOnfKd73wn48ePX+Kzqe01ceLE6lrl3tM/r0uXLmnatGn1vfzzyvnOru93FtSX0A2sNPbdd99MmjQpkyZNyqhRo9K4ceN8+9vfrnHOnDlzctttt+Wss87K0KFDa62zxRZbZNKkSXn77bfz6KOP5pBDDsngwYPTvXv3zJw5s8a5xx13XCZNmpT/+Z//yd13353NN9883//+9/PjH/94iboPP/xw1ltvvWy00UZJkjXWWKO6vS+++GL22WefHHrooZkwYUKt7/H512WXXZYkGTduXPbdd9/ssMMOeeKJJzJ27NhcddVVadKkSRYtWpQrr7yyxnVJMmzYsOrt5557rvp9Pvzwwzz11FPp3bt39b6//OUvmTRpUl5//fWcf/75ueiii2r93IYPH55DDz00M2bMyN/+9rdaP9fP3vfVV1/N1VdfnVmzZqVbt2656aabljh3woQJ+de//pXnnnsu/fv3z1/+8pd07do1Y8eOXeLcP/zhDznggAOqty+44ILq//xGjBiRJ554Iqeeemqt7/HFz7Vt27ZJkr59+2bkyJG56qqrMn78+Dz44IM5+OCDM23atKy77ro1rjn99NOr/zvz2euwww6r9TMAGqY+9/nP3+M+ex144IFJkqFDh+anP/1pTj311Lz00kt56qmnctZZZ2XWrFlJkueee676mrvvvjtJzXvFlVdeWf0+y3pPT5Ibb7wxZ511Vm699dbMmzev1p+1vvfBcr6zlvU+/8V73KRJk/Lkk08mST755JPsvffe+fjjjzNy5MhMmDAht99+e7bccstMnz49hx12WI3rdt555yW+19Zdd93q91rWe/qTTz6ZuXPn5uCDD85vf/vbWj/Tcr6zy/nOgi9VAlgJ9OnTp/Sd73ynxr6//vWvpSSlDz74oHrf8OHDS9/4xjdK06dPL6222mqlt99+u8Y1gwYNKm299dZL1H/ttddKTZo0KZ199tnV+3r27Fn6yU9+ssS5Q4cOLSUpPfzwwzX2H3vssaX+/fuXSqVSadiwYaWWLVvWOL5o0aLSKqusUrrjjju+9D0+M2TIkFLnzp3rPP5FSUr33HNPrcduuummUrdu3UqlUqn05ptvlpKUXnzxxRrn7LXXXqUTTzyxxr6qqqrSBhtsUHrwwQdL/fv3Lx133HH1ft+jjjqq1KJFi9KHH35YKpVKpUcffbSUpPTRRx/VOG/OnDmlTTfdtLTLLrvU2P/222+XmjRpUvr4449LpVKptN5665WGDBlS45wLL7ywtPnmm1dv1/Uen9eyZcvS8OHD6zz+eXX9dwZYvupzn1/aPa5UKpW+853vlI4++uh6vd+X3SuW5Z5eKpVKb7zxRmnVVVctTZ8+vdStW7fSiBEj6vW+td0Hy/nOKpWW7T7/Zfe4F198sZSkNHHixDrP+bylfa8tyz39M0cffXTpZz/7WemBBx4obbLJJvV+39q+s+v7nQX1pacbWCnNmjUrt9xySzbaaKO0bt26ev+NN96YI488Mi1btsx+++1X72HAXbp0yX777VfnUMHP69OnT1q1alXj3Kqqqtx///35zne+U+s1ixYtqv7L/HbbbVevNiVJ+/btM2nSpDzxxBP1vqYu9957b53tS5Lnn38+Y8aMSbdu3Wrsf/TRRzNnzpz06tUrRx55ZG677bbMnj27Xu952mmnZebMmXn44YeXet6qq66avn375qmnnsoHH3xQo82777571lhjjVqve++993Lfffct0eYv0759+/zpT39aopcI+Oqo6z6/NO3bt88zzzyTt956q0Hv3ZB7+rBhw/Ktb30rLVu2zJFHHpkbb7yxXu9Z132wNnV9Zy3rfX5p1l577TRq1Ch33XVXFi1aVO/rarOs9/SZM2fmzjvvzJFHHlnd6/7Xv/61Xu9Z23d2Xer7nQVfJHQDK437778/zZs3T/PmzdOiRYvce++9uf3229Oo0ae3utdffz3PPPNM9dDfI488MsOGDat1jnJtunTpUmPeWV0aNWqUTTbZpMa5zzzzTJLU+EXh448/rm5vkyZNcsIJJ+S6667LhhtuWKPer3/96+rzPnuNGDEiSXLIIYfk8MMPT8+ePdOhQ4d897vfza9+9avMmDGjXj/TZ+bPn58HH3ywxpC+JOnevXt1+3bccccceuihOeqoo2qcc+ONN+b73/9+Kisr07Vr12ywwQa1zpevzWdzAuvzudZ27heHISZJ//7907x586y66qrp1KlTKioqcvnlly9Rr1OnTjU+0y222KL62HXXXZenn346rVu3zo477pjTTjstTz31VL1+JqA4X3afT5LDDz98iXvm22+/nSQZNGhQ1lxzzXTu3Dmbbrppjj766Nxxxx2pqqoqqx3Lek+vqqrK8OHDq+csf//738+TTz6ZN998s17vW+498/PnNeQ+P3bs2CU+08/WFunYsWP++7//OwMHDkyrVq2y55575sILL8wbb7xRr5/p85b1nn7bbbdl4403zhZbbJHKysp8//vfr/cfM2r7zq5LOZ8/fJ7QDaw09thjj7z00kt56aWX8uyzz2afffbJfvvtV92jMXTo0Oyzzz5p06ZNkmT//ffPxx9/nEceeaRe9UulUioqKpbp3D/84Q/59re/XeMXwxYtWlS398UXX8zFF1+cvn375r777qtR64gjjqg+77PXZ7+UVFZWZtiwYXn33Xdz2WWXpWPHjrn44our59/V1yOPPJK2bdvWCJ5Jcvvtt+ell17Kyy+/nDvuuCN/+MMf8rOf/az6+PTp0zNy5MjqXyCTlNVz89kfPOrzuX7x3BkzZuTxxx9f4he0M888My+99FJeeeWVjBo1KknyrW99a4kemL/+9a81PtM//elP1cd69OiRN954I6NGjcrBBx+cV199NbvttlsuvPDCev1cQDG+7D6fJEOGDFninrnOOuskSTp06JDRo0dn7Nix+clPfpKFCxemT58+2XfffcsK3st6T3/44Ycze/bs7L///kmSNm3aZO+9965zjZEvKvee+fnzlvU+nySbbrrpEp/pBRdcUH38pJNOyuTJkzNixIjsvPPOufPOO7PFFluU1SPckHv60KFDl/geuvPOO+s9Wqm+3+/lfP5Qwwob2A6wHNU212/hwoWl1VdfvXT22WeXFi5cWOrQoUOpoqKiVFlZWf1KUvrBD35Qfc3S5q717t27tMUWW1Rv1zU/bOHChaVWrVqVTjrppOp9Xbp0Kf3+97+v3q5t/l+pVCrts88+Nebrfdmc7tp8+OGHpTZt2pQGDhy4xLHUMU+tb9++pZ/+9KfV23XN9Rs8eHCpcePGpblz55ZKpVLp6quvLiWp8Zk2atSolKQ0YcKEL33fMWPGlJKU7rzzzlKptPQ5lL/85S9rzN287bbbSttss02Nc2qb/zd69Oga8/XqM6e7NhdeeGFplVVWKc2fP7/GfnO64d/jy+7zpdKXz+muzWfzwh955JEa+5d2r1jWe/ohhxyyxD2zoqKitO6665YWLVr0pe/7xftgOd9Zy3qfX5Z7XFVVVWnvvfcu9ejRY4ljdX2vLes9/dVXXy0lKTVq1GiJ7/frrrvuS9+3tu/s+n5nQX3p6QZWWp89bmXu3LnV83NffPHFGn+pv/XWWzNy5MhMnz59qbU+W8H6oIMO+tL3/e1vf5uPPvqo+tzXX389b731Vvbee+8vvbaysjJz586t189Xl1atWqVDhw71nlddKpVy3333LXWe3+fbt3DhwixYsCDJp0PLTz/99Bqf6csvv5zddtutXj03V1xxRdZYY4306tVrqefNnTs31113XXr06JG11147yac9TfVt82c1GmLzzTfPwoUL61xpGPj3+/x9flltvvnmSVLve+ay3tOnTZuWP/zhD7nttttq3DNffPHFfPTRR/nzn/+81Fq13Qfr8sXvrIbc55fFZ48Uq+9nmiz7Pf3GG29Mjx498vLLL9f4XPv161evUVdf/M5emvp+Z8EXNV7RDQBYXubPn1/9bM6PPvoov/rVrzJr1qz07t07V1xxRb71rW9l6623rnHN5ptvntNOOy0jRoyofl7qwoULM3ny5FRVVWXatGl57LHH8otf/CLbbLNNzjzzzBrXz5kzJ5MnT87ChQvz7rvv5p577smQIUNywgknZI899kjy6S8SvXr1ymqrrVbj2lKpVN3euXPn5uGHH85DDz2UgQMH1voen9e0adO0atUqv/nNb/LSSy/lu9/9bjbccMPMmzcvN910U1599dVcddVV9frcxowZkzlz5mTXXXdd4ti0adOqf76xY8fmyiuvzB577JE11lgjL730Ul544YWMGDGixvNak0/nVF5wwQX5xS9+kcaNP/2qmT59eiZPnpz58+fnH//4R37zm9/k97//fW666aasueaaNa7/4IMPMm/evMycOTNjxozJZZddlqlTp1YvdLNw4cI88MADOeOMM5Zo88yZMzN58uSUSqW88847Oeuss7L22mune/futb7H57Vu3TqrrLJKdt999xx++OHZYYcd0rp164wbNy4///nPq392YMVY2n3+M5/daz6vRYsWWX311XPCCSdknXXWyZ577plOnTpl0qRJ+cUvfpG11147O++8c73asKz39JtvvjmtW7fOoYceusTw5P333z833nhj9t133+p9X3Yf/Ex9vrOW9T7/xff4vIqKirRr1y4vvfRSBg0alB/+8IfZfPPN06RJkzz++OMZOnRo+vfvX6/PdFnv6Z988kluvvnmXHDBBenatWuN6/7jP/4jl19+eV599dXqIfX1+c7+TDnfWfClVmQ3O8Dy0qdPn1KS6leLFi1KO+64Y+muu+4qTZ48udS4ceMlHtvymRNOOKG07bbblkqlT4fRfVajsrKytNZaa5V23XXX0pAhQ0rz5s2rcV3Pnj2rz23SpEmpQ4cOpW9/+9ulkSNH1jhv1113LV1//fU19g0bNqxGe5s2bVraZJNNShdddFFp4cKFtb7H51/77LNPqVQqlV544YXSkUceWVp//fVLTZs2LbVu3brUo0eP0r333lvrz5pahsydc845pSOOOKLGvs+GHX7+s+jUqVPpuOOOqx7WePLJJ9f62JZSqVSaNGlSqVGjRqU//OEP1e/72atZs2alDTfcsNSnT5/SmDFjalz32bDKJKWKiopSixYtSltvvXXpzDPPLE2aNKn6vL/85S+lTp06LfG+6623Xo33WnvttUv7779/jeGTn3+PL75Gjx5dKpVKpYsvvri08847l9Zaa61Ss2bNShtssEHp1FNPLU2dOnWJ9zS8HP49lnaf/0xd/9sePHhwqVQqle66667S/vvvX+rQoUOpSZMmpXXWWad00EEHlV555ZUl3q+uYd7Lek/fcsstl3jk4mduv/32UpMmTUpTpkyp932wVKr/d9ay3ue/+B5f/BlLpVJpypQppVNPPbXUtWvXUvPmzUstWrQobbnllqX/+q//qh4y/3m1DfNe1nv6XXfdVWrUqFFp8uTJtX6um222Wem0006rft/6fGeXSvX/zoL6qiiV6rlsLwBlmzp1ajp06JB333037dq1W9HNqdVWW22Vc845J4ceeuiKbkq9nXrqqVm4cGF+/etfr+imAP+HfB3u6bX5qt/n3dNZ2RleDlCgDz/8MJdffvlX9pezBQsW5KCDDsp+++23optSlq5du9Z7KCjA8vJVv6fX5utwn3dPZ2WnpxsAAAAKYvVyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoyP8HDFrZf5rgVMQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap(\n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'transmissibility_function_reassortment_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='transmissibility_function_reassortment_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=24\n", + " # How many sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXsAAALmCAYAAAAT90eJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADa5ElEQVR4nOzdd3hUZfrG8fvMTHohJHRC74LSi4sISFEQQRQRcRVU0B8qq66iiwWwo667KqjIUi00EUREBFG60kFpoSOEDoH0NjPn90fMkCGTAGGSkOH7ua5cnJzznvd9ZhAwd948xzBN0xQAAAAAAAAAoESzFHcBAAAAAAAAAIArR9gLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA+wFXcBuDqkpaVp69atkqSyZcvKZuM/DQAAAAAAvM1ut+vUqVOSpOuvv16BgYHFXBEAX0KiB0nS1q1b1apVq+IuAwAAAACAa8a6devUsmXL4i4DgA+hjQMAAAAAAAAA+AB29kJSVuuGbOvWrVPFihWLsRoAAAAAAHzTsWPHXD9Zm/NrcQDwBsJeSJJbj96KFSsqOjq6GKsBAAAAAMD38bwcAN5GGwcAAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4gGs27D158qS+//57jRgxQt26dVOZMmVkGIYMw9DAgQMve76FCxeqd+/eio6OVkBAgKKjo9W7d28tXLjwkuew2+0aN26c2rVrp7JlyyooKEi1atXSY489pu3bt192TQAAAAAAAACuHbbiLqC4lC9f3ivzOJ1OPfroo5o4caLb+SNHjujIkSP69ttvNWjQIH322WeyWPLO1k+fPq3u3btr/fr1buf379+v8ePHa+rUqRo7dqwGDRrklboBAAAAAAAA+JZrdmdvTlWrVlXXrl0LdO9LL73kCnqbNm2q6dOna926dZo+fbqaNm0qSZowYYJefvnlPOdwOBzq3bu3K+i96667tHDhQq1du1YfffSRypUrp/T0dD322GOXtVMYAAAAAAAAwLXDME3TLO4iisPIkSPVsmVLtWzZUuXLl9fBgwdVo0YNSdKAAQM0ZcqUi86xe/duNWzYUHa7XS1atNCKFSsUFBTkup6SkqL27dtrw4YNstls2rlzp2rXrp1rnkmTJumRRx6RJD3++OP6+OOP3a7v3btXzZs3V0JCgmrXrq2dO3fKZvPupuzY2FhVqVJFknT48GFFR0d7dX4AAAAAAMDX3wAK1zW7s/fVV19Vjx49rqidwwcffCC73S5JGjNmjFvQK0nBwcEaM2aMpKx+vP/97389zvPvf/9bkhQZGan33nsv1/XatWtr+PDhkrKC37lz5xa4ZgAAAAAAAAC+6ZoNe6+UaZqaN2+eJKl+/fpq06aNx3Ft2rRRvXr1JEnz5s3ThRupd+/erZ07d0qS+vbtq+DgYI/z5HxoHGEvAAAAAAAAgAsR9hbQgQMHdPToUUlS+/bt8x2bff3IkSM6ePCg27VVq1blGudJhQoVVLduXUnS6tWrC1IyAAAAAAAAAB/m3cav15AdO3a4juvXr5/v2JzXd+7c6eoNXJB5du/ercOHDys5OVkhISGXXG9sbGy+148dO3bJcwEAAAAAUFxMR7rsCbtlP7dT9vidf/0ao5BGzyq41gPFXR4AFCvC3gLKGZ5erJl6duN1Kav5+pXOY5qmYmNjXe0hLkXOGgAAAAAAuNo5M+LPB7rxWYGu/dxOOZL2S6Yz13h73BaJsBfANY6wt4ASExNdx6GhofmOzbkDNykpqVDmAQAAAACgpDFNU87UYzlC3RjXbl1n6uX9BKr93M5CqhIASg7C3gJKS0tzHfv7++c7NiAgwHWcmppaKPNczIU7ii907NgxtWrV6rLmBAAAAADgUphOhxxJ+10tF3K2XzAz472yhj0+xivzAEBJRthbQIGBga7jjIyMfMemp6e7joOCgvKdJ+fnlzPPxVysRQQAAAAAAFfKtKfKHr/rfKCbHeom7Jac+X/tfLkswdGyRTSQrdRfHxHXeXV+ACiJCHsLKCwszHV8sZYKycnJruMLWzVcOE9+YW9+8wAAAAAAUFSc6XGuHro5Q11H0kFJpvcWMqyyhtU+H+q6wt16sviFXfx+ALjGEPYWUM6dsjkfsuZJzhYKFz4o7cJ5ypQpc9F5DMNgpy4AAAAAoFCZpilnypEcLRfO/+pMO+nVtQxbsKyl6ufYpdtAtlL1ZQurLcOaf8tDAMB5hL0FdN115388JCYm/75AOa83aNAg33maNGly0XmqVKni9rA2AAAAAAAKynTa5Ujcl2uXrj0+Rqbduw8HtwSUce3OdYW7EQ1kDakiw7B4dS0AuBYR9hZQjRo1VKlSJR09elTLly/Pd+yKFSskSZUrV1b16tXdrt10002u4+XLl6tfv34e5zh+/Lh2794tSWrbtu0VVA4AAAAAuBY5M5PlSNiVO9RN3Cs5M726ljWk2vnduTnaL1gC8/5pVgDAlSPsLSDDMNSrVy99+umniomJ0Zo1a9SmTZtc49asWePakdurVy8ZhuF2vW7dumrQoIF27typWbNm6f3331dwcHCueaZMmeI67t27t3dfDAAAAADAZzjTTntovRAjR/Kf3l3I4idbeJ3zgW72Lt3werL48dOoAFAcCHuvwNNPP63x48fL4XBo6NChWrFihYKCglzXU1NTNXToUEmSzWbT008/7XGe5557To888oji4uL0/PPPa+zYsW7X9+3bp7fffluSVLt2bcJeAAAAALjGmaZTjuTDrkDXER/jCnad6ae9upZhC80KdF0PR/sr1A2rKcPi59W1AABX5poNe1etWqW9e/e6Pj99+vw/hnv37nXbSStJAwcOzDVH3bp1NWzYMI0ePVobNmxQ27Zt9cILL6hWrVrat2+f3nnnHW3evFmSNGzYMNWpU8djLQMGDNCkSZO0evVqffzxxzp+/LgGDx6s0qVLa926dXr99deVkJAgi8Wijz76SDbbNfvbBgAAAADXFNORIXviXtnjY9zaLzjiY2TaU7y6liWwnFvLBVfrheDKuX5KFQBwdTJM0zSLu4jiMHDgQE2dOvWSx+f1NjmdTg0ePFiTJk3K895HHnlE48ePl8WSd7P506dPq3v37lq/fr3H6wEBARo7dqwGDRp0yTVfjtjYWFWpUkWSdPjwYUVHRxfKOgAAAACA3JyZibLH78rVfsGRuE8y7V5cyZA1tHquXbq2UvVlCYj04jrIC19/AyhMbBG9QhaLRRMnTtTdd9+t8ePHa/369Tp9+rTKlCmjli1b6rHHHlO3bt0uOk+ZMmX066+/6n//+5+mTZumnTt3Kjk5WZUqVVKnTp301FNPqWHDhkXwigAAAAAAhcE0TTnTTrkHutmtF1JivbuYxV+28Lq5Q93wujJsQRe/HwBQIl2zO3vhju8sAgAAAIB3mKZTjqQ/PYa6ZsZZr65l+IV7aL1QX9bQGjIs7O+6GvH1N4DCxN/8AAAAAAAUgOlIlz1hT67WC/aEXZIjzatrWYIq5tilW98V7FqCKtJPFwDgQtgLAAAAAEA+nBnxuR6QZo+P+aufrtN7CxkWWUNrunbnutovlKovS0CE99YBAPgswl4AAAAAwDXPNE05U49f0HohRvb4nXKmHPXuYpYA2UrVy91+IayODFugd9cCAFxTCHsBAAAAANcM0+mQI+lAjlA35nw/3cx4r65l+Ee4B7p/HVtDqsmwWL26FgAAEmEvAAAAAMAHmfZU2RN2uwe68Ttlj98tOdO9upYluLLHUNcSWI5+ugCAIkXYCwAAAAAosZzpZ91252aHuo7EA5JM7y1kWGUNq5W79UJ4PVn8w723DgAAV4CwFwAAAABwVTNNU86Uo+d35547/6sz7YR3F7MGZT0cLecu3VL1ZQuvI8Pq7921AADwMsJeAAAAAMBVwXTa5Ujcn2uXrj0+RmZmolfXMgKiLmi9UF+2Ug1kDa0qw7B4dS0AAIoKYS8AAAAAoEiZ9hTZ43flDnUT9kjOTK+uZQ2pev7BaH8FuraIBrIGlvXqOgAAXA0IewEAAAAAhcKZdiZ364X4GDmS/pR3++naZAuv4xbo+pVqIGuperL4hXpvHQAArnKEvQAAAACAAjNNU87kw7kCXXv8TjnTTnl1LcMWcr7lQo6eutbwWjIsfl5dCwCAkoiwFwAAAABwUaYzU/aEva5Q1/FXoGuPj5FpT/bqWpbAcq4euq5QN6KBLMHRMgzDq2sBAOBLCHsBAAAAAC7OzCTXzlx7fIxrt64jYa9k2r24kiFraLULHpKWtWvXEhjlxXUAALh2EPYCAAAAwDXGNE05007lCnTt8TvlTD7s3cUsfrKF1/UQ6taVYQv27loAAFzjCHsBAAAAwEeZplOOpD/P79TNEeqa6XFeXcvwCzsf5Eac36VrDaspw8KXngAAFAX+xQUAAACAEs50ZMiesMcV5J4PdXdJjlSvrmUJqpAr0LWVaiBLcCX66QIAUMwIewEAAACghHBmJHjcpetI3C+ZDu8tZFhkDa2RI9Stf76fbkBp760DAAC8irAXAAAAAK4ipmnKmXrCwy7dGDlTjnh3MUuAbKXqnd+hm71bN7yuDFugd9cCAACFjrAXAAAAAIqB6XTIkXTwfKib40FpZsY5r65l+EfkDnRLNZA1tLoMi9WrawEAgOJD2AsAAAAAhci0p8mesDtXoGtP2C050ry6liW48vmWCzlCXUtQefrpAgBwDSDsBQAAAAAvcKafOx/o5mi/4Eg6IJlO7y1kWGQNq+UKcnM+KM3iH+69dQAAQIlD2AsAAAAAl8g0TTlTjp4PdHOEus7U495dzBp0vp9ujl26tvDaMqwB3l0LAAD4BMJeAAAAALiA6bTLkXTgfMuFHA9JMzMTvLqWERDpYZduA1lDq8owLF5dCwAA+DbCXgAAAADXLNOeKnv8rly7dO0JeyRnhlfXsoRUuSDUzeqtawksSz9dAADgFYS9AAAAAHyeMz0ux+7cnP10/5Rkem8hwyZreG1XD123frp+od5bBwAAwAPCXgAAAAA+IaufbqzH1gvOtJNeXcuwhchWqr6sf+3OdYW6YbVkWP29uhYAAMClIuwFAAAAUKKYzkw5Evad36UbH/NXsBsj057k1bUsgWVd7RZyhrqWkGj66QIAgKsOYS8AAACAq5IzM1mO+Bhlxu+UIz7m/G7dxL2SM9Ora1lDqp3fnZvjIWmWwCivrgMAAFCYCHsBAAAAFCtH2inZz10Q6MbvlCP5kHcXsvjJFl4n1y5dW6l6MmzB3l0LAACgGBD2AgAAACh0pumUI+lQVsuFCx6SZqaf8epahl+Yx9YL1rCaMix8CQQAAHwX/6cDAAAAwGtMR4bsiXtzPBwtK9R1JOySaU/x6lqWwPIeWi/UlyW4sgzD8OpaAAAAJQFhLwAAAIDL5sxMzPFgtBytFxL3SabDiysZsobVuGCXbtauXUtAaS+uAwAAUPIR9gIAAADwyDRNOdNO5tqla4/fKWfKEe8uZgmQrVTd86FuqfpZwW54XRm2IO+uBQAA4KMIewEAAIBrnOl0yJH8p4dQN0ZmxlmvrmX4lXJrueDqpxtaQ4bF6tW1AAAArjWEvQAAAMA1wnSky56w+4LWCzGyJ+ySHGleXcsSXMnjQ9IsQRXopwsAAFBICHsBAAAAH+PMiM+xSzfm/EPSkvZLptN7CxkWWUNr5tipe76nrsW/lPfWAQAAwCUh7AUAAABKINM05Uw9dn53bo72C87UY95dzBooW3i986Fu9q/hdWRYA7y7FgAAAAqMsBcAAAC4iplOhxxJ+7MC3QvaL5iZ8V5dy/Av7WGXbgNZQ6rSTxcAAKAEIOwFAAAArgKmPdW9n252qJuwW3JmeHUtS3C059YLgeXopwsAAFCCEfYCAAAARciZfjbH7tydOfrpHpRkem8hwyprWO0LWi/Uzwp1/cK8tw4AAACuGoS9AAAAgJeZpilnyhH3UPevX51pJ726lmELlrVU/fO7dEvVzwp2w2rLsPp7dS0AAABc3Qh7AVwyZ2aSUndPkD0+RrbIxvKv0EG2UvX5cU8AwDXLdNrlSNyXu/VCfIxMe5JX17IElDnfQzc73I1oIGtIFRmGxatrAQAAoGQi7AVwUaYzUym7Jyhpy6typp1wu2YJLC//Ch3kX6GDAip0kLVUPcJfAIDPcWYmy5GwK0eoG5P1a8IeyZnp1bWsIdVytFw4/5A0S2AZr64DAAAA30PYCyBPpmkq7c/ZStz4ohyJez2OcaadUNrBmUo7OFNSjvC3Yses8De8LuEvAKDEcKaddtud6+qnm/yndxey+MkWXud8oJu9Sze8nix+Id5dCwAAANcMwl4AHqUfW6rEjS8o8/T6y7ovV/gbVCHHzt+OsobXIfwFABQr03TKkXw4K8TNDnT/CnWd6ae9upZhCz3fQzdnqBtWU4bFz6trAQAAAIS9ANxkntmixI3/UvrRRXmO8SvbRo7kw3KmHLnofM7U40o7MENpB2ZIkixBFV0tH/wrdCD8BQAUGtORIXvi3qwdujl66jriY2TaU7y6liWwnFvLBVfrheDK/DsHAACAIkPYC0CSZE88oMTNryht/1d5jvEr00phzd9RQMUOMk1TjsT9yji+TOnHlyrj+LJLDH+PKe3AdKUdmC5JsgRXcg9/w2rzRTEA4LI4M5PcWi64Wi8k7pNMuxdXMmQNre6+S/evXbuWgEgvrgMAAAAUDGEvcI1zpJ1S0u9vKmXXJ3k+YMYaXldhzd5SYLW7XEGsYRiyhdeSLbyWgus+8lf4u++v8HeZMo4vlTPl6EXXd6YcVdr+aUrbP03SheFvR1nDahH+AgBkmqacaafcA93s1gspsd5dzOIvW3jdHKFudl/dujJswd5dCwAAAPAiwl7gGuXMTFbyjv8qedu7MjMTPY6xBFVQWJNXFVTnoYv2FcwKf2vLFl5bwXUH/RX+7j0f/h5bKmfqsYvXlSv8rXzBzl/CXwDwZabplCPpz9yhbnyMzPQ4r65l+IXnaLlQ/3w/3dAaMiz8bzIAAABKHv4vFrjGmM5MpeyeqKTfX5Uz9bjHMYZfuEKvf0HBDZ4q8BPBs8LfOrKF11Fw3cHnw99jS//a+bvsEsPfI0rb/5WrvYQlONoV/GaFvzUJfwGgBDId6bIn7Lkg1I2RPX6X5Ej16lqWoIruge5foa4lqCL/hgAAAMCnEPYC1wjTNJX25zdK3PSiHAl7PA+y+Cuk/hMKveFFWQLLeHV9t/C33qNZ4W/CHveev3mEzzk5U2KVuv9Lpe7/Mqvk7PC3Yses8De0Bl+4A8BVxJmR4CHQ3SlH4n7JdHhvIcMia2hNVw/dnD11LQER3lsHAAAAuIoR9gLXgPRjy5S48QVlnl6XxwhDQbX+rtAmr8kWVr1IajIMQ7ZSdWUrVTdH+Lvbtes349hSOdNOXHSeXOFvSJUcO387yhpanfAXAAqZaZpyph7PEerGuNovXEr/9stiCZCtVL0c7Rf++jWsjgxboHfXAgAAAEoYwl7Ah2XG/a7EjcOVfmRhnmMCKndTWPO35RfZuAgryy0r/K0nW6l6Cqn3WFb4G7/rfPh7fNmlhb/Jh5W67wul7vtCkmQNqepq+eBfoYNsYTUK+6UAgM8ynQ45kg6c36F77vxD0szMeK+uZfhHuAe62f10Q6rJsFi9uhYAAADgKwh7AR9kTzyopC0jlLrvS0mmxzF+ZVoqrPk7CqjYsWiLu0SGYcgWUV+2iPoKqf9/F4S/f7V9SDt50XkcyYeUuu9zpe77XJJkDal2QfhbvZBfCQCUPKY9VfaE3e6BbvxO2eN3S850r65lCa7sMdS1BJbjJzMAAACAy0TYC/gQZ9ppJf3xlpJjPpacGR7HWMPrKKzZWwqsdneJ+iLaU/hrj49x7fq99PD3T6Xum6rUfVMlXRD+VuwoW2i1wn4pAHDVcKafPd9yIUeo60g8oLy+WVgghlXWsFq5Wy+E15PFP9x76wAAAADXOMJewAc4M5OVvOMDJW97V2ZmgscxlsDyCm0ySsF1H5Fh8SviCr3PMAz5RTSQX0QDhdQf8lf4u/OC8PfURefJFf6GVnff+Uv4C6CEM01TzpSj53fn5mi9cCntcS6LNcjjA9Js4XVkWP29uxYAAACAXAh7gRLMdGYqZc8kJW0ZJWfqcY9jDL8whTR6QSHXPS2LX0gRV1h0ssLf6+QXcZ1C6j9+Pvw9tvR8+Jt++qLzOJIOKnXvFKXunSJJsobWcAW/ARU6yBpatZBfCQAUjOm0y5G4P9cuXXt8jMzMRK+uZQRE5dilW98V7FpDq8owLF5dCwAAAMClI+wFSiDTNJX25xwlbnpRjoTdngdZ/BRS/wmF3PCirIFli7bAq4Bb+Nvgiazw99yOv4Lfpco4vvwSw98DSt17QKl7J0vKEf5W7JgV/oZUKeyXAgBuTHuK7PG7Lgh1Y2RP2JNnC5+CsoZUzQpxc+7WjWhwTf67AgAAAJQEhL1ACZN+fLkSNzyvzNPr8hhhKKjm/Qpt+ppsYTWKtLarmWEY8ivdUH6lG/4V/jpzhL/LlH58mcz0MxedJ1f4G1ZLoY2eV1DdwSWqBzKAq58z7cwFrReyeus6kv6Ud/vp2mQLr+MW6PqVaiBrqXqy+IV6bx0AAAAAhY6wFyghMuP+UOKm4UqP/SHPMQGVb1NYs7flF9Wk6AoroQzDIr/SjeRXupFCGjz5V/i7PUf4u/zSwt/EfYr/7THZE3YprMW/CXwBXBbTNOVMPpwr0LXH77ykvuOXw7CFnG+5kKOnrjW8lk/0cgcAAABA2Atc9exJfypp8wil7vtCee3k8otqobAW7yig4i1FW5wPyQp/r5df6esV0mCoW/ibfmypMk4sl5kel+f9ydv/I9ORpvDWY+hXCSAX05kpe8LerJ258TFu7RdMe7JX17IElj3/cLQcrRcswdF8QwoAAADwcYS9wFXKmXZGSVvfUvLOsXn2YLSG1VZY87cUWK0PX8B7mcfw9+w2V8sHT+FvSswnMh0ZKnXjOBkWazFVDqA4OTOT/tqdG+PWU9eRsFcy7V5cyZA1tFquXbq2UvVlCYzy4joAAAAAShLCXuAqY9pTlLzjQyVtHS0zM8HjGEtgeYU2GanguoP40dsiYhgW+UXeIL/IGxRy3T9kmk6l7vtC8asflkyna1zqngmSM12l2k6SYeGvWMAXmaYpZ9qpXIGuPX6nnMmHvbuYxU+28LoeQt26MmzB3l0LAAAAQIlHEgFcJUynXal7Jytx80g5U495HGPYQhVy/fMKue4ZHppTzAzDouDaA2TYgnVueX+3HXup+76Q6UhXxM1fEsYDJZhpOuVIOnTBQ9KyPvJr61IQhl9Y7tYLperLGlaTbxwBAAAAuGR89QAUM9M0lXZorhI3vihHwi7Pgyx+Cq73uEIbvyRrYNmiLRD5Cqp+jwxLgM4uu8et3UbawVk660hX6Q4zZVgDirFCABdjOjJkT9jjIdTdJTlSvbqWJahCrkDXVqqBLMGVaMcDAAAA4IoR9gLFKP34CiVueF6Zp9fmOSaw5v0Ka/qabGE1i7AyXI7Aqj1V+pZ5Oru0t+RIc51PPzxPZ3/prdIdv5FhCyrGCgFIkjMjwWPrBUfifsl0eHElQ9awmufD3BzBriWgtBfXAQAAAAB3hL1AMcg8u1WJG4crPXZBnmMCKt2qsOZvyy+qaRFWhoIKjL5NkZ2+19lfesq0p7jOpx9ZqLife6r0Ld/K4hdSjBUC1wbTNOVMPXHBLt2sgNeZcsS7i1kCZCtVz7U71xXqhteVYQv07loAAAAAcAkIe4Ei5Eg6pMTNI5S673NJpscxflHNFdb8HQVU6lS0xeGKBVTqpMguPyrup+4y7Umu8xnHlujsku4q3fl7WfzCirFCwHeYToccSQf/CnXdd+uaGee8upbhV+p8kJvjIWnW0OoyLFavrgUAAAAAV4KwFygCzrQzStr6tpJ3jpWc6R7HWMNqKazZWwqs3keGYSniCuEt/uXbKbLrT4r76TaZmfGu8xknVihu8a2K7LJQFv9SxVghULKY9jTZE3bnbr+QsNutbYo3WIIreXhIWgNZgsrTTxcAAABAiUDYCxQi056i5B0fKWnraLfgLydLYDmFNhmp4DqDZFj9i7hCFAb/cm0UdevPOvNTV5npca7zmad+U9yizorsukiWgMhirBC4epn2VKXsHq/0o0uy+ukmHZBMp/cWMCyyhtXyEOrWl8U/3HvrAAAAAEAxIOwFCoHptCt17xQlbhkpZ8pRj2MMW6hCGg1TSMN/yuIXWsQVorD5lWmuqFuXKm5xZznTTrnOZ57ZoDM/3qLIW3+SNbBsMVYIXF1M01T6oW+VsP6fciQdvPIJrUF/9dN1D3Rt4XVkWAOufH4AAAAAuAoR9gJelBVWzFPCpuFyxMd4HmTxU3C9/1PoDS/LGlSuaAtEkfKLvEGRty1T3KJOcqYed523n/1dcT92UGTXn2UNrlCMFQJXB/u5GMWve0oZRxdf9r1GQOQFu3Tr/9VPtxotcQAAAABccwh7AS/JOLFSCRteUOap3/IcE1jjPoU1fV228FpFWBmKk1/EdYrqtkJnfrxFzpRY13n7uR0682N7Rd36s6wh0cVYIVB8nJmJStrympJ3fCCZ9nzHWkKqnA91S9V37da1BJalny4AAAAA/IWwF7hCmWe3KXHTi0o/PD/PMf6Vuiq8+dvyi2pWhJXhamELr6OobisUt+gWtx9PdyTs1pmFNyvy1l9kC6tebPUBRc00TaXu/0qJG56XM/WYxzH+5dsrqO4j5/vp0u4GAAAAAC6KsBcoIEfSISVuGanUfZ/n+fAgW1QzhTd/RwGVOhdxdbja2MJqKOq25TqzqJMciXtd5x1JBxT3Y3tF3vqzbOG1i7FCoGhkntmi+LVPKvPkao/XLcGVFd7yfQVW78uOXQAAAAC4TIS9wGVypscp6Y+3lbxzjORM9zjGGlZTYc3eUmD1e+gZCRdraFVFdfsr8M3R09mRfCirpUPXn2WLqF+MFQKFx5kep8RNLytl92eev0Fm8VdIw2cVesOL7OIFAAAAgAIi7AUukWlPVfLOj5T0x9syM+M9jrEEllVo45EKrjtYhtW/iCtESWANrqSo25YrbnFn2c9udZ13phzVmb92+PqVblSMFQLeZTodStkzQYmbXpKZfsbjmIDo7gpv9YFs4XWKuDoAAAAA8C2EvcBFmE67UvdOVeKWkXKmHPE4xrCFKKTRMIU0/KcsfmFFXCFKGmtQOUXdulRnfuoq+5lNrvPOtJM682MHRXX9SX5RTYuxQsA7Mk7+qvi1Q93+O8/JGlZL4a0+UGCVHkVcGQAAAAD4JsJeIA+maSr98HdK3Dhc9vidngcZNgXX+z+FNn5Z1qDyRVsgSjRLYJSiuv6suJ9uU+bpta7zZvoZnVl0iyK7LpZ/mZbFWCFQcI6U40rc+EJWT3NPrEEKveElhTZ8VoYtsGiLAwAAAAAfRtgLeJBxYpUSNr6gzJO/5jkmsEY/hTV9nYdqocAsARGK7LpYcUtuV+bJVa7zZsY5xS3qpMjOC+Vfvm0xVghcHtOZqeSdY5S0ZZTMzESPYwKr36PwFv+WNbRqEVcHAAAAAL6PsBfIIfPsdiVuelHph7/Lc4x/xc4Kbz5afmWaF2Fl8FUW/3BFdlmosz/3VMbxpa7zZmai4n66VaU7fa+Aih2Kr0DgEqUfXaKEtf/I8ychbBHXKbz1GAVUvKWIKwMAAACAawdhLyDJkXxYiVtGKXXvFM9PiZdki2yq8BbvKKBSl6ItDj7P4heqyM4LdPaX3ko/ush13rQnK25JN0XeMk8BlbsWY4VA3uxJfypx/bNK+/Mbj9cNv3CFNXlVwQ2ekGHxK+LqAAAAAODaQtiLa5oz/aySto5W8s6PJEeaxzHWsJoKa/qmAmv0lWFYirhCXCsMW5BK3/Ktzi7vq/TD889fcKQp7uc7VLrjNzzEClcV056qpG3vKWnraMmR6nFMUO2BCms+mp7mAAAAAFBECHtxTTLtqVl9Jbe+LTPjnMcxlsCyCm08QsF1H5Vh9S/aAnFNMmyBKt1hts6t6O++S9KZobNL71JE+xkKqnZX8RUI6PzDKxPWPSNH0gGPY/yimiu89Vj5l2tTxNUBAAAAwLWNsBfXFNNpV+q+z5W4eYScKUc8jjFsIQpp+JxCGj0ri19YEVeIa51h9VdE+xk6t2qA0vZPO3/Bmalzy/pK7b5UUM1+xVcgrmn2+F1KWPuUW7uRnIyAKIU3f1tBtR+WYbEWcXUAAAAAAMJeXBOydqLNV+Km4bKf2+F5kGFTcL3HFNr4FX7kGMXKsNgUcdPnirf4Z/WRzmY6dG7l/TKd6QquPaDY6sO1x5mZqKTf31Dyjv9KzszcAwyLgusNUVjT12QJiCz6AgEAAAAAkgh7cQ3IOLFaCRtfUObJ1XmOCax+r8KavSFbeO0irAzIm2GxqlTbiTIsAUrZ/dn5C6ZT8asekpwZCq47uPgKxDXBNE2lHZiuhA3D5Ew56nGMf/l2Cm89Rn6RjYu4OgAAAADAhQh74bMyz+1Q4sYXlX54Xp5j/CveorDm78i/TIsirAy4NIZhUfiNn0rWAKXs/CjHFVPxvz4q05GukAZPFlt98G2ZcX8oYe2Tyjix0uN1S3Alhbd4T4E17pNhGEVcHQAAAADAE8Je+BxHcqwSt4xS6t7Jkun0OMYW2UThzd+Rf6UuhBS4qhmGofBWH8iwBih523tu1xLWDpXpSFdoo2eLqTr4Imf6WSVuHqGUXZ94/jvU4qeQ6/6p0MYv0dccAAAAAK4yhL3wGc70s0ra+o6Sd34oOdI8jrGG1lBYszcUWKOfDMNSxBUCBWMYhsKavyPDGqik3193u5a44TmZjjSFNX6pmKqDrzCdDqXunaTEjS/KmX7a45iAyrcpvNUHspWqV8TVAQAAAAAuBWmXl2RkZGjChAm69dZbVbFiRQUEBCg0NFT16tXTQw89pF9//fWS5lm4cKF69+6t6OhoBQQEKDo6Wr1799bChQsL+RWUXKY9TUnb/q2T39RS8rZ3PAa9loAyCm/9kcr2jlFQzf4EvShxDMNQWNPXFNr0jVzXkja/rMRNr8g0zWKoDL4g49RanVnQRvG/Puox6LWG1lDpW+apdOcfCHoBAAAA4CpmmKQDV+zPP//U7bffru3bt+c7bujQofrwww89tg1wOp169NFHNXHixDzvHzRokD777DNZLN4PKmNjY1WlShVJ0uHDhxUdHe31NbzNdDqUuu8LJW4ZIWfyYY9jDFuIQho+q5CGz8riH17EFQKFI2nb+0rc8Fyu8yGNhmXtAL4GW5OY9hQ5Uo/LmX5G1pCqsgaVL+6SSgRH6gklbvyXUvdO8TzAGqjQG15UaMPnZNiCirQ2AAAAX1USv/4GUHLQxuEKZWZmugW9N9xwg/75z3+qXr16SkxM1KpVq/T+++8rOTlZY8aMUaVKlfSvf/0r1zwvvfSSK+ht2rSpnn/+edWqVUv79u3Tu+++q82bN2vChAkqW7as3nrrrSJ9jVcb0zSVHvu9EjcOl/1cHgG7YVNwvUcVesMrsgZXKNoCgUIW2uhZGdZAJax1fzhb8rb3ZDrSFN7K8zeVShrTmSln6kk5U49nBbk5fnWmHpcz7YTrczMz0e1ev3I3KahmfwVW7yNrYNliegVXL9OZqZSdHytxy0iZmQkexwRWu1thLd+XLbRaEVcHAAAAACgodvZeodmzZ+uee+6RJN14441auXKlrFar25iNGzfqxhtvVGZmpiIiInTq1CnZbOdz9t27d6thw4ay2+1q0aKFVqxYoaCg8zuoUlJS1L59e23YsEE2m007d+5U7dq1vfo6StJ3Fk3T1JkFNyrz9FqP1wOr91VYszdkC69TxJUBRStl9/8U/+tjktz/Gg+u+6jCb/z0qmxXYppOmelxHsNbtyA39USefWMvi2FVQKUuCqxxnwKr3skOf0npx35Rwtp/5PnNMmup+irVeowCKnUu4soAAACuDSXp628AJQ87e69Qzl68w4cPzxX0SlLz5s3Vo0cPzZ07V+fOndPOnTt1/fXXu65/8MEHstvtkqQxY8a4Bb2SFBwcrDFjxujGG2+U3W7Xf//7X3388ceF9IqufoZhKKzFO4r7sYPbef8KHRXW4h35l2lZPIUBRSy47mDJEqD41Q9JptN1PmX3eJmOdJVqO1GGJfffSd5mmqbMzMRcu209B7knJdNe6DWdL86h9CM/Kv3Ij4q3Biow+nYF1uyvwMrdZdgCi66Oq4Aj6ZASNjyntINfe7xu+IUptPFIhTQYKsPqX8TVAQAAAAC8gbD3CmVkZLiOa9asmee4WrVqebzHNE3NmzdPklS/fn21adPG4/1t2rRRvXr1tGvXLs2bN09jx471iR/TLqiACu0VEN1d6bE/yFa6scJbvCP/Sl2v6fcE16bg2g/KsAbo3Ir7JdPhOp+6b6pMZ4Yi2n0uw1Kwv+pNe5ocaScuCGxPeAxy5Uj11ku6QoYu3Ons4khT2p/fKO3Pb2T4hSuwam8F1bxP/hU7Ffg9KglMe5qStr+vpD/ezPP3KajWgwprPlrW4IpFXB0AAAAAwJt896vbIlKv3vmnku/fv18NGzb0OG7fvn2Ssnal1qlzvr3AgQMHdPToUUlS+/bt812rffv22rVrl44cOaKDBw+qRo0aV1p+iRbW/B0F1eivwJr3XZU/rg4UlaAa98qw+Ovs8nslZ6brfNqB6TrnzFDEzdNcOzVNp0POtFOed96muQe5Zsa5YnpFFzBssgSVkyWogqxBFWT568Oa89fA8rIEVZBhDVD6kUVKPTBdaYfm5RlumpkJSt03Van7psoSWFaB1e9RUI375Ffubz7190na4e+VsO4pORL3e7xui2yqUm3Gyr/c34q4MgAAAABAYSDsvUL33XefXn75ZSUkJOidd95R9+7dc7Vy2Lx5sxYsWCBJ6t+/v8LDz/eM3LFjh+u4fv36+a6V8/rOnTsvK+yNjY3N9/qxY8cuea6rhV/pRvIr3ai4ywCuCoHVeqt0x7k6u/RuyZnuOp/25zc6Pb+pZPhlBbvpp9xaPhQnS0AZWYLK5wpvLwxyjYDIywpgA6v2VGDVnnJmJin98HdK3T9d6UcXuQXhOTnTTikl5hOlxHwia0hVBdbop6Aa98kW2bjE/rSAPWGPEtY9rfTYHzxeNwIiFdbsLQXXGVQkrT4AAAAAAEWDsPcKlSlTRl988YXuu+8+rV69Wi1bttTTTz+tunXrKikpSatXr9b777+vjIwMNWvWTO+//77b/TlD2Is1Zc9u4C5lNXG/HDnvBeCbAqvcrshO3ynulzvddrTaz+3I+yYvM/zC3IPbv3bcWnMFuuVkWPwKtRaLX6iCavZXUM3+cqbHKe3Pb5S6f7oyji9TXq0eHMmHlLztXSVve1fWUvUVVOM+BdW8r8Q88NGZmaSkP95S8vb3JWdG7gGGRcF1H1NY09dlCYwq+gIBAAAAAIWKsNcLevbsqY0bN+r999/XxIkTNWDAALfr5cuX1+uvv67BgwcrODjY7VpiYqLrODQ0NN91QkJCXMdJSUleqByArwmo3FWRnX/Q2Z97yLQne2dSi7/HXbfZu3Ldgl2/kIvPVwwsAZEKrjtYwXUHy5FyVGkHZin1wDRlnl6f5z2O+BglbRmppC0j5RfVXIE17lNQjXtlDbn6npZsmqbSDsxUwobn5Ew54nGMX7m2KtV6jPyimhZxdQAAAACAokLY6wUZGRn6/PPPNW/ePJlm7t1iJ06c0JdffqkaNWqoZ8+ebtfS0tJcx/7++T/9PCAgwHWcmnp5D0O62E7gY8eOqVWrVpc1J4CrU0DFDorsulhxP3WTmZngeZBhkSWgbJ7tE7LDXGtQBRn+ESW2nYEn1uBKCmn4tEIaPi17wl6lHpihtAPT890BnXlmozLPbFTihmHyL3+zAmvep6Bqfa6K3bGZZ7cqYc1QZZxY7vG6JaiCwlq8p6Ca9/vU7yMAAAAAIDfC3iuUnJysbt26aeXKlbJarXr++ef10EMPqWbNmkpLS9PatWv12muvadWqVbrzzjv173//W//85z9d9wcGBrqOMzI8/MhtDunp5/twBgUFXVadF2sRAcC3+Jf7m8r22qrU/dMkw8gd5AaUoVerJFt4bYU1flmhN7wk+9mtWQ922z9djuQ/87jDVMaJ5co4sVwJa55UQOWuCqxxnwKr9pLFL6xIa3emn1PilhFKiflEMh25Bxg2hVz3tEIbvyKLf3ju6wAAAAAAn0PYe4VGjRqllStXSlKuFg7+/v7q0qWLOnbsqK5du2rp0qUaNmyYOnXqpMaNG0uSwsLOhwMXa82QnHz+R7Iv1vIBAKyhVRV6w7+Ku4wSwTAM+UXeIL/IGxTW7C1lnvpNqfunK+3gLDnTTnq+ybQrPfYHpcf+oHhrkAKr9FBQjfsUULmbDFug53u8wDSdSt0zWYmbhsuZdsrjGP9KXVSq1UeyReT/4E8AAAAAgG+59MebIxfTNDVp0iRJUt26dXP16s1ms9n0+uuvS5KcTqemTJniupZzx23Oh7V5krMVAw9cA4DCYRiG/Mv9TaXajFG5vkcU2XWxgmo/JMMvn92xjlSlHfxaZ5fepRMzK+jcqoeVfvQnmU67V2vLOLVOZxa0UfyvgzwGvdaQairdcY4iuywi6AUAAACAaxA7e6/AiRMnFBcXJ0lq2jT/B940b97cdRwTE+M6vu666zye9yTn9QYNGlxWrQCAy2dYbAqo1EUBlbrIbPOJ0o8szGr1cHi+5EjzeI+ZGa/UvZOVuneyLIHlFFi9r4Jq3ie/sjcWuGeuI/WkEjcNV+qeSZ4HWAMV2ugFhV7/ggzb5bX5AQAAAAD4DsLeK2CznX/77Pb8d29lZmZ6vK9GjRqqVKmSjh49quXLPT9cJ9uKFSskSZUrV1b16tULUDEAoKAMW6ACq/VWYLXecmYmKu3QPKUdmK70I4sl0/O/Ac60k0qJGauUmLGyhlRTYI1+Cqp5n2ylb7ik4Nd02pUS84kSN4+QmRnvcUxA1d4Kb/kf2cKqX8nLAwAAAAD4ANo4XIHIyEiFh2f9WO9vv/2Wb+CbM8itUaOG69gwDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr14onqAFCMLH5hCq71d0V2XqDy9x5T+I3j5F/+Zkl5/93sSP5Tydve0envmuj0vEZK/P0N2RP25Tk+/dgynf6uqRLWPeUx6LWG11Nkl0WKvGUOQS8AAAAAQBJh7xWxWCy6/fbbJUlHjx7Vm2++6XHc2bNn9cILL7g+79Gjh9v1p59+WlarVZI0dOhQpaamul1PTU3V0KFDJWXtCn766ae99RIAAFfIElhGIfUeU1S35Sp3zyGFtfi3/KKa53uP/dwOJW1+Rafm1Nbp71spaft/5Ug5KklyJMfq7LJ+ilvUUfZz23Lda9hCFdbiXZXt9YcCKnctlNcEAAAAACiZDNM0zeIuoiSLiYlR8+bNlZKSIkm64447NGDAANWsWVNpaWlas2aNPvjgAx06dEiS1KlTJy1ZsiTXPMOHD9fo0aMlZfX/feGFF1SrVi3t27dP77zzjjZv3uwa99Zbb3n9dcTGxroe+nb48GG3B8cBAC6fPX63Ug/MUOr+aXIk7LqEOwz5lfub7HGbZdpTPI4IrHm/wlu8K2twJe8WCwAAgCLD198AChNhrxcsWbJE9913n06fPp3vuFtuuUWzZ89W6dKlc11zOp0aPHiwJk3K4+E7kh555BGNHz9eFov3N2Tzjw0AFA7TNGWP26LUA9OVemCGnMmHL3sOW+nGKtVmrPzL31QIFQIAAKAo8fU3gMJE2OslZ86c0cSJE7Vw4UJt375d586dk81mU4UKFdSyZUv1799fPXv2vGiv3R9++EHjx4/X+vXrdfr0aZUpU0YtW7bUY489pm7duhVa/fxjAwCFzzSdyjz5q1IPTFfagVlypuf/TULDv7TCmr2h4LqPybBYi6hKAAAAFCa+/gZQmAh7IYl/bACgqJnOTKUf/VlpB6Yr7dBcmZmJOa4aCq77qMKavSFLYJliqxEAAADex9ffAAqTrbgLAADgWmRY/BQYfZsCo2+TaR+ntNgflB77vSRDIfWfkF+Z/B/yBgAAAADAhQh7AQAoZoYtSEHV71ZQ9buLuxQAAAAAQAnm/Sd9AQAAAAAAAACKHGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4ANsxV0AAAAAAAAALp1pmkpOTlZCQoLS0tLkcDiKuyQAl8hiscjf318hISEKDQ2Vv7+/V+cn7AUAAAAAACghnE6nDh06pNTU1OIuBUABZWRkKCkpSSdOnFDZsmUVFRUlwzC8MjdhLwAAAAAAQAlgmmauoNcwDFmt1mKsCsDlcDgcMk3T9fmpU6eUkZGhSpUqeWV+wl4AAAAAAIASIDk52RX0Wq1WVahQQaGhobJYeCQTUFKYpqn09HQlJCTozJkzkqT4+HhFRUUpICDgiufnbwMAAAAAAIASICEhwXVcoUIFhYeHE/QCJYxhGAoMDFS5cuVUrlw51/mzZ896ZX7+RgAAAAAAACgB0tLSJGWFRaGhocVcDYArFRER4TpOSUnxypyEvQAAAAAAACWAw+GQlNXCgR29QMlntVpdPbez/3xfKf5mAAAAAAAAAIBiYBiGV+cj7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAuGQZGRmaPn26HnzwQdWvX19RUVHy8/NTmTJl1Lx5cw0ZMkRLliyR0+ks7lKBaw5hLwAAAAAAAC7JnDlzVK9ePfXv319ffPGFdu3apbi4ONntdp05c0abNm3SuHHj1KVLFzVo0EALFiwo7pKvSdWrV5dhGBo4cGBxl3JVWrZsmQzDkGEYWrZsWXGX41W24i4AAAAAAAAAV7/XX39dI0aMcH3epUsX9ezZU9ddd50iIiIUFxenXbt2af78+frpp5+0e/duvfTSS7r99tuLsWrg2kLYCwAAAAAAgHxNnjzZFfSWK1dOs2bNUvv27XON69y5s5544glt27ZNzzzzjE6dOlXUpQLXNMJeAAAAAAAA5OnIkSN68sknJUkhISFavny56tevn+89jRo10qJFizRt2rSiKBHAX+jZCwAAAAAAgDz997//VUpKiiTptddeu2jQm81isejvf/+7x2urVq3SAw88oOrVqyswMFARERFq2rSpXn755Xx3A1/Ya9U0TU2cOFE33XSToqKiFB4erlatWumLL75wuy8jI0Pjxo1TmzZtFBkZqbCwMLVt21azZs3Kc62DBw+61poyZYok6euvv1bnzp1Vrlw5BQUFqX79+ho+fLjOnTuX73uxbds2vfHGG7r11lsVHR2tgIAAhYaGqk6dOhowYIDWrFmT7/2jRo1y1SJJ8fHxev3119W0aVNFRES4auzQoYMMw9Cff/4pSZo6darrvuyPDh065Psa58yZo65du6pcuXIKCQlR48aNNWbMGGVmZrruM01T06ZNU4cOHVSuXDkFBwerWbNmGjdunEzTzPe1ZNf/9ttvq23btipbtqz8/f1VsWJF3XHHHZo9e3a+c2TXO2rUKEnS+vXrdd9997ne18qVK+uBBx7Qzp07c92b/Xo7duzoOtexY8dc71H2e1EimYBpmocPHzYlmZLMw4cPF3c5AAAAAAD4pCv5+nv37t3mjh07zN27dxdSdbk5nU6zTJkypiQzJCTETEhIuKL5HA6H+cQTT7jeA08fpUqVMhcvXuzx/qVLl7rGLV682LzjjjvynOcf//iHaZqmGRcXZ9588815jnvzzTc9rnXgwAHXmMmTJ5sPP/xwnnNUqlTJ3Llz50Vrzu/jX//6V57v28iRI13jdu/ebVavXj3X/ZMnTzbbt29/0XXat2+f52scMmRInvfdddddpt1uN9PS0sw+ffrkOW7w4MH5/jewZMkSMyoqKt8au3fvbiYmJnq8P3vMyJEjzY8//ti02Wwe5wgODjaXL1+e5+9pfh+TJ0/O9zV4k7f/XLOzFwAAAAAAAB5t375dp0+fliS1a9dOYWFhVzTfv/71L3388ceSpBo1amjcuHFat26dli5dqmeeeUZ+fn6Kj49Xjx499Pvvv+c71yuvvKL58+fr/vvv14IFC7Rx40ZNnz5d9erVkyR99NFHWrJkiQYOHKhff/1VQ4YM0eLFi7Vx40ZNnDhRlSpVkiSNGDFC27dvz3etTz75RJMmTVKrVq00ffp0bdiwQT/88IP69u0rSTp69KhuvfVWJSYm5rrXbrcrJCREffv21bhx47Rs2TJt2rRJP/74o95//31Vq1ZNkjR69GhNnjz5ou9hnz59dOTIEQ0dOlQ//fSTNmzY4HrdkydP1tatW12vrVevXtq6davbR15rjBs3Tp9++qm6d++uOXPmaOPGjfr222/VunVrSVk7fidPnqxhw4Zp9uzZ6t+/v77//ntt3LhRM2bMcO34/t///qcff/zR4xqrV69Wt27ddObMGZUvX15vvPGG5s+fr40bN2r+/PmuneA//PCDBgwYkO/7sGjRIg0dOlQNGzbUpEmTtH79eq1YsULPPPOMLBaLUlJS9MADDygjI8N1T+XKlbV161ZNmjTJdW7SpEm53qM777zzor8PVy2vRMYo8djZCwAAAABA4StpO3u//PJLV70vvfTSFc31xx9/mBaLxZRkNmrUyDx79myuMQsXLnSNadWqVa7rF+6S/eCDD3KNOXbsmBkWFmZKMsuWLWsahmHOnTs317jff//dtVb2LuCcLtwF2r17dzMzMzPXuNdee801ZtiwYbmunzp1yuNrzZaenm526dLFlGRWq1bNtNvtucbk3NlrsVjMRYsW5TmfaZpmtWrVTEnmgAED8h134Wt8+umnc41JTk52zRcVFWUahnHR971nz565rmdkZLh2JN92221mcnKyx5rGjx/vtnv7Qhf+nqSnp+ca88Ybb7jGzJkzJ9f1nP8dLV261GMdRYWdvQAAAAAAACgSZ86ccR2XK1fuiub69NNP5XQ6JUkTJkxQRERErjG33XabHn74YUnSunXrtH79+jzna926tZ566qlc5ytUqKDevXtLkk6dOqW+fft63Kl5ww036KabbpIkrVy5Mt/aAwIC9L///U82my3XtZdeekmNGjWSJE2cONFtJ6kklSlTxuNrzebv76/33ntPkvTnn39qy5Yt+dYycOBAde3aNd8xBVGlShW9++67uc4HBwe7dtmeOXPmkt53T+/njBkzdPDgQQUGBurzzz9XcHCwxzoGDx6sVq1aSVK+vXMDAwM1efJk+fv757r2j3/8w3X+Yr+3voawFwAAAAAAAB7lbEsQEhJyRXMtWbJEktSwYUNXawBPBg8enOseT/r165fntcaNG1/WuP379+c5RpK6du3qao1wIYvF4gpD4+LitGnTpnznSk9P16FDh7Rjxw5t27ZN27Ztc3sg2cXaV9x///35Xi+ou+66S35+fh6v5Xw/77333jznyB539uzZXA+t++677yRJ7du3V9myZfOt5eabb5Yk/fbbb3mO6dKlS57fgAgLC1OdOnUkXfz31tfk/nYEAAAAAAAAILn16E1OTi7wPOnp6dqzZ48k5Rv0SlLTpk3l5+enzMxMbdu2Lc9xdevWzfNazp20lzLOU6/dnFq2bJnv9eydqJK0detWtWnTxu16cnKyPvroI82YMUPbt2+Xw+HIc67sHsl5ueGGG/K9XlDefD+lrPc05+cbNmyQlNVr1zCMS6rp+PHjeV7L7hGcl8jISFcd1xLCXgAAAAAAAHgUFRXlOj5x4kSB5zl79qzr+GLtIPz8/BQVFaXjx48rLi4uz3F5tQGQsnbbXs647PYSeblYzeXLl3cdX1jzwYMHdcstt+jAgQP5zpEtNTU13+ulS5e+pHkulzffT0m5Au2TJ09edk35vRf51ZGzlvyCdV9E2AsAAAAAAACPcv74/sXaE1yqS93VeTW5kpofeOABHThwQIZh6KGHHlK/fv3UoEEDlS1bVv7+/jIMQ06nU1arVZLcWjp4kj2upMkOXbt16+axNzC8g7AXAAAAAAAAHjVs2FBlypTR6dOntXLlSiUkJCg8PPyy58m5G/ViO4TtdrvrwXDZP4pf3C5Wc87rOWuOiYnRqlWrJEkvvvii3njjDY/357eD2VdERUXp6NGjysjIcD3QDt7HA9oAAAAAAADgkWEYroePJScna8KECQWaJyAgwPXArLVr1+Y7dvPmzcrMzJSkqyYUXL9+/SVfz1nz9u3bXcf5Pdgsu5+tt1yNu6ebNm0qKeu1ZmRkFGstV+P74y2EvQAAAAAAAMjTM8884+qPOmLECMXExFzSfU6nU1999ZXr886dO0vKCkDXrVuX5305A+Xse4rb4sWLdezYMY/XnE6npk6dKilrB3OzZs1c1+x2u+s4vwfcjRs3zkuVZgkMDJSU9WC8q0XPnj0lSfHx8Zo8eXKx1pL9/khX13vkDYS9AAAAAAAAyFPlypU1duxYSVmBZfv27bV8+fJ879mxY4duu+02vffee65zQ4YMcT0069FHH1VCQkKu+xYvXqyJEydKklq1aqWWLVt662VckfT0dD322GMeH/Y1evRobd26VZL08MMPKyAgwHUtezezJE2ZMsXj3J9++qnmzZvn1XorVqwoSdq3b59X570SAwYMUJUqVSRJzz33nFasWJHv+FWrVl30v7OCyn5/pKvrPfIGevYCAAAAAAAgXw899JBiY2M1YsQInTx5Uh06dFDXrl3Vq1cvNWjQQBEREYqLi9Pu3bu1YMEC/fjjj3I4HG4PeLv++uv17LPP6r333tPvv/+uZs2a6YUXXlDTpk2VnJys+fPn66OPPpLD4ZC/v78+++yzYnzF7lq0aKH58+erbdu2euaZZ1SnTh2dPHlSU6dO1YwZMyRJ0dHReuWVV9zua9q0qRo1aqRt27bps88+09mzZ/XAAw+oYsWKio2N1ZdffqnZs2erbdu2Wr16tdfq/dvf/qalS5dq/fr1Gj16tLp166aQkBBJUlBQkCpXruy1tS5VQECAZs2apQ4dOigpKUm33HKL+vXrpzvvvFM1atSQ0+nUsWPHtHHjRs2dO1dbt27VmDFj1L59e6/XUrVqVUVHRys2Nlb//ve/FR0drXr16rkefle+fHmFhYV5fd2iQNgLAAAAAACAi3rllVfUsGFDPfvsszp48KAWL16sxYsX5zm+YcOGevfdd93OjR49WsnJyfrkk0+0b98+Pfroo7nuK1WqlGbNmqUmTZp4+yUU2BNPPKHly5drypQp6tevX67rFStW1KJFi1SqVCm384Zh6IsvvtAtt9yis2fPatasWZo1a5bbmOuvv15ff/21KlWq5LV6hwwZok8//VRxcXEaPny4hg8f7rrWvn17LVu2zGtrXY42bdpo2bJl6tu3rw4fPqyvvvrKrdXHhQryMMBL9eKLL+rxxx/XgQMH1KtXL7drkydP1sCBAwtt7cJEGwcAAAAAAABckrvuuku7du3SV199pb///e+qV6+eSpcuLZvNpsjISDVr1kyPP/64fvnlF23dulVdu3Z1u99isejjjz/WihUrdP/996tq1aoKCAhQeHi4mjRpohdffFF79uzJdd/VYPLkyZo2bZo6dOigqKgoBQQEqG7dunr++ee1fft2XXfddR7va9KkibZs2aL/+7//U7Vq1eTn56fIyEi1atVK//73v7Vu3Tq3tgLeULlyZa1bt06PPPKIateu7dajtri1adNGe/bs0bhx43T77berUqVK8vf3V2BgoKpUqaKuXbvqzTffVExMjB588MFCq2PIkCH65ptv1LVrV5UrV042m2/siTVM0zSLuwgUv9jYWFfflMOHDys6OrqYKwIAAAAAwPdcydffe/bskd1ul81mc+sFi8Jx8OBB1ahRQ1LJ3umJq5u3/1yzsxcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADAB9iKuwAAAAAAAADgalO9enWZplncZQCXhZ29AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDs9bJDhw5p5MiRatGihcqWLavAwEBVqVJF7dq104gRI7Rt27Z871+4cKF69+6t6OhoBQQEKDo6Wr1799bChQuL6BUAAAAAAAAAKIl4QJsXjRkzRsOHD1dycrLb+djYWMXGxmrVqlVKSEjQBx98kOtep9OpRx99VBMnTnQ7f+TIER05ckTffvutBg0apM8++0wWCxk9AAAAAAAAAHeEvV7yxhtv6JVXXpEk1a1bV4MHD1bLli1VqlQpnTlzRps3b9bcuXPzDGpfeuklV9DbtGlTPf/886pVq5b27dund999V5s3b9aECRNUtmxZvfXWW0X2ugAAAAAAAACUDIZpmmZxF1HS/fzzz+rcubMk6cEHH9SECRPk5+fncWxGRob8/f3dzu3evVsNGzaU3W5XixYttGLFCgUFBbmup6SkqH379tqwYYNsNpt27typ2rVre/U1xMbGqkqVKpKkw4cPKzo62qvzAwAAAACAK/v6e8+ePbLb7bLZbKpTp05hlQigCHn7zzX9AK6Q0+nUkCFDJEmNGzfWxIkT8wx6JeUKeiXpgw8+kN1ul5TVCiJn0CtJwcHBGjNmjCTJbrfrv//9r7fKBwAAAAAAAOAjCHuv0OLFi7Vnzx5J0gsvvCCb7fI6Y5imqXnz5kmS6tevrzZt2ngc16ZNG9WrV0+SNG/ePLEhGwAAAAAAAEBOhL1X6Ouvv5YkGYahHj16uM7HxcVpz549iouLy/f+AwcO6OjRo5Kk9u3b5zs2+/qRI0d08ODBK6gaAAAAAAAAgK/hAW1XaM2aNZKk6tWrKywsTNOmTdPbb7+tbdu2ucZkP7Bt6NChCggIcLt/x44druP69evnu1bO6zt37lSNGjUuuc7Y2Nh8rx87duyS5wIAAAAAAABw9SHsvQJOp1MxMTGSpDJlyuipp57SRx99lGvc7t27NWzYMM2dO1cLFixQRESE61rOEPZiTdmzG7hLWU3cL0fOewEAAAAAAAD4Hto4XIH4+Hg5nU5J0tatW/XRRx+pYsWK+vLLLxUXF6eUlBQtX77c1Yf3119/1cMPP+w2R2Jious4NDQ03/VCQkJcx0lJSd56GQAAAAAAAAB8ADt7r0BycrLrOC0tTcHBwVq6dKnrQWqSdPPNN+uXX37RjTfeqN9//11z587V2rVr1bp1a9d92fz9/fNdL2cLiNTU1Muq9WI7gY8dO6ZWrVpd1pwAAAAAAAAoOgMHDtTUqVNVrVo1nucEj9jZewUCAwPdPh80aJBb0JstKChIb775puvzmTNnepwjIyMj3/XS09Pd5rwc0dHR+X5UrFjxsuYDAAAAAADwZcuWLZNhGK6Pe++996L3DBw40DUeKA6EvVcgLCzM7fOuXbvmObZTp06y2bI2Uq9fv97jHBdrzZBzJ/HFWj4AAAAAAADAe77++mtt3bq1uMsA8kXYewUCAgJUtmxZ1+f5PQQtMDBQZcqUkSSdOnXKdT7nQ9lyPqzNk5ytGHjgGgAAAAAAQNExTVMjR44s1hqmTJki0zRp4YA8EfZeoYYNG7qOHQ5HvmOzr2fv8JWk6667znUcExOT7/05rzdo0OCy6gQAAAAAAEDBZG/gmzt3rjZv3lzM1QB5I+y9QjfffLPreP/+/XmOS0hI0OnTpyVJlStXdp2vUaOGKlWqJElavnx5vmutWLHCdX/16tULWjIAAAAAAAAuwz/+8Q8FBARIkkaMGFHM1QB5I+y9QnfffbfreO7cuXmOmzt3rkzTlCS1a9fOdd4wDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr1otE3AAAAAABAEalSpYoeffRRSdL333+vdevWXfYcTqdTv/zyi5577jm1bdtWZcqUkZ+fnyIiItSkSRM999xzOnToUL5zZD8A7sJNgK+99prrwXB79uy5aC233nqrDMNQxYoV8/xJ9W+//Vb33HOPqlatqsDAQEVERKhFixZ69dVXdfbs2Ut+3ShahL1X6IYbblC3bt0kSdOnT9fPP/+ca8zx48f18ssvS5L8/f310EMPuV1/+umnZbVaJUlDhw5Vamqq2/XU1FQNHTpUUlYLiKefftrbLwMAAAAAAAD5GD58uIKCgiRJr7zyymXf/9prr6lTp056//339euvv+rMmTOy2+2Kj4/X77//rvfff18NGjTIdzNhXvr37+86njZtWr5jT5w44cqv+vXr58qksp09e1adOnVS7969NXv2bB0+fFjp6emKj4/Xxo0bNWrUKNWvXz/PDYsoXoS9XvDBBx8oIiJCTqdTPXr00PDhw7Vy5Upt2LBBn3zyiVq2bOl6+Nrrr7/u1sZBkurWrathw4ZJkjZs2KC2bdtq5syZ2rBhg2bOnKm2bdtqw4YNkqRhw4apTp06RfsCAQAAAAAArnEVK1bUkCFDJEmLFy/WqlWrLut+u92uihUr6vHHH9cXX3yh1atXa+PGjfr222/1/PPPKzQ0VCkpKerfv7927tx5WXPXrl1brVu3lnTxsHfmzJmu3bz333+/27X09HR17txZv/zyi6xWqx544AFNnz5da9as0cqVK/Xmm28qKipKJ0+eVPfu3fXnn39eVp0ofLaLD8HF1K1bV/Pnz1efPn104sQJjR49WqNHj3YbYxiGXnrpJT3//PMe53jzzTd18uRJTZo0SZs3b1a/fv1yjXnkkUf0xhtvFMprAAAAAAAAJZ9pOuVMP1PcZRQZS0CUDKPo9jK+8MIL+uyzz5ScnKwRI0bol19+ueR7Bw0apJEjR8rPz8/tfLNmzdSrVy8NHTpUbdq00ZEjR/TWW2/piy++uKza7r//fq1du1a7d+/Whg0b1KJFC4/jssPgunXr5hrz2muvadOmTYqIiNCSJUvUvHlzt+s33XST7r//ft144406duyYXnzxRX311VeXVScKF2Gvl9x0003avn27xowZo2+//VYHDhxQRkaGKlasqA4dOmjo0KFq2rRpnvdbLBZNnDhRd999t8aPH6/169fr9OnTKlOmjFq2bKnHHnvM1S4CAAAAAADAE2f6GZ2cUa64yygy5fqdlDWwbNGtV66cnnzySb3zzjtaunSpli5dqo4dO17SvRf22b1QdHS0hg0bpqefflrfffedTNO8rGc23XvvvXrmmWfkcDj01VdfeQx79+3bp7Vr10rKvas3KSlJH3/8saSsn0y/MOjNVq1aNb3yyit6/PHH9fXXX2v8+PEKCQm55DpRuAh7vSgqKkqjRo3SqFGjCjxH9+7d1b17d+8VBQAAAAAAAK8ZNmyYPvnkEyUmJuqVV1657HYO2RISEnTmzBmlpKTINE1JUnBwsOvagQMHVLNmzUuer1y5curSpYt+/PFHzZw5U++//74sFvddzzlbPOTs8ytJy5cvV3x8vCSpT58++a518803S5IyMzO1ceNG1+cofvTsBQAAAAAAAC5RVFSUnn76aUnS6tWrtWjRoku+988//9TQoUNVvXp1lSpVSjVr1lSjRo10/fXX6/rrr9ejjz7qGnv69OnLri17t+6xY8c8tpjIDntbt26t2rVru13Lfl6UlNWf2DCMPD8aNWrkGnv8+PHLrhOFh7AXAAAAAAAAuAz//Oc/FRERIUkaOXLkJd2zcOFCXXfddRo7duwlPdgsNTX1suu68847XbuDL+ylu2nTJsXExEjK3cJBkk6ePHnZ60lSSkpKge5D4aCNAwAAAAAAgI+wBESpXL+ChXYlkSUgqljWjYiI0D//+U+NGDFCa9eu1ffff68ePXrkOf706dPq37+/UlJSFBoaqueee0633nqratWqpVKlSsnf31+S9Msvv6hTp06S5GrtcDlCQ0PVq1cvTZ8+XXPmzNGnn36qwMBASed39VqtVt1777257nU4HK7jTZs25XqQXF6io6Mvu04UHsJeAAAAAAAAH2EYliJ9YNm17Omnn9aHH36oM2fOaOTIkfmGvbNnz9a5c+ckSXPnzlXnzp09jouLi7viuu6//35Nnz5dCQkJ+v7779WnTx85nU7NmDFDktSlSxeVK5f7IX5RUeeD87JlyxLillC0cQAAAAAAAAAuU1hYmIYNGyYpayfs3Llz8xy7fft2SVJkZGSeQa/k3je3oG699VaVKVNG0vndvMuXL9eRI0ckeW7hIElNmzZ1Ha9evfqK60DxIOwFAAAAAAAACuDJJ5907ZIdOXJknq0X7Ha7JCktLU1Op9PjmJSUFH3xxRdXXJPNZlPfvn0lST/88IPOnTvnCn2Dg4N15513eryvc+fOrn6/H330UYHaSKD4EfYCAAAAAAAABRASEqIXXnhBkrR161b98MMPHsfVqVNHUlagO2vWrFzXHQ6HBg0apKNHj3qlruzdu+np6Zo2bZq++eYbSVKvXr0UGhrq8Z6IiAg9+eSTkqRff/1VzzzzTJ7BtCSdOHFCEyZM8Eq98B7CXgAAAAAAAKCAhgwZoooVK0rKehCbJ3379lVAQIAk6aGHHtK//vUv/fzzz9qwYYOmTp2q1q1ba/r06Wrbtq1Xavrb3/6mGjVqSJJeeuklnT17VlLeLRyyvfbaa2rdurUk6cMPP1SzZs308ccfa/Xq1dqyZYuWLl2qsWPH6s4771TVqlU1btw4r9QL7+EBbQAAAAAAAEABBQUF6cUXX9TQoUPzHBMdHa1PP/1UgwYNUlpamt555x298847bmPuvfdeDR48ON+evpejf//+evPNN10PhitTpoxuvfXWfO8JCAjQTz/9pIEDB2rOnDn6/fffXbt9PQkPD/dKrfAedvYCAAAAAAAAV2Dw4MGqUqVKvmMeeughrVy5UnfeeafKli0rPz8/VaxYUbfddptmzpypGTNmyGq1eq2mC3fx9u3bVzbbxfd9hoWF6ZtvvtHKlSs1aNAg1atXT2FhYbLZbIqMjFTLli31xBNP6IcfftBPP/3ktXrhHYZ5lXZb3rdvn06fPq3q1aurfPnyxV2Oz4uNjXX9pXT48GFFR0cXc0UAAAAAAPieK/n6e8+ePbLb7bLZbK4esABKNm//uS7ynb0nT57UJ598ok8++UTx8fG5ru/du1fNmzdX3bp19be//U2VK1fW3Xff7eotAgAAAAAAAADIrcjD3jlz5ujJJ5/Uhx9+qFKlSrldS09PV7du3bRlyxaZpinTNOV0OvXtt9+qV69eRV0qAAAAAAAAAJQYRR72Ll68WIZhqHfv3rmuTZkyRfv27ZMk9ezZUx9++KHuuOMOmaap1atXa+bMmUVdLgAAAAAAAACUCEUe9u7atUuS1KZNm1zXpk2bJkm65ZZb9O2332ro0KGaN2+eOnfuLNM0NWPGjCKtFQAAAAAAAABKiiIPe0+dOiVJuRqQp6amas2aNTIMQ48++qjbtYcffliStGnTpqIpEgAAAAAAAABKmCIPe8+dO5e1sMV96TVr1igzM1OGYahz585u12rUqCEp6+FuAAAAAAAAAIDcijzsDQ0NlSQdP37c7fyyZcskSdddd51Kly7tds3Pz0+SZLPZCr9AAAAAAAAAACiBijzsrV+/viTpxx9/dDv/zTffyDAMtW/fPtc92cFw+fLlC79AAAAAAAAAACiBinyr7O233641a9Zo/PjxatCggdq1a6cpU6Zox44dMgxDd911V657snv1Vq5cuajLBQAAAAAAAIASocjD3ieffFKffPKJjh07pieffNLt2o033qiOHTvmumf+/PkyDEMtW7YsqjIBAAAAAAAAoEQp8jYOpUqV0pIlS9SsWTOZpun6aNeunWbNmpVr/O+//67169dLkrp06VLU5QIAAAAAAABAiVAsTzxr0KCBNmzYoAMHDuj48eOqWLGiqlevnuf4yZMnS5JuueWWIqoQAAAAAAAAAEqWYgl7s9WoUUM1atTId0zjxo3VuHHjIqoIAAAAAAAAAEqmIg97X3vtNUnS448/rjJlylzSPWfPntWYMWMkSSNGjCi02gAAAAAAAACgpCrysHfUqFEyDEN9+vS55LA3Li7OdR9hLwAAAAAAAADkVuQPaAMAAAAAAAAAeF+JCHszMzMlSX5+fsVcCQAAAAAAAABcnUpE2LtlyxZJUtmyZYu3EAAAAAAAAAC4ShV6z97PP//c4/l58+Zpw4YN+d6bnp6uffv2adKkSTIMQy1btiyMEgEAAAAAAACgxCv0sHfgwIEyDMPtnGmaevnlly95DtM0ZbFY9NRTT3m7PAAAAAAAAKBYbdu2TaNHj9by5ct14sQJV0vTzZs3q0mTJsVb3FVs4MCBmjp1qqpVq6aDBw8WdzlXhSJp42CapuvD07n8Pvz8/NS2bVt99913at++fVGUCwAAAAAAgGvcsmXLZBiGDMPQqFGjCm2djRs3qlWrVvrqq68UGxvrCnqBgij0nb0HDhxwHZumqZo1a8owDC1atEh16tTJ8z7DMBQYGKioqChZrdbCLhMAAAAAAAAocsOHD1dqaqrCw8M1evRotWjRQkFBQZKk2rVrF3N1WUaNGqVXX31Vktw2c+LqU+hhb7Vq1Tyer1SpUp7XAAAAAAAAAF+XmZmp5cuXS5IeffRRDRkypJgrQklX6GHvhZxOZ1EvCQAAAAAAAFx1Tp8+rYyMDElS3bp1i7ka+IIi6dkLAAAAAAAAwF16errr2M/Prxgrga8olrA3JSVFKSkpeV4fM2aM2rVrpwYNGqh79+6aP39+EVYHAAAAAAAA5C3nw9uWLVsmSZo1a5Y6deqksmXLKigoSPXq1dPzzz+vuLi4XPePGjVKhmGoRo0arnMPPfSQa868HgqXlpamsWPHqlOnTqpQoYL8/f1Vrlw5de7cWRMnTpTdbr9o7enp6Ro/frxuv/12Va5cWQEBAQoJCVHDhg01aNAgLVq0yNWXd8qUKTIMw9WvV5JbjdkfBw8ezLWOw+HQ1KlT1aNHD1WqVEkBAQGKiorSTTfdpP/85z9KTU29aK07d+7UwIEDVaVKFQUGBqpKlSrq37+/1q9ff9F7r1VF3sZh/vz5uvPOOxUaGqrY2FiFhYW5XX/44Yc1depUSVkNn3fv3q1FixbpjTfe0PDhw4u6XAAAAAAAACBPTqdTDzzwgL788ku387t379Z7772nuXPnauXKlapQocIVrfP777+rV69e+vPPP93Onzp1Sj///LN+/vlnffbZZ5o/f77Kly/vcY4tW7borrvu0oEDB9zOZ2RkaMeOHdqxY4cmTpyoAwcOqHr16gWu9dChQ+rZs6d+//13t/NxcXFavXq1Vq9erU8//VQLFizIs33FrFmz9OCDD7rtfo6NjdX06dP19ddfa9y4cQWuz5cVedib/d2Bnj175gp6V61a5fqOQXBwsOrWrauYmBilpqZqxIgRuuOOO9SoUaOiLhkAAAAAAADw6JVXXtGvv/6qO++8Uw8++KCqVaumEydO6OOPP9aCBQu0d+9ePfPMM5o+fbrrnscff1x9+vTR0aNHdeutt0qS3njjDfXq1cs1ply5cq7jvXv3qn379oqPj1d4eLieeOIJtWrVSlWqVNGZM2f03Xff6bPPPtP69evVq1cvrVy5MldbiJ07d6pdu3ZKSkqSJPXu3Vv9+vVTzZo15XA4tHv3bi1evFhz58513XPnnXeqRYsW+uSTT/Tpp59KkrZu3ZrrPahcubLr+MyZM7rpppt0+PBhBQQEaPDgwWrfvr2qV6+upKQkLV68WB9++KH27t2rbt26adOmTSpVqpTbfOvXr9f9998vu92ugIAAPfPMM+revbsCAgK0du1avfXWWxoyZIiuu+66y/798nVFHvauWbNGhmGoY8eOua6NHz9eklSpUiX99ttvio6O1uHDh3XTTTcpNjZWn332mcaMGVPUJQMAAAAAAJQITtNUUoZZ3GUUmVB/QxbDKNYafv31V73xxht66aWX3M7fdtttuu2227R48WLNnj1bH330kcqWLSspK8gtV66cQkNDXeMrV66c5ybHAQMGKD4+Xk2bNtXixYtVpkwZt+tdu3ZVjx49dPvtt2vt2rWaMmWKBg8e7Dbm73//u5KSkmSxWPTVV1+pX79+btdbt26tBx54QGfOnFFwcLAkKSIiQhEREW7B88U2Yv7jH//Q4cOHVa1aNS1dutStVYUkdejQQffcc4/atWun/fv3691339Wbb77pNubxxx+X3W6Xn5+fFi9erJtvvtl1rVWrVrrrrrvUpk2bXDuHUQxh78mTJyVJ9erVy3Xtxx9/lGEYGjp0qKKjoyVJVapU0dChQ/X8889r+fLlRVorAAAAAABASZKUYWrwktPFXUaR+V/nMgoPKN6wt3nz5nrxxRdznTcMQ//85z+1ePFi2e12/fbbb+rZs+dlz79y5Ur9+uuvkqSpU6fmCnqz3XbbberTp49mzZqVK+xdvHixNm3aJCkrjL0w6M0pKirqsmvMdvDgQc2cOVOSNHbs2FxBb7amTZvqiSee0LvvvqspU6a4hb3r16/Xhg0bJEmPPfaYW9CbrXLlynr//fd17733FrhWX1XkD2g7deqUJOVq4bB9+3adPp31l1HOLeuS1KJFC0nK1ZMEAAAAAAAAKE79+/eXkcfu4ubNm7uO9+/fX6D5v/vuO0lZGyevv/76fMdmB6Pr1693e1jb999/7zp++umnC1THpViwYIEcDoeCg4PVrVu3fMdm13r06FEdOnTIdX7JkiWu44ceeijP+3v37q2IiIgrK9gHFfnOXqvVKkm5nkS4atUqSVLZsmVz7fotXbq0pKwnDgIAAAAAAABXi/r16+d5LTIy0nWcmJhYoPmzd7nu2rUrz1D5QpmZmYqLi3O1X9i8ebMkqWrVqqpWrVqB6rgU2bWmpKTIZrv02PH48eOqWrWqpPM9gf39/dW4ceM87/Hz81PTpk21dOnSK6jY9xT5zt7shs1btmxxO79gwQIZhqF27drluic+Pl6S8tymDgAAAAAAABSH7P62nlgs56M3h8NRoPmzW6JerpSUFNdx9k/TV6xYsUBzXSpv1Jq9QTQyMtK1aTQv5cuXL9B6vqzId/a2a9dOe/bs0dixY/X3v/9dZcqU0fr16/Xjjz9KkusJhDnt3LlTklShQoUirRUAAAAAAKAkCfU39L/O185muVD/4u3XWxSyQ+LGjRvryy+/vOT7sjdcFqXsWsuUKXNZO2499fa91F3McFfkYe/jjz+uKVOm6MCBA6pZs6bq1q2rHTt2yG63KzIy0mNj5V9++UWGYei6664r6nIBAAAAAABKDIthFPsDy+Bd2Q9MS0pKUqNGjQo0R/ZPyx87dsxrdXmSXWtiYqIaNGhw0Z25nmS3cz1z5owcDke+c5w4caJghfqwIm/j0KxZM7333nsyDENJSUnatGmT0tLS5Ofnp//973+5HtwWHx+vBQsWSJI6dOhQ1OUCAAAAAAAAxaZp06aSsh7wdvz48QLN0axZM0nSoUOH9Oeff172/Ze6yza71vT0dFf/3suV/RC6jIwM/f7773mOs9vtudrEohjCXkl65plntHnzZr3yyisaPHiwRowYoT/++EO9e/fONXbZsmVq2bKlbr75ZvXo0aMYqgUAAAAAAACKR8+ePSVJpmnqww8/LNAcd9xxh+v4v//972XfHxgY6DpOT0/Pd53sYPiDDz647HUkqXPnzq7jqVOn5jlu7ty5Onv2bIHW8GXFEvZKWSn9q6++qs8++0yjRo1SvXr1PI7r1auXli5dqqVLl9J0GQAAAAAAANeUrl27qlWrVpKk9957T7Nmzcp3/NatWzV//ny3c507d1bz5s0lSWPGjNGMGTPyvP/MmTNKTU11O5fzwW779u3L89569erpnnvukSTNmDFD//nPf/Kt9cCBA5o+fbrbuVatWrl2In/66adatWpVrvuOHTum5557Lt+5r1XFFvYCAAAAAAAAuLhp06YpMjJSDodD9957r3r27KmvvvpK69at08aNG7Vw4UK99dZbuvHGG3XDDTdo+fLlueb44osvFBoaKqfTqfvuu0933323vv76a23cuFHr1q3TtGnTNHDgQFWrVi1XL9y//e1vruNnnnlGK1as0J49e7R3717t3btXdrvddf3TTz9VzZo1JUnPPvus2rdvr4kTJ2rNmjXavHmzlixZovfff19dunRR7dq19c033+Sq9ZNPPpHNZlNmZqa6dOmiF198UatWrdL69es1duxYNW/eXMeOHVPjxo299Rb7jCJ/QJsnpmlq//79iouLkyRFRkaqZs2aPHUPAAAAAAAA17xatWrpt99+0913361t27Zp/vz5uXbv5hQeHp7rXIMGDbRs2TL17t1bhw8f1pw5czRnzpxLWr927drq27evZs2apcWLF2vx4sVu1w8cOKDq1atLysr1Vq9erb59+2rlypVasWKFVqxYcVm1tm7dWp9//rkGDhyotLQ0vf3223r77bdd1202mz755BOtXr06376+16JiDXsXLVqksWPHatmyZUpJSXG7FhwcrI4dO+rJJ59U165di6lCAAAAAAAAoPjVrVtXW7Zs0axZs/TNN99o/fr1OnXqlBwOh6KiolSvXj3ddNNN6t27t6sNwoWaN2+uXbt2acKECfr222+1bds2xcXFKTAwUDVq1NCNN96oe++91xXc5vTll1+qRYsWmj17tnbt2qXExEQ5nU6P61SoUEErVqzQggULNH36dP322286fvy4MjMzFRERoTp16ujGG29Uz549dfPNN3uc47777lPjxo01evRo/fzzzzp9+rTKli2rtm3b6p///Kdat26t1atXF/j99FWGaZpmUS+akZGhgQMHaubMmZKydvZ6kr2z995779WUKVPk7+9fZDVea2JjY1WlShVJ0uHDhxUdHV3MFQEAAAAA4Huu5OvvPXv2yG63y2azqU6dOoVVIoAi5O0/18Wys7d///6aO3euTNOUzWZTly5d1Lp1a1WoUEGSdPz4ca1bt04//fSTMjMzNXPmTNnt9os2oAYAAAAAAACAa1WRh70LFizQnDlzZBiGOnbsqEmTJqlatWoexx46dEgPP/ywfvnlF33zzTf64Ycf1L179yKuGAAAAAAAAACufpaiXnDKlCmSpMaNG+vHH3/MM+iVpKpVq2rhwoVq0qSJJGny5MlFUCEAAAAAAAAAlDxFHvauWbNGhmHo2WeflZ+f30XH+/n56bnnnpNpmlqzZk0RVAgAAAAAAAAAJU+Rh72nTp2SJF133XWXfE/9+vUlSadPny6UmgAAAAAAAACgpCvysDckJESSdObMmUu+5+zZs5Kk4ODgQqkJAAAAAAAAAEq6Ig9769WrJ0maOXPmJd+TPTb7XgAAAAAAAACAuyIPe3v27CnTNDV58mTXw9ry88UXX2jSpEkyDEN33nlnodcHAAAAAAAAACVRkYe9Q4cOVcWKFWWaph555BH16NFDc+bM0ZEjR5SZmSm73a4jR45ozpw56tGjhwYOHCin06lKlSrpySefLOpyAQAAAAAAAKBEsBX1giEhIfr+++/VuXNnnT17VgsXLtTChQvzHG+apkqXLq3vv/+enr0AAAAAAAAAkIci39krSU2bNtXWrVt19913y2KxyDRNjx8Wi0V9+vTRH3/8ocaNGxdHqQAAAAAAAABQIhT5zt5slSpV0tdff61jx45p2bJl2rZtm+Li4iRJkZGRatSokTp06KCKFSsWV4kAAAAAAAAAUGIUW9ibrWLFirrvvvuKuwwAAAAAAAAAKNGKpY0DAAAAAAAAAMC7CnVn76FDh7w+Z9WqVb0+JwAAAAAAAACUdIUa9lavXl2GYXhtPsMwZLfbvTYfAAAAAAAAAPiKQu/Za5pmYS8BAAAAAAAAANe8Qg17BwwYkO/1c+fOad68eTIMQw8++GBhlgIAAAAAAAAAPq1Qw97Jkyfne3379u2aN2/eJY0FAAAAAAAAAOTNUtwFAAAAAAAAAEBJZBiGDMPQqFGjirsUSYS9AAAAAAAAQC7Lli1zBXkXfgQHB6tKlSrq0aOHJk2apPT09OIuF5BE2AsAAAAAAABcltTUVMXGxmrBggV65JFH1Lx5cx08eLC4ywIIewEAAAAAAID8DBkyRFu3bnV9/Pzzz/rwww8VHR0tKeu5VD179pTD4SjmSnGtK9QHtAEAAAAAAAAlXbly5dSoUSO3c7fccoseeugh3XDDDTp48KC2bt2quXPnqk+fPsVUJcDOXgAAAAAAAKBAwsLC9PLLL7s+X7JkSTFWAxD2AgAAAAAAAAV2/fXXu44PHz6c57ilS5dqwIABqlmzpoKDgxUeHq7rr79ew4YN09GjRy9prdWrV2vQoEGqV6+ewsPD5e/vr+joaPXo0UMff/yxzp07l+e98+fPV58+fRQdHa2AgABFRUXpxhtv1OjRo5WUlOTxnlq1askwDLVt2/aitR05ckRWq1WGYej555/3OCY+Pl5vv/222rZtq7Jly8rf318VK1bUHXfcodmzZ8s0zTznz3443qhRoyRJv/zyi+655x5VqVJFfn5+ql69eq57jh8/rpdeekktWrRQZGSkAgICVKVKFfXt2/eSg/lp06apQ4cOKl26tEJDQ9WoUSONHDky3/e6ONHGAQAAAAAAACggf39/17Gfn1+u62lpaXrooYc0Y8aMXNe2bdumbdu26dNPP9X06dN1xx13eFwjNTVVjzzyiKZPn57r2pEjR3TkyBEtWLBAp06dcoWhOdfv37+/5s6d63Y+Li5Oa9as0Zo1azRmzBgtWLBATZo0cRvTv39/vfHGG/rtt9908OBBj4FqtunTp8vpdEqS7r///lzXf/75Z9177706c+aM2/njx4/r+++/1/fff6/u3btr5syZCg0NzXMdSXrppZf01ltv5Tvmq6++0mOPPabk5GS387Gxsfr666/19ddf65FHHtG4ceNks+WOSO12u/r376+vv/7a7fz27du1fft2ffnll1flTu5CDXtfe+21fK+fPHnyksdmGzFixBXVBAAAAAAAAHjLzp07XccXhqGmaapPnz5asGCBJOmOO+5Q3759VbNmTVksFq1bt07vv/++Dh06pD59+mj16tVq0aKF2xxOp1O9evXSTz/9JEmqU6eOHn/8cbVo0ULBwcE6duyYfv31V82aNctjfQMGDHAFvY0bN9azzz6rBg0aKC4uTjNmzNCUKVN09OhRderUSX/88YcqV67suvf+++/XG2+8IdM0NW3aNL344ot5vg/Tpk2TJDVs2FCNGzd2u7Z69Wp169ZNmZmZKl++vIYOHarGjRurUqVKOnr0qGbOnKkvv/xSP/zwgwYMGKBvvvkmz3XmzJmjrVu36vrrr9czzzyjRo0aKTU1VVu2bHGNmTVrlh544AGZpqmaNWvqySef1HXXXaeyZcvq4MGDmjhxon744QdNnDhR4eHh+s9//pNrneeee84V9NarV0/PP/+8brjhBsXHx+vrr7/W//73P91777151llcDDO//dFXyGKxyDAMr87JUw0LR2xsrKpUqSIp60cOsp8mCQAAAAAAvOdKvv7es2eP7Ha7bDab6tSp43GM03TqTHqKV2otCaICgmUxCqdL6bJly9SxY0dJ0siRI3PtmJWycqqWLVtq8+bNkqSVK1fqpptucl3/3//+p0cffVR+fn767rvvdNttt+Wa4+zZs2rXrp22b9+utm3batWqVW7XP/roIz311FOSpN69e2v69OkKCAjINY/T6dSxY8fcwtoFCxaoR48ekqROnTrphx9+cNuJnLNGSerbt69mzpzpdr158+batGmTGjZsqG3btnl8r2JiYtSgQQNJ0ltvvaXhw4e7rmVmZqpu3bo6ePCgbrvtNn3zzTcKDg7ONUfOOhYvXqwuXbq4Xc+ZMXbq1EkLFizw+D6cPn1atWvXVnx8vB5++GF99tlnHnfuZu8Otlgs2rFjh+rVq+e6tnXrVjVp0kROp1PNmjXT8uXLc+02/vzzzzVgwADX53n9N3Ixl/Ln+nIUehsHb2bJ3g6OAQAAAAAAfMmZ9BSVmz6quMsoMifvG6Wygfn/yH9hOHXqlLZu3aoRI0a4gt4+ffq4Bb2maeqdd96RJP3jH//wGPRKUunSpfXee++pe/fuWr16tfbs2eMK/ZxOp9577z1JUnR0tD7//HOPAaeUtekyZ9ArSR9//LGkrPYSkydPzhX0StLgwYM1a9YsLVmyRHPmzNGxY8dUsWJF1/X7779fmzZt0vbt2/X777/n2rUrZbVMkLKyu/79+7tdmzFjhg4ePKjAwEB9/vnnHoPe7DomTJigdevWacqUKbnC3pyvc8KECXm+D59++qni4+NVuXJlffLJJx6DXkl69dVXNXXqVB05ckSff/653nzzTde1cePGuVpSjB8/3mNbiQcffFAzZszQwoULPc5fXAo17F26dGlhTg8AAAAAAAAUuldffVWvvvqqx2vBwcH6v//7P40ePdrt/I4dO7Rv3z5JWUFwfm6++WbX8W+//eYKe7ds2aLY2FhJWWHoxXrZ5mS327V8+XJJUteuXV07yj0ZPHiwlixZIrvdrmXLlum+++5zXevXr5+GDRsmp9OpadOmeQx7s3sJt23bVtWqVXO79t1330mS2rdvr7Jly+Zb880336x169bpt99+y3NM27Zt8+0dnL1ejx498gyEJclms+nGG2/U7Nmzc62X3Yv3+uuvV/PmzfOc4+GHH762wt727dsX5vQAAAAAAABAsWrSpIn+8Y9/5Ho424YNG1zHN9544yXPd/z4cddx9q5hSWrXrt1l1bV//36lpGS19GjdunW+Y3Nev7BVQ6VKldSxY0f9/PPPmj59ukaPHu320/dr1651hdqeHsyW/T4sWrTokn9qP+d7cKEbbrghz2sOh8PVu/ezzz7TZ599dtnrpaena8+ePZKkli1b5ntfq1atLmn+olQ4TU0AAAAAAAAAHzFkyBBt3bpVW7du1ebNmzV//nwNGDBAFotFv/76qzp06KBTp0653XPy5MkCrZUd0EpZ/Wez5WytcCni4uJcx+XKlct3bIUKFTzely07xD18+LBWrFjhdi27hYOfn5/uueeeXPcW5H1ITU3N81rp0qXzvBYXFye73X7Z6+V8z8+ePetqS3ux9618+fKXvVZhK/SevQAAAAAAACgaUQHBOnnfqOIuo8hEBXju/+pt5cqVU6NGjVyfN2nSRD169FDHjh01cOBAHTx4UIMGDdK8efNcYxwOh+t4/vz5+bYeuHAtb7vS52Ddfffdevzxx5WWlqZp06a5fprf4XBo1qxZkqTbbrtNUVFRue7Nfh+6deumd99994rqkCSr1ZrntZzv+aBBg1wPtrsYT72MpZL5/DDCXgAAAAAAAB9hMSzF8sCya9WAAQM0f/58ffPNN/ruu+/0yy+/6JZbbpEkt+AzIiLCLSy+VGXKlHEdHzt2TPXr17/keyMjI13HJ06cyHdszjYGOe/LFh4erh49emj27NmaPXu2xo4dKz8/P/3888+uuT21cJCy3oejR48qIyOjQO/B5chZu2maBVovIiLCdXyx9+1i14sDbRwAAAAAAACAAnrrrbdcu01ffPFF1/mmTZu6jlevXl2guZs1a+Y6vrB9wsXUrFlTwcFZO5/Xrl2b79h169a5jvMKSLPD3Li4ONdDybJbOISFhalnz54e78t+HzZs2KCMjIzLeAWXz9/fXw0bNpRU8Pc8MDDQ9YC89evX5zv2YteLA2EvAAAAAAAAUEB169ZV3759JWWFqj/99JOkrKA2OjpakjR+/HilpaVd9tyNGzdWlSpVJEkTJkxQUlLSJd9rs9lc7RZ++uknxcbG5jl2woQJrns6dOjgcUz37t1d/XK/+uorpaWlae7cuZKk3r17KygoyON92SFwfHy8Jk+efMn1F1T2ejExMVq0aFGB5ujcubMkuXo052XSpEkFmr8wEfYWkhdeeEGGYbg+li1bdtF7Fi5cqN69eys6OloBAQGKjo5W7969Xd8tAQAAAAAAwNXnxRdfdPV3feONNyRJFovFtdN3//79evDBB5Wenp7nHAkJCRo7dqzbOYvFomHDhkmSYmNj9eCDD+a5O9bpdOro0aNu55544glJUkZGhh555BFlZmbmum/SpElavHixJOmuu+7K80Fw/v7+6tOnj6SsHsTTpk1TYmKipLxbOEhZrS6yA+vnnnvuojuUV61apeXLl+c7Jj9PPfWUQkOzWpk89NBD2r59e77jFyxYoD/++MPt3GOPPeb6/Xz00UeVnJyc676vvvpKP/zwQ4HrLCyEvYVgy5Yt+s9//nPJ451OpwYNGqTu3bvr22+/1ZEjR5SRkaEjR47o22+/Vffu3TV48GA5nc5CrBoAAAAAAAAF0ahRI9eO0hUrVmjVqlWSpP/7v/9T7969JUlff/21GjZsqPfee0/Lly/Xli1btGLFCo0fP179+/dXpUqVNGrUqFxzP/HEE+rSpYskae7cubr++uv14YcfavXq1dq8ebMWLlyokSNHqn79+ho/frzbvbfffrvuueceSdLixYvVpk0bffXVV9q4caOWLFmiQYMGadCgQZKy+t1eLM/KDnVTU1P17LPPSpLKly+vTp065XlPQECAZs2apYCAACUlJemWW27R3//+d82ePVsbN27U+vXr9d1332nkyJG64YYb1K5dO23dujXfOvJTvnx5TZ06VYZh6NixY2rRooWGDBmi7777Tps2bdLatWv1zTff6IUXXlCtWrXUo0cPHTp0yG2Oxo0bu4LyDRs2qEWLFpoyZYo2btyoX375RUOGDNGDDz6oFi1aFLjOwsID2rzM6XTq0Ucfld1uV7ly5XTy5MmL3vPSSy9p4sSJkrL6mDz//POqVauW9u3bp3fffVebN2/WhAkTVLZsWb311luF/RIAAAAAAABwmV566SXNmzdPkvT6669r0aJFMgxDM2fO1FNPPaVx48Zp3759ev755/Oco1y5crnOWSwWffvttxowYIBmz56t3bt36+mnn77kuj7//HPZ7XbNnTtXmzZt0t///vdcYypVqqQFCxaocuXK+c518803q0qVKjp8+LDOnTsnSerXr5+rZ3Fe2rRpo2XLlqlv3746fPiwvvrqK1e/X0/Cw8Mv/sLycdddd2nevHkaOHCg4uLiNG7cOI0bN87jWIvFopCQkFzn//Of/+jo0aOaM2eOYmJi9NBDD7ldr1GjhmbOnKlatWpdUa3exs5eL/voo4+0fv161a9fX4888shFx+/evVv//ve/JUktWrTQ6tWr1a9fP7Vs2VL9+vXTqlWrXN8leO+997R3795CrR8AAAAAAACXr2XLlq4duIsXL3Y9vMvPz0+ffPKJfv/9dw0dOlTXX3+9SpUqJavVqlKlSqlJkyZ65JFHNHv2bO3cudPj3MHBwfr666/1yy+/6IEHHlCNGjUUFBQkf39/ValSRXfccYc+++wz127bnAIDAzVnzhx99913uuuuu1SpUiX5+/urdOnSat26td5++23t2rVLTZo0uehrNAxD9913n9u5/Fo45NSmTRvt2bNH48aN0+233+6qIzAwUFWqVFHXrl315ptvKiYmRg8++OAlzZmfO+64QwcOHNC///1v3XLLLSpfvrz8/PwUFBSkGjVqqEePHvrPf/6jgwcPqmPHjrnu///27jw+qvLu+/j3zEwmk5nJQoAASQDZQkCsooALKOKCtyvFqlVrUWrV21pv7NPWpT6tbW2tdnF9rLgvbRXXuqHeIlpEFgHFhX1fQhJIIOvMZNbz/BEyZJLJSkKSyef9euWVwznXOXMlXJnJ+eaa35WUlKTXX39d//jHP3TqqacqPT1dTqdTY8aM0a9+9St98cUXGj58+GH3s6MZpmmaXd2JRLFr1y4dffTRqq6u1n/+8x998skn+t3vfidJ+uSTT+IWuP7JT36ixx57TJK0bNkynXTSSY3aLF++XCeffHK0/aOPPtrhfS8oKIjWT9m9e3e0gDgAAAAAAOg4h3P/vXnzZoVCIdlsNo0aNaqzugjgCOron2tm9nagm266SdXV1br66qujqx02xzTN6PT+/Pz8uEGvVPuXj9GjR0uS3nrrLZHPAwAAAAAAAGiIsLeDvPLKK3r33XeVmZkZLcvQku3bt0dXSWwpHK47vmfPHu3YseOw+goAAAAAAAAg8bBAWwcoLy/XnDlzJEn33Xef+vXr16rz1q1bF93Oz89vtm394+vXr9ewYcPa1MeCgoJmjxcVFbXpegAAAAAAAAC6F8LeDnDrrbequLhYkydPbtWibHXqB7At1eipq+cj1db0aav65wMAAAAAAABIPJRxOEyLFy/WU089JZvNprlz58owjFafW1VVFd12u93NtnW5XNHt6urqtncUAAAAAAAAQEJjZu9hCAQCuv7662Wapn72s59p3LhxbTq/pqYmum2325ttm5ycHN32+Xxt66hang1cVFSkSZMmtfm6AAAAAAAAALoHwt7DcM8992jDhg0aMmSI7rrrrjaf73A4otuBQKDZtn6/P7qdkpLS5sdqqUwEAAAAAAAAgJ6NMg7ttGHDBv3pT3+SJD3yyCMxZRZaKzU1NbrdUmkGj8cT3W6p5AMAAAAAAACA3oeZve30wAMPKBAIaPjw4fJ6vZo3b16jNmvWrIluf/zxxyouLpYkXXjhhXK5XDGzbesv1hZP/TIMLLYGAAAAAAAAoCHC3naqK6uwbds2XXHFFS22v/vuu6Pb27dvl8vl0tixY6P7NmzY0Oz59Y+PGTOmrd0FAAAAAAAAkOAo49CFhg0bpuzsbEnSokWLmm376aefSpJycnJ01FFHdXbXAAAAAAAAAPQwhL3t9Nxzz8k0zWY/6i/a9sknn0T314W1hmFoxowZkmpn7i5fvjzuYy1fvjw6s3fGjBkyDKNzvzgAAAAAAAAAPQ5hbxe75ZZbZLVaJUk333yzfD5fzHGfz6ebb75ZkmSz2XTLLbcc6S4CAAAAAAAA6AEIe7tYXl6efvnLX0qSVq1apcmTJ+vll1/WqlWr9PLLL2vy5MlatWqVJOmXv/ylRo0a1ZXdBQAAAAAAANBNsUBbN/DHP/5R+/bt0zPPPKPVq1fr8ssvb9Tm2muv1R/+8Icu6B0AAAAAAACAnoCZvd2AxWLR008/rfnz52vGjBnKzs6W3W5Xdna2ZsyYoffee09PPfWULBb+uwAAAAAAAADEZ5imaXZ1J9D1CgoKNHjwYEnS7t27lZub28U9AgAAAAAg8RzO/ffmzZsVCoVks9ko8wgkiI7+uWaqKAAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAGjEMQ4Zh6Le//W1XdwWtZOvqDgAAAAAAAADdzX/+8x9Nmzat0X6r1aq0tDSlp6dr8ODBOuGEEzRlyhRdeOGFstvtXdBT4BBm9gIAAAAAAACtFA6HVVZWph07dmjx4sV68MEHdckllyg3N1d/+MMfFAqFurqL6MWY2QsAAAAAAAA048Ybb9RPfvKT6L+rq6tVVlamb775RgsXLtRHH32kkpIS/frXv9Y777yjd999V/379+/CHqO3IuwFAAAAAAAAmpGVlaVx48Y12n/uuefqtttu07p163TVVVdp9erVWrFihWbOnKmPP/6Ysg444ijjAAAAAAAAAByGsWPHasmSJRo/frwkacmSJXr00Ue7uFfojQh7AQAAAAAAgMOUkpKif/zjHzIMQ5L017/+VcFgMG7b4uJi3XnnnZowYYIyMzOVnJyswYMH67LLLtNHH33U7OOUlZXp2Wef1VVXXaWxY8fK7XbLbrdr4MCBOuecc/TEE08oEAi0qs8vvviiTj/9dPXp00dut1vjxo3TXXfdpfLy8jZ97eg+KOMAAAAAAAAAdICjjz5aZ599tj788EMVFhZq5cqVOuWUU2La/Otf/9INN9wgj8cTs7+goECvvvqqXn31VV177bWaO3eubLbG0d348eO1c+fORvv37t2rDz/8UB9++KHmzp2r9957TwMHDozbz1AopCuvvFKvvvpqzP61a9dq7dq1+uc//9li6IzuiZm9AAAAAAAAQAc566yzotuLFy+OOfbKK6/ohz/8oTwej4YPH677779fH3zwgb744gu9/vrrOu+88yRJTz/9tG699da41w+HwzrxxBN19913691339XKlSu1ZMkS/fOf/9R//dd/SZJWr16tyy+/vMk+/uIXv4gGvaNHj9bTTz+tlStX6qOPPtINN9ygHTt26Pvf//5hfR/QNZjZCwAAAAAAkCBMMyIzUtnV3ThiDEuaDKN7zWU8/vjjo9ubNm2KbpeWlur666+XaZr60Y9+pMcffzxm5u7xxx+viy++WHfeeafuuecePfTQQ7rhhhs0evTomOt//PHHGjVqVKPHPeWUU/SDH/xAzz77rH70ox9p0aJFWrhwoc4888yYdt9++60eeeSR6GMuWrRIbrc7evzMM8/UKaecoquvvvrwvhHoEoS9AAAAAAAACcKMVKqq+Htd3Y0jJnXg6zKsGV3djRh9+/aNbpeVlUW3H3vsMVVUVCgnJ0d///vf45ZokKTf/e53ev7557Vnzx698MIL+uMf/xhzPF7QW9/s2bP18MMP66uvvtKbb77ZKOydO3euIpGIJOmJJ56ICXrrzJo1S/PmzdP777/f/BeLbqd7/ekDAAAAAAAA6MHqh6dVVVXR7bfffluSdMEFFyg5ObnJ8202m04++WRJ0rJly5p9LNM0VVxcrE2bNmnNmjXRj5ycHEnS119/3eiculq8xxxzjE444YQmr/2jH/2o2cdG98TMXgAAAAAAAKCD1A9409LSJNXW2f3qq68kSY8//rgef/zxVl2ruLg47v758+frscce06effhrzeA2VlpbG/Nvv92vz5s2SpIkTJzb72JMmTWpVH9G9EPYCAAAAAAAAHaR+wJqZmSlJOnDggEKhUJuv5fV6Y/5tmqauu+46Pf3006063+fzxfy7rKxMpmlKkrKyspo9d8CAAW3oKboLwl4AAAAAAIAEYVjSlDrw9a7uxhFjWNK6uguNrF69Orpdt7haOByO7vvxj3+sOXPmtOpadrs95t/PPPNMNOg97rjjdMstt+jEE09UTk6OnE6nrFarpNqau//4xz+iwW48hmG07gtCj0LYCwAAAAAAkCAMw9LtFizrbRYsWBDdnjJliqRDM3yl2tm548aNa9e1n3zySUnSyJEjtXTpUqWkpMRtd+DAgbj7MzIyott79+5t9rFaOo7uiQXaAAAAAAAAgA6wZs0aLVy4UJI0ePBgTZgwQVLtDN2jjz5akrRkyZJ2X3/t2rWSpIsuuqjJoNc0TX355ZdxjzkcDo0aNUqStHLlymYfq6Xj6J4IewEAAAAAAIDD5PP5NGvWrGjphF/84hey2Q69qf6iiy6SJG3YsEH/+7//267HqKv76/F4mmzz1ltvqaioqMnjZ511liTp22+/jSk50dAzzzzTrj6iaxH2AgAAAAAAAIdh3bp1mjJlSjQ8nTp1qm688caYNnPmzJHb7ZYkzZ49OzpLtynz58/XN998E7OvblbuO++8E7dUw9atW3XTTTc1e90bbrghWq/3+uuvjxsc/+tf/9J7773X7HXQPVGzFwAAAAAAAGjGvn37tGbNmui/PR6PysrK9M0332jhwoVasGBBdEbvSSedpNdee01JSUkx1xgwYICef/55XXLJJSoqKtKECRN0zTXX6Nxzz1Vubq6CwaAKCgq0YsUKvfbaa9q2bZveeecdfec734leY9asWfrlL3+pwsJCnXzyybrttts0btw41dTU6OOPP9aDDz4ov9+v448/vslSDscee6xuuukm/b//9/+0atUqTZgwQbfddpuOOeYYVVRU6NVXX9UTTzyhCRMmaNWqVZ3w3URnIuwFAAAAAAAAmvHYY4/psccea7ZN//79dcstt+jWW2+NKd9Q38UXX6y33npL11xzjQ4cOKC5c+dq7ty5cdtaLBa5XK6YfXPmzNGCBQv04YcfatOmTbr22mtjjqekpOiFF17Q/Pnzmwx7Jen+++9XYWGh3njjDW3YsEGzZ8+OOT5s2DC9/PLLGjFiRLNfM7ofwl4AAAAAAACglSwWi1JTU5Wenq6hQ4fqhBNO0KmnnqoLLrhAdru9xfMvvPBCbd++XU8++aTee+89rV27VgcOHJDNZtPAgQN19NFH64wzztAll1yiwYMHx5yblJSk+fPn67HHHtMLL7ygdevWyTRN5eTk6KyzztKcOXOUn5+v+fPnN9uHpKQkvf766/rnP/+pJ554Qt98842CwaCGDh2qmTNn6he/+IX69OlzWN8ndA3DrJtjjl6toKAg+gSye/du5ebmdnGPAAAAAABIPIdz/71582aFQiHZbLZo7VYAPVtH/1yzQBsAAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAA0AVM0+zQ6xH2AgAAAAAA9ABWq1WSFA6HFYlEurg3AA5XOBxWOByWdOjn+3AR9gIAAAAAAPQADodDUu1MwOrq6i7uDYDDVV5eHt12Op0dck3CXgAAAAAAgB4gLS0tul1cXKzKykpm+AI9jGmaqqmp0b59+7Rv377o/j59+nTI9W0dchUAAAAAAAB0KpfLpZSUFPl8PoXDYe3Zs0eGYXTY278BdL5wONyoTm96erqSk5M75PqEvQAAAAAAAD2AYRgaMmSIdu3aJZ/PJ6l2lmAoFOringFor/79+6tv374ddj3CXgAAAAAAgB7CYrFo6NCh8ng8qqqqis7yBdAzWCwW2e12uVwuud1u2e32Dr0+YS8AAAAAAEAPYhiG3G633G53V3cFQDfDAm0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAArB1dQcAAOjtymrCWlrk15d7/TIM6b+OcuqELLsMw+jqrgEAAAAAehDCXgAAukB1IKLPi/1aUlijdfuDMusd+7a0Qsf1t+vqsW5lu3mpBgAAAAC0DneQAAAcITUhU1/srQ14vyoJKGw23farkoC+/fSALhju1MUjnXLYqLwEAAAAAGgeYS8AAJ0oFDH1VUlASwpr9MVev/zh1p8bNqW3tnq1eE+Nrsp365TsZEo7AAAAAACaxDShw7Rq1Sr9/ve/1/Tp05Wbm6vk5GS53W7l5eVp9uzZ+uyzz9p0vffff18zZ86MXis3N1czZ87U+++/30lfAQCgo0VMU2tKA3r8m0pd/1Gp/rKqQksLmw96HVZDp2QnKyO58UvzgZqIHv6qUr9bXq6dlaFO7DkAAAAAoCczTNNs5k2kaM5pp52mxYsXt9hu1qxZevLJJ2W325tsE4lEdP311+vpp59uss2Pf/xjPf7447JYOj6jLygo0ODBgyVJu3fvVm5uboc/BgAkMtM0taU8pCWFNVpe5FeZP9LiOUkWaXxWsiZnJ+v4rGTZrYa8wYje2OLVe9u9ccs8GJKmD03RZaNdcifxN1sAAICehvtvAJ2JMg6HobCwUJKUnZ2tSy+9VKeeeqqGDBmicDisZcuW6W9/+5v27NmjF154QcFgUC+++GKT17rzzjujQe/48eN16623asSIEdq6dav+/Oc/a/Xq1XrqqafUv39/3XPPPUfk6wMAtGx3VUhL9tRoaVGN9npbDngthnRMP7smZydr4oBkORsEts4ki64a49bpuQ49v65K35QGY46bkv53p09Li2p0xWi3pg12yEJpBwAAAACAmNl7WC644ALNmjVL3/ve92S1WhsdLy0t1eTJk7Vp0yZJ0qJFi3Taaac1ardp0yYdffTRCoVCmjBhgj799FOlpKREj3u9Xk2dOlWrVq2SzWbT+vXrNXLkyA79WvjLIgC03j5vWEsKa7S0sEa7qlpXhHd0nyRNzk7WSYMcSo9TqiEe0zS1cm9AL6yrUokvfpA8It2mH41L1ciMpFb3HwAAAF2H+28AnYmZvYfh3XffbfZ4v3799Le//U0XXnihJOm1116LG/Y++OCDCoVqazA+8sgjMUGvJDmdTj3yyCM6+eSTFQqF9MADD+jRRx/toK8CANAa5TVhLSvya0lhjTaXt65u7lFpNp2SnaxTBjnU39n4j4ItMQxDkwYm69j+dr291aO3tnoVbJD5bq0I6c4lZZqW69AV+e5WB8kAAAAAgMTDzN5O5vF45Ha7JUnnnXee5s+fH3PcNE3l5uaqsLBQ+fn5Wr9+fZPXys/P18aNG5WTk6Pdu3d36Irs/GURABrzBCNaUVwb8K4pDao1L5iDXNZowJub2rF/U93nDeuFdVVauTcQ97jTZujSPJfOGZoiq4XSDgAAAN0R998AOhMzezuZ3++Pbscr9bB9+/Zo7d+pU6c2e62pU6dq48aN2rNnj3bs2KFhw4Z1bGcBAPKHTX2xtzbg/aokoFDLZXiV6bDo5EHJmpLj0LA0W4f+Ma6+LKdVv5iQoa9K/HpubbWKPLElJLwhU8+vq9bHu32afXSqju7b9MKgAAAAAIDEQ9jbyRYtWhTdHjNmTKPj69ati27n5+c3e636x9evX9+msLegoKDZ40VFRa2+FoCeYVtFUP/ZXSNJSk+2KKPeR92/bcz+lCSFIqa+KQloSWGNVu4NyB9ueQ6vO8nQSYOSNTnbofzMpCO6SNpx/ZP119Psem+7V69v9qqmQX93V4X1++XlOnlQsq4a41a/lLaXkAAAAAAA9DyEvZ0oEono3nvvjf77sssua9Smfgjb0ls36t7mIdW+1aMt6p8LIPGtLPbrgS8r1FJm6U4yGgXAsf+2KiPZolS7cUTDzCMhYppafyCoJYU1+rzIr+pgywFvstXQpIF2Tc526Jh+9i4Ny20WQxeNcGlKjkP/Wl+tzwr9jdosK/Lry31+zRzp0gXDnEqyJtb/IQAAAAAgFmFvJ3rggQe0YsUKSdLFF1+sE044oVGbqqqq6HZdbd+muFyu6HZ1dXUH9RJAollWWKNHvqpsMeiVpOqgqepgWAXV4WbbWQwp3R4bCDcMh+s+UmxGp5UxOFymaWpbRUhLCmu0tNCvMn/LNRpsFml8/9qA9/gByUruZoFppsOqm8en6+yhAT2ztlo7K2MXj/OHpXkbPfpkd42uGevW8QOSu6inAAAAAIDORtjbSRYtWqTbb79dkpSVlaXHHnssbruamprott3efG3F5ORDN+g+n69N/WlpJnBRUZEmTZrUpmsC6H4WF9To0a8rW7WQWFtETKnMH2lVOJpkUROBsLXRPvsRCk4LqkJaWlijJYV+FXubD7YlyZB0TL8knZLt0KSByXIlWTq/k4cpP9Oue6f00YKdPr28ySNPg5nKe71h3beqQsdn2XX1WLcGuvgVAAAAAAASDXd6nWDt2rWaOXOmQqGQHA6HXn31VWVlZcVt63A4otuBQPzV1evUX+wtJSWlTX1idU8g8X28y6cnvq1qFPSO65sku9VQuT+iCn9E5f5Iq2b9tlcwIpX4IirxtRwMp9iMRjOD45WTSLdbZG1jyYQSb1hLi2oD3oazXZuSl2HTKdkOnZztUEZy9w94G7IYhs45yqmTsx16eWO1Fu6qaTQevtwX0DelB3ThMKe+O9Ilh617zVQGAAAAALQfYW8H2759u6ZPn66ysjJZrVbNmzdPp512WpPtU1NTo9stlWbweDzR7ZZKPvQGm8qCWrc/oHOHObvd26qBI+1/d3j1zNrGzyHnDE3RNUe7Y+rtRkxTnqCp8oPBb/0QuHY7HN2uCpgdPku4Pl/IlC8UVpGn+dm2hqRUe/36wta4AXGy1dDqfX4tKfRrY1mwVX0YkmrT5OxknZLtUJYzMRYyS7NbdN0xaTpzSIqeXVOlTeWxYXcoIv17q1ef7qnRVWPcOnlQcrctvQEAAAAAaD3C3g5UWFios846S4WFhTIMQ88884xmzJjR7Dn1Z9zWX6wtnvqlGHr7gmumaeqf66u1sSyoD3b4dGmeS6fnOto88w9IBPO3efXC+sZB7/nDUvTDMe5GIZ7FMJRqN5Rqt2hwaqPTYoQjpioDkZhguHE4XPvZG+q8WNiUVBkwVRkIa1dVWFLrgtymDHBaNTk7WZOzHcpNTdyXwuHpSfrdKX20eE+N/rXBo4oGZTj210T00OpKLdiZpNnjUjUkgb8XAAAAANAbcFfXQUpLS3X22Wdr27ZtkqRHHnlEs2bNavG8sWPHRrc3bNjQbNv6x8eMGdPOniaGL/YForP2yvwRPfFtld7d5tWV+W5NGGBnhhp6jTe3ePTSRk+j/TNHOPX90a7D/lmwWgz1cVjVx9HyjNdA2IwTBodV4TdVXm+2cLk/omDLFR46XJ9ki04+GPCOSLf1mucJi2Foam6KJg5I1mubPfpgh69RGY91B4K6bfEBnTM0RZfmuXpEjWIAAAAAQGOEvR2goqJC55xzjtatWydJuvfee3XTTTe16txhw4YpOztbhYWFWrRoUbNtP/30U0lSTk6OjjrqqMPqc09mmqZe2tB4FmOhJ6y/flGhvAybrhzj1pjM5he8A3oy0zT12maPXtvsbXTssjyXvjfKdcT7ZLcaynJaWyyFYJqmfKF4wXDj2cMVgYgihzFh2JVk6KSBtSUaxvZNiiln0ds4kyyaNTZVZwxO0bNrq7Rmf+zs6Igpvb/DpyWFNboy362puY5e/f0CAAAAgJ6IsPcweb1enX/++fryyy8lSXfeeaduu+22Vp9vGIZmzJihxx57TBs2bNDy5ct10kknNWq3fPny6MzeGTNm9JoZafEYhqGbjkvTSxuq9U1p47dybyoP6bfLynVCll2X57t5WzISjmmaemmjR29tbRz0Xpnv0owRRz7obQvDMORMMuRMsii7hfLjEdNUdaB+feFwk6UkqoK1qXCyVZowoHYG77H97bJR3iVGbqpN//fEDK0o9uuF9dUqbbCQXmXA1NxvqvTRLp9mH52qkRlJXdRTAAAAAEBbGaZpdubaOwktEAjowgsv1IcffihJmjNnjh588ME2X2fTpk0aO3aswuGwJkyYoE8//VQpKSnR4z6fT6eddppWrVolm82mdevWadSoUR31ZUiqrRdcVwd49+7dMbWEu7NvSgN6cX21tleG4h43JJ2W69BleS71S0mMhZfQu5mmqRfWV+u97b5Gx64Z69a5w5xd0KvuIRQxVR005U4yCHhbyR829dYWj97e5o1bWsOQNG2wQ1eMdistmdIOAAAAHaGn3n8D6BkIew/D9773Pb3xxhuSpDPOOEMPPvhgszNu7Xa78vLy4h674447dO+990qSxo8fr9tuu00jRozQ1q1bdd9992n16tXRdvfcc08HfyU9+8UmYppaXuTXvI3V2uuNXwg0ySL911FOfXeEU247gQV6pohp6pk11Vqwq3HQ++NxqTp7aEqcs4CW7fWG9cK6Kq3aG4h73GUzdNlol84eksJCmAAAAIepJ99/A+j+CHsPQ1tLKQwdOlQ7duyIeywSiei6667TM8880+T51157rZ544glZLB0fVibCi00oYmrhLp9e2+xRZSD+sHbaDH13pFPnHuWU3UpggZ4jYpp64psqfVJQE7PfkPTf30nV6YMJenH4vtrn13PrqlXkCcc9PiTVqtlHp2psX2qiAwAAtFci3H8D6L4Iew9DR4a9dd577z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999zD6G3zEunFxheK6N1tPr2zzSt/wyXnD8p0WHTpKJem5jqYpYZuLxwx9fevK/VZoT9mv8WQbjo2TVNyHF3UMySiYNjUezu8en1z08+hk7OTddUYtzIdlMcBAABoq0S6/wbQ/RD2QlJivtiU+yN6Y7NHH+3yqYm8Qjluq64Y7daEAfZevegduq9QxNTDqyv1eXFs0Gs1pDnj03TiIIJedI4DNWH9c321ljT4I0OdZKuhi0c6df4wp5J4pwQAAECrJeL9N4Dug7AXkhL7xabYE9LLmzxa2kRgIUl5fZL0g3yX8jN5azK6j2DY1IOrKxrVUbVZpP9zfLpOGJDcRT1Db7Juf0DPrq3Wrqr4C2EOcll19Vi3xmcxHgEAAFojke+/AXQ9wl5I6h0vNtsqgnpxQ7W+LQ022WbCALsuH+3W4FTbEewZ0FggbOpvX1Toq5LYoDfJIv3ihHQdR7CGIygcMfXRLp9e3uiRJxT/14YTsuyaNdatgS6ePwEAAJrTG+6/AXQdwl5I6l0vNt+UBPSvDdXaURl/lpohaWquQ5fmudQvhXqUOPJqQqb+sqpca/bH/mEi2SrdOiFD4/oxAx1do9If0byN1fp4d43i/fKQZJEuHO7Ud0e6lExpBwAAgLh60/03gCOPsBeSet+LTcQ0tazIr5c3VmuvNxK3TZJF+q+jnPruCKfcdssR7iF6K18oontXVmjDgdigN8Vm6PaJ6ZQaQbewtTyoZ9ZWaUt5/D+a9XVYNGusWycOTKYeOgAAQAO97f4bwJFF2AtJvffFJnTwrcmvb/aoMhD/R8FlMzRjpFPnHuWUnZlq6ESeYER/WlGuzQ0CNKfN0K8mZWhUn6Qu6hnQWMQ09WlBjV7cUK2KJp4/x/VN0uyjU5VLaRwAAICo3nr/DeDIIOyFJF5sfKGI3t3m1TvbfPKH4/9IZDosuizPpdNyHLJaCH3RsaoCEf3x83Jtb1BexJ1k6M4TMzQ8naAX3ZM3GNGrmz36YIdPkThPn1ZD+q+jUnTJKJecSbxLAgAAoLfffwPoXIS9kMSLTZ1yf0RvbPboo10+NZH5Ktdt1RX5bp2QZeftyegQFf6I/vB5uXZVxQa9aXZDvz6xj4akMSsS3d/uqpCeXVultfvjL4KZnmzRD/JdOjXHIQvPnQAAoBfj/htAZyLshSRebBoq9oQ0b6NHy4r8TbYZ3SdJV+a7qKGKw1JWE9bdn5drT3U4Zn+fZIv+74kZvP0dPYppmlpe7Nc/1lVrf038euh5GTbNHpfKbHUAANBrcf8NoDMR9kISLzZN2Voe1IsbqrWmiZlqkjRhgF1XjHYTyqHNSn1h3b28XMXe2KC3r8OiX5+UoUEuxhR6ppqQqTe3evTONq9CcTJfQ9IZQxy6fLRbaSyACQAAehnuvwF0JsJeSOLFpjmmaeqb0oBe3ODRjsr4K88bkk7PdejSPJf6pliPbAfRI+3zhvX75WUq8cUmYf1TLPrNSX2U5WQcoecr9oT0wrpqfbEvEPe4K8nQ9/NcOntoCqUdAABAr8H9N4DORNgLSbzYtEbENLW00K+XN1Zrny/+25OTLNK5Rzk1Y6RTbhYiQhOKPCHdvby80dvcBzqt+vVJGerHHwyQYFbv8+u5tdWNZrHXGZpm04+OdlMWBwAA9ArcfwPoTIS9kMSLTVuEIqYW7PTp9S0eVQXi//i4bIa+O9Kp/zrKKbuV2Wo4pKAqpD98Xq4yf2zQm+O26tcnZqiPg6AXiSkYNvXudq/+vcUjf/zMV1Oyk/WDMW5l8nMAAAASGPffADoTYS8k8WLTHt5gRO9u9+rdbT75w/F/jPo6LLo0z6Wpuaw+D2lXZUh3f16mygZ/JBiSatX/PbGP0pOZDY7EV+oL65/rq5tcANNhNfS9UU6dN8wpm4XnTQAAkHi4/wbQmQh7IYkXm8NRXhPW61u8WrjLpyYyX+W6rboy363js+wyCH17pW0VQf3x83JVB2MHybA0m+48MUOpLFKFXmbt/oCeXVul3VXxp/lmu6w6NcehHLdVOW6bBrqshL8AACAhcP8NoDMR9kISLzYdocgT0ssbPU3OVpOk/D5JujLfrdGZSUewZ+hqm8uC+tOKcnlCsU+3IzNs+tWkDLmo74xeKhwx9eFOn17Z5JE31PyvI1ZDGuCsDX5rA+BD2w4bP0MAAKDn4P4bQGci7IUkXmw60pbyoF7cUK21+4NNtpk4wK7LR7uVm2o7gj1DV9hwIKB7V1bI1yDIys9M0u0T05VCSAWowh/RSxur9cnumnad39dhqRcCH/qcZjd4NwUAAOh2uP8G0JkIeyGJF5uOZpqmvi4N6MUNHu2sDMVtY0iaNtihS/NcLEaUoNaUBvTnVeWNFqMa1zdJv5yQIYeNEAqob0t5UM+sqdLWivjPm23lTjLihsD9UizUUQcAAF2G+28AnYmwF5J4seksEdPUkkK/Xt5YrRJfJG6bJIt03jCnLhrhlJu38yeMr0r8+uuqCgUb/Lcf19+un5+QLruVoAmIJ2KaWlns15r9Qe2pDmlPdVjl/vjPn+1lt0jZDULgbLdNg5xWJfGzCQAAOhn33wA6E2EvJPFi09mCYVMLdvn0xmaPqoLxf+RcSYZmjnDpnKNSCAJ7uC/2+nX/lxUKNcinTsiy62fHpxMmAW3kCUa0pzocDX/rPu/zhtWRv8RYonWBY2cCZ7uscvLHOAAA0EG4/wbQmQh7IYkXmyPFG4zo3W1evbvd2+it/XX6Oiy6LM+l03IdvM24B/q8qEYPra5UuMEz64kDk/U/49Nks/B/CnSUQNhUkadxCFzkCTWaVX+4+iRbGoXAuW6r0pMt1AUGAABtwv03gM5E2AtJvNgcaWU1Yb2+2auFu32KNPETmOu26sp8t47PshMk9BCf7anRo19XNvo/nZydrJuOTZOVoBc4IiKmqX3ecDQALqwXBHtCHftrj8tmKLtBCJzjtirLaeUPdgAAIC7uvwF0JsJeSOLFpqsUVof08iaPlhf5m2yTn5mkH+S7ldcn6Qj2DG31yW6fHv+mqtFbyk/PdeiG76QS+gDdgGmaqvBHVFAv/C301H4+UNOxU4GTLNIgV10AXBcC2zTIZaVUDwAAvRz33wA6E2EvJPFi09W2lAf1r/XVWncg2GSbiQOSdUW+Szlu2xHsGVpjwU6fnlpT1Wj/2UNS9KNxboJeoAfwBiMqjFMSYq833OQ7MNrDkJQVpy5wjtsqF3WBAQDoFbj/BtCZCHshiReb7sA0TX1dEtC/Nni0qyoUt40h6YzBDl2S51Kmw3pkO4i43tvu1fPrqhvtP/eoFF091k0JDqCHC4ZNFXsbh8CF1SEFOrgucEaDusDZB+sC96EuMAAACYX7bwCdiSmCQDdhGIaOy0rWd/rbtWSPXy9vqlaJLzZJMCUt3F2jxXtqdO4wp2aMcDITrIt4ghF9sMOnVzZ5Gh2bMcKpK0a7CGeABJBkNTQ41abBqbG/MkVMU6W+SKMQeE91SNXB9v0dvdwfUbk/orX7Y9/lkWIzGs0EznZZNcBppRY4AAAAgBiEvUA3YzEMnZrr0EmDkvXhLp/+vdmjqgbBQSAivbXVq492+TRzpEvnDE2hBmQn8wYjWn8gqHX7A1p3IKjtFaFG9Xkl6ZJRTl0yiqAXSHQWw1CWs3YhtvFZh/abpqnKgBk3BN7fzrrAvpCpLeUhbSmPfdeHzSINdNaGv7n1wuBBbpuSeU0AAAAAeiXKOEASbyPpzrzBiN7e5tX8bd4m3zLc12HR90e7dGqOg/qwHcQbjGjDgaDWthDu1nf5aJdmjnQdkf4B6HlqQpGDJSBqw9+6heL2esMKd3Bd4H4plkY1gXPdNrntvBsEAICuxv03gM5E2AtJvNj0BGU1Yb2+2auFu31NLhY0ONWqK0e7NT7LzszSNqoLd9cdDHhbE+7WN2uMW+cPd3Za/wAkrlDEVHG9xeEKPXWzgcPyd2QKLCnNbjQKgXPcNvV1UBcYAIAjhftvAJ2JsBeSeLHpSQqrQ5q30aPPi/1NthmTmaQr893K65N0BHvWs3iDEW0sC2rt/trSDNvaGO5KUpJFGpWRpItGODU+K7lT+gmg94qYpg7URFRQrxRE3azgykDH/vqWbK2rC1wXAtcGwQOcVtmoCwwAQIfi/htAZyLshSRebHqizWVBvbihWusOBJtsM2lgsq4Y7VK2m/LcvtDBmbv7g1p3oDbcbWqGdFNsFikvI0lj+9p1dN8kjcxIolYygC5RFYi/OFzDhT0Pl9WQBroOBsB1n1OtynbZ5LDx/AcAQHtw/w2gM5EAAT3UqD5J+s1JGfqqJKAXN1RrV1W4UZsVxX6t2uvXtMEOXTLKpUyHtQt62jU6NtytDXhHEe4C6CZS7RblZ9qVnxm73x82VRgnBC7ytK8ucNhUtKREQ/XrAme7DtUFTkumLjAAAADQVQh7gR7MMAyNz0rWsf3t+mxPjV7e5FFpg1ldEVNauKtGiwtqdP4wpy4a4ZQzKfFuxH2hiDbWq7nb3nB3VF24m2lXXh/CXQA9S7LV0LD0JA1Ljy3jE46Y2usNNwqBCz1h+ULte5NXqS+iUl9AX5fE7k9Niq0LnH3wc78UC4uIAgAAAJ2MMg6QxNtIEkUgbGrBTp/e2OJRdTD+j7Y7ydDMkS5NH5rSo4PMmlBEG8oOztzdH9DWdoS7VqN2hvTRmbUzdwl3AfQ25sG6wHs8Ye2pqjcj2BNWhb9jS0IkW6VBrkMhcK7bqmy3TYNc1AUGAPQu3H8D6EyEvZDEi02i8QYjenurV/O3exVo4l69X4pFl+W5dGqOo0fMtKoJ1S6otm7/oZm7bX1LstWonbl7dF1Zhj5JSibcBYC4qoMR7akKq9BTvyxESPu8kTYvaNkciyENcNZfHO7Q5xRb4r0TBQAA7r8BdCbCXkjixSZRHagJ67XNHn2yu6bJWa9DUq26Mt+t4/rbZXSj0LcmZGpjWSBm5m57w926mrt5hLsAcNgCYTMmAC6sVxc42LGTgZXpsMQJgW1Ktxvd6jULAIC24P4bQGci7IUkXmwS3Z7qkOZt9GhFsb/JNmMzk3Rlvluj+iQ12aYz1YRMbSqrDXbXHghqa3mwXeHuyPrhbkYSq8UDwBESMU3tO1gXuOBgXeC6xeK87awL3BRXkqEc16HwN8dtVU6qTf2pCwwA6AG4/wbQmQh7IYkXm95iU1lQL26o1voDwSbbnDgwWZePdinb3bnrN/rD5sGyDLWzd7e0M9wdUa8sA+EuAHQ/pmmq3B9ptDjcnuqwyjq4LnCSpXFd4JyDdYGTeGcHAKCb4P4bQGfq3DQHQLeS1ydJd52Uoa9KAnpxQ7V2VYUbtfm82K+Ve/06Y7BDl4xyqY/D2iGP3aHhbr0F1Qh3AaB7MwxDfRxW9XFYNa6fPeaYNxg/BN7rDberLnAwIu2qCmlXVUjSoXezGKqtC5zdoCRErtsqZxJ1gQEAAJA4CHuBXsYwDI3PStax/e1avKdGr2zyqNQXO7MqYkof7arR4j01Om+YUxcNd7b5ZtgfPlSWYd3+oDa3N9xNt2lsX7vG9k3S6D5JcrBYDwAkDGeSRaP6WBqVEAqGTRV5G4fAhdWhdtUFNiUVe8Mq9ob15b5AzLE+ybV1gbMbLA7XJ9lCXWAAAAD0OIS9QC9lMQxNzU3RyYMc+nCnT//e4lF1MDaN9Yelf2/x6qOdPs0c6dL0oSlNvg02EI6tubulPKhQG2/ILQ3C3XzCXQDolZKshoak2jQkNfZX1YhpqtQX0Z7qkAoazAj2BNtXmazMH1GZP6I1+2NLHKXYjDiLw1k1wGmlLjAAAAC6LWr2QhI1gyB5ghG9vdWr97Z7FWgipO2fYtFleS5NyXEoFKmtAbzuQEBr97c/3B2ebtPR9WbuphDuAgDayDRNVQRM7akOqTAaAtcGwftrOrYusM0iDXI1CIFdtTOD7dQFBgC0AvffADoTYS8k8WKDQw7UhPXaJo8+3l3TZL3Evg6LKgKRwwt3M5M0OpNwFwDQuXyhQ3WBC+vNBi72hhXpwN+CDdX+UTR2JnDtttvOax0A4BDuvwF0Jso4AIiR6bDq+u+k6fzhTr20waOVe/2N2rR2llRduDs289DMXRbCAQAcSSk2i0ZmWDQyI7YucChiqtgTjpaEKKyrC+wJyd94/dIWmZL2+SLa5wtodUnssXS7ERP+1n3OdFAXGAAAAB2LsBdAXDlum34xIV2byoL614ZqbTgQbPEcQ43LMhDuAgC6I5vFUG6qTbmpNp1Yb3/ENLX/YF3g6OJwB0PhqkD7pgJXBExVHAhqXYPXUofVUHa98De3Xl1gq4UQGAAAAG1H2AugWXl9kvTbkzK0el9AL26s1u6qQ9Od6sLdsX3tOppwFwCQACyGof5Oq/o7rTouK/ZYZaBBCHxwRnCJr311gWvCprZVhLStIhSz32pIAxvWBXZble2yyWEjBAYAAEDTCHsBtMgwDB0/IFnHZdm1stivguqwhqXZlJ9JuAsA6D3S7BalZdo1JjN2f03IVKEnNgTeUx1SsSescDsmA4dNHbxG43oS/VMsym4QAue4bUqjLjAAAABE2AugDSyGoRMHOWLe7goAQG/nsBkanp6k4emN6wLv89aGtgX1QuDC6rBq2pMCSyrxRVTiC+jrBnWBU+vqAjeYEdw3xSILdYEBAAB6DcJeAAAAoBPYLIay3TZlu22aqOToftM0tb8mEg1+D80IDqminXWBqwKmNhwINqqxn2yVsl0Hy0C4bco9GAIPdFlloy4wAABAwiHsBQAAAI4gwzDUL8WqfilWHds/9lh1IBKdBVxYbzZwiS+i9sTA/rC0vTKk7ZUhSf7ofqshDXBaY2sCH/ycYqMkBAAAQE9F2AsAAAB0E267RfmZduU3qAvsD5sqqr84nKf2c5EnrFA71ocLm1KhJ6xCT1gr9wZijvV1WOqFwIeC4HS7IYOSEAAAAN0aYS8AAADQzSVbDR2VnqSjGtQFDkdM7fOFGy0Ot6c6LF+ofSUh9tdEtL8mom9KY0tCuJKMmHrAdSUh+lEXGAAAoNsg7AUAAAB6KKvF0CCXTYNcNk0YEFsXuMwfaRQCF1aHVeZvx1RgSZ6gqU1lQW0qiw2BkyyKloCoHwYPclqVZCUEBgAAOJIIewEAAIAEYxiGMh1WZTqsOqafPeaYJ9g4BN5THdY+b7hddYGDEWlnZUg7G9QFNiQNdFmV7YoNgXPcVjmTqAsMAADQGQh7AQAAgF7ElWRRXh+L8vrEloQIhE0VH6wFXFAvBC7yhBRsx2RgU1KRJ6wiT1hf7IutC9wn2dJoJnCO26qMZAt1gQEAAA4DYS8AAAAA2a2GhqTZNCQt9hYhYpra5w2rsLp+beDaINjTzrrAZf6IyvwRrdkfWxLCaTOi4W+226rcgyFwltNKXWAAAIBWIOwFAAAA0CSLYWigy6aBLpuOH3Bov2maqvBHVFAdVqEntiTEgZr21QX2hkxtLg9pc3koZn+SRRpUrxxEXY3gbJdNduoCAwAARBH2AgAAAGgzwzCU4bAqw2HVuAZ1gb3BiAo9jesC7/WGFWnHZOBgRNpVFdauqnBsHyRlOS0HQ+BDAXBOqlVu6gIDAIBeiLAXAAAAQIdyJlk0MsOikRmxdYGDYVPF3sYhcGF1SIF21gXe641orzegLxvUBU5Ptiin/uJwqTbluKzKdFAXGAAAJC7CXgAAAABHRJLV0OBUmwanNq4LXOqLNAqB91SHVB1sX13gCn9EFf6I1h2IrQucYjOU7Wq8ONwAp1VWCyEwAADo2Qh7AQAAAHQpi2Eoy1m7ENv4rNhjlf6ICuKEwPvbWRfYFzK1tSKkrRWxdYGtRmxd4Pr1gZOpCwwAAHoIwl4AAAAA3VZaskVjk+0a2zd2f03oYF3gqtrwt+BgCLzXG1a4HZOBw6ZUUB1WQXXjusD9UiyNQuAct02pduoCAwCA7oWwFwAAAECP47BZNDzdouHpsXWBQxFTe73hejOB62YDh+VvRwpsSirxRVTiC+irkthjaXZDOW6bsuuFwLlum/pSFxgAAHQRwl4AAAAACcNmMQ4GrzZJydH9EdPUgZr4dYErA+2rC1wZMFV5IKj1DeoCJ1uNg7N/rcp2HZoJPNBllY26wAAAoBMR9gIAAABIeBbDUL8Uq/qlWHVs/9hjVYH4IXCJr311gf1hU9sqQtpWEZLkj+63GtIAZ23wm+u2xswIdtgoCQEAAA4fYS8AAACAXi3VblF+pl35mbH7/WFThXFC4CJP++sCF3rCKvSEtXJv7LG+jvh1gdPsBiUhAABAqxH2AgAAAEAcyVZDw9KTNKxBXeBwo7rAtZ8LPWH5Qu0rCbG/JqL9NQF9Uxq7351kxA2B+6VYZCEEBgAADRD2AgAAAEAbWC2Gst02ZbttmlivLrBpmirzR1RQHdaeqnozgj1hVfjbVxKiOmhqY1lQG8ti6wLbLVJ2nBB4oNOqJCshMAAAvRVhLwAAAAB0AMMwlOmwKtNh1Xf62WOOVQcjKmwwE3hPdUj7vBG1Zy5wICLtqAxpR2VsXWBLtC5wbAic7bLKmURdYAAAEh1hLwAAAAB0MneSRXl9LMrrE1sSIhA2VeQ5FP7WrwscbMdk4IgpFXnCKvKEtWpvIOZYn2RLoxA4121VerKFusAAACQIwl4AAAAA6CJ2q6GhaTYNTYu9NYuYpvbFqQu8pzosbzvrApf5IyrzR7Rmf2xJCJfNUHaDEDjHbVWW00pdYAAAehjCXgAAAADoZiyGoYEumwa6bDphQGxd4HJ/JG4IXNbOusCekKnN5SFtLg/F7E+ySINcdQFwXQhs0yCXVXbqAgMA0C0R9gIAAABAD2EYhvo4rOrjsGpcg7rA3mBsCFzoqf1c7Am3qy5wMCLtqgppV1VsCGxIyopTFzjHbZWLusAAAHQpwl4AAAAASADOJItG9bFoVIO6wMGwqSJv7EzgusXi2lMX2JS01xvWXm9YX+6LrQucEacucI7bqj7UBQYA4Igg7AUAAACABJZkNTQk1aYhqY3rApf6ItpTHVJBg7IQnmD76gKX+yMq90e0tkFd4BSbETcEzkqxymohBAYAoKMQ9gIAAABAL2QxDGU5axdiG591aL9pmqoMmA1qAtdu769pX11gX8jUlvKQtjSoC2yzSAOdteFvbr0QONttoy4wAADtQNgLAAAAAIgyDEPpyYbSk+0a2zf2mC8UiZaAqF8fuNgbVqQdk4FDEamgOqyC6rA+r98HSf1SLI1mAue6bXLbqQsMAEBTCHsBAAAAAK2SYrNoRIZFIzJi6wKHIqaKPY1D4EJPSP5w2x/HlFTii6jEF9BXJbHH0u2GshuEwDlum/o6qAsMAABhLwAAAADgsNgshnJTbcqNUxd4/8G6wHsahMFVgfbVBa4ImKo4ENT6A7F1gR1WQ9lua70QuDYIHuC0ykZdYABAL0HYCwAAAADoFBbDUH+nVf2dVh3X4FhlIHJoBnC9ELjE1766wDVhU9sqQtpWEZLkj+63GtJA18EAuO5zqlXZLpscNkJgAEBiIewFAAAAABxxaXaL0jLtGpMZu78mZKrQcyj8rasRXOQJK9yOycBhUwev1bieRP26wNmuQ3WB05KpCwwA6JkIewEAAAAA3YbDZmh4epKGpzeuC7zPWxvaFjSYEVzTnhRYUqkvolJfQF83qAucmmQ0Whwu221TvxSLLNQFBgB0Y4S9AAAAAIBuz2apXZgt223TRCVH95umqQM1kZiF4Wo/h1TRzrrAVUFTG8qC2lAWWxc42SoNch0KgXMPfh7ooi4wAKB7IOwFAAAAAPRYhmGob4pVfVOs+k5/e8yx6kAkJvytXxe4PTGwPyztqAxpR2VsXWCLIQ1wWmNmAtd9TrFREgIAcOQQ9gIAAAAAEpLbbtHoTItGZ8aWhAiEY+sC76lXFzjUjvXhIqZU5AmryBPWqr2BmGOZDkucENimdLshg5IQAIAORtgLAAAAAOhV7FZDR6Ul6ai02BA4HDG1zxdWYb26wHVhsC/UvpIQB2oiOlAT0belsSUhXEmGclyHwt8ct1U5qTb1py4wAOAwEPYCAAAAACDJajE0yGXTIJdNJwyIrQtc5j9UEqKwXghc5m/HVGBJnqCpTeUhbSoPxexPsqi2NrErti7wIJdVSVZCYABA8wh7AQAAAABohmEYynRYlemw6ph+sXWBPcHYxeEKD37e6w23qy5wMCLtrAxpZ4O6wIYO1QXOdscuEudMoi4wAKAWYS8AAAAAAO3kSrIor49FeX0a1wUu9tSGwAX1wuAiT0jBdkwGNiUVe8Mq9ob1xb7YusB9kg/VBc6uVx+4T7KFusAA0MsQ9gIAAAAA0MHsVkND0mwakhZ72x0xTZX4ItpTVb8mcO22p511gcv8EZX5I1qzP7YusNNmxIS/dZ8HOK3UBQaABEXYCwAAAADAEWIxDA1w1gauxw84tN80TVUEzJjwt+7zgZr21QX2hkxtKQ9pS4O6wDaLNMjVIAR21ZaHsFMXGAB6NMLebmbnzp16+OGHNX/+fO3evVvJyckaMWKELrvsMt10001yOp1d3UUAAAAAQAczDEMZyYYyku06um9sXWBvMKJCT7hRCLzXG1akHZOBQxFpd1VYu6vCsX2Q1D/F0mAmcO22205dYADoCQzTNNv3PhF0uHfeeUdXXXWVKisr4x7Py8vT/PnzNXLkyA5/7IKCAg0ePFiStHv3buXm5nb4YwAAAAAAOk4oYqrIU7soXEGDReIC7ZsM3KR0uxET/tZ9znRQF7ituP8G0JmY2dtNrF69Wt///vfl8/nkdrt1xx13aNq0afL5fJo3b56efPJJbdq0Seeff75WrVql1NTUru4yAAAAAKAL2SyGBqfaNDjVphPr7Y+Ypkp9Ee2pDqmwOnZGcFWwffO9KgKmKg4Ete5AbF1ghzW2LnBuvbrAVgshMAAcaYS93cScOXPk8/lks9n04Ycf6uSTT44eO+OMMzRq1Cjdeuut2rRpk/72t7/pt7/9bdd1FgAAAADQbVkMQ1lOq7KcVo3Pij1W6Y+ooF74W1ceotTXvqnANWFT2ypC2lYRWxfYahyqC1w/DM522eSwEQIDQGehjEM3sGLFCp14Yu3fYW+44QbNnTu3UZtIJKJx48Zp/fr1ysjI0L59+5SUlNRhfeBtJAAAAADQe9WEDtYFrqoNfwuqwyr0hFTsCSvcwalB/brA2fXKQqT1krrA3H8D6EzM7O0G3nzzzej27Nmz47axWCyaNWuW7rjjDpWXl+uTTz7R9OnTj1APAQAAAACJzGGzaHi6RcPTYycVhSKm9nrD9RaGq5sVHJa/nSlwiS+iEl9AX5XE7k+N1gU+OBP44MzgvikWWagLDACtQtjbDXz22WeSJJfLpRNOOKHJdlOnTo1uL1mypFeHveFISAdq9nZ1NwAAAAAg4dkt0rC02o86pmmq3B/RXm9Y+zwR7fWGtNcb1l5vWNWhpq/VnJqQtLW89iPm8Q0py2VRltOqAU6bBjitGuC0qF+KVbYGdYEzHQNktRB1AOi9eAbsBtavXy9JGjlypGy2pv9L8vPzG53TWgUFBc0eLyoqatP1utqBmr2yl83q6m4AAAAAQK81QNIAQ5L74MeRFDj40cCBPi+ovzPnCHcGALoPwt4uVlNTo9LSUklqsU5Pnz595HK55PF4tHv37jY9Tl09IAAAAAAAAACJqXdUP+/Gqqqqottud8t/CnW5XJKk6urqTusTAAAAAAAAgJ6Hmb1drKamJrptt9tbbJ+cnCxJ8vl8bXqclmYCFxUVadKkSW26JgAAAAAAAIDug7C3izkcjuh2IBCn4FADfr9fkpSSktKmx2mpRERPk+kYoAN9XujqbgAAAAAAuoAnGFGJN6y93sjBheFCOmmgQ1MdA7q6awDQpQh7u1hqamp0uzWlGTwej6TWlXxIZFaLjaL7AAAAANBL9Zd0VHpX9wIAuh9q9nYxh8Ohvn37SpIKCgqabVtWVhYNe1lwDQAAAAAAAEB9hL3dwNixYyVJW7ZsUSgUarLdhg0bottjxozp9H4BAAAAAAAA6DkIe7uBKVOmSKot0fDFF1802W7RokXR7cmTJ3d6vwAAAAAAAAD0HIS93cB3v/vd6Pazzz4bt00kEtELL9QuSJaRkaFp06Ydia4BAAAAAAAA6CEIe7uBSZMm6dRTT5UkPf3001q2bFmjNn/729+0fv16SdKcOXOUlJR0RPsIAAAAAAAAoHuzdXUHUOuhhx7S5MmT5fP5NH36dP3qV7/StGnT5PP5NG/ePD3xxBOSpLy8PP385z/v4t4CAAAAAAAA6G4Ie7uJ8ePH6+WXX9ZVV12lyspK/epXv2rUJi8vT/Pnz1dqamoX9BAAAAAAAABAd0YZh27kwgsv1DfffKOf/exnysvLk9PpVEZGhiZMmKD77rtPq1ev1siRI7u6mwAAAAAAAAC6IcM0TbOrO4GuV1BQoMGDB0uSdu/erdzc3C7uEQAAAAAAiYf7bwCdiZm9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACcDW1R1A9xAKhaLbRUVFXdgTAAAAAAASV/177vr34gDQEQh7IUkqKSmJbk+aNKkLewIAAAAAQO9QUlKio446qqu7ASCBUMYBAAAAAAAAABKAYZqm2dWdQNerqanRt99+K0nq37+/bLbuP+m7qKgoOgt5xYoVGjRoUBf3CGg/xjMSCeMZiYYxjUTCeEai6YljOhQKRd9de8wxx8jhcHRxjwAkku6f6OGIcDgcmjhxYld3o90GDRqk3Nzcru4G0CEYz0gkjGckGsY0EgnjGYmmJ41pSjcA6CyUcQAAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEYpmmaXd0JAAAAAAAAAMDhYWYvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS96JF27typn//858rPz5fL5VJmZqYmTpyov/zlL/J6vV3dPSS4ffv26d1339VvfvMbnXvuuerXr58Mw5BhGLrmmmvafL33339fM2fOVG5urpKTk5Wbm6uZM2fq/fffb/U1QqGQ5s6dq1NPPVX9+/dXSkqKRowYoRtuuEFr165tc5/Qe6xatUq///3vNX369OgYdLvdysvL0+zZs/XZZ5+16XqMZ3SVyspKzZs3Tz//+c81depUjRw5Uunp6bLb7crKytLpp5+uP//5z9q/f3+rrrd06VJdddVVGjp0qBwOhwYOHKhzzjlHL730Upv69dJLL2n69OkaOHCgHA6Hhg4dqquuukrLli1rz5cJSJJuu+226O8ehmHoP//5T4vn8PyMrlZ/zDb3cfrpp7d4LcYzADTDBHqYt99+20xLSzMlxf3Iy8szN2/e3NXdRAJrauxJMq+++upWXyccDpvXXntts9f78Y9/bIbD4WavU1JSYk6cOLHJayQnJ5tPPvnkYX7VSESnnnpqs+Ov7mPWrFmm3+9v9lqMZ3S1BQsWtGo89+vXz/zggw+avdZdd91lWiyWJq9x/vnnmz6fr9lreL1e87zzzmvyGhaLxfztb3/bkd8C9BKrV682bTZbzHj65JNPmmzP8zO6i9Y8R0syp06d2uQ1GM8A0DLCXvQoX375pZmSkmJKMt1ut/nHP/7RXLp0qblw4ULzuuuuiwl8Kysru7q7SFD1fxEcMmSIOX369HaFvbfffnv0vPHjx5svvfSSuWLFCvOll14yx48fHz12xx13NHmNUChkTpkyJdr24osvNt9//33z888/Nx9++GEzKysrGiq89957HfDVI5GMGDHClGRmZ2ebc+bMMV977TVzxYoV5rJly8z777/fzMnJiY6tK664otlrMZ7R1RYsWGAOHjzYnDVrlvnQQw+Zb7zxhrls2TJzyZIl5ssvv2xeeumlptVqNSWZdrvd/Oqrr+JeZ+7cudExOGLECPPpp582V6xYYb755pvmtGnTWv0zcfnll0fbTps2zXzzzTfNFStWmE8//XT0Z0+S+fjjj3fGtwMJKhwORwOquufElsJenp/RXdSNnxtvvNH89ttvm/zYtm1bk9dgPANAywh70aPUzUKz2Wzm0qVLGx3/85//HH3Rvuuuu458B9Er/OY3vzHfeecds7i42DRN09y+fXubw96NGzdGZ+VMmDDB9Hq9Mcc9Ho85YcKE6Hhvarb6008/HX3sn/zkJ42Ob968OToTfuTIkWYwGGzbF4uEdv7555svv/yyGQqF4h4vKSkx8/LyomNs0aJFcdsxntEdNDWO6/v3v/8dHWMzZ85sdHz//v1menp69I95JSUljR7jwgsvbDFgW7hwYbTNhRde2KhvJSUl5pAhQ0xJZkZGhnngwIHWf6Ho1R544AFTkpmfn2/ecccdLY5Fnp/RnRzufRrjGQBah7AXPcbnn38efVG+4YYb4rYJh8PmmDFjojdPgUDgCPcSvVF7wt4bb7wxes6yZcvitlm2bFmzv4iaphkd75mZmabH44nb5k9/+lP0Oq+88kqr+gfUeeedd6Lj5+abb47bhvGMnmT06NGmVFvOoaH77rsvOr5eeumluOfv3r07OkP4vPPOi9vm3HPPjYYNu3fvjtvmpZdeij7Wn//85/Z/Qeg1du7cabrdblOS+Z///Me86667Wgx7eX5Gd3K4YS/jGQBahwXa0GO8+eab0e3Zs2fHbWOxWDRr1ixJUnl5uT755JMj0TWgTUzT1FtvvSVJys/P10knnRS33UknnaTRo0dLkt566y2ZphlzfNOmTVq/fr0k6bLLLpPT6Yx7nfqLxv373/8+3O6jl5k2bVp0e+vWrY2OM57R06SmpkqSampqGh2r+10jLS1NF198cdzzc3NzddZZZ0mSFi5cqKqqqpjjVVVVWrhwoSTprLPOUm5ubtzrXHzxxUpLS5PEWEbr3HTTTaqurtbVV1+tqVOnttie52ckEsYzALQeYS96jLoV4V0ul0444YQm29X/5XfJkiWd3i+grbZv367CwkJJavFmre74nj17tGPHjphjdT8TLV1n4MCBysvLk8TPBNrO7/dHt61Wa6PjjGf0JBs3btRXX30lqTYsqC8QCGjFihWSpJNPPll2u73J69SNUb/fr1WrVsUcW7lypQKBQEy7eOx2ezSsWLlypYLBYNu+GPQqr7zyit59911lZmbqr3/9a6vO4fkZiYTxDACtR9iLHqPuL7AjR46UzWZrsl39m7e6c4DuZN26ddHthmFDQ82N5/ZcZ/fu3fJ4PK3uK7Bo0aLo9pgxYxodZzyju/N6vdq8ebPuv/9+TZ06VaFQSJJ0yy23xLTbtGmTwuGwpCM/lkOhkDZv3tz8F4Jeq7y8XHPmzJEk3XffferXr1+rzuP5Gd3Vq6++qrFjx8rpdCo1NVWjRo3S1Vdf3ey7MhnPANB6hL3oEWpqalRaWipJTb4dsk6fPn3kcrkk1b4wA91NQUFBdLul8Tx48ODodsPx3J7rmKYZcx7QnEgkonvvvTf678suu6xRG8YzuqPnnntOhmHIMAy5XC7l5eXp5z//ufbu3StJuv3223XllVfGnNOVYznedYA6t956q4qLizV58mRde+21rT6P52d0V+vWrdP69evl8/lUXV2tLVu26IUXXtAZZ5yhmTNnqqKiotE5jGcAaL2mp0cC3Uj9enhut7vF9i6XSx6PR9XV1Z3ZLaBd2jKe6/5wIanReO6o6wBNeeCBB6Jva7/44ovjltBhPKMnOe644/TEE09o4sSJjY4xltEdLV68WE899ZRsNpvmzp0rwzBafS5jGt2N0+nURRddpDPPPFP5+flyu90qKSnRokWLNHfuXO3fv19vvvmmZsyYoQULFigpKSl6LuMZAFqPsBc9Qv1FVJqroVcnOTlZkuTz+TqtT0B7tWU8141lqfF47qjrAPEsWrRIt99+uyQpKytLjz32WNx2jGd0R9/97nc1YcIESbVjZOvWrXrllVf073//W1dccYUefPBBXXDBBTHnMJbR3QQCAV1//fUyTVM/+9nPNG7cuDadz5hGd7Nnzx5lZGQ02n/22Wfr5ptv1rnnnqvVq1dr0aJFeuyxx/Q///M/0TaMZwBoPco4oEdwOBzR7bpFT5pTt6BQSkpKp/UJaK+2jOf6i2M1HM8ddR2gobVr12rmzJkKhUJyOBx69dVXlZWVFbct4xndUUZGhsaNG6dx48Zp4sSJuvzyy/XGG2/ohRde0LZt2zRjxgw999xzMecwltHd3HPPPdqwYYOGDBmiu+66q83nM6bR3cQLeusMGDBAr732WnQ27yOPPBJznPEMAK1H2IseITU1NbrdmrfQ1BXQb03JB+BIa8t4rr8YRMPx3FHXAerbvn27pk+frrKyMlmtVs2bN0+nnXZak+0Zz+hJfvjDH+rSSy9VJBLRT3/6Ux04cCB6jLGM7mTDhg3605/+JKk29Kr/dvLWYkyjpxk+fLjOPvtsSdKWLVtUWFgYPcZ4BoDWI+xFj+BwONS3b19JarE4fllZWfSFuX5xfqC7qL8YREvjuf6iEg3Hc3uuYxhGi4tRoPcqLCzUWWedpcLCQhmGoWeeeUYzZsxo9hzGM3qaujHt8Xj0wQcfRPd35ViOdx30bg888IACgYCGDx8ur9erefPmNfpYs2ZNtP3HH38c3V/3ezDPz+iJxo4dG93es2dPdJvxDACtR81e9Bhjx47V4sWLtWXLFoVCIdls8Yfvhg0bottjxow5Ut0DWq3+L7H1x2s8zY3nhtc57rjjWrzO4MGD2zU7CImvtLRUZ599trZt2yapdibZrFmzWjyP8Yyepn///tHtnTt3Rrfz8vJktVoVDoc7dCy35jo2m02jRo1qufPoNerePr5t2zZdccUVLba/++67o9vbt2+Xy+Xi+Rk9UlOLEDKeAaD1mNmLHmPKlCmSamfifPHFF022W7RoUXR78uTJnd4voK2GDRum7OxsSbHjNZ5PP/1UkpSTk6Ojjjoq5ljdz0RL1ykuLtamTZsk8TOB+CoqKnTOOedo3bp1kqR7771XN910U6vOZTyjp6k/U6z+23LtdrsmTZokSVq2bFmztRzrxmhycnJ0Ibg6EydOjC7609xYDgQCWr58efSc+qvOAx2B52f0RHW/i0iKjl+J8QwAbUHYix7ju9/9bnT72WefjdsmEonohRdekFS7AMC0adOORNeANjEMI/o24g0bNkRv9htavnx5dEbBjBkzGs10yMvLi85WeOWVV+T1euNep/4iRDNnzjzc7iPBeL1enX/++fryyy8lSXfeeaduu+22Vp/PeEZP8+qrr0a3jznmmJhjdb9rVFZW6o033oh7fkFBgT766CNJ0plnnhlT/1GqrQd55plnSpI++uijJt8m/MYbb6iyslISYxmNPffcczJNs9mP+ou2ffLJJ9H9deEWz8/oabZv364FCxZIkkaMGKGcnJzoMcYzALSBCfQgp556qinJtNls5tKlSxsd//Of/2xKMiWZd91115HvIHql7du3R8fd1Vdf3apzNm7caFqtVlOSOWHCBNPr9cYc93q95oQJE6LjfdOmTXGv8/TTT0cf+6abbmp0fMuWLWZaWpopyRw5cqQZDAbb/PUhcfn9fnP69OnRMTRnzpx2XYfxjO7g2WefNX0+X7Nt7r///ugYGzZsmBkKhWKO79+/30xPTzclmUOHDjVLS0tjjodCIfPCCy+MXuOTTz6J+zgLFy6MtrnooosaPU5JSYk5ZMgQU5KZkZFhHjhwoO1fMHq9u+66q8WxyPMzuou333672XFRXFxsjh8/PjrO/va3vzVqw3gGgNYh7EWP8uWXX5opKSmmJNPtdpv33HOPuWzZMvPjjz82r7/++uiLdl5enllZWdnV3UWCWrx4sfnss89GP/7yl79Ex97kyZNjjj377LNNXuf222+Pnjd+/Hhz3rx55sqVK8158+bF/LJ7xx13NHmNUChkTp48Odr2e9/7nvnBBx+Yn3/+ufnII4+YWVlZpiTTYrGY7733Xid8N9CTXXzxxdGxc8YZZ5jffPON+e233zb5sXHjxiavxXhGVxs6dKiZmZlpXnfddebzzz9vfvbZZ+ZXX31lLl682Pz73/8eM7bsdru5YMGCuNeZO3dutN2IESPMZ555xly5cqX51ltvmdOmTYseu+KKK5rtz+WXXx5tO23aNPOtt94yV65caT7zzDPmiBEjoscef/zxzvh2oBdoTdhrmjw/o3sYOnSomZ2dbd58883miy++aC5dutRcvXq1uWDBAvPOO+80+/XrFx1fU6ZMMWtqauJeh/EMAC0j7EWP8/bbb0f/0hrvIy8vz9y8eXNXdxMJ7Oqrr25y/MX7aEo4HDZ/9KMfNXvutddea4bD4Wb7U1JSYk6cOLHJayQnJ5tPPvlkR38bkADaMo7rZjo2hfGMrjZ06NBWjePc3Fzzww8/bPZav/nNb0zDMJq8xnnnndfiLGKv12ued955TV7DYrHwLiQcltaGvTw/ozto7XP09773PbOsrKzJ6zCeAaBlhmmapoAeZufOnXrooYc0f/58FRQUyG63a+TIkbr00kv105/+VE6ns6u7iAR2zTXX6Pnnn291+5aeZt977z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999xWPUYoFNKTTz6pF198UevXr5fH41F2drbOPPNMzZkzR0cffXSr+4veo6kVr5sydOhQ7dixo9k2jGd0lY0bN2r+/PlasmSJtmzZor1792r//v1KSUlRVlaWjjvuOF1wwQW67LLLWvV7wtKlS/Xoo49q8eLF2rt3rzIyMnTsscdq9uzZuuKKK1rdrxdffFHPPfecvv76a5WXl2vAgAE69dRT9dOf/lQnn3zy4XzJ6OV++9vf6ne/+52k2pq9p59+erPteX5GV1q0aJEWLVqkZcuWadu2bSotLVVlZaXcbrcGDx6sU045RVdffXWrnxcZzwDQNMJeAAAAAAAAAEgAlq7uAAAAAAAAAADg8BH2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAHSx5557ToZhyDAM7dixo6u7AwAAAKCHIuwFAABopx07dkRD2sP5AAAAAICOQNgLAAAAAAAAAAnAME3T7OpOAAAA9ETBYFAbN25s8vgxxxwjSZowYYKeffbZJtuNGzeuw/sGAAAAoPexdXUHAAAAeqqkpKRWBbUul4tAFwAAAECno4wDAAAAAAAAACQAwl4AAIAu9txzz0UXa9uxY0ej46effroMw9Dpp58uSdqyZYv++7//W8OHD1dKSoqOOuooXXvttdq5c2fMeWvWrNHs2bM1fPhwORwODR48WDfeeKP27dvXqn69+eabuvTSSzVkyBA5HA5lZGRowoQJ+t3vfqeysrLD/bIBAAAAdDDKOAAAAPQgH330kS6++GJVVVVF9+3cuVPPPPOM3n33XS1atEj5+fl66aWXdM011ygQCETbFRQUaO7cuXr//fe1dOlSZWdnx32MsrIyXXLJJfr4449j9vv9fn3xxRf64osv9Pe//11vvfWWTjrppM75QgEAAAC0GTN7AQAAeojCwkJddtllysjI0COPPKLPP/9cixcv1i233CLDMLRv3z79+Mc/1sqVKzVr1iyNGDFCTz31lFasWKFPPvlEP/zhDyXVhsP/5//8n7iP4ff7ddZZZ+njjz+W1WrVD3/4Q7300ktavny5Fi9erD/+8Y/q27ev9u3bp/POO6/RbGIAAAAAXYeZvQAAAD3E5s2bNWrUKC1ZskT9+/eP7p8yZYpsNpv++te/asmSJTr//PM1adIkLViwQE6nM9ru9NNPV01NjV599VW9/vrrKikpibmOJP3+97/Xl19+qYyMDH300Uc64YQTYo5PmTJFP/jBD3TyySerqKhIv/rVr/Svf/2rc79wAAAAAK3CzF4AAIAe5OGHH24U0ErST37yk+h2aWmpnnrqqZigt86NN94oSQqFQlq2bFnMserqaj366KOSpLvvvrtR0Ftn6NCh+vWvfy1JevXVV+XxeNr3xQAAAADoUIS9AAAAPURGRobOOeecuMeGDRum1NRUSdJ3vvMdjRkzJm67Y489Nrq9bdu2mGOLFi1SRUWFJOmSSy5pti+nnXaaJCkYDOqLL75o3RcAAAAAoFNRxgEAAKCHGDVqlAzDaPJ4RkaGqqqqlJeX12ybOvUXeZOkVatWRbcHDRrU6n4VFxe3ui0AAACAzsPMXgAAgB4iXlmG+iwWS4vt6tpIUjgcjjm2b9++dvXL6/W26zwAAAAAHYuZvQAAAJAUG/5++eWXSkpKatV5ubm5ndUlAAAAAG1A2AsAAABJUt++faPb/fv3J8QFAAAAehjKOAAAAECSNH78+Oj2kiVLurAnAAAAANqDsBcAAACSpLPOOita7/fhhx+WaZpd3CMAAAAAbUHYCwAAAElSRkaGfvrTn0qSli5dqp/97GeKRCJNtt+7d6+eeuqpI9U9AAAAAC2gZi8AAACifv/732vRokX6/PPP9dBDD+k///mPrrvuOh133HFyuVwqKyvT2rVr9dFHH+n999/XMcccox//+Mdd3W0AAAAAIuwFAABAPcnJyVqwYIGuueYavfHGG/r666+js33jSUtLO4K9AwAAANAcwl4AAADESE1N1euvv67PPvtMzz//vBYvXqzCwkL5fD6lpaVpxIgRmjRpks4//3xNnz69q7sLAAAA4CDDZOUNAAAAAAAAAOjxWKANAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJ4P8D+twzsjcgztgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'transmissibility_function_reassortment_example_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/genindex.html b/docs/_build/html/genindex.html new file mode 100644 index 0000000..6558e52 --- /dev/null +++ b/docs/_build/html/genindex.html @@ -0,0 +1,959 @@ + + + + + + Index — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ A + | B + | C + | D + | E + | F + | G + | H + | I + | K + | L + | M + | N + | O + | P + | R + | S + | T + | U + | V + | W + +
+

A

+ + + +
+ +

B

+ + + +
+ +

C

+ + + +
+ +

D

+ + + +
+ +

E

+ + +
+ +

F

+ + + +
+ +

G

+ + + +
+ +

H

+ + + +
+ +

I

+ + + +
+ +

K

+ + + +
+ +

L

+ + + +
+ +

M

+ + + +
+ +

N

+ + + +
+ +

O

+ + + +
    +
  • + opqua + +
  • +
  • + opqua.internal + +
  • +
  • + opqua.internal.data + +
  • +
  • + opqua.internal.gillespie + +
  • +
  • + opqua.internal.host + +
  • +
  • + opqua.internal.intervention + +
  • +
    +
  • + opqua.internal.plot + +
  • +
  • + opqua.internal.population + +
  • +
  • + opqua.internal.setup + +
  • +
  • + opqua.internal.vector + +
  • +
  • + opqua.model + +
  • +
+ +

P

+ + + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + + +
+ +

U

+ + + +
+ +

V

+ + + +
+ +

W

+ + + +
+ + + +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/index.html b/docs/_build/html/index.html new file mode 100644 index 0000000..6091d09 --- /dev/null +++ b/docs/_build/html/index.html @@ -0,0 +1,167 @@ + + + + + + + Opqua — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Opqua Opqua

+

DOI

+

opqua (opkua, upkua) +[Chibcha/muysccubun]

+
    +
  • I. noun. ailment, disease, illness

  • +
  • II. noun. cause, reason [for which something occurs]

  • +
+

Taken from D. F. Gómez Aldana’s +muysca-spanish dictionary.

+

Opqua has been used in-depth to study pathogen evolution across fitness valleys. +Check out the peer-reviewed preprint on +biorXiv, now peer-reviewed.

+

Opqua is developed by Pablo Cárdenas in +collaboration with Vladimir Corredor and Mauricio Santos-Vega. +Follow their science antics on Twitter at +@pcr_guy and +@msantosvega.

+

Opqua is available on PyPI and is distributed +under an MIT License.

+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/intervention.html b/docs/_build/html/intervention.html new file mode 100644 index 0000000..684afc3 --- /dev/null +++ b/docs/_build/html/intervention.html @@ -0,0 +1,776 @@ + + + + + + + Interventions — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Interventions

+
+

A. Several interventions

+

Vector-borne model with susceptible and infected hosts and vectors in a single population scenario, showing the effect of various interventions done at different time points.

+

For more information on how each intervention function works, check out the documentation for each function fed into newIntervention().

+
+
[1]:
+
+
+
from opqua.model import Model
+
+
+
+
+

Model initialization and setup

+
+
+

Create a new Model object

+
+
[2]:
+
+
+
model = Model() # Make a new model object.
+
+
+
+
+

Define a Setup for our system

+

Create a new set of parameters called my_setup to be used to simulate a population in the model. Use the default parameter set for a vector-borne model.

+
+
[3]:
+
+
+
model.newSetup(     # Create a new Setup.
+    'my_setup',
+        # Name of the setup.
+    preset='vector-borne'
+        # Use default 'vector-borne' parameters.
+    )
+
+
+
+

We make a second setup called my_setup_2 with the same parameters, but duplicate the contact rate.

+
+
[4]:
+
+
+
model.newSetup(    # Create a new Setup.
+    'my_setup_2',
+        # Name of the setup.
+    preset='vector-borne',
+        # Use default 'vector-borne' parameters.
+    contact_rate_host_vector=4e-1,
+        # rate of host-vector contact events, not necessarily transmission, assumes
+        # constant population density.
+    )
+
+
+
+
+
+

Create a population in our model

+

Create a new population of 100 hosts and 100 vectors called my_population. The population uses parameters stored in my_setup.

+
+
[5]:
+
+
+
model.newPopulation(        # Create a new Population.
+    'my_population',
+        # Unique identifier for this population in the model.
+    'my_setup',
+        # Predefined Setup object with parameters for this population.
+     num_hosts=100,
+        # Number of hosts in the population with.
+     num_vectors=100
+        # Number of vectors in the population with.
+    )
+
+
+
+
+
+

Manipulate hosts and vectors in the population

+

my_population starts with AAAAAAAAAA genotype pathogens.

+
+
[6]:
+
+
+
model.addPathogensToHosts(  # Add specified pathogens to random hosts.
+    'my_population',
+        # ID of population to be modified.
+    {'AAAAAAAAAA':20}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+
+
+

Define the interventions

+
    +
  1. At time 20, adds pathogens of genomes TTTTTTTTTT and CCCCCCCCCC to 5 random hosts each.

  2. +
+
+
[7]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    20,
+        # time at which intervention will take place.
+    'addPathogensToHosts',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', {'TTTTTTTTTT':5, 'CCCCCCCCCC':5, } ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 50, adds 10 healthy vectors to population.

  2. +
+
+
[8]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    50,
+        # time at which intervention will take place.
+    'addVectors',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', 10 ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 50, selects 10 healthy vectors from population my_population and stores them under the group ID 10_new_vectors.

  2. +
+
+
[9]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    50,
+        # time at which intervention will take place.
+    'newVectorGroup',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', '10_new_vectors', 10, 'healthy' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 50, adds pathogens of genomes GGGGGGGGGG to 10 random hosts in the 10_new_vectors group (so, all 10 of them). The last 10_new_vectors argument specifies which group to sample from (if not specified, sampling occurs from whole population).

  2. +
+
+
[10]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    50,
+        # time at which intervention will take place.
+    'addPathogensToVectors',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', {'GGGGGGGGGG':10}, '10_new_vectors' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 100, changes the parameters of my_population to those in my_setup_2, with twice the contact rate.

  2. +
+
+
[11]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    100,
+        # time at which intervention will take place.
+    'setSetup',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', 'my_setup_2' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 150, selects 100% of infected hosts and stores them under the group ID treated_hosts. The third argument selects all hosts available when set to -1, as above.

  2. +
+
+
[12]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    150,
+        # time at which intervention will take place.
+    'newHostGroup',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', 'treated_hosts', -1, 'infected' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 150, selects 100% of infected vectors and stores them under the group ID treated_vectors. The third argument selects all vectors available when set to -1, as above.

  2. +
+
+
[13]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    150,
+        # time at which intervention will take place.
+    'newVectorGroup',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', 'treated_vectors', -1, 'infected' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 150, treat 100% of the treated_hosts population with a treatment that kills pathogens unless they contain a GGGGGGGGGG sequence in their genome.

  2. +
+
+
[14]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    150,
+        # time at which intervention will take place.
+    'treatHosts',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', 1, 'GGGGGGGGGG', 'treated_hosts' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 150, treat 100% of the treated_vectors population with a treatment that kills pathogens unless they contain a GGGGGGGGGG sequence in their genome.

  2. +
+
+
[15]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    150,
+        # time at which intervention will take place.
+    'treatVectors',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', 1, 'GGGGGGGGGG', 'treated_vectors' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 250, selects 85% of random hosts and stores them under the group ID vaccinated. They may be healthy or infected.

  2. +
+
+
[16]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    250,
+        # time at which intervention will take place.
+    'newHostGroup',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', 'vaccinated', 0.85, 'any' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
    +
  1. At time 250, protects 100% of the vaccinated group from pathogens with a GGGGGGGGGG sequence in their genome.

  2. +
+
+
[17]:
+
+
+
model.newIntervention(  # Create a new Intervention.
+    250,
+        # time at which intervention will take place.
+    'protectHosts',
+        # intervention to be carried out, must correspond to the name of a method of
+        # the Model object.
+    [ 'my_population', 1, 'GGGGGGGGGG', 'vaccinated' ]
+        # arguments to be passed to the intervention method.
+    )
+
+
+
+
+
+
+

Model simulation

+
+
[18]:
+
+
+
model.run(  # Simulate model for a specified time between two time points.
+    0,      # Initial time point.
+    400     # Final time point.
+    )
+
+
+
+
+
+
+
+
+Simulating time: 47.82778878187784, event: RECOVER_VECTOR
+Simulating time: 78.3366736929209, event: RECOVER_VECTOR
+Simulating time: 105.91879303271841, event: CONTACT_HOST_VECTOR
+Simulating time: 118.47279407649962, event: RECOVER_HOST
+Simulating time: 131.35992383183006, event: CONTACT_VECTOR_HOST
+Simulating time: 142.51592961651278, event: CONTACT_HOST_VECTOR
+Simulating time: 155.0493103157924, event: CONTACT_HOST_VECTOR
+Simulating time: 166.15922138729405, event: CONTACT_VECTOR_HOST
+Simulating time: 178.45033758585132, event: CONTACT_HOST_VECTOR
+Simulating time: 191.46530199493813, event: CONTACT_HOST_VECTOR
+Simulating time: 202.95353967543554, event: CONTACT_VECTOR_HOST
+Simulating time: 215.14396460201561, event: RECOVER_VECTOR
+Simulating time: 227.37567502659184, event: CONTACT_VECTOR_HOST
+Simulating time: 239.10997595769174, event: CONTACT_VECTOR_HOST
+Simulating time: 251.43868107426454, event: RECOVER_VECTOR
+Simulating time: 270.88105008645147, event: CONTACT_HOST_VECTOR
+Simulating time: 307.90286561294283, event: CONTACT_VECTOR_HOST
+Simulating time: 357.4327138889326, event: CONTACT_VECTOR_HOST
+Simulating time: 400.04897821206066 END
+
+
+
+
+

Output data manipulation and visualization

+
+

Create a table with the results of the given model history

+
+
[19]:
+
+
+
data = model.saveToDataFrame(
+        # Creates a pandas Dataframe in long format with the given model history,
+        # with one host or vector per simulation time in each row.
+    'intervention_examples.csv'
+        # Name of the file to save the data to.
+    )
+data
+
+
+
+
+
+
+
+
+Saving file...
+
+
+
+
+
+
+
+[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.
+[Parallel(n_jobs=8)]: Done   2 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.18432052612304692s.) Setting batch_size=2.
+[Parallel(n_jobs=8)]: Done   9 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Done  16 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.016484975814819336s.) Setting batch_size=4.
+[Parallel(n_jobs=8)]: Done  26 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Done  44 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.030623912811279297s.) Setting batch_size=8.
+[Parallel(n_jobs=8)]: Done  76 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Done 120 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.043166160583496094s.) Setting batch_size=16.
+[Parallel(n_jobs=8)]: Done 224 tasks      | elapsed:    0.6s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.04822254180908203s.) Setting batch_size=32.
+[Parallel(n_jobs=8)]: Done 408 tasks      | elapsed:    0.8s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.08920669555664062s.) Setting batch_size=64.
+[Parallel(n_jobs=8)]: Done 792 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.16597485542297363s.) Setting batch_size=128.
+[Parallel(n_jobs=8)]: Done 1528 tasks      | elapsed:    1.4s
+[Parallel(n_jobs=8)]: Done 3192 tasks      | elapsed:    2.2s
+[Parallel(n_jobs=8)]: Done 5368 tasks      | elapsed:    3.2s
+[Parallel(n_jobs=8)]: Done 7449 tasks      | elapsed:    3.6s
+[Parallel(n_jobs=8)]: Done 8243 tasks      | elapsed:    3.6s
+[Parallel(n_jobs=8)]: Done 8591 tasks      | elapsed:    3.6s
+[Parallel(n_jobs=8)]: Done 8822 tasks      | elapsed:    3.6s
+[Parallel(n_jobs=8)]: Done 9064 out of 9079 | elapsed:    3.6s remaining:    0.0s
+[Parallel(n_jobs=8)]: Done 9079 out of 9079 | elapsed:    3.6s finished
+
+
+
+
+
+
+
+...file saved.
+
+
+
+
+
+
+
+/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/opqua/model.py:1008: DtypeWarning: Columns (5) have mixed types.Specify dtype option on import or set low_memory=False.
+  data = saveToDf(
+
+
+
+
[19]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0AAAAAAAAAANaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
1898145400.0my_populationVectormy_population_105GGGGGGGGGGNaNTrue
1898146400.0my_populationVectormy_population_106NaNNaNTrue
1898147400.0my_populationVectormy_population_107NaNNaNTrue
1898148400.0my_populationVectormy_population_108NaNNaNTrue
1898149400.0my_populationVectormy_population_109NaNNaNTrue
+

1898150 rows × 7 columns

+
+
+
+
+

Create a plot to track pathogen genotypes across time

+
+
[20]:
+
+
+
plot_composition = model.compositionPlot(
+        # Create a plot to track pathogen genotypes across time.
+    'intervention_examples_composition.png',
+        # Name of the file to save the plot to.
+    data
+        # Dataframe with model history.
+    )
+
+
+
+
+
+
+
+
+1 / 4 genotypes processed.
+2 / 4 genotypes processed.
+3 / 4 genotypes processed.
+4 / 4 genotypes processed.
+
+
+
+
+
+
+_images/intervention_47_1.png +
+
+
+
+

Create a compartment plot

+

Plot the number of susceptible and infected hosts in the model over time.

+

Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter.

+
+
[21]:
+
+
+
plot_compartments = model.compartmentPlot(
+        # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.
+    'intervention_examples_compartments.png',
+        # File path, name, and extension to save plot under.
+    data
+        # Dataframe with model history.
+    )
+
+
+
+
+
+
+
+_images/intervention_49_0.png +
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/intervention.ipynb b/docs/_build/html/intervention.ipynb new file mode 100644 index 0000000..f403acc --- /dev/null +++ b/docs/_build/html/intervention.ipynb @@ -0,0 +1,860 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Several interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors in a single population scenario, showing the effect of various interventions done at different time points.\n", + "\n", + "For more information on how each intervention function works, check out the documentation for each function fed into `newIntervention()`." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `my_setup_2` with the same parameters, but duplicate the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup_2', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " contact_rate_host_vector=4e-1, \n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100,\n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`my_population` starts with _AAAAAAAAAA_ genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define the interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. At time 20, adds pathogens of genomes _TTTTTTTTTT_ and _CCCCCCCCCC_ to 5 random hosts each." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 20, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'TTTTTTTTTT':5, 'CCCCCCCCCC':5, } ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. At time 50, adds 10 healthy vectors to population." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addVectors', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 10 ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. At time 50, selects 10 healthy vectors from population `my_population` and stores them under the group ID `10_new_vectors`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', '10_new_vectors', 10, 'healthy' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. At time 50, adds pathogens of genomes _GGGGGGGGGG_ to 10 random hosts in the `10_new_vectors` group (so, all 10 of them). The last `10_new_vectors` argument specifies which group to sample from (if not specified, sampling occurs from whole population)." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'GGGGGGGGGG':10}, '10_new_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. At time 100, changes the parameters of my_population to those in `my_setup_2`, with twice the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 100, \n", + " # time at which intervention will take place.\n", + " 'setSetup', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'my_setup_2' ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. At time 150, selects 100% of infected hosts and stores them under the group ID `treated_hosts`. The third argument selects all hosts available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_hosts', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7. At time 150, selects 100% of infected vectors and stores them under the group ID `treated_vectors`. The third argument selects all vectors available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_vectors', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8. At time 150, treat 100% of the `treated_hosts` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_hosts' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "9. At time 150, treat 100% of the `treated_vectors` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "10. At time 250, selects 85% of random hosts and stores them under the group ID `vaccinated`. They may be healthy or infected." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'vaccinated', 0.85, 'any' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "11. At time 250, protects 100% of the vaccinated group from pathogens with a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'protectHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'vaccinated' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 47.82778878187784, event: RECOVER_VECTOR\n", + "Simulating time: 78.3366736929209, event: RECOVER_VECTOR\n", + "Simulating time: 105.91879303271841, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 118.47279407649962, event: RECOVER_HOST\n", + "Simulating time: 131.35992383183006, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 142.51592961651278, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 155.0493103157924, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 166.15922138729405, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 178.45033758585132, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 191.46530199493813, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 202.95353967543554, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 215.14396460201561, event: RECOVER_VECTOR\n", + "Simulating time: 227.37567502659184, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 239.10997595769174, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 251.43868107426454, event: RECOVER_VECTOR\n", + "Simulating time: 270.88105008645147, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 307.90286561294283, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 357.4327138889326, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 400.04897821206066 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 400 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18432052612304692s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016484975814819336s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030623912811279297s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.043166160583496094s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04822254180908203s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08920669555664062s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.16597485542297363s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1528 tasks | elapsed: 1.4s\n", + "[Parallel(n_jobs=8)]: Done 3192 tasks | elapsed: 2.2s\n", + "[Parallel(n_jobs=8)]: Done 5368 tasks | elapsed: 3.2s\n", + "[Parallel(n_jobs=8)]: Done 7449 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8243 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8591 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8822 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 9064 out of 9079 | elapsed: 3.6s remaining: 0.0s\n", + "[Parallel(n_jobs=8)]: Done 9079 out of 9079 | elapsed: 3.6s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/opqua/model.py:1008: DtypeWarning: Columns (5) have mixed types.Specify dtype option on import or set low_memory=False.\n", + " data = saveToDf(\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0AAAAAAAAAANaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
1898145400.0my_populationVectormy_population_105GGGGGGGGGGNaNTrue
1898146400.0my_populationVectormy_population_106NaNNaNTrue
1898147400.0my_populationVectormy_population_107NaNNaNTrue
1898148400.0my_populationVectormy_population_108NaNNaNTrue
1898149400.0my_populationVectormy_population_109NaNNaNTrue
\n", + "

1898150 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 AAAAAAAAAA \n", + "1 0.0 my_population Host my_population_1 NaN \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "1898145 400.0 my_population Vector my_population_105 GGGGGGGGGG \n", + "1898146 400.0 my_population Vector my_population_106 NaN \n", + "1898147 400.0 my_population Vector my_population_107 NaN \n", + "1898148 400.0 my_population Vector my_population_108 NaN \n", + "1898149 400.0 my_population Vector my_population_109 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "1898145 NaN True \n", + "1898146 NaN True \n", + "1898147 NaN True \n", + "1898148 NaN True \n", + "1898149 NaN True \n", + "\n", + "[1898150 rows x 7 columns]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'intervention_examples.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 4 genotypes processed.\n", + "2 / 4 genotypes processed.\n", + "3 / 4 genotypes processed.\n", + "4 / 4 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAALmCAYAAABio+lSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xUVf7G8eemE3qviqiLothFBUQUUVaKigKWXQt217p21/1Z1rKuuq676+ouFhRUVFBRQUFRlKqIBUXpRVoIpNcp997z+2OSIZMpmUB6Pu/XKzJz77lnzgwjSZ588z2WMcYIAAAAAAAAAIAmJKG+FwAAAAAAAAAAQE0j/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE0O4TcAAAAAAAAAoMkh/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE1OUn0vAA2Dx+PRTz/9JEnq3LmzkpJ4awAAAAAAUNNs29bu3bslSUcccYTS0tLqeUUA0HSRcEKS9NNPP+mEE06o72UAAAAAANBsLFu2TAMGDKjvZQBAk0XbEwAAAAAAAABAk0PlNyQFWp2UW7Zsmbp3716PqwEAAAAAoGnKyMgI/uZ1xe/FAQA1j/AbkhTS47t79+7q1atXPa4GAAAAAICmj/22AKB20fYEAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgCgkTHGre8lAAAAAADQ4BF+AwDQ6PjrewEAAAAAADR4hN8AADQ2xi9jTH2vAgAAAACABo3wGwCARsYYRzLF9b0MAAAAAAAaNMJvAAAaHVeO/9f6XgQAAAAAAA0a4TcAAI2OK8e3sr4XAQAAAABAg0b4DQBAo+PK9q6o70UAAAAAANCgEX4DANDIOL41ktjwEgAAAACAWAi/AQBoZFwnS4TfAAAAAADERvgNAEAjZExJfS8BAAAAAIAGjfAbAIDGyLj1vQIAAAAAABo0wm8AABol2p4AAAAAABAL4TcAAI0S4TcAAAAAALEQfgMA0IgYQ+gNAAAAAEA8CL8BAGhkXHuHqPwGAAAAACA2wm8AABoVI+NmyRB+AwAAAAAQE+E3AACNjDF+UfkNAAAAAEBshN8AADQSgX7fjmT89b0UAAAAAAAavKT6XgAAAIiTKZHr7JSRXd8rAQAAAACgwaPyGwCAxsYtqe8VAAAAAADQ4BF+AwDQaAT6fBu3QPT8BgAAAAAgNsJvAAAaE0PoDQAAAABAPAi/AQBoVNz6XgAAAAAAAI0C4TcAAA2MMb7o52QCDU+oAAcAAAAAICbCbwAAGhoTrbrbaE+vb8JvAAAAAABiIfwGAKCOuU6ejLFjjIgcbLvObsk4ZecdmaghOQAAAAAAIPwGAKCuGZ9kPHKd/CgDHBnjRL7UzZaMt0IIDgAAAAAAIiH8BgCgjhlTKGN8sj1LI4bcxngk44l4re39TsbNlZEjKXJADgAAAAAACL8BAKhzxi2Ra2+R6+yKMsCR3/O1bN+ayif2tEsxflH5DQAAAABAdITfAADUMWOK5fg3B9qfRDrvFspf8omcsPBbKq/2NsYbY2NMAAAAAABA+A0AQB0zbokc/3pF39hyl1wnS1KEcNuUX+OPfB4AAAAAAEgi/AYAoO6ZUhk3TyZK+G2MN9D3O2JPb7d8kGh7AgAAAABAdITfAADUMdfJlnHyFD28diRTEt4WJSTwNmXV4wAAAAAAIBLCbwAA6phxcxWo4DZlG1dWPl8s4xbJdQsrn9Ge8NsRld8AAAAAAERH+A0AQB1zfOsCN4wr18kMO+/amyU5MhHOGVPeCsWw4SUAAAAAADEQfgMAUIdcJ0flFdzGlEjGGzamPOB2nezQ43Ik2cF70XqGAwAAAAAAwm8AAOqUa/+q8k0rjZsrY0rDB5Udc53dlY47gY8gWwAAAAAAILKk+l4AAADNiXELZIxHrpOtRCtdxs0LH2M8ZTc8lc8o0Ou77F6lynAAAAAAALAHld8AANQhY/yBcNsUS8YjY3wRBgVCb+OWVD4hU6FNiutk1eJKAQAAAABo3Ai/AQCoI6a8bYnxl90vjjKuvOK7cjBu5Ph+Dt5z7YxaWCUAAAAAAE0D4TcAAHXFlEpy91R7h/TvrjDM3dMH3Bi3wu3A9Xv4a36NAAAAAAA0EYTfAADUkUDLEifQ8kSSkZGMG2FgxYrvPQG5499QaT4nJBwHAAAAAAB7EH4DAFBHAhtd5u054BYpsIll5XF72qG4zu6KZyqNdCJeDwAAAAAACL8BAKg7xiPX2dOn25hCRQ6/PcHbrr2l4olKAwm/AQAAAACIhvAbAIA6YlxPpZYmUmgP7wqbYu65qOyPorCxjn+9CL8BAAAAAIisWYbfBQUFevPNN3X77bdr6NChOvjgg9W2bVulpKSoS5cuOvXUU/XEE08oOzs7rvmWLFmi3//+9+rdu7fS0tLUrVs3jRgxQtOmTavWuqZNm6YzzzxT3bp1U1pamnr37q3f//73Wrp06d48TQBAQ2O8eza73HOw0l2fKvb5Lg+8jSkNC86Nmx1+PQAAAAAAkCRZxlT+Heqmb968eTrjjDOqHNepUye99tprGjFiRNQxDz74oB5++GG5buQNx0aNGqUZM2YoLS0t6hylpaUaN26cPvroo4jnExISdP/99+uBBx6ocs17a9u2bdpvv/0kSVu3blWvXr1q7bEAoLnyFn0g27NQtve74LG0drcqteWY4H3jFqkgY6zKQ+/0DvcrucVQ+YrnyPFvkK/43ZA523T/UFZCep2sHwAAAPuO778BoO40y8pvSdpvv/106aWX6p///KfeffddLV26VIsXL9Zbb72l8ePHKzExUVlZWTr77LO1YsWKiHP873//00MPPSTXdXXQQQfppZde0rJlyzRz5kyddtppkqTZs2friiuuiLmWK664Ihh8n3baaZo5c6aWLVuml156SQcddJBc19WDDz6oSZMm1eyLAACoW8YjY/yVjlVue+JXxfYmpqwFiuvmSsYbYdLIP3wFAAAAAKC5a5aV347jKDExMeaYmTNnauzYsZKksWPH6t13QyvtcnJydOCBByo/P1/777+/vv32W3Xq1CnkMcaOHasPP/xQkjR//nydeuqpYY/z+eef6/TTT5ckjRkzRu+9917I2rKysnTcccdpy5YtateunTZu3Kj27dvv1fOOhZ88A0Dt8xROk126WI5/VfBYWts/KLXV+cH7jn+zinZdGbzfot1tSmk5Sp78F+U6WfKXfhoyZ+tu7yohsW3tLx4AAAA1gu+/AaDuNMvK76qCb0k699xzdcghh0iSFi5cGHb+xRdfVH5+viTpb3/7W0jwXf4Yzz33XPCxnnzyyYiP89RTT0mSkpKSQsaX69Spk/72t79JkvLy8vTiiy9WuXYAQANl/IEK7pBj9p6bbmnYJa4TGG9MsYwpijApld8AAAAAAETSLMPveLVu3VqS5PF4ws7NnDlTktSmTRudd955Ea/v1auXhg8fLkn67LPPVFhYGHK+sLBQn332mSRp+PDhUX/ae95556lNmzaSpPfee6/6TwQA0EDYMs7OkCMV26AYN1eVN7B0ne0yxsi4xXLt0GvLRtTCOgEAAAAAaPwIv6NYs2aNfvjhB0nSoYceGnLO5/Np2bJlkqSBAwcqJSUl6jxDhw6VJHm9Xi1fvjzk3DfffCOfzxcyLpKUlBSddNJJwWv8fn/UsQCAhstUqPLeo0L4bUpVOfyWCXyecJ0suc6OsKsd/8YaXCEAAAAAAE0H4XcFJSUlWrdunZ5++mkNHTpUth0IKW699daQcWvXrpXjBDYgqxyMV1bx/KpVq0LO/fLLLxHHxZrHtm2tW7cu9hMBADRMEcLv0MpvjyqH38Z4ys7lR9zw0ji7anaNAAAAAAA0EUn1vYD69sorr2jixIlRz99zzz26+OKLQ45t27YteLuqjSnKN7GQAhtZ1NQ8hx12WMzxlVV8rEgyMjKqNR8AYG84YUeMsztwxr9ZkpFM6BhTFniXh+Bh19P2BAAAAACAiJp9+B3N0UcfrUmTJmnAgAFh5yr27m7VqlXMeVq2bBm8XVQUulFZTc0Tj4rhOQCgvkQIv4OV3bmSkmRUqTrcLZbkBtufhE9A+A0AAAAAQCTNvu3Jueeeq59++kk//fSTli1bpmnTpmns2LH64YcfdNFFF2nWrFlh11TcADNWv29JSk1NDd4uLS2tlXkAAA2DMaaK8xHCbzev7M8iSUbGDd0c2fGvl+NfJxMt/K7cIxwAAAAAAEii8lvt2rVTu3btgvcHDBigCy+8UFOnTtVll12mc845Ry+99JIuv/zy4Ji0tLTg7fINK6Pxevf0Z23RokXIuZqaJx6VW65UlpGRoRNOOKHa8wIAKnJljGRZiRHPGmdnhIOB8Nq4RbIS2kbsC+74fonY77vs7N4uFgAAAACAJq3Zh9/RXHLJJZo1a5befvtt3XjjjTr77LPVoUMHSVLr1q2D46pqQVJcXBy8Xbm1SU3NE4+qeooDAGqCE2hPYkX+d9r2/hD1ymDltykJP+dkS/KHHS87W+1VAgAAAADQHDT7tiexnHPOOZICwfOcOXOCxysGyVVtJFmx4rpy3+2amgcA0DC4doTK7jKBjSsj9ecOHHPdHMk4Mm5B2AjH3hJ9XievmqsEAAAAAKB5IPyOoXPnzsHbv/76a/B23759lZgY+JX21atXx5yj4vl+/fqFnDvssMMijos1T1JSkn7zm99UsXIAQH0wbn6Mc56o5wLni2SMN0KYbeT6N8e4rjDqOQAAAAAAmjPC7xi2b98evF2x1UhKSkqwP/bSpUtj9uv+8ssvJQU2rDz++ONDzg0YMCC40WX5uEh8Pp+++uqr4DXJycnVfCYAgLpi3PC2JQGRP1cYuXLtTMl45bpZMqZySG7kRqgGr3geAAAAAACEI/yOYfr06cHbRxxxRMi5c889V5JUUFCgd999N+L127Zt07x58yRJp59+ekiPbynQ8/v000+XJM2bNy9q65N3331XBQWB4GPs2LHVfyIAgBpnTKQWJpLrZEYYa4IbW4aftMsCbyPjFsqY0ghjom12GXstkccSlgMAAAAAmodmGX6/8sor8nhi//r5P/7xD3300UeSpD59+mjIkCEh56+66iq1bdtWknTPPfcoOzs75LzjOPrDH/4gx3EkSXfeeWfEx7njjjskSbZt64YbbgiOL5eVlaW7775bktSuXTtdddVV8TxFAEAts73fhR0zpkSuE9732/GvUtQKbeMt2+TSke35VsbNjfRoUddhKvw3Hq4de48JAAAAAACaimYZfj/44IPq2bOnrrnmGk2ZMkWLFy/WihUrtGjRIj3//PM6+eSTddttt0kKtDiZNGlSsMd3uQ4dOuhvf/ubpEA/8BNPPFGTJ0/W8uXL9cEHH+iMM87Qhx9+KEm66KKLdOqpp0Zcy7Bhw3ThhRdKUvC6Dz74QMuXL9fkyZN10kknacuWwEZnf/vb39S+ffvaeEkAANUWHkgbt1gy/vChxi8jJ/y4JGM8Mk52YENMUyrXyYo0KsY6jCJvpBlteITKcgAAAAAAmqCk+l5AfcnJydELL7ygF154IeqYXr166eWXX9bw4cMjnr/22mu1Y8cOPfzww9qwYYOuuOKKsDEjR47Uyy+/HHMtL7/8sgoKCvTRRx9p/vz5mj9/fsj5hIQE/d///Z+uueaaOJ4ZAKBOmPDw27U3y0poFz7U+GVFCZ2N8cq4eTJuiYzxSVFC8ioWE98o45RVmQMAAAAA0PQ1y/B77ty5mj17thYvXqz169crMzNT2dnZatGihbp06aKjjz5ao0eP1oQJE5Senh5zroceekgjRozQf/7zHy1cuFCZmZlq166djjrqKE2cOFEXXXRRletp0aKFZs+erTfeeEOvvPKKVqxYoby8PHXt2lVDhgzRjTfeqIEDB9bU0wcA1AATIfw2rkeWFaFFifFFHB84VyrjFsu4RWUtUIqqtQ7X3iYZV7LiWnWgwhwAAAAAgGagWYbfhxxyiA455JBga5N9NWjQIA0aNGif57n44ot18cUX18CKAAC1L7y9iTGlgTYmxsiyrNCx0cJvuXKdLBlTKBlHxi2o1ipce6vi7/ntRm7LAgAAAABAE9Qse34DALCvXDsj/KDxyPauUOUe3Mb4Jfmiz+XsllyPjCnei5U4ij/8pvIbAAAAANB8EH4DALAXIvXONsYv19mhsM0wjT/QmiTaXG6+jHx7VZVtjKu4N7w0RjLRQ3gAAAAAAJoSwm8AAPaC698S4ahfMh65TnbwiDGu/J5lct38qHMZUywZr+IOsUNUp/LbLdtUU3Kd3L14LAAAAAAAGg/CbwAA9oKJ0MbEuAWBSmy3wqaV5aF2rKpuN7yKPP6FOGXV33EMdfPK1iPJeIJBOAAAAAAATRHhNwAAe8P4QkJnY/xyfL9IMmV9v8uOuwUKVHRH2/AysFHm3ou/8tv2rQ72FTemRKZChToAAAAAAE0N4TcAAHvBODkKCZ2Np/yGHP86uW5B2T07UJ1ddj/iXPsUfrt7qrmrYNxcGbdYjr1Njm+9TNztUgAAAAAAaHwIvwEA2AuVe3ib8vDb+OXaW2WcrLL7tiRXrrM7+mR7sdFlhYv3PHYVXDtTxi2U698sx/5Ve9djHAAAAACAxoHwGwCAveKE3vOtKbvll6mwsWSgPYqnLASPZl9D6HgruP0ypijweMYjGSq/AQAAAABNF+E3AAB7o1KY7TqZFc45Uln4bYxPxpQG2p/U2lri27jSGFvGeBWoFrcVf2gOAAAAAEDjQ/gNAMBeCfT23nPXH3LO9v1Udtsn17+xisrvfVO5pYrj37qn8rwi45fr/1XGLVEg+KbtCQAAAACg6SL8BgCgmowpC40r9NoO6bttvDL2rrLjfgVC5tqrsg7v+R3YZDN0jBNoeWL8ct0cyfjLNu0EAAAAAKBpIvwGAKC6TIlUsa+3JMf3S/C262TImCIZ42hPdXUtVlkbb6UDEcJ2UyLHt1ZGrlz/r3LtbfKVflZ7awIAAAAAoJ4RfgMAUA3GLZVjbyu745frZAVuhlVfG0lOcFNJU6kSu0bXVKnFSaCft1vpmLdsPT4ZU1x2n7YnAAAAAICmi/AbAIBqMKYoWOVtjF9uMAivHDa7Za1HykPv2tzwslLlt/HIRAq/jSPJL+MWyJiSsDUDAAAAANCUEH4DAFAN/tIlcvybJUmus13l7UVcZ0elka4CgXdZ+F2LG16asPDbCQu2XTtDRv6y8X4ZN1+B1i21V5EOAAAAAEB9IvwGAKAaXHtTMOg2Tt6etiZuYaWRJhAyl4XQRrUZMptK9yr2Gi875mRK5e1RjC0FN+Ik/AYAAAAANE2E3wAAVIMxboWg26+wjSXL2N4VZePKK799EcfVjMrtSxy5TmboEf+6CuMCPcEDwXzk9QMAAAAA0NgRfgMAUC1Gxi0K3DK2TDA8rhRAm9LAsbK2IoE2I7W1JCf8vvGHHqpw35RXfRtvsHIdAAAAAICmhvAbAIBqMZJbXHbTp0B7k0gBsivJlVGg4tu1t9biivyVjjiKVdFtnJ1la9oScxwAAAAAAI0Z4TcAAHEyxlYg7C4uu+8rq7CO0tLEODJObh0srHKVtytjPMF+41EvkxE9vwEAAAAATRXhNwAAcTKmpMJGkZKMT8YUy5RXglceL1fGya6DdXkrHbHLWrNUFWzvaeECAAAAAEBTQ/gNAEAVgm1NjB3SO9uxt5Rtahm5wtr1bwrbeLJ2FugLab1i3Lz4Ntg0jhz719pbFwAAAAAA9YjwGwCAKpUF3sarij2yjZMl45ZIxo54letkyHVrv+2JKes9HrzvFpUdqziocnW4JPlknN1VtkcBAAAAAKAxIvwGAKAqZeF2oOq74gaRjiRfoB1KpMuMXzJ10VPbDl2XsWV7loSvpRJjnLKWKfT9BgAAAAA0PYTfAABEsaeVSFk4XKnCOrD5pV+ukxNlAlvBqvHaZByVt14xxpGRX8YtqDQoUnW6W9bzm8pvAAAAAEDTQ/gNAEA0JrAZpAlWfnsqD5CMIxOltYlxCyNWXNc0x79Rxs2TMX45/jVlvckrhd0RW5uYQM9y2p4AAAAAAJogwm8AAKIwxitjnODmkcaUSmEBuCPjZEW+3i2I2g+8JlUM5QM9yP0ypjCeKyNUiAMAAAAA0DQQfgMAEIVxciQ5csvDbeOX61Su8nbl2DsiX288weC8VpnisuptI5nSQNsTZ3cc17mBQJ+2JwAAAACAJojwGwCAKIzxyLW3ybh5ZUdsVQ6KjbEjVIOXc8rC5boTqE6PtIGliXzM2FHOAQAAAADQuCXV9wIAAGiojPHI2AUybn7gvluisCpp44/QC7ycq8gbTdYGo0AbkxJVDrNNxDBcCvb8BgAAAACgCaLyGwCAaIxXxviCbU8CleAZlQa5Mm5xlOvrsqLalYyR69+05+HdksCfTrakSAG4I8feWDfLAwAAAACgjhF+AwAQRWDzSM+e6mjjkeSvNMqJ0dc7WsV1zQtUd7tynd0qr04v3/TSmCIZE6Wvt/HWzQIBAAAAAKhjhN8AAFRi3KLAn6Y08OEWyRif/N7lYWP9pV/IhAXiAY5/ba2usyJjCuX3LJbrZKq87YnjWyNj/DLGS8gNAAAAAGh26PkNAEAlxvhkSTJugWQly7g5UrTKaSnKBpN1zHjLeo+7MsF2K4F1Gbc48FwAAAAAAGhGqPwGAKCysjYmgdDbHwiPjTdGAB658rsuGdcjGTuwOWdZlbcp/9PNletsr8/lAQAAAABQ5wi/AQDNjqliI0pTHn4bvwLV027gw3iijK//ym/j5gb+NB65zo6yg77QPwEAAAAAaEYIvwEAzVAVldrl/bHLq77lSjIypjTK+Pqv/HbdXElGMm5wg85AGxRTFuIDAAAAANC8EH4DAJqfKsJgE6yUdgKbXxqnbOPLksjj3fwaXmD1Ob5VCmx0aQd7kPuLP5ZxC2V7V9Tr2gAAAAAAqA+E3wCAZscYu4oR5eG3kTHFCrQ88ZVVUkdS/5XVxskpvyVTttGl6+wMrNvNiX4hAAAAAABNFOE3AKBZMcbd0xM72hi3eM9Ye5skI9vzjRpCyB1NIKQvv1O+TiPH3tIg2rIAAAAAAFDXkup7AQAA1AXjFklWsgI/94294aVUvoGlCVZ7G/kl49biCvdNeXuWgIobcNLzGwAAAADQPBF+AwCaBdu3WgmJHZWQ2F0yscNvUxZyG7dQxslSoO2JX6GhcsNijCcQ0EuSKoT0xpVUVZsXAAAAAACaHtqeAACaD+NX1VXfknEyy/4sC76D1zbcym8ZrxTcqLMil7YnAAAAAIBmifAbANBMuDKyFQi/Ywfgjr1VxvhlTEnwWMNvHWJkIoTfxpSWPW8AAAAAAJoXwm8AQPNgbLn2zmAP79hjvXL8G1Wx0rtiEN5QufbOsGPGLZFx8up+MQAAAAAA1DPCbwBAM2HLuEVl4XdVPb+9cu1tMqZCj++ILUUaFuPmRDhYIqmhV60DAAAAAFDzCL8BAE1acPNK45b1xfaqqo0rjVssf8lnCu3x3XA3uywXqarduA2/Yh0AAAAAgNpA+A0AaOLKq55dSY6MWyxjvFVc45YFyXsC75Aq8IbKhG/I6bq59bAQAAAAAADqH+E3AKBpK9+o0vhk5Mh1MqQq+34bSXalMLkRhN8R2rk4vjX1sA4AAAAAAOof4TcAoEkzprTsT5+MWxS8XcVVMk6OQiq/3fxaWmFNCq/8luw6XwUAAAAAAA0B4TcAoEkzbomM8Uvyy7iFkoxUZQsTI9fJVMUw2fVvqcVV1pQIG3kaNrsEAAAAADRPhN8AgCbNmBLJ+OQrmSsZWzJGjn9tVRepchW1MUW1t8ga4jpZYccM4TcAAAAAoJki/AYANGnG2SVjPHL9G4IbXbpOzt7MVLMLqw2mJPxQIwjtAQAAAACoDYTfAIAmzbV3Bft+u84OxRNiO3ZjaHESpyo39wQAAAAAoGki/AYANFnGOHLdHBm3OHDALVagnUkVAXhZhTgAAAAAAGi8CL8BAE2WcXMkt0SunRG4L1vGjacNiF27CwMAAAAAALUuqb4XAABAbTHGK9fZLcvZXnbAJ8e/RjK+GNcQfAMAAAAA0BQQfgMAmi7XI8ferPI2J8Ytkb/0CyWmHB71kvgqwwEAAAAAQENH2xMAQJNl5CsLs8uruf2B426JjPFHvMb2LKmbxQEAAAAAgFpF+A0AaLqMLRmvjFtS6bg3ausTx7+uDhYGAAAAAABqG+E3AKDJ8nuWSLJlTHHYuWi9vW3vj7W8KgAAAAAAUBcIvwEATZZxcgJ/uqHht5EjyYl8jfHU9rIAAAAAAEAdIPwGADRZxpSW3Qjt722c3YoWfpdvjgkAAAAAABo3wm8AQNMVtYrbDfQDj3xRba0GAAAAAADUIcJvAECT5Tp5kiQTIdCO1vOb8BsAAAAAgKaB8BsA0GRF2uhyz0lvlONu7SwGAAAAAADUKcJvAECTVXmjy5BzovIbAAAAAICmrNmG38uXL9df/vIXnXnmmerVq5dSU1PVqlUr9e3bVxMnTtSiRYuqnOOVV16RZVlxfbzyyitVzldSUqInnnhCAwYMUIcOHdSyZUsdeuihuv322/Xrr7/WwLMGgObDdXKkWJXf0a+s8bUAAAAAAIC6l1TfC6gPp5xyihYuXBh23Ofzad26dVq3bp1eeeUVXXrppXrhhReUkpJS62tav369Ro4cqXXr1oUcX7NmjdasWaMXX3xRr7/+ukaPHl3rawGAJsH4FLuKO1rITeU3AAAAAABNQbMMv3fs2CFJ6tGjh8aPH68hQ4Zo//33l+M4Wrp0qf7+979r+/btmjJlivx+v954440q55w7d6569OgR9XyvXr2inissLNSoUaOCwffVV1+tCy+8UC1atND8+fP117/+VQUFBbrgggu0ePFiHX300dV7wgDQDJmK4bYpijDAyBgjy7IqHafyGwAAAACApqBZht+HHnqoHnvsMZ1//vlKTEwMOXfSSSfpkksu0eDBg7V27VpNmzZN1113nU455ZSYc/bt21cHHHDAXq3nySef1Nq1ayVJTzzxhO68887guYEDB+rUU0/V0KFDVVJSoltvvVVffPHFXj0OADQrxol92hRKclT5U6FR7OsAAAAAAEDj0Cx7fs+aNUsTJkwIC77LderUSX//+9+D92fMmFFra/H7/frXv/4lSerXr59uv/32sDGDBg3SlVdeKUn68ssv9c0339TaegCg6YgdYjv+TZKJtOkl4TcAAAAAAE1Bswy/43HaaacFb2/YsKHWHmf+/PnKz8+XJF122WVKSIj8V3L55ZcHb7/33nu1th4AaDKMv6oBklyZyhXiVVSMAwAAAACAxoHwOwqv1xu8Ha1CvCYsWrQoeHvo0KFRxx1//PFKT0+XJC1evLjW1gMATUXV7UuMJKdsY8yKCL8BAAAAAGgKmmXP73h8+eWXwdv9+vWrcvzEiRO1Zs0aZWVlqU2bNjr44IM1fPhwXX/99erZs2fU63755Zfg7UMPPTTquKSkJB188MH68ccftWrVqjifxR7btm2LeT4jI6PacwJAw1bFxpUmUPVtWXs+FQaqwE3tLgsAAAAAANQJwu8IXNfV448/Hrw/YcKEKq+puAlldna2srOz9fXXX+vvf/+7nnnmGV177bURrysPpVu2bKl27drFfIz99ttPP/74o3bv3i2v16vU1NSqn0yFawGgWamyfYlfgSrvCiG5Ka3FBQEAAAAAgLpE+B3BP/7xDy1btkySdN555+m4446LOvbAAw/Ueeedp4EDBwYD5o0bN+qdd97RjBkz5PF4dN1118myLF1zzTVh1xcWFkqSWrVqVeW6WrZsGbxdVFRUrfAbAJqf2JXfxvjkOruVmNRrzzG3uLYXBQAAAAAA6gjhdyVffvml7rnnHklSly5d9Pzzz0cdO3bsWF122WWyLCvk+IABA3TBBRdo1qxZOu+88+T3+/XHP/5RZ599trp16xYy1uPxSJJSUlKqXFvFsLu0tHrViVu3bo15PiMjQyeccEK15gSAhsp1C6oOso23rNI70ObEuCUyVH4DAAAAANBksOFlBT///LPGjh0r27aVlpam6dOnq0uXLlHHt23bNiz4rmj06NG6//77JUklJSV66aWXwsakpaVJkny+yhuuhau4CWeLFi2qHF9Rr169Yn507969WvMBQEPmeFfIsX+NOcYYv4xbKmMCFeKOf1OEzS8bqqp/YAoAAAAAQHNH+F1m06ZNOvPMM5Wbm6vExES9+eabOuWUU/Z53muuuSYYkFfcRLNc69atJQXamFSluHhPFWM8bVIAoLkyxpaMv4pRjozxSLLLr5Kp8pqGwVhp9b0EAAAAAAAaPMJvSTt27NDw4cO1Y8cOWZall19+Weecc06NzN2lSxd17NhRkrR9+/aw8716BXrNFhcXKy8vL+Zc5a1LOnfuTL9vAIgpjvDbOAoE4OW/VeMqsAlmw2eUKDqXAQAAAAAQW7MPv7OysnTGGWdo48aNkqR///vfuvTSS2v0MWK1RjnssMOCt1evXh11nG3b2rBhgySpX79+Nbc4AGhijDGScWWCFd1Rxrllv3Fj9owzjaTtSbHpItuK3pYLAAAAAAA08/A7Pz9fI0aM0C+//CJJevzxx3XDDTfU6GPs3r1bWVlZkqQePXqEnT/55JODtyO1RSm3fPnyYNuTwYMH1+gaAaBp8Sueyu9AyxNJcsr+dGXcktpcWI3xuCkqNm3rexkAAAAAADRozTb8Likp0ahRo/Tdd99Jku677z7dfffdNf44kyZNClQhSho6dGjY+VNPPVVt2wYCjFdffTU4trJXXnkleHvs2LE1vk4AaDKMX0auVEXlt4wnEICbQPjtOrsl0zjC71y7hV7dRuU3AAAAAACxNMvw2+fzaezYsVq8eLEk6ZZbbtEjjzxSrTk2b96s77//PuaYWbNm6S9/+YskqUWLFpo4cWLYmJSUFN18882SpFWrVumpp54KG7N06VK99NJLkgIB+oABA6q1VgBoToyxZdyCwKaXMbhuvuSWSnJljFt2TWMIvy25RspvHO3JAQAAAACoN81yt6yLLrpIn3zyiSRp2LBhuvLKK7Vy5cqo41NSUtS3b9+QY5s3b9Zpp52mgQMHasyYMTrqqKPUpUugCm/jxo2aMWOGZsyYEazkfuqpp9SzZ8+I899555166623tHbtWt11111av369LrzwQrVo0ULz58/XY489Jtu21aJFCz3zzDM18AoAQNMUCLwdOb7VsqyWscc62XLsLUpMPUoyXhknR7Iaz2bC2b7IvykEAAAAAAACmmX4/e677wZvf/755zryyCNjju/du7c2b94c8dzSpUu1dOnSqNemp6frH//4h6655pqoY1q3bq3Zs2dr5MiRWrdunSZNmqRJkyaFjGnTpo1ef/11HX300THXCgDNmyspsJmllZhWxVi/jJsrKRAiG7mSKa3d5cUtUXt6kVdmKcufIjdKmywAAAAAABDQLMPvmnDcccfptdde09KlS7V8+XJlZGQoKytLtm2rffv2Ovzww3X66afrqquuClaEx3LwwQfr+++/13/+8x9Nnz5d69evl8/n03777aeRI0fqlltuUe/evevgmQFAI2YcSW5ZP+8qen5Lcu1dgfEygT/dhhJ+Jyl6+C2tKkyUUxb0AwAAAACAyJpl+B1tU8nqaN26tX73u9/pd7/7XQ2sKKBly5a66667dNddd9XYnADQvBgZ45UxPllVbXgpSbIlY2RMsWRc2b6fan2F8TBWiiwjSd5KZ1LkWm1V6kguhd8AAAAAAMTULDe8BAA0HcZUrIA2kvFLcsqqwKu62FZgw0ufJFeuk1U7i6wmo2TJSgw/YSXJVgvCbwAAAAAA4kD4DQBo5PakwMaUKND2xJXiaAsSCLuNZFwZN68B9fxO0L3rjtdW+9hKxy0ZifAbAAAAAIA4EH4DABo5J1j9bVxPWcW3UcVQPDp/2ThbxpTfrn9Gllbk+1XsJFU6HjiX7zcyDWStAAAAAAA0VITfAIBGz7iFZTe8MnJljEfxVH4HQ3Ljj3N83XCUph2lthxjRTiboA3F8fQzBwAAAACgeSP8BgA0bsZVoHLbyHW2K1AJHn/7EuOWyBi/jFtSa0usrmK3tbaXOvKb0E/TRqkyZa1PqPsGAAAAACA2wm8AQIMXaEkSjStjvJLxyPauDGxiabwy8Wx4Kcm4uYHxbl6NrLUmFLup8hujEif007StdBmTIEPyDQAAAABAlQi/AQANnnFyo59zCyW3SMb4ZNx82d5vFQjE46vkNnJle79TfdRSe63eksJbm2wtTZckrSpKqnTGkltW+e0QgAMAAAAAEBPhNwCgwTOmOMrxQIuTwOaPfhlTLMe/ueykN87JHdn+1TWyzura5OmqSOH3Dk8g9N4aIb83SpCRkUv4DQAAAABATITfAIBGINpmlGbPeeOX62QFx7r2jrjndv1byja9rBuu1UlSkrL9yRHPe8uS7dIICffivC76Ntcrn2sUKTgHAAAAAAABhN8AgIYvav9uN/BhPDLGloynwlg7zsldyfhkFF+P8JrgUysZq7UcEzm89riB44V2aPhtZGmXN0Fe18jjSnwaBwAAAAAgusrNRAEAaHCM8UQ54cq4JTLGK0v+sk0uo1WJR+bau2Tkyopzg8yaUOqma5fTQf4orUuKynL7b3N9lc5Y8rnlY1wFwu+6WzcAAAAaBmOMiouLVVBQII/HI8fha0IAjVNiYqLS0tLUpk0btWzZUpZVs7/hTPgNAGjwjFssY/yyrMptQmxJTiAAT/BLsuU62dWb2xQHWp5YKTW13NisFip2UrXV00KusSQrTaq0OWdWWea90xNavR7o9x2Q63MkK7FO27UAAACg/rmuqy1btqi0tLS+lwIA+8y2bXm9XuXn56tFixbaf//9lZBQc7/lTPgNAGjwjCmVcXJkJXUN3Hc9shLSykJxr2RKAyGwseU6G6s5uU+ST1Jaja87Ep86q9BO1nd5Serb2pVHXZSmzSFjtpQEKncK/aFV7K5JDG50me1zJCXWwYoBAADQUBhjwoJvy7KUmMjXhQAaJ8dxZEzZvlelpdqyZYt69+5dYxXghN8AgIbPlMp1c5WgrjJuqYxbKCshTa6bI+PmSTKBCm5F6SMSg+NbE3gIU712KXuryG2tJbktlOE1OriVpQKnjdIq/VA7r6wfSmBFlsqfl5HklD1Fv2vkU3ulqLhO1g0AAID6V1xcHAy+ExMT1a1bN7Vq1apGqyQBoC65rquioiLt3LlTjuOotLRUxcXFatWqVY3Mz7+OAIAGz7glMm5B2e28QLW3JOMWybgFMsYr4xaruv2+Jcl1tpffqqHVxlbkpGpFnqt8v1GJbclnwn8Oneev2LOx4nlLZUXhso3kMS1rda0AAABoWAoKCoK3u3XrpjZt2hB8A2jUEhIS1KZNG3Xr1i14rLCwsObmr7GZAACoJUY+GbcocNt4tWeTRyPjlsjxb5Rr79jHB4myqWaNSpRjLNkKVHGvKVKwjUlFOb49QXyRDgjeNpJe3BzoD+5zjYxqdiMQAAAANGweT+BrVsuyaqwqEgAaglatWgVbndTkngaE3wCARqLi5o9libFx5DpZgarwsmrwvVf7ld/GSpffJMrvSD7HaKfXjRhg5/r2VH57Teqe65UQ3AQz0AKF3o4AAADNieMEvk5MTEyk4htAk5KQkBDcv6D837oambfGZgIAoLYYI+OW/9qTkUzgE6Hj3yDX3i7X3iYjRzLV7/ldl1yl6fv8FsrwOJqxvVg7St0Ild+pKrT3BPHG7AnH15Z0DBm53du6FlcLAAAAAEDjRvgNAGgUjPHKGEeBCu2ycNh4ZNx8GeOTZGT2YsPLuuQoTUWOtL2setsxRm6lym/XSg+9X3beWC3Dnt12T3KtrRUAAAAAgMaO8BsA0Ag4krFlTLFcJ1emLPw2xiPX2R2oCjeO1MDDb79JU6EtbSr2S5IcI7kmNPx2FLqJZfn5ArN/WGH71lI+jQMAAAAAEA3fNQMAGgFXkiO5xWUbUwbCb9fZJckvmZJA3+866Nu9L/KcVsrx7bm/sdgfUvkdqbrbKftUnelrHfbsvI4kNr0EAAAAACCipPpeAAAAVTKuZFkycmWMT5YJtA1x7R2S8UsyMqZIMnbseepZtj9Vef49Efa2UlteZ8+Glq5aqXKY7ZRVfm8sSVVypZzbY1Q2vmFXvAMAAAAAUB+o/AYANAJGtnelZGz5ij+UMZ7AUTdfe/p/O5Jqbkfo2uBxEjRnpyfkWKkb+FRsWz3kV3rYNX4T2O06y5egfDs0/Z76a6n4VA4AAAAAQGRUfgMAGgXj5kvGJ9feURZ6BzbBDJ43XjX0ticeN0G7vHbYMUkqdNspxfJJVuhzyLeTpGRpt1dqW6n0+9cSv2h7AgAAANQd27b1/vvva+7cuVq6dKkyMzOVm5ur9PR0de7cWUcccYQGDRqkcePGqU+fPvW9XKDZo1wMANBIGHkKXpRkl/X6lqQKQbLxRbqojsUOor1u+PnVhYHK7gKnhSRLXtMi5PwXWSmSpOV5tn7IjxDuW/wcGwAAAKgLH3zwgfr166dx48bphRde0MqVK7V7927Ztq2CggJt2LBBM2fO1F133aUDDzxQo0eP1sqVK+t72bXqwQcflGVZsiyKctAw8R0zAKARMDJucdnmkK6Mk1N22K4wwl8/SwuRoED/7cgV6J4I4XdB2VPI9aeofVKCPG5KyPn1xYG5sryuNhWHt3UxSqD2GwAAAKhljzzyiO6//34ZE9hv59RTT9Xo0aN15JFHqmPHjiopKVFGRoYWLFigWbNmafPmzZo9e7Z69eql//73v/W8eqD5IvwGADR4Rq6MmyVZCTLGrdDupEIY3CAqvxMlK1kyxRHPeiO0JN9RGvji2eNaKnJaaLevhaQ9fcG/zfVKspTldbShOFLAzy9xAQAAALXp5Zdf1v/93/9Jkrp27ao333xTp556asSx48eP1zPPPKM333xTf/rTn+pwlQAiIfwGADQCpuwPb9ltR8aEBsHGya3zVVVmWx2UIJ8SFCn8TtK83SbsqFP23IrtRNkmQfl2Ysj5XJ+Ra3XUDo8ddm0A4TcAAABQW7Zu3aobbrhBktSmTRstWrRIBx98cMxrEhMT9bvf/U6jRo3SwoUL62KZAKLgO2YAQMNnAq0/ghXfxoS0PAkcKqzrVYXxmtYqNp0injNWut7cWhR23C3Lw3f7ElTiJCnfH9rEJNtna7PvAJU64cG5FGh7AgAAAKB2PP300/J4Ar+Z+eijj1YZfFfUrl07jRkzJur5nTt36r777tPxxx+vDh06KDU1Vfvtt58mTJigefPmRb1u8+bNwT7br7zyiiTp008/1ZgxY9StWzelpqaqT58+uv7667Vt27Yq1+nz+fTcc8/ptNNOU+fOnZWSkqJu3bpp5MiReu211+S64W0dX3nlFVmWpYceeih4rHxNFT82b96sH3/8MXj/8ccfr3I9//73v4Pjly1bFvaY5fN6vV499dRTOvbYY9W2bVu1adNGJ554op577jk5ToRfu63EcRy9+uqrGj16tHr06KHU1FR17NhRJ598sp5++mmVlpZWOQcaPr5jBgA0eI5/TeCG8UrGI8lUaH3ScNhKUp7dKvy41UNGKRGukPyu5FidleuXvstvoUxv6Kdm10iritKjPmaO02vfFg0AAAAgImOMpk6dKklq3bq1Jk6cWGNzv/766zr44IP12GOP6dtvv1Vubq58Pp+2bdum6dOn64wzztBVV10l2472G6B73HvvvTrzzDM1a9YsZWZmyufzafPmzfrvf/+rY489VqtWrYp67ebNm3XUUUfphhtu0BdffKGsrCz5/X5lZmbq448/1iWXXKKhQ4cqJydnr5/rkUceqQEDBkiSXn311SrHT548WZJ0+OGH64QTTog4Jjc3V4MHD9add96p77//XgUFBSosLNSyZct0ww03aNiwYSoqCi8+KrdlyxYdd9xxuvzyyzV79mxlZGTI5/MpJydHixcv1u23364jjzxSa9eu3YtnjIaE8BsA0OC5TnbZrUDLE8lIpqQeVxSZbRLkdRPDjntMS5ko21IWOa6KTQdl+aSNJdLPBaEV3kYmrBq8onwnbd8WDQAAACCilStXKjs78L3IkCFD1LJlyxqZ9+2339Yll1yi4uJiHXjggXr66ac1Z84cffvtt3rnnXc0cuRISdJLL72ku+66K+ZcL7zwgh5//HENHTpUb7zxhpYvX6558+bp0ksvlSTt3r1bV1xxRcRri4qKdPrpp2v16tWSpHPPPVcffPCBli9frunTp2vo0KGSpEWLFmnMmDEh1dTnnnuufvrpJ11//fXBYz/99FPYR8+ePSVJV111lSRp9erVWrp0adTns2LFCn3//feSFHXdknTttdfq22+/1QUXXKCPPvpIy5cv1xtvvBEM2RcsWKBLLrkk4rXZ2dk6+eSTtWLFCqWmpurGG2/U9OnT9c0332j+/Pm69957lZ6ervXr1+uss85Sfn5+1HWg4aPnNwCgQXOdfEmh1Q6umyPjRv8pfn35Kq+j2iU7OrhSkbejREX7eXOmx1WO3Uqbil2tLfTr54LKFe2WHlwVPeh3TPRgPOJ4q6sSTWa1rgEAAACaox9//DF4+9hjj62RObOysnTNNdfIGKMrrrhC//vf/5SUtCeeO/bYY3Xeeefpvvvu02OPPaZ//vOfuvbaa3XIIYdEnG/JkiW6+uqr9b///U+Wted7g9NPP10pKSl68cUX9dVXX+n777/XMcccE3LtQw89pI0bN0qS/vznP+vhhx8OnjvuuON0/vnn65JLLtHrr7+uJUuWaNKkScGwu127dmrXrp26dOkSvKZ///5Rn/dFF12k2267TcXFxZo8ebIGDhwYcdzLL78sSUpOTo4aXkvSN998o8cee0z33ntvyJrHjx+v0aNHa+7cuZo5c6Y++uij4A8Tyt18883aunWrevfurfnz56tPnz4h50899VSNHz9eQ4YM0caNG/XEE0/o0UcfjboWNGxUfgMAGjZTIlXe3NItkuvW8waXVouwQ4W2pe/ykqRKLU4ckyg3ys+bNxT5VeIkaUuJrQLbVaTO3vn+6P3q3MitwKPyK1ILlWpOAgAAADQDWVlZwdudO3eOOs51Xa1cuTLqh9+/5/uZ559/Xvn5+erZs6eee+65kOC7ooceekg9e/aU67qaMmVK1Mfu3r17sEd2ZXfccUfwduWNN71er1588UVJgfYiDz74YNj1lmXpueeeU8eOHSVJzz77bNR1VKV169aaMGGCJOmtt96K2E/b5/Pp9ddflySNHj065mt+5JFH6p577gk7npSUpBdffFHJycmSpOeeey7k/ObNm/XWW29JCjyfysF3uWOOOSa40Wl5X3U0ToTfAIAGzZgSmUrht+tfJ9eueuOW2pTrhn+RlOuXXthcKsdqH3LcNokqcttGnsfvKMefpN1eR6VO+EYykuSLkXA7UdqpRJYgr6FNCgAAABCPwsLC4O1YLU8KCgp0xBFHRP3Yvn17cOwHH3wgKRDupqamRp0zKSkpWB0dq03IuHHjos5zyCGHqFWrwJ5E5RXe5b799lvl5eVJki6//HIlJoa3b5SkNm3aBEPrX375RRkZGVHXUpXy1icFBQV65513ws5/+OGHwTYzsVqeSNJll10WMfCXpF69eunMM8+UJH3xxRch7Vpmz54tx3GUnp6us846K+ZjnHLKKZKkHTt2aMuWLTHHouEi/AYANGiBkDt8kxfb+0OdryXk8U3lLw4tfZXjyHGNcp0uMtaeL463eVup1I284aUkbShO0k6PHTXkjlWXneevTgezBHnd5LLb0dcDAAAAIFCtXK64uHif53McRz/88IMkBduUxPqYMWOGJGnnzp1R5zz00ENjPmb79oHCnIpBvhToZ17uxBNPjDlHxfMVr6uuQYMG6bDDDpO0Z1PLisqPde/evcpgury3dzTlG2UWFxeHBP/Lly+XJJWUlCgpKSnm6z969OjgdbH+DtCwEX4DABo0x78xrO1J4PimeljNHn4TGjobq5Xe31Esv5G+yGkvv8qrvy19lZMsf1hYvseaIiOva+R1qt9+JNObKMVd/Z0gX9m6XatVtR8LAAAAaE7K231IgY0jo2nXrp2MMSEfl112Wdi4nJwc2XZ4YU9VSkqi7wGUnh6preEeCQmB6K9i9XP5WspV7NsdSbdu3SJetzeuvPJKSdL8+fO1efPm4PGMjAzNmTNHknTppZdGrUQvV9Wau3btGrxdcc27du2q7pIlxf47QMPGhpcAgAbNuMWSIrQDMeE94urSdm8L9ajwdeYO+2BJUq7P0bI8aXTnwKdYY7WRx429MWWePxB6e6rbwFuSMZYCP8uO3hc8yEqQx0mUEiVXabKstrIMO5cDAAAAkRx11FHB299///0+z1cxgL7qqqt0yy23xHVdSkrt/tZmtPYhteHSSy/VvffeK5/Pp1dffVUPPPCAJGnKlCnB16eqlifS3q+5/DE6deqk+fPnx31dtN7gaPgIvwEADZpxiyIfN946XkmoPH9oJcIuX5okj/zGaJfHlW0C7UVcpcpfRfid6YkjuI4isEVmfOG3UaJ8JlD54VeqLDlKFOE3AAAAEEn//v3VsWNHZWdna+HChSopKamy0jqWDh06BG8bY9S/f/+aWOY+ryUzM1N9+/aNOrZiy4+K1+2NTp066ZxzztH06dP16quv6v7775dlWcFNJQcPHhxzLfGuOTMzM+Kay6v5CwsL1a9fvyorzNH40fYEANCgRd3Ysp4rv7/PT1DFdiNfZO2pxrCNUbHbQlIgcPa40o8F0b9IzvBE3ugyHkblld9V2+0cpLXFqco1h+m7wh5l1wIAAACIxLIs/f73v5cU2KTx1Vdf3af5UlJSdPjhh0uSFi9evM/r2xcVg/evv/465thly5ZFvE7auwrs8o0vN23apC+++EJLlizR6tWrJcVX9S1J33zzTVzn09PTdeCBBwaPH3PMMZIkr9cb7P+Npo3wGwDQYBljy9RzyB3NukJXFTeNXFe8J8Au9Bvt9AY2vHSVqPVFjopjFGb/Wuzb63UU2pKs+D6de9wk5fgs+UyySp0E8WUAAAAAENttt92mtLQ0SdK9996rTZv2be+hs88+W5K0evVqzZ07d5/Xt7eOO+44tWvXTpL06quvynUjF+QUFhbq7bffliQddthh6t69e8j58tdGCgTK8Rg+fLh69+4tKbDJZflGl61atdKECRPimmPq1KkyJnLbyO3bt+uTTz6RJJ166qkh1d1jxowJBvbPPPNMXI+Fxo3vegEADZZrZ8gYT30vI6IvszwqsXoG78/YVlzhXKmW5aVISpCjFH2YUSw7Rjvv4r3Y6LLc5M1exbvh5c9FLbXTIxU5ycr1WzJ8GQAAAADEtP/+++tf//qXJCk/P18nn3yyFi1aFPMaY4zy8vIinrvlllvUqlVg8/mJEyfq559/jjnX7Nmz9eOPP1Z/4VVITU0NVmCvXLlSDz/8cNgYY4xuvPFGZWVlSZJuvPHGsDEVw/ANGzbE9dgJCQnBCu933nlHb731liRp/PjxwdemKj/88IOefPLJsOO2bevqq6+WzxcoMLr++utDzh9yyCEaP368JOnNN9/U008/HfNxNm3apGnTpsW1JjRM9PwGADRgtuLayLEe5PsdOWV9vSWpctGB35WkRDkmscL9mlfquDKy4oq/S+wEbSx2tN2Tpmyfpd12Z/VIjNJWBgAAAIAk6eqrr9b27dv10EMPaceOHRoyZIiGDRumMWPG6IgjjlCHDh3kOI527typ7777Tm+//XYw1E5MTAzZsLJr16569dVXNW7cOGVkZOj444/X5ZdfrrPOOku9evWS3+/Xtm3btGzZMs2YMUMbN27Uhx9+qCOPPLLGn9f999+vd999Vxs3btSDDz6on376SRMnTlT37t21adMmPfvss/riiy8kSQMHDtQ111wTNsegQYOCt//4xz/qvvvuU/fu3YPV1QcccICSksLjxyuuuEIPPfSQSkpKQo7F6/jjj9fdd9+tH374QZdeeqm6dOmidevW6emnnw62aRkzZoxGjx4ddu3zzz+v5cuXa+PGjbr99tv1/vvv69JLL9Xhhx+u1NRUZWdna8WKFZozZ44+//xzjR07VhdddFHca0PDQvgNAGi4jC2Zhhl+O8bIZ5KDRddGoem3bSRZFcLvvS/ujqnUMYqv8jtBRY7RslyfTuzQQr8UumqV1Ea/71I76wIAAACakgcffFBHHXWU7rjjDm3cuFGff/65Pv/886jjLcvSiBEj9OSTT6pHjx4h58477zy9//77uvzyy5WTk6P//ve/+u9//xtxnoSEBLVs2bJGn0u51q1b67PPPtNZZ52l1atX65133tE777wTNm7w4MH64IMPIm4OefDBB2vChAl6++239cknnwTbjZTbtGmTDjjggLDrevXqpREjRujjjz+WJPXt21cnn3xy3GufNGmSrrzySk2bNi1iZfbgwYP1+uuvR7y2Q4cOWrx4sSZMmKCFCxdqwYIFWrBgQdTHatOmTdzrQsND+A0AaLCMKZFUSyXT+yRVjpG2e1upbYseSjI7VDnbdkxgs0vXBFqL+Gqt8ju+8NtYLbQoy2i319bWUinH58p2EySxuzkAAAAQj7Fjx2rMmDF67733NHfuXC1dulS7du1SXl6e0tPT1bFjRx1xxBEaOHCgLrjgAvXp0yfqXGPGjNGmTZv0wgsv6KOPPtLPP/+snJwcJSUlqVu3bjr88MM1bNgwjRs3Tvvtt1+tPacDDjhAK1as0AsvvKDp06dr5cqVKigoUIcOHXTMMcfod7/7nS6++GIlJERvmfjaa6/p+OOP14wZM7RmzRoVFhZG7SFe0SWXXBIMvydOnFitdbdv315LlizRM888o7feeksbNmyQMUb9+vXTpZdequuvvz5iWF+uW7duWrBggWbPnq1p06Zp6dKl2rlzp/x+v9q1a6ff/OY3GjhwoM4++2ydcsop1VobGhbCbwBAgxXo911LJdP7wFhJMpJ2epPVJ62VWisQdlcUuJ8ktyyYLt2Hvt6xlDiu4tnCw6iFfirwqdQx2lHqaGupI9skifAbAAAAiF9SUpLGjx8f7Bu9L9q0aaPbb79dt99+e7WuO+CAA6Ju9ljZ5s2bqxyTkpKiG264QTfccEO11lEuOTlZd955p+68885qXbdy5UpJgdYwl112WbUfNy0tTffcc4/uueeeal9bbtSoURo1atReX4+Gj52uAAANl/HLuIX1vYoQxmqnrf5DJEle15KJUnX9/MYiOWoRPF9g1856vK6RrdZVjst1u2m3N7CIQttofaGvbBPO+DbLBAAAAICa4jiOpkyZIkk666yzQjbOBGoS4TcAoAEzamhtTxyla6c3TZLkc8rD7/Dq6WyfK6NEOWVtT34trr3e5X6TVulIhPX401VQ1ni8yDYqcYxKHEkW4TcAAACAuvX6669r27ZtkqTrrruunleDpoy2JwCABssYf30vIcxH2QdrRb4lqVQljmRkyVitIo41SgiG33MySyKOqQl5TiulV8i7/VZ3JZvdkrzBY9/nt5DfFEiSFmeXSpI+3+XXbfsTfgMAAACofevXr5ff79fy5cv1xz/+UZJ01FFHaeTIkfW8MjRlhN8AgIbLeKseU8f8rqVNJYFq9Fy/5HOTZaJspGJkyTYJqu2+5aVuUkixt6MkJVsJVT6szzXyq4NofQIAAACgtv3mN78JuZ+cnKznn39eFr+NilpE2xMAQINlVEuNsveBI2lVgU+SlOOTcvxpivbp1ChRXrf2N5QsdUIfw29SZOL4FF9gu9rm6y43zs1yAAAAAGBftW/fXqeffrq++OILDRw4sL6XgyaOym8AQMPVAENZY6S1RYHw+5tcv0Z3S5Ib5dNppr+D1pe0kFS7m3YWVwq/XSUqUt/vykocI6+bIMdYcYwGAAAAgL1n9vH7u8svv1yXX355zSwGzQaV3wCABqxhbXYpBTqJOGVfs/1U4FWpkyCvaR1x7ObSFtpUXPu/wlf5VQr0Ga/6U7zfdZVvJ8nf8H7GAAAAAADAPiP8BgAgGqtF2P2KObHXMfK6llaVdI54eZ4/QSvyaz/Ad41V6X6CvGofcsyJEHD7XSnblyjX8OUAAAAAAKDp4btdAEADVr+V30ZJqtg+xCglpBOLzw2E31tLI7c92VJiaXupU8urlLxuaPjtKEF+kxxyrDjCMvzGaJc3QS6V3wAAAACAJojwGwDQgNVvKutRZwW2xwh8unSVojz/nvNGkm2k3d7IrU12e41y/bUf4Of7K346T5ZtLBU5LVRxa4+SSOG3a7Sx2DTE1uoAAAAAAOwzwm8AQMNl/FWPqRWBT4+lbgu5VmvJSpEUCL8rs11L2VGWWeJKmR671lYZfBzHkhT4cKx28rjJ8prQanRfhAze6xqtyK/99QEAAAAAUB8IvwEADZZxi+rnca2WkiSPm6xct5uMAi1EHKWENWIpcoyyvJFLp/2uUZav9tueFNlSIPxOUrbTXbt8yfK6iSFjIrU2cYz0ZVZpra8PAAAAAID60GDDb6/Xq8zMTLlu/fZ7BQA0RZHblJQzSpUkedwk+dxEuUqTJHlNaliLkLmZrorsyOH397l1U7m+osCVKducs9hJke0m6Ovc0M066WwCAAAAAGhu6jz8Lioq0kcffaSPPvpIRUXhFX1ZWVk6//zz1aZNG/Xo0UPt27fX7bffLq/XW9dLBQA0WZE3qCznlIXfJU6SXCXIY9pKkmyTGBYif7SzWEVO5B/U/lhQN5+7fszzy6iFJEsFdrJKXEvzdlWuOCf+BgAAAAA0L7G/+68F77zzjiZOnKhevXpp8+bNIedc19VZZ52l7777TqastK6wsFDPPPOMNm/erHfeeaeulwsAaCI8Vh8lq0iJZrdkJcfsJ+4oRcmStnmS1TLRVqFaqmWiZJskrS8OD7oL/fUbLK8r8smU9fyenZmifq2NFlZoZ2KsNmXnAQAAAABoPuq88nvu3LmSpLFjxyohIfTh33rrLX377beSpGOPPVZ//OMfdeyxx8oYo5kzZ2rOnDl1vVwAQBPhNalyFGgFUt7DOxq/CZzf5U2Q3yQoxw60PSl1k7TLEyH8jtL2pK54XSOjQI/vtUWOih1LuX5H5e1dHKWHtWsBAAAAAKCpq/PK75UrV8qyLA0aNCjs3JQpUyRJxx13nJYsWaKkpCT5/X4NGTJE33zzjV599VX99re/reslAwDqia/kkxqYJVGSI6MEOUqUlKBSdVK68qNeUeqmqXWCVOJIpU6iNpcm67DUFHmcRM3JLAkb/32epwbWuW98StdOp4d8ruQry+eN1UqWyVWpaav8eg7oAQAAAACoa3Ve+b1r1y5JUp8+fUKO+/1+LViwQJZl6YYbblBSUiCXT05O1nXXXSdjjJYtW1bXywUA1CNjwveGqDYrRZLkGks+kyYpUTKxW4C4ZRXTflfKtxO1qjBwP9OXsu/rqSU+k6pSJ1GuMcHu3j61kZSsPLulNhdX7gEOAAAAAEDTVufhd05OjiQpJSU0QPjmm29UWhroT1q5urtv376SpJ07d9bBCgEADYExRjL7vmGkKdu80jaJ2u1rJSlBporNH92ycHyHx2hLaYK2lQZKqT/fXeefNuNW6qTINgmyjeSWPb0Mfye5Vmv9XNRScyNUrAMAAAAA0JTV+Xfx6enpkvZUgJdbsGCBJOnggw9W165dQ861aNGibhYHAGhAaqJNR4L8al02myWfSZAsS1V9+sv0tZCUoF8KbK0pLGsjYiU26E0jfyhsKyMp1+cEw2+PE+gDvqqw4Yb2AAAAAADUljrv+X3QQQfphx9+0BdffKEzzzwzePy9996TZVk65ZRTwq7ZvXu3JKlLly51tk4AQH2rifA7UTl2B3VL3CrHWLJdS5Ilu4pPf9/lp+iYFsna5XW0tTShbDUpyveHb3bZUHy00+j6PtKP+T6d2yNQ7V7qBnqc/1xAyxMAAABgX9m2rffff19z587V0qVLlZmZqdzcXKWnp6tz58464ogjNGjQII0bNy6s3W80K1as0Lvvvqv58+dr8+bNwQysXbt2+s1vfqPjjz9eZ599tk455RQlJMRX1JKXl6c333xTn332mX744QdlZWWpqKhIbdq0UY8ePXT00Udr2LBhGjt2rNq1axfXnMYYzZ07Vx999JEWLVqkHTt2KCcnR6mpqerYsaMOP/xwnXjiiRo3bpwOO+ywuOaUpA0bNujtt9/WZ599pvXr1ysrK0u2batt27bq06ePjj32WI0aNUpnnnmmkpOT45qztLRU06dP16effqrly5dr165dKigoUKtWrdS1a1cdddRRGjJkiMaNG6du3brFvdbFixfr/fff15dffqlt27YpOztbiYmJat++vfr166fjjz9e5513ngYMGBD3nBkZGXrrrbc0b948rVq1Srt375bH41Hbtm2133776ZhjjtGIESM0evToYEFxVWrjfSrVznu1LljGmDrdAeuee+7RE088oTZt2mjatGkaMmSIJk+erFtuuUWWZem9997T2WefHXLNU089pbvuuksDBw7U4sWLa2Qdy5cvD/4P+8svv2j37t1KTk5Wjx49NHjwYF155ZU6+eST457v448/1qRJk/TNN99o9+7d6ty5swYMGKBrrrlGZ511Vlxz2LatF198Ua+//rpWr16toqIi9ejRQ8OHD9fNN9+sww8/fG+fbpW2bdum/fbbT5K0detW9erVq9YeCwDiYYxfBTv2cZNjq4VWlByto1os1XrfABU4STomfZWynP3UOeGnqJc9uHGo7jhwh4Ysbq/D2yTLMdLzR+bqqh/aa96uhtk+5NTO6Xq0n63BC3wa3iVd83aV6Ldd0/X60et04Q+/0acx2p7kXvQXtUuL7wspAAAA7Jt9+f573bp1sm1bSUlJ+s1vflPl+IxXGu5vLu6r7pfX7YbuH3zwgW6//XatX78+rvGjRo3S448/rv79+0c8v23bNt18882aOXOm4onmDjjgAD3wwAO6/PLLo45xXVdPPvmkHn/8ceXl5VU5Z2pqqq6++mo98MAD6tSpU9Rxixcv1k033aTvv/++yjkl6eSTT9bjjz+uwYMHRx2Tl5en22+/XVOmTJFt21XO2aVLF91999265ZZblJiYGHXcSy+9pP/7v/9TRkZGlXMmJibqoosu0iOPPKLevXtHHffLL7/ohhtu0BdffFHlnJJ0xBFH6NFHH9WYMWOijvF6vfrzn/+s//znP8E20LG0bt1at956q+65556YIXhNv0+l2nmvRlPdf+PiUefhd0ZGhvr166fCwsKQ48YYHXbYYfrpp59kWaH/OJ922mlasGCBrr/+ej377LP7vIZTTjlFCxcurHLcpZdeqhdeeCGsP3lFruvqmmuu0UsvvRR1zFVXXaX//e9/MX/qkZWVpZEjR+qbb76JeD41NVXPPvusrrrqqirXvTcIvwE0NMb4VLAjvh8eRp3Daqn5+cdoWJtFWuk5SaVOgo5ttUGZdg/1SIz+hdvd60/RHw4o1oglCTqqbYocIz3dv1TjliVrbZFvn9ZUWzqlJGrGick6daFHh7VJ1S8FXiVaUuaZGTprWR99k+uJei3hNwAAQN0h/K4ZdRl+P/LII7r//vuDwd+pp56q0aNH68gjj1THjh1VUlKijIwMLViwQLNmzdLmzZslSddee63++9//hs337bffasyYMcGAtlevXrrgggs0ePBgdevWTcnJydq1a5d+/PFHzZkzRwsWLJAxRqmpqfJ4In9dX1paqosuukjvv/++JCk5OVnnnXeezjjjDB144IFq166dcnNz9euvv+qzzz7TrFmzlJ+fL0maNm2aLrzwwojzvvLKK7rmmmvk9/slSccdd5zOPfdcHXfccercubP8fr927typpUuXavbs2frll18kSSNGjNCcOXMizrlx40aNHDlSa9askSR16NBBF110kU455RT16NFD6enp2r17t1avXq25c+fq008/DQbkGRkZEau1XdfVH/7wB/3vf/+TJFmWpVGjRum3v/2tDj30ULVv316FhYXavn275s+frw8//FCZmZmSpL/+9a+65557Iq51zpw5mjBhQjDHPOSQQzRu3DiddNJJ6ty5syzLUmZmZrDIdvny5cFxq1evjjhnVlaWzj77bC1dulSS1LJlS02YMEHDhg3T/vvvr9atWys7O1vr16/Xp59+qo8//jgYkC9dulQnnXRSxHlr+n0q1c57NZbaCL/rvO1J9+7d9eGHH+rCCy8M+SnMgQceqBkzZoQF3xs2bAgG1cOHD6+RNezYsUOS1KNHD40fP15DhgzR/vvvL8dxtHTpUv3973/X9u3bNWXKFPn9fr3xxhtR57rvvvuCwfcxxxyju+66SwcddJA2bNigJ554Qt9//71efPFFde7cWY899ljEORzH0dixY4PB93nnnaerr75aHTp00Ndff61HHnlEu3bt0rXXXquePXvGXUkOAI3bvn8x66itCuwEGautRiz26ZmjWunoVsnym9i/gmUkTdnaSqVOkRZllarEMcqzU7XbW3VFQn3J8jkqdQM/rPU6gfYsjpHy3U5aHiP4BgAAABDdyy+/rP/7v/+TJHXt2lVvvvmmTj311Ihjx48fr2eeeUZvvvmm/vSnP0Uck5GRoVGjRgWD1/vvv19/+tOflJqaGjZ25MiRuueee/Tjjz/qz3/+sz755JOo67z22muDwfdJJ52kN954I2pLi4kTJ6qgoEDPPvusHnnkkahzzps3T1deeaVc11WrVq00efJkjRs3LuLYsWPH6oknntDs2bOjBsmSVFxcrNGjRweD76uvvlpPPfWU2rRpEzZ2xIgRuuWWW7Rp0yY9/PDDmjx5ctR5H3zwwWDw3bdvX7399ts66qijIo69+OKL5fF4Qv5uI1m5cqXOP/98lZSUKDk5Wc8884yuu+66iMWtY8aM0UMPPaRFixbp3nvvDbYEqcxxHI0fPz4YfJ999tl64YUXIrZ6Hj58uK677jplZmbqySef1DPPPBN1rTX9PpVq771a1+q88rucz+fT4sWLtXPnTnXv3l0nn3yykpLCs/hFixbps88+kyTdeeedcfe3iWX06NG69NJLdf7550f8VYmsrCwNHjxYa9eulSR9+eWXEXuRr127Vocffrhs29bxxx+vBQsWhGzOWVJSoqFDh2r58uVKSkrSqlWrdPDBB4fN8/LLL+vKK6+UJP3hD3/Qf/7zn5Dz69ev13HHHaeCggIdfPDBWrVqVcTXal9Q+Q2goTGuRwUZo/ZpjiL9RpO39dClvTLV+5MWmnRMa43qvEObPJ3UP+2rqNfdse4U5flcvb+jRLYxMpI+HdxC533tVaHdcPt+TzuhtS5aVqiuqUnKLAvq1w531Hde9F8LlKj8BgAAqEtUfteMuqj83rp1q/r27SuPx6M2bdro22+/jZjrRJKXl6eFCxeGtb4YPXq0Zs+eLUn629/+prvuuivu9UydOlWXXHJJ2PEZM2Zo/PjxkgKV2QsXLgzJp2Ipb7t7/PHHhxwvLi7WgQceqF27dikpKUlffvmlBg0aFNecHo9HH374YXBNFd14443B3CtSBhbLhx9+qCFDhoT1KV+2bJlOOukkGWO033776fvvv1fHjh3jmnP79u1as2aNhg0bFnLcGKOjjjpKP/0UaJf51ltvacKECXHN6bqupk2bpt/97ndh55566indeeedkgLvhffffz/u/thLly5Vly5ddNBBB4Ucr433afn6avq9WpUmUfldLiUlRaeddlqV404++eRq9d6Ox6xZs2Ke79Spk/7+978H/+JnzJgRMfx+5plngr928e9//zvsH5b09HT9+9//1sCBA2Xbtv7xj39E/J/6qaeekhT4NY8nn3wy7PzBBx+se++9V/fee6/Wr1+v9957L+I/IADQtOx7lfU2b3v9dU2hvKarpAIZWcqx2+jL7FT17xn9OmOkj3aWyF/h58OlboK8br38vDhu3+QG/iy292xwmeNPk+SvnwUBAAAAjdjTTz8dbN3w6KOPxh0oSoFNACsHiitWrAiGiQMGDAiGoPGKFiaWdxqwLEuTJ0+OO/iWpEMPPTTi8RdffFG7du2SJN1yyy1xB9+SlJaWFjG3yszMDHZP2G+//YJ5WLyi9dD+61//Gmz18dxzz8UdfEtSz5491bNn+DeHH3zwQTD4Pv/88+MOviUpISEhYvDt9Xr197//XVIgM3zppZeqtTHkwIEDIx6v6fepVHvv1frQcLbebGAqBvMbNmwIO2+MCf46yaGHHhq1385JJ52kQw45RJL0/vvvhzWGX7t2rVatWiVJmjBhQtTK9opN4t977734nwgANFLGOFUPqkKWP0V+Vyoty9H9Jr5mKq6RSp3QkR7Xkq+Bh987PIH1FVdY++Lc+L/wBQAAABBgjNHUqVMlBTYbnDhx4j7P+eqrrwZv33TTTWGtf/fGjz/+GNyI8rTTTtMRRxyxz3NKe9ZqWZZuuummGpnzrbfeCoa0V199dbVC+mjy8vL0wQcfSJIOOuggjRq1b789XK7i39Utt9xSI3POnTtXO3fulCRdeOGFEVudVFdtvE+l2nmv1hfC7yi8Xm/wdqTWKJs2bQr2Dh86dGjMucrPb9++PdhMvtyiRYvCxkXSrVs39e3bV1Jgl10AaPr2PfxeV5QovzFaUxRIvwvLQvCqImwTYYzHafif7D1loXfFtS/ObrhtWgAAAICGauXKlcrOzpYkDRkyRC1bttznOb/88svg7d/+9rf7PF9tzZmfn68VK1ZIkvr166fevXvXyLy1sdaFCxfKdQPf84wYMaJGQlpjjBYsWCApECgPHjx4n+eUauf518b7VKqdtdaXemt7IgVK6BcuXKiNGzeqsLBQjhM76LAsK/jrEbWt4l9yv379ws6X714rRf8VkUjnV61aFbLhQHXnWbt2rbZu3ari4uJqvaG3bdsW83zFzUcBoEEw+972ZENxIAZeUxCY69tcRyO7qMr0+7tcX9ixPH/DD7/9EbbxKGnAPcoBAACAhurHH38M3j722GNrdM5evXqpc+fONTqnVHPrXLlyZTBQrqk5pT1rTUhIiLoZ5d7OKdXcWnfs2BEMlI866qhqtSaJpTbfUzU5Z8V5a/K9Wl/qJfxes2aNrrjiCn31VfTNxiozxtRZ+O26rh5//PHg/Uh9fSqGyVVtTlG+kYUUaEK/r/MYY7Rt27ZgO5V4VFwDADQGxpTs8xybSgI/VPWbwBdum0scSVWH2BuKw8Pvon3P4mudEyHnLnEadqsWAAAAoCHKysoK3o4V/rmuG1LYWNkhhxyi5ORk5efnB/eNqypM3LJliwoKCiKe69KlS0i7jHjXWVhYqF9//TXiuZSUlGC3gerMKQWKPKMVs/bp0yekcLN83rZt2yolJSXqnDt37gxZQ0Xt27cP6dEd71o9Ho/Wr18f9Xz//v2rPacUaJVcWloa8VyvXr1CNueMd97s7OyoRaotW7YMKaqt6feppFp7r9aXOg+/t2/frlNOOUVZWVnB/tetWrVS+/bta+wnKfvqH//4h5YtWyZJOu+883TccceFjSksLAzebtWqVcz5Kv6PXlRUVCvzAECTYyoG0AmSql/BvL008EWYKQu8t5XaOmtJgsb0iB0IRwqMfY2ggPqzXeFfdOU0hoUDAAAADUzFvCbWb94XFBTE7LO9adMmHXDAAXHPJ0k333xzcJ+5yh544AE9+OCD1V7nZ599prFjx0Y817t375A2vdVZ68CBA5Wfnx/x3Pz583XqqaeGzVvVnI8//rj++c9/Rjx32WWX6ZVXXqn2WlevXq1jjjkm6vmKe/RV5/mff/75wRYxlU2ePDlkD7945506dar++Mc/Rjw3dOhQffHFF9WeM973aXXmlKr3Xq0vdR5+P/roo9q9e7csy9JVV12lO+64I+SnS/Xtyy+/1D333CMp8BOK559/PuK48gb9kmL+tEqSUlNTg7cr/zSopuapSuWK88oyMjJ0wgknVGtOAKgzVppU7UrwRG0t8Uva0+Vkt9eWE9zM0lLk/icJEY/u8jX8CupIbU82RahiBwAAABBb69atg7eLi4sb3Hy1OW9trjUvL69ZP/+K87Zp06bG56wJtfX860udl1rPmTNHlmXp0ksv1aRJkxpU8P3zzz9r7Nixsm1baWlpmj59etTy/LS0tOBtny92sFBx88zKO9nW1DxV6dWrV8yP7t27V2s+AKhLPnWs9jWu1UHZlaqeywu6fy12AoF6BMaK/O/rcxsKIx5v6IppewIAAABUW8eOe74H2b17d9Rx7dq1kzEm5OOyyy4LG9e2bVslJSVVOZ8kzZw5M2S++fPn7/M6zz333LB1RtvIMt45JSkvLy9kzgceeKDKtebn58fMwJ555pmQOTdt2lTlnFWt9eijjw57/kOHDt2nOSXphx9+CJlz8uTJ+7zWW2+9NWyt+zpnvO9Tqfbeq/WlzsPvHTt2SJIuvfTSun7omDZt2qQzzzxTubm5SkxM1JtvvqlTTjkl6viKPwWpqgVJxZ+SVG5tUlPzAEBTYkxoaG324tNVxWuK7dAedJleRybKLz+t9x5W7ccCAAAA0LRU3JDx+++/r5E5jzzySEmB/d+i9bSurtpYZ//+/YOtiWtqTmnPWl3XDdmosSbmlGpurT179gyGyitWrAhu/rmvamOttTGnVDvv1fpS5+F3+/btJSmk4Xt927Fjh4YPH64dO3bIsiy9/PLLOuecc2JeU3FzyoqbVkZSseVI5Y0n92Yey7Kq3BwTABo1E9rayWsiV2nHnEKJwduVK8DXFvqiht83/1Qve0EDAAAAaED69+8fDEAXLlyokpLqtmEMV7HSeM6cOfs8X23N2a5du2CoumrVKm3ZsqVG5q2NtQ4ZMiQY1M+dOzdmlXS8LMsKFsQWFhZqyZIl+zynVDvPvzbep1LtrLW+1Hn4ffzxx0uS1q5dW9cPHVFWVpbOOOMMbdy4UZL073//O66q9MMO21MZuHr16phjK57v16/fPs+z3377VdlwHgAaM9v3s4z2VGuXuqmSlR739V6rt9wY21q4UtTw22F/SAAAAKDZsyxLv//97yUFNgt89dVX93nOinnTs88+WyNB7ZFHHqmjjz5akvT555/rl19+2ec5pT1rdV1X//nPf2pkzgsuuCC4n90LL7wQsg/e3mrXrp3GjBkjSVq/fn2NBbUV/67+/e9/18icI0aMUNeuXSVJb775ZpUtReJRG+9TqXbeq/WlzsPvm2++WcYYTZo0qa4fOkx+fr5GjBgR/Ifh8ccf1w033BDXtX369FGPHj0kBTbJjGXBggWSAr82Ub5zarmTTz45eDvWPDt37gz+wGDw4MFxrREAGivX3iGZPeG3z02SrXZxX59jt5dbxae4aOG3rxF/UgcAAABQc2677bbgXm333ntvzN7T8Tj66KN11llnSZK+/vpr/eMf/9jnNUqBtUmSMUaXX355jYTKV199tTp37ixJ+sc//qGvv/56n+fs2rWrrrjiCknSli1bdNddd+3znFLg+VuWJUm6/vrrlZOTs89znnPOOTr88MMlSW+//bbefffdfZ4zNTVVt912m6RAa+Orr766Rlqq1PT7VKq992p9qPPw+4wzztDdd9+t+fPn6/rrr5ff76/rJUiSSkpKNGrUKH333XeSpPvuu09333133NdblhVsjbJ69Wp99dVXEcd99dVXwYrtc845J/g/Y7m+ffsGq8HffvvtqL+e8MorrwRvjx07Nu51AkDj5ChQnx3gcRNVbOLfCds2CVX2CbeVGvG4j8pvAAAAAJL2339//etf/5IUKKA8+eSTtWjRopjXGGOUl5cX9fwLL7wQDJXvuOMOPfzwwzE3f5Sk3NzcmOcnTJigiy++WJL0zTff6IwzztCvv/4a85qSkhJ5vd6o51u2bKmpU6cqISFBfr9fZ555pmbOnBlzznjW+re//U2HHHKIpEBF9R/+8Icq98Cras4TTzwx+AOAX3/9VSeffLJWrlwZ8xrbtmM+rmVZev3119WiRQtJ0oUXXqhJkyZVGVZXtdbbbrst2FLl/fff17hx46rsqV3VnLXxPpVq571aH+q8semUKVPUr18/DRo0SJMmTdKHH36ocePG6dBDD1V6etW/0l4TG2X6fD6NHTtWixcvliTdcssteuSRR6o9z6233qpJkybJcRzddNNNWrBgQfB/CkkqLS3VTTfdJElKSkrSrbfeGnGeO+64Q1deeaVycnJ011136dlnnw05v2HDBv31r3+VJB188MGE3wCaPhO6QWWJkyS/SZKsKOMrcWXJNbEHmyiT+R0qvwEAAAAEXH311dq+fbseeugh7dixQ0OGDNGwYcM0ZswYHXHEEerQoYMcx9HOnTv13Xff6e2339bPP/8sSUpMTFRKSkrIfD179tSsWbN09tlnKzMzU/fff79efPFFXXjhhRo8eLC6du2q1NRU5eXlac2aNfr44481a9as4PXRsrMXXnhB+fn5mj17thYtWqS+fftq3LhxOuOMM3TggQeqbdu2Ki0t1ZYtW7RkyRJNmzZNu3btijnniBEj9L///U9/+MMfVFBQoLFjx2rAgAEaO3asjjvuuGCv6aysLK1YsULvvvtuSIV4xYysXOvWrTVr1iyNHDlS69at0/PPP6/p06froosu0imnnKIePXqoZcuWKigo0Pr16zVv3ryQqutoa/3LX/6izMxMvfTSS1q1apWOOuoojR49WmeddZYOOeQQtW/fXj6fT9u3b9eyZcv05ptvavPmzVHXKQU2k5w+fbouvPBCFRUV6dprr9Uzzzyj8ePH68QTT1Tnzp2VlJSknJwc/fzzz/rggw/02WefxVxrUlKSpk+frjFjxmjZsmV677339Omnn+rCCy/Uaaedpv3331+tW7dWcXGxNm7cqAULFuitt96q8vnX9PtUqr33al2zTB03bUlISAirfo6XZVmybXuf13D++ecH/8cZNmyYnnnmmZhrSklJUd++fSOeu/fee/X4449Lko455hjdfffdOuigg7Rhwwb97W9/C+60eu+99+qxxx6LOIfjOBo6dGgwjD///PN19dVXq3379lq2bJkefvhh7dq1SwkJCZo1a1bw1w5q0rZt24KbcW7dupUNNQHUC2McWVaiPIXTlJTST8VZt0uSlpcMUqcUrw5I+jaOWRK10X+MuiTnq9cnraKOyhiRrxZmY9jxIxedoC0l9fNbSfUl96K/qF1aw/jCBAAAoKnbl++/161bJ9u2lZSUpN/85jdVjs94Ze/yl8ag++V1W7Ty3nvv6Y477gjuGReLZVkaMWKEnnzySfXv3z/imC1btuimm27SBx98ENfj9+7dWw888IAuv/zyqBmW67r661//qieffFL5+flVzpmWlqaJEyfqL3/5izp16hR13IIFC3TzzTdrxYoVca114MCBeuKJJ0Ja/VaWm5urP/7xj3rttdfkOE7UceW6dOmiu+66SzfffLOSk5Ojjps0aZLuv/9+ZWZmVjlnUlKSxo0bp8cff1y9e/eOOu6nn37SjTfeGGxrXJXDDz9cjz32mM4+++yoYzwej/70pz/p+eefj6tNTZs2bXTjjTfqT3/6U8x9AGv6fSrVzns1mur+GxePegm/95ZlWXH9DxHPPNXRu3fv4E+DKnNdV1dffbVefvnlqNdfeeWVmjRpUsznnpWVpZEjR+qbb76JeD41NVXPPvusrrrqqmqtPV6E3wAaAmP8sqxkefJfVEJSN5XmBfqKfVMySO2S/PpNSuR/I0NYafqp9Gh1SSnRIfMSow7bMaJA6WZD2PFDFwzQTs++/6C1MSH8BgAAqDuE3zWjrsNvKdAq47333tPcuXO1dOlS7dq1S3l5eUpPT1fHjh11xBFHaODAgbrgggvUp0+fuOb84Ycf9M4772j+/PnavHmzsrOzJUnt27dXnz59NGDAAI0ePVrDhg2LO1PLy8vTtGnTNG/ePK1YsUJZWVkqLi5W27Zt1bVrVx1zzDE65ZRTNGHCBLVr1y6uOY0xmjNnTrCyPCMjQ7m5uUpNTVWHDh102GGH6YQTTtD48eNjBqmVrV+/Xm+99ZY+//xzrVu3TtnZ2XIcR+3atdP++++v448/XmeeeaZGjRoVM/SuqLS0VG+//bY++eQTLV++XLt371ZhYaFatWqlzp076+ijj9bgwYN1wQUXqFu3bnGvdeHChXr//fe1YMECbdu2TdnZ2UpKSlL79u3Vt29fnXDCCTrnnHM0cODAuOfMyMjQtGnT9Nlnn+mXX35RVlaWvF6v2rVrpx49eui4447TsGHDNHbs2LgrqWvjfSrVznu1siYRflfVc6gqsX4SE6+aDL/LffTRR5o0aZK++eYbZWVlqVOnThowYICuvfbauCu1bdvWCy+8oDfeeEOrVq1ScXGxevToodNPP1233HJLsNF+bSD8BtAQGOOVZaWqOOsuSUmyvYFfmfumeJBaJ9k6NHVZhKsSVLE/uLFaa07uMeqUYuuMRaVRHyta+H3g/OOU429ejb8JvwEAAOpOXYbfANCY1Ma/cXXe87smwut9VRt5/8iRIzVy5Mh9miMpKUnXX3+9rr/++hpaFQA0MsaVLMnxrZWV1HXPYUlet2IVd8XAu/LtRG0psdQyMfZPmrP9bZUe4bOgx6XnNwAAAAAATcHe9yABAKDGuTLGL2MKZZy84FHbWCp1K3zKslIrXFPxt3kSZGRpl08qcWL/ls9uf6oifRr0sOElAAAAAABNAuE3AKDBcJ3dkvEG7pT/KckxlmwTCLMdq6sctalwVcVPZYlylab1RY5Kqwi/bdeSVLlnXKKaV8MTAAAAAACarjpve1KR4ziaOXOm5s2bp5UrVyonJ0eS1KFDB/Xv31/Dhw/Xueeeq8TE6BuWAQCaDmM8MmWht9GeTSeNJLsslXaVLKtiRG0lBgZIkpUgV4kqto08buzw22cSQq+VZKwWNfAsAAAAAABAQ1Bv4fecOXN0zTXXaPv27cFj5b24LcvSkiVLNGnSJPXq1UuTJk3SiBEj6mupAIA6YpxMmYSyqm6zZ7NKI+mlX41OPbKlfCZNKVb5uQT51U7JKpEkuWohowS5MvI4sR/L41gySpSlVEnlgXtazT4hAAAAAABQb+ql7cnUqVM1evRobd++XcYYGWPUu3dvnXTSSTrppJOCm2IaY7R161aNGjVKr7/+en0sFQBQh4wxIe1O9hwPBOCO2shRkkzw01eCAj2/y3+WmyijBBX4jTxV9C8pcSy5SpOswFzGaimH8BsAAAAAgCajzsPvX3/9Vddcc41c11V6eroeeeQR7dy5Uxs3btSSJUu0ZMkSbdy4UTt37tSjjz6qVq1ayXVdXX311dqyZUtdLxcAUKdsyfgjnjHGUr7bUR43RSa4yWUg/Hat1pKVJkfJck2S1hb5VFpl5bfkVRuVb5hZYrrJr9TYFwEAAAAAgEajzsPvf/7zn/J6vWrVqpUWLlyoP/3pT+rSpUvYuM6dO+vee+/VwoUL1apVK3m9Xv3zn/+s6+UCAOqS8cl1c8MPS/ox36ttntb6aFd7GQX2gvBbncsqwtNllCxbqVpV0kXFtltl25N825LfJFcI0i35TEqNPh0AAAAAAFB/6jz8/uSTT2RZlu68804dffTRVY4/6qijdMcdd8gYo7lz59b+AgEA9ca4xTJOTthxx1jaVmrrp8IUTdrslW0CbU6K3UDltqtEGSXJNilamJMsx0hVZN/K9hn53GSVfyo0slTiUPkNAAAAAEBTUefhd3nrkuHDh8d9zRlnnBFyLQCgaTKmWMbNCz1otVSxE6jO/mino2LbDVZo7/C1kc8ENrk0Stb0nd3kc03ZZLEfq8CWvCZJpqzVSZGTriInuSafDgAAAAAAqEd1Hn47TqAWLzExMe5rkpICFX6uW8XuZQCARs0Yr4zxhRxzla6SsvB7ZYFProwKnMDGlFm+ZPlMsgLV30lamu3K51pl18WW7zcyJnCdJBU4qcr3E34DAAAAANBU1Hn43bNnT0nSkiVL4r6mfGyPHj1qZU0AgIbBtbfI8a0JOWYrTc9u8EqSMj22XFfa4QmE3wW2pQxvK7lKkKtk5fgdPbW2QJK0pjB245MPM0q0LK9VoH+4laatnhTl2PH/YBYAAAAAADRsdR5+n3baaTLG6PHHH9eOHTuqHL9jxw49/vjjsixLw4YNq4MVAgDqS6DqO7RfSaHbVkV2oI7b5xp5XFcZnkC19k5PgnwmQbZJkt+kqNC/59ocf+zwu9DvarfPklGCJEuOsfRLQZ1/WgQAAAAAALWkzr/Lv+mmm5SQkKDdu3frxBNP1IwZM4KtUCpyXVczZszQwIEDlZmZqYSEBN144411vVwAQB0xxi/j5Kly+P1dQXsVlgXZRlK2z1VJ2aeNL7JslTgJ8ptkFbnp8jh7rv0q2xP78SR9leOUhd+S15EmbSquoWcDAAAAAADqW1JdP2D//v318MMP67777tOOHTt0wQUXqF27djr22GPVpUsXWZalzMxMfffdd8rLy5MxgSDj4YcfVv/+/et6uQCAumL8kvwyblHI4Ty/pXw7tIN3ecS9qsCvXd409W6RrAI7RV5TxS6XlRQ7RkaWjFK125egAj97SwAAAAAA0FTUefgtSffee6/atm2ru+66SyUlJcrNzdXnn38eMqY89E5PT9eTTz6p66+/vj6WCgCoI8b4JWPLNTkhx3N8lpxKmbZbdn+X11Gu31KJk6zdvmQ5buhmmVUptl0ZJchRmnJ8gTAcAAAAAAA0DfUSfkvSH/7wB02YMEGTJ0/WvHnztHLlSuXkBAKPDh06qH///ho+fLgmTpyoTp061dcyAQB1xXgCVd+WFXL458LwauzyIyWOq62l0pfZLXRgevWrtn/K98nIkpSgjSVUfQMAAAAA0JTUW/gtSZ06ddKdd96pO++8sz6XAQBoAIzxyci3p6y7zObi8H0hAiMS5Bhpt9dVvl/av0X1H7PQdmWMJddKVJ6Pqm8AAAAAAJqSOt/wEgCAyBzJeCXtaV1iW91UaIeH0vf8VChjpUuSlmZ7tTjbpzVFCdqb+NrIkt+kya1mv3AAAAAAANCw1WvlNwAAQcYOO+QoVV43PJT2GyMpWZKU73dVaLvyumkq3Yue3baSVOKkKby+HAAAAAAANGZUfgMAGgSj8PDbY1rIHyXQdsvC7yLbldc1KvQb5fmrH2Hn+Fvqje1tVGjT8xsAAABAbF9++aUsywp+LFmyZK/neuihh4LztG3bVh6PZ5/WdtpppwXnO/PMM/dpruLiYrVu3To432OPPbZP89Xk6ybx2u2Lmn7tGrpaq/w+8MADJUmWZWnDhg1hx/dG5bkAAE2ICQ+uS5w05UYJtB2lSpI8ZZXhuX6jCB1SqmSbBK0scOTZi6pxAAAAoCG7YPau+l5CrXlrVJd6edxXX3015P6UKVM0aNCgvZprypQpwdsFBQWaOXOmLrzwwr2a69dff9WXX34ZvP/ZZ59px44d6tGjx17N984776ioqCh4f+rUqfrTn/60V3NJNfu6lV9fjteuemrytWsMaq3ye/PmzcGPaMf35gMA0FSFh9zFTrKyfJHD72y7Y+h9n5EdoUVKVVwjrSr0E34DAAAAiKm0tFQzZsyQJLVq1UqS9Pbbb8vr9VZ7rkWLFmnjxo0hc1UMJatr6tSpMsYoNTVVSUlJcl1Xr7322l7PV76W8rWtXr1ay5Yt26u5avJ1k3jtGtJr1xjUWuX3ZZddVq3jAIDmy7F3ROz57cqKes3G0paSSoL3l+V4tDeNS3L9yfI4fll7tV0mAAAAgObivffeU2FhoSTpX//6l6644grl5ubqww8/1Lhx46o1V3ng2LVrV916662699579cknnygzM1Ndu3at9tqmTp0qSRo9erRKS0v10UcfaerUqbrrrruqPde2bds0f/58SdKDDz6oRx99VLm5uZoyZYpOOOGEas9Xk6+bxGvXkF67xqDWKr8nT54c/Ih2fG8+AABNj3HzZSJUfseKo7eXJobcj1YhXpWd3kT5XDfixpoAAAAAUK48ODzyyCM1ceJEHXLIISHH4+XxeDR9+nRJ0gUXXKBLLrlECQkJchxHr7/+erXX9dVXX2nt2rWSpN/97nf6/e9/L0lauXKlvvvuu2rP99prr8l1XSUlJenSSy/V+PHjJUlvvvmm/H5/teerqddN4rVrSK9dY8GGlwCA+mdcyYT/2paJkUdP3RpeKb43Cm1LOz2Odnr2LjwHAAAA0PRlZGRo3rx5khQMSMv/nDNnjnbv3h33XB988IHy8vKCc/Ts2VOnnXaapL0LNcuvad++vUaNGqVzzz1XrVu33uv5yiuhzzzzTHXu3FmXXHKJJCk7O1uzZ8+u1lw1+bpJvHYN6bVrLOo8/N6yZYu2bNkix4k/ZHAcJ3gdAKBpMm5+2LFYbU9WFfhq5HF3egMV5tR9AwAAAIjm9ddfl+M4SkhI0MUXXywpUClsWZb8fr+mTZsW91zlQeMhhxyiAQMGSNoTaq5YsUI//fRT3HP5fD699dZbkqTx48crJSVFLVq00HnnnSdJmjZtmmw7/sKh5cuX65dffglZ0+DBg9WnT5+QtcerJl+3io/Pa1e/r11jUufh9wEHHKADDzxQa9asifuazZs3B68DADRFrowpDTsaK5De2zYnlT22uqBG5gEAAADQdJVX9J566qnq2bOnJKlPnz4aNGiQpPiDzV27dmnu3LmSAkFmufPPP18tWrSQJL366qtxr2vWrFnKycmRtCfIrHh7165dmjNnTtzzlT+P1q1b65xzzpEkWZYVDF9nz54dfLx41NTrJvHaSQ3ntWtM6qXtiYn1e+y1cB0AoGEzxhtofVKJ102MMBoAAAAA6s4PP/ygH3/8UVJoSFrx/rfffhus+o3ljTfeCFYTV5yrdevWOvvss4Nj4u2YUB6AHnDAATr55JODx4cNG6YePXqEjKmK3+/Xm2++KUkaO3as0tPTg+fK1+rz+YJjqlKTr5vEa1d5vvp87RqTRtHzuzz0TkhoFMsFAFSXKY644WWhzb/7AAAAAOpXeQDaokULnX/++SHnJkyYoJSUlJBx8cw1aNCgYDuMcuX9oTMyMvTpp59WOVd2drY++ugjSdLFF18sy9rTNrJiq4wPP/ww2Os5lo8//jjYR7py4HrooYfq+OOPD3kOVanJ163iOF67+n3tGptGkSpkZGRIUrDhPACgaTHGyDhZ9b2M5suK3lsdAAAAaM5s29Ybb7whSRozZozatGkTcr5Dhw4aOXKkpECPZtcN/43WcitXrtT3338vKTwglaQRI0aoc+fOkva0vIhl2rRp8vv9UecrP+bxeDR9+vQq5ysPSLt3767TTz896nxff/211q1bF3OumnzdJF67iur7tWts6i38tuL4Rtvv92v16tV69NFHJQUasgMAmiIj195e34totgzbfQIAAAARzZ07V5mZmZIiB4cVj2/btk3z58+POld5T+Xk5GRNmDAh7HxSUpIuuOACSdLMmTNVWFgYc23l8x177LHq169f2PmjjjpK/fv3l1R1hXBubq4+/PBDSdJFF10UsfvCRRddpMTExLjmq8nXTeK1q6w+X7vGptbD78TExJAPKVDh179//7BzlT/S0tJ0+OGH69NPP5VlWRo3blxtLxcAUMeMcWTcHBk3/BPscxsJZQEAAADUn/KgsmPHjvrtb38bcczo0aPVrl27kPGVOY4TrOY966yz1LFjx4jjyltQlJSUaMaMGVHXtWrVKi1fvlxS9IC04nyLFy/Wpk2boo5788035fP5Ys7XpUsXnXnmmZKk1157LebefDX1ukm8dpHU12vXGNV6+G2MCfmIdryqj/Hjx+vWW2+t7eUCAOqa8QU+IlQff5/nq/v1AAAAAICk/Px8ffDBB5ICPaJTUlJkWVbYR1paWrAv9Lvvvqvi4uKwuebNm6cdO3ZIkj744IOI81iWpRNPPDF4TaxQs+K52267Lep8d999t6RADhfvfMcee2zU+T7++GNJ0ubNm7VgwYJaf9147RrWa9cYJdX2AzzwwAMh9x966CFZlqXrrrtOXbp0iXpd+V9k9+7dNWjQIB100EG1vVQAQD0w8ssoco+yXV67jlcDAAAAAAFvv/22PB5Pta4pKirSu+++G6ykLbc3geKXX36pLVu2aP/99w857rquXn/99WrPN3Xq1LCcTpLWrVunr776qtrzTZkyRUOHDg07XpOvW/njVBev3Z7Hqa5or11jVS/htyTdcMMNOuyww2r74QEADZgxRjJ+ybgyciqdbRR7MgMAAABooipuYvj0009XOf7OO+/Utm3bNGXKlJAgsrCwUDNnzpQknX766brqqqtizlNQUKBrr71WxhhNnTpV9913X8j5+fPna+vWrZKkm266SYMGDYo539dff61nnnlGGzZs0OLFizV48OCIz1OSnn/++WA7jWgmT56sTz75RDNmzNCzzz6rFi1aRJxvX183ideuKnX52jVWtR5+VzZ58mRJUq9ever6oQEADY5d1vLEL+PkVjpH+A0AAACgfmzatEmLFy+WJJ1//vm68MILq7zmq6++0j//+U99/vnn2r59u3r27ClJmjFjhkpKSiRJ119/vc4///wq53ruuee0YsWKiCFkeUCamJioP//5zzE7K0jS8OHD9eyzz8q2bU2ZMiUkwDXG6LXXXpMk9e/fX9ddd12Va0tLS9Mnn3yigoICzZw5UxdddFHwXE2+bhKvXVXq8rVrrOo8Wbjssst02WWXqU2bNnX90ACAhsY4MjIybomMm1/ppFUvSwIAAACAKVOmBPeuGzduXFzXlI9zXTcYipbPJUnp6ek666yzqjXXmjVr9PXXXwePFxcX691335UkDRkypMrwVpI6deoUbLHx9ttvy+v1Bs8tWLBAmzdvDnnMqvz2t79Vq1atJIW31ajJ163i/Lx2kdXVa9eY1UtZ3ZYtW7Rly5aQN0w0Ho8nOB4A0LQY45HkypgSSZX7e1P5XWdi7DQOAAAANEdTp06VJHXp0kVDhgyJ65pBgwape/fuIddv2bJFX375pSTprLPOUnp6elxzVazSrRiSvvvuuyoqKgobE+98eXl5wQ0VK88d73xpaWkaOXKkJOnTTz/Vzp07g+dq6nWTeO3iUVevXWNW58nCJ598oj59+uiII44Ilt7HUlJSosMPP1wHHnigvvjii9pfIACgDvklY2Sc3eGnLMJvAAAAAHVv8eLF2rBhgyRp7NixSkiI73uT/2fvvuPlLOv8/7/uaaef9ARCAqGDgIIUG4rdFRDEdUFld5UV11XXtquu/nSxl11cZRUbX1RQEUR6WZpIMRFCCDUQ0vtJcnqbdt/3dV2/P+45c86cM6fXJO/n4xEyc5frvmYyOUPe85nPFYvFuOCCCwB44YUXWL16Nb/97W9HXc0LcPzxxxfXyvvDH/6A7/tAbyDpeR7vec97Rjzee97znuLj6Bkjm81y0003AXDsscdy4oknjni8nsdijCkuIDmRzxug524Epuq525dNec/vP/7xjzjnePe7382cOXOGPX7u3Ln87d/+Lb/5zW/4wx/+wBvf+MbJn6SIiEwNZwCLs9mBu6b+LUpEREREZL/yh3OGb+sgA42lorfv8T/96U+L49x3330AVFRUcM4554x6rBdffJGWlhbuvvtuzjjjDP785z8D8JrXvIbFixePeKxFixbxute9jr/85S/ce++9NDU18ac//YnOzs7itUbj7LPPpqqqimw2y29+8xv+/d//fUKft1NPPbVYyaznbmiT/dz1hOv7Ks+5qf2u84knnsjatWv5zW9+w8UXXzyic66//nouvvhiXv7yl/PMM89M7gQPUDt37mTp0qUA7NixQwuSisiUCP2XcKaZXNdvscHGkn3Om8Wc+46YppkdWFrf/3XmVNZM9zREREREDgjj+ff3hg0bCMOQRCLB0UcfPVlTFBGZFpPxM27Kv1Pe0wj+mGOOGfE5Rx11FBCteioiIvsHazpwNuq3huvf7xsc8SmekYiIiIiIiIjsT6Y8/A7DKOCIx0ceavQcm8vlJmVOIiIy9UywHhvu6rk3YL8lNbUTEhEREREREZH9ypSH3/Pnzwdg8+bNIz6n59i5c+dOypxERGQauBDnunHOx5n2AbuNwm8RERERERERGYcpD79PPvlkIFoxdKRuuOEGgFGtnCoiIjOdwYYN4PI41zVgr8ObhjmJiIiIiIiIyP5iysPv888/H+cct9xyC3/84x+HPf7GG2/klltuwfM83v3ud0/+BEVEZEqYYAM2bMC5/IB9oXfwNMxIRERERERERPYnUx5+f/CDH2TZsmU45/jABz7A5z73OXbs2DHguB07dvBv//ZvXHzxxXiex9KlS7n00kuneroiIjJJnO3CuTTOtg3Yl3O1oMpvERERERERERmHxFRfMJVKccstt/CGN7yB7u5ufvjDH/LDH/6QQw89lIMPjir9du/ezfbt2wFwzlFbW8utt95KRUXFVE9XREQmjcUGm3Cpkwbs2ZGfw6EVLdMwJxERERERERHZX0x55TdEfb9XrlzJKaecgnMO5xzbtm1j5cqVrFy5km3bthW3n3rqqTzxxBOccsop0zFVERGZJM4Fhd/9AfvSJoEqv0VERERERERkPKa88rvH8ccfz+rVq3nggQe46667ePrpp2lubgZg/vz5vPKVr+Rd73oXb3nLW6ZriiIiMomc7Sj83t5nawywrGpPcly1wu/B1Ccr6Qxy0z0NERERERERkRlt2sLvHm9729t429veNt3TEBGRKeZsNvrd9O35HQcs9+0NefWc+cCBGfAmvBihs4PuP6xmHntyHTTluqdwViIiIiIiIiL7lmlpeyIiIoKLgu2eCnAAvARQwTPtOR5oSk7PvGaAVDw+5P65FfUsrZ43RbMRERERERER2TfNiPDbWktzczPbt2/HGDPd0xERkSnQ0+vbud7q5ZA5OK+K9sDyXMeB+35Qn6ykOjF4+F8dr+b4uhOncEYiIiIiIiIi+55pC7+NMfzyl7/k9a9/PdXV1SxatIgjjjiCdevWlRx311138YUvfIFvf/vb0zRTERGZHC76b2HhS4CQJIYqAHZmD9zwOxlLkPTKV397eCS8OAlXN8WzEhEREREREdm3TEvP78bGRt797nezcuVKnHNDHrts2TLOO+88PM/jnHPO4eSTT56aSYqIyNRwYfFmh5nNzlwNkKXVH7zn9f6uOp7ijQvfR7N7gnsaVpfs8zyYHV+M5yqmaXYiIiIiIiIi+4Ypr/w2xvCud72Lxx9/HM/zuPDCC7nyyisHPf7EE0/kVa96FQC33nrrVE1TREQmXc+Hn73ht3Ex2oOo4jkdHriV3wdXzcMPqkl5pa1PYp5HVTxJzEvi8KZpdiIiIiIiIiL7hikPv6+99lpWrVpFMpnk7rvv5oYbbuDjH//4kOecd955OOdYvnz5FM1SREQmX0+43fsNoJyNs7ojemtqOYArvw+pWIYjTiKWKtlem6jg0Jp54BKg8FtERERERERkSFMefl9//fV4nsdHP/pR3vGOd4zonFNOOQVgQD9wERHZ91jTDICz6QH7uk0CO0w7rANBrFDxXe3NKtnuATE8sFUo/BYREREREREZ2pSH38899xwQVXOP1MKFCwFoaWmZlDmJiMjUMX70QaZzA8PvzjCOdQp1PRe1folTX7rd84h5Hs6lyp0mIiIiIiIiIn1Mefjd3t4OwLx580Z8jjHRV+Pj8fhkTElERKaIc5Yg+xecK9/PuykfxxxAhd+vmLOUmDcw7PeoBMDampLts1PVxL1YoVOMPiQQERERERERGcqUh99z584FYMeOHSM+Z8OGDQAsWLBgUuYkIiJTxWDNbvouctlXs++RtQdO+n1Y9SHld7io7UkYVpdsrowlicfiOPp2ShcRERERERGRchJTfcETTjiBxsZGVq1aNeLWJ3/4wx/wPI/TTz99kmcnIiKTygWAxQRbYED1d4xHmw07s+Wrwvcny2rnsahyFlXxmvIH9ITfNoWHhytE3Z7ncWzNceSzdVTG2kr2iYiIiIjI5PJ9n5tvvpl77rmHJ554gqamJjo7O5k1axaHHXYYZ5xxBn/7t3/Lm9/8ZmKxoetNn3zySW6++WYeeughduzYQXNzMxUVFSxYsIBTTjmFt73tbVx00UXMnj172Hk1Nzdz/fXXc//99/PCCy/Q3NxMPp9nzpw5HHfccbzuda/j/e9/PyeeeOKwY1lrueuuu7j77rv561//yt69e2lra6Ouro5DDjmE008/nfPOO49zzjmHZDI57Hhr167lxhtv5MEHH2TLli00NzcTj8eZN28eL3/5y3nTm97EBz7wAQ466KBhx0qn09xwww3cd999PP300zQ1NZHJZJg9ezZHHnkkr3nNa7jwwgt59atfPexYAA899BC33347jz76KA0NDbS2tlJdXc1BBx3Eqaeeyjvf+U7e8573UF1dPexY27dv54YbbuCBBx5gw4YNNDU1Ya1l7ty5nHjiibz+9a/n4osv5vDDDx92rIl8ncHEvtb2RZ5zU7uy2JVXXsmnPvUpZs2axebNm5kzZw4AsVgMz/N4/vnnednLXlY8/qabbuLCCy/E8zx+//vfc9FFF03ldA8YO3fuZOnSpUBUlb9kyZJpnpGI7I+saSXTchkVde8j0/rV0p1eJe95+pWsbsvTEdjpmeAUOW3eMg6pOpiqWA237XqYnCmthP+HxR8nH9YC8ED7j2nzswCcMHsxp846nVz2WCqTHdyw+2p8O/4PC1rf/3XmVA4SxIuIiIjIhBrPv783bNhAGIYkEgmOPvroYY/3fv25Mc9zpnOXfH9Kr3fLLbfw7//+72zdunXYY4855hh+8IMfcM455wzYt23bNv71X/+Vu+66a9hxqqqq+OxnP8tXvvIVqqqqBuy31vKd73yH//7v/6arq2vY8d72trdxxRVXlORufT3yyCN88pOf5Pnnnx92rMWLF/Ptb3+bD33oQ2X3t7a28pnPfIbrrrsOa4f+910ikeDSSy/l29/+drFjRH+/+MUvuOyyy2hsbBx2bqeffjpXXHEFr33ta8vuf+655/jEJz7B8uXLhx1rzpw5fPnLX+azn/1s2aA5l8vxpS99iZ/97Gfk8/khx/I8j7/7u7/j+9//fvFnQH8T9TqDiX2tTZXR/owbiSkPv/P5PMceeyw7duzgla98Jddeey0ve9nLBoTfjY2N/O///i+XX345xhhOPPFEnnnmGbwyvVFl/BR+i8hUMGED2dZvk6o5j2z7f5fsc14d568+iUebs9M0u6nzjoNPZlHySAI6ebZjDS927C7Z/4GDPk1oKwBocLezvClaJPSUuYdxYu0ryeeOJpXo5tbGq0mH/rjno/BbREREZOoo/J4YUxl+f/Ob3+Syyy4r3n/b297Geeedx8te9jJmz55Na2sr69at48477+SBBx7AWssrXvEKnnnmmZJxnnzySc4991z27t0LwLJly3j/+9/Pa1/7WhYtWoTv++zcuZM//elP3HrrrbS0tADw9NNPc/LJJ5eMlc1mueiii7jzzjsBSKVSXHTRRbztbW9j2bJlVFdXs3fvXp588kluvfXW4lw+/elPc8UVVwx4jL/+9a/56Ec/ShAEALz61a/mPe95DyeffDLz5s2jo6ODTZs28X//93/cfffd+L7PrFmzimv79bV582be+c53sn79egAWLlzIBz7wAd7whjdw8MEH43keDQ0NPPzww9x8883s2rULgFtvvZV3v/vdJWNZa/nYxz7GVVddBUTFs+effz5nn302Rx11FPX19TQ1NfH8889z++23FwPt888/n9tuu23A3O655x4uvPBCuru7gahDxUUXXcTpp5/OggULSKfTbNu2jXvvvZc77rijeFxbW9uAyujm5mbe9a538fjjjwNQV1fHBz7wAd785jezZMkSkskke/bsYcWKFdxyyy3Fts4//OEP+cxnPjNgbhP1OoOJfa1NpckIv6e87UlFRQW33347b3zjG1m9ejUnnXQSxx57bHH/3//939Pd3c3mzZtxzuGcY968edx8880KvkVE9nUuB1hgYLWyI0m7v39XfAMsrZnD/ORiYlQSJ8/8illAb/gd8zyMTfa531td4AFe4b61KRZU1pHubpmqqYuIiIiIHHB+/etfFwPJhQsXcuONN3LWWWcNOO6tb30rn/jEJ1izZg2f/exnaWpqKtm/Z8+ekjDyK1/5Cv/5n/9JKpUaMNZFF13ED37wA/7nf/6H73znO2Xn9bGPfawYfL/qVa/ihhtuYNmyZQOOO/vss7nsssu46667ygauAA8++CCXXnop1lpqamq45ppreO973zvguDe96U1ceumlbN26lS9+8Yvce++9A47JZDK8613vKgbfH/7wh/nhD39IXV3dgGMvuOACLr/8cn7+85/z5S9/uezcvv71rxeD76OPPpqbbrqJl7/85QOOe8c73sHnPvc5VqxYwac+9amyY73wwgu8973vJZPJkEgkuOKKK/jYxz5WtqL7H/7hH2hqauLrX/86P/nJTwbst9Zy4YUXFoPvc889l1/+8pcsXLhwwLHvete7+M53vsN1113H5z5X/gOpiXqdwcS/1vZ1Ux5+A7ziFa9g1apVfPCDH+Sxxx7jpZdeKu579tln6VuMfsYZZ/D73/+eI444YjqmKiIiE8rhsDjbOWCPJcWuXDANc5pax9QtIeEW4vCIe/VUxUu/UlaTSOH6rEcdLwm/PTwXByC0CRZWzmKrwm8RERERkUmxa9cu/vVf/xWAmpoaHnnkEY477rghzznxxBO57777+P3vf1+y/aMf/WgxjPzmN7/JV77ylSHHqaur42tf+xpvectbmDVrVsm+W2+9lWuvvRaAl7/85Tz44IPU1Az9Tc5zzz2XM888k0cffbRkeyaT4e///u+x1hKLxbj77rvLhq59LVu2jBtuuIHf/OY3A/Z96Utf4sUXXwTg0ksv5f/9v/835FipVIpPfepTvOUtbyGXy5XsW716Nd/61reAqM3K8uXLy4bLfb3uda/jr3/9K7fffnvJduccF198MZlMBojC5r//+78fcqwFCxZw5ZVX8qY3vWlAf/P//d//5aGHHgKi4P3WW28lkRg8Zo3FYvzDP/wDb3rTm4ofDPSYyNcZTOxrbX8wLeE3wFFHHcWKFStYvnw5d9xxB08++SSNjY0YY5g3bx6nnHIK5513Hm9729sm5fqNjY088cQTPPHEE6xatYpVq1YVS/w/+MEPcs011ww7xjXXXMMll1wyouv9+te/HrQPUo9MJsOVV17JH//4RzZt2kQ+n2fp0qWcc845fOpTn+Kwww4b0bVERGYsZwBH6L9Qstl4C3HEad/Pe30nvBgJLw4uSWiqiMfjJZXdAHNTpf/TmohFb9VH1S1gYeU8TLigsCfG7OTA6gkREREREZkYP/zhD4th6Te+8Y1hA8kesVisJFhds2YNd9xxBwAnn3wyX/rSl0Y8h9e//vUDtvWt0P31r389bPDdY/bs2Zx33nkl2371q1+xZ88eAD7xiU8MG3z39Y//+I8l95uamoph98EHH1y2vcpgTjjhhAHbvvvd7xb7hf/4xz8eNvjuUVFRwYUXXliy7e677+bZZ58Fokrs4YLvvv72b/+25L7v+3z/+1HbncrKSn71q18NGXz3tWTJkgGtjibqdQYT/1rbH0xa+P3cc88BcNxxx5Utq+9x5plncuaZZ07WNAa1aNGiKb/mUDZu3MjZZ59d7P/TY926daxbt46rr76a6667jnPPPXeaZigiMn6OEJzDmr0l231qiRNipnQViqk3t6KauJfA2iSBqSQe84lRGn5XxksrCuKF/UuqF1Adr8HP9/6P7azEnMmftIiIiIjIAcg5V6yurqmp4SMf+ciYx/r1r39dvP3JT36SeDw+5rGef/55nnzySSAKK1/5yleOeay+c/M8j09/+tPjGuuGG24gm43WcLr00ktHHMqX097eXuzZvWzZsgG9wEer75/BYO1fRuq+++6joaEBgL/7u79j8eLFYx5rIl9nMLGvtf3FpIXfJ598MrFYjOeee65kFdlvfOMbAHz84x9n/vz5k3X5UTn00EM57rjjuP/++8c8xn333Tfki32oBSy6uro455xzisH3Rz7yEd73vvdRVVXFQw89xHe/+106Ozu56KKLWLFixbQ2nhcRGRfngBBcrN/mGNYb2GdtfzMnVcOc5ELy2WoA8kEtiVT0VvyKOUtpznfiUbq+RU+P74MrlmBdSN/PB6q88iuhi4iIiIjI+Lzwwgs0NzcDUchcrmf1SD3yyCPF2+ecc8645jWRY3V2dhYXSzz22GM58sgjxzXeRM5t+fLlGBOtFfU3f/M3Zftyj8Zf/vIXIAqYR1PdXs5EPs6JfJ1N9Nz2F5Pa9qRv7+4eX/va1/A8j/e+973TGn5fdtllnH766Zx++uksWrSIrVu3cvjhh495vGOOOabswgIjcfnllxf7/fz3f/83n//854v7XvOa1/DGN76Rs846i0wmw2c+8xkefvjhMc9TRGR6OZxN48VK+1xbPGD//0R6TqqOBNUEhWpuR4wKrxKApdUHkTN+SY9vgJSXLPw+G+vlyffZ51FJzPOwZd5vRURERERk7HpaZACceuqp4xqrpzvCIYccMu5OBBM5r+eff77YVmS8Y0Hv3GKx2LgLNyfyce7atau4MOTJJ5887mroiZzbRI4FE/ta219MWpldTyP4nq87zDRf//rXOffcc6f9hRAEAT/60Y8AOP744/n3f//3Ace89rWv5cMf/jAQfYKzatWqKZ2jiMjEsTiXx5qBizRat/9Xfh9UuRBcZcm2ithsACpj1RxStYDaZOkHA7Pj0YLPLpxLzJa2OcnmlgwIy0VEREREZPx61oUDRtxrupzOzk6CIBj3OBM9r4keq+94s2bNoqKiYkLGgpn7OCdivIkca6Jfa/uLSfsXc0+ovHr16sm6xH7hoYceoqOjA4gW2hzsaxx9F8u89dZbp2JqIiITzjkfXB6cX7I9JIGZvjWYp0xFrApnaku2xVz0P4UJL0k8Fqc2UV16ko2quwNTRRjUDxgzofBbRERERGTCdXV1FW+Pp3f1RI0zGeNN1twOlMc5EePN1LH2J5OWNLzhDW/g97//Pf/xH//Bpk2bOOaYY4rV4AC33357sUH/aPRfSXZft3z58uLtoXoOnXbaaVRXV5PJZFixYsVUTE1EZMI52wUEA7bnTKrQ+mT/liBFrl+A7RXD72pixKhPzqJvb5MwrCEVi2NsEkPpYpgAqVicrBn4nIqIiIiIyNj17b2cTqenfZzJGG8y5tbW1nZAPM6+49XXDyxSGutYEzkviUxa+P2lL32JW2+9lY6ODr7//e+X7HPO8ZWvfGXUY3qeN2PD70suuYR169bR3NxMfX09Rx11FG9961v52Mc+xiGHHDLoeS+++GLx9nHHHTfocYlEgqOOOornnnuOtWvXjnp+O3fuHHL/7t27Rz2miMjo2bJbu0wK4zzKBeP7i1QsTtwuGfAIHR5xL0bcVTA/tRicKznGuCSHVM9hMPFxLvwiIiIiIiIDzZs3r3h77969Yx6nvr6eZDJJEATjGmei5zXRY/WM19bWRkdHB/l8flytT2b64+w73njC74mc20S/1vYXk/Yv5hNOOIFHH32Ut771rSSTSZxzJQtg9twf7a+Z6uGHH2b37t0EQUBLSwsrV67k29/+NkcddRS/+MUvBj2vJ5Suqalh9uzZQ15j6dKlADQ1NZHP54c8tty5Q/0644wzRjWeiMhYOJcpu73bJMjb/XvBy7pkJTl/YIjt4TG/ogaPFEm7gASzS/Zbl+CwmsHXp0h6+/fzJiIiIiIyHV7xilcUbz/11FPjGuvlL385AA0NDeMOJSdyXieddFKx/e54x4LeuVlreeaZZyZkLBj/3A455BDmz58PRAtMGmNmzNwmciyY2Nfa/mJSy8VOPfVU7r//frq7u2loaGDz5s1AVMF9//33s2XLllH96jl/JjniiCP43Oc+x80338wTTzzBE088wQ033MDf/d3f4XkeuVyOf/mXf+Gqq64qe35PP57a2tqy+/vq26+nu7t7Yh6AiMgUMcFmsOUWQY7jgGc6U1M9pSlVESv/ZStrk5ww+zCsqcHYKvL5gwYcc3DFoYOOe+LsZRM1RRERERERKTjhhBOKgelf/vIXOjs7xzxW3za3d99997jmNZFj1dfXc/LJJwOwbt06Nm7cOK7xJnJuZ555JvF4VOhzzz33YG35bxGP1Bve8AYgagfyyCOPjGusiXycE/k6m+i57S+m5LvSiUSCgw46iGXLlhW3LV68mMMOO2zUv2aSCy64gI0bN3L55Zfznve8h9NPP53TTz+diy66iBtvvJE77rij2Of8s5/9LHv27BkwRi6XAyCVGj706ft1kWy2XIA0uB07dgz564knnhjVeCIio+VcDkeZT9i9CozzeKlr5n67ZyIkYuUrtANTzZzkXEJTjbEprBsYkieoLnNmpCpeOWFzFBERERGRiOd5fPCDHwSiwPTqq68e81gf+tCHird//OMfjyvIPemkkzjttNOAKCwdb7XwJZdcAkQdGn70ox+Na6z3ve99VFVVAXD11VePq+/07Nmzefe73w3Atm3buO2228Y1t57HCXDFFVeMa6x3vOMdLF68GIA//vGP7Nq1a8xjTeTrDCb2tba/mPJGoV/96le57LLLWLhw4VRfesLNmjULzxt8gbZzzz2Xyy67DIBMJsMvf/nLAcdUVkahhe/7w16vb6uTnh8mI7VkyZIhfx188MGjGk9EZLScacXZjoHbifp9P9W+//b7BqhLlA+pjU2R8qoJbQpry78tZzOHDzpubOrfykVEREREDgif/exnqa6OClEuu+wyXnrppRGdZ63luuuuK94/6aSTOO+88wB45pln+M53vjPiOSxfvpwtW7aUbPv//r//r3j7kksuGXHI3N7ezp133lmy7Z/+6Z846KDo26c/+clPRlUV/dvf/rbk/oIFC/jIRz4CRGvLfeYznxnxWC+++CKrV68u2falL32p2Jblk5/8JI2NjSMaK5/Pc+ONN5ZsO+ecc4otRu68805+97vfjXhut9xyS8lznEql+NznPgdERa0f/vCHR9xKZdeuXfz5z38u2TZRrzOY+Nfa/mBawu+vfvWrxZL+/d0///M/FwPycj9AelZiHUkbk75/0UbSJkVEZCZxzgcXDtxOnHQYY2P38B8C7qtmp6qoTQ7+oWXSi9paWTvIOtRDfNCaio2u8rsqnhzV8SIiIiIiB6pDDjmEK6+8EogymbPOOmvYcPjFF1/kb/7mb7j88stLtv/iF79g0aJoLZ///M//5LLLLhuyEDKdTvP1r3+dN7/5zXR0lBYRXXDBBfzjP/4jAM899xxvectb2LZt25Dzuueeezj99NN58MEHS7ZXV1fzu9/9jlgshrWWc845h5tvvnnIsbZv38773/9+PvnJTw7Y953vfIfjjz8eiKq/P/KRjwyZeQVBwJVXXsmrXvUqduzYUbLv1FNP5Stf+QoQ9bA+88wzef7554ec22OPPcbrXvc6fv/735ds9zyP6667rhgyX3LJJfz0pz8dsjK6ubmZT33qU7z3ve8lCEqLtT796U/zpje9CYD77ruPCy64gKampkHHcs7x+9//nlNPPZXnnnuuZN9Evs5gYl9r+4NB/pUtE2XhwoXMmzeP5ubmsl+DWLJkCStXriSdTtPe3j7kopc9PwQWLFgwrhVzRUSmh8G5gYv1OuK0BzFa/H3/61gxz8OWWZz5iNqF1CVqYLCHaAoLYQ4Rcg+mIlY76HX7S3gxDquZx0udA9twiYiIiIjIQJdccgk7d+7ksssuo7GxkTe+8Y28/e1v5/zzz+f4449n9uzZtLa2sn79eu6++27uvfdejDElCxkCHHTQQdx1112ce+657N27l29+85v89re/5QMf+ACve93rWLhwIb7vFyuDb7755iHD1J/97Ge0tbVx5513snLlSo499lguvPBC3vGOd7Bs2TKqqqrYu3cvTz31FLfeeuuAquq+3vKWt3D11Vfz0Y9+lHQ6zXvf+15e/epX8973vpeTTz6ZuXPn0tHRwebNm7n33nu54447yOfzzJo1a8BYNTU13HXXXbzzne9k/fr1XH311dxxxx1cfPHFnHXWWRx88ME459i9ezePPvooN998M9u3bx90bl/96lfZs2cPV111FRs2bODkk0/m3e9+N+eccw5HHXUUdXV1NDU1sWbNGu64445iaLxkyZIBY51wwgncdNNNXHjhhXR3d/OJT3yCn/3sZ1x00UWcfvrpLFiwgHQ6zfbt27n//vu57bbbBu3BHYvFuPHGGzn33HNZuXIld955J0ceeSQXX3wxb37zm1myZAnJZJI9e/bw+OOPc/PNNw9Z0T1RrzOY+Nfavs5zbgT/Wp4kLS0tPPbYY2zevJmurq4RfUWgp43IRNu6dSuHHx59rfyDH/wg11xzzYSNvXDhQpqamnjZy17GCy+8ULLvsssu45vf/CYQfTr16le/uuwYYRgye/Zs0uk0b3jDG8bdnL+/nTt3snTpUiAK2cv9kBARGQ8/8wBhbhVBtrTSIPQO4sfbj+Xra8e3sMdMkPBiJGNxsqa0KuC1C46mPlFHvXlr2fOS8SyBGV07q+K5lS/wx5334tvh30MrYglOnnsoK5tLF5Buff/XmVNZM8hZIiIiIjKRxvPv7w0bNhCGIYlEgqOPPnrY471ff27M85zp3CXfn9Lr3XLLLfz7v/87W7duHfbYE044gR/84Ae8/e1vH7Bv27ZtfOITnxjRYoQ1NTV8/vOf54tf/GLZIkhrLd/+9re5/PLL6erqGna8c845hx/84Accc8wxZfc/8sgj/Ou//itr1qwZdqxDDz2U733ve7z//e8vu7+1tZXPfOYzXHfddcP2nU4mk3zsYx/jG9/4RtlAHeDnP/85l1122YhC2te+9rVcccUVnH766WX3P/fcc3z84x9nxYoVw441b948vvrVr/KJT3yi2IKlr1wuxxe/+EV+9rOfDdvS2PM8Lr74Yv7rv/6r2DO8v4l6ncHEvtamymh/xo3EtITfjY2NfPazn+Wmm24iDAd+BX4oI+2hM1qTFX43NTWxaNEinHO89a1v5YEHHijZf//99/OOd7wDgO9973v8x3/8R9lxHn/8cV7zmtcAUc+j0fTsGQmF3yIy2fzMAwTZFYS5v5RsD72D+cK6o/jV1uHbP810qVicZbXz2NjVVFKJ/cZFL6M6Xk1t+Oay58W8sOxClyO6ZtWL3LzzvgGBezk1iRSvnn8MD+4p/Z9Zhd8iIiIiU2cqw2+ZWL7vc9NNN3HPPfewatUqGhsb6erqor6+nmXLlhWrpd/4xjcOuUYcwKpVq7j55pt56KGH2LFjBy0tLaRSKRYuXMgrX/lK3v72t3PRRRdRX18/7Lyam5u5/vrruf/++1mzZg3Nzc34vs+cOXM47rjjOPPMM7n44ouL7UiGYq3lrrvu4q677uKvf/0re/fupb29ndraWpYsWcIZZ5zB+eefz9lnn00iMfy/YdauXcsf/vAHHnzwQbZs2UJzczPxeJz58+fzile8gje/+c184AMfGNHagN3d3dxwww3cd999PP300zQ1NZHNZpk9ezZHHnkkr33ta3nf+943aOjd35///Gduv/12Hn30URoaGmhtbaW6upqDDz6Y0047jXPOOYcLLriguF7fULZv387111/Pn/70J9avX09TUxPOOebOncuJJ57IWWedxcUXX8xhhx027FgT+TqDiX2tTbb9Ivxua2vjVa96FZs2bWIsl56sVUonK/z+9re/XexP9M1vfrN4u4fv+yxcuJCOjg6OP/54XnjhhbIv3H/5l3/hF7/4BQBPPPHEiP8ij5TCbxGZbH7mAXIdV+Fsa5+tKdo5kv94cT5/2Lnvh9+nzD2M+RWzeaF9K3Evxo5MGwAXH/pOAvKQO23Cr1mZauPWvb+hKxjYUqa/1y44mjnJWdzd8CTzKmpIxmLsyXYp/BYRERGZQgq/RUTKm4yfcVO+4OX3vvc9Nm7ciHOOt7/97dx77700NTVhjMFaO+yvmWLr1q08/fTTQx5z11138Y1vfAOAqqoqLrnkkgHHpFIpPvWpTwHRp2Hf//7Ar+089thj/PKXvwTgrLPOmvDgW0RkajicbS/d4lUR2AQZM20duCZUbaKK2Yk51CYrqE1G1QFxL0bCqyM+SctshKaKuDeyt/OaeBXJWAqAeRW1VMVTkzInERERERERkZlgyhe8vP322/E8j3POOYc77rhjqi9ftHz5cjZu3Fi839zcXLy9cePGAZXfH/rQh0rub926lTe96U285jWv4V3veheveMUril/R2Lx5MzfddBM33XRTsbr9+9//PoccckjZuXz+85/nD3/4A+vXr+cLX/gCGzdu5H3vex9VVVU89NBDfOc73yEMQ6qqqrjiiivG/+BFRKaBszn6r/joCm9Debvvhd9nLjiW5U3rSrYdXnU8LlzIa2YdxjPdfwZgcfUsPBcn4VUzGY27nIsTG8FX3eZWVLMwtQSv8Ll3baKSziAzCTMSERERERERmRmmPPzuWcH1E5/4xFRfusTVV1/NtddeW3bfihUrBjS97x9+93jsscd47LHHBr1OdXU1P/zhD/nnf/7nQY+pq6vj7rvv5uyzz2bDhg1cddVVXHXVVSXH1NfXc91113HyyScPOo6IyIzmcqV3vRoCarDEaMlPznoOk6k+WTdgm+dqCW0lsVhAfbIagKp4Cmvr8OK5AcdPhNDEqUlU0JofOsheXDWHBPU4fOZV1LCgYi6V8RSbupqHPE9ERERERERkXzXl4XdtbS35fJ5FixZN9aUn1Kmnnsrvfvc7HnvsMZ588kl2795Nc3MzYRgyZ84cTjjhBN7ylrdw6aWXjqhp/1FHHcXTTz/NT37yE/74xz+yceNGfN9n6dKlnH322Xz6058eUVN8EZGZqzTg7nCH0RpUE/Mcq9uH71c909Qn5pTeT1aSzR0MQCKeZnHlEpKxjdQmKsn5s6msbJuUeXhejMOqF7IjPfT4S6sPws8fRKqikZNmH8ZBiZNYmGzjqfiWSZmXiIiIiIiIyHSb8vD7pJNO4uGHH2bbtm3TWsV8zTXXjGtRy7q6Oi6++GIuvvjiCZtTTU0NX/jCF/jCF74wYWOKiMwU/RubGBfDOA9vwJ59Q9KrLrn/+gUnQRjdNqaKing9qVicykJf7dgkvuVWJYZffbw+PgsTJHFhPUkvAa4C58WIMXzLFBEREREREZF90ZQvePnRj34U5xy//e1vp/rSIiIynVxQcte4GBYPt4+GrzFXX7LQ5PzEMcXbgakClyQVS/Qe4yombS5Vsaphj0l6NeB55MJ6quLVhLaCmBcjHpvy/xUQERERERERmRJT/i/eCy+8kIsvvphbb72V733ve1N9eRERmSbOpUvub8rU0ewnsW7fCr/PPeQMzlxwLIE/jyNq53PcrIMACIN5JceZYBGzU1XECuF3zp8zYKyJUhErrfxeUj2bili/SvM+i2LOji8lCCvBzOMVs5ftox8/iIiIiIiIiAxtytuePProo3z4wx9my5YtfPnLX+aWW27hAx/4AMcddxzV1dXDnv+GN7xhCmYpIiITzdmukvvNQZyOwGNOMpymGY3NrPgCUhUVhH6KWamaYtuQwKRKjgtMFalYgoSXAAfWJSdtTgmv9Nq1iUq64jnytve59Vy8z+1aIIYxlcxJzWYaPgsXERERERERmXRTHn6/8Y1vxOtTfbZ69WpWr149onM9zyMM962QREREIs6WVn6HFp5scxxenQD86ZnUGHh41MWWkQWOqF7G9uyOaIfz6F9CHfdiJL3JC717r9Nb+V0ZT1CbrCSRj5ccE6NP2xUXvf074lTEKol5pceKiIiIiIiI7A+mpdTLOTfmXyIism9ytrPkft56bM+G7MhO+eew4+N5mLAegIRXQcKLk4zFS9qK9KhP1lCdqJn0KSVcDZXxBB4eB1fNIhlLUJ+sxBukoYntCb9tjMpY3aDHiYiIiIiIiOzLpjxxeOihh6b6kiIiMgM401Jyf3cO/tyY5dVzZ374nYrF8a2J7jjwwyjQ9khQl6xlfkX5gPuI6qNJUE1ukucXhnOZm6qhOd/NsXWHkTEZjqhdzM5MO0Fh3n0D7nxQV3goHnFXheep7YmIiIiIiIjsf6Y8cTjrrLOm+pIiIjKNnM3ixapwlLatag+ib/M0ZKdjVqMzK1VFU66bVCyOR2+LkLiXpDpezbyKurLnJanHI1V230QyJkXcixHzPOalDiYe7C3ZHwXfA6u7rY2DnY1D36wSERERERGR/Y9KvUREZFI524FzBpwp2d7mR4HrjuzMX8thXqoWgLpkJZ7X+7lxjBRJr5KFlXMGOTNFWGiRMpmMS5KIxfDwSJiFVMVrScZ6e3xXJRI4V+bzbs8j6w82dxEREREREZF9m8JvERGZVA4DGHD5ku2dYRR+787ZaZjVyFQnosUqZxfC7+p4KlrYssAE84iRYGHq4LLnB8FcgrBq8icK1CWrOHH2EhwJEl6CendCcd+ymvkEgUJuERERERERObBMatuTb3zjGxM+5mWXXTbhY4qIyCRyAc604FxXyWZb6LTRGZgyJ80MFbEEYcyysGI+sJHqRKqkeUg+rCaZ9EhRV7avd2gqymydHPWJGuqSteA8ElSSC2YX57qwcg6hnbq5iIiIiIiIiMwEkxp+f+1rX8PzBvYYHQ+F3yIi+xgXYkzzwM2F37vDmVf5PSdVRZufZXHVHGanapmVWAhAfbIaXN/+3jFiLkmM6umZaB9HVL2cdrOd0FSTKFSsnzHvKF7s3MHBFUsxk73qpoiIiIiIiMgMM+kLXjo3cYtoTXSQLiIik8/hgxuYvPYsstg1ReF3dSJJaC2+Hb7SvD4Zhd+zUjXUJmqIU4WHR0UshbOlC1jGqASXnKxpj5jnavDwCG2KpKsEoCKeIuHFSHo1zNz6ehEREREREZHJManh90MPPTSZw4uIyD7AmWacG7ioZVDIvM3EfUY6QCoWL4bdL599GK1+F+s791IZT5Azgy+0WZeM+nTXJWpJxZI4W0VFPE5NoppcULqAZTZ3GJWp9kl7DCNlTC2xWDy6Hc4FoCpeSUU8CWbBdE5NREREREREZFpMavh91llnTebwIiKyDzDhDmLxRYV7HhnvCKrdJvbkJ78WORGLkYjFyIQBAEkvCocXVtazPd066Hn1yaiNSX1iFhaDc9F5c5MLMGWmHU7RopZD8cNKKitrMYBz0XrWc+NLSXpbCMPK6Z2ciIiIiIiIyDSITfcERERk/2bDBihWfse5ec8SAHakg0m/dsKLc3TdQQDEPI9ELE7CizE3VTPkeRWxqLVJpVdHdWwOPW+XKeaXPX5mLCYZI8U8AIyNPtvO5w6nJlExQ+YnIiIiIiIiMrUUfouIyORyBkch6PaSbEjDVL39HD9rMYdVLwaiIHx+xSwSsRieN/T1F6SiBS49khAuJgxrOGHWIXgz/W3TRRXottCD3BHn5bNOnsYJiYiIiIjsW7Zu3Yrnefo1zb+WLVs27XOYCb+uueaa6f4rsc+b9AUvRUTkQBeAi8JvQx3p0DFVbz9zU3Oojkc9upOxBFXxKmKex3DLJ1fG5hD3opA8F9QCMeZXzMWaoSvGp1tPu5O+EuYgJr/GXkRERERmoo5db5nuKUyaWYc8ON1TEJF9gMJvERGZNM5mcC7A2XYADBWEzpH3DiZvJ3Gly4KklyRpjgIeoCpeTcJL4OGRLCwMORjPVvPKuYdhwwX0VKlXx6vxg+pJn/N45P36AdscQz9WERERERHpdcghh/D8888Puv+kk04C4LTTTuPXv/71gP3OOTyvfLnNV77yFW6//XYA7rvvPhYvXjzgmPb2dgBmz549YN+qVav4p3/6JwA+9rGP8fGPf7zsdYaawzve8Q4aGhpYvHgx9913X9ljWlpamDt3btkxfvrTn/Kzn/0MgF/96lecfvrpA44xxtDR0cHcuXMH7GtoaOAd73gHAOeffz7f+ta3ys4hlUrh+37ZfZdccglPPvkkwKB/Vq2trcyaNYt4fOC/h26//Xa+8pWvAPCtb32L888/f8AxzjlaW1uZN29e2fGHex30jDGe1wLAkiVLym6XkVP4LSIik8bZdnA5nO0ubPEIHXSaetJm8sPvilglJkxRFU9SFavG4Yh7MarjwyxQ6XksqlyAsanipmSsAoatGZ9e5YJua5PTMBMRERERkX1TMpnkxBNPHPa4mpqaER3XV99A+5hjjmHZsmWjOr+5ubl4e+HChaO+PkSPr+f3sZy/cOHC4u3DDz981GPU1tYWb8+ePXtMc6ip6f1G7ljO7wnOIfqwYyxj9J3LWM4f72tBRm6GNy8VEZF9mbPdmLABa1oBMMTJG0emT6g8mao5FGs9XrvgOLz8GVTE6piTqiYVG/r6nvOYFz+2pI1InGTZtiIznR/O7FYtIiIiIiIiIpNl3/tXvIiI7DOcS4PzcTYKvx0xLB7twdSE385W4lycOcno63YeHgsrZ1GXGNgepOQ8z8OFNRjbW0mdIIXT26aIiIiIiIjIPkP/ihcRkUnjbBow2GB7YQNY53iyY2rCb2tTOOJUu6OK15+Tqqc6tmDoE50jF9bT923So2LyJioiIiIiIiIiE049v0VEZBJZnAvBZQBweDhgY/fk9/uek6omMJXRLEzU4ztBPR7esJ27rakdsM2ZYQJzEREREREREZlRVPktIiKTyIHzAVu452EdNObtpF95Tqq62Kak53dravHwcMNk7/lgYJ/sfFA34XMUERERERERkcmj8FtERCaNsznAB8D3lpK2VezOGfJ2ciu/Xz3/KCrjyd55FGq9ja1gvvdaYlQNem5NIgXecLXhIiIiIiIiIjLTKfwWEZFJY01j8XZIitDF6Qotk134XZesIRHrXawSF4XZoUnihzVDLlx5cNWsyZ2ciIiIiIiIiEwJhd8iIjIpnHOYYFPxfrepIW/jZI3j2XZ/0q6b8GLEiZPwesPv0EYLbDqibd4QfU9eU/+3kzY3EREREREREZk6Cr9FRPYTbrhG1lPOFvp9R0IXpy1I0REYOgIzaVetS1ZQGa+kLlk9+MxsJXFvsLdAtTwRERERERER2R8o/BYR2V+49HTPoB+Hc5niPYvH3nycjsBOas/v2alqamJzWJg6aNBjcsFs6pIVZfc5Fy+7XURERERERET2LQq/RUT2E9Y097vfOq7xxl1J7gKgt8LbOUibya2qnpWsJBVLkGQOKa9yyGP7LojZl7N6axQRERERERHZH+hf+CIi+wHnQly/sNuGu8YxngPG15fbuTy40pUt2/zJDb9rkxXEvBjWVuN55cPtHoOG33prFBEREREREdkv6F/4IiL7ARvuwLnukm0m3DqO8bYPCK5Hy9lWoHcM38X4zfb8uMYsx+vTo7siliQZixOGVcRIDHleTaJ82xPr9NYoIiIiIiIisj/Qv/BFRPYDznbhbHe/bZ1jHs+aPfQNrsc0J9OG6zNG1iRY2zXx4Xci1vtWNitVQ1U8hbEJPDd05XfCK9/b21r1/BYRERERERHZHyj8FhHZDziXx0/fVbxvTRvY7NjHM23A+Hp+W9NUMofAeZgxDpnwBn+76rtvcdVCjq0+DUccb5i3uGRsYMhdl6wAb3Jbs4iIiIiIiIjI1FD4LSKyP3B5XJ/FJcHgXG7Mw1lbWrU9tjFacC49rjF6zEpVUZ8sv4BldSJVvF0Xn4Xnqgv3hm57MjtZP2DbwsqB20RERERERERk3zR0MiAiIvsE53xwfcNvN67g2Zk2cOOs/A4242x78b5vx15RfVTdIkJnWd2yFYCqeJKsCYh5HvMqaugMctQkUqTsMrL+3Oj6tnxY3mNB6mBSsRfwbe/zVpcY+hwRERERkX3JrEMenO4piIhMK4XfIiL7AxfgbBvOZvBi1dhwN86OI/zuE1qPeYx+ledd4dh7aVfHq4q351XUUBlPsCvTUWh5EgXgCS+G69Pn25ihg+y4l2ROqppWP0NgDYurZlE1yCKY+7u+i4aKiIiIiMjg3DiKhK655hquueaaMZ//xje+cVzXB9i6deu4zv/a177G1772tTGfv2zZsnE/hocffnhc53/oQx/iQx/60LjGGO9jGO9rQUZObU9ERPYLFmfbsaYRgNBfM77w203AwpQllejQmB/7W04ilqAyHoXZ8ypqqS6E1HEvRgyPWckqqhMVONcbsAemquxYPeKuhtmpaioKvb8Prp7DrETdmOe4Lxvf/7aJiIiIiIiIzEwKv0VEZjhnu4c9Jsw/A0CQ/TMm2EKYW4kNt47jogHjiURNuAv69Qxv9sc+nZSXpDIWhd81iUqq4lGf7zMXvowl1QupTlQwN1WHc6OoYHa1HFpzEPHCgpn1iRpqDtDwW0RERERERGR/pLYnIiIznDWNxGO1wxzTFP0e7iTIPY41zeOq/IYAMMMeNRgX7sH1C8/35McepidjKeJeksp4gtnJWnwbADAvuZCs6SafyJOKpUaV1zsbZ3ZiDrFC+F0Tr6bSqyUY8yxFREREREREZCZR5beIyAxnTcsIjoqC6iD7KMZ/EVye/pXXI2WCTVEluRt7+G1tO7jS6z/bHo55vBhxYngsqqxnaeJM5qRmAVDpDiYRS1KbqGF+csGoxgxNNdXuKGalqqhJpKhNzMYFR495jiIiIiIiIiIysyj8FhGZ4ZxpHsFBPT1FHM5lcc5nrG1LnM0RBefjqPy27QOub8bRRsXzPJJeJbNS1Riboi4+NxrT1FLp1QAecS8Fo1i40boYxlZSEUuQisWJk8K5A/NtcbyLtYiIiIiIiIjMRGp7IiIywzk3dPsSZ9OYYHOf+93gMn3uZ/FiQy/+WDpgLvptHGG1czlcnzlAjNCML2BN2CWcWOewfow4Uf9v31RSGV9Awmsl6dUReKMJvxP4YYKEF2d2qpoE1WRtclxzFBEREREREZGZ48AscRMR2Yc4N3gXaucMof880NtSxIYNRFXXDmezBLnHRn4tm8a5bM+9sc/XZnC2q8/WOJmxdWEpCk0VSTcf5+J4gIeHcwlwKeYkFoNLjKlyOx6LkYzFoRCoi4iIiIiIiMj+QeG3iMhMV2xp0m+z87FmNzbc029Hb6W4DXcQZP408kvZzt4q8jEumGnN3qhPeZ/znVfL2s78mMYD8IgRmEqCYC7WJcDzqIjHAQhMFUHuMLBVhCY+6rFjxKhNVOGswm8RERERERGR/YnCbxGRGcw5gwm2lN9nO8h1/L/C4pblhcE6nO0c8hr5rutJt1xG6L+Ew2HDrYXxeyu3remI2qmMZM6mFWfbcT3tU7w6ut2CcTRRgZgXvV2FpiLaECxmVrKquM24FPlgFp43+re1RCzGsbXHght9cC4iIiIiIiIiM5fCbxGRGc0UFo8cyNksJliHY/B+IjbYwXALV4b55wlzKwoV5C6q2gZs37YlLl9YRHMEXFA4NpqXpZK8S43s3EF4Pcl5oad3PqylOtEzZvRWZt3Y+nXHiJFiPtYq/BYRERERERHZnyj8FhGZ8cqH285lcKYF468b9Mww//Qg5xpCfy3OhVjbUtga4GwXrhB+B9kHAPDTd9PTQ3wkHKbQqsUU7icJ7PjWV3ZlFrKsSUxMm5J5FXMw4Zwx9QsXERERERERkZlL/9IXEZnJXAAuHGRfDrAlPb4HHGJbcX1Ca+cs1naC83GmMaoq71lQ0/nYcDvWthXOjdqWWNsRBdpDVJj3n3PfavWASiwDw+vRiJU5f15F/bjG7JHyUuA8jBtfQC8iIiIiMtnihXVvjDFYO84V5UVEZhBrLcZERXQ9P+smgsJvEZEZLPTXMljFtSuE4tY0D3p+FEL3Od9l8NN345wfLZgZ7qQn1HbOxwSbCqE6gI+zmajlSd8WKMNwLlMM0AE6TS2hG1/4TZnw++CKJeMcM1Idr8e6+JjbpoiIiIiITJXKyujbj845urtHtiaPiMi+oLu7G+ei/KKqqmrCxlX4LSIyg5hga8l9G+7A9VRm9+MKobcrhtWj4UeV3qaxt5e3yxfHBHC2G2c7ouu7ENzIKktsuLfQ9iSyLVtLOI7FJCtiCbwyb1cVzBvzmCXjuEVYLXYpIiIiIvuA+vrebz/u2bOHzs5OVYCLyD7NWktnZyd79uwpbqurq5uw8fUdbxGRGcTP3E/VrH8u3g/zz+JcpuyxJtwe3Rgu/HZ9F7x0xW3OhWDTOBtVjFjbWVLh7Ww31rYX2q6EWNtKjEXDPgYbbqFvi5QN6ST1iUFat4zAQVX1JLyKAct2mmD+mMfsK5M/aELGERERERGZbDU1NVRVVZHNZjHGsGvXLjzPm9AWASIiU8kYU6z4hqjqu6amZsLGV/gtIjKDONP7Safx1xPmn8bzBvlRXQjFe3pzD643NnbOgjOE+WcIMvcRTx7VZ5zuYiuV6H4XfvftmGADicozwA7eW7xkWv0qxAMLzUEKKF/BPpxj65cSMwsGbPfNxCx4KSIiIiKyr/A8j0MPPZTt27eTzWaBqAVKGI692EREZKaoqqri0EMPxfPG2zq1l8JvEZEZxPWp0rZmL7huHNVlj7WmqXBrmP/R7Vv57fJAgAnWYYJ1eLFaenuC2z63iY7z12DNbpztwPNSI5x/afidMbApPfYuWzXxOvJBucUt1blLRERERA48sViMww47jHQ6TVdXV7EKXERkXxSPx6mqqqKuro6ampoJDb5B4beIyIxh/A30DY6d7SzcyJc9vqddSf+wecBxxQUtA8L8U+AszkZVIjbcU3qsy/a7H/Xu9rtvoaLuwpE8Cvov0Plku+Xw6rEH1fXeMrJajFJEREREpMjzPGpra6mtrZ3uqYiIzGgKv0VEZghrdpfc7w2io/7cA9ufjHRhm6gKxNlubLgTh6GnBUkxYC+M50xj6amF8NuE20p6cA0mCtVLj2vxDePqQOjU3kRERERERERERk/ht4jIDBHknihpUWKCbcXbNtxFPHlY6QkDwug4DFgWksLilhZcgLVt0e+mpTBEnwUuTSvOdpSeil+4kWUkYXs0Xt/j4rQHlkeasoOdMiyrqm8RERERERERGQM1TBURmWIm2DRgUUgAZ9t7b/cLtsP802VGKh3DeYN95TEEHNY2Y8NdUbsUN7BPeE+Lk9KNfbeNoNLcZkvGcV4Vu7Nj7z9Yl6zAOn1OKyIiIiIiIiKjp/BbRGSK+ZkHy/fxdlFIDUQV2H2OMcGmgYf3q/LOMa/s9ZztxJlmjL8O4z+PDXfQvzVJdGD/8DtVetwgvcdLhnDdONtbTZ52B9MRjD38XlI9t+xURURERERERESGo/BbRGQMXJnK6ZGy4Taiauyye6P/mr0Y/8U+F0z3uXZhAUvT3ue8GFk7WG9sR7bjxxh/XWHsPTiXG3jlPj3HrTcfvNK3iHLnDLiSK13w8umuReTt2NPrOalajFXbExEREREREREZPYXfIiJj0Le6ebRsuAvngkHG7S4e0zeMNv763lYoLo9zBmdb+pwZJzNo+A1h7jFC/5meGeD6hOm9124v3u5y8wCv3/6R9O22UGzpEmNzZlxLXZKKJdX2RERERERERETGROG3iMhYuDxB7kkAguwjIz/NBdhwL860DLI/g3MGk3+mZHsUhAc453AEhfN7K6rz3sFcs6Nu6Gubpj63y1+/R5epxvV/ixhB5Xe0YGch/PaqGEe7bwCq49XjG0BEREREREREDlgKv0VExsC5PM40Y00HJmwY8Xk2bAB8nBukitoFONuBNc1l9oWAARdiben+nKthe2YEC1L2zmTIva1BBf3fIhzlq9UHjmsKx6fIjWZKZcS98VWOi4iIiIiIiMiBS+G3iMgoOWfIdfwMZ7vobvwnwvxTIz/XdhTG6L+4ZNTyxDmfIHN/8bjS6waF6mtDmFtVsi9vk/jj6K3dX2O+TKuREfU5NzjbCUCWuWxLj29OXr/WKyIiIiIiIiIiI6XwW0RklJxtx5rdONuBs12j7P9d6APi8gP2WNuMczlMuAPbp0VJ74XTxYrw/oH79lwtDVkDTMzikA25MhXXg/QpLznE2eJioO1hPcaNL/xW5beIiIiIiIiIjJXCbxGRUbLBNqxpx9o2wIDNDHuOcz2hty3cHxh+O9sVBdzB5n6LWUZMsA1r9uBsDuOvKdl3c0OCJ9pyOK9vj+zUiB9Tf80DC9NxjKSBdwBE4fdL6RqCcRajJ72K8Q0gIiIiIiIiIgesAzb8bmxs5K677uKyyy7jne98J/Pnz8fzPDzP40Mf+tCox7vnnnu44IILWLJkCRUVFSxZsoQLLriAe+65Z8RjhGHIz3/+c17/+tezYMECqqqqOPLII/noRz/KCy+8MOo5icjkcATg0sWKb+fSQx/vfJxtLdwuLBrpMljT0ecYV1xQ0oa7y45jwq3gTGHxSwAPSAAx1nVHgfOO4MjCrkrSHDrqxwZgvTnc3+gz4C1iJG1PnA8uwHpz2JOLkzET14pFRERERERERGQ0yjR1PTAsWrRoQsax1vLP//zP/PKXvyzZvmvXLnbt2sVtt93GpZdeyi9+8QtiscE/a2hububss89m1arSPr6bN2/mqquu4tprr+XKK6/k0ksvnZB5i8g4uBBwONsd3S38PvjxATbcSSy+oHisNS040wjxWYWDequqHWXKrgFnO6OFNgtBOl4lIXMAx58bowU0H26p4x8XgaOKBn8OR4+h+DvPHB5vyTHw89Hhw++owt2SdgtozENLfpwrXoqIiIiIiIiIjNEBW/nd16GHHsrb3/72MZ375S9/uRh8n3LKKVx//fU88cQTXH/99ZxyyikAXH311XzlK18ZdAxjDBdccEEx+H7Pe97DPffcw8qVK/nRj37EwoULyefzfPSjHx1VJbmITJYoBLamoXjf2eygR5tgPTZsBHorv51tLy4MGW3v0zql32KYre4EAILMg1F4XgjQfebz9Y1HsT7XW+Hd7EPeO5RGcygZM7bPN0MXnef6vUUUW7cMKTqm21TRFcLT7bkxzaFHyhw/rvNFRERERERE5MB1wFZ+X3bZZZx++umcfvrpLFq0iK1bt3L44YePaoz169fz/e9/H4DTTjuNRx99lKqqKgBOP/10zjvvPM466yyefPJJLr/8cv7pn/6Jo446asA41157LcuXLwfg4x//OD/5yU+K+8444wze+c53cuqpp9LZ2cmnPvUp1q5dSyJxwP7RiUy7ngUdnWnv3Wa78GJVZY+3pgUTbiscWAi/ncHaTpxzeJ7Xr6VIaauQ5qCauSmiPuAuh3NR0O67Kpa3BLz74N5FIdsDeD69hLz1CJ03psfXG373W2zS+Thn8IZchDKq9O40FQQO0uNoexL3YvhhzZjPl5HzvLG9VkRERERERERmsgO28vvrX/8655577rjan1xxxRWEYRRY/fjHPy4G3z2qq6v58Y9/DET9vH/4wx+WHacnQJ87dy6XX375gP1HHXUUX/rSlwDYuHEjt95665jnLCITwAWFG0Fxk+1pRUJvOG7CnRh/IzZswIYNOJvDFarGw/wqwvwqgsz/YcIGch29H3r1l7O9YXOQexxnowDdEOPp9hyPtCSL+3+0sZNHW5L8cCO0+KP/EW+8hTQHPYFzaSAa5lfS3fhPg55rbScUqsNb/CTPtAeDHjsSCe+AfYuaemrNLiIiIiIiIvshJQtj5Jzj9ttvB+C4447j1a9+ddnjXv3qV3PssccCcPvtt0eL2vWxfv161q5dC8CFF15IdXV12XH6LsKp8FtkejmGCXVdPlrk0jQBltB/DmcasaYJXFQZ7UwbzrTjXAAuGKKlSJzOsPebHibYiHNR25O0qQSiau++2n1He2DZmx9LNa/HM53lK9ih0Hd8sBYvLiw+N3vzcbrC8SWq8ZiqkUVERERERERk7BR+j9GWLVtoaIj6/Z511llDHtuzf9euXWzdurVkX0+7k+HGOeiggzjmmGMAWLFixVimLCITxZVbkLI36LXhLmy4Fz99D87lscEWTLAO8PscF+BcHlweCHGmueylrDeLHdk+bUZcGhtsAeCldC0A67tKF6JsDRwdvqUpP/rw2eHxYFN0ns/AD+Oc7cSEWwY52+AKvc03pj3a/OEXyBxKcsj2KiIiIiIiIiIiQ1Pj6DF68cUXi7ePO+64IY/tu3/t2rUlvcVHO8769evZsWMH6XSampqR98LduXPnkPt379494rFEDnRh/vkh95tgM/HU0dhwV9Sfu1DVHfov4ly6z5EBzuVwLsS5LgCy3hFUuc3FIzJuHnv6rRlpCwtlpk30+WWzb0v2P9nmsycfsrI1DodD1L5k8CB8t3kF23M1nFq7FUOSu3dHi292mjqqej4i9aoBG/Uct2mczeDFSsNxa1ox4Q4gSbPv2JsfyQKZg0vEFH6LiIiIiIiIyNgp/B6jvmHykiVLhjx26dKlxds7duwY9zjOOXbu3FlspzISfecgIuMT5p8us7VP5bdpJGYXY4LN4LK4wiKQYW410BsIO5vGmZaoXUihlcij7Yfwjlm94fea9EL29qvgdjYKyjeno7YgrX5pyPxSV1SZ/kx7YXFNrwav0CqlnOt2zeZbL3Xy4lsWkrMJusJovK4wxaJU4TFRhYfBIwcug7OdA8LvMP8kzjQSevPpDBzZcSx2Cer5LSIiIiIiIiLjo2RhjLq6uoq3a2trhzy2b4V2d3dpADVR44jIFHL5Mtt6q69NsIFcx1WAjwm20RN4O9tOmH+u9xSXxdpWnOvG2Q4ANqd7fyynOYovPG8Y0Dq7UD3ekIt2NA1SYR0VhKdY3nly70avkt3m5JLjtmSiuedsgkdben/O/Km577dLPFxhAUxnu7Fmb+Ex9LaAMfnncBhyrpbMOINvgFmp8msgiIiIiIiIiIiMhCq/xyiX6+1DkEqlhjy2oqKieDubLV0obqLGGU7/ivP+du/ezRlnnDGqMUUORNHClAMXvHSu9++yDXf3hsO2rdj2xJq9UFKBbQuV3zkg6o8d9ulgkrbVPNeZ55Q5ybJz6Sn4zhhbdn/gLKE3l0dbYry+rjBP4uz2qzi4z5qWHUFP+B1nZ58WK5vSveM6PLxi+J0pPl5nu/Hicwu30+AMhjg7MuPr9w2QVNsTERERERERERkHhd9jVFlZWbzt++UWv+uVz/dWiVZVVZXs6z9O3/ujGWc4w7VUEZERcrmym/PdfyBZeVp0iEvTU+3tZ/5MT1juTFvpUKYJY5rJtH4HgIx3JH1j7M6wAggJBimi9l20Y/Aia48Xs8vYlXMl2yIx0hxJtbeXQvZNZ5gg12ewHRkLVLDefwWHVewlRkgMsOEOwEHlq8h1XEXV7E/jxapwhOB88jbFuq6hfy6ORCpWPvQXERERERERERkJtT0Zo7q6uuLt4VqQpNO9C9z1b20yUeOIyNRwxZYnXr8dfmG/jW73tEFxmT4HRdXQ1pvb53xX3N4a1mP75NRdJvp80h8k3W7zh28t8kJXBaWF4R7OeeCl6DTVZN3CYouSxny8JGjvDh3Wq6MzTGBIkHazADDhdqzZiw0bsKYJcDgXFH7Pkjapcbc9qYoniXve8AeKiIiIiIiIiAxC4fcY9a2k7rtoZTl9W470X3hyLON4nqdKbpHp0hNye6X9qJ0tfHjlMjjbTu/Cln2T5ygQfqTjZcDANkd/aa0vCZ83pqPK5525/j29oxZIDzVlGM4fdoYlgTok8B04koQuToepYWc2Ct9zBrame6/VZSwBNXSHMayL4dsojDf+8zjbhZ99GOOvARzOdtIT5L/YXc14O34fU38QMb1FiYiIiIiIiMg4KFkYo5e97GXF2y+99NKQx/bdf/zxx497nKVLl5YsfikiUyeqcIZd4TEYbxEAvrc06t0NWNNaOLJ8H26A9d1xnDew69SuXGnPb+uiyufGfuG38xI4r47sCKqrX+z06Xt22s0ntB6OJIGL0Wkq2J6JHlNn6PFEa297pV2ZkJWdS/GdhyVenA+ADXcVHnMIuKiveaENS1c4/ortpdUHcXjN4eMeR0REREREREQOXAq/x+jwww9n8eLFADzyyCNDHvvoo48CcMghh7Bs2bKSfWeeeWbx9lDj7Nmzh/Xr1wPwute9bixTFpEJEQIJfripjqbwICDG2swSXGEhS2t2DzvCQ03RGP0FFpryPYF2jJ4i7L25/otHJgiYNaLZNuZDfNubqK/LLCB0Ho44oYvRGiSKPcN356At6I3Km33D/2y0OAfGxbCUht9RyxOIKr4NPYF/58D1QEdtfvxokuEx4x9IRERERERERA5YCr/HyPM8zj//fCCqyH788cfLHvf4448XK7bPP/98vH49bI855phiNfiNN95IJlO+jcE111xTvH3BBReMd/oiMlYuwPcWs7E7xHdxft/4ev7cnCLqd21xNjvMAHGe6fAJqB84NLA3HwXIzqvl2u1RFXbaOJxX0+e4OLv8g0Y85d7C8Tjbswma/Rhb8sv4zvoUL3b1LirZXaaSvCOw/GyLZUX7fIzrfctwLgMuW5iPw9k0PeF3/yYto5HwYsS9GLn8IpzTmswiIiIiIiIiMnYKv8fhM5/5DPF4HIBPfvKTZLOloVc2m+WTn/wkAIlEgs985jNlx/nc5z4HQGtrK1/4whcG7N+0aRPf/e53ATjqqKMUfotMI+dyZF0NDmgOKvjPF7tZ3tJT6txTAT240FvAnlxI4CrL7k8X+p50u4N4tr23BUmbXVZy3OPtI299lCuE2s6rIWM8GvMez3dVcVtDmk3p3sC7OxwYfncGloebMly5OSBn4332mN6g3zmcy+MKYbgZvOPLsCriCQ6qqsO6JNbFhz9BRERERERERGQQB2xZ3fLly9m4cWPxfnNzc/H2xo0bSyqtAT70oQ8NGOOYY47h85//PN/73vd48skned3rXsd//Md/cOSRR7Jp0yb+67/+i6effhqAz3/+8xx99NFl5/LBD36QX/3qV6xYsYKf/OQn7Nmzh4985CPMmTOHJ554gm9+85t0dnYSi8X40Y9+RCJxwP6xyX7Cho3EEgunexpj4mw3xnk0+5bt2RQtfo4N3VFbEhvuJNv+oyHPz7qo4jtkYLDbHji6Qgsk2evPImqxEvnljvl8/lAAD/D4t+e6RjznnHWAx/bgaL64ppt3L66mNhF99vlCR+81btyRHnBuR6ENyuMtOTKmNLA3wbrohsuCy4PNAUN1Ox/e0uq5HF9/JPhg7MBFQUVERERERERERuqATVGvvvpqrr322rL7VqxYwYoVK0q2lQu/Ab797W/T2NjIr371K55++mne9773DTjmwx/+MN/61rcGnUs8Hue2227j7LPPZtWqVdx8883cfPPNJcdUVFRw5ZVX8s53vnOYRyYy8zlXvr3PTOecwZpGjIuzJe3TlK8AYEcmAGLYcBcUen8PxhR+7IYuAf3WhVzTEdDiW/LeYpqDFH3D79/vyPL5Q3t+ZHsjWuyyR8ZE4XejX0FXmOW+vTkOr6kGYEum9xqBGzhme9AbZWdM/y8LRfusacQR4FwOiI8r/K5KVFARqxrXGCIiIiIiIiIioLYn4xaLxfjlL3/J3Xffzfnnn8/ixYtJpVIsXryY888/n//7v//j6quvJhYb+qmeP38+f/3rX/npT3/KmWeeybx586isrOSII47gIx/5CKtXr+bSSy+dokclMrmcHTognqmc2Uuu48eELkbWOBoLi1M6opYiNtw+7BjdJgrMfTvws8fN6ZBtmYDbGpdxf2NpZfiWdABeCudVEVK+ZcpgNnT5OK+On26Ofg415kMeaopatWzPDL06Zd+MPWu9ssfYcDfOtALRHO3Ic/kB5qVmUcH8sQ8gIiIiIiIiIlJwwFZ+X3PNNQNam4zH2Wefzdlnnz2uMRKJBB/72Mf42Mc+NkGzEpmZbLgVKk6c7mmMmnNRD25DHHC81NVbnxxSjwm2DjtG3iaAkJxN0L/zyd5cVIX9TIfjL83+gHMNdRgq6DCzRjXvwDkebH85f2rsrbjf0D106F2OP0j4DVHlO4Clms7RD11Unxy4EKiIiIiIiIiIyFio8ltEppzxNwy6z7mZ2/CiJ/z2bfSj84nW3gUpQ1I421m4V65XdXRO1kSJd6Pf/5g4PQXTz3eErOnM01+bXUCXrWd7rm7Uc3/vyu5CP/HInlw4xNHlDRZ+O+dDYfYBNezNj/3PsDa2EM8bLGQXERERERERERk5hd8iMqWcCwmDlwqBad/tAc524ezIF3KcKsW5Fn4PXG/7kF4ejqjk2XnJkvPz3mEYbx4AuUJwvjdf+sUb5/W2Mlndnis7j82ZenI2SWc4PT+6c4NVfrsAE+4AIO+qCMeYfce9GDFbB07ht4iIiIiIiIiMn8JvEZlSznZiwx3g+vXGcCHOZrFm1/RMbCiF0Lt/5Xdpa2uHsx2F26XBdms4h7SLwu+eftjBgCC595zBFrPsDONkTIKsmZ5w2B8k1HbOx+SfAyBwSXJjbPpdl6zAugqcO2A7comIiIiIiIjIBFL4LSJTypo9WGoJ808Xtznnk23/PuCwwXZMMPzCkVPJuUKFdyEE/+pL5X50ejgThd8+s7HefKy3AN9bSt7GaQlqoyEKR4cOQm9x8ew7Wl4x7Dw+9WyO+5qqWd46s8LvMLcSE0StbKzz2JYefUsVgPpkFTm/npy/YKxTFBEREREREREpUvgtIlPK2S4MlSWLQzrTTph/FmvbsKYJG26ZMb2/nbPF0BuiUPeFjoErOjq8YuX3mvQhGCoJqCbvqmgJKtiQqYpGKLT0aA2gxcwHKoAYu3PDB9oNuZDfbc+xsduM+3GNxWDht7VtQLTTuBgdY+h7kozFqU6kgBjOxYc9XkRERERERERkOAq/RWTKONtNkPkzljg27K3uDv01ONtGtu37WNOECXfibMs0zrSXs+2YYH3hdhaAVn9g+GxdHAo9v6/flcCQ5Oa9y8i7FB9/NmR9dwzn1bOuO2rp8aU1nTzcMof1/isw3gI2pkfWKuSlLp9tmbFVVo/XoG1PzJ7i7ZAY3eHow/njZx3MrGT1WKcmIiIiIiIiIjKAwm8RmTI23IM1e+gwszHB5ijkdgFh7q89RxBaH5zBmbZpnWuRCzDhNkJ/LdbsBpIEbmBQvTU3t3h7Y7ehw9TzTKejNagmYxyr2gx7wsN5qKk3GN6Rg/YggSXJjszIA+PN3QMrz6fC8x2WVnfCEEckCGyczmD0Pb9jeNQmasY+ORERERERERGRfhR+i8iUsbYd469hdedsbLiFfNeNOJvBhDt6jqAzCHAuiwm3TetcezgCbLAFv/s2TLAN51WUPe66nani7c7AsD5dx227smzKVJIOLLc3pLl1z2zu3J0uHtfuO3bnExgSNOVHHn6XC9+nwh93dfOPT80adL/zagidN6b5xbwYtYm68UxPRERERERERKSEwm8RmTJh7nEgwep2r3B/BWAKvbITGCpp9ONkwoAguxw/fe90ThcAZ1qw4S6sacC5NI7y4XfaRIFv6B3EtkzAL7dBYz7ktgZX7IG9M1caCneGjm0ZD99Vsik9PdXco/VCp4/15pfdl2U+oRvb20p1vJK43pJEREREREREZAIpaRCRKWP8tTivhoebogUknW3H2Q6c7QQviXEpGnIpduYSGH8tYf6paZ4x2HAXzqaxwQ6cacQOEn5vTUeV2x12Pi2+5aGmqD/43bvTFHJxHmspDbh35ywb05acTdERzIwFPofTFhgybk7Zfc92Lyou6DlaqXgSz9NClyIiIiIiIiIycRR+i8ikc65ngUZLjnk8256HQohs/HXg8vxu7xl4roWmXI7mzF4scWD6A2Fr27C2Hee6sWEDIamyxz3dngcgb6MFLfOFxLvb9FZ7P9OeKznn0aYst+7K8P4n962FHvOu/HNwz94kG9Ll9w3HA+q8JeOYlYiMVOeqz0/3FERERERERKaEwm8RmQJRVbTDkncVUU/oQpVvkFsOwM835zEuQTq0GBcWwu/p6W1dwgWFWTjAkbHlF2XsCi3gke0Jv+3AufffkreOrtCyuhCc7ytyNkUUV5fqDBwvdY2t8tsjhnPJcc5MREYi7HgRZ/eNVkszmZum9RdERERERGTkFH6LyORzUZsT6xy3710QbSr8+Alzj2G8hazpzPPh55bxQpcjb2OkbT3OTX/ld1R9HgXaxlvIEQ8MXtkceIfwqod7gv79V8YksN68wr3ewDodOh5sHH2QXxlPUJ+chbVVEzRDERlK0Pocue13FO+b9K5pnM2+y3Ssm+4piIiIiIjIMBR+i8ikC/2tOOezNbeYDd3RNp95xf3N5iAAAuvYlDbszcfYmptDY7hwOqZbwtgQQxTKhlQOeWybmUt4AFQCtgZJwsJzkvWWFrc7HPkxfF5Rk6ggTpzQDP38yuTxvLFV7Mu+xdkAZ3wwOVzQWdzu73lYVcxDGOy5CdqexVkTPaciIiIiIjIjKfwWkUmX674V46/jq+sSXLmpC4A/tR5W3P9c1ywgagOSDR0NOY/PPe/xnfXTH4bmwm7aTVSt7rvyi1322J6rpVw7kP3NS90Jum0dANc19ITfHhaPFj8c/MRB1CYqSHqVGKu2J9NlX4g9XZiZ7ins81zQhc23YIOOkuczt+NObK5xGmc2s9l8c9nt/u6HcH47Nt86xTMSEREREZGRUvgtIpPOml2E+dVkQlPc9tPNId0cDVTwux1R9LahO2BrJuDO3T5784aKmI8Jtk7PpAFnu3DhNhqDaEFKf5CFHns803FghLc37gzpCKPn5E+NIZAErxLrHI15M/TJZcyvqCNJ/QTPcv8W96DuwHi5FeV23DndU5jRXJgjaHue7NabBz3GpHfgN64AG+CCDgCClqfwG/9C2PoMuR13D3sdm2/FhdkJm/dM5Uwev3kVAKZzw4D9YdcWwq4NWL8drCq/RURERERmKoXfIjLpnAswwVba/N4F1la0ZLl+92Kcl2J5cxSk7MyG7MyGPNmWY28uZE6iCxtun65pY00rnm3h+c6oAj10Q//IbA32hfrZ8VvRkmV5aw0Q58HGLHgJLFWEzmHG8BTUJKrxXPmFRKW82qTjoIr9P4DsK/PSz6Z7CjOazTfjN/6V/M7BA+yg9Vn8PY8AELavBSC75QZspoHcjjvIbv7dsNcJO17CdG+bmEnPYC7oImx7HojawvSX33UPNt+KzTXh9onvToiIiIiIHJgUfovIhHEuKLv94fYjyYWttPmlVcHfeSmNI0GLP7BRdM46amMZch1XE+afnpT5Dsv5dNk5LG+xrEy/Ft8mhjy8O9z/W570uHFXwKrMqwicAzxCasbU77sqHpUv5/zZEzq//d3xlXt4s3/tdE9jzPIND47u+F33E7Q9V3afelWDzbdj/Q6C5ieHbA+T3fhrcltuACC/5yFs0E124zXRvk2/I2gZ/mdt11NfJrfrngmZ90zmTBab3QOAv3c5uR13FffZfBu5bTdjOteTWfczTPfWaZqliIiIiIgMR+G3iEwYZzvKbMtxz96Q3fka0v3KgtsCQ0DdoONZF7VMseHeCZ/rSDgsLUENu3KGNV1J2sOh255sz4y+5ce+alsm5LnOKLh2eISkaB1lyxMPj1mpKjwPrDvAeniMUw1dzM69ON3TGDOT2Tm649PbcGF3+aDbjb7P/P7GpLdh0tuw2d0lC1n2F3a8VOxfbbO7Md1bsLnovgs6cWH3gHOcK/1UK+zcQND41wmc/cxk/U5cmME5h+neWqwCBwjaniPsWI8LM+R3/xl/71+mcaYiIiIiIjIUhd8iMmHKhd/WNrOy1Wd5axUtZcLR9dnFg46XK2QuzuUmbI4j0VvB7mgOkvy5Mcv1O3yu2jp0QLu5+8AJ4bZnAvbkeoLIGIFL0FSmgn8or1lwFKfPPY6qWNXET3A/5gFH5h7GG+SbFjOdM3nC1meHPMb6HdhcM0HbC9igG2dyYIPoV59xbL4d07lpsqc86YJhno/+THpHyX0Xpsnv/D9MeicmvQNny38Q5YI+4baztD/yAfoud+rCDCazu+SczpWfJmheXZynzewit/NubDAwKN9XOTvw75Lp3oyzPt3PfYewcx2ZjdfgTB6A7ObrsIUPcGxmJ2FrVDFv/cE/eBARERERkemh8FtEJowz7b23CxWazqbJG8czHa7QIqPUL7cNXk3dHoDz6oAprqh2+eLv6TAOwJa0z+MtQy9qtiF9YC169nxHz59LjNAlacqPLvyvT9SR8JJ43oHTLma8Yh5UxqHO3wz7ULsPF2aLAaPp3oozQ/crd2GGsGMtNt+CSW8n7Hgp2h504pzFOYfNNRJ2rsftB5XfYduaUR1vsnvxm58Eosps67fjgk5M1was30rY/gI2SPc7p3FAyGv91pL7LugiaFpZOreOl7B+O2HHumhxx2gwspt+O6o5j4WzYb/7k/Ne4IKuAdtsrgkXZvAb7gdnwfrYQlV9T7/04rF+OybXRNi+734bQ0RERERkf6XwW0QmTDofVcI5240NC1VxYQNb0gEPN5Wv3r5m28DQocdTbQHNZhnODn7MZOipNLemmY3p6Mdki2+HDbezY1ntcR92796ot7Chhs6wctSPf15yEZWxWjwUfo9URRwWVvjU5tYTt/vOgpdhx1pMpgGA/K77sPm2IY+3fjvdL/wQf8/DhG1ryLz0UwBMejs2vROb3UvQ8hSZ9VcNG6TvC4L20YXffsOf6Fh+Cc4GBC1PYTO7cWEaF2awmQa6nvoyQeOKknMy638BNl+yzRb+TIpcSNCyumST6dqI6d5C5+ovEjQ9Xtye234rLpzc5950lVb1B61PTcp1ws6NA7bZXDM214TJ7ALAOYMrhP99W6AAOJMjv/028jvv6j+MiIiIiIhMM4XfIjJhuv3dOBcQZB/G+NHidB25neStY2P36Fs0rGrLcfOeuTTmp/ZHlTNRMJc1cR5o3PerSidbh507pvNiVFDhFhFT5fcA8UGekpq4Y1migcr8dirD3TP2YwObaykJRk12b7G6NuzaSNj23JBVvC7fQtDyJCa9A5trLG73m1YStD1LfvcD+I0rMOkdA1qA7ItsIWAdqbBjLSbbQH7HXaTXXE7QvIqwz6KLQctq0i/9pKTS29/90IjGNtneQDzs3oZJ7yC75QaCppXktt/W50CfsHP9oONkt940oHJ7tMKuzSX3/b1/GfC6GWrB07B727DHAATNq6LjCouFhh3rMZkGTNfmYqsT53dgcy09Vy0dwPjkG/6EKSyQKSIiIiIiM4fCbxGZME25PM60EfovYYINAOSDaLHKsRRF563ji2s6WdNVOZHTHJYt9C5v9hP8qTEzpdfeF3WElf2joBGJU0smt4iqWM2Ez2lflxgk1a6KhxwWrKLK30FFvoHkDH0XN+ltmGxv72ib3dMbLLavjVqa5AZfyDbs3IBN78BmdxcXZIQopDSdm/B33Y/fuAIXdmP6BaT7IlMIaUfCOYfJ7sblW8ntuJPc1hvxG5djOnqDaJvdTX7HHaUfQHSNrDe669O3OmxbA87g734Qm91dUvntTHbI5z794hXjrso36e291wtz2PSOYvV1cXuZliU9gp7WMP7A9SiK51tDvuGB6HrZxuj+7j9jurcWWp+kC9fp7H3N9mu140wmCuaHmIuIiIiIiEyPGfrPZhHZF+3MBjjbgSOGb6KKw85w/K1AMmZk1YPDVfeNVE+bldzo1m88YOVtjBe6Rr9opbOV4HlUewsmYVYz35KqkNfXbytbvX1EdZqK+MDtHpAqvD7jtpslVfmBB80AJttI2L4Wf+9fovtdm4utIlwQBZH5hj8Nen5YaANi/faSNhymayPpdT+L2p/kmqMKczO1C+JOtKD9xeIHA33ltt9RrDruy3RvK4a6+Z3/B0R9uV04cAHKvuGzHSIALjnH9VZW23zLoMfZfCv+3kejULpM6Gs61mFzTSO65mD83X+O5hRmcSaL3/gYYdcmwj5BvyksPFmO6d4SnR904sIsQftanOltX2Uyewia/krQ/AQuzBb6m7eS2fD/om8eZPcUX68AQUvUdqV/9XnYtQWbayr5loKIiIiIiMwMCr9FZMKs7fJwGDpNLc1BNQCto1wEsZyESw9/EAATlVZHc3ZO6fdIZG2cO3YPf9yg7OyJmso+pS6e5yBbvnJ2Tqy9bPW3hyNlesLvLHWxmdfv2llD2L4mWoAxE70wbK6JsHNdtL9QjTxU1bALugu/d2HzvZXfYddmTNfGqL910Bm1C7Gjb6k0k9hcc9nwOGh7tmz4bbO7cX5b4dyeSuRBWsj03e5G+Dz1+TDBDhEsY32CtudwLizb+9sGneOuhPZ3/xlnA8KuzTgbRN8EyO7G+r094+0QrUZcYYFKZ6JgO2heVfKNBBd0RMG134bJ7MJm90Sv1fYXsdm9UY/0Pu8Dxddi/0VWTRZcqPBbRERERGQGUvgtIhPi4d0beaixk+7Ms3xr/Sx+vzOqBL6vcfxdiYMRL+xnsGbwSsWRsi6ac8IO3pZBel21NcEfdw2sOh2OK9Q8B6Z6oqc0481JOV4d3sqC3HO8qn5geHd0sIKv7z2Cf018v2R7KmY4evd3i/dPCe6bMX2/ewLcoOlxulZ/MVqMsfUZgtZno0ra5lXkdz9UDBD7VhXndz/cO47fQdi5oXBMc2n4mNkFzkaLPGb34MLukr7W+5Kwa2t0w4XYTG/f8p7AO7f1j8WWG31l1v18xNfw9zxM2L0NF+bKVpeX42xvZXR+z8ODH2eyUW/sjnUDWthkNl4bheP9Fs/sYYM03WsuJ7fzXgCCthfKH5dvIfPSz8g33Edm3c8x6e2kX/xfup78Qslj7Hj8X8vPMeii88kv0PnkfxC0PY9J7yBo/Ct+42MA5HbcGQX8Jkf38/+FSW+Lqs1NbmDADWTW/SJ6nQ/yYYMLM7iw98OD/j3LRURERERk6in8FpEJsb6zmWfb83T7u/Gtw3NRELYnN/iidiPVnh9hWwMX4Oz4e3TnbRQn5iemi8p+b0PXyMPHqniSo+qiNifOJQAITXJS5jWT1SdC5ubWMDezmhjR35G+bU7qgu0kbJqD22+ntvD01Ceh2svj9emwPje/hsQMeSd3YRabb41abTiD6d6CzTVGFbTOEna8RHbjNcXQ26QLixFaU1xI0VlD0LKaoO1ZIKrqtf16PBeu1nuzT1g7onkOsdDmVMpt+yPO+FGIb01xMUXrd0Tb861le1X37YM9HNO9HUyuJNAeVp9jbXbwDwCt347N7CS75XqCQphc3FeogO6p4Ico1Ld+B84GmPQ2XJgptiUJO14qOc6F2UKI7Aja12A61hM0/jU6tmsjJru32As+7NxIvuF+THpglbpJ78Tf82gUau99BJvbS9D6DPndD2Iye6IWMu1R8O433B+10xmi1QvOFFvOlN3tTPSaLzxu07Vl8LFERERERGRKzJB/MovIvu6h3RtpyIWE1sc4i+c6saaJhuzogqlyciMMq2y4Cxh/FWiQfwHnDA3ZMk2XZYDV7SPvO31Y7TxeN+cdAARhz0KmB95b0ex4mqVNv2Z+x33UuijgfFl1a3H/3HS0sGBNdj1HV0bb31yxguPt4yXjHNp4Vdne4NPB5puLCwUCZF76CUHTSsJCwGnzrWQ3/67YpsTf8ygQtZ7Ibbm+cLuT3JY/4PKF58JZTOd6huLs6ForzYRFCZ1zxUrm3LZbwObJbbs52hdmCDvXYzO7iv3M+7Zg8oeoxu7P5psJOzcWe1WPaG59ns9ylee9g0d/jpkNvyS75XpMpvcbDD2hec9rAaIgOLftFsK2NbigOwrDM7uiMdb+GGcNzjn8PQ/jN60sBvZh63P4ex8l33BfNHZ6B6ZzHel1P8eZPEHLakznBtIv/M+AKfrNKwmaVxK2PkN2w6/wdz9E5qWfkN14TRTaN6/C3/NINL/0dvy9K4Z9fWTW/WLQfS7oIrfzbsLWZ7H5NrVBERERERGZARLTPQER2T9kCwtcdvg+i5LtZI0jyK5gU3r8YXQ4TPjdEwyZYCPx5FHjvp4J1uJsBzOjPnT/Evdi4HrC7pnSsGPqHez1VqkuCtcCL+NI9zwvxs8isFDf3RtWVng+HnB8+zU4BibdiyuyrA9Gv+DoWDiTx4tXlN+Xb8N0bsRLRHOxfjteak5vJXG/6mMXdOJMHpPZFVX72iCqrG19ZlRzCtvLt8wYjM23EKuYPapzIKow9lKziCVn4cVToz6/hMlhurdHCywWwlYbdOLvXU6scgG2EP7bIKqUdiaHl6wr2wN8KH7T4+AlcOEoAn8X4owfPcYRtJRxQSdB2/MELauJV5+Dc5awbU1x/jZIE0vW4EyW7KbfYv02knNPiSq/Cz3FnckStj1LvPYI0mt/RMUhf4PNR4tlmszOsoF00PxkSfV4/28IOBsOqJx3Ybpw3QZM5/po7D7nme7NmO5tQz5ev+mvgz8XYRp/94M4v61QBT6+BT9FRERERGT8FH6LyITIm6hacHWbZUlFE0+2gfFfpDMYf4S8N29xzsfzygdOznYAHibYRCxx2Liu5WyWvI3jbJpQC15OuKQXpyf0tjZ+wObfy7IPF2/XB1Ebi9nBZuoSbyBtPBK2t+I2iU8qDoua7ig71pLYLtYz/g99huOMj0lvJ1F/dNn9Jr2doGU1iVnHRRtsACaPzbeVPR4cNtdEbvttuLArCky9GEHzE6Oa12iPN91bSNQfOapzAPy9y4nXHkpy3mnjDr/Drk3gwmjuPQGz9Umv+zm1J/wbrqc1TPdWgngVNt9K5ZK/wQyxuGM5QWNUyezCkffkd84QdqwlOfcVxcrzoU+wuHwLQdNjVC49B+d34rdErUHC9rXYXFMx/Pb3PIQXryRedRCm46UofHYWm2siaHseYhXkd/4fzvj0tLbpqQ7vz3RvjSrTC8/fgIDc+sUFL4ub8s3RuCaL3/jXgWPbAL955ZAPd8hA2wb4TSsJmp+kItOAlzjw1jMQEREREZlpFH6LyIRozEXhyuoOx/G1Hn9qzGCsodUff4C8udviTDteYiEQhTOe11sB62yhSjJsAHq/sm/CXcQTh4zqWs5lyJgKcHmMVfg90TzPA+Kcs/h0CA+85DsVg2XVWWa3ryluq/U3cUx9hrrujbyhdjkrvNeWnPPK7mug9oODjjnP7sDjKCazRb0NujHpHbh8KyGUDcDDjnX4e/9SUrntnCFoenzAsT0y668ms/FX4Cy5nXeRnHfaqOfmTI6wc8OgoXx/Pa04bNBNLFk74uuY7i3gxUjOO3XUc+wvaF4FQH73Q3he9E2I/J5HCFpWk1rwGrx41BLI3/0guc3Xk1r8NvyKOSVVyiMV9nmtjYTLNRM0rQQbYv3BPrgYKGh/kfyeR8Fki21rgtanCQuvh57FH/2mx7FBV9T3O+ima/X/hymE0D39toOmvzJcOySbbyLf8EDxftixtt/+gXPvG5AP9rzYMr3DSwzzgUBPoJ7b8gdSi98afWMgWU+8auHQ44qIiIiIyKQ48BqtisikyIZR9Z0pJHA7syHNQQ15O/5IbnM6wPXt5e2yJfutacWGDTiXB9dbaW6DLTg3yspzFxC6GM7l8Sagf7iUinkxwGNOctF0T2VaHFzpszDWTGWwo7htVveTHOOtZX73Xzim4/dUx0t7WC/suJ9lweCL7FXYjklf9NIF3Ti/HZPeQdhWvs2I9Vuxub2Yro19zxyyWjlsX4NNR8+FSe8YVYVy7yVCgpanR3y4LVQDm65No7pM0LIa07UZJuAbIbbwnNjs7mJ1ddD8BC7fQti+prgt7FiP3/QYNreXsP1FTKZh9BdzdlRzNrkmwq7N0YcYI2h70sNmGggaV5Df+yjFBUlNjrDjRUzXJkzHumg6fhtB8ypsrhkXdOI3Lo9a4jhXbGHiwsywrwWbaSgJv/u/zmy/qu8BBn1Oxvue5QAXVZnbENO9bUwfWoiIiIiIyMRQ5beIjNuHl9/I+s5mAK7Z2k2iUND756bR9acdzK6coW8gYU0T8VhUsemcw/gv4nlVONuGK1R+h/mnybR9l7pFv8OLzxl0bOcCcCFerIquPX9PRf2HaAtT5DqvIgzmTcj8JXLC7MXMTtaBA8/NkFUaJ1jc6/0AqJyjE1s4PL+cWd2ri9uq81s4tutGarLrSIQdHD+7tIK1OreRkxouG3TMY5t/SrL+3QST+EUFm2vEdG+JWlNYH5tvJrX4bSRqe9sMlQv4XNCFHaK3Td/K4tyWP5CoP3b0k3N2VAsLms6NNN58JLUnf43k3FeM/LzMLoLWZ6k+9l9GP8d+evpTm+4tOBN9mNfz/IXta6Ne6UDQ8mTUB73piWihyLF8ODBaJkt2029wQcfwx/bhwu5C1X/pn3fYHr2eczvv7t1oe98beh530Pp0yQKZI5HbemPvOPk2nA3xYtH/2o52rMnSU+WfmHVMtJioFy98A6aXswFeLDkd0xMRERER2e+p8ltExq0h04EpVNHlrSNdSP8aR9AudiSyxoKLFstzLsT4Lxb3ObMb47+ItS0452MLleYm2AEuh7NDf23fhruwJgrurWnE2U5e6q4gDPcSTkDV+lRKeDP7R3plLEnci+GIEaP8oon7kvoyWdXcCkvVELl+rW1lbuYpvH7VpfO6lgOQCNtK+oEDeDiSYcugY1ZlN1IZH/lrNT6GbjMu6CJofQa/4U8Ebc9HVbb9FrAs1wvZBZ04v3XQcftWMhergMfChsMe4lyhh3S+BdO9vVhxPhLOGnAm6iE92m+TlFFcVNFZnF9aoRy0r8F0ri/sj65l/Tb8pseLQfJks/lmXJgZ5TktuKALkyl9Xk22gaD1GcK2Z8ue1xNS+3seGXaxyQFK/iwcLuj9cKCn0nw6OZMjaFmFKy76GkKfRUudc9h8KzbXPE0zFBERERHZ/83spERE9gmdQfkK78aJKfymI7D4+SgMsuFuTFD4arwzWNtJEOzCmTbyrp6mIEoeo0UwKQbbg8l2XIkNt+CcDxicy7KixWJcnHDfyr45vHb+dE9hSPMqZpOKVWBMBfn86Hqxz0RvTz08YNt57je8smbwnsGVroODW28asL06F7UKibs8x+z+7oD9/cPyvhI2zZEVQyzC1/dYDw6tHv1fTBt0Ena8RNixFn/vXzCd63FBuvSYfPmAfqgQ1XS8VHK/p0p2tJwd/jG5MI0z+ahVhguj0LHfYxiMzTZErTiCzmiRxXHK96mC7l/N7fItA0LgsOMlnN9WWLBxCoyi3UnxlOwegvY1BI1/LdkeNK8maHpi0DYjPc9n2PbsoAH5SJns7mhMZ0mv+/m4xpoIYdtz5LbdErXLIfrw1oXdUQU40Z99ZsOvyO9+cDqnKSIiIiKyX1P4LSLj1j1I+P1Em192+1ik/Z5AMSwE1eBsJzbcRejimHAnDf4sugMfa9qL4bfxh17szYZ7CLLLCTJR71hnmrmjIYslSd7uOwsyenjMStVM9zSGFCNGbbweY1O4/aDtyaxwK/VJmJ2KgulX1reyILOSY/xHqez38OqTUBGHxelHJ2UuC9zIekEvqgyZF+8a/sD+nC305E5HfZy7NpdU+LowU1y0cDxsdu+YzutZyDAo9CN3tkx1tslHiyAWqnBNdjfOb8WNoB+2zTVjC4s42tzY5licq/GHbV9isv3+PMcQRk8Hm9k9YJsLuwY+nkmSXX8V2a03EbavnboPCoZgCt+G8Pc8jLNB1DLIb+9deNMGOJMn7FiLzQ3+7Q4RERERERk7hd8iMm45U77lwF9bJqjvCWCC7dENF+BsFBzYsIEwt4qcq8YPu1jbXQXhdkzwEjaMwpYwH1USDrbwpbPtBNlHyHb8AoAgaKQtMBgSdA/fSWHGSMZi1CdmdvidiqVIMQvrErj94O1nQfpxDq5IszgVBZlv7vguB7XewjF7f8CsZGmgelhlB/UJy6FNv5yUudSbgaFjOUuTzcxmDCGbDUoWiHR+W0l1ctjxEnYsizH258b2l8760Ydd+R13RPfL9AC3QUdUQV3osR22vYDNt+L84Xtbh53rcYX+5GYU7VLKcXb4DwUHPpf7yNdQyv35OTtl4X36xSvoXPmp4uKh067wWgvansXfuxzTvZWgeRVh5wYAXJgFmydoXhX1dxcRERERkQm376cPIjJtbBhVQPoj6Lc7XnG7B4gWqLQmqqZztpkwv5oGfzatZj7Pd3qk7FpsuAsTFNopuKAw19KqVOfyWNtZCGtCcIWv3tsosL+3eSk37Ji4yvXJdljNPJZUHj3d0xhS3Etgw4Omexrj9tr6XbypfiOz0k+yLLaV2liG6gTM7Y76VaeCRt4Yf4C5qd7A8hj3LIdVTF4YVxcOX3V9eE2eV2Zu4FD/CQ6pGtnfWVvooexcWNpPuXt7yWKDue23jW7CE62nN3bQiTM+Jr0dF5Z++JbfeQ+5bTcV22+Yro2YzC7yDfcPO3zQtLJ4uye4HPtUs+M6X4Zms3sImp+Y7mmUsJlddK76N7qe/Rb5XfcStj4DRB+E5HfdS9C0kvzuP0/vJEVERERE9lMKv0VkzPxMFBqFdvi2AePluZ4gy8e6oBheW2d4uLmKRr+K9sCRcG2EudV9en5HgaOz7SXjmWBLVEHupUq228J1/nt9nifaJq5yfbItrp6HZ+dM9zSG5Hkefjizq9NH4vDwKU5v/zFV/g4WhBuZx17qEpbqXNTXN+7yHNH+R+Ymo3ZAHnBo+k8c5Ea5mN8oJO3wfagPje9mcftt1PlbmJ0YWQAbND0e3XCWvtXHLuwmaFldvB92rB/VfCdasa+4yeNMFpPeQdi1seSYsHMD+V339jknTX7n/5HdeO2w45s+leTjXpzQ7Ds/V/ZNbsYFyS7MELY+g7/3EWy+pc/8HEHrs7igk6D16Wmdo4iIiIjI/krht4iMWWM6WnjSuMn/Sn5zOB/nDCbcSWB9bLgbnE+eOdy4M09DPsWmboPDEeajr49nvSOwhcDO2Q5MELVtcM4SZv8CzufaPacBFQB8aM2ZNPlVAKztmvlV38lYnFnJSg6tmcuyipNghvbRPqiqDoAYM3N+oxVzIQe13gzA8Y3fZ0GwnpNSpdXA8zvu57X2TuIezKlwLGn+Da/f8ZFJm9Oyxp9SMczTe2jwNNW59Sxt+g2nhfdwdt2zzK8Y+u9u+oX/AcovWunCDKZ7O865Cen3PR4234zf9ATO5km/8ANy228tzr3PQZjuLSWbMuuvxh+mSjhsf6lkIU5nBl/Ac0RzDcbQc11GxYyzOn+yuDCLv/cvBK1Pkd1yI65PD3p/zyO0/+WD0zxDEREREZH9j8JvERkTE+7knsZKAMJB+mlPpC3ZWpzZiwmbaPAXgPOxJoPvKljfHdAVxGjMW4yLAQZIsjM/j9BV4ZzF2TQm2IZzITbchTV7cC7Pn5sMOW8xAPftzdARpoacx3SoSZSf05xUFS+fs4yFlfXganAuTsyLFumMeR7J2MwIm1OxJABJb+Y9tyPVd+nTGAGxQjudqtwWqkwjh+eXlxwfd3lm5zdQnYDKmCFus1QEk7foX8q0kxhmfdZK20rMGRK2i/nZp6izjdQnhv6QJ+zciLMhJl2+at1vXBEtgNn+wlinPiHCjnUEzStxQZqg7TlM50ZM1yaciarvnQ2i0Ln/4pY2j8u3RosRDsKZXGmrEjP2D8acs5hprpI/MMzQHunWx4VpTHoHNre3tNrb+pjsnumbm4iIiIjIfkrht4iMSZBdyc83ZwmtoSU/vkrIkbhjT5zupk/TldvEmq4arGmhPbueB1sW0RVaukJo8Q3WRQlgizuW0x8OSbs6nGnGuSy5jp9gwx1kWr+OsxlwPk+25vnXNYcASbLGkTEzIzDu6w0LTyq7/YjagziY8zix+k1k8wvIBfXMq4jaiiyoqOWouoVTOc1BVcZ7wu/6aZ7J2NUkem9Xmrbi7ZgLOH7X15mXHlg9fMTe/2VWMqA6NjWL/VXEhw78Uqa9eHtp0685pu1XvN7eTqrM/wmYbCM214zp3krYuWHQPtedT36esGNtcTHI6WK6NpJ+8X+xfjumYx1B8xP4e/9CfvdDAOQb/gSFIHwghxuiFUnQvqbYUxwYMigfTtixju7nvzPm82Uf50z0y+QIO17C3/uXkt02s3OaJiYiIiIisv9S+C0iQ3LO4AptTZwLC7/neaG7lhc706zvbMJOQduTx1sDnPPxbBM542FNEx2mmrv3RJWcq9otTfmQnI2C1r1+FAK/lJ5LkH0EG+7GuSzO5XC2A2vbyGWfoj0w7MwZdpkTAWjIJ8pPYBqlBqmYnpWsBcDa3v09xb8vn304c1K1kz21EVlaHYXwnpk1rfOYnXJUJSDmQW1ydOcuqojC0WQMUmZg0Fuffa78NeM5qqYo/E7FLB5QV+axeVCsVu9Rn36GOfm1LKwM6V8pGzSuIOx4CZzB+R24QVp1uKCL7JY/TMwDGCcXdGOzu7F9gnibb4paTTTcDwy+NoHNt0ZjlAm2c1tvwgV9eqq7AGfD4s/F0QhbnyZsf3HU58n+xwXdhF2bS7aFHeuxfuc0zUhEREREZP+k8FtEhmSDLeCi4CfMRwvcWdPC460W31oe2DU1vVVf6sqDy4MLafTBBptoC5LctCua23Xbu8kax/NdUejdEUYV3Dc1xPEzdxEGG8HlcaYJZ1vJmxx+5j7SxvFse553PhYlhs+0D9M7YhokYuWT2jnJ+QBY27u/p+3JwcnTWZCaP/mTG4GDKw6jOpEkm583rfNYUtHFwpRPMgaLUqNbdPDIWBRSLagIqcsNbFvRs9hlf/O9JhKEo5/sGByU6CQRgxOqBrZXqUkODO2TYSuL2u7ktNgqUq70+cjveYig+UnAYbN7Sha37MsFnWQ3XjNRD2FcbG4vJr0d26d1hM3uxeaayDf8qTTA7qfn8eUbHigdM0jjNy7HBR292/xO/L3LcX4Ho+HCLPld9+HC4Rcnx7R19wAAa+xJREFUlf2fSW8naCxtl4QLS16/IiIiIiIyfgq/RWRQJtiECdYT+i+R776dTOYx/MwDdPoBmTDqe/vHrc9OyVyyxgEGQ4K1XRYTbMJz3QOOu3a7xXgLachGgXDGOKxpIxf6WG8+JtgKwPrMYizJ4tg7MlHF55bM4NWhfU1WP+1XzT+y5H7Ci1HjlQ+x40QV32Gfyu/XzHs5r5p/JM4kScUqJmWOo+W5OIfXLgBvej9YSGA4LrGBw6oyxLyhq3YrC3+8cyscHrA4eJ64B4sSndRlyld5l1Pvmkl4UxN+n+bfyrLqLCdnb+GgSkOyzzv80oo087qWDzgnFTTy8pYfYhpL2y8ELU8Tdm+Nbrc9ix1iQcvxtAGZaDbXWHI/bFtDbtc9mPQOgrbB/9zC1mewQZrM2h+XbHdhGleoCu8d8zky636OzbcMO5/u576Ds6YwVoawa+NIH4rs5wZ7PfZ8w0pERERERCaGwm8RGZQJNmPN3igAz/2VpzqqCHOraM/tJh1G/XOfaN4xodeMDRmQxjEuzs6swYQNxBjYw/evLTlazSJeLOTi6zsDcGny1pB287BmL3jVPNVRiaG3xUlPFLotPbIgb3aqaoSPaHSOrD665H7M8/CoKXtsgqitibG9P8pnxQ7l+JrTsC5J0pucOY6WR5I5ybrpngZJL2Bh8BILYq14wyyIt7Aieh0sSqapTPz/7d15fBvVuT/+z4x2yfsex87qmCQQIJBwE5YGylbCDoXCLWUp26WF0pYfLS23QNsLpdAFSrnsELjfEnYSAoQSIAkhCdkJkH1xnHjfLVvbbOf3h2LFimVZtmXLUj5vXnkhz5w580jHI9vPHD0HyFR2QZaAbKkFDiX273mb0QEnhmem74Sm5zBJ2olczxoUWdyhBD4AFMl1cPp7Jl5NIoAc93IY7d+EbTf8jTC8wecZqPkk6nlH1Ezmwxa01Nw7odQtg1DbYfhqez1MbdkMvXMf1Jbwm3mGvxGHl4Qx/A1QGlbC8Nf3GY53x7PQ2rcdDE2BCCS2NjqNHIffVAlt7+cnCoiIiIiIKDomv4kojDB8ULzBReLWtVrh0xQono/w130TsLS+GR/VA7bA68iQgokk1dCjdddvBfZgkjTP1jPh+5vds1EdyMKaZj9UpEEzeibKOzQD31/vwosVwYTcroPJbLfuwi+3FMCtCvx9/0zUBQBd9Cwn8nW7ElOc5xTOifk59YdFCq/TfVLuREBEviEgCXvw/9Kht3J/YBT8/tFQNTvMknNQsZilwf2IkCUJJ+dPgmRkwWVOXCI+1yYwLd2NC+t+hLHt7+B7dT9Ghhw9YXuO/n8AgHTZg6OdTbDpzZiVth9TPW/369zT6/4bM9zPDDj2/nD692Jyx+vI7liJc9x/QJm9BaaD9c2nd8yLeqzoVmdYc++C3lkBteUrAIDatCb6iY3YrplE0Fq/QaDqgz7bKXXL4K98O6y2uaG0hxLXhzN8NdC9PcvLdPHvXwih+aB7q0KlVJSGVZz5TX1qW/EjCM2X6DCIiIiIiFIGk99EFEaITqh6cOZZva8DOz3p0AWwvlVFrV/Frk4N+7wOdGr9q5ncXbTZ3aXOXMiSBJe5Z8mOj+r9qPLb4NEFDJjhNSKXHtncFkCrGkzKt6sGABlNih2rW/zQDBXLmzR0aIDX6JmQVWNYxE6CBLNe1Ge7geh+eotswlhnGXp7tQR6Ls5pCDMMYQYkCbIRecZ4LCyyCXbT4Bb/tMlmFNuLoRt22GT7oPoajNFWN1ySBxmer5DZuQ7pns1w9TEbO0OpgEUGclGPLDTDqjagyNiNovbF/Tq3078XuR0r+m4YJ06lEmbDg6yO1RiNCphlwCwJZHo3Rj3O6FbTWm3eCBjKoeTuCCpr0l9C8/S6WGdYO7UDavP6YHthQAgBoXkQOPB+LwcYEGrPsktdAjVLIAwFEHpoxrneuS+pX0saHnrHHvirPkx0GEREREREKYPJbyIK0+bbh4W1BgytFopWh12dPmzzjYNf8+L5ig7c860bp3yu4PUDAy91MCm9oNd9BbY8HJM1GkWOrB772hUdbx/Mx3UaaXi6Ira3MEPKxqvVFlT5NATUBixr9OKFig5M+mRgyd10iw2a7kS6Jf41taVuNwZOyT8Kqu8YiMPeql1mK2yyGb5ATtS+vIH8AcdxXHYpTIOc+T0poxBOOReGYUKWedSg+hooiwxcUXcZXAgmKi0Hb+xM9v876nGSUHFsWhNOq74Vk72LkNf+CTLVfXD0srBlNJHKjQyVvPZgiRJnoAJn7Z2Lma79SDPpyOxcH/U4oR+6mdW2/OrgA33gN7hGjr5vZnW109q2oWuBT72zEoa/CWrbN70eoTb3/pqqTeuhNn4JAPB8+yh0bw10T2U/4qYjmXvtzxIdAhERERFRymDym4gAAMLwQxid8Pp3IqB5oOpu7OkMoMbTjlUtVuRYwj+G3a4OrNSBBAnjXMW97k8zpWOCawxKHKNxdFZ4u3bNwKcNwYRcm+aEFmNea4PnKFR6gjPBG9XgbGivHmtSrKdMiwOqbkN5enxnf5el50Pq9rZslg4m50V4kt5ltuKYrNHo+y3cBJtshtTr3PHe5VlzIA8y+Z1vy4YkrNCFGZKeO6i+Bh6DDpvSgDHK2rDtZsMb9Ti7Woep6grYlFrkuz8FAOT4NkMWI7fERySTlM9RZtkfc/tA7TLEnjBOLbonWONc79gLvXMfhO6LWqNb74yczBbCgO6tgr/y3dA2//4FLGVBMTNYG56IiIiIKG4G95l2IkoZhtECobegoqMJOzscqOpswVZ3B9JNAbxV5cFoe3h97FZlYLW+s6x2FJmmA9gUcb9FdsEqMqEGxuGEjFxsaVsQ2qcLoCGgAQA2ux3QRGwxnP3FoaTT1247AGVQ6b3RzlwAMsrTJmNT634YMZRKMUky9MMW4zvcf2SfBBiHZpPbZRtgALoRXjLEJMkoSyuDiGFi7lGZRajxtqIp0L+Z+pnmLERdezQG+dYiQNgghAk+Jfos9aEyxbIHVq0BZY1Phm23a3VRj8tp/wz5bcESJ5meYMmQ4ubXhibIIXTcgbswOvPcvhsaGgzFDfe6Xwx9UCOVEVxA11A7oNR+CkvuCdA7K3ptLlR3xO1a+w4Y3mr4qxaFtvn2zoc5oyy+8VLqMnou5kxERERERAPDmd9EBE3ZinbFi6bOLfimvQMdShvcSgOa/T58VOeHWxX42h3+x3h/Zk53L59R6MiEqqfDKofX655bPAOZFjtMwg7oRTAMc9gs6MOtbAa2uvtfP7c+DjkFqxy8b2hDDi4vmYOzio6N2v6ojEIUOdJDX5+SXw6L3LNeuUVKgyGsoa9d5gwAgKrbkG0N1ic3STKsshk2PbZE2tT0KTgt//iY2nYpcmTAJiZAHsCM8S6jnZmwwAVdS++78RCRAIxR1gEArGpT2L4szwZYevn2MkuASaRO8ind23vpji66twqerY9xdjIAw1cLf9UH8PexUKYRaA49FgdvbAk9gMCBRQf7OXSDRWvbEppZTtQnYUDoyfUpEyIiIiKikYrJbyKCruyAx7cD7sABvF0dgFf1YX9nO3Z0BFDpVWNaBDIaW7dEb5rZDk23wWW2hrXJk05EusUOGOkIqOkITjvuPfn6QZ0PFZ7+J7/rAoMv6WCRg7PgDT0TFvV4jLZMj9p+vGs0Sp2H6m+XOsZGrBcuhAyI4GtlkmSY4Ti43YQzCmbAJpuRZXWg0J4Fv5oZU6xWYywy5HExte0yypEFv5ITSvIPxFHppTBJDii6c8B9DJZZBsa1zgdwqNZ3l3TvN0i3RP5ecPWyPVnZ1Jo+22gtX8O355WwhO2RKlD7KfT27dBaNkdtJ7RDpXOE0gYA0D1VwYUtAaDbJz2E0tpnf0TdCYPJbyIiIiKieGDym4iwshmo97diYa2CpQ0+vFfrQYXHjX1eLS79z8wrQ6krG98vnYNJrnIAwMl5R4f259pc8CsZ+G7e2RDdZj5LUSoz1fkHFttbVYOf2WqRgsnvgJoGzbBCVbPD9h++UGSheTrGOccBAGyyGWatHEX2nslrCSaIg8lvq2wKq7lt107EhPR8jE/LR4lzdMyxBpQsQFj7bNelyJGO0Y5CAIg4Oz1WWdZsGFrGgI8frFkZdTjXtQHpB0uWRJJpjnzz5Brjb0MV1ohl+Ouhe/ZDqO19N05xgf0LAQC6tzpqO2GoMNQO6J5q+CvfhjBUqE1rwpLe3RmBpojbiSJRapYkOgQiIiIiopTA5DcRoS3QgFXNAt+2B2thNysGKjo649Z/msmFYzPL4JLGwCwFZwLnWcZBPlhUempmSXCmt54TttaeJGwDWqwxmq6a4YNhNwVrcIuDb6GaYUWezRXa7zAdStpLkKCoGbAimAguSy+AorngMPec+W3oLhgHk98usxWSOFRnXTOsGOscBZfZAbvk6nFsb4IxRn+rt8gmWGQTJEhwmmzIlaYFY+9W9Lu/42CTnNB0R7+OiaciYy9GB9ZBjlIX3ixF3lfQsXyowhrZjP5/kiIVCS1YH1+oHdHbqe3QWr6C5t6BQM2nEKoHvoo3IARfRxq83hZUJSIiIiKi/uGCl0RHOEOrxZ6ONhzwA69UHkp4b3V7oxzVPznmEshwQVVzoOmjAAA+3wR8v+R0vHFgKcbZpyDgR49SHt5AEU4rmIzPG7bFLZZ4cGkzcHh6q9iZHVpUssgRfB67OxoxPWcMdMMC3V8Gm2xGibMQ0AGL1PPtV9Md0AwrMix2TMkshd8/MWx/hn4WCux7IBlZ6FcKX/SeuB7jysHpWVfAr2aiWV6MfGsRfP48AEC6+dBCm0dnFaPB344Gf983RewmM6zIg8+IfcZ5vB3T8k+0OY6L2maStAO7cHyP7fYAk04EoI8FdYXaAe+e/4PasBqGvxGB6o8QqPkYtqI5wxQgpTKleR1iv81JRERERES94cxvoiOc4t+AtS1+WNAStn1dqz9u55BFLgAzDCP8LcchJsIsycDBhHgkRbaisFnVI4HWR1J3rKsIRfYcOEwWlDiKQtuLHBlwmoIz3w+vp22RTdD04EzvsvRCjHMcFbFvXRmNgNq/ciICh0qpdJdjc2KMMw+KFowpzZwGm3ToBsQEVykkSCh1ZcMsyT3KufQm35YOiMTdW5WlYI1vsxH9Bo5V+BCpsrxFaxyy2Ci16O07oftqIYwAfBXzAd0HI9DS94FEfdDduxMdAhERERFRSmDym+gI1+jZgc8bfaj1BcK2t6uR69YOhK7bIQw7jG5lPADAp+Qg2+YMLnDZm8BMHJ89sff9w8xltobKnXTXvSxIhjkTo+yjMMqRiSwcmn3sMFshS8EEdNeimV0yLfaDi3wC09JORsAXOfmtRngd+2IYMmRJQm63mwhW2YRpWWORZ8sL9WeTHIA4NNs7W56C0c5MnJx7AqyyBbm2KOPUzShnNgx9+G5YmLtlr11mIMsikOb5Gq7AvqjHZWr7YTcD9m73BNIsiFoqhag7pWktRKAZQmlD4MB7AAC1eUOCo6JUoDat5Y0UIiIiIqI4YPKb6AgmhIL36rPRGNCwqMYzJOcY7cyEplsRUCInTvNiSKja5J71sYdTlvVQ7epCe+RZ12OdxQCA8oxCZEgT4JJGY2b2sQhoh5LA0sH/AMAqh88ePzFnUuixohTGLXYA0HQ7Li+ZA7Nsgk0244ScsXCYLLBIFmTIxaF2FtkB4FAmWNEycFreTMiQUeocjRxrbDPO8605UIa43nf32doZlkOF4uc4NmOSvQEmocAViD5zMt+3HiU2H2ymQ8dnWeKzyCsdIYxAz228eUJxYvgaEh0CEREREVHSY/Kb6AimK7uwuM4PAaBTF322H4jJGWNgCEvE2dIAcHRGeZ99yFJ8F73srxJnTuhxljXyjOYsUykAYKyzEL5AEXz+UZDVYyG6zdKWu6VsLVL47O1Cy4TQYz3OtbINYYEUOAkWyQSH2YKxzlI4zBZYZSuEVhBqJ0GG0S1prek2mPUyABJcUhHMh5VN6U2GOQdCxNZ2oJwHq6pYZMBp1kOv7IymP2Kc/nWwjT968jvLsw65plY4TIc+5eCUuVgh9YOI3ydkiA4nDCXRIRARERERJT0mv4mOEELoEIbv0NdGJzo7FmCUtX1Iz1tgLY6636Yd22cfZql/ZT7iqciRjlJnsG53sSMT01xnRmwniTSUurJRbJ4JABCQeySxZ2bNgU0KJs+dpjQAwNziGShyZEAS2UP1FEK+k30+Lin6PkySCafkTUeefAICB+t9A4AJDgTUtLBjdN0Cs1YGXS2CWYotoW2RhnbW9yiHjkJbcMbtea61GGeuxWinhlybgE2txzGNj8bUj8O/F8f5F8Aq6RjvUjAzowEZ8tB8AoKIqN8EP4lCRERERDRYTH4THSGE8MDQqkJfa4FvUBcwIEtDO7PMjOizmNUYymPYZWefbYaKy2xHvjk4K7vYmQ1fIC9iO1134ZjMCfApub32pSgFMCNYOsQkBV+XHEsxsixO6ENcJgQAvIFCeP2jIEsmOKRs+JUsdP8xIBl2HP5jQRdmBLQ0qLoDFjm2GekShvZmRabJjxJTLQBgSvsryDWqkWfqQJ7FBwgd6Z7NMfVjEgEUdiyDRTKQIXuRL6oxxtg2hJETEcVOaNEX7SUiIiIior6ZEx0AEQ0PReuE17Ma6XoNJFM+3O3z8bstOXi7ujPu53KYLMiw2FHv74AJaX0f0AczEpf8HuMsgN8/Hj8acyFqlH1AL1UOFM2FXMdoKFEm6hmGDJ+vNFiwWsiYnV8Gk3Ahx5YORRu+52iTMmAyMnD4bQ+vvzC8mDYAIQ79mDi8VEsksiQBIv5laia4ApAhsNtjx/dbbkNVxlx8jnEoaH0fjc7/QIu1GOPEdsj9LBOQ416OY3PX4/j6P8JvKUFe++K4x05ENBBC9yc6BCIiIiKipMeZ30RHiDZFQZXXjU5Vg19TsdWThf1eDfGs9N1Vm/vY7FJMSg+WOzGM2BZJjMaUwOR3tjVY71uW7Mi25ERtaxLR4zQMM3DwNTIjDeMcEyCMdBTZi+ITbIxkkQ5xeJYbCMXWG4vU98xvl9mK7otmxkum7EGG7IHTDDiUCqSplbCbAJPhg11rhhUB2I02mHV3v/suCHwFe6AGsvBD5mKFRDRCCN3XdyMiIiIiIoqKyW+iI4RPqcTmlmZ80uTArvYa3L5Zx9rW+M4q+07BFJglGZOcR2OsYyIAQNUGX85DGIOfPT5QaVI+AEBXC+HCxKhthZ4evbNuyWWffwzM+kT4lSyYA7MHHWd/+HxFGMgHf+QYjilx5gDCPoCoorNJARShCulmAy7fTpTV/Q3pluA0/EL3xyjStiNH2QmL3v8a9pNr/gir1gCbWhfvsImIBszwNyc6BCIiIiKipMfk9yBJkhTTv9NPP73PvhYvXoxLL70UJSUlsNlsKCkpwaWXXorFi/kxfBq8pkAAb9cY6NR0SNoObHPHt9Z3sSMTY+yTMSN3AiBJkCUrJEgQYvBvM9ph9bAtcvjMYrmPGcsDlWGxQzKCNbxV3QZVjT6LPdDH/sPpum3AsQ2KJEFR+0jURyBLfY9lhsUBKdKs8kGyQMEoZRNk6dBnFcZYWwEANqUOpe4PkOtdPahzOPyVgzqeiCieNPfORIdARERERJT0mPweAQzDwE033YS5c+diwYIFqK6uhqIoqK6uxoIFCzB37lzcfPPNMIxeig0TxWBbewALazxQ9QA2t/mgingWPAEmZ5ZCaAWY4JwESUiQjUxMTM+DIQa/tIBuhCe7yzMKw77Otw3NzPB8ezp8SjYAQAgTNCN62Q/Rz3IfffU3lPQBnFuW+h5Lh8kelxseh7PDh6LO5ZC6FeqZrK0M7lOrUdT6LnLblw7qHGajY1DHExHFk9qwKtEhEBERERElPS54GSe33XYbfvKTn/S63+Vy9brv3nvvxQsvvAAAmD59On71q19h4sSJ2LNnDx555BFs2rQJzz//PPLz8/HQQw/FPXY6Mni0NgBAqfkrPLkv/otojbaOh+JPg9koAyQdAd2GE7OPhYjDqQxhCs4iP5j4LHUUYUtbTWj/KEcW6v0dkCUJ2VYnmgOeQZ3PLMnQhAG73PcCj0cSKYbkvkkyQTfiX/bEKvzI8GzE99Lnh7ZNbvxH3M9DRDRSqC2bYATaINuyEh0KEREREVHSYvI7TgoKCnDMMcf0+7idO3fiL3/5CwBgxowZ+Pzzz+FwBEs8zJw5ExdddBHmzJmD9evX49FHH8WPf/xjlJWVxTV2Sn3C8EDXmgAAkuHGly3xT37LSIOADLVbiRInCuGNU+9OswUeLViqxWUOn+ld6hyFr1oPwG4yo8iROejkd6bVgeaAByaZH47pTo7hw0IWyQxNj/9NAwEBm1qHSfWPhbale7+J+3mIiEYKoboPLnqZlehQiIiIiIiSFjM7CfbYY49B0zQAwBNPPBFKfHdxOp144oknAACapuHvf//7sMdII5cwfGFfa4FNEdt5Wu7Hzo5gSYer1vnRrMS3hM6Pxl4Ev390j+1ef3HczpF3sLTJ+LRcpEnBc01KL8BVY85CjnQsyjMKMD4tH2nmwc86HuvKAwDk27IH3VdK6aOEzfi0XFhlGwwR/3IuVhH8XncoVXHvm4hopFLqlic6BCIiIiKipMbkdwIJIbBw4UIAwOTJkzFr1qyI7WbNmoWjjjoKALBw4UKIONdqpuQkhA5d3Ru2TfF+HLFtq5qB5Q0BAEC7Gv/a8SaRDhHx7SR+bzF59uBikmlmOyCcAIBRjhzYRBEULR0TXCUYZc+DpVtdarvJPKDFMF0HE+jmGGpcH0kk4cCkjALY5Mivy5SM8bCbnENybhO0IemXiGgk0zr2JDoEIiIiIqKkxuR3AlVUVKCmJli3eM6cOVHbdu2vrq7Gvn37hjo0SgLCaIfifR9CGDD0dgCArlb0bCcCuHpDGr52B4YsFk3LHLK+uxzjPA0AYJUt8PlzIEsSMizp8AWKoRsWZJgzkWvNh0k+VJf6+OxxKLCn9/tchbYiyJIEWeJbZHe+QDGm26/H0Vk9Z/kDQL65HHZ90pCc26XXD0m/REQjmVDbEx0CEREREVFS47TGOHnzzTfxxhtvYN++fTCZTCgqKsLJJ5+M66+/HmeccUbEY7Zu3Rp6PHny5Kj9d9+/bds2jB8/vl/xVVVFLxVQW1vbr/4o8QytFkJvhhCdEEYTlMBG6IYPwvBDkg+V/jB0NyzS0CS+p2SOwrb2WhhG/MtcHE7Xgwn2LGsaYEgosmdA7rYAo1mywYIc2OUWAECRIx1lrino1Hyo87n7dS6HlI18WxpcpjRwwnFP6ZaeC/hKkCAJK/Q+SqMMxFFpXhS3fRr3fomIRjqhD92NayIiIiKiIwGT33HSPZENALt378bu3bvxyiuv4JJLLsG8efOQmRk+O7Z7QrqkpCRq/6WlpaHHBw4c6Hd83Y+n1KCr22HozdD86yGbsuF3v4AtnrGYbbRAkg/V2vZqPjjl+C9wCQD/kXEOaryvQxuG5LeiOmCTzci3FsHwAxlWR9jMbJNkh6bkINdSBAA4OnMcFN8UZFt39ftckpGHHFsaHHI2mHboKc3UM/ltlmUImKAb8V/scra2EEWt78a9XyKikc7wNyQ6BCIiIiKipMbP9A+S0+nEVVddheeeew4rVqzApk2b8PHHH+Pee+9Fbm4uAGDBggW4+OKLoapq2LEdBxcgBIC0tLSo53G5DiWbOjs74/gMKFkZeiOE0Q5d+RaqbzWE0YJ/VVnRrmjBfUIBALT5KvFV2+BSuKaDSeZs66EFWc8oPBreQD4uKv7eoPqOmSThytILYNXLAADpZgcyTd3Kb6jFUHU7zMYYAECGOVgjfJw9+qcqTJIM68FSKdeMvQAT0vLgV7JwQuYJgBq/BTtTSZ7pWBybHbxhZz74vTElcxRUNQ26Hv/kt83o38x9IqJUobv7fwOXiIiIiIgO4czvQaqurkZWVlaP7WeffTbuuOMOnHfeedi0aROWL1+Op556Cj/72c9Cbfz+Q7NxrdboM2dtNlvosc/n63ecfc0Wr62txUknndTvfilxDK0GgAFDb4QW2AyIAPZ4dDQrAg5tMSyOU2CyTERArUeNf3C1OzKtdrQEvPiP3Cn4qHYjACDbmgMEZKj+/pXgGQzFPxFCBBPVTrMdQj/0aYqAFryBFFCD/zdLB68pLXoCO9NqR6bFgRpvOxTfVIx27gIgQ1LHI6APzeKNyc4XyEWRPRdfowpW2QRNN5BjzYBm2ID+ry/aJ/ngjRwioiON7q1JdAhEREREREmNye9BipT47lJYWIi33noLkydPhqqqeOKJJ8KS33b7obrMihI9uRMIHJq563A4orSMrK+yKpQ8hDAgSTIUXYcqsmHzr4EqjcL9e07E0oZOCHUzGrQDyJCakCG5sKd9cLPGSpxZOCZzAvKsJTDBjqvG5OKLpnWwSy5oAAwR/5m+velKfAPAWPsUBHxZEdv8qPgngFyDAABFCyawT80/Ck1KO7a314W1v7DwImhaPqQMA4oGpJldgAYoTHxHVST/B64eUwCzNgnvNDwPk2QCRPzPc1x6G7Jav4l/x0REScDw1cFQPdDdOyGEBmvezESHRERERESUVFj2ZIhNmDABZ599NoBgHfCamkMzeNLT00OP+ypl4vF4Qo/7KpFCKU4Eb4QowoomLRuADp9IwxeNClQhINTdeL/ehl0eCX7386j3D3zWrMNkwYnZk5FjKYRJZEIyHLAhC8dkjocFWfF5PgOl50D08hYW0NJgMoKzwgVkTEjLQ74tDyWOAlgOljixyCaYJBmGlgNVc0DRgqWFrJItYp8UTtWdsIni4GstyaHSOPGWIzXDorcNSd9ERCOfgO6phKG0Qmv9FkLnJ2GIiIiIiPqDye9hMHXq1NDj6urq0OPus7G7L34ZSfeyJVy88simBTbB0FuxqSMXb9ZmAJCxzp2Hr93BpPj6lg4sqe9AILAD7f79+MmmgdeIP61gKjJNJdD80+D1FcIbKITPPx4Z+tkIBEbF6RkNjF/JibrfGygMPT416xJkyBNQKH0HE9LyAACn5U9BiTMrVC6li0Ue+sU7U4FuWEOvsUmSIA/Rj5NMow457uVD0jcRUTLo2PAb+PbOR/vKH0NpXJ3ocIiIiIiIkgqT38NAkiIXwe2eFN++fXvUPrrvnzJlSnwCo6SkqzthaNWoC8hYUq9CSA60q4cu5Vf269jUpqAl0I67txXDow+sFoVZkpFrKYIkgslh6bCZvYaRPFWTDMMOYTigGxbIkoxT88sx2jYeTnPPWd4OKTsBESa3QkcmhqTYN4CiwKYh6ZeIKFlo7p1QW4LrbajNGxMcDRERERFRcmHyexhs3bo19Li4+NDie+PHjw99vXx59JmNn3/+OQBg9OjRGDduXPyDpKQghIDi+xyashnbO1Q0KzrqtDI8v08Ntfl3vReVXhXb21vwr/0Dn/U9Li0XFqMUutZLmZ1ebuqMRIrmhF/JgiEskCFhom0OZLjgMEWY5a0ndkZ7MproKu31Jt9gmCRgcs0f494vEVEy0du3QzuY9PZXvpXgaIiIiIiIkguT30OsoqICS5YsAQBMnDgRo0ePDu2TJAkXX3wxgODM7i+//DJiH19++WVo5vfFF188JEkmGvmEMKAr30LRdSjez9Do74QA8Jc9mVjV7O/R/t3avuuCOs2WHrWa7SYzTi+cigJ7FvxKFlQ9tWpgT80oh6K5YOhZODZ9Vo/9qmaPcBRFk2spRqF5at8N+8nMn1BERGFEoDXRIRARERERJRWmFgZh0aJF0DSt1/319fW4/PLLoSjBJORPfvKTHm1+/vOfw2QKLsB3xx13wOfzhe33+Xy44447AABmsxk///nP4xQ9JRthdMDQG1CrFkDV/dB0FUIA2zrUiO2/jJAQP1xZeiEyLOHJ3iyrAyX2MjhMdgAyBEzxCH/EcEmjoRtWBNQ0eH1je+w3hCUBUSU5PR9ef/xnzJt5n4+IKIzub0h0CERERERESSV5ivaOQHfccQdUVcXll1+O2bNnY9y4cXA4HGhqasKyZcvwzDPPoKmpCQBw6qmn4qc//WmPPsrLy3H33Xfj4Ycfxvr163HKKafg17/+NSZOnIg9e/bgz3/+MzZtCta8vfvuuzFp0qRhfY40MgihQPG8A9k0Cgvr0nHZqFFwawIVHhWV3oH1mWdzYVrGcSh11MNmsuOdA18AAMrTS2AWaciyZAGB+D2HkcIfKDj4iPf+4iWgZA5JvznWyDd2iIiOVCLQAkP1QLa4Eh0KEREREVFSYPJ7kGpqavDEE0/giSee6LXN5Zdfjueffx42W+TyEQ8++CAaGhrw4osvYtOmTbjqqqt6tLnxxhvxP//zP3GLm5KLoTdC8S6B4bgST+71otCegRqfAlUIYADrWZolGdOzJ8Is0pBhViHDAlmS4DRZMMF+AoSwIR0TMcC8+ojGmd3xN1SfDjBLA1uslYgodQlorZthLTg50YEQERERESUFJr8H4eWXX8by5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3bUfmRZxgsvvIDLL78czz77LNatW4empibk5eVh5syZuPXWW3HeeecN07OikUjojRBGJ/a2bUGdX8MtG92D6m9adgmK5FPh86cBGAubvQalzmycnncWvL7RfR5PNBwsUu9lpYiIjlSd3z6KnO++m+gwiIiIiIiSApPfgzBnzhzMmTMnbv3NnTsXc+fOjVt/lBo0/0boejO8GAUzOqK2TbfY0KH2XqukwJ4GWZLhMNmgaI7Qdl1Pg8NkhdCy4hU20YCVufxwygEUY3+iQyEiGnEMfwN0Xz1MjsJEh0JERERENOKx6C3RCOdpuR9e/1b8tWI0FCN62zkFx/a6L9Nix6l5x2Na5jiMc5SFlaoIqGmYmjkJfjUrTlETDdy5gSfxwwNz8J3qmxIdChHRiGN4qqE2rE50GERERERESYHJb6IRTBg+QHjRogAv7/NgWbMzYrsiRwYAINc0CRkWe8Q2kzNHIw1TYZWtkLSyw/bKcOq9J86JhovNBMhChVWtg1VtTHQ4REQjju6vhzBScEVqIiIiIqIhwOQ30YimAwAkowFtqo5n9voitiq0ZwIAhOFCrs0VsU2poxR+JQs2kwNqt5InXRQt8nFEwynHqsOqt0KCgNnwJDocIqKRR/cDQk90FERERERESYE1v4lGMGF48LcDczAtw4AmAtjtUXu0kSBhYtpYHJ92JvxKBmwmS8S+0uRCeAE49eOgDHHcRAN1vGULimreS3QYREQjmjB6/j5AREREREQ9ceY30QimGioe3O7GHk/vl6rNZIJdSocvUAAhTDBFuKzz7WnQtRwAgKJFLp1CNBJk6A2waC2JDoOIaEQTavQFsImIiIiIKIjJb6IRzK8L6AL4xh15pctMix0XFX8Hmn9aaNuEtBJMSi8IfZ1mtmJu3hUIqOlDHi/RYJW3PJfoEIiIRjx/5duJDoGIiIiIKCkw+U00gql6KwDg33U9a31bZBOmZpXAidKw7TmmKRjjKoAECQAwMb0Qhoi8CCbRSGKRAbtal+gwiIhGPM78JiIiIiKKDZPfRCNYwLcWANCk9FzYKsfqRLljJnQ9fPFKn78QJbbJGO0MLoJ5VFoZZ31TUsix6nD5tic6DCKiEU/3NyQ6BCIiIiKipMDkN9EIJhm9z4Id48qDqhRAN3rO6lYDJRjjyofdZIZTKh7KEInixmXSEh0CEVFSMPyNMJR2AIDm3gPd35jgiIiIiIiIRiYmv4lGMuHtdVexvQiaYYNmWHvs0wwrbLIVZxedAK9/9FBGSBQ3LjmQ6BCIiJKD7oc4mPxWGlfBYPKbiIiIiCgic6IDIKLebXJnAgj/g1aCBIfZjCxTKXxq78cW2UoAZQp6FkwhGnmKHTryJCZviIhi1br8KkgmO3RvFWR7ASzZ0yDZcpBxwoOJDo2IiIiIaMRg8ptoBFvd0nNbusWGAns6IJxRj7VI6fBHmBVONBKlmRQ4RXuiwyAiShpq4+rQY929C4a/CZLJBjD5TUREREQUwuQ30Qj2ZbPSY9u5RbPQqXcAIvrl6/eOB6ShiowovrJkN6a0v5roMIiIkpbu3gHZVZroMIiIiIiIRhTW/CYaYYRQoCk7YGh1UIyeCwC65FHIN0+IuNBlGImZb0oeDvhg05oSHQYRUXLTA1AavoQRaA1tEpo/gQERERERESUWk99EI4we+Baepl/C734eNb6eM79VJQ9+/3goWvSyJ0TJwmkGivQdyG9bnOhQiIiSmuFvQPOHsxGo/QwAIISA0vBFgqMiIiIiIkocJr+JRhhdqwBEALqyHZoI33d0ZjFU3ZGYwIiGSKFNwZjOfyc6DCKilGH4gwsI+3a9AN/ul6G2bUtwREREREREicHkN9EIIww3AAFDr0W7qoftG+XIS0xQREMoW+7AqObXEh0GEVHK0N07AAC+Pa/At/f/wb+XayoQERER0ZGJyW+iBBBGR8Ttht6OFsWE52vnYIdyEtpUI2y/WTINR3hEw8oh+SALve+GREQUk1DZE80b/LpuWQKjISIiIiJKHCa/iRJA9a+PuF1XtmBXpw/3be3Au7U9F7S0ytahDo1o2KWL1r4bERFRzHRvFQBA69wX/H/blgRGQ0RERESUOEx+Ew0zIXQYWlXEfYGOV6GqVfDqAn/d2Rm2rzyjANnS0cMRItGwytP3JjoEIqKUIgIt0D0HIALNwa+VVnh3vZjgqIiIiIiIhh+T30TDTkAY7RH3GEYrOrXgZamK4GqX49NyAQA51gyoevrwhEg0RKwykG87VM7HaQYKvasSGBERUWpSGteGfa17DkBr3wnNvTtBERERERERDT8mv4mGnQHFuyRsi67uBwB0iCLUBcLrep+c/kMAgMvsgKbbhidEoiEyxuHHNYHfhb6e6axAaeO8xAVERJSi2pZ9P+zrQM0naPn4HDR/eGqCIiIiIiIiGn5MfhMlggiEfan6V0BTduDLthw8W6GEtrvMVqi6Hcdnl6LAWjTcURLFnUNWYDGCJX2mpbsx2b84wRERER0Z1KZ1MFQ3DH8DhKEmOhwiIiIiomFhTnQAREccYQBQIQwvJNkJANCV7RBaPZ6rCGBTmz/U1CQF708dlzELuloAPRHxEsWRQ/LBZPgAGfiu5zGMr38y0SERER0ZjACEcvDmu6ECsiWx8RARERERDQPO/CYadsFa3pqyFYZWA2F0QhidUP1r0BAwwlqmmYNlTgL+Uiiaa9gjJYqHSWk+AECh3UCxsReZnetxbsYW5HcsS2hcRERHKs+2fyY6BCIiIiKiYcHkN9GwCya/hd4EXa2EpnwbnPltNMGvH5b8ttgBAIbghzQoeeXKbQAAl0lBvvIt7Go1yrwfwxqoSWxgRERHqI6vHoARaE10GEREREREQ47Jb6JhJ/Do/jkQIgDN/yW8LQ9CSE4IKRM7O5WwlidkTUtQjJSMih1aokOIqExbAwCYYKpEed2jAIBxDU/BorclMCoioiOY7kPju0eh89u/JjoSIiIiIqIhxeQ30bATePWAD4ZeD12vAYQX1dp4NBul0AVglmSMdmYi2+qEDQWJDpaSSJmlOtEh9CAByPV/C7MEpBnNsOjtAACL3g7p4KcgiIho+Bn+Rhjekfdzg4iIiIgonpj8JoqzzY0BGKL3pJ5qABUeFUrnO9ADGwEA79ZmoGxJcOGp43PG4LT0H+OCorPh85cMS8yU/MwSMLv10USH0YPNBBS2f4CJLi9Oqr070eEQEVE3vn1vJDoEIiIiIqIhxeQ3UZx926TiswP+XvfrBxPjAakYQkoDYEanfmh/sb0QhmGGZHDWNwUV2o0+20xNa4czsAeWg+/q09LdcI2AUvF5Vg0WtRkn6f+GTeEMQyKikUQordDcexIdBhERERHRkGHymyjOfJrAi992wKdFTlh2Jb8b1Fy4RQl80hi8U3UoWW6VHYAkwa9kD0u8NPIda93RZ5vvdv4NmZ6NcJqD31+XNt2EQltgqEPr0yhLCyx6O07c/18wGb5Eh0NERN0IzQtfxauJDoOIiIiIaMgw+U0UR9WdGra1KNAFsKyX2d+6kAAAijBhS2cufr19NHZ5Di10aZFswxIrJQeTBIwJrOl1f7ZVYG76V8jrWA4AuEx+FT90LkRG53qMN1UOV5gRSQCO0lYnNAYiIorOt/dVtK+6FbqnGkrTehiKu999KPUrhyAyIiIiIqLBY/KbKI72d2ioOljD5JP9PuhGz9rfhgjOCO/UTNjYZsYrlZ1h+y1wDX2glDQkAJmBnb3uH2Nrx8zGPyDNtw0AcNyBX2Jm5S0wGx5M9C8bniB7YZKA4s6lCY2BiIii09u3w7vzWejeamhtW6B7DvS7D6XxyyGIjIiIiIho8Jj8Jopgc2MAd3/eDC1C8jrqcQ2HZnBXdepoV4KJbkMIuAPBx10zv2/5SuCx3Z6w4/8jbwKUwNjBhE4pJt+uI9O3GQCQbgHGuwLIsABZVoEylx/fr78SLt+uiMeW1f0VszJqB3xuU/BbFWdm7MJoh4Z8W9+1x7vLshrIb/twwOcnIqLh07b8B/DvXwihtIRtNwKtUY8TQsCz7XF0fv0ndH7z56EMkYiIiIio35j8JjqMZgisqglgf4eO/R1an+19mgEhBBRdYFebGrbPHTCg6MF9W1qCiXFdGMiw2LGjQ0GTEpwlLkvBLGOGJR2GsMT5GVGyMktAgbkDGZ0bkGMVSDPryDe1wyYbmGRvRJapA+mezTDrkRMTVr0Npcb2AZ3bJAUT7C4zUKjvRLbZh2Jr/z4Kn2lWYNHbB3R+IiIaXnrnPqhNa2H4myH04JoRQleg1C2HMPRej9Nav4HhOQDNvRNq6zfB47XeF/4mIiIiIhpOTH4TddOhGPigwos1dcE/+r5tUvo4AnhsoxtbW1Qs2usNlTzpUtmh4Z3dHiyv8uOTyuBif7oALi36YVi747JLAQDFphnxeBqUIo5La8INe4+CBIH7qotwvvEy/nPPNEy1VeKHe6bhmj3HAABkofbaxykVV4VmcPfH9PQm/Nh/F37VcT5O2vdj3LS3DNlSS98HdjNN3tj/ExMRUcIY3mq0Lr0Und8+AgDwVbyG1qWXQmv9ukdbzb0HANCx4Z5g293z4N/7L9S/lofOb/40fEETEREREUVhTnQARCPJgQ4NSyp98GnBciebGhScXupAhjXyfaLqTg1eTWBTg4ImX89ZUStrAlB1gXqvDr8WnAHu02SoanpYu4muCUg3u6Drjvg/KUpaGVJb2Nelbe8AACb7/92vfia5PNjeGXsteacZmOmbD4dyAGneLaHt6aIZwISY+3Hpzf0Jk4iIRohA9cdwjL8Khrcq+HXNEuidlbAWnwm1eRNEoAVKw0pYC06B7qvrcbzasgm6vxEme/5wh05EREREFIbJb6JuPKpAo+9QXeOtLSq2NSv4j1H2iO1f2dqJWo8GCcCO1p6zbzc3hs8cdysGmrxWaIYVLrMVHi2436ZPQxFOgtL7p4rpCDRa/Sbs68zOdQCAKdX396ufs31PYDvuibn9OHsnjqr4H/isY2AyfKHtDqOfZU+UPf1qT0REI4Pa8AU82/4JI9AEAOjY8GsAQM73lqN91S3Q3TsAAJ4tf4l4fODAIqiNa2AqvWB4AiYiIiIi6gWT30TdfF7ds0blN00qsu0mlGeH1+LuUAxsaVagGcA+ve/a4ADwxk4POg8ugjklsxg13laUOHOhapzxTUGnZFRhpbsEACChfwtM9sapVgEy4DADvj6+Vaemd2Kq2AAAsGqNYfts/Uh+H5XmhcnHmq9ERMkqUL0Yh1dI9Hz7KHTP/piO9+58Fqa0sbBkTwMAdH79MCRrJlyTb4t3qEREREREvWLNb6KDmnw61h6s9d3dxoZAxNrfH1f6oBqAABDQRUznWF7lx4aGYF+51iyMTytEiXP0oOKm1HKM7z0AwcUurYYnLn3alSpIANLMfSfTy8U3mNLyFACEzfoGALsRe83v8dIemETP64mIiJKD7t4VmuHdJVD1PqD7ejkiXODAIqhN60Nfe7Y/wVrgRERERDTsmPympKbGmHTuy5paPx5a2xZxX7PfQIs/PGnY4NXx3h7voM5pkS0Y4xgPp37coPqh5HNGxm6UOnuWyfmBawlyfJsAABlWgbKGf8blfBmer3C3+AVu6rwVd4tfYk5GRWgRzCKHjrvFL3G3+CVOy6hEsX8NctqXRexnQsNTuFv8EmOdkReCnZbuhs0UfDzJ+wGKm9+KS/xERJScArWfAAA6v3kEhq8ehucAmt4/CZ6t/0hwZERERER0pGDym5Jap2pANwafAF9R7Ud1Z+8FtxsPW8yyUzXgH2Ti3SY7YJOyoGjOQfVDySdfr0SWKXjzRJa6bfdvhCuwB2YJyDIrcCiVcTmfyfChuOlVFLa+h9FN/0KhvhfpFgEJwBRLBUY3/Qujm/6FYn07bHoLJET+3nYoBzC66V+YYD4AkxScnW7uFv847ECWxYAEwBXYB6vWEJf4iYgoOemd+2CoHij1ywER/F1KbVoHtWVTgiMjIiIioiMFa35TUhMI1t7Ospv6fezXjQqOzbfCr4lQKZLefNWowKMacFmC94se29i/hf8iMQVmYXBzxykZmSRgVuWPsH/CegCZ+E/7u1iGC+HWzCir+RsA4C/ewiGNYVbldTgwYS38Njsu3nNKaLvV6IRdre3z+Iv3nIwxY57A9P13wGsvw2/TVwIAprS/Al9mOmrMJbA3Hhiy+ImIKDmoDatQ/6+0HtuNQGsCoiEiIiKiIxGT35T02gaQ/FZ1gdd3dgJIQ3Wnhlgmj1d36ih2AZCAtkB8FiKkI0+ezYAsdGSjCU5zMca6F2JqbjlaLAXDFoMsVEzU1qJTDk+yZyl7kdm5IaY+sv1bAABmzQ1ZAlxmwNFZg1zjADymTFjV5rjHTUREqUHovP1PRERERMODyW9Kes0+A+My+nfMnnYVu9s0PNhLne9Illf5kGWToRqxL3BJdLhMsx8AkKNVotQ+Efm1izG3bfGwxzGj8tYe2ybW/SXm48c1PA0AsGoNsJuASfZmZNd8gam6D1Lez+AMVMQtViIiSi1Ci23RTCIiIiKiwWLym5LethYVJxbasGivF6eNtiPL1rOUfZtfR4Vbg9Msw6cZfZY5ieSL6gBMMmA3SX03JupFmhxMfpe6P4CS5UpwNPFRYvfBKgWvKWegAmM7FiU4IiIiGsn0zr3w7Z0Px4Srw7YH6pbDVjQnQVERERERUSpi8puS3if7ffhBuQuv7ehErl3GycX2Hm2e+roDDrMEQwBOs4Svm/qf/PbrAtABj8pZ3zRwmQjWOS1qfRe2FFkQcqK0C53IAgBYtBaMankrsQEREdGIZnhr4N3xTI/kt2/PK0x+ExEREVFcMflNSc+nCdy3uhWaAVR3aqHtjV4dT33thhDA1hYVFhmQADjMEjqYwKYEcYqO0ON0z1eJCySOZjX8FqopM9FhEBFRElFbNkLrqIA5fTwAIFC7FP79C9DcUQHrqDPhLL8JQmmHObM8wZESERERUTJj8ptSwt72YNJb77YO5f4ODVua1dDX6sF9isLENyWOjEM3aMyGJ4GRxE9m57pEh0BERElGqB3Q3TtDyW+9Yy9EoAVK3VLonftgH3MxdPcuJr+JiIiIaFCY/KaU4tEEPtrnxbq6ALa2qH0fQDRAdhPg12Nv/0jLUXhuzFc4o+KioQuKiIgoiXRs/gNso8+F2vot2lffEtqud1ag6b3pAASyvvMqhOaBc9INiQuUiIiIiJIWk9+UUvZ3aBAiOBPc4ARvGiISgMnOVmzxZIc+UdBXe7PRgVK5GrLoR8aciIgohRmBFigNX0Jr+xYQh/1AFcFPSnm3PwlD7YA5cwoAwJJzPCRzz/VdDic0L3TPAZgzj4KhemD462FOnwAj0ArZlh3350JEREREI5Oc6ACI4ml7i4ol+33wasx809Cxm4Hr905Gvk3ru/HB9rLQcdGeU4Y4MiIiouSht29H84ez0b7q5l7bKPWfQ2vZhOYPZ6P5w9nQ2rfG1Ld39zw0f3w2ACBQ/RHca+4EAPj2/r/BB05ERERESYPJbyKifsqyBGdvO2QN+XYDZ2dsQ5a15w0Xlxk4N+NbnOnYMNwhEhERpSTdUxV67Kt4I2IbpWEVvDueheE5APeG38C36wWoLZsQqF2KQNVi6N664Qo3qkDtZ70+ByIiIiKKDya/iYj6aZSlHQCQb2rDWGsLvrf3HORYAj3aZVo0nLfnTJy1d+5wh0hERJSSfHteDj12r/kZDH9TjzaB2qXQWjcDADzfPIxA9WIY3mp4tz8Jpf5zqC2bhi3eaPz73oJn2xOJDoOIiIgopTH5TUTUh1GO8DrdczoeAwB8t/lenNl6P0xCwQW+v4X2T0nrxI22ebgy8OBwhklERJTy/PsXQmg+GIE2GP56tHx2KbS27aH9bStvgm/PKxGPDdR+CqF5oNR/DqXhS6ht26C2bO53DEJXoHVUhG3z7XsLLZ9eBP+BRRGPUepXwF+1GACgd+5Hy6cXIVD1AYTSBiPQ1u8YKHa+va/yNSYiIjqCMflNRNSHiZaa0GObCRjb8AwAoKDtfYxqeQsAMK7hf0Nt8uQWTKn5PcbV/y+IiIgojoQO3VcLIxCc8a02fBF6DACB6n9Dd++MfKjSBgDQO/dBa98OEWiG1kvb6CH4odR+ErYtUP0RAgcWwVfxWsRjAtX/ht4ZTJjrvjoEDiyC7tkPzb0Lgdol/Y6BYqe1bYPa2v+bHERERJQazIkOgIhoJLvGuQDH7fsVxpU8iqzAdpQ0vx6xnSxUXONcgKn1f4altQ1mwzvMkRIRER0Zmt47HoAU+rpt5Y0ouGwHvDufg+Gt7vN4f+Xb8O9fCEk2I+24+xCo/QytSy9H9pzXYRt9zsE278I+9tKIx6tN69C+5mdwr/9VaJvQPMHjKl5HXdWHPY4RmheQTOjYeC8gun2izAggsP89OMZdEcMzHznc6++BtfAU2Esv7LGv4a0JMJTWiMeZnMXIv2TLkMbW+fXDcB39C7R8eiFyz/kYwghA9xyA1rYd7WtuR+65n/TdCREREaUMJr+JiHrhNAO5/q9h0duR6/8Gaf4dsKu9/1Gd498Cp3/vMEZIRER05BFqR9jXunsnlMa10Ny7APRcgLoHQwWgQuiA1vo1hO6DUNrg3T0PsrMYhrcGnm1PwJQxCQAgyVaYM8uD5/I1oPObhwHdD6H7IwSnh2aYR4xd9/XYprZtgdr6LcwZ5ZBM1r7jHyCtbTuE0CCZXTCnjx9cX+6dkEx2mNJ69qN7KgFhRD5OaYPaugWW7KMHdf7DGf4m6L7gQqbe3S/BWngqlNpPobl3Qyjt0Dv3QTFU6J2VMFQPZIur17409y4I/dBaLrItFybnKAhDByAgyan/J7QQApIk9d2QiIgoCUhCiBh+Q6RUV1VVhdLSUgDAgQMHUFJSkuCIYtPi13Hbp82JDoNS1MkZ1bhyzwmJDoOIiIgSSHaWoPDKAwAA94bfwvPNn4bkPHkXboIl9/gh6RsA6v5fOoTWCUvuici7cP2g+mr6YDbUxi8HdKzr6LuQMfMvgzr/4VqXXQn/vjcjnktt2QSl9rPQtqzT34Jj3OW99lX/ejEMX23oa+fk25E56wko9SshWdJgyTkurrGPRP6qxbCXnJfoMFJasv79TUSUjFL/tjURUT+5zIDDZGCy8lnfjYmIiCilCdUNzb0b5oyyYPmSIaK5dwxJ8ttX8QaMQHNo1rnuqYLua4DJUTCg/tTmjTC8NX037PX4DfBsfwoAYEobD3vJ9wbcl+6thX//uwhUfdDLuTZCbfkqbJu/8i1Ishn2MRf3aK80rg2rIQ8EPx3g2f4UlLplkO35sI3+HuylFwTb138Ba+GpA44/ngJ1y6G1bQUAOMZfBdmWPaB+NPcedH4dXLSdCXAiIkoFTH4TER2m2O7DaLkOx+75/xIdChERESWYUN0I1HwMc0YZtJaNQ3Ye746n4Rj/g7j2KQwVbV9cD3Qrt2L466G1fgOT48wB9enb+y/onv0DjkmpWwalbhkAwFZ60aCS356tj8Hz7SNRzrW0xzZ/xWvQPVU9kt+6tw6tn5x/sCxOtz7qP4dS/3noa++OZ5B38dcwZ05Gx6bfIfd7Pc8x3AylHa1LL4MItAAAJJMdzkk3DKgv/4H3oDashHfbP5j8JiKilMDkNxGlpOnpLZiuvB+27V/atQjoPduWOlWcrc8PfZ3h2QOnUjXUIRIREVGS0Np3QvccgNK4dsjOodQth//AIthLL0T76ttgKO0AAGv+LLim/iy0Lf2E/4E5fULvsXZWwpw2FkIPoHXZlWGJ7y6dm/8A764XAAC20efCWXZdzHEavoZ+PrPeqc0b0Lr8P2Et/A5ck/8rpmOEocP95U+QefIz8O15ZUDn1du3Q+/cD1PamNC29lU39Zj1HTkADW1LL4c5awp0T7AcTtvKm0OLnqZP/wPMGWUDiitWvr2vwpI7A+bMcnRsuh+B2k9CiW8A6PzmTwjULEHatF/D8DeFxrrre0lpWAXPtn/CNfVOeLY+HtxXcApkRxG8O54BAKgtX/V4jYiIiJIRk99ElJLGiJ04turusG1vFUdOfheZW3Fs5d09dxAREREB8Fe+DRiB4L8hI+Df/x7spRfCt3c+hBpMfsNQ4Jr6M/j2vQkRaIZrys+AKMlv/95XYS0+GzA0BA68F7FN95nMhq+uf8nvWBLEsfblrYa/Yj6E7o85+a137oNv3xtwHXM3jIOLXPb7vIEmBGr+DWf5zcE+ffUIVC+O+XitfRu09m0wucZCbf4Kvl3Ph/Y5Jl475Mlvz7Z/Iv2E/4HJNQad3z4CHLb4qu7eBd29C/aS8+GreA2BquCEEKH74Jr6M6gtXwdfd6UVgeqPAACGrxaaexcMb/XBr+ug++uZ/CYioqTHBS8JQPIuuMEFLwkALkjfAANmKJIdp9X9AgBgV6phU8P/IOpwHYenchejxmfCVc7F+NQ4F7e3XACL1gJnoCIRoRMREVHSkAAM8Z9OJjtkW97BBGTwXNZR34VszYZ//7uAMCDbCwDZ2msXQmkDZDMgmSACMfyeLJkhO4pgchRB99Uh/cSH0LHht3BOugHp0/8Qata28iYEqv8Nw98Y/5sAB5+3tfA0ZM95NWrTzq8fQsfG/4ZszwvGMkCSJR2SJRMZM/8KSBLall05gE5MkKyZYbOuJVsuJJMj9HXGjEfgmHD1gOPsrnXZD6A0rILhq4FsywUkU9QbAJI1O3gTRRjBDQdfZ6F1Br9P+pDxH/+Ea8pP4xI7hUvWv7+JiJIRZ34T0YhkkQHViLwv0ypgkQ798XlM2/NodRwX3OfZ0Guf6Z7NKCh0Q7FlIj+wGWNdM6K2JyIiIjpkGOYM6X4Y3vDSa2rLZkDooQSm4Y9f2REAgNBgeKtCSW2lfgUMbxU8256AY+KPINtyYSjt8Fe+HVPCdEAOPm+1YRW0jn0Rm0gmO0zOImgdewGIQSW+AUCoHRBqB9TmjQB6+aWzz070sMQ3AIhAc9h3StsX10OypMOcdUxom2zNgmzLOnSMEJAkKfS1oXZAtqSH9WuoHdBavwl9f8Ty/IXSGr4hwvdXNIEDi+CcdCMksz3mY2Jx+PPtixFoA2BAtuXENQ4iIjoycOY3AUjeO8+c+Z2abCZggsODbZ2uiPv/P3EXSpr+3zBHRURERHTksZXMRaDqw0SHAdlZgoIrKtHw1jgYB2ttJytz9nHIu3ADdG8VzGlj4d3xLJxH3RLa37Hxv5E2/Q+QJDlsW+fXDw57rKa0cciY9dSgFiY9XKD63zBnHQ2TK7a/OdvX/Bxay1fIPW9Z3GJItGT9+5uIKBlx5vcIU1lZiX/84x/44IMPcODAAdhsNkycOBFXXnklfvrTn8LpdCY6RKIhd4yrCWONbdDTZmBnpyNs3+yMGmTXrE9QZERERERHFqV+RaJDAAAY3ip0rP9V0ie+AUBr3YyO9XcDZgfMaRPgXv8rwGQDDia7A3VLYdo9D5AtoWMCdcsSEqveuQ+tn5wH+/irYSs5r1/H2ksvhmzN6LFdaVwD757/Q9Zp/wdJkqB76xCoXQIAcIy/GpIcnqYwvAegNKyA4W+CbM8b+JMhIqIjEpPfI8iiRYtwzTXXwO12h7Z5vV6sX78e69evx/PPP48PPvgAZWVDu4AKUaKd7n4EpY0vI7vkz9iJ60PbbSbgB3umJy4wIiIioiOMUDsSHUKIZ8tfEx1C3Hi2/j3s6/Yvrg//umHVMEbTN3/FfPgr5vfvoFNfhrPs2h6bNfcO+Pe+Cm3aPbBkHwNfxavoWHcXAMBeciGkbiVhAEBt2gAIA5p7J6xMfhMRUT8x+T1CbNq0CT/4wQ/g8/mQlpaG3/zmNzjjjDPg8/nw2muv4bnnnsPOnTtx/vnnY/369UhPT++7U6IkNN4VQGHVYgBASftC/DAnK7TPYvh7OYqIiIiIiEYSzzcPQ2n4osd25eAs9o71dyPzlBfg3fF0aJ977c8AU7ca40KH7qkMtv/q9zCljQ3tsuafDOek64ckdiIiSh1Mfo8Qd955J3w+H8xmMz7++GPMnj07tO+73/0uJk2ahF/96lfYuXMn/vrXv+KBBx5IXLBEQ6jQ1AqrFlzIKbtjFWZ2jKxZL0RERERE1DetfRu09m297g9Uf4SOTfdBd+8KbfPt+b9e2ys1H4cfX/kuHBP+E5LJOvhgiYgoZcl9N6GhtnbtWqxYEayld+ONN4YlvrvcddddmDJlCgDg8ccfh6qqwxoj0VC7w/Qo7lWuxfl1PT8aSUREREREqce3+6UBH2sEmtD47mQ0vDsF7atujWNURESUSpj8HgEWLFgQenzDDTdEbCPLMq69NpgUbGtrw9KlS4cjNKJhYTcBpU3zkN/+b6R7Nic6HCIiIiIiGg7CGNThemcF9Pbt0D374xQQERGlGia/R4AvvgjWQXO5XDjxxBN7bTdnzpzQ45UrVw55XETD5SY8DKvWlOgwiIiIiIiIiIgohbDm9wiwbVuwDlpZWRnM5t6HZPLkyT2OiVVVVVXU/QcOHAg9rq2t7VffidTq1+Ftak10GDQIFhlAxyLUcC1LIiIiIiIaAKvVD28ff/OOJN3/5tY0LYGREBGlPia/E8zv96OpKTjjtaSkJGrb7OxsuFwueDyesGR1LEpLS2Nue9JJJ/Wrb6LBejfRARARERERURJbBiD2v3lHksbGRowbNy7RYRARpSyWPUmwjo6O0OO0tLQ+27tcLgBAZ2fnkMVERERERERERERElOw48zvB/P5DtR6sVmuf7W02GwDA5/P16zx9zRT3+/3Yvn07CgsLkZ+fH7X8ykhRW1sbmqW+du1ajBo1KsERUX9xDJMbxy/5cQyTH8cw+XEMkxvHL/lxDJNfMo6hpmlobGwEAEybNi3B0RARpbaRn+FMcXa7PfRYUZQ+2wcCAQCAw+Ho13n6KqkCBGuOJ6tRo0bF9Bxp5OIYJjeOX/LjGCY/jmHy4xgmN45f8uMYJr9kGkOWOiEiGh4se5Jg6enpocexlDLxeDwAYiuRQkRERERERERERHSkYvI7wex2O3JzcwEAVX2sTt3a2hpKfvdnAUsiIiIiIiIiIiKiIw2T3yPA1KlTAQC7d++Gpmm9ttu+fXvo8ZQpU4Y8LiIiIiIiIiIiIqJkxeT3CHDqqacCCJY02bBhQ6/tli9fHnp8yimnDHlcRERERERERERERMmKye8R4JJLLgk9fumllyK2MQwDr7zyCgAgKysLZ5xxxnCERkRERERERERERJSUmPweAU466SScdtppAIAXXngBq1ev7tHmr3/9K7Zt2wYAuPPOO2GxWIY1RiIiIiIiIiIiIqJkYk50ABT0+OOP45RTToHP58M555yD3/72tzjjjDPg8/nw2muv4dlnnwUAlJeX46677kpwtEREREREREREREQjmySEEIkOgoIWLVqEa665Bm63O+L+8vJyfPDBBygrKxvmyIiIiIiIiIiIiIiSC5PfI0xlZSUef/xxfPDBB6iqqoLVakVZWRmuuOIK3H777XA6nYkOkYiIiIiIiIiIiGjEY/KbiIiIiIiIiIiIiFIOF7wkIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8pqRUWVmJu+66C5MnT4bL5UJOTg5mzpyJRx99FF6vN9HhHZEkSYrp3+mnn95nX4sXL8all16KkpIS2Gw2lJSU4NJLL8XixYuH/omkqIaGBrz//vu47777cN555yEvLy80Jtdff32/+4vHGGmahqeffhqnnXYa8vPz4XA4MHHiRNx6663YsmVLv2NKdfEYw3nz5sV8rc6bN6/P/rxeLx555BHMnDkTOTk5cLlcmDx5Mu666y5UVlYO7gmnmPXr1+MPf/gDzjnnnNB1k5aWhvLyctxwww344osv+tUfr8HhF48x5DWYOG63G6+99hruuusuzJkzB2VlZcjMzITVakVBQQFOP/10PPLII2hubo6pv1WrVuGaa67B2LFjYbfbUVRUhHPPPRfz58/vV1zz58/HOeecg6KiItjtdowdOxbXXHMNVq9ePZCnmdLiMYbLli2L+Rp84IEH+oyJ76Px8+tf/zrs9V+2bFmfx/BnIRERxUQQJZn33ntPZGRkCAAR/5WXl4tdu3YlOswjTm/jcfi/OXPm9NqHruvixhtvjHr8TTfdJHRdH74nliKivabXXXddzP3Ea4waGxvFzJkze+3DZrOJ5557bpDPOrXEYwxfeumlmK/Vl156KWpfu3btEpMmTer1+IyMDLFo0aLBP/EUcNppp8X0ml977bUiEAhE7YvXYGLEawx5DSbOkiVLYnrd8/LyxEcffRS1r/vvv1/IstxrH+eff77w+XxR+/B6vWLu3Lm99iHLsnjggQfi+RIkvXiM4dKlS2O+Bu+///6o8fB9NH42bdokzGZz2Ou3dOnSXtvzZyEREfUHk9+UVDZu3CgcDocAINLS0sSDDz4oVq1aJT799FNx8803h35RKS8vF263O9HhHlG6XvvbbrtNfPPNN73+27t3b6993HPPPaF+pk+fLubPny/Wrl0r5s+fL6ZPnx7a95vf/GYYn1lq6P6L/JgxY8Q555wT+ro/ye94jJGmaeLUU08Ntb3sssvE4sWLxZo1a8Q//vEPUVBQEPrD/8MPP4zDs08N8RjD7om3f//731Gv1dbW1l77cbvdory8PNTXzTffLD799FOxatUq8eCDD4q0tDQBQDidTrFp06a4PP9kNnHiRAFAFBcXizvvvFO89dZbYu3atWL16tXib3/7mxg9enTotbz66quj9sVrMDHiNYa8BhNnyZIlorS0VFx77bXi8ccfF++8845YvXq1WLlypXj99dfFFVdcIUwmkwAgrFar+OqrryL28/TTT4de94kTJ4oXXnhBrF27VixYsECcccYZMV/LV111VajtGWecIRYsWCDWrl0rXnjhhdD3GwDxzDPPDMXLkZTiMYbdk98vvvhi1Guwvr6+11j4Pho/uq6HEtBdr1tfyW/+LCQiov5g8puSStfMK7PZLFatWtVj/yOPPBLzbA2Kr8G+7jt27AjN+JgxY4bwer1h+z0ej5gxY0Zo/Dm7v3/uu+8+sWjRIlFXVyeEEKKioqLfidN4jdELL7wQOvdPfvKTHvt37doV+nRHWVmZUFW1f082RcVjDLsn3ioqKgYcy+9+97tQP4888kiP/StXrgx9r0T7tMeR4vzzzxevv/660DQt4v7GxsawROby5csjtuM1mDjxGkNeg4nT29h19+6774Ze10svvbTH/ubmZpGZmRm6CdnY2NjjHBdeeGGfybtPP/001ObCCy/sEVtjY6MYM2aMACCysrJES0tL7E80hcVjDLsnv6MlV/vC99H4+fvf/y4AiMmTJ4vf/OY3fY4PfxYSEVF/MflNSWPNmjWhX1BuvfXWiG10XRdTpkwJ/bGgKMowR3nkGmzy+7bbbgv1sXr16ohtVq9eHfWXVIrdQBKn8Rqjrms0JydHeDyeiG3+9Kc/hfp54403YorvSJOo5LeiKKHkz5QpU3r9SPGtt94aOtfatWsHdK4jyaJFi0Kv1x133BGxDa/BkS2WMeQ1OPIdddRRAgiWzjjcn//859BrOn/+/IjHHzhwIDT7eO7cuRHbnHfeeaHE3IEDByK2mT9/ftQbHNS7aGMYr+Q330fjo7KyMvRJlWXLlon777+/z/Hhz0IiIuovLnhJSWPBggWhxzfccEPENrIs49prrwUAtLW1YenSpcMRGg2SEAILFy4EAEyePBmzZs2K2G7WrFk46qijAAALFy6EEGLYYjzSxWuMdu7ciW3btgEArrzySjidzoj9dF/A8d133x1s+BRHS5cuRXt7OwDguuuugyxH/lWCY9g/Z5xxRujxnj17euznNTjy9TWG8cJrcGilp6cDAPx+f499Xb+LZmRk4LLLLot4fElJCc466ywAwKeffoqOjo6w/R0dHfj0008BAGeddRZKSkoi9nPZZZchIyMDAMevv6KNYTzwfTR+fvrTn6KzsxPXXXcd5syZ02d7/iwkIqKBYPKbksYXX3wBAHC5XDjxxBN7bdf9F6eVK1cOeVw0eBUVFaipqQGAPn/x7dpfXV2Nffv2DXVodFC8xqjrOu6rn6KiIpSXlwPgdTzSxDqGM2bMCP0xyTHsWyAQCD02mUw99vMaHPn6GsN44TU4dHbs2IGvvvoKQDCx1p2iKFi7di0AYPbs2bBarb320zUugUAA69evD9u3bt06KIoS1i4Sq9UaSuytW7cOqqr278kcoaKNYbzwfTQ+3njjDbz//vvIycnBX/7yl5iO4c9CIiIaCCa/KWl03Z0vKyuD2WzutV33X3S7jqHh8+abb2Lq1KlwOp1IT0/HpEmTcN1110Wdhb9169bQ477+UOH4Jka8xmgg/Rw4cAAejyfmWCk2N9xwA4qLi2G1WpGXl4dZs2bhv//7v1FdXR31uFjH0Gw2o6ysDACv1VgsX7489HjKlCk99vMaHPn6GsPD8RocGbxeL3bt2oW//e1vmDNnDjRNAwD8/Oc/D2u3c+dO6LoOYPivQU3TsGvXruhP5AgW6xge7t5778XYsWNhs9mQnZ2N6dOn4xe/+AV27twZ9Ti+jw5eW1sb7rzzTgDAn//8Z+Tl5cV0HH8WEhHRQDD5TUnB7/ejqakJAHr9eGiX7OxsuFwuAMFfUmh4bd26Fdu2bYPP50NnZyd2796NV155Bd/97ndx6aWXhj6q3V1VVVXocV/jW1paGnrM8R0+8RqjgfQjhAg7juJj2bJlqK2thaqqaG5uxpo1a/Dggw+irKwMzzzzTK/HdY2Fy+VCVlZW1HN0jWFjY2PYrFgKZxgGHn744dDXV155ZY82vAZHtljG8HC8BhNn3rx5kCQJkiTB5XKhvLwcd911F+rr6wEA99xzD/7zP/8z7JhEXoOR+jnSDWQMD7dq1Srs378fiqKgra0NX331FR577DFMmTIFDzzwQK/l9fg+Oni/+tWvUFdXh1NOOQU33nhjzMfxZyEREQ1E79NniUaQ7vUS09LS+mzvcrng8XjQ2dk5lGFRN06nExdddBHOPPNMTJ48GWlpaWhsbMTy5cvx9NNPo7m5GQsWLMDFF1+MJUuWwGKxhI7tz/h23dgAwPEdRvEaI4514k2YMAGXXXYZZs+eHfqDbu/evXj77bfx1ltvwe/347/+678gSRJuueWWHsd3jWGs78VdOjs7YbPZ4vQsUsvf//73UDmFyy67LGJpL16DI1ssY9iF1+DIdfzxx+PZZ5/FzJkze+zjNZgcoo1hl1GjRuGyyy7DqaeeigkTJsBsNmP//v14//338corr0BVVfz+97+Hoih46KGHehzPMRycFStW4Pnnn4fZbMbTTz8NSZJiPpbXIRERDQST35QUui9YE63GYpeuP+58Pt+QxUThqqurI85AO/vss3HHHXfgvPPOw6ZNm7B8+XI89dRT+NnPfhZq05/x7f6HO8d3+MRrjDjWiXXppZfiuuuu6/GH5syZM/GDH/wA77//Pi677DKoqopf/OIXuOiii1BUVBTWtmsM+/NeDHAMe7N8+XLcc889AICCggI89dRTEdvxGhy5Yh1DgNfgSHHJJZdgxowZAIKvy549e/DGG2/g3XffxdVXX43HHnsMF1xwQdgxvAZHloGMIRC81iorK8MmYQDACSecgEsuuQS33HILzjnnHLS3t+Phhx/GD37wAxx33HFhbTmGA6coCm655RYIIfCLX/wCxxxzTL+O53VIREQDwbInlBTsdnvocdciQdF0fbTX4XAMWUwULtpHrwsLC/HWW2+F/tB44oknwvb3Z3y7f2yb4zt84jVGHOvEyszMjDrD6oILLsB9990HIFhD9YUXXujRpmsM+/NeDHAMI9myZQsuvfRSaJoGu92ON998EwUFBRHb8hocmfozhgCvwZEiKysLxxxzDI455hjMnDkTV111Fd555x288sor2Lt3Ly6++GLMmzcv7BhegyPLQMYQCM7iPTzx3d1JJ52Ef/7znwCCZS66HnfHMRy4hx56CNu3b8eYMWNw//339/t4XodERDQQTH5TUkhPTw89juXjZl2LkcTykWAaHhMmTMDZZ58NANi9e3dopXagf+PbfaEZju/widcYcaxHvltuuSWUnOu+gF+XrjHsz3sxwDE8XEVFBc455xy0trbCZDLhtddew3e+851e2/MaHHn6O4ax4jWYOD/60Y9wxRVXwDAM3H777WhpaQnt4zWYHKKNYayuuuoqZGRkAIh+DQIcw/7Yvn07/vSnPwEIToTpXk4kVrwOiYhoIJj8pqRgt9uRm5sLAH0uNNLa2hr6JaX7QieUeFOnTg09rq6uDj3uvtBMX+PbfcEaju/widcYDaQfSZL6XIyI4qegoCD0ftv9Ou3SNRYejwdtbW1R++oaw/z8fNYa7qampgZnnXUWampqIEkSXnzxRVx88cVRj+E1OLIMZAxjxWswsbrG0ePx4KOPPgptT+Q1GKkf6l1vYxgrs9mM8vJyANGvQYDvo/3x97//HYqiYMKECfB6vXjttdd6/Pv2229D7T/77LPQ9q6/7fizkIiIBoI1vylpTJ06FStWrMDu3buhaRrM5sjfvtu3bw89njJlynCFRzHo7aPe3ZPi3ccvEo5vYsRrjA7v5/jjj++zn9LS0gHNDqKBi1aWYerUqXj77bcBBMdo1qxZEdtpmoY9e/YA4LXaXVNTE84++2zs3bsXQHD227XXXtvncbwGR46BjmF/8BpMnPz8/NDjysrK0OPy8nKYTCbouh7XazCWfsxmMyZNmtR38ASg9zHsj76uwS58H41dV/mQvXv34uqrr+6z/R//+MfQ44qKCrhcLv4sJCKiAeHMb0oap556KoDgLI4NGzb02q77xxNPOeWUIY+LYrd169bQ4+Li4tDj8ePHh76O9PHS7j7//HMAwOjRozFu3Lj4B0kRxWuMuq7jvvqpq6vDzp07AfA6Hm6NjY1oamoCEH6ddol1DNevXx+aqcUxDGpvb8e5554bei98+OGH8dOf/jSmY3kNjgyDGcNY8RpMrO4zfbuXOLBarTjppJMAAKtXr45aJ7hrXGw2W2hRxi4zZ84MLbAXbfwURcGXX34ZOiZanWoK19sYxkrTtND732CuQb6Pxh9/FhIR0UAw+U1J45JLLgk9fumllyK2MQwDr7zyCoDgQjhnnHHGcIRGMaioqMCSJUsAABMnTsTo0aND+yRJCn1Edfv27aE/9g735ZdfhmZfXHzxxVFn5VB8xWuMysvLQ7Nv3njjDXi93oj9dF+k6tJLLx1s+NQPzz77LIQQAIA5c+b02H/66acjMzMTAPDyyy+H2h6OYxjO6/Xi/PPPx8aNGwEA9957L37961/HfDyvwcQb7BjGitdgYr355puhx9OmTQvb1/W7qNvtxjvvvBPx+KqqKnzyyScAgDPPPDOstjAQrDV85plnAgA++eSTXksuvPPOO3C73QA4fv0VbQxj8frrr6O9vR1A5GuQ76MDM2/ePAghov7rvgjm0qVLQ9u7ktf8WUhERAMiiJLIaaedJgAIs9ksVq1a1WP/I488IgAIAOL+++8f/gCPUO+9955QVbXX/XV1dWL69OmhsfnrX//ao82OHTuEyWQSAMSMGTOE1+sN2+/1esWMGTNC479z5864P48jSUVFRWg8rrvuupiOidcYvfDCC6Fz//SnP+2xf/fu3SIjI0MAEGVlZVG/t45k/R3DiooKsXHjxqhtFi1aJKxWqwAgHA6HqKqqitjud7/7XejcjzzySI/9q1atEmazWQAQc+bMieXppLRAICDOOeec0Gt25513DqgfXoOJE48x5DWYWC+99JLw+XxR2/ztb38Lva7jx48XmqaF7W9ubhaZmZkCgBg7dqxoamoK269pmrjwwgtDfSxdujTieT799NNQm4suuqjHeRobG8WYMWMEAJGVlSVaWlr6/4RT0GDHsKWlpdcx6bJmzRqRlZUlAAhJksT69esjtuP76NC4//77+7x++LOQiIj6i8lvSiobN24UDodDABBpaWnioYceEqtXrxafffaZuOWWW0K/wJSXlwu3253ocI8YY8eOFcXFxeKOO+4Qr776qli1apXYtGmTWLJkibj33ntFXl5eaGxOPfVU4ff7I/Zzzz33hNpNnz5dvPbaa2LdunXitddeC0ue/+Y3vxnmZ5j8VqxYIV566aXQv0cffTT0ep5yyilh+1566aVe+4nHGGmaJk455ZRQ28svv1x89NFHYs2aNeKJJ54QBQUFAoCQZVl8+OGHQ/BqJKfBjuHSpUsFADF79mzx0EMPiQ8++ECsW7dOrFu3Trz++uviiiuuEJIkhfp88skne43F7XaL8vLyUNtbbrlFfPbZZ2L16tXioYceEmlpaaHk3aZNm4buRUkSl112Wei1+u53vyu+/vpr8c033/T6b8eOHb32xWswMeIxhrwGE2vs2LEiJydH3HzzzeLll18WX3zxhfjqq6/EihUrxP/+7/+GXRNWq1UsWbIkYj9PP/10qN3EiRPFiy++KNatWycWLlwozjjjjNC+q6++Omo8V111VajtGWecIRYuXCjWrVsnXnzxRTFx4sTQvmeeeWYoXo6kNNgx7LppfOyxx4r77rtPLFy4UKxdu1Zs2LBBvPvuu+LGG28M3XwCIO6+++5eY+H76NCIJfktBH8WEhFR/zD5TUnnvffeC92Fj/SvvLxc7Nq1K9FhHlHGjh3b63h0/3f55ZeL1tbWXvvRdV38+Mc/jtrHjTfeKHRdH74nlyKuu+66mMao619v4jVGjY2NYubMmb32YbPZxHPPPRfvlyGpDXYMuxJvff1zOp0xJVt27dolJk2a1Gs/GRkZYtGiRUPxUiSd/owbEJxR2hteg4kRjzHkNZhYsf6uUlJSIj7++OOofd13331hNyoO/zd37tw+Zyh7vV4xd+7cXvuQZZmfYjzMYMew+yemov0zmUzigQceEIZhRI2H76PxF2vymz8LiYioPyQheikUSDSCVVZW4vHHH8cHH3yAqqoqWK1WlJWV4YorrsDtt98Op9OZ6BCPKMuXL8fy5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3ZM/X344Yd49tlnsW7dOjQ1NSEvLw8zZ87ErbfeivPOO2+In01quv766/Hyyy/H3L6vHw3xGCNN0/Dcc8/h1VdfxbZt2+DxeFBcXIwzzzwTd955J44++uiY4z0SDHYMOzo68N5772H16tVYv349amtr0dTUBE3TkJ2djaOPPhpnnnkmbrrpJhQUFMR0Do/HgyeffBJvvvkmdu/eDUVRUFpairlz5+LOO+/E2LFj+/UcU1V/1ycYO3Ys9u3bF7UNr8HhFY8x5DWYWDt27MAHH3yAlStXYvfu3aivr0dzczMcDgcKCgpw/PHH44ILLsCVV14Z0++Rq1atwpNPPokVK1agvr4eWVlZOO6443DDDTfg6quvjjmuV199FfPmzcPmzZvR1taGwsJCnHbaabj99ttj/r3pSDHYMVQUJXQNrl27FtXV1WhqaoLf70dmZiaOOuoonH766bjppptiXlSd76Px9cADD+D3v/89gGDN79NPPz1qe/4sJCKiWDD5TUREREREREREREQpR050AERERERERERERERE8cbkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3ERERUYLNmzcPkiRBkiTs27cv0eEQERERERGlBCa/iYiIiAZo3759oaT1YP4RERERERFR/DH5TUREREREREREREQpRxJCiEQHQURERJSMVFXFjh07et0/bdo0AMCMGTPw0ksv9drumGOOiXtsRERERERERzpzogMgIiIiSlYWiyWmxLXL5WKCm4iIiIiIaJix7AkRERERERERERERpRwmv4mIiIgSbN68eaHFL/ft29dj/+mnnw5JknD66acDAHbv3o3/+q//woQJE+BwODBu3DjceOONqKysDDvu22+/xQ033IAJEybAbrejtLQUt912GxoaGmKKa8GCBbjiiiswZswY2O12ZGVlYcaMGfj973+P1tbWwT5tIiIiIiKiIcWyJ0RERERJ5JNPPsFll12Gjo6O0LbKykq8+OKLeP/997F8+XJMnjwZ8+fPx/XXXw9FUULtqqqq8PTTT2Px4sVYtWoViouLI56jtbUV3//+9/HZZ5+FbQ8EAtiwYQM2bNiA//3f/8XChQsxa9asoXmiREREREREg8SZ30RERERJoqamBldeeSWysrLwxBNPYM2aNVixYgV+/vOfQ5IkNDQ04KabbsK6detw7bXXYuLEiXj++eexdu1aLF26FD/60Y8ABJPlv/zlLyOeIxAI4KyzzsJnn30Gk8mEH/3oR5g/fz6+/PJLrFixAg8++CByc3PR0NCAuXPn9phtTkRERERENFJw5jcRERFRkti1axcmTZqElStXIj8/P7T91FNPhdlsxl/+8hesXLkS559/Pk466SQsWbIETqcz1O7000+H3+/Hm2++ibfffhuNjY1h/QDAH/7wB2zcuBFZWVn45JNPcOKJJ4btP/XUU/HDH/4Qs2fPRm1tLX7729/iX//619A+cSIiIiIiogHgzG8iIiKiJPKPf/yjR8IaAH7yk5+EHjc1NeH5558PS3x3ue222wAAmqZh9erVYfs6Ozvx5JNPAgD++Mc/9kh8dxk7dix+97vfAQDefPNNeDyegT0ZIiIiIiKiIcTkNxEREVGSyMrKwrnnnhtx3/jx45Geng4AOPbYYzFlypSI7Y477rjQ471794btW758Odrb2wEA3//+96PG8p3vfAcAoKoqNmzYENsTICIiIiIiGkYse0JERESUJCZNmgRJknrdn5WVhY6ODpSXl0dt06X7opkAsH79+tDjUaNGxRxXXV1dzG2JiIiIiIiGC2d+ExERESWJSGVMupNluc92XW0AQNf1sH0NDQ0Disvr9Q7oOCIiIiIioqHEmd9EREREBCA8Gb5x40ZYLJaYjispKRmqkIiIiIiIiAaMyW8iIiIiAgDk5uaGHufn5zOpTURERERESY1lT4iIiIgIADB9+vTQ45UrVyYwEiIiIiIiosFj8puIiIiIAABnnXVWqF74P/7xDwghEhwRERERERHRwDH5TUREREQAgKysLNx+++0AgFWrVuEXv/gFDMPotX19fT2ef/754QqPiIiIiIioX1jzm4iIiIhC/vCHP2D58uVYs2YNHn/8cSxbtgw333wzjj/+eLhcLrS2tmLLli345JNPsHjxYkybNg033XRTosMmIiIiIiLqgclvIiIiIgqx2WxYsmQJrr/+erzzzjvYvHlzaDZ4JBkZGcMYHRERERERUeyY/CYiIiKiMOnp6Xj77bfxxRdf4OWXX8aKFStQU1MDn8+HjIwMTJw4ESeddBLOP/98nHPOOYkOl4iIiIiIKCJJcCUjIiIiIiIiIiIiIkoxXPCSiIiIiIiIiIiIiFIOk99ERERERERERERElHKY/CYiIiIiIiIiIiKilMPkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3EREREREREREREaUcJr+JiIiIiIiIiIiIKOUw+U1EREREREREREREKYfJbyIiIiIiIiIiIiJKOUx+ExEREREREREREVHK+f8BeuVVcZN/SbQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot( \n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'intervention_examples_composition.png',\n", + " # Name of the file to save the plot to.\n", + " data \n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot\n", + "\n", + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5gb1dUG8HfUt1d3G9sYN9wrpto0A8ZgWsB0UxMgEEgChFBCQgmhfBBMaMH0aoohpprmAgZ3g3vvfXtXm/n+WK+8oymakUbSSnp/z0Mi3blz566s1WrOnDlXkCRJAhERERERERERERElhS3ZEyAiIiIiIiIiIiLKZAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESOZI9AYpNU1MTVqxYAQBo164dHA7+kxIRERERERFZLRAI4MCBAwCAQYMGwePxJHlGRJROGNFLcStWrMDo0aOTPQ0iIiIiIiKijLFw4UKMGjUq2dMgojTCcgdEREREREREREREScRM2hTXrl270OOFCxeiU6dOSZwNERERERERUXras2dP6E7W1ufiRERWYJA2xbWuQdupUyd07do1ibMhIiIiIiIiSn9cD4aIrMZyB0RERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERFFIIl+1K96CjVL7kKwbrtqH9++edjzugv7P+yl2se3bx72vCpgz6sCapbeDUmS4j1tIiIiIiIiShEM0hIREUVQs/BW1Cy6DfUrHkHZp6MhBX2y7f7KVSj/4gRA9CNYuxn7P+gu6xOs39G8/aD6Xx9G/eqnEjV9IiIiIiIiauMYpCUiIoqgYe2zocdi0z40bnlXtr1m0R8V+zRufjv0uGn7J4rttSr7EBERERERUWZikJaIiMikYM0G2XPf3u8VfQLVa0KPxcZ9cZ8TERERERERpS4GaYmIiGIlBpRtknjosWBP3FyIiIiIiIgo5TBIS0REFDO1RcBaBWltjoTNhIiIiIiIiFIPg7REREQmid6yyH18NaHHkq8yntOhDCB6K+Dd/S0CtZuTPRUiIiIiIooDBmmJiIh0SK3LFhzUsO55+PbN092vccNLCNRshHfvXNSv+r94TY8ygHfvXOyb3gUVs07BgQ97oe7Xh5M9JSIiIiIishiDtERERDr85UtU26t+uDrivg0bXkbNzzdZPSXKMPUrHwOCTaHndb8+BEkMJnFGRERERERkNQZpiYiIdPjLl6q2B2s3RtxXbNyLQNVKq6dEGcZfvlj2XAo0QGoVtCUiIiIiotTHIC0REZEOQYjhT6UU0N5mc0U/LpHETFoiIiIionTCIC0REZEuIeo9JVE7SCs486IelwgqtZKJiIiIiCh1MUhLRESkJ16ZtAyyUUz4/iEiIiIiSieOZE+AaPl+L95dV48tNc3BjCOLnbhpaD5Ks+xJnhkRZQLv7q9Ru/RuCM485B/1DJyF/SH661Dz0w3wHZiPYO3mqMfWy6RlkJZise+dktDj9hfugj27cxJnkxokMYi6Ff9E09b34SwdjfzRT8LmzE32tIiIiIiIADCTlpLMF5Tw5NKaUIAWAFZX+PH66rokzoqIMoUU9KLy+wvgL1sE357vUD3/OgBA3Yp/onHzmxEDtKKvOsIB9IK0rClK1qiad0Wyp5ASfHu+Qd2yexGo/BWNG15Cw9pnkz0lIiIiIqIQBmkpqfbWB9EUlBTtC/Z6kzAbIso0TTv+B8lfE3ru3/8jAKD+14cN7R+oWq27XQrqfZYxk5aMERz62Z6+Pd8maCaprerHa2XPa5fcmaSZEBEREREpMUhLSaUWoCUiShQp0BjrAM3/b3Oqbxd92ruy3AEZJGi9v8gUsWFnsqdARERERKSJQVpKKi+DtESUTIIQ0+4tNWe1gmiSTpCWNWnJKAb0iYiIiIjSH4O0lFR6QVpJYgCXiOJLiPXP4MFMWknUqC8b1AvSsiYtGcW/h0RERERE6c6R7AlQZvMGtE88gxLgiC3JjYhIn0omrZkLRMH6XQd3Ul8gTPSWa++cAdmR/soV8O7+Gq52Y+Bqf0yyp5OSJElCsGZ9sqeRcnz7f4Zv/w9wdzoZzpJhmv2CTQdg97RL4MwonvY01OCtTUuxt7E22VMhIpOyHU78Y/jpyZ4GEVFSMUhLSaVXk3b6+npc0k9/sRQiotioXAkKGq9TW/3jVcjqdblmVmywbovO3hIkSYIQY8mFtspfuQJlM0cBohcQbCg+9Su4O5+S7GmlnNqlfzXUT/TXw+bMifNsUoN37xxUfHUSIImotTlReubPcJYMV+1bNnME2p+3EYLdleBZktX8YhDHf/4fbKrVuThGRG1WiTubQVoiyngsd0BJ5dMJ0i7aq7cqOhFR7AS7R9HmK1tkaoxA1coYZpC+t7HXLPpzc4AWACQRVT9cldwJpaj6FY8Y7PfPOM8kddT8fNOhTHXRj5qFt2r2Fet3oHHr9MRMjOJqefkuBmiJiIgopTFIS0mld7OvT0zf4AURtQ323O6KNilQb2oMyV8X/QTSuC6tb/cs2XOxYWeSZpIZvLu/TvYU2oxA1SrZc9++efr9y5fGczqUIHUBnRrgRERERCmA5Q6ozdJbVIyIKG5E9fqyWqRYAq0ZUJeWEiU9y2ZYSXDmQfKr1Cq1ORM/GbKcGFZP3GN34OLDtesRE1HbkutwJ3sKRERJxyAtJZdOHFZvUTEioniRRL/JHRikpTZA4M1RkWkEsm38OpwOgmGfp8XubLx83EVJmg0RERGRefxWSkkTECXsqNXOWPOJQHljEHYBqPFL8AYktMuyodBjT+AsiSidSIFGBGo2wJ7TDTZ3kXqnBAZpJUlk/mOGE/21CNZtByDCkd836gWspAgL3vkrVwGiD86S9M4sFNUyZUPUf9sEgZm0qaQh4MOGmjJF+8awNjsvXBAREVGKYZCWkmJrjR8PLahCjU8/W/bG75QLQJxymAfXDcqP19SIKE15d81C5ffnQgo0AIINeSMfg6vdGEW/+lVPmBo3WB9DrdU0rklLkTVsfA3VP0wJPRccuSge/zVc7Zvfl5KJTOtAxXI0bHgZ2b2vVmzb86o8ONlpSnreqdKw8TVU/3it5nbJX62+gZm0KeOTbStx0Zw34Q1GLktjF3gJjIiIiFILLzFTUnyyqSFigFbLN9ubsLfeXM1IIqLaZfc1B2gBQBJRt+xeePd8r+jnL19saly9leMjyrByB1LQm+wptBmSJKF28R3ytkAd6n59KPTcX2buvVj94zWKtkDdNkWbb98PpsZNBZIkoXbJXYCk/v3AX7VGc19BYJA2Vdyz9EtDAVqAmbRERESUevjthZJid11s2WMHGjMrsEFEsfNXLJc9lwINgBh70FAzO8+QzPosE72VyZ5C2yEFITbtVzT79v8Yety09f2YD9O44RVFW/X862Met+2RIDbu0dzauPFV7V25cFjK2NFQZbjvkYUd4jcRIiIiojhgkJaSotqrHpgoctvQKSdyzdmAmJ63ahJRPCk/N6Rgk6kRCk94y6rJNB8/48odZFZQWpeokQ3Y6hZtKdgQ82EkSVljWdJbtTNVSfo/k17NXoHlDlJGMOz7n00Q4BBssv+cNjvGtOuOJ0efnaRZEhEREUWH30op4URJQo1P/UR9TCc3pgzIw73zK7G+UnvxHl8wDU8wiSjO1IK05jJpHQX9rZrMwQlkWNAy44LS2iSN2/JbL25l9iKCKlHlNY8Q0ExNEYK0AZ2F1ZhJmzICYZ8hP595M0a1OyxJsyEiIiKyFjNpKeEa/BK0YqzZzuaTU3eEZFp/hsU1iMgCagFRszVSbS5r5tIiw4K0klrAMFNpZNIKrYO0eoFFo1QD42kYpI3wu6SXlcyatKkjGHaBwWGLfPcVERERUargt1JKuCqNUgcAkO1ovm4QqZpBrUYmbmsBUcJ76+rxv82HTsz6Fztxx8gCZDt5fYIo8yg/WBrWv2BqBMFubZA2ULkC9uxOhvoGG/Zi//TOACRAsKPjpXUQHB5L56NFEoOoW/43eHfPgqNoMPJHPQGbqyCKgYIINuxF7ZI7IHrLkTv4Xrjaj7F+wikgULVCfUOrxY4kb4XpcSVJgtCqZILoUxlD1L5TJXXpf3Fo2vy29p4W1Kam+Pty51r4wy702Fu914mIiIhSHSNVlHCfbdHOZsk5mEkbKUj71tq6iMf5YkujLEALAGsq/HhtdeR9iSgNWXGLt8WZtBVfnw7J4LzKPh2FUCBKCqL8i+MtnYuehrX/Qd2vD8FftgiNG6ahZuGtuv0Ddds0toionn8dGje9Ae/Oz1Hx9XjTJSfSgSRJqPj6DI2th4JO3t1fRTG4PIjVuOFlRZdg3Rbz47ZxsZSGqFlwi4UzoXgoa6rHWd8o38t2gacyRERElD74zYbalCJP81vyjB5Zuv06ZEe+ve1NjUDu7J0W1PgjooxkcxdbPKIEf/liQz3Fhp2y50b3s0LD+v/KnjdufFW3v798ifoGMQjvzk9DTyV/LRq3To91eiknWL0OUqBefWOroJM9J4pam2FlFARHjqKLPb+P+XHbuKYt7yV7ChRHy8p3IaBS0qLUo3x/ExEREaUqBmkp4bTqyfbMd+DI4uYstREd3KGsWvUx0rCeHhHFWeyfGzZnHlydTpa1OUtHxzSmFNC+u6CtCFSvNbeDRr1VSaU+quSrimJGqU170TAArW7ftnnaRzF22O3guT0UfdTaUl2waX+yp0Bx5FP5TJnccyg6ZOUlYTZERERE8cGatJRwgbAAa6ccO6YMyMWRxS647M0npw6bgBdOLsXS/V6UNYl4b10dvK3OOxsDDNISUXI4CgfCt+fb0HNblrGaspqsKMPQ5mj8TKqLWGVeTUnB7tbbGnokiT7zg4cHgFWyD9MyMB7Na0UpIyAq38dvnnBJEmZCREREFD8M0lLCBcK+Zx/fxYOh7ZQnrE67gKM6NS+K07fIibt/rAxtY5CWiMyQIqz8boYQvlCNlI6LMMVI6/VWbc+8IK1uYL71axTNAl9hGYeSSsBcTMMgrZSWi6FRi/BSB30L2sFu4w2BRERElF4YpKWEC4adnDoMfMf22OUn8X4R+HhjPXoUODCk1KUMmgBw2QCfdXEZIjJJEoNo2vEJBMEBd7eJEBK0wIskBtC07UM0rHseNncpXB2Os7juqfzzRvLXxjhc5CClv3KFarskSaqff5bTuz2/1VwaN72BmoV/0MzUDFSvVjam6MI//spVqF18OzyHnYPsvtdH7B+o3Qrf/h/gKhmpGjhtITbuCT2OJpNWkgIINuxGzeLbIdbvQFClVEU6ZNIG6rbBt28enCUj4Czsr1liw/B4tVvhyOthzeTIcuGZtI4U/dwgIiIi0sMgLSVceD1Zh4EAQ5ZD2eeddc2LrlzYJwfn91YuHFHksWNfg9qttYAoSbAlIrBBlMGq5kxG07YPAABZva9F4bH/jbCHNWp+vgkN618MPW+Zg2XCggO+ffOsHT+Md+9cVHw5TnVb3bL7kDf8gbgeXzJYjqF6/nVo3DBNt0/V3EuV4/troppXMvmrVqPsk4EAAO+uL+DdNxdFJ7yp2T9QvQ5ln45qDujbPSg4aqr++BW/wFk8JKpMWt++H1A1+wLdPqKvKnEB/jgIVK8/+HrWADY3Sk7/PuZM2rL/DUHpxIVwFPS1aJZkpQVl22XPHbbIC8gSERERpRpehqaECy93YCSTNltnEbHvdjSqthe5tQfeVhNbxg0R6QvW75IFRxs3vATRXxf340piQBagtZKzdNTBR9YGtgRB/3ppw7rnoVXjte7XBy2dixr//h8N9YsUoNUSrNsW1X7JVPbxANnzps1v6favWfKXQxnXwSZUL7hFt3/l9+cDiC6TNlKAFgAg+iAF6k2P3VbULrvnUHBf9KJm4R9iLjsi+WtQu/RuC2ZH8bCpplz23C+qX4QnIiIiSmUM0lLChS8c5rAZyaTVfqtWNomGM71a1PtZ05YonoJ1WxVtkq867seNZ+Apu9/vmx8I1mZw2dwlutubtrxj6fHM8pUtiuv4kX7+dODd/rG8Iah+cTG0uXZT8wMLaymHExt2x23seGva+r7sub9sEWBB0K5p24cxj0HxUeqR3zG1umpfkmZCREREFD8M0lLCRZNJCwBdctUDI0FJfSExn6gdiA0vuUBEFlO9jTr+v3dSoCEu4xYc/QKyel3e/CTK22zzRz2p2q5Xn7RNiGOgEIChmrxkvWDDrmRPwVKSgbrJlLqagvJM6T8PHJukmRARERHFD4O0lHCKmrQGMmkBoMCl/XatU8mM9Qa1Ax/hgWIiSg/xCtJm970+VL8zUnkCNZ2mSMgZcKvG1jYepEXkD0wppkAug7Ta4vfeSLcgbawLh1Hb1hSU//vmOtxJmgkRERFR/GT8wmE+nw+vv/463n//ffz666+oqKiA0+lEly5dcMwxx+C6667DMcccE3GcL774Ai+++CIWLVqEAwcOoF27dhg1ahSuv/56nHHGGQn4SVJHeOxUZU0wVXqnqrU+Ee2z5dltPt0gbVsPihBRNKRgfIK0MhaXO4DJci2JJIl+SH4DJSRiXLSJNMTxvSHW74zb2OGkQCNg98R3oTKJNUoTyRcMoMKbgM/bg2r8TbLnHnvGn8IQERFRGsrobzjbtm3DmWeeiVWrVsnafT4f1q9fj/Xr1+PVV1/FzTffjH//+9+qJxeiKOL666/HtGnyBVN27dqFXbt24eOPP8a1116LF154ATYbE5cBZYDUaTCTVu9UdVW5D70KnbK2A43amV3z93hxdGePoeMSkXlqK61LcV44rGHTm6ied3lcjwHA+iBtG82kbdj4Gmp+/j2kQOR/NymmLEZm0qppWP8SRG9Z3MavXXoXsvv+FjZ3kWVjir4a7Hu7IPS8+NSv0LRjJhrWPQ9bVgcUnTQDrtACfNZiuYPEmbr6B/xlyWdoCCTv4oybQVoiIiJKQxkbNfT7/bIA7eDBg/Hqq6/ip59+wqxZs3DfffchJ6d5kYKpU6fiX//6l+o4d999dyhAO2zYMLzzzjtYuHAh3nnnHQwbNgwA8NJLL+Gee+5JwE+VGpQ1aY2doGfrpNy+tVae6VXj1b/1duFer+nFxojIOO/uWYq2ho0vx+14UtCHmgW3xG381gSLg7SSr1JzWzCB2Y6tSaIfNQtuNhSgBRBbJm2a1KSNreSDUvX86ywdT03jptctHa9u+d9kzyu+Pg0Na58BpADEhl2oXXKXpceTYSZtQtT5vfjjwv8lNUALMJOWiIiI0lPGBmk/+eSTUID26KOPxtKlS3HllVdizJgxOPXUU/H3v/8dc+bMgdPZnJ35r3/9C4GAPEtj/fr1ePzxxwEAI0eOxI8//ojJkydj1KhRmDx5Mn744QeMHDkSAPDYY49h48aNCfwJ267wTFqjC4dN6pVt+Bh7GyKfrOlUQyCiGNlcyuy8+pWPxe14/orlusFOKwUb95jqnzPgT/odbNq1FevXPWfqWFYRmw5A8tca7i+JvqiPpfZeSUWSrybux8jqfa3see6Qe2Mar2bhrTHtH65+9VO62317vrX0eK05CgfGbWw6ZEd9FQLxXkzQgD757ZI9BSIiIiLLZWyQdv78+aHHd911F+x2ZWbUiBEjMHHiRABAVVUV1qxZI9v+1FNPhQK3U6dORVZWlmx7dnY2pk6dCgAIBAJ48kn1lb0zjT/KTNq+RU6c3iMLdgPdwxcnU8NEWqJ4SnB2ZAKDBu7Op0Tsk3XEFMDmgrP0KOQc+YdQe8kZc5WddTIAhSSVApCCXnM7xBCkhZB6X0Wc7Y5WaY3/H5Wcvr+Dp+dkwOaCq8PxyO57I1wduMp9s9hff/V/V2pNSnJ5Fodgw7V9jsLYjr2SOg8iIiKieMjYe4V8vkMnlIcffrhmv169Dn0JbL2PJEn45JNPAAD9+vXDmDFjVPcfM2YM+vbti3Xr1uGTTz7BM888E9+FM1JAQIouk1YQBFw1IA9XDcjDRZ/t1+1rKEhr7LBEFJVEZ1rF/htdetZSlM0crmi35/eRPRfskbP6C497BYXHvaJod3U4HoKzAJK/+lCj7m3akf9eSJIIwepAp8mgq+mgrmzn5GflmSXYnCqt8f+rIrgKUDT2HVmbq/Op8O2bE/djW0USgxBsVtd1hqmSGzmD/oL6FY8o2gVHjpUzSktqF7jLLv57wo6f7XAhy6H2+0dERESU+jI2SNu3b9/Q482bN2PAgAGq/TZt2gSgOUDYu3fvUPuWLVuwe/duAMDYsfpZLGPHjsW6deuwa9cubN26FT179ox1+ilLkqSoa9Ka4TdQmo5BWqI4SniqugXHUw28QZnpGWtN2rAAlaQXpDVyUU8SLc9GNRt0lcTMCtKq1p9NxHte5T0q2FLrq5zkr4XgLrR+XBNBWvUgu/X1ptORGPY+FyCgxMPgNhEREZEVUuubvYUuvvhi3HPPPaipqcG//vUvTJgwQVHyYNmyZfjss88AAJdccgny8/ND21avXh163K9fP91jtd6+Zs0aU0HanTv1F43Zs8dcbcRkU6sDq7MemCl1fhG5zuZAxfID8oCBywb4ws6pWe6AKI5iCLyJ/nrsn94Zkr8GuUP/jryh9xk4ngW/0BoBmvAs1VizAAXBLg8pHwzSBpsOoG75PyD5qpBz5K1wlo5A/dpnIw8oBWHFn/NA7RbU/fowpGADXO2PNbdzMPpyB7pB6rZKdc4JyKQVVP6dtS4umCQFfSj/chz8B34CAJROXAxn6QhLxpYdx1+Dpn1z0LTtQzhLRyO7342y37HGzW+jcev7CFavg6NoIFwdxyG77w0R70KqX/mo8UkYvSBDCuHlDjL85jAiIiIiS2VskLa0tBRvvPEGLr74Yvz4448YNWoUbr31VvTp0wd1dXX48ccf8cQTT8Dn82H48OF44oknZPu3Dp527dpV91jdunULPd6xY4epebbeNx2ELxoGWJdJ+9wvNbh9ZCH2NwTxzfYm2TaXXYAv7Ng76wI4opC3zBHFR/QBq31v5YX2r1v+N7g6HAd3p5Mi7BV7NqZmFl14AFgtUGbqQGHHORjwq5pzCXx7vgEANO34H0pOnw3JWx5xuGD9Djjyj4hpSpIkofKbMxGobq693rT57Yj7+KvWwFnYv/lxxdKoj924+S3kDoywuFpbo3IRIiG1OlWyZrWyQs2qnDM5FKAFgLJPR6LjZfUQHMYX7TTCu+cbVP94DQCgcdMbEOweZPdpXhDNu/tbVM29NNQ3UL0GTVvfh2DPQnbvqyybgyBovGYpmNWdaF/sXCt7nqy62URERETpKKNTBs4++2wsWbIE1157LZYvX44rr7wSRx99NE499VTcf//9yM7OxlNPPYV58+ahQ4cOsn1raw+tep2bm6t7nJycQ7eB1dXVWftDpJjwUgeA8Zq0kawoa87k+mBDvWJbvkt5kDUVxm+NJCKzYglYyfet+OrkyHuIgRiOd5DGbeNZvS6TN8R6S3TY/pIYhCRJoQAt0JxtqFYfV03t0r/GNh8AYtP+UIDWqKrvzw89rllwc9THjjXAnBzJKXdgc+YrG7UCjiZ5t89QtPkrfrFk7Naq51+n+bxh/Qvq+/x4tbWT0PhdlyQLPkfS3Lb6StnzIAPbRERERJbJ2ExaoHkhsNdffx2ffPIJJJWTq3379uHNN99Ez549cfbZZ8u2NTUdytR0uVy6x3G73aHHjY2NpuYYKfN2z549GD16tKkxk8mqTNpbh+fjqaU1sjZvsHn8HbXKk6xCtw276+W3p1Y0peAttkQpQrVmZ1wPaMHvs0bw1XP4pfJuEYK0uYPv1j9MeCauFDC16FG4QJW54KqqKBb+ah3UlQINUR9asGdFvW/SqL6/E1DuwKF8razKpFUT04JwmoNqfzb4yxZbfzwVgk3je5sVF3vSXHhNWiIiIiKyTsYGaevr63HGGWdg3rx5sNvtuOOOO3DVVVfh8MMPR1NTExYsWIB//OMf+OGHH3DOOefg8ccfxx//+MfQ/h6PJ/TY59Ovxef1HjrJycoydzIaqZRCqvE4bLhuUB78QQkBqTmo6rGbD9Ie3ckDaRjw72XyQG1DQIJazNdlF3DW4dmYuflQIOFAA4O0RPGT4BN5C4LCqvU+AThyu8sbIizUlDf8Qf0Dhde0lYKQxOhrulrxWic1gzAFM/HUFw5L0s8RIUgruIthc5cg+4irzGddJ7hecGy/ByZovGbMpI2sPiD/N/rzQP3Fc4mIiIjIuIwN0t5///2YN28eAGDatGm48sorQ9tcLhdOPfVUnHjiiRg/fjy+//573H777Tj55JMxZMgQAEBeXl6of6QSBvX1h26/j1QaId15HAJOOcyarKnh7d2Ktga/CJvKKhYOG9ApRx4YOdCYeoEBopSR4ICVJYtPGS1jYHW5AykIxBKcsuK1TmIGoWRBPeGEi1MmrS2nG8R6c7Xr9TJpBWc+Ol7cXNc4ULU2iiBtgt8XMWSUm6H5mjGTNqI6v/yzKs+p/C5GRERERNHJyJq0kiTh5ZdfBgD06dNHFqBtzeFw4IEHHgAAiKKIV199NbStdYZr60XE1LQuWZBuC4Elk9sORdZso0YmrdMmoF22PDCytSaA5fu92Fuvf1K2tz6AebuaMHdnI7bX8ASOyIhg/XbLx/RXrUbTjpkQfdXKjVZk0kbIkD3U0dogLaQgpGD0QVorSkskN5M29W6floIqpYskCcG67ahZ9Cc0bHojqlIBWtncuvQyaQWb+uNW9Oo5W3LxwwS9TNqmbTMQqN0M0VsV+4G0XjNm0uryi0HM3LFa1pbrYJCWiIiIyCoZmUm7b98+VFRUAACGDRum23fEiBGhx2vXHlrR9sgjj1RtV9N6e//+/U3NlbQJgoBsh4A6/6ET/C+2NqpeeXDZBbTPUm7556JqOG3An0YUYJhKZu6y/V48urgarUvpXj8oDydblA1MlI58BxagccPLUe3btPNz1fbGzW+HVn235x2B0okLYHMXtzrm/KiOJ2Mw+Go4mKu1f9hxAhW/wlV6VNTjBWvWxTQfAKhf9X8xjxG1FCt3IEkSgjXrFe2B6tWomDU+9Lx28Z1of+EuSN4K44NHcQFAL5NW8lVFHLviq1NQfPr36gMkOrNUJ0hb+f15lh1G6zWzZAHCNHbJnLcUC4XlOPTXZSAiIiIi4zIyk9bhOHSCHQjofyH3+w/detd6v549e6Jz584AgDlz5uiOMXfuXABAly5d0KNHD7PTJR3hi44t2eeFQ+Vd7bQBJR71E1S/CLy6Sr1kxaxtjQhf6+zLreYWfyPKNA1rn4t638pvzlRtr1vxaOhxsHYjmnbMlG337Z0d9TFDbE7YsrtE7hdrJm1YkMNfvgSSGIcFmkxo3DAtiUdPrSBtsHazanvF12fInouNexCoWoX6dc8bGldw5kX33jK6cJjG2L59c+Dbqx6kTXSGdSwZ5abYNLI/mUmraXdDNT7Y+quiPZflDoiIiIgsk5FB2uLiYuTn5wMAfvrpJ91AbesAbM+ePUOPBUHApEmTADRnyv7888+q+//888+hTNpJkyZBUKmXStELhEVQsxzKsgYA0LfICafOAmV7NRYRq/Epgwd1/tQKKBAlWuOm11Tbne2PjWo8m6c9ApW/yI+x+W3Zc3tWx6jGlh3HmYvCY+UZwAXHvKTsGGOQNlC9Rn7c7C6JC07FiafHb6LfOcUyaUWfRmasSmkA0VuBhjVTDY1bePybulnaOYP+otoenpmtRdAodwAA3l1fqW9IcLmDRAXs7VkdYM/rpWhnJq22sqZ6RZtNEHB0++4qvYmIiIgoGhkZpLXZbDjzzOZsrd27d+Ohhx5S7VdZWYk777wz9HzixImy7bfeeivs9uaTo5tvvhmNjfIMy8bGRtx8880AmrNwb731Vqt+BDro6gF5sudS6H/kju/iiWr8oMr5YjD1yicStQmCPbrfQ0fRYOVYYdmDkmgsmGTL7qy73dX5VBQc/QLc3c5C3ohHkHXEFOWxo6kb2kp23xvkDVIgpoXDBFdRTPOxgj3viKj3taKmbkKZqaErBQED5THyj5oKd7ezdC8AuDuO09hi8OKvXjDX5oAtq5Oy3WTQMtLvV0QW1yd2dTpFfYPgQNHJM4Hw32Vm0mryqXzGfnTilTg8ryQJsyEiIiJKTxkZpAWA++67D9nZ2QCA+++/H2effTY+/PBDLFu2DD/99BOefPJJDB06FKtXNy+QcPLJJ2P8+PGyMfr06YPbb78dALB48WIce+yxeO+997B48WK89957OPbYY7F48WIAwO23347evXsn8CfMDDlO+cmpJDWXL2jtrMOzo85gDqicMIrh9Q+IyJhog3Eqv7+CPewWW4MZf4IzP8KhBGT3vR7FJ/8PuYPuhGBTCWzFmEkruApkzyXRr7tgUmvZ/W5UNop+ZVuixZJxmWpBWrUrgZpdRdX6p6VnLUOnKVLov5z+v2/+O6X33tLappMha7SfINhV/w3NLhwm2LNN9Y+ngmNeRNYRV6hvtNnhLOyPopNmyNuZSavJF5S/F/KcbkzqPjBJsyEiIiJKTxm5cBgA9OvXD5988gkuvvhilJWVYebMmZg5c6Zq35NOOgnvv/++6raHHnoI+/fvx8svv4xly5Zh8uTJij7XXHMNHnzwQUvnT81sYcEbUVIGVtVq1EYiHRyDmbREFoo6GKdykUUIC3wl8rZstcCtCYpMXNFEJm34z43E1w1VFVOgNcWCtKayPUVltiageuEBiLAoXcxBWv0AsGpAViVo2fL3URAE2eODW43NJUEEm/qiVqESEWH/Nm3id6mN8oW9F1wxfg4SERERkVLGBmkB4JRTTsHatWsxbdo0fPHFF1i1ahWqqqrgcDjQsWNHjBo1CpdccgnOPvtszUxMm82GadOm4fzzz8eLL76IRYsWoaysDKWlpRg1ahR++9vf4owzzlDdl2IX/s9S6RUxf7d8AZ7wxcW01PpE5Lls+HRzA95Yo76QGAA0BNrWSShRqvDta67xHajdgqp5VyBYuwk5/W9G7uC79PfbPUvZGBZQCmgs5hQPRmuAagrLrGza+h6ye19t7NhqgZFgU9RT8e6Zjer510W9/55XLaizniKZtIG6baiedzl8++YZ3kcStcodaLxuuoFUrWCssX8D3fet4IDkLVc0S4Ha0GN/+VKUzRwRtls2bJ72yD/qGXi6nRl1JmrDpjeR3esyWBrklSTtRdUOvhbhQXGxYRf2Te8CSCJcHU5AwTH/hc2ln32fKcLLHbgMlPEgIiIiInMy/htWSUkJ7rjjDtxxxx0xjTNhwgRMmDDBolmRUUbirw6DMYRPNjVgfPcs3QBtC1GSFFm8RASI3ird7ZIkoW753+Df/wMAoHbpX+E+bBKchUeaqk3atPMz2fNgzTrTc42W2VvAw6llS9avedrgzuqBNtFbBZu70NQ8JElC9Y9XI1i3xdR+1kuNC191y+83FaBtJqrXMNb6+6FbkkBjmwXlDvwH1Bc/bdz8DnL6N9fWr/7pd4rtUqABwbqtqP5hCtyT90WdiVo973J4Djs3qn21SJBgixCkVctyFht2AwCatk6Hq/2xyDnyFkvnlar84UFaOzNpiYiIiKyWsTVpKT04DARKSzyHTiR65Gtfl1i234ttNcZOMGu8qZH5RZRo/spfdLdLgXo0bnpD1la37G/N23xVxg8UlC/U6CgapOiSdfhlirb84Q/D3eV048dRYXMVa25ztj8u4v6Bmo2KNm9Y0FlLdp/rVdsbN75qaH8Z0d8GArRImUzaqF5jSYQ9p5ui2Z6lvsCW5Ne5SKgRoNcM3hrcHwC8Oz9VbXcUHao56i9bpLm/6C2D2FQWU9kRq9+Lnm6TYM/tob5RI5M2XM3CP1g6p1SmzKRlkJaIiIjIagzSUkrzGEiTHdXx0AJDl/TL0ewXlIC68FXHiMikCL+TKotcSaK35UHUR5WCXkVb/phnYM857NDMHLlwdz0TuUP+FvVxAI2SAwAEZwHyRzwScX9X+6OjPrYj/wjVQLAkRbF4WCLr+Oowk0GdcqQg7Hk9Fc02T0kUg5kvd+DqdHKrblF85TOzKJ0UjHHhLesyqrP73wx7dkc4CtUXttKqSUvawhcOczJIS0RERGQ5fjullJZlIEjbOpA7pJ0bIzu4sHifcpEem9Bcl9aI1Lg5lyjxItVrVb8dWji4LYZgXViQtujk/8HmKkD732xDoHbrwdqZ7SAIAlztx8BR0B+B6jXRH8+epcjm7TB5HwS7W2OHQwRHXlSHzDnyVgBA9hFXovpguYiQKF67RAVH3V3OQMFxrwAQINjdqFv+d9SvfrLVRNI5SCsqApfZB8sHqNP5mxZFuQNXx3GHukVRS1k6uKCdZGSxNNEf28JbonUXDfKG/gMANNcTCNUJZl1Vw5hJS0RERBR//HZKKc1IJm24LIf6Ca1dAOr8DL8SxSZCwE01M+/g73EMmZ2hbNyWEe2e0GNHXg/lDo6sqI8FHFzZPrzNQIC2uWO0N7EcfJ3UVqyPKtCZmOCoJPpgz+oQeq7MLE3fIK0kiYrApWqN2tBGvZq0WkExg/tEs+Bdy++rgd9NSQrEmJ1t4fsgUgCxpdwBM2kN84VdbGCQloiIiMh6/HZKKc1jNx+kdWqcz+6qC6J3ETNpicwK1G5Gw7oXYc/pCkdBf92+VXMmKxsPBqa8Oz+P6viSJEJs3CtvtOkHTAVBY0Ehw2JYODCaYBkQep0ElSBtVFmxicpgFcPvXAj7EDYwj0DVWjSsfxE2T3vkHHkLBEe2dfOLo9pFf4Lgypc36mVv6tVZ18yk1dundZDW/MWBYP1O1Cz+C+pX/iti3wMf9jI9fmtqJUuiFSlrOLSdmbSaJEnCS+sX4Id9WxCUJGyoOSDb7rLztSMiIiKyGr9hUUrTCrjq76N+QhuUgH31baNGI1GqkAINKJs5EpKvEgDgLBmp29+3b56iTRBs8O6di+r515o8dhMEhwf1K5R1YCNmtWqt+m5Y9EFawws9KXY8uJ9dJZM2mizEBAVppWBYkDb8548wD9Ffj/IvjofoLQMA+KtWouiEN62cYtwE67cB9WGNOtmbgsXlDmRByCguDvgP/AT/gZ9M7xeNmkV/sm6wSD8rM2kjemLlHNy+WH1BOYCZtERERETxwIXDKKUJggCNmKumHKf2DivLo1h8hyiDNax7MRSgBQB/+WLTY4j+WjSsf9H0ft493wIAmlQycG3OAt193V1OM3281jw9LpA9F1yFxneOOkAsHNw9X7nFHkX5hgQFaT09LwxrkX8GR8oC9u6YGQrQAkDT5resmlpSSP5qna3af5+0Mk0Fg+UONOuzthH+Az9ZcPHkoAhBWrHpYFYoM2k1fbZTv2Z3vtOju52IiIiIzGOQllLeGT3MBSdGdXRDoywtEZnkr1oV8xj27M7w7Ztrer9gw04Azdm8ijEL+urum9P/FtjcpaHnBUe/YOrYuUP+BsGRe/CZgMLjXjW8r7PdUaaOFXIwY9LZ7mjFJkfhANPDSQmoBSu4ipDV46KwxvBgoX4BmUDNOmsnlWT27G7aG/WyYlXrOcN4uQMA2X1+qzOz5LPndLdmoEgLGLZ8ZkRbeiQD1AeUC6y2dlHPIQmaCREREVHmYAoBpbzL+ufipz1eVDQpAw6/G6xcRf3wAicePKYIP+/x4uNNyuCOEUYWuibKCBZk5wmOnOh2bKl1GrZYUf5RUyNmDdpc+Sid9Cuatn0AR34f05m1jrweKD17Gby7voCzeChcHY43vK/NVWzqWCEHA3g2p/L1ilSDU1UcM2kLjnsVYtMBeA47B/acLrJtylv6I3ygptkHrrNkmM7WKMod6F1vD3tf5B/9LBrWm7sgkVBhi6xFK2LWcEsGbdSL+KU/nyj/XD2r25EYUNgRDpsNYzsejlM690nSzIiIiIjSF4O0lPJsgoAJPbLx5to6xbZsh/qJWs8CJ3oWOLGtJoBlB/SzRYhIm24NTTOiCMSFap2GBXZsnnaG9rdnd0JO/5tNH7eFI/8IOPLN7y9EWcux9W3ttuzOEBt2t9oaRSBTil8Nbk/XM2HzlKpvDA+gRfy3T9ACZ4misvBbiG7QUON3TWcfIex2fkGwQXDkQAqEF8qNr/wxz6Hm5xsi9pPCsoUdhUciULXa8vkIB8sqRF0fOgP4w4K0l/Uajgt7Dk3OZIiIiIgyBIO0lBby3eonr1kR6hp4NIK4RJQ4geq1EBt3R+4Y7mAmrRQWTNBbmCmlyYKbxj67xKYyBBv3QGzYA0CSZwzHsyatmWBjpHnEME9JEhGoXIFg/XbYc3vAUTgw6bVZBb26q7pz0whmmyh3oNkWZ4aDoWL4InMW1agNF/qMYJBWjSRJWF21T9bmYv1eIiIiorjjNy5KCwVu9ROtrAhB2GiDtOl18y1R9MIz36LhO7gAmOljtyykFJZJG9Wt/ynBXEDJt38+Kr6ZKFvYDQA6TTn4CRbXhcOMB2n9ZQt0R5Ki/MSVJAmV350H745PQm3uw85F8UkfRTWeZfQyaXWD71qvg/FyB81tSQhMGgyMh3+e6Aa0Y9HyGrTxxdSS5XfzP1S0uaK8A4CIiIiIjGMKAaWFAleUQVo7T9CIYhGo1l8BPJ6klqw7MayOZZpmfAV0FmmTVEoG1Cz4gyJACwCBmk0AgGDDLusmF85kIFD01WhvjLImbaBqlSxACwDe7TPgL1tieqxg3fao5qBGL/BocxVq76gV3NV7rVWCtPbsrtr948VucIHP8Is+cQrStpSBEHQD5pnpQFMdXlz/s6LdZWeQloiIiCjeGKSltNAl16GoP5vjFNAxR/+kQm2xMSIyTnAqF+dLlJaap1J4bdU0zaRt2vZBq2eRLzD5yxerj7N9RvMDkzVpzSzwpve+cBT2V7SJ3nLtwaLM+BUb96q2N23/2PRY3n1zo5qDKrtbc5PnsEma25wlw1Xb9epCCyqlPwqOfk5ncvEgwN3xRGT3uyliTyms3EG8gqj2vCMAQLtucgbb11iraLMJAgYXdUrCbIiIiIgyC4O0lBZcdgG3jSjAEYUOFHts6F3owB+HF8Bh0w9kHNtZ+2SZiCKzZ3VO3sFbMmjDyx2kaSatZcHnUC1f44smOtsdjaKTZgB2T8S+ucMe0K376iwepmzUDcQqM2nVMoeVQwbUN0SRnWnZAnkABJv2352sI67S3k8rY1Yvk1blFnVn+2ORO+Rv2vtYyJ7THYUnvAV7Thd4elwYeYfwTFq7fpBWcBZENa9k1yVuy/yi8nfx3bGXoX1W8i7IEREREWWKND2TpUw0uNSFwaXFpvZxRSh38MhxReiYY8eUr8pk7VHefUuUfpJYp1ASW2rSZsjCYSYDmdrDNAfCQjV9I3AUDUbpmfMBNGdmRjqSq3SUfgfVoKLOqKo/t4SI2cSSepA2bnVODRJ0MmmjusBgstyBIAjIHXQn6n75u/ljmVR6zgrYDmZVC45s0/tH+rdqN+lXHPhkECS/TrkMMsUfthBjtsOJ3/QckqTZEBEREWUWZtJSRouUaeu0WZk/RZSOkvgbcjDIqMiYTNNyB7JAZiyZgC3ZigYzaWWBMiOvbaQguVpQUTcArbLNSAkEzUzaaAKhFr7PdYK00dErd6Dx75WgQHXr4+sFp7UHiDBPuxtJ/QxKQ+FBWkfafp4SERERtT0M0lJGc0T4DdDazkRaomb+cvOLMFlF9FU1PwjLpE3bcgcWaSlzYDSTVhbQM5I5HXHRMGVQTbf0gtqiaAv/EHH+YkBZW7P58Ml9fwgGSkaYG1Avk1bjZ01U4K3V8aOpLxspk1awua0NoKtoWP/fuI7flgRFEbct/J+szWnjqQIRERFRovCbF2U0R4STO6dNALN0iLQFKpYn7diNG19pfhB+W3tGZn4Zv3TUsO7F5j1EY0Ha1oEyzcxMM3NRCSo2rH9JezSVrNmGtc+icdObuodpWKu+QFY0QXy1OURLryZtlAPqbFP/90pYTdbWr3U0P3ekIK3dhXj/ja6efz0CNRvieoy2YvrWX7CobIeszZnEkjZEREREmYZBWspoRR79X4E8F39FiNoqV6dTASjLHaitaJ8O8kY+GnocqRCLFNTOTJX81c0PdPq0FqheH3osNh2I2N9ZPDRCD+XcG9apB1SbqQd9q+dfq3sU/4GfVNuDtZt191NjaR3bCGPlDX/Y1HB67wV7didTY1mt9WJn0dSkzT7iSv0Odg/yhv1D1uTudpbseVYv+Ri5Q+6T9z/snIjz8B34OWKfdLC0fKeirVNWfhJmQkRERJSZGIGijFaapZ0hUui2wWUX4n0nJVHKktrKCnqKhcPSM/Mru8/1xjtrLJol62Iwk9bV8YTQY0fR4Ij9bW79BRxVszh1yx1Yl8XaPFzk10Yhmn00RMpize5zPex5h8vacgb/VWdA7a9yjqJBmtvCj2G18GCzzVVgegxn+2Ph6XFR8xN7FuwF/ZofC3bkj/kPBMGGrF5XwFkysvkYWR2RN+wB2Ri5Q+6BPac7AMBROBDZ/W6Sz3Po3yMHkNvKZ12ceYNBRdvdQ05OwkyIiIiIMlN6phsRmXBmzyx8tqVR0X71gNwkzIYohVgcPDNPbA4Uhwdp07QmrW6QKyyIJIW/JmpUMmnbnb8JBz7sJWtzFA4IPfZ0Px91lb9qDim4iiIf1zSLA2QRa+aqzMDgImtWsHlK0O6c1QjUrEegchWcJcPhKOijNzvNLYLOz5o37EFUzb0khplqjDv8IXh6ToYjLAgczcJhgs2JwrHvIDjsHxBcBbBndUCgdgsEmxP2nK4AAJsrHyVnzkewdjNsWR0VvyeO/CNQes5KiA27YM/pDsEhrwnsLB6M9hfuRrB+O+p+fRhNW95VmUhmXK31hV2MmNxzKM7vEfnCDBERERFZIz3PZIlM0Dr10it1kBk5NUQRGAkExvX4omqgOF3LHchFCBoZyPwMz6R1d50Am1qQtXWgL0Jg3tKyAIcOavF4UQTcRL/Fc9An2N1wFg2CUycTtoUkRvl7GEWwOhJ7Tnfk6mX9mmVzQhAEWZDakddT0U2wOeEo6KszTC5settdBbC5BiGr1xXqQdqkX5BKDG9Q/rnROZulDoiIiIgSKRPOZIl0ad162hKkVdt6y/flAICjO7nx+6H5cNgyI8uGqDXf3tlJPb5352fqt8lzoRtIEcod+MuXQwqGlTvQXNipdTAvQrAqHlnMFgfIolk0S0pwkNacKF+fOARp4ciybizBrpsJHA9ax2vc8DIkXzWyel8FmzMPQPN7onHja5BEH7KPuAqClT97HK2vPoDpW35BlU95B9GCA9tlz11pelcCERERUVvFb19EGvKckU/kf9rjxcK9B/D2hPYJmBFR2+Hd/Q0qvj4t2dNA9YKblY0ZkUkbLizbNEJ2ZdnMYYdqfR7UfDu68nOvdeAqUhkFReDXClbXA23j5Q5MizqIbf3FRSlQb91gccnKjkT9NfHtmwvfvrlo2PgKSs9aCkEQUDX3cjRtfQ8A0LTtQ5Sc9m0iJxqVvQ01OPqzqajwNhjq77bzghcRERFRInHhMMp4WqepuTrlDloLSkCdLzNuhSRqUb/mmWRPAQDQuGGaok1IgYXDXJ1OMtVfschTpGxQAwuHtQSYQkPaXBrjtmqLEBCUvOURj6tGcOrU27W7ohpTiy2ro/md2nAmreCM9pZ064O0Yv0Oy8YSbNb+uxs8qO7mQMVy+PbNgxRokP3++PZ8h0DNhnjPLmbf7dloOEALADmOJPwbEBEREWUwBmkp43kc6ieqZkoYVHkZpKXM4t3xiaF+eSMfRf5RCQ7opsAtukXj3jfVP3/kE6b6SwZq0irY3aqBMVnphDjV5nR30c7KtukFcHXY83urtjsK+pkeqy1n0tqzoryTIwmLYXl6TjbeuQ1l0rYWrFkHKaAMdAbrd8ZjQpaqCxh/HzttdpzWRbuOLxERERFZr+2fyRLFWY5KWYMpR+aGHhs5jfUGuZQYkZqswy+DLasjvLu+aK4ha4LNXYrsvr8F7FmoW36f8QBhCpQ7sLmLNbc5igYjUPmrrM1ZOiLCiGGfQVEs6ibYXIBdpS5t6yxSi4K0OYPuQv2KfxrqG6nEghZ7TjcE1bIboymf0IaDtFoKjn9Dd7tgMpPW2f44OIuHomFt9Bddisa+gwp/Hbw7P4XgLmkujxBsUp9fUjJpDbwmkgT1bwZt/3tAMOz3t0NWHiZ0VV60yHW4cVHPIRhc3DlRUyMiIiIiMEhLhGyVTNr22eZul673t/2TM6KksDkgCAKyDr/MdJDW2f4Y5A1/EACQN+Ru1K/5D2oW/D7ifqlQ7kCL4MyHu/MpiiCtMigUe7kDxbHtbtWFk+RZpNYEaYXwYLBeIDbKIG2kurxmtO2Fw4Dm94P875DiNVbsYu5mqqzDL0VOv9/FFKQFgOJTZoYe7327CJJmkDYZmbSRXxNJEtVfuzhlmVspIMrn2L+gPV4+7iKN3kRERESUaAzSUsbLdipPtvJa1aM1klhT3mRdMICorTOzOJTQktVqsyBwajSolALlDrRIog8QYg9ORVXuQCtzUYxDuYOwf0tJZ1zJVxXlQbTGTMNMWsGmEsyO9PtiLpPW5io01d8IQXBo/2skI0hr5A9+sEl9gbQ2FqSVJAnb6ipR7T8UBN9RXyXrY49iET0iIiIiip/UPZMlsohaSdp8l7mT1+d/rUWWQ8CYTh6LZkXUNgVqNqLimwnGdwhltVoQDDAaUEjhTFoEvRBUF8qKlDkbXu4giiCt1tCtskj1gqlmKLKdNbJlG7e+j4b1L2qOE6jbBkdud0W7JPrh2zdPfacoyh349s83vU9CqQVpIwUcTdakFeIQpBW9ZZrbgg27LT9eZJFfk5pFt6Fm0W0qW9rOHTVNAT/O/vYVfL17vW4/exLqEhMRERGRNl5Cp4xnV1kgLN9l/lfj3XUqmTVEaaZuxT/V63xqEA5mtUZTgkBw5MieG82oFFKgJq02CYLdwMWeSMGVKEoE+PZ8q36oVkHj8H+T6IV9xmoEf6tmX6g7Sv2qJ1XbfXvn6uxlPpjmP/Cz6X0SSW1xtUg1XQVbhHII4cdwF0XuZOS9a1Sw0bqxjIohY9qqCxhW+GrXuogBWoCZtERERERtDb+dUcbrW+SU1aXtkmtHllp6bQR76lnygNJf44aXze1wMDjrKDzS9LE8PS6QPdfMjAxnRWmFJHK2GyN7LrgKYcvqaGqMaBbb8pctAgC4DztH1p7T/5bQY0/3c02Pqyr83yjKurMNa/6t2t646XXNfaQosowdxcM0txWfPsf4OAX9TR/bCLVFwtydT9Xdx9n+GFPHcJY0L16XN/xhzT75o58yNWZbI3rLo97X5mln4Uxis62+0lC/AUUd4jwTIiIiIjKDQVrKeC67gBuH5KNjth2H5dlx/aA8CFHeAihGs2o4UTo7mNXqKOhjarfs/jfD021SlMdMjSCtPV/9NXF1PBE5A++E4C6BPe8IFB7/JoSIgefwcgfRfxblj/gXnO2PhT2nO/LHPAt7TtfQNmfJSOQO/TtsnvZwFA2J+hhGMmmlGH4G3UBs0Hy2pKSS1WnPOQx5wx+Cq8PxhscpOuVT08c2wt35FNk8Co59OeLCYTZnLmxZnQwfoyUrPrvvDfD0+A1s2V0VfbKPmGJ4vDapDWXDxqIpqHz/OwRb6D+P3YEJXfvhrsEnJ2F2RERERKQlle8JJbLMqI5ujOqofkJrJlzrFwF3asSHiBIjittpO1xSBZtLefu20d9GIUVu4XUU9EewRnlLsiAIyB/5CPJHPqKzd6TXIvoAp6OgD0on/KB+VEFA3tD7kDf0PgDAnleju6AVXv5CNfM3yuzaSCTR+MJ3IcEm2dOik/8HT7ezTA3RYfIB2Dyl5o9tgGBzoOQMvRIP6rJ6XYH6lf8ytY/NXYiicdNNHysVRJOBHhLNYn1x4g0L0p572EB8dPKU5EyGiIiIiAxLjTNZohThCzKTlqi1qLLSUyTIGrN4LtrT1jMCFf/GKvONU9BLiiaTNiDPpBXsWVEcue0t0qS+SF0GiyVIG6eLCtEIz6T1OJxJmgkRERERmcFMWqIIzMRRvEEJefGbClFGiGaRsYynKA3Qxi8YhQVpfXu+w55XBQjuEmT3uR55Q/9mOKsxWL8D9pxuxo8dRSZteLmDqIK08QzKR8vG4J1MDBc3osrQtohfDOLuJV/g2z0b4BdF7GmokW13p3idbiIiIqJMkSHpSkSJcaCx7WTSEFlNEhP1/uafpsgiBPzaen1sjUC85C1H/Yp/on7NVMDgAl9Vcy9XGUg72CYFLQjSOqLJpG17BIFBWpkYsmHrfnnAwomY88TKOXhs5WwsLd+FFZV7UOatl2332PnvTERERJQKeCZMZKEGfxsPjBDFIFi32VR/W1bH6A6kcQu2p/u50Y3XRmX1vDiOo5vPCHRHu1BbK4YXE4tQ0qJ28e2GA2a+fXMUi4z59v+o2V8SzZU7kCQJEP3yRpu8hrmn+3lhzy9QjCM4ck0dNxHcnU9VtOUceWviJ6LCUTgg4cd0tj826n19e2dbNxGTFhzYrru9Q1bbe+8RERERkRKDtEREZIiRDER7Qb/Q49yBd8q25Qz4k+y5VhBXa+Evd+fxEY+fSsIDe7GRBynDg5ZG5Bz5B/P7DLxD9rz41C8N7WekpIVkqiZt2M/vq9LuajqTVuW1DHuPZvf/QyhwK7gKkTv0fmT3+W1oe+6Qv7XJ+q/O0hGtgvMC8sf8BzkDb4c9p7usX/6YZ+Ny/PyjntbcljdCb+G8+HAW9oenx4UJP26sgjqZ46XuHFzWa0QCZ0NERERE0WJNWqIIzFQRFJlIS+nMQAZi6cRF8O2bB3tOVziLBsm25Y96HO5uZ8O3bx5y+t2Aiq9Ph9i41/DhBUeOkV6Gx0s2wRbDn+CI9U3NfxjZsjqY3id/5L/g7nomfPvmIqffjbC5i43taGRxODO3nktB+Zh65Q5MZtKqjRV+IcHd8QS0P38j/BXL4Cw9Cvas9sg/+jlk9b4ags0FZ8lQc8dMoKKTPoJ//08Q3EVwFh4JACg9ezn8FcshesvhKOwfardaTv+bUbPgFtVtnm4T43LMSArHvou9W6cn5djREsMuykzuORRnHzYAWXYnjuvQE6UeI5+dRERERJRsDNISWSj8RIkonUjByMEtmzMXnq5naG53dzwB7o4nHHxmMqBqIPtScHLpPgBR1aQV7J6oDiX/NzV8sMh9DNakBQCIQdkiWJKVNWnVxlIJMttzusKe0/VQF0GAq91oc8dKAkGwwdVBfpu/zV0Id6dxyZlQkgmCAFt2Z4gNu5M9FcOksIsyw0q64OLDhyVpNkREREQULZY7IIpAMLEiNzNpKZ2ZzkCMyGyQNvKfLMGZmbUXWwdp/OVLUfndOabHiDZIGxUD/5ZmFqqTFFm3Oh/Gpt/HamPx61N6S52MfADYUFMme55asyciIiKiFjzLILKQ+aV6iFJHoHKFtQMaueW9dXcjmbSOTMmkVQ/DeHd9hbKZIyD5q82PGLYYVjwJBr5+NGz4r4kRwz59dTJpG7e8Y2JcjbFMXLwjiqeVlXsUQVob359EREREKYlBWiILMZOW0lmgaqWl4znM1rk0UMPVWZT4FeFj4eowVvbclt05pvEqvj496n0FR1ZMxzZ3sMgB9/pfHzY+XljWrT3vcM2uNnep8XGhVTqBX5/SmbNkZLKnYNgHW39VtDltBsqJEBEREVGbw7MMIguxJi2lM8FVZOl42UdcpWjL6nWl9vFb1RzVkqUyZluW3f9m2fOcI/8Y3UAWfPYIjuyYxzB+MIu/foSVO8jqcaFm19Z1Y42JvHAYRS932APJnoJC3oh/mt/JSJ3lOKj0NiraTuigfZGCiIiIiNounmUQRen83sqABjNpKa3p3EIOAKWTlBldelwdjkXh8W+Gnru7nYWCo5+PamotkrUifLSyepyPgmNfgafHb5A36gnkDLjN4J7mb2fO6nOd5jZ3t7NNjxcTiwNa4TVpJb1FxxT1ayMNbmzhMIpO7qC/JHsKCs7C/ig6+VNT+9hzu8dpNvr8Ye/n7rlFGFrSJSlzISIiIqLYRL53lIggQLl0zFEdPfjlgA8bqw4FA5hIS+lNP0grOMwv2pXV61Jk9bo02gmlhezeU5Dde0pcj2HL7orCY15E4/qXoLYQlvns0thYnokaHkgV/dpdTQdp1T7YWfPTKoKBMibJ4Ol2pqn+UrApTjPR5xfl7/1zDhuYlHkQERERUeyYCkJkgNopul1Q/gJx4TBKV1LQh2D9Dt0+Rhb2oniJcIWoZSEhrX8jIcGBMqvfK+GZtEGfdl/RZJBW7ZOdmbQURgo0JOW4vqA8a9xp43uTiIiIKFXxmxxRlOw25QrK/11RC1+Q6bSUXupXP429b7jRtOVd/Y4M0iaOydXbhZbMT40yAAkPsMe5Jm3Dmn8b7ht5bAZpKTLJVwXv3jkJPWZZUz1e37RE1uZqo5nJRERERBQZzzKIomQXBNhU4iRL9nsTPxmiOJECDahZ+AdjnRmkbcP0g7qiryox02hhcZCzdQkDf+VK/b4m73mQVGsxs9wBKdUsinLhvyg9u/ZHRRszaYmIiIhSF7/JEUWp0G1DRZPy5P2dtfVJmA1RfAQbdhvvnIDswvxRT8b9GKkpQgZ/hOy6pm0fWjgXA0Sdhb2i0SqQWvfLgxGObTKTVqW+bVuto5ouHIWpWVc1WLslocfbUFOmaOud3y6hcyAiIiIi6zBISxQll13AxMOzFe0iVw+jDJWIW+azjrgy7sdIBYLJTE7BnqW/3ZkXy3SSr3UJA0l70TBFXyNDi8q7IwS7x9QYpK/gmJdkz4vHf52kmaQWX1D5Xj6/+6AkzISIiIiIrMBUEKIo5DmbAyTtspTXObIcvPZBGSoBQVqbuwiCuxiStyLux0ongt2tv92Rm6CZtIj+YlbHKwLY+7r860vrcgeSSuarvLPJIG2wSdlo0389yZzsPtcgu881yZ5GyvGGZaQ/OPx0eBzOJM2GiIiIiGLFaBJRFFrW7BFV4gzZTtYqpAxlS1BNWmarK0V6TSJkftqcCQ7SqtZ5NUitrEbrwGuEIK16jVkdwbBMWsEBIVHvdSId3qA8SOvi+5KIiIgopTFISxSFljBsrV95sp/jYJCWMlMiyh3QQUL454yE+rXPanePEKQVHDkWTMo4KYZMWkEQlIHaVoFXSfRFOLi5TNpg4x758VnqgNqAn/dvw5e71sna3HbeIEdERESUyvhtjigKwsEASbVXGaR1M0hLaSRQvdZ454QFaZlJG65p+ydo2vKO5vaI5Q4Snkkb47+hYJdn47YKvPr2fBfh2OaCtJXfnCnfPVBnan8iq1V6G3DyV88r2t1c0I6IiIgopTGTligKLWHY3kXK2m+BGO7iJWprgnUmVisXkhsgcHUcl9TjJ5NegBZAxBqqrk4nWzibyBx5PaPbr3DAwUfyry+SmcCrySAtZS7BXWxuh0hZ3BZZcGA7GgLKsh7FbuVipkRERESUOhikJYpCy9pgfVWCtP4gs/wojRgMvGb3uzGpdToFRw7yRz2RtOMnnrmMfcGmv5iQp9tZsUzGNEfxsKj2Kzi6OXtQ8V4zEXg1E9CVwhZmosxSeNzrpi4+SYH6hLxnqnyNirbuuUU4pXPvuB+biIiIiOKHQVqiKNgPljuwCQIu7iuv5ehXW02MKFUZDGjlj346zhNpReVW+dKzf4GzZHji5pBqIgRphQiZtlYTBAHtL9hmah9Xp5Ph6nDcwQHCg7QmbmEw0VcK1Bsfl9KOp9uZKD17KQrHTYer44mK7e4uZyjaJF9V3OdV6/cq2had9QcUMZOWiIiIKKWxeBVRFGytkthynPJrHSpriRGlLgMBLVt216Svdu/I75XU47d1kTJpEaFmbTwIrkJT/R0F/Vo9C184LD7lDiR/rfFxKS05iwbBWTQIUqARvr3fy7bZPKWK/qKvUrXdSuFB2lM790E7T4LrShMRERGR5ZhJSxQFR6vfnLAYLdZV+rGyzIcAM2opDUgGaiwKjqwEzKQ1/m6ZLXcQ6ZbtRGfSNh/T5HViodWHbdhFgZpFf4borTA0jNi0H1LQWO1Qo2NSBhCUX5kFezZg98jaRG9l3KdS42+SPc9zJv73l4iIiIisxyAtURRayh0AgNOuDJY8sKAK/15Wk8gpEcVF7eLbI/YR7IkO0pJZkTJphSRk0kYqwaDQqsyFEFbuwF+2APveKTEcVN37hhuSqJ9RK4lBlP1viLk5UtoSVIK0EGywhWWES774B2n/vvxr2XMGaYmIiIjSA4O0RFHoknsoQOCyqWe0LdzrRUUTVxGn1BVs2GOoX6KDtI6igQk9XlpQCzC1ZjZgagUTCzIBgHfnpxH7lH95kuHxmnZ8on+8Hf9TbRfcxYaPQelE/XfI5iqSPRfjXJNWUqnJ7TablU5EREREbRKDtEQGTOolX4zjN30OLRbm0PktqvPxtmxKXWLTAWMdExwgyO5zve5zUgrUbAAA5Bx5q+p206UHLCAI5ko2BOu2hh5rvTcDlb8YHs+7/WPd7U3b1YO4hce9ZvgYlEZULnRIok9Rz1kS/XGdRkClTni3nMK4HpOIiIiIEoOX3okMuKB3DkQJ2FUXwEndstAx59CvjkMjkxYARJWMF6JUYaQebTJk9boCYuNeNO34FM7iwcgb8a9kTynxTAY4s3peDADIHfYg6lc/FYcJJZar44mKRZxa2HK6QazfEXpuz++LYM06RT8p0gJiGovhubueaXyilD5UgrTZva9GdcUyeaOBxRZjERCV408+fGhcj0lEREREicEgLZEBLruAy/qrr5ysFyqJ76kaUZwZDtKaXMQqRoIgIHfQncgddGdCj5vKBGdz9r/NmaMb4EwV9pxu2hvDFgXL7n01apeovFci1KTVel+bzQCmdKH8dxccuYr6yIgU/I9RQGV8p403xhERERGlA36rI4qRTiItRCbSUgqTgl5D/Ri0avsER07kTilE7+eRRPn7VnBka3TUDqY11/3k+5paUblo1fw+DPsqnYRMWkd4oJiIiIiIUhIzaYniKMhUWkplbbTcAQFmA4jpF6TVCLxCeXFBq69auYNg/S5UzpkM//4fYpsgpR0p2KhoExw5KmUx4vuH36+SAe5gJi0RERFRWuC3OqIY6SURimAqLaUu4zVpmXHY1smCtOmQ+ax3S3lYME2wG8+krV1+HwO0pErtzgLBmYvwr9JSxDIasfl0xxpFm0OlXi4RERERpR5+qyOK0eEFTs1tLHdAKU0MGOqWO/juOE+EwgUqfzW3g2zF+bYTpHW2O1r2XHDma/bN7v+H0OOmnZ8bPoY9r6f6Btlr0ixQudLwuJRZXGHvVZunHQRHtrImbZwzaSt9DYq2ApcnrsckIiIiosRgkJYoRm67gKM7uVW3BRmkpRQmGait6OlxEVydTk7AbKg1V6dTkj0FS+SN+Cds7lIAQHa/G5HV63LtvkPvDz0W7OqfuWpsng5wlAxXtEuBOmWbpH9hIrvfjYaPS+nFUTwYWUdc1fzE5kTeyMcgCDYgPIs1zguHqc5NUXKBiIiIiFIRa9ISWeDW4QW41i/imlllsnZRYpSWUpkySOvucjoKx02HYHNBCjRCcBVw4bAkcLUbA9+eb4zvIAu4t51/L3fHsWj/mx2QRC9srgLULLxNtV+HiytgcxeGngv2LMPHEOxuFJ/yOfa/11HWLvprlZ1VsmtbcxQOMHxcSi+CYEPhcS8jb8QjEBw5sDkPlhAJz6SN88Jh4U7r0jehxyMiIiKi+GGQlsgiuU4bSrNsKGs8dILGGC2lNJVggz3vcNiceQDMZTOSxUzWoFRbJKutEBweCGi+XVsze9smLytj5r0n2N2K/QFA8tco2yIEaQWVcSiz2LPayxvCfhfb8u8aEREREbVtDNISWSg8bMJyB5TS1AJmvPLQNphdKKj1bfxtOfNZI8ClqPtpN16DU7B7AJsyqCv55EHaupVPIFi9Vn8wm8vwcSkzCGG/i2LDnrgdS5IkvL15WdzGJyIiIqLkYk1aIgvtb5QHtVaW+ZI0EyILqGY1MkjbJpgO0rYOfqZekBY2+TVlM+UOYHNDUKnZKbbKpG3c+iFqF/854lDMpCWFsAsI9asehxSni1lvbFqCpeW74jI2ERERESUfg7REcfTF1sZkT4EoapJKQNZZelQSZkJK5v5823MOCz12dxxn8VysI2hlyIYFwpwqC4FpjqmxqJKjoF/ocdXsCwyNJQWbDB+XMoPaBQOxfkdcjjVj20pFW7adFw6IiIiI0gWDtEREpE4lkzbr8EuSMBEKF36LdSSOgkOLC2X3/z1snnah5/ljnrVsXrESnPmKNlenkxU/r7vzaTEfy93pJNP72HO6x3xcSi+enpMVbcGmfXE51ra6SkXbhT2HxOVYRERERJR4rElLRETqwoK09tyeEOysydkmGAzSenpciMLjXpO12Zx5KD37VzRtex/2vCPg6XpGPGZomeJTv1I2RlFXN6v3NWjcMC30XHORMh2amb6UsbJ6nI+qsDaxqSwux9peLw/S3jFwHCYfPiwuxyIiIiKixGOQloiINMiDWK2zLynJDAZpi8a9p9puz+6InP43WzmjuFEvV2A+SCuEL/rVejE1gySRdcZJyVE0GIHKX0PPxaYDlh+jIeBDubdB1jal9yjLj0NEREREycNyB0RkiCT64StbhGDD3mRPhRJFkWnYhhecyjjp+uc7ju+xsMXHJNFveggp6LVqNpRGwi9gxSNIu6O+StHWLafQ8uMQERERUfKk61keEVlI9Neh/LOjUf7paOx/vwsat36Q7ClRIoQHaU3WQaU44r9FFOQB4Mb1/zU/hMggLSmFB2lrF//Z8mM8/Mu3sufF7mzkOt2WH4eIiIiIkodneURxJkpSsqcQM++uL+AvX9L8RBJR9+vDyZ0QJYSEsPcuA4NthtmFw1KF4Cow1i+K2rC+3V+b3kfB5ox9DEo7Nnexok0KWlsa472tv8ied8k29rtCRERERKkjPc/yiJLEqfIbFTC/Nk2b07j5bdnzQMWyJM2EEioskzZdA4MpycC/hbvzaQmYiLWye18DtKod6+52lmo/R9Eg02MHqtdEPa8W7s6nxjwGpR9HXm9Fm+SvtfQYHru8XIeDn8dEREREaYff8Igs9MAxRYq21M+jBViLNEMpatLyT0bbof9v4e56JvKPfi5Bc7GOzZWPopNmwNluDNzdzkbBUc+o9hMEaz+T7HlHRJ5bdlcIzKQlFZ7DL1G0SVEsTKenMSCvofzoqDMtHZ+IiIiIks8RuQsRGZWrkkrbXO4gtYOcgqC2ujqlP9akbbN0/i1KJvwEV/sxCZyMtTxdJ8DTdUJiD2og6OvudGICJkKpSGiV/R0iWhekDYoifGJQ1tYpK9+y8YmIiIiobeAZN5GFbCrn+WlQklaxKjplCMXCYal9sSGt6AXM+e9knhSM3IcXq0iL2t9II+8pg5qCfkVbloNZ3URERETphkFaIgupxUaumlWGy77Yj7311t76mEiBypW625u2f4IDM0egYtbpCNRuTtCsKN5EX5XsueSvT85ESEG/PjCDtGYFjXxuMZOcNKjdbWJVuYM9DTU49asXFe1ZdgZpiYiIiNINzziILGTTyGDzi8C0ldYuIpJIgSplkFY6mGUp+qpROfsiBMqXwrv7K9QsuDnR06M4qVt+v+y5v2xBciZCSnpZncykVafxmgUb9xkcgF+ZSEMcM2n/uPB/+OnANkU7g7RERERE6YdnHEQW0vuF+rVMebtiKhObDgAAGjZMA0RvqN278/NkTYkog2h/2tg9HRI4j+TxdD8/Yh9X5/GhxzlH3qrap/qnGwwdTz97mTKaWiatRTVpF5btULQVuDzIc7otGZ+IiIiI2g6ecRBZSK0mbaqTtIrqHjwBlbyVCZwNEQHQvfXenntYAieSPLlD7oUtq6N+n0F/CT3WCupK3gpjB2RNWtLQHMAP+wJgUbmD/Y11irZ7Bp8Cu41f4YmIiIjSDb/hEVkoHYO0Wieakug/+P++RM6GiADNIG1W72sTPJHkcRYPQbtz18Ke30ezj7vTiaHHgt0j32g7eLu43WBGIjNpSU94yQMx9nIHTQE/6gJeWdvXp12PPw8aF/PYRERERNT28IyDyEJpWQpS1CjT0BK81dpORHHDW++b2VwFcBQOMNg5rIan6IckSRDC27XwNSc9YZnWViwcdqBJuVjjsOIuMY9LRERERG2TykoHRBQtrYXDUlGw6QAaN70JmzNfvUNLuQMGaYmSQCtgqFGeJI0JBssQCILyK0/9ysfg3fmZsQMdXCyRSI0gOOS/fRYsHLa6Wr6onV2wocidFfO4RERERNQ2MUhLZKFIIdqmgAiPo+1nY0lBH8r+Nxxiw07tPqFMWpY7IEo4razOTAwkht9mbqJf7ZI7DR8m2LDLcF/KQOEXC2JcOEyURJw+67+ytlJPDmzM6CYiIiJKW/ymR2ShSDVpv9/RlJiJxKhx85u6AVoAoTIHzKRNT4GajcmeAunRCMYKNleCJ5JCjJY10ODfP9+iiVBaCrsIEGu5g18r9ijaOnhyYxqTiIiIiNo2BmmJLGSPEKRdV5kaAU1/2eKIfUInoGlU4oEOCdZHCNJTUknBRtV2wV2U4Jkkn+DIMdZPpdyBGVbUGKX0JYTfSyPFVnpkX1Odou3c7gNjGpOIiIiI2jYGaYksJAgC9KoZuCJFcdsKI4HXg7dyqgU+JAtWtaYkU3kP5A3/ZxImQmqkoEZWfoyBoVRkcxkMTJvIpM0/+nllYyaWkqCkqfA2KNruG3pqEmZCRERERInCIC2RxZw6NQ+cKfMbZ2CioUxa5aI9mgEkSiEq72ObsQWaKP60MmmBzAsk2tzFhvoJBmvXerqfj5y+v1VuYJCW9CgubMV2waS8qV72/PgOPVmPloiIiCjN8dsekcX0kmX1ArhtioFM2lAtWpUgrb9sAaQAA7WpTFANBvBPRpvBTNoQwepMWs1F2XiHAOmxJkjrCwawsnIP1lTvl7UXu7OjnBcRERERpYrYCrQRkYJeHHZXXaqc5EcOxgVrtwCd1LPTKr46GRAcKD7tG7g7jo3HBCnuVN7IzOJqM6SAViZt5gVpbQbr8BquSaty4QkAJGbSkglig3Lhr0gWl+3AabP+q1rqgEFaIiIiovTHM24ii9l0slB/LfMlcCbRU8+ilGvc+t7Bzhq3wEsB1P3yDwtnRYnkr/xV0SaYqOlJcabxbyHYPQmeSPLZ3CUGOxp8/2pkI9uc+QZnRJlJ/re/aftHpkd4+JdvVQO0AFDsYpCWiIiIKN0xSEtkscMLtLO1+hWlRpDLnn9ExD42V0sdSO3MvWD9DotmRInm3f21os3V6aQkzITUZPe5Tr293+8TPJPkc5aOAmyuyB21LiiFkfw1AIDcYfKLTAXHTjM9N8ocYtM+2XObp73pMXY0VGluG1bSxfR4RERERJRaGKQlstiVR+aid6FDtTZtqtwsa3MWROzTEsgI1aZV7ZQq5R0onKAS9HLk903CTEiNPbsTCo55UdaWO/ge2LM7JmlGyWNzFaDw2Jcj9hMM1Npu7tgczM3pdxM83c+HLacbcgb8Ee4u42OZJqU5d+fTZM91/zZqCIryi542QUC+04Pr+4zBb3oMjml+RERERNT2sSYtkcU65jjw4LHNWabfbm/EiytqQ9ukFFnUR5ICEfuIB4O0COqUcBAjj0NtlEqtYWpbsvtcp5lRm2myel2K6p9+BylQZ8FozZ/TNncxik78wILxKBM4igbBu/urQw1R/P0LhNU9fuP4i3FJr+GxTo2IiIiIUgQzaQ/avn07/va3v2HkyJFo164dPB4PunXrhuOPPx733XcfVq5cqbv/F198gXPPPRddu3aF2+1G165dce655+KLL75I0E9AbVH4ImJiasRoDZ1cHsqk1Q7SSsykTVmCwVvDidIOFwijaITVPJakKDJpw957Dhu/phMRERFlEqZKAZg6dSruuusu1NfXy9p37tyJnTt34ocffkBNTQ2eeuopxb6iKOL666/HtGnyWnW7du3Crl278PHHH+Paa6/FCy+8ABu/bGec8JtrUyVGKwXqI/YJVK7AgY8HIVClcwGDmbSpi0FaylQM0lIUwhdWlLwVhvddXbUXdy/5Equr5HVt7QYW8SQiIiKi9JHxQdoHH3wQ9957LwCgT58+uO666zBq1CgUFBSgvLwcy5Ytw4wZMzQDrHfffXcoQDts2DDccccd6NWrFzZt2oRHH30Uy5Ytw0svvYR27drh4YcfTtjPRW1DqmbS1v36oKF+ugFagDVpU5lqkDZF3sBEMZBSpno4tSlhJWK8u740vOt5372GddUHFO0M0hIRpSdJklBfX4+amho0NTUhGOQ5E1GqsNlscLlcyMnJQW5uLlwuAwsYm5DRQdpvv/02FKC94oor8NJLL8HplGdCnHzyyfjzn/8Mn095S/f69evx+OOPAwBGjhyJuXPnIisrCwAwatQonH322Rg7diwWL16Mxx57DFdffTWOOOKIOP9U1JaEL1STKkFasUl5shgNI7VtqW1yloxA44aX5I0MGFAbljPgNtT98kDoubN0dHQDMZOWoiA2hmXBGlxoscrbqBqgBYB2npyY50VERG2LKIrYvn07Ghsbkz0VIoqSz+dDXV0d9u3bh3bt2qGkpMT4IsURZGyQVhRF3HDDDQCAIUOGYNq0aXA4tF8Otej4U089hUCgOQg1derUUIC2RXZ2NqZOnYqjjz4agUAATz75JP7zn/9Y+FNQWxeeSStlWiYiM2lTlj2nq6JNYJCW2rCc/regcfPbCNZuguDMR/5RT0c5kjVfsCizOAqPjGo/UeN7wdHtumN0u8NimRIREbUxkiQpArSCIMBuZ5kxolQRDAZlC8IfOHAAPp8PnTt3tmT8jA3Szpo1Cxs2bAAA3HnnnboBWjWSJOGTTz4BAPTr1w9jxoxR7TdmzBj07dsX69atwyeffIJnnnnGsgg7tX3hIa1UyaS1isSatKkrLJvQnnd4kiZCZIzNU4rSs5fBX74UjrwjYM/pkuwpUQax53STN+gsqhnJ68dfjN/0GAynjSftRETppL6+PhSgtdvt6NixI3Jzc7l2DVEKkSQJXq8XNTU1KC8vBwBUV1ejpKQEbrc75vEz9tPg/fffB9B85WrixImh9oqKCmzYsAEVFfoLPmzZsgW7d+8GAIwdO1a3b8v2Xbt2YevWrTHMmlKNIpM2w4K0zKRNYYp/u4z9c0EpxObMg7vjWAZoKeEEm/yOK8lgkFZS+WJwSufe8DicKr2JiCiV1dTUhB537NgR+fn5DNASpRhBEODxeNC+fXu0b98+1F5ZWWnJ+Bn7ifDzzz8DAHr06IG8vDy8/fbbGDRoEEpKStCnTx+UlJSgb9++ePzxx+H1ehX7r169OvS4X79+usdqvX3NmjUW/QSUCsKzpn2ZlkobQyZRJhD9tahddh+q5/8OgbptyZ6OTLBhp7xBdSExIiICAIQFaUVvedRD8X4rIqL01NTUBKD5HDE3NzfJsyGiWBUWFoYeNzQ0WDJmRpY7EEURa9euBQCUlpbiD3/4A55+Wlm7bv369bj99tsxY8YMfPbZZ7J/gJ07DwUwunZV1m5srVu3Q7fA7dixw9RcWx9HzZ49e0yNR4kVfqJV1ph5C9IEajbAkd872dNocyTRj31v5YeeN6x/Ae3OW98mXqtg/U7ULLhF1sZ6tERE2sIzaRFsgiRJLHFFREQhwWDznWp2u50ZtERpwG63w263IxgMhn6/Y5WRnwzV1dUQxeZg2YoVK/D000+jU6dOePPNN1FRUYGGhgbMmTMnVGd2/vz5uPrqq2Vj1NbWhh5HugqWk3Nodd66ujpTc+3WrZvuf6NHR7l6NSVEeLkDAGjwZ1agtmnbjGRPoU1q3Py2oq122X1JmIlS7fK/KxuZSUsZQvLXRu5EFEZwZCvaAtWR757KsPtriIiIiNKK1RfkMzJIW19fH3rc1NSE7OxsfP/997j00ktRVFSErKwsnHDCCfjuu+8wZMgQAMCMGTOwYMEC2X4tXK6w7IkwrYsHt17JkdJf93xlsnqdP3VPydxdJ0buFEb0V8dhJqnPt/sbRVvTlneTMBOlxo0vKxuZSUsZQgowSEvmOQoHKNokr/76BgDQFPQr2jx21qMlIiIiykQZedbt8Xhkz6+99lr07dtX0S8rKwsPPfRQ6Pl7772nOobPp193s3VN26ysLFNz3bFjh+5/CxcuNDUeJVaJR/kr1hBo+5m0jqLBqu15Q+83P5gYiG0y6aot3wIrqbxHmUlLacBuoJyIs92YBMyE0o1gV16wl4LKNQ3CNQaUQdosLhpGRERElJEysiZtXl6e7Pn48eM1+5588slwOBwIBAJYtGiR6hiRShi0ztw1WyA8Ur1batsEQUCOQ0B94FD2bGMgBTJpJfV6KoIzF4KrEJKvyvhYovIElFIPa9JSWpAMfP6qXaQgMsCW0w1i/aG1ByQxcpC2ISyTVoAAl40XxYiIiIgyUUaedbvdbrRr1y70vPXCXuE8Hg9KS0sBAAcOHAi1tw6eRlrcq/ViYXrHovSU5ZRnTFZ5234AQNII0sLmNn3buyRFn0kbFCU0pkDmcUZgJi1lCgZpKUqCzS1vMJBJu7O+SvY8y+HgYmNEREREGSojg7QAMGDAodphkVZha9nucBxKPD7yyCNDj9euXau7f+vt/fv3NzVPSn0eu/xk66mlNXhtdS0kIxldSRKsVn9PC3a3oRp7rTWsmQrRXx+5Y5j5u5twzddluOqrMjy1tBoBse2+XmY0bfsYe98qROOmN5I9FVWBum3qG5hJS2kh8ueI5kUqoggEuzxIq1fuYFd9NYZ98n+Y+I28Bni2StkEIiIiIsoMGXvWfcIJJ4Qeb968WbNfTU0NysrKAABdunQJtffs2ROdO3cGAMyZM0f3WHPnzg3t36NHj2inTCnKZVdmxHy+pRHba9tmICBQu1VzW/gJqFFNW94x1V+UJLy8qhaNAQkSgJ/2eLFsv37t51QgSSKqF/weUhteTK1+1ZOq7YGqVQmeCVEc8GIDxVN4kFan3MHjK2djecVuRTvr0RIRUbz5fD688847uOKKK9CvXz+UlJTA6XSitLQUI0aMwA033IBvvvkGosi7i4gSLWPPVs4///zQ4xkzZmj2mzFjRijj8fjjjw+1C4KASZMmAWjOlP35559V9//5559DmbSTJk3iLWwZaE+9ejB2b33bXFCrbsXDqu323J4QXEUR98/qdaWiLVC7ydQcmgISan3yjLc1FakfpBUb90Fs2JXsaehqWPNv1XbJzxXvKfUVjHlW9jy73+/hPuxcWVvu4L8mckqURgQhLMCqs3Dmptpy1fY++e1U24mIiKzw0UcfoW/fvrjkkkvwxhtvYN26daioqEAgEEB5eTmWLl2K559/Hqeeeir69++Pzz77LNlTzkg9evSAIAiYMmVKsqfSJs2ePRuCIEAQBMyePTvZ07FUxgZpBw8ejDPOOAMA8M477+Dbb79V9Nm7dy/uueceAIDL5cJVV10l237rrbfCbm+u03jzzTejsbFRtr2xsRE333wzgOZSCbfeeqvVPwalALdKJi0ABNvo3fuSX20hPAH5R03Vv8hgcyHnyFuRf9TTym06J6pq1F6btKh2wNuoiZLK1XEcsvpcB9hccJaMRM6APyFv2N9hz+8L2NzIGXQXnIVHRh6ISI0iU1v7D5dfVP496JFbhEdHnmnxpIiIiJo98MADOP/887F161YAwKmnnoqpU6fi22+/xZIlS/D111/jmWeewWmnnQabzYb169fj7rvvTu6kiTKMI3KX9PXUU0/hp59+QlVVFSZOnIhbb70VEyZMQFZWFhYuXIh//vOfoUXBHnjgAVm5AwDo06cPbr/9djzyyCNYvHgxjj32WNx5553o1asXNm3ahH/9619YtmwZAOD2229H7969E/4zUvK5NC6FBNvo3SNSQFk/tsMlVbC58nX363hJNQSHBwCQ1fsaNG6Y1npQU3NoqwHsWLHWJVFyCTYHCo95EYXHvChrb3+efm15IkPCL2TqLEIXCNt275BT8Pdhp/GOKyIiiotXXnkF9913HwCgffv2mD59OsaOHavod8opp+Cmm27CypUrcdttt8kWTyei+MvoIG2fPn0wc+ZMXHDBBdi3bx8eeeQRPPLII7I+giDg7rvvxh133KE6xkMPPYT9+/fj5ZdfxrJlyzB58mRFn2uuuQYPPvhgXH4GavvUatICQKCNLhwmBZSZtEZq0bYEaAFAEOQfLZLJTFpR5bVpm6+WSQzSEhGlMflVWUkvSBtW56+9J5cBWiIiiotdu3bh97//PQAgJycHc+bMQb9+/XT3GThwIL766iu8/fbbiZgiER2UseUOWhx33HFYtWoV/va3v2HIkCHIz8+Hx+NBz549cdVVV2HJkiV44IEHNPe32WyYNm0aPvvsM0yaNAmdO3eGy+VC586dMWnSJHz++ed46aWXYLNl/EudsTSDtGHnbpIk4dvtjXh0URXeXluHpkBywpKq5Q5sJlebtoVd/xH9pnZv8Ct/9i+3NmLGxnoEVeoeLN3nxX+W1+DzLQ2qAd42g0FaIqK0JUQodxAURTzy63c4Y9Z/saxCXp/cwe+JREQUJ08++SQaGhoAAP/4xz8iBmhb2Gw2XHbZZarbfvjhB1x++eXo0aMHPB4PCgsLMWzYMNxzzz262bfhtUQlScK0adNw3HHHoaSkBPn5+Rg9ejTeeOMN2X4+nw/PP/88xowZg+LiYuTl5eHYY4/F9OnTNY+1devW0LFeffVVAMD777+PU045Be3bt0dWVhb69euHu+66C1VVVbqvxcqVK/Hggw/itNNOQ9euXeF2u5Gbm4vevXvjyiuv1FyjqMX9998fmgsAVFdX44EHHsCwYcNQWFgYmuO4ceMgCAK2bdsGAHjttddC+7X8N27cON2f8aOPPsL48ePRvn175OTkYMiQIZg6dSr8/kPn5JIk4e2338a4cePQvn17ZGdnY/jw4Xj++edDazLpqa6uxj//+U8ce+yxaNeuHVwuFzp16oSzzjoLH3zwge4YLfO9//77AQCLFi3CxRdfHHpdu3Tpgssvvxxr1qxR7Nvy85544omhthNPPFHxGrW8FqkoozNpW5SUlOD+++8PvUmiMWHCBEyYMMG6SVHaCGgUUw1v/3mvFy+uaF6cacl+H2q8In43RL/EQDyolTswnd0TnklrstzBtJXqi1S9u64eogSc3zsn1Lal2o9/La4GAMzdBdgF4LQe2ebmmygqNQiJiChd6Jc7eHzlbNy15HPVPR02e7wmRUREGUySJLz22msAmrNor7vuupjGE0URt9xyC/7zn//I2r1eL5YvX47ly5fjmWeewfvvv49TTz1Vdyy/349JkyZh5syZsvZFixbhiiuuwOLFi/Hvf/8blZWVOOecczB37lxZv/nz52P+/PnYuHEj/vrXyAu/XnPNNXj55ZdlbevWrcMjjzyC119/Hd9++61qAHv27NmyoGALn8+HjRs3YuPGjXj99dfxl7/8Bf/85z8jzmPDhg0YP358qDawlW688UY899xzsrZff/0Vt9xyC2bPno3p06cjEAjgsssuwwcffCDrt2zZMtxwww1YunQpXnxRXhqstW+//RYXXXQRysvli6Du3bsXn376KT799FNMmDAB7733HnJzc3Xn++yzz+IPf/gDAoFD8YLdu3fjzTffxEcffYQvvvgCJ5xwgtEfPy3wsj1RnFV51W93DK+7+t32Jtnz73fKnyeKo3hozGMINuMrXKvZU68dzPx8S4Ps+eur5Zm/L69SW/isjVBkWSlJQW8CJmKe4CpM9hSIiNo2xWe8/O//93s3ae5a5MqKw4SIiCjTrVq1CmVlZQCA448/Hnl5eTGN95e//CUUoO3Zsyeef/55LFy4EN9//z1uu+02OJ1OVFdXY+LEifjll190x7r33nsxc+ZMXHrppfjss8+wZMkSvPPOO+jbty8A4Omnn8Y333yDKVOmYP78+bjhhhswa9YsLFmyBNOmTUPnzp0BAPfddx9WrVqle6xnn30WL7/8MkaPHo133nkHixcvxueff44LL7wQQHNg8LTTTkNtrTJZKBAIICcnBxdeeCGef/55zJ49G0uXLsWXX36JJ554At27dwcAPPLII3jllVcivoYXXHABdu3ahZtvvhlff/01Fi9eHPq5X3nlFaxYsSL0s02aNAkrVqyQ/ad1jOeffx7PPfccJkyYgI8++ghLlizBxx9/jKOOOgpAc4btK6+8gttvvx0ffPABLrnkEnz66adYsmQJ3n333VCA+r///S++/PJL1WP8+OOPOOOMM1BeXo4OHTrgwQcfxMyZM7FkyRLMnDkzlHn9+eef48orr9R9Hb766ivcfPPNGDBgAF5++WUsWrQIc+fOxW233QabzYaGhgZcfvnl8Pl8oX26dOmCFStWyILtL7/8suI1OueccyL+O7RVzKQlirPOuQ7UVChv9w+G3QKwq85cIDNenCXD0bT5Lc3tuYPvQd2v8hrLRSd+JO9kiy2TVi9xty6sFMKWmrbxullFEgOGagAnWnbva5I9BSKitk2xcJj871VTUL30T4/cIpzciYvLEhGR9VoHSkeMGBHTWCtWrMATTzwBoLlm7bx581BYWBjaPm7cOIwfPx5nnnkmfD4frr/+eixYsEBzvAULFuCpp57CH/7wh1Db8OHDMW7cOPTp0we1tbW45JJLUFZWho8++kgWeBs+fDhGjhyJYcOGIRgM4sUXX8S///1vzWMtWrQIEyZMwCeffAKH49C56hlnnIGBAwfivvvuw/bt2/HAAw/g0Ucfle07dOhQ7Ny5U/aztjjttNPw+9//HhMnTsTXX3+Nv//977jiiitgt2vfIbNy5Up88cUXGD9+fKgt/N/G6WxOeiosLMTAgQM1x2ptwYIFuPXWW/Hkk0+G2oYPH45TTz0VRx55JLZt24a//OUvqKioUH3dx44dG3rdn3vuOZx++umy8f1+Py677DL4/X6cfvrp+PDDD5GdnS0bY+LEiTjhhBNw/fXX46OPPsLXX3+tmVH9888/Y8KECZgxYwZcrkPlFY8//niUlJTgnnvuwfbt2/HZZ5/h3HPPDb0uAwcODF14AJovFhh9jVIBM2mJ4qzEo/5rFl6Tts0Iy3p1dzlD9jxv+AMoPP5NAIDgLkHJmT/D0/1cWZ/whcPMZtKq1Z3V0pZL0IaTjNTmbaN1ax3FQ5I9BSKiNi7s731YuQN/2GJhv+kxGK8edxEWnvUHFLqZSUtERNZrfUt6+/btYxrrueeeg3jwb9lLL72kGrQ8/fTTcfXVVwMAFi5ciEWLFmmOd9RRR8kChS06duwYCsodOHAAF154oWpm5ODBg3HccccBAObNm6c7d7fbjf/+97+yAG2Lu+++OxTkmzZtmixzEwBKS0tVf9YWLpcLjz32GABg27ZtWL58ue5cpkyZIgvQWqVbt26KADMAZGdnh7Jay8vLDb3uaq/nu+++i61bt8Lj8eD111+XBWhbu+666zB69GgA0K0N6/F48Morr8gCtC1uueWWUHukf9t0wyAtUZxpxRvDA5FtZlHn8KzX8EXAAGT1uhSdpkjoeHEZXO2OUo4Rvo/JTNrwUhB6UihGa2wBtTYapFXUWiQiIrmwcgdSWLmDQFhd8tO79MOVvUehnUe/XhsREVG0Wt++n5OTo9Mzsm+++QYAMGDAgNAt9Gpa171t2UfN5MmTNbcNGTLEVL/Nmzdr9gGA8ePHh0oIhLPZbKEgZkVFBZYuXao7ltfrxfbt27F69WqsXLkSK1eulC2UFanMw6WXXqq7PVrnnXdeKAM3XOvX86KLLtIco6VfZWWlYjG1//3vfwCAsWPHol27drpzaakj+9NPP2n2OfXUUzUvHOTl5aF37+a7jCL926YbljsgijOtIGIgbINaCKyiKYhiT2IWE5EkEY0bX0Xdikfk8wqvL2tA+D6GMkgB7K0PYFtNQFHSINz6Sj96FzoOLmhmJutWgm/v9/DtnQtXh+Ph6nhCVD9ftCQp8uvg2zsbgjMPznZHweaMrWaUnga/iDUVfpRm2dE93wEp0ATf/h80+ytXLSciotYExcJh4eUO5BcsnVwsjIiI4qx1Ddr6euUC0UZ5vV5s2LABAHQDtAAwbNgwOJ1O+P1+rFy5UrNfnz59NLe1zlw10k+tlmxro0aN0t3ekvkJNJd1GDNmjGx7fX09nn76abz77rtYtWoVgkHtxJrWt+KrGTx4sO72aFn5egLNr2nr54sXLwbQXEvW6MLie/fu1dymtkhba8XFxaF5ZBIGaYniTOt2/ICBW/pv/LYcDx9XhMML4h9I3PtGNiAqF60SfTXmBwsvd2Agk3b5AS8eXVRtKIv23vmVOL1HFq4akGeq3EHNzzeiYd3zoefurhNRfMpMnT2sFazbHrFP5ffnAQDseb1QOnERbO4iy+fR4Bdx94+V2H1wgbZrj8zC0F+PR6BS76ovM2mJiHRFWDjs18o9sucOGy9+ERFRfJWUlIQe79u3L+pxKisrQ48jlU1wOp0oKSnB3r17UVFRodlP63Z5oDm71Uw/UdSvJRhpzh06dAg9Dp/z1q1bcdJJJ2HLli26Y7RobGzU3V5UZP35HWDt6wlAEYjev3+/6TnpvRZ682g9F72AeDpikJYozkqy1E/CwoORdpWrURKAOTub4h6k9Vf8qhqgBQDfHu1bVDSFLxxmoCbt51saTZU5+HJrI37Tx/gtO2JTuSxACwDenZ8iULcNjtzuxg8cA/8B7ds9wgVrN6F+7X+QN+Qey+exeJ83FKAFgE83HMBA3QAtILji82WCiChthAdpW9WkrfQ2KLo7eIcCERHFWevb3CPdxm+U0SzKtiSWOV9++eXYsmULBEHAVVddhcmTJ6N///5o164dXC4XBEGAKIqhxcKkCFlEeouKtWUtwdIzzjhDtfYtWYNBWqI4m3R4Nj7foryCFAy72Nc934G9DcqrRLW++K8w5tv/o6XjKRYOM5BJ+8sBX8Q+4cobjb82gdpNqu2StxxIUJBWcBWY6t+w7vm4BGkX7JUH5Pf69eshCs4CuDurr8pJREQttMsdVKgEaYcUq9fGIyIissqAAQNQWlqKsrIyzJs3DzU1NcjPzzc9Tuvsz0gZuYFAILRgWcst68kWac6tt7ee89q1a/HDD80l4f7617/iwQcfVN1fL2M4XZSUlGD37t3w+XyhhdbIeryETxRnhR47bhmm/EMYXu7A41C/umcmuzRagmDx1bzwhcMMZNJGy/DLo1EXV2qzC3XFj4FKGzIlE+ZBYO1EIiJ9OuUO/Cq3YR6e1zZOXImIKH0JghBaFKu+vh4vvfRSVOO43e7QQk4LFizQ7bts2TL4/c3nXm0lmLdo0SLD21vPedWqVaHHegtutdRrtUpbzFYeNmwYgOaf1eczn2Blpbb4+liFQVqiBDi2swdnHy6vuRK+cJjWXRFBsxG1aFgcpI124TCzJFOLhmkEisUEBmnNFNAFEK86sAGTydnOokFxmQcRUXqRf2ZLrcodBFQuCNpZ7oCIiBLgtttuC9X/vO+++7B27VpD+4miiLfeeiv0/JRTTgHQHLhcuHCh5n6tA8Et+yTbrFmzsGfPHtVtoijitddeA9CcMTx8+PDQtkDg0Dmk3sJrzz//vOa2aHg8HgDNC7a1FWeffTYAoLq6Gq+88kpS59Ly+gBt6zWyAr8dEiWIPey3LTyTVit8l4hMWmX2T6zjmS93EC3jmbQac0hoJq3Zf0zr//ElSULQdLCYiIgiUvwtPfRZG55J6xBsaZ0FQkREbUeXLl3wzDPPAGgONI4dOxZz5szR3Wf16tU4/fTT8dhjj4XabrjhhtBiTtdffz1qapQLTM+aNQvTpk0DAIwePRqjRo2y6seIidfrxW9/+1vVRageeeQRrFixAgBw9dVXw+12h7a1ZA8DwKuvvqo69nPPPYdPPvnE0vl26tQJALBpk3rJvmS48sor0a1bNwDAn//8Z8ydO1e3/w8//BDxfRatltcHaFuvkRVYk5YoQcIXBvtpjxeHbajHuUc0X9Wct6tJdb+l+32QJCkuJ3P+8qUomznC8nHDyx34y/RvL9lcHV2m7Z3zKiN3Oqhp2weq7YG6zXB1ODaq45slNplbEVPyK7/46PFX/IKqH66C2LQfeUPvR3afa0Pb9tQH8PSyGmyujl/AnIgokwlhQVrJfyjjpiEgvy3QyRIyRESUQFdddRV27tyJ++67D/v378e4ceMwfvx4TJo0Cf3790dhYSEqKiqwfv16fPbZZ/jyyy8RDAZlC48NGjQIf/rTn/DYY4/hl19+wfDhw3HnnXdi2LBhqK+vx8yZM/H0008jGAzC5XLhhRdeSOJPLDdy5EjMnDkTxx57LG677Tb07t0b+/fvx2uvvYZ3330XANC1a1fce++9sv2GDRuGgQMHYuXKlXjhhRdQWVmJyy+/HJ06dcLOnTvx5ptv4oMPPsCxxx6LH3+0bp2XY445Bt9//z0WLVqERx55BGeccQZycpoXzc7KykKXLl0sO5ZRbrcb06dPx7hx41BXV4eTTjoJkydPxjnnnIOePXtCFEXs2bMHS5YswYwZM7BixQpMnToVY8eOtXwuhx12GLp27YqdO3fi8ccfR9euXdG3b9/QomwdOnRAXl6e5cdNBAZpiRLEoZKs+t76eozs6IYvQrrs5uoAehU6dftEIy4BWgCCSpK+JImKE9gW01bWxmUerTWsU78FpXbJX5Hd6/K4Hx8AGtabqwEl+c29LjWL/ohAxTIAQPVPv4PnsHNh85QAAF5fXacboN1nPwIdghtNHY+IiFqTX0z17vwMGPkIAGD6ll9k2xw23sxGRESJde+992LAgAH405/+hK1bt2LWrFmYNWuWZv8BAwbg0UcflbU98sgjqK+vx7PPPotNmzbh+uuvV+xXUFCA6dOnY+jQoVb/CFG76aabMGfOHLz66quYPHmyYnunTp3w1VdfoaBAvtCzIAh44403cNJJJ6GyshLTp0/H9OnTZX0GDRqE999/H507W7cg6A033IDnnnsOFRUVuOuuu3DXXXeFto0dOxazZ8+27FhmjBkzBrNnz8aFF16IHTt24K233pKVxAgXzSJ1Rv31r3/FjTfeiC1btmDSpEmyba+88gqmTJkSt2PHE78hEiWIw6aeCbuyzIf31mnXtwGAxfuSV2fF1elk0/sEapW3HASq12n231UX35IDkk7dWZu7SHOb1Vwdx8V1fN+e7w49kYJo2Phy6OnS/frF3Xc7jozXtIiIMoJvn/yWPlfHQ5kjOU6XbFutP73qpxERUWo477zzsG7dOrz11lu47LLL0LdvXxQVFcHhcKC4uBjDhw/HjTfeiO+++w4rVqzA+PHjZfvbbDb85z//wdy5c3HppZfisMMOg9vtRn5+PoYOHYq//vWv2LBhg2K/tuCVV17B22+/jXHjxqGkpARutxt9+vTBHXfcgVWrVuHII9XPh4YOHYrly5fjd7/7Hbp37w6n04ni4mKMHj0ajz/+OBYuXCi7/d4KXbp0wcKFC3HNNdfgiCOOkNVgTbYxY8Zgw4YNeP7553HmmWeic+fOcLlc8Hg86NatG8aPH4+HHnoIa9euxRVXXBG3edxwww348MMPMX78eLRv3x4OR3rkoKbHT0GUAlwal0QCooSmCJm0jeGrjCVQ1hFXmt5HsKl8tOjUfk3I4mga4rWomcbBEncsADDxszUIBZE7ERGRJmfJSHh3fdGq5dDftvBS4AWutnOyRUREmcXlcuGSSy7BJZdcEvUYxx9/PI4//njT+40bNw6SgfUxpkyZYigT8v7778f9999v+PgXX3wxLr74YsP9Wxx22GF47rnndPvo/Vxm5wkAvXr1ki3CpqZHjx6GXk+rX3e3243f/va3+O1vfxuxbzgj8wBgKFv4vPPOw3nnnWd6Dm0ZM2mJEsRlV8+klQDl2VuYQIJje63ZXMXR7KRs0wlQxn9xNJ0DiPoZptZK4j9kBI0M0hIRxcSe20Pe0Opvuxj2N3BStwEJmBERERERpRIGaYkSRCtICwCREmX9Scw0Va5WbWQX40FaSZKSGqRN60xaGF9srtFWGL9pEBFlAsUCn4f+9gTDLsba4rAYKBERERGlNgZpiRLEpVGTtjEg6S7oBADzdjXFY0qGCEIUK1Db1BY5Uw9QxiP+rLiFQidTWazfYWpsb1DCxxvr8fLKWmyuNh7glQJN8O2dbepYsTMeBKgXElebl4goPcm/VkvBQ3VnRYQHafkVnIiIiIjk+A2RKEFcGrHOGRsbIu4blIDV5dbelu87sMBYxyiCtOqZtOqB0nhkCStHjFBOomaD4bFf/LUG76yrx1fbGnH/T1WobDK26FnZpyMMH8MyBzO1jNT8/TnrsnjPhogorfkrlsmeN258JfRYZCYtEREREUXAIC1Rgjg1MmmNev7XGotm0qx+1f8Z6xhNJq3drWiSNBYO21lnLMhpRnhMUmzcp9vfu+c7w2P/sPtQZpQ3KGH+bmMrdAeqVmtuc5aOMnx8LcH6XcrGg8HybbX6mdoA0D6wXrXdUTQopnkREWUK//4fNbcpgrQm7nQgIiIiosygsgQ7EcVD59zYft32NVhbz7Rp24eG+tlc+abHNlOTtiFSQd4ohAdppaB+uQgpEDmbWYuRAKjuCpY2NwqOfhG1S++Cd9eXsk2uDsZXTBWblIFoR34fAECDP/JrbId6sDyn/82G50BEROrCFw5jJi0REVF89ejRQ/88jKgNYiYtUYI4TPy29SlMxPUTY3+wBGeB6ZEFEzVpG/36wedxXT2Y3DcHF/bJQZHb2IsYvkCLJEYoFRHD4mE+I6ueaWQRZ/W6EqVnLYKzZCiKTp4Je25P+W4mgsdiU5nmtiYDc5Q0srqy+1xneA5ERKROWZOWQVoiIiIikmOQlihBzPyydYkx69ZKNpf5IC1sKvPXuIoZKZP2yBInzj0iB+f3zsHzp5Sif7FaAFhOEZOMEKSVDAZpw29XBWIL0uYMuhPOg+UEBJsDeSMflR/PX2doXgAgNh1QOzAAwGsgW1krSEtERLFjTVoiIiIiioRBWqIEMXM+5tVY6GlnbUB2y0a1V8R32xuxv8H6uq4tBKf5cgfqdWxFiJKEBXuasLHqUFA00q34jrBavm575Bey1ici2LgP/soVkMQgpKA1mbRq/yybqwORb6PRCNIKjuyw57ny3QK1huYFAKJXLZO2eV5GMmmDiBz8JiIic1r+PrAmLRERERFFwiAtUYIIJk7ItLIz/zS3Aq+ubs6uXLbfi+u/KcMLK2px8/flmLXNZF1Vg/V5BLtKfdlI+6gEaYNBPy7+/AD+b2kN7v6xEv9cWAUAaAjolztwhL1sLgNB2ltnV+CXGRNQ9slgVMw6FVJQ/7Vp2v5RxDEBQG2qlV4RL6/Sz3j17p2r2h4epLU55UFasWG3oXkBGpm0B2sgGgnSljkOh8g/CURE1jpYE52ZtEREREQUCc/IiRLEQGwxpMCl/av55dZG1PlFPLGkWtY+baXxW+MBAKp1Y60hOHIUbT+W58meLz/ggyhJEcsd2MMyaZ0GP7U+ybodAODb+z2ats3Q7RuoXGFozE3V6hm3s7Y1os6nHWyuXfwn1XbBniV/HpZJCwDBRuWCYGpUa9IeDAo0GVycbZPzaEP9iIjIGF/ZQgCsSUtEREREkTFIS5QgThNR2omHZ+tur/GKiLDeVkSuDsfFNoAOZztlsO/VHd0UbUFRPTu1tfBM2kKDi4etdZ0Uetyw9j+6fe053Q2NuWCPV3NbtU6QNlC1WrU9PHPWUdBX0Uc0GKSVDmZrydoOLtbmNVI3F8A611hD/YiISKlw3PuKNslfA4CZtEREREQUGYO0RAk0uDRy9mqh24bOuQ6celiWZp9IgU0j7NldYx9Eg2BTq0mrJAIIRii7EJ5Je1oP/QC2Ov1jSIF6Q6P4NWoFAyqLlUVQdMoXijbBofJvLgWMDahW99ZkJm344mG5wx40dmwiIoLnsHOUjaxJS0REREQGMUhLlEDd8hwR+5xymAcA0C5b+9dTL1holBQW1MsZ9BfA5o553BaCuzhin6AoqS7G1Vp4ArLRcgdmiAFjpSL0XnfR5L+Jq3SU+oawEgjh/05aJNVgbvOcjGbShgdp7TnxC+QTEaUbweaAPe9w1W3KTFp+BSciIiIiOX5DJEogI3E8+8FbID065RGsyKSFKA/qCYIDsPCkUQj7eFH70UUp8mviCMukNbjemb7wYHSwCZIYORjq0+liNpMWKourASqLrokGM2nV+plYOAwApPA/CZa82ERExJq0RERERBRJ5LQ+IrKMoSDtwTiZWydIu79RPVr44YZ6LNjrRddcO64akIc8jQXIpKAPTVvfkzcKdgiCLUJhABPCgo2SGAAEl6wtYChIK39uZn4iBKj9RDZ3McTGPfJxA/UQXPnaY0kSFuzVrkk7dd4i7LEdAQDoW+TApVkfo3j7v+EoGqS+g2ZJCHkEvm7Fv1B88seh5wFRwu++KUOtv/nnsglAx2wb3NVX4HzHWnQNrGz9UwEAtlYbDPQqbr9lkJaIKCYH74ZYVr5L1swgLRERERGFYyYtUQIZCdI6WjJpw1fMauWZ5TWq7dPX12NbTQA/7vZixkbtOqsN6/+rbLQ5IDiiqfeqwUBW7pZqv+IW0HC2GM5jl7rPUx/TXaRokyKUPPh6W6Pu9pYALQCsqwzgxW3dEKj8FU2b31Ltr8iYDc2jQfbcu+MT+MuXhZ5/u70xFKAFmt9Tu+tFbHEehdfzngsbrLnf3gaDJRPCg7SSFSnbRESZRP452rT9YwDA2ur9snYGaYmIiIgoHIO0RAl0fBdPxD4tmaPOWKKTAD7boh1U9FcsU7TZszohZ8CfZG3ubpOiPn54pupA35eKPlVeMWLgusgtD2YWqGQHa71Sux391efmq1a0RVo87OVVxurWttjpHBKhh/GP38ZNbxiax35HH/jRupRDc5DVbWwdN5QEt8meuzqdbHiOREQEBGs3yZ7bsjogoFJOJyjyIhgRERERyTFIS5RAfYocOKqj/uJc9oPBWSOLjEVNpX6pp/u5yOp1RWjRE8GRjdyBf7bskCXB7arteuVSx3fPQoFb/jHltAu4rF9uKDD7mz45KPaof5QF4VRt93Q/X1mOwW8uCGuEqPcRq1nuQCnYuNdwX7/Q6v11MJPWbzAW4JIOZfFm97kejrweho9LRESAzdNB3iD64VMJ0k46bECCZkREREREqYJBWqIEEgQBtw3Ph1PnN6+lFG08b4SUJHmQNmfAH2FzF8Oe3QntzlmDkomL0P7CPXB1OC7qYzhLR8ueB6AenA4vd3BRnxz8e1wxnhpXjKsH5Kruc1avbDxzUgmeObEEF/TOQZZGaQhRUA/SujudDMEhHztSuYNoiHplvzXKHagyUXbALxzK1pYgIihKhspsHJxU8/86slFwzAvG50dERAAAT48LZM+lQCN8QWWQtnN2QaKmRERERHG2cuVKXHbZZejWrRtcLhcEQYAgCFi+fHmyp9amTZkyBYIgoEePHsmeSpvBIC1RggmCgHZZ2gG6lpq0cV2ySZKfMAr2rFaPXXCVjoRNZxEtQ2zyAGUgbNEwoDnRMzyAaLcBHXMc6JTjgKBTs680y4522c2vo1aQNqCRSSs48yA4c2Rtol+/3EE0gjpBWsFAzd5DjAdpA2hVUkOS4DceoQ1xFKiXiSAiIn2t/54CgBRshE/l7hWX3cSFOiIiIjJt9uzZoWDp/fffH7fjLFmyBKNHj8Zbb72FnTt3wu/3x+1YlP7ieD81EWkJ6iyWZT8Yu7MiSPvp5gZIAI7q6Eb7bDvWV/qxdt8BdN7+K7q07ihY/1EgHBwzCAcWei7C/KwrFX0O7JiDpVXDZW3RLKaS5dAod6CRSSs4cyE4ciEB+MFzFb7LvgkTd1dgbNWTCHo64V97x2NzdQCX9c/FhB5ZeOYX9YXaIgkKzpj/IVe6xqPCOxZHlvnw4IKqiP39ghtVto5Y5j4H3n1HoHrLlwBGGjqW1PLax+H9QESUCQSHWpBWmUnrMlHyhoiIiNquu+66C42NjcjPz8cjjzyCkSNHIiur+fvAEUccEWHvxLj//vvx97//HQAgRVi4m5KLZ+JESRDQSYx0HKxJa8WH5xtrmm/h/3BDPa4dmIdnltdAggP2oi/xp8rT0Tm4urljPE4WD2bSvpn3HyzznKPa5aOwAC0ARLNemkcjk3ah52JcUnurytTyIDhz8WnOPfg2+2YAwBsHumF3wxx8m30pgOaspzfX1OHNNdGXQdjmGIb+/tlR7/+DZwo+yPsXEAA+MhCgBYBqWydMzf8E9bYSwNgurRx8HW3qwW0iItKnyKQNNMIbVMmktfErOBERUarz+/2YM2cOAOD666/HDTfckOQZUapjuQOiJDiyRHnrf4uWmrTZGtmh0WgMSJi6vCaU1BkU3JiR+4/Qdslfa9mxQmMGGuFDlmaAVsuGSvO3h6zT2KcwuFO1XXAVwubICQVoW3ybfYvpY+tZ4Lkkpv0/yPuX6X2+yLmjOUAbBanlT4KkDCgQEZEBdo/sqRRsYiYtERFRmiorK4PP5wMA9OnTJ8mzoXTAIC1RElzQOzsUjA3X0p7vju+v5wbX8XEd33/gJ/iErMgdw+ytV57MRlLtVU9NzhErFW2CuwT27I4JuaV/j6OfarujeJjmPva82G6J2eocpbt9aDsXhrdXv0ggHsyktWV1imkORESZSlAsCikqgrR2wQa7jV/BiYiIUp3X6w09djp5NyLFjt8QiZKgY44DDx5bpLrN3up+/9dOK4VHK5prIWexsuxArLL7/BZCFAVZoyl3oEWtJm3J6d83PzC1cJdSl9zIWVBaP3/BMS9q7pM79L6o52TEH4bl49bhBbikX45im4Tmn8mR2yOucyAiSlvhf1skEb6wcgfMoiUiIkqu1ouKzZ49GwAwffp0nHzyyWjXrh2ysrLQt29f3HHHHaioqFDsf//990MQBPTs2TPUdtVVV4XG1FqsrKmpCc888wxOPvlkdOzYES6XC+3bt8cpp5yCadOmIRCIfEej1+vFiy++iDPPPBNdunSB2+1GTk4OBgwYgGuvvRZfffVVqHTiq6++CkEQQvVoAcjm2PLf1q1bFccJBoN47bXXMHHiRHTu3BlutxslJSU47rjj8H//939obGyMONc1a9ZgypQp6NatGzweD7p164ZLLrkEixYtirhvpmJBLKIkObxA/Upb65isx2HDa6e3Q3ljEDd+Vx6/ycShBmnz4inmg7TRxKTtAhBUOZQI5YmwPeew5geKbCdzTuyahY/Xl6FO9Gj20QrSCna3zsjxC8oXBbcj29keADCpVw6W7/dhdcWhUhGh1yvGADYRUeYK+wyXJEUmrcvOIC0REVFbIYoiLr/8crz55puy9vXr1+Oxxx7DjBkzMG/ePHTs2DGm4/zyyy+YNGkStm3bJms/cOAAvv32W3z77bd44YUXMHPmTHTo0EF1jOXLl+O8887Dli1bZO0+nw+rV6/G6tWrMW3aNGzZsgU9evSIeq7bt2/H2WefjV9++UXWXlFRgR9//BE//vgjnnvuOXz22WeaZR6mT5+OK664QpZtvHPnTrzzzjt4//338fzzz0c9v3TGIC1RG6OWSeqwMr20FRE22CBCiMdCUY7sKDNpzf+sLruAxoDyWEHBCQlAua07CsU9cMAHwdGcQaq8JdUchw2wC/o/nwCtFeLinx2txg55oCD8bSWGXpPkzI+IKOUpLnIpyx0wk5aIiKjtuPfeezF//nycc845uOKKK9C9e3fs27cP//nPf/DZZ59h48aNuO222/DOO++E9rnxxhtxwQUXYPfu3TjttNMAAA8++CAmTZoU6tO+ffvQ440bN2Ls2LGorq5Gfn4+brrpJowePRrdunVDeXk5/ve//+GFF17AokWLMGnSJMybN09RPmHNmjU4/vjjUVfXvLD1ueeei8mTJ+Pwww9HMBjE+vXrMWvWLMyYMSO0zznnnIORI0fi2WefxXPPPQcAWLFiheI16NKlS+hxeXk5jjvuOOzYsQNutxvXXXcdxo4dix49eqCurg6zZs3Cv//9b2zcuBFnnHEGli5dioKCAtl4ixYtwqWXXopAIAC3243bbrsNEyZMgNvtxoIFC/Dwww/jhhtuwJFHHmn63yvdMUhL1MaoBRstXENMZmrhx7iu+jIUxSOT1p6FDc7jotjR/C5aQdpyew88VvQtdjsGwi3W4vraKeh0cEXteuSZP1Ardhtgk/wAtOvuClI0Qdrmn2OfPbbatGpsYQuC+cLSjz/OfQAnNP6XmbRERNEK+/yUJBGvbVwsa3PZ+PWbiIjUSZII0RvHOyjbGJu7BEKSzz3mz5+PBx98EHfffbes/fTTT8fpp5+OWbNm4YMPPsDTTz+Ndu3aAWgOwLZv3x65ubmh/l26dMHAgQNVj3HllVeiuroaw4YNw6xZs1BaWirbPn78eEycOBFnnnkmFixYgFdffRXXXXedrM9ll12Guro62Gw2vPXWW5g8ebJs+1FHHYXLL78c5eXlyM7OBgAUFhaisLBQFjDWmmOLW265BTt27ED37t3x/fffy0o6AMC4cePwm9/8Bscffzw2b96MRx99FA899JCsz4033ohAIACn04lZs2bhhBNOCG0bPXo0zjvvPIwZM0aRqUsM0hK1OWq37ccrk3aL8ygs9FyM8+IQpJUC9fgq54+m93NF8bO6dP6u73Y0/xHy2vLwVdYtaAkb/9zQO6ZPQIcgwBasB4R8zT52aNQU0skWFmzNpRBmZ/0u+slpsIVl0q6vUs5voedinGLXLuFARETaFCeaKkFaJxcNIyIiDaK3HPvfbR+5Y5poP3k/7J52SZ3DiBEj8Ne//lXRLggC/vjHP2LWrFkIBAL46aefcPbZZ5sef968eZg/fz4A4LXXXlMEaFucfvrpuOCCCzB9+nRFkHbWrFlYunQpgOYganiAtrWSkhLTc2yxdetWvPfeewCAZ555RhGgbTFs2DDcdNNNePTRR/Hqq6/KgrSLFi3C4sXN331++9vfygK0Lbp06YInnngCF110UdRzTVf8lkiURNcNUmZzDixxKdr0gpCx+jj3H3GpSSs27kWTTgBTyzUDcyN3CmM0iL3eNTb0+APHLaaPIz8mYItwy2q3wHLVdntOd8193F3PBACU2XtEOzVNdgOlJN7NexLZ/W6y/NhERBkhfMFK0R9VGR8iIiJKjEsuuQSCxt/qESNGhB5v3rw5qvH/97//AQD69u2LQYMG6fZtCWguWrRItojYp59+Gnp86623RjUPIz777DMEg0FkZ2fjjDPO0O3bMtfdu3dj+/btofZvvvkm9Piqq67S3P/cc89FYWFhbBNOQwzSEiXRcZ096JZ3KNB345A8eBzKPxCCIODYznqLTcUmHjVpBXsWgjA37uBSFzrmmE9vlcyXvo2ZwyYoaryG06pJa3PmaO5jc+Yg/6ipaBLMB6sjsdmN/XvYszLn6j0RkZXCF4YMBL0Qw/5ITR1zbiKnRERERDr69eunua24uDj0uLa2NqrxW7JK161bB0EQdP/7/e9/DwDw+/2oqKgIjbFs2TIAwGGHHYbu3bUTfmLVMteGhgY4HA7duU6cODG03969e0OPW2reulwuDBkyRPNYTqcTw4YNi9NPkrpY7oAoiTwOAY+fYOx2hBO6evDjbm/kjtGIR5DWkYVAeEZRBHcfVRjVsaQoFiiLVXOQVqOcQUh02VOeHheiaf3GqPbVY9dcyIyIiKwghJWL8QV9ij79C3ghjIiIqK1oqd+qxtaqRFEwqJ+go2X//v1R7dfQ0BB6XFZWBgDo1KlTVGMZZcVcW4LLxcXFsNv17zzt0KFDVMdLZwzSEqUIZ5zq0gKAYDKYamhMexaCUJZuiAcxGZm0grLGazgxypsVBMEGrxDbwmZqIs2XiIhipMik9Su6OCOUyiEiosxlc5eg/eToAmWpyOaOvn5qqmgJ7g4ZMgRvvvmm4f26dOkSrylpaplraWkpvv/+e8P7qdWu1SohQfoYpCVKEfEM0sYjkxZ2D5ps5mvSRiMJMVo4bAJskn7Qc37WFMzPmhJ63i6wEXdWnhh5cMGOJhuDtEREqcZIJi2DtEREpEUQbElfSIus1bKQV11dHQYOHBjVGC2Lje3Zs8eyealpmWttbS369+8fMRNWTVFREQCgvLwcwWBQd4x9+/ZFN9E0xpq0RCnCIcQvFCnFIZM2YNOuu2q1YEB5EhxvNrEBtojlDuQOOI7Ax7n3R+wXlAT4BO3bbqIlJCWcTUSUOZRBWmbSEhERZbKWuqubN2+W1W41Y/jw4QCA7du3Y9u2bab3N5rV2jJXr9cbqk9rVsviaD6fD7/88otmv0AggOXLl0d1jHTGIC1RiigJan8YZ4uVMY1dLhVH7mTScteZpvoXBXdEfayxgfei3jdaOY0bDNSkVfoh65qIffwmF1yLllNqTMhxiIgyhWCTlzvwBZV/J1wM0hIREWWMs88+GwAgSRL+/e9/RzXGWWedFXr85JNPmt7f4zl0Ednr1V7n5qyzzgoFdJ966inTxwGAU045JfT4tdde0+w3Y8YMVFbGFsdIRwzSEqWILKlKtf2cuvtwaoP5D+rWRGdhTPurqXGYq6FzffWlUR9rTN1/0S5gbqEtIUKpAj19fd+jk6sWNsl8kNYI0eaJ3CkK4Zm0N1WdH5fjEBFlrLBM2oCo/DvBTFoiIqLMMX78eIwePRoA8Nhjj2H69Om6/VesWIGZM2fK2k455RSMGDECADB16lS8++67mvuXl5ejsVGejNN6wbFNmzZp7tu3b1/85je/AQC8++67+L//+z/duW7ZsgXvvPOOrG306NGhzN/nnnsOP/zwg2K/PXv24M9//rPu2JmKQVqiVBH04tjGVxTN4xpfwImNL+COCgO1TrWGFmOZmDqfiRhorngAnYLroj5WjtCAP1eeistrbjC8TzT1Wc+ofwQ3VZ2L66ovB0RfVJm0xsSr/rA8SNsjsCROxyEiykxC2MJhfpWv2k4bv34TERFlkrfffhvFxcUIBoO46KKLcPbZZ+Ott97CwoULsWTJEnzxxRd4+OGHcfTRR2Pw4MGYM2eOYow33ngDubm5EEURF198Mc4//3y8//77WLJkCRYuXIi3334bU6ZMQffu3RW1Xo855pjQ49tuuw1z587Fhg0bsHHjRmzcuBGBwKHz2uf+n737Do+qTNsAfp/p6SGFEjpIFUQQBERERGVFELEAYu9rYcW17drbWr513XV1FTtWQARERRQVRUWRrhQpUgRCDenJZOr5/ggZZk6bcyZTk/t3XV5mTpt3JpNh5j7Ped6XXkKXLl0AAHfccQdGjBiB119/HcuXL8fatWvx1Vdf4V//+hfOOussHHfccZg7d65srC+++CIsFgs8Hg/OOuss3Hvvvfjhhx+wcuVKvPDCCzjppJOwf/9+9OvXL1pPcZPBicOIUoToc8Em1qquL/JtivjYXjH6vUrdPv3HzPftbtydCSbYUYvjPPKzdKq7wHgyPTq4YtnvhkkUYpKn+g38OgY738fPaVN0bs2etEREsSTtSeuBvGrWLDCkJSIiak66du2Kn376CRdeeCE2bNiATz75RFYtGyw7Wz4Bd69evfDtt99iwoQJ2LNnD+bNm4d58+bpuv/jjjsOEydOxAcffIDFixdj8eLFIet37tyJTp06AQDy8vKwbNkyTJw4Ed9//z2+++47fPfdd4bGOnjwYLz99tu46qqrUFdXhyeffBJPPvlkYL3FYsGLL76IZcuWafatbY4Y0hIlmLdyG6rWPQJr7vHIOP4OCGab4nait0YzpG2MmFTSGkgazaifWMXvroDJlmP8zo5+4TUZCJsbO4mW6HfDpPDlOxqMPHfpKm0wFMUgjCciomOkIe1GhM7QbTOZdU/eQURERE1H9+7dsW7dOnzwwQeYO3cuVq5cicOHD8Pn8yE/Px89evTAqaeeigkTJgTaBUiddNJJ2LJlC1577TV89NFH2LBhA0pLS+FwONC5c2cMHToUkyZNCgSuwd59910MHDgQH374IbZs2YKqqir4/cpBQOvWrfHdd99h4cKFmDlzJn766SccOHAAHo8Hubm56NatG4YOHYrzzjsPp512muIxLrnkEvTr1w9PPfUUvv76a5SUlKCwsBDDhg3DX//6VwwePBjLli2L+PlsqpI2pN2+fTtKSkrQqVMntGrVKtHDIYoJz5F1KPmkfgbFOgA1G59Fq0sOK25btmQ87Gk3x2Qcsaik9RiopPUdfSs6+H4uWl/uUg2qVQn1YWkk1bER87thFmPzFvrEinLd2zrESt3benW+5ftFESaGCERExgW1O/hZbIu/YEzIavajJSIiio/TTz8dosr3XK11UlrbderUSfdxAMBsNuOSSy7BJZdconsfqbS0NEydOhVTp041tJ/VasVdd92Fu+66S/c+5557Ls4919iE4MF69+6Nt99+W3X9jBkzMGPGjIiP3xTF/XqrQ4cO4cUXX8SLL76IiooK2frff/8dJ510Erp3745TTjkFbdu2xYUXXshZ36hJqlx1R8htv6sEnrKNsu3EoxOP5Pt2xWQcsaikNRL77rb0D/xcu+WlCO6s/gGY4da9i6WR/WRFnxseWCPat8Sp3g93V6UHxdX6++X6DZxr2yEcr2u7tYf0P49ERHRMcCXtfPSUrU8zR/bvBhERERE1fXEPaefNm4dbb70Vzz33HHJyQi9rdrlcOOecc7Bu3TqIoghRFOH3+/HRRx9h/Pjx8R4qUcy59y+RLfNWyifQEn31szP2cX+BHN++wPITXJ+GbDfUqX6WSkssKmkL0/RXC4nCsW2dO2cbvi/RVwcASBOrNLezB4W4nbONVTNNqL5fcqceVAj5ho7RoM6r/nz/Uak/PG7t3QyxEU1xTY5C2WsIADaXeiI+JhFRcyaYjoWwFXDI1o8q6hbP4RARERFRCol7SLt48WIIgoAJEybI1s2YMQPbt28HAJx33nl47rnnMG7cOIiiiGXLlmH2bOPhDVGqMdly5Qt99eGiGT5MLT8fpzhnYFTt85hS9ZeQzSZW34Xeri8BAOn+UvSvmw8A6ONahL+XDlO9z1hU0kYa/AZ/wdWrIcQOxw1b4HIUR1qu5raTqo5VOQ+vfQ3Dna9J7tONwZ6PjQ20YV+NdWqRa3AA7/BXYpjzTdxQcWmgn28kLC36YUjde4bGR0RE+ngVPma/OuyiBIyEiIiIiFJB3HvSbtlSXyU4ZMgQ2br3338fAHDGGWfgo48+AgBMnToVZ599Nr766ivMmjULkyZNittYiRJBKaQU/ccqQAv8f2Bi9T3K+wK4ofKykGVXVv057H0aaB+rm1v/FfshRNF4Yix69U2oJgLw+AGbGQg3N9fQuncxtO5d9WP53fCJkVWxauXXgkpMe0H1/ZhULe8fZGpMH17RB5PC822krxIRESnzSELaB4vSkWWVV9cSEREREQEJqKQ9fLh+UqR27dqFLHc6nVi+fDkEQcANN9wQsu6aa64BAKxZsyY+gyRKoIb+syHLPPonh9JiE5XDTF+4xDIC7kiTXzGCXrE6K2kBoO7ouPyNDSJ9LngR2QQwmveskvuaoJx6myJ5vgID8SuGvIxoiYgazynpW26J5+SWRERERJRy4h7SlpeX19+xKfSuly9fDo/HA0EQcOaZZ4as69y5M4D6SceImgLR50bZd5eqrDwWulWtexT7Zwg4PF8++Ugk0v2lisudGj1SI7WvJsLwUCGkjqbPd9UH1Y3NpavW/B1eX2StBjaUqE/MtadK+fELKl/uBYORqnPXh6j7Yz4OvJcL98GliseNRWU1EVFz8rrYH9+jY8gy377PIfo4MSMRERERKYt7SJuZmQkAOHDgQMjyb7/9FgDQu3dvtGjRImSd1VpfiWCxxL07A1FMuPYtRt2O9xXXiX7P0f/7UL3uoajeb55/r+LyzWXRnygq0smnxBhXGs3dVgu3T2x0SAsYD0gbvP1bteq6BduVq53VQ1pjfSUql9+Kip+nQvRUAAC8kLfX+L2cE4cREUWqWrTiUYyQLbfAD1fx5wkYERERERGlgriHtD171lcEfv556IfUuXPnQhAEjBgh/1DbEOi2atUq9gMkioPK5beqrzwa0vqqd0X1Pm1FZ2Ns9T8U17VOj+yyfS098/RPAHZB1b2Bnx3txxu+L1ubUYGfz655Nuz25S4/PBop7XHuZbrut4f7O13bRYNa99te7m90H2N0zTPw1x2Ev7Y4sOygpbtsO4spsl67REQEFCMbHoV2OF1QBl/VjgSMiIiIiIhSQdxD2nPPPReiKOKVV17BSy+9hA0bNuDOO+/Epk2bAAAXXHCBbJ+GXrRt27aN61iJEqGhkhZCtIIyAendb0Tu8LfRoyALw51vyLaIRe2qL8xBe7u+hFl0oZfrKwx0zQksF6xZhu9LsKQHfu7jDl+l5PSKgd60DYq8G2AV/CgwV2FszeOB5Rl9lCdpA4AO3vj0ybaL6pW3rXxbVdd19vwccntU7fOybcwKPW39MehRTETUXLgUAtqJ2IDh+AOiyCsViIiIiEhZ3PsH3HrrrXjxxRexf/9+3HpraDXh0KFDMXLkSNk+n3zyCQRBwKBBg+I1TKLYMmlUmTaEtKq1k/q1uSo0bCv401e4FYBnTQWW73cdu8sYhHLhDnlD5WXIOeVVOHfOgrsyaGK0CCbCEj1VgZ8dYpXGlvWcXj9ckj68lw4ZhoGt7EdvrQ5Zlz3wKeyfIf99mFTaHWT7DqDS3DrsOPTqX5SPNmPr70s6Dq1XyTkDz8SpBXXYN6sVLFAOBswKyzm1DRFR5OokH69t8OI/whf1N2Lcd52IiIiIUlfcK2lzcnLw1VdfYcCAARBFMfDf8OHD8cEHH8i2/+WXX7By5UoAwFlnnRXv4RLFhGC2qa4ToxjSqjFLDh2LiaJ8oo6DCqaQKlgAgN9Yj1UA8HuOhbxW0aWxZb06n7yS1i59UhrBpKNPrKjn+Tkq0pEJAEyWNNWAFgDMonwSm3BV0EREpM4lCWlzcOzfpWP/xhMRERERhUrITFy9evXCqlWrsHPnThw4cABt2rRBp06dVLd/8803AQBnnHFGnEZIFDueI2vhLd+kvoH/aGgWtXYHcibJsX/aX4dLetZP6rd0rxMrD7jROceC8V3TI+5PWuPRE0IKgBB6WainfAPKf7gaAJDR525Yc3vJ9vI5D6L6l0cBvw+Z/R6A6D4W0lp0hLS1HhF1kkpaRxRDWj2TeYnQH75G+lIQIABmu+Y2ZsirunZWerG/xos2GZyskYjIqHI4Qm7bg95n/a6SeA+HiIiIiFJEQr+Bd+7cGZ07d9bcpl+/fujXr1+cRkQUW35PFUo+1W7b0VBlI7qOxGwc0jzyYK0fW8s8qPH48eIv9e0CVh50wecXMbFHZkT3sa9GT0WsAEEIfRuq2/Fe4GfXvi/R8qI/IJhCg9yyJefDc3g5AMB9aBnEoEpaC8KHtB9srYFbUi3qsESzkjZ8KapfBPTm3xGPTAAEQQBMtmPhv2wT5TB92relmDmmUBboExGRtr9jVMhte9CJu9rfnkfO4P/Ge0hERERElALi3u7g0UcfxaOPPoqSEv2VBGVlZYH9iFJZ7ZaXATFMeHk0pPVWbW/UfcnaCATJsMqDt99K3Vj8hzNk2aJdTtl2emUq3IecCJjUzxX5a4vhrQydGMtXdzgQ0AKAt3wD/HWHArdtYvgxWxXS0XDtDsxZXRSXt/WsD7nd1b0MA+vmKG4bzEgb4H6Fx9pj2IrOlq3v4f5Gcb/AG7xKQAsARd6NquvWHlLfj4iIlNklV1OUBVfWmtTbHRERERFR8xb3kPbhhx/GI488gkOHDoXf+KjS0tLAfkSpzFe9K+w2gX51Gn3rHB0v0D6IYELO8HdUVw8rcsiWefzAxiOh91nrjbxZrVabhCmV9ZMGWguHyNodyPgklbG+Os3NlS7fl3IpNF0NV0mbd+ZnistPc74W+FkQ/RjhfBUjnK8i11Rfkaz2NPgN9KQ9NqEZkH3SU7L151WrnMDSkZO38W1RXVcpLTcmIqKw7Pa8kNsnozjws6A1cSgRERERNWtsOEgUT4KO8yIN7Q68NaqbpPe6DXV/zJMtb3VJKVz7voQluxus+f1V9++aa0WnbAt2VQb1yfOLgMql75GQTow1uvbfOGA+DsOcM9Dd8wMAwOQogBAmpBVlVaCNv/y+2i1/nOF60lpyesCc3R0+SWXvYNcstCrbiiM9nkFXewk6WEbDknMbninoiPVHvCjKNOOe78tkx1OrpE2zCHAGheN3npSDDOux1401vz8KJ2zGkc9PhzmzM3JHzETOwe/Qblct9taFVk837GVvfx5cez5WfWw93V9js22UbDkbHRARRcCaCbiOve9fgg2BnzlxGBERERGpSYmQ1uOp/0BrtbL6gFJd+JBWFI+GtB71kFZQmQzKZG+BtM4TdY2kbaY5NKQVjV2CH470WMd5fsQ5NaFVoIJgDV9JK/tC2/josEZSISwAsOrIz615/WUhLQB08q7BwC45sOaPDCyzAzilSKOVg8pzLV2ea5cPzJLTA60m7T92O/NytK+owN79kqrjo0+VYM1SHQcAWETl0IDtaImIjJNeKRHS+9vvhiiK9f3CiYiIiIiCpERIu27dOgBAYWFhYgdC1EiCjkpa0V0/CZbfW61+HJNySGuEdEKo+dtrG33MYNKw0aRUpWuyaPakBZSqjqKYJB/lsAi6vjALljStlYbu06fyMNySFXonF1ParmGRyZKhua+gY6IzIiLSRxrSyv79E32G/80gIiIioqYv5p8Q3377bcXlCxYswKpVqzT3dblc2L59O9544w0IgoBBgwbFYohEcVOz6d/ht9n4DLL6PwbnjvfUNzI3fuIRIz1RIyGvVpUHgYJgDtvuQDrplefImkaPTSpcq4MGglneyzcgTNgs9cSKcjw9PE+2XPpb0Tk0WegOHAtpBWum5r5qIe3Xu+swop1GME1ERDLS93FZSOv3GP43g4iIiIiavph/QrzqqqtkFWqiKOL+++/XfQxRFGEymXDbbbdFe3hEcSP6feE3Oqpu90fwVWxWXa8ZFuq0tSx2ffFK6+SP1ZTdDShZJlloCVtNJK2kde76wPB4WqWbcLBWvVrUrHMKRXNGe9V1gsEZu3dVeuHzizAHlcCWOOXPm1lnKa1SmNvw3iuEqaQ1icqvzS0xfI0QETVV4U6Cin43BPAEGBERUXNz1VVX4a233kLHjh2xa9euRA+HkpDOaKJxRFEM/Ke0TOs/q9WKYcOG4eOPP8aIESPiMVyi2JBNgKXOuf0t1XWmtDYwZ3aCo/MlkuWtDQ2nxBm7S9z3VslDP8eJT8qWCSZr2ABR1pNWJVAMNqL25ZDbF3bTvg+9z0Vat2sVl5scrWDO7Ky63586KX8Zr5O0Nih3ycfRJiNMpfFR6VaNSlpLuEra2FZVExE1JyLCtDvg5GFEREQx9+2330IQhMB/kyZNCrtPQ5Ehe8dTosS8knbnzp2Bn0VRRJcuXSAIAr744gt069ZNdT9BEOBwOJCfnw+zWV9IQZTMRB3hYgPBkq643N7hfGT1ewiCYELOKa/AW74J3rJfAACF52+KyjilIpngRKmKyJaWh+xB/0blytsBAIXn/wYAMNlytO9fEm6L3vC9cy9qdwQZWXYcdIo4u2MaHBbt8Z+jEqJKmazKY8076zMIJvX3qQu7ZeDzXU7ZcpdPREbQfIh1XvnzZtFZSZttk59za/i1hQvC2ZOWiCh6wvWklfdaJyIiolibM2cO7r//fvTt2zfRQyFSFfOQtmPHjorLi4qKVNcRNUmi/iBMMCuHtHlnzA/8bLJmonD8usaOKqw6n4i0MCGnlNKkWGYByDh+GjKOnxayXAgT0korjvSEtAX9H8CVjmPH/b1c+wtxpkLAqUihh6C9aDSs+QM0d1PreSudJExaWdsyTf/FDllKIW3D/yPsSUtERMZJQ1rZvwAMaYmIiOJOFEU89NBDmDdvXsLGMGPGDMyYMSNh90/JLy7tDoL5/X74fD707t073ndNlFgGQlpYkqdXXa3H+KXwfoVdBPnXVADq1akNRL8n0CpFFEWI3prwA5CEqZYw73R6J+eC0iRnKlXPIcNROb5LUlwtraQNVwEcTLGStuH/4XrSQn+VNxERaQvX7kB6hQgRERHFVkFBAQBg/vz5WLt2bYJHQ6Qu7iEtUfOlP6R1bn01huOop7eDgVPhEvxwfArtDtTuL1wlbcWyq3HgLRP2zxBw4C0TPId/Cj8AyWRkljAPNtz6wGEVtlNrTRFMLaS9+/tSvPhLJVw+ERtK3Hh+XWXIerUKXCVZNoWxBdodRF5JqzQJHBERqTviCr3ig+0OiIiIEusvf/kL7HY7AODBBx9M8GiI1CUkpK2trUVtrfoly88//zyGDx+OXr16YcyYMfjkk0/iODqi2PDV7kv0EEJk6KzSrI0kpFXI/NTuLVxP2kgIRitpG/FOaLJmhx+Pxrqle+uwfH8dHvu5XLZOYR4xVUqVtNVHq6BNVu1KWpegHuLO3qKjcpmIiAAATq9CACs9wceQloiIKK7at2+PG264AQDw6aefYsWKFYaP4ff7sWTJEtx5550YNmwYCgoKYLVakZubixNPPBF33nkndu/erXmMhonJOnXqFLL80UcfDUxYtm3btrBjGT16NARBQJs2beDzKRfVfPTRR7j44ovRoUMHOBwO5ObmYuDAgXjkkUdQVlam+3FTfMU9pP3kk0+QlZWFNm3aoKqqSrb+mmuuwbRp0/Djjz9iy5Yt+OKLL3D++efjySflM8MTpRJ/3eFG7Z818P+iNJJ6F3fXDu4aSPum6uE1UElrSm9r+PhhSdoShOs5W5imf3JCc07PkNuOTheFH06YSt0Xf5G/FwLAH5Ve3eMqUHgMDVWw5swumvv+Yh+nuu7bvXW6x0BE1NztrD4iW1ZkkkyA6ZNPJElERESx9fe//x1pafVtBR944AHD+z/66KMYNWoU/vWvf+HHH3/EkSNH4PV6UVFRgV9++QX/+te/0KtXL8yfPz/8wSSmTJkS+Pn999/X3PbgwYP4+uuvAQCTJ0+G2Rz6PbCsrAyjRo3ChAkT8OGHH2LPnj1wuVyoqKjA6tWr8fDDD6Nnz55Yvny54XFS7MU9pP3iiy8giiLOO+88ZGVlhaz74YcfAk2U09PT0b9/fzgcDoiiiAcffBAbNmyI93CJokbtS5k5s7Ou/dOPuzqaw8Hwtg5d2yn1lw3Hq1ABqnbJvzm9nfE7CEcS0trV7vyofoU23YfOPukpwFz/j7uj44WwtTpN134398sKv1Ej2BVaIzRk5eYM7SC8lXdLLIZERNTs1CpU0na0Sdod6OmtTkRERFHVpk0b3HTTTQCAxYsX44cffjC0v9frRZs2bXDzzTfjnXfewbJly7B69Wp89NFHuPvuu5GZmYna2lpMmTIFv/32m6FjH3fccRg8eDCA8CHt7NmzA9Wzl156acg6l8uFM888E0uWLIHZbMbll1+OmTNnYvny5fj+++/xj3/8A/n5+Th06BDGjBmDP/74w9A4KfbkU5XH2PLlyyEIAkaOHClb98orrwAAioqK8NNPP6Fdu3bYs2cPTj31VOzduxcvv/wynn/++XgPmSgqRK9ySJve40Y4d86Gt1S9gbmjyxSYHAVRHU+6Vd85Gj8iqKRVSHZVY1JT9N+GpJWrWoWsLewm2Az0fnV0GI/Wl5TC7y6DOb2N7v1GtEvD57uc2FGhvzo2XnL8B3EQPRI9DCKilFfrDa2abWFLOzp547GraRjSEhGRGr8ootodQZVMisq0CTDpnSwlCu655x68/PLLqKmpwYMPPoglS5bo3ve6667DQw89BKvVGrJ8wIABGD9+PKZOnYohQ4aguLgYTzzxBN555x1DY7v00kvx888/Y+vWrVi1ahUGDhyouF1DiNu9e3fZNo8++ijWrFmD3NxcfPXVVzjppJNC1p966qm49NJLMXToUOzfvx/33nsv3nvvPUPjpNiKe0h76NAhAECPHvJA4PPPP4cgCJg6dSratauvrmvfvj2mTp2Ku+++G0uXLo3rWImiSf3yRgGCSbuSUzCHn5wqVhQ6F4TlUepJqzZxmGACBBMgGmjAGkXh+tUqESwOmC36A9oGaTr7AEdL8/l4R0SUHKSVtOkW29GQ9hjRw5CWiIiUVbtFXP9VSaKHETevnlmAbHv8viO1bNkSt956K55++ml88803+OabbxQLCJVI+8hKtWvXDnfddRemTZuGjz/+GKIohm17F2zSpEm4/fbb4fP58N577ymGtNu3b8fPP/8MQF5FW11djf/9738AgMcee0wW0Dbo2LEjHnjgAdx8882YM2cOXnnlFWRk6GuFSLEX93YHhw/XVxJIWx1s3LgRJSX1b0bjx48PWdfw4mQpNqU0tZBWEMJWkwpmewwGpE9k7Q7kO5m0ps8SYnu+SOufRkuYVgjxGgcREaU+eUhrhWAJnZzR7y6P44iIiIgo2F133RXIoyLpTdugsrISO3fuxMaNG7FhwwZs2LAB6enpIeuMaNmyJc466ywA9S0N/H55EVNwK4TgPrYAsHTpUlRUVAAALrpIe96U006rb9nn8XiwevVqQ+Ok2Ip7SNvQ1Li0tDRkeUM/kMLCQlmVbYsWLQAAdXWcwIZSl1q7A0AAROUZGQNbhKm0jaVt5cZnoVaaa0zrJKJgsqqvjAKt+zbQ6aDR4pgHG8SaWyKiaKj1hbY7SLfYIFhDq1MqV/wlnkMiIiKiIPn5+Zg2bRoAYNmyZfjiiy907/vHH39g6tSp6NSpE3JyctClSxf06dMHffv2Rd++fXHDDTcEtm0oQjSioTp2//79iq0YGkLawYMH47jjjgtZt2rVqsDPbdq0gSAIqv/16dMnsO2BAwcMj5NiJ+4hbdu29RPYrFu3LmT5woULIQgChg8fLtun4WxAQUF0e3ISxZPoUz7JYM7sCHvbczT3teQeH4sh6TL/91rD+6QrXNafbVN/uxGssZ1US4tLKVGOkdK6+LZ06JB1rELZlKbenkFgSEtEFBVOSSVtmtkqO0lrsufHc0hEREQk8de//hW5ubkAgIceekjXPosWLULv3r3xwgsv6LrK2+lUK9JSd/755weqcaW9YtesWYPNmzcDkLc6AI61FjWqttb4932Knbj3pB0+fDi2bduGF154AZdddhkKCgqwcuVKfP755wCA0aNHy/ZpmBmvdevWcR0rUTSJfrdsmSm9LexFo2FvMwrV69T/cXB0OD8mYxrQ0oY1h+TjaqxMhUA2x64e0qZ1noyaTf+J+jgaaDWj75wT2yreYJG0jjDi/K7p+Gh7/T+yRRlm9G95rAI7o9etqFpzX2wHQETUzPkljdzNggBLbm94Dv90bGGMrx4hIqLUlWkT8OqZzac4LdOWmEsNc3Nz8de//hUPPvggfv75Z3z66acYO3as6vYlJSWYMmUKamtrkZmZiTvvvBOjR49G165dkZOTA5ut/nvXkiVLMGrUKACAGMHkLpmZmRg/fjxmzpyJefPm4aWXXoLD4QBwrIrWbDZj0qRJsn19vmNX565Zs0Y2wZmahvmgKDnEPaS9+eabMWPGDOzcuRNdunRB9+7dsWnTJni9XuTl5Sm+2JYsWQJBENC7d+94D5coevzytgEF5/4Eky0bAGBrfTrcB76VbWPO6gqTIzZVN/cMysV7v1Xj4x3RPXsm/ZIaXNGpJGvgMxGFtBnH34majc/o2vbvg3Lw5MoK2fJzO6cZvt9InVLkwIfb9E8Yk+cwdrHD5B4Z6JRjQaXLj+FtHSHhdEbfv8Oc0xPuA0tR+9t/DR2XiIj0ESVXJgiCgLTOk+Hc9vqxhb7onxwlIqKmwSQIcZ1IqzmbNm0annvuORw5cgQPPfSQZkj74Ycfory8HAAwf/58nHnmmYrbSdt6RuLSSy/FzJkzUVlZiU8//RQXXXQR/H4/Zs2aBQA466yz0LJlS9l++fnHMoPCwkKGrykq7u0OBgwYgH/+858QBAHV1dVYs2YN6urqYLVa8eqrr8omFKuoqMDChQsBAKeffnq8h0sUNaIkpHV0mQJzRvvA7eCfg1lyY3ty4tJemfjzCdFtN+CTXNVvM2tvL5jCbKAirculgM5+vWoThGlV2UZbrO9KEAQMbePA6E7pSLeaZOvSOl6AnMHPwdZG+qGC7Q6IiKJBepLSBEH275TSlTVEREQUX1lZWbjrrrsA1Feezp8/X3XbjRs3AgDy8vJUA1ogtC9spEaPHh1o9dlQPbt06VIUFxcDUG51AAD9+/cP/Lxs2bJGj4MSI+4hLQDcfvvtWLt2LR544AFcf/31ePDBB/Hrr79iwoQJsm2//fZbDBo0CKeddprmmQ2iZCaKfrj2fBKyTD4ZmHKCF+tJtYDoX4YvbfNqjlU6KQhQe96kzCrvds3xPLVgCq1sZk9aIqLokIW0giD79170VMVzSERERKTi1ltvDVSlPvTQQ6otCrxeL4D6yez9fuV5Rmpra/HOO+80ekwWiwUTJ04EAHz22WcoLy8PhLXp6ek4//zzFfc788wzA/1s//vf/0bUboESLyEhLQD07dsXjzzyCF5++WU8/PDD6NGjh+J248ePxzfffINvvvkGrVq1ivMoiRpP9Ptw4C0zvOUbQlfIwleVuFBIxZBW2pMvusc/RtBdnqoWFKsU2MZE0gTCBoP/NzcyUCAi0uOj3RtDbgsABLPkpKzohc8Z2eQeREREFD0ZGRm45557AADr16/HZ599prhdt27dANQHsR988IFsvc/nw3XXXYd9+/ZFZVwN1bIulwvvv/8+5s6dC6A+H8vMzFTcJzc3F7feeisA4Mcff8Ttt9+uGigDwMGDB/Haa69FZbwUPQkLaYmaC1fx54rLpRWy3soturaLBXtk3QZUySppY/ROU1+dpC/6VGu5ELsAWc5oFp6rMdlaY5gzOoTczvSXaG7/+S4nSpw+zW2IiAj4ev+2kNt+iIonxup2zozXkIiIiEjDTTfdhDZt2gConyBMycSJE2G32wEAV199Nf72t7/h66+/xqpVq/DWW29h8ODBmDlzJoYNGxaVMZ1yyino3LkzAOC+++5DWVkZAPVWBw0effRRDB48GADw3HPPYcCAAfjf//6HZcuWYd26dfjmm2/wwgsv4Pzzz0eHDh0wffr0qIyXoicpQlpRFLF9+3asXLkSK1euxPbt21maTU2G8/c3FZdLL3/0Ow8qbmfJHxD1MUkNaeNQXVeQZvxtQnrCTk+7g4zetxu6D3NmZ5hzekDQWUnbMcsCSZtW2ExAm8z4zZ/olabXYVx9fHR7BTdIO+6qkNvnZa8Nu8+WMvnEd0REFKprVuhEnwecVRAUrohxHVgaryERERGRhrS0NNx7772a27Rr1w4vvfQSTCYT6urq8PTTT+PMM8/EoEGDcNVVV2H16tWYNGkSHnnkkaiNa8qUKQAQmLCsoKAAo0eP1tzHbrfjyy+/xAUXXAAA+OWXX3Drrbfi1FNPRf/+/XHGGWdg6tSpWLBgAdxuN7Kzs6M2XoqOhIa0X3zxBcaNG4fs7Gx0794dQ4YMwZAhQ9C9e3dkZ2fjvPPOw+LFixM5RKLGE1T+zGSVNfIAL73nLcjoeUv0xyRhMwuY1l/5DbprjvFKXmm7Az0tBTJPfBhpXS+HObt72G1trU9Hi9Pn6A5ogfqJsx4e2iJw22IC7jgpB/Y4ltKe1Mqua7sOWWZc1TsT3XJjEyDbCgYie/DzsOT2gb3dWBx3yqO4uV8WuuSo3x/PmxERhSd9q3yg31nKLWZ8dXEZDxEREYV3/fXXo3175Ym8G1x99dX4/vvvcf7556OwsBBWqxVt2rTBn/70J8yePRuzZs2C2Ry9S1SlVbMTJ06ExRL++2FWVhbmzp2L77//Htdddx169OiBrKwsWCwW5OXlYdCgQbjlllvw2Wef4csvv4zaeCk64ldCFsTtduOqq67C7NmzAUCxarampgYLFy7EwoULMWnSJMyYMQM2m75Z3ImSi0oIKP3SpvB3kDPkhRiMR9nQIgeGFjkwd1sNPthaE1gunQRFD/nEYeH3MdmykTv8bQDAgfdbQHSXq26b/6dvDI8JAI7LtWL2uS0j2jca9LR9eO2sAmTZYn/+LKPXrcjodWvg9ogMYES7NExaqNwnkRktEZFxWVa7Ytsi0e9KwGiIiIiaj9NPP133Fdp2ux27d+8Ou90pp5yC+fPnR3yfM2bMwIwZM3SNqVevXo26wvzUU0/FqaeeGvH+lBgJCWmnTJmC+fPnQxRFWCwWnHXWWRg8eDBat24NADhw4ABWrFiBL7/8Eh6PB7Nnz4bX61Vs0EyU/JQTSmm7g2SJwaSBqsEr9I/uI5/d2ghBsBh4NpJmOq6w9LR9iOdEZoYkx8uTiCj1KIW0Poa0RERERBQq7iHtwoULMW/ePAiCgJEjR+KNN95Ax44dFbfdvXs3rrnmGixZsgRz587FZ599hjFjxsR5xESNpBLMSStrxCRJwcySlLC42htyu6zOhz9/fSRwWwDwqqT6U9qT1mK0MNTQZGnJmmrK6aooTtKH42W/AyKisHZUHZEtU5wAlO0OiIiIiEgi7j1pG0q7+/Xrh88//1w1oAWADh06YNGiRTjxxBMBAG++qTwBE1Eyc+//WnmFoSAyfrz+0DDuYG1o4jr1m9AvoCKAudtqQpZJq2+NVtLCZOD8kdFjJ5CesNrwcxUn3+5hoEBEpMUnPUOJo6cRZVfOsJKWiIiIiOTiHtIuX74cgiDgjjvugNUaPqSyWq248847IYoili9fHocREkWXYFWekEva7iCt6+Uht635J8VsTFpWHND+4uiRfwfFol3OkNvSdgfRnJvL0fGikNtZJz4actveflz07izK9LSOsCZ0Okd1m8s8iR4CEVFS211TJluWa0uDYMmQLbfmD4jHkIiIiIgohcQ9Djh8+DAAoHfv3rr36dmzJwCgpKQkJmMiiiWTvUBlRehJivRu18OU3rb+hmBG5gn3x3hkyvxRuKo9konDgmX2/qvicsGSiYzj7whZltbtaljzBwIATGltkDXgH8buLI70PA3JWklLRETa3H6fbNmggvYQTPKZnk32vHgMiYiIiIhSSNx70mZkZKC8vBxHjsh7dqkpK6uvTEhPT4/VsIhiRlTpOyftUWfJ6oSWF/wOT+k6WLK7weTIj8fwZBwWeUjoF0VD4aFPUm1rNHh0dLoQlStvD1lmLTgZeWd/CZMttDLZZMtB/phl8FXvhCmtNUy2HEP3FU/J2m+WiIgaz+2Th7R2c/1H7bTu18O59dXAclFUuCyFiIiIiJq1uFfS9ujRAwAwe/Zs3fs0bNuwbyzdc889EAQh8N+3334bdp9FixZhwoQJaNeuHex2O9q1a4cJEyZg0aJFMR8vJT/R51ReodCjTrA4YGs5JGEBLQA4FMpelVocaPFL2h0YnjhMkJ8/shYOkQW0gc3NNlhyeiR1QAuwSpaIqCmTVtLaTGYIR9/3BelHboa0RERERCQR95D2vPPOgyiKePPNNwOTiGl555138MYbb0AQBJx//vkxHdu6devw7LPP6t7e7/fjuuuuw5gxY/DRRx+huLgYbrcbxcXF+OijjzBmzBhcf/318CtMJEHNh+itVVyuONtzErArhLSLdzllE4pJzf+9Bodq67+gbpH0LzVcQao4cVjqB5yspCVKvAM1Xnyyoxa/HK7vvy2KIlYccOHTHbUor5NXQhLp5fZ7Q27bgv8tE6QfufnZkIiIiIhCxT2knTp1Ktq0aQNRFHHttddi7NixmDdvHoqLi+HxeOD1elFcXIx58+Zh7NixuOqqq+D3+1FUVIRbb701ZuPy+/244YYb4PV60bJlS1373HfffXj99dcBAP3798fMmTOxYsUKzJw5E/379wcAvPbaa7j//sT0FqXkoF5Jmzoh7bubq/HiL5Wa+83aUoP7fyzDukMu7K0ODTrMBitIBYVKWqEJVKEypCVKrNI6H/72Qxne/a0aT6yowPfFdfhkRy3+tboC7/xWjbt/KINLzwx/RArWle4LuW0zB/WilYa0rKQlIiIiIom4h7QZGRn49NNPkZubC1EUsWjRIlx88cXo0KEDHA4H7HY7OnTogIsvvhiLFi2CKIpo0aIFPv3005j2pP3vf/+LlStXomfPnrj22mvDbr9161Y888wzAICBAwdi2bJlmDx5MgYNGoTJkyfjhx9+wMCB9ZMZ/fOf/8Tvv/8es7FTcjMpzOoMQHG252RwXK5yq+pl+1xwhwkvKlx+vLahSrbcZnDmMMHskC0zpbU2dIxkpNRKgojiZ/7vtXB6j72PvbCuEu9trgncrnD5sWS3yok1ojB+rwyd4LbK4zp2gyEtEREREYUR95AWqK86Xb9+PS688EKYTCaIoqj4n8lkwkUXXYRff/0V/fr1i9l4du/ejQceeAAAMH36dNhs8l6hUv/5z3/g9dZf1vb8888jLS0tZH16ejqef/55AIDX68W///3vKI+aUoXJUShbJtjzYCs8JQGjCW9UhzTVdXXe8BVmh53yL579W4b/mwomWNJga3PmsQUmOxwdzjd0jGSUbjVhgMHnIt5uOiFLcXn7LPns5ESppqHFgZZt5Z6w2xApybCEvr97QnrUhn7k5sRhRERERCSlXDIXB0VFRZgzZw7279+Pb7/9Fhs2bEBpaSkAIC8vD3369MHpp5+ONm3axHwst9xyC6qrq3HllVdixIgR+OabbzS3F0URCxYsAAD07NkTQ4YMUdxuyJAh6NGjB7Zs2YIFCxbghRdeaBKXbJMxfk9omwBTWmvkjV4Ckz03MQMKw6JxTb7HLyLLJqDKrf9y4HaZZhyXa7y1Q4vT56B2y4vwOQ8hrcslsOTEfuLAeJg2IAef76rF+0HVe8nk9PZpeOlXeTW0UhsMotQT/nXMtiQUKa8keL240wmBnwX2pCUiIiKiMBIW0jZo06YNLrnkkoTd/wcffIBPP/0UeXl5gfYF4ezcuRP79tX3HRsxYoTmtiNGjMCWLVtQXFyMXbt2oXPnzo0eM6UW0R0a0uYOfxvW3F4JGo0+bTPNKK6WT6Dj8YsIM3+YTN+CyCpHTfZcZJ5wb0T7JjO7WcD4rhnYU+XD98V1iR6ObiLbdFIToCd/FZrAJIWUGF7JRLFp5qATlILkagRW0hIRERGRRELaHSSL8vJy3HbbbQCAp59+GgUFBbr227RpU+Dnnj17am4bvP63336LYJSU6qSVtII1O0Ej0U+tkszjh+FJdbQqcyl1GA3niZKRnotZ+JZFkZJW0lpNnDiMiIiIiPSLaSXt7t27o37MDh06RO1Yd999Nw4cOIBhw4bpmiyswd69ewM/t2vXTnPb9u3bB37es2eP4TEG35eS/fv3Gz4mxY/ocwO+0EloUiGkVes9u7XMA6/B75UMPNSkVuqZWqMlUlZaF/4NrM7giSiiBlsrDofctpiCgllJSFv3x1xg+FvxGBYRERERpYiYhrSdOnWKag9WQRACk3U11vfff4/XXnsNFosF06dPNzTOqqpj/RozMzM1t83IyAj8XF1dbXicwSEvpR5PyQrZMlMKhLRKk38BwOsb5L1Kw2ErU2U2hfQ6WZ6qLKuAKk9oUOVnvwNqAvRcCbCtjBOHUWTWle4LuW0K+WwZ+g4vepOzLzkRERERJU7M2x2IohjV/6LB7XbjhhtugCiKuP3229GnTx9D+9fVHesjabNp99u02+2Bn51Op8aW1BT53WWyZaa01gkYSXREUmDWNjPhra+T0vnHZciW/aV/cgT4N/eTj4PtDqi5KMo0h9+ISMHQlh1Dbi89sCPws+itDVknWLPiMiYiIiIiSh0xTU+uvPJKzfXl5eVYsGABBEHAFVdcEcuhhHjiiSewefNmdOjQAQ899JDh/R0OR+Bnt9utua3L5Qr8nJaWZvi+wrVI2L9/P04++WTDx6U48csn3xJMzSsAGNrGHn6jZqhluhmTe2Rg1pb6aqp+hTYMapUcz1W/QhsK0kwoCaqoZkhLRKRNWkxwXvvjAz+ndZ6E2t+eO7atPzpXhhERERFR0xHTkPbNN9/UXL9x40YsWLBA17bRsnnzZjz55JMAgOeffz6kHYFeWVnHqh/CtTCoqTl2OVu41ghKwvW8peQmIrRtgDm7e4JGkhhmATCzKa2qCcdlYIJCRW2imU0CruiViWfXHJv0jhktEZE2aVuYdIs18LNglpyo97OtBhERERGFanbXIf/73/+G2+1Gly5dUFtbi1mzZsm22bBhQ+DnJUuW4MCBAwCAcePGISMjIyQ4DTexV3AlLPvLNkOipJJWOrtzE8d8NnWZJH26WUlLRKTNLzmdJQT3oTVZQzcWvRBFMapzNxARERGRMQ2fxR566CE8/PDDiR0MmmFI29B+YMeOHbjkkkvCbv/YY48Fft65cycyMjLQu3fvwLLNmzdr7h+8vlevXkaHS6lODK2kFZpdSMsvn6lKGrAfdspbdxAlE1EU8e3eOvy034Uu2RZc1D0DFp4pojiSTp0Q/G+gYFL4yC36AKHZfRQnIiKKi2+//RYjR45UXJeWlob8/Hz069cPF1xwAS699NKQ+YSIEqV5JUZR0rlzZxQVFQEAli5dqrntd999BwBo27YtOnXqFOuhUbKRhLQQmlc/WuYjTQcraSnZbS3zYvqvVfjlsBvzt9di0a7IJuuM0hyl1Az5JS2OQk5USitpAbY8ICIiShCn04m9e/di4cKFuPbaa3HSSSdh165diR4WUfMLaWfMmAFRFDX/C55M7JtvvgksbwhZBUHA+PHjAdRXyi5fvlzxvpYvXx6opB0/fjwvaWuGRGm7g2b2J2fmSz5lbTwinxTRx6SWktgbG6tCbr/7m3bPeKJokwb8wf8ECgohrciQloiIKC5uuukmrF+/PvDf119/jeeeey7QynLjxo0477zz4PPx6kFKrOaVGEXRtGnTYDbXV0VOnToVTmdoxY7T6cTUqVMBABaLBdOmTYv3ECkZSCtpTalRSXtKUXQu9WAlbeqq9cgDWZ5nomR2oCY6H6rZpoUiJZ04LOS1pNTWQPTGeEREREQEAC1btkSfPn0C/51xxhn4y1/+gk2bNgWK8davX4/58+cndqDU7DGkjVD37t1x1113AQBWrVqFYcOGYfbs2Vi1ahVmz56NYcOGYdWqVQCAu+66C926dUvkcClRJJW0Qor8yfXJt+na7r8j8zXXmxl2pCx/+E2ImiSeXKJISScOC+1Jy0paIiKiZJOVlYX7778/cPurr75K4GiIGNI2yj/+8Q9cc801AIC1a9di8uTJGDRoECZPnoy1a9cCAK699lo8/vjjiRwmJVKK9qTVE1J0ybGgVboZZ7R3NOo4lJykFWFEzQXftihSouR9U0C4nrSspCUiIkq0vn37Bn7es2eP6nbffPMNrrzySnTp0gXp6enIzs5G3759cdddd2Hfvn267mvZsmW47rrr0KNHD2RnZ8Nms6Fdu3YYO3Ys/ve//6G8vFx1308++QQXXXQR2rVrB7vdjvz8fAwdOhRPPfUUqquV23x17doVgiBg2LBhYcdWXFwMs9kMQRBw9913K25TUVGBJ598EsOGDUNhYSFsNhvatGmDcePG4cMPP5R9FgomCAIEQcDDDz8MAFiyZAkuvvhitG/fHlarVXEOpwMHDuC+++7DwIEDkZeXB7vdjvbt22PixIm6A/X3338fp59+Olq0aIHMzEz06dMHDz30kOZznUicUrYRTCYTXn/9dVx44YV45ZVXsHLlSpSUlKCgoACDBg3CjTfeiHPOOSfRw6QEcO1fAs+RNXD+PiN0hZAa50X09JJNt9RvpDV7OkPa1MX2s8mvzivi++I6LNxZi36FNkzpmQl7M20EXecVUeeLzos2+AKA3ZVe/FHpxfEFVuQ5UuMkGyWOViWtUrsD5473YLLnwd5+HMxprWI9PCIiIlJgsx27itRqlZ9Uraurw9VXX41Zs2bJ1m3YsAEbNmzASy+9hJkzZ2LcuHGK9+F0OnHttddi5syZsnXFxcUoLi7GwoULcfjw4UCIGXz/U6ZMkbViKC0txfLly7F8+XI8//zzWLhwIU488cSQbaZMmYLHH38cP/30E3bt2qU5mf3MmTPh99cXmV166aWy9V9//TUmTZqEI0eOhCw/cOAAPv30U3z66acYM2YMZs+ejczMTNX7AYD77rsPTzzxhOY27733Hm688UbU1NSELN+7dy/mzJmDOXPm4Nprr8X06dNhscg/Z3m9XkyZMgVz5swJWb5x40Zs3LgR7777blJWTsc0pH300Uc11x86dEj3tg0efPDBRo1Jj4cfflj2h6FlzJgxGDNmTOwGRCmleuO/UbXyr8orUySk1TPJXVogpFXfhr0dU5dS3uXyiYHfOyWWXxTxtx9Ksf9oH9b9NU58vsuJmWMKm93fnSiKeHJFedSPu6HEjSdWlMMnAplWAU8Pz0NBGoNaUqfVk1ap3UHV6nvqt8toj8LzfoHJ3iK2AyQiIiKZ3377LfCzNMQURREXXXQRFi5cCAAYN24cJk6ciC5dusBkMmHFihX417/+hd27d+Oiiy7CsmXLMHDgwJBj+P1+jB8/Hl9++SUAoFu3brj55psxcOBApKenY//+/fjxxx/xwQcfKI7vyiuvDAS0/fr1wx133IFevXqhtLQUs2bNwowZM7Bv3z6MGjUKv/76K9q2bRvY99JLL8Xjjz8OURTx/vvv495771V9Ht5//30AwPHHH49+/fqFrFu2bBnOOecceDwetGrVClOnTkW/fv1QVFSEffv2Yfbs2Xj33Xfx2Wef4corr8TcuXNV72fevHlYv349+vbti9tvvx19+vSB0+nEunXrAtt88MEHuPzyyyGKIrp06YJbb70VvXv3RmFhIXbt2oXXX38dn332GV5//XVkZ2fj2Wefld3PnXfeGQhoe/TogbvvvhsnnHACKioqMGfOHLz66quYNGmS6jgTJaYh7cMPPxw27GlY/8gjj+g6ZjxCWqLGcG57XXWd6C6P30AaYX+1nksw6/92tfrOWlMjkyYFDoWKzPUlHpzcOjqTylHjrD3kDgS0wVYfdGNQM/sd7a32YXNZ+N6eelt4NLzyX/61MnCyotojYv7vNbi+b3aEo6TmQLvdgfpHbn/NHrj2LUZa5+T7okBERPHlF/044qpN9DDiJt+eDlMCC5l8Ph/++c9/Bm5fdNFFIetfe+01LFy4EFarFR9//DH+9Kc/hawfMmQILr/8cgwfPhwbN27EtGnT8MMPP4Rs88ILLwQC2gkTJmDmzJmw20M/r5977rl47LHHsH///pDlCxcuDIS3o0aNwmeffRZS+Xv22Wdj6NChuOGGG1BaWoq//vWvmD17dmB9z549MWDAAKxZs0YzpN28eXOgZae0itbj8eCyyy6Dx+PBn/70J8ydOxfp6emB9QMGDMDYsWNx2mmn4YYbbsC8efPw5Zdf4qyzzlK8r/Xr12PUqFFYuHBhyPNw2mmnAQBKSkpwww03QBRFXHPNNXj55ZdDKmUHDBiACy64IFCN+9xzz+HGG29Ejx49Qu7j+eefD2y/dOnSkOreUaNG4ZRTTsGVV16pOMZEinm7A62eFEbpqe4jSjR/3SHVdd7yjXEcSeRqveH/bhsqKrWCjz4F+iYgo+RzalsHvt1bF7LssFMeClJibFEJJTeXNr+Q9mCtvtel3hYejqPvbYecoT3Fl+6tY0hLmjQnDgvzBdTvKo3JmIiIKLUccdWi5cyHEz2MuDl0ycModGhfGh8Lhw8fxvr16/Hggw8GwsmLLroIp556amAbURTx9NNPAwD+8pe/yALaBi1atMA///lPjBkzBsuWLcO2bdsCE8f7/f5ACNyuXTu8/fbbsoC2gclkCqmCBYD//e9/AOrbMLz55pshAW2D66+/Hh988AG++uorzJs3D/v370ebNm0C6y+99FKsWbMGGzduxC+//CKrkgXqWwsA9ZnblClTQtbNmjULu3btgsPhwNtvvx0S0ErH8dprr2HFihWYMWOGakhrMpnw2muvqT4PL730EioqKtC2bVu8+OKLiq0MgPpCz7feegvFxcV4++238Y9//COwbvr06YHWDa+88opi+4UrrrgCs2bNwqJFixSPnygxDWm/+eabWB6eKDlphJbpvW6L40Bia3jb+gnD1NpAXtQtA+d3VX4Dp+SnVAXNucSSh1Wl4XNzPJlZ4/GH3wiAV99mqmEue2xTONL3SGnrEVN6O/hr96rszRcYERFRrDzyyCOqV2+np6fjz3/+M5566qmQ5Zs2bcL27dsByCtspRqqQAHgp59+CoS069atw9699f/2X3/99WF7tQbzer1YunQpgPqK2fbt26tue/311+Orr76C1+vFt99+i0suuSSwbvLkybjrrrvg9/vx/vvvK4a0Db1yhw0bho4dO4as+/jjjwEAI0aMQGFhoeaYTzvtNKxYsQI//fST6jbDhg3T7I3bcH9jx45VDXIBwGKxYOjQofjwww9l99fQa7Zv37446aSTVI9xzTXXNK+QdsSIEbE8PFFSEkWNVgFa65KInizOfDTEUwo03ji7ABnsdZDSlF4DDGmTh42tUQOq3fpemHrbHaiHtAzRSJu0klb6ijGntVYPacXwLTuIiIgo+k488UT85S9/kU0atmrVqsDPQ4cO1X28AwcOBH5uqNIFgOHDhxsa144dO1BbW9/6YvDgwZrbBq/fsGFDyLqioiKMHDkSX3/9NWbOnImnnnoqpLDj559/DoTRShOGNTwPX3zxhe6CkODnQOqEE05QXefz+QK9aV9++WW8/PLLhu/P5XJh27ZtAIBBgwZp7nfyySfrOn48MUUhija/W3WV6KtTXZdM9GQZDS1LlYIPG0vOUp7Sa0AaQFDiqP2NNce/PN2VtDpfvmqbNcfnloyRTxwm+ZitMHlYA19NcVRbhBEREdExN910E9avX4/169dj7dq1+OSTT3DllVfCZDLhxx9/xOmnn47Dhw+H7BM80b0RDcEqUN9ftUFwCwI9SkuPtUJq2bKl5ratW7dW3K9BQ/i6Z88efPfddyHrGlodWK1WXHzxxbJ9I3kenE6n6roWLdQnSi0tLYXXa7ywLfg5LysrC3ymCve8tWrVyvB9xVrMe9ISNTeiz6WxLkVCWh3bNEwYplR1ZuHpn5Sn9BrYXZkaleDNgU1hYjcAaI7FntUenRWyOpvSrjjgwi1LSmTLee6JwpGGrNLqa0Fj8rCaDU/DueMdtBg5H7bC5KvqICKi+Mi3p+PQJQ8nehhxk2+PT3u8li1bok+fPoHbJ554IsaOHYuRI0fiqquuwq5du3DddddhwYIFgW18vmPzHnzyySeal+hL7yvaGtvS7MILL8TNN9+Muro6vP/++4Gr3n0+X2Bisj/96U/Iz8+X7dvwPJxzzjn4v//7v0aNAwDMZvVLAoOf8+uuuw633aavXaRSr14gNVvBMaQliiJR9ANi6k+upOetTKvdQSq+GVJ4P+xzYWr/RI+CAOWewQDg0zs7VhMS7UpaAChxyo/JtzUKJ1y7A61KWgDw1+5D1eq/If9PS6I7MCIiShkmwZSQibSaqyuvvBKffPIJ5s6di48//hhLlizBGWecAQAhgWVubm5IyKtXQUFB4Of9+/ejZ8+euvfNy8sL/Hzw4EHNbYMv9w/er0F2djbGjh2LDz/8EB9++CFeeOEFWK1WfP3114FjK7U6AOqfh3379sHtdkf0HBgRPHZRFCO6v9zc3MDP4Z63cOsTgfVuRNHk1640zOxzV5wG0jjndgl/RrOhqozBRdPUPVc7TKDEUps4rEpnVWlTovcRNza/zmKfbQrD4w89SWuRtDuwZHULewxv1e9RHRMRERFpe+KJJwLVnffee29gef/+x6pTli1bFtGxBwwYEPhZ2mYgnC5duiA9vf57+c8//6y57YoVKwI/qwWbDSFsaWlpYLKshlYHWVlZOO+88xT3a3geVq1aBbdbvbVjNNhsNhx//PEAIn/OHQ5HYOK2lStXam4bbn0i8BsHUTSFqaK1tFBvkp1MWqWbcXH3DFhNQJZVOQyyHE1nLUxpmySryuX0lBzU8sbm+I+63vDV28iUtlc+T1yQNpcv9ESt3Rx6wVrmCffCknei5jFEb63meiIiIoqu7t27Y+LEiQDqw9Avv/wSQH3A2q5dOwDAK6+8gro6460L+/Xrh/bt2wMAXnvtNVRXV+ve12KxBNoSfPnll9i7V2Xy0aPHbtjn9NNPV9xmzJgxgX6w7733Hurq6jB//nwAwIQJE5CWlqa4X0N4W1FRgTfffFP3+CPVcH+bN2/GF198EdExzjzzTAAI9CBW88Ybb0R0/Fhqjt/niGJGFLUvu02lNgAXdcvAu+e0xPNnyPvSAMcqadl/lij+VOcXSp23mKjRm70qbTdzTCEGtlLuYSWlVr1M1MDlCz1RKw1pzZkdUHjeWrSaUo5Wk+V9jwEAPvWJNoiIiCg27r333sB39ccffxwAYDKZApW1O3bswBVXXAGXS33+mcrKSrzwwgshy0wmE+66q/5q2r179+KKK65QrUb1+/3Yt29fyLJbbrkFAOB2u3HttdfC4/HI9nvjjTewePFiAMAFF1ygOkGZzWbDRRddBKC+x+7777+PqqoqAOqtDoD6lhANQfOdd94ZtiL4hx9+wNKlSzW30XLbbbchM7O+5cfVV1+NjRs3am6/cOFC/PrrryHLbrzxxsDv84YbbkBNTY1sv/feew+fffZZxOOMFcYrRNHUBPrRSplVgmXz0cCCBZdE8ad2Oqg5/jn6VRPrUF5R3i/UJAjw6mtpqx6MEx1V5wv94uQwK0/9YLLlwORQPgEqep2yCciIiIgotvr06ROo4Pzuu+/www8/AAD+/Oc/Y8KECQCAOXPm4Pjjj8c///lPLF26FOvWrcN3332HV155BVOmTEFRUREefvhh2bFvueUWnHXWWQCA+fPno2/fvnjuueewbNkyrF27FosWLcJDDz2Enj174pVXXgnZ99xzz8XFF18MAFi8eDGGDBmC9957D6tXr8ZXX32F6667Dtdddx2A+n6uzz77rObjbAhjnU4n7rjjDgBAq1atMGrUKNV97HY7PvjgA9jtdlRXV+OMM87AZZddhg8//BCrV6/GypUr8fHHH+Ohhx7CCSecgOHDh2P9+vWa49DSqlUrvPXWWxAEAfv378fAgQNx00034eOPP8aaNWvw888/Y+7cubjnnnvQtWtXjB07Frt37w45Rr9+/QIB96pVqzBw4EDMmDEDq1evxpIlS3DTTTfhiiuuwMCBAyMeZ6xw4jCiaGqCIa1apaw5UEnbHGMhosRSC3H2VGn3xW5K/KKIRbucWHlQvTeW1y8G3qPUKm71tkFgbEbh7K2tCLltN0XyMVsE/G7AbI/OoIiIiEiX++67DwsWLAAAPPbYY/jiiy8gCAJmz56N2267DdOnT8f27dtx9913qx6jZcuWsmUmkwkfffQRrrzySnz44YfYunUrpk2bpntcb7/9NrxeL+bPn481a9bgsssuk21TVFSEhQsXom3btprHOu2009C+fXvs2bMH5eXlAIDJkycHevKqGTJkCL799ltMnDgRe/bswXvvvRfoZ6skOzs7/APTcMEFF2DBggW46qqrUFpaiunTp2P69OmK25pMJmRkZMiWP/vss9i3bx/mzZuHzZs34+qrrw5Z37lzZ8yePRtdu3Zt1FijjZW0RNEUpt1BKjKpVdKy3QFRwqgFhtvKvY3uvZoqFv/hxNubtPt6zd5y7NKmEmfo+3PDs8RKWooGt09+gkTa7kAv0cuWB0RERPE2aNCgQMXr4sWLA5NKWa1WvPjii/jll18wdepU9O3bFzk5OTCbzcjJycGJJ56Ia6+9Fh9++CF+++03xWOnp6djzpw5WLJkCS6//HJ07twZaWlpsNlsaN++PcaNG4eXX345UN0azOFwYN68efj4449xwQUXoKioCDabDS1atMDgwYPx5JNPYsuWLTjxxBPDPkZBEHDJJZeELNNqdRBsyJAh2LZtG6ZPn45zzz03MA6Hw4H27dvj7LPPxj/+8Q9s3rwZV1xxha5jahk3bhx27tyJZ555BmeccQZatWoFq9WKtLQ0dO7cGWPHjsWzzz6LXbt2YeTIkbL9rVYr5s6di3feeQfDhw9HTk4O0tPT0atXL9x7771YvXo1unTp0uhxRhsraYmiSGyClbRqHJb6lLZHng0AJzohiietHHZPlRedc5r+JFdvbgw/8cLHO2pxaa/6nlYfbFXe/rR2Dmwuk/f3ktLbVoGapw1lB2TL8uzp2juZbPVVsxKiz/jEJERERBTq9NNPN9xCqKG3q5K+ffviv//9b6PGNHLkSMVAUY9x48Zh3Lhxjbp/AHj66afx9NNPR7Sv3W7HjTfeiBtvvNHwvpG0c8rOzsYdd9yhGF7rddlllylWHzdmXLHEGjiiaNKopM0a8GQcBxJ7aUdLaPvmW9Et99j5nik95ZcaUGrqlM3zeMlK67OEL7k+ZySNPVXKJ9FGtnfo2r/pXSdB0eT0yYP+njnySx6DtRgxO1bDISIiIqIUxG/gRNGkUElrLRiMrJOehL1NZGfMksEpRXb8uE95JktBEPDQkBZYc8iFLJsJvfP1zZROye+0dg7sCrqcvE9+06/OTBVaOWySnQxOeiZBQI7dhAqXdgzL55W0uP2h//6nW6yBWYXVODqej7yzv0Lp4jNjOTQiIiIiShEMaYmiSSGkzTt7MUy2xjXOTrRw4YTVLGBwG33VaJQ6eKlF8mombWfjJs0soCLMNnzKSYs0pG1hC9Pq4Chr3okKS/lqIyIiImqO+B2cKIpEpXYHgvZMiamAgVDzJC0C4+sgeYgaIc6GI27sqgzfYzVZ+UURG0rc+KNSPhFTrJi0Cx4BAD7+AZAG6cRhNpPOf/sVqm39rhJ4K39H3R/z4as7HI3hEREREVEKYCUtURQ5f39DtkwQUv9ciI/X+TZL0uiAr4LkofUnOWtLDWZtqcFVvTNxTmd91XzJQhRFPLmiHL+WeCAAuKZPJs7uGPvHcNgZftLHH/a5MLV/zIdCKeqP6rKQ2zZz5CdoSxacEPjZ5ChE/rnLYclKvtmHiYiIiCi6Uj89Ikoi1b88Jl/YBCppW6en/mMg40ySCi9m9clDT1HnjKB+wqliS5kHv5bUVwGLAF7foPwYKt3RncbLo/NwB2vDh7nUPG2uOBRyW/f7ZZjPCP66w3DueD/CURERERFRKmFISxRjgjn1J9Ia3i603+ywInuCRkKJxNntk0dT/V2sL9HXpuFQBGFpNN63dlWkbhsJiq1WaVkht7dW6mtTYLLlwJLTS3Ob2i3TIx4XEREREaUOhrREFFanbCv+0j8bffKtGNXegWv7ZIXfiVKetE+nyFLapNF0fxWxe2DZttCPPCe3Nh7aWvU0r6VmySvpST+mXU/d+7Y4Y77mekFgdzIiIiKi5oCf+ohIl2FFDgwrcoTfkJoM9qRNXk03pI0daYuIbJvxwNXCkJZUePyh1d25tjTd+1pyeiCt6+Vwbn9Hcb1gzWjU2IiIiIgoNbCSloiIFEknHWcwmDz8TTQyj+Wjkk6AaJa+wHWw8FMTqZCGtFaT0V7u6i8uwcKQloiIiKg54NcNIiJSJC0a3F7hTcxASEZvYD5p4SEs2lkr2VfEvG01uPGrEjz0U1lE/V3j6bdSt2xZJCcMdkhev+YIPgGxkpbUrDlSHHLbcEgrqL8gPSUrIfpckQyLiIiIiFIIQ1oiIlKkFEeVOJM70GsujGSUMzZVwxt0rf+eKh9mb61BucuPzaUefLitJvoDjJC0JQEAPPxTuWxZtcf41GnSkLbWYzzpPVDDExWkbMn+30NuWzRCV0VhKruduz4wOiQiIiIiSjEMaYliyFowONFDIIqYoBDTfrqjVmFLijelMFPLb6WewM+zt1aHrFu6ty4aQ4qKarfyA/NJHrCRMatNeLds37FjnNTSputYkbRIoOYh354ecrvc7TS0v7d8k/b60l8Nj4mIiIiIUgtDWqIoEqxZIbfTu1+XoJEQNZ5SHuU1XsBIMdCY3q1uX/L2s1XLQKWhtNOr/zF4/cpBbXDgesMJ2bqOJe1rS9TA5Qu9ymBy5xMN7W9rNVxzvd9TYXRIRERERJRiGNISRZHJnh96O611gkZC1HgsGkxeatWhalKllaraMKW5ssdAKbHHLyqeXEi3Hru3XLsJ759TGPZYSZxvU4LV+TwhtztktjC0vyXrOM31opshLREREVFTx5CWKIpEv6RfoWB0dmei5KH0DwSD2+RgtKAzOKRN5pxRLUz2Sx6wkZa0Xj/gUkhX0yyhd2Y2CWiXqf2ezUpyUuL1++AVQ18cDrPF2EEs6ZqrRU+l0WERERERUYox+AmSiJT46g7j8LzuEN3lIcsFE//EKHUpBbKL/3DiQI0PvfOtqPGIGNHOgfZZfJ3Hm4Gr/QEApqAa1WS6Yt/nF7H4DyfKXH6M6pCmehJg0S4nLuyWEbjtMVDS6vGLOFInT1elIS0AWMKUHHuNNgOmJmVPlRdf73Yiw2rCuZ3TkG6tP5Xl8sknlDMa0gphQlo/K2mJiIiImjx+syaKgkOzWiqvYCUtpTC1uOrXEjd+LXEDAD7fVYv/nVGAHDsvzIinBduNTeCWrBXQM7fU4JOjk9F9tduJrjnKH0s+2FqDHi2s6FNQP8FXnYGQ1u0X8cCPZbLlSiGtOczz9NVuJ87prB2mUdNU6/HjoZ/KUOOpf+39Xu7B30/OBQB8uW+bbHuH2Wro+CZLhuZ6kT1piYiIiJo8fqsmaiRvxRb1lQxpKYWZdCR7Hj+wYHtNHEZDwfIdxv75TtaetA0BLQDUeET8WuJR3fb5dccu9y5M0//491X7FJdbFZ4UpeA22F6VY1HTt77EHQhoAWDdYXegsnrJ/t9l22dZ7cbuwJymuZqVtERERERNH0Naokby1x1SXScILFan1GXR+S/E9gr5pb4UWxlWY/98N4Wr9Mtdx1oWdM5Rr1KUVsPWqDSwVQquTylyRDQ2avoq3fI/orqjfUfK3U7ZukyDIa0193jN9Zw4jIiIiIwSBAGCIODhhx9O9FBIJyZIRI0kihozybCSllKYWW/5ZRMIAJs6I+0BUoFb4/FYTQJ8QetdKsWvZoVK8VEd0pDvMOHXEjcW7pQHb9R82RT+Oa/zicgEcLiuOmT5A/3ONH4HZpvmatFbDdHvg2Di5woiIiI9vv32W4wcOVK23Gw2Izs7Gzk5OWjfvj1OOukknHrqqRg3bhxsNu1/j4lijZW0RI2lNQsPv0xRCgtz5TcllLHQ1RU001hTiGtdmiFt6G21QFftHMSJLe24oncWRrVnVS0dY1NoWNzwOjxcF9rypUNmiwjuIfxHctFTGXYbIiIi0ubz+VBWVoZdu3bh+++/x3/+8x9cdNFFaNeuHR5//HF4vbxKkBKHlbREOvnqDsNfux+W3OMllSzqYYHASlpKYUo9O5UkIvSr84rYWelB2wwLsjlpWVjBoWaFS6P6P0VohrRmAQjqHapWRRyu5XJTaBFB0aP0LtPQ7mB71ZGQ5YV27UnAlAhC+Pcxv6cSJnskATAREVHzdtNNN+Hmm28O3K6urkZZWRl+/fVXfP311/jqq69w+PBhPPDAA/jkk0/w6aeforCwMIEjpuaKIS2RDq4D36Hs63EQPZWwtjwF+aO/gdBwaaKocaaNPWkphentSRtvB2q8eOincpS7/DALwF0Dc9C/pcFJepqZ4ur696lfS9xNYvKrZftcquvK6kJD6A+2Kk9sp1AYGUItyi6t8yHPwRNwzY3S62FvtReVvkOynrSFjkzjd6AjpPWWroMls6PxYxMRETVzLVu2RJ8+fWTLzznnHNxzzz3YtGkTLrvsMqxduxYrVqzAhAkTsGTJErY/oLhL0q/gRMmleu0DgcsMPYd+RN0fcwPrRJ96WAATQ1pKXXoraeNtyZ66wCRSPhH4aHttgkcUf0aLPP+orA9pX/1V+XJpUattS4zE6j71HjXLpv0RKNOq/Pr/jL1qmyWll+svh914btP3suWFDuOVtHp62Nft+tD4cYmIiCis3r17Y9myZejfvz8AYNmyZfjf//6X4FFRc8SQlkgH98HvQm7XbHw28LPoq1PcR7BkwpLVNabjIoql1hn6qgU9cb4u/OvdoSHZ5lJPXO8/FRWk1f8uDzmV60MTMa+Y0bsc2uZYtXSOTTlA/euAbN3HG9clXXP9WJX1n+xoficFSDmkzbSacMQlr9TunJVn+PiCnpO6YSYXIyIiosilpaXhnXfegXC0J9YzzzwDj0f5e8aBAwdw3333YeDAgcjLy4Pdbkf79u0xceJEfPXVV5r3U1ZWhjfffBOXXXYZevfujczMTNhsNrRu3RqjR4/GK6+8ArfbrWvM77//Pk4//XS0aNECmZmZ6NOnDx566CGUl5cbeuyUPFjmRxQBMajFgVJIay0YjKwBj0Mw8xJsSl0Wk4D+hTasPaz9IUFtYqZYYa9Q43xhqlY9fhGWOFdO+wy2xs0N6j2s9BrolmvBya31vedO6ZkRtmVBnsOM8V3TsaAZVmqTnNLL1S8CPsmL8bz2x8MSo0lDRS+ruImIiGLp+OOPx1lnnYXFixdj3759WLlyJU455ZSQbd577z3ceOONqKkJPVG7d+9ezJkzB3PmzMG1116L6dOnw2KRR279+/fHH3/8IVt+8OBBLF68GIsXL8b06dPx2WefoXXr1orj9Hq9mDJlCubMmROyfOPGjdi4cSPefffdsGExJSdW0hJFwh90Rk3S7sBaMBgFY5fDXnRmnAdFFH0nFIav3Ip3SEvKVX1awgWi3gTMJRYuOJYKzsKkw31oSC4eH5YXqHzQkmUTML6rvsvRR3VIMzBCasqU2nP4IcIvqQkf0bpLxPdhye2tPQYfQ1oiIqJYO/PMY9/jv/8+tK3RBx98gMsvvxw1NTXo0qULnn32WXz++edYvXo15s6dizFjxgAAXn/9ddx9992Kx/f5fBg8eDAee+wxfPrpp1i5ciWWLVuGd999F3/6058AAGvXrsXkyZNVx3jnnXcGAtoePXrg9ddfx8qVK/HVV1/hxhtvxK5duzBp0qRGPQ+UGKykJYqAGBTSSitpBbMj3sMhihk9tZWuBAR8ZEy4HD3eLSsA4y0WgjeXDtdIEbBJR5DbwBFudjFqNpRern4R8Imhb4BGXl8y4frSspKWiKjJE0U/RL/yHAJNkWDKhqBj8sx4GjBgQODnrVu3Bn4uKSnBDTfcAFEUcc011+Dll18OqZQdMGAALrjgAtx333144okn8Nxzz+HGG29Ejx49Qo6/ZMkSdOvWTXa/p5xyCi699FK8+eabuOaaa7B06VJ8/fXXGDVqVMh269evx/PPPx+4z6VLlyIz89ikpaNGjcIpp5yCK6+8snFPBCUEQ1qiSASFtM6d74euY4sDakL0hF8VLj92VnjQOcca+wGpmLGxClN6ZsLGUE1RuKrVRFTSfvS7sTYCi/9w4tKemXBYBIWQVv/v3cjXAIeFr6fmrMbjx5sbq/Hz/jq4Ff5GDtb44Jf8bZkb80VT0P5Y7tr3BUo+G4ack/8La8FJkd8PERElLdFfiaoDFyZ6GHGT1XouBHNuoocRIj8/P/BzWVlZ4OeXXnoJFRUVaNu2LV588UXFVgYA8Mgjj+Ctt95CcXEx3n77bfzjH/8IWa8U0Aa7+uqr8d///hfr1q3DRx99JAtpp0+fDr+//oPJK6+8EhLQNrjiiiswa9YsLFq0SPvBUtJJrlMWRCmioZLW7yqF59CPIetYSUtNid7w6/l18TvjrzSiRbuc+L5YeRI/Ch/Clse5HLrW48fHEUzA9dXRSeOkl54bq6TVv62Nn5KatU+21+L7YuWAFgA2lXqiWkkrhKukBeA59CPKlk5WbL9AREREjRccelZVVQV+/vjjjwEAY8eOhd2uXphlsVgwdOhQAMBPP/2keV+iKOLAgQPYunUrNmzYEPivbdu2AIBffvlFtk9Dr9m+ffvipJPUT9pec801mvdNyYmVtESRODpxmHPXHNkqhrTUlEirxNQUV/vgTcDkU8FeWV/VbHuItrCbUKYRtIarpF38Ry26t8iJ9rBU/VaqPFNuOO/8Vo2xXdJlPWljFdLq6XFLTdd8HZPGSd8jGxPSmtLbAEfCb+er+h2itwaCVV45Q0RERI0THMxmZ2cDqO8ju27dOgDAyy+/jJdfflnXsQ4cOKC4fOHChXjppZfw3XffhdyfVElJSchtl8uFbdu2AQAGDRqked8nn3yyrjFScmGNCFEkGr6U+b0K69igk5qOnnnhJw5rELe2pszNZMZ01g6nPWHeliriXEnrbeSLRdbuIOjnPIf2Rxuj5xGGtgmtlODLj4JJT4A0pt1BxvF3AuZjf8vmnJ6q23ISMSIiotgIDkbz8vIAAKWlpfB6Fb77h1FbG3rCVxRFXHfddRg7diwWLlyoGdACgNMZ+u99WVlZ4Gqali1bau7bqlUrw+OlxGMlLVFE6gMNU5r8jdHvqYj3YIhixh7+6tuA+ooyRljxII04C9PMeGt0Ia784rDi9p4ws3TVeeN76XRjK1SlhcHB1YvtMi0orXOr7mu00nFsl3T8tN8VuG3h6W0KEs1KWnvr09Bq0n54Sn+BOb0NRF8dShacoLyxj+1diIiaIsGUjazWcxM9jLgRTNmJHoLM2rVrAz83TPrl8/kCy6677jrcdtttuo5ls4UWvLzxxht4/fXXAQAnnngipk2bhsGDB6Nt27ZIT0+H2Vz/5euKK67AO++8o9neiFd8NU0MaYkicfTN0mSV/6MiuhnSUvMUt0pakhO0J7lyh/nl1IUJcaOtMR8pRVGUhdTB1bHhQlSj922VlN56/fVj4AdjAgC/5OoZcyNfFyZbDuytTwMA+GqVL5EEAJEhLRFRkyQIpqSbSKu5+fLLLwM/n3rqqQCOVdQC9Z8D+/TpE9GxX331VQDAcccdhx9//BFpacpXw5WWliouz83NDfx88OBBzfsKt56SE+tBiCLgd9fP8qh0ZsvPkJaaqXhdMF/jYRpsVLiJw+JfSRv5vnO21WgeL1w7A6PtDqyST0oigDhn2k2eKIq45/tSTFp4CF/sMj6hXCJ5pZW0UbyawOTIV10netnugIiIKNo2bNiAr7/+GgDQvn17DBw4EEB9Rezxxx8PAFi2bFnEx9+4cSMA4LzzzlMNaEVRxJo1axTXORwOdOvWDQCwcuVKzfsKt56SE0NaokiI9Zc7OLe9Ll/lLo/zYIiSQzwqaTeXql/G3pwYndjdHa7dQQqljnO3yUO84OA1XCWj8ZBWvoOHZeNRNfmzw9hVWd/n7Y2N1fi+OHWqREvrQvvTmU3R+2gtmKyq61hJS0REFF1OpxNXXHFFoBDrzjvvhMVy7OLz8847DwCwefNmfPHFFxHdR0Nf25oaedFBgwULFmD//v2q688880wAwPr160NaM0i98cYbEY2REoshLVGEfM6D8FZukS23tzsnAaMhig2LgUQrHrnVq+u1m+s3V+F+S+Em6sq1x/fjQLQbBQT3Ae2aq93JyWjPUGklLQB4fPJlFD0vrKtM9BB0K5OGtI2YOMwIhrRERETRs2nTJpx66qmB0HPEiBG46aabQra57bbbkJmZCQC4+uqrA1WxahYuXIhff/01ZFlDFewnn3yi2NJg+/btuOWWWzSPe+ONNwbabt1www2Kge97772Hzz77TPM4lJwY0hJFSPRUw2TLlS3P6HNX/AdDFCP5DhMcZn2hlnQCnVjYW810LBLhfjN9C2xhtoiuqIe0QT+P7qh86VhgW4N3rhTqso6WGnhEV8jtbKs9qsfP7Pegyhq+ComIiPQ6dOgQNmzYEPjv559/xueff47/+7//w+jRo9GnT59Ai4EhQ4bgww8/hNUaekVLq1at8NZbb0EQBOzfvx8DBw7ETTfdhI8//hhr1qzBzz//jLlz5+Kee+5B165dMXbsWOzevTvkGFdccQUAYN++fRg6dCjeeOMNrFixAt999x0efvhhnHTSSSgtLcWAAQNUH0u/fv0CQe6qVaswcOBAzJgxA6tXr8aSJUtw00034Yorrgi0aqDUwonDiCLl90CUTBiS1vVyWHN7J2hARNEnCAKeOz0PL6+vwppD2q0GeAV48mr41ZgF5X6q8f7VRfv+gnNUh8WEEwttWHdY+fVqNKRVKrzVmmmXmhe3GFrR2sKWHtXjZ574EMwZ7VHx4/WhK/gaJCIi0u2ll17CSy+9pLlNYWEhpk2bhrvvvjukzUGwCy64AAsWLMBVV12F0tJSTJ8+HdOnT1fc1mQyISMjI2TZbbfdhi+//BKLFy/G1q1bce2114asT0tLw9tvv42FCxeq9qUFgGeffRb79u3DvHnzsHnzZlx99dUh6zt37ozZs2eja9eumo+Zkg8raYkiJIreQG/aBrZWwxM0GqLYyXWYcc+gXIzroh0+MDNInHC5Y8PvRi1I98Vr1jdojyNS0uC1baZZfVuDx1YKaeP8dFGS8os+eEVPyLIWdu1KbqMEwYT07tfBZC+I6nGJiIiaK5PJhJycHHTo0AHDhw/HtGnTMHfuXOzduxf33nuvakDbYNy4cdi5cyeeeeYZnHHGGWjVqhWsVivS0tLQuXNnjB07Fs8++yx27dqFkSNHhuxrtVqxcOFC/Pe//8XAgQORnp6OtLQ0HHfccfjzn/+MNWvW4OKLLw77GKxWK+bOnYt33nkHw4cPR05ODtLT09GrVy/ce++9WL16Nbp06dKo54kSg5W0RLoIkNV++Vzw10oaegvqwQBRqgsXBEYSXImiiD+qvIAItM6wwGGJ9oXwyc8vijhU60Nhmhlmo2WeOtV4RLh9omoFa7yroKPdGkPakkCrl7JgsCet0tY8IdH06XmNuiWtDgCg2KT/wwAAn45JREFUhS26IW2A7HXLFyEREZGW008/PWZXP2VnZ+OOO+7AHXfcYXhfi8WCqVOnYurUqarbzJgxAzNmzAh7rMsuuwyXXXaZ6npe/ZV6GNIS6SJ/cyv57BTAL7mcliEtNWHhsq1FO2tx1fFZuo9X6/Hj6sUlIcvuOzkXJxRG3h+13OWP+yRYjVFa58Njy8uxr8aHXLsJ9w/ORfus8P80G/24VecTcfnnh1XXf7nbiev66v/dNVa0Py5KM1mtrN9wuwOFZfy4Gz07KjzhN4ozt0/EFRp/Lw08fvnkXbmxCmml931kNextRobfkIiIiIhSRup8kyVKNtKAFgDiNKszUSKEy7YW7XIaOt5P++VVaP+3qlx1ez1ngr/ZY2wMibZkTx321dS3TSl3+fHJjtqEjSUeE78du6/oHk/6zlvpVr8D4xOHyZexKCF63t9cneghyKw84NIVxEsraR1mCxwWq8rWjRX6Qqzd/L8Y3Q8RERERJQoTJaIoElhJS01YhTu6nTi/L5ZXoXk07kJrXYPlCsFvMpu3rSbk9tK98ufEiPFdI5+0qM4bv+RRT8hpN+tPU6VB6hKNsH7jEWOVm0rtEZjRRs/6kuSrpH1XZ3Dsl/SlTzPHKqAF/O6y0AWmyK84ICIiIqLkxJCWKJoY0lITNrSNParH8xksp9Szda2eJDeJ+KKc9o3rkg5rhP+yx/Op0/Orf3BIru7jSUNarWrZQa2MhVtsd0DJIGfwCyG3fTV72GeOiIiIqIlhSEsUhqEvQQxpqQkzUtmoh9FMUM/l+HXRTj1TREO1Z5bNhHfPaYkHBucaPoYnjrOH+XXEnDk2/R9RpBOHaclzGHufVm530DxfZ81FMv567W3/FLrA54ToOpKYwRARERFRTDCkJYom9qSlJsxitJlnlOnJEJ1xvGQ/mRnILAPccQy49fwuzQbeTqUPV+ulaonC23Qc82xKavF7IZjSi2SfMXw1e+J2/0REREQUe+GnkCZq9vR/CWNPWmrK9IRb3+114us9dch3mHBZr8yQqsVylx83flUCADi5td1w0KWnui3Fuh1ELNxzEUmcHslzV+ny4/qjv9PBre24fUC2Yg9XKT2/SyNZqjSUFSBA7b3bavBkg2IlreS21y/i/c3V2FbmQb+WdlxwXDr2Vvswe0s1rCYBU3pmomV6cv77sLXMg3nbapBpq/+bzbEJ+HK3E+9vroHTK2JYkR1X9M5Crj36JyG1+iDXeUU4LPE/MfR7uQdlLn1/DEe8+2M8mmMEkwWmtCL4a/cGlpV9ezEKz98IwRzdVjRERERElBgMaYmiiSEtNWEWHeHb/36pCvxc5fbjvsEtArcbAloAWHHA+ARf+2t84TdKIaV10Xs80t9MJJW028o96Jht7GPB9UG/058PuLDigAuD2zjC7qcnnzcZCFNlIW0UK2kVe9JKHsBH22uxcGf9ZGVby71oYTdh7rYaHKmrD/sO1frwxKl5xu44Dtw+EU+sKA9UoNd4/DinUzpe33Bs4qxl+1xw+UTcNTA36vc/7Vv1y/Xf31yNa/pkRf0+tXj9Ip74uVzXtn7Rh1+rv43peKTMmR1CQlpf1XZUr38KWSc+FNdxEBEREVFs8NpsonCMNKfze2M3DqIEyzbQIxQAfo1w1navSont98V1ER0vWX30e23Mjh1J/eHrG6rCbxTGs2sqdW0Xroq6S44FRlogS6t3O2uEzUbbdgiCIHs+pZ0hPtke+rt8ZX1VIKAFgO0V3qSc1O6H4rqQFiFrDrkx/Vf573DVQXdM7l+rYvWLP5wxuU8tqw+6UKOzZUq1r1y2LM+eHuURhbJkd5ct8xz+Oab3SURERETxw5CWKIosLY5P9BCIYiY7Bpc7K1EL8A47WUnbIBadMOPZZ1VrErg0i4Crj8/S7CsbbErPDNmyFg7116rRdgcAYJNcJCGdZE3PhHXJOKddhVsekgaHy81NjUf/L8kryk9CTes9PJrDkUnvcZN8odh8f19ERERETQ3bHRBFkWCJ76WZRE1Rc5mUKZYP0xRJv4M4Uvod33tyDsyCgKJMM/IcZt0TmY3vKg9ptUQycZjVJMAVNJ54TrIWS17meyGM5Pc+UX7lzK29T43iaORshScjo/ftqNn075jeDxERERHpIxq58loHhrREYRmYOMySFsNxEDUP9VWWyR0yUuNI31X75FvRrzB08qMICl51iaySVgA8jQtpkzHW9UX5Q2WqM/LS8CM0pE0zGTtZEClTetu43A8REUWf2WyG1+uFz+eD3++HycQLm4lSmc/ng89Xf3Wk2Ryd+Yn4rkAEQPR74Nw1B3V7Pm3UmRDBzJCWKJjWZe1qvvjDicO1jWgFkCLBk1YeVFrnw5d/OPHT/jqVQFD7MTY239x0xI0fiutQp1BqWe7yY8luJ9YeMj75WwNpJa1S5W+sQtpIKmltksFsKvXg+711qFZoF6Bm9cHIny89Sut8+O/aCnywpRo+neXoRi7vD7anyovv99ZhW5kHV39xGJMXHsK+6tTvyS7tbaxFWklrERJT9yD6Y9MvmIiIos/hqJ9cVRRFVFdXh9maiJJdeXl54Of09OjMTcBKWiIAZUvOh2vvZwCA9J63ImfI80FrDXyJNVmjOzCiFOcX68M2I5WHs7bU4JMdtXjq1Dy0TDd+RjJV6nBXqkzGVO7y428/lKHi6KRKg1rZcOfAXM1jSbOlxnQ7WLSzFjM21X9xaJtpxj+H58F8NKSs9vhx37JSlDgbd528NEdXCmRj1bLB6MRhgLwn7YKjE4XlO0z414g8XceY/msVajwixnaJ/uRSR5w+3LzkSOD2R9tr8f6Ylpr7iKKIxRFMzrXpiBv/WFEua5Vw+9JS/N/wPHTUmLQt2TWm3YE5QSGt+8A3CblfIiIyLjs7GxUVFQCAAwcOAAAyMzNZUUuUQkRRhMvlQmVlJY4cOfb5u0WLFlE5fup+kiaKEm/l9kBACwC1m19A9qB/QTDbDB/LSBUOUXPQUNC3tUw+yY6WGo+I74vrcGG3Y5cQZ9n0fYBtCIZT1eqDrkBAC9SHuTUePzKs+j/AN+bhNwS0AFBc7cPKgy4MaeMIjK2xAS0A+CUnv6L9+2qXaQGgXLlqieC+1ApTj9T58cyqCt3Heee36piEtHN/rwm57ROB4mov2maqf8wrrjZWrV5a50Oew4zXN1Sp9rJdsL0Gf+mfY+i4ycRIKwyfGPr8mRCdS9zCEuW/N9FbC8ES/dcVERFFV0ZGBtLS0uB0OuHz+VBcXAxBEKJ2mTQRxZ7P55NduZmTkwO73a6yhzEMaanZ81Zsli3zu47AnN6m/obOS6cdHS+I5rCIktKNfbPw8voq3ds39Jet9Rq/rHpHRWiw2y3XiqV768Lu5xNT+x+30jp5AubyicgIKtQP97ZkjiCIPK2tQ3H5piOeQEi7oyI6l7RLQ0+14Q5sZcMqlYpjALj1xGzF5cPbOjB7a43iukgqdPdqBJobjhg7ARELSn8XxdU+zZD2oMGWIvuq60Naredi2T4X/tLf0GGTSpbNyGtD+kcYnzND1rx+8pEwpCUiSgmCIKBDhw7YvXs3nM76q1lEUYTXm/otg4iaq8LCQuTn50fteKn8PZYoOgT5mUu/q+RYSKuDyVGInGFvRHNURElpZHsH/ABe1RnUNnQ5iKQ3baStZVN54jGzAMV+ouGeC+mjjSSILEhTrtQN7uEarWdV+njUhntLv2xcvbhE9TinFimfsS6MoE2GlrM7pkXUGiBelF4f4XozG/3zckZwoiWcbJuASrfycdtkxL+qSM97Tp7DhH4FNry5LfbjUWLNHyhbJvr55Z6IKFWYTCZ07NgRNTU1qKqqClTVElFqMJlMsNlsyMjIQGZmJmw241dga2FIS82e6JU3bffXHQ7eIuwxck55FSZb6l7iSaSXIAg4s0Oa7pDWL4b+vzH0Br0G2t8mHYtJQDSysEjaB3hULmE3ByWo0WpLIL0rtVA53WrCuC7p+GRHreJ6rRYzvfKs+K00OlWu9khKk+NI6e8r3MvI6EmQWrUeB42g9b6gd/KzaNJzjxOOS8ewIoc8pI3XS8Sk8NFdZEhLRJRKBEFAZmYmMjMzEz0UIkoy7FBNzZ7oLpctCw1pwzPZ9U0cQ9TcNASmkVbFNnD5RN3hqz/6WVLcWEyAV6mSNsxtKXME/7p7/aJi9aU5JpW0ofejddxIg2G13SJpHR5JH9t4Uno9NPZvTqrGE50DiqII19E/Zq0cNgaFu2Hpec4ECCrbxelFojBBGStpiYiIiJoGVtJSs+dXCGlrt76GtM6T6m/o+NYmWJX7IhI1dyVOH5xeP/67rtLwvqsPuTFp4SHD+0XSWiFZ1HhELNolv6y+zmBiFUm7A69fuQrZEpSSRmtyxPUloRWuWkFstM8mR/IIzCk4E92GI24MLVLuMwwYb3fw1qZqvLVJfuWJEbsqPLjnhzJd2yaiklYPQVB+7uL1ChEUWjSJriNAVqc4jYCIiIiIYoWVtNTsiW75zNzu/V+F7ecXTLBkhN+IqAlJ01laOP/3Gny8XflS9VhJhXYHvxx2Gdr+5wPGto/k6nyvX1Ss4g0+VrSyyi1loSFtjVqvBchbI+i1SaXVgSeC8M+SxJ+W1E5KfLVbe5I9I//GRYvegBZITCWtnteagPqQVjQcc0eJQruD2u1vJWAgRERERBRtSfy1gyg+RL9y+CF69M9gb87sFKXREKWGcV30zSS+6qAbS/Zoh0WN0TZTYeK/FAhpn1ghPzmk5YOtNYa21xOmSidm8vjDt5SIVbXgryXqvWO1AtxIbC0z3qfWksSVtAdqIptsJNn/TGLQAje8ME+KxQQMbWNHllX+enDEq2+xQiUt2O6AiIiIqElgSEukUk3kdx1p2EBz9+yh0yEoTeRB1ISN7piGrjmJf91f2Vs+4YIvhdsdREoaD4Vrd5BuEXBya3vIMo8/fHAXLqvMd0T/Y4UQtwvJ1SVzT9pI8+NY/JW0UzhpEqlE/B1rVcc6zAKu7J2JdKsJgiCgteQkR5Q6gYQlCAIsuX1Clhk5qUxEREREySvx37CJkpTfdQTI6qy4rmDcWpizusBkYy9aap4ybSY8PLQFLv/c2CR70dS/0Ibj822y5alQSRtr4Yr63hxdiPm/h1bnqoViwc9nuCAqFq0moh1+RTLESCZii5dI+g8DiElKG83qV5+/viVDtPog66GWC//5hCyMbJ8WsqxjtgU4EIdBKXB0noTqtRsCt/0e4z2/iYiIiCj5JPHXDqJ4Uf5WJmpU0gq2bAa01Owl+gpwQVAeQ3MIacM9RD1XXlsk4ZfHr3zg4EXhqlpjUf0Y7ZdZJEOUPlfJJNKRxeLPxB3FPz4R8f9bVru7RL/XSZkkk5WykpaIiIioaWAlLTV7nrL1isvdJatgbztaZa8k+8ZGlACJDi5MQn0VYcNEPg1SYeKwaJNmiHp+N9LJsH457MZDP8kndgqemMoV5smtcif/k58KlbQ/76/Ds2vqqyPNAvDaWQVItyoPItK/w+oo9/oFgNI6PyYtPAQAeP2sAmTajo1ZbYIzLT4R2FPpwWc7ncizm3BqWwc+21kLm1nABd0ykH30+GsPufDjPhc65VhwTqe0kOpiURTx9Z46bCn1YEArG4a2cYTch18U8fkuJ97aVK06DqWnOJFdVQRrVsht94FvcHBWK9jajEJG79tgKxys6zjOHbPg3DkL5vQiZPZ7AOb0NrEYLhERERHpxJCWmjXR54Z732LFddVr70dWv/sSMgM2USqI+DLrKGm4d5MQGsxGEgalgh0VHnTJseraVs/vRmkyrL3V8kmoluyuw8Tu9b1/P9lRG/a40b5EPRmKWONZSbu51B0IaIH61/bVi0sw+9yWittrvdprPX7VcPf1DeqhZDRc92UJZgWNuc5r/O+yxuPHgz+WB04OzN9+7PW3p8qLB4a0wB+VXjy1sn4ivu+K60PtP3U6NrHhsn0uvLq+6uj6OmQPMYW0SfnyD+2AFtBb0Ru/14g0pAUAf90h1O2cCdeej9FyYjFMthzNY7j2f4vy7y4J3PaU/YqCMT9EfaxEREREpB/bHVCz5i3fqLneV6fWbzMJUgOiZq7EWV8JKM0am2olbUPQBISv4pNWySpRye5kWgRNBmbXMS/UzkrtmeaVTnz1yVcPn9XebU8slPcj1iPbZvyjTzRfUuFOIry50Vh4qnW47RXav4tYEhH6u3ZGENIu/sOpWr294YgHXr+ItzeFXuovff6eXxfarzX47wgA3tDxfOfYk+vjsjmtleo60VsDT8mqsMeo+2NuyG3PoWUQ/Z5Gj42IiIiIIpdcnzqJ4kz0ObXXe2sRm859RNRYDdmNWVLl2FR70u4wELhpVdIObFUfbipV0iqxBm1n09Hsttaj/QtQWnuGZFKmYEoPxSwAk3tkaN7PuZ2Vj5luMX6SLZovqXBdBnaFCbmltMbmTfAfQ/DdeyIYy/4aeWV3MK9fxE6DQXS4Y0q1yTCjV15kJwRixVo4BJbcPqrrRV/4ind/3UGFhcaeGyIiIiKKLoa01KyJPrf2Bj6X8vJkuP6WKAmMbOcIv1GM9G9ZH5xIs8am2u4gWtpm1nc60ltJGzwZWDQyP6VfT+cc9e5LSu+2z5yWh85hWj/0aKG8PpJK62i+40cSVmrROpraXcWrjU/wc+2NoAVuuN+V2x/706iPn9ICjgiC/VgSTFbka7QmEH11YY8h+pXCbb53EhERESUSQ1pq3vzaIa3oVwlpiaheArOLhkv6pcWdTbXdQbSe6oa8SW8lbXC4pidfDLeN0mqt815Kq1pnhO+7YFZ5fL4Eh/jeKL9AtQJXtd9FvP5GGltJG64SOB6Vwpkq7TESHduabDmwtxujuE5UO8EcslHiWmEQERERkTJOHEZNhuj3wn1gKXy1xTBntIet1XAIJu2XuBgmpHX+PiOxUzgTJblE/nk0XIYvr6RNwGASzEhg1BBe6ulbC9Rffr/xiBu98qy6qpTDhaBKvx+t8Uc6CZlaZ4ZIKjrj2e7AKO1KWuW11e4oD0LF6kMuDGplh80sxKSS9kCND7UR9LqNBjEZqk5NduXlPhd8tQfgLV8PS96JMDsK5dso9J/1Vm2HtYV6GwUiIiIiii2GtNRklC+9BHV/fBi47eh8CVqMeF9zH2/Fb5rrazY+q7hcSHgNDVFySGTPS0sgpBUQHFUlulIy2TWEs1adlbQA8OjycgxsZdMVgM/YWI3+LVXCI0AxVNMKYpXW6Bm52sNLdDsMrYrSvVXGqxu1Ho5SyFnl9uPGr48Yvp9I/HdtJY7LteDRoS2wryb8YzMJoSG+L8wL7pHl5Y0cYfQk4lOBYFb+O/OUrkXl6rshukphcrRE/pgfYcnuGrKNq/hz2X4lC/oi76wvYG97dkzGS0RERETa2O6AmgRfzd6QgBYA6nbOhM+pMDFGEM+RNbEcFlGTd7A2cRPNeI4mUGbJv2RNNaPNtkUnBmpxdKZ6owWqqw66dVWBHqj1aYb3m47Ir2DQmo9MaZx6qmvV2jlkqVy+riXTGr0ITus5XLJHfTLLCpfyjlo5ptK6RTvDTyoVTb+Xe7GlzIMPt9aE3Vb6OohVkWzt0V+CO8V7owhm5Z7gtZv/B9FVCgDw1x1C9a+P6z5mzeYXojI2IiIiIjKOIS01Cb7qPxSX+50HNPcz2fMiu0NOHEYEAEjXO/tUDDRUJEpHkOK5i6qR7dMCP+t5iBd1S1dcfmrb+mAnK4a/O63wq04hectzqI8l0nfbTtkWxcnRTo9gsrsTCmwRjkJOq9L793L1atP9OipRpZSqhr/4Qz0IjpX9NT4ccoZP+KXBerhK2kiV1tWPpSbavSfizNZymK7tnL/PkC0zpbdT3NZX+XtjhkREREREjcCQlpoEX51yxazfXaG5n+ipisVwiJqNwrTE/TPSEOhIJ4hqqj1ppRXDIRSSzPFdMzC+azrSgmamv3tgztH2EIjpjPVa0Zf012MzITAmJZGeE8uwmvC3Qbnollvf2ckkAI8ObQGH3ma8QdQmIYuEVm9WrZeuWpsdreda6W8hmSvNpS/JSPrYGpHET4Uuad2uiXhftc8/IicUIyIiIkoY9qSlJsHvPKS4XPRUau8XcUjLSloiIDohx+iOaVh10IUjdcYSmYasTfrX2GR70hp8WDazgCk9MzGlZ6bi+ijmjjJGfgUds7U/ijRmmH0KbHi8IMIrJmJEs4+zxhOnFlYb7UmbiNpRvSdO6sPw2PeXbhhPYw6fDBfUCEJkJ8lE0a/++cjPkJaIiIgoUVhJS02CX6WSViukFUWRlbREjZXAPPRYJW3ocn+SX8EsRpgMBT+saGRXscyYRFH9cUqXhhtHMoRh0aTVZzWSX6uosZdSOJqIidO0xhhM2pM2Vt0IGsLfxjwT8td36rxQRW8N1B696PfEdzBEREREFMBKWkp5niNrUL3uYcV17kM/Iq3LlJBlorcOFT9eD+eOdxtxr6nzZYyoqWq4NNosSfGW7HFiWFvtvqOiKGLu77VY/IcTbTLMuLVfNgrTzbrv2+sX8e5v1fhpvwtdciy46YRsZNv1nfeMtGducCZUJplEKpJ3JK0WA4314E9lqHT5cUaHNEzpmaF9X2HG0dTebbX69Wq9NNSyVa3MVRrIbi3zwJWAuf5e31CtaztpT9r9NZENVhRFzcnlfFGopE01oijCX3cIh2a31tzOX7sXpV+eg9zT3ou8bz8RERERRYSVtJTyKpbforqudvP/ZMucO95tZEBLRA2ikXEcrPXBLi2h08F6NNCRXra/4YgnMHu7mj8qvZiztQYVLj82l3owd1v4meeDrS9xY9EuJ8pdfqw55Mbnu2p177u7KrLLiRue633V8v2r3MZ/E7GsUN1f40ONV8QnO2qx6UhoZZ40GAs3jFiGyYmw4oBLdZ1WaKhWjar1m5dW0r6+IbmvHvFEqaF0uKP4jr49JHnRfVR5Di1D2dfjdW3rKv4c1RueifGIiIiIiEiKIS2lPM/h5Ya295ZvVF1ncrTUd5AmFhoQRWp0x7RGH8NmFnBWBMfpnW8FABSkyStgD9RqV+DN2hIayn6zt87Qfb+yPjTsmvu7/pD2iI5Z7pU0BHjF1fLHFu7xKonXB4Avdzs114d7Nx3c2h5yuyhDf8VzMspzqD/zWuGi2kRv2pW0wduJ2FWZvP1GzQJQarAvtZpwWW/B0QkPfU1glsHswc/r2s5b8Rs8JT/rPq63fFOkQyIiIiKiCDGkpZQmisa/0Ik+9TDGVnRWY4ZD1Ox0yrHirA71AWu2TcDF3TMiOs5pbR3Ishk7+dE6o75jz4Tj0mXrPGEyyxqtxqA61Hoi3z/SnqANe3kV9o/ktFG8zjVJgzfp4w83gVnbTDNGdahvX2EzQXUitFQRcS6o1u5A530lexw5qUdk7x1Kwj3HDa/9JpDRIq3LFJjStFsYADDe20Fkb1oiIiKieGNISylN9Ojrcxeyj0/5UlNLi34w2QsaOySiZue6vll48+wC/O+MAvTOs2pu+49hLWTLRBHItJnwf8Mj63/YJceKDGto0hfusunGVtA1asKhCPdrCDe9CuemwgWdSuJ1PYC0AFQ23VKYgQiCgBv6ZuPVMwvw+tmFGCSprE1mN/TNwoh2of2RtV57mlWxass19xF1bafm5NZ2vHl2ga6/zb8PyjF+B0H6FtgatX+wcI+1YX2k/aGTicmeh5YX70XmCfdrbqd1Ujut65VI7zU1dHtOIEZEREQUd5w4jFKa6I0kpFWppBW9BibJYLsDomDp1vpzfuHCwgLFS73rk5LGnDW0mwXUBFW3esOFtI0MZ+Qzu+sXaT4cqKRVOEBkE4dFNg6jLJJfrNGetA30TsyWTDKtAqTtlrVee5FMHKYl+KUSyevOLNT/bbdXabUQrCjTgnSLgNoIq9Sj+XKsP6GhfsRjIW0TSGkBCCYzzFmdw2ylHtKaMzvK2z353I0fGBEREREZwpCWUproMTYJiuhzoW7nTOV1fiMhLRFFwqyQDDbEJFqzsYdjleR3W8s8OLGlHVvLPHhiRTnqvCIeO6UFurWwwh+F3pxuhbzji121OKtjWtiJriLNhUqO9rJVarUQyVPXmOfbiHKXH5ctOgSPHxjYyoZVB0PDn3iFxYlgEgSYJc/zIY3+wUYmATu2XH0vT1AiHMnLzhKYnC/8L8ksNO53Gc2XY2mdP3DiSEnDc9YU2h00EGy5musrNSZZBQQIptCrINwHlzZ+UERERERkSOqVpRAF8esIaT1lGwI/V66Ypr4hK2mJGi1chaq0qhA4FpQ0JuCxSHae+3stfjnswgM/lsHpFSECuP/HMhyu9WHO1hrlgzTSGxur8cGW8MeONCBeccAFr1/E27/JryAwRfCeFK93sd1VPniOhtrSgBaIX1icCIIg7yG8+pBbNVjVqtBWW6P1Jxc8oV0kvZClVdBazILy37deeoJgve7/sQx+UUStR7l6NFBJG515ypKCydqIdhOCAJjk7SY8R9ZFfkwiIiIiMowhLaU00Rt+RnXXvsWBn2u3TFfdzpLdTd/kGwAES+NntCdqiqS9YaVsCilO77z6cMDaiJS2SqG09YkVFbJlc7bVYNEuZ8T3AwBOpaawR83fHv49SYlG0V+I74uV27W0zzYbvk8jAVwspUpEG0kAaQLwh0Iof6BGuZpWerIhmHqwq28skVRwK/1dqbFbhEYFrY7GJLwSTq+IXw+78Xu58gkRve0O2mcZ/7tKFJOjMOJ9BUsGBFu2bHnw5yciIiIiir0k+YpGFCFRR0WaWg9aibRu18LWchjMGR3DbmuyNW6CFKKmqkOWdhcdi0nANcdnBm7n2ASc1bF+YiWHjr6XDbrkhN5PpVtfArWtzANnhD0zG2hktLooPc7JPTIVtpQrrlYO9/pFMOmSSRBwalHiJ+FKlZD26uOzDO8jCIBbobxcpcAzTEirvFzvq1nr0v7xXdMVl2cEnT04p5P6yckBLW1Is5girobPd5hQmBbdj6QldX64VEr7G54LrefEJADX9jH+O08US4s+Ee0nWNLhaDcW9tany9aJ3thcdUBEREREytiTllKbxmzFgU18Ll2HSut0EQAg/9yf4Nw5E67iL+BWrCJJlUiBKP60KumOy63/J2d0p3S0TDfjQI0PQ9vY4YigpLMoI7TCrV+hDb8cTo2JbqQVkb3yrOico++fY7VqykhbBvz5hGz0KajD9F+N9fduUJRhxgmFNmw64sHuqsjaOKRKt4OzOqahIM2E74vrsGyfvn9XBEG5BYioEq1qtSRQbXegM6XVCiTtKlWsvfKO9Sm9oncmuuZa8cK6SgDA5b0yYRLq9x1WVH+iJdJi2P87LS8mbS+krSYaNDzPSpW0T57aAltKPejewoquuVbZ+mNC9xUS/NlAEEzI7Pcgqn95VNf2lhYnwNFpIhwdxsOS2xMAYG05DJ5DywLbiP7UeE8lIiIiaioY0lJqE0OrykzpRbC1Hom6He8d28TglwxzehtkHv9XZB7/Vxz+6Hh4yzeFrA83OQcRKbMFldn1b6m/gvOEAht+LQn9O5ZWIsbzspDGTjYk7YOZ5zDBojOgUqritTXiwVvNAka2T4s4pP336fkAgHd/q444pE2licP6t7Qj02rSHdKaBMFQL1it15baYXRX0mrer4gsm4AqSUV68O/GJAgY3taB4W0dqseJtN1B5tGKXQGRTXCmRIB6z1mfSiVtvsOELjlWdMnRCmeTlzmjg67tcoa9ifRuV8mWW7K7h4S0YEhLREREFFfNtt3BqlWr8Oijj+Lss89Gu3btYLfbkZmZie7du+Pqq6/GDz/8YOh4ixYtwoQJEwLHateuHSZMmIBFixbF6BEQAIjSSlrBDEEy+YXoKov8DgT5FzXBxHMbRJGIPIyTxzbSCrhoBn0un4jdlV7VSYfC9bEMR1pZaRIE3f1hS5zydgfmJEg5GzOExI/eGCM5pAnKlbTbyrzYXu7BllIPdlR4UHe0BYdWSKva7kB3Ja36hj5ROWA1GwxdG/u3EU1rD7lUx+MX6ydp2ytpHxLFtrgJIVgy9G1nVg7apZ+f/O5K+OuOwLXvK7iKF8NXU9zoMRIRERGRumaZNp122mn4/vvvZcvdbje2bduGbdu2YcaMGbjiiivw6quvwmZT7/Xn9/txww034PXXXw9ZXlxcjOLiYnz00Ue47rrr8PLLL8NkaraZeMzU/TEv5LYAk+xLRu3Wl5HR925YsroYPr5gUqimEZrlnw1Ro0V6NXOdQg9ZaUWp3pBwn8qETQ3KXX488lMZ9tX4kOcw4YHBuSjKDP2bb2wl7drDoVWYFkG7F2mw1YfklW3JkIt5G/GkxOIy92QhCMrVnK9tCK1czneY8PiwFpohZ4XKJF5+nbWnWq8TvwhUuOTHNxq+H3Y2smFzFK086MbKg8qVoH4RmLWlBh9JJvpLhhMejSFYlHsLy7ZTCWlhDr3CwbntNTi3vRa8J3KGv4X0rpdHOEIiIiIi0tIsU8N9+/YBAIqKinDbbbfhww8/xIoVK/DTTz/h2WefRdu2bQEAb7/9Nq666irNY913332BgLZ///6YOXMmVqxYgZkzZ6J///4AgNdeew33339/7B5QM+bc/k7oAsEEv1teOevc9ibESJIMs0JAz0paIk2ZVuWgY2dFZJfDb1WYoT0/ypMMAfVB4+c7awNBbmmdHx9uk0+c09iQdk+VJCgWoLuSVkmdyuRI8bTygL7L/5WkWixmZLwmob6dRThH6vz4dEet5mtr8R9O5RVR6EmbpjJpX7wrS+OV19f5/PhkR61subGMNvleuXoraaFWSWsO14ZGRM2vTxobFBERERHp1ixD2p49e2L27NnYvXs3/vOf/+DCCy/EoEGDMGTIENx+++1Yt24dunfvDgCYOXMmvvvuO8XjbN26Fc888wwAYODAgVi2bBkmT56MQYMGYfLkyfjhhx8wcOBAAMA///lP/P777/F5gM2IyZ4XctvvqYTfVSLbzufcD9FVqnqcjOPvUFxuzRugaxkRHTO2i3I1V7UnfJo0qJVySDCsKHT56e1CZ5pXqgI0yu0TMV9SWafUe9RIj1ElHbJCJz07XOvTXUkbK9ZGfho41IgKylQrXmybaVZcPrpjmmxZ+ywLLu+dqeu4C3c6NYPUrWUexeV6M3q135BZAM7qIB87EHmP2UjF67VQ7REVn7dUb3dgzTsREEJfn/b24yRbCfXbKe4f/vONr2ZPZIMjIiIiorCaZUj76aefYuLEiTCblb9oFRQU4F//+lfg9ocffqi43X/+8x94vfUVXs8//zzS0kK/5KSnp+P5558HAHi9Xvz73/+OxvApiOipDLmde8qrgF9edSf66uCr3qV4jLSulyPzhPsU12UNeByOLlNgzugAU3o72NuPQ87QFxs9bqKm7NzO+i65VXLriVmKy6/snYWTW9vRPsuMK3pnonuL0FYk56oEw0boDrsaWbgq3f/09mlQKWTUpVW68r9lRtw+IKfRx4hUqnU7cKiUPY/tko7CoArvaf2zkWk1oWcL/ZNQRXICQOt1Gxy+q11NcvuAHGSqzD4X7wA93AR6I9o5MKFrFP7WVf6IjYTSia9flzM58pE7YjYs+QNgzjoOGX3/hhYj5yHzhPthzu4GS15/5I6YBXN6a8X9HZ0nhr0P0Vsjnw+AiIiIiKKC122rGDlyZODn7du3y9aLoogFCxYAqK/MHTJkiOJxhgwZgh49emDLli1YsGABXnjhhSbdfy+eRL8Xojf0UmRzTg+IokLPSV8dvJKQ1pzRES0v3iXfNojJloMWp73XyJESNS82s4CLuqXjw23yy4nDUQvAcuwm3HGSepBoj0IJnN7wNdohrdUEWBuRhkWj+q91RuOD3kil4r+IHbLM2C1pW2ExAS+cUSDb1si/+ZG8ttQCRyD0daW22aDW6pe4xzuktZqAOpW20bPPbRn4WVrxbpRasJ3qlbQAkNbpQqR1ujBkWdaAx5A14LGw+wqCCWndrpP0oZUSIXqdEKw6WysQERERkW7NspJWD5fr2CWuShW3O3fuDPS2HTFihOaxGtYXFxdj165d0RtkMyd6qmTLTNZsQCGkFX0uWSWtOatzrIZG1OzF+2RUNO5N78z0jW0BK93fLAiN6kkbjac6keFUKuZiSq/vaDyOSEJahXn1AoJXRXJsc5z/juM1cZd04sHA/afiizHKFCdMlVD6/EVEREREjcdKWhVLly4N/NyrVy/Z+k2bNgV+7tmzp+axgtf/9ttv6NxZfzi4d+9ezfX79+/Xfaxk4HMexJFPB0P0uyD63YDPjZYX74HJnmvoOH5XKQ7OzJctF2w5KiFtHZzb3wpZZs7sZOg+iUi/eGcd0eidqRZiiaIYEsqFuyS9tM6HPId6Zap0f5OARvWkjcZzHe/eo8FS8eoSpUw9Go/iSJ3xy8i1KmmdXhGTFh6KeDxxb3cQp9IBtb9hU6o1SI4FHSFt2ZLxyBv9FUxW5fY0RERERBQZhrQK/H4/nnrqqcDtiRPlPbqCw9N27dppHq99+/aBn/fsMTbhQvC+TYJggq/mj5BFot/4rOCVK6YpHRyCJROiYk/aWnjL1ocsY0hLFDvxjjqikfOpZV1rD7kxIGhCs3AViXcsLcWbowt13099SKt3lHLRyJUSWUGYirmY4ustQWFzYyu7tcT7d2OLVyVtE2530Fh6Kmk9JStQ/cvjyB74dBxGRERERNR8sN2Bgn//+99YsWIFAOCCCy7ASSedJNumqurYpV6ZmdozN2dkHOvbVV1dHaVRpibBZJMv9LsNH8e5/R3ZMnNmRwiCgMy+98jW+ap2yLfP6Gj4folIn2jmVYNaqffMbBCNcEWtuu7L3c6Q2+FCsVqt688hD2kFob6SNcsW+iCGtgn/uAFgTCMmamuQaTMZfg4n9zj2b9vwtvrGqmR3pfzEWrJTyhLjke9VueWVtt7GNknWkGuP/sfEYUWhr5Xgv+8zOqRJNweg/29BL7XnzNjfQOgxUrAgXJHfdUTXdp7SdbEdCBEREVEzxJBWYunSpfjb3/4GAGjZsiVeeuklxe3q6uoCP9tsCsFjELv92JcLp9OpsaXcnj17NP9rCJNThVJIK/qMh7RKMvs9CABwdDhffh9e+SQj9vbnRuV+iUiuMXlFcPgHAH8+IfwltdEowFPLug7V+iTbNS4Uk8ZsDa0GLu527HEPaWPHzf2ydR1vSBQCLLtZwHldj4W9LXSEc+cGhcMj2yuHa3oclxu+ci/ZxKrdQThKrQ2iVUn7t0GhE/P1zLOiTQwmlBvTOR2ds+sv5MpzmCRhv0N2n/kOEy7qFt1JqtT+1hPZ9iNZ2IvO1reh3xPbgRARERE1Q2x3EGTjxo2YMGECvF4vHA4H5syZg5YtWypu63A4Aj+73dohY/AkZGlpxr7IhmulkHKUQtoIKmmVpHe7GgAgmO3IHTEb5UsnHbsPnzwcF8yNrz4jImWNyTomHJeBoW3sKK724YQCG6w6ytuEKERkesOuxhYuynrSHv3/6E7pGNTajlqPiLaZZgiCgAld08POZG+N0iXik3tk4oz2aXD5RHj8Iv7+Q5nm9rag30uWNfJzvrEIAmNNsY9uHPI9pSJtn/E2tor6t7Tj9bMK8PMBF7rmWtAxyxKTfsEFaWY8dkoLHHb6kGs3IT3otZNrN+GZ0/Kwq9KLfIcJTq+IFg4T0nT0A+nRwootZfqCQ7WJwwgwZ+j73CkypCUiIiKKOoa0R+3cuRNnn302ysrKYDabMWvWLJx22mmq22dlHavsCtfCoKamJvBzuNYITZ1gMgOCOXRyryiFtCH3Y5FU3Sh8mRAEFpITxUpjo53WGRa0ztD/T1Qse9JKlzc+pA29HZyx5jnMyHMor1MTzTaeLdPrA9M9VcZaEDSmp24qFi8qjTke/6IonUjwNrKyO1imzYRRKi0HoiXdIsBqFlCUqfz3bTEJgerqFgaO2zNPf0irNtlaY6vkmwRBZ2W7mHptSoiIiIiSHUNaAPv27cOZZ56Jffv2QRAEvPHGGxg/frzmPsEVrsGTiCkJniysyU0EFgmTDQiqbBV9+icO89XsgXPn7LDbCWY9l/+mYDJAlCKiUdkab0v2KLejkQZjekLa/TVerDroRqdsC/oWHLuCQBRF1HhCD2DWSCn1REaxeKaNFsZaGpEUp94rRSWQjcMD8flF7K3yYu1hN7rmWNA73wZPLGcOi4FGFF1rshh4/t0qf8Qp9lTGhJ6JwwCw3QERERFRDDT7kLakpARnnXUWduyon1jq+eefxxVXXBF2v969ewd+3rx5s+a2wet79eoV4UibDsFkC20/oLOS1u8qw+EFJ0B0l4e/D7Mj7DZgJS1RzMS7OjIad/f5LuWQ9qCkJ21xdfgKsnu+L4PraOIzbUA2hrapf096ZnWFbFutfFNXSBuDJ9to6NqY4C2alcDxslfhNRCPh7GzwouXfq2Ex19/f3cPzMHc37XbYSSbWLxeAcBs4IW0cKfy33pxtU9xuR5NpghXZ0gr+llJS0RERBRtzTqlqqiowOjRo7Fp0yYAwFNPPYVbbrlF176dO3dGUVERgPrJxrR89913AIC2bduiU6dOkQ+4iZBWuertSVu75WVdAS0ACNbwEw1BSL0+iESposYjb/qYZqTUzaCcGMxCr6bMFb6hpSuoJO/5tZWBn1cdlL/feTRKc9saaPkQTQ5j09w3qi+uU6nRapKrdMvH3JhqYr0aAlqgPsCfvr6qUcdrlR7ffwdj+RSV6/i7jOUxUvHqASWydlFqRFbSEhEREUVbsw1pa2trce6552LNmjUAgPvuuw/33HOP7v0FQQi0RNi8eTOWL1+uuN3y5csDlbTjx4+PWQVJSpFMHib69IW0dXsXqq6z5PUPvZ3bJ+zxBBNDWqJYUQp/bjpBx8mTCLVMN6NHC52X6TaS0bA53CXU6RrHG1qkp3VL9GXaTIaez8aEbwp5fkqyGwy2IyF9rioaGUzeGOW/yfsH54bcbpVuRkbQ6/vczrGbsLPK3UReSAlmzuoCS478qq/0XreF3GYlLREREVH0NcuQ1u12Y8KECVi2bBkA4LbbbsPjjz9u+DjTpk2D2VwfREydOhVOZ+jlc06nE1OnTgUAWCwWTJs2rXEDbyIEc2hIq7fdgVbAnX3yv0O3DRPA5gx9Wdd9ElFk2ihUgDZMBhQrfxuUg8GtYx9qNnbiMCmTRsIZj+pMNXcNzMHE7vqq6ho3ztSrpI2H984pjOnxO2VbcHy+LfyGBvQtsOHmfvXB7+DWdvzn9Dw8ckoLnNclHdccn4lLeuis0oxAKrbNSEaCICBv9FfI7PdAoC1UzqkzYC8aFbohe9ISERERRV2z7El7ySWXYPHixQCAM844A9deey02bNigur3NZkP37t1ly7t374677roLTz31FFatWoVhw4bhnnvuQdeuXbF9+3Y8/fTTWLt2LQDgrrvuQrdu3WLzgFKNtJLWr3fiMPVzCiZ7gWyZOes4+Kp+V9xesOfrvE8iioSYgOAt3WrCpB4Z+PmA/skIIxHtGeCTNVvKsplwYbcMWE3Ae5trNLdtTBEpI1plFpOALJuAKoXWCtFwRnsdvdsjMKJdGka0Swvcbp9lwaW9MmNyX8FMvFIpaszpRcjq/yiy+j8aWFa3d1HINqLISloiIiKiaGuWIe28efMCPy9ZsgQnnHCC5vYdO3bErl27FNf94x//wKFDh/DGG29g7dq1mDx5smyba6+9NqJK3aZKkIS00NnuQGuiL5NC6CpY1C+rlPbFJaKmIVaXnPtFMRACRVJJu6XUg24tlP/JTfZoSU+bHlYxxkYsn9Y8R9Nq+ROHbhPNmiCdUIyVtERERERR1yzbHUSTyWTC66+/joULF2L8+PEoKiqCzWZDUVERxo8fj88++wyvvfYaTCY+1Q0inTjMfeAb1XUme57C/aQpbKk8BiJqGmwxSmpu++YIDtfWz/weSUj74E9luOSzw4rrkr0AUM/wGtVvnaW0qmIb0jatzyU8URBjkpBWZEhLREREFHXNspJWjPKlqgAwZswYjBkzJurHbZJk7Q7Ch7RaE1QI1ix5n1sAgkU9pJWOgYiiy6wQ2sUjjIxVJe0hpx+L/3Di0l6ZYScCM8obZr4jqymxk2vZYlxwyemeNAgCYpViN7WQVuk9J7Ykv5cmHhILguQrA0NaIiIioqhrWp/QKSXI2h3oCGn97jLVdda8E1X2qVDdR2nmYiKKnq65FuTYjqUWrdLNaGGP/T85NhOQZY1NWvLxjloA0T/RVxMmgZ1wnPpkS/lxCNpOLYpN79IG1THquRpLl/Y0NgHWX07MDrk9Mkw/2Ov61E++Fck5h4Gt9J2EzLal7kfAv/QPfT6v6JUJcxQejvS4FMQkCWlFnl4hIiIiirbU/YROKUsa0oo6etKKnirF5Zb8Acge8qLiOn9tserxzGktw94nEUXOJAi4uV82ijLMaJdpxp9PyGrcJfE6CYKAOwbmxPQ+4h0pjumchkGtlFu0/P3k3Jjff7pV30eFJ09tEXabogx5WW7H7NS7qOecTukhhZPhHvvJre04q0MaCtJMGFZkxxntNa70AHBau/oQN5KQ9sreWTilSLulT5pFgDmF+wOc3MqOszseez5Htnc0uiftWR3ScLLK3xlBNi+AKPoSNBAiIiKipiv1vhlR6pP2g/WHn4ldFtIKJrS+wqsZ+vjrDkUyOiKKkhNb2nFiy/iHHr3ybJh9buiJGJ9fxJRFyj1hG6tfoQ2/HNY5AWIE0iwm3DkwB5MWyt/T2mfF559xs4CwbR665FgDz/sPxXV4fl2lbJup/bPx9x9Cr4wQU7AprdUsYNa5+k/2Wc0CruubBaC+QnZftXoLn1y7KdC2wxJBkOowC7itfw5u619/+/Zvj2BfTWiglm5J3YAWqH8+r+2ThWuPPp9AZM9VsPrfD6kRpHUdrKQlIiIiijpW0lLcRaOSVrBkxqUqj4iahmgWDUonDkvxvCsm1N6elX4PMWgTn/S0Xo/BqyKpDpXOU6r0u8iIUUuQRIpRO2pqIEiq4FlJS0RERBR1rKSl+JNM8lX9yyNwH/gW6b2mIq3ThYHlzl1zUf7tRYqHEKyseCEi/aJ5UkdaUWriCSMZtWdE6bmSht7NgVZVcvBTFEl1qDSsVDqC3hYWqSTef4fSX6HQ5GcOk1bSeuGvKwHMaahadRfcJT/Dmtcf2YP+BZMtti1niIiIiJoqhrQUd7KJwwC4Dy6F++B3sF64HZaszvBWblcNaAGGtESUGKIo4vviupBlv5bErtVBqlKtpI3vMJKWRyOlDa4sjqiSVvLkK92TowmWnVr44ootaUgLoOKnP8OU3ha1W14CAHiPrAFEP3JPfSPeoyMiIiJqEviRluJO9KsFGiI8h38CANT89l/NY/idB8Lej6PzJYrLLS1OCLsvETU90Yilylx+OL2hsZcrXLPWMIoyk/986WltHSG3O4eZ7CtLpVJTqTC0V7414nGlqsJ0+QRqDYJfTdsr1HvXqpHmr8XV8svS18Wwh3KiHJ8vPwFM0WOyF8iWuQ8vh3NbaCDr/P3NeA2JiIiIqMlhSEtxZy8arbrO7y4HAHjLftU8hq3lKWHvJ6P3bYrLM0+4N+y+RERKvFGeK2dASxty7fr+KZ7cIyPk9i394ndFwdmd0gLVlwKAcV3TNbfv3kI5eDUJwDXHZwYC80Gt7OiU3fxC2gyrCacUKU+qJwaV0kZWSRt6u4XO11eq6xTmxIGWvgXN7zVolDm9NUwOyWR5fjdEb3ViBkRERETUBCV/+Q41OfbWp6uuE90V9T8oXFYXzNFpUtj7sRUORsuL98J9aBk8h3+CKIrI6HULLNndjAyXiJoIQZBPUtWjhRVbyjy6j+GJcgPV6w3MKD/huAz0LbDhx311GNEuDR0bEUoZ1SXHiudOz8PWci/aZ5nRJkP7vm0q6aJJEDC6UzqOz7ehxiOiW4vm+zHkmuOz8OM+l2x58CtsUGs7lu+Xb6NF2u7glCI7Fu50hixrk6FeyZuqwrXvHdTKhpUHlSuIh7ZxKC6nULkjZqP0i5GB26Jf/3snEREREYXXfL8dUcLIKjGC+BtC2jAXJgtmfV+ozBltkdZ5ItI6T9Q7PCJqopTeVTpmWwyFtNGupDVa43hcrhXH5Sam6i/XYcbJrRsX7jX8Dtpl8eOHWpVs8IkEWwQTh0kpTajV9DrShpem0bTWJz17E4HmMP+d7LMXQ1oiIiKiqGoe18BRUhEsDgjWbMV1ftdhOHfNhXv/19rH0BnSEhFpMTrJvTfKlbRCnGekT7QoZI5NhlnlyQh+hVmjUPDaBOcIUxTuYdo1nghfRCdfQt8LmsPTLJhCTxCJ3hrF7SrX3Ifara/B5zwYj2ERERERNRksZaGEMKW1gs9TKVvu3PaGbBIKJYJZuZcfEZEaQYCs3M1qMDV8bUNV9AaE5hdaNrfHq0W1kjbo5+hU0sqXNcVzA+Eek00j8I7yuZemy6Tva0PNr08AAMwZHVAw/leYbDmxHBURERFRk8FKWkoIk6NVo/YXLBnhNyIiCpJuUbjs22BYtaPCG6XRRHb/qc5oKN6UqT0VWUHl3dHoHdta4Rhdc5reRFnhXllafZSj0e6gORDMaYa299XsRt2eT2I0GiIiIqKmhyEtJYSj3TkR7yvYcmHNHxDF0RBRc3BSy9AK/I7ZFrTPbPwFJUPbRF7Z39z+Ec60NbdHrM4kCOiTLw9LBwe9noYWGWvtk22TR5WnKhzj2j6Zho6bCgRBQN8C9fB5RDv159LHjFYXc/Zxhvfxlq6NwUiIiIiImiZ+W6KEyOhzD7IG/p/h/az5A5E/+hsIlvQYjIqImrKr+2RhwnHp6F9ow+iOabh7YA7aZMqrDG/om2XouCPbR94ju7lV0lKo2wbkYFhRfSibYREwqXsGJnY/dqVItsFQ+7nT82XLzCYBjwzNDdz+64BsODQm0Uplf+mfg3M7K1d72rR60jKk1UUQTDCltzO0j+j3xWg0RERERE0Pe9JSQggmMzL73AUIZlStvENlIwvaXMmZg4koOuxmAZN7hFYQVrrlMwalW40lp6ZGJK2N2ff/27vv+Laq+//j76tty9txFhlkmSQkQCBhNKEQZlmFpC2lfCmjFOimlG5aoPQHBbpLB+XLKv22QGkZBQolQKAhCRkklJlBJtlO4njJ1jy/PxwrlnQlS7Zsxcnr+XjkEenOIx1dj7fP/Rz0f2Ueh742pVxfm9LzYx1W6VZxmpnwxld59Og5A3t+kv1cmcehSyeW6tl1rbbri12WApHURDaWl6K0B8e17K46SsHApux3MIS0AAAA2Towh1KgH0n/Sw2jZQEUgjPH4LQnZVYPjlgHfcFQV7VL6d4hm9y2+wc7wFnu3EplmHCDjEn9YxgAAABSEdKioKyMIS2TgwHoXXZfgTLcFW2rJyEt82ghX4jBuhZLE2TnZSDtQSLXn81a1/xZ2x8ZqODWub3UIgAAgAMHIS0KK8OINUbSAuhtbTbFKJ05fmd09GA8LBkt8oXSGV0Lcud9j1mu3CedM8FdakxX2goAAABxhLQoLEf6mZgdRYP6sCEADka7W1PHHw4qTp1MLJNB/ty27+xAHkn7pSMTJ2C76DDujuiOiVXpv092dvnE3MOzA9Ul4xPfi64mAzxjpP1kY7DRzRqzkd3L89wQAACAAw8hLQoq021zZVN/3octAXAwsrvLOZeQdnyVWxXe7o+ltQ7g0Y/HDfbpuMFeuRzS4dVunTqcIKw7Lh6fXfg6upy5YDucPNynIwa45XJIUwd59JGh3rTbXljr18Ac/zBzMCsadVHadaVTfyY501/n1E0GAADIjJ/oUVCZQlp3zbF92BIAByO7yCCX2HTW2PayLA5LsqmcoEPLXFrfGLHd98CNZ9v5XJa+cUx5oZvR742rdGuI36mtLZlHMB7IgX+uSj0O3XBcZVbbfmJc90Z4m6SvHgfLu295ytKu80/8mvyHf0MN8z+n1g8eTN0gFpacnt5rHAAAQD/HSFoUVKaQ1rL4eALoZTbBai5hl3PvtukmG3Nl+DJ2IJc6QH7xUcH+I8On0XLKsiy5K4+0XW0igV5qEwAAwIGBkbQoqFxnCQaAfEoeDZerjnC2fdKm1GO5MgS+hLQA+p20f0C34n9cd/iH2W5R//LHVXLUzfIOOcV2vTFGgfd+rcYl10mSvMPPl+X0Khbao0j9W3JVHiF31RSVHPlDOdz8/AgAAA48hLQoKAchLYAC6mmFxI6gtc2u1oEyj6Qlo0W2qGSA/UeaD6Nj368UzuJDbDcJbZ+n3XPO0sDZq+UsGZG6fuvL8YBWkoIfPpW4vnWbQlteUCxYp4rp93Wj7QAAAPs37idHQTl8NYVuAoCD2Mgy+79VHlWTXd1Evzvzt1FXhuGy1BBFttoiTLiUD6ePSJzUalSa6z8rB+nl6/DY15l2eCrij50lo9IfIBZSaMcC21UN8z+XVRtaV9+f1XYAAAD9DSEtCspZMkLeoWemLC877jcFaA2Ag82hZW4d2SmQnTWmfSKws0YVZVWOYFhJ5lnhqUmLfEgzUDvu85NK+6Yh/dysscUq9bRfeG6HdOnEkjwe/eC4oJ3FQ+U95GMpy4vGXdlpm8HyjpiV9hgm2ma7PNqysecNBAAA6Mcod4CCqzzlCbVtelbR5nUy4SZ5h54pz6DphW4WgIPEd6aWa9mOkHwuS5MHtAe2R9V4dceMKq3eE9bWlqieXms/4U1Xo2EdmWrSdr/JgL4+pUyLtgV12ogiTRqQ3cjvg111kVM/O7FK7+8Oa3ipS8NK+TG4OypnPq62Tf9SrOVDSZKrYqI8Q09P3OakR9T24T8V/PCfal3z58QDmHBfNRUAAKBf4adTFJzlKlLRoZ8sdDMAHKScDkvTBntTlo8oc2lEmUsvb2zt/rEzTYR+cAy8Qy+ZXOPRCUN9hW5Gv1Phc+qEoZlHwCOz9p/bPpF5G6dHRYd+UkWHflLR5g0Kbf9PfJ2Jhnq7iQAAAP0SIS0AABn0pBpoppIGhLTIlt1HhZHY6Dcc7oSnkcaVal3zFzlLRsg9cLosq399mmNtOxXc9opMJCB35SS5q48udJMAAMABgpAWAIAMehLSOjMksU0hJoNC9xHyo7+wHInlOALv36WA7pIkFR/2BZWf8AfFgvU5HTMWakg7iVlvijSt165nj1OsbUd8WenUn6pk0jf7vC0AAODA07/+dA0AQB8rcnU/Dcs0cRiQLbvPYKY/AAD7laSRtJ0FVt6tWLhZwU3/yumQwS1zetqqbmnb8FhCQCtJgfd/W5C2AACAAw+/PgIAkMHkNJMyzRpT3OW+tZVunZ/FdkAmxwxKrJl8aJlLnkwFj4H9iMNXk3F9rK1OsdCenI6ZHJT2lVhwd+qyUOoyAACA7qDcAQAAGZR57P+eOXucv8t9Tx7mUzgmPbUmkO9m4SByYa1fMWO0YndYA4uduuiwrj976GWGciXZcvpHZFxvQnskE7XZ0SdF2+z3SbO815mYzTKbtgMAAHQDIS0AADmaPba4y5GMZ48qkmVZ8jiliw7z65GVLX3UOhxoPE5Ll04sLXQzgG7pKqSNhRpSwk/PkNNUfeYctW14QvVzZ6fuVKiQ1qZKubELbgEAALqBkBYAgF7QOcKNMugOwEHKWdL1SFqjpKDTar+DwXLZjxo30TYZY2R1ozZz8n6m06hou+N1rLcsy37ULCFtr0l473HAMTZ3JNDXAA52hLQAAPSQw5JiJnnZvl80YtwaDeAg1dVI2vq5s1KWWZaz/X+XfU3v5v/+WM3//bGKx39FZcf+SpbD2WU7QjsWaM9rVyjWVqeSSd+Uf/L31LTsBgVW/E4m3Cg5vPKNnKWK6ffFzxtY839qWvptxYI7pVjY/sCxkKItm+X0H9JlG5AdE4uqcfHX1PrBn2S5ilVy5I3yT/hKoZuFvRqCMf3+v41a2xDWCUN8uvzwkoSfebqyqzWq3yxv1Mr6cMLY9FK3pXvPyFzDGgAOdEwcBgBADzlsfjfpvCzGQCvggGaJ0V/pOIuH5b5TFyNpOwRW/FbBzc9ndciG+Z9XtHGVTKheTctuUOvq+9Xy9k/aA1pJigXVtu4RBT74U/vTcJMa5n9esdat6QPavZrf/klWbUB2gpueUWDF72UiLYq11alx0VcVDWwtdLOw17/WBfRmXUiNIaN/b2jVsh2hnPZ/bFWLViQFtACAdoS0AAB0Yag/cZTWR4f5Ep5feXhqvdCTO20zsdqTsr62gptZgP7KEC9kzXL5ZHkqc9rH6R/e/n/JyHhgm064bmFWx4w0vJ/wvOnNm+y32/1fSVK0YZUUC2Z17MCK32W1HbIT2fO+zbJ3C9AS2HkyaTLU+99pymn/NQ2RfDYHAA4ohLQAAHThisNL5Xe3j5Q7d1SRhvgTA9aPDPUljKObNsijoSX7tplY7U455pWTmQgKwMGhqxGxyfyHf0OS5PBWqeSIH2bc1nQxyjWdWGCz/fJQfcL/KITU209MOLcgEH1nV1tutwvVt9nUdgYASKImLQAAXTqixqO7Tx2gSMyo2J36902fy9Jfz65RYzAmp8NSqSdxG5fD0qPnDNS2loiiRhpY5JTbye3RAA4OuYS05R+5V66ycfHnpVNulqN4iBoXfsF+B7vJvJI3yaEueCy4u/1/QtqCMTaTscUIaQ8IoahRUzjxevzG0WU6pMRlWzoKAA42hLQAAGTB47TkyRCsOixLFb7Mk9cM9vNtFzggECbkJN0EYLacqeVhHL70kwmZWBa3TtuEfunEQu0hrQkS0haMTfDOSNoDw26bUbRH1HhU5OIGXwCQCGkBAAAA9KJcQlrLSv31xG5Zh8D7v5ZMVMXjrpDlKlFg1f/KWTJSxYd9UZaj4w9n2Y+kjTauVv1/LkmpYXsgCG6dq7Z1j0oy8o36tLxDTpHUXjIi8P7vFN71RsZ6y66yWvkPv04Od/7L9YR3vqGWFb9V69q/SrHUiagaF31FsdAe+SdeK4e7JO/nxz4bmyJ6eWOrmkKpf9xIF6Y+szag9Y1hJQ9ary5yqqbIqTUNYYVtRtEWuSwCWgDohJAWAAAAQK/JqSatw+bXE7tlnQRW/FaBFb9NWBZt2aSyqbe3P8lhJK0JN6lt7V+y3r6/CO9apt0vnB4fpRpYfZ+qz3ldngFT1fTGd9Xy7i+yPM4bqjr1qby2LdqyWTufO1GKtmbcrnn5DxTZ/aYqZz6W1/Njn5ZwTDctqFcgktvkiH9+v7lb56v2EdACQGd8VQQAAABykVt+cdBzeCqz3tZypY7SdLjLcj5nyzt3xB+baFvO+x9ogptfSCwjYKIKbXlBktS26V/ZH2fTs9mVmMhB28Ynugxo9237eF7PjUTv7QrnHND2xICizGWiAOBgQ0gLAAAAoNcUjboo6209g6anLHMPmCZnyahunz/asqHb+2bDWTqmV4+fDyaSOtIxFmnZu64lhwNF8z6pWrRpTQ7nz35UNHK3J9i37++Jh/j69HwAsL+j3AEAAACAXuMbeYGqzpyr0LaXZWJhOYsGq3Hx11O2cxQPta13ajm9qj57vlrX/lVNS7+Z8/mjzetTlvknf7f92C6/PIM+qkj9W4oGNqdsF9nzvqSYXBWHS5JcFRPlcJWofu7sfRv1g+DQRIOpC6N7a7/GwgmLfaMukrPk0L07moRRyZIUa9spZ4bJ3HJuWySQ2/bGyLKYva83NCTVoR3id+rYwV69sT2oTc2pk37ZOWGIV8t2hBSMpo7IHV/l1mGVbjktaUK1R0cMSJ0oEAAOZoS0AAAAQE4IiHLlHXKyvENOliSZWNQ2pHX6R6bd31k8RCWTrpdk1LT0WzmdOzmkddecoLJjfpLYvsEfzfp4wS0vJTzPNWQsBLuSD2bvBF0mKaQtrr0m3leSFFj5B5lw4779gjvz2rZYLiN5pfayDRkmk0P3NSaNpJ1Q5dbF40vUGIxlHdLOHO7T+saItrakbn/MQI8+PiaHGtUAcJDhuxsAAADQI4S2ubAcTlmu4tRwM4vRkZYz+9ujg5tfkLPkUEUaViYsj48S7SbLVZTwPNa2XSYWkdXFBGfdEQ1sU2TP25JpH5XoKh8vZ8mILvcLRY22tkQ1oMghv9shE0sdSRttWtNeqzapHqzlcCc8d/gGKNoppI215RbSNgZj2tAU0bASpyp9+2qQRtvqFNz4VO4TtZmokn+NjbXtVHj3m4mjmi2n3NVTFAvtkQnWy1V1lCxHz2qghqJGaxvC2h6IyhipyueU6VSkOhA2cjstuTsVFfQ4LY0pd8vj7N2vE9HAFsWCu+WqODxhpHFDMKYNjZGEdqbzYVNiveFyb/sLyaXtliwVu+y37+33AAD6O0JaAAAAAH3KcpXajEDteroMy+nN+hy755xpu7zHIa2zOGXZrudPUvUZL8ly5a/GZuu6v2nPfz6TUk6h7PjfyT/+S2n3awrF9KPX6/VhU1TlXod+cFyFymxG0gY3PavgpmdTD5Ac0noHKNq0Nv68bdMz8o2cldVreHNHUD99o0GRmOS0pGunlOm4IT6F6hZp17PHZ3WMZLG2nXL6D9n3OrbM0e4Xz5X2jgxOxzPkVFWd/ny3w/TmUEw/XFCvLTYjRLtSU+TQLR+pVJWvdybKal3/d+35z/9IsZB8I2er4uS/y7Iszd/SpruWN3Z7rsNyT/s16c0lXLWkYrf99jkdBwAOQkwcBgAAAOQgmxFpyMxyl6Qus7L41SSHkbTpuHo8kjY1pA3vWKDQ9ld7dNxkze/cYVvvtvmtWzPut3Brmz5sag8SG4Ix/eX9ZvuatGlYjsQ6oZanIuF5eMfCrI/1z7UBRfa+hKiRnvigPZjvbkArSW0bn0x43vLOz7sMaCUptPUlhesWdfu8r21p61ZAK0l1rTHN35x9H+Sq+e2fxN+Dtg2PK7zjNbVFYrrvnaYefbUqi4+kzX4fh6Ril/217HEQ0gJAJoS0AAAAAPqUe8CxKctcVVO63q/q6J6fe9CMHu3vLB0ly1OZsjzauq1Hx00WS3O8WGCLjEkfvT28IrHG65t1IclE0mydyHIVy1V+WMKyyJ73Ep47iodkdSxJendXYr3bdY2RjG3PRiy0J+F5tHVr1vuGdy7p9nnXN2T3Hqazq617AW82IruWJTwPrL5fcz9sU0u4Z+/1uIr2UdW+NKFrMkvSiFKXfGnKHfjTjLAFALSj3AEAAACAPlV27K9kom0K71oqS5Y8gz6q0im3dLmfu/JwlX/kHrW8f5dMqEHR1m1y+ofJRIOKBTZndW53xcQetd1yuFV5yhPa/fzJiStiPQvxUtiMot13rrDk9NiuKvVYCkQSwzlj0zZH8SEJz53Fh6h0yi0pNXf9E7+mpqXf7nTunoWNrZEejkRPKt1gkkfROrySTQ1eST0aib25Obf+dVrto4c7tPX0decgHKjTs+sSy4kUuSwVpQlPk5W4HTp3dJEGFrcPoU1XY3ZshUu729o/p+Uehy4YW6wyryOhJm9nHTVuAQD2CGkBAAAA9Cln0UBVnfJ4t/Ytrr1KxbVXpV1vYmFte8g+wPSOuKBb50w5zuCT5B44Q+Edr+07b5ajVbNm0oehJhaUlSakLXE7tF1JAW9S20qPuV0lk7+TVTMsV3JpigzhcedTphkxu6stZvtL6JDLjVpW/EGNr6evtytJJrm+blJI6x12loJJJRF6yhijzc25hdMTqtx6p9NI4tZo34W0y4JjVBdO7KfvTCvXhCr7z0xX7ELaC2v9+sQ4v+327jRlDSoIaQEgI75KAgAAAD3ADbz7GSv9OJSs6t5me5rkCajyPJLWZBpJm6HGbKkn9TXGoklty/AepUh6zzK2q5O2NKHkrtYMYWcW/ZMc0ppoYkhrOdJPLmeirV0e305DMKaWHEfCJo9a7auRtEbSi+b8hGVjK1waX+m23yELdiNwBxSl7yu7kNaSVGbz2QQA7MNIWgAAAAB9qr4tqnvebtKahogcksZXuXXV5FL5090nnQPLsiSHu70kQIo8hkRJQacJN8Ufv7MzpB8v2iNJOmGIV18/ujzrw8bCzWpc+EWZ4K6025hoUJGY0d9WtWjJtqC2tERV7rFU4nHYjvhcssurozo3PTlgziA52A7XLdL2RwbLVXWkyk/4o7ZomO57p0lbk8oBpItyNy69XYOyPJckWd7qhPeiZcVv9YL/es3bWapwzGis85v6pL4nj9oD2HQjjCWpack3FNz4hCJNa+QqH6/yE+6Wq2yc7bbPrw/ohQ2tag7F1J18tTjps/xmXWKYbExMzW/eotY1D8lEWva+1iqVHH69ims/n/sJ9/pX8fe00TkpYdm5o4vbr4tuKrKpSTugKP1sYm6bVSUeS04mDgOAjPhTFgAAAIA+9af3mrVsR0gNwZjqgzEt3BrUY6taut4xS5YjTVDXg6Aq9RyJQWfggwfijzsCWklauDWoD5uyH2Xb8vbtal37fxm3CW6bqyXbgnpqTUBbWtpD2YZQ+lvyHyy/VyF1qsea00japMTNRBRr267QlhfUuPAL+t2bjVqxO6yGkEn41xSyTzZ3NjdnOlnKEoevJuH5KvdH9feNxdoeiGp3W0yLfZ/R3OIvdNoh/UhaSQptn6dYYItCW19Ww3z7MHRVfVgPvNuszc1RNYRMtybgsisRsL5x3x8Ogpv/reb//kjR5nWKte1QrG2Hog0r1LDgKkUa12R9nmjrjvjjkHya4/96wvqBRQ4dOyjze9IVu8umMkPpAruRtOWMogWALvGVEgAAAECfWtuQGlqub8xfuYCOkYkpHN2/5TtZrK0u4bm7sn30YiSWGujdtKA+6+OGdi7pchsTqtfv/tuY9TElaYdrbPyxo3hI1vs5iganXResfzvnfgs4qlKWFY25LO25PAM/kvB8k2tyyjabXEfEH7urj8m6LaHt/7Fd/vrWNtvl6Qzxpw4dHVOR+llb3+lzH9r2atrjhXcuzvrckfr/xh937uMOZ48q7vEI1mElTjk7HcJpSTUZRtJW+VJjBrv3CACQiJAWAAAAQJ+yq1eaZp6pbrFcxbbLHZ7KvJ3DVXVUwvNo63ZJUtDmteVSz9SEsgh0Y1GFsysNu68N1r5w1Dv0zKz38w4+Re6BM2zXJYzOzVJEqaOcS4/5Sfu5hpwq98Dp+849/HyVHn1bwrZhK3VUaMja19/FYy+XZ9BHc25XZ+/vtiuVYW9AkUPfPKZctZ1qvp48zKePDLFpZ6cAP9q0Ou0xk/8AkIkJ7xuZ3LmPO5w2oijrY6VT7Hbo42Pa32NL0v9MKJHbmT74nTbIq5Fl+0Zre52WzhttP8kYAGAfatICAAAA6FNtkdSEMcfMMaOicVcq8P5dKcsdnoq8ncM77Gy1rr4v/jwW2CLJPqTNRSy4O+F56dG3KrR9noKbn48vMyb7ELFDi6M9oPYOO1cOd/aBmeXyqfpjryhS/5aCW19S09JvxdcFrdQw/FtTy+XrFOD9ZUVzwsjpiJUY0g66uEEOT9necxWp+mOvKlL/luTwyFUxUZZlqfrshdr1rxMkSVHZhbTtQWTZcXfJcvlU9bG5iux+S7FQvUwkoPqXzs369bZGYlqXNNL7isNLNKzEJZdDGlnmUnPIKGKMorH2kNbncuhHJ1RoQ2NEXqelIX6nLMvSpGq33tm1r69CnapRRBpWpW1DrG1H2nUp20Y6hbRJo5SH+p0Zw9RcXHRYiU4ZXiSHlbkerdQe6v5keqXWN0YUjBqNLHPlpd40ABzoCGkBAACAnmAunJzEjFHQrnRqHofSWmnqklp5DGmdRUMTnkcDW2SMUVt3ZpnqJJY0ktZd8xGF6l5P2ij30hAdoywtV+4jKy2HU+7qKYolTWYWVGpIe1SNR65Ot9cfWeNJDGmTQlbLlRgYd5wrYVmnycCSQ15JCu1tR0epA8tyyF19VHy9q3yCIg3v2762ZCvrw+rcg05LOmV4kTydws4im9+iHZalUeWJJQ68SQFpeO9IWmNiijSmH0kbzSGkNeF9pT1arMSR4qV5rgM7sDj7kgVOh2Vb8gEAkB4hLQAAAJCTPN6Xf5B4qy6kd3aFFI0ZlaeZcGhHa/7G0lpOr4yk/3rO1W7nCB0T/LvKYzvyWu7AWdwe0jZaNVrq+5SaHDWqfPnPOsTbLOmTKds/8J9/y1E6Xg5v6i3pJtqmjXWbFFKRhrq+omF6W0cHn5AlyeGtTJnoa8+HL0q6Mqf2Pl5yq8aGF2pUuknVctRo1eg55+UJy5yWEgJaKXUSqeW+CzQ+NFdTg4/JqahkZR8k7nYM09ziL6Usbx9Ja8lVeUTqTpJcFftC2qCKtcR3oXY5R2h45L+asfibWhUervei46XS8VrXVpaw79gKd0JAm4vk/R5Z2aING5epVI0q83xGx7Y9Ko9aE7bZ4JqidzdVqXjOAzqhdKMcMlrUNlGNzho5TFS72oyGtbysGVX1cvuqNHd9nXzeT2tq8O/x0dIdSj38BQkA+hNCWgAAAAC9ZtHWNv1iWdeTXO0JxhQIx1Scj9uinV69WPQ1PVtygyTp5eIv6Ye7js3rSFpH0WBF5dJvKp/WTueo9oVte//ZeL5pitQkKSmU2+cQSdLK4i9LkupaRutjgZ/L4a2SlTTh2T2ha2RT2jUjYzn1y8p/6UbzO/U0qo7Kpd9U/FM7XaMTlvtcqaGgXXc+XPZrbQpM1idabpBlZRMkWmqz/Ppl5XO2a8NWkVzl49OWcXCVT5T0uCTpT2X36D3v6fF18zcv0Fr38TKWY2//JJaSmFDV/dGgduHuwtbD2h+UTtMKz0x9vvGy+LoNrin6TcU/FbU8UkiaU7dTDsXU5BiYcIwlniP1asNGefe0aGvJBEnS+tZpcpvED5/fEex22wEAfY/CMAAAAAB6zcKt2QdFK+tzr7Vqx3L69Jz/2/HnzY4aLfF9Kq81aS2nRx96jt4X0ObZMu8F7efxVCWUBGixKrTSc3K3jhmy/Ho3OqHbbbKc7aUKNrsOTwloJclvE9Kms7DokuxP7PTqA/f0lLCyQ5tVKldSiYTOXBUTJbWPou0c0ErSGs9H2gPaNHoS0hZ18X686zkjoWTE296z2gPavVocA9K+5t3OEdrq2teXC4s+q2ZHdeL5gxu702wAQIEQ0gIAAADoNS3h7MsYtPVw0q0ODm+NYlZiuPa29yw5Sw7Ny/E7tKis6426qdkxQJanQg63X77h5+07pyO1XIKdT4wrti2X3GZlP2lYMnf1MXIUDVbQKrFdf8yg1FrAw0vtb96MWD45/COzOq+r7DA1OAalXd/mKFPUf1ja9d5DPibLXaaQzURnmQwrcWrSgO6Xhzh6YOZ9jeVQs6Na/iO+L8tdrrY072u26pyJwbnbpBu1DQDYH1HuAAAAAOgJQ93HTGwnCUsjlqeytCHP0JRlQatUzpLsQsFsWaOukHbnts9o7y6NqDkk/nzjzm1a21aRsl2rVa7K0+dIknwjZ6ly5hMKbn5ekYaIlPQ+WWqvlDy2wqVRZW4dPdCjowd5NbHKox8v2pOwbdTq/shQy1Ws6rPmybz0o5R1l08s0ekjUyclG+5Pf30UnfhYdud1OBXwT864TYNnjAakWefwVqr67AVqW/6z9NUm9hru3q0xg4ZqYLFTJw3zpdTYzcWRNV59d1q5bl/SkHab8IBTVTrl/6lo9P8o+qJ9OYdsbXPVJjx3KT8j0wEAfYOQFgAAAECvCeYwOjZq8jOStsllE9I6K2U58vvrT9BRkfM+x5ds0PlH7rtN/dnFi21DWmM5FSoaoY6xqb6RF8g38gLp/XnS2n3blZpduvdc+xIGkwZ4NNW1TEsjR8eXRXItZpvEVTZWvtqrpfX7llXGtuqsUUfabu+x0pe7aHPVZD0WucU3TgqlX9/oGpZxf3fl4So+8kfS65nPM614rT595PgsW9W1KQO9mub+r5aE7d+fyMjLZVmW3BUTpbJ1ySVxcxJOGinsNBneMADAfoeQFgAAAMhBfmLEVIFwTDtao6ryOlXm7V5Vsvq2qFojRkP8ziwnZOp9uYS0dpURGoMxGUnlObwnjY6a1GVW6rKeSnfbfyYmVK/w7v/GnzuDmyUdYbttm1Wu0r2PY8ZoS3NUm0KJ5Q680QaFdy2XHC7JxGQ5vHKWjZPlcMoYI0doV0KRu6i6P5K2w65w4ohZp2mTibTKcqWOpPWagGRbeCG39y+53mqyPVb6cgiSZIxRXVvXv/5a4fb+cRYPk8OX+ZzZMCam4taVkss+pG3sNI1bXSzdWODuYSQtAPQvhLQAAABAgc39sFX3vN2k2N48c9aYYl00PrcA8J63G/XSxvbZ3UeUOvXD4yq7HfbmUyiHkPaet5s0ocqtoSXtv6Y8sqJZT6wJSJLOH1Osi7N8TxpMmaSmhGUtVpmaQjGVevL3nixuPqTrjZKEtszRzrUXx583+S6XSs+y3faptSF9frJXdYGobnm9XjtaY5ISw+Yi06idT5+ZsMxZVqvKmX/XnnmXyhH6rNQpO+1JuQNjjP74dpPmbh6RsNxhItr+yABVznxc3kMS22IFd6a0ucMr2936bJY56NK29DVnJWlPp7DTrt2/XNaoRdu6/vU3uuM/2vnPSyTLKf/k76js6Fuza6DdsQJbtev5mSqJfCztb973rB+skYeE9fTagD6I5ncSOqfJftI+AEDhFf6nNgAAAOAgZozRwytb4gGtJD2xJqCmUPYFWre2ROIBrSRtbIrq1c1tGfboO7lOBvbsuvZQtikU05N7A1pJ+ueagBqD2b0nDUH7c25ryaFAbhbWtpZ2vVESK2kstkPp2zRnY6uiMaMXNrTuDWhT+UxTyrJo4yrt+tcMRXa/KVdSjYBID0bSbmmJau6HqZ8rh6IykYCalt+Usi609QW5TSBluSQ9sy67EHGPTb8nB5C7I6mjeDusqA9r0bbszuU0e0efmqha3vqJIntWZLWfncDqexVtXKmS2M6M2925ZI9e35r/QJVyBwDQvxDSAgAAAAUUNVKDTQhVn2UgKUk7AqlB3+62/AaS3RGKGrWEcwtpd7e1v+6drdGEONNI2pnla0oXDDfmEHx3xRgjl5V78YtB0VUJzycHn5PDRNJu3xw2GV/30Mh79u0LN0rqFDruFfN0/xb+XW3279/gyEpJUrR5nV1LNCzydrfPKbWX8Uh2VPCZhOcfNqV/j9buSf/+JhscXdnpmVFw60tZ75ss2rxekjQ88t+M2zWEeqeIylBt6JXjAgB6ByEtAAAA0BM9LP2abq6sXObQCtrkU3mag6tHdnUjKO4YUWxXyzac5eHCMfsXH8gxMM6kOWwUMamd71BUjqRg1GHC8sd267TAXRobWSxZrvi/Uu3Rhc3fVGV0o+3t6S3hmKJJ2aglI7dp1fjQSzo98KuM7XQmjaQ1RZkn2MrV6PDrOr/lR+3HjjSnbhAN6lNN39Gw8Ft5Pe+U4JMJz9c3RhRL86Hf1Jw+pHXIyKHovv4JL0xYH9r+n2630UTbRx0fEnlHZ7fcrpLYzoyBfDJLRk7FUoL2Dk5l/qPDyC7CYQDA/oWatAAAAEBO8pt+pjuaySFlDUZSt90PMlrtTHOLfodvHlOu7YGo/vz+vnCvI1+1Gw2bLnxNFklz2ma7mcm6qd5mVOlfzqqRaXhPO5+alLJuyOVG0o/3/ks0a+8/Sbr0+R0JoXtz2Cia9Fm4sLZEJ8wfnFU7XUkBX7r3pjvK3TF9re78+HMTCcjEorIczn3LokENjb6vb+45XV+v2Z5yDGNMl5PcJfe604Q0LJIY+rZGjHYEohrsT/0Vd3Nz+nT/4XM6JhwbIunHCqwepYb5V8bXh7b/J6s22rY70iqp/e84ZwR+qdm1FSo96ka1RYwu+3dd2v1OPMSrrxxVntU5nlsX0IPvpYbjxbHdMqFdObcZAFA4jKQFAAAACijd6L9cQtagTXi5P4yk3dmaeehrsdtScvZl9r7ykM2u2Ya0aUfS2oTZ3bU7afhymceSy2HJcvl7dNwSd+KvaHYjaZ05/BaXPJI2nyGtXXBpooGk55lrI2fZpclnUXlsm0piiUHnusbUUarGmIwjaZN5Bn00sX2t2xRt+qA7jZSirQlPLVd73Vyfy1KVL30nluUwuZ3PZR8eW4opFiSkBYD+hJG0AAAAQJ7sCcb05/eatCcY01mjijV1kLfLfdKFVAu3BvWn95rVFIppV1tMNUVO2UW3LoeltQ2pIVRrxOiZtQEt3Nomn9PSeaOLddTArtuTT12NpPW7rJRRI2/vDOvTz+6w3f72JQ0q81gaUORUzLSXRCh1W3tH3VoaWebUZyeUqi5gf96WPI6kTT5Hpa999Kjl7llI63db2tUp17x9SUPKNs4cRnUm3yq/ZHvuE1TN39KmFza0aldK6J7ajl3PHCc59v2aGanPXI/2l8sa9I1jyuXY+5pe29ymORtb5bKk80YX68gaj/61rjVlP0vSsMjbWuE5Jb7s2bUBnTDEpwV729sUimlThlG0dpylY+QoGqJY69b4st3/Pl2Wp0yyXHIWDZZMTMEt/5azZJSKxn1OJZO/o7b1jymw8m5ZzmKVHHmDPINOVHDz84ltdvrij4f4nfH6y8lyCmmd6UJaKbL7zayP05Xw7rfUtPyHshwelR59q1zltRm3D6z6XwU+eFAmEpBn4AyVTb1Dlqs4b+0BgAMRIS0AAACQJ/e81ag3drSPXHxvd4N+O7Na1UXOjPukG9351JrEEYkbm7IfDShJ/9ncJm3e9/z93Q26+7QBOQVAPZUa6iUqdjvkyPEu8saQUWNo33uxtdO6jU0RtUXSB5H5rEn79NrE/qn0tr+vDldJj47rdzskZX7f0uRytlxKrWe6tiGs0eXurPbf1BTRb5Y32q+0CYsjDe9n3zhJS7aHtGRbUMcN8WljU0R3vbnvXO/vbtA1R5Rq3ubE0bjW3j9WJIe0q/dEtLYhrN8sb+x2uQ/LsuQZ9FG1rX80vizaskFqaX/c+SqMNq9T8/IfyoT2qOXdn8eXh3bM14DzlqYe21kUfzzE79S7u+xrzZZ78zOSVpJCdYvkqTku6+PZMSam+pfOU7RloyQp0rxWA85dmrYERGj7PDUsuDr+PLL7TVlOn8qm/bRH7QCAAx3lDgAAAIAesDqNJuwIaKX2EbKvb+t61OLWltwn1+qOqGkP5/pSUxcjV8s8DhW78/sryTu7QkqXQ7fa1LntrkNKEsP3xtDe19pptGSHkimpdWjTGVCU3ftRPP5LWW1XEtuZsmzNnuwD/zUZPjMlbocsb3XWx5rRep/t8l8sa9zbrsRzRY30nM0o2uLYHknSiPDylHWvfNiWdUBbnabkgHfIKbbL0+kc0ErtE6gFVj+Qsp2jaFD88fDS9OOlarr4w05nlWkCXX9stySp+a2fZH2sdCL1b8cDWkmK7FqWMNI4Waju9dRl21/tcTsA4EBHSAsAAAD0ErvJpZJFuleUs1vCfZMHx2Wqf/qxQ4vkc1k6eqAnr+dsjRiF0pw3n3V6k19bR+hmWZbcA6cnrCuZ9O2sj3v6iOK0IXOHidUe+Q//lhzFQ7s83oTQSynLcvnMZerDs0YVq+Twb2R9rNMDv8q43q5ZjTadOTP2d0nSxNCLKeuCOQTx5462v/2+aMylclVMzPo4dmKh3SnLPIP3hb8fGeJTjU0gP6bcpfFV2Y1ylqQRZfZh70db75UkBT/8pyINq7I+nh27usLRwJb020dSg/VYa+qkcQCARJQ7AAAAAHJg0k30ZbPclcWQiLYcR3fOGlus4SUuLdke1MKtudUXDfVhICylhoHnjCrSuAq3BhQ5Nbai/VcRf55H0vaV5AnfRnUKywac/ZraNjypSONK+Sd+XZYz+yD6sCq3fnVytb70cvpJn8q9Drm8h6rm/LcVrn9bDm+1oo2r5Swbpz2vflqRPe/Ft/WbPRpX7tTqhn0JfS4fg+RNh/id+lStXyNLXRpW6pJGfF/eQ85OKXNgIs0Jt7xLUnlsh343foG+vOIjWZ1LSg1pD6t066Kp31Ro+7Ey0TYVrzQKRPaNZs80udypw32aNdavDxrCOsTvShtwWi6fBnz8TYW2vaJY207FWrerccl1aY9r+1pCiSUi3DUnyNGpXnGZ16E7TqzSit1hte0teVLisTShyiNXDjVAHGlKDnyk7c8dLVHLe79U+Ql/yKn9nZlIS8qyWMuH0oCp9tvHUr8uRVu3yxiTtkQCAICQFgAAAMgLuzv7s5ngKZRjSDt5gEeHV3u0OxjLOaQN5/F2/2wkn25QsVMnDE0tB9BX8plRJ5cSdiZlzb6RF3T72NVFTpV6LDWF7BvckWs7vFXyDj6pfVnlpL3LUssP+D1Oda5zG81hSHHypuUeh6Yn9aG7+ii5q49K3C8WTglpJamsdHDW55JSr6uxFS45PKXyDT9XkuRfu1OBTsN9M438HVHmUk2xUzXFXZcTsBxueYee3t6uaEiNS78pmeyHoptw4oRvnUsddPC7HTomi8kFczXImTiKN/DBgyqZcoucvppuHS85cJaUUP4gdWXqyFvFgjLhRlme8m61AQAOBoS0AAAAQA7S5a6bmlPrfO4JRrWuIax3doW1riGsIX6XvM720W8uR3tIU9fadUkEO92Z/+sPbzVpWKlLYyvsb6fe1hLRf+tCCkaNqn1OTR3slXfvLFXBqNHS7cGEycCGlbh01EBPwmi+UNRo8bagFm0L6v3diTVGcxkh2Bsa0tVByFEoarQi6bVlE8jnov09TRfSpj9XLJh6m33y5k8mTUonSVU+p6YO8qZMRJU8Yjjbl2k57D9jTv8w2+W/Wd6gN+tCtus6S37tyZ8pu+sw3bbZspweOUvHKtq4Mut9Ig0rEp73dEK5XFSWVEgOtxTb+xmNtqlx4RflznICMYe3Wr7h58vhaw/8Y+HUkDa86w21rvmLoq3tZQ8cvkHyDf+4HN4K2/IIkhRr3SYHIS0ApEVICwAAAPTQluaIvvdafcryFze26cWNnQOL3Ea+2umImTIFdZncML9et06vTAlqNzVF9IMF9WrtNET08Gq3bjy+UpL006V79PbO1EmkzhtdrEsm7AugfrWsIWECtc6cBb7TeVV9WG2RmHzZ1KHI4OdvNKQsy3f+nKmFmZofC6aWSUh+31vCRn9ZkXoL+/gqt24+viLhlvTk4LSnr9NRNERSahvnb8nu2kgOWpNf2+bm9KNdezKS3FUxIaeQNtq8PuG55S7t9rlzVVlcpKJRF6t1zZ/iy9o2/ENtG/6R9TGaS3+imvPfluXypYwKlqTWNX9W65o/JyxrqZysAectSxvSRlu3y1V+WNZtAICDTf8sAAUAAADsRx5ZmRp49ZaOjMrdg8TzB/NTA+VF24IJAa0kvbsrrJ2tUe1sjdoGtJL0yqZ9kwTVt0XTBrSS5EnT5kHFffdrSTajNTOpb4vaHsOT55Q2XRDrdqSvQypJ7gHHpizLtH1nK3aHtT2QGHLuymLyu3QcxYekLLMcXZcayCT5ffHmcB2UdGf4ecd5yyd0e19JstxlPdo/F2PK3fJPur5Hx4g2faDgtlckSTGbcgd2IvVvK7x7efqRtG07etQmADjQEdICAAAAPbRoW89HyGbD77I0qrx9BKyrB5mg3XjCFruiupKawzEFwulHIHZel6l0g9sh1Vba3wJ/zRF9F2Bta8m+rqidJpv3wmm1T/iVT5Oq7Scbmzwg8yRkJUf+IOF5+UfuzWoCuw4tSa/Pn/RB25lDeY6iURclPC+uba9Re8GY4uwblOSwpM/QpC7ejw4eh3Rkltva8Q3/eLf3lRSvb9sbZg7fVyO42GXp9JE+uSsnyzfykz06biywSZJkoqnlMdIxoUaZUOrIW0kykeyPAwAHI8odAAAAADno26m32g0ocmhStUdnHVoUHzmY79vr090JHo1JMSv9q+48GdeuNvsAdFK1W58Y59eAIvtRlIdXe/T5SaW6950mSdJHhnrltCy1hGPa3BzRsBKXNjZFbEPg6UO9Om1EkVwOS/9eH1Bzp5BxYLFTL2xoTdi+rrVnIa3dRG8/OK4i7WvrrismlarC59D6hkj8M3dIiVOzx/kz7ucZME2Vpz6jto1PyD1gmorGXSHPW80p21X7HBpe6tJbO0MJfZj88hqT6vh+qjbz+TsrPfo2We4yhXcukbvqSJUccYMk6aLD/NoeiOY88Z2klDIdF9b65XNaWr0nnPA6HJY0xO9UJCYFIkZnjCxSmbf7Y5Q8A49X5cwnFFh9r4Kbno0vd5aOlatsnEykWaHt8yRJ3kPOiq+3XMXyHXqhvENP7fa5u/K5w0tV5XOovi2ms0YVx8t5lM94QK7ywxTevdx+VrYk4V3LFGvbHn8ebd37OKdw1ShGSAsA3UJICwAAAOznbj6+MmVGemeWKe3nDi/R/e+mhnTJomkGSEZimQNho/bJpRyWpd1pRllef0y5it2ZA7LTRxbp9JFFaddvaY7oulcTJ8U669AiXX74vlqftZWpkxJVeh16dNW+chTdnaitQ3JIW+q2NDHNqNee8DotXXRY9yab8g0/R77h58Sf202YNXWQV5+bVKrPvVCXMHo2Ekt8fckjh8tzKBlgOT0qPerG1OWWpa8fXa6vS/rFGw05jURPfikuh9VlcJ0vvpEXyDfygj45Vy48TksX1qZ+VhzuEpUe/f+yPs6e1z6n1g8eiD/vKE+QU7hqYjKhPfaroq22ywEA7QhpAQAAgP2c16a2QbalOLOtR9oSsQ8vo8Z0OXq4PdczWttgX7c2XS3aXNgFxdnk1Mnh9ur6sPbsHfHrcVoqdjsUjhrbcg8upyVL+yacKvM6FEwKafPx2nqb22aQb0cJhOSPVkMoFn9/jKSmpJG0pZ78vl5fjnU78j2CHPs4fAMTnkdbNioa2KZYcHeaPVLFgrsUC6XWvJakWOt2RQPbZDlcsrzVCRPUAQAIaQEAAIAeyVSvNV98NkGg0ybg8DikpExN6XKQny7do2unlMvlkO57p0kLttiPZmwKxTRvs/1EQB2eXhvQ31a1KJbmrchHjmkXNtu9B8lqihJHfgYiRte8tKtbbShxWxqYFPr2i5DWJtnsGF3bPiJ7X8f9alnmSaJKezD5lh27z3Ym2f7RAblzFA1KeB7c+KR2bHwyp2Ps+c/Fade1vHOHWt65Q5LkqpioylOflqt0dM7tBIADFROHAQAAAPsxh9U+6Zbd8mR2JQXSRVpLt4f0+tY2ra6P6MWN6UPYuR+2acn2UMY2PrIyfUArKS8j5uyyvGzyveRQtSeaw0ZrGyIJy3o6EVlfsPv8dAxgzTVjzndI63cTuu4vnEkjaXtTZM97an7rJ312PgDoDwhpAQAAgFxkMQFPPg31O21DziH+1PBxysDU2qiDip0aV2F/A932QEzbAhHbdR3CmdLXLIwuz8/Ne+Veh4qSbo0fkzSJlJ2yPIeKyQoxkVyuhvhT+2Dw3s+P3econYFFjvjEdfkyeUD29XyH5tBW5M5VOblPzxepf6tPzwcA+ztCWgAAAKCPlLgtTR2U2yRTnSfG6qy6yKlP1/rlcbSPlPzE2GJdMqFEk6rbg0unJZ06wqeJ1W5dd3TqhFrtTNoJwzq0RVNjyJIsRz9WeB26dGL3Jr9K5nJY+tzhJSp2WXJY0vShXttQGqmOHezVcYO9stQ+svrYwV4dP8QnSbp4fElKSQg7pR5Ln5tk/1nsifFVbp0+Iv2EcR3KvQ5dkeZaQH64KifLf/g3JUdu15XlqejW+aKBTd3aDwAOVNSkBQAAAPLoosP8emRlS8ryM0cW6fLDS+SwLEVjRoFI+4RcHXGn22Hpsn/XJewzptyVcaTh7HF+fXxMsYyR3HtHOP7w+Eq1RmJyWla8Xmp1kVOPnjNQdyzZo2U79pUuMJIiXYwMTp4oy2FJV00u1S+7qF168jCfvnBEaV4nB/rosCLNOMSncExZj+jMZaKpoX6nbvlIpV7a2KqHbfqwv/I4LX3jmHK1Rdr7svNkXaPK3bprZrVawpkniPO7rV6pB+uwLH1+cqkunVgil0N66L1mPbe+NWGbWWOL9elaPxNN9TLLslQ27acqPfr/yYSbU9e7irTt//wpywd9ZrdMqD7lLgPLUy7L4VIs3CRFQwrveUe7nz85vj4W2CoTC8tydD0iHgAOBoS0AAAAQB6lmwipwuuIh1xOh6VST9eBU3JAasdlk0IWuexHRqYEm0ZdjqQNRlJD2mwm7PI6rV4J1RyWJW8v3fVe5nGo1ONQte/AvK3e57LvD8uyVJLF57E3dfxBwa7mbU2RfckP9A7L6ZXl9Ga/vWXJ8lalXe9wl0puyV1xeNIao1jrNjn9w7vZUgA4sBDSAgAAAD2SGB6lG7np7EahsWxC2p74xweBLrfZ0ZqY4jqU3ejUXEaw9qZcmtERVDKZVeHYvfPJtYjRP1neasnhlWLB+LK6JybIXXOCHJ4yVc78RwFbBwCFR0gLAAAA5FG6AX/ZjD5NFu5ilGuu8jEY0bKsrALn/SaktXnRHocUsnlv/W5Hwv/oe3afUULaA4NlWXL6D1G0aW18mYm0KLT1xfYAFwAOcvz0AQAAAOSgq7Gt6QK+bEZn1lYm1mY8Zbgv22ZlpavSBlL7hGOZ+N2WSrIIMUeX7z91JpPvoJ862P5W7kpv+4aVvux/TRqYxaRbyJ7ddVLu5T3eX3gGz0x47j/8mznt7ywZnc/mAMABhe92AAAAQB7VFDk1qToxoKz0OjSlpusZ088ZVRS/3bvIZWnGIfkNaY8ZlLkNTkv66lFlGbeZOdynUWWZb8gbWOTQ0QNzmyG+N50+sij+eIjfqcsmlKgmKVz1OS1NH9r+fg8sduqIAdmFzJ+dWJq/hkJHD/SqrFN93NHlLh3axecNfafkiO9Leyf6srzV8k/KLaQtPuwa5VaEBAAOHny3AwAAAHLQVckAhyV9e1qFlu8IaldbTMUuS0fVeFSRxWRUxw/x6bYZTm1ojOjwao8GFud3AqujB3olNaVdf8eJVRpe6tLdbzWpzaYe7heOKNXJw3xpJ3G66DC/qnwOTRnoVfF+VDLgkgklOqLGo8ZgTEcP8qrE7dBt06u0bEdQLREjj8PSETUeDer0fn9raoWW7QiqMRTT+EqPfrp0T0p9Xkk6Ns2oXHTPgCKn7jixSm/uCMnrtHT0IE98wj0UnnfoaRpw3nJF6t+SZ+hpcvpqctq/6NBPynXuEoXqFkix6L4Vzvz+QQoA+iNCWgAAACCPLElep6Xjh3QvdBhd7u61UgGZanvWFDk0vLT914Mqn0NbWqIp20wb5E0b0ErSrLH+njeyFzgsS0fVJIapZV6HTh5elGYPyZPUh8cN8enptYkTre1HOfQBpcrn1Ckj0vcNCstdebjclYd3f/8Bx8g94Jg8tggADgz8WAEAAADk0f486M/lsNIGi50nNks36ZfvIJ7Aye6VH7zvBgAAyDdCWgAAACCP9vfgLl0Zgs7BrNMmpXU52kPeg5Vd+M5t+AAAIF8IaQEAAIBcpJZqTeDcz4O7kE2tWSlxlKzdgNkiZ+LCTKUTDkR2+bTz4HoLAABALyKkBQAAAHJQVZT+R2i/y9LQkvxO9pVvrRH7kPaoGk/8cW1lak3cw6oSl80c7sv4/EBTW5H6noyzeZ8AAAC6g4nDAAAAgByUeRJDWr/boVFlLlX5HJo11r/flwSorXBp1Z5IwrLTRxRpdqdJvz4zvkRG0qr6sCRpeKlLl4wvSdjnosNKZIy0ek9Yo8rc+p8J++ekYfly9CCvPnd4iRZsCSoYNRpR5tLFSe8JAABAdxHSAgAAAD1weLVHt59YVehmZK3EkzoS+LMTS+TudO++12npisNLMx7H67R0eRfbHGjOPLRYZx5aXOhmAACAAxDlDvJow4YNuv766zV+/Hj5/X5VVVVp2rRp+ulPf6pAIFDo5gEAAAC2tVX377G/AAAABz5G0ubJ008/rUsuuUSNjY3xZYFAQEuXLtXSpUt177336tlnn9XYsWML2EoAAAD0lOli4rD93f4+sRkAAMDBiJG0ebB8+XJ9+tOfVmNjo0pKSnTrrbdqwYIFeumll3TVVVdJklatWqVzzjlHTU1NBW4tAAAADmZOm98AiG0BAAAKi5G0eXDttdeqtbVVLpdLL7zwgk444YT4ulNOOUXjxo3Tt7/9ba1atUo///nPdfPNNxeusQAAADioHV7t0YItwfjzco8lF0M3AAAACoofx3po8eLFmjdvniTpyiuvTAhoO1x//fWaMGGCJOnXv/61wuFwn7YRAAAAvae/jUL9yBCvaivax2o4Leni8SWyKIEAAABQUIS0PfTkk0/GH19xxRW22zgcDl166aWSpD179mju3Ll90TQAAAAgRbHboVs+UqnfzqzW/WfU6OThRYVuEgAAwEGPkLaHXnvtNUmS3+/XMccck3a7k046Kf54/vz5vd4uAAAAIB3LslRT7JTPxQhaAACA/QE1aXvo/ffflySNHTtWLlf6t3P8+PEp+2Rj06ZNGddv3bo162PtD5pDDVq49luFbgYAAEC3HeZo1R8ntcafj/DvUWD3lgK2CAD6N8sqUlHldYVuBgAUFCFtD7S1tWnnzp2SpGHDhmXctrKyUn6/Xy0tLfrwww+zPsfw4cN71Mb9TSQa0rGlawrdDAAAgDyqV7h1XaEbAQD9luUoU5EIaQEc3Ch30ANNTU3xxyUlJV1u7/f7JUnNzc291iYAAAAAAAAA/QsjaXugra0t/tjj8XS5vdfrlSS1trZ2seU+XY263bp1q4499tisjwcAAAAAAABg/0JI2wM+ny/+OBQKdbl9MBiUJBUVZT+DbldlFPobj6tI/2kmVAYAAP2fw7J0aEmlRvgrC90UAOjfLG+hWwAABUdI2wOlpaXxx9mUMGhpaZGUXWmEA1Wxu0QfO+wnhW4GAAAAAAAAsN+gJm0P+Hw+VVdXS5I2bdqUcdv6+vp4SHugTQYGAAAAAAAAoPsIaXto4sSJkqQPPvhAkUgk7XYrVqyIP54wYUKvtwsAAAAAAABA/0BI20MzZsyQ1F7K4I033ki73auvvhp/PH369F5vFwAAAAAAAID+gZC2hy644IL44wceeMB2m1gspoceekiSVFFRoZkzZ/ZF0wAAAAAAAAD0A4S0PXTsscfqxBNPlCTdd999WrhwYco2P//5z/X+++9Lkq699lq53e4+bSMAAAAAAACA/Zer0A04EPz617/W9OnT1draqjPOOEPf//73NXPmTLW2tuqRRx7RPffcI0mqra3V9ddfX+DWAgAAAAAAANifENLmwZQpU/Too4/qkksuUWNjo77//e+nbFNbW6tnn31WpaWlBWghAAAAAAAAgP0V5Q7y5LzzztNbb72l6667TrW1tSouLlZFRYWmTp2qO+64Q8uXL9fYsWML3UwAAAAAAAAA+xnLGGMK3Qh036ZNmzR8+HBJ0ocffqhhw4YVuEUAAAAAABx4+P0bQG9iJC0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFJCr0A1Az0QikfjjrVu3FrAlAAAAAAAcuDr/zt35d3EAyAdC2n6urq4u/vjYY48tYEsAAAAAADg41NXV6dBDDy10MwAcQCh3AAAAAAAAAAAFZBljTKEbge5ra2vT22+/LUmqqamRy7X/D47eunVrfNTv4sWLNWTIkAK3CLmiD/s3+q//ow/7P/qw/6MP+zf6r/+jD/u//tiHkUgkfjfr5MmT5fP5CtwiAAeS/T/RQ0Y+n0/Tpk0rdDO6bciQIRo2bFihm4EeoA/7N/qv/6MP+z/6sP+jD/s3+q//ow/7v/7Uh5Q4ANBbKHcAAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVkGWNMoRsBAAAAAAAAAAcrRtICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0qJPbdiwQddff73Gjx8vv9+vqqoqTZs2TT/96U8VCAQK3byDkmVZWf07+eSTuzzWc889p1mzZmnYsGHyer0aNmyYZs2apeeee673X8gBaseOHXrmmWd044036qyzztKAAQPifXL55ZfnfLx89FEkEtHdd9+tE088UTU1NSoqKtKYMWN0zTXX6N133825TQe6fPThgw8+mPW1+uCDD3Z5vEAgoDvvvFPTpk1TVVWV/H6/xo8fr+uvv14bNmzo2Qs+wCxdulS33HKLzjjjjPh1U1JSotraWl1xxRV67bXXcjoe12Dfy0cfcg0WTmNjox555BFdf/31OumkkzR27FiVl5fL4/Fo4MCBOvnkk3XnnXdq165dWR1vwYIFuuSSSzRy5Ej5fD4NHjxYZ555ph5++OGc2vXwww/rjDPO0ODBg+Xz+TRy5EhdcsklWrhwYXde5gEtH334yiuvZH0N3nzzzV22ia+j+fOd73wn4f1/5ZVXutyH74UAkIYB+sg///lPU1ZWZiTZ/qutrTWrV68udDMPOun6I/nfSSedlPYY0WjUXHnllRn3//znP2+i0WjfvbADRKb39LLLLsv6OPnqo7q6OjNt2rS0x/B6veZ///d/e/iqDyz56MMHHngg62v1gQceyHis1atXm3HjxqXdv6yszDz99NM9f+EHgBNPPDGr9/zSSy81wWAw47G4BgsjX33INVg4c+bMyep9HzBggHn++eczHuumm24yDocj7THOOecc09ramvEYgUDAnH322WmP4XA4zM0335zPt6Dfy0cfzp07N+tr8KabbsrYHr6O5s/y5cuNy+VKeP/mzp2bdnu+FwJAZoS06BPLli0zRUVFRpIpKSkxt956q1mwYIF56aWXzFVXXRX/hlpbW2saGxsL3dyDSsd7/8UvftG8/fbbaf+tXbs27TG++93vxo8zZcoU8/DDD5vFixebhx9+2EyZMiW+7nvf+14fvrIDQ+cfOEeMGGHOOOOM+PNcQtp89FEkEjEzZsyIbzt79mzz3HPPmUWLFpnf/OY3ZuDAgfFfUP/1r3/l4dUfGPLRh50Don//+98Zr9X6+vq0x2lsbDS1tbXxY1111VXmpZdeMgsWLDC33nqrKSkpMZJMcXGxWb58eV5ef382ZswYI8kMHTrUXHvttebvf/+7Wbx4sVm4cKH5xS9+YQ455JD4e/mZz3wm47G4BgsjX33INVg4c+bMMcOHDzeXXnqp+fWvf20ef/xxs3DhQjN//nzz6KOPmk996lPG6XQaScbj8Zg333zT9jh33313/H0fM2aMue+++8zixYvNk08+aWbOnJn1tXzRRRfFt505c6Z58sknzeLFi819990X/7xJMn/84x974+3ol/LRh51D2vvvvz/jNbh9+/a0beHraP5Eo9F4UNrxvnUV0vK9EAAyI6RFn+gYyeJyucyCBQtS1t95551Z//Ub+dXT933lypXxv6BPnTrVBAKBhPUtLS1m6tSp8f5ntHRubrzxRvP000+bbdu2GWOMWbduXc4BX7766L777ouf+0tf+lLK+tWrV8dHy48dO9aEw+HcXuwBKh992DkgWrduXbfb8sMf/jB+nDvvvDNl/fz58+OflUyj5w8W55xzjnn00UdNJBKxXV9XV5cQuL366qu223ENFk6++pBrsHDS9V1nTzzxRPx9nTVrVsr6Xbt2mfLy8vgfy+rq6lLOcd5553UZMr300kvxbc4777yUttXV1ZkRI0YYSaaiosLs3r07+xd6AMtHH3YOaTOFgF3h62j+/PKXvzSSzPjx4833vve9LvuH74UA0DVCWvS6RYsWxb+RXnPNNbbbRKNRM2HChPgPtaFQqI9befDqaUj7xS9+MX6MhQsX2m6zcOHCjD9MIXvdCfjy1Ucd12hVVZVpaWmx3eYnP/lJ/Dh/+9vfsmrfwaZQIW0oFIqHFBMmTEh7K+E111wTP9fixYu7da6DydNPPx1/v7761a/absM1uH/Lpg+5Bvd/hx12mJHab5lPdscdd8Tf04cffth2/w8//DA+mvPss8+23eass86KB0gffvih7TYPP/xwxiAe6WXqw3yFtHwdzY8NGzbER/6/8sor5qabbuqyf/heCABdY+Iw9Lonn3wy/viKK66w3cbhcOjSSy+VJO3Zs0dz587ti6ahh4wxeuqppyRJ48eP1/HHH2+73fHHH6/DDjtMkvTUU0/JGNNnbTzY5auPVq1apffff1+SdOGFF6q4uNj2OJ0nwnriiSd62nzk0dy5c9XQ0CBJuuyyy+Rw2P8IQB/mZubMmfHHa9asSVnPNbj/66oP84VrsHeVlpZKktra2lLWdfwsWlZWptmzZ9vuP2zYMJ122mmSpJdeeklNTU0J65uamvTSSy9Jkk477TQNGzbM9jizZ89WWVmZJPovV5n6MB/4Opo/X/7yl9Xc3KzLLrtMJ510Upfb870QALJDSIte1zFrst/v1zHHHJN2u87f4OfPn9/r7ULPrVu3Tlu2bJGkLn9A61i/efNmrV+/vrebhr3y1UedZz/PdJzBgwertrZWEtfx/ibbPpw6dWr8lx76sGvBYDD+2Ol0pqznGtz/ddWH+cI12HtWrlypN998U1J7ANRZKBTS4sWLJUknnHCCPB5P2uN09EswGNTSpUsT1i1ZskShUChhOzsejyceQC1ZskThcDi3F3OQytSH+cLX0fz429/+pmeeeUZVVVX62c9+ltU+fC8EgOwQ0qLXdfy1c+zYsXK5XGm36/wDWcc+6DuPPfaYJk6cqOLiYpWWlmrcuHG67LLLMo5qfu+99+KPu/qBmv4tjHz1UXeO8+GHH6qlpSXrtiI7V1xxhYYOHSqPx6MBAwbo+OOP1w9+8ANt3rw5437Z9qHL5dLYsWMlca1m49VXX40/njBhQsp6rsH9X1d9mIxrcP8QCAS0evVq/eIXv9BJJ52kSCQiSfr617+esN2qVasUjUYl9f01GIlEtHr16swv5CCWbR8mu+GGGzRy5Eh5vV5VVlZqypQpuu6667Rq1aqM+/F1tOf27Nmja6+9VpJ0xx13aMCAAVntx/dCAMgOIS16VVtbm3bu3ClJaW8L61BZWSm/3y+p/Zsp+tZ7772n999/X62trWpubtYHH3yghx56SKeccopmzZoVv0Wzs02bNsUfd9W/w4cPjz+mf/tOvvqoO8cxxiTsh/x45ZVXtHXrVoXDYe3atUuLFi3SrbfeqrFjx+qPf/xj2v06+sLv96uioiLjOTr6sK6uLmGUIRLFYjHdfvvt8ecXXnhhyjZcg/u3bPowGddg4Tz44IOyLEuWZcnv96u2tlbXX3+9tm/fLkn67ne/q4svvjhhn0Jeg3bHOdh1pw+TLViwQBs3blQoFNKePXv05ptv6le/+pUmTJigm2++OW1ZLb6O9ty3v/1tbdu2TdOnT9eVV16Z9X58LwSA7KQf1gjkQed6XiUlJV1u7/f71dLSoubm5t5sFjopLi7Wxz/+cZ166qkaP368SkpKVFdXp1dffVV33323du3apSeffFLnn3++5syZI7fbHd83l/7tCOAl0b99KF99RF8X3ujRozV79mydcMIJ8V881q5dq3/84x/6+9//rra2Nn3hC1+QZVm6+uqrU/bv6MNsvxZ3aG5ultfrzdOrOLD88pe/jN9GPXv2bNuSPlyD+7ds+rAD1+D+66ijjtI999yjadOmpazjGuwfMvVhhyFDhmj27NmaMWOGRo8eLZfLpY0bN+qZZ57RQw89pHA4rB/96EcKhUK67bbbUvanD3tm3rx5uvfee+VyuXT33XfLsqys9+U6BIDsENKiV3Uu/J+pBliHjl9CWltbe61NSLR582bbET2nn366vvrVr+qss87S8uXL9eqrr+oPf/iDvva1r8W3yaV/O/+CSf/2nXz1EX1dWLNmzdJll12W8gvRtGnT9OlPf1rPPPOMZs+erXA4rOuuu04f//jHNXjw4IRtO/owl6/FEn2Yzquvvqrvfve7kqSBAwfqD3/4g+12XIP7r2z7UOIa3F9ccMEFmjp1qqT292XNmjX629/+pieeeEKf+cxn9Ktf/Urnnntuwj5cg/uX7vSh1H6tbdiwIWGwgCQdffTRuuCCC3T11VfrjDPOUENDg26//XZ9+tOf1pFHHpmwLX3YfaFQSFdffbWMMbruuus0adKknPbnOgSA7FDuAL3K5/PFH3dMtpBJxy19RUVFvdYmJMp0y+WgQYP097//Pf4D8V133ZWwPpf+7Xy7Jv3bd/LVR/R1YZWXl2ccsXLuuefqxhtvlNRe4+++++5L2aajD3P5WizRh3beffddzZo1S5FIRD6fT4899pgGDhxouy3X4P4plz6UuAb3FxUVFZo0aZImTZqkadOm6aKLLtLjjz+uhx56SGvXrtX555+vBx98MGEfrsH9S3f6UGofFZkc0HZ27LHH6re//a2k9tvbOx53Rh9232233aYVK1ZoxIgRuummm3Len+sQALJDSIteVVpaGn+czW0mHUXds7kVEH1j9OjROv300yVJH3zwQXxmVim3/u1csJ/+7Tv56iP6ev939dVXx0OkzhMhdejow1y+Fkv0YbJ169bpjDPOUH19vZxOpx555BF99KMfTbs91+D+J9c+zBbXYOF89rOf1ac+9SnFYjF95Stf0e7du+PruAb7h0x9mK2LLrpIZWVlkjJfgxJ9mIsVK1boJz/5iaT2ARudywhki+sQALJDSIte5fP5VF1dLUldFmyvr6+PfzPtXDAehTdx4sT4486zV3cu2N9V/3Yu/E//9p189VF3jmNZVpeTOiB/Bg4cGP96azfLfEdftLS0aM+ePRmP1dGHNTU11MLsZMuWLTrttNO0ZcsWWZal+++/X+eff37GfbgG9y/d6cNscQ0WVkc/trS06Pnnn48vL+Q1aHccpJeuD7PlcrlUW1srKfM1KPF1NBe//OUvFQqFNHr0aAUCAT3yyCMp/95555349i+//HJ8ecfvdnwvBIDsUJMWvW7ixImaN2+ePvjgA0UiEblc9h+7FStWxB9PmDChr5qHLKS7xbNzeNu5/+zQv4WRrz5KPs5RRx3V5XGGDx/erdEW6L5Mt2NPnDhR//jHPyS199Hxxx9vu10kEtGaNWskca12tnPnTp1++ulau3atpPbRRJdeemmX+3EN7j+624e54BosnJqamvjjDRs2xB/X1tbK6XQqGo3m9RrM5jgul0vjxo3ruvGQlL4Pc9HVNdiBr6PZ6ygbsHbtWn3mM5/pcvsf//jH8cfr1q2T3+/neyEAZImRtOh1M2bMkNT+V/E33ngj7Xadb0uaPn16r7cL2Xvvvffij4cOHRp/PGrUqPhzu9vKOvvPf/4jSTrkkEN06KGH5r+RsJWvPuq4jrs6zrZt27Rq1SpJXMd9ra6uTjt37pSUeJ12yLYPly5dGh/5Qh+2a2ho0Jlnnhn/Wnj77bfry1/+clb7cg3uH3rSh9niGiysziMnO9/a7PF4dOyxx0qSFi5cmLGOZUe/eL3e+ORWHaZNmxafqChT/4VCIb3++uvxfTLVUUWidH2YrUgkEv/615NrkK+j+cf3QgDIDiEtet0FF1wQf/zAAw/YbhOLxfTQQw9Jap9QYObMmX3RNGRh3bp1mjNnjiRpzJgxOuSQQ+LrLMuK35q2YsWK+C8lyV5//fX4X7PPP//8jKMckF/56qPa2tr4aIa//e1vCgQCtsfpPNnHrFmzetp85OCee+6RMUaSdNJJJ6WsP/nkk1VeXi5J+tOf/hTfNhl9mCgQCOicc87RsmXLJEk33HCDvvOd72S9P9dg4fW0D7PFNVhYjz32WPzx5MmTE9Z1/Cza2Nioxx9/3Hb/TZs26cUXX5QknXrqqQm1L6X2WpinnnqqJOnFF19Me6v1448/rsbGRkn0X64y9WE2Hn30UTU0NEiyvwb5Oto9Dz74oIwxGf91nkxs7ty58eUdISvfCwEgSwboAyeeeKKRZFwul1mwYEHK+jvvvNNIMpLMTTfd1PcNPEj985//NOFwOO36bdu2mSlTpsT75uc//3nKNitXrjROp9NIMlOnTjWBQCBhfSAQMFOnTo33/6pVq/L+Og4m69ati/fHZZddltU++eqj++67L37uL3/5yynrP/jgA1NWVmYkmbFjx2b8bB3Mcu3DdevWmWXLlmXc5umnnzYej8dIMkVFRWbTpk222/3whz+Mn/vOO+9MWb9gwQLjcrmMJHPSSSdl83IOaMFg0Jxxxhnx9+zaa6/t1nG4BgsnH33INVhYDzzwgGltbc24zS9+8Yv4+zpq1CgTiUQS1u/atcuUl5cbSWbkyJFm586dCesjkYg577zz4seYO3eu7Xleeuml+DYf//jHU85TV1dnRowYYSSZiooKs3v37txf8AGop324e/futH3SYdGiRaaiosJIMpZlmaVLl9pux9fR3nHTTTd1ef3wvRAAukZIiz6xbNkyU1RUZCSZkpISc9ttt5mFCxeal19+2Vx99dXxb7S1tbWmsbGx0M09aIwcOdIMHTrUfPWrXzV//etfzYIFC8zy5cvNnDlzzA033GAGDBgQ75sZM2aYtrY22+N897vfjW83ZcoU88gjj5glS5aYRx55JCHk/d73vtfHr7D/mzdvnnnggQfi/37605/G38/p06cnrHvggQfSHicffRSJRMz06dPj237iE58wzz//vFm0aJG56667zMCBA40k43A4zL/+9a9eeDf6p5724dy5c40kc8IJJ5jbbrvNPPvss2bJkiVmyZIl5tFHHzWf+tSnjGVZ8WP+7ne/S9uWxsZGU1tbG9/26quvNi+//LJZuHChue2220xJSUk8ZFq+fHnvvSn9xOzZs+Pv1SmnnGLeeust8/bbb6f9t3LlyrTH4hosjHz0IddgYY0cOdJUVVWZq666yvzpT38yr732mnnzzTfNvHnzzO9///uEa8Lj8Zg5c+bYHufuu++ObzdmzBhz//33myVLlpinnnrKzJw5M77uM5/5TMb2XHTRRfFtZ86caZ566imzZMkSc//995sxY8bE1/3xj3/sjbejX+ppH3b8cfOII44wN954o3nqqafM4sWLzRtvvGGeeOIJc+WVV8b/SCLJfOtb30rbFr6O9o5sQlpj+F4IAF0hpEWf+ec//xn/q6bdv9raWrN69epCN/OgMnLkyLT90fnfJz7xCVNfX5/2ONFo1Hzuc5/LeIwrr7zSRKPRvntxB4jLLrssqz7q+JdOvvqorq7OTJs2Le0xvF6v+d///d98vw39Wk/7sCMg6upfcXFxVqHA6tWrzbhx49Iep6yszDz99NO98Vb0O7n0m9Q+Qi8drsHCyEcfcg0WVrY/qwwbNsy88MILGY914403JgTqyf/OPvvsLkd8BgIBc/bZZ6c9hsPh4K6wJD3tw853oGT653Q6zc0332xisVjG9vB1NP+yDWn5XggAmRHSok+tX7/eXHfddaa2ttYUFxebiooKM3XqVHPHHXeYlpaWQjfvoPPKK6+YH/3oR+ZjH/uYqa2tNVVVVcblcpmKigozefJkc80119iWp0jn2WefNeeff74ZOnSo8Xg8ZujQoeb888/nr9g9kK+QtkM++igcDpvf//73ZsaMGaa6utr4fD4zevRoc9VVV5l33nmnJy/3gNTTPmxsbDT/93//Z7785S+b4447zowYMcIUFxcbj8djBg0aZE455RRz6623mu3bt2fdpubmZnPHHXeYqVOnmoqKClNcXGwOO+wwc91115n169fn8+X3a/kI+JJxDfatfPQh12BhrVixwvz85z83s2fPNkcccYQZNGiQcblcprS01IwZM8Z84hOfMA888EDWP0fOnz/fXHzxxWb48OHG4/GYgQMHmtNPP9389a9/zaldf/nLX8zpp59uBg4caDwejxk+fLi5+OKLc/q56WDR0z4MBoPmscceM9/4xjfMjBkzzKhRo0xpaalxu91mwIABZvr06eaGG24w69aty7pNfB3Nr2xD2g58LwQAe5YxaWYtAAAAAAAAAAD0OkehGwAAAAAAAAAABzNCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAACAbnrwwQdlWZYsy9L69esL3RwAAAAA/RQhLQAAOOisX78+Hq725B8AAAAA5AMhLQAAAAAAAAAUkGWMMYVuBAAAQF8Kh8NauXJl2vWTJ0+WJE2dOlUPPPBA2u0mTZqU97YBAAAAOPi4Ct0AAACAvuZ2u7MKWP1+P0EsAAAAgF5HuQMAAAAAAAAAKCBCWgAAgG568MEH45OIrV+/PmX9ySefLMuydPLJJ0uSPvjgA33hC1/Q6NGjVVRUpEMPPVRXXnmlNmzYkLDfO++8oyuuuEKjR4+Wz+fT8OHD9cUvflE7duzIql1PPvmkPvWpT2nEiBHy+XyqqKjQ1KlT9aMf/Uj19fU9fdkAAAAA8oxyBwAAAH3gxRdf1OzZs9XU1BRftmHDBt1///165pln9Oqrr2r8+PF6+OGHdfnllysUCsW327Rpk+6++24999xzWrBggYYOHWp7jvr6en3yk5/Uyy+/nLA8GAzqjTfe0BtvvKHf//73euqpp3T88cf3zgsFAAAAkDNG0gIAAPSyLVu26MILL1RFRYXuuusuLVq0SPPmzdPXv/51WZalHTt26POf/7yWLFmiSy+9VGPGjNG9996rxYsXa+7cufrsZz8rqT3U/cY3vmF7jmAwqNNOO00vv/yynE6nPvvZz+rhhx/W66+/rnnz5unWW29VdXW1duzYobPPPjtl9C4AAACAwmEkLQAAQC9bvXq1xo0bp/nz56umpia+fMaMGXK5XPrZz36m+fPn65xzztGxxx6rOXPmqLi4OL7dySefrLa2Nj322GP6xz/+obq6uoTjSNItt9yiZcuWqaKiQi+++KKOOeaYhPUzZszQ//zP/+iEE07Q1q1b9f3vf19/+ctfeveFAwAAAMgKI2kBAAD6wG9+85uUYFWSvvSlL8Uf79y5U/fee29CQNvhi1/8oiQpEolo4cKFCeuam5v1u9/9TpL04x//OCWg7TBy5Ej98Ic/lCQ99thjamlp6d6LAQAAAJBXhLQAAAC9rKKiQmeeeabtulGjRqm0tFSSdMQRR2jChAm22x155JHxx2vXrk1Y9+qrr6qhoUGS9MlPfjJjWz760Y9KksLhsN54443sXgAAAACAXkW5AwAAgF42btw4WZaVdn1FRYWamppUW1ubcZsOnScfk6SlS5fGHw8ZMiTrdm3bti3rbQEAAAD0HkbSAgAA9DK78gWdORyOLrfr2EaSotFowrodO3Z0q12BQKBb+wEAAADIL0bSAgAA9HOdQ9tly5bJ7XZntd+wYcN6q0kAAAAAckBICwAA0M9VV1fHH9fU1BC+AgAAAP0M5Q4AAAD6uSlTpsQfz58/v4AtAQAAANAdhLQAAAD93GmnnRavZ/ub3/xGxpgCtwgAAABALghpAQAA+rmKigp95StfkSQtWLBA1113nWKxWNrtt2/frnvvvbevmgcAAACgC9SkBQAAOADccsstevXVV7Vo0SL9+te/1iuvvKKrrrpKRx11lPx+v+rr6/Xuu+/qxRdf1HPPPafJkyfr85//fKGbDQAAAECEtAAAAAcEr9erOXPm6PLLL9fjjz+u//73v/HRtXbKysr6sHUAAAAAMiGkBQAAOECUlpbqH//4h1577TX96U9/0rx587Rlyxa1traqrKxMY8aM0bHHHqtzzjlHZ5xxRqGbCwAAAGAvyzCzBAAAAAAAAAAUDBOHAQAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAAf1/JwrsUWtU3I8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'intervention_examples_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/metapopulation.html b/docs/_build/html/metapopulation.html new file mode 100644 index 0000000..0b33e9f --- /dev/null +++ b/docs/_build/html/metapopulation.html @@ -0,0 +1,1155 @@ + + + + + + + Metapopulation — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Metapopulation

+
+

A. Migration

+

Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by migrating hosts.

+

Population A is connected to Population B and to Clustered Population 4 (both are one-way connections). Clustered Populations 0-4 are all connected to each other in two-way connections.

+

Isolated population is not connected to any others.

+

Two different pathogen genotypes are initially seeded into Populations A and B.

+
+
[1]:
+
+
+
from opqua.model import Model
+
+
+
+
+

Model initialization and setup

+
+

Create a new Model object

+
+
[2]:
+
+
+
model = Model() # Make a new model object.
+
+
+
+
+
+

Define a Setup for our system

+

Create a new set of parameters called setup_normal to be used to simulate a population in the model. Use the default parameter set for a vector-borne model.

+
+
[3]:
+
+
+
model.newSetup( # Create a new Setup.
+    'setup_normal',
+        # Name of the setup.
+    preset='vector-borne'
+        # Use default 'vector-borne' parameters.
+    )
+
+
+
+

We make a second setup called setup_cluster with the same parameters, but doubles contact rate of the first setup.

+
+
[4]:
+
+
+
model.newSetup( # Create a new Setup.
+    'setup_cluster',
+        # Name of the setup.
+    contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),
+        # rate of host-vector contact events, not necessarily transmission, assumes
+        # constant population density.
+    preset='vector-borne'
+        # Use default 'vector-borne' parameters.
+    )
+
+
+
+
+
+

Create a population in our model

+

Create a population of 20 hosts and 20 vectors called population_A. The population uses parameters stored in setup_normal.

+
+
[5]:
+
+
+
model.newPopulation(    # Create a new Population.
+    'population_A',
+        # Unique identifier for this population in the model.
+    'setup_normal',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=20,
+        # Number of hosts in the population with.
+    num_vectors=20
+        # Number of vectors in the population with.
+    )
+
+
+
+

Create a second population of 20 hosts and 20 vectors called population_B. The population uses parameters stored in setup_normal. The two populations that will be connected.

+
+
[6]:
+
+
+
model.newPopulation(    # Create a new Population.
+    'population_B',
+        # Unique identifier for this population in the model.
+    'setup_normal',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=20,
+        # Number of hosts in the population with.
+    num_vectors=20
+        # Number of vectors in the population with.
+    )
+
+
+
+

Create a thrid population of 20 hosts and 20 vectors called isolated_population that will remain isolated. The population uses parameters stored in setup_normal.

+
+
[7]:
+
+
+
model.newPopulation(    # Create a new Population.
+    'isolated_population',
+        # Unique identifier for this population in the model.
+    'setup_normal',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=20,
+        # Number of hosts in the population with.
+    num_vectors=20
+        # Number of vectors in the population with.
+    )
+
+
+
+

Create a cluster of 5 populations connected to each other with a migration rate of 2e-3 between each of them in both directions. Each population has an numbered ID with the prefix clustered_population_, has the parameters defined in the setup_cluster setup, and has 20 hosts and vectors.

+
+
[8]:
+
+
+
model.createInterconnectedPopulations(  # Create new populations, link all of them to each other.
+    5,
+        # number of populations to be created.
+    'clustered_population_',
+        # prefix for IDs to be used for this population in the model.
+    'setup_cluster',
+        # Predefined Setup object with parameters for this population.
+    host_migration_rate=2e-3,
+        #  host migration rate between populations
+    vector_migration_rate=0,
+        # vector migration rate between populations
+    host_host_contact_rate=0,
+        # host-host inter-population contact rate between populations
+    vector_host_contact_rate=0,
+        # host-vector inter-population contact rate between populations
+    num_hosts=20,
+        # number of hosts to initialize population with.
+    num_vectors=20
+        # number of hosts to initialize population with.
+    )
+
+
+
+

Now, we link population_A to one of the clustered populations with a one-way migration rate of 2e-3.

+
+
[9]:
+
+
+
model.linkPopulationsHostMigration(
+        # Set host-vector contact rate from one population towards another.
+    'population_A',
+        # Origin population ID for which migration rate will
+        # be specified.
+    'clustered_population_4',
+        # destination population ID for which migration rate
+        # will be specified.
+    2e-3
+        # migration rate from one population to the neighbor.
+    )
+
+
+
+

We link population_A to population_B with a one-way migration rate of 2e-3.

+
+
[10]:
+
+
+
model.linkPopulationsHostMigration(
+        # Set host-vector contact rate from one population towards another.
+    'population_A',
+        # Origin population ID for which migration rate will
+        # be specified.
+    'population_B',
+        # destination population ID for which migration rate
+        # will be specified.
+    2e-3
+        # migration rate from one population to the neighbor.
+    )
+
+
+
+
+
+

Manipulate hosts and vectors in the population

+

Add pathogens with a genome of AAAAAAAAAA to 20 random hosts in population population_A.

+
+
[11]:
+
+
+
model.addPathogensToHosts( # Add specified pathogens to random hosts.
+    'population_A',
+        # ID of population to be modified.
+    {'AAAAAAAAAA':5}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+

population_B starts with GGGGGGGGGG genotype pathogens.

+
+
[12]:
+
+
+
model.addPathogensToHosts( # Add specified pathogens to random hosts.
+    'population_B',
+        # ID of population to be modified.
+    {'GGGGGGGGGG':5}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+
+
+
+

Model simulation

+
+
[13]:
+
+
+
model.run(          # Simulate model for a specified time between two time points.
+    0,              # Initial time point.
+    100,            # Final time point.
+    time_sampling=0 # how many events to skip before saving a snapshot of the system state.
+    )
+
+
+
+
+
+
+
+
+Simulating time: 83.06461341318253, event: CONTACT_VECTOR_HOST
+Simulating time: 100.06274296487011 END
+
+
+
+
+

Output data manipulation and visualization

+
+

Create a table with the results of the given model history

+
+
[14]:
+
+
+
data = model.saveToDataFrame(
+        # Creates a pandas Dataframe in long format with the given model history,
+        # with one host or vector per simulation time in each row.
+    'metapopulations_migration_example.csv'
+        # Name of the file to save the data to.
+    )
+data
+
+
+
+
+
+
+
+
+Saving file...
+
+
+
+
+
+
+
+[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.
+[Parallel(n_jobs=8)]: Done   2 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.19491923660278324s.) Setting batch_size=2.
+[Parallel(n_jobs=8)]: Done   9 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done  16 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done  26 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.027785778045654297s.) Setting batch_size=4.
+[Parallel(n_jobs=8)]: Done  44 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.024601459503173828s.) Setting batch_size=8.
+[Parallel(n_jobs=8)]: Done  76 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Done 120 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.040442705154418945s.) Setting batch_size=16.
+[Parallel(n_jobs=8)]: Done 224 tasks      | elapsed:    0.6s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.06669497489929199s.) Setting batch_size=32.
+[Parallel(n_jobs=8)]: Done 408 tasks      | elapsed:    0.8s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.0938570499420166s.) Setting batch_size=64.
+[Parallel(n_jobs=8)]: Done 606 tasks      | elapsed:    0.8s
+[Parallel(n_jobs=8)]: Done 714 tasks      | elapsed:    0.8s
+[Parallel(n_jobs=8)]: Done 793 tasks      | elapsed:    0.8s
+[Parallel(n_jobs=8)]: Done 810 tasks      | elapsed:    0.8s
+[Parallel(n_jobs=8)]: Done 829 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Done 848 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Done 869 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Done 890 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Done 918 out of 918 | elapsed:    0.9s finished
+
+
+
+
+
+
+
+...file saved.
+
+
+
+
[14]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2NaNNaNTrue
30.0population_AHostpopulation_A_3NaNNaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
293755100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
293756100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
293757100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
293758100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
293759100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
+

293760 rows × 7 columns

+
+
+
+
+

Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population.

+
+
[15]:
+
+
+
plot = model.populationsPlot( # Create plot with aggregated totals per population across time.
+    'metapopulations_migration_example.png',
+        # Name of the file to save the plot to.
+    data,
+        # Dataframe with model history.
+    num_top_populations=8,
+        # how many populations to count separately and include as columns, remainder will be
+        # counted under column “Other”
+    track_specific_populations=['isolated_population'],
+        # Make sure to plot the isolated population totals if not in the top
+        # infected populations.
+    y_label='Infected hosts'
+        # change y label
+    )
+
+
+
+
+
+
+
+_images/metapopulation_36_0.png +
+
+
+
+
+
+
+

B. Population contact

+

Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by “population contact” events between vectors and hosts, in which a vector and a host from different populations contact each other without migrating from one population to another.

+

Population A is connected to Population B and to Clustered Population 4 (both are one-way connections).

+

Clustered Populations 0-4 are all connected to each other in two-way connections.

+

Isolated population is not connected to any others.

+

Two different pathogen genotypes are initially seeded into Populations A and B.

+
+
[ ]:
+
+
+
from opqua.model import Model
+
+
+
+
+

Model initialization and setup

+
+

Create a new Model object

+
+
[ ]:
+
+
+
model = Model() # Make a new model object.
+
+
+
+
+
+

Define a Setup for our system

+

Create a new set of parameters called setup_normal to be used to simulate a population in the model. Use the default parameter set for a vector-borne model.

+
+
[ ]:
+
+
+
model.newSetup(     # Create a new Setup.
+    'setup_normal',
+        # Name of the setup.
+    preset='vector-borne'
+        # Use default 'vector-borne' parameters.
+    )
+
+
+
+

We make a second setup called setup_cluster with the same parameters, but doubles contact rate of the first setup.

+
+
[ ]:
+
+
+
model.newSetup(
+    'setup_cluster',
+        # Name of the setup.
+    contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),
+        # rate of host-vector contact events, not necessarily transmission, assumes
+        # constant population density.
+    preset='vector-borne'
+        # Use default 'vector-borne' parameters.
+    )
+
+
+
+
+
+

Create a population in our model

+

Create a population of 20 hosts and 20 vectors called population_A. The population uses parameters stored in setup_normal.

+
+
[ ]:
+
+
+
model.newPopulation(    # Create a new Population.
+    'population_A',
+        # Unique identifier for this population in the model.
+    'setup_normal',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=20,
+        # Number of hosts in the population with.
+    num_vectors=20
+        # Number of vectors in the population with.
+    )
+
+
+
+

Create a second population of 20 hosts and 20 vectors called population_B. The population uses parameters stored in setup_normal. The two populations that will be connected.

+
+
[ ]:
+
+
+
model.newPopulation(    # Create a new Population.
+    'population_B',
+        # Unique identifier for this population in the model.
+    'setup_normal',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=20,
+        # Number of hosts in the population with.
+    num_vectors=20
+        # Number of vectors in the population with.
+    )
+
+
+
+

Create a thrid population of 20 hosts and 20 vectors called isolated_population that will remain isolated. The population uses parameters stored in setup_normal.

+
+
[ ]:
+
+
+
model.newPopulation(    # Create a new Population.
+    'isolated_population',
+        # Unique identifier for this population in the model.
+    'setup_normal',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=20,
+        # Number of hosts in the population with.
+    num_vectors=20
+        # Number of vectors in the population with.
+    )
+
+
+
+

Create a cluster of 5 populations connected to each other with a population contact rate of 1e-2 between each of them in both directions. Each population has an numbered ID with the prefix clustered_population_, has the parameters defined in the setup_cluster setup, and has 20 hosts and vectors.

+
+
[ ]:
+
+
+
model.createInterconnectedPopulations(  # Create new populations, link all of them to each other.
+    5,
+        # number of populations to be created.
+    'clustered_population_',
+        # prefix for IDs to be used for this population in the model.
+    'setup_cluster',
+        # Predefined Setup object with parameters for this population.
+    host_migration_rate=0,
+        #  host migration rate between populations
+    vector_migration_rate=0,
+        # vector migration rate between populations
+    vector_host_contact_rate=2e-2,
+        # host-host inter-population contact rate between populations
+    host_vector_contact_rate=2e-2,
+        # host-vector inter-population contact rate between populations
+    num_hosts=20,
+        # number of hosts to initialize population with.
+    num_vectors=20
+        # number of hosts to initialize population with.
+    )
+
+
+
+

Now, we link population_A to one of the clustered populations with a one-way migration rate of 2e-3.

+
+
[ ]:
+
+
+
model.linkPopulationsHostVectorContact(
+        # Set host-vector contact rate from one population towards another.
+    'population_A',
+        # Origin population ID for which migration rate will
+        # be specified.
+    'clustered_population_4',
+        # destination population ID for which migration rate
+        # will be specified.
+    2e-2
+        # migration rate from one population to the neighbor.
+    )
+
+
+
+

We link population_A to one of the clustered populations with a one-way population contact rate of 1e-2 for population_A hosts and clustered_population_4 vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)

+
+
[ ]:
+
+
+
model.linkPopulationsVectorHostContact(
+        # Set host-vector contact rate from one population towards another.
+    'clustered_population_4',
+        # Origin population ID for which migration rate will
+        # be specified.
+    'population_A',
+        # destination population ID for which migration rate
+        # will be specified.
+    2e-2
+        # migration rate from one population to the neighbor.
+    )
+
+
+
+

We link population_A to population_B with a one-way migration rate of 2e-2.

+
+
[ ]:
+
+
+
model.linkPopulationsHostVectorContact(
+        # Set host-vector contact rate from one population towards another.
+    'population_A',
+        # Origin population ID for which migration rate will
+        # be specified.
+    'population_B',
+        # destination population ID for which migration rate
+        # will be specified.
+    2e-2
+        # migration rate from one population to the neighbor.
+    )
+
+
+
+

We link population_A to population_B with a one-way population contact rate of 2e-2 for population_A hosts and population_B vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)

+
+
[ ]:
+
+
+
model.linkPopulationsVectorHostContact(
+        # Set host-vector contact rate from one population towards another.
+    'population_B',
+        # Origin population ID for which migration rate will
+        # be specified.
+    'population_A',
+        # destination population ID for which migration rate
+        # will be specified.
+    2e-2
+        # migration rate from one population to the neighbor.
+    )
+
+
+
+
+
+

Manipulate hosts and vectors in the population

+

population_A starts with AAAAAAAAAA genotype pathogens.

+
+
[ ]:
+
+
+
model.addPathogensToHosts( # Add specified pathogens to random hosts.
+    'population_A',
+        # ID of population to be modified.
+    {'AAAAAAAAAA':5}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+

population_B starts with GGGGGGGGGG genotype pathogens.

+
+
[ ]:
+
+
+
model.addPathogensToHosts( # Add specified pathogens to random hosts.
+    'population_B',
+        # ID of population to be modified.
+    {'GGGGGGGGGG':5}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+
+
+
+

Model simulation

+
+
[ ]:
+
+
+
model.run(          # Simulate model for a specified time between two time points.
+    0,              # Initial time point.
+    100,            # Final time point.
+    time_sampling=0 # how many events to skip before saving a snapshot of the system state.
+    )
+
+
+
+
+
+
+
+
+Simulating time: 100.1491768759948 END
+
+
+
+
+

Output data manipulation and visualization

+
+

Create a table with the results of the given model history

+
+
[ ]:
+
+
+
data = model.saveToDataFrame(
+        # Creates a pandas Dataframe in long format with the given model history,
+        # with one host or vector per simulation time in each row.
+    'metapopulations_population_contact_example.csv'
+        # Name of the file to save the data to.
+    )
+data
+
+
+
+
+
+
+
+
+Saving file...
+
+
+
+
+
+
+
+[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.
+[Parallel(n_jobs=8)]: Done   2 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done   9 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.19925533388085942s.) Setting batch_size=2.
+[Parallel(n_jobs=8)]: Done  16 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done  25 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.017675399780273438s.) Setting batch_size=4.
+[Parallel(n_jobs=8)]: Done  36 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Done  58 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.030938148498535156s.) Setting batch_size=8.
+[Parallel(n_jobs=8)]: Done  96 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.039101600646972656s.) Setting batch_size=16.
+[Parallel(n_jobs=8)]: Done 168 tasks      | elapsed:    0.6s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.07192206382751465s.) Setting batch_size=32.
+[Parallel(n_jobs=8)]: Done 288 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 453 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 528 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 545 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 562 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 581 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Done 611 out of 611 | elapsed:    0.7s finished
+
+
+
+
+
+
+
+...file saved.
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2AAAAAAAAAANaNTrue
30.0population_AHostpopulation_A_3AAAAAAAAAANaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
195515100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
195516100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
195517100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
195518100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
195519100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
+

195520 rows × 7 columns

+
+
+
+
+

Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population.

+
+
[ ]:
+
+
+
plot = model.populationsPlot( # Plot infected hosts per population over time.
+    'metapopulations_population_contact_example.png',
+        # Name of the file to save the plot to.
+    data,
+        # Dataframe with model history.
+    num_top_populations=8,
+        # how many populations to count separately and include as columns, remainder will be
+        # counted under column “Other”
+    track_specific_populations=['isolated_population'],
+        # Make sure to plot th isolated population totals if not in the top
+        # infected populations.
+    y_label='Infected hosts'
+        # change y label
+    )
+
+
+
+
+
+
+
+_images/metapopulation_77_0.png +
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/metapopulation.ipynb b/docs/_build/html/metapopulation.ipynb new file mode 100644 index 0000000..ac1939c --- /dev/null +++ b/docs/_build/html/metapopulation.ipynb @@ -0,0 +1,1396 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Metapopulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Migration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by migrating hosts.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population 4** (both are one-way connections). **Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a migration rate of 2e-3 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=2e-3, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " host_host_contact_rate=0, \n", + " # host-host inter-population contact rate between populations\n", + " vector_host_contact_rate=0,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration( \n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `population_A`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 83.06461341318253, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 100.06274296487011 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19491923660278324s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.027785778045654297s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.024601459503173828s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.040442705154418945s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.06669497489929199s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0938570499420166s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 606 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 714 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 793 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 810 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 829 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 848 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 869 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 890 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 918 out of 918 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2NaNNaNTrue
30.0population_AHostpopulation_A_3NaNNaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
293755100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
293756100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
293757100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
293758100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
293759100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

293760 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "293755 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "293756 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "293757 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "293758 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "293759 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 NaN NaN True \n", + "3 NaN NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "293755 NaN NaN True \n", + "293756 NaN NaN True \n", + "293757 NaN NaN True \n", + "293758 NaN NaN True \n", + "293759 NaN NaN True \n", + "\n", + "[293760 rows x 7 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_migration_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAALmCAYAAADlpH2lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUZdYG8HtKOmmkQKgBRKnSAlJUQBGWjkhRUAEbUuy4u6KLILqwn1hWERVYCFgQbEgTaQJSQzf0llATSO9tyvdHnCHztimZFub+XVeuK/PWZ94kk5nnvOccldFoNIKIiIiIiIiIiIiIiMiLqT09ACIiIiIiIiIiIiIiImsY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvB4DGkRERERERERERERE5PUY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvJ7W0wOgmqO0tBTJyckAgJiYGGi1/PUhIiIiIiIicjadToeMjAwAQNu2bREYGOjhEREREXkHzkiTzZKTk9GlSxdPD4OIiIiIiIjIZyQlJaFz586eHgYREZFXYMkpIiIiIiIiIiIiIiLyeszQIJvFxMSYv09KSkJcXJwHR0NERERERER0e0pLSzNXSKj6WZyIiMjXMaBBNqvaMyMuLg4NGjTw4GiIiIiIiIiIbn/sX0lERHQLS04REREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiNzuSdQ1/P7AOy88fhNFo9PRwiIiIiGoEracHQERERERERORLLhfmoOu6T1Bu0AMA8stLMbXVvR4eFREREZH3Y4YGERERERERkRu9f3y7OZgBAC/sX+25wRARERHVIAxoEBEREREREbnR3puXPD0EIiIiohqJAQ0iIiIiIiIiNwrS+nl6CEREREQ1EgMaRERERERERG4UrGFAg4iIiMgRDGgQERERERERuREzNIiIiIgcw4AGERERERERkRsFSWRo6Ko0CSciIiIiaQxoEBEREREREbmRVIZGQUWZB0ZCREREVLP4bEDj5s2bWLduHWbMmIH+/fsjOjoaKpUKKpUK48ePt7p/amqqeXtbv+Lj4x0eb3x8vMvPQURERERERK4nlaHBgAYRERGRdVpPD8BT6tSp4/Zz3nXXXW4/JxEREREREXmXQI34ozgDGkRERETW+WxAo6pGjRqhRYsW2LRpk8371K9fH8nJyVa3mzNnDr799lsAwLhx4xweo8nQoUPx7rvvyq739/ev9jmIiIiIiIjIdYwSyxjQICIiIrLOZwMaM2bMQOfOndG5c2fUqVMHqampaNKkic37+/n5oU2bNorb6PV6bN++HQAQGhqKhx9+uDpDBgBERERYPS8RERERERF5L53BIFqWX1HqgZEQERER1Sw+G9CYNWuWy8+xZcsWXL9+HQAwYsQIBAUFufycRERERERE5N10Rr1oGTM0iIiIiKzz2abg7rB8+XLz984oN0VEREREREQ1n1SGBgMaRERERNYxoOEiBQUFWL16NQAgPj4e999/v2cHRERERERERF5BbxR30WBAg4iIiMg6ny055Wo//PADiouLAQBPPPEEVCqVU467c+dOtG/fHhcuXIBer0edOnXQpUsXPPbYYxg6dGi1znP16lXF9WlpaQ4fm4iIiIiIiCrpDCw5RUREROQIBjRcpGq5qSeffNJpx01JSbF4nJqaitTUVKxatQo9evTAypUrUb9+fYeO3bBhQ2cMkYiIiIiIiBTojCw5RUREROQIBjRc4PLly9ixYwcAoHv37rjjjjuqfUx/f38MGTIEffv2RZs2bRAeHo7c3Fzs3bsXn3/+Oa5cuYLdu3fjoYcewt69exEeHl7tcxIREREREZHzSffQKPXASIiIiIhqFgY0XODrr7+G8a+aqM7KzkhKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGHdp/jypUriuvT0tLQpUsXu49LREREREREt0hlaOQzQ4OIiIjIKgY0XOCrr74CAAQEBGD06NFOOaZUMMMkNDQUq1atQtOmTZGdnY2FCxdi7ty58Pf3t+scDRo0qOYoiYiIiIiIyBrpDA0GNIiIiIisUXt6ALebpKQknD59GgAwZMgQxUCEM4WHh+PRRx8FABQVFeHgwYNuOS8RERERERHZR2dkU3AiIiIiRzCg4WSuagZui1atWpm/v3btmlvPTURERERERLZhDw0iIiIixzCg4UQVFRX47rvvAACxsbH429/+5tbzq1Qqt56PiIiIiIiI7CfVQ4MZGkRERETWMaDhROvXr0dWVhYAYMyYMdBq3dui5OTJk+bv69Wr59ZzExERERERkW30DGgQEREROYQBDSeqWm5q3Lhxbj13Xl6eOTskODgYCQkJbj0/ERERERER2Uay5JSOAQ0iIiIiaxjQcJLs7GysX78eANC2bVu0b9/e5n179eoFlUoFlUqF1NRU0fqNGzeipKREdv/CwkKMGjXKnB3y9NNPIyAgwK7xExERERERkXvIlZwyGo0eGA0RERFRzeHemkheZNeuXTh//rz5cWZmpvn78+fPIzEx0WL78ePHKx7vu+++Q3l5OQDnZ2fMnTsXY8eOxfDhw3HvvfeiWbNmqFWrFvLy8rBnzx588cUXuHz5MgDgrrvuwsyZM516fiIiIiIiInIeqQwNg9GIYl05Qvx4cxoRERGRHJ8NaCxevBjLli2TXLd7927s3r3bYpm1gIap3JRGo8HYsWOdMsaqsrOzsXjxYixevFh2m549e+Kbb75B7dq1nX5+IiIiIiIicg6pDA2gMkuDAQ0iIiIieT4b0HCmc+fOYf/+/QCAhx56CHXr1nXq8efNm4etW7di7969OHPmDDIzM5Gbm4vg4GDUq1cP99xzDx577DH07dsXKpXKqecmIiIiIiIi59IZ9JLLCyrK4NxPk0RERES3F58NaCQmJorKSjmqefPm1ap1un37dsX1CQkJbPJNRERERER0m1DK0CAiIiIieT4b0CAiIiIiIiLvdDI3HT9fOo7Ciso+hSoV0KF2fYyIv9ulWelGoxE/XUrGoayrULpn7WpxLi7kZ6FrbGOcy89A64i6UMH6uDQqFZqFReFMXobk+l+vnUbH6AaODp+IiIjotseABhEREREREXmNc3kZ6LL2ExTpykXrZrbvi7c79HXZuef8uQ1vHv7V5u33ZlwCAKy7csop53/r8EZ0jKqP/g1aOuV4RERERLcbtacHQERERERERGSy5soJyWAGAHx78YhLz73Cxce3xY+pyZ4eAhEREZHXYkCDiIiIiIiIvMb14nzZdTnlxS49d055iUuPb4tifYWnh0BERETktVhyioiIiIiIiLxGRmmR7LpinWsn+0sFwYSH6t2J2MBa5sdXi3OxI/2i7P6PNG6LQI2faHlKYTb23Ex12jiJiIiIfBUDGkREREREROQ1MkoLZdcV6ypgNBpd1hi8RBDQmN2xH+6JaWx+vO7KScWAxqIeIxEZECxavvLiUcmARreYxngg7g689+dW8zKjUjdyIiIiIh/HklNERERERETkNZQyNIwwokyvc8l5jUYjSgXHFmZbaKwEUvzUGruWh/oFuCw4Q0RERHQ7YkCDiIiIiIiIvIZShgYA2Ybh1VVh0MMgyI4IEgU0lD9Cywc0pPcL9QuwY4RERERExIAGEREREREReQ2lDA3AdX00hOWmACBQY1ml2XpAQ3q9UoaGEAtOEREREcljQIOIiIiIiIi8QlFFmWRgoapivWsyNITlpgAgSGuZoaFWKA+lVqmglgl4aGUzNALBglNEREREtmNAg4iIiIiIiLxCZplydgbgwgwNieOKS07Jhx+0Ctkbchkatfz8bRwdEREREQEMaBAREREREZGXEJab8lNrRGWZil3UQ0MqQ8OeklNKpaL8VHaUnDKy6BQRERGRHAY0iIiIiIiIyCsIG4JHB4QgRGuZxeCuHhpalRpaQWaFtR4acmSbgmsDoFLI+iAiIiIiSwxoEBERERERkVcQZmjEBIoDGkUuytAQlpwKFJSbApR7aChlVtjTFJyIiIiI5DGgQURERERERF5BmKERE1gLwaIMDVeVnLIMaARptaJtHC45JRvQCJQ4DktOEREREclhQIOIiIiIiIi8glSGRrDWMlOiWO+eklPChuCAclNwJVqZklNsCk5ERERkHwY0iIiIiIiIyCuIAxq1ECwILLirKbjdJacUMiuUSk6xgwYRERGR7RjQICIiIiIiIq8gLjkVIlFyyk0ZGlqpDA2FklMKlaL8VLb30GDBKSIiIiJ5DGgQERERERGRV7Cp5JTbmoLb10NDiZ9MySk2BSciIiKyDwMaRERERERE5BWkmoKHuClDQ1hyyt4eGo6VnAqESlB0yqiU6kFERETk4xjQICIiIiIiIq+QWWaZoREtUXKqyFUZGjY0BVfqoaFEtim4lk3BiYiIiOzBgAYRERERERF5XLleh7zyUotl7iw5Vap3Zckp6QwNf4lzEBEREZE8BjSIiIiIiIjI44TZGUBlySlRU3C9i5qC6wQlp+xsCq5ELqABAMKkDxacIiIiIpLHgAYRERERERF5nLAhuAoq1PYPRrDGTU3BRRkaTiw55WAghIiIiIgs8V0VEREREREReZywIXhUQDA0arU4Q8NlTcGFPTSkSk45FtBQObgfEREREVliQIOIiIiIiIg8TpihERMYAgAIEQU0XJShIQiUSJackmnu7QhT1oYKlsEOo5FFp4iIiIjkMKBBREREREREHifM0IgJrAUAoqbgRR4sOeVoDw0pUgETIiIiIlLGgAYRERERERF5nFyGhvtKTgmagkv10IDzSkcFSpS0IiIiIiJlDGgQERERERGRx9maoVGsd01AQ5yhIdFDQ+28gEaAuvL4opJTTjsDERER0e2HAQ0iIiIiIiLyuExBhka0KUND454eGqIMDakeGk4sOSVV0oqIiIiIlDGgQURERERERB4nX3JKkKGhq3BJ42xRU3CWnCIiIiLyOgxoEBEREREROdn+jEv45dJxlP1117/RaMS26+fw69VTMBgNHh6ddynVVeCXS8ex88ZFi+WmklMhgh4aeqMBFQa908dhW8kpJ2ZoaP8qOSWIkVwoyMJnp3bj+5RjKKgoxb6blr9LRERERL6Mt4QQERERERE50acnd+HF/asBAF2iG2LfoBfx2oG1+OjETgDA6Cbt8V2vxz04Qu8yfNsy/HrttGi5XFNwoDJLw9/JGQ62NAXXCKMP1SBXcio5Jw1T9/0sWt4luiH2DnoBaieWvSIiIiKqafhOiIiIiIiIyIlMwQwASMq8grVXTpqDGQCwMuUoUguyPTAy73O1KFcymAEAsTJNwQGgyAV9NEqFGRoS51UKJrSOqGPX+dpG1gUAaG0MUCRlXsGma2ftOgcRERHR7YYBDSIiIiIiIhfacPWUaNnJ3BseGIn3yS0vkVxeNygUrf4KEEhlMgiDD86gM1iWApMLNPSrf5fk8s+6DVc8/j/a9jZ/r1ap8Fa7PgCAe+s0sXmMO9IvWt+IiIiI6DbGklNEREREREQupJdoYF1mYD8EAJDq7T2maQe8cfcD0Ko1AIAAjUa0jSuun17Q20SuvNQ394/B20d+Q0FFGSL8g5BRVoQhDVuhZ91misef1aEfAjRanMvPxMS7uqJecDgAoEedJljRcyy+vnAYhboy7Ll5SbZHiNqJJa+IiIiIaiIGNIiIiIiIiFxIanKaDZ4rGWAZ0dCo1Pim51iLZWqVGn5qjcV1LNU5//oZjOKxSIkKDMF8K9kYUgI0Wszq0E9y3aNNO+DRph0AAPW+ewdpJfmS2zGcQURERL6OJaeIiIiIiIhcSCqgUS5zB76vMQqCCHIT9oGCBuCuydCwHIs3ZkOovHBMRERERO7EgAYREREREZELCXszAAxomAizIuSCCAFqy4BGqQsyXMQlp7zv47I3BlmIiIiI3Mn73qERERERERHdRlhySp6whYZcBoIoQ8MF109ccsr7ggdqFp0iIiIiH8eABhERERERkQtVGBnQkGMQZEXITdgHaNyfoaFmhgYRERGR1/G+d2hEREREREQ1lLAnBABUSJScckUPiJpInKEhvZ07MjSEPTS8MUNDxQwNIiIi8nEMaBARERERETmJsGwRIF1yqlhX4Y7heD1RDw2Zj6iBGj+Lx6V6518/cckp7/u47IUxFiIiIiK38r53aERERERERDWUsGwRIN0UvEhX7o7heD2jIEdDbsJeWHKqzMlN1Y1Go2gs3ljeyRvHRERERORODGgQERERERE5iU4ioCGdocGABiCRoWFjU3BnZ2hIZdZ4ZYYGS04RERGRj/O+d2hEREREREQ1lFSGhlRTcGZoVBL10JBrCq52bVNwqZ+bN/bQYIYGERER+ToGNIiIiIiIiJxEb7CtKXhRBQMaAGAQBBJszdBwdlNwYUNwpbG4mtJp1czQICIiIh/HgAYREREREZGTSGZoSJScYoZGJXGGhjRhDw1nZ2gIAyuAl5acYjyDiIiIfJz3vUMjIiIiIiKqoRjQsI+jPTTckaHhjQENtReOiYiIiMid+G6IiIiIiIjISaSaguukSk4xoAEAMAoCCbI9NFzcFFwqEOWN/SqE14uIiIjI1zCgQURERERE5CTSPTSYoSHHAFszNPwsHpdJXNNqjUMyQ8P7AhpS4yQiIiLyJQxoEBEREREROYlkySmJZcU652YY1FTC+Xm5DA1hySl3ZGho1N73cVlqnERERES+xPveoREREREREdVQUhPOOmZoyLI1Q0NYcsodPTTUsi3KPUdqnERERES+hAENIiIiIiIiJ5GacK5gDw1Z4h4a0sQZGs4NaEiXnPK+j8vM0CAiIiJfp7W+CREREREREdlCZxRnY0j10Kgw6FFh0MNPrXHHsLyWMJAgm6GhdnWGhlTJKW/M0GBAg2xXXl6OwsJCFBUVoby8HAaJ4CoREZGzaTQaBAYGIiwsDCEhIVA5uS+ZzwY0bt68iaSkJCQlJeHAgQM4cOAAsrKyAADjxo1DYmKi1WMkJiZiwoQJNp1v6dKlGD9+fDVGXCkzMxOffPIJVq9ejdTUVABAfHw8hg0bhpdeeglRUVHVPgcRERERETlGqil4uUwD66KKckQEBLl6SF7NKCg5JfeB1xMZGiw5RTWV0WhEZmYmMjMzPT0UIiLyQTqdDmVlZcjLy0NQUBAaNWoEtRN7k/lsQKNOnTqeHoLd9u/fj2HDhiE9Pd1ieXJyMpKTk7F48WKsXr0aXbp08dAIiYiIiIh8m9Qd9HJ31RfpGNAQZWjIBBGEPTTc0hTcQyWn5BqjA9KBFyKhtLQ05OXlWSxTqVTQaHw7I4yIiNxDr9eby4qWlJTg8uXLaNy4sdMyNXw2oFFVo0aN0KJFC2zatMnhY/z222+oV6+e7PoGDRo4fGwAuHLlCgYPHoyMjAxotVq8+uqrGDRoEABg3bp1+PDDD5GWlobBgwfj0KFD1T4fERERERHZz5476NlHAxBeLfkMDT+Lx2UyWS+Okvq5aZx4J6GzsOQUWVNaWmoRzIiKikJYWBgCAgKcXvKDiIhIisFgQGFhIdLT06HX61FSUoKioiLUqlXLKcf32YDGjBkz0LlzZ3Tu3Bl16tRBamoqmjRp4vDx7rzzTsTHxztvgAJvvvkmMjIyAADffvstRo4caV533333oVOnThg9ejRu3ryJt956y6aSWURERERE5Fz2TDgXM6Bhc4aGuOSUczM0ak7JKQY0SFlubq75+9jYWJalJiIit1Or1QgLCwMAXLt2DQBQUFDgtICG991y4iazZs3CoEGDakTpqfT0dHzzzTcAgH79+lkEM0xGjRqFfv36AQC++uorUVkqIiIiIiJyPZ0dTXeZoSHVQ0N6O2HJKXc0BZdrUO5J7KFB1hQXF5u/j4iI8NxAiIjI59WqVcucHVhSUuK04/psQKMmWbNmDQx/fTBSakJuajpuMBiwZs0adwyNiIiIiIiqsOcOegY0JDI0PNQUXPhzU6tUXlmeR29HwIx8k15fWY5Nq9WyZwYREXmUWq02/y8y/X9yynGddiRymV27dpm/79mzp+x2Vdft3r3bpWMiIiIiIiIxBjTsI8rQkGsKrnZthoatpa88jSWniIiIyNf5bA8NZ5swYQLOnDmDzMxMhIWF4Y477kCfPn0wadIk1K9fv1rHPnnyJAAgPDwcdevWld0uLi4OYWFhyM/Px6lTp6p1TiIiIiIikne9OA9Hs66jXe16qB8SjvzyUuzLuISkjCs2H2PXjRRoVMr3mGlVauiMBoT7B6JrTGNR6SVHXCnMxdHsaxahhHD/QNwT3QiBWj/Z/ZzFaDTidN5NnMvPxAHB9XIkQ8NoNCI5Jw2phTm4MywGLSJiZc9dVFGGfRmXRcGkQ1lXLR57Y0NwALhQkIU1l09YLNOoVOgU1QB1g8OQUVqIAxlXoJMIfNQJqoWEqIZe+9yIiIiIbMGAhpNs377d/H1WVhaysrKwf/9+fPDBB/j4448xceJEh4999Wrlm+sGDRpY3bZhw4Y4ceIErlyx/YOU8Dxy0tLS7D4mEREREdHt5terpzB0ayIqDHpoVGp82GUw5v75O9JK8u06zocnduLDEztt3r5jVH3sGjAVQdUIOvyQegyjt38t2QS7bWQcdg2YgjD/QIePb4vZxzbj7SObJNfJ5UWIemgYdDAajVCpVPjHwfV4//h287r3OvbH9HYPio6RXpyPbus/RWphjtUxSl0fb7Dx2hlsvHZGtNxfrcGM9g9hzp/bFDN/BjZoibV9nvLKclpEREREtmBAo5qaNm2K4cOHo1u3bmjYsCEA4OLFi/jxxx/xww8/oLS0FM8//zxUKhWee+45h85RUFAAADZ1gg8JCQEAFBYW2n0e0/iJiIiIiEjef5J/R4Whsg6w3mjAS/t/cct5D2ddw2/XzmBY4zYOH+OD4ztlJ+uTc9Lw27UzGNmkncPHt0ZvMGDe8R2y6+UyVgI1lkEcg9EIndGAcp1OdLz3j2/HP+/uDbXgWD+k/mlTMAOA+efrCY6UlSo36PHW4Y1Wt1t/9RRO5t5A60j5zH8iIiIib8aARjU8/PDDGDdunOjuls6dO2P06NFYt24dhg8fjoqKCrzyyisYMmSIYskoOaWlpQAAf39/q9sGBAQAcG7neCIiIiIiumVH+kWPnftCQWa19reWRZJZVlSt41tTbtCjoKJMdn2naOmsdK1EmSS9wYDrxfmiPhy55SXQG41QC5IQbpTaf9OXJ+SUu/aznKt/xkRERESuxOKZ1RAeHq6Yqjto0CDMmDEDAFBcXIz//e9/Dp0nMLAy5bu83HrTwLKyyg8HQUFBdp/nypUril9JSUl2H5OIiIiIyNdE+t96L15LG4BmoVFoFhqFJrVqAwDuCI02L5P6qhccJnvs68X2lbUSKnVyM217CYMPANAoJALNw6IxtmlHfNB5sOR+Uk26DTDKTs4bJbJQdAbLzIeqPxtv8mW3R2TXVf09iQkMUTxOdEAImoVGifqSSF0bIiKqNHPmTKhUKq8pzRcfHw+VSoXx48d7eihEXoMZGi723HPPYcaMGTAajdixYwfefPNNu48RGhqK4uJim8pIFRVVvqG3pTyVkC09OoiIiIiISNk/2vbGP+5+wOH9d91IwX0bPpNcl1ZS4PBxAaBMENBQQSUZZHCnHf0nIz60tuI2Us3C9UYDMkqlAxpSZbWEpZwebtwGy+9/DACgWjrNYl1ckHxQydXqBYdLLp/XeRBea9PL/Pir84fw5B8rZI/zfudBGN+8M2JXvC17nYiIgMq+sL1795ZcFxQUhJiYGHTo0AGjRo3CqFGjoNVyOpGIPIcZGi4WGxuLqKjKO36uXbvm0DFMgQZrTbsBmJuBsx8GEREREZFnhLuwqfb14rxq7V+qr7B4HChotu3qu/cdPb5UQMNgNCJDpoyUQSJIIwxoaBTuvvXkjblSzxUA/NWWPyupMlxVCX+2JszPICJ7lJSU4PLly/jll18wduxYdO/eHenp6Z4eVo3Wq1cvqFQq9OrVy9NDIaqRGNBwg+qmqbVq1QoAkJeXp/hPIy0tDfn5lSnoLVu2rNY5iYiIiIhIzJYJ+TC/6gU0lD49pBU7nqFhNBpFJafkJr1dRerq2fJxSapZeGVAw/aSU3rBMq1aY/3EHiAX0AgQ/KyUAjLArUbqKrDkFBHZbtKkSUhOTjZ/7d27F59++ini4+MBAAcOHMDQoUP5WuImqampMBqNSExM9PRQiLwGAxoulpGRgczMysZ99erVc+gY9957r/n7HTt2yG5XdV2PHj0cOhcREREREcmrMOitbhNWzQwN4QR0Vdaaeisplxi7adLb2zkjQ0MneP7WAgKeIjcuf0EARqtSDsi4O1hFRLeH2NhYtGnTxvzVtWtXTJ06FYcPH8Ydd9wBAEhKSsK6des8PFIi8lUMaLjYwoULzVHrnj17OnSMIUOGQP1XOvHSpUtltzNFa9VqNYYMGeLQuYiIiIiISF6xrsLqNmF+AS47f0FFGQoryhzaV1huCvBEhoY40KAUwDGRDGhAKUNDvEyYoSGV9WHPmFxFLTMuYUDDeoZG5c9WWDGA91QTkSMiIyPxxhtvmB9v3LjRg6MhIl/GgIaDUlNTceTIEcVt1q1bh3feeQdAZROlCRMmSG5nqp2nUqmQmpoqWl+3bl2MHTsWAPDbb7/hhx9+EG3z/fff47fffgMAPPHEE6hbt649T4eIiIiIiGxQrC+3uk21S05ZmUtPK3YsS0PYEBwAgrQ1JENDIsCgmKFhQ1NwrUJAw5OknisA+GsEGRpWe2jUjJ8tEdUcXbp0MX9/6dIli3UZGRl466230KFDB0RERCAwMBDx8fF44oknsGvXLsXjxsfHQ6VSYfz48QAqy1o99thjaNiwIQIDA9GwYUNMmDABp0+flj1GYmKi4tyaSWpqqnk7R8o4lZeXY+3atZg6dSo6d+6MyMhI+Pn5ISoqCvfccw9mzpxprtQiNH78eKhUKnOFlR07dpjHYvoylfYyEV4bOWvXrsWIESPQoEEDBAQEICoqCt26dcPcuXNRWCj9vxIQXzeDwYCFCxeie/fuiIyMREhICO6++2689957KC4ututaEbmKz+ag7tq1C+fPnzc/rvpic/78edGLmvCFIzU1Fb1790a3bt0wePBgtGvXDrGxsQCAixcv4ocffsAPP/xgzs6YN28e6tev7/B433vvPWzcuBEZGRl47LHHcPDgQQwaNAhAZeDkgw8+AADExMTg3Xffdfg8REREREQkz6YMDReWnAKA6yX5aB4eY/dxhf0zACBA0Gja1XfvS2VOOJqhoTca5DM0pEpOCZuCWwkIeIqtTcGVMkyAKhkaguVS14aIyBZ+frcCpXr9rTJ+mzZtwsiRI819XU0uXbqES5cu4euvv8aUKVPwySefmCuQyFmyZAkmTpwIne7W/6yrV68iMTERK1aswFdffYWRI0c66RnZ77nnnsOyZctEy7Ozs5GUlISkpCTMnz8fv/zyi1vKwZeWlmLMmDH4+eefRePZt28f9u3bh08//RTr169H+/btFY9VXFyMvn37YuvWrRbLTf1U1qxZg23btiEkJMTZT4PILj4b0Fi8eLHkCxAA7N69G7t377ZYJhcJ3bt3L/bu3St7nuDgYHz00Ud47rnnHB4rADRs2BBr167FsGHDkJ6ejv/85z/4z3/+Y7FN3bp1sXr1ajRo0KBa5yIiIiIiImnFOtdnaFjjaIaGVECjpvRZsLuHhlSGhkEQ0KhhPTSETcGZoUFE7pacnGz+3tQn9ujRoxg8eDDKy8vh5+eHqVOnYsiQIQgJCcGRI0cwd+5cpKSk4LPPPkNISIhoLquqo0eP4ttvv0VsbCzeeOMNdOnSBaWlpdiwYQM+/vhjlJWVYezYsWjSpAkSEhJc/nyl6HQ6NG3aFA8//DC6dOmCRo0aQavV4tKlS9iyZQuWLFmCrKwsPPzwwzh+/Lj55meg8mbladOmYcKECTh48CASEhJEpeX9/f3tGs+4cePMwYx27drhtddeQ8uWLZGdnY3vvvsOiYmJuH79Oh588EH8+eefijdbP/vss9i3bx/GjRuHUaNGoW7durh8+TL+7//+D3v37kVSUhLeffddzJkzx64xEjlbzXj36oU6deqEr7/+Gnv37sXBgweRlpaGzMxM6HQ6REZGonXr1njwwQfxzDPPWLx4Vcc999yD5ORk/Pe//8Xq1avNKXRNmjTB0KFD8fLLLyMqKsop5yIiIiIiIjFbMjRCq9lDw9o8+3WHAxqWY1dBJSpj5GqSPTRsiCvIBTQyy6QzNKSagtvTQ8OTbO+hYWuGhqCHBhM0iMgBOp3OXB0EqCyfDlRmLJSXl0Oj0WDdunXo27eveZvOnTtj5MiRuPfee3Hy5EnMmzcPTz75JFq3bi15jmPHjqFx48bYt2+fRSn1+++/H/369UPfvn1RUVGByZMnIykpyTVP1IpZs2ahadOmov5ECQkJeOSRRzB58mR0794dGRkZ+PTTTzF79mzzNvXr10f9+vXNGQ4hISFo06aNw2NZv349Vq1aBQB48MEHsWHDBouASN++fdGtWzc899xzyM7OxquvvoqVK1fKHm/Pnj346quv8Pjjj5uXdezYEf3790dCQgKOHz+ORYsWYfbs2dBqOaVMnuOd7+DcIDExEUaj0eYvodDQUIwdOxbz58/Hvn37cOnSJRQVFaGsrAzp6enYunUrpk+fblMwY/v27ebzCGvlCUVHR2P27NlITk5GQUEBCgoK8Oeff2L27NkMZhARERERuZi1DI0AjVZ0J729rJVgSitxToZGoEbr9ubXjpackpq8L9SVyQaYpD7D1ZgeGrIlpxxtCm65nCWniMgeRUVF2LFjBx566CHs27cPANC4cWOMGjUKSUlJOHDgAIDKu/urBjNMIiMjsXDhQgCAwWDAggULFM/3wQcfSPaF7d27N5599lkAlT02Dh48WK3n5ahmzZqJghlVtW3bFs888wwAYPXq1S4dy2effQagshTY0qVLJbM7nn32WfTp0wcA8NNPPyEtLU32eMOHD7cIZpgEBARg6tSpAICsrCycPHnSGcMncph3voMjIiIiIiLyQsV65QyNsGpmZ9girbjAof2ETcGlyk1JBQK8gVSj7Bsl8k1OpUpO2dNDw5PFqOQCFcKAhlalnF3DklNE5IhZs2ZZNKmuVasWevXqhe3btwMAYmNjsXr1agQEBGDLli3m/Z5++mnZY/bo0QMtW7YEAIt9hCIjIzF06FDZ9U899ZT5e6XjuFNOTg4uXLiAEydO4Pjx4zh+/DgiIiIAACdPnkRFhfXMTkfodDpzc/G+ffuiYcOGstuaAkE6nc78c5QyduxY2XWdOnUyf3/x4kU7R0vkXMwPIiIiIiIispG1DA1n9M+wNpl+vTjPoeOKMzTcP+HtzJJTN0rkAztSYZma0kNDLkNDmPmjUduYoSEsOVWNsRGR72rSpAlGjBiBadOmmauRHD9+HEBl3wdrDafvuecenDp1CufOnUN5eblkNkGHDh0USxm1b98e/v7+KC8vt+jn4W7Jycn46KOP8OuvvyI9PV12O4PBgJycHKeVoq/q4sWLKC4uBlB5bZVUXW/6mUlp0aKF7LratWubvy8ocOzGCiJnYUCDiIiIiIjIRtZ6aDgloGFloj1NYSJfibCHRoCb+2dUh3RAw74MjZrTQ0MuQ0PQFNxKhkZ1S58RkW+aNGkSJk+eDKDy/1FgYCCio6MRHh4u2jY7OxtA5WS3tZ4KpjJSRqMROTk5qFOnjmgbaxP/Wq0WtWvXRnp6uvnc7va///0Pzz//PHQ6nfWNAZSUlLhkHFWfv7XrVrWEl9J1Cw4Oll2nrpLVqNfrbRkikcvwHQ4REREREZGNrGZo+Fe/5JS1nhKONwUXZ2i4O0dBKjvAlh4aUpP86YoZGtXroWEtqORKcoEWYQN3pQyTAI3W/ByEW3lrWTEi8g6xsbF2N6p21mumJ197bXH69GlzMCM2Nhavv/46HnjgAcTHxyM0NBR+fpWZj0uWLDGX4HLHa663XzciZ2NAg4iIiIiIyEYlVntoVD9Dw5r8ilIU68oRrBWX61Ai1RRcyNXTLo5O7EgFPW6Uygc0bOqh4a0ZGjIBHlEPDYUeIFI/WyIiZzOVIcrKyoJOp1PM0jCVZlKpVIiMjJTc5saNG4rn0+l0FlkhVVXNIDAISgxWVVRUpHgOJYmJidDpdNBoNNixY4dsiSZ3ZI9Uff7WrlvVsljC60ZUE3nnOzgiIiIiIiIv5JaSUzZsk+ZAlkaZwfM9NKTY8nxVKpUoS0Oph4Z0ySnbm4J7ks09NBQCMlV/tsI7d6WyV4iIHGHK5CgvL8fRo0cVt01KSgIANG/eXLJ/BgAcPXpUsZTTsWPHUF5ebnFuk9DQUPP3OTk5ssc4e/as4jiVnDhxAgDQrl07xX4TBw8eVDyOMzIqmjZtai4RtX//fsVtTdceEF83oprIO9/BEREREREReSFrAY1wf9f30AAcKztVKhi7J+7ir85UujBzQamHhmTJKYPtJac8SbbklFpYcsqxDA1WnCIiZ+nTp4/5+yVLlshut3fvXpw8eVK0j1B2djbWrl0ru77qOYTHadKkifl7pYDCihUrZNdZYwq2KGV5pKWlYc2aNYrHCQysfK9QVlbm8Fi0Wi169uwJANi8eTOuXr0qu+3ixYvN+/Tq1cvhcxJ5C+98B0dEREREROSFrPbQcEPJKQBIK3EgoCFRcsob6m7bOobqZmiIS055/rlLsbkpuI0lp7zzWRLR7aBLly5ISEgAACxatAhbt24VbZOXl4eJEycCqCwLNWnSJMVjvvrqq5IllHbs2IGFCxcCADp16oTOnTtbrG/Tpo25nNL8+fMlgwWrVq3C999/b8Mzk9a8eXMAwLlz57Bnzx7R+uLiYowZM8ZqI/C4uDgAwMWLF6vVY2PKlCkAKjNknn76aVRUiG+6WLJkCTZt2gQAGD58uPncRDUZAxpEREREREQ2KrbWQ8MpTcGtcyhDQxDQEJYwAlxfjqg6xxcFNEqVMjTE9IJJI6/toSEb0LC9KbhSOTGWnCIiZ1q0aBH8/f2h0+kwYMAATJs2DTt27MDBgwexaNEidOzYEcnJyQCAadOmKZY8ateuHa5du4ZOnTrhs88+w4EDB7Br1y5Mnz4df/vb38x9Oj777DPRvlqt1hw4OX78OB544AH88ssvOHLkCDZu3Iinn34ajz32GLp37+7wc33iiScAVPboGDhwIP79739j586dSEpKwueff4727dtj+/bt6NGjh+JxTGO4efMmXn31VRw6dAjnz5/H+fPncenSJZvHM3DgQIwcORIAsGnTJnTt2hXffPMNDh06hC1btuCZZ57BM888A6Cyd8aHH37oyNMm8jrsFEZERERERGQjd2Ro2JKx4EgPjVK9sOSUHwoqHC934QipO1FtzSAQTvRXGPSy29bkHhpygRbheLUqjeR2gCBDw0szUYjo9tC+fXusXbsWI0eORH5+Pj744AN88MEHou2mTJmCOXPmWD3W1KlTMWnSJEydOlW03t/fH8uWLcM999wjuf9bb72F33//Hfv27cOePXswbNgwi/W9evXC/PnzHe4j0blzZ8yaNQtvv/02cnNz8eabb4q2ee2119CmTRvs3r1b9jiPPvoo5syZg4sXL+Ljjz/Gxx9/bF7XuHFjpKam2jym5cuXQ6fT4eeff8bhw4fx+OOPi7apV68e1q9fj/r169t8XCJv5p3v4IiIiIiIiLyQO5qCS2lSq7bF4+sOlJwSNwX3jvvbbC45ZcfHV1sCGko9NDwZApDL0BBSztCQLznF/Awicra+ffvi/PnzmD59Otq3b4+wsDAEBASgUaNGGDt2LP744w/Mnz8fahsCyc888wz++OMPjBo1CvXq1YO/vz/q16+PJ598EkeOHMGjjz4qu29wcDC2bduG9957D23btkVQUBDCwsLQuXNnzJ8/H1u2bEFISEi1nuuMGTOwfv169O3bF5GRkfD390eDBg0wfPhwbNq0CfPmzbN6jFq1amHPnj146aWX0LJlS3Nzb0cEBgbip59+wpo1azB8+HDzNYuMjMQ999yDOXPm4MyZM2jfvr3D5yDyNt7xDpaIiIiIiKgGsJ6h4ZqSU01Do5BSmG1+nFYs3z9CjmQPDTdP3VerKbgdmQZSZZV0BmEPDe+8v8/W56lVy2doBCmVnGJXcCIS6NWrV7VfG2JiYvDee+/hvffeq/Z4unbtipUrVzq0b1BQEKZPn47p06dLro+Pj1d8rjNnzsTMmTMVzzFgwAAMGDBAdv348eMxfvx4xWPUqVPHIjNDjq3ZGoMHD8bgwYNt2rYqW8YKWL9uRO7kne/giIiIiIiIvJD1HhpOKDklEWRoFhpl8dg5TcHFk96emKuwNahiTxNv6QwNYQ8N7yzFZGugxdYeGu4OWhERERG5EgMaRERERERENnJHDw0pzcIsAxqONQUX9tBwf8J+de7urG6GhqiHhlLJKQ8GO9Q2BiC0CqVblH62vL+WiIiIajIGNIiIiIiIiGxkvYdG9UtOSWkaatlDI7e8BCVWxiIkVXLKGzjaFFyJVIaGsOSUUkDAk6Sep1S/D6WADJuCExER0e3KO9/BEREREREReSGrGRpOKDklbN4NAM1Co0XL7C07VSYIaARotHD3XHf1emjY/vFV6jz2ZGh4kmRAQyL4ohzQYA8NIiIiuj15xy05RERERF5AbzDgRmkBogJCEOAldy4TkefoDQaczrtpEQiwVurJGSWnpDIv6gaFIkjjh5IqZaN2pl9EblmJzcfNKC2yeCw16X2lKBeHM6/aMVr7ZJQViZbZmkFgaykmADiSdQ0twmMtXsuFGSpKPSg8mdMgFajQqsQNwKWyNkwsMjQE687lZ8JoNIque6muAjnlJYgNrAWNl2avEBEREfGTOhERERGAgopS9N+0GLtvpuKO0Gj82vcZ3BEmviOaiHzD1aJc9Pr1c1woyLJ5H61K7ZQyTiUSjceDNH6oFxxmMZ4Ju1ZW6zxSY/3gxA58cGJHtY7rKvaUnJqwayVeO7AWm/s+h47RDfBn9nVcK86z2Eap5JQncxhszdBQuh5KGRqvH1yHX66cwKa+zyFIW7nd2bwMDNi8GBcKsnB/naZY99BTCHVRPxgiIqHU1FRPD4GIahDedkFEREQEYNm5g9h9MxUAcL4gE/NP7fbsgIjIoxad3W9XMAOoLDflqn4FgRot4oLDnHrMALV33N9m6xVTyqiQkl1WjLnJ2wAA7x/fLnE8+Y/DrmrubgupQEUtrb9omUqlkn0OAZpbGR0qiSu860YKVl8+bn783rEt5t/3nTcuYmXKMbvHTUREROQODGgQERERAXhh/2qLx/89+YdnBkJEXuFqUZ71jQTaRcY55dw96zazmFBvV7seArV+6Bzd0CnHN2kbWRetI+o69Zj2igsKQ4R/kE3btoqoY/fxz+VnApD+eVY93t/b9LJY91nXh+0+l7P4qTVoLsgQHNiwpeS2rWWuSdsqv4utI6W3+TM7zfz98guHLNa9vP8Xm8ZKRERE5G4MaBAREREREQkY7Sg6FKDRokt0Qyzo9ohTzh2g0eLr+x/DXeEx6FC7PhZ2HwEAmH73gxjQoAWCtX7wV2sc/qoTFIrZHf6GhOiG+Fe7Pk45piNfrSLq4Kv7H7M5q+XTrg+jW0xjBGi05mOE+wdiQvPO2DfoBXSoXV+0T1ZZMQDxz7NNRF00CIkwP57WtheGNmqN+FqRmNH+IfSoE+/YD89Jlt33KNpGxiFI44eH6t2Jdzr0k9xuyb2j0b52PfP1qB0QjBdb3othjdqYt/moyxD0iI0X7XuhIFP2/N7aMJ2IiIjIO3KMiYiIiIiIvIjRaFtAI3fsbITbmGFgj8GNWmNwo9YWy6IDQ7D+oWecep4oFxzTVe4Ii8aeQS/Irj889BXsz7iErus+NS/L/KsRukHw85zcsrvF45jAWlj94AQnjrZ6usXG489hr1ndrlN0AxwZ+qriNk1Co7Br4FR8fnoPJu/9ybz8YkG27D729CshIiIicifedkFERERERCRga35GsERvA/KcqIAQi8cl+goU68pFAQ1fnK5vGhpl8fiiQo8Ye/uVEBEREbkLAxpEREREREQCwglwKRqVGn5qjdXtyH2iBQENAMgqLRYFqNQ+WFKpaa3aFo9zykuQ81dJLiGWnCIiIiJvxXcpREREREREArb00AjW+rlhJGSPcP9A0WR8ZlkRMzQANK4VKSolJVd2igENIiIi8lZ8l0JERERERCRgSwsNlpvyPiqVClEBwRbLMkuLRAEqX+wR4a/RomGVRuiAfNkplpwiIiIib8WABhERERERkYBNGRoaZmh4o+hAy7JTWRIZGr4Y0ADEZacuyAU01JwqICIiIu/EdylEREREREQCtvTQYMkp7yTso5FZKlVyyjcDGs3Coi0ey2VoqH30+hAREZH3Y0CDiIiISIKW9cOJfJoNFadYcspLiUpOlbHklEnTUMsMDfbQICIiopqG71KIiIjI5xkl7sTmRCWRb5N6XRBihoZ3EpecKmbJqb80C42yeHyhIFNyO1+9PkREROT9GNAgIiIin1eq14mWcaKSyLfZ1kODgU9vJAxosOTULU0FAY3LRbmoMOhF22nZQ4OIiIi8FN+lEBERkc8r1JWJljFDg8i3sYdGzSVdcsqSr2YgCAMaBqMRlwpzRNux5BSR66WmpkKlUkGlUiExMdHTwyEZM2fONP+cyLW2b99uvtbbt2/39HAwfvx4qFQqxMfHe3ooJMB3KUREROTzCiskAhoaTlQS+TL20Ki5hE3Bs0qLYTAaLJb5atPr2gHBiPAPslgm1RjcVwM+REREBIwePdocXFKpVEhNTfX0kCwwoEFEREQ+r7CiXLQsQKP1wEiIyFuwh0bNJSo5JZGh4cvz9eLG4OKAhsaXLxARAfC+u+WJnIEZN9atW7cOq1at8vQwFDGgQURERD5PquSULfXziej2xQyNmisqwHoPDV/OQBA2Bj+fLxXQ4FQBERH5tsTERBiNRq/LTnClwsJCTJkyBQAQGxvr4dHI47sUIiIi8nlFOnGGhi3184no9mVTDw2WpvNKwgyNEn2F6HVe7cMfhYV9NM7k3xRt48sBHyIiIl/11ltv4fLly3jwwQfRv39/Tw9Hlu++iyMiIiL6i1TJKQY0iHybLVlazNDwTsIeGgCQUVpo8diX5+tFAY28DNE2zNAgIiLyLQcPHsSnn36KgIAALFiwwNPDUcR3KUREROTzpEpOMaBB5NtsC2gwQ8MbhfsHiibkS/U6i8e+2hQcEJecOpefKdqGPTSIHLN7924888wzuOuuuxAWFgZ/f380aNAAgwYNwmeffYbc3FybjzV+/HioVCrEx8crbpeYmGi1ce+2bdvw2GOPoUmTJggKCkJwcDAaN26Mrl27Ytq0adi2bZt529TUVKhUKvTu3du8rHfv3hYNglUqFRITEyXP9fvvv2PcuHFo2rQpgoODERYWhrZt2+L111/H9evXZZ+HsLdBXl4eZs+ejQ4dOiAiIkL2nKtXr8bIkSPRqFEjBAYGIiIiAgkJCZg1axZycnIUrx0AXL16FVOmTEHTpk0RGBiIevXqYciQIdiyZYvVfR1lusZVn9P333+PPn36IDY2FkFBQWjRogXeeOMNm35nysvLsWDBAvTu3RsxMTHw9/dH3bp1MWDAAHz99dcwGAyy+wp/z65du4ZXX30Vd955J4KDgxETE4OBAwdi48aNdj0fOfHx8VCpVBg/frzV5yVl3759eOutt9CrVy/UrVsX/v7+CAsLQ6tWrTBp0iScPHlScj/T38msWbPMy4S/08K/IVv/BpOTk/Hcc8+hefPmCA4ORmhoKFq3bo1XXnlFsVyV1HXbvHkzBg8ejLp16yIgIABNmjTBpEmTcPXqVVsvkUN0Oh2effZZGAwG/POf/8Sdd97p0vNVF7tdEhERkc8rrJAIaLCHBpFPsyWmGcSSU15JpVIhKiAYNwVZGcJtfJWwKbgUZmgQ2aekpARPP/00VqxYIVp37do1XLt2DevXr0dGRgZmzpzp1rG98sor+Pjjj0XLL1++jMuXL2P//v1ITExEZqY4uGmP0tJSTJgwAd99951o3fHjx3H8+HF8/vnnWLFiBQYPHqx4rHPnzqFv376Kk8E5OTkYMWKERTAGAMrKynDo0CEcOnQICxYswC+//IKuXbtKHuOPP/7AoEGDkJ+fb16WlpaGtWvXYu3atW77WT399NNYsmSJxbIzZ85g7ty5WL58ObZu3YoWLVpI7puamor+/fvj9OnTFstv3LiBX3/9Fb/++iu+/PJL/PLLL6hdW/n1/+DBgxg4cCBu3rxVirCkpAQbNmzAhg0b8Oqrr+KDDz5w8FlWX2JiIiZMmCBaXlFRgVOnTuHUqVNYtGgRPvnkE0yePNktY5ozZw7eeustUdDo5MmTOHnyJD7//HMsXLgQTz75pNVjvfHGG5g7d67FstTUVHzxxRf48ccfsWPHDrRs2dKp4zf58MMPcfToUTRv3hxvvPGGS87hTAxoEBERkc9jySkiEpJqIi1cxpJT3is6MEQxoOHLPSIahkRAq1JDZ5S/Y5cBDSLbGQwGDB06FJs3bwYANG/eHJMnT0ZCQgKCg4ORlpaGPXv2YNWqVW4f27p168zBjLvvvhuTJk1Cy5YtER4ejtzcXJw4cQJbtmxBUlKSeZ/69esjOTkZBw4cwFNPPQUAWLJkCTp37mxx7AYNGpi/NxqNGDFiBNavXw8AGDx4MEaNGoWmTZtCrVYjKSkJH3zwAS5fvowRI0Zg9+7dSEhIkB33iBEjcO3aNbzwwgsYMmQIIiMjce7cOTRu3BhAZdCiT58+OHz4MDQaDcaMGYMBAwagSZMmqKiowM6dO/Hhhx/i5s2bGDBgAI4cOWLe1+Ty5cvmYIZarcZzzz2HESNGIDw8HH/++Sfmzp2LmTNnKo7TGRYsWIADBw6gS5cueOWVV9C8eXPcvHkTiYmJWLVqFa5fv45+/frh+PHjCA0Ntdi3sLAQDz74IC5evAgAGDZsGJ566inUq1cPKSkpmD9/Pnbs2IFdu3Zh8ODB2LlzJzQajeQ4iouLMXLkSOTl5eGf//wnBgwYgICAAOzfvx9z5sxBWloaPvzwQzRq1AgvvfSSS6+JHJ1Oh8jISAwdOhT3338/mjdvjpCQEFy/fh2HDx/GJ598gszMTEydOhUtWrTAAw88YN532LBhSEhIwIIFC/D5558DqMysEKpfv77N41mwYAGmT58OAIiJicE//vEP9OjRA3q9Hlu2bMH777+PoqIijB8/HtHR0RgwYIDssRYtWoQ9e/agZ8+emDhxIu68807k5uZi+fLlWL58OTIyMvDUU09h7969No/PVikpKebMlQULFiAgIMDp53A2BjSIiIjI57HkFBEJCUtOBWn8RI2lWXLKe0UFBCuu9+WSU1q1Bo1rReJCQZbsNr4c8PEVRqMBhjL534HbjTogCioXBermz59vDmY8/PDDWLFihWhCcODAgZg9ezbS0tJcMgY5piBK48aNsXv3btSqVctifa9evTBlyhRkZ2ebl/n5+aFNmzYWGRtNmjRBmzZtZM+zePFirF+/Hn5+flizZg3+9re/Wazv2rUrnnjiCdx33304ceIEXn75ZezatUv2eMePH8evv/6Kvn37mpd16tTJ/P0777yDw4cPIyIiAlu2bLFYBwD33nsvxo4di27duiEtLQ3Tp0/HN998Y7HNa6+9Zs7M+Prrr/HYY4+Z1yUkJGDkyJG47777cPDgQdlxOsOBAwcwYMAA/PLLL9Bqb03T9u/fH23atMGMGTNw+fJlzJ49G//3f/9nse+sWbPMwYy33noLs2fPNq/r1KkTHnnkETzxxBP45ptvsGfPHixcuBCTJk2SHEdGRgZyc3OxZcsW3H///eblXbp0wSOPPIJ77rkHV69exZtvvokxY8YgJibGmZfBJv3798eYMWMQHGz5P75Dhw4YOHAgXnzxRdx///34888/8fbbb1sENCIiIhAREYHY2FjzMqXfaWsyMjLw+uuvAwDq1auHffv2oWHDhub1PXr0wJAhQ3DfffehqKgIzz33HFJSUuDnJ/3ecc+ePXj22Wfx5ZdfWmSRPvjgg/D398fixYuxb98+HDlyBB06dHB43FKef/55FBcX47HHHkOfPn2cemxXYUCDiIiIfJ5UhoZe4c5VIrr9CUOagRotAxo1iFRj8Kp8fb6+aWiUYkCDPTRuf4ayLNz8Ltb6hreJ2EdvQhPo/AlYg8GA999/H0BlxsLy5ctl725Wq9V23f3tDOnp6QCAjh07ioIZVVkrRaTEaDTiP//5DwDgxRdfFAUzTCIjI/H+++9jwIAB2L17N86dO4fmzZtLbjt+/HiLYEZVhYWF+OyzzwAAs2fPFgUzTBo3box//etfmDx5Mr7//nssXLgQISGV/xvS09Px888/AwAGDRpkEcwwCQ0NxcKFC3HPPfcoPPvqCwgIwKJFiyyCGSZvvvkmVq1ahePHj+N///sf3n33Xfj7V2aHlpWVYfHixQCA1q1bS5bHUqlUWLBgATZu3IisrCzMnz9fNqABABMnTrQIZpjUq1cPH3zwAUaPHo2ioiIsW7YM06ZNc/AZO87a3094eDjeeecdDBs2DLt27UJWVhaioqIU93HU0qVLUVxcDKCyXFPVYIZJhw4d8MYbb+Ctt97CtWvXzP1epMTFxeHTTz+VLIk5bdo088/6jz/+cGpA4+uvv8amTZsQHh6Ojz76yGnHdTXmkRIREZHPE05SAszQIPJ1RhvKS7HklPeKDlQOaKh9vKSSsDG4EDM0iGxz9OhRc7PeZ599VjFo4AlxcXEAgJ07d+LChQsuOcfJkyfNxx4xYoTitlUny5VK54wdO1Z23Y4dO5CXl2fX+SoqKnDo0CHz8t9//x16vR4AJHsymHTp0gWtW7dWPEd19e3bF/Xq1ZNcp1arMW7cOABAdnY2Dh8+bF536NAhc8Pw8ePHy5aSCgsLw6hRowBU/qyUsoSUrsXDDz+MiIgIAHBpw3R7FBUVITU1FSdOnDD3aamaAXHs2DGXndt0DSIiIjB8+HDZ7Z555hnRPlJGjBghGwy96667zK8tpowcZ8jKysKrr74KAPj3v/+NOnXqOO3Yrubb7+KIiIiIIFNyik3BiXya8DVAqgF4MJuCe60oKxkavlxyCrCtMTgRWXfkyBHz9/fdd58HRyLN1Ig4KysLbdq0waOPPoqlS5fi/PnzTjtH1ZJM3bp1g0qlkv2qGvAxZY9Iufvuu206X1xcnOL5qpYUqnq+qr0ThL1BhLp06aK4vrrsOX/VcR8/ftz8vbUskqrrq+5Xlb+/P9q1ayd7DD8/P3NmgFTvCXfJzMzE9OnTcddddyE0NNRcDq1t27Zo27YtBg4caLGtq5iuY8eOHWXLSAFAnTp1EB8fb7GPFLmm7yaRkZEAgIKCAjtHKu+1115DRkYGunTpgueff95px3UHBjSIiIjI57EpOBEJCV8CAjTiUhDM0PBe0YHKPTR8PQGhWWi04no9/wcS2aTqhKkpG8KbPPjgg5g/fz6CgoJQWlqKlStX4qmnnkLz5s3RoEEDPP/889W+i/3mzZsO7Wcq1yPFNHnrqvNV7RlStaeCFFfftW7P+auO257nULduXcn9qqpdu7ZslodwLHLHcLVDhw6hRYsWmDNnDs6ePSvKphUqKSlx2VhM18DatQduXX+l6ybsCyKkVldO4Zsyi6pr27ZtWLZsGTQaDb744gvz8WsK9tAgIiIin8em4EQkJGwKLvWhmT00vJe1HhrM0FDO0OD/wNufOiAKsY86NjFcE6kDXFNHvyaYMmUKRo4ciW+//RabN2/G7t27kZeXh2vXruHLL7/EwoULMX36dLz77rsOHb/qBOvatWvNd6NbozQRrDSxXvV8hw8fVrw7vqoGDRpILpfqWeBOzji/txzDlcrLyzFq1ChkZWXBz88PL7zwAoYOHYo777wTkZGR5nJNFy9eRLNmzQBIv3dzNm+/bnJMfW8SEhJw5swZnDlzRrRNSkqK+fu1a9eaG8E/+uij7hmkAgY0iIiIyOcxQ4OIhGx5DWCGhveKstpDo2ZOQDhLUys9NPg/8PanUqld0iTb10RH38p2SktLs1o2xh6mO6YNBoPidkVFRVaPFRsbi5dffhkvv/wyDAYDjh49ip9//hnz589Hbm4u3nvvPXTu3BlDhw61e5xVmy5HRERYlHlyharni4mJkQ1UKKmaAXLjxg3Jhs5V17uSteNXXV+1eXvV72/cuIE777xT9hhVy23JNYDPysqCXq9XDCaZxiI8RtW7+53x+ypl27Zt5v4RCxYssOhNUZW7skdq166NtLQ0m34/TNdf7tp7QllZ5Q19+/fvx2OPPWZ1+xdffNH8vTcENGpWPgkREVENVqIzIL/MAJ2BkwSelFdegozSQouvvHJxOvKN0gLoDM5J6SWimkeYoSGFGRrey1qGRk29o9JZwvwDFa9Rekk+9FYmpYiosn6+yc6dO5167NDQUAAwN36Wc/bsWbuOq1ar0bFjR8yePRtbt241L1+1apXFdra+Tpr6KgDA7t277RqLI5xxvrZt25q/P3DggOK21tZXlz3nrxosqvr9/v37FY+RlJQkuV9V5eXliuXHdDodjh49KnkM0+8qAOTk5MgeIzs7G1lZWYpjlXPixAnz96NHj5bdrmqPFSnO+v9vugaHDx+GTqeT3e7mzZu4dOmSxT5UfQxoEBERuVipzoA5SbkY/1smnt2Siac2ZWLzJdfV8yRpmaVF6LF+PiK++RdiV8y0+DqVJy65YDAaEfXt21hx8YjE0YjodnYuLwM70i9aLJMKcEg1CifvEG0tQ8PHS04BymWnTuTeQPSKt/FDavVq6xPd7tq1a2e+u3/x4sUoLCx02rGbNGkCoLIJsFQ5GKByEvrHH390+BwdO3Y0ZysIGygHBgaavzfdzS13DFOWxMKFC1FaWurweGzRp08fc7+BTz75xKGyQr179zZnIixbtkx2uwMHDig2cnaGTZs2IS0tTXKdwWAwjy8yMtIigNapUydEREQAqHwOcpkRBQUF5mBVq1atFHu9KF2Ln3/+2Rys6NOnj8W6yMhI81iUAgrfffedw2WgqgYN5LI8DAYDFi1apHgcW3+vrTFdg9zcXPz000+y2/3vf/8zP2fhdfOk7du3w2g0Kn6NGzfOvH1KSop5uTdgQIOIiMjF/rhWhqMZt0oalemNWHayAKU63vnoTp+d2o09N1Pt2ie/ohRT9/2MCmZqEPmUWUc3i5ZpVOKPTlq1cvNM8pyoAGtNwRnQaBam3Bg8t7wEU/b+DIOR71eI5KjVarz++usAgKtXr+LJJ59Eebm4lClQOdl6/fp1m4/ds2dP8/cffPCB5Davvvoqrl27JnuMlStXKjZGPnjwoHmS2hRAMak68X3hwgXZY6jVakyfPh1AZf+CJ598UnGiOD8/H/Pnz5ddb01ERASmTp0KANizZw9eeeUVxTJHN27cwOLFiy2WxcXFmctrrVmzRpSdAgCFhYWYOHGiw+O0VVlZGSZOnCjZ7Hnu3LlITk4GADz11FPmPhEAEBAQYC67dPz4ccyePVu0v9FoxNSpU83BKtN1k/P5559j165douXp6emYNm0agMrm1VUnuk3uv/9+AMAvv/wi+fty5swZ/Otf/1I8v5LmzZubv09MTJTc5o033sDhw4cVj2Pr77U1EyZMMAfWXnvtNcm/w2PHjuHf//43AKB+/foYNmyYw+cjS+yhQURE5GI3isVvTisMwI1iAxqH8d4Cd7lQ4Fh6c3ZZMa4X56FxLe+peUpErvVnjvhOyX+07Y0n//gO+r8mdztG1Xf3sMgOEf5BqBcchuvF+ZLrrTXF9gWdoupbzUK8WVqIYl0FavkFKG5H5MumTJmCtWvXYvPmzfj555/Rtm1bTJ48GQkJCQgODkZ6ejr27duHFStWYMyYMZg5c6ZNx+3QoQO6deuGvXv3YtGiRSgvL8e4ceMQHh6Oc+fOYeHChdi2bRu6d++OPXv2SB7jH//4B55//nkMHToU999/P+68806EhIQgKysLu3btwqeffgqgsgm3sCdBo0aN0KBBA1y9ehXz5s1DgwYNcNddd5kzG+rUqWMuNfT888+bn//333+Pw4cPY+LEiejSpQvCw8ORn5+P06dPY/v27VizZg0CAwOtTq4reeedd7Bjxw7s378f//3vf7F9+3Y8++yzaN++PUJCQpCTk4MTJ05gy5Yt+PXXX9G2bVvR8/vggw+wefNmFBQUYMyYMdixYwdGjBiBsLAw/Pnnn5g7dy7Onj2LhIQEq2WMqiMhIQFr165Fjx498Morr6B58+a4efMmli1bhu+++w5AZUNzqWDAjBkz8NNPP+HixYuYOXMmkpOTMWHCBMTFxSElJQXz58/H9u3bAQDdunXDc889JzuOmJgYBAcH46GHHsIrr7yCAQMGICAgAElJSfj3v/9tDsbNnj1bsqH75MmTsWbNGpSUlKBXr16YOXMmOnTogMLCQmzduhX//e9/ERMTA41Gg4yMDLuvU79+/RAbG4ubN2/irbfeQmpqKh5++GFER0fj/PnzWLRoEbZu3YoePXooliLr3r27+ftXXnkFb775JuLi4sw3OsTHx0OrtT5dHhMTg/fffx9TpkzB1atX0alTJ/zzn/9E9+7dodPpsGXLFrz//vsoLCyESqXCwoULbW5gT9YxoEFERORicmmZBeW849GdbKmHLyetuIABDSIfkiaYBG8QHI5RTdrhRmkh3ji0AbX9g/FB58EeGh3ZQqVS4bOuwzFh10rkVumTFKTxw/S7H0S94HAPjs47PN38Hvx69Qy2pp3z9FCIajS1Wo3Vq1dj3Lhx+OGHH3D27Fm8/PLLTjn2kiVL0LNnT/MEt7Ak0LRp09C6dWvZgAZQWRJHal+TgIAAfPHFF0hISBCtmz59OiZPnoyUlBRRw/ClS5di/PjxACpfc1euXImXXnoJX3zxBS5cuIC///3vsmOSmhC3R0BAADZv3ozx48fjp59+wrFjxxQDJGFhYaJl8fHxWLNmDYYMGYKCggIsWLAACxYssNhmxowZUKlULg1oTJkyBTt27EBiYqJks+W4uDj89ttvCA8X/98KDQ3F1q1b0b9/f5w+fRo//vijZAmyHj16YM2aNYoNv4ODg/HDDz+gf//+mDNnDubMmSPa5sUXX8Srr74quX+/fv3w4osv4pNPPsHVq1clA2Rr1qxB//79ZcegJCQkBMuXL8ewYcNQWlqKL7/8El9++aXFNr169cL8+fMVe1XccccdGDVqFFatWoVNmzZh06ZNFutTUlIQHx9v05gmT56M3Nxc/Otf/8KNGzfwyiuviLYJCAjAwoULMWDAAJuOSbZhQIOIiMjF5KbRGdBwL2Fc6YWW9+Jf7S3rmIb5VdZUjfp2Bop0t8oFyN3hS0S3nzK9DplllrWZN/Z9Flq1Bq+0vh+vtL7fQyMjew1r3AaDG7ZCdnmxeVmYXyACNPwYDAARAUHY8reJyC8vRZlBBxVUyCgtRKuf3/f00IhqnODgYHz//ff4/fffsXTpUuzatQvp6enQ6/WoU6cO2rdvj0GDBuGxxx6z67gtWrTA4cOH8d5772HDhg1IS0tDeHg4OnXqhBdeeAEDBgyQLb8DAL///jvWrl2LnTt34uzZs0hPT0dOTg6Cg4PRrFkzPPjgg5g0aRKaNm0quf+kSZNQp04dfPnllzh69Ciys7NlGyD7+flhwYIFmDRpEhYtWoTt27fj8uXLKCwsRK1atdCkSRN06tQJ/fv3x6BBg+y6DlJCQ0Px448/YteuXVi2bBn++OMPXL9+HSUlJQgLC0OzZs3QpUsXDBw4EH379pU8Rq9evXDixAnMmTPHfH0jIyORkJCAF154Af369bM5o6Y6li5dir59+2LhwoVITk5GYWEhGjdujGHDhuGf//ynuc+JlPj4eBw7dgyLFi3C999/j+PHjyM/Px+1a9dGhw4dMHbsWIwZMwZqtfXKAAkJCTh8+DDmzZuH9evX49q1awgJCUHnzp3x4osvWg1G/Pe//0XXrl3xxRdf4OjRo6ioqECjRo3w8MMPY9q0aYiKirL72lTVr18/HDx4EHPnzsW2bduQkZGBiIgItGrVCmPHjsXTTz+Ny5cvWz3O119/jYSEBPzwww84c+YMCgoKFMuWKZk+fToGDRqE+fPnY9u2bbh+/TrUajUaNWqEvn374uWXX7Y5QEK2Uxm9pZsHeb2rV6+am11duXLF3PSJiIiULT9ZgPUp4tq1T7WuhX7xyjW+yXke3/Etvrl4q6bqP9s+gDkJ0nfK9Fg/36LfxvyuD2NKyx6uHiIReYFLhdmI//7fFsuyx7yDSCs9GYhuB5cLc9D4+/csluU//i5C/QJl9iBXcfTz97lz56DT6aDVai1qzhOR90hNTTX3LKma6eIJ48ePx7Jly9C4cWOkpqZ6bBx0+3LF/yUW7iYiInIx2QyNCt5T4E7CklNK/WDjgkItHgvLzxDR7SutuMDicYBGiwj/IA+Nhsi9VGCzdCIiIvJuDGgQERG5mFwuZH4ZS065kz3ho7hgyzq710sY0CDyFcISc/WCwsyNIomIiIiIyLN8NqBx8+ZNrFu3DjNmzED//v0RHR0NlUoFlUplc6pXcXExfvrpJ0yaNAmdO3dGZGQk/Pz8EBUVhW7dumHmzJlIT093ynjj4+PN41P6Yl02IqKao6CCAQ1PUroLtZ4goMEMDSLfkSYIYAoDnES+hkWqiYiIyJv4bDe0OnXqVGv/P//8Ez169EBhYaFoXXZ2Nvbt24d9+/bho48+wsKFCzF69OhqnY+IiGouNgX3DsK2YUr3W8cFCQIaJQUyWxLR7UaUocGABhEREVWRkpKCoqIiu/eLjIxE/fr1XTAi8jVFRUVISUlxaN+77roLfn5+Th6Re/lsQKOqRo0aoUWLFti0aZPN++Tn55uDGT169MCgQYOQkJCAqKgoZGRk4KeffsKiRYuQn5+PsWPHIiwsDP3796/2WIcOHYp3331Xdr2/v3+1z0FERM4ld2djQTlveXQne662cALzenGecwdDRF5LlKERxIAG+Q5WVyMism7ChAnYsWOH3fuNGzcOiYmJzh8Q+ZwDBw6gd+/eDu2bkpJS4yv8+GxAY8aMGejcuTM6d+6MOnXqIDU1FU2aNLF5f7VajVGjRuHtt99Gq1atROv79u2L/v374+GHH4Zer8cLL7yAc+fOVbv+bkREBNq0aVOtYxARkXsxQ8M7Kf1PFk5gZpQWocKgh59a4+phEZGHMUODiIiIXCk+Pl6UPe4piYmJDLJQjeOzAY1Zs2ZVa//u3buje/fuitsMHToUw4cPx48//ogLFy7gyJEj6NixY7XOS0RENY9sU/ByA4xGI5vNuoldJackJjDTiwvQsFaEcwdFRF6HAQ0iS0a7chyJiG5/27dv9/QQyMf16tXLa4JinuCzTcHdpWr6z4ULFzw4EiIi8jYVBqBM7+lR+A57JmSiAoJF2RjCMjREdHtKK2bJKSIiIiIib8WAhouVlZWZv9doWKaCiMgXKU2ks+yU5yhlxqhUKsQFhVosE05yEtHtp1yvQ2aZZZNPZmiQL1Ep5i8SEREReR4DGi5WtUlQy5Ytq328nTt3on379ggNDUVwcDCaNGmC0aNHY/Xq1T6dakRE5M2UXp0LKhjQcBfhz8HalI2w7NR1ZmgQ3fbSSwpEy6RK0BH5En7MJCIiIm/isz003OHYsWNYv349AKBt27ZOCWikpKRYPE5NTUVqaipWrVqFHj16YOXKlahfv75Dx7569ari+rS0NIeOS0Tk8xQmAvLLGNBwF3sD//UEZWaYoUF0+xP2zwjQaBHpH+Sh0RARERERkRADGi5SVlaGZ555Bnp9ZXH09957r1rH8/f3x5AhQ9C3b1+0adMG4eHhyM3Nxd69e/H555/jypUr2L17Nx566CHs3bsX4eHhdp+jYcOG1RojERFJUwpZFJTztkdPsVZWQ5ShwYAG0W1P1BA8KEyxPB0REREREbkXAxouMnXqVBw8eBAAMG7cOAwePLhax0tKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGH1TofERE5kVKGBktOuY2o5JSVOUphI2A2BSe6/Qn/zlluinwN43dERETk7RjQcIE5c+Zg8eLFAIDOnTvjs88+q/YxpYIZJqGhoVi1ahWaNm2K7OxsLFy4EHPnzoW/v79d57hy5Yri+rS0NHTp0sWuYxIRkZUeGmwK7jZ2l5wKFpacEtfWJ6LbiyhDgwENIhgV38kQERERuRcDGk725ZdfYvr06QCAFi1aYMOGDQgJCXH5ecPDw/Hoo49iwYIFKCoqwsGDB9G9e3e7jtGgQQMXjY6IyLcxoOGdrJecCrV4zKbgRLc/UYZGEAMaRERERETeRO3pAdxOVqxYgcmTJwMAGjdujM2bNyM6Otpt52/VqpX5+2vXrrntvERE5Dj20HAfUckpawENwUTmzZJC6Ax6J4+KiLwJMzSIiIiIiLwbAxpOsmbNGjz55JMwGAyIi4vD1q1b3Z7xwIaFRETeSanSETM03MfekhnCiUwjjLhRUujMIRGRl2FAg3ydVLCft14QERGRN2FAwwm2bt2KUaNGQafTISoqCps3b0azZs3cPo6TJ0+av69Xr57bz09ERNKUJgLyGdDwGGv3AUQHhkCrsnyrxMbgRLe3tGKWnCIiIiIi8mYMaFTTnj17MHToUJSVlSE8PBy//fYbWrdu7fZx5OXl4bvvvgMABAcHIyEhwe1jICIiaUrNqJmh4T7CH4O1klNqlRp1gyz7aAgnO4no9lGu1yGzrMhiGTM0iIiIiIi8CwMa1XD06FEMHDgQRUVFCAkJwfr169GpUye7j9OrVy+oVCqoVCqkpqaK1m/cuBElJSWy+xcWFmLUqFHIysoCADz99NMICAiwexxEROQaik3BK4wwKNWkIqext+QUAMQJJjOF5WiI6PaRXlIgWiZ8DSAiIiIiIs/SenoAnrJr1y6cP3/e/DgzM9P8/fnz55GYmGix/fjx4y0eX7hwAf369UNubi4A4N1330V4eDiOHz8ue87Y2FjExsbaPda5c+di7NixGD58OO699140a9YMtWrVQl5eHvbs2YMvvvgCly9fBgDcddddmDlzpt3nICIizzAYgWKdEbX82AfJ3WxpPSUsN8OSU0S3L2HAMkCjRaR/kIdGQ+QZUv8alTJNiYikjB8/HsuWLUPjxo0lb9x1N1PP2bfffptzZkS3AZ8NaCxevBjLli2TXLd7927s3r3bYpkwoPHHH3/g5s2b5sevvPKK1XNW54UzOzsbixcvxuLFi2W36dmzJ7755hvUrl3boXMQEZFrWJsGKCg3oJYfkyZdzZEMDWG5GWZoEN2+hAHLuKBQ8wQIERERUU3Su3dvbN++HQDw0EMPYdOmTZ4dEJETcfakBpg3bx7mzp2LoUOHokWLFoiOjoZWq0VYWBhatGiBcePGYePGjfj9999Rv359Tw+XiIgErN3YWFDOOx/dwd4eGgAQFyzoocEMDaLbljBgWS843EMjISIiImvi4+OhUqlENyATcOnSJezYscP8eOvWrbh+/boHR0TkXD6boZGYmCgqK2WP8ePHO+1F0xQxlZOQkMAm30REtzE2BvcMW+67FpWcKhbX2Cei24M4oMH+GUSA9UxTIiJv52ul87766isYjUYEBARAr9dDp9Ph66+/xt///ndPD43IKbwqQ+PChQvYv38/bty44emhEBEROY21t8/5DGi4BUtOEZEScckpBjTI97DMGhFRzffVV18BAAYNGoS+fftaLCO6HbglQ+PmzZv44YcfAABjx45FeLhl+vb58+cxevRoHD16FEDlm6ihQ4di8eLFiIyMdMcQiYiIrNIZjPjmdCGS0svgr1ZBZzAiu0w+GJFbkYF9eRuQq8uU3Uaj0mDfH3dg4h1D8GKH2uZeGsUVBiw4lo8/Myugl7mjKNRPjSHNgjGgSbDiuM/nVuDLPwtwvUhn9TmqADQO02JKuzDUq+X6twnXivIwYddKnMm7iQfi7sDJ3Bs4lpNmcRdVveAw9Kl3J3bfSMGFgiwAQKDGD0MbtcbC7iMQqPWD0WjEe8e2YvG5/WgVXgeL7x0pKhdzLt/y52DLpI1UU/CM0kLEBNYCAGSXFePJnSvwe/p56AzWA1NRASGY1qYnXm3T0+q2Um6WFOCJnSvwx40U6I2OB8LUKhW6RDfC8vsfReNa7L1FYgvP7MO//9yK+sHhWHLvKNwVHuvpITmsTK/DpL0/4sfUZJTqK2S3qxD8Dd8uGRrFFQYsTC7A+dwKJNQJwOMta0Gr5qQ1ERHR7Wjfvn04e/YsgMo52NLSUmzYsAHHjx/H4cOH0bFjRw+PkKj63JKh8dNPP2Hq1Kn473//KwpmlJWVoX///jh69CiMRiOMRiMMBgNWr16NoUOHumN4RERENjlysxwbUkqQWWLA9SI9bpYYoDNA9ispfzOydTdggF72q8JYjstlJ/H9pSSsvVBsPteai8U4cKMcZXqj7PFzygxYdrIQ6VYCFV/+mY/LBTrFsZq+KgzA+VwdlpxwT2mld45uxubrZ3G5KBeJ5w8iKfMKyvQ6lBv05q/UwhwsPrsfp/JumpflV5TiqwuHsPjsfgDAwcwr+NeRjbhUmINfr53Ge8e2is4lCmjYML44iQnN15LWmr9/99gWrL96CsW6Cosxy32lleTjtQNrcSbvpn0X6i+zjm7GputnUaK37XxyX6V6HXbeuIh/Htzg0Djo9pZakI3Je3/CpcIc7LmZileT1nh6SNWy7PxBLD13APkVpYp/F8IsrrigUJkj1iybL5dgb1oZMkoM+DW1BEdulnt6SEREt5WZM2dCpVKZb5bJzc3F22+/jdatW6NWrVqoXbs2evfujRUrVlg9VmpqKl555RW0bt0aoaGhCA4ORvPmzTFx4kQkJycr7msaw8yZMwEAW7ZswZAhQxAXF4fAwEA0bdoUU6dOxbVr12x+LnK2b99u3s5aGXUpRUVFWLlyJZ555hm0b98e4eHh8PPzQ0xMDHr27Il58+ahsLBQct9evXpBpVLh0qVLAIBly5aZx2L66tWrl8U+wmsjxWAw4Ouvv8aAAQNQt25d+Pv7IyYmBr1798aCBQtQXi7//1N43UpLS/H++++jY8eOCA0NRWhoKLp06YL58+dDp7N+k1l1LF++HAAQGRmJgQMHYtiwYQgNDbVYR1TTuSWgsWnTJqhUKjz88MOidYmJibhw4QIAYMiQIfjvf/+LwYMHw2g0Yvfu3Vi5cqU7hkhERGTVspP2TfLn6TLs2DYT53Nv3Tl8pcD2N7pXCvSy6wxGIy4rrJdz1YF9HLHw7L5q7Z+ckw4AeO9PywDGgtN7RNvWF2Rs2FI+KvavTIyqqpalOZnrWJnMY9mONeU7/tfzdZaDmVedejy6PQgzgGr674mjf28tI+o4eSSe8e3pIovHn//J0nkkTy0xiVmdjEAiX5OSkoKEhAS88847OHnyJIqKipCTk4Pt27djzJgxGD16tOyE9vLly9GiRQt8/PHHOHnyJAoLC1FSUoLz589j4cKF6NChA+bMmWPTOGbNmoWHHnoIa9euRXp6OsrKypCSkoLPPvsMrVu3xh9//OHMp223gQMH4tFHH8X//vc/HDt2DPn5+dDpdMjMzMTOnTvx+uuv4+6778bp06fdMp7s7Gzcf//9eOKJJ/Drr7/ixo0bqKioQGZmJrZv344pU6agffv25iCKkhs3bqBbt274+9//jiNHjqCwsBCFhYU4cOAAXnjhBQwfPhwGGzK7HVFeXm6eRx05ciT8/f0RFBSE4cOHAwBWrFjh8oAKkTu4JaBx5swZAEDXrl1F67799lsAwAMPPIDVq1fjhRdewC+//II+ffrAaDTiu+++c8cQiYiIrMpVKC8lRW+0/c2iEUZkld46vs6OU8mVpAKAUt3t3QCv5K/yMfnlpXbve2+dJla30ajVuDsyzmKZLaWlrCmoKHNovzKDcz+ACHsGEAHAaUEGUbFOvkxTTZBfYf/rw8j4u9E5uqELRuN5RRW39/8Fqh6tSjxFwIAGke1Gjx6NlJQUPP/889iyZQsOHDiA//3vf7jzzjsBAKtWrcLrr78u2m/9+vUYP348ysrKUKtWLbz99tv4448/sHfvXnzwwQeIjo6GXq/H9OnT8fnnnyuOYf369Zg5cybuuusu/O9//8OBAwewZcsWTJw4EWq1Gnl5eRg0aBCuXLnikmtgC51Oh7Zt2+LNN9/Ezz//jP3792Pfvn1YuXIlHn30UajVaqSkpGDYsGEoLbX8P7506VIkJyejXr16AIChQ4ciOTnZ4mvp0qU2j0Wv12PQoEHYvXs3AKBnz574/vvvcfDgQaxZswbDhg0DAJw6dQoPPvigbOaIyfDhw3Hy5Em8+OKL2Lx5Mw4dOoRvv/0WLVu2BACsXbsWixYtsnl89li3bh2ys7MBAI8//rh5uen7mzdvYuPGjS45N5E7uaWHRkZG5R2qDRo0sFheUlKCffv2QaVS4bnnnrNY99RTT2HLli04fPiwO4ZIRERklb9GhQqD9ETQSx3CUDdEY36sNxqw6mfLLIeF3caiY3Q0VFDho5M78fWFW//jjDAgq0QPo9EIlUolClIMbBKEe+sHAgA+PpyPG8W3jq1XmJsqlghovN01AoFayzswz+VUYMkJ5Tfn3sgU0Ajx87e6rUFwTUP9Amw6x+QW3fH83h/NjysM8tkrL7e6D0806yRaPmnvj0jKvPWh0dGARrne8tzvdOiHgQ1a2rz/teI8DNl66wNeka4cBRWlCPULdGg8dHsSBTT05ebXppoov9zy721yi+54unkX2e2jAoPZW4Z8llYtDmg4I5BP3sdgNKKw3HcCnLX8VZIZSM524MABfPvtt3jsscfMyxISEjBy5Ejcd999OHbsGD755BM8/fTTaNOmDQCgoqICzz33HIxGI2rVqoU//vgD7du3N+/ftWtXPPLII+jWrRvS0tIwbdo0jBw5EtHR0ZJjOHjwIDp27IgdO3agVq1b2cYPPvggevTogSeffBL5+fl47bXXsGrVKtdcCCuWLl2K5s2bi5bfc889GDVqFJ5++mn069cPZ86cwTfffIOnn37avE2TJpU3Jfn5+QEAIiIizNfSEV988QX27t0LAHjyySeRmJhofs/TqVMnDB48GG+++Sb+/e9/48KFC5g9ezb+85//yB7vwIED2LRpk0XZq44dO6Jfv35o1aoVbty4gQULFmDixIkOj1mOqaRUfHw87r33XvPyBx54APXq1cP169exfPlyDBo0yOnnJnIntwQ0cnNzAQBqwZujffv2oaKiAmq1Gn369LFYZ3qBunnTsRrTREREzuavVqEI0h/8GoVq0SD01r/VIokJ6z71G6FJaBQAoEFwhMU6o9GIcgNQUGFEmL8KesHcQWywBk3DK9+0BwmCEXqZIAsAlEgENFrU9hN9oKupH2hL/rpzPFgjDmgIJ2CF9fFt/VDrp9ZYPFYKaDQICUfH6Aai5ZUNym8FNBy5YxwAygUZGneFx0ieT85dFTGiZWnFBQgNZ0CDbhEGNAxGI8r0OgRq/Tw0ouoR/r3Z+3dD5Es0EhkaOmZo3JYKy414dkum9Q1vE4v6RCMswPUBjUGDBlkEM0xCQ0OxcOFC3HPPPTAYDPjiiy8wf/58AMDPP/+M69cryyO+9dZbFsEMk8aNG+P999/H448/juLiYixdulQy08Nk4cKFFsEMkyeeeAIrVqzAr7/+ip9//hnp6emoW7eug8/WcVLBjKr69OmDIUOGYPXq1Vi9erVFQMPZPvvsMwBATEwM5s+fL3kDx6xZs/DTTz/h9OnTWLRoEd555x0EBEjfHPXCCy+IengAQO3atTFhwgTMnTsXycnJyMvLE/UZro6srCxs2FDZH2/MmDEWz0OtVmPMmDGYN28e1q5di9zcXERERDjt3ETu5paSU6YX0fR0y7rPpsZBrVq1QmRkpMU6U6RVq3VLzIWIiMgqf438Oo3gP2qJXlwaKEhzazJQI3ijbETlZEFWSeVkuU4QpNCqq7whFbzHVsrQEAY0AjTuuTvNXYp1lc35giUmWgt1lkElYYaGyqa24OK7VR2Z2BFmgzicoSEIpvir7XufFOIXIBpLOstOURU6gx7n8sUTXMX6mlt2ShjQCGNGEpEsyZJTzNAgstmECRNk13Xp0gWtW7cGUNmw28T0vUqlwlNPPSW7/8iRI80T4FX3F2rbti06dRJnDJuYzqHT6Rxq6O0KGRkZOHfuHI4fP27+iompvBHn2LFjLjvv9evXcerUKQDAqFGjzM2zhbRarflnm5OTo1hNZuzYsbLrTD8Xo9GIlJQUR4ctacWKFaioqHy/VrXclIlpWWlpKb7//nunnpvI3dwS0GjRogUAiOq0/fjjj1CpVOjZs6doH1Pwo06d26MZHxER1Xx+wkhCFcIARYlEzfmgKpPuGsEkuSl7wNRHQ5hYoalyeEGCBhQSNFAsaMYRLNzZi9XSWi8JZQochWjFGRq5ZZaTmM7L0PBcQKNMECjzVytE2WTEBYVZPE4rtq/ZPd3eUgqyJbOQTMHDmkj498aABpE8yZJTzNAgslnnzp0V13fpUlny8OzZsygvr/zfevz4cQCVlUpMk/hS/P390aFDB4t9qjMGAEhOTlbc1pV2796N0aNHIyoqCrGxsbjzzjvRtm1b85epz0Rmpusyiapex3vuuUdx26rrla6/aQ5USu3at0paFhQ49z34smXLAFSWtzL166iqXbt25tJcptJURDWVWwIaAwcOhNFoxMKFC/H555/j+PHjmDZtGk6ePAmgsmGOkCnaWb9+fXcMkYiIyCp/jfwEuDDWUSJxN3PVDA3hHZDCDA1h1oXWImXY8mTCbA6LcQgiI8JyVd7Mlh4XpuscqBFnaOSWl1g8FmZo2B7QsPxZKZWckiOcQM13VoaGxv6ARt0gyzvP2BicqhKWmzIpqsEBDeHfW5i/bf1ziHyRWqUWZTCyhwaR7WJjYxXXm27aNRqNyMnJAQBzE2dr+wIwl4cy7VOdMVg7jivNnDkT9957L1atWmV1DCUlJYrrq6Pqua1dt6qluZTGHBwcLLuuail+vd7+zxRyTp06hYMHDwKQzs4weeKJJwBUBpOcnSFC5E5uqec0depULFiwAGlpaZg6darFum7duqF3796ifdauXQuVSmU1skxEROQu/ooZGpaPhQENtUplcae/sEa10SjI0BCVnJI/l1KGRmkNDWgEafxEgQQppkwYvcTdo9YCGrZeCa3KMmjgyMSOOEPD0R4awpJTDmRoBFtmaKSXMEODbpELaBRLZJ3VFPnlLDlFZA+tWm0RvGeGxu2plr8Ki/pIN5W+HdXyd897YKn+C+7Y1xXHcZWtW7di1qxZAICmTZti2rRpuPfee9GoUSOEhISYS8/PmDEDs2fPdtu4vP26KamacfHqq6/i1VdfVdzeaDRi+fLlePvtt109NCKXcEtAIzw8HFu2bMETTzxhUWfuvvvuw4oVK0TbHzt2DAcOHIBKpcJDDz3kjiESERFZpfRx3lrJqSCNn8WbZLkeGpmmDA3ByTRq+X2VemgU19CARojWH1obJutNgSPhRD8gDmgIL5Naok64FFGGhtH+u6mc1kNDcCdXgMb+t3JxwgyNYmZo0C2nZAMaNTNDo8KgFwWYbcn+IvJlWpUaFagS0HAgM5G8n1qlckuTbF9z48YNNGzYUHE9UDl5buolaypDZFqnxFSevWrpIrlz2LJeeJyqGQQGg8HicVVFRUVWxyrHVEoqMjIS+/btky2z5Y7skarP39p1q9oXWOn6u5vBYMA333xj935fffUVAxpUY7mt43bLli1x8OBBpKSkID09HXFxcYiPj5fdfunSpQCABx54wE0jJCIiUlahEDkQNwUXBzSqEtaoNvfQKKmMZOgF2QRVszKEGRrCbS3GIQpoyEziC46pECNxi2CtnyhwI8UUOJIOaFjele1whoaoh4YjJacsJ1Dzyx0tOSXsoeFAQEOQoZHGDA2q4nTu7VVySip4yAwNImVatRpV4hnM0CCyw4EDBxQDGgcOHAAANG/eHP7+lT3g2rRpg7179yIlJQUZGRmyE/wVFRU4cuSIeR9r57BlvfA4VZti5+TkICoqSvIYZ8+eVTyHkhMnTgAAevfurdgzxFRCSY4zMiqqPv/9+/ebSzJJSUpKktzP037//XdcuXIFAPDCCy+ge/fuitvv378fH3/8MS5cuIDdu3ejR48e7hgmkVO5LaBh0qRJEzRp0kRxm3bt2qFdu3ZuGhEREZFtKhRqO4lKTgkzNLSWAQ1xyam/emiUVs4gCHp5W5acEsQkhNkcFuOoEDQF96sZd+JJNfmWYgocSQUZnNZDQ/CzcqzklOUEqiMZGkaj0Sklp4Q9NFhyikyMRuNtV3JKqrybL/XQMCoEvInkCN+jKN04QUSWli1bJtknFqgMJJiaSffp08e8vE+fPli0aBGMRiOWLl2Kv//975L7//DDD8jLyxPtL5ScnIwjR46YG4gLLVmyBACg0WjQq1cvi3VV5+sOHjyIfv36SR7ju+++kz2/NTpd5Q06SlkeR44cwf79+xWPExhY+f66rMyxG4UAoF69emjZsiVOnTqFVatWYe7cuahVq5ZoO71ej8TERACVmSUdO3Z0+JzOZio3pdFo8NZbb1ntBdKnTx/Mnz8fOp0Oy5cvZ0CDaiS3NAV/55138M477yAzM9PmfXJycsz7EREReYNyhQwN4eR4sd7ybmZhhoZwssDwV8mp7FIDDEYjdKIMDcdKTgkzNAIVGpt7kxA/f9E1klKir5Cc6AeAnPJii8dGONoUvPoZGsISN/kO9NCQOq9DPTSCBBkaLDlFf8koLUROuXTjzZpackqYDaWCyuaA6e1A6v9DzfgvQJ6kFQXyWXKKyFZr1qzBqlWrRMsLCwsxceJEAJVlnUzfA8CwYcNQr149AMB7772H5ORk0f5XrlzBtGnTAFQ2nZ4wYYLiOJ577jnJgMG3336LDRs2mM8bFxdnsb579+7mHhYfffSRZGD8/ffft8hWsFfz5s0BALt27cL58+dF6zMyMhQzJUxMY79w4YLDYwGAKVOmmM/74osvSm4za9YsnDx5EgDw7LPPIiDAO26OKCoqwk8//QSgsqy/LY3lo6Oj0bNnTwDAqlWrqhUQIvIUtwQ0Zs6ciVmzZuHmTek7vqRkZ2eb9yMiIvIGFQo35oszNCxLAwkzNORKTumNQG6ZQTFDQ9ibXOnOSWEPjeAa1ENDY0NTcIPRiAqDXiZDw1rJKduuhfBnVeFAhobwjnBHMjSkgjYO9dAItszQyCwrQrleJ7M1+RK57Ayg5pacEgYPQ/0CbO6fcztQCsQTyRH+32PJKSLbJSQkYMyYMZgyZQp+//13HDp0CEuXLkVCQoK5XNSUKVNw9913m/fx9/fHwoULoVKpkJ+fjx49emD27NnYs2cP9u/fj48++ggJCQm4fv06AGDevHmIjpZv6J6QkICDBw8iISEBiYmJOHToELZt24bJkyebAwWhoaGYN2+eaN/Y2FiMHDkSAPDbb79hyJAh2LhxI44cOYJffvkFI0aMwN///nerZY2UPPnkkwAqJ+N79uyJTz/9FHv27MGePXswb948tGvXDidPnkS3bt0Uj2Maw4EDBzB37lwcO3YM58+fx/nz53Ht2jWbx/P888+bz7V06VI8+OCD+PHHH3H48GGsX78ejzzyiLk5ebNmzfCvf/3LkaftEj/99BMKCwsBAI888ojN+5m2zc3NxZo1a1wyNiJXcnvJKSIiopqqXKHklDDIYK2HhqjkVJXsgawSA/SCc2ktmoJbnkthWOIeGjWk5FSwxh+FKtsmUIt1FaJm2YBUU3DnZGjonNAUvERfAZ1Bb1PjcxOpgIZjJafCRMtulBSiYa0Iu49Ft5fTeRmy62pqySmpgIYvUQrEE8kRZ2jwF4nIVqtWrcKDDz6IBQsWYMGCBaL1jzzyCD788EPR8oEDB2Lp0qWYOHEiCgoKMGPGDMyYMcNiG41Gg9mzZ2PSpEmKYxg4cCAGDhyIWbNmSWZyhIWFYc2aNbJ9bT/66CMcPHgQ586dw7p167Bu3TqL9Y8++iieeeYZxbJXSkaMGIEJEyZg6dKluH79uigrQqPR4KOPPkJOTg727t0re5xJkybh888/R3Z2Nt544w288cYb5nU9e/bE9u3bbRqPRqPBunXrMGTIEOzevRvbtm3Dtm3bRNu1bNkSv/76q2RJKk8xlZtSqVSypc6kDB8+HFOnToXBYMDy5cvNQSyimsJrb0+qqKj80OTn52dlSyIiIveQawquVomb0ol6aAjupBeWjTJWufsxq1QvKhNi0RRcED0RBj+qKhU1BZeexBcuddc9vXKlXypLTtkWcCjRV4iaZQNAbplyDw1bMzTEJacc6KGhFTchtjdLo0wii8LfgQyNqIBg0XNKL2HZKVLO0BCW0asphCWnwnwuoCF+NXdCD1W6zTFDg8hxTZo0waFDhzB9+nS0bNkSwcHBCA8Px/3334+vv/4aP/zwg7mkk9C4ceNw+vRpvPTSS2jZsiVCQkIQFBSEZs2a4dlnn8WRI0csJu2VzJw5Exs3bsTAgQNRp04d+Pv7Iz4+HpMnT8aJEyfMJYek1KlTB/v378c//vEPNG/eHAEBAahdu7b5OaxYsQIajf031VS1ZMkSfPXVV7jvvvsQGhqKgIAANG7cGE888QT27NmDl156yeox6tevj6SkJDz99NO44447zD01HFG7dm3s3LkTy5cvx9/+9jfUqVMHfn5+iIqKQq9evTB//nwcPXoUjRs3dvgcznbt2jVz4KVbt27msmW2qFOnjrl3xsaNG5GRIX9TC5E38toMjaNHjwIAYmJiPDsQIiIiVDZWlbvTVaothShDQ1hySpShcevgmSUGUUBDKUNDqaKIsORUkNa77mUI1vpJlrIJ0frbnL1Qoq+QDDI4qym48GelNxpgNBpFQSwlUk2ICyrKEBkQbPMxpII2jmRoqFQq1A0KxZWiXPOyNDYGJwCncxVKTlXUzIBGgU4Q0PB3fLKjJpIqOcV4BlmjVVn+b9EzQ4PILpGRkXjvvffw3nvv2b1vfHw8Pv74Y6eMo1+/frJNva2JjIzE3LlzMXfuXMn1vXr1kuyvYZKYmGhuoi3n8ccfx+OPPy67fubMmZg5c6biMZo1a4bFixcrbgNAcawmarUaTzzxhE39O4RsGStg/brZo379+tBLZKnbaufOnU4ZB5EnuCSgYUp5Evrll19w8OBBxX3Lyspw4cIFLFmyBCqVCp07d3bFEImIiOyiN8pnLUhlElgtOSXTQwMAbhaL35haZGjY1RTcchLC23poyNWyD9b62Z6hoZPJ0BD00BBeJkdLTgGVd6v6qWwPJtTSSgc07CFVVsuRgAYAxAkDGmwMTrCWoVFDS04JXgfC/HwroCEViDcYYXdQlnwLMzSIiIjIm7kkoDF+/HjRG2Sj0Yi33nrL5mMYjUao1Wqb0syIiIhcTamxqmSGhrDklNZKD40qd+rckAhoWGRoCGIASk3BRT00vCygYZCZJAnR+ouukRy5DI2c8mLBuYQlp2wjnNgBgAqDXjLQIUejViNE62+RjSKs7W+NVA8Ne8ZQlbCPRjozNHxeia4CqYU5sutraoaG8O+MJacqg7t6I+Bl/w7IiwhvKGAPDSIiIvImLqs7YTQazV9Sy5S+/Pz80KNHD6xZs0axrh8REZG7KDVWlZjvtpqhoVRySjqgcet7UckpmbEZjUZRQCPQy2awhEEGk8qSUzYGNGzO0HCwKbhEJoYjkzvCZsTV7aHhr9Y4fId1XHCoxeM09tDweefyM0R/I1XV2B4agr8zX2sKLheMlwp0EJkISz4yQ4OIiIi8iUsyNFJSUszfG41GNG3aFCqVCr/99huaN28uu59KpUJgYCCioqKq3WCIiIjImZQzNCRKTomaglvJ0KgS0JAuOXXrHMKJeLmhVRjE62wuOeWk2q5WTyOz3N4MDalyTHnlpTAYDVCr1JK1am1vCi6doWGvUL8Ai0yI6mZo+KsdfxsXJ8jQSCtmhoavUyo3BQDFOpacqonkAhcVeiDIa7spkqcJb7rQOfA/j4iIbHPt2jXk5MhnycoJCQlBkyZNXDAiIu/nkrexjRs3llxer1492XVERETezN67Wa01BRcGQareGS0VoKhaZkoYk5DLchA2BK8ch3SQwFN5G3JjD9b6iyZU5JToKlBhFE+2GGFEQUUZwv2DJM9jc1NwibJOjgQ0hBOpdvfQEGSh+Ffj5o+6QZYZGunM0PB51gIaVcul1STCvzNfawoul13IDA1Swh4aRETu8+abb2LZsmV279ezZ09s377d+QMiqgHccl+OgTU3iYiohitXmPwplQgcWMvQEE4WyPWSMG9fNUNDMM+vk9m1VGKF9/XQkC85Vd0MDQDILS9BuH+QZCkd25uCi8fhyOROdUtOCTM0AqqToREsyNBgDw2fdzovw+JxgEZrUeasuIYGNHy9hwZLTpEjhDcUKPXqIiJg5syZmDlzpqeHIZmRTER0O3JZDw0iIqLbSYXCDfmlEhNGwgyNYCtNweWLL1Wy7KFhORFva4aGRgX4edl/fuWAhm0Bh8qm4HIBjVLZ89hecso5GRrCgEZ+eTV7aFQjQyNOlKFRwA/BPu50rmWGRrvIOIvHNbbklDBDgyWn/lru5oFQjSLK0GDJKSIil0lMTLS553DVL2ZnkC9z27RGcXExiouLZdd/+umnuO+++9CyZUsMGDAAa9euddfQiIiIrKp2ySkrPTRUKuXjV20ELmoKLrOrsCF4sFblcBNpV5FrQhys9bO5KXixrkKUvWCSW14CQDqgYXPJKYlMkQoHsk/FJaeq20OjOiWnLDM0Kgx6ZJXJv0+j25vBaBCVnOoU3cDicU0tOSXsoeF7TcGllzNDg5RoVWwKTkRERN7LLQGNtWvXIjQ0FHFxcSgoEJc0eOqpp/Dyyy9jz549OHPmDH777TcMGzYMc+bMccfwiIiIrFIqOSVFVHJKq1xyCpCfLNCoYBGIEGYu2BrQsKfclLumupxSckohoJFTVhnQkDqLrVdDKkNDJ9GzwxpRySmdnSWn9M4LaNQJqiVaxj4avutKUa4oCNsxyjKgUVNLTgn/znyvh4Z8U3AiOcL3GTqWkCYiIiIv4paAxm+//Qaj0YghQ4YgNNSyxMGuXbuQmJgIAAgODkaHDh0QGBgIo9GIGTNm4Pjx4+4YIhERkSJ7J39KBOWBxBkawul0+RCCMCNDGAvRy0xYlVQIAhreVm8KgEHmeYdo/W3O0FAuOWXK0BBPxtiaoaFSqUTBFUcyNKpbckqcoeF4Dw1/jRbRASEWy9KK2UfDVwn7Z4T5BaJZaJTFshpbcqrct3toyJecYoYGyWNTcCIiIvJmbpnZ2LdvH1QqFXr37i1at3DhQgBAvXr1cOrUKRw6dAinT59Gw4YNYTAY8OWXX7pjiERERIrsLjllJUNDOEFuVMjQ0KotJ96FiRZyQysWNAUPEkZGvIBshoafnU3BrQQ0pM5ia0ADEE/uONJDQ1xyyt6AhmWQLEDjeEADkGoMzgwNXyXsn9EiPAYhWn+LZTWx5JTRaPT5HhosOUWOEJac0jOgQURERF7ELQGNmzcrPyTdddddonUbN26ESqXCCy+8gAYNKlPbGzZsiBdeeAFGoxE7duxwxxCJiIgUlcvVdZJhrYeGcIJcrpcEAGgE/62FE/E6F5Scche5RtTBGvmAhrCnRYnOlgwNx5uCA4CfsJ64EzI07O2hIWoKXo2SUwBQV6IxOPkmYf+MFuGxCBYEYUv0FZKZTt6sRF8hmoj1tR4abApOjhA3BecvDBEREXkPtwQ0MjIq09iF5aZOnDiBzMxMAMDQoUMt1iUkJAAALl265IYREhERKbN38kcU0LCSoaE0UagVBDCEiRZyWQ6lwoCGn/cFNGRLTvn5SzbjBoDIgCCLx8I7sKvK/avcTHWaggPOydAQlZyyO0NDUHJKU72ARpwgoJFWzAwNXyUKaETEIliQoQEApYKgmrcTlpsC2EPDvNzOID35FuH/X5acIiIiIm9SvVoFNtL89YE7OzvbYvmuXbsAADExMaLsjcjISABAaal9dy8SEdHtr8KgxxsHN2DD1VOypYaqCtH64/FmHTGtTS+L5tr2sLUpeLleh78fXI/ssmKL5eIeGpaTBWUGHTZkLZQ8ploFbPlBg8iAIExp0QNNgtpYrD+fq8OMPTkYcWcI7o72R2GFAUuPF2DXdcsJ86oZGjqDHm8c2oANV0+jTK+D3qCCUV8H/qpA3Ci/BAN0+P4r6ecYqg1H98jeqBMQhwa1NBjfOhSxwY5Nris2BVdL/6wi/IOQUVpkfrwy5ajs8ZecS8KqlBMo0Yl/T+wJaPgJAhqP7vgaQRo/XLcjCBDmbxnQOJR1FXP/3IZ/tO0t+Xt5qTAbr+xfg9zyEvSKa4a3j2yyWF/dDA1hyanFZ5Ow9spJZJUVIyYwBG0j4/BRlyEo1evw8v5fkFFWiCktemB8887VOq+t8spL8OK+1dibcQkqqNCjTjw+uWcYatXwO+zPZFfguzOFyCo1IDZYjcdb1EJ8uJ/s9qU6I1acKcTFPB161AtAv8ZBot+XH1P/xMcn/0DjkEjM6zwIRbpyvJz0C04JSknJuVSYY/G4RXisqOQUUPm3NqF5FwCVQdj/S96OtVdO4r46TTCzfV8EauWfh60uFWbjxX2/4ERuuk3bh/oFYPwdnfFS6/tE65acOyBa5i0lp4orDPjqVCGuFujwQKMg9G4YhEv5Onx9qhA3iq3/XwvUqtCzfiAGNLn1+7AhpRg7rpZaZOfll0tPRH9yNB8bUosxID4YPepbvyYGoxGrzhTh0M1yNAnXYnyrWgh2Yl+mHVdLsDG1BEUV0v8T/NRAQp0AjL4rxK7XbnKMMIj/ycld+ObCYacdX61SoUt0I3zadRgiA4Lt2regohQv7f8F+25eQufohvik6zCE+wdZ35GIiIhuG24JaNSvXx/nz5/H0aNH0atXL/Py9evXQ6VS4b77xB9A8vLyAADR0dHuGCIREdUgn5/egw9O2FeS8O8H16NtZBz+1qCFQ+e09W7W/578A/89+YdouajklET2QaE+V/a4+QUACoAJu1ZiefdYAJYf3s/kVOCDg3n4sk8Uvj5ZKApmAECw9tY5Pz+9F/OOC69hpuz5q8rT5WLtjR8xKOp53CjWo0iXj1ndIm3atyq5clMAEKjRimp4m0QIJi6UavsXVJTJ9qqwq+SUIHhgTyDDJFRiIvWNQxtwd2QcBjRsKVr39K7vsTXtHADg9/QLovUB1WgKDohLThXqylBYUHmtcstLcC4/E8W6cmSUFuFQ1lUAlb9/XWIaolVE3Wqd2xZvHNqA5RcOmR+fzc9AmF8gPr5nqMJe3k1nMOKDQ7nIK6/83b9RrMe8Q3n4tHeUbLB1Q0oxNqZWlk47m1OB+DAtWtS+FWy4VpSHkb9/BSOM2IUUaNVqnMnLwL4Mx7OcW4bXEZWcAoCndq3C0EZtUDsgGOuunMIbhzYAAPbcTEWjkAhMbtnD4XNWPce2tPN27fNy0i9oVzsOveLuMC+7WpSLNw//arGdv1pT7d4zzvLT+WJsu1J549bZ3AI0i/DDh4fykG5DMMNkeX4hGodp0SbaH8czy7HsZKFdYzifq8MnR/PRPNLPalB6x9VS/HyhMlB/uUAHf7UKz7QNVdzHVtcKdVhwzHrJu6uFxagTrMEDjTh57WrC9yi55SXmEo7Oci4/E/4aDZbcO9qu/d46tBFL/wpWnsq7iRA/fyzo9ohTx0ZERETezS0lp+677z4YjUbMnz/fXGLqwIED2LhxIwCgX79+on1OnToFAKhb1/UfmImIqGZJyrji0H4HM686fE65PhUAkFDn1uTi4axrktvUDbac+IkJDHF4LGfzpc9RqjciNV+H83kVkutrB976t38w07FraFJiKECxoXJS/2Ku9PmsUcquUavUiA2sJbmuQ+36Dp2vKj+1BuF2lJ6pE2jbxF10gPzPtWFIuORyU9DC1uXmMQVVbzLxjjDrN41svHbGHMwwj+u6fZPNjjog8TsqHEtNc7VAZw5mmGSUGFAoc1c6AKw8W2Tx+KtTlpPW+zIuWfTg2XTtbLX+voO1fmgaWhshWn/Jv5FDf72Ovndsi8XyKft+dvicJkajEXtupjq0b5LgOUv9/jQIiXDo2K6w9qJlFt+i5AK7ghkm5/56/U3Jd7wc2HkbXsM3X7KczN582XmT22eybf8fcjGvZpU9q6lig6T//zpbUsZlu/dZfG6/xePPT+911nCIiIiohnBLQGPy5MlQq9VISUlB06ZNkZCQgJ49e0Kn0yEyMhKjR4vvyti2bRtUKhVatWrljiESEVENUqxwR76SCqP9k0XWhGhVePiOW5PYUiWUnmreBTGCyfm6wWF4slknh86p9Dwyig0ok4i+xASp0T3uVqmeCifUwy41VE7IOVqKPV+mKfbn3YYDAB5v1hFxQZZlkfrWuxOzO/ZDs9Aox076lxda9pDsESDn9ba9rGZ0tAiPxeBGrWXXtwyvg8ENxe9rTubesHkcJmF+gZh4V1e796uqT1xzdI5uaPd+Sg3snalcL/4919fwxrRpRdJ/uzobS9oBwJUCy2MIm8WnleRXq979G20fhL9GC7VKjb+36S1an1Ne+Xd/oSDL4XPIKdKVO9yno1TQtyhPon/GP9qKn4+3SJUJRFtjer1XynizRq7MU1WXC1wXSMgps/331Z6/FXLcU827IMrOUlCOcOTvvVjn2N8KERER3T7cknPdsWNHvP/++3j99ddRWFiIw4cr62/6+flh0aJFombheXl5WL9+PQBYlKgiIiICgGLBxNX4OxLwcOO2ou3mHd+OP26kmB9XZzJUOFfUMdYfjzQPQUyQBuEBt+4PEE72Dm7YCot6jJA85tL7RuOlVvfhanGeeVl2qR5ZpZXjVAGIDdZgbvJGnKgy6a1XmKy8WaKHcG5oWLNgPHxHCAIFPTSs6RFzJx5u1MX8+N/Jq5Fdfuvu8FJD5feOzi9JNew9NvRV3F27HgAgPrQ2zjzyd+y7eRkl+grEBtZCQnQDaNUa/DnsNey7eQmFguBWk1q10SwsCvszLqOgogxf/pmPPEEN+c97NUWbSPsyQB9r2gE9YuNxLPu65HR+qF8AusY0FjV/r0qlUuHnB8Zj2oG1+LhKWbJTebb1OagqZeR01K7mZFOg1g9/DJiCpIzL2JtxCf84uN6m/YTl01xFKoNHrol8TSEf0LD9GMIJXVv6CH3ebTjqBUtnCFXVLDQKrav8bUxv9yDmHd+OnCqlZnLKKr9vFBKJLEGvoOrKKBWXTFrZ63EESvzOfXhiB3akXzQ/Fk6MCgMajUIi8Fw1g4CuJNXq4vm7QxHqb3n/2aZLJTiWcet1r+SviLLwL6NpuBaPNL8VbPfXqFAnWIPrhTqsOltkkelQbMMvoCv/8nIF/7Taxfijb+PKslI7rpYiKf1W2UClbElynpYRdXD+kTewP/OyKGhaHYezrmLW0c3mx848NhEREfkOtxWRfeWVV9CnTx/88MMPSE9PR1xcHB577DFRM3AA2L59Ozp3rmw4OWjQIHcNkYiIaogSwd15naIaYIjEnfHfpx6zCGhU565l4XSOn1qFOyKsT+x2jKoPtUS/DKCyrFLH6AboiAaKx0g8v8cyoKEwgZlRohdlaHSqE2ARzACAChuCOx2jY/Ha3e3Nj1dd2oGkzKoBjcpSOEZU3h1sb8N14YSjRqVG28g4i2WhfoF4qP6don2Dtf54oF5z2WP3/quW/u8Xs3BdMInctnasXeM0aVQrEo1q2d8rpCqNWo1xdyRYBDQuFeagqKIMITY2u25cK7LawQyTAI0W99VtCn+N7Q3GlQJqziQZ0KjGXejeQDagYcfzEmZE2RLQ6Ff/LjRxMKupW2xjbLh62vw4+68Mjca1InEk27L8XUFFqWSvGFtllFqW1/JXazAyvp3ka8svl09YBDSE/xeEGWAdoqpfqs7d2sX4o3ag5d/myaxyHMu49bhEZoY/IkCNhDri15Q6wRrsvFZqGdCwIUPDlX96OaWWrynNwrXmsZ/Psfy56mv4a0BNEhEQhH71xZ/VqyPULwBAlYCGgQENIiIisp9bu+K1bdsWbduK76AVGjp0KIYOrbkNH4mIyLWK9ZZ35cuVDhI2tdS5oVyNK6Za/NSC56EwoZxRrEeZYMYzQCOeDNTZUH5LLZhEFPZsMJWcAiqzNCROo0g44RjuH2h3UMQardq5x3OGu8JjoYLKIpvndF4GOkUrB7ZMXJEhoZEJuklx14RiucSdu+4qd+Uq6UXSk3f6arw0SV0nIWFTe3sIg2emDI0GEj1hLhXmoI0gKGkPYYZGTGAt2deEIEFzb2sZGuHVCLR4E2FwutSBlIUQreXfuy0lp1wpt8zy/1FElaxHjeClqTp/K+R5AWrLv9syidKCRERERNa4pYcGERGRMwnvxJUr8yOcpK3OneWenO4RTkbqFYIR14v0orEGSMxl2hLcEQY06ooCGrfupnakj0Z+RZnF4zAbMxTs4e/4PK7LBGn90CS0tsWyU3m299EIVihr5Shh8E+Ju7IkbssMDZmmz9XpC2BLhoY9P1+hSH/LgEb2X2WmAjXi+6IuFeY4fB5AnKERExgisyVEZahEPTREAdOgao3NWwQJZvhLHXjxDfazfG23peSUK1tXCEtORVbJStEI/g8xQ6NmCxC8bjgrQ6Om91ciuh2NHz8eKpUK8fHxnh4KgMrSryqVCjNnzvT0UIjICTwW0DAajbhw4QIOHDiAAwcO4MKFC9VqZkdERL6jRHAnbrDMHetaOzIb7GVrIoG1RtK28BcENJSyK7JLxc9ROkPDhoAGrGVo3Jp8dGSyS3QHtQsmHL0xQwMAWkVYlr2ypzG45zM0WHLKEYUVBhSUS49f7iZ7W56vLROC1cvQsPy7NPXTkBpadQMamaKARi3ZbYUBFeH/BWGPHlcETD1BmKFRYm4KbvsxggXHsKXklKsYjUZRU3ClDA17+s2Q9wkQlDcs0+vsmgOQ27ZI0E+LiMjX9OrVyxy0EX75+fkhJiYG999/P+bOnYvs7GxPD5eo2twe0Pjtt98wePBghIWF4c4770TXrl3RtWtX3HnnnQgLC8OQIUOwadMmdw+LiIhqkGLBB1e5DA2nlpyy8fO2K4LzwslIWxp6VyUZ0LDhWgiDNsIMjTKLgIb9z1tYcsolGRoS73S84QaKluF1LB6fyrW9MbhS43FHaewI/LgroFFxmwU00mX6ZwDyGRrlMnffV/0dLrehZEt1AhpyGRpS5b+qn6FhWXIqWiFDQ/h3YD1Dw7tKTjkaahWXnJL+e1Q6foifoOSUBzttF1UYRUGKyCoBDS0zNG4rwswqwLYsMxO5JuIMaBD5pvj4eKhUKowfP97TQ/FqOp0OmZmZ+OOPP/DGG2+gZcuW2L17t6eHRVQtbuuhUV5ejvHjx2PlypUApCcTioqKsH79eqxfvx6jR49GYmIi/P2l66ITEZHvKhFMXMndsa4VZTY4MUPD1u2ckCAgCmjY+Tz8JQIaUpPFQsIMDaWSU45kaIgDGs6fcJTK0KgweL4UVasIy4CGpzM0tCp7moJ7ruRUTZ7KlGsIDsjfdS7XH6FMbzRPbNsyGejUHhqmDA2JbS8V5Tp8HgDIKBNkaAQolZyys4eGl5WcCvZTOdS7Ikimh4Y9RxJnaFj/n+Kqvz1huSmAPTRuZ8IeGkBlkEJYikqO8P2fifBGFyIiIW+4ocldkpOTLR6Xl5fj4sWL+Oqrr7BmzRrcvHkTgwcPxpkzZxATE+OhURJVj9sCGmPGjMHPP/8Mo9EIrVaLhx56CPfccw/q1q0LAEhPT0dSUhI2b96MiooKrFy5EjqdDqtWrXLXEImIqIYQ9tCQawourr3t+h4arnirLCw5pdRDQ0ijkp7Ut6nklCDDxfUlp5wf0PCTeO5leqNkkMedWgpKTl0oyLJ5Usc1Jae8K0PDaDTKZGjU3NnMNJmG4ACgk/mQLdcfobDCiMC/flXKbSo5VY0eGoKSU6YMDSnOztBQLjll+Xcg/L/gjgyw6nB0XiVQ8NpV4pQeGp6b5BGWm6rlp4JflecofG3y4FDJCYQlpwD7+mjIBTSYoUFEdEubNm1Eyzp27IgRI0Zg3LhxWL58OXJycrB48WK88cYbHhghUfW5JaCxfv16/PTTT1CpVOjduzeWLFmCxo0bS257+fJlPPXUU9i2bRt+/PFHbNiwAQMGDHDHMImIqAbQGwyiO5KDtNL/zpxacspBzuihIby72pbsChPh5JeJM5qC64wV+H/2zjs8iqr/4me2pjcgQGihd+kdJL4gXUBFfMUCCKKADcXeQH4qiu1VBAWlWQEpIkUp0mtCb1JDS4BAet06vz+W3ezcuTM7W7NJ7ud5fAw77e7s1Hvu9xyT1QitSufRqP1AVGhoKf24BguPSPHHAYW0nLLwVpzLu4VWsTVdLusXyyl3MjT8mQ58B6ljvKJaTkmNOpcSNPKNVlQNtV0XlFhOufP7ksQRllPZBnuGhj8sp5SHgpPCnshyKgCCqTd4Wukktpyir0dOowzTCI+HsszQyCmRzs8AAI2oQqP8XgMY4lBwACgxKxc0isxM0GAwGAxveOWVV7BkyRIAQHJychm3hsHwnIBkaCxatAgA0KZNG/z111+SYgYA1K1bFxs2bEDbtm0BAAsXLgxACxkMBoNRXqCNzguE5RTZheILKymlkIKGOyPkpSoRlFVokKHg4tHS9hwNX1Ro+GMEtVSFRlkTpQtBrbBowWfOORpyZfF+sZxyYwR/ICo0pGyUrOXYdEreckqiQkOis7rAqQPaleWUhlOB8+KCRVZoFJgNMFkt1F/ienGepMe9EsSChvJQcNJyKhCCqTd4Gm5NWk6ZrNLHjxThRIVGiYUvM6Eg2yA8fmNDCEFDVGnp9yYx/AgtQ8OtCg0maDCClGnTpjkCmAEgJycH7733Hlq2bImIiAjExcXhnnvuwa+//upyXZcuXcKUKVPQsmVLREZGIiwsDI0bN8bTTz8tshIisbdh2rRpAIDNmzdj6NChqFmzJkJCQtCgQQM8++yzSEtLU/xdpNi2bZtjvm3btrn8XiSFhYVYunQpxo8fj7Zt2yI6OtoRXt27d298+umnKCgooC5rD8C+fPkyAGDx4sWiIOykpCTBMuS+oWG1WvHTTz9h0KBBqFGjBnQ6HapVq4Z77rkHc+bMgdEofa0h91tJSQlmzZqF9u3bIzIyEpGRkejcuTNmz54NsxtCrq+pX7++42+DwVBm7WAwvCUgFRr79u0Dx3F4+eWXodW6fgnXarWYOnUqHnvsMezbty8ALWQwGAxGeYEmaEhZTpGdtO6GaQsow1Bw0nLKzFug1BGfHM3rWIeSDA3iRSZCo0eYRisYIVnCFyECsT7J0PCLxz3l6weDoAHYcjTSinId/3bO0aAFLtsp8wqNshQ0ymmFBs/z8oKGxNeStpwq/Q1cdQZ6k58BiDM0ACBbxnbqamEOGkVV9WhbYsspuQwNwnLK6d5gsVqRbxK+pAdbhYaSaybt6k2ruiux8G5ZWJGWU4DNdipS557wxfO8V2IZIM7QiNELj1cyQ8Nd8YYRXJDPM4B00DcNScspExM0GMFDamoq7r33Xly4cMHxWWFhIbZt24Zt27Zh9erV+Pnnn6GhVJgvWbIEEyZMEHU0nz9/HufPn8cPP/yAGTNmKLIJmj59uqjzPjU1Fd988w1++ukn/Pnnn+jVq5dnX9IHDB48GNu3bxd9fvv2bezYsQM7duzAnDlzsH79ejRr1szv7cnKysLQoUNFYdm3b992/HazZ8/Ghg0bZAdpA8DNmzcxYMAAHDlyRPB5cnIykpOTsXHjRqxevRoqLyxBPcUuAgG2AeUMRnklIGfPrVu3AAAtWrRQvIz9gnX79m2/tInBYDAY5RNa8KPUiHVxhobvOkIUh4L7wXLKHessqQoNkxLLKaLtHMehRmiU4LMSi21EtUeWU0bhy5o/KjRofV/GIBE0mkcLczRO52ZIzCkkrMwzNMrOcqqc6hnIM/IoljH/l+qkNUhVaBidKjRcWE55K2jEUoTGLEOxpHjrqe2UwWIWiRByFRqk1aBzhQa5HgCI1gZPKLiVl5Ms5SErNADpSh4pSMspwLMcDV+cjmSGRixhOUXewoLk8s3wEI7jRKKGTwQNVqHBCCIefvhhpKam4plnnsHmzZuRnJyMH374AU2aNAEALFu2DK+88opouXXr1mHMmDEwGAyIiIjAe++9h507d2Lv3r347LPPULVqVVgsFrz55puYO3eubBvWrVuHadOmoWnTpvjhhx+QnJyMzZs34+mnn4ZKpUJubi6GDBmCq1ev+mUfKMFsNqN169Z46623sGrVKuzfvx/79u3D0qVL8d///hcqlQqpqakYPnw4SkqEg6AWLlyI48ePIyEhAQAwbNgwHD9+XPCfO24vFosFQ4YMcYgZvXv3xvLly5GSkoI1a9Zg+PDhAIDTp0+jT58+kpUjdh544AGcOnUKzz//PDZt2oSDBw/il19+QfPmzQEAf/75J+bPn6+4fb5k1qxZjr+HDRtWJm1gMHxBQCo0wsPDkZOTg8zMTMXLZGfbXobCwsSjwhgMBoNReSmmlOhKjVjXcJ4LASRlGQpOBvqaeeUv/3ofWk4BQPWQCFzML72fl3hjORWACg1au6RGvQeaFjHCHA1BhYZMEytFhYZEJ315tZySCwQHpO2HlFRouAoF9yYQHAB0ag3CNTpBh2G2sUjyl/BU0LhN2E0BQFU3KjScMzTI6i8AiNIFTyi4VGaKEmhVdyVmsUAiJ1Hq1TahwPnwKjRZAcW1fzYsVsBLvUycoUFaThG2gSxDo/yjV2sEVXjuWE7RBrUAQJGE0MGQx8pbkSlTcVfRqKIPg8qLTCmlJCcn45dffsEjjzzi+Kxjx4546KGH0KtXLxw9ehRfffUVxo0b5whvNplMmDBhAnieR0REBHbu3OmwYQeArl274sEHH0S3bt1w/fp1TJ06FQ899BCqVqVXRKakpKB9+/bYvn07IiJKBwf06dMHPXr0wBNPPIG8vDy8/PLLWLZsmX92hAsWLlyIxo0biz7v0qULRo4ciXHjxqF///44c+YMfv75Z4wbN84xj902ye4AExMTQw3CVsq3336LvXv3AgCeeOIJLFq0yFGB2KFDB9x3331466238OGHH+LChQuYMWMGPv74Y8n12aswnG2v2rdvj/79+6NFixa4efMm5syZg6efftrjNstx4sQJwb+NRiMuXbqEn376CatWrQJgE94GDBjgl+0zGIEgIIJG06ZNsX//fixduhR9+/ZVtMzSpUsdyzIYDAaDYYccnafhVJIjkEWWU7wXllMe4ousDZ1KeLt2R5jRS3Q2eWI5BYiDwb0RNPICkKFBsygyBv4woNI8RlihcTbvFsxWCzQqtbzlVKXI0KB3cFkDsG1/IGc3BUhXvUiNvC90I0PD2woNwFal4SxoZMl0gF0p9EzQIO2mVByHOL20yEmeB85iN5nPw4FDpB+uL57iTZWTiuOgUwFGp1NBrvqHBsdxCNNyyHeq9PEkGNzC89B6WYXIKjQqH3qVBvkoraIi82/koA1qAZjllKdkGooQ/+u0sm5GwMh4ZJps5Z+vGDJkiEDMsBMZGYl58+ahS5cusFqt+PbbbzF79mwAwKpVq5Ceng4AePvttwVihp169eph1qxZeOyxx1BUVISFCxdSKz3szJs3TyBm2Hn88cfx66+/YsOGDVi1ahVu3LiBGjVqePhtPYcmZjjTt29fDB06FKtXr8bq1asFgoav+eabbwAA1apVw+zZs6l2itOnT8fKlSvx77//Yv78+Xj//feh19OfLZ577jlRhgcAxMXFYezYsZg5cyaOHz+O3NxcREdHi1fgJa1bt5ac1rRpU7z++usYPXq0z7fLYASSgFhODR06FDzPY+HChY6AcDl+/PFHLFiwABzHOUq7GAwGg8EAxKPz5Eara4hRWN50Iikd/eq5kYg04goN5T3yvq7QqBHmQ0GDDO31g8c9rV3Bk6EhfHk0WMxIzc8CIF/pU/YVGv7ffxUtQ+OGC0HD7QoNp95sV5ZT5HXQE8gcjWxjseS1ztMKDTIQ3NVIWnEouHSFRqRWH5BRuUrx9hJE2k4VU1coLzSQtlOeWE754lIqztAgBA2iQsODZjKCDPLcZZZTjIrG2LFjJad17twZLVu2BGAL7LZj/5vjODz55JOSyz/00EOODnDn5Ulat26NDh06SE63b8NsNnsU6O0Pbt26hXPnzuHEiROO/6pVqwYAOHr0qN+2m56ejtOnTwMARo4cicjISOp8Go3G8dtmZ2fj0KFDkut89NFHJafZfxee55Gamuppsz3mzJkz+O6777Bjx46Ab5vB8CUBebJ/7rnnULNmTfA8j3HjxmHIkCFYuXIl0tLSYDKZYDabkZaWhpUrV2LIkCEYM2YMrFYrEhIS8OyzzwaiiQwGg8EoJ5Avs1KB4IC4k9Yby6myhBxhLZUvQENK0FCyDjJDAwCqh0gJGu71MvE8LxpFHa2tXIJG1ZBwVNULLXXsORpy4fL+qNBwS9AIwHlU0QQNVxUa7mZo5AsspwJQoUFUSmQZinyeoSEOBJcfRUtaTpl5q6PyjLy2+KP6yxuUWk5JSRIhhBjhboYGAIQTweCFJvfPa28vpSVmcbaMSNAgdgILBS//6JmgwajgdOrUSXZ6586dAQBnz56F0Wg7du0WQfXr13d04tPQ6XRo166dYBlv2gAAx48fl53Xn+zevRsPP/wwqlSpgvj4eDRp0gStW7d2/GfPmfBntq7zfuzSpYvsvM7T5fa/XIh5XFyc4+/8/HwlTXQbnucF/1ksFty8eRMrVqxAmzZtsG/fPvTr1w+///67X7bPYASCgAga4eHhWLt2LWJiYsDzPDZs2ICHHnoIdevWRUhICPR6PerWrYuHHnoIGzZsAM/ziI2Nxdq1a1mGBoPBYDAEFJuFL7Ohamn3RH9aTim1kvJFKDgZoKmkusKxrFSFhpJQcDcsp9zt2CqxmEXfo7JVaADyORpSVArLKYkOruD55dzDteUU/XPpDI3Sz135z/tC0IjTERUahmLJeS8X5ni0DbJCo5pMfgYgDgUHSq1rxPk8vr+2eIPZS2GOzNEoMYvTZVzdo8KIdXhiOWX1UlzIMYjPi1iXGRpebZIRBIgEDR9kaDBBgxFMxMfHy06vXt327MfzvCM7NisrS9GyABz2UPZlvGmDq/X4k2nTpqFnz55YtmyZyzYUF0s/d3iL87Zd7Tdnay65Nsv1Y6qcnrktLqpsfYVKpUJ8fDweeOAB7Nq1C02aNIHRaMSTTz5ZZr8/g+EtAcnQAIB27drh+PHjeOGFF7B69WrJE1etVuP+++/HF198gVq1agWqeQwGg8EoJxSJBA3lllOBqNDwxwByskPSbLUoHpIQ4utQcB9laNBCe/3R6UizxTEGkaDRPCYeO25edPz79B1BI/CWU8qFt0AEc1ekCg0rz+NmkbDDLlInzC+QGnUuNfJeaDnl31BwAIglLKeyDNKh4FcLc2DlrW5bPHlboQHYBI0IrZ6SzxNcgoa3RQahxHXd3QwNAAjTkpZT7t8fvbV/IvMz9GoOoRpXGRrl7xrAEKJXkRUayjv0yEEtdqSEDoY8VfRhyHhkWlk3I2BU0QdmsCwtfyEQy/pjPf5iy5YtmD59OgCgQYMGmDp1Knr27Im6desiPDwcmjuDFt59913MmDEjYO0K9v3mCyIiIjBx4kRMmTIF+fn5+P333zFhwoSybhaD4TYBEzQAICEhAcuXL8f169exbds2nDhxwqEGxsXFoVWrVkhKSkLNmjUD2SwGg8FglCPcsZwiR517laEhWlTZA68vnou9sZzyrkJD3CFJVmgYrDbrGXc76EhLGMA/nY7lrkIj946gIXOshvlB0HCn89kSAMsXqWM8EGKKr8kusYIciF4nQoNTWaXXMnczNAIdCk6Gc2cbixGhpV97TVYLrhflo1a4eyGXtw3uVWiQPvxAaWdn0FdoeHkOiSo0LLzbYnq4hrSckl6BlJDo7aUgp0Q+EBwA1MRHHugujCCDrNAokbCRosEsp3yLilMFJCS7snHz5k3UqVNHdjpg6zyPjY0FUGpDZJ8mx40bNwTLyG1DyXRyPc4VBFarVfBvZwoLC6mfK8FuJRUbG4t9+/ZJ2mwFonrA+fu72m/2fU8uV95wtsQqS8sxBsMbAipo2KlZsyYeeeSRstg0g8FgMMo55Mus3Gh1UYaGF5ZTZRkKrlOTllOBCQWnLUkKGhaYYeKNbotFZIWGTqUWdXL4gmAXNJpHCwWN0zkZNr9bmWX8YTnlDgGxnJKs0Ch/vZmk3ZReDVQLUwMCQUMiQ0PScsoKnufBcVyABA1xhUa4jJh8uSDbbUGDtJwi82VIaOeBvWNUlM+jCxXNW5Z4KwSILad4UUWdKy09jMjQkAsFlxIRvK2WICs0YkLEnWYa4nvxsAkstApCRvnAq1BwiQoNJmgwgonk5GRZQSM5ORkA0LhxY+h0tntpq1atsHfvXqSmpuLWrVuSHfwmkwmHDx92LONqG0qmk+txDsXOzs5GlSpVqOs4e/as7DbkOHnyJADgnnvukc0MSUlJkV2PLyoqnL///v378fjjj0vOe+DAAepy5Q2z2Uz9m8EoTwQkQyMYycjIwNq1a/Huu+9i4MCBqFq1KjiOA8dxGDNmjNvr27BhA+6//37Url0ber0etWvXxv33348NGzb4tN1FRUX45JNP0KlTJ8TFxSE8PBzNmjXDyy+/jMuXL/t0WwwGgxGMkLYCYXKWU2SGRhmEgvsiQ0PLkZZTyr8HTdDgeV5ZKLgCyykAKLEWeF2h4a8R1MEuaJAVGoVmI64W5sgKY5Vb0Aie304ppKBRI1wDwlVHOkNDopPZZAXsrlNGF3YtpPWeJ8TqxBUaclwudD8Y3F3LKa1KLbq+2jM0SME02ELBFVs1SXTU+MVySiYUXEq48DbPIsfgfoWGL7bLKFu8ydAolhA/mKDBCCYWL14sOS05OdkRJt23b1/H5/a/eZ7HwoULJZf//fffkZubK1qe5Pjx4w7hg8aCBQsA2Czfk5KSBNPq16/v+FtOUPjtt98kp7nC3okuV+Vx+PBh7N+/X3Y9ISG29weDweBxWxISEtC8eXMAwLJly1BQUECdz2KxYNGiRQBslSXt27f3eJtljfPvKie+MRjBTKUVNKpXr4777rsPM2bMwF9//YXMzEyP1mO1WjF+/HgMGjQIq1evRlpaGoxGI9LS0rB69WoMGjQITz31FKw+6EQ7f/482rZti9deew0pKSnIzs5GUVERzpw5g88//xx33XUX1q5d6/V2GAwGI5gpJkaRyFVo+DNDI5CDQ0WWU7z4hT5aR28QTdBQ2imsoogxoRqtyBrKYC2Cu3tW3OHoL0EjuDM0EsKiEEl0tp7OzZBdxh8ZGu4QCA97qU764PnllHOjUHi+1ghTi0adu2s5BZTmaAQkFJyaoSHdtssFngga7llOcRwnGuldLFmhEVyWU96GadMqNNw9O9yxnJKu0HBrkyKyCcupGJqgQbnZshyN8o03GRqSoeAmJmgwgoc1a9Zg2bJlos8LCgrw9NNPA7DZOtn/BoDhw4cjISEBAPDBBx9QbYCuXr2KqVOnArCFTo8dO1a2HRMmTKAKBr/88gvWr1/v2C5p+d69e3dHhsUXX3xBtUGdNWuWoFrBXRo3bgwA2LVrF86fPy+afuvWLdlKCTv2tl+4cMHjtgDA5MmTHdt9/vnnqfNMnz4dp06dAgA89dRT0OuDa7CEUi5fvoxvvvnG8e9BgwaVYWsYDM8JuOVUZmYm9u7di4sXLyI/P18yHNyZd999169tqlu3Lpo1a4aNGze6vexbb72FH374AYAt+PzVV19Fw4YNceHCBXzyySc4fPgwvv/+e1SrVg0ffvihx23Mz8/H4MGDce7cOQC2C+h///tfhIaGYuvWrfjoo4+Ql5eHhx9+GLt370bbtm093haDwWAEMyLLKTcqNAIxsjwgllMUYSZar0KJxSLy6tdT+jKV2E0B9AoNAKgeGiEQJEqshW530AUqtJfWrJIgqqzmOA4tYqpj/60rjs9O5dxEz/hEyWUqR4UG/UcqjxUaN4qEJ2VCuBpG4sB0NxQcAApMPKqEBiZDI1ZHETRkfgrPBA33KjQAm7jnfE+wW06Rgmm0Nrgsp7wN0yYFjWIPlAV3LKekcnO8FRZyiBtWLM1yijL8ztv9xyhb9MQzDcvQYFQ0OnbsiFGjRmH79u0YMWIEoqKicOzYMXz88cc4c+YMAFsH+l133eVYRqfTYd68ebjvvvuQl5eHHj164JVXXkGfPn2gVquxZ88ezJw5ExkZtkEvn376KapWrSrbhpSUFHTs2BGvvfYaWrdujdzcXPz+++/47rvvANispT799FPRsvHx8XjooYfw66+/4u+//8bQoUMxefJkVK9eHVeuXMGPP/6IFStWoHv37tizZ49H++iJJ57An3/+icLCQvTu3Ruvv/46OnToAADYs2cPPv/8c9y4cQPdunXD3r17JdfTvXt3bN26FcnJyZg5cyYGDhyI8HDbgIjQ0FDUqlVLUXueeeYZ/Pzzz9i7dy8WLlyIy5cvY9KkSahfvz6uX7+OBQsWYOXKlQCAhg0b4p133vHoewcKexWQHavViszMTOzcuRNfffWVY0D3o48+yvoOGeWWgAkaGRkZmDJlCn7//Xe3Pdr8IWi8++676NSpEzp16oTq1avj0qVLgtI6JZw9e9ZxA+jYsSN27NiB0FDbC1OnTp0wdOhQ9O7dGykpKZg1axaefPJJNGrUyKP2zpo1y+FR+Mknn+CVV15xTOvWrRuSkpLQu3dvFBUV4cUXX8S2bds82g6DwWAEOyLLKRkfd3GGhucdsXIhzXL4opCD7JCkZWioOA7VQtW4VkD69YtbYFYYKi4laNQIjcS5vNuOf5dYC923nApQaC/tFyc7k8ua5tHxAkHjdM5N+QyNylChUYEsp9ILSMspNdIJGyqzxPeSq9DIv1OhYXThP6+VCPN0B7JCI9tY7NMKDYvViiyD0MbKVYUGIPbit1tOkRUaUbrgGkXprWVSKKVCQ5Tz5OLmE6ZRbjklJSD42nJKcYUGs5wq14QQorwvMjSKJD5nMMqCZcuWoU+fPpgzZw7mzJkjmv7ggw/i888/F30+ePBgLFy4EE8//TTy8/Px7rvvivrC1Go1ZsyYgYkTJ8q2YfDgwRg8eDCmT59OreSIiorCmjVrkJiYSF3+iy++QEpKCs6dO4e1a9eKnED++9//Yvz48bK2V3KMGDECY8eOxcKFC5Geni6qilCr1fjiiy+QnZ0tK2hMnDgRc+fORVZWFt544w288cYbjmm9e/dW3C+mVquxdu1aDB06FLt378Y///yDf/75RzRf8+bNsWHDBkREuB50UZa0bt3a5TwPP/ywY3A2g1EeCYjlVHZ2Nnr27InffvsNJpPJFnbpxn/+YPr06RgyZAiqV6/uemYJvvzyS4c48/XXXzvEDDthYWH4+uuvAdg8Ar/44guPtmMymfDVV18BsF1AX375ZdE83bt3x7hx4wAA27dvdxkCxWAwGOUVcYWGtDbvT8spKfxx29Iq+B4cgGqh4pHYVEFDcYUG/TGBDAYvsRa6bT2SZxR63QayQiOYMjQAcY7GqZyblT5DQyrjpbwJGlaeR0axWNAgT0tJyymZoeiFdzqgA1KhoRc+45qsFtkR0e5maGQaCkXHvJIKDbJj1N7ZKbKc8tP1xVO8FQVD1DTLKfcIJyo0CmVDwf1ToUGGgsdSSgqpGRrl7DrAECLO0FBuOcUqNBjlgfr16+PgwYN488030bx5c4SFhSE6Ohp33303fvrpJ/z+++8OSyeS0aNH499//8ULL7yA5s2bIzw8HKGhoWjYsCGeeuopHD58WNBpL8e0adPw119/YfDgwahevTp0Oh0SExMxadIknDx5Er1795Zctnr16ti/fz9ee+01NG7cGHq9HnFxcY7v8Ouvv0Kt9u75YsGCBfjxxx/Rq1cvREZGQq/Xo169enj88cexZ88evPDCCy7XUatWLRw4cADjxo1Do0aNHJkanhAXF4cdO3ZgyZIlGDBgAKpXrw6tVosqVaogKSkJs2fPxpEjR1CvXj2Pt1FWcByHyMhItGjRAuPGjcP27dvx22+/lVvbLAYDCFCFxsyZMx2+eP369cNLL72EDh06IC4uDlwgTch9CM/z+OOPPwAAzZo1Q9euXanzde3aFU2bNsWZM2fwxx9/YPbs2W5/561btzqCn0aPHg2VxEi7MWPGOMoHV61ahU6dOrm1HQaDwSgPkKPz5Co0fGk5JRr9qnA5X9zndMTLP82OR8UB1cLELxY6iqBhUijsSFtOiQUNdzuaRZYwfgsFF7fLEGR+Jc1pgoZME8u8QiMAwqBUJ70/LN38ye1iq0isSAjX4GSm8DomJWjIiW8FdzIPXAkavggFjyMspwAg01AkOf/lgmzwPK/4+nfbIPb4rqqgQoMUtCVDwYMsQ0Oppiq196iWU8Q6Xe35MGIdRSZe8jeTaq83xW5mK498o3AFMTTLKcoXkTpfGOUDPSGyulOhIVWJwQQNRrARGxuLDz74AB988IHbyyYmJuLLL7/0STv69++P/v37e7RsbGwsZs6ciZkzZ1KnJyUlyQ5AXrRokSNEW4rHHnsMjz32mOT0adOmYdq0abLraNiwIb7//nvZeQBl1fYqlQqPP/64ovwOEiVtBVzvN09hLi2MykZAKjT++OMPcByHIUOG4K+//kK/fv1QpUqVcitmAEBqairS09MBQFbZdp6elpaGS5cuub2tXbt2idZFo2PHjggLs71w7t692+3tMBgMRnmgiKzQkA0FJ62afBgKLvG5PzpcScsYaoUGB1QLFd/WyY4v2/IKLackviWtQsPdPSuyhNH6Z4RQeazQyDYW42ZxPnVeDafyyYh7byjLUPDyVqGRTgSCh2k4ROo4US4AbZ+arTxkXIBQYLKC53nJahY7vjheonR6cMT1IEtG0Cg0G2Wnk5CB4NG6EEXtJis0SqRCwStYhUYocQB5UqERphWug4e0xZk/QsFJuykAiGWh4JUCcYWGG5ZTMhUa/nJ2YDAYDAaDEXwEpELjyhWbL/TkyZMDsbmAcOrUKcffzZo1k53Xefrp06fdzupQui2NRoNGjRrh2LFjOH36tFvbAIBr167JTr9+/brb62QwGJWXM7kZ+ODoFhSajXi2eQ/cU1NZhtC6q6fw04VDuCuuJqa2SkKR2Yh3D/2NY9nXwYPHiewbgvnl7HfIjpD0ojz0/es71NLXR4OQjgA4hGo49Kkbig7VxR3qh24asOVqMYpMvCjYN5BoCWGmyFI6ErHEWogTBbuwLz8bG26pRBkaj+7QQE+IGtcKcxVtVy5Dw5nrxot47eBS9KxZDW/e1QcRTuKExcpj9YUinMo0CsSFjdeE95Sjt4Dpe0ttasK0HPrWDUW7eOHvwvM8Nl8pQfJNA6w8j1ZVdBjaMAy3i634/VwhbhG/E5lfAAC3ii2CbQE2QahJjBYPNg6HllLV4k/qhcciRK1xjC4HgIe2/Uidt6yrMwBgV0YqkjaIPaHdQc2pcHf1BnirTR9o7nRc5xlL8N7hv3EkKx1XCnOoy5VYzNRtN42Kx7R2/VAzLEo07UZRHqYd2Yh/czNctis+JAImqxW5xmJYwcPK89h5MxUA0CW2E/rF94WaU+Hf/DM4kXcKNUNqoltcZ0l7NrLTtka4GhzHQUOcW7uuZ2LLhvWoE6nBtLb9UCciBusv5eJYwXYUWfLQOKwjqmhrCpbZeLkYKTfEooFepYfBWmrpdjrLdrzHhagwrGE46ka5//iv4lSI1YcKRAryWkwycNP3CFN4vGaWCL9HNb0yb2oyQ+ODY1uw8HwysozC9S09Y8LOy/I2WPWiNBjaMAxrLxYhNdd1B2vtSA1GNglHpE6FM1kmrL9UhDxKJz2NfDmlSgGkUJ1ZYsH2tBKJuemQllMA8OH+HGhU4s+LJQSTJafyEaH1bHwcKZ5oVEAEpU00y6mvD+cJ7BTD79wv2sYHh3VGRpGFej8CgGi9CkMahKFRTNlfy+1suVKMAzcMMDr9JmoV0LKKDsMahlGfBS7lmbDmQhGyS+jHctVQNe5vFIaEiNJzlOd57Eoz4Ngt4X5Zd/W04nvKqZyb1M8tvBVGq0UkljAYDAaDwaiYBOSOHxERAYPB4FVeRbDh3Plfu3Zt2Xnr1Knj+Pvq1asebys8PBwxMTEut3Xs2DHcunULBoPBLU8853YyGAyGN1h5KwZu/B6pBVkAgLVXT+HSQ29ROxudOZVzA0M2LwAA/JZ6BGpOhUOZaViaekRyGbkOM9JyCgC2XD8H4BzaR/BoFNYOAHAow4jPesehltOLd1qBGbMO5kpbaijs8/ZF17iO4lFrtwbZl7sWGabLAIArxaLZcOu2+DOlKLWcAoCdt45j5y2bJdgXXYY5Pl9zsQjLzortZC4VXRb8O7dEi1NZwpGXhzKM+KJ3HGqEl/4u+24Y8P2J0uqF47dN0Ko4/HO1WCTmSGGyQrQtADiZaYKZBx5rHtigP7VKhWbR8TiSle747KjT386UdX4GYBuZv/3GRa/X88/181BxHN5pey8AYNLelfj54iHZZXjw1G1vv3ERZ/IysG3gJNG0R7b/jG03Lnjd3v3ZySgyhqKGLhGbsn8HAJzIP4VbxUCTsA6K1lEz3HYuk520u3NXItt8E7gBpNy+it/ufg4vHViLC8VHAADXDGcxtOqz0KlKn+tuF1txvVCYRQMAYaoYGKylnX75xtLj/XimCXP/UwVqSqe1K2J1QkFDaqS0neTb7j/z2lESCA6IBb5zebdxLk980buap0JOkXx7T2WZsOES5SIqM//tYguebRuFDw5kwxBAzZvM0DBbbceDO5DB4gBwNkf5SHkAuJJvAeCbLx6jV1Gr91UcBxUnrLa7QBGcDmUY8TlxvygrPk7Okb0fHbllxLd9qlIrKANN8g0D5h2nVwQev22CTsVhcAOh5ZzZyuOD/TnIM8pVRJhwJtuI/yWVujIczzRh9tE8XCceCTJKCpBxo8CbrwEAKDIbmaDBYDAYDEYlISB3/NatW2Pbtm24fPky2rZtG4hN+p38/NIHv4gI+Y6P8PDSl7KCAvcf1uzbcrUd2rZYyA+DwSgLUvOzHGIGYPN435txGQ8ktpZd7p1Dfwv+/VrKOmrnuTNV9dIdX7EU33c7t0xX0Qg2QYMHcOimUSBonM02yfqDk/7jdsh8CrUP/OtpgdmF1lxEqGNwy+R5p6ErYnSh1M/rhcdKLvPlqZ0CQeNfinBAt4UQf2blgTPZJkEH1elM8fr23TAoFjNccTqrbHy4W8fWFAgaUijt6PUENacKSOC3MztulooTO296J5LsvJkKK28VVEvwPC/YhrecLUrBTaNQjDtSsEWxoGG/xkQ6jWovsuTZxIw7HMu+jm1pNx1iBgBYYcH54kNoEd5NsD4rxewtSlNVsD69qvQ8zjVYcb3QgtqR7r8C1AqLxoX8TLeX84Q64TGK5pO7/jujV/nnvDmdZcKFXLNfxAwVB0EVgjMxFGsmkjBKtYNw/Rxi9Cqq9VNZUC1U2mIsQsu56Dy32V+dyzaXuaCRb7S6vB8Vm3mk5pnQPE46AyxQuLrnncoyigSN9AKLy98DAG4WWZFtsCIuxPbbfn3YVh2q56Sfzbyh2GKC9NMJg8FgBC9paWnIzpavJKURHh7utgMMg1FRCEiGxtNPPw2e5/Hjj3T7hPJISUlpWbdOJ/8w6iwqFBcrH/lFbsvVdrzd1tWrV2X/O3DggHsNZzAYlRaad7qZd93jczgzTfRZnlHaRqNeRCwG1Ja24msZWx3d4xOp0yy8cIRnap6JmC7dTr0a6FmL7smeaxRee30Rdk3r3EuMNsDKW8G7nV6hjEaRVZFUoyF1WqvYGrLLOnv6mxWmxlbV1qJ+TuZdGCnry/Vhb2JZhc0+3bQrdAoyA55u2s3lPJ7yXfcHRZ+FqDVY9Z8xqBkqX13lKc5ZGd5m3Fh5XhSmbuGtPs3dMPBFyDHTLU9cEaHl0OvOdeOuajpH5o2ZF4t0BZSA21BdvsiSh3b+NwxpAw1ne2bUcDrU1bcQTPc09+Dppl0lp0VpQ/B+u/6inA1P0HAqjG/SRdG8Tzbu7DL0vK6+haCyxZdYeQhsejyleZy48qpnQojkCP74MDXaVJN+L9CqgLsl7lHO9K0bPNki99ajC+gA0Leu9DRnzEGQoaD0eCg2lX1bAdfB7rTpJjfS4C1Olyi7CJKgb4QQP4iMQfDzMxgMhke89dZbaN26tdv/jR07tqybzmCUGQEZwjJy5Ej8+eef+OWXXzBz5ky8/vrrgdisXwkJKX0BMBrlR7YYDKV2AKGhyh7IadtytR1vt+XKOovBYDCUkm0UC6pKQjxpdhOkrck7bfqiemgkYnSh6F+rKeL00iP9VJwKG/s9hb/TzuLl5DW4VFA68sVK2GSQnulkc6uHqTC4fhg0Kg6tqupQPYze+ZxDCDBSVQ7uwHEc6oTH4KpTrkDP2hYkhkbid2FRC95tcy+MFtt9o9Ydv347t0sKMe3IRtH6VRyHVf8Z41h/rC4UA2o3Q5SEGMNxHNrG1cKRLLEABQDXCnNQP7IKAHHdRZcaejSLU2P5NuHno5pURZ3wCPx1qRjphaW/jYnQKiyUPm9ypKiaA0a3EFY16u6MdCY7my7kmrH9WulvVlb9IT2q18ex4S9j+42LAkHoTO4tXC3MQVKNhuhcrQ66SQh0vmBcky5oE5eAq4U5aBOXgCOZ6WhbJQENIqugW3w9bEw7izyTez79JLtupuI3Jws5uYqQyc26o01cAjpXq4vU/CykFQmzXzJKCvD+kU2Cz6zg4Xxmmq3i9b/X9l5UCyk9Pniex3P7Vyv+DqEaFYyEBvFkS/kqWp2aw11VdahyZxR6pE6FD3vGYca+bJzMFl/3eMp+aV1Vh1kd43DslhEGC4+V54twvUg838RWdTHO+gJO5V5B48gEbLioFRzXngbnjmrYHs2i47H/9hWBSBSq1qJvQmPUjYjFfXVaYN+tyx6HNms4FXrVqI8WMfKiqZ17azXBseEvY8eNiw5BrNBkxW9nbJ424epo1NDVx6PNwqnVDumFFvwlYzN1b91Q1IksPaIyiixYmyqc30RcU2L0KjzQSNkIdI4DGkRr0ShGi4u5JpzPMYHnbYLFXVXlBzJN7RCNo7eMyCoRXiQ1Kg4tqmhRU0GlwojG4WhRRYdr+cqtpowWQOd9zrwDjgMaxWjRIFraTm9kk3C0rKJDWoGwnX9eLMItN622/A1Nz3iieQT+vFiEbKdqmGIfCGFlBdl0jcr2Hc1WYMlpoRsB7VuGqSNxb+xo3DRewhMtPRMb9WoNntq9nNhW+d2njPLPtGnTMG3atLJuhsf3eAaDwShv+FTQ2LFjh+S0J598EqmpqXjrrbewcuVKjBo1Cs2aNUNYmOsH/rvvvtuXzfQJkZGlFiiubKQKC0uNQpXYRkltS4ldlbfbYjAYDF+QbaAJGq47HZSM7R3fpAvqRig3FQjX6vFAYmukFeXieadOS7JC43qhBSVmK0I09NG+sXo1+ie6vmdlE2G0vhA0AKB+RJxA0LhZkof76opv42Mbd0JiZBx1Han5mVRBI0YXiqF1W7rVnkiKDVbpdrJKBQ3ivapFFS361BV3YPSqHYqm0WE4essoEDTIigxaRykZWBuh5RT9VgCwO61EKGiU4Ytg0+h4NI2OL7PtA0DHqnXQsaotU6vBnd8QsOWmPN5Ima2SHDqVmhA0Svc3ueuH1W2Fe2s1AQC0iUsQretC3m2xoEGsxESpDBvbuBPqRZSeI+4KGiEaNXIJQUPp8eZMlE6Fu2uH4iTFYUDqKIwLUSOpju2asulKMdKLxHP2qxdxR4y0ZddtvJQhqDzypvu3fdXaaF9VegBM2yq10LYKvdrKXzSPqY7mMaU5fbeLLTh4VWiN1bduKMIo4dUnbhtlBY0O1XVo5xQ0fS7bJBI0yGtUjF7l0fHQIFq+U59Ep+bQqYZ3lSccx6FlFR1aVil76yM5OM42kKAVIfLsSCsRCBpuFA74DVpV4oDEUOy5XiIQNEokgtbLA+R1Vq+y3XMNFl4kaEgRqo5AYmgrTG7u2T0vz1giFjTK7y5lMBiVnEWLFmHRokVl3QwGo1zhU0EjKSmJOrqW5ODBgzh48KCidXIcB7PZvYC6QOBczeAcEE7DOQjck+Dt2rVrY//+/SgsLEROTo5sMLh9W9WqVWP5GQwGo8wgO/UBwEIZKU2ixK4kUuv5aD5nSO95HsClPDOa3fG0Fo30U6C28DzvlwoNAKgVHi34d3pRnmAkvx2tjG2RVMi3J0HTcjYvzvkpZP8CB7pooLqzg3XEKGpy9LMSS6hQCVGKBrlLgqFDrCJDZsp4k9lBO57JjjZahYaGE54jSp5dnVG7Ob8cUtnctOOQvCZx4KgZGmT7yE1U9E4/2r7zIANdMeQ1SRcQQ18GoGwQRKCh3aNUnDiEvTwLGmSFhurOMU/7PeS+ZaSLnBc5aJdhVqHBYDAYDEblweeP3DzP+/y/YKRFi1I/4n///Vd2XufpzZs399u2zGYzLly44PF2GAwGw1d4bjnlet3hGs9GkpL5BFZeLJY7206RzVXy2l1sMYlEhhgfZGgAQAKRYSAtaEjf2lUSt/0QtfvjG+QEDWdrL3I/qjiOmmlg71TWEj2PRqJzSMlx5CoMV7hd4b+D86mj4kB2tvta0CDXR8vl0FDOEXeyH0hRxhtUd7ZOQnv+JT/jOLo1lYa41pGd+RX9GKddX6TEXFcoWYq0sdP4Uz1hCCDFyGAQpMkcD43K1s4QQqwPFsspT1ohEjRkzi/7dYt2XkZ6of7RrtlM0GAwGAwGo/Lg0wqNrVu3+nJ1QU39+vWRkJCA9PR0bN++XXZeuxVXrVq1kJiY6Pa2evbs6fh7+/bt6NqVHsqYkpLisJzq0aOH29thMBgMX+G55ZR8R5BOpYbOg853gFKhQbGiSc2TrghU0kWVQxFyfFWhkRAmFDTSinJhoow+96RCwyNBQ0Y4Sc0vrdAgW8hx9A4Ue9u0RPPJ8FFlFRpuCBrEv4N0HEWFQU0cN94EdtMEOmUVGuLlVBynOPfBl93VKo6+PquCjjkO9A488vtxd+Z0rLuCH+PuVGj4otiGvEaRVWYM/xGMe5q8R2nuHGSknWV5rtCwEse8/ZCX+z2KKCHoUV4JGmLY/ZvBYDAYjMqDTwWN3r17+3J1QQ3HcRg2bBjmzp2Lf//9F/v27aMKDfv27XNUVQwbNsxtWwPAZuUVHR2N3NxcLF68GK+++ip1Pc6ee/fff7/b22EwGAxfQavQoI2UJnF1iYzw0G4KAPQq4S3PAoqg4Vyh4cE2aIJGtI8qNGqFiS2nzBRRRk7QkNq/oRr3LafUnPR2BJZT5KhyAFbKsWBvmo6s0CCGgiqq0PBG0FC8JMMTVMQeF2RokJZKLn5Gjy2nqBUayjFQKqM8RcVxVFGC5sNPtW+jWE6R+0Vsq1axj3K3BA1XK1NwYJiIn4AS1cHwE8F4bJPnrl3HqMiWUw5Bg2oDZSOPLLcEEKnzrSTFKjQYDAaDwag8sEduL3jxxRehVts6dJ577jkUFws7soqLi/Hcc88BADQaDV588UXqesaMGQOO48BxHLZt2yaartPp8PzzzwMATp8+jU8//VQ0z969e/HDDz8AsAlLnTp18vRrMRgMhtdkGzzL0HBFhId2UwCgV5OWU+JOyWsFZkcHuif9IjkGYX5GhEYvsn/xFKUVGnJWUGRnsp0QTzI0ZCo0LslkaKhcVGiIMjTIUHAfZ2iQnb8VffR6WeP3DA3i6KKJflIVGkopsZhcz6QQ2/lAETQo7SbhOLE4qOZUokEv5Let6Ic4XdDwn+UUeY3SsgqNgBGMe5rUKewWZCLLKSXlhkEKeY7JW07Z/p9LETS8sWejDe6r6Nc2BoPBYDAYpfi0QqM8sWvXLpw/f97x79u3bzv+Pn/+vKDaAbCJDiRNmjTBK6+8gpkzZyIlJQU9evTAa6+9hoYNG+LChQv4+OOPcfjwYQDAK6+8gsaNG3vc3ldeeQVLly7F2bNn8eqrr+L8+fP473//i9DQUGzduhUffvghzGYzQkND8eWXX3q8HQaDwfAFHmdouOie8KZCQ6ciQ8HFHYZWHriSb0ajGHEHv5L+MLJCw1f5GYBY0Cg0G5FpKBTNFyjLKbmsjvSiPJSYTQjRaKlZJNQMDdgzNISfG4mfScmgVq8yNIJghG9FRk10YHkjaNDCuZVVaIjPEXcqaIvNvhU0aJgpVSC0aidSDKHle4iPcbeaWO4gjwFvIi2UZKuYiOHqZA4Qw3+QezoYBGmLhB1TCFmhESQZGp5AnmNKLKfyDL4VcKgZGhX94sZgMBgMBsNBpRU0vv/+eyxevJg6bffu3di9e7fgM5qgAQAffPABMjIysGDBAhw+fBj//e9/RfOMGzcO//d//+dVeyMjI7Fu3ToMGjQI586dw7x58zBv3jzBPFFRUfj555/Rtm1br7bFYDAY3uJ5hoY8/q7QAGy2U1RBQ8E2xIKGb/IzACCBsJwCgMtO4duA7QWfzChwRiVRvRHqSYWGjOUUAFwuzEbT6HixTY7EiHRHhgbRGSiu0HDdYeFVhobiJRmeIKrQ8KIHknY8kxULNKs7mhjnThe0UUJs8MRWVKpCw2gV5/nQzyXh96OJlmJbHrebWa4gf3E5fcHlT8Ysp4KaYNSORBkadxoZrJZTnmgA4lBw2//lLad8+32D8KdnMBgMBoMRQNgjt5eoVCr88MMPWLduHYYNG4aEhATodDokJCRg2LBhWL9+Pb7//nuoZDqYlNKoUSMcPnwYH3/8MTp27IiYmBiEhYWhadOmmDJlCo4dO4YhQ4b44FsxGAyGd2QbKZZTCgQNV6+7XmVoEFUIljuCRsNo4eepeSZFbaFBChqxet8JGqEaLWIJgYQUNOSqJgDpDgBfh4IDwKU7bSM7T11VaJCWU+IMDddtc0fQIDvEgqOLqeIiZzklzoiQ/x09ydDgwFGFEE8tieyYPMzVkMrQMFEFDUqFBnFdpdppidZTsRHZ4XixLo8sp4Kxl72SEAwmTmbiGmR3QBRbTpXfM1GUoSFzzNt3By1Dw5s9wCynGAwGg8Go3FTaCo1FixaJbKW8YdCgQRg0aJDf2xIeHo5XX30Vr776qkfbYjAYjEDgqeWUK2/6CI3vQsHtllNNYrW44BQGbg8Gp42GdkWOUZih4csKDcBmO+W8b8WChnzVhLTllCcVGvLdhKn5mQBo+5HegStdoSGcjxaWTBLmRoaGqEKD9Yj4FdImisy8cAdaJgx5nSErNKSEOCXWQnKUWMzQeSAMqjixKAFIVGiQ4iDlXJLOB3EKX6/gx7g7/v6+kB5IQYMUZRn+Q9SPHgTHttIKjfIsaHhkOUUTNLzYBbRtMcspBoPBYDAqD6xCg8FgMBg+xWK1Ipfo2AeUVWgUufCmj9B6bjmlIyyneFjB8zwaxwo786/km22d5pTKAlf403IKAGoRtlOXC4WChquqCV9maLjaVmq+LRic7GBQgV6hURoKLvxcZDmlJEPDHcupSmbHU9aQx6CFknHh6boAWoWGsHJCSojzVtAwUAQIJdj6OpVaTonnsxJj0mmWc6JjPBh6ff2IbzM0XEPm/LihpzK8hhRIyx5SdJfK0DCU4wwNC7GjSy2npKsmcn2docEqNBgMBoPBqNSwR24Gg8Fg+JRck1jMAOjhvCTFAazQAAALzGhM5GWYrcC1AjPlxdh115a/BQ0yGPxyQY7g31oXuRZSgoZnGRrKLKeUZmjYW0ZWaJCWU4oqNNwKBRfOyzpE/IvYcsq5csC9vU8VNCCfoSElxHlrOWWweChowPMMDYuVV1ShUdmqkMQVGv7dHrOcKjuCsUKD1CnsFRqkoFGeKzTEGRoyllN3/p/va8sp6rbK7z5lMBgMBoPhHkzQYDAYDIZPyTaI8zMAZRUaxX6s0CAzNABbgHCMXoX4UOHtMDVXLGgos5wiBY0Qd5spCxkMfqkgS/BvV5ZTUqPQPanQcLWt1AJ7hQbRBk6qQsP2G5B2LZ5UaLiVoUH8m1lW+Be5DA0SV7+iJxkakhUaXvZBl3gqaHActQvOaBVfC8nvZrLy4gwNimAjyomp4Ic4KWjIOUC5qsxRclyQIquOCRplRjBUH5HHg/12FErJ0Civ9xspyymAct2+M2uuzy2nKBUa5XN3MhgMBoPB8AAmaDAYDAbDp9DyMwDXGRpmq0U0mprEm1BwHaUD3gozNCqgfrSwQuFSntlDyyn/ZmjUIio08k0Gwb9dhYJLWk5pPKjQUGg5RQvopXXilFZoCD8n7Vwsvs7QENnxMPwJmaGhROiUgpahIRI0lFZoeGs55bGgYbO/I6FVaJDB4yareFlFFRruN7Nc4VaGhoufXZHlFPHzaeW1XoYPCUbtSCpDg6zQ4CE+dsoLolBwmd/BPmuekXbl8fxqRDt3WYUGg8FgMBiVByZoMBgMBsOnZBukBA35N3dXdlMAEKHxbYUGYIGK41A/WjjNVqHh/otxtlFYneJ7y6lo2ekuQ8Eluuf8YTl121CIApOBuhdpo2ilQ8HJDmrXbXOnQqOy2fGUNWSFBq1aR/G6KOKE6woN+jlC82N3B88rNEA96EwUQYMUOYwWseUU7RpAfreKnhPjywwNJZgs5G8QhL3slYRgOLZFFRp3LlMhFKG9pJzaTsmJhuSllAcPK8/73HKKBhM0GGXJokWLwHEcOI7DpUuXyro5DrZt2+Zo17Zt28q6OQFlzJgx4DgOiYmJZd2UCk+wHf9JSUngOA5JSUll3RSGH2GCBoPBYDB8Ctmpb8eVoOEqEBzwrkKDlqHBcbY21Y8STruUZ/aoYyTHENgKDRKXgoYvQ8FdCBqAzRKL7KtVcRxVNLDbR5CWU2SGBhlGSsOdDI3KZsdT1ohCwZ0zNNzsjKJWaIAUwIhQcIkKDW+7oL2r0FAoaFiE38Vs5WH1wHLKGxGpPCD29/fv9liGRtkRjLtaXL1gayRNaC8myznKCWTFrSvLqUIT73OxiVlOMRgMBoNRuWGCBoPBYDB8inSFhvybpqv8DMC7UHCdWtzZr+JsHYSJhOWUwcIjvVDYeajMciqwGRokrkQGqVHoHgkaLsQTwGY7RXbWSmdo3BE0RBUaQosqV8cR4G6FBjF6XfGSDE9wJ0PDFTSBjlyf0gwNr0PBKQKEEmwZGhRBg6dVaFiIf4stp0hLL4BZTsl1erv61ZUcFibScoq9XZUZwVyhoVOJj7dgqNBw1QLaLVeUUyNzzPMA8iS8tbzK0KCcnKxCg8EoG6ZNm+YYnc9g+AtWccMgcb8HQ4YGDRr4cnUAbA8rFy5c8Pl6GQwGg+EfpDI0yI5FEkWWU16Egqs4FTScSuCpbxc0YvQqxIWokFVSOi01V9geV8/oPM9TBA3fVmhUD42AiuMkR1gH0nLKVV4HAFwqyAbPVxd8xoHe6WDfv6T/PA/biFe7RuFqQKtezbnVOS2yx2D9IX7FnQwNVy/GtOni4Gzh+qXOEVfh0K4oUXD9omHrbBcfdLQMDVLQMFl5cYYG1XJK+O+KfoyLLaf8m6FBVmiQVWYM/+HteesPpDI0OI5DiIZDsZOIUUKWc5QTxFVQhOWU03QeQK5BQtDwcbsq+rWNEdyMGTMGY8aMKetmMBgMoNLZq1VWfCpoKPVKs7+AkqGgtM+ZystgMBjli2yDZ5ZT/q7QAACtSgOzxVj6AVfaQZgYpUFWSem0K/lEGrULisxGUQBxjN63goZGpUb1kEhcL86jTvc4FNyTDA0FgkZqQZaow0IlVaEBeoYGYLOd0qhsQo6r/oowN6oz7O1xho3w9C/iCg3v9jcp8IlDwRVaTnlboWFx73phR9pySnw9JEUOs1X8LK0kFLyiVyGR38/fbxIsQ6PsIE/boKjQIM9Jp1MylBA0ioOgQsMTrMSOlrWcAqj5Gb6Ag7DCjd2/GQwGg8GoPPhU0Bg9erTs9CNHjuDo0aPgeR4xMTFo164dqle3jdy8efMmjhw5guzsbHAchzZt2qBNmza+bB6DwWAwAoBUhYZPQsG9qNAAbKOzi536HTmnrq/60RocyjBSlrLPK0+OsUT0ma8rNAAgISxKRtCQr9DwqeWURLiyM6n5WahJtgFSFRr0DA3AZq0TBtfVGYB7dlP29jgTDB1iFRkyyNv5uuCJtqECJ8jNcB0KLmE55WW3t8cZGuBEogQgUaFBEU2sCiynSCGzoo9idsdyyhVKKgDIvlpK9jPDT9BMh8oaMudJ43T+hRD3t2CwnPIEd3JqeB7I9YPlFGATtJzXUT73JoPBYDAYDE/w6SP3woULJf/r1asXTp06hdq1a2Pp0qXIyMjAli1b8Msvv+CXX37Bli1bkJGRgaVLl6JOnTo4deoUevbsiYULF/qyiQwGg8HwM9KChvyrpqJQcC8rNESd8JyToBElX6XgagA3aTcFAFFehJhLkSATDO5K0ADoHXShGv9UaFyiVGhIZmjYQ8Epq7WPgFYymt+dQHB7e5xhHSL+hexw9zagmuysF1douA7NBpRlJcjhjeWU4lBwq1jQUGI5VdmC78WChozllIt1KTkuyMwEZjkVOILRTk0qQwMAQgjBvUJaThHz2jI06N/T229PPs/QxGEGI1AsWrTIkSNBcy45ePAgxo0bhyZNmiA8PBwhISGoU6cOOnTogMmTJ2PNmjWyx/Cff/6JESNGoHbt2tDr9ahSpQq6deuGmTNnoqCgwKu279u3D2+//TaSkpJQo0YN6HQ6REVFoUWLFpg4cSJOnTol+52nT5/u+My+D5z/o+0Pi8WCxYsXY8iQIUhISHB8p549e+Lzzz9HcTH9fdKZ06dPY8yYMahTp45jf44aNQrJycke7wtXbNu2zfG9tm3bBqvVivnz56N79+6Ii4tDeHg42rRpg48++gglJeLBbiQFBQWYOXMmunXrhri4OOj1etSuXRsjRozA2rVrZZdNSkoCx3FISkoCAJw5cwYTJkxA/fr1ERISgpo1a2LkyJHYt2+f4u8jh32+adOmufxeJFarFf/88w+mTp2KHj16oGrVqtBqtYiJiUHbtm0xdepUXLlyhbqsPaNl8eLFAIDLly9TjzNnyH0jxa5du/D4448jMTERISEhjoH3b7/9Nm7duiW5HG2/LVu2DH369EG1atUQGhqKpk2b4tVXX0VWVpbyHcVwC59WaEiRkpKCZ555BtWqVcO+ffuQkJBAnU+tVuOhhx5Cz5490aFDB0yaNAlt2rRBx44dA9FMBoPBYPgA6VDwYKjQEN72OK6007B+tHe3RFLQiNTqFQVnu0stmWBwJSKDiuNEwoBnFRrKLKe6hAs/s1lE0NsF0O1a7B715MhXGm5bThH/Zv0h/oXWuWzlrVApsEqiYbOwKu3otxJHV8AqNChigxKkMjTMCkLBAU8tpyr2QS7O0PDn1nhKKDgTNAJFMAbek0UXGqfjgawgDAbLKU/ueeQ5JrCcohz+eRIZGt4SjL8/g0Hjiy++wNSpU2ElnkmuXbuGa9eu4dChQ5gzZw7y8/MREREhmKekpASjRo3CqlWrBJ9nZWVh37592LdvH77++musW7cObdu2dbttixYtwtixY0Wfm0wmnD59GqdPn8b8+fPx1VdfYdKkSW6vn8aVK1cwdOhQHD16VPB5VlYWdu/ejd27d2Pu3LlYt24dmjRpQl3HsmXL8MQTT8BgMDg+u3btGn799VcsX74c3377rU/aKofRaMTgwYPx119/CT4/duwYjh07hp9++glbtmxBjRo1qMsfPnwYQ4YMQXp6uuDztLQ0rFixAitWrMADDzyAn3/+GSEhIbJt2bBhAx566CEUFhY6Prtx4waWL1+OFStW4LPPPsOLL77o2Rf1Ae+//75A+LKTm5uLo0eP4ujRo5g7dy5++ukn3H///X5vj9VqxfPPP49vvvlG8LnBYMCRI0dw5MgRzJ49G8uXL8e9997rcl2PP/44fvrpJ8HnZ8+exaxZs7Bq1Srs3LlT8jhgeE5AiqK/+OILWCwWvPnmm5JihjM1a9bEm2++CZPJhM8//zwALWQwGAyGr8g2SmRouAoFV1Kh4WXFg9gmqbRNVUJUiNR5PpLX34HgdmQrNBTYQNE6lD3L0HC9rVxjCYqtwtFJUhUa9pE1ahUHcoCz8c5wUCV9P6Fu+r2QI3qY5ZR/ITM0gNLKG0/8z92v0JAIBfc6Q8NDyyl3KjQo21BiORWMo9j9CXkOyxVMeFuZQ4oZAKBlllMBIxiPbVGFhlMbg1HQ8ASyQkN4jokt7vL8laHBsjYZ5YBjx445xIz69evjs88+w5YtW3D48GHs2LED8+fPx6hRoxAeHk5dfvTo0Q4xo02bNliyZAmSk5Px999/Y+zYseA4Dunp6ejTpw/S0tLcbp/ZbEZsbCzGjBmDBQsWYOfOnTh06BDWrl2L999/H1WrVoXFYsGzzz6Lf/75R7Ds8OHDcfz4cUycONHx2fHjx0X/1apVyzE9MzMTPXv2xNGjR6HX6/Hss89i+fLlSE5OxtatW/HGG28gLCwM58+fx8CBA5Gbmytqc3JyMh599FEYDAbo9Xq8/vrr2LFjB/bv34+vvvoKVatWxcSJE3HkyBG394c7vP322/jrr7/Qr18/rFq1CikpKVi1apWjA/zUqVO47777YKFYhqalpaFPnz5IT08Hx3EYO3Ys/v77b6SkpGDJkiUO+/2VK1e6DJtPT0/HqFGjoNFo8OGHH2LPnj3Ys2cPPvjgA0RFRcFqtWLKlClYvXq1r3eBYsxmM2rWrIlJkybhxx9/xO7du3Hw4EGsXr0ar776KiIiIlBUVIRRo0bh9OnTgmUnTZqE48ePY9iwYQCAhIQE6nHmDq+//rpDzKhfvz6+/fZbHDhwAFu3bsWUKVOg1WqRm5uLIUOGiIQ3knfeeQc//fQThg8fjpUrV+LgwYNYv349Bg8eDAA4f/48pkyZ4lb7GMoISIXGzp07AQBdunRRvEzXrl0B2EqAGAwGg1F+kK7QkH9xV1Sh4YNQcGd4pwoNjuNQP0qLY7elcjTkX5zJDI0yETQUWU6JCfVA0HAVQG4n35QDLeIF26d14DqPkNeqOFicekzsfSEWBWqDuxUazHIqsFAFDatV0bFLw6WgQVQ1SFVoeNst5rnlFEcXNJRWaHhiOeVmG8sbvs3QcG9bAKvQCCTBOEKfzHpSOx0P+gqSoSFn60a3nJLI0PCyHaJtBYOiVc7geSt4Kz2XrSLCqaLAKagw9iW///47rFYrwsPDsXfvXkeGrJ1evXph/PjxyM3NRVhYmGDaunXrsGzZMgBAnz59sH79euh0pdXq/fr1Q7du3TBhwgRkZWXhpZdewtKlS91q38CBAzFq1CjRttu1a4fBgwfj+eefx913341jx47hvffew3/+8x/HPDExMYiJiUF8fOlzfqtWrWS39/zzz+Pq1auoV68etm7divr16wumJyUl4aGHHkKvXr1w8eJFfPLJJ/jggw8E80yaNAlmsxlarRYbN27E3Xff7ZjWuXNnPPDAA+jatavLjmhvSU5OxoQJE/Ddd985PuvQoQOGDx+O8ePH44cffkBKSgq+++47UXXLiy++iOzsbADA/PnzMW7cOME6Ro4ciYEDB2Lr1q1YunQpRo8ejYEDB1Lbce7cOURHR2Pv3r1o3ry54/Nu3bph2LBh6N69O/Ly8vDss89i8ODB0Grdf+/zlvHjx+O9994Tbbt9+/YYNmwYnnvuOXTt2hVpaWn48MMP8eOPPzrmiY+PR3x8PGJiYgAAWq3W5XEmx/Hjx/HZZ58BsB2vO3fudKwbsB2D/fr1w+DBg2E0GjFhwgTs379fcn179uzB//3f/+Gtt94SfD5gwAAMGDAAGzduxO+//46vvvoK1apV87jdDDEBETTs3mPO5WCusM8r51vGYDAYjOBDKkODHClN4krQUHGcR9ZIzqhlKjQAm+2UlKDhboZGjE6+NNhT5CynlIgMtN/Bk/2qpBoEAPIsOaiiLn3RUUlWaDitWw2UOPXdOiynFPRVuJuhQdtjPM+zkZ9+glZB4MqOTg5S0CDXpTRDQy5nQQkGyug7JbhToWGiWk65ttSqbMH37mRouMKTRbUsQyNgBKOgQQ7ecC4aJCs0ym+GBmE55fQdaedMroTllK/1h/K5N8sW3pqH/BsPlnUzAkZkjRXg1DEB3eaNGzcAAE2aNBGJGc5ER4uf7+0jyLVaLRYuXCgQM+w89dRTWLZsGTZv3oyVK1fi+vXrqFmzpuL2OVdPSLXr/fffx/Dhw7Fr1y5kZmaiSpUqitfvzKVLlxyCy+zZs0Vihp127dph8uTJ+OSTT7Bo0SKBoJGcnIyUlBQAwNNPPy0QM5y/02effYaHH37Yo3YqpXr16vjiiy+o07788kusWbMGt27dwpw5cwSCRnp6uqPqZsCAAQIxw45er8eCBQvQuHFjmM1mzJ49W1LQAGxVAs5ihp2WLVvirbfewmuvvYa0tDT88ccfGDFihLtf1WsSExNlp9euXRuvvPIKXnzxRUeejL/exebOneuwf/v+++8FYoadAQMG4Mknn8T333+PAwcOIDk5GZ06daKur0OHDnjzzTdFn3Mch5deegkbN26E2WzG3r17MXToUJ9+l8pOQORpuwq1YcMGxcusX78eAFC1alW/tInBYDAYvsfKW5FrpAegueq0LDJLVUbYiNDovX6wIS2neAg7CL3J0QgKyykFo9xpYoJnllPKHiHyTMJScU6iA9c53FNHjHB2WE4p6IklO4xcQTukWKeI/6BVaEhlOig538nsC3GFhrIMDTJc1l0MFAFCCSoO1F49s+JQcLJjkWY5Vbls1dzJ0PDHq7KOWU4FDPLYDoYB+mSFhsapjaQlYnm1nCIdROU0PJ4H8iUtp7z7/qLfn929GUGIXVw4deoUDhw4oHg5s9mM7du3A7BVYtSpU0dy3qeeesqxjKtgZ1cUFhbi0qVLOHnyJE6cOIETJ04IRtV7U/Wwbt06WCwWhIWFyXbOA3AIFenp6YKw6M2bNzv+pmV/2Ln//vupHdW+ZOTIkaLKFjsREREYOXIkAODkyZMOYQuwBUrbbahoYoadxMREh32V8zIkHMdh9OjRkuuxW5MBwv1XluTl5SE1NVVwnNn3pX2av7Dvg5YtW8q6CNnPK+dlaIwaNUrynaVDhw6Ovy9evOhuUxkuCEiFxn/+8x8sWbIEn3/+OQYOHIgePXrIzr9nzx588cUX4DgOffr0CUQTGQxGkHIl34wd10pQM1yNe+qEKB5peavIgo2Xi5FVYkFChAaD64cixE1v/fKKxWrFvLP7kJqfhQitDqn5WTC5yK8g0ahUSKrREKMbdXTZqXgmNwPzzuzDzeICmHmr5AulVIZGtqEI/zu1E9OPbJLdjtJA8PQCMzZfKaaOCCwyCY+BA1mH8dj20gfMYrMVKblCYYXjOFTV1kInvrPsdtdeFfp9+k/QkKvQ8My2J1TjgaChsGT/TOEx3DTcdPz7tYM6WCGu2HQ+znRE78gfF4qwK60ERQo6f9zO0KB8ZrECUruS53nsTCvBlXwLuifo0SA68GXb5RmaoDFu1zLoVBrkm5RX8toh7wnvH92E6mciHf8+lXNTMF1KiPNWLF1x6RhS87Oo00LUGgyt2xJD67YUTZOq0Mgy5Yg+KzKb8Nj2Xxz/3pdbglyLsJJZnBNECb4Hj3+zjNiVZkAx2fsqQZVQNQYkhiIupHT9zvdZKWpHajC4fpjonPYFWSUW/HWpGJFaFQbWD4VGxaHAZMXys4WC+QItaDDLqcBB7umDGQbcLLJg/w3btaRHgl40j1bFoV28Dl1quq6ivJZvxparxcg3WlEvUou6UWocuGFAqEaFfvVCER8mPt9S84RipPMtibScOpVpxNeHS0V/FcehRRUtkmqH+GVk6u60Ehy9bRTYN17IlRdjL+WZBW0EgLPZwopaOcup388VIM9Iv3fL3dH3Xy/B4Qyjo0KTBvlYySynGMHII488go8++ggGgwE9evTAgAEDMHjwYPTs2RMtW7aUPNcvXryIoiJbLqEr63bn6SdOnHC7jbdv38bnn3+OFStW4Ny5c7Ln0u3bt91evx17ZUVRURE0GuVdkTdu3EDdunUBwJGVoNPpHDkTNLRaLdq1a4etW7d63F5XSI3Yt9O5c2dHlc3x48cdodDOv5GS33bDhg0oKirCxYsX0bhxY9E89evXlx0IXq1aNSQmJiI1NdXtrAlfcvnyZXz66af4888/cfnyZdl5b9++jQYNGvi8DQaDAefOnQPget+3a9cOWq0WJpNJ9rxq1qyZ5LS4uDjH3/n5+W62luGKgAgar7/+OpYuXQqDwYA+ffrgmWeewZgxY9CmTRvHBZzneRw9ehSLFy/G3LlzYTQaHQE/DAajcpJrsOLNXVmO0M0CkxXDGtID05yx8jze35eNjGL7m44Bl/PMeKmDdEdwRWLakY34v6Pej75YfD4FJRYTnmnWXXKeYrMJd6+fg4ySApfrk8rQGLntR2xOP+dyeSX5GUYLj2l7s5Er8fJssgq79q4WX8fPF6+7XO/lkpOoccuMqRhEnX4q5wb23RI+mPlL0KiiD4NOpaaO1lZaNUHiieWU4goNSybyLJmOf1+5Jp6H7JQmQ3VPZynPJ3A3Q4PW97jsbCEebR5BnX/TlWL8cMJ2vK9PLcL/kqqgGqVTi0GHJkovv3TMZ+tzdS2hdfgD8Los53RuBk7nZkhO/+HcAazrOw6D6gjtAKQyNGjw4PHzxUOy89DOS3KXX8u3YPGpAtFIclck3zDg895x4DgOVp7HjP3ZuFnkaiUGpBdYMLmtdGWZJ1isPN7enY3MEtv20wrNeOauKHxxMBf5JuUVGq4UDXe7lFUcvUqG4R/IYzutwIK0gtJ74+50uki69VoJXu7AoXMN6eeKErMV0/ZmO46nnYQQv+96Cb66p4rgGlRosooGU2icjgeygjCzxIpdRBt3pJWgxMxjYH36qF9P2ZlWgtlH3M9KyDaI20jirNOQR/+x29L3b6k+0/3XS/D5IddtJbUOJmcwgpFmzZrh119/xVNPPYXs7GysXbsWa9euBWBzIxkwYAAmTJiAXr16CZbLyiodJOGcUUHD3lFOLqeEgwcPon///sjMzHQ9M4DiYrq1sBIyMqSfk+SwCztA6feLi4uDWi3//C1n8eULXP0uztt3/l18/du6Woe9LampqW4fH75iw4YNGDFihOC3lMOb40wOe24J4Hq/abVaVKlSBTdu3JDdb1JVOgCgcnoul6qwYXhOQASNZs2aYfHixXjsscdgNBrx9ddf4+uvv4ZOp0NcnO3FKDMzE0ajbVQsz/PQaDRYuHChrNrFYDAqNutTixxiBgD88m+hIkEjvcDiJGbYOJhhqDS++L4QM+ysv/avrKBxKPOaIjEDoFtOlZhN2JJ+XtHycXrXL/dns02SYgYAaDnPQ8XPFEi3k/Yd4kPoHeLewnEcIrV6ZBrED4RRWtcjTqN1ISJbME8EDSk5g4PyDlo74Rph9U2YVgXAs4e+SDf9XmjXhDUXiyQFDbuYAdgyPZafK8SkNr7trK3IkL+1HGEKrNAitSG4VVLocr7S+enXABXn/0qbDWn/igSNUDUnCvb2hgjK/iWLI47cMrotZgBAeqHt3lo9TI30AosCMcNGyk33K2+UrNMuZgDA1qsleLJlJE5mijtPQ2SqQ8gR866mu5rfXUGV4R1yv60rDmcYZAWN8zlmkTjmzK1iK64VWFA3svT++S9FfHcWMSJ1ytp7KMPoc0HjSIay81CvBgxu3n5DnL6jXsOhUKGVllTxxZFb8hakdjibh6XT+pik4S6cKgqRNVaUdTMCBqcqm+e1Bx98EH379sXSpUvx999/Y+fOnbh16xZu376Nn376CT/99BNGjx6NBQsWCDpA7fjr/dVoNGLkyJHIzMyEVqvFc889h2HDhqFJkyaIjY2FXm+7Rl68eBENGzYE4F0llL1Dt2rVqm5VTtCyNoLhnd4XbQiWdfiT27dvY9SoUSgqKkJERASmTp2K/v37o2HDhoiOjnZkw/zzzz8Oh55AVNwF+35juCYgggZg85erX78+Jk2ahIMHDwKwlftcvy4eGdu+fXvMmTMHnTvL23swGIyKzfkc5aOynaGVp5uttvBFd/31KzslFnkrAlfTnaF1chdbTIo7v0c1aOdynhyJ4Ek7dUKa4arhX0XbI9Gppd/wafkfw+uJ7WV8xZA6LbD4fIro8wfrtXa57JONO+OLkzsc/360QXtoPLCqknoG7BQ5CEcK/oGRVz6yZmSisGS8R4Ke2jHkihi9Ci2ruNcx7e0VgbTeYMgTpQvBoNrNsP6a/HnYOKoq2laRD6oEgIfrt8FHx/5RvP2R9en2BEnxrXA+/4bgs+raeghTRyO1xPMKEmeKzeJjJUqvQs1wDnB/4LQIDhweShR/v3Ci5EnOIsoVhjsdle6EGReZeRgtvE9tp9ILxd/BbKXfTbolSAu9NcLUSIzS4FKe+F5WN1KDhAjhtbF2pBq1I9S4VkDfh91ltsXwPV1q6rHpSrFHuTAGF8ewkmPcRMyTR8mKaFW1VGRsU1WHCC2HAhmhROm23cWkQH9Uc8BTraLww8l8xfkeOhXQoXqpMNStph7rUpXd/6XspJS01YZ8hhLDNRynCnhIdmUlOjoaEyZMwIQJEwAAp0+fxh9//IGvv/4a6enpWLx4Mdq1a4cXXngBgNCq5ubNm9R12nHOZ3BezhX//POPw9d/zpw5GD9+PHU+X43qt4eJ5+fno3nz5i4rLGjExsYCADIzM2GxWGTX4Wq/eYur9TtPd/5dyN9WLh9FyW+r5Hva5yHX4SygWWUsqgsLlQ8eIvn999+Rk5MDAFi1ahX69u1LnS8Q1SP24wdwvd/MZrOjcsmd84oROAImaAA2j7nk5GSkpKRg8+bNOH78uOOgjY2NRevWrdG3b1+XXnQMBqNy4KkPtdTrTIGRR2hAr3qBxyoTvN2zen30jBePcHEmJfOqwLLFVZA3+fIYrtHhueY9AQB/Xj2Jk07+9bT3TJpt0rPNe6B/raa4mJ+J60X5UHEculariyF1Wsi2BYDI6qFaqIroYGqLe3Kj8W/eJVQNA2L19IfgjCIzjmbdwMHss47PtGrpF2XSTisxIhatYmu6bK+nvNf2XpGgoeI49Krh2mt0Vsch6FS1Do5lXUeT6KoY1aC9R22gjWqZ0HAYese3Q0ZJI+zPPIlCc2klSIiGQ+0IjWiEc/OYeDxCiFX96oWhSoga57JNkmPX60RooFUDl3LNsAKI0HLonhByp7rDje/h1twMX7As6XH8cvEwLkpkTtQIjcR/G7RVlAnzf+0HoE1sAo5mp8sGAmtVKvRJaIzeNRpSpz9c726cuh2BLNMNADyq6WMwunF76FVa7LndECWWYtSP1qLIUvpCd9tQiBhdiKSN1T/Xz+HA7auOf0tdT/9TV4fVMs53dfTN0LNGNdSLEot1WSUWZBusqBWhwwP1mlKvAeSocLKzsHqYGl1r0keq/3mxSNBZbL6zk8mOSK0KGHRnRLnFymMt0aGZY7BS8wY8xUzpCKX9/JPaRKKHjMjAcRze6RKDXeklyHKq+IjVq9Czlji3S8VxeK9bLHanlSCbuN/UidCge4LnVYAM92lZRYfp3WJx9JYBJitwIceEE0SVTq9aIYgLUeHfLBPOOAnQrjQDuewGO+QspFBRPUyFGH3pPSkmRI0PesRi33WDIBPqar4ZhzJKB0aQQokvINvaLE6LprGl1xR7tkijGC3qR2uQfNPgUtTQqzl0rK4XVKk81jwCDaO1uJwvFgnPZZtwymmwgmRWOHE2N4rRoGWVUmFod3oJbhdbwRF3cFfPrAxGMNG8eXM0b94cjz76KJo3b47CwkIsW7bMIWg0aNAAYWFhKCoqwv79+2XX5Rw23qpVK8VtOHnypOPvhx9+WHI+e/aFFEpHurdr1w6//PILDAYDUlJSXGYY0GjdujV+++03GI1GHD16FO3b099jzGYzjhw54vb63SE5ORmPP/647HQ7zr+L89/79++XFTTsv21YWJhkpkRqaioyMzMdghHJrVu3cOnSJdG2ASAysjR3ztmOieTs2bOS01xhP87i4uIkxQzAd8eZHHq9Ho0bN8a5c+dcnleHDx+GyWS7Z7lzXjECR5l07XXs2BEdO3Ysi00zGIxyhMbHPtSFJiuqoWJ73cuF6t6b0Bjvtu0nu/w3p3cLBA1Xo93I8bAxulB81NGWMxGnD8WrKesk5wUAI8VL8sMOAxGpwDqJRi7xdtwoRotRzUjroNZ3/pNn6cUj+O/20oc3M0V8cUzjhdPaxbkeWe4NtI7ezlXrKlpWrVLhkQbtRCKCL3i1bXM0jIoAEAFA+uFcCR2q6wWjPqXo6qVuxKqNA0+4Vo+nmnb1ybpUnAoPN2iLh9HWq/VYAdTWN0FtfRMAts6+cS1to7geQw+P1vla8lqBoGGW7GyT7oRrHX43mod3xaSmUehZy7ProisbtrqRasp10sbGy8WCTk3TnUsdKYqEa1WOdfA8j78uFwtsrXJ9LGhYKLuMdrtqU9W1xVmEToUBicrtfaJ0Kp/bATE8p0msFk3udMyvvVgkEjQGJIaiUYwWK84VCgUNF4KFWUEhE7mGQuIZpEG0WISsEa7B8EbCV/A96SVCQcOTkhOXCNfZpqoODzSm27jWjtSgdqRn3QQqjkOPWiHUq+a+6yVCQUOhcNOyik5wjbqYa7ojaAivbUzQYJRH6tSpgyZNmuDw4cOCwG2NRoPevXtjw4YN2LRpE65du4batWtT1/H99987lklKSlK8bbO5VHgsLCwUdG7bsVqtmD9/vux6QkJKn08MBoPDqorkvvvuw6uvvgqe5/Hll1/i119/VdxWO3379sVbb70FAFi8eLGkoLFq1SrZDnpfsHz5cnz88ccIDRXnJtoFKgBo0aIFatYsfWFJSkqCWq2GxWLBggULMGLECOr6r1y5gk2bNgmWocHzPJYsWYIpU6ZQpy9atMhh4UQKComJiY6/U1JS8OCDD1LX4clvZcd+nJWUlMBqtVJt1YqKivDjjz/Krsd+nBkM3lmZ9u3bF+fOncPJkydx4MABSWcg+3llX4YRfHiWHspgMBgBQEu5Z3vjp+iqxL8ikEXJVXAHcjSquxUanOBv1z3FRqt4BJ9O5bnWTlZoOI+MdBcyXNckU4ZLVmh4Gs6tFDVX9rdvWrhzefQiZfm9DEDcQe4LdyS1iuxso9+DDDLWfao757o3dk2RLqqWaOeyHQ2xqL1Cw2whr3mlf3Mch2hCRCHFZm+hDRyn9Y2Wx2sSw7fYTx3yWPZNhYZwHvI5M0JhxSBZkewPQYNcY1mcGjqF39PVo779miWu0Kj4z/mM8sfq1asddjs0rl69in//tdlwklkRkydPBmDLuhg3bpxjtLgzCxYswMaNGwEADzzwgKDj3BWNGzd2/L1o0SLqPG+88QYOHTokux7nbV64cEFyvqZNm+Khhx4CAPz222/4/PPPZdebmpoq6kjv3LmzQ8SYO3cudu3aJVru+vXrmDp1quy6fcGNGzfw8ssvU6e99NJLjhD0iRMnCqYlJCTg/vvvB2ALy168eLFoeaPRiCeffNLxmz/77LOybZkxYwbOnDkj+vz06dP44IMPANh+p2HDhgmmx8bG4q677gIALFy4kGr7tGvXLvzvf/+T3b4c9uOsqKjIIfI4Y7FYMH78eKSnp8uux36cZWRkID8/3+P2TJw40SGqTJgwAXl5Yt/XjRs34ocffgBgO+aYi1BwUmY9IteuXUNKSgp27NjhtwR7BoNRvqFZTikJKpR6nylUbspbbsk2eHc9JTvKXVVokNOdO8bIl2XammiWU1ovxABS0IhyMyBa2A6hoiY9uhowE2KHvwUHdRB00pV9C3xDRfkeDO8g+9V8IWhoiOuAVJUX7TpoR3WnqtCLS5nLIGK1zLo1HL0DUmw5JZwvmhCTyWuzt9A6Lmk2VEFwqWSUMfb7JXnfNLs4JD2znBKuNEKr7AAkB/AYPY+5kYRsa1mcGqQwq7RCg8R+dSEFS1ahwQhGvvzyS9SqVQsjR47Et99+i+3bt+PIkSPYunUrZs2ahR49ejj6w5555hnBsoMHD3YIABs3bkTXrl3x888/4+DBg9i8eTPGjx/vyL2Ii4tzKRCQ9O/fH/Hx8QCAt99+G8888wz+/vtvHDx4EEuXLkXfvn3xySefoEcP+UrV7t27O/6eMmUKduzYgXPnzuH8+fM4f/68oBJk7ty5Duukl19+Gb1798YPP/yAffv24fDhw9i8eTM+++wz3HvvvWjUqBFWrBCH1s+ZMwcajQYmkwn33nsv3nzzTezatQvJycmYPXs2OnTogOvXr6NNG3pumq/o2LEj5s6di4EDB+KPP/7AoUOH8Mcff2DAgAGYN28eAJvNFvm7AsAXX3zhyHN48skn8dRTT2Hz5s04ePAgfv75Z3Tp0gVbtmwBYMsjHjhwoGQ7GjVqBKvViq5du2LmzJnYt28f9u3bh5kzZ6Jbt27Izc0FAHz99deOAG5n7MLZzZs30atXL/z22284fPgwtmzZgpdeegl9+/b1ymFn5MiRjqqdsWPH4vXXX8eWLVuQkpKCxYsXo0uXLvj1118VH2dWqxXPPPMM9u3b5zjGzp8/r7g9rVu3dghRdtuy+fPnIyUlBdu3b8fUqVMxZMgQWCwW6HQ6fPfddx5+c4a/CajlVH5+Pj755BMsWrRIoL4dP34cLVqUeqP/9ttvWLlyJaKjo12WtzEYjIoLOZoOAErMVoRoPLOtKKwMFRpGX1douGc5JTcallZdQ3bkaTiVY0SyJ5CjgMlONXcghRWTTKcj+RJdGSo0aBU45bHvkI3gZgDia51c1YJSyOuA1PWUVqlW2o47goY3FRou1BC5VZMDzO2VLGSFBHm/JqvjfC5oUFZHq9oo+yslI5DQzjC71kYe566eb5SMgRFZThELhSus0CArF2jinK8pkwoNkaBBn8/Vt7eLsMxyilFeKCoqwvLly7F8+XLqdJVKhenTp2P48OGiaUuWLIHZbMaqVatw6NAhPPbYY6J5EhISsG7dOtSq5Z7lbXh4OJYsWYLhw4ejpKQE3333najzNikpCbNnz5bNEGjUqBFGjhyJZcuWYePGjY6KETupqakOa6O4uDjs3r0bI0eOxM6dO7Fjxw7s2LFDct1RUVGiz7p06YIlS5ZgzJgxKCkpwUcffYSPPvrIMV2j0WDOnDnYvXs3jh49qmRXeMQHH3yAzz77DH/99Rf++usv0fRmzZph7dq10GjE3a61a9fGli1bMGTIEKSnp+P7778XWBzZeeCBB6gVHM7UqlULX375JUaOHIk33nhDNF2lUuGTTz6RtJMaP348NmzYgNWrV+PUqVN45JFHBNNbt26NFStWuFX940zt2rUxd+5cjB8/HiUlJfj444/x8ccfC+Z5+OGH8dRTT8laO/3nP/9B165dsW/fPvzyyy/45ZdfBNPdcfKYOXMmCgsLMWfOHFy4cAETJkwQzRMdHY1ly5ahbdu2itfLCCwBe84/d+4c2rdvjw8//BBpaWngeV7ygOvatStWrlyJBQsWUEvIGAxG5YBWoVGsYDSXZCh4JajQkLOcUmIBpSLmkQsZt00nOgGdlie3R63QIKxWdBLeoErxqeUUEfQrJ2gEvkKj7LvpaJ0hSo6xYKPs9yQjGCBvLTRB3V3I85S8TtgxULKE7DgqNPwoaMhbTtE7WskOV/J+TVbH+d5yilVoMMTQqkrtnd/ksUwTxZxRUqFBbk5kOeWiOsoO2TYfny4AgqRCg7gUGRUKN2Rb7c8azHKKUR749ddfMW/ePIwaNQpt27ZFjRo1oNFoEBERgZYtW2LixIk4fPgw3n77beryISEhWLlyJdasWYMHHngACQkJ0Ol0iI2NRZcuXfDRRx/hzJkzHne69u/fHykpKXjssceQkJAArVaLatWqoXfv3pg3bx62bNmC8HB63o4zP/30Ez755BN07twZ0dHR1JwEOzVq1MCOHTuwdu1aPProo44AdPu2u3fvjpdffhnbt2/HggULqOt45JFHcPjwYTz++OOOfWKvhNm1axeeeuopj/aHO+h0Oqxfvx5z5sxB165dERMTg7CwMLRu3Rr/93//h0OHDiEhIUFy+Xbt2uHMmTP46KOP0KVLF8TExECn0yEhIQEPPPAA1qxZgxUrVggySqQYPHgwUlJSMHbsWNSrVw86nQ7x8fF48MEHsWvXLklrLMAmePz+++/45ptv0KlTJ4SHhyM8PBx33XUXPvjgA+zfvx81atTwaB/ZGTt2LHbu3Inhw4ejWrVq0Gq1qFmzJgYMGIClS5fit99+k8wIcW7nxo0b8fbbb6NNmzaIiIjweGCaSqXCN998gx07duDRRx9F3bp1odfrERUVhbZt2+LNN9/EuXPn0K+ffP4oo2wJSIVGSUkJBg8ejAsXLiA8PByTJ0/G3XffjSFDhlDnT0xMxD333IN//vkHa9asQc+ePQPRTAaDEWTQbk/FtCGYCqkMFRreW065W6EhRGg5RQoaris0vMnP4Hle1GnmneWUss5IQGxHRVrN+Bo1Reyj6rTNmQAA/HZJREFU7V9/Uh7FCxredniy/pOKAdmv5pMKDVLQ4KUspxRkaHgR9uJNhQbZ0WofF0CODyDn87flFM0uiNYBXTGuUgyl0ESKUssp4ec0UUww3QPLKbJCQ2mGBnmK+icUXEhZ3MNJYdbK2/Yzef1whX12UYWGzHMag+FvxowZgzFjxog+r1mzJp566imvO9jvu+8+3HfffW4vl5SU5HLkesuWLWUDmRMTE12uQ6vV4pVXXsErr7yiuG2DBw/G4MGDFc9P0qJFCyxZskRy+qJFiySzQXyFWq3GxIkTRTkZSomIiMDrr7+O119/3eu2NG/eXFIAcoVarcakSZMwadIkyXnkjgGp49+Z7t27Y9WqVZLTlRyrkZGRmDFjBmbMmCE737Zt22Sn2+nVqxd69eqlaF5nlLTVjjcZsAx5AiJozJ07F+fPn0d4eDh27typSD0eOHAgtmzZgr179/q/gQwGIyihdViUMEFDFu8tp7zL0OAEFRpCaKsiw3B1Ks8rNIrNvOiY8c5yiqjQkOiMBMQ2B5WjQoMWCl4GDfGS8thmhu8hxVufhIJzpB2KlOWU6woN0mPfHSJd+PjLZfKIQsHtGRpkKDixCn8LGrR7E+2ZwQsdiFEOoR1lDsspCfs0KZQU9VqJgQQFRuG/wxVnaIg7+i1Wnjp4wVNEFRpBYDkF2HI0XAka5FSHoOHmIBwGg8FgMBgVh4D0iKxcuRIcx+GFF15QXApnD/A5d+6cH1vGYDCCGdqLiZIKDan3mcpgOeX7Cg35fUZWBQgqNESWU0oqNDzvtcuhdJh5I2iQ/vfuWE5VjgyNikHZ70lGMEAO7PVFPyJ5HZC2nFKQoeFFg0I1nKxAI7dqqQoN8lZMdsjGEEPOaddnb6CJF3TLqYpypWIowUo5BuyHJhlw76rzW0mFhvMqrDyPIuLEUFqhQbNY9X2VBjkAJfDQvifNXsvVNy+t0GCh4AwGg8FgVFYC8h5/+vRpAHDLf6xKlSoAgJycHH80icFglANYhYb7eJ2hwZGjBN2s0ODofwPKQsF1as8LB0m7qRA1B70Xw6y1RIaGnOWUKBTc7xUaZd9JRw8FL/t2uYvXllO+aQajjCEzNHxxjokrNOjXECUVGt5kaHAcJ2s7RY5cd4bsj5XO0BDOJ6rQ8HWGBlXQEH9W/q5IDG+gPSI6LKdEx7L8uhRVaDhtr8gkHrahNEODdnr6egxOcFRoiD8zKsjGI09k+7MqCwVnMBgMBqPyEhDLqYKCAgA2fzilGAwGADYvPgaDUTmh+RuXsFBwWeQEDSUo7YCzI6rQkAkFp0F6x3tToZFHjAD2pjoDoFVoKM/QUFeGCo0KEgrufZuZpFER8IfllKhCwxNBw56h4WWDIrQccgz0afKWU2QouO3/5Ohxcr4o4vpbaOI98sqXgja6nvbMwCynKhe0oga7kCGuQJVfl6JQcKe/ac+Y4UorNCjnt79zNMomFJxuOUXiyjnKvruY5RSDwXCXs2fPwmg0ur1cfHw84uPj/dAiBoPhKQERNKpUqYIbN27g0qVLaN++vaJlTp48CQCoUaOGP5vGYDCCGNroORYKLk+20TvLKVGFhovOWnGFhkyGBmV5o8V/llPRCkdGSkFmaPDgYbFaqWKFyHLKz4JDMNiolEfxgoZUhyfP80GxnxmBQRQK7oNTWBQK7onllD1Dw8v2ROlUAOjCiazllESQMnl/JucjLacAIM9oRVyIF2EgTtA6o1mFBoNWVeqwnCIzNHxsOVVAPGNqVfTKCxpUKyYllQtuEAwVGmqVzf7O+asZFexnyQwNZjnFYDDcpF+/frh8+bLby7333nuYNm2a7xvEYDA8JiBDPO0ixo4dOxQvs2TJEnAch27duvmrWQwGI8ixUF5yvBM0Kv6LjrcVGqSgQfsNnCH7AwQVGsS6FGVoqD3v7CItTbyt0CAFDUB6hHWgQ8GDAVpfSHns/5dqsp8HxzKCjLK1nJLP0NCqxNdmd4mQs5xyI0PDEQouspwSzheh40RCiS9zNGidzfQMDZ9tklEOoGkA9nNHVKHh4nA0ShdOOXAWUMgKjXCtSrEoTootgO8tp8hdU1anBllt5olwUypoMMspBoMRWJKSksDzPHieR1JSUpm2Zdu2beB5Htu2bSvTdjAYZUVAelxGjBgBnucxb948XLlyxeX8X375pUP8eOSRR/zdPAaDEaTQtIsSV6bHkC5VLzTxLjMhyjtyFRpK3qvJDjiXFRpkyKRchQZlVeJQcM8LB/MMwg14bTlFESWkgsEDHQpOg5ZRwnCN1HnBBI3KRUAspyQqNMhKNWdUUHkVCG4nUqZiTU4sITtaHaHgZIUG0UYVx92pCikl14eCBq0TlFVoMGgihf1cFmVo+KBCw3lzZBVwhFb50afiOMq55tubkEjQKKOTg9RWlQg34goNe4YGs5xiMBjucenSJYcg4c5/rDqDwQg+AtLj8vjjj+Ouu+5CSUkJkpKSsGHDBkHHC8dx4HkeycnJePTRR/Hyyy+D4zj06tULAwcODEQTGQxGEEJ7mSz2ogSfh3eh4uUBn1douBjtRgpEch1j1AoNi+8yNMSWU76v0JASNMQVGhW/G432W5dHGyqpvmKlXa+s/6RiQGoNvsheUFqhYXBRoeFtfgYARMl4Vsmtnqy8kKzQoFy6RcHgvhQ0qKHghMCO4LDnYwQO2iAM+yFMHueuKjSUdLQLLKeIgzLCTZ848lzzteUUea8qq/u1Tys0yGusTNYZg8FgMBiMikVAMjRUKhXWrFmDnj174tKlSxgyZAjCwsIcLxlJSUnIz893BIHzPI+GDRti2bJlgWgeg8EIUmijLZUIErSOczsFJh5hWm9aFbwYLWYUmt0POXOG7Ih3VdFC7mvnpcWWU2LEFRpehIL73HKKkpUh0SFJfq7hfOMTH8zQOgrLY9+hVJMtVt43w/QZ5QJ/WE6JMjSkLKdkKzTU0PngciJrOSVzqSRHjZsdFRryllOAOMeItAX0BmqFRhBkBDDKFlp/tv1eRVYR+SJDw3kWMkMj3I0KDcBWueBcY6ugINktgqVCQyTcUPazqz3PMjQYDAaDwWAEzBOjbt26OHLkCB555BGoVCoUFhY6yrdu3bqFkpISR9XGyJEjceDAAcTHxweqeQwGIwihvWx6k6EBiD2OKxLeBoIDgErhiGI7chUaYsspP2dokBUa3lpOeVGhURaWU4GmovQVSo3grrhXCgYNf1hOqUUdqFIZGjKCBqemigXu4rnllFSFBjEfZRV+rdCgCBomi7TAzqgcyA32J89pV4KBEssn58sGmdMmJyLS0BIN9LnlFB8c54dHFRpEY9USllMV3VaWwWAwGAxGKQGp0LATFxeHn3/+GR9++CHWrVuHlJQUZGRkwGKxoEqVKmjXrh3uu+8+NGnSJJDNYjAYQYqnFRpykB7HFQlv7aYADyo0ZAUN16/LZBiuNxka5Ohf0r/dXWgVGkozNCqD5RTt9y2PllNSsAyNygX5e/tCkyQrtaQyNAwWGcspqHxjOeVhKDgpppgkKjRI4QMQ2/75PUOD/A0rzuWIoRC5qguxwGh7hpEStZWMf3G2uPK2QsPvllPEv4NH0BDP40qXkA4FZzduBoPBYDAqCwEVNOzUq1cPkyZNKotNMxiMcgSt3L9EwQue3BzkCLqKhCtBQ0lns8rN8n1RKLjT8oospyy+sZwyWnhR9U6Mt5ZTFNsoqQ5JkeWUF9ZZ5YWK7k1vVahosO6TioFfLKfIUHAPKzR8IWjI+fnLrZ6svLAHKZMDDqiWU2SFhi8tpyjnJy1Dg1G5kLts06qI5JwF3bWcElVouJ2hIfy3rx9XRRkaQRIKTjuXSUSh4PbP3cx9YzAYDAaDUXEIiKBx5coVAECtWrWgVmgnYrVace3aNQA2uyoGg1H5oGkX3lpOVeQKDV9YTqmJDjjXFRrCf3ttOeWhEEAb+eu95RStQoP+skwGUZZFhUagj2zaN5TLrylvsG6RyoXYPs/7dZLXAanAWrJSTdAOqKErS8sporfXLmSQdjhk1gbgP8spnudhoGhApMhS0UVXhhhZyynKeWThAamnDnctp8gKjQgvKzR8bjlF/Dt4KjS8CAUXVWiwOzeDwWAwGJWFgAgaiYmJUKlUOHbsGFq0aKFomdTUVDRu3BgqlQpms/SLHoPBqLhQKzSUhILLzFKRMzR8YTklrtCQ399eV2iIMjQ8uy2RI381KiCMNhzTDdScuIfOzEtYTolCwSt+hgaNiuT2wCynKhcW4tbgiwwNkeWURGebQS4UnPNNKHikh5ZTogoNqQyNAFpOSd3GLVbfi1KM8oXcIAzacW628pIVUEoeF523VkA8h4S7W6Hh9wwN4b/LrEKD/J6KBA3hMpxEhgaznGIwGAwGo/IQsB4X2shcfy7HYDDKP7QMDVahIU22wReh4L7M0CDmpUga5MhkvY8qNKJ1Kq9H53IcBy3RHskKDVGgcMUXNGijuitUhUbF+SoMBfjDckpUoSFpOSU9cIeDyieh4GEaTrKDXy1zuZIKBScHHND6bskKjTwj75PQXimLGrIDmOkZlQ93Lafk+tKVCApCyynvKjRIzdEkrXN6RLBUaIiyQiiXRVd7vrRCg1lOMRgMBoNRWQnaHhd7J5nKF6mMDAajXCKVoeFNh0iFrtAwusjQUPD2SnbEu9rX5HRO8DdRoUGznCIzNDyt0CAEDW8Dwe2QlRbSoeDCz2l2VRUNWiZLRRqDwEZ6Vi78YTklytCQtJySq9DwTSg4x3GSVRpyllNSvv5iQcN1hgYPIN/oA0FDoheaHO/AHKcqH25bTsmIFrRBNSTO1w3y+TLCzecQcUe/ny2nyugEISvOlFhOkU21XxI5jllOMRgMBoNRWQnaHpfr168DACIjI8u4JQwGo6yQKsYweOC3a6ciV2j4xHLKzYBFckS+oEKDI+cV47MMDWKIn7f5GXbICg2pDkmy87syWE7R+kJYhQajvELeb+SqFpRCWk5JiWQGi7y1qi8yNAAgUmLEuKzllESFhthySrwsTVj2he2UpKBBWk55vSVGeUNOoKBaTnlZoWGfw2jhRedEuJsVGuS55nvLqeCoYCKvZ7Tz2dV4AukKDXbjZjAYDAajshDQZ30lI0FMJhP+/fdffPDBBwCApk2b+rtZDAYjSKFVaACubafkphZW4AoNX1hOiSo0XHRQiys0pK/zdMsp/4SC+07QICo0FGZokOHqgSDQYoLcb10RYIJG5cJK/OA+sZwixQDK9YPnedkKDUA8otlTpCo05AUN4b/dqdDQqDiRiJJD85dxE6PE7hKHgnu9KUY5Q9ZySiIUnAbP8worNGz/p1X/RriZoUGe5363nAqSDA0llShkU1VSGRoSg04YDAaDwWBUPPwSCq5Wi9+8eJ5Hq1at3FoPx3EYMWKEr5rFYDDKGVIvk66CwWVDwX1gdxGs+KVCw8XLodimxTlDw/XbspEYmaxT+SYUnAyj9RSNKENDoeVUZajQoHzGKjQY5RWyY9MnllNkKDjleioVFO6MLyynAGlBQ85ySnmFBn0dUXoV8p16Zn1SoaE0Q4MpGpUOWcspWoaGxLGkRMwASp83CyjVv+5WaJCioN9DwX26duWIBA3qY5X8dy+t0CAtp9iNm8FgMBiMyoJfBA2pIG93A75HjhyJF1980QctYjAY5Q0rL901WuKV5VTFHb3lMkNDwesrOSrZVYWGXMikKBScsipRhQZFEFeC3yo0OGUe+JUxFJzWWeiLwN9ggXWMVC7EoeDer1McCi4+plzZTQFlbDlFTLPvJ7KzlWY5BdjE5TT4VtCQsp0kO6Er/lWYQSJ33aadRlLjY5SKCfZDroAYVBGm4WSFQhp+FzSIf5dZhYao6sv97+kQNNy0SWUwGAwGg1Fx8Iug8d577wn+PX36dHAch2eeeQbx8fGSy3Ech5CQENSsWRPdu3dHw4YN/dE8BsMnWKw8dqeX4FqBfE14qIZDp+p61I70y+lWYZEbHbfuYhGqhEp3fN8ulv5NMoptK84qsWB3ugH5RitO3DYiPkyN+LDSdVYJUaFnrRCcuG1EtsGKnrVC3LYP8DUnsjLwxYlDyDcZUCdCgzyjFbeKLbDyts6ks7m3ZZc/csuAX/4tcPw7TMOhS009aoaXHpsmCyFo8Dx+Pp0PjuMQo1ehR0KIQCwQV2iUTiNfNA9mXsNvFw9jZP02sPA8fr5wCOuunRbM447lVM6d3zDXaMW1fGGnoK8EDTLU94dzB7D9xkXRfDeL82WXY5Q//rpUjBi9weV8t4qtgvPKjoYDWlXVoUUVnWia2cpjx7USAMDdtUMkR7crxcrz2HfdgMt5Zqg4oHmcDndVE2+3MlFstmLHtRJklijr4MoqEd43fGE5RV4HLLwVb6SsF3xWYjG5XI/fKzRkLldkJ2tWiQUlZl6UR0WznALE1+L9NwzIc+r8DVFz6FxD/hnJ+X4NABlF9Hv85TzhfYAVaFQ+5PrGOY6DmhOKl+suFjmOUY0KuKuqDs3idKIKJCkO3bQdlzeJYzLCzeoMQHye70wzYHwr3u1Ko5OZRpy8bRSJNaSYGCwVGkduGQX/LjFbkXxT+BmJVIXG1usXRNdYKXpVr49BdZormpfB8CeXLl1C/fr1AQALFy7EmDFjyrZBDCrTpk3D9OnTAbg/UJvhHtu2bcM999wDANi6dSuSkpLKtD1jxozB4sWLUa9ePVy6dKlM28IQEjBBAwAmT56MFi1a+GOTDEbAWXyqAH9fVpZZ8MeFInzcKw7Vw3xkhF0JkMrPAIBd6a47GeU4eNOAH07kCzq6LuSKR8kuOFnaSbk+tRhf9I4TeaIHirTCXHT68yuUWEs8XsepTBP4EmEVx5qLRfj07jjEhdiOzZ9Oiztm/7hQ5Hih3nS5GJ/1jnOMPJQNBae8Lj+y/WecyL6B68X5WHDugGi6UkHDZOHx7t5s3Cyi9zr4ynKKDAX//dIxRctVhgoNFeX3rUiP99uvKT/X/rhAr45acb4Ir3SMRsfqesHnXx7KdXTYHMww4JWOMR63EwCWnS3EqvPObSjCs22j0KtWiFfrLc98kpyLU1muxQIpfKFJ0q4DM4//4/Z6fJWhESGZoaHccspgAT47mCOaT0rvjyEEjbPZJpzNFv4uf1wowid305+RjBYe7+zJxu1i1z3MN4hOZaZnVD5cDfbXqACL02GyjbjOrzxXhDc6R6NWhLJX5FNZJup1JtyDATDkIgYLj5Xni/Bg43DF60i+YcCnB3MVzRssoeAAsDe9BN0SbPerzw/liaaTS6glMjRSMq8iJfOqonaYrL2ZoMFgMBgMhhMnTpzA119/jc2bNyM9PR0RERFo1qwZHn30UYwfPx4aTXAN0g5Ij8vChQuxYMEC1K5dOxCbYzACwu505Z1dxWYeRzK864SvbJCjP33JopP5ikft2rlZZMH+G2X3G66+fMorMQMQVk/YKTTxOHZndFyRyYoz2eKRr1Ynu5D0QotgFCxpweQsaISo6Te8ny4ewi8XD1GnhWuUjSq/mGuWFDMAICbEN7c3pe0hCVVrfbJ9d+hctW5At1clJEz0WYSH+6sis++68LzNNQhHn6bcNCLHSxueHRTxZXead9eL8kxmscUrMQPwjc1TmMY314FQtW+uZzESgobcdw0hPacAHLst3rd6ynyAWNCgUWLhcUDi/vpvlkmRmEHDV5UtjPJDoxj5F21XxwQPYN91g+ygGiVIVUPJQTvX9rjxrgG4924iVVXlb0Ip1Sv/XLW1u9BkxdFb4uoM0tLOfs1Sc8HVscJgVES2bdsGjuPAcRy2bdtW1s1hMHzCtGnTHMc1w8b8+fPRoUMHzJs3DxcvXkRJSQlu376NXbt2YeLEiejRowdu35Z3BAk0ARE0Ro8ejdGjRyMqKioQm2Mw/A7Pi+0WXCHl+cygk5rn2lfcU267KWbYuUip4ggUN4rFlRPuUl2bSP3cfmwWmnhoVXrRdCMhpBQ7+RhkG4VVStHa0hHhPavXR4RGvL4rBTkoofjGh6q1SKqpzGqw2CL9G9YIU6N2hG+GNA+q7f7ovTh9GLpU87+48EXnoY6/9WoN3m7T1+/bdKZeRBx6xCc6/v2fmo0QHxoZ0Db4invrhvpt3QZCI6RlCJD+6+5gtPBUgTbPi3WWd7I8vMbbCdNwaBrrvRhRNzwWLWKqe7x8y/Ae0KuBFlV8I4y0qqqFnrg0RutVqB8t3SlYP8p1h2G1UBVqSFSgto/XK8ojyZSwiswskbf1lKNtJbddq4zc3yhc0Pk9pkWEYHr7ePEzCUmxmVccCi5Fx+ruH3ttqoqXcffdoUgqFIQgXMOhiQ+ucZ7QPE78Pa/csQ01Snzfu4h907yK7VpWU9fA9w1kMBgMBsOJRYsWgef5Cm03tX79ejzzzDMwGo2oXr06vvrqK+zfvx8bNmzAAw88AAA4cOAA7r//flgsnj+b+5qADWu4cuUKAKB69erQ6+UfJktKSpCRkQEAqFs3sCNOGQwlWHixtUrH6jqEOL21n8w0Idup44rJGe5xIUc8ArRXrRC3PCs5DqgXqcWtYovAHszTgXdl6ZeZaxSKCuGqaFTR1hLNVyNMjd61qmDWiW2iaTHaeLSI0yKtwIxcIy2cloeOE3fsWlEMoLRTwPlFP9NQKJjXedR+zbAo7Bg0CW8eXI+/0s44PqfFvT/RsAOebd4D9SLiRNNokD+FXg10qq5HXIga/RND3Q7jlOL9dv1RMzQSB25fVRR4XS0kHE817YIonf+tfl5o0QsxulCcyrmJxxq2R82wwA8aWHfvOHx5cidUHIcXW/YK+PZ9xZiWEYgLUWHpWdvx3CNBL2vHcTrLhMwSK5rFalE1VDg25Eq+xdE5A4iPVdpx5M1AWak8gWKFHVsVkVxCzAlRc4o7GCN1KvynTqikPZM7cByHTf0nYPbp3bhSkONy/voRVRClTsTfaSdQVReLvjU64j91Q2Uzo9whNkSNad1ise1qCQpNVsToVehbL1R21LpWgRoxvVus5Ai3ulEavN0lBrvTS1DidExeyTfjSn7psZstUaVECoBxISq0iLN1xHIch+uFZtQM1wjuzxwH1I/Son+i/4RKRnBSNVSND3rEYneaAbUj1bibsN0b3yoStSLUuOI0aIY8Fq08YKZcp++tG4oisxUpN40I03BoSREa1SoOLeK06F3b/WeAxGgthjUME1gYuvu8aiIEgYbRGtQMF14/fHmN84QYvQovtIvC/w6XWkvlGKzIM1ip70pTO0QjMVq4r6uGqvFe11isOt8M1iv3I91wHhbe9ht2q6lXlEvVvor4GZrBYDAYjMqGyWTCc889B6vViqioKOzevVuQZz1gwABMnjwZc+bMwa5du/Djjz8GTdZPQASNjRs3YuDAgYiIiMClS5dcChpFRUVo2bIliouLsXnz5jIPgWEwSGgjiMa2jERVp06HmQdykE0pm2Yo40KuUNAY1jAMo5pFSMwtz9+X6P727lKW3YO5JmElRE19A7SPvFc0X+caerzcIZoqaADA/Y3DsepcIXKd7Fjs38tg4aHiVNByepj4UvsPjaZE8OWdrRiyDMJ9W0Uv9HpuV6UWfrx7FKr9KsxWckbNqbCo13/dKvkkX/KjdSo81y5a8fJKUatUeLZFT5+v1xdwHIcxjTuVaRuidaF4r12/Mm2DL9CoODzQOBwPuOFVLsWKc4UCQYO8ctC6bb0RNG5JjGxXOlK3IkJ2gidEqP1yfVBCQlg0PuwwyK1lXmnb1E+tARpEa9Eg2r2R2SFqDiUSI6ejdJxLwaVFFR1aVBEKShtSi7DoVGnlYbZEVQ0pTrWqosPktqzimyFNYpQWiVH0Y1yn5jCsofA6v/JcIa7klw7OsPDiCg2dChjf2v8ViK2q6LwSNIzEAn3qhqKPHysQPaVrTT3mHIUgfP1KvhkJlOpaqQq1hjFaPH1XFJJvNkYtfWPH53O7VUFsCMssZDAYDAZDCatWrcLFixcBAG+88YZAzLAza9Ys/Prrr8jOzsasWbOCRtAIyNCM5cuXg+d5DB8+HLGxsS7nj4uLw4MPPgir1YqlS5cGoIUMhnuYKO/dvvDbZtjgeR4Xc4SWRA1lLDFcESrh7V2eyCEqNLQcXRguoh2czsupbKNXnbEPRLRbG+hVwpdf0nLKuZ80kxA04vTiXIUYF9UKcfpQt/0ryZd8X1VkMBj+xktrdhFSFRqurgUVGTKTREmOA8MzQklze4XEETlH2RLWUuRvGc1+S4aPISNqLFaIMjSUjPj3BeRmlFSGOkNe9oP13UTFcagTKXyuv5zvvq0rrbqMWfwygoHdu3dj/PjxaNq0KaKioqDT6VC7dm0MGTIE33zzDXJychSva8yYMeA4DomJibLzLVq0yJEJIGWN888//+CRRx5B/fr1ERoairCwMNSrVw9du3bF1KlT8c8//zjmvXTpEjiOwz333OP47J577nFsw/7fokWLqNvaunUrRo8ejQYNGiAsLAxRUVFo3bo1XnnlFaSnp0t+DzLbIDc3FzNmzEC7du0QExMjuc3Vq1fjoYceQt26dRESEoKYmBh07NgR06dPR3Z2tuy+A4Br165h8uTJaNCgAUJCQpCQkIChQ4di8+bNLpf1FPs+dv5Oy5cvR9++fREfH4/Q0FA0a9YMb7zxhqJjxmg0Ys6cObjnnntQrVo16HQ61KhRA4MGDcJPP/0Eq1X63YA8ztLS0vDSSy+hSZMmCAsLQ7Vq1TB48GD89ddfbn0fKRITE22D8zzsGN+3bx/efvttJCUloUaNGtDpdIiKikKLFi0wceJEnDp1irqc/TyZPn264zPymCbPIaXn4PHjxzFhwgQ0btwYYWFhiIyMRMuWLTFlyhRZuyraftu0aRPuu+8+1KhRA3q9HvXr18fEiRNx7do1pbtIMatXr3b8LfV7hIWFYeTIkQCAU6dO4ezZsz5vhycEpEJj79694DgO/fopH8XZv39/LFmyBHv37vVjyxgMzzBReqS0xGAgqU5jhmtuFFlQSIwubhjjudevOx0uHKQrMXzdEekOuURWhZSg4SrbRS4E0l55pOfCUICc0s/5Ijj771icdgQpaFShCBoalRrRuhCRbZadWJ14GVeQL/lB+s7OqISQhyJ5RtKuI95cW6QEDeOdTrlAdcQFE2SFRnQZWatUBjwdMECOoM42WMHzvEjcFv2WTNBg+Bg1cczRKjQ81O3cRixouLc8aTlFvpsEE3UjNYJsuit5ZnSr6TrjxBkt5XepxPFRjCCguLgY48aNw6+//iqalpaWhrS0NKxbtw63bt3CtGnTAtq2KVOm4MsvvxR9fuXKFVy5cgX79+/HokWLvA79LSkpwdixY/Hbb7+Jpp04cQInTpzA3Llz8euvv+K+++6TXde5c+fQr18/2c7g7OxsjBgxQiDGAIDBYMDBgwdx8OBBzJkzB3/88Qe6du1KXcfOnTsxZMgQ5OWVWuFdv34df/75J/7888+A/Vbjxo3DggULBJ+dOXMGM2fOxJIlS7BlyxY0a9aMuuylS5cwcOBA/Pvvv4LPb968iQ0bNmDDhg347rvv8McffyAuTt7iOSUlBYMHD3bEAAC2Y3v9+vVYv349XnrpJXz22WcefkvvWbRoEcaOHSv63GQy4fTp0zh9+jTmz5+Pr776CpMmTQpImz766CO8/fbbItHo1KlTOHXqFObOnYt58+bhiSeecLmuN954AzNnzhR8dunSJXz77bdYsWIFtm/fjubN3c/5lGLXrl0AgKZNm6JGjRqS8/Xu3RvfffcdAJto26RJE5+1wVMCImjYL0DufOFGjRoBAFJTU/3RJAbDK2iWU3IdxQDL0HAHsjojWq9ClRDP3yb1bnS4ROo45FHyJcqaPBNRoUEJ7waAIhdJlhqVuMPVjn1Um04lrKgwWksE9XzOmxBbTtHFiVhdqKSgQavqcIW4QsPtVTAYfsFVsRBtxK03gsbNIulzvtjMI1JX+U4O0qaIdYJ7h9wxHeapoEH8JiarTZCP0MkLGqzahuFryEH+FkqGRtlVaLi3PDngKlgrNABbvo4zVyQqNOS+gYrjoFUJK1OkgsUZDH9jtVoxbNgwbNq0CQDQuHFjTJo0CR07dkRYWBiuX7+OPXv2YNmyZQFv29q1ax1ixl133YWJEyeiefPmiI6ORk5ODk6ePInNmzfjwIEDjmVq1aqF48ePIzk5GU8++SQAYMGCBejUSWh3W7t2bcffPM9jxIgRWLduHQDgvvvuw8iRI9GgQQOoVCocOHAAn332Ga5cuYIRI0Zg9+7d6Nixo2S7R4wYgbS0NDz33HMYOnQoYmNjce7cOdSrVw+ATbTo27cvDh06BLVajVGjRmHQoEGoX78+TCYTduzYgc8//xwZGRkYNGgQDh8+7FjWzpUrVxxihkqlwoQJEzBixAhER0fj2LFjmDlzJqZNmybbTl8wZ84cJCcno3PnzpgyZQoaN26MjIwMLFq0CMuWLUN6ejr69++PEydOIDJSaIFYUFCAPn36OGyDhg8fjieffBIJCQlITU3F7NmzsX37duzatQv33XcfduzYAbWarngXFRXhoYceQm5uLl5//XUMGjQIer0e+/fvx0cffYTr16/j888/R926dfHCCy/4dZ9IYTabERsbi2HDhuHuu+9G48aNER4ejvT0dBw6dAhfffUVbt++jWeffRbNmjXDf/7zH8eyw4cPR8eOHTFnzhzMnTsXgK2ygqRWLeU5S3PmzMGbb74JAKhWrRpee+019OjRAxaLBZs3b8asWbNQWFiIMWPGoGrVqhg0SNqKdv78+dizZw969+6Np59+Gk2aNEFOTg6WLFmCJUuW4NatW3jyySd9NvC/oKAAV69eBQBJscyO8/TTp0/7ZPveEhBBw2y2PaBInTQ07POWlNA7wIKBpKQkbN++3a1ltm7d6nYmyLRp0wQlUb5eP8N9SI9aFRe4l53KAJmf0TBa47YlkTOhCkJN7YRrVcgz0kc8l+UrEilo6Di6jZMnFRrOGRoAoFcJBYYSq1C0cH7RJ0PBpcSJOH0YLhXQy31jde77OzNBg1FeofW1eCNoSGVoALYcjUhlWdgVCjaqP3B4WqFBEyayDFZRUDH7LRn+RmQ5xdtsp5wJlHMpaZ/pbrEBWZ2gdeP5N9DUIyynruabRftdCTo1JxBymKDhHlYrj8yiypP5WCVMB5WfXhpmz57tEDPuv/9+/Prrr6Ls2MGDB2PGjBm4fv26X9oghV1EqVevHnbv3o2ICGEuZVJSEiZPnoysrCzHZ1qtFq1atRJUbNSvXx+tWrWS3M7333+PdevWQavVYs2aNRgwYIBgeteuXfH444+jV69eOHnyJF588UXH6HAaJ06cwIYNGwROLx06dHD8/f777+PQoUOIiYnB5s2bBdMAoGfPnnj00UfRrVs3XL9+HW+++SZ+/vlnwTwvv/yyozLjp59+wiOPPOKY1rFjRzz00EPo1asXUlJSJNvpC5KTkzFo0CD88ccf0GhKr48DBw5Eq1at8O677+LKlSuYMWMGPvnkE8Gy06dPd4gZb7/9NmbMmOGY1qFDBzz44IN4/PHH8fPPP2PPnj2YN28eJk6cSG3HrVu3kJOTg82bN+Puu+92fN65c2c8+OCD6NKlC65du4a33noLo0aNQrVq1Xy5GxQxcOBAjBo1CmFhwn6Hdu3aYfDgwXj++edx991349ixY3jvvfcEgkZMTAxiYmIQHx/v+EzumHbFrVu38MorrwAAEhISsG/fPtSpU8cxvUePHhg6dCh69eqFwsJCTJgwAampqdBq6e4je/bswVNPPYXvvvtO0P/Vp08f6HQ6fP/999i3bx8OHz6Mdu3aedxuO84WVs7iJA3n72UXQcqagAgaVatWxfXr13Hx4kW0b99e0TL2E9JVOVR5QqVSoXHjxq5nZAQ9JqL/iNZJHLyvEMHPBaJCw90AUxJ3OlwitNLzlqVtmKhCQ8ZyipdpqFbFie3Q7vzfcOe41nFCgaHEKrS7sldolJhNKDILxScyFNyOXBWGbyo02BnHCE7I05H0Zgfc90l3RspyCrDnaASx54ifYJ3ggcNTQUOr5hCp45DvVBGZXWJBXadOTrOVRz4h0scw+zCGjxFZTln58puhQVpOBfHpUpcQNExW4LrM/UwKnYpDodOQI3LQGUOezCIj4t/bWNbNCBgZ0/uhWoR71mZKsFqtmDVrFgBbp+CSJUtEYoYdlUrl1uhvX3Djxg0AQPv27UVihjPe9L3xPI+PP/4YAPD888+LxAw7sbGxmDVrFgYNGoTdu3fj3Llzkn1kY8aMkbStLygowDfffAMAmDFjhkjMsFOvXj288847mDRpEpYvX4558+YhPNz2vnrjxg2sWrUKADBkyBCBmGEnMjIS8+bNQ5cuXWS+vffo9XrMnz9fIGbYeeutt7Bs2TKcOHECP/zwA/7v//4POp1txJLBYMD3338PAGjZsiXVHovjOMyZMwd//fUXMjMzMXv2bElBAwCefvppgZhhJyEhAZ999hkefvhhFBYWYvHixZg6daqH39hzXJ0/0dHReP/99zF8+HDs2rULmZmZqFKlil/asnDhQhQV2QZ/fv7554JOfzvt2rXDG2+8gbfffhtpaWmOvBcaNWvWxNdff00dzDt16lTHb71z506fCBr5+fmOv+WuDQAc5w1gO/+CgYA85rRt2xYA3Ar4tnvueaOW+ZuFCxfi+PHjsv85f+c+ffp4ffNytT2yBJDhH8iHZdr7NcvQ8AyLlUdqnrCTvFGMd9priFuCRnC+/eWRGRoSllM8gBKZ0WlUH+g7sxslQsFLLKSgYZsvyyis3ACkLafiZHIyYvUeVGgQ9TKsQoMRrJBnI80VztMBpQUmK4rM0gvLTavIsAyNwOFpKDgAxOqJHI0S4e+WRzHDZ+IUw9fQLaeIecpLhgb5fhLEFRpRepXIeu5KnvfB4OSgMwYjEBw5csQx0vmpp55y2TEYaGrWrAkA2LFjBy5cuOCXbZw6dcqx7hEjRsjO69xZLmed8+ijj0pO2759O3Jzc93anslkwsGDBx2fb926FRaL7aJBy2Sw07lzZ7Rs2VJ2G97Sr18/JCQkUKepVCqMHj0aAJCVlYVDhw45ph08eNARGD5mzBhJV5yoqChBqLNclZDcvrj//vsRExMDAH4NTHeHwsJCXLp0CSdPnnTktDhXQBw9etRv27bvg5iYGDzwwAOS840fP160DI0RI0ZIiqFNmzZ1XFvsBQDe4uyIZBfJpHBuV3FxscycgSMgFRrDhg3D+vXrsXLlSixfvlxSjbKzbNkyrFy5EhzHYfjw4YFookfUr1/f5Tw//vij428lATCuCGaBpzJBjoAK5heG8kZagcVRKWCnoZcVGm4JGjJ+82U16MtgMcNgFb7kSVVoAPK2U1oVpyBDQygwFJEVGndWn1kiFDQ4cIiRsI/yf4WG26tgMPyCq0ORXqHh2bbkqjMAW4ZGZcNk4VFIfG+Wu+A/wmSqGl0RF6LCldKBYcgmhChSmOKASpkJw/Av4lBw8XVaE6AqUPJK5Y7YzfO8IEsCcJ3vV9bUidQg21Bqd0TL0XC163VE3x2znGKUBYcPH3b83atXrzJsCZ0nnngCS5YsQWZmJlq1aoVhw4ahf//+6NWrlyO71lucLZm6deumeDl79QiNu+66S9H27IKNu9tzzk5wNTC4c+fOOHnypOLtuIuS7ds5fvy4I+D8xIkTjs9dVZF06dLFkRtx4sQJ6n7T6XRo06aN5Dq0Wi3atWuHrVu3UrMnAsXt27fx+eefY8WKFTh37pysQ4W3Qfdy2Pd/+/btJW2kAKB69epITEzEpUuXBL8Ziasci9jYWBQUFAgqK7whJKTUxtxolLcfNBgMjr9DQ90fkOoPAvKGN3r0aCQmJoLneYwaNQpTp06lem5dvXoVL730Eh599FFwHIc6deoIlKzyhtVqdXj0RUREyCp2jPKFJy8M7PFaGWR+RrVQFaK87IwKcTNDI9jINYoVcDlBo8jMQ8PRv4ft6wn3hzhDQ3iDKjYTGRp3XvTJ/IwYXQjUKvp25aowfJKh4fYaGAz/4KrzhVah4S9Bo4i8WVUCyEBwgI3q9yeeWk4B4mBwskIjhxA0ovQqZi/I8DnkY4vNckr4mReFSO61hczQcOPeQLvcB+EjrYB6RDD4ZU8qNIh3MGY5xSgLnDtM3elcDxR9+vTB7NmzERoaipKSEixduhRPPvkkGjdujNq1a+OZZ57xehR7RkaGR8vZ7XpoxMbG+nV7zpkhzpkKNKpXr+7R9pTizvad2+3Od6hRowZ1OWfi4uJcZh/b2yK1Dn9z8OBBNGvWDB999BHOnj0rK2YA/q0msO8DV/seKN3/cvuNzAUhUd15aLFXFnmLc8C8KxupwsLSvp9gqUILSIWGTqfDypUrcffdd6OgoABffPEFvvjiC9StW9dxwb9+/TquXLkCwDbCJCIiAqtWrZIstykPbNmyBWlpaQBspUOuDk5G+YEc/aOlXPPZK7dn+Do/A7B5H2tV9Jc9Ejnxgy8jWSrXWCL6TKeih4IDtk5MjUoFMyVdUSOboXFH0CAyNIpEllO2/2cZhJ9L5WcA8pZTLEODUZERZWhQHrpJCzWluBQ0KmGFBjmqX80B4V5UETDk8UrQCBH2tmaVyFdosEobhj8gD2ErrUKjjDI0bO3hFT3jkHZTQPBXkNeNFL5A0QQNV9+A/I4GVqHhFlXCdMiYTs8oqIhUCZO3VKnITJ48GQ899BB++eUXbNq0Cbt370Zubi7S0tLw3XffYd68eXjzzTfxf//3fx6t37mD9c8//0RiYqKi5eQ6guU61p23d+jQIdnR8c5IBR/TMgsCiS+2Hyzr8CdGoxEjR45EZmYmtFotnnvuOQwbNgxNmjRBbGyso//44sWLaNiwIQC4FDx8QbDvNymcIxGcA8JpOBcl0LJCyoKACBqALUdj//79eOyxxxwleZcvXxaIGHY6dOiAH3/80WW5TbCzZMkSx9++sJtiBA/k6J9gL+kuT5AVGg29zM+wE6LhYDK6vpnJvfyV1StSDlGhoYIaak56vxSaeGg4NQDhiyEHsVc0AFGGBmk5VWI1wMJboOZsD5UWnl6hESdTheF7yymWocEon9CEVc8rNORV2iIZ+7mKCtkJHqVjo/r9iS8FjWzCb5KstmFZKAx/QF4fLDwvytAIXIWG+DMrr+wZh7TDBYL//aQuUaHhyR1LTzzYMssp91CpOL+EZFc2qlat6vj7+vXrPu3Hso/Itlrln/mcR09LER8fjxdffBEvvvgirFYrjhw5glWrVmH27NnIycnBBx98gE6dOmHYsGFut9M5dDkmJsbvVunO26tWrZqkUCGHcwXIzZs3ZTtpb9686fb63cHV+p2nO4e3O/998+ZNNGnSRHIdznZbUgHwmZmZsFgssmKSvS3kOlROJY++OF5p/PPPP478iDlz5kg6+gSqeiQuLg7Xr19XdHzY97/Uvi8LIiMjUadOHVy9ehX//vuv7LzO05s3b+7vpikioG8GzZs3x8GDB/H333/jueeeQ8+ePdG0aVM0bdoUPXv2xPPPP49NmzYhOTm53IsZBQUFWLVqFQCgXr16SEpK8sl6+/Xrh/j4eOh0OsTHxyMpKQkzZ85Edna21+u+du2a7H9ywUGVDWWhe3RbH4Y0JgsvGp3lbX6GnVCFo9Rk7anK6EfMISo05OymAFsnppryEqtR2UYPuMrQIC2nAMDolKNRWqEhLBGWrdCQES18YjkV3O/sjEoEeSiKQ8HFFxJP+18yilmGBomoE5yN6vcauctrmBc9vXEh8qHgonB39lsy/AB5CJdphoaEoKEEitte0AsatcI19IE2AuRnIL8jbT8wGP6mffv2jr937Njh03XbLWHswc9SnD171q31qlQqtG/fHjNmzMCWLVscny9btkwwn9KR5+3atXP8vXv3brfa4gm+2F7r1q0dfycnJ8vO62q6t7izfWexyPnv/fv3y67jwIED1OWcMRqNsvZjZrMZR44coa7D2b5Irn8yKysLmZmZsm2VwjnH5OGHH5aczzljhYavKirs++DQoUMwm6VtEzMyMnD58mXBMsFCz549AQBnzpyRzbTZvn274+8ePXr4vV1KKJM3g3vvvRf/+9//sGPHDpw6dQqnTp3Cjh078OWXX6JPnz5l0SSfs2LFCofq+Nhjj/nshNm0aRNu3boFk8mEW7duYfv27XjjjTfQoEED/PHHH16tu06dOrL/OQcRVXZMRB8SbdAgGxDqPpfzzaKOvQbRvqrQUHa5k6vQKKt3pFyTsEJDp5IXNArNVmqGhtSLrd1Kyz44VsdRBA3eWdCwV2gQgkaIjGjhYfWGFEzQYJRX6BkavrGcCiNGyxfRNlbBIXMXmE2Rf/FlhkaOwSo4F9hvyQgE5PODxSq+TpdVhgagXNCgWU4Fe4aGVs0hIULeq90VLBScEQy0adPGMbr/+++/d+lF7w7169cHAOTn5+PMmTPUeYxGI1asWOHxNtq3b++oViADlJ1Dg51DgWnrsFdJzJs3DyUlYstkX9K3b1+HpftXX33lka3QPffc46hEWLx4seR8ycnJskHOvmDjxo2SA4itVqujfbGxsQIBrUOHDoiJiQFg+w5SlRH5+fkOsapFixayWS9y+2LVqlUOsaJv376CabGxsY62yAkKv/32m8c2UM6igVSVh9Vqxfz582XXo/S4doV9H+Tk5GDlypWS8/3www+O70zut7Jm+PDhjr8XLVpEnaeoqEhw/MhVAgWSIH/MKb/42m6qdevWeOedd/Dnn3/i4MGD2LdvHxYvXox+/Wyelzk5OXjwwQexYcMGr7fFcI0nllMBsO4r91zIEdpNJYSrEeajt7EQhZ0uFaFCo9DEQ6MSvyDad6XUCHJ7hYaKU4m2YXCq0LC/K5KChmxOhsw031RoMEWDERxI10DZoFVoeHJ/sPI8bhEVGomEfQfL0GCj+v2NLy2nLDyQ52QNKfotmeUUww+oKZZTFuI6Tat69QdSGRpKIC2n1Fzg2u0NdSO9G7hEDkRiggajLFCpVHjllVcA2FwvnnjiCRiNRuq8VqsV6enpitfdu3dvx9+fffYZdZ6XXnrJkd1KY+nSpbLByCkpKY5OaruAYse54/vChQuS61CpVHjzzTcB2PILnnjiCdmO4ry8PMyePVtyuitiYmLw7LPPAgD27NmDKVOmyNoc3bx5E99//73gs5o1azrstdasWSOqTgFszitPP/20x+1UisFgwNNPP00Ne545cyaOHz8OAHjyyScFOcN6vd5hu3TixAnMmDFDtDzP83j22WcdYpV9v0kxd+5c7Nq1S/T5jRs3MHXqVAC28OrRo0eL5rn77rsBAH/88Qf1eDlz5gzeeecd2e3L0bhxY8ffUp3vb7zxBg4dOiS7HqXHtSvGjh3rENZefvll6nl49OhRfPjhhwBsmRXOAkIwcP/996NBgwYAgI8++oi6P1555RXHNcJ+rQsGApahQWK1WpGVlYWioiLUqlVL1qOtvHHt2jVs27YNANC1a1ev1asXX3wR06ZNE33epUsXPPHEE/juu+/wzDPPwGKxYPz48bhw4YJAcVSKc8gLjevXr7MqjTuQLw20Uf3iT9gDtisu5BJ2Uz7KzwCUd7qQI72cKatfMJfI0NBy8ud3kYleoeEq1NL5JVCvCoXJUvoQKrScss0nspySqdCQtZzypEKD+DXKwTs7o5IispyiXEg8ydDILrGKRhHXi9LgVFapMFwpMzRY7kJA8UbQiNapwEF4jmSXWByVGGL7MHahZ/geNc1yiszQCNChRxU0FC5LWi0Fu92UnbqRGuyGdKenq/EqOpHlVOW77zGCg8mTJ+PPP//Epk2bsGrVKrRu3RqTJk1Cx44dERYWhhs3bmDfvn349ddfMWrUKGr/Do127dqhW7du2Lt3L+bPnw+j0YjRo0cjOjoa586dw7x58/DPP/+ge/fu2LNnD3Udr732Gp555hkMGzYMd999N5o0aYLw8HBkZmZi165d+PrrrwHYQrjJTIK6deuidu3auHbtGj799FPUrl0bTZs2dfTfVa9e3WE19Mwzzzi+//Lly3Ho0CE8/fTT6Ny5M6Kjo5GXl4d///0X27Ztw5o1axASEuKyc12O999/H9u3b8f+/fvxv//9D9u2bcNTTz2Ftm3bIjw8HNnZ2Th58iQ2b96MDRs2oHXr1qLv99lnn2HTpk3Iz8/HqFGjsH37dowYMQJRUVE4duwYZs6cibNnz6Jjx44ubYy8oWPHjvjzzz/Ro0cPTJkyBY0bN0ZGRgYWL16M3377DYAt0JwmBrz77rtYuXIlLl68iGnTpuH48eMYO3YsatasidTUVMyePdvRP9mtWzdMmDBBsh3VqlVDWFgY7r33XkyZMgWDBg2CXq/HgQMH8OGHHzrEuBkzZlAD3SdNmoQ1a9aguLgYSUlJmDZtGtq1a4eCggJs2bIF//vf/1CtWjWo1WrcunXL7f3Uv39/xMfHIyMjA2+//TYuXbqE+++/H1WrVsX58+cxf/58bNmyBT169JC1Iuvevbvj7ylTpuCtt95CzZo1Hc46iYmJ0Ghc90VVq1YNs2bNwuTJk3Ht2jV06NABr7/+Orp37w6z2YzNmzdj1qxZKCgoAMdxmDdvnuIA+0Ch1Wrx9ddf47777kNeXh569OiBt99+G507d0Z2djbmz5/vqADr2bMnHn/88TJucSkBFTQsFgsWLVqERYsWITk5GSaTCRzH4dixY2jRooVjvrVr12LHjh2Ijo7GW2+9Fcgm+oSffvrJoQ7TVEt3sZdtSfH0008jOTkZP/zwA9LT07FixQo8+uijbm/HkyClykp5fWkIdi6SgeA+ys8AXFReOKGXeWstu1BwokLDpeUULxpxaFvO9pnUy6HBSdCw2U7llE7jxRkaZCi4JxkaYRot9Gr3b0Xk+yo7AxlBg4uD0UwZPepJ/wuZn6FVATXDhYpspczQYBUaAYW0OXMHtYpDjF6FbKffLLvEivrRtr/FllMVZ/ATI3gQVWhYKRkaAavQ8J3llLacnC71onxdoeHV6hgMj1GpVFi9ejVGjx6N33//HWfPnsWLL77ok3UvWLAAvXv3dnRwk5ZAU6dORcuWLSUFDcDm6EFb1o5er8e3336Ljh07iqa9+eabmDRpElJTU0WB4QsXLsSYMWMA2HIJli5dihdeeAHffvstLly4gFdffVWyTbQOcXfQ6/XYtGkTxowZg5UrV+Lo0aOyAklUVJTos8TERKxZswZDhw5Ffn4+5syZgzlz5gjmeffdd8FxnF8FjcmTJ2P79u1YtGgR/vvf/4qm16xZE3///Teio6NF0yIjI7FlyxYMHDgQ//77L1asWEG1IOvRowfWrFkjO5g8LCwMv//+OwYOHIiPPvoIH330kWie559/Hi+99BJ1+f79++P555/HV199hWvXrlEFsjVr1mDgwIGSbZAjPDwcS5YswfDhw1FSUoLvvvsO3333nWCepKQkzJ49WzarolGjRhg5ciSWLVuGjRs3YuPGjYLpqampSExMVNSmSZMmIScnB++88w5u3ryJKVOmiObR6/WYN28eBg0apGidgWbQoEH49ttv8eyzz+LmzZt47rnnRPN07twZq1atCqpihIC95WVkZKBXr16YMGECdu/eDaPRCJ7nqd5piYmJ+PTTT/Huu+86AmfKEz/++CMA20ErF1TjS5zL4JzDWhj+gSxnVvLSUPm6ldyjxMzjWr7wLaSBLwUNX1hOlRG5HoSC0yynpDyg7ZdhA1Gh4Yyz5ZSZp2doyFVhhGq0CKEIF3JWVHKwDA1GsCKydCOOVZrGYPHAc4rMz6gWqkY4YdFXGTM0mKDhe+Qur6Fe2kKStlN2ccNi5VFgFJ4X7Ldk+APysc/C82WYoSH+TLGgQVaPl5MHI1eWU66+BcvQYAQTYWFhWL58Of755x88/vjjqF+/PkJDQ6HT6VCnTh3cd999+O677/Dyyy+7td5mzZrh0KFDmDhxIurVqwedTodq1aphwIABWLduHWbNmiW7/NatW/G///0PDz74IFq3bo1q1apBo9EgKioK7dq1w9SpU3Hq1CmHMEEyceJErFixAv369UN8fLzsyHWtVos5c+bg6NGjeO6559C6dWtER0dDrVYjOjoabdu2xbhx4/D777/j9OnTbu0HGpGRkVixYgV27tyJ8ePHo2nTpoiMjIRGo0FcXBw6deqEyZMnY/369di0aRN1HUlJSTh58qRg/1avXh2DBw/GX3/9henTp3vdTiUsXLgQv/zyC5KSklClShXo9Xo0adIEr776/+zdeViU5foH8O/MMAwMOwgKLqDmrhVKprnh0dzXRM/JStFSU8rS7JRmRdkpy+x3LMNES/RkpmamHrWjuGBuiWIumEsKKYqCCArIPvP7gxhn3nlnn2FYvp/r8hLe9Zlh1ud+7/v+J1JTU3UuAhcKCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4GL7Qssq3336LTz75RJNBJJVa/2Y/b948nDx5ElOmTEHLli3h7u4ODw8PtGvXDq+88grOnz9vl1YEjjRlyhScOHECU6ZMQYsWLTR/9549e2LZsmU4dOgQGjRo4Oxh6qiWDI2KigoMHz4cycnJkEqlGDt2LHr37m0wetqxY0c8/vjjOHbsGDZv3oxHH320OoZpF8ePH8e5c+cAAMOGDdM0V3I07Rc3Y/UTyT6EV0GJfWnQu8iKn6+NSrtXpnMXSSVAmJ0aggOWlJwy0hTcaT00LGsKft9EU3BTPTQAQCHVDTRol5yq+OuLvl7JKROlo/xclcgsuqe7zIpyU4B+TWn20KCaS/exKtZDw6oMjfu6M24NlTL9puD1seQUAxrVRioBbK3oJWwMfqe48u93r1RYWJB/S3IM/YDGgws3qlRfhob+MrN7aNTS7HF/Nyk85BIUWvl+pWAPDaqB+vbti759+5q1bVhYmFkNkhs3bqyXOaAtOjraYECiefPmmDlzJmbOnGnWmMQ89dRTeOqpp8zevlOnTvj8888tPk9sbKzZ5bi09ezZEz179rR4vypNmzY1ev9aOy5LPf3003j66aet2tfV1RUxMTGIiYmxeRxNmzbFkiVLTAYvDDF1O9LT0w2ui4yMNPmc6NChg+ZCcjHmPK/kcjlef/11kz0hqqoMmfLwww8jPj7e5HZC5r4GAMbvN3vo2LGjVbfBWarlm8Hq1auRnJwMuVyO7du34/vvv8eMGTOM7jNixAio1WrRZjQ1mXYzcHuUmzKXhJN51UovoGFWDw0y5nKebv+Mpl4uel9SbOFu5rGMZ2g450uSpRkahWWGSk4ZP0+pTskp3T4duiWnKrPrhBkaxkpOAYC/Qr/5t9gycwi/r9aS7+1UD5h6KIolTVgX0NDN0AhSyuAuFwQ06lnJqXKVGvmCSTFfToI7jLuLxObPn/oZGpWPa2FgSgLA25Uv9GR/UsEHCJVa/3W62npoiCwz9/3BmuzxmkAikSDUhsbg7KFBRERUP1XLt7x169ZBIpFg2rRpGDhwoFn7hIeHAwAuXLjgyKHZVVlZmaZhT2BgoNV14axRlRUCACEhIdV23vpKWJ/VnIoL/Hht3GW9/hn2TSAz1htDm7EMDSuqwtiFMEND2BRcGPgxXHJKvIeGeMkp3cwJ3ZJTQEF5CcpUuk8EU8EJsZJUfiw5RXWN8PklWC0MiAPmX4GrTdhDI1Apg1JQF6W4XG3VsWure8IGVwB82RTcYWzpn1HFz033vSr3rwyNPMHf0ttVwkw8cgixh3FJhbMyNKzvoSGcyK8tGRpA5UVM1tLvoVF/3vOIiIjqs2r5lnf69GkAlVkX5qpqEJSTk+OQMTnCzp07kZ2dDQAYP3680dqC9qbdCKdPnz7Vdt76Sq/xnhlfGvjx2jhhhkZLX/v1zwDMLzllLEPDWX/Du2XGMzT8BVe4FhoqOWW0nJZap9m9q6CHhnbJqXKVWq/cFGBOhoZ+8MJY3w1jGNCg2kKvh4adSk5lCzI0xEpOqVEZ1KgvhFf1SyWAJ6/qt52Bu9Dc91VjhCWnqgIaLB1G1UXs84NwUlzm1B4a5pacqp09NADjjcFN9tDQy9Cww4CIiIioxquWGfe8vDwAQEBAgNn7VFRUflGvSR3UTdEuN2Vuw5eEhARMmjQJAPDuu+/q1eU7c+YM3N3d8dBDDxk8Rnx8PFauXAkAaNSoEUaPHm3hyMlSwi86xq7qJ9MKylS4dV/YENy+L0/26KHhLKZ6aPgppMgsfHD/VWZoiPXQqPxfrIeGMOtIITHcFLxCBeQU6wY0XCRSeMmNl8Lyc9XP4BBbZg720KCaymTJKdGm4Jado6xCrek1UCXIXQqlXP/s98vVUNo3PlxjCSfBvV2lfG1wIHc7dEoWBuSrmoIL/5YsHUaOIpZ9oZehUU2vI7Y1Bdf9vbaUnAJMNwY3hk3BichZ0tLSUFhYaPF+fn5+aNy4sQNGRPVNYWEh0tLSrNq3TZs2kMtr95fEaglo+Pv7IysrC9euXdOUkjLl0qVLACpLN9UGubm5+O9//wugspFK586d7XLcEydO4IUXXkDfvn0xePBgdOrUCQEBASgvL8f58+exdu1a7Nq1C0Bl8Cc+Ph4eHsavkibbCa/+EcvQYFNw810RZGfIpbZ9uRFjvDeG7rklEP9z1ZSm4MIMDWEN8go1IBGZVjVWMkH4BVAhzNDQ7qEh0j/DX6E0WUvdoRkaVh2FqPrZI0Mju6hC7zUqSCmDm0jgtj710bhbyqv6q5MjMjTulqhQoVIzQ4OqjdhHI/2SU84bS/0oOSUz+NnbFJacIiJnmTRpEpKSkizeb+LEiWY1mSYyJTk5GX379rVq37S0NISFhdl3QNWsWgIaHTp0QFZWFpKTk80uO7V+/XpIJBI89thjDh6dfaxfvx4lJSUAzM/OMFdFRQUSExORmJhocJuAgAB8/fXXGD58uF3PTeLK9DI09LdhPMN8wv4Zod4udq9XLDbRJySXVjYndHORoKiGTAKq1CrcKy3RWSYXZGiIXbkqFSs5pVmkX5ZG+OVdWHKqTF0ClboCUokM5SrolZwKMCMwIdpDw8qm4Cw5RTWVqdd+8abglr3eCPtneMglUP71BHeTSVCs9XwuKqsZr2XVIU84Cc7+GQ5ll4CGoIeGGpWBKf4tqbrIRC7GEE6K14YeGtaUw60p3FykaKiU4aYgWxsQuUBMQHg72RSciGqLsLAwqGtIr7uEhAQGWajWqZaAxqhRo7B3714sXboUs2fPhp+fn9Htf/jhB2zbtg0SiQRjxoypjiHa7D//+Q+AyiyJZ555xm7HHTJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7W2385JxtblObU10OU/YENz+qW/mlMao+lLkKhMPaDjj40Z+WQnUgjMLm4L7KfQjahKRnAVDTcEB/YCGMEMDqCw75S7zRLlKjZwS3fTaADfTmWGiGRp2awrO5yDVDnbJ0LivO9nbUPngNUAp1w1o3BeLoNRRvKq/etmjKbiXqwQyiW7ZtTvFKmbbULUR64/hrAwNoPICDe33BLN7aAhiAWIXW9VkzbxdRAMapuhnaNhrRERExu3fv9/ZQ6B6LjIyssYExZyhWgIaU6ZMwaeffopr165hwIABWL16Ndq3b6+3XVZWFpYsWYJFixZBIpGgY8eOGDduXHUM0WaHDh2yar/o6GhER0cbXB8UFITJkydj8uTJVo6MHEF45ZaxZstV6u/LjGmX7wobgtv/pcncDA0AcJMBd0XWO+O94m5psd4yYckppVyid1W2WECjKmCjdwW5Wv/Lu1LmBqFSdTHc4YkKNfRLTpkRmBDbxuoMDcEzijFFqqn0m4Lrb2NpyCFLMOkT6K4V0HCR4I7WunpVcop9FxzC0MurUm77/SuVSOCrkCJHqydMbrGKwSmqNmIf4UsEk+LV1UMDEAlomLlfbc7QAIBmXjIcu2n5fgqRklNqtdpkGVQiIiKq3aoloKFQKLBlyxZERkbixIkT6NSpE9q0aaNZ/+yzz6KgoABXrlyBWl35ISQgIACbNm3ihxGqkcr0emjob2PvR+7togqcuV1qU23Ylr5yPORre/bD3RIVTmWX2KUsU6kKes1tHZGhYU4PjarAlPBqrztlmbhTdhP3s2R48k4HdPRrhNScMlwvqAzEBLrL8HCgqyYDQq1WY//NyziXdwsdfBuiT6OWAIA9mZdQpqrAwMZtdEpCqdQq/JxxAa5SGQJdQ3FTq8H3lYJc/XFKXHV+d5VJ4CG4Kvtuif7fxtAVhn/klaFIMMvqLnOBr6u7Tv+OtKLT8JD54mqJBPk5f+hsH+BmOqAhFry4lCuDuuy+yNbGXcvXnW2oZd/bqQ4Tfmw5d6cM/0t/8BjPKda/fPT3nDK4SAw/DxQyCR4OdIX/X+V5bgkCGkFaGRrCMkAnbpWgQNj4SWTMD/nK0cKG1161Wq3zumiOnOLK0kKjH1Ii2MOyj6T3y1Q4mV2quW3eCqne1b0sU+RY9ig5BVT2gdIOaBzJLMbtIganqHqIlZwqFHzQF8vicBThqQ7fKMGl3DLRbbWlCS4OEn6Wrems7Z0nzERRo/LCgdrUFJ2IiIgsVy0BDQB45JFHkJycjIkTJ+LIkSM4f/68Zt2pU6d00mS6du2K7777Di1atKiu4RFZpLob72Xkl2P+4Vy7BBCmdvJCv2bWXRUPAPdKVJh78I7O5IM9uckkCPG0/7cQcyZeqv6O2ld7pRWdQXL+TgBASgGwY+v/MLvNP3D1TlOdfZ8IUeCVcB8AwPyUn/Hh6T2ade88+iRyigvx5fnDAICnW4Tjuz4PStONT/oO69N+AwC0cu+CcK9+mnXZpboBDblEoRfoVcgkUMolyNFK5rhTrP9YMfQ4/S27FL9l6y5TuEgQoFDqBDQuFh0X3R8APF1MP6bESk7tuFwBT5cCk/uawoAG1WTfpBp/jCffKkHyrRKj23i5SvBhD38EKWXILhIGNB5MgQmvmj90owSHbhg/dpWYR7zQu4l17w/fXyjET5ctD04CQFJGMT7u6YcwMwMqJRVqvH04FxkFxmuL+Cj4wuBI9gpoVAbqHkzGij1emaFBjiI27y+8cKm6emgAVSU0H3yG23bFutfV2pahEeotPi1h6laIlf0tVanNyp4nIiKi2qtavx089NBDOHToEA4cOIA5c+YgMjIS7dq1Q+vWrfHEE08gJiYG//vf/3D06FEGM6jGUqvV+g2URT40Cy/4sqVH3ZFM+2RDAMDea0WmNzLiZHaJw4IZANDCx8Uh/RDMmXhp+tfVYdrbXik6pbONSq3GhnT9if0jN0pw/69vwP+XekBn3Uen92LFxV81v6+7chKZ9+8BAP64d1sTzACAS0UnoFI/mKQrUwsaggvKTQGAQgZ4CCYxvWT+ettVPU7NqQWtkEkQ6OZpesO/lJTpj0tIrHG4sPm4tapzsoHIGEc9EvNL1Th2s/L1IEcY0NAqOeUht34Ee67pl7gzV+JV295bvjx1z+xtL+SWmQxmAPqvi2QdQ/OC9uihAQB+ZgQrfJltQw4ilZi+KKI6e+XZ62VLpL1ajaadaajN1FcCse9gtmSzExERUe1g1wyN06dPAwDatm0LV1dXg9v17NkTPXv2tOepiapNYZlarwa6t8gXbWEKu7lN/cTPab8AQmGZbR/yC2zc35SIRqYnxq3hIpWgrZ8c542k7T/TtrKxdYcAV5y5XbmdMKAAAEUV+pN+agDFFWoo5UBRhe45ylT6E28X72UjWOmN5NvX9NapUAEpKr/YlatLddYJy00pZJWlYjoGyHH+zoPztvV4HJeKTmgaird2j0A7/8qrn9v6y01esd0hQA5Pr4dwNPtPo9tVae/T3OQ2YZ7+aOMTiAt3K9NB/F2C4SrV79VhjarbRuRsjqyUee+v8krCtwTtHkEdA1xx2MyMDCFTpakMUavVNr83XM03v5NrkZnviQ0NTJCRZdr6u+LXm7qPKamk8r3EHh4JdMX//jQcEGvqJWOGBjmMRCJBO385UnPEPx/KpUArB/R2M6RdgKsmeG3TcfwNfxeviaQSCboHK3Ak88Ftb+snN3mRk1gASKxXFREREdUtdv109uijj0IqleL06dM6Tb/ff/99AMCMGTPQoEEDe56SqNoJ+z0AgL+b4QbMVWyJSQgvNPJTSBHsYd5Ezb1Slc6VrLY2tlYJboeHXIJQK+veapNJKyfiBofZ54p9Ma929sbGi4XI/KtHRUOlDK4yCfLLVIhs4oZGf9VwH9FCCZUaOJdTip05YneY7UGdtPw76NOoJW4XF+ofXa0GJEAbPzmK7qoArQuXFbLKL6it/eTwd5NiSJgSHnIpRj9UGYw5f6fsr2wgXwQon0Ny3gkEuvrhrUf7o0NA5b79m7mjpBw4fbtE9EtfS185xrb2gARPQiaV4uCtNBSUViCnWIVylVqnybCLRI4wt45o493E5G2WSCTY+eQLWHAqEedyyhEk6aZZF+gu1WlsbC5XmQTdghUID3JMIIzIUhKRHA3ha7YKlc9VCYwH4zILK5Cr1Ry5+K/nnvAVSHvC529N3VBUrsapbPHntzbh+4O1k0BiF8M+5Oti8KrmqttvLXNfgT1tyFahB6Y97AU/Nymu3qssC+Uhl6BfM3fNe6atujRUYGonLxy7WaJ3ZXWgUoaoVh7sqUcONTPcBxsvFuCGIPPLy1WKAaHu8HWrvuDotIe94KeQ4lq++f2ItClkEvQIcUPHBrUroAEAUzp5wVchxZ/3yhHsIUNUaw+T+4hl6Jbb+mWHiIiIajy7X26iFvkAERsbC4lEgqioKAY0qNYTNnT1cZWIfpgWlvUpt6HmVIVg327BCkR38DJr3+O3SrDo+F3N77Z+xK8QPMfb+MnxxmO+Nh61evi5yTD1YW+T28mkEoxp5YExrTzw+WVAeOGwsftQ7DVQzJX8HADA7RKRgMZfZ3inmy+++N0F224+WPdwAw+sHxikt4+LVIKxrYUlovwAPKy3rVQiwfCWSgxvaaqRtwveCx+ot/Tv27NM7GdYc68AfNPz7/j0eB6Sbz3IPvlbU3c81cr0F1eimk5s3tWS12xta87lY3vagyvXi/+a7BW+nWi/BUkkEgxrocSwFqae38DJrBIsTH7w/mDtJJBYIOSVcB+DJUTKVWo8szNbdJ09sRSdfXjIpZhkxePXEv2audvU34vIFr4KKaZ0Mv35sDp4yqWY3NGxz7eaykMutfi9UqwkXgUzNIiIiOo8u+Zvy+WVVxkWFdlWR5moJhNmaPgbuGpLOJFizwwNS+ZohJuaO+Fu7ljqes898Ztn+D40t7RYWsEdABDP0IAKClnlY6igTLfsgKdLzcxE4MVwRJXEXjOsnVd3E7zAVmVoCF9nrH0ZlgkGZm2GhlggxFivHlvjDOa+3MhYpYiIqE6TSCR630VsuYiMiIiIage7ftVr2LAhAODEiRP2PCxRjXJHkKER4C7+NLJrhoZgssiSq071AhpWj6KScCLNEQ28axSJ/j1mKCikVgMqM+/hK/mVAY3s4gL940AN978eQHoBDXntKyFAVJ+IBzSse51UCJoul1SIl5yy9mVY2NPZ2vcpsUBITciOcKnr709ERKT/nYvxDCIiojrPriWnevfuje+++w5vvPEGLl++jNatW2uyNgBgy5YtOH78uMXHnTBhgj2HSWSTHEGGhp9CPEND2EPDtoCG7u8WZWgItrW95JTu7/XxCli1PTI08o1kaKhVUP4101hYrtsUvKZmaFiK3zWprhKbQ7dXhoYmoGHDe4I2e2USir2/CYMl2mwOM5j5AlIf35+IiOobF4kEJVpvDMzQICIiqvvsGtCYO3cuNm/ejLt37+LTTz/VWadWqzF//nyLjymRSBjQoBolVxDQMD9Dw/pzCmvBWlLmSb/klPXjsHUstZNld1iF2rw/dGbRPRSVlyFbtOSUGu5/zQYWCAMazNAgqtFEMzSsPJbCYMkp4fGteyG2VyahaEDDSJSlOho8SyX1IIOQiIjs+p2LiIiIage7XrvWoUMHHDhwAP3794dcLodardYpzVL1u6X/iGoSYVNwfzdDAQ1BhoYNj2VhySmZBZM09s/QqGclp0TYI0MDANIL7hhsCq6U/xXQqCU9NIiokl0zNERKTqnV+q9A1r4MCzMJK9TW9VkSLzll3ZjMYc4I636wnYiIAJHvXMzQICIiqvPsmqEBAF26dMGuXbtQXl6O27dvo7i4GC1atIBEIsH//vc/tGrVyt6nJKpWZjcFF0ym2NIUXPi53JIyGhLBlbu2xgj1xlLnJ43E7jD7BDSu5OcYLDml6aEhyNDwcGGGBlFNJvaSaG1Ggl6GRoV4ONX6klP6yyrUxstFiREG7CVwfrC7JvTwICIixxN+FxGWxyUiIqK6x2HXz7m4uKBRo0YICwvTLAsJCUFoaKjF/4hqiuJyNQrLdD8lB5iboWHD1ULCq19tydCwNQtbr4dGnc/QEGkKbiCgoYb5JacA4EzuTZSLbK+GWtNDg03BiWoXseCF3TI0ytV6QWXA+p4UYk2zrXmvEpYidGR2BmBehoalQRkiIqqdmKFBtVl6ejokEgkkEgkSEhKcPRwyIDY2VvN3Isfav3+/5r7ev3+/s4eD6OhoSCQSnbltqhnsnqEh5t133wUABAUFVcfpiBzmjqDcFGC45JTcjvVchVf929JDw9YUDf2SUzYdrs6xJEPjaPafost1Sk7p9dComSWnbP3qyM+GVFeIPZStzWQTzdAQebLZM0PDmvcq4T7WZkeo1Gq7ZXYwQ4OIqH5gDw0iIiLrXbt2DceOHUNycjKOHTuGEydO4N69ewAq5/NjY2OdO0ADqjWgQVTbCctNKV0kcDNwKapdMzRsKTll5wwNlTBbxMFX4jqbWDaGsRrzKgum9o9kGQpoqB40BWcPDaJaxa49NAQBjQo1UCbyXmLt1WJik/7WvFcJS05Zm6FRpgIU4lUcdZkxxLr+3kRERJXs2beQiHTt378fffv2BQDs27cPkZGRzh0QkR3ExsbivffeA2Bd/8C65M8//6y12Sf8ukdkAWGGhqHsDEC/2apNPTRUwgwNC0pOCRfY+Hpd/0pO6TPWFLxCGPExIqu4QPz4ajWUBnposOQUUc0m9opobdaBsOQUANwXRrhh/Yc50QwNK94jhEEQsVJW5ii1Y+Fza8dARES1i/CtkhkaRERkLwkJCVCr1UhPT3f2UBxCO6AjkUjw0EMPoXfv3k4ckfmqJUNDW05ODo4cOYIrV64gPz8fFRX6JXyE3nnnnWoYGZFp5jYEB8TSn+2YoWFJySm799CwvvxV7WRhU3Cbiy8xQ4OoNrNnhoaw5BQAFIlEHKydu7dXDw39klPWjcfcgIY5WzFDg4iofmAPDSIiIut4eXnhgw8+QNeuXREREQE/Pz+dzKyarNoCGllZWZg1axZ++OEHlJeXW7QvAxpUUwgDGoYaggNi6c/Wn1f4udyWDA1bM+r0x2Lb8Wo60ZJTRjM07BHQqOyhoVKrUFhLMjT41ZGokti7gqMDGtYeX2zS35psQr0MDSsHVGrHSSj20CAiqh+E72W2fOciIiKqTwICAvDWW285exhWqZbr13Jzc9GzZ098//33KCsrg1qttugfUU2RY0HJKb0MDRtKaQgniyy58lRY6sTWZ5TwZkjr5aSRsQwN2/Pc1VDD3UWC++VleuuYoUFU+1jftFui915SJFJLw9oPc1KJRC8obc2VrfqlCK0bT6nppF0A5r2PiVTrIiKiOkiYbcgMDXK2Q4cO4YUXXkCbNm3g7e0NV1dXNGnSBMOGDcOXX36JvLw8s48VHR0NiURissZ9QkICJBIJJBKJwdI4e/fuxdNPP43mzZvD3d0dSqUSoaGh6NatG+bMmYO9e/dqtk1PT4dEItG5Srtv376ac1T9S0hIED3Xvn37MHHiRLRo0QJKpRLe3t7o1KkTXn/9ddy4ccPg7YiNjdUcGwDu3r2LBQsWIDw8HL6+vgbP+dNPP2Hs2LFo1qwZ3Nzc4Ovri4iICLz33nvIzc01et8BQEZGBmJiYtCiRQu4ubkhJCQEI0aMQGJiosl9rVV1H2vfpo0bN6J///4ICgqCu7s72rZti7lz55r1mCktLUVcXBz69u2LwMBAuLq6olGjRhgyZAi+/fZbqIyUxhY+zq5fv47Zs2ejdevWUCqVCAwMxNChQ/Hzzz9bdHsMCQsLg0QiQXR0tMnbJebo0aOYP38+IiMj0ahRI7i6usLb2xvt27fH9OnTce7cOdH9qp4nVf0zAOg9poXPIXOfg2fOnMHUqVPRqlUrKJVKeHl5oUOHDpg1a5bRclVi99vu3bsxfPhwNGrUCAqFAs2bN8f06dORkZFh7l1UL1RLhsbChQvxxx9/AAAGDBiA2bNno0uXLvD397e6kSWRM+iVnHI3XHJK2EPDlgZ19syKsD1Do36VnBLeXsD4ZJrY9pZSq1VQukhRUFakt85TzoAGUU0m1i/D2h4aQGWWhvbkjHjJKeuP7yKVoEIrImFN7XG7ZWjYsYeGrF4G24mI6h/9Mr/OGQdRUVERnn/+eaxbt05v3fXr13H9+nVs374d2dnZiI2NrdaxzZo1C//+97/1ll+9ehVXr17Fr7/+ioSEBNy+fdum8xQXF2PSpEn4/vvv9dadPXsWZ8+exbJly7Bu3ToMHz7c6LEuXbqEAQMGGJ0Mzs3NRVRUlE4wBgBKSkpw4sQJnDhxAnFxcdiyZQu6desmeoxffvkFw4YNw7179zTLMjMzsW3bNmzbtq3a/lbPP/88vvnmG51lFy5cwMKFC7FmzRrs2bMHbdu2Fd03PT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2HX9tVS0BjS1btkAikWDo0KHYunVrdZySyCEsKjklmEuxpSm4Xt8KCyZqhJsaK5dk1lgEt6PuzxlZ1kND+LeyhgoqKF0keg3BAcDTpWaWnGLNKSLDbEmHdZNJUFhmKqBh/fFdpECJVmaENcF3e/XQKDE3oGHGZszQICKqH4RBdHuUfyWylEqlwsiRI7F7924AQKtWrTBjxgxERERAqVQiMzMThw8fxoYNG6p9bP/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc+wmTZpoflar1YiKisL27dsBAMOHD8e4cePQokULSKVSHDt2DIsXL8bVq1cRFRWFQ4cOISIiwuC4o6KicP36dbz88ssYMWIE/Pz8cOnSJYSGhgKoDFr0798fKSkpkMlkGD9+PIYMGYLmzZujrKwMBw4cwGeffYasrCwMGTIEJ0+e1Oxb5erVq5pghlQqxdSpUxEVFQUfHx+cPn0aCxcuRGxsrNFx2kNcXBySk5PRtWtXzJo1C61atUJWVhYSEhKwYcMG3LhxAwMHDsTZs2fh5eWls29BQQH69euHK1euAABGjRqFyZMnIyQkBGlpaVi6dCmSkpJw8OBBDB8+HAcOHIBMJn5h7v379zF27FjcvXsXb775JoYMGQKFQoFff/0VH330ETIzM/HZZ5+hWbNmeOWVVxx6nxhSXl4OPz8/jBw5Er1790arVq3g4eGBGzduICUlBZ9//jlu376Nl156CW3btsXf/vY3zb6jRo1CREQE4uLisGzZMgCVmRVCjRs3Nns8cXFxmDdvHgAgMDAQb7zxBnr06IGKigokJiZi0aJFKCwsRHR0NBo0aIAhQ4YYPNaKFStw+PBh9OnTB9OmTUPr1q2Rl5eHNWvWYM2aNcjOzsbkyZNx5MgRs8dXl1VLQOPq1asAgJiYmOo4HZFDlKvUuFuiO2vjZ0EPDZW68up9a67UtVc5D8D2DA39puB1e9ZINJxh5E60S4bGXz00cu7rBjRkEikUsmprfeRQrCZIdZVYkNeWwK+wj4Y9e2gAVe9VNmZoqO2ToVFm1x4adjsUERHVYHoZGvyMaTa1SoWKghxnD6PayDwDIJE65gPC0qVLNcGM0aNHY926dVAodDPrhw4digULFiAzM9MhYzCkKogSGhqKQ4cOwdPTU2d9ZGQkYmJicOfOHc0yuVyOjh076mRsNG/eHB07djR4npUrV2L79u2Qy+XYunUrBg0apLO+W7dueO6559CrVy+kpqbi1VdfxcGDBw0e7+zZs9i5cycGDBigWdalSxfNz++//z5SUlLg6+uLxMREnXUA0LNnTzzzzDPo3r07MjMzMW/ePKxdu1Znm9dee02TmfHtt9/i6aef1qyLiIjA2LFj0atXLxw/ftzgOO0hOTkZQ4YMwZYtW+Di8uD7/uDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOhn4/fr1g6urK1auXImjR4/i5MmTCA8Pt3rcdUW1zIx5enqipKQEDRs2rI7TETlEXolKb3I7wM1wySmxyZRyFeBqeBeDbMmK0M/QsI09gyu1gSUBCrXa9PZ+ru7ILdUvJaVznL96aBSUlegs95S7skwfUQ0n9gy1JeDg5mJGQMP6w+tlMlhTe1wvQ8PqHhrmnducTEM2BSciqh+EF1exh4b5KgpycPHlINMb1hGtv8iCi7f9J2BVKhUWLVoEoDJjYc2aNXrBjCpSqdSiq7/t4ebNmwCAzp076wUztJkqRWSMWq3Gxx9/DACYOXOmXjCjip+fHxYtWoQhQ4bg0KFDuHTpElq1aiW6bXR0tE4wQ1tBQQG+/PJLAMCCBQv0ghlVQkND8fbbb2PGjBnYuHEj4uPj4eHhAaDyftm8eTMAYNiwYTrBjCpeXl6Ij4/H448/buTW206hUGDFihU6wYwqb731FjZs2ICzZ8/i66+/xgcffABX18qqDSUlJVi5ciUAoEOHDqLlsSQSCeLi4vDzzz8jJycHS5cuNRjQAIBp06bpBDOqhISEYPHixfj73/+OwsJCrF69GnPmzLHyFlvP1PPHx8cH77//PkaNGoWDBw8iJycHAQEBDhnLqlWrcP/+fQDAZ599phPMqBIeHo65c+di/vz5uH79uqbfi5jg4GB88cUXonM+c+bM0fytf/nlFwY0UE1NwTt16gQA+PPPP6vjdEQOkVOkO2MjlwKecsMTJmKTKdZ+wLYlK0K4pd2bgtfxOSOxiTNjk2kVauOXNz8e2MyMk6rgJtMvOcWG4EQ1n9jLsy09NNzMyNCwreSUcCLI8mPYr4eGeduZ8z5W14PtRERUiT00yNl+++03TbPeKVOmGA0aOENwcDAA4MCBA7h8+bJDznHu3DnNsaOiooxuqz1Zbqx0zjPPPGNwXVJSEu7evWvR+crKynDixAnN8n379qGiovLDp1hPhipdu3ZFhw4djJ7DVgMGDEBISIjoOqlUiokTJwIA7ty5g5SUFM26EydOaBqGR0dHGywl5e3tjXHjxgGo/FsZyxIydl+MHj0avr6+AODQhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqoyc+q5aAhrTpk2DWq3Gf/7zn+o4HZFD3CnRnWnxd5MZvVpe2BQcsL6PhjBDQ2bBM1cvoGFrU3DBxFVdb7wq3hTc+pJT5gQ0XGWVV1KIZWjUVLwWjqiSvTM09EtO6b+R2BIw0S/V4bweGqV2LTlVt9+biIiokl5gnnVNqZqdPHlS83OvXr2cOBJxVY2Ic3Jy0LFjR/zjH//AqlWr8Mcff9jtHNolmbp37w6JRGLwn3bApyp7RMzDDz9s1vmCg4ONnk+7pJD2+bR7Jwh7gwh17drV6HpbWXJ+7XGfPXtW87OpLBLt9dr7aXN1dcUjjzxi8BhyuVyTGSDWe6K63L59G/PmzUObNm3g5eWlKYfWqVMndOrUCUOHDtXZ1lGq7sfOnTsbLCMFAA0bNkRYWJjOPmIMNX2v4ufnBwDIz8+3cKR1U7UENMaNG4dnnnkGmzdv1uvWTlRb3CkyvyE4YKjklLUZGrq/W5ShIdjW1vmi+lZySjx4YSSgYWJqv2sD0wENuazyGMKAhkdNbQhORA/YuYeGOSWnbHkZtkeGhr16K5lbcsocdf29iYiIKumXTnTOOKj+0p4wrcqGqEn69euHpUuXwt3dHcXFxVi/fj0mT56MVq1aoUmTJnjxxRdtvoo9KyvLqv2qyvWIqZq8ddT5tHuGaPdUEOPo8vmWnF973JbchkaNGonup83f399glodwLIaO4WgnTpxA27Zt8dFHH+HixYtG+5sCQFGR8XLftqi6D0zd98CD+9/Y/SbsCyIk/asHUFVmUX1XLT00Dhw4gOeffx5paWl466238OOPP2L8+PFo27atyT8YANH6bUTV7U6x7ouGsYbggHiGhrVN6vQni8zf194tF+pbQMOSDA01gAqV8W9R7X0bwtNFgYLyEoPbuEr/Cmiw5BRRrSMVCS/YkkHh8KbgjuihwQwNIiKqJvqBeWZomEvmGYDWX1g3MVwbyTwdU0e/NoiJicHYsWPx3XffYffu3Th06BDu3r2L69evY/ny5YiPj8e8efPwwQcfWHV87QnWbdu2aa5GN8XYRLCxiXXt86WkpBi9Ol5bkyZNRJc7u0+lPc5fU47hSKWlpRg3bhxycnIgl8vx8ssvY+TIkWjdujX8/Pw05ZquXLmCli1bAoDJgIc91PT7ra6qloBGZGSkzh/4xIkTOrXrjJFIJCgvL3fU0IjMllMszNAwHrkWm9Aps/LqU70ggi0lp1D5om7ti65wgt/aK3FrC0v/YqYyNILcPdHcyx9ncg3XrXT566FVm0pOWUp4L9XtRxHVKw7O0Lhv54CGMPjuzB4aJeY2BTdjM0veJ4mIqPYSfueyY7JfnSeRSh3SJLu+adCggebnzMxMk2VjLFF1RbbKxEVzhYWFJo8VFBSEV199Fa+++ipUKhV+++03bN68GUuXLkVeXh7+9a9/4bHHHsPIkSMtHqd202VfX1+dMk+OoH2+wMBAg4EKY7QzQG7duiXa0Fl7vSOZOr72eu3m7do/37p1C61btzZ4DO1yW4YawOfk5KCiosJoMKlqLMJjVD1WAfs8XsXs3btX0z8iLi5OpzeFturKHvH390dmZqZZj4+q+9/QfU+Wq7ave2q12up/RDXBHUFAw99EhoZUItGbZLKmpqtardYrE2VLU3DAtn4Hek3B6/ikkdhrkLHXJWM9NDxcXKF0cUULL+NvYrUxQ4Ov1ESVxF4SbXmZFGZoFNu95JTu71ZlaAh2sTpDw47Z0y51PNhORESVhN+LmKFB1a1z586anw8cOGDXY3t5eQGApvGzIRcvXrTouFKpFJ07d8aCBQuwZ88ezfINGzbobGfuRZBVfRUA4NChQxaNxRr2OF+nTp00PycnJxvd1tR6W1lyfu1gkfbPv/76q9FjHDt2THQ/baWlpUbLj5WXl+O3334TPUbVYxUAcnNzDR7jzp07yMnJMTpWQ1JTUzU///3vfze4nXaPFTH2yqioug9SUlKMXoiflZWFP//8U2cfsl21ZGjs27evOk5D5FDCklOmAhpAZSmPUq3P1NbVJtdf5sySU7YEV2oj8QCF4S9KFWrDf+RANw8AQHNP4wENFwM9NDzlNTegQUSVxF4SHd0U3JYP5fbooaGXoeHgHhrmbGVtUIWIiGoX/cC8c8ZB9dcjjzyCpk2b4tq1a1i5ciVee+01ncbXtmjevDmAyibAFy5cQJs2bfS2KS0txaZNm6w+R+fOneHn54fc3Fy9Bspubm6an0tKDJdM7ty5M5o0aYKMjAzEx8fjlVde0dnX3vr37w+lUon79+/j888/x7hx4yz+PNy3b1/IZDJUVFRg9erVeOqpp0S3S05ONtrI2R527dqFzMxM0R4sKpUKq1evBlCZVaIdQOvSpQt8fX2Rl5eH1atXY/bs2TqZElXy8/M1war27dsb7fWyevVqnXNo27x5syZY0b9/f511fn5+mrEYCyh8//33Vl+4rh00KCws1AmiVFGpVFixYoXR4wgf11WlqizVv39/7N69G3l5efjxxx8xbtw40e2+/vprzW0W3m9kvWr5utenTx+b/hE5m0qt1svQCHA3XnIKsE9NV9GAhgWzY2Jb2nLhUoVg57reQ0M8nGFdhkaQW+UH2xZexuu3Vn0x08/QqDslp4jqKrGXRFt6aJgqOWVrqwi9iSArvmCwhwYRETkLe2iQs0mlUrz++usAgIyMDEyYMAGlpaWi26pUKty4ccPsY2vPhy1evFh0m9mzZ+P69esGj7F+/XqjjZGPHz+umaSuCqBU0Z74vnz5ssFjSKVSzJs3D0Bl/4IJEyYYDYDcu3cPS5cuNbjeFF9fX7z00ksAgMOHD2PWrFlGyxzdunULK1eu1FkWHBysKa+1detWvewUACgoKMC0adOsHqe5SkpKMG3aNNFmzwsXLsSZM2cAAJMnT9aZfFcoFJqyS2fPnsWCBQv09ler1XjppZc0waqq+82QZcuW4eDBg3rLb968iTlz5gCobF49ceJEvW2q+h9v2bJF9PFy4cIFvP3220bPb0yrVq00PyckJIhuM3fuXKSkpBg9jrmPa1MmTZqk6Qv92muviT4PT506hQ8//BAA0LhxY4waNcrq85GuasnQIKqt7pepcDGvDPmlar3AgjkZGnLBJmXWZGiIfCi3JIggNqdz4laJTlAk2EOGxp7mvRxkFN7HnbJMqKCCn0tDSCU+5g+mFlGr1UjNuymacWEooHHmdimuFIp/eAUAV4kSx2+VoLxc/0oCbRn3b0ClVtWqDI1r+eU4fkv8Q6sEQHMfF/ib6DtDVBfYO0PDTfCCf79M9/XH1ml7e5TquF2k++XL2mDCrcIKg68j2tLvme6tVteD7UREVEkYRD+bU4Yzt0vRyleud1EAkaPExMRg27Zt2L17NzZv3oxOnTphxowZiIiIgFKpxM2bN3H06FGsW7cO48ePR2xsrFnHDQ8PR/fu3XHkyBGsWLECpaWlmDhxInx8fHDp0iXEx8dj7969eOKJJ3D48GHRY7zxxht48cUXMXLkSPTu3RutW7eGh4cHcnJycPDgQXzxxRcAKptwC3sSNGvWTJN58emnn6JJkyZo06aNpsdCw4YNNVfJv/jii5rbv3HjRqSkpGDatGno2rUrfHx8cO/ePZw/fx779+/H1q1b4ebmZnJy3Zj3338fSUlJ+PXXX7FkyRLs378fU6ZMwaOPPgoPDw/k5uYiNTUViYmJ2LlzJzp16qR3+xYvXozdu3cjPz8f48ePR1JSEqKiouDt7Y3Tp09j4cKFuHjxIiIiIkyWMbJFREQEtm3bhh49emDWrFlo1aoVsrKysHr1anz//fcAKhuaiwUD3nnnHfz444+4cuUKYmNjcebMGUyaNAnBwcFIS0vD0qVLsX//fgBA9+7dMXXqVIPjCAwMhFKpxJNPPolZs2ZhyJAhUCgUOHbsGD788ENNMG7BggWiDd1nzJiBrVu3oqioCJGRkYiNjUV4eDgKCgqwZ88eLFmyBIGBgZDJZMjOzrb4fho4cCCCgoKQlZWF+fPnIz09HaNHj0aDBg3wxx9/YMWKFdizZw969OhhtBTZE088ofl51qxZeOuttxAcHKzJ8gkLC4OLi+n5scDAQCxatAgxMTHIyMhAly5d8Oabb+KJJ55AeXk5EhMTsWjRIhQUFEAikSA+Pt7sBvbV6eeff9bpsXL+/HnNz7/99ptO8MjT0xNRUVHVOTyDGNAgMuBGQTneOZKL/FL9yR2pBPBVmFFySiqB9jX+dsvQsPGz+Wcp9/SWPdvWE8NbKo3ut/bCVezIiUepurhyHHDByJxohAfZr/FZTfHm8e345Ox+A2vF/47xZ/Jx8b7hCH9GvisWHb+Lu+XG38R23zqGib+Uo6C89jQFT8ooRlJGscH1Mgkwp4sPOjesuUEZInsQz9Cw/njCgIZeHyN7Z2hYGHg/e7sUZ3PKjB7TXOfulOHcnbvW7SzADA0iovpBrMzhB7/mIdBdig+e8IMvL6ihaiCVSvHTTz9h4sSJ+OGHH3Dx4kW8+uqrdjn2N998gz59+mgmuKvKD1WZM2cOOnToYDCgAUBTkki4bxWFQoGvvvoKEREReuvmzZuHGTNmIC0tTa9h+KpVqxAdHQ2gsgTq+vXr8corr+Crr77C5cuX8c9//tPgmMQmxC2hUCiwe/duREdH48cff8SpU6eMBki8vb31loWFhWHr1q0YMWIE8vPzERcXh7i4OJ1t3nnnHUgkEocGNGJiYpCUlISEhAT84x//0FsfHByM//3vf/Dx0b+Y1MvLC3v27MHgwYNx/vx5bNq0SbQEWY8ePbB161ajDb+VSiV++OEHDB48GB999BE++ugjvW1mzpyJ2bNni+4/cOBAzJw5E59//jkyMjJEA2Rbt27F4MGDDY7BGA8PD6xZswajRo1CcXExli9fjuXLl+tsExkZiaVLlxrtVfHQQw9h3Lhx2LBhA3bt2oVdu3bprE9LS0NYWJhZY5oxYwby8vLw9ttv49atW5g1a5beNgqFAvHx8RgyZIhZx6xuCxcuRFJSkui6LVu2YMuWLZrfQ0NDa0xAgxWGiQxIyigWDWYAlcEMc0qICCdU7JehYf5EjbmlTjZfLjRZy/Dzc79qghkAUIFyfJumn45Y2xWXl2HJ74Zvl7GSU9dLLhlcp5C6AwA8ZKazWr69nIKLd3VrmHrU4pJTFWpge9p9Zw+DyOHEXnNtCmiYuLrUlnJWgO2lOnam6z+va0JDbvbQICKqH+QG3mSzi1Q4kmk664/IXpRKJTZu3Ii9e/fiueeeQ/PmzeHu7g5XV1c0bdoUw4cPx/Lly/Haa69ZdNy2bdsiJSUF06dPR2hoKFxdXREYGIhBgwZh+/btWLRokdH99+3bhyVLlmDMmDHo1KkTAgMD4eLiAm9vb4SHh2POnDk4d+6cJjAhNH36dGzatAkDBgxAUFCQ0SvX5XI54uLicOrUKbz88svo1KkTfHx8IJPJ4OPjg0cffRTPP/88fvjhB/z+++8W3Q9ivLy8sGnTJvzyyy944YUX0KZNG3h5ecHFxQX+/v547LHHEBMTgx07dmD37t2ix4iMjERqaqrO/duwYUMMHToUP//8M9577z2bx2mOVatW4bvvvkNkZCQCAgKgUCjQunVr/POf/0Rqairat29vcN+wsDCcOnUKS5cuRZ8+fRAQEAC5XI6GDRti0KBB+M9//oMDBw7A3994L0+gMlskJSUFM2fORMuWLeHm5oaAgAAMGjQIO3bswJIlS4zuv2TJEnz33Xfo3bs3vL294e7ujjZt2uDNN99ESkoK2rVrZ/F9o23gwIE4fvw4nn32WYSEhEAulyMwMBB9+vRBfHw89uzZAw8PD5PH+fbbb/HJJ59oMojEeo+Ya968eTh58iSmTJmCli1bwt3dHR4eHmjXrh1eeeUVnD9/HhMmTLD6+CROora2G4sB77//vj0PB6AyIkrOl5GRgaZNmwIArl27hiZNmjh5RI711al72GfgivPuwQq82tn0pPQbv9zRKY0x/WEvRDZ1t2gcV/PL8fqBOzrL1g4ONPvqU5VajWmJt3HPQHBG2/J+AUavYmqzPgEX7+s2xGrpFYA/ouaaNZba4lZRPhp9b/iDixRSzGz+BiQS4HqBbqmVQ3d/wvWSi6L79fAZjcaKyrqPe3O/w+2yDKPjkECiEzxZ1fPviG71mLk3w2GSMooQdyrf4v2aecmwqHdl/5CFx/JwMvtBea7xbT0wsqXpDx5ENV1RuQpTdt/WBLBdpMCK/g2gFNYgNFNucQWm78kxGEZt5y9HbHc/6wYLIP7MPey5+uC9blCYOyZ1MF4WT9tbh+7gjzzdElBzu/rg0UDj2VjLTt3DfiNZXbZ6+3FfdGxQe4PARERknusF5ZiddEd03eiHlPhHG/s0Z3YGa79/X7p0CeXl5XBxcdGpOU9ENUd6erqmZ4l2poszREdHY/Xq1QgNDUV6errTxkF1lyPel+xecio2NlZTd8xeGNAgZxCW9VC6SODtKkVzHxezJ3s85brPhYIyy+OHeYJm5F5yiUWlNKQSCV6P8MX6CwXILtI9Vtb9Cp1JsqwildGARoVI/PNqYR4qVCrIbIho1zRlKv1mXNpUUGFmZy+4SKT49vcCZBY+2N41X/8+CpAHorVHe4T7tNG8Pg6WD8XBO3tRqi5BuPfjuHL/As4VnNbZT5gJ4uPqZu1NsqseIW64ll+BbVcqr8wOdBfPWCquUONuyYPHnHYpG2GyktTmTgBENYO7ixRzuvhg8x/3oUblZIq1wQwA8HOTYVZnb2y7cl8vMN3US4aJ7c0PPogRZlOUWZihISxRFertgkfMCCQ8084TFWrgl+uVQY2GSstLgkglQGs/ORp7ynD4RgmKytVwd5GgdxM3dAioefVpiYjI/hp7umDGI174Ob0IV+7qBtgtLaNIREREtYNDemjYM+nD3sERInMJJ+8HhLrj6baWXeHj6ao7iVVgRc2pvBLdyXVfM5qRC7X2k+PtbvpX8L6yLwc37z84fnZRBVr7GZ4EEgtolKkqcP3+XTTztP4K4Zqm1ERAAwAC3dXwlLtgbldfneVXdrsgTSvx4uOIofhnp74iRwgAoB2Zfhx+a99GXmmRwXP6yGtGQMNFKsGz7TzxbDvjz4fkmyX49MSDevjaQULh+wTL3VNd8miQAo8G2a9fzOPBbng82DHPf2GsxdLJH+H7wsiWSrM+u3m7SvHSo9546VH9esbWYIYXEVH91aeJO/o0ccfy0/ew99qD7D9r+hcSERFRzWf3gMa+ffvsfUgipxBmaFjTiFsvQ8OMsk9CeSW6s0vmNCM3V6BSqhPQyLpveCJfrVZDZSBYeSU/p04FNExlaABAUUUZPOX6E5blat2/l4vE/L+Xq9T4Fco+rpaVK3M24XNGe+JT+P2SsWsi57C1h4YwAGKi5QcREZHD6L+nOWkgRERE5FB2D2j06dPH3ockcooKwQdgmRWXkHvK7ZGhIQxoWF6Ww5AgdxmAMs3v2UWGJ/LLVIBar1BQpSv5dxAZbLdhOV1phRkBjfIy0eXlKkFAw4JSXKYDGjUjQ8NcMsFN135OCedMmaFB5BzC5tkWZ2gInsyWlEQkIiKyJ+F7mlh2ORGRPaSlpaGwsNDi/fz8/NC4cWMHjIjqm8LCQqSlpVm1b5s2bSCX1+4SvQ4pOUVUFwizEayZo7FPySlHZmjoTqBnG8nQKFUJOzo8cCU/x25jqgmEGRrC5txAZYaGmHK17r4WZWjIjL8k17qAhiDtQvtLpfCxxClQIucQBiAsnfwpF2Yz1p12SkREVMsIP3syQ4OIHGXSpElISkqyeL+JEyciISHB/gOieic5ORl9+4qVNzctLS0NYWFh9h1QNWNAg8iAmlJyKrfYcQGNygyNB4RNw7WVVqj1JvWrpBXcsduYaoIyQVDC3cUFJRUVqNAqJ2V+hob5GTUmMzRqSA8Nc1mWocGQBpEzCJuC25yhwecyERE5iV7WITM0iKiGCgsLs2v/YVskJCQwyEK1DgMaRAYIr1IVXvFjDkeUnPJzZIZGUQVUarXo5HKZCoDBHhp1K6AhLDnlKnWBFFIUlJdolhnO0HBMDw03mYvJDI6aRu8qOTYFJ6px9EtO2dhDgxkaRETkJOyhQUTVZf/+/c4eAtVzkZGRNSYo5gz82klkgH4PDcuP4ekqyNAos/zF5q4goOFjz4CGu+6xylX6AZQqxjI06nrJKblUCncX3WCCQ3poyAwHNLxrWXYGoD+xqV3GTfgoYzyDyDlsnfwRXv3KHhpEROQsLoK3IEuD9ERERFQ7MKBBZIDw8689MjSKytUWfbAurVCjUFCg3M/Nfk9bX4UUgiEiy0AfjTKV4YBGVnEBCstKRNfVRqUq/QwNd5luwyRzMzRkFmVoGM7AqG39MwD9rItyIyWnWKWGyDmEgccyGzM0rCnPSEREZA/M0CAiIqofGNAgMkB41ak1F516yfV3KrQgS0MsW8KePTQkEgkChX007hvO0NBv5fxAXeqjIZ6hYWZAQ2VDU3AjJadqY0BDWEtfjQdZGsLMSF7UTeQcej00LIhnqNVqvX5TzNAgIiJnsbWMIhEREdUODGgQGaCfoWH5MTyE6Q+wrI+GMKAhlwJKYS61jYIEfTSyisQzNEpVMJihAdStPhplgrJRohka5eWi++r10LCk5JSxgIbc3ezj1BRiZdqqSrkJnwVSFp0icgoXwcuOJZM/wmAGwAwNIiJyHmFGvdj7FBEREdV+DGgQGSD8ACyz4qpTuUwChWB2p6DU+gwNX4UUEjvX5tHL0DAQ0Cgz0kMDANLqUECjVKUbrJBLpeaXnBL20LAkQ8NID43amKEhVqat6nnFpuBENYNehoYF5TnEtmWGBhEROQszNIiIiOoHBjSIDKgQfAC29qpTT7mwMbglGRq6wQV7lpuqEqjUPWa2gR4apSq1fp0gLXWpMbhohoaw5JShpuA2ZWjUrR4aYs+Zir8eQ+yhQVQz2DL5UyHyniA8HhERUXXR66HBeAYREVGdxK+dRAboZWhYG9Bw1X2aWRTQKBZmaBi+gt9aQWZmaJSayNC4UlB3Ahp2zdAwUkZKyHjJqVoY0BC5UltTcooBDaIawZbJH9EMDT6ZiYjISZihQUREVD8woEFkgEpw5ak1JacA/cbgtpacsrdAQQ+N20UqvdsOAGUmemjUpZJT+k3BZeY3BRdmaNTrpuD6y8qrmoILlvPNiMg5bJn8EdtWrHcOERFRdbCljCIRERHVHvzaSWSAvTI0hI3BLcnQyBUGNNzs/5QVZmhUqIE7xfpjNJmhkX9Hry9CbaVfckom0hTcUIaGbjDEopJTMmMlp+pGU3CVpoeG7nIpr+omcgpbJn/Emq2yhwYRETkLMzSIiIjqBwY0iAyoEEzqWDtH4+kq7KFhfYaGnwMyNLxcJRBWssoS6aNRplJD/7r6B4oqynCrKN/Oo3MO/ZJT+gGN4grdbao4LEOjNpacEglSVH2xFGYBMZ5B5Bz2ztAQy8wiIiKqDsKMerHAOxEREdV+DGgQGSBsdio2OWsOTxsyNO5WQ8kpiUSCQDP6aJRWqE1mYKQV1I2yU3oZGjILSk7p9dCovyWnxJuCV/7PklNENYMwo6JCrR9wNESs3wYTNIiIyFmEQXVmaBAREdVNnEMiMkCv5JSVzxZPK3toqNTqaumhAQBBgj4aWff1gy6memgAlWWn6gK9DA2JBSWn9DI0zG8KLjcS0PCuhRkaYhObbApOVLPIRd5WhBmKhggnilyklUFyIiIiZxAG6dlDg4iIqG5iQIPIAOGEq7UZGl6u1mVoFJSp9YIqjgpomJuhYazkFABcyc+x57CcRj9DwwXuLrr9LZihYZpEItHL0qjKfBI+v3hVN5FziPW8KDczQ0MY+LD2fZKIiMge9Moo1pH+fkRERKSLAQ0bSSQSs/5FRkba5Xzr1q3DgAED0KhRI7i5uSE0NBTPPvssjhw5Ypfj0wMVghlXq3toCEtOlZoX0BBmZwCAj6MCGoIMjWyRHhpiTcE9XFx1fq87AQ3d2y+XSs3K0FCr1aiwpYeGrG4FNAD9slOGSk7xqm4i5xDreWHuFa3CiSLhRBIREVF1EsvQMFUyl8iZ0tPTNXNGCQkJzh4OGRAbG6v5O5Fj7d+/X3Nf79+/39nDQXR0NCQSCcLCwpw9FBLgV89aoqioCEOHDsX48eOxe/du3Lp1CyUlJbh69SrWrl2Lnj174r333nP2MOsUvZJTVr53eQhLTpnZFDyvWHdGyctVInolrT0Eueu+FIhmaIiUnHrIu4HO73Wlh0apXkBDpOSUSIaGMJgBADKLmoK7GFxXG5uCA/rNGQ01BeebEZFziGZomFlzXBj4YENwIiJyJrH3ITYGJyIiEqdSqXDgwAHMmzcPkZGRaNSoEVxdXeHt7Y2OHTtixowZOH36tLOHKcrw7BlZZPr06ZgxY4bB9R4eHjYdf/LkydixYwcAoG/fvnjllVcQEhKCM2fO4MMPP8Tly5cRGxuL4OBgTJ061aZzUdWV9rrLhBOz5vIUlJy6X65GhUpt8nh5JbqT6o4qNwXoZ2jcLlKhXKXWmegqFfk28JBXAE7duaH5va700BBmaLhKzWsKLiw3Bdiz5JS72cepSYRfLDUZGiw5RVQjiGVVmJuhIcxkdFTQnYiIyBziQXpmEBJZa//+/ejbty8AYN++fXarPELkTLGxsZoLwut7Fl9YWBiuXbumt7ysrAypqalITU3F8uXLMWfOHCxcuLBGZSkxoGEnQUFB6Nixo0OOvXfvXnz//fcAgOHDh2Pz5s2Q/VWa5rHHHsOIESPQpUsXXL16FW+88QbGjh0LPz8/h4ylvhB7SbM2Q0PYFBwACsvV8HY1fsBcQckpPwcGNIIEPTTUAO4Uq3SahZep1FALMhBaegXo/J5ReBclFeVQyGr3S0tphRkZGiIlp8QyNCwqOWUgoCGXyuBWS+/TysDdg2dUVUBDeE/VoPdFonrFlh4a5YLNOGFERETOJPY+VNm/jR80iYjIcgkJCXW6HNyNG5UXKD/00EMYM2YMevTogZCQEBQVFWHfvn34v//7P+Tm5uKTTz6BTCbDhx9+6OQRP8CvnrXAp59+CgBwcXFBXFycJphRpUGDBvj4448BAHl5eVi5cmW1j7GuEbs61fqAhv7TzJw+GncFAQ0fheGr923lIZfAXXApfZagj4ZYDw1hySk11LhakOuYQVajMrWVGRpiAQ1LMjQMBC185G41KhJuCb0eGirxpuC189YR1X5i723WZmiwKTgRETmTi8j7kLnvaURERPVN165d8fPPP+PixYtYuHAhhg8fji5duqBnz554++23kZycjMDAQADAokWLcOXKFSeP+AEGNGq4/Px87NmzBwDQv39/NGnSRHS7p556Ct7e3gCAzZs3V9v46iphfX8AkFo5UeMqk0AYizCnj4awKbgjS05JJBIECrI0hH00ykR6aPgp3OEnKIV0pQ700dBvCm5ehoZoySk7ZGjU1obggJGm4HolpzgRSuQMEolE73lqdQ8NfqokIiInEi+jWL/LiRARERly+PBhDBw40OAFtC1btsQ777wDACgvL8dPP/1UjaMzjl89a7jk5GSUlpYCAPr06WNwO1dXV3Tr1k2zT1mZ/mQrmU+seZwtEzXCLA1zMjRyi6uv5BQABCkFjcFFMjSExbikkKKFoOzUlfwch4yvOglLTtmWoWF+Zk2dDGgIytlUGGoKzngGkdMIy06VmXk1q7A0FTM0iIjImcR6FArLIxI52qFDh/DCCy+gTZs28Pb2hqurK5o0aYJhw4bhyy+/RF5entnHio6OhkQiQVhYmNHtEhISIJFIIJFIkJ6eLrrN3r178fTTT6N58+Zwd3eHUqlEaGgounXrhjlz5mDv3r2abdPT0yGRSDT9M4DKXq5V56j6Z6gUz759+zBx4kS0aNECSqUS3t7e6NSpE15//XVNiRsxsbGxmmMDwN27d7FgwQKEh4fD19fX4Dl/+uknjB07Fs2aNYObmxt8fX0RERGB9957D7m5pitIZGRkICYmBi1atICbmxtCQkIwYsQIJCYmmtzXWlX3sfZt2rhxI/r374+goCC4u7ujbdu2mDt3rlmPmdLSUsTFxaFv374IDAyEq6srGjVqhCFDhuDbb7+FSuTiyyrCx9n169cxe/ZstG7dGkqlEoGBgRg6dCh+/vlni26PIWFhYZBIJIiOjjZ5u8QcPXoU8+fP12ti3b59e0yfPh3nzp0T3a/qeVLVPwOA3mNa+Bwy9zl45swZTJ06Fa1atYJSqYSXlxc6dOiAWbNmGXxOAuL32+7duzF8+HA0atQICoUCzZs3x/Tp05GRkWHuXWRX2q8Dly9fdsoYxNTOouw10MaNG7Fhwwakp6dDJpOhUaNGeOKJJxAdHa3zx7eU9hOxbdu2Rrdt27Ytdu3ahfLycly6dAnt27e3+rx1wR937+Fcrm62QKCbFxq6e5vc9/5fGRTFqkKUqIrgLQsweAX57eJCXC3IRVNPXwS6eYpu4yGXIkcrQJF2rxy+blLcKroHT7kCHi4KvX1yiquvKTgAnQyNYtV9HLyVAzfFg+yL9MICVKjLdfaRSiRo4eWPEzkPXliPZV/F4w2a6R2/tU8gPOUPbmduyX2o1GoEuHlYNE61Wo0r+Tlwd5Ejv6wEhWWlFu1vjuziAp3fxTI0CstLkXJb9w0lS7AfYGGGhsxAQENeiwMagqfNjcIKXLlbphc0ZECDyHnkUqBE6y3nWn65WUH8W4W671PM0CAiImdyEfk8mX63DIWCSL2PqxQB7o4r50v1U1FREZ5//nmsW7dOb93169dx/fp1bN++HdnZ2YiNja3Wsc2aNQv//ve/9ZZfvXoVV69exa+//oqEhATcvn3bpvMUFxdj0qRJmh6w2s6ePYuzZ89i2bJlWLduHYYPH270WJcuXcKAAQOMTgbn5uYiKipKJxgDACUlJThx4gROnDiBuLg4bNmyRXMBsNAvv/yCYcOG4d69e5plmZmZ2LZtG7Zt21Ztf6vnn38e33zzjc6yCxcuYOHChVizZg327NljcE4wPT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2Hb8pJSUlmp+FLRCciQENOxFGAP/44w/88ccfWLNmDUaNGoWEhAT4+PhYfFztCJyhclNVmjZtqvn52rVrFgc0TEX7MjMzLTqes31y6hhWXNaPID/kHo7OXk+a3D+18DBSCw8CALxk/rhdHANfhe7f8MNTe/BWyk7N7x9HDMU/O+kHsISNwddfKMCs5K24VnIBrhJ39PAZhUDXpnr7afN1c3BA468G4KmFh5BaeAi4DXxhIvgqk0jQ3FP3DTHhj+NI+OO43rYKmQs2RD6HEc06IOFSMl48sgmlFRVY0Hkg3nqkv1ljLCovw/DEb7An85J5N8pOxAIaxRXl6LLt3yb3taiHhtRADw1BWa/aRHil3PcXCvH9hUK97RjPIHKeygyNB1HG+DP5Vh1H7MpYIiKi6iKVVH6m1L5u5rOUe3rbDWvujufae1XbuGoqtUqN8vslpjesI1yUCkgc9FlFpVJh5MiR2L17NwCgVatWmDFjBiIiIqBUKpGZmYnDhw9jw4YNDjm/Mf/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc2ztOSq1Wo2oqChs374dADB8+HCMGzcOLVq0gFQqxbFjx7B48WJcvXoVUVFROHToECIiIgyOOyoqCtevX8fLL7+MESNGwM/PD5cuXUJoaCiAyknW/v37IyUlBTKZDOPHj8eQIUPQvHlzlJWV4cCBA/jss8+QlZWFIUOG4OTJk5p9q1y9elUTzJBKpZg6dSqioqLg4+OD06dPY+HChYiNjTU6TnuIi4tDcnIyunbtilmzZqFVq1bIyspCQkICNmzYgBs3bmDgwIE4e/YsvLx0X7sKCgrQr18/TW+DUaNGYfLkyQgJCUFaWhqWLl2KpKQkHDx4EMOHD8eBAwcMTkrfv38fY8eOxd27d/Hmm29iyJAhUCgU+PXXX/HRRx8hMzMTn332GZo1a4ZXXnnFofeJIeXl5fDz88PIkSPRu3dvtGrVCh4eHrhx4wZSUlLw+eef4/bt23jppZfQtm1b/O1vf9PsO2rUKERERCAuLg7Lli0DUJlZIdS4cWOzxxMXF4d58+YBAAIDA/HGG2+gR48eqKioQGJiIhYtWoTCwkJER0ejQYMGGDJkiMFjrVixAocPH0afPn0wbdo0tG7dGnl5eVizZg3WrFmD7OxsTJ48GUeOHDF7fPaQlJSk+bm6gynGMKBhI6VSiREjRqBfv35o27YtPD09kZ2djaSkJHz11VfIycnBTz/9pHlzk8vlpg+qJT//waSCp6f41f9VPDweXOleUKB/pbgp2gGRuuyPopNoq3wcSpnhTI1SVTF+Lzys+T2/4g7WXknGu+EPJt7vl5fi/VO7dfZ75+T/MKPtEzqZCADg5ao7qX27LAPXSi5UnktdhHP3j6CPqYCGo0tOuctQpirBuULzXxwlEoleySlDSirK8XbKzxjWtB2mHNqoKc8Ue3IXXm7XE95mlFXadf1CtQczAEAuleqVnDKXzA49NLzl+hk8tYVYw2ExrFRD5Dz2yqwQuzKWiIioukgkErhIzS+dWN+V3y/B6Q9/cvYwqs3D80ZB7umYzPelS5dqghmjR4/GunXroFDofocbOnQoFixYUO0XilYFUUJDQ3Ho0CG9eaXIyEjExMTgzp0H1S3kcjk6duyok7HRvHlzdOzY0eB5Vq5cie3bt0Mul2Pr1q0YNGiQzvpu3brhueeeQ69evZCamopXX30VBw8eNHi8s2fPYufOnRgwYIBmWZcuXTQ/v//++0hJSYGvry8SExN11gFAz5498cwzz6B79+7IzMzEvHnzsHbtWp1tXnvtNU1mxrfffounn35asy4iIgJjx45Fr169cPy4/gWb9pScnIwhQ4Zgy5YtcHF5ME07ePBgdOzYEe+88w6uXr2KBQsW4JNPPtHZ97333tMEM+bPn48FCxZo1nXp0gVjxozBc889h7Vr1+Lw4cOIj4/H9OnTRceRnZ2NvLw8JCYmonfv3prlXbt2xZgxY/D4448jIyMDb731FsaPH69pFl2dBg8ejPHjx0OpVOosDw8Px9ChQzFz5kz07t0bp0+fxrvvvqsT0PD19YWvry+CgoI0y4w9pk3Jzs7G66+/DgAICQnB0aNHdeZVe/TogREjRqBXr14oLCzE1KlTkZaWZnBe+PDhw5gyZQqWL1+u09OiX79+cHV1xcqVK3H06FGcPHkS4eHhVo/bEvfv39cERBUKBUaOHFkt5zUHiwPY6Pr161i3bh1eeOEF9OzZE48++iiefPJJfPDBB0hNTdU8yJKSkjQRQEsUFxdrfnZ1dTW6rfYbZlFRkcXnqk/uq4xffZpfkQsVdD8JZ9zXrb14qygfJRW6JZhKKspx4W623vHCvHVjh3nlutvklxtvpO0hl6Ch0rGpXS19XVCsKoAa5n8D6ODbEN2DQk1v+JdL927jTkmRTq+JcrUKv2ZfNWv/a4V5Zp/Lnjr6BaOZhy+8LSz91MIrAG4y8+PGHXwbiS5/NMD8KwRqmqZepm+/ixRopGR8nchZmnra5/lnzvOdiIjIkfheRNVNpVJh0aJFACozFtasWaMXzKgilUotuvrbHm7evAkA6Ny5s9GLZE2VIjJGrVbj448/BgDMnDlTL5hRxc/PT3NfHTp0CJcuGb5YMTo6WieYoa2goABffvklAGDBggV6wYwqoaGhePvttwFUlokvLHxQKeDmzZvYvHkzAGDYsGE6wYwqXl5eiI+PNzhGe1EoFFixYoVOMKPKW2+9pZl0//rrrzU9doHKLJWVK1cCADp06CBaHksikSAuLg4BAZUXoi5dutToWKZNm6YTzKgSEhKiKTVVWFiI1atXm3fj7Kxx48Z6wQxtPj4+eP/99wEABw8eRE6O43q8rlq1Cvfv3wcAfPbZZ6IXiYeHh2Pu3LkAKuePjTXVDg4OxhdffCHaoHvOnDman3/55RcbR26+N954A1evVs7XxcTEICQkpNrObQoDGjby9fU1uK5hw4b44YcfNNG3L774wuLju7k9mEDVfuESo13XzN3d8hI1165dM/pPOwWxNpBJpJBCBin0AwEySeUkqqF/Jeq7evsUles2gS4RNI6ucvGefkBjcHN3dAtWwE0m+ev4ugGVUnWRwbE0UsoQ84i3XtNWe/N3k2HEQ/pBs6r7UPtfA4U3Pn98FJp7BeBh/xB81GUIGrl7wVUq0/knF2QcFFWUIatYP5jkZWYGQoVavKufBBK9c9vjXwOFB/7ZMRJPhrSCq8wF/+n9NB7yamDWvh18G2JNr3+IvhkZ0tTTF8u6P4UmSh+4SmXwkiswvkU4prURr/dZGzzdxgMdA+RwNfD4DnKXIuYRb7jx0m4ip4nu4InWvi6QG3lfNPZPIQPCA10xppVlPZGIiIjsbVonL4R5uxh93zLUG5HIGr/99pumfPeUKVNMVtaobsHBwQCAAwcOOKyh77lz5zTHjoqKMrqt9mS5sdI5zzzzjMF1SUlJuHv3rkXnKysrw4kTJzTL9+3bh4q/5nTEejJU6dq1Kzp06GD0HLYaMGCAwYliqVSKiRMnAgDu3LmDlJQUzboTJ05oGoZHR0cbLCXl7e2NcePGAaj8WxnLEjJ2X4wePVozB+rIhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqowcR1u7dq0mANauXTt88MEH1XJec/HyBQdr0aIFnnzySezYsQN//PEHbty4YVFES7s+nqkyUtrRZmveRE316KhtlvX6G5b1qkwv8/l2Pu6VPch2ie3mhycaBhnaFZ+eOYeDgqzCgnLd+qIlKt3sjCoXRTI03F2kmNX5Qf+NZ5JKcU7rNahcXYZVA/zhasHV/I7QqYFujNNLrsC9Z/9lcr83H/4b3nz4b3rL80qK4Pfd2zrL0vL1s1GUZpZzUkE8oDGu+SP4PvJZs45hixHNOmBEM8d+mHmx7RN4se0TDj1HdfJzk+Htbn7OHgYRGdHIwwULelh/VR4REVFNEeYjx8e9+J5G1efkyZOan3v16uXEkYibMGEC1qxZg5ycHHTs2BEjR47EwIED0atXLzz00EN2OYd2Sabu3bubvV9V9oiYhx9+2KzzVQVsLD2fdu8EYW8Qoa5duyI1NdXs81jKnPNXOXPmjKbB+dmzZzXLH3/8caPHePzxxzVVY86ePSt6v7m6uuKRRx4xeAy5XI7w8HDs27dPtPdEdbl9+zY+++wzbNq0CZcuXYLawIWvVds6StX937lzZ6PtBRo2bIiwsDCkp6fr/M2EDDV9r+Ln54eCggKd1gSOsn//fjz//PMAKrO3Nm3aZNWF847EgEY1aN++PXbs2AGgMsXIkoCGdpAhIyPDaDOia9euaX6uL/0wzCW8CEdtYGK8SnqB/qR7Ybluhoyw3FSVS/dMv2CKlU7KLS1CQ3fnNqcrqtDNQhE2wraUj6sbZBIpKrRKTF3O10/5M/7XeKBCxYK4REREREREtnJRKvDwvFHOHka1cVE6pi+h9oSpJZPr1aVfv35YunQpXn/9dRQVFWH9+vVYv349gMryPcOGDcP06dONTmSbkpWVZdV+VeV6xPj5Gb4ozh7n0+4Zot1TQUzDhg2tOp+5LDm/9rgtuQ2NGj0ob629nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUlCPL8VfdB6bue6Dy/k9PTzd6vxkrpQVUZusA0GQWOcrx48cxYsQIlJSUwNPTEzt27KhRzcCrMKBRDSwpOSPUvn17zc/nz583um3VehcXF7Rq1crqc9ZFEuj+DUxNoP9ZmKu3rKDMvICGWMkpIbGARk5JofMDGoKyWtY2wq4ikUgQoFAiq/hBdtHle/pvPOYGKrQDIzrnsW54RERERERE9ZJEKnFYk2yqWWJiYjB27Fh899132L17Nw4dOoS7d+/i+vXrWL58OeLj4zFv3jyrS8poT7Bu27YNYWFhZu1nbCLY2MS69vlSUlKMXh2vzVBVElvm7OzBHuevKcdwpNLSUowbNw45OTmQy+V4+eWXMXLkSLRu3Rp+fn6ack1XrlxBy5YtAcBo9oa91PT7zRKpqakYNGgQ8vPzoVAo8NNPP5nM/nEWBjSqwblz5zQ/W9pA5bHHHoOrqytKS0uRlJSEN998U3S70tJSHD16VLOPuS/o9YXw5cXUi9qfBXl6y/QyNAyVnLqXDbVabfBFTaVW4fr9e3rL75Q4v5G7vTM0AKCBm4duQEMkQ8NQKSkhgz006tAbCBEREREREdUODRo00PycmZlpsmyMJaquyFaZuABQu/y4IUFBQXj11Vfx6quvQqVS4bfffsPmzZuxdOlS5OXl4V//+hcee+wxjBw50uJxVjWcBir7CVQ1sXYU7fMFBgZaVT5dOwPk1q1bRquc3Lp1y+LjW8LU8bXXazdv1/751q1baN26tcFjaJfbMtQAPicnBxUVFUaDSVVjER6j6rEK2OfxKmbv3r2a/hFxcXE6vSm0VVf2iL+/PzIzM816fFTd/4bu+5rg8uXLePLJJ5GTkwMXFxesX78e/fr1c/awDGJTcAdLS0vD7t27AQAtW7ZE48aNLdrfy8tL8wBKTEzUNJsS+vHHH3HvXuUk+ejRo20Ycd0knPA2VnJKrVbjzwKxDA1BDw0DGRp3S4uRXWy438mtogKUqfRTxO6UGE63rC7CDA1ze1sY00Ch2yRWLKBhKPPC3O0YziAiIiIiIqLq1rlzZ83PBw4csOuxq3qqVjV+NuTixYsWHVcqlaJz585YsGAB9uzZo1m+YcMGne3MvXAwPDxc8/OhQ4csGos17HG+Tp06aX5OTk42uq2p9bay5PzawSLtn3/99Vejxzh27JjoftpKS0uNNtEuLy/Hb7/9JnoM7f6/ubn682lV7ty5Y3a5KCHtPiZ///vfDW6n3WNFjL0uiK26D1JSUlBeLj4/CFSWSPvzzz919qlpMjIy0L9/f2RmZkIqlWL16tVWBTerEwMaNti2bZvRB+2tW7cwZswYlJZWXtk/Y8YMvW0SEhIgkUggkUgQGxsrepw5c+YAqHzxiImJ0auXdvv2bbzxxhsAKqPhhqKU9ZlehoaRbfNKi3QaiFfR76FhuG7dRSN9NMTKTQGVJaeczVEZGtquiGVomJkGaO52RERERERERI72yCOPaK7uX7lyJQoKDF/caKnmzZsDAPLz83HhwgXRbUpLS7Fp0yarz9G5c2dNtoKwgbKb24OSZCUluhd4Co9RlSURHx+P4mL9+RR76t+/v6bfwOeff25VWaG+fftqMhFWr15tcLvk5GSjjZztYdeuXcjMzBRdp1KpNOPz8/PTCaB16dIFvr6+ACpvg6HMiPz8fE2wqn379kZ7vRi7LzZv3qwJVvTv319nnZ+fn2YsxgIK33//vdVloLTnXw1leahUKqxYscLoccx9XJtSdR/k5eXhxx9/NLjd119/rbnNwvutJsjKykL//v2Rnp4OAPjqq68wfvx45w7KDAxo2ODll19GaGgoZs6ciXXr1uHIkSP47bffkJiYiPnz56Njx444efIkAKBnz56IiYmx6jx/+9vf8I9//AMAsHXrVjz55JPYunUrjh8/jlWrVqFbt264evUqAODjjz822jypvtLroWHkBVQsOwMACsp1X+hKDZScAoBLRvpoGApo1IQMjft27qEB6GdolIpkpxgqJaW/naEMDeZoEBERERERUfWSSqV4/fXXAVRe5TxhwgTNRa1CKpUKN27cMPvYffr00fy8ePFi0W1mz56N69evGzzG+vXrjTZGPn78uGaSuiqAUkV74vvy5csGjyGVSjFv3jwAlf0LJkyYYHSi+N69e1i6dKnB9ab4+vripZdeAgAcPnwYs2bNMlrm6NatW1i5cqXOsuDgYM0V6Fu3btXLTgGAgoICTJs2zepxmqukpATTpk0Tbfa8cOFCnDlzBgAwefJkTZ8IAFAoFJoLms+ePYsFCxbo7a9Wq/HSSy9pglVV95shy5Ytw8GDB/WW37x5U3OxtVKpxMSJE/W26d27NwBgy5Ytoo+XCxcu4O233zZ6fmO0ewUnJCSIbjN37lykpKQYPY65j2tTJk2apAmsvfbaa6LPw1OnTuHDDz8EADRu3BijRo2y+nyOkJeXh4EDB2oCpv/3f/+HKVOmOHlU5mEPDRvduHEDX3zxBb744guD24wZMwYrV67UeeGx1DfffIN79+5hx44d2LdvH/bt26ezXiqV4u2338bUqVOtPkd9Ymz63FBA4355GVRqFaSSyjigoZJTAHDxruUZGnW1h0aAm9LkNiqzS04Z6qFh0ZCIiIiIiIiI7CImJgbbtm3D7t27sXnzZnTq1AkzZsxAREQElEolbt68iaNHj2LdunUYP368weocQuHh4ejevTuOHDmCFStWoLS0FBMnToSPjw8uXbqE+Ph47N27F0888QQOHz4seow33ngDL774IkaOHInevXujdevW8PDwQE5ODg4ePKiZy5LJZHrVPpo1a4YmTZogIyMDn376KZo0aYI2bdpoMhsaNmyoKTX04osvam7/xo0bkZKSgmnTpqFr167w8fHBvXv3cP78eezfvx9bt26Fm5ubycl1Y95//30kJSXh119/xZIlS7B//35MmTIFjz76KDw8PJCbm4vU1FQkJiZi586d6NSpk97tW7x4MXbv3o38/HyMHz8eSUlJiIqKgre3N06fPo2FCxfi4sWLiIiIMFnGyBYRERHYtm0bevTogVmzZqFVq1bIysrC6tWr8f333wOobGguFgx455138OOPP+LKlSuIjY3FmTNnMGnSJAQHByMtLQ1Lly7F/v37AQDdu3c3OmcYGBgIpVKJJ598ErNmzcKQIUOgUChw7NgxfPjhh5pg3IIFC0Qbus+YMQNbt25FUVERIiMjERsbi/DwcBQUFGDPnj1YsmQJAgMDIZPJkJ1t+CJgQwYOHIigoCBkZWVh/vz5SE9Px+jRo9GgQQP88ccfWLFiBfbs2YMePXoYLUX2xBNPaH6eNWsW3nrrLQQHB2tKUYWFhcHFxfR0eWBgIBYtWoSYmBhkZGSgS5cuePPNN/HEE0+gvLwciYmJWLRoEQoKCiCRSBAfH1+j+h2XlJRg6NChmjJizzzzDPr37280I8nDw0Mv8OksDGjYYPXq1UhKSsKRI0dw5coV3L59G/fu3YOnpyeaNm2KJ554AhMnTkT37t1tPpe7uzu2b9+O7777DgkJCTh16hTy8vLQsGFD9OrVCy+99JJdzlNXWTLh/Weh4Xp/98vL4CmvDEyViGQaVLloRYZGjSg5JczQsEfJKUGGhhhmaBAREREREVFtJJVK8dNPP2HixIn44YcfcPHiRbz66qt2OfY333yDPn36aCa4hSWB5syZgw4dOhgMaACVV2GL7VtFoVDgq6++QkREhN66efPmYcaMGUhLS9Orqb9q1SpER0cDqOxLsH79erzyyiv46quvcPnyZfzzn/80OCaxCXFLKBQK7N69G9HR0fjxxx9x6tQpowESb29vvWVhYWHYunUrRowYgfz8fMTFxSEuLk5nm3feeQcSicShAY2YmBgkJSUhISFBU51FW3BwMP73v//Bx8dHb52Xlxf27NmDwYMH4/z589i0aZNoCbIePXpg69atRht+K5VK/PDDDxg8eDA++ugjfPTRR3rbzJw5E7Nnzxbdf+DAgZg5cyY+//xzZGRkiAbItm7disGDBxscgzEeHh5Ys2YNRo0aheLiYixfvhzLly/X2SYyMhJLly412qvioYcewrhx47Bhwwbs2rULu3bt0lmflpaGsLAws8Y0Y8YM5OXl4e2338atW7cwa9YsvW0UCgXi4+MxZMgQs45ZXTIzM3VeN9auXYu1a9ca3adPnz6aAJmzMaBhgz59+uikAFojOjpa8wZgjvHjx9eKWmY1jSUlp9INZGgAlX00NAENoxkatbPklF6Ghj1KTrmZDmiY2xvD3ObhRERERERERNVFqVRi48aN2LdvH1atWoWDBw/i5s2bqKioQMOGDfHoo49i2LBhePrppy06btu2bZGSkoJ//etf2LFjBzIzM+Hj44MuXbrg5ZdfxpAhQwyW3wGAffv2Ydu2bThw4AAuXryImzdvIjc3F0qlEi1btkS/fv0wffp0tGjRQnT/6dOno2HDhli+fDl+++033Llzx2AvWblcjri4OEyfPh0rVqzA/v37cfXqVRQUFMDT0xPNmzdHly5dMHjwYAwbNsyi+0GMl5cXNm3ahIMHD2L16tX45ZdfcOPGDRQVFcHb2xstW7ZE165dMXToUAwYMED0GJGRkUhNTcVHH32kuX/9/PwQERGBl19+GQMHDjQ7o8YWq1atwoABAxAfH48zZ86goKAAoaGhGDVqFN58802jpeXDwsJw6tQprFixAhs3bsTZs2dx7949+Pv7Izw8HM888wzGjx8PqdR014GIiAikpKTg008/xfbt23H9+nV4eHjgsccew8yZM00GI5YsWYJu3brhq6++wm+//YaysjI0a9YMo0ePxpw5cxAQEGDxfaNt4MCBOH78OBYuXIi9e/ciOzsbvr6+aN++PZ555hk8//zzmpL8xnz77beIiIjADz/8gAsXLiA/P99o2TJj5s2bh2HDhmHp0qXYu3cvbty4AalUimbNmmHAgAF49dVXzQ6QkPkkamu7sVC9k5GRoWl2de3aNU3Tp9qg0ffv4VZRvub3xIHT0C+klei2Y/auxo9/nhFddzlqLlp4Vb4Af3pmP14//l/R7dxkLih87kNNeSpt3f/7BY5m/6m3vF9wKyQOcnx9RmNmHNmEZeePaH6f3rY74rqPsemYO679jqGJXxvd5n8DpmBA4zYmjzX72Fb8X+oBveUTWnbB6t6WfTAkIiIiIiKqqaz9/n3p0iWUl5fDxcVFp+Y8EdUc6enpmtI92pkuzhAdHY3Vq1cjNDRU0xiayJ4c8b7EpuBULwgLEqmNdNEw1EMDAArKHjS2KjHSFLy4ohwZhXdF19XoDA0HlJwyp4eGuZkXhjI5JGyiQUREREREREREVOcxoEH1gn7JKcPbGgtoFJaXan42VnIKEO+jUa6qQGbRPdHta0IPjftO6qFha8kphjOIiIiIiIiIiIjqPgY0qF4QXsBvKEOjsKwEt40EFgrKLAhoiPTRuHH/nsHJ+zslRUaPVx2c1UPD1qbgREREREREREREVPexKTjVS4amz/8sNJydAQgyNFQVRre9eO+23jJD5aYAoKC8BKUV5XCVOe9pqRfQsEOGhrfcDS4SKcqNBCPMztBQseQUERERERERETlPWloaCgstr7Lh5+eHxo0bO2BEVN8UFhYiLS3Nqn3btGkDudz2+T5nYkCD6gX9klPiE+PGyk0BlUGHKqYyNC6JlJwyFtAAKvtoNFJ6G93GkYQ9NJR2yNCQSCRo4OaBm1pN2YXMzbwwXHKKAQ0iIiIiIiIicrxJkyYhKSnJ4v0mTpyIhIQE+w+I6p3k5GT07dvXqn3T0tIQFhZm3wFVM5aconrB3KbgpgIahdolpwRNwYPcPHV+v3jXsgwNALhT6tzG4I7I0ACAAIXxxuDsoUFERERERERE9UFYWBjUajXUajWio6OdOpaEhASo1Wqkp6c7dRxElmCGBtULwpJEhubP023I0OjkF4w9mZc0v6cV3NErIXWt8K7R4zu7j4ZeU3A7ZGgApvtomJuhYW7gg4iIiIiIiIjIEfbv3+/sIVA9FxkZabD6TH3ADA2qF8y9gt9khka54abgHf0a6fxeoVYhreCOzjJTGRo5xZbXYLQnR2VoNFAYD2iYn6HBHhpERERERERERET1FQMaVC/oZWhYWXKqwEjJqYbunggUZCJcEjQGr/Elp5yWocGSU0RERERERERERGQcAxpUL+j30BD3Z6FuQCNE0KBbN0OjQmedQuqC1t6BOssu3tVtDC4MaMgkuk/BOyV1s4eG6QwNNgUnIiIiIiIiIiIi4xjQoHpBOOEtVmeupKIcN+7f01nWwVe3jFRBmeEeGgqZC1r7CAIa97J1ts8qLtBZ31awvbN7aAgzNJQurnY5boDdMjTqb31AIiIiIiIiIiKi+o4BDaqXxKbFxcpBtfdtqPO7ToaGSj+g0cq7gc4y7QyNDJHjP+IfovN7TonzemiUqSpQLsiAqK4MDVubgrOFBhERERERERERUd3HgAbVC3o9NEQmxoX9M7zlbmgsKDlVYKQpuGjJKa0eGsKAiZdcgeae/jrLnFlySpidAQDuLi52OXYDN6XR9eY3BWfJKSIiIiIiIiIiovqKAQ2qF8zpoSEMaIR5+sFTrtBZVmgsoCGT6QU0rt+/i8K/ylRdK7yrs66phy/8FboT/c4sOSXsnwHUvAwNgwENxjOIiIiIiIiIiIjqPAY0qF7Q66EhEtJIL7ij83uopx88BD0kdHpoqPSbgj8kKDkFAH/k5wDQz9Bo6uGLAEFAw5klp8QzNOwU0DDRQ8P8DA320CAiIiIiIiIiIqqv7FNPhqiGE17Bf7e0GNmCBt2XtMpDAeIBjXtlJZr9hAEAhcwF7i5yNPXw1QlenLidgRClN/7I1z2+WIZGdnGh3riM3i5IEKBQ6pXUskRpRTnulhXrNUQH7JehEWAiQ+Numf7fQ0yxSBYJwJJTRERERERERERE9QEDGlQvCCe8Jx1cb3KfUA/9klNX8nMQtC5WdHuFrPLp1No7UCeg8fyhDcAh/e2bevjoBTSu379r8PiGhCi98UPfCegeFGbRfgDwf6kHMD9lJ+6LZGfIpTK4SGUWH1OMl+B+FJqf8jPmp/xs9fEZziAiIiIiIiIiIqr7WHKK6gVrEhjCvPQzNIxRSP8KaPjol50SU1lyynjmgjlu3L+H15P/a/F+d0ruY07yNtFgBmC/7AxAvym7vTn6+EREREREREREROR8DGhQvdDCM8DifR71b4xW3g3MLmfU0rvyHF0bNDP7+KGeflDaoU/FxXvZFu+Tln/HaO8KcwMzNUELL8v/vkRERERERERERFS7MKBB9cJHEUMQ5uln1rYKmQvefqQ/HvJugIbuXvioy2Cj2QruMjk+6jIEDd29AAB/b/4oRjbrYDAQIpfK8Gr7XnjUPwTuLnJ8/vgoeLoYL8lkiqEsC2NKKsoNrmvk7oXPHhthy5CqTb/gVpjc6jFnD4OIiIiIiIiIiIgcjD00qF54xD8EV6Lm4U7JfahgOCsBALxcFHDTypp44+G/YVaH3rhbViy6vY/cDa6yB08ldxc5fuo3CfllxSgWCRp4uijgrnX851s/jgkPRSCvtMjs2/N73i302blM8/v98jKo1WqLSi+VqHTH5q9Q4vxT/wQANFB4OLyM0+DGbbG2z3iUq1UW76uUyVGiqoCLRApvVzcHjI6IiIiIiIjIcdLT09G8eXMAwKpVqxAdHe3cAZGo2NhYvPfeewAAtZEqF2S7/fv3o2/fvgCAffv2ITIy0qnjiY6OxurVqxEaGor09HSnjoV0MaBB9YZEIkGAm3U9K1xlLgiUeVq0j5fcDV5mVpOSS2UIdDP/+HeVusEVNdQoqSjXCcSYIszQcJfJLRqDPfgJmqJbwvbuI0RERERERERERPVPVlYWdu7cieTkZKSkpCAzMxO3b99GaWkp/P398fDDD2PUqFGYMGECPDxq1iwcS04R1UJifTfuV1hWdkoY0FDIqje+qTaRKUNEREREREREzrF//35IJBJIJBLs37/f2cMhsovY2FjN47q+27p1K6Kjo/Hll1/iyJEjSE9PR0FBAUpLS3Hz5k3s2rULM2bMQIcOHXDixAlnD1cHMzSIaiGlzFVvWVF5GWBBKw5hOSyFVGbrsIiIiIiIiIiIiGq9hIQEJCQkOHsYDiORSNCqVStERkYiPDwcjRs3RnBwMIqLi/Hnn3/i22+/xf/+9z/8+eefePLJJ3H27FmEhIQ4e9gAGNAgqpVEMzTKSy06hrCHhpuRxudERERERERERERUN0ycOBHPP/+86LpevXrh2Wefxb///W/MmjULubm5+PTTT/HZZ59V8yjFseQUUS0kl8ogk+g+fWtbySkiIiIiIiIiIiKqfi4upucBX3rpJXh6Vvbb/eWXXxw9JLMxoEFUC0kkErgLMiosztDQC2hUb8kpdtAgIiIiIiKiuuTQoUN44YUX0KZNG3h7e8PV1RVNmjTBsGHD8OWXXyIvL8/sY0VHR0MikSAsLMzodgkJCZqeAOnp6aLb7N27F08//TSaN28Od3d3KJVKhIaGolu3bpgzZw727t2r2TY9PR0SiQR9+/bVLOvbt6/mHFX/DJXi2bdvHyZOnIgWLVpAqVTC29sbnTp1wuuvv44bN24YvB3C3gZ3797FggULEB4eDl9fX4Pn/OmnnzB27Fg0a9YMbm5u8PX1RUREBN577z3k5uYave8AICMjAzExMWjRogXc3NwQEhKCESNGIDEx0eS+1qq6j7Vv08aNG9G/f38EBQXB3d0dbdu2xdy5c816zJSWliIuLg59+/ZFYGAgXF1d0ahRIwwZMgTffvstVCqVwX2Fj7Pr169j9uzZaN26NZRKJQIDAzF06FD8/PPPFt0eQ8LCwiCRSBAdHW3ydok5evQo5s+fj8jISDRq1Aiurq7w9vZG+/btMX36dJw7d050v6rnyXvvvadZJnxMC59D5j4Hz5w5g6lTp6JVq1ZQKpXw8vJChw4dMGvWLIPPSUD8ftu9ezeGDx+ORo0aQaFQoHnz5pg+fToyMjLMvYvsysXFBW5ubgCA4uJip4xBDC/JJqqllC5yFJSXaH6/X25hhoZK2EODLwdERERERERElioqKsLzzz+PdevW6a27fv06rl+/ju3btyM7OxuxsbHVOrZZs2bh3//+t97yq1ev4urVq/j111+RkJCA27dv23Se4uJiTJo0Cd9//73eurNnz+Ls2bNYtmwZ1q1bh+HDhxs91qVLlzBgwACjk8G5ubmIiorSCcYAQElJCU6cOIETJ04gLi4OW7ZsQbdu3USP8csvv2DYsGG4d++eZllmZia2bduGbdu2Vdvf6vnnn8c333yjs+zChQtYuHAh1qxZgz179qBt27ai+6anp2Pw4ME4f/68zvJbt25h586d2LlzJ5YvX44tW7bA39/f6DiOHz+OoUOHIisrS7OsqKgIO3bswI4dOzB79mwsXrzYyltpu4SEBEyaNElveVlZGX7//Xf8/vvvWLFiBT7//HPMmDGjWsb00UcfYf78+XpBo3PnzuHcuXNYtmwZ4uPjMWHCBJPHmjt3LhYuXKizLD09HV999RU2bdqEpKQktGvXzq7jN2XPnj2a1wZDj0Fn4AwmUS0l7KNheYZGhc7vLDlFRERERERUP6jV6hp1ta2jubm5aa78tzeVSoWRI0di9+7dAIBWrVphxowZiIiIgFKpRGZmJg4fPowNGzY45PzG/Pe//9UEMx5++GFMnz4d7dq1g4+PD/Ly8pCamorExEQcO3ZMs0/jxo1x5swZJCcnY/LkyQCAb775Bo899pjOsZs0aaL5Wa1WIyoqCtu3bwcADB8+HOPGjUOLFi0glUpx7NgxLF68GFevXkVUVBQOHTqEiIgIg+OOiorC9evX8fLLL2PEiBHw8/PDpUuXEBoaCqAyaNG/f3+kpKRAJpNh/PjxGDJkCJo3b46ysjIcOHAAn332GbKysjBkyBCcPHlSs2+Vq1evaoIZUqkUU6dORVRUFHx8fHD69GksXLgQsbGxRsdpD3FxcUhOTkbXrl0xa9YstGrVCllZWUhISMCGDRtw48YNDBw4EGfPnoWXl5fOvgUFBejXrx+uXLkCABg1ahQmT56MkJAQpKWlYenSpUhKSsLBgwcxfPhwHDhwADID1Tnu37+PsWPH4u7du3jzzTcxZMgQKBQK/Prrr/joo4+QmZmJzz77DM2aNcMrr7zi0PvEkPLycvj5+WHkyJHo3bs3WrVqBQ8PD9y4cQMpKSn4/PPPcfv2bbz00kto27Yt/va3v2n2HTVqFCIiIhAXF4dly5YBqMysEGrcuLHZ44mLi8O8efMAAIGBgXjjjTfQo0cPVFRUIDExEYsWLUJhYSGio6PRoEEDDBkyxOCxVqxYgcOHD6NPnz6YNm0aWrdujby8PKxZswZr1qxBdnY2Jk+ejCNHjpg9Pmvl5+fj2rVr2LBhg07PDGf93cVwBpOollK6uOr8XmRpDw1hhgYDGkRERERERPVCcXEx/vOf/zh7GNXmueeeg7u7u0OOvXTpUk0wY/To0Vi3bh0UCoXONkOHDsWCBQuQmZnpkDEYUhVECQ0NxaFDhzS18KtERkYiJiYGd+7c0SyTy+Xo2LGjTsZG8+bN0bFjR4PnWblyJbZv3w65XI6tW7di0KBBOuu7deuG5557Dr169UJqaipeffVVHDx40ODxzp49i507d2LAgAGaZV26dNH8/P777yMlJQW+vr5ITEzUWQcAPXv2xDPPPIPu3bsjMzMT8+bNw9q1a3W2ee211zSZGd9++y2efvppzbqIiAiMHTsWvXr1wvHjxw2O0x6Sk5MxZMgQbNmyRaenweDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOsHXfv36wdXVFStXrsTRo0dx8uRJhIeHWz1uQ2JjY3XKcWmTyWRYsmQJevbsaffzWos9NIhqKf0MDRubgrPkFBEREREREZHZVCoVFi1aBKAyY2HNmjV6wYwqUqnUoqu/7eHmzZsAgM6dO+sFM7SZKkVkjFqtxscffwwAmDlzpl4wo4qfn5/mvjp06BAuXbpk8JjR0dE6wQxtBQUF+PLLLwEACxYs0AtmVAkNDcXbb78NoLI/RWFhoWbdzZs3sXnzZgDAsGHDdIIZVby8vBAfH29wjPaiUCiwYsUK0QbNb731lmbS/euvv0Zp6YPKHCUlJVi5ciUAoEOHDqLlsSQSCeLi4hAQEACgMvhmzLRp03SCGVVCQkI0paYKCwuxevVq826cnTVu3FgvmKHNx8cH77//PgDg4MGDyMnJcdhYVq1ahfv37wMAPvvsM51gRpXw8HDMnTsXQGXpuZ9++sng8YKDg/HFF1+IZpLNmTNH83N1N+bu168fzp49i5iYmGo9rykMaBDVUkqZboaG7U3BqzegoVazLTgRERERERHVXr/99pumWe+UKVOMBg2cITg4GABw4MABXL582SHnOHfunObYUVFRRrfVniw3VjrnmWeeMbguKSkJd+/eteh8ZWVlOHHihGb5vn37UPFXGW6xngxVunbtig4dOhg9h60GDBiAkJAQ0XVSqRQTJ04EANy5cwcpKSmadSdOnNA0DI+OjjZYSsrb2xvjxo0DUPm3MpYlZOy+GD16NHx9fQHAoQ3TLVFYWIj09HSkpqZq+rRoZ0CcOnXKYeeuug98fX3x1FNPGdzuhRde0NtHTFRUlMFgaJs2bTSvLVUZOfY2Y8YMnDlzBmfOnMHRo0exatUq9O3bF3v27MHf//53/Prrrw45r7UY0CCqpdxtzNAo1gtoiL/5EREREREREZG+kydPan7u1auXE0cirqoRcU5ODjp27Ih//OMfWLVqFf744w+7nUO7JFP37t0hkUgM/tMO+FRlj4h5+OGHzTpfcHCw0fNplxTSPp927wRhbxChrl27Gl1vK0vOrz3us2fPan5+/PHHjR5De732ftpcXV3xyCOPGDyGXC7XlDoS6z1RXW7fvo158+ahTZs28PLy0pRD69SpEzp16oShQ4fqbOsoVfdj586dDZaRAoCGDRsiLCxMZx8xphpu+/n5Aajsb+EIQUFB6NixIzp27IjHH38c0dHR2Lt3Lz744AOcPn0akZGR2LVrl0PObQ3WmCGqpZQyQUCjwsIMDUEPDTeZ4RdgIiIiIiIiqjvc3Nzw3HPPOXsY1cbNzc0hx9WeMK3KhqhJ+vXrh6VLl+L1119HUVER1q9fj/Xr1wOoLN8zbNgwTJ8+3ehEtilZWVlW7VdVrkdM1eSto86n3TNEu6eCmIYNG1p1PnNZcn7tcVtyGxo1aiS6nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUVFFRkcPGUnUfmLrvgcr7Pz093ej9ZqyUFlCZrQNAk1lUXd566y1s3boVx44dw5QpU3D58mXR8mjVzfkjICKr6DUFLy83sKU49tAgIiIiIiKqnyQSicOaZFPNEhMTg7Fjx+K7777D7t27cejQIdy9exfXr1/H8uXLER8fj3nz5uGDDz6w6vjaE6zbtm3TXI1uirGJYGMT69rnS0lJMXp1vLYmTZqILhfrWVCd7HH+mnIMRyotLcW4ceOQk5MDuVyOl19+GSNHjkTr1q3h5+enKdd05coVtGzZEkD1lDqv6febPYwcORLHjh3D1atXcezYMTzxxBPOHhIDGkS1lX5TcFt7aFRvySl20CAiIiIiIqLarEGDBpqfMzMzTZaNsUTVFdkqlcrodtrNrg0JCgrCq6++ildffRUqlQq//fYbNm/ejKVLlyIvLw//+te/8Nhjj2HkyJEWj7Oq4TRQ2U9Au8yTI2ifLzAw0GCgwhjtDJBbt26JNnTWXu9Ipo6vvV67ebv2z7du3ULr1q0NHkO73JahBvA5OTmoqKgwGkyqGovwGFWPVcA+j1cxe/fu1fSPiIuL0+lNoa26skf8/f2RmZlp1uOj6v43dN/XdIGBgZqf//zzzxoR0GAPDaJaSpihcb/Csh4awpJT1d0UnIiIiIiIiKg269y5s+bnAwcO2PXYXl5eAKBp/GzIxYsXLTquVCpF586dsWDBAuzZs0ezfMOGDTrbmXvleVVfBQA4dOiQRWOxhj3O16lTJ83PycnJRrc1td5WlpxfO1ik/bOphs3Hjh0T3U9baWmp0Sba5eXl+O2330SPUfVYBYDc3FyDx7hz547Z5aKEUlNTNT///e9/N7iddo8VMfbKqKi6D1JSUlBupGJKVlYW/vzzT519apvr169rftbug+NMDGgQ1VK2Z2jo1t2r7pJTauZoEBERERERUS32yCOPaK7uX7lyJQoKCux27ObNmwOobAJ84cIF0W1KS0uxadMmq8/RuXNnTbaCsIGydt+RkpISo8eoypKIj49HcXGx1eMxR//+/TX9Bj7//HOrygr17dtXk4mwevVqg9slJycbbeRsD7t27UJmZqboOpVKpRmfn5+fTgCtS5cu8PX1BVB5GwxlRuTn52uCVe3btzfa68XYfbF582ZNsKJ///466/z8/DRjMRZQ+P77760uA6UdNDCU5aFSqbBixQqjxzH3cW1K1X2Ql5eHH3/80eB2X3/9teY2C++32kClUum8xmgHA52JAQ2iWspd2BS83MIMDb2SU8zQICIiIiIiIjKXVCrF66+/DgDIyMjAhAkTUFoqfrGhSqXCjRs3zD52nz59ND8vXrxYdJvZs2frXD0ttH79eqONkY8fP66ZpK4KoFTRnvi+fPmywWNIpVLMmzcPQGX/ggkTJhidKL537x6WLl1qcL0pvr6+eOmllwAAhw8fxqxZs4yWObp16xZWrlypsyw4OFhTXmvr1q162SkAUFBQgGnTplk9TnOVlJRg2rRpos2eFy5ciDNnzgAAJk+erOkTAQAKhUJTduns2bNYsGCB3v5qtRovvfSSJlhVdb8ZsmzZMhw8eFBv+c2bNzFnzhwAlc2rJ06cqLdN7969AQBbtmwRfbxcuHABb7/9ttHzG9OqVSvNzwkJCaLbzJ07FykpKUaPY+7j2pRJkyZpAmuvvfaa6PPw1KlT+PDDDwEAjRs3xqhRo6w+nyOsWLHCaJNxlUqF1157TRPU69Wrl9k9chyNM5hEtZTNGRpOLjklQd1vnERERERERER1W0xMDLZt24bdu3dj8+bN6NSpE2bMmIGIiAgolUrcvHkTR48exbp16zB+/HjExsaaddzw8HB0794dR44cwYoVK1BaWoqJEyfCx8cHly5dQnx8PPbu3YsnnngChw8fFj3GG2+8gRdffBEjR45E79690bp1a3h4eCAnJwcHDx7EF198AaCyCbewJ0GzZs3QpEkTZGRk4NNPP0WTJk3Qpk0bTWZDw4YNNaWGXnzxRc3t37hxI1JSUjBt2jR07doVPj4+uHfvHs6fP4/9+/dj69atcHNzMzm5bsz777+PpKQk/Prrr1iyZAn279+PKVOm4NFHH4WHhwdyc3ORmpqKxMRE7Ny5E506ddK7fYsXL8bu3buRn5+P8ePHIykpCVFRUfD29sbp06excOFCXLx4ERERESbLGNkiIiIC27ZtQ48ePTBr1iy0atUKWVlZWL16Nb7//nsAlQ3NxYIB77zzDn788UdcuXIFsbGxOHPmDCZNmoTg4GCkpaVh6dKl2L9/PwCge/fumDp1qsFxBAYGQqlU4sknn8SsWbMwZMgQKBQKHDt2DB9++KEmGLdgwQLRhu4zZszA1q1bUVRUhMjISMTGxiI8PBwFBQXYs2cPlixZgsDAQMhkMmRnZ1t8Pw0cOBBBQUHIysrC/PnzkZ6ejtGjR6NBgwb4448/sGLFCuzZswc9evQwWopMu//DrFmz8NZbbyE4OFhTiiosLAwuLqbnxwIDA7Fo0SLExMQgIyMDXbp0wZtvvoknnngC5eXlSExMxKJFi1BQUACJRIL4+HizG9hXl6lTp+K9995DVFQUunXrhtDQUCiVSuTm5uLkyZNISEjA6dOnAQDe3t748ssvnTxiLWoiM127dk2Nyl7O6mvXrjl7OPVe3O+H1PjmNc2/XtuXWrT/oz8t1tl/zaXjDhppJe1z4ZvX1P1//sqh5yMiIiIiIqqtrP3+ffHiRfW5c+fUFy9edODoSKiwsFAdFRWl+ZsZ+vfuu+9q9klLS9MsX7Vqlehxf//9d3VQUJDB482ZM0e9atUqze9paWk6+4eGhpock0KhMHj+uLg4g/sJ9yktLVVPnz5dLZFITJ6zefPmeud69913NevNce/ePfVTTz1l8lwA1H379hU9xr59+9ReXl4G93vnnXcsHpc5hH/76Ohog2MIDg5Wp6amGj1W27Ztjd7+Hj16qHNyckT3nzhxohqAOjQ0VJ2cnKxu0KCBwePMnDnT6O2aOXOmwX2bNWumPnfunOYxOXHiRL399+3bp9l+3759eut//vlntZubm8FzREZGqs+ePWvyeTVu3DiDx9B+DmnfN4b861//UkulUqPPr9WrV4vua85rQBVj95u1zHnuAFC3a9dOfeLECavP44j3JZacIqqllDaWnCrWKzkls3lMRERERERERPWNUqnExo0bsXfvXjz33HNo3rw53N3d4erqiqZNm2L48OFYvnw5XnvtNYuO27ZtW6SkpGD69OkIDQ2Fq6srAgMDMWjQIGzfvh2LFi0yuv++ffuwZMkSjBkzBp06dUJgYCBcXFzg7e2N8PBwzJkzB+fOnUN0dLTo/tOnT8emTZswYMAABAUFGb1yXS6XIy4uDqdOncLLL7+MTp06wcfHBzKZDD4+Pnj00Ufx/PPP44cffsDvv/9u0f0gxsvLC5s2bcIvv/yCF154AW3atIGXlxdcXFzg7++Pxx57DDExMdixYwd2794teozIyEikpqbq3L8NGzbE0KFD8fPPP+O9996zeZzmWLVqFb777jtERkYiICAACoUCrVu3xj//+U+kpqaiffv2BvcNCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4eJg8zrfffotPPvlEk0EklVo/PT5v3jycPHkSU6ZMQcuWLeHu7g4PDw+0a9cOr7zyCs6fP48JEyZYfXxHOnHiBD744AMMGzYMHTp0QIMGDTSvD23btsX48eOxceNGnDp1Sqd/S00g+SsiQ2RSRkaGptnVtWvXNE2fyDk2pp3CuP3/0fzezicI5576p9n7t9j4IdIK7mh+39JvEkY062DXMWqTrJqj83u/4FZIHOT4epRERERERES1jbXfvy9duoTy8nK4uLjo1JwnopojPT1d07Nk1apVBgNK1SE6OhqrV69GaGgo0tPTnTYOqrsc8b7EDA2iWspd2EOjwsKm4E7uoUFERERERERERERkCQY0iGop/ZJTFjYFF5ackrLkFBEREREREREREdVcDGgQ1VJKF1ed3y3toVFSUaHzOzM0iIiIiIiIiIiIqCbjDCZRLaUUlJwqqiiDWq2GRCIxa3+9klPS6n05UIPte4iIiIiIiIiodklLS0NhYaHF+/n5+aFx48YOGBHVN4WFhUhLS7Nq3zZt2kAul5vesAZjQIOolhJmaKjUaijWvAnzwhlAmYoZGkRERERERERElpg0aRKSkpIs3m/ixIlISEiw/4Co3klOTkbfvn2t2jctLQ1hYWH2HVA14wwmUS0lzNAA9IMUlmBAg4iIiIiIiIjIscLCwqBW14yqFQkJCQyyUK3DGUyiWipA4QEPF1cUWtgMXIxcKkMjdy87jMqw3g1b4MCtK5rf53Ts49DzERERERERERHZ2/79+509BKrnIiMja0xQzBnYFJyollLIXPB++EBIzC4yZdjbj/SHp1xhh1EZtuixYZqgyehmHTEgpI1Dz0dERERERERERER1CzM0iGqx2R37YOJDEfizINfqYzT19EWgm6cdRyWua2Az/DHmTeSXlaChu5fZzcuJiIiIiIiIiIiIAAY0iGq9ADcPBLh5OHsYZvGQK+Dh4EwQIiIiIiIiIiIiqptYcoqIiIiIiIiIiIiIiGo8BjSIiIiIiIiIiIiIiKjGY0DDRsePH8f777+PAQMGoEmTJlAoFPD09ETr1q0xadIkHDx40C7niY2NhUQiMevf/v377XJOIiIiIiIiIqo9ZDIZAKC8vBwVFRVOHg0REdVnKpVK815U9f5kD+yhYYPevXvjl19+0VteWlqKS5cu4dKlS0hISMCECROwYsUKuLq6OmGURERERERERFQfKJVKlJSUAADy8vIQEBDg5BEREVF9VVBQALVaDQBwd3e323EZ0LDBjRs3AAAhISEYO3YsevXqhWbNmqGiogJHjhzB4sWLcf36daxZswZlZWX47rvv7HLeM2fOGF3fvHlzu5yHiIiIiIiIiGoPX19f5ObmAgCysrJQUVEBb29vKBQKSCQSJ4+OiIjqA5VKhYKCAty8eVOzzMvLy27HZ0DDBm3btsWHH36IMWPG6KXNdOvWDc899xx69OiBixcvYt26dXjxxRfRu3dvm8/bsWNHm49BRERERERERHWLm5sbfHx8cPfuXQBATk4OcnJyIJFI7Frug4iIyJCKigpNZgZQmZ3h4eFht+MzoGGD//73v0bXN2jQAIsXL8bw4cMBAD/88INdAhpERERERERERGKCg4Ph6uqK7OxszTK1Wo3y8nInjoqIiOojd3d3NGvWzK5ZggxoOFjfvn01P1++fNmJIyEiIiIiIiKiuk4ikaBBgwbw9vZGQUEBCgsLUVpaCpVK5eyhERFRPSCTyeDu7g4vLy94eHjYveQhAxoOVtWMC7BvN3ciIiIiIiIiIkNcXV3h7+8Pf39/Zw+FiIjIbqTOHkBdl5SUpPm5Xbt2djnmgAEDEBQUBFdXVwQFBSEyMhILFy7UNP4iIiIiIiIiIiIiIqprmKHhQCqVCgsXLtT8Pm7cOLscd/fu3Zqfs7OzkZSUhKSkJHz88cdISEjAyJEjrTpuRkaG0fWZmZlWHZeIiIiIiIiIiIiIyFYMaDjQ//3f/+HYsWMAgKeeegpdunSx6XidOnXCqFGj0LVrV4SEhKCsrAwXLlzA2rVrsWvXLuTl5WHMmDHYtm0bBg8ebPHxmzZtatP4iIiIiIiIiIiIiIgcRaJWq9XOHkRdlJSUhP79+6O8vBxBQUE4c+YMgoKCrD5eXl4efH19Da5fvnw5XnzxRQBASEgILl++DDc3N4vOYUmDlmvXrqFJkyYWHZ+IiIiIiIiITMvIyNBcdMjv30RERA8wQ8MBUlNTMXr0aJSXl8PNzQ0bN260KZgBwGgwAwCmTZuG5ORkfP3117hx4wY2bdqEZ555xqJzXLt2zej6zMxMdO3a1aJjEhERERERERERERHZAwMadpaWloYBAwYgNzcXMpkM33//PXr37l0t5542bRq+/vprAJUZIpYGNHjFBxERERERERERERHVVFJnD6AuuXHjBvr3748bN25AIpHgm2++sbpBtzXat2+v+fn69evVdl4iIiIiIiIiIiIiIkdjQMNObt++jSeffBJXrlwBAHzxxReYMGFCtY7Bkh4YRERERERERERERES1CQMadnD37l0MHDgQ586dAwAsXLgQMTEx1T6OqvMDlY3BiYiIiIiIiIiIiIjqCgY0bHT//n0MHToUKSkpAIC33noLb7zxhlPGsnz5cs3Pffr0ccoYiIiIiIiIiIiIiIgcgQENG5SWlmL06NE4dOgQAOCVV17BBx98YPFxEhISIJFIIJFIEBsbq7f+zJkz+OOPP4weIz4+HitXrgQANGrUCKNHj7Z4HERERERERERERERENZWLswdQmz399NPYtWsXAOBvf/sbnn/+eZw9e9bg9q6urmjdurXF5zlx4gReeOEF9O3bF4MHD0anTp0QEBCA8vJynD9/HmvXrtWMQyaTIT4+Hh4eHtbdKCIiIiIiIiIiIiKiGogBDRv8+OOPmp/37t2Lhx9+2Oj2oaGhSE9Pt+pcFRUVSExMRGJiosFtAgIC8PXXX2P48OFWnYOIiIiIiIiIiIiIqKZiQKMWGDJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7e3s4RIRERERERERERER2Z1ErVarnT0Iqh0yMjLQtGlTAMC1a9fQpEkTJ4+IiIiIiIiIqO7h928iIiJxbApOREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERET/3969R3ld1/kDfw4MMDDAQUELAvOCI2pmrMDq4l2jU1hEF9tuXgJ1rVhsXXUt827mWnnh7K5bYOa2kdlFS+P8CkVEEBFl21QQL2AqEiCgyG0Y+P7+4PBdxhmYGZhhvjM8HufMOZ/5ft6f9/v91Zee73yfn/f7AwCUvPLWngAAAABAU9W880re+Z9rsnnNy42+puKgz6Vy0IUtOCsAoCUJNAAAAIA2Z9VDo1Kz6k9NuqZTnyEtNBsAYE+w5RQAAADQpmzZuKrJYQYA0PYJNAAAAIA2pVCztrWnAAC0AltOAQAAAG1KYfP6Oq/1HHZbUtZxp9d12vdDLTQjAGBPEGgAAAAAbUqhZt27XilLt8PHpaysrFXmAwDsGbacAgAAANqUQk3tFRpl5V2FGQCwFxBoAAAAAG1KnS2nOnZtnYkAAHuUQAMAAABoU94daJQJNABgryDQAAAAANqUultOdWulmQAAe5JAAwAAAGhTrNAAgL2TQAMAAABoW94daJQLNABgbyDQAAAAANqUQs26Wr9boQEAeweBBgAAANCm1H2GhkADAPYGAg0AAACgTfEMDQDYOwk0AAAAgDZFoAEAeyeBBgAAANCm1N1yqlsrzQQA2JMEGgAAAECb8u4VGrFCAwD2CgINAAAAoE2ps+WUh4IDwF5BoAEAAAC0KYWadbV+9wwNANg7CDQAAACAtqXOMzQEGgCwNxBoAAAAAG1KnS2nrNAAgL2CQAMAAABoUwQaALB3EmgAAAAAbUrBllMAsFcSaDSjV155JRdffHEGDRqUysrK7Lvvvhk6dGhuvvnmrFu3ruEOGmnKlCkZPXp0+vfvny5duqR///4ZPXp0pkyZ0mxjAAAAQKmqu0KjWyvNBADYk8pbewLtxe9+97t86Utfyttvv118bd26dZk7d27mzp2biRMn5sEHH8zAgQN3eYwtW7bk/PPPz6RJk2q9/vrrr+f111/Pfffdl7Fjx+Y///M/06GDrAoAAID2qU6gYYUGAOwVfOvdDObNm5fPfe5zefvtt9O9e/fccMMNmTVrVh566KGcd955SZKFCxdm5MiRWbNmzS6P861vfasYZgwePDiTJ0/OnDlzMnny5AwePDhJMnHixFxxxRW7/6YAAACgRBVq3rULgmdoAMBeoaxQKBRaexJt3YknnpgZM2akvLw8jz76aI477rha52+++eZceumlSZKrrroqV199dZPHWLhwYY488sjU1NRkyJAhefTRR9O16/99YFu3bl1OOumkzJ07N+Xl5Zk/f/5urQapz2uvvZYBAwYkSV599dX079+/WfsHAACAxnjj7opky8bi773PmJPOfYa24oyal7+/AaB+Vmjspjlz5mTGjBlJkjFjxtQJM5Lk4osvzuGHH54kue2227Jp06Ymj3PrrbempqYmSTJhwoRaYUaSdOvWLRMmTEiS1NTU5JZbbmnyGAAAAFDqCoUttcKMJCmzQgMA9goCjd103333FY/PPffcett06NAhZ511VpJk9erVmTZtWpPGKBQKuf/++5MkgwYNyrHHHltvu2OPPTaHHXZYkuT++++PxTcAAAC0O5s31HlJoAEAewcPBd9Njz32WJKksrIyxxxzzA7bnXTSScXjmTNnZsSIEY0eY9GiRVmyZEmdfnY0zvPPP5/XX389ixcvzkEHHdTocdqb6g0b8+pLz7T2NAAAAGhGhZq1eXv9YbVeW/vSyynrvLrBawcc8oF0rujSQjMDAFqaQGM3zZ8/P0kycODAlJfv+B/noEGD6lzTWM8991y9/TRmnKYEGq+99tpOz7/xxhuN7qsULJr735n+XE1rTwMAAIDm1vGfav/+5KIkixq87LQkhxy545sRAYDSJtDYDRs2bMiKFSuSpMEHdO2zzz6prKzM2rVr8+qrrzZpnO2DhobG2fbQsCRNHmf7a9uDzWuXJNm/tacBAAAAAEAz8AyN3bBmzZricffu3RtsX1lZmSR55513WmycbWPsyjgAAAAAAFCqrNDYDRs2/N+DyDp37txg+y5dtu7TuX79+hYbZ9sYuzJOQys63njjjQwbNqxJfQIAAAAAQHMQaOyGioqK4nF1dXWD7Tdu3Jgk6dq1a4uNs22MXRmnoe2s2poDjjguf7fp/7X2NAAAAGghHbv2Taf3DE9ZWcdGtR9wyAdaeEYAQEsSaOyGHj16FI8bs73T2rVrkzRue6pdHWfbGLsyTnvTfcBp+cCA01p7GgAAAAAANAPP0NgNFRUV6d27d5LaD+6uz6pVq4phQ1Mfvr39yomGxtl+26j29pBvAAAAAAD2XgKN3XTEEUckSV588cXU1NTssN2CBQuKx4cffvgujfHufpp7HAAAAAAAKFUCjd10/PHHJ9m61dNTTz21w3bTp08vHg8fPrxJYxx00EHp169fnX7q8+ijjyZJ3ve+9+XAAw9s0jgAAAAAAFCqBBq76ZOf/GTx+Mc//nG9bbZs2ZK77747SdKrV6+ccsopTRqjrKwso0aNSrJ1Bcbs2bPrbTd79uziCo1Ro0alrKysSeMAAAAAAECpEmjspmHDhuWEE05IkkyaNCmPP/54nTbf//73M3/+/CTJ+PHj06lTp1rnH3nkkZSVlaWsrCznnHNOveNcdNFF6dixY5Jk3LhxWb9+fa3z69evz7hx45Ik5eXlueiii3bnbQEAAAAAQEkRaDSD2267LV27dk1NTU1GjBiRG2+8MbNnz860adNywQUX5NJLL02SVFVV5eKLL96lMaqqqnLJJZckSebOnZvhw4fnnnvuydy5c3PPPfdk+PDhmTt3bpLkkksuyaGHHto8bw4AAAAAAEpAeWtPoD0YPHhw7rnnnnzpS1/K22+/nW9+85t12lRVVeXBBx9Mjx49dnmcG264IcuWLcudd96ZefPm5e///u/rtBkzZkyuv/76XR4DAAAAAABKkRUazeTjH/94/vd//zff+MY3UlVVlW7duqVXr14ZMmRIbrrppsybNy8DBw7crTE6dOiQSZMm5cEHH8yoUaPSr1+/dO7cOf369cuoUaPy+9//PhMnTkyHDv61AgAAAADQvpQVCoVCa0+CtuG1117LgAEDkiSvvvpq+vfv38ozAgAAgPbH398AUD+38gMAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACWvvLUnQNtRU1NTPH7jjTdacSYAAADQfm3/N/f2f4sDwN5OoEGjLV++vHg8bNiwVpwJAAAA7B2WL1+eAw88sLWnAQAlwZZTAAAAAABAySsrFAqF1p4EbcOGDRvy5z//OUmy3377pby89Bf4vPHGG8XVJHPmzEnfvn1beUaw69Qz7Yl6pr1R07Qn6pn2pK3Wc01NTXGXhKOOOioVFRWtPCMAKA2l/400JaOioiJDhw5t7Wnssr59+6Z///6tPQ1oFuqZ9kQ9096oadoT9Ux70tbq2TZTAFCXLacAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5AAwAAAAAAKHllhUKh0NqTAAAAAAAA2BkrNAAAAAAAgJIn0AAAAAAAAEqeQAMAAAAAACh5Ag0AAAAAAKDkCTQAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5Ag3brlVdeycUXX5xBgwalsrIy++67b4YOHZqbb74569ata+3psZebO3durr322owYMSL9+/dPly5d0r1791RVVeXcc8/NY4891qT+pkyZktGjRxf76t+/f0aPHp0pU6a00DuAxrnssstSVlZW/HnkkUcavEY9U2r+8pe/5KqrrsqQIUOy3377paKiIgMGDMgJJ5yQK6+8Ms8888xOr1fTlILq6upMnDgxH/nIR9K3b9/iZ4/DDjss5557bmbNmtWoftQzLWnZsmV54IEHcuWVV+ajH/1o+vTpU/wMcc455zS5v+ao15qamtxxxx054YQTst9++6Vr16455JBDcsEFF+TZZ59t8pwAgN1UgHbot7/9baFnz56FJPX+VFVVFV544YXWniZ7qRNOOGGHtbn9z1lnnVXYuHHjTvvavHlzYcyYMTvtZ+zYsYXNmzfvoXcH/2fevHmF8vLyWvU4bdq0HbZXz5Si22+/vVBZWbnTuhw/fny916ppSsXixYsLRx55ZIOfPcaNG1fYsmVLvX2oZ/aEndXX2Wef3eh+mqtely9fXhg6dOgO++jSpUvhRz/60W6+awCgKazQoN2ZN29ePve5z+Xtt99O9+7dc8MNN2TWrFl56KGHct555yVJFi5cmJEjR2bNmjWtPFv2RkuWLEmS9OvXL+PHj88vf/nLzJkzJ48//nh+8IMf5H3ve1+S5O67727wTrRvfetbmTRpUpJk8ODBmTx5cubMmZPJkydn8ODBSZKJEyfmiiuuaLk3BPXYsmVLzj///NTU1GT//fdv1DXqmVJz/fXX5x//8R+zdu3aVFVV5eabb84jjzySefPmZerUqbn55pvzd3/3d+nQof6P1GqaUrBp06aMHDmyeCf5Bz/4wdx11115/PHH84c//CFXXnllKisrkyQTJkzITTfdVG8/6pk97YADDsiIESN26drmqNfNmzdn9OjRefLJJ5Mkn/rUpzJlypQ88cQTuf3227P//vtn48aNueCCC6xQAoA9qbUTFWhu2+5+Ly8vL8yaNavO+X/9138t3lFz1VVX7fkJstcbOXJk4Z577inU1NTUe3758uWFqqqqYp1Onz693nbPP/988e73IUOGFNatW1fr/Nq1awtDhgwp/vdgVRJ70i233FJIUhg0aFDh8ssvb3CFhnqm1EydOrXWirnq6uodtq1vNZ2aplTce++9xVo+7rjj6v38MXfu3EKnTp0KSQq9evUqbNq0qdZ59cyecuWVVxZ+97vfFZYuXVooFAqFRYsWNXmFRnPV66RJk4pjf/WrX61z/oUXXijuCjBw4MA6/90AAC3DCg3alTlz5mTGjBlJkjFjxuS4446r0+biiy/O4YcfniS57bbbsmnTpj06R3jggQdy5plnpmPHjvWe79OnT77//e8Xf//lL39Zb7tbb701NTU1SbbeUdm1a9da57t165YJEyYk2br37y233NIc04cG/eUvf8m3v/3tJMkdd9yRzp07N3iNeqaUbNmyJRdeeGGS5Oijj86kSZPSqVOnHbavr8bVNKVi+2djXH755fV+/jjmmGNyxhlnJElWr16d+fPn1zqvntlTrrnmmpxxxhl5z3ves8t9NFe9fu9730uS7Lvvvrn55pvrnB84cGAuv/zyJMmLL76Y3/zmN7s8ZwCg8QQatCv33Xdf8fjcc8+tt02HDh1y1llnJdn6B9u0adP2xNSgSU455ZTi8UsvvVTnfKFQyP33358kGTRoUI499th6+zn22GNz2GGHJUnuv//+FAqFFpgt1Pa1r30t77zzTs4+++ycdNJJDbZXz5SaP/zhD3nhhReSbH2wfXl5eZOuV9OUkurq6uLxwQcfvMN2hxxySL3XqGfakuaq14ULFxaDvTPPPDPdunWrt5/tt4cVaADAniHQoF157LHHkiSVlZU55phjdthu+y/YZs6c2eLzgqbauHFj8bi+OykXLVpUfBZHQ18Ybzv/+uuvZ/Hixc03SajHL37xizzwwAPZd999i3c2NkQ9U2ruvffeJElZWVnxrvUkWblyZV544YWsXLlyp9eraUrJti9tk+Tll1/eYbttN1CUlZXl0EMPLb6unmlLmqtet/1d2VA/733ve1NVVZXE35UAsKcINGhXtt1FM3DgwJ3eTTlo0KA610ApmT59evF42xZp23vuueeKx9vXc33UO3vK6tWrM378+CTJTTfdlD59+jTqOvVMqZk9e3aS5MADD0yPHj3ys5/9LEcddVR69+6dqqqq9O7dO4cddli+973v1Qqgt1HTlJLPf/7z6dmzZ5Kt/2/evHlznTbz5s3Lgw8+mCT5whe+UGyfqGfaluaq113p59VXX83atWsbPVcAYNcINGg3NmzYkBUrViRJ+vfvv9O2++yzTyorK5Ns/eAJpWTLli357ne/W/z9zDPPrNPmtddeKx43VO8DBgwoHqt3WtKll16apUuXZvjw4RkzZkyjr1PPlJItW7ZkwYIFSbY+02j8+PH54he/mGeeeaZWu4ULF+aSSy7JqaeemtWrV9c6p6YpJX369Ml//dd/pVu3bpk5c2aGDh2au+++O7Nnz87UqVNzzTXX5KSTTkp1dXX+5m/+ptZzvBL1TNvSXPW6K/0UCoVa1wEALUOgQbuxZs2a4nH37t0bbL8t0HjnnXdabE6wK2655ZbMmTMnSfKpT32q3u3TmlLv22o9Ue+0nBkzZmTixIkpLy/PHXfckbKyskZfq54pJW+99Va2bNmSJPnzn/+c22+/PX379s1Pf/rTrFy5MuvWrcv06dOL+7LPmjUrX/nKV2r1oaYpNZ/4xCfy1FNPZezYsfmf//mfnH322TnuuOPy4Q9/OFdffXW6deuWW2+9NTNmzKjzMGb1TFvSXPWq7gGgdAk0aDc2bNhQPO7cuXOD7bt06ZIkWb9+fYvNCZpq+vTp+Zd/+Zckyf7775//+I//qLddU+p9W60n6p2WUV1dnfPPPz+FQiHf+MY38oEPfKBJ16tnSsn224Vs2LAh3bp1y7Rp0/LFL34x++yzT7p27ZoTTzwxDz/8cI4++ugkWx8E+8QTT9S6bhs1TSmorq7O3XffvcOHdf/1r3/NT3/600ydOrXOOfVMW9Jc9aruAaB0CTRoNyoqKorH1dXVDbbftud1165dW2xO0BTPPvtsRo8enZqamlRUVOTee+/N/vvvX2/bptT79vu7q3dawne+850sWLAgBxxwQK666qomX6+eKSXb12OSjB07ttZDlbfp2rVrbrjhhuLv99xzT719qGla29q1a3P66afnxhtvzMqVK3PppZdm/vz52bhxY95666384Q9/yPHHH5+5c+fmk5/8ZH7wgx/Uul4905Y0V72qewAoXQIN2o0ePXoUjxuz1HfbHZiN2Z4KWtqiRYsyYsSIrFq1Kh07dszPf/7znHjiiTts35R63/5uY/VOc1uwYEFuvPHGJMmECRNqbbvQWOqZUrJ9PSbJiBEjdtj2tNNOS3l5eZLkySefrLcPNU1ru/rqqzNjxowkyaRJk3LTTTdl0KBB6dy5c3r27JkPf/jDmTZtWk455ZQUCoVccskl+dOf/lS8Xj3TljRXvap7AChd5a09AWguFRUV6d27d958880GH8a2atWq4gfP7R8GB61hyZIlOf3007NkyZKUlZXlzjvvzKhRo3Z6zfYPJ2yo3rd/yKF6p7ndcsstqa6uzsEHH5x169bl5z//eZ022z9M+eGHH87SpUuTJB//+MdTWVmpnikpXbp0yX777Zfly5cn2XmdVVRUpE+fPlm6dGmxfeL/0ZSOQqGQO++8M0lSVVWVs88+u9525eXlue6663L88cdny5Ytueuuu3LLLbckUc+0Lc1Vr+/up0+fPg32U1ZW1uADxAGA3SfQoF054ogjMmPGjLz44oupqakp3jX5bgsWLCgeH3744XtqelDHihUr8uEPfzgvv/xykq13uJ911lkNXnfEEUcUj7ev5/qod1rStm0WXn755Xz+859vsP11111XPF60aFEqKyvVMyXnyCOPzCOPPJIk2bx5807bbju//WcONU2p+Otf/5qVK1cmSQYPHrzTtsccc0zxePu6VM+0Jc1Vr+/u50Mf+lCD/QwYMGCXVqoCAE1jyynaleOPPz7J1mW/Tz311A7bTZ8+vXg8fPjwFp8X1Oett97KRz7ykTz33HNJku9+97v52te+1qhrDzrooPTr1y9J7Xquz6OPPpoked/73pcDDzxw1ycMLUQ9U2q23/JvW+Bcn7fffjsrVqxIsrUmt1HTlIrtg7aampqdtt20aVO916ln2pLmqtdtf1c21M/SpUuzcOHCJP6uBIA9RaBBu/LJT36yePzjH/+43jZbtmzJ3XffnSTp1atXTjnllD0xNahl3bp1GTlyZJ5++ukkybe+9a1cdtlljb6+rKysuC3VggULMnv27HrbzZ49u3jX2KhRo1JWVrabM4fa7rrrrhQKhZ3+bP+g8GnTphVf3/blgXqm1Hz6058uHv/mN7/ZYbvf/OY3KRQKSZITTjih+LqaplTsu+++6dmzZ5Lk8ccf32mosf2XtgcddFDxWD3TljRXvVZVVRVXbfziF7/IunXr6u3nrrvuKh6PHj16d6cPADSCQIN2ZdiwYcUvFCZNmpTHH3+8Tpvvf//7mT9/fpJk/Pjx6dSp0x6dI1RXV2f06NGZOXNmkq11eP311ze5n4suuigdO3ZMkowbNy7r16+vdX79+vUZN25ckq13Wl500UW7N3FoQeqZUvLBD34wH/3oR5MkkydPzkMPPVSnzdKlS3PFFVckSTp37pxzzz231nk1TSno0KFDRo4cmWTrM7tuuOGGetutWrWq1o0VZ5xxRq3z6pm2pLnq9Z//+Z+TJCtXrsyll15a5/xLL72UG2+8MUkycOBAgQYA7CFlhW23lUE7MW/evAwfPjzr169P9+7d881vfjOnnHJK1q9fn5///Of54Q9/mGTrXTdz585Njx49WnnG7G0+/elP59e//nWS5NRTT82tt96607sYO3funKqqqnrPXX755fnud7+bZOve2JdddlkOOeSQvPTSS7npppsyb968YrvvfOc7zfxOoHGuvvrqXHPNNUm2rtA4+eST622nniklCxcuzN/+7d9m9erVqaioyEUXXZSPfexj6dq1a+bMmZMbb7yx+MDZm266qd4vu9Q0pWDBggU55phjineYf/zjH8/ZZ5+dgw8+OBs2bMjs2bNz66235i9/+UuS5LTTTsvUqVPr9KOe2RMee+yxvPjii8XfV6xYkUsuuSTJ1i2dxo4dW6v9OeecU28/zVGvmzdvzkknnVS8CenTn/50zjvvvOyzzz6ZM2dOrrvuuixbtiwdOnTIAw88UAzCAYAWVoB26Le//W2hZ8+ehST1/lRVVRVeeOGF1p4me6kd1eWOft7//vfvsK/NmzcXvvKVr+z0+jFjxhQ2b968594gvMtVV11VrMdp06btsJ16ptTMmDGj8J73vGeH9VhWVla44oordni9mqZU/PGPfyz06dOnwc8cp556amHlypX19qGe2RPOPvvsJn1O3pHmqtfly5cXhg4dusM+unTpUvjRj37U3P8YAICdsEKDduuVV17JbbfdlgcffDCvvfZaOnfunIEDB+azn/1svv71r6dbt26tPUX2Uk3dU/r9739/Fi9evNM2v//97/PDH/4wTz75ZFasWJE+ffpk6NChueCCC9wtRqtr7AqNbdQzpeTNN9/MhAkTct9992XRokWprq5O3759c/LJJ2fcuHEZPHhwg32oaUrBm2++mUmTJmXKlCl59tlns3r16pSXl+e9731vhg4dmi984Qv5xCc+0eDnFPVMSzrnnHPyk5/8pNHtG/o6oznqtaamJj/60Y/ys5/9LPPnz8/atWvTr1+/nHbaaRk/fnyOPPLIRs8XANh9Ag0AAAAAAKDkeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAJe6uu+5KWVlZysrKsnjx4taeDgAAALQKgQYAQAtZvHhxMYjYnR8AAABAoAEAAAAAALQBZYVCodDakwAAaI82bdqU559/fofnjzrqqCTJkCFD8uMf/3iH7T7wgQ80+9wAAACgrSlv7QkAALRXnTp1alQYUVlZKbQAAACABthyCgAAAAAAKHkCDQCAEnfXXXcVHxC+ePHiOudPPvnklJWV5eSTT06SvPjii/mHf/iHHHzwwenatWsOPPDAjBkzJq+88kqt65555pmce+65Ofjgg1NRUZEBAwbkwgsvzLJlyxo1r/vuuy+f/exnc8ABB6SioiK9evXKkCFDcs0112TVqlW7+7YBAACgFltOAQC0I1OnTs2nPvWprFmzpvjaK6+8kjvvvDMPPPBApk+fnkGDBmXy5Mk555xzUl1dXWz32muv5Y477siUKVMya9as9OvXr94xVq1alc985jN5+OGHa72+cePGPPXUU3nqqafy7//+77n//vtz7LHHtswbBQAAYK9jhQYAQDuxZMmSnHnmmenVq1cmTJiQJ554IjNmzMhFF12UsrKyLFu2LGPHjs2TTz6Zs846K4ccckgmTpyYOXPmZNq0afnyl7+cZGsA8k//9E/1jrFx48acfvrpefjhh9OxY8d8+ctfzuTJkzN79uzMmDEjN9xwQ3r37p1ly5blYx/7WJ1VIQAAALCrrNAAAGgnXnjhhRx66KGZOXNm9ttvv+Lrxx9/fMrLy/O9730vM2fOzMiRIzNs2LD88Y9/TLdu3YrtTj755GzYsCH33ntvfvWrX2X58uW1+kmSa6+9Nk8//XR69eqVqVOn5phjjql1/vjjj88Xv/jFHHfccXnjjTfyzW9+M//93//dsm8cAACAvYIVGgAA7cjtt99eJ4RIkq9+9avF4xUrVmTixIm1woxtLrzwwiRJTU1NHn/88Vrn3nnnnfzbv/1bkuS6666rE2Zs8/73vz/f/va3kyT33ntv1q5du2tvBgAAALYj0AAAaCd69eqVj3zkI/WeO+igg9KjR48kyQc/+MEcfvjh9bY7+uiji8cvv/xyrXPTp0/PW2+9lST5zGc+s9O5nHjiiUmSTZs25amnnmrcGwAAAICdsOUUAEA7ceihh6asrGyH53v16pU1a9akqqpqp2222f7B4kkyd+7c4nHfvn0bPa+lS5c2ui0AAADsiBUaAADtRH1bSG2vQ4cODbbb1iZJNm/eXOvcsmXLdmle69at26XrAAAAYHtWaAAA0CjbBxxPP/10OnXq1Kjr+vfv31JTAgAAYC8i0AAAoFF69+5dPN5vv/0EFQAAAOxRtpwCAKBRBg8eXDyeOXNmK84EAACAvZFAAwCARjn99NOLz9+4/fbbUygUWnlGAAAA7E0EGgAANEqvXr3y9a9/PUkya9asfOMb38iWLVt22P6vf/1rJk6cuKemBwAAQDvnGRoAADTatddem+nTp+eJJ57IbbfdlkceeSTnnXdePvShD6WysjKrVq3Ks88+m6lTp2bKlCk56qijMnbs2NaeNgAAAO2AQAMAgEbr0qVL/vjHP+acc87Jr3/96/zpT38qrtqoT8+ePffg7AAAAGjPBBoAADRJjx498qtf/SqPPfZYfvKTn2TGjBlZsmRJ1q9fn549e+aQQw7JsGHDMnLkyIwYMaK1pwsAAEA7UVbwNEcAAAAAAKDEeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUvP8PEIIbP2eDbHwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Create plot with aggregated totals per population across time.\n", + " 'metapopulations_migration_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8,\n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot the isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## B. Population contact" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by \"population contact\" events between vectors and hosts, in which a vector and a\n", + "host from different populations contact each other without migrating from one population to another.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population** 4 (both are one-way connections).\n", + "\n", + "**Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup(\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A', \n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a population contact rate of 1e-2 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=0, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " vector_host_contact_rate=2e-2,\n", + " # host-host inter-population contact rate between populations\n", + " host_vector_contact_rate=2e-2,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to one of the clustered populations with a one-way population contact rate of 1e-2 for `population_A` hosts and `clustered_population_4` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'clustered_population_4',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way population contact rate of 2e-2 for `population_A` hosts and `population_B` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_B',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_A` starts with `AAAAAAAAAA` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 100.1491768759948 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19925533388085942s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.017675399780273438s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030938148498535156s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.039101600646972656s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.07192206382751465s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 453 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 528 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 545 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 562 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 581 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 611 out of 611 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2AAAAAAAAAANaNTrue
30.0population_AHostpopulation_A_3AAAAAAAAAANaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
195515100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
195516100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
195517100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
195518100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
195519100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

195520 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "195515 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "195516 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "195517 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "195518 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "195519 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 AAAAAAAAAA NaN True \n", + "3 AAAAAAAAAA NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "195515 NaN NaN True \n", + "195516 NaN NaN True \n", + "195517 NaN NaN True \n", + "195518 NaN NaN True \n", + "195519 NaN NaN True \n", + "\n", + "[195520 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_population_contact_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhkAAALmCAYAAABfB/XFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd7gU5dk/8O9sO53DoRepBhUVC00BDajEBpaoqLFiw56qyavmRYghkp8afSOSiAXskRgbYouFIggcEBBEUBCQXg+nn20zvz+W3bPzzDOzvX8/1+UlZ2d29tnZ/tzPfd+KpmkaiIiIiIiIiIiIiIiIYmTL9ACIiIiIiIiIiIiIiCg3MchARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXBhkICIiIiIiIiIiIiKiuDDIQEREREREREREREREcWGQgYiIiIiIiIiIiIiI4sIgAxERERERERERERERxYVBBiIiIiIiIiIiIiIiiguDDEREREREREREREREFBcGGYiIiIiIiIiIiIiIKC4MMhARERERERERERERUVwcmR4AJaalpQVr1qwBAHTs2BEOBx9SIiIiIiIiomTz+XzYt28fAGDAgAEoLi7O8IiIiIiyA2ekc9yaNWswdOjQTA+DiIiIiIiIqGAsW7YMQ4YMyfQwiIiIsgLLJRERERERERERERERUVyYyZDjOnbsGPr3smXL0LVr1wyOhoiIiIiIiCg/7dq1K1RJIPy3OBERUaFjkCHHhfdg6Nq1K4444ogMjoaIiIiIiIgo/7EfIhERUSuWSyIiIiIiIiIiIiIiorgwyEBERERERERERERERHFhkIGIiIiIiIiIiIiIiOLCIAMREREREREREREREcWFQQYiIiIiIiIiIiIiIooLgwxERERERERERERERBQXBhmIiIiIiIiIiIiIiCguDDIQEREREREREREREVFcGGQgIiIiIiIiIiIiIqK4MMhARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXAo2yLB371689957mDhxIs477zx06NABiqJAURSMHz8+oWM3NTWhb9++oeP17t07KWMmIiIiIiIiIiIiIsomjkwPIFM6d+6csmNPnDgRmzdvTtnxiYiIiIiIiIiIiIiyQcFmMoTr2bMnzj777KQca+XKlXjiiSdQXFyMioqKpByTiIiIiIiIiIiIiCgbFWyQYeLEiZgzZw52796NrVu34umnn074mH6/H7fccgv8fj/uv/9+tGvXLgkjJSIiIiIiIiIiIiLKTgUbZJg8eTLGjh2b1LJJ//d//4cVK1bg6KOPxh/+8IekHZeIiIiIiIiIiIiIKBsVbJAh2bZu3YqJEycCAP75z3/C5XJleERERERERERERERERKnFIEOS3HHHHWhsbMS1116LUaNGZXo4REREREREREREREQp58j0APLBv/71L7z//vuoqqrCY489ltRjb9++3XL7rl27knp7RERERPlG9dSh8dv/g692Q8R9FcUOZ6fhKD3qFigK1+NEq8mr4oMtzdjZ4Atd1q3cgTF9SlDs4HkkIuCrPW5U73HD49cM24odCm4Z0CYDoyIiIqJkYJAhQTU1Nfj1r38NAJg6dSo6duyY1OP36NEjqccjIiIiKjSHFl4D97Y5Ue/fvOlFaO4alJ/wPykcVX55clUdvtrrES51Y2udD78dVJmRMRFR9li734O/Lq813V7hVHDLgDQOiIiIiJKKy4oSdO+992LPnj0YNmwYbrnllkwPh4iIiIjCaJoK9/YPYr5ey/a5KRhNflI1Dav3iQGGgBV73dA046plIiosq0zeI4iIiCg/MJMhAQsWLMDzzz8Ph8OBf/7zn1AUJem3sW3bNsvtu3btwtChQ5N+u0RERER5we8BNF/k/QSarzEFg8lPqgZIqp8AAHwq0OLXUOJI/vdkIsodshJJRERElD8YZIiT2+3GhAkToGkafvWrX+GEE05Iye0cccQRKTkuERERUSHQNK/hstJj7oDi1Nf+9h1aB/e2d1svUI3Xo/g0ejWU8FcHUUFThRhDnzYOnNDRFfq7yM5AJBERUS7j1/04TZkyBRs2bECPHj0wefLkTA+HiIiIiGT8xhId5Sf8EfbSrrrLmre8oQsyaCpLe0RLnDwUNXk1oCQ9YyGi7KQKZdOObufEVceUZ2g0RERElGwMMsTpr3/9KwBg9OjRmDNH3kiwsbEx9P9//etfAIBOnTrhzDPPTM8giYiIiAqcJslIUGyuyJcxkyFqkYqgNHjVtIyDiLKXGIy0MXGBiIgorzDIECePJ7C6bebMmZg5c6blvvv378cvfvELAMDIkSMZZCAiIiJKF0m5JNicES+TBSdILlJj5yYfa7ETFTox1GjLyCiIiIgoVfjZTkRERER5S5OUS4ouk4HlkqIVqVxSIzMZiAqeWC7JpjCVgYiIKJ8wkyFOkVZsAUDv3r2xdetW9OrVC1u2bEn9oIiIiIhIT5aRwEyGtGr0MpOBqNCxXBIREVF+YyYDEREREeUtYwNnBYrNbtiPmQzxi5SnwCADETHIQERElN8KNpPhiy++wMaNG0N/79+/P/TvjRs3YtasWbr9x48fn6aREREREVHSiBkJklJJAKAwkyFukRJ8m3wsl0RU6IxBBkYZiIiI8knBBhmeffZZvPDCC9JtixYtwqJFi3SXMchARERElHvEYIEYTAgRL1c90DQNCifCIooUZGAmAxEZezJkaCBERESUEiyXRERERER5y1AuySTIIGsGDc2fghHln8jlkpjJQFToWC6JiIgovxVskGHWrFnQNC3q/+KxZcsWaJrGps9EREREmWLIZJCXS5IGH1gyKToRvis3MZOBqOD5GWQgIiLKawUbZCAiIiKi/Bd1JoPdGHwwNo0mmYiZDD4GGYgKHXsyEBER5TcGGYiIiIgof4mZDJJgQmADMxniFbHxM8slERU89mQgIiLKbwwyEBEREVHeEhs/S4MJYCZDIiLlKTSwXBJRwTNkMmRmGERERJQi/GwnIiIiovwlBAoUk3JJsjJKhgAFSYmTh6Jmn2ZYxUxEhUXMZ2ImAxERUX5hkIGIiIiI8pYhUGBSLkmRlktiJkOyNLEvA1FBY08GIiKi/MYgAxERERHlLzGTwaRcEjMZ4hdNlkIjSyYRFTT2ZCAiIspvDDIQERERUd4yBApMyiUpNjugCF+NGWSISjThg0Y2fyYqaMZMhsyMg4iIiFKDQQYiIiIiyl9CoEDW4DnEpt/Gxs/RkSUylDn0M4hNzGQgKmgMMhAREeU3BhmIiIiIKG+JgQLTckmQNIVmJkNUZI2fy136GURmMhAVNrFckp09GYiIiPIKgwxERERElL+ibPwMwJjJ4GcmQ7zKnPqfGezJQFTYmMlARESU3xhkICIiIqK8ZchkMOnJIN2mMZMhGmKOggKg3ClkMvgYZCAqZAwyEBER5TcGGYiIiIgof4mZDBblksSm0MxkiI7Yk0FRgFIhk6GJ5ZKICpoxyMAoAxERUT5hkIGIiIiI8pYWQ+NnRSiXxJ4M0dGEKIMCY+NnlksiKmxiTwZmMhAREeUXBhmIiIiIKH8J5ZLEbAWrbRrLJUXFUC5JkfVkYCYDUSET3wE4EUFERJRf+NlORERERHnLkMlgUS7JkMnAcklxUQCUCj0ZmtiTgaigsScDERFRfmOQgYiIiIjyltj4GZblkoRMBpZLiops8rBMbPzMcklEBY09GYiIiPIbgwxERERElL/ETAbLckliTwZmMkTD0PgZCsocLJdERK3Yk4GIiCi/MchARERERHnLkI0gBhLCMJMhPmKOgsJMBiIS+FkuiYiIKK8xyEBERERE+UvIRrDOZBCDDMxkiIa4QjnQk0H/M6PJx0wGokLGngxERET5jUEGIiIiIspbxkyGGBo/M5MhLrJMBrcf8ImzjERUMNiTgYiIKL8xyEBERERE+cuQyWBeLsmYycAgQzQMk4cAyhzGCUSWTCIqXOzJQERElN8YZCAiIiKivJVYJgPLJUVD1pNBLJcEsPkzUSFjuSQiIqL8xiADEREREeUvIcgQW08GZjJEQ1igDAWAy65AjDM0+ZjJQFSoGGQgIiLKbwwyEBEREVHeMjRvtiiXxEyG+Ij5CcrhWutlQpSBmQxEhUnTNEPGE3syEBER5RcGGYiIiIgofzGTIfUkmQwAUCr0ZWBPBqLCJHvlcyKCiIgovzgyPQAiIiIiomRQ3YfQuO4J+GrXwVuzBs72g+Cr26jfyTKTQQgy+JtTMcyc46vbiKbvnoG9vBdKj7oVis0OILA6ed72Fry2oVG3f7AMSrlTH2SYu7kJK/a4LW+r2KFgeLdiHNde/zhpvmY0rvs/aL4GlPb/JewlnRK8V0SUSvub/fhoSzMOtvjlQQYmMhAREeUVBhmIiIiIKC/UzL8cnp3/Df3tr11v2Mc6k0E/sd383TNoO3xG0saXi1RvPfbPGQTNWwcA8DftQJuBUwAAH2xpxgvrGgzXCVZBEZs/bzzkw8ZDvoi3+fm2FvxlRBV6V7Y+VocWXoeWrW8AAJq3vIGOP/82VJaJiLKLqmn405JD2NPkN92HQQYiIqL8wixFIiIiIsp5mq9FF2AwozjbWBxDWJFfzNXyTRtmhAIMAND49V9C/161T96zosgemD2sLIrvp4ZfA77e33psTVNDAQYA8NdtgHffl3Edm4hSb2eD3zLAAADFDk5FEBER5RN+shMRERFRzlN99RH3sZV2h6vTCNPt9vLewgVFCY4q9/lqvjbd5vXLeywM6xo4b8O7FiHexcrhPaI1rzFbwt+0M84jE1GqReq/cmw7J9rGGYQkIiKi7MRySURERESU8zRvo+m2kn43w1F5NEr6XAGbyzyTQQxAaL6mpI0vZynRTwSWOBTcdkIFTukSCDKc1KkIk4a1xdf7PfCp1tddttuNXY2tK5/DpyjDMylah2VR9oqIMqrZr3/BlzgUnN2rBADQscSOEd0YwCUiIso3DDIQERERUc7T/OYBgfLj74Wj8qiIx1AcJfoL2PgZUOymm8S1yr84ugyndi3WXXZMOxeOaWfebDtod6NfH2TQWo+ueiVZKgwyEGUtt0//7tC2yIarjinP0GiIiIgoHZijSEREREQ5T+ynoGOLbl2NYtcHGTRfs26yuyDFkMmQCLEJbPhp12RBBs263jsRZU6zEGQocbDLMxERUb5jkIGIiIiIcp5VuaRoS+sojlLxqIDfncCocp8i+bkQDLwkM/yiCHOQ4cVWZOWSNB+zTIiyVYvQr6XYziADERFRvmOQgYiIiIhynlW5JChRBhmETIbAcQt8MtsmKZekeqW7ioGCWIhXjZTJoPlb4r8xIkopMZOhmJkMREREeY9BBiIiIiLKeVblkpRoyyWJPRnAIIPs54KmHs7uSGIqg6FcUti/VUkmAxhkIMpaYk8GBhmIiIjyH4MMRERERJTzrMolRdskWLGL5ZIAzWeRIVEIZD0ZTEpIKYZ8hBhuRriuykwGopzVLJRLKmG5JCIiorzHIAMRERER5TzrTIboggywF0Es3FPomQyKYiyXFJzgT2VPhvCG2wwyEOWWFmYyEBERFRwGGYiIiIgo51n3ZIiyXJKiAPZi/XELvcGwJJNBO5zJkMwgg3grkcolFXrwhyibsScDERFR4WGQgYiIiIhynnW5pOiCDACgOPQlkwq+XJKkBFKoJ4O4ZyLziBY9GZjJQJRb3EK5pGKWSyIiIsp7DDIQERERUc4zLZek2KDI+gqYUOz65s8Fv2Je8xsvC07wa8nLZTBkMkToycDGz0TZS8xkKHFw2oGIiCjf8dOeiIiIiHKeabkkJcp+DMHdHQwyhNM0n/Ey08bP8ROzIMIbP8vLJTHIQJStDOWSmMlARESU9xhkICIiIqKcZ1YuKeqmz8H97SyXpKN6DReloieDIjbcDv83yyUR5RS3X9X9zZ4MRERE+Y9BBiIiIiLKeablkmLoxwAYMxlQ6JkMkiADTHoyJMIm9mSIUC6p4BtyE2UxNn4mIiIqPAwyEBEREVHOMy+XFNvXXUNPhkKfzJZmMgSyCJKaySCWSwo7OsslEeWWFkNPBgYZiIiI8h2DDERERESU88zKJcXanFhxsFxSOFkmQ0p6Moi3wcbPRDnJr2rw6KslsScDERFRAWCQgYiIiIhynmm5pBgZMhkKvFySNJPBpFySmI0QC0O5pPB/M5OBKGe4/cbALsslERER5T8GGYiIiIgo55mWS4qR2JOh0IMM0p4MwXJJSayXZJbJoGkaNG+DcVwMMhBlJbEfA8AgAxERUSFgkIGIiIiIcp5puaQYOwcYezIUdrkkaNGXS0qEIqRBBB+1QIaK8TEs9OAPUbZqkWUysFwSERFR3mOQgYiIiIhyXtLKJYk9GQp8MtuqJ0NSGz8Lf6vBTAZJqaTAGJjJQJSNxEwGpw1wiPXQiIiIKO8wyEBEREREOc+0XFKsNX0MmQyFHWSQ9mQwmeBPqPGz2JPh8OMmbfoMsPEzUZZqEYIMLJVERERUGBhkICIiIqKcpmlq0soaGXoyFHi5JGlPBpPGz4kQf5QEpylVkyADMxmIspNYLomlkoiIiAoDgwxERERElNOSmW2g2FkuSceqXJKQJCJmI8RCvC7LJRHlJjGToYSZDERERAWBQQYiIiIiymmmpZICW2M6lpjJgAIPMsh7MiR/gt9QLin4f9NMhsJ+XIiyldiTgZkMREREhYFBBiIiIiLKaZo3OU2fAUAx9GQo7HJJ0HzGy1LS+Fk/ERnMkjArlwTVC031J3EERJQMhnJJDk45EBERFQJ+4hMRERFRTtN8SQwyOFguKZw0k8GkJ0Mi65VtppkM8nJJAFLSG4KIEtPiU3V/s/EzERFRYWCQgYiIiIhymnWQIcZySYZMhsIOMsh7MqSgXJJ4G4dTGczKJaVqHESUGPZkICIiKkwMMhARERFRTktmSSOxJ0PBl0uyavwsXC6WPIqFWU8G1SKTgUEGouzTLJZLYk8GIiKigsAgAxERERHltKSWS7KzXFI4WbmkVJQpEqch1cPzlJaZDIWeZUKUhcRMBpZLIiIiKgwFG2TYu3cv3nvvPUycOBHnnXceOnToAEVRoCgKxo8fH9Uxmpqa8Oabb+L222/HkCFDUFVVBafTifbt22PYsGGYNGkSdu/endo7QkRERFTgLIMMWozlksRMhgIPMliVSzKc2gTmEg2ZDNEEGZjJQJR1DEEGZjIQEREVBEemB5ApnTt3Tuj6X3/9NUaMGIGGhgbDtoMHD2LJkiVYsmQJHn/8ccyYMQNXXHFFQrdHRERERHJJLWkk9GSA6oWm+qDYCvNrs7Txsz8FjZ+Fa0fV+JlBBqKs08yeDERERAWpMH8tCXr27IljjjkGH3/8cdTXqaurCwUYRowYgbFjx2Lw4MFo37499u3bhzfffBPPPPMM6urqcPXVV6NNmzY477zzUnUXiIiIiApWUhs/O0oNl2n+Zii2ihhHlSc0SbmkUJAhtnNrRcxkCJZLUpnJQJRTWsSeDAwyEBERFYSCDTJMnDgRQ4YMwZAhQ9C5c2ds2bIFffr0ifr6NpsNl19+OR588EEce+yxhu1nn302zjvvPPz85z+H3+/H3Xffje+//x6K+AuKiIiIiBKS3J4MJYbLNF8z4CzMIIM8k0E+uZ/It1xj4+fARCXLJRHlFvZkICIiKkwFG2SYPHlyQtcfPnw4hg8fbrnPRRddhEsuuQT/+c9/sGnTJqxcuRIDBw5M6HaJiIiISC+Z5ZLEngxA4fZl0DRN3pPhcOPn5OUxGBvFtfZkMC+XVKiPC1E2M2QysCcDERFRQSjYxs/pcsYZZ4T+vWnTpgyOhIiIiCg/JbVckjSTIYk9H3KJ5pdffrhcUkobPx/+P8slEeUW9mQgIiIqTAwypJjb3doYz263Z3AkRERERPkpqeWSbA7A5tRfWKgr5iVZDECKyiWJtxHKZGCQgShXaJpmLJfETAYiIqKCULDlktJl/vz5oX/3798/5utv377dcvuuXbtiPiYRERWu1fvcWLrLDY+qwaYoKHcq6NXGgZ92LzbtG6RpGhbuaMGP9X6M6FaEPpVO6X6Uu5btduO7Gi8GdXahfztXpodjybPnCzT/8Ipuhbt335dJvQ3FXqLrRaD5CjPIIOvHAACqpwY1C66Bv+n3ALqELm/8dhpqNq4CADgqj0HZsb+CLcpeFjbh/UcF0ODx4wPHzdhXJO+b5tx+NBx1tZbHPKadE2f2MH9/I6Lk8ajG3DH2ZCAiIioMDDKk0OrVqzF37lwAwIABA+IKMvTo0SPZwyIiogK1/qAHDy+rlRaPafZpOLd3qfR6H29txvPfNAAA3t/chL+f0R4dSpidly+W7GrB418F6t6/90MT/nJaFfpmaSDJe+hbHPjoLED1pPR2FEeprheA98ByuDqPSOltZiPTfgiqFy0/vAKtagLgaA0yePcuRIv73da/D3yFdme+GdVtGcolacD/fXUIX5fda36lBgANbvPtABbsaEGLX8OYPvL3NyJKnrX7je/NxQ4WTyAiIioE/MRPEbfbjZtvvhl+f6CW7ZQpUzI8IiIiKnRf7/eYVqefeTiIIPN82Da/Bvzn++SVpqHMm7aqdSJZA/DSOvPnQqZ5dn0ac4ChuNdlMd+O2rJf/7fHfLV8PvPVfmu5XYtQIMm9/f2ob0v8UeL2a1hzwKQnRIy+2mMdiCCi5Piuxpj9VMpMBiIiooLATIYUueuuu7B8+XIAwPXXX48LLrggruNs27bNcvuuXbswdOjQuI5NRESFxZuc+TpskEwiUO7yqvq/1x3M3sdXi7E3guIoQ/lJD8ZxQz7hOMZm0AXB0NlZT4U+o8kmNopW3dBUPxRb5MynImEistatxtiy25zYiJaIUkP2SnOxJwMREVFBYJAhBR5++GE8++yzAIAhQ4bgqaeeivtYRxxxRLKGRUREBY7TbJTzNH1ExF5xJIp7jwv9bXNWoKjnz6G5D8B74CsUHXEeHBV9Y76ZoiPO16/CV5MUocsxmhg0AFA24H9a/9jXAQjbpbj7z4DNc/VXUL1AFEEGsTlsrUc17DOq6R+wQx8EKz/ud4ZG3TsafFi+pzXjxe3nux9ROvhU/WtteLeiDI2EiIiI0o1BhiR7+umncf/99wMAjjnmGLz//vsoKyvL8KiIiIiSJ8LiZqLUESa9HW2PQ5tBD0t3dXU+Lf7bUcSvyMYJ74IgBnXKe+vP92f7gebWfUp7XwZs/rVwCA8UFEe8KbE5rCp5n7mg8c+wQ59l0qn3XbCXVukuW77HrQsyeBhkIEoL8XUrBg8pQNM0NDY2oq6uDi0tLaESy0RERKlkt9tRXFyMNm3aoKysDIrYFC1BDDIk0WuvvYY77rgDANCrVy/897//RYcOHTI8KiIiogCN0QHKcYaV9UqK2osJx5Wt6C8MQnBFOC/ihKJNlrGgRld+K9JkpE3zGgIMAKD56gF00V0mlmdxF2iMiCjdfMJrzZ7kyYt8oKoqfvzxRzQ3x1b+j4iIKFE+nw9utxu1tbUoKSlBz549YbMl7/cUgwxJ8u677+K6666Dqqro2rUrPv30U5Y6IiKirMIQA+U8YWW9okQuwxMPw3G1Ap2lNpSJsg4y2O3GnxZalI26xUwGkVNrAewlgX4ZYYELzVNn2LfIpj8WMxmI0kMVFjM4UhQHzlWaphkCDIqiwG5PzWcZERFROL/fH1p42NzcjB9//BG9evVKWkYDgwxJ8Omnn+Lyyy+Hz+dD+/bt8d///hdHHnlkpodFRERElF8MmQwpmpgRMyQKNJNBM2Qy6M+3GHqx2SQ/LZKUyeBCMxSbC7CVQnMfCDt8vWHfImEYbr8GTdOSnhJORHpij3UbX3I6jY2NoQCD3W5Hly5dUF5entRVpERERGZUVUVDQwN2794Nv9+P5uZmNDY2ory8PCnH56dZghYvXoyLLroIbrcblZWV+Oijj3DcccdlelhEREQGkdbyspwSZT0xoyBl5ZKYyQDAEFxRDOWS9O8ZdqEBM5C8TAaX1gzF7oLNWaE/vleSyWA39ndgMgNR6vlVMZOBUYZwdXWt71ddunRBmzZtGGAgIqK0sdlsaNOmDbp0aS01Wl9vXLAT9/GTdqQCtGrVKowZMwaNjY0oKyvD3LlzMWjQoEwPi4iISCpSDIGTcJTtjD0Z0pPJULA9GQxBHSGTQVy1LC2XFF0mgxgYEDm1ZsDmguJsox9DFEEGAGjhGxxRyokvM8YY9FpaWgAESiQla9UoERFRrMrLy0MZvsnsEVSw5ZK++OILbNy4MfT3/v37Q//euHEjZs2apdt//Pjxur83bdqEc845B4cOHQIA/PnPf0ZlZSXWrl1repudOnVCp06dEh47ERFRKnj8GlcdUnaLsLI+WdiT4bAImSOGngyKLRCICH+cosxkcNgUOG2A1+RUu7RAuSQxyKBJyiWJjZ+Bw30ZjIkWRJREYpCBjZ/1/P7Ae6PdbmcGAxERZYzNZoPdbofP5wt9NiVDwQYZnn32WbzwwgvSbYsWLcKiRYt0l4lBhoULF2Lv3r2hv3/zm99EvM0HH3wQkyZNinmsREREyRBpHa9HBUrTMhKiOEVYWZ887MkAyDJHrMsl2RQANicQ9mMl2nJJQKAvg1eMXBwWzGSIqlySJFjqZiYDUcoZyyVlaCBERESUdvzYJyIiKhCRyiV5JJNw7NNAWSVd5ZJszGQAYLjfYoaHoVySgkBzZt1O0ZVLAqz7MjgR6MkQTSaDwwaIR2KQgSj1WC6JiIiocBVskGHWrFnQNC3q/0Tjx4+P6fqapjGLgYiIsppsBTHn5SibRFpZnzzsyQBAEtSxLpcUymTQHSL6TAarvgyt5ZL0mQyyngyKohiO5SnQh5AonfzC72YHyyUREREVjIINMhARERWaiOWSJBEFn2QBN+MOlDERVtYnC3syHBZr42dFMWYyaMnJZHAFyyW5ImcyAECR8BAyk4Eo9fzCW4adsw1EREQFgx/7REREBSJS5SNZw1VxVSJRRqUrk0E8bqFmMsC88bOmaYaAY6BcUvyZDMUWmQzOYCaDI3JPBsDY/FkWRCWi5GLjZyIiosLFIAMREREBiD6TgShj0tX42RBkKMwXgqaKwZXW8yLrzxwol5SingxaC2B3QREyGVSPPMgglktiJgNR6okLEyzihkREMZs0aRIURYGSJQHM3r17Q1EUjB8/PtNDIcoKDDIQEREVCOO6Yz15kIETc5Q9xN4IqSqXJAYvCrYnA8zLU5kFGRS7PsigqcnJZHAhkMlgc4qZDGblkhhkIEo3lksiSr558+aFJtbF/0pLS9GrVy9cfPHFePXVV+Hz+TI9XCIqYPzYJyIiKhCRptjY+JmyXprKJSmG4xZmJoPV+ZadEZuiAIq+XFIsmQwlDvPHM9iTQXGKPRmiy2RguSSi1DNmMmTHamOifNXc3Iwff/wR77zzDq6++moMHz4cu3fvzvSwctqoUaOgKApGjRqV6aEQ5RxHpgdAREREaRJhjs0jWazNTIb8puZaz420lUti42cAludb9tyxIcFMBstySU2BngxCkEE1yWQQezIwk4Eo9cQSi8xkIEqu22+/HXfccUfo74aGBixfvhyPPfYYtmzZgurqalx00UVYsmRJ1pQUymdbtmzJ9BCIsgqDDERERAUi0hSbRxJQkPVkYNwhf+Razw1j2SI2fk4lzRBkiNyTQbPFn8kgZh+Ec2nNUOyycknR9mSIehhEFCfxfcHBSU6ipOrUqROOP/543WWnnnoqrr76agwdOhQbN27EsmXL8N577+GCCy7I0CiJqFBxbQEREVGBiBhkkPVkkKxWFsshUO7KucdSnOy3pasnQ45FY5LF0AMjcpBBsaUqk6HFpFxSPTTJ85iZDETpJ36m2BhjIEqLqqoq3HfffaG/P/zwwwyOhogKFYMMREREhSJSuaQoMxlybfU7mRObdGY9zbwRcVIxkyHAslyScXebogBCJoMWQyaDZeNnrflwuaQKYYsGzddo2L9IeGqwJwNR6rFcElHmDB06NPTvrVu36rbt27cPf/zjH3HyySejbdu2KC4uRu/evXHttdfiiy++sDxu7969oSgKxo8fDwCorq7GL37xC/To0QPFxcXo0aMHbrjhBqxfv970GLNmzQo1q7YqMbRly5bQfrNmzYp4n0Uejwdz5szBXXfdhSFDhqCqqgpOpxPt27fHKaecgkmTJmH//v3S644fPx6KomD+/PkAgPnz5xsabffu3Vt3HfHcmJkzZw4uu+wyHHHEESgqKkL79u0xbNgwTJ06FQ0NDabXE8+bqqqYMWMGhg8fjqqqKpSVleGEE07AlClT0NTUFNO5IkoFlksiIiIqEJEbPxsvk/VkYJ+G/OHLtYcyTeWSDMELZjIE6DIZJD0ZJJkMSFYmA5qh2ItgEzIZgMMlk5zlusuM5ZJy7clOlHvE9wWWSyJKH6ezNcjv97d+fn/88ccYN24c6ur05QW3bt2KrVu34uWXX8add96Jv//977DZrL9XPf/887j11lvh8/lCl23fvh2zZs3Ca6+9hpdeegnjxo1L0j2K3YQJE/DCCy8YLj948CCWLVuGZcuWYdq0aXjnnXcwYsSIlI+npaUFV111Fd566y3DeJYsWYIlS5bgySefxNy5c3HSSSdZHqupqQlnn302Pv30U93la9aswZo1a/Duu+/is88+Q1lZWbLvBlHUuLaAiIiIAJiVSzLux0yG/OGXBIyyeUrIULYoVeWSxK/IBZrJYOzJECmTASnNZIA0kyFQMsmwP4MMRGknfmdguSSi9FmzZk3o3926dQMArFq1ChdccAHq6urgdDrxm9/8Bp9//jmWLVuGp59+Gn369AEAPPXUU7pySzKrVq3Cbbfdhk6dOuHJJ5/E0qVLMX/+fPzhD39AUVER3G43rr76aixfvjx1dzICn8+Hvn374ne/+x1ef/11fPnll6iursYbb7yB2267DS6XCwcOHMDPf/5z7N27V3fdKVOmYM2aNRg8eDAAYPDgwaEJ/OB/H3/8cUzjuf7660MBhhNPPBEvvvgiqqur8dFHH+GGG26AoijYuXMnzjrrLOzYscPyWLfccgs+//xzXH/99Zg7dy5WrFiBt956C8OGDQMALFu2DH/+859jGh9RsjGTgYiIqEBEzmSQ9F+QZTLkWh1/MpVz866GHgEpCjLY2JMhQCxPFXtPhqRlMgTLJdldgK0IUN2tNyFp/ixmMrBcElHqiSX4HIwyEKWFz+fDY489Fvp71KhRAAIr+z0eD+x2O9577z2cffbZoX2GDBmCcePG4bTTTsO6devw6KOP4rrrrsNxxx0nvY3Vq1ejV69eWLJkCbp06RK6/Kc//SnOOeccnH322fB6vbjjjjuwbNmy1NzRCCZPnoy+fftCEbKoBg8ejEsvvRR33HEHhg8fjn379uHJJ5/EQw89FNqne/fu6N69eygToKyszNBkOxZz587F7NmzAQBnnXUW3n//fbhcrd+Rzj77bAwbNgwTJkzAwYMH8dvf/havv/666fEWL16Ml156Cddcc03osoEDB+K8887D4MGDsXbtWjzzzDN46KGH4HBwqpcyg5kMREREBMAkk8GkJ4Os0SrlnpwrfZWmcknMZDhMNT/fsrBLansytAD2wI9zm5DNIMtkYLkkovQTGz9bvKSJKAkaGxsxf/58/OxnP8OSJUsAAL169cLll1+OZcuWobq6GkBgFXx4gCGoqqoKM2bMAACoqorp06db3t5jjz2mCzAEnXHGGbjlllsABHo2ZCqb4cgjjzQEGMINGDAAN998MwDg7bffTulYnnrqKQCBMlYzZ87UBRiCbrnlFowePRoA8Oabb2LXrl2mx7vkkkt0AYagoqIi3HXXXQCAAwcOYN26dckYPlFcGGQgIiIqEJHiAh7JPKpZ1gLn6/JDzj2OaSqXxJ4MQVblkiQ9GZDKTIam0LEVl74vg+ZhJgNRNhBfZgwyECXX5MmTdY2Iy8vLMWrUKMybNw8A0KlTJ7z99tsoKirCJ598ErreTTfdZHrMESNGoH///gCgu46oqqoKF110ken2G2+8MfRvq+OkU01NDTZt2oRvvvkGa9euxdq1a9G2bVsAwLp16+D1Rr8QIhY+ny/UQPrss89Gjx49TPcNBmd8Pl/ocZS5+uqrTbcNGjQo9O8ffvghxtESJQ9zaIiIiApEPOWSzPov+DV+icgHsnJYGgITyLYsbNippSuTQWEmAyA531GVS0pRJgMCPRkAQHHoMxlUXxQ9GQo1TkSUJpqmGd4X7CyXRJQWffr0wWWXXYZ77rkHnTp1AgCsXbsWAOByuSI2FT7llFPw7bff4vvvv4fH45Guuj/55JMty/CcdNJJcLlc8Hg8uv4Q6bZmzRo8/vjj+OCDD7B7927T/VRVRU1NTeh8JdMPP/yApqYmAIFzayV8e/AxkznmmGNMt7Vr1y707/p643cionTh/AAREVHBsA4zyFb6yiahgUCZHXGlMOUeWWNvIBBccqWqp3Ii0tWTgZkMAZrYkyGaxs/CxIQ/uT0ZAMDGTAairCN7ifFrAlFy3X777bjjjjsAAIqioLi4GB06dEBlZaVh34MHDwIITEBHqtEfLIGkaRpqamrQuXNnwz6RJuMdDgfatWuH3bt3h2473Z577jncdttt8Pl8Ue3f3NycknGE3/9I5y28/JTVeSstLTXdZrO1LgLx+wtzYQxlBwYZiIiICkTEcknSJs/yfc0yHCi3iE06gwKlcLJwdihN5ZLETAZjBkWBEM+3RSaDgsCEhzGTIYYgQ4SeDMrhngyKUwgySBo/i0Ey9mQgSi1pkIGZDERJ1alTp5ibEVv1KMjEcVJl/fr1oQBDp06dcO+99+LMM89E7969UVFRAacz8P3k+eefD5WPSkePuWw/b0TJxCADERFRgYhYLknWk8Eik4Fyn9ikM8gsuJRxaSqXZMyQKNCommW5JP2TJDSXaOjJEH25JIctsPJZnKxUND/s8LSWSxIaP6ts/EyUcbLMR2YyEGVOsITOgQMH4PP5LLMZgmWFFEVBVVWVdJ89e/ZY3p7P59NlT4QLX2mvqubfqRobGy1vw8qsWbPg8/lgt9sxf/580/JC6ciyCL//kc5beEkn8bwR5Ro2fiYiIiIA8kwGs5XuWTsJTTExexzNHvdM0wwr69OTyQCVmQwAhMbP+k3BIEMw26D1ENFnMiiKIs1mcGnNgUyJYLmkKDIZWC6JKL1YLokouwQzHjweD1atWmW577JlywAA/fr1k/ZjAIBVq1ZZliFavXo1PB6P7raDKipaFwfU1NSYHuO7776zHKeVb775BgBw4oknWvYvWL58ueVxkpF50Ldv31B5o6VLl1ruGzz3gPG8EeUaBhmIiIgKRKQpNtkknM9spTszGfKCWc8NswyHjDP0ZEhV42dmMgCxNX4ONQpPoPEzIO/L4MThmskmmQyaJJPBJZRp8arG7AsiSh5pJgPLJRFlzOjRo0P/fv755033+/LLL7Fu3TrDdUQHDx7EnDlzTLeH34Z4nD59+oT+bTXJ/9prr5luiyQYALHKhti1axfeffddy+MUFxcDANxud9xjcTgcGDlyJADgv//9L7Zv326677PPPhu6zqhRo+K+TaJswCADERFRgYg0v+aV9WQwy2QozDnXvGP2OGZrJoOxfA97MqRUDI2fQ5kMhnJJ0WcyAPIgg0sLBBnMejKoUWQyACyZRJRKspeXRS93IkqxoUOHYvDgwQCAZ555Bp9++qlhn9raWtx6660AAiWNbr/9dstj/va3v5WW/5k/fz5mzJgBABg0aBCGDBmi23788ceHSgFNmzZNOoE/e/Zs/Pvf/47insn169cPAPD9999j8eLFhu1NTU246qqrIjZ77tq1KwDghx9+SKhnw5133gkgkEly0003wes1Lrp4/vnn8fHHHwMALrnkktBtE+UqBhmIiIgIAOBhT4aCY5axkL2ZDOkpl2TIkBBvt2BYNH6GWU+GBDMZJMEBZzDIEEMmQ5FkdtNdoLEionSQBRlsbHhKlFHPPPMMXC4XfD4fzj//fNxzzz2YP38+li9fjmeeeQYDBw7EmjVrAAD33HOPZbmeE088ETt27MCgQYPw1FNPobq6Gl988QXuv/9+nHvuuaG+D0899ZThug6HIxTMWLt2Lc4880y88847WLlyJT788EPcdNNN+MUvfoHhw4fHfV+vvfZaAIGeD2PGjMFf/vIXLFiwAMuWLcM//vEPnHTSSZg3bx5GjBhheZzgGPbu3Yvf/va3WLFiBTZu3IiNGzdi69atUY9nzJgxGDduHADg448/xqmnnopXXnkFK1aswCeffIKbb74ZN998M4BAL4a//e1v8dxtoqzCxs9EREQFImK5JFlPBpMrMZMhP5j23MjSx9eqfE9SicGLQs1kMPSisCqXFPh/KjMZkEBPBoB9GYhSSbb4wMEljUQZddJJJ2HOnDkYN24c6urq8Nhjj+Gxxx4z7HfnnXfi4Ycfjnisu+66C7fffjvuuusuw3aXy4UXXngBp5xyivT6f/zjH/H5559jyZIlWLx4MS6++GLd9lGjRmHatGlx9yUYMmQIJk+ejAcffBCHDh3CAw88YNjnd7/7HY4//ngsWrTI9DhXXnklHn74Yfzwww944okn8MQTT4S29erVC1u2bIl6TC+++CJ8Ph/eeustfPXVV7jmmmsM+3Tr1g1z585F9+7doz4uUbbixz4REVGBiLQ4XdqTwSyTIVtXulNMzB7HrE1UMfRkSFG5JPErcoFmMmiGTAarcklJ6skQRyaD6jEGGZySXzksl0SUOrLPDbZkIMq8s88+Gxs3bsT999+Pk046CW3atEFRURF69uyJq6++GgsXLsS0adNgs0WeHrz55puxcOFCXH755ejWrRtcLhe6d++O6667DitXrsSVV15pet3S0lJ89tlnmDJlCgYMGICSkhK0adMGQ4YMwbRp0/DJJ5+grKwsofs6ceJEzJ07F2effTaqqqrgcrlwxBFH4JJLLsHHH3+MRx99NOIxysvLsXjxYvzqV79C//79Qw2c41FcXIw333wT7777Li655JLQOauqqsIpp5yChx9+GBs2bMBJJ50U920QZRNmMhARERGAQGNUTdOghJU3yLma/RQT00yGbA0iGcolpWi9jE0fvNAKNMhg1WhbbKIc3JKSTIZg42eTngyaz1guyaYocNkAT9hDxyADUeqInxsKWC6JKBlGjRqVUG8AAOjYsSOmTJmCKVOmJDyeU089Fa+//npc1y0pKcH999+P+++/X7q9d+/elvd10qRJmDRpkuVtnH/++Tj//PNNt48fPx7jx4+3PEbnzp11GQxmos1quOCCC3DBBRdEtW+4aMYKRD5vROnCIAMREaWNX9Xw8dZmHGhRMbpnMbqUJf9jyOvX8MGWJjR5NZzbuwRti1O10jlx+5v9+GhLMw62tE7kKYqCIysdOKd3SUI/ztfu92Dxrha4fa1fODceiryi+MlVdQi/1Y2HfNL9cqEnQ7NPxfubm7GzIXAfFAXoU+nEub1KYI9ieeWinS1Yvc+DUoeCM3uUoGeb9HxtWnfAg6/2enB0lRNDuhQl7bibDnkxf3sLGr2ts667m+RlgNIdRGr0qnh/cxN2N/rRpcyO8/qUoly2FD1NjZ8VIZPBd3AlGtf/A6VH3wpFsUFT/Wj6bgb8DZtR2u9mOCqPSsk4YqVpGlp+eBXemtUo7n05XB0GR3U9X90mNG2YDn+zvpmjd9+XaFDaY0HJTThg7wVH3bFwrqwFANS49U8Ss54M3v3VOLR4Akp6XYai7mdHHIssk8ElZDLYXEKQQZLJAARKJoWXgXt9QwPauGzoXGbHeb1LUeFiUjdRPFRNw3+3NuP7Q77QxFaDV/+9gKWSiIiICguDDERElDavrG/A3M2ByaLPtjVj+pkdpKtWE/H0mjos3OEGEJgk/r8z2mflSjpV0/CnJTXY02SczV24AzjkVvGLY8rjOvYPtV5MWXYorpI3i3a6o9rPl/0xBjy1qh7Ve/T3Z+EON2paVFzT3/rcLtzRgmmrWicuF2xvwd/PaI/yFE9KbjrkxZ+WHIIGYA6AewZVJiXQsL/Zj0lf1uhWdVtJd+PnJ76qxdf7W4NgG2q8+OMpVYb9DBkFqSqXJDlu3ZI7oLoPouLEB9Cw+k9oWP0nAEDT+n+g0+XbYXNVpmYsMWj+/lnULp4AAGj85nF0/Pl6ONocaXkdzdeCAx+cBrV5t3T7M23nYqvzcLDCDcDkPcK0JwOA5u+eQfP3z6H9eV/A1WmY5XhknwlOreXwjZg0fvY1QNNUQ8Nul10BwiY+w59j3x7w4sFhxucYEUX2xneN+M/GJst97Fn43YuIiIhSh+sLiIgobap3t05ONXo1rD0QWxmNaAQDDACwt1nF6n3Jv41k2NXolwYYgpbviW6yX2b1Pk/Ka+rnQibDqn3yc7hyb+Rzu3SXfp9Gn4bvamKrLR+PWd/U6xp0hwc6ErF2vyfqAAOQ3sbPHr+mm/wFgDX7vfDKSttYlO9JJsUpD0K5d7wPAKEAAxCY4G7a8HRKxhGrYIABAKD5UL/qwYjX8ez70jTA0KRUtgYYIig5HBwQSxm1jkeFe8dHEY8jy2Ap0Q4BQCiQY3MaAzqau8ZwWZksG+awdQe9aMnWDudEWW7F3sjfrUqSvIiEiIiIshuDDERElDb1Qip9eJmgVNljUg4m0yLVBhdLkcRCOjmbZNkeY1A1DV6TUxhNXXbZ8yYd2RvfCeWpWpL0WDbGOPh09mQwezykF4v1/e3JKycVztXpNNhKuhou1/wt0v29NatTMo5EefcsjLiPv36T6TYfjFkJZoZ1LQYAuDqPgK20u3QfTY0c4BvcpQhOtAadbJoPJ7nnwNnpNNhLuwUuK+kCQD+B6W/abjjWiG7Wz49YAm9E1KrJ7AM2zPAIrz8iIiLKLyyXREREaeFXNTQLE52HWpI7wyM2Ig1cltSbSJpINe8bvRp8qgZHFL0DROJ9PqLcjkGdW3/sF9sVnNTJha11Puxp8sPt1+CMcDvvbNKXRUh3OZ1YWZ3fSPP2mqZhb5YGp+LVIrz2upbZMTSsDJPh8U1zJoOMBg3iRLImBBlkpXmSwVbUFh3GLMHBTy+ELzyAYNIAWlGc0stzga/+B93fjsr+KOp5EQDA6y8D9un3P693SaAM0WEKgL6VjtDzyeasQIcxS9C8+XXUL79Hf+UoGmj3rHDgvrazsHzHAfhhR3/P5+jtW4F2ow+13qbdBVtJZ10Ghr9xG5ztTtQd66IjS9Gt3IEfDnnR4tfwwZZm3XZ/tn5AEGU5MTg8olsROpS0lpnrWeFgkIGIiKjAMMhARERp0SRZSZ3Ian0Z2XxRGhb1xyWaSfo6j4p2cTSuFs9qn0oHrpL0d+hbGf3E6Jr9HvxQ27rKPtvn5qzOb6SJxXqPlrQMgmwhTggdKTwnqne7sbOxNbCSznJYHpPbkj2Eml9YCZ+iIAMA2Mt7onzA73FowdVhAzB5z7LlbpDBLwQZio44H20GPQwA8LX4gU8P6LZfdlSZvCl3GHvZESg//nfw1axG86aXwrZE97w6wrEX7Zr+Hvq79KgJhp4X9rIehiCDSFEUDO1ShKFditDkVY1Bhvx6mROljfgZeW7vUhxVlbvvg0RkbsuWLZkeAhHlCJZLIiKitGiUpNbXJDmTQVZeW5bdkA3EedVypwIxl6A2ziCMOImejMbXYqJDtgcZrKoDRaoclK0lthIhZhGVOPRfAcWMmfT2ZJBfLn2Y0pTJ0Er4qqyp0FSfYS8la4MMkV/7/gZ9kMFe0Tf0b9nbZ2zvJuL5i/aNI/J+9rIeur9lQYZwsqywXOgtQ5RtVE2DW3jfljVsJyIiosLCIAMREaVFOjIZZKvXs3UOSTwdDpuCNkX6j+XaOAuGi9dKxoe9GKjI1vMapFqcukhjNyuVpGVpwCoaYrkkcUJIiDnAm85MBtNySZLLxCCDPcVBBkNjaRWar9G4ny13k4PFckn28rAgg2T/mKYSDQHOeN/zjbdqL+upP3KEIIOsIly2v48RZSNZYLjYziADERFRoWOQgYiI0qLBa5zNOZT0IIPxsmydRFKFgdkVoNIlBBniPD/ifY6jrYOBMZMhS0/sYVaNiyOtXs7HTAaxtEWRXQwyCJkMaXx4oy2XpGkaoHr1F9pSXPNbCDJomjzIkL2ZDNZUTy00t74ckiMsk0EmtsQoYeckvm/YDJkMP1ruL5sDTefznChfyMoJip8pREREVHgYZCAiorRokpRLqnWrSW28KTtWtjYoFn+j2xWgskj/I73OHd/YjUGGxH/8i/MH2Rq8CUqk8XO+NX0GImcyiCX209qTIdpMBjHAgAxkMpgEGZCjjZ/99ZuFSxTYy3uF/kq4XJIhEyTK51UU79uxlktSFMXwPsbGz0SxE3v8ACyXRERERAwyEBFRmjRKMhk0xF8SSCaXMhkMQQabgjZiJkO85ZKECbrUZDIkfsxUsgouqZp16aO8zGQQmiyIpS3ETAZJTDBlzIIM4ny0WCoJQEobPwOAogiN1zU/NK8syJCbE2w+oR+DrewIKPbW7BD5IxPLfdXvq5k1zo54GEm5pFIhyNC0PeLxDUGGLH8fI8pGbiForQBwcVaBiIio4PHrABERpYWs8TOQ3JJJuRVkMAYC2oo9GbKqXFJu9WSI1LjYanJxb3MeBhmEO1wi9mQQniPpzGQwC2gYLva7DfukvPFztJkMkiyLXOCv36T721FuXSoJiDGeYtg5dY2foXqhNu+1vo6hwXmWv5ERZSFZ+T0lRwOtRERElDwMMhARUVo0STIZAKCmJYlBBsmEUbbOIYmNie1KMjMZ9H8nJcgg3kbUk4WZEWmFslkQwqdqONCcxmX8aRK58bM4+ZryIYWYZzLoL5dlMqQ8yCA+802CDNIsixzgF5s+C/0YEm38rBjOX7zvG8ZbtZV0ARR9w21/k3XJpFwr+0aUjQxBBpZKIiIiIjDIQEREadJo0mGzJomZDLKbyNaeDGJj4kBPhlRlMiQ+AZBP5ZIA88bV+5r9WR4+iY84KWQsl6TfP609GUxuS3z2Syfy09yTQYNJJoM/N4MMvkhBhkTfPw3vPdG+p0W+XcVmh720u+6ySH0ZDJkM+fhiJ0oxsVxSsd1kRyIiIiooDDIQEVFamJVLSmYmgyqZrPRmaeUbcah2G1ApZDLUZVVPBv1Bsr2WuVXjZ8B8cjEf+zEAQHPMmQyZb/xsIM1kKJLsmDyKpFySmkuZDBECjGImgyPJmQyGveMNWpjcD5tQMklt+NHyMOKCazZ+JoqdsVwSpxSIiIiIQQYiIkoTWeNnADjkTt6krmzi2GyVdKYZGj8rijSTIZ6VxOL8emoaP2fneQ2KlMlgNrm4Nw+DDH5VM/Q9iJjJkMaH1yyWJj5EmixbwOZM/oDCyXoyeBsMu2VtkMGCpvrhb9iiu8xeLmYyGK8XW08G8adGlE+sKN9fxL4MsZZLyvZgKVE2chsy4zI0ECIiIsoqDDIQEVFaNKUhk0G2et2brUEGYVyyckl+zbzMlJXUNH62vo1sE2/j5z2N+RdkECeEAGMmgzMXMxlszjQ0G42y8bOkKXW6aVps76X+pu2A5tNdJpZLkkkskyHe93v5rRqCDDGWS2ImA1HsxB4/7MlAREREAIMMRESUJg1mjZ+T2JNBtnrdm6VLVcVh2RQYGj8D8fVlYE+GyJkMZpPoe5rysOlzFEEGcY7IJCaYEmZBBkMmgxBkSH3TZ0hW4mdx42fVG9PuYqkkxVEGW3FH3WXSckkxZTLod9aS3PEk5iADMxmIEmbMZGCQgYiIiBhkICKiNGkyWZF/KKlBBuNl6ZwsjYU4VodNgcuuoESY7Y0vyCD0ZIj5CEZioCLrgwxxZjLsbTbPZMjyu2xK7McAyMolZTCTIcrb0sRsgbQEGfR1QDSzTIYsCDJoCQYZ7BV9DZkhiVdFEzNBoj1gtOWSeur+jj2TIcrhEFGIGGQoYpCBiIiIwCADERGliVnj50NuNWn1/WWlL6IuxZJm4liDc19txb4McTR/TkW5JHEOIft7MsS+XdO0vOzJIJa2cNqMQQVjkCHlwwrxmJxyw3MsA5kMxsbP/izOZIhtDL4GMchwZFTXiy2RQdw7teWS1OZdlsEW8X3Ml+XvY0TZSPxMETPjiCh7jR8/HoqioHfv3pkeCoDA9wRFUTBp0qRMD4WIkoBBBiIiSjmP39h4NkjVgDpPkoIM0kyG7JxEMjZ+DvxfLJlUl5RySTEfwiDfyiXJAlL1Xk266j/XieWSZKUtDI2fs7Ang6Fckr0oFcPRkzV+lgUZZE2p0yzRTAaHpB+DvFxSDG8ohvOX2sbP0FT4m3aa7i/OhWZpDJooq4mfKcxkICKK3hlnnBEKrpx99tmZHg5RUjHIQEREKWfW9DnoUEtyVo/LJoziSARIC3GVdrCMh9j8OSnlkgqxJ0Mc5ZLyMYsBiG7VqSGTIY2Pr1kg0HCpOJGfjnJJ0TZ+zopMhgTLJZVHF2SIjfhci/OIJu9hSlF7wF6su0y1KJlkY+NnooSxJwMRWenduzcURcH48eMzPZSss3XrVsyfPz/096effoqdO80XRxDlGgYZiIgo5RojzFgmq/mzbMIoVxo/B3+jV7qys1xSrvVkiFQGRbZSf0+BBBlkq07FuEM2ZDKID6Exk4GNn/VjkAUZzF/8sp4MhmMKj0HsbyXCNbRo38+ie/4pihJT82dmMhAlzvCZwnJJRBQnTdOgaVrBlEt66aWXoGkaioqK4HA4oKoqXn755UwPiyhpGGQgIqKUa/RGCDK0JCnIkEvlkoS7HJzEryxKRuNn8dgxH8LAmMmQnec1iJkMrQzlkiQTQk4h8JDOhummQQbxb3EiPy2Nn/VflTVNhebN/UwG1VMH1b1fd5m8XJL+UYg5KcoQpIn3fcP8hmMJMrDxM1HimMlARBSfl156CQAwduzYUKmk4GVE+YBBBiIiSjmzps9BSctkkEx8Z2u5JHGswXlfsSdDbRz9KtLR+DnbVwDH0/g5UiZDlt9lU+Kq0xJZuaRMZjKYvEYNL+esaPycaz0Z5I+jmMUAKLCX9Yp49UQzGbQoMxnE4IYVe1lP3d+WQQY2fiZKWDTZcUREpLdkyRJ89913AICrr74a11xzDQBg7dq1+OqrrzI5NKKkYZCBiIhSrilCJsOhJAUZfJLDZGu5JEMg4PAnstiTIb7Gz6noyZBb5ZLiafycrZkMWoITodE1fhZ6MmRjJoPfrfs7LY2fc7wng1kzaF+DPshgK+0OxVFs2C/hl7nhvSfDmQzCeLL044EoqxkyGVguibLUpEmTQg12AeDQoUN48MEHcdxxx6G8vBzt2rXDGWecgddeey3isbZs2YLf/OY3OO6441BRUYHS0lL069cPt956K9asWWN53eAYgiWBPvnkE1x44YXo2rUriouL0bdvX9x1113YsWNH1PfFzLx580L7zZs3L+L9EjU2NuL111/HzTffjJNOOgmVlZVwOp3o2LEjRo4ciUcffRQNDQ3S644aNQqKomDr1q0AgBdeeCE0luB/o0aN0l1HPDcywZJC559/Prp06QKXy4WOHTvijDPOwPTp0+HxmH8HE89bS0sLHnnkEQwcOBAVFRWoqKjA0KFDMW3aNPh8vthOVoxefPFFAEBVVRXGjBmDiy++GBUVFbptRLnOkekBEBFR/muMMGOZrHJJsonvbC2XJJ4Se6hcUhJ6Mgh/J2NFAcslpZ7ZOdUQzwryVs1RNH52Ck+SdGYymDZ+jpDJkJZySTa7OAiTTAa34bJ00zRJQMEkyCBmMshKJQHGkEDC5ZKifd+I4f3FGGT40XxfYThqln4+EGUzMcjATAbKBZs3b8bPfvYzbNq0KXRZY2Mj5s2bh3nz5uHtt9/GK6+8AofDOEX24osvYsKECXC79Z/1GzduxMaNG/Hcc8/hoYcewn333RdxHJMnTzZMqG/evBlPPfUUXn75ZcyZMwenn356fHcyCcaMGaNrTBy0f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7wQixYtMown+NhNmzYNH3zwAXr1kmRkhtmzZw/OPfdcrFq1Snd5dXU1qqur8fHHH+Ptt9+GzZb8tdgejwevv/46AGDcuHFwuQLfYS+55BK88MILeO211/Doo49Kn39EuYSZDERElHIRezK4kzO5K5sY9arZOSEujsms8XOzTzNd6W1+bP3fSenJIN5G4odMqUhlUMRMBp+qYX9zZu+VWWAk0brxYmmLYnGmFbJMhixo/Cz+nYFySbJMBtVnXMGXDY2fISnZZJbJEE3TZ5mYYwxxN34WjmMR3bCV6oMMakzlkuIaDlFBM3ymMJOBcsAVV1yBzZs347bbbsMnn3yC6upqPPfcczjqqKMAALNnz8a9995ruN7cuXMxfvx4uN1ulJeX48EHH8TChQvx5Zdf4rHHHkOHDh3g9/tx//334x//+IflGObOnYtJkybh6KOPxnPPPYfq6mp88sknuPXWW2Gz2VBbW4uxY8di2zbzz7FU8/l8GDBgAB544AG89dZbWLp0KZYsWYLXX38dV155JWw2GzZv3oyLL74YLS0tuuvOnDkTa9asQbdu3QAAF110EdasWaP7b+bMmVGPxe/3Y+zYsaEAw8iRI/Hvf/8by5cvx7vvvouLL74YAPDtt9/irLPOMs2wCLrkkkuwbt06/PKXv8R///tfrFixAq+++ir69+8PAJgzZw6eeeaZqMcXi/feew8HDx4EgFCZpPB/7927Fx9++GFKbpsonRgmIyKilBODDCUORbe6Olnlkszm4n0q4BIXJGeYONZQkKHIOAFc61bRsTT6O5Cexs+JHzOVIk3Mi5OL+5v9hkntqiJb0vqFRMOsxJNfA5wJHDeaxs9i3CGdk6/mPRn0gzD0PchA42cA0LySH7FZEGSQBhQSDDIkHp9NVrkkc2Img+reD83XDMVRYthXDKbJyqYRkTXxM4WZDMmlaSpU94FMDyNtbEXtjf2PUqC6uhqvvvoqfvGLX4QuGzx4MMaNG4fTTz8dq1evxt///nfcdNNNOP744wEAXq8XEyZMgKZpKC8vx8KFC3HSSSeFrn/qqafi0ksvxbBhw7Br1y7cc889GDduHDp06CAdw/LlyzFw4EDMnz8f5eXlocvPOussjBgxAtdddx3q6urwu9/9DrNnz07NiYhg5syZ6Nevn+HyU045BZdffjluuukmnHPOOdiwYQNeeeUV3HTTTaF9+vTpAwBwOgPfWtu2bRs6l/H45z//iS+//BIAcN1112HWrFmhRQeDBg3CBRdcgAceeAB/+ctfsGnTJjz00EP461//anq8YLZCeMmmgQMH4pxzzsGxxx6LPXv2YPr06bj11lvjHrOZYDmk3r1747TTTgtdfuaZZ6Jbt27YuXMnXnzxRYwdOzbpt02UTgwyEBFRyjUJjZ+7l9ux8VBr3cuaFhWapkWsMxqJ2SStR9XgyrIfweJY7Ycnv0odChw2fTmlWk+sQYYU9GQwTM4lfMiUirUng9j0ucypoMypoCY8Mz7F85FmE/uBxzP+x7BFqM0lCzI4lOzPZDA0frZnoPGzZBxAlmQySMolRduTwVEeZbmkWMdkOH/RPq/iL5cEAP6m7XC0MU6S5FoDe6Js41M1w+tG1ueH4qe6D2Dvvzplehhp0+nKvbAXd0z57YwdO1YXYAiqqKjAjBkzcMopp0BVVfzzn//EtGnTAABvvfUWdu7cCQD44x//qAswBPXq1QuPPPIIrrnmGjQ1NWHmzJnSjIigGTNm6AIMQddeey1ee+01fPDBB3jrrbewe/dudOnSJc57Gz9ZgCHc6NGjceGFF+Ltt9/G22+/rQsyJNtTTz0FAOjYsSOmTZsm/Z04efJkvPnmm1i/fj2eeeYZ/OlPf0JRkbxn1913323oCQEA7dq1ww033ICpU6dizZo1qK2tRWVlZdLux4EDB/D+++8DAK666ird/bDZbLjqqqvw6KOPYs6cOTh06BDatm2btNsmSjeWSyIiopRrEDIZupfrY9x+DaiPUFIpGmYT39nY/Nksk0FRFEPJpNoYV9Ono1ySluoZ9wRFesjF7Xub9Oe4cwxBnWQxLZeU4KmOpvGzU3iSeNMURPJLJqyCIpVLylQmg5TqTbhBd6KkAQVp4MEPf8MW3WXRZjLEHghOTrkkq/CGzdUGilM/GWDW/Fls/JzOBudE+UD8PAFYLolyww033GC6bejQoTjuuOMABJoyBwX/rSgKbrzxRtPrjxs3LjQpHX590YABAzBo0CDT7cHb8Pl8cTVtToV9+/bh+++/x9q1a0P/dewYCAqtXr06Zbe7c+dOfPvttwCAyy+/PNQgWeRwOEKPbU1NDb766ivTY1599dWm24KPi6Zp2Lx5c7zDlnrttdfg9Qa+j4WXSgoKXtbS0oJ///vfSb1tonRjkIGIiFKuyWfMZBAdSkLzZ7PV6+maMI2FOKEcnm3QRggy1MXY/JnlkmJv/CxmMnTKRJDBolxSIqKpn+3IUONnj8XtGE6H0FxZsctXqiVXDF+VTbIG0kYaZFChCRP7atMOw76mQQbh79gzGeItlxTb88/Q/LlB3vzZ0Pg5C/v1EGUztyTljuWSKBcMGTLEcvvQoUMBAN999x08nsCihrVr1wIIlAEKTqzLuFwunHzyybrrJDIGAFizZo3lvqm0aNEiXHHFFWjfvj06deqEo446CgMGDAj9F+xbsH///pSNIfw8nnLKKZb7hm+3Ov9WjarbtWsX+nd9fX00Q4zaCy+8ACBQminY/yHciSeeGCorFSyrRJSrGGQgIqKUE3sytHHZUOHS/yhNRvNns4nlWBsnp4OhXFLY6RD7MsTas0KctxVX78Yj54IMMZZL2isEGTKRyWC2qjrRiVBx5WmJZELI2Pg5oZuMmsfiZZ8VjZ9jqBOd6ZJJZqWRxICCT+jHoDhKYSuOrjRH7IkM+vMXd7ZHhBs2BBmazDIZ9H+z8TNRbNyS71MMMlAu6NTJ+nOuc+fOAAKfUzU1NQAQatQb6boAQqWNgtdJZAyRjpNKkyZNwmmnnYbZs2dHHENzc3PKxhF+25HOW3hZKasxl5aWmm6z2Vq/r/j9if8mDfr222+xfPlyAPIshqBrr70WQCDAk+xMCqJ0KtieDHv37sWyZcuwbNkyVFdXo7q6GgcOBBosXX/99Zg1a1ZMx/vggw8wY8YMVFdXY9++fejYsSOGDBmCCRMm4LzzzkvBPSAiyh1ikKHMaUNVkQ31YTOMyWj+bBZLsFotnSmGQEDYXJwYZIg1k0GcYE9OJoP+INm+AjjSJLk4uZgNmQxm2QOJ9r+IJpPBKcylawgEYuzJePJYsAoAik+xrC6XBGS++bNJkEFTvbqsD7/Qj8Fe3te0DFLSGz9HWy4pxhs2BBlMyiWx8TNRYsSgtcNmfF1RYmxF7dHpyr2ZHkba2Irap+V2Eun7lmjPuGQfJ1U+/fRTTJ48GQDQt29f3HPPPTjttNPQs2dPlJWVweEITB9OnDgRDz30UNrGle3nzUp4ZsJvf/tb/Pa3v7XcX9M0vPjii3jwwQdTPTSilCjYIEN4lDgRqqpiwoQJeO6553SX79ixAzt27MDbb7+Nm2++GU8//bQuOkpEVEjExs9lTgVVxXb8WN86sXswleWSkrcgJWmMPRlav0BnY0+GXGuYGksmg6ZpUQUZUn2Xzc5poq8MMcggW3UqmyTyaUCqQy2W5ZLEC/zpz2RQlOjPgObPjUwGv5DJYFYqCTD2Xon9rSTeckmRjqNnE4IMqmlPBv3f2f4+RpRtovk8ocQoii0tjZALzZ49e9CjRw/L7UBgQruqqgpAawmd4DYru3fv1l3H6jai2S4eJ3wuSVVV07mlxsbGiGM1EyyDVFVVhSVLlpiWiEpHlkX4/Y903oLnXrxepqmqildeeSXm67300ksMMlDOKtggQ7iePXvimGOOwccffxzzdR944IFQgOHkk0/G73//exx55JHYtGkT/t//+39YuXIlnn32WXTs2BF/+ctfkj10IqKsp2kaGoUfpWUOBW0TLAkkY7Z63ZuFq1XFFbThv9PbFCU3yJCMBUC5Vy4p+u2NXg3NwnM0M42fzTIZklsuKZqeDEAgsyLVE0gJZTLYmckQze2LwQexXJKj4siobyLmakmG85eqngw9dX+bNn7OUFkwonwhlksqZpCBckR1dbVlkKG6uhoA0K9fP7hcge8Xxx9/PL788kts3rw5VK1Cxuv1YuXKlaHrRLqNaLaLxwlvfFxTU4P27eUZIN99953lbVj55ptvAABnnHGGZQ+KYPkfM8nIPAi//0uXLg2VE5JZtmyZ9HqZ9vnnn2PbtsD3kbvvvhvDhw+33H/p0qV44oknsGnTJixatAgjRoxIxzCJkqpggwwTJ07EkCFDMGTIEHTu3BlbtmxBnz59YjrGd999h0cffRQAMHjwYCxYsAAlJSUAAk19LrzwQowcORLLly/HI488ghtvvBE/+clPkn5fiIiyWYtfM0xIlx4ulxSuJgmZDGZzsVkZZLDINmibaONn4W+x1FE8jOWSEj5kSsXS+Hm3kMVgU4D2xenPPjSrD5/IufapmqHxuWxSSJbJkI6G6dY9GYQ7nomeDDG0L9NUd+SdUig1mQyC2Ds/CweM90kVY0+GKDMZsr3sG1G2EYPWzGSgXPHCCy/gkksukW6rrq4ONQwePXp06PLRo0fjmWeegaZpmDlzJn7/+99Lr//GG2+gtrbWcH3RmjVrsHLlylCTaNHzzz8PALDb7Rg1apRuW/hc1fLly3HOOedIj/Gvf/3L9PYj8fl8AKyzIVauXImlS5daHqe4uBgA4HbH/72oW7du6N+/P7799lvMnj0bU6dORXl5uWE/v98fKnVeVVWFgQMHxn2byRYslWS32/HHP/4xYm+J0aNHY9q0afD5fHjxxRcZZKCcVLD1eyZPnoyxY8cmVDbpiSeeCL0RP/nkk6EAQ1BpaSmefPJJAIE37Mcffzz+ARMR5SixHwMAlDsVVAmTuDXJyGQwmTDKzsbP+r/DJ3nbFOl/tMeeySD0ZIhtaFLGTIbsO6fhYimXJDZ97lBsy0iNabPASCJPX3FCCABKZJkMkrtr1iMimawCgJEbPxch5WJp/JzhcklWPRnCGXoyWAUZxKyoWMdkCHCm5jklBhk0bx1UT61xP5ZLIkqIO4oeP0TZ6N1338Xs2bMNlzc0NODWW28FEChJFPw3AFx88cXo1q0bAGDKlClYs2aN4frbtm3DPffcAyAw/3PDDTdYjmPChAnSSfxXX30V77//fuh2u3btqts+fPjwUE+Exx9/HJrke+4jjzyiW9Ufq379+gEAvvjiC2zcuNGwfd++fZYZBUHBsW/atCnusQDAnXfeGbrdX/7yl9J9Jk+ejHXr1gEAbrnlFhQVpeG7YRQaGxvx5ptvAgBOP/30qJqHd+jQASNHjgQAzJ49O6EgDVGmFGyQIVGapuGdd94BABxzzDE49dRTpfudeuqpOProowEA77zzjvTDgIgonzUJQQYFgR+lYibDoZbEGyeYTdKmY0V2rMQSOOFz2sbGz1pMk/qp6MmQa+WSIpVBCZ9cNOvHkO4+c2aBkUgBEyti/WzArFySpCdDGh7kmMol+YUfW2kol2Qs92Mhw+WSTDMZtNbLVW891JZ9us2O8ugzGWJ+TYjnL9rncqyNn0uPMFwmy2YwlkvK8jcyoixjKL/HTAbKEYMHD8ZVV12FO++8E59//jlWrFiBmTNnYvDgwaFSR3feeSdOOOGE0HVcLhdmzJgBRVFQV1eHESNG4KGHHsLixYuxdOlSPP744xg8eDB27twJAHj00UfRoUMHyzEsX74cgwcPxqxZs7BixQp89tlnuOOOO0KT9xUVFaFqGeE6deqEcePGAQA++ugjXHjhhfjwww+xcuVKvPPOO7jsssvw+9//PmJJHivXXXcdgMAE+ciRI/Hkk09i8eLFWLx4MR599FGceOKJWLduHYYNG2Z5nOAYqqurMXXqVKxevRobN27Exo0bsWPHjqjHc9ttt4Vua+bMmTjrrLPwn//8B1999RXmzp2LSy+9NNSA+sgjj8T//u//xnO3U+LNN99EQ0MDAODSSy+N+nrBfQ8dOoR33303JWMjSqWCLZeUqM2bN4c+TILRRjMjR47Ehg0bsGPHjrjKMhER5bIGYYa/1KHApihoW6SveV/jVqFpWkJ1PM0mY3MhkyH8d7rY+FkDUO/RUFkU3blJR5AhC0+pTqSJeZ9FJkMm+jEAqSmXJAsyyBs/S8aTjnJJsTR+zkS5pFgyGTLekyFyJoNYKgkA7OW9TQ+ZcCZDssolRfhcUBzFsBV31AVQ/I3b4KzS12YW42vZ/j5GlG3Engwsl0S5Yvbs2TjrrLMwffp0TJ8+3bD90ksvxd/+9jfD5WPGjMHMmTNx6623or6+HhMnTsTEiRN1+9jtdjz00EO4/fbbLccwZswYjBkzBpMnT5ZmPLRp0wbvvvsuevfuLb3+448/juXLl+P777/He++9h/fee0+3/corr8TNN99sWbLJymWXXYYbbrgBM2fOxM6dOw3ZA3a7HY8//jhqamrw5Zdfmh7n9ttvxz/+8Q8cPHgQ9913H+67777QtpEjR2LevHlRjcdut+O9997DhRdeiEWLFuGzzz7DZ599Ztivf//++OCDD6TllDIlWCpJURTTMl0yl1xyCe666y6oqooXX3wxFFgiyhUMMsQpmJIFBDIZrIRv//bbb2MKMmzfvt1y+65du6I+FlEh8Po1fLClCQ1eDef2LkG74sxMFhYyTdPw+bYWfHvQC1XTcFDotVDqDPwgFcsleVXg76vqok6xqyyy4We9StC1rPWjzGxS9JMfm/HNAesJwDZFNvysZwm6lTvgOfw8+rHOF+VoYrdPmNgOX2HbxmU8C9NX1+Gm4ytCq+zNNHhUQxPjVPRk2FLnw/ubm3BCBxc+29Ycc0mnoHqvhtX7PChzKDi5kwsOm4KTOrkwrGtxzMdq8qr4YEszdjb4sOmQ9WO3cq8Hte5afH/Iiz1N+rGbneMPtzRjxR556vL2Bj86l9rhNHkCdy6147w+pahw2dDkVfH+lmbsamgdY4XLhvYm71fRBslUTcPHW5ux8ZAvlDnZIGQSOW3yrAWbosCu6Cddn1hZi9O6FeP8PqVwRTmRpGkaPtvWgl2Nfow8ohg9KoxfNX+o9WLethY0elXsbTZ/3rz5fSM++7E59Hdz81VQKi7DEb6vcXrzc1nXk6Hh6ymoGjkbiiP2526imn94DfVf3SffGBZk8NXpyx/YSrvHNN7YyyUJ7/M1q1Gz4JrQ347y3ijt/0vYSzpB0zS0/PAq3Ls+gWfPglhvCbayHrogQ8Pqh9D8wyuBbUXtUdrvJtht/XTX2d7gw5MrW8sqdS6z49zepdL3YKJ8tXKvG2v3ezCgowsndbQuNSKWSyqSZMb5m3ahcf00+Bu2xjQOm6MclcP/GdN1iKLVp08frFixAo8++ijeeustbN26FU6nEyeeeCImTJiAq6++2vS6119/PUaOHIknnngCH3/8MX788Ueoqopu3brhzDPPxN13340BAwZENY5JkyZh2LBhePLJJ7F8+XLU1NSgW7duOP/883HffffhiCOMmXlBnTt3xtKlS/HXv/4Vb775Jn788UeUlZXh+OOPD92HaCfwzTz//PM488wzMWPGDKxatQoejwddunTBT3/6U9x1110YOnQoJk2aZHmM7t27Y9myZXj44Ycxf/58bN++HS0tLXGNp127dliwYAFeeeUVvPrqq1i5ciUOHjyINm3aYMCAAbjssstwyy23hJp1Z4MdO3aEgiHDhg0LldyKRufOnTFixAgsXLgQH374oWXDcaJsxCBDnMIn/60+CACgR4/WOrHB7vLRCr8uEUX2zNp6zN8e+BKzaGcL/j6qvaE8AqXWB1ua8cK6BtPtZYdnYdsWGSdxFu+MrfbkFzvdeOqM9nAengBdult+/U21PmyqjRwwWLijBU+d2QHPr63HvO3xfRmOV/gcrt2moMKpoD5sgnjVPg8mfVmDJ8+wfk4/ssJYhzwVmQwALB/nWDX6NHxx+PGft70FGIiYAw3TVtVhxd7oVpPvbPRjZ6O8RJdZJsOGGi821Jgfc0uEoNQ3B72YPKwKf19Zh5X7ol/1/vK3DfjLae0i7jd7QyPe2tRkuY9V/WyHDfCHnZJt9X68tqER2xt8uOukyqjG+u4PTXh1faDW8IdbmjD9zA5oE/ZaP9Tix4OLaxBNL/O1B4SV+a6LAADLMQ61tq64LssyGdzb5qB26d1oO+KZFA7IqGnTy6hdaF4jOTyToX6Fvmmlw6IfAwAs2SW8p8ZeL0n3l9q8Gy2HJ/6D3Ds/Roexy9C8cRZqF90Y1XFk7GU94TvwVehv774v4d3XutKyeeMLUIZ9r7tOvaf1fSfom/1eTB5eFfH2iPLB1/s9mFod+N7w3uZm/O8pbXF8B/P31kjlkjRNw8H/ngtfzdcxj0Upas8gA6VUVVUVpkyZgilTpsR83d69e+OJJ55IyjjOOecc08bNkVRVVWHq1KmYOnWqdPuoUaMsS3TPmjUr1CjZzDXXXINrrrnGdPukSZMiBhqOPPJIPPvss5b7AIiqnLjNZsO1114bVT8IUTRjBSKft1h0794dfn/8ZYAXLIh9oQVRtuAynTjV19eH/h0pLausrCz072BdNiJKjeVhq4z3N6v4IYqJZUquapOJ/qDgClGXXUGlK7HZ71q3io21rRNoHUoS+1ir92jYUOPFir3pb7QlTv5WSVa1H2hRsa3B/Dnd4FGx/qCxZIqs0W+sStJcEmFVlMGCIFXTLCfuK5zRj79zWeDcJ7sMxPqDXtR5VKzeH9t9E3tGmPkqisBFuVmqBYBSWc0kxPZYBAMMQCA76Z1N+uaGq/Z5ogowRLLOdRYUV5vEDxSBYi8ClOgz4tw73k/haExu88e3rXcICzLYioXGg4r1eqODQq+cWDOWbI6yiPt491dDbdkP93bzc6c4SiMex1FunSmseWvhatwQ8Tjra7xoysZGPkQp8PK3+t+mM9bUWe7vET6OxM9JtWlnXAEGIiIiyn0MMsQpPN0rUmpWeIf75uZmiz2Ntm3bZvnfsmXLYhs4UZ4T64/XJmM2i2Kyv9l6QvS07kVh/068rEi9p/UxT0YDwlq3sdxQqrUvtuHoKqfustO7y0sWuC3iZockE4Ddy+3oVpZ42bBj2jkNzbpTyRtjIwK3XzPtXVDqUHDzgApE8/ToWeFA7zaBidfhcZRsiuRQixpzj4Vo68aLZSxkRnQzv0/Du8mfc4nMt35Xow967Y3w/hAtn1KMoi6jknIsK4q9CMU9fx71/obm1Gngb7QurRk+JnF89rKelteVlUKJhav7OVCckbNgNH8LNL9J9pitCMU9Lox4jOI+VwI2p+U+xxTvjSq4neaPAKKM2Spk4InlA0VivyMxy9H0dUxERER5j+WS4lRc3Poj3eOxXuHndrf+oCspKYnpdiKVYiKiVqqmGSbj6uKsE0/xUTUNB4VzPuqIYlQW2WBTgP7tnDgxrN7vNf3L0bfSiR/ro884WbC9BTVht1FvEUjqWmbH0C7W9YW/3Nmiqwt/yK0aejuc1aMY5Smq0V3hsmF41yKUCKvIL+hbii5lDjwmlD/yWaTy1knOxeRhVQk10w4qddrw5xFVmLGmHqtNVsxXuBSc2SP6z7mFO1oMPTviJa6uBIDzepegssiGU7oUoVu5A51K7fhqrwcev4bPtzWjzqM/lwqAB09tG+o/cX6fEnQqtWPTIS9ko2z2BXogiI6qcqJ/u8Bk55wfmnRBBdljFEmzT4PHr0XsiyAGZk7tWhQq/aQA6F3pwKkWr4fg6/Hzbc26UkWasQVz1MQAxT5hAusnbR04rr0LNgU4psqJJp+GrXU+wy3u3Pcjqus6hP72wwFbUeQSUsnQ9vQX0XzEefDVtZbaUWxFKOp+Lpp/eAVN66eF7Z3+2Wl/807rHdSwwILQHLqou3W5BjEgdslPImcUhHOU90KHsUvRsvVNqN7DK6RVDxq/0TfX1DQ/ILzKXJ1HwtXtLBQfcQGc7U+KeFuujkPR4fwv0bL9vdBEZ/P3z+n6NJTbW/DnEe2wZFdLqF+J26/hwy2xLQIiKlTie4KhlKJm/DAuO/73UZWeiyZjiYiIiLIXgwxxqqioCP07UgmkxsbWUgHZ1PGeKN/IVtvWs+RBWtV5NMME/RVHl5k24LYpSszZDFvqfKgJm+RuCHuMxem9K44qwzCLldsAsLfJj73N4WW2jD+QL/5JWcSGy8mmKAqGdilCu2KbbiLeZ7EMXpzA7lJqR0USgyMdSuy4+MhS0yBDxxI7rjom+s+5PU1+Y833OLkly/2vPLoMxWHBm76VTvStDEz+r97nQZ1HH9wa27dUF0xSFAVDuhRhiMnE/MEWvzTIcEIHF8YdFSgTIwYz4gkyBK/XocT6OSiuvj6rZwlOsKitLQq+HruU2fHAotbmE4mUqBUDH/uE19fwrsUY01c/sTRc0h+v2rdHF2TQ0tL0OUBxlKC0n0mvAM2rDzIkqZ5vtDRNhdq0y3qfsJXFmiq8diOcR/HuxNNE3lF5NMpPaG1KrfmaDEEGaH5A0782inqMQfnx98Z0W84Og+DsMCj0t3vHh7ogg6b50anUjguPbC3jdMitGoMMzGQgkjIGGcRUBuNnXMWgh6HE0N+GiCgb7NixAzU1Fs3YTJSVlaFPH+sSjkT5ikGGOIVnGIQ3gZYJb/bMRs5EqSMrr8JMhvQS63fbFHmD50SUC7X1G8OaIxvm96KYD2sjTMLLggyRVpCnklitRAzihBMnsNsk2PNCOh6LLtLJPE+xzvF5JEEGq/HINsXaINtuMuEanpRS5rShLizNIqVBBuE90KL9giVD+Yv4DgPA+HwVgwwdowze2RT9KNSsqfhpWMab1ltXW/YDmj5YprjaQvMcah2R3zyTQYlQXkiNUBolLrIeF5ofmmFyMvHHWBFvSzW+v8vuEmMMRHJiZpvh80KSyRDVlzEioizzwAMP4IUXXoj5eiNHjsS8efOSPyCiHJAtv9ByzrHHHhv69/r16y33Dd/ev3//lI2JqNB5JZOM9V5OFaTTgWb9JFFVkS2ula9WxMa1DRaTttHcchshCLKv2Xi8ovQmMeiIk/pWmQy1bv028b4lg9XEdayNkpP5zBAzGRw261XXdslsaawxErvJuXCE3a7YdDveIEM0DXfFCX1Hkl57sfaQCBde3sunaob3iI5RNmtXhIktDRl8UeoYZtjSeutq0w79BYrN0GdBCyuXpAlBhkg9DCKWRomHNMigGldAJ2Pls3hb0glQyXASv2WinBDrS9rwnmDcw3ALySjZSBSPSZMmQdM0aGn+bBYFxzBp0qSMjoOIKNUYZIhTnz590K1bIJ9//vz5lvsuWLAAANC9e3f07t071UMjKljSckls/JxWB4RMhvbFyf+YKRdW5zeEZzII+0YVZBCOt79JksmQlJm1+AitGiwzGcTnu5ilkZzxWGQyJPE8xfp70CPMfBRFGIs8kyG28ZsFJey6TAb9TvWe+H7oRhOcEANQ4nMnWsl81oS/Lx9sUQ2v0ZzPZDA8Z9I7keFv0vdjsJV0MdY1D2/EKpRLUiKUS0pNkMH42Ml6MiSlvIpNSNqWBBmkdynDE1JE6RLr4oCI7wlitpAsqEhElANmzZoVChDF8h+zGKiQZckvtNyjKAouuugiAIFMhSVLlkj3W7JkSSiT4aKLLuJKDqIUkpZLYpAhrcQmvu0ilHeJh5jJkGggqVKYiG/0GSdqZave08WQyRBD4+dUBBmsMxliO1YyPxLFTIZIpZvSVS6pVJjpT1UmgyZpfG8VELIkXC2hTIawQe0VAnglDgVlYj0wE1kbZMh0uSSh6bO9pBsUu74PTXi5pFgzGcR7Y0tC/pE0eKD5jRP7SQgyiOWSpKVc+NWcCphL8rltlTEpbjL+tk1BRhIRERHlBH7qJ+DXv/417PbAN7O7774bzc36pnHNzc24++67AQAOhwO//vWv0z1EooIiCzIwkyG9xH4GKclkcJpnMsQjUmPkTGYxALH1ZBAnolNRLslq4rooygnjoGSeWY8wdxhpdWYyyiWZZQqEBx/ETIZ4+8TURciAkD0v4s9kSN4jEx4UM/RjKLFHvfjCpolBhmxZHZvZckmGTIbSblBs+kbl+p4MsWYypKAnA2Bc3awaGz8n5WeKoVySz7iL5GrMY6BCIfusbPJFH2SI2JOBmQxEREQFo2AbP3/xxRfYuHFj6O/9+/eH/r1x40bMmjVLt//48eMNxzjqqKNw7733YurUqVi+fDlGjBiBP/zhDzjyyCOxadMm/PWvf8XKlSsBAPfeey/69euXkvtCRAGySbZIE3OUXGImQ/vi1GcyNIbVYzEshI1iArMywkR8rKUEki2WngzpyGSwDDIksSdDoo2fZaszw8mGapaZYMZsb7Hxc7hEGj9bkWW4xNuTQbxaIu+i4eWS9gmZDJ1Ko39+Zm0mQ4bLJalCkMFe2s0QeNDCyiWJmQyRGz/r/05qkCF8MlJSLiklPRnY+JlIR5b11+RVTb8/RGr8LAYLk1L2jIiIiHJCwQYZnn32WdNO8YsWLcKiRYt0l8mCDAAwZcoU7N27F88//zxWrlyJK6+80rDPTTfdhD//+c8Jj5mIrImTjADQ7NPg9WtwZniiuFAcFHoytIuyqWssyoUfvg3hQQZh3+h6MkTIZMh4kEH/d2w9GZI/dstySTHOQFrNgce6IDwT5ZIURYFdgbFMUdgdKxWyO+LNropULkn2vLB6rKxIJ101LWLQTtZYMXySeq+h6XP0QUgbciSTIe09GfSNn22l3aC6D+p3Otz4WdM0QCyXZI+tJ0PSSpxJyhhpaWj8LC2XRFTAZJ97jRYZohEDj4bXcba8VxMREVGqcWlBgmw2G5577jnMnTsXF110Ebp16waXy4Vu3brhoosuwvvvv49nn30WNhtPNVGqmU2+1ss6QlPSqZqGA2nJZND/onX7wwNMsU/wlTkVy8nlSCviUy3angyqphkyd8R+E6kYT7jYAzLJC4KIQcZIWRWyJs/xrNKWZkSE92QQyyWlqPGzLMMl3p4MsonkaEYtifPqGMolRdn0GQBsiv7+a9nyFTbDvbbErAV7aXcodpNySZof4iOpKBEyGYS/k5XJIPZKgKamZAW08XbYk4EonF/y0SL2pgpnCDIYSsaJ5ZKy5L2aiIiIUq5gMxlmzZplKImUiPPPPx/nn39+0o5HRLGT9WQAgHqPhnbF0k2URPUezRDoSUlPBsnEeaNXhctul5RLinw8m6KgwmUzXSme6XJJYgkfs2Bag1csYpCangzWjZ8zd64MmQwRZkNl/QrscZwuu00xzLroejIINxTvOvfIQQbjZfH2ZJBnMphsCBMxyCCWS4opk0EYj2KLKrsi3WTZHKkklkuylXQDDD0ZDpdLErMYgIiNn42rlpMVZZBM/qeiJ4NN+KkjCTKYPt+JCoAsQN1ssTgnUnZTSjKSiIiIKCfwU5+I8oZZkCHeGugUmwNCqSSbAlSlIMhQJmkuXH84tT+eckkAUGlRVijjjZ8N5ZJMnueSIEkqejLYFMX0vMaayWB1amPuySCcl0hjkU2WxtqTATA25gb0j5mYyRCvWrdqOYEt7cmQ7kwGk+empmnwqZqhZ0vHGMqpiZkMgHGyKzMyVy5JU71QW/bqLrOXdoNiF6LqhzMZNKHpMwAoEcslCfXX4xinlE1Wxigz5ZLYk4EKmSxpwbpcUqSeDPrXmCGbiIiIiPIWgwxElDe8JqWW462BTrE5INRbryqyJW/Vaxi7TTHUuW9I8DG2mozPdE8Gp6Hxs3w/MZhW6lDinmSOPCb55UUZnEvwCK//SFkVsuBAPKfLJrmSPeyysiQFGbwq0GKRKiBbeBrvU1d2tWgm9M0qbPhU4ECLapi4jalckmTaN1LmRDoYQm5pXAKvNu+BOB0eCDIImQyHezJIMxkilUtKUU8GRfwJIstkSEW5JNWX8DGJ8ols4UJM5ZIi9WTgdAMREVHB4Kc+EeUN83JJDDKkg6HpcwqyGILEvgyNCWYyVFgEGTJdLsmQyWAyiSkGGVKRxRBkFryI9VxZ7Z1o4+eIPRkkpyeeIIM0kyHsstJ4uy9LWPVzECeK7AriLiUU7/XMMhla/Br2CqWSSh0KymI4N7LHJisyGQznKn2DEps+w+aCUtQeMPRkCJRL0iRBhkiZDOLrMGlxS0m5pHQ0fpb2ZJBguSQqFLKFC01W5ZKEvyNlMohZS0RERJS/GGQgorzBckmZZWj6HEO99ViJfRkaDv8gjqcnAwBUWvQuyHQmg6Hxs8nTWewpkYp+DEFmc8OxnivrvWOb5TP0ZIjw9HMkqVySbNI1/DETs24SYdY3BDA+L8QMmFjEm8lgllnQ4tMM/RhiyWIAAJthastYtiMzMhdkEPsx2Eu7QVEUQ7kkzaJcUsSeDOLuyUplECceJZkMhmyHeERTLim72noQpZUsk6EppkwG/QvIECzkdAMREVHB4Kc+EeUNs4VX9Rarfyl5DjTrJ29S0fQ5qFyY5W5I8DG2LpeU0KETFnVPBuEctLHoM5GoZGUyWEUZYu7JYAgyROrJEN1lkcjORfhNJ6tcEmAdMBWfF/E2fQbMHpbIj4jZc7PFr2Gf8P4QSz8GQF4uKTvCx5krl+QXmz6XdgMAKELjZ1g0flZsMfZkSFEmQ6p6MhjKJbEnA5FOrD0ZxN5AhtcPezIQEREVLAYZiChvMJMhs8Smru2KU5nJoP9ZWx/MZBD2i3Y+zCrIkPFyScIqQfNgmn5DZQbKJcXc+DkZgzlMDDJE7MkQITgQLdmpsIfdsWK7eaNsILZMB1lz7yBxoiiRfhyyld0JZzIYggwxZjIokiBDNswEZ7JcUrOQyVByOMhg0pMhrkwGcdVyjGM0Y5z8V1PSkwE2h3A7snJJTGWgwqRqmvR91LJcUsQSail4HRMREVFO4Kc+EeUN9mTILGO5pDRmMpiUS4p27shq1X9RiponRyvaTIbatPZkkF+ezEyGWBnLJcWTyZCkcklhx1EUxTKbwWpbsXAfxMc4nNgPIfmZDJH5TYbn9mvY16Tf2CnmcklZGmTIonJJwUwGmJRLMmQyKDYoESYA09mTwRhkSEKgOppMBsl9yoqnFlGKmZVfjK1ckrBDKoKFRERElBP4qU9EecPsx5JVs1RKDk3TDI2f26cyk0GYmDUrlxTtfJhVTwZnpjMZouzJIK5yr0hpT4YklUuyEGvVGXH+3RVhNlSWQJCsCVRxgt8qkFBiEQ2oEkqOWWVliQtPZT0noiXNZIjiemZNyeXlkpKRyZAF7+3iyUpruSR942d7hHJJhsbPEUolAZHrr8dNUi4pFY2fxYwJTfUlfEyifGG2aMGqXFKkPi2Gvicsl0SUVcaPHw9FUdC7d+9MDwVAYDGOoiiYNGlSpodCREnAIAMR5Q2xXEoQMxlSr96jGSY526WxJ0OjSWq/daGaVlldLkkYmt9kElOcgE5tuST55clt/BwbY7kk6/1tSSqXJHs4xAbSpRaBhFKLAESVECiybvyc4kyGKObOzQJgDR7VUE6tY2mMPRkMzUSZyWDMZOgOAKaNnyGUS1IilEoCjIGcpMUYpBkGqW/8HHVPhmwIYBGlmFnCQpPZmzmMrw3Dq5SZDEREIaNGjQoFUsT/nE4nOnbsiJ/+9KeYOnUqDh48mOnhEiWMn/pElDfMMxlUThik2H4hi0GBcYI0mcSeDA2HV93F+yi3sRhrxoMMipjJEF2QIbXlkswyGWI7jlUQKNbHUiyXFOlxk22WBR7iYRdOvVUgodiumAY3xEwGq4CpMciQSCaD8brRhGrNAmA7GvyGxzNvejJksJ6/2Pg5lMlg2pMhjkwG4e+kvauIE4+qrFxSeoIMRIUqrkyGiOWS2PiZqND17t0biqJg/PjxmR5KVvP5fNi/fz8WLlyI++67D/3798eiRYsyPSyihDgi70JElBvMejL4NaDZp1lO9FFixFXKVcU22FPYy8C0J4O4Y5RDKHMEJnplyTCuDP8+NvZkMO6jahrqhZJRVn0mEh6TyaEjlShKJTGTIVJWhWxzsuJJ4gS/VSaDXQkERGQ1sA2ZDBal38TnRSKZDLKrRhOnNevJ8GO9vkRNmUNBmTPGTAZpT4YsiDJIAjKapkkDNcmk+ZqheWp0lwUbP0MMMhwulxRPJkNmezIkP8hgKOUCk0yGxG+ZKOuZvWe3+DSomiYtj8aeDESUTIW0EHDNmjW6vz0eD3744Qe89NJLePfdd7F3715ccMEF2LBhAzp27JihURIlJqs+9Tdt2oSlS5diz549mR4KEeUgsyADYF3LnBJ3oFnsx5DajxcxyBCaYBdLe0R5PEVRTFf+x1oCKNmMPRmMz/MGj2aYFLPKzkiUrCeDw4aYA0vJjEnEHGSQ3HjSejIIx7HqyWC3KaZZF1VCXxOx70Y4sR9CIpkMshdOND8BzXoybBOCDB1jbPoM5FomQ+oH5m/eZbjMFspkKBZ2NstkiKZcknCVVPVkgJqSyUnFJqynijKToYDmPKiAmb1nawgszpGJ9J7AngxERHLHH3+87r+BAwfisssuwzvvvIPrrrsOAFBTU4Nnn302wyMlil9aggx79+7F9OnTMX36dNTW1hq2b9y4EYMGDcJRRx2F4cOHo3v37rj00ktRU1MjORoRkZxJWX4AMKzypuQ6IGQytEth02fAWC7J7dfg9Rsn2mOZDqswCTIUZXB1PiDJZJA8lWVBtNSWSzJeluzzFOskXzLKJYm9FKIhG6YYwLAMMijmYxX7mliVfjNkMiTwcMgzGSI/IGarYsX3h44lsT83ZZkMJm140kpa8isNM9Sq0PRZcZRBcVYE/m0TMxmCPRn0QQYlqsbPaerJoPoDgQadFJRLkjR+TnHSCVHWsmi9YFoySXxPYCYDEVHi7r333tC/q6urMzgSosSk5VP/zTffxF133YX/+7//Q2VlpW6b2+3Geeedh1WrVkHTNGiaBlVV8fbbb+Oiiy5Kx/CIKE94LWac2Pw5tQ4KPRnaxzGJGAsxkwEINH9OZGrPrLxQxjMZoujJIAYZyhxKYivZI41Jcux4zpPV5F4sj6WqaRBf4pHLJSUnk0E2nyxO8JdalAZy2MzHKvZk8GtAo8nq0mT2ZIg3kyHaSf94MhkUBVCEFbJZkckgfRKnIZNB0vQ5VKLJpFySJpRLii+TIbZxmoqiXJKSpnJJRIXKrCcDADSZrNyJuJhD7MmQXYUTqMBMmjQp1GQXAA4dOoQHH3wQxx13HMrLy9GuXTucccYZeO211yIea8uWLfjNb36D4447DhUVFSgtLUW/fv1w6623GsrgiIJjmDRpEgDgk08+wYUXXoiuXbuiuLgYffv2xV133YUdO3aYHkO8L2bmzZsX2m/evHkR75eosbERr7/+Om6++WacdNJJqKysDDUoHjlyJB599FE0NDRIrxtscrx161YAwAsvvGBodjxq1CjddcRzI6OqKl5++WWcf/756NKlC1wuFzp27IgzzjgD06dPh8fjMb2ueN5aWlrwyCOPYODAgaioqEBFRQWGDh2KadOmweczLkRIlz59+oT+7Xa7MzYOokSlpSfDxx9/DEVR8POf/9ywbdasWdi0aRMURcGFF16Is846C5988gnmzJmDRYsW4fXXX8cVV1yRjmESUY5juaTMOdCsP7/tU5zJIFsZ3uDVDL9+Y1mhWmlSXijjQYYoejLUik2fU1gqCZBPYBfHsXQ+WWdWNhcSV+PnJA1IPE6ZxbmxK4ppw2xZ8/Q6tyoNsonnIDM9GaKbXI+16fPhEcAGP/xovW5W9GTIVLkkk6bPgKRckuoOZKLEk8kg/J20IIMtPT0ZDBkT7MlAFGKVySDrEwTE05OB5ZIoO2zevBk/+9nPsGnTptBljY2NmDdvHubNm4e3334br7zyChwO4xTZiy++iAkTJhgmfzdu3IiNGzfiueeew0MPPYT77rsv4jgmT55smFDfvHkznnrqKbz88suYM2cOTj/99PjuZBKMGTMG8+fPN1y+f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7zQ0BB5//79ocdu2rRp+OCDD9CrVy/LY+3ZswfnnnsuVq1apbu8uroa1dXV+Pjjj/H222/DZkt/cDQYmAGAnj17pv32iZIlLa+eDRs2AABOPfVUw7ZXX30VAHDmmWfi7bffxt1334133nkHo0ePhqZp+Ne//pWOIRJRHmC5pMwRy6GkuieDw6agRJi4bZBkMsQyH2ZWXijSZHWqRdOTQazVb1b6KVlkC/MzGYwR+zEAQKRTYJdsT1a5JHGVmVXTebvN/DlWbDc+z8WAUpA4wZ/sTJboejJEd6xOcWQyAIANOZLJkJZySWImQ3iQoUjcHVC90PyxN342TCgmKTQoTv5raWr8LA0yZOYhJMo4s54MgFW5JP3fhj4thp4MzGSg7HDFFVdg8+bNuO222/DJJ5+guroazz33HI466igAwOzZs3Ula4Lmzp2L8ePHw+12o7y8HA8++CAWLlyIL7/8Eo899hg6dOgAv9+P+++/H//4xz8sxzB37lxMmjQJRx99NJ577jlUV1fjk08+wa233gqbzYba2lqMHTsW27ZtS8k5iIbP58OAAQPwwAMP4K233sLSpUuxZMkSvP7667jyyiths9mwefNmXHzxxWhpadFdd+bMmVizZg26dQt8J7nooouwZs0a3X8zZ86Meix+vx9jx44NBRhGjhyJf//731i+fDneffddXHzxxQCAb7/9FmeddZZphkXQJZdcgnXr1uGXv/wl/vvf/2LFihV49dVX0b9/fwDAnDlz8Mwzz0Q9vmR65JFHQv9mRRfKZWnJZNi3bx8A4IgjjtBd3tzcjCVLlkBRFEyYMEG37cYbb8Qnn3yCr776Kh1DJKI8YJXJUG8VgaCEaJpmKJeU6p4MAFDuVHSNCeslzY9jYR5kSOCgSRBdTwb9hZUmpZ+SRTaBHU/yRLLKJYn9GIDIwSFZA9tUxUlKLdIKHIp542e7LdCQvNnX+voya/4sPi8sKjRFJItPZDyTQdOgCOvqsyLIkLHGz0ImQ0lYkMFmDDJo/hZAExs/R9OTQf930voXSCf/U9CTwcZySURmrDMZ5Bsj9WTQmMmQMFXT0FBAi6PKXYr0O1myVVdX49VXX8UvfvGL0GWDBw/GuHHjcPrpp2P16tX4+9//jptuugnHH388AMDr9WLChAnQNA3l5eVYuHAhTjrppND1Tz31VFx66aUYNmwYdu3ahXvuuQfjxo1Dhw4dpGNYvnw5Bg4ciPnz56O8vDx0+VlnnYURI0bguuuuQ11dHX73u99h9uzZqTkREcycORP9+vUzXH7KKafg8ssvx0033YRzzjkHGzZswCuvvIKbbroptE+w5I/TGVjE0LZt29C5jMc///lPfPnllwCA6667DrNmzQot5Bk0aBAuuOACPPDAA/jLX/6CTZs24aGHHsJf//pX0+MFsxXCSzYNHDgQ55xzDo499ljs2bMH06dPx6233hr3mK2sXbtW97fH48GWLVvw8ssv46233gIQCIade+65Kbl9onRIS5Dh0KFDAGBIO1qyZAm8Xi9sNhtGjx6t2xZ8g9q7d286hkhEecCqtqzZxBwlrt6rGbJIUt2TAQj0ZdgXVqapwasmVC7JrMRQ5sslxd6TIZVNn4HkZTIk68xKMxkiBRlkl6XoobZs/GzRk8GuBHqF7GlqvUwMKAUZejIk8INdVu83qT0Z4nx/sGl+3ZMma4MM6chkaNTXbQ7PZIBYLgmAprqhGcolRZPJEKHJa7zE1c2aXzI5mYxyScJPHQYZiEKsvjebZjIIfxs/LlLQW6XANHg03PLJ/kwPI22eGd0BbYpS/1177NixugBDUEVFBWbMmIFTTjkFqqrin//8J6ZNmwYAeOutt7BzZyCo/8c//lEXYAjq1asXHnnkEVxzzTVoamrCzJkzpRkRQTNmzNAFGIKuvfZavPbaa/jggw/w1ltvYffu3ejSpUuc9zZ+sgBDuNGjR+PCCy/E22+/jbffflsXZEi2p556CgDQsWNHTJs2Tfr9dPLkyXjzzTexfv16PPPMM/jTn/6EoiJJRieAu+++29ATAgDatWuHG264AVOnTsWaNWtQW1tr6CWbDAMGDDDddvTRR+N//ud/cP311yf9donSKS2f+sE30d27d+suDzaiOfbYY1FVVaXbFox+ymriERHJWJZLYiZDyhxoFpv8AW1T3BMACKx8CtfgNWYyxPKTpdJkYj7jQQbhC7XsqWwIMmSgJ0Oyy0rFMk8rBhnsSnzlgpLV+FlkWS5JUVBscu5simLoFWJWLklcdJpIuaR41+ZbTVgFlTkVy0bYVsRySf5sqGmThtWXMoZMhtLuoX9LyyX53YA/9sbP4hlOVeNnTVPT0vgZqrGpI3syUKFKTU8GsVwSMxkoO9xwww2m24YOHYrjjjsOQKApc1Dw34qi4MYbbzS9/rhx40KT0uHXFw0YMACDBg0y3R68DZ/PF1fT5lTYt28fvv/+e6xduzb0X8eOHQEAq1evTtnt7ty5E99++y0A4PLLL0dFRYV0P4fDEXpsa2pqLCuhXH311abbgo+LpmnYvHlzvMOO24YNG/D0009jwYIFab9tomRKS5Ah2BDmww8/1F3+n//8B4qiYOTIkYbrBAMSnTt3Tv0AiSgvWDd+5pRBqhwU+jG0LbIlvR68jNj8ttFj7MkQiwqTEkNFabgvVoyNnyP3ZEh1JoOs+k/yMxmifzTdwpxGVGOR7JKsngyiMstySZEyGfTXNS2XZOjJEMXATEgnXaOY0I+mJ0N8TZ8B7XDj53DZkckgk9qBaZpm6Mmga/xsUi5J0+Jo/GzoyZAc0obMaejJICuXFG/mDlGus+rJ0GSyOCdin5ZUvI6JkmDIkCGW24cOHQoA+O677+DxBILywfI2ffr0CU2sy7hcLpx88sm66yQyBgBYs2aN5b6ptGjRIlxxxRVo3749OnXqhKOOOgoDBgwI/RfsW7B/f+oybsLP4ymnnGK5b/h2q/Nv1ai6Xbt2oX/X19dHM8SYaZqm+8/v92PPnj34z3/+gxNPPBFLlizB2WefjTfeeCMlt0+UDmn51B8zZgw0TcOMGTPwj3/8A2vXrsU999yDdevWAQg0YBEFI5Ddu3c3bCMikvFa1OqoN1n9S4k7IPRjSEepJMAYZGiQpPYrMeQyiCvGgxKZrE0GY7kk4z7pL5eUnEwG2eReUEw9GYRZj2iCDLI9ZM2gkyHexs92mzHDRnysg8T5oIQyGWQVgKK4XjQ9GeINMgCHyyWFyY539fSvg9e89dB8jbrL9OWSZEEGt6HxczSZDBGbvMYrTT0ZpMGMaDDKQAXAKpMh+sbP+r8NgTwGGShLdOrUyXJ7cHGrpmmoqakBABw8eDCq6wIIlTYKXieRMUQ6TipNmjQJp512GmbPnh1xDM3NzSkbR/htRzpv4WWlrMZcWlpqui28tLvfn57SijabDZ06dcIll1yCL774AkcddRQ8Hg9uvPHGjD3+RIlKSy2iu+66C9OnT8euXbtw11136bYNGzYMZ5xxhuE6c+bMgaIoEaO9RERBVhWRzCbmKHEHmvXntn0amj4DsnJJxsc4pp4MJhPzVhPh6SAGOTQE6qSHT/alvVyS5JzEFWRIxmBgLJcU792P72qRZyNLHIFwl2xPu6KgSPJtTEFgQrdCLJdk2vhZ7MkQcVim5JkMka8XTU+GTqXxPzcVQyZDNswES1bBa1rSntsyYhYDANhLuraOSFECTZ3VsKCC6gYMPRmsMxlk5zdV5ZJSlslgizPIQFQA4unJIGa1GcsliWXPWC4pVuUuBc+MljcOzkfi9/lUSeT7fLJ+C2T6N0Ukn376KSZPngwA6Nu3L+655x6cdtpp6NmzJ8rKykKlzCdOnIiHHnoobePK9vOWDOXl5bj99tvxm9/8BvX19XjjjTcwYcKETA+LKGZpCTJUVlbik08+wbXXXqurkXb66afjtddeM+y/evVqVFdXQ1EU/OxnP0vHEIkoD1iVS2r0avCrGuwZLn2Tjw4I5ZIylclQ71ET6rdamsisbArJVqT7VMB1+He7qmmoF8qBtUnxD7aklUuyuEoiPRnizWSwxfH+EM04bYqCEocirXFttwFOyWiCQ4k2k8HQkyGBHhnxZjJYrYoNij+TwVguKTtiDOnPZPA36Zs+K64qKI4S/WX2ImhhQQZZuaRImQyy85u6ngypafwsz5iQ7Ab9o5YNTy2iVLN6z2422Rix8TMzGRJmU5S0NEIuNHv27EGPHj0stwOBCe1gv9BgCZ3gNivBct/hZXfMbiOa7eJxwlfaq6qq+ztcY2Oj9PJoBMsgVVVVYcmSJaYlotKxyj78/kc6b+G9X63Of7YLL+eUyXJZRIlI26d+//79sXz5cmzatAmLFi3CDz/8gPnz56Nbt27S/WfOnInnn38eZ555ZrqGSEQ5TNM0y0wGAKg3WZVFiTkolEtql65MBqEEjazxcyyydZWMLPYRvvqwwWO836nvySDLZEjpTVpyxxFkkPdkSNKAJMpMSiY5TDIZgmMRs1LMgwzZkMkQRbmk0gTKJQnTW9nQk0Feki3FQQaLps9Bir1YPyJJ4+fImQzGy5JWLcnQkNmYyZCMxs+Kon9xyXoyyCT2aUKUG+LJZIjc+FkMFjKTgbJDdXV1VNv79esHlyvw+Xj88ccDADZv3ox9+/aZXtfr9WLlypW66yQyBtlxwhsfB8s5yXz33XeWt2Hlm2++AQCcccYZlj0oli9fbnmcZPymCr//S5cutdx32bJl0uvlGp/PJ/03US5J+9KCPn36YNiwYejdu7fpPieeeCKuv/56XH/99XA6I9eLJSKKpkwH+zKkhrFcUpoyGYSJ9EavCnFyLzvDBrExy2QIkk06p74ng/GyeDIZksVQLineTIY47kK0U5GlspMG854MwawrMZOh3qNJy9gYMhkS6skQXyNcfxRvsZ3izWTQNNg0/Q+uaN73U06a9pHagYnlknT9GEIX6vsyaP4WaGpsmQyyhzNlPRmgSm4xBZkMqvxHu3E1duI3TZTtrN5Dm8wyGSL0aTEG8pjJQNnhhRdeMN1WXV0dahg8evTo0OXBf2uahpkzZ5pe/4033kBtba3h+qI1a9aEghEyzz//PADAbrdj1KhRum19+vQJ/dtqkv9f//qX6bZIghPbVtkQK1eujDjpX1wcWOjgdrvjHku3bt3Qv39/AMDs2bPR0NAg3c/v92PWrFkAAhkYAwcOjPs2My38cbXKuiHKZmkpl/SnP/0JAHDHHXegQ4fo6gvW1NTgySefBBCo+UZE+emHWi/mbWs5PEEcv2gmm15c14AeFXaM7lmCbuXRvf35VQ0fb23GwRYVP+tVgk4RVuHubPDhvz82o86kbno4RQH6VjpxTq+SnC3jpGmasfFzhjIZatyqYZIzS5MTYiIrTbS7yR9a4V4rBBnKHEpCE8zRjSn1PRm21fvw5MpaOG0KBnUuwpAuxma2AHDIreLFb/U/POINMthT+IQpM0ktsCuKNEATymQQSl9pAP5vZZ0hU2FrvX7yNNGG5WL5mFfXN0QsKfbFzsg/JjuElVPTVC+avn0K3gMrQivH7WU9Udb/LtglE+diT4Zpq2pxbf8KnNWzWDfRte6AB4t3uk3LfXQsteO83qWmzd5jYzwntYtvDvREENgc5SjucwWKuhp7kUXSvOUNuLe/D031wHfgK9026bkSmj83rvkr/M07sco1Futco+FCE36q+tFWcluapmHBjhYs3+MxbEvadKGQpdCy9U1Dz4hUlEvy7l+GmnlXoPyEB+Bsd0LrbsLVnlpdj/P7lGDUEcVZm+WWTr66TWj6bgbspd1ResztUKJoGk7p4969AC2bX4PqrTfd5wd/LyzxDkaLFpj8sxW1x27bkab7N0kyGaQB7t3zcejrf0HzBxrA+mr0JT4UsS8KUYa8++67mD17Ni6//HLd5Q0NDbj11lsBBEoSBf8NABdffDG6deuGnTt3YsqUKTjvvPMwYMAA3fW3bduGe+65B0CgsfANN9xgOY4JEyZg3rx5KCsr013+6quv4v333w/dbteuXXXbhw8fDofDAZ/Ph8cffxxnn3224fPpkUce0a3qj1W/fv2wfv16fPHFF9i4cSN+8pOf6Lbv27cP1157bcTjdO3aFevXr8emTZviHgsA3Hnnnbjrrruwb98+/PKXvwwFYcJNnjwZ69atAwDccsstKCqS/17Idlu3bsVTTz0V+vv888/P4GiI4peWIMOkSZOgKAouu+yyqIMMBw8eDF2PQQai/FTT4seDi2uQqgSDUqEG+tf7Pfh6P7BwRwueOrNDVCuvX1nfgLmbAz+cPtvWjH+cZX49t1/DxC9rDPXxrSzc4cbBFhXX9C+P+jrZpN5rLFOVqZ4M0dSDz0WyCf2Ji2vw6vkdYVOUtDd9BuSZDMkOMtR6tNCk9efbW/A/QypxcifjD4epyw4ZHntnnEGW1GYymJRLsgHFFkGGCklWypJdkSfzEw00KYp+Qf5Xe40TzrEqdyq6jI76Ff+Dxm/+ZtjPvW0OOlz0teHHs1guye0Hnl1bjwavip//JPBj/cc6H/689FDEwPOa/R5MGZGMur3G89yy5d+mezd9/yw6jF0GZ/voV9o1b30Th+aNM90uy2QQyyV59szHatcYzKp8LnTZ0jovHm/yG0pYffJjC55dK5+sTFb8UiyX5Dv0jWSnFDR+BtCyZTZafnwLnS77EfbSLtKr/Vjvwz+/rkezT8P5fUoTH0cO03xN2D93KDR3oAa3v3Er2gx5LMOjoiBvzRoc/Hi0MUgXZp+9D/5W9Rf4lLD3BR8AmJcPa/RpgSb2Ye/DsiStuiW3osRvNZHITAbKDoMHD8ZVV12F+fPn47LLLkObNm3w9ddf469//Ss2bNgAIDCpfcIJrQFol8uFGTNm4IILLkBdXR1GjBiBe++9F2eddRbsdjsWL16MqVOnYu/evQCARx991HK+a/DgwVi+fDkGDx6MP/zhDxgwYABqa2vxxhtv4OmnnwYQKIv06KOPGq7bqVMnjBs3Dq+99ho++ugjXHjhhbjzzjvRuXNn/Pjjj3jppZfwn//8B8OHD8fixYvjOkfXXXcd5syZg8bGRowcORL/8z//g0GDBgEAFi9ejL/97W/YvXs3hg0bhi+//NL0OMOHD8fnn3+O6upqTJ06Feedd14oqFJSUoLu3Y1lHmVuu+02vPLKK/jyyy8xc+ZMbN26FXfccQf69OmDXbt24fnnn8ebb74JADjyyCPxv//7v3Hd73QJZssEqaqKAwcOYOHChfj73/+OAwcOAACuvvpqnHTSSRkYIVHi0hJkICKSWbXPk7IAgwKgS5kdP9QaSyPUeTRsPOTFse2t61EDCAUYgEDN/8+3NeOc3vIJh/UHPTEFGIKW73HnbJDhkCRjo20aJrkBRLUKWTZ5a+WMHsX4fFtL6O/j22d+tabTFpiIDp9I1wBsb/CjZ4UDDcJzrsJkMjuZSiRRhjKTckBW+lRG/zVkxR6PIchwsMWPzXXG17iY5SLTpcx42/FMoA7uXIQPt7S+T5g95cxKWJU4FOm5Kz6ciuCwKah0KaiN8b2lJMFG5kV2Bc2SRtWJEDPBWrbNke7nO7QWatMO2MuOaL1Q86FIk6fKV+92h4IMa/Z7osps23jIh3qPKg3ixEJxxDgBrfnh3vnfmIIM7u1zLbfbS40p9YqrreGyr4vG6P72wol1Bz0YWapvGr1ij3kQK55goozirIi8j6Ms4j6R2Bwmt6N60bBmKipPeQJA4LOiUfJ8X7nXU/BBhuatb4YCDADQ+M3fGGTIIp6dn1oGGADge+dp+gBDFFQtsHimOOyzRNbCwRahz4nizM3vt5R/Zs+ejbPOOgvTp0/H9OnTDdsvvfRS/O1vxoUPY8aMwcyZM3Hrrbeivr4eEydONCyCtdvteOihh3D77bdbjmHMmDEYM2YMJk+eLM14aNOmDd59913T0uKPP/44li9fju+//x7vvfce3nvvPd32K6+8EjfffLNlySYrl112GW644QbMnDkTO3fuxC9/+Uvddrvdjscffxw1NTWWQYbbb78d//jHP3Dw4EHcd999uO+++0LbRo4ciXnz5kU1Hrvdjvfeew8XXnghFi1ahM8++wyfffaZYb/+/fvjgw8+QHl5dr/fiFkwMldccQWee+65iPsRZausXVrg9Qa+LLEnA1H+2t0YXQPGeAzuXITRPUtMt8fbn2FbvfmY9zfHd8xoSitlqxafsRZ+qkv1BFW4bDipo3mgqGeFHd3KY0vTH92zRDdJfEYP8+dQutgUBadKSgUFnzdi48Z09EY4qq1T13ujbZENx8URkBnSpQhdy6J7jGT1oc0aU57aLXKqdK82DhxT1TrmM3oUx1Vv/qIjS3UT+nef3Ea637BuxYY175UuBce2d6FvpQNdhAn44V1b78Np3WObHGrjUjAgiiCqlfDbT5aRR+jvhxo2cSkKlt4I/e2tx8nud6T71oS9h4pNwK2I71/xsBVVwdXt7Jiuo/ljq1GseeXBFQBQnJUo7nGB4fKSPlcaLjtg72m4TJYB1mBSvvCEDk5DL5x4Ffe61DJTwdl+MOzlvRO+HVeXkbCVyLMVvAdaG2wOM3nP8GRDd/EM89dtNFymic19KWPE90oZb4wBhiDxM1b2alAs8/kUFPc2z8IiSqc+ffpgxYoVuP/++9G/f3+UlpaisrISP/3pT/Hyyy/jjTfegMMhX/xy/fXXY/369fjVr36F/v37o6ysDCUlJTjyyCNxyy23YOXKlbqJdCuTJk3Chx9+iDFjxqBz585wuVzo3bs37rjjDnzzzTcYOXKk6XU7d+6MpUuX4g9/+AP69euHoqIitGvXLnQfXnvtNdjtiZUoe/755/HSSy/h9NNPR0VFBYqKitCrVy9ce+21WLx4MX71q19FPEb37t2xbNky3HTTTfjJT34S6tEQj3bt2mHBggV48cUXce6556Jz585wOp1o3749Ro0ahWnTpmHVqlXo1atX3LeRKYqioKKiAsceeyxuuukmzJ8/H//6179ytuQTEZDFmQyrVq0CAMuu9kSU2/Y06Sfsj6pyon+7xAOLnUvtOL17MVx2Be2KbdhQ48VbG5t0+zSYTE5GIk7ohtvfrL8/3cvtGNzZ+CWhwaPi07DV8o2+QCPXpDXUTKMWYUKvOMHV07H6zcBKLNzRgn3Cua8qsuG07rFPGv+krRN/HlGF1fs8OLLSiRMsghjpdNsJbfDFzn26y4ITgV7hOZmOIE+xQ8GfR1Rh0U43NE3DsK7FcWUy2BQFU0ZU4YsdLagssqFXGweW7nKjyRfINvrmQOvqTNmqetllk4e1xTHtonvcHjilLRbsaEGRTcGI7vF9oW9XbMf/O70dVuxxo2cbB44zmdw/oYMLk4dV4ev9bnhVoMypYFjX4lCGw+ThVVi0swV1bhW92zhwStgk/zX9y9G30okf6+VNa8OFjptgRtGNx1fgmHZObG+ILhi8o8FnqOFf7lRwVs8S2AD0q3JikPB+qFnUD4cwial6ajGyeQY6+Lfii5LxWO86M7St1q2G3kPFqc+uZXYMPRyke2eT/nNAfO3Eq+qM/6Dlh1fha9gs3d6y9S346zaEXRLb7YpBCVfnn8LZaThszjYo7n0Z7GXGsgOlx9wJe3lvePZ9GTqXNXuPNfRWlp0C8XXVscSGi44sw+lxvkZkirqdhfbnfQH3jo+gqfr7Zy89AiV9r0pKLwRbURXaj1mCfW/0lmxtPf4Nx1Xg6ConXljXoPt+oDLIAFtJZ8NlmvsglOLoSuBSaomNlu1t+gWCeGEcjQOBsLfb9v6tOOlw0LbsuN/C6XDhuPYu/GnJId31mnwa2scwFkf7gSg6HHRVbC4UdRsNV+fTYzgCUWpVVVVhypQpmDJlSszX7d27N5544omkjOOcc87BOeecE9d1q6qqMHXqVEydOlW6fdSoUdBktc0OmzVrVqhRsplrrrkG11xzjen2SZMmYdKkSZbHOPLII/Hss89a7gPAcqxBNpsN1157bVT9IETRjBWIfN7iFW3WBlG+SEmQ4cUXX5Re/s477+g6psu43W5s2rQJzz//PBRFwZAhQ1IxRCLKAmKQ4fTuRTi7V3LLEpzcqQgndyrCD7U+rN7XOgEWb6Npq4WvYibDCR1cuOoYY9rmwRa/LsgABIIeYoPXXOAWTkiaej633p5Dwc96JTfboG+lE30rsyuLzmlX8JO2Dmw81DrJHCzNJa5ETrThb7TaFdtxQd/EX69lTpuuBNnFPwl8NfloS1MUQQb9na8qskUdYAACWR9WGU/R6lRqx3lRlFQ5up0TR5sEUtsW2TDG5Bg2RYk5myFRDpuCnx4R/bn5cpexUfDp3Yul74HA4Ylz1bzPgzhxpnnroAA43vMRjvCtxqT2q0Pb/BrQ4NHQpkgxTAr3buMIjWHOD026SfVkrVK3OctRevQE0+3+uo36IEOsP2KFSfiiHmNRfvy9lldRFAXFPcaiuMdYAIDHr6H2w32W1wkSX2s3HFdhCBAlg6vTMLg6DUv6cUWO8l6ArchwHpWwTIrg892vAf/8unU2luv1Aw2CRf7mXbAxyJAdVH3w2Vl1AtoMelh/2aZGYH1j6O9Ovu9xQWNgkrXjEdfD0aYfgECZvfDXv/hdOVImg6vTaYbbJiIiosKRkiDD+PHjDauPNE3DH//4x6iPoWkabDZbVOlYRJSb9gjlkjqXpm6Gukyo0W5WZiUSv8Xk0IEW/f1pXyK/PxWSFd8NHtW0Zns2EzMZiuy5dx9yhfi8CWYyiNk18TY9zjZiT4FoMhnSnUlDrRwxrjpXvXXWOwhBBtVTG/p3hbrfsPsht4o2RTZDP4bwl4PTFmgWHZS2ZvGGc5NYJoNii33CX8y0C1Iln2liGalE+3tkBWlpJuNl4tunn1EGQDF+l1GbdwNVkWtLUxqIPRFkj5f4vhgWPlObdwOHgwylQpChSSyXJH3rar1QsWVtkQQiIiJKg5TNBmmaFvpPdpnVf06nEyNGjMC7775rWZOOiHJXg0c1NFlMaZBBWN4dd5DBYsJBzGToUCJ/i3XaFUPzzHgaRmcDcTKKk7ypI9ZCbzjcV0Sce09XJkOqlQh3JJogQ15MhuYoWWzLKu6geSIEGVQxk6E1yGCHD+U2fR3yYBN6w2Ra2CDEAJwnhv4NiUkwyCCswIc99iDD3qboyl5pmoYm4XVVmgevK0UWZJBcZheetGl7imQ14xcff/PuDIyDZMSsr+iCDK3ZD/6mXaF/l4oLcgyfu8YXhK4ng+S2iYiIqHCkZLnB5s2tNWk1TUPfvn2hKAo++ugj9OvXz/R6iqKguLgY7du3T7hhDRFlt93ChIdNATqYrPxPBjGTwayxZSRmmQyqphkzGSxqB1W4FLibW48V73gyzdCTgW/dKVNueA4Hzn0mejKkgxiwapEsO2eQIXvI+o1bPRqW/RgAiBObYlCirb0FDWprOaeawykK4nu0XZfJoCB8kixZPRkiE85ErOWSkpDJsK9Z/hkjjsTtN16WH8Hj6KJg4vNYlulRcCRNntWwiWnKMCHIoEQVZGi9jhoWMAosyGnd1hRjuSQGGYgon+zYsQM1NTUxX6+srAx9+vRJwYiIsl9Kggxmnd27deuWk13fiSj5xH4MHUtsKZ0cTVa5JLPyGnUezbDNLJMBAMqdNl3mQ64GGdwsl5Q2FWImQ6hckn6/WMvWZCsxYCCurgYYZMgmthjfvyOVSxJX56phmQwAUOn0Yntryw6LTIbWf4uV6nK2XFIcmQz7TMoliXPosmBeaT6kR8VbLokxBnmQgZkM2UPMZJCULBKDZUrYYxqelSJmMoifuxHLJTHIQER55IEHHsALL7wQ8/VGjhzJhs9UsNJSOFFVc3PyjIhSJ539GIBAc9lwcTd+Nln5Kta7tiuBRq5mxFXpLJdEkZg9Z8TV2M48+Y0vBgy8auD1Fx6MZJAhe8SeyRBjuSSPGGTQv4fXmgQZwsvfOIVBJqvxc2RCn7IsKpckjkQWzMuL9/VoyyUJUQZmMkAaZGC5pCwSV7mk8EyG1qyUeBbk6DMZ2JOBssukSZMwadKkTA9DV0KciCif5cHSJCLKRWImQ+fS1P4wESdo485kMLnaASHI0K7YpqsFLjKsSvfkZjDWEGSQzTRSUhh6MhRYJgNgfL4ZG9Tya02mSIMMFs/FiEEGoVySmPnQ1qXfu+ZwkEEsl6TPZBACV+lapi6eB8mkraWklEuKMpNBOCd2xZgBkpuMz0VZnwbxEmYyAJqkJ0P4xDRllpj1FV25pNaeDOFZKWLWklguSfbOpYRfasuTVQ5ERABmzZoVdV/Z8P+YxUCFLG0/G5qamtDU1GS6/cknn8Tpp5+O/v374/zzz8ecOXPSNTQiygBjkCE3Mhn8ZpkMLWLTZ+v7Uy6Mpz5HyyUZejLkw4rXLFXhlAemxOya/JgQlAcZxMyFJiHCwkyGzLEKqsqokXoyaNaZDG2FBjCHWmIvl5S+t93EejIkpVxStJkMQgC+1KFYBotyhjSwY7xfNuE5krZkl2zGTIbsFlUmgxB8DctksGr8bMhsYrkkIiIispCWqYg5c+agoqICXbt2RX298UfljTfeiF//+tdYvHgxNmzYgI8++ggXX3wxHn744XQMj4gywBBkKEt1kEHIZPBpcaWumq1qFDMZrPoxAIHGz+Ea4sysyDRjT4Y8mIzKUuWS54ymaYZySWK5j1xVZFcMU4BikIGZNNkj2eWStLBySZrqh+Zr0G1vW6yfaD8UymQwH5chkyFNM8jGZ3Ji5ZJiDTK0+DTUmpTkEz8GxddY3gSONZ/xMlm5JCGgwkwGGCexwZ4MWUWNIsgg/G0LCxwZGz+3ErN+pY2fw99EGGQgIiIqaGkJMnz00UfQNA0XXnghKioqdNu++OILzJo1CwBQWlqKk08+GcXFxdA0DRMnTsTatWvTMUQiSiOPX8NBYeV/ujMZVM04mRIN854M+vvTvji2TIa8KZeULxNSWUh8zvgPP4fFckn5kslgUxTD80l8zbInQ/aQl0sy31/zRF8uSZNkPbQrLdH93dqTwTzo5hIG6ZUv7k8+w2R2YpkMiLFcktgzSD+SwihBpqle44XSIIP+b5WpDNJMBs1zCJqvOQODIZFYLkk20e8XHkIlvCeDe18oqGvMZNBfURpk0P3BngxERESFLC2/HJYsWQJFUXDGGWcYts2YMQMA0K1bN3z77bdYsWIF1q9fjx49ekBVVTz99NPpGCIRpZGsAWXn0tS+HYk9GYD4+jKIE7pBB1rETIYIQQZhVXp9jmYyGMolcSV5yojZL0Agm0EMfDnyJJMBMD6fmoWZEgYZsoctxued2GPBIGziTPXWGja3LSvT/d3o0+Dxa5La463E+fJ0ZTIkWi4JCWYymPVjAGSNn/O0BJksk0HyM0h8GjOTAaY9RPzNe9I8EJISntuKpC+CVeNnaCrUlr0AJEEG8bspyyURERGRhbQEGfbuDXxxOfroow3bPvzwQyiKgrvvvhtHHHEEAKBHjx64++67oWka5s+fn44hElEaiaWSKotsKE7xaslih7FgRTx9GcwmHMRMhojlkvIkk0Esl8QgQ+oU2xXDKtsGryrJZMifx0Cc4DSUS/IzyJAtZC99qzl8WXaCbnt4uSSPGGRQUFVWbrjOIbdqeI8Or7GfqXJJxpSO6G9XU32GSd5YGz/LAvuh40do/Jw3rynZRDnLJUVFMwkysGRSloimJ4PwnmMTCigFH0tDuSThM1eeyRB2KRs/ExERFbS0BBn27dsHAIZSSd988w32798PALjooot02wYPHgwA2Lp1axpGSETptDvNTZ+BQOkVsS9DPH0Q/JIVqF6/FqoHHhSxXJJLaPyco0EGlktKH0VRpM8bcaI0T6qbADBOcIrPN7EpZb6UdslF8iCD+XtspJ4M4RNn4r6Ksw3KnHZDabBDbtVQFiS8IbWhXFKmGj/HEmQQSyUBQMyZDOZ3VBxJszdPgwwSiizIYGj8zCiDsaL/4Uubd0kvp/SKplySGE+1C+8hwUbexkyGyOWSdJeyXBIREVFBS8uvcbs98GXn4MGDusu/+OILAEDHjh0NWQ5VVVUAgJaWljSMkIjSaU9j+oMMgLEvQ1yZDJKriKWSgMiZDGL5Jo8a6FWRa8RVr0V5PCGVDcTnTYNHg9haJJ/KJYkTnGJQoSVfS7vkIHEFOGCdyRCxXFLYxKYqZDIorjZQFAVti/Tvs4fcqqHHQHhcIWPlksRzE8vEtWoMMsRaLimWTAZj4C6fX1PG+ya+fbIlAyzKJTGTISsIjZ8VyUS/oVySU9/TJhgwEhfjeMXvppL3LoXlkoiIiOiwtAQZunfvDgBYtWqV7vK5c+dCURScfvrphuvU1gZ+UHbo0CHl4yOi9BLLJaUvyKD/8RRfTwbjdQ60GCc6SyN0361wGbc3pG9ZbdIYMhlYLimlDGW2vCq8/sLMZPCrGtx+6/0pfcQV4ECEckmRGj+Hl0sSejLYnJUAIAky+CWZDK3/donlktIW2E1uJkOs5ZJi6cmQt+WSpIyfuTZJuSSt0LMZWC4pu0WVySB8T3CIQYbDmQySLxDhgcfImQwMMhARERWytExFnH766dA0DdOmTQuVR6qursaHH34IADjnnHMM1/n2228BAF26dEnHEIkojcQgQ5c0BRnEVeBxBRkkV9kvTOC0L4781lrmNPaIqPfk1kSGqmmG7AsGGVJL1jBcLOGVTz0ZxF4t4T0ZxMlQIN8nRLObODkLRAgy+CL0ZAhv/CwEJBRXGwCyIIOkJ0PYuMTXRvqq1OlvN5ZJ66SUS7LKZBD+Fhu95vNrSlONzaBlH2G59cmcAqaZDCyXlA0M5ZKiafwsBBn8TYHHslTyeg8vmRSxJwODDERERAUtLUGGO+64AzabDZs3b0bfvn0xePBgjBw5Ej6fD1VVVbjiiisM1/nss8+gKAqOPfbYdAyRiNJE1TRD6YbOZblTLkmWyWBs+hz5/sh6RORaXwaP3/iDkz0ZUqtc0jBcfBrn00MgTng0h5VHEptAA/k9IZrtpD0ZLKZnxcCB7NpB5pkM+vfaQy2qYcVu+LjEBDPZ+3lKJND4OdFySc0+FfUWAXVj42cxMy+PUqNEWnRBBlmZxEKimfZkYCZDVtDEckmRgwwOZ6l+++HH0mlXICbaRl6QE974mT0ZiIiICllafjkMHDgQjzzyCBRFQUNDA7766iu0tLTA6XTimWeeMTSErq2txdy5cwEAo0aNSscQiShNDjQbV5pmqlxSfI2fjZeJPRki9WMIEieM4wl6ZJJsJTkzGVJLLLPV4FUNE6X51JNBDFqFBxZkQQYGuTJH3vjZfP+IjZ/DyiWJ/RsU1+EgQ7Exk8HQ4DQ8yGBo/JyeIIMxby2RTAYlpuaq+5oifa7oxyK+rvI5cCfLZJBl5ORgu6TkYrmk7BZP42dnme7v8P4aYrnPxrDgviwJiz0ZiIiIKChtyw1+85vfYPTo0XjjjTewe/dudO3aFb/4xS8MDZ8BYN68eRgyZAgAYOzYsekaIhGlgVgqqdiuoI0rPZMYhkwGX+yT+rI5qQNCJkP74uh+ZJW7FKCp9W+r1abZSGy6C7Dxc6qJJb/qPZoxkyGPFh6LE5xWQYYiuyKdIKT0iKVckqap0LzW5ZLCJ840j5jJYF4uSQyyWZZLMq8ilGTxN37WxEwGexGUGJ7nVv0YZEMppCADVK/hov/P3pmHx3T2b/w+M5mZLLInSFBB7ZTYahel9rVFf3QRraUoRemi2lerLW+9uuCNWlqhXoqiKFr7XsS+q5ZQa4gEWSfJnN8fYyZznrPMmclkkky+n+tymZz1mTNnzpzzfJ/7vqWLZTykQqJLDXJ2SRlkl1QscCKTQasrI5xvY33l68Uh1eayk2lzb0p2SQRBEARBKOFWTWP9+vVRv359u8v17t0bvXv3dkOLCIJwN6LQZz+tQx0mBcEVwc9SsJkMapUMbIhvSbNLYkN3OUAksydcSxkVSgZPymRQCn7OzBUHrhNFhyNKBj43HWx3FacPBm9MyV/G1i6JKTJYlAzBEkWGEEbdYPt1KJF2SYySwdHQZ9aekIVtSakqMqi1SypZ9X/XI6dkyLoLnjeB4+iHvygRZTJIdPSz57C4yJCvZBDdK0uFkQlboLhvgiAIgiBKD3RXSBCEWxEVGdxklQQUjj0Rz/NOZTIAEh3GJazIkMU8eHp7cW4rGJVW/FnLLyMPVlDiSXZJjigZPLoztASglbijZEfPWpBSMWj0QczKCnZJTzIZAlUEPwszGdjgZ3f1HhfELilLuCVHQ59JySCLpF2SxPXTbadJsUXm3sSUAz47RXoe4T6Y81hVJoNeWGTgc9NhykkDoJxfJmmXZDORo0wGopgRHx8PjjM/nyQmJhZ1c6zs3r3b2q7du3cXdXPcSmxsLDiOQ1RUVFE3xeMpbud/TEwMOI4jS3wPp8juBHiex5UrV/DgwQMAQEhICKpWrUodVATh4dxJL7oiQ2EoGTJyeVE2QajKIoM/YxNV4uySmDRMA+UxFDrsw/9Dozhalx2tXZJhQ2epyFB8kTr6skoGidBnji0yKNkl6aXtkvJ44GG28LokUDKIMhmk2+dy2HtbR+ySWCWD1tuhXSfZyWSwbYmJ50XFYwp+BvIc+Lw8EV5GyQAAeZm3ofEOdWNrCBFOZTIEiJfJvA2NrrrotzTDjl2SvX0TBEEQBFF6cPuTw++//46ePXsiICAANWrUQPPmzdG8eXPUqFEDAQEB6NWrF7Zu3eruZhEE4SaKUsnAdtCmuaCHiVUxcABCDOourSU9+Jm1S6LQ58KHDX6WCj/2JCWDKPg5j4oMxRWpQSJyRQZWmQCtt7jznLdVMjB2SU+UDGyRAQAeZAmvo1pBJoNw2Ry3+eAUQMkgkcngCHaVDDavs/N4Ucs8+XvFS2QySF0+S72Sge3EtoHCn4sekV2ShJpAlMngpQen8xcu8+SzZAfkZNixS6JMBoIonkydOtU6ip0gCgtSphAsbisyGI1GDBo0CN26dcPmzZuRnp4OnucF/9LT07Fp0yZ07doVgwYNgtFodFfzCIJwAzzPS2YyuAspJQNfwBGKbB5DkEEjGi0rh1SIb0mCDX5mO4QJ18OqX6TwpIHHvmyRwaYQR0WG4o+8XZKwyKDRBQCMr7vt6GnJ5WEuqLEWYuweNTabZe2ScorKLsmR350CZjLcY35z2RwL26ZIFS09+nslYZekleiMoUwGJSUDFRmKHKbIoMYuScMBGp/ygmmWIG9FuyTpBijumyCKktjYWGtfE3WCEkTRsnv3bvA8X+oswkobbrNLGjRoENatWwee5+Hl5YXnn38ezz77LMqXN9/g3LlzB0eOHMG2bduQk5ODlStXIjc3F6tWrXJXEwmCKGQeG3lRJ0b5IsxkMPFAVh5foE6U5Czhw12oytBnQDwqvaQFP7M2UaRkKHzYc1gKj1IyMOeU0QTkmXhoNRwVGUoAsnZJTCYDpwsQd07ZKhlkgp8Bcy7D4xz5kda235jiYpfEy3ncSyC2S1JfZEjPMYlCW8v6apGSLd1pWNqKDLyEXZLU5TOvtEsZFIoMpszbbmwIIYkTdkkaDtD6lEfeo8v5yzwpGLHFfYFdkkSBVKBkoEwGgiAIgijVuOVOYNOmTVi7di04jkP79u3xww8/oHLlypLLXr9+Ha+//jp27tyJNWvWYPPmzejWrZs7mkkQRCFzhxlRqeWAUG/3DbtmlQyAWc3gI3MlVKNyYO2SQr3VF01Ewc8lzC6J9e42eHBnVHFBr+Wg15g72+XwpI/BV+I7m5nHo4yGEwePSyUPE0WKWrskTucv7hh70nHG87xEJkN+kSHIoMGNNPkig9am11hkl1QClAwFsUtiVQwcgDAfDS7ZZPXa/s6xRQadxrOKliLILkkVSkUxsksqekR2SZJFBsYuieOg8YkQTLOoUtjfXVu7JKmvAtklEQRBEARhwS1P5PHx8QCABg0a4LfffpMtMADAU089hS1btqBhw4YAgMWLF7uhhQRBuAPWKincRyvoACpsfLw4kTO2Use+XL+C7cMaa5cU5oCSgbVLSnOBfZM7ySYlQ5HAKmBYWEuYkozUOWUpLmQydl1SBQmiaJG7ukrbJbFFhidr52WJAno5m9DSYDuFaoGSgbVLKgGZDAWxS7rHFMFDvDWiY6CkZPBkFQMASbskDSe+TyjtRQaySyrmmFTYJTF/S9klWVQpfl4KdkkS3wXOZutkl0QUN+Lj4625BImJiaL5x44dwxtvvIEaNWrAz88P3t7eqFSpEho3bozRo0djw4YNis9mGzduRL9+/VCxYkUYDAaEhoaiRYsWmDFjBtLS0grU9kOHDmHKlCmIiYlB+fLlodfrERAQgDp16mDkyJE4f/684nv+5JNPrNMsx8D2n9TxyMvLw5IlS9CjRw9ERkZa31Pr1q3x1VdfITMz0267L1y4gNjYWFSqVMl6PAcNGoSEhASnj4U9du/ebX1fu3fvhslkwsKFC9GyZUuEhITAz88PDRo0wPTp05GVlWV3e2lpaZgxYwZatGiBkJAQGAwGVKxYEf369cOvv/6quG5MTAw4jkNMTAwA4NKlSxg+fDiqVKkCb29vREREYMCAATh06JDq96OEZbmpU6fafV8sJpMJO3fuxMSJE9GqVSuEhYVBp9MhKCgIDRs2xMSJE3H9+nXJdS2ZH0uWLAEAXLt2TfI8s4U9NnLs378fr776KqKiouDt7Y2goCBER0djypQpuHfvnux6Usdt1apV6NChA8LDw+Hj44OaNWvi3XffxYMHD9QfKMIh3KJkOHToEDiOwzvvvAOdTmd3eZ1Oh4kTJ+KVV15R/PIRBFGyKMo8BsDceeCr45BuI/22fa2WXBOgf9L0ZCZkNNRH/Xvyl7BvyszlS0xnqWgkuad3SBUT/HQa0XlniycN6Jc6pzKtRQYqchV35DIZTEZGyaAPENkCWUbnslZJ5uVtlQzK11zbTAa9KJPBPJK/sEMROY79UjqvZHDELikpU1zYZ9+qcpHBgy4mEkjZJQHma6htDTOvBBX/CwUlu6QMsksqcgpglyRYRoWSQaYBNvsmuySi5PD1119j4sSJMJmE17gbN27gxo0bOH78OOLi4vD48WOUKVNGsExWVpbVDtyWBw8e4NChQzh06BDmzJmDTZs2WQfPOkJ8fDyGDBkimp6Tk4MLFy7gwoULWLhwIWbPno1Ro0Y5vH0prl+/jl69euHUqVOC6Q8ePMCBAwdw4MABzJs3D5s2bUKNGjUkt7Fq1Sq89tpryM7Ov3e5ceMGVqxYgdWrV+O7775zSVuVMBqN6N69O3777TfB9NOnT+P06dNYtmwZduzYYbVtZzlx4gR69OiBW7duCabfvHkTa9aswZo1a/DCCy/gf//7H7y9vRXbsmXLFvTv3x/p6enWaXfu3MHq1auxZs0azJo1C+PGjXPujbqATz/9VFCMsvDw4UOcOnUKp06dwrx587Bs2TL07du30NtjMpkwduxY/Pe//xVMz87OxsmTJ3Hy5EnMnTsXq1evxvPPP293W6+++iqWLVsmmP7nn39i5syZWLduHfbt2yd7HhDO45anB0u1qU6dOqrXqVWrFgDg/v37hdImV2M0GrFo0SJ07twZERERMBgMKFOmDGrWrIkhQ4bg4MGDRd1Egihy7qYzRQY35jFYYNUDSkUGudGLthYbyaySwQH7J6kQ38dOFD2KCjaTwUCdvG5BKfxZy5mLaZ6ChuNExQO5IoPHj7ougbgik4HPERcZNDZKhkCD8jXXNsiX7TPn4aZQX1HPvgNFBqb4AkeUDKx60Fcr1lQIgp+FHS0e/52SUDIA5uuoLRT8THZJxRq2yKBRUWSAvF2SOPjZAbskiX0TRHHk9OnT1gJDlSpVMGvWLOzYsQMnTpzA3r17sXDhQgwaNAh+fn6S6w8ePNhaYGjQoAGWLl2KhIQE/P777xgyZAg4jsOtW7fQoUMH3Lx50+H25ebmIjg4GLGxsfjhhx+wb98+HD9+HL/++is+/fRThIWFIS8vD2+99RZ27twpWLdPnz44c+YMRo4caZ125swZ0b8KFSpY5ycnJ6N169Y4deoUDAYD3nrrLaxevRoJCQnYtWsXPvjgA/j6+uKvv/5C165d8fCh+N4sISEBL7/8MrKzs2EwGPD+++9j7969OHz4MGbPno2wsDCMHDkSJ0+edPh4OMKUKVPw22+/oVOnTli3bh2OHj2KdevWWTulz58/j549eyIvT2y1efPmTXTo0AG3bt0Cx3EYMmQIfv/9dxw9ehRLly5FgwYNAABr165FbGysYjtu3bqFQYMGwcvLC1988QUOHjyIgwcP4vPPP0dAQABMJhPGjx+PX375xdWHQDW5ubmIiIjAqFGj8OOPP+LAgQM4duwYfvnlF7z77rsoU6YMMjIyMGjQIFy4cEGw7qhRo3DmzBn07t0bABAZGSl5njnC+++/by0wVKlSBd999x2OHDmCXbt2Yfz48dDpdHj48CF69OghKoaxfPTRR1i2bBn69OmDtWvX4tixY9i8eTO6d+8OAPjrr78wfvx4h9pHqMMtww38/PyQmpqK5ORk1eukpJgNY319fQurWS7j2rVr6N69O86dOyeYbjQa8eeff+LPP/9EfHw8xowZg2+//bbQR8wRRHFFpGQogiKD+eEp/4E53YkcBEs/jInnRSPKwxxQMhi0HLyYEZOPjaYiOS7OIPbEp2ubO1AKf/ZE/3QfL05Q0LJ0hFKRofgjX2Rg7ZL8kccqFp50bLL5DdAYBKP5g+0UGWy/EnqJa1SOiXfD98aFdkmOZDIwRfCyPhqkKgS6lLbvFM+LMxkAS6E2/1iUerskhUwGsksqetRkMrBqHEm7pCeqFDb4OTuPR56Jh1bDydRH8yeSXZJrMPEmJGdnFHUz3EaowRcakeKvcPn5559hMpng5+eHP/74A+XKlRPMb9OmDYYOHYqHDx+K+qM2bdqEVatWAQA6dOiAzZs3Q6/XW+d36tQJLVq0wPDhw/HgwQNMmDABK1eudKh9Xbt2xaBBg0T7jo6ORvfu3TF27Fi0bdsWp0+fxr/+9S8899xz1mWCgoIQFBSEsmXLWqfVq1dPcX9jx47FP//8g8qVK2PXrl2oUqWKYH5MTAz69++PNm3a4MqVK/jyyy/x+eefC5YZNWoUcnNzodPpsHXrVrRt29Y6r1mzZnjhhRfQvHlzu53DBSUhIQHDhw/H/PnzrdMaN26MPn36YOjQofj+++9x9OhRzJ8/X6QCGTdunLUfcuHChXjjjTcE2xgwYAC6du2KXbt2YeXKlRg8eDC6du0q2Y7Lly8jMDAQf/zxB2rXrm2d3qJFC/Tu3RstW7bEo0eP8NZbb6F79+6qHF9czdChQ/Gvf/1LtO9GjRqhd+/eGDNmDJo3b46bN2/iiy++wI8//mhdpmzZsihbtiyCgoIAmN1o7J1nSpw5cwazZs0CYD5f9+3bZ902YD4HO3XqhO7du8NoNGL48OE4fPiw7PYOHjyIzz77DB9++KFgepcuXdClSxds3boVP//8M2bPno3w8HCn202IcUuRoWbNmjh8+DBWrlyJjh07qlrHciGuWbNmYTatwOTk5AgKDM888wwmTJiAmjVr4vHjx9i/fz9mzZqF9PR0zJkzB5GRkXj//feLuNUEUTQUjyKDeiWD3GBTi5IhNdsk6nxwxC6J4zj46zRIyc5/gE9TSvQtZogyGTy8Q6q4UEZByaBQfyix+HhxSLHpZ7V0hLJKGk/vEC2JqA9+DgCYDgZLx5lS6DNgDn5WwrauIJVXkpMH+BT63bDrgp8dskvKEP6ehPtq8ZD5jTEJlAyl7Dslo2RgTxOyS1LIrjKmgM/Ldui8JFwMm1mjxi5JA2j1TJEh+x54U56kZWdGLi+roqTgZ9eTnJ2BsiumFnUz3EbSwKkI9y5jf0EXcueOuUBao0YNUYHBlsDAQNE0y0hrnU6HxYsXCwoMFoYNG4ZVq1Zh+/btWLt2LW7fvo2IiAjRcnLYqgzk2vXpp5+iT58+2L9/P5KTkxEaGqp6+7YkJiZa+97mzp0rKjBYiI6OxujRo/Hll18iPj5eUGRISEjA0aNHAQAjRowQFBhs39OsWbPw0ksvOdVOtZQrVw5ff/215LxvvvkGGzZswL179xAXFycoMty6dcuqTunSpYugwGDBYDDghx9+QPXq1ZGbm4u5c+fKFhkA82h62wKDhbp16+LDDz/Ee++9h5s3b2L9+vXo16+fo2+1wERFRSnOr1ixIiZNmoRx48ZZ80kKa8D0vHnzrNZlixYtEhQYLHTp0gWvv/46Fi1ahCNHjiAhIQFNmzaV3F7jxo0xefJk0XSO4zBhwgRs3boVubm5+OOPP9CrVy+XvpfSjlu6I3r16gWe57F48WJrCLQSP/74I3744QdwHIc+ffoUevsKwvr1660FhhYtWuD48eMYPHgwmjdvjueffx6ffPIJ9uzZY60O/vvf/0ZurvRDDUF4Mlm5PFKzhQ+q7s5kAKRk4I4HP+c+eVq7z4Rq6jRAgEIHsHR7xOHPJQW2k5eUDO6BzfKwxROVDGzxytIRyvpEe7p/fElErnOWVTJwksHP0pkMtqHPgP0ig619mNRXx+iOYeqiB7LCt0vieV6kZAj30UIca5xPqSsyyGUysEWGklP7LxR4hSIDQGqGIsfkRCYDAI0v0+HJm2DKShLdJwP598rSdkm2f1AmA1EysHT4nz9/HkeOHFG9Xm5uLvbs2QPArFioVKmS7LLDhg2zrmMvvNce6enpSExMxLlz53D27FmcPXtWMPq8IOqATZs2IS8vD76+vood5gCsxYNbt24JAoG3b99ufS2VJWGhb9++kp3HrmTAgAGybihlypTBgAEDAADnzp2zFpsAc2iwxUJJqsBgISoqymq9ZLsOC8dxGDx4sOx2LLZagPD4FSWPHj3C1atXBeeZ5Vha5hUWlmNQt25dPPvss7LLWb5XtutIMWjQINmCSOPGja2vr1y54mhTCTu45Yl8zJgxiIiIAM/zeOONN9CjRw+sXbsWN2/eRE5ODnJzc3Hz5k2sXbsWPXr0QGxsLEwmEyIjI/HWW2+5o4lOY5u18MEHH0CrFd/YNW7cGD169AAApKamivzMCKI0kJQh/gEu7koGOSz2RveZDpxQb63Dfvj+euFl+HEJUjKwdkkGT++QKiYo2SV5qpLBFst5l8X4x5OSpvihNpNBo1fKZGCslRxUMmjsKBly3eKF4367pPQcXlQ0KOsrDn4uzUoGXjaTQfi+S71dkp0iA+UyFC1iuyRxR784+JmDxhAmUpCZMu9ArxEX2ixFfXtfBbJLIkoKAwcOhE6nQ3Z2Nlq1aoWePXviu+++w9mzZ8ErqNeuXLmCjAyzlZVSRyg7/+zZsw638f79+5g8eTJq1qwJf39/VKlSBfXq1UP9+vVRv359q7e8ZVlnsSgQMjIy4OXlBY7jZP9Z+rQACDroLd77er3emlsghU6nQ3R0tNNtVYPcyHYLzZo1s762zQyw/YzUfrYZGRmyndRVqlRBWFiY7DbCw8OtSgJHswtcybVr1zBmzBhERUUhMDAQVatWFZxnw4cPty5bWHm52dnZuHz5MgD7xz46OtpaYFP6XlkyfqUICQmxvn78+LHscoRzuC2T4ddff0XHjh2RkpKCLVu2YMuWLbLL8zyP4OBg/Prrr8U+k8FoNFpfV61aVXa5atWqSa5DEKUF1iop2KApkqBgtoM2rQBKhmRGyRDq43gPryPtKW6I7JJIyeAWlOySPFHJwHZ0ZuSa/aGzmX4V1keaKHoKYpdk6dhk7ZI4psjgpxNn29hie1mSEru4p67rfrukJKYIzgEI8dYo6BikigweWLW0xSSXycAsVtrtkhQyGQAqMhQ5TJGBkwx+FmcycBotNN7lYMq8bZ2el3kHOo6Dr47DY2P+OhmWATnMV4FjC1AU/EyUEGrVqoUVK1Zg2LBhSElJwa+//opff/0VABAWFoYuXbpg+PDhaNOmjWC9Bw8eWF/bZh5IUb58viWZ7XpqOHbsGDp37qw60zQzM9Oh7duSlJTk1HqWYguQ//5CQkIkB93aomRP5QrsfS62+7f9XFz92drbhqUtV69edfj8cBVbtmxBv379BJ+lEgU5z5Sw5GAA9o+bTqdDaGgo7ty5o3jclPqRNZr8+1s5JQrhPG7TNEZHR+PMmTN4++238csvv8h+mFqtFn379sXXX39t14uuOGCbGXHlyhXUrVtXcrm///4bgFk2Vb16dbe0jSCKE3eKQR4D4JpMBks/zP0s4XtyJPTZAutxa/tQV9wRBT9TJ69bYNUvtnhin6CUkoG16gLo/CuOyCoZjGyRwV9k8WEZnStZkLD9m+MQZNCI7Oss2I5K5zgOOg1gW8vNkTiXXA4zMp53g13SvQz290kDLw0nVjLYtCWTqdR4upIB4MHzJnBMgUtkl1RyfpYLB3t2SRm3FecThYyK4Gf2Wmw5xzU+5QVFBstrPy8NHhvztytvl8RWHajI4ApCDb5IGji1qJvhNkINRTOo9MUXX0THjh2xcuVK/P7779i3bx/u3buH+/fvY9myZVi2bBkGDx6MH374QdApaaGwvOmNRiMGDBiA5ORk6HQ6jBkzBr1790aNGjUQHBwMg8F8H3DlyhXrQFYl9YU9LP1yYWFh2LVrl+r1pLIbCuuYOIIr2lBctlGY3L9/H4MGDUJGRgbKlCmDiRMnonPnzqhWrRoCAwOtWSM7d+5Ehw4dABTsPFNLcT9uhH3capwYGRmJ1atX4/bt29i9ezfOnj0rqHrWq1cPMTExDoXiFDUDBw7ElClT8OjRI/z73/9Gt27dRNXbEydOYNOmTQDM3mABAQFSm5Lkxo0bivNv36Ybe8I1/JmSg703skSdDEpwHFA1UIfOlX2gVRhBfSstF8supAmmFUUeAyDOZLjyMAdzTjyUXFauY2HlpTQE6DW4lCIcBRnmXXAlw9lkI344+1gyK4LjOFQJ9IKJB649ygHPm49jjyq+8H2ynZNJ2Zh3+jE4AHVDdaJtOEJkGS90q+IjGs2aZjRhc2IGkphOvaJQppRGykiEMlrw8sAbM/b8S7ibLSpaAqRkKI6YeB7G+0eR+Vc8TMZU6/S8jJuC5TQ6sV1SxqV50OgDkXbyX8yy4hBGpSID+9Ok03DIselxyykCu6Scu/uRsvcVVWsak/YLt6RaycCEPj8pgrPfkrP3838D/0oV2geVhsJd6u7+yLq2FgBQpuFUlKn3nuh+ZuOVDBy8lWX9W6/l0Ky8AdFlPT/smOd5ZFz+QXGZjEvfic5TC1rfSPjWHAUv/6gCtSMv/SbSL86FxhAG/unR2HI9F3fThb8DfjoN2lfyRpVAHc7eN+LkPSNqh+jQuFzJ+pxMOenIuPAtclLPAwA0hjD41hgGXbD0QDZTFjMKWU0mw5N7Ba1Pedh+69MvzEX27Z0wZI0D8JR1+i8nT2H/6QfI4H0A1MnfFVNk4CiTwSVoOI3bg5BLK4GBgRg+fLjVEubChQtYv3495syZg1u3bmHJkiWIjo7G22+/DUBos3L37l3FbdvaCdmuZ4+dO3daLXji4uIwdOhQyeVcNfrdEhj9+PFj1K5d264SQYrg4GAAQHJyMvLy8hS3Ye+4FRR727edb/u5sJ+tUt6Gms9Wzfu0LMNuw7aoZQlDliI9Pd3uPuT4+eefkZqaCgBYt24dOnbsKLmcO1QWlvMHsH/ccnNzrQofR75XhPsokjuBiIgIDBw4sCh27XLCwsLw448/YuDAgThw4ACaNm2KcePGoUaNGkhLS8OBAwcwa9YsGI1GNGrUCLNmzXJo+0oXN4JwFbfTc/HpoRQ449Sz72Y2HmSZ8Ept6ZthYx6Pj/9IEU0vLkqGR0Ye+29lyywtzen70hYLoU4oGVjrm5tpebiZJi9F3HdTPO1ySi4+fDYIp+8bMT0hv2Di6PsSk40rD3MwqUmQYOqsYw9x/oH4GJBdknso7ZkMt9PzcDtdXGQoDR2iJQ2TKRcPfmsHPldZhi1ll8QbU/H42PviZfXSRQY5REUGLZcvRwNw7VEuaoXoFdtXYJjiX176NeRduebcppxUMoQ/+c1l65B3M/JEdoYWSkPhzlJgAIC0k1ORl34dGu5LwTIXJH7vdv6ThSnPBqF+WCGfO0VMxsU4wKRs85qbcgq5KfKho1lXVyH8xb8lbXzUwJtycX/TszA9KU7Ou9kSl3KrSS6750YWRjcMwFfHHoIHsPEK8G6TwBJVaHh44HVkJa4STMv8eynK9rsqyqSRQioXQcouCRCHP+c+OIHcBydgCOwD6POLDFdMVXDFJB61TEoGwtOoXbs2ateujZdffhm1a9dGeno6Vq1aZS0yVK1aFb6+vsjIyMDhw4cVt2UbKF2vXj3VbTh37pz19UsvvSS7nCVLQQ61I8Kjo6OxfPlyZGdn4+jRo3Y98aWoX78+fvrpJxiNRpw6dQqNGjWSXC43NxcnT550ePuOkJCQgFdffVVxvgXbz8X29eHDhxX74Syfra+vr6xl+tWrV5GcnGwt4rDcu3cPiYmJon0DgL+/v/W1rZUQy59//ik7zx6W8ywkJES2wAC47jxTwmAwoHr16rh8+bLd79WJEyeQk2O+L3Pke0W4Dw/sjnA/vXr1wrFjxzB06FCcPHkSgwcPRosWLfD8889j6tSp8PX1xTfffIN9+/YVugcdQTjD2fs5ThUYLBxPku/MvpSSI2kBVL6IlAyBClYzBSXcicKJUoexWk7fNyIr14S4k4/sL+wgJ5KMAmlkVi4vWWAAlLMCCNeh1KHq44FVBn8V78lPxzkcuk4UPvUN1+wWGABA4x2GPJW+7hpvcYheqLf8tZctPrFnU0p24YcyaLz8XLYtqSKLFOz7sijtHFGcKVmzlThUFmcyL/+g2ibq1D3Pz1jLvimVoefYtTYv/RpyU8/ZX1CuDf9stBYYsuErW2AAgKw8HrOeFBgszCmEe6PCJPvGZtE03piCnHvijpe8TAkvdY248CVWMpj/1/pWlGxDGZO6cE89L7y+cy681hFEUVKpUiXUqFEDgDDs1svLC+3atQMAbNu2TdF1YtGiRdZ1YmJiVO87NzdfXyQ3Ut1kMmHhwoWK2/H29ra+zs6Wf1bv2bOntaP4m2++Ud1OW2w7qZcsWSK73Lp16xQ7zV3B6tWrZbMDLEUjAKhTp47AQSUmJsaqwPjhB3kF3/Xr17Ft2zbROiw8z2Pp0qWy24mPj7c+Y7Od/JZAaEC5k3/FihWy8+xhOc+ysrJk1RIZGRn48ccfFbdjOc+UzjE1WI7BuXPnBAU6Fsv3ynYdonjhQU8PRYfRaMTSpUuxfv16SZ+yu3fvYtmyZdi+fbvD2/7nn38U/yl9AQlCLQW1i2ADgG1JyRKPkAzUc4gOL5rRfzWCdSjrRECzPcJ9NKgd7Lg9katGX9/PNBVKZ1keL7SNMsp81lUDvVC+iNQppY0yeg0aynx/WkWWnNGaamlcTm+3Y7RVpLfifMI9jG2Ybwfp58Whi/9pu+vowppBW6YKkJdld1loveH9VB/R5JaRBpFiAQBqBesQwhQg2OtkhkIuj6swVOoJaAt+jnK6ABgqdFW1LDty2WIB1LScQVV2S7BBgzohBbPcK04EtZF/0GdpEaHus5L7PfQkeInvZWCbpYDWx7Ht5Dx2ug25aVetr7M0jlvIsIHmxR027F1pOm9jQ2dBFywe2cmeqpasGu+ofpLXpkbZ61S0FIjO3mB9bajQBRpDkKr1CKKo+eWXX6xWMVL8888/uHjxIgBx9sDo0aMBmPuA3njjDeuoalt++OEHbN26FQDwwgsvOGQHbpvfGR8fL7nMBx98gOPHjytux3aflnxQKWrWrIn+/fsDAH766Sd89dVXitu9evWqqHO7WbNmVvXCvHnzsH+/2ELv9u3bmDhxouK2XcGdO3fwzjvvSM6bMGGCNeh65MiRgnmRkZHo27cvAHMgslSxxGg04vXXX7d+5m+99ZZiW6ZNm4ZLly6Jpl+4cAGff/45APPn1Lt3b8H84OBgPPPMMwCAxYsXS1oW7d+/H99++63i/pWwnGcZGRnWwosteXl5GDp0KG7duqW4Hct5lpSUhMePnf+tHzlypNUmavjw4Xj0SDxAYOvWrfj+++8BmM+5pk2bOr0/ovBwu11ScnIy/vjjD1y5cgWPHz9Wleb98ccfu6FlzpGeno6uXbti37590Gq1ePfddzFkyBBUrVoVWVlZOHz4MD799FPs378fffr0wX/+8x9MmDBB9fYrVpQeYUIQroStjZX10aCFQqfdvcw8HLSx4lGKcXiYLX64+6J1iDVDwN14aThMaxmMA7ey8dCovlP+79QcVCjjJVkU8Ndr0DrSYLbhcBClztNwHw1aRnqLjrcUyRLFHAB4JkyHKoHqO4oycnhsuy4c/ZFryg8UzpUopA6o4YfOUT4U1ORGxjcKxL6bWbiXaf7cNRxQK0SHhuGeV2SILOOFz1sFI+FOtmTgc6UyXmjpgcWVkkirCt4INGjwz+NcNClngM+VFNg+bmj9q8I7akD+374V4VP1ZXAcB95OuKyhUk/4R38GXXB90bxaIXpMaxmME0nZVlVemI8GrSV+x1542hdr/8offSt37XQluuD6COt+GFn/bACf65x/rkYXAO/KLzjtbW+5OlcL0mFay2AcTzLKdpKX0XFoGeldZL/ThYFPlQHQeJdFzr2DMOWkAeBhyriFzL/FxYfuVXxQzleLv1NzYHtWnr5nxNVH+SNM89wQgFj0CN+jT7XB8K32CnQhDZB1fb3s+ZxxYY5gnlSxQi22Pv/ZnLjIEOKtwYOswlckFTkS10jJ4y9RAGLPVe2Tr7b52nToybUp/7r4LIBg4ypcyH4KeTJjEiO8HqBpuQfw4t6HV5kq8K46SP17IYgi5ptvvsHLL7+M7t2747nnnkPt2rURGBiIlJQUHD16FHPmzLGOhn/zzTcF63bv3h39+/fH6tWrsXXrVjRv3hwTJkxArVq1kJKSgp9++sk6Ej4kJMRupz1L586dUbZsWSQlJWHKlClITExE3759ERYWhr/++gsLFy7Ejh070KpVKxw4cEB2Oy1btrS+Hj9+PD788ENERERYn9eioqLg5WW+vs6bNw9Hjx7FlStX8M4772D9+vV47bXXULduXRgMBiQnJ+PUqVP47bffsHPnTvTt21dkfx4XF4fWrVsjJycHzz//PMaPH49u3brBYDDg8OHD+OKLL3D//n00aNAAp07JW+wVlCZNmmDevHm4evUq3nzzTVSqVAn//PMP5s2bh99//x2A2SKK/VwB4Ouvv8aOHTuQkpKC119/Hfv378dLL72E4OBgXLx4Ef/5z3+sdk8DBgxA167yAz+efvpp3Lt3D82bN8d7771nVbPs3r0bM2bMwMOHZovjOXPmWEOWbRk9ejRGjBiBu3fvok2bNvjoo49Qs2ZNPHjwAJs2bUJcXByaNGmCgwcPOnWcBgwYgMmTJyM7OxtDhgzByZMn8fzzzyMwMBDnzp3DnDlzcOzYMdXnmclkwptvvokxY8YgLCxfdfz000+rak/9+vXxzjvvYObMmVbLrffeew/R0dFIT0/Hxo0bMXv2bOTl5UGv12P+/PlOvW+i8HFbkSEpKQnjx4/Hzz//LJCAqaE4FxmmTp2Kffv2AQC+//57DB482DpPr9fj+eefR/v27dGpUyfs2rULkyZNQocOHdCgQYOiajJBiGCFDJFlvDColvxosfPJRqbIIP+gzXbkt4o0IMyJ7AJXEuStRfeqvkXaBgt6hcDsSv7mz+HiA6P9IoNM6Gmz8t54vrL6EYcPsvJERQbzw6m5nVIFpe5VfMkP3814e3EOfa4lnUr+XqjkT4GSJYF6YXrUe+JT/5ixStKFNERA4+kyayp3Evo3+Bd0Ic/Izn86SIeng+wXVMOZ3597MtdOV6MLeUax/e6kaqAOVR0oPnsKhogYGCJirH8b7x2RLDJwHIem5Q1oWl5YvDTmPWaKDIXW1GKLLtQ8UlUXXF+y4Gch6+pPyEuzLTLIZ03Zxcb+J5sT2vFoOaBCGa1nFRnkileSRYY0wd+cLlBywAd7rtreeupCGkAXIn4ubfLkH0F4KhkZGVi9ejVWr14tOV+j0eCTTz5Bnz59RPOWLl2K3NxcrFu3DsePH8crr7wiWiYyMhKbNm1ChQoVHGqXn58fli5dij59+iArKwvz588XdajGxMRg7ty5ip70Tz/9NAYMGIBVq1Zh69atVmWFhatXr1pteUJCQnDgwAEMGDAA+/btw969e7F3717ZbQcEBIimPfvss1i6dCliY2ORlZWF6dOnY/r0/Hs+Ly8vxMXF4cCBA4VaZPj8888xa9Ys/Pbbb/jtt99E82vVqoVff/3VWmCxpWLFitixYwd69OiBW7duYdGiRQJ7HgsvvPCCoi0UAFSoUAHffPMNBgwYgA8++EA0X6PR4Msvv8SLL74ouf7QoUOxZcsW/PLLLzh//ryoqFO/fn2sWbPGIZWMLRUrVsS8efMwdOhQZGVl4d///jf+/e9/C5Z56aWXMGzYMEVboueeew7NmzfHoUOHsHz5cixfvlwwX8rpRY4ZM2YgPT0dcXFx+Pvvv62B7LYEBgZi1apVaNiwoertEu7FLUOUUlJS0Lp1a/z000/IyckBz/MO/Suu8DxvrVLXqFFDUGCwxcvLC9OmTQNgrvDJyd4IoqgwMSPVFPq9AZjVALYoKRlSGWsKJT/50oheod6if6JyUBOofF9mNK4aWwzB8hIPp7afr1RBydF9EARROmDzGDitQnHXjpLBVYGiYYyt2/3MwlcyFAXs7TMJzQoO+1NcQKfJkoGzz2GMBU9BigycJr8gZmSKDN5aDjp7N60egpTay5QjVDJwOukBQnnMqlL3egRRmlixYgUWLFiAQYMGoWHDhihfvjy8vLxQpkwZ1K1bFyNHjsSJEycwZcoUyfW9vb2xdu1abNiwAS+88AIiIyOh1+sRHByMZ599FtOnT8elS5ec7gjt3Lkzjh49ildeeQWRkZHQ6XQIDw9Hu3btsGDBAuzYsQN+fvYzUJYtW4Yvv/wSzZo1Q2BgoNWORory5ctj7969+PXXX/Hyyy9bQ64t+27ZsiXeeecd7NmzRzazYODAgThx4gReffVV6zGpUKECBgwYgP3792PYsGFOHQ9H0Ov12Lx5M+Li4tC8eXMEBQXB19cX9evXx2effYbjx48jMjJSdv3o6GhcunQJ06dPx7PPPougoCDo9XpERkbihRdewIYNG7BmzRpB5oUc3bt3x9GjRzFkyBBUrlwZer0eZcuWxYsvvoj9+/fL2joB5iLEzz//jP/+979o2rQp/Pz84Ofnh2eeeQaff/45Dh8+jPLlyzt1jCwMGTIE+/btQ58+fRAeHg6dToeIiAh06dIFK1euxE8//SSbOWHbzq1bt2LKlClo0KABypQp47S7gUajwX//+1/s3bsXL7/8Mp566ikYDAYEBASgYcOGmDx5Mi5fvoxOnTo5tX3CPbhlWOCMGTPw119/AQA6deqECRMmoHHjxggJCSnR9hp37961+qNFR0crLtu4cWPra4u/H0EUF0SdEXaWZzuVpSx0LDxkigyBVGQQoGSXZFE5GFSoBOSUDI46OGklPh7bwoLUyE0nXKIIgigFiIoMXgUoMmhcVGTwFl7k0nN4ZOaa4ONh1dLS0P9dYBx8BtEyndl5paPKIPxT5THjGMuegtglQWNrl8QUGbw8scggd16Jp4uUDBLByyaeF63pcYeMIGSIjY1FbGysaHpERASGDRtW4E7vnj17omfPng6vFxMTY3cwbd26dRVDd6OiouxuQ6fTYdKkSZg0aZLqtnXv3h3du3dXvTxLnTp17AYeF/agW61Wi5EjR4pyF9RSpkwZvP/++3j//fcL3JbatWsrBkkrodVqMWrUKIwaNUp2GaVzQO78t6Vly5ZYt04+h0fNuerv749p06ZZB1bLsXv3bsX5Ftq0aYM2bdqoWtYWNW21UJwHs5d03FJkWL9+PTiOQ/fu3bFhwwb7K5QQbCVW9iygbAOBpKRZBFGUsM/JdpUMHPugbb5QSxUNWbukQL1ndeQUFKUig2WevdBbQN5XnFWd2ENqedvCAqtk0HIo0cVigiAKDz7PgSKDvW5xVykZJOz67meaUMnfs3+b6CqtHp43gePE5wP78+hBBj3yiB7C1RYZmBGeuQVRMsjbJZmLDPa3IXePWqJQkckgpWSQqoV5WE2VIAiCIIhigltuMa5fvw7AHF7iSYSEhFj96P744w/FQsOePXusr6tUqVLobSMIRxA9Qtp5EGMfTnjI2waQkkEZvZKS4UlfmCq7JBcpGaREE0pKBnpQJQhCDlbJgAIoGTgXFRn0Wg6BeuGFzlMtkwh7yPxAmqTv59nfU9aCxjNxssjg5SYlg5aDTsWNTrYnfMWligw5QiWDRkLJIGVpqinpBReCIAiCIIolbukeKlPGPKqiXLly7tid29BoNFYp2a1bt/D5559LLpeSkoL33nvP+nePHj3c0j6CUAtbILBvlyTh2y9RZDDxPB6xSgYqMghQtEtyRMkg00nmqJJBanGlTAby9SUIQg5HMhmk/MaZlV3RJABiNYNckbYkQ5kMBYCXLjKwHbOm0ii1d9ouqQDBzzbXBiklg17FfU6GUnhYsUPuvFKhZPCSUjKIt0c2lwRBEARBFAZu8e2pX78+du/ejWvXrnlcCvjHH3+M9evXIyMjA1OnTsWxY8cwePBgVK1aFVlZWTh06BC++eYbq5qjQ4cOFFRCFDtYTzp7z2tSDye5Jl7UGZ5m5EUFDAp+FqImk0Gr4eClUQ7YNsrMk8pYUILjxPuyzdxg20BKBoIg5HBpJoOLiwx/P8zvSL7ngUqGUtj97TCczJAKns+TnCNSMpSKg+zcm2TtkvgC2CWBz/9+SgU/q7kPycjhEWI/o7N4I1EsUJPJIJmlRaEMBEEUI/78808YjUaH1ytbtizKli1bCC0iCMJZ3FJkGDFiBHbt2oUff/wRvXv3dscu3UatWrWwfv16DBw4EPfv38fGjRuxceNGyWWfe+45rF692s0tJAj7sF07djMZpJQMEv1DqRI93wGUySBAyUvYtgBh0HIiFYEanFEaeHEcciFdWGBDvulBlSAIOVyZyeAquyQACPMRXnhLg10SXakdQNYuiVUyuKMxRYs4GNH9wc+8TZHBeSVDyf+weDVKBolMBqmAclIyEARRnOjUqROuXbvm8Hr/+te/MHXqVNc3iCAIp3FLkWHAgAHYuHEjli9fjhkzZrgkpb040bFjR1y8eBHff/89tmzZgnPnziE1NRVeXl4oX748mjZtikGDBqFXr14lP3SM8EhEtgp2lpcaNSbVAc7mMfjrOIftezwdjuNg0Er7BdvmNXhrOaTnOP6Q7KiSwbqOTXsEmQyskoE+ToIgZCjOSgZbPNEuiUVu1H6pRu6enJcuOmmY39O8UmGX5FyRAaJMhgIoGUw2RQZIKBlU9Jhn5JSg77jceaUik0G1koEuBwRBeBAxMTESRfGiYffu3UXdBIIoUlxaZNi7d6/svNdffx1Xr17Fhx9+iLVr12LQoEGoVasWfH2VRrWZadu2rSubWSiEhobi3XffxbvvvlvUTSEIhxFlMtgNflaXyUChz+rQazhkSzwF6m36wdTkMkjhlJJBw8G2Y8H2s2WLSaRkIAhCDkcyGaT8xpmVC96gJ4SLigyep2QoHo/aJROegp9tcC7cQ2SXVKBMhvzPQ0rJoKQIteAJSgapIoNJlMlAdkkEQZQ8EhMTi7oJBEG4CJcWGWJiYlSN1D927BiOHTumapscxyE3V/pmnyAI18A+f9i1S5LJZGChIoM69FoOkFApsHZJzuCMkoH9fG2l9uxzOmUyEAQhhyNKBrvBz5rCs0t6kGVCron3KKWdky43BCCrZCiNdkksahUxrF0SXGSXZOSE1xBvLQedx9klybVVIpOBVTJI2SVR8DNBEARBEG7C5XZJxUWmRBCEekxs8LOd5TWcub/Cdi2pEX2pVGRQhVwBwdZn2OCkL5EznWZs4UCQycAqGcgCjiAIGRzKZLBTZHBtJoNwWzzMhYayvq7bR9EjvFbTlVoKueBn6cFN7M9pqbBLcvI9ijIZXBT8zCoZDF4qiwwlyS5JDim7JDVKBom37kH1VIIgCIIgihEuLTLs2rXLlZsjCMJNiO2SlJfnOA5eGiBHIRAYAB4ywc+BFPosiV6uyMBkMjiDM7UJtnBg+9mKMhnoIyUIQgaHMhnsGfy4sMhQRsfBoBXa1N3PzPOwIoMQ6lN0ALV2SaWgxlAs7JJsPo9sjXCkvreWE1hLylGylAwySBYZhEoGjZdYySC6xwegoQEiBEEQBEEUAi4tMrRr186VmyMIwk04apcEmEfI59ja6EiMlCK7JHXIKhlcYpfkbCZDPnkKxSRPshchCMJ18LxJZJGimMngxuBnjuMQ5qPBzbT8EdKelsvgAV2qbkAuYJfskqw46bvFiYKfXWOXxAY/+3hxqu5zMiQsKUsaUpZyapQM7H2bMzaaBEEQBEEQaqDbDIIgRM+Qajx32T5vqUwG1i4piIoMkhhk+s5ckcngjJJBbJekoGSgGgNBEBJI2aMUF7skQCr82QPsVGygTAYVyFgBydolMb+NpcIuSVSIUXkiuTT4Wd4uydtLI7CWlMMjlAxOZjKwt+eUx0AQBEEQRGFBPX4EQYgeQNQqGWxRpWQguyRJ5O2S8l+7VcnAFpBszg/2cyYlA0EQUrB5DEDBigyuVDIAQCgT/uxpSgYWulKL4R1WMgj/lvK693hU2yW5MJPBxi7JyBYZtJwq28ZMqZvUkoaLMhkoS4sgCIIgiMKCevwIgoCJedBWV2QQ/s0qGUw8j0dsJgMpGSSRKyDYTveWkAz4eXHQ2TmkzikZWLskG1ssVnZPz6oEQUjA5jEAxSeTARArGe55mJKBhS7VUsicc7KZDKXQLslJ4y3WLom1TnOoBYpKBnXBz+klxC6JV1THqCkyiJUMrOKG7tsIgiAIgigsqMePIAixXZKaIoMoHFg4Pz2HF4UiUpFBGlklg82Ds5SlkpcGCPFW7nhzJphZXECSfm1elp5WCYIQI1lkYEY3C5a3q2Rw7e9HmDdrl+RZSoaS0aVaxMjaJUmfC+zPXamwS3I2k6EQ7JJM4GDkhIVKc/BzKbFLYq6RPG8SFxl0EkoGVq1M920EQRAEQRQS1ONHEIRoNJ6axw97SgbWKgkguyQ55PyE7QU/azXm8FIlnJHFs+vYqhfymM+ZAgQJgpCELTJo9OA0XgorKBQZOA04F1t8hPmK7ZKURxGXLDzorRQijikZ2J/q0qlkKAK7pCcZGTnwAc8UG7291NklZeR4gFKJ+VJL597YVzJQlhZBEARBEIUFdQ8RBCF6hNSo6MwRW+oI57Ohz35eHHSk0ZZEqoDAAQIrJMkiAweE2lEyOFMEUFQyMCcLq2ghCIIAxJkMylZJUM5kcLFVEiBWMhhNwOMSYqniDHSplkCuEiMT/Fwa7ZJEuRXOZjK4wC6JzWMAnigZPCr4Wb6dPFOI5XPTRMuoyWQgIQNBEARBEIUFFRkIgnAy+Fn4N+vV/5DyGFQjJfXXayEYuSuVyaDlOFF4KYuaghGLYiYDc7I4Y8dEEITnw9olFbciQ4i3RvRb50mWSc6NPy9tkF2S4xSBXZLJ/Hlkc+JriFolQ2YuX/KVSqxdEmOVBAAanVjJwN7jU/AzQRAEQRCFBXUPEQQBE/PgpcouibXUYfqHWLskKjLII5W3wI7Mk7ZLAsJ8XN/5xu7KdgAg+znTwypBEFKIigxa54sMXCEUGbQaDiHerGWSB1iqEA7gYPAzcxvDet17JM52zLPBzyYjeJOTRTzeUmQQjtK3KD7VZDKYeCC7JHxgSsebLTLksEoGDpDIvREFP9PtOEEQBEEQhQTdZhAEIWGXZH8d9iHFXiYDFRnkkSogsA/N0nZJHEK9XX9cWSWD7Wcr8valj5UgCAkcVTKwViDClQvnQsNaJt3zYCUDIYGsXZL0eVAa7ZJEZ5KTdkkAAFO2k00wF33YIoO3FweO40T3LHKUHMskOdhMBib02ctPMruGtUsi51KCIAiCIAoL6h4iCEL0nK3mGVLcES2cLyoyUOizLNJ2SfaLDF6FpGRQzGQwscvS0ypBEGIcz2RQ8CIvgJ+7EmGM3VyyBxUZnOwbLmXI2SWpC37OKw1VBtH30jm7JMD58GdeRsng88RGUu3tZUZJz1wR2SUJlQxSeQyAeHCIMzaaBFHaSExMBMeZC5nx8fFF3RxChqlTp1o/J6Jw2b17t/VY7969u6ibg9jYWHAch6ioqKJuCsFAvX4EQYhG43EqHiLZiADKZHAeqQICO006kwGFomRgR2vafrYiJQPd0xEEIYFLMxlMOS5okRi2SHvPg+ySxF3DdLFWjZxdkiiTwQ1tKXJYO03nlQxOFwtlgp+9n3wgOo9SMigUW0V2SYySQSKPARCfp6RAJQiCIIiSw9mzZzFixAhUq1YNPj4+CA8PR5s2bfDdd98hN1f6nrUoodsMgiCcDH6Wt9QBgFRGyRBERQZZJO2SNPaX4QD46jTW0XyuwhElA3n7EgQhhcOZDEp2SYUEW2TwpOBnQg1kl+Qwqu2SJJQMzoY/m+TtkgBzvoqaVmXklPQiovCEM6lWMgj/JiUDQZR8ituocoJwBaRMEbNw4UI0btwYCxYswJUrV5CVlYX79+9j//79GDlyJFq1aoX79+8XdTMFeLlyY1WrVnXl5gAAHMfh77//dvl2CYLIhwcrpba/jlJHNECZDI6gc9IuyTIoL8xHg38eu65zjC0g2VpCsMUksksiCEIKlyoZCgnWLsmTigwiJQNdqkXwMhZdau2SeAAmnvfwTlsnKylaA8xDIfLXd7bIkG+XJByp721zX6TXAtl2vr7pJULJoIDILkmlkoG9b/Pk05UgCIIoFcTHx3u8ldnmzZvx5ptvwmQyoVy5cvjwww/x7LPP4sGDB1i4cCHWrl2LI0eOoG/fvti9eze0WtfbaDuDS4sMiYmJqpazVKbYm3up6VTFIojCR2yXZB9RR7TNNnieF9slUSaDLAaJjnq2yOAtVWR4cohDvbWuLTKIrLDyX4tk93SNJghCAoczGYogqjicUTI8MvLIzuMli7olDoWMC8KCzDEyySgZJG5jTLy6gRklFmczGTgO0HoDNoWFgtolySkZAPM9abYd/6qSkcmg0EaRXZKzSganGkYQBEEQhJvIycnBmDFjYDKZEBAQgAMHDqBatWrW+V26dMHo0aMRFxeH/fv348cff0RsbGzRNdgGlxYZBg8erDj/5MmTOHXqFHieR1BQEKKjo1GuXDkAwN27d3Hy5EmkpKSA4zg0aNAADRo0cGXzCIKQwangZ7Yj2qZSkZ7Li5QNZJckj0Gi6KxKyfDkmIf6uPbYahWssFglA9klEQQhhaNKBtZv3B2wSgbAHP4cWcalt8dFgnNdw6UMmXNOTsnA2iUB5g7ckn+2KOH8mcRpvQXqBWeDn+Xskmzvi/QaDul2CpUZ7I1picOOksFLXSYDe49HEARBEETxYt26dbhy5QoA4IMPPhAUGCzMnDkTK1asQEpKCmbOnFlsigwu7R5avHix7L82bdrg/PnzqFixIlauXImkpCTs2LEDy5cvx/Lly7Fjxw4kJSVh5cqVqFSpEs6fP4/WrVtj8eLFrmwiQRASsI9laqT/4o7o/NesVRJAdklKsAUFQBwwKRXUZwlhDvN2rTSO3VeebSYDBQgSBKEChzMZiqDI4O2lQRmd8GJ7z4Mskwh7OJbJINU3y1rReB5OjEKxLOrFhD8X2C5JXsmgU3EvklkSlAxKCiRmHs9kMmhklAwmZj1PEGoRhDMcOHAAQ4cORc2aNREQEAC9Xo+KFSuiR48e+O9//4vU1FTV24qNjQXHcYiKilJcLj4+3uoxL+f6sXPnTgwcOBBVqlSBj48PfH19UblyZTRv3hwTJ07Ezp07rcsmJiaC4zi0b9/eOq19+/bWfVj+ydnI7Nq1C4MHD0bVqlXh6+uLgIAA1K9fH5MmTcKtW7dk3wfrlf/w4UNMmzYN0dHRCAoKkt3nL7/8gv79++Opp56Ct7c3goKC0KRJE3zyySdISUlRPHYAcOPGDYwePRpVq1aFt7c3IiMj0atXL2zfvt3uus5iOca272n16tXo2LEjypYtCx8fH9SqVQsffPCBqnPGaDQiLi4O7du3R3h4OPR6PcqXL49u3bph2bJlMJnk73/Z8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOKc7qw8dOoQpU6YgJiYG5cuXh16vR0BAAOrUqYORI0fi/PnzkutZvieffPKJdRp7TrPfIbXfwTNnzmD48OGoXr06fH194e/vj7p162L8+PGKTjxSx23btm3o2bMnypcvD4PBgCpVqmDkyJG4ceOG2kOkml9++cX6Wu7z8PX1xYABAwAA58+fx59//unydjiDWwbfHD16FG+++SbCw8Nx6NAhREZGSi6n1WrRv39/tG7dGo0bN8aoUaPQoEEDNGnSxB3NJIhSC/sAoqbfWJzJkL8Ntsjg48VJdqQTZtRYc0hZx1ntklysZBCFevMKSgaySyIIQoKSkMkAmMOf03LyR67fzyzpo53NkJJBBXIduiY5JYPEoiWg39q1OKJkEBYZCmqXZGSLDDa3PmryoTJKeCYDb1fJIF1kYAUcdDtOlDYyMzPxxhtvYMWKFaJ5N2/exM2bN7Fp0ybcu3cPU6dOdWvbxo8fj2+++UY0/fr167h+/ToOHz6M+Pj4Age7ZmVlYciQIfjpp59E886ePYuzZ89i3rx5WLFiBXr27Km4rcuXL6NTp06KHbQpKSno16+foEACANnZ2Th27BiOHTuGuLg4rF+/Hs2bN5fcxr59+9CjRw88evTIOu327dvYuHEjNm7c6LbP6o033sAPP/wgmHbp0iXMmDEDS5cuxY4dO1CrVi3JdRMTE9G1a1dcvHhRMP3u3bvYsmULtmzZgvnz52P9+vUICQlRbMfRo0fRvXt3JCUlWadlZmZi8+bN2Lx5MyZMmIBZs2Y5+S4LTnx8PIYMGSKanpOTgwsXLuDChQtYuHAhZs+ejVGjRrmlTdOnT8eUKVNEhZzz58/j/PnzmDdvHhYsWIDXXnvN7rY++OADzJgxQzAtMTER3333HdasWYM9e/agdu3aLmv7/v37AQA1a9ZE+fLlZZdr164d5s+fD8BcSK1Ro4bL2uAsbikyfP3118jLy8PkyZNlCwy2REREYPLkyRg7diy++uorLF++3A2tJIjSiyiTQZVdknxHNFtkIKskZZz1/8558sGF+bhYySCywpJ+DZCSgSAIaRzPZCiqIoMGifnPrx4V/kzYw7HgZzm7JI+mANkenNZbuCln7ZJ4GbskTf53Vc1AlhJvl2Qvk0Em+Fk0kIgGhxClCJPJhN69e2Pbtm0AgOrVq2PUqFFo0qQJfH19cfv2bRw8eBCrVq1ye9t+/fVXa4HhmWeewciRI1G7dm0EBgYiNTUV586dw/bt23HkyBHrOhUqVMCZM2eQkJCA119/HQDwww8/oGnTpoJtV6xY0fqa53n069cPmzZtAgD07NkTAwYMQNWqVaHRaHDkyBHMmjUL169fR79+/XDgwAHFQb79+vXDzZs3MWbMGPTq1QvBwcG4fPkyKleuDMBcSOjYsSOOHz8OrVaLQYMGoVu3bqhSpQpycnKwd+9efPXVV0hKSkK3bt1w4sQJ67oWrl+/bi0waDQaDB8+HP369UNgYCBOnz6NGTNmYOrUqYU+GDkuLg4JCQlo1qwZxo8fj+rVqyMpKQnx8fFYtWoVbt26hc6dO+Ps2bPw9/cXrJuWloYOHTpYLW/69OmD119/HZGRkbh69Srmzp2LPXv2YP/+/ejZsyf27t0rG9ybkZGB/v374+HDh3j//ffRrVs3GAwGHD58GNOnT8ft27fx1Vdf4amnnsLbb79dqMdEjtzcXAQHB6N3795o27YtqlevDj8/P9y6dQvHjx/H7Nmzcf/+fbz11luoVasWnnvuOeu6ffr0QZMmTRAXF4d58+YBMCsQWCpUqKC6PXFxcZg8eTIAIDw8HO+99x5atWqFvLw8bN++HTNnzkR6ejpiY2MRFhaGbt26yW5r4cKFOHjwINq1a4cRI0agRo0aSE1NxdKlS7F06VLcu3cPr7/+Ov744w/V7VMiLS0N//zzDwDIFrAs2M6/cOGCS/ZfUNxSZNi3bx8A4Nlnn1W9jqWiaangEARReIjtkuyvI1Yy5L9OZYoMFPqsjLMqj/zg58JVMtjaQeQxD6tqRg8SBFH6cFzJUDS9tWz4s8coGZx3uSlFOGiXpGBb6KnwBbFLEikZnLRLMsnYJWnyi0FqBjx4XPCzSiUDWwijwSHFH543gTc9sr+gh8BpAsBxhXNizp0711pg6Nu3L1asWAGDwSBYpnv37pg2bRpu375dKG2Qw1LYqFy5Mg4cOIAyZYSFwpiYGIwePRoPHjywTtPpdKhXr55A2VClShXUq1dPdj+LFi3Cpk2boNPpsGHDBnTp0kUwv3nz5nj11VfRpk0bnDt3DuPGjVPsgzt79iy2bNmCTp06Wac1btzY+vrTTz/F8ePHERQUhO3btwvmAUDr1q3x8ssvo0WLFrh9+zYmT56M//3vf4Jl3nnnHauCYdmyZRg4cKB1XpMmTdC/f3+0adMGR48elW2nK0hISEC3bt2wfv16eHnld5127doV9erVw8cff4zr169j2rRp+PLLLwXrfvLJJ9YCw5QpUzBt2jTrvMaNG+PFF1/Eq6++iv/97384ePAgFixYgJEjR0q24969e0hNTcX27dvRtm1b6/RmzZrhxRdfxLPPPosbN27gww8/xKBBgxAeHu7Kw6CKrl27YtCgQfD1Fd7vR0dHo3v37hg7dizatm2L06dP41//+pegyBAUFISgoCCULVvWOk3pnLbHvXv3MGnSJABAZGQkDh06hEqVKlnnt2rVCr169UKbNm2Qnp6O4cOH4+rVq9DpdJLbO3jwIIYNG4b58+cL3CU6dOgAvV6PRYsW4dChQzhx4gSio6OdbrcFW/sl24KhFLbvy1KYKGrcUmS4d+8eAHNVUy2WZS3rEgRReIiUDCrWEVnq2NolGZkiAykZFJHyElbzKGxRMoQWciaDrcOASMlAHVcEQUjgcCaDqque6wkVFRlIyVBqILsk+4iOkfOZDAW1S8rmhNcQ2yKDvhTYJbHXSLVKhjzmvo2UDMUf3vQIj++8WNTNcBv+5deA0wa5fLsmkwkzZ84EYO6oW7p0qajAYEGj0Tg0StoV3LlzBwDQqFEjUYHBFns2OkrwPI9///vfAICxY8eKCgwWgoODMXPmTHTr1g0HDhzA5cuXUb16dcllY2NjBQUGW9LS0vDf//4XADBt2jRRgcFC5cqV8dFHH2HUqFFYvXo1FixYAD8/c6H0zp07WLduHQCgR48eggKDBX9/fyxYsMChQczOYDAYsHDhQkGBwcKHH36IVatW4ezZs/j+++/x2WefQa/XAzD3ZS5atAgAULduXUlrJ47jEBcXh99++w3JycmYO3eubJEBAEaMGCEoMFiIjIzErFmz8NJLLyE9PR1LlizBxIkTnXzHzmPv+xMYGIhPP/0Uffr0wf79+5GcnIzQ0NBCacvixYuRkWF+Dvnqq68EHfEWoqOj8cEHH2DKlCm4efOmNT9EioiICMyZM0fSvnrixInWz3rfvn0uKTI8fvzY+lrp2gDA+r0BzN+/4oBbev4slbQtW7aoXmfz5s0AgLCwsEJpE0EQ+bDPkGoeQJSUDKxdEhUZlJH6wVKD5ZjrtJxLjzFrCWFbQGJDLknJQBCEFA4rGYqIcCbTxlOCnymTQQ1ydknS54CUXZLHFxkKciaxdklOKhnkMhkMnNH6ujRkMrBKBpNqJQMFPxOlk5MnT1pHBA8bNsxuZ527iYiIAADs3bsXf//9d6Hs4/z589Zt9+vXT3FZ2w5sJduXl19+WXbenj178PDhQ4f2l5OTg2PHjlmn79q1C3l55uu+lMe/hWbNmqFu3bqK+ygonTp1krV712g0GDx4MADgwYMHOH78uHXesWPHrKHQsbGxsjZIAQEBguBeJTWN0rHo27cvgoKCAKBQQ7EdIT09HYmJiTh37pw198NWKXDq1KlC27flGAQFBeGFF16QXW7o0KGidaTo16+fbIGyZs2a1muLRblSULKy8gdlWApXcti2KzPTyfssF+MWJcNzzz2HpUuX4quvvkLXrl3RqlUrxeUPHjyIr7/+GhzHoUOHDu5oIkEUOYkPc7DrRhbSjI5bNZT11aJLlK/THc3sHlXZJTEP21cf5WLOCfNNxYUHOYJ5VGRwHDUODLaLhHprRMUdZ2ELSPcyTZhz4iG0Gg5JjJUIPawSROkm+/ZOZF1dKerwyktLFPxdXIsMbKZNcpbJ+ltWEPx0GsRU8kbVQGnpNQAcuZON43ezrao0V5KUIewop8HLDiCTySB1b+TpdkkinLBLuqCLwWV9G1Q/uREt/CrBJyp/pOD9zDxsvZaJZIXiXnbOMJj8e+CetqpguunKYqTc/su8r8xhAJQDF689ysX3J26iWdZPqBqghW/t0eA04u+nKfsB0s9/gxupadib0wJpvLnzQGMIgldALcAJWxdT5h3kpV8HL6OSyYdHnv9/BVPK5v2FdpkLob2xCUnp2dhtbImUzCzwuQMB//wRvhVSG6Kn0YQAvQY3Hudixz+ZyDMBVx4K78m1dEtOlBJOnDhhfd2mTZsibIk0r732GpYuXYrk5GTUq1cPvXv3RufOndGmTRs8/fTTLtmHrZ1QixYtVK9nUVlI8cwzz6jan6WI4uj+bL342awJlmbNmuHcuXOq9+MoavZv4cyZM1bL97Nnz1qn21NbPPvss9YcgrNnz0oeN71ejwYNGshuQ6fTITo6Grt27ZLMMnAX9+/fx1dffYU1a9bg8uXL4BXukQoaZq6E5fg3atRI1gIJAMqVK4eoqCgkJiYKPjMWe7kIwcHBSEtLEygQCoK3d/4gDaPRqLCk0C3Ix8dHYUn34ZYiw/vvv4+VK1ciOzsbHTp0wJtvvonY2Fg0aNDAOoKX53mcOnUKS5Yswbx582A0GmEwGPD++++7o4kEUaSkZpsw9VAqMgswyur0fSM+b+WcnJINhVNnlyT8OzXbhP23pC3RKJOh8An11uLKQ3sPr+pgRwRm5vKyny0pGQii9JJz/xgebH1eNMJWipJSZDDxkL3eOcruG5n4JiYUIRKWdsfuZmPWsYIXMwjnkX34NclkMkgVGTwjwkOBggU//6lrjflBKwEAO33fgvbAi2gGDj5R/WDieXx2OBW30+2ph1oB3uKpmvt7kJWz27wv/3aAt3KRAQC23tJhN/8CJl9uici0qwh89lvRMik7++Lx3aOYGXoU6RobK4dcAOk5ouXVEfzknwq8xUGm170a4Y2Hg/GVdimStZXNT/DMU/yxZODPYw/xQdNATP0jBY9lMiikFDkE4YnYdmI60uHtLjp06IC5c+di0qRJyMzMxMqVK7Fypfl6WaFCBfTo0QMjR45U7Fy2R1JSklPrWaxmpAgOlr+WuWJ/thkUth79UpQrV86p/anFkf3bttuR91C+fHnJ9WwJCQmRVUOwbZHbRmFz7NgxdO7cGcnJyaqWL8xR95ZjYO/YA+bjn5iYqHjc2JwJFs2T0C6LAqeg2IaI27NASk/PH+RVXNRabiky1KpVC0uWLMErr7wCo9GIOXPmYM6cOdDr9QgJCQHHcUhOTrZWaXieh5eXFxYvXmy3akQQnsClB8YCFRgA4K/UXDx6MoLJUViffTWjnHwcMOMPcXEwcWmgTqi46l7OV4u7NqNTny1vsJknPsblfJ3LanDks6URcQRResm68auqAgMAcHrlDjbDU32Qff0XmZUL73Y1UM/BoAWyC8ElKTsPOJecgzYVxNfiE0nKI5NcjYFkZyK8ykRJTudllQwctJwwSDebTdX1NJjvN+eA065GH4zVZcYJpq0u8288kzgbPlH9kJSRp6LAII8fn2p97cOrL9gZOT9c0TVHyLWfRUUGU3YKjHf34pqujbDAUMRc0LfHHW0tc4FBgYsPcnA2OUe2wACQArUkwGkC4F9+TVE3w21wmoCibkKRMXr0aPTv3x/Lly/Htm3bcODAATx8+BA3b97E/PnzsWDBAkyePBmfffaZU9u37fTcuHEjoqKiVK2n1Dmr1Nltu7/jx48rjiK3RS7c1llLYVfhiv0Xl20UJkajEQMGDEBycjJ0Oh3GjBmD3r17o0aNGggODrZa+ly5cgXVqlUDoDDQw4UU9+Mmh22+hW0ItBS2Yc9S2RNFgVuKDAAwYMAAVKlSBaNGjbJ6rmVnZ0v6jjVq1AhxcXEC+RFBeDJsJ7+zGJ182E3LETagjFQSMcMzYXqU0XFIU3iQAYBggwZ1Q5W95AjgtdplsPSCuVIdZNAgpqJY7ja8vj8+O5wKHuaw6P418v1321T0xq9XhSMC3nzGH85QPUiHcB8N7mXaPzFpRBxBlF5MWepGrGkDakIX0lBxmYBG03Hv5u+AhG97YKtFzjRPFRzHoW0FH2y7XjgjqjJypK+jWW7snA7Uc6hDv8MivIJqQV++PYx3djFz5D+bYG8N7tv8NiZnmVCtkNpXHOBNTDFMq/488o7qj3spwqNzz+tp5D68CABwwh3USnjuX6iQm28J0TB7Iw55vwyeUze4Ihd6mDLvgud5QSeEKfMuACCTK16dniZOh0yNunu6dJlrjgVSoBZ/OE5TKEHIpQ3bbM/bt2+7dPCqZeSyyaT8fbMdZSxH2bJlMW7cOIwbNw4mkwknT57EunXrMHfuXKSmpuLzzz9H06ZN0bt3b4fbaRusGxQUhHr16jm8DWf3Fx4eLls8UMJWKXH37l3FjtO7d+86vH1HsLd92/m2Ad22r+/evYsaNWrIbsPWKkou5Ds5ORl5eXmKBR5LW9htWM5VwDXnqxQ7d+605hHExcUJsg5scZfKIiQkBLdv31Z1fliOf0EC1l2Nv78/KlWqhH/++QcXL15UXNZ2fu3a9hWd7sBtRQbA7GmWkJCAo0ePYvv27Thz5oz1RAsODkb9+vXRsWNHu95nBOHp+Os5PFdJ2VMtz8SLOpWdtXV+xHj5+6tQQwR5a/F5q2AcvpONdJlCg79Og5aRV/DhvwABAABJREFUBng7MDK+tNK9qi/K+2mRlJGHlpHe0EsMNasXpsdnrYJxOSUH9cP0qOiffwmPCtBhZtsQbL6agVwT0CXKB08HqRs9wqLXcvi0ZTAO3srGI6MJN9NycfSu9KhbelYliNKLKUvop6or2wr6ckLfY61PeXhXHQROo3zL6RVUC2E9j8F4ezt0oU2h9auErGtr4BVUG4bI513edluG1C2D6sFeuJlWcDnD4dvZuGOjOJMrJrBe/jWCdagd4tw1Wwk/HYcWEd5OqRxLAyEdN+POMuZ+S2F0XZi3VlBkuO8hQeGy5Al/+zmN+iKDIbIDcEJciMx99Cd43iR5mHtXYywJeB5p52YJcjKC/fzRIiIbARUnwXhrO3KSj6Jmzl6MTe2Fv8tPgLZiTwDmPLAGYXqcuW9E/Hmh3QAPDuDzwBsfgjMEWaebss3XtGxO2I6AvLtomr0SHKeDX713VB8DADDe3gXj/cPWvzWGMHgFKPutp5u8sTdT6HuuqfgCYPM2dHwGmmcuxz5fYWeOvYFLdCkgSguNGjWyvt67dy/at2/vsm1b7Ews4b5y/Pnnnw5tV6PRoFGjRmjUqBH69u2Lxo0bAwBWrVolKDKoHaEdHR1tfX3gwAG0bt3aofY4Cru/l156yeFt1K9f3/o6ISFBsciQkJDg8PYdwd72befbFnBsXx8+fFgxE+TIkSOS69liNBpx6tQpwTltS25uLk6ePCm5DVvrnZSUFNl2PHjwQLXVEYttLobSZ26b2SGFq5QH9erVw+3bt3H8+HHk5ubCy0v6GSQpKQnXrl2zrlOcaN26NVasWIFLly7hzp07AlstW/bs2WN9bS/72F24tchgoUmTJmjSROw3SRCEmWCDFoNqKXuq5UoUGXKdqDJk5/Gi0WQBenUX+PJ+XuhdrUguIx5J43IGu8s8HaSTLR485e+FN59xzei7EG8telQ1P2Qn3MmmIgNBECIsHXIWvCu/iDJ1xzu9PV1QbeiC8kfh+NUZ6/S2HEGr4dBOQj3mDEkZeYIig5wVItsR2CBcj37V/SSXJQoPzssb3pVfRNY1W2sShSKDjwaweUb39CIDbxLmk3Ba+/cpdsnLRF76P+ARKZis4SC69zUZH+Lu4U8E08K7XIGXfxUAwCNTDnKSzZ0WVXKPoo7hdwTVGihYvqK/F/bdzMLfNrlV/JPwZlP2fWhsiwxZ9wCYLZVsCTNdRc/0zwGtNyJq/cuht/vo0S6kX/va+rdP5OsIajVOcZ076bnYu1s44lNTqT9wIf9vP1MKOmV8LVFkUH4WICUDUVpo0KCBdTTwokWL8M4777jMs7xKFfM16PHjx7h06RJq1qwpWsZoNGLNGudtrxo1aoTg4GCkpKSIQnJtg2Ftg1+ltlGxYkXcuHEDCxYswNtvvy1Y19V07NgRvr6+yMjIwOzZszFgwACHO47bt28PrVaLvLw8LFmyBC+88ILkcgkJCYphva5g69atuH37tmSmh8lkwpIlSwCYB0zbFgAaN26MoKAgpKamYsmSJZgwYYJAUWDh8ePHWLVqFQCgTp06itkhS5YskS0yrFu3zlpA6Nixo2BecHCwtS1Knfw//fST0xZGubn5v6/p6emCwoYFk8mEhQsXKm6HPa8tNkuO0rFjR2zbtg2pqalYu3YtBgwYILnc999/b33P7HEravr06YMVK1YAAOLj4yWzijMyMgTnj5Jixp3QWAaCKKFIPSM4o2RgVQyAOiUDUXpQymigZ1WCKL2wSgaNd5jMkqUHVrmXJVtkEE4nn/SihDn4SkoGJij8vgpbwRINa5ekcUGRAUDew0uiWo7UV8CUIbbV1frYdMJohIMueF46mFncx2WewF7D8osMQiWDnn9iIWGSzutQgs344FRkzGgkOuWyeeG558Vng5MoiNmLeNPRjRtRStBoNJg0aRIAs6/5a6+9Zs0AZTGZTLh165bqbbdr1876etasWZLLTJgwATdv3pTdxsqVKxXDb48ePWrtOLYUNSzYdkb//fffstvQaDSYPHkyALMf/muvvaZYlHj06BHmzp0rO98eQUFBeOuttwAABw8exPjx4xUteu7evYtFi4SWmBEREVbVxoYNG6ydqLakpaVhxIgRTrdTLdnZ2RgxYoRkoO+MGTNw5ozZtu/1118XdIgbDAarZdDZs2cxbdo00fo8z+Ott96yFpAsx02OefPmYf/+/aLpd+7cwcSJEwGYA4oHDx4sWqZt27YAgPXr10ueL5cuXcJHH32kuH8lqlevbn0dHx8vucwHH3yA48ePK25H7XltjyFDhljDmt955x3J7+GpU6fwxRdfADBnIPTp08fp/RUGffv2RdWqVQEA06dPlzwekyZNsl4jLNe64kCRDUG+ceMG7ty5g4yMDDRt2hQ+Pq4ZQUYQJRFnasYajgPHrOuMxfNjxrtVywG+ZG9E2KBkd0WZDARRemGVDBoDFRm8teqKDOzvNY0uLhmIiwwermTIY5QMDtglKZH78CJMZexbl+RlCosMnD4InFf+SEeOKTLAJF1kYOEtRQbmGpZvlyRUMhj4jCcr5opyHOzCtoltswRSW88xCc89HbIh9QRhX8lgd/cE4TGMHj0aGzduxLZt27Bu3TrUr18fo0aNQpMmTeDr64s7d+7g0KFDWLFiBQYNGoSpU6eq2m50dDRatGiBP/74AwsXLoTRaMTgwYMRGBiIy5cvY8GCBdi5cydatmyJgwcPSm7jvffew5tvvonevXujbdu2qFGjBvz8/JCcnIz9+/djzpw5AMxBy6zH/VNPPWVVKPznP/9BxYoVUbNmTatnf7ly5ayjyd98803r+1+9ejWOHz+OESNGoFmzZggMDMSjR49w8eJF7N69Gxs2bIC3t7fdDm8lPv30U+zZsweHDx/Gt99+i927d2PYsGFo2LAh/Pz8kJKSgnPnzmH79u3YsmUL6tevL3p/s2bNwrZt2/D48WMMGjQIe/bsQb9+/RAQEIDTp09jxowZ+PPPP9GkSRO7FjwFoUmTJti4cSNatWqF8ePHo3r16khKSsKSJUvw008/ATCHVkt10H/88cdYu3Ytrly5gqlTp+LMmTMYMmQIIiIicPXqVcydOxe7d+8GALRo0QLDhw+XbUd4eDh8fX3x/PPPY/z48ejWrRsMBgOOHDmCL774wlogmzZtmmRo96hRo7BhwwZkZmYiJiYGU6dORXR0NNLS0rBjxw58++23CA8Ph1arxb179xw+Tp07d0bZsmWRlJSEKVOmIDExEX379kVYWBj++usvLFy4EDt27ECrVq1w4MAB2e20bNnS+nr8+PH48MMPERERYf3NjYqKkrU+siU8PBwzZ87E6NGjcePGDTRu3Bjvv/8+WrZsidzcXGzfvh0zZ85EWloaOI7DggULVIeUuwudToc5c+agZ8+eePToEVq1aoUpU6agWbNmSElJwcKFC61KqdatW+PVV18t4hbn49Yiw+PHj/Hll18iPj5eUCk+c+YM6tSpY/37p59+wtq1axEYGGhXUkMQpRmtRmi5wHo8q0Eqj8FVfniEZ0BKBoIgWHieJyWDBOz1Ui6Tge0IpNp+ESK657Fjl2TD/SzPVTLwpjyAZ4oorrBLApD76BJQQThNUqHLFBkEKgZArGSQKTKIN21RMgg7U+wqGcw7AVQGTJsXZ9QPKpQMUrfh2SbhuefFZ0krGeyckjqSTRGlCI1Gg19++QWDBw/Gzz//jD///BPjxo1zybZ/+OEHtGvXztrpbLHOsTBx4kTUrVtXtsgAwGqnw65rwWAw4LvvvpO0Gp88eTJGjRqFq1evikKhFy9ejNjYWABmn/uVK1fi7bffxnfffYe///4b7777rmybpDqpHcFgMGDbtm2IjY3F2rVrcerUKcWiRUCA2Oo3KioKGzZsQK9evfD48WPExcUhLi5OsMzHH38MjuMKtcgwevRo7NmzB/Hx8fi///s/0fyIiAj8/vvvCAwMFM3z9/fHjh070LVrV1y8eBFr1qyRtM9q1aoVNmzYoBjq7Ovri59//hldu3bF9OnTMX36dNEyY8eOxYQJEyTX79y5M8aOHYvZs2fjxo0bkkWrDRs2oGvXrrJtUMLPzw9Lly5Fnz59kJWVhfnz52P+/PmCZWJiYjB37lzF7IOnn34aAwYMwKpVq7B161Zs3bpVMP/q1auIiopS1aZRo0YhNTUVH330Ee7evYvx48V2rgaDAQsWLEC3bt1UbdPddOvWDd999x3eeust3L17F2PGjBEt06xZM6xbt07x/HE3bhvLcPnyZTRq1AhffPEFbt68CZ7nZT2/mjdvjrVr1+KHH36QlAQRBGGGfU7Ic+JZ97FR+D1Um8dAlB7Ykbm20LMqQZRO+Nw0kZUKKRnU2yWxv9ekZChKHCkyCB/iHmabYHRGRloSYK2S4GIlg4rDlsfYJWl8hMGHHKdOycAOnpFVMmTZUTIAghBqVTBtEqkvJJC6GhiZIoOckiHPzoHVkZKBKGX4+vpi9erV2LlzJ1599VVUqVIFPj4+0Ov1qFSpEnr27In58+fjnXccC3WvVasWjh8/jpEjR6Jy5crQ6/UIDw9Hly5dsGnTJsycOVNx/V27duHbb7/Fiy++iPr16yM8PBxeXl4ICAhAdHQ0Jk6ciPPnz1uLBSwjR47EmjVr0KlTJ5QtW1ZxhLdOp0NcXBxOnTqFMWPGoH79+ggMDIRWq0VgYCAaNmyIN954Az///DMuXLggux21+Pv7Y82aNdi3bx+GDh2KmjVrwt/fH15eXggJCUHTpk0xevRobN68Gdu2bZPcRkxMDM6dOyc4vuXKlUP37t3x22+/4ZNPPpFcz9UsXrwYy5cvR0xMDEJDQ2EwGFCjRg28++67OHfunGCwNEtUVBROnTqFuXPnol27dggNDYVOp0O5cuXQpUsX/Pjjj9i7dy9CQkLstqNJkyY4fvw4xo4di2rVqsHb2xuhoaHo0qULNm/ejG+//VZx/W+//RbLly9H27ZtERAQAB8fH9SsWRPvv/8+jh8/jtq1ayuub4/OnTvj6NGjeOWVVxAZGQmdTofw8HC0a9cOCxYswI4dO+DnZz97bNmyZfjyyy+tShupLAu1TJ48GSdOnMCwYcNQrVo1+Pj4wM/PD7Vr18bbb7+Nixcv4rXXXnN6++5g2LBhOHbsGIYNG4aqVataP/fWrVtj3rx5OHDgAMLCitfzl1uUDFlZWejevTv+/vtv+Pn5YfTo0Wjbti169OghuXxUVBTat2+PnTt3YsOGDWjdurU7mkkQxQa1QgKzVU3+w4RTSgajWMlAELYoKxmoY4wgSiOsigEgJQMgLspmyikZmN9rKtgWJeozGUK9xfdIyVl5iPArMgfaQoO1SgJcFPwMIPfhJfG2JZZjlQwaX9coGSyfsMOZDDArExw5DmwmAzTOKRmMJuFEymQgCMdo37492re3b9MGmPuj1ITgVqhQQTTC3pbY2FjZIkGVKlUwduxYjB07VlWbpHjhhRdkg5GlqF+/PmbPnu3wfqZOnaraSsqW1q1bF6gvr1KlSorH19l2OcrAgQMxcOBAp9bV6/UYPXo0Ro8eXeB2VKpUCd9++63dgoIc9t5HYmKi7LyYmBi734m6devixx9/lJ2v5nul0+kwadIkuxkD8fHxsvkPtjzzzDNYsGCB3eVY1F4DAOXj5grq1avn1HsoKtxyRzxv3jz89ddf8PPzw759+9CwYUO763Tt2hU7duzAH3/8UfgNJIgSCtsp4Uzw82OmyBBARQaCQSmTgZ5VCaJ0wo4AhkYPzqtM0TSmGKE++Fn4N/mkFyEO2CX56jTw8+KQbvO53s80IcL+4LwSBy+hZICLlAymjJsw5WQIpklZdbKZDKxdktpMBvEnbP7CyWUyiIsM7lUySF0OzHZJ+RcOHe9cJgMVGQiCIAiCKCzc8kizdu1acByHt99+W1WBAQAaNGgAwGyzRBCejrNCew3zoOCMYp+UDIQ9NBwHudOCnlUJonRiykoW/K3xDqM8H6gPfhZlMtDFtAhhrXSUb6ZCS0v4s6nwlAwAkJt2XbhtqSaI7JKcUzKIN27JZJBWMijaJbEZC/ZgixKqMhnERyObVTLAuUwGKmgSBEEQBFFYuOU2w+Lr1qlTJ9XrhIaGAjCH4RAEIY0ok8EpuyTKZCDsI2eZpKVORYIolbAjgCmPwYxIySBT/Wcnk11SEcL+jtm5lwpnw589tMjA5xVeJgMA5KYzRQaJ74BIyeDrKiWDdCZDnhq7JAeVDGzhQ1Umgwq7JJ2sXRIpGQiCIAiCKBrcYpeUlpYGAChTRr2MPjvbPHpGp7N/I0YQpRXXBD+TkoGwj7eXBg+N4o4UelYliNIJz4wApjwGMz7MMGFSMpQEHDv2bPjz/Uwnbr5KALyEksFVdkkAkJt2DUBT698uUTLw6ooMUkoGPjcDyMsE4GIlA7u8ikwGqTtxqUwGabsk5W1TkYEgCE/m6tWrSE9Pt78gQ3BwMCpUqFAILSJKG+np6bh69apT69asWbPE94G7pcgQGhqKO3fuIDExEY0aNVK1zrlz5wAA5cuXL8ymEUSJhh1F7kwmA2uXRJkMhBRyuQz0rEoQpRNSMkgjskvK42HieWiY32u2I1BLP73FCHt2SaVDyQBWycBpwWm00ss6QW76DeHmmfl8bib4nIeCaU5nMrBiFQklg0XFAChnMhRYycCp6DyQUjIwp5kO2eAkVAt2Mxlc9xESBEEUO4YMGYI9e/Y4vN7gwYNVBQkThD0SEhJUh8yzXL16FVFRUa5tkJtxyyONpbCwd+9e1essXboUHMehRYsWhdUsgii2qO23ZTt4nbFLIiUDoQYfGS8PsvggiNIJ62VOSgYzUgVZo4RlEvt77UXWc0UGx9512bVLEvbSJmeVDiWDK/MYACCPzWRg72kZqyQA0Pg6l8kgKmBw5ntdPjsF/BOlga06S6xksBkVW9BMBieVDNlsWDyfJbmu/UwGutYQBEHIERUVBZ7nwfM8YmNji7Qt8fHx4HkeiYmJRdoOgnAEt/Qm9uvXDzzPY8GCBbh+/brd5b/55htrQWLgwIGF3TyCKHqcTH5mRz46Gvxs4nmk5bCZDFRkIMTIKxnoYZUgSiOkZJBG6lopZZnEdgRSGGsRIvodU76ZEtsl5cHkxCCPYo+JUTK40CoJAHIzlJUMrFUStD7gdAHCdVhVgFzwMwNv3RsPkzEFAKNkgLySQVQ0sLcvtk3OZjIwN/lymQz2Bhzp6FpDEIQHs3v3bmuRwJF/pGIgXEVMTIxT5yDP8yVexQC4qcjw6quv4plnnkFWVhZiYmKwZcsW8DY3QBzHged5JCQk4OWXX8Y777wDjuPQpk0bdO3a1R1NJIgSCWuXlOegX1KakRc9nvhT8DMhAdklEQRhCykZpGHtkgAgU42SgS6mRYijRQbh41OOCXhk9LwiA5/HKBk0jikZ5Aovlqk8qwiwo2TQ+kaAY3vfnbRLst2Z6UlxwVI45SG2S7LNZBC12x7M8hxnX8kgUtcAyGbskrxAmQwEQRAEQRQv3JLJoNFosGHDBrRu3RqJiYno0aMHfH19rTeKMTExePz4sTXsmed5VKtWDatWrXJH8wiixCIKfnbwGZfNYwBIyUBII2eXRM+qBFE6ISWDNDqN+bfZ9vdYlZKBrqVFiGN2SUEGjegzvp+ZhyCDZ90/8aySQeuYkkGuszsPenjBaKMmMMMePVOmndBniDMZ5O2ShPuy/YQtBVNLsSEHPlY7JQt6W7skR5UMbBi1CiWD1L2VWMmQJalksJvJQDduBEEQBEEUEm67G37qqadw8uRJDBw4EBqNBunp6VZJyL1795CVlWVVNwwYMABHjhxB2bJl3dU8giiRsP2+jgY/s0UGHy+ORlMSkkgpGTiQXRJBlFZIySANx3EiNUMmU2TgeV40KEBLv71Fh4N2SRqOQ6h3KQh/LqCSQa6zO5czFyt49jGUVecydkls6DMA1ygZsoVFBlbFAAiVDOAd/KxZJYOKTAYpjMzx9JKxS7KvZHBq9wRBEARBEHZxi5LBQkhICP73v//hiy++wKZNm3D06FEkJSUhLy8PoaGhiI6ORs+ePVGjRg13NosgSiwaplPC0eBnNvSZVAyEHFJFBuoTI4jSCc/zEkqG0CJqTfHD24tDuk1hIZupKEipDimToShxrMgAmHMZkjLz76HuZ3pe+DOrZOBcpGTIhfR2RJkMrJKBDX2GI0oGIbYFDkvgs+WaxoY+A0Ilg+N2Sa5RMrDXEZ2cXZKdZwEaTEQQBEEQRGHh1iKDhcqVK2PUqFFFsWuCKJaIkxHUIbJLcvAZl/UQpjwGQg4fKjIQBPEE3vhQNJqX7JLyYYuyrF2SVOcrm7FEuBEnjn2ojxZAfuexJyoZ2EwGOKhkyFFSMvAQ2SXZC35WpWRgrYlk4B1UMuiQabOyo3ZJzmQyiGHtkpxVMlBBkyAIgiCIwsItRYbr168DACpUqACtVqtqHZPJhBs3bgAwWy0RBCGmoJkMpGQg1CIVZkpWSQRROmFVDADZJdlizy5JaqQxdfwVI1SoQsN9WLskz1MygFUyaBxUMsgcxjxI2yWxtxRs8LOqTIY8o2gZQErJYBv8fF/wP6tk0PMZ0Nh05rtDySB1e5XDnGI6PgvSwc/y56+Wo3s3giAIgiAKD7cUGaKioqDRaHD69GnUqVNH1TpXr15F9erVodFokJvr4M0cQZQS2JGPjtolsZkM/lRkIGSQskuSyYImCMLDYfMYoPUB5yUe/VtaYZVfWXn2lQxe1PFXhDhnl2RLaVAycFoHlQwyI1+smQycHSUDU2TQStglgS188LngeR6caNtsW9QrGQx8puBvh5UMbFHCSSUDixeyJacrDTjS040bQRAEQRCFiNt6FHkHOz8Luh5BlAa0zDfY0eBnUjIQavGRGGZLdkkEUToR5TGQikEAW5RllQx5Ej/WpGQoSoSfl5pnj1BWyZDlgUUGRskg6tC3g2zwMyzFCqYQYPMnb8qxdvpbd69CyWBeWaoIIPx8JJUMMpkMejBFhgIqGSTbzMBxnN1Cg07WLkn+/KXrDEEQBEEQhUmxvdWw3OBrNMW2iQRR5LCSZ0ftkiiTgVALKRkIgrDAKhkoj0EIa5fEBrZK2choqWpbdIhUJCqUDN5CJcNjIy/6nEs8BVQyyNkl8X5R5v9ZuySb16bMu6L1pIKfJa2HJMKfOZ6RD3FCJQNvygOf/QCAhJKBKTKwGQv2EC2vcY2RgJesXZL8Ojq6zhAEQRAEUYgU2x7827fNEll/f/8ibglBFD7yIm5lxMHPjj3gkpKBUAtlMhAEYYGUDMrYC36WVDLQ5bTIEI8Zd9wuCfA8yyTexAY/O6ZkkAt+5v2qmf9XCH5m8xjAeUFjCBVtS0oVwEsUGdigetsChynrPkzZybB87mIlA3Mc3KBkAOyrRXWQUTIoKHF0dJtPEARBEEQh4tZbDdYfU4qcnBxcvHgRn3/+OQCgZs2ahd0sgiixsA8gjisZqMhAqIP1GCcIovRCSgZl7AY/s4OqQfZzRQtz8FXYJXl7cfDXCdfzvCIDE/zsaCaDzIh63q+q+X+F4GdTBhv6XB4cJ3GPyqlVMrBFBpvFs+4JCqeuVjKI7JtUZDIA0uHPtnjx2ZKDkpSUDF50oSEIgiAIohAplOBnrVY8uofnedSrV8+h7XAch379+rmqWQThcbAPCwXNZKDgZ0IOqSKDku8vQRCeCykZlPFmjM9Fwc9MJ7ZWo24gDlFIOGGXBAChPlo8zsnvQL6fqdC7WxJh7ZIcVDLIqWtNvpUBiJUMtsUeVskgGfoM9UoGTiGTgc9Ngyn9hvVvcZGhYEoGtj1qlQz2MxmyJKcr3ZuRXRJBEARBEIVJofQo8jwv+Cc33d6//v37Y9y4cYXRRILwCMRKBvWdvlm5PJgaAwIok4GQQcouyeP8pwmCUAUpGZQR2yUJf2zZkcZeVGAoYpw7/uFM+HOyhysZ4Colg28lyekaRSWDdJFBbSYDa5fEfua5Dy9aX4vtkpjj4KiSgS1KqMxksFcP8HpS/GAXU85kULVrgiAIgiAIpygUJcO//vUvwd+ffPIJOI7Dm2++ibJly8qux3EcvL29ERERgZYtW6JatWqF0TyC8BjEmQzq12VVDADZJRHySAU/S5xCBEGUAkjJoAxblBVlMkgoGYjihLoCOpvLcM/jlQyOFhlklAyGCgDEdkmCZVglg0yRwflMBrbIcMH6WqRk4ISKAd4BJQNvygN7PnFSFk+ScKJ1bdHx2ZLTlc5eUjIQhDoSExNRpUoVAMDixYsRGxtbtA0iJJk6dSo++eQTABAMbiZcz+7du9G+fXsAwK5duxATE1Ok7YmNjcWSJUtQuXJlJCYmFmlbCCFuKzIAwOjRo1GnTp3C2CVBeBRqBzVqmQUdUTKweQxajnz3CXnIx5cgCAukZFCG/S0V2SWxSga6vhYt7E2XynupUKbI4PmZDI7ZJcnZ9uTpAsHpAhwKftbI2CU5q2RgCxxCJQNrl1QAJYPUsq5SMjwpMnCc6lOWrjUEQRAEUUL4559/cOTIESQkJODIkSM4duwYHj16BMDc5z516tSibaAMhVJkYFm8eDEAoGLFiu7YXZFy/fp1fP/999i0aROuXbuGx48fIzw8HFFRUWjfvj0GDBjgcDYFQcjBjn50xL2GVTIE6DXkCU0QBEHYhZQMyrDKL3Hws/Bvqu8XNc5lMoSxdklZHlZkYJQMcFDJIGfbk2sCvAJrAY+YIoOCXZKckgGcVA6g/eBnkV1Sqo2SAaySgSkyOKRkkCh4uCiTQc4uSQmySyIIz6C4jSonCFdAypR8rl27hqioqKJuhlO4pcgwePBgd+ymyJkzZw4++OADpKenC6bfuHEDN27cwP79+/Ho0SN88803RdNAwuNglQyO5PCySgZ/ymMgCIIg7MCb8sBnPxBMIyWDEJFdUh5rlyRc3os6/ooY55QM4SIlgwkmnofGUwZssEoGB4Of5eySck08vAJrwvT4kXD7Nq/VKhk4jjN32tt25jsY/AwApqy71tdsJoOBE26Pd0TJIFGQ4Dh1j99Kp5GGz4EWjhe1dBL5WgRBEARR0oiPj0d8fHxRN6PQsC2ycByHatWqITIyEnv37i3CVqnDLUUGwDzCHwDKlSsHg0F5JExWVhaSkpIAAE899VSht80VfPbZZ/joo48AADVq1MCwYcPQtGlTBAYGIjk5GSdOnMC6deug0dCTJOE6RMHPDlQZHhuFy1IeA0EQBGEP3pgCdqQ3KRmEiIOflZUM7IABws2Ijr9KJYO38L4pjwdSs00I8RaPri+JsEoGzsHgZ7tKhhsJwu0/+Rh43gRT5l3BPNngZ5hzGWwVA5LqAVFnv/x3TpzJUAAlg4SqQq2SQemu3DaPgVOObhCuR7f6BEEQBFHs8ff3x2effYZmzZqhSZMmCA4OFiiYijNuKTJs3boVXbt2RZkyZZCYmGi3yJCRkYG6desiMzMT27dvL/byrx07dlgLDK+99hoWLVoEnU54A9mhQwdMnDgRRqNRahME4RSi4OcCKRnoyYMgCIJQhs1jAACNIbQIWlJ8YZUMOSbzIADtk5EBeaJMBne1jJBG+HnxKntsAwwaeGmEnen3Mz2oyMAoGeAiJUOOiYc2oCZ4HBNMt3wKpqz7oiwDWbskAGCDlNUoGRQKe4WuZFCZyaBUe/RCfhi1IyVKymQgCIIgiOJPaGgoPvzww6JuhlO45bFm9erV4Hkeffr0QXBwsN3lQ0JC8OKLL8JkMmHlypVuaKHzmEwmjBw5EgDQoEEDfP/996ICgy16vWM36ETpwFnLOVaSX9BMBoIgCIJQgs1j4HT+Do9w9nTY4GdAaJmUy/zoU8dfUeOcXZKG4xDKFBSSPSn8ucBKBrkig1nJwFoWgTffl5oYqySAg8annOx+OEYZIKlksBP8bItYycBszwElg2QItQsyGWyVDI6go2sNUYo5cOAAhg4dipo1ayIgIAB6vR4VK1ZEjx498N///hepqamqtxUbGwuO4+x6psfHx4PjOHAch8TERMlldu7ciYEDB6JKlSrw8fGBr68vKleujObNm2PixInYuXOnddnExERwHCcYzdy+fXvrPiz/5Gxkdu3ahcGDB6Nq1arw9fVFQEAA6tevj0mTJuHWrVuy72Pq1KnWbQPAw4cPMW3aNERHRyMoKEh2n7/88gv69++Pp556Ct7e3ggKCkKTJk3wySefICUlRfHYAWbb8dGjR6Nq1arw9vZGZGQkevXqhe3bt9td11ksx9j2Pa1evRodO3ZE2bJl4ePjg1q1auGDDz5Qdc4YjUbExcWhffv2CA8Ph16vR/ny5dGtWzcsW7YMJpOM7A/i8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOMTGxtp9X1IcOnQIU6ZMQUxMDMqXLw+9Xo+AgADUqVMHI0eOxPnz5yXXs3xPLHkMAETnNPsdUvsdPHPmDIYPH47q1avD19cX/v7+qFu3LsaPHy/7nQSkj9u2bdvQs2dPlC9fHgaDAVWqVMHIkSNx48YNtYeoVOAWJcMff/wBjuPQqVMn1et07twZS5cuxR9//FGILSs4W7duxeXLlwEA7733Hry83OZARRCi0Y8mB6oVlMlAEARBOIopO1nwN+UxiGHtkgBz+LPfk75F1kaGbNKLFk5pyLgdwn00uJuR34F9z4OKDKySwdFMBjm7pDwTD6+ApwFOeBPLmcwd53lM6LPGO1x59D/baS9ZZBAWBpTultkig55jPlMHlAxSqgf1mQzyPkhetnZJqltDdklE6SQzMxNvvPEGVqxYIZp38+ZN3Lx5E5s2bcK9e/cwdepUt7Zt/Pjxknmd169fx/Xr13H48GHEx8fj/n2xitQRsrKyMGTIEPz000+ieWfPnsXZs2cxb948rFixAj179lTc1uXLl9GpUyfFDtqUlBT069dPUCABgOzsbBw7dgzHjh1DXFwc1q9fj+bNm0tuY9++fejRowcePcrP77l9+zY2btyIjRs3uu2zeuONN/DDDz8Ipl26dAkzZszA0qVLsWPHDtSqVUty3cTERHTt2hUXL14UTL979y62bNmCLVu2YP78+Vi/fj1CQkIU23H06FF0797daisPmM/tzZs3Y/PmzZgwYQJmzZrl5LssOPHx8RgyZIhoek5ODi5cuIALFy5g4cKFmD17NkaNGuWWNk2fPh1TpkwRFXLOnz+P8+fPY968eViwYAFee+01u9v64IMPMGPGDMG0xMREfPfdd1izZg327NmD2rVru7T9JRW39IhbLkA1atRQvc7TTz8NALh69WphNMllrF69GoD5RrBHjx7W6Q8ePEBycjJCQ0PtXjAIwlnEmQzq16VMBoIgCMJRWLskymMQw9olAcJcBnaENykZihvqB2yE+mgB5Hdq38904EasmMObmNHyDioZlOySOK0BMJQV7i/PbAHEKhmU8hgAdUoGTtTZr94uyVvDFCiKg5IBTCaDSkjJQJQ2TCYTevfujW3btgEAqlevjlGjRqFJkybw9fXF7du3cfDgQaxatcrtbfv111+tBYZnnnkGI0eORO3atREYGIjU1FScO3cO27dvx5EjR6zrVKhQAWfOnEFCQgJef/11AMAPP/yApk2bCrZdsWJF62ue59GvXz9s2rQJANCzZ08MGDAAVatWhUajwZEjRzBr1ixcv34d/fr1w4EDB9CkSRPZdvfr1w83b97EmDFj0KtXLwQHB+Py5cuoXLkyAHMhoWPHjjh+/Di0Wi0GDRqEbt26oUqVKsjJycHevXvx1VdfISkpCd26dcOJEyes61q4fv26tcCg0WgwfPhw9OvXD4GBgTh9+jRmzJiBqVOnKrbTFcTFxSEhIQHNmjXD+PHjUb16dSQlJSE+Ph6rVq3CrVu30LlzZ5w9exb+/v6CddPS0tChQwdcuXIFANCnTx+8/vrriIyMxNWrVzF37lzs2bMH+/fvR8+ePbF3715otdJ2ixkZGejfvz8ePnyI999/H926dYPBYMDhw4cxffp03L59G1999RWeeuopvP3224V6TOTIzc1FcHAwevfujbZt26J69erw8/PDrVu3cPz4ccyePRv379/HW2+9hVq1auG5556zrtunTx80adIEcXFxmDdvHgCzAoGlQoUKqtsTFxeHyZMnAwDCw8Px3nvvoVWrVsjLy8P27dsxc+ZMpKenIzY2FmFhYejWrZvsthYuXIiDBw+iXbt2GDFiBGrUqIHU1FQsXboUS5cuxb179/D6668X+wHy7sItRYbcXPPNmNyXRgrLsllZWXaWLFoOHToEwCwt8vf3x/LlyzF9+nScPXvWuowlCHrMmDF28yhY7Elvbt9mJcVEaYINizxxz4iz942oF5Y/2uxuRh5+T8zAw2zhg+8/j4UPSZTJQBDqMeWkIf38t8h9eEFyPsd5QV++HXyeji3QKNnSQNb19cj6ZwMADt5P9YZ3JekRVNl39iLrynKYctMk5+uC6sKvztvgvHwl5xOugbVLIiWDGK2Gg05jtoWx8OOFNJTRma8Ft9KFI6NJyVDUMBkaycdVrxnmI7x3Ss7yDCWDKecxcpnjoEbJ8CArD78lZiI5Mw9/P5TujD+eZERq9kPcMgwS1HP4rDtI2TtV9Luq9VUuMrCd9mmnpiE35RRyUvNtGUxpnQBtHevf5wxd8VBTXnJzWZywo8jACd9HVuJq5D76U7lNT+CND8UTOXXPw0r1AC/e9vlYffIzFTRLBiYTj+SM0pPjGOqrh6aQzs25c+daCwx9+/bFihUrRP0x3bt3x7Rp09zer2IpbFSuXBkHDhxAmTJlBPNjYmIwevRoPHjwwDpNp9OhXr16AmVDlSpVUK9ePdn9LFq0CJs2bYJOp8OGDRvQpUsXwfzmzZvj1VdfRZs2bXDu3DmMGzcO+/fvl93e2bNnsWXLFoFLSePGja2vP/30Uxw/fhxBQUHYvn27YB4AtG7dGi+//DJatGiB27dvY/Lkyfjf//4nWOadd96xKhiWLVuGgQMHWuc1adIE/fv3R5s2bXD06FHZdrqChIQEdOvWDevXrxc4lnTt2hX16tXDxx9/jOvXr2PatGn48ssvBet+8skn1gLDlClTMG3aNOu8xo0b48UXX8Srr76K//3vfzh48CAWLFhgtWFnuXfvHlJTU7F9+3a0bdvWOr1Zs2Z48cUX8eyzz+LGjRv48MMPMWjQIISHh7vyMKiia9euGDRoEHx9hc9h0dHR6N69O8aOHYu2bdvi9OnT+Ne//iUoMgQFBSEoKAhly+YPPlA6p+1x7949TJo0CQAQGRmJQ4cOoVKlStb5rVq1Qq9evdCmTRukp6dj+PDhuHr1qqzt/cGDBzFs2DDMnz9f8FzfoUMH6PV6LFq0CIcOHcKJEycQHR3tdLs9BbcUGcLCwnD79m1cuXIFjRo1UrWO5QtZnFUAJpPJKn0KCwvD22+/jdmzZ4uW+/PPPzFp0iSsW7cOmzZtQlBQkOp92H4ZCIJFqmPi8yOp+LxVMKoG6pBr4jH1jxQ8yLI/so6UDIQ9NBwgMzCx1PFwfyyyrq1RXCbz7yXgc9PgV3uMm1pV8si6sRkpO/tY/868/D1Cnv8NhgqdBcvlPDiNB793ULSpyAKQk3oWwW3/J7sMUXBIyaAOby8OOTaKwZP35DuMqOOviGEKwbkPTiAv4w60vtKd0LaE+wg7jD1FyZC69xXxRDtKBhPP4/PDqbiRplxouZWe96TQ9rRwRm46sq6Ir9/2lAxskSHn/mHk3D8smMb7NwVsPqq72mq4q62mvN0n6LXC95Obeha5qWdllrYD56V64IHSYgIlgwO7J7ukkkFyhhFl/7W1qJvhNpI+6YTwMq7PdjKZTJg5cyYA88j+pUuXyg741Gg0Do2SdgV37twBADRq1EhUYLClIP1hPM/j3//+NwBg7NixogKDheDgYMycORPdunXDgQMHcPnyZVSvXl1y2djYWFkb9LS0NPz3v/8FAEybNk1UYLBQuXJlfPTRRxg1ahRWr16NBQsWwM/PrCK7c+cO1q1bBwDo0aOHoMBgwd/fHwsWLMCzzz6r8O4LjsFgwMKFCyUt0T/88EOsWrUKZ8+exffff4/PPvvMmr+anZ2NRYsWAQDq1q0rae3EcRzi4uLw22+/ITk5GXPnzpUtMgDAiBEjBAUGC5GRkZg1axZeeuklpKenY8mSJZg4caKT79h57H1/AgMD8emnn6JPnz7Yv3+/1fWlMFi8eDEyMjIAAF999ZVkn2p0dDQ++OADTJkyBTdv3rTmh0gRERGBOXPmSP5+T5w40fpZ79u3j4oMcFPwc8OGDQHAoRBni19cQSpYhc3Dhw+t/l5nzpzB7NmzERERgWXLluHBgwfIyMjAnj17rD5zBw8etMraCMIWtuNW7QODlO+ziQdOP+nM+Cs1R1WBAQCCDPTkQSjTKtJb8Heod+k9Z7JvblG33I3NhdySkk32jU2iaVkSxyz71jZVPtjZN9R9LoTzmIzCoD5OH1xELSne+DvQmycVFE24D85L3LljvLNTYkkxwczvYEp2yS8y8Dwv+Run0QUornczLc9ugUEJPZ8hOV3rpzzgyl67lLatBke+y/bgdP72F3qClO2aBR+TeYSvoWJ3GBy4flBBkyhNnDx50uoKMWzYMMWO/KIgIsJcQN27dy/+/vvvQtnH+fPnrdvu16+f4rK2HdhKti8vv/yy7Lw9e/bg4cOHDu0vJycHx44ds07ftWsX8vLMvyVSHv8WmjVrhrp16yruo6B06tQJkZGRkvM0Gg0GDx4MwGyVfvx4vvrv2LFj1lDo2NhYWUeXgIAADBgwAID5s1JS0ygdi759+1oHMhdmKLYjpKenIzExEefOnbPmftgqBU6dOlVo+7Ycg6CgILzwwguyyw0dOlS0jhT9+vWTLVDWrFnTem2xDJQv7bilh6h3797geR5r1661ZhgosWrVKqxduxYcx6FPnz6F30AnSU9Pt77OysqCr68vdu3ahZdffhnBwcHw8fFB27ZtsXPnTjRo0AAAsG7dOhw+fFhukyL++ecfxX+2Hn1EySU7T1hlMKj0TmgQroefTsL7+cn27qSre9irEuCFCmXU25kRpZOXavjB8OQ04QAMqav+YdnTsHhH218u2/5CpRg+R2x9JGUvwctYJIlgPcQJ18MLO1EVA1lLMa0qeNtf6AktIlw/gpNQj/dTvUXTTNkPJJYUo2c6bU2eIPfjcyWzBPRlWyqudjPNgawCCaKz14snar3hHaXcUeVd5f/sbrtB9iZwvOMFkPphOoRX6SYKqXYWHxVttdAiUv4aEp39C6D1hn+TL9HSgesHuTcSpYkTJ05YX7dp06YIWyKNJWw2OTkZ9erVw//93/9h8eLF+Ouvv1y2D1s7oRYtWoDjONl/tkUYi8pCimeeeUbV/iIiIhT3ZzuY2HZ/tl78bNYES7NmzRTnFxRH9m/bblvrdHtqC9v5tuvZotfrrf2JUuh0OusIeqksA3dx//59TJ48GTVr1oS/v7/Vyqt+/fqoX78+unfvLli2sLAcx0aNGslaIAFAuXLlEBUVJVhHCrlgbwvBweYBV48fP3awpZ6JW54MBw8ejOnTpyMxMRGDBg3C4cOH8fbbb4tkK//88w++/vprqxSlUqVKgupSccPbW3jzN3ToUNSsWVO0nI+PDz7//HNrMPTKlStVS7tsQ3sIzyWLKTJIKRSkCPHW4vNWwRi3W/gwnPukDygpQ/hAFemnRdPywoeRYIMGbSp6k288YZdwXy2+bBOC40lGVAn0Qu0Q+/7MHgvT0epT/Q1ovMORc/8ojLdtR0J4QIdTISJVrOHzxCNOeZPQasYrqA4MlXrBlHELmX8vLbT2EYSzvPi0LyqW0eLqw1zZq4AXB9QJ1QtylAj3owttBI1vRZgy8nPQTFJe+hKwA8PzPOGSbxJ3xod02WM37+Ymo2Io76vFsxEG6LUcQr01SM4ywcgcIJMxFaaH51FVk4hnykcAeN86j/PyhXelXtAF11fcr1+dcTBl3EL6uf9IzveuOggN/Z7Ce8ZVOJdTHfCvAY1PeeQkHzOr5Bg0+mD41hyBcB8t2lQwwODVAaFd9yP75u/iMGwH8AqqA58qYtsPOaSuIVoOqK79GzVz2kEf8Sl0QXXwWiCPakE6QdbahWQj/kwVF33oTp8oTdh2YlpUA8WJDh06YO7cuZg0aRIyMzOxcuVKq/NHhQoV0KNHD4wcOVKxc9keSUlJTq1nsZqRwtKhWlj7s82gsPXol6JcuXJO7U8tjuzftt2OvIfy5fOtGW3XsyUkJMRuvq2lLXLbKGyOHTuGzp07Izk5WdXymZmZhdYWyzGwd+wB8/FPTExUPG5szgSLRmMeiGBR4JR23FJk0Ov1WLt2Ldq2bYu0tDR8/fXX+Prrr/HUU09ZL/i3b9/G9evXAZhlumXKlMG6descDkp2J2yCvJw3HWD+EfHy8kJubi4SEhIKu2lECcNZJQMARPh5oUMlb+z4J7+zLufJSLo7TJGhQbgeg2oVL6koUbIo7+eFblVK98hlnhf3IvnVnQBdUB2kX5jLFBkIJSSLDLnp4gUZRYgurBkCGk+H8X6CoMgg9dkQroY9xtRtJQXHcWge4Y3mxa9fg5DAUD4GmVeWWf/mc9QWGRglgwdcgngJazptmcp212OVDOruOcsAKNiAKo7j4B3VX7bI4FdzJPTlWiMagK1TcubVu0i9/LloeS+v2giv9Y5gmr5sC+jLtihQOx1F/hrS4Mk/MxqOQxtGOfVXag4+PJACFrpalwxCffVI+kS+X8HTCPUtvYX20aNHo3///li+fDm2bduGAwcO4OHDh7h58ybmz5+PBQsWYPLkyfjss8+c2r5tp+fGjRuto7btodQ5q9TZbbu/48ePK44it0VuYG1RD4J0xf6LyzYKE6PRiAEDBiA5ORk6nQ5jxoxB7969UaNGDQQHB1v7dK9cuYJq1cx5SO54Zivux81TcVtPUcOGDXH48GG88sorVunatWvXBIUFC40bN8aPP/5oV5ZS1BgMBoSHh+PevXsAlEOavb29ERYWhjt37liXJwgLWbnOKRkssB6rliIDq2Qo50uWSARRYHix5zZndR9kvrvU6a2IdJHBvpKB08g9kNLxdj90A0+UfDh9oOBvkzFV1XrsmJA8T7jmmyRGwHP2HxlZJYM7bTg5rYI9mYzVEeflI728Rl2nWHFG78BgJaL4odFwhRKEXNoICwuzvr59+7ZL+5YsI5ct+Zxy2Npry1G2bFmMGzcO48aNg8lkwsmTJ7Fu3TrMnTsXqamp+Pzzz9G0aVP07i229rOHbbBuUFBQoeed2u4vPDzcKVcOW6XE3bt3FfvY7t696/D2HcHe9m3n2wZ0276+e/cuatSoIbsNW6souZDv5ORk5OXlKRZ4LG1ht2E5VwHXnK9S7Ny505pHEBcXJ+tG4y6VRUhICG7fvq3q/LAc/4IErBNC3JraWbt2bRw7dgy///47xowZg9atW6NmzZqoWbMmWrdujbFjx2Lbtm1ISEgo9gUGC7ZhM/bkMZb5Uun0ROmGVTIohb1JwWbSydklUZGBIFyBRCeSZaSEaMSEB3Q4FSZOKhlgLTJQR4rb8YROVIJgYIsMUtkwUrB2SZ6gZICEkgGc8v2jiedxi1EyVCjjvucdxSKDzOMup5UuMnCeUGSQecKnQZ1EaaJRo0bW13v37nXpti2OFpZwXzn+/PNPh7ar0WjQqFEjTJs2DTt27LBOX7VqlWA5tSO0LT79AHDgwAGH2uIMrthf/fr5Fnn2HEAK2yHEkf3bFnBsX9vLY7XNWJUrAhmNRsWg5NzcXJw8eVJyG7buKykpYoWbhQcPHqi2OmI5d+6c9fVLL70ku5xtZocUrlIeWI7B8ePHkZsrnxeVlJSEa9euCdYhCo5biwwWnn/+eXz77bfYu3cvzp8/j/Pnz2Pv3r345ptv0KFDh6JoktO0bdvW+lopTfzRo0dWX8AKFSoUeruIkoUok8HhIoNYyZCZa8JDo3C7ZanIQBAFR0LJIB8K6Qk9ToWH00oGrXmEH0fKkSKAOcbUa0V4ABp9kOBv9UUGT7RLEg+ashfwfj/TBCPz0+hOJQO0CqO+5ZQMMkUGT1Yy0NWaKE00aNDAOgp+0aJFSEtLc9m2q1SpAsAc9Hrp0iXJZYxGI9asWeP0Pho1amQd1c+G5Npmg2Zny2fFNGrUyKomWLBgAbKyxPfdrqRjx45W//rZs2c7ZYnTvn1764j9JUuWyC6XkJCgGNbrCrZu3Yrbt29LzjOZTNb2BQcHC4pajRs3RlBQEADze5BTEDx+/NhaQKpTp45idojSsVi3bp21gNCxY0fBvODgYGtblDr5f/rpJ6ctjGw78uXUECaTCQsXLlTcjtrz2h6WY5Camoq1a9fKLvf9999b3zN73AjnKZIigyfx4osvWl+vW7dOdrl169ZZT+A2bdoUeruIkgVrl2Rw1C6JeZjIyQOSMsQ/ZlRkIAgXIFVkkLFLoowAZdRmMvCySgbRki5oFeEY1G1FlHw0OtfYJfHwgOu+hF0S7NglsSoGHy8OQQb3PWYq2yXJdLjL2CV5hJKB7JIIAhqNBpMmTQIA3LhxA6+99hqMRqPksiaTCbdu3VK97Xbt2llfz5o1S3KZCRMm4ObNm7LbWLlypWL47dGjR60dx5aihgXbzui///5bdhsajQaTJ08GYB4Q+9prryl23j569Ahz586VnW+PoKAgvPXWWwCAgwcPYvz48YoWPXfv3sWiRYsE0yIiIqzWUBs2bBCpOAAgLS0NI0aMcLqdasnOzsaIESMkHUtmzJiBM2fOAABef/11QZaswWCwWgadPXsW06ZNE63P8zzeeustawHJctzkmDdvHvbv3y+afufOHUycOBGAOaB48ODBomUsA6PXr18veb5cunQJH330keL+lahevbr1dXx8vOQyH3zwAY4fP664HbXntT2GDBliLXa98847kt/DU6dO4YsvvgBgHgTep08fp/dHCCky3x6TyYQHDx4gIyMDFSpUsJuWXlx55pln0LVrV2zZsgUrVqzAkCFDRGqMO3fuYMqUKQDMIdhDhgwpiqYSxRjX2yXxuMtYJYV4a+ihgyBcgpRdkkwmA6GIWiUDZJQMNIq+KCjhHagEIYEok0F18LN4mokXFx9KElLBz7CjZJDKY3Bn4KJSkYGTG1PnwUoGg9SJCfrJJEofo0ePxsaNG7Ft2zasW7cO9evXx6hRo9CkSRP4+vrizp07OHToEFasWIFBgwZh6tSpqrYbHR2NFi1a4I8//sDChQthNBoxePBgBAYG4vLly1iwYAF27tyJli1b4uDBg5LbeO+99/Dmm2+id+/eaNu2LWrUqAE/Pz8kJydj//79mDNnDgBz0DLrcf/UU0+hYsWKuHHjBv7zn/+gYsWKqFmzprVPrVy5clabnDfffNP6/levXo3jx49jxIgRaNasGQIDA/Ho0SNcvHgRu3fvxoYNG+Dt7W23w1uJTz/9FHv27MHhw4fx7bffYvfu3Rg2bBgaNmwIPz8/pKSk4Ny5c9i+fTu2bNmC+vXri97frFmzsG3bNjx+/BiDBg3Cnj170K9fPwQEBOD06dOYMWMG/vzzTzRp0sSuBU9BaNKkCTZu3IhWrVph/PjxqF69OpKSkrBkyRL89NNPAMyh1VId9B9//DHWrl2LK1euYOrUqThz5gyGDBmCiIgIXL16FXPnzsXu3bsBAC1atMDw4cNl2xEeHg5fX188//zzGD9+PLp16waDwYAjR47giy++sBbIpk2bJhnaPWrUKGzYsAGZmZmIiYnB1KlTER0djbS0NOzYsQPffvstwsPDodVqncqP7dy5M8qWLYukpCRMmTIFiYmJ6Nu3L8LCwvDXX39h4cKF2LFjB1q1aqVoo9WyZUvr6/Hjx+PDDz9ERESE9X4iKipKlfV8eHg4Zs6cidGjR+PGjRto3Lgx3n//fbRs2RK5ubnYvn07Zs6cibS0NHAchwULFqgOKXcnv/32myCz4+LFi9bXJ0+eFBR0ypQpg379+rmzebK4tciQl5eH+Ph4xMfHIyEhATk5OeA4DqdPn0adOnWsy/3666/Yu3cvAgMD8eGHH7qziU7xzTff4I8//kBqaip69OiBcePGoVu3bvDx8cGRI0cwffp03LhxA4D5i092SQSLSMng4NOpVPAzW2QgFQNBuAZeUslAmQxO4aSSgZPNZKDjXeiIRmlTrxVR8nHeLkk8LY8HSvQdl2Tws/I7ulmEeQyAk8HPcpkMXPHraHAUL435yiy+WtP1mihdaDQa/PLLLxg8eDB+/vln/Pnnnxg3bpxLtv3DDz+gXbt21k5n1s5m4sSJqFu3rmyRATDbuUita8FgMOC7775DkyZNRPMmT56MUaNG4erVq6JQ6MWLFyM2NhaA2ed+5cqVePvtt/Hdd9/h77//xrvvvivbJqlOakcwGAzYtm0bYmNjsXbtWpw6dUqxaBEQECCaFhUVhQ0bNqBXr154/Pgx4uLiEBcXJ1jm448/BsdxhVpkGD16NPbs2YP4+Hj83//9n2h+REQEfv/9dwQGBorm+fv7Y8eOHejatSsuXryINWvWSNpntWrVChs2bFAcdO3r64uff/4ZXbt2xfTp0zF9+nTRMmPHjsWECRMk1+/cuTPGjh2L2bNn48aNG5JFqw0bNqBr166ybVDCz88PS5cuRZ8+fZCVlYX58+dj/vz5gmViYmIwd+5cxeyDp59+GgMGDMCqVauwdetWbN26VTD/6tWriIqKUtWmUaNGITU1FR999BHu3r2L8ePHi5YxGAxYsGABunXrpmqb7mbGjBnYs2eP5Lz169dj/fr11r8rV65cbIoMbtOxJiUloU2bNhg+fDgOHDgAo9EInuclJcVRUVH4z3/+g48//tgaYFKcqVGjBjZu3Ihy5cohKysLM2bMQNu2bdG0aVNr9YzjOEyZMkXxgk6UXkRKBgftkqSCn++mU+gzQRQO4iID96QTQ/wAT53eSsgpGdh7AzaTQdZ/u6TblBAEUSRwjF0Sr1rJIL5fK/G5DBKZDHaVDOliJYNbkbXQg3yRQcYuyd57LQlwHAc93fYTBABzB+3q1auxc+dOvPrqq6hSpQp8fHyg1+tRqVIl9OzZE/Pnz8c777zj0HZr1aqF48ePY+TIkahcuTL0ej3Cw8PRpUsXbNq0CTNnzlRcf9euXfj222/x4osvon79+ggPD4eXlxcCAgIQHR2NiRMn4vz589ZiAcvIkSOxZs0adOrUCWXLllUc4a3T6RAXF4dTp05hzJgxqF+/PgIDA6HVahEYGIiGDRvijTfewM8//4wLFy44dByk8Pf3x5o1a7Bv3z4MHToUNWvWhL+/P7y8vBASEmLtJ9u8eTO2bdsmuY2YmBicO3dOcHzLlSuH7t2747fffsMnn3xS4HaqYfHixVi+fDliYmIQGhoKg8GAGjVq4N1338W5c+cEg6VZoqKicOrUKcydOxft2rVDaGgodDodypUrhy5duuDHH3/E3r17ERISYrcdTZo0wfHjxzF27FhUq1YN3t7eCA0NRZcuXbB582Z8++23iut/++23WL58Odq2bYuAgAD4+PigZs2aeP/993H8+HHUrl3b4WNjS+fOnXH06FG88soriIyMhE6nQ3h4ONq1a4cFCxZgx44d8PPzs7udZcuW4csvv7QqbTQa57usJ0+ejBMnTmDYsGGoVq0afHx84Ofnh9q1a+Ptt9/GxYsX8dprrzm9fUIajneDcWheXh5atmyJhIQEaDQa9OvXD23btsVbb70FjuNw5swZ0ZezRYsWOHLkCKZMmeK2C0hBSU5Oxpw5c/DLL7/g6tWrMBqNiIiIQExMDMaMGYPo6GiX7/PGjRvWQKN//vnHGuxDlCxG77yP+5n5HZfvNglE43IKIXYMu/7JxHenH1v/rhbohTJ6DU7dy++YG1DDDy9Wt39hJwhCGZPxIe4uDxJMK9v/H2j9KiLj0gI8/CPfI1QX3gJh3eVHMJV27vwvSLIzr/wrGYIOoOQtMTDezR/JEfDsHPjVfgs5ySdxf6PNbyvnhYjBOYXa5tJOyt5XkHXlf9a//eq/j4DG4hFVBFGSyEm9gPu/CJ9Fyr9mtOvPfz8zD6N3JgumLe4UBl929EcJIif1PO7/UlcwrfzgPGsxXYqh2+7hsTH/kXJSk0A0ceA+1hXcXuoNmMRe42G9T0MXXF803WR8hLvLxaNPDU/1Qchz8jl7JYWhW+/hcY7wMX9YfX90fEqmuEKopiDP35cvX0Zubi68vLwEPuYEQRQPEhMTrRkYtoqQoiA2NhZLlixB5cqVkZiYWGTtIDyXwvhNcstQjSVLliAhIQE6nQ4bNmxA586dASiHm/Tq1QuHDx+WDDcproSGhmLq1KmqvfwIwkJ2bsGUDGK7JFIyEEShIVmbJ7skZ5BSMgBmyyTbIgOrZJDPZKDj7X7IfoMo+Wj04s5m3vgQnHeY4npS7pYlXsnA2iVxGsUCwyOjSVBgAIpAyQCzZRIvUWSQE+57cvAz8CT8mSky0NWaIAiCIIjCxC3DbFasWAGO4zBixAhrgcEellH/ly5dKsymEUSxICuvYJkM7IA5Yx6Pe5mUyUAQhYNEJoNc8DPZ98jC87zkqFNAHP4s6jiStcag41340DEmPA82kwEwq9bsrueRdklskUF5TNotJo/BSwOU9SmKIoOMckIm7ZjT6ACprAlPKjIQBEEQBEG4EbcUGU6fPg3ArE5QiyVwJjk52c6SBFGyyTPxyGH6LL0dLjIIl7+XmQembkFKBoJwFVLBz3JFBkKePOkCAwCY2PDnPEbJoLF0JtHxdjts4UymA48gShRaH1FnuppcBqnbtbwSXlzm2UwGu6HPwuXL+2qhlUrELmTkwp85hcddqfBnTwh+BqSLDHS1JgiCIAiiMHGLXVJqaioAs52QWvLyzDesSinrBOEJsKHPgDN2ScK/2U16azkE6OnRgiBcAS81kttSZCD7HtXIWSUBAOwpGbRPlAzs8S7hnXslEXHYOUGUPDiOA6cPBJ+dP7jJZEy1u55UX3qJVzIwdkmcvdBnRslQoUwRBSfLFBnkgp8Bs2USn5smnOgpSgaJt001YYIgPJ2rV68iPT3d/oIMwcHBqFChQiG0iChtpKen4+rVq06tW7NmTeh0Jfs+xC13gSEhIUhKSsI///yjOvz48uXLAIDw8PDCbBpBFDmsVRJQcCUDS1lfLTh6siAI1yChZMjvaKUig1qUigz2lQxkl1R00DEmPBONPhB5NkUGXpVdknhaiS8yOGiXxCoZKhZBHgOgZJfkoJLBU4oMZJdEEEQpZMiQIdizZ4/D6w0ePBjx8fGubxBR6khISED79u2dWvfq1auIiopybYPcjFvskurWrQvAfLDVsnLlSnAch6ZNmxZWswiiWJCVK34adTSTgQ1+ZiGrJIJwIYp2SeyyJb23qfBQKjLYy2TI70yiThS3Izqn6TMgPAOOyWVwNpOhxNslFVDJEFlESgY5uySlIgMkigyw835LCnqJZwO6WhMEQSgTFRUFnufB8zxiY2OLtC3x8fHgeR6JiYlF2g6CcAS3FBn69OkDnucxd+5cpKSk2F3+559/xsaNGwEAL774YmE3jyCKFNYuScuJ7Y/swQY/s5TzdctXnSBKB1JFBshlMpTszqZCRbHIIFQy8CahkiE/+Jm6TAiCcA0aXaDgb7602iU5kMmQncfjfqbwN7FCkSkZZIoMCr8TnFfpUjKQqJkgCE9n9+7d1iKBI/9IxUC4ipiYGKfOQZ7nS7yKAXBTkWHYsGF46qmn8OjRI3Tq1Annz5+XXC4pKQkffvghBg0aBI7jUK9ePQwYMMAdTSSIIoO1S/LWcg5bG9mzSyrnR0oGgnAdUpkMnPB/wi6KSoY8oZKBDYnOD36WWLeEjyIu/lDwM+GZcHphkcGkIvjZE4sMrJJByS7pdlqu6BexqJQMTmUySCkZPCb4uahbQBAEQRBEacMtd4EGgwHr169HTEwMjh07hvr166NmzZrW+a+88grS0tJw5coVawUnNDQUa9asIR95wuPJZuySDA6GPgP2lQ9lyS6JIFyHol2S8PsrGRJNALBTZMhRVjJwcsHP5qVBCgd3Qsea8Aw0jF2SukwGcyKP7ZW+pBcZ2EwGJbskNo8h3EfjsOWnq5ArPnN2gp/F2/GUIgPZJREEQRAE4V7c5qHSoEEDJCQkoEWLFuB5HhcvXrTOO3XqFP766y+YTCbwPI9mzZrh8OHDePrpp93VPIIoMqSUDI5CmQwE4T54JbskttObRtXLwuYsCObZKBl43gSYcoQLaCiToeigc5rwTDid40oGQKxmMJX0674DSgY2j6FCUakYoGSX5KCSwVOKDJKZDPSbSRAEQRBE4eHWO8Gnn34aBw4cwP79+7FhwwYcPXoUSUlJyMvLQ2hoKKKjo9GrVy88//zz7mwWQRQpbCaDMyPAlOySOADhPlRkIAjXIe5Akh8pWcI7mwoTtZkMbIEBNkoGyZV5qj0UJhT8THgoGr3jmQyAuchgeyuXV8Iv+zybyaCgZLjBKBmKKo8BcC74WarI4MlKBrpcEwRBEARRmLi0yHD69GkAQK1ataDXy3cAtG7dGq1bt3blrgmixJLF2CV5O2GXpBT8HOajsat0IAjCASSVDBzzv2XZEt7bVIgo2iXl2igZ2NBn5NtiSI/KpGPuVsjWkvAQRJkMKuySALNlku11x+PskhSCn2+lC5ctsjwGANDKZPU4aJfkMUoGsksiCIIgCMLNuPROsGHDhtBoNDh9+jTq1Kljnf7pp58CAEaNGoWwsDBX7pIgSjysXZIzSgalIgJZJRGEq5HPZBB3epf03qbCQ7nIYKNkyJOwVdIoZTIQhQud04Rn4kwmA/6fvTOPb6Ja3/gzk637BgXK2oJsQlWgoohAuSKrCCqi4hWKCggoiuKG6EXxJ1y5eC+IRQpXCq6giICKlx0EZC2yCiK0YKFshZbubZL5/RETMmdmsk7SJLzfzwdNZjlzOk2mM+c9z/MAYG/bTMFeXHbRLslkFlBQFgRKBgdD67JKBgf2UMGEXqa2Qn8xCYIgCILwJarfRQkyN9ZTp04Fx3EYMmQIFRkIgoENfvZEyeAo+JlCnwlCZRwFP9Ogt8t4pWRQmrFq2cObbhFuQ595IjRQL5NBrR7VDoKLwc8XK0wwMn8OAzGTwVHwM0I5k4HskgiCIAiC8DOqBj/rdJabsoqKCjWbJYiQRg0lA89xkpl0VkjJQBAqIztLVcEuiQa8FXFVySA4UjLIjZgE+yzigIfOLxGaeJrJwN5/BXuRAWwmg8LM/nNMHkO0nkOM3PR5f6GSXVKoZDLIPU9QjYEgCIIgCF+i6p1g/fr1AQD79u1Ts1mCCGnYIkOYB0UGQDn8mYoMBKEuggO7JMpkcAMXlQyQVTKQXVJtIVGs0u+ACBG8y2Sw2y/YL/usXRIvfx+ZXyrerlFk7doMKdsluRf8HDJKBpnnArpaEwRBEAThS1S9G+zevTu++OILvPrqqzh58iRatWplUzcAwMqVK7F371632x0+fLia3SSIgEINuyTAEv5caZIuJ7skglAZGbskTnGgNdhHm3yH50oGTnFm7V97eNcxwk1o2IoIDdhMBpirIRgrwWmVBq//2k+iZAjua5DELknhenu2NHDyGAAHRQYKfr4OXa4JgiAIgvAhqhYZXn/9daxYsQLFxcX417/+JVonCAKmTJnidpscx1GRgQhp1LBLAqzhz9IH2/qRVGQgCHVhZ3LbDWBIig3BPdjkS1wuMrBKBl5vV9QhuyT/Q+eXCE3YTAYAMFcXQaNt4HA/tshgCvavCGuXpJDJcI5VMtRiHgPgqMjgZvBziBQZdDK3/1RjIAiCIAjCl6hql9SuXTts3boVvXr1gk6ngyAIIlm99b27/wgilKlSzS5JuixSyyFKbgVBEJ4jUTJwCq8JR7ga/AxGySAOfabz7Xck92X0OyBCAzaTAQAEF8KfQ80uSWDtkmSUDIIgSJQMDWtbycArZDKQXZINuloTBEEQBOFLVJ9y0qlTJ6xduxZGoxGXL19GZWUlmjdvDo7j8L///Q8tW7ZU+5AEEdRUqmSXpJV5mCAVA0H4ALbI4EjJQIVyZeQCnf/CkZKBs4U+K+7tTa8IN1G2CiOI4ILTGABNmCgvxpVcBmnwc5Bfg1i7JBklQ1GVGeXM/WttKxmgoGTg3A1+dmjHFzzI2iURBEEQBEH4EJ9NcdZqtWjQoAGSk5Ntyxo2bIhmzZq5/Y8gQhnVlAwy+1EeA0H4AImSwf5Pqfh7KNCAtyKuKhkkmQz2SgbZAW46576Fzi8RuvCMZZJrSgbx+2BXMkiCnznpvSSrYtDzQN3w2lXOepTJEMJKBk/tVwmCAPLy8sBxHDiOQ3Z2dm13h1Bg6tSptt8T4Vs2b95sO9ebN2+u7e4gIyMDHMeJxpuJwMAvUzX+8Y9/AADq1avnj8MRRFDBKhkMXgQ/s9SnIgNBqI6kcODoxjbYZ7T6EFczGeBQySA994IgkCWEX6GzTYQOnD4WqLxge2+uLnK6T6gVGQQ2k0FmZv9ZJo+hYZRWYhvlb8RWevYrHBQ/QjiTQU7JYGTnSBAEQRAEEXCYzWZs27YNP/30E3bs2IFjx47hypUrCAsLQ9OmTdG9e3c888wzuOWWW2q7qxL8WmQgCEKKWkoGWbskKjIQhPowSgaxFQMFP7uKy0oGswMlA1EL0GeaCF14fSzsh9gFF+yS2MF1U7AXl83O7ZJYJUOjWs5jABwoGRxlMsjYJYWKkkEv82NXB3sFjCAIAJZZ5T179gQAbNq0Cenp6bXbIYJQgalTp+Ltt98GgBs+mzc5ORl//vmnZHlNTQ2OHDmCI0eOYP78+Zg0aRJmzJgRUGqe0DCdJIggppIpMngqb5ZTMpBdEkH4AEd2SZI/8Df2DZIjHBUZIBghmKrBafSAyT0lA51zH0PBz0QIw+njRO9dyWQINSUDm8ngipKh1vMYAMVMBkdqQzm7pFBWMtQE/YeTIAiCIIDs7OyQtjI7d+4cAOCmm27CQw89hK5du6Jhw4aoqKjApk2b8O9//xtXr17F+++/D41Gg/fee6+We3wdv98RFhYW4pdffsGpU6dQUlICk8nkdJ+33nrLDz0jCP9jFgRUMV8BT4OfdaRkIAg/wdolXS8ycDTg6jqOigywqBk4jV6iZBAVGSiTofYJoJkzBOEtkkwGF+ySpMHPKnaoFhBYJYNMJsO5MvHNa8NAUDLwSio3B0UGOSVDqAQ/yzwXVDt/7CYIgiAIopbp3Lkz/vGPf6B3794SlcLdd9+NYcOGoUuXLrh06RJmzpyJp59+Gs2bN6+l3orx213UxYsXMXHiRHzzzTcwGo3Od7CDigxEqFJtkj6JeqpkYO2SNBxQJ6x2Q/gIIiSRKBk4hdegTAYHOFQy4K9cBkMcBEbJQHZJtQ19ponQhdOLiwxml4KfWbskVbvkf9hMBsYuqbzGjCuV4r+DgaBkkLdLchwIKhv8LPkbH5xoZR4BSMlAEARBEIHPjh07HK5v0aIF3nrrLTz33HMwGo347rvv8OKLL/qpd47xyx3h1atXcffdd+PkyZM3vLfWjU55RSnmbf3Z7f00MKGN9gQ6a/epMmlSE9EYEa2egjampVv7mSsvo+zobBhLcwFYxg/3GDviT1MjdNIfQZumbRHe/DGn7RRWmPC/0xXILZYW3DxXMojfJ4ZroJGZxUSIqchbjppLOxDWdDD09btJ1purrqDsyL9tv3NX0cXfgsibn1cOInSTmsIclJ9YBHP1VQAAb6iLiFajoItvp0r7oUrl6RWozP8egqnK+cYuYq68KF7gIFTSXHEeV7f+3eW2OU0YwpoOQliTgZ52LygQzCZUn9/kcJvinePA6aJhKj4uWm6vZJBTjhRvf9olT21NRCNEthkPTVRTF3vtOubKQpQd/Q+MpbngOB66up0R0XosON712b41Vw+h/Pf/wlx1WbSc10UjvPkw2euV2phrSlB29D+A2YjIm58Hb0hAVf4PzFb0d4YIHXjGLqn8tw8R0WIEdHU7Ke4jVTL451mnqmATKnO/Ah9WDxFtn0Vl3teoubwbgpeD5DWF+8QLOC12FVRi/8Vq1JgFlBvFPx8HICkAlLPyRQbHvwv5IoN7k+ECFbniSk3QV8AIwnO2b9+ORYsW4eeff0ZBQQEqKytRr1493HbbbejXrx8ef/xxxMXFudRWRkYGFi9ejGbNmiEvL09xu+zsbIwcORIAkJubi+TkZMk2GzduxIIFC7Bz506cP38eHMchMTERSUlJuPvuu9G/f3/87W9/AwDk5eUhJSVFtL81m8GeRYsWISMjQ7J806ZNyM7Oxs8//4zz589Dq9WiWbNm6Nu3LyZOnIiGDRvK/hysV35xcTHmzJmDb7/9Frm5uSguLpY95nfffYfPP/8cu3btwsWLFxEWFoabbroJAwcOxIQJExAfH6947gAgPz8f06dPx5o1a3Du3DkkJCQgLS0NEyZMQK9evRzu6yn259j6M3399deYP38+Dh48iJKSEjRr1gwPPPAAXn31VaefmerqaixcuBBff/01Dh8+jOLiYiQkJKBjx44YNmwYhg0bBp6Xf5ZkP2dnz57FrFmz8P333yM/Px+RkZHo3LkznnvuOfTt29fln0eJ5ORknD59GiNGjPDIimjnzp34/vvvsW3bNlFQcePGjdGjRw8899xzuPnmmyX72X9PrMj9DbP/Drn6HTx06BA+/PBDbNq0CWfPnoVGo0HTpk3Ru3dvPP/887LfSUD+vK1btw5z5szBnj17cPXqVTRs2BB9+/bFG2+8gcaNG7t2klTE/rt/8uRJvx9fCb8UGWbMmIE//vgDANC7d2+8+OKL6NSpExISEgIqoILwPSZTDXYblR/UHPGLsTMqSvbgzsovVelLZe5XqDvoIHh9jMv7XNk4GDUXt9ve7wx7DF9FWwYQN1Tfjde2d0dLwYSIFsqDioIg4N1dRRKpuRW1gp8pj8E5FbnLULTlEQBA2ZEPUPf+X6FLuFW0zdWND6D6wla3267E5zBeO4G4rgu87qep/BwK13QTheECQMXJJag3JBc8M/OSsFB5ZhWubnrQ9wfilDMZBGMpKk997lZzFSf+i4Tea2FoeK8avQtISn/9h9Ntqv5cJbtcVLiTuYeozFvmcj8qT3+DxAdPMOHd3nN10wOovnC9oF5x8lOYK84juuO7Lu1vrixE4Y/dICjMoi4/8V/UHbgPuvhUVfqrxNWND6K6YD0AoOrsGkS0fU66Ed3HESEEq2QAgMKfeiDxgePQRDaS3ac2MhlqCnNwZe29NtVB6UHXri2ecMDYDpk51xTXN4jUQOfhvauqKAY/O0CmIM3aRYUS1aEh0iAIt6ioqMBTTz2FL7+UjiGcPXsWZ8+exQ8//IBLly5h6tSpfu3bxIkT8Z///Eey/MyZMzhz5gx27dqF7OxsXL58WbqzG1RWVmLkyJH46quvJOsOHz6Mw4cPY968efjyyy8xcKDjiU4nTpxA7969HQ7sXr16FUOGDMHGjRtFy6uqqrBv3z7s27cPmZmZWLlyJe68807ZNn7++Wfcd999uHbt+t+fgoICrF69GqtXr/bb7+qpp57CJ598Ilp2/PhxzJgxA0uWLMGGDRvQpk0b2X3z8vLQr18/HDt2TLT8woULWLNmDdasWYP58+dj5cqVSEhIcNiPvXv3YsCAAbh48fpkt4qKCvz444/48ccf8eKLL2LWrFke/pTeI1coACxBxb/99ht+++03LFiwAHPmzMG4ceP80qfp06djypQpMJvFf/yOHj2Ko0ePYt68ecjKysLw4cOdtvX6669jxowZomV5eXn4+OOPsXz5cmzZsgVt27ZVtf/OqKq6PolSowmcsT+/FBlWrlwJjuMwYMAArFolP2hAEK5wWN9HtSKDqew0KvOWIaLV0y5tb666IiowAMBX0f+5vp7TYV3E82h6ZqXDIsOFcpNigQGQD3B2hSid+AEvKTJwLjSBSuWZ78TvTy8XFRnMlYUeFRisVP25EoD3RYbq85slBQYAEKqvoubSLhga9fb6GKGIdMa1b+C1kbbXnDZKlTar8n8M6SJD5Z+rPd6X010vDHOaCK/6YSo5BWPxceji1LspNFddERUYrFTm/+BykaH60i+KBQbLQWpQfW6DT4sM5poyVBdssL2vubwH5cc/lmzn7e+AIAIJ3pAoWSYYy1B9YauiUrU2igyVp1dIbY18xCGjY8VkowDIYwAgO2mI0zq+PvG6aMkyTaT/ZyP6i+axtW9rRRD+xGw2Y9CgQVi3bh0AoGXLlhg3bhzS0tIQERGBgoIC7NixA8uWuT5BRS2+//57W4HhlltuwdixY9G2bVvExsaiqKgIR44cwfr167F7927bPo0aNcKhQ4ewZ88ePPnkkwCATz75BLfffruobftZ1YIgYMiQIfjhB8tz0cCBAzF06FA0b94cPM9j9+7dmDVrFs6cOYMhQ4Zg+/btSEtLU+z3kCFDcPbsWTz33HO4//77ER8fjxMnTqBZs2YALAOfvXr1Qk5ODjQaDYYNG4b+/fsjJSUFNTU12Lp1Kz744ANcvHgR/fv3x/79+237Wjlz5oytwMDzPEaPHo0hQ4YgNjYWBw8exIwZMzB16lSH/VSDzMxM7NmzB507d8bEiRPRsmVLXLx4EdnZ2Vi2bBnOnTuHPn364PDhw4iOFv89KS0txT333INTp04BAAYPHownn3wSDRs2RG5uLubOnYstW7Zg27ZtGDhwILZu3ao4UFxeXo6HH34YxcXFeO2119C/f38YDAbs2rUL06dPR0FBAT744AM0bdoUzz//vE/PiRJGoxHx8fEYNGgQunfvjpYtWyIyMhLnzp1DTk4O5syZg8uXL+PZZ59FmzZtbOocwHJu0tLSkJmZiXnz5gGwKBBYGjWSn+whR2ZmJiZPngwASExMxKuvvoquXbvCZDJh/fr1mDlzJsrKypCRkYG6deuif//+im0tWLAAO3bsQI8ePTBmzBi0atUKRUVFWLJkCZYsWYJLly7hySefxC+//OJy/9Rgy5Ytttf+LnA4wi93GmfOnAEAjB8/3h+HI0KYMt5xhdddKnKXulFkuOp0mz90XWGu/MbhNjVOZhF5qu65MykMP+VVwCRYHnjTm3gwo+sGQ6gW/05N5QWi9+5aJLGYKy9BMNeAc8G6xWE7Dj57gqnCq7ZDGXNNiV+OE5byiO21LvFOaCKbwlR2xqs2zTWl3nYroDFXXZEsC28xHBUnlzjd1/5882F1oE/qZZtt7xFOsiHcbo65jlgR3PidyhUVJduY1bMAk8VUAdZqxHRNKsU1NJKXZxNEMBLWZABK9sVKinyOv5P+n8VvqrzgnwNxWhgjmgMOLpM9GstYDtUCvCEB+oa9UX1urW1ZePMnHO7DacMR3vzvqDj1GQBAn/Q3aGNu8mk//cnQVpFY9nsZACAxnEfnBpRpFAwIZjNMpYW13Q2/oYmqA07BLsZb5s6dayswPPDAA/jyyy9hMIi/BwMGDMC0adNQUCB//+YrrIWNZs2aYfv27YiKEk9USk9Px/jx43HlyvV7Zp1Oh/bt24uUDSkpKWjfvr3icRYuXIgffvgBOp0Oq1atktjq3HnnnXjiiSfQrVs3HDlyBC+88AK2bdum2N7hw4exZs0a9O59fZJbp07XnSreeecd5OTkIC4uDuvXrxetAyyhtY8//ji6dOmCgoICTJ48GZ9/LlZ9v/TSSzYFw2effYbHHrte5E9LS8PDDz+Mbt26Ye/evYr9VIM9e/agf//+WLlyJbTa60On/fr1Q/v27fHWW2/hzJkzmDZtGt5//33Rvm+//batwDBlyhRMmzbNtq5Tp0546KGH8MQTT+Dzzz/Hjh07kJWVhbFjx8r249KlSygqKsL69evRvXt32/LOnTvjoYcewh133IH8/Hy88cYbGDZsGBITpRMmfE2/fv0wbNgwRESIi/sdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmaPPtDMuXbqEl19+GQDQsGFD7Ny5E02aNLGt79q1K+6//35069YNZWVlGD16NHJzc6HTyY/Z7NixA6NGjcL8+fNFY3X33HMP9Ho9Fi5ciJ07d2L//v3o0KGDx/12h/LycluR0mAwYNCgQX45riv4pcgQFRWFqqoq1K9f3x+HIwIYvc6AfpHbnW/4FwXGBPxadf1mvzL8JkQ2ec3j45vKzqDy1Be299XnN8JUcQGacOefTaGGkYrL2GtohSqYKi85bsfBDLdb6no+GN0qXod3u8bjt8IapNbVo2kMzVZyhmAsE703Mw/tJqbIwBkSENFqtHKDpkqLf7mozUvQRMj7W7rcT/azJ1pJ2ndFzOLAYF29u6Gvf7eqh9DF34qwlKG297wuEnX670BF3lKYnVwL7Kk+vxk1l3ZeX6DywHegITAFoLjunyMs+REYGvZGTdFh2X04Xgd9g7/BkJQuWh7/t29RceoLmErzXDp22eF/iTy3BZX9t9nriO047vxOmRnKfFgiOF0MTCV2g/w+9n0XmO8PIP3ZwlsMhzamhU/7QRD+RBPZBHXv241LK1qLlgvmmlrqkQJOcobCkh+BJjrF4TbO4DRhMDTuD9PpugCuH69NvA6tE3TQckC7unq0q6NXbsTPxPdcjspTX8BYmgtt3M0IT3GekxZ79yLoG94LmKucFiWCjQdvikDTaC2uVJrQtWGYxFqVCExMpYX4/bl6zjcMEVp9eBHaGPUHRc1mM2bOnAnAMrN/yZIlkgKDFZ7n3ZolrQbnz58HAHTs2FFSYLDHmY2OIwRBwD//+U8AwIQJExR9++Pj4zFz5kz0798f27dvx4kTJ9CypXx2ZUZGhqjAYE9paSk++ugjAMC0adMkBQYrzZo1w5tvvolx48bh66+/RlZWFiIjLcrw8+fPY8WKFQCA++67T1RgsBIdHY2srCzccccdDn567zEYDFiwYIGowGDljTfewLJly3D48GH897//xbvvvgu93vL3sKqqCgsXLgQAtGvXTtbaieM4ZGZm4qeffkJhYSHmzp2rWGQAgDFjxogKDFYaNmyIWbNm4ZFHHkFZWRkWL16MSZMmefgTe46z709sbCzeeecdDB48GNu2bUNhYSHq1Knjk74sWrQI5eWWySEffPCBqMBgpUOHDnj99dcxZcoUnD17Ft999x0efvhh2faSkpLw4Ycfyk4GnjRpku13/fPPP/utyPDqq6+KJvMr5anUBn4ZhUxNTcXmzZtx+vRp3Hbbbf44JBGgGAwRyEi/z+Xtf71UhV93X59NVqFJREyn6R4fXzCW48KZldcHlwUzKk8vR2Qb575w7KxoTif17dULFRAqHXsmmh2E0Gm89LZuHqtD81jvZs3fSLCzxc0V4kBfdtBSF3+rw8+fYDah7Lc5ooF/c8UFr4sMjmbkC36ySwhG2LDnsMb9EXXL6z4/riayEaLavejWPiX7p4qKDG4NSAcZgiBICmfauPbgeA3CWzwOd+fE8rpoRLYe4/L25cc+Ehc5zOp+h9jriA03fqds4YOPaAxNRCNxkcFJoKm3CCZpkYFFG+/5LCOCCFS0sa2gb5CO6vObry8UAqvIYK4ucrg+os04GBpIByM8wZgrPlaHenoMvilSfuNahtdFIaK1g8kgMnC8FhE3OfdjDkY4jsPtpF4gblB+/fVX5OfnAwBGjRrlcCC/NkhKSgIAbN26FSdPnkSLFupP2jh69KgtEHbIkCEOt7UfwP7ll18UiwyPP/64YhtbtmxBcXGxW8erqanBvn37bO83bdoEk8lyby7n8W+lc+fOaNeuHY4cOeLwON7Qu3dvxcFbnucxYsQIvPzyy7hy5QpycnJs+RL79u1DUVERAEtRRskGKSYmBkOHDsW8efNw9OhRFBQU2D4XLI7OxQMPPIC4uDib2qE2igwsZWVluHTpEsrKyiD8NTHKXilw4MABkZpBTdavtyjc4+Li8OCDyvmMTz/9NKZMmWLbR6nIMGTIEMUCZevWrREVFYXS0lKbcsXXfP7555g7dy4Ai03Su+/6LpfLE3yjS2MYM2YMBEHAp59+6o/DESFEFBNQUFZjtl2kPIHTRsDQ5H7RsspcaQCSHOygmL0vuBUdKmGuKoTgYNDKUfcpP9O/OFUylIiVDJqoZIftcbwGvKEu06bCgKMbsLO+xStJyaCExE5GE7gP2hwTWBnSRQZjGdgBck7GF9tncMyNfiAqGZjgUY7XyvyB8LHxu4ySQQJ7LgkiVODE87ACLQyYtXtkYf+meEMNEzKho9nwBEEEAfv377e97tatWy32RB5r2GxhYSHat2+PRx99FIsWLcIff/yh2jHs7YS6dOkCjuMU/9kXYawqCzluueUWl46XlJTk8Hj2djj2x7P34mezJlg6d+7scL23uHN8+34fPnxdle1MbWG/3n4/e/R6PW699VbZdYBl8N46g14uy8BfXL58GZMnT0br1q0RHR1ts/JKTU1FamoqBgwYINrWV1jPY8eOHRUtkACgfv36SE5OFu0jh1Kwt5X4+HgAQEmJ762aN2/ejKeeegqAReW0fPlyhIcHhm2lFb8UGYYOHYrHH38cK1askCRyE4Qj2DDjGjNQ7eWYaridnzcAVF/YBlNZvtP92CJDjV4qY9UJVQAEhw9/fsgDJFxEMIqVDKaKC6IiFqtkcMV6gGest0wV3vsmO7ZLIiWDIoySgeOpyBAIyBXNeJmirc9gBsbVVgMpfefds0tiBjQ5LVjfd28K7i51wYUiA0dFBiJEkWQpBZhdkrOcME6r3gMnmyWm9cvTI0EQhHfYD2IqzQ6vTe655x7MnTsX4eHhqKysxNKlS/Hkk0+iZcuWaNy4MZ555hkcOHDAq2NcvOjZZDer1Ywc1gFVXx3PPoPC3qNfDl/bsbtzfPt+u/MzNGjQQHY/exISEhTVEGxflNrwNfv27UObNm0wffp0/P77706fUyoqfJcraT0Hzs49cP38OzpvbM4EC/9XpoxVgeMr9u7di/vvvx9VVVWIiorCjz/+GFCBz1b8Ype0detWPPXUU8jNzcUbb7yBb7/9FsOGDUObNm2c/sIAyHqPETcGrJIBsKgZDE4uso4wNOoLTmcf6iegIu9rRLWb6HA/c7V4oLdCK71Z0QmWi6Wp8hL4sLqS9QBgpipDwCDUiJUMMFVAMJaB01lmcrDBz86UDADAh9UHcH0GgdKsZncguyTPYO2SOE3g+EZLuKGKDNKimT+VDBynFRd7Vf4OKaqXBCMEs9GiSnCCZNY0p4E0XDYQlAyU/UOEKEyRwZ1MBn/c5pn9qGQwkpKBIPyKJqoOWn3ovRI6WNBE+caXPRgYP348Hn74YXzxxRdYt24dtm/fjuLiYpw9exbz589HVlYWJk+e7LEdiv2g5+rVq22ztp3haHDW0WC3/fFycnIcziK3p3HjxrLL5Tzw/Ykaxw+UNnxJdXU1hg4disLCQuh0Ojz33HMYNGgQWrVqhfj4eJvV0KlTp2y2YL6eLAUE/nlzhyNHjqBv374oKSmBwWDAd9995/NMEk/xy9Nhenq66Be8b98+7Nu3z6V9OY6D0RhYEmXCf0TopBeG0moBCV48O3EaA8KaDkbFycW2ZZW5S50WGdiBsUptPYD5aGphGZSxBL7KVxX9cD0lXEAQBIldEmDJUOB1URAEQaJk0Ea5omQQ35SZfa5kILskJSR2SUGkZIDJd7M7ahsz+3nmDf4tAPHMw5HKNiiOvvOCqcqlIgNb+KgNuyRXMhnILokIVQJdySA4yWTgNL5TMlCRgSB8C8fzPglCvtGoW/f6hL+CggKnlifuYJ25bDY7fg4rK5M+a7LUq1cPL7zwAl544QWYzWb8+uuvWLFiBebOnYuioiL83//9H26//XYMGjTI7X7aB+vGxcWJLIp8gf3xEhMTFYsHjrBXSly4cEE2tNd+vS9x1r79evuAbvvXFy5cQKtWrRTbsLeKUgr5LiwshMlkcljgsfaFbcP6WQXU+bzKsXHjRlseQWZmJp5++mnZ7fylskhISEBBQYFLnw/r+fcmYN3XnDx5Evfeey8KCwuh1WqxdOlS3HPPPbXdLUX8JngVBMHjf8SNC89xiNSKH2ZK2acdDwhLeVT0vubyLhgZ/30WdqC3Qiu9+TPB8lBqrlL2mCMlQ4Bgrpb1YrcqD8yVFyVBra4oGTRhYtmm7zMZSMmgiETJEDxFhtBWMog/z7zej1ZJgM/tkhyql1z9vUqUDFK7JF9XrF2yS2ILNgQRKrAqHQfZLf6eKCeYa2QnSdijaiaDiVEy0NeeIIggoGPHjrbXW7duVbXt6GiLAtca7qvE77//7la7PM+jY8eOmDZtGjZs2GBbvmzZMtF2rs7Qtvr0A8D27dvd6osnqHG81NRU2+s9e/Y43NbZem9x5/j2BRz717t27XLYxu7du2X3s6e6utqhdZbRaMSvv/4q24b1swoAV68qqyCvXLmCwsJCh31Vwj58+5FHHlHczj6zQw61lAfWc5CTk+NwwvrFixdx+vRp0T6BRn5+Pnr16oWCggLwPI/Fixd7VHD0J34pMmzatMnjfxs3bvRHF4kAJpJRM5TVeD+wYmh4DziDWJpZmbdMYWsL7OzbCo1U2lnDWQYxLUoGeQQHs09pbpj/UHpAt85CZkOfwevAhzv38/RNJgMFP3sCq2SgTIbAQGCs5/wa+gyLXZIItYOfK5QLi67+XgVBGvwsvfEOBLskGm0kQhNWyeCOXZKvcZbHAABQVclAdkkEQQQft956q20W/MKFC1FaWupkD9dJSbGo20tKSnD8+HHZbaqrq7F8+XKPj9GxY0fbrH42JDcs7PpzQ1UVo9xm2rCqCbKyslBZ6dvni169etns0OfMmePRhOGePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccTvO0H8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rwFAhcvXkSvXr2Ql5cHAPj4448xbNiw2u2UC/ilyNCjRw+v/hE3NlF68cdUDSUDx+sQ3uwh0bKK3K8c7sMOjFXwUkmV0YUiAykZAgOhRv5G0/SX8kAS+hzZzKVZuzyrZFChyCCxl7GHlAyKSOxeAljJcCNlMrCfZ86foc+AdGDcrN53SBAEmBwoGVz+vQaEksGFQVUqMhChSgDbJQlO8hgAtTMZxO8p+JkgiGCA53m8/PLLACyzgYcPH47qavkJFGazGefOnXO5bfsxqlmzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSbaZ2qtWrZKoOACgtLQUY8aM8bifrlJVVYUxY8bIBvrOmDEDhw5ZchiffPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCikeMGCHZxppxu3LlStnPy/Hjx/Hmm286PL4jWrZsaXudnZ0tu83rr7+OnJwch+24+rl2xsiRI23Frpdeekn2e3jgwAG89957AIBGjRph8ODBHh/PFxQVFaFPnz62Iua///1vjBo1qpZ75RqU2EcEPKySoVQFJQMAhKU8gvLfs2zvjVd+hbH4OLSxrWW3F4zi2eQVfKxkGyOsRQZluySqMQQGZmdKBg9CnwGpkkGN4GdHSgYKfnYAq2QI4CLDDaVkYO2S/F1kYDIRWNWANwg1JQ4tkVxXMjDf6wANfpaoQggiRAhqJQOvU9XKjJQMBEEEK+PHj8fq1auxbt06rFixAqmpqRg3bhzS0tIQERGB8+fPY+fOnfjyyy8xbNgwTJ061aV2O3TogC5duuCXX37BggULUF1djREjRiA2NhYnTpxAVlYWNm7ciLvuugs7duyQbePVV1/FM888g0GDBqF79+5o1aoVIiMjUVhYiG3btuHDDz8EYAlaZj3umzZtisaNGyM/Px//+te/0LhxY7Ru3dqmAKhfv77NJueZZ56x/fxff/01cnJyMGbMGHTu3BmxsbG4du0ajh07hs2bN2PVqlUICwtzOuDtiHfeeQdbtmzBrl27MHv2bGzevBmjRo3CbbfdhsjISFy9ehVHjhzB+vXrsWbNGqSmpkp+vlmzZmHdunUoKSnBsGHDsGXLFgwZMgQxMTE4ePAgZsyYgd9//x1paWlOLXi8IS0tDatXr0bXrl0xceJEtGzZEhcvXsTixYvx1VeWCaqNGzeWHaB/66238O233+LUqVOYOnUqDh06hJEjRyIpKQm5ubmYO3cuNm/eDADo0qULRo8erdiPxMRERERE4N5778XEiRPRv39/GAwG7N69G++9956tQDZt2jTZ0O5x48Zh1apVqKioQHp6OqZOnYoOHTqgtLQUGzZswOzZs5GYmAiNRoNLl5QnyyrRp08f1KtXDxcvXsSUKVOQl5eHBx54AHXr1sUff/yBBQsWYMOGDejatatDG6277rrL9nrixIl44403kJSUZFNzJycnQ6t1/uyRmJiImTNnYvz48cjPz0enTp3w2muv4a677oLRaMT69esxc+ZMlJaWguM4ZGVluRxS7g+qqqowYMAAmwXW448/jl69ejlU7kRGRkqKkbUFPR0SAU+UTjxlqqxaHXsYff0e4MPqiwaBK3KXIvq2t2S3NzNKhnJIB8ZsdklVDuySHIwL+dvX90ZGMMorGayfB4mSIdq1i7YmjAl+rrwEQTCD4zyb+icIAtkleYjAZjIEkV2Sy979QQibb+N/uyRm8E3FQp3TDBZXf68ydkl+D34muyTiRoYNaA+kIoMTJYOaoc+ANPhZS0UGgiCCBJ7n8d1332HEiBH45ptv8Pvvv+OFF15Qpe1PPvkEPXr0sA06s3Y2kyZNQrt27RSLDIBltrLcvlYMBgM+/vhjpKWlSdZNnjwZ48aNQ25ursSjfdGiRcjIyABg8blfunQpnn/+eXz88cc4efIkXnnlFcU+yQ1Su4PBYMC6deuQkZGBb7/9FgcOHHBYtIiJkY6pJCcnY9WqVbj//vtRUlKCzMxMZGZmirZ56623wHGcT4sM48ePx5YtW5CdnY1HH31Usj4pKQn/+9//EBsrnXwaHR2NDRs2oF+/fjh27BiWL18ua5/VtWtXrFq1ymGoc0REBL755hv069cP06dPx/Tp0yXbTJgwAS+++KLs/n369MGECRMwZ84c5OfnyxatVq1ahX79+in2wRGRkZFYsmQJBg8ejMrKSsyfPx/z588XbZOeno65c+c6zD646aabMHToUCxbtgxr167F2rVrRetzc3ORnJzsUp/GjRuHoqIivPnmm7hw4QImTpwo2cZgMCArKwv9+/d3qU1/UVBQILpufP755/j8888d7tOjRw9b0aq2IcErEfD4SsnA8RqEJT8sWlaZq+xFxw6MlXNRkm1cUTLQkHBgINQoKRksg4RGRsmg9VDJAMEEoeqK2/2z7W4sg8PBRFIyKMIWGQLZLulGUjIEnF2SmkUGJ/ZowWSXBNZuTA4KfiZCFY5RMrihePK1YtWZXZKaVkkAYJQoGVRtniAIwqdERETg66+/xsaNG/HEE08gJSUF4eHh0Ov1aNKkCQYOHIj58+fjpZdecqvdNm3aICcnB2PHjkWzZs2g1+uRmJiIvn374ocffsDMmTMd7r9p0ybMnj0bDz30EFJTU5GYmAitVouYmBh06NABkyZNwtGjR23FApaxY8di+fLl6N27N+rVq+dwhrdOp0NmZiYOHDiA5557DqmpqYiNjYVGo0FsbCxuu+02PPXUU/jmm2/w22+/uXUe5IiOjsby5cvx888/4+mnn0br1q0RHR0NrVaLhIQE3H777Rg/fjx+/PFHrFu3TraN9PR0HDlyRHR+69evjwEDBuCnn37C22+/7XU/XWHRokX44osvkJ6ejjp16sBgMKBVq1Z45ZVXcOTIEdx8882K+yYnJ+PAgQOYO3cuevTogTp16kCn06F+/fro27cvPv30U2zduhUJCVIbbpa0tDTk5ORgwoQJaNGiBcLCwlCnTh307dsXP/74I2bPnu1w/9mzZ+OLL75A9+7dERMTg/DwcLRu3RqvvfYacnJy0LZtW7fPjT19+vTB3r178fe//x0NGzaETqdDYmIievTogaysLGzYsAGRkZFO2/nss8/w/vvv25Q2PO/5TcfkyZOxf/9+jBo1Ci1atEB4eDgiIyPRtm1bPP/88zh27BiGDx/ucfuEPKorGd555x21m8Rbb8nPLCduDFglgxqZDFbCUx5F+bHrvoPG4t9gLDoMXXyqZFtJ8LMQIdnGpeBnXw8MES6hGPyspGSIck3JwIdJZ3+YKi6AD6vrXgf/wqGKAWSXpIQgCEFtlwTBBMFstMxgDzECzi6JHdD3Akd5DIDnwc/gtdLCAykZCMJnsHZJjpQM/p7X78wuSU0lg1kQYGIuNWSXRBBEMNKzZ0/07NnTpW2Tk5NdemZv1KiRZIa9PRkZGYpFgpSUFEyYMAETJkxwqU9yPPjgg3jwwQdd3j41NRVz5sxx+zhTp0512UrKnrvvvht333232/tZadKkicPz62m/3OWxxx7DY4895tG+er0e48ePx/jx473uR5MmTTB79mynBQUlnP0c1oBhOdLT051+J9q1a4dPP/1Ucb0r3yudToeXX37ZlqeiRHZ2tmL+gz233HILsrKynG7H4uo1AHB83jzBnWMHIqqPXkydOtXmmaUWVGS4sWGVDGUqKRkAQFevC/iIxjCX59uWVeYulS0ySJQMgvQhzpXg5yC+XoQUSnZJpooLEAQzTKWnRctdzWTgNHpw+njRTENL4aKdZ/10UmQguyQFZAaEAtkuiQ1+BiwD0hwvVUwFOyFtl1Th2C7JUyUDx2khcOJ+CgFQZKBMBiJkCeRMBmfBzz4MfQYo+JkgCIIgCIKQxye3iYIgqPaPIHypZOA4HuEpj4iWVShYJglMJkOZWS/ZxmaXVHVZ2XbJ084SqqKsZLgIc3mBJPTU1SIDIFUzOBt4dASroJFASgZZBEbFAADgpd/ZQEHW3iJELZPYfBtO72+7JGZgXMXgZ2dB7y4XGdjvNS8T/OzreyRSMhA3MO4oGfyNU7skrXpKBjb0GSAlA0EQBEEQBCGP6lPQNm3apHaTxA2OL5UMABCW8ijKjsyyvTeVnISxMAe6up1sywTBLJn5Xm6WJtBb7ZJgqoRgLAOnk85Clnles0GPbf5DqJFXMgjVRTBeOy5eqAkDH97A5bY14fVhsmvD2cCjI0jJ4CFsHgOCzC4JoZvLIBhr2S6JGRgXzP7LZHC1cMTaJVmUDH4OfnYlk4GKDESowtqqqViM9BZzdZHD9WpmMsjN69Fp6G6VIAiCIAiCkKJ6kaFHjx5qN0nc4ETpfadkAABdnU7QRDeHqeSUbVlF7lfiIoPMgHS5UTq4YuIMEGApFpgrL4N3s8hA+A8lJQMA1FzaLXqviWzmlg0cG/5scjbw6ADKZPAMOasXKjIEBqwqLKTskip9Y5dkGfAMPCUDR8HPRIjCcYGrZPBnJkMNG8gACn4mCIIgApfc3FyUlSk/5ysRHx+PRo0a+aBHxI1GWVkZcnNzPdq3devW0Omkk5mDCTLTJQIeVslQXiPALAjgVcr+4DjOomY4+J5tWWXeMkSn/RMcZ3mSYj3EAaDMKH98IwzQoQrmqktAdLJkPdUYAgNHRYbqSztF77XRroU+W+HDxEUGb5QMZJfkGYKMkgEBnckg7VuoFhnYzzRXy8HPatolOSsoehz8zGnBSbRutZ/JQEoGImTxJpPBxzd6Tu2SVFUykF0SQRAEETyMHDkSW7ZscXu/ESNGuBQkTBDO2LNnj8sh8yy5ublITk5Wt0N+huaiEAEPm8kgACg3qvsEF54szmUwlZ1Bjd1AMzsoZoQOVQqCihon4c+Os0bowc1fmBXskgCg5vIu0Xt38hgAqZLBm0wGskvykGCzS+I4SREkVIsM7Ge61u2SVFUy+CaTgeO1gL/tklwqMtBcFSI0CeRMBqdKBhUzGeSCn8ktiSAIgghVkpOTbfmwGRkZtdqX7OxsCIKAvLy8Wu0HQbgDPR0SAU+UTvo0U1YjIEpFFZE2PhXa2LYwFv9mW1aRuxT6encBkNp7VOqSFNuyhT9XXpZdT0PCgYEjJYO54rzovbtFBg0b/OxVJgMpGTxBEvzM8ZaB2gCG04SJ+x2yRYZatktiPwesNZEXsAVFThcLoabYbgMZhY1sQ6ySoRaCn13IZJBYTxFEqOBDxZO3OFMyQE27JEbJoOPhln0kQRAEQfiTzZs313YXiBuc9PR0JxOLQxtSMhABj0HDSWZNlVarO1RvsUwSqxkq85bZAkHZQbEKXUPFtoxOlQyO+uFKbwk1YIO8HaGJctMuSaJk8GEmA5WtZJHYJQWyVdJfsBYXoahkEMwmSYHP73ZJPspkEIyV4oICAE1UM+ZQntslSZVugaBkoCIDEZqwSga37JJ8jLkW7ZK0ZJVEEARBEARBKEBFBiLg4ThOomYoq1F/cIW1TDJXnEf1hZ8tryVFBmUlg3O7JG96SaiFIyUDi9t2SWHS4GdPq9lmZ3ZJZlIyyMLMGA9kqyQrN0SRQaa4x+tDwy5JLvTZ0yIDq2SoDbskl+xhKPiZCFUCNPhZMBudTj5QM/iZtUui0GeCIAiCIAhCCbpVJIKCSOapprRG/dnb2rg20MbfKlpWmfsVAKmSoVIrtsOxx2aXVEV2SYGM4CCTgUXjbvAzo2SAucp5toICZJfkGaySgQsCJQNuhCKDzOeZ0/rZLonNEVDJLsnE2qLxOvDhDUSLXM9kcEHJ4OOKtStKBsm5JIgQIVCVDEJ1kdNtfKlkoNBngiAIgiAIQgkqMhBBgT+UDAAQnvKo6H3l6eUQzDWSAeIKbaJiG87tkpT7To9u/sNVJQOnjQBvqOtW23yYtAjlaS6D8+IEla3kkBQZSMkQEJirZYoMfs5k8JVdEpvHwIfVk8wodtkuyVz7wc8guyTiRsaL4GfBh99NZ1ZJgG+Dn8kuiSAIgiAIglCCigxEUBCl972SAQDCUoaK3purLqO6YKPULklTR7ENW5FBScng4NnTTF5KfsPVIoMmKsXtkENeFwlOGyla5mkugzO7JHYwkvgLdoCU19dOP9xAMvs0BIsMbNGM00aA87flDhPoKsk/8BC2kMiH1/f8dypRMkiDn30dKCa4EPxMRQYiZPHRdcJbzFUuFBl8qmRQrWmCIAiCIAgixKBbRSIoiPSTkkEb3Ry6up1Fyypyl0JgZt9W8PGKbdTAiZLBwfGrTFRk8Beu2iW5m8dghbVMMnlYZJDay7AFD1IyyEFKhsCE/Tz7PfQZAOczJYP4O64Jq+f575S1cArQ4GfJuSSIEIG1SwqYTAYX7JKgYiYD2SURBEEQBEEQrkJFBiIoiGIzGap9N7AaliIOgK48/a2kYFDBxSrub+Qsg0pKRQZHSoZKmpTuN1xXMiR71D4b/qyWXRKnj2M2oA+NHAIT/AwqMgQErCqsNooMPrNLqmTtkqRKBpftkoRACH52QcnAUyYDEaJwrmcy+HPY3SW7JFWVDOL3pGQgCIIgCIIglKBbRSIoYJUMpT5SMgBAeLLYMkmoKUZl/mrRsnJOeWDMCIsti1BdJPtQ6qjnlUZSMvgLs9FVJYN7oc9WWCUD69fuKmyRgWeLDGSXJA8FPwckrJKB93ceAyC1QVEr+LlCapfk8e+ULXxwWnABGPxMdklEqBKoSgbX7JJUVDIwClvKZCAIgiAIgiCUoCIDERSwSoYyH2UyAIAmsjF09e4WLROqrojeVyBKcf8a7vpgprmyULLe0bgQ2SX5B8Fsctkb3VMlg4YJf/ZUySCZ+c0UGQSyS5KFVTIEo13SDZHJEEp2SWwmg4xdkqu/U0nhg/e/XRJcyGQguyQiZAnQTAahloOfdRoqMhAEQRAEQRDyUJHBR7z66qvgOM72b/PmzbXdpaBGqmTw7cBqeMqjDteXI0JxndUuCZAPf3YU7kxFBv8gmMpd3lYbrY6SwZNMBkEQZJQMjFUX2SXJIslkCAIlA9kl+QmOsfhRScnAqpXkgp9dVzIwdkmcxu92SaRkIG5kAlbJ4He7JAp+JgiCIAiCIFyDbhV9wK+//ooPPvigtrsRUkiVDL4dXAlLHgJwyl+PcrPyA5zVLgmQz2Ugu6TaRy70mc1QsFKrmQymCkkRQZLJQHZJsrBFBspkCAyE6gCwS2IGxgUfKRk03hQZXAl+9rFdkkuZDFRkIEIV3vVMBhZffjP9bZdkNJNdEkEQBEEQBOEaVGRQGbPZjNGjR8NoNKJevXrOdyBcIpINfvaxkkETXh/6Bj0V15eb9YrrxHZJMkUGskuqdeRCnzXRzSXLOF0MOH28R8dQI5PBzKgYAICX9IfskmQJQrukGyOTgQ0yrwW7JF59uyTBbIS5UqxcUzP4GbUQ/OyKkoGj4GciROG4wFQyuGKXxP4t8QYKfiYIgiAIgiBchW4VVWbOnDnYs2cP2rRpg6eeeqq2uxMyROnFgytVJmkYndqEpzyiuK7MrFNc59QuycExqcTgHyRKBo6HJrKpZDtNVDI4ycCea/AqZDKwA7KA1C5JrVnYoYbA+MmTXVJgEJB2SSp4rZurCsFewfmweqoFP3O1oGRgv0OykJKBCFVYuyTBBEHhO+fhbYJHsHZJfERDyTZqZjKwdkmkZCAIgiAIgiCUoCKDipw5cwZvvvkmAODjjz+GXq88251wD1bJAPg2/BkAwpo+KB2MAmAGhwqT8lenBo6VDGaqJNQ6rJKB00ZJlAeA51ZJgEUNIzpmTQkEY4VbbQjMgCw4LThtJLMRKRlkMQe/XVJoBj+Hpl2SWZK5woEPq+v57zQQgp/JLom4gZFV6QRA+DNrl6SJaCzZRs1MBknwMxUZCIK4AcjLy7Nla2ZnZ9d2dwgFpk6davs9Eb5l8+bNAZU3m5GRAY7jkJycXNtdIRioyKAi48ePR2lpKUaMGIEePXrUdndCiiid9A9HqY9zGfiwOjA0vFeyvJKLhiAZ7LmOkbPPZJAqGZRmwhH+QzCKlQycNlJSFAAATZRnoc+AfMaDu+HPrF0Sp4uWDuqRkkEWafBz4Bd9bwQlg8QuqRaUDJLBQxWCn1mlEh9WFxyvVc0uSS74WQgAuyQqMhAhC6tkAALCMom1S5KbIKFmJgMFPxMEQRAEQfiXixcvYvHixXj22Wdx1113ISUlBdHR0TAYDEhKSkKfPn0wb948lJVJbcBrG7pVVIlly5bh+++/R0JCAv71r3/VdndCDi3PwaARD7D4OpcBAMJSHpUsq+DiHO4jsktyM/iZ8A9miZIhUmJvBABaL5QMnD4WYAa2zZXu5TKwA7K8LloaSE5FBlmEIMxkuBGKDIFhl6R+oY7NXLFeT1QLfpZTMvg8+Nn5gCplMhChCidTZHAn/NlXmKuLRO/5sETJNmoqGaRFBpotShAEUdsE2qxyglADUqZcZ9WqVcjIyMBHH32EX375BXl5eSgtLUV1dTXOnz+PtWvXYty4cWjXrh327dtX290VQU+HKlBUVITnn38eAPDPf/4TdevWVa3t/Px8h+sLCgpUO1agE6XjRMHIZT5WMgBAWNNBKOb1ItuIcj7WwR7Ab7qe+DT6I8uboggc+OEsorgytNKcBACcMzcA0MhXXb6hMJacQvmxeTBVuPc9MJXmid5zOgW7pGjPlQwcx4EPrw9z2Z+2ZSU5r4MPT3Kjn6eZfsZIBkirL+3G1a1/97ifLJqIRohsMx6aqOsZFYK5BmW/zYWxMMfns6cBy+COoeG9CG8+zO19qy/vQcUf2ag48Yl4RRBkMrD+/carByW/W01kE0S2eRaayNq7hhivnUD58fkwVZx3e19TyUnR+4CwSzJXo+y3j1BzeRcED+3HTMXHRe9t1xO2uGWuwdWtj8NaMJD7fdZcOQhTaS7TZ8d2SYKxEmW/zUbN1UOy/eN1MQhv8QT09bpI1gnGcpQdnY2aoiPirjIzpjltpMRqjpQMRMjCBj8DKN7+tKz1Xk35UwDa2d7vOFeFM9eMEMxVMBYfR4LpDP6m24po3vvZZkJ1se11BReNDTUDURMRh/SKLIQJFpWmWkoGo1nA9nPigj1lMhAEQRAEUdtkZ2eHtJUZx3Fo2bIl0tPT0aFDBzRq1AhJSUmorKzE6dOn8dlnn+F///sfTp8+jXvvvReHDx9Gw4bSnK7agIoMKvDKK6/g/Pnz6Nq1q+phz02aNFG1vWAmUsejsPL6ANDOgip0qu/bgUNeHwtD4/6oOvOdbVkFn+Bwn8va5risbS5aViTEYbexky+6eMMimGtQuKYHzOWOC3GuYFEyqJvJAACasHqiIkN1wUav2uN00RbbFDvM5fmoPPW5V+2yVJ7+BokP/A6Otxzr2p6XUf7bbFWP4YyKP7IhCGZEtHC9gGIq+xOFa7rL+t4Ho5LBXHlJ9ndbeeY7JA4+WiuzPARjJQrXdIfZgwKDHLVil8Rk7VT9uRpVf65W9RjW64ncjOLKU1+Ij39mJeoOPgKO42CuvGz5DDNwvFbm9329yFC8cxwq/ljksE/lJz5B4uBD0Ma0FC0v2jHapWsIH9EIpmu/Mx2jIgMRmsipdCpPfyO7rSmmH2C4XmTIu2ZE3jWrGqk1gNY4WpaAiUX9Ve3jgtjPcKrsTiDyLvyhuxvPFj9o6btKwc+f/VYqWUZ2SQRBEARBEL5lxIgRimPL3bp1w9///nf85z//wcSJE3H16lX861//wgcffODnXspDt4pe8vPPP2PhwoXQarX4+OOPSdrjQ+IM4nN7pdI/NjHhyY+I3lfrfTeDuHEUDdi4ivHqEVUKDADAGxKgiWB/r5xXmQwAwMsEMnrVXlhdcLooVduUw1RyCsbio7b3Vfnf+/yYclT9ucq97c+tUwzW5fSOFUiBAK+Pc2k7U/ExmEpO+bYzCtRc2a9agQGwfKb9jh8sfjQRlpkkvM75585Y/JtNtVR96RcINcWSbThtFBzZJVW68l0xV6Hq3HrJ4qo/Xft+SzKKOJ7ueYiQhdNGSu0JFdAL5U63Oa3rhFLO8SQVd7jKN8Ip3Z2293/ou+Ia95d1kkrKvf0XpbksETIZaQRBEARBEIR6aLXOn1efffZZREVZxoZ+/vlnX3fJZajI4AXV1dUYPXo0BEHAxIkT0b59e9WP8eeffzr8t3v3btWPGaiEa8Uf19PXjH4JUQ5rOhjauJtt77UN0iXb6FX4JnEARtxcC9YhQYqafvXhKY9BE9kI+qRetmVhyUPB672bZR3e4nFvuyZuL+UxGBr1+2vA0beYq67YXguMj76/MFcVurW9qfyc7HJOG4mwxvep0SWfom+QDj68gUvbSmxr/IRgqlCtLW1cO2jjU1Vrz1U4bYRvD8DrEJY81PIyrA70DXs73+ev65ncdU0T3QK6Op0kwc9WJYNgNkFw8bvC5rwIglm2qMGiTbgNUbe+Cc5wfZA0/KYMl45JEMEIpw2Hockgl7a9rcq1gnglp949XhkfL1lWxUchvOWTNhWit1SYpPfYtyUGviqQIAhCju3bt+Ppp59G69atERMTA71ej8aNG+O+++7DRx99hKKiIpfbysjIAMdxSE5Odrhddna2zWM+Ly9PdpuNGzfiscceQ0pKCsLDwxEREYFmzZrhzjvvxKRJk7Bx43UlfF5eHjiOQ8+ePW3LevbsaTuG9Z+SjcymTZswYsQING/eHBEREYiJiUFqaipefvllnDsn/xwFSL3yi4uLMW3aNHTo0AFxcXGKx/zuu+/w8MMPo2nTpggLC0NcXBzS0tLw9ttv4+rVq5LtWfLz8zF+/Hg0b94cYWFhaNiwIe6//36sXy+dNKMW1nNs/zN9/fXX6NWrF+rVq4fw8HC0adMGr7/+ukufmerqamRmZqJnz55ITEyEXq9HgwYN0L9/f3z22Wcwm5WtWtnP2dmzZ/Hiiy+iVatWiIiIQGJiIgYMGICffvrJrZ9HieTkZHAch4yMDKc/lxw7d+7ElClTkJ6ejgYNGkCv1yMmJgY333wzxo4di6NHj8ruZ/2evP3227Zl7Gea/Q65+h08dOgQRo8ejZYtWyIiIgLR0dFo164dJk6cqPidBOTP27p16zBw4EA0aNAABoMBKSkpGDt2rFOLe1+h1WoRFmZRzVdWBk6WI9klecF7772HY8eOoWnTpvjHP/7hk2M0bqzuTOhg5u9to7Dr/HVv2JIaAefKTGgU5duPMacNQ52+W1CR+yV4QyLCwgYB+68P1DSK0uCFDrHYc6EKVSYBQk0pjEVHcaC8Ps4axYF8bfRnkMyfQc2VHGiEGrSq+RnR5ks412U3bqoThVbxUg9gQgnmDzKvQ2S7l9xqgeO00DfoAUNDS3Eh4Z7VqDj1KcBpEe6GTY8S4ckPg++zAdUFmyAIRuc7uNjPOvftQtWZ72BmBgy9ofz4xxDsAiXtfZ8Fo3hgObzFE+Alyg/vMV49LFJNsAGXzpCbYR/V4V1LoTC2lbfd8zm8IQ51B+xCRd4ySYGl7PC/ALvPEBts7TeYzAJOG4GIthPcbkYTnoTw5sPAuThTWE04jeMiQ1izB6GJ8ezzwmnCENb4PujqXrfHi++5HBWnPhdlwZQdmiHaT7Bez2QK53X6bQOn0UNJySBXJIho+xw4bSQqz3wHU/Gx67sYxTOu5YpVEW3GiWysNBGNEN58GHhDAuoO2I3K09+AD2+A8JTHJPsSRCgR3/1zVJz6AsaSPxxul/bnKkQWPYgTuq4wcTroE7tAV/d2rM4zQ7C7xvEtnkZkmDoF4ghdR+BP8bKYtJmIbT1YlfYBwMgUGUanRqNeBCluCYIILioqKvDUU0/hyy+/lKw7e/Yszp49ix9++AGXLl3C1KlT/dq3iRMn4j//+Y9k+ZkzZ3DmzBns2rUL2dnZuHz5slfHqaysxMiRI/HVV19J1h0+fBiHDx/GvHnz8OWXX2LgwIEO2zpx4gR69+7tcID26tWrGDJkiKhAAgBVVVXYt28f9u3bh8zMTKxcuRJ33nmnbBs///wz7rvvPly7dn2yW0FBAVavXo3Vq1f77Xf11FNP4ZNPxFl/x48fx4wZM7BkyRJs2LABbdq0kd03Ly8P/fr1w7Fjx0TLL1y4gDVr1mDNmjWYP38+Vq5ciYQEx2rHvXv3YsCAAbh48aJtWUVFBX788Uf8+OOPePHFFzFr1iwPf0rvyc7OxsiRIyXLa2pq8Ntvv+G3337DggULMGfOHIwbN84vfZo+fTqmTJkiKeQcPXoUR48exbx585CVlYXhw4c7bev111/HjBni57e8vDx8/PHHWL58ObZs2YK2bduq2n9nbNiwwXZtUPoM1gZUZPCQY8eOYfr06QCADz/8EJGRkbXco9AnMZxHQhiPK3a5DMeu1Pi8yABYLD0i2z5neXNOXCXkADSN0aJpjLUfUQAaYP7Bazj7p3jbO266GX3qN8TFZQ+Jlt/SRABvoAKDWzCDcZwmHDGdpnvVJKcNQ0SrUV61wWJI+hsMSX9TtU1d3M3Q2alr1KAq/0cY7Qb1zXbqBXZ2deTNE6Gr00HV4wNA5envREUGocr5DBd72CJD1C1vIPrWN1Tpm7/QRDVFVPtJkuXlx+aJB5NNUhsLvyCIbeo4fZzX3zt/40zJEH7TkwhrMkC14/G6KES2HiNaVnb4fXHBxnpemSKONj4VmgirukVeyWCW+Z7EdJoBThsBc1k+KuyLDIwSRaiReq5H3/YO+LA6sj+LNqYFolJflV1HEKEGpw1HRCvnWWtFFefRsigbLWu2AwAik19EZIvb8VNeBapx/flAe9MYxNRPVGrGLQxFNcCf4u9+RLPBqqkYAKDGLL7PahZDj40E4Q8EswBjeS1NJqkFtBEGcD4KlTebzRg0aBDWrVsHAGjZsiXGjRuHtLQ0REREoKCgADt27MCyZct8cnxHfP/997YCwy233IKxY8eibdu2iI2NRVFREY4cOYL169eLnCsaNWqEQ4cOYc+ePXjyyScBAJ988gluv/12Udv2E1UFQcCQIUPwww8/AAAGDhyIoUOHonnz5uB5Hrt378asWbNw5swZDBkyBNu3b0daWppiv4cMGYKzZ8/iueeew/3334/4+HicOHECzZo1A2ApJPTq1Qs5OTnQaDQYNmwY+vfvj5SUFNTU1GDr1q344IMPcPHiRfTv3x/79++37WvlzJkztgIDz/MYPXo0hgwZgtjYWBw8eBAzZszA1KlTHfZTDTIzM7Fnzx507twZEydORMuWLXHx4kVkZ2dj2bJlOHfuHPr06YPDhw8jOlqsViwtLcU999yDU6csFreDBw/Gk08+iYYNGyI3Nxdz587Fli1bsG3bNgwcOBBbt26FRiP/N7y8vBwPP/wwiouL8dprr6F///4wGAzYtWsXpk+fjoKCAnzwwQdo2rQpnn/+eZ+eEyWMRiPi4+MxaNAgdO/eHS1btkRkZCTOnTuHnJwczJkzB5cvX8azzz6LNm3a4G9/uz4+MnjwYKSlpSEzMxPz5s0DYFEgsDRq5Pokx8zMTEyePBkAkJiYiFdffRVdu3aFyWTC+vXrMXPmTJSVlSEjIwN169ZF//7KuVkLFizAjh070KNHD4wZMwatWrVCUVERlixZgiVLluDSpUt48skn8csvv7jcP08pKSnBn3/+iWXLlokyGGrr9y4H3S16yL///W9UV1ejefPmKC8vV6wKW9m4cSPOn7cMgA0cOJCKEh7AcRxax+vwS8H1m67jV2twT1N1Au5chRW0KVlSa2RWcADAS4sJgrnG637deDAzfmthRnQowTOZBVYlg2A2imbQAwBkwmzVgDOI7R/cVTKYKi6I3rtqPRQMcBo9BLvLRG0pGQSBvQIG3/fOWZGBk7lGqw8P0V8T23l1cH4V7JLM1VfEi3kDoPnr7yITACspMhilRQZ/5L4QRCjBMRkIgslyfdYLFajmrt/vV6kYJWaWcQtVc4xOEATUMJcjbfBd7gkiKDGWV+Hge9/Vdjf8xi2TB0MX5Ztni7lz59oKDA888AC+/PJLGAzia/aAAQMwbdo0FBQU+KQPSlgLG82aNcP27dtt3upW0tPTMX78eFy5cv0+T6fToX379iJlQ0pKikPb7oULF+KHH36ATqfDqlWr0LdvX9H6O++8E0888QS6deuGI0eO4IUXXsC2bdsU2zt8+DDWrFmD3r2v24F26nRdwfvOO+8gJycHcXFxWL9+vWgdANx99914/PHH0aVLFxQUFGDy5Mn4/PPPRdu89NJLNgXDZ599hsceu66eTUtLw8MPP4xu3bph7969iv1Ugz179qB///5YuXKlyCO/X79+aN++Pd566y2cOXMG06ZNw/vvvy/a9+2337YVGKZMmYJp06bZ1nXq1AkPPfQQnnjiCXz++efYsWMHsrKyMHbsWNl+XLp0CUVFRVi/fj26d+9uW965c2c89NBDuOOOO5Cfn4833ngDw4YNQ2KiOhMa3KFfv34YNmwYIiLEz1kdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmTdW9JcuXcLLL78MAGjYsCF27tyJJk2a2NZ37doV999/P7p164aysjKMHj0aubm50OnknwF37NiBUaNGYf78+aI8unvuuQd6vR4LFy7Ezp07sX//fnTooP5EzKlTp4qspOzRaDSYPXs27r77btWP6yl0u+ghVVWWB4hTp07hsccek/23fPly2/bTpk2zLb906VJtdTvoaZMg/uIfu+L/2bysmwUnmV1qQe5hj+cAjpO5eFGRwQPYJ2wKI/QGe3sU4LoFi5wHP6fxTWGPDT4WaoplBrWVYZUMoVRkYIM8hUBRMnDBZ53BaZ0U+f1RZGCLon99ziWfd1FhQcEuiVEy8IZ42w0waw3FWp9JlAycFuD1TjpPEIQIDXt9rgQgSAKh1S0ySKsMahYZTIL0Lkvno5nGBEEQvsBsNmPmzJkALDP7lyxZIikwWOF53q1Z0mpgnYDasWNHSYHBHmc2Oo4QBAH//Oc/AQATJkyQFBisxMfH287V9u3bceLECcU2MzIyRAUGe0pLS/HRRx8BsIx/sQUGK82aNcObb74JwJJ3UFZ23Urw/PnzWLFiBQDgvvvuExUYrERHRyMrK0uxj2phMBiwYMEC2RDeN954wzYQ/t///hfV1defzaqqqrBw4UIAQLt27WStnTiOQ2ZmJurUsaiH586d67AvY8aMERUYrDRs2NBmk1RWVobFixe79sOpTKNGjSQFBntiY2PxzjvvAAC2bduGwkL3shfdYdGiRSgvt9yDffDBB6ICg5UOHTrg9ddfB2CxTfvuu+8U20tKSsKHH34oKjBYmTTpugOBv8OX77nnHhw+fBjjx4/363GdQUUGIqhow2QWXCg340qlik9tLsA+1yk9c2lkvl0cB1IyqITjwTjCXThGyWC2KhmMMkUGrW+KDBxTZIBglgTVOoItMmhCqMhg8eS3o9YyGZjrrYrWHP4iIJQMTJFBULBLEm8nvsYJNrsksZKB119XBLHfVcHEZjKIiwycLlr2BpogCGU4Vt1nUzL4ssgg0w/1modR5gBUZCAIIpj49ddfbYGso0aNcjiQXxskJSUBALZu3YqTJ0/65BhHjx61tT1kyBCH29oPYDuyfXn88ccV123ZsgXFxcVuHa+mpgb79u2zLd+0aRNMJssfTDmPfyudO3dGu3btHB7DW3r37o2GDRvKruN5HiNGjAAAXLlyBTk5ObZ1+/bts4VCZ2RkKNogxcTEYOjQoQAsvytHahpH5+KBBx5AXFwcAPg0FNsdysrKkJeXhyNHjthyP+yVAgcOHPDZsa3nIC4uDg8++KDidk8//bRkHzmGDBmiWKBs3bq17dpiVa6ozbhx43Do0CEcOnQIO3fuxKJFi9CzZ09s2LABjzzyCHbt2uWT43oKFRk8JDs7G4IgOPxnHwa9adMm23JnCeiEMk1jtAjXih9yjl/17wC9wMztUnrkkrdL4uQHsKjI4D5sJgNdzryC1ynYJdWikgFw3TLJXFMmGTDlw+ur0KvAQGLHYa4tJUPo2yWB872TpEQBYjuvDq5rinZJYiUDZ7g+4439rrJFQ3MNW2QIrAdwgggGOFbJYFYoMrguzHOKTI0BvIoFQtYqCQB0wXe5JwjiBmb//v221926davFnshjDZstLCxE+/bt8eijj2LRokX4448/VDuGvZ1Qly5dwHGc4j/7IoxVZSHHLbfc4tLxkpKSHB7P3g7H/nj2Xvxs1gRL586dHa73FneOb99ve9v0O+64w2Eb9uvt97NHr9fj1ltvVWxDp9PZbHrksgz8xeXLlzF58mS0bt0a0dHRNiuv1NRUpKamYsCAAaJtfYX1PHbs2FHRAgkA6tevbxubVTr3gPNQ5fh4ywSvkhLXJ0e6Q7169dC+fXu0b98ed9xxBzIyMrBx40a8++67OHjwINLT07F27VqfHNsTKJOBCCr4v3IZfr10fYDt+JUadEnyjY+jHBKTHsVMBukyUjKoCetbRTPsvEGiZLCGDDOhz4APlQy6aMvMbbuBbKG6CEAzxX2smCsvSJaFll2SWMlg9fz2NwKrZAhGuyRN4CkZbJ95N5QM1kKrO0oGOMlk4LVUZCAIt5HLZBAEGPytZFDxNogNfQZIyUAQ/kIbYcAtkwfXdjf8hjZCfoawt9gPYlpVA4HEPffcg7lz5+Lll19GRUUFli5diqVLlwKwWM/cd999GDt2rMPBZWdcvHjRo/2sVjNyWAdUfXU8+wwKe49+OerX9+2EMneOb99vd36GBg2uP6/a72dPQkKCohqC7YtSG75m37596NOnj8s2SBUV0omMamE9B87OPWA5/3l5eQ7PmyMbKMCiagFgU+D4izfeeAOrVq3C7t27MWrUKJw8eVLW2svf1H4PCMJN2CLDsSv+HaBnn7uUlQzSZRws/nvgNGLbESoyuI9kRjU9/HqDopKBtUviND4bhOU4HpwuFoLdzGwz4zevBGuVxGkjwIXQgCk7UxYBomTggtIuKQAyGVgFiCt2SQpKBoFRMvAiJYOzTAbxjBtSMhCE+0iuz38VgXWC+PtWaVLvPkUmkkFV5JQMWioyEIRf4HjOZ0HIRGAxfvx4PPzww/jiiy+wbt06bN++HcXFxTh79izmz5+PrKwsTJ48Ge+++65H7dsPeq5evdplRw1Hg7OOBrvtj5eTk+NwFrk9jRs3ll1e2xaeahw/UNrwJdXV1Rg6dCgKCwuh0+nw3HPPYdCgQWjVqhXi4+NtVkOnTp1CixYtAFjyQnxNoJ83NRg0aBB2796NM2fOYPfu3bjrrrtqu0tUZCCCDzb8Oe+aEeU1ZkT4ScctCX5WuHbxMg9jtkW8DrD7IywIVGRwHwp+VhMlJQNrlyTxnlYZXh8Hk92gqeCiXZJJJvQ5pG4sAkTJIMlkCEW7JH8UGSTFGTPzfyuc3SsFJQNrl+ROJgNrlxRChTmC8Bcu2yWZ1Huglgt+VpMamb6SXRJBEMFE3bp1ba8LCgqcWp64g3Xmstns2AfPPtBYiXr16uGFF17ACy+8ALPZjF9//RUrVqzA3LlzUVRUhP/7v//D7bffjkGDBrndT2uoMGDxp7e3KPIF9sdLTExULB44wl4pceHCBdnQXvv1vsRZ+/br7QO67V9fuHABrVq1UmzD3ipKKeS7sLAQJpPJYYHH2he2DetnFVDn8yrHxo0bbXkEmZmZoqwDe/ylskhISEBBQYFLnw/r+fcmYL02SUxMtL0+ffp0QBQZ6HaRCDpaxOlEKgEBwIki/w3Ss49dSl8iOSWDFclMcFIyeABb7aHLmTfwegUlg6TI4BurJFv7BrEE1+VMBrbIEBY6eQxA4CgZQsIuyYndlz/sktgMGWuQvTTQ3oFdklLwsxuZDNLgZyoyEIS7sMV3wVQJQJAUGap9nMmgJmzwM88BGlIyEAQRRHTs2NH2euvWraq2HR0dDQC2cF8lfv/9d7fa5XkeHTt2xLRp07Bhwwbb8mXLlom2c3UildWnHwC2b9/uVl88QY3jpaam2l7v2bPH4bbO1nuLO8e3L+DYv3YWyrt7927Z/eyprq52GJRsNBrx66+/yrZh/awCwNWryg4BV65ccdnqiOXIkSO214888ojidvaZHXKoNUHQeg5ycnJgNBoVt7t48SJOnz4t2ifYOHv2rO11oITb06icD5k6daot7Dk9Pb22uxMyGDQcmseKRTjH/WiZJM1kkL8YyhUZREoG+zapyOA+ksE4evj1Bo6xSzIr2SX5KI/BChv+zM7SVsJcIZ6pEFJ5DAC4gFEyOBoEDw44XudYrRBAmQycK3ZJVaxdkr2SgbFLMjkJfiYlA0G4j1wmAwADWCWDevcpcpkMasLaJZGKgSCIYOPWW2+1zYJfuHAhSktLnezhOikpKQAsQa/Hjx+X3aa6uhrLly/3+BgdO3a0zepnQ3LDwq4Xt6uqlJ8JOnbsaFMTZGVlobJSmrWnJr169bL518+ZM8cjS5yePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccWRvYD+UpqCLPZjAULFjhsx9XPtTOs56CoqAjffvut4nb//e9/bT8ze96CAbPZLLrG2BfoahO6ZSSCkjYJ4gG3Y1f9WGRwOZNBusa6hB0wJCWD+0j/CFKRwRskSgabXZL4ZtTXSga2yOCqXRKrZNCEWJEBEjuO2spkECsZuCBUMgCOcxlqJ/jZel4daeWU7JLESgaRXZJEycDYJZGSgSC8Rqo0q4KckqFSVbsk1ZqShQ1+pjwGgiCCDZ7n8fLLLwMA8vPzMXz4cFRXy98/m81mnDt3zuW2e/ToYXs9a9Ys2W1efPFF0SxjlqVLlzoMv927d69t4Nha1LBiPxh98uRJxTZ4nsfkyZMBWPzwhw8f7nDw9tq1a5g7d67iemfExcXh2WefBQDs2LEDEydOdGjRc+HCBSxcuFC0LCkpyWYNtWrVKomKAwBKS0sxZswYj/vpKlVVVRgzZoxsoO+MGTNw6NAhAMCTTz5pyx0AAIPBYLMMOnz4MKZNmybZXxAEPPvss7YCkvW8KTFv3jxs27ZNsvz8+fOYNGkSAEtA8YgRIyTbdO/eHQCwcuVK2c/L8ePH8eabbzo8viNatmxpe52dnS27zeuvv46cnByH7bj6uXbGyJEjbcWul156SfZ7eODAAbz33nsALEHrgwcP9vh4vmDBggUOg6TNZjNeeuklW6GtW7duLmeu+BrKZCCCkjYJOqw+df39ias1MJoFvzwEsT64ipkMcsHP1o1JyaACZJekJmwmg1BTAsFs8r9dkt0AKeC6XZJcJkMoISlMBkomQ9AWGSKUC1h+KTIw501ByeCaXZKD4GdJJgMb/CwuMvCkZCAIt+EUlAw6SSaDesf0eSYDU2TQU5GBIIggZPz48Vi9ejXWrVuHFStWIDU1FePGjUNaWhoiIiJw/vx57Ny5E19++SWGDRuGqVOnutRuhw4d0KVLF/zyyy9YsGABqqurMWLECMTGxuLEiRPIysrCxo0bcdddd2HHjh2ybbz66qt45plnMGjQIHTv3h2tWrVCZGQkCgsLsW3bNnz44YcALEHLrMd906ZN0bhxY+Tn5+Nf//oXGjdujNatW9sUAPXr17fZ5DzzzDO2n//rr79GTk4OxowZg86dOyM2NhbXrl3DsWPHsHnzZqxatQphYWFOB7wd8c4772DLli3YtWsXZs+ejc2bN2PUqFG47bbbEBkZiatXr+LIkSNYv3491qxZg9TUVMnPN2vWLKxbtw4lJSUYNmwYtmzZgiFDhiAmJgYHDx7EjBkz8PvvvyMtLc2pBY83pKWlYfXq1ejatSsmTpyIli1b4uLFi1i8eDG++uorAJbQarkB+rfeegvffvstTp06halTp+LQoUMYOXIkkpKSkJubi7lz52Lz5s0AgC5dumD06NGK/UhMTERERATuvfdeTJw4Ef3794fBYMDu3bvx3nvv2Qpk06ZNkw3tHjduHFatWoWKigqkp6dj6tSp6NChA0pLS7FhwwbMnj0biYmJ0Gg0uHTpktvnqU+fPqhXrx4uXryIKVOmIC8vDw888ADq1q2LP/74AwsWLMCGDRvQtWtXhzZa9nkCEydOxBtvvIGkpCTbGFpycjK0WudD2ImJiZg5cybGjx+P/Px8dOrUCa+99hruuusuGI1GrF+/HjNnzkRpaSk4jkNWVpbLIeX+YvTo0Xj77bcxZMgQ3HnnnWjWrBkiIiJw9epV7N+/H9nZ2Th48CAAICYmBh999FEt9/g6VGQggpJW8eKLQLUZyC02omW87y8Ors6f18iMeVsXUSaDGjDFHlIyeAXP2CUBlkIDaiH4WdQHl+2S2CJDaGcy1J6SIfjtkgCA0yiHP3Oc/5UMgmKRgZN/bdnY8l9GycDbF+ook4EgfA97fbbaJfmyyKBeU7IYmQNog/NSTxDEDQ7P8/juu+8wYsQIfPPNN/j999/xwgsvqNL2J598gh49etgGnVk7m0mTJqFdu3aKRQbAYucit68Vg8GAjz/+GGlpaZJ1kydPxrhx45CbmysJhV60aBEyMjIAWCY5Ll26FM8//zw+/vhjnDx5Eq+88opin+QGqd3BYDBg3bp1yMjIwLfffosDBw44LFrExMRIliUnJ2PVqlW4//77UVJSgszMTGRmZoq2eeutt8BxnE+LDOPHj8eWLVuQnZ2NRx99VLI+KSkJ//vf/xAbK32Ojo6OxoYNG9CvXz8cO3YMy5cvl7XP6tq1K1atWuUw1DkiIgLffPMN+vXrh+nTp2P69OmSbSZMmIAXX3xRdv8+ffpgwoQJmDNnDvLz82WLVqtWrUK/fv0U++CIyMhILFmyBIMHD0ZlZSXmz5+P+fPni7ZJT0/H3LlzHWYf3HTTTRg6dCiWLVuGtWvXYu3ataL1ubm5Ls/WHzduHIqKivDmm2/iwoULmDhxomQbg8GArKws9O/f36U2/c3Zs2cxe/ZszJ49W3Gbtm3b4rPPPgsYqySA7JKIICVGz6NRlPhC7C/LJHbymNLkLjm7pOt+SaRk8Bp2MI6KDF7BKhkAwFxTLBmUdBaa630/4sR9cNkuSZzJEHJ2SQGSyRAKwc+ANKtARC0EP9sUIpLrmrKSQRAECKZqiQWSWMnA/JzmKlG4NKtk4HTRIAjCPSTFd3MVIMgEP6tYZPCxkEGiZNCRkoEgiCAlIiICX3/9NTZu3IgnnngCKSkpCA8Ph16vR5MmTTBw4EDMnz8fL730klvttmnTBjk5ORg7diyaNWsGvV6PxMRE9O3bFz/88ANmzpzpcP9NmzZh9uzZeOihh5CamorExERotVrExMSgQ4cOmDRpEo4ePWorFrCMHTsWy5cvR+/evVGvXj2HM7x1Oh0yMzNx4MABPPfcc0hNTUVsbCw0Gg1iY2Nx22234amnnsI333yD3377za3zIEd0dDSWL1+On3/+GU8//TRat26N6OhoaLVaJCQk4Pbbb8f48ePx448/Yt26dbJtpKen48iRI6LzW79+fQwYMAA//fQT3n77ba/76QqLFi3CF198gfT0dNSpUwcGgwGtWrXCK6+8giNHjuDmm29W3Dc5ORkHDhzA3Llz0aNHD9SpUwc6nQ7169dH37598emnn2Lr1q1ISEhQbMNKWloacnJyMGHCBLRo0QJhYWGoU6cO+vbtix9//NHhQDQAzJ49G1988QW6d++OmJgYhIeHo3Xr1njttdeQk5ODtm3bun1u7OnTpw/27t2Lv//972jYsCF0Oh0SExPRo0cPZGVlYcOGDYiMVLartfLZZ5/h/ffftylteN7zIevJkydj//79GDVqFFq0aIHw8HBERkaibdu2eP7553Hs2DEMHz7c4/Z9yb59+/Duu+/ivvvuQ7t27VC3bl3b9aFNmzYYNmwYvv76axw4cECUBxIIkJKBCFraxOtwtvT6E9vxK9UY2NzBwJFKSIOf5beTDX627kNKBhVg7ZLoAdgbLIOLHOzPq1BdXAuZDGK7JFcyGQRBCH27JFnP71pAEkwcrEUGR5kMfrg14tnzZjmvAjs/2Unws1wwuqNMBsCiZuB0lp/fXFMi3pfskgjCbSRKs7/+bkozGdQ7ps8zGZi+UiYDQRDBTs+ePdGzZ0+Xtk1OTnYpBLdRo0aSGfb2ZGRkKBYJUlJSMGHCBEyYMMGlPsnx4IMP4sEHH3R5+9TUVMyZM8ft40ydOtVlKyl77r77btx9991u72elSZMmDs+vp/1yl8ceewyPPfaYR/vq9XqMHz8e48eP97ofTZo0cTqz3RHOfo68vDzFdenp6U6/E+3atcOnn36quN6V75VOp8PLL79sy1NRIjs7WzH/wZ5bbrkFWVlZTrdjcfUaADg+b57SsWPHgCseuAopGYigpU2CeKD+2NUaly8E3uBV8LN1kSSToZasT4IZyS+CLmfewHG8ZBazUFMszWTwsZKBtUti/eblEKqLJYPuIVdkYD2/AyT4OVi/d7WtZJDcfinYJXGOMhkEAeYqsVUSAPAGx0UGews0sksiCO9RymRgiwxVKnoc+VvJoA/OejJBEARBEAThR4JzdIAgALRJENuHlFQLKChTcZqYAhKTHoUZ9HLKLptbEikZvIfsklSHtUwyV0vtkliPd/X7EMf0ocjpPmweAwBowkIrk4HsktRFscjA8czAvq86wGYyWM+ro+KpVMnAZpZw2ijR3xe5oqB94ZCCnwlCBSRKs2oAZmmRwaReZcAs0dWqC1tkICUDQRAEQRAE4QwqMhBBS2I4j3iD+CP82xXfD9azagmlxy6tnF2StSAhUTJQkcF9XI3gJlyFDX+22CWxwc8+VjIY3LdLMlWK8xg4XSw4rW8Dqv2N1C4pMIKfg9YuSSn42R+hz5A5b0rBz3bXNWlBW6pk4Jjvj1wxxb5wSEoGgvAeyfUZgGCqhh7iv5+qBj/7WMnABj/r6ImRIAiCIAiCcAJlMhBBC8dxaJOgwy8F12f0Hr9ag3ua+nYQlH2uU5rcxTvICJAoGQQqMriL4HDGL+EJEiWDnF0SG3Cpeh/iRO8FYykEs9GhTz6rZAg1qyQAAaNkCHW7JMm12WcdcM0uyaGSQZBmMvB6cXAcx+ssahO735t9ULQk+JmUDAThNqxdEgAI5ioZJYN6x/R5JgMFPxMEQRBBSG5uLsrKytzeLz4+Ho0aNfJBj4gbjbKyMuTm5nq0b+vWraHT+el51EdQkYEIalrHi4sMx/yiZHBtO9ngZ8VMBioyuA3ZJakOr5cqGcAGP/s5k8HSjyJwYXUV92GLDJoQLDIEqpIheO2SFIKfa63IYBl9FCTXNSd2SUxmCasEAizqI3vFgrVwKAhmCEbxQxgpGQjCA+SK7yZpkcEkAEazoIr1kK8TyKjIQBAEQQQjI0eOxJYtW9zeb8SIES4FCROEM/bs2eNyyDxLbm4ukpOT1e2Qn6EiAxHUtGXCny+Um3C10oT4MN8NfLmsZKBMBh/DKhnoAdhbOJ3zTAaf2yXppYOk5uoi8A6KDCaJkiHE8hgAcAGiZJBmMpCSwTMUlAxs6o/9+XXBLok3JICF0yoUGYwVYK+jpGQgCPeRt0uqhIEpMgCWXAY1igxmHyc/1zCXIm1wXuoJgiAIwi2Sk5Ml9ti1RXZ2NhU+iKCDigxEUNM0RotwLYcK4/U/BMev1uDOJN8VGViJunImg3SNbRFHSgavYbMxgnSwM5CQKBlk7ZJ8W2SAJsxiDWQ3U99Z+LO5QpzJEJJ2ScwgllBrSoYQD372V5GBF583AfJ2SZybdkmcTJGOzZ+wFg7ZPAaAlAwE4QmydkmmSomSAbAUGSJVuMz4evzDSEoGgiAIIgjZvHlzbXeBuMFJT08PmEJVbUCjckRQw3McWsWLn9Z8bZkkiRtWmEEv9zxm3ZSUDGpAwc9qI6tkYIsMPrZL4jhOYpkkMAOpLDeEXRKjZECtZTKESPBzLSsZOCUlg+SG1O66JqNkEFglg0yRAcx3VjBZBj6FmhLJpjwpGQjCfTR6ySJLkaFCsrzSqM5Dp+8zGcTvqchAEARBEARBOIOKDETQ09rfRQYXlQwaOSWD9QVlMngPZTKojqySgbFLkvWeVhl2NrYzJYPULikEiwwBq2QIztuIQM1kcGiX5Erws5xdEqM+sikZmNBncBq/fL8JItTgOF567TBVQYNq8IJRtLjapFKRQZVWlKlh+qkLznoyQRAEQRAE4UeCc3SAIOxow+Qy5F0zosLou8cvgfWwVhjb1shlMvy1MSkZ1IAyGdSG08spGZjgZ1/bJUEa/iw4tUsK/UwGBEomg2QQPDhHnlgLIdtyzk8ukux5E+TtkhwVGQSZTAZZuyRGtXE9k6GU2S5KUZlHEIRjOKZAJ5irwAESy6RKtYoMPlcykF0SQRAEQRAE4R5UZCCCnpvidNDYPfsIAE5cNSpu7y2uKxmky2xfOFIyeI/EVoQuZ97C61glwzW/2yUB0iKDuUrZLkkQzDBXXhQtC0m7JDZYtLaUDGaxkiHU7JJqT8lgKS4IjooMcsHPHikZLIOeZkbJQHkMBOE5bC6DtUDPFhmqVCoy+Nrrl4KfCYIgCIIgCHehW0Yi6DFoODSPFc8+PXbVdwNw7HOd0uQuWbskpUwGgYoM7iKdUU2z7LyF08eI3gvVxYDRz8HPADiD63ZJ5qpCiYVPSNolsUoGc21lMoSKXVItZzIw502wnlc28wKO7ZKEKrbIIKdkYL6zDpQMBEF4CFsI/kttJi0yqHM4XysZKPiZIAiCIAiCcJfgHB0gCIY2CeIBuOM+zGVwNQlA7nnMVqCQDBhSkcFtHAWkEh7hUvBzgNklsVZJAAc+LFH1PtU6PDuAVUtKhlCxS6rtTAal4GcHNnCc5BonwFzNBj97nsnAk5KBIDxGkptjVTJA/De0SqXgZx/XGCj4mSAIgiAIgnAbKjIQIQEb/nyiqEYyC8tXuJPJYH1mo0wGNWCzMehy5i3S4OdrNmsVK/6wS+JYu6RqZbskSR6DoY7fZqP7E04TGEoGwcwqGYK1yFC7Sgbw7HlTyGSAsl2SUFMq+dvBqoAA9zIZCILwDJftklS6N/V/JoNvj0cQBEEQBEEEP3TLSIQErZnw5yqTJQDaF7APdtLZpRbk7JJsHrqUyeA9ksE4mmXnLaySARCkA5FMuKUv4JnwWkdKBlPFBfG+IWiVBMgNYNWSkkFgMxmC8zai1jMZ2NsvW/HG9eBnVsUASL87gHImg1BTIt6OlAwE4Tkywc+ATJFBJSWDv4sMWlIyEARBEARBEE4IztEBgmCI0fNoFCWeGXrMR5ZJbNieopLBgV0SKRnUQNlWhPAMVskgSy3YJTnMZGCVDCFaZJD4fZurfB78KU+I2CVpFJQMXO0EPwtKSgYHwc/mqkK2UXAy32FWfWRVMphJyUAQqqFol8QUGSqDJPjZKLFL8unhCIIgCIIgiBCAbhmJkKENY5nksyID817pSyRXZLBNDCMlg/dQJoPqcLoY59v4I/iZLTJUuW6XpAnRIgMb/AygdoqTEruk4LyNqO1MBo4tzvxVXBAcFRmYa5xQJVYycPo4WWWJq5kMpGQgCM9h1WbW4GeDJPhZJSWDKq0oI7FLkrupJQiCIAiCIAg7gnN0gCBkYC2Tjl+t9slML8nQtsJzFy8jLbfuK5kta66tENdghlUy0OXMWzhe43Q2sz8yGdwJfjZJlAz1fdCjAIBVMgAQauG6IYSKkqG27ZLY65Ugr2QQ2/E5HuTjDdLQZ4AyGQjCLygoGXQCE/ysVpHB13ZJJjaTgYoMBEEQBEEQhGNoVI4IGdokiGf6XqsWUFBmUtjac9i6hdJjFykZfAxlMvgEObsV0Xp/KBmY8FrHdkk3SiaDjJLBVAvhz5JMhmAtMsh/jv0W/CwpMljPq4PiqRNLOLk8BgASi7PrmQziIgOvi3bYPkEQyrhql6RWkcHXbnk1zC2Wlp4YCYIgCIIgCCfQLSMRMtQL5xFvEH+kfWGZJAl+VsxkkK4w//VUSJkM3iNQJoNPcJbL4J/g5zjxAnOVzeKF5UbJZGAHsIDaUTKEjF0Sr5NXLfBaP/WAyWRQUDI4sktiYYtztuVskUFJyUB2SQThMZK/jb62S/J5JgMpGQiCIAiCIAj38NfTNEH4HI7j0CZBh18Krs/uXX2qHEcK1R2IO1lsFB9XYeBHVslgfcEMbhmLDuPq1r+r0Dv34Hg9DI36IDzlEb8f21vMZfnMkuAc7Aw0OJ2DIgPH+8VOhs1kAICin58AZAocxpKTovehmskAGSVD8c5xytkCCnAcD11iF0S0HiPr369ERd7XqMpfg+oLW5kGg1PJAFhyGVgrLn8FP3M8e94sfx2MRUeZ5a4XGXi9kl2SuMhgLP4NV7f+HTWX9zHbUZGBIDyFzWSwXiv1YIoMRs+LA7sKKrH/YjVqzAKOFEonpyw8VII4A4+/NQlDcqx317KSGioyEARx45KXl4eUlBQAwKJFi5CRkVG7HSJkmTp1Kt5++20A8IlNNnGdzZs3o2fPngCATZs2IT09vVb7k5GRgcWLF6NZs2bIy8ur1b4QYqjIQIQUrePFRYZzZSac84Flkj1Kz10amfE7698+VslgrryEylOfq9wz16j4YxEgCAhv/mitHN8TBEFA6cF3Rcs4UjKogiMlA6cJ98t5ligZAFSeXu7aviGaySCnZKg6851HbVWc/BTmqiuIvvUN17bPXYaiLQqFyKAuMkRI8z78ZZfEFkXNJphrylB9YYt4uTt2SUpKBjaToeqK7N8bUjIQhBcw12hT2RkA6tkl7T5fhQ9yrjncZtd5y/3vlvxKzO5ZB3EGzyZf/HpRasWno3kcBEEQBEEQtc4jjzyCZcuW2d7n5uYiOTm59jrEQLeMREjRJsFfA0TXMchJFiA/57RBpGVAjtPF+LBH7lN19sfa7oJbmEpzJcs4jUKQK+EWfFg9xXVyCgNfwPE6cEr+8k7QRDRSuTcBAqeVeOt7Q1X+925s+4PiOneVFIGEXIYBr/fTtZmxZRLM1ai5vFuymf35dXau+TD5AptiVgO7nUJwNEEQzpErjgPSIkOlh0WG/TID/0pUmgT85oWKd/8l6b4RVGUgCIIIGDZv3gyO48BxHDZv3lzb3SEIVZg6dartc03I8/3334sKDIEI3TESIUVyjBa31PVfoUHDAbc3kM4wBiwz63s1vW7v0jJOi+Z/ydcNSX8DH5bolz66gjWgMFgQakoky8KC0PIpELGcR/k/7OEp/lO7hDd/3O19DI37h+xAKcdxqp5/NvTXEYrB25owhDW9X50O1QJhKY+JF3BahDV90C/HZgckheoiSUYCAIQ1HWx7bUi6B5zS51sThrBm8n3X17sLfGQTx/0JT4K+fg+H2xAEoUxYswctxWCGcHOx6H15jWdFBncVEOVe2DJVyuxbL5weGQmCIAiCCAyys7MhCMINZZVUWlqK8ePHAwDq1VOeGFrbkF0SEVJwHIeJHWOx+3yVz22SdDyHjvX0aBGnXNR4qn002iboUWEU0L3x9YIDH1YXdQbsQmXe1zBXX/VpP+Woubgd1Rd+tr0XzEYHWwceckWRiJYja6EnoUdY4/6o028Lqs6tFwUL6+JTEZbsv0JOTOf/QJd4B4xFR1zaXhOVjIgWT/i4V7VLbJePoW/QA8biY27va7p2QmQ5ZQ3/dQV28Fuf1Av6Bj0Q1uR+6OJT3e5LoBB1y2RoY9ugpnAfOI0Bhsb9oa97u1+OzRYLzFVXIJiks4f1iZ1trzURSag7YDcqT38jKvxw2gjL7yLhFvljaSNQt/8vqMj9Cuaqy5L1vKEOwlMe8Z+KgyBCEH29u1BnwA5U5f8oukeJr2oK2N3mlXk4+M/kMKNVvA4pMVrsOl+FxHAeRVVmXKq4Hhxf7UXANBv63KtpGM0qJAiCIAiCqEWmTJmCM2fO4J577kHjxo2xePHi2u6SLFRkIEKOCB2P9Cbq2Yp4A89xuLuRNKwWALTRKYhKfcXPPbJQevA9UZEBgm8LMmojGMUDpJyhTi31JDTR1+8Gff1utdoHjtcgooX/w9ADGU6jR8RNIzzat+rs/5gig+vqJVb1EJ7yKCJaPeVRPwIJjuMQnvwQwpMf8vuxWQsjc/UVwCwuMmhlCjjamBaISn3V7eNpIhshqv1Lbu9HEITr6OveLilUJhbVANuvVxnKa8zsbi7BFhluqavHw60i8WT7aADAjN1FuFRx/RpSze7gBmwdJNbDbAeCIAiCIAjCe/bu3YsPP/wQBoMBmZmZeO+992q7S4rQXSNB3Iiwkv5gKzIwA6Scil71BBGSaMTFTm+UDBQQ7D2srZdQdVWkHAIAjtf7s0sEQfiASJ1YAVBj9kxlYBLE+7BxYHpmgZpKBh1PKgaCIIKf7du34+mnn0br1q0RExMDvV6Pxo0b47777sNHH32EoqIil9vKyMgAx3FOw1azs7NtHvNKti4bN27EY489hpSUFISHhyMiIgLNmjXDnXfeiUmTJmHjxo22bfPy8sBxHHr27Glb1rNnT9sxrP+ys7Nlj7Vp0yaMGDECzZs3R0REBGJiYpCamoqXX34Z586dU/w5WK/84uJiTJs2DR06dEBcXJziMb/77js8/PDDaNq0KcLCwhAXF4e0tDS8/fbbuHrVuZtDfn4+xo8fj+bNmyMsLAwNGzbE/fffj/Xr1zvd11Os59j+Z/r666/Rq1cv1KtXD+Hh4WjTpg1ef/11lz4z1dXVyMzMRM+ePZGYmAi9Xo8GDRqgf//++Oyzz2A2K08+YD9nZ8+exYsvvohWrVohIiICiYmJGDBgAH766Se3fh4lkpOTwXEcMjIynP5ccuzcuRNTpkxBeno6GjRoAL1ej5iYGNx8880YO3Ysjh49Kruf9Xvy9ttv25axn2n2O+Tqd/DQoUMYPXo0WrZsiYiICERHR6Ndu3aYOHGiQ6slufO2bt06DBw4EA0aNIDBYEBKSgrGjh2L/Px8V0+RRxiNRowaNQpmsxmvvfYaWrVq5dPjeQspGQjiRoTTiN8HmV0SJEUGebUIQRAWJIU4L5QMnJaKDN7C6xm7pOorgIkJdtXI5/0QBBE8yAUml9eYoddoZLZWhhUmsOP+bJGhyou5I0ZmvENLVkkEQQQxFRUVeOqpp/Dll19K1p09exZnz57FDz/8gEuXLmHq1Kl+7dvEiRPxn//8R7L8zJkzOHPmDHbt2oXs7Gxcviy1u3SHyspKjBw5El999ZVk3eHDh3H48GHMmzcPX375JQYOHOiwrRMnTqB3794OB2ivXr2KIUOGiAokAFBVVYV9+/Zh3759yMzMxMqVK3HnnXfKtvHzzz/jvvvuw7Vr12zLCgoKsHr1aqxevdpvv6unnnoKn3zyiWjZ8ePHMWPGDCxZsgQbNmxAmzZtZPfNy8tDv379cOyY2Or2woULWLNmDdasWYP58+dj5cqVSEhwnCu4d+9eDBgwABcvXrQtq6iowI8//ogff/wRL774ImbNmuXhT+k92dnZGDlSal9dU1OD3377Db/99hsWLFiAOXPmYNy4cX7p0/Tp0zFlyhRJIefo0aM4evQo5s2bh6ysLAwfPtxpW6+//jpmzJghWpaXl4ePP/4Yy5cvx5YtW9C2bVtV+2/lgw8+wK+//oqWLVvi9ddf98kx1ISKDARxA8IxRQYh6JQMjF0SFRkIwiHsd0QwVkAQBJd8ts3GMnFb2khV+3YjIpvJQEoGggg5IrTSa2yZUUCcm+2wRQYNc+02MDULNZUMWtK9E4RfEQQBlZWuTwYJdsLCfJf7YjabMWjQIKxbtw4A0LJlS4wbNw5paWmIiIhAQUEBduzYgWXLlvnk+I74/vvvbQWGW265BWPHjkXbtm0RGxuLoqIiHDlyBOvXr8fu3btt+zRq1AiHDh3Cnj178OSTTwIAPvnkE9x+u9iqr3HjxrbXgiBgyJAh+OGHHwAAAwcOxNChQ9G8eXPwPI/du3dj1qxZOHPmDIYMGYLt27cjLS1Nsd9DhgzB2bNn8dxzz+H+++9HfHw8Tpw4gWbNmgGwFBJ69eqFnJwcaDQaDBs2DP3790dKSgpqamqwdetWfPDBB7h48SL69++P/fv32/a1cubMGVuBged5jB49GkOGDEFsbCwOHjyIGTNmYOrUqQ77qQaZmZnYs2cPOnfujIkTJ6Jly5a4ePEisrOzsWzZMpw7dw59+vTB4cOHER0dLdq3tLQU99xzD06dOgUAGDx4MJ588kk0bNgQubm5mDt3LrZs2YJt27Zh4MCB2Lp1KzQKExDKy8vx8MMPo7i4GK+99hr69+8Pg8GAXbt2Yfr06SgoKMAHH3yApk2b4vnnn/fpOVHCaDQiPj4egwYNQvfu3dGyZUtERkbi3LlzyMnJwZw5c3D58mU8++yzaNOmDf72t7/Z9h08eDDS0tKQmZmJefPmAbAoEFgaNWrkcn8yMzMxefJkAEBiYiJeffVVdO3aFSaTCevXr8fMmTNRVlaGjIwM1K1bF/3791dsa8GCBdixYwd69OiBMWPGoFWrVigqKsKSJUuwZMkSXLp0CU8++SR++eUXl/vnKrm5uTaFR2ZmJgyGwJ+ERkUGgrgR4Vm7pOBSMkjskrRkl0QQjpB+RwTAXANonA9kS5QMZJfkNRK7pOoiqYUVFRkIIujR8hwMGg5VdoP+ZTXe2yXxzMC/mnZJbGyEluySCMKvVFZW4tNPP63tbviNJ554AuHhvnmWmzt3rq3A8MADD+DLL7+UDNINGDAA06ZNQ0FBgU/6oIS1sNGsWTNs374dUVHi++v09HSMHz8eV65csS3T6XRo3769SNmQkpKC9u3bKx5n4cKF+OGHH6DT6bBq1Sr07dtXtP7OO+/EE088gW7duuHIkSN44YUXsG3bNsX2Dh8+jDVr1qB37962ZZ06dbK9fuedd5CTk4O4uDisX79etA4A7r77bjz++OPo0qULCgoKMHnyZHz++eeibV566SWbguGzzz7DY489ZluXlpaGhx9+GN26dcPevXsV+6kGe/bsQf/+/bFy5UpotdfHT/r164f27dvjrbfewpkzZzBt2jS8//77on3ffvttW4FhypQpmDZtmm1dp06d8NBDD+GJJ57A559/jh07diArKwtjx46V7celS5dQVFSE9evXo3v37rblnTt3xkMPPYQ77rgD+fn5eOONNzBs2DAkJiaqeRpcol+/fhg2bBgiIiJEyzt06IABAwZgwoQJ6N69Ow4ePIh//OMfoiJDXFwc4uLiUK9ePdsyR59pZ1y6dAkvv/wyAKBhw4bYuXMnmjRpYlvftWtX3H///ejWrRvKysowevRo5ObmQqfTyba3Y8cOjBo1CvPnzxcVRO+55x7o9XosXLgQO3fuxP79+9GhQweP+y3HM888g/Lycjz22GPo1auXqm37CpqbQhA3IqxdUtApGcguiSDcQe474koug2CuAcxiGx+e7JK8hi0yAIC54qLoPSkZCCI0YHMZPAl/NjG7sJkMBqYQUOVN8DMpGQiCCAHMZjNmzpwJwDKzf8mSJYqzgHmed2uWtBqcP38eANCxY0dJgcEeZzY6jhAEAf/85z8BABMmTJAUGKzEx8fbztX27dtx4sQJxTYzMjJEBQZ7SktL8dFHHwEApk2bJikwWGnWrBnefPNNAJa8g7Ky66rp8+fPY8WKFQCA++67T1RgsBIdHY2srCzFPqqFwWDAggULRAUGK2+88YZtIPy///0vqquvK5KrqqqwcOFCAEC7du1krZ04jkNmZibq1KkDwFIQc8SYMWNEBQYrDRs2tNkklZWVYfHixa79cCrTqFEjSYHBntjYWLzzzjsAgG3btqGwsNBnfVm0aBHKy8sBWKyG7AsMVjp06GCzHjp79iy+++47xfaSkpLw4YcfyiquJk2aZHv9888/e9lzMZ999hnWrl2L2NhY/Pvf/1a1bV9Ct40EcQPCMUqGYLdLYkNtCYIQIxeOzhbr5BBqyiTLSMngPbw+XrLMVCGeQcdRJgNBhASsZVKZ0f0CgLuZDF7ZJTG7kpKBIIhg5Ndff7UFso4aNcrhQH5tkJSUBADYunUrTp486ZNjHD161Nb2kCFDHG5rP4DtyPbl8ccfV1y3ZcsWFBcXu3W8mpoa7Nu3z7Z806ZNMJksYxNyHv9WOnfujHbt2jk8hrf07t0bDRs2lF3H8zxGjBgBALhy5QpycnJs6/bt22cLhc7IyFC0QYqJicHQoUMBWH5XjtQ0js7FAw88gLi4OADwaSi2O5SVlSEvLw9Hjhyx5X7YKwUOHDjgs2Nbz0FcXBwefPBBxe2efvppyT5yDBkyRLFA2bp1a9u1xapcUYPCwkK8+OKLAID33nsP9evXV61tX0NFBoK4EaHgZ4K4sZBTMhhdUDIYSyXLKPjZezhtuOR3Yq44L96IlAwEERJEMuHP5R7YJZkZuyQ2k0FVuyRmX5nsaoIgiIBn//79ttfdunWrxZ7IYw2bLSwsRPv27fHoo49i0aJF+OOPP1Q7hr2dUJcuXcBxnOI/+yKMVWUhxy233OLS8ZKSkhwez94Ox/549l78bNYES+fOnR2u9xZ3jm/f78OHD9te33HHHQ7bsF9vv589er0et956q2IbOp3OZtMjl2XgLy5fvozJkyejdevWiI6Otll5paamIjU1FQMGDBBt6yus57Fjx46KFkgAUL9+fSQnJ4v2kUMp2NtKfLxl8lhJSYmbPVXmpZdewqVLl9C5c2c888wzqrXrDyiTgSBuRELOLokyGQjCEbKFOJeUDDJFBh0FP6sBb0iAufyc7b254oJoPdklEURowNollXlil+REyWBgigxVXtzWsfkPpGQgCP8SFhaGJ554ora74TfCwnwzWcx+ENOqGggk7rnnHsydOxcvv/wyKioqsHTpUixduhSAxXrmvvvuw9ixYx0OLjvj4sWLzjeSwWo1I4d1QNVXx7PPoLD36JfD17O73Tm+fb/d+RkaNGggu589CQkJimoIti9Kbfiaffv2oU+fPi7bIFVUOJ/s5inWc+Ds3AOW85+Xl+fwvDmygQIsqhYANgWOt2zcuBGLFy+GRqPBxx9/bGs/WKAiA0HcgHBckNslMTOwSclAEI7heC3AaUUh7y5lMhgZuyReD45XnhFCuA6vFxcZWLskV0K5CYIIfFi7pHIP7JLYIgObyaBnxh6qvLFLYoOfqcZAEH6F4zifBSETgcX48ePx8MMP44svvsC6deuwfft2FBcX4+zZs5g/fz6ysrIwefJkvPvuux61bz/ouXr1atusbWc4Gpx1NNhtf7ycnByHs8jtady4sexyOQ98f6LG8QOlDV9SXV2NoUOHorCwEDqdDs899xwGDRqEVq1aIT4+3mY1dOrUKbRo0QKAJS/E1wT6eVPCmqOSlpaG48eP4/jx45JtcnNzba9Xr15tC/t+9NFH/dNJB1CRgSBuRILcLomCnwnCfThtOISa6zJOVzIZzIxdEuUxqAcb/ixUiWf+cDxlMhBEKMDaJXmiZGDtknhf2iVJgp+D8yGdIIgbm7p169peFxQUOLU8cQfrzGKz2fH13D7QWIl69erhhRdewAsvvACz2Yxff/0VK1aswNy5c1FUVIT/+7//w+23345Bgwa53U9rqDBg8ae3tyjyBfbHS0xMVCweOMJeKXHhwgXZ0F779b7EWfv26+0Duu1fX7hwAa1atVJsw94qSinku7CwECaTyWGBx9oXtg37WfBqfF7l2Lhxoy2PIDMzU5R1YI+/VBYJCQkoKChw6fNhPf/eBKyrTVVVFQBg165dssHnLBMmTLC9DoQiQ3DpLgiCUAc+tOySQHZJBOEUthjnkpKBsUviKY9BNTiD45tZjpQMBBESREjskrwPfmaVDAamEFDN7uAGEiUDPS0SBBGEdOzY0fZ669atqrYdHR0NALZwXyV+//13t9rleR4dO3bEtGnTsGHDBtvyZcuWibZzdYa21acfALZv3+5WXzxBjeOlpqbaXu/Zs8fhts7We4s7x7cv4Ni/3rVrl8M2du/eLbufPdXV1Q6Dko1GI3799VfZNqyfVQC4evWqYhtXrlxx2eqI5ciRI7bXjzzyiOJ29pkdcqilPLCeg5ycHBiNypNpL168iNOnT4v2IbyHbhsJ4gYk2O2SKPiZINyHzS5xRcnABj+TkkE9WCWDdAMqMhBEKBDJjNKrYZfEigvUVDIYSclAEEQIcOutt9pmwS9cuBClpdKcMU9JSUkBYAl6lbMyASwDw8uXL/f4GB07drTN6mdDcu1zLKyznpXasKoJsrKyUFnp/N7fG3r16mXzr58zZ45Hljg9e/a0zdhfvHix4nZ79uxxGNarBmvXrkVBQYHsOrPZbOtffHy8qKjVqVMnxMXFAbD8DEoKgpKSElsB6eabb3aYHeLoXKxYscJWQOjVq5doXXx8vK0vjgb5v/rqK48tjOwH8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rzVJps3b4YgCA7/jRgxwrZ9bm6ubXkgQEUGgrgRkQQ/B5tdEmUyEITbsEoGo/tKBk5Loc9qweuVg/MACn4miFBBqmTw3i5Jwzu2S/Im+JntHikZCIIIRniex8svvwwAyM/Px/Dhw1FdXS27rdlsxrlz52TXydGjRw/b61mzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSTZrqFWrVklUHABQWlqKMWPGeNxPV6mqqsKYMWNkA31nzJiBQ4cOAQCefPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCiu0Hn610794dALBy5UrZz8vx48fx5ptvOjy+I1q2bGl7nZ2dLbvN66+/jpycHIftuPq5dsbIkSNtxa6XXnpJ9nt44MABvPfeewAsQeuDBw/2+HiEGMpkIIgbEUkmQ3ApGSSZDFqySyIIZ7BKBlYRJIdEyUB2SarhTMnAaSiTgSBCgUimyFCugl0SO+5vkFEyCILgtvWAWRDA9k5HSgaCIIKU8ePHY/Xq1Vi3bh1WrFiB1NRUjBs3DmlpaYiIiMD58+exc+dOfPnllxg2bBimTp3qUrsdOnRAly5d8Msvv2DBggWorq7GiBEjEBsbixMnTiArKwsbN27EXXfdhR07dsi28eqrr+KZZ57BoEGD0L17d7Rq1QqRkZEoLCzEtm3b8OGHHwKwBC2zHvdNmzZF48aNkZ+fj3/9619o3LgxWrdubVMA1K9f32aT88wzz9h+/q+//ho5OTkYM2YMOnfujNjYWFy7dg3Hjh3D5s2bsWrVKoSFhTkd8HbEO++8gy1btmDXrl2YPXs2Nm/ejFGjRuG2225DZGQkrl69iiNHjmD9+vVYs2YNUlNTJT/frFmzsG7dOpSUlGDYsGHYsmULhgwZgpiYGBw8eBAzZszA77//jrS0NKcWPN6QlpaG1atXo2vXrpg4cSJatmyJixcvYvHixfjqq68AWEKr5Qbo33rrLXz77bc4deoUpk6dikOHDmHkyJFISkpCbm4u5s6di82bNwMAunTpgtGjRyv2IzExEREREbj33nsxceJE9O/fHwaDAbt378Z7771nK5BNmzZNNrR73LhxWLVqFSoqKpCeno6pU6eiQ4cOKC0txYYNGzB79mwkJiZCo9Hg0qVLbp+nPn36oF69erh48SKmTJmCvLw8PPDAA6hbty7++OMPLFiwABs2bEDXrl0d2mjdddddttcTJ07EG2+8gaSkJNu9THJyMrRa50PYiYmJmDlzJsaPH4/8/Hx06tQJr732Gu666y4YjUasX78eM2fORGlpKTiOQ1ZWlssh5YRzqMhAEDcgHB/cdkkU/EwQ7uNRJoNRLHkluyT14PRkl0QQNwIRbPCzGnZJTJXBwApUYclW0ClnRMrC5jEAZJdEEETwwvM8vvvuO4wYMQLffPMNfv/9d7zwwguqtP3JJ5+gR48etkFn1s5m0qRJaNeunWKRAbDYucjta8VgMODjjz9GWlqaZN3kyZMxbtw45ObmSkKhFy1ahIyMDAAWn/ulS5fi+eefx8cff4yTJ0/ilVdeUeyT3CC1OxgMBqxbtw4ZGRn49ttvceDAAYdFi5iYGMmy5ORkrFq1Cvfffz9KSkqQmZmJzMxM0TZvvfUWOI7zaZFh/Pjx2LJlC7Kzs2UDdZOSkvC///0PsbGxknXR0dHYsGED+vXrh2PHjmH58uWy9lldu3bFqlWrHIY6R0RE4JtvvkG/fv0wffp0TJ8+XbLNhAkT8OKLL8ru36dPH0yYMAFz5sxBfn6+bNFq1apV6Nevn2IfHBEZGYklS5Zg8ODBqKysxPz58zF//nzRNunp6Zg7d67D7IObbroJQ4cOxbJly7B27VqsXbtWtD43NxfJycku9WncuHEoKirCm2++iQsXLmDixImSbQwGA7KystC/f3+X2iRcgwSwBHEjEmJ2SawNDEEQUljFjyuZDGaJXRIVGdTCqZKBigwEERJEalklg/t2SWyRQcM5tksCgCoPwp9rZPbRUo2BIIggJiIiAl9//TU2btyIJ554AikpKQgPD4der0eTJk0wcOBAzJ8/Hy+99JJb7bZp0wY5OTkYO3YsmjVrBr1ej8TERPTt2xc//PADZs6c6XD/TZs2Yfbs2XjooYeQmpqKxMREaLVaxMTEoEOHDpg0aRKOHj1qKxawjB07FsuXL0fv3r1Rr149hzO8dTodMjMzceDAATz33HNITU1FbGwsNBoNYmNjcdttt+Gpp57CN998g99++82t8yBHdHQ0li9fjp9//hlPP/00WrdujejoaGi1WiQkJOD222/H+PHj8eOPP2LdunWybaSnp+PIkSOi81u/fn0MGDAAP/30E95++22v++kKixYtwhdffIH09HTUqVMHBoMBrVq1wiuvvIIjR47g5ptvVtw3OTkZBw4cwNy5c9GjRw/UqVMHOp0O9evXR9++ffHpp59i69atSEhwMvEIFlVFTk4OJkyYgBYtWiAsLAx16tRB37598eOPP2L27NkO9589eza++OILdO/eHTExMQgPD0fr1q3x2muvIScnB23btnX73NjTp08f7N27F3//+9/RsGFD6HQ6JCYmokePHsjKysKGDRsQGencdvezzz7D+++/b1Pa8OysCjeYPHky9u/fj1GjRqFFixYIDw9HZGQk2rZti+effx7Hjh3D8OHDPW6fkIcTAiUdgvCI/Px8W6DRn3/+aQv2IQhHVBVswpX//c32ng9LRP1HL9Zij9zj0upOMBZe9/SLvXsxIm6iPxAE4Ygr6/qh6uxPtvfRae8jqv3LDvcp3jUB5b99aHsf3moU4u7K8lkfbySqzq3HlbX3Kq6PuXMeIts848ceEQThC86XGfH85iuiZZ/2TZQtDCjx9NpLKLGzWfrHnXG4uc71QmRpjRlPrRUHg867pw4SwtyTMhRXmTF6vbidBb3qIsZA89IIwoo3z98nTpyA0WiEVqsV+ZgTBBEY5OXl2TIw7BUhtUFGRgYWL16MZs2aIS8vr9b6QYQuvvibRHeMBHEDEux2SayXPNklEYQLaNxXMrDBzzwpGVSDMhkI4saAtUsC3FczSDIZmPqEQcbSqJqVP7iAUU7JQE+LBEEQBEEQhAvQbSNB3IhIgp+DzC7JKLZLoiIDQThHkslgdCWTgbVLci5zJVzDWSYD2SURRGgQIeM35G4ugySTgbFL0vIAe5QqD+aPyNolUSYDQRAEQRAE4QJUZCCIGxFJJkNwKRkkwc+M1zxBEFIk3xMPlAwU/KwevCHe8QYaKjIQRCig5TkYGGukshp3iwzi7VmnJY7jJPZLVR4pGaTLSMlAEARBEARBuIJyOgxBECELxwW3XZKkyEBKBoJwikTJwAaoyyBVMlCRQS04XYyl4Ktw/SUlA0GEDpE6TjToX+alXZJcnINBI1YveGSXxBQzeE6qmiAIgiCIQCU3NxdlZWVu7xcfH49GjRr5oEfEjUZZWRlyc3M92rd169bQ6XQq98i/UJGBIG5Egt0uiR0cpSIDQTiF8yCTwWwU36STkkE9OI4Dr4+Hueqy/AY8ZTIQRKgQoeVgH/1c7qaSQZrJIB34tygZrm/oWSaD+L2M0xNBEARBBCwjR47Eli1b3N5vxIgRyM7OVr9DxA3Hnj170LNnT4/2zc3NRXJysrod8jNUZCCIGxE+eO2SBEGQCX4muySCcIZHmQysXRIpGVSFMyQACkUGjuySCCJkiNTxAK7fa5XJ+RIpYBYEsOUCuZgEPbOwWiZfwRls8LOO8hgIgiCIG4jk5GTLeEMAkJ2dTYUPIuigIgNB3Ihw7FdfgCCYwXFBYLxrrpYsIrskgnABD5QMFPzsW3hDApRKvGSXRBChQ6TO80wGuVqBRuZ2jc19UCOTgfIYCIIgiGBi8+bNtd0F4gYnPT09YApVtQHdOhLEDQjH2iUBQaNmkJt9TUUGgnCOR5kMjJKBJ7skVeENCQ5WUpGBIEKFCMZ3yB27JLlagUbRLuk61R7c1tUwFQ0tKRkIgiAIgiAIF6EiA0HciMgVGcxBUmSQmX1NdkkE4RxOy3xPnCgZBEGg4Gcfw+uViwychjIZCCJUsNglXcdduyQWubF/A3Nrp0omAxUZCIIgCIIgCBehIgNB3IjwUqc0QQiO8GdZixdSMhCEU9xWMpgqAUE84kTBz+rCGeKVV5KSgSBChgidukoG2UwGNeySBFbJ4HYTBEEQBEEQxA0K3Tp6yd69e/HOO++gd+/eaNy4MQwGA6KiotCqVSuMHDkS27Ztq+0uEoSEoLZLkhkYJbskgnAOq/hxlskgGMukbZCSQVUcKhmoyEAQIUMkM1rvViaDjOjBNbskD4oMzK0gKRkIgiAIgiAIV6HgZy/o3r07fv75Z8ny6upqnDhxAidOnEB2djaGDx+OBQsWQK+nAQMiQAjiIoPE4oXXgeNlfh6CIERIlAwy+Sb2mJk8BgDgdBT8rCaOMhk4Dd0zEESoIFEyeGmXpJGzS2IKAtVyidFOYJUMOpqORhAEQRAEQbgIFRm84Ny5cwCAhg0b4uGHH0a3bt3QtGlTmEwm/PLLL5g1axbOnj2LJUuWoKamBl988UUt95gg/kLOLskcnHZJpGIgCBdxW8kgU2TQRKjapRsdzmHwM2UyEESoEMkUGdxRMvjVLonNZJBRTBAE4TkajQZGoxEmkwlmsxk8T5U8giAIwv+YzWaYTJaJxhqNepN2qcjgBW3atMF7772Hhx56SPJLufPOO/HEE0+ga9eu+P333/Hll1/imWeeQffu3WuptwRxnVCyS6IiA0G4hruZDEING/ocQaohlXGoZCC7JIIIGSIYSUB5jetKBvkig3O7pCoPbutqzJTJQBC+JCwsDFVVVRAEAaWlpYiJiantLhEEQRA3IKWlpRD+UrCGh4c72dp16NbRC77//nsMHTpUsepTt25dzJo1y/b+m2++8VfXCMIxnEx9MWiKDKySQb0LIkGEMpyW+a64qWSgPAb1cZjJQHZJBBEyRGoZJYNRsD3YOcNluyTmccSjTAZJkYGUDAShJvZFhfPnz+PatWswywWvEARBEIQPMJvNuHbtGs6fP29bFh0drVr7pGTwMT179rS9PnnyZC32hCDskFEyBKtdEkjJQBAuIadkEAQBnIIdhkTJoKMig9rwhngHK6nIQBChAmuXZDQDNWZA74I4TC5awRW7JM+KDOL3pGQgCHWJjIxEeHg4KioqYDKZcPbsWXAcp6pVBUEQBEEoYTKZRBNdwsPDERmpXu4iFRl8TFVVle013TwQgUIw2yXBSHZJBOEJEtWPYAYEI8DpZLcXjGXi/UnJoDqKmQwcD04mO4cgiOCEtUsCgLIaM/QuPBu4nMmgRvAzKRkIwqdwHIemTZvizJkzqKiwPNMIggCjMTgmexEEQRChQ3h4OJo2bao46dAT6AnWx2zZssX2um3btm7vn5+f73B9QUGB220ShFzw87U9E8HpnPuC8vpYhLcYAX1iZ9n15srLKDv6HxhL87ztpSymErEiiOySCMI15ApyRVufkL0eAIDp2h/i/bXqzXAgLPB6BSUDqRgIIqSI0Eof3hYeLkHYX+qD4mozDl2uAQDc3zwCfZLDUTfcUoAwMXZJPAfZh0EDo2Q4U2LEh/uLxdtoOdyVFIb2deWvMUamLiFTGyEIwkt4nkezZs1QVlaGkpISm6qBIAiCIHyNRqNBeHg4oqOjERkZqWqBAaAig08xm82YMWOG7f3QoUPdbqNJkyZqdokgLMgoGar+XO3y7uUnPkHi4N+gjU6WrLuycRBqLu7wpnduQUoGgnARNpMBQGXeUpd3J7sk9eF4LThdDISaa8xyKjIQRCih5TkYNByq7GQJey9Uy2676lQ59lyowgc9EsBznMQuSS6PAZDaJZVUC9h2rkqy3aY/K/F/XePRPFaqYpMoGVR+8CQIwgLHcYiKikJUFN1bEQRBEKEDzU/xIf/+97+xe/duAMCDDz6ITp061XKPCMICx3HezUo2VaL6/Ebp4ooLfi0wAACnj/Pr8QgiWOG1UbIFRpf3dxBSTHgOH15fsswVVRlBEMFFrN71AfuCMhMKyiwzm6sYvySNwsB/lM619s0CcPCSfIGjmplMTXZJBEEQBEEQhKtQkcFHbNmyBa+99hoAoF69epg3b55H7fz5558O/1mLGAThLmEpj3i1v1BTIllmKj3tVZueEJ7yqN+PSRDBCKcNR1jTQR7vT9813xDe/HGZZY/VQk8IgvAldzdyT3lZVmMpLlyuEKcxx4fJP761SdAhQWEdC1u4sFLJLA+TsXkiCIIgCIIgCDnILskHHDlyBA888ACMRiPCwsLw9ddfo169eh611bhxY5V7RxAWYrt8DH397jAWH3Np+8q8b2Aque7RLjABzABgKvtT9J7TxyOi9RjvOqoAx2mhb9ADhoa9fNI+QYQicd0+Q0Wjz2Fksk0cwfE66Bv8DYakdN917AYm6ta3oI1rh5rCHAACdPG3IizFfXtFgiACm4dbRaJJtBanrxlhP5S/70IV8kulfuzWAf9L5eJ1ieHyirQwLY9374rHjoIqlFSLCxPsMRRqDKg0ivejIgNBEARBEAThKlRkUJnc3Fz07t0bV69ehUajwVdffYXu3bvXdrcIQgLH6xBx0wiXtzdd+0NcZDBJiwxmpsigjWuHmE7TPe8kQRCqwmnDEdHq6druBmEHx3EITx6C8OQhtd0VgiB8CM9xuKthGO5qyCwHkF9aLtm+ymhVMrBFBmW1Qp1wDQY2j5AsL6oyi4oMbPaClQom+TlcKQCCIAiCIAiCIBjILklFzp07h169euHcuXPgOA6ffPIJBg3y3JqCIAIJjgmNlSsymMrFRQZNVFOf9okgCIIgCCKYMSssr/xrwP8SY5dUV0HJ4AhWkKCoZCC7JIIgCIIgCMJDqMigEpcvX8a9996LU6dOAQA+/PBDDB8+vJZ7RRDqwWmYIoMLdkmaiCY+7RNBEARBEEQoUmGyFBekSgb3iwwaJsDZpFDZqDRSkYEgCIIgCILwDCoyqEBxcTH69OmDo0ePAgBmzJiB8ePH13KvCEJlNOLAQsFUKdlEUmSIpCIDQRAEQRCEEgrORag0ChAEAZfYIkOE+49vWmYXo0B2SQRBEARBEIS6UJHBS8rLyzFgwADk5OQAAN544w28+uqrtdwrglAfiZJBzi6p7IzoPRUZCIIgCIIg3KfSJKC4WkANozrwxC5Jw4mLBUZSMhAEQRAEQRAqQ0UGL6iursYDDzyA7du3AwCef/55vPvuu7XcK4LwDWwmA5gig2Cugbm8QLSMigwEQRAEQRDKCAqqgkqjILFK0nBAQpgHSgZJJoP0mIIgUCYDQRAEQRAE4THa2u5AMPPYY49h7dq1AIC//e1veOqpp3D48GHF7fV6PVq1auWv7hGEqjjLZDCVnwMgfjilIgNBEARBEIQyCm5JqDRKrZLqhPHgOfcH/jVMXUIuk6HGLA2EDqciA0EQBEEQBOEiVGTwgm+//db2euPGjbjlllscbt+sWTPk5eX5uFcE4RtYJQNrl2Rm8higCQdnqOPrbhEEQRAEQQQtikUGk4DL5eJqgCdWSYDULklOycBaJQGUyUAQBEEQBEG4DtklEQThEk6VDDKhz5wHs+0IgiAIgiBuFBTckmSVDIkRHhYZ2OBnGSUDa5UEkF0SQRAEQRAE4TqkZPACJQ9VgghFnAU/U+gzQRAEQRCEezhSMrBFhrrhns0P0/LOlQwVjJKBA2AgJQNBEARBEAThIlRkIAjCNZzYJckpGQiCIAiCIAhlHCkZSqrFkoNED+2SWEGCnJKhglkYpuVIkUoQBEEQBEG4DBUZCIJwCU/skgiCIAiCIAhlzApFhgqjgKtV6hQZNKySQeagbCZDGKkYCIIgCIIgCDegTAaCIFyC04SJ3jtXMjT1eZ8IgiAIgiBCkatVZomFkad2SWy9QCbjWZLJQHkMBEEQBEEQhDtQkYEgCJdglQwwVYremknJQBAEQRAE4RaCQiqDXEZCXY/tkthMBufHC6ciA0EQBEEQBOEGVGQgCMIlOJlMBmv4uWCsgLnqsmg9T0UGgiAIgiAIhyhlMrDEh/GSAGdX0TBPfGSXRBAEQRAEQagNFRkIgnAJiZJBMAPmGgBSqySAlAwEQRAEQRDOcLHG4LGKAYCkOCGnZCC7JIIgCIIgCMIbqMhAEIRLsEoG4HouA1tk4HSx4HXRfukXQRAEQRBEsOKqkiHRwzwGQCaTQUbJQHZJBEEQBEEQhDdQkYEgCJeQKBlgsUkC5EKfScVAEARBEAThDFeVDIleKBlYuySjWbqNxC6JigwEQRAEQRCEG1CRgSAI15ArMliVDOVMkSGqqV+6RBAEQRAEEcz4xS5JEvzsXMlAmQwEQRAEQRCEO1CRgSAIl3DHLkkTQUoGgiAIgiAIZ/jFLkkS/Czdhs1kILskgiAIgiAIwh2oyEAQhEtwHA/wevHCv+ySzEyRgSe7JIIgCIIgCKcILmoZvFEyaBglg1Eu+JnxUArT0mMiQRAEQRAE4Tp090gQhMuwuQzXlQxnRMspk4EgCIIgCMI5LisZIrywS2KVDGSXRBAEQRAEQagMFRkIgnAZThMmeq9ol0RFBoIgCIIgCKe4UmOI0XMweDHoz2YyGM2AwBQayC6JIAiCIAiC8AYqMhAE4TJsLoNgqoS5uhhCTYloORUZCIIgCIIgnONKkcEbqyRAmskAAGbmwJVGKjIQBEEQBEEQnkNFBoIgXEZil2SskKgYAEAT0dhfXSIIgiAIgghaXLFLSvS2yCBTL2CEC1K7JCoyEARBEARBEG5ARQaCIFxHomSQFhn4sHrgtGJbJYIgCIIgCMIzEsO9e2TT8tKCgZGRMlAmA0EQBEEQBOENVGQgCMJl5JQMZspjIAiCIAiC8AjWtkgOr+2SnCgZjGZBomwguySCIP6/vTsPsqq888f/bmigoYEvCphgwBVb1KghiKPjigtWgiaiianERCRoHJM46DjqaIxrjDJq3GpmLAUlTiZqTKImOlQpigyyiCiTiQYCLqiMIiCgyNY03N8f/LhDQwPNpTfw9arqqtP3POf0p62P1L39Ps/zAMC2KG/uAoAdxyYhw5oVWbvqo1qvtRIyAADUS332ZOjeYftChrpmMqzZIN3YeBZDYrkkAAC2jZkMQL1tvPFz6lguyUwGAID6aa49GTbMFeoMGSyXBADANhAyAPVWn42fhQwAAPVTqMdchsbek2HlxmslxUwGAAC2jZABqLe6lkvaNGTYoylLAgDYaXUoL0uHNtv3kW1rezKs3GgmQ7vWZWlVJmQAAKD+hAxAvW28XFKhZnnWLJ9b6zUzGQAA6mdrGz9v76bPSVLHRIasWft/xytq1tY6ZxYDAADbSsgA1FtZ64pa369Z9l6yZmWt14QMAAANY7cO2/9xraysbJPZDDUbbAax8UyG9vZjAABgGwkZgPrbaLmkmk9m1T5f1iqt2vdowoIAAHZcTTGTIUnKN/rUt+FMho33ZDCTAQCAbSVkAOpt4+WS1nwyu9b3rdrvnrJW5U1ZEgDATqvBQoaN9lhYs8FMhhU1QgYAALaPvwYC9bbxxs9J7Q+llkoCAKi/rUxkSPf2DfNMWOuNbvPb2cvy/9quSJLM/XRNrXOWSwIAYFsJGYB62zRkqK115R5NVAkAwI6vUNhyzNC9gWYytC4ry4aRxp8Xrt7sWDMZAADYVpZLAuqtVbtdtni+dce9mqYQAICdwIFd227x/G4dGiZkaL8NwUGntj4iAgCwbbyDBOqtbY8TU9aua90nW7VN+73PatqCAAB2YKfs2T6d29YdAPT/XNsG+4P/3+5eUa9xrcqSI3q0a5CfCQDAZ4flkoB6a93+c+l26tSsnPNY1lYvKb5e1rp9KnqdljZd+zZfcQAAO5gObVrln4/ZNVM+WJUela1zUNe2+a//XZlWZckxX6hfMFAf39ivQ3p1ap23P67Z7D4QbVolh3Zvl6pd2jTYzwUA4LNByABsk/JO+6TjwVc0dxkAADuFXSpa5yt7dyh+f+IeW94DqxRlZWU5okdFjujR4LcGAADLJQEAAAAAAKURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMjSgd955J5deemn69OmTysrK7Lrrrunfv39uvfXWLF++vLnLAwAAAACABlXe3AXsLP74xz/mu9/9bj755JPia8uXL8+0adMybdq0jBw5Mk8//XR69+7djFUCAAAAAEDDMZOhAUyfPj3f+ta38sknn6Rjx4656aabMmnSpDz33HM5//zzkySzZs3KoEGDsnTp0mauFgAAAAAAGoaZDA1g+PDhWbFiRcrLy/PMM8/kyCOPLJ474YQTst9+++Xyyy/PrFmzcvvtt+e6665rvmIBAAAAAKCBmMmwnaZOnZoJEyYkSYYNG1YrYFjv0ksvzQEHHJAkueuuu7J69eomrREAAAAAABqDkGE7PfHEE8XjoUOH1jmmVatWOeecc5IkS5Ysybhx45qiNAAAAAAAaFSWS9pOL774YpKksrIy/fr12+y44447rng8ceLEDBw4sNFra4lWrliRmbNebe4yAAAAaEH6VH05Fe3bN3cZAEAJhAzbacaMGUmS3r17p7x88/85+/Tps8k19TF37twtnv/ggw/qfa+WYOasVzP1pdebuwwAAABamC8delRzlwAAlEDIsB1WrlyZhQsXJkl69uy5xbG77LJLKisrs2zZsrz33nv1/hm9evXarhoBAAAAAKCx2JNhOyxdurR43LFjx62Or6ysTJJ8+umnjVYTAAAAAAA0FTMZtsPKlSuLx23btt3q+Hbt2iVJVqxYUe+fsbVZDx988EEOP/zwet8PAAAAAAAaipBhO1RUVBSPq6urtzp+1apVSZL227CZ1daWYdrR9Kn6cnOXAAAAQAvjsyIA7LiEDNuhU6dOxeP6LIG0bNmyJPVbWmlnVdG+vc28AAAAAAB2EvZk2A4VFRXp2rVrkmTu3LlbHLt48eJiyGAzZwAAAAAAdgZChu104IEHJkneeOON1NTUbHbczJkzi8cHHHBAo9cFAAAAAACNTciwnY4++ugk65ZCeuWVVzY7bvz48cXjo46yXBAAAAAAADs+IcN2Ov3004vHDz74YJ1j1q5dm4ceeihJ0qVLlwwYMKApSgMAAAAAgEYlZNhOhx9+eI455pgkyahRozJ58uRNxtx+++2ZMWNGkmT48OFp06ZNk9YIAAAAAACNoby5C9gZ3HXXXTnqqKOyYsWKDBw4MFdddVUGDBiQFStW5JFHHsl9992XJKmqqsqll17azNUCAAAAAEDDEDI0gL59++bRRx/Nd7/73XzyySe56qqrNhlTVVWVp59+Op06dWqGCgEAAAAAoOFZLqmBnHbaafmf//mfXHLJJamqqkqHDh3SpUuXHHbYYRkxYkSmT5+e3r17N3eZAAAAAADQYMoKhUKhuYugdHPnzk2vXr2SJO+991569uzZzBUBAADAzsfnbwCom5kMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABAScqbuwC2T01NTfH4gw8+aMZKAAAAYOe14WfuDT+LA8BnnZBhB7dgwYLi8eGHH96MlQAAAMBnw4IFC7LXXns1dxkA0CJYLgkAAAAAAChJWaFQKDR3EZRu5cqV+fOf/5wk6d69e8rLW/7klA8++KA462Lq1Knp0aNHM1cEpdPP7Gz0NDsT/czORD+zs9kRe7qmpqa4msDBBx+cioqKZq4IAFqGlv8XabaooqIi/fv3b+4yStajR4/07NmzucuABqGf2dnoaXYm+pmdiX5mZ7Mj9bQlkgBgU5ZLAgAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASlJWKBQKzV0EAAAAAACw4zGTAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQgSb1zjvv5NJLL02fPn1SWVmZXXfdNf3798+tt96a5cuXN3d5kGnTpuWGG27IwIED07Nnz7Rr1y4dO3ZMVVVVhg4dmhdffHGb7jdmzJgMHjy4eK+ePXtm8ODBGTNmTCP9BrB1V1xxRcrKyopfL7zwwlav0cu0NO+++26uvfbaHHbYYenevXsqKirSq1evHHPMMbnmmmvy2muvbfF6PU1LUV1dnZEjR+aUU05Jjx49iu899t9//wwdOjSTJk2q1330NI1l/vz5eeqpp3LNNdfkK1/5Srp161Z8D3Huuedu8/0aoldrampy77335phjjkn37t3Tvn377Lvvvrngggvy+uuvb3NNAMB2KkAT+cMf/lDo3LlzIUmdX1VVVYXZs2c3d5l8hh1zzDGb7c8Nv84555zCqlWrtnivNWvWFIYNG7bF+5x33nmFNWvWNNFvB+tMnz69UF5eXqsXx40bt9nxepmW6O677y5UVlZusS+HDx9e57V6mpZkzpw5hYMOOmir7z0uuuiiwtq1a+u8h56msW2pt4YMGVLv+zRUry5YsKDQv3//zd6jXbt2hfvvv387f2sAYFuYyUCTmD59er71rW/lk08+SceOHXPTTTdl0qRJee6553L++ecnSWbNmpVBgwZl6dKlzVwtn1Xvv/9+kmT33XfP8OHD89vf/jZTp07N5MmT84tf/CJf+MIXkiQPPfTQVp/a+slPfpJRo0YlSfr27ZuHH344U6dOzcMPP5y+ffsmSUaOHJmrr7668X4h2MjatWvzgx/8IDU1Ndltt93qdY1epqX52c9+lr//+7/PsmXLUlVVlVtvvTUvvPBCpk+fnrFjx+bWW2/N3/7t36ZVq7rf5uppWorVq1dn0KBBxaeuDznkkIwePTqTJ0/OM888k2uuuSaVlZVJknvuuScjRoyo8z56mqa0xx57ZODAgSVd2xC9umbNmgwePDgvv/xykuSMM87ImDFj8tJLL+Xuu+/ObrvtllWrVuWCCy4wiwcAmlJzpxx8Nqx/Qry8vLwwadKkTc7/8z//c/HJk2uvvbbpC4RCoTBo0KDCo48+Wqipqanz/IIFCwpVVVXFXh0/fnyd4/76178WnxQ/7LDDCsuXL691ftmyZYXDDjus+P+EGTw0lTvuuKOQpNCnT5/ClVdeudWZDHqZlmbs2LG1ZpVVV1dvdmxdM870NC3JY489VuznIwXwsRQAABQ+SURBVI88ss73H9OmTSu0adOmkKTQpUuXwurVq2ud19M0hWuuuabwxz/+sTBv3rxCoVAovP3229s8k6GhenXUqFHFn/3DH/5wk/OzZ88uzp7v3bv3Jv/PAACNw0wGGt3UqVMzYcKEJMmwYcNy5JFHbjLm0ksvzQEHHJAkueuuu7J69eomrRGS5KmnnspZZ52V1q1b13m+W7duuf3224vf//a3v61z3J133pmampok6548bN++fa3zHTp0yD333JNk3Xqyd9xxR0OUD1v07rvv5qc//WmS5N57703btm23eo1epiVZu3ZtLrzwwiTJoYcemlGjRqVNmzabHV9Xj+tpWpIN91q48sor63z/0a9fv5x66qlJkiVLlmTGjBm1zutpmsL111+fU089NZ/73OdKvkdD9eptt92WJNl1111z6623bnK+d+/eufLKK5Mkb7zxRh5//PGSawYA6k/IQKN74oknisdDhw6tc0yrVq1yzjnnJFn3AWrcuHFNURpsswEDBhSP33zzzU3OFwqFPPnkk0mSPn365IgjjqjzPkcccUT233//JMmTTz6ZQqHQCNXC//nRj36UTz/9NEOGDMlxxx231fF6mZbmmWeeyezZs5Os27y8vLx8m67X07Q01dXVxeN99tlns+P23XffOq/R0+woGqpXZ82aVQzazjrrrHTo0KHO+2y4rKmQAQCahpCBRvfiiy8mSSorK9OvX7/Njtvwj14TJ05s9LqgFKtWrSoe1/XE4dtvv13c22Frf8hdf/5///d/M2fOnIYrEjbym9/8Jk899VR23XXX4hOAW6OXaWkee+yxJElZWVnxye4kWbRoUWbPnp1FixZt8Xo9TUuz/o+pSfLWW29tdtz6hxrKysqy3377FV/X0+woGqpX13+u3Np9Pv/5z6eqqiqJz5UA0FSEDDS69U+b9O7de4tPHfbp02eTa6ClGT9+fPF4/RJfG/rLX/5SPN6wp+ui52kKS5YsyfDhw5MkI0aMSLdu3ep1nV6mpZkyZUqSZK+99kqnTp3y61//OgcffHC6du2aqqqqdO3aNfvvv39uu+22WoHwenqalubb3/52OnfunGTdv89r1qzZZMz06dPz9NNPJ0m+853vFMcnepodR0P1ain3ee+997Js2bJ61woAlEbIQKNauXJlFi5cmCTp2bPnFsfusssuqaysTLLuzSC0NGvXrs0tt9xS/P6ss87aZMzcuXOLx1vr+V69ehWP9TyN5fLLL8+8efNy1FFHZdiwYfW+Ti/TkqxduzYzZ85Msm5/nOHDh+fss8/Oa6+9VmvcrFmzctlll+WEE07IkiVLap3T07Q03bp1y7//+7+nQ4cOmThxYvr375+HHnooU6ZMydixY3P99dfnuOOOS3V1db785S/X2hcq0dPsOBqqV0u5T6FQqHUdANA4hAw0qqVLlxaPO3bsuNXx60OGTz/9tNFqglLdcccdmTp1apLkjDPOqHP5r23p+fX9nuh5GseECRMycuTIlJeX5957701ZWVm9r9XLtCQff/xx1q5dmyT585//nLvvvjs9evTIr371qyxatCjLly/P+PHji+t8T5o0Kd///vdr3UNP0xJ97WtfyyuvvJLzzjsv//3f/50hQ4bkyCOPzMknn5zrrrsuHTp0yJ133pkJEyZssumunmZH0VC9qucBoOUSMtCoVq5cWTxu27btVse3a9cuSbJixYpGqwlKMX78+PzTP/1TkmS33XbLv/3bv9U5blt6fn2/J3qehlddXZ0f/OAHKRQKueSSS/LFL35xm67Xy7QkGy51sXLlynTo0CHjxo3L2WefnV122SXt27fPsccem+effz6HHnpoknWbfb700ku1rltPT9NSVFdX56GHHtrshswffvhhfvWrX2Xs2LGbnNPT7Cgaqlf1PAC0XEIGGlVFRUXxuLq6eqvj16+h3L59+0arCbbV66+/nsGDB6empiYVFRV57LHHsttuu9U5dlt6fsM1w/U8De3nP/95Zs6cmT322CPXXnvtNl+vl2lJNuzHJDnvvPNqbZq7Xvv27XPTTTcVv3/00UfrvIeepiVYtmxZTjrppNx8881ZtGhRLr/88syYMSOrVq3Kxx9/nGeeeSZHH310pk2bltNPPz2/+MUval2vp9lRNFSv6nkAaLmEDDSqTp06FY/rM011/ZOK9VlaCZrC22+/nYEDB2bx4sVp3bp1HnnkkRx77LGbHb8tPb/hk7l6noY0c+bM3HzzzUmSe+65p9aSAfWll2lJNuzHJBk4cOBmx5544okpLy9Pkrz88st13kNP0xJcd911mTBhQpJk1KhRGTFiRPr06ZO2bdumc+fOOfnkkzNu3LgMGDAghUIhl112Wf70pz8Vr9fT7Cgaqlf1PAC0XOXNXQA7t4qKinTt2jUfffTRVjfcWrx4cfHN4IYbfkFzef/993PSSSfl/fffT1lZWR544IF8/etf3+I1G25Ct7We33AzOz1PQ7rjjjtSXV2dffbZJ8uXL88jjzyyyZgNN8x9/vnnM2/evCTJaaedlsrKSr1Mi9KuXbt07949CxYsSLLlPquoqEi3bt0yb9684vjEv8+0LIVCIQ888ECSpKqqKkOGDKlzXHl5eW688cYcffTRWbt2bUaPHp077rgjiZ5mx9FQvbrxfbp167bV+5SVlW11k2gAYPsJGWh0Bx54YCZMmJA33ngjNTU1xacLNzZz5szi8QEHHNBU5UGdFi5cmJNPPjlvvfVWknVPg59zzjlbve7AAw8sHm/Y03XR8zSW9UsEvPXWW/n2t7+91fE33nhj8fjtt99OZWWlXqbFOeigg/LCCy8kSdasWbPFsevPb/ieQ0/Tknz44YdZtGhRkqRv375bHNuvX7/i8Ya9qafZUTRUr258ny996UtbvU+vXr1KmtEJAGwbyyXR6I4++ugk66asvvLKK5sdN378+OLxUUcd1eh1weZ8/PHHOeWUU/KXv/wlSXLLLbfkRz/6Ub2u3XvvvbP77rsnqd3Tdfmv//qvJMkXvvCF7LXXXqUXDI1AL9PSbLhU3foAuC6ffPJJFi5cmGRdT66np2lJNgzAampqtjh29erVdV6np9lRNFSvrv9cubX7zJs3L7NmzUricyUANBUhA43u9NNPLx4/+OCDdY5Zu3ZtHnrooSRJly5dMmDAgKYoDTaxfPnyDBo0KK+++mqS5Cc/+UmuuOKKel9fVlZWXFJp5syZmTJlSp3jpkyZUnzC6utf/3rKysq2s3L4P6NHj06hUNji14abQY8bN674+voP9HqZlubMM88sHj/++OObHff444+nUCgkSY455pji63qalmTXXXdN586dkySTJ0/eYtCw4R9T99577+KxnmZH0VC9WlVVVZzd8Jvf/CbLly+v8z6jR48uHg8ePHh7ywcA6kHIQKM7/PDDix/yR40alcmTJ28y5vbbb8+MGTOSJMOHD0+bNm2atEZIkurq6gwePDgTJ05Msq4Xf/azn23zfS6++OK0bt06SXLRRRdlxYoVtc6vWLEiF110UZJ1TyRefPHF21c4NBK9TEtyyCGH5Ctf+UqS5OGHH85zzz23yZh58+bl6quvTpK0bds2Q4cOrXVeT9NStGrVKoMGDUqybg+om266qc5xixcvrvWww6mnnlrrvJ5mR9FQvfqP//iPSZJFixbl8ssv3+T8m2++mZtvvjlJ0rt3byEDADSRssL6R72gEU2fPj1HHXVUVqxYkY4dO+aqq67KgAEDsmLFijzyyCO57777kqx7OmXatGnp1KlTM1fMZ9GZZ56Z3//+90mSE044IXfeeecWn/Zr27Ztqqqq6jx35ZVX5pZbbkmybq3lK664Ivvuu2/efPPNjBgxItOnTy+O+/nPf97Avwls3XXXXZfrr78+ybqZDMcff3yd4/QyLcmsWbPyN3/zN1myZEkqKipy8cUX56tf/Wrat2+fqVOn5uabby5uKjpixIg6/wClp2kpZs6cmX79+hWfxj7ttNMyZMiQ7LPPPlm5cmWmTJmSO++8M++++26S5MQTT8zYsWM3uY+eprG9+OKLeeONN4rfL1y4MJdddlmSdcsRnXfeebXGn3vuuXXepyF6dc2aNTnuuOOKDwWdeeaZOf/887PLLrtk6tSpufHGGzN//vy0atUqTz31VDGcBgAaWQGayB/+8IdC586dC0nq/KqqqirMnj27ucvkM2xzvbm5rz333HOz91qzZk3h+9///havHzZsWGHNmjVN9wvCBq699tpiL44bN26z4/QyLc2ECRMKn/vc5zbbj2VlZYWrr756s9fraVqSZ599ttCtW7etvuc44YQTCosWLarzHnqaxjZkyJBteo+8OQ3VqwsWLCj0799/s/do165d4f7772/o/wwAwBaYyUCTeuedd3LXXXfl6aefzty5c9O2bdv07t073/zmN/PjH/84HTp0aO4S+Qzb1jWK99xzz8yZM2eLY/7zP/8z9913X15++eUsXLgw3bp1S//+/XPBBRd4sopmVd+ZDOvpZVqSjz76KPfcc0+eeOKJvP3226murk6PHj1y/PHH56KLLkrfvn23eg89TUvx0UcfZdSoURkzZkxef/31LFmyJOXl5fn85z+f/v375zvf+U6+9rWvbfV9ip6msZx77rn55S9/We/xW/sTQ0P0ak1NTe6///78+te/zowZM7Js2bLsvvvuOfHEEzN8+PAcdNBB9a4XANh+QgYAAAAAAKAkNn4GAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAACjR6NGjU1ZWlrKyssyZM6e5ywEAAIAmJ2QAAD5z5syZUwwHtucLAAAAPuuEDAAAAAAAQEnKCoVCobmLAABoSqtXr85f//rXzZ4/+OCDkySHHXZYHnzwwc2O++IXv9jgtQEAAMCOpLy5CwAAaGpt2rSpV0BQWVkpSAAAAIAtsFwSAAAAAABQEiEDAECJRo8eXdwEes6cOZucP/7441NWVpbjjz8+SfLGG2/k7/7u77LPPvukffv22WuvvTJs2LC88847ta577bXXMnTo0Oyzzz6pqKhIr169cuGFF2b+/Pn1quuJJ57IN7/5zeyxxx6pqKhIly5dcthhh+X666/P4sWLt/fXBgAAgCLLJQEANIGxY8fmjDPOyNKlS4uvvfPOO3nggQfy1FNPZfz48enTp08efvjhnHvuuamuri6Omzt3bu69996MGTMmkyZNyu67717nz1i8eHG+8Y1v5Pnnn6/1+qpVq/LKK6/klVdeyb/+67/mySefzBFHHNE4vygAAACfKWYyAAA0svfffz9nnXVWunTpknvuuScvvfRSJkyYkIsvvjhlZWWZP39+zjvvvLz88ss555xzsu+++2bkyJGZOnVqxo0bl+9973tJ1oUS//AP/1Dnz1i1alVOOumkPP/882ndunW+973v5eGHH86UKVMyYcKE3HTTTenatWvmz5+fr371q5vMngAAAIBSmMkAANDIZs+enf322y8TJ05M9+7di68fffTRKS8vz2233ZaJEydm0KBBOfzww/Pss8+mQ4cOxXHHH398Vq5cmcceeyy/+93vsmDBglr3SZIbbrghr776arp06ZKxY8emX79+tc4fffTROfvss3PkkUfmgw8+yFVXXZX/+I//aNxfHAAAgJ2emQwAAE3g7rvv3iQYSJIf/vCHxeOFCxdm5MiRtQKG9S688MIkSU1NTSZPnlzr3Keffpp/+Zd/SZLceOONmwQM6+2555756U9/miR57LHHsmzZstJ+GQAAAPj/CRkAABpZly5dcsopp9R5bu+9906nTp2SJIccckgOOOCAOscdeuihxeO33nqr1rnx48fn448/TpJ84xvf2GItxx57bJJk9erVeeWVV+r3CwAAAMBmWC4JAKCR7bfffikrK9vs+S5dumTp0qWpqqra4pj1Ntw8OkmmTZtWPO7Ro0e965o3b169xwIAAEBdzGQAAGhkdS1/tKFWrVptddz6MUmyZs2aWufmz59fUl3Lly8v6ToAAABYz0wGAIAd3Iahw6uvvpo2bdrU67qePXs2VkkAAAB8RggZAAB2cF27di0ed+/eXXgAAABAk7FcEgDADq5v377F44kTJzZjJQAAAHzWCBkAAHZwJ510UnE/h7vvvjuFQqGZKwIAAOCzQsgAALCD69KlS3784x8nSSZNmpRLLrkka9eu3ez4Dz/8MCNHjmyq8gAAANiJ2ZMBAGAncMMNN2T8+PF56aWXctddd+WFF17I+eefny996UuprKzM4sWL8/rrr2fs2LEZM2ZMDj744Jx33nnNXTYAAAA7OCEDAMBOoF27dnn22Wdz7rnn5ve//33+9Kc/FWc31KVz585NWB0AAAA7KyEDAMBOolOnTvnd736XF198Mb/85S8zYcKEvP/++1mxYkU6d+6cfffdN4cffngGDRqUgQMHNne5AAAA7ATKCnYGBAAAAAAASmDjZwAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCT/H28R1YIirC5pAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Plot infected hosts per population over time.\n", + " 'metapopulations_population_contact_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8, \n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot th isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/_build/html/model_documentation.html b/docs/_build/html/model_documentation.html new file mode 100644 index 0000000..e5eac40 --- /dev/null +++ b/docs/_build/html/model_documentation.html @@ -0,0 +1,1728 @@ + + + + + + + Model Documentation — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Model Documentation

+

All usage is handled through the Opqua Model class. +The Model class contains populations, setups, and interventions to be used +in simulation. It also contains groups of hosts/vectors for manipulations and +stores model history as snapshots for specific time points.

+

To use it, import the class as

+
from opqua.model import Model
+
+
+

You can find a detailed account of everything Model does in the +Model attributes and +Model class methods list sections.

+
+

Model class attributes

+
    +
  • populations – dictionary with keys=population IDs, values=Population +objects

  • +
  • setups – dictionary with keys=setup IDs, values=Setup objects

  • +
  • interventions – contains model interventions in the order they will occur

  • +
  • groups – dictionary with keys=group IDs, values=lists of hosts/vectors

  • +
  • history – dictionary with keys=time values, values=Model objects that +are snapshots of Model at that timepoint

  • +
  • global_trackers – dictionary keeping track of some global indicators over all +the course of the simulation

  • +
  • custom_condition_trackers – dictionary with keys=ID of custom condition, +values=functions that take a Model object as argument and return True or +False; every time True is returned by a function in +custom_condition_trackers, the simulation time will be stored under the +corresponding ID inside global_trackers[‘custom_condition’]

  • +
  • t_var – variable that tracks time in simulations

  • +
+

The dictionary global_trackers contains the following keys:

+
    +
  • num_events: dictionary with the number of each kind of event in the simulation

  • +
  • last_event_time: time point at which the last event in the simulation happened

  • +
  • `genomes_seen**: list of all unique genomes that have appeared in the +simulation

  • +
  • custom_conditions: dictionary with keys=ID of custom condition, values=lists +of times; every time True is returned by a function in +custom_condition_trackers, the simulation time will be stored under the +corresponding ID inside global_trackers[‘custom_condition’]

  • +
+

The dictionary num_events inside of global_trackers contains the following keys:

+
    +
  • MIGRATE_HOST

  • +
  • MIGRATE_VECTOR

  • +
  • POPULATION_CONTACT_HOST_HOST

  • +
  • POPULATION_CONTACT_HOST_VECTOR

  • +
  • POPULATION_CONTACT_VECTOR_HOST

  • +
  • CONTACT_HOST_HOST

  • +
  • CONTACT_HOST_VECTOR

  • +
  • CONTACT_VECTOR_HOST

  • +
  • RECOVER_HOST

  • +
  • RECOVER_VECTOR

  • +
  • MUTATE_HOST

  • +
  • MUTATE_VECTOR

  • +
  • RECOMBINE_HOST

  • +
  • RECOMBINE_VECTOR

  • +
  • KILL_HOST

  • +
  • KILL_VECTOR

  • +
  • DIE_HOST

  • +
  • DIE_VECTOR

  • +
  • BIRTH_HOST

  • +
  • BIRTH_VECTOR

  • +
+

KILL_HOST and KILL_VECTOR denote death due to infection, whereas DIE_HOST and +DIE_VECTOR denote death by natural means.

+
+
+

Model class methods list

+
+

Model initialization and simulation

+
    +
  • setRandomSeed() – set random seed for numpy random number +generator

  • +
  • newSetup() – creates a new Setup, save it in setups dict under +given name

  • +
  • newIntervention() – creates a new intervention executed +during simulation

  • +
  • run() – simulates model for a specified length of time

  • +
  • runReplicates]() – simulate replicates of a model, save only +end results

  • +
  • runParamSweep() – simulate parameter sweep with a model, save +only end results

  • +
  • copyState() – copies a slimmed-down representation of model state

  • +
  • deepCopy() – copies current model with inner references

  • +
+
+
+

Data Output and Plotting

+
    +
  • saveToDataFrame() – saves status of model to data frame, +writes to file

  • +
  • getPathogens() – creates data frame with counts for all +pathogen genomes

  • +
  • getProtections() – creates data frame with counts for all +protection sequences

  • +
  • populationsPlot() – plots aggregated totals per +population across time

  • +
  • compartmentPlot() – plots number of naive, infected, +recovered, dead hosts/vectors vs time

  • +
  • compositionPlot() – plots counts for pathogen genomes or +resistance vs. time

  • +
  • clustermap() – plots heatmap and dendrogram of all pathogens in +given data

  • +
  • pathogenDistanceHistory() – calculates pairwise +distances for pathogen genomes at different times

  • +
  • getGenomeTimes() – create DataFrame with times genomes first +appeared during simulation

  • +
  • getCompositionData() – create dataframe with counts for +pathogen genomes or resistance

  • +
+
+
+

Model interventions

+
+

Make and connect populations:

+
    +
  • newPopulation() – create a new Population object with +setup parameters

  • +
  • linkPopulationsHostMigration() – set host +migration rate from one population towards another

  • +
  • linkPopulationsVectorMigration() – set +vector migration rate from one population towards another

  • +
  • linkPopulationsHostHostContact() – set +host-host inter-population contact rate from one population towards another

  • +
  • linkPopulationsHostVectorContact() – set +host-vector inter-population contact rate from one population towards another

  • +
  • linkPopulationsVectorHostContact() – set +vector-host inter-population contact rate from one population towards another

  • +
  • createInterconnectedPopulations() – create new populations, link all of them to +each other by migration and/or inter-population contact

  • +
+
+
+

Manipulate hosts and vectors in population:

+
    +
  • newHostGroup() – returns a list of random (healthy or any) +hosts

  • +
  • newVectorGroup() – returns a list of random (healthy or +any) vectors

  • +
  • addHosts() – adds hosts to the population

  • +
  • addVectors() – adds vectors to the population

  • +
  • removeHosts](#removehosts) – removes hosts from the population

  • +
  • removeVectors() – removes vectors from the population

  • +
  • addPathogensToHosts() – adds pathogens with +specified genomes to hosts

  • +
  • addPathogensToVectors() – adds pathogens with +specified genomes to vectors

  • +
  • treatHosts() – removes infections susceptible to given +treatment from hosts

  • +
  • treatVectors() – removes infections susceptible to +treatment from vectors

  • +
  • protectHosts() – adds protection sequence to hosts

  • +
  • protectVectors() – adds protection sequence to vectors

  • +
  • wipeProtectionHosts() – removes all protection +sequences from hosts

  • +
  • wipeProtectionVectors() – removes all protection +sequences from vectors

  • +
+
+
+

Modify population parameters:

+
    +
  • setSetup() – assigns a given set of parameters to this population

  • +
+
+
+

Utility:

+
    +
  • customModelFunction() – returns output of given function run on model

  • +
+
+
+
+

Preset fitness functions

+
    +
  • peakLandscape() – evaluates genome numeric phenotype by +decreasing with distance from optimal sequence

  • +
  • valleyLandscape() – evaluates genome numeric phenotype by +increasing with distance from worst sequence

  • +
+
+
+
+

Detailed Model documentation

+
+
+class opqua.model.Model[source]
+

Class defines a Model.

+

This is the main class that the user interacts with.

+

The Model class contains populations, setups, and interventions to be used +in simulation. Also contains groups of hosts/vectors for manipulations and +stores model history as snapshots for each time point.

+

CONSTANTS:

+
    +
  • CB_PALETTE: a colorblind-friendly 8-color color scheme.

  • +
  • DEF_CMAP: a colormap object for Seaborn plots.

  • +
+
+
+populations
+

dictionary with keys=population IDs, values=Population +objects.

+
+ +
+
+setups
+

dictionary with keys=setup IDs, values=Setup objects.

+
+ +
+
+interventions
+

contains model interventions in the order they will occur.

+
+ +
+
+groups
+

dictionary with keys=group IDs, values=lists of hosts/vectors.

+
+ +
+
+history
+

dictionary with keys=time values, values=Model objects that +are snapshots of Model at that timepoint.

+
+ +
+
+t_var
+

variable that tracks time in simulations.

+
+ +
+
+addCustomConditionTracker(condition_id, trackerFunction)[source]
+

Add a function to track occurrences of custom events in simulation.

+

Adds function trackerFunction to dictionary custom_condition_trackers +under key condition_id. Function trackerFunction will be executed at +every event in the simulation. Every time True is returned, +the simulation time will be stored under the corresponding condition_id +key inside global_trackers[‘custom_condition’].

+
+
Parameters:
+
    +
  • condition_id (String) – ID of this specific condition-

  • +
  • trackerFunction (callable) – function that take a Model object as argument +and returns True or False.

  • +
+
+
+
+ +
+
+addHosts(pop_id, num_hosts)[source]
+

Add a number of healthy hosts to population, return list with them.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • num_hosts (int) – number of hosts to be added.

  • +
+
+
Returns:
+

list containing new hosts.

+
+
+
+ +
+
+addPathogensToHosts(pop_id, genomes_numbers, group_id='')[source]
+

Add specified pathogens to random hosts, optionally from a list.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • genomes_numbers (dict with keys=Strings, values=int) – genomes to add as keys and number of hosts each one will be added to as values.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific hosts to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+addPathogensToVectors(pop_id, genomes_numbers, group_id='')[source]
+

Add specified pathogens to random vectors, optionally from a list.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • genomes_numbers (dict with keys=Strings, values=int) – dictionary containing pathogen +genomes to add as keys and number of vectors each one will be added to as values.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific vectors to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+addVectors(pop_id, num_vectors)[source]
+

Add a number of healthy vectors to population, return list with them.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • num_vectors (int) – number of vectors to be added.

  • +
+
+
Returns:
+

list containing new vectors.

+
+
+
+ +
+
+clustermap(file_name, data, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], n_cores=0, method='weighted', metric='euclidean', save_data_to_file='', legend_title='Distance', legend_values=[], figsize=(10, 10), dpi=200, color_map=<matplotlib.colors.ListedColormap object>)[source]
+

Create a heatmap and dendrogram for pathogen genomes in data passed.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf +function.

  • +
+
+
Keyword Arguments:
+
    +
  • num_top_sequences (int) – how many sequences to include in matrix; if <0, +includes all genomes in data passed. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to include +in matrix if not part of the top num_top_sequences sequences. Defaults to [].

  • +
  • seq_names (list ofStrings) – list with names to be used for sequence labels in matrix +must be of same length as number of sequences to be displayed; if empty, uses sequences +themselves. Defaults to [].

  • +
  • n_cores (int >= 0) – number of cores to parallelize distance compute across, if 0, +all cores available are used. Defaults to 0.

  • +
  • method (String) – clustering algorithm to use with seaborn clustermap. Defaults to ‘weighted’.

  • +
  • metric (String) – distance metric to use with seaborn clustermap. Defaults to ‘euclidean’.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • legend_title (String) – legend title. Defaults to ‘Distance’.

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • color_map (matplotlib cmap object) – color map to use for traces. Defaults to DEF_CMAP.

  • +
+
+
Returns:
+

figure object for plot with heatmap and dendrogram as described.

+
+
+
+ +
+
+compartmentPlot(file_name, data, populations=[], hosts=True, vectors=False, save_data_to_file='', x_label='Time', y_label='Hosts', figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=False)[source]
+

Create plot with number of naive,inf,rec,dead hosts/vectors vs. time.

+

Creates a line or stacked line plot with dynamics of all compartments +(naive, infected, recovered, dead) across selected populations in the +model, with one line for each compartment.

+

A host or vector is considered part of the recovered compartment +if it has protection sequences of any kind and is not infected.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses +all populations in model. Defaults to [].

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population +IDs. Defaults to [].

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int)) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • one (stacked -- whether to draw a regular line plot instead of a stacked) – (default False, Boolean)

  • +
+
+
Returns:
+

axis object for plot with model compartment dynamics as described above

+
+
+
+ +
+
+compositionPlot(file_name, data, composition_dataframe=None, populations=[], type_of_composition='Pathogens', hosts=True, vectors=False, num_top_sequences=7, track_specific_sequences=[], save_data_to_file='', x_label='Time', y_label='Infections', figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=True, remove_legend=False, genomic_positions=[], population_fraction=False, count_individuals_based_on_model=None, legend_title='Genotype', legend_values=[], **kwargs)[source]
+

Create plot with counts for pathogen genomes or resistance vs. time.

+

Creates a line or stacked line plot with dynamics of the pathogen +strains or protection sequences across selected populations in the +model, with one line for each pathogen genome or protection sequence +being shown.

+

Of note: sum of totals for all sequences in one time point does not +necessarily equal the number of infected hosts and/or vectors, given +multiple infections in the same host/vector are counted separately.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • composition_dataframe (pandas DataFrame) – output of compositionDf() if already computed +Defaults to None.

  • +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses +all populations in model. Defaults to [].

  • +
  • type_of_composition (String) – ‘Pathogens’ or ‘Protection’. Defaults to ‘Pathogens’.

  • +
  • hosts (Boolean) –

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • num_top_sequences (int) – how many sequences to count separately and include +as columns, remainder will be counted under column “Other”; if <0, +includes all genomes in model. Defaults to 7.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to have +as a separate column if not part of the top num_top_sequences +sequences. Defaults to [].

  • +
  • genomic_positions (list of lists of int) – list in which each element is a list with loci +positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] +extracts positions 0, 1, 2, and 5 from each genome); if empty, takes +full genomes. Defaults to [].

  • +
  • count_individuals_based_on_model (None or Model) – Model object with populations and +fitness functions used to evaluate the most fit pathogen genome in +each host/vector in order to count only a single pathogen per +host/vector, as opposed to all pathogens within each host/vector; if +None, counts all pathogens. Defaults to None.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population +IDs. Defaults to [].

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • stacked (Boolean) – whether to draw a regular line plot instead of a stacked one. Defaults to False.

  • +
  • remove_legend (Boolean) – whether to print the sequences on the figure legend +instead of printing them on a separate csv file. Defaults to True.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

axis object for plot with model sequence composition dynamics as described.

+
+
+
+ +
+
+copyState(host_sampling=0, vector_sampling=0)[source]
+

Returns a slimmed-down representation of the current model state.

+
+
Keyword Arguments:
+
    +
  • host_sampling (int >= 0) – how many hosts to skip before saving one in a snapshot +of the system state (saves all by default). Defaults to 0.

  • +
  • vector_sampling (int >= 0) – how many vectors to skip before saving one in a +snapshot of the system state (saves all by default). Defaults to 0.

  • +
+
+
Returns:
+

Model object with current population host and vector lists.

+
+
+
+ +
+
+createInterconnectedPopulations(num_populations, id_prefix, setup_name, host_migration_rate=0, vector_migration_rate=0, host_host_contact_rate=0, host_vector_contact_rate=0, vector_host_contact_rate=0, num_hosts=100, num_vectors=100)[source]
+

Create new populations, link all of them to each other.

+

All populations in this cluster are linked with the same migration rate, +starting number of hosts and vectors, and setup parameters. Their IDs +are numbered onto prefix given as ‘id_prefix_0’, ‘id_prefix_1’, +‘id_prefix_2’, etc.

+
+
Parameters:
+
    +
  • num_populations (int) – number of populations to be created.

  • +
  • id_prefix (String) – prefix for IDs to be used for this population in the model.

  • +
  • setup_name (Setup object) – setup object with parameters for all populations.

  • +
+
+
Keyword Arguments:
+
    +
  • host_migration_rate (number >= 0) – host migration rate between populations; +evts/time. Defaults to 0.

  • +
  • vector_migration_rate (number >= 0) – vector migration rate between populations; +evts/time. Defaults to 0.

  • +
  • host_host_contact_rate (number >= 0) – host-host inter-population contact rate +between populations; evts/time. Defaults to 0.

  • +
  • host_vector_contact_rate (number >= 0) – host-vector inter-population contact rate +between populations; evts/time. Defaults to 0.

  • +
  • vector_host_contact_rate (number >= 0) – vector-host inter-population contact rate +between populations; evts/time. Defaults to 0.

  • +
  • num_hosts (int) – number of hosts to initialize population with. Defaults to 100.

  • +
  • num_vectors (int) – number of hosts to initialize population with. Defaults to 100.

  • +
+
+
+
+ +
+
+customModelFunction(function)[source]
+

Returns output of given function, passing this model as a parameter.

+
+
Parameters:
+

function (callable) – function to be evaluated; must take a Model object as the +only parameter.

+
+
Returns:
+

output of function passed as parameter.

+
+
+
+ +
+
+deepCopy()[source]
+

Returns a full copy of the current model with inner references.

+
+
Returns:
+

Copied Model object.

+
+
+
+ +
+
+getCompositionData(data=None, populations=[], type_of_composition='Pathogens', hosts=True, vectors=False, num_top_sequences=-1, track_specific_sequences=[], genomic_positions=[], count_individuals_based_on_model=None, save_data_to_file='', n_cores=0, **kwargs)[source]
+

Create dataframe with counts for pathogen genomes or resistance.

+

Creates a pandas Dataframe with dynamics of the pathogen strains or +protection sequences across selected populations in the model, +with one time point in each row and columns for pathogen genomes or +protection sequences.

+

Of note: sum of totals for all sequences in one time point does not +necessarily equal the number of infected hosts and/or vectors, given +multiple infections in the same host/vector are counted separately.

+
+
Keyword Arguments:
+
    +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf +function; if None, computes this dataframe and saves it under ‘raw_data_’+’save_data_to_file’. +Defaults to None.

  • +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses +all populations in model. Defaults to [].

  • +
  • type_of_composition (String) – field of data to count totals of, can be either +‘Pathogens’ or ‘Protection’. Defaults to ‘Pathogens’.

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • num_top_sequences (int) – how many sequences to count separately and include +as columns, remainder will be counted under column “Other”; if <0, +includes all genomes in model. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to have +as a separate column if not part of the top num_top_sequences +sequences. Defaults to [].

  • +
  • genomic_positions (list of lists of int) – list in which each element is a list with +loci positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] +extracts positions 0, 1, 2, and 5 from each genome); if empty, takes +full genomes. Defaults to [].

  • +
  • count_individuals_based_on_model (None or Model object) – Model object with populations and +fitness functions used to evaluate the most fit pathogen genome in +each host/vector in order to count only a single pathogen per +host/vector, asopposed to all pathogens within each host/vector; if +None, counts all pathogens. Defaults to None.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • n_cores (int) – number of cores to parallelize processing across, if 0, all +cores available are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

+
pandas DataFrame with model sequence composition dynamics as described

above.

+
+
+

+
+
+
+ +
+
+getGenomeTimes(data, samples=-1, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], n_cores=0, save_to_file='')[source]
+

Create DataFrame with times genomes first appeared during simulation.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf +function.

+
+
Keyword Arguments:
+
    +
  • samples (int) – how many timepoints to uniformly sample from the total +timecourse; if <0, takes all timepoints. Defaults to 1.

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • n_cores (int) – number of cores to parallelize across, if 0, all cores +available are used. Defaults to 0.

  • +
+
+
Returns:
+

pandas DataFrame with genomes and times as described above.

+
+
+
+ +
+
+getPathogens(dat, save_to_file='')[source]
+

Create Dataframe with counts for all pathogen genomes in data.

+

Returns sorted pandas Dataframe with counts for occurrences of all +pathogen genomes in data passed.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+

save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

+
+
Returns:
+

pandas dataframe with Series as described above.

+
+
+
+ +
+
+getProtections(dat, save_to_file='')[source]
+

Create Dataframe with counts for all protection sequences in data.

+

Returns sorted pandas Dataframe with counts for occurrences of all +protection sequences in data passed.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+

save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

+
+
Returns:
+

pandas DataFrame with Series as described above.

+
+
+
+ +
+
+linkPopulationsHostHostContact(pop1_id, pop2_id, rate)[source]
+

Set host-host contact rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which inter-population contact rate +will be specified.

  • +
  • pop1_id – destination population for which inter-population contact +rate will be specified.

  • +
  • rate (number >= 0) – inter-population contact rate from one population to the +neighbor; evts/time.

  • +
+
+
+
+ +
+
+linkPopulationsHostMigration(pop1_id, pop2_id, rate)[source]
+

Set host migration rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which migration rate will be specified.

  • +
  • pop1_id – destination population for which migration rate will be +specified.

  • +
  • rate (number >= 0) – migration rate from one population to the neighbor; evts/time.

  • +
+
+
+
+ +
+
+linkPopulationsHostVectorContact(pop1_id, pop2_id, rate)[source]
+

Set host-vector contact rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which inter-population contact rate +will be specified.

  • +
  • pop1_id – destination population for which inter-population contact +rate will be specified.

  • +
  • rate (number >= 0) – inter-population contact rate from one population to the +neighbor; evts/time.

  • +
+
+
+
+ +
+
+linkPopulationsVectorHostContact(pop1_id, pop2_id, rate)[source]
+

Set vector-host contact rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which inter-population contact rate +will be specified.

  • +
  • pop1_id – destination population for which inter-population contact +rate will be specified.

  • +
  • rate (number >= 0) – inter-population contact rate from one population to the +neighbor; evts/time.

  • +
+
+
+
+ +
+
+linkPopulationsVectorMigration(pop1_id, pop2_id, rate)[source]
+

Set vector migration rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which migration rate will be specified.

  • +
  • pop1_id – destination population for which migration rate will be +specified.

  • +
  • rate (number >= 0) – migration rate from one population to the neighbor; evts/time.

  • +
+
+
+
+ +
+
+newHostGroup(pop_id, group_id, hosts=-1, type='any')[source]
+

Return a list of random hosts in population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be sampled from.

  • +
  • group_id (String) – ID to name group with.

  • +
+
+
Keyword Arguments:
+
    +
  • hosts (number) – number of hosts to be sampled randomly: if <0, samples from +whole population; if <1, takes that fraction of population; if >=1, +samples that integer number of hosts. Defaults to -1.

  • +
  • type (String = {'healthy', 'infected', 'any'}) – whether to sample healthy hosts only, +infected hosts only, or any hosts. Defaults to ‘any’.

  • +
+
+
Returns:
+

list containing sampled hosts.

+
+
+
+ +
+
+newIntervention(time, method_name, args)[source]
+

Create a new intervention to be carried out at a specific time.

+
+
Parameters:
+
    +
  • time (number >= 0) – time at which intervention will take place.

  • +
  • method_name (String) – intervention to be carried out, must correspond to the +name of a method of the Model object.

  • +
  • args (array-like) – contains arguments for function in positinal order.

  • +
+
+
+
+ +
+
+newPopulation(id, setup_name, num_hosts=0, num_vectors=0)[source]
+

Create a new Population object with setup parameters.

+

If population ID is already in use, appends _2 to it

+
+
Parameters:
+
    +
  • id (String) – unique identifier for this population in the model.

  • +
  • setup_name (Setup object) – setup object with parameters for this population.

  • +
+
+
Keyword Arguments:
+
    +
  • num_hosts (int >= 0) – number of hosts to initialize population with. Defaults to 100.

  • +
  • num_vectors (int >= 0) – number of vectors to initialize population with. Defaults to 100.

  • +
+
+
+
+ +
+
+newSetup(name, preset=None, num_loci=None, possible_alleles=None, fitnessHost=None, contactHost=None, receiveContactHost=None, mortalityHost=None, natalityHost=None, recoveryHost=None, migrationHost=None, populationContactHost=None, receivePopulationContactHost=None, mutationHost=None, recombinationHost=None, fitnessVector=None, contactVector=None, receiveContactVector=None, mortalityVector=None, natalityVector=None, recoveryVector=None, migrationVector=None, populationContactVector=None, receivePopulationContactVector=None, mutationVector=None, recombinationVector=None, contact_rate_host_vector=None, transmission_efficiency_host_vector=None, transmission_efficiency_vector_host=None, contact_rate_host_host=None, transmission_efficiency_host_host=None, mean_inoculum_host=None, mean_inoculum_vector=None, recovery_rate_host=None, recovery_rate_vector=None, mortality_rate_host=None, mortality_rate_vector=None, recombine_in_host=None, recombine_in_vector=None, num_crossover_host=None, num_crossover_vector=None, mutate_in_host=None, mutate_in_vector=None, death_rate_host=None, death_rate_vector=None, birth_rate_host=None, birth_rate_vector=None, vertical_transmission_host=None, vertical_transmission_vector=None, inherit_protection_host=None, inherit_protection_vector=None, protection_upon_recovery_host=None, protection_upon_recovery_vector=None)[source]
+

Create a new Setup, save it in setups dict under given name.

+

Two preset setups exist: “vector-borne” and “host-host”. You may select +one of the preset setups with the preset keyword argument and then +modify individual parameters with additional keyword arguments, without +having to specify all of them.

+

“host-host”:

+
    +
  • num_loci = 10

  • +
  • possible_alleles = ‘ATCG’

  • +
  • fitnessHost = (lambda g: 1)

  • +
  • contactHost = (lambda g: 1)

  • +
  • receiveContactHost = (lambda g: 1)

  • +
  • mortalityHost = (lambda g: 1)

  • +
  • natalityHost = (lambda g: 1)

  • +
  • recoveryHost = (lambda g: 1)

  • +
  • migrationHost = (lambda g: 1)

  • +
  • populationContactHost = (lambda g: 1)

  • +
  • receivePopulationContactHost = (lambda g: 1)

  • +
  • mutationHost = (lambda g: 1)

  • +
  • recombinationHost = (lambda g: 1)

  • +
  • fitnessVector = (lambda g: 1)

  • +
  • contactVector = (lambda g: 1)

  • +
  • receiveContactVector = (lambda g: 1)

  • +
  • mortalityVector = (lambda g: 1)

  • +
  • natalityVector = (lambda g: 1)

  • +
  • recoveryVector = (lambda g: 1)

  • +
  • migrationVector = (lambda g: 1)

  • +
  • populationContactVector = (lambda g: 1)

  • +
  • receivePopulationContactVector = (lambda g: 1)

  • +
  • mutationVector = (lambda g: 1)

  • +
  • recombinationVector = (lambda g: 1)

  • +
  • contact_rate_host_vector = 0

  • +
  • transmission_efficiency_host_vector = 0

  • +
  • transmission_efficiency_vector_host = 0

  • +
  • contact_rate_host_host = 2e-1

  • +
  • transmission_efficiency_host_host = 1

  • +
  • mean_inoculum_host = 1e1

  • +
  • mean_inoculum_vector = 0

  • +
  • recovery_rate_host = 1e-1

  • +
  • recovery_rate_vector = 0

  • +
  • mortality_rate_host = 0

  • +
  • mortality_rate_vector = 0

  • +
  • recombine_in_host = 1e-4

  • +
  • recombine_in_vector = 0

  • +
  • num_crossover_host = 1

  • +
  • num_crossover_vector = 0

  • +
  • mutate_in_host = 1e-6

  • +
  • mutate_in_vector = 0

  • +
  • death_rate_host = 0

  • +
  • death_rate_vector = 0

  • +
  • birth_rate_host = 0

  • +
  • birth_rate_vector = 0

  • +
  • vertical_transmission_host = 0

  • +
  • vertical_transmission_vector = 0

  • +
  • inherit_protection_host = 0

  • +
  • inherit_protection_vector = 0

  • +
  • protection_upon_recovery_host = None

  • +
  • protection_upon_recovery_vector = None

  • +
+

“vector-borne”:

+
    +
  • num_loci = 10

  • +
  • possible_alleles = ‘ATCG’

  • +
  • fitnessHost = (lambda g: 1)

  • +
  • contactHost = (lambda g: 1)

  • +
  • receiveContactHost = (lambda g: 1)

  • +
  • mortalityHost = (lambda g: 1)

  • +
  • natalityHost = (lambda g: 1)

  • +
  • recoveryHost = (lambda g: 1)

  • +
  • migrationHost = (lambda g: 1)

  • +
  • populationContactHost = (lambda g: 1)

  • +
  • receivePopulationContactHost = (lambda g: 1)

  • +
  • mutationHost = (lambda g: 1)

  • +
  • recombinationHost = (lambda g: 1)

  • +
  • fitnessVector = (lambda g: 1)

  • +
  • contactVector = (lambda g: 1)

  • +
  • receiveContactVector = (lambda g: 1)

  • +
  • mortalityVector = (lambda g: 1)

  • +
  • natalityVector = (lambda g: 1)

  • +
  • recoveryVector = (lambda g: 1)

  • +
  • migrationVector = (lambda g: 1)

  • +
  • populationContactVector = (lambda g: 1)

  • +
  • receivePopulationContactVector = (lambda g: 1)

  • +
  • mutationVector = (lambda g: 1)

  • +
  • recombinationVector = (lambda g: 1)

  • +
  • contact_rate_host_vector = 2e-1

  • +
  • transmission_efficiency_host_vector = 1

  • +
  • transmission_efficiency_vector_host = 1

  • +
  • contact_rate_host_host = 0

  • +
  • transmission_efficiency_host_host = 0

  • +
  • mean_inoculum_host = 1e2

  • +
  • mean_inoculum_vector = 1e0

  • +
  • recovery_rate_host = 1e-1

  • +
  • recovery_rate_vector = 1e-1

  • +
  • mortality_rate_host = 0

  • +
  • mortality_rate_vector = 0

  • +
  • recombine_in_host = 0

  • +
  • recombine_in_vector = 1e-4

  • +
  • num_crossover_host = 0

  • +
  • num_crossover_vector = 1

  • +
  • mutate_in_host = 1e-6

  • +
  • mutate_in_vector = 0

  • +
  • death_rate_host = 0

  • +
  • death_rate_vector = 0

  • +
  • birth_rate_host = 0

  • +
  • birth_rate_vector = 0

  • +
  • vertical_transmission_host = 0

  • +
  • vertical_transmission_vector = 0

  • +
  • inherit_protection_host = 0

  • +
  • inherit_protection_vector = 0

  • +
  • protection_upon_recovery_host = None

  • +
  • protection_upon_recovery_vector = None

  • +
+
+
Parameters:
+

name (String) – name of setup to be used as a key in model setups dictionary.

+
+
Keyword Arguments:
+
    +
  • preset (None or String) – preset setup to be used: “vector-borne” or “host-host”, if +None, must define all other keyword arguments. Defaults to None.

  • +
  • num_loci (int>0) – length of each pathogen genome string.

  • +
  • possible_alleles (String or list of Strings with num_loci elements) – set of possible +characters in all genome string, or at each position in genome string.

  • +
  • fitnessHost (callable, takes a String argument and returns a number >= 0) – function +that evaluates relative fitness in head-to-head competition for different genomes +within the same host.

  • +
  • contactHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying probability of a given host being chosen to be the +infector in a contact event, based on genome sequence of pathogen.

  • +
  • receiveContactHost (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying probability of a given host being chosen to be +the infected in a contact event, based on genome sequence of pathogen.

  • +
  • mortalityHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying death rate for a given host, based on genome sequence +of pathogen.

  • +
  • natalityHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying birth rate for a given host, based on genome sequence +of pathogen.

  • +
  • recoveryHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying recovery rate for a given host based on genome sequence +of pathogen.

  • +
  • migrationHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying migration rate for a given host based on genome sequence +of pathogen.

  • +
  • populationContactHost (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying population contact rate for a given host based on +genome sequence of pathogen.

  • +
  • mutationHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying mutation rate for a given host based on genome sequence +of pathogen.

  • +
  • recombinationHost (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying recombination rate for a given host based on genome +sequence of pathogen.

  • +
  • fitnessVector (callable, takes a String argument and returns a number >=0) – function that +evaluates relative fitness in head-to-head competition for different genomes within +the same vector.

  • +
  • contactVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying probability of a given vector being chosen to be the +infector in a contact event, based on genome sequence of pathogen.

  • +
  • receiveContactVector (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying probability of a given vector being chosen to be the +infected in a contact event, based on genome sequence of pathogen.

  • +
  • mortalityVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying death rate for a given vector, based on genome sequence +of pathogen.

  • +
  • natalityVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying birth rate for a given vector, based on genome sequence +of pathogen.

  • +
  • recoveryVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying recovery rate for a given vector based on genome sequence +of pathogen.

  • +
  • migrationVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying migration rate for a given vector based on genome sequence +of pathogen.

  • +
  • populationContactVector (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying population contact rate for a given vector based on +genome sequence of pathogen.

  • +
  • mutationVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying mutation rate for a given vector based on genome sequence +of pathogen.

  • +
  • recombinationVector (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying recombination rate for a given vector based on genome +sequence of pathogen.

  • +
  • contact_rate_host_vector (number >= 0) – rate of host-vector contact events, not necessarily +transmission, assumes constant population density; evts/time.

  • +
  • transmission_efficiency_host_vector (float) – fraction of host-vector contacts +that result in successful transmission.

  • +
  • transmission_efficiency_vector_host (float) – fraction of vector-host contacts +that result in successful transmission.

  • +
  • contact_rate_host_host (number >= 0) – rate of host-host contact events, not +necessarily transmission, assumes constant population density; evts/time.

  • +
  • transmission_efficiency_host_host (float) – fraction of host-host contacts +that result in successful transmission.

  • +
  • mean_inoculum_host (int >= 0) – mean number of pathogens that are transmitted from +a vector or host into a new host during a contact event.

  • +
  • mean_inoculum_vector (int >= 0) – from a host to a vector during a contact event.

  • +
  • recovery_rate_host (number >= 0) – rate at which hosts clear all pathogens; +1/time.

  • +
  • recovery_rate_vector (number >= 0) – rate at which vectors clear all pathogens +1/time.

  • +
  • recovery_rate_vector – rate at which vectors clear all pathogens +1/time.

  • +
  • mortality_rate_host (number 0-1) – rate at which infected hosts die from disease.

  • +
  • mortality_rate_vector (number 0-1) – rate at which infected vectors die from +disease.

  • +
  • recombine_in_host (number >= 0) – rate at which recombination occurs in host; +evts/time.

  • +
  • recombine_in_vector (number >= 0) – rate at which recombination occurs in vector; +evts/time.

  • +
  • num_crossover_host (number >= 0) – mean of a Poisson distribution modeling the number +of crossover events of host recombination events.

  • +
  • num_crossover_vector (number >= 0) – mean of a Poisson distribution modeling the +number of crossover events of vector recombination events.

  • +
  • mutate_in_host (number >= 0) – rate at which mutation occurs in host; evts/time.

  • +
  • mutate_in_vector (number >= 0) – rate at which mutation occurs in vector; evts/time.

  • +
  • death_rate_host (number >= 0) – natural host death rate; 1/time.

  • +
  • death_rate_vector (number >= 0) – natural vector death rate; 1/time.

  • +
  • birth_rate_host (number >= 0) – infected host birth rate; 1/time.

  • +
  • birth_rate_vector (number >= 0) – infected vector birth rate; 1/time.

  • +
  • vertical_transmission_host (number 0-1) – probability that a host is infected by its +parent at birth.

  • +
  • vertical_transmission_vector (number 0-1) – probability that a vector is infected by +its parent at birth.

  • +
  • inherit_protection_host (number 0-1) – probability that a host inherits all +protection sequences from its parent.

  • +
  • inherit_protection_vector (number 0-1) – probability that a vector inherits all +protection sequences from its parent.

  • +
  • protection_upon_recovery_host (None or array-like of length 2 with int 0-num_loci) – defines +indexes in genome string that define substring to be added to host protection sequences +after recovery.

  • +
  • protection_upon_recovery_vector (None or array-like of length 2 with int 0-num_loci) – defines +indexes in genome string that define substring to be added to vector protection sequences +after recovery.

  • +
+
+
+
+ +
+
+newVectorGroup(pop_id, group_id, vectors=-1, type='any')[source]
+

Return a list of random vectors in population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be sampled from.

  • +
  • group_id (String) – ID to name group with.

  • +
+
+
Keyword Arguments:
+
    +
  • vectors (number) – number of vectors to be sampled randomly: if <0, samples from +whole population; if <1, takes that fraction of population; if >=1, +samples that integer number of vectors. Defaults to -1.

  • +
  • type (String = {'healthy', 'infected', 'any'}) – whether to sample healthy vectors only, infected vectors +only, or any vectors. Defaults to ‘any’.

  • +
+
+
Returns:
+

list containing sampled vectors.

+
+
+
+ +
+
+pathogenDistanceHistory(data, samples=-1, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], n_cores=0, save_to_file='')[source]
+

Create DataFrame with pairwise Hamming distances for pathogen +sequences in data.

+

DataFrame has indexes and columns named according to genomes or argument +seq_names, if passed. Distance is measured as percent Hamming distance +from an optimal genome sequence.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf +function.

+
+
Keyword Arguments:
+
    +
  • samples (int) – how many timepoints to uniformly sample from the total +timecourse; if <0, takes all timepoints. Defaults to 1.

  • +
  • num_top_sequences (int) – includes all genomes in data passed. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to include in +matrix if not part of the top num_top_sequences sequences. Defaults to [].

  • +
  • seq_names (list of Strings) – list with names to be used for sequence labels in matrix +must be of same length as number of sequences to be displayed; if +empty, uses sequences themselves. Defaults to [].

  • +
  • n_cores (int >= 0) – number of cores to parallelize distance compute across, if 0, +all cores available are used. Defaults to 0.

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
+
+
Returns:
+

pandas DataFrame with distance matrix as described above.

+
+
+
+ +
+
+static peakLandscape(genome, peak_genome, min_value)[source]
+

Return genome phenotype by decreasing with distance from optimal seq.

+

A purifying selection fitness function based on exponential decay of +fitness as genomes move away from the optimal sequence. Distance is +measured as percent Hamming distance from an optimal genome sequence.

+
+
Parameters:
+
    +
  • genome (String) – the genome to be evaluated.

  • +
  • peak_genome (String) – the genome sequence to measure distance against, has +value of 1.

  • +
  • min_value (number 0-1) – minimum value at maximum distance from optimal +genome.

  • +
+
+
Returns:
+

value of genome (number).

+
+
+
+ +
+
+populationsPlot(file_name, data, compartment='Infected', hosts=True, vectors=False, num_top_populations=7, track_specific_populations=[], save_data_to_file='', x_label='Time', y_label='Hosts', figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=False)[source]
+

Create plot with aggregated totals per population across time.

+

Creates a line or stacked line plot with dynamics of a compartment +across populations in the model, with one line for each population.

+

A host or vector is considered part of the recovered compartment +if it has protection sequences of any kind and is not infected.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • compartment (String) – subset of hosts/vectors to count totals of, can be either +‘Naive’,’Infected’,’Recovered’, or ‘Dead’. Defaults to ‘Infected’.

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) –

  • +
  • num_top_populations (int) – how many populations to count separately and +include as columns, remainder will be counted under column “Other”; +if <0, includes all populations in model. Defaults to 7.

  • +
  • track_specific_populations (list of Strings) – contains IDs of specific populations to +have as a separate column if not part of the top num_top_populations +populations. Defaults to [].

  • +
  • save_data_to_file (String) – file path and name to save model plot data under, +no saving occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population +IDs. Defaults to [].

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • stacked (Boolean) – whether to draw a regular line plot instead of a stacked one. Defaults to False.

  • +
+
+
Returns:
+

axis object for plot with model population dynamics as described above.

+
+
+
+ +
+
+protectHosts(pop_id, frac_hosts, protection_sequence, group_id='')[source]
+

Protect a random fraction of infected hosts against some infection.

+

Adds protection sequence specified to a random fraction of the hosts +specified. Does not cure them if they are already infected.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • frac_hosts (number between 0 and 1) – fraction of hosts considered to be +randomly selected.

  • +
  • protection_sequence (String) – sequence against which to protect.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific hosts to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+protectVectors(pop_id, frac_vectors, protection_sequence, group_id='')[source]
+

Protect a random fraction of infected vectors against some infection.

+

Adds protection sequence specified to a random fraction of the vectors +specified. Does not cure them if they are already infected.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • frac_vectors (number between 0 and 1) – fraction of vectors considered to be randomly selected.

  • +
  • protection_sequence (String) – sequence against which to protect.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific vectors to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+removeHosts(pop_id, num_hosts_or_list)[source]
+

Remove a number of specified or random hosts from population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • num_hosts_or_list (int or list of Hosts) – number of hosts to be sampled randomly for removal +or list of hosts to be removed, must be hosts in this population.

  • +
+
+
+
+ +
+
+removeVectors(pop_id, num_vectors_or_list)[source]
+

Remove a number of specified or random vectors from population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • num_vectors_or_list (int or list of Vectors) – number of vectors to be sampled randomly for +removal or list of vectors to be removed, must be vectors in this +population.

  • +
+
+
+
+ +
+
+run(t0, tf, time_sampling=0, host_sampling=0, vector_sampling=0)[source]
+

Simulate model for a specified time between two time points.

+

Simulates a time series using the Gillespie algorithm.

+

Saves a dictionary containing model state history, with keys=times and +values=Model objects with model snapshot at that time point under this +model’s history attribute.

+
+
Parameters:
+
    +
  • t0 (number >= 0) – initial time point to start simulation at.

  • +
  • tf (number >= 0) – initial time point to end simulation at.

  • +
+
+
Keyword Arguments:
+
    +
  • time_sampling (int) – how many events to skip before saving a snapshot of the +system state (saves all by default), if <0, saves only final state. Defaults to 0.

  • +
  • host_sampling (int >= 0) – how many hosts to skip before saving one in a snapshot +of the system state (saves all by default). Defaults to 0.

  • +
  • vector_sampling (int >= 0) – how many vectors to skip before saving one in a +snapshot of the system state (saves all by default). Defaults to 0.

  • +
+
+
+
+ +
+
+runParamSweep(t0, tf, setup_id, param_sweep_dic={}, host_population_size_sweep={}, vector_population_size_sweep={}, host_migration_sweep_dic={}, vector_migration_sweep_dic={}, host_host_population_contact_sweep_dic={}, host_vector_population_contact_sweep_dic={}, vector_host_population_contact_sweep_dic={}, replicates=1, host_sampling=0, vector_sampling=0, n_cores=0, **kwargs)[source]
+

Simulate a parameter sweep with a model, save only end results.

+

Simulates variations of a time series using the Gillespie algorithm.

+

Saves a dictionary containing model end state state, with keys=times and +values=Model objects with model snapshot. The time is the final +timepoint.

+
+
Parameters:
+
    +
  • t0 (number >= 0) – initial time point to start simulation at.

  • +
  • tf (number >= 0) – initial time point to end simulation at.

  • +
  • setup_id (String) – ID of setup to be assigned.

  • +
+
+
Keyword Arguments:
+
    +
  • of (vector_migration_sweep_dic -- dictionary with keys=population IDs) – Setup), values=list of values for parameter (list, class of elements +depends on parameter)

  • +
  • IDs (vector_population_size_sweep -- dictionary with keys=population) – (Strings), values=list of values with host population sizes +(must be greater than original size set for each population, list of +numbers)

  • +
  • IDs – (Strings), values=list of values with vector population sizes +(must be greater than original size set for each population, list of +numbers)

  • +
  • of – origin and destination, separated by a colon ‘;’ (Strings), +values=list of values (list of numbers)

  • +
  • of – origin and destination, separated by a colon ‘;’ (Strings), +values=list of values (list of numbers)

  • +
  • with (vector_host_population_contact_sweep_dic -- dictionary) – keys=population IDs of origin and destination, separated by a colon +‘;’ (Strings), values=list of values (list of numbers)

  • +
  • with – keys=population IDs of origin and destination, separated by a colon +‘;’ (Strings), values=list of values (list of numbers)

  • +
  • with – keys=population IDs of origin and destination, separated by a colon +‘;’ (Strings), values=list of values (list of numbers)

  • +
  • simulate (replicates -- how many replicates to) –

  • +
  • snapshot (host_sampling -- how many hosts to skip before saving one in a) – of the system state (saves all by default) (int >= 0, default 0)

  • +
  • a (vector_sampling -- how many vectors to skip before saving one in) – snapshot of the system state (saves all by default) +(int >= 0, default 0)

  • +
  • all (n_cores -- number of cores to parallelize file export across, if 0,) – cores available are used (default 0; int >= 0)

  • +
  • multiprocessing (**kwargs -- additional arguents for joblib) –

  • +
+
+
Returns:
+

+
DataFrame with parameter combinations, list of Model objects with the

final snapshots.

+
+
+

+
+
+
+ +
+
+runReplicates(t0, tf, replicates, host_sampling=0, vector_sampling=0, n_cores=0, **kwargs)[source]
+

Simulate replicates of a model, save only end results.

+

Simulates replicates of a time series using the Gillespie algorithm.

+

Saves a dictionary containing model end state state, with keys=times and +values=Model objects with model snapshot. The time is the final timepoint.

+
+
Parameters:
+
    +
  • t0 (number >= 0) – initial time point to start simulation at.

  • +
  • tf (number >= 0) – initial time point to end simulation at.

  • +
  • replicates (int >= 1) – how many replicates to simulate.

  • +
+
+
Keyword Arguments:
+
    +
  • host_sampling (int >= 0) – how many hosts to skip before saving one in a snapshot +of the system state (saves all by default). Defaults to 0.

  • +
  • vector_sampling (int >= 0) – how many vectors to skip before saving one in a +snapshot of the system state (saves all by default). Defaults to 0.

  • +
  • n_cores (int >= 0) – number of cores to parallelize file export across, if 0, all +cores available are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

List of Model objects with the final snapshots.

+
+
+
+ +
+
+saveToDataFrame(save_to_file, n_cores=0, **kwargs)[source]
+

Save status of model to dataframe, write to file location given.

+

Creates a pandas Dataframe in long format with the given model history, +with one host or vector per simulation time in each row, and columns:

+
    +
  • Time - simulation time of entry

  • +
  • Population - ID of this host/vector’s population

  • +
  • Organism - host/vector

  • +
  • ID - ID of host/vector

  • +
  • Pathogens - all genomes present in this host/vector separated by ‘;’

  • +
  • Protection - all genomes present in this host/vector separated by ‘;’

  • +
  • Alive - whether host/vector is alive at this time, True/False

  • +
+
+
Parameters:
+

save_to_file (String) – file path and name to save model data under.

+
+
Keyword Arguments:
+
    +
  • n_cores (int >= 0) – number of cores to parallelize file export across, if 0, all +cores available are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

pandas dataframe with model history as described above.

+
+
+
+ +
+
+setRandomSeed(seed)[source]
+

Set random seed for numpy random number generator.

+
+
Parameters:
+

seed (int) – int for the random seed to be passed to numpy.

+
+
+
+ +
+
+setSetup(pop_id, setup_id)[source]
+

Assign parameters stored in Setup object to this population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • setup_id (String) – ID of setup to be assigned.

  • +
+
+
+
+ +
+
+treatHosts(pop_id, frac_hosts, resistance_seqs, group_id='')[source]
+

Treat random fraction of infected hosts against some infection.

+

Removes all infections with genotypes susceptible to given treatment. +Pathogens are removed if they are missing at least one of the sequences +in resistance_seqs from their genome. Removes this organism from +population infected list and adds to healthy list if appropriate.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • frac_hosts (number between 0 and 1) – fraction of hosts considered to be randomly selected.

  • +
  • resistance_seqs (list of Strings) – contains sequences required for treatment resistance.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific hosts to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+treatVectors(pop_id, frac_vectors, resistance_seqs, group_id='')[source]
+

Treat random fraction of infected vectors agains some infection.

+

Removes all infections with genotypes susceptible to given treatment. +Pathogens are removed if they are missing at least one of the sequences +in resistance_seqs from their genome. Removes this organism from +population infected list and adds to healthy list if appropriate.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • frac_vectors (number between 0 and 1) – fraction of vectors considered to be +randomly selected.

  • +
  • resistance_seqs (list of Strings) – contains sequences required for treatment resistance.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific vectors to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+static valleyLandscape(genome, valley_genome, min_value)[source]
+

Return genome phenotype by increasing with distance from worst seq.

+

A disruptive selection fitness function based on exponential decay of +fitness as genomes move closer to the worst possible sequence. Distance +is measured as percent Hamming distance from the worst possible genome +sequence.

+
+
Parameters:
+
    +
  • genome (String) – the genome to be evaluated.

  • +
  • valley_genome (String) – the genome sequence to measure distance against, has +value of min_value.

  • +
  • min_value (number 0-1) – fitness value of worst possible genome.

  • +
+
+
Returns:
+

value of genome (number).

+
+
+
+ +
+
+wipeProtectionHosts(pop_id, group_id='')[source]
+

Removes all protection sequences from hosts.

+
+
Parameters:
+

pop_id (String) – ID of population to be modified.

+
+
Keyword Arguments:
+

group_id (String) – ID of specific hosts to sample from, if empty, samples from +whole from whole population. Defaults to “”.

+
+
+
+ +
+
+wipeProtectionVectors(pop_id, group_id='')[source]
+

Removes all protection sequences from vectors.

+
+
Parameters:
+

pop_id (String) – ID of population to be modified.

+
+
Keyword Arguments:
+

group_id (String) – ID of specific vectors to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/objects.inv b/docs/_build/html/objects.inv new file mode 100644 index 0000000..e29b00b Binary files /dev/null and b/docs/_build/html/objects.inv differ diff --git a/docs/_build/html/opqua.html b/docs/_build/html/opqua.html new file mode 100644 index 0000000..31de558 --- /dev/null +++ b/docs/_build/html/opqua.html @@ -0,0 +1,1746 @@ + + + + + + + opqua package — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

opqua package

+
+

Subpackages

+
+ +
+
+
+

Submodules

+
+
+

opqua.model module

+

Contains class Model; main class user interacts with.

+
+
+class opqua.model.Model[source]
+

Bases: object

+

Class defines a Model.

+

This is the main class that the user interacts with.

+

The Model class contains populations, setups, and interventions to be used +in simulation. Also contains groups of hosts/vectors for manipulations and +stores model history as snapshots for each time point.

+

CONSTANTS:

+
    +
  • CB_PALETTE: a colorblind-friendly 8-color color scheme.

  • +
  • DEF_CMAP: a colormap object for Seaborn plots.

  • +
+
+
+populations
+

dictionary with keys=population IDs, values=Population +objects.

+
+ +
+
+setups
+

dictionary with keys=setup IDs, values=Setup objects.

+
+ +
+
+interventions
+

contains model interventions in the order they will occur.

+
+ +
+
+groups
+

dictionary with keys=group IDs, values=lists of hosts/vectors.

+
+ +
+
+history
+

dictionary with keys=time values, values=Model objects that +are snapshots of Model at that timepoint.

+
+ +
+
+t_var
+

variable that tracks time in simulations.

+
+ +
+
+CB_PALETTE = ['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999']
+
+ +
+
+DEF_CMAP = <matplotlib.colors.ListedColormap object>
+
+ +
+
+addCustomConditionTracker(condition_id, trackerFunction)[source]
+

Add a function to track occurrences of custom events in simulation.

+

Adds function trackerFunction to dictionary custom_condition_trackers +under key condition_id. Function trackerFunction will be executed at +every event in the simulation. Every time True is returned, +the simulation time will be stored under the corresponding condition_id +key inside global_trackers[‘custom_condition’].

+
+
Parameters:
+
    +
  • condition_id (String) – ID of this specific condition-

  • +
  • trackerFunction (callable) – function that take a Model object as argument +and returns True or False.

  • +
+
+
+
+ +
+
+addHosts(pop_id, num_hosts)[source]
+

Add a number of healthy hosts to population, return list with them.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • num_hosts (int) – number of hosts to be added.

  • +
+
+
Returns:
+

list containing new hosts.

+
+
+
+ +
+
+addPathogensToHosts(pop_id, genomes_numbers, group_id='')[source]
+

Add specified pathogens to random hosts, optionally from a list.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • genomes_numbers (dict with keys=Strings, values=int) – genomes to add as keys and number of hosts each one will be added to as values.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific hosts to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+addPathogensToVectors(pop_id, genomes_numbers, group_id='')[source]
+

Add specified pathogens to random vectors, optionally from a list.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • genomes_numbers (dict with keys=Strings, values=int) – dictionary containing pathogen +genomes to add as keys and number of vectors each one will be added to as values.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific vectors to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+addVectors(pop_id, num_vectors)[source]
+

Add a number of healthy vectors to population, return list with them.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • num_vectors (int) – number of vectors to be added.

  • +
+
+
Returns:
+

list containing new vectors.

+
+
+
+ +
+
+clustermap(file_name, data, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], n_cores=0, method='weighted', metric='euclidean', save_data_to_file='', legend_title='Distance', legend_values=[], figsize=(10, 10), dpi=200, color_map=<matplotlib.colors.ListedColormap object>)[source]
+

Create a heatmap and dendrogram for pathogen genomes in data passed.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf +function.

  • +
+
+
Keyword Arguments:
+
    +
  • num_top_sequences (int) – how many sequences to include in matrix; if <0, +includes all genomes in data passed. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to include +in matrix if not part of the top num_top_sequences sequences. Defaults to [].

  • +
  • seq_names (list ofStrings) – list with names to be used for sequence labels in matrix +must be of same length as number of sequences to be displayed; if empty, uses sequences +themselves. Defaults to [].

  • +
  • n_cores (int >= 0) – number of cores to parallelize distance compute across, if 0, +all cores available are used. Defaults to 0.

  • +
  • method (String) – clustering algorithm to use with seaborn clustermap. Defaults to ‘weighted’.

  • +
  • metric (String) – distance metric to use with seaborn clustermap. Defaults to ‘euclidean’.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • legend_title (String) – legend title. Defaults to ‘Distance’.

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • color_map (matplotlib cmap object) – color map to use for traces. Defaults to DEF_CMAP.

  • +
+
+
Returns:
+

figure object for plot with heatmap and dendrogram as described.

+
+
+
+ +
+
+compartmentPlot(file_name, data, populations=[], hosts=True, vectors=False, save_data_to_file='', x_label='Time', y_label='Hosts', figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=False)[source]
+

Create plot with number of naive,inf,rec,dead hosts/vectors vs. time.

+

Creates a line or stacked line plot with dynamics of all compartments +(naive, infected, recovered, dead) across selected populations in the +model, with one line for each compartment.

+

A host or vector is considered part of the recovered compartment +if it has protection sequences of any kind and is not infected.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses +all populations in model. Defaults to [].

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population +IDs. Defaults to [].

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int)) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • one (stacked -- whether to draw a regular line plot instead of a stacked) – (default False, Boolean)

  • +
+
+
Returns:
+

axis object for plot with model compartment dynamics as described above

+
+
+
+ +
+
+compositionPlot(file_name, data, composition_dataframe=None, populations=[], type_of_composition='Pathogens', hosts=True, vectors=False, num_top_sequences=7, track_specific_sequences=[], save_data_to_file='', x_label='Time', y_label='Infections', figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=True, remove_legend=False, genomic_positions=[], population_fraction=False, count_individuals_based_on_model=None, legend_title='Genotype', legend_values=[], **kwargs)[source]
+

Create plot with counts for pathogen genomes or resistance vs. time.

+

Creates a line or stacked line plot with dynamics of the pathogen +strains or protection sequences across selected populations in the +model, with one line for each pathogen genome or protection sequence +being shown.

+

Of note: sum of totals for all sequences in one time point does not +necessarily equal the number of infected hosts and/or vectors, given +multiple infections in the same host/vector are counted separately.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • composition_dataframe (pandas DataFrame) – output of compositionDf() if already computed +Defaults to None.

  • +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses +all populations in model. Defaults to [].

  • +
  • type_of_composition (String) – ‘Pathogens’ or ‘Protection’. Defaults to ‘Pathogens’.

  • +
  • hosts (Boolean) –

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • num_top_sequences (int) – how many sequences to count separately and include +as columns, remainder will be counted under column “Other”; if <0, +includes all genomes in model. Defaults to 7.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to have +as a separate column if not part of the top num_top_sequences +sequences. Defaults to [].

  • +
  • genomic_positions (list of lists of int) – list in which each element is a list with loci +positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] +extracts positions 0, 1, 2, and 5 from each genome); if empty, takes +full genomes. Defaults to [].

  • +
  • count_individuals_based_on_model (None or Model) – Model object with populations and +fitness functions used to evaluate the most fit pathogen genome in +each host/vector in order to count only a single pathogen per +host/vector, as opposed to all pathogens within each host/vector; if +None, counts all pathogens. Defaults to None.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population +IDs. Defaults to [].

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • stacked (Boolean) – whether to draw a regular line plot instead of a stacked one. Defaults to False.

  • +
  • remove_legend (Boolean) – whether to print the sequences on the figure legend +instead of printing them on a separate csv file. Defaults to True.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

axis object for plot with model sequence composition dynamics as described.

+
+
+
+ +
+
+copyState(host_sampling=0, vector_sampling=0)[source]
+

Returns a slimmed-down representation of the current model state.

+
+
Keyword Arguments:
+
    +
  • host_sampling (int >= 0) – how many hosts to skip before saving one in a snapshot +of the system state (saves all by default). Defaults to 0.

  • +
  • vector_sampling (int >= 0) – how many vectors to skip before saving one in a +snapshot of the system state (saves all by default). Defaults to 0.

  • +
+
+
Returns:
+

Model object with current population host and vector lists.

+
+
+
+ +
+
+createInterconnectedPopulations(num_populations, id_prefix, setup_name, host_migration_rate=0, vector_migration_rate=0, host_host_contact_rate=0, host_vector_contact_rate=0, vector_host_contact_rate=0, num_hosts=100, num_vectors=100)[source]
+

Create new populations, link all of them to each other.

+

All populations in this cluster are linked with the same migration rate, +starting number of hosts and vectors, and setup parameters. Their IDs +are numbered onto prefix given as ‘id_prefix_0’, ‘id_prefix_1’, +‘id_prefix_2’, etc.

+
+
Parameters:
+
    +
  • num_populations (int) – number of populations to be created.

  • +
  • id_prefix (String) – prefix for IDs to be used for this population in the model.

  • +
  • setup_name (Setup object) – setup object with parameters for all populations.

  • +
+
+
Keyword Arguments:
+
    +
  • host_migration_rate (number >= 0) – host migration rate between populations; +evts/time. Defaults to 0.

  • +
  • vector_migration_rate (number >= 0) – vector migration rate between populations; +evts/time. Defaults to 0.

  • +
  • host_host_contact_rate (number >= 0) – host-host inter-population contact rate +between populations; evts/time. Defaults to 0.

  • +
  • host_vector_contact_rate (number >= 0) – host-vector inter-population contact rate +between populations; evts/time. Defaults to 0.

  • +
  • vector_host_contact_rate (number >= 0) – vector-host inter-population contact rate +between populations; evts/time. Defaults to 0.

  • +
  • num_hosts (int) – number of hosts to initialize population with. Defaults to 100.

  • +
  • num_vectors (int) – number of hosts to initialize population with. Defaults to 100.

  • +
+
+
+
+ +
+
+customModelFunction(function)[source]
+

Returns output of given function, passing this model as a parameter.

+
+
Parameters:
+

function (callable) – function to be evaluated; must take a Model object as the +only parameter.

+
+
Returns:
+

output of function passed as parameter.

+
+
+
+ +
+
+deepCopy()[source]
+

Returns a full copy of the current model with inner references.

+
+
Returns:
+

Copied Model object.

+
+
+
+ +
+
+getCompositionData(data=None, populations=[], type_of_composition='Pathogens', hosts=True, vectors=False, num_top_sequences=-1, track_specific_sequences=[], genomic_positions=[], count_individuals_based_on_model=None, save_data_to_file='', n_cores=0, **kwargs)[source]
+

Create dataframe with counts for pathogen genomes or resistance.

+

Creates a pandas Dataframe with dynamics of the pathogen strains or +protection sequences across selected populations in the model, +with one time point in each row and columns for pathogen genomes or +protection sequences.

+

Of note: sum of totals for all sequences in one time point does not +necessarily equal the number of infected hosts and/or vectors, given +multiple infections in the same host/vector are counted separately.

+
+
Keyword Arguments:
+
    +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf +function; if None, computes this dataframe and saves it under ‘raw_data_’+’save_data_to_file’. +Defaults to None.

  • +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses +all populations in model. Defaults to [].

  • +
  • type_of_composition (String) – field of data to count totals of, can be either +‘Pathogens’ or ‘Protection’. Defaults to ‘Pathogens’.

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • num_top_sequences (int) – how many sequences to count separately and include +as columns, remainder will be counted under column “Other”; if <0, +includes all genomes in model. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to have +as a separate column if not part of the top num_top_sequences +sequences. Defaults to [].

  • +
  • genomic_positions (list of lists of int) – list in which each element is a list with +loci positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] +extracts positions 0, 1, 2, and 5 from each genome); if empty, takes +full genomes. Defaults to [].

  • +
  • count_individuals_based_on_model (None or Model object) – Model object with populations and +fitness functions used to evaluate the most fit pathogen genome in +each host/vector in order to count only a single pathogen per +host/vector, asopposed to all pathogens within each host/vector; if +None, counts all pathogens. Defaults to None.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • n_cores (int) – number of cores to parallelize processing across, if 0, all +cores available are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

+
pandas DataFrame with model sequence composition dynamics as described

above.

+
+
+

+
+
+
+ +
+
+getGenomeTimes(data, samples=-1, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], n_cores=0, save_to_file='')[source]
+

Create DataFrame with times genomes first appeared during simulation.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf +function.

+
+
Keyword Arguments:
+
    +
  • samples (int) – how many timepoints to uniformly sample from the total +timecourse; if <0, takes all timepoints. Defaults to 1.

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • n_cores (int) – number of cores to parallelize across, if 0, all cores +available are used. Defaults to 0.

  • +
+
+
Returns:
+

pandas DataFrame with genomes and times as described above.

+
+
+
+ +
+
+getPathogens(dat, save_to_file='')[source]
+

Create Dataframe with counts for all pathogen genomes in data.

+

Returns sorted pandas Dataframe with counts for occurrences of all +pathogen genomes in data passed.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+

save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

+
+
Returns:
+

pandas dataframe with Series as described above.

+
+
+
+ +
+
+getProtections(dat, save_to_file='')[source]
+

Create Dataframe with counts for all protection sequences in data.

+

Returns sorted pandas Dataframe with counts for occurrences of all +protection sequences in data passed.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+

save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

+
+
Returns:
+

pandas DataFrame with Series as described above.

+
+
+
+ +
+
+linkPopulationsHostHostContact(pop1_id, pop2_id, rate)[source]
+

Set host-host contact rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which inter-population contact rate +will be specified.

  • +
  • pop1_id – destination population for which inter-population contact +rate will be specified.

  • +
  • rate (number >= 0) – inter-population contact rate from one population to the +neighbor; evts/time.

  • +
+
+
+
+ +
+
+linkPopulationsHostMigration(pop1_id, pop2_id, rate)[source]
+

Set host migration rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which migration rate will be specified.

  • +
  • pop1_id – destination population for which migration rate will be +specified.

  • +
  • rate (number >= 0) – migration rate from one population to the neighbor; evts/time.

  • +
+
+
+
+ +
+
+linkPopulationsHostVectorContact(pop1_id, pop2_id, rate)[source]
+

Set host-vector contact rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which inter-population contact rate +will be specified.

  • +
  • pop1_id – destination population for which inter-population contact +rate will be specified.

  • +
  • rate (number >= 0) – inter-population contact rate from one population to the +neighbor; evts/time.

  • +
+
+
+
+ +
+
+linkPopulationsVectorHostContact(pop1_id, pop2_id, rate)[source]
+

Set vector-host contact rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which inter-population contact rate +will be specified.

  • +
  • pop1_id – destination population for which inter-population contact +rate will be specified.

  • +
  • rate (number >= 0) – inter-population contact rate from one population to the +neighbor; evts/time.

  • +
+
+
+
+ +
+
+linkPopulationsVectorMigration(pop1_id, pop2_id, rate)[source]
+

Set vector migration rate from one population towards another.

+
+
Parameters:
+
    +
  • pop1_id (String) – origin population for which migration rate will be specified.

  • +
  • pop1_id – destination population for which migration rate will be +specified.

  • +
  • rate (number >= 0) – migration rate from one population to the neighbor; evts/time.

  • +
+
+
+
+ +
+
+newHostGroup(pop_id, group_id, hosts=-1, type='any')[source]
+

Return a list of random hosts in population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be sampled from.

  • +
  • group_id (String) – ID to name group with.

  • +
+
+
Keyword Arguments:
+
    +
  • hosts (number) – number of hosts to be sampled randomly: if <0, samples from +whole population; if <1, takes that fraction of population; if >=1, +samples that integer number of hosts. Defaults to -1.

  • +
  • type (String = {'healthy', 'infected', 'any'}) – whether to sample healthy hosts only, +infected hosts only, or any hosts. Defaults to ‘any’.

  • +
+
+
Returns:
+

list containing sampled hosts.

+
+
+
+ +
+
+newIntervention(time, method_name, args)[source]
+

Create a new intervention to be carried out at a specific time.

+
+
Parameters:
+
    +
  • time (number >= 0) – time at which intervention will take place.

  • +
  • method_name (String) – intervention to be carried out, must correspond to the +name of a method of the Model object.

  • +
  • args (array-like) – contains arguments for function in positinal order.

  • +
+
+
+
+ +
+
+newPopulation(id, setup_name, num_hosts=0, num_vectors=0)[source]
+

Create a new Population object with setup parameters.

+

If population ID is already in use, appends _2 to it

+
+
Parameters:
+
    +
  • id (String) – unique identifier for this population in the model.

  • +
  • setup_name (Setup object) – setup object with parameters for this population.

  • +
+
+
Keyword Arguments:
+
    +
  • num_hosts (int >= 0) – number of hosts to initialize population with. Defaults to 100.

  • +
  • num_vectors (int >= 0) – number of vectors to initialize population with. Defaults to 100.

  • +
+
+
+
+ +
+
+newSetup(name, preset=None, num_loci=None, possible_alleles=None, fitnessHost=None, contactHost=None, receiveContactHost=None, mortalityHost=None, natalityHost=None, recoveryHost=None, migrationHost=None, populationContactHost=None, receivePopulationContactHost=None, mutationHost=None, recombinationHost=None, fitnessVector=None, contactVector=None, receiveContactVector=None, mortalityVector=None, natalityVector=None, recoveryVector=None, migrationVector=None, populationContactVector=None, receivePopulationContactVector=None, mutationVector=None, recombinationVector=None, contact_rate_host_vector=None, transmission_efficiency_host_vector=None, transmission_efficiency_vector_host=None, contact_rate_host_host=None, transmission_efficiency_host_host=None, mean_inoculum_host=None, mean_inoculum_vector=None, recovery_rate_host=None, recovery_rate_vector=None, mortality_rate_host=None, mortality_rate_vector=None, recombine_in_host=None, recombine_in_vector=None, num_crossover_host=None, num_crossover_vector=None, mutate_in_host=None, mutate_in_vector=None, death_rate_host=None, death_rate_vector=None, birth_rate_host=None, birth_rate_vector=None, vertical_transmission_host=None, vertical_transmission_vector=None, inherit_protection_host=None, inherit_protection_vector=None, protection_upon_recovery_host=None, protection_upon_recovery_vector=None)[source]
+

Create a new Setup, save it in setups dict under given name.

+

Two preset setups exist: “vector-borne” and “host-host”. You may select +one of the preset setups with the preset keyword argument and then +modify individual parameters with additional keyword arguments, without +having to specify all of them.

+

“host-host”:

+
    +
  • num_loci = 10

  • +
  • possible_alleles = ‘ATCG’

  • +
  • fitnessHost = (lambda g: 1)

  • +
  • contactHost = (lambda g: 1)

  • +
  • receiveContactHost = (lambda g: 1)

  • +
  • mortalityHost = (lambda g: 1)

  • +
  • natalityHost = (lambda g: 1)

  • +
  • recoveryHost = (lambda g: 1)

  • +
  • migrationHost = (lambda g: 1)

  • +
  • populationContactHost = (lambda g: 1)

  • +
  • receivePopulationContactHost = (lambda g: 1)

  • +
  • mutationHost = (lambda g: 1)

  • +
  • recombinationHost = (lambda g: 1)

  • +
  • fitnessVector = (lambda g: 1)

  • +
  • contactVector = (lambda g: 1)

  • +
  • receiveContactVector = (lambda g: 1)

  • +
  • mortalityVector = (lambda g: 1)

  • +
  • natalityVector = (lambda g: 1)

  • +
  • recoveryVector = (lambda g: 1)

  • +
  • migrationVector = (lambda g: 1)

  • +
  • populationContactVector = (lambda g: 1)

  • +
  • receivePopulationContactVector = (lambda g: 1)

  • +
  • mutationVector = (lambda g: 1)

  • +
  • recombinationVector = (lambda g: 1)

  • +
  • contact_rate_host_vector = 0

  • +
  • transmission_efficiency_host_vector = 0

  • +
  • transmission_efficiency_vector_host = 0

  • +
  • contact_rate_host_host = 2e-1

  • +
  • transmission_efficiency_host_host = 1

  • +
  • mean_inoculum_host = 1e1

  • +
  • mean_inoculum_vector = 0

  • +
  • recovery_rate_host = 1e-1

  • +
  • recovery_rate_vector = 0

  • +
  • mortality_rate_host = 0

  • +
  • mortality_rate_vector = 0

  • +
  • recombine_in_host = 1e-4

  • +
  • recombine_in_vector = 0

  • +
  • num_crossover_host = 1

  • +
  • num_crossover_vector = 0

  • +
  • mutate_in_host = 1e-6

  • +
  • mutate_in_vector = 0

  • +
  • death_rate_host = 0

  • +
  • death_rate_vector = 0

  • +
  • birth_rate_host = 0

  • +
  • birth_rate_vector = 0

  • +
  • vertical_transmission_host = 0

  • +
  • vertical_transmission_vector = 0

  • +
  • inherit_protection_host = 0

  • +
  • inherit_protection_vector = 0

  • +
  • protection_upon_recovery_host = None

  • +
  • protection_upon_recovery_vector = None

  • +
+

“vector-borne”:

+
    +
  • num_loci = 10

  • +
  • possible_alleles = ‘ATCG’

  • +
  • fitnessHost = (lambda g: 1)

  • +
  • contactHost = (lambda g: 1)

  • +
  • receiveContactHost = (lambda g: 1)

  • +
  • mortalityHost = (lambda g: 1)

  • +
  • natalityHost = (lambda g: 1)

  • +
  • recoveryHost = (lambda g: 1)

  • +
  • migrationHost = (lambda g: 1)

  • +
  • populationContactHost = (lambda g: 1)

  • +
  • receivePopulationContactHost = (lambda g: 1)

  • +
  • mutationHost = (lambda g: 1)

  • +
  • recombinationHost = (lambda g: 1)

  • +
  • fitnessVector = (lambda g: 1)

  • +
  • contactVector = (lambda g: 1)

  • +
  • receiveContactVector = (lambda g: 1)

  • +
  • mortalityVector = (lambda g: 1)

  • +
  • natalityVector = (lambda g: 1)

  • +
  • recoveryVector = (lambda g: 1)

  • +
  • migrationVector = (lambda g: 1)

  • +
  • populationContactVector = (lambda g: 1)

  • +
  • receivePopulationContactVector = (lambda g: 1)

  • +
  • mutationVector = (lambda g: 1)

  • +
  • recombinationVector = (lambda g: 1)

  • +
  • contact_rate_host_vector = 2e-1

  • +
  • transmission_efficiency_host_vector = 1

  • +
  • transmission_efficiency_vector_host = 1

  • +
  • contact_rate_host_host = 0

  • +
  • transmission_efficiency_host_host = 0

  • +
  • mean_inoculum_host = 1e2

  • +
  • mean_inoculum_vector = 1e0

  • +
  • recovery_rate_host = 1e-1

  • +
  • recovery_rate_vector = 1e-1

  • +
  • mortality_rate_host = 0

  • +
  • mortality_rate_vector = 0

  • +
  • recombine_in_host = 0

  • +
  • recombine_in_vector = 1e-4

  • +
  • num_crossover_host = 0

  • +
  • num_crossover_vector = 1

  • +
  • mutate_in_host = 1e-6

  • +
  • mutate_in_vector = 0

  • +
  • death_rate_host = 0

  • +
  • death_rate_vector = 0

  • +
  • birth_rate_host = 0

  • +
  • birth_rate_vector = 0

  • +
  • vertical_transmission_host = 0

  • +
  • vertical_transmission_vector = 0

  • +
  • inherit_protection_host = 0

  • +
  • inherit_protection_vector = 0

  • +
  • protection_upon_recovery_host = None

  • +
  • protection_upon_recovery_vector = None

  • +
+
+
Parameters:
+

name (String) – name of setup to be used as a key in model setups dictionary.

+
+
Keyword Arguments:
+
    +
  • preset (None or String) – preset setup to be used: “vector-borne” or “host-host”, if +None, must define all other keyword arguments. Defaults to None.

  • +
  • num_loci (int>0) – length of each pathogen genome string.

  • +
  • possible_alleles (String or list of Strings with num_loci elements) – set of possible +characters in all genome string, or at each position in genome string.

  • +
  • fitnessHost (callable, takes a String argument and returns a number >= 0) – function +that evaluates relative fitness in head-to-head competition for different genomes +within the same host.

  • +
  • contactHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying probability of a given host being chosen to be the +infector in a contact event, based on genome sequence of pathogen.

  • +
  • receiveContactHost (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying probability of a given host being chosen to be +the infected in a contact event, based on genome sequence of pathogen.

  • +
  • mortalityHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying death rate for a given host, based on genome sequence +of pathogen.

  • +
  • natalityHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying birth rate for a given host, based on genome sequence +of pathogen.

  • +
  • recoveryHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying recovery rate for a given host based on genome sequence +of pathogen.

  • +
  • migrationHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying migration rate for a given host based on genome sequence +of pathogen.

  • +
  • populationContactHost (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying population contact rate for a given host based on +genome sequence of pathogen.

  • +
  • mutationHost (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying mutation rate for a given host based on genome sequence +of pathogen.

  • +
  • recombinationHost (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying recombination rate for a given host based on genome +sequence of pathogen.

  • +
  • fitnessVector (callable, takes a String argument and returns a number >=0) – function that +evaluates relative fitness in head-to-head competition for different genomes within +the same vector.

  • +
  • contactVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying probability of a given vector being chosen to be the +infector in a contact event, based on genome sequence of pathogen.

  • +
  • receiveContactVector (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying probability of a given vector being chosen to be the +infected in a contact event, based on genome sequence of pathogen.

  • +
  • mortalityVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying death rate for a given vector, based on genome sequence +of pathogen.

  • +
  • natalityVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying birth rate for a given vector, based on genome sequence +of pathogen.

  • +
  • recoveryVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying recovery rate for a given vector based on genome sequence +of pathogen.

  • +
  • migrationVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying migration rate for a given vector based on genome sequence +of pathogen.

  • +
  • populationContactVector (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying population contact rate for a given vector based on +genome sequence of pathogen.

  • +
  • mutationVector (callable, takes a String argument and returns a number 0-1) – function that +returns coefficient modifying mutation rate for a given vector based on genome sequence +of pathogen.

  • +
  • recombinationVector (callable, takes a String argument and returns a number 0-1) – function +that returns coefficient modifying recombination rate for a given vector based on genome +sequence of pathogen.

  • +
  • contact_rate_host_vector (number >= 0) – rate of host-vector contact events, not necessarily +transmission, assumes constant population density; evts/time.

  • +
  • transmission_efficiency_host_vector (float) – fraction of host-vector contacts +that result in successful transmission.

  • +
  • transmission_efficiency_vector_host (float) – fraction of vector-host contacts +that result in successful transmission.

  • +
  • contact_rate_host_host (number >= 0) – rate of host-host contact events, not +necessarily transmission, assumes constant population density; evts/time.

  • +
  • transmission_efficiency_host_host (float) – fraction of host-host contacts +that result in successful transmission.

  • +
  • mean_inoculum_host (int >= 0) – mean number of pathogens that are transmitted from +a vector or host into a new host during a contact event.

  • +
  • mean_inoculum_vector (int >= 0) – from a host to a vector during a contact event.

  • +
  • recovery_rate_host (number >= 0) – rate at which hosts clear all pathogens; +1/time.

  • +
  • recovery_rate_vector (number >= 0) – rate at which vectors clear all pathogens +1/time.

  • +
  • recovery_rate_vector – rate at which vectors clear all pathogens +1/time.

  • +
  • mortality_rate_host (number 0-1) – rate at which infected hosts die from disease.

  • +
  • mortality_rate_vector (number 0-1) – rate at which infected vectors die from +disease.

  • +
  • recombine_in_host (number >= 0) – rate at which recombination occurs in host; +evts/time.

  • +
  • recombine_in_vector (number >= 0) – rate at which recombination occurs in vector; +evts/time.

  • +
  • num_crossover_host (number >= 0) – mean of a Poisson distribution modeling the number +of crossover events of host recombination events.

  • +
  • num_crossover_vector (number >= 0) – mean of a Poisson distribution modeling the +number of crossover events of vector recombination events.

  • +
  • mutate_in_host (number >= 0) – rate at which mutation occurs in host; evts/time.

  • +
  • mutate_in_vector (number >= 0) – rate at which mutation occurs in vector; evts/time.

  • +
  • death_rate_host (number >= 0) – natural host death rate; 1/time.

  • +
  • death_rate_vector (number >= 0) – natural vector death rate; 1/time.

  • +
  • birth_rate_host (number >= 0) – infected host birth rate; 1/time.

  • +
  • birth_rate_vector (number >= 0) – infected vector birth rate; 1/time.

  • +
  • vertical_transmission_host (number 0-1) – probability that a host is infected by its +parent at birth.

  • +
  • vertical_transmission_vector (number 0-1) – probability that a vector is infected by +its parent at birth.

  • +
  • inherit_protection_host (number 0-1) – probability that a host inherits all +protection sequences from its parent.

  • +
  • inherit_protection_vector (number 0-1) – probability that a vector inherits all +protection sequences from its parent.

  • +
  • protection_upon_recovery_host (None or array-like of length 2 with int 0-num_loci) – defines +indexes in genome string that define substring to be added to host protection sequences +after recovery.

  • +
  • protection_upon_recovery_vector (None or array-like of length 2 with int 0-num_loci) – defines +indexes in genome string that define substring to be added to vector protection sequences +after recovery.

  • +
+
+
+
+ +
+
+newVectorGroup(pop_id, group_id, vectors=-1, type='any')[source]
+

Return a list of random vectors in population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be sampled from.

  • +
  • group_id (String) – ID to name group with.

  • +
+
+
Keyword Arguments:
+
    +
  • vectors (number) – number of vectors to be sampled randomly: if <0, samples from +whole population; if <1, takes that fraction of population; if >=1, +samples that integer number of vectors. Defaults to -1.

  • +
  • type (String = {'healthy', 'infected', 'any'}) – whether to sample healthy vectors only, infected vectors +only, or any vectors. Defaults to ‘any’.

  • +
+
+
Returns:
+

list containing sampled vectors.

+
+
+
+ +
+
+pathogenDistanceHistory(data, samples=-1, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], n_cores=0, save_to_file='')[source]
+

Create DataFrame with pairwise Hamming distances for pathogen +sequences in data.

+

DataFrame has indexes and columns named according to genomes or argument +seq_names, if passed. Distance is measured as percent Hamming distance +from an optimal genome sequence.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf +function.

+
+
Keyword Arguments:
+
    +
  • samples (int) – how many timepoints to uniformly sample from the total +timecourse; if <0, takes all timepoints. Defaults to 1.

  • +
  • num_top_sequences (int) – includes all genomes in data passed. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to include in +matrix if not part of the top num_top_sequences sequences. Defaults to [].

  • +
  • seq_names (list of Strings) – list with names to be used for sequence labels in matrix +must be of same length as number of sequences to be displayed; if +empty, uses sequences themselves. Defaults to [].

  • +
  • n_cores (int >= 0) – number of cores to parallelize distance compute across, if 0, +all cores available are used. Defaults to 0.

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
+
+
Returns:
+

pandas DataFrame with distance matrix as described above.

+
+
+
+ +
+
+static peakLandscape(genome, peak_genome, min_value)[source]
+

Return genome phenotype by decreasing with distance from optimal seq.

+

A purifying selection fitness function based on exponential decay of +fitness as genomes move away from the optimal sequence. Distance is +measured as percent Hamming distance from an optimal genome sequence.

+
+
Parameters:
+
    +
  • genome (String) – the genome to be evaluated.

  • +
  • peak_genome (String) – the genome sequence to measure distance against, has +value of 1.

  • +
  • min_value (number 0-1) – minimum value at maximum distance from optimal +genome.

  • +
+
+
Returns:
+

value of genome (number).

+
+
+
+ +
+
+populationsPlot(file_name, data, compartment='Infected', hosts=True, vectors=False, num_top_populations=7, track_specific_populations=[], save_data_to_file='', x_label='Time', y_label='Hosts', figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=False)[source]
+

Create plot with aggregated totals per population across time.

+

Creates a line or stacked line plot with dynamics of a compartment +across populations in the model, with one line for each population.

+

A host or vector is considered part of the recovered compartment +if it has protection sequences of any kind and is not infected.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • compartment (String) – subset of hosts/vectors to count totals of, can be either +‘Naive’,’Infected’,’Recovered’, or ‘Dead’. Defaults to ‘Infected’.

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) –

  • +
  • num_top_populations (int) – how many populations to count separately and +include as columns, remainder will be counted under column “Other”; +if <0, includes all populations in model. Defaults to 7.

  • +
  • track_specific_populations (list of Strings) – contains IDs of specific populations to +have as a separate column if not part of the top num_top_populations +populations. Defaults to [].

  • +
  • save_data_to_file (String) – file path and name to save model plot data under, +no saving occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population +IDs. Defaults to [].

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • stacked (Boolean) – whether to draw a regular line plot instead of a stacked one. Defaults to False.

  • +
+
+
Returns:
+

axis object for plot with model population dynamics as described above.

+
+
+
+ +
+
+protectHosts(pop_id, frac_hosts, protection_sequence, group_id='')[source]
+

Protect a random fraction of infected hosts against some infection.

+

Adds protection sequence specified to a random fraction of the hosts +specified. Does not cure them if they are already infected.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • frac_hosts (number between 0 and 1) – fraction of hosts considered to be +randomly selected.

  • +
  • protection_sequence (String) – sequence against which to protect.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific hosts to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+protectVectors(pop_id, frac_vectors, protection_sequence, group_id='')[source]
+

Protect a random fraction of infected vectors against some infection.

+

Adds protection sequence specified to a random fraction of the vectors +specified. Does not cure them if they are already infected.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • frac_vectors (number between 0 and 1) – fraction of vectors considered to be randomly selected.

  • +
  • protection_sequence (String) – sequence against which to protect.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific vectors to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+removeHosts(pop_id, num_hosts_or_list)[source]
+

Remove a number of specified or random hosts from population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • num_hosts_or_list (int or list of Hosts) – number of hosts to be sampled randomly for removal +or list of hosts to be removed, must be hosts in this population.

  • +
+
+
+
+ +
+
+removeVectors(pop_id, num_vectors_or_list)[source]
+

Remove a number of specified or random vectors from population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • num_vectors_or_list (int or list of Vectors) – number of vectors to be sampled randomly for +removal or list of vectors to be removed, must be vectors in this +population.

  • +
+
+
+
+ +
+
+run(t0, tf, time_sampling=0, host_sampling=0, vector_sampling=0)[source]
+

Simulate model for a specified time between two time points.

+

Simulates a time series using the Gillespie algorithm.

+

Saves a dictionary containing model state history, with keys=times and +values=Model objects with model snapshot at that time point under this +model’s history attribute.

+
+
Parameters:
+
    +
  • t0 (number >= 0) – initial time point to start simulation at.

  • +
  • tf (number >= 0) – initial time point to end simulation at.

  • +
+
+
Keyword Arguments:
+
    +
  • time_sampling (int) – how many events to skip before saving a snapshot of the +system state (saves all by default), if <0, saves only final state. Defaults to 0.

  • +
  • host_sampling (int >= 0) – how many hosts to skip before saving one in a snapshot +of the system state (saves all by default). Defaults to 0.

  • +
  • vector_sampling (int >= 0) – how many vectors to skip before saving one in a +snapshot of the system state (saves all by default). Defaults to 0.

  • +
+
+
+
+ +
+
+runParamSweep(t0, tf, setup_id, param_sweep_dic={}, host_population_size_sweep={}, vector_population_size_sweep={}, host_migration_sweep_dic={}, vector_migration_sweep_dic={}, host_host_population_contact_sweep_dic={}, host_vector_population_contact_sweep_dic={}, vector_host_population_contact_sweep_dic={}, replicates=1, host_sampling=0, vector_sampling=0, n_cores=0, **kwargs)[source]
+

Simulate a parameter sweep with a model, save only end results.

+

Simulates variations of a time series using the Gillespie algorithm.

+

Saves a dictionary containing model end state state, with keys=times and +values=Model objects with model snapshot. The time is the final +timepoint.

+
+
Parameters:
+
    +
  • t0 (number >= 0) – initial time point to start simulation at.

  • +
  • tf (number >= 0) – initial time point to end simulation at.

  • +
  • setup_id (String) – ID of setup to be assigned.

  • +
+
+
Keyword Arguments:
+
    +
  • of (vector_migration_sweep_dic -- dictionary with keys=population IDs) – Setup), values=list of values for parameter (list, class of elements +depends on parameter)

  • +
  • IDs (vector_population_size_sweep -- dictionary with keys=population) – (Strings), values=list of values with host population sizes +(must be greater than original size set for each population, list of +numbers)

  • +
  • IDs – (Strings), values=list of values with vector population sizes +(must be greater than original size set for each population, list of +numbers)

  • +
  • of – origin and destination, separated by a colon ‘;’ (Strings), +values=list of values (list of numbers)

  • +
  • of – origin and destination, separated by a colon ‘;’ (Strings), +values=list of values (list of numbers)

  • +
  • with (vector_host_population_contact_sweep_dic -- dictionary) – keys=population IDs of origin and destination, separated by a colon +‘;’ (Strings), values=list of values (list of numbers)

  • +
  • with – keys=population IDs of origin and destination, separated by a colon +‘;’ (Strings), values=list of values (list of numbers)

  • +
  • with – keys=population IDs of origin and destination, separated by a colon +‘;’ (Strings), values=list of values (list of numbers)

  • +
  • simulate (replicates -- how many replicates to) –

  • +
  • snapshot (host_sampling -- how many hosts to skip before saving one in a) – of the system state (saves all by default) (int >= 0, default 0)

  • +
  • a (vector_sampling -- how many vectors to skip before saving one in) – snapshot of the system state (saves all by default) +(int >= 0, default 0)

  • +
  • all (n_cores -- number of cores to parallelize file export across, if 0,) – cores available are used (default 0; int >= 0)

  • +
  • multiprocessing (**kwargs -- additional arguents for joblib) –

  • +
+
+
Returns:
+

+
DataFrame with parameter combinations, list of Model objects with the

final snapshots.

+
+
+

+
+
+
+ +
+
+runReplicates(t0, tf, replicates, host_sampling=0, vector_sampling=0, n_cores=0, **kwargs)[source]
+

Simulate replicates of a model, save only end results.

+

Simulates replicates of a time series using the Gillespie algorithm.

+

Saves a dictionary containing model end state state, with keys=times and +values=Model objects with model snapshot. The time is the final timepoint.

+
+
Parameters:
+
    +
  • t0 (number >= 0) – initial time point to start simulation at.

  • +
  • tf (number >= 0) – initial time point to end simulation at.

  • +
  • replicates (int >= 1) – how many replicates to simulate.

  • +
+
+
Keyword Arguments:
+
    +
  • host_sampling (int >= 0) – how many hosts to skip before saving one in a snapshot +of the system state (saves all by default). Defaults to 0.

  • +
  • vector_sampling (int >= 0) – how many vectors to skip before saving one in a +snapshot of the system state (saves all by default). Defaults to 0.

  • +
  • n_cores (int >= 0) – number of cores to parallelize file export across, if 0, all +cores available are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

List of Model objects with the final snapshots.

+
+
+
+ +
+
+saveToDataFrame(save_to_file, n_cores=0, **kwargs)[source]
+

Save status of model to dataframe, write to file location given.

+

Creates a pandas Dataframe in long format with the given model history, +with one host or vector per simulation time in each row, and columns:

+
    +
  • Time - simulation time of entry

  • +
  • Population - ID of this host/vector’s population

  • +
  • Organism - host/vector

  • +
  • ID - ID of host/vector

  • +
  • Pathogens - all genomes present in this host/vector separated by ‘;’

  • +
  • Protection - all genomes present in this host/vector separated by ‘;’

  • +
  • Alive - whether host/vector is alive at this time, True/False

  • +
+
+
Parameters:
+

save_to_file (String) – file path and name to save model data under.

+
+
Keyword Arguments:
+
    +
  • n_cores (int >= 0) – number of cores to parallelize file export across, if 0, all +cores available are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

pandas dataframe with model history as described above.

+
+
+
+ +
+
+setRandomSeed(seed)[source]
+

Set random seed for numpy random number generator.

+
+
Parameters:
+

seed (int) – int for the random seed to be passed to numpy.

+
+
+
+ +
+
+setSetup(pop_id, setup_id)[source]
+

Assign parameters stored in Setup object to this population.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • setup_id (String) – ID of setup to be assigned.

  • +
+
+
+
+ +
+
+treatHosts(pop_id, frac_hosts, resistance_seqs, group_id='')[source]
+

Treat random fraction of infected hosts against some infection.

+

Removes all infections with genotypes susceptible to given treatment. +Pathogens are removed if they are missing at least one of the sequences +in resistance_seqs from their genome. Removes this organism from +population infected list and adds to healthy list if appropriate.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • frac_hosts (number between 0 and 1) – fraction of hosts considered to be randomly selected.

  • +
  • resistance_seqs (list of Strings) – contains sequences required for treatment resistance.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific hosts to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+treatVectors(pop_id, frac_vectors, resistance_seqs, group_id='')[source]
+

Treat random fraction of infected vectors agains some infection.

+

Removes all infections with genotypes susceptible to given treatment. +Pathogens are removed if they are missing at least one of the sequences +in resistance_seqs from their genome. Removes this organism from +population infected list and adds to healthy list if appropriate.

+
+
Parameters:
+
    +
  • pop_id (String) – ID of population to be modified.

  • +
  • frac_vectors (number between 0 and 1) – fraction of vectors considered to be +randomly selected.

  • +
  • resistance_seqs (list of Strings) – contains sequences required for treatment resistance.

  • +
+
+
Keyword Arguments:
+

group_id (String) – ID of specific vectors to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+
+static valleyLandscape(genome, valley_genome, min_value)[source]
+

Return genome phenotype by increasing with distance from worst seq.

+

A disruptive selection fitness function based on exponential decay of +fitness as genomes move closer to the worst possible sequence. Distance +is measured as percent Hamming distance from the worst possible genome +sequence.

+
+
Parameters:
+
    +
  • genome (String) – the genome to be evaluated.

  • +
  • valley_genome (String) – the genome sequence to measure distance against, has +value of min_value.

  • +
  • min_value (number 0-1) – fitness value of worst possible genome.

  • +
+
+
Returns:
+

value of genome (number).

+
+
+
+ +
+
+wipeProtectionHosts(pop_id, group_id='')[source]
+

Removes all protection sequences from hosts.

+
+
Parameters:
+

pop_id (String) – ID of population to be modified.

+
+
Keyword Arguments:
+

group_id (String) – ID of specific hosts to sample from, if empty, samples from +whole from whole population. Defaults to “”.

+
+
+
+ +
+
+wipeProtectionVectors(pop_id, group_id='')[source]
+

Removes all protection sequences from vectors.

+
+
Parameters:
+

pop_id (String) – ID of population to be modified.

+
+
Keyword Arguments:
+

group_id (String) – ID of specific vectors to sample from, if empty, samples +from whole population. Defaults to “”.

+
+
+
+ +
+ +
+
+

Module contents

+

Opqua.

+

An epidemiological modeling framework for population genetics and evolution.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/opqua.internal.html b/docs/_build/html/opqua.internal.html new file mode 100644 index 0000000..248048f --- /dev/null +++ b/docs/_build/html/opqua.internal.html @@ -0,0 +1,2703 @@ + + + + + + + opqua.internal package — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

opqua.internal package

+
+

Submodules

+
+
+

opqua.internal.data module

+

Contains data wrangling methods.

+
+
+opqua.internal.data.compartmentDf(data, populations=[], hosts=True, vectors=False, save_to_file='')[source]
+

Create dataframe with number of naive, susc., inf., rec. hosts/vectors.

+

Creates a pandas Dataframe with dynamics of all compartments (naive, +infected, recovered, dead) across selected populations in the model, +with one time point in each row and columns for time as well as each +compartment.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+
    +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses all +populations in model. Defaults to [].

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
+
+
Returns:
+

pandas DataFrame with model compartment dynamics as described above.

+
+
+
+ +
+
+opqua.internal.data.compositionDf(data, populations=[], type_of_composition='Pathogens', hosts=True, vectors=False, num_top_sequences=-1, track_specific_sequences=[], genomic_positions=[], count_individuals_based_on_model=None, save_to_file='', n_cores=0, **kwargs)[source]
+

Create dataframe with counts for pathogen genomes or resistance.

+

Creates a pandas Dataframe with dynamics of the pathogen strains or +protection sequences across selected populations in the model, +with one time point in each row and columns for pathogen genomes or +protection sequences.

+

Of note: sum of totals for all sequences in one time point does not +necessarily equal the number of infected hosts and/or vectors, given +multiple infections in the same host/vector are counted separately.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+
    +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses all +populations in model. Defaults to [].

  • +
  • type_of_composition (String) – field of data to count totals of, can be either +‘Pathogens’ or ‘Protection’. Defaults to ‘Pathogens’.

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • num_top_sequences (int) – how many sequences to count separately and include +as columns, remainder will be counted under column “Other”; if <0, +includes all genomes in model. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to have +as a separate column if not part of the top num_top_sequences +sequences. Defaults to [].

  • +
  • genomic_positions (list of lists of int) – list in which each element is a list with loci +positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] extracts +positions 0, 1, 2, and 5 from each genome); if empty, takes full genomes. Defaults to [].

  • +
  • count_individuals_based_on_model (None or Model) – Model object with populations and +fitness functions used to evaluate the most fit pathogen genome in each +host/vector in order to count only a single pathogen per host/vector, as +opposed to all pathogens within each host/vector; if None, counts all +pathogens. Defaults to None.

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • n_cores (int) – number of cores to parallelize processing across, if 0, all +cores available are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

pandas DataFrame with model sequence composition dynamics as described above.

+
+
+
+ +
+
+opqua.internal.data.getGenomeTimesDf(data, samples=1, save_to_file='', n_cores=0, **kwargs)[source]
+

Create DataFrame with times genomes first appeared during simulation.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+
    +
  • samples (int) – how many timepoints to uniformly sample from the total +timecourse; if <0, takes all timepoints. Defaults to 1.

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • n_cores (int) – number of cores to parallelize across, if 0, all cores available +are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

pandas DataFrame with genomes and times as described above.

+
+
+
+ +
+
+opqua.internal.data.getPathogenDistanceHistoryDf(data, samples=1, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], save_to_file='', n_cores=0)[source]
+

Create DataFrame with pairwise Hamming distances for pathogen sequences +in data.

+

DataFrame has indexes and columns named according to genomes or argument +seq_names, if passed. Distance is measured as percent Hamming distance from +an optimal genome sequence.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function

+
+
Keyword Arguments:
+
    +
  • samples (int) – how many timepoints to uniformly sample from the total +timecourse; if <0, takes all timepoints. Defaults to 1.

  • +
  • num_top_sequences (int) – how many sequences to include in matrix; if <0, +includes all genomes in data passed. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to include in matrix +if not part of the top num_top_sequences sequences. Defaults to [].

  • +
  • seq_names (list of Strings) – list with names to be used for sequence labels in matrix must +be of same length as number of sequences to be displayed; if empty, +uses sequences themselves. Defaults to [].

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • n_cores (int) – number of cores to parallelize distance compute across, if 0, all +cores available are used (default 0; int)

  • +
+
+
Returns:
+

pandas DataFrame with distance matrix as described above.

+
+
+
+ +
+
+opqua.internal.data.getPathogens(data, save_to_file='')[source]
+

Create Dataframe with counts for all pathogen genomes in data.

+

Returns sorted pandas DataFrame with counts for occurrences of all pathogen +genomes in data passed.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+

save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

+
+
Returns:
+

pandas DataFrame with Series as described above.

+
+
+
+ +
+
+opqua.internal.data.getProtections(data, save_to_file='')[source]
+

Create Dataframe with counts for all protection sequences in data.

+

Returns sorted pandas DataFrame with counts for occurrences of all +protection sequences in data passed.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+

save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

+
+
Returns:
+

pandas DataFrame with Series as described above.

+
+
+
+ +
+
+opqua.internal.data.pathogenDistanceDf(data, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], save_to_file='', n_cores=0)[source]
+

Create DataFrame with pairwise Hamming distances for pathogen sequences +in data.

+

DataFrame has indexes and columns named according to genomes or argument +seq_names, if passed. Distance is measured as percent Hamming distance from +an optimal genome sequence.

+
+
Parameters:
+

data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

+
+
Keyword Arguments:
+
    +
  • num_top_sequences (int) – how many sequences to include in matrix; if <0, +includes all genomes in data passed. Defaults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to include in matrix +if not part of the top num_top_sequences sequences. Defaults to [].

  • +
  • seq_names (list of Strings) – list with names to be used for sequence labels in matrix must +be of same length as number of sequences to be displayed; if empty, +uses sequences themselves. Defaults to [].

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • n_cores (int) – number of cores to parallelize distance compute across, if 0, all +cores available are used. Defaults to 0.

  • +
+
+
Returns:
+

pandas DataFrame with distance matrix as described above.

+
+
+
+ +
+
+opqua.internal.data.populationsDf(data, compartment='Infected', hosts=True, vectors=False, num_top_populations=-1, track_specific_populations=[], save_to_file='')[source]
+

Create dataframe with aggregated totals per population.

+

Creates a pandas Dataframe in long format with dynamics of a compartment +across populations in the model, with one time point in each row and columns +for time as well as each population.

+
+
Parameters:
+

data (pandas DataFrame) –

+
+
Keyword Arguments:
+
    +
  • compartment (String) – subset of hosts/vectors to count totals of, can be either +‘Naive’,’Infected’,’Recovered’, or ‘Dead’. Defaults to ‘Infected’.

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • num_top_populations (int) – how many populations to count separately and include +as columns, remainder will be counted under column “Other”; if <0, +includes all populations in model. Defaults to -1.

  • +
  • track_specific_populations (list of Strings) – contains IDs of specific populations to have +as a separate column if not part of the top num_top_populations +populations. Defaults to [].

  • +
  • save_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
+
+
Returns:
+

pandas DataFrame with model population dynamics as described above.

+
+
+
+ +
+
+opqua.internal.data.saveToDf(history, save_to_file, n_cores=0, verbose=10, **kwargs)[source]
+

Save status of model to dataframe, write to file location given.

+

Creates a pandas Dataframe in long format with the given model history, with +one host or vector per simulation time in each row, and columns:

+
+
    +
  • Time - simulation time of entry

  • +
  • Population - ID of this host/vector’s population

  • +
  • Organism - host/vector

  • +
  • ID - ID of host/vector

  • +
  • Pathogens - all genomes present in this host/vector separated by ‘;’

  • +
  • Protection - all genomes present in this host/vector separated by ‘;’

  • +
  • Alive - whether host/vector is alive at this time, True/False

  • +
+
+

Writing straight to a file and then reading into a pandas dataframe was +actually more efficient than concatenating directly into a pd dataframe.

+
+
Parameters:
+
    +
  • history (dict) – dictionary containing model state history, with keys`=`times and +values`=`Model objects with model snapshot at that time point.

  • +
  • save_to_file (String) – file path and name to save model data under.

  • +
+
+
Keyword Arguments:
+
    +
  • n_cores (int) – number of cores to parallelize file export across, if 0, all +cores available are used. Defaults to 0.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

pandas DataFrame with model history as described above.

+
+
+
+ +
+
+

opqua.internal.gillespie module

+

Contains class Population.

+
+
+class opqua.internal.gillespie.Gillespie(model)[source]
+

Bases: object

+

Class contains methods for simulating model with Gillespie algorithm.

+

Class defines a model’s events and methods for changing system state +according to the possible events and simulating a timecourse using the +Gillespie algorithm.

+
+
+model
+

the model this simulation belongs to.

+
+
Type:
+

Model object

+
+
+
+ +
+
+BIRTH_HOST = 18
+
+ +
+
+BIRTH_VECTOR = 19
+
+ +
+
+CONTACT_HOST_HOST = 5
+
+ +
+
+CONTACT_HOST_VECTOR = 6
+
+ +
+
+CONTACT_VECTOR_HOST = 7
+
+ +
+
+DIE_HOST = 16
+
+ +
+
+DIE_VECTOR = 17
+
+ +
+
+EVENT_IDS = {0: 'MIGRATE_HOST', 1: 'MIGRATE_VECTOR', 2: 'POPULATION_CONTACT_HOST_HOST', 3: 'POPULATION_CONTACT_HOST_VECTOR', 4: 'POPULATION_CONTACT_VECTOR_HOST', 5: 'CONTACT_HOST_HOST', 6: 'CONTACT_HOST_VECTOR', 7: 'CONTACT_VECTOR_HOST', 8: 'RECOVER_HOST', 9: 'RECOVER_VECTOR', 10: 'MUTATE_HOST', 11: 'MUTATE_VECTOR', 12: 'RECOMBINE_HOST', 13: 'RECOMBINE_VECTOR', 14: 'KILL_HOST', 15: 'KILL_VECTOR', 16: 'DIE_HOST', 17: 'DIE_VECTOR', 18: 'BIRTH_HOST', 19: 'BIRTH_VECTOR'}
+
+ +
+
+KILL_HOST = 14
+
+ +
+
+KILL_VECTOR = 15
+
+ +
+
+MIGRATE_HOST = 0
+
+ +
+
+MIGRATE_VECTOR = 1
+
+ +
+
+MUTATE_HOST = 10
+
+ +
+
+MUTATE_VECTOR = 11
+
+ +
+
+POPULATION_CONTACT_HOST_HOST = 2
+
+ +
+
+POPULATION_CONTACT_HOST_VECTOR = 3
+
+ +
+
+POPULATION_CONTACT_VECTOR_HOST = 4
+
+ +
+
+RECOMBINE_HOST = 12
+
+ +
+
+RECOMBINE_VECTOR = 13
+
+ +
+
+RECOVER_HOST = 8
+
+ +
+
+RECOVER_VECTOR = 9
+
+ +
+
+doAction(act, pop, rand)[source]
+

Change system state according to act argument passed

+
+
Parameters:
+
    +
  • act (int) – defines action to be taken, one of the event ID constants.

  • +
  • pop (Population object) – where the population action will happen in.

  • +
  • rand (number 0-1) – random number used to define event.

  • +
+
+
Returns:
+

Boolean indicationg whether or not the model has changed state.

+
+
+
+ +
+
+getRates(population_ids)[source]
+

Wrapper for calculating event rates as per current system state.

+
+
Parameters:
+

population_ids (list of Strings) – list with IDs for every population in the model.

+
+
Returns:
+

Matrix with rates as values for events (rows) and populations (columns). +Populations in order given in argument.

+
+
+
+ +
+
+run(t0, tf, time_sampling=0, host_sampling=0, vector_sampling=0, print_every_n_events=1000)[source]
+

Simulate model for a specified time between two time points.

+

Simulates a time series using the Gillespie algorithm.

+
+
Parameters:
+
    +
  • t0 (number) – initial time point to start simulation at.

  • +
  • tf (number) – initial time point to end simulation at.

  • +
+
+
Keyword Arguments:
+
    +
  • time_sampling (int) – how many events to skip before saving a snapshot of the +system state (saves all by default), if <0, saves only final state. Defaults to 0.

  • +
  • host_sampling (int) – how many hosts to skip before saving one in a snapshot +of the system state (saves all by default). Defaults to 0.

  • +
  • vector_sampling (int) – how many vectors to skip before saving one in a +snapshot of the system state (saves all by default). Defaults to 0.

  • +
  • print_every_n_events (int>0) – number of events a message is printed to console. Defaults to 1000.

  • +
+
+
Returns:
+

+
dictionary containing model state history, with keys`=`times and

values`=`Model objects with model snapshot at that time point.

+
+
+

+
+
+
+ +
+ +
+
+

opqua.internal.host module

+

Contains class Host.

+
+
+class opqua.internal.host.Host(population, id, slim=False)[source]
+

Bases: object

+

Class defines main entities to be infected by pathogens in model.

+
+
+population
+

the population this host belongs to.

+
+
Type:
+

Population object

+
+
+
+ +
+
+id
+

unique identifier for this host within population.

+
+
Type:
+

String

+
+
+
+ +
+
+slim
+

whether to create a slimmed-down representation of the +population for data storage (only ID, host and vector lists). Defaults to +False.

+
+
Type:
+

Boolean

+
+
+
+ +
+
+acquirePathogen(genome)[source]
+

Adds given genome to this host’s pathogens.

+

Modifies event coefficient matrix accordingly.

+
+
Parameters:
+

genome (String) – the genome to be added.

+
+
+
+ +
+
+applyTreatment(resistance_seqs)[source]
+

Remove all infections with genotypes susceptible to given treatment.

+

Pathogens are removed if they are missing at least one of the sequences +in resistance_seqs from their genome. Removes this organism from +population infected list and adds to healthy list if appropriate.

+
+
Parameters:
+

resistance_seqs (list of Strings) – contains sequences required for treatment resistance.

+
+
+
+ +
+
+birth(rand)[source]
+

Add a new host to population based on this host.

+
+ +
+
+copyState()[source]
+

Returns a slimmed-down representation of the current host state.

+
+
Returns:
+

Host object with current pathogens and protection_sequences.

+
+
+
+ +
+
+die()[source]
+

Add host to population’s dead list, remove it from alive ones.

+
+ +
+
+getWeightedRandomGenome(rand, r)[source]
+

Returns index of element chosen from weights and given random number.

+
+
Parameters:
+
    +
  • rand (number 0-1) – random number.

  • +
  • r (numpy array) – array with weights.

  • +
+
+
Returns:
+

new 0-1 random number.

+
+
+
+ +
+
+infectHost(host)[source]
+

Infect given host with a sample of this host’s pathogens.

+

Each pathogen in the infector is sampled as present or absent in the +inoculum by drawing from a Poisson distribution with a mean equal to the +mean inoculum size of the organism being infected weighted by each +genome’s fitness as a fraction of the total in the infector as the +probability of each trial (minimum 1 pathogen transfered). Each pathogen +present in the inoculum will be added to the infected organism, if it +does not have protection from the pathogen’s genome. Fitnesses are +computed for the pathogens’ genomes in the infected organism, and the +organism is included in the poplation’s infected list if appropriate.

+
+
Parameters:
+

vector (Vector object) – the vector to be infected.

+
+
Returns:
+

Boolean indicating whether or not the model has changed state.

+
+
+
+ +
+
+infectVector(vector)[source]
+

Infect given host with a sample of this host’s pathogens.

+

Each pathogen in the infector is sampled as present or absent in the +inoculum by drawing from a Poisson distribution with a mean equal to the +mean inoculum size of the organism being infected weighted by each +genome’s fitness as a fraction of the total in the infector as the +probability of each trial (minimum 1 pathogen transfered). Each pathogen +present in the inoculum will be added to the infected organism, if it +does not have protection from the pathogen’s genome. Fitnesses are +computed for the pathogens’ genomes in the infected organism, and the +organism is included in the poplation’s infected list if appropriate.

+
+
Parameters:
+

vector (Vector object) – the vector to be infected.

+
+
Returns:
+

Boolean indicating whether or not the model has changed state.

+
+
+
+ +
+
+mutate(rand)[source]
+

Mutate a single, random locus in a random pathogen.

+

Creates a new genotype from a de novo mutation event.

+
+ +
+
+recombine(rand)[source]
+

Recombine two random pathogen genomes at random locus.

+

Creates a new genotype from two random possible pathogens.

+
+ +
+
+recover()[source]
+

Remove all infections from this host.

+

If model is protecting upon recovery, add protecion sequence as defined +by the indexes in the corresponding model parameter. Remove from +population infected list and add to healthy list.

+
+ +
+ +
+
+

opqua.internal.intervention module

+

Contains class Intervention.

+
+
+class opqua.internal.intervention.Intervention(time, method_name, args, model)[source]
+

Bases: object

+

Class defines a new intervention to be done at a specified time.

+
+
+time
+

time at which intervention will take place.

+
+
Type:
+

number

+
+
+
+ +
+
+method_name
+

intervention to be carried out, must correspond to the +name of a method of the Model object.

+
+
Type:
+

String

+
+
+
+ +
+
+args
+

contains arguments for function in positinal order.

+
+
Type:
+

array-like

+
+
+
+ +
+
+model
+

Model object this intervention is associated to.

+
+
Type:
+

Model object

+
+
+
+ +
+
+doIntervention()[source]
+

Execute intervention function with specified arguments.

+
+ +
+ +
+
+

opqua.internal.plot module

+

Contains graphmaking methods.

+
+
+opqua.internal.plot.clustermap(file_name, data, num_top_sequences=-1, track_specific_sequences=[], seq_names=[], n_cores=0, method='weighted', metric='euclidean', save_data_to_file='', legend_title='Distance', legend_values=[], figsize=(10, 10), dpi=200, color_map=<matplotlib.colors.ListedColormap object>)[source]
+

Create a heatmap and dendrogram for pathogen genomes in data passed.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • num_top_sequences (int) – how many sequences to include in matrix; if <0, +includes all genomes in data passed. Deafults to -1.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to include in matrix +if not part of the top num_top_sequences sequences. Defaults to [].

  • +
  • seq_names (list of Strings) – list with names to be used for sequence labels in matrix must +be of same length as number of sequences to be displayed; if empty, +uses sequences themselves. Defaults to [].

  • +
  • n_cores (int) – number of cores to parallelize distance compute across, if 0, all +cores available are used. Defaults to 0.

  • +
  • method (String) – clustering algorithm to use with seaborn clustermap. Defaults to ‘weighted’.

  • +
  • metric (String) – distance metric to use with seaborn clustermap. Defaults to ‘euclidean’.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • legend_title (String) – legend title. Defaults to ‘Distance’.

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • color_map (cmap object) – color map to use for traces. Defaults to DEF_CMAP.

  • +
+
+
Returns:
+

figure object for plot with heatmap and dendrogram as described.

+
+
+
+ +
+
+opqua.internal.plot.compartmentPlot(file_name, data, populations=[], hosts=True, vectors=False, save_data_to_file='', x_label='Time', y_label='Hosts', legend_title='Compartment', legend_values=[], figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=False)[source]
+

Create plot with num. of naive, susc., inf., rec. hosts/vectors vs. time.

+

Creates a line or stacked line plot with dynamics of all compartments +(naive, infected, recovered, dead) across selected populations in the model, +with one line for each compartment.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses all +populations in model. Defaults to [].

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population IDs. +Defaults to [].

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • stacked (Boolean) – whether to draw a regular line plot instead of a stacked one. +Defaults to False.

  • +
+
+
Returns:
+

axis object for plot with model compartment dynamics as described above.

+
+
+
+ +
+
+opqua.internal.plot.compositionPlot(file_name, data, composition_dataframe=None, populations=[], type_of_composition='Pathogens', hosts=True, vectors=False, num_top_sequences=7, track_specific_sequences=[], genomic_positions=[], count_individuals_based_on_model=None, save_data_to_file='', x_label='Time', y_label='Infections', legend_title='Genotype', legend_values=[], figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=True, remove_legend=False, population_fraction=False, **kwargs)[source]
+

Create plot with counts for pathogen genomes or resistance across time.

+

Creates a line or stacked line plot with dynamics of the pathogen strains or +protection sequences across selected populations in the model, +with one line for each pathogen genome or protection sequence being shown.

+

Of note: sum of totals for all sequences in one time point does not +necessarily equal the number of infected hosts and/or vectors, given +multiple infections in the same host/vector are counted separately.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • composition_dataframe (Pandas DataFrame) – output of compositionDf() if already computed. +Defaults to None.

  • +
  • populations (list of Strings) – IDs of populations to include in analysis; if empty, uses all +populations in model. Defaults to [].

  • +
  • type_of_composition (String) – field of data to count totals of, can be either +‘Pathogens’ or ‘Protection’. Defaults to ‘Pathogens’.

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • num_top_sequences (int) – how many sequences to count separately and include +as columns, remainder will be counted under column “Other”; if <0, +includes all genomes in model. Defaults to 7.

  • +
  • track_specific_sequences (list of Strings) – contains specific sequences to have +as a separate column if not part of the top num_top_sequences +sequences. Defaults to [].

  • +
  • genomic_positions (list of lists of int) – list in which each element is a list with loci +positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] extracts +positions 0, 1, 2, and 5 from each genome); if empty, takes full genomes. Defaults to [].

  • +
  • count_individuals_based_on_model (None or Model) – Model object with populations and +fitness functions used to evaluate the most fit pathogen genome in each +host/vector in order to count only a single pathogen per host/vector, as +opposed to all pathogens within each host/vector; if None, counts all +pathogens. Defaults to None.

  • +
  • save_data_to_file (String) – file path and name to save model data under, no saving +occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population IDs. +Defaults to [].

  • +
  • figsize (int) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • stacked (Boolean) – whether to draw a regular line plot instead of a stacked one. Defaults to False.

  • +
  • remove_legend (Boolean) – whether to print the sequences on the figure legend instead +of printing them on a separate csv file. Defaults to True.

  • +
  • population_fraction (Boolean) – whether to graph fractions of pathogen population +instead of pathogen counts. Defaults to False.

  • +
  • **kwargs – additional arguents for joblib multiprocessing.

  • +
+
+
Returns:
+

axis object for plot with model sequence composition dynamics as described.

+
+
+
+ +
+
+opqua.internal.plot.populationsPlot(file_name, data, compartment='Infected', hosts=True, vectors=False, num_top_populations=7, track_specific_populations=[], save_data_to_file='', x_label='Time', y_label='Infected hosts', legend_title='Population', legend_values=[], figsize=(8, 4), dpi=200, palette=['#E69F00', '#56B4E9', '#009E73', '#F0E442', '#0072B2', '#D55E00', '#CC79A7', '#999999'], stacked=False)[source]
+

Create plot with aggregated totals per population across time.

+

Creates a line or stacked line plot with dynamics of a compartment +across populations in the model, with one line for each population.

+
+
Parameters:
+
    +
  • file_name (String) – file path, name, and extension to save plot under.

  • +
  • data (pandas DataFrame) – dataframe with model history as produced by saveToDf function.

  • +
+
+
Keyword Arguments:
+
    +
  • compartment (String) – subset of hosts/vectors to count totals of, can be either +‘Naive’,’Infected’,’Recovered’, or ‘Dead’. (default ‘Infected’)

  • +
  • hosts (Boolean) – whether to count hosts. Defaults to True.

  • +
  • vectors (Boolean) – whether to count vectors. Defaults to False.

  • +
  • num_top_populations (int) – how many populations to count separately and include +as columns, remainder will be counted under column “Other”; if <0, +includes all populations in model. Defaults to 7.

  • +
  • track_specific_populations (list of Strings) – contains IDs of specific populations to have +as a separate column if not part of the top num_top_populations +populations. Defaults to [].

  • +
  • save_data_to_file (String) – file path and name to save model plot data under, no +saving occurs if empty string. Defaults to “”.

  • +
  • x_label (String) – X axis title. Defaults to ‘Time’.

  • +
  • y_label (String) – Y axis title. Defaults to ‘Hosts’.

  • +
  • legend_title (String) – legend title. Defaults to ‘Population’.

  • +
  • legend_values (list of Strings) – labels for each trace, if empty list, uses population IDs. +Defaults to [].

  • +
  • figsize (array-like of two ints) – dimensions of figure. Defaults to (8,4).

  • +
  • dpi (int) – figure resolution. Defaults to 200.

  • +
  • palette (list of color Strings) – color palette to use for traces. Defaults to CB_PALETTE.

  • +
  • stacked (Boolean) – whether to draw a regular line plot instead of a stacked one. Defaults to False.

  • +
+
+
Returns:
+

axis object for plot with model population dynamics as described above.

+
+
+
+ +
+
+

opqua.internal.population module

+

Contains class Population.

+
+
+class opqua.internal.population.Population(model, id, setup, num_hosts, num_vectors, slim=False)[source]
+

Bases: object

+

Class defines a population with hosts, vectors, and specific parameters.

+

CONSTANTS: These all denote positions in coefficients_hosts and coefficients_vectors

+
    +
  • +
    INFECTED – position of “infected” Boolean values for each individual inside

    coefficients array.

    +
    +
    +
  • +
  • +
    CONTACT – position of intra-population aggregated contact rate for each

    individual inside coefficients array.

    +
    +
    +
  • +
  • +
    RECEIVE_CONTACT – position of intra-population aggregated receiving contact

    rate for each individual inside coefficients array.

    +
    +
    +
  • +
  • +
    LETHALITY – position of aggregated death rate for each individual inside

    coefficients array.

    +
    +
    +
  • +
  • +
    NATALITY – position of aggregated birth rate for each individual inside

    coefficients array.

    +
    +
    +
  • +
  • +
    RECOVERY – position of aggregated recovery rate for each individual inside

    coefficients array.

    +
    +
    +
  • +
  • +
    MIGRATION – position of aggregated inter-population migration rate for each

    individual inside coefficients array.

    +
    +
    +
  • +
  • +
    POPULATION_CONTACT – position of inter-population aggregated contact rate

    for each individual inside coefficients array.

    +
    +
    +
  • +
  • +
    RECEIVE_POPULATION_CONTACT – position of inter-population aggregated

    receiving contact rate for each individual inside coefficients array.

    +
    +
    +
  • +
  • +
    MUTATION – position of aggregated mutation rate for each individual inside

    coefficients array.

    +
    +
    +
  • +
  • +
    RECOMBINATION – position of aggregated recovery rate for each individual

    inside coefficients array.

    +
    +
    +
  • +
  • +
    NUM_COEFFICIENTS – total number of types of coefficients (columns) in

    coefficient arrays.

    +
    +
    +
  • +
  • +
    CHROMOSOME_SEPARATOR – character reserved to denote separate chromosomes in

    genomes.

    +
    +
    +
  • +
+
+
+model
+

parent model this population is a part of.

+
+
Type:
+

Model object

+
+
+
+ +
+
+id
+

unique identifier for this population in the model.

+
+
Type:
+

String

+
+
+
+ +
+
+setup
+

setup object with parameters for this population.

+
+
Type:
+

String

+
+
+
+ +
+
+num_hosts
+

number of hosts to initialize population with.

+
+
Type:
+

int

+
+
+
+ +
+
+num_vectors
+

number of hosts to initialize population with.

+
+
Type:
+

int

+
+
+
+ +
+
+slim
+

whether to create a slimmed-down representation of the +population for data storage (only ID, host and vector lists). +Defaults to False.

+
+
Type:
+

Boolean

+
+
+
+ +
+
+CHROMOSOME_SEPARATOR = '/'
+
+ +
+
+CONTACT = 1
+
+ +
+
+INFECTED = 0
+
+ +
+
+LETHALITY = 3
+
+ +
+
+MIGRATION = 6
+
+ +
+
+MUTATION = 9
+
+ +
+
+NATALITY = 4
+
+ +
+
+NUM_COEFFICIENTS = 11
+
+ +
+
+POPULATION_CONTACT = 7
+
+ +
+
+RECEIVE_CONTACT = 2
+
+ +
+
+RECEIVE_POPULATION_CONTACT = 8
+
+ +
+
+RECOMBINATION = 10
+
+ +
+
+RECOVERY = 5
+
+ +
+
+addHosts(num_hosts)[source]
+

Add a number of healthy hosts to population, return list with them.

+
+
Parameters:
+

num_hosts (int) – number of hosts to be added.

+
+
Returns:
+

list containing new hosts.

+
+
+
+ +
+
+addPathogensToHosts(genomes_numbers, hosts=[])[source]
+

Add specified pathogens to random hosts, optionally from a list.

+
+
Parameters:
+

genomes_numbers (dict with keys=Strings, values=int) – dictionary conatining +pathogen genomes to add as keys and number of hosts each one will be +added to as values.

+
+
Keyword Arguments:
+

hosts (list of Host objects) – list of specific hosts to sample from, if empty, samples from +whole population. Defaults to [].

+
+
+
+ +
+
+addPathogensToVectors(genomes_numbers, vectors=[])[source]
+

Add specified pathogens to random vectors, optionally from a list.

+
+
Parameters:
+

genomes_numbers (dict with keys=Strings, values=int) – dictionary conatining +pathogen genomes to add as keys and number of vectors each one will be +added to as values.

+
+
Keyword Arguments:
+

vectors (list of Vector objects) – list of specific vectors to sample from, if empty, samples +from whole population. Defaults to [].

+
+
+
+ +
+
+addVectors(num_vectors)[source]
+

Add a number of healthy vectors to population, return list with them.

+
+
Parameters:
+

num_vectors (int) – number of vectors to be added.

+
+
Returns:
+

list containing new vectors

+
+
+
+ +
+
+birthHost(rand)[source]
+

Add host at this index to population, remove it from alive ones.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual to make parent.

+
+
+
+ +
+
+birthVector(rand)[source]
+

Add host at this index to population, remove it from alive ones.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual to make parent.

+
+
+
+ +
+
+contactHostHost(rand)[source]
+

Contact any two (weighted) random hosts in population.

+

Carries out possible infection events from the first organism into the +second.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individuals to contact.

+
+
Returns:
+

Boolean indicating whether or not the model has changed state.

+
+
+
+ +
+
+contactHostVector(rand)[source]
+

Contact a (weighted) random host and vector in population.

+

Carries out possible infection events from the first organism into the +second.

+

Arguments: +rand (number): uniform random number from 0 to 1 to use when choosing

+
+

individuals to contact.

+
+
+
Returns:
+

Boolean indicating whether or not the model has changed state.

+
+
+
+ +
+
+contactVectorHost(rand)[source]
+

Contact a (weighted) random vector and host in population.

+

Carries out possible infection events from the first organism into the +second.

+
+
Parameters:
+

rand (number) – individuals to contact.

+
+
Returns:
+

Boolean indicating whether or not the model has changed state.

+
+
+
+ +
+
+copyState(host_sampling=0, vector_sampling=0)[source]
+

Returns a slimmed-down version of the current population state.

+
+
Parameters:
+
    +
  • host_sampling (int) – how many hosts to skip before saving one in a snapshot +of the system state (saves all by default). Defaults to 0.

  • +
  • vector_sampling (int) – how many vectors to skip before saving one in a +snapshot of the system state (saves all by default). Defaults to 0.

  • +
+
+
Returns:
+

Population object with current host and vector lists.

+
+
+
+ +
+
+dieHost(rand)[source]
+

Remove host at this index from alive lists.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual to kill.

+
+
+
+ +
+
+dieVector(rand)[source]
+

Remove vector at this index from alive lists.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual to kill.

+
+
+
+ +
+
+getWeightedRandom(rand, r)[source]
+

Returns index of element chosen from weights and given random number.

+

Since sampling from coefficient arrays which contain a dummy first row, +index is decreased by 1.

+
+
Parameters:
+
    +
  • rand (number) – 0-1 random number.

  • +
  • r (numpy array) – array with weights.

  • +
+
+
Returns:
+

new 0-1 random number.

+
+
+
+ +
+
+healthyCoefficientRow()[source]
+

Returns coefficient values corresponding to a healthy host/vector.

+
+ +
+
+killHost(rand)[source]
+

Add host at this index to dead list, remove it from alive ones.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual to kill.

+
+
+
+ +
+
+killVector(rand)[source]
+

Add host at this index to dead list, remove it from alive ones.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual to kill.

+
+
+
+ +
+
+migrate(target_pop, num_hosts, num_vectors, rand=None)[source]
+

Transfer hosts and/or vectors from this population to another.

+
+
Parameters:
+
    +
  • target_pop (Population objects) – population towards which migration will occur.

  • +
  • num_hosts (int) – number of hosts to transfer.

  • +
  • num_vectors (int) – number of vectors to transfer.

  • +
+
+
Keyword Arguments:
+

rand (number 0-1) – uniform random number from 0 to 1 to use when choosing +individuals to migrate; if None, generates new random number to +choose (through numpy), otherwise, assumes event is happening +through Gillespie class call and migrates a single host or vector. Defaults to None.

+
+
+
+ +
+
+mutateHost(rand)[source]
+

Mutate a single, random locus in a random pathogen in the given host.

+

Creates a new genotype from a de novo mutation event in the host given.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual in which to choose a pathogen to mutate.

+
+
+
+ +
+
+mutateVector(rand)[source]
+

Mutate a single, random locus in a random pathogen in given vector.

+

Creates a new genotype from a de novo mutation event in the vector +given.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual in which to choose a pathogen to mutate.

+
+
+
+ +
+
+newHostGroup(hosts=-1, type='any')[source]
+

Return a list of random hosts in population.

+
+
Keyword Arguments:
+
    +
  • hosts (number) – number of hosts to be sampled randomly: if <0, samples from +whole population; if <1, takes that fraction of population; if >=1, +samples that integer number of hosts. Defaults to -1.

  • +
  • type (String = {'healthy', 'infected', 'any'}) – whether to sample healthy hosts +only, infected hosts only, or any hosts. Defaults to ‘any’.

  • +
+
+
Returns:
+

list containing sampled hosts.

+
+
+
+ +
+
+newVectorGroup(vectors=-1, type='any')[source]
+

Return a list of random vectors in population.

+
+
Keyword Arguments:
+
    +
  • vectors (number) – number of vectors to be sampled randomly: if <0, samples from +whole population; if <1, takes that fraction of population; if >=1, +samples that integer number of vectors. Defaults to -1.

  • +
  • type (String = {'healthy', 'infected', 'any'}) – whether to sample healthy vectors +only, infected vectors. Defaults to ‘any’.

  • +
+
+
Returns:
+

list containing sampled vectors.

+
+
+
+ +
+
+populationContact(target_pop, rand, host_origin=True, host_target=True)[source]
+

Contacts hosts and/or vectors from this population to another.

+
+
Parameters:
+
    +
  • target_pop (Population object) – population towards which migration will occur.

  • +
  • rand (number) – uniform random number from 0 to 1 to use when choosing +individuals to contact.

  • +
+
+
Keyword Arguments:
+
    +
  • host_origin (Boolean) – whether to draw from hosts in the origin population +(as opposed to vectors). Defaults to True.

  • +
  • host_target (Boolean) – whether to draw from hosts in the target population +(as opposed to vectors). Defaults to True.

  • +
+
+
+
+ +
+
+protectHosts(frac_hosts, protection_sequence, hosts=[])[source]
+

Protect a random fraction of infected hosts against some infection.

+

Adds protection sequence specified to a random fraction of the hosts +specified. Does not cure them if they are already infected.

+
+
Parameters:
+
    +
  • frac_hosts (number 0-1) – fraction of hosts considered to be randomly selected.

  • +
  • protection_sequence (String) – sequence against which to protect.

  • +
+
+
Keyword Arguments:
+

hosts (list of Host objects) – list of specific hosts to sample from, if empty, samples from +whole population. Defaults to [].

+
+
+
+ +
+
+protectVectors(frac_vectors, protection_sequence, vectors=[])[source]
+

Protect a random fraction of infected vectors against some infection.

+

Adds protection sequence specified to a random fraction of the vectors +specified. Does not cure them if they are already infected.

+
+
Parameters:
+
    +
  • frac_vectors (number 0-1) – fraction of vectors considered to be randomly selected.

  • +
  • protection_sequence (String) – sequence against which to protect.

  • +
+
+
Keyword Arguments:
+

vectors (list of Vector objects) – list of specific vectors to sample from, if empty, samples +from whole population. Defaults to [].

+
+
+
+ +
+
+recombineHost(rand)[source]
+

Recombine 2 random pathogen genomes at random locus in given host.

+

Creates a new genotype from two random possible pathogens in the host +given.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual in which to choose pathogens to recombine.

+
+
+
+ +
+
+recombineVector(rand)[source]
+

Recombine 2 random pathogen genomes at random locus in given vector.

+

Creates a new genotype from two random possible pathogens in the vector +given.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual in which to choose pathogens to recombine.

+
+
+
+ +
+
+recoverHost(rand)[source]
+

Remove all infections from host at this index.

+

If model is protecting upon recovery, add protecion sequence as defined +by the indexes in the corresponding model parameter. Remove from +population infected list and add to healthy list.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual to recover.

+
+
+
+ +
+
+recoverVector(rand)[source]
+

Remove all infections from vector at this index.

+

If model is protecting upon recovery, add protecion sequence as defined +by the indexes in the corresponding model parameter. Remove from +population infected list and add to healthy list.

+
+
Parameters:
+

rand (number) – uniform random number from 0 to 1 to use when choosing +individual to recover.

+
+
+
+ +
+
+removeHosts(num_hosts_or_list)[source]
+

Remove a number of specified or random hosts from population.

+
+
Parameters:
+

num_hosts_or_list (int or list of Host objects) – number of hosts to be sampled randomly for removal +or list of hosts to be removed, must be hosts in this population.

+
+
+
+ +
+
+removeVectors(num_vectors_or_list)[source]
+

Remove a number of specified or random vectors from population.

+
+
Parameters:
+

num_vectors_or_list (int or list of Vector objects) – number of vectors to be sampled randomly for +removal or list of vectors to be removed, must be vectors in this +population.

+
+
+
+ +
+
+setHostHostPopulationContactNeighbor(neighbor, rate)[source]
+

Set host-host contact rate from this population towards another one.

+
+
Parameters:
+
    +
  • neighbor (Population object) – population towards which migration rate will be specified.

  • +
  • rate (number) – migration rate from this population to the neighbor.

  • +
+
+
+
+ +
+
+setHostMigrationNeighbor(neighbor, rate)[source]
+

Set host migration rate from this population towards another one.

+
+
Parameters:
+
    +
  • neighbor (Population object) – population towards which migration rate will be specified.

  • +
  • rate (number) – migration rate from this population to the neighbor.

  • +
+
+
+
+ +
+
+setHostVectorPopulationContactNeighbor(neighbor, rate)[source]
+

Set host-vector contact rate from this population to another one.

+
+
Parameters:
+
    +
  • neighbor (Population object) – population towards which migration rate will be specified.

  • +
  • rate (number) – migration rate from this population to the neighbor.

  • +
+
+
+
+ +
+
+setSetup(setup)[source]
+

Assign parameters stored in Setup object to this population.

+
+
Parameters:
+

setup (Setup object) – the setup to be assigned.

+
+
+
+ +
+
+setVectorHostPopulationContactNeighbor(neighbor, rate)[source]
+

Set vector-host contact rate from this population to another one.

+
+
Parameters:
+
    +
  • neighbor (Population object) – population towards which migration rate will be specified.

  • +
  • rate (number) – migration rate from this population to the neighbor.

  • +
+
+
+
+ +
+
+setVectorMigrationNeighbor(neighbor, rate)[source]
+

Set vector migration rate from this population towards another one.

+

Arguments: +neighbor (Population object): population towards which migration rate will be specified. +rate (number): migration rate from this population to the neighbor.

+
+ +
+
+treatHosts(frac_hosts, resistance_seqs, hosts=[])[source]
+

Treat random fraction of infected hosts against some infection.

+

Removes all infections with genotypes susceptible to given treatment. +Pathogens are removed if they are missing at least one of the sequences +in resistance_seqs from their genome. Removes this organism from +population infected list and adds to healthy list if appropriate.

+
+
Parameters:
+
    +
  • frac_hosts (number 0-1) – fraction of hosts considered to be randomly selected.

  • +
  • resistance_seqs (list of Strings) – contains sequences required for treatment resistance.

  • +
+
+
+

Keyword arguments: +hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from

+
+

whole population. Defaults to [].

+
+
+ +
+
+treatVectors(frac_vectors, resistance_seqs, vectors=[])[source]
+

Treat random fraction of infected vectors agains some infection.

+

Removes all infections with genotypes susceptible to given treatment. +Pathogens are removed if they are missing at least one of the sequences +in resistance_seqs from their genome. Removes this organism from +population infected list and adds to healthy list if appropriate.

+
+
Parameters:
+
    +
  • frac_vectors (number 0-1) – fraction of vectors considered to be randomly selected.

  • +
  • resistance_seqs (list of Strings) – contains sequences required for treatment resistance.

  • +
+
+
Keyword Arguments:
+

vectors (list of Vector objects) – list of specific vectors to sample from, if empty, samples +from whole population. Defaults to [].

+
+
+
+ +
+
+updateHostCoefficients()[source]
+

Updates event coefficient values in population’s hosts.

+
+ +
+
+updateVectorCoefficients()[source]
+

Updates event coefficient values in population’s vectors.

+
+ +
+
+wipeProtectionHosts(hosts=[])[source]
+

Removes all protection sequences from hosts.

+
+
Keyword Arguments:
+

hosts (list of Host objects) – list of specific hosts to sample from, if empty, samples from +whole population. Defaults to [].

+
+
+
+ +
+
+wipeProtectionVectors(vectors=[])[source]
+

Removes all protection sequences from vectors.

+
+
Keyword Arguments:
+

vectors (list of Vector objects) – list of specific vectors to sample from, if empty, samples from +whole population. Defaults to [].

+
+
+
+ +
+ +
+
+

opqua.internal.setup module

+

Contains class Intervention.

+
+
+class opqua.internal.setup.Setup(id, num_loci, possible_alleles, fitnessHost, contactHost, receiveContactHost, mortalityHost, natalityHost, recoveryHost, migrationHost, populationContactHost, receivePopulationContactHost, mutationHost, recombinationHost, fitnessVector, contactVector, receiveContactVector, mortalityVector, natalityVector, recoveryVector, migrationVector, populationContactVector, receivePopulationContactVector, mutationVector, recombinationVector, contact_rate_host_vector, transmission_efficiency_host_vector, transmission_efficiency_vector_host, contact_rate_host_host, transmission_efficiency_host_host, mean_inoculum_host, mean_inoculum_vector, recovery_rate_host, recovery_rate_vector, mortality_rate_host, mortality_rate_vector, recombine_in_host, recombine_in_vector, num_crossover_host, num_crossover_vector, mutate_in_host, mutate_in_vector, death_rate_host, death_rate_vector, birth_rate_host, birth_rate_vector, vertical_transmission_host, vertical_transmission_vector, inherit_protection_host, inherit_protection_vector, protection_upon_recovery_host, protection_upon_recovery_vector)[source]
+

Bases: object

+

Class defines a setup with population parameters.

+
+
+id
+

key of the Setup inside model dictionary.

+
+
Type:
+

String

+
+
+
+ +
+
+num_loci
+

length of each pathogen genome string.

+
+
Type:
+

int>0

+
+
+
+ +
+
+possible_alleles
+

set of possible +characters in all genome string, or at each position in genome string.

+
+
Type:
+

String or list of Strings with num_loci elements

+
+
+
+ +
+
+fitnessHost
+

function +that evaluates relative fitness in head-to-head competition for different genomes +within the same host.

+
+
Type:
+

callable, takes a String argument and returns a number >= 0

+
+
+
+ +
+
+contactHost
+

function that +returns coefficient modifying probability of a given host being chosen to be the +infector in a contact event, based on genome sequence of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+receiveContactHost
+

function +that returns coefficient modifying probability of a given host being chosen to be +the infected in a contact event, based on genome sequence of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+mortalityHost
+

function that +returns coefficient modifying death rate for a given host, based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+natalityHost
+

function that +returns coefficient modifying birth rate for a given host, based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+recoveryHost
+

function that +returns coefficient modifying recovery rate for a given host based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+migrationHost
+

function that +returns coefficient modifying migration rate for a given host based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+populationContactHost
+

function +that returns coefficient modifying population contact rate for a given host based on +genome sequence of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+mutationHost
+

function that +returns coefficient modifying mutation rate for a given host based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+recombinationHost
+

function +that returns coefficient modifying recombination rate for a given host based on genome +sequence of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+fitnessVector
+

function that +evaluates relative fitness in head-to-head competition for different genomes within +the same vector.

+
+
Type:
+

callable, takes a String argument and returns a number >=0

+
+
+
+ +
+
+contactVector
+

function that +returns coefficient modifying probability of a given vector being chosen to be the +infector in a contact event, based on genome sequence of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+receiveContactVector
+

function +that returns coefficient modifying probability of a given vector being chosen to be the +infected in a contact event, based on genome sequence of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+mortalityVector
+

function that +returns coefficient modifying death rate for a given vector, based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+natalityVector
+

function that +returns coefficient modifying birth rate for a given vector, based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+recoveryVector
+

function that +returns coefficient modifying recovery rate for a given vector based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+migrationVector
+

function that +returns coefficient modifying migration rate for a given vector based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+populationContactVector
+

function +that returns coefficient modifying population contact rate for a given vector based on +genome sequence of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+mutationVector
+

function that +returns coefficient modifying mutation rate for a given vector based on genome sequence +of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+recombinationVector
+

function +that returns coefficient modifying recombination rate for a given vector based on genome +sequence of pathogen.

+
+
Type:
+

callable, takes a String argument and returns a number 0-1

+
+
+
+ +
+
+contact_rate_host_vector
+

rate of host-vector contact events, not necessarily +transmission, assumes constant population density; evts/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+transmission_efficiency_host_vector
+

fraction of host-vector contacts +that result in successful transmission.

+
+
Type:
+

float

+
+
+
+ +
+
+transmission_efficiency_vector_host
+

fraction of vector-host contacts +that result in successful transmission.

+
+
Type:
+

float

+
+
+
+ +
+
+contact_rate_host_host
+

rate of host-host contact events, not +necessarily transmission, assumes constant population density; evts/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+transmission_efficiency_host_host
+

fraction of host-host contacts +that result in successful transmission.

+
+
Type:
+

float

+
+
+
+ +
+
+mean_inoculum_host
+

mean number of pathogens that are transmitted from +a vector or host into a new host during a contact event.

+
+
Type:
+

int >= 0

+
+
+
+ +
+
+mean_inoculum_vector
+

from a host to a vector during a contact event.

+
+
Type:
+

int >= 0

+
+
+
+ +
+
+recovery_rate_host
+

rate at which hosts clear all pathogens; +1/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+recovery_rate_vector
+

rate at which vectors clear all pathogens +1/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+recovery_rate_vector
+

rate at which vectors clear all pathogens +1/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+mortality_rate_host
+

rate at which infected hosts die from disease.

+
+
Type:
+

number 0-1

+
+
+
+ +
+
+mortality_rate_vector
+

rate at which infected vectors die from +disease.

+
+
Type:
+

number 0-1

+
+
+
+ +
+
+recombine_in_host
+

rate at which recombination occurs in host; +evts/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+recombine_in_vector
+

rate at which recombination occurs in vector; +evts/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+num_crossover_host
+

mean of a Poisson distribution modeling the number +of crossover events of host recombination events.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+num_crossover_vector
+

mean of a Poisson distribution modeling the +number of crossover events of vector recombination events.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+mutate_in_host
+

rate at which mutation occurs in host; evts/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+mutate_in_vector
+

rate at which mutation occurs in vector; evts/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+death_rate_host
+

natural host death rate; 1/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+death_rate_vector
+

natural vector death rate; 1/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+birth_rate_host
+

infected host birth rate; 1/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+birth_rate_vector
+

infected vector birth rate; 1/time.

+
+
Type:
+

number >= 0

+
+
+
+ +
+
+vertical_transmission_host
+

probability that a host is infected by its +parent at birth.

+
+
Type:
+

number 0-1

+
+
+
+ +
+
+vertical_transmission_vector
+

probability that a vector is infected by +its parent at birth.

+
+
Type:
+

number 0-1

+
+
+
+ +
+
+inherit_protection_host
+

probability that a host inherits all +protection sequences from its parent.

+
+
Type:
+

number 0-1

+
+
+
+ +
+
+inherit_protection_vector
+

probability that a vector inherits all +protection sequences from its parent.

+
+
Type:
+

number 0-1

+
+
+
+ +
+
+protection_upon_recovery_host
+

defines +indexes in genome string that define substring to be added to host protection sequences +after recovery.

+
+
Type:
+

None or array-like of length 2 with int 0-num_loci

+
+
+
+ +
+
+protection_upon_recovery_vector
+

defines +indexes in genome string that define substring to be added to vector protection sequences +after recovery.

+
+
Type:
+

None or array-like of length 2 with int 0-num_loci

+
+
+
+ +
+ +
+
+

opqua.internal.vector module

+

Contains class Vector.

+
+
+class opqua.internal.vector.Vector(population, id, slim=False)[source]
+

Bases: object

+

Class defines vector entities to be infected by pathogens in model.

+

These can infect hosts, the main entities in the model.

+
+
+population
+

the population this vector belongs to.

+
+
Type:
+

Population object

+
+
+
+ +
+
+id
+

unique identifier for this vector within population.

+
+
Type:
+

String

+
+
+
+ +
+
+slim
+

whether to create a slimmed-down representation of the +population for data storage (only ID, host and vector lists). Defaults to False.

+
+
Type:
+

Boolean

+
+
+
+ +
+
+acquirePathogen(genome)[source]
+

Adds given genome to this vector’s pathogens.

+

Modifies event coefficient matrix accordingly.

+
+
Parameters:
+

genome (String) – the genome to be added.

+
+
Returns:
+

Boolean indicating whether or not the model has changed state.

+
+
+
+ +
+
+applyTreatment(resistance_seqs)[source]
+

Remove all infections with genotypes susceptible to given treatment.

+

Pathogens are removed if they are missing at least one of the sequences +in resistance_seqs from their genome. Removes this organism from +population infected list and adds to healthy list if appropriate.

+
+
Parameters:
+

resistance_seqs (list of Strings) – contains sequences required for treatment resistance.

+
+
+
+ +
+
+birth(rand)[source]
+

Add vector to population based on this vector.

+
+ +
+
+copyState()[source]
+

Returns a slimmed-down representation of the current vector state.

+
+
Returns:
+

Vector object with current pathogens and protection_sequences.

+
+
+
+ +
+
+die()[source]
+

Add vector to population’s dead list, remove it from alive ones.

+
+ +
+
+getWeightedRandomGenome(rand, r)[source]
+

Returns index of element chosen from weights and given random number.

+
+
Parameters:
+
    +
  • rand (number) – 0-1 random number.

  • +
  • r (numpy array) – array with weights.

  • +
+
+
Returns:
+

new 0-1 random number.

+
+
+
+ +
+
+infectHost(host)[source]
+

Infect given host with a sample of this vector’s pathogens.

+

Each pathogen in the infector is sampled as present or absent in the +inoculum by drawing from a Poisson distribution with a mean equal to the +mean inoculum size of the organism being infected weighted by each +genome’s fitness as a fraction of the total in the infector as the +probability of each trial (minimum 1 pathogen transfered). Each pathogen +present in the inoculum will be added to the infected organism, if it +does not have protection from the pathogen’s genome. Fitnesses are +computed for the pathogens’ genomes in the infected organism, and the +organism is included in the poplation’s infected list if appropriate.

+
+
Parameters:
+

vector (Vector object) – the vector to be infected.

+
+
Returns:
+

Boolean indicating whether or not the model has changed state.

+
+
+
+ +
+
+infectVector(vector)[source]
+

Infect given host with a sample of this vector’s pathogens.

+

Each pathogen in the infector is sampled as present or absent in the +inoculum by drawing from a Poisson distribution with a mean equal to the +mean inoculum size of the organism being infected weighted by each +genome’s fitness as a fraction of the total in the infector as the +probability of each trial (minimum 1 pathogen transfered). Each pathogen +present in the inoculum will be added to the infected organism, if it +does not have protection from the pathogen’s genome. Fitnesses are +computed for the pathogens’ genomes in the infected organism, and the +organism is included in the poplation’s infected list if appropriate.

+
+
Parameters:
+

vector (Vector object) – the vector to be infected.

+
+
Returns:
+

Boolean indicating whether or not the model has changed state.

+
+
+
+ +
+
+mutate(rand)[source]
+

Mutate a single, random locus in a random pathogen.

+

Creates a new genotype from a de novo mutation event.

+
+ +
+
+recombine(rand)[source]
+

Recombine two random pathogen genomes at random locus.

+

Creates a new genotype from two random possible pathogens.

+
+ +
+
+recover()[source]
+

Remove all infections from this vector.

+

If model is protecting upon recovery, add protection sequence as defined +by the indexes in the corresponding model parameter. Remove from +population infected list and add to healthy list.

+
+ +
+ +
+
+

Module contents

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/py-modindex.html b/docs/_build/html/py-modindex.html new file mode 100644 index 0000000..a7e008a --- /dev/null +++ b/docs/_build/html/py-modindex.html @@ -0,0 +1,177 @@ + + + + + + Python Module Index — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ o +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ o
+ opqua +
    + opqua.internal +
    + opqua.internal.data +
    + opqua.internal.gillespie +
    + opqua.internal.host +
    + opqua.internal.intervention +
    + opqua.internal.plot +
    + opqua.internal.population +
    + opqua.internal.setup +
    + opqua.internal.vector +
    + opqua.model +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/requirements_and_installation.html b/docs/_build/html/requirements_and_installation.html new file mode 100644 index 0000000..d014d49 --- /dev/null +++ b/docs/_build/html/requirements_and_installation.html @@ -0,0 +1,133 @@ + + + + + + + Requirements and Installation — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Requirements and Installation

+

Opqua runs on Python. A good place to get the latest version it if you don’t +have it is Anaconda.

+

Opqua is available on PyPI to install +through pip, as explained below.

+

If you haven’t yet, install pip:

+
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
+python get-pip.py
+
+
+

Install Opqua by running

+
pip install opqua
+
+
+

The pip installer should take care of installing the necessary packages. +However, for reference, the versions of the packages used for opqua’s +development are saved in requirements.txt

+

Check out the changelog file for information on recent updates.

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/search.html b/docs/_build/html/search.html new file mode 100644 index 0000000..068dafa --- /dev/null +++ b/docs/_build/html/search.html @@ -0,0 +1,127 @@ + + + + + + Search — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Pablo Cárdenas.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/docs/_build/html/searchindex.js b/docs/_build/html/searchindex.js new file mode 100644 index 0000000..ac6c10a --- /dev/null +++ b/docs/_build/html/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["API", "about", "basic_usage", "evolution", "index", "intervention", "metapopulation", "model_documentation", "opqua", "opqua.internal", "requirements_and_installation", "tutorials", "usage", "vital_dynamics"], "filenames": ["API.rst", "about.md", "basic_usage.ipynb", "evolution.ipynb", "index.md", "intervention.ipynb", "metapopulation.ipynb", "model_documentation.md", "opqua.rst", "opqua.internal.rst", "requirements_and_installation.md", "tutorials.rst", "usage.md", "vital_dynamics.ipynb"], "titles": ["API", "About", "Basic usage", "Evolution", "Opqua ", "Interventions", "Metapopulation", "Model Documentation", "opqua package", "opqua.internal package", "Requirements and Installation", "Tutorials", "Usage", "Vital dynamics"], "terms": {"opqua": [0, 2, 3, 5, 6, 7, 10, 12, 13], "packag": [0, 3, 4, 5, 10], "subpackag": 0, "intern": [0, 8], "submodul": 0, "data": [0, 1, 2, 8, 12], "modul": 0, "gillespi": [0, 1, 7, 8], "host": [0, 1, 2, 8], "intervent": [0, 4, 8, 11, 12], "plot": [0, 1, 2, 4, 8], "popul": [0, 2, 4, 8, 11], "setup": [0, 7, 8], "vector": [0, 1, 2, 8, 11], "content": 0, "model": [0, 2, 4, 9, 12], "group": [0, 1, 5, 7, 8], "histori": [0, 1, 7, 8, 9], "t_var": [0, 7, 8], "cb_palett": [0, 7, 8, 9], "def_cmap": [0, 7, 8, 9], "addcustomconditiontrack": [0, 7, 8], "addhost": [0, 7, 8, 9], "addpathogenstohost": [0, 2, 3, 5, 6, 7, 8, 9, 12, 13], "addpathogenstovector": [0, 5, 7, 8, 9], "addvector": [0, 5, 7, 8, 9], "clustermap": [0, 3, 7, 8, 9], "compartmentplot": [0, 2, 3, 5, 7, 8, 9, 12, 13], "compositionplot": [0, 3, 5, 7, 8, 9], "copyst": [0, 7, 8, 9], "createinterconnectedpopul": [0, 6, 7, 8], "custommodelfunct": [0, 7, 8], "deepcopi": [0, 7, 8], "getcompositiondata": [0, 7, 8], "getgenometim": [0, 7, 8], "getpathogen": [0, 7, 8, 9], "getprotect": [0, 7, 8, 9], "linkpopulationshosthostcontact": [0, 7, 8], "linkpopulationshostmigr": [0, 6, 7, 8], "linkpopulationshostvectorcontact": [0, 6, 7, 8], "linkpopulationsvectorhostcontact": [0, 6, 7, 8], "linkpopulationsvectormigr": [0, 7, 8], "newhostgroup": [0, 5, 7, 8, 9], "newintervent": [0, 5, 7, 8], "newpopul": [0, 2, 3, 5, 6, 7, 8, 12, 13], "newsetup": [0, 1, 2, 3, 5, 6, 7, 8, 12, 13], "newvectorgroup": [0, 5, 7, 8, 9], "pathogendistancehistori": [0, 7, 8], "peaklandscap": [0, 3, 7, 8], "populationsplot": [0, 6, 7, 8, 9], "protecthost": [0, 5, 7, 8, 9], "protectvector": [0, 7, 8, 9], "removehost": [0, 7, 8, 9], "removevector": [0, 7, 8, 9], "run": [0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13], "runparamsweep": [0, 7, 8], "runrepl": [0, 7, 8], "savetodatafram": [0, 2, 3, 5, 6, 7, 8, 12, 13], "setrandomse": [0, 7, 8], "setsetup": [0, 5, 7, 8, 9], "treathost": [0, 5, 7, 8, 9], "treatvector": [0, 5, 7, 8, 9], "valleylandscap": [0, 7, 8], "wipeprotectionhost": [0, 7, 8, 9], "wipeprotectionvector": [0, 7, 8, 9], "stochast": 1, "distinct": 1, "evolv": 1, "genotyp": [1, 6, 7, 8, 9], "spread": [1, 11, 12], "through": [1, 3, 7, 9, 10, 12, 13], "which": [1, 3, 4, 5, 6, 7, 8, 9, 12], "can": [1, 3, 5, 7, 8, 9, 12], "have": [1, 3, 5, 6, 7, 8, 9, 10, 12, 13], "specif": [1, 3, 7, 8, 9], "immun": [1, 12, 13], "profil": 1, "us": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13], "tool": 1, "test": 1, "out": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13], "scenario": [1, 3, 5], "explor": 1, "hypothes": 1, "make": [1, 2, 3, 5, 6, 9, 12, 13], "predict": 1, "teach": 1, "relationship": 1, "between": [1, 3, 5, 6, 7, 8, 9, 13], "epidemiologi": 1, "among": [1, 13], "other": [1, 3, 6, 7, 8, 9, 12], "thing": 1, "born": [1, 5, 6, 7, 8, 11], "vertic": 1, "transmiss": [1, 2, 5, 6, 7, 8, 9, 11, 12], "mutat": [1, 3, 7, 8, 9], "recombin": [1, 3, 7, 8, 9], "reassort": [1, 3], "recoveri": [1, 7, 8, 9, 13], "death": [1, 7, 8, 9, 12, 13], "birth": [1, 7, 8, 9, 12, 13], "metapopul": [1, 4, 11], "complex": 1, "structur": 1, "demograph": 1, "interact": [1, 7, 8], "alter": 1, "ecolog": 1, "evolutionari": 1, "paramet": [1, 2, 3, 5, 6, 8, 9, 12, 13], "treatment": [1, 5, 7, 8, 9], "influenc": 1, "genom": [1, 2, 5, 6, 7, 8, 9, 12, 13], "sequenc": [1, 3, 5, 7, 8, 9], "well": [1, 3, 9], "dynam": [1, 4, 7, 8, 9, 11, 12], "intra": [1, 3, 9, 12], "inter": [1, 6, 7, 8, 9], "competit": [1, 3, 7, 8, 9, 12], "strain": [1, 7, 8, 9], "across": [1, 4, 7, 8, 9], "user": [1, 7, 8], "specifi": [1, 3, 5, 6, 7, 8, 9, 13], "adapt": 1, "landscap": [1, 3], "ar": [1, 3, 6, 7, 8, 9, 10, 12], "compos": 1, "contain": [1, 3, 5, 6, 7, 8, 9, 13], "themselv": [1, 7, 8, 9], "mai": [1, 5, 7, 8, 12], "infect": [1, 2, 3, 5, 6, 7, 8, 9, 12, 13], "number": [1, 2, 3, 5, 6, 7, 8, 9, 13], "differ": [1, 3, 5, 6, 7, 8, 9], "A": [1, 7, 8, 10, 11, 12], "repres": [1, 3], "string": [1, 3, 7, 8, 9], "charact": [1, 7, 8, 9], "all": [1, 3, 5, 6, 7, 8, 9, 12], "must": [1, 3, 5, 7, 8, 9], "same": [1, 3, 5, 6, 7, 8, 9], "length": [1, 3, 7, 8, 9], "set": [1, 2, 3, 5, 6, 7, 8, 9, 13], "loci": [1, 7, 8, 9], "each": [1, 3, 5, 7, 8, 9, 12, 13], "posit": [1, 3, 7, 8, 9, 13], "within": [1, 3, 7, 8, 9], "one": [1, 3, 5, 7, 8, 9, 13], "correspond": [1, 5, 7, 8, 9], "allel": [1, 3], "possibl": [1, 3, 7, 8, 9], "avail": [1, 4, 5, 7, 8, 9, 10, 12], "them": [1, 5, 6, 7, 8, 9, 12, 13], "separ": [1, 3, 6, 7, 8, 9, 12], "chromosom": [1, 3, 9], "reserv": [1, 9], "thi": [1, 3, 5, 6, 7, 8, 9, 12, 13], "purpos": 1, "its": [1, 7, 8, 9], "own": [1, 12], "uniqu": [1, 3, 5, 6, 7, 8, 9, 13], "dictat": 1, "happen": [1, 3, 5, 7, 9], "insid": [1, 7, 8, 9], "includ": [1, 3, 6, 7, 8, 9, 12], "There": [1, 3, 13], "kind": [1, 7, 8], "occur": [1, 3, 4, 5, 7, 8, 9], "contact": [1, 3, 5, 7, 8, 9, 11], "infecti": 1, "anoth": [1, 3, 6, 7, 8, 9], "migrat": [1, 7, 8, 9, 11], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], "new": [1, 2, 7, 8, 9], "exist": [1, 7, 8], "due": [1, 7], "natur": [1, 7, 8, 9, 12, 13], "caus": [1, 4, 12], "two": [1, 3, 5, 6, 7, 8, 9, 13], "The": [1, 2, 3, 5, 6, 7, 8, 10, 12, 13], "likelihood": [1, 3], "determin": 1, "": [1, 4, 7, 8, 9, 10], "explain": [1, 10], "function": [1, 5, 8, 9, 11, 12], "document": [1, 4, 5, 12], "healthi": [1, 5, 7, 8, 9], "involv": 1, "crucial": 1, "also": [1, 3, 7, 8, 12], "those": [1, 5], "arbitrari": [1, 3], "evalu": [1, 3, 7, 8, 9], "affect": [1, 13], "ani": [1, 3, 5, 6, 7, 8, 9, 12], "abov": [1, 5, 7, 8, 9], "rate": [1, 3, 5, 6, 7, 8, 9, 13], "onc": [1, 3], "again": [1, 7, 8, 9], "done": [1, 2, 3, 5, 6, 9, 13], "argument": [1, 3, 5, 7, 8, 9], "As": 1, "exampl": [1, 4], "result": [1, 2, 7, 8, 9], "increas": [1, 3, 7, 8], "decreas": [1, 7, 8, 9], "These": [1, 9, 12], "custom": [1, 7, 8], "combin": [1, 3, 7, 8], "rout": 1, "depend": [1, 7, 8], "when": [1, 3, 5, 9], "present": [1, 7, 8, 9], "transfer": [1, 9], "receiv": [1, 9], "long": [1, 3, 5, 6, 7, 8, 9, 13], "unit": [1, 2, 13], "inocul": 1, "randomli": [1, 7, 8, 9], "distribut": [1, 4, 7, 8, 9], "base": [1, 3, 7, 8, 9], "poisson": [1, 7, 8, 9], "probabl": [1, 3, 7, 8, 9], "mean": [1, 7, 8, 9, 13], "multipli": 1, "fraction": [1, 7, 8, 9], "total": [1, 3, 5, 6, 7, 8, 9], "fit": [1, 4, 8, 9, 11], "For": [1, 5, 12], "instanc": [1, 3], "consid": [1, 7, 8, 9], "inoculum": [1, 9], "size": [1, 7, 8, 9], "given": [1, 7, 8, 9], "10": [1, 3, 5, 6, 7, 8, 9, 13], "ha": [1, 3, 4, 6, 7, 8, 9], "0": [1, 2, 3, 5, 6, 7, 8, 9, 12, 13], "3": [1, 2, 3, 5, 6, 7, 8, 9, 13], "7": [1, 2, 3, 5, 6, 7, 8, 9, 13], "respect": 1, "would": 1, "gener": [1, 3, 7, 8, 9], "random": [1, 2, 3, 5, 6, 7, 8, 9, 13], "equal": [1, 7, 8, 9], "via": 1, "mechan": 1, "link": [1, 6, 7, 8], "compat": 1, "wai": [1, 3, 6], "allow": 1, "b": [1, 11], "both": [1, 3, 6, 12], "greater": [1, 7, 8], "than": [1, 7, 8, 9], "zero": [1, 3], "singl": [1, 3, 5, 7, 8, 9, 12, 13], "defin": [1, 7, 8, 9], "frequenc": 1, "transport": 1, "therefor": 1, "govern": 1, "toward": [1, 6, 7, 8, 9], "being": [1, 3, 7, 8, 9], "remov": [1, 7, 8, 9], "addition": 1, "option": [1, 5, 7, 8, 9], "gain": 1, "protect": [1, 2, 3, 5, 6, 7, 8, 9, 13], "recov": [1, 3, 5, 7, 8, 9, 12, 13], "memori": [1, 13], "delimit": 1, "contigu": 1, "save": [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13], "abl": [1, 12], "inherit": [1, 7, 8, 9], "parent": [1, 7, 8, 9], "offspr": 1, "follow": [1, 4, 7], "sampl": [1, 5, 7, 8, 9], "process": [1, 3, 5, 7, 8, 9], "equival": [1, 3], "describ": [1, 7, 8, 9], "mortal": [1, 13], "onli": [1, 7, 8, 9], "track": [1, 7, 8], "record": 1, "de": [1, 3, 9], "novo": [1, 3, 9], "locu": [1, 3, 9], "assign": [1, 3, 7, 8, 9], "creat": [1, 2, 7, 8, 9], "independ": [1, 3], "segreg": [1, 3], "segment": 1, "field": [1, 7, 8, 9], "In": [1, 3], "addit": [1, 7, 8, 9], "crossov": [1, 3, 7, 8, 9], "homolog": [1, 3], "side": 1, "locat": [1, 7, 8, 9], "while": 1, "remaind": [1, 6, 7, 8, 9], "throughout": [1, 3, 12], "uniform": [1, 9], "furthermor": 1, "chang": [1, 5, 6, 9, 12, 13], "behavior": 1, "timepoint": [1, 7, 8, 9], "dure": [1, 3, 7, 8, 9], "known": 1, "manipul": [1, 8], "ad": [1, 3, 5, 6, 7, 8, 9, 13], "unlink": 1, "action": [1, 9], "some": [1, 3, 7, 8, 9, 12], "appli": 1, "cure": [1, 7, 8, 9], "vaccin": [1, 5, 12], "choos": [1, 9], "individu": [1, 7, 8, 9], "consecut": 1, "multipl": [1, 3, 5, 6, 7, 8, 9, 12], "member": 1, "remain": [1, 3, 5, 6], "even": 1, "thei": [1, 5, 7, 8, 9, 13], "awai": [1, 7, 8], "were": 1, "chosen": [1, 3, 7, 8, 9], "do": 1, "collect": 1, "resist": [1, 7, 8, 9], "order": [1, 7, 8, 9], "avoid": 1, "On": 1, "hand": 1, "consist": 1, "behav": 1, "acquir": 1, "implement": 1, "algorithm": [1, 7, 8, 9], "comput": [1, 2, 3, 5, 6, 7, 8, 9, 12, 13], "current": [1, 7, 8, 9], "state": [1, 3, 6, 7, 8, 9], "store": [1, 2, 3, 5, 6, 7, 8, 9, 13], "matrix": [1, 3, 7, 8, 9], "matric": 1, "coeffici": [1, 3, 7, 8, 9], "contribut": 1, "master": 1, "whenev": 1, "entri": [1, 3, 7, 8, 9], "updat": [1, 9, 10], "recomput": 1, "inform": [1, 5, 10, 12], "time": [1, 2, 6, 7, 8, 9, 13], "compris": 1, "copi": [1, 7, 8], "everi": [1, 3, 7, 8, 9], "point": [1, 3, 5, 6, 7, 8, 9, 13], "intermitt": 1, "interv": 1, "cours": [1, 3, 7], "instead": [1, 7, 8, 9], "entir": 1, "reduc": 1, "footprint": 1, "raw": [1, 12], "panda": [1, 3, 5, 6, 7, 8, 9, 13], "datafram": [1, 3, 5, 6, 7, 8, 9, 13], "tabular": 1, "file": [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13], "type": [1, 5, 7, 8, 9], "count": [1, 3, 5, 6, 7, 8, 9], "first": [1, 6, 7, 8, 9], "emerg": [1, 12], "distanc": [1, 3, 7, 8, 9], "visual": 1, "compart": [1, 7, 8, 9], "naiv": [1, 3, 5, 7, 8, 9, 13], "dead": [1, 3, 5, 7, 8, 9, 12, 13], "composit": [1, 3, 5, 7, 8, 9], "over": [1, 2, 3, 5, 6, 7, 12, 13], "phylogeni": [1, 3], "format": [1, 3, 5, 6, 7, 8, 9, 13], "1": [2, 3, 5, 6, 7, 8, 9, 13], "import": [2, 3, 5, 6, 7, 12, 13], "object": [2, 7, 8, 9], "2": [2, 3, 5, 6, 7, 8, 9, 13], "my_model": [2, 12, 13], "call": [2, 3, 5, 6, 9, 13], "my_setup": [2, 3, 5, 12, 13], "simul": [2, 8, 9, 12], "here": [2, 3, 12], "we": [2, 3, 5, 6], "default": [2, 3, 5, 6, 7, 8, 9, 13], "preset": [2, 3, 5, 6, 8, 12, 13], "100": [2, 3, 5, 6, 7, 8, 12, 13], "my_popul": [2, 3, 5, 12, 13], "4": [2, 3, 5, 6, 7, 8, 9, 13], "num_host": [2, 3, 5, 6, 7, 8, 9, 12, 13], "add": [2, 3, 5, 6, 7, 8, 9, 13], "pathogen": [2, 4, 6, 7, 8, 9, 13], "aaaaaaaaaa": [2, 5, 6, 12, 13], "20": [2, 3, 5, 6, 12, 13], "5": [2, 3, 5, 6, 7, 8, 9, 13], "200": [2, 3, 7, 8, 9, 13], "6": [2, 3, 5, 6, 7, 8, 9, 13], "71": [2, 3], "89423840111455": 2, "event": [2, 3, 5, 6, 7, 8, 9, 13], "contact_host_host": [2, 3, 7, 8, 9], "136": 2, "14665780191842": 2, "recover_host": [2, 3, 5, 7, 8, 9], "15737579926133": 2, "end": [2, 3, 5, 6, 7, 8, 9, 13], "tabl": 2, "basic_exampl": 2, "csv": [2, 3, 5, 6, 7, 8, 9, 12, 13], "parallel": [2, 3, 5, 6, 7, 8, 9, 13], "n_job": [2, 3, 5, 6, 13], "8": [2, 3, 5, 6, 7, 8, 9, 13], "backend": [2, 3, 5, 6, 13], "lokybackend": [2, 3, 5, 6, 13], "concurr": [2, 3, 5, 6, 13], "worker": [2, 3, 5, 6, 13], "task": [2, 3, 5, 6, 13], "elaps": [2, 3, 5, 6, 13], "batch": [2, 3, 5, 6, 13], "too": [2, 3, 5, 6, 13], "fast": [2, 3, 5, 6, 13], "19414451599121096": 2, "batch_siz": [2, 3, 5, 6, 13], "9": [2, 3, 5, 6, 9, 13], "16": [2, 3, 5, 6, 9, 13], "01929759979248047": 2, "26": [2, 3, 5, 6, 13], "44": [2, 3, 5, 6, 13], "013352155685424805": 2, "76": [2, 3, 5, 6, 13], "01486515998840332": 2, "124": 2, "224": [2, 5, 6, 13], "02699422836303711": 2, "32": [2, 3, 5, 6, 13], "408": [2, 5, 6, 13], "05492806434631348": 2, "64": [2, 3, 5, 6, 13], "792": [2, 5, 13], "08415079116821289": 2, "128": [2, 3, 5, 13], "1292": 2, "1495": 2, "1698": [2, 13], "1793": [2, 13], "1956": 2, "finish": [2, 3, 5, 6, 13], "organ": [2, 3, 5, 6, 7, 8, 9, 13], "id": [2, 3, 5, 6, 7, 8, 9, 12, 13], "aliv": [2, 3, 5, 6, 7, 8, 9, 13], "my_population_0": [2, 3, 5, 13], "nan": [2, 3, 5, 6, 13], "true": [2, 3, 5, 6, 7, 8, 9, 13], "my_population_1": [2, 3, 5, 13], "my_population_2": [2, 3, 5, 13], "my_population_3": [2, 3, 5, 13], "my_population_4": [2, 3, 5, 13], "195595": 2, "my_population_95": [2, 3], "195596": 2, "my_population_96": [2, 3], "195597": 2, "my_population_97": [2, 3], "195598": 2, "my_population_98": [2, 3], "195599": 2, "my_population_99": [2, 3], "195600": 2, "row": [2, 3, 5, 6, 7, 8, 9, 13], "column": [2, 3, 5, 6, 7, 8, 9, 13], "suscept": [2, 3, 5, 6, 7, 8, 9, 13], "graph": [2, 3, 9, 12], "basic_example_compart": 2, "png": [2, 3, 5, 6, 12, 13], "illustr": 3, "meet": 3, "most": [3, 7, 8, 9], "higher": 3, "transmit": [3, 7, 8, 9], "case": 3, "doe": [3, 4, 6, 7, 8, 9, 12], "NOT": 3, "vari": 3, "accord": [3, 7, 8, 9], "howev": [3, 10], "stabil": 3, "select": [3, 5, 7, 8, 9], "where": [3, 9], "i": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13], "less": 3, "account": [3, 7], "peak": 3, "special": 3, "my_optimal_genom": 3, "best": 3, "take": [3, 5, 7, 8, 9, 10], "return": [3, 7, 8, 9], "valu": [3, 5, 6, 7, 8, 9, 13], "advantag": 3, "you": [3, 7, 8, 10, 12], "want": 3, "deviat": 3, "exponenti": [3, 7, 8], "decai": [3, 7, 8], "min_fit": 3, "maximum": [3, 7, 8], "strong": 3, "veri": 3, "low": 3, "minimum": [3, 7, 8, 9], "def": 3, "myhostfit": 3, "peak_genom": [3, 7, 8], "measur": [3, 7, 8, 9], "against": [3, 7, 8, 9], "min_valu": [3, 7, 8], "1e": [3, 6, 7, 8, 13], "name": [3, 5, 6, 7, 8, 9, 13], "possible_allel": [3, 7, 8, 9], "abdest": 3, "letter": 3, "list": [3, 4, 8, 9], "simplest": [3, 12], "approach": 3, "num_loci": [3, 7, 8, 9], "len": 3, "fitnesshost": [3, 7, 8, 9], "could": 3, "lambda": [3, 7, 8], "rel": [3, 7, 8, 9], "head": [3, 7, 8, 9, 12], "It": [3, 7], "should": [3, 10], "reciev": 3, "mutate_in_host": [3, 7, 8, 9], "5e": [3, 13], "modifi": [3, 5, 6, 8, 9, 13], "get": [3, 10], "identifi": [3, 5, 6, 7, 8, 9, 13], "predefin": [3, 5, 6, 13], "start": [3, 5, 6, 7, 8, 9], "off": 3, "suboptim": 3, "badd": 3, "see": [3, 12], "outcompet": [3, 12], "more": [3, 5, 9, 12], "culmin": 3, "dictionari": [3, 4, 5, 6, 7, 8, 9, 13], "kei": [3, 5, 6, 7, 8, 9, 13], "final": [3, 5, 6, 7, 8, 9, 13], "84": 3, "9205322047209": 3, "139": 3, "4831216243728": 3, "199": 3, "83533163204655": 3, "0243380253218": 3, "per": [3, 5, 6, 7, 8, 9, 13], "fitness_function_mutation_exampl": [3, 12], "19662265031018072": 3, "25": [3, 6], "019941329956054688": 3, "36": [3, 6], "58": [3, 6], "020781755447387695": 3, "96": [3, 6], "016440391540527344": 3, "168": [3, 6], "02756667137145996": 3, "288": [3, 6], "051561594009399414": 3, "560": 3, "1024": 3, "0886225700378418": 3, "1822": 3, "2156": 3, "2270": 3, "2384": 3, "2560": 3, "255995": 3, "255996": 3, "255997": 3, "255998": 3, "255999": 3, "256000": 3, "plot_composit": [3, 5], "fitness_function_mutation_example_composit": 3, "num_top_sequ": [3, 7, 8, 9], "overal": 3, "lump": 3, "categori": 3, "track_specific_sequ": [3, 7, 8, 9], "isn": 3, "t": [3, 10, 13], "top": [3, 6, 7, 8, 9], "103": 3, "11": [3, 5, 6, 9], "12": [3, 5, 6, 9], "13": [3, 5, 6, 9], "14": [3, 5, 6, 9], "15": [3, 5, 6, 9], "17": [3, 5, 9], "18": [3, 5, 9], "19": [3, 5, 9], "21": [3, 5], "22": 3, "23": 3, "24": 3, "27": 3, "28": 3, "29": 3, "30": 3, "31": 3, "33": 3, "34": 3, "35": 3, "37": 3, "38": 3, "39": 3, "40": 3, "41": 3, "42": 3, "43": 3, "45": 3, "46": 3, "47": [3, 5], "48": 3, "49": 3, "50": [3, 5], "51": 3, "52": 3, "53": 3, "54": 3, "55": 3, "56": 3, "57": 3, "59": 3, "60": 3, "61": 3, "62": 3, "63": 3, "65": 3, "66": [3, 13], "67": 3, "68": 3, "69": 3, "70": 3, "72": 3, "73": 3, "74": 3, "75": 3, "77": 3, "78": [3, 5], "79": 3, "80": 3, "81": 3, "82": 3, "83": [3, 6], "85": [3, 5], "86": 3, "87": 3, "88": 3, "89": 3, "90": 3, "91": 3, "92": 3, "93": 3, "94": 3, "95": 3, "97": 3, "98": 3, "99": 3, "101": 3, "102": 3, "ancestr": 3, "besid": 3, "pairwis": [3, 7, 8, 9], "plot_clustermap": 3, "pass": [3, 5, 7, 8, 9], "fitness_function_mutation_example_clustermap": 3, "path": [3, 5, 7, 8, 9, 13], "extens": [3, 5, 7, 8, 9, 13], "under": [3, 4, 5, 6, 7, 8, 9, 12, 13], "save_data_to_fil": [3, 7, 8, 9], "fitness_function_mutation_example_pairwise_dist": 3, "how": [3, 4, 5, 6, 7, 8, 9, 12], "mani": [3, 6, 7, 8, 9], "home": [3, 5], "acs98": [3, 5], "miniconda3": [3, 5], "env": [3, 5], "lib": [3, 5], "python3": [3, 5], "site": [3, 5], "seaborn": [3, 7, 8, 9], "py": [3, 5, 10, 12], "624": 3, "clusterwarn": 3, "scipi": 3, "cluster": [3, 6, 7, 8, 9], "symmetr": 3, "non": 3, "neg": 3, "hollow": 3, "observ": 3, "look": [3, 12], "suspici": 3, "like": [3, 7, 8, 9, 12], "uncondens": 3, "linkag": 3, "hierarchi": 3, "self": 3, "arrai": [3, 7, 8, 9], "method": [3, 4, 5, 8, 9, 12], "notic": [3, 5], "exce": [3, 5], "becaus": [3, 5], "twice": [3, 5], "former": [3, 5], "latter": [3, 5], "plot_compart": [3, 5], "v": [3, 5, 7, 8, 9, 13], "fitness_function_example_reassortment_compart": 3, "denot": [3, 7, 9, 12], "middl": 3, "ground": 3, "rest": 3, "myhostcontact": 3, "els": 3, "05": 3, "contact_rate_host_host": [3, 7, 8, 9], "2e0": 3, "necessarili": [3, 5, 6, 7, 8, 9], "assum": [3, 5, 6, 7, 8, 9], "constant": [3, 5, 6, 7, 8, 9], "densiti": [3, 5, 6, 7, 8, 9], "contacthost": [3, 7, 8, 9], "infector": [3, 7, 8, 9], "recombine_in_host": [3, 7, 8, 9], "either": [3, 7, 8, 9], "num_crossover_host": [3, 7, 8, 9], "By": 3, "averag": 3, "ensur": 3, "restrict": 3, "second": [3, 5, 6, 9], "500": 3, "time_sampl": [3, 6, 7, 8, 9], "skip": [3, 6, 7, 8, 9], "befor": [3, 6, 7, 8, 9], "snapshot": [3, 6, 7, 8, 9], "transmissibility_function_reassortment_exampl": 3, "795": 3, "796": 3, "797": 3, "798": 3, "799": 3, "800": 3, "transmissibility_function_reassortment_example_composit": 3, "transmissibility_function_reassortment_example_clustermap": 3, "transmissibility_function_reassortment_example_pairwise_dist": 3, "transmissibility_function_reassortment_example_compart": 3, "opkua": 4, "upkua": 4, "chibcha": 4, "muysccubun": 4, "noun": 4, "ailment": 4, "diseas": [4, 7, 8, 9, 11], "ill": 4, "ii": 4, "reason": 4, "someth": 4, "taken": [4, 9, 12], "d": 4, "f": 4, "g\u00f3mez": 4, "aldana": 4, "muysca": 4, "spanish": 4, "been": 4, "depth": 4, "studi": 4, "evolut": [4, 8, 11, 12, 13], "vallei": 4, "check": [4, 5, 10, 12], "peer": 4, "review": 4, "preprint": [4, 12], "biorxiv": 4, "now": [4, 6], "develop": [4, 10, 12], "pablo": 4, "c\u00e1rdena": 4, "collabor": 4, "vladimir": 4, "corredor": 4, "mauricio": 4, "santo": 4, "vega": 4, "scienc": 4, "antic": 4, "twitter": 4, "pcr_gui": 4, "msantosvega": 4, "pypi": [4, 10], "an": [4, 6, 7, 8, 9, 12], "mit": 4, "licens": 4, "about": 4, "epidemiolog": [4, 8, 12], "framework": [4, 8], "genet": [4, 8], "work": [4, 5, 12], "requir": [4, 6, 7, 8, 9], "instal": 4, "usag": [4, 7, 11], "minim": 4, "tutori": [4, 12], "basic": [4, 11], "vital": [4, 11], "class": [4, 8, 9], "attribut": [4, 8], "detail": [4, 12], "api": 4, "show": [5, 6, 12], "effect": [5, 12], "variou": 5, "fed": 5, "my_setup_2": 5, "duplic": 5, "contact_rate_host_vector": [5, 6, 7, 8, 9], "4e": 5, "num_vector": [5, 6, 7, 8, 9, 13], "At": 5, "tttttttttt": 5, "cccccccccc": 5, "place": [5, 7, 8, 9, 10], "carri": [5, 7, 8, 9], "10_new_vector": 5, "gggggggggg": [5, 6], "so": 5, "last": [5, 7], "whole": [5, 7, 8, 9], "150": 5, "treated_host": 5, "third": 5, "treated_vector": 5, "treat": [5, 7, 8, 9], "kill": [5, 9], "unless": 5, "250": 5, "400": 5, "82778878187784": 5, "recover_vector": [5, 7, 8, 9], "3366736929209": 5, "105": 5, "91879303271841": 5, "contact_host_vector": [5, 7, 8, 9, 13], "118": 5, "47279407649962": 5, "131": 5, "35992383183006": 5, "contact_vector_host": [5, 6, 7, 8, 9], "142": 5, "51592961651278": 5, "155": 5, "0493103157924": 5, "166": 5, "15922138729405": 5, "178": 5, "45033758585132": 5, "191": 5, "46530199493813": 5, "202": 5, "95353967543554": 5, "215": 5, "14396460201561": 5, "227": 5, "37567502659184": 5, "239": 5, "10997595769174": 5, "251": 5, "43868107426454": 5, "270": 5, "88105008645147": 5, "307": 5, "90286561294283": 5, "357": 5, "4327138889326": 5, "04897821206066": 5, "intervention_exampl": [5, 12], "18432052612304692": 5, "016484975814819336": 5, "030623912811279297": 5, "120": [5, 6, 13], "043166160583496094": 5, "04822254180908203": 5, "08920669555664062": 5, "16597485542297363": 5, "1528": 5, "3192": 5, "5368": 5, "7449": 5, "8243": 5, "8591": 5, "8822": 5, "9064": 5, "9079": 5, "1008": 5, "dtypewarn": 5, "mix": 5, "dtype": 5, "low_memori": 5, "fals": [5, 7, 8, 9, 13], "savetodf": [5, 7, 8, 9], "1898145": 5, "my_population_105": 5, "1898146": 5, "my_population_106": 5, "1898147": 5, "my_population_107": 5, "1898148": 5, "my_population_108": 5, "1898149": 5, "my_population_109": 5, "1898150": 5, "intervention_examples_composit": 5, "intervention_examples_compart": 5, "connect": 6, "isol": 6, "seed": [6, 7, 8], "setup_norm": 6, "setup_clust": 6, "doubl": 6, "population_a": 6, "population_b": 6, "thrid": 6, "isolated_popul": 6, "2e": [6, 7, 8], "direct": 6, "prefix": [6, 7, 8], "clustered_population_": 6, "host_migration_r": [6, 7, 8], "vector_migration_r": [6, 7, 8], "host_host_contact_r": [6, 7, 8], "vector_host_contact_r": [6, 7, 8], "origin": [6, 7, 8, 9], "clustered_population_4": 6, "destin": [6, 7, 8], "neighbor": [6, 7, 8, 9], "06461341318253": 6, "06274296487011": 6, "metapopulations_migration_exampl": [6, 12], "19491923660278324": 6, "027785778045654297": 6, "024601459503173828": 6, "040442705154418945": 6, "06669497489929199": 6, "0938570499420166": 6, "606": 6, "714": 6, "793": 6, "810": 6, "829": 6, "848": 6, "869": 6, "890": 6, "918": 6, "population_a_0": 6, "population_a_1": 6, "population_a_2": 6, "population_a_3": 6, "population_a_4": 6, "293755": 6, "clustered_population_4_15": 6, "293756": 6, "clustered_population_4_16": 6, "293757": 6, "clustered_population_4_17": 6, "293758": 6, "clustered_population_4_18": 6, "293759": 6, "clustered_population_4_19": 6, "293760": 6, "aggreg": [6, 7, 8, 9], "num_top_popul": [6, 7, 8, 9], "track_specific_popul": [6, 7, 8, 9], "sure": 6, "y_label": [6, 7, 8, 9], "y": [6, 7, 8, 9], "label": [6, 7, 8, 9], "without": [6, 7, 8], "host_vector_contact_r": [6, 7, 8], "note": [6, 7, 8, 9], "need": 6, "1491768759948": 6, "metapopulations_population_contact_exampl": 6, "19925533388085942": 6, "017675399780273438": 6, "030938148498535156": 6, "039101600646972656": 6, "07192206382751465": 6, "453": 6, "528": 6, "545": 6, "562": 6, "581": 6, "611": 6, "195515": 6, "195516": 6, "195517": 6, "195518": 6, "195519": 6, "195520": 6, "th": 6, "handl": 7, "To": [7, 12], "find": 7, "everyth": 7, "section": [7, 12], "global_track": [7, 8], "keep": 7, "global": 7, "indic": [7, 9], "custom_condition_track": [7, 8], "condit": [7, 8, 12], "custom_condit": [7, 8], "variabl": [7, 8], "num_ev": 7, "last_event_tim": 7, "genomes_seen": 7, "appear": [7, 8, 9], "migrate_host": [7, 8, 9], "migrate_vector": [7, 8, 9], "population_contact_host_host": [7, 8, 9], "population_contact_host_vector": [7, 8, 9], "population_contact_vector_host": [7, 8, 9], "mutate_host": [7, 8, 9], "mutate_vector": [7, 8, 9], "recombine_host": [7, 8, 9], "recombine_vector": [7, 8, 9], "kill_host": [7, 8, 9], "kill_vector": [7, 8, 9], "die_host": [7, 8, 9], "die_vector": [7, 8, 9], "birth_host": [7, 8, 9, 13], "birth_vector": [7, 8, 9], "wherea": 7, "numpi": [7, 8, 9], "dict": [7, 8, 9], "execut": [7, 8, 9, 12], "replic": [7, 8], "sweep": [7, 8, 12], "slim": [7, 8, 9], "down": [7, 8, 9], "represent": [7, 8, 9], "inner": [7, 8], "refer": [7, 8, 10], "statu": [7, 8, 9], "frame": 7, "write": [7, 8, 9], "heatmap": [7, 8, 9], "dendrogram": [7, 8, 9], "calcul": [7, 9], "numer": 7, "phenotyp": [7, 8], "optim": [7, 8, 9, 12], "worst": [7, 8], "sourc": [7, 8, 9], "main": [7, 8, 9], "colorblind": [7, 8], "friendli": [7, 8], "color": [7, 8, 9], "scheme": [7, 8], "colormap": [7, 8], "condition_id": [7, 8], "trackerfunct": [7, 8], "occurr": [7, 8, 9], "callabl": [7, 8, 9], "pop_id": [7, 8], "int": [7, 8, 9], "genomes_numb": [7, 8, 9], "group_id": [7, 8], "keyword": [7, 8, 9], "empti": [7, 8, 9], "file_nam": [7, 8, 9], "seq_nam": [7, 8, 9], "n_core": [7, 8, 9], "weight": [7, 8, 9], "metric": [7, 8, 9], "euclidean": [7, 8, 9], "legend_titl": [7, 8, 9], "legend_valu": [7, 8, 9], "figsiz": [7, 8, 9], "dpi": [7, 8, 9], "color_map": [7, 8, 9], "matplotlib": [7, 8, 9], "listedcolormap": [7, 8, 9], "produc": [7, 8, 9, 12], "part": [7, 8, 9], "ofstr": [7, 8], "displai": [7, 8, 9], "core": [7, 8, 9], "legend": [7, 8, 9], "titl": [7, 8, 9], "dimens": [7, 8, 9], "figur": [7, 8, 9], "resolut": [7, 8, 9], "cmap": [7, 8, 9], "map": [7, 8, 9], "trace": [7, 8, 9], "x_label": [7, 8, 9], "palett": [7, 8, 9], "e69f00": [7, 8, 9], "56b4e9": [7, 8, 9], "009e73": [7, 8, 9], "f0e442": [7, 8, 9], "0072b2": [7, 8, 9], "d55e00": [7, 8, 9], "cc79a7": [7, 8, 9], "999999": [7, 8, 9], "stack": [7, 8, 9], "inf": [7, 8, 9], "rec": [7, 8, 9], "line": [7, 8, 9, 12], "analysi": [7, 8, 9], "boolean": [7, 8, 9], "whether": [7, 8, 9], "x": [7, 8, 9], "axi": [7, 8, 9], "draw": [7, 8, 9], "regular": [7, 8, 9], "composition_datafram": [7, 8, 9], "none": [7, 8, 9], "type_of_composit": [7, 8, 9], "remove_legend": [7, 8, 9], "genomic_posit": [7, 8, 9], "population_fract": [7, 8, 9], "count_individuals_based_on_model": [7, 8, 9], "kwarg": [7, 8, 9], "shown": [7, 8, 9, 12], "Of": [7, 8, 9], "sum": [7, 8, 9], "compositiondf": [7, 8, 9], "alreadi": [7, 8, 9], "element": [7, 8, 9], "extract": [7, 8, 9], "e": [7, 8, 9], "g": [7, 8, 9], "full": [7, 8, 9], "oppos": [7, 8, 9], "print": [7, 8, 9], "arguent": [7, 8, 9], "joblib": [7, 8, 9], "multiprocess": [7, 8, 9], "host_sampl": [7, 8, 9], "vector_sampl": [7, 8, 9], "system": [7, 8, 9], "num_popul": [7, 8], "id_prefix": [7, 8], "setup_nam": [7, 8], "Their": [7, 8], "onto": [7, 8], "id_prefix_0": [7, 8], "id_prefix_1": [7, 8], "id_prefix_2": [7, 8], "etc": [7, 8], "evt": [7, 8, 9], "raw_data_": [7, 8], "asoppos": [7, 8], "save_to_fil": [7, 8, 9], "uniformli": [7, 8, 9], "timecours": [7, 8, 9], "dat": [7, 8], "sort": [7, 8, 9], "seri": [7, 8, 9], "pop1_id": [7, 8], "pop2_id": [7, 8], "integ": [7, 8, 9], "method_nam": [7, 8, 9], "arg": [7, 8, 9], "positin": [7, 8, 9], "If": [7, 8, 9, 10], "append": [7, 8], "_2": [7, 8], "receivecontacthost": [7, 8, 9], "mortalityhost": [7, 8, 9], "natalityhost": [7, 8, 9], "recoveryhost": [7, 8, 9], "migrationhost": [7, 8, 9], "populationcontacthost": [7, 8, 9], "receivepopulationcontacthost": [7, 8, 9], "mutationhost": [7, 8, 9], "recombinationhost": [7, 8, 9], "fitnessvector": [7, 8, 9], "contactvector": [7, 8, 9], "receivecontactvector": [7, 8, 9], "mortalityvector": [7, 8, 9], "natalityvector": [7, 8, 9], "recoveryvector": [7, 8, 9], "migrationvector": [7, 8, 9], "populationcontactvector": [7, 8, 9], "receivepopulationcontactvector": [7, 8, 9], "mutationvector": [7, 8, 9], "recombinationvector": [7, 8, 9], "transmission_efficiency_host_vector": [7, 8, 9], "transmission_efficiency_vector_host": [7, 8, 9], "transmission_efficiency_host_host": [7, 8, 9], "mean_inoculum_host": [7, 8, 9], "mean_inoculum_vector": [7, 8, 9], "recovery_rate_host": [7, 8, 9], "recovery_rate_vector": [7, 8, 9], "mortality_rate_host": [7, 8, 9, 13], "mortality_rate_vector": [7, 8, 9], "recombine_in_vector": [7, 8, 9], "num_crossover_vector": [7, 8, 9], "mutate_in_vector": [7, 8, 9], "death_rate_host": [7, 8, 9, 13], "death_rate_vector": [7, 8, 9, 13], "birth_rate_host": [7, 8, 9, 13], "birth_rate_vector": [7, 8, 9, 13], "vertical_transmission_host": [7, 8, 9], "vertical_transmission_vector": [7, 8, 9], "inherit_protection_host": [7, 8, 9], "inherit_protection_vector": [7, 8, 9], "protection_upon_recovery_host": [7, 8, 9, 13], "protection_upon_recovery_vector": [7, 8, 9], "atcg": [7, 8], "1e1": [7, 8], "1e2": [7, 8], "1e0": [7, 8], "float": [7, 8, 9], "success": [7, 8, 9], "clear": [7, 8, 9], "die": [7, 8, 9], "index": [7, 8, 9], "substr": [7, 8, 9], "after": [7, 8, 9], "ham": [7, 8, 9], "percent": [7, 8, 9], "static": [7, 8], "seq": [7, 8], "purifi": [7, 8], "move": [7, 8], "subset": [7, 8, 9], "frac_host": [7, 8, 9], "protection_sequ": [7, 8, 9], "frac_vector": [7, 8, 9], "num_hosts_or_list": [7, 8, 9], "num_vectors_or_list": [7, 8, 9], "t0": [7, 8, 9], "tf": [7, 8, 9], "setup_id": [7, 8], "param_sweep_d": [7, 8], "host_population_size_sweep": [7, 8], "vector_population_size_sweep": [7, 8], "host_migration_sweep_d": [7, 8], "vector_migration_sweep_d": [7, 8], "host_host_population_contact_sweep_d": [7, 8], "host_vector_population_contact_sweep_d": [7, 8], "vector_host_population_contact_sweep_d": [7, 8], "variat": [7, 8], "colon": [7, 8], "export": [7, 8, 9], "resistance_seq": [7, 8, 9], "miss": [7, 8, 9], "least": [7, 8, 9], "appropri": [7, 8, 9], "valley_genom": [7, 8], "disrupt": [7, 8], "closer": [7, 8], "compartmentdf": [8, 9], "getgenometimesdf": [8, 9], "getpathogendistancehistorydf": [8, 9], "pathogendistancedf": [8, 9], "populationsdf": [8, 9], "event_id": [8, 9], "doaction": [8, 9], "getrat": [8, 9], "acquirepathogen": [8, 9], "applytreat": [8, 9], "getweightedrandomgenom": [8, 9], "infecthost": [8, 9], "infectvector": [8, 9], "dointervent": [8, 9], "chromosome_separ": [8, 9], "lethal": [8, 9], "natal": [8, 9, 11], "num_coeffici": [8, 9], "population_contact": [8, 9], "receive_contact": [8, 9], "receive_population_contact": [8, 9], "birthhost": [8, 9], "birthvector": [8, 9], "contacthosthost": [8, 9], "contacthostvector": [8, 9], "contactvectorhost": [8, 9], "diehost": [8, 9], "dievector": [8, 9], "getweightedrandom": [8, 9], "healthycoefficientrow": [8, 9], "killhost": [8, 9], "killvector": [8, 9], "mutatehost": [8, 9], "mutatevector": [8, 9], "populationcontact": [8, 9], "recombinehost": [8, 9], "recombinevector": [8, 9], "recoverhost": [8, 9], "recovervector": [8, 9], "sethosthostpopulationcontactneighbor": [8, 9], "sethostmigrationneighbor": [8, 9], "sethostvectorpopulationcontactneighbor": [8, 9], "setvectorhostpopulationcontactneighbor": [8, 9], "setvectormigrationneighbor": [8, 9], "updatehostcoeffici": [8, 9], "updatevectorcoeffici": [8, 9], "output": [8, 9, 12], "initi": [8, 9, 12], "wrangl": 9, "susc": 9, "verbos": 9, "straight": 9, "read": 9, "wa": 9, "actual": 9, "effici": 9, "concaten": 9, "directli": 9, "pd": 9, "belong": 9, "act": 9, "pop": 9, "rand": 9, "indicationg": 9, "population_id": 9, "wrapper": 9, "print_every_n_ev": 9, "1000": 9, "messag": 9, "consol": [9, 12], "entiti": 9, "storag": 9, "accordingli": 9, "ones": 9, "r": 9, "absent": 9, "trial": 9, "poplat": 9, "upon": 9, "protecion": 9, "associ": 9, "graphmak": 9, "deafult": 9, "num": 9, "coefficients_host": 9, "coefficients_vector": 9, "conatin": 9, "version": [9, 10], "sinc": 9, "dummi": 9, "target_pop": 9, "otherwis": 9, "host_origin": 9, "host_target": 9, "target": 9, "python": [10, 12], "good": 10, "latest": 10, "don": [10, 13], "anaconda": [10, 12], "pip": 10, "below": [10, 12], "haven": 10, "yet": 10, "curl": 10, "http": 10, "bootstrap": 10, "pypa": 10, "io": 10, "o": 10, "care": 10, "necessari": 10, "txt": 10, "changelog": 10, "recent": 10, "sever": 11, "folder": 12, "notebook": 12, "environ": 12, "jupyt": 12, "integr": 12, "spyder": 12, "overview": 12, "materi": 12, "manuscript": 12, "summar": 12, "descript": 12, "yourself": 12, "your": 12, "analys": 12, "try": 12, "aris": 12, "borne_birth": [12, 13], "death_exampl": [12, 13], "vital_dynam": 12, "network": 12, "interconnect": 12, "undergo": 12, "uninfect": 12, "advanc": 12, "repositori": 12, "forthcom": 12, "simpl": 13, "015": 13, "01": 13, "7483164411631": 13, "175": 13, "53517979111868": 13, "00318125185066": 13, "1995853034973145": 13, "019458293914794922": 13, "020659446716308594": 13, "0252227783203125": 13, "04323148727416992": 13, "08730292320251465": 13, "18108701705932617": 13, "1233": 13, "1613": 13, "1888": 13, "1977": 13, "443810": 13, "my_population_120": 13, "443811": 13, "my_population_136": 13, "443812": 13, "my_population_117": 13, "443813": 13, "443814": 13, "my_population_112": 13, "443815": 13}, "objects": {"": [[8, 0, 0, "-", "opqua"]], "opqua": [[9, 0, 0, "-", "internal"], [8, 0, 0, "-", "model"]], "opqua.internal": [[9, 0, 0, "-", "data"], [9, 0, 0, "-", "gillespie"], [9, 0, 0, "-", "host"], [9, 0, 0, "-", "intervention"], [9, 0, 0, "-", "plot"], [9, 0, 0, "-", "population"], [9, 0, 0, "-", "setup"], [9, 0, 0, "-", "vector"]], "opqua.internal.data": [[9, 1, 1, "", "compartmentDf"], [9, 1, 1, "", "compositionDf"], [9, 1, 1, "", "getGenomeTimesDf"], [9, 1, 1, "", "getPathogenDistanceHistoryDf"], [9, 1, 1, "", "getPathogens"], [9, 1, 1, "", "getProtections"], [9, 1, 1, "", "pathogenDistanceDf"], [9, 1, 1, "", "populationsDf"], [9, 1, 1, "", "saveToDf"]], "opqua.internal.gillespie": [[9, 2, 1, "", "Gillespie"]], "opqua.internal.gillespie.Gillespie": [[9, 3, 1, "", "BIRTH_HOST"], [9, 3, 1, "", "BIRTH_VECTOR"], [9, 3, 1, "", "CONTACT_HOST_HOST"], [9, 3, 1, "", "CONTACT_HOST_VECTOR"], [9, 3, 1, "", "CONTACT_VECTOR_HOST"], [9, 3, 1, "", "DIE_HOST"], [9, 3, 1, "", "DIE_VECTOR"], [9, 3, 1, "", "EVENT_IDS"], [9, 3, 1, "", "KILL_HOST"], [9, 3, 1, "", "KILL_VECTOR"], [9, 3, 1, "", "MIGRATE_HOST"], [9, 3, 1, "", "MIGRATE_VECTOR"], [9, 3, 1, "", "MUTATE_HOST"], [9, 3, 1, "", "MUTATE_VECTOR"], [9, 3, 1, "", "POPULATION_CONTACT_HOST_HOST"], [9, 3, 1, "", "POPULATION_CONTACT_HOST_VECTOR"], [9, 3, 1, "", "POPULATION_CONTACT_VECTOR_HOST"], [9, 3, 1, "", "RECOMBINE_HOST"], [9, 3, 1, "", "RECOMBINE_VECTOR"], [9, 3, 1, "", "RECOVER_HOST"], [9, 3, 1, "", "RECOVER_VECTOR"], [9, 4, 1, "", "doAction"], [9, 4, 1, "", "getRates"], [9, 3, 1, "", "model"], [9, 4, 1, "", "run"]], "opqua.internal.host": [[9, 2, 1, "", "Host"]], "opqua.internal.host.Host": [[9, 4, 1, "", "acquirePathogen"], [9, 4, 1, "", "applyTreatment"], [9, 4, 1, "", "birth"], [9, 4, 1, "", "copyState"], [9, 4, 1, "", "die"], [9, 4, 1, "", "getWeightedRandomGenome"], [9, 3, 1, "", "id"], [9, 4, 1, "", "infectHost"], [9, 4, 1, "", "infectVector"], [9, 4, 1, "", "mutate"], [9, 3, 1, "", "population"], [9, 4, 1, "", "recombine"], [9, 4, 1, "", "recover"], [9, 3, 1, "", "slim"]], "opqua.internal.intervention": [[9, 2, 1, "", "Intervention"]], "opqua.internal.intervention.Intervention": [[9, 3, 1, "", "args"], [9, 4, 1, "", "doIntervention"], [9, 3, 1, "", "method_name"], [9, 3, 1, "", "model"], [9, 3, 1, "", "time"]], "opqua.internal.plot": [[9, 1, 1, "", "clustermap"], [9, 1, 1, "", "compartmentPlot"], [9, 1, 1, "", "compositionPlot"], [9, 1, 1, "", "populationsPlot"]], "opqua.internal.population": [[9, 2, 1, "", "Population"]], "opqua.internal.population.Population": [[9, 3, 1, "", "CHROMOSOME_SEPARATOR"], [9, 3, 1, "", "CONTACT"], [9, 3, 1, "", "INFECTED"], [9, 3, 1, "", "LETHALITY"], [9, 3, 1, "", "MIGRATION"], [9, 3, 1, "", "MUTATION"], [9, 3, 1, "", "NATALITY"], [9, 3, 1, "", "NUM_COEFFICIENTS"], [9, 3, 1, "", "POPULATION_CONTACT"], [9, 3, 1, "", "RECEIVE_CONTACT"], [9, 3, 1, "", "RECEIVE_POPULATION_CONTACT"], [9, 3, 1, "", "RECOMBINATION"], [9, 3, 1, "", "RECOVERY"], [9, 4, 1, "", "addHosts"], [9, 4, 1, "", "addPathogensToHosts"], [9, 4, 1, "", "addPathogensToVectors"], [9, 4, 1, "", "addVectors"], [9, 4, 1, "", "birthHost"], [9, 4, 1, "", "birthVector"], [9, 4, 1, "", "contactHostHost"], [9, 4, 1, "", "contactHostVector"], [9, 4, 1, "", "contactVectorHost"], [9, 4, 1, "", "copyState"], [9, 4, 1, "", "dieHost"], [9, 4, 1, "", "dieVector"], [9, 4, 1, "", "getWeightedRandom"], [9, 4, 1, "", "healthyCoefficientRow"], [9, 3, 1, "", "id"], [9, 4, 1, "", "killHost"], [9, 4, 1, "", "killVector"], [9, 4, 1, "", "migrate"], [9, 3, 1, "", "model"], [9, 4, 1, "", "mutateHost"], [9, 4, 1, "", "mutateVector"], [9, 4, 1, "", "newHostGroup"], [9, 4, 1, "", "newVectorGroup"], [9, 3, 1, "", "num_hosts"], [9, 3, 1, "", "num_vectors"], [9, 4, 1, "", "populationContact"], [9, 4, 1, "", "protectHosts"], [9, 4, 1, "", "protectVectors"], [9, 4, 1, "", "recombineHost"], [9, 4, 1, "", "recombineVector"], [9, 4, 1, "", "recoverHost"], [9, 4, 1, "", "recoverVector"], [9, 4, 1, "", "removeHosts"], [9, 4, 1, "", "removeVectors"], [9, 4, 1, "", "setHostHostPopulationContactNeighbor"], [9, 4, 1, "", "setHostMigrationNeighbor"], [9, 4, 1, "", "setHostVectorPopulationContactNeighbor"], [9, 4, 1, "", "setSetup"], [9, 4, 1, "", "setVectorHostPopulationContactNeighbor"], [9, 4, 1, "", "setVectorMigrationNeighbor"], [9, 3, 1, "", "setup"], [9, 3, 1, "", "slim"], [9, 4, 1, "", "treatHosts"], [9, 4, 1, "", "treatVectors"], [9, 4, 1, "", "updateHostCoefficients"], [9, 4, 1, "", "updateVectorCoefficients"], [9, 4, 1, "", "wipeProtectionHosts"], [9, 4, 1, "", "wipeProtectionVectors"]], "opqua.internal.setup": [[9, 2, 1, "", "Setup"]], "opqua.internal.setup.Setup": [[9, 3, 1, "", "birth_rate_host"], [9, 3, 1, "", "birth_rate_vector"], [9, 3, 1, "", "contactHost"], [9, 3, 1, "", "contactVector"], [9, 3, 1, "", "contact_rate_host_host"], [9, 3, 1, "", "contact_rate_host_vector"], [9, 3, 1, "", "death_rate_host"], [9, 3, 1, "", "death_rate_vector"], [9, 3, 1, "", "fitnessHost"], [9, 3, 1, "", "fitnessVector"], [9, 3, 1, "", "id"], [9, 3, 1, "", "inherit_protection_host"], [9, 3, 1, "", "inherit_protection_vector"], [9, 3, 1, "", "mean_inoculum_host"], [9, 3, 1, "", "mean_inoculum_vector"], [9, 3, 1, "", "migrationHost"], [9, 3, 1, "", "migrationVector"], [9, 3, 1, "", "mortalityHost"], [9, 3, 1, "", "mortalityVector"], [9, 3, 1, "", "mortality_rate_host"], [9, 3, 1, "", "mortality_rate_vector"], [9, 3, 1, "", "mutate_in_host"], [9, 3, 1, "", "mutate_in_vector"], [9, 3, 1, "", "mutationHost"], [9, 3, 1, "", "mutationVector"], [9, 3, 1, "", "natalityHost"], [9, 3, 1, "", "natalityVector"], [9, 3, 1, "", "num_crossover_host"], [9, 3, 1, "", "num_crossover_vector"], [9, 3, 1, "", "num_loci"], [9, 3, 1, "", "populationContactHost"], [9, 3, 1, "", "populationContactVector"], [9, 3, 1, "", "possible_alleles"], [9, 3, 1, "", "protection_upon_recovery_host"], [9, 3, 1, "", "protection_upon_recovery_vector"], [9, 3, 1, "", "receiveContactHost"], [9, 3, 1, "", "receiveContactVector"], [9, 3, 1, "", "recombinationHost"], [9, 3, 1, "", "recombinationVector"], [9, 3, 1, "", "recombine_in_host"], [9, 3, 1, "", "recombine_in_vector"], [9, 3, 1, "", "recoveryHost"], [9, 3, 1, "", "recoveryVector"], [9, 3, 1, "", "recovery_rate_host"], [9, 3, 1, "id0", "recovery_rate_vector"], [9, 3, 1, "", "transmission_efficiency_host_host"], [9, 3, 1, "", "transmission_efficiency_host_vector"], [9, 3, 1, "", "transmission_efficiency_vector_host"], [9, 3, 1, "", "vertical_transmission_host"], [9, 3, 1, "", "vertical_transmission_vector"]], "opqua.internal.vector": [[9, 2, 1, "", "Vector"]], "opqua.internal.vector.Vector": [[9, 4, 1, "", "acquirePathogen"], [9, 4, 1, "", "applyTreatment"], [9, 4, 1, "", "birth"], [9, 4, 1, "", "copyState"], [9, 4, 1, "", "die"], [9, 4, 1, "", "getWeightedRandomGenome"], [9, 3, 1, "", "id"], [9, 4, 1, "", "infectHost"], [9, 4, 1, "", "infectVector"], [9, 4, 1, "", "mutate"], [9, 3, 1, "", "population"], [9, 4, 1, "", "recombine"], [9, 4, 1, "", "recover"], [9, 3, 1, "", "slim"]], "opqua.model": [[8, 2, 1, "", "Model"]], "opqua.model.Model": [[8, 3, 1, "", "CB_PALETTE"], [8, 3, 1, "", "DEF_CMAP"], [8, 4, 1, "", "addCustomConditionTracker"], [8, 4, 1, "", "addHosts"], [8, 4, 1, "", "addPathogensToHosts"], [8, 4, 1, "", "addPathogensToVectors"], [8, 4, 1, "", "addVectors"], [8, 4, 1, "", "clustermap"], [8, 4, 1, "", "compartmentPlot"], [8, 4, 1, "", "compositionPlot"], [8, 4, 1, "", "copyState"], [8, 4, 1, "", "createInterconnectedPopulations"], [8, 4, 1, "", "customModelFunction"], [8, 4, 1, "", "deepCopy"], [8, 4, 1, "", "getCompositionData"], [8, 4, 1, "", "getGenomeTimes"], [8, 4, 1, "", "getPathogens"], [8, 4, 1, "", "getProtections"], [8, 3, 1, "", "groups"], [8, 3, 1, "", "history"], [8, 3, 1, "", "interventions"], [8, 4, 1, "", "linkPopulationsHostHostContact"], [8, 4, 1, "", "linkPopulationsHostMigration"], [8, 4, 1, "", "linkPopulationsHostVectorContact"], [8, 4, 1, "", "linkPopulationsVectorHostContact"], [8, 4, 1, "", "linkPopulationsVectorMigration"], [8, 4, 1, "", "newHostGroup"], [8, 4, 1, "", "newIntervention"], [8, 4, 1, "", "newPopulation"], [8, 4, 1, "", "newSetup"], [8, 4, 1, "", "newVectorGroup"], [8, 4, 1, "", "pathogenDistanceHistory"], [8, 4, 1, "", "peakLandscape"], [8, 3, 1, "", "populations"], [8, 4, 1, "", "populationsPlot"], [8, 4, 1, "", "protectHosts"], [8, 4, 1, "", "protectVectors"], [8, 4, 1, "", "removeHosts"], [8, 4, 1, "", "removeVectors"], [8, 4, 1, "", "run"], [8, 4, 1, "", "runParamSweep"], [8, 4, 1, "", "runReplicates"], [8, 4, 1, "", "saveToDataFrame"], [8, 4, 1, "", "setRandomSeed"], [8, 4, 1, "", "setSetup"], [8, 3, 1, "", "setups"], [8, 3, 1, "", "t_var"], [8, 4, 1, "", "treatHosts"], [8, 4, 1, "", "treatVectors"], [8, 4, 1, "", "valleyLandscape"], [8, 4, 1, "", "wipeProtectionHosts"], [8, 4, 1, "", "wipeProtectionVectors"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:attribute", "4": "py:method"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "method", "Python method"]}, "titleterms": {"api": 0, "about": 1, "opqua": [1, 4, 8, 9], "i": 1, "an": [1, 3], "epidemiolog": 1, "model": [1, 3, 5, 6, 7, 8, 13], "framework": 1, "pathogen": [1, 3, 5, 12], "popul": [1, 3, 5, 6, 7, 9, 12, 13], "genet": [1, 12], "evolut": [1, 3], "how": 1, "doe": 1, "work": 1, "basic": [1, 2], "concept": 1, "event": 1, "intervent": [1, 5, 7, 9], "simul": [1, 3, 5, 6, 7, 13], "output": [1, 3, 5, 6, 7, 13], "usag": [2, 12], "A": [3, 5, 6, 13], "fit": [3, 7], "function": [3, 7], "initi": [3, 5, 6, 7, 13], "setup": [3, 5, 6, 9, 13], "creat": [3, 5, 6, 13], "new": [3, 5, 6, 13], "object": [3, 5, 6, 13], "defin": [3, 5, 6, 13], "optim": 3, "genom": 3, "custom": 3, "host": [3, 5, 6, 7, 9, 12, 13], "our": [3, 5, 6, 13], "system": [3, 5, 6, 13], "manipul": [3, 5, 6, 7, 13], "vector": [3, 5, 6, 7, 9, 12, 13], "data": [3, 5, 6, 7, 9, 13], "visual": [3, 5, 6, 13], "tabl": [3, 5, 6, 13], "result": [3, 5, 6, 13], "given": [3, 5, 6, 13], "histori": [3, 5, 6, 13], "plot": [3, 5, 6, 7, 9, 12, 13], "track": [3, 5], "genotyp": [3, 5], "across": [3, 5, 6, 12], "time": [3, 5], "heatmap": 3, "dendrogram": 3, "compart": [3, 5, 6, 12, 13], "b": [3, 6], "transmiss": 3, "content": [4, 8, 9], "sever": 5, "metapopul": [6, 12], "migrat": 6, "line": 6, "stack": 6, "dynam": [6, 13], "one": 6, "each": 6, "contact": 6, "document": 7, "class": 7, "attribut": 7, "method": 7, "list": 7, "make": 7, "connect": 7, "modifi": 7, "paramet": 7, "util": 7, "preset": 7, "detail": 7, "packag": [8, 9], "subpackag": 8, "submodul": [8, 9], "modul": [8, 9], "intern": 9, "gillespi": 9, "requir": 10, "instal": 10, "tutori": 11, "minim": 12, "exampl": 12, "composit": 12, "differ": 12, "phylogeni": 12, "vital": 13, "born": 13, "diseas": 13, "natal": 13, "spread": 13}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"API": [[0, "api"]], "About": [[1, "about"]], "Opqua is an epidemiological modeling framework for pathogen population genetics and evolution.": [[1, "opqua-is-an-epidemiological-modeling-framework-for-pathogen-population-genetics-and-evolution"]], "How Does Opqua Work?": [[1, "how-does-opqua-work"]], "Basic concepts": [[1, "basic-concepts"]], "Events": [[1, "events"]], "Interventions": [[1, "interventions"], [5, "Interventions"]], "Simulation": [[1, "simulation"]], "Output": [[1, "output"]], "Basic usage": [[2, "Basic-usage"]], "Evolution": [[3, "Evolution"]], "A. Fitness function": [[3, "A.-Fitness-function"]], "Model initialization and setup": [[3, "Model-initialization-and-setup"], [3, "id1"], [5, "Model-initialization-and-setup"], [6, "Model-initialization-and-setup"], [6, "id1"], [13, "Model-initialization-and-setup"]], "Create a new Model object": [[3, "Create-a-new-Model-object"], [3, "id2"], [5, "Create-a-new-Model-object"], [6, "Create-a-new-Model-object"], [6, "id2"], [13, "Create-a-new-Model-object"]], "Define an optimal genome": [[3, "Define-an-optimal-genome"], [3, "id3"]], "Define a custom fitness function for the host": [[3, "Define-a-custom-fitness-function-for-the-host"], [3, "id4"]], "Define a Setup for our system": [[3, "Define-a-Setup-for-our-system"], [3, "id5"], [5, "Define-a-Setup-for-our-system"], [6, "Define-a-Setup-for-our-system"], [6, "id3"], [13, "Define-a-Setup-for-our-system"]], "Create a population in our model": [[3, "Create-a-population-in-our-model"], [3, "id6"], [5, "Create-a-population-in-our-model"], [6, "Create-a-population-in-our-model"], [6, "id4"], [13, "Create-a-population-in-our-model"]], "Manipulate hosts and vectors in the population": [[3, "Manipulate-hosts-and-vectors-in-the-population"], [3, "id7"], [5, "Manipulate-hosts-and-vectors-in-the-population"], [6, "Manipulate-hosts-and-vectors-in-the-population"], [6, "id5"], [13, "Manipulate-hosts-and-vectors-in-the-population"]], "Model simulation": [[3, "Model-simulation"], [3, "id8"], [5, "Model-simulation"], [6, "Model-simulation"], [6, "id6"], [13, "Model-simulation"]], "Output data manipulation and visualization": [[3, "Output-data-manipulation-and-visualization"], [3, "id9"], [5, "Output-data-manipulation-and-visualization"], [6, "Output-data-manipulation-and-visualization"], [6, "id7"], [13, "Output-data-manipulation-and-visualization"]], "Create a table with the results of the given model history": [[3, "Create-a-table-with-the-results-of-the-given-model-history"], [3, "id10"], [5, "Create-a-table-with-the-results-of-the-given-model-history"], [6, "Create-a-table-with-the-results-of-the-given-model-history"], [6, "id8"], [13, "Create-a-table-with-the-results-of-the-given-model-history"]], "Create a plot to track pathogen genotypes across time": [[3, "Create-a-plot-to-track-pathogen-genotypes-across-time"], [3, "id11"], [5, "Create-a-plot-to-track-pathogen-genotypes-across-time"]], "Create a heatmap and dendrogram for pathogen genomes": [[3, "Create-a-heatmap-and-dendrogram-for-pathogen-genomes"], [3, "id12"]], "Create a compartment plot": [[3, "Create-a-compartment-plot"], [3, "id13"], [5, "Create-a-compartment-plot"], [13, "Create-a-compartment-plot"]], "B. Transmissibility function": [[3, "B.-Transmissibility-function"]], "Define a custom transmission function for the host": [[3, "Define-a-custom-transmission-function-for-the-host"]], "Opqua Opqua": [[4, "opqua"]], "Contents": [[4, null]], "A. Several interventions": [[5, "A.-Several-interventions"]], "Define the interventions": [[5, "Define-the-interventions"]], "Metapopulation": [[6, "Metapopulation"]], "A. Migration": [[6, "A.-Migration"]], "Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population.": [[6, "Creates-a-line-or-stacked-line-plot-with-dynamics-of-a-compartment-across-populations-in-the-model,-with-one-line-for-each-population."], [6, "id9"]], "B. Population contact": [[6, "B.-Population-contact"]], "Model Documentation": [[7, "model-documentation"]], "Model class attributes": [[7, "model-class-attributes"]], "Model class methods list": [[7, "model-class-methods-list"]], "Model initialization and simulation": [[7, "model-initialization-and-simulation"]], "Data Output and Plotting": [[7, "data-output-and-plotting"]], "Model interventions": [[7, "model-interventions"]], "Make and connect populations:": [[7, "make-and-connect-populations"]], "Manipulate hosts and vectors in population:": [[7, "manipulate-hosts-and-vectors-in-population"]], "Modify population parameters:": [[7, "modify-population-parameters"]], "Utility:": [[7, "utility"]], "Preset fitness functions": [[7, "preset-fitness-functions"]], "Detailed Model documentation": [[7, "detailed-model-documentation"]], "opqua package": [[8, "opqua-package"]], "Subpackages": [[8, "subpackages"]], "Submodules": [[8, "submodules"], [9, "submodules"]], "opqua.model module": [[8, "module-opqua.model"]], "Module contents": [[8, "module-opqua"], [9, "module-opqua.internal"]], "opqua.internal package": [[9, "opqua-internal-package"]], "opqua.internal.data module": [[9, "module-opqua.internal.data"]], "opqua.internal.gillespie module": [[9, "module-opqua.internal.gillespie"]], "opqua.internal.host module": [[9, "module-opqua.internal.host"]], "opqua.internal.intervention module": [[9, "module-opqua.internal.intervention"]], "opqua.internal.plot module": [[9, "module-opqua.internal.plot"]], "opqua.internal.population module": [[9, "module-opqua.internal.population"]], "opqua.internal.setup module": [[9, "module-opqua.internal.setup"]], "opqua.internal.vector module": [[9, "module-opqua.internal.vector"]], "Requirements and Installation": [[10, "requirements-and-installation"]], "Tutorials": [[11, "tutorials"]], "Usage": [[12, "usage"]], "Minimal example": [[12, "minimal-example"]], "Example Plots": [[12, "example-plots"]], "Population genetic composition plots for pathogens": [[12, "population-genetic-composition-plots-for-pathogens"]], "Host/vector compartment plots": [[12, "host-vector-compartment-plots"], [12, "id1"]], "Plots of a host/vector compartment across different populations in a metapopulation": [[12, "plots-of-a-host-vector-compartment-across-different-populations-in-a-metapopulation"]], "Pathogen phylogenies": [[12, "pathogen-phylogenies"]], "Vital dynamics": [[13, "Vital-dynamics"]], "A. Vector-borne disease with natality spreading": [[13, "A.-Vector-borne-disease-with-natality-spreading"]]}, "indexentries": {"model (class in opqua.model)": [[7, "opqua.model.Model"], [8, "opqua.model.Model"]], "addcustomconditiontracker() (opqua.model.model method)": [[7, "opqua.model.Model.addCustomConditionTracker"], [8, "opqua.model.Model.addCustomConditionTracker"]], "addhosts() (opqua.model.model method)": [[7, "opqua.model.Model.addHosts"], [8, "opqua.model.Model.addHosts"]], "addpathogenstohosts() (opqua.model.model method)": [[7, "opqua.model.Model.addPathogensToHosts"], [8, "opqua.model.Model.addPathogensToHosts"]], "addpathogenstovectors() (opqua.model.model method)": [[7, "opqua.model.Model.addPathogensToVectors"], [8, "opqua.model.Model.addPathogensToVectors"]], "addvectors() (opqua.model.model method)": [[7, "opqua.model.Model.addVectors"], [8, "opqua.model.Model.addVectors"]], "clustermap() (opqua.model.model method)": [[7, "opqua.model.Model.clustermap"], [8, "opqua.model.Model.clustermap"]], "compartmentplot() (opqua.model.model method)": [[7, "opqua.model.Model.compartmentPlot"], [8, "opqua.model.Model.compartmentPlot"]], "compositionplot() (opqua.model.model method)": [[7, "opqua.model.Model.compositionPlot"], [8, "opqua.model.Model.compositionPlot"]], "copystate() (opqua.model.model method)": [[7, "opqua.model.Model.copyState"], [8, "opqua.model.Model.copyState"]], "createinterconnectedpopulations() (opqua.model.model method)": [[7, "opqua.model.Model.createInterconnectedPopulations"], [8, "opqua.model.Model.createInterconnectedPopulations"]], "custommodelfunction() (opqua.model.model method)": [[7, "opqua.model.Model.customModelFunction"], [8, "opqua.model.Model.customModelFunction"]], "deepcopy() (opqua.model.model method)": [[7, "opqua.model.Model.deepCopy"], [8, "opqua.model.Model.deepCopy"]], "getcompositiondata() (opqua.model.model method)": [[7, "opqua.model.Model.getCompositionData"], [8, "opqua.model.Model.getCompositionData"]], "getgenometimes() (opqua.model.model method)": [[7, "opqua.model.Model.getGenomeTimes"], [8, "opqua.model.Model.getGenomeTimes"]], "getpathogens() (opqua.model.model method)": [[7, "opqua.model.Model.getPathogens"], [8, "opqua.model.Model.getPathogens"]], "getprotections() (opqua.model.model method)": [[7, "opqua.model.Model.getProtections"], [8, "opqua.model.Model.getProtections"]], "groups (opqua.model.model attribute)": [[7, "opqua.model.Model.groups"], [8, "opqua.model.Model.groups"]], "history (opqua.model.model attribute)": [[7, "opqua.model.Model.history"], [8, "opqua.model.Model.history"]], "interventions (opqua.model.model attribute)": [[7, "opqua.model.Model.interventions"], [8, "opqua.model.Model.interventions"]], "linkpopulationshosthostcontact() (opqua.model.model method)": [[7, "opqua.model.Model.linkPopulationsHostHostContact"], [8, "opqua.model.Model.linkPopulationsHostHostContact"]], "linkpopulationshostmigration() (opqua.model.model method)": [[7, "opqua.model.Model.linkPopulationsHostMigration"], [8, "opqua.model.Model.linkPopulationsHostMigration"]], "linkpopulationshostvectorcontact() (opqua.model.model method)": [[7, "opqua.model.Model.linkPopulationsHostVectorContact"], [8, "opqua.model.Model.linkPopulationsHostVectorContact"]], "linkpopulationsvectorhostcontact() (opqua.model.model method)": [[7, "opqua.model.Model.linkPopulationsVectorHostContact"], [8, "opqua.model.Model.linkPopulationsVectorHostContact"]], "linkpopulationsvectormigration() (opqua.model.model method)": [[7, "opqua.model.Model.linkPopulationsVectorMigration"], [8, "opqua.model.Model.linkPopulationsVectorMigration"]], "newhostgroup() (opqua.model.model method)": [[7, "opqua.model.Model.newHostGroup"], [8, "opqua.model.Model.newHostGroup"]], "newintervention() (opqua.model.model method)": [[7, "opqua.model.Model.newIntervention"], [8, "opqua.model.Model.newIntervention"]], "newpopulation() (opqua.model.model method)": [[7, "opqua.model.Model.newPopulation"], [8, "opqua.model.Model.newPopulation"]], "newsetup() (opqua.model.model method)": [[7, "opqua.model.Model.newSetup"], [8, "opqua.model.Model.newSetup"]], "newvectorgroup() (opqua.model.model method)": [[7, "opqua.model.Model.newVectorGroup"], [8, "opqua.model.Model.newVectorGroup"]], "pathogendistancehistory() (opqua.model.model method)": [[7, "opqua.model.Model.pathogenDistanceHistory"], [8, "opqua.model.Model.pathogenDistanceHistory"]], "peaklandscape() (opqua.model.model static method)": [[7, "opqua.model.Model.peakLandscape"], [8, "opqua.model.Model.peakLandscape"]], "populations (opqua.model.model attribute)": [[7, "opqua.model.Model.populations"], [8, "opqua.model.Model.populations"]], "populationsplot() (opqua.model.model method)": [[7, "opqua.model.Model.populationsPlot"], [8, "opqua.model.Model.populationsPlot"]], "protecthosts() (opqua.model.model method)": [[7, "opqua.model.Model.protectHosts"], [8, "opqua.model.Model.protectHosts"]], "protectvectors() (opqua.model.model method)": [[7, "opqua.model.Model.protectVectors"], [8, "opqua.model.Model.protectVectors"]], "removehosts() (opqua.model.model method)": [[7, "opqua.model.Model.removeHosts"], [8, "opqua.model.Model.removeHosts"]], "removevectors() (opqua.model.model method)": [[7, "opqua.model.Model.removeVectors"], [8, "opqua.model.Model.removeVectors"]], "run() (opqua.model.model method)": [[7, "opqua.model.Model.run"], [8, "opqua.model.Model.run"]], "runparamsweep() (opqua.model.model method)": [[7, "opqua.model.Model.runParamSweep"], [8, "opqua.model.Model.runParamSweep"]], "runreplicates() (opqua.model.model method)": [[7, "opqua.model.Model.runReplicates"], [8, "opqua.model.Model.runReplicates"]], "savetodataframe() (opqua.model.model method)": [[7, "opqua.model.Model.saveToDataFrame"], [8, "opqua.model.Model.saveToDataFrame"]], "setrandomseed() (opqua.model.model method)": [[7, "opqua.model.Model.setRandomSeed"], [8, "opqua.model.Model.setRandomSeed"]], "setsetup() (opqua.model.model method)": [[7, "opqua.model.Model.setSetup"], [8, "opqua.model.Model.setSetup"]], "setups (opqua.model.model attribute)": [[7, "opqua.model.Model.setups"], [8, "opqua.model.Model.setups"]], "t_var (opqua.model.model attribute)": [[7, "opqua.model.Model.t_var"], [8, "opqua.model.Model.t_var"]], "treathosts() (opqua.model.model method)": [[7, "opqua.model.Model.treatHosts"], [8, "opqua.model.Model.treatHosts"]], "treatvectors() (opqua.model.model method)": [[7, "opqua.model.Model.treatVectors"], [8, "opqua.model.Model.treatVectors"]], "valleylandscape() (opqua.model.model static method)": [[7, "opqua.model.Model.valleyLandscape"], [8, "opqua.model.Model.valleyLandscape"]], "wipeprotectionhosts() (opqua.model.model method)": [[7, "opqua.model.Model.wipeProtectionHosts"], [8, "opqua.model.Model.wipeProtectionHosts"]], "wipeprotectionvectors() (opqua.model.model method)": [[7, "opqua.model.Model.wipeProtectionVectors"], [8, "opqua.model.Model.wipeProtectionVectors"]], "cb_palette (opqua.model.model attribute)": [[8, "opqua.model.Model.CB_PALETTE"]], "def_cmap (opqua.model.model attribute)": [[8, "opqua.model.Model.DEF_CMAP"]], "module": [[8, "module-opqua"], [8, "module-opqua.model"], [9, "module-opqua.internal"], [9, "module-opqua.internal.data"], [9, "module-opqua.internal.gillespie"], [9, "module-opqua.internal.host"], [9, "module-opqua.internal.intervention"], [9, "module-opqua.internal.plot"], [9, "module-opqua.internal.population"], [9, "module-opqua.internal.setup"], [9, "module-opqua.internal.vector"]], "opqua": [[8, "module-opqua"]], "opqua.model": [[8, "module-opqua.model"]], "birth_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.BIRTH_HOST"]], "birth_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.BIRTH_VECTOR"]], "chromosome_separator (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.CHROMOSOME_SEPARATOR"]], "contact (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.CONTACT"]], "contact_host_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.CONTACT_HOST_HOST"]], "contact_host_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.CONTACT_HOST_VECTOR"]], "contact_vector_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.CONTACT_VECTOR_HOST"]], "die_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.DIE_HOST"]], "die_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.DIE_VECTOR"]], "event_ids (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.EVENT_IDS"]], "gillespie (class in opqua.internal.gillespie)": [[9, "opqua.internal.gillespie.Gillespie"]], "host (class in opqua.internal.host)": [[9, "opqua.internal.host.Host"]], "infected (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.INFECTED"]], "intervention (class in opqua.internal.intervention)": [[9, "opqua.internal.intervention.Intervention"]], "kill_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.KILL_HOST"]], "kill_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.KILL_VECTOR"]], "lethality (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.LETHALITY"]], "migrate_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.MIGRATE_HOST"]], "migrate_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.MIGRATE_VECTOR"]], "migration (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.MIGRATION"]], "mutate_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.MUTATE_HOST"]], "mutate_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.MUTATE_VECTOR"]], "mutation (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.MUTATION"]], "natality (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.NATALITY"]], "num_coefficients (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.NUM_COEFFICIENTS"]], "population_contact (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.POPULATION_CONTACT"]], "population_contact_host_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.POPULATION_CONTACT_HOST_HOST"]], "population_contact_host_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.POPULATION_CONTACT_HOST_VECTOR"]], "population_contact_vector_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.POPULATION_CONTACT_VECTOR_HOST"]], "population (class in opqua.internal.population)": [[9, "opqua.internal.population.Population"]], "receive_contact (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.RECEIVE_CONTACT"]], "receive_population_contact (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.RECEIVE_POPULATION_CONTACT"]], "recombination (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.RECOMBINATION"]], "recombine_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.RECOMBINE_HOST"]], "recombine_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.RECOMBINE_VECTOR"]], "recovery (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.RECOVERY"]], "recover_host (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.RECOVER_HOST"]], "recover_vector (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.RECOVER_VECTOR"]], "setup (class in opqua.internal.setup)": [[9, "opqua.internal.setup.Setup"]], "vector (class in opqua.internal.vector)": [[9, "opqua.internal.vector.Vector"]], "acquirepathogen() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.acquirePathogen"]], "acquirepathogen() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.acquirePathogen"]], "addhosts() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.addHosts"]], "addpathogenstohosts() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.addPathogensToHosts"]], "addpathogenstovectors() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.addPathogensToVectors"]], "addvectors() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.addVectors"]], "applytreatment() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.applyTreatment"]], "applytreatment() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.applyTreatment"]], "args (opqua.internal.intervention.intervention attribute)": [[9, "opqua.internal.intervention.Intervention.args"]], "birth() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.birth"]], "birth() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.birth"]], "birthhost() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.birthHost"]], "birthvector() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.birthVector"]], "birth_rate_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.birth_rate_host"]], "birth_rate_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.birth_rate_vector"]], "clustermap() (in module opqua.internal.plot)": [[9, "opqua.internal.plot.clustermap"]], "compartmentdf() (in module opqua.internal.data)": [[9, "opqua.internal.data.compartmentDf"]], "compartmentplot() (in module opqua.internal.plot)": [[9, "opqua.internal.plot.compartmentPlot"]], "compositiondf() (in module opqua.internal.data)": [[9, "opqua.internal.data.compositionDf"]], "compositionplot() (in module opqua.internal.plot)": [[9, "opqua.internal.plot.compositionPlot"]], "contacthost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.contactHost"]], "contacthosthost() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.contactHostHost"]], "contacthostvector() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.contactHostVector"]], "contactvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.contactVector"]], "contactvectorhost() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.contactVectorHost"]], "contact_rate_host_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.contact_rate_host_host"]], "contact_rate_host_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.contact_rate_host_vector"]], "copystate() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.copyState"]], "copystate() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.copyState"]], "copystate() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.copyState"]], "death_rate_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.death_rate_host"]], "death_rate_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.death_rate_vector"]], "die() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.die"]], "die() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.die"]], "diehost() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.dieHost"]], "dievector() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.dieVector"]], "doaction() (opqua.internal.gillespie.gillespie method)": [[9, "opqua.internal.gillespie.Gillespie.doAction"]], "dointervention() (opqua.internal.intervention.intervention method)": [[9, "opqua.internal.intervention.Intervention.doIntervention"]], "fitnesshost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.fitnessHost"]], "fitnessvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.fitnessVector"]], "getgenometimesdf() (in module opqua.internal.data)": [[9, "opqua.internal.data.getGenomeTimesDf"]], "getpathogendistancehistorydf() (in module opqua.internal.data)": [[9, "opqua.internal.data.getPathogenDistanceHistoryDf"]], "getpathogens() (in module opqua.internal.data)": [[9, "opqua.internal.data.getPathogens"]], "getprotections() (in module opqua.internal.data)": [[9, "opqua.internal.data.getProtections"]], "getrates() (opqua.internal.gillespie.gillespie method)": [[9, "opqua.internal.gillespie.Gillespie.getRates"]], "getweightedrandom() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.getWeightedRandom"]], "getweightedrandomgenome() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.getWeightedRandomGenome"]], "getweightedrandomgenome() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.getWeightedRandomGenome"]], "healthycoefficientrow() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.healthyCoefficientRow"]], "id (opqua.internal.host.host attribute)": [[9, "opqua.internal.host.Host.id"]], "id (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.id"]], "id (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.id"]], "id (opqua.internal.vector.vector attribute)": [[9, "opqua.internal.vector.Vector.id"]], "infecthost() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.infectHost"]], "infecthost() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.infectHost"]], "infectvector() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.infectVector"]], "infectvector() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.infectVector"]], "inherit_protection_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.inherit_protection_host"]], "inherit_protection_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.inherit_protection_vector"]], "killhost() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.killHost"]], "killvector() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.killVector"]], "mean_inoculum_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mean_inoculum_host"]], "mean_inoculum_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mean_inoculum_vector"]], "method_name (opqua.internal.intervention.intervention attribute)": [[9, "opqua.internal.intervention.Intervention.method_name"]], "migrate() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.migrate"]], "migrationhost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.migrationHost"]], "migrationvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.migrationVector"]], "model (opqua.internal.gillespie.gillespie attribute)": [[9, "opqua.internal.gillespie.Gillespie.model"]], "model (opqua.internal.intervention.intervention attribute)": [[9, "opqua.internal.intervention.Intervention.model"]], "model (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.model"]], "mortalityhost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mortalityHost"]], "mortalityvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mortalityVector"]], "mortality_rate_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mortality_rate_host"]], "mortality_rate_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mortality_rate_vector"]], "mutate() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.mutate"]], "mutate() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.mutate"]], "mutatehost() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.mutateHost"]], "mutatevector() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.mutateVector"]], "mutate_in_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mutate_in_host"]], "mutate_in_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mutate_in_vector"]], "mutationhost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mutationHost"]], "mutationvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.mutationVector"]], "natalityhost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.natalityHost"]], "natalityvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.natalityVector"]], "newhostgroup() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.newHostGroup"]], "newvectorgroup() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.newVectorGroup"]], "num_crossover_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.num_crossover_host"]], "num_crossover_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.num_crossover_vector"]], "num_hosts (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.num_hosts"]], "num_loci (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.num_loci"]], "num_vectors (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.num_vectors"]], "opqua.internal": [[9, "module-opqua.internal"]], "opqua.internal.data": [[9, "module-opqua.internal.data"]], "opqua.internal.gillespie": [[9, "module-opqua.internal.gillespie"]], "opqua.internal.host": [[9, "module-opqua.internal.host"]], "opqua.internal.intervention": [[9, "module-opqua.internal.intervention"]], "opqua.internal.plot": [[9, "module-opqua.internal.plot"]], "opqua.internal.population": [[9, "module-opqua.internal.population"]], "opqua.internal.setup": [[9, "module-opqua.internal.setup"]], "opqua.internal.vector": [[9, "module-opqua.internal.vector"]], "pathogendistancedf() (in module opqua.internal.data)": [[9, "opqua.internal.data.pathogenDistanceDf"]], "population (opqua.internal.host.host attribute)": [[9, "opqua.internal.host.Host.population"]], "population (opqua.internal.vector.vector attribute)": [[9, "opqua.internal.vector.Vector.population"]], "populationcontact() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.populationContact"]], "populationcontacthost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.populationContactHost"]], "populationcontactvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.populationContactVector"]], "populationsdf() (in module opqua.internal.data)": [[9, "opqua.internal.data.populationsDf"]], "populationsplot() (in module opqua.internal.plot)": [[9, "opqua.internal.plot.populationsPlot"]], "possible_alleles (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.possible_alleles"]], "protecthosts() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.protectHosts"]], "protectvectors() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.protectVectors"]], "protection_upon_recovery_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.protection_upon_recovery_host"]], "protection_upon_recovery_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.protection_upon_recovery_vector"]], "receivecontacthost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.receiveContactHost"]], "receivecontactvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.receiveContactVector"]], "recombinationhost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.recombinationHost"]], "recombinationvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.recombinationVector"]], "recombine() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.recombine"]], "recombine() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.recombine"]], "recombinehost() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.recombineHost"]], "recombinevector() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.recombineVector"]], "recombine_in_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.recombine_in_host"]], "recombine_in_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.recombine_in_vector"]], "recover() (opqua.internal.host.host method)": [[9, "opqua.internal.host.Host.recover"]], "recover() (opqua.internal.vector.vector method)": [[9, "opqua.internal.vector.Vector.recover"]], "recoverhost() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.recoverHost"]], "recovervector() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.recoverVector"]], "recoveryhost (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.recoveryHost"]], "recoveryvector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.recoveryVector"]], "recovery_rate_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.recovery_rate_host"]], "recovery_rate_vector (opqua.internal.setup.setup attribute)": [[9, "id0"], [9, "opqua.internal.setup.Setup.recovery_rate_vector"]], "removehosts() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.removeHosts"]], "removevectors() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.removeVectors"]], "run() (opqua.internal.gillespie.gillespie method)": [[9, "opqua.internal.gillespie.Gillespie.run"]], "savetodf() (in module opqua.internal.data)": [[9, "opqua.internal.data.saveToDf"]], "sethosthostpopulationcontactneighbor() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.setHostHostPopulationContactNeighbor"]], "sethostmigrationneighbor() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.setHostMigrationNeighbor"]], "sethostvectorpopulationcontactneighbor() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.setHostVectorPopulationContactNeighbor"]], "setsetup() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.setSetup"]], "setvectorhostpopulationcontactneighbor() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.setVectorHostPopulationContactNeighbor"]], "setvectormigrationneighbor() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.setVectorMigrationNeighbor"]], "setup (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.setup"]], "slim (opqua.internal.host.host attribute)": [[9, "opqua.internal.host.Host.slim"]], "slim (opqua.internal.population.population attribute)": [[9, "opqua.internal.population.Population.slim"]], "slim (opqua.internal.vector.vector attribute)": [[9, "opqua.internal.vector.Vector.slim"]], "time (opqua.internal.intervention.intervention attribute)": [[9, "opqua.internal.intervention.Intervention.time"]], "transmission_efficiency_host_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.transmission_efficiency_host_host"]], "transmission_efficiency_host_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.transmission_efficiency_host_vector"]], "transmission_efficiency_vector_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.transmission_efficiency_vector_host"]], "treathosts() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.treatHosts"]], "treatvectors() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.treatVectors"]], "updatehostcoefficients() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.updateHostCoefficients"]], "updatevectorcoefficients() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.updateVectorCoefficients"]], "vertical_transmission_host (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.vertical_transmission_host"]], "vertical_transmission_vector (opqua.internal.setup.setup attribute)": [[9, "opqua.internal.setup.Setup.vertical_transmission_vector"]], "wipeprotectionhosts() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.wipeProtectionHosts"]], "wipeprotectionvectors() (opqua.internal.population.population method)": [[9, "opqua.internal.population.Population.wipeProtectionVectors"]]}}) \ No newline at end of file diff --git a/docs/_build/html/tutorials.html b/docs/_build/html/tutorials.html new file mode 100644 index 0000000..2a3e74b --- /dev/null +++ b/docs/_build/html/tutorials.html @@ -0,0 +1,146 @@ + + + + + + + Tutorials — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+ + +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/usage.html b/docs/_build/html/usage.html new file mode 100644 index 0000000..33e10c9 --- /dev/null +++ b/docs/_build/html/usage.html @@ -0,0 +1,209 @@ + + + + + + + Usage — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Usage

+

To run any Opqua model (including the tutorials in the examples/tutorials +folder), save the model as a .py file and execute from the console using +python my_model.py.

+

You may also run the models from a notebook environment +such as Jupyter or an integrated development environment +(IDE) such as Spyder, both available through +Anaconda.

+
+

Minimal example

+

The simplest model you can make using Opqua looks like this:

+
# This simulates a pathogen with genome "AAAAAAAAAA" spreading in a single
+# population of 100 hosts, 20 of which are initially infected, under example
+# preset conditions for host-host transmission.
+
+from opqua.model import Model
+
+my_model = Model()
+my_model.newSetup('my_setup', preset='host-host')
+my_model.newPopulation('my_population', 'my_setup', num_hosts=100)
+my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} )
+my_model.run(0,100)
+data = my_model.saveToDataFrame('my_model.csv')
+graph = my_model.compartmentPlot('my_model.png', data)
+
+
+

For more example usage, have a look at the examples folder. For an overview +of how Opqua models work, check out the Materials and Methods section on the +manuscript +here. A +summarized description is shown below in the +How Does Opqua Work? section. +For more information on the details of each function, head over to the +Documentation section.

+
+
+

Example Plots

+

These are some of the plots Opqua is able to produce, but you can output the +raw simulation data yourself to make your own analyses and plots. These are all +taken from the examples in the examples/tutorials folder—try them out +yourself! See the

+
+

Population genetic composition plots for pathogens

+

An optimal pathogen genome arises and outcompetes all others through intra-host +competition. See fitness_function_mutation_example.py in the +examples/tutorials/evolution folder. +Compartments

+
+
+

Host/vector compartment plots

+

A population with natural birth and death dynamics shows the effects of a +pathogen. “Dead” denotes deaths caused by pathogen infection. See +vector-borne_birth-death_example.py in the examples/tutorials/vital_dynamics +folder. +Compartments

+
+
+

Plots of a host/vector compartment across different populations in a metapopulation

+

Pathogens spread through a network of interconnected populations of hosts. Lines +denote infected pathogens. See +metapopulations_migration_example.py in the +examples/tutorials/metapopulations folder. +Compartments

+
+
+

Host/vector compartment plots

+

A population undergoes different interventions, including changes in +epidemiological parameters and vaccination. “Recovered” denotes immunized, +uninfected hosts. +See intervention_examples.py in the examples/tutorials/interventions folder. +Compartments

+
+
+

Pathogen phylogenies

+

Phylogenies can be computed for pathogen genomes that emerge throughout the +simulation. See fitness_function_mutation_example.py in the +examples/tutorials/evolution folder. +Compartments

+

For advanced examples (including multiple parameter sweeps), check out +this separate repository +(preprint forthcoming).

+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/vital_dynamics.html b/docs/_build/html/vital_dynamics.html new file mode 100644 index 0000000..4568789 --- /dev/null +++ b/docs/_build/html/vital_dynamics.html @@ -0,0 +1,495 @@ + + + + + + + Vital dynamics — Opqua 1.0.2 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Vital dynamics

+
+

A. Vector-borne disease with natality spreading

+

Simple model of a vector-borne disease with 10% host mortality spreading among hosts and vectors that have natural birth and death rates in a single population. There is no evolution and pathogen genomes don’t affect spread.

+
+
[1]:
+
+
+
from opqua.model import Model
+
+
+
+
+

Model initialization and setup

+
+

Create a new Model object

+
+
[2]:
+
+
+
my_model = Model() # Make a new model object.
+
+
+
+
+
+

Define a Setup for our system

+

Create a new set of parameters called my_setup to be used to simulate a population in the model. Use the default parameter set for a vector-borne model.

+
+
[3]:
+
+
+
my_model.newSetup(  # Create a new Setup.
+    'my_setup',
+        # Name of the setup.
+    preset='vector-borne',
+        # Use default 'vector-borne' parameters.
+    mortality_rate_host=1e-2,
+        # change the default host mortality rate to 10% of recovery rate
+    protection_upon_recovery_host=[0,10],
+        # make hosts immune to the genome that infected them if they recover
+        # [0,10] means that pathogen genome positions 0 through 9 will be saved
+        # as immune memory
+    birth_rate_host=1.5e-2,
+        # change the default host birth rate to 0.015 births/time unit
+    death_rate_host=1e-2,
+        # change the default natural host death rate to 0.01 births/time unit
+    birth_rate_vector=1e-2,
+        # change the default vector birth rate to 0.01 births/time unit
+    death_rate_vector=1e-2
+        # change the default natural vector death rate to 0.01 deaths/time unit
+    )
+
+
+
+
+
+

Create a population in our model

+

Create a new population of 100 hosts and 100 vectors called my_population. The population uses parameters stored in my_setup.

+
+
[4]:
+
+
+
my_model.newPopulation( # Create a new Population.
+    'my_population',
+        # Unique identifier for this population in the model.
+    'my_setup',
+        # Predefined Setup object with parameters for this population.
+    num_hosts=100,
+        # Number of hosts in the population with.
+    num_vectors=100
+        # Number of vectors in the population with.
+    )
+
+
+
+
+
+

Manipulate hosts and vectors in the population

+

Add pathogens with a genome of AAAAAAAAAA to 20 random hosts in population my_population.

+
+
[5]:
+
+
+
my_model.addPathogensToHosts( # Add specified pathogens to random hosts.
+    'my_population',
+        # ID of population to be modified.
+    {'AAAAAAAAAA':20}
+        # Dictionary containing pathogen genomes to add as keys and
+        # number of hosts each one will be added to as values.
+    )
+
+
+
+
+
+
+

Model simulation

+
+
[6]:
+
+
+
my_model.run(   # Simulate model for a specified time between two time points.
+    0,          # Initial time point.
+    200         # Final time point.
+    )
+
+
+
+
+
+
+
+
+Simulating time: 66.7483164411631, event: BIRTH_HOST
+Simulating time: 175.53517979111868, event: CONTACT_HOST_VECTOR
+Simulating time: 200.00318125185066 END
+
+
+
+
+

Output data manipulation and visualization

+
+

Create a table with the results of the given model history

+
+
[7]:
+
+
+
data = my_model.saveToDataFrame(
+        # Creates a pandas Dataframe in long format with the given model history,
+        # with one host or vector per simulation time in each row.
+    'vector-borne_birth-death_example.csv'
+        # Name of the file to save the data to.
+    )
+data
+
+
+
+
+
+
+
+
+Saving file...
+
+
+
+
+
+
+
+[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.
+[Parallel(n_jobs=8)]: Done   2 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.1995853034973145s.) Setting batch_size=2.
+[Parallel(n_jobs=8)]: Done   9 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done  16 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Done  26 tasks      | elapsed:    0.3s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.019458293914794922s.) Setting batch_size=4.
+[Parallel(n_jobs=8)]: Done  44 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.020659446716308594s.) Setting batch_size=8.
+[Parallel(n_jobs=8)]: Done  76 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Done 120 tasks      | elapsed:    0.4s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.0252227783203125s.) Setting batch_size=16.
+[Parallel(n_jobs=8)]: Done 224 tasks      | elapsed:    0.5s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.04323148727416992s.) Setting batch_size=32.
+[Parallel(n_jobs=8)]: Done 408 tasks      | elapsed:    0.7s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.08730292320251465s.) Setting batch_size=64.
+[Parallel(n_jobs=8)]: Done 792 tasks      | elapsed:    0.9s
+[Parallel(n_jobs=8)]: Batch computation too fast (0.18108701705932617s.) Setting batch_size=128.
+[Parallel(n_jobs=8)]: Done 1233 tasks      | elapsed:    1.1s
+[Parallel(n_jobs=8)]: Done 1613 tasks      | elapsed:    1.1s
+[Parallel(n_jobs=8)]: Done 1698 tasks      | elapsed:    1.1s
+[Parallel(n_jobs=8)]: Done 1793 tasks      | elapsed:    1.1s
+[Parallel(n_jobs=8)]: Done 1888 tasks      | elapsed:    1.1s
+[Parallel(n_jobs=8)]: Done 1977 out of 1977 | elapsed:    1.1s finished
+
+
+
+
+
+
+
+...file saved.
+
+
+
+
[7]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
443810200.0my_populationHostmy_population_120AAAAAAAAAANaNFalse
443811200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443812200.0my_populationHostmy_population_117AAAAAAAAAANaNFalse
443813200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443814200.0my_populationHostmy_population_112AAAAAAAAAANaNFalse
+

443815 rows × 7 columns

+
+
+
+
+

Create a compartment plot

+

Plot the number of susceptible and infected hosts in the model over time.

+
+
[8]:
+
+
+
plot = my_model.compartmentPlot(
+        # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.
+    'vector-borne_birth-death_example.png',
+        # File path, name, and extension to save plot under.
+    data
+        # Dataframe containing model history.
+    )
+
+
+
+
+
+
+
+_images/vital_dynamics_23_0.png +
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/docs/_build/html/vital_dynamics.ipynb b/docs/_build/html/vital_dynamics.ipynb new file mode 100644 index 0000000..35ac810 --- /dev/null +++ b/docs/_build/html/vital_dynamics.ipynb @@ -0,0 +1,510 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Vital dynamics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Vector-borne disease with natality spreading" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simple model of a vector-borne disease with 10% host mortality spreading among hosts and vectors that have natural birth and death rates in a single population. There is no evolution and pathogen genomes don't affect spread." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " mortality_rate_host=1e-2,\n", + " # change the default host mortality rate to 10% of recovery rate\n", + " protection_upon_recovery_host=[0,10],\n", + " # make hosts immune to the genome that infected them if they recover\n", + " # [0,10] means that pathogen genome positions 0 through 9 will be saved\n", + " # as immune memory\n", + " birth_rate_host=1.5e-2,\n", + " # change the default host birth rate to 0.015 births/time unit\n", + " death_rate_host=1e-2,\n", + " # change the default natural host death rate to 0.01 births/time unit\n", + " birth_rate_vector=1e-2,\n", + " # change the default vector birth rate to 0.01 births/time unit\n", + " death_rate_vector=1e-2\n", + " # change the default natural vector death rate to 0.01 deaths/time unit\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation( # Create a new Population.\n", + " 'my_population', \n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100, \n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 66.7483164411631, event: BIRTH_HOST\n", + "Simulating time: 175.53517979111868, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 200.00318125185066 END\n" + ] + } + ], + "source": [ + "my_model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.1995853034973145s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019458293914794922s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020659446716308594s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0252227783203125s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04323148727416992s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08730292320251465s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18108701705932617s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1233 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1613 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1888 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1977 out of 1977 | elapsed: 1.1s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
443810200.0my_populationHostmy_population_120AAAAAAAAAANaNFalse
443811200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443812200.0my_populationHostmy_population_117AAAAAAAAAANaNFalse
443813200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443814200.0my_populationHostmy_population_112AAAAAAAAAANaNFalse
\n", + "

443815 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "443810 200.0 my_population Host my_population_120 AAAAAAAAAA \n", + "443811 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443812 200.0 my_population Host my_population_117 AAAAAAAAAA \n", + "443813 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443814 200.0 my_population Host my_population_112 AAAAAAAAAA \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "443810 NaN False \n", + "443811 NaN False \n", + "443812 NaN False \n", + "443813 NaN False \n", + "443814 NaN False \n", + "\n", + "[443815 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'vector-borne_birth-death_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hb5fk+8PtoD+8ZO3FiZzjOJpOEBBI2CYFAoexZRr+0DaO/QqFQSgstUEqhDVBKCbtAy0wh7BGyyHbI3tOO4z1lbZ3fH45lnaFly5Zt3Z/r4sI6S68dWzq6z3OeVxBFUQQRERERERERERERxYUm3gMgIiIiIiIiIiIiSmQMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKI4a0RERERERERERERHHEkJaIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojjSxXsA1DUOhwNbt24FAGRnZ0On4z8pERERERERUax5PB5UV1cDAMaNGweTyRTnERFRf8JEr4/bunUrpk2bFu9hEBERERERESWMdevWYerUqfEeBhH1I2x3QERERERERERERBRHrKTt47Kzs/1fr1u3Dnl5eXEcDREREREREVH/VFFR4b+TNfCzOBFRLDCk7eMCe9Dm5eVh0KBBcRwNERERERERUf/H+WCIKNbY7oCIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojhiSEtEREREREREREQURwxpiYiIiIiIiIiIiOKIIS0RERERERERERFRHDGkJSIiIiIiIiIiIoojhrREREREREREREREccSQloiIiIiIiIiIiCiOGNISERERERERERERxRFDWiIiIiIiIiIiIqI4YkhLREREREREREREFEcMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKo4QPaV0uF1588UWce+65yMvLg9FoRFJSEkaOHIkbb7wRq1evjug4n376KS6++GIMGjQIRqMRgwYNwsUXX4xPP/20m7+DxCGKIr45YscbO1twtNkT7+EQERERERERERHFhCCKohjvQcTL4cOHcf7552P79u0ht1u4cCH+9re/QRAExTqfz4dbb70VixcvDrr/zTffjH/+85/QaGKfiZeVlaGgoAAAcPToUQwaNCjmz9FbLNlvw5u7bAAAvQZ49owspBoT/joDERERERER9YBE+vxNRD0vYRMut9stCWjHjx+PV155Bd9//z2++OILPPjgg7BarQCARYsW4fHHH1c9zv333+8PaCdOnIi33noL69atw1tvvYWJEycCAF588UU88MADPfBd9W/tAS0AuH3ARwda4zgaIiIiIiIiIiKi2EjYStp3330XP/7xjwEAM2bMwIoVK6DVaiXbbNy4ETNmzIDb7UZaWhqqq6uh0+n86/fs2YMxY8bA4/FgypQpWL58Ocxms399a2srZs+ejQ0bNkCn02Hnzp0YPnx4TL+PRLqSd/nSKsnjsZl6/HZ6epxGQ0RERERERIkkkT5/E1HPS9hK2sBes/fdd58ioAWAyZMnY/78+QCAhoYG7Ny5U7L+6aefhsfT1ht10aJFkoAWACwWCxYtWgQA8Hg8eOqpp2L6PSQ6rUbZfoKIiIiIiIiIiKivSdiQ1uVy+b8eOnRo0O2GDRumuo8oiliyZAkAoKSkBNOnT1fdf/r06Rg5ciQAYMmSJUjQwuVuoWVGS0RERERERERE/UDChrTtwSkAHDhwIOh2+/fvBwAIgoARI0b4lx88eBDHjh0DAMyePTvkc7WvLy8vx6FDhzo7ZJJhIS0REREREREREfUHuvCb9E9XXnklHnjgATQ1NeHxxx/HvHnzFC0PSktLsXTpUgDAVVddhZSUFP+6HTt2+L8uKSkJ+VyB63fu3ImioqKIx1lWVhZyfUVFRcTH6i2e3NiIdced/sePnJKOEel6yTYtbh/e32uD3SNiwTALBliVv6qVrV4890MTvD4RWo0Aj0/EnAIzxmcZuv17ICIiIiIiIiIiipWEDWmzsrLw+uuv48orr8SqVaswdepU3HnnnSguLkZLSwtWrVqFJ598Ei6XC5MmTcKTTz4p2T8wPA3XLLy9sTjQ1lw8GoH79heBAS0A/GVjI/55VpZk2TOlTSitbmsvsaXGhUWnZyqOc7TZi6PNXsmyNRVOPDk7A3kqoS4REREREREREVFvlNBJ1oUXXoiNGzfiySefxOLFi3H99ddL1ufm5uLhhx/GLbfcAovFIlnX3Nzs/zopKSnk81itVv/XLS0tMRh5/9Lg9CmWtQe0AFBj96G0yqXYRo1XBP6904ZfTUmN2fiIiIiIiIiIiIi6U0KHtC6XC6+99lrQCb0qKyvxxhtvoKioCBdeeKFkncPh8H9tMIS+vd5oNPq/ttvtUY0xXOVtRUUFpk2bFtUxezu1f4vjrV6VLdWtr3SG34iIiIiIiIiIiKiXSNiQ1mazYe7cuVixYgW0Wi3uuece3HjjjRg6dCgcDgfWrl2LP/zhD1i5ciUuuugi/OUvf8Evf/lL//4mk8n/tcsVusrT6ewIDc1mc1TjDNdKoT9SRrSAzaWstiUiIiIiIiIiIuoPNPEeQLw89NBDWLFiBQBg8eLFePzxx1FSUgKDwYCUlBScffbZ+Pbbb3H66adDFEXcfffd+OGHH/z7Jycn+78O18LAZrP5vw7XGoEAn0pK2+xWi26Da1RpoUBERERERERERNQbJWRIK4oiXnrpJQBAcXGxohdtO51Oh4cffhgA4PP58Morr/jXBVa4Bk4ipiawZUF/nAgsFnwBLQ5Uuh1EHboeaHR3dUhEREREREREREQ9IiFD2srKStTV1QEAJk6cGHLbyZMn+7/etWuX/+vRo0erLlcTuH7UqFFRjTVR/GZlPT7YZ4MoiqrtDtYej67P7GPrG7G2whF+QyIiIiIiIiIiojhLyJBWp+toxevxeEJu63Z3VGQG7ldUVIT8/HwAwHfffRfyGMuXLwcADBw4EIWFhdEONyEcbPLg7d02LC93qLY76IynNjXhuC30vy8REREREREREVG8JWRIm5GRgZSUFADA999/HzKoDQxgi4qK/F8LgoAFCxYAaKuUXbNmjer+a9as8VfSLliwAIIgdHn8fZ1RG3zd3noP1GtpoycC2FXHtgdERERERERERNS7JWRIq9FocP755wMAjh07hj/+8Y+q29XX1+PXv/61//H8+fMl6++8805otW2J48KFC2G32yXr7XY7Fi5cCKCtCvfOO++M1bfQp905MTXoOh/EmFXSAkCzK4YHIyIiIiIiIiIi6ga68Jv0Tw8++CCWLFmC1tZWPPTQQ9i4cSOuv/56DB06FA6HA2vWrMHTTz+NI0eOAADOPPNMnHPOOZJjFBcX4+6778Zjjz2GDRs2YObMmfj1r3+NYcOGYf/+/Xj88cdRWloKALj77rsxYsSIHv8+e6NJuUY8PScDq485sWS/DU5vwEpRfeKwa0qSkGbSoMXlQ53Dh4JkLQRBgFknwKAR0OjyIdWowZMbGuHwdhyg2R3dhGNEREREREREREQ9LWFD2pKSEixZsgRXXnklampq8NFHH+Gjjz5S3faMM87AO++8o7ruj3/8I6qqqvDSSy+htLQUV1xxhWKbm266CY888khMx9/X5Vl1uGSEDs0uHz49JK1AVotVTx1kQpoxfOH3nAITPgs4XpOLIS0REREREREREfVuCdnuoN1ZZ52FXbt24fHHH8ecOXOQnZ0NvV4Ps9mMoqIiXHbZZfjwww/x1VdfIT09XfUYGo0GixcvxtKlS7FgwQLk5+fDYDAgPz8fCxYswCeffIIXX3wRGk1C/6ijolZJq4mwlW+KQfpzbmZIS0REREREREREvVzCVtK2y8zMxD333IN77rmnS8eZN28e5s2bF6NRJa4V5Q5sqHQqlkcacScbpGluE3vSEhERERER9Si3z4tfrvsfPj66A4VJGXhm+sUYkz4g3sMiIurVWN5JvYrLBzSqBKtChJW0yaykJSIiIiIiiqt/7voez+xchUMt9Vh2fD+uXv5mvIdERNTrMaSluEqNoM+sUSvAqI0spbXqpcdr5cRhREREREREPeqTsl2Sxz/UHYPH5w2yNRERAQxpKc5OHWhCljn0r+GCYRboImxKKyukBQtpiYiIiIiIepbd61Ysc3o9cRgJEVHfkfA9aSm+ssxaPDU7Ewca3XCpXFgdYNUix6KN+HgGWcWt28eetERERERERD3JoFF+hnN4PbDqjXEYDRFR38CQluLOoBVQkmGIzbFkFbceH+ATRWgibWpLREREREREXWLUKqMGBytpiYhCYrsD6lf0Kr1r2ZaWiIiIiIio55hUQ1plCwQiIurASlrqV/Qqlx1u+qIaSXoNLh5uwbmFlp4fFBERERERUQL4+OgO3Ll2CfY31yrWDX/vMRg0Wtw6cjr+e/AHVDlaAABaoe1DXMPVDyOJ7RCIKIGxkpb6FXlPWqCtkrbe6cNL21tQ5+CMokRERERERLHm8Xlx7fK3VAPadi6fF8/sXOUPaAHAK/rgFXn7IxERQ1rqV+Q9aeWONLMPEhERERERUawda21Cg8se72EQEfVZDGmpX9GF+Y12sZCWiIiIiIgo5pycGIyIqEsY0lK/ohGEkEGt0yv23GCIiIiIiIgShNOnDGk/PfvmiPc3a/WxHA4RUZ/DkJb6nVAtDxjSEhERERERxZ7LK71t0aDR4pScwoj2PTl7MLQaxhNElNj4Kkj9jl5l8rB2DGmJiIiIiIhiT15Ja9TqYNFFVh1rYRUtERFDWup/DCF+q10MaYmIiIiIiGJKFEX8v3UfSZYZNFroNNqI9jdHGOYSEfVnDGmp39GHanfgYUhLREREREQUS7saq/B99WHJMqNWF/H+Fp0h1kMiIupzGNJSvzPAGvxqLTNaIiIiIiKi2NrXVKNYNjw5CwBgiiCsbd+WiCiRMaSlfufykVZkm/mrTURERERE1BN8orIa5s9TzwcAfHXuT0PuOyVrEO4YPatbxkVE1JdEfv8BUR9RmKLHotMz0eQS8czmJmypccV7SERERERERP2WPKIdlpyJk7OHAABm5hZBvPEvsLmdaHY7AbS1QnB6PTBodcgwWnp4tEREvRNDWuqXBEFAqlFAmpEVtURERERERN1JXkmrEZTzhFj1Rlj1xp4aEhFRn8MEixKKy8umtERERERE1Dd5fT40uuzw+LzxHoqEiPAhLRERhcaQlhLK54ftWH3MEe9hEBERERERRaXO2YrZnz6HtH//FtM++juOtTbGe0gAAFEUcf2KtyXLBDCkJSKKFkNaSjhv7mqJ9xCIiIiIiIii8sb+jVhVdQgAUFpXjhd2r4nvgE744tge2DzSeUAY0RIRRY8hLfVr+UlaxbJquy8OIyEiIiIiIuq8O9YukTz+/eYv4zQSqS/L9yiWlaTmxGEkRER9G0Na6tfOKzQjz6oMauWN7YmIiIiIiCh6q09U9wZ6Yur8nh8IEVEfx5CW+jWzToN7pqQqlvuY0RIREREREXWJw+PGxtoyybLPz7kFw1Ky4jQiIqK+iyEt9XtajbIjEkNaIiIiIiKirtlUWw6Xz+t/LEDAydmD4zgiIqK+iyEt9Xtqv+RetjsgIiIiIqI+zhMQkMbDvw9skjwemz4AqQZznEZDRNS3MaSlfk+lkJaVtERERERE1OdNXPIU6pytcXnuX637CM/tWi1ZdkrOkLiMhYioP2BIS/2eViWk9TKkJSIiIiKiPiJYxey2huN499CWHh4NUOdsxVM7liuWn5JT2ONjISLqLxjSUr+nEdiTloiIiIiI+i6bxxV0XXlrYw+OpM1RWwN8shZyFp0eZ+cX9/hYiIj6C4a01O9pVH7L5ScUREREREREvZXb5wu6zuFx9+BI2jS67Iplr596FfIsKT0+FiKi/oIhLfV7ar/krKQlIiIiIqK+wh1igjCH19ODI2nT4HJIHhcmpeNHheN6fBxERP0JQ1rq97QqM4exJy0REREREfUVnlCVtHEJaaWVtGkGc4+PgYiov9HFewBE3U29kpYpLRERERH1Tm6viN31bjS7fTBoBIzJ1MOkY31NImn1uLCy8iAaT1SsVjlagm5b6WiO6Jj1zlasqT6M0Wm5qHW0Yn9zLTyiDy1uJ9IMZlh1BszKLYIIESsrD6L1RBuFYcmZGJ2Wi1VVh1DnbAUALD9+QHLsVIOpM98mEREFYEhL/Z5W5Xy2utWHPGvPj4WIiIiIKBSPT8Tv19Rjb0NHdaRFJ+DPp2Yg26KN48iop7S4nZj+8d+xvaEyou2XHNmOMlsDBlnTgm5zoLkWpyx9BpX20IGuVtBAhBh1UQsraYmIuo6XY6nfUzY7ADZXO3t8HERERERE4eypd0sCWgBo9Yh4b68tTiOinvZp2a6IA9p27xzaEnL9q/s2hA1oAcAr+jp112GqnpW0RERdxZCW+j1BUMa0OpU+tURERERE8dbsUu89urnaBZEtuxLCUVtD1PvUOkKH+It2rOzkaCJzSk5htx6fiCgRsN0BJYSSDD121bn9j308vyUiIiKiXijY9FD1Th/KWrwoSOZHuP5OPilXit6EgZYU/+OS1Bx8cGRbVMd0+bwxGZt8PEatDvMLRuPm4pNjdnwiokTFd3hKCHlWrSSk9bIKgYiIiIh6oxCnqVuqXQxpE0DDicnC2l1WNAH/mvljybIrl72Btw9ujviYYqhfrChdN3wyFk2/OGbHIyKiNmx3QAlBK+tu4A1WokBEREREFEehTlO31Lh6bBwUP/JK2jRD1/u9dqbPbDB55pTwGxERUdR4GZYSglbWl/bzw3ZMzjVAKwgob/Eg3aTFhGwDjPI0l4iIiIj6NVEUsaXGBQECxmXpVeczCKe61YutNS64fSKseg1OyjEgSd/JepgQWdqOWhdcXhEGnrP2S6IoorS2HK/v3yhZnmYwd+p4x1ob8UX5HtQ6bXB4PeF3iFCeJTlmxyIiog4MaSkhqM0T9qd1jZLHozL0+N30tE6dmBMRERFR3/T8lmYsK2u7vfyswSbcMi66KsGyZg8eWF0Pu6cjXc2zavHYrHSYdNEHtaEqaV0+YHe9G+OyDFEfl3q/p3eswC/X/U+xPD2CkPbVfRvwyOS5/seHmusw9aO/ocYZekKxzmAlLRFR92C7A0oI3gju7tlZ50aFLXYN9YmIiIiod2ty+fwBLQB8dcSBVnd0fbFWlDskAS0AVNi82FbrDrJHaJ4wM9zuqe/ccal38/p8+MPmL1XXqVXSamSFJWWt0gKUD45s65aAFgDyLAxpiYi6A0NaSgimCG8Ja/VwQjEiIiKiRFFjV16gb3JFF9JWtqpf5G90dm4ShPKW0EUD8kCY+odtDccVvWgBQCdocGruUMVyeY/ZLKNV8rjK3tLlMd1aPB3DkjMly/LMKRiTltvlYxMRkRLbHVBCmJxrwP8OtIbdLob99ImIiIiol1O7jB/t6WB9kDDWEcmtXCqONofuHepgSNsvraw8qFh28eCx+NmoU1CQlKZY95vxZ+Ltg5v9j2ucNji9Hhi1bR/x7d7QFdezBwzFYGs6Ug0mPLNzlWL9RYPH4qmTL0S5rRF/+OFLHLU1YKAlFfeNPwM6jTa6b46IiCLCkJYSgnziMCIiIiKiWKh3qFe+djZMlYe06UaNJAh2hWmHQH3TqqpDksfXDZuMV0+7Muj2BdY0xbJjrY0oOlH52upxqe53yZBxePeM6yXLBlpScd/GTyTL/jHjR7DoDBiRmo3XT7sqgu+AiIi6iu0OKCFoI/xN5ykvERERUWKLJgMVRRF1jiCVtJ0IaVvdPtTKjjc8Td/l41LvJ6+knZlbFHL7VIMJFp30d6PM1tGXttWjXkmbYjAplrl8yurtZL0x5PMTEVHsJWQl7Zw5c/Ddd99Ftc+3336LOXPmqK779NNP8cILL2D9+vWorq5GdnY2pk6diltvvRVz585V3Yd6libCQtrPDrUi25yEdBNv4SHqrURRxIdHtuGHumOKCyupehMuKRyHIUkZcRkbERH1LfJAFAA+OdiKVKMGKQYNStL12F3vhsfX0b6gJEOPOocPFTYPPD4g2Dxj35U7YNELGJtpwIh0veo2Hp+INRVOHLO1hWStbuk7m1YAilJ1WF/p9C870uzBf/d09BsVACQbNNAIwOBkHUoyDNH8CKgXONJSj6O2BsmyWbmFIfcRBAEDLanY21TjX7Zo50qsqT6MFL0J/z6wSXW/FL1KSOtVVoNbdPw9IiLqaQkZ0kZLo9FgxIgRiuU+nw+33norFi9eLFleXl6O8vJyfPjhh7j55pvxz3/+ExoNi5bjKdJ2B6uOObG73o0nT8uESccWCUS90YOln+ORH74Kuv73m7/Ezh/djXxLag+OioiI+hqb24cnNjQqln91xBGT4zc6fXh7tw0CbPjNtDSMz1aGXi9ua8a3R4M/X55VC6teek5aYfPivb3qcy0IAO6alIKT85RBHPVe8lYH6QYzSlJzwu43SBbSvnNoC945tCXkPmoVsk6VSlqB7eKIiHpcQoa0L7/8Mmw2W8htduzYgcsvvxwAcOaZZ2LgwIGKbe6//35/QDtx4kTcc889GDZsGPbv348///nPKC0txYsvvojs7Gz86U9/iv03QhEzaCM/yaix+7Cr3oWTsnmLD1Fv9OaB0pDrm9wOPLdzNR6ZzDsZiIgouJ11oSdWihURwJdH7IqQVhRFrCoPHQgPTNLBHEXhgAjguR+aGdL2MVvrKySPZ+QMgUYIX+QzSKUvbThpKu0OilOyoz4OERHFXkKGtEVFofv7AMDrr7/u//q6665TrN+zZw/+8pe/AACmTJmC5cuXw2w2AwCmTp2KCy+8ELNnz8aGDRvwxBNP4Cc/+QmGDx8eo++AopVj1iDPqkWFTX1iBzmbi72+iHqrJlf4CqeVVcoZkomIiALZ3T13vvdDtXISJ68IuIK0SmiXY9FiTKYBek3wtgpy7W0ZqO9weKWVrAPMKRHtt2DwGLy+f2PEz6MVNDgnf6Ri+TXDJuOeDUvR4LIDAG4fNSviYxIRUewkZEgbjs/nw7///W8AQFJSEn70ox8ptnn66afh8bS9mS5atMgf0LazWCxYtGgRZsyYAY/Hg6eeegrPPvts9w+eVAmCgAdOTsMnB1vR6hHh8orwiYDTK2JrjUtx0uvkyS1Rr+UVpX+wpw8YBkEQ8E3FPv+ytdVH4PJ6YNDybY6IiNT5VKaMnZRjwJFmD2rsESaiJ/YxagUcafagvEW9IEDt3NITwQxl5xeZkW7S4sHp6VhWZoctIFj2+iDpVUt9l8cn/X2LtFXbJYXj8ebsq/FJ2U4sP34AR2R9bduNTM3GzJwiXDNsEsZl5CnWm3V6rL/gDjy3azXyzSm4fTRDWiKieOCnVxVff/01ysvLAQCXXnopLBaLZL0oiliyZAkAoKSkBNOnT1c9zvTp0zFy5Ejs3r0bS5YswTPPPMPePnGUZdbiutHJquv+sKYe22s7bnljSEvUe3lkIe0fJ8/FyNQcZL75oH+Zw+tBaV05Ts4e0tPDIyKiPkKekQ5L1eHXU9Pwxs4WfHRAveermp+OS0aaSYvSKiceW6/scdtOFEXJZwFPmNNNrQCkGttueS9O16NYNvmYKIq47rPqsNW41PvJL0DropjP5MqhE3Hl0In4ycr/4OW96xXr35x9Na4cOjHscYanZOGv0y6M+HmJiCj2OJuVitdee83/tVqrg4MHD+LYsWMAgNmzZ4c8Vvv68vJyHDp0KHaDpJgyynrWuiKobCCi+JB/kNEKGmQYLRiTlitZvrKSLQ+IiCg4+eme5sTpYK5FG9VxtCd2tOpDf7SyyVJZT5hwNcusgSZEgYcgCMgyRzdW6p3Uzm2iZdSo118FW05ERL0PX7FlWlpa8MEHHwAAhgwZgjlz5ii22bFjh//rkpKSkMcLXL9z586I+uEGKisrC7m+oqIi5HqKjHxisZ7sUUZEkfP6fGj1SCd6af8gMzOnCNsbKv3Ln9+1Bv9v7JxuGYfD48Y/dn+Pemcrrh42CSNDzMD81bE9+PjoTjhl/ebSDGZcM2wSxqQP6JYxEhH1Vz5RxLdHHahz+HB6ganTQaUypG07H8yxRBeQtZ9GJulD3zF30xc1GJupx12TUpFk0OBosyfk9pF8XzkWLY5FOOdCT/P4RLy2owWfH7ajJEOPuye3fd8EbKopw9sHN6PZ7USawYzS2nLJel0nQlqDRv33xcTWT0REfQZfsWXee+892Gw2AMA111yj2p4gMDgdNGhQyOMVFBT4vz569GjU4wncn7qPvJL2g/2tuKIkKU6jIaJgflv6mWJZ+y2Bs3KL8MKeNf7l+5prcKy1EfmW1JiP44aV/8F/Dm4GADy/+3tsvehXyDUr26l8dWwPzv78haDHeXbXKuz50a8xwBLZBCFERAS8ucvmb0fwzVE7npqdAZMu+lDLJ0pT2q5W0kYSQG6rdeOmL2uw+JwsPLK2IeS2kYS02b24kvbpTY1YX9k2Ydquurbv+z/nB7+omSj2NdVg1ifPwu51B90mmnYH7YxBwthgy4mIqPfhpUyZcK0OAKC5udn/dVJS6CDParX6v25paeni6Ki7GDTSkJadg4l6pw8Pb1Mss+oMAICZuYWKdZ+V7Y75GOweN949tMX/uNphw+I961S3DdxOTbPbia8q9sZ0fERE/d3qYw7/13UOHz4/bO/UceTtBtqv2UdTmasVAN2J/ay6yM8g/70z/OeCbHP4j2rRVv32pPaANlCjkw10vzy2J2RAC7Sda0QrRW9SXZ6sN0Z9LCIiio/e+64eB2VlZVi2bBmAtkm/iouLVbdzODpODA0GQ8hjGo0db4p2e/QnkEePHg3537p16sEARacgWXoyLgKwh2sURkQ9rsWj/MA3LDkTADD0xP8DHWttivkYtjccV/SOe+tAqeq2ZbbgE8i0q3bYYjIuIqJEUeuQvgZ/c8QRZMvQGmSBYcqJSbp0GgGnDVQPvOSm5Br9lbRaTeQh7YZKZ8j1WgGYNiD8GKbk9q0AjpPzAja38lxGbqA1+ruAzi8YBb2s5UFhUjomZg6M+lhERBQfvPchwBtvvAGfr+1k7frrrw+6ncnUccLkcoV+k3U6O07AzGZz1GMK106BYuP0AjNe2i6taKhq9WFICq9jEPUmLp+0796/T7tK0pbmx4Xj8U5A9epxe+xD2s11xxTLtjUcR0VrE/JkbQsqZM9/Zt4IHLHVY29TjX9ZnTPyGcSJiBKdKCpDvuOtXoiiqNqmLJR6p/Q9Jd3Ycd730/HJGJGug90j4vQCM3bUulBh82JYqh67611odonIs2pxxuDoz+8BoMkl/T50GuD2k1Kwq94NnSDg5DwjhqSE/6iWn6TDgmEWLNnf8V4yKKn3tkDwcHJeeMTwhSCnDxge9XEnZg7E8rk/wweHt8LmcWGAOQU3jJiiCG6JiKj3Ykgb4PXXXwfQVv16+eWXB90uObmj72C4Fgbt/W2B8K0RKH4MWgEZJg3qAiozKlu9EZ0cE1HPcctC2kGyShP5BF7H7c2ItR9UQloA+OjoDtw6crpkWUWr9PnvGnMqPjq6QxLS1jpZSUtEFCl3kHzrmM2LgUnRnbfVyypy040dYZZOI+CcIRb/4+l5HUUa47ND30nXGTeNScbJeSacnBdZBW+gYanS77s35KDyfr8dy3t4IL2Q/G4cNUn6zv2OTc8Zguk5Qzq1LxERxR/LBE/YsGEDduzYAQCYP38+0tPTg24bWN0aOImYmsDJwjgJWO+WI5skorK1d86US5TIXF7p36W8OmSAbPKuim4IadUqaQFlv1yvz4cqh/RCXp45BRlGi2RZnbNzvRSJiBKRw6Oe8m2tCX8LuZy83UGaKX4fjQYld74wQCOrIO4NQWiwrmGeIOFtIokopNX1rTYWREQUGywTPCFwwrBQrQ4AYPTo0f6vd+3aFXLbwPWjRo3q5OioJ+RatNhV19Gk/42dLfD4RFww1AJdFD3GiEjdh4e34atje3DagKE42FyHDbVl/kobrSDgtNyh+NmoU6ARNBBFEa/sW48vyvfA7fNiQkY+5heMRotH2sMvXEi7pa4Cl3zzKgBgXPoA3DPudOg1Wvx123dYX3MU4onnPiWnEAtHzYI2zGzKDo8bKysPqq77qmKv/7mAtqpf+QexPEsKMgzSkLa0tjzkcxIRUQdHkJ6mL29vQVGKHt9XOBQ9awEgz6rFgmEWrDvuxMFGD6bnGVUqabse0uo1wat9QxnYhRYF8tPUYFWsPckVJCn+9Yp6zMgzIsOkwQVDLUg3Jc6t+G6fF4/88BX+sPnLsNsmcbIvIqKExJAWgNvtxttvvw0AyM7Oxty5c0NuX1RUhPz8fBw7dgzfffddyG2XL18OABg4cCAKCwtjMl7qHrkW5Uni27ttaHT6cMOYZJU9iChSX5TvxsXfvAIAeHbXatVt3jm0BXavG3ePOx2v79+In6z8r3/de4e34sHSzxX7hAtpWzxOvH94KwDg/cNbcaC5DjmmJDy5Xfra/c6hLbB5XLh/wlkhv4/Llr0edJ3b5/U/lxqNICDHlKSopN3TVN2pXopERIkoWCUtADz4fX3IfQP7tn5+WHkXQ3oMKmmTDdL2WZFIM2pg1Xf+uRUhbaePFDueEBOEfV/RdsF1R60bj52a0VNDirsHNn6KP29bFtG2SbrYt9QgIqLej+0OAHz66aeorq4GAFx11VXQ6UJn14IgYMGCBQDaKmXXrFmjut2aNWv8lbQLFizgB/BeLtus/udQWhX97XNEJHXLqnci2u6LY3sAAJ+X745o+1S9tHffYGvwVjUA8GnZLrx3eIvquo+P7gz7fFvqKyIal5p8cwq0Gg1yzMr+5IdbQgcLRETUpjXYffQxkBqDStpTB0bfU7arE31pZZ8x3CEC0p7S4g4/hoNNHjS5ekOk3DP+uUf9M6OcVWeAUctaKiKiRMSQFtJWB9ddd11E+9x5553QattOqBYuXAi7XXo13m63Y+HChQAAnU6HO++8MzaDpW6j16qH6I0JdPJI1F2O2Boi2s7h9QAAmt3OMFsCs3KLMCRJGsoWJKXhzLwRQfepcdpwKEggWmFvCvl8oiiiUtbj1qTVKXoBBnPjiKkAgNMHDFOss3l4MYiIKBKNzu47LzPGoL3VgmEWJOujO86Zg81des4kg/T5WtwixDi3PChr8US0XajK6P6m0eWIaLvrhk9mcQ8RUYJK+Et09fX1+PjjjwEAY8eOxaRJkyLar7i4GHfffTcee+wxbNiwATNnzsSvf/1rDBs2DPv378fjjz+O0tJSAMDdd9+NESOChwbUOwQ7FbJ7RHh8IvvSEvUAj6/tw3d7WBvKJ2ffpPohZsmZN+C/h37AUVsDGlwOPLV9eUTPfdzeHLLtgM3jUoxry4L/B7vXjc/Kd8PhdavuJ0DAuPQ8LBg8BgBgVekz5/JxokIiokg0uSIP9X5cbMWH+2wR94jVxaB8xarX4C+zM7Gh0okvDttxuCn0+9nvpqdhdGbXbm1PMUgH7hWBVo8Ia5RhcSwdbY7sfc3ZC6p+4+m+8Wcg3WCG/cQ5RElqDi4ZMj7OoyIionhJ+JD2P//5D5zOtoqtSKto2/3xj39EVVUVXnrpJZSWluKKK65QbHPTTTfhkUceiclYKX5aXD6kJdDEBkTx0j7Rlj1I4Nlu3qASJOvVbym16o24ccQ0AEC1oyXikNbp9aDR5UCaUb2iqdrRoliWa05GisGE8Rn5ET2Hf4w6g6R61hlBKE1ERJHf4SQAuHSEFSvKHDjeGj4w1GkQs+rFNKMGZw02Y3+DO2xI29WAFmjrgyvX7PJ1qc9tV0VaSetKkJA2WGXzLcUnoyg5s4dHQ0REvVXCtzt4/fW2SWC0Wi2uvvrqqPbVaDRYvHgxli5digULFiA/Px8GgwH5+flYsGABPvnkE7z44ovQhJktnHqHUKflTRH01SKiruuopA0d0mablH1d1aQECXKDOS5rZxCo2mGTPDZotEju5OzL8l5zTh9DWiKiSDRF2O6g/QaojAgnA9N3wx1T3dg+V8KoFSDPaaOpOO4OZc2Rva8lSiVta5C2RmatvodHQkREvVnCV9KuWrWqy8eYN28e5s2bF4PRUG919/I6AECuRYsRaTr8uNiKAdaE//OhBLf06A68tHc9xqYPwP3jz4ThRPC4u7EKj/zwVdDer6HsbqrCqZ88ix0NlSG3yzZZIzqeUauDUauLuFJ1R0MljFotflf6BQ621EnWra85KhtDUqerrowaWUjLSloiorA2Vzvx+WF7+A0BCFGHtJ0dVXBuX88FkMkGDWodHanwsRYPitOVAWCj04f/7G5BeUtbdfGu+hO32Qdsm2rUYF6RGSUZnavy3VjpRFlLZO0O+nslbbPbgd9u+hxLg0xOamJIS0REAZgyEUWhstWLylYvDjZ58ORpGWzqTwlrb2M1LvjqZYgQ8f7hrQCA3088F6IoYu4XLyoCzki1etxYWXkw7HaRVtICQKrehCqvslWBmh8vew2jU3OxreF4BGOILChWY9BK26ewJy0RUWg1di8eX98Y8fbtZ2iZ5sjaVXVPJW3PBZApspD2H1uaMadA2b7nmc1N2FKjrOpsD2vbba524vkzs2CJMr2uavXizxsi/3fq75W0t6/5EK/s2xB0vUnLj+NERNSB9+ETnTAkJfKTpPIWr+REmCjR3L3hY4jo+GD1h81fAgCOtTZ1OqCNRoE1LeJt8ywpwdeZpet8ohhRQAtEFxTLWXXS6qQ6Z2unj0VElAh21rkRTeaZdCJczLFEFtKq9XXtqpPzQrfcGZwcu4Au1agcv1oAurNO/bZ75b7AwTD9dNXsrg/drkj5PP07pF0e4sJz+90+RERE7RjSEp0wwKrDyQMi7y953MbKN0pc31bsV10ebW/Vc/KLMS49L6p9ipIyMG9QScTb3zZyhurySwvH4+5xc6J67kD5IcLfcIqSMiSP9zfXdvpYRESJINJetO3OHNxWRTotN7Jzu7MGq08a2RXTBxgxMKktJBYA/GRMEjJPtF/Qa4BrR3f+Yp/cnAJlIHywURqYiqIIdxQ/xs5UAgdrX2DUqlcqt3r6d0gbqsf+wlEzeVceERFJ8NIdUYA7J6VgS40LRq0Ai06Db47a8dkh9d5nla1ejO3h8RH1Fk1uh+pyt8pt+89MvxhaQUCNoxVraw7j5KwhyDJZUGBNw9n5xXB4Pfji2G7UyCbmAoBkvQlCwPOlGcw4Z+BIpBoi/zD905IZmJQ5EJtqy/3Vv4OsaThv4Eh4RRG/XPe/oPumGcy4ZtgkPLNT2b+8KyHt8JQsyeO9TTWdPhYRUSJocinTxZfOyUKTy4d1x51odPqQd2K+gEHJWn+P1RSjBg+cnIZH1jYo9j8p24ApuUYUpeowPC32vUH1WgF/mpmBbbUuZJu1GJKiw8yBJuysdWNgkhb5SbH7KDYjz4RFQhMCM9K9DR5JX9loi1Y7061BrQ9vrkWDB6enY1edG4s2N0nW2fr55Lzy86LzBo7E0ORMXFo4HnMGDIvTqIiIqLdiSEsUQCMIOCm7o+LizAJzyJCWiKQ8PuWH6J+VnBKyUsSg1eHSwgndOSxMzR6MqdmDFct1AAaYk3Hc3qy6X2FSOu4ff6Z6SGvuQkibnCl5vI8hLRFRSPKQ9twhZlj1Glj1GiwYFvojTbC2AhcOs2BMZucmx4qUSSdgSkA1b5Jeg6lR3LkVjTkFJnx9pOMi6r4GaRVntJWxnelE4FY5PXZ5gSyzFrMGarG52okV5U7/Ons/r6SV95z/7YSzcUpuYXwGQ0REvR7bHRCFEuIOpCqGtEQK8ooRnaDp9bfyDQ7R3zbPnIIBlhSMkFW+AqF73YYjr6RlSEtEFFqzLKSNpodsskGA2t32Fl3vfn+K1ghZNfBeWX/YaFodAJ2rpHWp7BQYDlt00n+31mgH1ce4vNLzIr2GH7+JiCg4VtISdRIraak/E0URf9m2DG8d2AyTVodfjj0NlxZOwJGWely34i3VfUa+97ii95quD3wYGZyUjnU1R1XXtQexp+YOVbQk6Eq7A3noW++yo/i9xyCcuDKUrDfixhFT8fNRMzv9HERE/cn6SumEVymGyANWjSDApBMUt9Zb9L3/PSoa8pC21uHDO3ts+HGxFUD0lbRPbmzEuUPMuGZUEgxBesrKVduV58eB+bpFLz3O10cdmJJrxKQIewf3NfJKWgMnCiMiohD4LkEUgi3E1f1KThxG/djSsp24Z8NS/+PLvn0Dh388BDevegffHT+gus+epmrFMr0mslm146kgZCVtMgBgbPoAxbquhLRDktKhEzTwiB2vMfIQeGNtGcan5+HUAUM7/TxERP2B2mRUKVFU0gJtE1cpQtp+Vkmbn6SFWSdIWgi8u9eGc4eYkWLU4GhL9Oeunx+2I9mg8Qe94Xx7VNmz3i2ppFX+zP+ysREvnJWFpCj/TXs7n+iDV5R+ljD0gfMiIiKKn/71TkgUY+0TUKixeUQ4+nkfLUpc31cdljwWIWJN9WF8eWxPVMfJMcVu5uruMjIlO+i6YSltvWMvHiydJtCqMyCvCz1pdRotSlJzwm63PkiFLxFRIilr8SiWZVuiC7tKMqRVpiat0O9CWo0gIFmv/J4+O9QKAGhwdK7AYE+9K/xGJ5hUKm4vCwh4M83KfzevCBxsUv4b93XyVgdA37h4TURE8cOQliiENKMGpw8yBV3f0s/7aFHiqne1KpZVO1qiPs6vxs6OxXC61aWF4zE8WdlzdmRqNi46Ec4WJmfgtpIZ/nX3jJvT5VsW7x1/hr+9QTDyHr9ERIlIXgELAENTo3sNnltogTEgQJw/1AKtpn+FtAAwp8CsWFZ1ogVBqG4HBclaLDwpBWo/kmZXZEUJLW4fHCpVz2cEjGlitgGDkpRBpVq1dF/n9CmDZ6OGN7ISEVFwfJcgCuOn45NxbqEZeo2Au1fUSU5wm1w+ZKlUBBD1dfVOu2JZeWuT6ran5hbhrjGnKZaPS89TTJDVG2WarChdcBe+rzqMFk/bjNPJeiNmZA+BVd/RI++5GZfg5hEnw6jVYYxK+4NoXT1sEmbkDMGWugqIaHtheXzrt1hbfcS/jdvHC0FERPLJpbLNGmiinJSyOF2Pv5+eif0NbmSbtShI7p/nb+OyDPjvHptkmevE9T55DlqYosM1o5IgoO3nY9AKGJWhxzt7bZK2Bc0RFiWoTaq7+GxpGwOLXoNHZ2Xg2s+kLZLUJhzr65xelZBW2z9/74iIKDYY0hKFIQgCilLbbpFLNmjQ6Ow4UZXPNEzUX9S7lCFtma1BddvLi07CxUPGdfOIuleS3oizBxaH3W5S1qCYPu/Q5EwMTc70P37zQKkkpPWIrKQlIpJX0kbbj7ZdmlGDyf10gqp2atF1e09Y+cRhFp2AcVkGybJMsxanDzJLQ9oIK2nlIW2WWaPaZ9agFVCYosOhgBYH7v5YSavS7sDIicOIiCgEtjsgioJ8JuFIT1qJ+pp6p7LdQbBKWvZXix35z9LDSloiIthkcwBYVfquUhuPqDw3bW8lIJ9KQRvkk2Cy7HzX6RUjakcgD2lzQtxtJs9u+2Pdg8PrVixjuwMiIgqF7xJEUUjWawB0nICykpb6E5fXg/+3/iO8d2grKuzKQPbb4/tU9+NMxbGjE6SfWv+y/Ts8u2s1AMCk1eGCgtF4dsaPFGHum/s34Q8/fIlKe/C+wWatHpcWjseT0y5gsE5EfYJPFPHmLhs+OiC9cGjRs84kGLXOBPsb2ypW5ZW0uiAtI9Qqla/9rBpWnQARQGtA2nvPlFR/dXJVq/TJc0JM7maQTTDWl3rS2txO3LF2CVZUHsT5BaPw+JTzFe+rr+3bgOtXvK3Y18B2B0REFAJDWqIoJMtOWhnSUn/y5oFSPLNzVdD1PpXqHICVtLGk00hfY5xej6Sn3b/2rEWBNQ2/Pels/7JqRwuuX/E2PGLo16MG2LFo50pMzhyI60dMje3AiYi6wfrjTkVACwBWHStpg/GohJ32E6GqV/Y2EayS1qJvm9ZSfiR5RTMA/HlDI/49Nxs6jeCfoKxdqJBWr1FW6/YVL+5Zh8V71wEA9myvxrSsAlwxdKJ//fb64/jJyv8q9tNrtNAIvMBARETB8V2CKAoW2e119j50QkkUzvLKA53ab5A1NcYjSVwDLeF/li/uWQtfQCC7qbY8bEAbaH3N0U6NjYiopx1pVk68BADZIcK/RDciXa9Y1l606pVdbNUGqaTVCILinDeU9jYHgfM2AG09aYORFz7sb1D/t+6N7ly3RPL4p6vfkzxevHcdvCrvywXWtO4cFhER9QMMaYmiILvoj344ES0lsN2N1eE3kjl34EicklMY+8EkqJuLp2FwmA9xR2wNWFV5yP842IRuwVQ7bOE3IiLqpQZYtJg9yBTvYfRayQYNTsqWTgbWfr7qkeWGuhCfBOWVrqG0F9jaZU9gCfEEY7OkYfLWGlefnTysyd0xyZrH58W/929SbKMRBDx00jk9OSwiIuqD2O6AKAoa2Zy5DGmpP9ndWCV5fO+4M3BT8TQ4vR40uOz+5T5RhNvnRb4lFSNTsyEEqcSh6A1JysDeS+7FlvoKSZuDW1a9g50B/z5v7N+EUwcMBQCU2Rolxzg1twiPTp7nf/zOoS34244V/sfVjuB9a4mIerNciwZPzs6ALooAMRFdMyoJm6vr/I9FAKIoQp6Bhvo5qrX9nTbAiHXHnYrlvhMnxK2ydgjmEG0pTso2QkCzv6WCwytiZ70b47MMQffpC74o34Mq2fvs4pmXYcHgMcg0WeM0KiIi6isY0hJFQVlJy5SW+odahw21Tmnfv5+MmIrhKVlxGlHiMmh1mJJVIFl27fDJ+M3GT/2P3zn0AxZNvwgGrQ5lrdKQdmz6AMzMLfI/PthSJ1lf41T2dyQi6gsKU/QMaCOgVfkR+US1icOCH0Pt51ySrlcNab3+Slrp8UO1TEg1ajAsTYd9AW0OSqucfT6kfW3/Rsnjk7MH4yfF0+I0GiIi6mvY7oAoCmx3QL2ZKIpweT3+/9w+b/idTpC3OtBrtChKzoj1EKmTrgqYkAQA6l12fHR0B1xeD4601EvWDbKkSR5nGaWVO1WOFsnvSeB/ouzCk8vrgdfng9vnVWzri6IPLhFROKIowuNr+48XwbtGLcd2+US4ZSeu2igrafOT1HsBe0XA7RUV7RRCVdICwMQco+RxaZUr5Pa9WYvbiRqHDR8e2SZZft2wyXEaERER9UWspCWKgvxctrwl8hCMqDu9tGcdfr1hKWqcHf1GBQiYlVuIt+dcg/wwE1J9UrZT8nhYciZ0Gk7M0lsMScrAqblFWFF50L/s0m9fU91WPpFbtilJ8rjS3gzja/eq7ptrTsZfp16AUWm5uOq7f2OXrAVGoCyjFfeOPx3/b+ycCL8LIiJ1myqdeGFrM+qdvPgTCxqVNkQ3fF6jWBaqJ628KhYA8pPUPzrurHNhgMpkbuZQTwBgUo4B7+zpOG+psHmxt96NarsXr+1ogUEr4KfjkzEms/dU1zo8btXlyW/cr1im12hxedFJ3TwiIiLqT1hJSxQF+Unv7nr1EzWintTgtONna96XBLQAIELEisqD+NMPX4c9xot710kej0zNjukYqeuuHjopou0GWuQhbeQ98Crtzbh51Tv4v9XvhgxoAaDGacPd65eitLY84uMTEcl5fSKe39LEgDaGIu0IoQ3RU15tDq9ss/pHxzd32dAqL6MFYAlTSVuYokOaUXrMTw+1+gP7ylYvXtzarLjLI55WVx2KeNsLCkazDy0REUWFIS1RFFrd0hPQnCAnq0Q9aXvDcckkU3Jra46EPUaGwSx57OWt7L3Oj4smwKQNfQOMAAGj03Ily3LNydAJkb9W2b1urKs5GtG2IkR8cHhrxMcmIpI70uxBoyuyEC6L510RSTFoYIjgRxUsdAWgqF4dnqaDRhBwdYkydNRrlJW3WkG9ZUIgjSAo+ueuO+6UHOuYzQt3LzolqXNF3tf9huFTunEkRETUH/FMhygKk3OlvbOa3b3nyj4lrqO2hpDr9zbVhK1CaXJLJwK5rPCkLo6KYi3DaME/ZlwCq079tk+NIOCBCWciz5IiWW7U6jA5a1C3jeuz8t3ddmwi6v/2NkR+V9K8Iks3jqT/MGgFXFWSpDqBWLvidD1mDTQFXX/RMAsyTW0fFS26tuMBwJxBZtXt5SGtWSdACFGp2+6UfOkY1AJZeS/deIqkqFcjCLil+GTMLxjd/QMiIqJ+hT1piaKQK+u3Zfe0TXDBmYYpnuQh7ZCkdBwOmEyq0eVArbMVWSFuuWtyOySPhyVnxnSMFBs3jJiKy4tOQplKMJ9jTkKqQf3D86m5RVhbLa2oTtYbsfGCOwEAxe8/HtHzvzTrMpi0elz13b/9yzbUlKHGYQv5+0VEFMze+uB3ggT651lZilvjKbi5RRacXmBGvVM5f4JRKyDDFLrv/KBkHZ45IxM1dh8yTBr/uW6KUYM/zUzHb1ZJJ61UC2kjEUl1tMsrwqqP6HA9Tq/RYvtFv5IsyzRZkWHkBQUiIooeQ1qiKKSofDhodvmQHuZEl6g7HbU1Sh7PyinCsdYmuH0dH8z2NlUHDdF8og/NskraFINRdVuKP7NOjxFR9gw+NXco/rLtO8kyo0bnP45W0ETU4mJs2gCMz8iHRadH64nJU0SI+PLYHlw5dGJUYyIiAiKvpE0x8IJ4tEw6AXm6zn/c0wgCclQmBJMXyIoAWhUhbWSBuiGCQofe1O5AhPT7HJ6cGfV7MhERUTC8HE0UhSS9APmp5NEWL+od3l41qQH1Lz7Rhyp7M8psDaiyN0vWiaIoqZoFgMKkdBQlZUiWrak+gjJbA8psDah3SvuptbhdiudM0Qe/BZL6npk5hYplgRPNhZo8JlCG0QKjVocz8oZLli85sh1ltgbJhQEiSlyiKOJYa6Pi/Uau2eVDhS2y1w355K0UP/J/CVEE7LKJw8JNGtbOGKonwwkurwhRFFHv8KLW3vaf68TMZh6f2KPn4HWy3+lIWjoQERFFipW0RFHQCAKS9IKkF+0f1zYAaJt84d6paRiUzD8rip1dDVUY9cGfJcsmZQ7E0rNuQpWjBWd9/k9UO2yS9QXWNIxIycKepmr/sl+u+x9+ue5//sfzC0bhnTnXodXrxsQlf1U8L0Pa/iXc7NJaQQMgfFCSaWw7zrn5I/Hx0Z3+5f85uBn/ObgZyXojFs+8DD8umtCl8RJR37W9/jjO/2qx/wLigsFj8J8518KoMvHhkxsbFcuo7/GKwOpj0jtyIm13YIggpH17tw1Hmj2obO14n9JrgIFJOhy3eeEVRdw6LhmnBemXGwsNTjsWfP0yllce6LbnICIiYiUtUZSSg0yXW2334d29NtV1RJ017eO/KZZtqi3Hop2r8PAPXykCWqAtpB2ekhXyuB8f3Yn3Dm/Fv3avwRGV/qbJerY76G/SgvSrBdpD2vDa22CcN6hEdX2z24k71i7hnQVECez3m7+Q3OGx5Mh2fHh4m2K7RqcPO+ukrQ6Gp6lf6I4gx6MepPbPIf+3NOsjDWnDb7O+0ikJaIG2FgiHmjxweEW4fcCrO1rg6cYJxl7et141oOWvJhERxRJDWqIoDU4JXilb3sJbfSm25L1i2+1vrsW7h7aorhufkYdpWQVhj722+gj2Ndcqlo9MzYZWw7eH/ua1U6+QPL6l+GT/18WpoUN9oK0freZEmDs8JQvj0vNUt6uwN8HFtgdECWtfk/J9ZX3NUcWylcccimXDUvUYmqo8zzqvsPsqJCl62Sp9auUineQtknYHkWhxi2hwdl/z2hd2r1Fdvr2hstuek4iIEg8/hRNF6fJiKwYlqZ+c2nrTzAbUrzm8wSdaGWRNwyWF48MeY2djJVo9yn60z07/UZfGRr3T/ILR+OnI6TBotJicOQi/GX+mf93fT74o5L75lhQsmi7d5qVZl6EkNacbRkpEfZnT51Es29VYpVimFs2lGDW4fnQSAuecKk7T4YKhlhiOkLrKqtdgco4h5DbnF0X2b5YZw8l3u7OqtdrRorp8TFpuNz4rERElGjbPJIpSfpIOT87OhN3jw556N/60rqOfms3NW3ypZzi8yg/BAHDD8CkAAKNWh1m5RVhZeTDoMXY2VCEpS9rW4PcTz8GZ+SNiN1DqNQRBwPOnXIp/zLhEMdHJzNwibF7wS5yk0p/463N/itPzhiv2mZJVgB0X343S2nJM/ujp7hw6EfUhTpX3p92N1YplaoFasl5ASYYB/57bdgHI7RWhZ6+DXumqkiRsrKpTXTch24Asc+zC10h5u/E03COqF2KMDXJXCRERUWewkpaok8w6jeLqv8Mrdms/LEosofp6Bquk1QT0Fs03p4Q8fnlrIyrtzZJlFm3oyhjq+4LNRJ1rSlJfbk4Ouo8gCEg1cJI5IuqgFtIeaKlVLFd7WUmS9f1nQNt7ZZmDf4ycmB35uUSQt5dO8XVjP3RvkPN7TSy/ASIiSnispCXqAqvKpAg2t4hUI0/YSEkURexrqkGz24lUgwlDkzMl4ZfT60GNw4ZccxJ0Gi0aXPagx6p1tKouD/ywkGcJHdICwOa6Y5LHFp0+7D7UP2UHCWk7M4lcaW05SlJzkGZkH0mi/sTjE1He4oUIEaIItMdWWkFAQbIWoiiirLVRsZ9PFLH06E4UJqXD7RPR6PJhf6NVsZ1FF9vzp+OtTfCIPgyypsXkeD7Rh2OtTcg2JcGoTeyPUSadBkl6AS0qd5FNDNMKobsE5qg+UcRxmxdpRg0s+rZAuf331yuKyDJrkaIyGfCRlno0uhwoScuBVhCwu7Eado8bLR71OQI0nDqMiIhiKLHPLoi6yKpXntwt2tyIB05Oj8NoqDezuZ0494t/YVXVIf+ys/OL8dFZP4FRq8Oh5jqc88UL2NtUg2lZBXj/jBsw6X9PBT3etobjqssDPyzkRxDS2mUVuWaGtAkr2GRx4UJatSrbGUsXQSMIeH7GJbhl5PSYjI+I4utoswcPr21AY5DJmfQ6G76ueyvo/pd8+6rksQANpqXMwxDTaP8ycwxD2p9//z6e27UaQNtEiS/M/HGXjmdzO3HW5y9gTfVhDE3OxOfn3ILhKeEnXezPssxatLilFdJ5Vi0GWOPzEXNluQOXjUxCi9uHR9Y04GCTB1oB+L/xyRiaqscjaxtQH/D7e8VIKy4e3naxQBRFXL38Tbx1oBQAoBM0EAQB7jATYbKSloiIYontDoi6wKAVIM9pt9a4Ud3Kmc1J6n9Hd0gCWgD48tgefHVsDwBg0c6V2NtUAwBYV3MUV373BqqCTFIRSuBnhUhCWjmzliFtIss0Kid66UwlLdBWxXT/pk9Dtu0gor5j6YHWoAEtAJQ2lOK4Q71HqRoRPmxrWSFZlqRy8bszVlYe9Ae0APCvPWuxI8jFzUg9t2s11lQfBgAcaK7F87u+79Lx+gO1lgcnRdHqINbe29d2l9HqYw4cbGoLj70i8PZuGz451CoJaAHg3b02OE80si2tLfcHtEBbD9pwAS3QvZOVERFR4mFIS9RFRSnKaoFqO0NaktrbpJw0BQAONLd9oP3r9uWS5StCTPgVypi0Af6vp2YVKNaPSs0Juf/4DE6AkcguHDxG8nh0Wi50mtCTvxRY05CkUw9yqx22oJPcEVHfUusIfW7T5K2N+pitPmlf9Pyk2Ew29Z+DmxXLNtSUdemY92xYKnn85PbvunS8/mBYqvLC7oy86PqUpxs1sMaogrq9hXFplUuyvNbhQ6VN+fvr8QHNrrbgdl9zTaeec0z6gPAbERERRYghLVEX3TJOWa3o8LByjKTqnOr9ZZvd6j3OgknRm2DQaGFQCc6uHTYZtxSf7H88MjUHT069AHnmFKQaTLhpxDSsOv8XuHLoRCTrjf7jGDRa5JlT8MSU+Ridxg8bieyRSefhzLwRMGv1GJ+eh5dnXR52H71GizdOuxLDk7OgV/m9dPkY0hL1B+HmRbV7m1WX6wQ9NNBCJ2ghyD56iOiobJyUY4jJreM+0Yf3Dm1VLN9W37VKWlKaW2TG9DwjTFoBmSYNrilJwsiM6O7I0WoELJyYgjxr5AH98DSd4k42oK1q1ieKcHmVv6yNLvUq8PZN65zqvf7bCbKa2WS9EVcUnYRfjJoZ2aCJiIgiwJ60RF00OEWHQUlalLV0XKG3q5wcUmKrddpUlze5HRHdDv7AhLPw8KTzon7eX46djV+OnS1Z9ubsq6M+DiWGfEsqvjrvp1Hvt2DIWCwYMhZV9mbkvv17yTpXBLeLElHvFyyk1WsAtw+wy6piZ6ZejIHGEf7HZw82490DR/F53UuS7URRhCAIuGSEciKxzlhddRgV9ibF8liHtDqBtS5mnQZ3TUrt8nEm5hgxMUd6R8Z9K+twoFF5kW9ekRnXj04GAFS1erHwW2kFt8srQq1WIlirDu+JX+z6EJO1Am19jf8589KQ2xAREXUVzy6IYsAku02LlbQkF6xCo9ntRE2QADdQjikp1kMiijmDRnnt1+VlSEvUHwQLaU/JN8En+mD3SfuomzXJkscun6ioRgQ6qmmzzLFpdfDuoS2qy4NNuBmJZrdDsWxEgk8a1t1SDOofUzNMHb8napu4fB3Ba6Aml/ovsC/CSloiIqKewEpaohiQz0bsYCUtBWhyOfBJ2S7Vdbsbq/HOwR/CHoMhLfUFBq0yZKl3tWKgteuVVkQk5fR6sKHmqKJtTrrRjEmZg1TbjwCAx+dFaW05aqMIpRqdPiyrbEG6LhcCBNR7KuET2y7A+LRWlDnrIEJ67mPRSkPa6lavot0BAFS4DkADLVZX1SraHSTpjZiSOQgmXdst9OW2RmxrOK64A8WqM2BKVgGMWi3+tkM6GVm7o7YGLDm8DZkmq+SYaipam7C1vgK+E89zuKVesY1By49R3SnVGCyk7Vhu0CpD/2aXL6rz8PLWRmxvqmE7DCIi6hV4dkEUAyYtK2lJ3Y6G4zj1k+eCrv+6Yi++rtgb9jg5Zoa01PsZVSppx334JKqufAjZvNBAFDMNTjtmffIMtjdUqq6flVuEb8/7P8XEfz7Rh3lfLsaXx/bEbCwr1iuXaaCBUbBIlu2oc0Oj0iJgVeMHbcf5Sv34I1OzsXLeL/B5+W5cu/wtRRjcbnhyFnSa0DcJXvTNKwCAktQcrDr/F8gwWhTbfFq2Exd9/UrYVi0/1B3Dm/s34aphk0JuR52TGqSSNjNMSPvL7+oifo4jjp2Y8cnHQX+niIiIehrbHRDFANsdUDD/2r02JrfQZZti06uPqDtpNRpoVUKYV/duiMNoiPqvj47uCBrQAsDKyoP4umKfYvmqykMxDWiDMWuSIahMAqZWSRvO7sZqvH94Kx7f+m3IMG1fcw12NVZFdMxdjVX44LBycjEA+NOWbyLupf2HH76MaDuKXkrQStqOCw9aAdB0Ya65na1rIg5oYzCnHRERUVgMaYliQCs7c/NGMBEUJYbjdvXZrqORbjCjOCU7BqMh6n6TMgcqlm2oLYvDSIj6r+MqE2PJba4tVywrrVMu6w6Z+nzV5WZNEkya6C86VrQ2oczW0MVRSZW3NiqWiaKIH+qORXyM3Y3VsMnaTVBsjEhT3pmRadIgy9zx8VUQBAxN7fyNoa3e8H9H7SZmKN/biIiIYo3tDoiIupFXVM4mfEbecFTam9Hokk5EUnbiA2OqwYRkXdssxwXWNPxp8lz2vqM+443TrsLI9x+XLIsm9CCi8Dyy9xaTVgedoEWLpyMw3KlSVbqzQbrMqjMg3WAO+jxeEah1OOESlRNnAUC2MQnGE72o7R4RLi+QZRiAi/PPxS1j07Cn3o1lZQ7UOXywe0QIgoBTUi/ClpbvYPM2nhi7AIteOqVYrbMVdq/b/9jh9aA14DHQ1qvd5nHB5nEFHX/Nlb/HHWuXYGXVQVQ7WtDq6TiGza3cr8LepOjxm29JgQYCRKgHu7sbqzEpa1DQMVDnjEzX47rRSfjmiB12j4gssxbXjkpS9C3++YQU3BVFi4N2oijCLUr/rXPNybB73GhyO1BgTYMoijBp9bhw8GjcVDytS98PERFRJPipnygGeAcUBSOvqv79xHPw4EnnxGk0RN2vODUba+YvxPSPF/mX7Wmqht3jhjnERD1EFDmPTxrSzh1YgtMGDMVd6/7nX7ZTpR3CDtmyByachXvHnxH0ebbUuPCL5ZuwovFd1fUbL7wTBUlpQfcvyTDgwmFWfLDPhrd32wAAWfqBOCP9KkzPM+KuSeqTCt608r94ae86/2ObxwWn1yPZZtnc27B4zzo8uf071WOsmPdzZJqseGP2VQCA/1v9Lv65e43kmHK7VELso5c9IOmlO+zdR3Ggudb/eEdjJUPabiAIAs4vsuD8ImXf4ED5STrcMDoJr+xoier48oAWANbNvx2Dk9KjOg4REVEssd0BUSzIUlo2O6B28kpatX6dRP3N2LQBCKyL84kittVXxHFERP2L4r1Fo8GotFzJsp2NVRBlFwrlIe2o1JyQz1Nr90IvGFTXWXR6DLSmRDpkhRFpwS/atFfntqt3KXu7W3R6JOnVx5ZvScEpOUNk20u3VQtpdzdVSx4Xp2QrJjuT/8zkP1PqeclBJhkLRS2kTQtRVU5ERNQTWEl7wpEjR7B48WIsXboUhw8fRnNzM7Kzs1FYWIjTTz8dl112GcaOHRt0/08//RQvvPAC1q9fj+rqamRnZ2Pq1Km49dZbMXfu3B78Tige5JW0bElLoihiTfVhLDmyXbKcIS0lAqveiBEpWdgTEHg8tWMFXj/1SmjDzL5ORMGJoojVVYfw0t71kuU6QaMID5vdTjy3azWS9W3tcxxeD2qcNsk2o2XBriiK2Fnnhs0twuUT8fZuG3Qao+pYRqgEmMHYVSZUDRXSmrTSddvqjyu2segM/u9N7pIh4xVjs8pC2p2NVXht3wbkmJJwet5wGDRavLpPOslhSZoyxB6dloulZTv9jz8v340/TZ4X9Hvp71o9LnxbsQ+1sklSs01WzBkwvEfuoEgyRH9Pm8snbeGhEYSgoT8REVFPYUgLYNGiRbjvvvtgs0lPXMvKylBWVoaVK1eiqakJTz/9tGJfn8+HW2+9FYsXL5YsLy8vR3l5OT788EPcfPPN+Oc//wkNP5gSJYx7NyzFn7ctUyyXTzJH1F9NyMiThLRvHSiFBoL/1mMiit7d6z9Wvb1fp9FgkDUVFp1e0nf1F2s+CHoso1aHouQMybJFm5uw6pi0wjBYJe3IKCa03N/gViwrCjHhk0nWh32zSl9rq86AZL1Jdf/Liiaobh9obfURrK0+AgCYPWAoZuYU+R+3U/se5cH2ptpyrK8+gqnZg1XH0p+5vB6c+smz2KQySR0AnJw9GCvm/Rx6jVZ1fawk67teSZtmMEd80YGIiKi7JPw70SOPPILbb78dNpsNxcXFeOKJJ7Bs2TKUlpbiq6++whNPPIFTTjklaMB6//33+wPaiRMn4q233sK6devw1ltvYeLEiQCAF198EQ888ECPfU/U8+Sxm4+VtAnN4/PimV2rVNd19wcVot5ifLpydvd/H9iEoy0NPT8Yon7A4XGHfG/RCBqUhGlfEKg4JRu6gPek4zaPIqAFAL2gXq1anBp5SJufpAxkDdrgFy3N2tDVlwIEmLQ61UpatVYHAJCkC14l+d3xA/jTlq8Vy9V+nqNUqmuf2an+79Lfrao6FDSgBdqC8PXVR7t9HLFod5AaJPAnIiLqSQldSfv111/jt7/9LQDguuuuw4svvgi9XnpSeOaZZ+JXv/oVXC5l36o9e/bgL3/5CwBgypQpWL58Oczmtl5GU6dOxYUXXojZs2djw4YNeOKJJ/CTn/wEw4cP7+bviuJBL/ug4WFKm9AaXA5JJVOgGSofHIn6o3mDSvDb0s8UyzfWloWcaIiI1B2xNSgmz2p3Sk4hAOC8gSUhQ7NA5w4sljzeWaf+vqUXjNBCBy+kz51tskb0PAAwM9+ILw7b/Y+vKUkKuX379xP0eLmF0AgazMgeAo0gwBfQZ+qnI6erVkTOzC2KeLzt5uQNUyw7KWOgYtnG2rKoj90fHLc3h91G3mKjO2SZNcg2a1Bt94Xf+ASvKP195sSWRETUGyRsSOvz+XDbbbcBACZMmIDFixdDpwv+4zAYlFffn376aXg8bW/wixYt8ge07SwWCxYtWoQZM2bA4/HgqaeewrPPPhvD74J6C6MspHUxpE1oDS67Ytm0rAL8fNRMnJzNkJYSw6SsQXj9tCtx7fK3JMtL68px0ZDgPd6JSN3hlnrFshnZQzC/YDR+MmIqAOC3E86C0+vB8soDisnF2mkFDWbmFOL3E8+VLHeo9I0FAEEQYNWmoclbI1ku7xsbSkmGAbeNT8b3FU4MS9PhvMLQEzSdmT8C/zzlUvx7/ya0eKQVjyWpOXhs8vkAgMLkDHxwxg1YtHMlmt1OnJ1fjPvGn6l6zImZA/Hv067Ci3vWotHtwJ7GGsWxAz0340fINScrlhu1Ovz95Itw+9oP/ct2NVbD4XHDlGBBX4tb+vOz6gzwiD7JxQS3z9vt49AIAu6Zkob/7rGhxu6FUStgTKYe7+1TTjgHALeOS8Zv1kn/Pgy804mIiHqBhA1pv/jiC+zduxcA8Otf/zpkQKtGFEUsWbIEAFBSUoLp06erbjd9+nSMHDkSu3fvxpIlS/DMM89AYE/Kfkevkf6bOrv/fJR6MXlIa9BosWb+7fzbp4RzzbDJKK0tx1+3L/cvK42wyo+IpI7YpCHthIx8rJ6/ULLMpNPjL9Mu6NTxW9zBqxCTVEPa6M6d5xSYMacgdDgb6NaR03HrSPXz60AXDh6DCwePieiYVw2bhKuGTQIAXPT1y4rJPQOdP2hU0HU3jJiCO9YugYi2YNsr+rC9oRKTswZFNI7+osUjvdPwlJxCHGttxPaGSv+ynghpAWBwig6/mpLaMTa3L2hIOzRVBx+k42JIS0REvUHC9qR95513ALRVB8yfP9+/vK6uDnv37kVdXV3I/Q8ePIhjx9omMZg9e3bIbdvXl5eX49ChQ10YNfVWRtl5ncvLStpEVu+UhrRpBjMDWkpYEzOltwYzpCXqHHkl7RBrekyPX+sIHtJatamKZdGGtL1NrklZJRtIF2LC32S9CcNTMiXLNtcl3mubWiWtvPe+2xd5C4JYCvUh16rXKEJaHUNaIiLqBfr22VUXrFmzBgBQWFiI5ORkvPnmm3j00Uexbds2/zbFxcW45ZZbsHDhQhiN0okJduzY4f+6pKQk5HMFrt+5cyeKiqLviUW9m6LdAUPaPmVN1WG8daAU6UYzknRtf+tajQan5AyJqj3BgeZafFa2SzE7dJoh8sohov5moqx/Y1lrI/70w9dIN5oxb1AJhiRJZ5f3iT7878gOCAAuGDyas21TQvD6fFhathN7Gqv9y3SatrYEDS4Hfqg7hod/+Eqyz5Ck2Ia0Zc3q/W4BIEmrfK5o2h30Rrnm0H1xdWFeeyZk5GNvU0d18Rv7N0ku0moEAVOyBuG0Acq+tl0hiiI+ProDHtGHCwvGQBsiTA7n+6pD+L7qsKSnbyhaTVsf4Okn+uvvDvh9BYAkvTKk3VRbhmuHT+70GDtLqwl+cdyiF2D3tki3FxjSEhFR/CVkSOvz+bBr1y4AQFZWFu644w78/e9/V2y3Z88e3H333fjggw+wdOlSpKWl+deVlXVMEDBoUOhbmwoKCvxfHz0a3Qyngc+jpqKiIqrjUfeQz1DsZEjbZ7yydz1uXPmfoOvfmn01rhg6MexxdjdWYepHf0OzW9nfLt3IkJYS18jUbJi0OjgCehTev+lTAEC6wYxNF96FwuSOoPaa5W/hrQOlAIDrh0/BK6de0bMDJoqDn695H//cvSaqfYbEcAI+j0/E3oZQIa3yufp8Ja1Kv9lA4SorT8rIx7uHtvgfLzu+H8uO71ds9/yMS/DTkhmdG6SK/1v9Hl7Y0/a7cmnheLxz+nWdOs6re9fjhhDnP6H8+7SrMCdvGP59YJNkeZLOqAhpn96xAgsGj8GcvJ6dPDlUdO3xObGz9XvJMlFkSEtERPGXkOUpjY2N8J249Wbr1q34+9//jry8PLzxxhuoq6tDa2srvvvuO3+f2dWrV+MnP/mJ5BjNzR2zmSYlhb4Sb7V2zH7b0tISYkulgoKCkP9NmzYtquNR92BI23eFCmgB4KW96yM6zjsHt6gGtEBbEEWUqHQaLcan56muq3fZ8f7hrf7H5bZGf0ALAK/u24Bmt6Pbx0gUT16fD6/t2xj1foNj2O7gu7LQf2dq7Q7MfbySdkCYkDZcj9KTMvIjep7nd38ffqMI2dxOf0ALAO8e2oIyW0OnjvXqvg2dHsfivevwadkuxfIUvVH19+L1/ZsUy7qbNsin3GyzBl9X7FUs9/kY0hIRUfwlZEhrs9n8XzscDlgsFnz77be4+uqrkZ6eDrPZjNNOOw3ffPMNJkyYAAD44IMPsHbtWsl+7QwGQ8jnC2yVYLcrZ32nvk+W0cLHjLbfqHJEdmHlmL0x6LpzBo6M1XCI+qQfDRkXdF1Za8ffzraG44r1LW6XYhlRf+IVfbB73VHvl6w3ht8oQivLQ4e0ydoMDDR39GBNM5j7/CRZswcMCxo0T8sqQFKYn+/sAcMiugi7q7EK3hj1Za13KT9HHGlp6NSxGrtwAayitUnRfx8Azsovxpn5yorZWqdNsay7aQQB47OUn9FuHJOM8lblOduE9KE9MSwiIqKQ+vZ9Sp1kMpkkj2+++WaMHKkMUcxmM/74xz/6Jxb7z3/+g5NPPllxDJcr9AdIp7Ojus5sjq6iLlx7hIqKClbT9gIa2aRQzGj7jyZXZB9iah3SGYSHJWdiVFoOTh8wHHeMntUdQyPqM341dg60ggbfVe7HjoYqHGiu9a+rsreoft0u0l6JRH1VZ3/D5beVd0WTK3SIeMOYZDyaeSse3/oN3D4v7hh9Kiy60EUKvV2WyYqvz/spnt25WhIiDk/Jwn3jzwi7f5LeiG/O+z88tX255IKuVxTx5bE9/scOrwdHbPUoSs5UO0xUPCphb6gJzkLxyl5bx6fnId+SorptrbMV62s6PpM0uBxwi17FdmcPLMYZecPxtx0rUWnvuOvQ7on+IkQs3DEpBR/steGbow4Upuhw5mAzJucasaRcGRqfnTs1DiMkIiKSSsiQNjlZenvTOeecE3TbM888EzqdDh6PB+vXd9z2HHiMcC0MAit3w7VGkAvX75Z6B/ncBAwV+o+mCCtN6lzSkPa2khn4f2PndMOIiPoerUaDX42bg1+Nm4Mntn6LezYs9a8LDDeqHM2Kfd0+ZRBAROFvx49Go1MZ/j1xWgYGJwd+VLDghZk/jtlz9gYzcgoxI6ew0/uflDkQr552pWSZKIpIf/O3aAy4yLu7sTo2Ia2oEtJ2cnJF+bnqvePPwJVBevCvrT6M6R8v8j+ud7UqXpsvHjwWQNvr/YMTzsLP13zgX9eZSvFYSNJrcO3oZFw7WvrZr0ZW2TvUNAFhrlMQERH1iIRsd2A0GpGdne1/HDixl5zJZEJWVhYAoLq6YwbTwPA03ORegdWwoZ6L+i75HxLbHfQNkdx+2OR2QowgdJdX0mYYLZ0eF1F/lmOSXqyUhLQqlbRqoQRRfxLJe4yaWFbSNruVY0jIDwkxIAgCRqZkS5btbqwOsnV01C5adb6SVvraqpXdFRYo3SA9p3F4PYpWNIG/j2adtI1EvELaYGoc0pDWqLHAwfkkiIioF0jISloAGDNmDJYtWwYA8HpDV+m0r9fpOn5co0eP9n+9a5eycX6gwPWjRo2KdqjUB8jPa6vtDBV6i31NNfjo6A6clJGP0/OGY09jNd459AMaXY6IKvTcPi8e+eErNLudKExKx7XDJyNZ39HupMzWgLcOlKK0rlyyX6bRKj8UEQHIMUtD2gPNtbhn/ccAgCe2LVNsz0pa6qu8Ph/ePFCKrfUVIbdzeD2dOn6sQtpgITEzq84bmZqDdQHtAd44sFG1D6qcRhAwI3sI8i0p+Lhsp6JNQLVKn/ynti9HtikJOo0Gp+UOxXmDSiIaozyklbfuCpRuVLZr+7x8t+Rx4O+jSdbrd0NNGZ7duQpHWur97T1GpGThmmGTFYFuT6h1Si+sGzVmVLTwvYaIiOIvYUPa0047zR/SHjhwABMnqt/e09TUhJqaGgDAwIED/cuLioqQn5+PY8eO4bvvvgv5XMuXL/fvX1hY2PXBU68jb3cAAM0uH5INrEOJpyMt9ThpyV9h87RVe/zt5AX4XekXaFCZeCOUB0s/93/94ZHt+OLcWwEArR4XTln6DI6qzKycyUpaIlU5Jultp81up2o42+7f+zfhkclzu3lURLF394aP8dT25d12fH0nKyjlmlzqaaybtwV1WklqjuTxhpoybKgJfeddZ72yb4P/60fxDd447SpcPWxS2P3k7Q60IdompKlMkLZFdvEhsKJXbUK2XwS0P2j3xbE9eOf068KONdbklbQGwYzSahdcXhEG+WzAREREPShhE6RLLrnE//UHHyhPGgLXtVcYnHrqqf7lgiBgwYIFANoqZdesWaO6/5o1a/yVtAsWLIAQ4io19V1qJ3Q763rXrV2J6E9bvvYHtABwx9olUQe0cl8e24P6ExUYa6oOqwa0AJBtiq7/NFGiGGBODr9RgFVVh7pnIETd7I39G7v1+NYYTdxVYVOv5E3S85y1s+QhbU96PcLfO/kkZBoE//fWa7RINZiCrgcAS0BFbIreGNEYPjy8Da5OVpJ3hbKStu1728VzdyIiirOEDWnHjx+PuXPbKnPeeustfP3114ptjh8/jgceeAAAYDAYcOONN0rW33nnndBq227tWbhwIex2afhjt9uxcOFCAG2tEu68885YfxvUSwxLVVYMOD2sQIm39w9vjXqfJF34DxatJ24/bHY7VdePTsvFiJSsqJ+bKBEMtKZiSlbkk2KatAl70w/1YQ6PG9UO5QzykQqsREw3mHGPbCLKUak5GBqDiagA4GCjMiQbnqbDACv/9jrrrPwRSFepPu0J+5tqI9quVdYn1qoPHfpfWDAm5Pr5gzpawZ2cPRhZEbR98oi+uLS0CbyADwA6oe17r3Ww5QEREcVXQp99Pf300/j+++/R0NCA+fPn484778S8efNgNpuxbt06PProo/5JwR5++GFJuwMAKC4uxt13343HHnsMGzZswMyZM/HrX/8aw4YNw/79+/H444+jtLQUAHD33XdjxIgRPf49Us8waAWYtAInHehjBpiTcXZ+sb/q5Nbi6bitZAYm/u+pkPu193FTm9Do/vFn4uejZrJqniiET86+Gc/sXIXDLfUAgA8Ob0OT26G6rbeTkyoRxVOFvUmx7JphkyS3lNc4bFhatlN1/+/m3oY39m+CUavDtcMmY2z6AJSk5WBl5SHkW1JwW8mMmL3PHGpShrS/mZYWk2MnqhSDCavO/wVe3LNWUbWp5lBLHb47fkB13bj0PEzK7PgM0upx4Z1DWwAAlxedBLvHjf8d3e5ff9hWD6/PB22YdhgtsgvN4Sqz/3nKpRiXPgDbGyoly40aHeYXjMK8go55N6x6I1ad/wuMfP/xkMcEAB96/jVeGdK2XRRpcHJOCSIiiq+EDmmLi4vx0Ucf4dJLL0VlZSUee+wxPPbYY5JtBEHA/fffj3vuuUf1GH/84x9RVVWFl156CaWlpbjiiisU29x000145JFHuuV7oN5jgFUr+aAjxuGkk6SEELfuAW0ffF477Uq8dtqV/mWR3HbX3sdNfqvgmLRc9s4kikC2KQm/n3iu//GhlueCBhTyyW2I+oKK1mbJY5NWh9dOvVISrJbWlquGtBpBwNTswZiaPViy/MYR03DjiGkxH+tBWUh7w+gkWPUJe7NdzIxKy8WT0y6MaNslh7cFfQ28rHACHjjprKD7Vtqb8b+3O0Jat8+LY61NKEhKC7qPT/T57wpqF+5OIrNOj7vHnR5ym0DFqdlI0hnR4lG/66hjLD17vuz2eRXVu9oTIW0jQ1oiIoqzhD8DmzVrFrZv347f/e53mDBhAlJSUmAymVBUVIQbb7wRGzduxMMPPxx0f41Gg8WLF2Pp0qVYsGAB8vPzYTAYkJ+fjwULFuCTTz7Biy++CE2MJneg3kseBzKi7f1CzWQcSrBKWl2MZtomSjShbtuWXwwh6guO2Rslj/MtqYrKV0OQ94xwFxhjyeUVUdYsDWmLUhO6hiMuDNrg5w/h2hDkmJIk/WAB4GBL6JYHdo9bUUwQ7nk6I5LzrJ4OaVtlVbRARyVtPUNaIiKKM56FAcjMzMRDDz2Ehx56qNPHmDdvHubNmxe7QVGfIz8PPdocuq9Vi8uHzw7bUe/wYnKOEZNyI5tkgcJ779AWfF6+G1WOlpDbaTsZ0g5/r63iXt5XUxdiZmQiCm5YiJB2eaV6dRlRb7ansUbyOE9lwrxgIW1nLyB2xof7bAjs1CQAGJLCjwc9zaAJ/jMP14ZAEAQUJmVgR0AbggdLP0dhUkbQfZwqdw0lxWgiOunYwm9j97qRHmabOmcrntm5EtUOG64dNhnTZFXmoTg8bjy7axW21h9vez6PcnKw9kraNRVONDp9SDUGtCWxe/HVYTvSTRqcNdgMrYbtrIiIqPvwLIyom3x0oBUXDrMgxaAe3D25sRE7Tswi+9URB+6bloqTshnUdtU7B3/AZctej2hbbRdD1Q01ZZLHOlbME3VKjikp5Pp11Uei+lBOFG/3b/pU8jjfkqLYJlj1ZE9FQKVVTry3T9ovdYBVC7OO72U9LVhgD4QPaQGgSBbSfnf8AL5DdBe4InmeaGki+G3+xfcf4P0zbwi5zY++ecXfDuJfe9Zix8V3Rzxx3s/WvI+X964PuU17JS0APLquAY+d2hZwu70i7ltZhyZX25WMylYvrhutvOBCREQUKzwLI4oRo1Z5IrqnXnm1HgBa3T5/QNtubUXonl0UmQ+PbIt4W7UPJFpBE/LDUijJeobsRJ0xMXNgyPXvnZgkh6gv8KjMVp9usCiWJetNqvt3R1im5uMDygmtCllFGxcpBvXfBQDIMJrD7j88JatLz2/U6mCWtUyIhUh+l789vj/k+iaXQ9Kv1+n14L8Hf4h4DB8f3RFyvRY6aNBx3newyYM6R9vf8JrjTn9ACwBLD9ojfl4iIqLOYEhLFCMz8pQBndOr3mfLpbLc5mYX21gI1+Ig0KWF4xXLtBoNLlFZHokfF07o1H5EiW5y5iBMyMgPun5XY3UPjoaoa+pdyiBn3qASxbIMowVn5Y9QLO+p95JttcoLyTkW9laPh7FpA1CSmqNYnmdOwam5Q8Puf0XRSV1quXR54QRouqFl02VF4X+X5ZN4yTW5HYpluxurIh5Dszt0EURx0ihFv+j2c/IKW/jJZImIiGKJl8uJYuScIWa8tF0aEPqC5K4eleVscRUbtQ5pZdDUrALsbarBydmDMT49DwCg12hxRt5wnKny4RgAXpp5Gc7IG449J4KhTKMF9278RHXbcweOxMSMgZiVW4jzC0bH8DshShyCIGD53J/h1X0bkKI3YndTNR7d8o1//c7GyhB7E/Uu8vchADhPJaQFgPfPuB6v79uIQy31AIAxabm4atikbh1fKOlG1m/Eg1ajwXdzb8O/D5SiorUJAJBlsuKKopOQFMFdOtNzhmDV+b/Ax0d3wKHSbzaUkanZuHbY5E6NO5w/T5mPSZmD8EPdMQBArjkJQ5Mz8aNvXvVv0+pxQxRFRVAauF7uuL05oucXRRFOrzQEvmH4FGSfaLFTkpqD+YNOwsJvGyTb2E+cqJtU7pLziWKP9o0mIqLEwpCWKEYEQUBRig4HmzpOjoPNWOtRSW9VzgOpE2qdNsnjByachQsHj4nqGCadHjcXnyxZFiyk/XHheNwk25aIopdiMGHh6FkA2nrQBoa0B5rr4PR6YNTytIV6vzqnNKS16gxBf3eT9Sb8bNTMnhhWRDJMDGnjJcecjLvGnNbp/adlD+51vbu1Gg2uHjYJVwdceDjQXCvZRoQIh9cTtN1Cq8elWFZma4zo+T2iDyKk59z3jj8DI2VVy6lGDRqdPv9jR3tIq1OenLd6RCTpedJORETdg2diRDGklf1FBaukVeuCwNliY6NW9uE406jsAxhL4W7TI6LojUzNljz2ij7sa6qJ02iIolPnkr4PZXTz+1BniEEuIqeb2O6AupdFqwxjbSpBbDu1StqDLXVBf4cDOVWqio0a5QUTecWs3dMW2JrlJ/YA7GxPRkRE3YglKUQxJD+Ve35LM2YPMvlvi7J7fHh/bytWHlP216Kua/W4FCf6mUZrtz6niyEtUcylGszIt6Tg2InbfgHghpVvI6sLf89DkzPxm/FnYqA1Nep9HR43Ht36DTbUHA16h0Qow5Iz8ZsJZyLf0vbcr+3bgA8Ob4PDqz65pF6jxTn5xfj5qJlBbwGm3mVzbTme2r4cVY4WVMhuxe7ui4XR2FrjwrKjdslkSIHY7oC6m0VlMrFapw1ZJitEUcSbB0rx1bE9OCu/GPMLRuFna95XbG/zuHDuF/9CgTUNvxo7G1pBg4VrPsAXx/bglJxCpJxoEeH2+RT7qlW1m2UVs44T1RQGlWsWrSeqbF1eER/ut6HO4cO8IgsGJ6t/rD7S5MHHB1uhATB/qAWDgmxHREQEMKQliimNSjXso+sacP/J6QCAF7c2Y+Ux9QkMOvG5n2TuWf+xYlmmiZW0RH3RqNRcSUi7oaasy8dcU30YGy+8K+r97tmwFIt2ruzSc6+rOYp1F9yB/x3ZjutXvB12+4+O7oBeo8VPS2Z06Xmp+9ncTpz+2fNoUJkwDOg9lbTlLR48vr4BbmVu5ZfGkJa6mUWlrcHNq97Bink/x9Kynbhm+ZsAgFf2bYBRq1OthgWAL4/tAQB8dHQ7PD6ff8K+1VWHQj6/Wkgrb2vgUJs84oT2KttXdjTj6yNtRRdrKpx4/swsxXFcXhF/WFOP5hPVt5uqXXjujEzoePccEREFwTMxohhSaV2FLTXugK+D384l75lF0VtTfUSxLN1g7tbnnJpV0K3HJ0pUY9JyY37MTbXlqHHYwm8o81n5ri4/9/qao2hxO/HB4a1RPO/uLj8vdb9VVYeCBrQAkGdO6cHRBLfsqCNkQGvQAHo2yKduptMoy1PbJ2r9xZoPJMuDBbSBqh02f0Abjl6jhVWlktesaHfQdk6ultW2r2sPaNuXfXlYOYZ9DW5/QAsAjU4fjrXw4j4REQXHkJYohowhPtyIooiWEH2sgvWvpcgdtTVIHhdY01Q/DHTGvePOUCybllWAU3OHxuT4RCR1w4ipMKv0Luwq+eSCkahojWwm8XC8og9b6isif157U/iNKO72huiXrBU0uGHElB4cTXCbq9Xv5Gl3wbDeUfFL/d802QXu9tZRh1vqu/V5rx46MbJK2hPtDpwqKa3avBIAUG5TBspVrcpA1sNb54iIKAS2OyCKIbVZYNs5vSKD2G5kcztR5WiRLFt61k0xO/6fJs/FnLxhaHTZkaI3odHlwILBY9gvkqibTMwciNIFd+HL8j1wRFBNFcxvSz+T7F8nm1wwHJvbiRaPNNy6b/wZyDCEDrQa3Q488sNXkmUenw/bGyoly34xaiaGWNta4uxqrMLivev86ypaGdL2BfKQdkrWIFxeeBL0Gi3m5A3DhIz8OI2sQ53DiyPN0sBoflHbnSaVrT6cNdiECdnKCkOi7vD8KZdi0v+e8j9ucjsimghs4ahZGJKUhl+ptLeS++OkuTAEXKgfnpKF8wtGqW4brN2BXSWR9QY5mXepbFttV4a0/CxAREShMKQliqFQIa0tzGywPGnrmkMq1RdDkzNidnxBEHDuwJExOx4RhTcyNQcjU3O6dIy/71wpqbKPNqStlF38Adoq61MMppD7ldsaFSHt3qYaxe27vzvpHGSZ2iZEW1d9RBLSHrc3QxRFXgzq5fY2VUsezxs0Cr8aNyc+gwlic5W03ZJVJ+CqkiRo2RuT4iBN9vrpE0XFxK9q/jrtAug0Wry0dz12yC54yf1yzGkwqfS/VSOfOKy9pYFab9pg7WrVQtqqVmV/ERbSEhFRKGx3QBRDphDtDmwhJiEAwI60XXSwpU7yOMeUBOuJ2X2JKHHJJ22qjTaktUtbHZi0OiR38rVF3uog35LiD2gBZe9Sl88bca9Fip89jdJK2hEpWXEaSXCbq6UB2LhsAwNaipsUvfIiV5PbobJlh2S90d/CKpLXYE0UF7fkPWn97Q6iqKR1qrSaVauk5fk+ERGFwkpaohgKVkn7zh4bvGEunfPKeuR+qDuGh0q/wBFbW/XsUVsDqmWTARXFsIqWiPquTFlIe/2Kt/Gfg5tx//izcEpuoeo+NrcT9278BGuqD6PeKQ1JB5iTO13Z+rvSzyWPx6fnSR7nmpMU+xxrbVQEzWrjvW/jp/i++hB8J95MzFo9flw4AbePnoUf6o7hz9uWYXdjFQAg3WDBz0edgouHjJMcp9ntwK83LMX6mqPwiSLMWj1+NGQc7hpzWkJV87a4fHhjVwuqWr04vcCMUwcGr5p2+7zY19y7QlqXV8R7e234cH/bBYmiFB3KWqQV3CextQHFkdqdCOd8/kLIfQJfB2Md0hpl5+9rKpx4dF0DalRC1h+qXRicrPwIvaXGhcuXtr3GDkzSwqARFH93APyv0UQulwstLS2w2WxwuVzw+ULM7EhEvYZGo4HBYIDVakVSUhIMhtieUzGkJYqhYJW07+4NP1ENT9ki4xN9mPflizgWpldjURJDWiJSVtICwCdlu7Cy8hAqrngQFpWZvu/b+Cme2blK9Xi55uROj+W4rCpX3qvUoNUh02iRVPv+Zdt3eOXUK0Ie9zcbP8WinSsVy1dVHcIAczLu3/Qp9jfXStZ9U7EPey75NYYHBIq/XPcRXtyzVnGMAmsaflw0IfQ314+8sLUZa4+39SHeXuvGwCQthqaq3zb90p51imUjUrK7dXzhLD3Y6g9oAeBgkzIoYkhL8aTXaGHW6mH3uv3L5P265dINZv/XybrwIa1WiPyGUXm7A0BZfd5u5TEnvq8IPQlfeYtKWe0JPN8nURRRU1ODmprgk04SUe/WfpGlsrIS2dnZyMzMjFlBA0NaohhKN2rDbxSEO9h0sSRxuKU+bEALACVd7GNJRP3DIEuq6vImtwMba8pw6oChinXLKw8EPV6kF4BSDEZoBCFk1dTEjIGKZS2yvoyRVF2tqDwYdN2DpZ8rAloAECHi+6rDkpD2+6pDqsdYXXUooULa9oC23bKjjqAhbXlro2JZuMrn7vb27tAXhgtTdEg3df58hSgW8i0pqq9NwQyydryW51tSQmwJpBpMUX1YDtWuTE1XTtlZSEsVFRVobJS+dwiCAK2Wr8tEfYHX65VMdlldXQ2Xy4X8/NhMFMuQliiGJuZEXpkyOkOPHXUdFQQtbt7iEgmnN3h1QrssoxXXDZ/cA6Mhot7uxhFTsXjvOjS7lZVPagEbADQG6QNr1OpwW8mMiJ43WW/CDcOn4qW9ykpLoO1C0oWDxyiWD7GmY0/ARFRq45YL1ctxj2xSq0DNsv08ovr7kMsX/nW3P6uwBf/+g/3MerOrSqzhNyLqZneMPhW3r/0wom11ggY/L5npf/yTEdPw6r6NaPGovz7ePmpWVGPpyf7MnCg4sTkcDklAm5mZiZSUFBiNxoRqK0TUl4miCKfTiaamJtTWtl1sbGxsRGZmJozGrs+Jw5CWKIaSDBq8fE4Wvj7qwBs7lTOCtxubqcdZQ8yykJZnbZFwRxAWbL/4V8jpwi3JRNR/jM/Ix64f3YMVxw/iiu/ekKw7amtQ3afRJQ0v7x9/Jkan5eKUnEIURtHv+oVTLsX1wyfjUEu9ZHmq3oQz8ofDrDLz+M9KTsGd65b4H4ebTAeILMhVI6/aDVbh5UnwPnmeEKmKvNL5mmGTuns4ITW71P+tpuYacXKeEaMz9Mg0s1qL4m/h6Fk4NbcIW+uPQwxoAuDx+XDU1oAhSenQCAK0ggYnZw+WVP1PyhqEXT+6BysrD8Lpa2vncdzeDLvHjbmDSjA1qyCqsQSZUqLLzi8yY+lB6UU/nu0ntoaGBv/XOTk5yMzMjN9giKhTBEGAyWSCyWSCVqtFVVVbP/L6+noMGDCgy8dnSEsUYxa9BhcMtSDDpMHfS9Vvy586wIhkvbRXFitpIxMupE3RmxjQEpFEviUVlw89CZ+W78Kr+zb4l5fZlJW0oiiiSRZ6Xlo4HidlKlsThKPVaHDagGE4LYp9UgzSK/CRBLCdDmll+4lB4oO+WC0aS9GEtALiWwkVrOp3RLou5ARoRPFwUubATr22AsBAa9vreizouqmSdkK2AauPOVHv7HgNZbuDxNba2tEvPC0tLX4DIaKYSEtL84e0gX/fXRF5R3UiioolxGX5/CQdkvTS9S0ukTO+RsAthg5ptbxViIiCkPenLVNpd9DqccErCyXVZiLvLvJZy8NV0np8XsnkO9GItP+tJ8HbHYS6hioPtqOZUb47VNiUk4QBgKEHb+cm6muibEkbxXEFyP/0fKylTWjeE23bdDode9AS9QNardb/t+yNoC1jJFhJS9RNLLrg10Dyrco3ZRGA3SPCqucHqVDcYW67jWY2XyJKLAXWNMnjj4/uQMF/HpYs86oElan6ngtpU2TPtbepRjHGQGof+ItTskP2om33wu41eG3vZji9bVGj3avepuedQ1vwTcU+/2OzTo9LhozHHyefB02Ur7n1Di9e3NaMg40dYaJFL+C8QgvOGtw2e/vRlgbc9v17KK0rl0wU2R6yG7Q6zB04Ek9OuxBGbexOZbfVV+COtUvwfU3HLPNWbSpma2bh07JKPFT6hWLiygZZa4x4hrRNTh+e+6FZdZ2hu1Ioon6guypptRpA/pLAegwiov4l1v2kGdISdRNzkLDVqBWQYdLApXKhZXutG9MGdL3ZdH8Wrt2BTsOQlojUBc4ODrRNiKVWTSvXk5W08pDWJ4oRjTHQzNzCiEJam8cFG1xht7N73YoxPLb1G4xKy8F1w6dENbaXtrdgQ6X0OWsdwL+2NqM4XY/ByTrcuvodfFa+W7Fv4Bie3bUaQ5Mz8cuxs6N6/lCu+u5NbK2vkCyz+5rxwfF38N7xyKojNHFsd7Bos3qLJYCVtEShaLvp1FErKBugMKQlIqJQmGYQdZMMk/pHtSHJWmgEAUaVO1yCTfhBHcKFtLnsR0tEQYxMzYl6nwHmZOg1PXdLorzaN1qpBhPOyBuuui5LP6hLx5YrrS2Pep/9DcFbM+w+MZnmhpqyiI61qupQ1M8fjMfnVQS07XyI/Pa1eL0H7axzYUtN8MA93cRTfqJg0o3d8/eRbtSotDsgIiIKjmdsRN0kSa/BuYVmyTKtAFw03ApAvSze6eXl9XBcIUJaAQLuHXd6D46GiPqS4SlZuGroxKj2uX/8md00GnUDram4Icrq1ED3jTsDlwwZj4kZ0sl4pmYWYkbKhUjSpnd1iH6decdyhHifq7G3vb7bPOGrewHgqK2hEyNQ5wnTSicSueZk3DhiagxGE71399iCrivJ0KMkQ9+DoyHqW3ItWkzP69ydbDPyjDCptBOZmW9EtkWraIESYh5CIiIitjsg6k43jE7C2YPNqLF7IQjA4GQd0k0dFVmTcgzYVNXxYZQhbXjyStpkvRHvnH4dAGBc+gDkyyYGIiIK9PppV+KecaejojX4reHtSlJzUJic0QOjknpp1uX45ZjZKI+yzcGIlCwMS8kCAHw/fyE21pShye1AjikJoicLf97YhHMzbkSduwIeMXhF66Mz8zExcwA21Zajxe30L//bjhWqbQiiEep9rtruhU/0RTwRWkxDWjHykHaQJRX/mvljyTKjVoepWQVI0vd8y6JddS5sq5X+zCblGHDuEDOSDBoUpeigZbsDoqAEQcAdE1Nw8XAPGpw+pBg0+M9uGzZXSy8YXTHSisIUnf9OufwkHXIsWtjcPhxo9CDfqkWrR4RPBAqS28735X96an3PiYiI2jGkJepGgiBgULIOg5LV/9SMsivvLoa0YblksyYOsabj3IEj4zQaIuprNIIGEzLyMSEjP95DCUoQBIzLyMO4jLxOH8Oo1eGU3EL/488PtQIAtIIO2YaCkPuOSs2ERafFrNwiyfL3D2/t9HgAwOsT4QmRhdbYfbB7IgtoAaDS3gKX1wNDDCYP80YR0uaak3HeoJIuP2esvLtXWkWbbtTgrkmpnCyMKAoaQUBhSkfF+ZRcoyKknZFnxACr8vXGqtdgXJYBAJCpOK70MStpiYgoFLY7IIoj+QcoVtKGJ293YND2XK9IIqK+qsYeeQjp8HTPe1G497gauxetEVbRAoAIEcciqIiOhFp1W5pOvYdxShyqZYPZVefC1hrpz2zBMAsDWqIu0ql8Su7M35Wi3QGb0lIv4HK58NZbb+G6665DSUkJMjMzodfrkZWVhcmTJ+O2227DV199BR9/YYl6HCtpieJIXkm79KAdSw/acfvEFMzM77nZxPsSl88jeWzQ8GWMiKid3ePDP35oxg/VLngCgkdvFJ+z7vquDreflIKZA0O/D/19x0os2rEaAGDWWDEp9VTcOGIKrhuVpHp7/aEmD3a3rsfu1nVw+Ryqx3wxxJxhKXoTPKIXrQHVtif976/Yf8l9ePNAKR7f+i2qHS0AAK8Y7Szqyo0LjCVo8FQpx2HoHe/Pnx5sxSs7WiTL0o0anDnYHGQPIoqUTuU1zNCJtiHyXNfXqW7eRLHz/vvv4//9v/+HQ4cOKdbV1taitrYWmzZtwvPPP4/i4mL89a9/xfnnn9/zA01whYWFOHz4MK6//nq88sor8R5Or7Ns2TKcfnrbXDTffvst5syZE98BxRDTDaI4koe07f5e2oSJ2QZY9Cx2l5NX0uo1/BkREbX75KAda487w28YxrM/NGFSrgHmgHIyeUseESJEnJjsy9eElfWfIPPAMIzJNGDaAGW16eMbD+GHlm9DPm+ooh29RoM8UzJ2N1b7lzW6HPjp6nfxXhdbMagZaByBbbYVEGWhSoo+/iHtcZtHEdACwIWsoiWKidhV0kofR3PBjCjWHn74YTz44IP+x2effTYuvPBCjB49Gmlpaairq8Pu3bvx0Ucf4csvv8SePXtw//33M6Ql6kEMaYniKNscPGD8vsLJahgVDq+0ktYYg16ERET9xaEmT/iNIuAVgQqbF0NTO96nrLrkkPuIENHkrcWe+gxFSOv1idjfcqxLY3pi6nx8fHSnJKQF0C0BrU4wIEmbhhz9YFS6D0vWDY3DZHJyR5u9imVpRg3O4nkDUUyMzTRIHmeYNOhM7YRew9Zm1Du8/PLL/oA2JycH//3vfzF79mzFdmeddRZ+/vOfY9u2bbjrrrtQXV2t2IaIug9L0IjiaGa+CYUp6iFjd/UE7OtaPdJJHKw6Q5AtiYgST4srdmVa8km+5g+cgiRtetj9KmzKoLisxYtWr73TYzkjbzguLzoJvxl/ZqePEY2x1lnQCFpMTD4LJo3Fv3x4chZuLj65R8YQikell8PPJiSzipYoRpINGlxWbIUAQK8BrhhphSBE//dl1Uv3aXHz/J56Xnl5OX7xi18AAKxWK7777jvVgDbQ2LFj8fnnn+NXv/pVTwyRiE5gSEsUR0kGDR6blY5ci/JPUe0DGAE2WUhrYUhLROQnDwAuL7bi0VnpeHRWOgYnKydafGxWOl47LxuvnputWCefTCtJm4y5GTfj3Iyf4Oz063Bl/o3KC2WiiOM2ZZXnvgY3nD5pSHtm3gg8M/X/cHb6df7/fpR7AzZccAc2XnAnGq9+BPZrH8Wxyx/El+feCovOgMlZg7Bm/sKQP4M0XYbkmE9P+j8sOf0XWHL6L3B53o2SdYH/nZtxHZac/gv8b859KLZMAQCk6DIxP/NnKL3wLmy76FfY9aN7MMiaFvL5e4L8luk8qxYTsnvPhGZE/cElI6x44ews/POsLMwe1Lkq9SRZ+a3NzX4H1POeeuoptLa2AgD+8Ic/oKSkJKL9NBoNrrnmGtV1K1euxLXXXovCwkKYTCakpaVh4sSJeOCBB0JW3y5btgyCIEAQBCxbtgyiKGLx4sWYNWsWMjMzkZKSgmnTpuH111+X7OdyufD8889j+vTpyMjIQHJyMmbOnIn//ve/QZ/r0KFD/udq7+v6zjvv4KyzzkJOTg7MZjNKSkpw3333oaGhIeTPYtu2bXjkkUdw7rnnYtCgQTAajUhKSsKIESNw/fXXY82aNSH3f+ihh/xjAYDGxkY8/PDDmDhxItLS0vxjnDNnDgRBwOHDbXfxvPrqq/792v8L7L+q9j2+//77OOecc5CTkwOr1YoJEyZg0aJFcLs7evqLoog333wTc+bMQU5ODiwWCyZNmoTnn38eYgQ5RGNjIx599FHMnDkT2dnZMBgMyMvLwwUXXIB333035DHax/vQQw8BANavX48rr7zS/3MdOHAgrr32WuzcuVOxb/v3296PFgBOP/10xc+oL/fx5X3CRHEmCALyrTpUtkrDR3kFE7UJnDAGACxafZxGQkTU+8gDgMIUHYamtr1OFqfrcUR2m3xRasdraKpBQKOr46Ra/j7U6vFBEASk6rIAACOS9dDXSINfESKOt3rhE0XJrOb7G91witKQdlhyJi4pKsTyw3WBB0C2IQODA+4yydNJX+dHpuSofu/ttDAiXT/A//j8IekYntZ2jO/L6iB61VtCZJs1uLAwC1WtXryxo9a/XCNoMCotN2gf+Xjw+KQffsy63jM2ov4kxdC1mqYkVtJSnImiiFdffRVAWxXtLbfc0qXj+Xw+3H777Xj22Wcly51OJzZv3ozNmzfjmWeewTvvvIOzzz475LHcbjcWLFiAjz76SLJ8/fr1uO6667Bhwwb87W9/Q319PS666CIsX75cst3q1auxevVq7Nu3D7/5zW/Cjv2mm27CSy+9JFm2e/duPPbYY3jttdfw9ddfqwbYgZNUBXK5XNi3bx/27duH1157Dffeey8effTRsOPYu3cvzjnnHNXJ27rqZz/7Gf7xj39Ilm3ZsgW33347li1bhv/+97/weDy45ppr8O6770q2Ky0txW233YZNmzbhhRdeCPocX3/9NS6//HLU1tZKlh8/fhwff/wxPv74Y8ybNw//+c9/kJSUFHK8zz33HO644w54PB3nZseOHcMbb7yB999/H59++ilOO+20SL/9foGVtES9gNrpmlcU4fSKaHX74EvAqtoWtxONLrvivwaX9EM+2x0QEXWQBwBJAQGDvDeinFa2vvVE4CuKbe9FTbJWCmadIAliAcAjutDqceJAow2NLjuaXG64vR7sqG2Bwyed6CrLZEWuRavoz76lRnrRUi7NaEaaIXhVmyBIg+MMU8fxQ7UDyDBpg25T7/Ci1e2Do4tXUNt/ll3pS+kTRTS7pPv3ovyYiAJYY1xJ6/D44PV1/XOBKIqKiz3UP23fvh01NTUAgFNPPRXJyaH7y4dz7733+gPaoqIiPP/881i3bh2+/fZb3HXXXdDr9WhsbMT8+fPxww8/hDzWb3/7W3z00Ue4+uqrsXTpUmzcuBFvvfUWRo4cCQD4+9//jq+++go33HADVq9ejdtuuw1ffPEFNm7ciMWLFyM/Px8A8OCDD2L79u0hn+u5557DSy+9hGnTpuGtt97Chg0b8Mknn+Cyyy4D0BYMnnvuuWhublbs6/F4YLVacdlll+H555/HsmXLsGnTJnz22Wd48sknMWTIEADAY489hpdffjnsz/DSSy9FeXk5Fi5ciC+//BIbNmzwf98vv/wytm7d6v/eFixYgK1bt0r+C/Yczz//PP7xj39g3rx5eP/997Fx40Z8+OGHOPnktjZN77//Pl5++WXcfffdePfdd3HVVVfh448/xsaNG/H222/7A+p//etf+Oyzz1SfY9WqVZg7dy5qa2uRm5uLRx55BB999BE2btyIjz76yF95/cknn+D6668P+XP4/PPPsXDhQowZMwYvvfQS1q9fj+XLl+Ouu+6CRqNBa2srrr32WrhcHeeFAwcOxNatWyVh+0svvaT4GV100UVh/x16K1bSEvVS7+1txXt7225LSdILuGlsMk7Jj/+M0t2t3NaIH33zCtbVHI1oe7Y7ICJqU+/wKsK/wCqucCGtvBjzr5uaADRBrwHUcgWzXoD8iCsa3wMAfPhB+PFmGi0QBAHjswz4+qjDv/z1nS347x4bLiu2Yv5Qi+q+RUkZKK0rV12nQUdIqxHaJtRqZwjxM2gPc03KrhC4Y1lHtW9hig6/mpyKbIvKhiFsrnLiuR+a0OgSIQAYl2XAXZNS0OTySY7/8CnpKE5Xv0tkY6UT/9zSJKl4BgBdmH9bIoqPJENsKmkrW734y4ZGHGn2wKQVcMVIK+YWqb8+hvPStmZ8frit6CHHrMHfTs9UXHCj/iMwKJ08eXKXjrV161Y8+eSTANp61q5YsQJpaWn+9XPmzME555yD888/Hy6XC7feeivWrl0b9Hhr167F008/jTvuuMO/bNKkSZgzZw6Ki4vR3NyMq666CjU1NXj//fclwdukSZMwZcoUTJw4EV6vFy+88AL+9re/BX2u9evXY968eViyZAl0uo4YbO7cuRg7diwefPBBHDlyBA8//DD+/Oc/S/Y96aSTUFZWJvle25177rn4xS9+gfnz5+PLL7/E73//e1x33XXQaoOfI2zbtg2ffvopzjnnHP8y+b+NXt92HpCWloaxY8cGPVagtWvX4s4778RTTz3lXzZp0iScffbZGD16NA4fPox7770XdXV1qj/32bNn+3/u//jHP3DeeedJju92u3HNNdfA7XbjvPPOw3vvvQeLxSI5xvz583Haaafh1ltvxfvvv48vv/wyaEX1mjVrMG/ePHzwwQcwGDo+05966qnIzMzEAw88gCNHjmDp0qW4+OKL/T+XsWPH+i88AG0XCyL9GfUFrKQl6gXCna61uEW8uK05Ia54/3Ld/yIOaAHAomO7AyIiAPhgX6tiWWA/RH2YTFFeSdsuWOGXWSdAGdNGLstkBQCMy1ZebHN6RbyxswU1dmV/WwAoSs4IelxtQCVtmlEjCR+MIX4GmSdC2nCTbx1q8uC9fbaQ28iJYtv7eHu4KqKtYvjrIw68vF1aYfy77+uDHuNfW5sVAS3ASlqi3krek7azkzu+s8eGI81ttwM7vCJe39miuLshEg6Pzx/QAkCV3Ydtte4Qe1BfF3hLek5O6HZB4fzjH/+Az9f2e/fiiy+qhpbnnXcefvKTnwAA1q1bh/Xr1wc93sknnywJCtsNGDDAH8pVV1fjsssuU62MHD9+PGbNmgUAWLFiRcixG41G/Otf/5IEtO3uv/9+f8i3ePFiSeUmAGRlZal+r+0MBgOeeOIJAMDhw4exefPmkGO54YYbJAFtrBQUFCgCZgCwWCz+qtba2tqIfu5qP8+3334bhw4dgslkwmuvvSYJaAPdcsstmDZtGgCE7A1rMpnw8ssvSwLadrfffrt/ebh/2/6GIS1RL1CQFL4ax+YW0ejs341qHR43Pi7bEdU+I1Kyumk0RER9y9FmZa/VwCquMwukLQLk1Zq5UVaG5ll1IcPScEaltn1YHJtpUI16RQAryh0qa4CJGQODHteqTfN/nWmSnuoOsAa/iay9D65GEML+LCpUJkcLpcklotqufA+vsHmwuVr6YTDY9ViXD6gPch6Qa43u346IeoZJdgXF3cmCiwqb9PXdK6q/5oeztUYZyH59xK6yJfUXgbfvW63WLh3rq6++AgCMGTPGfwu9msC+t+37qLniiiuCrpswYUJU2x04cCDoNgBwzjnn+FsIyGk0Gn+IWVdXh02bNoU8ltPpxJEjR7Bjxw5s27YN27Ztk0yUFa7Nw9VXXx1yfWf96Ec/8lfgygX+PC+//PKgx2jfrr6+XjGZ2v/+9z8AwOzZs5GdrZxwNlB7H9nvv/8+6DZnn3120AsHycnJGDFiBIDw/7b9DUNaol7g/CC3c8rZPP27knZl1UHFxGChXFAwGgsG959bG4iIOksURRxqkn5gn5FnlFSRZpq1uKzYCgFtk4RdOVL6Ye3ykVZJ/9ZQSjL0OL3AhCemzkeWMboPfQIE/HTkdEzJKgAAJBs0konCAjUHqRT7v5IZmJ49RLE8RZuFkZZp/sc5srB1XpEZQ1Sea2K2AdPzOloKXT86CZYQk3FF2xOyslU91I2mPWWw58y3arFgWNc+eBNR99DKXlI729Zabb9gdxqEohYS9/cikEQX2IPWZovuLpBATqcTe/fuBYCQAS0ATJw40R8Wbtu2Leh2xcXFQdcFVq5Gsp1aL9lAU6dODbm+vfITaGvrIGez2fDoo49iwoQJsFqtGDJkCMaMGYNx48Zh3LhxmDhxon/bwFvx1YwfPz7k+s6K5c8TUP5MN2zYAKCtl6wgCCH/+8tf/gKgbTKxYNQmaQuUkZGhOo7+jj1piXqBDJMWt41Pxj+2hH4Bau3iZAO93adluySPJ2cOwodn3qC6rVVnQLqxc724iIj6myq7D62yC3nXjFLOqHvJCCsuHm6BAECQ9SAcmqrHc2dkot7pw4Or61UrP/8wIx15SVr/jOezBwxD5ZW/Q0VrM3yiDz/7pq236sbmL1Dh2i/Z1yiYcXbGDRiaYsHfTsmTrBudocfhJmVVWLAJtrJMVnw/fyGqHS1wej247etaaAQNjIJF8n3JK2IzTFr8+dQMNDp90GoAUQQESCdYA4DJuUa8eHYWGk6EF2uPO/Hqjo62BNEGLcdt6hVv0VTVqT3lo7PSUZSiU/xbElHvoJX9bXZ2MmC1lmc1Kq/R4ag9vaOfF4EkuszMTP/XlZWVnT5OfX1HK55wbRP0ej0yMzNx/Phx1NXVBd0u2O3yQFt1azTbtbdhCCbcmHNzc/1fy8d86NAhnHHGGTh48GDIY7Sz20NXp6enp0d0nGjF8ucJAF6v9EJQVVVV1GMK9bMINY7AscjH0d8xpCXqJcL1wAPaWh70Z5+V75Y8nl8wCoOsafEZDBFRH3KwUXoXQrJeUNzq3y7UBDGCICDDpMUFQy14SdYrFQAyzRp/QNtxPA0GWlMBAAVWL2odPli1KSrPq4VFmwyrSj+40ZkGfHpIeSIfLjzINiVBFEVYtC7V9fJK2napxvAVw1qNgEyzVnV7T5RBy/EglbTRhL1qeW6GScuAlqgXU1TSdvJUXq1OozOVtGqvI44gF8Oofwi8zT3cbfyR6ovvO10Z87XXXouDBw9CEATceOONuOKKKzBq1ChkZ2fDYDBAEAT4fD7/ZGFimHOEUJOK9WbtYencuXNVe99SbDCkJeoljBGEtK39OKQ91FyHHQ3Sq7tzB4W+BYKIKJG1uHzw+ESkmbQ41Cit1CxK7Vp15fQ8k2pIG+6tqv2Co1GjvP1eONFlS68yQVlJhnoPtV31btTavcg0a9Hg9EErtFXX6jQC0k4Ep80h3huj7bMbjLzzgccHNDh90ABIiSDwrQzSw1beZzJwuUYQkG3umPhMLVwJMtcbEfUS8kraVrcInyjC5QXqnV4kGzQwagTUOKSvEQLaLjK1//2rVdJWBbn4I9fg9CFJL6DO4UOdU7kPK2n7tzFjxiArKws1NTVYsWIFmpqakJKivJAaTmD1Z7iKXI/H45+wrP2W9XgLN+bA9YFj3rVrF1auXAkA+M1vfoNHHnlEdf9QFcP9RWZmJo4dOwaXy+WfaI1ijyEtUS8RSSXttloXTh1kCrtdX7Ol7hgmLPmrZFmG0YIpmQVxGhERUe8liiJe3NaMr460Tao1Idug6FdamKIeekYq1ahBYYpO0edWHjjItU+oZdIob2HTCG1hpk4l05RX57arsfvws29qVddNzjFgwTArHvy+XnU9ELySNlo6WRpaYfPip1+19ZybnmfE7SelQBsiMQ1WSVvWor78zmVtH/bSjRr8ZloaBqfosLxMWWnMkJaod5Of3osArvykOqJ904wa3Dc1FTkWLWodylLabbVuHGh0Y2iq+uu9w+PDnzc0Yntt6PkeWEnbvwmCgP/P3n2HR1GubQC/Z3s2vUIKvTfpTUBAwIIUsSBgoYoHFDt61E/FemzHo6JSBEUUkY5iUBCpIr33XkMo6X3rfH+EbDI7syXJpt+/6+K6dqftu0uy2b3nmecdPXo0/vvf/yI7Oxtz5szB888/X+zj6PV6NGnSBKdOncKOHTvcbrtv3z5YLPk/d5UlzNu1a5fX64uO+ciRI47b7ibcKujX6iuVsVq5ffv2uHLlCnbv3g2z2QydTldhY6mMr4+vcOIwokpC58U3rW2JpnIYSfl794B81s87YppCreJbFBGRs0uZNkdACwAHbphx2OlLeIPg0p+HvzVGL1vm6U9VbEB+KGooZiUtUPyq1z3XzW4DWgBeT4TmiVKwXGB7oglHU9yHIK4mDvMk1WTH8tPZsIsiFhyXT/jCv5JElZsXNRgupZnsWHY6B1sS8lxus+yU64mgtieaPAa0QMn75FLV8dxzzzn6f77xxhs4fvy4hz3y2e12LFiwwHG/f//+APKDy507d7rcb86cObJ9KtratWuRmJiouM5ut+P7778HkF8x3KFDB8c6q7XwZLW7iddmzpzpo5HmMxjyC7NMpsrz/X/IkCEAgPT0dHz33XcVOpaC1weoXK+RL/CzHVElEROghqfPcRF+1fNX9nCqfNbHB+u3VdiSiIgSXFwiX1SdwNKHtP3r+sGvyHX+oXoVjFr3f6nuqOcHAAjWRMrWBarzLx90rkotML61fKKz0mgconHbf7c4QvXuA2R3lx3bRRGZ5pKHINdybIr7a1SQ/P8QUeXjrsLeG0m5NpeV+ABwxUU1PpA/4aE3utSWn5Cj6iU2NhZffvklgPygsXfv3ti0aZPbfY4ePYq77roLH3/8sWPZpEmTHJM5TZw4ERkZGbL91q5di7lz5wIAunTpgs6dO/vqaZSKyWTCE088oTgJ1QcffIBDhw4BAMaNGwe9vvB3okmTJo7b8+bNUzz2jBkz8Msvv/h0vNHR+ROsnjlzxsOW5Wf06NGoUyf/StcXX3wRmzdvdrv933//7fHnrKQKXh+gcr1GvsB2B0SVRKBOhfGtAzHncKbLbbKqaU/aK7nSP/DtwmIwrF7luDSGiKiyyfIi8Iv0K/1l/v5aFSa3DcJ3RzKhFoDxrQM9hp594gw4mmzBwaRQDKzdD+uu/Q2zaEKIJgptA/oAAHQuhnZLhA6DGxqx6mxOqccO5I/XV+IC1fDXCi4n8DS5uVy4tJN+5lpFJOfJv1Q+3yG4Wl/uR1QdlKaSFsjvRZ3r5j0kW2lGsZtYIEtFjR07FpcvX8Ybb7yB69evo0+fPrjjjjswdOhQtGjRAiEhIUhJScHJkycRHx+PP/74AzabTTLxWJs2bfDCCy/g448/xoEDB9ChQwe8/PLLaN++PbKzs7Fq1Sp88cUXsNls0Ol0mDVrVgU+Y6lOnTph1apV6NGjB5577jk0adIE169fx/fff4+ff/4ZABAXF4fXX39dsl/79u3RunVrHD58GLNmzUJqaioeffRRREdH4/Lly/jxxx+xdOlS9OjRA1u3bvXZeG+99VZs2LABu3btwgcffIC7774b/v75Vyn5+fkhNjbWZ4/lLb1ej8WLF6NPnz7IysrC7bffjhEjRuDee+9FgwYNYLfbkZiYiD179mDFihU4dOgQpk+fjt69e/t8LHXr1kVcXBwuX76MTz75BHFxcWjWrJljUrZatWohMNB3nwPLE0NaokpkQD0/9K9rQMF3vfMZVry2tfBSziyzHaIoVqsvZdkWE9LN0su4FvV5tFo9RyIiX8py86UcAAK1Agw+qrDsUluPzrV0Xr8nGzQqPN8x+Oa9u/Gfnd2w93oeVEJhMuuqklYQBDzSIgCPtAiAKIrIsYoYtzbJ67GqBGDB3ZE3b/v2b4hKENAiTIvd18yK692HtO7/vwDg0RYBGNjAD3YROJRkxge70h3rcqwiUp36UYbqVehYi9VvRJVdcSppBQBP3BKImQcLCzZEALlu3l+yLKLL7wau2r10rqXHrmuFVbbpJs/vUVQ9vP7662jVqhVeeOEFnD9/HmvXrsXatWtdbt+qVSt89NFHkmUffPABsrOz8fXXX+PMmTOYOHGibL/g4GAsXrwY7dq18/VTKLEnn3wSmzZtwrx58zBixAjZ+ujoaKxZswbBwcGS5YIg4IcffsDtt9+O1NRULF68GIsXL5Zs06ZNGyxZsgQxMTE+G++kSZMwY8YMpKSk4JVXXsErr7ziWNe7d29s3LjRZ49VHN26dcPGjRsxfPhwXLp0CQsWLJC0xHBWkknqvPXqq69i8uTJOHfuHIYOHSpZ991332HMmDFl9thlqXpeO01UhQmCAI0q/5/zRCo20f0XwaooMVdeORxtrJpnvYiIykOm2f0X6ggfVNEWVZqTZs3DdJKAFgC0Xnz6FAQB/loVGod4X09QNzC/vYGvA9oCLcNcT5Bh9hCieBKkyx+3RiUgwOkFyrXYkeIU0vqq1y4Rla3iVNIG6QTZRMJ2UUSu1fV7iE2Ey/XBeuX3Cef31TRT9fpuQe7dd999OHHiBBYsWIBHHnkEzZo1Q2hoKDQaDcLCwtChQwdMnjwZ69evx6FDh3DHHXdI9lepVPjqq6+wefNmPPzww6hbty70ej2CgoLQrl07vPrqqzh16pRsv8rgu+++w08//YQ+ffogPDwcer0eTZs2xUsvvYQjR46gZcuWivu1a9cO+/fvx7/+9S/Uq1cPWq0WYWFh6NKlCz755BPs3LlTcvm9L8TGxmLnzp0YP348GjduLOnBWtG6deuGU6dOYebMmbjnnnsQExMDnU4Hg8GAOnXq4I477sB7772H48eP47HHHiuzcUyaNAnLli3DHXfcgaioKGg01aMGtXo8ixLw9guHN2cpfv/9d8yePRu7du3CjRs3EBkZic6dO2PixIm4++67fTBaqqkCFHr/Xc+1o26gCla7iIuZVqgA+GlV8NPIQ92q4EpOuuR+oFaPQG3l+SNERFTZeAr9Ios5AVdZahoqn3XcXow8oHmoFqfTPPfgBYC4gLJ93i3DlWdQB4BjKRZY7SI0KgFZFjsuZ1phF/Orey+76RlZoGgw49xn1mwH9t+Q9pYMM1Se/2Micq1YIa1eJaugEsX8EzXuZFlEGBXenlydsKrr1LM83cOJP6p+dDodRo0ahVGjRpX4GL169UKvXr2KvV+fPn0getGLY8yYMV5VQk6bNg3Tpk3z+vFHjhyJkSNHer19gbp162LGjBlut3H3vIo7TgBo1KiRZBI2JfXr1/fq9fT1667X6/HEE0/giSee8LitM2/GAcCrauH77rsP9913X7HHUJnV2JDWF+x2OyZOnOhojF0gISEBCQkJWLlyJSZMmIBZs2Y5GmwTFYefRoBKkH6hnbo5Bf+6JRDLTmXjRq70Q9VzHYLQLbpqBZzT9kkvsYkxlt0lEURE1cGmy65n+gaAyEo0yWSjYHlycDHTu9AVAJqF6fDbuVyvto3zwWRp7tQL0sBfIyBboWrtWIoFz25MxuCGRnx7JMvtcQK0gixoLxqlKE3O5txmgZW0RFVDcdodBOtUcM5V7SJw0sOJqiyLHVGQn7hZdVZ5JvpQp/ePDJMddlEss6sQiIjIezU+pJ00aRImT57scn1Bc2Ylr732miOgbd++PV566SU0atQIZ86cwUcffYR9+/Zhzpw5iIyMxPvvv+/zsVP1l3+5pyCb1blor6qi5hzOrHIh7Yar0tkYa/ux1QERkSt5Vs8VT75ud1AaSr1xQ/Xej6+ZQiWuK3EBZfuxViUIaBHuui/tjVy7x4AWyP//ybJIQ5eir5NzJa0ShrREVUNx2oMH6VWyoNSbNmdKV1eYbSJMCkX8KkHeBkEEkGkWEaxnSEtEVNFqfEgbFRWF1q2LP4v8yZMn8cknnwDInylw8+bN8PPzAwB07twZQ4YMQe/evbF79258/PHHGDduHBo3buzTsVPN0DBYiwM3lL8QOnMOcys7pUsdArWcCIWIyJU0LyZ4UWoxUJEeaOKPpacKK7r61PH+ZGKwXoWmIRqPlWRqAWhSDs+7W22Dy5DWW83DtLCLhRXFgVpB0u/W4MX10eXxXImo9Pw0AiL8VEjK9fze3TBYixCnADU5z/N+VoUgN9XF34p+dfzgr9AYPM8mIlhheyIiKl88DV9Cn332GazW/A/X06dPdwS0BYxGI6ZPnw4AsFqt+N///lfuY6TqYXzr6ltZalcIaV+7pX8FjISIqGpQKqRtG6mDv0ZApJ8Ko5r7o1Fw5ToHP7ihH3rHGRDtr8bQRka0j3Q9AZeSibcEIdq/sPq2YbAG0f5q+GsE+GsERPurMemWIFm4URZ6xuoxtJERoaV4rAeb+GNS20A0DdWifpAGU9oHQVskmPU0b8KDTf3RMowhLVFVIAgCnm7nOv4M1AkI1qvQN86AO+v5oX6QxmMfW+dqe6Vi29Q8eRltmwgthjfzV5y80d3kh0REVH4q16f4KkIURfzyyy8AgObNm6Nbt26K23Xr1g3NmjXDiRMn8Msvv+DLL78s1QzJVDPVMqrxfIcgfLo3o6KH4nM2UZ42hOmNFTASIqKqweo065ZaAF7tElIxg/GSQaPC5LYl7zdeJ1CDz/qE+3BEJScIAkY1D8Co5gEAgPlHMxHvZc9cAOgerUeAToUAnQrv3BrqcrvYADUSFCYcu7OeHx5o4roVFxFVPs3CtHiiTSBmHZK2K3uhYzC61JZfQVYvSIOz6a6vHtA4haxKRQ/pTpW0tYwq/F/XwvccrQooOh8ZQ1oiosqBIW0JnDt3DleuXAEA9O7d2+22vXv3xokTJ5CQkIDz58+jQYMG5TFEqmaK08i/KjX+V/pQqa4iYyciqgjOk3xrijEpDflecV99b/+/XG3lPOEPEVUNWoXffVdvB41DtO5DWkFAfifZfIqVtE4hbYhTL3CdWoClyEk/s50hLVU/9evXV2yvR1SZ1fhPekuWLEHLli1hNBoRGBiIJk2aYPTo0diwYYPLfY4ePeq43bx5c7fHL7r+2LFjpR8w1UjFyS29mFOmwuVZLdiQeBq/XT4qW1dVAmYiovJyLceGXVdNuJptlfWkda6oovJV3L9ZOi//v1wdlxOGEVVNGoX5El39NjcOcV9H5fy+fyFDHug6V+I7t4PRqYo/QRkREZW9Gl9JWzRwBYDTp0/j9OnTmD9/Pu69917MmzcPwcHSPkKXL1923I6Li3N7/Dp16jhuX7p0qdjjK/pYShITE4t9TKp6ivMV0GoXofNi0pGKkmu1oEf8l9iXkqC4Xi3wCygRUYHNl3Px1YFMl+uVqrOo/BT3vKK3lbSuNgs1KCQ9RFTpFaeStkmI+57Tzu8jK8/kwKARMKxxfiuUK1lWrL0gbcMiC2mdvitY5N1ViIioAtTYkNZoNGLIkCHo168fmjdvjoCAANy4cQObNm3CzJkzkZycjJUrV2Lo0KH4888/odUW/rHMzCz8shQQEOD2cfz9C/uGZWVlFXucRUNeqrmKF9KW2TB84s8rJ10GtACgUTGkJSIqsOJ0jtv1ShPAUPkpbkbu7UlUlyFtOUyORkS+p/RerXLxi1775sSI2Vbl6lalwPfXMzkY2sgIlSBg0+U82fpgWUgrXc+etERElUONDWkTEhIQEhIiWz5gwABMmTIFd999N/bt24dNmzZhxowZePrppx3b5OUV/uHT6dzPUKzXFzaDz831fmIJoqKMWu+/BebZRJR8epaydzEr1eU6P7UWkQb3Jz6IiGqSK9nuy5sae6i4orJV3EpmT5cxF2gULO9JGawTEOPPSlqiqqhBkBZqobB/rFoA6gcpvx+oBAHto3T4+4pJti42QI1W4VpczJS+P+RYReRYRQRoBdmkYQDQIkz6t0LjdBmAjX07iYgqhRob0ioFtAVq1aqFpUuXonnz5rBYLJg+fbokpDUYDI7bZrPZ7eOYTIV/XP38/Io9Tk8tEhITE9GlS5diH5eqFudLlNzJdXHWvbJIMbuuCutRqz60Kn4BJSLy1rhWgRU9hBpN76EyNtyggk4tQK8W0C1aj64KM7krGdXcHxa7iJOpFog3j/NQswCo2d6CqEoK0qvwQsdg/Hom/3PwkEZGBLlpUj26Zf57+9l0q2OKsNpGNR5uEYBIPxUyzHZsdQpxs8x2BGhVsDoFrno10DJcWljk/FbCQloiosqhxoa0njRs2BADBgzA6tWrcfr0aVy5cgUxMTEAgMDAwi9EnloYZGdnO257ao2gxFPPW6oZnGdkdSe3kvc7SDG5rijvU7tROY6EiKhqG9XcH0G8/L1CuQtp3+wWIgtGvGXUqjCpbWW+LoaIiqtjLT061vLuRE2QXoUp7YNdrp/SLgg7r96ApcjH/kyziNr+8tZn9zQwyvZ3fuuyM6QlIqoU+MnejZYtWzpuJyQU9tAsGpx6mtiraCUs+8tSSRk03lfOVPpKWpPrSlqGtERE3nOenZvKn7tzqGEGfswmorIhCAICnBrdZt1MbJ1DWqUKfJVTuwOGtERElQMrad0QXEzZWzS8PX78uNtjFF3fokUL3wyMyI3KHtKmumh34KfWonMET2QQEXnL20moqOy4q6QNM7B9DxGVnUCdgNQiHQ+2XslDuEGNXdekbRCU3qacc9s1F3IQF6hG81AtBEGA2SZi/tEsJGZb0ShEi0g/NaKMKrSJ0MkCXiIi8h2GtG4cPXrUcbug1QEANGjQADExMbhy5Qo2bdrk9hibN28GAMTGxqJ+/fplMk6ioip7SOuq3UGPWvWhU/MtiYjIW576oVLZcxWUB+kEhuhEVKbyK2kLJ5fckmDClgT5ZGMahUpa55z1UqYN07alYXhTf9zX2IhH/7jhWHc42eK43a+uARPbsBULEVFZ4XVYLpw7dw5//vknAKBRo0aIjY11rBMEAUOHDgWQXym7fft2xWNs377dUUk7dOhQl5W5RL6UbancPWlTXbQ7YKsDIiIpu4fZthnSVjw/F+2IWEVLRGUt0M3EY0VpFTa7nGlV3HbthVysPud6/oiNl/Jg5ixjRERlpkaGtKtWrYLVqvyHCQCuXbuG+++/H2azGQAwefJk2TbPPvss1Or8D+BTpkxBbq70j1lubi6mTJkCANBoNHj22Wd9NHqqqZ7ycgKRlLzKHdJaRfn4DGoNRjRoV/6DISKqxPLcXBmhUQFNQrXlOBpSUj9IC4NCWH5LRMkmDCMi8pa3J+rqBMqvVMtzEbSmm+z45Uy24joAsImVvyCEiKgqq5HXFk+ZMgUWiwX3338/unfvjvr168PPzw9JSUnYuHEjZs2ahaSkJABAz5498eSTT8qO0bRpU0ydOhUffPABdu/ejR49euDll19Go0aNcObMGXz44YfYt28fAGDq1Klo0qRJuT5Hqn56xOpxJduI5afzK1Gbh2oRoBOw+5pZsl1yJQ9pnSvDNIIKv/Qbi0ZBERU0IiKiyilHIaSNC1Aj2l+Nu+obEaKvkefaKxWDRsBrXUPw29kcpJvsUAn54fmDTfwremhEVM3pvCzYbxUuP2mU31dW/jfGmxpZEytpiYjKTI0MaQHgypUrmD59OqZPn+5ym/vvvx9z5syBXq9XXP/ee+/h+vXr+Pbbb7Fv3z6MGDFCts348ePx7rvv+mzcVHOpBAEPNQvAQ80CJMvXXsjB3MNZjvspeTbnXSsV55B2Rb8xuCO2WQWNhoio8lIKaT++LYyTtlQyTUO1eL5jcEUPg4hqGG/6XveIUf4eq9Cm1sHuIYN1VYVLRESlVyNLML7//nu89dZbuOuuu9C0aVOEhYVBo9EgJCQEbdq0wRNPPIF//vkHS5cuRUhIiMvjqFQqzJ07F/Hx8Rg6dChiYmKg0+kQExODoUOHYvXq1ZgzZw5Uqhr5MlM5CXfqe5ecW8kraZ3O0avAsIGISEmO0yWlfhqBAS0REQEAdO6S1puauWiL4y7fzbK4D2HdteIhospHEAQIgoBp06ZV9FDICzWykrZ3797o3bu3z443cOBADBw40GfHIyqOcD/pSYBUkx1Wu6g4k2tFyrGasfjcAVzISpUsZ+BARCSXa7XLJm8xupikioiIah5vKmldh7TK7Q7gcmmh+HO5iPHXIKgULXfOpFlwJNmMxiFatFRox0DkKxs3bkTfvn1ly9VqNYKCghAcHIw6deqgY8eO6NmzJwYPHgydjj+TVHFqZEhLVJ1EKMwgfTjJjHZRypc3VZT713+PPxJOyJYzpCUikvtoVzqOplgky/wY0hIR0U3eVNIqTRoGuG934MnOqyYcTzHj8z7hMGqLH9QeTjLjvZ1pjrYKT7UNQq84Q8kHRFQCNpsNqampSE1Nxfnz57FlyxZ89tlniIyMxNNPP41///vf0GgYl1H543X4RFWcv1b+KeuY0xf7inY1J0MxoAUAvZp//IiIikrOtckCWgAIKMGXYSIiqp48TRwWblBB7SKNbR6mXGHrrQyziPhzOSXaN/5cjqTv7eaEvFKNhchbkyZNwqFDhxz/tm3bhtWrV+ODDz7AgAEDIAgCbty4gddffx09evTAjRs3KnrIVAPx0z5RFScoVKJaPXX8L2eXstMUl4fq/NAxPK58B0NEVMnluuj31y6Kl98REVE+T1ejPdYywOW64U39Sz0rxIZLJQtX9143S+4fTDK72JLIt6KiotC6dWvHv27duuHuu+/Gyy+/jLVr1+Lw4cNo3749AGDnzp0YNmwYzGb+fFL5YkhLVA3cFiu9RMhkq6CBuHA1N1O27F/NumPT3ZMRoK1cbRmIiCqa0vSPY1oGYGgjY7mPhYiIKid3Ge3T7YPQtbbrz9i1/TV4q3so7qznp7g+UOc5wk3Oq9yTFRMVV8uWLbF161ZHULt161Z89dVXFTwqqmkY0hJVA0FOH6TMlayS9lpeluR+p4g4zLj1frQJi66gERERVV6i01u4AODuBkb28CYiIgd3X+R7xBgUr7YrqlmYFuNaB6JfHXk/2H/dEoRF90Rh0T1R6BXru4KKHIs82NV7MQEaUXnx8/PDDz/84Pj9+eSTT2CxKLcSvHr1Kl577TV06tQJYWFh0Ov1qFOnDoYPH45169a5fZzU1FR89913eOSRR9CyZUsEBARAp9Ohdu3auPPOOzF79myvq3h/+ukn9OnTB6GhoQgICEDr1q3x5ptvIi0trVjPnSoHNoMkqgb0TpPJ5Lm4VLaiXM2RVtLW9gusoJEQEVV+olNKW5oJXoiIqHry1Xm7cD95c9uic14YNa7jYFEUPYbBRV3LkV/uF25g3RhVLq1atcKAAQOwdu1aXLlyBbt27cKtt94q2WbBggV44oknkJ2dLVl++fJlLFmyBEuWLMH48eMxc+ZMxQnI2rdvjwsXLsiWX7t2DWvXrsXatWsxc+ZMrF69GrVr11Ycp9VqxahRo7BkyRLJ8iNHjuDIkSP48ccfPYbFVPnwHZGoGnA+A73jqgl51oq9BCk5LxvvHVgH4/xX8Pq+PyTravsFVdCoiIgqP+d3bxbQEhGRM1+dwAvRyyOBohNVGhUmKS5wJNn7yYovZVrxxb4M2fIMM9smUOXTv39/x+0tW7ZI1i1evBiPPvoosrOz0bBhQ3z66af4448/sGfPHixbtgwDBw4EAMydOxcvvfSS4vFtNhu6du2Kd955B7/99ht27dqFrVu34scff8Rdd90FANi3bx9GjBjhcowvvviiI6Bt1qwZ5s6di127dmHdunV44okncP78eTz00EOleh2o/LGSlqga0Cl8Svt8XwZe7hxS/oNB/ln1u/78BruTLiuuZyUtEZFrSu0OiIiIivLV3waDRn6kopW0/m4qad/ZkYavbw9XrMYtKiXPhtf/SVWcGDPLIsIuimzpc5Mo2mE3JVf0MMqVSh8OQahc9YMdOnRw3D558qTjdlJSEiZOnAhRFDFu3DjMmjVLUinboUMH3HfffXjttdfw/vvv4/PPP8cTTzyBZs2aSY6/fv16NGnSRPa4t956Kx5++GF89913GDduHDZt2oS//voL/fr1k2x36NAhTJ8+3fGYmzZtQkBA4WSB/fr1w6233orRo0eX7oWgcseQlqga8Fc4w73vuhlmmwhdBfR5Op2R5DKgBYAog+vZZomIajrnr7Bsd0BERM5c9XKtZXQfmDqL9ZdvX7SS1tMkYgeTzOhbR3kCsgKHk8yKAW2Bc+lWNArRehhpzWA3JeP6z1EVPYxyFTXiOtSGyIoehkR4eLjjdmpqquP2jBkzkJ6ejtjYWHz99deKrQwA4K233sL333+PhIQEzJ8/H++9955kvVJAW9TYsWPxxRdfYP/+/Vi5cqUspJ05cybs9vwq9NmzZ0sC2gKPPfYYfv75Z/z+++/unyxVKpXrdAURlUjrCJ1smQjAbKuY3rSnM5Pcrjdq+CGMiMgV57kfBdbSEhGRk+ZhOsVCjcfbFO+KtXpBGjQKLgyautTWS4o8bonUweCm6CPL4vn7hruAFgDSTGx5QJVL0dAzM7NwfpVff/0VADBo0CDo9a4n1dNoNOjevTsAYNu2bW4fSxRFXL16FSdPnsThw4cd/2JjYwEABw4ckO1T0Gu2TZs26Nixo8tjjxs3zu1jU+XDSlqiaiDMoMbrXUPwzo40yfKKmj/sbGaK2/U6Fd96iIhckbU7YEZLREROgvUqvN09FH8n5OFIshk6tYD7mvijVbi8eMMdQRDwf11D8OfFXOhUAvrVlVbFhhnUeOfWUPx9JQ9ZFjv+upgnWZ/rxTwYnupGMtmXliqZosFsUFD+fCo2mw379+8HAMyaNQuzZs3y6lhXr15VXB4fH48ZM2Zg8+bNksdzlpQkLYAymUw4deoUAKBz585uH7tLly5ejZEqDyYlRNVEg2D5r7PNuRyrnJzNdN9HSa8u3mVYREQ1iejU8IDtDoiISElcoAYjmpe+jZhRq8LQRv4u19cN0mBUUP7jWO3ApsuFQW2eF1UhVg/fSTh5GFU2RYPRsLAwAEBKSgqsVmuxj5WTkyO5L4oiHn/8ccydO9er/XNzcyX3U1NTId48ox8V5b41Rq1atYoxUqoMGNISVRNKVyFVULcDVtISEZWC83dZ9qYiIqLKwug00ZinVgaAN5W0FfSlpRJS6cMRNeJ6RQ+jXKn04Z43Kmf79u1z3C6Y9MtmszmWTZgwAc8884xXx9LppNXt3377rSOgbdeuHZ599ll07doVsbGxMBqNUN8saHrsscfwww8/OAJZJQIvt6p2mJQQVRNqhTdoT2etS0MURcw7vQvrrpyCxW5DhsWEQ6mJ6BFVH5uvnXW7LytpiYjkbHYRq8/nYtWZbMlyfv4mIqLKwuAU0q6/lAd/rQo3cm0QAET4qWEXRSTn5VfHCgAO3jC7PeavZ3NwPdeGJ9sGVcikx5WJIKgq3SRaNdGff/7puN2zZ08AhRW1QP534datW5fo2N988w0AoHHjxvjnn3/g56c88V5KinLhU0hIiOP2tWvX3D6Wp/VU+TCkJaom1AqlVtdybIgJKJtf8+9O7cL4rYtly5ecP+hxX1bSEhHJLT6ZjZVncmTLWSVBRESVhZ9G/jdp1Vn5367i2p5owqRbRICTZVIFO3z4MP766y8AQJ06ddCpUycA+RWxrVq1wpEjR7B169YSH//IkSMAgCFDhrgMaEVRxN69exXXGQwGNGnSBKdOncKuXbvcPpan9VT58Ao6ompCpfAlPjHbprClb8RfPlbifYN1Bh+OhIioeth51aS43N2s2kREROWJf5OoOsvNzcVjjz3maDHw4osvQqMpLDAaMmQIAOD48eNYs2ZNiR6joK9tdna2y21++eUXJCYmulzfv39/AMChQ4ckrRmcffvttyUaI1UchrRE1ZitDHvwp5hKdsa8RXAU2oXF+Hg0RERVm10UcSNX+cRazxh9OY+GiIhImdoHs1l2iNIhUMuwlyqXo0ePomfPno7Qs3fv3pg0aZJkm2eeeQYBAfmT6I0dO9ZRFetKfHw8Dh6UXmnapEkTAMCqVasUWxqcOXMGTz75pNvjPvHEE44rrSZOnKgY+C5YsACrV692exyqfHjNMVE10qW2XlKJlWMtu5Q23Zzndv3rbfujbkAoTqRfx9LzBzG0bms0C47Eg/XbQqNiT1oioqLSTHZYnN6y+9U1oF2kHp1r6ZR3IiIiKme+KKQNN6gxtmcgdl41Sb6vKM2xQeQr169fx+HDhx33s7OzkZqaioMHD+Kvv/7Cn3/+6aig7datG5YuXQqtVis5Rq1atfD999/jgQceQGJiIjp16oQxY8bg7rvvRlxcHCwWCy5fvoydO3di6dKlOHv2LFatWoVbbrnFcYzHHnsMU6dOxZUrV9C9e3e8/PLLaN26NfLy8rB+/Xp89tlnMJlM6NChg8uWB23btsWTTz6JL7/8Ert370anTp3w8ssvo02bNkhPT8eSJUswe/ZsdOrUCbt37y6DV5PKCkNaomrE+Yx0tqXsJg5Lt7gOaQ1qDd7ucJfj/sedB5fZOIiIqoNrOdIqWq0KeLx1IPvREhFRpeKDQlqoVUCUUY1BDY2lPxiRl2bMmIEZM2a43SYyMhLPPvssXnrpJUmbg6Luu+8+/PLLLxgzZgxSUlIwc+ZMzJw5U3FblUoFf39/ybJnnnkGf/75J9auXYuTJ09i/PjxkvV+fn6YP38+4uPjXYa0APDpp5/iypUrWL58OY4fP46xY8dK1jdo0ACLFi1Co0aN3D5nqlwY0hJVI0attINJ2VbS5rpcF6jlpblERMVx3SmkjTKqGdASEVGl44tqV7a1pYqmUqkQGBiI4OBg1KtXDx07dkSvXr0waNAg6HSer2AaPHgwzp07h2+++QarV6/GkSNHkJKSAo1Gg9q1a6NVq1a4/fbb8cADD6BOnTqSfbVaLeLj4zFjxgzMnz8fR48ehSiKiI2NRf/+/fHMM8+gefPmiI+PdzsGrVaLZcuW4ccff8Ts2bNx8OBBWCwW1KtXD8OGDcOLL76I0NDQUr1OVP4qbUh75swZJCUloX79+qhVq1ZFD4eoSvB3qqTdkmDCXfUtaByidbFHyYiiiGQ3PWkDtZwYjIioOJxD2lpGtoUhIqLKxxcBq8YX5bhEXujTp4+jhYGvBQUF4YUXXsALL7xQ7H01Gg2mTJmCKVOmuNxm3rx5mDdvnsdjPfLII3jkkUdcri+r509lo9wnDrt+/Tq+/vprfP3110hPT5etP336NDp27IimTZvi1ltvRWxsLO6//36kpqaW91CJqhyjRv6B590daTDZfPvGfDlb/rtbFCtpiYiK51qO9MqHKIa0RERUCfkiX1X4ykJERKiAkHb58uV46qmn8PnnnyM4OFiyzmQy4e6778b+/fshiiJEUYTdbsfKlSsxdOjQ8h4qUZXjp/CJJ9cq4ny61aePs/3GBbfraxkCfPp4RETV3eVM6fs0Q1oiIqqM/LWljxD8deUeQxARVQnl/u64du1aCIKAYcOGydbNmzcPZ86cAQAMGTIEn3/+OQYPHgxRFLF161YsWrSovIdLVKW46l/o60ra63lZrscAARObdfPp4xERVWcWm4iLTiFt/aBK25GKiIhqsKahWtQJLN2JxC61eNUdEZGScv8GcOLECQBAt27yEOenn34CANx+++1YuXIlAGDKlCm44447sG7dOvz888946KGHym2sRNWFr0Paq7mZkvt9azfCv5p3R4opB90i66FdeKxPH4+IqDq7mGmF89t0A4a0RERUCenUAt7uHor9N8xIybNDowIEAGEGNUINKpxLt8Iuioj21+Bajg1zDku/N7zSORiRvFqEiEhRuX8DuHHjBgAgLi5Osjw3Nxfbt2+HIAiYOHGiZN24ceOwbt067N27t9zGSVSdmO1lG9K2DKmF4Q3a+fQxiIhqirNOLWmi/dUw+uByUiIiorJg1Kpwa4zyRMFFJyxec14+0XBcIE9CEhG5Uu7fANLS0vIfWCV96O3bt8NisUAQBPTv31+yrkGDBgDyJx0jouIz+7iSNjEnQ3K/tl+QT49PRFSTnEm3SO43DOYXWCIiqvpyrPLvIP5azhpGRORKuYe0AQH5EwpdvXpVsnzjxo0AgJYtWyI0NFSyTqvNPxun0fBLC1FJ7L1u9unxnCtpaxsDfXp8IiJXTDYR849mYtq2VPx5IRei6NuTUOXNbBOx4VKeZFmjYK2LrYmIiKqOXIWQ1qBmSEtE5Eq5h7TNmzcHAPzxxx+S5cuWLYMgCOjdu7dsn4JAt1atWmU/QKJqaOdVE/Ksdp8dzzmkjfZjSEtE5SP+bA7iz+XiWIoFcw5n4kSqxfNOldgvZ+SXgjZgJS0REVUDORZ5SOtqomMiIqqAkPaee+6BKIqYPXs2ZsyYgcOHD+PFF1/E0aNHAQD33XefbJ+CXrSxsZyMiMidQJ3rDz0XM20+e5xUszRUCNf7++zYRETuLDqZLbm/4rQ85KxKDifJr3RgSEtERNVBt2i95D7brRMRuVfu3wKeeuopfP3110hMTMRTTz0lWde9e3f07dtXts+qVasgCAI6d+5cXsMkqpJahunQMFgjm4QG8G1fWpvT5cUaFT9xEVHFOJLs23Yu5UkURVzMlL5fxwWo4afheyoREVV9LcO1aBGmxbEUC9QC8GQ7zmNBROROuYe0wcHBWLduHR599FFHhSwA9OrVCwsXLpRtf+DAAezatQuCIGDAgAHlOVSiKkenFvBW91CcSLXg3R1pknU+DWnt0tYJaoGBAhGVPatd/j6msKjKSM6zyyZVeaVLSMUMhoiIyMdUgoDXu4bgTLoVwXoVahnVFT0kIqJKrUKup2vRogV2796Nc+fO4erVq4iOjkb9+vVdbv/dd98BAG6//fZyGiFR1aVTC2gToUOMvxpXsgtbHJh9mGQ4V9Kq2VuKiMpBSp68t3ZVDmkvZEiraI0aAeEGnvQiIqLqQ60S0DSUE2ISEXmjQpueNWjQAA0aNHC7Tdu2bdG2bdtyGhFR9aFzmjnVV5W0oihChHNIy1CBiMre9Rx5b20RQI7FDmMVbHTn3OqgbpCGE6oQEREREdVQ5R7Svv322wCAyZMnIyIiwqt9UlNTMX36dADAG2+8UWZjI6pOnPOK8xlW3OaD4/50dp9smYqhAhGVgWMpZvxwNAsqAQjRq7DrmnL/2cPJFnSprVdcV5msOZ+D38/nIsucXxGc53TyrF4gJwwjIiIiIqqpyv3bwLRp0yAIAh544AGvQ9qUlBTHfgxpibzjXDcbfy4Xj7UMLNUxk/Ky8cjmn2TLWUlLRL5mF0VM35eBZIUWB86+PpCBLrUjy2FUJXcp04pvj2S53aYOQ1oiIiIiohqLyQpRNXU6zep5o2I6mHJFtkwlCIgyBPj8sYioZjufYfUqoAWAPKuIDJN321YU5/6zShqFMKQlIiIiIqqpqkRIa7FYAABaLRuOE5WGKJauL22mxSRb9lzL2xCi9yvVcYmInOVYvH+/EgEcuKHcCqGysHt4/+0WrUeDIIa0REREREQ1VZX4NrB//34AQGRk5b6Ukaiys9oBrbrk+2dapSFtkNaAT7oMLuWoiIjk3E12GKpXIcJPhVNFrhjYd8OEXnGG8hhaididnk60vxoT2+S3oAnSqRAboOakYURERERENViZh7Tz589XXP7LL79g9+7dbvc1mUw4c+YMvv32WwiCgM6dO5fFEIlqDItdhFZd8hAgy6mStk1o7dIOiYhIkclNSNsyXIsWYTqcSst0LDtwwwy7KFbaiQydn42/VkDLcF2FjIWIiIiIiCqfMg9px4wZI6sMEUUR//d//+f1MURRhEqlwjPPPOPr4RHVKNZStmx0bncQoK38s6kTUfkraK1SmsrQLDftDnRqAe2jpAFnlkXE6TQrmoZWrtZIoihCBOCcOVfOKJmIiIiIytKYMWPw/fffo169ejh//nxFD4cqmXLpSSuKouOf0jJ3/7RaLXr06IFff/0VvXv3Lo/hElVbj69Lwie709xeRuxK/KWjeGl3vGRZgIZVYEQktT0xD1M2JGPiuiT8dTG3RMfIMtsx53Cmy/U6lYAIPzXiAqT9W3446nqfsrTuYi6eWJeEqZuTcT7d4li+IzEPk9cnY+TqG/jmkHRslbXil4iIiKi62LhxIwRBcPx76KGHPO5TUGjINlRUEcq8kvbcuXOO26IoomHDhhAEAWvWrEGTJk1c7icIAgwGA8LDw6FWl6KJJhFJ7LpmxpaEPPSr6/1kXza7HWO2LJItD2QlLREVkWGy4+sDmY5WBXMPZ6JTLT2C9cU7J/zb2Ry363U327a0j9LjclbhtifTrBBFsVw/VKfm2fDt4UzYRCDNBHx/NAtvdg+FxSZi5sFM5FiVT4qp+LmfiIiIqFwtWbIE//d//4c2bdpU9FCIFJV5SFuvXj3F5TExMS7XEVHpPdUuCF/uz1Bc98f5nGKFtMmmbCSZsmXLGwVGlHh8RFT97LhqkvSStYnAqTQLOtUq3gmdS1lWt+ujjPmhb5MQ+ceYPJsIP035JaB/XsiVtDI4mpJfSXsj1+YyoAWACL9yuZiJiIiIiG4SRRFvvvkmli9fXmFjmDdvHubNm1dhj0+VW7l/Q7Db7bDZbGjZsmV5PzRRjdLZTShyLad4zWnzbPLApH5AKCY07VLscRFR9bU9MU+27HyG+8BVSZ6bcLNJiAY9YgwAgGZh8pYrllL23i6upDzlB0w3ux5IqF6FoY38y2pIREREROQkIiK/wGjFihXYt29fBY+GSFmZV9ISUcUwaAQsHBiJxSezseK09NJhu1i8nrRKIe2J+16GTs23ECLKl26y40iyRba8aI9Wb5mc+mbf08AP/er6Qa8WEG5QOdoZaBVONVtK0HO7NNJNymFshtPyCD8VXu0SApUA1DKq2ZOWiIiIqBw9/fTTeO+992AymfDGG29g1apVFT0kIpkKudYuJycHOTmu+81Nnz4dvXr1QosWLTBw4ED+8hCVkEoQUDdQHqQWN8PIs0lDFpUgQKtir2giKrTzqglKby0lqaR1DmkbBGsRG6BBhJ9a0m9Wq9DY1WIv35A2zUVI61xJG6ZXITZAg2h/DQNaIiIionJWp04dTJw4EQDw22+/YefOncU+ht1ux/r16/Hiiy+iR48eiIiIgFarRUhICNq1a4cXX3wRFy9edHuMgonJ6tevL1n+9ttvOyYsO3XqlMex3HnnnRAEAdHR0bDZbIrbrFy5Eg8++CDq1q0Lg8GAkJAQdOrUCW+99RZSU1O9ft5Ufso9pF21ahUCAwMRHR2NzEz5LMzjxo3Ds88+i3/++QcnTpzAmjVrcO+99+I///lPuY3x5ZdflswAuHHjRo/7/P777xg2bBji4uKg1+sRFxeHYcOG4ffffy/7ARO5EaST/5oXN8NwrqQ1qDWc7ZKIJP65Im91AAA3cu3ILmYPAueQ1qBWfr/RKHyKsZZzuwOlStq0PBsuZkg/LAcVc/I0IiIiIvKtV155BX5++XOzvP7668Xe/+2330a/fv3w3//+F//88w+Sk5NhtVqRnp6OAwcO4L///S9atGiBFStWFPvYo0aNctz+6aef3G577do1/PXXXwCAESNGQK2WFlClpqaiX79+GDZsGJYuXYpLly7BZDIhPT0de/bswbRp09C8eXNs37692OOkslXu3xjWrFkDURQxZMgQBAYGStb9/fffjgbKRqMR7du3h8FggCiKeOONN3D48OEyH9/+/fvx6aefer293W7HhAkTMHDgQKxcuRIJCQkwm81ISEjAypUrMXDgQDz++OOw28v5WyPRTYEKIS0A/HgsC6KXbQ+cK2kNam2px0VE1ce6i7mOCbOUjFubhCseJgMrYBdFWd9svYuQViUIcF5VnpW013NsSFUIaZ/4Kxl/XsyVLFM6YUZERERE5Sc6OhqTJk0CAKxduxZ///13sfa3Wq2Ijo7G5MmT8cMPP2Dr1q3Ys2cPVq5ciZdeegkBAQHIycnBqFGjcOzYsWIdu3HjxujatSsAzyHtokWLHNWzDz/8sGSdyWRC//79sX79eqjVajz66KNYuHAhtm/fji1btuC9995DeHg4rl+/joEDB+LChQvFGieVrXJvKLl9+3YIgoC+ffvK1s2ePRsAEBMTg23btiEuLg6XLl1Cz549cfnyZcyaNQvTp08vs7HZ7XZMnDgRVqsVUVFRuH79usd9XnvtNcydOxcA0L59e7z00kto1KgRzpw5g48++gj79u3DnDlzEBkZiffff7/Mxk7kSpBOOdxYdTYHt9cxICbA89uAUiUtERGQP0vugmNZHrdbfjoHT7UL8rjdUYW+tgaN68p9jUqArUjlrXMVbln67azr1k3OXLVFICIiIipgF0Vkmcu3dVNFC9AJ5doK6uWXX8asWbOQnZ2NN954A+vXr/d63wkTJuDNN9+EVistWurQoQOGDh2KKVOmoFu3bkhISMD777+PH374oVhje/jhh7Fjxw6cPHkSu3fvRqdOnRS3KwhxmzZtKtvm7bffxt69exESEoJ169ahY8eOkvU9e/bEww8/jO7duyMxMRGvvvoqFixYUKxxUtkp96SlIPhs1qyZbN0ff/wBQRAwZcoUxMXFAcjvGzJlyhS89NJL2LRpU5mO7YsvvsCuXbvQvHlzDBs2zGOLhZMnT+KTTz4BAHTq1AmbN292lM537twZQ4YMQe/evbF79258/PHHGDduHBo3blymz4HIWbCbS2yvZttKGNKykpaI8tlEIMfq+cvEtRzlXlnOLmXKK25rG133wA7Vq3C1yLFPpVrRPEzn1WOV1poLuZ43uinDzJCWiIiI3Msyi3h8XVJFD6NcfdM/AkH68gtpo6Ki8NRTT+HDDz/Ehg0bsGHDBsUiQiXOfWSdxcXFYerUqXj22Wfx66+/QhTFYrUJfOihh/Dcc8/BZrNhwYIFiiHtmTNnsGPHDgDyKtqsrCx89dVXAIB33nlHFtAWqFevHl5//XVMnjwZS5YswezZs+Hv7+/1OKnslPu1dzdu3AAAWauDI0eOICkp/81o6NChknUFP5hlWYZ98eJFR0+SmTNnQqfz/AXvs88+g9Wa/2Vy+vTpjoC2gNFodFT+Wq1W/O9///PxqIk8UwkCnm2vXL3m7WXB8nYHrKQlonxKPWBf7BissJ137zfOE24B7vu5toqQnjTaf8Pk1eOUNzY7ICIiIqocpk6d6sikStKbtkBGRgbOnTuHI0eO4PDhwzh8+DCMRqNkXXFERUVhwIABAPJbGii1zSzaCqFoH1sA2LRpE9LT0wEADzzwgNvHuu222wAAFosFe/bsKdY4qeyU+3eGgobGKSkpkuUFvUAiIyNlVbahoaEAgLw85UlJfOHJJ59EVlYWRo8ejd69e3vcXhRF/PLLLwCA5s2bo1u3borbdevWzfF8fvnlF697gBL5UvcYg+Jyb+fyca6k1asY0hJRPrvC37WGwRo87dTawNuQNsOpLcCd9fxcbJmvXaRecv94qgV5XlT2lpU3u4Vg7oAI+QpOtkhERERUKYSHh+PZZ58FAGzduhVr1qzxet8LFy5gypQpqF+/PoKDg9GwYUO0bt0abdq0QZs2bTBx4kTHtgWFiMVRUB2bmJio2IqhIKTt2rWr7Ert3bt3O25HR0dDEASX/1q3bu3Y9urVq8UeJ5WNcg9pY2NjAeRP0FVUfHw8BEFAr169ZPsUnAmIiFD40uMDixcvxm+//YawsDBH+wJPzp07hytXrgCAx1C3YH1CQgLOnz9fqrES+ZL3lbTsSUtEypTyULUAaJw+YXh7Usi5ktZdFS0AtA7XSiYPs9qBo8lm7x6sDATqVAhQmCSMlbRERERElcfzzz+PkJAQAMCbb77p1T6///47WrZsiS+//NKrK71zc71vjVXg3nvvdVTjOveK3bt3L44fPw5A3uoAgFfzKinJyfF+ngUqW+WetPTq1QunTp3Cl19+iUceeQQRERHYtWsX/vjjDwDAnXfeKdunYFa82rVr+3w8aWlpeOaZZwAAH374oddB8NGjRx23mzdv7nbbouuPHTuGBg0alGCkRL5XNKTNs4pIM9lQy6iW9c1huwMicsWucLJHrRKgUUnfR5Qqae2iiGs5NslkXzdypSFtsELgWZRRq0LTUC2OpRS+T+2/YUaHWno3e5Udl/WyLKQlIiIiDwJ0Ar7pXzbFaZVVgIuJrstaSEgInn/+ebzxxhvYsWMHfvvtNwwaNMjl9klJSRg1ahRycnIQEBCAF198EXfeeScaNWqE4OBgR8vM9evXo1+/fgBQoiupAwICMHToUCxcuBDLly/HjBkzYDDkXxlbUEWrVqvx0EMPyfa12Qrnadi7d69sgjNXCuaEoopX7knL5MmTMW/ePJw7dw4NGzZE06ZNcfToUVitVoSFhSn+oK1fvx6CIKBly5Y+H89LL72Eq1evokePHhg/frzX+12+fNlx29MPdJ06dRy3L126VKzxFX0cJYmJicU6HlFRBZVtu66a8Pm+dFjsQNMQDV7tGgK/ImVwnDiMiFxxVUmrdQppb+TakWW2O6pMc612vLM9DWfS5ROFFRXkxQf3tpE6SUh7MKniKmldFQwzoyUiIiJPVIJQrpNo1XTPPvssPv/8cyQnJ+PNN990G9IuXboUaWlpAIAVK1agf//+its5t/YsiYcffhgLFy5ERkYGfvvtNzzwwAOw2+34+eefAQADBgxAVFSUbL/w8HDH7cjISIavVVC5X33XoUMHfPzxxxAEAVlZWdi7dy/y8vKg1WrxzTffyCYUS09PR3x8PACgT58+Ph3Lli1bMGfOHGg0GsycObNYs+5lZmY6bgcEBLjdtugseVlZWcUaY506ddz+69KlS7GOR1SU+Wb12qKTWY7A9mSaFTsSpRPvOFfS6llJS0Q3KVXIqgRB1u4AALYk5EluewpoASDYQ7sDID+kLSox24aUPJuLrX3D1fFNLvrhGtT8wkVERERUmQQGBmLq1KkA8itPV6xY4XLbI0eOAADCwsJcBrSAtC9sSd15552Oq7wLqmc3bdqEhIQEAMqtDgCgffv2jttbt24t9Tio/FVIi7TnnnsO+/btw+uvv47HH38cb7zxBg4ePIhhw4bJtt24cSM6d+6M2267ze1ZjeIym82YOHEiRFHEc889J2ma7I2ik5gVlLW7otcXXnJZkp4kRL5wS4T85zTzZu/HS5nSsGHXNWlIa3WaVVKrYndFIsrn/P5hUAvQq4HYAPnJnBu5hdseT7HI1jtTC0BcoOeTQvWDNHDOQJ0nIPO1pFzl4zcIzh/v7XWkEzaObO7+hC4RERERlb+nnnrKUZX65ptvumxRYLXmFxfk5eXBblf+HJiTk4Mffvih1GPSaDQYPnw4AGD16tVIS0tzhLVGoxH33nuv4n79+/d39LP94osvOHF9FVRhSUubNm3w1ltvYdasWZg2bRqaNWumuN3QoUOxYcMGbNiwAbVq1fLZ47///vs4fvw46tat63WT6KIKeoIA+YGvOyZTYeDl5+d+lmpnly5dcvtv586dxRs41VhjW8kDgpQ8O2yKfSKl9523EHjhLhHddCZNGrY2CtFAEAQE61XQOn3KyCvSe/acUxWtAEAlFP4LN6jwxC2BCHA+iAKVIEDnlNKayraQVrGCeGqnYEcv3vub+KN1uBbhBhVGNPNH3UB12Q6IiIiIiIrN398fL7/8MgDg0KFDWL16teJ2TZo0AZAfxC5evFi23mazYcKECY4J5kuroFrWZDLhp59+wrJlywDkZ2SuruYOCQnBU089BQD4559/8Nxzz7kMlAHg2rVrmDNnjk/GS75RI69ZPn78OP7zn/8AAKZPny5pR+Ctom0ZPLUwyM7Odtz21BrBGXuIkK/EBGgwpmUA5h0t/HlNybMj16Z0qbL0vvMZOFUxWoMQUfV2yimkbRxS2LP67vpG/Hq2cLbYglYAORY7rmRLU9T3eoSiUUjJ+13r1QJyi7QaMCmEqL5kdfq8G6pXoVORycoi/NR4vVtomY6BiIiIiEpv0qRJ+OSTT5CYmIikpCTFbYYPH45XX30VJpMJY8eOxf79+zFgwAAEBwfjyJEjmD59Ovbs2YMePXr4pNXArbfeigYNGuDcuXN47bXXHP1wXbU6KPD2229j06ZN2LFjBz7//HNs3LgRjz/+ONq1awd/f3+kpqbiyJEjWLduHX7//Xe0adMGEyZMKPV4yTcqRUgriiLOnj3raLAcFhaGhg0bFqtHbHH873//g9lsRsOGDZGTk+NovlzU4cOHHbfXr1+Pq1evAgAGDx4Mf39/SXjqaXKvopOFFZ1EjKi8hRmkFWkpeTbkWuRBhnOlrN2plrasfjeJqGqxi6Ksr2zRkFavca5uzX8vOZ8h3UctAHW9aGvgjs6p4NascALKlyxOIbBSD14iIiIiqvz8/Pzw6quvYsqUKS63iYuLw4wZMzBhwgTk5eXhww8/xIcffijZ5qGHHsLjjz/utmdtcYwaNQrvvfeeI6CNiIjAnXfe6XYfvV6PP//8E2PGjMHy5ctx4MABR3WtkqCgIJ+MlXyjQkPaNWvW4Msvv8TGjRuRk5MjWWc0GtG3b1889dRTuOOOO3z6uAXtB86ePYuRI0d63P6dd95x3D537hz8/f3RsmVLx7Ljx4+73b/o+hYtWhR3uEQ+E2qQXm57I9eOTIv88gebU+WscysbRrRENVu6yY4LmVak5dkk1asA0Dik8KOFXtaCIH9b52C3bqAG2lJOrOXc7qAsQ1q7KOJkqrSCWON8CQIRERERVRmPP/44PvroI0mRnbOxY8eiWbNm+Pjjj7F161akpaUhIiICbdu2xdixYzF8+HBs3LjRZ2N6+OGH8d577znuDx8+HBqN5xgvMDAQy5Ytw99//43vv/8eW7ZswZUrV5Cbm4ugoCA0atQIXbp0wT333OPzvI1Kp0JCWrPZjDFjxmDRokUA5JdSA/ktAuLj4xEfH4+HHnoI8+bN8zhBV3lq0KABYmJicOXKFWzatMnttps3bwYAxMbGon79+uUwOiJlzpW0APDK36myZXuvm5GWZ0PIzVB37qkdkvXsSUtUc+26asKne9NlvauB/PeYsCIngwxOwWnezQ4H59KlAWfD4NJ/HHEVCPuaxSbi3R1pOC4Lacvk4YiIiIiohPr06eP15Fl6vR4XL170uN2tt96KFStWlPgx582bh3nz5nk1phYtWpRq8q+ePXuiZ8+eJd6fyl+FfKUYNWoUFi1aBFEUoVarcffdd2PatGmYOXMmZs6ciWnTpmHgwIHQaDQQRRGLFi3CI4884rPHnzdvHkRRdPuv6GRiGzZscCwvCFkFQcDQoUMB5FfKbt++XfGxtm/f7qikHTp0KC8TpwoVold5Ha9uTSyc8O5GXrabLYmoJvn1TLZiQAtIWx0AgN5prqyC4PSCU7uDBsEl70Vb+FjlE9IeS7HIAloA0PDvOxERERERlUK5V9LGx8dj+fLlEAQBffv2xbfffot69eopbnvx4kWMGzcO69evx7Jly7B69WoMHDiwnEfs2rPPPovZs2fDZrNhypQp2Lx5M/z8/Bzrc3NzHT1NNBoNnn322QoaKVE+jUqAt7FFWl5hGwSDWoM8W2Go4tyjlohqjjST6xli20VKr3iRBac3WyNkO/XCjjKW/pyxv1Z6jHQ34ywNV8dt4INqYCIiIiIiqrnKvZK2oKy7bdu2+OOPP1wGtABQt25d/P7772jXrh0A4LvvviuHEXqvadOmmDp1KgBg9+7d6NGjBxYtWoTdu3dj0aJF6NGjB3bv3g0AmDp1Kpo0aVKRwyUCAAxv6u/VdkX70lrs0lDi2Za9fDomIqo6nE/R+GsFRPqpMLCBH3rHGSTrXE0cZnYqxXXuJ1sS8okRyyakFRVOUnWtrcfDzQPK5PGIiIiIiKhmKPeyj+3bt0MQBLzwwgvQaj1f3qjVavHiiy/ikUcecdlSoCK99957uH79Or799lvs27cPI0aMkG0zfvx4vPvuuxUwOiK5pqHeXVZccKWwXbTDJkrDjgBt5ekPTUTlyzminNIuCO2j9IrbynvS3gxpnVoRaH0w6Vb5hbRS9YM0eL5jcJk8FhERERER1RzlXkl748YNAEDLli293qd58+YAgKSkpDIZU2moVCrMnTsX8fHxGDp0KGJiYqDT6RATE4OhQ4di9erVmDNnDlQqzihClUOg1rswxHYz33CuogUAraCWLSOimsF57gJ37yhKfWJFUYTF6W2lbCppbaU+pjfYiZaIiIiIiHyh3Ctp/f39kZaWhuTkZK/3SU3Nn33eaDSW1bBkpk2bhmnTpnm9/cCBAytVv1wiVwJ03p0w2JaYh4ea+cMimmXrdGqGtEQ1ldV51jA3KaVzSGsXgeu58hM/Xr4tuRVmkL4vJWR5DmnNNhHHUszIMBc+J50KaBWhQ4DWu0FxvjAiIiIiIvKFcg9pmzVrhh07dmDRokXo37+/V/ssWrTIsS8RlY63wUOWRcTzm5KxP3ehbJ1WxZCWqCay2ESkm6UhrbuM0qCRr316g/wkrS8qaUOdKmlFAEm5NkT4Kb9fWe0i3t6eilNpVtk6nQr4oFcYYgPkH5OuZZdPhS4REREREdUs5X4N/pAhQyCKIr777jvHJGLu/PDDD/j2228hCALuvffeMh8fUXWnV3t/ee6VnBTsTr4oP4aKs5gT1URbEvJky9RuSkmde9K6UhbtDgBgx1WTy+1Pp1kUA1oAMNuBxSezFdddzJTu41xYTEREREREVBLlHtJOmTIF0dHREEUR48ePx6BBg7B8+XIkJCTAYrHAarUiISEBy5cvx6BBgzBmzBjY7XbExMTgqaeeKu/hElU7giAgws+7X/08MUe2rElQBML05dd6hIgqj8PJ8vYn9YNcn7QxalWoE+i+8j7GX+11hb87fhr5MfKsrhPUTLP7dPXgDbO8tQOAcKfK3PMZykEvERERERFRcZR7SOvv74/ffvsNISEhEEURv//+Ox588EHUrVsXBoMBer0edevWxYMPPojff/8doigiNDQUv/32W7n2pCWqzp5uL5+JvHW4FmNaBkiW2UX5Zb2/9BsLgU0YiWocURRxNNkiWda1tt5jn+sXOsrfb4p6sZP79cXRPFQruZ/rJqS1Oc2A5pzx5lhFnEyVPl9A3pO3d5yhmKMkIiIiIiKSK/eQFgDat2+PQ4cO4f7774dKpYIoior/VCoVHnjgARw8eBBt27atiKESVUtRRnll2131jbi7gRH96xYGDs4hbYwxCC1CapX5+Iio8knMtiHVJJ30a0Qzf4/7RftrcH9j5ZOs4QaVYt/XkqrnVNWbY5VPUlbA5pTf1jaqZVXB+2/IK4edDxmg5UkrIiIiIiIqvQprLBkTE4MlS5YgMTERGzduxOHDh5GSkgIACAsLQ+vWrdGnTx9ER0dX1BCJqi2Fq4IdVWVF+0vaIQ1p2YuWqOY64lRFG6pXIdrfu0kEA11U22pUvg04jU4TlbmrpLU7ha0alYD2kTpJ+4J9180Y1Vy6nXMlra+fAxERERER1UwVnrhER0dj5MiRFT0MohpFqxAqFOQORQNckz1Xso1eXeFvGURUBkRRxKEkCy45TYp1LccGk01E3UANtiVKJw1rGa71uvVJkIuQ1getaCX8nKpacy3KIe3JVAtWnZP23FYJQLsoHVacKVx+MdOKlaezJe+Zl7KkJ6+UTnoREREREREVFxMXohpIKRgpuPS3oJJWFEXsyvxdso1O5V3VHBFVLUtOZWPZKflEge60Ctd5vW2g3lVI69sqVD8vKmk3XMrFzIOZsuUaAWgSooW/VkB2kXB34Ylst4+pYY9uIiIiIiLygTINaS9evOjzY9atW9fnxySqaVQKoUKgLn+Z7mYOm269IdvGqPE+lCGiquOvi3meN3LSMlzreaObgnTKQaZe7euQVhoGZyv0pF1/Sfm5alQC1CoBt0TosC3R5PVj6nz8HIiIiIiIqGYq05C2fv36Pp0FXhAEWK1WzxsSkUcdo3TYcz1/UpxQvQq3ROQHsC3DdcCpHJhEeVVd3+hG5TpGIip7dlFEmsn1BFtKWoZpUVthAkJX6gRoEKpXySYeaxXhfdDrjUCndgdZZnklbbrJJlsGAK1vvgcOqOfndUgroHhhNRERERERkStl3u5AFF1P2kFEFefJdkFYfiobuVYRQxoZHdW1rcJ1GNjAD98ct8j2eav9neU9TCIqYzkKfVvrBqpxMVMaZtYyqlHLqEK9IC0GNvAr1klYtUrA/3UNwa9nc5CaZ4NKENAsVIuhjYylHn9RQU5tFTLMdoiiKBmr8/PVqoD7m/hjSMP8sbQK1+G5DkHYesWEPIVK3AIGjQq3xRrQMJghLRERERERlV6ZhrSjR492uz4tLQ2//PILBEHAY489VpZDISIn/loVHm0ZqLiuV6wBM49JQ9rWIbWhZU9aomonyyIPIse2CsRb29MkywbU9cPgUoSqcYEaTG4bVOL9vRHo1HDbJgI5VhH+2sJe2zlOfWrfvjVUFrR2izagW7ShTMdKRERERERUVJmGtN99953b9UeOHMEvv/zi1bZEVH50KgFWUdpaxJ/9aImqpWynylK1AET4yU/IiKj8V8Y4V9ICQKbZDv+b4a3FXjhJYgGjhj1liYiIiIio4ilPt0xENZpGBVhFaSWtn4aX9BJVRzdypW0N/LUCArTy4FKh4LbS0asF6Jw+2VzPtWPthRz8dDwLPx3Pku3jPNkYERERERHVHIIgQBAETJs2raKHUvY9aYmo6tGqBJzJ3SdZZlAzpCWqbkRRxP/2ZkiWBWhV8FOoLrXaK38lLZBfTZuUW5gov7cjze32rKQlIiIiqp42btyIvn37Kq7z8/NDeHg42rZti/vuuw8PP/ww9Hp9OY+QSIrlI0Qko1UJUDm9PZhsyjOiE1HVdTlL/nsdqFMpTgoWE1A1zusGaL3/aKNXA1o1Q1oiIiKimiY3NxeXL19GfHw8xo8fj44dO+L8+fMVPSyq4RjSEpGMVg1oVNKziGY7Q1qi6uZyplW2rGOt/P7Td9X3cywL0gnoVrtqVBYUp3tBh6iq8ZyIiIiIqHQmTZqEQ4cOOf799ddf+PzzzxEXFwcgf86kIUOGwMbiJKpAVaMshojKlVYlQBSlf5zuq9u+gkZDRGVFqZJ2cEMjAODRFgGoZVQjzWTHgLp+1aLi1F8joH1UfggdF6jB3fWNFTwiIiIiIioPUVFRaN26tWTZ7bffjrFjx+KWW27B+fPncejQIaxYsQIPPPBABY2SajpW0hKRjFoA7JDOEqSCfLZ3IqraErKklbR31/eD6marA41KwMAGRoxqHoBIY/X4/W8UosWU9sGY0j4Ywxr7w8B+tEREREQ1WmBgIP7v//7PcX/dunUVOBqq6RjSEpGMIAgQnUJaCHy7IKpunEPa2CrSd7akIo18HyMiIiIiqTZt2jhuX7p0yeV2GzZswOjRo9GwYUMYjUYEBQWhTZs2mDp1Kq5cueLVY23duhUTJkxAs2bNEBQUBJ1Oh7i4OAwaNAhfffUV0tLSXO67atUqPPDAA4iLi4Ner0d4eDi6d++ODz74AFlZWYr7NGrUCIIgoEePHh7HlpCQALVaDUEQ8NJLLyluk56ejv/85z/o0aMHIiMjodPpEB0djcGDB2Pp0qUQRdeTDQuCAEEQMG3aNADA+vXr8eCDD6JOnTrQarWoX7++bJ+rV6/itddeQ6dOnRAWFga9Xo86depg+PDhXgfqP/30E/r06YPQ0FAEBASgdevWePPNN92+1hWlen8bI6JiScrLxtfHt+JCVhpybJmSdQeuW2G1i9CoWHlGVB3YRRGJ2dJ2B7EB1aNi1pVIv+r9/IiIiIio+HQ6neO2VquVrc/Ly8PYsWPx888/y9YdPnwYhw8fxowZM7Bw4UIMHjxY8TFyc3Mxfvx4LFy4ULYuISEBCQkJiI+Px40bNxwhZtHHHzVqFFasWCFZnpKSgu3bt2P79u2YPn064uPj0a5dO8k2o0aNwrvvvott27bh/PnzikFogYULF8Juzy/Wevjhh2Xr//rrLzz00ENITk6WLL969Sp+++03/Pbbbxg4cCAWLVqEgIAAl48DAK+99href/99t9ssWLAATzzxBLKzsyXLL1++jCVLlmDJkiUYP348Zs6cCY1GHm9arVaMGjUKS5YskSw/cuQIjhw5gh9//LHSVU6XaUj79ttvu11//fp1r7ct8MYbb5RqTETk2j1/zsHOJOUzh6fSbJh/NAvjWgeW86iIqCxcz7HB4lQwHxdY9c/dujuNxJCWiIiIiJwdO3bMcds5xBRFEQ888ADi4+MBAIMHD8bw4cPRsGFDqFQq7Ny5E//9739x8eJFPPDAA9i6dSs6deokOYbdbsfQoUPx559/AgCaNGmCyZMno1OnTjAajUhMTMQ///yDxYsXK45v9OjRjoC2bdu2eOGFF9CiRQukpKTg559/xrx583DlyhX069cPBw8eRGxsrGPfhx9+GO+++y5EUcRPP/2EV1991eXr8NNPPwEAWrVqhbZt20rWbd26FXfffTcsFgtq1aqFKVOmoG3btoiJicGVK1ewaNEi/Pjjj1i9ejVGjx6NZcuWuXyc5cuX49ChQ2jTpg2ee+45tG7dGrm5udi/f79jm8WLF+PRRx+FKIpo2LAhnnrqKbRs2RKRkZE4f/485s6di9WrV2Pu3LkICgrCp59+KnucF1980RHQNmvWDC+99BJuueUWpKenY8mSJfjmm2/w0EMPuRxnRRBEd7XIpaRSqSAIvq2640x7UpcvX0adOnUA5JflF8xMSFRciTkZiFnk+mRJ75CH0Cq4Ab66PaIcR0VEZeVgkhnv7Uhz3PfXCvj2jsiKG5CPvLM9FYeTLcrrbg1F01B5dQQRERGRN0rz/fvUqVOwWq3QaDRo0qSJ4jZ20Y5kU45PxlpVhOuNUJVRa72NGzeib9++AIA333xTVqEK5GdMnTt3xr59+wAAW7ZsQc+ePR3rv/nmG0ycOBFarRa//vor7rrrLtkxUlNT0atXLxw5cgQ9evTA33//LVn/xRdf4JlnngEADBs2DAsXLoRer5cdx263IzExURKyxsfHY9CgQQCAfv36YfXq1ZLK36JjBIDhw4dj0aJFkvUdO3bE3r170apVKxw+fFjxtTp+/DhatGgBAHj//ffxyiuvONZZLBY0bdoU58+fx1133YVly5bBaJRPwFt0HGvXrsWAAQMk64vmg/369UN8fLzi65CUlITGjRsjPT0d48aNw6xZsxQrZQuqcVUqFY4ePYpmzZo51h06dAjt2rWD3W5Hhw4dsGnTJll17/z58zF69GjHfVc/I+5483tdHGVeMuPLDNjXgS8RFUo2Zbtc56cKQLg2BmZbmZ3TIaJyZrNLf5/9qskkWl2j9YohbbS/Go1Dqn6lMBEREVVfyaYcRC2cVtHDKFfXR05DpMH9pfFl4caNGzh06BDeeOMNR0D7wAMPSAJaURTx4YcfAgCefvppxYAWAEJDQ/Hxxx9j4MCB2Lp1K06dOuUI7Ox2Oz7++GMAQFxcHObPn68YTAL5hY5FA1oA+OqrrwDkt2H47rvvZAEtADz++ONYvHgx1q1bh+XLlyMxMRHR0dGO9Q8//DD27t2LI0eO4MCBA7IqWSC/tQCQn7uNGjVKsu7nn3/G+fPnYTAYMH/+fMWAtmAcc+bMwc6dOzFv3jxZSFv0ec6ZM8fl6zBjxgykp6cjNjYWX3/9tWJACwBvvfUWvv/+eyQkJGD+/Pl47733HOtmzpzpaN0we/ZsxfYLjz32GH7++Wf8/vvvisevCGX6bWXDhg1leXgi8qE0c57kvl6lQa+ITriWrUM9Q0toBC3Kru6eiMqbU0YLdfXIaDGgrh9C9WqcSLXAfvNNK1ivQu84P6h4speIiIioRnrrrbfw1ltvKa4zGo3417/+hQ8++ECy/OjRozhz5gyA/ADXndtuu81xe9u2bY6Qdv/+/bh8+TKA/BDTU6/WoqxWKzZt2gQAuOOOOxxV3Eoef/xxrFu3DlarFRs3bsTIkSMd60aMGIGpU6fCbrfjp59+UgxpC3rl9ujRA/Xq1ZOs+/XXXwEAvXv3RmSk+yvvbrvtNuzcuRPbtm1zuU2PHj3c9sYteLxBgwa5DHIBQKPRoHv37li6dKns8Qp6zbZp0wYdO3Z0eYxx48bVnJC2d+/eZXl4IvKhdHOu5H6UXwC+6D4E07alOZY5hzpEVHU5F8ZXlwBTEAR0rq1H59quP9ARERERERVo164dnn76admkYbt373bc7t69u9fHu3r1quN2QZUuAPTq1atY4zp79ixycvLbX3Tt2tXttkXXO7c0iImJQd++ffHXX39h4cKF+OCDDyRXqu/YscMRRitNGFbwOqxZs8brK9yLvgbObrnlFpfrbDabozftrFmzMGvWrGI/nslkwqlTpwAAnTt3drtfly5dvDp+eSmbxh9EVOWkO1XSBmsNUDlNweM0xxARVWE2p9J4VfXIaImIiIiIZCZNmoRDhw7h0KFD2LdvH1atWoXRo0dDpVLhn3/+QZ8+fXDjxg3JPkUnuy+OgmAVyO+vWqBoCwJvpKSkOG5HRUW53bZ27dqK+xUoCF8vXbqEzZs3S9YVtDrQarV48MEHZfuW5HXIzc11uS40NNTlupSUFFit1mI/XtHXPDU11dF61dPrVqtWrWI/VlliczYiAgCkW5xCWp0BzifJcq0spSWqjLIsdqw8nYOtV/IQ6adGXIAaAxsYEReo/Gf+eIoZX+3PkCyrLu0OiIiIiKqqcL0R10dOq+hhlKtwvXJ/U1+LiopC69atHffbtWuHQYMGoW/fvhgzZgzOnz+PCRMm4JdffnFsU3Ti+lWrVrm9RN/5sXyttHM03X///Zg8eTLy8vLw008/Oa58t9lsWLx4MQDgrrvuQnh4uGzfgtfh7rvvxkcffVSqcQCAWq12ua7oaz5hwgTHhGueKPXqBare3FYMaYkIADDrxHbJ/RCdn2JlnV0Uq81l0UTVxed7M3AwyQwASMmz40SqBbuvmfB1vwhonH6Rr+fY8P7ONFicSuP5e01ERERUsVSCqkIm0arJRo8ejVWrVmHZsmX49ddfsX79etx+++0AIAksQ0JCJCGvtyIiIhy3ExMT0bx5c6/3DQsLc9y+du2a222LXu5fdL8CQUFBGDRoEJYuXYqlS5fiyy+/hFarxV9//eU4tlKrAyD/dbhy5QrMZnOJXoPiKDp2URRL9HghISGO255eN0/ryxvbHRARAKBhgPSNPMtqUpzt/VqOTbaMiCqO2SY6Atqi0s0iLmbKLxX6OyEPJoVfY6PC7zsRERERUXX3/vvvO6o7X331Vcfy9u3bO25v3bq1RMfu0KGD47ZzmwFPGjZsCKMxv9J4x44dbrfduXOn47arYLMghE1JSXFMllXQ6iAwMBBDhgxR3K/gddi9ezfMZvn3Dl/S6XRo1aoVgJK/5gaDwTFx265du9xu62l9eWNIS0QAALNdmtroVRrE+MsvQzA5zzZERBXK7OZ3Mk+hRcmxFOUPVr3jDD4bExERERFRVdG0aVMMHz4cQH4Y+ueffwLID1jj4uIAALNnz0ZeXp7LY7jStm1b1KlTBwAwZ84cZGVleb2vRqNxtCX4888/cfnyZZfbzpkzx7FPnz59FLcZOHCgox/sggULkJeXhxUrVgAAhg0bBj8/P8X9CsLb9PR0fPfdd16Pv6QKHu/48eNYs2ZNiY7Rv39/AHD0IHbl22+/LdHxywpDWiICAGRbpcHNoDotFfu3WDl7GFGlYrW7DmktTuusdhEnUi2SZU1DNHirewj61FH+UEZEREREVN29+uqrju+/7777LgBApVI5KmvPnj2Lxx57DCaTyeUxMjIy8OWXX0qWqVQqTJ06FQBw+fJlPPbYYy6rUe12O65cuSJZ9uSTTwIAzGYzxo8fD4vFItvv22+/xdq1awEA9913n8sJynQ6HR544AEA+T12f/rpJ2RmZgJw3eoAyG8JURA0v/jiix4rgv/++29s2rTJ7TbuPPPMMwgIyG/7MXbsWBw5csTt9vHx8Th48KBk2RNPPOH4/5w4cSKys7Nl+y1YsACrV68u8TjLAkNaIgKQ396gKH9NfuNtf600qHUOfYioYrmbz8+57+yZNKus1cHUziFoHqbcaJ+IiIiIqCZo3bq1o4Jz8+bN+PvvvwEA//rXvzBs2DAAwJIlS9CqVSt8/PHH2LRpE/bv34/Nmzdj9uzZGDVqFGJiYjBt2jTZsZ988kkMGDAAALBixQq0adMGn3/+ObZu3Yp9+/bh999/x5tvvonmzZtj9uzZkn3vuecePPjggwCAtWvXolu3bliwYAH27NmDdevWYcKECZgwYQKA/H6un376qdvnWRDG5ubm4oUXXgAA1KpVC/369XO5j16vx+LFi6HX65GVlYXbb78djzzyCJYuXYo9e/Zg165d+PXXX/Hmm2/illtuQa9evXDo0CG343CnVq1a+P777yEIAhITE9GpUydMmjQJv/76K/bu3YsdO3Zg2bJlePnll9GoUSMMGjQIFy9elByjbdu2joB79+7d6NSpE+bNm4c9e/Zg/fr1mDRpEh577DF06tSpxOMsC5w4jIgAANkW6dm8AG1+aKNVCQAKUyALW9ISVSruTpxYnFohHHVqdVA3UI0gHc/XEhERERG99tpr+OWXXwAA77zzDtasWQNBELBo0SI888wzmDlzJs6cOYOXXnrJ5TGioqJky1QqFVauXInRo0dj6dKlOHnyJJ599lmvxzV//nxYrVasWLECe/fuxSOPPCLbJiYmBvHx8YiNjXV7rNtuuw116tTBpUuXkJaWBgAYMWKEoyevK926dcPGjRsxfPhwXLp0CQsWLHD0s1USFBTk+Ym5cd999+GXX37BmDFjkJKSgpkzZ2LmzJmK26pUKvj7+8uWf/rpp7hy5QqWL1+O48ePY+zYsZL1DRo0wKJFi9CoUaNSjdWX+M2MiADI2x0UVNJqnd4lWElLVPFyrXbMO5KJh+Kv49mNKS63Mzv9vh5Nll4e1TKcFbRERERERADQuXNnR8Xr2rVrHZNKabVafP311zhw4ACmTJmCNm3aIDg4GGq1GsHBwWjXrh3Gjx+PpUuX4tixY4rHNhqNWLJkCdavX49HH30UDRo0gJ+fH3Q6HerUqYPBgwdj1qxZjurWogwGA5YvX45ff/0V9913H2JiYqDT6RAaGoquXbviP//5D06cOIF27dp5fI6CIGDkyJGSZe5aHRTVrVs3nDp1CjNnzsQ999zjGIfBYECdOnVwxx134L333sPx48fx2GOPeXVMdwYPHoxz587hk08+we23345atWpBq9XCz88PDRo0wKBBg/Dpp5/i/Pnz6Nu3r2x/rVaLZcuW4YcffkCvXr0QHBwMo9GIFi1a4NVXX8WePXvQsGHDUo/TlwRRFJm4VGGXL1929Aa5dOmSo6k1UXGF//QGUkw5jvsb756E3rUb4dmNyUjMLiyffb5DELpGc4Ihooo0+2AG/rrkeeKCCa0DMaBefq9Zm13E2LVJksn/+PtMRERE5L3SfP8+deoUrFYrNBqNY+Z5IqrafP17zUpaIoIoisi0SHvSBmj0AJQqactrVETkijcBLZBfcVsg3WyXBLQA0CRU69NxERERERERUckwpCUi5FjNsNilzWZDdPnVdRqVdOIwG4vviaqMDHPh76tSpxKDWpAvJCIiIiIionLHkJaIkGaWV+WF6o0AAI1ThmNlJS1RlZFmKvyFVTq/ohIY0hIREREREVUGDGmJCKnmHNmyYK1yJa2VE4cRVUr3NTZiVHPprKbpRUNahX1UzGiJiIiIiIgqBU1FD4CIKp5zJW2Q1gC1Kv8cjsbpVA4raYkqJz+NgCCd9Bc23Vz4C2tXKKVlRktERERERFQ5MKQlqiGWnz+E+zd8DwCo52fC+80SEKq1Yt6VJtiYHIDHYpPwSGwyjmf5YXZCS9htychL/xoPRCVCMA/CgYxOAABrkaAnJc+Gbw9n4nyGFQBg0AjoG+eHgQ38ILi4jPpIshmLT2QjJc+GxqFajG8ViABd9Szq33olD7+dzcHZ9PzXp22kDo+2CECdQL71Uskpha0A4KdRIVjvFNKaioa08n3Y7YCIiIiIiKhyYFJAVANkWvIcAS0AfNriEvpFZAIA2gYdxL27G+OLVpcAAF1CcqBRJyAvfQYsuRtRWwf8q8EpTD08A1m2IEkl7ZxDmdhz3Sx5rPnHstAgWIOW4TrZOKx2EZ/sTkeONT8tup5rgkEt4Ilbgnz9lCtcUq4N0/dlSC4xP3DDjHRTBj7sFVZh46Kqb0eiSXG5QSMgxCmkzTDbYRdFqASB7Q6IiIiIiIgqsepZvkZEEj+e2VvknugIaAHAX23Hn11PSrYfFX0WltwNjvtqwY7eEX8CkPakLagQdXbGxfKr2TZHQFvgVJrFq+dQ1VzIsCqGYuczrMixsGcEldxJF78z4QYVAp2q0u0ikHvzd06pAJcZLRERERERUeXAkJaoBsgo0nPWX12ygNBfkwUAsBUJeswuJhFzNbmYTWFxjqV6TkTmbn41s9ILQeSl5Fz573DLMC2ahWphUMtjV9PNnzel33xXbUmIiIiIiIiofLHdAVENoFEVno8J09pKdAxRzD9G0QDW1SRirpbbFEr5nCtrqwt3zyqPIS2VQnKe9He4V6wBk24JhFolQK+Wb19wUsD514+tDoiIiIiIiCoPVtIS1QBaVWFyE6pVbkXgiXjzwuiiAazLilmXFbbyZblW0eX2VZnoYnIngCEtlY5zJW33aD3UNxNXjUrewiDPEdJKf+6Y0RIREREREVUeDGmJagCNUPirXtKQ1u5USWsXRcX2BQDgqjhWqZIWKOyZWVOYSvZfQASrXUSaSRrShhsKf78FQYDeqeWB+WbhrfM5ElbSEhERERERVR41st1BRkYGVq9ejV27dmH37t1ISEjAjRs3kJubi5CQELRs2RIDBw7E+PHjER4e7vF4//zzD77++mts2bIF165dQ0hICNq2bYsxY8Zg5MiR5fCMiNyL1l5A2h37SnWMu2qtQpugffg5YTTGrW2DbDe9ZAuC3DyrHTMPZuLADTP0agH1gpTfcsb/mYTaRjVGNPdH92iD12M6n2HBrIOZuJxpRYBOhcENjehbx4D3d6ThZFphEuqnEWCzizBqVehf14AHmvhDEATsvmbCx7vTHdvd39iIB5v6l6hP58lUC745lImr2fmP665Y9o1tqehSW49JtwTCqOW5MvJeap5d1koj3E/a40CvESTV2m9tT4UK8hYczGiJiIiIiIgqjxoZ0u7cudNleHrjxg1s2rQJmzZtwscff4wff/wRd955p8tjTZs2De+88w7s9sIapWvXrmHt2rVYu3YtFixYgKVLl8Jg8D54IvIlUbTjdr+5PjlWrN9lTKj3JV468jXcFeIXtDWIP5eLbYkmAPm9Z1NvmF3uczXHhq/2Z6B9pB4GjXfx0ayDmTibnh+KpuTZ8f3RLCRkWSUBLVBYqWs22bH0VA5aR+jQMFiLz/amS7ZbdjoH7aL0aBqq9erxC4iiiC/3Z+Bajvf9fndeNSHWX40RzQOK9VhUszn3o9WpgACt9PdF7/Sr6apHNCcNIyIiIiIiqjxqbAlXnTp18Nhjj+Hzzz/H8uXLsW3bNmzduhWLFi3Cgw8+CLVajaSkJAwZMgQHDhxQPMasWbPw1ltvwW63o1GjRpg7dy527tyJlStXom/fvgCA+Ph4jBs3rjyfGpGEaE/z6fGCtekI0GS63aagkvZCRvGu67fYgSvZ3u0jiiLOpcu3XXcxz+O+FzOsuJRphUUhvDqTZvHq8YvKtYrFCmgLnC/m60Pk3I823E8tC1sjjQqzhykIM9TYjwBERERERESVTo2spO3bty8uXrzocv3w4cOxcuVKDBs2DGazGW+99RaWL18u2SYlJQUvv/wyAKBu3brYvn07IiIiHOsHDRqEYcOGYdWqVVi4cCEmTpyIPn36lMnzIXJHtGf4/JhqwX0gab3Ze9ZSggnBzF5OqpVrFWWXb3vLJgKJ2crPIdPsouzQjYwS7AMAuZxAjIopyamSNlwhaL2vsT9Op6XB5ObXVC0Aw5v6+3p4REREREREVEI1MqRVqz1XGd17771o1qwZTpw4gS1btsjWz5kzB+np+ZdKf/jhh5KAtuAxvv76a6xevRo2mw0ff/wxQ1qqEJ4qaf0jvwIAZN940utjegxpb2aW3gauRZm9LEjNKcVkYzY7HL1jnaWXKKSVjkWrAqZ1DwWQPzlTmEGNlDwbNl/Ow+/ncx3b1bQJ06j0lCppnbWO0OGbAZFIyLLC1XmSGH81+yETERERERFVIjUypPVWYGAgACAvT3759MqVKwEAQUFBuO+++xT3j4uLQ//+/bFmzRr89ddfyMzMdByTqLyI9nSX61TqaGh0zYt9TLXg/jL9gnYHJSkwNXkZ7GYp9SrwklUUXVbSppuKH5w6V98G6VRoHCLtaxuiVyElzy4JaXNK8RyoZnLuSRvhomWBXi2gYXDxeisTERERERFRxWEZjQsnTpzA/v37AQDNm0tDLLPZjJ07dwIAunfvDp1O5/I4vXv3BgCYTCbs3r27bAZLNZ7FbkOWxQSzTR6e2m1pLvcT1BEu17njKaS12POraC0lqKTNMNuRZy385+oYOZaSV6Fa7cr9bAHgRq40BBNFEXlWO+yi68dzbncQqFN+a/VzmhAtqxTPgbxjv/n/l2e1w1aC9huVicUmIiHLqd2BQiUtERERERERVT2spC0iJycHCQkJWLVqFT766CNYrfkhzrPPPivZ7uTJk7DZ8r8oOwe4zoquP3bsmGNCMW9dvnzZ7frExMRiHY+qF7toxzM7fsE3J3fAZLNCI6jwUIN2+LbncGiQjsyrw93uryphSBukSUci6rhcv/+GGY/+caNEx559KBOzDxVOTCYA6FhLhyntgmEoEnJmlyLgXHoqx+W68xlWTN2cjMltg5BtEfH1gQwk59nhrxHwSIsA3F7XT7L9rqsmzDwonUgtyMuQNtcqYtmpbNzfhL1BizqfYcEX+zKQnGvHkEbGEr8+ay/kYOHxbEdrDL0aGFjfiBHNA3w53DKXZxUxfX869lwzy/owK/WkJSIiIiKi8nX48GF88MEH2LRpE65duwaLJX9C6n379qFdu3YVO7hKbMyYMfj+++9Rr149nD9/vqKHU+FqfEg7b948jB071uX6f//73xg1apRkWdHgNC4uzu3x69QpDLIuXbpU7PEV3Z/I2earZ/Hlsa2O+1bRjgVn92JwnZYYGr7L4/4lraTtG/EnTmS1LtG+xSUC2H3NdMq6ugAAsFhJREFUjI2Xc3FXfaNjeXYZtgq4mGnD7EOZyLWKSM7Lf5xsq4jvjmSiW7Te0cvTLor45pB8YrYgnSBbBgBGjXz54pPZ6BGjR23/Gv927LDgWJajYnTxyWx0i9YjNqB4r0+W2Y55R7JQtBDbZANWnMlB9xgD6gVVndd70+Vc7L5mVlzHSloiIiIiImUbN250FMq9+eabmDZtWpk8zp49e9CrVy/k5uZ63pjIDZbguNCuXTvs3LkT//nPfyAI0mAlM7Owai4gwH1Flr9/YQVYVlaWbwdJNd7x9OuKy09m3IAp62eP+wuqYMdtXYD7qtuizHbXLT7KyrEUi+R+XglaKRTH2XSrrG+t2Q5czCxsk5BtEZFulo/DVaAYZlBDr5CpXcr0cra0GsAuijiYJP2/3npF3hfck4QsG1z9iJzPsCivqKROpSmPV68WUMvIkJaIiIiIqCK98soryM3NRVBQEL7++mvs3LkThw4dwqFDhzxefV1epk2bBkEQZPkWVS5Vp5SojNx7773o1KkTACA3NxdnzpzB4sWLsWLFCowcORKfffYZBg0aJNmn6ERi7vrRAoBer3fcLslZFU/Vt4mJiejSpUuxj0vVQ65CD1oAEGUXRSsThMKfX33A/TBnLfZyPxH96hpwLduGw8kWNA7R4HSa+z61pXXeqYestYLm3LqabUPzsPzbFoUep9H+avR3aolQQKfOb5kw97D0hE1pJkGrbpJy5a+FyVqCydzcvKYpeVXr9b6SJQ/xtSrg0RYB0Kn5IYuIiIiIqKJYLBZs2rQJADBx4kRMmjSpgkdEVVmND2lDQkIQEhLiuN+5c2eMGDECP/zwA0aPHo2hQ4di7ty5GDNmjGMbg8HguG02K1+CWsBkMjlu+/kpBzfueGqnQDVbnk25ws7NHFdSRUJalToCQTF/AmIuRHsmzNmrXFbjdo/W447wIIiiCJsIqIX8lgSf7El3+VB6tYD/3pafbj61IdntsL7sG46ELCv+s6vweFdzbMix2B2tBpwD0lbhWky6JchxX6sCrCKgEoAQvQrj1iYhVyHsm9U/AgFaARa7iLe3p+GsiwnFChStrjUrlGp+1CvMbXB2Rz0jtl4x4XiRymBOIFYoIUv++pfk1ckwuQ5iU6tQSCuKIq44VXQ/3iYQt8UaGNASEREREVWwpKQkRy7UtGnTCh4NVXVsd+DCo48+igcffBB2ux1PPfUUUlJSHOsCAwMdtz21MMjOznbc9tQagai4cq0uQlpvK2mhld4XVBBU/lBpakOlqetyv4JsSBAEaFT5l0z4a90HRpF+KkQa1Yj04vLsSKMarcJ1cM6gzmcUBnjOlbQB2sLjRxrVCDGoEeGnRphBDZUgoFmo9LkC+ZOSBenyn4OfRoXb63g+kSINaeXH03rxrhqql26UZa46oWFZU6oaTXMTuLqS4eY1TcmrOu0l0k122cmFWyJ0DGiJiIiIiCqBooV5Wq38OydRcTCkdWPo0KEA8oPWP/74w7G8aHVr0UnElBRtV8BJwMjXcl1U0uZaUr07gOD6j4igMrhcB8gDMKVJsYoK0Rfv7UarFhAXKC32P51mcbQGMDlVsWo8HL55mPy5GrUCVEV68rSJ8PxH9XKRSk+zUzWvVgWvevwE6pxCWrY7cFCqpL2RY8O1HBusCu0lihJFEUm5+dtey3EdxJZ3u4PUvMIxKf1z/v9PN9mRlGuDKIo4lyF9PbQqIMKPf7qJiIiIiEpj48aNjh6tGzduBAAsXrwY/fr1Q2RkJPz8/NCsWTO89NJLkqK9AgU9Xhs0aOBYNnbsWMcxBUFQnKgsLy8PX375Jfr164fatWtDp9MhKioK/fv3x9y5c2G1em4jaDKZMHv2bNxzzz2IjY2FXq+Hv78/WrVqhQkTJmDNmjUQb15eO2/ePAiCgLfeesuxf9ExFvw7f/687HFsNhu+//57DBo0CDExMdDr9QgPD0fPnj3x6aefetXS89ixYxgzZgzq1KkDg8GAOnXqYNSoUdi1y/NE5zVRjW934E5kZKTj9oULFxy3mzZtCrVaDZvNhuPHj7s9RtH1LVq08P0gqca6kJWCTw5vkixTQcTXrS9gRMw+r45RtCetfKW7kFbO6KGENNjLkLZogWD9IA0uFAmpFhzPxk/HsxHup5L1LtWo3IejLRRCWucR1fbXIMpPhesKfVELJGTZcPCGGbdE6mTtDrytbgxwqjpmu4NCf12STxJ2Ms2Kpzckw6AW8FS7IHSurZdtcy3Hhvd3pOGqm3C2QHmFtFkWOz7cmYaTHvo1CwBur2vAYy0C8d896TiY5LqNTrS/WnJigYiIiIiISsdut+PRRx/Fjz/+KFl+8uRJfPzxx1ixYgW2bNmC2rVrl+pxDhw4gKFDh0ryJQC4ceMG/vrrL/z111+YNWsWVq1ahVq1aikeY//+/bjvvvtw7tw5yXKz2YyjR4/i6NGjmDt3Ls6dO4f69euXeKwXL17EkCFDcODAAcnylJQUbN26FVu3bsWMGTMQHx/vss3D4sWL8dhjj0mqjS9fvoyFCxdiyZIlmDlzZonHV12xHMeNhIQEx+2irQp0Op1jsq5t27a57Utb0EBar9c7Jigj8oX/HdkiW9YlJBsjYrysogXcV9IK8iCsgCgqVNJ6aHfgbUhbtCK3QZD8PJII5cmlPLUZaBQsf64GherfNhHuJwMEgG+PZAKQ96TVegiKCwRo2e5Aic1DpWyeTcSPx5RbzPxyJturgBbIb5/gqSrXFzZdzvMY0AL5P9N/XczD4pNZbgNaAIj257lVIiIiIiJfev311/Hjjz/i3nvvxfLly7Fnzx6sXr0a99xzDwDg9OnTeO655yT7TJ48GYcOHcKaNWscy959910cOnTI8W/y5MmOdadPn0bv3r1x4cIFBAUF4ZVXXsGKFSuwe/durFmzBk8++SQ0Gg127dqFoUOHwmKRXzV77Ngx9OrVyxHQDhs2DIsWLcKuXbuwfft2zJ8/H4888gj8/f0d+9x77704dOiQZEKzomMs+BcbG+tYn5ycjJ49e+LAgQPQ6/V46qmnsGTJEuzatQsbNmzAK6+8AqPRiNOnT+Puu+9Gerp8bppdu3bh4Ycfhslkgl6vx7///W9s3rwZO3bswBdffIGIiAhMmjQJ+/fvL+b/VvXGb3tuLFmyxHG7TZs2knX33nsvtm3bhoyMDCxfvhwjRoyQ7X/58mWsW7cOANCvXz9JL1ui0jqWdk22rI7BfcDjzF3fWXfrAHkY5q8R3Fah1i8SuHaupcOua8pjndy2cPIv53YH7hg99DvQqgV0jNJhz/XCx20ZLg9ku0TrFas5iyqYlMq5IjNA511I6xwOO7duqKm8qSi+mmODXRRl1aSnUpVbfygRkd+2on5Q2faMSlTor+vOHhe/E0U1VeitTERERETVgyjaIdozKnoY5UpQBUEQKrZ+8J9//sG7776L1157TbL8rrvuwl133YW1a9di6dKl+OKLLxxXXEdFRSEqKkpS0BcbG4vWrVsrPsbo0aORnp6O9u3bY+3atYiIiJCsv+OOOzBo0CDcc8892LFjB+bNm4fHH39css0jjzyCrKwsqFQqLFiwQJZDde3aFY8++iiSk5NhNBoBACEhIQgJCUFUVJRjO1djLPD000/j0qVLqFevHjZs2CBp6QAAffr0wYMPPohevXrh7Nmz+Oijj/Dee+9Jtpk8eTKsViu0Wi3Wrl2L2267zbGuS5cuuO+++9CtWzdZpW5NVyND2nnz5mHEiBEwGFxfzv2///0Pq1evBgA0aNAAvXr1kqyfMGEC3n//faSnp+Pf//43BgwYgPDwcMd6m82GyZMnw2bL/5I+derUMngmVJMlmbI9b1TEzjQjuoTkOO7rg8ZBrYlxub1KHQa1tgVslmPylaI8TBIEAY+3CcKsQxmSSle1AHSL1qN7dOHv26jmAbiWk4HLWVbUCdRALeRPyNUzxoBbIguDU+cJtty5p4HnSb8eaxmATHMGTqVZ0TBYgweb+Mu2aRepx5CGRvx5MVc2YVOBvJuh6nWnys1aXkyKBsirftmSNl+u82xwLuRZRUnlttUuIsFFIKpVAbfFGXDghlnyc3kuvexD2hwvn0+B67nuQ92OUTr0q1u8NiREREREVHWI9gxkXr2/oodRrgJrL4OgDqnQMXTs2BGvvvqqbLkgCHj++eexdu1aWK1WbNu2DUOGDCn28bds2YJ//vkHAPD999/LAtoCd911Fx544AEsXrxYFtKuXbsWe/fuBZAfoioVChYomk0V1/nz57Fo0SIAwJdffikLaAu0b98eTz75JD766CPMmzdPEtLu2rULu3fvBgA88cQTkoC2QGxsLP773//ioYceKvFYq6MaGdJOmzYNL7zwAu6//3707NkTjRo1QkBAADIzM3Ho0CEsWLAAW7duBZDf2mD27NlQq6XhS1hYGD788EP861//woULF9C1a1e89tpraNOmDa5cuYLPPvsMGzZsAACMHDkSffr0Ke+nSdVcUp40pP2131j0C0uAJf1D2bZvnozBDdVd6NP8wZsTbKkhCJ4DRX3gCOSkvClbLiqEtABwS6QOX92e/wfHLoqw2gGVIO8XGxOgwce3hcFmF6F20yIgzOB9SOtNO4Xa/hq80yMMVrvotoftwy0CMKKZPwoKXK/n2PDC5sJm8TYxPxi8lluykNb5scvj0vuqIM+polgAMKNfOP71V7Jkea5VhLFIvpqQZYNzMfKs/hEwagSoBUCtEvDpnnQk5Rb2QjqXbkXfMp7LMcepMnh4U38Mbmh03P/6QAa2JRaOyd2PwcQ2gehX1/OJCCIiIiIiKp5Ro0a5nAC6Y8eOjttnz54t0fF//fVXAECzZs1kV2k7u+2227B48WLs2rULVqsVGk1+bPfbb785tnn22WdLNA5vxMfHw2azwWg04u677/Y41o8++ghXrlzBxYsXUbdu/tW4BVeUA/mTqbkybNgwhISEIC0tzSdjrw5qZEgL5Dc7/uabb/DNN9+43CYuLg7ffvst+vfvr7j+iSeewJUrV/DOO+/gzJkzGDdunGybgQMH4ttvv/XZuIkKOFfSRhoCoFGp4Oqi71CdH7Rqz/1WJQQXbxEuQtqiVIIAnYfM0l1ACwB+GgF6NWDy4qpxV39UlXiaZAzIH1vB8JV615ptIq5ll7SS1jmk9Wq3ai/PqXLZTyMohu/OFc4XM6R9XyP9VAhx2q9BsAY7rhYGomfTvW+PUFLZTuMM0qkkk8sV5yREx1que0QTEREREVHJNW/e3OW6sLAwx+3MzMwSHb+gqvTEiRNef2+1WCxISUlxtCnYty9/cvC6deuiXr16JRqHNwrGmpOT4wiIvXH16lVHSHvo0CEA+UWPbdu2dbmPVqtF+/btHQWOVEND2jVr1iA+Ph5bt27F6dOnce3aNSQnJ8PPzw9RUVFo164dBg0ahOHDhzv6eLjy1ltv4c4778RXX32FLVu24Nq1awgJCUHbtm0xduxYjBw5spyeFVUHdtGOY2nXEWsMRoheuWpOFEUcSk1EjlUaMkUY5JfuF2VQF//SbgHK+4guo2DfEgQBIXo1rnk5IVRZ0avlf0iPJFtwJl0aDkZ5XUkrvW9hJS0AeUhr0AhQCQL0akHSt/dAkhkhehXUqvwq2u1XpT2E6yr0Mm4YLF12IcMKm128ORGdDeEGNbQ3/5/NNhEXM60wqAXEBKihEgRkmPMnGwszKP8f28X8lgtqIb96PMMsIt3p7ILRKex3DpJdaRSs8XpbIiIiIiIqHne5j0pV+Dm8oJ1lcV2/fr1E++XkFLYrTEpKAgBER0eX6Fje8sVYU1Lyr0INCwuTXZXurFatWiV6vOqqRoa0zZo1Q7NmzfD888/75Hi33norbr31Vp8ci2qudHMu+v0xC3uSL0MtqLDgtlF4qGE7yTaiKOL+9d9jxcXDsv0j9P5K83nl7wfAoC7Br7vgItj1opLWV0INqkoZ0n6yRz6DJdsdlM6hJOnPleHm627USEPa+UezMP9olsvj1AuS/6w3CJb+LJvtwJEUC749nInEbBtiA9R4vWsIUk12vLsjDdk3WxU0CdGgbx0/fHckExY7cFd9P4xtJZ0EMs8q4t0dqTiVJg3tnRXtowt416IDANpHFbMCnoiIiIiqJEEVhMDayyp6GOVKUAV53qiKKwh327Ztix9//NHr/WJjY8tqSC4VjDUiIqJYFa5KvWuLc7Ur5auRIS1RZbT0/EHsSb4MALCJdkzbv1YW0u5KuqQY0KoFFYJ1BlhylcO+bJsKET4MaV31pC0L3kweFqQr2zd/54m+lAgAIv1KVkmbZ8sP4Gv6H7F/ivRnBQrbTPhpBKSalPZQVlchpA3SqRDhp5JMHvbF3nRk3gxjE7Js2JyQh/MZVkdACwCn0qw4lVZ4WdMf53MxtJFRUlG7+5rJY0Bb8DyK8rY6tn0UWx0QERER1QSCoKrwSbTI9wom8srKykLr1q1LdIyCycYSExN9Ni4lBWPNzMxEixYtPFbCKgkNDQUAJCcnw2azuT3GtWvXSjbQaorXTxJVEkvOH5TcP54uv8xAaRkAdAiPhSAIEMU82bo8m4AliWFoFxZT7DGpNXWheC5HLJ92BwDQOMRzm4YhDd23eigtQRDgr3UfoIqA43J5TyKcLpk32URcyqrYauHKIEgn/ZN04+bEbPWDi3eCwVVFc1yA9DiZThN7rTidg0Qv/h8SnLa5nOU5oFULQB2nNgwNgjz/bNcyqmWtGoiIiIiIqOpo3749gPyJx65evVqiY3To0AEAcPHiRVy4cKHY+3tbEFQwVpPJ5OhPW1wFk6OZzWYcOHDA5XZWqxX79+8v0WNUVwxpiSqJbKvn6tTEnAzZsq6RdTG3x/D8O3b5JeAvn2yOfzXvh3vqtCj2mASVP/xCX5GvKMdK2jvq+aF3nAGBLkLSaH817qhf9rPeP9nW/WU4Y1oGeH2sSKMakX7St98jSeX3mlZWRVsaAMDwpvnh+6MtAtAmwvueyv4uSp89TdSlUwHpZs+zuDln8cm5yvsIyG/ZEO2vxlPtgmTjCvJQSdswWIMp7YKgquEV1kREREREVdmQIUMA5F89+fnnn5foGIMHD3bc/t///lfs/Q0Gg+O2yeT6MsXBgwc7At3PPvus2I8DAP3793fc/v77711ut2LFCqSmppboMaorhrRElUSu1XN16hWnkHZ0407YPuhptAnLbx4u2rMl67V+t2Ne/y/xYedBUAkl+3XXGfvAP/IryTIR5Rco6tQCJrcNwpw7IrHonijZv8/6hCv2jPU1pT6nRXlT8VtUq3Bpn9HDyQxpnUPagvYRYQY1/q9rKD7sGerVcfw1yj8PoR5C2pgADdJNnkNaq9MmyXnK1bdxgWp8f1ckPusTjltjDIrbdIuWtzL4d+dgLLonCv/pGYYmocWf8I+IiIiIiCqPO+64A126dAEAfPzxx1i8eLHb7Q8dOoRVq1ZJlvXv3x8dO3YEAEyfPh0///yzy/2Tk5ORm5srWVZ0wrEzZ8643LdZs2Z48MEHAQA///wzPv30U7djPXfuHBYuXChZ1qVLF0fl74wZM/D333/L9ktMTMSLL77o9tg1EUNaokoi1+Y5pE3MlYa00X7S6k5RlIa0gsr76k53BMFp4iLRDFGsWZNdqTzkwLpiBsWtnULaY8kW2GvYa+rMZJU+/5KG784TdBUIM7jvpyQAsHnxX+A80ZurStoci+eDGcrhBAMREREREVWsn376CWFhYbDZbHjooYcwZMgQLFiwADt37sSePXvw+++/4/3330f37t1xyy23YNOmTbJj/PDDDwgICIDdbsfIkSNx//33Y8mSJdizZw927tyJn376CWPGjEG9evVkvV6LTnb/3HPPYfPmzTh16hROnz6N06dPw2otbOE2Y8YMNGzYEADwwgsvoHfv3pg7dy62b9+Offv2Yd26dfjvf/+LAQMGoHHjxli2TD7Z3ddffw2NRgOLxYIBAwbg1Vdfxd9//41du3bhyy+/RMeOHZGYmIi2bdv66iWuFtjojqiCJeZkYE/yZZzOSJKt+/XiEcn9Y2nSnrTRRuks86JTuwNB8FGvVueQFiJEexoEtXJloyjaYLOchkodBpU60jdjqGCeojRvJhcrqpXT5fvZVhHnM6yobVTjdJoVMQFqRHg5EVlVcjXbistFerpqVPlVyAFaFfKcElKDc0WsF3mmn0Zw2R4gzEN7gcRs7/oCn0i1wKgVEG5Q42KmFVdzlPdLzvNclasURLO7ARERERFR9dKoUSNs27YN999/Pw4fPoxVq1bJqmWLCgqSt9tr0aIFNm7ciGHDhuHSpUtYvnw5li9f7tXjN27cGMOHD8fixYuxdu1arF27VrL+3LlzqF+/PgAgLCwMW7duxfDhw7FlyxZs3rwZmzdvLtZYu3btivnz52PMmDHIy8vDf/7zH/znP/9xrNdoNPj666+xdetWt31raxqGtEQVaE3CCQxe9y0sduWQZ+hf37nd37mS1pK7XnJfUPkmpBXgHNICmVdHIaDWN1Br4iTLRdGG7KTnYTMfBgQ9jGFvQmvo6pNxVCRPuVlxK2nDDGpE+6slweCGS3nYddWE1JuX3I9rFYA76xuLO9RK64/zOfjuiLxvcqBWwBvdQmVVrCWppHU3wZundgepXrQ6AICVZ3Kw8kxOscbliiyIhldZNBERERERVTFNmzbF/v37sXjxYixbtgy7du3CjRs3YLPZEB4ejmbNmqFnz54YNmyYo12As44dO+LEiROYM2cOVq5cicOHDyMlJQUGgwENGjRA9+7d8dBDDzkC16J+/PFHdOrUCUuXLsWJEyeQmZkJu135O1Dt2rWxefNmxMfHY+HChdi2bRuuXr0Ki8WCkJAQNGnSBN27d8eQIUNw2223KR5j5MiRaNu2LT744AP89ddfSEpKQmRkJHr06IHnn38eXbt2xdatW0v8elZHDGmJKtBnRza7DGi9EW10P5kVBB9NqCWrpAUAMyzZf0AdPEGy1Jq3Iz+gBQDRhNy0z6CtvVBh/6rF0+RNOk/9EBS0DtchMbuwV9DaC9K+QT8cy0KfOn7l0nO3PKw6qxxsZlpELD+dLVvu/Ly9mUDLqHEdxHpqd+Br3lRXK/3fcqIwIiIiIqLS69Onj8s2fe7WOXO3Xf369YvVClCtVmPkyJEYOXKk1/s48/Pzw5QpUzBlypRi7afVajF16lRMnTrV633uuece3HPPPcUdokPLli0xf/58l+vnzZuHefPmlfj41Q170hJVoMTczBLva9Ro0S4sxnFf6Q+Dz3rSqoIhqGvLlttt8hYN5pw1kvui7bpsm6ooUCcgwk/5LTPKT4VAXfGDtWZh7ieFstiBgzeqz4RiaW4qVbclSmcY9dMICHVqTxBtVHvs4do01PW5xyCdgGj/8gtq723suZK9idOEcyrB8yR1REREREREVP3wmyBRBTLZrC7XNQoMd7ku2hiEN9oOQIC26Mzw8mOptc1KMzwHQRDgHzYNWTf+JVkuinkK21bP2egFQcALHYOx8HgWzqRZkW0VEW5QITZAjYebB0AoQfVjvUDPb8G7rpnQubbe43ZVgc27bgIAgA5ROqidqpO1agFTOwVj2alsJOfZoVcLSDfZ4K9VQUR+b9tRzV2fmBAEAc93CMYPxzJxLSd/MNdu9pOtZSwa3oqO9c70asDkovi9Q5QO0f5qnEy1oGGwFkMaem5V0SZCi0daBGBLQh70KmBoY38E6Xj+lIiIiIiIqKZhSEtUgZxD2l/7jcXguq1KdjBRHtIKgu+qBtW6JjAEPYG8jFlFHlPp8vXq+7bSMFiL17oqT5ZWEjEBaqgFyHqxFrX3mgk2uygLLKsauyjC+4uAgK4ugunWETq0jlBqv+GdukEar/4P/7mSh8/3ZUiWPd8hCLuumbAlwSTb/qVOwehYq/hhuiAIGNzQiMFeBLpERERERERUfbFch6gC5TmFtHp1aQJOpfI+3wamgkoaJIlirsJG1Tek9TWNSkBsgPsgPdMi4kSqpZxGVHasxaii1auBdlEVWz2sNAGZn0blsspVW8VDdCIiIiIiIqpYTFOIysHl7DRsvHpGFspmWKTtAgylCGnt9nT5Ql8Hpk4TkdnMRyGKVgiCBqI9B1bTAVicetICgChaqm0bhNKqE6jBxUz3k8f9djYHidn524QZVGgToYOmioWCtmI0028Xqa/wydL8FWb9MmgEBOuVQ1o385URERERERERecSQlqiMHUm9ilvjv5QFskpKWkkr2rOQdX2iwhrfTpIkOIW0AJCT8h6MoS8h6/q/YLcluBhgHsCQVlG9IA22XpFfPl/Unutm7LleOIFYp1o6TO0UUsYj863i9KPtGl3xPXiNGnlIrBLgspK2qoXmREREREREVLkwpCUqYwvO7vUqoAUAP3XJgkyraU9+EOpEEEreu1OJoJLPVm/N2wxTVgPXAS0A0Z4DQRXo07FUF3W9mDzM2e5rZiTl2hDh59sQvixZ7d5V0mpV+RNwVTQ/hZDWoBYQ7CKk5VxfREREREREVBr8WklUxhJzMjxvBCBcb0SLkFolegy7LVW2TKVtBEElr3wtDbW2KZTO7Zizlrvdz2675tNxVCfNQrWKgaAnKXnFKE2tBPIUZkcLVWgd0CvWAL9K0Dsg1KBGw+DCn/VofzViA9RoGqqFcyeEAK2AuBKE7UREREREREQF+K2SqIxlWKSXstfxD0GcMViyLNY/GK+0uR1aVQkrI0X55fL+YW+V7FhuCCo/+Ed8jOyk55xWqAE3hZJ26xVAf4vPx1MdGLUqvNolBL+cyUaGKT94DdSp0Lm2HmfSrLiQkT9p2LkMKyxFctlsSxULaa3SHxABwBvdQrD0VDZu5NggCAKahWpxXxOj8gEqwAsdg7H4ZDZsdhEPNvWHIAgI0Al4tUsI4s/lIMNkR6hBjXsbG9nugIiIiIiIiEqFIS1RGct0CmmfadkTL7Tu49PHEJ1CWo2hF1SaaJ8+RgG1ro3SUrf72G2JZTKW6qJpqFaxx2zfOoW3p25OlkwwlmX2fiKuyiDXqZLWTyMgJkCDp9sHu9ij4kX4qTG5bZBsectwHVqGV3xLBiIiIiIiIqo+Kv6aUqJqzjmkDdIafP4YopgruS8Ivn+MwmMLkL11CB5CWitD2tIKcLrGPquKV9KWpMUDERERERERUWUhir4tnmIlLVEZ237jguR+oLbkM9eLoghr3jaIYha0fn0AqGHN+wfmrMWS7QSh5I/hHRWAoiEhK2nLmr9TSJtmKnz97aKIPdfMuJxlVdw3yqhGl1p6aNUVF4w6h7T6ChwLEREREVF5U6vVsFqtsFqtsNlsUKurziTARCRns9lgs+Vf7eqr32eGtERlaG/SZdmy0lTS5mXMgjlrCQDAnL0Kam1TmLNXyjcsl5C2yMNB5a4lLStpfSBAKw01V57JwcjmAQCAhcez8evZHLf7d62tx/MdK661wIbLeZL7rKQlIiIioprEaDTCZMq/yjItLQ3h4eEVPCIiKo20tDTHbaPRN3OrMKQlKkOLzx+QLQvR+ZXoWKIoOgJaALCZj8JmPqq4raAq48mXBJV0ojAP7Q5EeypE0QxBYB/PkvLXykPNHIsdRq0KmxLyFPaQ2nnVhDyrHQZNxXS5Sc2rWu0ZiIiIiIh8KSQkBKmpqQCA69evw2azISgoCHq9/mZLOSKq7ERRhMlkQkZGBpKTkx3LQ0NDfXJ8hrREZeh6XpZsWYfw2JIdTJQfyxWNvmPJHsNLgioIoq0wGBTt2R73Ee0ZENQRZTmsaq1NhA6/nZP2Hk7Oyw9ps8yeA1ARQJ4NMFTQu77RqXI2y1K1Jj4jIiIiIioNg8GA4OBgpKenAwCSk5ORnJwMQRDY+oCoirDZbLI+tMHBwdDrfXM1M0NaojKUbpZWOD5Y/xYYNNoSHctuS/a8EQCtX29o9G1K9BjeUqnCYbNdd9wX7c5jEwCnBgiiPRNgSFti7aLkb/qpeXbEBoiwOeWdrcO10KoE7Lthliy3+7ipeXFYnR57aKMyrvYmIiIiIqpkoqOjodPpcOPGDccyURRhtSrPLUFElVtkZKRPW5cwpCUqQ84hbfeo+iU+lmhP9Wo7rV//Ej+GtwR1KGBxvV4XMBzm7N8AsbDCVrRnlvm4qru6gRpczCz8AJeSZ4PZJn8bf+KWIARoBYxdmyRZbq/A4lWLU7GvTsVLuoiIiIioZhEEAREREQgKCkJWVhays7NhNptht7M1GFFVoFKpoNPp4O/vj4CAAOh0vm3pyJCWqAxlWKQhbZC25CXw3lbSlnk/WgAqVZj7MQhaCKoAiDaGtL4UZlDhYpGXMSXPDqVOBzq1AJVCX6uKDGmtTg+u4RVdRERERFRD6XQ6hIWFISzM/fcqIqpZGNISlSHnStpgnaHExxJtKV5tJwhlH9IKak/l/BoIqkCItmuOJTmpH0FvfQg64wCo1JFlO8BqKtQgnfRr0clsZDqXqALQqQClQtUlJ7MlE5Dp1AI6RunRLKxkLTiKQxbScnIEIiIiIiIiIgeGtERlSF5JW/KQ1m73LqSFyr/Ej+EtQe1+5kJByA9pJcQsmDLmwpwdj8Ba30MQ+PZTXGFOIS0A/H979x0nR1n/AfzzzMz2vZbk0kMSUkjokYQWegkCQgwoYKFJExRB/SEKVhRFBBUiIhCahSJFqihICRBKCEQpSUgCSSC9Xd86M8/vj73bu9mZ3Z3d273du/u8Xy9e3M4888xz2Zvdme985/v8M2MyMSAVfHUKgb68IWZb9uTHEfzsoAZMbShvoFbPiCV77L8KERERERER0aDFy2SiMmpLxi2vexOkdZ9JGy56H24pSn2eQQSgKHWOq6SxGUbiw9IPahAY6s9fI8CjAKpIZdJqLj7hTQks2RLP37AXdFOiLaMug1dlJi0RERERERFRFwZpicooblhn6fSrxWePusmkVb17Q1Gdg6OlpHr3zrHWC823HzT/oVlbSGnP/qT8Zgz3wpcnuDlzhA9CCAiRKmXgRodDyYRSWtmUtNTOFQDG1jCTmoiIiIiIiKgLr5KJysSUJnSZmT1Y/GxJbjJpQ0OvKbr/QmQLBHvDX4QncARUzzionnGINv08Sw9G+QY3gA3xq7jm4Hpc+UqT4/pZI3y4eJ/a9OtL9qnFlIYoNrVbbxasatbxSVv3skSZ3473tycsryfUaqj18h4hERERERERURcGaYnKJGHYI18+pfhDLm+QVvjsdWD7kKKNR6Du65ZlQm2ENLbZG8tkH41q4JlQ68GXdgvh/g87bOs+t2vAkmnr1wRO2tU+kdyDH7Zbg7QZk3qV2nsZQdo9h3nLuj8iIiIiIiKi/oapTERlkjDtQVpvkUFaKROQsi1Po/I+sp6PlO7rmkoGaXtlcn3vJvnKrAebMMoXpI0kTaxusWby7jWsvJOUEREREREREfU3zKQlKrGkaWD+slfxrw32ybF8RZY7kIbz4+1WlQ3SQsYKaKznb0JZ7VqnQQAoNrSaGaT9cGf5gubLdibRM1FXU4BpQ5hJS0RERERERNQTg7REJXbV2//EDe8vdFxXbCatfdIwD4DMwFp5H1nPp5BMWshE/jaUVdCjYExYxfr24orJehVrkLZDl9gZMzDEX3zN5GwySx3s1uDJO/kZERERERER0WDDcgdEJfbM+hWOyzWhIKAV95i3NFstr4VSB0XbxbLMGzy+qL6LJZQh1v0HjrK3EX7HbWVBWbfkZIpDyQO3wc+wx95uRZmyade1WrOm9xjKLFoiIiIiIiKiTAzSEpVY1HB+lP/UCXvDpxaZvJ5Zb1Z44K+7GEBnsE344a05o7i+ixRouCLv/j2BIx23lUZz+QY2SBwxzo+eCbFjwip2qXH397WHw8Rd8TLVpW2JW/92R4VKn61LRERERERE1N+x3AFRiekZE4Z9ZugYXDr9EHxp1xm96NUaQBMAPP79EWq8GUZiJTT/TKja6F70X7jU/ufDSHyYdf++mrOgenZFZOdPLcvt5RuoUNOGePGLgxvw320JhDwCB4/yQ1XcZdLWehUM9SvYEesOoOplKmnckrB2XOvlvUEiIiIiIiKiTAzSEpWYnpH1et1+J+LYMVN72WtmBC0V6NK8u0Pz7t7LvouneadD807Pul4IAU/gUPhqv4Z4613p5e4mQqN8JtV7MMmh7IEbI0NqRpC29Jm0uinRkbT2W+djkJaIiIiIiIgoE6+WiUpMN60BVU3hYaYoDZbX0mSQttK0jKzbclQ7aE3Y03MZpCUiIiIiIiKyYyYtUYnNbtiB44dtwrutAfxx3XBowl1QSkoD0abrkIy+AADwBOfAV3Mm9OgixFr/ZG3sss9qIVTrJGNGciVaNhwNiCA8/v0hzQ4ACjTfXvCGT4MQrFtabplzjP1leTs8CnDs+AAU4a5sQj6tGfVoBZwnLSMiIiKi/kVKiWT0P9Bji6H59oUneAJEic4hiYgGKwZpiUrISK7F3XstAwCcNqoJEsJ1Jm287f50gBYAkpFnkYw8m6V1/zoBUpQhzitkBMnoS+mXevxNABp8NV/sk3ENZpmZtABw1wft8KkCR4wLlGQftnq0PqVkAWAiIiIiqhw9vgTRpusAAMnoCxBKGJ7A4RUeFRFR/9a/0vGIqly05Y+W19futgEexV1WaLztbtf7ESJU0LgqTaiNrtvG2+8v40ioS7b5u259t61k+2jPqEdbwyxaIiIiogEh1jzf8jrafEuFRkJENHAwSEtUQkZihW1Zvbc0WYk9eUPHl7zPclLUBmj+w1y1lWZLmUdDADA6XP4HKZIZhW69mTUWiIiIiKhfMo0NltfS3FGhkRARDRwM0hKVkJRx27KGEgZpVc9UhBrnwxs6sWR99pXgkKsQHHJNpYdBnT47ofQ3DzIlM+YNcyqxQEREREREREQM0hKVlIBuW1bKTFpfzVegeXcvWX99SQgPPIHZEOqIvG2lTPTBiAa3kEfB8EB5vwJ005pJ6+E3DhEREREREZEjXjITlZnqcuIwN4QSLllflZP/30MafFyqL4yv9ZS1fz0jk9bDTFoiIiIiIiIiR4M2SLtkyRJcc801mDNnDsaOHQufz4dwOIypU6fi3HPPxauvvlpQf8888wzmzZuX7mvs2LGYN28ennnmmTL9BlRt9Pj/HJe3bTkfHTt+DCP5qW2dqW9By4aj0bLhaFf76G8ThjkRyB+oi7V1Tx4mpYFY6z1o33ox2rdegljb3yClmWNrcmtiXe/r0iYNib8ub8fVi3bivhXtMEyJTR06bljSgr+uaLe01QbtNw4RERHRwJGMvuK4vG3LBWjbehEiTTdAmu2ObYiIKLvyzxxThQ477DC88or9iyWRSGDVqlVYtWoV7rnnHpx11lm444474PV6s/ZlmiYuvPBC3HnnnZblGzZswIYNG/DYY4/h/PPPx2233QalhBmVVF2k2YGO7Vc6rjP1NTD1NYjoG1EzYoFlXduWLxe0n4GRSZs/SJuMPA09eBw03x5IRp5BvO0v6XVG8kMo6nB4g8eWc5CDwoRa56+AlriJOp+7z6un1kTw5McRAMDqZh21XgWvbIhhbau99Adr0hIRERH1b6axDZGdP3Vep3+c+n9yNQAg2PB/fTUsIqIBYVBGDTdu3AgAGD16NC677DI8/PDDWLx4MV5//XX89re/xZgxYwAAf/7zn3HOOefk7Ovqq69OB2hnzJiB+++/H4sXL8b999+PGTNmAAAWLFiAH/7wh+X7hajiktEXASRztjH1NZBmNP1aSqPAvWgQSn3BY6s6wt29oWTkWQCAHn/Xts5IfFDSIQ1W2TJp17XZA6zZPPhhh+X10q1xxwAtANR5B+VXDhEREdGAYSSWu2qXjDxf5pEQEQ08gzKTdtq0afjlL3+JU089FaqqWtYdeOCBOPPMMzF79mysXLkS999/P77+9a/jsMMOs/WzcuVK3HDDDQCAmTNn4uWXX0YgkJokatasWTj55JNx+OGHY8mSJfjNb36Dr33ta5g8eXL5f0Hqc9LsyN8IgEQSAoHObdoK2oc39DkIpXSTkFWKUGpctUvGF8MvJUxju22dNCOlHtagNMSv4oixfry0PmZZnjRkli2sDFMis+X7O5xvVgQ0gaPG+YsZJhERERFVCffXMJwImIioUIMyrempp57CaaedZgvQdhk2bBhuvPHG9OuHH37Ysd3vf/976HoqY2z+/PnpAG2XYDCI+fPnAwB0Xcfvfve7UgyfqpBQXNaKld0ZhtJsdWziqzkHNSPuQ3j47Qg0XI1Aw9UINf4B/rpvlmKoFec2SCuNrTD1TyDNnfZ1kkHaUrlob/v7EXMZpN3QYc8GHxWyf66es3sYvz98CCbUlXeiMiIiIiIqr2zXMERE1HuDMkjrxpFHHpn++aOPPrKtl1Li8ccfB5DKzD3wwAMd+znwwAOx2267AQAef/xxSOku+EH9jNsJvWR3lqHTXWjFMwX+2jOhaCOgeibBGzwK3uBR0LzTIcTAqOfpNkgLAHpsMUxjh205M2lLRxECkzLKHiRcBmk/arZnzfpU+9/pAaN8qPc73xQjIiIiov4jc0IwoQzN0nJgXLsQEfUlBmmziMfj6Z+dMm7XrFmTrm17+OGH5+yra/2GDRuwdu3a0g2SqoYQ2SeX60miZ5DWfhdaDIJDUgj3Qdpk7GXAIWuWmbSllRlYjenugrQft9hrzzoFeNUBcoOBiIiIaLDLTDTR/DMd2w2IuTSIiPrYoKxJ68bChQvTP0+fPt22ftmyZemfp02blrOvnuuXL1+OiRMnuh7H+vXrc67ftGmT676qRdvmsyBlByB88AQOhb/2QgjR37PsXGZIy9xB2sFw36SQTFojscxxuZlchbbNX4UnOAe+mjMHTJZxpWQGae9b0Y69G71Y8F4bNrTrGBFUcc4eNZhUby1X8Oy6KDJtciiBoPDtISIiIuqXpJRIdDyCRPsTkDJqK0WmqMOctzObYOpbocffQbz975BmC4TSAF/Nl+ANHt0XQyci6ncYpHVgmiauu+669OvTTjvN1qZn8HTs2LE5+xs3blz6508//bSgsfTcdqAwzWZApibaSrQ/3PlY/5zKDqrX7IEpRz2DtNKh6H6/D1bnV0iQNhfT2IR4271QvbvB4z+gJH0OVt6MIG3CBL6zsPsEvCWh46alrbjpiCHpgPjKJucJwpxuVzBIS0RERNQ/GckPEWu5Net6IcIQ6ihIw5481LHjKpj6mvRraTYj2vQraL4ZUNQhZRkvEVF/NvDT9orwu9/9DosXLwYAnHLKKdhvv/1sbdraugNs4XA4Z3+hUHe90vb29hwtB4nOAG0XI/FhhQZSOlK6C9JK2V1GQ5ox23pf+AslG1O1UrRRuderowvqz0iu7s1wCMCwQP6vgi0RA9EeZRDWtdpLHTjxq8KxTi0RERERVb9812qKNgqBuosc1/UM0HaTMJL2OV+IiIiZtDYLFy7E97//fQDA8OHDceutzncNY7HuAJvXm7seqc/nS/8cjdofD84lX+btpk2bsP/++xfUZ7VxmkCr35H2gKtjM0stVdO2XvMfVKIBVS/NNwOqd08Yifd7LFUBGPCGToU3eAzat38HkC6PFYdgNxXmmF0CeHpN/n/vhCER7Kx4YLicBPHzk4PQmEpLRERE1C/JjAQbKy803yxAeKB694GR+J/LTjm/BBGREwZpe/jggw8wb9486LoOv9+Phx56CMOHD3ds6/f70z8nEomc/fachCwQCBQ0pnylFPojzXcA9Pib6dfOtVn7l54ZsjnbmT1PcqxBLs1/KIQY+IekEF6Ehv0WZvJjQHihaLtAmjsgZQKqlsqirR31SOdd++4MZUWbAGm2oGPHDy2PU7n9t6fsRoc1fGa4F+9szfNZ1uO+Qub8YDVegctn1FmWjQypGBYY+CU8iIiIiAYqaWZ/ErR21EMQSuq6ODTsRiQiTyHW/HsXfRaWuERENFgM/IiQS2vWrMGcOXPQ1NQEVVXxwAMP4LDDDsvavqamu65mvhIGHR3dgbl8pREGA09gdkaQtv9n0uqGu7vB1jvR1kza/j95mntCqFC9U7pfZ0w4IIQPmm9v+4ZqAzz+A5Ho+Ed6kXSZxUy5BbT82a7xHpFZMyNIu2udB3sOy/1UARERERH1M6ZzJq1QhkAo3de2QgionqmuupTMpCUicsSatAA2btyIY445Bhs3boQQAnfddRfmzp2bc5ueGa49JxFz0rNkwUCcCKxQQqm1vB4IQdqYnusxoB6ynOSk8JFwN4TwWxcwSFsSisj/95ewBGmtUVqWnSUiIiIaeKR0TkhSNPs8EkJ4XPbJTFoiIieDPpN2+/btOPbYY/Hxxx8DAObPn4+zzjor73a77757+ucVK1bkbNtz/fTp04sc6cAhlBrLa9PYgLbNX4W//lvw+Ku/vq6pb0Gk6RcwEisg1XG4etU0jBBLcdnE/NvG2x+Er+aM1AuZWZOW90xcET7LS5Y7KA03QdarFzXhl7MbEPII3LfCesOBZWeJiIiIBh6ZJcnEKUgLuAvSxlvvQrz1rvRrzX8Qgg3ft2TmEhENRoM6KtTS0oLjjjsOy5YtAwBcd911+MY3vuFq24kTJ2L06NQX08KFC3O2ffnllwEAY8aMwYQJE4of8ACRGaQFANPYhGjTryFtgcvqE2tdACOxDIAJYazD54e8goDqbtzSbIVp7Ox6VbYxDmQiI0gLBmlLwm0m7N0ftOGvy+0ZFW4ycYmIiIiof8k2cZiijrEtE6K40ld67HXE2x8talsiooFk0AZpI5EITjzxRLzzzjsAgKuvvhpXXnml6+2FEOmSCCtWrMAbb7zh2O6NN95IZ9LOnTsXgoEMKOoIOCVxS7O5X5Q+SEZfsrzevz4Cr+I+4Grq6wAAEsykLUrGyR8zaUvD7QRfq5p1rGnVbcuH+vn3S0RERDTQSNO5fqzqmWRbJtR6AMUFao3kmqK2IyIaSAblVXUikcC8efOwaNEiAMBll12GX/ziFwX3c/nll0NVU4GNSy+9FNGotbZONBrFpZdeCgDQNA2XX3557wY+QAglDF/t2VnWGn06luLYs2azHUhCbbQt657NNCOwywC+K/ZaV/aAIRXuqHF+jA27C9Q2xezHwPETg6UeEhERERFVmNMkvZrvAGj+WbblQvjgrz0XRYUZmHhBRDQ4a9J+6UtfwrPPPgsAOOqoo3Deeefh/fffz9re6/Vi6lT7TJVTp07FFVdcgeuuuw5LlizB7NmzceWVV2LSpEn46KOP8Otf/xpLly4FAFxxxRWYMmWKrY/Byl/zZXgDR6Bty5kZa6q73IGUzkHkoGpd7g2dDF/4dAh1BNq3XgBT774z3P3IUGb2LYO07mR8bEkGaUuh3q/ihsOGYEvEQLLzMEyaEj94tcnW1sj4073piCEYEXQX4CUiIiKifiQjSBtouBLe4JyszX01p8EbOgGtm+wTcdeM+AvatnwNQNK+GwZpiYgGZ5D20Ue769288MIL2HvvvXO2Hz9+PNauXeu47tprr8XWrVtx1113YenSpTjjjDNsbc4777yiMnUHOqHU2hdWeU1aaTrPbhrWMsftgaKNBAAIJZTRR7Trh4xtGKR1JSOTVkr7SR4VRwiBkaHCvxYa/AzQEhEREQ1EUlqfFlW0cXm3EUoYQhkKae7I2HY0hNoAaWx12BGDtEREg7LcQSkpioI777wTTz/9NObOnYvRo0fD6/Vi9OjRmDt3Lv75z39iwYIFUBT+U9s5BXaqPUjb6rg8nGPiMCGsj4FLcwdMo9l2V5qHoztCWIOI0tgO02iBlJyIrRICmoDP7axjRERERIOYlImyT5QszXaYRjOkTLhoG021NWOQUredU5tGiy14KoTf5Uicn3YTjteAgGls5fk8EQ16gzKTthwf/ieccAJOOOGEkvc7oAl7UNI0m6FgZAUG445pbHZcHsood9CzvqxQrEHaeNtfEW/7q60PwUxalzKCtLINbZtPSb8ONf4Bmnd6Xw9q0Krz8uYCERERUT6x1rsQb/s7hBJAoOEH8Pj3L2n/prENHTt+BDO5qnOJF76aL8Nfm1leDpBSR7TpeiSjLyIzSUYowxCovwSxtr/BTH5k29ZtkDbr027COQQhzR2pJBYRcNU/EdFAxKtrqiD7n1+i46kKjMO9ZPQVx+X2cgc9Aq7C7YRKDNK6Yps4zCrWsqCPBjI4NAZyf03U+fg1QkRERJSLoW9AvO1vAJKQZitizX8o+T7ibQ/1CNACQALxtntgGttsbfXYYiSjz8PpKUZpbkdk5zWOAVoAgMsgrVDCWdbkPpcnIhrMeHVNFeR0F7W6H3HJrC/bJZyRSSt6/G6qi7pNQKpGE+WXWe4gk5H4b98MZJA4f6+anOt3qRmUD2QQERERuabHllhem8aGrBMSF8s0Njgv1+3LTf3TovYhlFrneUUceEOfs7zW/IcCAAL1lxS1byKiwYBBWqoYIQQUbRfrwhKfrJSecw0pWyat0v2Yjjd0AlTfZ3L2qnr3gTd0Yq9HNzhwkqq+tM8wL4b4nb8qdqnRMHeS20xxIiIiosHK4RoiY0KuXstS69ap7IAsZpIuEYK/7lII4e5c3Bs6Cao3NUG3oo6Bv/ZcAJ3XPcETwVAEEZEdU6Coojz+QxBvv6/HkioP0mY5+anJCNKKHrWUhBJGeNhvIM0Ox5MkITxZM3TJQZ5MWiotIQRuPXoYDFOiI9md6a4oQNjDk2siIiKivBzOX6UZyVESoBhZrqMcg7SFBYgDDd+HJ3CU6wAtAChKLcKNv4M0o4DwQ3TO2SGEgkDDdxBo+E7nWBKQZiS1ketJyYiIBiZGO6iyROYkUM6zgFYPd7OxCoeC90IJsepsCQh+bFWEqgjU+vgXTERERFQo4VCHVcpISfeRvXyCwwReBWbSKtq4ggK0PQkl90RgQnghVG9RfRMRDTRMg6IKy/yyr/JMWrdBWoWPgJeNixNEKbPXNpYyDtNoydmGiIiIiKh07Nc4pQzSSilh6usd15lGk0P7WEH9Ky7r0BIRUe8wSEsVZbsjW+2ZtG5r5vJRnTLKn0nbvu1imGarbbke/wBtm7+Mts2nINr0KwZqiYiIiKjsnEqeJdofL0nfptGC9m1fhzS3O66PtcxHvO3vGQMqLEjrdrIwIiLqHQZpqcIysyKrO0gre1HugErERU1aM7kKyciztuWx1tshzWYAQDL6PIzk8lKPjoiIiIjISiZsi5LR/5QkYSAZ+TfM5OqcbWKtd0Ga3YHZnj/npwKC82cQEfUFBmmpooRSY3ltGjsrNBKXXD6WpGjjyzyQwUtRG11lKhvJjyyvpRmFkXjfskyPLSnp2IiIiIiIMkmnurAASpGgYhpbXLRKwjR3FLffHpN+ERFReTFISxWlaKMsr01jU1U/gm4aLXnb+MJnQFHr+mA0g5MQXgQbroRQh0MoQ+ENn+7YztQ3W14biWUOffnKMkYiIiIiojSHcgep5fYM25L1ncnsTjZx+3RgqnFhpRGIiKh4nCadKkpRrUFayBik2QyhNlRmQHlIM3+Q1lvjHDSk0vEEDoMncFj6daDuQiSjryCy86fpZaZhDdLqifds/RR0gkpEREREVIwsgVQpExDoXSmBzCxdb/iLCNR9HS0b5wKyvce+oj02KmSy5mqf2JmIaOBgJi1VlFCHIbMubWZwrZpIh8moMgnWbKoIRR1peS2NbZZJGvS4PUjbM6OAiIiIiKgcnCYOS60oRSattXSBgCf1fyWYMYYeQVomKhARVSVm0lJFCaFCUUfCNDakl5n6JsA7vSLjkVLC1NdDCA+EEoKR/BhSGljf0YpPYvXYG81572wIkTkZGvWFzNIZgEQy8jwUbQQADUbiv7Ztuk5WTX0jIDyperc5mMZ2GMm1ne+xgq4TXEUbD0Ud0uvfgYiIiIhKQ8oEjMQqSNkGaUag9HhSzzSaAJmEUGqg+fYGRAim/gkg4xDqMJj6us6WHqjeqRDC26uxmPp6x+XJ2KtQPbumXyva2Lzno5lsAWDRGaQVfvQsIhff8TgM0QohVJhmYfOAxDe9UFD7YnlHHAahMERBRIMXPwGp4hRtlCVIG2tdAG/wqIqMJdZyMxIdT9iWD+n8j6qXUMKACFse64o2/ybnNlJGEG25HYn2BwEo8Nd9A77w5x3bJjqeQbT5hmx7R6DhSniDxxY3eCIiIiIqGVPfjPZtl0Ga2121VzyTYGZMOttFKMMQbrwJijbScX0+sbb7oMffdF7X8kfbMn/dZfCFT3bdvx57xbqgM0grDWu2rIE3kWz9D2JL3kHwyMOz9ieTSQiPx7Js57+Pdj2e3hjxlbbUOT0R0SDFcgdUcfbH1N3MUFp6ptHsGKDNZVOM9zmqSaEnz6a+oTNACwAmYq13QErnx79irQty9CQRb/tbQfsmIiIiovJIRJ5xHaAFkDVACwDS3I5E5JmixiGljnjbfQVtE2/7S1H76iI6S8mZ7fYSckpNDbSRuc+Xzda2Xu2fiIiKxyAtVZxweKRHmlGHluUlzR0FtW9JKrh7/TDLMm/wxFIOiQpU6ONhRuJ96wIZA6S9Tq2UBqTZnLMv02gqaN9EREREVB6mUdjj/PnIYs/zZDT1XyGbmDuz17B15Ml4LVL9JJ33qwzN/nygsWMn9PUbrMt28hyXiKivMA2QKs4bPhnxtrsty6TZBKEE+nQchZ0MAetjAbwXOxhRbSeCcjlUz1T4as8r0+jIDaHU97oPKaMQyHjMytWkDjJ/EyIiIiLqA9UxMZbMmNTL/YaxdNmC/Ky/q+bbN9WFnoQ9gAso4RrHXoymduhrtkNGBfRPtkFprIOMJaB/tA2Kf3gBg+8N0Uf7ISKqTgzSUsUJUQPAC6A7EGYaTVC00X07kAKDtPs0fgb/nPaNMg2GiqGUIkhrRoCMud+kjPW6XyIiIiLqI9JwXKz5D7XXcC0r+zi8oVOR6Hgk51bSjEIozsFUh9bWl6LzYVnd+dpGCYYBWIPHgYbvwzvmWGBPhw2clhERUVmw3AFVnBACosdsq0Aqk7bPFRik7fMgMuUl1Ppe9yGdHkljkJaIiIioH3HOpBXCX1RvRT8v5RAsFi4yZB3PR7O3ztxD566zPQlmz+4VwlfA/oiIqFyYSUtVQVEaYPSYMMzsRZBWSgkzuQqm2QrNuyeE4u5kTKKwIK3KIG3VKUm5A7MZUuow4v+DabZ0Lmt3sWFHr/dNRERERClSxmEklkFRR0PRRmRtZyQ/gpH8FEASqmdXqJ5JyBqkVYJFjSUZeRrtLW0QMgwhR6Yn58pHohXIiH8mm1fmvQqPrX8cisxfYkBCB3zWIG1s/b+gyCGAKKDkA4O0RERVgUFaqgpCHYKeMdKii/MDiLfdg3jbXwEAimcywo03u7s7XGgmrcogbbUpRZA2suNqKNo4mPqnBW+bjC2Gx79/r8dARERENJhJM4r2bZfA1D8BhA+hoddC882wtYu33Y9Y6wLLMn/t+UhGX3TsV4jigrQAYHheTv1/ZxPiby91tY0IBhGYfaBlWWzNQ/BOmZRzu45V18HYuCl354oC//77QfFZyyK0LbkCsiMC797u6xQI4XXdloiIyoflDqgqCKU05Q6kNBBvfyj92kyuhh572+W28YL2xXIH1acUNWkBFBWgBYBEx+Ml2T8RERHRYJaI/icVoAUAGUes9S+O7WJtD9iXZQRtexI5MnLdUoc0QKl1WS9WOEyEZTrXy7Xso64ubxuloR5KjcM4OhNrZcx9ua7UHCFERFRpDNJSVcisDyVlthpKecgYkBFsNZIrXW1qGltd70ZRR0OofTXLKbkl1PwntOUkjZaK7p+IiIhoIEi0/d3y2kj8z9ZGShOQ2UpSOVzmigC8gWMg1FG9Hp/wuSwPoFiDtNI0Yba02pZlklkm/bKMwWOvbSsTCchoqp6t/ul6d2MEoHhyZ/YSEVHfYLkDqg4i409R2gvau+GcDeuuHpOp2x8punf9ULzeMgrnjNmCCUEDIwM10Dyj4K89H0LwHke1EUqt43LVu3vnLLkhCOGDlHFIM1VDVsoopLG5iJ2FHS4MCqj9RURERESOpMPkVvZGuZI6rOdkQh2JYMP3IZQAwsN+i7YtX8q6pVBHQNHGAACM+DuObdSa8RDJkXmHKEKZ1zgCitgF+ppWKMP8gAkYmyNQh/uhNHQnrSj+Rmj1gZx9KyH7vBv66nZodXukXydXt0Ab2QARDgJwDmgHGq6EcMr4JSKiPscgLVUF+yynxQVpHU/WpMsgrbHR8vqnK0fh92tHYuHxF+Owkby73B9kqz0cbpyfc7u2LefB1Ne62ofqmY7w8D8AABKR5xBtui69TiL/42tERERElIfMf05VSKmy8LAboWipoKqiDUd4+D1o33qOpY3mOwChYb+0LGvZcLRzf/v9BL7QSXn3q8c/QMf2b6VfCy2Mxs+/YG20OxBt+i0SkafTiwKTvoLAft/M2Xei41+INv8m/Vr17Ia6Y/+YtX3H9qugx9+0LVc9U/P9GkRE1EeYCkhVwnq/QJYwk9Zt4Cwzk3Zt1AevomL/YbsUNRbqR4S7GXoBQNHG9niVsZ2LCwoiIiIiysd+LSBt51kFlEfLmBhLKKG8bXIyIy4bWn8Pke2c07bczTllZiJKnkv7LL+fqwmWiYioTzCTlqpDRrkDPfYqYq1/BWBCKGEAgKKOgOqZCD3+X0jZXQhf0cZC881MlR9wuqPe2dbQNyDeeg8UdSQUz3hIM1UPypAmljVtwRTV+sj7mogP+zfuAr9mr/dEA437+1WKZ1z658wTbVNfg2T0FWj+AwqaJVeaUSRjr0OabdB8e0L1TIKUJvT424BMdvZnP6k39A3Q4+9AiBp4/AdAKLkfiyMiIiLqa3rbWiQ2PQepR3O2k5CQWmqOCBmy1/lvX/UjCH0EoO6AVFsBoQP2J/4dRT68GwLd5/QSBpAxlYHRugYdW262Lswy3UG8/e/Q/AdD7XFeKKUOPfYGpEzA498/dQ1jCyxnSwwo5sa/tL7MU7IgazCWQVoioqrBIC1VBeHwpxhvu9v19t7QPATqv+k44Vii4wl4Q6fYHmnqaYrD+dLaqBeXTJzoegzUf4ksJ8yafzb02CLLMjVXJi2AyM6fOj4ul42UJjq2XwEjubxziYLg0J9Dj72JRMcT6XGEhl5j2c5IrEb79m+lb0wkPNMQapzPWslERERUNZLNy7Hj6QMgk21523r3mA5tdPZJvczQmzA7OqCEHLJg82h76wpAWoOawWOPso5162J0LP9zzjZdpNmM9q0XItT4W2je6QCAyM5fQI+9AgCIa+MRbrzFXls3cx6ONOv5m3Qxz4G9Te5zwGxBWmbSEhFVD17NU3Uo5PEiB4nIM5DStGTY9hRr+UNB/cUMgRZdw2Ejdu3VuKgSrH9Lqme3/JvYaiIDgApv0F6HTFHH9NjO+e9Wj78JU9+af78AjOSKHgFaADARb/1LOkALAHpsEUxju2W7ROQpS+a4kVwBU1/jap9EREREfSG25gFXAVp4PDkDtF2KCdBK07QFaJ2Y7c4Ta2WXQDLyfGpbY1s6QAsApr4OicizDpMhuyt30DXBbU62eTfyTP7l+MSVYCYtEVEVYZCWqoLm2wu9+nOUMQB6uoRBJj2+pKDu/KrErjVDcTgnDOt3Ag3ftrz2112UdxvNt49tmSdwFDTfTEB0P0cn1OFQPN3Z1apnt6wntqa5w9V4jeRHDstW2PszrEFfPbHM1kaaLi6CiIiIiPqIGd2cvxEAJeCybkExY2hqdlyub+ieNFjqOvSNm2xtEqvs52k9STMV2DUSq2zrkpFnIaU12OpYCxeAqo2xvHY6F7Tv3PoEoX0iZivNaz/fVb17QWTN7iUior7GT2SqCqpnVwSH/AyJyL+hx14trhOpQ5r2+lXFeKV1Lzxx9LkIsB5tv+MJHANpRmEkPoDmP9AxAJvJV3MmABVG4n1ISGje3eELfwFCCSE07AYk2h8BoMFX82VLbVhFrUNo6PVIdPwDyehLlj6z3TDIZCY/dtVOGs09+o7CTDpkzXLiMiIiIqoiZtJ6PqSGJ0CtsT+pJgpPkM2+z54JsXFAbh0C7yiHsgUtgOkF4AHM7Rq8ww+3t4kDxmZACXqh1k6BiQ8yGqQydLPddDcybqoLEXYcs+rd09qrsRWmvhWKNtyxfWrPGWXe8mTEegIHI1B/BZLRlyGRgKqNha/mrJzbEBFR32KQlqqGJ3AwPIGDEW/7O2KttxW8vUTpgrTHjN0f/pqRJemL+pYQCnzhuQDmFrCNBn+t80mq5p0ObcgPs26r+faE5tsTbVvWWcoNuA3SGm6DtGZzj21WwT6jL+x1z4iIiIgqSGYEaYO7fR3hva60tUtE/oNo0696ta/w8HssE3mVQ6xlAeLt9/dYkj1IC8BSvgoAhFLr2E7RdgFEGJDdEWY98T68mnNN3NSurRMmu6kt6w19Ft7QZ/O2IyKiymC5A6o6Qm0obsMSZtIKUb5HrmhgyjzpdhOklVLCcMqIdWD2DNImsjwCx0xaIiIiqiJmwnpuLjzOQUppNPV6X0JkqfdaSrYJWlM3zc3kapebO2fSCqFA8+5hWWYkMrN2rWRGkLa3c3wQEVHlMZOWqo5Q6oraLt52H/T4u6UZAwvoU4Eyg7TJ6KuQZjs03z7QfPs6biONrYB0MTEEgET7Y/CFz4A0tmTNNDeSK+AJHOx6zHr8A+jxtwHoMPWtqbq3MoZAw3eherrrMRv6RujRlyFlJL1M0cbDEziiby6IiIiIqKTMeDOia+6DGdmYv3EvGK3W4KXitZ/nSzOKeNvfSrC3vjgnyZycy0Qy+hpMw17P1nFrpSbrOtW3J/T4m+nXiY7HoKgj4AkckS57IGUcych/UnMmmNYJk3n9QkTU/zFIS1VHUeqL2i7R8Y/SDYKZtFSgzCCtkXgXRuJdxNuA4JAfwxOw1zkzdHdZtAAgzR2INt8IPfZa1jbxtr9B8x0AzbdH1jZdkrHFiOy4Cl2P6fXUvvVChBtvheqdCtPYgfatF1sev0uPP/EBAvXfcv07EBERUeVJKbHzuTlIbn+rz/ftlEkb2fkTSFmCyU/75MaxNUibjC5EMrrQ/dZZyh0AgObdExm5sYi13oZ4+8OoGXEXIELo2H5FjgxbZtISEfV3LHdAVafocgelHIMIVHoI1M8oan3WdYnI847Ls5YtyCIZ+VfeMgrJ2Mvu+oouhFOAtkuk+bed7RY5BmhT43nB1b6IiIioehitqyoSoAUAxWs9zzeNls6nekqgDx73l2Ykf6McspU7AADVuxuccqikuQN6/L8wEstylkBgJi0RUf/HIC1VHaEMg+KZkqeVB4o6ptf7emF7DZa2ZARkRQiqb0/nDYiy0HwHwP4IXErPSb960uP/Lf1AMh59y0aaucssmMlVqf/r67P3IdsgZfZALxEREVUfM7a1IvtV/MPhGbqfdWFmXdUMmm8WVG/+83LVMw1KjizVknGRresNnQqhDHHePEcgVQgfvEHnSb1MsylvjdpcpRSIiKh/YLkDqjpCCISG/hKJ9kcgYcAXmgcjuRrJ2CJAJiBECJ7gHKie8Yi3P5wliKRBT7wLaWxx3McHbX78e/sQrDePgCpMbDeXY49agQm1E+ANndA3J3k0oGi+PRAc+kskowth6uthJN5Pr5OmPRNVmjEYieWWZZ7A0UjdO9OheqYAShCx5t8XNA6ZIzvWKumqlWnkq1WXBB+vIyIi6j9sk3lpQfjGnVzWfaqBkQjudjGElllSzH7eIpRaaL79oGhj4Qt/AVIaSHQ8AlNPnZNIMwI9/iZU7x5Q1OFQ1JHwhk8p6/i7qJ6pOdcr6hj4674Ob+gExFr+BD2embGcO8jrr/s6FM8ExFr+YF1htsPMM0FyrlIKRETUPzBIS1VJUYfAX3dB92ttBDyB2bZ2/tpzsvZhJNeifet5juu+8t9dEfLtgvfnOa8nKobHvz88/v07673+IL3cKUirJ94HoPdYoiBQfzmEEuzeTiZzBml9NedAmm1IdDzSY6npbrBSz9/EjKQviLI3inM2YSIion5EJq3BPjU8EQ2H31+h0djVjPib5XxIAPDXfq1yA7Jwfmqqizf8eQihQPVMQKD+W2jbcmZB2wslAF94HozEMiSj3WWlpNkBaezIsy2DtERE/R3LHdDAJTxZVxlSYLg/e00oot7IfNxMOk26lVHqQPXsZrkgAQAhPIDI/neqqMMAkfkx7i5IK2X+TFpD/zRvkFbmeUyRiIiIqostk9ZbV6GRDEQ9zstyXIvkk1m7Vsp2mHmDtCx3QETU3zGTlgYskePP25BAI4O0VCYiM7Aq42jZeDI0754I1H8TijYa8faHLU003wzHvhS1HqbuPHGXUIcC+ieWZaa+uXu3ZhSJjidh6OshhBeewOz0fozk6ry/R8e2S/K2MRIroQSG5W1HREREKVKPIfLhn5BsWVa+nSgGEG4FNPtNWRnfCe/03SBNE8a2HVA8DNK6JUTuTFhrpmzxTxoJEbK81mPvwMxSxi29DTNpiYj6PQZpaeDKcfdalwKN/lDW9US9IRSHvy3ZAT3+Jtq2vIlQ4x+QWRM2W5BWKPUAnCfvUtRhEBkPRBiJ/0FKHUJoiDT9GnrslfS6RMfjCA37LRRtDCBzTxzmPBifbYKPyM4foWbko1BUXuARERG50fL6RYh+9Oey7sM3az+o9c7fzaLGAwWpCXg9u4yDuSHg2K4vSJlwWJovEFrFejzhJEqYSWsaG1xswyAtEVF/x3IHNHCJ3Jm0o4I8kaHySD1ulv3jNbrzl7Zlqm8Px7a5ygkoaiMgMifgAIzECkgpocfeyFhjQo+9CT2j1IJbQoQAYQ9AG4n3iuqPiIhoMIp98lh5d+DxZA3QOlFqKxcUNY1N9oUi9+Ra1UwIX48XTtci7iZ4Td2kL4TKIC0R0QDAIC0NWAK5M2k/v8uefTgaGkyE8EDz2ye662Ia9jqvlpN6S2PnUgdAKhjs8R/g0P8WpGrTOjziKBOQxWTRAlA9E+EJHO7QZ7So/oiIiAYbaRqQyday7kOohQU5lZrRZRqJG/agpajiCUkVz5TsK0Uo48mo4oPNmn+m443xbDyBwyD6cXCbiIhSWO6ABq4cmbSmFNijYWQfDoYGm+CQHyDRsS9iLfPztvUEjsy6TgscikT7323LveEvAgBU71RABAEZSa+TxlYARpYeTVvJAts+fTOhx5fYlvtqzoTqnYZk5J/WFVLP2R8RERGlSN1+ozQw5WsQWgnnSlATAFZal7UPAWRnxqw3Cvi6zxsUfwUnnJIxy0uhDq/QQNxR1BFZ14Ub56eeckpzylB2N8Grog5DuHE+ktEXIM3uv5lExz9sbb2hefDXXeiqXyIiqm4M0tIAlv3Pe98hY/twHDQYCeGDL/x56PG3ocdey91WHVpw/z0vAjyBQ5GM/Dv92jS2ATJbkDZ3CQUACA37Ndq3XQYj8b51nMIPITxQvXta1kkwSEtEROSGTLbZltXOvAGKr6Fk+zCSn6J96znWfUy9L10jNd7+mOUmsjQr90RM5jmJUKq7xr0QKoSogZTW99FfeyFUz/jM1r3al+oZD9VzrmWZkVxtKzPlqzmzqrOPiYjIPZY7oAErNfuqc6DWp2V5tJyoAoqpIZaqe5tizdroDNJmzdQwAcdJOjL6F0GHhV31bzOOK2bSEhERuSJ1exkjoZV6Mlunc4DuR+GFsE4UVmwZpFKwBWmzlX+qIo7nbQ5zBKSuRTK5q0mbjczIPE6Np4RZ2EREVFGDNpN269atWLx4MRYvXoy33noLb731Fnbs2AEAOPvss3HPPfcU1N8zzzyD22+/HW+99Ra2bduGxsZGzJo1CxdeeCGOP/74MvwG5IrQHANIfrX6TwBpgJD2urCZhCj8McOe2ygZjwYa8fcQ2Xmt43bJ2JsQbmqkOcxI3HXhJDJKicgcdXOJiIiqXbLpPXQsnw8zurXs+5LJFusCxQuhljoL0h6kFaI7N0coGTdii8ikNZKfItHxKKTZCs1/ILzBYwvaXkqJROQpxJp/nzHO6j9HF0otYGzIWBbI0jqD7F2QFg7zALAWLRHRwDFog7QjRmSvJ1QI0zRx4YUX4s4777Qs37BhAzZs2IDHHnsM559/Pm677TYoChOX+1qHLhFyOG8JMpOW+oh0k7WqFBGk7ZHFITIyaaVsgx5/03k8xmZXORzCIUiLrgunjCBtvO0e+GvPdNErERFRdTGTHdjxryMg4zsrsn/hKX0WpKlvzliScQ1iy6SNoBBSGujY/n+Q5nYAQDL6EoTwwxM41HUfycjTtgBtamzVf47ulEkrHDJpnfU2kzZ3ySoiIurfGDUEsMsuu2DOnDlFbXv11VenA7QzZszA/fffj8WLF+P+++/HjBmp2T0XLFiAH/7whyUbL7m3M2l/zKhVVzDUX+rHyoicKVr+G0JKjpq0jmUHAChqQ4+fRxU+sCw0/+xUn1pmXbWeWSL2rw7Z28wQIiKiCkhseaViAVoAUHzDSt6naWzJXGJ5JRTrebB0yM7M2b/+aTpA20WPv11QH8mYfYLS1NgKLwHV14Rqf8/c1tJVPBN6te/MyWYVbWKv+iMiouoyaIO0P/7xj/Hkk09i8+bNWLduHW677baC+1i5ciVuuOEGAMDMmTOxaNEinHHGGZg1axbOOOMMvPrqq5g5cyYA4De/+Q1Wr15d0t+B8ntks/0k6qFNQ/GliTMqMBoajLzB43KuV9QxUL27Z13vCRxiq3OmeveGoo3u7kMbC9W7Z+8GmuoJvtDczv0eCfQIEHsCx6YnpdB8M+2bSpY8ICKi/kdvWVbR/Qcnn136TvM8xZNZkxYyBpljwlF7//ZSYgVneDoGhhV4A0cX1k8FeIPHoGeN39S53HTntuHT0j+r3j2heaf1ft89zgt94VN61R8REVWXQVvu4Gc/+1mv+/j9738PXU+dpMyfPx+BgPWEJxgMYv78+TjooIOg6zp+97vf4ZZbbun1fsm96z8ehdd2erFHTRQCwPDQNHx2yjnYZ+jYSg+NBgnNty/CjX9C+7avO64PNc631XjtSfVMRLjxT9DjiyFlDIraCI/f+jihEAKhodchGV0I09xh70QmOk/oMzJphA+abxYgE9AT70Hz7gnVO7Vzv+MQHv4n6LE3IJShqWBxJ2/oBMRabrb0ZepboHoLL9tARERUSXrLCstrz7AD4N/l5D7Ys4A2ZF/4xny25D1Ls9Xy2hM4wrpnp6d0ZBQQbksvODw9U0iQF/ZyUEIdidCQn6TPQ6qZ5tsb4cY/Qo+/A6GEoPkPSd/IzuSvvRCady9IGYEncFiv9616JiHceCv0+BKonl2h+fbtdZ9ERFQ9Bm2QtreklHj88ccBANOmTcOBBx7o2O7AAw/Ebrvthg8//BCPP/44/vCHP2SZ6ZPKIWGYeHZ7HZ7dnnoE6b9zv4Z9hozOsxVRaaneKdB8M6HHrY/2CWUoFDX/43GqZxxUz7icbYQSgDdU/IWe6p1iX6aNgRo+1b4v4YFQhlkedTSNzVAxuej9ExERVYLevNzy2j/hVIT3vKJCoykNMyNIm/kovm3iMADSjEAovQjSorAgLTIyb/01X+kXAdouqncyVG/+8x4hBDyBg0u7b88uUD27lLRPIiKqDoO23EFvrVmzBhs3bgQAHH744Tnbdq3fsGED1q5dW+6hUSdTmtClNXPQq3D2U6oMp8nBMmvC9SeKNtLy2l7/joiIqPrpLdYgrVbn/Nh6f5KZSWs7B8ksd4DCJw+zb28vgZC7fUZJhn4wYRgREVG5MZO2SMuWddevmjYtd22hnuuXL1+OiRPdF3hfv359zvWbNm1y3ddgkzRN2zIPg7RUIc4zAffjIK06AgbeT7+OtfwRyehLljaqNhG+2vNcZQsT9QdmohVt71yN5M53AE6WR9T/SRMybi0TVO4gbSLyApKRf0PKKFTPJPhrzysgg9UdI/5fy+vMcxAh1FQZJBlLL8sM0kqZRLz1XuiJ95BZLkma9nqyeuxV1+NLRhfC1NdkjIlBWiIiIgZpi9QzeDp2bO76puPGdT+m/Omnnxa0n57bUmESpv2OPjNpqVKcM2kdasL1E4o6wrbMSCyzvTbNnQgN/UVfDYuorFoXX4bo6nsqPQwiKhfFBzU8oWzd64kViDZdm35tJD6ANDsQHHJVyfYhpQEp2yzLnG8UByF7BmlNa5A23vZXxNvvL2jfyejr8AQOytnGSH6EyM5r7Cuy1HQlIiIaTFjuoEhtbd0nP+Fw7rvfoVB3tlx7O2dA7ysJw14bi0FaqhRFHW5bJpQhFRhJibi8mDLi7+dvRNRPJDa9WOkhEFEZafW7Q5TxXNGIv2tbpifsy3rD1DfalinqMNsyIfzWBRk1YvUivr/d/C56/D3H5YpSX/D+iIiIBhpm0hYpFuu+8+z15g5W+Hzdj+9Eo/bHg3LJl3m7adMm7L///gX1OVgkTIcgrco/eaoMzX8whPoXSGNb5xIPvKETKjqm3lC97h4HlUiWeSREfceMb8/fiIj6rdAe3y5r/1J22BeaMfuyXrE/SaZ697I3E5m5OhllwjKCtq6Y+evaStOesKJ6pkPxcPJRIiIiRqyK5Pd3331OJBI5WgLxePdJTiBgL9SfS75SCpQdyx1QNVHUBoQbb4MefweQCai+vaBqoys9rKIpakOWNRosF4iywNmeiaqUNOKQujXAUvOZa6H47VnyRNTPCAWeIZ+BZ+i+Zd2NUy1XidzXEYXvxP69K4TTJV/uIG3mTVZP8HhoGTdoo82/A9Bdn1vK/MkotkC1CCM07AYIW9CYiIho8GGQtkg1Nd31JfOVMOjo6D4ZyVcagUqH5Q6o2ihqHbzBIys9jBJx/voQIpBRC49BWhoYzIzJhQAgOPVCKH77Y8RERE4cg5gyDiklhBAl2kvmxLmeLO2sQVEpMzNprcFjzTcT3uAR1j0ZTYi33d2jDxdB2oxMWm/wGAjFn6U1ERHR4MJblkXqmeHacxIxJz1LFnAisL7jVO7AwyAtUWk4ZuUAUDKfFjDtF35E/ZA9SCsgvNkyyomIHMhs5QBKVxpIZt4cFdnOfTODwjLjpXVMQtiDvSLzO1+6KN2QkUkrlFCWhkRERIMPM2mLtPvuu6d/XrFiRc62PddPn+6ujiP1zpq2HTju2TssyzyKWsIsBaLBTWTNpPVlXuahfctZSF8MKkF4g8fDF/58zv6TsSWIt/0FkAZ8NafDEzi012MuljTbEW3+A4zEMgASijYK/rqLoXomVmxMuZhGC2It82EkVsJ20Q0AQoHq3ROBum/aL7A7SSOBtrevRHzDvyHNEj+K2w+oo2qhDAtBJnToa5uAuA5pWIMPwltf1gmGiGhgMY0WJKMvOa+UcdcTcmaTjL6KeNsDMNO177tkycnJCN7GWm5BvO3P0Hwz4K+7GDIjSAunIG3G5GN6/B20b/0GvOG5MBIrocffBqTeubsG+Gq+DGlmBGkFg7RERERdGKQt0sSJEzF69Ghs3LgRCxcuzNn25ZdfBgCMGTMGEyZM6IPR0Zkv348NkRbLMpY6ICqhbJm0mbNFAzCNTd0vDCDWMh+qZxI0n8NEJkjV7Ivs/Ek6Iyey8xrUjHwQijqk18MuRqzlDiSjz6Vfm8ZGRHZeg/Dwu6ryxk+s5Y9IRl/M2cbU10MoYQTqLnZc37F8PjqW/b4Mo6t+6vBGaOPHp16EvIBIIv7W27Z2im9oH4+MiPqzWMstWddJGYdATdb1+ZjGTkR2/gz2UgeAgLtMWmk2Q5rNSOifQij1QEatXKdMWgj7jT4juQLRJocEFmMjIjt+AkUbae1CYSk4IiKiLix3UCQhBObOnQsglSn7xhtvOLZ744030pm0c+fOrcoL+oHore2f2paNCBR/8ktEVqmLKvsFm6qNh5uvFiO5Mse6VRmPTJqpZRWiJz+0LTP1TyDN1gqMJj8jsdxlu+xPgSS3Ly7VcPodbcJ4y2u1vs6xnRoe77iciMhJrs/czNICBfed/BhOAVoAEGq943JFcV4OpMYqzYzSBQ43YRW10JrcOkw9o0ycQ6CXiIhosGKQthcuv/xyqGrq7vSll16KaNRaLD8ajeLSSy8FAGiahssvv7yvhzgomdJ0rEf7vT2P6PvBEA1QQvjgDc/LWBiCL/xFeEMn5+8gxwWpNJscFlbwkfssY5WmfSKpaiDd1ATM007q2eomDnCKArWu1r5czchEUzwI7fGdvhkTEQ0IEnqOdb2t3Z69b1/4NMfl3vCpyPZQpTRbYMukVew3rFTvHlC9zk/FuJVZMoGIiGgwG7TlDl599VWsXr06/Xr79u3pn1evXo177rnH0v6cc86x9TF16lRcccUVuO6667BkyRLMnj0bV155JSZNmoSPPvoIv/71r7F06VIAwBVXXIEpU6aU5Xchq7hhD9A+O+dCHDtmagVGQzRw+WsvhDc4B6a+CRAaVO80KEot/J5vwhs6Aaa+Jd023nYfjGR3hqeU2S8oTcMe/JQyXtrBFyJLkNY0dkD17NrHg8kv89/KV3s+VG08jMQyxNvv79Ew+7+pNKw3HQNTzod/3EklHWc1MrEOSTxmW15/+L3djyILBZ4hM6CGxvTt4Iiof5P289Pudb0M0mZsL5QGBOq/A9UzEYo2ynETj38Wakbel64dm+j4R3qdaWyxtVcU+w0sIVSEht0AI/EhOrZ/q6ihM0hLRETUbdAGaRcsWIB7773Xcd2iRYuwaNEiyzKnIC0AXHvttdi6dSvuuusuLF26FGeccYatzXnnnYdf/OIXvR4zuRM37MGf6fXDKzASooFNCAHVM9E2gVZq+SSonknpZcnofyxB2lxZP9LY6bCwcpm02bKfpEMwuSpkZMh6fPtB9U5NTRLTI0ibM5M2I0jrGTYT/l1cZEj3c9HmPwId9uXeUbOheib0+XiIaCDJ/r0H5AjgupIRpBVBeAIH591KUYdCCRwEKaNAjyCtNJszWwJZJvgSQoPm2wOKNgGmvrbAcQMQvsK3ISIiGqBY7qCXFEXBnXfeiaeffhpz587F6NGj4fV6MXr0aMydOxf//Oc/sWDBAigK/6n7Sty0nwT7VYfJDoioD2XcE8yVSWvag7SyCssdmFVY7iCVoZzxb9uZpWTLVsqsN9izH90apBXq4KgZqMffdFyeORs5EVHBcmXS9rrcQUbforDJcvNlswqlzsW8GsXNuyEYpCUiIkobtJm099xzj62kQW+ccMIJOOGEE0rWH+X35rZ1uOT1R7GyZbtlebtuf4TXl1lPkIj6Vsas0PH2+7sfvc+cNMThMfxYy58Qa10AyFTwUNF2gb/2fHgCs8syXADQ4+8i2jwf0iFoDJQmk1ZKE7HWBUhGngOEB77waVDU4Yi13gHT2Na5nxiQjEPfsBX6uo3pbbWJY6CNagRUFULL/hm3/bEZkPEERE0I/pl79Nh3G5rXHeG4jWefGqiRmUgs+xCyrQ1C6z9BWtPYiWjTb6AnPkBhgQ9py0Lu0rH9/wDhheabgWDDdyEUTkTZX0kzimjzjdBjS7JmySvq8M62LdbyIbLr5oUKCK/DciDceCsAINr8e5j6Rmj+/RCo/y6EEsw5rmR0EWKtd0EoIQTqv217QoH6Pynbsq5r3/ZNZObOCKUWvvBp8IU/DykTiDb/DnrsDcjOG4eqZyIC9f8H1TMe0hYALiw5JF+g1KkerUOjgvbZvR2DtERERF0GbZCW+r8zX74fq1q3528IwKfwT52okgRy3CiR0ezr0pKWjFZT/wSRpmtR6/9HWbJwpDQRafolZGeg1IlpuPv8yUWPvYFE+4Pp17GW+bY2QgHg88Kz61gYO7bAbG6BMqQBngnuaqKaiVZA14GEPWCZK7ir1tbCt8d0xN5Y3K8yaWOtd0GPLy5xrwlAJqDHXkGsbTQCdReWuH/qK/H2h5CMvpizjamvy9OLkfVzq33bxZbHvpPRl6BoY+GvPTdrb9KMIdL0y/RNgmjz7xFuvCnPGKg/MY2W3A0cbk5KI4pYy3xo/llIRp5HMvKsZb2RWIZo8287/1YyP98LDJi6yKR10Ulh++zaikFaIiKiND6DT/1S3NBdB2gBwKMwk5aokoRahrrQMg5T35i/XTFdm805A7SpNk293o+RXJ2/UQ9KOJz6f03YVXuZ1AE9lWEl4wlIs7BHapWaMCAE1NAuBW1XSUZyZXn7T3xY1v6pvIzkR2XfR2ZdzmTsjZztk9GFlixuI/F+OYZFFWTqa4rfNrk6640FI9nVb8Zne4FZrYqW+zs62+RjljbK0IL2meKFUN0EgImIiAYHBmmpX0o41J3NJX8dLSIqJ2/oOCjq6NJ3nKO2ba+6Ndvzt8mXGeVmPzkm73KkpD7LhOauznby448BKVMvdB36uk8K2x8A/8RToTXsVfB2lSKN5vL2X4LgPFWQQ8Zi2XdptuZejwrW3KY+Ic2Iw1J3l2FG8lOYepbP7q567TJj4rBcT684jURthDfkPDmkUOrhC38hbx++mi/ZyxcB8AQ/m32b2q8yk5aIiKgHPgNO/VLSIRvs6r2PxrXvPm9bfun0Q/piSESUg6I2IjziHpjJNWjfdpG9gQgjNOxX1kUiCMgEJHTE2x6EHnvVtpns9YzYzqS0B2kDDVci2vTr9GvTNvt1MTsqLEjradwfdXs+hITxBAzTeZIrAPCon4cqpiOwZxjYM2OXsgVSOgeYJZJIGHdZltUeNL/f3OiSUkKa1t8tUH8FFI/7TGABLxTProCMw9DXwUh8iFjLzd37MJxrFFP/kDkJoTd8GjyBQyHNDkR2fD/LVgoyMxWFOhzBIT9Cx7ZvwzZZn22n5fmcov4j84acok1EuPF3MPRPbW2jzTfB7PGURdLhu69bElJK2CYOKyIPJ1B/GXzhMzImxVSheiZC9KzBnIXm2wu1Ix+Goa9F1/GiqI1Q1Ea0RP6V0dqDmpH3QVGHFDxOIiKigYxBWuqXkqb9gufwkZMcg7Q1Ht6hJ6oGQqhQvZMhRI1tAhVFqYPm3T3rtrpnvGOQtmed2lKSpnV8QhkK1TM1o1EHpExCCHdZrY77KTBIq/jq4R1+IPSdL8DIUcrXN/QkqJ4JRYzHQGLjXRlLC8z2rSTZgcyAmebbF4o2svC+RACad5oty0vKtl6/71RBGZm0qrYLNO/uObPnhVILmXFTRoggNO/uEErYts6+T2bKDnrSmkkrhB9CqXH83lOUBsstATO5Kk/nOqSt3EFxZb4UbQQUjChqWwAQih+ad1redppvXwZoiYiIHDBIS/1GwtBhdD6225a0P644PtzguF3Yk//uPxH1IaEBMmORkrvGavZJS/TOzDiZZX1GPw6PVaZmxbYG9jKzMYVS4zgGabZAqMMy+tORmdWU7XFOabqZNK0HBZAynvfx6WIJoaYmkOkRPJbS6THd6uSU3exuwpvshGIPJEizGUJt7FW/pSZlHIC34lnPfRXAdjpuUxMXeYAc5QNsN0bSx2b2oJZQ6u2BWKF19pf/RpGUbaljPVud0Cx9pDIkzdRxSf2aaftOCWZv7FAyIBdptjvcCKjyina8yUVEROSIQVqqeu3JOL768n146tPlMGT2SW9GBWugCQV6RpsajZm0RFXF4eJMKDW5N8kSaOvY/n/FDUFpgL/uEhiJD5Do+CdyBXVS7cMQSi1SQaDugLAeexPe0IkAUsHZaNMNnRO8WINHijoGgSFXQ/PuZlmux14uaNwysBatG09w0bL4C3QhgpZAlnMtxeqUjGQ8TSF8EEphAY9Mqb9N6+PubZvPQHjEn6FqY3rVdykYiZWINP0Gpv4xhDIMgYb/g8c/q8/HYRrbEdn5cxiJ96GoYxAc8kOo3qn5N3SQ6PgXYq23Q4ggAg3fg+bb27I+1vY3xNsesGUnFiP9GHeOiZacPn8EOj/HXNa4bd30uYLGlYwtRrTpRkgZhS88D/7acwvanqqDoa9HZOfPLeULAOQMxArFX9A+2jY71Yut7iCtm/IJREREg1F1f4MTAbhz5WI8/skHOQO0AOBTNIwK1tqWh1nugKiqpIMbPZflzaStL+kYpNmEaNO1SHQ8hnwB2tT+wxBC7QzUdos2z0//nIy+gmT0OTjVpzSNDYi13JKxbHsxQ3ep+GxKkRk8kB29HEvfkFIi3vZny7LeZtECgBAKhGJ/UiPemlkWojIizTfC1D8GAEhzO6LNv+3MwOxb8bb7YSTeB5D6e49m/L27Jc02RFtuhjRbYBqbEG2+2bLe0Dek/u1LleGdzqTNfkqsqPUO23XlOZRn8sJo068hze2A7EC87a/Q4++WZT9UXrGWO+0BWjh8zlrWZQ/SOn0WOfdR5Zd4DNISERE5qvJvcCLgvaZNeduMDtbCo6jYo95eR2ty7TCHLYioUhRtlMOysTm3UbVx5RqOK13jswf9jM7HzAEj/t+cfRjJjyzBMyP5cSmH2IMKRR1a9NaZgWjT2JGlZXVxKgGhOJQqKIZTfd/yvX/umfoWWwBIGlsLnpCuFFI3PLp1BWwLlYy+bMlONfU1kD1u0prJNUX1m42ije78SYNQnI8bzbcfMm98KGqqznGg/nslHU+XzPIKiY6ny7IfKq9s9WRzfecpOTL0PcFjIETuJ08AQKhF1OEuI81nze73hb9YoZEQERFVNwZpqertjOfOlglqHvx21skQQuCaGcdhRKD75PXMSfvhoMbx5R4iERXAV3uuJTNW8UyCNzQ35zaKNgK+8JfKPLLsfKFTAQD+um9krDFhdAaNjOTK3J3ImCX7Txo7czY3IxHE3nwLRmuu+rMCnuAJ8IZPR+orXYO/9vzc9Q7z6A5adY5Dz3+jrBpI056Z7K+7uCR9+xweNS9XXeBC6Ann7Mq+riNcysxdp7rCPYO2mZP6FU+BN3RqumSFECL195JRP1rzHwxP8Fj4as5C12mzUIfDV/NlAIAncCg038wSjSk7PfFB2fdBpSWldHxiQvFMSZfJceINHgfVYUIx1TMd/pozOz/XsmeiCnUUfDWnFzXmcvHVnpWu7+0NnQrVs2uFR0RERFSdWJOWqt7OhPVi8yf7HouzJndfEI0J1sGnpv6UZzXugg2n/QifdjSj1uvHEF/xgQoiKg/NOw01I/8OaWwDhAqhDHM12ZG/7nz4ar6E1k0nO6731ZwNb/AY23IjuQ6RnT/M27/q+wxUbTwSHf+w9hv+MhRtOADA458JRR0N09iYXm8mP4L07GrLrAw0XIlo068ty0xjJ1QlBCBVcsGyrq0N8f+9h8DELyOw28UQNQ0QIwWklBCaAcVrLwmRmtAsdWPKX/MVAEqva7BmZjqbRv8I0mZm/AqlDppvz5L0rXmnI9T4R3RsuyS9TJptqfemghN16Vmyt6UZAXqRTV2oUgasnYKwUsYgEHBcr3r3hObbD/G2e23bhYffmbX2pVBqbWVWvMEj4QnMhuwKrIlgutSBv/Ys+MJfgDTbINTh6fddKEEEh14HIAnIeHp8iY6nEW9/wNJ/cMjPHINTUibQvvU8x3Gm2xibYJqtUBR7WSeqTlK2AbBOChcadjNU7+45PzeEUoNw4/zUZ1rXDQrhSz8h4Q0dB0/wyO6/UwvV8vdZLTTv7qgZ+QAAg/VoiYiIcmCQlqrezrh19vMptY3YtSb7xaeqKJhQU5pHXImoPIRQIbTCH8cUSig14YqM2tepDbYsUMBhNvesYwpD0XZxWGH9qlS9U2FGu4O0RvIjKMlJyKxN6fHPRlSELDVdpbkDQKp0g2lkBmnbIaMxKL6J8NYVnpknOoO/vaWoGUHa/pJJmxGwEGpjSftXbHWRjdR7K3LXUy4nI/4/x+V9nUlr6uvtC0VxN0kdM2UtmbTWgLCiDoOiOpc1UrSxEKKwU10hvBAOnyNAKiDrlKWeCoh5AeFN3zRRvdPs41GHZ/mMyl8XGwCM+LtQAoe4akuV5xREVb1TXQdQc5WtyfV3Wq2EUAGolR4GERFRVWOQlqpWTE9iS6wN22LtluVDfL3LEiOi/s65Uo/IWsHHXWUfaSQgk4ZtuZlog96+rscC64WzHnsXUrd+nQplJIzIdghRA9kjSJtsfwdmPLUPI/6Rdf/xVKBG8eSvN1hO9nIHayGlXnCwqycpE5AZQelshDoEQtgnl8sn87FiJUt90WJl1uoFACO5Boo6vIi+gulgnlvSjFgCmKbZlDXL2dQ3wOwRVBZKKO/kfOn9SAOAtLzfUhpZsvZSjOSKLOPY0j0GtdHVZEZOWbmmsRWKNhJSmraMdaHUAln/XioXEHKc7FD0bjzJ2JtQPVMglDoIJfvkUr0lpeyctMx5wtZUFnL5z8WyjUOoQzP+PmXnDTBAKENzBkFz/W5CHQJp7IRQG0qS7Wkk11r7V+qL+mwjIiKiwYNBWqpKf1rxGi5f/ATihn3WZJYwIBrcBBQ4V8DMFgByFxiJr30UHev/AP8B1izWjvd/g5a1l3bvZdhQ+Gfsk35tGmtgGtbJjJIb/ott70+Ab78ZUId0z8adiP0NiP3Ncf8ykQrSiooHae0Tu7VuPA7BodfC4z+w4P4SkecQbf69+8mshB/Bhh/AU2DGYObEStmyK4sm/AA86Pn4csf2y4vuzhM4GoGG77sKXMZa7kC8/e8AnINmmaJN12YsUeEJHodA/XdyBrD0+AeI7PwZpLkD3vBpCNRdhGT0dUSbry+8pIGMoG3Ll9MvhTIEwaG/gObdLfsmUkKPvWZb3rH926nMaDPW+Qh5t1Sw2ynwpVT0kW+nIK2U9nOaQiQj/0Qy8k8AHvhrvwZfzWm96s+JoW9AZPv3LSVd7BT4wqfBX3dByfffxdQ3o2PHD2Dqn9hXigCCDd+HJ3AITH1LZ7vUjTRFG4/QsF9DccikN/WNnW0dMr8t/fsQqL8c3uCcosYupYlo0/VIRp+zdlvqzyQiIiIacDhxGFWdqJ7E/731lGOAFgCGeBmkJRrUsmajZflKM9w9SixNEzIRt6/ICKLJtvwTF5mdk33JuEN/2fafDtJWtuZkaoZ7e9Ar1nJbwX1JaSDW8kf3AVoAkDFEW24paDIqKQ3bxGGlDogIIQrOfs0lGX0eRpaasj2Z+ubO2qbuArTODCQj/4QeX5yzVaz1znRGYqL97zCSHxcXoHUgzZ2It96ds40eez379sY2W4AWAISoyZKdWNnHqp0yr3uWbchoXWDvScRaF0CaHfmbFijedn+eAC0AmIi3P2DJlC75ONofdA7QAoCMItpya2e7h9MBWgAw9XWItfzJuc+2B/MHaAFAxhFr/mNnVnnhjMT7tgAtUPrsfiIiIhp4GKSlqvNJRxM6dOegSo3Hh3Gh+r4dEBFVFUUbW9ByM56ANPJfbMuOCGQ8kQ6WprfPCMrKeAJmJHfNT2Nnc+e27TnbWfeTaqvVTXe9TTkIoUCoDbblpv4JZJbHn7ORZntRAT5pbIU0trpubySW25aVY/Zw1TOxpP3piQ/ytjGNzaXbX+ytnOuNhLXGbcf2K0s6KVi+30WPvVFwn4pnomMt6WyfB31FKLVQ1B6lQ0QAatYsYg2i4LIZBkxjW7HDy8rUP3XfNm8wt3hGcl3O9dLYDCkNx6BrMvoapGmvW27oa2zLsvYv2xxrn7uRWeagi+qdUlR/RERENHgwSEtVZ1vMOTNkmC+EWw86FX6N9byIBjN/3SXWya2ED97QqVC9zsFNAQWJ5R/agq9dpJTQt22DvnETICUSy1ZAJhKQpgl9/UaYO3batkks/xBmzJ4VJw0DyTVrIdtTAVd9wwYY23fkzAqVhoHkx2uAuER476uh1e+e69fvEyJbFqIsMHOvkAzaDEbyQ9dt9bg9+Kj5Dyp639n46y6Coo0rWX+Z9VWd5cso9kD17gVFyx9A1hPvuRpXes+m/W+/V/JkJuqJdwvqzhs6CZpvBhRtLHw1Z3WWpACEOhyB+m8VPcxSEELAX38ZhDocQqlDoP5yCOHL2jZQ/+3OLHYnWU7Xe1k+wbHLArJz3U54Vtw4XNwckLEsk+QlkHTIyjaNwv6ei82k7cpG70n17gtv6JSi+iMiIqLBgzVpqepsjVozzyaEG/De5/8PQc0DxUXtPiIa2DTvbqgZ+dfuTCnhyTmplZQGjE2bEd20GVBVwDQx4kvNkEgAUgJCgxjhAfbouY0EoEOM9ACfydavtAchhRdilAockNk2kT1A1bmNmO2HUKrjazlb8MU0W6EW8Mi/dAjS1o56HE6Ponfs/BGM+NL0ayOxEp7AYa72k5kh6g2f3jmTeGmpnkmoGXGPY5aeG4nIc4i13JR+bepugrRWQqlFzYj7eizQ0o/7SzOGnkFdPfEBIjuu7N5f8mNIs931JGKZ/PWXwxs4JsfgNAAK0Pn3o8cXI7LzmvRqiexBL9PYYcviFMpQx4AXAAQaroI3eHT32GrPhq/mq6l9C39F69F28fhnwjPyfpdt94c28sGMzxQBofjTnzWtm0+1lEyQKEOQVlrPwYJDfgrNl6rT3b71Qmv2rEyiXKTZbHkdqP8/RJtvsLaRcUjT+amGZPRleINH9WgrIQ3r31Jo2A1QPVPRuukLAJw+84oL0poZkyR6gp9FsOGKovoiIiKiwaU6rgaJetgWs14gjAjUIOxxzj4hosHL9eziZo9AhmEAEFC8par7WtlJvspFZqmdKc389Xit/WQGaT1ZA4SaZ5o1SJtc5WofptEMI7nSuhf/rILGWahiZ7ZXvVMtr019A6QZLbA/JWt7ofgtrzXf3rBOdmZCTyyDx79/Afvr4oE3cKS7sYrONiKjhnyOzEQ9bi21ABGC5tsHyegLzrtwqEMrhNq9735ICOE4/u7lGoAex2ZZMmmt52BCGdL9nmdkApcrk1ZKE9JssSxzzGCXMcgsJQn02JvWY0u2IzMQq6ijIJQQFG2Upa5tt2Izaa0Zu4o6oqh+iIiIaPBhkJaqhm4aWN68Ff9rstY4G+4vLuOHqC8YHethRDdVehiUg96S8dh8GTIsB5wsQdqu2q8CChTP+KyPb3f3Yw3SCuHP0tBer9FIfAgpZd6MSD3+NiwlAYQfqnfP3OOqEFWbgNSj6121fSWSsVdzllAwklkmT3JBCC9U724wEu+nlyWjrzpPapWHJ3BwwRm4trIZMg49saKzXuuo9Htrmq1ItD9kaap597QFBTN7H2yEUGGtnFLaIK2Uhq0Oa8/3XAivZZ2ReA+6NtraHgoUbVxBNx5Mowmm0WMSMhlF5kR5itpo205PrMhx4yhV8qArm9Y07BnZQh2S6lsb4xykzQiCp2rgfgpFG237t7C0MzKDtJwwjIiIiNxhkJaqwqZIK4545lasbLVPgtHIIC1VqZbXvo7IysJnvKcKq5KSAtXN+THmWMsful+IEELDroPmzV5D15ZJq+QI0nqskypJ2QZpbIHQRuYcaWapA803wzHLshoIxd8ZEOp+rD/adF1Z96l597IGaSNPIxl5uuB+PLnKHGSTcUNEyjZ0bPtGalz+gxEc8lMkI//pfIzdGpTTfPvANHLdABt8QdpUVnQ3WeJM2kTH47ZllsB8xnGV6HgCiY4n7B0JP0JDfwHNNyPvPmNt9yHeemfedkJtSNUc7vGZEm26Nuc20aZrofn2hRBBtG89z9qfqEkHWi01znvo2PkzhBtvhRACpr4F7du+BWluh1CGIjTsRqge55srpmktdyAU+0SMRERERE5Y4JOqwp0rFzsGaAGg0R/q49EQ5ae3r2OAtp8qR63SgSZb0MJCdiDelqfeZgGZtEIdASGs5SOM5Oq8w9AT1sfkNV95Sx30lurZtZc9FBacVH29zyoWSi20okpIZD/W9NhrMBLLEGu9E5kBWgBQffsgdy7BIAzSZn52lbgmbMwhWJorkzYrGUOs9S/5m8kE4i7aQQQghDfn50c2sda7kYy9Zu+yM4sWAFTPeMdtzeSq9ASGsdY7Ic3tqXGbO5DoeMRxm1TtW2smbc99EREREeXCIC1VhQ9bt2Zdt9/QsX04EiJ3zMjG/I2oKmn11fkofDXxBD/rqp2pb8i53jbBVq4grRBQPBOs/fd8BDrrPqyzwGeWTag2qnffXm2f+W+Uj+bdq6jyBj15gscVlZ2seHZBrlNNI7HCcWIwoY6E6pkC1TMxR98TCh5Pf5f5PmbWPu2N1ORkTmVOugOzhWSEmnr+Mh2purP569qqnlQtZ6WIGxx69BWYyY/sfXq7M/c1/wHI9ndqJFdBShPJ6POW5cnoy847lBFklqFQlPpChkxERESDGJ/5pKqwJWqdqEITCuq9AXxl0mcwbzwDKtRPqP13wprBwtOwJ+pmL6j0MKqeL3wqTH0NktGXuhcKHyBN9CyFkBkgzZRZ7iBfJpyiDrNM1WMa2/MPNmPyIgGX2X4V4g19FkbyQ+jRRZAuAlTdBFTPrgjUXVbQ/oQSQqDh+4i13mUps+AoM0gnQvD494e/9tyC9tlFUWoRaPge4q33wjR3dmZ+dmfNOk0Op3qmwl/3DQihwhOcAz3xIfToy+l/K6HUwRc+Hao2pqgx9WeKOhxmj+xy08h+g7tgMgZLbWcAgYYfWmpCK5rTTXMBCK/DZ0MTpEzmDu47lmvwAul9CqjaRATqv5UaT923EG2+HkbyY9tYFXU4/HVfh6lvQazl5u5dyDYkIv+x7cVfe16PbYchUP9tRJtvtLUzk5861qvNnNise7m9Rm5vb5IQERHR4MEgLVWFLVHrSe2dh5yGsybPrNBoiNywXiAKTy1GfsX5oo2ovxFKAMEhPwLwI8tyI7ES7dsuTr+WZmvuyb0yJyFymLnesj5jgh3pMNmPZb00YHtUvkrr0XYRwotgwxVAwxV9tk+P/wB4/Af02f568gaPhTd4LAAgsvMXSEZfTK/LDNIKtRHh4bd2vxYeBBu+AzR8p28GW+UUdYTltannzzR3S8oO2zLN9xnr/h2CtJpvP4SG/RrSbEPrps9b+zR25KwpLS23ZFJqRz+RNbCresYh3Dg/a39dkpFnYSRXdO/HtN7s8deeD0UdZlnmDZ0Ab+gExFrvQbytuwSDqX8KPf5fx/2YZisUW3Zz5o0rFcjzuUdERETUheUOqCpszgjSjgjUZGlJRESVIpS6jCUG4BDc6WKbOCxfJq1iDZzkzaR1qMlZrZOGkf3vJ/OR+MwgJFkp6nDL61Jm0kozYlsmlKDltao5TZTVWSdXhG3Ht2k4zzXQvVOnTNre1wz3BA7LuV5kBGh7UrRdLK8N/VPo8f85tnUq95KZSSuUmuw3sYiIiIgyMJOWKs4wTWyNWcsdjPCHs7QmsjM61iPZ9C4gZf7GJaK3LMtYwoswGvicHttNRl9JzbzuwEhaHxMWSu4gbWYmrWlsQjL2Rtb20ozZFzJIW7XsQX4rBmlzUzTrv4+R+B/02NtQvbtZJvgCAGl2pGr+wmlyMQWqZzIUdQikTMJIrICRXJnRxmu74eGUSSvNZgCdNaXVYTD19el1ydjrUL1TYSbXQajDIZRAakydGfamvtk2LiF6nz/iCRyGWOvtWdcramPWdZmBaGlshu5QwgBIffZllj0w4u9bXrPUARERERWCQVqquP/ttE/AxExaciu69mE0Lzy9sx4eEZWV8APwoGftyWjzDe43d1GTtidpbEVkx9WFjBCo8pq0g1m+gFVmpihZCYcgdseO70EotQgNuwmqJ5UFaujr0bHtsnQA1bkzH4INP0Ks7R5Lndv06ows2tQy+2P7Zo+SJEJtBHoEaRPtDyLR/mCuXylD77NoAUDRRkH1THUIPKeIHEFaeyBaArLdsa2b308oPJ8lIiIi91jugCruLx+9bXktINDoD1VoNNTfdLx/fXUEaEuQ/UNU7YQQebMhc3eQL5M2+2PIrnchGKStVvn+doTGTNpcsgWxpdmKROSZ9Otkx79yB2gBQMYR2flDxwAtkL9+dJeuwDBgL1dSMFG63BEtR8mDzJtBliEoAYgS3iwQgk+GERERkXuMKlDFZZY6kJDQlNJkU9DAZ7SvrfQQAACeoZ/J34hoAFC904veVvNOy7leUUdAKENztsm5vTbOMduPqoOW529H8+7VRyPpn4TSAMWxLiwgjab0z6bZ5NimENmOc3/thZbX3vBp6Z81X+/eP9UztVfb9+QNHOV4U0jxTIEQvpzbar59SzYO1bt7yfoiIiKigY/lDqji1rTttLy+dPohFRoJ9TdSSphx69+PEhgFofRtJp02ZG/UHpB/xmmigSBQ/y1EmwEjuQqAuzrQQvjgCRwJzZ9nQh+hIjj0Z4i13A7TKGzmekUbg0Dd1wvahvqWoo1EoOEHiLc/DGm2ppcLpQa+0FyongmVG1w/IIRAcMiPEG35E4z4OxlrezxRkjkhlwh11qw1IXNO5uWBUIdB806Fv+4bji28obkwjW0wEivgCcyG5tuve+vgZ2Ho65Fo/7uL38ZrqWWtahMQqP+Wi+3cUbQRCDZcjXj7g+kJzFRtHPx138y7rb/264BMQE98iK5/VwENmn8/CKUGyeir9kkRM3S199WclrMdERERUU8M0lLFfdxuDbLNGVO6TAoa2GSyFZCGZdnQE1+HFh5foRERDXyKOgShoT8tW/+adzrCjb8rW/9UWd7gMfAGj6n0MPot1TMJ4WG/Qaz1bsTb/tpjjZHlZ8AX/jz8tV+DlDpaN55gW5/u27s7wo2/zbl/ofgRqHcOdAqhIlB3EZKR5yDzZPNq/pkIDf15zja95QkcDE/g4IK3U9Q6BIf8KOt6f+3XejMsIiIioqxY7oAqqiMZx5aoddbcXWuGVGg01N9kZtECgOLj3w8REQ101rJQsscNS5mZSduZkyGEBkUbk6NPUZqhCU9p+iEiIiIaZJhJSxW1tt2eaTEhzCBbtTCiW5HY/BKk3lHpoTgyOj6xLhAahMZJOoiIaIAT1iCtaWxCouNf6Z+ztVW08TD1jO/OdLvS5G4IeFwWQiEiIiKinhikpYr6uG2H5fXIQA2CGmfmrgZ6+zrseGp/mLGtlR6Ka4pvKIQoUSYQERFRlRIZD8OZydWINv8mS9vuIK3qGQ899kqWdqUaHM/jiIiIiIrBcgdUUesyMmknMou2asTWPtyvArQASx0QEdEgUUhJgR5tFS1XzXY1x7oCducqSFuafRERERENJAzSUkXFDGvdtDqvv0IjoUwykXvSj2rkHXlEpYdARERUdqp3j6Laar59ke1BukL6zL2/PfO20by7l2RfRERERAMJyx1QRSWldYZhj8LMimolfEOg1Uyu9DCcCQWeYfuj5jO/rPRIiIiIyk7zTkeg4ftIRp6FNCPOjZQgvMHjoHmndS9ShyA49Fok2h+BNFtTC4UKzbs3fDVfKsnY/HXnAULASCyDkVgFIAkAUD3TAKFB882AN3xqSfZFRERENJAwSEsVpZum5bVWokkrqPR8o49Dw+H3VXoYREREBMAbPBbe4LEFb+fxz4THP7MMI0oRwodA3cVl65+IiIhooGJEjCoqaTKTloiIiIiIiIiIBjdm0lJFZdak1RTeNwAAKSXinz4JvWV5xcaQ2PpaxfZNRERERERERDSYMEhLFfWb91+yvGYmbUrbO1eh473rKj0MIiIiIiIiIiLqA0xbpIoxpWlbZjgsG2yklIisuLXSw7ARCu/pEBERERERERGVA4O0VDFJ0x6Q3b1+RAVGUl3MyHrIZEulh2HjHXV0pYdARERERERERDQgMTWOKsYpa/b0ifv2/UCqjN6cUYdW8cE3uvDZm0tFqF74xnwWgUlnVWwMREREREREREQDGYO0VDFOQVpViAqMpLrozcssrz1D9sWQY56s0GiIiIiIiIiIiKjcWO6AKsYwpW2ZKvgnmWyxBmm1+t0rNBIiIiIiIiIiIuoLzKQtoXXr1uHmm2/G008/jU8//RQ+nw+TJk3Caaedhm984xsIBoOVHmLVaI5H8dsPFtqWR5f9Dq1or8CIqkdiw7OW11r99AqNhIiIiIiIiIiI+gKDtCXy5JNP4qtf/SpaW1vTyyKRCJYsWYIlS5ZgwYIFePrppzF58uQKjrJ6nPifO/Ha1rW25bH3f4MOEe37AVUxrY6ZtEREREREREREAxmfLS+BpUuX4vTTT0drayvC4TCuvfZavPbaa3j++edxwQUXAABWrlyJE088EW1tbRUebeV90t7kGKAFAB+Mvh1MP8ByB0REREREREREAxszaUvgsssuQzQahaZpePbZZ3HQQQel1x111FGYMmUKvve972HlypW48cYb8dOf/rRyg60CW6LOgeqD8QlqRKKPR1PdPMP2hxqeUOlhEBERERERERFRGTFI20uLFy/GK6+8AgA477zzLAHaLt/97ndx9913Y/ny5bjppptw9dVXw+Px9PVQq8bOhL2cwY/HBHHGhifSr5XgWPjGzOnLYVUdNTgOoemXQghR6aEQEREREREREVEZMUjbS4899lj653PPPdexjaIoOOuss/CDH/wAzc3NePHFFzFnzuANQO6MRyyv96gfgf8bEUf7xnh6mWfYTNTPvrOvh0ZERERERERERNTnWJO2l1599VUAQCgUwn777Ze13eGHH57+edGiRWUfVzXbEeuwvB7iCwKmtcyBULx9OSQiIiIiIiIiIqKKYSZtLy1fvhwAMHnyZGha9n/OadOm2bZxY/369TnXb9q0yXVf1eLSNx+zvK5pW45Y4iVrI2XwloMgIiIiIiIiIqLBhUHaXojFYti+fTsAYOzYsTnbNjQ0IBQKoaOjA59++qnrfYwbN65XY+wPaiKroUc/sCxjJi0REREREREREQ0WLHfQC21tbemfw+Fw3vahUAgA0N7eXrYx9QcqTMvr4eiwtRGe2r4aDhERERERERERUUUxk7YXYrFY+mevN3/mp8/nAwBEo1HX+8iXdbtp0ybsv//+rvurBiEk0YrUv4UXOk7ESmsDoSIw4dQKjIyIiIiIiIiIiKjvMUjbC36/P/1zIpHI0TIlHo8DAAKBgOt95Cuj0B99Y2QNYoaOgAIcV+PHvsGvpdcJxQff2OPhbTyggiMkIiIiIiIiIiLqOwzS9kJNTU36ZzclDDo6Uo/1uymNMJD98vhfVnoIREREREREREREVYM1aXvB7/dj6NChAID169fnbNvU1JQO0g6GycCIiIiIiIiIiIjIHQZpe2n33XcHAKxevRq6rmdtt2LFivTP06dPL/u4iIiIiIiIiIiIqH9gkLaXDjnkEACpUgZvv/121nYLFy5M/zx79uyyj4uIiIiIiIiIiIj6BwZpe+nzn/98+ue7777bsY1pmvjzn/8MAKivr8eRRx7ZF0MjIiIiIiIiIiKifoBB2l7af//9ceihhwIA7rzzTrz++uu2NjfeeCOWL18OALjsssvg8Xj6dIxERERERERERERUvbRKD2AguOmmmzB79mxEo1HMmTMHV111FY488khEo1E88MADuP322wEAU6dOxXe/+90Kj5aIiIiIiIiIiIiqCYO0JTBjxgw8+OCD+OpXv4rW1lZcddVVtjZTp07F008/jZqamgqMkIiIiIiIiIiIiKoVyx2UyEknnYR3330X3/72tzF16lQEg0HU19dj5syZ+PWvf42lS5di8uTJlR4mERERERERERERVRkhpZSVHgQVb/369Rg3bhwA4NNPP8XYsWMrPCIiIiIiIiKigYfX30RUTsykJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogrdIDoN7RdT3986ZNmyo4EiIiIiIiIqKBq+c1d89rcSKiUmCQtp/btm1b+uf999+/giMhIiIiIiIiGhy2bduGCRMmVHoYRDSAsNwBERERERERERERUQUJKaWs9CCoeLFYDO+99x4AoLGxEZpW/cnRmzZtSmf9Ll68GKNGjarwiKhQfA/7P76H/Rvfv/6P72H/x/ew/+N72L/x/ev/+uN7qOt6+mnWvfbaC36/v8IjIqKBpPojepST3+/HrFmzKj2Moo0aNQpjx46t9DCoF/ge9n98D/s3vn/9H9/D/o/vYf/H97B/4/vX//Wn95AlDoioXFjugIiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKkhIKWWlB0FEREREREREREQ0WDGTloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpqU+tW7cO3/3udzFt2jSEQiEMGTIEs2bNwm9+8xtEIpFKD29QWrJkCa655hrMmTMHY8eOhc/nQzgcxtSpU3Huuefi1VdfzdvHPffcAyGEq//uueee8v9Sg4zbf/sjjjgib1/PPPMM5s2bl/5bGDt2LObNm4dnnnmm/L/IIHXEEUe4fg+7/nvppZcsffAYLJ+tW7fiqaeewo9//GMcf/zxGDZsWPrf8pxzzim4v1IcY7qu409/+hMOPfRQNDY2IhAIYNKkSbjooovwwQcfFDymga4U72EkEsGjjz6Kiy++GLNmzUJDQwM8Hg+GDh2Kgw46CD/96U+xefPmvP0UcrxTt1K8h6X+nIxEIrj++usxa9YsDBkyBKFQCNOmTcN3v/tdrFu3rne/8ADU2/dw7dq1BX9XTpgwwbEvHoeFK8X1Qk/8LiQiykIS9ZEnnnhC1tbWSgCO/02dOlWuWrWq0sMcVA499NCs70fP/8466ywZj8ez9nP33Xe76geAvPvuu/vuFxwk3P7bH3744Vn7MAxDnnfeeTm3P//886VhGH33iw0Shx9+uOv3EIBUFEWuX7/e0gePwfLJ9W959tlnu+6nVMfYtm3b5KxZs7L24fP55B133NHL33pg6e17+L///U+Gw+G8x1Ztba184IEHcvZVyPFO3UpxHJbyc3LVqlVyypQpOf8Wnnzyyd7/4gNIb9/DNWvWFPRdCUDOmTPHsS8eh4Up1fWClPwuJCLKRwNRH1i6dClOP/10RKNRhMNh/OAHP8CRRx6JaDSKBx54AHfccQdWrlyJE088EUuWLEFNTU2lhzwobNy4EQAwevRofPGLX8Shhx6KXXbZBYZh4PXXX8eNN96IDRs24M9//jOSySTuu+++vH3++9//xujRo7OuHzt2bMnGT1YXX3wxLrnkkqzrQ6FQ1nVXX3017rzzTgDAjBkz8L3vfQ+TJk3CRx99hOuvvx5Lly7FggUL0NjYiF/+8pclH/tgdvfdd6OjoyNnm2XLluH0008HABx99NEYM2ZM1rY8Bstnl112wbRp0/Dss88WvG0pjjHDMDBv3jy89dZbAIBTTjkFF1xwAYYMGYI333wTv/jFL7B161ZcdNFFGDNmDI4//vjif9kBqpj3sLW1Fe3t7QCA2bNn43Of+xxmzpyJoUOHYtu2bXj00Udxxx13oLW1FV/5yldQW1ub999+5syZuPvuu3v1uwxWvTkOu/Tmc7KtrQ0nnngiVq1aBQC44IILcMYZZyAQCODFF1/Er371K7S2tuL000/HokWLsO+++xY9zoGqmPdwzJgxeO+99/K2+9WvfpU+Xz377LNztuVx6E4prxf4XUhElEelo8Q0OHTdgdU0Tb722mu29ddff336zudPfvKTvh/gIHXiiSfKBx98UOq67rh+27ZtcurUqen3ZuHChY7temanrFmzpowjJie9PXY+/PBDqWmaBCBnzpwpI5GIZX1HR4ecOXNm+hhmxnvf+973vpd+n//yl7/Y1vMYLJ8f//jH8sknn5SbN2+WUlqzudxm8JXqGLvzzjvT+77kkkts61etWpV+YmXy5MkymUwW9ssOUL19DxctWiRPO+00+cEHH2Rt89hjj0khhAQgJ02aJE3TdGzXlcGX68kGsivFcViqz8kf/ehH6X6uv/562/pFixalj3e+z91K8R7mo+u6HD16tAQga2pqbJ+1XXgcFqZU1wv8LiQiyo9BWiq7N998M/1FetFFFzm2MQxDTp8+XQKQ9fX1MpFI9PEoKZsnn3wy/f5deumljm0YIKqs3gZpL7744nQfr7/+umOb119/PecJMZWPYRhyzJgxEoAMh8Oyo6PD1obHYN8pJrBQqmOs63tyyJAhjn8HUkr5q1/9Kt3P3//+d1fjG2zKERySUspTTz013e/bb7/t2IbBodKoVJA2kUjIuro6CUBOnz496yPZF110UXpfixcvLmpfA105jsN//etf6T7PPffcrO14HJaem+sFfhcSEeXHicOo7B577LH0z+eee65jG0VRcNZZZwEAmpub8eKLL/bF0MiFI488Mv3zRx99VMGRUDlIKfH4448DAKZNm4YDDzzQsd2BBx6I3XbbDQDw+OOPQ0rZZ2Mc7J5//nls2LABAPCFL3wBwWCwwiOiQpTqGFu5ciWWL18OADjttNOy/h30nIDnH//4R2+HTwXg9+XA9+KLL6KlpQVA6lF6RXG+lOJxWBl//vOf0z/nK3VApZXv84/fhURE7jBIS2XXNdtnKBTCfvvtl7Xd4Ycfnv550aJFZR8XuROPx9M/q6pawZFQOaxZsyZda6znMeika/2GDRuwdu3acg+NOvW86Oy6mUX9R6mOsZ4zZ+fqZ+TIkZg6dSoAfpf2NX5fDnxuj8OZM2emg0c8DvtGW1tbOjFkwoQJOOywwyo7oEEm3+cfvwuJiNxhkJbKrutu5+TJk6Fp2eeqmzZtmm0bqryFCxemf54+fXre9ueeey5Gjx4Nr9eLYcOG4cADD8QPf/jDdCYglc9DDz2E3XffHcFgEDU1NZgyZQrOPvvsnJnpy5YtS//c8xh0wmO077W3t6czQMaPH48jjjgi7zY8BqtLqY6xYvr59NNP805KR6VTyPflihUrcMABB6C+vh5+vx9jx47F3Llz0xPvUHkV+znp9jjUNA2TJ08GwO/LvvLwww8jEokAAM4880wIIfJuw+OwdPJ9/vG7kIjIHQZpqaxisRi2b98OIP+M4g0NDenZ5z/99NOyj43yM00T1113Xfr1aaedlnebl156CZs2bUIymcSOHTvw5ptv4tprr8XkyZNx2223lXO4g96yZcuwfPlyRKNRtLe3Y/Xq1fjzn/+Mo446CvPmzUs/otnT+vXr0z/nO0bHjRuX/pnHaN945JFH0hcWX/3qV11ddPIYrC6lOsaK6UdKadmOyud///sfnn76aQDAXnvtlTdIu2XLFixevBgtLS2Ix+PYsGEDnnjiCZx99tnYd999Gdgrs2I/J7uOp1AohPr6+pz76DoOt23bZskypPIo5qkTHoel4eZ6gd+FRETuZE9rJCqBtra29M/hcDhv+1AohI6ODrS3t5dzWOTS7373OyxevBgAcMopp+QsV7HrrrvilFNOwUEHHZQ+Kfr444/xyCOP4OGHH0YsFsPXv/51CCFw4YUX9sn4B4tgMIiTTz4ZRx99NKZNm4ZwOIxt27Zh4cKF+NOf/oQdO3bgsccew9y5c/Hcc8/B4/Gkty3kGO26iQKAx2gfKeSik8dgdSrVMcZjtXrF43Gcf/75MAwDAHDttddmbasoCo4++miccMIJ2GeffTB06FC0tbXhnXfewW233Ybly5dj2bJlOPLII7F48WLssssuffVrDAq9/ZzsOg7dntN2aW9vh8/nK9FvQZk++eSTdCbnwQcfnM5izobHYWm5uV7gdyERkTsM0lJZxWKx9M9erzdv+64T2Gg0WrYxkTsLFy7E97//fQDA8OHDceutt2ZtO2/ePJx99tm2LL9Zs2bh9NNPx1NPPYVTTjkFyWQS3/72t3HyySdj5MiRZR3/YLJhwwbHjJ5jjz0Wl156KY4//ngsXboUCxcuxK233opvfetb6TaFHKM9LzB5jJbf+vXr8dJLLwFITaTRVVvNCY/B6lWqY4zHavX65je/iSVLlgBITVZ00kknZW376KOPOn5eH3roobjkkktwwQUX4N5778WWLVtw+eWX49FHHy3XsAedUnxOdh2HhZzTAjwOy+2vf/1reoIpN1m0PA5Lx+31Ar8LiYjcYbkDKiu/35/+OZFI5G3f9ThYIBAo25govw8++ADz5s2Druvw+/146KGHMHz48Kzt6+rqcj6G/bnPfQ4//vGPAQCRSAR33nlnycc8mOV65HLEiBF4+OGH09mz8+fPt6wv5Bjt+bgmj9Hy++tf/wrTNAHkn6Wax2D1KtUxxmO1Ov3qV7/CggULAKSCfbfcckvO9rk+rz0eDxYsWJCe2fwf//gHa0mXUCk+J7uOw0LOaQEeh+X2l7/8BUAqKHf66afnbc/jsDQKuV7gdyERkTsM0lJZ1dTUpH9285hJV+1FN4+RUXmsWbMGc+bMQVNTE1RVxQMPPFCSGXIvvPDC9MVRz8kFqPx23XVXHHvssQCA1atXp2fXBQo7RntOusBjtPwKvejMh8dgZZTqGOOxWn1uu+02XHXVVQBSE9T885//tDxeWwxN03DeeeelX/NY7Vv5Pie7jsNCzmkBHofltHjxYqxYsQIAcPLJJ+etFewGj8P8Cr1e4HchEZE7DNJSWfn9fgwdOhQA8hZsb2pqSn+Z9iwYT31n48aNOOaYY7Bx40YIIXDXXXdh7ty5Jel7+PDh6b8FZiT0vd133z39c89//56TLuQ7RntO3sBjtLyWLFmSnsH4c5/7HBoaGnrdJ4/ByijVMVZMP0KIvBOrUHHuv/9+XHLJJQCA8ePH47nnnsOwYcNK0ne2z2sqv3yfk13HU0dHB5qbm3P21XUcNjY2sh5tGRUzYZgbPA6zK+Z6gd+FRETuMEhLZdd1krN69Wroup61XdddcAB5Z0Wm0tu+fTuOPfZYfPzxxwBSj8WX8mQXgKuZ6ak8sv3b97wI6XkMOuEx2nd6XnTmK3VQCB6Dfa9Ux1gx/YwbN67XmZ1k98QTT+Css86CaZoYNWoUnn/++ZIGAHicVlauf3+3x6Gu6/joo48A8PuynJLJJB544AEAqQD7Zz/72ZL1zePQWbHXC/wuJCJyh0FaKrtDDjkEQCrr4O23387aruejRLNnzy77uKhbS0sLjjvuuHTm3nXXXYdvfOMbJd3Htm3bsH37dgDA6NGjS9o35df13gLWf/+JEyemX+d7nO/ll18GAIwZMwYTJkwo/SAJgPWis7GxEccff3xJ+uUxWBmlOsa6vkvz9bN582asXLkSAL9Ly+H555/HaaedBl3XMXToUDz33HOYNGlSSfeR7fOayi/f56Tb43DJkiXpp8N4HJbP008/jR07dgAAvvzlL0PTSjcnNo9Du95cL/C7kIjIHQZpqew+//nPp3++++67HduYppnOHKuvr8eRRx7ZF0MjpCbHOPHEE/HOO+8AAK6++mpceeWVJd/P7bffnp559/DDDy95/5TdmjVr8NxzzwEAJk2ahDFjxqTXCSHSj6itWLECb7zxhmMfb7zxRjojYe7cucwwKaNnnnkG27ZtA1Dai04eg5VRqmNs6tSp6Yyiv//974hEIo793HPPPemf582b19vhUw+vvfYa5s6di3g8jrq6Ovz73//GHnvsUdJ96LqOu+66K/26FDXhyb18n5NHHHEE6urqAAD33ntvum0mHod9o1xPnfA4tOvt9QK/C4mIXJJEfeDQQw+VAKSmafK1116zrb/++uslAAlA/uQnP+n7AQ5S8XhczpkzJ/1vf9lllxXcx5o1a+Q777yTs82TTz4pvV6vBCADgYBcv359kSOmTE888YRMJpNZ12/evFnOmDEj/R7feOONtjYffvihVFVVApAzZ86UkUjEsj4SiciZM2emj+GVK1eW/Pegbqeeemr6/Xr77bfztucx2LfWrFmTfn/OPvtsV9uU6hi788470/v+xje+YVu/evVqWVtbKwHIyZMn5/xsGMyKeQ+XLl0q6+vrJQAZCoXkq6++WvB+X3jhBdnU1JR1fSKRkGeffXZ6bCeddFLB+xgsCn0PS/k5+aMf/Si97+uvv962/rXXXpOapkkA8vDDD3fz6wxKxRyHPe3YsSP9fu21116ut+NxWLhSXC9Iye9CIiI3SvdMCFEON910E2bPno1oNIo5c+bgqquuwpFHHoloNIoHHngAt99+O4DU3dHvfve7FR7t4PGlL30Jzz77LADgqKOOwnnnnYf3338/a3uv14upU6dalq1duxZHHnkkDjroIJx00knYZ599MHz4cADAxx9/jIcffhgPP/xwOtvkhhtusGRyUu9ceumlSCaTOPXUU3HQQQdhwoQJCAQC2L59O1566SXcdttt6Uc3DznkEMfH0qZOnYorrrgC1113HZYsWYLZs2fjyiuvxKRJk/DRRx/h17/+NZYuXQoAuOKKKzBlypQ+/R0Hk6amJjz11FMAgD333BOf+cxn8m7DY7C8Xn31VaxevTr9uut4AlK11ntm6wDAOeecY+ujVMfY2WefjbvuuguLFi3CLbfcgs2bN+OCCy5AQ0MDFi9ejJ///OdobW2Foii4+eabS/rob3/W2/fwo48+wnHHHZeeKOoXv/gF6urqcn5fDh8+PH0cdrn33ntx8skn4+STT8YRRxyB3XbbDbW1tWhvb8fbb7+N22+/Pf0Y8fDhw3HTTTcV8dsOTL19D0v5OXnFFVfgwQcfxMqVK/G9730Pq1evxhlnnIFAIIAXX3wRv/zlL6HrOgKBAH7/+9/3/pcfIErxWdrTAw88gEQiAaCwLFoeh4UrxfUCwO9CIiJXKhwkpkHkiSeeSN/VdPpv6tSpctWqVZUe5qCS7b3I9t/48eNtfbz44ouutg0Gg/K2227r+19ygBs/fryrf/9TTz01Z+aIYRjya1/7Ws4+zjvvPGkYRt/9coPQrbfemjNDywmPwfLqmVHl5r9sSnWMbdu2Tc6aNStrHz6fT95xxx2l/mfo13r7Ht59990Ff186PRXkdhx77bWX/OCDD/rgX6b/6O17WOrPyVWrVskpU6Zk7ae2tlY++eST5fin6LdK9Vna5YADDpAApKqqctOmTSUfB4/DboV+/jldL3ThdyERUW68rUR95qSTTsK7776Lm266CU8//TTWr18Pr9eLyZMn44tf/CK++c1vIhgMVnqYVKD99tsPf/3rX/H6669jyZIl2LRpE7Zv3w5d19HQ0IA99tgDRx99NM4//3xbVhH13r333ouFCxfi9ddfx8cff4zt27ejtbUV4XAY48aNw8EHH4yzzz4bBx10UM5+FEXBnXfeiVNPPRW333473nrrLWzfvh3Dhg3DrFmzcNFFF5VsAivK7i9/+QsAQFVVfOUrX3G1DY/B/qFUx9iwYcPw2muv4Y477sB9992H5cuXo6OjA6NHj8bRRx+Nyy67rOR1Uqk0rrzySuy77754/fXXsWzZMmzbtg07d+6Ez+fDiBEjMHPmTHzhC1/AvHnzoKpqpYc7oJT6c3Ly5MlYunQpbrnlFjz00ENYvXo1EokExo0bhxNOOAGXXXYZxo8f3we/2eC0atUqvPnmmwCAY489FiNHjnS9LY/DyuJ3IRFRbkLKLBXviYiIiIiIiIiIiKjslEoPgIiIiIiIiIiIiGgwY5CWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiKhI99xzD4QQEEJg7dq1lR4OERERERH1UwzSEhER0aCzdu3adHC1N/8RERERERGVAoO0RERERERERERERBUkpJSy0oMgIiIi6kvJZBIffvhh1vV77bUXAGDmzJm4++67s7bbc889Sz42IiIiIiIafLRKD4CIiIior3k8HlcB1lAoxEAsERERERGVHcsdEBEREREREREREVUQg7RERERERbrnnnvSk4itXbvWtv6II46AEAJHHHEEAGD16tX4+te/jl133RWBQAATJkzAeeedh3Xr1lm2e//993Huuedi1113hd/vx7hx43DxxRdj69atrsb12GOP4Ytf/CJ22WUX+P1+1NfXY+bMmfjZz36Gpqam3v7aRERERERUYix3QERERNQH/vOf/+CUU05BW1tbetm6detw11134amnnsLChQsxbdo03H///TjnnHOQSCTS7davX48//elPeOaZZ/Daa69h9OjRjvtoamrCF77wBbzwwguW5fF4HG+//Tbefvtt/PGPf8Tjjz+OAw88sDy/KBERERERFYyZtERERERltnHjRpx22mmor6/H/Pnz8eabb+KVV17B5ZdfDiEEtm7divPPPx9vvfUWzjrrLEyaNAkLFizA4sWL8eKLL+LMM88EkArqfuc733HcRzwexzHHHIMXXngBqqrizDPPxP3334833ngDr7zyCq699loMHToUW7duxQknnGDL3iUiIiIiosphJi0RERFRma1atQpTpkzBokWL0NjYmF5+yCGHQNM03HDDDVi0aBFOPPFE7L///njuuecQDAbT7Y444gjEYjE89NBDeOSRR7Bt2zZLPwBwzTXX4J133kF9fT3+85//YL/99rOsP+SQQ/CVr3wFBx10EDZt2oSrrroKf/vb38r7ixMRERERkSvMpCUiIiLqAzfffLMtsAoAl1xySfrn7du3Y8GCBZYAbZeLL74YAKDrOl5//XXLuvb2dtxyyy0AgJ///Oe2AG2X8ePH40c/+hEA4KGHHkJHR0dxvwwREREREZUUg7REREREZVZfX4/jjjvOcd3EiRNRU1MDANh7770xffp0x3b77LNP+uePP/7Ysm7hwoVoaWkBAHzhC1/IOZbDDjsMAJBMJvH222+7+wWIiIiIiKisWO6AiIiIqMymTJkCIUTW9fX19Whra8PUqVNztunSc/IxAFiyZEn651GjRrke1+bNm123JSIiIiKi8mEmLREREVGZOZUv6ElRlLztutoAgGEYlnVbt24talyRSKSo7YiIiIiIqLSYSUtERETUz/UM2r7zzjvweDyuths7dmy5hkRERERERAVgkJaIiIionxs6dGj658bGRgZfiYiIiIj6GZY7ICIiIurnZsyYkf550aJFFRwJEREREREVg0FaIiIion7umGOOSdezvfnmmyGlrPCIiIiIiIioEAzSEhEREfVz9fX1+OY3vwkAeO211/Dtb38bpmlmbb9lyxYsWLCgr4ZHRERERER5sCYtERER0QBwzTXXYOHChXjzzTdx00034aWXXsIFF1yAfffdF6FQCE1NTfjggw/wn//8B8888wz22msvnH/++ZUeNhERERERgUFaIiIiogHB5/PhueeewznnnINHH30U//vf/9LZtU5qa2v7cHRERERERJQLg7REREREA0RNTQ0eeeQRvPrqq7j33nvxyiuvYOPGjYhGo6itrcWkSZOw//7748QTT8ScOXMqPVwiIiIiIuokJGeWICIiIiIiIiIiIqoYThxGREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEFMUhLREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEF/T8CDHwDuccc8gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = my_model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'vector-borne_birth-death_example.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe containing model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/about.md b/docs/about.md new file mode 100644 index 0000000..b52c97a --- /dev/null +++ b/docs/about.md @@ -0,0 +1,206 @@ +# About + +## Opqua is an epidemiological modeling framework for pathogen population genetics and evolution. + +Opqua stochastically simulates pathogens with distinct, evolving genotypes that +spread through populations of hosts which can have specific immune profiles. + +Opqua is a useful tool to test out scenarios, explore hypotheses, make +predictions, and teach about the relationship between pathogen evolution and +epidemiology. + +Among other things, Opqua can model +- host-host, vector-borne, and vertical transmission +- pathogen evolution through mutation, recombination, and/or reassortment +- host recovery, death, and birth +- metapopulations with complex structure and demographic interactions +- interventions and events altering demographic, ecological, or evolutionary +parameters +- treatment and immunization of hosts or vectors +- influence of pathogen genome sequences on transmission and evolution, as well +as host demographic dynamics +- intra- and inter-host competition and evolution of pathogen strains across +user-specified adaptive landscapes + +## How Does Opqua Work? + +### Basic concepts + +Opqua models are composed of populations containing hosts and/or vectors, which +themselves may be infected by a number of pathogens with different genomes. + +A genome is represented as a string of characters. All genomes must be of the +same length (a set number of loci), and each position within the genome can have +one of a number of different characters specified by the user (corresponding to +different alleles). Different loci in the genome may have different possible +alleles available to them. Genomes may be composed of separate chromosomes, +separated by the "/" character, which is reserved for this purpose. + +Each population may have its own unique parameters dictating the events that +happen inside of it, including how pathogens are spread between its hosts and +vectors. + +### Events + +There are different kinds of events that may occur to hosts and vectors in +a population: + +- contact between an infectious host/vector and another host/vector in the same +population (intra-population contact) or in a different population ("population +contact") +- migration of a host/vector from one population to another +- recovery of an infected host/vector +- birth of a new host/vector from an existing host/vector +- death of a host/vector due to pathogen infection or by "natural" causes +- mutation of a pathogen in an infected host/vector +- recombination of two pathogens in an infected host/vector + +![Events](../img/events.png "events illustration") + +The likelihood of each event occurring is determined by the population's +parameters (explained in the `newSetup()` function documentation) and +the number of infected and healthy hosts and/or vectors in the population(s) +involved. Crucially, it is also determined by the genome sequences of the +pathogens infecting those hosts and vectors. The user may specify arbitrary +functions to evaluate how a genome sequence affects any of the above kinds of +rates. This is once again done through arguments of the `newSetup()` +function. As an example, a specific genome sequence may result in increased +transmission within populations but decreased migration of infected hosts, or +increased mutation rates. These custom functions may be different across +populations, resulting in different adaptive landscapes within different +populations. + +Contacts within and between populations may happen by any combination of +host-host, host-vector, and/or vector-host routes, depending on the populations' +parameters. When a contact occurs, each pathogen genome present in the infecting +host/vector may be transferred to the receiving host/vector as long as one +"infectious unit" is inoculated. The number of infectious units inoculated is +randomly distributed based on a Poisson probability distribution. The mean of +this distribution is set by the receiving host/vector's population parameters, +and is multiplied by the fraction of total intra-host fitness of each pathogen +genome. For instance, consider the mean inoculum size for a host in a given +population is 10 units and the infecting host/vector has two pathogens with +fitnesses of 0.3 and 0.7, respectively. This would make the means of the Poisson +distributions used to generate random infections for each pathogen equal to 3 +and 7, respectively. + +Inter-population contacts occur via the same mechanism as intra-population +contacts, with the distinction that the two populations must be linked in a +compatible way. As an example, if a vector-borne model with two separate +populations is to allow vectors from Population A to contact hosts in Population +B, then the contact rate of vectors in Population A and the contact rate of +hosts in Population B must both be greater than zero. Migration of hosts/vectors +from one population to another depends on a single rate defining the frequency +of vector/host transport events from a given population to another. Therefore, +Population A would have a specific migration rate dictating transport to +Population B, and Population B would have a separate rate governing transport +towards A. + +Recovery of an infected host or vector results in all pathogens being removed +from the host/vector. Additionally, the host/vector may optionally gain +protection from pathogens that contain specific genome sequences present in the +genomes of the pathogens it recovered from, representing immune memory. The user +may specify a population parameter delimiting the contiguous loci in the genome +that are saved on the recovered host/vector as "protection sequences". Pathogens +containing any of the host/vector's protection sequences will not be able to +infect the host/vector. + +Births result in a new host/vector that may optionally inherit its parent's +protection sequences. Additionally, a parent may optionally infect its offspring +at birth following a Poisson sampling process equivalent to the one described +for other contact events above. Deaths of existing hosts/vectors can occur both +naturally or due to infection mortality. Only deaths due to infection are +tracked and recorded in the model's history. + +De novo mutation of a pathogen in a given host/vector results in a single locus +within a pathogen's genome being randomly assigned a new allele from the +possible alleles at that position. Recombination of two pathogens in a given +host/vector creates two new genomes based on the independent segregation of +chromosomes (or reassortment of genome segments, depending on the field) from +the two parent genomes. In addition, there may be a Poisson-distributed random +number of crossover events between homologous parent chromosomes. Recombination +by crossover event will result in all the loci in the chromosome on one side of +the crossover event location being inherited from one of the parents, while the +remainder of the chromosome is inherited from the other parent. The locations of +crossover events are distributed throughout the genome following a uniform +random distribution. + +### Interventions + +Furthermore, the user may specify changes in model behavior at specific +timepoints during the simulation. These changes are known as "interventions". +Interventions can include any kind of manipulation to populations in the model, +including: + +- adding new populations +- changing a population's event parameters and adaptive landscape functions +- linking and unlinking populations through migration or inter-population +contact +- adding and removing hosts and vectors to a population + +Interventions can also include actions that involve specific hosts or vectors in +a given population, such as: + +- adding pathogens with specific genomes to a host/vector +- removing all protection sequences from some hosts/vectors in a population +- applying a "treatment" in a population that cures some of its hosts/vectors of +pathogens +- applying a "vaccine" in a population that protects some of its hosts/vectors +from pathogens + +For these kinds of interventions involving specific pathogens in a population, +the user may choose to apply them to a randomly-sampled fraction of +hosts/vectors in a population, or to a specific group of individuals. This is +useful when simulating consecutive interventions on the same specific group +within a population. A single model may contain multiple groups of individuals +and the same individual may be a member of multiple different groups. +Individuals remain in the same group even if they migrate away from the +population they were chosen in. + +When a host/vector is given a "treatment", it removes all pathogens within the +host/vector that do not contain a collection of "resistance sequences". A +treatment may have multiple resistance sequences. A pathogen must contain all +of these within its genome in order to avoid being removed. On the other hand, +applying a vaccine consists of adding a specific protection sequence to +hosts/vectors, which behaves as explained above for recovered hosts/vectors when +they acquire immune protection, if the model allows it. + +### Simulation + +Models are simulated using an implementation of the Gillespie algorithm in which +the rates of different kinds of events across different populations are +computed with each population's parameters and current state, and are then +stored in a matrix. In addition, each population has host and vector matrices +containing coefficients that represent the contribution of each host and vector, +respectively, to the rates in the master model rate matrix. Each coefficient is +dependent on the genomes of the pathogens infecting its corresponding vector or +host. Whenever an event occurs, the corresponding entries in the population +matrix are updated, and the master rate matrix is recomputed based on this +information. + +![Simulation](../img/simulation.png "simulation illustration") + +The model's state at any given time comprises all populations, their hosts +and vectors, and the pathogen genomes infecting each of these. A copy of the +model's state is saved at every time point, or at intermittent intervals +throughout the course of the simulation. A random sample of hosts and/or vectors +may be saved instead of the entire model as a means of reducing memory +footprint. + +### Output + +The output of a model can be saved in multiple ways. The model state at each +saved timepoint may be output in a single, raw [pandas](pandas.pydata.org/) +DataFrame, and saved as a tabular file. Other data output +types include counts of pathogen genomes or protection sequences for the +model, as well as time of first emergence for each pathogen genome and genome +distance matrices for every timepoint sampled. The user can also create +different kinds of plots to visualize the results. These include: + +- plots of the number of hosts and/or vectors in different epidemiological +compartments (naive, infected, recovered, and dead) across simulation time +- plots of the number of individuals in a compartment for different populations +- plots of the genomic composition of the pathogen population over time +- phylogenies of pathogen genomes + +Users can also use the data output formats to make their own custom plots. diff --git a/docs/basic_usage.ipynb b/docs/basic_usage.ipynb new file mode 100644 index 0000000..830cf55 --- /dev/null +++ b/docs/basic_usage.ipynb @@ -0,0 +1,408 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basic usage" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make a new model object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. \n", + "\n", + "Here, we will use the default parameter set for a host-host transmission model" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup('my_setup', preset='host-host')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation('my_population', 'my_setup', num_hosts=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the simulation for 200 time units" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 71.89423840111455, event: CONTACT_HOST_HOST\n", + "Simulating time: 136.14665780191842, event: RECOVER_HOST\n", + "Simulating time: 200.15737579926133 END\n" + ] + } + ], + "source": [ + "my_model.run(0,200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Save the model results to a table" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19414451599121096s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01929759979248047s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.013352155685424805s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01486515998840332s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 124 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02699422836303711s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.05492806434631348s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08415079116821289s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1292 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1495 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1956 out of 1956 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2AAAAAAAAAANaNTrue
30.0my_populationHostmy_population_3AAAAAAAAAANaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
195595200.0my_populationHostmy_population_95AAAAAAAAAANaNTrue
195596200.0my_populationHostmy_population_96NaNNaNTrue
195597200.0my_populationHostmy_population_97AAAAAAAAAANaNTrue
195598200.0my_populationHostmy_population_98AAAAAAAAAANaNTrue
195599200.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

195600 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 AAAAAAAAAA \n", + "3 0.0 my_population Host my_population_3 AAAAAAAAAA \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "195595 200.0 my_population Host my_population_95 AAAAAAAAAA \n", + "195596 200.0 my_population Host my_population_96 NaN \n", + "195597 200.0 my_population Host my_population_97 AAAAAAAAAA \n", + "195598 200.0 my_population Host my_population_98 AAAAAAAAAA \n", + "195599 200.0 my_population Host my_population_99 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "195595 NaN True \n", + "195596 NaN True \n", + "195597 NaN True \n", + "195598 NaN True \n", + "195599 NaN True \n", + "\n", + "[195600 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame('Basic_example.csv')\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wU9fkH8M/M9tvrhXKANEFALCBgwYK9S0yMJppoLDExicYUTYzGmKi/aExijdFE1KiJGnsUUbEjSlNEqiCduwOu320vM78/lt3bnbYze3u3Vz7v18uX7Mzs7ve2zM4883yfR5BlWQYRERERERERERERFYRY6AEQERERERERERERDWYM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRAdkLPQDqnlAohNWrVwMAampqYLfzLSUiIiIiIiLKt1gshsbGRgDAQQcdBLfbXeAREdFAwoheP7d69WrMmjWr0MMgIiIiIiIiGjSWLVuGmTNnFnoYRDSAsNwBERERERERERERUQExk7afq6mpSf172bJlGD58eAFHQ0RERERERDQwNTQ0pGaypp+LExHlA4O0/Vx6Ddrhw4dj5MiRBRwNERERERER0cDHfjBElG8sd0BERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBDfogbSQSwSOPPIJTTz0Vw4cPh8vlQnFxMQ444ABceuml+Pjjj009zoIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCgh/8CIiIiIiIiIiIi6s8EWZblQg+iULZv344zzzwTa9euNdzu6quvxr333gtBEFTrJEnClVdeiXnz5une/4orrsDDDz8MUcx/THzXrl0YNWoUAGDnzp0YOXJk3p+DiIiIiIiIaLDj+TcR9aRBm0kbjUYzArQHH3wwHn/8cXzyySd46623cPPNN8Pr9QIA7r//ftx5552aj3PjjTemArTTpk3D008/jWXLluHpp5/GtGnTAACPPPIIbrrppl74q4iIiIiIiIiIiKi/GbSZtM8//zy++c1vAgCOPPJILFq0CDabLWObTz/9FEceeSSi0SjKy8vR2NgIu92eWr9x40YceOCBiMVimDFjBj788EN4PJ7U+kAggOOOOw4rVqyA3W7H+vXrsf/+++f17+CVPCIiIiIiIqKex/NvIupJgzaTNr3W7A033KAK0ALAYYcdhrPOOgsA0NbWhvXr12esv+eeexCLxQAksm3TA7QAUFRUhPvvvx8AEIvFcPfdd+f1byAiIiIiIiIiIqL+b9AGaSORSOrf48aN091u/PjxmveRZRmvvPIKAGDSpEk44ogjNO9/xBFH4IADDgAAvPLKKxikictERERERERERESkY9AGaZOBUwDYsmWL7nabN28GAAiCgAkTJqSWb926FfX19QCA4447zvC5kuvr6uqwbdu2XIdMREREREREREREA5A9+yYD07e//W3cdNNN6OjowJ133okzzjhDVfJg5cqVmD9/PgDgwgsvRGlpaWrdunXrUv+eNGmS4XOlr1+/fj3Gjh1repy7du0yXN/Q0GD6sfoCKdKBwIa/IR7Yhbh/J+L+Xag+42MIdnehh0ZERERERERERFQQgzZIW11djSeffBLf/va3sXjxYsycORPXXnstJk6cCJ/Ph8WLF+Mvf/kLIpEIpk+fjr/85S8Z908PnmYrFp4sLA4kiotbkX7fgaLzs99k3I4H6mAvHa+zNRERERERERER0cA2aIO0AHDOOefg008/xV/+8hfMmzcPl1xyScb6oUOH4tZbb8X3v/99FBUVZazr7OxM/bu4uNjwebxeb+rfPp8vDyPvv0RnKQRHCeRo1+sX9+9kkJaIiIiIiIiIiAatQR2kjUQieOKJJ3Qbeu3ZswdPPfUUxo4di3POOSdjXSgUSv3b6XQaPo/L5Ur9OxgMWhpjtszbhoYGzJo1y9JjFpqtaCRi7etTt+MB45IOREREREREREREA9mgDdL6/X6cfvrpWLRoEWw2G66//npceumlGDduHEKhEJYuXYo//OEP+Oijj/C1r30Nf/7zn/Hzn/88dX+3u6uGaiQSMXyucDic+rfH47E0zmylFPoj0TsKSAvSSn4GaYmIiIiIiIiIaPASCz2AQrnllluwaNEiAMC8efNw5513YtKkSXA6nSgtLcXJJ5+M9957D8cffzxkWcZ1112HVatWpe5fUlKS+ne2EgZ+vz/172ylEQYDmzcz8BwPWKvTS0RERERERERENJAMyiCtLMt49NFHAQATJ05U1aJNstvtuPXWWwEAkiTh8ccfT61Lz3BNbyKmJb1kwUBsBGaVrUgRpGUmLRERERERERERDWKDMki7Z88etLS0AACmTZtmuO1hhx2W+veGDRtS/54yZYrmci3p6ydPnmxprAORzZsZqI77mUlLRERERERERESD16AM0trtXaV4Y7GY4bbRaFTzfmPHjkVtbS0A4IMPPjB8jA8//BAAMGLECIwZM8bqcAccUZFJK7FxGBERERERERERDWKDMkhbWVmJ0tJSAMAnn3xiGKhND8COHTs29W9BEDB37lwAiUzZJUuWaN5/yZIlqUzauXPnQhCEbo+/v1Nm0kqhRsRDjQUaDRERERERERERUWENyiCtKIo488wzAQD19fW4/fbbNbdrbW3Fr371q9Tts846K2P9tddeC5vNBgC4+uqrEQwGM9YHg0FcffXVABJZuNdee22+/oR+zV42EYK9KGNZdM/iAo2GiIiIiIiIiIiosAZlkBYAbr75ZhQVJQKFt9xyC8455xy88MILWLlyJT755BPcfffdOPTQQ7Fu3ToAwIknnohTTjkl4zEmTpyI6667DgCwYsUKzJ49G88++yxWrFiBZ599FrNnz8aKFSsAANdddx0mTJjQi39h3yWIDjhqjsxYFtm7qECjISIiIiIiIiIiKixBlmW50IMolLfffhvf/va30dTUZLjdCSecgOeffx4VFRWqdZIk4fvf/z4effRR3ftffvnl+Mc//gFRzH9MfNeuXRg1KlE+YOfOnRg5cmSWe/QNnStvgW/V71O3HdWzUH3W0gKOiIiIiIiIiEhffz3/JqL+YdBm0gLASSedhA0bNuDOO+/EnDlzUFNTA4fDAY/Hg7Fjx+L888/Hyy+/jLffflszQAskSifMmzcP8+fPx9y5c1FbWwun04na2lrMnTsXr7/+Oh555JEeCdD2Z86hx2TcjjZ/BinqL9BoiIiIiIiIiIiICmdQZ9IOBP31Sp4U9WHPf8oBOZ5aVnnqO3ANP6FwgyIiIiIiIiLS0V/Pv4mof2B6JxWE6CiGo2p6xrLIHtalJSIiIiIiIiKiwYdBWioYR81RGbdj7RsKNBIiIiIiIiIiIqLCYZCWCkZ0lmUuSCt9QERERERERERENFgwSEsFJGTelKXCDIOIiIiIiIiIiKiAGKSlwhEUQVqwhx0REREREREREQ0+DNJS4QiZHz9ZZpCWiIiIiIiIiIgGHwZpqYAUmbRSuDDDICIiIiIiIiIiKiAGaalg5Ghnxu3wrtcLNBIiIiIiIiIiIqLCYZCWCibc8Hahh0BERERERERERFRwDNJSwUi+Hapl8UBDAUZCRERERERERERUOAzSUsHYy6eolkWbPyvASIiIiIiIiIiIiAqHQVoqHJtLtSjawiAtERERERERERENLgzSUsEIokO1jJm0REREREREREQ02DBIS4UjqIO0seaVBRgIERERERERERFR4TBISwUj2JyqZXH/dkih5gKMhoiIiIiIiIiIqDAYpKWCcQ49VnN5rHNzL4+EiIiIiIiIiIiocBikpYIpmnAFxKJa9Qo53vuDISIiIiIiIiIiKhAGaalgBLsb1ed8rl4hS70+FiIiIiIiIiIiokJhkJYKyuaugeAsVyyVCzEUIiIiIiIiIiKigmCQlgpPyPwYysykJSIiIiIiIiKiQYRBWuoDBMVtZtISEREREREREdHgwSAtFZygyKRlTVoiIiIiIiIiIhpMGKSlwhNdGTfjvm2FGQcREREREREREVEBMEhLBeeonplxO7TjlQKNhIiIiIiIiIiIqPcxSEsF597vaxm3w/VvQY4FCjMYIiIiIiIiIiKiXsYgLRWce9RZgGDrWhAPIlz3VuEGRERERERERERE1IsYpKWCE12VcA47LmNZaMdLBRoNERERERERERFR72KQlvoEZcmD0M5XIUuxwgyGiIiIiIiIiIioFzFIS32Ce9TcjNtypBWRPYsKNBoiIiIiIiIiIqLewyAt9Qm24v1gr5yWsSza/FmBRkNERERERERERNR7GKSlPsNeMj7jthxtL9BIiIiIiIiIiIiIeg+DtNRnCM7SjNtSpKNAIyEiIiIiIiIiIuo9DNJSnyHYSzJuy7HOAo2EiIiIiIiIiIio9zBIS32G6FAEaaMM0hIRERERERER0cDHIC31GcpyBwzSEhERERERERHRYMAgLfUZynIHUpQ1aYmIiIiIiIiIaOBjkJb6DNFZnnFbCtQXZiBERERERERERES9iEFa6jPs5ZMzbsd92yCFmgs0GiIiIiIiIiIiot7BIC31GfbyKYDNnbEs2vJZgUZDRERERERERETUOxikpT5DEB1wVBySsSzatKJAoyEiIiIiIiIiIuodDNJSn+KonpFxO9r8aYFGQkRERERERERE1DsYpKU+xVF1WMbt0PYX0LHsZwhue6FAIyIiIiIiIiIiIupZDNJSn6LMpAUA/7p70Pb+eQhue64AIyIiIiIiIiIiIupZDNJSn2Ivm6xqHpYU+PKhXh4NERERERERERFRz2OQlvoUQbTDXjpRc12k4d1eHg0REREREREREVHPY5CW+hx76f6FHgIREREREREREVGvYZCW+hxbiXaQVvQM7+WREBERERERERER9TwGaanP0c2kFWy9OxAiIiIiIiIiIqJeMCiDtHPmzIEgCJb+e//993Ufb8GCBTj33HMxcuRIuFwujBw5Eueeey4WLFjQe3/UAKKXSStH23t5JERERERERERERD3PXugB9AeiKGLChAmq5ZIk4corr8S8efMyltfV1aGurg4vv/wyrrjiCjz88MMQxUEZD8+JXiatHO2ELMUhiMyoJSIiIiIiIiKigWNQBmkfe+wx+P1+w23WrVuHCy64AABw4oknYsSIEaptbrzxxlSAdtq0abj++usxfvx4bN68GX/605+wcuVKPPLII6ipqcH//d//5f8PGaDEohGAIAKypFonRVpgc9cUYFREREREREREREQ9Y1AGaceOHZt1myeffDL174svvli1fuPGjfjzn/8MAJgxYwY+/PBDeDweAMDMmTNxzjnn4LjjjsOKFStw11134bLLLsP+++vUWqUMgiCi6IAfIbDhAdW6eOdWBmmJiIiIiIiIiGhA4Rx8DZIk4d///jcAoLi4GF//+tdV29xzzz2IxWIAgPvvvz8VoE0qKirC/fffDwCIxWK4++67e3jUA0vp4fei/Nh/q5bHO7cUYDREREREREREREQ9h0FaDe+88w7q6uoAAOeddx6Kiooy1suyjFdeeQUAMGnSJBxxxBGaj3PEEUfggAMOAAC88sorkGW5B0c9sAiCCM+4C+GsPTljedzHIC0REREREREREQ0sDNJqeOKJJ1L/1ip1sHXrVtTX1wMAjjvuOMPHSq6vq6vDtm3b8jfIQcJenFmaIsZMWiIiIiIiIiIiGmAGZU1aIz6fDy+99BIAYPTo0ZgzZ45qm3Xr1qX+PWnSJMPHS1+/fv16U/Vw0+3atctwfUNDg6XH629sJeMybrPcARERERERERERDTQM0iq88MIL8Pv9AIDvfOc7EARBtU164HTkyJGGjzdq1KjUv3fu3Gl5POn3H4wYpCUiIiIiIiIiooGO5Q4UspU6AIDOzs7Uv4uLiw0fz+v1pv7t8/m6ObrBx16sCNIGdkKWogUaDRERERERERERUf4xkzbNrl278P777wNINP2aOHGi5nahUCj1b6fTafiYLpcr9e9gMGh5TNmybxsaGjBr1izLj9tfKDNpIUuI+3bAXjq+MAMiIiIiIiIiIiLKMwZp0zz11FOQJAkAcMkll+hu53a7U/+ORCKGjxkOh1P/9ng8lseUrZzCQCe6KiA4yyFH2lLL4r4tDNISEREREREREdGAwXIHaZ588kkAiezXCy64QHe7kpKS1L+zlTBI1rcFspdGIG3KbNoY69ISEREREREREdEAwiDtPitWrMC6desAAGeddRYqKip0t03Pbk1vIqYlvVzBYG8ClitVXVoGaYmIiIiIiIiIaABhkHaf9IZhRqUOAGDKlCmpf2/YsMFw2/T1kydPznF0g5syk5ZBWiIiIiIiIiIiGkgYpAUQjUbxzDPPAABqampw+umnG24/duxY1NbWAgA++OADw20//PBDAMCIESMwZsyY7g92EFKVO/AxSEtERERERERERAMHg7QAFixYgMbGRgDAhRdeCLvduJ+aIAiYO3cugESm7JIlSzS3W7JkSSqTdu7cuRAEIY+jHjzsxWMybkv+ndobEhERERERERER9UMM0iKz1MHFF19s6j7XXnstbDYbAODqq69GMBjMWB8MBnH11VcDAOx2O6699tr8DHYQEpyZ9YGlaGeBRkJERERERERERJR/gz5I29raitdeew0AMHXqVEyfPt3U/SZOnIjrrrsOQKLp2OzZs/Hss89ixYoVePbZZzF79mysWLECAHDddddhwoQJPfMHDAKCoyRzQTwEWYoWZjBERERERERERER5ZjyvfxB49tlnEQ6HAZjPok26/fbbsXfvXjz66KNYuXIlvvWtb6m2ufzyy3HbbbflZayDlagM0gKQo50QXJUFGA0REREREREREVF+DfpM2ieffBIAYLPZcNFFF1m6ryiKmDdvHubPn4+5c+eitrYWTqcTtbW1mDt3Ll5//XU88sgjEMVB/zJ3iyqTFix5QEREREREREREA8egz6RdvHhxtx/jjDPOwBlnnJGH0ZAWwV6sWtb4/BgAgGfC5bB5R8E7+acQXeW9OzAiIiIiIiIiIqI8GPRBWur7BNEGwV4EORZQrQtumgcACNe/heozuh9wJyIiIiIiIiIi6m2ch0/9guAoM1wf3fsxYp1be2k0RERERERERERE+cMgLfULtqIRWbeRQnt7YSRERERERERERET5xSAt9Qu24v2ybyRFe34gREREREREREREecYgLfULNm/2IK3MIC0REREREREREfVDDNJSvyCaCNIyk5aIiIiIiIiIiPojBmmpX2AmLRERERERERERDVQM0lK/wJq0REREREREREQ0UDFIS/2CvXhs1m1kmUFaIiIiIiIiIiLqfxikpX5BdFfDNeoc440EW+8MhoiIiIiIiIiIKI8YpKV+o2LOf1F21D/h2f97muvlmL93B0RERERERERERJQHDNJSvyHYXCiaeAXKj35Mc70c6ejlEREREREREREREXUfg7Q0YMhRBmmJiIiIiIiIiKj/sRd6AET5IjFIS0RE/Ywky3h0jQ8LdwThsQs4aT8PThjlRm0xD9GIekNnRMKCrQE4bAJOH1MEt10o9JDIQEsojje3BeF1JN4vh43vFxERDRw8A6ABg5m0RETU3zz8RSfe3xUCAARjMl7dEsA7O4J48MQqeOyc8ETUk2RZxq1L27C9IwYA2NQaxfUzyws7KNIlyTJ++3ErmoISAGCXL44fHVJa4FERERHlD4/+qV8SPcNVy1iTloiI+ptkgDZdICbj872RAoyGaHDZ3hFLBWgB4NO9EUTicgFHREa+aIykArQA8IHG/pOIiKg/Y5CW+qXSGXeplknRzgKMhIiIKP/q/PFCD4FowGsNS6plMYlB2r6qKcT3i4iIBjYGaalf8oy/CK5R52QsY7kDIiIaKMpdPEQj6mla1UwZ8uu7nBq7xVCM7xgREQ0cPAOgfsu937kZtxmkJSKigSLMKddEPU8jSsuvXt/l0mgSFmCQloiIBhAGaanfEpyZjQIkBmmJiGiACDPwQFQQEqfP91l2UStIqy6BQERE1F/ZCz0AolyJjswgbbxjEzqW/wKRPR/BOeQouMddCGf1zAKNjoiISN+uzphm07CkZzf6cWStCzUeG/60oh2rGiO48qASFNkFbGqLYtYwFyZVOg2foyUUx5vbgih2ijh9jEczwEE0mGl9I7p7feSrtigW14cwptSOY0e4IQj83uWLVvw8uO8N80Ul/HFZG75qi+GaaaU4ariLrz0REfU7DNJSvyUogrQA4F/7VwBAtGkZ/BseRM25G2AvGdvbQyMiItLli0r4zeLWrCUNbv64FTZBSDU3+sfqrgaZ87cG8adjKjG6VPtQLi7JuGlxK5r3Ndqp64zhh4eofzeJBjNBI0zbnUTa3f4Ybv64NVUyIRIHTh7tyf0BKUNMVr85wWhi2eVvNaWW3beyA8WOMhxS4+q1sREREeUDyx1QvyU4Sow3kCIIbn6idwZDRERk0uK6kKmasx0RWbP7fNIzX/p0161sjKQCtADwnkHWLtFgpZVoGepGUdon1/syatrO3xrI+bFILRmQTeeLSqj3xVTL//Jpe28MiYiIKK8YpKV+S1nuQEtkz6JeGAkREZF5X7ZG8/I4n+2N6K7bE4irlskaWWhEg5nWZPjWkPq7Y9aKPZnfyQZ/7o9FalqvZ2tYQkdEfTErzJeeiIj6IQZpqd9SNg7TYise0/MDISIisqDI3vOHXxpN0BFlfx2iDFqXLVpC/KL0VfV+dcZsa0jSLFsBAJFuZEUTEREVAoO01G8Jdm/WbURXdS+MhIiIyLxYL3SPt2nM4zZTYoFoMNFKLm8K5hakDfAqSI+r96nTY1tCkmbZCgDYpVEGgYiIqC9jkJb6LUHI/vGV46zBR0REfUu7xtTcXEk6JQy0MmkZpCXKpPX9acmx3MH2TnVAsMrNU618iUmyZhmX1rCkGWwHgG3tDNISEVH/ot0SmGigYJCWiIj6GK36iblqD0uocNsylsmyjA/q1L9/wZi1IK0sy1hcH8bW9igOH+7GxApHt8ZK1NdoJb8alTvY1hHFR3VhjCqxYXatGy9u8uOFrwI4pMaJVY36NaKp+/YG4tC6zrSxNYrF9drH+1qBcyIior6MQVoa0OR4sNBDICIiytAezl+QtimoDtK+tjWIDS3q5mT/Xu/Dr2eVm37s93aG8PDqTgDAgm1B/PnYStQW89CRBo5/b/CpljXrZNK2hOK4cXErYvu+vg+u6kyt0wvQRnuhtMlg8e5O/cSLN7drH+9v62CQloiI+hfOwaEBTQruKfQQiIiIMvii+QvctGkEfJ9arw48AcBKi5l+yQAtAMRl4I1tvPBJA0uDX6PGqU5N2v9u9KcCtGaxTG3+vLolYPk+ezTeXyIior6MQVrq18pmzzNcH2leAVmvUBUREVEB5DO5Tq8mbU9Y28zp3DRwRHVqNPtjMkIa0diNrers9Gx4CFpYvdGkkYiIKJ8YpKV+rWjCZYbr5XAz4r5tvTMYIiIiE/J58bA3QxClTh420sChV9YgsU4dpM0l3if36jeUlCyW4SYiIio4Hm1Tv+eonmW4Ptq8opdGQkRElF0+4wY9lamnlUlY6uJhIw0cjTplDQDtIG0uWZnMpC0sZtISEVF/w6Nt6v9E427T0ablvTQQIiKi3mW15KXZLF6tDvclDh420sDRFNTPpG3RWJdbJi0VktUawkRERIXGFr3U7wmC8cfYv+YuACKKJl0Fe/Ho3hkUERGRQlMwjre2B/PbTMhiFOjPn7ZjVLEdNhEIx4ETRrlRW6z+HdUK0i7cEcT5B3hZ9oAGhEaDIK1WJq3WsmwYpDWvKRjHK5sD+Lg+hBP38+CscUXd3tfISNTtFgUhP4MkIiLqYTzKpv4vSyYtAPjX3Inm12ZBjrPpCRER9b6YJOPGxa14ZbP1DuVGrIaNVuyJ4KXNATy/KYBXtwTwm8WtCGhEjVt1AlLfX9jEhpw0IDQZljvIDOBGdJqMZcOvijnJ/eNb24PwRWW8sjmA25e25emx8/IwREREvYJBWur3XLUnm9pOCu1FeNfrPTwaIiIitWW7w2gL5z9a0N2AaTAmY+GOoGp5S1g/y3Bze6xbz0nUF7QaNA5rU1yk+KgulNNzSHIik5OMfdKg3j9u64hht7/7+5pwjgF2IiKiQmCQlvq9okk/guiuSd0uPeJvEItqNbeN+3f01rCIiIhSdnUaBxtsOc7GVYYfcmmUs7lNPTa9TFrAeJo4UX8Riul/V4KKdTt9uQULZQABg+ehBL39YygtwFpkz20n2RlhKi0REfUfrElL/Z7oKEb1OV8gtP052Er2h3vk6QjXvYVw4BX1tp5hBRghERGRvuNHuXHG2CJUu0UsqguhxCliUqUDy3aHIcnAv9b5dO+rTNLTqiWbjVZg1+hxcp36TdSXGCTSqoK0ZpJhv75/Edx2Af/Z4M9Y7otIKGbTPUN6uxQBXYFZj13ICHifOtqDN7erZwEotYUl1BZ3e4hERES9gkFaGhBsRcPgnXx16rajeibCO9VBWsHBozQiIupbzhxbhFEliUOyU8cUpZaftu/fH+wKYVuHdqaZMrZh1LFej1ain9FU8AgTaWkAMJoGH8rhQsQpoz2ocNvw3EZ/RnPAzoiMYd5cRjh4xHWi4OnLfdHMbYZ5baYeu4OZtERE1I/wsi4NSM7qGdorZJ5ZEhFR7zOa8ZxtEq9RKQRlEmyzQTMkPXGtTFqD+rmRHEoqEPU1RkFaZSatGa59X1Rl1qxPozEfZYrrvETJpl/RuKx6v0pMZie390AtcCIiop7CIC0NSI4q7SBtaMfLvTsQIiIa1Da2RvHEuk4sNJiWG8syl9pMvdqYJGPh9iAeWNVhdYiqALIky4Y1aVnugPqzmCTj1S0Bw0Z+bWEJa5sjqdt6mezp3PtqppY4M7+wvgi/L9noXfdJZtJ2agS6la+zHmbSEhFRf8IgLQ1IortKc3lw06MI7Zzfy6MhIqLBaFdnDDd/3Ir5W4OGzYMCUeMgjijqByOSwY3/bQ7gkTWdOY1TWZO2MyLr1ogEgDAbIVE/9siaTjy1Xr/Oc9IflrRhS3sUzcE41rdEs24vCtqZtFoBRsqkW+5g30v31jb1RS6v6Uxa7q+IiKj/YJCWBixH9SzN5YEND/TySIiIaDD69wafqmaslgq38eGYUSwiJsmQZRnPbvTrb5SFchpxtswzxmipP3tvZ8j0tv9a58PTX1r7bimDh34GabPSy86P7ruA9NLmgGqd3eRZLMtNEBFRf8IgLQ1YJTPu0lwernujl0dCRESD0Wd7I1m3mVLpwHCvcR/XSrd+g5xATMZOX/fqrbcpShtk62Tv5NEjDTB6ueobWqL4bG/Y0mM5FV/XGGOEWSmbgiUZlVZxGMwwSMfqLERE1J/wMJsGLNewYzWXi+6aXh4JERGRthtmlWfdpsajf7jmi0pY1agfDD5upBs3H1GOWq8NQ4u0H6czKrPOLA1qEyoc8Ni1g37+LOVIlOyK4KGynAip6WW7RgyuP7nMFOtGosY2ERFRf8EgLQ1ogktdm9ZeNqUAIyEiIlJzmgg01Hj0M2l9ERlfNOpn+h1d68aBVU7cPacK9x1fjaNrXZrbtYTMZ+My5EEDzfgyO8rylCKunIbP2fbZdeo0VwsbBLjNB2lzGhIREVFBMEhLA5ocblYtE70jCjASIiKi3NQU6QdpW0LGTY28jsxAhl68ojlkPpLEmAf1V7JOVuW4MjvKXHkK0gqKTFpmcmbl06mDbdSk0MwFLoDlDoiIqH8xLoI2iOzYsQPz5s3D/PnzsX37dnR2dqKmpgZjxozB8ccfj/PPPx9Tp07Vvf+CBQvwj3/8A8uXL0djYyNqamowc+ZMXHnllTj99NN78S+hbMJ1bxZ6CDSAyPEI/OvvQ3jnqxA9w+Ee/XW4R50N/7p7Icd8KJp8DWyeIYUeJhH1spUW61gaMcqkXdNs3HW+WJEdqJdV9vdVHThxPw9m17rx3CbjRknKRmN9jSzL+GBXCH//ojO17PbZFdi/3FHAUVG+rdgTxr/WdqLYKeKSKcWYVOnU3VaSZbz4VQDP6TTYG1fmQKkzP99ZZaM/1qTVt7QhhPUtUfh1grFPrPchorPTUtb+1RNnKi0REfUjDNICuP/++3HDDTfA7888cNu1axd27dqFjz76CB0dHbjnnntU95UkCVdeeSXmzZuXsbyurg51dXV4+eWXccUVV+Dhhx+GKDJxuS+Qw80I7/5Qt2YtkRXtn/wQwa8eS90ObXs2Y31w2/OoOXc9BMFcxgcR9X+7/THcsbw963Zm9wpV7tyPH5SZtHrxisaghGe+9OMZE53sX98axCVTSnIeU09bsSeSEaAFgBsXt+Kp02rgMJl9R33bp3vCuGtF4ju2Nyjhd5+04c5jKjCmVDsQ/7JBgBYAaottpjMzs2FNWnOWNIRw92cdWbfT2yeJOsdVNiEze5YvPxER9SeDPmp422234ZprroHf78fEiRNx11134f3338fKlSvx9ttv46677sJRRx2lG2C98cYbUwHaadOm4emnn8ayZcvw9NNPY9q0aQCARx55BDfddFOv/U3UxV55qObyjuU/692B0ICVHqDVEu/4EtHGT3ppNETUF/xxWfYALQAcpVMfVslmsou5liJFM6TJlfnJJu3Lgac/f6r9+j+6tlNzOfU/89ao38sn1vl0t3/WIEALJAJ+zm58z9Ipa9Iyk1bboxrvYT4o93l9eFdFRESkMqgzad955x389re/BQBcfPHFeOSRR+BwZJ68nHjiifjlL3+JSETdOXnjxo3485//DACYMWMGPvzwQ3g8HgDAzJkzcc455+C4447DihUrcNddd+Gyyy7D/vvv38N/FaXzTrkW7R99T7U81vxZ7w+GBq14oL7QQyCiXrQ7YK4J17cOKDb9mN86wGsqyzXdCaPcqmyzE/bz4OXNAbSFuxc56quBD6NO7iv3qo/lqH/SqqG8NkvpDz0/OaQUAOCymw/S1nhENAa7xnDu/kVpa83VgR7s2nWahZlxaI1+aQu3XUBntOuxjfYJREREfc2gzaSVJAlXXXUVAOCQQw7BvHnzVAHadE6n+mDgnnvuQSwWA5AomZAM0CYVFRXh/vvvBwDEYjHcfffd+Ro+mVS0/yVwjTit0MOgQU4QBvX1MCLS8MejKzDEoCGY0tfGF+GXh5Xh5P08htvNHOrE7FoXfnxICb5/kLokgcsm4M5jKrvdJKmvBml3deoHyPt6LV0qjGNGugEkvhtm/e6ICnz7AC8mltvx02mluGCiN7VOOQufMcL8O22M/n5QWW6CX3siIupPBm2Q9q233sKmTZsAAL/61a9gt1sLosiyjFdeeQUAMGnSJBxxxBGa2x1xxBE44IADAACvvPKKbldZ6jmuUWcXegg02InmAzFENPBVukWMK7NWdkAQBMwc5sLXMjL21C6bWoJrppXh2JEe3ZqN5S4R38jyONnIfTQ/cEOrfrZswKBTPA1cRsfeU9LKfzgslDvw2AV8bX8vbp1diaNq3Rl159WPws9dvhUru7OlUZZiYZCWiIj6k0EbpH3uuecAJE56zjrrrNTylpYWbNq0CS0tLYb337p1K+rrE1OYjzvuOMNtk+vr6uqwbdu2boyaciGI5mr+ERER9YaRxblfuHEbTMm2CYkArBlegyCHGX31mvOGltymvNPAFTaoPpKeze6y8rW0UL62j35V+rUSp/4boAzK9tWsfyIiIi2Ddg7ukiVLAABjxoxBSUkJ/vOf/+CPf/wj1qxZk9pm4sSJ+P73v4+rr74aLldmoG/dunWpf0+aNMnwudLXr1+/HmPHjjU9zl27dhmub2hoMP1Yg5ZNO0jbvvRaeMZ+C84h2lnQ1LsaA3G8uT2IFXvCmDbEiZP386C2uO/uomRZRvsnPzC3bTzcw6Mh6l9CMQnztwYRics4dYwHle7+lW0eict4fWsAobiM08cUZZQOMNNQa0Q39m0egynZFW5RN3tWyevoXpMkSQbe2RFEnS+Go2rd+LIlitawhJNHezDUQhmHfMsWpJVlOSPrkQaWC+bvBQBcP6MMhw1NHP8FDDp3ZQZp8xN5zfYor2z24z8bEvWl/3ZCFao9/Wv/1xcYZdLGFfvgvlyTVpZldH76K/jX3JVaVjT5GpTOuAuCTb/uLhERDVx9NwLSgyRJwoYNGwAA1dXV+OlPf4r77rtPtd3GjRtx3XXX4aWXXsL8+fNRXl6eWpcePB05cqTh840aNSr17507d1oaa/p9KTeCza25PLD+XgS+fBA1X1sHeykbuhVSTJJx4+KWVBOJhq1BvLsjhL+fWIWibmZ79ZT2T36A4MZ/mtpWjod6eDRE/cu9Kzvw2b4mTiv2hPGnYyphy1Nn9d7wt1UdWNKQuPiytCGMvx5XmQr8PbI6e8fy7gRpjV6nKgvB7iJlC3qLXt4cwKtbAgCA+VuDqeXv7wziwROr4bQS8MqTxkBcs6FUund3hnBilrq+1LcFotmb3v1pRTt+PbMM04a4EIjqB+mGpAVIrXxmja7FGNWk/bg+lArQAsCP323G02fUmL64QokgeJHBRSZlVZO+XO7At+rWjAAtAATW3wc50oryY54o0KiIiKiQ+mb0o4e1t7dDkhIHeKtXr8Z9992H4cOH46mnnkJLSwsCgQA++OCDVJ3Zjz/+GJdddlnGY3R2dp2EFRcbd2f2eruaCfh8vnz9GWSSoJNJCwCQogjXLei9wZCmpbvDqi6/obiMhTuCOvcoPLMBWgCQo/zeEyWFYnIqQAsAu3xxrGnWryPaFyUDtABQ749jTVpX+fd2Zb8oM7KkZzLnzJY6ALqfSZsM0Cp1RmV80VSY93OXL5Z1m0fXZg+iU9/2xDpzv6n/3HfBpNMgqFvl6frOjCoxf/HEaeErnH50c+/KDtX6T/f0r/1fPnSnR0exQ0gFtWu96jcivc4w0LfLHfg+/53m8uDmJ3t5JERE1FcMyiCt3991BTsUCqGoqAjvvfceLrroIlRUVMDj8eDYY4/Fu+++i0MOOQQA8NJLL2Hp0qUZ90tyOo2no6SXSggGrQWddu7cafjfsmXLLD3eYKSXSZsUbVreSyMhPbv92gXjtndkP+HuD6TQ3kIPgajP2BNQf9+/aOzfQYp6E8HBdCN7qJSLleRYKwFdo07qWgq17w6ZSJkzmPlO/cSyPeZKCCWzqpuD+m96erOw/csdmFiRvaHfUbUuuLuZiZ6uwT8wjnWs6E52a7Gz67X/3oHqRJljRmQe9/flcgdERERKg7Lcgdud+eN9xRVX4IADDlBt5/F4cPvtt6caiz377LM4/PDDVY8RiRifXIbDXQeTHo+1E51spRTIhCyNwwRnRS8NhPS4daYY9qPZz4ak0J5CD4Goz9AK0n7Z2r+bPfkNplMreewCSpw9c43cyi7TSibt/uUOAOYvMitrQvaWSF+e10x5Y+X7BgDNIYPOYQo3HV6Oi99oVC1/+KRqfLonDLsIHF1rfPHf6qHLYPzY6l0smVTpwI2zynHrklZsbNMOXhen7bsOqXHh1qMq8N+NPtR67fjGBC+2dmT+nvTV11eW+vfvHhER9YxBmUlbUlKScfuUU07R3fbEE0+E3Z6IZS9f3pVxmf4Y2UoYpGfuZiuNQPlnWO4AgBxp652BkC6XTrdywfKpTt8kBRmkJUrarZE19lVbDH4TdSb7qoCyCKKB4RrTc/PFSllLK82zih2CpWZg2erC9pSQ4n2ocg/Kw1xSaDLIpFV+DVw2AQdXq7Npy10iTtzPg+NGerLWzzaqSavFTLPBgSau86IcXeuG0ybg1tmV0CsRrLzINbHCgZsOr8BlU0tQ5hJhU7wBffXljfu2F3oIRETUBw3Ko1eXy4WamprUbaPmXG63G9XV1QCAxsauK+vpGa7pTcS0pDcLYyOwAhCMP+YSg7QF59I54RkofTTiDNISpezWyKSVAaxr7r9ZRb59AWYz02q1aijmT8/sNIsdIkqc5h+7xULmYj5FFE/r1rkASINLU9Da59HKBQwzknsFvTqs8f57fSpnepm0pWn7Gb1GbsVZGsoqDyn1AsKFFu/cbLi+O3V7iYio/xqUQVoAOPDAA1P/jseND96S65MZtQAwZcqU1L83bNhgeP/09ZMnT7Y0TsoH44NtOdKal2eRZRmLdoXw1Hofvmrrv8GGXMU6t6Jjxa/hX3cv5Li1+pJ6UxH76tRVKdJuafvo3o/QufJmSOGWHhoRUf+xR6cG9eo8NJsKRCX8cVkbLpi/F29rNB7c2RnDU+t9WLg9iJgkQ5ZlvLcziB++3YTbl7blvO/27Wt8aCZjq7aH6tECPRWiBUqcAkotlGgoWCat4jfDMwCCtLIsIbDpMXQsvw7R5s8LPZx+Kb1RoZLWcUZ3T470PnVBnYz7cF9N9bRoY2sUT6zrxOL6kGGAUZb1G8OWptXK1ovFFme5YKSM7Urd2B1FW1ejfcnV2Pv8OHSsuB5xf13uD6YQyxKkhdz3o/fbOxK/qe/sCLL2LxFRngzKmrQAcOyxx+L9998HAGzZsgXTpk3T3K6jowNNTU0AgBEjRqSWjx07FrW1taivr8cHH3xg+Fwffvhh6v5jxozp/uDJkmxT5vOVSfv2jhAeWZPoJPz61gD+elwlhnkHx1dMjoXQ9NpMyOFmAECscwvKDr/X1H3jkoynv/RrrvukIYxr8zXIPGp9Z67l+/hW3YrwrgWoPpuN6mhw06pJCwBf5CFI+9P3m9GxL2D6z9WdcIjAcSMTteB9EQk3Lm5FeF9Qpi0swW0X8NT6RMmi1nAEXzRFcO8c6/vu5fsaGZm5rlRb3DfKHQCJYJKZ0+pEJq2FIG1QgizLec9IzCaseAPsA6CwuX/dvehc/vPEv9ffhyHf2AKbd0SWe1FSa5as7vaIOhDW3Y+N8rgz+ans0HguQF2moz+q88Vw88et+/7WIGJSSWrfq/TuzhCe26h93FeWtp9J7suVsmfSKsodGG6tLx7ci+b5R0COBQAA/jV3IbTjFdR8bS0EsfvH99kyaSHHAfTkzIvuaQ9LuGlxC5If646IhHP39xZ2UEREA8CgzaT9xje+kfr3Sy+9pLvdSy+9lLoafMwxx6SWC4KAuXMTgZoNGzZgyZIlmvdfsmRJKpN27ty5vX7CQoBYNNxwvWwxK1JPMkALJE7U394Rysvj9gehnf9LBWgBILD+PtP3/TxLV/doH8umjYcaEdljfGFGT7R5BaItq/I8IqL+Q5Zl3fqQDf54t2oztoUl1Un9g6u69stLd4czgnjPb/KnArTpXt9q3CDLKFvITMOs8WXZu8fnyuoRxkn7mWtmWuQQMpr1ZBOKywgXoOKBMiuyTCOwrFfnsq9KBmgBAFIE/i8fLNxg+qGXNwcM19d41EGwKVXObj2nMsib3GfoNTxT1lDtj57e4Mu44PPYWv1+Hf9Y3am7rsJEHels+yJVuYMcf1dC259PBWhTj9WxEeGdr+b0eEqxjizlDuJ9+zzi4/oQ0q87PKOTcEFERNYM2iDtwQcfjNNPPx0A8PTTT+Odd95RbbN7927cdNNNAACn04lLL700Y/21114Lmy1xcHf11VcjGMw8sQsGg7j66qsBJEolXHvttfn+M8gEW1EtnMNP1F0vxXrmoOLLlu5nhfUX8c6vVMvkeNjUfbPVitPLPCmU7jYByzq9jWgAC8eNMze7c00mW4B3a7t2p3Cltc3G++6AQWf5bLGAGUOdGGKhAZeeX88s01xudXr/2eOLsm5zwig3REGwHEhSlh7oDTFFAL3SLaLak3moG5eBzj72u2JFdM/iQg+h4Mx+EitcIr5s0S9hMqbUjvFl6ozIk/bzoCxt2v33plhr+qtshhrelymr942wD4CzseV7MvebeqUdjBw53AWPiRcj235OuTbXPVFM56J6ePd7OT5ipmyZtFJob16ep6ds71D/prLkARFR9w2Aw4Lc3XPPPSgvL4ckSTjrrLNwww03YNGiRVixYgUefPBBzJw5M9UU7NZbb80odwAAEydOxHXXXQcAWLFiBWbPno1nn30WK1aswLPPPovZs2djxYoVAIDrrrsOEyZM6N0/kFIqT3odxdNuhb3yUHinXpexTs5DkFbrKn2lRnbGQCW6h6iWxQPm6na5sqQ1aU1FLCQp1Jh9IwMyG9XRIBbS6xazT64ZTwCQLT5Z5TF3yOPNMpU22SRMi15c8oqpJfjBQSW4dpp2cNWqQ2u0M/2KLGS7AsDQIhvuPq4SZ471YFSJ+jdrxlAnvn9QCQDrU8Czvdc9QfmUdlHAX46tUm2nFVzoi7TqegrO0gKMpO+QZNl00M0uapcA+c6kYlwxtQS3HFmuOcPNbRdw1zGVuPTAYvx6ZhlOH5v9YkbG/RXHNdkuWBTigkZf9KNDzH22sx035isx2Vaqfd4Wa1vf7ceWZRlx3xbDbaTg7m4/T08aqtEEs1FnpgwREZk3OApm6pg4cSJeffVVnHfeedizZw/uuOMO3HHHHRnbCIKAG2+8Eddff73mY9x+++3Yu3cvHn30UaxcuRLf+ta3VNtcfvnluO2223rkbyBzBJsTJYfchJJDbkK0dS38a+7qWhkPQZYlCELu1yy0mqRUmZiyNVAINvWU2bh/F+wl47LeN9vBdke4bx3wdTezIV81kIn6o2CWYER3vu3ZwhxmY4bZptLqTVkG9LuIHz/Kndf6qIIg4KBqB1Y3ZWYJFuWQkldbbMfFU0rQEorjqneaM9bNHOpK1Xe0HKQtRCatIshvFxIBt3FldmxJy6Te2hHD1OruTWnvDbJGs0nRkZ9Af38Vt7CTiEnan9tjRrpR7jL+rpS5RJw2xlpwNsmtuGKUrDmrl2SorKU8kBllWprdxygzlbPJ9dXVOrYFgFh794O0UnC3qpSCUryPB2m1agPX+2IYmofZIkREg9ngiSLpOProo7F27Vr87ne/wyGHHILS0lK43W6MHTsWl156KT799FPceuutuvcXRRHz5s3D/PnzMXfuXNTW1sLpdKK2thZz587F66+/jkceeQSiOOhf6j5DsKuL2mc7UMpGa8p+tmysgUSW1NODJf9OU/d19LtM2u4FaeVwa55GQtT/ZGuQ050u3NlOxM0GQrLtu/06f0M0LuuWO+iJipNjStW1bb0WM2nTaU0hTn/NrGfSFiJIm3nbtm/QY0ozcxK2tetPge9L4sEG1TLBYW3q/UCjLGlhJCLJmt+9nq5LbDWTNjwAGoeZZXSRy+zbonx9sz1OzjPwJe39hBSog6yzzqysTcPQ9zNptdT7C1CMnIhogBnUmbRJVVVVuOWWW3DLLbfk/BhnnHEGzjjjjPwNinqMYFdnRsixAGDxxGdrexS//kg/4DaQ6jKF6xci+NUTiLatgXv0efBOuRaCzY3AxocR920HZHVkJR7YZeqxs71MT6734cjhbjj7SLeX7takjQfr8zSSnhMPNSKw7j4Idg+KJv8UooPdevNJkmU8usaHhTuCOHOsBxdNKk4Fkwa6bHUKc91vtoWlrE1LzAYNP6wL4YyxHozVafC1rkm7Zu3yPWGML9e+T0/0BRpdoj6EK7KYYZZOa1ZDenCpRWPGiJFCZAeqMmn3xdtVQVqL5Q4+3RPGI2s64XUIuHxqCSZX9k4WrqQRpJWl/lGqQUmSZby/M4R6fxzHjHBjdGlupyBWMmn9URmb2tSvV48HaRXfw46IjGc2+LCfzt88mDJp2/MwOypruQPF7bgMPLXehxNGuVFbbO5zJ4Wa0PHZDbrrY+1fwlEx1fAx5FgI/vX3QQq3wDv5x7B5R3Xd30SQtmPFdZBCjSia+H1E9ixCtPkzuMd8E+H6hfCtvAme8d9F2dH/KlhTaq3f6wYfg7RERN3FIC0NOtqZtNbq0vqikmGAFsjeQKa/iOxZhJa3Tknd9rV8jmjTctjLp8C/+o+694ubzKTVmx6c1BmR8dAXHbgmT7UcuyvezUza4KZHUT57Xp5Gk3+yLKPljRMQa1sDAIg0LkPliS8XdlADzONrEwFaAJi/NQhREPCdyYMjOy5bMCKXWIUsy/j9J626GTxftkRxQKUDIQvRnRsXt+L+46tQpagt3hyM4yWdbvH3ruzATw7tvXqhozUaHnXnd0fUONFPz/CzGtgsSCat4intqUzazOB5vT+OSFw2dfHvsz1h/GlFOwCgJQTc8kkb/nRMZc5BRiu0pjvL8e7N/CmU17YE8O8NiWOtN7YF8MDxVSh3W58Wna1BoBlan/V80sr01NtvAP2/Jq2Vi2v5mB2V9e3TWP/qlgDe2h7EgydWaU7TTyfLMprfPAGIh3S3ibZ8njVI2/7JDxDc/AQAILTtWdR8fSMEMbEvMpNJi3gIvlV/gG/VH1KL/Gv/nPp3cPOTkOMRVMx5Jvtj9QCtr2KDv39eRCIi6ksGz3xson0Eu7rGlNVyB68ZHGwnGU3p6k/al/xEtSy88xXDAC1gfpqWmbjJ4vqwqcfqDVJQP0hrK51o6jH6ciZUtGlZKkALJN7rvjze/ujN7cGM269u6Z9Bl1x0ZDlBzyX+sr0jZjjF8pE1HQCs7ZPjMvDvDT7V8g/r9E/aAeCBzzs0l/dESKhWo2nLMI1l3ZEeiJxd67Z030IEngKKpm7OfUe5o0szXxdJBvYEzGV8/W2V+j39x2rt9znftH5vujubo1CSAVoAiErAwh3G3yU9+Yj951C62RJlJm02nZH+fbyo1ztAK3jbajEjX0up0/gNdOjMTAnHZSzYmv33Nta2DrHW1cbbtK4xXA8gFaAFgLhvG0LbXui6bTKRIZvQtmfz8ji50PrU7jW5XyUiIn0M0tKgIwgiYMs82bSaSbuhNXstqp2dAyOwFWv9Iqf7yXFzgdWIyahMtI9kmhjVpK0+8xOI7iFZH0OOqoM/fUW8c6tqmRwPamxJ+dQaGhwnNg1Z6tXlcvqebRr+js64qe2UljSo92Gb26zXIZxa5eiR6ah2UcBpY7ouOu5XYldN67fqvAldM02GFomYMdSVuj1rmEuzbq0es43a8mm3IkBQvS8T2m0XVWP3Rc0N0KcR3P9KYwp9T5A1Gk3GWlZBHgDllL7K4bsEaGfS7qdR+sNIPpv4aclWM1VpbyCR2d1ftegGadXLjC6OKHeTF01Sz3w7uNqJyiwZ2EOLbLr1uc3MCJCj7Vm3iXd+ZfwYGhe3I3s+SP1b2UTWO/VXWZ+zr9F6fzsHSIIKEVEhsdwBDUqC3Qs5bRqT1UxaM9M4d3bGIMtywWpFFZosmQzSmjwxCcblrE3GeoNWkNZeeSgqT34DoqsS1eesQmjrM4iH9sC/+g7Nx5CjHYCrvIdHmhutJnCJms0lBRjN4LGhJYojawd+R+T6LPXq4jmk0poNtrVYDIRr7ZpqLHatnj7Eietm9FyplkumFGNiuQO+qIRjRri7/Xtz3oQi7FdiQ1tYwuxad0at5CFFNvzf7Ao8urYTq5vUAbbhXltGED4f09Kt8EclVUbi8LTM4mKHkFETubuzXXxRKeu06e6SouqMXSncBClQD5t3RI8+dz5pZVRaCfin0/pe3nJkOT6uDyMYkzIydrXcPrsip+e1wmomrYzEBQarwea+Qu8CmNUgrdI5472o9thw78rE9+DCSV6cMUbdV0LJLgqYPsSFRVlmPugRnOVZt4l1ZAnSalyMj/u2d61XBGltRbUomf5HdBrUwe1rtK4VBWMyYpLc4xdCiIgGMmbS0qCkbB5mNZPWzDTOzqiMtjw0SOi3TGfSmnu4QtQ31KIM0ladvgg156yEzTMUAGArGgbvgdfCM+5C/ccwkaVRMBrBdTnGTNqetr6lf3Sb766smbQ5fM3N7GcjcRkdeZhSXGWhhubMoS78amZ5j9a/FAUBs0e4ceqYIhTlIWAoCAIOH554vGKNKcW1xXbN+sljSu2o8WRubzJ2njfKz5aARGA5SRlQ9XWzNuaGXvjOyhHt34poy+c9/tz5pDUdvkgn0zEbZYa2AMDrEHHyaA9O2E9dzipdmVPAOI1azvlmFwXLzcnqfP139pXeBTCt4PyeLL8BSkfVuvHsmUPw7JlDMHe81/TF+lnDXNk30iEI2T8j8c6vDDPa5Vin+j7+riCtpPhuC84y2ErGWRhl4UmaBQ+0Zx8QEZF5DNLSoKRsHma1EYfZTrzbB0jJg1yYLXdgtoxBoBBzZxXkWBByNPPAW6+8gWDTr98oR3qnnmEutN43ljvoeWZKqPR3kixjd5amIrkEac10C2/N8YKZMhvUbOBFAHDBAeqpugNBtUcdqNbKnIr2cibtbkXwZ0iRmDEm5fTn7mbSrmtWzzrIN61MWqD/BWm1psNbLQmQpGw2ml5fVq8WadKhQ1w93jQsyWo2bV2WWQZ9WUvQfCatsiRJTzm42gmt61b5evflmN+wPrQU1QjS+ranArvKkgqiowyCo381ENXbxXf3AhgR0WDXP+fVEHWTKpM2qp9J2xaW8OtFLWgNS7jx8HJsbI2arm34x2XtmD7EieFeGw6qdmLakNyv7GcjhZrgX38fINjgnXItRGfPTbE1w3S5A5Mn8sE+kEkb1yh1oB+k1c/o0Tvx7guUQWgAQDeDtBtbo1jSEMK4Mgdm17oGbAmQaFzGG9uC6IxKOGW0RxXM2u2PYeF27ddyR0cM/qiENU0RbGqLYcZQJyZVOntj2D2qwR/DvZ91YEdnDBdNKs6aOf+/LX784KBSS6VNzGTSNgdzCwzsDcRRW9x1qGQ27nj0CBdG9dOpy9l4NYJP4bisCpA986Ufp43xwNPTXZr2UWbSDvNmvv7KzOAn1vtQ5BAwZ6R+mQijTLn5W4M4b4I3LxnMSeH6dxDc/CSiLZ/DPepsxDs2am7nW3kTXLUnw1kzK2/P3ZO0ypxEcvhK+iISnlY09LOlvXfZ3opDa3pvn+q2CZYuBDy30Y+3tgXw61nlGFfm6MGR5YcvKuH1fU24dupkAfujMl7e7MMrJprt5pvbLuCQGidW7FFeTMnf8UfLO2eieOqv4Bl7PmKdWxD48mHYvCNRdMBVCG1/SbW9HPNDCuyCzTtKVZNWcJYBQv8qeaS3ezRbgoiIiLQNzDMIoixEk5m0sizjB283pW7fvrTN8nN9tjdxgDh/axA3HV6Og6rzf5IgyzJa3jkb0cYlAIDI7vdRddp7eX8eS8yWOzBbk7YPTJ9S1aMVnYkDay02/YC83IeDtMoTB8B6zeZ09b4Ybv64dd+kuCCiUgmOH2U8JbW/emRNJ97flaiB91FdCPcdX5XK5AvFZPzmo1b4dS42yAD+tc6HD/bd/7UtAdxxdAXG9IOTdT3BmIRr329J3X5ifWZwxW0TEJfljGnxi+rCsIud+OHBpaafx0yQ1mrTsKQ9yiCtyfulN+AaaLQCmpG4DK1Y7F8+bcdNh/d8DVAAqiztYYr6wVqNhB76ohP+qIyzxmnXucx2UeH3S9pw5zGV1gaqI7J3CVreOil129e6ynD75tdno+brX8LeD6ZI3/+5+jfP7AXadLcva8OW9sz3Of1zly1L9uBeDNK6csgUbo/IuOGjVtx/fFVGqY6+6E/L2/Fllhkgf1rRjh0FnFE2a5hLFaTVKsGQq1jzZ2j74ALI0U50rLgOcqQVABDc8jSijZ9o3ifaugZi0UhVKRPRWQ7I/Su4qTdaZW1wIiKyhuUOaHBSZDnqBaHyXSfyfz2UTRBrW5MK0AKJIK0Uau6R5zJLqwGVFrO1ZvtCJq0cbsm4LbqqdDOwRLv+tDWt5mN9hVYAuTvlDl7eHMioWvbkenUzjYEiGaAFgOaQlNG05N2dQd0AbdIHafeX0f9fq/d3GjdtGea1aU5Pfi/L/ZTMBGnNlETQ0qSYxmum1M3sWpcqi3OgqXRnHj7OGeXRrNG6uima82tvlTIQP1QR5CrRSbM0+p5lm7a7rSOGzjxN7fWt+r21O8gxBDc/lZfn7kl677/ZslFJDf6YKkALwFKDop5u9Jau3mLt1XRvbuv9zFMrGgPxrAFaAJYDtPmeY3OYxuw1M7M0ZNnauNs/viIVoAWgG6AFgFj7+kSAVlbU0HaWQ3TXWHreQpN0LrT4mUlLRNQtDNLSoCQIyo++9oFGtiY3Vn3R1DM17GItX6iWaU3Nz4Wyfq955k7AlLUijx/l1uz6HOgLQVplloOoH4gR7B64x35bc122rsCFJEvqE6/uNA77uD4z4NbdOpD9yeq07/uODuvZRGua+3ed2mwn8W6boFsSwGytagBozxIkc9mEnOujKmvS7s1ST7HKLWo21hpovjel62902QScMtqjm62cryBmNsr3yqX4HSl3WT/kNdMAx2qwUfdx6t6wfp/6N/Py3D1JWUM2tdzid9Knk52njLmdMVZ7psZ5E7Szpfuivl6jfE8P1JU9fpR+2ZFcaTU/9JgJ0mrMKMqXeOdWxP07VMttRbWwFe8H59BjUsvc4y6EYHDBv9D0du194HCdiKhfG9ipHkR6lEFanSlG+Tr56mmx9vWqZVKoEcDkPDx6jq+ByWlbrYoT+wnlDswdX5QxTRown3HbszLHIGTJ+yg/5gkEa09Bx7JrMmq96tUZ7BMkdTCxO5m0vdw7qGC0aldmXOQZmGV4DWXr9WcTgf3LHZrB3M6ohEpb9um+MUlWTa0sc4kZ2XulTgG5JvYo/wZlc6oqt4gzxxYhLstw2wVMH+JCpbtvT1POh8OHu/G7I0Rs7YjhsCFOVHtscIjaJ+25TGvPhfLnWhmLqdJoeJaNmYwwsyV7eoKteEzBntssvV2f1V6gNp0YuzKT9ruTi7GuOYptigtjRw7Xb+bZ13h7MeM3F4051vjWMrXKgeNGunH0iJ55f86b4MXzm7r6Tmg1sVPSKvuUL3HfVsT92zOWiZ5hEPaVyKo4aQGCW56CILrgGfstNDYehHinwYV9sed6XWSjd45k5SIrERGpMUhLg5TitEEn06O/BGm1Oj0ngrTdI8tS7vVIzQZpFQfMlW4Rw712HDHchSUNXXVtg1bP6HqCxVpmgmhH0YTvQbC50PbhhanlsT4cpJVlrUza3Kdear1ikbgMZ46dvfsqrY9nekBvYP215uhl0CXZRQEHVGjX3O2MyKg0cc7eoREVvGRKMe5b2VW2IyJZz9pLUmbgKjuTXz61BIcNLdxJciFNqXJiSlVXjU+HKGgGZKO91LQ+W5BWWaLBDDOZtIUM0gr9oNGQ3quTbf+gpPc5Ur7PoiDg+FFuPLY2s4xFL/Wvywut+sl9yZ48zTI7f6IX3+jh+t1DizLfeDNNJOVwa9ZtchXv3IK4LzNIa/OOTv1bdHjhPeAHXbc9Q42DtLkmUuSB3jlSn8ipICLqx/rRIQtRPikPgLWPKHoiezPUA8HGHgvSdmOau2ziwDEuyap6dRX7pqQqSx70hXIHauZOpOylEzNux33bIJtsrNbreiGTVhmYHwi0ptMHYnKqSUkup9x9+zQ9u2z7T5sATNQN0pr7jCjr0YqCOhgXics5nzTG0gJJwZik2l8p654OZnadCy+9l0mb+Tw2RYalUZBWr5mQqUzaPOzOpHBbjvfruWBST7N6KKT3OdKqSevW+CxaqV1baN4+HlFWXqzKlbK5X09QZtA3m2giKUV0vleqUmnWxXxb1UHa4tE6WwOie4jxA0oRzZk8vUHvApWy9AwREVnDTFoanEzWpO2JTNp7PuvAkbUuHDsiP/W3pFATpECdannwq8fgnfRD3fuF6xcitPM1xNrWwVE9A95JP4LNOypjGznm17m3CSYyaVtCkuqVT04VLlIEaQvZOCzc8B7CO/+H4Jb/ZK4w+f7ZSidkLpAlxDq3wFFuvRyFFPUjsP5+SLFOeCddjWjTUkT2fAjXyDMBWUa4bgGcQ4+Fe79zTD+mLEsIbvkPYu3rEW1aplof+PIf6Fjy44xl1XNXw1Ex1fBxW0LaJ3ItobhhcEuOR+Bffz+kcDO8k34Mm3eEib+iZ+0NxPH8Jj+W7Q7jnHFFOGtcUSobWJZlvLVdO5Dd4I9jXXMU71hshgUk9kqf7Qljej/L1IxJMv63OYB1WRov2gQBJRo1AwHzQVplHdQyp6jqqh6MyYbZjk6dafoA8MKmACJx4LChTlUtQwHo8x3Ye5PeDO3emPoqyTJ2dmbub5RxOqOatIGYjGKN7EW9OqjpXtsSwLXTSyF24/c87tuW0/2UwaSYbzsCXz4E0VkOR9UMhOteh6PqMIR2vY7Qln+jeNptKD74N6ljj9CuBYg0vAMIdvjX3AkA8Ox/KVy1pyCy5wNEdn8A1+hz4T3gRwjteBFxfx2KDvgB7CVjc/5bU2PVeWnXNUfw2d4IJlY4MGtY175P7zusFc9U1iMGAI1FfdaW9u7VpG0JxXH1e82IScD9x1eh3CViwbYAgjEZp40pyqk+c7p81aQd6u2FIK3i4kwwJiMQlVBkUFJCN0hrcoaYoXgI/rV/zlhkFKS1eYZmf0wpCtic2bfLM91MWgZpiYi6hUFaGqQyj9ZVDaH26YkmRysbI1jZGEkdLHdXtGWV9vKmZYj7dsBWvJ9qXXj3h2h565TU7UjD2wh+9TiGfHMHBLErs02Odae7fPbX7r7PO1TLip2J90aZSVuoIG2kaQVa3jxBZ625sz7RWQrRMwxScHdqWbxjY05B2vbFlyK07TkAgP+L/0st96/9a9q//4KKE/8H96izTT1mYP0D6Fj2U931sVb1Z6zplYMw9CIfRIf+VMWr3mnWXK6sQ6zUvuRHCG6aBwAIbn4SQ87bBkEsXDAsEpfx60Ut8O/7DD670Y/tnTH8bHoZAOC1LUE8/aX2BY0/LW/vVtbRnSvaccPMMhyq0aW6r/rH6k58sCt7UDoZXCl1CuhQBMO0yhhoPtcXmfsQt12AUyNj7k2dIDoAeBwiIgbZ3a9uCeC1LQF8bXzm/rrKIw64sh3dofdS9EYm7bsaF0FsiqCpURA1EJVRrJHUbSaTdunuMF78KoDzujFtO+7bmtP90jvKy7EQWt48yXBqtG/lTRCdpfBOvhrh+oVoffsM1TbBrx5D8KvHUrdjX6zP+K0JbPwHhp5fB8Gu3aBLNUadt18rkLOlPYo/LGlLHT38fHopDt9XS1av+Z9W8FUrk1bsR5m0m9tj2NUZw0idxopGZFnO+O29+r1mHDnchU/2lY9a0hDGX4+r7NZFhbwFaXvhIpdWjfCWkHGQticbh2mxedXH6UlZM2kByFIYQgGCtHoXTnKtAU9ERAl9ez4NUQ9JD0QC+tO5rdZMs0JZLy1Xcd8W3XV7Xxivubzz01+rlknB3QhteyFjWbcyaTWmzStt1GgYlDxxcNvV2Q+F0L74Cv2VFk5ylCUPYh2bLI9FjodTAdps2hZdYvpxg9uetTwWAAhu/KfuOqPpd8op6qrH3RegBQApsAuhna9YH1wefbArlArQJi1pCKf+xvSmJEpGAdoZQ82dVD24Sn0xoy8zE6AFuoK0p4xWX6wye4GsXRHcbfDHLQdOZ9dmD4DLAF7anFmbmaUOMs3QyfjujZq0/1zdqVpmZca4XjBW+b3X89zGbvxWAogH6nO7n28b5HgEABDYNC9L7cqEjqXXAMjy22ZAjrQisOlR09vrxei1svCeWOfLuLx7T1ptab2sPYfG9324Roam1sWbvmzeGvVn2ozN7epjr0/S6vs3+ONY05R7pm4oJhvun6s95r94Wtnr+ea0CSh1Zj5PtiCzFNH+zXUMOSpv40pnFKR1Dj0m+wPs2wf0Nr3j8r7R6JeIqP9ikJYGJZt3ZMZtvamGuRxmlDh790TAsKmTrB0ojTZ+orlc2dBKjuZ+4tmtAC+0yh0U5tK8VhZpLpQlD3JpHhbvNJ9tJetN19MQ3fux5bEAQLT1C/11Bm+X1YC7lb+7J9T5dL5H+/7GUI7TuUcWm8uSUgYiB4pkpuPZ49QZed2ZIW+lMbrXIeAb++eWAZlLI6qB7Oxx2jNDejqTVq8pXIXG+/PDg0s0t1XWGk7qrWCDHM+tOaMcCyDatBRAIkhrRdy/I6fnBIBY+3rT2+oFVzs0XvP1ihIp6W9tQCcwqHWxZJjXjoOruy6CHTncBXcv1zv48SHan7V0RiPKVi5GT7aLoADQ4M9+EV1PIMux2IFV5i4+njOuKC8lv8yoVfzW7ujM9vdr/43u0ecBNhMdLS0S3dW665zDT4S9cprh/WWpMD0OfDoHenqlroiIyByeYdCgZCvOrKemFwTSOykw0tvZGnLceq1LXYpavd0JtMqxgG4ZCTP6QrmD7M0Ycs+kjbdbD9LGOjdbvk+hGNVzDlidC5eHZh09IdfgLJA4ge/jvWF6XPLvd9tFTKnMnN2g18jJzDYOE/vgMaV2fG9KMe46phLFOnVxsynL8X4DVYXGtGJAf0psvtTpdJqv1hjP8aM8uGFWmWp5u055DeV3fHyZ/oUVM59ZPUZNOsuPeQplRz+OoRf5UHbUI6r14fq3IcsSYi0rc35+yyzsk/WC9J1R2VLtSr3moXoXu66fUYYrDyrBVQeX4OpDS00/T74cO9KD62eUYWSxDSOLtb8bw3qgJquZo5LuHE9lm+Wwf7n+dyR5Ae2n00rx7Um5lwexar8Si0Favd+WykNRfeYSuEd/I19DAwAIzgr9dYKAqtM/RMlhd8JeeSjslYeqtpELlEmrLFOUZKY5GxER6WNNWhqUbCXjMm7HO7VLBhgFk44d4caHdeoAaW93EM4pSCvYNbNshTwGaQEZciwIwaBmqZG+EKRNryGrrTvlDnLJpM0+ldUqWYoj8Xfk9/U1CtJafS+Vn8vepveVDsVklOZYBm5ihcPSiUwwJsEzwKK66TURlVmpZuJ6WhfRbIK5ae6H1Dhx+tju1QQvd7HcgRk9nUm7VafJkldnKvWhNS4cVO3A6rQp32YzaY+sdWNzu3apIl9UVk2rNstoRoxn/EWpfxdNvByx9g0ZjYfCDW/DZbL+eP6Y/zuNspHbwxKqPOa+R3q/GyNKtO/vsAk4cT9zdXN7ymFDXThsqAuRuIzvvtGoWr9fiR0NOhcZgMSF4p7INu1Ohni25IWxpRrFnQFcOMmLueN7LzCbThWk7ciWSavzNwoiHJWHoHTWPQhtf0F7G8372QBZ/30WDYK0ACA6ilF80PUoPuh6yFIUu59QHHgUIJM2Gpd1v5PNQWbSmhWJRODz+eD3+xGJRCBJDHAT9QeiKMLpdMLr9aK4uBhOZ37rgjNIS4OSMpNWCu2BHAtAsGeetOtlbgD6J4BWptrmQy5BWsFRojMdPp9B2n331wnSZss6UgZpjd6LnhJrXW28gYWTJ1tZZpBWCjZAinZCdGSfEpkaT4e1IK0sxSCIxrt5OdqO3AO0+vczOgm0/F4WOEir9y4bBaKNFNkFDC2ywW7h87PHH8eYsoEVpE1vDmZTRMLNxPW0plpWe0RTF8qUr2QulynKXP2rxmWh9HQTma0aNTgBGAa3lFnQukFaxXdcqyFVUkdYQmmO2dV6dfG1uGpPygjSRhuXIrTlPzk9b66sXDgz2k+2KYK0Rt9DvYvmo0yWjSkkvTrZo0vtWLpbP8DWEZEt72fM7Du7MwskW7kDrTIjAHL+buTDKEUgv8EfR0yS9X8rdI9PE9uLnmGWnl90VUEK7TVYbxykzRyC+vMuS72fSdtpsGNvj8iIxGU21jQgyzKamprQ1NRU6KEQUY6SF1n27NmDmpoaVFVV5e3Cat8/siHqAfaSsaplsc6tcFQcmLq9oSWCXT79q8HKmqlJZqbaJikPYuL+Ovg3PADRVQXv5GtMdWvNFkiUIu0QnZnTO0VHKeIaQdpw3RsoPrirqVh3g7Txjo3wr7sboqsa3slXZ/w9yw1OTACgSKNxmOFBdQ+IZgvSWsmkLRkP5SlovOMriFXqWmNx/y74N/wNonsIvJN/AkF0INK0HIEND5h+PgCQQk0QPUPQvvhyBL96HMWH/h4lh96M0M75iOx+D64Rp6ouWORCkmW8syOE3f4Yjh/lwcgSu2EgNj37Ilz/NoKbn0K05XO4x3wT7hGnadyj67OwYk8Y65ojOHSIK6PmYD50hCXctqwN2ztiuH5GGQ7b1whJ7wf3kdWduGhyseXnGea1QRAES+UOdgfiGFOmnaHUl2QvEdIlPdtG+bU207TRp5HRVeoUYea8UPmWumyC5cAFM2nNeW6jH2eO9fRYJvgWnSCtkTKXIkirV+5AsR8zqmvaofMYZlgJ0jqGHA2ITiAZmJHj8K+729LzBQyaPpphVI883Wd7wnh0rX4DrJaQhPT2plrfwAvm74VdBMaVap+y9Jfa0NUeEU3BzM+IMsNTqcEfQ5nL2u+cmb3Ygm1BHDHchUmV1n9Ds2XSFutkKhQySKt8neMy8J8NPnx3crHO77v23yjHEln02S5+K4nuasMgrWDL3rwyta0gAKIrI3u26ZWDAQAVJ/4P7l7IqpdkGS9uMq6j3RKKY5iXYQY9DQ0NaG9vz1gmCAJsNh5XEPUH8Xg845ynsbERkUgEtbW1eXl87j1pUBLsRRDdQyGF9qSWxX1dQdqdnTH87pM2w8co0jkQtZJJe//nHfjFYYkAqizF0PT6kZD8OwEAsbZ1KD/auIOyFO1EeNd8w23inVshVh2asUzQyd6M7PkA4bo34RpxamJMloO0mUHI5gVdXWlj7etQPjvR2GR1UwR//cy4Y73WyfA/VnfiR4f0Xm25rJm0Fgg2F2zFozOa1MU6NsKhCNLKUhRNr82CFGwAkAh0ew/8OVreOMHyc0qhPehY/nOEtj4NAPB9/jtEm5alPjP+tX9ByYw/Gz2EKS9/FcCz+7qbv7U9iAdPrMZvP9ZvXJYM4Eb2foKWt05B8jPja10F38qb1HcQEgetK/eGcdeKxEHt/K1B/P7I8pxOMrXIsozvv92V0fCnFe249agKTKxw6DbH2NAaNfw79SQv8Fi54JCtG3VfYSXMmV7uQRlYjZuId2m9Lx67YOoqtnILlw2w2utEGegjfX/9tB03Hm4hW8wkSZaxLevUZTVVkFYnkzas+CAaZtJ2J0hr1ABUQXR44RxyFCK738/5+do/vjLn+wJApOFdxP07YfOO0t3m88Yw7lzRrrseAO7/vB1PnDYEgPHsmpgEbGyznjHdl+xXYkdTMDPjcbRO4Dlptz+OSZXWnsfshbJbPmnDncdUZh2DUraZMHrXrgpZrafIIaqC5PO3BlHjsemUvdH+G6WgfqDViOiqyul+VrW+cw4qT3sfrmHH9ejzvLApgIU7jC8sNQUlDCtMdYs+LxQKZQRoq6qqUFpaCpfL1W/2Z0SDnSzLCIfD6OjoQHNzMwCgvb0dVVVVcLnMX3jTwzMMGrRsxWMybsf9u1L/fvmr7MFJj13ApIrMzLYxpXZMH2r+i7lsdzh1QB3a8VIqQAsAwa8ey3r/oIkpjvFgvWqZXpAWyDx5M2pmokVw6GcVBjd1BZwf/kI7QDtjaFfATVnuAAA+2JXHJmkmZK0ba3Eavq10QsZtrYZ1oW3PpwK0ABD48iH4Vt2ayuCwIh6oSwVok5RB/c4Vv7T8uEnJOmrJAC0ARCTghU3G35/ktNXAl3+HqbCenKgd+dzGzMd9ar3110TPVo1Az99XJT6nlXkOxh09ItEd2spJa3Owf9Qps9Ik6ujari7ZyoC1mccJamR0HWQyu1pUPF/yPbGiLMf6o4PRF01RdHYjiKmnLSxpTqefPsT4c1Cu+E63hbU/b8psba3fJb1tLbFYtsg5/MTcnytPfKtuM1z/2Jrs++dw2oWRDS3atYWN1PZA462ecviwzGNDp5jIrjXSmENtT9FkkEdGbr+hfoNp7ieOcusGmYYWFfa90iqL8fg67b9f1qkfay/dP/Vv0V1j+rkFu/UZN4YMatB2Lv9Ffp9Lw/NZjvEAoNnqVc9BpK2tLfXvIUOGYMiQIXC79b87RNT3CIIAt9ud+g4ntbZaT97RwiAtDVrKGlDpQbC1zdlPFpw2ARdPKU4FWmwCcPnUEpw62oMSCyfvyfPLWOsa0/dJirWtz76RRlaF0cFl3L8j7Zb5k+rSmXdDLBphattGnYDTd9KmjveFUlbZGocJorUsTuXrLkXaVNvEOjaplgU3P2npeZLivu053c8svTponzca10dLljsIbnve1PMks1c2K6Y1b9LJrMqFVhZc/b6GLiOyTEm1osIl4qjaZJDWQmmUHm6+lC/K6bxJymCKyybghP26AqPKGqGtOpmN6aIar8mpYxJZUV6DYBoAVYOnueO9hgE4LY6+sJPqR4yCO7nSqn0tALhkinFQRFWTVuP7H4hKqk72VR4Rv55ZptoWAOLd+I7q7UvLjnxYc7ldccGvECJ7PzJcv9ti9n9LDh3he3NmTXcdPcKN4Wn7wTPGFkEUBJwzTr+BofLzZ4aViyFfNFmvZaqXSesUga9P0E+dLPTU92qTDeoA7QQFe/lUOIYclbpdfux/YKbkVdHka2Dz7qe7vnTWPabHZUa0+dO8Pp5Stn4SSXrHAgQEAl0zJ8rLyws3ECLKi/Tvcfr3uztY7oAGLcGeeTApR7uCtMVOAa1ZmqXaRWB8uQO3z67A+uYoDqh0YNy+mpF3HVOJJQ1htEckFDtEPGmQrRCTEo+VS6ak6DYzhUrjgMpkBqhy2pytZDy8k6+Bo+YI2IrHwL/+XkSbVsA7+Wq4R52FcN0biLdvMPXYWoanHcTrXVCWZNl0pkh3yLKMeFpGqxbLQVpFB1/t5m35E/epM3WzKZ72B0TqFyKyZ1HWbaMtn2suz9bZN3mSZy/d31RJiXhaWZKeYjSNOee+avt8c6IXo0vs2BuM4+haN1y2ZLkD848R7Uajl96klfn12CnVAIBFdSHsDsRR7bHh0BpnxvddWVfSXJA28/bQIjH12s47pRrfel3dTT2pQjEnt8wl4s/HVmLp7jBGl9gRisv43+YAvmzVv2BnY9aLJT2QSKuZcX33nMqsASFluYOOsKT6bdEKMlS7bRjuteO6GWWp0itJ3bqOImV+zsSikSg76p9wj9Sq0Q2I7qHdeDJjrpFnZi2j1BOsNhn69gFeTKjo+3W6k+yigNtnV2BRXQhlLhFH7Mus/fYkL8aW2XHvSvUMI71SO0aacsi+tUJZk3ZksQ0njPJgxjCXbiC0og+UhinXqV0sy7I6g1FRfsRWMg5VZyzOaJjnqj0JVWd+gmjjUthKxiLu24aOpdeoHr901t3wr9WuGe0YMhveKT+1+JcUVpuJ32aAmbRG4vHEa2O321mDlmgAsNlssNlsiMfjqe93dzFIS4OWcvpRepA00fjA+EuWbBA2ptSBMaWZJwoV7sw6V4vrQ7rNTRINcgTIUfX0Ic2DxzSi00yxMo0zRym3DER7+VR4p3QdhJZOvz1zPMX62QLZeB2Zf6deIDYSB9y9sOeSox3Zp6CaaOyWThmklTSDtPkLxqXXvzXLOWQ2bEWjTAVpYy2rIMvqA/ZswZhQTIYky7CVmAvSSgHjYHk+GAX+u/uOlDgEzBymLoNitxDk64EkxB6hDGyNK7On6ncns1y1KDuCt5g4wYspomKV7rQu8VleW616stUeG85M22+XOETc/In+hZRC1ljsj8JZalnm9JiKj4nHLmQE//Uo338ZgC8io9TV9blRXnCocImp7OkZQxONC9MzEbvz58mKIG3xgb/QDdACgOjpuSCtZ9x3zAVpDTLqrDQQTLJ6yWNynuqR9yavQ8Rpiv2gKAg4qtatGaTNJZN2bw9nMAZimY9/2FAXzjTIBgaMG+71FmWJkyR/VEaxYmaFHM8M0noP/AVEpzpr21lzOJw1h6duawVpBUHUzXwvURxD9wd7TWbI95cSTURE+ZDvciU8xaBBS1k/Nb1JVrEj+xfNygn6GIPGDMnjXUkrk1YyLrugzAY2TafelsaGiic0fl1s3tG5jQfqWn96z2S1A3uuzAQGBdFaYXBBUWJDCmsEgDSCnrnSqnlrSBDhqJ5lutaaHPMh3vGV5XHJAMJxGYLNXB3QeFqtZqVAnqKXyoBfuhziDRmKdbpaW8qk7SflDpSBrRqTU0zTA6wA0BmRs2YPK2IFlpo2msnsqspSL5LVDqwJ9sC+O6z4XrhMvilanebbFFeXlMGIGkVNTeVTmZ0GrEn5Wy8aZ4jaejBIKzjLTW0nG1y+yqU+r5V61gBQZOI4rb/z5ZB+nksdWyuUgeMiEwHYvrCv1AvStmhkhiob+Qk24yB0Nsp+BEmOykO79biFYDpIy0xaIqKcMUhLg5ZRuQOvibN9h4V6kkZB2mTwJf35k/a+MA7h+rdVy2O+7ej49Aa0L74063N3LL8OUUW2ol5ThNR9lv0M4YZ3YTWH0FacPUir1eQFUE8313t59e4vhVvRufJ36Fx5M+Ih/WnOZsWz1KMFkPVEWrW54uS3p8sdRJtXWNreXnEIREcxRJf5dtJ6JQ+yCURlw+YX6eL+HZq1JwHg3pUdmL8lkBFkXdccwY2LW3DB/L34ybtNWLg9qBtA+aIxgifXdWL5Hv2xSN3MpVVmiSdZqUlrFETuK75ojOCVzZknt9ka4yQpM2kB4O9fdOB3n7TiH6s78Ple9fujDFxbeT21MmlVY3KJuheLRKH/dJXvK4I9kA7+UV3mbAed6yEqdlFQXYxtVwRr1jRn1uusUXyWbYrniufw50WaVqB9yU8Q2fNhxnIhy2+L4CwHhJ6ZJqv8ndKlU0cXyF7yJt3bOxL7Z6t1t80EB/u7ZLBbkmW8tzOIp9b7sKXd+OJ9T5Q7kGMh+NbejY4Vv4Y/nFmv1UywvDdKVGWjF6Rt1QgmxhQXnwV794K09uKxmstFp3Z962xE9xDD9R0rfoVY55acHtvIV21R/G1Vp6ltzWTSylIcnStvQcPjAtoWXaIKjhMRDVYsd0CDljKTNj2TVS+oks5KkHZsmf4J1xPrfPj5YWUZmbypMQXq0PLWyag6/SM4h84GkJgW2fz6UZAC9aaeO97xJZrnH4Ga87bBlsyQlI3LHfjX3QP/untUy7M1JDBqjpD0t8/VU/oA9XQ4vZdXL1jX8s7ZiO5dDAAI1y9E1RkfdyuIImWpRwsAgmhtF9rb5Q6scu5riiE4SkzfJ9qyEi7bHNW042yCMRlFcXNBWjnSqtnYC0g0Kfu8MYIGfxxXHFSCre1R/H5JW2p9Y1DCI2s64YtKOHf/zAsz61si+L9lbT3+iuuVNbCWSZunwfSQtc0R3L6sTbXcbCat1y7AKWaWylhcn/h8bGiJ4p0dIdx4eDkOru6a4qzcFVgJ0pqpf2kTBVS4Rc2GRoMgPpR3+Z4F8UlDCB/sygzSWpnqXeYS4Yt27bjSg7ThuIwVezKDkEMUn2Vl4Mnqnxfr2Izm+Udq/x5nC9IKooUZMdYIGtO6tRjNcGi20ATsn6s70RGWLGfGDoZM2mSzvTe2BfGvdb59/w7gnjlVmvVfY5LcI9PMO1b8EoENfwMA+CrPBmxdmaFeEz9kfTmTVlljVZbikKOZ9aa7G6QV7OZmDZklFo2AFNqru96/5k8IbnoUQ765M2/Pvdsfw42LzScWBGIyAlEpVe5Ii2/VrfCt+j0AILj5CcSDu1F1ypvdHisRUX/HTFoatER7ZiBKCjV1rTMR3LMSYNmvRD9QsXR3IhAhhZt0t2n76OLUv6NNy00HaJPkWADh7S+lbhudXBmRstwvW5A2Foum/l4lZSat3juglUkb9+9KBWgBINq4BLGWVYZjySYe2JV9I4uZTIIqSNtm6f49zVlzJADAVjTC9H3inVtQ7rKe0RWMyao6jEaydYZfuCOR3fOfDdoN+J75Un0R5OWvAqYCtN0NkA4p0n59jC70eBVRQL0M8r5C7+KL2Y7agiBoZtOme/iLzOdQXrBRngtOH9L9mpXVOmOyEhCmBL0LbLm6X6OGpxXKkhcN/q5g6fs71d3dqzzG5Q6sZrt3fvYb/QumFmdp5JPNPQS2knHZtysaqbtO68KGkWc3+hG0+PkwbPY4QHRGE/XbkwFaIPF7tKhOu15+W7i78z7UZFlOBWgBIIDMi51mguXT8rAv7i6zQdrQjpdU25gN0torDs647Rx+Qte/hx6Tsc479TpTj6nFM+a8rNtI4SaEd7+f83Mo/Xej+hgqm2wXa5IB2qRI/VuQ4/oZ+kREgwWDtDRo2Uoypx/FOzal/m2mNpqVk3S3XcTxI42vZsf9O/TXpU1bkoL6V8+BRFdoLdHmzwAAsc4tGX9rPonuasP1HR362anKTFq9LFitaeux9g2qZeHd7xqOJZt4x2YTW1nbhYqKmrRypE3VeMsoi9VRPcvS81llr0ycYIiuCtgrDjF3Jzmum/VsJC7LpuvvCvYi01lqXzTpB36VzWw+bzR3MqCcBp3NUbVdtYoPrnboBmmNggzDizPvky1IXWh6J2Pjy81nmxdnKTOjbErWpkjfVp6Enz9Ru2b3xVOKNZdrGV+uHSwzUy5hMPr6/vrBjHxX7OjudQtlGaINLV37jrXN6v2IU/E1Vv5mWc0UjjTo/0YJQmEmurlGngnRXY3Swx9AtlZeymOodJ051FK1up8daOVGvnWAen8lyeogIgBsatX+nfPl8DuR7eKCclZRQMw8jtEqD/bDg0vS1gtZG4v1Brso4DiN43BlQ8NY6xrVNmZr0pbOurfr4r3oQumse1LriiZf3bWhzQPvZHWTMbO8U35mart4x5c5P4fS6qbsx0uligZsVsqeJMX92y3fh4hooGG5Axq0bKUTM25LoT2QIu0QnWWmaqNZaVIDAN8/qARTqhya9ZykcAvkcIupxxHsHt11nvEXQ46HENr2X9W6ZGZMeNcCkyO2TrB7ExlAOhmSLe0NALRP7JSNw/RovTWxdvWBaKThHeDAn5t6TC2xThMNsQSLQVpFJi1kCXK0E0JGXTLtx7R590PVae8juPlJxAP1iLWthhwLwl4xFYKtCIKjGI6Kg9Cx/OeIta2zNK4ke8n+qX9Xn70cu59QZ78IjlLI0fQMNtlUYy2vQ8hoOJJ4H9UnlDVf3wTfqj8guPnJrmeQpbwEeDqjcsZJRIlDQKdBg5vkZ9JK8OCACgd+ckgpDqkOIS4Dx4zQvzhjlIE0otiOr9q6sux8kb6dSatlaJGoaghmxEwt8HStisBwheK5xpY5cNcxlXhlsx8f7Sud8PPppTh8uPnpnwdVO7Fgmzqr0kzjscHo/IlejC61oy0s4Y1tQTT4u07S+1pZ5UmVTry2teu93dgaRUySYRcFU0FGZU1Uq5mghjMJ8plJK7o06387qg8HIKFk+u2I+3YAkOEZ/10AgHvk6ag64yNEm1bANeJUxAN16FxxfUbJo7jBjJ7OHIKFWsHIweRr44swotiOv3yaOdU+/XcgaahXe7+qbOplRiAmq4Jr6WJt61P/jsCNqJB5DFqicd/jR3lQ5bahzhfD4cNdWS/A9ZYfHFSCj+pCGRd4lA0N5Zj6GF1wmGvS6xo+B1VnfoJo4xI4h58IR/mU1DrPmG9CPPVdRJs/g3u/r8Hm1c9Ez0aweyA4K7L2NVAmAXSHmf13lduGjkjX59Uok1aKaM+EiHVshl2n0RrlVyQSwQsvvIAFCxZg2bJlaGxsREdHB8rKyjB69GjMmjUL3/jGN3DCCSdAFPvGd5hosGCQlgYte8n4RJAt7SAm1rERzuqZqkxat01QZclYqUkLJOobHjvSoxmkDTarr9wrSZEOiM5SyJJ+PVnXiNMQbVquszYx/nDdGxlLRc8wSGaaZJkgCAJEZ4Vuray2jkboBWnNNpbQDNJ2bFQti+z+AHI8AsGW2zQ7ZbZx+TFPoW3RdzKWCRaDtFpds6Vwa0bzCCncrHlfe/mBEOweFB1wpeFziGuGAzkEaQVXZcYFAEF0wFY8FnHf1oztvAf+Ar7Pf5e6LcsyZMH46H1okQ2BWObBuiQDyuhu6eH3wV66P7xTrs0I0kKWutc5fZ/GQDyjq3u5W0RnVD/TI/mc7RaywgQh8V2fM0r/YkqSUeObEcpM2lhi2mtfaMBi1qRKa989M7XA0ymnVFdqBE73K7Xj6mlluHqapYdOmVzpgCio9zvZSjMMVoIg4Ih9QfCVeyN9PEibGQiNSMCW9hgmVjg0g4wRxa5ClUlrtZyDrB+kzdY4TPtONs06tWVHPIDg5idVzcmqz1pi+HDOIUel6pTbyw4AZv4VLW8cl1ov+fVLAuWSSds6yIO0giBg1jAXhhbZsCfQ9T5qZTDqTd335fC6+6NSxu+iUqy9K0irzKIF9GdAHFzjxME1hS9zkM4mCjhltCfjwpvye5te+izJbCYtADirZ8JZPVNznWv48XANP970YxlxVByMyJ4PDLeR8tBEN8nMIVi1R8TWtNirURO7eKBOe3mnmVls1F0vvvgifvGLX2Dbtm2qdc3NzWhubsZnn32Ghx56CBMnTsRf//pXnHnmmb0/0EFuzJgx2L59Oy655BI8/vjjhR5On/P+++/j+OMT+9T33nsPc+bMKeyA8ohnGTRoCTYnbIqOq/H2RLBPWf9RK3iQz5qEvhb1dH2lVCDSIPvGVjIeok49UTkWhBwLIaIoA+AZ9x3N7XMluCp117X723XXmT3B1ToFiWtk0soxPyKNxieheuRYSFW3156WEZFiNUjrKFHVsVVmQujVJtZ8fg02z3BLYzK6n2DXyB5RBQmzZ9J6HYIquCgBGuUOktsoXtc8ZdLuVZwwZMuGTO4GlJm01R79+1nZK7hsgu72tV71NdRcsqQKaXKltUCT1WwrZVCnJwKnRQ4R+5ep3wtm0man/Gznv1pm95Q4RYxUXAzZ0JIIiGllrisv1HoUhemDMWsBMsPaizkEabUuAgKAs/ZkyHHtGqZWKGuVyzGfbjZcZw6Z/1bLHQxUVYr9mFaQVu83N5ffiGz3SS8nFRAyg7QCrF9cKzRlmSHl9zqukbTQ3cZhPUEsyn6sl88grZlvp7Jut2EmLYO0BXPrrbfiG9/4RipAe/LJJ+P+++/HO++8g08//RQLFy7EAw88gFNPPRWiKGLjxo248cYbCztookGGZxk0qNkVJQ9i++o3KTNptabhWmkcls1fd83ABsdxhtskD5Rjnfr1ZO2l+8NWVKu5To4HEdm7CHIskLZUgGfcty2P14hqSn+a9qB62nCS2cZImjVpdepuRRreBpA48b5iYSMumL8Xv/u4FYEsUzFjvq2AIqBgKxmvsaW1kxNBEFQn0pIySKtzUG0vP9DUc4ieYZbG1HU/rSCt1omJ4m+W5ayhl86IpGqyIyVSaRUPLWb+P/UcMcTi2U8RXvrKuLHFPZ914OkNvlR2R1mWhmeSnBj7+pbMCyPDdGrMAtY+EYIg6GbTKjNpgdzqDSaFYjJ+/0krLpi/N/XfuubEyX9o1wJ0LPs5QjqlUGJtG9Cx/Dr4NzwEWZYQ3PY82pdei3DDe4bPaT1Im/3VS06JDsYk1fTyyh7Kbj2oWp0NVm6hjMNgpbyOGZMSNdE7VvwK/vUPQJaM6xUmP2dtiy9Hx/LrEG3qmmqfryZkkxXZ3htaopBkGR0aGYnK4wJliR6r5Q50m4YBEETrE93EjLI5XezFoyHH9X97zdJqKKlXP9Jsve906VnXg5ky0KX1utTrvFY5lTvYd59w/UJ0LP8FQjtfy1ifnknrV2TSFmlcgO3rXBoZ8Cv2hPHUeh/WNEU0Z4L1xSCtmQvywU2PoGPFrxDzaX9PY51b0fbRZdj9VDE6P/+D4vwgIRST8eImc439lBcYPtgV0p0FpZdJG2OQtkc99thjuPnmmwEAQ4YMwfvvv4+33noLP/nJT3DCCSdg+vTpOOmkk/DjH/8Yb7zxBlatWoWTTjqpwKMmGnwYpKVBzV52QMbtWCqTNnM7reCB1XIHRrbFR+Kh8v9ik+Mo3W3i7V9CjoXQueJ63W1EVyVE9xDNdXI8qCp14KieparN212iQSZtR1g/C9jsSbfyeE+OhRDXOQAN1y/Ezs4YfvdJWyqzZ0NrFJe9pZ2tmhRX1KMV3UMgOks1trT+GVAGsaWwMkjbvUxaM9kVWmwa9zMVpEX2IG1jUFIFbCRZq17avo00MpQD257P8izAM19m7z788uYA/risDTFJzlpXWpKB336srvmmVw8wF3p1aas9NihnoHanLu2P3mnCOkWw+fdL2rBtyyK0vn0G/OvuRuvbZyBc/07GNlK4FU2vHQb/2j+jY8lVaHrlILS9/00E1t+LljdPRES3vEqizIUVZmrS/u7jVkiyrKpHC6hr0ubLVI0gbZb4PkGd6bxgqx9Nr86Af82f0LH0anR+doPufYNb/5v6nAU3PQr/2j+jaf4RiHVuAwDc/Zn+rAwrlCUPNrRE0RyUNJuSKS8kemzdDNIayNYgVItWJq29ajqAxEya7hLs6lrOTa8crFq2fLe6/m26PB46DUjVJi42fbArhJBG5nYuF/L8UQnh3R+i5a1T4F/7V7S+czZCu7qOFdNr0gaE8oz7lvSRWrNWKC+ufLY3grtWtOPVLQHcurQNW8I1qvv0xSCt2WM9/5o/ofn1oyDHM7+XciyEptdmIvjVY5Bjfvg+/x3aFl2suv/9n7fj2Y3Zj60A9QUGAHhtizrwCzCTthDq6urwk5/8BADg9XrxwQcf4LjjjBOEpk6dijfffBO//OUve2OIRLRP//t1JcojW1qjJACI+3cAUNdT0+rw3RPHpi8W/5/uurh/O0LbX8j6GNoZn4Ac9SHa/FnGMteIU/c1+3Jp3kfJzIGq6KrSXeeL6Z+dHTZUHQhRXpUH1HUN44FdUGVk7hNtWo6/f96mWi4DaAnpZ+2kn5QAgK10f83tnDnUFhMVJ9LpTbhkWdY9QDVf7iC3TFrXiDPUy0aepVqmyvCKh7OWOzh9jEd1UaMlLKnrJ6YyadUH+v6vHjN+Egt2+eJYXB8ylb2tlcU0XKMUQa60GuZ57AKcNgHFiihtrpm0kbgMv04A6ak1ezKfY82dGbf9a/+SkV2T2ZRORtsHFyKq8zpa7b5ebNC8Jml3II71LVFVk6EiuwCXMl07TyZWqPf/+5WwpH82W9ozM0U7o5nlXfxr7tK9b2Djw+qFcgz+NX9CTJJ1MzVrDEqRaDlA8d76YzK2dWhnuI5VlL1Q1aQ1ORsEyNI0DPq/40bcI8+C6B2VsaxoYqKGuXvU2ZYfL1fz1qjr7ifVeMQe+54OFFqBLi0Ld6hLWOTaOKxj6dUZy3yr/gAgUZJDCjaklgfFzGxto+aXfZWy3IHSs57fq5blVCO6h1mZNSUF6hHa8UrGstDO/0FW9EAIbX8howxLTJKxYo/5rPhqjQul/96gHeDVrUmrs5y67+6770YgkDie+8Mf/oBJkyaZup8oivjOd7RL43300Uf47ne/izFjxsDtdqO8vBzTpk3DTTfdhMZG/XIb77//fmJ2oSDg/fffhyzLmDdvHo4++mhUVVWhtLQUs2bNwpNPPplxv0gkgoceeghHHHEEKisrUVJSgtmzZ+O//1U3zE7atm1b6rmSdV2fe+45nHTSSRgyZAg8Hg8mTZqEG264AW1tbYavxZo1a3Dbbbfh1FNPxciRI+FyuVBcXIwJEybgkksuwZIlxmX2brnlltRYAKC9vR233norpk2bhvLy8tQY58yZA0EQsH17IgnpX//6V+p+yf/S669q/Y0vvvgiTjnlFAwZMgRerxeHHHII7r//fkSjXccfsizjP//5D+bMmYMhQ4agqKgI06dPx0MPPQTZRCHq9vZ2/PGPf8Ts2bNRU1MDp9OJ4cOH4+yzz8bzzz9v+BjJ8d5yyy0AgOXLl+Pb3/526nUdMWIEvvvd72L9+vWq+yb/3mQ9WgA4/vjjVa9Rf67jyyAtDWqCIjtSjocQjcvYHcgMzBw+zIVJaSdzc0a6c57idcFE/S6xDfbJuuvkeAjRNv0GY8nasvaSMXAOUwcPpXCTahqXvXQiBEEw3WW24vgXs25jKx6juy4c13/NjtdotHTVIers1agiSqs1PatrZRybO7QDW0YBumjLyozbjvKDAAAlM7qCCmJRLYrGX6L/3HoUjcxkqesAOO7blnFClOQedyFER4mph9erS5iNe8x5qmVFB/wgIzO79PD7VJna8eBuxAwKxtoE4MjhbowpzQxwrG6KQI75MpaJ9uLE/zWm7caR3wYk7+4MZTRnsWLKvmZSWqyWQSnSuEPtvkxdZY3WXDNpjcp7rLYdm3E7Ur8w43Z4t3FjknjnV4holKK4dppW5rkxs5m3TcG46kJaWQ/WiLWLAs4e13WBarjXphm4peziMPceRxre1V6+5wPDQNSVB1v73GkFmSIa+7Maj4iZQzMvZjoVwR4r11CM6tHayw+Eo2ZW1scoO7IrkC24quA98BfwjL0wtcxWNglF+18KINHwUXB0vTblc/RPaLvLqAHYdyYXGzapSmcUzP3a+L6X2ZgvJSYuVgHAzk71xQTlhbwZQ52qUkNKMUlGrPWLjGXRxk8AZF5EBoAYMvd7yu9Af6C8uKJUJ1i/QFIIgi17c9J0UUWPhliHduk0KdR14dbKhafvTSnWrdevVfIgrtd4MMsFLMqNLMv417/+BSCRRfv973+/W48nSRJ+8pOf4JhjjsFTTz2F7du3IxwOo729HZ9//jluv/12TJgwAQsXLsz6WNFoFHPnzsUVV1yBxYsXo6WlBZ2dnVi+fDkuvvhi/PSnPwUAtLa24uSTT8ZVV12FpUuXorW1FT6fDx9//DEuuOAC/N//6Sc6pbv88stx/vnn45133kFjYyNCoRC+/PJL3HHHHTjwwAOxYYN2n5j3338fBx10EH7729/irbfeQl1dHSKRCPx+P7766is88cQTOPLII3HDDfqzhNJt2rQJhx56KG6++WZ8/vnnaG/PzwwhAPjRj36Eb3zjG1i4cCEaGxsRCATwxRdf4JprrsG3vvUtxONxhMNhnH/++bjooovwwQcfoLGxEcFgECtXrsRVV12FH/zgB4bP8c4772D8+PH4zW9+g48//hhNTU2IRqPYvXs3XnvtNXzzm9/EWWedBZ/PZ/g4APDggw/iqKOOwjPPPJN6Xevr6/HUU09hxowZ+PDDD7M+xkDDVBAa1ASbYvpePIR6f1yVrTmyxIbfHF6OD3eF4LIBR49QT/sz69z9i0xPHUonx0MQdDJei6f9ASWH/DZ1u/Kk+WhacDRiaZmzUnCvaiq96E5M67J59zM1xcg14tSs29hKJ+iui8jaB3C/PbwcJRonblq1IJUnwka19owCAjaDIHu05fOM2/aqRGt474G/gL10IuL+7XCP/Zbm9M9sBEER3Ek7II3s/Ui1fdnsR+EZb765m+iwFqRwVM9E5clvadZAFB3FqJ77BUJbn4WtZDzco85EuO7NjG2kYAOiOi/DdyYVY0qVA+PLHaj3O/FJQ9d0uzVNEcSjmd8DYV8gWquucRz5DYptaInmnA1f7hIxtcqBL5rUJxNGnystWpm0o/ZlaSrLrOSaSauXRWuGHNXPiksKtn4JoDpj2YEa391saovNHZKIgoAORcDaTD3b7rhwkhfjyuzoiEg4ekTuF+kGu722/TE8rl1D3BTRBb/O9+DWoyryEjzXuuZ0x9GVqmahyv2HXka59pNoByJKZ94Nz4RLIZhoSll0wJUQvfsh3vEl3GPOh+gsRclhf4Sjajqk0B54xl0EYd9FQZt3BKrPWYnwrvmwVxwM1zDjKa75dvJ+HhxZ68KBVU7M3xrMeoGs1Cng90dW4PPGCMaU2tEckvDyV35E4jLOm+jFsd04BuvrzDZQ1LpQqPxuTKp04lsHFOPzvREcUOlArdeGyxdmHgca/axIiv1/XMjcr2eJd/ZJ2TJplUoOuzP7RgUg2MzNgEtSvpeiu1pzu3igHrZ9Gflhg2OHo2td2L/cgTe3B/GNCV4cM8KtW3+2JSShWpEhrlfuQJb0a3VT7tauXYumpsR3/5hjjkFJibnEDz2//vWv8be//Q0AMHbsWPzqV7/C9OnT4ff78b///Q8PPPAA2tvbcdZZZ2HZsmU45JBDdB/rt7/9LZYuXYqLLroIF154IYYNG4aNGzfilltuwZdffon77rsPZ599Nu6//358/PHHuOqqq3DuueeiqqoKn3/+OX7729+ivr4eN998M+bOnYsDD9Tv4fHggw9i+fLlmDVrFn72s59hwoQJ2Lt3Lx5//HH897//RX19PU499VSsWbNG9RrFYjF4vV6ceeaZOOGEEzBp0iSUlpZi7969WLt2Le677z5s374dd9xxByZOnIhLL73U8DU877zzUFdXh6uvvhrnnHMOKioqsGnTJowePRqPPfYY/H4/Tj31VNTX12Pu3Lm47bbbMu7v9WonfT300ENYunQpzjjjDFxxxRUYPXo0du7ciT/+8Y9YunQpXnzxRTz22GP44osv8Pzzz+PCCy/EhRdeiOHDh2PTpk245ZZbsGHDBvzzn//E17/+dZx22mmq51i8eDFOP/10RKNRDB06FFdffTUOOeQQ1NbWor6+Hs8++yyeeuopvP7667jkkkvwwgv6M4HffPNNLFu2DAcddBB++tOf4qCDDkIwGMRLL72Ee++9F4FAAN/97nexadMmOJ2J36ARI0Zg9erVWL58OS677DIAwKOPPoqZM2dmPPbIkeaS0PoiBmlpUFMGaeV4CLsU2QnVHjHVxfnk0dauXGs+pyDg2BFufFhnrduyHA+lTriU0gO0ACDYPSg5+Ca0vvf11DIpuBuSYmpT8iDN5t0v6/NrZedqsRsFaaGd/TLMoMbn+DI7NqdNm1VmbRp1rW6w6U/l0TuYlKJ+xNszgwiOykMBJN47937n6D6mKYppc+nTXqN7Fmesc42ai6IJxj/ySoLFIG3F8S9AdJXrrrd5hsI75ZrUbVHRmE4K7dXNpD07LdtJGXD3RWXsiI/EKGxJLUsGaQW7+nsWU5wc7ldiR4M/Zil7TSnX+9pFAUcMd2sHaa1m0moEF0cmg7R5KndgZQps8sJNkhzLHqT1N3wA4BsZy0wmy2UoM5lBJkJdkkbrIk8+iYKAo2oHbmCoJzhFQNl/q94+xVSQVnQPzcjoShJEB3w6n+d8ZTcrfxvKXKLquwio69IrZ3kYkWXtIG3RlGtMBWiT3CNPA9B1AiUIAjxjz9fc1l4yDvbJV2uu62nn7l+UmsZfYuKCissmoLbYnnHh5pgBHJhNZ/aCk1aQVvndKHYIGFViT134A4DpQ5z4bG/mlHY9yot0youlygsX/UG2TFolZYmqvkP773CNPAPhXa+rlisTMfQu6EuBrtlcRjPOzhnvxehSO04f23Wcp3fxssEfVwVpdcsaGDRUpNytWrUq9e/DDjusW4+1evVq/OUvfwGQqFm7aNEilJeXp9bPmTMHp5xyCs4880xEIhFceeWVWLp0qe7jLV26FPfcc08qYxYApk+fjjlz5mDixIno7OzEhRdeiKamJrz44ov42te+lrHdjBkzMG3aNMTjcfzjH//Avffeq/tcy5cvxxlnnIFXXnkFdnvXfvH000/H1KlTcfPNN2PHjh249dZb8ac//Snjvoceeih27dqV8bcmnXrqqfjJT36Cs846CwsXLsTvf/97XHzxxbDZ9M9v16xZgwULFuCUU05JLVO+Nw5HYp9bXl6OqVOn6j5WuqVLl+Laa6/F3XffnVo2ffp0nHzyyZgyZQq2b9+OX//612hpadF83Y877rjU6/73v/9dFaSNRqP4zne+g2g0itNOOw0vvPACioqKMh7jrLPOwrHHHosrr7wSL774IhYuXIiTTz5Zc7xLlizBGWecgZdeeikVhAUSFxOqqqpw0003YceOHZg/fz7OPffc1OsyderU1IUHIHGxwOxr1B+w3AENalpB2p2+zAOEkSazu6woNRmMyBAPQYqZz8BVTUv3b1fVAE1l0haPzvp4ZgK5gHGQNipoB7mNEhuynQgbNUTZ7piuu07v2DMx7S9tpSDCUXGQ/gAtUtU2y8ikzQzSOofOtv74FoO0VuqaAYDNU6taZiY4Ue2xpabxJ20QMg9GBIOSDsqTQ4cI09Nm880mAjOHuTRPkq1m0mqdMI4qSZY7UGbS5r/cgZJyvyFHOnS27OLf/bFqWS4n74IgmAruxmQZndHeDdKSdVrT1evt5mpr6xKdupm0+aLcnel9shwa5Q7M1HBLPIl2kNZKgLY/caXt58xkoee6rxsItC4IaBE1gnTK74ZWVq5y3xyJqI8rk/0HlEFa5cVSq+V9+gKrQVqrx1S9Rifj1FFzhObyWEfmxTFZJxgaD9an/m1U7kBrFpCeesV5lSxFIQXVF+ESK+Pm96NkWnNzV5LOkCHaDabN+vvf/w5JSuxrHnnkEc2g5WmnnZbKcFy2bBmWL9dvMnv44YdnBAqThg0blgrKNTY24vzzz88I0CYdfPDBOProowEAixYtMhy7y+XCP//5z4wAbdKNN96YCvLNmzcPkUhmWaLq6mrNvzXJ6XTirrsSZfG2b9+Ozz//3HAs3/ve9zICtPkyatQoVYAZAIqKinDJJYkyfc3NzaZed63X85lnnsG2bdvgdrvxxBNPZARo033/+9/HrFmJ0k1GtWHdbjcee+yxjABt0jXXXJNanu29HWj64c8rUf4og7RSsEGVSTuyOP9tvEst1k/0CxX4X/w8vNZ2MMI62ahKoif7j7DoMp9JayaQm3jMSt112x3TtB/b4KRNeRLQHlZ2DssM0iYCzwJicOK5kj/rPu78rQH8e70PewNxrG2O4Il1nVjaEEJwx6uZz182Kb+dfXUyaaVwK2KKmsPOIUfn8PDWpjBZbYghuCoB0QkZwArXN/Ci91bIOhkdSsps2o2OzL8vWZNWS0xQZ/AUKjBnFwSUOkUcWKV+7axm0gY0ghH7pcodZD5Ygy8G39q/ouFxAa3vn4/QrgXoWP5LBDY9DlmWEdz2AjqW/RzhhncR2bsEHct/ieCWpy0FtWJtayFLiYs5OzpjeMlxDZa4L9RpzZewpi3zfRVgfOHFiJmmOaGYjNVNmQfPhQrYkz6tepUNtkTd9RgceN/zAzy13oedWz9Ex7KfY+maD/Hkuk6sagxDimrXZovu/Qgtu3r2QD0aasm4rfed1vrIrW2O4ol1nfioLmQYaIi2rNJd198oGxJpSZ9ibmYfGexGiZb+zmy5g3RS1IfOVbehM5hZo9+rkZWrPKaKBNTNfQS7d9/jZl6kU14stXpRsi+wWu5A0KiR3xfoBVmdOkFaKVCPaNOn6FhxPfwb/q6auQUA7eJQPL97NF7Z7EeDP2bYBNBKkPaxtT7E065+ScHd0Gv4C0DdVJa6rbOz673UmyZv1ttvvw0AOPDAA3H44Yfrbpde9zZ5Hy3f+ta3dNell0kws92WLVt0twGAU045BbW16mQTINEgLRnEbGlpwWeffaa5XVI4HMaOHTuwbt06rFmzBmvWrMn43U/PXtZy0UUXGa7P1de//vVUBq5S+ut5wQUX6D5GcrvW1lZVM7X//e9/AIDjjjsONTU1yrtmOPbYRN+LTz75RHebk08+WffCQUlJCSZMSCR/ZXtvBxqWO6DBTVmTFsDOzswMl5E90MXbSkBBBvC38udRL0wFgsCm0n/gyo7sNUqVGXFKgt2bmlYuuqqyPp7ZTFo9nUINIoL2gYHRcb7yRP/5TX58M635mrImregeCrFoJP4TNW7q9c6+zsj/29J1UjN/axDfa1+NQ9O2s1ceinzSy6SNNCp+wEQXHFX6mcC6j68RpLWV7I9451eWH0vz8QUBNs9wfBg/1jAIruXgGife3N71fm1xzEQYRXAh8R4YZ9KqM3gK1SU8eZJ7xHA3VitKHmj00DLUHFSfjFTsu4hTrMi4X9UURcf6X0AAENr2HELbnkutC371GCJ7EoX1/evuzrhf24ELARysO4aNjqMxMdpVD7nz85shHXgrfvNRC6KeROOAgFCGE4J/V913l+1AvFDyx4xlThtSnWutqnKLaPAbn6DV++PY2Zm5jdlmO9R7tIK0yUzaV4p/j0Wey4EtAbwrVeNbnesxr+zXAIJ4bWsQPxGnYf+49kF988b/ACX6n+fu6lx7D+C4LnVbbzejnOUBALcubdv3ryCiUolmQ0wp1ITWt8/o/kD7iNZ3v4aKE16Be79zdMsIpWdv9sMZ8r3KZTIvID3Lse2DCxDc9QaC1VdkzILXCvgqP7e+rc+ptpGiiUYvqnIHqoul5sbal7hNDLpZHIUqaScA63X+e41eJm21ftPBptdm6D8cRNxX/iqa/aOBDX78Z4PxzD29IG2FS1Q1D5QB/HuDDxdPSRzjxf06pQ5Sg4kBGn0SKHfp9VX9fut9UZLC4TA2bUo0nTMK0ALAtGnT4HA4EI1GsWaNfuPriRMn6q5Lz1w1s116MFqLsmapUjLzE0iUdTjiiMyLHn6/H/fddx+eeeYZrF27FvG4/vFq+lR8LQcf3DPHMfl8PYHEa5p+e8WKFQAStWTNHuvv3r1bd92kSfqlCQGgsrIyNY7BpB/+vBLljzKTNg479gQyDy5G9UCQdmyZ/mMqm13tsU1Avb2rxso618kICfoZh0mCo1SVtZkuPYhrKzsg6+MlGwmYoRXY/KBIv5OoUbCtXaNTdFvaMkkxHVuwF8E59Ggsc3/bxEjV/ltyV8ZtR0Wef0TFzGCjLCUyAmPtmd1EHVXTLTeGAKBZt9g5xHrZBCNiUS3+573FcJsyjWzxKZWOjIBHXHBhu6Or5EF6kFZ0D824r/rkUDA9LTTfkn/DrKHq96dJI+hq5AhFnVNR6Apwan0vdtm1S28kA7RaWre8bDiGB8szC/r7v/g/PLfRl1Gz93/Ft2jed6H3Z6plzm5EYQ4fnv0z/8Y2dYmTXLLPqGcdNkS9L2qzjUAE7kSAdh+/WI15Zf/K2O6pkgd0HzckqC/mJEuEWKX1SY2GM7N49abnawVp0z30hfYJhW/1HabG1p+0L7kKAPBFYyTLlsAhJpoKDpb6s1rMnvQmy2bJ8QjCu15HSCiGrCiXoVXzXLl/1jyejAchS3FVXeiBUJPWTAbowqJrU/8WnH0zSKtVWsw95psQnWU5zf7a5DgazTZzM+YA/fder7Hy/K1dv9uJTFp9elnClLuqqq5knD17dEpNmNDa2pr6d7ayCQ6HI/W8LS0tutvpTZcHEtmtVrZLlmHQk23MQ4d2nXsox7xt2zYcdNBB+M1vfoMvvvjCMEALAMGgfjk+AKioUDdJzod8vp4AVH/n3r17LY/J6LUwGkf6WLK93gMNz2poUFMGadvEWtXU7aFF+S93MKZUP3gaFTLHpHVC2il0dWUtnXm3aj2QONA3qqWVfrXdUT4ZzqHH6G4LAIKF5gmls+6F8vR3h1271MExI1yaGVdJWo0LImnL4oGdGevEohGqAJ8VATGzXIPgyO9Ut+Q0wiQ5WWc4nnlya1Q2wvJzOkvhmXB59g1NshXVIiwaXyj4wUHqz22RQ8SY0swLFFscXVe104O0ZUf9I2O7mCKT1iZkn2ppE7SDxd1x4ih36iRaq2yJsk5lNkcNd2WcNP7okK7vrNZJULs43NLjA0BUsB7s/6Ipe7AFAFa5zlYt607w/PiRHlS5rd9fa1ovFdbX9teeOdFuy/4ZbrPpd+SNC+qLnN+ZlP3CpRatQGtQ8ZurG//P8SMX2f2B5nL32NwuLPamstnzNJdLgUQdy8ag+gRZ+fodVetGZZbv+Gljut+ktT/7xv7Zg2zJRkzJ5qnKY0dA+0JfheK1bxO1p/4CEqItX2QsUf4O98dMWjMzcLY4ujIEbUXmExR6k11jplXJoX9I/H+GtVlOALDbrp9Vp2QU6D7XxGdXivmybWB6LGRO+jT3bNP4zcp1xlQhdWfM3/3ud7F161YIgoDLLrsMb731Fnbu3IlQKARJkiDLckYgMVttZaOmYn1Z8m88/fTTsXr1atP/kTWcS0CDmjJI26I4MXTbBNOddq06d/8ivPRVQLU8Cg+GHH4nYm1rEfjy77BDHSzpFIegRtoG57A58B54re5ziI5SxMPNmutcI0/PuF158hsIfPUEBNGB9o+vUG1vNBVd9djDjkXVWcsQ3fMROlb8ApAlOOSQartjRrhx1cHGj6t1Ep1+YiD5M4O0Nu+oVBmHXMlIP//Ob2080ZEZTJD3HazKyhpcGoGI3AkoO/IhBDdpn2BbJRbVAuqPbsqvZ5Zh2hDtwOABlQ5sbu86AN+WHqRNO3hy73cOqk5fhGjzp/BveBDxmDqDJ9sBUKlTxG8OL8d1H+pfwU86f6IXTpuAp9YbnzxcoRF8Tme13l2F24Y7j6nEZ3vCGFVix9S0LDOth4rn8LMd0zh5z6ZTI4PdrO7UCnbYBNxxTCU+qgvhk4YwNrZqN1hSKuqP0YIBrsQp4m8nVOHH72b+BtXZDuzW40qK70CVW8ShOvubbOxiYl+fvicJCpkX5rJlzBoJRCUUKaKUsk4D0PJj/53z8/SWogmXoX2x/gU/p8Y5Z3p5osQ2Au7c9x3/1zr1/vZ7U4qxf7m1WukDzTcnejG61I7WsITpQ1xYuTeMR9dmvlapa9X7ZuNEoT7u0boAXu3J/Dy26l0QkWXEWjNrKqpmtPTDII0ZIhLHY4KjDKKrvLCD0SEIAoZ9x4/2JT9GrG09ymbPg708MW246IAfwlY8xlJZFWWWtJEyg994r0PEDw8u0Z1JAGjvA71TrwdEOwTBrjkjjLrnwAMPRHV1NZqamrBo0SJ0dHSgtNR6lnh69me2jNxYLJZqWJacsl5o2cacvj59zBs2bMBHHyXKgv3mN7/Bbbfdpnl/o4zhgaKqqgr19fWIRCKpRmuUfzyrocFNGaQVM6+YV3vEHrtSqHc1P+4eAe/kH8Mz/rsAgBjUJ58dYmK6hneKeqpxOqPAqqs2s6OkYC+Cd9IPUTTxcs1MVGVwMRtn9Qx4D7wWjspEBq0dYdU2J4xyw5blBFgriyn9xCDu25GxzubdD4Kte0Fav5B2MCGZyyg0S1A0x5L31X6DYnqXkNd6XAIE0W4p0G7E5tHLvEmYWqV/gH1AReaJwDb7DEg6P0XOoUfDO+WncI04TbMmbXvEOJBY6hJRbjKTtsot4vQs2VuXTCnO2pncaudoIJGtf/rYoowALaAdpJVyCN5HNfYh2Zit2iDK6iBqaTfrw5Y6RZwxtghH15oft9a0Xiq8ao9N9Xmos3fvoF75HZhUmXtATxAE1W9MUFQEabtR+1qrvrIcU1/hKpr0o36TleQapc6eBxLT7rVKnUQ0ZsMkv+Na9Vcnd+P9HCgEQcDhw904bUwRhhTZcOqYIkyryfx9SNb/TZVM0pgxoXX8VK1oztgqjtS+FC3HEG3NrCM5EDJpzRCROB4z2zC3UAR7EcqPfgzVZy2Bo6Lr4pcgCHArEjGy6RSzNxtOytb8ONsMRGWQ1ll7Mkpn3InS6bejZNrv89uslwAkPhPJplh+vx+PPPJITo/jcrlSjZyWLl1quO3KlSsRjSaOEftKMG/58uWm16ePee3atal/GzXcStZrzZe+eFwwbVrivH7FihWIRPJ7jmxVX3x98mWA/rwSmaPOpM0M0g7pgVIH2URtiRPE5NiUmQsA0CEmgqjZShDolTuwVxwCW5H+lFNRY51gzzHAt++E2i6rg7Rm6pll20ZZ7sDmHQXZ1r0DvPS6XHJcPe7uEFSZtP7kEyk27LvTYLQ+H+mMuncrg7QhsRS7bcZF4+0l41RTnO2CgNaQcZC2zGk+E97rELM2tFGWatBiNZPWiNYFDGUWoRlxoeeyUmxQT0vM1ytgpTFcUQ7BceodyszqbgdpFXXbu9thXpltGBDKM253p9xxvU8rSKvOIrOXmp9qXGj2cu1M6Lh/p+bvddjggo+kER3M5ULXYKD8XU02qZT3lUpSljtwiNr1lGsUQdqwWKz6zANArH0joGjMqrxA0h9r0pphk5NB2jGFHUgv0i97oWaUSQtkn32g3Acqy4BRz/jZz36Wqv958803Y8OGDVnukSBJEv79766ZHieddBKAROBy2bJluvdLDwQn71Nob731FhoaGjTXSZKEf/0rUR+/oqIC06d3lRSJxbqOdY0arz300EN5GmmC253Yr4fD+T0X7Y5zzjkHANDe3o7HHnusoGNJvj5A33qN8mHQBmkFQTD135w5c7I+1oIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCg5/8Q6hZlkHaT4+iM28qD2d4Qte/L4tk3NmXmAgCscJ8HABCdxvVSRUcJ4rDjfc+VeNV7E1rExLQ214jTDO9n82gEaR05HkSJiddQq9xBTOsMTUEri2nPM0PQ/ulvsXCbHy/Kl6DB1tX4zObdr9tB2idLHoSEZFMO9bi7Q7AXwy9U4PWi67Gw6Kf4fI8ff3/u95i3uRQveX+PNc59Gc55zKTN95VGW5H+wbxN0G+0AySm9w9RTLdMr0ur+Zgl4zQzeJQdhJVKnGLWzNckr0PIGlw0FaTNY4BB66GU5Q4abAfglsrP8OuqTdhmPwyfuebif97fYpu9qyGbXzDfnKBTqMb8ohtMbx8V1NnHGolzOcmWZZ9OOaWc+o4SxXuzznWyqfuFob0fVwdpcxtXkjJIGxQyL27qBRziJn6/HljVgYdXteOxRe/i46dm4rG3nsKbtotUzZps/SpIO0Vzedy3DZva1Jn1WnXlk2Iau3D3QE3P7Cblb9kbX+3B60tfx3++ktFgOwBRqIO0Wirdouq37t8lD8AnJBr8SBCx2H0xHl9Vhxe9t+F/3t9ity3x+VT9Dg/MGG3qovBACdKudZ6EV7y/w5eOY3W3aTNRKzypzJVlBpzOqdMF8/figvl7ccWuH2Bj2vkWg7S9Y8SIEXjggURTTr/fj+OOOw4ffKBdIz1p3bp1OO2003DXXV1Nla+66qpUM6crr7wSHR0dqvu99dZbmDcvUWJt1qxZmDnT+Di/t4TDYfzgBz/QbEJ1xx13pGqnXnbZZXC5umYnJLOHAeDxxx/XfOy///3veOWVV/I63uHDE9/LzZs35/Vxu+OSSy7BqFGJpLZf/vKX+PBD/cbFAPDRRx9l/ZzlKvn6AH3rNcoH1qTtBkmScOWVV6Z2Qkl1dXWoq6vDyy+/jCuuuAIPP/xwRpc86kPSsgIi8GCL88iM1craXXl9ap3lykzaevtk1TY7HNOx2XE4arI0tRIcpXjZ+3ssKkrUmF3q/jZuaZ6WNUirmUkr5jYFUdiXEapV7iBqJkir8RZ0iEPx8WYfXt/tBzw/xEfuS/C75sNQLDfDVrwfpKB2HV6zmuzj8K7nxzgp+EDeyx3A5sXfyl9AvV07G+kD/BBXtl+Iw/Jckzbz/90jemrhlZrhF6tU68zUbzyg0oG9dV2fh62OWTg69C/d7W0l4xEX1mUuQwz+qPHnx0rTMLc9cWFOFLSzu4YWiaYCgZ48ZtJqZSmlZ9b7hErcWdl1cHRPxeupf7/v+SGub52DYfFNWOk+19TzyQD+Vv4CdtuNM5uTkifuqjHmKUjry1LOIh0zafuukhzLX6xwn4fZoSdUy5XZ5N1N5nMKmZ8zVbkDnSeImvx4vrsrDGAq3qiYD0QBeE/BLvtBuLSjq/a7Vqf2vsqhk0kb6tiBVzYfpFquVe4gSWtNPmcjDCTKl6VdKsa/mmYAAN6qeBPf6vx5xnqHoJ3CbBcFVLpFNKfNRFnnOhl/sz2P61uPx8Kin2KB99dAEEBRIrDykecy/K55umpml9Gsmf4sGYzu6+UOzFjvmIN/liWyIN8r+hGubpuL8dElqu3aLDQlzZZJa8aD5S/ghpajMDS+GaI9t8aPZN2ll16KXbt24eabb8bevXsxZ84cnHLKKZg7dy4mT56M8vJytLS0YOPGjZg/fz7eeOMNxOPxjMZjBx10EH7xi1/grrvuwqpVqzB9+nT86le/wrRp0+D3+/Hqq6/ivvvuQzweh9PpxMMPP1zAvzjTjBkz8Oqrr2L27Nn42c9+hgkTJmDv3r3417/+hWeeeQYAMHLkSPz2t7/NuN+0adMwdepUrFmzBg8//DBaW1vx3e9+F8OHD8euXbvw1FNP4fnnn8fs2bOxePHivI33qKOOwnvvvYfly5fjjjvuwOmnnw6vN3FRw+PxYMSIEXl7LrNcLhf++9//Ys6cOfD5fDjhhBPw/+yddZgcVdrFT1W1d49LMpLMTFwIcU8IkiBBQtBgS1hskUDwD3eWxXYhyC4aHIJLkGBx4kLcPZOZjEt7VX1/9HRPV9UtaxnJ1O95AtOld3q6q26de+55p02bhnPPPRclJSXgOA6lpaVYvXo1vvrqK2zYsAGzZs3ChAkTEt6Wrl27orCwEAcPHsRzzz2HwsJC9O7dO1KUrVOnTkhJSUzUX0vT4UXaG264ATfeeKPs+vAXgcT9998fEWgHDx6Mu+++G927d8euXbvwzDPPYO3atXjzzTeRk5ODp556KuFtN4ifaIfhcpu0snJWEp20JWnkr1+QDl1MKCY0gveN6zHidl+4/okxFuXQd8rsigi0ANBAZ+Mv+1RMzh2juJ+14HR4drytuI1WgrWh6TQML50WLc5GI9E304JVZUKh9AfnPdhobRaaA5Qdi+xX4QzPf0DbOoGn468M/b3rQUz0vAxz1lD1jXVwgO0kK9CG+db5EIbS8qKlXszZoQctW9dz4dnVLHrEmvvF2DvBwu9FI6QiLalwjJie6WYsihJpyxhlgYJxFklcQgzbiBMK0rDwkLzTObXpQUJcGGhyiR0/7BFO48xoEnTlxg2KUrUNUnRPYMEbUq5bA50d+flP+xWy+3KUCd85H8JVdfJFfsQcYXprFmgBYE7Ks8TlQ3ITE6/QJUV7F4VUIMegbeBEA0CYEaLGZynPEkXagCh7U4/jmoSJqwfQ3ImXFg4j76dU4VyN9daz4abS4OBrAbQvx54pjXyNeHtPOnF5rwz5a+KEQhsWHBRew7XcQzoiSh/zAGXHT447BcsslHzRxSw7IxBpAaDU1A+HmX74WXQcAPBTDix1XicpLkV7jwDood74NkavDLNiUcoUrgJAKD6rvfOdSyg2feF6EndXnyLZroHO0XzMXiq50akaRdxvnI/iurrLjQzaFubBBx9E//79cccdd2Dv3r2YN28e5s2bJ7t9//798cwzzwiWPf3002hsbMSrr76KXbt24brrrpPsl5aWhjlz5mDQoEGJ/hVi5qabbsKCBQswe/ZsTJs2TbI+Ly8PP//8M9LShP0AiqLw/vvv4+STT0Z1dTXmzJmDOXPmCLYZMGAAPvvsM+Tna48OUeOGG27Aa6+9hqqqKtx77724997mmW4TJkzA/PnzE3YuPYwaNQrz58/HRRddhAMHDuDDDz8URGKIiaVInVbuu+8+3HjjjdizZw+mTJkiWPfOO+9g+vTpSTt3MjlGx0C1k5ubi+OOO072X0lJCXG/7du347nnngMQGpVZsmQJpk2bhuHDh2PatGlYvHgxhg0LjXA/++yz2LlzZ4v9Tgaxsd56lmRZMs1ZA7ItKHRJn0YCdHhEWfnredjUX3WKEE/Ioiy3DVStnGrrOhVManOEgHPA/ylurwTnC7laxXlpAFDgUhdhTiiQ7hct0IbZZjkRjLMQFM1IpoQDoXzSWJArkhIrtZz6tK4jpj6gZfKEteAa9GjkZ8ZVAlvxhaHlgx+LKlxGIf2Ej2I7AW0BJ1MJON+p/jfNsAk/914qBaDli0RRJjv8lLATb6VZTC6xK+ZFhoXXawc0CzAuM4ULejoxOq/5fMdlmSVtEkP6rgLAOd2a21XgYjC0U+LyXwsJImV0jMFBlWzPnebRaKTTVc+TEwzdn6oZfSPyu82jJMusTEh4SQT9sszId6orNqcVxT8oY5A8rApikRYsnYRTdN2iz7TW3Gk5TGyD4LVEpKWkA4yANGtXL3vMIwAAtDU7wYUikwtlcsDe/UrJ8mXcWOL24wn38DB/7y91uGiNqDEQctTUXfDaQZM/twCQIzNLrIbJly1OecjUD0FRn5IO1utsZdvgwp7K/bAU7igAgKKTl+feEti6XYbDon6C+HUYUrQaiaJUEwZmK2+baWMk9QdIRKJvmMT0GQy0c95552Hbtm348MMPcfnll6N3797IyMiAyWRCZmYmhgwZghtvvBG///47NmzYgFNPFRabpmkar7zyChYuXIjLLrsMXbt2hdVqRWpqKgYNGoT77rsPO3bskOzXFnjnnXfw0Ucf4cQTT0RWVhasVit69eqFu+++G5s2bUK/fuRIn0GDBmHdunX4xz/+gaKiIpjNZmRmZmLEiBF47rnnsGLFCsH0+0RQUFCAFStW4Oqrr0aPHj0EGaytzahRo7Bjxw7897//xZlnnon8/HxYLBbYbDZ06dIFp556Kp588kls3boVf/vb35LWjhtuuAFffPEFTj31VOTm5sJkaj/9KSWOjd+iFfjPf/4TCZGeNWsW7HbhQ6LD4cCsWbMwevRoBINB/Pvf/8Yrr7zSGk01UCFlyJOoX3M/Sk29JetIeWmJgqYoPD4mA1fNqxCek2kS0SiaKDYKD6LcUWqkpEKflVKfi0zRJmSfuQye3R+AtuVGRL6Y4ENvopcSPoydUaxNWNHqkGNhirgeOEKxtSv7peClddLcJCVMuScm/OGZ1lgQjFKJslDCNfBBmDMGgHUfhr3bpZHfweQqQvY5a+E79CPMmYNg6TQ+thNQNLGgHRDqwKshzm310imwdJbPSqMomijSlqSZ8cTYDGyuDGD5ER+2VgnFoMwm4fWUrnZk2WkcbmAxKs8Kp5nGzYNSMSjHiyBPHggQkycjFl7ax4luaSbU+TmML7AlXGC4fkAK/reh+UF4t3kkONCgwcHKyxcvCNNISd3OVoYS5ESGq4LXU8pOmiDMMEFZcPvPiVmwJyhTkqYoPDE2A3ctrJK4vqKZ3t+YKtmWsTLx5F9QyJz0M2oW/w3evZ8BkH6mXXGKpRYTg+j6d15aeN808fKRNw+PSsejy2piOu9u80j09/+ClOHPxbR/a5I29k2Yc0aibpn8TDQgFBmldA+3mSjMOikL/1pZg6JUE24elDy3TXtH753Fxchfq+VmMVU31S0gYeXqUS/qx5naad6BWgRLkJIfNG5POHv/A9BQbJ4HwKv0Tc/u5kCOncaEQpumOgcPjEzHFT8d1dZQLr6BPIPYsFgsuPTSS3HppZfGfIzx48dj/Hj9zxInnngieF69bzB9+nRNTshHHnkEjzzyiObzX3LJJbjkEukMWjW6du2K1157TXEbpd9LbzsBoHv37oIibCSKi4s1vZ+Jft+tViuuv/56XH/99arbitHSDgCa3MLnnXcezjvvPN1taMu0z7trK8PzfCQYuk+fPhg1SuomAkIjDL17h4S/b775RvOH0aBlYVzF8MOGxqhpxGHcweT+zRxmGl1N5YJl/qaCIhRF45DKtHi1jlI9L33gkQv0F0Nb0+HsezPsJRclpPCUWKRN15gXqlXvYSkLaGdXANLMQiC26dD1NqlwHy+0RtGXUikKp7gvRcFWNBXOvjeBtgqLRplSe8DZd0bsAi1Cn025AQQtxbXEua0+yikp4ifGTwudLzaabTqfGZNLHCghnDfT1vzhGZRjxeQSR0S4NdEUTuxix8Sudk2fjXwZ1zdFURidb8NpxY6kFK8amCMciPHQ6ShlQtONrZwGkZaWFg2Lfl9C22SBMrlQx3RWPFYd3Un1fJkqjmS9OM00pvaQH9AZX2A1nHdtnHictKytAJTJBkefmyLLxJ/p1Di/d2bIOw4BctHLMPEUF91tHhn6gVM+f1uEok1w9rkBzuPuVtxOy30+18Hg+QlZuGVwmvFdTiBORn5wQa7ewj7zYNl9rFw9WEpcwLN9PkaqfczCkSqJLhzb0lBmbVmM4mKMYkroPbi8rwunFTs0F/azMBT6qMQiAICbSgXPelS3MzAwMOhItM+7ayuzZ88eHD58GABUQ5DD6w8dOoS9e/cmu2kGMcA4i3DAPJC4zptkkRYALJSwoFYwLEZRNPaoVL1XowHSDhpLt04VVY/IneTQOEVVq7bqhz3KSSsV1GJ5jq+mcvXvpALNaBRp43DSJh95J22xTNZyNOIsxwDlAEcrZ5L5KOHn1koLi6LUEYpMicXIeOisYdp9MsiyM+jkEP4eOy2hTGkb30DaJQoKjVSmZKm4oJqfcoDPHI1aWlmkVVufLJSm7WZYjQDLtk48Im21PXRvji5c6aaEIq0rxiibMGZCUctoTLy8gJARxzVmv2kQ/LCB55TP35Zx9r0ZoBg0UunE9cZDRuKoUphNQMJJy3/v5AYX9pmGyO5j5WolmbQmKonTzZKIWs3a8NR/zl+T/MYkEUpjbBbHKIu5NGL7O2dpuD6WmvqCD7pjOr6BgYHBsUqHjzv47LPPMGfOHOzduxcMw6Bz584YM2YMpk+fjpNOOom4z+bNzVXG+/RRLrISvX7Lli2yGbdyHDx4UHF9aWmpruMZSGFcRdhjGkFc50lm3kETZtFUykBkWjeNvab4RNo6TjoN2E+3fJXD9ZYzsSfsGmpC7KaUQ6uLt5bpDNoh76Q1x+CkraKk7up40Rp34GMy0TpyugYUnLSFGnKGSQV3fIyyKC2JOxDlRNYTRNp4CvuIcSXBJauVvpkWlLmbHT0L7Nejhi7AHw7lqcY+2oW1timS5aTKzL7MsajxKmdpHTQNwGbLJJjgxQTPGxpbHz92Wt4RptWRb9B6xCPSVlmbsuEoE+qpHCy0X41aRvg5jTcb1gz5zxegLNKa4ihaxlIWbLBOxols+xVpGWcX2IovxPaDh4jrEzELxyDE/np9jmuHopOW3A8pN/WS3cfKN+CIaD2j4kJvq0TH/ZDYZRmLCroIKb7qFmpRcqDNKQBBYP3c9U94KRdSuAoM985BpxTlQXIasRlWtBQQW2Odiv7supiOb2BgYHCs0uFF2mjBFQB27tyJnTt34r333sO5556L2bNnSyr8RQunhYXy+U0A0KVLc2XQAwcO6G5f9P4GyYG252GPZSRxXaNf+eEtEVggnE4VoJum9lI09piHxXXsBpBE2pbNb1xnORuz06RZOja2GkDiCv4EKAc8thK4QHbS+mIQ3Gt4aZ5nvGiNO2ikMyH1QLYRKFq2cJiW6ADSjHhxsR4xEietSKSt9XgB0ZS9Y0Ug6JtpxvyoCuhVTFdVgTbMeus5kmUuEweaZ8FFDRh4XMejTsXN/EXK05Gf90UVMEs2dsoDgByHwfMscblB28FKxX4frTKHiiHxrB+z0r9CuamnZJt4C4eZeRUnrYZYkVh5P/U1jAu+k7TjtwTOfrfhwJH3iOso3siaTBQNAX1CmVNhcEsu7kAJHnSUiSAE007/vj4Ns+ReyPgZz/jeI/Si2w+huINayfLF9r9H/Twd9wWvVTxOrGJ8qoZaZEvsV+HcwO2QBjMZGBgYdFw6rAXF4XBg2rRpeOONN7Bo0SKsXbsW8+bNw/3334+srJAw8/XXX2PKlCkIBISdkPr65iIuLpfy7dvpbBYWGhrUpqYatAYUzeCwaQBxXRffn0k/vzjvzt8kXPp5E2oY5UEANRp5qejip1rWn/ll6r+Iy60BsvMmHmpMISctS8jXSvdt0328Wj493iZJoFVcW2HqVUTL1oQDBZ6S3j7y2e2a9rcxUsF8nek0xX0CIkHfIhJ+BvJLNZ1bjUJ2i2RZMbcxIceOlV5m/QN8ShT7FsPJCx1CDaY81DIFmo8RqcrcAth5+amQhYF1LdYOg9hQc6oqUUWHBqoP8/lEgRYAXNBXEFKMGcq5kyY2eSItAPzFyBdNbA+Ys4djtYtcubl/cFELt+bYZSS9WNf2Dsg7wGMp7rjceZVkmSmO73Zrku5X7w+66QysYZT7JW0e2gJKZSAzQDmwNvse5cOoDGTJ0U2jQ3apfXpMxzcwMDA4VumwIu2hQ4fw8ccf45prrsG4ceMwaNAgTJo0CU888QQ2bdqEwYND4fkLFiyQVPHzeps79BaL8jCh1dpcIdTj0R+MfuDAAcV/K1as0H1MAyFBjkcNLc0eTWcPYjA7P+nnN4s60gEq5BjjaOVCSilcueJ6AOAY6SCCj1J2yyWaOkJ1eQDozFRoPsZJ7lc0bVeNUGYmJ4oUoHgOeVQpugbWaj4nALCmxFea1uo88VJt11fAy9w6Lqi7Q9sBAvWSRRXhac0yiN3RNCf83oxs+B9sXLNj5G9112lri4jJDY9Jlk2pVX6ASTZpNfNh52oSdryh/u+Rwh0RLKvhM1FHx+ccz2D3x7W/HBaOLMJ1Cm5D9+DqpJzTIHGYuNjzBuua7s1+K3nA0srVwxqsivn4gHJhMACwU8kVaats5EHi9sLGygAOo5i4bkzj6y3bmGOY4VXPgeK1zwiiWXljCOerwSnuWbrOX0HlS8/RTp20edQRdPOrmzAqbeR6Fe2FAAfwGiK21gaPU1xvVRnIkqObdwHygtKBbzEHzINiOr6BgRaKi4vB8zx4nsf06dNbuzkGBprosCJtenq67LpOnTrh888/h9kcms47a5awI2OzNYtnfpXp8D5f8+ij3a5/andhYaHiv7w85QxBA3WqvJxEdDq98RncWT0JFkvyXadmTizSNlWVVdlPi9jHM9L2+xIYMRArLu4oXFyl5u3PaZQKZyQqg00CtyjJhUYQtMmKm2rOw4X1d+HSuhm4pO5W1eMFmcSLtCyvbcqil267TloSf6u7Ht2CK8AFNMwYCEq3CcjEJ4QRVx+mRNWAM6007qyehKkN9+OmmvMwxPcNeI3vdTT9/L/j1uozMdz7CcZ63sEd1RNRElwV07EShb98ATqxOxJyrDGed0H5jyKVKxMsP+BLAa9S4VmNk92vxrW/HBa2hrh8Zs2ZoGDEHbR14okLqGuaBMvIZL9mcgfB+7QP+JEwK2TOAoAdyS1qY2bad1f8hz3S96drYC0eqRwIG5IrcHckejG7MbNmsubtKcJ9NgzbuA9nNT6BkZ6P4mpTe3XSUiYH/lE7TdVl6rS271RArcWPxf0rMQwfW9wB7yvHzOrJOL3xGaSz8rPnrGbl/p+BgYFBR6N99wyTSLdu3TBpUmg6586dO3H48OHIupSU5sJLahEGjY3NHVS1aASD1qHCI+ykWXg3TnM/Dxdf1ZTnlFzMoqm8ATSJtCp9q7DjVgmWKNKq75ds8oNbwPulOVkkeJ4HhZCwq0ZlU/VjcYeTRhA864UVboz1vocRvjkY6ftE9XisSsXbWAiqlRVuwsNrCPNqJUi/QtilHKzeoL4/wUkb4JUfhiR/U5E7j7blIJvbhwmeN9EzsAQAwPtjK/pRElyFy+pvxYUN/4cuwdDvw8UpBMUKz/PwH1mAzkFtURJqZLAHwXnLkMoKnfi7G4WfN5oP4MzGp3QdW23aeKyYg9K/4wDfD7Dz9eA8RvHMtg7DxuGk5UIzP+SumxnsQXA+7QN+JJQKgwGAA9LrVRg+GP9nvhVrEsbN4YYg1pQLhboL6u/B7TWnI507AhiZ0QnDlDEARcG1KA6s1LQ9xcp/btnG/aAADPJ9o/n8FKEAFcO1V5HWCQu8GOMlZymHac2CoYnArbEWwxG3cr801m8x5ymDFW6c7n4ej1QNwX+OdsKldTdLtrPEUYDRwMDA4Fikfd99kky/fs3Tbw8dah4BjC4WFl1EjER0sTCjCFjbRCzSZrAHEO4u0C0h0opcRn6ExBK1rpWfUnfE8jRBpG0D4l9ecAv4gDaRFlzIMWzi1R8GKr2hv6VE0ONZIIYK2iyT+GgIrfXL3BodEK0BqWVU09JA1Tr1/Ukircr7woqm7NFB4feGtmVL93EnLveYrU2MSKr7vPW7wbkPoZPGvF81aLDgPGVI5YUi7Z464XUwlSuDg9MncqsVYIoVJiCdzh6eScAaIm2bh47DSVsbCA3eyBVjT+cOxS3Siu/BYhy8fOYt6zksu07z+duxQPHjXqHA7eCqMdw7p3mBjun5Bsow9lCcUzqr8TNHuM+GYRv2AWi+b2vBRJTqYnNYtjpNmfpqv78jzqKErY1WJ63c9TUMz8f2PrCN0jx9ksFES8FZAwMDg46EIdIqIFcZPFq83bp1q+Ixotf37ds3MQ0zSCiljSKRlmsW3pPtpGUbD4Fx7xEs8zeJqOpOWofqFGyOkQq5Pk7b177czeKDLQ34brdbs/tTK3nsVgTrd2valm9yajBQj3eo8IQeCMWCHoMguID+4jJHvImfgqXWGQ7jUVMtlc7B8fhxjxsfbW1AuVv4+d5RHcAHWxqw9HDsDjDS5y7ssglqEWmDJJFW+Y0RR5JQTe483+FfULfyDngPfCfZh2081NReDu7tb6Ju5V0IVIedsdWoX/cY6tc8CM6rLvIE68giKc/60bDpBdStvhdso/KgXSx4938JAAkTaQOUFWz9LqSywrgD8eBBGlcGGy//kE/CzHsi72+iYBv2o375jZLl4euBd/dHCXEzGiQPJo7CW/UBHg1+DrM3kT+LGeyhuF3ujFomLSc/oBisVe4DakHrPaEt4QlyeH9zPebtE4q0o70fwBoVD6Hl/fGXLULpbArln5eACxjxCHLwTYKiOKpGlqDC4EIMIi1DEGmDbDt1SkcGD5R/f5PMc2B7IVGD/UF/LSq+HxXq57i1DRJwvioEjkpzfwOEuhiGSGtgYGAgpH2H7SSZzZs3R37Oz28OzC8pKUF+fj4OHz6MBQsWKB5j4cKFAICCggIUFxcnpZ0G8fHlTuFUzHQ2ypnFWJEseC6IirkjYcaZguWBpq+llgzMAAdYFKKkONoKiKYgezn13MkAy+OhpdWo9oU6sqWNQVw3ILZ8VgrSbnBecAs8O9YibcwbsoMhYfgmcZXR4qRtckXzPIPoCVo0WNQuuVpPswEAe+tYBFge5gR2ILUK3vF0rt/f0hBxOP2+34NXT8mGhaFwqCGIh/6sjsQVBDgeEwr1ZxSTfoWwSKvFSUuKO9hQIS/CczxPEGkb4C9bjKp5p0HuQYtrctI2bnwO9atDxb8at8xC7oX7ULPob/AfngcA8B76ATlnKxegkhNpa5ffDM/2NwAAnl3vIfeCfaDoxNxaeZ5H/aq7ASBhcQeBJge+2oN+GlcKO6/R7d6ECT5UfHM8Ok07SnQ264XnAqiYO5K4LnrQpmbp1cg44cO4z2eQHFg2PhH94T+rcbCBLAaZ4YvbSVvBZQEKl3il70H1r2cCORpFMxne3liPiV1bPyteDy+vq8OqMuE9meaDGOd5W7CMD9SB89eBtpD7D5yvGpU/ngAAYBv2ouxDF/Kmt0PVukUIvS9+SlutBEphYJpt3Kf77AzBNRvk2qdIy7oTP6DaFvlmV2LytHkwCFQsR6BiObx7PkXOeTtA0crPEhVzRxOXk2YBtuPJBAYGBgZJwXDSyrBnzx788ssvAIDu3bujoKAgso6iKEyZMgVAyCm7bNky4jGWLVsWcdJOmTJFVYwyaBuUmXo1vwgqZ9XFg/fAt+DchyRFS8LZnFp8lD4VCw5LOEgtl6K63+LD3ohACwC/7Y/9ITvTJr3MdA5uAwAEq9ar7u9uEsAG+aROSTFVXg4sxyMourTRfBAgFD7o5/tF9Zh/libWpcdaO2nazhOHSBs9BbU+wGPhodDv8MGWBoHA+up6fU7JMCSTL90kigfrd6ruzxGmwClB+rwyXCMaNjwNJSdMeCpyWKANndyHupW3RwRaAAhWrkGwQfmhNVizibg8LNACAOc+DO+eTxWPo4doV3I6l5johqLAGgBaRNoy2Dl97nNzkyOxcdv/YmucCN+heeA8R4jrukdV5vbu/qhVC7sZKONk1fPEw7i4CsmAnJxAC4SysHlfbNnTYXqw8gM0FM/CLJPtyXpC36E0rdPPZWB57YN3bQFPkJMItAAw1LYTGZz0vXDveEv2WDULLpEs442IBDJN17i+/l81bU4H5QcX2Ib9APQ5aYOU1LSQTddo3r8tUdc0+NktsEJxO387+l6SWHc0MZnBvQLNhiS2YQ+8B5SzjIP1e8DKDGwXBDdKlqnNpDIwMDDoaHRIkfa7775DMCifo1RWVobzzz8ffn/o5nbjjdKpljNnzgTDhEYRZ8yYAY9HKLR5PB7MmDEDAGAymTBz5swEtd4gkZAe7Bup9MjPpDylRBHOuLSIRFo/H/pcaZntrua29BDErQBPY0ulcsdtS5V6tIBWchzS0fbwdEjOp/7wHqgMPUBP8LwhWXduw4OC1zyAah+HAC88pxnkrMyzG5+IiOQ0H8Rg71eSbQ43JtYpErTmq2+ExE6BPdwQut4l6u9a45N+OF1ck5tNQ/avv3yJrvOVu6XnS0clfAfnKu7HecmfL+9uaUVr3ts0ZZoi3xa1OIQBIFAjfQCJlejrD63jYVqOLHYv+vtD4nQqV664bRpbCiuvz4UTnhYeKFsUWwNFsA3NUTBnNjwZ+TmdPYihvi9FGydvQM0gPtIDu9HTr+0zYeUbkKFxQKJzcCuKgyvBx1h5PEyv4J9Ikfk+0GBBceSBOr5pEPfS+ltlj93f97OmAnxl7vbjSDxYT27rsF5DicuDCtdE3+GfJcv4oBF5QKTpc97X/wdS2ebBq2HRGcBRZAflB0zDTlqTStRHND5eGv/UiWmdgprxwjbFcAz0fY8sVn6AttLTfr6XyYLiOYzyCPtMwco1ivvwQfmi2n39v0uW+dpwDQYDAwOD1qBDirQzZsxAUVERbrnlFnz88cf4888/sW7dOvz666944IEHcNxxx2Ht2lCl8nHjxuGmm26SHKNXr1646667AACrVq3C2LFj8emnn2LVqlX49NNPMXbsWKxatQoAcNddd6Fnz54t9wsaaIYkhFn55gcEtmFvEs8eOrlZ1En2N8URBAiNo0QOE7eKkitXNEBtdL3aKz1urE4fTrTfBfVRrkZaPU6CbxL9nHw1Hq4cjAw25AC5bUgqzh0zBWZK+IBe4WHhF+Xuit3KYfLYrbi9+jScV38fbq05C70D0viSRBd1If1NCsw1kmVcAp2Bie7+VnuFDy4u7mhkKiSvItLyPK9bpBULGGnsYZg4D2ir8pR6OZGWuG2gLjRoI+Pi4hoPaMqu5QPyDyd64bnEDZYM9n6F26tPi+QKqjlpU7kjsPD6xBJHeFo4nZgsZ9qSEfl5oucl/L12Os6rvw93VU+ESZRRzfn1RTMYtBycrwLX1l4euXYrYea9yNSwHQDcWnNWaPCCi0+ktbKVuKP6VPTyL5Ss40GDl4lroJhQAZzegYW4tfpMpLOHQPNBXFX7d1xSdyum1c/E3z2347wBvXBTpyXomcphaibZkS/Oxm/LHGwgv9+5TjNSR74sWU4pFuCU3l8TeQ09puBDnxELPLireiIu4F/HrSW7MbWHi7h5VmAH+TBBb2SGghnyIu0FGWsVm5MX3AKwiXFqthYMgrijehLOr78XV9Vehb4+oUv5qKdjurq7+5cCAE50v4ZHK48X5EwDzbMIZJHpR1EmB2hwGMcJZ8Z522Mwt4GBgUES6bCZtIcPH8asWbMwa9Ys2W3OP/98vPnmm7BayULSk08+ifLycrz99ttYu3Ytpk2bJtnm6quvxhNPPJGwdhskFtIUm2j3WCy5XXoRd5L9fEhgFE+zYngfrLwbbqpZuFBz0sqtX68i0tb4pA+M3iAPl0W/YCnuqpnQfG5Ki5gTJfplcIfxcNVw5E4rB2OzAZiM7F2VggfcSg8XeQ/DiIXwaPLYbchjQ/ELB03HSdabEjyUJe6MDsm14J7hvTBnWwO+iMpHbsuzv6pFTtq0KFcP+CB4ngMl40hlG/aBcx8GtMXqAZCKtNnsXoDzg3bkKRYN4rzlmoVO3l+jWok8ULUW1vyJysdRcJDoJoEi7VmNT8HJ10ReW+CFjauFl04jbp/OHdHtpHWEj5+oTF4u6loB4Hj/j/Lb+msBR15CzmuQWDhvBSzwYqT3Y/zkvEdxWzeVjhJ2pabj2sOF7eJ00vJBD9K5alxedyMeyha6PjnKJDvwFJ09XRJchUeqhki2SZ/wCewlF+MEAKHk1c747ZejqPMLL/DtSqStJ7/f2XYGjKNAspwyKYi0jBUQieAJvYYeQ/BRgxEp/FGc0ZWGq98olLuHAweFA4iZ7H7QLPl9jM5jFc/kimbUgFPw+cIq2fUW3p3QgcTWwsHXYrw3lKVcauqLLdbme/zRduRwTyQ31l5IzCAOw3mVZ+LIDWx1vjw08Ju/oxHY3jwIrBbBZmBgYNDR6JBO2nfffRePPvooTj/9dPTq1QuZmZkwmUxIT0/HgAEDcP3112Pp0qX4/PPPkZ6eLnscmqbx1ltvYe7cuZgyZQry8/NhsViQn5+PKVOm4IcffsCbb74Jmu6Qb3O7IEDof0U7aYOt4KQNNLlAxW0z8z5JtXV3QLlj4xWXbG/icCOLcoXOJ8lJG+tIt1hspPjm82rp4POcsjMzS5R5W+Fl4Ze8d9qmQnOQisaJdtKKO6M2U+j4tOg8ieyzJjquU/z5SONEuaEK7prA0aW6zyf+rGZx+8BzftB2ZVGO8x4FpzGvkvPXqIo9WiIPEuqk5RP3AExyziq5aWNx0ka2j9PZGEbPtGcuYDhp2yrhwl7i4n8k6ukcZHL6Yob4OD9vfFNURipPdt7LCQ5aMKX2liyzEgpRljYm5jvTEshlBGfaaOL9WlGkNZy02hHfn6jQIIGZ8LXKYXcDnB88obAXG5W/rjSA3cnBwG6S7/9Q4ACufTtpxWSywmvP0Q4Yd2DnahQFWiB2kTaMTXQNNERaAwMDAyEd0kk7YcIETJgwIWHHmzx5MiZPnpyw4xm0HKSiABZB3ME+8DyflKJv4elCYidDXYDCR1sbcEDkVjHBF8p8jIpbfXV9Hd7pnCN7DqXiU+uP+jGpqLnKap2Pww973aARKjal51gkVpX5sLnSj921wt8jXGAKABrWPQzzKd+DNsvbKnnSQ0CUuJtlZ4Coqc+VHk6Sg6s0pS8alkq+SCuOOwh3VsXPWYmMOwBCxV7iKUYWjdhJKxb7PLvfh73nNcTvjdaoA57n8WepD7tqAlh0SPj3y2L3AZwfjC1X8Ricp1yQa6pEsGYj6lYpu/zqV90FZ5+bQJnkK7HzAf3F2PwVK+Hd8ylMGQNg735Fsws5gS4lUi5zGleOcvQibA1kMB6Ydea8hnNzldzNWgjW7YB72+vw7PlE8z68vyaucxokh0DlWvA6RFqeYjTHHYTx7p0DTJDmTGuB53mBkzOL3YtKpli4UTwibZr0+0USaX/b78Xf+6fA1A7KnMvFJZloCn7Se0VJHzWCdTvQuOVlYpa0Z9/nMGcNjrud7RmeC8C95RWwnlJYC86A79BP8B38QbgRFernkD4zOezu0HFYLyha2L+KniGmJNLSFNAlxYTt1eT7EAWO3D9rx4gHiI56uKQ9AySCWh+Hx5ZV42ADi3tHpGFQTmjmJ8vx+ONgbNctJyfvng7DqcQdBCqUZ0NYReL/hooAXlpbC5qiwFDAVf1dsCV6GpuBgYFBO6JDirQGBmHIcQdR7i3WA857FIxdWQzSC8/zcG95CQDZ5fnNLuk0YzPvhY0XVlt3B3l8uKUBl/UlZ5IpiXLrjvoiIi3P83h8eTX2yxQEAeTzbUmsLvPh2VVkZxsdFYDgPzIfNQsuQuZEhQJQhKmm0aP02XZhR67SyyLNqj3uIJogwUmbaMSO5PADOyPqjyYy7oAH8Op6/eKhHOJMWrFIW7v0OoCxw9H9csm+/jJ5kZbjedBND0OLDnnxikybs9j94Fk/KJNyZgLnq0DlD2MVtwnTuOkFTdvVLLocGSd9IX9OnVN1g/V7Qm1sEmT5QD2cfW8O/ZzkvD+5YkkAYLfZwfljdM/ryAKW7BuoR8XcUeB96g+Kgv2MTNo2B9t4CBXfNUcA8JAWkSSRpVOkBc/Cs2cO7CUX6dsPkNxfigJrJCJtPE5akovUJuNOfHJ5DR4enUFc11b4coeyuz1cTC2ahrUPIGXg/ZHXXKAeFd8NBy/jfm/86ylY806BNe/k+BrbjqlbcRvcW18BADRufIa4DRURaaXrstmmwUnWA4gGwQVOWsgPxFEAipREWr59irSkgsFhxE5aH8ujPsAjNYaor2TD8zyu+7V5QPSfK2rxz3EZ6JZmxre73fhkW2wF+Jy8BpFWwUnLespQv+ouxf3FTloAWHK4+Vr8t37kZxoDAwODjoIxTGXQoSHFHXQPrhC8ZuvIxRfiOu/R5ZGftbo8TbyvOYMvim93k3MjOZ5XFGn3RDlc99YFFQVaAGhQKVIWzRsb5AVBWjSNynfwB3AB+c4kZU6VHsPcnKOZZRM++Fd7OVSJRESrxmnbBUFpFep6f2ILR0jiDpo6q2LHbo0vceet93NYcUQ5NkIPkkxacdwBgNpFV0iWcd5KBKv/kj1u9ECAnEALhDJpec6vWqQMPBsptpIovPu+jDzksY0HpRvodL96dr0n2Kdu+YzmlQmKO7BT5Adp0t8tsk/X82I+H6dTYI3GvfVV3QItYDhp2yL16x4SvOZkcqqj6e/7WZOTVlyErG6ZtMCrFsTT8wf6hAVtGN4vG7nDq2RYk+5dADAkl1znYHNV28/3/HQ7+V5anBryfJjS+6kew7PjHVmBNkzjxuf0N+4YIizQKhGsD/VNSbN9ugVCfUyOEBkTLhoGKA9gUxTQNVV+YIUC1y4LhynF6KRxpYJILgCS/mRbYRtBPP9gS2iQOFaBFgBcGpy0Su9h/Zr7ZdeFkRuoCkPQcA0MDAw6FIZIa9ChIcUdjLBtFrwO1m6WbBMvwZrmCs9aXZ5m+GDntbvF3AFeMde0zs9FxCYtFWwrCTm1cohFvGgcXI10oYJTibZKnUW0LSvys3hE3s/x2Cp62C0IkitqR2hypPQOLJCs2idTJCVWxDHBTNMDVpcU4cSGfXXBmHK6AoR9xO9HvEgzaVUq/TbhK/0N4SzmK+r+IVmvJY7BxtWiMLgB4PyRrMsWp0lU9e79XLKKcZXoOpTv8C+SZWHxR5zNeE7DI7LHmVBok113dSdylW6xayjM5X1dcA34P1AW7a6+Qd5vIj/H4zz0HfpJdRvncdJYilb7LBjI4i9bJHhNiju4q+ok0E1ZmzQfxMmeV+GAuhv97EZhQdaYIzZErroB/h/R1dKcYz3a+758xrJKXnrauHeIy88olo9LaY9QaHa+WTqNJ24T7V70l6vnkvsOyRcJPNZRcnoKtguGBuhNNIVx+c3Cfw//EnQJrg9tQxi8ir4+M2Bhp6SfYytDgaYopFrkHxNp8AnNTW8plDKPGbCS2g+JiolKNFWEPvmmygDq4jQWKGXVRyM3SO478B1xuWvw45Gf063K8gPdRuMlDAwSyfTp00FRFIqLi1u7KQZtECPuwKBDQ4w7SO8Db82G5m2qVQS+GIieKqRUXVfQLmc+0uwuoEbbOWpVOmoBDvCxgM0UyrVSo0JjlVu1BwxHVIX55n3kjy3uCKYME079s4hE2koPB7eoU90tsExyXNfgJ0Bb0mDvdilYzxH4D82DOWcUrmhw4f0tzZ34vbWJFWlZ0WcuPFWxZ7oJNNUcc8DywM6aAPpnWXQd30MQafUI7GpwPC9x+aYqODKjiRYkB/m+xfv4r2C9loeh430/wAR/yEmr4MBOJjznB8VY4Nn3mXSlzocLxtkVAQgjINiG/TClFEscqZM7VaBXnzR8u9uNQTkWjOxsxYYKPwpTTBiQbcGkrnZsrw5gQI4FFhpYW+5HUaoJJXUe4mUji9tLbNNZJXZQlAM5526EZX4Qfl69q3B5/c1Rv4A35hw/tlG9aBTjKoIl72T4S3+PLIs3B9cg8YinvnOEuIO+w/6Bp3Ot2FhrR3dmF7o0ToOl8/9gWQ7I3cLu6boGeau/Ia+MExo8/q9wCX5fvwh2vg6DfV8Bzi7EbUmDEdlTNsBf+htMmYNg7UyufeAw03hybAbuX6KtqGFb54mxGeiRHooKkv3Oc36ACQuJiZ2dcqzBa4zMiY7SuHFgKo7P8aJy2W0Y2vBupBwbaVaDOKLgtsyv8VTlxYJl4QlKSo5HHlQ7ddIqv782vh4epEdee1QK9LYWcm7TnTLxFADw8klZWFXmQ66Dwc6aAL7cKZ2Jl5M/FOmdPoC1cDJql8+Ad/eHxGPxgXpQjHRWACkKgUnpBtfxzQ7bTJuySGs4aQ0Szfz583HSSSdFXl900UX49NNPFfeZPn063n33XQDaB88MDBKFIdIadGjEcQcZVhqm9P4AmsWXaNdroojObNTqpLU6c5GaWQDUkOMNxGgZTa/zc7CZGFRqqGBboXHKV51KjiXRSSuuWhy9SvQgTJmEWVVm0XO/WKC18I3oEpROsbcXXwBTWqjyNm3NhLlpmmY/q7CDe8TNwhPkYE9QEQOxhhrujNpMNIpSTNhT1/xebKuKQaTV6foIsDzMOnrE9X6pQztNpip6NDzPwx8l0jJgYaaCCEQJgOK8XhJDfV+GfmD94HyxZ5/GBRcA23gQAZIjTGfcAWWWZq8FazaGRFq/8AGbtudjeGcrhndufjAqjHJg98wwo2dGc67yGSWhdT5vOvHc2exeybICFxMRWhhHPuzmo/CrfKcHZwZgEhQT4kPfaUIhPjW0iLSUyQlz5iChSOs1RNq2Bs8K71UkJ62z7ww4ARRlAcCApn+A01wBP2HwsE+GGf0zKcQeqKGO3QSM886OvOZl7k8kkdaU3h/mjONUz5ElI1K05SJFcoQFWiX4YGOzoKMhgkaPi/9Yg/NqnBUQFbfB0BQmFNpRTv0GNipCi/NLBwLEA9+5ZmmfMtyPsIvD8qOoYfLbZyatSnFPGy8Ucduqk1bObbqjhtwHybbTyHEwOKMkJO43ykSY5RaMhL2pXoWr/52yIi0XqANty9bUVtdx9wiua+lWWmBKENMO6icatHM+++wzPPDAAxgwYEBrN8XAgIgRd2DQoRE7ac00mkTaZpIt0po0ZtJaaHL2mBx1ogfcTg5GMjodzlvVIsBqiUQAgNJGZeepgyc8NCgJW6IHCooRTuu2qLwnJYGVYEBoE6HiNAAUukySDuK+usS5aYOizxwTdbI+mcKHXVLmmBoeHdnBgHI0BXF70WeFApBCqRclY+t3CqpKA9IHwPDDkNyIdQpXjh6BkOuU53ytJszxnB/efeTiYYqfZdL2/jrJsvA1R+yCoq2Zuo4dhrKkE5eT4g7E1w0tFZYHEpoVS+QBz/Mhx50KFG0GbRU+HBpO2rZHeDp25LWOLqf4OhlZzvPJF/DE9waZuAPJdF/GpllgZWTuW21TDoqf6AxLLQURaUua6jbHKrxf2xAEaQaSOB6K9xHc2qJrrIugsYfH+O0KTtoKpkTT9bqtocVJG4144L+tINf1lRNp853C65qcyBvtcqVEReeiIfVd5GCaDBHR55aLPKApBUe+gUGC4HkeDz/8cKu2Yfbs2eB5Hnv37m3Vdhi0TQyR1qBDI86kNTOURKTlPKXgfNVgvUdRv+YBNPz1T8nDpx54LgjP7g8ir2nwMGlw05ppCqyMePXsqhpwUevq/JykeFeahUKKKF8s7Lat0CDAas01PdIoL/jShLwvAAhUrJTdJ1C5SvBaPL1KHHcgpjsh6qDpQMTFFoZCoUu4LlxkjeN5/LzXjQ+2NKiK0XKIzaLRz0C9M4RPS+uO+vHZ9ka4dQiveh8oZvxRiXKFKIuD9UF8sKUBv+zzgON5adEwKw2GJr+XtctvhffA9wCk2au0vTNsZuFDQ7hwmJwJfJD3WzAItTVYvSHuB0TKHKMQwAXgIeTRhtfpgVRAJ1gdKmAnLqAVq0hLy4i0JkjbWi+a2qn0kB5mYLb0KT8WkZZzH9K0Hc+zEgdPsgV7PuhGw8bnULfqHgTr9yb1XMcMos+AlsJhYcSfwzBBjpxTDgDefV9pb5sClOjewHnLEazfI91QPMuDkc+FFiP3tfpgS4OmmS1A6CHzt/0efLClAQebstODHI/vdofuUUdE96hdNQF8sKUBiw55W3zqZu2fN8C96wPwPC8YpJaDC9TDX74UdSvvhHvHO6hf+zBKZ1MonU2hbvV9ugfD2hOaCy+SRFqL8B7B+avgO/wrapfPhHffVwjW74bv4FzBNhQjP1tHrcBTe3TScgqZtABgFfVR4814TRZy3+ANFeTvRq5DeP11iwskNBEtnlImeZG2ZsnfUb3g0tB3ctX/gec52e+lKbWXZJlc5IERdWCQbLKzQ/3Hr776CmvXkms2GBi0NkbcgUGHRlxkyUxTMKX2AGizQGwJ1mxC7Z//iDjc/BUrkHlybA+E9av/T7LMwnsQpJQf8MwMBTmtblWZH48tq8EjozPA8zyeXF4jechNtdLwsjxqosw/ESetxofCPw97MTpfuZ1KIq2T8oDU/6qZfyEsFx0C48gXLCc+dNMikVbFSds98Cd5hcLDRXGqGfvrm3+PsJN2zrZGfLUrJND/ut+D107J0h2DIM6kjXZU9c6Uil2f72jEzpoA7h2Rrun4sUzNm/FHJd4/PUcieDcEONy3pAq+prei1s8hQ+R+yLDSoGgr8YHBveUluLe8hMxJP0lEWmv+JNh4GtH5hJ6mh4YGmYeiIb7EiDAAYMmfBD7YSI4sUIFt2IdA+RLiOrmp0XJwAakbJVATEmmT7aTVghaRtnOKDeJSI959X8LZ+3pd5wrWbtO2Ic+2uJO2dvmt8Ox4EwDg2fkuci/cR8zjM5BHj5NWjiDHg5Zx0lb/cR7ST/wc9uLz4zsJLe0aV3w/DJ0uPAjK1Fz0SxLFQ2v/PMg5aefu8eDPUh9ePilLdpsw3+5246OtIYfqT3vdePWUbHyytQG/HQi1a+lhL16YkAmbicaRxiAeXFodGST0syk4pWvLFTDzHZwbEgdZDzivemEi3leJyh/HC6b0h2nc8E/wviqkjfkvYc/2j3aRVvreUKIBDN+BuahfdTcAwL3lReJhlK5jatd/La7otoaqk5YTrp+zvRHn95QXK1sLudkGclhF/bt6mRijDJs2kTZYtRbBqpDA1bjxX6BoM+y9riFuS9s7S89jZQDCLDejaJhBsrnlllvw5JNPwufz4aGHHsJ335GL3RkYtCaGk9agQ9MoEjKtDAWKNsOU2lOw3LP7I0HsgW//1+DlKj6rnXPT85JlFl7dmWtlKPRUyH7b0uR0LW1ksZcwPT/FQksq9R5sYMHzPLFKLIn/rFWf3nRUQfB1UPLuusYtL0uWVc+/SLJM7PqwKjxEmGigZ24n4jol4ao4VfiQfqAh9H6GBVogJIb+uk+/W1AstEc3P9PGINsuvSyvO+qXFS7FuGMscrHokPR3+WG3OyLQAsBn2xsjwn6YNCsNKDhxAMCz97OIOzSMpfPJEpdO+FxyQnNxcBVxeSw4e98Ik6tbTPv6yxdD1seSgLgDtm5H6FA+YTYhZUmskxYAShhhBMXYfOED+5Bc5b9t7wyzQLgKU/fnP7Q3sAm2geBWJGBK6yN10nqkxUoSBR90RwRaAOC8ZfDLiPQG8hQFVmvedkw+WTga3smqeO2uWXSFrjaRcq1JwgTvq4JnzyfCZaywMFoinLRAqGr7Fg0zV8ICLRC6r3y5oxGLDzePwlZ6Ofy8L9TGr3a6BbM4Xt+gHlETK6bMwbLrapfdrN31ThAhw7i3/09vs9oNWpzGAGDJHSNZJh7I85ctUD0ORVtxXJawbzmsU+i6ryTSdgssA1hthW/bEmqZtIdtw6X7tMGiQT4NGf7RHCeqb1CSSvZppVm0ibRiGv56AlzjfuI6UnyBnJPWbCgTBkmmS5cuuO666wAA33//PVasWKH7GBzH4ffff8edd96JsWPHIjs7G2azGenp6Rg0aBDuvPNO7N9P/j6EmT59OiiKQnFxsWD5Y489BoqiQFEUduzYodqW0047DRRFIS8vDyxLfgb/+uuvceGFF6Jr166w2WxIT0/HsGHD8Oijj6K6+tgoYnqsYVwKDTo0pSLXZ06TQCYWQ4I1QoEJQEKzuEgFfMTk2BlVwYTneVTKCK42gsi77qgfnqC0EFQ8NCiIhFlm+Q59oHyxdCHJlSjKC8yy0bLZXL3SzcgaLXWPMM4iMPZc2bbki+IO5NzBu+v0T7kUTzFziHqkOXZydMDBBm2DAtU+ba5oMZsrpZ/nzQShQGzeMNEApXIr8ex4S/J9oe25kr8b3yR8kgwif++yn+jCjgVz7hhYu5wNaBBVzLnjJMuCddvld9D5MMcR4g74YCO4QKPUSWvL0nXsMBRjgSmDXBzhquM7R95XhgImlzgE608tciDN0vzOD8m1RLY30cD1x6eAosmDR3ofbLU4yMxZw2DOHgHanic8V7ABnMrDd6z4y6TXpmDt1qSc61jCLBKRhls2CAahpvWWFwAmFNok33e7icLpxXZQtAm2bpeRd9QpGon/trQtF+asIcRtxd97sdhDmVM0n1fNJRvLFOstVQGJcLPwYGjwLZZ8cy1YCber1OHPye/A+SUF5QyEaCmeCAD2btIBCTmXuRKUJQ2X93VF7scMBZzdLXQfMNEUceAYAE50/5dYmKytw4vjDii6Of6KtiJgkQ7sJ7KPnCiqNZorACDfyWBgjvD5YWCOBZ1EEQgnd7EJrk0UbYK9x3TN52EbpKJU2pg3iNtmyXyusmT6wAYGieTee++F3R4yGDz44IO693/sscdwyimn4Pnnn8fSpUtRWVmJYDCI2tparF+/Hs8//zz69u2Lr77SPwPw0ksvjfz80UcfKW5bVlaG3377DQAwbdo0MIzw+1NdXY1TTjkFU6dOxeeff44DBw7A5/OhtrYWq1evxiOPPII+ffpg2TKZaECDVsOIOzDo0IhzRfNcoa8EZRIKFRyh+ALP+iTbxUoXF4WdKppvgYsBQ1O4bkCKrAumzs+jRqbjZmEoDMy1CNyg++qCOFAfm6gnR4NCfmq2Rf5BUesDrjgv0ERT6ORgJII7AByfY4HJVYSc83agfvW98O77HM5+M5Ey9F+K5+jsFJ6jIcATnayxmCvEIrbTLHxYF7udwxxsYNFHg5GyRmchMKX9SE4N4q+sMj2NSe0pKBwT2oWRiDDh95N0jgnZdVB7HEwb/z5qFZx0tK0TXIMehr3bpaBoRuKEk0AxyDr1Fxz5QOgUZet2Kuyk70MhV3yDbdgLcMLCROK8QT1kn70W9avvgXfvZ6Fj2Tsj/YQPkZfaBU87A9hUFUDfTDO6pQkFV5uJwjMnZOHPw150djIYnGvF1io/dlQHMTjXggKXfDciWLsF5vR+mtuo5YE/8/T5oChKEo0CAJz7MGhRgZJE4Cv9TbJM8qBvIIG2CgcVUnv+DU/3ycSSw15k2ZiIW4/EoBwrHh2dge01AViZUBbtsE5WpNtC1+b0ce/iiEzVcT34yxYJXls6jQ8NANBWyfdP7CoTDwroEWnVcMncB5QgZZeHZ8skwp3mJcxw+Oc46TXJmncyQiUlZa6FCg5ZA4B1q4u0jr63gjJJBxljKapHW9JRkmbG0+MysbHSjz4ZZnSPGtDPd5pQ4RF2UMe738Tx/h/B8e2vwJs47sBaeCZcxz+AwNFlsOSdgrSNVlT7hc8GPpaHSUfh3pZAa19vej8XTii0SQaGGJrCU2Mz8dsBDzZW+DG+wIZxBdLPVNqYN2DpfBJqF1+pei7SAINDJgIhkzTCg1CRYwODZJOXl4cbbrgBL7zwAubNm4fFixdj3DipKUOOYDCIvLw8TJ06FaNHj0a3bt1gs9lw4MABLF26FK+++ioaGhpw6aWXYs2aNejbt6/mY/fo0QMjR47E8uXL8dFHHykWOPv0008j7tnLLhMOXvt8PkycOBFr1qwBwzC49NJLMXnyZJSUlCAQCGDhwoV44YUXUF5ejsmTJ2Pt2rUoKirS3E6D5GKItAYdGrGwl98kzklEWoJ4IKnsHAfdu43HH1uVxdJw2+REPCDk+KyScVKaaQq90s1wmChBcanFh/VP2VdCHCERTY5dvpOreVoVofhMnpMs0g7IDokAptQeyDjpM23HR8jNSlNCR+cRQnEtnZFg4HheEkcgFmlTLOT3KFwYRo1YRVpS5IVfg32Eivqv7DbmFKkYSRJpw/8Xqd8MBVAyxcmicXS/XFGkTRv9GmxFUyOvOU+p8gEpBpTJBkvnE+E/Mj+yOFivJNJqh+c58IRMWoDs1Iw1kxYIvX+pw58jutyK08woTpOPUkm30jgjymHbJ9OCPpnKrn4A8B9ZqEukJVYiF0E3VZumTA5QlnTw/prIOtZ9GKakiLS/SpapfnYMpIWNKAYpFhqnF2sb3OydaSbmdAPargdakIq0J4CiKNC2bEkhO/E9Svzdpc2pus7NUPIOPXF2uRYaZWJiShtZ1QKbWqjySu+BWTJTlq2FkyUFqtRg0vqANRzqEjeiKeN4BKv/EixjCBmfQGz3iLD7tijVhCLCFPgCF4O/RAkVPQMhBzofqAXPBUERcpzbKuLCYZTJBUvOCFhyRgAA0q01kn18LA+n/C2yVRAXcSUxsatNcO8W47LQmNLdiSnd5fvfFG2Co8ffULd8hmx/JYx4gMHe8++y22bIXDsMkTYEz3OSyKtjHdqaBUpHgdF4ueeee/C///0PjY2NeOihh/D7779r3veaa67Bww8/DLNZeGEYMmQIpkyZghkzZmDUqFE4dOgQnnrqKbz//vu62nbZZZdh+fLl2L59O1atWoVhw4YRtws7bXv16iXZ5rHHHsOaNWuQnp6OX3/9FUOHDhWsHzduHC677DKMHj0apaWluO+++/Dhh/EPfhskhvZzVzUwSDB+lkeFR9jJyZMTaQnTcHkucSJt13QHAOWpumGXr9KzVpk7KDsFysKERs4HZFuw/Ehz20lZpPGg5KTNccj3crWLtNIOXJ5TusxhotAtLbZLnImmkGOnUeZu/l20iqRKeIK8xFvkElmcUmSdtBrjDnRMgYuGJO6SRFrpEooonAv28VUTBRuxATeszYpbQlFSB3UsMK5iwWvOrSy0hR88aZtw+iPnPqywl3ZxJeQulqliX7tF3BpQlvblWvKXLYSzj/ZsWr1TZxlHPoICkfaQ/MYxwnkrEayUVv9lFT8DBgAATvydb1sJW6z7CFjRgIul03gAoYdFsUhLS0Ta+Jy0JhqQiY+LaXq1XB75XxV+1QKbWhAP5DlMFGwyhTPFhf20wNg7GyItAE7kRrTmT5SItHLEFneQrrieNFuCRvMHl/NXg7Hl6D5vayH+3tKi722aVfqZ1jJg3dLIzZqLRsnUoRsN12+xk5ZxdpXdVi6T1hBpQ3C+SpR/Ih/LdiySO628Ra8lubm5uPnmm/Gvf/0Lf/zxB/744w+cdNJJmvYV58iKKSwsxF133YWZM2fi22+/Bc/zxGxmOS6++GLcdtttYFkWH374IVGk3bVrF5YvXw5A6qJtaGjAK6+8AgB4/PHHJQJtmKKiIjz44IO48cYb8dlnn+H111+H09n2CiV2RAyR1qDDcqSRlcgjEZGWEY08k6ZF63TScv46NG6ZRVzXJdUKNZE2XJmVUegnLTrkky30EBbABucKRVq5Ik2xwPO8opM2N8Ulv6/WjF+CWJdPeIjon2WJq0psZ6cJZe7mNr32l/Tvo9fsRHpvJE5amXmpB+tZ1Po4/LzXjX31QWytCsAT5NEvywwrQyHNQqNHullzETgx7iAPb5CLPHS7AxzKPdJjfbZdHFsAqDlp2YY9oMxCgZGiTZK9Zm9uQNdUEz7eKnK6AMS/u14YV4mwXRqctAC5MrEcPOsDF6hH4+b/AFwAzn4zZd1NvF+aRxtG7KSlrBkt6jBIBP6yhbo6ppqrmjdBOwqAms3N+xOEU9/hX1Cz+O/g3AcBAClDnoTzuHs0OzF9R/4ASUg3nLRkeC6Axi0vg/MckTqQE/AdTiT+cqGLljKnwpRxPABICtMBkGRYc6LZAXpFWoaSjwSIxUkrt8c7m8jRHBfPDRXbu6Kvq6kfwOOMEkdk4HBZqRc7qgMY2smKox5Wchw5kQWILT9bnDPd0eC5INxbXwHbKCzmaMmbiMZNLwiWyQ1IUbE4aa3Kwm6BS/l7y/uqAJGwwvM8PDvfQbBmC+w9/gazTCZ6S8MFGuHeKixSS5mF/VKSsOnVIdKuLvNhS1UAg3IsOC67ecYJz/NYdMiL3bVBjMm3oVdGfNbcrRpypltcpBW5wBlnF9ltM21G3IFB63PXXXfh1VdfRX19PR588EEsXkyoj6KBuro6VFZWwu12R2YDOhyOyLo9e/agWzftxYpzc3MxadIk/PTTT/j000/x/PPPg6aF38HovNroHFsAWLBgAWprQ88YF1xwgeK5TjjhBABAIBDA6tWrI68NWhdDpDXosIjzaDNtdESg0pI1q1lUbKJm8XT49pMDxB1mGqkWCnV+9Y4gKRcuzF8VfonoFyY8XV9cPCCReIK8onDZKS0dct1KrRmPJKGK5KQ9Lju+DnBnB4P1KttIfbHKNIpcxjQVKugWTVAm6Lbax+GBJVUS4XRDRfM7+tuB+FzRpY0sStJC7+8tf2ibZhUSUNVFOF5cIIvgpAWAx5bVSJbRFIAETKekrenCNkW5MEmEHTeMXVpIRI5AxQpU/3EB/IfnAQB8B39E9tkridtyClMHxY6yePJoWwvOfQhswx6YUrR1THm9Tlq7MJdW7G71ly1C1bxTBcvq19wPnvUiZfBjms7hPyyNOiCdyyBE3YqZcG99lbguEW74ROI/slDw2pI7NiLeE52goixVPih20uqMO1DQPBI4dqrK+1ua771/HfXj8bGZWHrYixfXhq5P3+8hZ3enExyHYWJ10nZk6lffi8ZN0jgac+ZgyTK2YTfxGGqCKwm1zy3JSVtDN197SVOyGze9gPpVd4Z+3jILuRfsBeNo/b9vzUJpwUHKJBRpbQSjg19j6YbVZT48syrU1/lutxuPj8mIiLG/H/BG6kn8tNeDFyZkEg0GWiDlT5NIZPozRTGqPV5x3IGSSEt6nwGgE6E/b2CQLLKysjBz5kw8/vjjWLJkCX7++Wecdtppmvbdt28fnnvuOXz33XfYt2+f4rYVFRW6RFog5I796aefUFpait9//x0TJ04UrA+LtCNHjkSPHj0E61atWhX5OS9P+wDokSNHdLXRIHm0L1uOgUECOSoSuzpHjd5SGqq+63HScr4aWYE2TLZCRdMe6c0duRyVUWY5J+uArJA4m2lj0CUlOZ0gtYrUGS55oUk8BU22MjxFykyTLhuQHZ8YrWU0X2/hMPHfxmmiJC5Dn8LTOcnZmkj21oUGLup8HOoVHNHR0BQALoYoCMoESsWBG8bHAhSlLLqHp2zaSqYR15PcsPbu8vm1gn11Tr8KC7QAEKhchUCNOLoghPgzH02wdpuwDTE8fLck5izyVKpA1TrNx1DLXzNnCad7if+mnLdc8Lpu5Z3E4zSsf1xzmwJVa4jLOe9RzcfoSMgJtAASMtASjdJUWi0EqzcIXls6NRcNsRaeKdleXPyQD4hmFZj1TREc1Vm+nxGLkzYRbK8JotrL4r9/KWdPAsChBnnliuhEVoHWMRgGhDIbjyVIAi1oM2i7dMqztWAy8RjiYn1aUMuTTSXk5Hdmm+9PpBkQYYG2aQM0/PWk7nYlGj7ohe/AN5LlYgd8d0JMFqmIKglxUd83ol5/G1W0lwfw7W43YuXLndr2LSFkDMeKrfhi1W140WeBcciLtHJkKzj0DQySwe2334709HQAUCzSFc2PP/6Ifv364eWXX1YVaAHA41EpVEzg3HPPjbhxxVmxa9aswdatITOHOOoAAMrLyyXLtOB2x35dMkgshpPWoMMinr7kjJ5mrsElqyeTNlAt78m097q26fzygtV1A5qdDsWpJhS4GMUHJDGpFgqDc5tFyzQLjQNQ3p+hAIeZQn2UuzdfZYRbnPErOSZjgqPXdXBvf12yTlxxV64CNOlBON1KY0iuBWvKQ3+3QTkW1baqoTSVM4z+uAPh7+RMRMntBLKjOoCTuth1FR/LdzExZYFS5hTIxBkSUZs+6+xzEwAgZdCj8O75RLLeNfAh6T79boNnzxxJFXfpyeNzZXOeUiBdWtlVqfig+PtAMfa42pBsUkf/F5VzRwO8ULBnG9Q7r0BoUEbRnUqbkTpKNE1VNOOBZ4VO8kDFCk3nVoJUrRrQP5PCQOpYi5e0MW+g6hex40V7xA3rETpGmJTukZ/tJdMk1czZRuFUXvDCeSEUrW9g8LyeDiw+7CVGDrVmBGZDgIdM/VEB4vtZNLSjQNc5U0e9KnvPl4MP1Le7nG69hAvppI2bjdrF0wEAlCUDtuILydvbOoUGsvn4M/TDUBSF83o4IsJgDn8QJYHma6tSbE8Y/9GlCWtPrIi/72HEgwODCLPNtGbSivtO+6NqGYiLz/5xwIt/HK/PfR/mrwr1+08nB43ecUYqROMa8H+hvruOex+t4KQFgOn9XJi9ubmvM77ACiYB+dnHArQ1C7nTYhPa2iuxDDIlgvT0dNx+++146KGHsHz5cnz//fc466yzZLevqKjApZdeCrfbDZfLhTvvvBOnnXYaunfvjrS0NFgsoWvI77//jlNOOQWAgvFIAZfLhSlTpuDjjz/Gl19+iddeew02W2hwN+yiZRgGF18sHUBhowLv16xZIylwJkdhYaHudhokB0OkNeiwiGMDoqfecBqqjCsJLGJIhWfCpAwMjdqJp70DwPBOVlzc24kuKc1fVZqi8NiYDCw55MXP+zyqYu2AbDNuOD4VjihBUC2r9Yq+LgzKCWXXzonKIFXLJqvwqD/ZpY56lSzSSuIOZERamQf924ekYWFTEbTxBTZdAe0k0jWItKzOm26D2ElLEuZbsX+6rSnjzB3U/rBcnGrW1WkPQ1vSYNbYGU+xUKCtZDero/c/YMk7GbaiUOaSKa0Xcs7dgsatsxCs3gDangd7jythK5Q6j8xZg5F91nL4j8wHz/lRv+pucgPizILlWZn3R8/7psXd34pYsoch++xVqPh2kGC5ZpHWVyl5P5zH3wcEPaCdhbB2PgnmLOG0X4qxCg+i4/3kg27VWBue9YPzlJFXcup5gAZCaJ1xAGpYC06Fc8C9aNzwz8gyxlWkeX/OK/zb0rZmxyLFWGDveTU8O96KLGMb9gq250UzCCidgzmZNgbPjM/EyjIf3tssvP+pXYI5ngdN6R8o1IJcATIxcpmSgPI0ZzEZE3+ArfAMuHe8o3kfoEkcPNZF2qZCYI4eV4JxFCBYsxnWLmeDIbhrAYCiGTDOLmAb9iS0HRf1cqIo1YRaH4c+m+4HIygcVqN+gFhm2yQYTkakFcfmUBSFLBuNyqh8f61OWjni3V9MpUpfe3o/F8YV2BIqeDLOAuRM3YqjX/bSNAhAWTNBq8wuOKPEgXQrjc92NOKkLnacWdK2B6NbEoqi21VBvvbOzJkz8eKLL6KyshIPP/ywokj7+eefo6amBgDw1VdfSWIIwlRV6auzQOKyyy7Dxx9/jLq6Onz//fe44IILwHEcPvkkZEaZNGkScnOl94OsrGbBOycnxxBf2yFty8ZlYNCCSETaKJGU86tfWPWItIpTfpnQiBspn2nmkFSBQBvGZaZxWrED53RTz849o9iBLFGUglq/7axuDhQSzqvWzazQULRKrmAPJ576La4MHt7fTBZpzQyFU7racUpXOywEwVsvSnl7YXRomQCkD78kJ20iNdqe6frG4Q42sGgMcBIxWYniGKfTUeZUzU7abBsDykQWKVOGPQt78YUCUd6U3gdpo15B1hkLkXHip0SBNow5cyCc/W6FOXukUmu1NVQGXuZ6oseNKREk2yDmzIFwHX+/YJm4CI4cUhcthZRBjyB1xAtw9b9dItACAETORT3XZDlXlbBNhyB71ePZmJwRHRm9hbW0YM07RfCaD2qbqsezPkkmtdhRZ84aIngtFmklQgUhikeNXAeDM0sc6JcpFHjVBgAb/Mr57/GgdZBOKVNXzzRnW+EZAPTPFuDEOefHINGFwKz5E+HsdwtMKSUKewCMqzjx7aAojMqz4bRiB1Kswj6cJG+eRBsY1JIr9kg78iXL0kT9v3hF1rJGcn9WLSJMDrU+2hklDqQksmhYE6aUEqSPf0/TtlqvAaPzbXhhQhbO7uaIq9ivgUE8pKSk4K677gIQcp5+9ZV8ROGmTZsAAJmZmbICLSDMhY2V0047DdnZofigsHt2wYIFOHQoNIORFHUAAIMHN/eZlyxZEnc7DFoeQ6Q16LCIO116nbR6XFuBKnknbThr00oQFtW0Rj0VZ/UcN4ze7lKFW3sEgxhJ3IGMk5ZO8JRZOTSJtHHHHZDe4cR1UtXyi0nsqA6gXuODg9NEIccew22EokGZnIpF8KLJUjgHLSPa62+SvAuOVKxOD7JZq3IOW1Ib2riTNozYyajVSSuOzKBtuarORKmTVkdOuJv8wC5ok0zUQfNBWl94aE8kQ6SVRF5oFGnF+cUAwNiEIq1Y7FJz0saTuSsWPFmVS3BNjOKOFuRy7fUQSwwBZdIn0mqZZt/eoa3yOf5yJEOkjSac/x6G0/B34BMYvxArcgNzjF1aVEfcH9cadyCHuFBxmL21rf++6IVxKQ8SRLbT4aY3MGgL3HzzzRFX6sMPPyw7EB8Mhr63Xq8XHEe+F7vdbrz//vtxt8lkMuGiiy4CAPzwww+oqamJiLUOhwPnnnsucb+JEydG8mxfeuklw1TQDjFEWoMOi1jgjO6UyTnfogln0voO/4K6VXfDe/DHyLpA9SbUrbwTlT+fgtplMxCs/kv2OFTYSUtQTtWm7EfnxepB6wwo8ek3VQbw/uZ6rDziw+GGIP61sgZX/nQUP+91g+N5HNUQdyAH768R3ER4XuZYLSRW2U00UTiPJqjTyiR2P7hITtoEGglyFYrRybG5KoDPtjeqbwigKNVE/IyqZU9S5lRQFCXJaJNDi2AeN3KfNwDx3io5Txkat8xC3co7EKzZ2nxKPU5auu07aQGAcQpF2mDVWrAN+8E2HkDd6ntRMXc0apffAn/ZIsF2nMhJSzvVMy3F70kgqhCUbMREE6QH9kDFatStvAPuHe+gccsrqFmgXCjFyKXVB2XSV1hL2zHFIm0D/GWLVfdjxTEWlAmUqDifWOzivOUREbjhr6cFBQIBgIrBSRs5l+g6+t6WBvy23yP7YFWrIzdcL+9vEQ+YklG6VcUSNyR7z5fBs+fjdvfgGazfg7pVd6Nh4/PgmwZ5+KAHDRsJRcPQHHegBz2RH7FAiwR499ZXUbfidvjLl8nuIxsb04LIxR2QBhTEfb93Nzegyiv8fPI8jxVHfHh/cz2+2dWID2S+N36Wl+3rvLCmFlw7+wwzKk7uyHaGSGvQznA6nbjnnnsAABs2bMAPP/xA3K5nz54AQkLsnDlzJOtZlsU111yDw4cV6izoIOyW9fl8+Oijj/DFF18AAKZMmQKXi/y8lZ6ejptvvhkAsHTpUtx2222ygjIAlJWV4c0330xIew0Sg5FJa9BhSUQmra90PqrmnQoAaNz4LDIn/Qxz1hBUfD8MaCpi4y/9XflATW4xUtyBGg0KhTvCkI4aqynAE+Tx/R4Pvt8jrFL59qYG1Po5QYZXLASr1sOcNSj0Qi7uoAWnQ6VbaZQpCIl6RdpG0TRSh0KxuEQQi5P2m13aK3sWE6ogAwDtLARbu5W4DmjOplR6b6NpCZFWXLk9kURXtnZvfwu5F+wBbc3QJ/K1UyctAJR/XgTamg3OVwEACBxdBvfWV5F99mqYMwcCkDppxTmB5JOJ4g78NeB8NaCt6TjyvrKoLX5gDzbsQ8XckSpivfgghpNWD8lwg5NyhSt/HI/sc9bDnHm87H5i0Yi250oc8+IBByD0OQlUrET9mnulB43DSUuKfnl9Qz3q/RzO7SEVt5Mp0uopHJlQgvqqX7u3vgpb13NhzZ+UpAYlFj7oQeWP4yIDUmzdDqSN+S9qV9wKz/Y3iPu0ByctH2xA4+Z/o3Hzf5AzdQtMab0l+/CBOvA836L9NzGsTNwBqU3iyCyWBx5YUo2XT86KTMlfccSHF9bUqZ739Q11MMk4IzxBHl/saMSFvVpmhlgiiM7uVoJxdk1ySwwMEs8NN9yA5557DqWlpaioqCBuc9FFF+G+++6Dz+fDVVddhXXr1mHSpElIS0vDpk2bMGvWLKxevRpjx45NSNTAmDFjUFJSgj179uD++++P5OHKRR2Eeeyxx7BgwQIsX74cL774IubPn49rr70WgwYNgtPpRHV1NTZt2oRff/0VP/74IwYMGIBrrrkm7vYaJAbDSWvQYRFPPbdHiaS24gvUD8B6UPvnPwSLapb8HQ0bn40ItJpoct/0SNdfhbWXhn1IfUOl6ezd0qKLlGlvyxc73KjSKNKas0cQl9cuv7n5RRuYHpehUjxMbyat+MHaRRBpSRmvsRZTiCmKQAdhjZoyC50o9uKLFPcLO1dOLdL2e6U2ZatZRdmy1i5na9pfCzThgcLSaTwAIFC1JmHn4QO18Ox8N/RCj5NW51Tg1kLOPRMWaCPwLBq3vtK83ntUsJq2d1Y9F0n0a9xEdqSptadh3SP6BFoAPKtPVOro0LbshB9TzrVf++f1ivtJi4Z1kmxDm52grcI2c+5DqF18JbktOguHRSN20ob5eBt58OhQQ+vfH4fkKg+EmHPH6Doek9ZLdxuq5yvfa9oS7u1vCGYMuLf/DzzHygq0gDCTViu0WXvUhK1kWgKPz6N+zf0y64BgzWbd50okpOgdcd8lDCnOtdLLYWNF88CcFoEWABYd8in2jT/foX1gXAsDcyzqG8WBVqHdcNIatEfsdjvuu+8+xW0KCwvx2muvgaZpeL1e/Otf/8LEiRMxfPhwTJ8+HatXr8bFF1+MRx99NGHtuvTSSwEgItBmZ2fjtNNOU9zHarXil19+wXnnnQcAWL9+PW6++WaMGzcOgwcPxsknn4wZM2bgm2++gd/vR2pqYou7GsSHIdIadFjKRVPzs6IEOWe/mar7c/5asHXbhMvchyTTeJWw97wm0uEZmGNBl5Rm5+NZGoS54Z3Vp0BnEqa8exSyQKf3a84NtOisDKtUXCH690kdOYu4TaC8ecRRUkgMgLP/7braEy/5TmUnql5D8hFR8YhOBKfrkFyL4LzndnfgrG4OpFn0O1AyrIzkc3R6sT2SScxQwHUDYs+JDH+OUoY2V1enrdlwHneX4n5Uk5P2xEI7CIkP0u2b2usa8H8A1fTeUCakDHpMf6NlMKf3lSxLHfkygMRnH3oPfBM6ro5MWpKrr02iwy3pP/Rz8wuRK1WL65IWOboAwH9UfsqtAJEg6zs4V9t+UXAeaa6pARlb8cWSadKJgLZ3JgotAZXPgfhvx9ilIi1AcA0G5KMAxIKuHiw6Jz1sqGj9qI2zVQqXpg57DlDJ846+rpmzhulug7j4W1vGe/B7yTK2fpfiPlrzP6PRHBvB2JEy+HHdx1fKG/bu+0I2goJzH9R9rkQSjIrDCZM68iXitnJCZI0vtkgvpT53LFgVrhfTeic+VkZM6ogXVbehDZHWoJ1y7bXXoksX5c/vVVddhUWLFuHcc89FTk4OzGYz8vLycPrpp+PTTz/FJ598AobRP5tRDrFr9qKLLoLJpD57JyUlBV988QUWLVqEa665Br1790ZKSgpMJhMyMzMxfPhw3HTTTfjhhx/wyy+/JKy9BvHTZuMOdu3ahYqKChQXF6NTJ3Ln2cAgVjxBTpLnGi2YmVK6IWfqNhz9SjptK4yccMPrcNGmjf5v5GeaovD4mAwsPOhFioXG6Dx1AdbCUBhfYMWiQ/IFc0i5pHIdxtF5VvSOqjKtlsmqxjPjM7Gt2g+XWfj7WHJGIGvyElT+MFZ2Xz4gdSmkDNPmkksUXVMSd4n0sbwkDiLPKT0+TVF4cmwGFh3yItVKY1RnKyiKwuNjM3HLHzIFqGRIt9K4ol8Ksu0Mft7nwSW9nRiZZ8OEQhu2VgVwXJYF1hhiNsQ4+9wAxlUMtm57SIwxu5B91qpQ7AeBsFhTlGrCk2Mzsbbch3IPi94ZZgzItuCG34S/Z/iZz9JpPLLOXIZA2WJY8k+BOWNA3G2PpvPljahdfiuCVeuQNvatyHTpsKgsxtbtUqQMfFjxOkEiUmhFh5PWlNJd1zlaD+2fp+iHOHFhGUrD1HHaInWZ8YF6bTmVvPC7qLXgVDSs5whi9052HGh7HtJP+CApx6YoCuasIfAf+UPXflInLXkKLyUqTMhJClxGHyNHVxuiEU+vVsId4LCzJj4n7ZNjM3D/Eg0FUmUY2dmKVJUYGkvuaGSftRJ1K26Dv2whcZvU0a9GfpYTxsy540DRJlAmF3wEoZPnubiLO7YEweqNkmUBhXoFAGBK7an7PFrfi5xz1sGU2kP38UmDY9HwhAF2QF/fONFw3kpworiD1JEvwdHjb8Tt5b6Nap95ORoSXOhP7IfolmaCiQKuPi4FxWnJvys5+s4Az3pQv/r/ZLcxnLQGbYkTTzxRc4a51WrF/v37VbcbM2YMvvrqq5jPOXv2bMyePVtTm/r27RtXBvu4ceMwbty4mPc3aHlaXKQtLy/H559/DiA0KpCWJhyR3blzJy6++GKsW7cOQKjTNmXKFLz55pvIyNAfoG9gQKLcLe0wZYvETFNaL5jSj0OwRtqxBgBOzsGho8I4RQvPaTfROK1Y2Z0iJsumPFJHyroV5/GGKRJNtY9XwMuw0ji1iPz7mHNGKe4rFmkpS3qL55l1SaBIK3bRAkBnGaeuwyz9HHRyMJhcYscPe7RPsXY1uW/PKHHgjJLm43VLM6NbU0deHPsRK7bCMwCcEXmtVCQoWvQsSjVJPndioqN/LdnDYMnW77jSAmVyIH0saeop+fviOv5+mGKYosvWbQfPsboyaZkYHqZbAz3fUcFDHCcSnTQUYRIXegKaskY1ZMXyor9pLJnEYqHPgIyjzw2aRPdYiUWkFRcOo+WctKLrmKKTNh6RVseslU2VAcGn10wD53R34Asd06ZjiVeKJlMlCiiMOWsInAPulRVpGXuecAFFSwZQsieHZifVLhXGS4VhG/bBpLGYUWsiFgkBKBaVBWITadXcywDg6HtLTPcuQD4iIAznIxfe5bzkfMeWICB20dJWOHrfILu93G0s/D3VW4+gXqWf5Wd5zQM1PM9LorZuOD4VXVX6UYmEoijYu1+pINJSYBzqxT8NDAwMDMi0+NDzl19+iZtvvhkvvviiRKD1+Xw444wzsG7dOvA8D57nwXEcvv76a0yZMqWlm2pwDFMuKliUaaOJHSSlaV1y0+xa2i1gjsHt6pGJJRAP0tnidNIqibxqbg/OLxRpaRk3YzJR6/TqGdQsbRSKUFkynzklOussBEZrEMzsJkqH91E73X6n4QAApIhJREFUlFlepNWTmQfoj5VIODz5AYuWycNUPVywEWzdDvCs9gEdU0q3mM7VlokuiiN20mopwkRy0rKN+8FrGSiT+ZvqQa5auIGQZBQMi8acNZS4XMl1oiWTFpB+x3lFJ622gjok9NwLxFEHvTPMGJ3XsoUF9VyTaaV7gTh7WuF7Kdcfa+2sUy1wMuJ+oEpZpI2lcJiW2Qy0OfaYIzUnLScqAhlZ7m29eJhgjVCkNaX3jWngKPy511p/IYx45p4YLUWAw5C676TCg8mGtmXJr7N3BsUkNxvXwMDA4FimxS/r8+bNA0VRmDp1qmTd7NmzsWtXKJ/pnHPOwYsvvoizzz4bPM9jyZIl+PTTT1u6uQbHKOKq8qRIAACKGXqe3eTpmy0u0sbwLZYzAYgXxxN3QIFcfEEr4ilzVBwPFbGSqvIL6HlQLRU5afNU8m5JdIphHzVoiopZBFX6dCg6aS36BPc4ZvgkBF5GOFD6HdXwHZ6ns3CYPod9uyDKPSt2lFFanLTEzxEPaMj69ex4C3Ur71IVSZQwRFptUExyi96Zs4YQl4uL0QGh73Lj1lfhL/1dsFzWSSuKO2jc8C/Zdojza/WgdK/9emcjvtjRiAoPi8+2N+DnfcLZFMdlW1DoSvy9QQk912T56ySly30s1x8L1mwiLud81ahf+zDq1z9OzLhPNjzPo2HTCyidTaHsQ3L/Rc1Jmyzi6U8pmRcAIFC5iri8fs19KJ1NoXQ2hfr1T+oapIwXsZNWLSpJ7tvI88BfR/3495rE5tQ3BpS/UFVeFq+ur8PFc8tx2Y/S65pJZ/2IREDRZtlrnhF1YGBgYBAfLR53sG1bqNDSqFHSqc4fffQRAODkk0/G119/DQCYMWMGTj31VPz666/45JNPcPHFF7dYWw2OXcRO2lwZh6LatC4SLdnxBPQX91JC3E0kRSVoxWai4oonkMQdtIKTVh3tT6pSkVb/5Vevk7Y10Rp3oIXEprnFQuJF2roVt8J53D0x738swDfFEnDeSmlRFw0uJzk3vhYnLec9isZNz6Fxy0vIvWCPemMJiKfMd3SC9eT3MdlOWkZmSjjnPgjGLnS3Nm7+D+pX3iE9hmzcgSiT1ic/ZTue+53SffzjbaEojjnbyZEcA7ItoCgKvTLM2F6tHvXR0lAMeYCJtuXocjPK9cfknLRVv5yGQMVKAIC/bBGyTp2n+VyJwL3lJeJnLRq2IbZrjzLq/ZJ4RFq1AoD+ihWqx2hY+wDYhr0y8UKJR3x/McUo0m6rDuCz7Y0Jn92jFDvF8TweWlqNox75bWIxayQC2poNljCr0BBpDQwMDOKjxS/rR4+GRgALCwsFyz0eD5YtWwaKonDdddcJ1v39738HAKxZs6ZlGmlwzFPtE2We2eW+Cvq7YrxPW3EnypKYjGUlB06uzO81NJc8DalEnEkbh5NW71R+MVyg9eMOAGBAdmKKMJQ2CKdz58XgfBLnJiuRr8N12y8ztt+xd4bCfrT8VDe9Vd67pLSuOG3OHkFewYSK4cmJRGoEqrTd00wZx8d0/LZOOJO3fr20wjhFx/690zVQxvlRv/q+mM7T2tXK2xoNhL8jkHwnrZxYzxKcznKimdbCYXLEk0cLANYYLRN2E4VuaaGdT+2q730O7xcL3dN1iKsyswBI75m1q3CWHe3Ibz6OzAwMtmGvZFmgemNEoAUA/+FfJBFKyaZuxcy49rcVnR/TfoyGIpPmjIExHRsAaJW+q/+wtgrhnh1vxlUIRw/B2m2C16b04xS3lxszWVXmS0r8Up1CHMLqMr+iQAu0jpMWAGgrOfKANvJoDQwMDOKixUXampqa0Ilp4amXLVuGQCAAiqIwceJEwbqSklBBgPLy1sszMji24EQdQ7kOTjIdQKkjX0rIceSKTwHAU+PIeWYX9HJKMqzynQwGi8TbeERaLRcXa5dzJMt4LuQ4lRYOax2R9qr+KZB7G3Rl0orc23pE1DAmmsLErsLPJKlpFIBrB2h3ypzYJbbP+fgC+f2UXGW0uFiMiLO7NT/UF7oYDMxu3Wwze8nFYFzFgmWOXtdHfkeXgiPW0mm87DpND7MUjbTR/9XUzraCs99t2jZsctJ6dr4jWUUR8mZJmNL7C14zqb3Bs9qL6wGA79CP6hsxdqQMfVqwKFi/S9d5jnX8ZQvIK5LspAWA9AmEOCwNsRdh5IQnNUEqjGvgg5rPRUKtAKgc2XY6kj0+Jt8qGWglMWNQ6F56Vf8UWTFKiRw7jbH5Ov6mMiI6SbxNHfIUEBb1KRrp42Y3by/jyCU559mGfdINNRQUbEukDH8+pv3MGVIB0tG7ueiaOXsEzLljYm4XZbIrDkqQYkbkt03+cx0XaATvrxYsU8t4d8hYU3fXBonL46XCIy0s23xO9c9tazlp5Qax4pllZGBgYGDQCnEHLpcLtbW1OHJE6HCYP38+AKBfv37IyBB2is3mkKPGZGrx5hoco4jFNbkHFbUCCbHg6HMjbF3PgzX/lIQcr1jmoWxcvhUpMpmq3dLMeHJsBjZXBlDr45BpozG+wCYpNBVP4TAtMz/TRv8X5Qe+FSzjvEfBODpLXC+tFXdQ4DLh2RMysbbcj78q/Fh/tPnBX6tG2+DnJIUjlMR1Ja4+LgV9MizwsBxOKLDhQD2L7dUBHJ9jAc8Dmyr96JVhRncd1bsnFNqRY2dwqIHFr/s92FsnfBAZmmvBztogan0cGCrkwLprWLpq0bpOl9UTs/iYKHcUicv6ONE9zYQ6P4fxBba4phEnAoo2I/vs1XBvfxO+0t9g734F7CWXRNY7el0NymRHzcLLJPumjXsPwZqNqP7t7JjOnX3WStnMzbZKyvDnYc4egZqFlyhuF447EA/IAABty9Z2rmHPofrXM5qP6a8BglKR1tH3Fri3kAfGxK59YUOsSB3+LKx5k8DzQUE1a859GFygUbEwUkeClxHBKFNynbQAYC+5CDULhHFY4mJ0cu0D5O8vlFVdpHX2vwPOvjM0tFKeHB2zJATnjlJnGJrCg6PSsfiQFw4zje5pJqw96kf3NBN2VAfx2wEPLu3jwojOoRkAvTLMeGpsBrZUBZBhpfH1LjcONQRxUS8njsu2YFNlAAfrg+iRbsb4Ahs2VPhR5WUxNt+m07kn18GS3qNM6X2QffZq+Et/hTlrOCy5zdFosoPmhL8rH5RGQyj9/dsa1sIzYXIVxbx/58sbUfXrmeA5PzIn/gjK7IIldxy4QD3s3a+I+57KpHTXJcbKwdbvko0aSRSkGQ+0o5CwZTMOmagvmpKv6RAPSiJtrU898Km1nLRyLnmqaZaRgYGBgUFstLjq2adPHyxfvhw//fQTJk+eHFn+xRdfgKIoTJgwQbJPWNDt1Cm5N3KDjoPWPlYyRoNThz2b0CJADjONXDuNctF0qH5Zyu7D4lQzilOVhTxrHJm0WvakbbkAxQB8cweV8xwG4+gsEW5aK+4ACAm1BS4T8p2MQKTVijiPlqFifyinKQrjC5sfVntm0OgZFTvQVYOTikS/LAv6ZYVEXrFIOyjXgruHp+tvq9mF0CdB+I1TmwpHURRG63FqtQC0NROuAXfDNeBu4nprF7IIy7iKYEophr3XtfBs15u/R7U7gRYI/f3s3abBvf11+I/8Ib8h5wfrJhffoq3aRFpGVB2e8x0FFxRWUqfMaaAU4jegUOzRNeCeiADHB93SXRt2g1bJN+wwyMRMJDuTNowp/TgEazY2LxCJckqF3uQyOmkNjm5b0QXaGqiAfOSSMi6z8E7rNNM4rbi5f5HvCt0P+mRacHZ3ab+jJM2MkrTQ/UN8ze2WJuwfDO8co/AiIwjKfSfN6X1hTu8r3V5G7OcJBRh50TUAgK5Cja0NoyIiqkGZHMg6XXjttXeXDiLGCpPSHYGjy+I+TrB+FyxxuHq1wDYeELymLBmqA2tOM/kzm4h0BitD4fRiO77Z1Xw/UYozqPWri7RxpovFjJy7XfF+a2BgYGCgSotPkDjzzDPB8zxef/11vPbaa9i4cSPuvPNObN4cCv4/77zzJPuEs2gLCoyMG4PkINe/SYZIm4wq7UUEYS5VxkWrBwutTWwloWVgn6IZ0CKRhXUfBkAqHBZ7oYtkobW/XtooFD1zHUyrOR/UIHX24ypOR5jqyqjEHbRHKFoqYFDWrGbHUkxPdy2T15cs1K6fPBeAv3wJcZ1WJ634+gGekz6Um+wxO3ui96NMDskAA1u3M6bjHovIZQEnO5M2gsiZKXbSso3yGcIUTR40ozU4aRNxT5ebXq26nzi3qE2i3UmreBSZzxHJIUt20rYfkZYTTc9va6jFBWilJa6f4u8941QXwF0y38dE3JE7OWjJIH08TloTHV/RwniQvfYZTloDAwODuGhxJ+3NN9+MV199FaWlpbj55psF60aPHo2TTjpJss93330HiqIwfPjwlmqmwTGOWC+R69+0l1ylolQzVpYJH0BSLPF32iiKgoWh4GOTJxYxjnxw7kOR16z7EPzly+Dd94WwLa3opI20Qedb6gly+GGPR1KVOy/GqIOWgCEIsvFkE4ud0qFFx6DLgjR1N7VX1Kv2LbjGhJoIwwUQKF9M3lWjk5a25YQGAvjmB9naRVcItqEYu2IhO+UTCPczpfSAP+p6Vf3HeXD0vQWc+zCY1J6wd7sE5g7grOV5Ht49HyNQuRq2ogtgyR1NzAYFWs5JS9GiLq1IvGOj/m5aoa3qTtqWiHOQI5CMudcthF63nexAi0h85Vkf6tc9ItlMV0HBVqati7RaipNpoWH9Y2jY+AxcA/4PruPuTsp3KVi7WfCacXZR3cch46RNBLkORuKcjxZpa3wcftrrhpmmcFqRXVWkbaHaa0Rk4w4MJ62BgYFBXLT4EHxaWhp+/fVXDBkyBDzPR/6NHz8ec+bMkWy/fv16rFwZqtA6adKklm6uwTGKuE/Tkk7aZEAqQpUIJy0gLbKmFa3mS9ouzCf1l/6Byp9OkG7XSoXDlFB7a/69pk4i0AJtXKQlOWnjEmnbg9MrfkhOFlNqz6hX7VdMiRVKRaTlOT/8ZXIirbbCYRTNqAq6bOOBmB8axcIQk9pDso17y0vw7vscjRv+icofT0CwA7hrPTvfQc3Cy9C46QVU/jguVD29jTlpwQmdtJyCk1YOSkPhsJYSoUkcVXDgtRl4mWJLOr+TcpmyvKhAXO3S68D7qiTbube/rut8rQnvr2ntJijCuEoSdzDWi4Z1j6CakOmeCBo3Pit4Le5zknAmsRJXSKQV9gHr/Dx8bOh5+PFl1fhqpxtztjdi1ro61KiItEn0UKhiiLQGBgYGyaFVnp779u2LVatWYdeuXViyZAl2796NBQsWID+ffON855138Pbbb+Pkk09u4ZYaHKuIhUe5qUKmzOMTel5bt0sTerww3dKlpvg0a2K+3gH1OCwilMagBHGmpHfvp8RCIG3BScuIPidBhc6xN8jL5td2crRlkVb6d1MrEKaEs/cNgtem9H4xH6u9Ye1yVuRnS+5Y3fvbii9MZHNaHGvBGYrreX8tgnXbiOv0uK0lkQeSEwVjdmiJBTg1cYL316B26XUxnas9Ubv02uYXPIeGTc8TBWwAoO25LdImceSIuCAc6ykl72ciVygHNDppE3RvGl+gf4rwuDaW3U1CbrBbbRBHjGxMjqi/4Nn1HnEzucKBbRG5jPO2gnAAMjH49n8Fno+xwykD65Z+53kNLmW5wmFy6Nk61y510gJAtZdFuYfDwYbmgZd1R/3QEEnbasgOwLXiwJWBgYHBsUCrWpxKSkowevRoFBcXy24zcOBAXHnllbjyyithNuvr0BkYyOEXmU+sMpqZJTuBERuUCc6+tybueFHkOU0YlNMsaozobE2qE0ALWqPyKLP8A7Jwu9YXaV2iCIkGPyfrNPYr2BsS5XJOBqRpfvE019lvJhDVkU8Z/ETsB2vjOPvfEfnZlN4Ptq7NGev2bpepVpR2HndXxHlMmRzt/r2yl0xTXB+s30Wcguzsf6eu86iKtBq3IcE4hRXWtbgm/Uf+QKBqfUznazeIxBTfge9gzhom2cxWfKFmV3S8MM6ugtds/S7Ba47grgSA1JHy4h2t4qS15p8G2pKmsYXKnNPdqasAkN1EYWRe289+lPv7683yZVxdYck/VbJcT9Ys6ynTdc54YFJ7x7yvo+e16hu1IowjD9bCs1S3s3Q+MfmNUcC7/xvJMi2fFz0x/BSAO4amCYTX0Qrfy4IUE2wMJfmuu4M86tuyIktCHDETXqwhy9vAwMDAQJ4Wz6R97LHHAAA33ngjsrO1Zc5VV1dj1qxZAICHHnooaW0z6Dh4RQKaUuZm58sbUb3wcnDug0if8An8RxagdsnfNZ8rdcSL4HkW1s4nwpw1OOY2q3HH0DQsOuQFTQHjC1p/FFtrYSytU2HpNlA4LE2kVrI84A7wEvEWAPwKWYH2JOadxQupqnE8mbSMqytypmyA98C3MGcNgbXzhHia16ZJGfYMzFnDwPkqYe9+uaAYEcVYkXPOWnj2fIy65bdId6ZMcA18GLauUxGoXAVr/qkwpfWSbteOoEw25E4rR/3q+8DW74Sz30xU/35u8wasR7KPc8C9SBnypK7ziN34xG1irJYudodSlDYXfP3aB5F5yrcxnbOtwxMGpiiTAxBl0jLOIqSf8GFLNQuMyN0XrNsheE1y0GWeOg/WfPkoLTUHdsbE73S0UJmuKSY8PT4Ta8p8KPew6J5mxu8HPNhZQ44LeHpcBjJtbXdWRjQZp3yL6t/OESyLJU4q85RvUbvsJnh2vNW8MMpJy3My0QpN+A79BEePK3WfNxb4YIPufaxdpiB1xL/BOGIbVGpJMk76HJ5d7wMA/EcWwLP7A8k26SfOgW//t/Dseh/B+l3g3PojR+LBu/8r6UKN13AtjOxsxeQSO/pkWtAn04wlh73IsjEY1smCAdlevL6hXrJPVxcDiqLgMFOo9zdfS90BXpc43DYgj+DT1qwWboeBgYHBsUWLi7SPPPIIKIrCBRdcoFmkraqqiuxniLQGiUDsclQSoSiTA5knfxl5bUrphvq1D2nqbGae9huseS0T02FhKJzStfUKmIjRbOTVOC2qLThpSQ7YWj8HF2G5kpO2LVfkthG+C3Fl0gIwpXaHq/9tcR2jPUBRNOzd5N2jtC0bzr4ziCKtOWsIaLMTltzRsOSOTmYzWxTGloP0sW8ACIl7lMmlKF7Yu12qu1I1be+kvo2Git4kxO5MrRnLvgPfwV++DJbcUTGdty3D+yolyyjGLnFFO3r/Q/eU9ngQT8FmRSKt2EmbOuI/igKtGs4B9yb89+uaYkLXlOau+bqjfgBS4fHSPk50drZ4Fz5mJN8jxJZbSTFWOHvfIBBpo52RasXBfAd/bDmRNqBPpE0Z8iRcx9+XpNYkHoqxwtHrGgAA27ifvA1thaPX1XD0ujqyrGxOF/n+M8/ryw5QgPPVwF/6e2IOJsM1A1Ii/cIUC43Ti5vd4b0zpNcGh4mKRJE5TDTqo6b1NQY4mNuZSkvJ3A8NkdbAwMAgPtquUmBgkER8OkRaElqn6Js6QJVvObR2NrVmRbYFkdbMUJKsMrnKu0pZvnadeWctCckBbWlnDw7tEUun8a3dhKRDURQYNXdwDC4nLVEGoTxL/Z9jSjSdU8/U6vq19+s+X3uAKMjQFul7w7TsVHyJSNt4AHzQG3nNiZy0WoqCKdESswLksjGLU9uPQAsAtENac4ILSF2GmhDnVXOBZnc3pyLSHv5Z1W2bCHie1+2kNaX1TVJrko/sTAXC9dwkk12daHwH58oXrUsADhOFFIVZUaR+XradiQxCimctuYO8ZJZfm0fmfk21UMSNgYGBwbFKuxBpA4HQVCYjk9YgUcQr0tIapunR9s5gbDm6jnsskfC4A0vri7SAtCDbo8tqcPHccuytC12nDtQH8d7menyxo1H2GG1bpJUui9dJa6BORxBpAcCkktMoFkW1oCXugGIsmhy3arAN+zRv6y/9HUc+SAEflMY6JAou0IiGDc+gbvW9YBsPxX08ngugcfOLqFv1fwjW75Gs95cvRfX8iyTLg1VrEaxcK1jW0hW+xXEHAI9gVC4tL3LSxpuVa46hGKBeSBnhAFCc2r76wyRnHR+ojelYFCX+3Xlw7kOoW3M/6tc+rLgv76+B/8gfMZ1XF6wP4Fn17aJozyIt7SggLifFwzAp3TUfl+dY1K95AKWzKZTOplA9fxo4n3rhLwDw7v9a5qDqQqgWrbSzk1Gc9UHq5+VE5daKB2DcQR67a5M/gJBQ5Jy0cQ6AGRgYGHR02sVQ/Lp16wAAOTkdV/AySCxikVavCKVUDTpMR3bRAtrjDrSKtFQbyKQFQpEHpY3Sh697FlXjlZOz8MCSalU3hN7KwS0JSVyXK6xnkDgsueNauwktgik18U5arS57xlEIznNE+3EJhY3Yhr2a9wdCuZQV3w1FztTNuvbTSt2f/4hkQXp3f4yc83cJspB1H2/lXXBveREA4N7xJjpdeBCUKRRJE6jZgsofJ8i60zhfheA11cJOWtrsAm3PA+dprujO1u2AOaN/U/tEIm2cQgKtcUZNPJCEngwrLRksbOuQpkVz/thEWomTFkDF3NGa806r5p2KvOnJdSzqzqOlTGBStYuXbQ1GRqQF4Vpk0iHS1q99AI0bno689u79FMG67cg5Z43ifnzQC9+hH+XWqp63UWkqVBOdHMrXWZuMkzaMQ9RJrvCw+GFP8gb0kgLhfk1Z0mMabDUwMDAwaCbpV9H33nuPuPybb77BqlWrFPf1+XzYtWsX3n77bVAUheHDhyejiQYdDI7nJVPRSTmcSli7nAl/2QLFbczp/fU2rU1yXJYZGysD6huKMGt8T7VUSwfQotmGSig9HM+cX6kYcxCG1HlvKxS6pLcFw0mbfGhbx8hwE09JlxCDSGtKUZ4+a+l8EoCmKdfSOFVZ7D2kBSKtBafDd/B7Xe0L1m4J5fHqzNpVg2d9gmI9bOM+BCqWw5I7JuZjhgVaIJQ969k7B44efwMAePd8rG/6cAuLtEDIpScQad0HAITyKcXCmdbcRFNaXwRrtwiWWQsnx9lSbTgJUxu6trOoAzlsBWfEtB+pL6C3IBXP+pI6iMDpzKNlUrq3mT5OLNBOGZFWt5NWKKBGC7RhglVrEazfC1NKsexRgg27wQfJs5ksnU9UOH+IdA2DIJ2dyvcqmnC9H5jTPMDgFPUD251AC/LgC23VVm/GwMDAwECepPf0pk+fLnkw4XkeDzzwgOZj8DwPmqZx6623Jrp5Bh0QsYsW0B934Oh9I+pX3a24jRa3bXvgsr4uPLCkWjD9a0KhDV1cJnywVf5BJEOr00fDg4mjz83ajtUCpBGKhIXRItAC5M57W6Eo1YQ+mWZsrQoJ8ycW2tp0e9sjrsGPo2Htg5HXKcOea8XWtCxqWXUUFUPcQVpvmHNGIXB0GXF96oh/AwBoS5rmY1LmFKQMkk6dtpVchLrl8tejjJO/RvXv5xLW8EhYRZwmgjVSdy7rLiVsGTts/c7Iz77S33TtS7fCPVDsbuXZUE5uoHq9eEMwKd00HTNtzP9Q+eMJgmWpI1+OvZE6SCXcR5VyMNsyaWPeQO3SawGErgP2WAt4JSBGg+eCSRVp9TppaWv7nh4uN+BBEvEYR17c51ONyuDIxgLa1gmOXtepHr+z04R+mWZsrpI3KEQX+JPjjGI7ftzriWw/OLf5s5ut4sTVytndpDM+WgzS31fjddXA4Fhl48aNePrpp7FgwQKUlZVFYjvXrl2LQYMGtW7j2jDTp0/Hu+++i6KiIuzdu7e1m9PqtMhwPE/I/yEtI2GxWDB8+HDce++9mDAh+UUaDI59fISYMN2ZtGYnci86jPI5oWIYtL2zdBptDI6wtki3NDP+OS4Ta8p9KHez6JNpxviCkHCX52Jw1M3CE+Tx6XahayHLpu33V5sWZc4ahtSRLypu05KkWuN7QD6tSFu8Q2ty/4h0LDjohZUBxhVoczobaCdl4AOgrdlo3PQcXMc/ELtY0Q6h1WJLYok7oChknvorGjc8jYa/npCsN2cODG2nQzTMOXcTaJvUEcTYcpAy/AXUr7xdsi7z9PnEKvYAElq1PEygah1hqcaRIgI8J705Rr9n5sxBCJQv1Xw8rQU2E4pYwGsqJCXOyzWl9wdFmDZPwtJpPLLOWonGDU+DMjnhGvgATCklCWmuGqTBTr39lbaCo9c1YJxdEKzdBlvReTELkwlxnCaxoBQA8AQnbeqo12BK7Y6qeadK1lEa6hy0ZUhirBy0LTf+E6rl/RKeMVNHvgRb8UWgzdre63tHpOPuRVXEeCtAW/G+v/VzoWe6GQ0BLtJvDqMWlwAA+U4GZ3dzYFSeFXvrgthXF8TgXAsO1LP4cGsDJhXZcWZJa4q0hDiLNOXceQOD1mD+/Pk46aTQrKqHH34YjzzySFLOs3r1aowfPx4eT/tzxhu0LZIu0u7Z01x4gud5dOvWDRRF4eeff0bPnvLTHimKgs1mQ1ZWFhjm2BC7DNoGRCdtDNPPGUdeJNfMX7YYlT+KCv/o6LS2dYpSTSgidEiHdQo5Uf44IL0ZZdq1/v7K772z30xdDwDJRslJqwWXpe0/YFsYCpPagZjcnnH2+Qecff7R2s1ocdSE0liz7GizE44+NxBF2sixNYqG9m6Xg3F2kV0fFn3FWHJGg/OWyeyV+AxMkkjLx5rzCbL7L1o8oq366gK0xmwScbGyiJO2SijSmjMH6zquJXsYLCd9Hl/jYoA07bo9z2ywFpwGa8Fp8R1Eh5OWsmbClNpL6rLnkizSiqM1bJ3g7PMP+I8uJ27f3kVaPSiLtNquk3JRBrLHoc1w9p2h6dhhLAyFU4vseHcz2RWtFncAhL6rY2UGurWItGeU2HFy11BfrF+WBf2yLE3nNmF455aPk5EivT6p5s4bGBzD3HvvvfB4PEhNTcXTTz+NYcOGwW4PfYd79FCO5mopHnnkETz66KMAtJsmDVqepIu0RUVFxOX5+fmy6wwMkglJpNVa5EoOxlUsWSYuUnIsQyo2lWXT9qbyrPJoI21PgOsigZCmn+qBlDFoYNBRUC0AGNcMBGXxSmvxQc6vXD2ctqSTj89YANm4hsR3hINV6yXLYi7GBIAP1EuWCYRtndXqW8VJK3LH8lxYpF0nWG7O0ifSthYZhPuoOxi7W/pYQI+TlqKtAC99v/gWdtKqfRc6kkhLyVw/9cAFdIq0MU5jkDOt59jpuAdLOmsQadPbeNVWkoHCcNIadFQCgQAWLAjVq7nuuutwww03tHKLDNozLa4WcBwHlmXRr1+/lj61Zu655x5QFBX5N3/+fNV9fvzxR0ydOhWFhYWwWq0oLCzE1KlT8eOPctVFDVqSxgCH/6ypxcVzy/HpNmHn2crE70yh7dKMLb2FLNozJOFba9yBmiMiIVPjEki8TlpnO80TNDBIBKrCXRJFWq1dHrUBNsqiME1bxglcv+4R1K99JGGDdzzPE4tXqmY1EvCXLUHlz6eg/DOpe7hxy0vgg+6mc+oUaVtBeBI7acH5wXrKEKz+S7DYnDmo5RoVBw7CLB9PsIM7X/SItIyNKNI2/PUU6tbcr5jhHKzdhrpVd6Nx2//AE46hBCdy0ja7ysnXqA4l0ir0t0kDRcTt1Jy0EndYbP0uue9aAaHAql5SLBTsKrP44u1vJhuWMHPElGqItAYdk4qKCvj9oYHhXr0MR7lBfBwbJWITyLp16/DCCy9o3p7jOFx33XV46623BMsPHTqEQ4cO4euvv8Y111yD//3vf6Dptn2zPZZ55M9q7K8PPWCuKvML1iWicj1FS4UFtrHjiLS1PukDDMkBRCIsAMjR1kTa1LhFWuM6YNBxUcukjTXuAADA+RVXsw17NR2G99corpdz0gLyhc8a/3oKAOA/8geyzpCKq3rx7P6QuJxTabuYQPVGVP44TnZ9sHINahZdgYyTvtDvpG0LcQecH+WfF0u2M2WQIyvaGiRBy93BRVqKokNxUhqEUz5QD57wfXVveQkA4N39EXLO3yVxBHK+GlR8NzQiBnKeI8RCgvLnlXHSygiUx4ZISyHeGQPVCy5B1qk/q26nVpiNF7cjRiOGXB5tgSt+hytFUejkYLC3Tt7Vna6xH91asHU7JctoZ2ErtMTAoPXx+XyRn83mBGSnG3RoWuXq73a74XbLCzOzZs3C+PHj0bdvX0yePBnfffddi7QrLLgGg0Hk5moThu6///6IQDt48GB8/PHHWLFiBT7++GMMHhyaTvfmm2/igQceSFq7DZQ56mYjAi0JW5KKcNi6npOU47ZFSgh5taQIBBKm9P6K60nFe1qTeDvNiejcGxi0Wxi7QiQAdLnkxKi5dK35EzUdx1Z8gfJ5LGnyK1VEZn/ZQgRqtmhqhxK1i64gLicVLFKiYf1jqtt4930JnguCZ32q20ajWiQuGTDCnEa2YS/AeoXbUAxoS2rLtSnBDMnVnsl6zKLR2cr5KmDrcpbserZhL/xliyXLGzf/R+DWbFj3iL7mscJnHMoUKu5EyT12qcQ+tQfsPa8SvGYUsknlIg/8h+eB89WonkvdcZsYJ+1xWeTv2sCcxHwH1XJpU9t4DQNL55Mky9pSDQkDAy3Mnz9fMnt6zpw5OOWUU5CTkwO73Y7evXvj7rvvRlWVdDbUI488AoqiUFLSXFD0qquuEszKJhUq83q9ePnll3HKKaegc+fOsFgsyM3NxcSJE/HWW28hGFSP5fH5fHj99ddx5plnoqCgAFarFU6nE/3798c111yDn3/+OZI7O3v2bFAUFcmjBSBoY/jf3r17JedhWRbvvvsuzjrrLOTn58NqtSIrKwvjxo3DCy+8oKlQ2pYtWzB9+nR06dIFNpsNXbp0waWXXoqVK1eq7tsRafEr6XfffYeUlBTk5eWhvl56k/373/+OmTNnYunSpdi2bRt+/vlnnHvuufjnP/+Z9La99NJLWLlyJfr06YOrr75adfvt27fjueeeAwAMGzYMS5YswbRp0zB8+HBMmzYNixcvxrBhwwAAzz77LHbulI44GiSf+oByZ96RIGdj+oRPIj9T5jTYu/8tIcdtDxyfY0EnR/P7eEFP7a4QS+cJiusTUsk5gbjMNIZ3iq1gw/HZZuQnYJqcgUF7haIoMC5yHr0p4/i4vu+0NRMm0TT2jJO/jvxsLZwscOanjngRaWPelBzH0es6xfMoPYTKOWmjCYqKWCUUndOyvXs/03ZYfw14v/aoBsqSDsrU8sUHKUZY6ZzzEfKFdTqCW5sbBzaL3U4ThZO6GEUd9eDsN1NxPeerkCwLVK2J76Si72FYnKWsmeTNk5BZ3dK4Bj4UGoRrInXov2S3JV13w7Ae+QiKMKqxMaLCcLHO0BjaySIRSrulmXB8dsuItGaNZofWwtb1XNC25oKSqaNebcXWGBjED8dxuOKKK3DxxRfj999/R0VFBbxeL7Zv345nn30WI0eOxJEjR+I+z/r169GnTx/MmDEDv//+O8rKyhAIBHD06FH89ttvuOaaazBmzBiUlckVow3N/u7bty+uv/56/PDDDzh8+DD8fj/cbjc2b96Mt956C6effjr27dsXV1v379+PoUOHYvr06Zg7dy5KS0vh9/tRVVWFJUuW4I477sDxxx+P7du3yx5jzpw5GDx4MN59910cPHgQPp8PBw8exMcff4wxY8ZIZqQbtELcQVjRP+ecc5CSInRZLF68OKLyOxwO9OrVC1u3boXH48FDDz2Es88+G8cdd1xS2rV//348+OCDAID//ve/+OOPP1T3+c9//hMZ5Zg1a1akel8Yh8OBWbNmYfTo0QgGg/j3v/+NV155JfGNN1BErXChUyUTSiv2kotB2zohWP0XrIVngulAU35MNIWnxmZi8WEvMqw0RuioOktRNFJHvYK6ZTdJ1tm7X5nIZiaMmUNScdmPR3Xtc92AFJwgU+XXwKAjYUrpAbZ+l2S5VqerEtlnLkf9+kfhOzAXqSP+DWtes9OHNqcg+5y18O79HExKd1gLJ4dEY2cXNG77L0ypPeHodV1M125b8YVNJ9Eg0tZu03187SRH7OF8VeC8UjFLDsbROve/sGMxgthF2w6ZUGhHho3Bofoghne2xh2509GgrZmgbbngvOXE9QwpUiluIZ883T5a0IqmVVznCcbkKkLOlA3wHfgOpqwhsHY+QXZbe/H5wAkfombhZZJ1ob9TXwAAbc0miuicr1K5MeK/n4bBMxIOM42nx2Vi+REfdtUE0CvDjBMKbYq5unro5FQWadu4Rgvamo7ss9fAu/9rMCk9YCs8vbWbZGAQFw8++CCWLl2Kc889F3/7299QVFSEsrIyvPLKK5g7dy527tyJ2267DR9//HFknxtvvBEXXHABDh8+jNNOOw0A8MQTT2DKlCmRbaJnaO/cuRMTJkxAbW0tUlNTcdNNN2HEiBHo0qULKisr8e233+J///sfVq5ciSlTpmDRokWS+IQtW7Zg/PjxaGgIzZ6aOnUqpk2bhm7duoFlWWzfvh3z5s3DV199Fdnn3HPPxbBhw/Dqq6/itddeAwBs2LBB8h4UFBREfq6srMS4ceNw4MABWK1WXHvttZgwYQKKi4vR0NCAefPm4cUXX8TOnTtxxhlnYM2aNUhLE842W7lyJS677DIEg0FYrVbcdtttmDx5MqxWK5YvX46nnnoKN9xwQ5uuV9UatLhIu2zZMlAUhZNOkk6ReP311wEA+fn5+PPPP1FYWIgDBw5g3LhxOHjwIP73v/9h1qxZSWnXTTfdhIaGBlx55ZWYMGGCqkjL8zy++eYbAECfPn0watQo4najRo1C7969sW3bNnzzzTd4+eWXE3ZzN9CG2iNrIgs5WfNOhDXvxIQdrz3hstA4vdihviEByiwz9bSNfle0RjmE6ZtpxildDfeTgQEAMKndgcPS5Za8+EVairEgdciTwJAnyed25MPZ7xbBMmvBqbAWnBrfecPTdzUUPmufIm0lUSyRo7UGKcXZnpzGQkRtneOzLQlz73VEzDmj4TvwDXmluNgcoNuRLt2fPN1eLnuWYo6N/oEptTtM/Wdq2taSP4m4nPM2D4DzMoMsvIqTlhc7aeMoSJllZzC5JLa+rRpqTtp4ixq3BIyzEM6+N7d2M445OJ5Hg7/9O+z14LJQrf6ZX7p0KZ544gncf//9guWnn346Tj/9dMybNw+ff/45XnrpJeTkhAbdcnNzkZubC5erOXKroKBA1lh45ZVXora2FoMHD8a8efOQnS2M9Tv11FNx1lln4cwzz8Ty5csxe/ZsXHvttYJtLr/8cjQ0NICmaXz44YeYNm2aYP3IkSNxxRVXoLKyEg5H6PqVnp6O9PR0gWCsZn685ZZbcODAARQVFeGPP/4QRDoAwIknnogLL7wQ48ePx+7du/HMM8/gySeF/e8bb7wRwWAQZrMZ8+bNwwknNA/gjRgxAueddx5GjRqF9evXK7alo9HiIm15eWgku3dvafXHn376CRRFYcaMGSgsDHXwu3TpghkzZuDuu+/GggXxF9sgMWfOHHz//ffIzMyMxBeosWfPHhw+HHrKnDBBebr2hAkTsG3bNhw6dAh79+6VfMANkgunco9LVNyBQezIVuqN90GpjZBmNT5jBgZhmJQe0oW0GZZO8s6rtg5tyQCgLY8vWLs1eQ1RmzoSI3qdtHQbcdLywWNDpDWID8bVVdf2fJKctLImDZJQfIxDUeRom2jHs5xIq+6kFWU5xlOQMomoibQGHZcGP49rf9V+zz0WeGNiNlKtrSvSDh06FPfdd59kOUVRuP322zFv3jwEg0H8+eefOOcc/bVnFi1ahKVLlwIA3n33XYlAG+b000/HBRdcgDlz5khE2nnz5mHNmlAkzy233CIRaKPJysrS3cYwe/fuxaeffgoAePnll2X1q8GDB+Omm27CM888g9mzZwtE2pUrV2LVqlUAgOuvv14g0IYpKCjA888/j4svvjjmth6LtLhycPRoaIRUHHWwadMmVFSELkbR9nAAkVzXeDM1SNTU1ODWW28FAPzrX/+S/bKI2bx5c+TnPn36KG4bvX7LFn0FQw4ePKj4r7RUPbupoxNUUWkT6aQ1iA3ZYjfHikhrTE81MIhgSpWKtJacMaDN7bfCOS1TCIdEsG5bpJBDotGTbcnruL5y/iqwDXs0b99mnLRugmXboP2jszgR41QSaYXfGdZ7FP7Dv0i2ClSuQf3ah1G//glwagX6ZJy0crS17P2WgGLIwnTjhmfANh5C6WxKKrY2IRZpPXs/Q+n7DlTMHY1g7faExR0km2y70Tc0MGhLXHrppbKDaUOHDo38vHv37piO/+233wIImRUHDBiguG1Y0Fy5cqWgiNj3338f+XnmzJkxtUMLc+fOBcuycDgcOOOMMxS3Dbf18OHD2L9/f2T5r7/+Gvn5qquukuwXZurUqUhPT4+vwccYLX7XYpjQqKG4Ot7ixaHqqjk5ORKXbUZGyKHi9SY+W+zuu+/GkSNHMHbsWE3FwsIcPHgw8nPY9StHly5dIj8fOHBAV/ui9zWIjYCKSNsY6FjTSdoick5aHseISGs4aQ0MIjAp3SXLzLmjW6EliYNqctJqgvWC85SBcXROQku0389U3WhR+Et/19mO1hn8lGTSGhyTUJYM8Do+v8oibTM8z6PqR/LsuIrvmh/QA2WLkXnqT0pHEr1W+T50QCctZIRptnEfyj9Tfq6KvnZ59n6GmvkXAQACR5fh6Fe9kX7Cx4Lt44k7SCatPbXbwMBAiJLxLjOzufBjfX1ss3TCrtJt27Zpjr8MBAKoqqqKxBSsXRsqPtu1a1cUFZEL8SaCcFvdbjdMJu2S4ZEjR9C1a+ieG868tVgsGDhwoOw+ZrMZgwcP1lQTqqPQ4spBOIx43bp1guVz584FRVEYP368ZJ/a2loA0Oxy1cqiRYvw5ptvwmQy4b///a+urNjoL2d0BgkJp7PZ2REOeDZoOQIqOl/P9I7nYGhrmLMGE5dbcse1cEuSgyHSGhg0Y3J1k2S32grPbKXWJAZzpnznk0SwdrP6RrGgo1AW5yEXUiLh2TlbulDBnWbJHav52ImElss3j4JxJu+hxqBlcPTUZqowZ4Vm4jFOecMDH/REfvaXLUSwVn3Gm+/wz+D8tQpbkOMOZNup8/pxTBCHu5WLyqStXXqdZL17xxvCBW007sDAwKBtEc5vJUHTzc9yLBtbJE449lMvbrc78nN45nleXl5Mx9JKItoaNmVmZmZGjJpydOrUKabzHau0+F1r/Pjx2LFjB15++WVcfvnlyM7OxsqVK/HTT6ER6XBVvGjCEQGdOyfOdeL3+3HdddeB53ncdtttqsHJYqJdvRaL8gi41dpc6d7j8ShsKUXNeVtaWooRI0boOmZHQ8lJazdRGJLbAR0MbQxrwRlgUnqArd8ZWUbb8+DoMb31GqXCBT0d+HyHW31DAFbGcEsYGIShTDbYu10Gz673AISK+phzx7Ryq/Th6HUd3NtDxU7NOaNgzmkuHursfwcaNz2vuH+wZjOseScnvF2sjun9vL86rnOlDH4c9WvulSxnXCWwKFR2TyamjONVt0kZrq32gEHbJWXQI2jc+Izqdqkj/gOgOTOaBNvYHKXG1u/S3Aae82veNprMU+ehap6wUKEl75SYjtWeiaeIMu+vAc+xoGgGvL9Gsj5QuVZ0srYr0l47IAVvbJC68s4sOTaKyRnEhstC4Y2JiTWntXVclmP/WSks7g4cOBAffPCB5v3CJseWJNzW7OxsXQ5XUnZtPNf7jkqL37VuvPFGzJ49G3v27EG3bt3Qq1cvbN68GcFgEJmZmcTQ4N9//x0URaFfv34Ja8dTTz2FrVu3omvXrnj44Yd172+z2SI/+/3KHTWfzxf52W7Xd9NVi1IwUCcoM9h1eV8XhnWyIMveNqdBdSQo2oTss1bAs/sjBCpWwpw9FLbii0GZ2m4n9cJeLqRZaby1Ud0db0TSGhgISRv7Fix5J4MPumHvfrmmglttidTRr8HS6QRwgXo4evxN0AFNGfasukirwa0nB8/K9znYRu2RShxB3NCDo/f1MGUOAlu7FbaSi+AvXwrOUwp7yaWtlrHJODpLBvzE2IsvaMEWGSQDtb4Bk9oTGSd8DHN2KKKAsqTJbsvWN2ct80FtA6+A8hR6aeZ08/XBmj8JGRN/QPWvk0E7CpAzdYvxAKsbHry/GpSNLGJRtFngZabottvPn9jVDitDYc62BrgsNAIcj9OKHJjY1aa+s8ExC01RrV5EyyDxhAt5NTQ06DYIhgnPLE92XaJwW+vr69G3b19VJyyJcGRpZWUlWJZVPEZZWVlsDT1GaXGRdsiQIXj22Wdx1113oaGhIVKdzmw244033pAUFKutrcXcuXMBACeeeGJC2rB161b885//BADMmjVLEEegleh2qkUYNDY2522qRSMYJB6/jJP27G5Gdl1bgrZmwNn3ptZuhi5OLXJoEmlNtNHRMjCIhqJNcPS4srWbETMURcPe/TKZderf92BN7HEHfEA+C43zlILngqA0TO+NV6QFRcNWeDpQeDqAtiN+WjqNg0dBpDU4tsmbLu3zKRX2iy6Ip0ekVc6ZVc6ktRWeQWyngXY4XyVoGZFWkvHbhp20ADC+wIbxBYYoa2BwrDN48GAsXboUu3fvxpEjR2KaJT5kyBAsXrwY+/fvx759+3Tn0modFBw8eDA++ugj+Hw+rFq1CiNHjtTd1gEDBuCTTz6B3+/H+vXrMWTIEOJ2wWBQEoXa0WkV68ptt92GtWvX4sEHH8S1116Lhx56CH/99RemTp0q2Xb+/PkYPnw4TjjhBJx11lkJOf+///1v+P1+dOvWDW63G5988onk38aNGyPb//7775HlYcE12uEaXUSMRHRkgVEIrOUJqhQOMzAwMDAwaEniEWm5oMLAEM+B82hzV8QbdyDOFW4rWDpJaxsYdHAYeQFMINKyeiLJlPqW+jJpDfQTnUsrRuLkNzJpDQwM2gDnnHMOgNBsixdffDGmY5x99tmRn//973/r3j96Nnj0bG/SecKC7n/+8x/d5wGAiRMnRn5+9913Zbf76quvUF0dZ5/0GKPV7loDBgzAgAEDVLebMmUKpkyZktBzhz+Qu3fvxiWXXKK6/eOPPx75ec+ePXA6nYLoha1btyruH72+b9++eptrEAc8z2PePn05wAYGiYY1xgkMDAyi4Lzl8B6YC1sX7QXTeC4A97b/wnfwR8XtKn86CeBZOHpdB2e/W0GZpLNGgrXbULf8Ft3tjqatRlQoFZykFLJJDY5dlJxD/rJF4HkOFEWDDzbKbieGdZeibsVMeHa9D9fgJ+AacHezOKgQd2CQGDhfpfxKkSirFE1hYGBg0FKceuqpGDFiBFasWIFnn30WgwcPxkUXXSS7/YYNG7B3716BMDtx4kQMHToUq1evxqxZszBq1ChMmzaNuH9lZSUcDocgbjO64NiuXbtk40R79+6NCy+8EHPmzMEnn3yC4cOH4/bbb5dt6549e7Bs2TKBtjZixAgMGTIEa9aswWuvvYYLL7wQ48YJ+2ilpaW48847ZY/bUWmbPex2QElJCfLz8wEACxYsUNx24cKFAEKhz8XFxclumkEUP+z14GBDbBUYDQwSBSt5YDMwMOjoVP92FgLVmzRvX7/mftQtvwW+Q8oiLVu/C2zDXtSvuQ81i/4mWc/5alDx3TDd7ZXSNoUnJrWn7DpKwVFp0HFxb5kFQF/cQeUPo+HZ9T4AoGHtA6hbfmvUWuE938icTTwN6x+TX8mK3GFtPO7AwMCg4/DRRx8hMzMTLMvi4osvxjnnnIMPP/wQK1aswOrVq/Hjjz/iqaeewujRo3H88ccTdab3338fLpcLHMfhkksuwfnnn4/PPvsMq1evxooVK/DRRx9h+vTpKCoqkmS9jhnTXKj3tttuw8KFC7Fjxw7s3LkTO3fuRDAYjKx/7bXX0K1bNwDAHXfcgQkTJuCtt97CsmXLsHbtWvz66694/vnnMWnSJPTo0QNffPGFpK2vvvoqTCYTAoEAJk2ahPvuuw+LFy/GypUr8fLLL2Po0KEoLS3FwIEDE/UWHxO0ibsWz/PYvXs3qqpCU1cyMzPRrVu3pHVqZs+ejdmzZytu88gjj+DRRx8FAPzxxx+SPFyKojBlyhS89tpr2Lp1K5YtW4ZRo0ZJjrNs2bKIk3bKlClGR62F+XYXucM9MMdCXG5gkAw6OwwXh4FBR8LS6QT4yxaqble/6k5kTlIWXcM0bnxWdzu8+76IVEGPHGfrK+CVIhO00kanEIf6WRRI09HtPaa3dHMMkoQpawiClWsEy2xFseUi162YCWe/W3WJtOJsaPe215A2+tWmlZxoa8MTQ8KUcTyC1X/FtG+gYqXsOnEkjJaMbgMDA4OWoHv37vjzzz9x/vnnY+PGjfjuu+/w3XffyW6fmpoqWda3b1/Mnz8fU6dOxYEDB/Dll1/iyy+/1HT+Hj164KKLLsKcOXMwb948zJs3T7B+z549EVNhZmYmlixZgosuugiLFi3CwoULI+ZDrW0dOXIk3nvvPUyfPh1erxf//Oc/I7WhAMBkMuHVV1/FkiVLsH79ek2/Q0egVXsNP//8M84++2ykpqaiV69eGDVqFEaNGoVevXohNTUV55xzjuSD05aYOXNmpErdjBkz4PEIp9V7PB7MmDEDQOgDOHPmzJZuYoenxifuKIeY1lt/sTgDAxJnlUirTGfami+tPdNNKElrnUrnBgYGrUP6hI81bec7rK2Pw7P+mNvCiwqEBavWxXysaCS5j22IzNP/IC5PGfw4cblB+yN1+AuSZSlDn5LffvR/FY/HcwHwnHw+nx54TvR9ZQxjAInU4c8B8camEPbn/bWibYyBcgMDg7ZDr169sG7dOnz00Uc4//zz0bVrV9jtdlgsFuTl5eHEE0/EAw88gNWrV+Ohhx4iHmPo0KHYtm0bXnrpJZx88snIzc2FyWSCy+XCgAEDcN111+G3334jzuL+4IMP8Mwzz2DEiBFIS0sDTctfhzt37oyFCxfi+++/x2WXXYZu3brB4XDAbDYjJycHY8aMwR133IEFCxbg7bffJh7jkksuwdq1a3HFFVcgPz8fFosFBQUFuOiii7B48WJce+21Mb2PxzKtMrTo9/sxffp0fPrppwBCTloxjY2NmDt3LubOnYuLL74Ys2fPhsXStjo5vXr1wl133YWnn34aq1atwtixY3HPPfege/fu2LVrF/71r39h7dq1AIC77roLPXvKT8EzaDkKXQy6GaKZQYK4vK8L3dPN2FkTgMtMo1+WGb0yzFhy2AdvkMcJhcb0WgODjgbjyEf2lI2o+OY45Q0ljjsybOMB9Y1k4PzVoG1ZzQtkRBFLpxNg73UNbF2non7N/XBveUn2mM7j7om5PS2BtfMEZE1egpolV4Ot3QomtTeyTv9d4Cg2aN9YO09A1lkr0LjpBdDmVDj73w6TQtSFs/f1oK3ZqF9zH9i67ZL1wZrN4AMJcJgDgEikpei29fzSVrDmT0LWGUvgP/on6leSsw4pkwOpo/+H2kVXSNbxHEu+hvKimDMj7sDAoENz4oknEvUmtXVilLYrLi7WfBwAYBgGl1xyiab6SHLY7XbMmDEjYgrUitlsxl133YW77rpL8z5nnnkmzjxTex0FMf369cN7770nu17LTPeORKvctS699FJ89dVX4HkeJpMJkyZNwsiRI9G5c2cAwJEjR7BixQr88ssvCAQC+PTTTxEMBjFnzpzWaK4iTz75JMrLy/H2229j7dq1xODmq6++Gk888UQrtM6ARFGq0VkzSBwURWFMvg1j8oVi7PgCQ5w1MOjImDP6J+xYbMNe2XXWgtPhL1ssG2EgqYIuI9KmDHkClk7jAQCOXtcoirTtYfqwJXcMcqduae1mGCQRS/ZwWDS61gHAXnw+bEXn4ci70u9AoGIVOG95Qtoldr5TtDUhxz0WseSOgiV3FBr+egK8+FoFIGXwk3B0v5ws0rLaCgO3h+uVgYGBgYFBmBa/a82dOxdffvklKIrCSSedhLfffhtFRUXEbffv34+///3v+P333/HFF1/ghx9+wOTJk1u4xcrQNI233noL559/Pl5//XWsXLkSFRUVyM7OxvDhw3H99dfjjDPOaO1mdljSrbQk8uCoR5tzycDAwMDAoC2gJNLS9s6w5J0M34Fviet5f7VwgYxISzsKdbTIyNc3aJ/I1YYIVCZQpBXHJhhxB6rQ1iywBJGWMsvHk2nOEDbiDgwMDAwM2hEtLtKGbcwDBw7ETz/9BLNZftp5165d8eOPP2LkyJFYv3493nnnnRYTaR955BE88sgjmrefPHlymxOQOzo8zxMzaQ/VBwlbGxgYGBgYtDyctwK0LVtxG0WR1poJc/ZwWZG2YcO/EGzYi7o//6F4DsaRr9rWCEYRVINjjEDlanCexIi0kDhpDZFWDdqaBRY7JMspxiG7j3aR1nDSGhgYGBi0H1q8cNiyZctAURTuuOMORYE2jNlsxp133gme57Fs2bIWaKHBscLqcnKhlcag9rwYAwMDAwODZFL588mqOWZKIi1lyYQ1/zTZ9f4jf6gKtLQtFxRjTMk26LgEKlbKRoZQ1izicjmkhcOM75YatMx7TJkURFpWm0hrZFEbGBgYGLQnWlykPXr0KIBQeLBW+vTpAwCoqKhISpsMjk1mb6onLjeyQg0MDAwMWgJ797+pbhOs3oBgzUbFbVjPYdl1tCUNptTuutsmOIa9s3CByvRgPqgtC9LAoL1jKzoP9m6X69pHnJVqZNKqQ1szySsYu/xOrFfbwSmjWLCBgYGBQfuhxUVapzOULVRZWal5n+rqUJ6awyE/mmpgIEYue/bkLoZIa2BgYGCQfFyDH1MWGZrg/TXKG3AB+XV0SIBIHfWKjpYJoURtZGydVLY3RCeD9ouz/53aNqQYpAx5CikDH9B1fHEBLNqaoWv/DomMkE015fmmDHtWsk5coE320CpxMgYGBgYGBm2JFhdpe/fuDQD49NNPNe8T3ja8r4GBGjVelrh8ag8H+mUZ2WAGBgYGBsnH5CpCzpQNSB3+b5jSj5PdjjKnKR6H5+Sz1KmmQmCO3jcgY+IPMbWTEhU2oqyZsqIJAFAm+WI+BgZtnZRhzyB9wieq2+VM2QhTWm/QtmzYis5T3T78PeV8QiOK3FR+g2YompwbSzUNQtm7XyFZx/mlhcZI0HblQScDAwMDA4O2RIuLtOeccw54nsc777wTKSKmxPvvv4+3334bFEXh3HPPTXr7DI4NdtWSH2h7phtTngwMDAwMWg5Tanc4+8+EtcvZ8hvJCBQReKWCl6EiXhRFwVZ4BtJP+Eh/I0WFjSiKUiwkJnbeGhi0JyiKgr3kYtD2PNltaHseTOl9ml87uqgel///9u47PKoqceP4O5NeCKFDSKQ3BQUJCCICotgoG0TsFAFZLIu7LrI/3bUX1LWt69KLWEAp0gIriBIloCGAihQpghIIHSnpk8zvDzbXDFPSZnKTzPfzPHmeO/eee+bMTM5M5s2559gyJBHSlonVzd/n/3tvsgY7j0YuyC7ZNHjW0PplbhYAABWtwkPaRx55RI0aNZLdbteoUaPUv39/LV68WIcOHVJeXp5sNpsOHTqkxYsXq3///hoxYoQKCgoUExOjhx9+uKKbiypq3xnXl4ZaWZAaAGACdyPFJEnFLBxm9zTdgcXxT7mAiEtK06z/VeEckFg9hLQKJKRF1edpRLglKKrU9dltGbLb7Sq4aLoDi7v5VmGwWDyPpLUEBMsSVMPh2MVhuDsBhLQAgCqkmKEb3hcREaEVK1bo+uuv1+nTp7Vq1SqtWrXKbXm73a5atWppxYoVzEkLt9LO2bQuLVsNIwJ0XVyo9v3metRRps3zF2EAACra2U1/UWSHiQqMaq2MXe/KGlJXIY36Kmv/PBVkpct26jsPZ18U0kaWPqR1NYotILyx3EXDnlZcB6oKS1Ck22PWiwLBkjiz8Y8KCGskFTjOlcpI2hJw90+sIu9N1uDays/7fVHgvBObSlY1IS0AoAqp8JBWkjp16qRt27Zp/PjxWrJkifLzXc8fGhAQoISEBL355ptq3LhxBbcSVcX53AI9kXxKOf/7NTqTU+B2JO2ZHNeLiQEAYJbcw6t16vBqh33n3JR1ctFIWk+XcLuvwnmu9oBw9393Md0BqgPPI2lLH9LmHFzucj8hbQm4GUmrgt+/I+ZnHXE4lL1/XomqtoYR0gIAqg5TQlpJiomJ0YIFC5Senq5169bpxx9/1KlTFy4Pql27ttq3b6/evXurUaPSf9mAf1nxc6YR0ErSJ7sz3JaNjTTtVx4A4MeC6l7lm4otjvP4eJxWwY3gRtc77fM03UFgTRZyRdVnDXQ/kvbi6Q6C63dX5s63y3AvljJNneBvgutdJVd/vVuLThVRkFOmuq0hdcvWKAAATGB6YtWoUSPdddddZjcDVdheN6NmL9YoIkDt67JwGACg4oU0vkkBUW2Uf/Ynr9ZrKefyAtawRgpvOdxpv6eRtEG1OpTrPoHKwBrh/nf84oXzQpvcVsY7CZTFwoIIxQmJ7e/0/hjcsE/Zpm+5CCP/AQBViekhLVBe+SWYweD+yyLVo3GorPyhDAAwgcUaoLr9v1XWvg909lsvLoRqKV1IG9npOQWENZQlOFoFWUcU2uxOWVwsBGZ1E9I2vDerTM0EKpuAiCYejsU53LZYAyVrsNN8s8Xj786SMN4f985RzuHPFRo3QGEt7vNO5S7m3AYAoLLyaUj766+/er3OSy4p/39UUb0UtxZYQstw3diURU4AAOayBtdURLuHdHbTY2W+dNdJaUPay/9eopF9F48klKTwNn+UJTC0VPcHVFYBke5DWmtErPO+0PoqyEwr5b0Q0paUNbimIi4dr4hLx3uvUotVFmuA9+oDAMDHfBrSNm3a1KuX+FgsFtlsNq/Vh+ohv8BzStuiJv9BBwBUIl69qqN0dZX07zJX0x0UZB8v1X0BlZnHkbThziGtpSwjMkv5TxR4mYtFEQEAqMx8Pt2B3V7MMEegHOx2u/ad8Rzct4hmVg8AQOVhsVjltb+OfBQCuZoCgZAW1YmnkbQBLkbSqgyL8jEfrbkshLQAgCrGp+nV8OHOC1EU9dtvv2np0qWyWCwaNmyYL5uCamrFfs9z49UKsap2KJc5AQAqEy8GNxU4Uo+QFtWJyyC28JiLkeQWS1m+NjGS1kyEtACAqsanIe3s2bM9Ht++fbuWLl1aorKAKx/sPO/xeLOajKIFAFQyZQp73FTlxbqcXLRQUmiTwb67L6CCuZu+wBJSR5ZA57UMQmJvle3MztLeSVmaBm8JYA5tAEDVwl8OqNZqBPMrDgCoXKyhdbxXl4sFvmpePcNl2bDm95aq7uhrPzK2LUE1FN76gdI1Dqjkgupe5bTP1Xy0khTZYaIswdHGbauL0bYXswSElLltcBTZ6YVSnxNYs7UPWgIAqG4sFossFoueeeYZs5tCSIvqLdjKXGAAgMrFGlrfa3UFRFzitC+89SiFNr/baX/k5U+Wqu6wprep9k1Jiur6tuoO2KKASOf7AqqyyI5POe1zNw2CNbSu6g36QVFd31btfmtU//aDiu75gQLrXKnIjs8oIKqN80mM5PSasOZ3uT1W48qXXO4Pqt3RR60BUFWsW7fOCOAu/gkPD1dcXJz69++vWbNmKScnx+zmAr5fOAwwUxDT0QIAKhlvhrTW0Hou94c07KPsnz9y2GcJiih1/SENr1VIw2vL1DagsrNYnP9QdDeSVpICIuIUcemfjNthLe5RWIt7JEkhjW/SycRujifYC7zTUCggoolkDZEKHEOU4AY9Fdywt8tzAglpAXiQlZWltLQ0paWlKTExUW+88YZWrFihpk2bmt00+DFG0qLKKrAXvzZ2ECNpAQCVjDdDWnerx9sLbM5lA0sf0gLVmos5Y60RcWWqKqhWB6d9BZmHylQXnFmsAQqMauW03xoWI3eLMQbVusLHrQJQlYwbN07btm0zftauXau3335bsbEX/jm3fft2DRw4UPn5+Sa3FP6MkBZVVrat+JD2txxGMAAAKhdXo/e8zk5ICxTP+auQu+kOiuNqsTF4V2BN5yklAsJjJLn+ez+wZlsftwhAVVK/fn21b9/e+Lnuuuv0pz/9STt27DBGz27btk2ffvqpuQ2FXyOkRZWVVYKQ9ngm/wUDAFQuBXlnfH4f9oI8553WYJ/fL1CluBhJ62m6A5grwEVIaw2PcTuthCWA9zwAxatRo4b+/ve/G7c///xzE1sDf0dIiyqrJCFtl4asqgsAqFxCYm/xSj1hLYa5PRZU63Knfe6mRgD8lotwzxreqMzVhbUc6XA7uAHzOXtTYA3n6Q4CwhrJ6iJYD6jRoiKaBKCa6NDh9ylrDh486Lbcl19+qeHDh6t58+YKDw9XVFSUOnTooAkTJujw4cMluq/k5GSNHj1abdq0UVRUlIKDgxUbG6v+/fvr3Xff1W+//eb23OXLl2vIkCGKjY1VSEiI6tSpo+7du2vSpEk6f/68y3NatGghi8WiHj16FNu2Q4cOKSAgQBaLRY8//rjLMmfOnNHLL7+sHj16qF69egoODlajRo00YMAALVy4UHYP01IWLtr2zDPPSJK++OIL3X777YqLi1NQUJDL+YCPHDmiJ598UvHx8apdu7ZCQkIUFxenoUOHljhQ/+ijj9S7d2/VqlVLkZGRat++vZ5++mmPz7VZWDgMVVZmMSFteKBF3RsR0gIAKpfQSwbrXOgEFWQf9VguIKKJAiIvUe7Rr50PWkMUeYXzyvSFghtdp8Do9rL99qMkKeKyx8rVZqBasjtfcWUJCCtzdTWufFHZBz6R3ZYhSQpvM67MdcGZq8UPLSG1FFijqSwhtWXPOWXsj+75QUU2DUAVFxz8+8j7oKAgp+PZ2dkaOXKk5s+f73Tsxx9/1I8//qjJkydr3rx5GjBggMv7yMrK0qhRozRv3jynY4cOHdKhQ4eUmJio48ePGyFm0fu/++67naZiOHXqlL755ht98803euedd5SYmKiOHTs6lLn77rv1wgsvaOPGjTpw4IDHhdHmzZungoIL/8C85557nI6vXbtWd9xxh06ePOmw/8iRI1qxYoVWrFihW265RR9//LEiIyPd3o8kPfnkk3rppZc8lvnwww81duxYZWRkOOxPS0vTggULtGDBAo0aNUpTpkxRYKBzvGmz2XT33XdrwYIFDvu3b9+u7du364MPPqh0I6d9GtI+99xzHo8fO3asxGULPfWU+y8k8C9ZNufRD8MvjdSxzHzVDw9Q5wYhqhVaAfP+AQBQCtagCNUd+J2yD3yisynjXZaxBEaq7oBUWULq6PzWfyjrwELV7D5FFmuQck+kKDT2VgVGuR8pZrFYVOeWZGX9/IGsIXUV2vR2Xz0coFqxWJ2/nJdUQHgj1R30o7J/Xayg2h0V0ug6L7YMFovza2MNipIkNRh6WGc3/UW5R9erZo8ZCq7bpaKbB6AK27lzp7F9cYhpt9s1ZMgQJSYmSpIGDBigoUOHqnnz5rJarUpJSdHrr7+uX3/9VUOGDFFycrLi4+Md6igoKNCgQYO0Zs0aSVKrVq304IMPKj4+XuHh4UpPT9eGDRv0ySefuGzf8OHDjYD2iiuu0GOPPaZ27drp1KlTmj9/vubMmaPDhw+rb9+++uGHH9S4cWPj3HvuuUcvvPCC7Ha7PvroIz3xxBNun4ePPvpIknTZZZfpiiscF19MTk7WzTffrLy8PDVo0ECPPPKIrrjiCsXExOjw4cP6+OOP9cEHH2jlypUaPny4Fi1a5PZ+Fi9erG3btqlDhw7685//rPbt2ysrK0vfffedUeaTTz7RfffdJ7vdrubNm+vhhx/WpZdeqnr16unAgQOaOXOmVq5cqZkzZyoqKkpvvPGG0/389a9/NQLaNm3a6PHHH9fll1+uM2fOaMGCBZo+fbruuOMOt+00g8XuaSxyOVmtVq9fWsdKe47S0tIUF3dhFdqDBw8aKxP6g2/Ss/XmlrPG7UYRAXqrdx0TWwQAQOmkz3H9d1KNK19U5OXu/4gGUH45h1br1JobHfbVH5qugPCGJrUInmQfXK7Tawc67Ks76AcF1erg5gzA+8rz/XvPnj2y2WwKDAxUq1bO03dIUoG9QCdzMr3S1qqiTki4rC7mCPeGdevWqU+fPpKkp59+2mmEqnQhY+rSpYu2bt0qSfr66691zTXXGMenT5+uBx54QEFBQVq2bJluuukmpzpOnz6tnj17avv27erRo4fWr1/vcPxf//qXxo+/8I/5hIQEzZs3TyEhzlf9FhQUKD093SFkTUxMVP/+/SVJffv21cqVKx1G/hZtoyQNHTpUH3/8scPxzp07a8uWLbrsssv0448/unyudu3apXbt2kmSXnrpJf3f//2fcSwvL0+tW7fWgQMHdNNNN2nRokUKD3deMLNoO1avXq0bbrjB4XjRfLBv375KTEx0+TycOHFCLVu21JkzZ3T//fdr6tSpLkfKFo7GtVqt2rFjh9q0+X3u8m3btqljx44qKCjQlVdeqaSkJKfRvXPnztXw4cON2+5+RzwpSb8uDZ9Pd+DNDJi51FDUxXPShgXy+wEAqB4sgc6X9QLwNufvKeUZSQvfsufnOO2z/G8kLVBdnMzJVP15z5jdjAp17K5nVC/U86XxvnD8+HFt27ZNTz31lBHQDhkyxCGgtdvteuWVVyRJf/rTn1wGtJJUq1Ytvfbaa7rllluUnJysPXv2GIFdQUGBXnvtNUlSbGys5s6d6zKYlC4MdCwa0ErSu+++K+nCNAyzZ892CmglacyYMfrkk0/0+eefa/HixUpPT1ejRr/PsX7PPfdoy5Yt2r59u77//nunUbLShakFpAu529133+1wbP78+Tpw4IBCQ0M1d+5clwFtYTtmzJihlJQUzZkzxymkLfo4Z8yY4fZ5mDx5ss6cOaPGjRvrP//5j8uAVpKeffZZvffeezp06JDmzp2rF1980Tg2ZcoUY+qGadOmuZx+YdiwYZo/f75WrVrlsn4z+DSk/fLLL31ZPfyY3W7XZweyHPaFE9ICAKqLgFCzWwBUey4Hk1hZsqOysudnOe2zBtU0oSUAqqJnn31Wzz77rMtj4eHh+uMf/6hJkyY57N+xY4f27dsn6UKA68m11/6+WOTGjRuNkPa7775TWlqapAshZnFztRZls9mUlJQkSerXr58xituVMWPG6PPPP5fNZtO6det01113GcfuvPNOTZgwQQUFBfroo49chrSFc+X26NFDTZo0cTi2bNkySVKvXr1Ur149j22+9tprlZKSoo0bN7ot06NHD49z4xbeX//+/d0GuZIUGBio7t27a+HChU73VzjXbIcOHdS5c2e3ddx///3+E9L26tXLl9XDj63+JUv7z9oc9jGSFgBQXRRkHjK7CYAfcBHS+uiSW5Sf3eZ8CbglqIYJLQFQ3XTs2FF/+tOfnBYNS01NNba7d+9e4vqOHDlibBeO0pWknj17lqpdP//8szIzL7z3XXXVVR7LFj1+8ZQGMTEx6tOnj9auXat58+Zp0qRJDleqf/vtt0YY7WrBsMLn4bPPPivxFe5Fn4OLXX755W6P5efnG3PTTp06VVOnTi31/eXk5GjPnj2SpC5dPM9R3rVr1xLVX1H4KwRV0qzt5532hQXy6wwAqB6C6nUzuwlAtRcY2cxpn8XqfBkpKofAmu2c9lmsLBIMoGTGjRunbdu2adu2bdq6dauWL1+u4cOHy2q1asOGDerdu7eOHz/ucE7Rxe5LozBYlS7Mr1qo6BQEJXHq1Clju379+h7LNmz4+3zqRc8rVBi+Hjx4UF999ZXDscKpDoKCgnT77c6LzZblecjKcr76oVCtWrXcHjt16pRsNpvb4+4Ufc5Pnz5tXC1T3PPWoEGDUt+XL3E9D6oNRtICAKqaiMufUMYPLznss4bHKqQhq8IDvhYY3VbBDXsr98g6SVJYi+GyBLi/rBLmCm7QU4G1Lpft9A+SpIhL/2xyiwDvqxMSrmN3PWN2MypUnRDX85t6W/369dW+fXvjdseOHdW/f3/16dNHI0aM0IEDBzR69GgtXbrUKFN04frly5d7vET/4vvytvKu0XTbbbfpwQcfVHZ2tj766CPjyvf8/Hx98sknkqSbbrpJdeo4L8Ze+DzcfPPNevXVV8vVDkkKCHD/D7aiz/no0aONBdeK42quXqnqrW1FSItqgzlpAQBVTdSVLyogPE4Z219XUJ0rFdzgGoU2vUOWQOakBSpC7etXKuvnDyRriMKaO1/iicrDYrGozi3rlbXvA1lDaiu06VCzmwR4ndViNWURLX82fPhwLV++XIsWLdKyZcv0xRdf6LrrLvyzvGhgGR0d7RDyllTdunWN7fT0dLVt27bE59auXdvYPnr0qMeyRS/3L3peoaioKPXv318LFy7UwoUL9e9//1tBQUFau3atUberqQ6kC8/D4cOHlZubW6bnoDSKtt1ut5fp/qKjo43t4p634o5XNK4PR7URFkRICwCoeiLa/lH1b9ujWr0/VkS7RxQQ5v3RFwBcswSGKbz1GIW3HMal81WANaiGItqOU1izO6rc6CgAlddLL71kjO584oknjP2dOnUytpOTk8tU95VXXmlsXzzNQHGaN2+u8PALI42//fZbj2VTUlKMbXfBZmEIe+rUKWOxrMKpDmrUqKGBAwe6PK/weUhNTVVubm4pHkHpBQcH67LLLpNU9uc8NDTUWLht06ZNHssWd7yiEdKi2ggN4A81AAAAAABQcq1bt9bQoRdG53/77bdas2aNpAsBa2xsrCRp2rRpys7OLnXdV1xxheLi4iRJM2bM0PnzzuvruBMYGGhMS7BmzRqlpaW5LTtjxgzjnN69e7ssc8sttxjzwX744YfKzs7Wp59+KklKSEhQWFiYy/MKw9szZ85o9uzZJW5/WRXe365du/TZZ5+VqY7rr79ekow5iN2ZNWtWmer3FUJaVBkZeQVasPu8/vTlCZfHw1k4DAAAAAAAlNITTzxhjNB/4YUXJElWq9UYWfvzzz9r2LBhysnJcVvH2bNn9e9//9thn9Vq1YQJEyRJaWlpGjZsmNvRqAUFBTp8+LDDvoceekiSlJubq1GjRikvL8/pvFmzZmn16tWSpMGDB7tdoCw4OFhDhgyRdGGO3Y8++kjnzp2T5H6qA+nClBCFQfNf//rXYkcEr1+/XklJSR7LeDJ+/HhFRl6Y9mPkyJHavn27x/KJiYn64YcfHPaNHTvWeD0feOABZWRkOJ334YcfauXKlWVupy+QaqHKeHXTGS3ck6mjmQUuj4cwJy0AAAAAACil9u3bGyM4v/rqK61fv16S9Mc//lEJCQmSpAULFuiyyy7Ta6+9pqSkJH333Xf66quvNG3aNN19992KiYnRM88841T3Qw89pBtuuEGS9Omnn6pDhw56++23lZycrK1bt2rVqlV6+umn1bZtW02bNs3h3FtvvVW33367JGn16tXq1q2bPvzwQ23evFmff/65Ro8erdGjR0u6MJ/rG2+84fFxFoaxWVlZeuyxxyRJDRo0UN++fd2eExISok8++UQhISE6f/68rrvuOt17771auHChNm/erE2bNmnZsmV6+umndfnll6tnz57atm2bx3Z40qBBA7333nuyWCxKT09XfHy8xo0bp2XLlmnLli369ttvtWjRIk2cOFEtWrRQ//799euvvzrUccUVVxgBd2pqquLj4zVnzhxt3rxZX3zxhcaNG6dhw4YpPj6+zO30BRYOQ5VwKjtfu047/8eoqHy7vYJaAwAAAAAAqpMnn3xSS5culSQ9//zz+uyzz2SxWPTxxx9r/PjxmjJlivbt26fHH3/cbR316zuvLWC1WrVkyRINHz5cCxcu1O7du/Xoo4+WuF1z586VzWbTp59+qi1btujee+91KhMTE6PExEQ1btzYY13XXnut4uLidPDgQf3222+SpDvvvNOYk9edbt26ad26dRo6dKgOHjyoDz/80JjP1pWoqKjiH5gHgwcP1tKlSzVixAidOnVKU6ZM0ZQpU1yWtVqtioiIcNr/xhtv6PDhw1q8eLF27dqlkSNHOhxv1qyZPv74Y7Vo0aJcbfUmRtKiSjiR5Xr0bFGBLB4AAAAAAADKoEuXLsaI19WrVxuLSgUFBek///mPvv/+ez3yyCPq0KGDatasqYCAANWsWVMdO3bUqFGjtHDhQu3cudNl3eHh4VqwYIG++OIL3XfffWrWrJnCwsIUHBysuLg4DRgwQFOnTjVGtxYVGhqqxYsXa9myZRo8eLBiYmIUHBysWrVq6aqrrtLLL7+sn376SR07diz2MVosFt11110O+zxNdVBUt27dtGfPHk2ZMkW33nqr0Y7Q0FDFxcWpX79+evHFF7Vr1y4NGzasRHV6MmDAAO3fv1///Oc/dd1116lBgwYKCgpSWFiYmjVrpv79++uNN97QgQMH1KdPH6fzg4KCtGjRIr3//vvq2bOnatasqfDwcLVr105PPPGENm/erObNm5e7nd5ksdsZfliVpaWlGXODHDx40JjUurrZeDhbb20967HM37rUVKf6IRXUIgAAAACAPynP9+89e/bIZrMpMDDQWHkeQNXm7X7NSFpUCSUZSWtlIC0AAAAAAACqIEJaVAknsvOLLRNISgsAAAAAAIAqiJAWVcKJrOJD2gAyWgAAAAAAAFRBhLSoEkq0cBgjaQEAAAAAAFAFEdKiSjidU3xIWzuUX2cAAAAAAABUPaRaqBKy8jyHtFfWD1bt0IAKag0AAAAAAADgPYFmNwAoTn6BXbkuMtp2tYPUpWGIwgIsujY2tOIbBgAAAAAAAHgBIS0qvex8u9O+d6+ro7phjJwFAAAAAABA1cd0B6j0smzOIW1YIIuEAQAAAAAAoHrwy5D27Nmzmj9/vh577DH16tVLLVu2VM2aNRUcHKz69eurd+/eevXVV3Xy5MkS1bdhwwbde++9atKkiUJDQ9WwYUPdeOONmjdvno8fiX/IdhHShgYQ0gIAAAAAAKB68MvpDlJSUnTXXXe5PHb8+HElJSUpKSlJr732mj744APdeOONbut65pln9Pzzz6ug4PdJU48eParVq1dr9erV+vDDD7Vw4UKFhjJnalldPJI22CoFWAlpAQAAAAAAUD345UhaSYqLi9OwYcP09ttva/Hixdq4caOSk5P18ccf6/bbb1dAQIBOnDihgQMH6vvvv3dZx9SpU/Xss8+qoKBALVq00MyZM5WSkqIlS5aoT58+kqTExETdf//9FfnQqp3zeY6rhoUF+e2vLQAAAAAAAKohvxxJ26dPH/36669ujw8dOlRLlixRQkKCcnNz9eyzz2rx4sUOZU6dOqWJEydKki655BJ98803qlu3rnG8f//+SkhI0PLlyzVv3jw98MAD6t27t08eT3V3LDPf4Xa9MEJaAAAAAAAAVB9+mXYFBAQUW+YPf/iD2rRpI0n6+uuvnY7PmDFDZ86ckSS98sorDgFt4X385z//Me7rtddeK2+z/dbRi0La+uHFv34AAAAAAABAVeGXIW1J1ahRQ5KUnZ3tdGzJkiWSpKioKA0ePNjl+bGxsbr++uslSWvXrtW5c+d809Bq7uKRtA3CCGkBAAAAAABQfRDSuvHTTz/pu+++kyS1bdvW4Vhubq5SUlIkSd27d1dwcLDbenr16iVJysnJUWpqqm8aW80dzXSck5aRtAAAAAAAAKhO/HJOWncyMzN16NAhLV++XK+++qpsNpsk6dFHH3Uot3v3buXnXxjdeXGAe7Gix3fu3GksKFZSaWlpHo+np6eXqr6qxm63O42kJaQFAAAAAABAdeL3Ie2cOXM0cuRIt8f/9re/6e6773bYVzQ4jY2N9Vh/XFycsX3w4MFSt6/o+f7oXK5d2fl2h32EtAAAAAAAAKhO/D6kdadjx46aNm2aunTp4nSs6NyykZGRHuuJiIgwts+fP++9BvqJixcNC7BIdUKZpQMAAAAAAADVh9+HtH/4wx8UHx8vScrKytK+ffv0ySef6NNPP9Vdd92lt956S/3793c4p+hCYp7mo5WkkJAQYzsrK6vU7Stu9G16erq6du1a6nqrimNZjiFt3bAABVgtJrUGAAAAAACgarBYLuQnTz/9tJ555hlzG4Ni+X1IGx0drejoaON2ly5ddOedd+r999/X8OHDNWjQIM2cOVMjRowwyoSGhhrbubm5HuvPyckxtsPCwkrdvuKmU6juLp6PtkE4o2gBAAAAAIBn69atc7kuUEBAgKKiolSzZk3FxcWpc+fOuuaaazRgwIBiB+IBvkTi5cZ9992n22+/XQUFBXr44Yd16tQp41iNGjWM7eKmMMjIyDC2i5saAc4unu6A+WgBAAAAAEBZ5efn6/Tp0zpw4IC+/vprvfXWWxoyZIhiY2P1wgsvGIvIAxWNkNaDQYMGSboQtP73v/819hcd3Vp0ETFXik5X4O+LgJXFxSNpCWkBAAAAAEBpjBs3Ttu2bTN+Nm7cqJUrV2rSpEm64YYbZLFYdPz4cf3jH/9Qjx49dPz4cbObDD/k99MdeFKvXj1j+5dffjG2W7durYCAAOXn52vXrl0e6yh6vF27dt5vZDWVm2/Xyv2Z2n4yz2F/A0JaAAAAAABQCvXr11f79u2d9t98882aOHGiduzYoXvvvVdbt25VSkqKEhIS9MUXXzD9ASoUI2k9OHTokLFddKqC4OBgY7GujRs3epyXNikpSdKFBcQKFyhD8ab8cFbzfspw2s9IWgAAAAAA4E2XXnqpkpOT1alTJ0lScnKy3n33XZNbBX9DSOvBggULjO0OHTo4HPvDH/4gSTp79qwWL17s8vy0tDR9/vnnkqS+ffs6zGUL9/IL7Eo+nOPyWP0wQloAAAAAAOBdYWFhev/992WxWCRJ//znP5WXl+ey7JEjR/Tkk08qPj5etWvXVkhIiOLi4jR06FAjB3Ln9OnTmj17tu69915deumlioyMVHBwsBo2bKgbb7xR06ZNK3aR+kIfffSRevfurVq1aikyMlLt27fX008/rd9++61Ujx2Vg1+GtHPmzFF2drbHMm+++aZWrlwpSWrWrJl69uzpcHz06NGqWbOmJOlvf/ubTp486XA8Pz9fDz74oPLzL8ypOmHCBG81v9o7mV3gcr9FUniQpWIbAwAAAAAA/MJll12mG264QZJ0+PBhbdq0yanMhx9+qJYtW+qll17S5s2bdfr0aeXm5iotLU0LFizQDTfcoNGjR7tdgKxTp066//779eGHH2rnzp3KyMhQXl6ejh49qtWrV2vs2LHq1q2bjhw54radNptNQ4cO1T333KOkpCT99ttvysjI0Pbt2/Xcc8+pc+fO2r9/v3eeFFQYvwxpn3nmGTVu3FgPPPCA5s6dq+TkZH3//fdav369Jk+erGuuuUZ/+ctfJF2Y2mDatGkKCHAcwVm7dm298sorki7MV3vVVVdp9uzZSk1N1bJly3TDDTdo+fLlkqS77rpLvXv3rtDHWJUdych3uT8s0CKrhZAWAAAAAAD4xvXXX29sf/311w7HPvnkE913333KyMhQ8+bN9cYbb+i///2vNm/erEWLFumWW26RJM2cOVOPP/64y/rz8/N11VVX6fnnn9eKFSu0adMmJScn64MPPtBNN90kSdq6davuvPNOt23861//alz93aZNG82cOVObNm3S559/rrFjx+rAgQO64447yvU8oOL57cJhp06d0vTp0zV9+nS3ZWJjYzVr1iyHDlrU2LFjdfjwYT3//PPat2+f7r//fqcyt9xyi2bNmuW1dvuDI5mu/9sUFkhACwAAAAConuz2AtkLzprdjAplsUbJYqlc4wevvPJKY3v37t3G9okTJ/TAAw/Ibrfr/vvv19SpUxUYGOhw3uDBg/Xkk0/qpZde0ttvv62xY8eqTZs2DvV/8cUXatWqldP9Xn311brnnns0e/Zs3X///UpKStLatWvVt29fh3Lbtm3TO++8Y9xnUlKSwzpKffv21dVXX63hw4eX74lAhfPLkPazzz5TYmKikpOTtXfvXh09elQnT55UWFiY6tevr44dO6p///4aOnSowsPDPdb17LPP6sYbb9S7776rr7/+WkePHlV0dLSuuOIKjRw5UnfddVcFParqw91I2rwCewW3BAAAAACAimEvOKtzR24zuxkVqkbDRbIERJvdDAd16tQxtk+fPm1sT548WWfOnFHjxo31n//8xyGgLerZZ5/Ve++9p0OHDmnu3Ll68cUXHY67CmiLGjlypP71r3/pu+++05IlS5xC2ilTpqig4MI0kdOmTXMIaAsNGzZM8+fP16pVqzw/WFQqfhnStmnTRm3atDGmNCivq6++WldffbVX6oJ0NNN1SHs2l5AWAAAAAAD4TtHQ89y5c8b2smXLJEn9+/dXSEiI2/MDAwPVvXt3LVy4UBs3bvR4X3a7XUePHtXZs2cdFgtr3LixvvvuO33//fdO5xQuTNahQwd17tzZbd33338/IW0V45chLSo3dyNpAQAAAAAAfKloMBsVFSXpwjyy3333nSRp6tSpmjp1aonqcrf4V2JioiZPnqyvvvrK4f4uduLECYfbOTk52rNnjySpS5cuHu+7a9euJWojKg9CWlQqefl2pbsJaa+Ocf+fKgAAAAAAgPIqGozWrl1b0oV1jWw21+vneJKZmelw2263a8yYMZo5c2aJzs/KynK4ffr0adntF64yrl+/vsdzGzRoUIqWojIgpEWlcvC8TfkuZjWwSOodG1rh7QEAAAAAoCJYrFGq0XCR2c2oUBZrlNlNcLJ161Zju3DRr/z83weTjR49WuPHjy9RXcHBwQ63Z82aZQS0HTt21KOPPqqrrrpKjRs3Vnh4uAICAiRdmFP2/fffNwJZVywWFlevbghpUans+835P1P3totU6+ggtakdZEKLAAAAAADwPYvFWukW0fJHa9asMbavueYaSb+PqJUujIZt3759meqePn26JKlly5basGGDwsLCXJY7deqUy/3R0dHG9tGjRz3eV3HHUflYzW4AUNT+M3kOt3vEhGhA83ACWgAAAAAA4FM//vij1q5dK0mKi4tTfHy8pAsjYi+77DJJUnJycpnr3759uyRp4MCBbgNau92uLVu2uDwWGhqqVq1aSZI2bdrk8b6KO47Kh5AWlcrPZxxH0jarSTgLAAAAAAB8KysrS8OGDTOmGPjrX/+qwMDfL0AfOHCgJGnXrl367LPPynQfhfPaZmRkuC2zdOlSpaenuz1+/fXXS5K2bdvmMDXDxWbNmlWmNsI8hLSoNPLy7fr1nGNI26ImM3IAAAAAAADf2bFjh6655hoj9OzVq5fGjRvnUGb8+PGKjIyUJI0cOdIYFetOYmKifvjhB4d9haNgly9f7nJKg3379umhhx7yWO/YsWON+WgfeOABl4Hvhx9+qJUrV3qsB5UPCRgqjV/POS8a1jSKX1EAAAAAAFB2x44d048//mjczsjI0OnTp/XDDz9o7dq1WrNmjTGCtlu3blq4cKGCghyv7G3QoIHee+89DRkyROnp6YqPj9eIESN08803KzY2Vnl5eUpLS1NKSooWLlyon3/+WcuXL9fll19u1DFs2DBNmDBBhw8fVvfu3TVx4kS1b99e2dnZ+uKLL/TWW28pJydHV155pdspD6644go99NBD+ve//63U1FTFx8dr4sSJ6tChg86cOaMFCxZo2rRpio+PV2pqqg+eTfgKCRgqjcMZ+Q63G4YHKDyIwd4AAAAAAKDsJk+erMmTJ3ssU69ePT366KN6/PHHHaY5KGrw4MFaunSpRowYoVOnTmnKlCmaMmWKy7JWq1UREREO+8aPH681a9Zo9erV2r17t0aNGuVwPCwsTHPnzlViYqLbkFaS3njjDR0+fFiLFy/Wrl27NHLkSIfjzZo108cff6wWLVp4fMyoXAhpUWlk2QocbkeHENACAAAAAADvsVqtqlGjhmrWrKkmTZqoc+fO6tmzp/r376/g4OBizx8wYID279+v6dOna+XKldq+fbtOnTqlwMBANWzYUJdddpmuu+46DRkyRHFxcQ7nBgUFKTExUZMnT9bcuXO1Y8cO2e12NW7cWNdff73Gjx+vtm3bKjEx0WMbgoKCtGjRIn3wwQeaNm2afvjhB+Xl5alJkyZKSEjQX//6V9WqVatczxMqnsVeOJ4bVVJaWprR6Q8ePKjY2FiTW1R2S/dl6KNdv8+l0rFesP6va7R5DQIAAAAA4H/K8/17z549stlsCgwMNOYlBVC1ebtfM1QRlUaWzfH/BWGBFpNaAgAAAAAAAFQcQlpUGtmEtAAAAAAAAPBDhLSoNDIJaQEAAAAAAOCHCGlRaVw8kjaUkBYAAAAAAAB+gJAWlUbaeZvD7YhAfj0BAAAAAABQ/ZGCoVI4fN6mQ+fzHfa1qhVkUmsAAAAAAACAikNIi0ph09Ech9vRIVa1jA40qTUAAAAAAABAxSGkRaWQesQxpI1vECyrhTlpAQAAAAAAUP0R0sJ0p7Pztfs3x/louzQMMak1AAAAAAAAQMUipIXpUo/mOtwOC7SofZ1gk1oDAAAAAAAAVCxCWpgu9aL5aDvVD1aglakOAAAAAAAAUDnZ7Xav1kdIC9P9ctZxqoPO9ZnqAAAAAABQfQQEBEiSbDab8vPzTW4NgPLKz883+nJh/y4vQlqYLv+i/zxEh/BrCQAAAACoPsLDw43t3377zbyGAPCKov24aP8uj0Cv1AKUw8Wjw5npAAAAAABQnURHR+v06dOSpGPHjik/P19RUVEKCQmRxcKXYKAqsNvtysnJ0dmzZ3Xy5Eljf61atbxSPyEtTFdgdgMAAAAAAPCh0NBQ1axZU2fOnJEknTx5UidPnpTFYvHapdIAfCs/P99pHtqaNWsqJMQ703YS0sJ8jKQFAAAAAFRzjRo1UnBwsI4fP27ss9vtstlsHs4CUFnVq1dPderU8Vp9hLQwVXqGTRk2766GBwAAAABAZWOxWFS3bl1FRUXp/PnzysjIUG5urgoKuL4UqAqsVquCg4MVERGhyMhIBQcHe7V+QlqYJstWoP9bf9ppv5X5eAAAAAAA1VRwcLBq166t2rVrm90UAJWI1ewGwH/990CWslyMog0gowUAAAAAAIAfIaSFafafcT3vTqMIJk0HAAAAAACA/yCkhWny7c6jaBuGByg8iF9LAAAAAAAA+A/SMJjG5mJu9GY1mSYZAAAAAAAA/oWQFqZxNZKWkBYAAAAAAAD+hpAWpsnNd97XLCqo4hsCAAAAAAAAmIiQFqb59ZzzwmFNGUkLAAAAAAAAP0NIC9M0iXIOZKOC+ZUEAAAAAACAfyERg2na1WZqAwAAAAAAAICQFqYJslocbsc3CDapJQAAAAAAAIB5CGlhGvtFty2yuCwHAAAAAAAAVGeEtDCN/aKU1kJGCwAAAAAAAD9ESAsTOaa0ZLQAAAAAAADwR4S0MI3TdAektAAAAAAAAPBDhLQwzblcx5g2gJAWAAAAAAAAfoiQFqbZdSrP4fYlNQJNagkAAAAAAABgHkJamCIjr0AHz9kc9rWtHWRSawAAAAAAAADzENLCFLtP5znMSRtklVrUJKQFAAAAAACA/yGkhSkunuqgRXSQgpiUFgAAAAAAAH7Ib0Pa1NRUPffcc+rXr59iY2MVEhKiyMhItW7dWiNHjtT69etLVd+qVauUkJBg1BUbG6uEhAStWrXKR4+gars4pG1bi1G0AAAAAAAA8E9+uVLTtddeq6+//tppf25urvbs2aM9e/Zozpw5GjZsmKZPn67g4GC3dRUUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIOcvPt2nvmopCW+WgBAAAAAADgp/wyNTx8+LAkKSYmRuPHj9fChQuVkpKijRs36o033lDjxo0lSXPnztWIESM81vXkk08aAW2nTp00b948paSkaN68eerUqZMkacaMGfr73//uuwdUxRzOsMlW4LivNSNpAQAAAAAA4KcsdrvdXnyx6qV///4aNmyYbrvtNgUEBDgdP3HihHr06KHdu3dLkpKSknTttdc6ldu9e7cuu+wy2Ww2xcfH66uvvlJYWJhxPDMzU7169VJqaqoCAwO1c+dOtWzZ0quPJS0tTXFxcZKkgwcPKjY21qv1+8KWozl6JfWMcTs6xKqp19c1sUUAAAAAAHhWFb9/A6g6/HIk7YoVKzR06FCXAa0k1a1bV6+//rpxe+HChS7LvfXWW7LZbJKkd955xyGglaTw8HC98847kiSbzaY333zTG82v8k5mOw6jrRPql7+GAAAAAAAAgCQ/DWlLok+fPsb2vn37nI7b7XYtXbpUktS2bVt169bNZT3dunVTmzZtJElLly6VHw5cdnIyO9/hdu1Q12E5AAAAAAAA4A8Iad3Iyckxtl2NuN2/f78xt22vXr081lV4/NChQzpw4ID3GllFnbp4JG0Yv4YAAAAAAADwX4FmN6CySkpKMrbbtWvndHzHjh3Gdtu2bT3WVfT4zp071axZsxK3Iy0tzePx9PT0EtdVWZzMchxJy3QHAAAAAAAA8GeEtC4UFBRo0qRJxu2hQ4c6lSkanhY3WXjhxOLShcnFS6PoudWF85y0THcAAAAAAAAA/8UQRhfefPNNpaSkSJIGDx6szp07O5U5d+6csR0ZGemxvoiICGP7/PnzXmpl1WS323Xqojlpme4AAAAAAAAA/oyRtBdJSkrS3/72N0lS/fr1NXnyZJflsrOzje3g4GCPdYaEhBjbWVlZpWpPcSNv09PT1bVr11LVaaYMm105jhktC4cBAAAAAADArxHSFrF9+3YlJCTIZrMpNDRUCxYsUP369V2WDQ0NNbZzc3M91lt0EbKwsLBStam4qRSqmkCLRQ93jNLJrHydyi7Qyex81WZOWgAAAAAAAPgxQtr/2b9/v/r166fTp08rICBA8+fP17XXXuu2fI0aNYzt4qYwyMjIMLaLmxqhugsNtKhn49DiCwIAAAAAAAB+giGMkg4fPqzrr79ehw8flsVi0axZszRo0CCP5xQd4Vp0ETFXik5ZUB0XAgMAAAAAAABQdn4f0p44cUI33HCDfv75Z0nSO++8o2HDhhV73qWXXmps79q1y2PZosfbtWtXxpYCAAAAAAAAqI78OqQ9c+aMbrzxRu3YsUOSNGnSJD300EMlOrdZs2aKiYmRdGGxMU+++uorSVLjxo3VtGnTsjcYAAAAAAAAQLXjtyFtZmambr31Vm3ZskWS9OSTT2rixIklPt9isRhTIuzatUvffPONy3LffPONMZJ20KBBslgs5Ww5AAAAAAAAgOrEL0Pa3NxcJSQkKDk5WZI0fvx4vfDCC6Wu59FHH1VAQIAk6ZFHHlFWVpbD8aysLD3yyCOSpMDAQD366KPlazgAAAAAAACAaifQ7AaY4a677tLq1aslSdddd51GjRqlH3/80W354OBgtW7d2ml/69atNWHCBE2aNEmpqanq0aOHJk6cqBYtWmjfvn165ZVXtHXrVknShAkT1KpVK988IAAAAAAAAABVlsVut9vNbkRFK+2UA02aNNGBAwdcHisoKNCYMWM0a9Yst+ePGjVK06ZNk9Xq/YHLaWlpiouLkyQdPHhQsbGxXr8PAAAAAAD8Hd+/AfiSX0534E1Wq1UzZ85UYmKiBg0apJiYGAUHBysmJkaDBg3SypUrNWPGDJ8EtAAAAAAAAACqPr+c7sAXg4dvueUW3XLLLV6vFwAAAAAAAED1xvBOAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIr8NaY8dO6YVK1boqaee0s0336y6devKYrHIYrFoxIgRpa5v1apVSkhIUGxsrEJCQhQbG6uEhAStWrXK+40HAAAAAAAAUG0Emt0AszRo0MAr9RQUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIAAAAAAAAA3CA1lHTJJZeoX79+ZTr3ySefNALaTp06ad68eUpJSdG8efPUqVMnSdKMGTP097//3WvtBQAAAAAAAFB9+O1I2qeeekpdunRRly5d1KBBAx04cEDNmjUrVR27d+/WP//5T0lSfHy8vvrqK4WFhUmSunTpooEDB6pXr15KTU3Va6+9pvvvv18tW7b0+mMBAAAAAAAAUHX57UjaZ599Vv379y/XtAdvvfWWbDabJOmdd94xAtpC4eHheueddyRJNptNb775ZtkbDAAAAAAAAKBa8tuQtrzsdruWLl0qSWrbtq26devmsly3bt3Upk0bSdLSpUtlt9srrI0AAAAAAAAAKj9C2jLav3+/Dh8+LEnq1auXx7KFxw8dOqQDBw74umkAAAAAAAAAqhC/nZO2vHbs2GFst23b1mPZosd37txZqrlv09LSPB5PT08vcV0AAAAAAAAAKh9C2jIqGp7GxsZ6LBsXF2dsHzx4sFT3U/RcAAAAAAAAANUP0x2U0blz54ztyMhIj2UjIiKM7fPnz/usTQAAAAAAAACqHkbSllF2draxHRwc7LFsSEiIsZ2VlVWq+ylu5G16erq6du1aqjoBAAAAAAAAVB6EtGUUGhpqbOfm5nosm5OTY2yHhYWV6n6Km0oBAAAAAAAAQNXGdAdlVKNGDWO7uCkMMjIyjO3ipkYAAAAAAAAA4F8Iacuo6AjXoouIuVJ0ygIWAgMAAAAAAABQFCFtGV166aXG9q5duzyWLXq8Xbt2PmsTAAAAAAAAgKqHkLaMmjVrppiYGElSUlKSx7JfffWVJKlx48Zq2rSpr5sGAAAAAAAAoAohpC0ji8WiQYMGSbowUvabb75xWe6bb74xRtIOGjRIFoulwtoIAAAAAAAAoPIjpC2HRx99VAEBAZKkRx55RFlZWQ7Hs7Ky9Mgjj0iSAgMD9eijj1Z0EwEAAAAAAABUcoFmN8As69ev1969e43bJ06cMLb37t2rOXPmOJQfMWKEUx2tW7fWhAkTNGnSJKWmpqpHjx6aOHGiWrRooX379umVV17R1q1bJUkTJkxQq1atfPJYAAAAAAAAAFRdFrvdbje7EWYYMWKE3nvvvRKXd/c0FRQUaMyYMZo1a5bbc0eNGqVp06bJavX+wOW0tDTFxcVJkg4ePKjY2Fiv3wcAAAAAAP6O798AfInpDsrJarVq5syZSkxM1KBBgxQTE6Pg4GDFxMRo0KBBWrlypWbMmOGTgBYAAAAAAABA1ee3I2mrC/6TBwAAAACA7/H9G4AvMbwTAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJDWi3755Rc99thjatu2rSIiIlS7dm116dJFr732mjIzM81uHgAAAAAAAIBKKNDsBlQXy5cv17333quzZ88a+zIzM5WamqrU1FTNmDFDiYmJatmypYmtBAAAAAAAAFDZMJLWC7Zu3ao77rhDZ8+eVWRkpF588UVt2LBBa9eu1ZgxYyRJu3fv1q233qpz586Z3FoAAAAAAAAAlQkjab1g/PjxysrKUmBgoFavXq3u3bsbx6677jq1atVKjz/+uHbv3q3XX39dzzzzjHmNBQAAAAAAAFCpMJK2nFJSUvT1119LkkaNGuUQ0BZ67LHH1K5dO0nS22+/rby8vAptIwAAAAAAAIDKi5C2nJYsWWJsjxw50mUZq9WqYcOGSZJ+++03ffnllxXRNAAAAAAAAABVACFtOa1fv16SFBERoc6dO7st16tXL2M7OTnZ5+0CAAAAAAAAUDUwJ2057dy5U5LUsmVLBQa6fzrbtm3rdE5JpKWleTyenp5e4roqi892PSyrcs1uBgAAAACgkrimxZsKC4owuxkAYBpC2nLIzs7WiRMnJEmxsbEey9aqVUsRERHKyMjQwYMHS3wfcXFx5WpjZdQubLdqBuab3QwAAAAAQCVhK2DtFgD+jekOyuHcuXPGdmRkZLHlIyIu/Ffw/PnzPmsTAAAAAAAAgKqFkbTlkJ2dbWwHBwcXWz4kJESSlJWVVeL7KG7UbXp6urp27Vri+gAAAAAAAABULoS05RAaGmps5+YWP8dqTk6OJCksLKzE91HcNApV0Y7sbpK4lAUAAAAAcEHvBsUPfAKA6oyQthxq1KhhbJdkCoOMjAxJJZsaoTq7qc1zZjcBAAAAAAAAqDSYk7YcQkNDVadOHUlSWlqax7KnT582QtrquBgYAAAAAAAAgLIhpC2nSy+9VJK0d+9e2Ww2t+V27dplbLdr187n7QIAAAAAAABQNRDSltM111wj6cJUBps3b3ZbLikpydju0aOHz9sFAAAAAAAAoGogpC2nP/zhD8b27NmzXZYpKCjQ3LlzJUnR0dHq06dPRTQNAAAAAAAAQBVASFtOXbt2Vc+ePSVJM2fO1MaNG53KvP7669q5c6ckafz48QoKCqrQNgIAAAAAAACovALNbkB18Pbbb6tHjx7KyspSv3799MQTT6hPnz7KysrS/PnzNW3aNElS69at9dhjj5ncWgAAAAAAAACVCSGtF3Tq1Ekff/yx7r33Xp09e1ZPPPGEU5nWrVsrMTFRNWrUMKGFAAAAAAAAACorpjvwkgEDBuiHH37Qn//8Z7Vu3Vrh4eGKjo5WfHy8XnnlFW3dulUtW7Y0u5kAAAAAAAAAKhmL3W63m90IlF1aWpri4uIkSQcPHlRsbKzJLQIAAAAAoPrh+zcAX2IkLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkCzW4Aysdmsxnb6enpJrYEAAAAAIDqq+h37qLfxQHAGwhpq7jjx48b2127djWxJQAAAAAA+Ifjx4+radOmZjcDQDXCdAcAAAAAAAAAYCKL3W63m90IlF12dra2bdsmSapXr54CAyv/4Oj09HRj1G9KSooaNWpkcotQWryGVR+vYdXG61f18RpWfbyGVR+vYdXG61f1VcXX0GazGVezdujQQaGhoSa3CEB1UvkTPXgUGhqqLl26mN2MMmvUqJFiY2PNbgbKgdew6uM1rNp4/ao+XsOqj9ew6uM1rNp4/aq+qvQaMsUBAF9hugMAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARBa73W43uxEAAAAAAAAA4K8YSQsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdKiQv3yyy967LHH1LZtW0VERKh27drq0qWLXnvtNWVmZprdPL+Umpqq5557Tv369VNsbKxCQkIUGRmp1q1ba+TIkVq/fn2xdcyZM0cWi6VEP3PmzPH9g/IzJX3ue/fuXWxdq1atUkJCgvG7EBsbq4SEBK1atcr3D8RP9e7du8SvYeHPunXrHOqgD/rOsWPHtGLFCj311FO6+eabVbduXeO5HDFiRKnr80Yfs9lsmjJlinr27Kl69eopLCxMLVq00NixY7V9+/ZSt6m688ZrmJmZqcWLF2vcuHHq0qWLatWqpaCgINWpU0fdu3fXM888oyNHjhRbT2n6O37njdfQ2++TmZmZevXVV9WlSxfVrl1bERERatu2rR577DH98ssv5XvA1VB5X8MDBw6U+rOyadOmLuuiH5aeN74vFMVnIQC4YQcqyLJly+xRUVF2SS5/Wrdubd+zZ4/ZzfQrPXv2dPt6FP0ZNmyYPScnx209s2fPLlE9kuyzZ8+uuAfoJ0r63Pfq1cttHfn5+fZRo0Z5PH/06NH2/Pz8intgfqJXr14lfg0l2a1Wqz0tLc2hDvqg73h6LocPH17ierzVx44fP27v0qWL2zpCQkLs06dPL+ejrl7K+xp+//339sjIyGL7VlRUlH3+/Pke6ypNf8fvvNEPvfk+uWfPHnurVq08/i4sX768/A+8Ginva7h///5SfVZKsvfr189lXfTD0vHW9wW7nc9CAChOoIAKsHXrVt1xxx3KyspSZGSk/u///k99+vRRVlaW5s+fr+nTp2v37t269dZblZqaqho1apjdZL9w+PBhSVJMTIxuv/129ezZU5dccony8/O1ceNGvf766zp06JDmzp2rvLw8ffTRR8XW+dlnnykmJsbt8djYWK+1H47GjRunBx980O3xiIgIt8eefPJJzZw5U5LUqVMnPf7442rRooX27dunV199VVu3btWMGTNUr149vfTSS15vuz+bPXu2MjIyPJbZsWOH7rjjDklS37591bhxY7dl6YO+c8kll6ht27ZavXp1qc/1Rh/Lz89XQkKCNm3aJEkaPHiwxowZo9q1a+vbb7/VCy+8oGPHjmns2LFq3Lixbr755rI/2GqqLK/h2bNndf78eUlSjx491L9/f8XHx6tOnTo6fvy4Fi9erOnTp+vs2bO65557FBUVVexzHx8fr9mzZ5frsfir8vTDQuV5nzx37pxuvfVW7dmzR5I0ZswY3XnnnQoLC9OXX36pl19+WWfPntUdd9yh5ORkdezYscztrK7K8ho2btxY27ZtK7bcyy+/bPy9Onz4cI9l6Ycl483vC3wWAkAxzE6J4R8K/wMbGBho37Bhg9PxV1991fjP59NPP13xDfRTt956q/3jjz+222w2l8ePHz9ub926tfHaJCUluSxXdHTK/v37fdhiuFLevvPTTz/ZAwMD7ZLs8fHx9szMTIfjGRkZ9vj4eKMPM+K94j3++OPG6/z+++87HacP+s5TTz1lX758uf3IkSN2u91xNFdJR/B5q4/NnDnTuO8HH3zQ6fiePXuMK1Zatmxpz8vLK92DrabK+xomJyfbhw4dat++fbvbMkuWLLFbLBa7JHuLFi3sBQUFLssVjuDzdGUDnHmjH3rrffIf//iHUc+rr77qdDw5Odno77zOv/PGa1gcm81mj4mJsUuy16hRw+m9thD9sHS89X2Bz0IAKB4hLXzu22+/NT5Ix44d67JMfn6+vV27dnZJ9ujoaHtubm4FtxLuLF++3Hj9HnnkEZdlCIjMVd6Qdty4cUYdGzdudFlm48aNHv8ghu/k5+fbGzdubJdkj4yMtGdkZDiVoQ9WnLIEC97qY4Wfk7Vr13b5e2C32+0vv/yyUc8nn3xSovb5G1+EQ3a73X7bbbcZ9W7evNllGcIh7zArpM3NzbXXrFnTLsnerl07t5dkjx071rivlJSUMt1XdeeLfvjf//7XqHPkyJFuy9EPva8k3xf4LASA4rFwGHxuyZIlxvbIkSNdlrFarRo2bJgk6bffftOXX35ZEU1DCfTp08fY3rdvn4ktgS/Y7XYtXbpUktS2bVt169bNZblu3bqpTZs2kqSlS5fKbrdXWBv93dq1a3Xo0CFJ0pAhQxQeHm5yi1Aa3upju3fv1s6dOyVJQ4cOdft7UHQBnk8//bS8zUcp8HlZ/X355Zc6c+aMpAuX0lutrr9K0Q/NMXfuXGO7uKkO4F3Fvf/xWQgAJUNIC58rXO0zIiJCnTt3dluuV69exnZycrLP24WSycnJMbYDAgJMbAl8Yf/+/cZcY0X7oCuFxw8dOqQDBw74umn4n6JfOgv/mYWqw1t9rOjK2Z7qadiwoVq3bi2Jz9KKxudl9VfSfhgfH2+ER/TDinHu3DljYEjTpk117bXXmtsgP1Pc+x+fhQBQMoS08LnC/3a2bNlSgYHu16pr27at0zkwX1JSkrHdrl27YsuPHDlSMTExCg4OVt26ddWtWzf9/e9/N0YCwncWLFigSy+9VOHh4apRo4ZatWql4cOHexyZvmPHDmO7aB90hT5a8c6fP2+MAGnSpIl69+5d7Dn0wcrFW32sLPUcPHiw2EXp4D2l+bzctWuXrrrqKkVHRys0NFSxsbEaNGiQsfAOfKus75Ml7YeBgYFq2bKlJD4vK8rChQuVmZkpSbrvvvtksViKPYd+6D3Fvf/xWQgAJUNIC5/Kzs7WiRMnJBW/onitWrWM1ecPHjzo87aheAUFBZo0aZJxe+jQocWes27dOqWnpysvL08nT57Ut99+qxdffFEtW7bU1KlTfdlcv7djxw7t3LlTWVlZOn/+vPbu3au5c+fquuuuU0JCgnGJZlFpaWnGdnF9NC4uztimj1aMRYsWGV8s7r333hJ96aQPVi7e6mNlqcdutzucB9/5/vvvlZiYKEnq0KFDsSHt0aNHlZKSojNnzignJ0eHDh3SsmXLNHz4cHXs2JFgz8fK+j5Z2J8iIiIUHR3t8T4K++Hx48cdRhnCN8py1Qn90DtK8n2Bz0IAKBn3wxoBLzh37pyxHRkZWWz5iIgIZWRk6Pz5875sFkrozTffVEpKiiRp8ODBHqeraN68uQYPHqzu3bsbfxT9/PPPWrRokRYuXKjs7Gz98Y9/lMVi0QMPPFAh7fcX4eHhGjhwoPr27au2bdsqMjJSx48fV1JSkqZMmaKTJ09qyZIlGjRokNasWaOgoCDj3NL00cJ/okiij1aQ0nzppA9WTt7qY/TVyisnJ0ejR49Wfn6+JOnFF190W9Zqtapv37665ZZbdMUVV6hOnTo6d+6ctmzZoqlTp2rnzp3asWOH+vTpo5SUFF1yySUV9TD8QnnfJwv7YUn/pi10/vx5hYSEeOlR4GK//vqrMZLz6quvNkYxu0M/9K6SfF/gsxAASoaQFj6VnZ1tbAcHBxdbvvAP2KysLJ+1CSWTlJSkv/3tb5Kk+vXra/LkyW7LJiQkaPjw4U6j/Lp06aI77rhDK1as0ODBg5WXl6c///nPGjhwoBo2bOjT9vuTQ4cOuRzRc8MNN+iRRx7RzTffrK1btyopKUmTJ0/Wn/70J6NMafpo0S+Y9FHfS0tL07p16yRdWEijcG41V+iDlZe3+hh9tfJ6+OGHlZqaKunCYkUDBgxwW3bx4sUu36979uypBx98UGPGjNF7772no0eP6tFHH9XixYt91Wy/4433ycJ+WJq/aSX6oa998MEHxgJTJRlFSz/0npJ+X+CzEABKhukO4FOhoaHGdm5ubrHlCy8HCwsL81mbULzt27crISFBNptNoaGhWrBggerXr++2fM2aNT1eht2/f3899dRTkqTMzEzNnDnT6232Z54uuWzQoIEWLlxojJ595513HI6Xpo8WvVyTPup7H3zwgQoKCiQVv0o1fbDy8lYfo69WTi+//LJmzJgh6ULY9+6773os7+n9OigoSDNmzDBWNv/000+ZS9qLvPE+WdgPS/M3rUQ/9LX3339f0oVQ7o477ii2PP3QO0rzfYHPQgAoGUJa+FSNGjWM7ZJcZlI492JJLiODb+zfv1/9+vXT6dOnFRAQoPnz53tlhdwHHnjA+HJUdHEB+F7z5s11ww03SJL27t1rrK4rla6PFl10gT7qe6X90lkc+qA5vNXH6KuVz9SpU/XEE09IurBAzcqVKx0ury2LwMBAjRo1yrhNX61Yxb1PFvbD0vxNK9EPfSklJUW7du2SJA0cOLDYuYJLgn5YvNJ+X+CzEABKhpAWPhUaGqo6depIUrETtp8+fdr4MC06YTwqzuHDh3X99dfr8OHDslgsmjVrlgYNGuSVuuvXr2/8LjAioeJdeumlxnbR57/oogvF9dGiizfQR30rNTXVWMG4f//+qlWrVrnrpA+aw1t9rCz1WCyWYhdWQdnMmzdPDz74oCSpSZMmWrNmjerWreuVut29X8P3inufLOxPGRkZ+u233zzWVdgP69Wrx3y0PlSWBcNKgn7oXlm+L/BZCAAlQ0gLnyv8I2fv3r2y2WxuyxX+F1xSsasiw/tOnDihG264QT///LOkC5fFe/OPXUklWpkevuHuuS/6JaRoH3SFPlpxin7pLG6qg9KgD1Y8b/WxstQTFxdX7pGdcLZs2TINGzZMBQUFatSokdauXevVAIB+ai5Pz39J+6HNZtO+ffsk8XnpS3l5eZo/f76kCwH7TTfd5LW66YeulfX7Ap+FAFAyhLTwuWuuuUbShVEHmzdvdluu6KVEPXr08Hm78LszZ87oxhtvNEbuTZo0SQ899JBX7+P48eM6ceKEJCkmJsardaN4ha+t5Pj8N2vWzLhd3OV8X331lSSpcePGatq0qfcbCUmOXzrr1aunm2++2Sv10gfN4a0+VvhZWlw9R44c0e7duyXxWeoLa9eu1dChQ2Wz2VSnTh2tWbNGLVq08Op9uHu/hu8V9z5Z0n6YmppqXB1GP/SdxMREnTx5UpJ09913KzDQe2ti0w+dlef7Ap+FAFAyhLTwuT/84Q/G9uzZs12WKSgoMEaORUdHq0+fPhXRNOjC4hi33nqrtmzZIkl68sknNXHiRK/fz7Rp04yVd3v16uX1+uHe/v37tWbNGklSixYt1LhxY+OYxWIxLlHbtWuXvvnmG5d1fPPNN8aIhEGDBjHCxIdWrVql48ePS/Lul076oDm81cdat25tjCj65JNPlJmZ6bKeOXPmGNsJCQnlbT6K2LBhgwYNGqScnBzVrFlTn332mS677DKv3ofNZtOsWbOM296YEx4lV9z7ZO/evVWzZk1J0nvvvWeUvRj9sGL46qoT+qGz8n5f4LMQAErIDlSAnj172iXZAwMD7Rs2bHA6/uqrr9ol2SXZn3766YpvoJ/Kycmx9+vXz3jux48fX+o69u/fb9+yZYvHMsuXL7cHBwfbJdnDwsLsaWlpZWwxLrZs2TJ7Xl6e2+NHjhyxd+rUyXiNX3/9dacyP/30kz0gIMAuyR4fH2/PzMx0OJ6ZmWmPj483+vDu3bu9/jjwu9tuu814vTZv3lxsefpgxdq/f7/x+gwfPrxE53irj82cOdO474ceesjp+N69e+1RUVF2SfaWLVt6fG/wZ2V5Dbdu3WqPjo62S7JHRETY169fX+r7/eKLL+ynT592ezw3N9c+fPhwo20DBgwo9X34i9K+ht58n/zHP/5h3Perr77qdHzDhg32wMBAuyR7r169SvJw/FJZ+mFRJ0+eNF6vDh06lPg8+mHpeeP7gt3OZyEAlIT3rgkBPHj77bfVo0cPZWVlqV+/fnriiSfUp08fZWVlaf78+Zo2bZqkC/8dfeyxx0xurf+46667tHr1aknSddddp1GjRunHH390Wz44OFitW7d22HfgwAH16dNH3bt314ABA3TFFVeofv36kqSff/5ZCxcu1MKFC43RJv/85z8dRnKifB555BHl5eXptttuU/fu3dW0aVOFhYXpxIkTWrdunaZOnWpcunnNNde4vCytdevWmjBhgiZNmqTU1FT16NFDEydOVIsWLbRv3z698sor2rp1qyRpwoQJatWqVYU+Rn9y+vRprVixQpLUvn17XXnllcWeQx/0rfXr12vv3r3G7cL+JF2Ya73oaB1JGjFihFMd3upjw4cP16xZs5ScnKx3331XR44c0ZgxY1SrVi2lpKTo+eef19mzZ2W1WvWvf/3Lq5f+VmXlfQ337dunG2+80Vgo6oUXXlDNmjU9fl7Wr1/f6IeF3nvvPQ0cOFADBw5U79691aZNG0VFRen8+fPavHmzpk2bZlxGXL9+fb399ttleLTVU3lfQ2++T06YMEEff/yxdu/erccff1x79+7VnXfeqbCwMH355Zd66aWXZLPZFBYWprfeeqv8D76a8MZ7aVHz589Xbm6upNKNoqUflp43vi9IfBYCQImYHBLDjyxbtsz4r6arn9atW9v37NljdjP9irvXwt1PkyZNnOr48ssvS3RueHi4ferUqRX/IKu5Jk2alOj5v+222zyOHMnPz7fff//9HusYNWqUPT8/v+IenB+aPHmyxxFartAHfavoiKqS/LjjrT52/Phxe5cuXdzWERISYp8+fbq3n4Yqrbyv4ezZs0v9eenqqqCStqNDhw727du3V8AzU3WU9zX09vvknj177K1atXJbT1RUlH358uW+eCqqLG+9lxa66qqr7JLsAQEB9vT0dK+3g374u9K+/7n6vlCIz0IA8Ix/K6HCDBgwQD/88IPefvttJSYmKi0tTcHBwWrZsqVuv/12PfzwwwoPDze7mSilzp0764MPPtDGjRuVmpqq9PR0nThxQjabTbVq1dJll12mvn37avTo0U6jilB+7733npKSkrRx40b9/PPPOnHihM6ePavIyEjFxcXp6quv1vDhw9W9e3eP9VitVs2cOVO33Xabpk2bpk2bNunEiROqW7euunTporFjx3ptASu49/7770uSAgICdM8995ToHPpg1eCtPla3bl1t2LBB06dP10cffaSdO3cqIyNDMTEx6tu3r8aPH+/1eVLhHRMnTlTHjh21ceNG7dixQ8ePH9epU6cUEhKiBg0aKD4+XkOGDFFCQoICAgLMbm614u33yZYtW2rr1q169913tWDBAu3du1e5ubmKi4vTLbfcovHjx6tJkyYV8Mj80549e/Ttt99Kkm644QY1bNiwxOfSD83FZyEAeGax293MeA8AAAAAAAAA8Dmr2Q0AAAAAAAAAAH9GSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAFBGc+bMkcVikcVi0YEDB8xuDgAAAIAqipAWAAD4nQMHDhjhanl+AAAAAMAbCGkBAAAAAAAAwEQWu91uN7sRAAAAFSkvL08//fST2+MdOnSQJMXHx2v27Nluy7Vv397rbQMAAADgfwLNbgAAAEBFCwoKKlHAGhERQRALAAAAwOeY7gAAAAAAAAAATERICwAAUEZz5swxFhE7cOCA0/HevXvLYrGod+/ekqS9e/fqj3/8o5o3b66wsDA1bdpUo0aN0i+//OJw3o8//qiRI0eqefPmCg0NVVxcnMaNG6djx46VqF1LlizR7bffrksuuUShoaGKjo5WfHy8nn32WZ0+fbq8DxsAAACAlzHdAQAAQAX4/PPPNXjwYJ07d87Y98svv2jWrFlasWKFkpKS1LZtW82bN08jRoxQbm6uUS4tLU1TpkzRqlWrtGHDBsXExLi8j9OnT2vIkCH64osvHPbn5ORo8+bN2rx5s/7zn/9o6dKl6tatm28eKAAAAIBSYyQtAACAjx0+fFhDhw5VdHS03nnnHX377bf6+uuv9eijj8pisejYsWMaPXq0Nm3apGHDhqlFixaaMWOGUlJS9OWXX+q+++6TdCHU/ctf/uLyPnJycnT99dfriy++UEBAgO677z7NmzdP33zzjb7++mu9+OKLqlOnjo4dO6ZbbrnFafQuAAAAAPMwkhYAAMDH9uzZo1atWik5OVn16tUz9l9zzTUKDAzUP//5TyUnJ+vWW29V165dtWbNGoWHhxvlevfurezsbC1YsECLFi3S8ePHHeqRpOeee05btmxRdHS0Pv/8c3Xu3Nnh+DXXXKN77rlH3bt3V3p6up544gl9+OGHvn3gAAAAAEqEkbQAAAAV4F//+pdTsCpJDz74oLF94sQJzZgxwyGgLTRu3DhJks1m08aNGx2OnT9/Xu+++64k6fnnn3cKaAs1adJE//jHPyRJCxYsUEZGRtkeDAAAAACvIqQFAADwsejoaN14440ujzVr1kw1atSQJF1++eVq166dy3JXXHGFsf3zzz87HEtKStKZM2ckSUOGDPHYlmuvvVaSlJeXp82bN5fsAQAAAADwKaY7AAAA8LFWrVrJYrG4PR4dHa1z586pdevWHssUKrr4mCSlpqYa240aNSpxu44cOVLisgAAAAB8h5G0AAAAPuZq+oKirFZrseUKy0hSfn6+w7Fjx46VqV2ZmZllOg8AAACAdzGSFgAAoIorGtpu2bJFQUFBJTovNjbWV00CAAAAUAqEtAAAAFVcnTp1jO169eoRvgIAAABVDNMdAAAAVHGdOnUytpOTk01sCQAAAICyIKQFAACo4q6//npjPtt//etfstvtJrcIAAAAQGkQ0gIAAFRx0dHRevjhhyVJGzZs0J///GcVFBS4LX/06FHNmDGjopoHAAAAoBjMSQsAAFANPPfcc0pKStK3336rt99+W+vWrdOYMWPUsWNHRURE6PTp09q+fbs+//xzrVq1Sh06dNDo0aPNbjYAAAAAEdICAABUCyEhIVqzZo1GjBihxYsX6/vvvzdG17oSFRVVga0DAAAA4AkhLQAAQDVRo0YNLVq0SOvXr9d7772nr7/+WocPH1ZWVpaioqLUokULde3aVbfeeqv69etndnMBAAAA/I/FzsoSAAAAAAAAAGAaFg4DAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAm+n+hmsAdrAogIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "graph = my_model.compartmentPlot('Basic_example_compartment.png', data)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/conf.py b/docs/conf.py new file mode 100644 index 0000000..13c057c --- /dev/null +++ b/docs/conf.py @@ -0,0 +1,45 @@ +# Configuration file for the Sphinx documentation builder. +# +# For the full list of built-in configuration values, see the documentation: +# https://www.sphinx-doc.org/en/master/usage/configuration.html + +# -- Project information ----------------------------------------------------- +# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information + +import os +import sys +sys.path.insert(0, os.path.abspath('..')) + +project = 'Opqua' +copyright = '2023, Pablo Cárdenas' +author = 'Pablo Cárdenas' +release = '1.0.2' + +# -- General configuration --------------------------------------------------- +# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration + +extensions = ["myst_parser", + "sphinx.ext.autodoc", + "sphinx.ext.intersphinx", + "sphinx.ext.mathjax", + "sphinx.ext.viewcode", + "sphinx.ext.napoleon", + "sphinx.ext.autosummary", + # "autoapi.extension", + "nbsphinx", + ] + +# autoapi_dirs = ['../opqua'] + +templates_path = ['_templates'] +exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] + +# The master toctree document. +master_doc = "index" + +# -- Options for HTML output ------------------------------------------------- +# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output + +# html_theme = 'furo' +html_theme = 'sphinx_rtd_theme' +html_static_path = ['_static'] diff --git a/docs/evolution.ipynb b/docs/evolution.ipynb new file mode 100644 index 0000000..61558f8 --- /dev/null +++ b/docs/evolution.ipynb @@ -0,0 +1,1424 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Evolution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Fitness function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single population scenario, illustrating pathogen evolution through _de novo_ mutations and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector), the pathogen with the most fit genome has a higher probability of being transmitted to another host (or vector). In this case, the transmission rate does NOT vary according to genome. Once an event occurs, however, the pathogen with higher fitness has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal genome and every other genome is less fit, but fitness functions can be defined in any arbitrary way (accounting for multiple peaks, for instance, or special cases for a specific genome sequence)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define an optimal genome" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # The genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # Minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='host-host',\n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function).\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " mutate_in_host=5e-2\n", + " # Modify de novo mutation rate of pathogens when in host to get some\n", + " # evolution!\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a suboptimal pathogen genome, _BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, _BEST_, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 84.9205322047209, event: CONTACT_HOST_HOST\n", + "Simulating time: 139.4831216243728, event: CONTACT_HOST_HOST\n", + "Simulating time: 199.83533163204655, event: RECOVER_HOST\n", + "Simulating time: 200.0243380253218 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19662265031018072s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019941329956054688s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020781755447387695s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016440391540527344s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02756667137145996s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.051561594009399414s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 560 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Done 1024 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0886225700378418s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1822 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2156 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2270 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2384 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2560 out of 2560 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1BADDNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
255995200.0my_populationHostmy_population_95NaNNaNTrue
255996200.0my_populationHostmy_population_96NaNNaNTrue
255997200.0my_populationHostmy_population_97NaNNaNTrue
255998200.0my_populationHostmy_population_98BESTNaNTrue
255999200.0my_populationHostmy_population_99BESTNaNTrue
\n", + "

256000 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 BADD NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + "... ... ... ... ... ... ... \n", + "255995 200.0 my_population Host my_population_95 NaN NaN \n", + "255996 200.0 my_population Host my_population_96 NaN NaN \n", + "255997 200.0 my_population Host my_population_97 NaN NaN \n", + "255998 200.0 my_population Host my_population_98 BEST NaN \n", + "255999 200.0 my_population Host my_population_99 BEST NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + "... ... \n", + "255995 True \n", + "255996 True \n", + "255997 True \n", + "255998 True \n", + "255999 True \n", + "\n", + "[256000 rows x 7 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame( \n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'fitness_function_mutation_example.csv' \n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 103 genotypes processed.\n", + "2 / 103 genotypes processed.\n", + "3 / 103 genotypes processed.\n", + "4 / 103 genotypes processed.\n", + "5 / 103 genotypes processed.\n", + "6 / 103 genotypes processed.\n", + "7 / 103 genotypes processed.\n", + "8 / 103 genotypes processed.\n", + "9 / 103 genotypes processed.\n", + "10 / 103 genotypes processed.\n", + "11 / 103 genotypes processed.\n", + "12 / 103 genotypes processed.\n", + "13 / 103 genotypes processed.\n", + "14 / 103 genotypes processed.\n", + "15 / 103 genotypes processed.\n", + "16 / 103 genotypes processed.\n", + "17 / 103 genotypes processed.\n", + "18 / 103 genotypes processed.\n", + "19 / 103 genotypes processed.\n", + "20 / 103 genotypes processed.\n", + "21 / 103 genotypes processed.\n", + "22 / 103 genotypes processed.\n", + "23 / 103 genotypes processed.\n", + "24 / 103 genotypes processed.\n", + "25 / 103 genotypes processed.\n", + "26 / 103 genotypes processed.\n", + "27 / 103 genotypes processed.\n", + "28 / 103 genotypes processed.\n", + "29 / 103 genotypes processed.\n", + "30 / 103 genotypes processed.\n", + "31 / 103 genotypes processed.\n", + "32 / 103 genotypes processed.\n", + "33 / 103 genotypes processed.\n", + "34 / 103 genotypes processed.\n", + "35 / 103 genotypes processed.\n", + "36 / 103 genotypes processed.\n", + "37 / 103 genotypes processed.\n", + "38 / 103 genotypes processed.\n", + "39 / 103 genotypes processed.\n", + "40 / 103 genotypes processed.\n", + "41 / 103 genotypes processed.\n", + "42 / 103 genotypes processed.\n", + "43 / 103 genotypes processed.\n", + "44 / 103 genotypes processed.\n", + "45 / 103 genotypes processed.\n", + "46 / 103 genotypes processed.\n", + "47 / 103 genotypes processed.\n", + "48 / 103 genotypes processed.\n", + "49 / 103 genotypes processed.\n", + "50 / 103 genotypes processed.\n", + "51 / 103 genotypes processed.\n", + "52 / 103 genotypes processed.\n", + "53 / 103 genotypes processed.\n", + "54 / 103 genotypes processed.\n", + "55 / 103 genotypes processed.\n", + "56 / 103 genotypes processed.\n", + "57 / 103 genotypes processed.\n", + "58 / 103 genotypes processed.\n", + "59 / 103 genotypes processed.\n", + "60 / 103 genotypes processed.\n", + "61 / 103 genotypes processed.\n", + "62 / 103 genotypes processed.\n", + "63 / 103 genotypes processed.\n", + "64 / 103 genotypes processed.\n", + "65 / 103 genotypes processed.\n", + "66 / 103 genotypes processed.\n", + "67 / 103 genotypes processed.\n", + "68 / 103 genotypes processed.\n", + "69 / 103 genotypes processed.\n", + "70 / 103 genotypes processed.\n", + "71 / 103 genotypes processed.\n", + "72 / 103 genotypes processed.\n", + "73 / 103 genotypes processed.\n", + "74 / 103 genotypes processed.\n", + "75 / 103 genotypes processed.\n", + "76 / 103 genotypes processed.\n", + "77 / 103 genotypes processed.\n", + "78 / 103 genotypes processed.\n", + "79 / 103 genotypes processed.\n", + "80 / 103 genotypes processed.\n", + "81 / 103 genotypes processed.\n", + "82 / 103 genotypes processed.\n", + "83 / 103 genotypes processed.\n", + "84 / 103 genotypes processed.\n", + "85 / 103 genotypes processed.\n", + "86 / 103 genotypes processed.\n", + "87 / 103 genotypes processed.\n", + "88 / 103 genotypes processed.\n", + "89 / 103 genotypes processed.\n", + "90 / 103 genotypes processed.\n", + "91 / 103 genotypes processed.\n", + "92 / 103 genotypes processed.\n", + "93 / 103 genotypes processed.\n", + "94 / 103 genotypes processed.\n", + "95 / 103 genotypes processed.\n", + "96 / 103 genotypes processed.\n", + "97 / 103 genotypes processed.\n", + "98 / 103 genotypes processed.\n", + "99 / 103 genotypes processed.\n", + "100 / 103 genotypes processed.\n", + "101 / 103 genotypes processed.\n", + "102 / 103 genotypes processed.\n", + "103 / 103 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABToAAALmCAYAAABijysXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5iU5bk/8O/swtKriIBgixKxxoIRG9iPiBpMRBOPCFGJxiTGYzDxZ2KM7Xg0iUYTSVARsSucxIg1OXZEEYOFAFJXYNll68xOe9vzPL8/3nnfnd52dtp+P9fF5ezMO+88s8yO7Hfu5749SikFIiIiIiIiIiIiogpWU+oFEBEREREREREREXUXg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKK16fUC6DyoGkavvjiCwDAnnvuiT59+NIgIiIiIiIiKjTLstDS0gIAOPzww9G/f/8Sr4ioejDNIgDAF198geOOO67UyyAiIiIiIiLqNVatWoXJkyeXehlEVYNb14mIiIiIiIiIiKjisaKTANjb1R2rVq3C2LFjS7gaIiIiIiIiourU2Njo7qiM/l2ciLqPQScBQExPzrFjx2L8+PElXA0RERERERFR9eN8DKLC4tZ1IiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIKAvSEqVeAhEREREREaXBoJOIiCgLikEnERERERFRWWPQSURElAVpSkjTKvUyiIiIiIiIKAUGnURERFmQlgUrqJd6GURERERERJQCg04iIqIsSFPAChulXgYRERERERGl0KfUCyAiIqoEyhSQQpZ6GURERERERJQCKzqJiIiyIIWENNijk4iIiIiIqFwx6CQiIsqGVBA6g04iIiIiIqJyxaCTiIgoC0oqCI09OomIiIiIiMoVg04iIqIsSEtAaGapl0FEREREREQpMOgkIiLKgmLQSUREREREVNYYdBIREWVBGlZC0CktUaLVEBERERERUTwGnURERFmQloDQY4NOVngSERERERGVDwadREREWZCWRGhnW9fXhgVpcgo7ERERERFRuehT6gUQERFVBKkg9K5gU/cGAVXC9RAREREREVEMVnQSERFlQSkFJaT7teENJWxlJyIiIiIiotJh0ElERJQFJaT7BwCMjiCsgFbiVREREREREZGDW9eJiIiyoRSUVFBSwlNbA8MXKvWKiIiIiIiIKAqDTiIioiwoYYecSgHCsGCFdNT04cYIIiIiIiKictFrf0NbvXo1brvtNpx11lkYP348+vXrh8GDB2PixImYO3cu3n///YznWLx4MTweT1Z/Fi9enPF8oVAI99xzDyZPnoyRI0di0KBBOPjgg3HDDTfgq6++KsCzJiKifCmlAGlPHzI7QzA7w5CmKPGqiIiIiIiIyNErKzpPOeUUvPfeewnXG4aBTZs2YdOmTVi8eDFmz56Nhx9+GHV1dT2+ps2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjB5fCxERJVKWgJIKUAqdm5ogNBPSYtBJRERERERULnpl0Llr1y4AwLhx43DRRRfh5JNPxj777AMhBFauXInf/e53aGhowJIlS2CaJp5++umM53z99dcxbty4lLePHz8+5W1+vx/nnnuuG3JeddVVuOSSSzBgwAC89dZb+O///m90dnbi4osvxooVK/CNb3wjtydMRETdJp2gE4C07KFE0rBKvCoiIiIiIiJy9Mqg8+CDD8Zdd92Fb3/726itrY257fjjj8dll12GE088ERs3bsQzzzyDq6++Gqecckrac06cOBH77bdfXuu59957sXHjRgDAPffcg/nz57u3TZkyBdOmTcPUqVMRCoXw05/+FG+//XZej0NERPmTpgSUHXQqU0BG/hAREREREVF56JU9OpcvX45Zs2YlhJyOUaNG4Xe/+5379dKlS3tsLaZp4oEHHgAATJo0CTfccEPCMSeccAKuuOIKAMA777yDjz/+uMfWQ0REyUnTrt5UUkFaAtKwWNFJRERERERURnpl0JmNU0891b28ZcuWHnuct956Cz6fDwBw+eWXo6Ym+V/JnDlz3Mt//etfe2w9RESUnFO9qSwBZQkIw4Jg0ElERERERFQ2GHSmoOu6ezlV5WchRE93nzp1asrjjj32WAwcOBAAsGLFih5bDxERJacig4eskAFp2f05uXWdiIiIiIiofDDoTOGdd95xL0+aNCnj8XPnzsW4ceNQV1eHUaNG4fjjj8cvf/lLNDQ0pL3funXr3MsHH3xwyuP69OmDAw88EACwfv36jOshIqLCcgYRWUHd3rpuFn7ruhKyoOcjIiIiIiLqTXrlMKJMpJS4++673a9nzZqV8T7RA4La2trQ1taGjz76CL/73e9w//334wc/+EHS++3cuRMAMGjQIAwfPjztY0yYMAGff/45WlpaoOs6+vXrl/nJxD1OKo2NjVmfi4ioV1JO0KnZ1Z0KkEZhKzq1lk4MGDO8oOckIiIiIiLqLRh0JnHfffdh1apVAIALL7wQxxxzTMpjDzjgAFx44YWYMmUKJkyYAADYunUrli1bhqVLl0LTNFx99dXweDyYN29ewv39fj8AYPDgwRnXNWjQIPdyIBDIKeh01kZERPlRkaDTDOjulnVnQFGhhBq9DDqJiIiIiIjyxKAzzjvvvINf/OIXAIDRo0djwYIFKY+dOXMmLr/8cng8npjrJ0+ejIsvvhjLly/HhRdeCNM0cf311+P888/HmDFjYo7VNA0AUFdXl3Ft0cFmOBzO+jkREVH3WEHd3aZuBTUYvhAAFHzrunNeIiIiIiIiyh17dEb597//jZkzZ8KyLPTv3x8vvPACRo8enfL4YcOGJYSc0WbMmIFbbrkFABAKhfDoo48mHNO/f38AgGEYGdcXPSBpwIABGY+PtmPHjrR/nApWIiJKZPhCEJoJwA499bYAABR8GJEI6ZkPIiIiIiIioqQYdEZs27YNZ511Fjo6OlBbW4tnn30Wp5xySrfPO2/ePDcMjR5w5BgyZAgAeyt6JsFg0L2czVb3aOPHj0/7Z+zYsTmdj4io2inZNRjI8IUgdDvoNIM6RNj+cEoJWbCwU28PwIqEqURERERERJQ7Bp0Adu3ahTPOOAO7du2Cx+PBokWLcMEFFxTk3KNHj8Yee+wBAEknsI8fPx6AHWJ6vd6059qxYwcAYM8998ypPycREeVOWVFBpzeqojOgxRxnhTNX5GfDv63ZfQwiIiIiIiLKXa8POltbW3HmmWdi69atAIAHH3wQs2fPLuhjpNvefsghh7iXN2zYkPI4y7KwZcsWAMCkSZMKtzgiIkpKiq6g0wrpkLrTozN2e7koUNAZqG+B1M2YSlIiIiIiIiLKXq8OOn0+H84++2ysW7cOAHD33Xfj2muvLehjtLS0oLW1FQAwbty4hNtPOukk93Kyre2O1atXu1vXTzzxxIKukYiIEqmooBORietAYtBpFaivZuCrVgjNhNALO+CIiIiIiIiot+i1QWcoFMK5556Lf/3rXwCAm2++GT//+c8L/jgLFy6EivyCPHXq1ITbp02bhmHDhgEAHn/8cffYeIsXL3Yvz5w5s+DrJCKiWMrq6r0Z/d4cv1VdaCak1b0+nUI3obf57XMVeJI7ERERERFRb9Erg07DMDBz5kysWLECAHDdddfhjjvuyOkc9fX1WLNmTdpjli9fjttuuw2APSV97ty5CcfU1dXhJz/5CQBg/fr1+O1vf5twzMqVK92J7VOnTsXkyZNzWisREeXOCkf1y5RRH0LFfSAVbuxIqPLMlekPA8oOUQs9yZ2IiIiIiKi36FPqBZTCd7/7XbzxxhsAgNNOOw1XXHEF1q5dm/L4uro6TJw4Mea6+vp6nHrqqZgyZQrOO+88HHnkkRg9ejQAYOvWrVi6dCmWLl3qVgH99re/xd577530/PPnz8dzzz2HjRs34sYbb8TmzZtxySWXYMCAAXjrrbdw1113wbIsDBgwAPfff38BvgNERJSJCHeFlymK7QEA/q3NGHnU/t16LCcotUJ6TCUpERERERERZa9XBp3/+7//615+8803ccQRR6Q9ft9990V9fX3S21auXImVK1emvO/AgQNx3333Yd68eSmPGTJkCF5++WVMnz4dmzZtwsKFC7Fw4cKYY4YOHYqnnnoK3/jGN9KulYiICsMKRW1RT5N06u2Bbg8Qcqs4pYI0BaQlUNOntlvnJCIiIiIi6m16ZdBZCMcccwyefPJJrFy5EqtXr0ZjYyNaW1thWRZGjBiBQw89FKeffjquvPJKt9IznQMPPBBr1qzBn/70J7zwwgvYvHkzDMPAhAkTMH36dFx33XXYd999i/DMiIgIiOvFmSboNIM6INKUfGZBRW2NF4YFZUmAQScREREREVFOemXQmWrgTy6GDBmCSy+9FJdeemkBVmQbNGgQbrzxRtx4440FOycREeVHRFV0pvv/hjJFtys6o4NUaVqQlkAt+nbvnERERERERL1MrxxGRERElIkV1aMTGXLM6IrMfETfXxqCfTqJiIiIiIjywKCTiIgoCalb7mWttTPtsUp0s0en3jXhXWgGJINOIiIiIiKinDHoJCIiSsKpstRaOtG5uSmrY/Ole0PuZcMbgjS7uRWeiIiIiIioF2LQSURElITTd7NtTT2QIccUutmtsNPoCHZd9ga5dZ2IiIiIiCgPDDqJiIiSiQwI0tsDGQ8N7WyHNMyMx6WitXRtjQ/v9nHrOhERERERUR4YdBIRESWhpIKSCoYvlPHYYEM79KiqzFxpbf6uyy1+VnQSERERERHlgUEnERFREkoqGN4gzCyCTsMXgm/9rvweRymIsNH1tSWgRPd6fhIREREREfVGDDqJiIiSUFJBa/XD6AxnPNb0hhDc2Zbf41giYWq70x+UiIiIiIiIssegk4iIKAnTF7K3rWcxZMgK6bCCel6PE27uTBh25FSTEhERERERUfYYdBIRESVhBXVI3cr6eKHlN4woUN+ScJ2SCuEmX17nIyIiIiIi6q0YdBIREcWRloAUMqeqSmlmH4pGSx50SoR3+6AUe3USERERERFli0EnERFRPKUAKRHckX3fTWnl3ldTSYng9tYkJ1MwA2FYgfy2wxMREREREfVGDDqJiIjiKKEgTQGtpTP7+1gi58cxvCGYAS3xXFJCaKbdI5SIiIiIiIiywqCTiIgojhU2IC0JaWYfXkqRe0Wn3uZPGEQERIJWQ3AgERERERERUQ4YdBIRUa+Urv+l0AwoIaByCC9VHlvX9fbkQaaSCtK0YPhCUFlMfSciIiIiIiIGnURE1Eulm6guwmbSSsu0lII0chtIJPTkk9qVlJCGHXRaIfbpJCIiIiIiygaDTiIi6pVShYyAXdGZD8Mfzun4lFvjpYIwLJjeEKwgg04iIiIiIqJsMOgkIqJeRwmZsvrS7AzDCucXdAa2Nud0vEjxOEoqiLBhV3QGE4cVERERERERUaI+pV4AERFRsUnTStl/U+8IQGipqz3TMXOsvkw2cR0AlJKwgjqEZsIK57cWIiIiIiKi3oYVnURE1OtIQ6QMGfX2YMpKy4znTbMdPhkrVdApFKQpYAX1nAYiERERERER9WYMOomIqNeRpoXwbl/S28zOEKxQnkFnjpPXzUDyClBlCXcqPINOIiIiIiKi7DDoJCKiXkeaAnpbIOltQjOhtye/LRNlJR8upHcEk16faqK6EhJwgk7JoJOIiIiIiCgbDDqJiKjXEYaVcuu6MCzorf68ziuTVF+Gm7wIbEscUqSUShl0Ct0CVOQ4VnQSERERERFlhUEnERH1OtKwIELJ+19Kw4LuTV6BmUl8RadSCrs/2OhuQwfs4LLh9c9gdAQBqeJPAQAxU9+VSH4MERERERERxWLQSUREvY7QTBi+UNJt4dKwUgaQmai4Hp1acyfa19THnC+0qwNN76xPuXUeAPS2ropSZ42s7CQiIiIiIkqPQScREfU6QneCzsRAUxrJ+2xmI3rrupISTe+sgxIypqIz8FULAMAMJt86DwBaa3TQyV6dRERERERE2WDQSUREvY7QTChLJq2SFIaZ93mjt67HDDyKClQD9XbQaaWYuA4Ayuw6j7NGbmEnIiIiIiJKj0EnERH1OkKzw8zkFZ1W3ueVUVvXpSkgI8FnVEEnAl+1AgCsNBWd0dygkxWdREREREREaTHoJCKiXsXwBmH4QgCS973sztZ1JaIqMS0B6VRmRpJOaVqwgnYlpxXOrnLUCTiFnn8AS0RERERE1Bsw6CQiol5Fa/UjtLMNQPKKzu5tXY+q6LQEpGnFPE5MxWeWj+NsWReh1FvdiYiIiIiIiEEnERH1MlZQR7jJBwDQo4b+OITWva3rziAhaYio6tDIQKGo3pvO9vlMnKpTK8vjiYiIiIiIeisGnURE1KuYga7emK2rt8bcJi0BqecfKErLQuuqzQAAK6RHbV3vOr8j263ozoCj7qyLiIiIiIioN2DQSUREvYrTIxMAvOt3xgz5ybbKMhXDG4J/WwuUVJHJ7l3BphnQYnqCOtvaM3HCUScYVYrT14mIiIiIiJJh0ElERL2KFVXRqSwZG24m6dmZE6kgdBNKyITp7S0fbooJKZMNQkp6ykhVqHO+bO9HRERERETU2zDoJCKiXsWKG+pjhY2Cnl9ZAtISEFFBZ2hXBwLbW2OPyzKwdAYcMegkIiIiIiJKj0EnERH1Ks4Uc4cId1V0FmJTuDQFtN2+mIpOwxtMeIBkE9+Tns/p0WkKKKWyvh8REREREVFvw6CTiIh6NRFd0VmA/pfSFAg2tMcEndKSCSlqzlvXhYAS0q3wJCIiIiIiolgMOomIqFezCh10WgKhhnaYga4t8tIUgLL7d7oPJbPduh4ZRhQ2AamghMhwDyIiIiIiot6JQScREfVqQitsj05IhcD2VpidIfcqJ5yM7g+a69Z1M6BBScmt60RERERERCn0KfUCiIiISkkaXRWSqgAVnQBgtAdR27+u6zEi282tYFTQme3W9cgWeCugQUnFretEREREREQpsKKTiIh6t+hws4DFkqYvqqLTElAqPujM7sGskF1xagY0KCEhOXWdiIiIiIgoKQadRETUq6i4NLNQVZzxorep2xWdClZA63rcLHt0Cs2EUgoiZEBJVfit9kTUK/TUex0RERFROWHQSUREvUrC1u+oX/4LGgREF4oKASjAzGPrOpSC0ExIy566Hm70Fm6NRNRrZP2eQ0RERFTBGHQSEVGvEv/Lfsxwnx6qeHIeM3rrOnIYKiRCOqQloLcHYs9BRJSC88GN+18GnURERNQLMOgkIqJeRehmzNdWuGsrePRgooKKZJqmP5zX3c2gDsiuyk4iokykbg8ycwaaMegkIiKi3oBBJxER9SpCiws6oyok40PQQpKWcAcL5cr0a+45pJl70MnefES9j/N+5gSeDDqJiIioN2DQSUREvUp80BkdHMbfVkhSt6DyrMY02gMAAGWKvCo6DW8o80FEVFWcYFMYZszXRERERNWMQScREfUqzjZOR/Qv/yLccxPNhW5Gpq/nTmvzA7BDWZVHRafW7MvrcYmogkUquaVuQSnFoJOIiIh6BQadRETUayghE3/ZjxoK1KMVnYYFyPyCBr3VDjr19kBk+7qV4R6xjM78eoMSUeVy3tmkJQCpoIR9jeENlm5RRERERD2MQScREfUaKknQGH2d1YMVndIUyLdTphYJOv1bmyFNkfPkddmDvUeJqEw5FZ2GgJLKfa8LfNVaylURERER9SgGnURE1GsomRg1Rld4xm9rL+hjC4l8k05nWnt4txfStHIeatSTz4uIypSyP8iRloCSEmZAgxIS4d1drSy4nZ2IiIiqDYNOIiLqNZIGnVHXJbu9sAvI8/yq67/KkrBC2Vd0SlO4W1aJqBdRgNCtyHuAhH9bsxt2Onqyip2IiIioFBh0EhFRr5Gseikm3Mw3iMz28QtwfmmKnCo6pWkPIslnWjsRVS6lFKRu2u8BQiK4vQ1WQIt5nzPZv5eIiIiqDINOIiLqPZJWdMqoyz1d0dn9U9hBZw4VnYYFKAWtxd/9ByeiiiFNuzenU9EpNANmUHc/cAnt6uBgIiIiIqo6DDqJiKjXSDaMCJWwdT2KtHIbRiRNAaMzDBHObYAREVU2p5JTmgLSkhCaBRE23Pc534aGnn/PIyIiIioyBp1ERNRrZOrRqbeXf9WjsgREyMi6t540BbSWzp7elU9EZUSawq3kNDqCkIYFoRmRCm/7GL0jyKCTiIiIqg6DTiIi6jWS9ciMrvLUmjuLuZy8KCFhhfWsqzqlaUFv9fd4/1EiKg9KSCgh3K3reps/EnSa7nUAIDQTSFblTkRERFTBGHQSEVHVk4YFwJ5YHs/9pV83YfrLfzCHtCSskJH1EBEn4HCquALbW3twdURUak6YaXiDUFJC7whC6GZkG7sFKPt9UOgmP/8gIiKiqsOgk4iIqp6zzTvZ1HWnR6fhDRVkWFBPU0JAGha01uyqT6VpT1t3qllbP97SY2sjotKTpgAUEG7yQgkFK6BB6PaHPdIQbrgpI9cRERERVRMGnUREVPWEZgJIHnQqKd3qp4qgAGFYWU9Rj+7laQV1dG5u6qmVEVEZkJYFaVro3NwUmbZuQhr2e6DhD7sf7pgBDRXx6Q4RERFRDhh0EhFR1bNCdj9LaYmE25RUUELYFZ0VwvSFYAW0rI41OiIBrlLQOwIwO8OQhpV8Aj0RVTxpCrR8tBmmL+z+nDsVnaGd7VBKwQob9nsDc04iIiKqMgw6iYio6rkVnSl6dCph97GrFFZId8PbTNwAV0WGLSlAawsk38ZPRBVPmgLNH2wE0FXFLnX7PTDc7AOkgm99Q8nWR0RERNSTGHQSEVHVE5q9fTtZRSekgjQF9LbstoKXBZWi32gSZqTyUykFbyTc0Fv9WQ8zIqLKokzh9uZ1/mtFPuyBVJCWsANPdPXuJSIiIqoWDDqJiKjqORWdzi/90ZSUkIYFvT1Q7GV1izMt3r6cOvR0gk5pCnRusvtzam2dMBh0UgYMwSpT9Puciny4I6J69SpLuu+JRERERNWGQScREVU9oTtb15P36LQ0M+uel+UiuqIz3ORLeZzltwNN/9bdkEZUn75k1a1EUaxgdu0RqLxIs2uauoiEntHBprRE19dFyLKd918iIiKiYuhT6gUQERH1NLeiM0XQKcIGrJCRcFs5i67iDG5vxcBxIxKPUQpmJKzyfbnLvT7wVStGHXdgzy+SKprpD6Pv4P6lXgblSBhdQafz4UZ0RafQDMCt1u35pFNoJmr79e3xxyEi6m2UUggGg+js7ISmaRCCH2JTZaitrUX//v0xdOhQDBo0CB6Pp6DnZ9BJRERVT2j2L/tKJPmlXikIzay44TzRz0X3xg5S0lr96D9qiB1yRLa4m76ureqs1KNsiDAr8SpRsq3rZlTFeqiho+vgHs45hW7Cu24nRh37NXhqPPDUcjMZEVEhSCmxfft2hMNsRUSVx7Is6LoOn8+HAQMGYJ999kFNTeH+jcCgk4iIqp4zjAhJeg4qWZn96qKD2fhAKrijNRJ0pvlkn/0XKYPoLdBUOWR0Radlv0+kGj7W0+8C4SYf2j/9CiOP2BeevrWoZdBJRNRtSqmEkNPj8aC2traEqyLKnhDC7QUfDoexfft27LvvvgWr7GTQSUREVcsMaKjpWwsRNqCkihng41KAFaq8Ckdn67rQTVhBHcKwUFtn/2891OjFiMMEg6peKtzsw4DRw7p1DiWkG6Y77R36DOpXiOWVPaFX9lbr6KDT+TtM+WFOD1eyd25ugtAtGJ0h1A0bCNTxVw8iou4KBoNuyFlbW4sxY8Zg8ODBBa2II+pJUkoEAgE0NTVBCIFwOIxgMIjBgwcX5Pz8SSAioqrl+3IXlJAw/RpU1CeH8SpxK7cTYOitfhi+IERUWKssidCujpjAg3qPtk+2dfscwrDcDwYMXwiGL9Ttc1YKw1vZzzVZ0Jny2CIMJVNCINTQ4VaXEhFR93R2drqXx4wZg6FDhzLkpIpSU1ODoUOHYsyYMe51fr+/cOcv2JmIiIjKjH/Lbnuqeki3f8lOVtEJILizvcgr6z4nhNI7gtDbApBxgUa4yRszlCTh/ty6XrV8XzZ2+xzSsNxej4Y3CL0jmPy4IgRlxWZ4kz/XbEUPCisFoUdvXU//9xPdz7OnSEsivNvn9gslIqLu0TS777LH4ylYBRxRKQwePNjdrl7IfrMMOomIqGoZvrDdhE4pKEumrG4y/ZXXyN15LqZfg7QEVFy1VHRQlfz+DDqrlbS6X8krTQG9PQAAsAIa/Ft2Jz0uVe/HSmakCHWzVeqev9ET1jOFiz0edEoFZQmYnaGqDMWJiErBma5eW1vLSk6qaDU1NW5vWed1XZDzFuxMREREZcYKalBKQQppb11PEXRW2sR1ICroDITtforRVWRKQRhW2q3rlficKTtOiN2dYEkallvZaHSGEahvTnqc4QtVXXVwd7fpW1FBYylE9xzOFGT2dNCppIS0Iu1Dsty6nrSXMhEREVGWGHQSEVHVUpaEFdAgQgakJVMOHarELZVOGGAFNEAlVmhKU6QNOkUFDmCiLEVC7+D2tvxPYXZVBAe3t8IKJ69SNHwhqCJsfy6m7vbsFSm+V8USHbRmqrjtyaBTSQWhW5GKznDWH65U4nA4IiIiKh8MOomIqGoppRBq7ABg/0KfKsCoxCEZTgWn6bf7NMWHCNJMX9HJMKF6OaG3f2vy7ebZkIaAkgpKSAS2t6bsO2n6qm9LcncrMoVW4orOqPe5TNWpqgBtDlKfXEEaJpSQMPxhSFNkrNZUSrnvaURERET5YNBJRERVS0nl/tJvBbWU1UuVWtEpDAv+rfaW4uig0/Tbz1VrTT29sNTba6lnmH67XYNSCv5tybebZ0OaFiAltDY/hGamrMYzfOGS96QsJLsKsXvPp5QVnW3/2hbTY9QKpf85t4Jdt0uzsKGnOwQOgDIFlBAI7kxfZRxu8iK4vbWg6yAiIqLehUEnERFVL6XcqkYroKWsPIufWF4RpELHF9vd5xddcad7g5CG5VazJiMYdFYlwxcElILe5u9Wr0lpWFBSQWvutAfKpBheZfhCVRV0Ct3s9qCuUlV0Gp1h7Fj+r5jr0lV1A7GD2KKntReC6deAqApOaUn4N+9OGyTvfm8DrDCrzYmIiCh/DDqJiKhqKaXcKk4zqKfeYluhwy+iK5+iK+6MjmDM1OxkpFF5VayUmRXUoRSgtwchwiZEhqArFRHZZqy1dNpb2KVMun3d7Ax1e3hPOZG66fY4zVepqqU7NzYmhM6Z+mJGh45OZfvOVz/t9lpCDe12FX3U41tBDVbYgOFN/noRmomOL3ZAmd3/4Km7fVaJiIiocjHoJCKi6iWjKjpDetZTfytFdAWWE2gIzYAIG5CmBZFm22q1Tcommx1gK1ghHUI3YfnTD6NJfR4LSsquoFPIpD8/QrMybkeuJEIzu/2zUaoK13xacET3zHSet+ENpjo8a7vf/xJKKjs4jtDbAml7A3duaoISsiA9X8PNvm6fg4iIYlmWhWXLlmHevHk4/PDDMXr0aPTt2xfDhg3DgQceiJkzZ+Lee+/Ftm3bSr1U6uUYdBIRUVWJrmBSUrm/NIuwmXEbZ6WJfj7O8/Z92QjADlvSBi4MOquS1uaHNAT8m5sAqWBkmLqdijQFEKnohFL2hwZJAihpWvb29iohdCvjwJzM5yhR0JnPuiPvA8KwgMjd9Y7uBZ1KKXSs3QGlVMx7UOsn2+D7clfssVHv14EddoV6ISbBay3V85okIioHf//73zFp0iR85zvfwcMPP4y1a9eipaUFlmWhs7MTW7Zswd/+9jfceOONOOCAAzBjxgysXbu21MvuUbfeeis8Hg88Hk+pl0Jx+pR6AURERIUkdBN9Bvazv1DK3aItdLPqtjMmq+h0BhCZGQIuJRSUVPDU8B9n1UTqpt2js90Oq/IN95XlbF3vGmglDQtwfrac60yRcXt0JRG62e1WFoUI6vKRTyWqcx9licjE8zCsQPemnrvDqxRgRp0r2XmtsIG+g/vb94tUoBdiOFw1he9ERKV2xx134JZbbnH/nzFt2jTMmDEDRxxxBPbYYw+EQiE0Njbi3XffxfLly1FfX4+XX34Z48ePx5///OcSr556IwadRERUNZSQMAOaG3RGV3RKw6q6SePRIZZ3XQNGfmM/d7iImSGsUFJGqrkYdFYT55cQZ4twvkGntASMzlDM/ZMNq6m2oFN2s6JTSQVlCgjdRG2/vlBCwlNbpA1U+VRpR56rknbVrt4R7Hb/Xue157wfpyO0rqDT6fVaiK3rrOgkIiqMRYsW4Ve/+hUAYK+99sKzzz6LadOmJT32oosuwv33349nn30W/+///b8irpIoFreuExFR1Qhsb4URt+1SmnY4Iw2r6rZrR4dQHf/eAWlY9qRjIGNVmhKSfTqrkBPSOdXL+Q4jUkIlBF7xW7KVVG7lZ7VQonvPx/CFIAwLHWt3uF8XSz4/zu5zVQrCsCBNETNAKB9OZaYV0NK+DymlIMJdrymnCr0gW9db/ZkPIiKitHbs2IFrr70WADB06FC8//77KUNOR21tLS699FJ89tlnOPfcc4uwSqJEDDqJiKhq+LfsTpjoq8yurevVRhhRz0nZ/RnNLIfPOFtLqco4QWekerk71XnxW4jjq0OdDxGqqaLTmTCfL73ND73Vj+D2ViipEj546VF5JZ12dbeSCiJs2B+AdHPqvBm0P2zJ1B9WGlZM9abQIq/ZblZ0SkuknOxORETZ+/3vfw9Ns9/T77zzThx44IFZ33f48OE477zzUt7e1NSEm2++GcceeyxGjhyJfv36YcKECZg1axb++c9/prxffX292xdz8eLFAIB//OMfOO+88zBmzBj069cP+++/P6655hrs3Lkz4zoNw8BDDz2EU089FXvuuSfq6uowZswYTJ8+HU8++SRkkv8nLl68GB6PB7/5zW/c65w1Rf+pr6/H559/7n599913Z1zPgw8+6B6/atWqhMd0zqvrOn7729/i6KOPxrBhwzB06FB885vfxEMPPQQhMv9/VAiBxx9/HDNmzMC4cePQr18/7LHHHjjppJPw+9//HuFwfj3eywWDTiIiqhpWUI+toFKxW9erTXyIpbcGsu6vZwZ1MOmsPu7rPBJ4OmFk7lRCZZ+0REwI5bz+uhuMlZOulg75CTd6YQY0BBs67NCzzINOpRT8W5shNBNai98OOrsZXAe3twHI3CdYaLH9UJ3WCN19fGkKQKmqqjQmIio2pRSeeOIJAMCQIUMwd+7cgp37qaeewoEHHoi77roLn3zyCTo6OmAYBnbu3IkXXngBZ555Jq688kpYVuZ/w9x0000466yzsHz5cuzevRuGYaC+vh5//vOfcfTRR2P9+vUp71tfX48jjzwS1157Ld5++220trbCNE3s3r0br776Ki677DJMnToV7e3teT/XI444ApMnTwYAPP744xmPf+yxxwAAhx56KI477rikx3R0dODEE0/E/PnzsWbNGnR2dsLv92PVqlW49tprcdpppyEQCKR8jO3bt+OYY47BnDlz8PLLL6OxsRGGYaC9vR0rVqzADTfcgCOOOAIbN27M4xmXBwadRERUNZRUCVtFpVvRWY1BZ+xz0lo7u7auZ5AphKDKFP86707Ar6zYwEmEzZgwrauis3oCJWdIV76CDe2QhgVttw/BHW1FrejMqxWFUghsa4Fvwy5I07JDRqm61dbCv2U3AGSsLrf7ocrIMlTBhji5QSlbcxAR5W3t2rVoa7M/uDr55JMxaNCggpz3+eefx2WXXYZgMIgDDjgAv//97/Haa6/hk08+wbJlyzB9+nQAwKOPPoobb7wx7bkefvhh3H333Zg6dSqefvpprF69Gv/85z8xe/ZsAEBLSwu+//3vJ71vIBDA6aefjg0bNgAAvvWtb+Hvf/87Vq9ejRdeeAFTp04FALz//vs477zzYqokv/Wtb+GLL77ANddc4173xRdfJPzZe++9AQBXXnklAGDDhg1YuXJlyufz2WefYc2aNQCQct0A8IMf/ACffPIJLr74YrzyyitYvXo1nn76aTdQfffdd3HZZZclvW9bWxtOOukkfPbZZ+jXrx9+9KMf4YUXXsDHH3+Mt956CzfddBMGDhyIzZs345xzzoHP50u5jnLGYURERFQ1lFII7+76H7KSXb88yyoMOuMrn/T2QNbVUNVY4VotpClQ07c2/TGWQE2fxGPiKzhzCY+kYaGmLvJPQ4WEoEhohr3VOTJgx3kNVVNbCCUkrKAOpRQ8ntwHdYUaOtyfwVBDB0TeFbW5Czfl/suIkgpGZwiGL4QhB+zlrl0JCU+S11c29Ha7iiTl1vXI60oYphuSKyt5Ja0z1CkXQjMjD6M4ao2IKE+ff/65e/noo48uyDlbW1sxb948KKXw/e9/H3/5y1/Qp09XJHX00UfjwgsvxM0334y77roLf/jDH/CDH/wAX//615Oe74MPPsBVV12Fv/zlLzH/zz799NNRV1eHRx55BB9++CHWrFmDo446Kua+v/nNb7B161YAwC9/+Uvcfvvt7m3HHHMMvv3tb+Oyyy7DU089hQ8++AALFy50g83hw4dj+PDhGD16tHufww47LOXz/u53v4v/+q//QjAYxGOPPYYpU6YkPW7RokUAgL59+6YMKgHg448/xl133YWbbropZs0XXXQRZsyYgddffx1/+9vf8Morr7jBseMnP/kJduzYgX333RdvvfUW9t9//5jbp02bhosuuggnn3wytm7dinvuuQd33nlnyrWUK1Z0EhFR9ZAKelsAQjOhlLK3YUa22uY7lKWSZFvNSeXNCWrSSRVUx/c3zCXQdqZlp1xXOLaHohOiOoOPqoGS0h7qlUfFs9BM6O1dQ3CssA6rSD+TSip0bmrK/X5KQeoWtOZOAF39Sbs1eT4Slqb6Hjp5ptDMrsdL8QFNPu9pbiUpt64TEeWttbXVvbznnnumPE5KibVr16b8Y5pd/6ZZsGABfD4f9t57bzz00EMxIWe03/zmN9h7770hpcSSJUtSPvbYsWPdnpbxfvazn7mX33vvvZjbdF3HI488AsDeIn7rrbcm3N/j8eChhx7CHnvsAQD44x//mHIdmQwZMgSzZs0CADz33HNJ+18ahoGnnnoKADBjxoy03/MjjjgCv/jFLxKu79OnDx555BH07Wt/QPjQQw/F3F5fX4/nnnsOgP184kNOx1FHHeUOoXL6oFYaBp1ERFQ1lJSQugmzM+z+4uyEMfGDVapRtoOIqLxl01czVSuG+MAol4DfikzLTnl7OPIBguX8bEUqOjWj230VM4WsxeIEfHoeU7tDDe0xbW+tkAFLS/89LRS9I+AG0TlRCiLynmkPJopUWHbj79O5b8r1RJLO0K6OrorOlEFn7u9pTjjane33RES9nd/f9f/BdNvWOzs7cfjhh6f809DQ4B7797//HYAd5PXr1y/lOfv06eNWPabb6v2d73wn5Xm+/vWvY/DgwQDgVm46PvnkE3i9XgDAnDlzUFubfAfD0KFD3YBy3bp1aGxsTLmWTJzt652dnVi2bFnC7S+99JLbKiDdtnUAuPzyy1PuOhk/fjzOOussAMDbb78ds+X+5ZdfhhACAwcOxDnnnJP2MU455RQAwK5du7B9+/a0x5YjBp1ERFQ1nF/SDX+4K4zpBQGng303q0M21XSpKjXj+2XmVNEZHUwlWYK9dT16wJdwj+1uUBnc0dat+xeKE7hpeQSdwYbYYQVWUC/aRHoRzq99gJKqK+BWiNm6nq9Mr1+lFIRhoXnlRreiM37wlSOfik53IBuDTiKivA0ZMsS9HAx2v9+0EAKffvopALhbzdP9Wbp0KQB7OnsqBx98cNrHHDFiBIDY0Baw+486vvnNb6Y9R/Tt0ffL1QknnIBDDjkEQNfAoWjOdWPHjs0YQjq9OFNxhhgFg8GYkHf16tUAgFAohD59+qT9/s+YMcO9X7q/g3LVa4PO1atX47bbbsNZZ52F8ePHo1+/fhg8eDAmTpyIuXPn4v3338/pfK+++ipmzpzpnmv8+PGYOXMmXn311azPYVkW/vznP+Pkk0/GnnvuiQEDBuBrX/safvCDH+Df//53rk+RiKj3ifyCbXaG3TAmfqBKNSuXqjjqpiwCGifATAik4u6bS4/OTBWBVlCHksqtjo6uPO3u9vVQY0dZfCjhfD8Nb+wvddl8H+3t312skF60yd9mZyjzQckoFfP3nqnCMuPpspnarhQ6v2y0K+/drevJv79WQLPP6fT1zKIfrFMFypyTiCh/zpZtwB7qk8rw4cPt3R5Rfy6//PKE49rb27Oaoh4vFEr9/7eBAwemvW9NjR13ibj/x0RPUY/us5nMmDFjkt4vH1dccQUA4K233kJ9fb17fWNjI1577TUAwOzZs1NWmDoyrXmvvfZyL0evubm5OdclA0j/d1CueuUwolNOOSWhTwNg90XYtGkTNm3ahMWLF2P27Nl4+OGHUVdXl/JcUkrMmzcPjz76aMz1DQ0NaGhowN/+9jdceeWV+Mtf/uL+oCXT2tqK6dOn4+OPP465fuvWrVi4cCEef/xx/PGPf3RLnomIKJHzy3D01vVehb/YV4Vsttw6gY/hDaLfHl1VF05w5MilojP6WJXkxaS3BaCEgox8eBC9Ld4M6hiQ9SMl0lr8sAIa6oYXZqprvpxgUsZ9QBLe7cOg8SPtYyLDmOLFtxwQmonafsX5p3bH2h353VEhant9dI/O/N4/9WymzCvADGqRCtIMW9cDGqQlIA0LfYcMgH9rM4ZP2jvt6U2nopM9OomI8nbkkUe6l51J4N0RHTZeeeWVuO6667K6X7osphDyGTyYr9mzZ+Omm26CYRh4/PHH8etf/xoAsGTJEvf7k2nbOpD/mp3HGDVqFN56662s75eql2c565VB565duwAA48aNcydK7bPPPhBCYOXKlfjd736HhoYGLFmyBKZp4umnn055rptvvtkNOY866ijceOON+NrXvoYtW7bgnnvuwZo1a/DII49gzz33xF133ZX0HEIIzJw50w05L7zwQlx11VUYOXIkPvroI9xxxx1obm7GD37wA+y9994ZS5mJiHorJXt50EnVIcut68KwYAb1uKAzvqIzNnxTUsFTk/wfyDF9P5MsQe8I2MNrnGrpqCrH7lZ0Gu0BmP5yCDqTb90O7/Z2BZ0yRdAZF44K3YQS/XtopV2UkPCub8h8YApdU8q7v3XdmbiejlLKboOA6MdLfMEppdzQ0vCGEoJOaQl4amvcX/iUUoBSsAJ619dERJSXww47DHvssQfa2trw3nvvIRQKZaygTGfkyJHuZaVU2inlPS16Lbt378bEiRNTHhu9bTv6fvkYNWoULrjgArzwwgt4/PHHccstt8Dj8bgDf0488cS0a8l2zbt37066ZqdK1+/3Y9KkSRkrRytZr9y6fvDBB+O5557D9u3bcf/99+Pb3/42Jk+ejOOPPx7XX389Pv30U/eF88wzz+Ddd99Nep6NGzfit7/9LQDg2GOPxYoVK3DJJZdg8uTJuOSSS/D+++/j2GOPBQDce++92Lx5c9LzPP744+5W+R/+8IdYtmwZ/uM//gPHHXccfvzjH2PFihUYOnQopJT4yU9+klfJNxFRr6C6enSWwzZYonxkk88Iw4Le6k/Ybp7YozP25yB+S3a08G5f2uOUJQEpu7auW9FBZ/emi0tLlMUwrfgKQ+c5OmEgkLoHZUI4KFXelZG5MLxByBTDqbIS9XzcnplGfu+foV1ZbOtTyt3m7wTk8cPilFQQIcO93ak2toKaW83c/ml9zNr1Vj+skAHpVA2xopOIKG8ejwf/+Z//CcAeoPP4449363x1dXU49NBDAQArVqzo9vq6Izpk/eijj9Ieu2rVqqT3A/KrrHR26G7btg1vv/02PvjgA2zYsAFAdtWcABJ2Aae6feDAgTjggAPc64866igA9tR5p19nteqVQefy5csxa9aslAn2qFGj8Lvf/c792mmEG+/+++93Q8cHH3wQAwbEbtoaOHAgHnzwQQB2/8377rsv6XmcsHTkyJG49957E24/8MADcdNNNwEANm/ejL/+9a/pnh4RUa9ndoZ7VW9OqjLZ9OjULWit/oRKyvhgLX7qut6WeshOdEiVahiPkl1b12ODzu5VdCoVteW4hOK3brsVh9FhYIpqx/iwLv5+PUVv7/6QCIcT9GbTCzOZ0M6OzI8hlRuqa5HXY/wwImlasIJ61wAsZ5K7brmVx7vf+9LtBwfYU9xFyHCrkVnRSUTUPf/1X/+F/v3tnQk33XQTtm3b1q3znX/++QCADRs24PXXX+/2+vJ1zDHHYPjw4QDsojOZ4kNJv9+P559/HgBwyCGHYOzYsTG3O98bwA4Ps3HGGWdg3333BWAPIHKGEA0ePNid8J7JE088kfL/cQ0NDXjjjTcAANOmTYvJvM477zw3nL3//vuzeqxK1SuDzmyceuqp7uUtW7Yk3K6UwosvvgjArhA9/vjjk57n+OOPx9e//nUAwIsvvpjwgty4cSPWr18PAJg1a1bKcvA5c+a4lxl0EhHFcodPOP31DItb16lixW83dzjhozSFXfEWNhIDxvhhRHFBZ7pp4obPbjavpISRoteiEtKdah39YUK3K6iVyqmfaE+Jr+h0vydRvcWSbrMWEqFdiSFfMd6HChYQK9VVyZrDEKto4WZfxmO05k5oLXZFZ/ua+pgBVw7vugZ0btkNoZnwb2tx1xXa1QGhGZCmcM/h32oPVzADGqyw0fVaZNBJRNQt++yzDx544AEAgM/nw0knnZRxaLNSCl6vN+lt1113HQYPHgwAmDt3bsaByy+//DI+//zz3BeeQb9+/dzKyrVr1+L2229POEYphR/96EdobW0FAPzoRz9KOCY6+EyWGSVTU1PjVm4uW7YMzz33HADgoosucr83mXz66adJC+Qsy8JVV10Fw7B3+1xzzTUxt3/961/HRRddBAB49tln8fvf/z7t42zbtg3PPPNMVmsqN72yR2c2ohP5ZJWf27Ztc3t9Tp06Ne25pk6dii+//BINDQ2or6+PaeYa/UaR7jxjxozBxIkTsXHjxpKXehMRlRut1Y++Qwa4vywrKbl1nSqWCCevpgtub0X/UUMiQaiKDHWJr+hM36MzXdDpbIM3OoIpAzrDG0rY1m0/cMrTZkepok0oT0vG9ozUW/0YMHpYTLiZbDu6E8rFK8ZzSva4+XL+TvPZCq+kShmQR2tbUx9bca9UTH9TZUm0fLjJ7uUZNtD+aT1GHL4PtOZOmL4QrKCOPgP7AbArib3/3omhX9sLSipYYd0NzMvi9UREVOGuuuoqNDQ04De/+Q127dqFk08+GaeddhrOO+88HH744Rg5ciSEEGhqasK//vUvPP/8826AWVtbGzNMaK+99sLjjz+O73znO2hsbMSxxx6LOXPm4JxzzsH48eNhmiZ27tyJVatWYenSpdi6dSteeuklHHHEEQV/Xrfccgv+93//F1u3bsWtt96KL774AnPnzsXYsWOxbds2/PGPf8Tbb78NAJgyZQrmzZuXcI4TTjjBvXz99dfj5ptvxtixY92qyf322w99+iRGbt///vfxm9/8Jmaaebbb1gG7beLPf/5zfPrpp5g9ezZGjx6NTZs24fe//7271f68887DjBkzEu67YMECrF69Glu3bsUNN9yAF198EbNnz8ahhx6Kfv36oa2tDZ999hlee+01vPnmm5g5cya++93vZr22csGgM4V33nnHvTxp0qSE29etW+dePvjgg9OeK/r29evXxwSduZ5n48aN2LFjB4LBIAYNyr5h/86dO9Pe3tjYmPW5iIjKjem3K5qcyiYlFCs6s8AgoPxYId0d1BItsL0Vge1t2OPo/buCHKUSemPGh3DKku6UcKEZMFJsc1ZC2sdKCcOXulem3uZHTV2fyGMV7vWjRHH6WaYjdDNhy3pXRWdUEJfkeYcbvUnPWYz3oYJ9qKO6qnTzqRIVmpHV8w1ub419WBn7fm0GNOhRgXxNXR8MP0QivNtrP07YwM5XPwUABOpbII1I0CslRMjoqkZlRScRUUHceuutOPLII/Gzn/0MW7duxZtvvok333wz5fEejwdnn3027r33XowbNy7mtgsvvBAvvvgi5syZg/b2dvz5z3/Gn//856TnqampySnzyMWQIUPwf//3fzjnnHOwYcMGLFu2DMuWLUs47sQTT8Tf//73pMVvBx54IGbNmoXnn38eb7zxhrtl3LFt2zbst99+CfcbP348zj77bLz66qsAgIkTJ+Kkk07Keu0LFy7EFVdcgWeeeSZpxeWJJ56Ip556Kul9R44ciRUrVmDWrFl477338O6776acSQMAQ4cOzXpd5YRBZxJSStx9993u18l6JUQHh+PHj097vgkTJriXd+zY0e3zKKWwc+dOd0t8NqLXQERUbZQlIA0LWov9y7GSkiFeFqRhobZf31Ivg6KEGr2wklTo7frHF7BCul3lZlh2KKVUkh6dia97YVjoM6AO/q3NXYNa4jjhkLIkrFDqPlNaWwADxw6PPFjUY3UzVJKWSLolvJiMjqD7/VPSDoid6trYoDMxzFMqRd/OYrwPFegxFLq2kDvbwnO6f559kVXUgCsgsd+rGdCghIQ0VWRtfvgiU+YNX8itBlVC2cOInNcyg04iooKZOXMmzjvvPPz1r3/F66+/jpUrV6K5uRlerxcDBw7EHnvsgcMPPxxTpkzBxRdfHFPcFe+8887Dtm3b8PDDD+OVV17Bv//9b7S3t6NPnz4YM2YMDj30UJx22mn4zne+06M5xn777YfPPvsMDz/8MF544QWsXbsWnZ2dGDlyJI466ihceuml+N73voeamtQdH5988kkce+yxWLp0Kb788kv4/f6UPT+jXXbZZW7QOXfu3JzWPWLECHzwwQe4//778dxzz2HLli1QSmHSpEmYPXs2rrnmmrQT1ceMGYN3330XL7/8Mp555hmsXLkSTU1NME0Tw4cPx0EHHYQpU6bg/PPPxymnnJLT2soFg84k7rvvPrfk98ILL8QxxxyTcIzf3/VJc6ZeCtGfQgQCgR45DxFRbyZNgWBDuxu2KKlYzZOFfPvwUc/Rmn0QuuVWYZqdYSil4N+yG6jxwOwMdwVBqisUkpZATZ9aIElYKA0LGFCHwFetCbe5x0S2uEshEya5R9Nb/RgwZphdRZhlzuk8l3SUkCWv6DR8oZgenckqPIHEvqf2lSm+AVHPKZvvQz4KGeg5Ibve5oeSEp40v9zFix8olDUVW9EZX9Eswgak6ApDvet2dlXcRrVSUNIO6d3XL4v6iYgKqk+fPrjooovcPo/dMXToUNxwww244YYbcrrffvvtl/X/9+rr6zMeU1dXh2uvvRbXXnttTutw9O3bF/Pnz8f8+fNzut/atWsB2Nv7L7/88pwft3///vjFL36BX/ziFznf13Huuefi3HPPzfv+5YxBZ5x33nnHfbGMHj0aCxYsSHqcpnVt6YnuO5FMv3793MvhcOx2sEKdJ5P4StJ4jY2NOO6443I6JxFRuZCmQOfGqBYcrOjMSjkMf6FYemsAtf37wgrqqB1Yh7Y129B/9DD7RqmgtwcQ2tkO1Hjsis6wASUlTL+GfiMGJf3HvzNBW28LpAzknNBbGhasNEGnMyXb9GtxfTlT/7yZ/jDqhmex9azEP7NCiw02pSnc7110EGf4Qhg4dkTMfVO930RfbwY01A1LPnSyWwoVdCog3OQFAOjtAUhDoLZ/9kGnSlEtnPF+Mq4/a/zTUZG/j0jlphU23Kccamh3+3UqqRDc2RbT2oGIiKjcCCGwZMkSAMA555yTMM2duo9BZ5R///vfmDlzJizLQv/+/fHCCy9g9OjRSY/t37+/e9mZapVK9GCjAQMGpD1P9Ne5nCeTTNviiYgqmbQsd/IukOQXZ0qqWBWdbrUhZaS3B9B/r6EwgzoMfxiB7W0xOVbLR5uhtwcw8sh93Unl0hR2mDhsQNIeiU7wo3cEUNs/+YeqzjHSErBCqf9d4wybMTvDUEgTTjlXSwkzoKcNOq2QblexlkXQ2VXRKS3hXmcFdSip4KnxwPSFE17TqUK16CpVK6gXPOiUkTYGhaAsYYfhsCslpWGhtn/2rS3y37quMoaSSkg3SLVfq/bxocYODN5vz8h5ZEzVcqlfT0RERMk89dRTbgvDq6++usSrqU6F3z9TobZt24azzjoLHR0dqK2txbPPPpu2H8GQIUPcy5m2kQeDXY3/47enF+o8RES9mTRFTBWaErLk1WGVoFhBZzDNlmmKZfrDkT6DFqRuItzkjelf2PH5druiMzI4RuiRoLMzDK3Fn7RKV0QmaBsdwZTVf+4WeENAhFP36HSCVLMzHBuwpQo6hUrb8xMA9I4gZNQ28VKJ2aouFZQpIHQLzSs3Qmv1u1uilVQI7miLvXOq9xvVFXY61aGFoncEEdzRVrDKRaGZXe0/hLR7weZA5hl0QqmM79fOsCwg8nqOHK6sruuVsP/Ouu7D1hxERFQeNm/ejPXr1+OJJ57A9ddfDwA48sgjMX369BKvrDqxohPArl27cMYZZ2DXrl3weDxYtGgRLrjggrT3ia6QzDTRPHrbeHwz3fjzjBo1KuN5PB4PKzSJiKIoU8SEdtlUCFEBpzVn0LllN4Z8ba+iPFalMwMa+kRN+ja8QTeojKUghbADUVNAa+1MWcEmDQtmQIsMMUp+jBkJOlWGik77GAlLxh6jUiSdSsqE4TLJ1geUtmesUsoOOiNBroxsXdeafejc2Ii6YQPtv5tB/QAoBOpbMGT/0VBKwePxpK0etCtB8694TKXj868wYK/hBTtf/Oss19YWBdu6nuwYq6sdidNPtutxu3p0RmMPYiIiKhcHHXRQzNd9+/bFggUL4PF4SrSi6tbrKzpbW1tx5plnYuvWrQCABx98ELNnz854v0MOOcS9vGHDhrTHRt8+adKkbp9nwoQJMYOJiIh6O70jGFP1pqRKO1CFbMWqoAs3eovyOJXOmaJu+EKA6uqDGd7tTXJwV+WyMgWCO9qht/sTj4NdSSh0MzKpPfljWwG7Z7g0rYw/O4YvBAgZN3U9xXMS6ae4A12BWqaAtadYQR1mZxhSs6C32t9D5QadnZCG1fU9hF31qkd6lYYa2gHYlbipiMiAn0J+sCBNy66EtUTBfo6FEVtxGh8oZqI15z6pHYA9jCibik7neUoV83pzhiCpuGBTFemDHCIiomyNGDECp59+Ot5++21MmTKl1MupWr066PT5fDj77LOxbt06AMDdd9+d9bSt/fffH+PGjQNgDzBK59133wUA7L333thvv/1ibjvppJPcy+nO09TUhI0bNwIATjzxxKzWSETUG7i/8MdUdGauIiMUrLdfJoY/7IY9lJoIG3YVp88OzfR2u6VNuMmXcKxCV4WgtARCDe1uf8V4Ure6qglTVnQ6QadIO4wIAAxvMLFiOlWPyiy2rruVgyWqwg41dsAK6dDbAzC8XdW00cGkFTbcIE3oph1CA+jc2ATA/rAlFXfLewGDN6Fbkb6VhWvTIeMqOpNXEqeWsJ0/S0qmSeAjpJBQInmvBOf7Gr/VnhWdRERULpSyd5u1t7fjn//8J0444YSc7j9nzhz3HPGZEiXqtUFnKBTCueeei3/9618AgJtvvhk///nPs76/x+Nxt7dv2LABH374YdLjPvzwQ7cS84ILLkgoTZ44caJb5fn8888jFAolPc/ixYvdyzNnzsx6nURE1U6aAiJsxFZLSYVd//yidIuiGFIzYXQm//8bdTGdqkrdBKBgeO3wzKm2jKGUu2XXChswO8Mpg04R6fVp3y15oBTaaVcmSlNk/JDADGhQUmVVoaikhAgZaftTOhV5xQre49kTxi1oLV0VifaHJV3fd2V2bekXmulWcGqt9n2cgDQZJzi2Mnwfsl5vmx+B+hb376BQQ3fig0IjTXibdF05Hu/erz2QXUVn9KCtqMP1tgD0Nn9CoJ53z1AiIiKqaL0y6DQMAzNnzsSKFSsAANdddx3uuOOOnM/z05/+FLW19sTNH//4xwiHY7cthcNh/PjHPwYA9OnTBz/96U+TnudnP/sZAKC9vR033nhjwu1btmzBf//3fwMADjzwQAadRERRpGFx+FC+ilRBJzQzbRBEtphAUwF6e5rgSHVthXbu51SAxuvc3ORutU4WJlohHZ1bdgOwf54yBZ0iZABKxVTppnopKSFhdGao6HXvXJqfYWnYQ4eiQ0glZEJwrHfYXwvdhNmpufdVUqXfuh4JOvX2QMbq1kyUlNj2wkewQro7oKdQQaeMC2GDkW352co3xPVv2Z1x+33M1vUktzX84wsYcT8v3LpORETUO/XKYUTf/e538cYbbwAATjvtNFxxxRVYu3ZtyuPr6uowceLEhOsnTpyI+fPn4+6778bq1atx4okn4uc//zm+9rWvYcuWLfif//kfrFmzBgAwf/78hAa0jssvvxyLFi3CihUr8Kc//QlNTU246qqrMGLECKxatQq33347Ojs7UVNTgwceeAB9+vTKvzYioqSkIbhFMU/F2iksdNOtTqTUrGDXlnGhmdDakvfctHVVdBqddshmdiYP2/xbmjFgzHCkatLp39rsflBgdIZjK+eSrTNs2H1wY4KtVMOIFMzOcPoQzJmgXaLPKqSVWBWuhEoIjo2OIIRuQuomrLAO069BWsIOmtOEjc4W8PgWG/no3NiE4PZWjDxyHyhLQmgmAvUt3TqnI/7DiPCujpzun++wpXCTDwPGDk9/bpG+crXji+1A3K6pfCtMiYiIqLL1ysTsf//3f93Lb775Jo444oi0x++7776or69Petudd96J5uZmLFq0CGvWrMEll1yScMwVV1yRtmK0trYWf/vb3zB9+nR8/PHHWLZsGZYtWxZzTL9+/fDHP/4R55xzTtq1EhH1NsIwGXTmqwjJkjRFZHo4KzoziR4G412/E5Y/yZb1CKW6gqVUW9ajDzZ9YTvnTHJzdKCXzXZl4QSd0VWaka30ntq4zUJKwewMJfR/jD2ktEmnEtKu1lRx18VVCOodQWjNnfbzVoB33U5I03KD5tQPoNxzxg/MyZURqRxVQsIKG/Bv3Z22mjQX8QG33h6AtARq+tRmd/88K0uVlG5rhXRri+3RGX8AEl4/3nU7MfbUQ+Gp4URbIiKi3qRXbl0vpJqaGjz66KN4+eWXccEFF2DcuHGoq6vDuHHjcMEFF+CVV17BI488gpqa9N/qUaNG4YMPPsBDDz2Ek046CXvssQf69++PAw44AFdddRU++eQTXHnllUV6VkRElUNoJrcoljEnDMu1319v40xcd7R/tj3TPdzelqmmrUdze6RGhUFOMBUdQmdTeSt0E0gIOpP3/1RSwQzoWQ2jctZTqCniWZMKhjc2LLTD+bigsz2A8G6vW6HpXd8AZUmYWfafjR9wlM3x8VW6IrL1XVoSQjPg39acsQI3X0I3k/eHTSnPoFMpaC3pX8PSkjlPgQ/v9mX1s0FERETVpVdWdKZqxN8d06dPx/Tp07t1jj59+uCaa67BNddcU6BVERFVP2dACOWhCAV0Tk/CcEsnlFSsrkpBGlbMFmRpZAh1VFcFXjYhshuYRf0bSIQN9BnULybQy2q7byTUjO7pqICk27etkG7380yzdd2dHh85xgoZ6DOwDp4MHxIXipISiAtXlZQJ4aze5kdge5vbczO0sx19hw3IulpZCZlT9fn2v6/G8EPGY9jQAe51zoAdJWTkQx4J1aeHgmEFmAEddcMHZX18XqRyv6cpTy0kDF+OVeFSIdzoQ/9RQ/NcGBEREVUiVnQSEVFFi56MTLnpiQ/+4jlVinpLZ+maMFYAqVu59VpUyq1kziYAcoLO6O3FZuRnJzrozLqXarKt60n+fqMnlafiBLZOGKqEjOlX2h3OmtJtq3Zvi652FSoxlFSAb12DWx1rhXTo7YHMW9fdc2YfdLau3oLWj7cmHi+7tsE74WChhhElk0tFZ77vJ0qqmLYNSY8REkZH7u0vwru9ea2JiIiIKheDTiIiqmhWoHtTjHuzjFWDBeBUdEoz/TCR3s4KG1lt73ZIU7hb17MZAuOGiVGVc6GGdiilYnp8ZjtQxvSHE0K4ZH+/zlbrtBWdkWpK5/mLsNHt6eRd69QgdLNr6nwS0hR2i8eYRSUf3GSF9JjvkdQt9zlmYleJZhfgBnfag4Dit7o7YaLQTPf71ZNb/c1ctq7nG3RGpsenY4Xye02IIrzHERERUXlh0ElERBXNDDLozFe2oUt3RPedLEYFaaXK9e9C6FZevRnNoO7+Pfi3tcDsTAwssxFu9sVeoVTqretIX9HpBO7OMfmGWskY3iBE2ECo0Zvx8fOVbUCthIIIZx9mA0gYXuSEydHBbdohPd2US9CZ7893Nt8/raUzr3MXoz0HERERlRcGnUREVNFkhi2PlJoVqe5LV22XSab7xgRWrOhMSaSZSp6MNMz8htBIBRGyq0fDTd60lY7pBLe3xXytVGL1IdAVdMs0rxNn8JJTfWeF9IL03hWGBSukwwxoCO3qSHscgLxDsay3rkvp/sxlcTQAQIuqtgW6vo+dm5qiDu3Brev+XCo683uMbEL+TD08U+KHK0RERL0Og04iIqpo3A6dP6e6LKftqXEy3Tc6sGJFZ2q5VhXaFZ35fT/NgAbTH4bRHoTWWqCp1EolnYrt9uhME3S6fUGlPbTICuoFqegUIR3KlNDbgwg3eVMe1xXC5vf91NsD6Q9w+oQKlVN7AgAI7YwNlAtV6ZqtYmxdt3L8nuSEbzlERES9DoNOIiKqaAw68+dUUuXb51RaIuOwkuhqrbyrsnqB3INOM+/ejFZAg+ELwQobXdPYCyBZiOcEnKkCPitsxGydl6aA6Q9DFKCiU28LQFoCwe2taYNWaQpAqryD40w/A1JIBHe02T06w0bSytdUtLiK21yD0u6ywpnfG4RuwvAG8y6ejN+eX0iKSScREVGvw6CTiIgqWw8O4qh23a3otII6zAxbW2XUluy8++z1ArkGnVK38g46TefvTamct8ynoqRKGph3TVRP/jgJW6OlPRypEJWLnZuboCyB4M72tJV9Sil7An0PVRz71u9C6ydb7UnpmpFdiOsMgo8b0iOzHBZVKDKL14cIG2j9eGt5bhMvwyURERFRz2LQSUREFY0VnfkTumn3Mcwz6BRZVASKqO3MWjODzlRyHQgkdCvvnqd2Rae9XbxgA6lU8m3VbtCpJa/sNDpDsccrBa3Nn9O6UgW+ge2tsMIGtPjBSUnWmFMvyhz5vtyFzk1NdhicxUT56BYP8e9vSvRc9WMy2UwtF5qJjrU7yjToLMM1ERERUY9i0ElERBWNQWf+pGlv6823olOaAuEM4WV0RViYFZ0pyRwDLGmYeb/29Y4gAttaABRyK3Ty/pNdFZ1JhugAib0zlV3RmW0+JY3k0+eVkLBCBvzbmiMhcuoTCs3sVp/aTJSQbqsBs1PLGB4qq2u98SFuXgOouiOLvwhpRZ5fD05/JyIiKpW3334bHo8n5Z/Bgwdj4sSJuOyyy/Dmm2/mdO76+nrU1NS453r66aezvl+ytdTU1GD48OHYd999cfzxx+Paa6/FE088gUAgQz/xiGnTpiU978CBAzF27FgceuihuPjii3Hvvfdi48aNOT3XYupT6gUQERF1R77bd8kOKkMN7Qnbz5VS8Hg8XV8LCU9t4mejVthAuDH1NGsgtiKMFZ2pxW9RzkToFjw1nswHJmF0BBD4qjVynsIEnUolrw6VkWDOGfjj+3IXRhw+wb09fhq6GdDtXq4ZAjbnNSp0EzV1if+cFboJoyMIKJVxCJbQzB4f8qNMAQ889uClDAG1NLpC7/jwsNhb17OhhLT7jpbhh04s6CQiAhoX5/fvhUowdk7p3+iDwSA2bdqETZs24cknn8Ts2bOxaNEi1NbWZrzvkiVLYv6dsmTJEnzve9/Ley1KKfh8Pvh8Pmzfvh0fffQRHnroIQwZMgRXXnklbr/9dgwaNCjn84bDYYTDYTQ1NWHdunV4/vnn8fOf/xynnnoqfv/73+PII4/Me809gUEnERFVNFYR5U9ZAmZAS5iWLTQTfQbUuV8Hd7Zj8L6jEu5vBfWuidkp6G1dnyCzR2dquVbqCd1Ebb++eT2W3h5we4IWrKIzRb/P6K3rhjfovgaUVPDUeBDa5Y05PrijLf4USTmvUaFb8PRJ/EVCaKZd7WlJO4BL8TahlLJDzh4O6aQl4amVUEJm/HBG7wh09egsdUVnFpQl7HWV5VtxWS6KiIgq1DXXXIMf/vCH7tdKKbS3t2PlypW477770NzcjCVLlmDChAm44447Mp7viSeeAAAMHjwYgUAA//znP9HY2IixY8dmvaYLLrgg5rFCoRC8Xi/WrVuHd955B8uXL4ff78d9992Hl19+GcuXL8dBBx2U8bxffPGFe9myLHi9XjQ0NODDDz/E0qVL0dTUhDfffBPHHXccHnzwQcybNy/rNfc0bl0nIqLKxpKdvElLwAomVrLFV7f5t+xOen+7kit18GJ0ht1KPiDS07MHeyFWspwDLKlyHmDk0Nu7wunCBZ3JKzqd7fVCtxDc0d5VQaoUpCmgtcaG38EdrZkfSimIyGtU6GbSkNL53sSH+PFE2ChOJaJSbnVzppYDemvUpHUZW5GqcpjYXixSSDtQLsf34nJcExERVazRo0fjsMMOc/8cfvjhmDp1Kn7xi1/grbfeQv/+/QEADzzwAAwjfb/xDz74AJs3bwYA3HfffaitrYUQAk899VROaxo+fHjMmo477jicddZZ+OlPf4q//vWv2LJlC84880wAwMaNGzFjxgx0dKTfkQUg5pzf+MY3MG3aNFx66aV48MEHUV9fj//5n/9Bnz59YBgGrrnmGixfvjyndfckBp1ERFTRCrX1tjeSlkg6TCg+/PRvTR10pgvokg2BEXqBht9UGZlHpV6+1X3RAWmhgk6lunp0Rp/f3ZKvFPxbd7vHKKVgBsIJIaPhi7we0+RTLR9thhWZXC41M2mFpHCDzq5gUG/zJxyXLOjvMc5zzWIrffQRzt+zErL4HxRkkRM6VarlGCmy4p+IiIrlkEMOwbnnngsA8Pv92LBhQ9rjlyxZAgAYNWoULr/8cpx++ukAuqo8C2WfffbBq6++6q5t48aNuPXWW7t1zn79+uHGG2901yqlxJVXXglNK4+CBgadRERU0Xq6t141U5aEkSToFKGuMFIphWBDe9JA2e3NlwJ7cmavVFuSCzeMKPlk9egQsnPL7pjbol9njq4KzOQBldBMNLz+OfSOyNR4PflQJmcIlhN0KqUQ3NmecFxRg86ITEWG8Tc7zy/c3FmmW9ftbetlubYyXBMREVWv/fff372s66n/jaHrOp5//nkAwKxZs9C3b19cdtllAIDPP/8cn376aUHXVVtbi8WLF2PgwIEAgIcffhitrZl30WRyySWX4KKLLgIA7N69G4sWLer2OQuBQScREVU0maQvIGVHWsIOm5RyAyatzR8THhveIKRuuYFQTLWekGm3ULMnZ/ZKtSW5UI/bubERVtiA4QvFhOfRQZPe6oc0LSipYAU0mElCRmcQT6owMLC9FVI3EWqwQ0uhW0mDTieYj378pEFnKT4oyVTRGdJhRU2BtwIarKCetEK6GKxw+ipsaUV+/stwGFG6D2KIiIgK7auvvnIv77PPPimPe+mll9zt4//5n/8JAJg5c6Y7KMip9iykUaNGuY8VDofxxhtvFOS8119/vXv5b3/7W0HO2V0MOomIqKJFb02lHEk74FSWhAjbwVDrR5tjegKGm+xwxQk6TX9XiOVstzb8iVWhgF2BRtlJNsinkighIXULgfqWmEAuoaJO2SFksKEDZmco4TxuRWeKMNAdZqSc3p9m0mPjw3ehmQn9QIHSBJ2ZJqeHmnwxQ5mskA7fl7ugtSZuve9pVkiHFUy/DU1o5fvaZUUnEREVy4YNG9w+lccffzz22muvlMc6QebXvvY1TJkyBQAwaNAgfOtb3wIAPP300xCi8L/jnHHGGe7l9957ryDn/OY3v4khQ4YAAFauXAnLKv2/Cxh0EhFRxVJK8RfZbpKmgBXSoSLDYVo/2RZzuxOuOFVd0T0CnTApWZ9PaQmEGzM3OidbvoOFyonW5ocZ0KBF9cJMVlGnt/kR2tXe1Y8zSqbvg1slHAk3rYCW9DFE3Hn0tkDS9woryfb5npbpPSu4vTVmS70IG/DXtyQNhnuaFdIzhvCGL5j29lLi/x+IiKiQmpubsXbtWvfPF198gffeew/33HMPTj31VITDYQwbNgz33XdfynO0tLTgtddeAwBceumlMbc5FZe7d+/G66+/XvD1H3300e7ljRs3FuScNTU1OPLIIwEAgUAAjY2NBTlvd/Qp9QKIiIjyVY4TiCuRpdlVcR1fbLenUEcVyDkVnE5gYGkGhGaitn9f6O0B+5gkQadvw67k/R/Lb3drWaiKymRpDySyImG4ksqtFI7WunobtBYf+u8xJPEUTk/NFNug3b6vkfwqtKsDQyeOTTxPfGCqVNKt1SXp0SkklFTw1HiS3i7itopbYRPSsFDTt7YYy4ulAJlm4Js0LPi3JB9WVg4yVc8SERHlYsGCBViwYEHS22pqanD11Vfj+uuvx8SJE1Oe45lnnoFp2v9vdYJNx5lnnokxY8agqakJS5YswfTp0wu3eAB77LGHezmbyev5nnfChAkFO3c+WNFJREQVi7/EFobQDCil0Prxlsg1diCkpIoJrQBAmRJmUIOSEkZkIEyygUZtcZWhlUJlmhTTE48p0w91qiQibLi9N4VmJN1W3v7ZVwjuaE86QbxrGFFyTrju/D2Fd/sSgkEAMAOJ51ZSJXyfk923xymVcmt+qjWWsjIxXUWn0RlGeHdpeodmQ/XAtj8iIqJkpJR49tlnsWDBgrSDiJxt68cddxwOOuigmNtqa2txySWXAAD+/ve/o7OzsG2gBg8e7F72+wvXEqenzpsvBp1ERFSxqqIKrgwIzYQV0BHYHukLqCKDijSjKzCKTM8WmgFpCBi+kBs6xQ9JMf1h+DaVfttKPkox3MrsDFdNdbLZGXarKVNVS0rdhLJE8nDXyf9SBIFulXBUj874ymGhmUmDdiUVAvUtsWspwfddSZkyUI+vqAYiH0SUMOhM105AWcKeul6mynltRERUeX7961/brbOi/oRCIXz++eeYP38+AoEA7r//fpxxxhkIhRJbzvz73//GJ598AiCxmtMRPTDohRdeKOj6o0PIoUOHlv1588Wgk4iIKlam6i/KjtBM+L7c5YZHSimYfg3Skm7Q6VR0WmEDyhII7/a5QVZ8RVfbp1+V5QTmVKJDJ6EVv8LP8IYgzeoIZLRI+A1kHvSjZJrnnOLl4wSTzl+ZEjKhKrPlo01JKzWVlOjc3BTz961ECSp4RfKKTqVU0kpUq+QVnam3rpegADonkj06iYiohw0YMACHH3447rnnHjz00EMAgPfffx933XVXwrFONWefPn3cys14xxxzDCZNmhRzfKG0tra6l0eOHFn2580Xg04iIqpYihWdhSEVtJauT2INXwhWQIPe5nf787lb1y0JoZsw2rsGkIi4gS5pt62XYTCiRU2HT9pXtIcZ3iBkGUyoLAS7IjESimcY9JOqDycQGz47gagSsitAd0J5IWHFhdPuwKLEk0Jr7oQWFcynDVt7SGhXe9KA0L9ld9IJ51pzp92mo0SpYroqZxEufo/TXLCik4iIiumKK65wg75FixbF3CalxFNPPQUAsCwLo0ePhsfjSfpn/fr1AOzJ6PX19QVb35o1a9zLX//61wtyTiklPv/8cwB2NeeYMWMKct7uYNBJREQVi1vXC8cMdPXZ1Fr8MP1hhBu9kIYzHCYSNkWms0dXnsmoPnjBnW0JW9nLXWhXu1spmK56racYvhBUlVR0RlceZhz0k67qN+omp+oy5ufdDToTBx6lClCVVJCGBe/6hqTrLZbOzbuThpYtH21O2nc41NAOJUTJqifT/Uwk67NaTtijk4iIiqmmpsbtu9nY2Ii2tjb3tv/7v/9DQ0NDqrsmpZTCE088UbD1/eMf/3Avn3TSSQU558qVKxEI2Dt6pkyZgtraEgxPjMOp60REVLFKMTG5WlmBru+l1twJ068htKujqz2AEx5JO+jUWrsqQKOrpgLbYnsgVgK9NQDTr6HfiEElqei0gnrVDCOKCTozbF1PF6B1bmpEsKEdg/YeCbMzhH57DIk5XimFT29bBiiV0G4gZdAZCUxDDe0Zj+1JRkcwadAZ2NaCPY7eP+F606+h79ABGb+fPSU6fJWWQE2frl9gyj3olEJCaAZq+9eVeilERNRLWFG7dKIvO9vQ+/Xrh0WLFqGmJn3d4T333IM1a9bgiSeewK9+9atur6ulpQVPP/00AGDQoEE466yzun1OALj//vvdyzNnzizIObuLQScREVUsvSOQ+SDKiunvqujU2/wwOkMI7mzr6onobF1Xyu7RuavDPT46CDF8iY3Xy53eHoDhDZYs6BSG1SuDznQfVKioyeShRi/67TEk5nipW+7flRVX0ZmyUlQpKBU7RbwUW9cjS4n9WipYYSNllboSEnpbid7vohYrDSsu6Awnu0fZkIYF068x6CQioqIIhUJYt24dALt356hRowAAgUAAf/3rXwEAZ555Jr73ve9lPFdTUxPWrFmDTZs2YeXKlZgyZUre65JSYs6cOe6ApHnz5hWkl+azzz6LpUuXAgDGjh2LOXPmdPuchcCt60REVLH0dgadhRId8Ckh0bpqi93r0GmJGAmPOjc3QZoiJmSO3h6aKegsx2DE9Ift7eNKQe8IZr5DgYmQUVHDm9LJZet6ulBZSWX/ERLhJm/C+aJfZzKuMjTVRHMlJZSUbmWoUqp07yFxa7RCul2dmqLKVVoSZmdpfnac76cVNmLWp7f5y/LnOZrULVhJBlMRERH1hFtvvRXhsP3/xrPPPtvdxr1s2TIEg/a/Mb/zne9kda5vf/vb8Hg8ALo3lGj79u34j//4D7zyyisAgIMPPhi//vWv8z4fABiGgXvvvReXXXYZAKC2thaPPvoo+vXr163zFgorOomIqCIppRKmfVPhxIdUSkooIe3t7EdYcT0Uu8KtTGFMx793YsjX9iroWrtLSQXTF4LpCyG0sy3zHQrM6Ky8KthUlFRuhpdxGFG6ppMKgFIwvEH3NRU9qCc66Izvs5muR6cV1OGJbBXr3NgYM1SrmOLX6Py8md7krwUlZOkmr0fWGtzeirphAwHYwWzrv7YlnRJfbuKHpREREeWrubkZa9eujblO0zRs2rQJS5YswWuvvQYA6N+/P2677Tb3GCeo7Nu3L84///ysHmvChAmYPHkyVq1aheeeew5/+MMfUFeXuEPB6/XGrCkcDsPr9WLdunV455138NJLL7lb6L/+9a9j+fLlGDZsWMbHjz6nEAJerxcNDQ1YuXIlli5diqamJgD2Vvw//elPOOecc7J6XsXAoJOIiCpScHtrySqceiWpoHuDdo9OI257rerq3Wdk+DvxfbkLwDE9t848KKlgeEPo3LLb7eNYzMeuptdxdBgnutNTUin378UJ06KD0+jekDI+AEw3jEg3UNPP/udv25r6/NfXXXEhr4hUHaYKvZUlShZ0OqFs4KtWDDt4HACgY+0OWH4tprdvuWJFJxERFcqCBQuwYMGCtMfsueeeePLJJ3H44YcDAHbs2IG3334bAHDaaadhxIgRWT/ed77zHaxatQodHR146aWX8O1vfzvhmBdffBEvvvhi2vMMHToUV111FW677TYMHDgwq8d21p+Kx+PB6aefjt///vcZjy02Bp1ERFSRwk2+jBVjVDhKKmjNnQDQNaAo+nYhgT61bmCTSlkOkFJ2oNZ/z6Hpqwx7gNBNmOX4PSmAjAFTpu91pG+lE3SaURWd0fdNqOhMs3Xd0gz0sXeBlaQfq7uWJD06gdQ/H8JI/JkrGrdXagcG7m3389Ja/Gl7ipaTTO9JRERE3VFXV4eRI0fi0EMPxfTp0zF37tyYMPPJJ5+EjPQETxZUpvPtb38bN954IwC7KjTT/T0eD4YMGYKhQ4di7733xtFHH40TTjgBM2fOxKBBg3J8Zl369++PYcOGYeTIkTj88MMxefJkXHDBBe6E+XLDoJOIiCqSkqpkU4h7IyVlV9AZX9EJQJp2RafMEMgoIe1j+9amPa6YlLKrVaWQmcO3AjM7w1AVEBblxv4eZgwSM3yrlVKQhgXLqehMEQIqK37revLKR6cXqjSFO1SrZBKSzkjQmeI9LdnPXLHY/VIlRNhEcEcrRhw6HoY3CBE2SjbMKRdWSIdSyu1zRkTU24ydUx19wEtl2rRp3fog/KabbsJNN92U130POOCApI+933779ciH807laaXjMCIiIqpISsqqGeBSCZRUCDfbPVGTVXQa3mBWW0SVUknvX1JKQW/1w+gIFr2iU2/zF/XxisEJHrtbMamkgtBMt2pQa0n+vUrY0p1q63rkOGkKGN4QQrs6urW+bokfRhT52Un5PSvy6zL2oRVCjV4IzURoZzuUkBBhA5Zmlq5vaA5E2GRVJxERUS/CoJOIiCpSqoEj1EOksqewA0m3q2qt/uzCBKXKbrurUnYI5tu4q+jhudZWoqnfPUialt0Ps7vbrSNTyJ3wWUsxfEyK2NdTxvcGpdD+aX1pt66nGEaUaup6SUmFwLZmSMNEqMkLYViQpohUdJb/+7AZCDPoJCIi6kUYdBIRUUWqhEqiaiJ0E+FGL4DkA1NEyMguOFJdFaHFrp5MxdnCbLQXv6LT6CjN1O+eJDSz+yEnIhWdugkou+Ix1bbubHt0Ruvc1NTt9XVLXGWzf1szgOQfIpSaUgrh3T4I3YIIGTA6gu4HG5XwPqyX4OeaiIiISoc9OomIqDJVQG+4auLf2uyGGlpr4hZiKWTW041L2W8wmZhwqYh5iDRFeVbwdZMVMgrzvJSC0Cx3+nrKw+J6dGazzVsrccsApZyfAw+UEPCua7CvF+UXyCkhYfp1N5ht+7TerpD0ADV9y/9XCaMjWBGVp0RERFQYrOgkIqKKxF9ciyvc5HUvW34t4XY7DAlndS5pCjsULZMqKxk1lKaYlV9W2EgM6aqANKyCbAu3t7+bgFIwfKkrXxMqOrN4b0j2Gi6qSEWntAS8G3a5VcVlOdxHKlhB3X2t+tbvsq9XKEjlbk+zQjr7ORMREfUiDDqJiKgy8ffWsqJE11T2TKRh2f0Wy+TvMGbqeREDERHSK2Lrbz5SbTPPibKHESmlYHSkqeiM+x6W4/bveCrSq1aZAv4tu7uuL8PXg1IqpsdlQf5ui4xb14mIiHoPBp1ERFSRZBkGAr2ZEhJ6e3aDdaRpIRTp91kOooOxolZ0VnXQ2f3hL+5AI6mgd6R+bcW/F6gKCDoh7aBTGBYCX7XGXF9ulFQxf59Cq8DBPmX4fSUiIqKewaCTiIgqkplkIA6VjpLSnRydiTQFQg3tZVF5p6SMDRuLGnQaEEb19egE7GrV7nKrHpVCaEdb6gOlitmuHt2KoFwpISFNC+Emb9lPBDe8wdgt6hWYGbKik4iIqPdg0ElERBXF8IVgBrS0w0mo+JSQWW9plaaF0K7yCDrj11DMPESEjbIbzFQoZrAAPTClvXUdSiG4qyPtodFhdSUEnVJIN/Av96peraW0g5sKIb5vq1KK4ScREVGVKv9RiURERFFCDe2oHVAHw8egs5woobKu6LRCBsLNnWURNCSErUWu6KyEYS75CO1s7/Y5tDY/tBa772um7ehKSKBvrX25AgY8KSEBBQQb2su+DYeqgOA4o7ifa6GZUKZA36EDSrQgIiIi6ims6CQioooiTWFP+O7MbsI3FYcSkUnqWQjuaCubnnkJFZ1FXJcV1iGqNOiM6TuZp/ZPv8r62Eqr6HTWG2roqIhgttLF/1wLzeSHZURERFWKFZ1ERFRRpClghYyy3+7Z21hBI+vw0qnSy1Q9qaSCp8aT8XxCN1Hbr29Wjx0voQq1SBWdQjcjW9erM+jMtro3HaMjmPWxTlWkErJsQvR0nIrOcu/PWTWkguELQUn79aGUgtCrsz8uERFRb8eKTiIiqijStLLuBUnFY/qzr7DNthpXyezC7O6ERfHrLlZFpxXSq3rrerEpYVdxVkI1J+AMI6qMtVYDpRQ6NzXBCuoI7mwHJIrbkJeIiIiKhkEnERFVFGkKiBCroMpNttvWAXvbaFayDB2tbrwetv99dczXSsiiVAtbQQNWSGdlcoE438dKCQ+lJWGF+YFNsSipEKhvARTQtqYeQjeZcxIREVUpBp1ERFRRpCkYEJShvCoTM21dzyKJUEJ2a5t0/H1F2Mi6krQ7hGawR2ABOX0uK2U7shIChpd//0WjFKyQjvZPv4J/627o7QFWdBIREVUpBp1ERFRR7K3rrOgsN93dgp3s/tlsIxe66Q70ybU6UkmVMAhGaGbRtq8bHQy6CsV5Dchsq4VLTAkJK6CVehm9hpIKWqsfLas2Q1kS4WYfwJyTiIioKjHoJCKiimIPI2JFZ7mReUyOji6oCjf7kpw0cxJheEOAUnZwlGOvTpWin2PRJq+zoqxgnMFFQq+MnqfKkllVLFNh+Lfsht7qj512z+8/ERFRVWLQSUREFUWxR2dZcobB5Etr7kw8ZxZbyA1fCEpICN3MuT9jqsE17JtZefT2AIDK2bouhWTQXURt/9oW83W4ycvvPxERUZVi0ElERBVFClkxVVu9Sl6ZQdedkvXZzGaCtuENItzktbeh5xh0pqzcLFZFJxWMHqnolBUSdCohmbMVUfwANKFxGBEREVG16lPqBRAREeVEKkijMsIMyiAqaEg2iT2bCk3DG7Krs5BdMJrVsoowjIgKy3ArOivjQxDFis6Skqbg95+IiKhKsaKTiIgqhhU2ItuUKyPMoOwJw4Tpjx3O4vTdlKb99236wwn3s4IatDY/pGHlvHU9VRVqMXp05rxWSkv32hWdRuS/5U4J6fYVpRJQikEnERFl5e2334bH40n5Z/DgwZg4cSIuu+wyvPnmmynPU19fn/Y8yf5861vfSnm+nTt34tZbb8XJJ5+MPffcE3379sWAAQMwfvx4nHLKKbjuuuuwdOlS+HxdffCnTZuW8xri/yxevLiA392ewYpOIiKqGFZQg5Ky2xO+qfxIw4LhDaLvkP7udUoqWEEdtf36oqZvH+gdQfQdMiDmflbYhOXXYIX0PCo6kwcdRQk6+RouKMuvQRoWtLZAqZeSFSUkwkn60lLxMOckot7i4pebS72EHvPcuaNLvQQEg0Fs2rQJmzZtwpNPPonZs2dj0aJFqK2t7bHHfPjhh/HTn/4UoVAo5nrLstDQ0ICGhga89957eOCBB3DxxRfj2Wef7bG1lCMGnUREVDFMvwYlFIfFVItI0iAtAaFZEPHhn1QIN3kxYOxw9FH90PT2Ohw4+5SYQ0TYgDQFzIAGDzw5Pbzvy8bkyyrC64tBZ2FJU0DoFqyAlvngMqC3ByHCHKpWUkw6iYgoR9dccw1++MMful8rpdDe3o6VK1fivvvuQ3NzM5YsWYIJEybgjjvuSHmeCy64IO3tjqFDhyZc98wzz2DevHkAgP79+2Pu3Lk4++yzMX78eCilsGvXLqxevRrLly/HmjVrYu772GOPIRhMvqPkl7/8JV588UUAwOuvv45x48YlPW78+PEZ111qDDqJiKhimH6N/ROriIIdKkrDsv9e44IHJSQ6NzWi38jB8G3YhfBuX8I5rEhYZAU01Pary3EByYOOQvX6TCch1KVuE4ZZMQFyaFd7qZdADDqJiChHo0ePxmGHHZZw/dSpU3H++efjmGOOgaZpeOCBB3DLLbegri75v02HDx+e9DyZCCHwX//1XwCAIUOG4P3338cRRxyRcNz555+P2267DevXr8cXX3zhXr///vunPPfw4cPdyxMnTsR+++2X8/rKBXt0EhFRxTD94aRDa6hCqUgfzqAeGc4Sd7OU6NzUBKGZ6Ph8e9JKS+f1YAUNKJHj1PUUQYcqQtBZKdPBK4nUk1QFlym9vTK22Fcz5pxERFRIhxxyCM4991wAgN/vx4YNGwr+GB999BGampoAAD/4wQ+ShpzRJk2ahFmzZhV8HeWOQScREVUMszOMcHNiVR9VKKWgpES4yQslZELwGGr0wvCG7EFFAS1p0OlU8AndTDVbKM3jJ7+6GIOCrDCDzkITulk5Q54YspUek04iIiqw6IpJXdcLfv7t27e7lw888MCCn79aMOgkIqKKEdrVAcmJ61VDSQUlFMK7fXZAFRc8dG62P7EWYbOr6jOOE3RK3co9PEpV0VmEHp1CY3/GQpOGBWny/YGyk6qim4iIKF9fffWVe3mfffYp+Pmjt8KvX7++4OevFgw6iYioIlghHWZnuNTLoAISugklJIzOMPQ2f0JQ6QyWMf1hWMHEik4lpHudMEzkmnSmyjmKMoyIgX3BCd2CNCqkopNKjzknEREV0IYNG7B8+XIAwPHHH4+99tqr4I9x1FFHuZf/8pe/4M033yz4Y1QDDiMiIqKKYHhDkDn2YKTyprV0os+gftBb/fagqbjk0em/afrCsEKJFZDR/RiTVXQqpeDxpJnEnqqiU/Z8AiJYeVhwImwUpb8qVQlWdBIRUY6am5uxdu1a92ulFLxerzt1PRwOY9iwYbjvvvvSnsfr9cacJ5X9998fgwYNivl6xowZWL58OTRNw+mnn47JkyfjnHPOwfHHH4/Jkydj1KhR+T/BKsGgk4iIKoIV1KEsTlyvJsGvWhFq6IAZqdyMDx6cfovhFl/abetA8inmVkBH3yH9Uz6+M7E9XjGCTlZ0Fh7791IuuHWdiIhytWDBAixYsCDpbTU1Nbj66qtx/fXXY+LEiWnP8+KLL+LFF1/M+HhvvfUWpk2bFnPdY489hunTp+Pjjz8GAHz88cfuZcCemH7WWWdh7ty5OProozM+RjXi1nUiIqoIQjMhWa1VVcLNPrSs2py0r6ISsivo3OWNud4hYyo6zYTgwugMpX18kaRKFLCnvfc09pIsvPCujlIvgSoJc04iIiogKSWeffZZLFiwoEcGETlGjRqFFStWYOHChUmDzI0bN+KPf/wjjjnmGFx22WUIBoM9tpZyxaCTiIhKrvnDTRmDH6EbrOisMsHtbYBUbl/F6EpK7/oGiEjFpRXq+seijAo6rWDX9ckqOvW2QFe1aBJmMMVtxajoZC/JgtO9ve8f8pS/EINxIiLK0a9//WsopWL+hEIhfP7555g/fz4CgQDuv/9+nHHGGQiFUn/gfvnllyecJ9mf+GpOR9++fXHVVVfhk08+QUNDA5599ln87Gc/w8knn4y+ffu6xz355JM4//zzIXpZ+y8GnUREVFKhRi92vvIpRIatvCLMis5q5VZmRuWLQjeTHhtd0WlEDadKthVcb+2E1tKZ8nGjA9SYxyhCRac9PIkKSYT5PaXsef+9syg/60REVN0GDBiAww8/HPfccw8eeughAMD777+Pu+66qyiPP27cOFx88cW499578e6776KpqQk33XQTamrsuO/NN9/EM888U5S1lIuyDTp1Xcfu3bsh+Q8QIqKqtvvd9VCWiNmGHE/opj2YpgiVdlR8TngZvfU8VQ/L6KDTjNqaLnQzJiiVlkCwoQOmL/Wn6akfo+tE0VWjheQMWqLCSfceQhTPCukIN7GvKxERFc4VV1yBkSNHAgAWLVpUkjWMHDkSd911F2688Ub3uhdeeKEkaymVogedgUAAr7zyCl555RUEAoGE21tbW/Htb38bQ4cOxbhx4zBixAjccMMNPdrjgIiISsfZPpwupNBa/LC05P0UqYpEBZ2pKh6jp2rHVHQaFqKTzuCONoSbvG6fz6TnSvFhavT1gR2tGZedK2lYHEZEVAb0tsTfRYiIiPJVU1ODgw46CADQ2NiItra2kq3lqquuci9v3ry5ZOsohaJPXV+2bBnmzp2L8ePHo76+PuY2KSXOOecc/Otf/3KrOvx+P+6//37U19dj2bJlxV4uERH1IKWUW9kmdAvSFKjpWwslJDy1Ne4xemun26+RqlgWFZ3RPToNb1e1pjSFe3fTryHU0AHDG0oIOpVS8Hg89uUUFcLR14d2tmP4wXvn9jwySDXtnYiKS+9g0ElERIVlWVbSy8U2btw497Lzb9/eougVna+//joAYObMmW7PAMdzzz2HTz75BABw9NFH4/rrr8fRRx8NpRT+9re/4bXXXiv2comIqAcpS7rb0aVhuv0Urahp2MoUCLd0xoRaVJ2iY8dUPVujB1LF999UloThDaJj7Q6Y/jCgVEJf1+it71CZg04zoBV8S3SqgJWIiktvZ9BJRESFEwqFsG7dOgB2785Ro0YV9Pwqxb9dk1m9erV7+YADDijoOspd0YPOtWvXwuPx4IQTTki4bcmSJQCAY445Bh9++CF+97vfYeXKlTjuuOMAAI8//nhR10pERD1LWsINt7S2gDscRlqWO4xGWgJacye0Vn+JVklFEwkmlVKphxFFgkslJPS22NeENC20ramH2Rlyp607FZ3OdnQnKFVSpQ4co7auC82E4Q3Z0y8ZUBJVFQadRERUSLfeeivCYbu10tlnn43a2tqCnv/VV1/FrFmzsGbNmrTHtbe34yc/+Yn79QUXXFDQdZS7om9db25uBgDsv//+Mdebpol3330XHo8H1157Lfr0sZfWt29fXH311Vi1ahVWrVpV7OUSEVEPiu63qLcFUDdsoH29VBBhA7X9+kKaAlZQhxUJrqh6SVPAt74BQw7YK+UQIeeD7NCujpjqTgDQ2/z27VK6Q4Sc15jW4seAvYa5FZ1mZyj11nUVO4yo/bOvMPqEiZCmhbrhg7rzFImojBgdwVIvgYiIKkhzczPWrl0bc52madi0aROWLFni7kLu378/brvttpTn8Xq9CedJpra2FpMmTXK/llLihRdewAsvvIAjjzwS5557LiZPnoyxY8eirq4Ozc3NeP/997Fw4UI3ezvmmGNw+eWX5/N0K1bRg8729nYAQF1dXcz1H3/8McLhMDweD/7jP/4j5raJEycCAJqamoqzSCIiKgppSTe5MjqCMdV6lm6HStJMP5Gdqod3XQOGHjQGZkCD4QunOCrSw7u+JeEWrcWPumEDYQY1t6erU9Fp+sPoM7CfW9kpdAtmZ4rHiOSnSilYQR1tn9ZjxOETYIUMBp1EVcTw2h94eGp6V+8yIiLKz4IFC7BgwYK0x+y555548skncfjhh6c85sUXX8SLL76Y8fGGDRsGr9frfj1ixAgMGjQIwWAQn332GT777LO09z/zzDPxzDPPuIWEvUXRn+3AgQPh9/vddNnx7rvvAgAOPPBA7LXXXjG3DRgwoGjrIyKi4lGWcIfO6N6g209R6hZEJNyUpnAHFlF1Czd5MWT/PWEFNBidKXqyKkDoJsJN3oSbDF8IfQbWwfRr7mtGmgJmQIOyJLQWH/pGqobNznDKAN2p6BSaCSuk28dGKouJqHooIWH4Qug3gh9gEBFRfurq6jBy5EgceuihmD59OubOnYsRI0b0yGOdeOKJaGlpwT//+U+8/fbb+OSTT7Bp0ya0tbVBCIGhQ4div/32w+TJk3HJJZdg2rRpPbKOclf0oPNrX/saPv30U7z99ts466yz3Ov/+te/wuPx4JRTTkm4T0uLXbUxevTooq2TiIh6nrSk25fT6Ai61XdWSIc0ItWdluCU6l7CChuQpkC4uRMqblp6NK25063YjLl/ULeDzUgwCdg9Xo0OO0TXO4Ko7V8HJWX63nyRoNMK6u7jKKkgjEIF7uz1SVQujPYAg04iqmrPncscpTumTZuW0xCgVPbbb7+CnGfAgAE477zzcN5553X7XNEWL16MxYsXF/ScpVL0YURnnnkmlFJ46KGH8OqrryIQCODBBx/Exx9/DABJ/7I+//xzAMC4ceOKulYiIupZVlBzh86IsOH2XJSGBWna1XZCN1MOpqHqokwBaQp0bmpMfYxS0NsDSasx7deNiLyWhHtOrc0PaVowA2EI3bSruLxpevMpe9q6E5wCgOENpuwbSkSVy/SnapNBRERElajoFZ3XXXcd/vznP8Pv92PGjBkxt02aNClp0Pnyyy/D4/HgqKOOKtYyiYioCMKN3pjiNndCdtR1ZmcY4LTrXkNr7kTn1t1pj7FChtvaIJ4TkLtfWwJaSyf6DOgHSAWhmZCWvV01FaUUQg3t7uAiAPBv2Q0rxMpiomojdPaAJiIiqiZFr+gcO3YsXnrpJYwZMwZKKffPAQccgKVLl8LjiW0GvmXLFrz33nsAgDPOOKPYyyUioh4UiuuzKK3Y7cpWSE/dq5Gqkm9TY9pt61CA0Ay3t2s8p+VB19cW9BY/rJAOpSKVw0LC8KZ5XSmF8G5fTMuE8G4fQo0dOT0XIip/3DFARERUXUoyeunkk0/Gtm3bsGLFCjQ1NWHs2LE46aSTkk6CamxsxK9+9SsAiOnpSURElU9v9cd8LeMCLt+GXRxE1NtkrN5V7pCgpHePq+g0fCEoBdQOrENtv76wQkbGretK2SF7nwF1XdcJmTJcJaLKxaCTiIioupRsxnxdXR1OPfXUjMeddNJJOOmkk4qwIiIiKjYtLuiMDzW963aiz+D+xVwSlTvlTENPvo08Piw3vCE34Kzt1xdWUIOyBIzONH35lB2mqqjQVUmVUHFMRJWPH2AQERFVl6JvXSciInLEB5v+SG9GJSSkYaFz826IMKttqItSyq7ASjG1Mj7oVEJC6BZE2IDQTIR2dUAKmbZy1L5PfNApY4JOYVgxt+f0HKJ6fxJRacVXgRMREVFlY9BJREQlkSys0lv90NsDUEIg3NwJaVgIx/XxJEq31TRZ1aXQTYiwgcBXrZCmyBg0KqkiQWfXcUooQCr3OqmZiJmklQNlMegkKhfxH44QERFRZSvZ1nUA+Oyzz/Dee+9h69at8Pv9ECL9PzQ8Hg8effTRIq2OiIh6UqpJt74vG+HxAFqzDwCgtXQWc1lU7lRiJXCMJFWWUjdhabUQIQO1/frATLdtHfbAIqnFBvHCsB9TSQVPjf11H9Uvr6dgBZP3FyWi4mPQSUREVF1KEnR++eWX+P73v48PP/ww6/sopRh0EhFVEZmiKs+3cReGHjgG4d2+Iq+IKoJSKV87qUhTwAoaUJaAtAT0tkDa482gBqHHbk0XzgT2SPiZKqjPhulPH7QSUfGw9y4REVF1KXrQ2dDQgFNOOQWtra1QkV8WBg8ejBEjRqCmhjvpiYh6C2kkD4r8W5sxaPwerHqjpISeehBROk44qoREKEM7BCuoI9zkRcNrXcc5282dIs/wrg4M2GsYPDmuQ2gmTL+W472IqKcoVnQSERFVlaIHnXfeeSdaWlrg8Xhw5ZVX4mc/+xkmTpxY7GUQEVGJpaqiUaZA56amIq+GKoXhDXUrBFdCIvhVa9pj0p4/knR2rN2BkUftl/PjG74QKzqJygi3rhMREVWXogedr732GjweD2bPno2FCxcW++GJiKgM+Lc1Y/vfP0l5e3BHWxFXQ5Uk3OTt1tRyaQqY/vRb191t6slEgk7/1ua8ZhFZIR2GN5T7HYmoR3DrOhERUXUpetC5a9cuAMDs2bOL/dBERFQGzM4wtj77Aax023dVftOsqfoFd3V06/5CMzMGlDJNkKqUvX3eDltzf50qIdl/lqiMsKKTiIiouhS9KeaIESMAAMOHDy/2QxMRURnY/tIn6UNOojS0boaE0sxiiFCSye0upbp6hOaRxyshobX5c78jEfUIxYpOIiKiqlL0oPPYY48FAGzcuLHYD01ERGVAb0+/bZgone5sW7dP0M27S+Vubc/nVEqq9EEqERWV4g4CIiKiqlL0oPMnP/kJlFLsz0lE1EsJzSz1Eojyp6J6eOYRkHQ7qCWigmPYSUREVD2KHnSeeeaZ+PnPf4633noL11xzDUyTv/ASEfUmJretUyVTKm0Pz0w4+ISozChA6lm0tCAiIqKKUPRhREuWLMGkSZNwwgknYOHChXjppZfwne98BwcffDAGDhyY8f6FGmLU3NyMVatWYdWqVfj444/x8ccfo63NnvJ7+eWXY/HixRnPsXjxYsydOzerx3vssccwZ86ctMeEQiH88Y9/xAsvvIAtW7ZA13VMmDAB5557Ln7yk59g3333zeqxiIjKlRXS2Q+NKppSqlvDspTFik6icmKFDFZ0EhERVZGiB51z5syBx+Nxv25sbMSDDz6Y1X09Hk/Bgs699tqrIOcplM2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjBKtkIio+wxfqNRLIOo25fTYzCMbkQYrx4jKCT98IyIiqi5FDzqB8uuDs88+++Dggw/GG2+8kfc5Xn/9dYwbNy7l7ePHj095m9/vx7nnnuuGnFdddRUuueQSDBgwAG+99Rb++7//G52dnbj44ouxYsUKfOMb38h7nUREpWT6wqVeAlH3xFR05v7vGcGgk6j8lNnvJkRERJS/oged27ZtK/ZDJnXLLbdg8uTJmDx5Mvbaay/U19dj//33z/t8EydOxH777ZfXfe+99153Cv0999yD+fPnu7dNmTIF06ZNw9SpUxEKhfDTn/4Ub7/9dt7rJCIqJaOTFZ1U2ZRSbkVnPtmIFWCPWiIiIqJK8fbbb+PUU09NefugQYMwbtw4fPOb38TcuXNx2mmnJT0un8zpggsuwN/+9reY62699Vb85je/STi2rq4Ow4YNw7Bhw3DQQQfh2GOPxRlnnIFTTjkl4+OkWpvH48HQoUMxbNgwjB07FscccwyOP/54zJw5E4MHD87puRRT0YPOcukzmeyFUQqmaeKBBx4AAEyaNAk33HBDwjEnnHACrrjiCvzlL3/BO++8g48//hiTJ08u9lKJiLqNFZ1U8VT01vXck85wk7ew6yEiIiJKw/PYz0q9hB6j5v621EtAMBjEpk2bsGnTJjz55JOYPXs2Fi1ahNra2qKuwzAMtLS0oKWlBZs3b8arr76K22+/HZMmTcJvfvMbXHTRRTmfUykFn88Hn8+H7du346OPPsJDDz2EIUOG4Morr8Ttt9+OQYMG9cCz6Z6SbF2nLm+99RZ8Ph8AewhSTU1N0uPmzJmDv/zlLwCAv/71rww6iagiGb5gqZdA1C3SFF0BZx4VneEmX2EXRERERERFcc011+CHP/yh+7VSCu3t7Vi5ciXuu+8+NDc3Y8mSJZgwYQLuuOOOlOe54IIL0t7uGDp0aNrbFy1a5GZDTijZ0tKC1atXY/ny5fj888+xfv16zJo1C1dccQUWLlyYMnNKtbZQKASv14t169bhnXfewfLly+H3+3Hffffh5ZdfxvLly3HQQQdlfC7FxKCzxN5//3338tSpU1Med+yxx2LgwIEIhUJYsWJFMZZGRFRwWqu/1Esg6hat1e/2Gs+157jZGYYV0ntiWURERETUw0aPHo3DDjss4fqpU6fi/PPPxzHHHANN0/DAAw/glltuQV1dXdLzDB8+POl5crX//vsnPc/MmTNx55134qWXXsL3v/99tLa24tFHH8XIkSNxzz33pD1nqrWdddZZ+OlPf4rt27fjyiuvxD/+8Q9s3LgRM2bMwIcffogRI0Z0+/kUSvoot4cJIbBs2TJcc801OPnkk3HooYfi0EMPxcknn4xrrrkGy5YtgxCVMQlx7ty5GDduHOrq6jBq1Cgcf/zx+OUvf4mGhoa091u3bp17+eCDD055XJ8+fXDggQcCANavX1+YRRMRFZGSCnoHKzqpsumtfiDPqevh3d6Cr4eIiIiISu+QQw7BueeeC8AeOL1hw4YSrwg477zz8MEHH2DIkCEA7Pkw//rXv7p1zn322Qevvvqq+1w3btyIW2+9tbtLLaiSBZ2vvfYa9t9/f8yaNQsLFy7EBx98gPXr12P9+vX44IMPsHDhQsyaNQsHHHAAXn/99VItM2tvv/02GhsbYZom2tra8NFHH+HOO+/EgQce6G45T2bnzp0A7Aa2w4cPT/sYEyZMAAC0tLRA13OrCNm5c2faP42NjTmdj4goV9K0oMzK+PCKKBXDF4qq5Mwt6dRaA4VfEBERERGVheiBPrlmNj3loIMOwt133+1+HX05X7W1tVi8eDEGDhwIAHj44YfR2tra7fMWSkm2rj/xxBOYO3euPbk08svCfvvthzFjxgAAmpqa8NVXX0EphR07duDcc8/F448/jksvvbQUy03rgAMOwIUXXogpU6a4QeTWrVuxbNkyLF26FJqm4eqrr4bH48G8efMS7u/329s4s5lYFd3kNRAIoF+/flmv01kbEVGpSFPkvNWXqNyY/jAghwPIfRaR3sGgk6gs8X9NRERUAF999ZV7eZ999inhSmLNmTMHN998M7xeL15++WWYpom+fft265yjRo3Cf/7nf2LhwoUIh8N444038L3vfa9AK+6eold0fvXVV5g3bx6klBg4cCDuuOMONDU1YevWrfjggw/wwQcfYOvWrWhqasKdd96JwYMHQ0qJq666Ctu3by/2ctOaOXMmNm/ejHvvvRcXXnghJk+ejMmTJ+Piiy/G888/j7///e/ui+f6669HU1NTwjk0TQOAlL0bokUHm+EwJxcTUeUQuglpWF1bfokqlBnQoLVFAssck06jnUEnERERUTXasGEDli9fDgA4/vjjsddee5V4RV0GDhyIE044AYA9XKi729cdZ5xxhnv5vffeK8g5C6HoFZ1/+MMfoOs6Bg8ejHfffRff+MY3kh6355574qabbsL06dNx8sknIxgM4g9/+AN+97vfFXfBaQwbNizt7TNmzMAtt9yCX/3qVwiFQnj00Udx8803xxzTv39/AIBhGBkfL7r0ecCAATmtdceOHWlvb2xsxHHHHZfTOYmIsmWFDFZ0UlUwvCGE6zryuq/OoJOIiIioYjU3N2Pt2rXu10opeL1ed+p6OBzGsGHDcN9996U9j9frjTlPKvvvv3/Mzt7uOProo/HKK68AsPtqfvOb3yzIOR0bN27s9vkKpehB5xtvvAGPx4P58+enDDmjHXnkkfjZz36GW2+9Fa+//npZBZ3ZmDdvHm655RYopfDOO+8kBJ1OU9hAIPMvP8Fg1xCPbLa6Rxs/fnxOxxMRFZII6Xa7ElZ0UoUzfSH0GRDZhZFDcG8FdYR3d/bQqoioO/ghHBERZWPBggVYsGBB0ttqampw9dVX4/rrr8fEiRPTnufFF1/Eiy++mPHx3nrrLUybNi2fpSbYY4893MsdHfl9aF+McxZC0beuO9vPo0tcMznzzDNj7ltJRo8e7f7lJ5vA7gSQwWAQXq837bmcqsw999wzp/6cRESlZoUMSEPk3tSQqAyZnXb7mFxezsIw+fonIiIiqlJSSjz77LNYsGBB2QwiihZdLOfMiinHcxZC0YNOIeyJu7W1tVnfp08fu/BUStkja+ppHo8n5W2HHHKIe3nDhg0pj7MsC1u2bAEATJo0qXCLIyIqAiukwwrpHPhAVcEKO/94zf4FLQ3RM4shIiIioqL49a9/7Q7Vdv6EQiF8/vnnmD9/PgKBAO6//36cccYZCIVCKc9z+eWXJ5wn2Z9CVXMCsUHk0KFDy/achVD0oHPvvfcGAHzwwQdZ38c5dty4cT2ypp7U0tKC1tZWAMnXf9JJJ7mX33nnnZTnWb16tbt1/cQTTyzwKomIeo6SEkIzEd7tK/VSiApDxf03C9KwemQpRERERFQ6AwYMwOGHH4577rkHDz30EADg/fffx1133VXilcVycikAGDlyZNmesxCKHnSeeuqpUErh7rvvxq5duzIev2vXLtx9993weDw47bTTirDCwlq4cKHb92fq1KkJt0+bNs0davT444+n7BG0ePFi9/LMmTMLv1Aioh4iLQlpWtAYdFK1yWErumDQSURERFTVrrjiCjfwW7RoUYlXE2vNmjXu5a9//etle85CKHrQ+eMf/xg1NTVoaWnBN7/5TSxdutTdzh5NSomlS5diypQp2L17N2pqavCjH/2o2MtNqb6+PuYvNZnly5fjtttuA2Cn/HPnzk04pq6uDj/5yU8AAOvXr8dvf/vbhGNWrlyJRx99FIAdlk6ePLm7yyciKhplCSihoHcEMx9MVEGklX1LHVZ0EhEREVW3mpoaHHTQQQCAxsZGtLW1lXhFtlAo5O6UHjx4cFaDwbPxj3/8w70cvVu51Io+df2www7D7bffjptvvhm7du3CxRdfjOHDh+Poo4/G6NGj4fF4sHv3bvzrX/+C1+t1Kxxvv/12HHbYYQVbx/vvv4/Nmze7X0eX3G7evDmmghIA5syZE/N1fX09Tj31VEyZMgXnnXcejjzySIwePRoAsHXrVixduhRLly511//b3/7W3bYfb/78+XjuueewceNG3Hjjjdi8eTMuueQSDBgwAG+99RbuuusuWJaFAQMG4P777+/+kyciKiJpCigpYfhS96khqkTSyr7vJoNOIiIioupnWVbSy6X02GOPweezd9fNmDHDnYPTHS0tLXj66acBAIMGDcJZZ53V7XMWStGDTgC46aabMGzYMNx4440IhULo6OjAm2++GXOMExAOHDgQ9957L6655pqCruGRRx7B448/nvS2FStWYMWKFTHXxQedjpUrV2LlypUpH2fgwIG47777MG/evJTHDBkyBC+//DKmT5+OTZs2YeHChVi4cGHMMUOHDsVTTz1VsOSdiKhYTL8GaQpYQa3USyEqKGUy6CSqChyUR0REBRAKhbBu3ToA9q7eUaNGlXhFwKZNm3DTTTe5X//iF7/o9jmllJgzZ447cGnevHll1aOzJEEnAPzwhz/ErFmz8Nhjj+Gf//wn1q5di/b2dgB2E9PDDjsMZ5xxBubOnVsWL454xxxzDJ588kmsXLkSq1evRmNjI1pbW2FZFkaMGIFDDz0Up59+Oq688kq30jOdAw88EGvWrMGf/vQnvPDCC9i8eTMMw8CECRMwffp0XHfdddh3332L8MyIiArL6AjA6AjyF0mqOtLMPrxkj04iIiKi6nbrrbciHA4DAM4++2zU1taWdD3Lly/H3Llz3enoN910E4488shunXP79u248sor3W3rBx98MH796193e62FVLKgEwBGjRqF+fPnY/78+UV/7MWLFydsT8/FkCFDcOmll+LSSy8t2JoGDRqEG2+8ETfeeGPBzklEVGqGLwy9I1DqZRAVnExT0amkRGhXBwaN3yNyLINOIiIiokrW3NyMtWvXxlynaRo2bdqEJUuW4LXXXgMA9O/f353XkozX6004TzK1tbWYNGlSytu3bdvmFgYqpdDZ2YmWlhasXr0aL730Ej7//HP32Hnz5uHOO+/M+JjxawuHw/B6vfj/7N15fFvllT/+z3Pv1erdcfaFJJAACSmQAKUshZmyFFqglBnaoZSllNJ2vp3CTJfh1w6kdBm6AQOdZtpSWiBtoawpaSn7koQkJCFkIZsdx/siL9qluz+/P64tWbYkS7ZW+7xfr7wiS/c+97FsS7rnnuecAwcO4K233sILL7wQW5J/4oknYuPGjbEG26WiqIFOQgghU58WkqEMUiMiMvWkC3QGjvRAj6qxQCfPonERIaTQaMkBIYSQ8a1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NDXw+X8rHv/CFL4w7xooVK/D9738fn/70p8fdNtO5VVdX49Zbb8U999wDt9ud0biFRIFOQggheaWHZOghqs9Jpp50WZr+w11wzY5f3aYanYQQQgghU4/dbkd9fT1WrlyJyy+/HDfffDPq6uoKPg+bzYbq6mrU1NTgxBNPxBlnnIFLLrlkUt3QGWOoqqpCdXU15s+fj9WrV+Occ87B1VdfjYqKihzOPrco0EkIISSvNApykikqXUanHlZidTlNzaAanYQQQggpCn7zz4o9hbJ24YUXxpplT8bixYtzMs7atWuxdu3aSY8zUq7mViryFuhcunQpACsCfPTo0TH3T8TosQghhJQ+LRgt9hQIyQsjqqV8TI+qMBTrcUPRaOk6ISXM1FNftCCEEEJIeclboLOlpQWAFZxMdv9EjB6LEEJIaeMmh9wfLPY0CMmLSLc35WN6VIWpWsETU9EokEJICYv2+OGoqyz2NAghhBCSA3kLdN54441Z3U8IIWTqUX1h8DTLewkpZ5HOQQBWNpggiQmPGREFpjqU0SlrUH2Rgs+PEJKZaLcXtSfPL/Y0CCGEEJIDeQt0/u53v8vqfkIIIVMPNWAhU5nqi0ALyejb1oh5FyV21hzO6OScI9oXQLitv0izJISMRwspxZ4CIYQQQnKEmhERQgghhExQ+192QQsnBkm4YcJUdBiqDm6YiPb4ijM5QkhG6KIcIYQQMnUIhT5gW1sb2traYBiZL2U0DCO2HyGEEEJIqfDubwcfVX9Tj1iBTzMW6PQXY2qEkAwZiga5L1DsaRBCCCEkBwoe6Fy8eDGWLl2Kw4cPZ7xPS0tLbD9CCCGEkFJiGokd1YeXwcYCnb0U6CSklGmBKMIdA8WeBiGEEEJyoOCBTgDgnBd0P0IIIcWhR9ViT4GQvBvdcMu731qBYqg6tKAMzU+NiAgpZVFPAHqE3q8IIYSQqaAogc5sDQc4BaEspksIIWRItNtX7CkQknfmqKXr4XYrM8xUdcoSI6QMcN2AIWvFngYhhBBCcqAsIofd3d0AgKqqqiLPhBBCSCZMzWrsQDXPyHTAh5auc5NDjyiIdAwCsAKd1IiIkNLHDROGTBmdhBBCyFRQtEAnY2zcbTRNw6FDh/DDH/4QAHDiiSfme1qEEEImiZs8VpPQoE62ZBowNQOcc5iqhpZn3o1lhhmqDn1UR3ZCSGkyopTRSQghhEwFUr4PIIrimPs45zjllFOyGocxhn/6p3/K1bQIIYTkGDc5mMCgBSLQAlEAVgCIkKmOGya4bqJvRzP8Bzvj92sGBToJKRO0dJ0QQgiZGvIe6EzVQCjbxkLXXnstbr/99hzMiBBCSD7oIRm2aheCzR5wc2gpLwU6yTRg6ga4YSDa5R3zmOqjRkSElIPRtXYJIYQQUp7yHui8++67E77+3ve+B8YYvvzlL2PWrFkp92OMwel0Yu7cuTjnnHNw/PHH53uqhBBCJkH1R2CrdsF/pBvuuXUA4rU6CZnSTA5DTd7MRPWFizAhQki2hmvtEkIIIaS8FSXQCQD/+q//ihUrVuT78IQQQgpE9UXgnl+PQFMP7DVuAJQhQ6YPPaxAT9LMhMo3EFIeKNBJCCGETA15D3SO9rvf/Q4AsGDBgkIfmhBCSB6p/jDCHQMwImqsLiEFech0oYdlamZCSBmjC3OEEELI1FDwQOeNN95Y6EMSQggpANUXgSF3AwD0iALOOdUnJNOG6o/AUMZmdBJCygNldBJCCCFTQ8EDnQDQ1tYGAJg9ezYcDkfabWVZhsfjAQAsWrQo73MjhBAyMaovAjVgBTb1iIJojw9GlAI/ZHqQ+4KU0UlIGaNAJyGEEDI1CIU+4Msvv4wlS5Zg1apViETGz/SJRCJYuXIlli5dijfffDP/EySEEDIhaiCCSKfVdVqPqAi3DxR5RoQUjtwXgKlS8y1CyhXXKdBJCCGETAUFD3Q+9dRT4JzjU5/6FOrq6sbdvr6+Htdccw1M08STTz5ZgBkSQgiZCEPWAM6t24oG1Uvdpsn0ofQHiz0FQsgkmJTRSQghhEwJBQ90bt26FYwxXHLJJRnvc+mll8b2JYQQUpr4iEYOpqxRfU4yrSiDoWJPgRAyCbR0nRBCSDJvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/61Jhx1q5dm3Rbh8OBWbNmYdmyZbj88stx11134e233077vWU7n2T/WlpaJvkM517Ba3QOPwnLly/PeJ8TTjgBAHDs2LF8TIkQQkgOcJPHbpuaQYEfMq1QkISQ8kZ/w4SQqcrf+bFiTyFvaua/VuwpIBwOo7GxEY2NjVi/fj1uuOEGPPLIIxBFsaDzUFUVfX196OvrQ1NTE1588UV8//vfx8knn4zvfe97+Od//ueCzqeYCh7o1HWrflU2P/ThbWVZzsucCCGE5F7U4y/2FAghhJCMjFyVQAghhCTzla98BV/96ldjX3POMTg4iK1bt+L++++Hx+PBY489hoULF+IHP/hBynGuuuqqtI8Pq66uTvv4I488gjPPPDM2F7/fj76+PuzcuRMbN27E3r17cfDgQVx77bW45ZZb8Otf/xqCEF/YvW/fvpRjX3rppejq6sK8efPw0ksvpdxu/vz5434fhVbwQGdDQwO6u7vR3NyM1atXZ7RPc3MzAKteJyGEkPJgKtSYhRBCSHngnI+/ESGEkGlt1qxZOOWUU8bcf8EFF+DKK6/EmjVrIMsyHnzwQdx1112w2+1Jx6mtrU06TraWLFmSdJyrr74aP/zhD/HCCy/gC1/4Avr7+/Hb3/4W9fX1+MlPfhLbLt0cbDZb7P9czLWQCl6j87TTTgOArBoLPfHEEwDS/xAIIYQQQgghZCJGll8hhBBCsrVixQp84hOfAAAEg0EcOnSoyDMCrrjiCrzzzjuoqqoCAPz0pz/Fe++9V+RZ5V/BA51XXXUVOOd49tln8dRTT427/Z///Gc8++yzKQuxEkIIKT6ZOk4TQggpZ5TRSQghZJKWLFkSu60oShFnErds2TLce++9sa9H3p6qCh7ovPHGG7F48WJwznHdddfhG9/4Btrb28ds197ejn//93/H5z73OTDGsHDhQnzxi18s9HQJIYSMg5smAk09xZ4GIYQQMnEU5ySEEDJJra2tsduLFi0q4kwS3XTTTaitrQUA/PWvf4WmacWdUJ4VPNBpt9vx7LPPorKyEoZh4P7778fixYuxZMkSnHPOOTjnnHOwZMkSLF68GP/zP/8DwzBQUVGB5557Dg6Ho9DTJYQQMg7VG4YeomZxhBBCyhs3qfM6IYSQiTl06BA2btwIADj77LMxe/bsIs8ozu1245xzzgEARCKRKb98veDNiACrTuf27dtx/fXXY/fu3QCsyHdbWxuAxGLga9asweOPP46TTjqpGFMlhBAyDm5ymBp1qyWEEFLeuMnBCp4GQgghpFx4PB7s378/9jXnHD6fL9Z1PRqNoqamBvfff3/acXw+X8I4qSxZsgQVFRWTnjcArF69Gn/7298AAEeOHMGHP/zhnIxbiooS6ASAk08+Gbt27cIrr7yCjRs3Yvfu3ejv7wdgdWZfvXo1rrjiCnzsYx8r1hQJIYRkgJscpm5QIwdCCCHljd7GCCGEpLFu3TqsW7cu6WOCIODLX/4y7rjjDixfvjztOBs2bMCGDRvGPd4bb7yBCy+8cCJTHWPGjBmx216vNydjlqqiBTqHXXzxxbj44ouLPQ1CCCETxTkMWYMepuXrhBBCyhenhkSEEEImyDRNPPHEE3A6nbj33ntLrvRiZWVl7HYwOLUbydLiDEIIIZPCOYfSH6RMGEIIIeWNViYQQghJ4+677wbnPOFfJBLB3r178c1vfhOhUAgPPPAALrroIkQikZTj3HjjjWPGSfYvV9mcQGJws7q6OmfjlqKSCHSapon+/n60tbXBMKjOGyGElBWTQw1Eiz0LQgghZFIoo5MQQki2XC4XVq1ahZ/85Cf45S9/CQDYvHkzfvSjHxV5ZomGS0UCQH19fRFnkn9FC3QahoHf/va3OP/88+F2uzF79mwsXboUhw8fTthu48aN+Na3voUf/vCHRZopIYSQdDgH9LBS7GkQQgghk0OBTkIIIZNwyy23xIKIjzzySJFnk2i4ETgAnHjiiUWcSf4VpUanx+PBpz71KWzfvn3cK6eLFy/GlVdeCcYYPvGJT+C0004rzCQJIYSMSxkIApyD65SNTwghpLxpQRmSu7RqqhFCCCkfgiBg2bJl2L59O7q7uzEwMJDQBKhYIpEI3nnnHQBWrc6pHlcreEanYRi44oorsG3bNjDGcO211+IXv/hFyu1POeWUWNv75557rlDTJIQQkoFQW//4GxFCCCFlQO6f2s0ZCCGE5J+u60lvF9Pvfvc7+P1+AMAnP/lJSFLR+5LnVcEDnY8++ih27NgBm82Gv/71r3jiiSfw1a9+Ne0+V155JTjn2Lx5c4FmSQghJBVTN6D6reLaelhFpNtb5BkRQgghk6cOhmK3uWFS4JMQQkhWIpEIDhw4AMCq3dnQ0FDkGQGNjY248847Y1//53/+ZxFnUxgFD3T+6U9/AmMMt912Gy699NKM9jn99NMBYEz9TkIIIYXnO9AJI6oOfcXh+6CjqPMhhBBCckENxDvkBhp7EO31F3E2hBBCys3atWsRjVpNWi+99FKIoljU+WzcuBHnnHNOrOP6nXfeiVNPPbWocyqEguer7t27F4CVpZmpWbNmAQAGBgbyMidCCCGZ833QAdesFTB1A5wDwWZPsadECCGETJrmj8Zu+w51wT2vtniTIYQQUnI8Hg/279+fcJ8sy2hsbMRjjz2Gv//97wAAp9OJe+65J+U4Pp9vzDjJiKKIk08+OeXjx44di2WNcs4RCATQ19eHnTt34oUXXojF3wDgS1/60rRp8l3wQKfP5wOArAqyGobV5KLY0XBCCCGAFoqCc0D1hq1GRIZZ7CkRQgghk6YG4oFOQ1ZhKqVRW40QQkhpWLduHdatW5d2m5kzZ2L9+vVYtWpVym02bNiADRs2jHu8mpqaWAwtmS984QvjjrFixQp8//vfx6c//elxt50qCh7orK+vh8fjQXt7e2xJ+ngaGxsBWL8whBBCikuPWMvW5YEguElBTkIIIVODNmLpuqkZMBStiLMhhJDcqJn/WrGnMKXZ7XbU19dj5cqVuPzyy3HzzTejrq6u4POw2Wyorq5GTU0NTjzxRJxxxhm45JJLcN555xV8LsVW8EDnypUr4fF4sGPHjoyXrz/55JNgjOHMM8/M8+wIIYSkww0TyoBV4yV4tBeqLzLOHoQQQkh50IIyOOdgjEH1R+CYUVnsKRFCCCmyCy+8EJzzSY+zePHinIyzdu1arF27dtLjjKelpSXvx8iXgjcj+tSnPgXOOX7xi1/A6x2/U+/TTz+NF154AQBwzTXX5Ht6hBBC0pD7AuC6lcXpP9SNUEtfkWdUWExkxZ4CIYSQPOGGCT2kALDKs9DSdUIIIaT8FDzQeeutt2LRokUIBAK45JJLcODAgaTbeTwefOc738F1110HxhhOOeUUXHvttQWeLSGEkJGCx6zGQ3KvD8pAEHpYKfKMCkdwSHDU2cHEgr91EkIIKRAtEIGhaDBklZauE0IIIWWo4EvXHQ4HNmzYgAsvvBC7du3CqlWrcOKJJ8Yev/766xEKhdDc3AzOOTjnmDFjBp555hkwRpk0hBBSTIEjPQCAwX3tRZ5J4UkuEaJNBxMYAAZuTH7pCSGEkNKiBqIQXXaAA6ZKGZ2EEEJIuSlKWsqpp56KHTt24CMf+Qg45zh06FDssT179qCpqQmmaYJzjrPOOgvbt2/HCSecUIypEkIIGSHS47P+7xq/9MhUI9gAQbDqkzJJhFRph+iyFXlWhBBCckn1RxBuHwAAGIqOSLevuBMihBBCSFYKntE57IQTTsCWLVuwefNm/OUvf8HOnTvh8XhgGAZmzJiB008/HVdeeSUuvvjiYk2REELIKObQMj5uTL9u64xxCFobwFZCkAQ4q1WoEQeMaLFnRgghJFc0fwT+g53W7WAUA7uPwT339CLPihBCCCGZylugc+/evQCAk046CXa7PeV255133rRsd08IIeVGj6owhhozcHP6BTpFmwyjeQNYzSlw1QYhRPbAXnEmVB+VVSGEkKlCGQwhcLTXuj0QQrhtAIaqQ7QXLT+EEEIIIVnI29L10047DatXr0ZTU1PC/ffccw/uuece9Pf35+vQhBBC8sB/qAvgVl3K6VifUoAMw98EwS5AUJtgRjsgIFDsaRFCCMmhaG8AMIfe4ziHoWiQPf7iTooQQgghGcvrpUnOx54Ir127Fowx/NM//RMaGhryeXhCCCE5FDjSHf9iGmZ0AhxcD0O0MRiet8CkCjAzBPecGZAHOEzNKPYECSGETJIyEBzz9fBqBkIIIYSUvrxldNpsVoOGaJSKlxFCyFSgheXYbW5Ov4xOQAfjHILNhNG1CWa4A1D7IJkfQHTRkkZCCJkKRteg5roZW81ACCGEkNKXt0Dn7NmzAQC7du3K1yEIIYQUkKnGMxanY41OcKsRkyAqAADTfxRc7gTjBgRqvk4IIYQQQgghRZe3FJSPfvSj+OMf/4hvf/vbOHr0KJYvXx7L8gSADRs2YOfOnVmPe8MNN+RymoQQQjJkaiOW7k3H5JbhQCf8MABAj8IMHoPoWgiH0wvNVkXL1wkhZCqaju95hBBCSJnKW6DzzjvvxHPPPQe/34+f/exnCY9xzvHd73436zEZYxToJISQIhmZ0TkdMa5aN5SO2H2m9zDEmeeCD/wdgv2zFOgkhBBCCCGEkCLK29L1lStX4u2338ZFF10Em80GznlCc6Lhr7P9RwghpDi4Mc2DeLIV4OShxthdXO4HNyLQjz6FCvfuYs2MEEJIXtE5CCGEEFIu8to9Yc2aNXj55Zeh6zr6+/shyzKWLl0KxhheeuklLFu2LJ+HJ4QQkkPT/VoTN62l6+bgnsQHNP/Q40qhp0QIIaQApvv7HyGEEFJOCtImVpIkzJkzJ+G+efPm4bjjjivE4QkhhOTE9D3TE102QPUCAEzvkYTHuNxn3dBDkzqGvcYBQzVhRLVJjUMIIUkxRhE7MiWZqg7Bbp3WmroBQRKLPCNCCCHFVJBA50h33303AGDWrFmFPjQhhJDJmMbnx85aE+axQ0kfMwNHrRvRrkkdw+XYC6PyRIQ6JzUMIYQkxSQBnOoITwwFiEua4g3DNbsGAKAFo3DUVRZ5RoQQQoqpaIFOQggh5WXa1UlmiAV3RdYL1XcILMlmhr8ZDIAZagfsEzuUvcYBdf/PYF/5dUBYBZjT7LkmhOQdk8RpE+hkogBumMWeBikAUzOgDgU6uWlC6Q9SoJMQQqa5vDUjIoQQMsVMs9ibYItfC2RcBjPUpNsxbgUOeNQz4WNJLgPQQjC970Ny2yY8DiGEpDSNlvPy2oocD5jb4UhumJqOaI8PUY9VK7t/RzMUb7jIsyKEEFJsBc/oHGlgYABbt25Fc3MzgsEgjAw6+t51110FmBkhhJDRuDnFsmMEljZz0lErINrH4Kizg4ebxh3OiPYDNRObiiT2QQOgd2+BeOIt0Cc2DCGEpMRtQ4HOaVCr01/hRM1AsNjTKAvcMK0MWJODCcnWLZQuQ9YQ6fEh2uODoeroenUf5l28qtjTIoQQUmRFCXR6PB7ccccdePrpp6Hr2Z3OUaCTEEIKTwtGYUSSZzSWK1eDHVFP6k7pdnYARs1KOLS/Qjv023HHY4Zs1cDTsw8IG4d+Yt1QfRDEqR2AIIQUR1+lG7PCMswqF9BvBQEFhw2mMvUaoLUzETXjXMzKBs9RSqep6QmrBUqBHlYQ6faiYuEMSG5HsaeTlUBjD5SBIAJHe+E/2Ak9rFDJAkIIIYVfuu71enHeeefhiSeegKZp4Jxn9Y8QQkjhhdoGij2F3BIYbLY+MCnJ2yAbymjRQ7BXyNA7Xsx4WMmV/QksExmMUEd8ahKdpBFCcowBb2oMcNjQU+GO3++cmqUyjmhWnc6cydEpiKGUXr4+5xxdr+2HIZdfwNu7vx2+A53QgzIG97YBwIQuNhJCSDpvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/6VMrxOjo6sHbtWpx//vmYOXMmbDYbXC4XFixYgI9+9KP4+te/jqeffhp+vz/p/osXL075/cyfPx+nnnoqbrjhBjz00EPo7CyvbqkFv6R47733oqnJWgJ4ySWX4N///d+xZs0a1NfXg7HyWi5BCCHTRbitv9hTyCnRLoLpfRDtM6CPOilyz5aghRmMvi0QZwJGKPNu6s7qALSgM6u5uGaK4G3xk1/GVDBRBDfo4h4hJEcYwzsBDde4bfBwhjkABKcNkUoXnP6ItckEM9JzTXDaYE4y6PZ+SMc/Fan5kqkbEFLUQ9UjCmyV2b1H5JseVhDpGIQeVuCoz20TH/+RbtQsn5vTMUeS+4JQhkoUyJ4AAMDMoBQaIdMN+48Xij2FvOE/v6LYU0A4HEZjYyMaGxuxfv163HDDDXjkkUcgivmrjf2b3/wGt99+OyKRSML9uq6js7MTnZ2d2LRpEx588EF85jOfwRNPPJHx2OFwGOFwGF1dXdi7dy8ef/xx3HHHHbjyyitx3333YfHixTn+bnKv4IHODRs2gDGGT3ziE/jLX/5S6MMTQgiZgKkW6BTsIqANQrCNzfiRhB6wytmAV4XR+0ZW47IJVNe0yW9hZFEAxqIQbDUwjNLL/CGElCcmMDSFdSi1NuhDeQXeWbUQOMdw2I3ZJXC9+CVKzAonMMlA51a/AlTlMqMz8wtPppYm0BmUgVkTLOacJ8pACACg+iOoWDgjZ+MGmnoQau3La6BzZO1wzq3bpRCsJ4RMXV/5ylfw1a9+NfY15xyDg4PYunUr7r//fng8Hjz22GNYuHAhfvCDH6Qc56qrrkr7+LDq6uox9/3pT3/Cl770JQCA0+nEzTffjEsvvRQLFiywsvS7urBz505s3LgRu3fvHvcY8+bNw0svvRT7WtM0eL1etLa24p133sFTTz0Fv9+P5557Dq+99hrWr1+PK64ofoA5nYIHOtvarGUF//qv/1roQxNCCJkAQ9UR7hws9jRyRnLbINgAHumEPXI/VPFfE+u4hfZDrBJhaGGYgx9kOXriyXnNzEMwul8CX3QHwl1jT76YJEI59DBGrmcwD94DYd79oJwUQkiuMFFEV9hAWHRC49Yrzgdcwgo24oKK3QZEVQg2CaZanAstgsuO/goX6geS1xANL2hAZfdg+jqMDVXwdpqAkN8KXXpESVrT0lR1wGVPuo8WjOZ1ThMR7fUBALSgnNNxA009MNX8vJOZmoEDD/4dqj+eyTQc4DQp0EkIyaNZs2bhlFNOGXP/BRdcgCuvvBJr1qyBLMt48MEHcdddd8FuT/5+UFtbm3Sc8RiGgX//938HAFRVVWHz5s340Ic+NGa7K6+8Evfccw8OHjyIffv2pR3TZrOlnMvNN9+M+++/H3fffTfuu+8+BAIBfOYzn8Hbb7+NM844I+v5F0rBa3RWVlpLImbPnl3oQxNCCJmAwJHuKZUh4agxIUochvcDGF2b4JyR+AGEBxsB3zvgkZ6sx2ZmOHEs//swerdBYJGk2zvrRTAj8eTSDLaBSVTKhRCSQ3YrwzDEGPShgpNek8MccZnFsEsQKpyAvXjNco7NqkPbiNMTvdad8HiLKIGNM7/migoAABdz9zqaLKEz0uVNum26ILEWym0wMRcCR3sBAHo4x3PjgCHnJ0PY1A1ryfqIi5TDNUY5LV0nhBTJihUr8IlPfAIAEAwGcejQoZwfY/v27ejpsc5RbrvttqRBzpFOPvlkXHvttZM6ZmVlJX7+85/j3nvvBQBEo1F88YtfnNSY+VbwQOeqVasAAK2trYU+NCGEkAkIDp0ETRWCEIQU+DOMwYMAALs9sdGS6W+EduxZcHkCDZj0YOwmkwSYipUJm2pJu83WnXyO+SvpQwiZZphdAh/q9N3HGfSh2JDX4NBG1MeP2iXoFQ68U19bhFkCYAzf6VIQHBFUHHQkZkzuUzngsCGyoAGCyw4IzPofVvMhJgl4R7EG4LlsRoTEZdIAoAWiUH3hMduZaeqCaoHSyug0VB2RDut9Sg8rabflnMPUMw8ictOEEbWCj5nsZ2SRRZwso9fUrP25biaMNRxc5ibVvSaE5N+SJUtitxUl/evqRAyvkAaAE044Iefjp/Otb30LH/7whwEAe/bswd/+9reCHj8bBQ903nbbbeCc4/HHHy/0oQkhhEyAkuRErpwJRh+0pifBuHXixfS+EQ8yGKF2QJvY98z1eFdDJgoww8MdClOcYAX3J72biXRCRgjJDW1GFfShLMgtYRPa0MuLXzcRHsroFCqd6BMlmIKAB7uKE4wzZ1bjUEiDfzgmxoBWxK/6MJuIR7sj0B02rIswHJpVDyYwNM+qBwDw+kowtxPyUEBLl3KYmcr5mK7k3DTh/aBj7PeRJqineEvr/TTc1h8LGmrjBDpVbzirzux6RIUetTI6lf7gOFtnVws8aemCod9rUzdiY5mqjsHdLUO3y6+rPCGk/IxM6Fu0aFHOxx+5FP7gwYM5Hz8dxhi+/vWvx75+/vnnC3r8bBQ80Hnttdfic5/7HJ577rlY6ishhJDSleu6XcXG5c7Er5V4VqXokMCyaDoxhuoFk6y3VkESYAbjV12H7x/J7H836TBMmDqlAgghxfW+zYHA0InRxv6oFehsqML+sA7vUL3OQF0VFDCYjKFNLk59ziaXC4C1pJ5JAgSXA206B7NZwc7IrFr0KSa2Opw4ENZwV2cUwbkzcGBougMuJ3SnDf6hlNWILbdL8Ee/F3KDw7u3bej2UCMck6ft9K76IzAUbUx2aKGMzmoMNntit8dbui73BdLXRh3FiKixpeuKN5w2Y1QZDEHuC2Q8Nk8TTJY9AfgPdQEABve1QQ1EYeoGDIUa/BFC8uvQoUPYuHEjAODss8/OS7nG008/PXb7V7/6FV5//fWcHyOdiy66KHZ706ZNBT12NgpehOftt9/GLbfcgmPHjuE73/kOnn32WVx33XU46aST4Ha7x93/ox/9aAFmSQghZFixmlLkjTnqZGvkcnNhcjXduNyPyjkygp12CDYGZsafu8rZUQQ748swmSRC79qDZEdkjAKdhJDceNij4N9mW689XtWEzIEPKiqwozOIf6ixYw2Ag0xEJQCDMcgGILgL35CoZ+hlTzU5Buc1IMgEtIQM9M+dgZkeLwaGMjQPyCaORXQEdI5nVAcczArehZkAl92GYyErCPZnheFLLjvM6OTrROphBd7edrhmxzumc9NEuH0A/iPdkFx2VCycAdnjh5kiGMgNE9EePwbfb0XFoga459ZOel7Z0oJR2Gus8y1ucgy+3xJ7bLyl66ZmZBXo1CMKjKHnXu4LwF7tglQxtnkTN0wce2obKhc1ZD52NHV2Zrh9AMJQcDzU0gfZE4DvQCcqF+WuozwhZPryeDzYvz++IotzDp/PF+u6Ho1GUVNTg/vvvz/tOD6fL2GcVJYsWYKKodrTw19/8pOfxMaNGyHLMj72sY/hzDPPxGWXXYazzz4bZ555JhoaMn89zdbMmTOxYMECdHR0oKmpKW/HmayCBzovvPBCsBH1gHbt2oVdu3ZltC9jDLo+xU64CSGkxGVzYlNsUoUdekRL3jlimDYqa0RP3ihoIkzfQQjC0wCug2iL38+0TiDcAuDjsfscdRJYa/KsFAp0EkJy5UhYQ5MeDzBFTY7AUCbnnoiOaxmwM2Li/AoB3uHl3k47UOBAZ//Qy6FX53g4BHQoKryaiRrRgS9UOqENXRbqVs1YndG/9Mm4tMEJAFAABAURgaFzhRf6ZHxyUR3mtE6+zrRn6xFUL58LwDqpZYyBG9YkOl/agxmnL0HFwhkIdwzAVp08cSPS7QPXDXi2NWKOTcx7oJObfMzFO9UXga3KBSYwBI50Q/XF3//GC3RaY6Z/bxp5TD2sQB9a6q6HZCi+CNzz68fs0/nSHoRb+2Gvco17/NhcI+PXEwWshlHRHj88Ww6jYuFHMh6fEEJSWbduHdatW5f0MUEQ8OUvfxl33HEHli9fnnacDRs2YMOGDeMe74033sCFF16YcN/vfvc7XH755dixYwcAYMeOHbHbALB8+XJccskluPnmm7F69epxj5GtGTNmoKOjA7quIxAIoLq6OufHmKyCL10HrDefif4jhBBSWOVUwL+iYj8kty3l40wUoDU9kXAf1+M109gkm/SagWMw+q2Ld6ItfiJmdLwAmIkZKHa7Bykx6hpLCMmNgM6xPxwPWkZNDt/QS0yPYsCcWYNO1UC/AVx5JAQAMBy5yYUY7pDOJCFp+Y6Rdoes18gW2cCT3RFsGVRwIKhhb1iDZrNhOC+zPapDHzonaI0aCAxFPVUAHRBwOGRt2Skb6OS5OdWRPQGYQ0ufh5v3KIPWcxXt9iHa67Me6/albEakeq3t5V4/DCX/9SL9hzqh+hMv5Kn+CDpf3gPOOfp2HE14bLyl3VogCq6nD3R697Yi1NaPUFs/lMEQuGZYHdIHw2MaN2khGVpQRu87R6zjJwmspyqdY4wT6AQfGj8QBThHuH0gZalsQgjJFdM08cQTT2DdunV5aUQ0rKGhAVu2bMGvf/3rpIHMI0eO4Be/+AXWrFmDz3/+8wiHc1sfurKyMnY7GBy/BnMxFDyj84033ij0IQkhhExGOV1k4ipEB4Oe4v086Ym2HhqxweSnYIa7ITSIEJgPw6e7ZrAVQs2yxA0N/5h949MwAFDrdUJIbuwKxJdvR0wO31A2YtTgaHa50OKV0V8RPy1Q7DY4c3Bc5rSBqzrYUL1MrqdeRu5RrSDa0UhiEPBIWIdaZ48FOltkYyjQab1g+4eCbzJn+LNXhcHjL+S5vGQ0vAzbu78dFQtnINrtjT2mDAwFMT0BVCTJWgQSMyYLcQFRCyto/+tuHH/dubH7lP4APO8cgeSyw3+4K2F7bqR/tqKeACqPS78c0rO9CZLbAXNEINeIapD7A7DXxZdecs6h+SMINPUCw8/FqM8anHMo3hBsVWN/E/VI+nIEnHOreRLV5SSE5Njdd9+NtWvXJtwXjUbR1NSExx9/HPfffz8eeOAB7Ny5Ey+99FLK8ow33ngjfv/73094HjabDbfeeituvfVWdHV1YdOmTdi5cye2b9+Obdu2QdOs1+H169ejq6sLL7/8MkQxN+cWI4ObpZjNCRQh0HnBBRcU+pCEEEKmONFlgxHVwE0VNqeKVNdQBWlsJJOrYYg1NitTZbIpnQAY53D2fR2s7kvxY8gD4NyErdoBLWDNjhnplszrqJpvItiZi1ADIWTaGnpJa43Gg1hPdMdfe6IGR4cJHApp6K6JZ8OHRDEngc7Guhp8UFWDK5UwBFUHUjR0Z5KA9wIKAIY+JTFr0KMYkAUB6lAA06uaGHlVaotXgVDrxF7FxGv9iRmARg7T+PShxjq+g52Yd/EqRLrigU4tJIMbJiKdg6hdMT/p/glBtwJcQDRVHb797dCCcixY6P2gA1w30fnS3rE7cMCQNYjO5KsiNH8EpmHCUDQYshar9QlYz0nNifMQbh3bOV3uD0DuD8I5sxrhjkFULKhH37ZGuGbVoG97Y/zwo56TcNsA/Ic6E2p3yv1BOBuqxu/+zjmiPb7EpkXldNGWEFJWXC4XVq1ahZ/85CdYtmwZvvSlL2Hz5s340Y9+hB/84Ad5P/68efPwmc98Bp/5zGcAAIODg/jZz36GH//4xzBNE6+//jr+9Kc/4frrr8/J8fr7rdd6SZJQVVWVkzFzrShL1wkhhJSPcigbYq8aOuk1VQhmW8rtmJgk0KmHIDoESG4pF3FOa8xwN0zP24nHNjU4q0bWB02dacKgg/nfSrsMnxBCxsOEsR/1FdP6BwAy5wgM3e4cEWD0sdycIigA2hUDA24XuJQ6k4RJIjhP/QIcYQxKireigM7xak0t9obGBr+MHL59GVEVeliB0h9E8Ghv4hJ1zhFs9sCQtZRZhOaIoFshMjpNbWip/VDmqeINI9rtS7uPFkgRiYZVn5MbJgJNvQnbhdr60f36/pQZoX3bGgGTQ/VF0P3GB/Dua0f7xt0YeL8loUYoRj0nvZsOonfLESje+KqL4S73hpo+0GkoOkLtA4nzT7sHIYTkxi233IL6eiuz/5FHHinKHOrr6/GjH/0I3/rWt2L3PfXUUzkZ2+PxoKvLWhFw4okn5mTMfKBAJyGEkPTK4OxAtA1l8Rgy+MCmMY8Pd2AVkgU6tQBEO4fo4HDqz+ZsTlpXYqBT63gVjPtGHDj1MkGm90HveAnOOjk2d0IIyYrArH9pRA0O31CNyx3+eC78I14Ngn3yC788ptVc6BgEGJIIwWVPnOLwsuQ0QVAACCN1oBMAvnMsiHd9Y3P5gzns66ZHVYTarSwW3wcdCY9xzuE/ZJ34maPqbxpDmaCTyS7UJ9A53lSt4ykD1hLDUEvfuPuogdQrDTjn4LqBUEsftHA8c7bzpT0wNRPKYPKaMd6h5yra44P/cBeOPbUV4ByD77eOGj9+O3C0F76DXeC6gfYX3rPm5gsjeMwDPaxA9aZvIqj6ItBG1SflKWqnEkJILgmCgGXLrHJV3d3dGBgYGGeP/Ln11ltjt3PVIf2VV16J3T7vvPNyMmY+5HXp+j333JPzMe+6666cj0kIISSNMsjoZJABuK1AZ7R3zLubvUaC3G+AJXnX40oAok0Fgw7tyPrczWl0IFMLgRnxk0OeJtBpDmwHD3dDjL4He815kPvpBI0Qkp1MApVRw0SvZkUD/Vr8tf7lPhnfOb4WFR1jlyJnI2AAA5qJTh04VRQRmFmD2jYr4Ca47DBcDrCgDIjpcy9C3Mo+TUVLEdDcEzFw2YRnn8iIarGMwvCIZesAAA4EmnoAxAOMwyJdXrjn10OPxgOg2WR0cpMj1NKH2pOTL4lPZTij0xyqYTrucm+Mk9FpmDBkDao3BD1UE7tf9YYBxuDZcjjFRHhsfyD+vQ9/HT/AUKf0bi+Ort8c+9p/qAt97zYh2uOHqRnwHeiA/1Bn2u+D68aY4LDiDcM1pzbtfoQQkgu6rie9XWjz5s2L3WY5WLbGOceDDz4Y+/rqq6+e9Jj5ktdA59q1a3PyhI5EgU5CCCkMQ9EgOmyxk6RSJqgtqJq/DOax/TBVL1CZ+LjkiAIQINnUsc0ptBAEBAGzAF0DzSiYJKJq9iAQGEy5md71ujW1pvWQVp2Z/3kRQqYeuw3Q018kMTjDDn/ybMFNkHCZTZxUJpzGOQY0E22qCdUpoJ2JqK9xw/RHoFe7YAoCJABcEpBu+YDfBMITWO79llfGnZP8HoYZsgbfASvAJvcmNpPTQnLsGIaWeFKrR1REe3yxzE4gu0Cn3BeAHk7efTzlXBUttrSe6wa4aWbU6V1NEeg0dQNcN6HLGlR/NDYfLSRb37vJMbgvddmYjHAOQ1bR9Pu3xmTFdvx1NwS7BFPV0flyMGVn+9hQpjkmsKt6c9t1mBBCkolEIjhw4AAAq3ZnQ0P6Jm7Z4pxnHGPbuXNn7PbSpUsnfewf//jHePfddwEAq1evxqWXXjrpMfMl70vXOec5+0cIIaRw+t49Crk/OOaEoxSZ3vfBj/4MRt8ucH8zpIpRyyO5lUHEWPITHWYMAvIkT9IywI0wqmaHoL37ZfDgsdQbatY8edQDhtJ//gkhJSiDpesA0BxJnm2yI6SD1yTvFpvp8YMGR59q4EhEx4Aowm8C5tAy9acFF/ShGqLmOJ1gfQZHk5z9Rbc+xQQqXdnPPRnOYarWczU6G3FkIHV4m2F6REGky5cYeMvivMbUjKwXVvTvaB4R6DRhagYinakvrg1LldEZbuuH4g0P1SmVoYUUGKqOpsfethr5mRzmJDucc9Na/q8FxwZ1Tc2AHlZi/48/mFVTdaSRgWZCCMmXtWvXIhq1XksvvfTSnHU6H/biiy/i2muvxe7du9NuNzg4iH/7t3+LfX3VVVdN+JihUAjf+MY3cOeddwIA3G43Hn744QmPVwh5zeh844038jk8IYSQPBrY2VzsKWROD8AMd8W+dFQb0MOAs8EBeVAFQgcAzAYbm88JAOCRZvBIR9LHcjvPIMzm/7GOqXjH2XiYCoCaEhFCsmPYJIiTSBTY7FUQXOhAFSaQ7c4YmCjAZ3D0qwZUk2NHjQ0DholzBQY+uxb/1xHCZYudcAIwkjRNGumwbOD9wMQu+iguO+yZvtzmQLJApzoYTgi8ZZPRaWr6mEY94wm3DyDU4rH2NwxwkyN4zDPufqMDndwwrZ/jwU7oIRl6RLX+hWUc+9M7iHSMHzzNlGmY8B/uztl4o5eup2oSRQgh2fB4PNi/f3/CfbIso7GxEY899hj+/ve/AwCcTmfaUo4+n2/MOMmIooiTTz459rVpmnjqqafw1FNP4dRTT8UnPvEJnHnmmZg7dy7sdjs8Hg82b96MX//61/B4rNf9NWvW4MYbb0x5DE3TEuaiaRp8Ph9aWlrwzjvv4Omnn4bP5wMA1NTU4A9/+ANOP/30cedeTHkNdF5wwQX5HJ4QQkgecNOEEdUg9wUQyuDEqNiYKMAM9oLL8VpyIusF0ACx426IdXfD6N0MVnURrKDhWEbH3wFbVd7nyuU+GP17rNtKZsXJGVQAFXmcFSFkKhpwO1AjCUj1ujfu/qqJHlHCRF4Zo/PqURGMYJtfBecMfo3jv1us7tlfXChh0GFHQNfgF0RUAdDHyTx9tid17cjxBCQJuV04mN7oQKfmjyLS40vMeMwiAC33+rPuCWioWiwzkusmot1eGJHxfw9GNiNSfWF4P+iAc0YVAo29AKyGQqaqQ/VFMmpulA1umFByubx8VHBY9dHSdULI5K1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NTSzICAB1dXWoqKhAOBzGnj17sGfPnrT7X3zxxfjTn/4ESUod+uvq6ko7VwCQJAlXXnkl7rvvPhx33HHjzrvY8hroJIQQUn64wRHpttJfMlnqVmySS4LZPSobM7QPwD8AihdMAMB1iA4BMJOf6JnRPkDx5Xuq4Er8xNCMZniSaGZXm40QQgArlhaVJEw00AkATTqwLNudBIY/6yI+XVOJpr6x3bE5Y4gO1Rfr5QIWigL0cZoRTUY/Ewob6BxVP1LxhRHt9UMc0Rwqm4xOPapCdE48q9/UTQSPZfZ+MzKjs297E4LNHnDDhDrUwXz4s4HsCUx4PqlwwxwTJM4lua8AdbgJKVH851cUewpTmt1uR319PVauXInLL78cN998M+rq6vJyrHPPPRd9fX149dVX8eabb2LXrl1obGzEwMAADMNAdXU1Fi9ejDPPPBOf/exnceGFF2Z9DLfbjZqaGjQ0NODUU0/FWWedhWuuuSahuVGpo0AnIYSQBHpEQbTbBwBJa2WVGsHOAC2UcB8PNAH4B5haBIIkwAy2Q5wvgCkpOrXqUQATzxjKmDri5FDP7HhsKNDJJMGqhUYIIRngDOhlk6sN1qpm/5ojVDjwUFsYs5cmzwUN2W3o4lZg87bGAN6rEqDnuHnpSDsVjhVDDZAKwRgRrOOGiXD7ALhmQB8RAE3Ve0D1hWGvTczg1yMqBHt2p2wJy+QNA4EjmS0J10JyrAamZ1vTmBrd+tBnAj2SQZ3MLFkNk/L3Hqdl2dCJEEKGXXjhhTnpGbN48eKcjONyuXDFFVfgiismF8BuaWmZ9FxKVd6bERFCCCkvqj8Sy9ooB0KS83huDAcROWwVGqBHYXNHwZXiLsXnfAIncUOBTtGe22LmhJCpjYPhg0n2MhucwMUV3eUAALziS55Jup+JeC8yIutRFKAjf4HOzT4VPIOmTLkyMisxeMyTfMl4koxOLRCF6hsbjDWiSrqG9Ekpg+ERt0MId2RWKgUmR6itH12v7y94I0JujO2UntPx6UIhIYRMG5TRSQghJIHqi0Duy/2ytHyxiY1j+5LrEcDGwPUwRDYIE4Cot8JUirwUP+MGRHHcsE58RYcAvTAJSYSQMsdEATKA90KTWwocMrKLsPUtmoXHQhyAjre9MpAkgPnjtghCI7qWmxUO5LNNzK6AAlQULrdjONCp+lPXsUy2dD3S5QWTxs5Tj6hZ1fT0HeiAHopnL4Za+rMKlIbb+tG/42jmO+QIN3hel65zgwKdhBAyXVCgkxBCSALVF4YaKMAy7lxRusbcxfUIbJV2MEMFDCtoy5UemIHCn7yNZGoTiFQaVmaO6KCTNELI+JhNBBMEtJkMjZHJZchlu8LuLY3h5YHo0L7Jsyi7lMQalq0VbuQzX51zBs4KGOgcWqLu3ddmBSmTT2rMXZEeL5wzxi731yNqxksdvfvacezPW8c9Vjqhlr6iZD+amp7XYCQFOgkhZPqYtkvXPR4PNm7ciLvuuguXXXYZGhoawBgDYww33XRT1uO9+OKLuPrqq7FgwQI4HA4sWLAAV199NV588cWMx9B1Hf/3f/+H888/HzNnzoTL5cLxxx+P2267DR988EHWcyKEkGyZugEtGIUeyn39rbwxxtbd4noYNpd1csc0K4uSR9ph+BoLOrXRuB4af6PRhvYRxShYHht2EEKmBuayAwLDppCO5skGOoGMX3cEu4SDUQODo5rxjOcdBdg88X5JGTEFBiYKSTMmc34sTQfnHAO7W1LWsgx3DMDU48+TqeqI9viT1sXWI0pGwcpAYzean3xn0gG9cEdxVj7kM5sTsGqAEkIImR6mbUbn7NmzczKOaZr40pe+hN/+9rcJ93d2dqKzsxPPP/88vvjFL+JXv/oVBCH1h6v+/n5cfvnl2LFjR8L9zc3N+PWvf41HH30Uv/jFL/DFL34xJ/MmhJBkor1+mJqZfRpPMRljs0+5GoEgGOAAuNpv3Rc4CsazOwHPNWZkfzbPhxotMUQgOlzQI3SyRghJzbRL8NVW4tnGCJItHc9GUOdAtQvwhsff2C6hOaqnzORMxW9w/KUvv41iuMDA6yqt97aBPHff5oB3b5vV1C9Fk6VIpxeDe1rRsGYpACDQ3AvVF4ExZ2xg2oiOn9HJTRPtG3cnrf2Z9fSLlfmY748d3Pre6IIhIYRMffRKD2DRokW45JJLJrTvd77znViQ8/TTT8ef/vQnvPvuu/jTn/6E008/HQDw8MMP47vf/W7KMQzDwNVXXx0Lcn7605/Giy++iO3bt+PBBx/ErFmzoCgKbrvttqwyRAkhJFvRbh8wkYY5RcSjY7vJcj0ECa0AANNnZcQb/uJmc06Y6gMAMDMKwSYABWyqQQgpP5pNwp19ucmO2xdUYdoyzIsQBTSGs88gDRkcHiW/F6FMJmCr2w2eJukglzpf3gsAaetde7Ycid2OtA9C9vjBR9VE5YYJPaom3M9NDlM3EjIU+3c0l1Vt7WIxafk6IYRMC9M20HnXXXfhhRdeQE9PD1pbW/GrX/0q6zGOHDmCn/3sZwCAM844A1u2bMFnP/tZnHnmmfjsZz+LzZs344wzzgAA/PSnP0VTU1PScR599FFs3rwZAPDVr34VzzzzDD7+8Y/jrLPOwte+9jVs2bIF1dXVME0T//Zv/wZdz+/SDkLI9KUFo0mbJJQyrWvTmPuYqUPd+U0AgNEzVK9ML6O6oyPovdvARAFcPgYmAa6ZtmJPiRBSwoI2G3ak6HierYjBoUmZVdA0JRHyBOKVx6L5z7T32iX8+9Eg8p82aFGHMmB5mmX8cn88s1SPqlbH8VHvv9797YDJE7qRR3v98O5vjzU6Un1hdL60J5fTn7KMFKUECCGETC3TNtD5ve99D5/85CcntYT9gQceiAUdH3roIbhcroTH3W43HnroIQBW/c37778/6TjDwdL6+nr89Kc/HfP4CSecgDvvvBMA0NTUhOeee27CcyaEkHSMqFpWgU7BJoIlqdE5pehROOptMAd2QLLrsEmeYs+IEFLCPDluvCOLGQY6J7gk+Mgk64hm4hdeE5ppZbsKjtK4WMR1I1an01Cs52B0HUnPVivrc2Stz2iPD33bGjHwfis452h55t2EQChJTQtToJMQQqaDaRvonCzOOTZs2AAAOOmkk3D22Wcn3e7ss8/GiSeeCADYsGHDmBo7R44cwcGDBwEA1157Ldxud9JxRjZIokAnISQf9KiKSI+vrDqTiq7pUWrabu+DMXgQghAGMybQ0IgQMm0053jhT3Sc5d6C0wY+sxpBp31C43vV/L/n/K3Pyug/55iCn1bU5v14mTIVHYasQhnK7hx5oVHxhhBuGwCQGOhUBq375b4AvPvaETzaW9hJl7HQMQ/CnYMpm0QByLjDPSGEkNJFgc4JOnbsGLq6ugAAF1xwQdpthx/v7OxES0tLwmPDS9bHG2fOnDlYvnw5AGDLli0TmTIhhKTl298OU9Fz0sygUERHsWdQIINvAIoXDDKAPLcnJoSUtX05XgoeGq+hkcOGt5xuHOSZZX4W2+FI6ZSAMhQNymAYkS4vgMQgm/9QV3y7SPx1P7atYaLrlb0FmunUMLC7Bb1vH0p/Qbd8PgIRQghJYXqkwuTBgQMHYrdPOumktNuOfPzgwYNYsmTJhMc5cuQI2tvbEQ6HUVFRkfF8Ozo60j7e3T22mQchZHoJHO0FN8yyKtZvt/dgOizYU48+BQbAOPBDSCfcWOzpEEJKFKurwIt9ua1HHB6ni7ppE/HHPgUfri6NJeHjORBSgdlVYIFI2hqahWDIGnwHO+OBNyN5oFP1R2DIGiLdXqheK6s/0jlIQbksRbt9iPb4seDy09JsxRHp8sE9r65Q0yKEEJJjFOicoJGBwwULFqTdduHChbHb7e3tkx6Hc46Ojo7YkvhMjJwDIYQko/kjMA0TplY62S5pMYD3/rXYsygIxq2TcTPUAajeIs+GEFKSGMPPmBshPZLTYY1xommmIMCnmfDp5RF1kw2gp9KNuaYJDDUNKhZD1jC4pzX29XCNTkPVETwWr8esBaLwvHMYodZ+mMPB2fJ4uksP52NqoY6kh1X0vH0QSz97TgEnRQghJJdo6foEBYPxTomVlZVptx2ZeRkKJdZWy9U4hBAyWao/YmV0quUR6HTPtkFrf6nY0yg4U+kDm2DTD0LI1OVf2IA/dec2yAkA6d4RhEononYbfLqJ3cHyya/fpTNoE6wpmkvhjoFYfU4gXosz2NQDricG43reOohAYw9Uf24zdqcjPaLGGkAN46YJxRuG/0gXoj2+4kyMEEJITlBG5wTJcrzLr92e/oOSwxEvIheNJn44ydU44xmdSTpad3c3zjrrrKzGJIRMHYaiQfVH4KivLJtApygGwc3ymGtORT2w1dqg+ql7LCEkLpjjbuvD0i3u5nYJYVGAVzNglFETl21BDRdVsqKfCEU6BxO+9h/phqnpCcvWhw1ncnK9uMvtp4LBPa2oWTYX1cvmxO7zH+5G8JgHktM+JshMCCGkvBT7/b1sOZ3O2G1VTd8YQlHiJ6MulyvtOCO/zmac8Yy3LJ4QMr1wk4MJ8bprcl8A4Nb9RpkEOlna0++py4x0QZprQPUXeyaEkGIyZ9dCCkVhRhSAA+Z4TYMmyOAABGY1qmNIWDLNBYZtugDOGQK6CeRpDrm2yavArCp+N7toT+ILuanoCDT1wn+Eaufn08B7xyC57LFAJzdMDOxqRrClDw1rllLn9SLgnIOx8nj9IISUPlr7NkFVVVWx2+MtIw+H4/V/Ri9Pz9U4hBCSDdWXWJcs2mudbHGTw1TLJYBYHgHZXDNDHRDF4taVI4QU32a7E0p1BQS3FbDLVw6aDsBsqAYACPbEhkNRpx33NFtLr/k4TYtKSUjnMEsgqKKF5TH3yR4/tAAtT88nI6Ii2ByvgRrp9iLqCcCIqIj2+MBNCnQWmhFNnzhECCHZoEDnBI3MkByvo/nIZeOjmwJNZBzGGGVoEkImRe4LJH7tGfqa85Jfui7YRDBJBHj51IPLKT0KQW0u9iwIIUWmcEAXGLRKF1hdBfrzFJvRONDmcgGMAc4RgU4G9Inl0Wk9GaMEAp2mMvb9NtLtK/xEpqFI5yD0qArFG4LvYGcsuBzuGAQoo7Pg9BCV4yGE5A4FOidoxYoVsduHDh1Ku+3Ix08++eRJj7Nw4cKExkSEEJIteVTzg/5dVuCMG2a8o2uJcs804ZohgEWPFnsqRaO3PgmpsviNNAghxdOrc2iCgG6nA2t6gC83BsffaQI0DhwxgPZFs2DY41WvIvMb0FLGpQxLIdDJjbFP4MjmRCR/DFlDuK0fh375CnreOBC7yGtEVcroLDAtGEXwmGf8DQkhJEMU6JygJUuWYN68eQCAt956K+22b7/9NgBg/vz5WLx4ccJj5513Xux2unF6enpw5MgRAMC55547kSkTQkiM3Bc/ker8+x4YEWvJkKHoJZ/JwJgCJnDoXdOv4/oww3cEjqoyjjAQQiatTzOhMYZ8v2KrHGhWTDziM/CW023dObMaO5iEA3L5vg6V6iU9xUulSQrFs7URejhJJiEFOgsq1NqPYHNvsadBCJlCKNA5QYwxXHXVVQCsTMtt27Yl3W7btm2xTMyrrrpqTJHl5cuXx7I8//znPyMSiSQd5/e//33s9tVXXz3Z6RNCprnhGp1aSEb/rmOx+8uhmytDBIIQhTl4sNhTKRrGOUTWU+xpEEKKqFc14WMCXozmNyijco4dARUb+yJY22LVkz/qdqNb52iRS/89I5W2PHWpnyyqVVg4gRRNnwxFo4ZEBRRuH4g15jLkaVqWiBCSU6X5Dl8mbr/9doiiCAD42te+hmg0sXB4NBrF1772NQCAJEm4/fbbk47zjW98AwAwODiIb33rW2MeP3r0KP77v/8bAHDCCSdQoJMQMmnDGQz+w10ln8E5hhEAM2mJE1O7ij0FQkgRdSsGNoZM+PT8voYrHAgbHJwzhHQOJgnoMIF22UTEKLP3jxH+r1cplybxpMC4YVLNyAKKdA5Cl60AvzKYvjkvIcXw5ptvgjGW8l9lZSWWL1+Oz3/+83j99dfH7J9u30z/tbS0pJ2LJEmor6/HkiVL8NGPfhR33HEHnnnmGahqZhfPFi9enPJ7mz9/Pk499VTccMMNeOihh9DZ2ZnLpzcvpPE3mZo2b96Mpqam2Nf9/f2x201NTQkZlABw0003jRlj+fLl+OY3v4l7770XO3fuxLnnnotvf/vbOP7443H06FH8+Mc/xu7duwEA3/zmN7Fs2bKkc7nxxhvxyCOPYMuWLfjf//1f9PT04NZbb0VdXR3effddfP/730cgEIAgCHjwwQchSdP2x0YIyQE9osAcytwMtfQVeTbZY0YQ0OmDMI+2A/hQ1vs5GxyQ+xUwSSyLDF5CSJw5uwZPMCc+AwXtnTqOhDV8cqYrr8fc2C+jQ443zWE2CW2alc2plduFshHe86vAgmpgVHM+QgAg1NaPupXjN3/lpgk9rEByO8BEyiHKluoLI9w+EMugjXR74Z5XV+RZTT0Hbpy6V3VWPFr896FwOIzGxkY0NjZi/fr1uOGGG/DII4/EkuIKwTAMeL1eeL1etLS0YNOmTXjggQcwc+ZM/Nu//Rv+8z//c0JxpHA4jHA4jK6uLuzduxePP/447rjjDlx55ZW47777xpRmLBXTNmL28MMP49FHH0362JYtW7Bly5aE+5IFOgHghz/8ITweDx555BHs3r0bn/3sZ8dsc8stt+AHP/hByrmIoojnn38el19+OXbs2IFnnnkGzzzzTMI2DocDv/jFL3DZZZeN850RQkh6I+tz6pHyWyLHTQU80lHsaRQdV/wT2s8eeAxs5g0wNED1UaCTkHIy6HDgvsYQPrS8CgHdei3X8nyO1xQe1RmcAX7dxJGIhrmOwp3E5cMxtwtLQIFOMlbnS3tQe9K8cYOXhqyhf9cxNKxeAlt1fi86TEV6WIk1wTQ1Hf5DXWhYs7TIsyIkta985Sv46le/Gvuac47BwUFs3boV999/PzweDx577DEsXLgwFgPat29fyvEuvfRSdHV1Yd68eXjppdT9B+bPnz/uXEKhELxeL/bu3YvXXnsNr776Kvr6+vBf//VfeOGFF7Bx40bMnDkz7fc3eh6apsHr9aK1tRXvvPMOnnrqKfj9fjz33HN47bXXsH79elxxxRVpxyyGaRvozBVBEPDb3/4W11xzDX79619jx44d6O/vR0NDA84880zcdtttGQUnGxoa8M477+A3v/kN/vjHP+LgwYMIh8OYN28ePvaxj+HrX/86Vq5cWYDviBAy1SmDwVih/bKsBWYoMPt3FXsWxaf5M1526Z5jgxZm0CM6tPaXIKkBsNlfRRn+9AmZ1oJDdSUfHYjXsZML3ThFFOFRObyqCaPMm7a8FuX4YrEnQUqS0h9E/85mzPzwCWMeM1Qdot06jdZCMgbfb0HN8rkU6JwAQ41fSNEjKsIdAzBkFaLTXsRZEZLarFmzcMopp4y5/4ILLsCVV16JNWvWQJZlPPjgg7jrrrtgt9uTbj/MZrPF/k+3XTZzueyyy/Dtb38bBw4cwPXXX4/du3fj3XffxdVXX43XX38ddnvqv69087j55ptx//334+6778Z9992HQCCAz3zmM3j77bdxxhlnZDX3fJu2+fW///3vwTnP+N94Lr/8cjz//PPo7OyEoijo7OzE888/n1UGpiRJ+MpXvoJNmzahv78f0WgUR48exa9//WsKchJCcobrJgzFOknWyzHQaSowA8fG326K44ovo+0EuwRx8I+wuQEmMECPQu98HUykbE5Cys1w1cA3BuTYfZ0FbgjUV1eFVwasuvSBPNcHzbc/dkfApGl7OkTG4d3XNuY+UzfgOxBfVeLd2wY9rCB4jGqHT4TcG1+dokcUcM2EFpDT7EFI6VqxYgU+8YlPAACCwWCsKXUx57NlyxacfvrpABArlTgZlZWV+PnPf457770XgNWX5otfLL1LhvTOTggh09BwJme5ZXQySQCPlH4B7ELgqi+j7ezVIozutwHGASGeAsqYnmYvQkgp8vOxadzHooXtUnzPgA7NLOgh8yagc2gza4o9DVKigi19Yy4Ia/4IAo094KYJzjkG3m+BoegINnvAzcwSZMoR5xw8DxnckW5v7LYeVsA5hxaMptmDkNK2ZMmS2G1FKX5TM5fLhccffxyMWZ8ffvazn0HTJv+54Vvf+hY+/OEPAwD27NmDv/3tb5MeM5co0EkIIdOQqRnghgmul9fZqqPWBr11Y7GnURLMETU6RZcNUkXyZSiCZIDL/QA4KhriH7gETKzGJyGkeHZHx2ZvFjihE1sGi3/ilkuDdluxp0BKlcnh29+ecJcWlKH6wvDua4d3XzvUwTC4bkALRBE65oHqCxdpsvkVbu1HpHMwp2OamoFob7xGbrhjEEZUhRaijE5SvlpbW2O3Fy1aVMSZxK1cuRIXX3wxAKCrqws7duyY9JiMMXz961+Pff38889PesxcokAnIYRMU3pULY3MA4aMa01Kjql1gj0ZXIufHNirGER78ieRCVYwmzEAPY/HH1CooRMh5SZY5kvFS1EfnQ6RNAZ2tyR8rYVk6CEFvZsPo+uVeIMRU9PRv6sZykCowDMsjME9rQgc7cnpmKamQ+6Lf5YZ3GMFiCijk5SrQ4cOYeNGKyHj7LPPxuzZs4s8o7iLLroodnvTpk0lO2auUDMiQgiZZgzZWq6gBaJACQQ6a2q3Q93/ANTjn4Ihp19OLZidoMqSFsY5mCRAkARg9zVgpz4be8w1045on7XcTgy9ChOAyPqhtY3o5qj0AmwVUPxfAUJIhoIG/cHmmre8FjaQAot0e9Hz1gHMuWAFAOsz1Mjg3DBT1RFo7EHtigWFnmJembqB3s2HEe4chNuozenYvg86EkooDdfr1IKU0UlKl8fjwf79+2Nfc87h8/liXdej0Shqampw//33F3GWY61evTp2+8iRIzkZc+bMmViwYAE6OjrQ1NSUkzFzhQKdhBAyzaiBCABAGQyVREYnV/oAALYKcdxAJx/YWogplQ0mCrBVikO34z9Lu3gEeuVyaCEVRu871p39LyXurIfBBAZOgRNCykbAoKhcrgXpKSVpcIOjb3sTDFnD/EtPBU/xN2goOgxFK88mj2l0vPg+Bve0QnI7cj724N6xzZ4AyugkpW3dunVYt25d0scEQcCXv/xl3HHHHVi+fHmBZ5bejBkzYre9Xm+aLbMft6OjA7quIxAIoLq6OmdjTwat1SCEkGnEUHXoIWv5txaUi57Nx0QBXLXebO3OATjqU3+QdjY4oLX9tVBTKwuCJEByWCcEgjDi5EvxwFkTgGATYQ5+AABQWzYk7Kt3vDK0np0QUi6ORaiJWK5RlixJhxsmuMnR89ZB+A52wlCSN/EwoipgchiRqRPoVH1h9G1thBFRoQyEEj4yTraOpqkbKTvVU41OUq5M08QTTzyBdevWlUQjopEqKytjt4PBYMmPO1kU6CSEkGlE6Q/C1IcWf/PidwcVnRLAh+bjewuiPXVqjWRXwAz68DsSExlEs8u6zeKL+rWOv4AhDNEVX7jBRv2suTxQmEkSQnJCqHKis9Cdh6YBfx46SZMphPNYFmf36/vHrcGZKhBajuT+EUELzhPKHYXb+mFqE7/wogyEgBR/e7TShJSyu+++G3zoHGr4XyQSwd69e/HNb34ToVAIDzzwAC666CJEIpFiTzdmZBAyl1mX+Rp3sijQSQgh00i01x/7wG5qetFrdDqqDXDNOmnQjj0HJqT+0Cyw0vmwUCrcjl0w2p8GAIjhtwEAFXMlcN9RwAhDzP1KM0JIkbTV1xR7CmXDIWV+iuPTKKhC0hv+3BTp9MK7L/ly62GmMjWyrrlhjq1FOuIzozIQguqb+OeytN3pS6CsEiHZcLlcWLVqFX7yk5/gl7/8JQBg8+bN+NGPflTkmcX19/fHbtfX1+d8XEmSUFVVlbNxJ4sCnYQQMo0Ej3liGZ2hln7wImeySOYR6D3brC+0MAQ2lAmRZEU1M0tnOUSpUN//IYze7dbtA7+Ec4YDkvYeAIAZAYjS1DjhIoQARwwqNZGplbNsGW/rpbqnZBymHv8dGW7omIqhTo2MTrkvgEBTb8J9xoggrtwfSFmvNBPp9p3MuIQU2y233BILJD7yyCNFnk3c7t27Y7dPPPHEnIzp8XjQ1dWV0zFzhQKdhBAyjUQ6BmMdLoMtnuLW6GSA3vRbMD5yKaY1NyaMOqEXGKAPFm5uZcru7IXR9bL1heqDxDrH2YMCJ4SMxsQS+HjcUIXIghkQ3PbYXXTZInMrZmkY/TaSilcz6aWQpMWNzEtGlGNGZ7KL3tFeP0Kjamia6ohAZ18wYb9sgpPDdU9TMSnQScqYIAhYtmwZAKC7uxsDA6VRKuqVV16J3T7vvPNKdsxcKYFPcoQQQgrFUDRoQ82ITKW4S9dFhwQzcCzhPsatxjpShT3hxNM5ww4ebS/k9MoSizbB6NsFAODqALR9P0y7vWinjwGEjDY4v6HYU8BmVwU+elRGpC6+DKyR6nNmbFmdHy6bmNG2UQMQ7NL4G5LpK4uPSoZaXoFOznnSZeSGrI3JXh3+mpsmIl1ecM5h6gaiPb7Eep7jiHT7EO5IffFaHUxfB5WQUqfretLbxbJ//3689tprAICFCxfijDPOmPSYnHM8+OCDsa+vvvrqSY+ZS3SGQwgh04weLoEugAywVY09CR0OdIo2QHLFlx7a7b0w/YcKNr1ypXfEu9Lrfe+Cy/1ptgYECnQSkmhmNbabOfy7mGCmIB/aURXic9kZnBpLYgvh+DoPXLbMnvy2qAYI9FpIcqPcmhFpgWjS5fjJMi4NRbcCm70BK7vT5OAmh+9AZ/qam6NEe33w7U998dqQtazGI6SURCIRHDhwAIBVu7OhobgXT6PRKG644YZYA9pvfOMbkKTJX9z78Y9/jHfffRcAsHr1alx66aWTHjOX6F2dEEKmEVM3wPXiZwVVz/OBvf/pMfebPX8HAEiOKCS39RbFRAEschhGz9aCzrEcmd54MJj7m8fdXqAkJkIS9LmcaFVyt2xSqKmY4J7WCYnCGIRKJ4RqF1ojxc8KKRdLq9vgtmV2mhPQqfEJyR0tEIUeURBq64fvQEexp5OWoWgINsdrt4c7B2PBkGTL9U1VQ9er+xBusy6i6mEFAzubEWrtgxaUE8eW1ZTH9R/shDJO1mY2GaKElJK1a9ciGrUSNy699FKIYmarC/LhwIEDOO+882L1OS+44AJ85StfmdSYoVAI3/jGN3DnnXcCANxuNx5++OFJzzXX6BSHEEKmkVKoHeWeY4O682tJE530jtfgWv0VMBaGaLPmKjpE8GhXYSc5TQgi1cEiZKR+JqAjhxlZstsB+wQyk4ZDb1HGwO0SuqsqEB2g5ZyZWlx9NOOMTgBUo5PkjOqPwH+kGx0bd2PepR8q9nTS0kIyfB90YNY5ywEAvv3tcM2uAZNEmNrYQKcha/Af6oKzwSqpEWzuRd+7RyE6bag6Xhk1tgLBbhtTc10LRuE7NP5nuvECoYQUi8fjwf79+xPuk2UZjY2NeOyxx/D3v1tJG06nE/fcc09B5xIOh+H1erF371689tpreOWVV2IXL84++2w8/fTTsNnSN+vTNC1hTE3T4PP50NLSgnfeeQdPP/00fD4fAKCmpgZ/+MMfcPrpp+f+m5skCnQSQsg0wU0Tplb8QKfoexLcTD0Pu/ImTOk0MEEEIEKwCzAHx2uqQyaCCRToJASMAZyD1Vfir0ED7/pVMJsArptgkvX/hIYVBQQlCTMmsO9woPM3Xh1r3RK2qIBGf64ZOW2uA24phPOOU3C4L7N9WmfW4bgBP8yQPP7GhKRjcrQ8vR0weUlcXE5H6Qsi3N4PLbgQ4fYBhFr6rKZCkpg00GioOoSoCt9B6zNZ75YjAOcwVR2qLwJT1WP1bg1ZhdwXADiHrcYN2ROA6JAQ9QSANI2IhsmeQG6/WUJyZN26dVi3bl3abWbOnIn169dj1apVJTGX22+/Hd/61rcyWrLe1dU17rwlScKVV16J++67D8cdd1xWcy4UCnQSQsg0YchacbusD5M9aR9WDqyD47TvwrBZHQsFCTCjPYWY2TRUCr8QhBQXkwRwzUDY7cTzLRHIBqDMr4W9axDMaQefYPCLSQJ8TJhUoHO7X4VaZccWX3nV/Sumi4+3AiTXnbQNBzwXYGvb+HWp9+kMlfXVqKNAJ8mFoUCeWeKNifyN3TAUHd797QDn0EIyuG6C20z4DybJujS51Wxp+AVqREPLcFs/tJAMR30lAECPqAi3diHcOYjqZXMQbhuAVOFAxcLMXhHTNSsi2VvxKH3eyye73Y76+nqsXLkSl19+OW6++WbU1dUVdA6CIKCqqgo1NTU47rjjsGbNGpx//vn45Cc/CbvdPuFx3W43ampq0NDQgFNPPRVnnXUWrrnmGsybNy+Hs889CnQSQsg0kazYfDGYwba0jzNuQN3/c0in/x9s1Q6Idg1GsJ1WFuYDPamEgNklgHP8b4RhuLH5YZsdqwCEaivgzjL4FV7QgCp/GBAY+jnD8RnuJzgkwCbBDMsID2VvDqomBiQJW320jDNTH55r1Sc+tWEnLjthJba2VY2zB/BMv4xlc5wo7GkpmepKvQN7sKkXpqbDf6gL3ORgAoNpmIi29EOPJL9AkCp4G+nxJQQ6jagKz9YjMGQNoZY+OGdWw3+kG476zOoWR7q94IYJJsZr7Q7PkZBCu/DCC2NLwHOtpaWlJOaS7TxKHTUjIoSQaWJ0ofhisFU7YAaOjb+hFgJDEG7bdggsCGakLmpPJo5RRichiNRWAlUuvDwQf43sNxjAgCNC+lpWyexhNrxUUwNPTSV6smh00zlnBgyXHUwU8aov/pr3lkzL1rPhEK2LepKgo8Ke2XtHl2Kgj55jkmOlnNFpKBrk/gDAYS1X5xzcMMF1w8rwTCXVS5rJoY+4KGTqRuwCu6nqMDUdpqIheDT9qp7YYTQDUY8/8RAl/HwSQkoLBToJIWSa0ILRYk8BjsrxlxAO04/8DObgLjCT6jTlDRvbbICQ6WYTs8GURChG/Ax+wDAhOO1oy/ZPhAGbwjp+2BrCqxpDRxYRynVeA6YogFU4sGkw/lq5vjeS5STKW7YJW05JiO0nCQwuW/y9ziVmtpJhUDXQTd3XSY6VQl30VKK9/qRBS1Mz4PsgTaAzDS0QjTUxGr2KaLjWcfBYZoFOAAi39id8beSwURwhZGqjQCchhEwTWgnUHhPN1oy35b6j0Pt2genePM5oehPM3mJPgZCie92vQbbbEBkR6OzTOAYaahAysgt+CRVO7AtqCOkcm3waepXMAp3MJuKl/ggMQUC40pXwWF+GY0wVC2uzqyX2Lx+ynp/lDQ4sqbdjpjPegWhRVWb1nQ3O4M/yZ03IeEq5GVGqpen+w10TXgEU7hyEd59Vnsi7LzFYOjK7M1OerY3gIxoXlUoJJkJI6aNAJyGETAOcc+glsHTdHHw3ux0UL8yBbfmZDAGCeyHYxWLPgpCi6lENDIzqRNqjmvirJqBXM8HqKiFUODIaS6t0oi1qncgfDKnoVTNLCeU1bhicQRMEeDLoijqVnVCf+rFqp/V6Ve+WwBhw6lwHLlp8FABw2lwdJ9RzOMX4e93yuiMZZ4gGKNBJcswo4YzOVEHY/nePTnjM4NFe9O86hmivH+G2yWdjyn0B+D7oiI8RpTJGhJDMUKCTEEKmgXDbACLdxc+MNAbfz3ofvf2V3E+EAADMwb1wNUyvbDFCRjsW0bHfSIyGdSo63g9q+ENXBGt6OJ6rqQObUQWhypl2rGaHM5YZGtA5uuXMAp1Rh5XFKAsCDhvTt9nGybMc+IfF8QDJqXMTA8zXfUhDlUPETy8+hkuX2XHHh4+g1hEEAMyviuLU2QHMcnXGtp/l6sJJMzMLUvtp6TrJsVLO6EyVtakMTrzxmeqLQPWF4TvYOeYxbkzss0bgqJWV3fbCLii+8ITnRgiZXijQSQgh08DgnlaE2weKOgfBIYHLvqLOgSQyvAchMMqQINOXYJcQ0jleGEj8O2iXjYQMv9f9KvoqXYhWudOO90wgMbDZq+pABnHLsGhlKnIGbAuVbnAk3/7fma04rsZ6rxIFhn9ckhh0WVrrx0eXCDi14SD+3+p3sXrWHlQ7rDrOdU4Znzz+XTCWGLBcMSuzYHNAp4s+JLdKuUanmqegITdMBI/mriyO3BdE6/M70be1ccLBUkLI9EOBTkIImQa8H7RDD2feCCjXbFV2SE4RMIs3B5KEHoUg74etKrEmnuic3ktnydTCpPjH3f5FsxIfdFm/+9t9ia9NA6qJ3YH4fVsGFWzXBfTYbMCMqqTHESqdeKY3MXhgcAbBHc8oFOzxvy1mEwGBoW/RLHymxWo4JINhb2B6XnyosIv4p+OfQ7UtjFVzHDh/sR0nz+jFytnx5++sOQfxD8f1Yn5FC86b9yYWVTZjWfVBLKyx45SGdpxS/96Ycc9b2I3FdePX/fRRoJPkmFFiGZ0j62Oqgfw0qDSTdEufjNAxD/rfbbLGpq7rhJAMUaCTEEKmOC0YLWp9TiYyOKpUCHaA68WvE0oSGd2vw1md2NXZXkV1O8nUIY6oQ9s16qOv4bCl3I/zxFTMvwwo+HuEw+9OvnzdU189Zh8A0IeaCzFRAEYEPZnDBsFpx5MRDr9mZSEOcIbBLDq1TyX/eLwAh6RAEnTceno7vnjaASyrbce/nGI1F5pXbcNpDe+ixhGBXYgHoZ1SFP/f+a1YWNmWdNyzZn8Al238tFqvOj2fd5I/pZbRqQXjwU09mJ9AJ9eNvNXSLIWmmoSQ8kApG4QQMsWFWvvH3yiPKuaYEBCCgx2CyjNbQkgKx+jbCfv8I2DiKeCGCccMB0R7FCOvhTpnOCAPUDYuKU+iU4QesRphdBjAaQ4bzKHGGIpNApBZMOK9gIK9QRWNtQ78XBLAdRO9x83G7NZevLpgDp72JP8b+W9FwncaqiA7bLCrOhhjAOfgNhH+Sjfe7Y036dgpmwhM01qRH5lvvVfNcA7i1BN2wSlagRgOBsbOxiUnWD+nuRUDEIXE95LPLHsKJk+ev3FS3V44pUvhtgkQBIaQkvx9yKebAF3jITlUajU6VX8UjqGMdC1Pq3xM3QDy9BKmU6CTEJIhyugkhJApbuC9Y0U9vqgeAKBDb32qqPMgqXEjCsklQXTZYOu6BwzxQAATBUi990KwUQSAlKkRvWg6NBPhhurY11Ex899rzhk0E3hzUAGGsjT3GwxMEvCd5gB2+pNnMT3XG8VudwW8kg2GJFpL6Rlg2iS8ZojoG9GZ/d1A9p2Jp4o6p5VZ3uD0oNIWhCTokAQd8ys6MLfKhjqn9fwurGwfs6/ATEhC8qCSwEw4JOD0eTYsm5E6xyNC9f9IjplaaV3cVQaC4NyKQuatg3ker9MUswQTIaS8UKCTEEKmMEPR4D/SXZiDCWOXBoouG4zOv4EZfpiDBwozjzLFnFVgjgpAKEJAUfHAUSPDbfwBRv/7ADSAMQh2EZVzFBi978JZb82LifGfs+iyJf25E1IqHHUOmHYDgkMCkwSoJsc2Fq/XGGYT+/0NDQU6IybAaypgJFmyPtIfBzV0gUEVRTBRABME6KKI/+sMo39EoHN/cGrW52TM+pfOvAqrCVGdoy/h/gZnNxbVCrCLViByfkVL1sd3SsCX1xyCmObMR+cZTJKQLHDDLJkGOqo/Au/+dhgRFdzk0PMV6Mwj1Z+f5faEkKmHAp2EEDKFmYoOmIVZBmmvHtvsQXIJMPreA/e/X5A5lLOjp1yG7pMvAqudV/Bjm4FGsIHnoR97DgDAgtvhnGGHs56BKYes+0Qr08xeE/852yoEOGrGb/JBSLE4HUcQYTZU1h2Dc4aEXtVE54imM/5MWqIn8bRmfYSOmBzBEXU3U2mL6jikcHhFEdxlBwQGXWAYUM2Eup5KacREcs5tE1EzTpOzeZXWRbnRy9JFwUCD20SV3crmSpW5mc6ps8O4YvGGcbcbeSGHkFwwSqSBTs9bBxFo7MHA7mPQI0rBPhvmUqTba82dEELGQYFOQgiZorjJY0uU8o4x2FzWh3nBJoJJQ1mJQ+eMeucbhZlHmWLuWvxX1UL8uP4EaFUzC358Y2AfjK63Yl9rTX+Ag+2BjTeCe60uxoxZwQfJqUGqtIKbgmTC7vaOO75UQcFQUni2Sjt0pQ0BbT+4fxdsYjfaZRMDWvx1cdCcWGDrl+0hCDVuBE2OdmH8kvcBw0TU5OjiDJrTDiYK0KdRNnSVQ8AMt5iQAC4KDE7JOhVhDKh3pK4n3eDWUeWYeIDjllUvAgBOnaNg1ZzUgWmWLuWTkAkohU7hekRB/65mAIBna2NCU6KyYnIEGnuKPQtCSBmgd3NCCJmiAk09QIECnc4GG0TBCnhVzArCUWcFOiW7lQXIo56CzKNcReetxPsceNkEIhX1YHZ3YSeghRJ/RloY6vvfg37sURiBRgAAg/WzFOGB5LSiFYIoA52PjTt8hY0C3eVIdKXuSF4ObBXAzsrVMMJNONRwHgLcg5aohv4RdfMGjYm9RhqcYVtNDdplE73G+AFLn2YiYgKHVI7DdgcgCAgUo0xFgVU5rO9xeYOAOhfw4YXxIOMX15hYOdv6Hat1Spjh7E05zgyXAqc48UDnosqjAICff/QBrL/i6ZTb6bWVEz4GIcmUQqAz0u0DH3rdU71hBI6Ub7CQOq8TQjJBgU5CCJmiBt47VpA4p2ATYbd7wJQWgAG89dcQbUNBMZb6xHXKyEFNN0OMB5S8rjrAXTvpMXPBjHhgBjsBDAU6GcCgQ5CMofsMcMWfdgwmMiiHHqaszjIkucr7YyKXOLbJtXgTK/FkcCbe0SsQ0jl6lMkHOgHgv9vDGNBNDGRQg08zgUHNxEsDCp726YDI0JOiS/hUMrNCBGPA6XPCmOHiuOA4P6ocIpY3OHD76mdR57Ke/3p3+qBvnVOGU8pNwOi4qqOYWZE8iN/uHL8MASHZKIVAp+aPJHw98H5LcSZCCCEFMvU/YRFCyDTEDRP+Q13QApHxN54kqUICM0Pg4RZUzJFg9G6HyMLWg3Jb3o9faExKPBF+49wvTrqu5i3z18RuX161CKazalLj5YziBTOGsid4GK7eW6HuuAOiKA+VJdDB1fRL1x11djBDhrOWsjDKjWizglDuORJsleUXqA7ZOLyajp/0LgfTvfiDfy4AoEsxIThtYDYRG/smvoSzXTawzavg3pZQRtu/4IniUEjDC54oIAjwlWCNPFFgqHONvxQ/U9et8uG5a/fj+NpBzKtSUe+K4vh6CWcvVDG3oh0LqjVr2bor/Tj1rjDqnYGczevUuckvUL0/ouk9s4lAQ3XOjjkdaXPriz2FojNLoBnR6CxIuTf9BUpCCCl3FOgkhJApKNTWD1PVEekcv37iZDEGwIiCR3shhl+27jR91v/R9rwfv+BEyeqOPkQXBPDJLDVnDEdHnQfpzhJcPtn/JqBZAR2GCARJBIMGMzqYdje7w3pcjL6X7xmSHGNDTV8EQYXoKL96kqrejH7V+uNq19zYHqwFAHhUHUa1G/1zZ6A1aqQZIX+4wFB6YU5gYY0NFfbcnR6IAkedw4/ZFT4sqQ2i1hGGXQKqHdbv1nE1IbgkATMr0j8bM5wBLKjoyNm8Tm5IfhFwcyCefeefU4+Qs/wC/KXCmF2L92yUIVsKDEUbfyNCCJlCKNBJCCFThDpiaVK02wcAiHTlP9AJBsCMwJQ9UA89Yt2lelA5j0Freyn/xy8Q5qoG5iwHJAfgrAKrqAerqIcGhmjtXECcWD1DfdFqjD7l1hylF+hUW16I3WZmAJWOv4Hpg4AWhK06TXMPxaqNpx7+DTCNmq+UO9EpQUQrAEBgEQi2/AYEK+cBTMrtx9JgtA19Q4HOTYHa2P2cM/iddvwmWLxQIxeFggc6bUMdxUdmbDpGPOdOScD8aob7LtmXs2POqQigxuHFbHc/PnfSRly88A3MrjQxy2296l1/0kYcV2dDnTP98t6PzNmKhZXNOZvXhQsbY42QRtrslcEkAYLThl1cQlCc+nVUh43biElgVpZrhj5wuNCuFT+bsegK1RQyDSOiFnsKucOBSGf8Aqvqj5REeQBCSGmhQCchhEwR4fYByP1BANbSdQCIdBcmo5PrEYCbYNwKhnC5EyLvAFRf3o9fKHrDYnTOWwk4q8AdlQgsOh16/UIYADbNPhlsAnU1masGPzn+o2PuV6XSy4IZ/tkCANQ+GN1vwey1Mnhd7saU+3F5qE6rGoCQ40AWyR9HLYPGhrKAzACESTSCyYSovA9bZe6aHzFRwNvGcejWnAAAjsQgexcT8UxvOGfHy5YuiQUPdNY4rSDVRxbFn4u5VfGg54IaGxwScMbMnTk7ptumoM7Rj9muLsxw9qLOOYAPzxvAihlWduZMVzc+fkIIVY70gYpquw+SkLtgxrK6JiysHfv7ppkAr61EdEYVQibHAKbPxRnmTP/3x2rcYPbMyxqY4DiqUKCzFFK3FW/xXutyTQtF0fHSntjXvVsOw9SKk5lPCClddMZBCCFThB5REDjSDUPRwIcyCGRP7mqaDauar8cay4hOCRAA07MZPBJvPGQGmwGlK+fHLqZQ1Ww8WLsEhrMSL5x0Md6YtRzNc06GxgTcL1WhbfnYgOV4mldeiqeNsW/FquSAuvTDAMbWBC0FRverMCM90DvfBADoh/8n+YYMML3x7DDJnbvafyS/JNELWbD+zhVRANMO5vV4QQRgr8xdTeHKOSqe8h+HXjV58Oa+HhmcFy+IpYoi5AIHQBZUi3DZBKyeE6/Pt7gu/hwsm8FhFzlq7IO56LEGxgCJGaix+zDL1R27/4qlb2PNrHgpi48uOIKPHXdk8gfMwnx3C+alKIXc53bib9yOt/wqegxY9Vyn8EUaZhPBRAGmO/17TdTtBMbL+hzBAMOhsHWxJJNandlki6Y1auWAMBTALdbPkJdARqfcn/vPgsUSPOpBsNkDLShDDyvof/co9OgUylglJInFixeDMYabbrqp2FMpG1P3XZsQQqYZPazAf6Qb/sPdsaVSPA9F8Nngi7F6fe4ZEYiSDqPvPXB5ILaN6T0MM3Qs58cupoCzCi+aDLqjEv8puLFbdGJj1RxEmIg2DqyvXpj1mO9UzoKSJKAgS3b8adFZkJedC33uSTmYfW4Zfe8BeryJCw91QbCPPUmtmCPC8OyIfe1yHCjI/EgOcAXKUDbbgDQDaiR11m4uvCWtgM6CORlLdNlg7PsPNMvOMZmcw94PFLdmnSKI2BUs3HJLgQFXnzSAsxfaUGm3ggKnzXVgYbV1e2aFDStnhiAJHKJgoMY5+YsSdlFAhc16nRCFeMbVcVVNqHP0xb6e4RrExxa8POnjZUMUDFTYkwegNukCnuuX8eagghbVRPPsGeC1pVdOJFeYw4beBQ0YcDnTbmcyBp5FoHPQ5DgU0gCB4Y+mNG7pEm1GbprwCSMCtkwS0DHbCrIaORo/a0WOc0Z7fFAHp05GpyGrgMnh/aAd3W8egKnqCDb1FHtaZJrx+/343//9X1x++eVYvHgx3G43ampqsHz5cnzuc5/Dk08+CcOgTONiotQKQgiZIvSwgmCzB9w0UbmoIS/HkNw2mL7DgAsAY2BQIfr+htHhVC4PwOjelJc5FIvJBBgAApXWc3sUAtpMhn9hHODALjY20GcsOg2RinpU9xwG93aOeXyz4MCYJw9AwObCLsGOXQvPxn/1H8bM9j1jNyox9moJcr8xVMuAg4kChL5HE749dd+9EBf9DoZM9bRKnwaPUIkFAIIQUSUmD4IwUbAylibRQdxW7cCW6Ayc7gwg23CSvdYB1a8m1MGrqOtCVFkMHi3dZcdBQcAbg7nLYE1HEhjsIsO/nPQ3BNVPwS5af3/XrOhHq78KksBw7nFAjVPBRxZYgckGtwhfNPu/0+UNDhzpV2AXGZySgGr7+B3pT6g5DIEVfomzQ0p+zEe7I+hXrRPUv3hkbHUI+L96CWNygwWW/e89Q9EDX2MIDN/t1XDLLCdmpNmMA+CCFehkojDuhdQ+nUMzrcDja14VN9W4wVMsoRYqneh3ODAny6kzm2jNY8TPQa9wQBjqMu6fOwO9nGGewNDhdGERitFtvLg/cO/+qdUU0tSt37u+7U1QBqyLY75DXZh59jJowShsVa5iTq9k7fr/nij2FPJmzY8+W9Dj/eY3v8Gdd96JgYGBhPuj0SgCgQAaGxvxoorWFQABAABJREFUxz/+EStWrMCvfvUrnHfeeUnHuemmm/Doo4/iuOOOQ0tLSwFmPr1QRichhEwRelgB1w0Em3qhBaLj7zAB7rp+GH27AACOWjsADq3pyaTbcrk/L3MoFk2wApnv1cwHAOwygT5wNMK6/4gJgCW+rf7y+Atw9uzT0bNo9ZjxmOTA1hTnidtd9XjNBF4zgeBkOroXkM1hnUDaq+0QHBKqnC9Ab/1r4kZaCKJz+jT3KGdhWxX26g1wzXQgHNqLqJi8+3TlHBk29+RqazqrgjgcZmjWsg+sOaWdEB2jfqfkFtwofH1Sc8q3XRoQMQoTADl1rh0nzrRhlqsLq+e0wj6UXXnarGasaOjHBUtsOG9hL46v7cW/fuh3AIDlDRMLPP6/M9tgFxluXM2xZr6IU2fsGHcftzR+MDQfXCkCnZ2ygeHSkl2KgT0BDcmqHKhz6rJeDi2UYBd33WXHe34VO6Pps48GRAlcFCDUVoDXVow7bvdQI7De+mocCGqIVKTIGGUMv62ogWcCpSS8c+vBRsxFnVePXmf8OO9DxNthE9F59XhXLU7Asdgr1wNNveNvVEaGGw/JvX7woaBnoLEb0V4/Bve0FnNqZBr4xje+gS996UsYGBiAJEm4/vrr8ec//xnbt2/Hpk2b8PDDD+Mf//EfAQAHDhzARRddhKeffrrIs56eKNBJCCFThB6JNwtR8xToxOBbAABB4rC5oyh2pkIhqYK1COIxW3XC/e8NLY01ALDq2fEHmIDuoSxPRRp7cmvMPgGpFs/+hcUDR0Fb+uWEpYLByqBxVnpRoayDdmR9kWdEJoqJDD1CDSK6BqnvIQyaNgwKyZd98vZfQRo/5pEWZ4AGhvZoKOvAEQ/sHVM24XDlyXg/XKRlqhl6rl8u2LHWzJNx/nFWJt2Zs96DXdRQ5RBRYw/gjNmHcN4iL/5x4XYsr413NT9zni/r40gCw4n1bTj3ODuuWb4L3/zw1oQl66XGmSLQmUyyd7qwKCE0Z/zakwnjuEsv0NnvtJZ6vzrO72STAZgCQ2tNJeQMAradivWzf9Bn/d8jJl9IeGTRbPxvWwgtE/hV+ZsqwFfhsl43BIa1IRYruQEAm0M6/twTxqOKiDf9RSpXUcRIp6npCR3Kp4KkHdY50PHi+1AGinPRhEwPv/zlL/Hzn/8cALBgwQLs2LEDjz/+OP75n/8ZZ511Fs477zzccssteO211/CHP/wBdrsdiqLg+uuvx/vvv1/cyU9DFOgkhJApQgvGT1K0QO6XRNprHTB6rOXoQut3IYbeAdP7xtlr6lCGMjp3j1qq2Dviy/bjz47dZnYXhqtGGUyAfMK5Cfsdm7sy5bGaRpx/+4Yy6ViVtWR+It3dC8KMQHBIMJsfgt75erFnQyahco6KiO816Eon9M43EIGE+0NnjNlOctsQcjkhsL2TOl6zNA+HIm68r9RDdEgQsujs/ErtP0CsTPyb3K7NmtR8CuFAsHBBl9s+9DLOmNMGwOpyXmFTcN+lrfjQjF2Y6+7E7IoAllYfxgk18Rq6//qhx/ChOdk1QptVKaHaHsTjn/glzp69CR+Z83ZOv49cWz0780w3ztiYZjmaALxiZlcFLOIsreZyQo0blx+xguDtsgGhKvWFtQ6NIypJ+J9+DX4p8fvuPs66yBde0AA0VAMNVdjktT6TvNhn/d9kMKjz4oFhwWWH4LLjS81WcMqrZ59FvCOooVcQ8eqcWVBn1+LlPhkjw7UfhHQoJvBwRxj7g0VqWFPE68FaUM5LrfZiSvX9BI50Fz17lkxdra2t+I//+A8AQEVFBV577TWcdtppKbe/7rrr8MgjjwAAFEXB5z//+ZJoTDadUKCTEEKmCC0Yz+JU/bnP6HRW9MMMdQwdLAy953WYnjdyfpxSpQjjn9DqbMQ2kgPHTCuzJCw58MyC0xO2HcxwSbpXtLI7tfrjAABmTbZVzAqDGWE4qkWYoalVD2w6YpFd0JgNYVhBdhMMPm3sB3R7Dcf/Oq6BIk5u6fpwItcbwRlgAoNgFyBk2IF5izwTED0J9w3qpZc1V0wznD04tSEexKx2hFFlty6G2QQFVfaxmXx2UcE1Jw+g3p15IG9mhYCZTg8qbblpKpVvly9+DdI4DXKGcQDMlfh7pYPFlmdnqlea3N9KrvXXJKZjR6tSvy8ZAAZFCa1RHZ4RWZORBTPwwKCVZfcHVcALdjfWS27wUUvRd4UN/EqN/z6ZFQ60z6pDSLdeW8wJLF1XTeDFkIlHemVslawgsjzipapXiWf/hXQ+bkOk/ChecINPIHhMCBnrgQcegCxb75V33XUXli9fPu4+n/vc5/Dxj38cALB//35s3LgRALB27VowxvDoo48CsIKojLEx/9I5fPgwbr31VixevBgOhwOzZ8/G1VdfjW3btmX0/TQ1NeGOO+7AqlWrUFNTA5fLhaVLl+Kmm27Czp07U+735ptvxub35ptvwjRNPPLII/iHf/gHzJ49G4IglExneAp0EkLIFMANM2HpuhHNQ+ZCcFf8eFoY5uBB6B2v5f44JapdGr/AfXTEEnXursFw+OVR92z0Mgmsbn7scZ+UWWbPwFDw1FO/EGACBhuWZj7pQjJCsCl/B5cHxt+WlCTRZQVhjM6XEIUDIVMCc1TgtehC+A0JbETHZcEmgkkRPNY3H6+wVZM6rmYcBQD4dBtMQYCz1gtblfV7z0QhaYbn8BL3XeFKRI14ZrnktiGkjG38NV0xBtQ6vDiuqil235kzt+Kj86xsS4coo8qWfAXAKQ3t+PCCzE8VFtWaaHCVT/fjeqcHV6/ILKDOGcPgUOd1odp6L/CC4eUBGWzU7ydL05m8y0Ta8gyCK79BesFlhzzfajnEJAH/F0wMwvXY4oFYJgoQauKBT4NzHDCANllHx4jVww+GBWzxylDn1eM3HSH8oCWAB1rHLiF+pjeMx7pCuL2iHv/mrochifh5v5YwfqaYJOD2inq8H1DweFcYh0MaXhi0PvfIsBogCW77mAs0gqPwgeZiJnHJA+Vx0YGQUsY5x2OPPQYAcLlcuO222zLe9/bbb4/d/t3vfpeT+Tz33HNYvXo1Hn74YbS2tkJVVXg8Hjz//PM477zz8OSTyXsnDPvZz36GFStW4IEHHsD+/fsRCAQgyzKOHTuGRx99FGeddRbuuuuucechyzIuvfRS3HLLLXjzzTfh8XhKKmuVAp2EEDIFaMFo/pMGtPgHZq4XpltwKYmw8d8yPbb4SaFcMy92+wAHVMbQtuTD8cczfAvuG8okDdrcYFUz8cqMJZlOuaC40gft6NTt6jkdOGo4mCTC8B2GDhEhQ8LW5V/F24FaDBq2hACNrVKCX6yCAQEebXINppgcrw0JgcE0uoZqAAO2Khsk19jxJZf1dxExTBwRGmL3i04BplmkJaolKFnGolOKxhoAOUQZdQ5f0n1PqD2KD8/PvL7fmXPLrxbgf569MaOszj2ChHcM6/ewrc6q07xb4WiXDbTMTexVzpypg2ltOgeQ/HiC0wa9Or/N5yL1VbipVwdmVuOVObPwbE/i6o9Denxu3nkzoI2oxalw4O2ABoMzHFXiBTWPRDTIBrARdnDOYKTIzOScgXOGzYMK3vEq2GF34u3B+AXabHIPmShi86ASaxoFAMO9hiImEKyvQrC+esx+PM3PJm+KeOI/uLulaMcmZKr44IMPMDhovb+df/75qKmpyXjfiy66CC6XdXFs8+bNAICvfvWr2LdvH6666ioAwLx587Bv374x/5LZt28frrvuOsyePRu/+MUvsG3bNmzduhVr166F0+mEYRj40pe+hL6+5KXFfvrTn+Kb3/wmNE3Dhz70Iaxbtw6vvvoqdu7ciT/84Q/4yEc+As45vv/97+PBBx9M+719+9vfxquvvoorr7wSzz77LHbt2oW//e1vuOyyyzJ+fvIpu8IyhBBCStLI+pz5YkZGLEnW89TsqEQxZxW8TBw3mNwp2sFq5oD7e9BbMzd2f6sJBAUBH3XVYVFFPf665locFR0ZBaePDgVEfTYnwnNOxDuCE/9id4GrpfUz0Fv/AqiBcbdzOT6AihMKMKPMiS4bjGiRGlUUmOiUYMjJu5uLYhiuGZUw1FV4MnoS9keqsNF3LjQuIGoCkluHqhmAySE6TfShCoCCkB6e8HycMxzYoccDRVxg6BbsmCUEANRCchkwjfjHVUedA3Z3BJrC4K5oRrjzJGyTa3Di8AZ2hm2+7BrETGW2cYJ4AjOxpLox6WMLK5vxoZlLAaxIuf+8ahtmVQg45jWwYkbHZKZaFMdXH8LlJ16BvxxM//f/nWMh3DTPWub9ZNDEfwD4+4AVpPuP9iieEYVY7UDusAFhJek4H4R18Fo3mD8CriV231HqqsDAk14CE+xS8iYsaQjVbpij6nVvE2xoCsu4ntlwKDQ2229bSMfHRQHcNPE/AY7ra504HgCzSwjoJt4YsD5rvNyv4MQFVhmVw8escR5oy64RzP93LHF7I8n7IRvxvCYQx/5eR4a2e3ZQRbjWjnkSA5D4Phl1O+EOK+Ccj3n+pxrOOXyHu4o9DULK3p49e2K3V69endW+oiji1FNPxbZt29DX14euri7MmzcPs2bNQm1tLQDAZrPhlFNOyWi89957D2vWrMHrr7+O6ur4xZyzzz4bJ5xwAq6//noEAgGsX78ed9xxR8K+Bw4cwHe+8x0AwN1334277747YYn8mjVr8NnPfhY33ngj1q9fj+985zv4/Oc/j7q6uqRz2bt3L7773e/i+9//fjZPScFQRichhEwBI+tz5gtXvHk/RqkKLzodH7Dxs9ZaRDveXHUFwAS8VB3P6OQMGODAoGjD/lMuwzeFCuxEZllwWw2Aueuw21YJv7sOe00Gbe7JE/5e8iXTJevawYfiCU1FqZc2lrt++izvc89I/VrBoMJm7sV7DRfhVd8M9Kh2aHxEFmdFCGzoZ6bZeKy7cVTth6N+Yk1W7M5+POdfFL9DYNilOtAv1gIATFsQxohMUrs7BN76EEwHg/LeXYgaAjpH1OHTJQFN0fxmxZUTewZd7KvtvqT3C8xEtSP930adS8DKWRr+5UMqquzl2fF4ae34KxQCOodHM8FsIp7ujUCdW49DISs42hI1Eup3mmLy13Zml/DqgIx33RXQZlSNebzHboOSbF8GRGZmnkE0rLe2EsGFMxO/j6GY4fDcR3tjUAZq3PAvnIkXPFH8PWLtIDdUY6dfhTa0f5di4M6jQdx5NBjLqowki1SmEdATtzeTXfmrTlEyJkl5AM/QRLZ5FRyRDWyLjg1kvgEbWufOACvgEvZiLeU0ZG3KB3MJKYT+/v7Y7Tlzsq+TP3v27NjtgYHJl3d65JFHEoKcw6677jrMm2ede2zatGnM4z//+c+haRrOOOOMMUHOYYIg4KGHHoLD4UAoFMLTTz+dch7Lly/H2rVrJ/6N5BkFOgkhpIyFOwfRv+NoQTI6YWaXTVL2hj4A6MetxlPzTsX7Gayre9kU8V+2arSvvhp/5GNrrXkEO77ttj4kHchwnR5nQGT+Srwl2PFa7SL0gWP3/FMBYXLLhYvFlPsguWxw1DnGLbZeKCy43apPWSKB13xivleT3i+6bEB4L7TG3+A5OXkgnYfeBsDgqHMgIooYXiDuMZxwuDLvYD2SxvtxaGRg0q3hoGxDs2lleYbNQWgj1h8Z+mEoNgOG0Arv8ishcxHdCovVRVRprVIMY4A9SeZbNiqkcNql3U4JuHjJMVx38hbMcU/sd6DY5lZmFqDtUQyYdZXQTOBBJfH1N1Q71NSHMRgpanTq9da+93VF0etIvDDARAEHDYZQkkCnOasGASn71/sIY/har55QMzQ8TjAypHN0VVXgP/us9/tX+2X0L5qFtwU7WpMEDnNJH7XkXbBLiLhTdIEXxj7HvSMyXncHNXQqY+d7X0cYd/UoSQOleTPqKedmYRoE6Smyigkh2QkG4xf8Kisrs95/5D6BwPgrn9JZtWoVPvShDyV9jDGG00+3Gp82NzePefyFF14AAFxzzTVpP3/X1tZi1Sqr9vrWrVtTbveZz3wGYooLe6WAAp2EEFLGPFsOo/W5HYX5QMunV/dO5rQybn699Dz8BHZkUpW0DxwDHPh41WL0JclO6WQCjg3drWQRf9g3cxmaOcd/D3XBftRZD8xYNM5epYlxDsktwKFuiAWTi43LvXDXRyFMIJhQThz1DmitLyQtEWivZlAH3gCP9ODNYPKl3wO6ldXgcHXBDwfUocDEi94GaIJV3zNbLQD4iAkx+V3siNQjZA7VQ2RVUEZkU3vUDtxbcQsUpRWXem+wtlGcEJ1WhDPKqD7nsGqHNOlAp1OUsawhdYOccxaG8amlz2FR5THMdHVP6ljFUufMrPRCt2pin9PKMHyiO/EdYRO3MgRZfQXMFK9r4aFGP01hHZFRf4TazBo0ygZCSf44m50uGCnqeqYTAsP+oApeNxSEFRie6B1/9ce7GsMOn/V31C4b+HhjGH/35v/vSh6V+dg+dwZ+ERWSvl4ZSRqUjawN2qsaaEsSmPWqJvYFtKT754s5ukSBd+KlPrIR7fEV5DiETHVVVfEM/FAo+5ULI/dJlomZjZNOOint4/X11ue3kcFZwOrsPly3884770za5X3kv+HO6z09qRsMpgq4lgoKdBJCSJninMc+yGqh/Gd0cj69MjqN+kVgdjeeRu6WuLVnsPw9md866xEacQ642QR8s5ZNbBLDTZWKGGS0OwagHXkUoqNEAotGFMz/GiS3CKkyv12Pi8nu8gKqD7aKsd+jKGoYrDkRrG4RfHry3/lXbGeD2QSYagv83ITCreAHB0OTtBCCLbuPlYJDQpOSeJFGjrZhf6QSOgwwScB7Wj0iLD6fQ8JCPDEwDx/wKkSGgqFdqgOiwzp2mBcmiFAOFtSIcNkm93c+292FeVXJswAZAy467hAAoMbuhY2VZ53bunGW5w9rj+r4hSf5RcV9Q0G1/gp3ql5DCI7IQhwdNjzmcOAdv4Zk77LNBpB1LiUDAkM/tn63C2AM+uxadMrjj/SEZ2wwdG+Kpe65FDE4hBo3WF0lWH0lvter4snuCPzDy+8ZYu9bEUf61+mAZqAtmvozi2Iv3NJ1U9WsmqAmhxaMwojmJmicbkk85xyR7ulbboiQXGpoiDc8TBf4S6W3N77aYcaMGWm2HJ/bnb40jzD0PmMYia/1Ho9nQseLRFKneaSq3VkqaIEPIYSUIVM3EGz2QO6zTtDyXaNTdEowu45NIKekMFj9QvDB9vE3HGnmEmCwHTCSnwy9dvy5OHn2MvTmsLxW2wTH2jwqmVYD0FgzH2dOYKy6T1wF30svQqyaAX2wc2ITmiyfVTuIjcg2s9c4oPpHBREEBpj5r29mBBrBe7bBuWoFoPUhEMqu2Hy5ENRj0OefAVsFhzYqKYGxCMJiJYJz/xFIsQL5np4V+OxSGQcNN5j/RQisCsC5AACP4cYSl55VUydXPcc7wbkJ9/2ZnQEA4GojKmbNQEdgELKjdugbYLin/1RwMGyMLIztw8EgVgaAQTt6DbqGP+zshQq80cl91HdLIcytSv4aee0pIuZXWs1OGOOwieWZTVvrzGwpYcTgeM+f/HvsGype2QQRqwQTycJw7Wb89U4Z9bI2yBkOhzToGLtUe1/EwIlV2f1eR+Y3QB463iATUD+rBr12O8aGWMdqDI/9eXvV/K/oiBgcX9QdI55j6/9bOhQ8W+lEsLYSYVHArFYPfjJObNrgLG3N0H2iDWfNqAQfyH9dWS2kwHegE9FuL6qWzoLcF4RU4YRjONN2gkLNHlQdP9u60M0BW5X1uxPp8kJwSNACpdWwkJByNTJzcffu3VntaxgG9u7dCwCYOXNmrIZmoY0MfN51113453/+54z2q6hI/TpVysvWAQp0EkJIWVIHw+jddCjWjTTfGZ2OuuIV1M9EcNYJqMwy0BmtnQ+3roJ7kwf7wkzEhtpFQA7P7zJZ/p6pD+wV2Qc6GYNjlY4a7RKo7Z6iBToNz7bh6cTYK2Wo/lE12kQBppnfunCCXQLvPAoA4D1/h1CbusN0ueOhRmyr+xgulEIARtUI5EFEBRf+oK5JO4aAPhzUqrGIBaCNaKhlAGCO7F4jBEHGS/7EZimvhqzAJ+ccgvd5hISPwRj6RREkET7F+ui6K5TYnMXwvQywK9CspWheMg0J4Dhlpn/S48yukIFRobvV8xy4ctkHkITyDG6OVOeY/HOkDV2Q2RM1sNzJkCznpnvES9noQGdgaH8tyZ/Qdr+KT1Vl93u9DRI2Ba2LDlEAx5xO9JZ49ZmIwdGTJOO0JWrg4YYaqApHyOD41HFz8Ncjk2sg99SghuPr3agvQKDT90EHXLNrMLi3DVFPANwwYa9xTyrQyTlH/3vHUHX8bITbB+CcWR0LdPbvOIq6UxbCkMszw5qQUnPKKaegvr4eg4ODePvtt+H3+1FTk1mDuFdffTWWFXn++efnc5ppjcwkzabLezmjy96EEFKG5IEggkfjaVd6ngOdEuvK6/iT9dwc6w1727lfgDl/ZUb7dNfMx6dP/xdATFzCFjz5Y8Cc5dgouvEsz+3ytoEcxooPCdl3uWY2J4RqwH1+GPZ5M4u2fN30HbHmM+JisGiODbqyDOsLiq6J/5xsVfFJ6J2vg+u5DEcXhzS0NN1Rl/g7YkRa8H+BU8DkD1A5H6iYawUNK+cxyD1P4Ka+S/HMYPqOogMixwvBWfiy5wJ8ozceatcBmPYkkRTGEjqyu2bZ4ahzwNngwKDdPWaZ/L6IdfL/Z/8ChLV2bA3VQYUViKqs3hlbrt6mJma+ec0obFV2tKmFW5Ja6mqdKpbW9o+/4TjqnDIW1NjxiZNsqBwqN3HR8QEcV90Jm1D+JU3cthBcWZZdGE3nVkOhjX0y5FGNclh9JYRKJ9qV+N/H2rYwhKEGRvrcOjTJ1mMjn01WV4GrWTWaIzqyzc3bFzXxwtAS9IgJ/C1s4lvHJhcczLewwdGXokv4L9tDeLgjjCe6I/hslkHO0+dZrz9zquKvDa8PyGhCYbKRIp2D8B/qAtcN+Pa3I9rjQ7Rv4g1JQq39iPb4EOn0InC0F9EeH8LtA4j2+KCFZAzsbkGk21eQkka5xGylnR1Gpi/GGG64waoJHo1G8Zvf/CbjfR966KHY7ZtuumnMuIWydOnSWHB2y5YtBTtuMVGgkxBCypAykPhBP+/NiPy78jv+JLUKVsCmW3Li/UVnjLs9c9fhmLMGh0wOfWFiMe0/zDkFO5aeCw8Heko4i3VCoWcmQMZsMIFDmuMseud20Tbi+VX7xjyeSaCTiQy2yol/WBTto06sjfKv8eiotr4npzPedZNJAvzuGdgdrobpfQ8MMthQNp7ABqHY3AgY4y/06dDCaFFcCBliLOgIAAYHIsLYvxfJJcHh7Ix1tLdF/wansxmSIwp/msqDYV3DX6suQ49qh2lYvxvGwPaU2/+e/SNsbgMBvcTT1gpoae0g5lZMrC7XSDbBwEcX67j9jC349Arr+V1U5cOiymOwTYGMTrc4+UCnxjnUWbXoUgxERxV5UR12vFxbi2Y5HsYcUE38vbIKYMAz3I7n+6yg5MgcvM2VVWgfynAcyPLX+r1g/OdyRDWxviuEDMpzFpVHNaDl+M/3uDo7rlg+CAA4c0HiY/sK+ISYevxYpqJDmUSgc2BX8//P3nnHx3HW+f89ZXvRrnqXbLn3HsfpvRBSCYRywNFCuQB3v+O4O7jCUe6O0HNHOwiEEJJACAnpjXQ7cZzYce+yepdW2r475ffHSFqtd1fNkiw58369/LJ25pmZZ3dnZ+b5PJ/v90vHK4dQYwnan99H8FgHXa8fpWv7Mdqe34eWUOg/2EK8e3YL2ycj2M/c/Ngmc58vfOEL2GzGpMnXvvY1jh49OuY29913H4899hhguEKvueaatPV2uzFhG49Pf0FZSZK4+uqrAXj66ac5cODAtB/zdGMKnSYmJiZzkKHcnENMZ4iStyJM8sRD07b/U0XwV3ACiWfOv5V7JAdftxchWHMn6xa8xWjeYhotxgNLfVF6UZ9Hkfm8NZ/jM5Ab8lRoHtk92YpgzR7aaKtaiu+yd2OtWITsL+PJbmO0Z5mfRBBPbwYbqedXeL3PIzstaKFjac4/AItTxFlqGa7mLWZxfHhKB5Ask3OViTYZqfMXacv0k5NXzkGkAePBWm15EHuh8ZnKTgsHHUsBSKjd6M13Ig46JYVkByFr9krrJ3M4ptKWyHQTK2gMoA5XPx9CtIgoHX/E7reCKJAMbCd57H9IyAl6R0lLENc0vt5hOLVbEjqCJLLXlzvU6q7uSjSLRkCZ5WrODCAK4LSIbCrZzfL83ae8P4ukclFNIyvyd/H3G/8MQJmrF681QL7t1IXU043P1ot4is6aw+Ek/xw09nGyvPQ7TeYrxwfYcVIO4q/VB1FLfPygKUTPYA7MlsHYddFh5d8bU5MuXUrqgi96Rw9jV8r87A+lhM6fN4fTKpLPVjrjU//bvXl5iGJniFKPhfOq0s/VV3LkWwWG3bZTxVCaIQAlGid5CpPTgf0t9O1uJBmKEazvJHiii3BTD91vHKN7u5GGJXiia/onwKcQQRKJu43zWpBNecJk9lFbW8vtt98OGFXUL7nkEt5+++2c7X//+9/zkY98BACr1crdd9+d4eAsKzNS9XR2dmZUSZ8O/umf/glJktA0jfe85z00NzfnbKuqKvfcc8+obWY75pXExMTEZA4yVG19RujfConJuw+mG8VdQFTX+ark5oAGh3WdjqWX5GzfuPA8FLuHHYLhHjjm8KVWSjInNBgAZvu4sFNjOPRc8JVhKajI2k7y+bEtl5E9Plxb1vGxN4NEhDoSjvEJW9OJ0vAoyQM/x+6PoXW9gXRS6LNkjSC2/RBbniGeWfOyCLOBlxCYnCgtSgJK41MndWruC51q1+uIVhmlfRs2wXgQF0Q4qJUAEHJVoba+DP3bAdAjjfRLvnHte1u8JOtyRdfpVpPY89O/Q00QafDUYLH3Y/dbebLoJhrKL6BX7aZdze3g6VVk4rrxmLo77sHitnBXbE3u94xISHQykCP09Z1Etc/Kx9Ynqcs7gNty6oMnq6gyz9uMQ45Q7mxAEMBpMRyI8hkQug45C6WPm/6kzvM9Rqhw94hTUPC7uaPREBpPNhDGNThms6e5GH/SEka0yhwpzk8rANQ5InnnPn/u3HDJsnyuaEmij7iBxd/BJuc1xU2cV/EGH1gZYXPZnrR1B0PJrOlbRKvMYy7PlPZDHzlxqjPpyuvJUAwlEjeEU00HncH/dXRVSwmqs3yi9mTUAg97rYMTaBPMR2tiMlPcdtttfOELXwCgsbGRDRs28OEPf5gHHniAN954g61bt3LnnXdy6aWX8r73vY9EIoHNZuOee+5hzZo1GfvbsmULAJqm8elPf5rXXnuNo0ePDv+balauXMl3vvMdAPbv38+KFSv4h3/4B5588kl27tzJtm3buPfee/n85z9PVVUVH/rQhwgEAlPej5nCLEZkYmJiMsfQNX1GhU4teGTGjjUZWooXckCD+Ijxyt35dfy/bI0FkZ/m1bDeXcLrg+OBfZKdK4dWO32zXuAcQhdAsLrQ/eW8uORiLm1MhfWKdjdazBDs1NIKev3l6LZ+PKsF9OfhM3vK+PqSCLIwO+Y7xeBLJIONiIKGaJXQEipWnw2avova9ipy5Wdwl4tIyZ3ESC8WpPXtR3LOB5ZO+LjZQt61/mPgn5lq79OCKKDHOnEWJdBaHCQP/QSh6A4kC+wMFQJw3L6ANSVLSQ68DeIVxIUYj2rnjGv3L/RnF8gTaied8VZEWyGMKMUi5CX5VfcW/oUurHaJH7cuRRKW8J/SNhqFSk4ucjNEQEk9ou6POpB8Oi/0FGRtO0S/YKMveeo5Vj02ieA0uMtmApss8sXNLVw3/+kp26dVSlLiNHJCy6JCiduCzxaYsv3PBjZUCLx0QiKcOPXvvW3QfSlYJBq8bmjPLTa/Ek2/zvQndQ7OK+Q/WtPzKzbEVRBAdNh4eEBlYZkfua0vrY1W4uOK5gQDyhy9dk0Dy/IPU+M5ymdWh/FZe3BaLiQyqCwnNRA9drp8HpKCQGlDB6LDykChl9+2x7hqKjtyUhqcbFE4SjSB7Bg9fHuuhaOPlxaHnacGFNYCIZcDV9/cTyFjcmbygx/8gCVLlvCVr3yF3t5e7r77bu6+++6sbZcuXcrPfvaznEWILr74YjZv3sxrr73G7373O373u9+lrZ+OIrBf/OIXcblcfPGLX6S/v5/bb7992Kl6MlardTi8fi5iCp0mJiYmc4x4TxBtBl1Leqxnxo41GV70lHFygFa9kD33pODI4yFN4CEh5RhoH9k2x3azFrubAzUb+Qwu9tvdw4s9Z51P/0tPgK4TXVDGd4/7+eL8ebydLAOiPNwa5gOVblbZ3OiJ0198R+t+CwBBTOIq0gm2SNhdPST3GQnTRbUJreE+EoGDUHJnakNRQOnZjdp3IH35OJEtIU72o2mhZqRSGTU6NyvWWlwWFK0We/+zdM67koJDD+IsFpCEVrYPVjR/LrmA8vx27GoIe0KiWXbxi/bqce1/ZF7OkeixBpp0B71uP5YRv0gx9AK/772CW90NFFutHIvNB+A1bxVhPQBkDxHVR3js+pM6mhVC6ui/z6QwQK9yao+2ogAfXZvgjtfm2LVgkK9e0M9Hl94zpfu0ywnsUkp4u3KhwqK8fVN6jNPN9YvrKXJV8pudp76vpkGRfKDUT9cY49S3w5nXmV/1Jg234Qhe6o0Rr8lnv2yluyfB721WPiiJKQefAN+Iywwoc/O6NV34rUYxriJHGwDFbpkTfSk3ZYfPw/vqI7glkT+V+Dhst2MBDoWiCG4JfZqetdRYuqMz2tlP8HgnxZsX5tjCIBE4MwXA3YrAq33GfeMvmsy1lun77N+prP/WLae7C2cMn/70p7nlllv47W9/y2OPPca+ffvo6upClmVKSkrYuHEj1113HTfffDOSlPtZQhRFnn76ab797W/zyCOPcOzYMcLh8LQInCP55Cc/ybXXXsvPfvYznn76aQ4dOkQgEMBms1FRUcHKlSu57LLLuOmmmygsLJzWvkwns8PKYWJiYmIybiJtgZk9oD67Hzbrxcwqy32DzwhKzXqj4M6gc1H1Z4Z3dwNIg+LIaapCPll6qtbwnLMIALUs9d6kYhfOZZtBEInm23m8PYp9iYt/2JuKYXysAzR77hDImUQNGEnRxYG/IBAEAYRkKi+Q1ng/avdOUKJp+busHiuCpoASRXZahgvejBeB7FVpJevcfTySHXAgfwtK85PcL52PYHMjtN6BqjTTN1jh/ImBUo7ItURkL9Y8mQ7h1M+DetXHs6FS2nR32vKIbgxeDyYFemINw8vvD1TTnCXXZzbCmk5M7B2znR4/TL96alXXt9TY2FDWdEr7mCkWFNjIG5ETdUOljc+u/PWUH6fc3YVNStX9/vy6x5HE2X1fmCgXVGzj/KrGKdnXiajx2TyelOgbI2x8z0BmCPP2/szcikkN/i0o8C+NEZrjKn/oiKLnp35r/VVF/LljorXZz3xOTt1QMujilwbvFd/qURhQdNoSCvcLNr7dHmNYSpzGEGrlpIm0njfribSMfY2Lzyahc4oelwSLxBN9CdriKqLDyrP9CdT8qU0dYGIy1fh8Pv7mb/6GJ554gsbGRqLRKMFgkKNHj3Lvvfdyyy23jCpyDuHxePj617/Orl27CAaDaJqGrusZYueJEyfQdZ1f//rXo+7v17/+Nbquc+LEiVHblZSU8K//+q+88sordHV1kUwmCYVCHDp0iAceeIBbb701q8h54YUXDvfvwgsvHPP9nU7m7pO8iYmJyTuUmZ7R12e50PmIlnkrGxouXDz/QgRHHkr1WgCaSxdntO3SgYIaBFf+aa9CPlHOK1zOT3Sjz55LCpF9pQA0+8qxVhRhKa7hrnYnnXGF/bqPNwOpAfRvGkJgn9qCC5MmaZzTatd20KLYfDa0nteGV6tdbw3/LY8Qdqyu1Pux+xRkx8RELiFyMOvyLNr5nEGUVL4fOgs90s4DfZU01t2I2voyWtMfhtu0J6zc2raFvVIdFtsA9fqpz9j/qquK3WE38RF1o+0FNv5PWQPAs7Eajo2o6t4Yt/PSgH9c+46qIonux8Zs1xo79VzCy4tiFDvGFhxmA5/f1MRZVSLFbuOE3VIZnhYBckPRNrzWwPDr+d5DU36M002ps5liZ9/YDcfB0UgSId/N9xqDHBijsne2MPP+ZHY3z7PdMdrjKkfDCk0xlRdsRooI0Wnjky2Ty/l4JpLvNK4zBU4Zi5T+uVw2v49LF1gpHGzzcq9xD9F1ge81hNg1kGR/3Pj8X3ClT9pMJVoimZa3M94byigyeTLJUIzOVw9PW58mijAFBZsEWUT3Onlt0M2pO6y0xVQ67eObBDMxMTHJhSl0mpiYmMwxkgMz69oQRqmMfLoRrA6yBV73AggiGoAks6tiJQBKltD0dh2ieWVo3hJ0ee4+XEdUG87lqxHtbva5fQw4/FjLq3i83XAt/qQ+y+DZNkuEzkG0YAOCGsLmDJBsfi5rG9E2aCMRQNJTrk9Rb0WyTsxioie6sh9DnrvVOwRxsCp64QI6klZ+khzMDZVFvf1DaCFisp6DyfEJjuMhqaeKOdnk/RyMewF4PFDMI7FFaW1j2vi+r7Aq0WXNXgRpJK8mqibQ0+xUeEIUOmZ3uo4hZEnFa9Oo9omIAtjk2XutngvkWacm/2F/Uuc3VheqLvBy3/QJkI2Dgui9Xh/HI2dGUaipoMxj3Ocr8zLv9zcv+gtf2LADhyX3tefxXuM7+4djA1A4Tc5CHdR4alJI13TiPaOffw0Pbp9VldTjDhui+9Ty9wkWGU1KyRGKVUbTdfarcyu6xsTEZPZhCp0mJiYmc4xkcJqFzsGQLkeJFdEqoYZmbxhnx5Ls1dVDOiy/4G+NEHbJwv/YCxCcPhocmSG6UaDZX8Wb885i+fIbprfD08j6FwSEwjz8N1zJgYjIYSEP57uqqB/MAfdMR6YkLFhGL3ww4yQGSOz8V5LbP2aEpGdBFHXcFTre8gCJHV9KrQjtR7Ski7nSCIen1WdDkFMDX2epBT2e3bknCLNf6LTm5RDlhT4a4naeLPkAAA/3lSDk19CVvzKj6atBH4ldX2dHeOqEzn5VHU4vkIwdYduAIXTGdZGH+tLFSnWcj6FxXeT69mvGbPebnlMTOteV27iy9nVq3Efx2Ga/u7vS3UVNXoRvXfgKvX/7A76y6Senu0tzGq+1f8r29cMGQ/CfTgGyV9GIVRRwe0No7ManiXctGb89vto38fvRxXVWKvJS283Pt3J2lSEGLizIFP5rPEc5r/wveGy5hbS9QUPoVHWBFxxjTwYKsghFXiiYmCg6lKdT13UirX0okTihxu60NsFjRhGwWPcA/QdbJ7T/qUKQRY7VlCL4XQj+1OcxYJHR7Lm/X9E6dr7kziIfm5oU/A6Z8+fZ6LVaaYopHInP/nuwiYnJ7MYUOk1MTEzmGMlg9ryCU4U4OLtujT+Po4CcgtNpR5S4s3D0xP0ASBbiCPTXbuC4lN19sMuRz0Hr3M4JFVV1mu2F2JYF+dWJCL1eJxHn6AKWNBdLEopGbk1BSXfdaV3bEaX0ga3FlXrMkWw6g+lMQRCQg39GDzWTjdkudAqyhM2dvYhUZPAcfyJWO7zs2Yq/4qilNmt7wVfBsdjU5aJrTFqRbMaJtcu1Ytxi5mxgUaHCgrz9WKU4l9TN/n5Xulu4ct6utEJBJpNnZHj+XCCpw9dncRHuc2ps3Lzk6LjaSqLA5qqJO5JvXNzE6tLUBNd/XHiAAofxe1hVnDsVgX+cl7xftMfGzEUpWGVesjvZ655YhMRQwbvg8U6S/RHQoePlVDqVgSNthJoM4TPcePpc5tvKivlyU4S9Xg9tntR7bNFFNHGU66TTNmbe8z8NXro2V4ksKYzxQMQQmLXprcViYmLyDmD2P8WZmJiYvEPRlOwP/dMdui47ZSSHhcShXyIrs6+ybrxuM1rlSgaWXMRv1bFvY7pkoU2DNwrm05Aj+eL/Cg72irPM3TgJmmsK2ZXYQGdcodtr52uHRs+9KEpz7zFAkpLQeg9aIL08stqzG0FMF+UlaxKLx/heRVFDphVBFhEtIokj96D07gEMsS8N4TSHAOcoqmT1GS5OR4EIZK+uHBk8j58L5A8v+3/tG/ivwPqs7YMFy0+ho5m0RPtxOrbjrtB5dMA3pfueLjw2Ca9d4h83/RlxUOQ+q6J7jK1ODxfMs/Hch17jioVWKpwn2FC0DZecXfQ2mRhueeocnTPBgx0RnuqaOZFbFgXcE3A6X7mgm4X+EwD8zebRr6nXL5Oo9k782WZz2dssLQxz60adZcU2rql9BI81QYFTZlVR7uJS68tCFLnGdpseDCXRin0Zy8U8J+Jgjsqk18lvOmM8E5rYfSPeazhx+w+2DC8L7G8Zzt3Zu6cJXdGItPYRasieZmWqELK4LwWLhF7k5W+OBjkRVfniiTCH9dQzwwkFeh250/1oFgnRkvt8EWSRO1uM/NybKvpY6A/w69YQTovILJ1eNzExmUPMvRGOiYmJyTsEJZI9t9d0h65bXVGc+UFQomg926b1WJOhMb+WqCufbmc++jjSOIV9FXSh87zs5qCe/bbXhc7hM8BB0KtIfORNY7C1Lwi/aRyjuEGWnKWzHTGxG6X5ObS+bCJ8+pcoCkkEaSinp4aOgsVtQbJJCLqKMFjV8kjl1WnbCZxeR+eQI/JkHNbdiFYJWe7i5Pc6RFI3hoj6CBtSUhc5GnVmbV/vGIcregKEFA018BZS6BVak3OjqtOmSom6fJliZyo01GebRdWNR1CXH2d98WtcUNOFTY4jCDr5tukVQd4pGJ/n6e7F+EnO8GVqQYEVv3389wxR0KjzHEQU4PqFO5iXn30ycUGBje9f+AsqvRMXmmUhwcqiNj61+iluXGo4OD3WGJfU6aws2J1zu4urD7BpnJkutlnTI0FEm8w+n5cXPEYUyF9kOwOKTiBLYanRGApFTytCpOvDk9xaXCEZjNLyzG6C9dP3GxcsEmTJtan53exwpO4bfQkNdcRb7FE0BkaREhIWGUYLX/c6h8/h1UUNVHm7UHWBefkWYuoZ8EBmYmJyWjGFThMTE5NZSnIg3aWT6I+gxhJoyelzmwmyiKg1o5/4sdGH1pem7ViTQpJpsHuJ2tz0WrMLNyfTOOjWe1IXOKjnfng+egY8V391X4TGiOH0+0NziLHGCr2uSihekrlCTh+QKlWboNioWC+MKNgkeErSXs8EyQPGuakGjmSsEwbFP9ltHXwdQbIaywRBRUBHtmvYvem/rWe15YarcziWP+UncRRbjVyfOVyW04FkTT2eDTlSLW4revgYHudL6C33kUvo7BvlHM/G/0WyOz0ny9uRPN4uvJBQ9CB7InMjHcR1i5opdetYxVShD7/dcFtZpFP73n2Oqc0PsaG0HYB3zXt5eFmebW5UiZ8LFDjTxXn/FH9/c5m6Ag2XVUAQIM8+9uciCxp2Ocq8fBsL8w5wTrUyXBEdDIcowC/f9Re81gDl7szzONfvTxYF/vOyAPn2bq6ofop5nsNcXvsmAGeX7eYza17BnzEBkDr2puJXWVuSW1gd+f5+0h4bdm8C6C47/9IU4bvNEd6qLuWHzRGaYgoDioZolYdzFI9F/6FWdE0n1pneDy2hoCkqse4Bet9uJHS8k3j39OUo0HyutIJAQ/TZbXy3NX1ifWQcQVNc409BlZ01ZSAKGa7QuCTS73cj2i0Zn4lolYk6bAgClLgtrCvaQbXbEH5XligE1NmdPsbExGT2YwqdJiYmJrOU0IlU6GRiIErz47tIDkxvmJo93wJaFLXzDQAEdXblfhM8xfRIVurdxbxk841rmyN2oxhKFBhNIj4T6hV3xlMCXXgcjohXbOsJ+BZnLNcL6lIvBIGv2G5lIM9YphalKmer7hKU4qWn0ONJkAgY3dIzvzEdHdllxeUwwtqFyAEkiyFeiXovuq4hSRGEwFNp2/WqNhoqLkWwGOK5MOJssOq7ceYHkR0z504czrAgCNhjv0Z2WXFYXkIPt5DY9z8oLS/mdJ32JCfm+H6uP3/sRhOgIW7nfwKLed59Hj3K3HB0Vnm6uKquGXlE6gOfzRAW5vknn9JCFGB58dS6ppcVHAeMoiqp45iiwFTxrkWpc2BVqY3NVeZQaQhZBJfVKNq1oWLszyXPbkwo3bIiQJ41wNkVrXxu08Dw+so8C5urbawuNJ43rGJmwHJNjgJFDovIZ1b+Gq81gEOOIAoaHovxm13k28si/76M34Umlg3/bZPjLC7oyLpviyTw3pWpvpyIJvk6DoTBYkMJm4UTUZWWmMqnjgRpj6skNehKaPSW+tH845vgUcJx+vY0kgikT7xp8ST1920l2hYwRM9pnNwGOOh0omfJtZkU4Gg4/TvpHnStChaJZ3qi3NsW4ZOHB1CL89C9zpO2F3lNl3mzpBDBle4YTea7aZUtOGSRcq+Iz9ZLlacegGsWHGZPRJnRyUUTE5MzD/PubWJiYjJL0BQVfdCNpasawfrO4RCmxofeQAnHSPRPby42i6UPQc+e+29aEATUqlUEl16C4MhDGKN4Tjy/mt2ilcftfh5kfALC89L4nJ/vRN4Wq4m40vN4ChZ7SvyUrQwsuJq39QokqzHgDHmqEfxGzJ/myGNPwQUz2ufREIni9HWiHL8bV7mA0vokAlHDbRJvhMhxxMhOkg2PpW0X0mR+p56FUrAArXwNw45OAfRoE/qx72NxztCgSxQQZWOAbi+wopx4BGfyNyQP/QI1cGBEQx1BEtMqy0t2GTV5+t19ETXJHb3LTnc3xo1djnPNvGfTlvmsAbx2icVFkxcRfQ6Zcs/UihT59tNXlOSdwLUL9gOGxvKeZd0Uu2bwfniaGHJWjhW2Lwk6Hhu8b3k7y4rSn0UclswhZYHdEB4/vNS43l5Y+RofW/4nrltm4YblMqUegY+urh+x//TfitMisqAg+4SdLYtrUhJT2zukkf0znIZBrSat/WLfsaz7vmCehU1lqUJ1MRX2hxU+GpIQ3XaicnY3a2tM4X8GdCK28U/wtDydGV5f/4fXCexvydJ66hGtMvcFFFRRRJBF1BLf8LpoFpmgLaEheh2o+R4SIy6Nb9vshO1WBElEGHSHxgWBh3oS/O3xIEd9XqNquywiuu28ZrXz55BKmdfCJfOM88Rj6afQZWFlwQHqiiSEPPPZzcTEZPKYQqeJiYnJLEEJxejd1QBA/+E2om199B9sJRmKEWnrQ9d0et9umNY+CFovaDM3sBPyyvhd3QVsLlnD8eWXEyvLEkY9gh1ly3hIE/i9JtA3zgjdp02zU0621HTSXbIgbdnDS77CXt8G9OIlJCo2sMO+lu9d9jZ+j/FBRvIqieXVgiih+Yq5Xzr3NPQ8B/1bIbANbaAB7Y1b0HoPIOhBnMUSevAwyQM/I7H3+xBPr8a7M5LHA71lvJp/JX/Mfy/ohpNZslvQBg6h9uzGIo2vevCp4iyWEUXjN2gZzBOZrH8YkmH0cNuIljpWnwVXfkr4svkhqp5+YaYvKVIfn7pK7tON39ZHvr0zbZnP1sd1S3TOKp+8sOixiSwpHBi74ThxWkQqXfVjNzSZNGeXvYpNFllZaqPcHaDEPbuiGqaDIpfMihIb+WOE6dfkRSn3JLmi5lWWFqTCwkUBvnVpZ0Z7vy0AQInTEA0rXCfw27q468rb+dUV36HKq3Lj/IdH7Cdd6PzAao3b1m/P2hdrlnlOt5z6raXcnAIBjHvU3oF1ae2r3Mez7rs6L8GG4nQBciCpsWcgydZ8H4kcivCAovNQR5ToBIr8JfoycwGHG2euEFp3aT57gwkarVYaK4r4RkwedlI+HMp8eGqKqzzjzaPZbmNZsW1YHH81rLJHlOkvLyBYZkQJvKjpvB6IE1J03ns4yOseL33lBQT8Hr5wJMhvWyPcsiLAV8/68fD+S90iHssAq0sjRJ2ZeUNNTExMxospdJqYmJjMEjRVo/WZ3WhJlZ636lHjCr27Ggge70RXNJKhGL27c1cRPVVEq4we75hRoTNcspAG0Rhc/cBbRdThzd1YkvmDbXTHp8nEOKvsOLulGgS7F8Hq5MiKT/FPbavZalvOvpJLOepdS9BfxmXVT6FbZARXARa3lZi7FMFXhWpzUlkytrNWsMzMgEVtexG1/cX0Yyv9WJI7UHqzF6YQXAU0xu1ENYm7Qkvp1RwIquEGku0iaq/h8FLr70LMUSRoKhgqmmTR9iMIRri9oI/uzrTY4tD1+PBrSQwR0E//4LA9Oflw79OB15aZq89n7eEDy95kcX4rRS7LhKpNOwfdbS6LwPLC5jFaZ8djkyhyWdJyFK4tt5hh6tOMUw6xpdrC+TURvLYIJa7Q6e7StCOJAjcv66HcO/o5vjC/m5q8CD5bNysKj1HkslDksvDl82JcWLEdSRQoHFHJ3G8PjLq/29a/gFVK5cWVRI18p0yRy0Kx28Jn1zzBOWUvcN2yTIekNUvuTo8l83ccFdbQHjciEJ5tXw4jIkEccoQ8u4zfIVMwIneo15rEbUnPiRkbjLb55/oQrWNEk4TmyPBakEQeTwh0JFR+0p3gW50JDkcUBFlCdNr4XVvmuV8fUXi4N8G9QY3KPJ1yr3Gtf6E3zq874/w8DL9PSIg+F4/3J9OuX7tjKr8OgzJCKL5+wStp+y90gSDorCpqoyeHc9bExMRkPMyNK7GJiYnJOwBd0UgEIvS+fYJoWwBd0wi39BI83oGuasS7g+jK1IRB2vIzC8h4nC+idb2KrkydA2ks3l+xgXs141b0rCYQtLmNFVkcEwOLLzTdmVOMxxphRUU7jy78fzy5+Etc334NXzhbYU11H38bfhcPOc6ntsoYiCoONxtcv+BPeRej5eVzo/u/CftL+JuNfyZRs2XU4/x04X8ieIqn/f1oA/VoA+muZz3WRnzPt9H7s7t31LzK4b9fC+bRo9pBT2DxWBEt+rD7U+vdh9v1+rT13VksYfHaUJseRCCBNc+GEG/N2T4iexC1RpLNzw0vE+OH2ZsomLI+jRz8T4SoNrV5KacTqyRQYs8ME7XLUc4ufZHLqp7kyK23c8dV9ZR5xheS+o/n9fOeFTIbKhLM905ucupbl7Ry5NbbuWpR6jv44IoTk9qXycS4vK6TT6x8gssqn6TEGeDiOiuVeZni/Tk1tjlVpT0XRS6BL6z9BZfMG13ULXH0saqoiTxrgFUFOzhy6+0cufV2vrzhp8zzHuZDq+HorbezttzGmjIb8z2HRt3fqoIdaa9tYoIXP/RHjtx6O4c/dTvzvcb2/3XefeQ75bRCRl5b5gdvkRIZy45G1lIfqiAhLqUl4kUX0idTN1SIvPaR+3j9I7+l3GuE1K8qbsNv60pLEdk3GKc9oOh87Mjoz0jTVzZoaomV+PhBQ4iYagiVbwQSHAolESSRjsI8ClxWFhbacNskvn5JkFWlNgp9Mj1JjT+0Raj0JigcTOnSEFXZ0Z/gvrYIO0NJTuS58ToEXCOst00xjd+2Rjg2KD/4HTIL8/al9WlJYRS/rYtydw9PRM+ACpHTiCQZn62qqmia+XBsMnfRNA1VNca3Q+f1VGAKnSYmJiazBH2wymTPWydIBqPoqo4aTRA81ommTO1DjM3enrFMCzWAmoT4zOSAE9wFHD3pbQUGi8EgZgosDd7SGejVOwsNkfXFuwjpNv4QquPyhVb+9ayfcHXtC1yxQKGqSKPAHwBgl2slEU0iqkuEPPnYLBI7rEvJs/byB891uQ8iiPy6p4a3aj+AYJ35cGatcyvCKJXIo46StNddihV0DasniSif5G6exkkAQVBxeDpRu3chxI4j2XS0UPYccoLNTbvoh8gxSIYQrRKCJKA0P8KxuCvrNpNhXv7cESwny6JCa1puv1ysKDhErX98j83z8jr50qanePeCA1S4T0yqX0MaS7knnrnQZFq5sPJN/LZuBEFnif8Yt67dy6LCzA9/eXGMs6szJw3nGvP8xvl//cI3Rm0niTorCvbnXP/+ZYZw+YVNh/jqubsQhIkJVQ45ktWVWeZq4kdXHqLWl7oe5Y8zfePBgRqea1/Cjv5LAdAEX9r6v159gBJnM3nWXj66ZoCPrXqT9cW7kUWFMu/knOkBbW78UJNZChABIEs8HIVVpQIbK5J89/IGPrz0j9yyopPzaiN0Jozzpc4fwJ5lLiyoaLwQg3yHhseaOkZ48Bn3TwHjvrqgIPP+ctMi4xwS0PhZcwjBP3X3szMNu92I3tB1nVDozHeem5y5hEKh4RoVDsfUjRNModPExMRkljBUeCjU0IWWVNEVFS2hEO+ZOifnMKFdaS8FWUTt2AZ6Ei3WlX2bKSSy+AL+atNHM5bf5SxGsHuILNgCYuohWPCWcMCeN+39eqextc+Dw+nm0pUDXLjWzl1X/Q+SqFLq6uM/zrmTG5dvo9zbwsH4Jp5JLGXrR1/g8kV7edq6nh9dt4MBhxunReBRbVXOShbbVv49/3xxiC/0XkS8bF3WNtOJ2pM9ZB1AcPr5cPJjzM9PDWhfHChAOf5rJL0FUUh3COnRtpN3MSWINhkEheSufwAgefhniLKC1p0uPOhlKwCIlq8nISTRB44AIDtkZKeFpN3CnvDUDAwLXRaKXWe+S6TWP773uDBvH/P8Y6f1sMsiKwoOsdi3h0srn8IlhyhyTaz6/MJCG4VOQ/D5yPIXKPVY8Dlk/DZzMDsTLPXvxmsNALAgbz+XVz2BRdSHw6WrByuBl7sjfHjVxHKm2rMU0TmdFLks3H7B3QCsKdxOxQjnqlUS0q6NkqBS5c79fjeXvAzAtfP+zKVVT024Lw45ituSfTLpmtpH+MJZh9g8KCx/fM3Bce3zSLCYgaSNu46dDUC/WosuFoFgRI+8q+ZRwHCD3rbmbs4tfYEaj5GP+YoFmQ7R8dCrzl4nojDi/IuMyCWaN0KxTLps/Ko1THVegm+dexfvW/gAedYAn1x+D0vyu4fdrZWePlaXZuawDSoaz/bF8do0blkZZEWJDZ9DJjA4Yf90V4yKPCu1vhHPtYIdRVzAxuKtgJHGQNcFXvGkV7AXJpD/9EzH6025k9vb2xkYGDCdnSZzCk3TGBgYoL09Zb7xnPSbPxXM5BcmJiYmswR9yLU5A8/IeiQ9JNZZJKA1dKM7i9GjmW7PKaWwlhvKN9KsZb7RJzRYePbHuCzYzrzSRQitRpXpnuq1HBIsM/LZvJO4v1lls89J0i3z7orXcMhGbsoIJXgsx1EdMhZJ5trX4bOlXSzL30Vf6Bxkp0aFu411ZQUE9XL+en0bQkM+ejjTDfy2Us7/W/RnjgU+zG+abuYTvDrTbzM3kpWDESf/tGGA/3rZjq5DXBfRSUD4MHh8ac3Vvv3gnvpuWD0SAklIDA7yZQk5/iaJk8Lwny68iSv7mznhWoYldgBt8LcqWg2duVevRY1PzUBwQ4WATT7zB00FDmXcbc+pbOV3b4/uLJ+fb8FvMyaLhhxt8/NFujJrjuTkfcv7WFe0C4Bqz3EWFYqUuRXmTTIM3uTUEAQdSTRSObQFk1y/NMKPtsmsKGzEJiWB8nHvq9Qjc6JvcgLadHBODRTYO4ZfX1ircM/bxt/vWSHQEBA4PpgqWB6H8xmYdB7ZPGsvspj793hJ5XPYpQT/I67kqurHxrXPQGLQ9TZoh365+xzq3LUsdz6CQCjNdTp0/xviHzf9nj/sfT/B+MQmmrunOAJnKhFcdvR+4312Dvqd3DaJap/Ennbjs39GthPXksiijs+WuqdbpETad5tnDZJnSwDpruagqtOXVNgkw6qiZs4uj/MvL66lNZD6bleX6qwpTe07xmJCSgmFoiEyWwRjUukr9SFeyrOjhQxBVbDK6NHZ8/s5nbhcLhwOB9FoFFVVaWlpQRCEKQ39NTGZTlRVHXZyguHmdLmmzsVtCp0mJiYmswQtOf4B96kg2mT0SA9Ixuy+178brW0rmtEJ9PA0Cp2ylb9ddVNWkXOIH+kyD3kquadggPxBoXOnv5rndBlT6Zxanu2McCjsxmXXWePbA4AilHIiVsQyWyNeW4T9sdXUh+OcVXaMh3rP50+tGjeXNvBcsI4a5wC/bCrlEwseoa10Ha5jzzCw8F28Yts4fIyieQX4bL38w4b7ua7hw3zSV4kemFyBllwIVid6IjJ2w5OIFC6DIGwpP0yNbwMtA0mSqo5u96I0PYJU0JTWXu8/hpAnoKs69kIbsZ74qZ+SooBsiyLEUiGhuj2PxIH/NV4ULYCuo1Awn0NKAYdr/oM9YR9f1Z9HT/aila1ClhVk7SjN1qpT7EyKpYVhfLY4f9rnZkWJjbagSk9keq9RFkkgOcNuqOVFoxd8GsmWsrfwO67F5xCp780+2N5cFSdv0A04xL+e+zp//9xZHOiMZ91mCK9dIs8m8d7Fj1DsMCajXHKIVSURVha1UznJMHiTU0cUdFaUCLQF4doFb/KjbWexqnAPCc2KJK5GHXFPG+08rvULnOjLfRynRSSSnD6hzGkRqfFbhs/FmxanOyPPr27iD3srSWo6n137An8+dhavNhh5Gh1ydNr6BZBnHeWDAdyWIOeXv8BZ73ptVEE0hUR/Il2Ee6JlKS55AbeveoaxIuuLHa18emOE218ZPT2BKBj5JjUd+qIKzfHZJ3SKXidPeb0MqDo3DQqdzSrMz7dS5BIYqc3+V4PhHK/2ZmYbtUgp0bfY0c31C/uo8y/k849XYLeIDMRU+pIqui5Q6opxUeULuC1BhAt0fr1nNdubLVTmifz9phcpcaaeNdsTiwirLgrtABY8VqMPIUXnUIGPhaHBtlYZTKETAEEQqK6uprGxkWjU+G3quo6izMxYwsRkKnE4HFRXVyNMYeJrU+g0MTExmSUkAhMXaiaD1SuhtR8HPzgKRRJvfnN4nZ4MQXIC1qMJ0r300nEVFGrUQRuRkO64ZKPLFDmnhT+2wj9Wtht5CgUHH357AbUukX+qq8Ml9PB6wAbEeWvAwhd3G47DG8pFvncoxka/jW09Uf62qp+97jpcspWvajfzXHv+8P4fOM8Qq4scbfzNphPoj01xVXBRQsufh9C+b+y2JxFwlEEQnHKEG5aGufMtB/2qgmL1InceRgllFgMSJAldVbCJbxMTlsIo+T/Hg2STEfUO1KaHh5eptjyk5DGQZP4u75/5vvLv/LL0czTG3TwRKARAc0LSV8Pzviu5SoySPHAHj1T+2yn1ZSQOWWG+vwtwc15NlAPdDl44Pr0DqAqvZcbdblWe7nG3nec9zMfXReiK2GgbEImd5NzKs8v806Z7MnITnlP2Arcsr+PfOkcPyfrgqiT7umTybR1pyy+oPEyRsw+XbIauny6WFoZYUdTGKw3zWVuwncsWnDcsRt+0XOT3e1ICULnXQkOO8/iCml5eOJ7dseKwiCwvsfBG8+iC+KmwttzCdy5+gpv+eAU3Lovx7nmPpK0/r+J1avzz2ViRZEX+WwQTHr7NWs6tkahxZ88ZPFWMJ6enQ45kOC9zoYv5w07OITREgooNBTfjycD5rvlvcvsroxfb89plPrg6RjBu4Vdvwev9s0+Ii3gc/NOxIIKgc9PgG29KaNy4LITXGufJY4XDbUOK8T1cM+/ljP34bYb46bZJLMzbhySqLPfv5IF5/0BvVOCtFkPkFAR43+K/DFevv6jyGdojfpYW5tPQ72Jd0Wtp+z0SnIcoaCy3gyYWM89zGIt0GUlV50ASFg62U62ymap4BKIoUlNTQzgcJhgMDrs7TUzmApIk4XA48Hg8uFyuKRU5wRQ6TUxMTGYN8d4ZGMSKArI1ihrpQCiSsOhHGPlIrkW7puchUrKAmuRnRYthvGYHQUCwe9DjYU6IlvFvZzIhHmoN841FVuJCDbfX1/J4+wAWQcBvKeXGMg8vdBkPzd85EhmxjUZnTOP+piFR3IrV46B50fsIyiV8bEEql+FC3zFiQi12vYGb6/7E/rLNFHYdheJF0Hk41RFJBnXiQlq8eguqZMPJxIXOXtEPgN0S5/oF23mj9WJEQSLZ4835gCRaRLQEJI/fDd5vTfiYJ2P3aeidT6H1DX4WspWk1YsEqGWreSpQyN8W/DsvdfnJk1MDGFWQ6PIs4Ns9K7m6YCvoMf4cKMl+kBFYJYHEOFyTdlnBPSgorCttpc7v5IXj+WNsNXmuW2YhnGBUt9tkkURh2HG3tNjG0Z7EsOOu0DGxA3529QNsbT+L9tBSnjqSYEuNja0NcW5ZJfGuBUcocmTP43rlvO281HgVWxsVYoqWVR//q2Uvccdbl+A8Scg5u2wrkqBOuLiLydRx68o/cTxYx4qSxUiiyj9ufml43T9seoIH9l6OphvuvgqvQEOO02pL+X5kcRPKSVENFklgbbmF6U7hec2iTpb6d/Praz2sK3w9Y325s5GL5sX4m7VG7sql/r18bP1aziqvx2+fmUKFU0WSwpzrIloJVo4Co99zVhe8Qbn3AloH0vPz2mURQYBoUqPYJfG+Ja/SHirmV28tpTOuQrkHeoKIDivaLHAg9svGHU3XBUS7BS2WJCLpfHzRS9jlKK803YTbJnF+rcTjhxKsLLVR6z2SsZ98e4AlRTZK3DAyXeZVde281lLMgU4RXYdNVRbmeQ+nbbvE38B5Fdv54VvXp+9UcLOtu44qVx/4IazV4JFaWFhgZX9nnKf6EmypLgbAqWmMsw7VOwZBEHC73bjd05BXx8RkDmNm9DUxMTGZBei6Tt/eprEbniJWjxUBQyyxuGT0UHrYmqBNj2NLqVyJ4PTzlD7+205csrJ93XsQvMW0mHP400ZU1Xm8u4gfNdTyncOGYzOp63zz4ABfPWDj4OAArzmaOjceag3Tl1RJ6jpJXac+uQpfvsZXI1fwjYu38r0LfjD8r8ZzlI/sqiAuVGGRknyNG0Gy8OPCzxri5iBa8dKMvgnWsYc097muQxEnVx13D9UAVLrqWZ6/k/cubeKTaw6QlHK7Tm1eFdlpQe8/fsqzzxa3FWngUZSGx4eXRavPJWYxigx0ewwfy1OBQqKaRHsi9T41RPZL82lN2EjGm9G85YTUsXNzXb5wfHPcdlnBZY1wcZ2Nq2qe4vKa6c2t+p/n30+df3qcbIsLU5/bx9e2cW6N8Xp+vpX1JzmLxiLf3sk1tY/w0VWGsP7Xq49R47fy00u/y7trH865XZmzkc9veIt5fgsuq5RRu8thEVni382G8o6MHIduS3DcLjaT6aHQ0U6Jo4NrFxv5V9cXp86bBXn7KXAaBaeWFdtwyNkFaYsksLrgLWQx87qxpdrKpfN68dqmd0avzBUAYFPxqznDv8+tbKB60L3ps/XwvQt+wIbiPdPar+lA0XPnetsfXEVCXJhz/RCCoHPz8vTfnkUSuHkFfHiN8fldv3SAYnsbRc6UOzzgstNYU0pzsX+SvZ9aRk6j9wz2yZ+nsMi3l2r3Mc6qCPC5TRG+cvbT2GWR6xZnV+rzbT18+ZwjbKwYQBFrGJISVhYd5fzqFm5eoXPTcrhsfmZRyzJXC5WuE2wuH/msa0URSmiOeDkaNITpnf2bUMQ65ucbv4XXA3GuPBLmyiNhOiXTo2ViYjI+TKHTxMTE5DSjazqh+i4SfdMXMj6ExZka2Mh2Da1v4i64iSL4K+nKryZcuZLABAxJP/DP5ym7j6SvgkbTyDStdCXgd02Z+dd2BhKciIxdafrrhx20usrIKy1kdf6OtHWaUMSznRHuaJyHLjhxOy2E5l3MbwcWITh8w+06/Cszd+zwIVgdox67VS6g31poiKbCBB5rBIE21UWRy0KeNYAsKlxa8wpea5iEmFvolGnF4h48zinq7zZvEqX1WWNXg6Luy67ziMhGiHObnNuhqSKxRzHWx9QB+r114zrme5YcHbON0yKSbw9RaO/mexc9iFMO47VMg9VyEJ9DxibGWV/aMuX79tgkVpYoCIJRsGlJfhPvWWoUebp1faaoOF4uq3qKijwr+bYg1ywaO3eh19pPibOTCq+O0yJiO6l68OJCC6KgsaVs96T6YzL9FDtauWHBX7Kuqyswvs+NFYkMEXuIVaVW7HIUhyXzOrWlqp/r6l6hyDl1k41Z9NRx5bbcUpop/pe5pjav8kyQ1HPfO/7Svpzu5IJRtk59eDcv3oY04sOs8Fr48IrX+MSq51habON9i17AZQnhkGPD3/0TCZGbjgzQPksmacMjJpl/M/ioGRJSEQLvWfgXPrb8EcqcrXhsEtfWbR1cM9R/Y/t8ew/rinZz08JXiesF6KIhTi727eey6pe5dc0LfHDZm5xXsTejD/mDRdrOL986vEwX3IS1CgC6Yi4Q3LzdV8ue0CXU+TOvq+PPqGxiYvJOxxQ6TUxMTE4jmqLS9doRQo3jzxN3Ksj6cQQMd4IkB9FjmbPuU82uxRcRsLr4aMUmJpI56HENtuoSDUV1dJhC57RyYECjPpwpaLbHFJLjyEH5YEuIJlsx3zjvSWxyuivv5y3LUHX4xoEB6hNLuf3SP/Cc4zz++7JGsKQGov2ezMrF0cKlbFv8Nwheo9K1kF+b0ebGTR38P+W96IUL4aT1gie3UNi38Fp6FCvVvtSjULmzEbclTELKPUDWI4cQpaHPavKDWNltRaQLfTAPaKRyMxTWcWf/EmKCA4oXUa8X5dx+P5UcjRuCaFSy8039uuF1dQXZi2dU5lm5vPqZrI4yMNxoAB9co/GeBX9kvvcQtd4jiIKG1xrIKeCcKjcvT1Jg72BFwdgi7ET53KYwhc4EH1krcONymTJnG1vK3qKuwMYNC56Z9H5lUeEzG7opdXWwqGB8w+8l/t1U5SU4r0bHdlKMcmWeIbgu9ZtC52zFIUeodJ3Iuu5DKxoBWFHUk/OqUOs37oA3LldYXJT+Gy10RKjLO0CxK5Z129VloxfEycYHVotU5aW73dcUje3MLHRkFiR0zsH8sN2JipzrGsN5NEcrc66PCmuG/67zHuR7V3ZilYxvtswjsLF4Kwvz9rHtQ/9NXd4BnHIIpxxmc5WNeflWvtsQQtcFTow9TzgjtA6m6vA5ZO5uDSPaLLgdqXt1jecoJc5m8u2dnFurs8i3F13IRxWrQPDwZvhTJMVFOGyFOOUwS/27CSrFqBj3oDxrgFJnM8v9O6nxnqDaXQ+Cj5FSg1UyjjcyvUdL8jy+tOszw69VIZ+uuJPjoTKunr8z4310mHV2TExMxokpdJqYmJicRuLdQbp3HCewb2bcEmrLwwhJ4yFTQEdXsw+qppJddh9/dBWzbxJFWxp0nZfdxdPQK5ORvNF36udBlbeXRb5MF0dDJPW9/+0eKy5LkHrXPG6c/zCClAq1dvszw88b8lZwW8cWYvlGiGF/wbK09YK3lEJvLwVeC13+lcS81Wnrk77a7J0VJX4gXM2BmIdyb7qjz2sLEhdyiwpaYC/CoCvqVIQ/ixOINaT6KjnYU3YVeyIu3hbmodh8HEzmzon5u/75NCcN52m9bT6P96VE0Y0V2UeDF81TcMohVpVmD/U/tyaGKMAlNYcz1omChts6dmj8ZHBbjf7WeQ/kFGEng8sqcW7lITaVN/HJ1S/wdxufo9p9nApXAx9a1TtcTGay3LLocRxydLhAx3iozQtyy9I92OT091nsmiWKiMmkqPMZbuRF+U05rwv5duM7fu/iNzinOn1CyGU13Gs2KfO363fIbKyYeFqHRfn9fOviVHqaNWW2nELtmciBgdFd7sdC2YVQTayiMbZi+LVDjnBZ9cv837X1CAKUuLO7wF1yPx9c0cjSotQ973B0dhSGOTJYCb7MY1zDdaeVSk/269anVhu5W6PMp09dxDM9n+HeE5vZE7qQ9uQK3HIAgM54KVqWkk5eawCvtQ9NcKMLeaP26y8dZ6W9VnQv6EYu0bNKXmVlafq9uC1pznqbmJiMD1PoNDExMTmNxHtDRNsDRFqmNyDHU5EAUUBt34YeNEQMQetBV6YoSX5hLYIv05FHyUK+j5V7tcnfbr7HxJ0sJhPjROTUbRJl+b2IgsYz/eex6pVNw/9+UZ9yAr3YHcVudbJiUQyrFEccDEsX3EVI+RaS1WejlRkh7IFF1/ITy5X81XqRvrw67lr+HT6i3Yogp86HWP5Cqt315Ds03rIsI2JNz4cWsRdCwXzjGPm1IBuDMsHm5oGeMrpFHz+77Cdp29R5D5CU7YPtXOxa+QX0shXDIfRK2ytI8UFX1CkoncLxL5HY9wPjb6ePhOTgI+2XAvC1juVE7IW8FMpdTONA1MWRqBHu/kRicdq6L643nIrnz0v/7awr6wTg3Yt7uXmFzBULU4PULTU2/uPsn7O8xMY5Zdnzca4qlTOciBsrbRS5LGO93VG5YaExsLbJcYpcMs4sob2TYWWpTKG9h+vmPcRy/06W+3dikRJYpTifX33nKe+/0NHOfO8hrq55fOzGg9Tk9XBhxfPYZQGfQ8ZllbjrhhN885yfn3J/TE4fxc5OLJLAqoKdWKV0MWZZsY2KPCvLi4zIjbNKXqXKm0pVc9F8G9Vu47dpkzOvxR9fH8EhT0ww21BpI98e4d3z/kxFnpVlxTY2Vk5fNfdZhWBcv3f1VY3abH+O4m0BdSHPd65OW+aUwlw37yE+ulYgz5b9fumz9fGBxfdT7Eqt3xM6/RMYgizSaVU48bnf8Nh7fgVAwO2kzJU9HcnZpUa19bBawNf3fpg/NK5lIGnj54cvoC1WhsNiiPJPta3JGv7vsfQjiwoqLo7GriIpLgLBm6VjDl7pmpe2KKSV0hV3oeiGIPu5jfVp67eHTn9hJxMTk7mBKXSamJiYnEYSgekvMCG7LAh9TyHZjCTuWv8h4//O56bG0SmI1Nduoq8yM8eiLkqc6mP+7PBDmIxFT9KCLnj56v4EjZHk8L9soe8bi43csJrDcHuES1bR4/BwzLuGxvwNADTYallUGOPLG++lJW8BP++ZR22xDbxlw/tp9y3FZ+tBFHSeilShnRQ0GpOcIBoDpoS7lFjV2cYKhyGISkJmSKYoaGiWwRydrkJ+GV7D84XXgdsYFAu6jhYyCnVMNnJdtEhGMaPB4l9Kfh1x0U58MI9aUhd53HY+jfHcuUJHsjOS7popsHdhkQS+cf5zacvne42Q1Asrd5PvSFA4Ih/gyuIodjnKZ9Y34LH0Zz3ORbV9GW/57zfvocJ7ao+TNZ5UyLpNFvA5pAxBdTLkO3RKnNmroEvi1F1ZxpP3cIjl+YexSAlsskB1nsRtZ4W5uPIvZrGhOY4kKFwwz8j367Gmn1vlXp1/Of8EKwuODS9zWVKCza3r9rC66E0A7FLmeXlF7U5sWZaPxvtXtFKT1wHAWZUaF9RGme8LTGgfcxVN8IPgoDE8upuwI+YGMidp4pqT3nh6ITxZNL6vL6x7FIcl93chCholrlRuycPhBMIUXMtOhUiJH5dLxWfrJd/eiSjAQwmBYmfPqNupukhUTX0+GiK6btwBdKGAI8FC4lrue1RS91AfruRPbR9CFQoy1itC5uT41p7NqLpIUjPu2++pe5DaEdEenTpQmEU0NTExMTkJU+g0MTGZEnRdR1fHV9RB13R6324Yu+E7gERg+gsQ2fMUkicexu4fFFV6jfDiZNMzCJMQOg+c9UEE/4jcVgXVNNrz2JdnLIssOh8KawFQLaMXkjE5c+iMS9zfuZZDwdEdF79tW8SSwTyEdxZ+jF8t+w77vRvwe/p50b0R0W5HsHtQCkr40obfkW/vZJtzGbedm+Rr5z6J4iwgWb2Z4MKreMBxEQCfWvM6e9UyrIPhwHqJUcG9Ty4g7jLyeyqykyPuVQh2L0fLDefkhhwp2nSr1eiDo4AXB/z8Q8eGtLB5tcUoSCJOcgAr2UeEgEsyfe5aXhbTJwq+3bFk3Ps7GE0Nym2yiN/WxRc2x1lVsIN15SlXZ43HuO6uLnyDT6x6jkqvMSC/dIGVz6x+AoCbFzyY8zgfXvZomonVJotcXPEsH1kz+SJCF9fZyLMGhl/bZYFrl8SpyjMG2JIo4LVPLmS+0hvHZ52Z/MfjZb7XCCV2W+H6Jb387dpf4bEMnOZenYEIM3vvKXG08l8XPAqAx5YuhH1u3U7eu+ABVhakcg5eXr2VYreF5SU2Lqt8CtfghEuZOxXdsbrMxh9uPsi6wu04LRObMlzka2FLyYsArCru54Lqo9xQ9+yk3ttsRhMrQBghSgp2gtpCEkLNuLZXxTJ2hD/NqwOfB2Q0sZLeRCE9sXSh0ykbz2q13iPctvbPo+6z1J2aPNN1AcE5vgmr6UAvyuMfAzpl7hH5OP1Wft4cptAxQugUMvvYlSjLWBZVbQTZQkg3ogj+3HIuT/b8I2AFwZPWNqG7eKxlBc+2LeS+lo8T4EJ0cdBFK3iJapmO2idbjPteIGF8/rKo8OHVKedpmUfgPouDnupUSiPRaUWwTE9aFRMTk7mLKXSamJhMCVpSRYmMHRalJRWO/+4V2l/cPwO9mv3Ee6df6BRDz0MyjBQxwlEF1RCiBH1yjqbHnUVodvfwa93ioFeysMfiQqtYztXlmxgoNsKZuvKrc+3G5AyjOSbyjYNju9K+fTiCOFjV/FWlhu90LqLFW8vCvMP4CyxUF0WJla6hv7AQn80YiK0s6eZjy//EUv9uZItIt2seB+zLsOcb+9lc8jLLS0XcNgUK67i/6KMAvK7X0e00BryqaCGBhWjZWu5PrgegzJ1dPLDKEC9eQdzuR0Ukqkk8artgeL0eM/olSJO0dI5QCwWHnyZLJff1pw/M4/r4H9H0ET7Lap8FWVS4Yt4uAP56jVEkRRIFKlyG0CkKGgvz9nFhleGsvXZhM7XeIwBYpNxC9ck5LVeWWrBICRb5Jp9j+Na16cVR7DK8f8k21pYZ16eqPAtLi+RJ7fvcynoEYXbldBuq8l7s0in3BDKKd5lMDSG9klMpFjZRHHKEBXnGc43HmrquLC22cVHlM4iCNlyMBQzB7EtbOllSpKa5iy+q+Asem0SN38rvr7uHy6qeRBJV/I7MCtSjUeVpHN5vpaeXC8pfoNQ59yqnj0V97DzizB9+fSx+Pa3xWppia8a1/Yn4Fn559DwebFpHP5vZFbqat/oWEVRsIKSec4Z+twAVY+Q5LXGmh4TrU5SKYzK8aHfwam8cjzV1Xb9lxQBxDXzWIVHdiipk5kJ/vHV9xrJjoVKe7LiChqghdO4LFPNg02rCwmqSJzk0Fd0y7Ah9saOOfQOrOBI1Jhmj1NEer83Yf3IwZP1gfyFDbtuF/lRxrFqfwvaBJDfXRxD8LgD2FuUjyKbQaWJiko4pdJqYmEwJyWB0XI7Oo3e9RGB/C0rEzLMDkOifXqFTtMokDhs5mZJHf3vqOyyaxxuCBAggWRDsHjTZwvOSgydEC3+16Eq60Gl1F6NVrOCe/Hlj7tLkzODXDTGao2OH8PYlVaKUEBNq+ciq4/z9uXH0Ijd+WxcXLDrACU8dv3LfjDMvta+ra5/Gb+sCQLZZOeZbQdxXzHsWvTHcZktVH3i97Cq7hj9EF3N4xaf4c2Qe7VIxStVZKKIdDZEj7lX8qa8Ur11iVVFn1j4etlTR7FlOxOIbXvbDrkWE6y5PaydOQn8TpPRHr77ys7k7uno43+apUjEY1bcq3wiFvW7+E1glgYUF1gwRc13h69hlkXPKM6vb5kIUBCRRwCoJrCoZqqI7OddkXYGNSyqfTlu2pTrKqoIdrCk1xOS6fFhcmPt+cU6NLWcBo7NL38i6fDZQ4k7iMkXOaaMjmWeEMJ8G8mzG9+q0iFy5IHe18vctepgLqtInDxxyhNvOCvHHGx+lZIQwWWBP7SfPPvqFpyrPmlZ06IqaZ8/Y1Agvda2hT6khKS4BIY//PXwlr3Uv47HWzePa/pdHL0XVRYJJG/c3Xc99Jzazo8ew+ieEyU3Ulru60l5r0ukT4b7fbHzvebZU9M4Hlz6JKECetRdd8KOIlegn5UJXxIUcC2YWwzvQX8yxYCH3NZyTtvxgaD1hrcxw1w66Q6OqO63NoYEK7ms4H0VcyMs9l/Fc57qc/U7qEqpofA/rS97m78+N8/fnxllW2M+AojGg6HxNd3C8ppSvNEaM2UkTExOTEZhCp4mJyZSQ7I+ga2M7ZyKtxky3EjWFTgAtMb0ZKEWrOOzgJJ498fxE2F13LnsG9WytZCFtSy4maffwnAZHNdg1eAocsudxoHI1v9LMWfZ3CmOFrA8RVXW6kn7+9Ug171v4IF/d9BNWlRlOwwpXEzvFeWyTF7OuKOX089lS4ZxdBcvZ7lmOr0JiXdFrw8vXlxxjj3MFb0iLuXVLLze0X0NtmZudaiV3ed9Lu7UMFYFuvEQ0ic+fFWRjaWaVeICtyjz2idXExVT4a0iVeHQwVH4IYRJPUfZ8C9JgyjEhv4a7pEt5KpC76NBEcVuNH+iQU9BrDXD5QplrFmdW2LXJcdZXWKjLOzDu/TstIhVeC2vKrRQ6jWMs8u2lxp+9knsurJLAVQsjGfktr1+4A0HQh3MYrisLkmfLHbb7ibVHyMsS2i4KUGhvz7LF7KDaG+b8ipdOdzfOWI5HHLwVXoImZIo1002FJwDAuxaLlLhyC51ea4AVhccyll+34NVhd+gQPlsqvcH7V+W+1tb6rTz63j+m/a5y5dw9EwgknHTEy3iw7QN0qmcTUmxs66phb45CQyfTHXcN/72jp4JAwjHsQny0/eZJ9anGfTzttX4KRetOBdEq0xIznjErPKl7aKXrBIUuw/nfrpxDU3w92km5So9GswvFA0kbYcVKZ8yVtnx/fzUHgitpVy6gUzWiH55tT99Hc8RHc8TLa4GreaBxLW/1ZK96P0REM0Lny52NfHXTT/jqpp8w399FV8K4x/25I8p7Dwdpiql05rlH25WJick7EFPoNDExmRISA9ExhU5d09EU46FLT6poyVOv9DzXGW9e0/FwchitxWM9laLQWQ4g8pDTEGT6CmpoK1lMyOLgtxWZ4U1vyXaabJ6M5SYmAHc1efj58SD6YGjgqoK3AMi3dbHA386HVjYzz3s467b3SBeyoCCI4Ek/uVcXvsVBuZK8Gi9X17zAubU2bl56lEfCNdzdW8NWfRGNegENWj4WSeBDSx+nyl1/0t6NfTotGn+JVHJUSnf09Ggp4VNw+iYVGStZEtgsjSAI9BWu4dH+zDxop0KBI/O6+m/nPM66ksas7W9dd2hC+y/1iGypVllbGsNrTTkSr12cO7RWGuG4lETDEZpnl7m4OvPYS/1GOL00GCq6tqSJPFtK2PHaJeblp65tKwsO4nNkCp0rS22zLmx9JO9d/FxablKTqWXPgMgTHRZ2RxbP+LGrPUYBrJuW7MdnHz3kfJEvM41P9UlCGUC+PQAYEwTXLXib+fmZEws1fiuPvvf31HgyxdO5wUQuqAJxYQVhxcpjret5rbOGrT2bprQ3T7YuISycNeHt/Pbu4QI6NlnktF2FHKlzpNqT7hwu84gguHm+azPPtJ+FqtsACVU0onCebN2Yc7e98cz8t2/3lfNk60r+0HQFz3WehyLWsa07PR1Lx2DUwjNty8fV/T6lNGNZob0P0SpS6kkJs4IAf0ka507SzNVpYmIyiCl0mpiYTAlKOA6jCJ1qLEG4qQddSQl7Zvg6aFModDqLRexFRviRaJVxxH+DkCOkczJoFct5cTB/0keLVvCIr5pjDh/fz1K1dKcucUSyZSw3MQH47hHDnaQPnjtDgo9FSnBl9eN8dOk9ObcVvQ7+eul9zM8/kbY8zxpgdUUTayqaKHE28+iN/82NdQ8iOtx0Ja08Jy7nx8HVPKavIM8uUepsxm05yeU4GHLnkFWe7i/ks23pjpQj8VS110Pz34cgTnwIKwhhEju+iJBXQZOtmtbE1P5O6vyZhW0W5u3j6ppHs7a/dt5DE9r/+1d08tm1L+K1JbBJKVG13BPCnqU4k00WuXmFOCxMfngNnF9r5a9Wh9lc+mpG+yH3mTQoUhY5eqnNSxXNuLRO4IeX76AqzxjEF9rbWVOW7oyXRYG73pW7qNJsoNo9V8WoucHrvQrfPTLA450TcxpPBdXuRpYW27i86klqBkXPXGRcgyBrmPl872FWldr49KYkhY5u/unc45x8e/+vi/emhazPNVSxNmOZnsuRK9i4bedXaAzncSLkI6xaaQhnVvY+Vbb1XjB2oyycW6Nw43KZz2yMo0/hc9hEiLqN+1mx28Jy/660dZfODxJhKS+017Gjp4LuZC0d2uXc1fhpIsIG9vcX5dzvUB7NkQwkbbRFPewJlFAfyqchnimUJnUjvLwtOr5J8Oc6MoXr1YVvce3SGPff8MJwypKrFln4dWcMMc/J8+LM/95NTExmJ6bQeYoIgjCufxdeeOGY+3riiSe44YYbqKysxGazUVlZyQ033MATTzwx/W/ExOQUUaMJdC23aDdwtIN4T/oDvSl0Tq2jUxKDWPp/C6KAo0AnceLPSLap8xLsq1xDu27sr03XeRwLf5Czhwsd03Vew8yZZDI6OhN3X7x38VbscjRrYY2VhXtZUZAejj40xvQ54JrFCpur4hS5sh9XxwoIuCwpAW+kK/qNcN7w379JbECQJv77FTBckHFfLQf08jFaTxyrNL3pMK6o3Ua1+zgeawLLiGNZRBWXNfOxstAlc1ZFB5urDEH3E6tf4DPrd3Pz4lewibGM9kMMFVKxyzG8tpTws6QgyJbSl9hSrSIK4LYMcF5Vupj0gdUMF1cyeSci8Uq34aR8pXvmnzOKHS38+/l7EAWNxb6JOaZz4ZRDfO38t/jUqkdxymG2lO2gwJmaZNxSY+Oqmsen5FinByt96oKTlgkkhUxXn0HmBKuiTf2w9snWZVmPNRaby9v48SX/y/KijrRicTNJs2yIftcvTaQVvAK4edErJPVUpfUn2s7h/sYraI16ebjt+lM6bk/MyZu9y05pHwDbumpIiumObKcc4tKag6wufIMvnRtFFOCLG7ciiAIPurzsCk/v/c/ExGTuYI5CZwGapvGpT32KX/7yl2nLW1paaGlp4aGHHuITn/gEP/vZzxBFU5s2mZ2o0STJUIzMgBaDgSNtWDzpa4PHO3CW+aa9b7OVZCiGlpjC8H21G6X+QVz5B5DEv0PTdSxyM7mz202M1+2pwg4RDDHz2Cg66q7ZGzVqMkvQx5xvtcBJZ/CqAqPITra8cydXBQdYVqxysAscss6igj5sksL3LkgvzNXPUiQUdg4UcyQs47IqlHudqBp8+dw27t1bwf5Ohb4ECFYHIPCn3hK+5Zt4MTEhZIRmXxT7WwKhiQ+gh6grsHGsJ7OYjVOeXmGnznsQgM+vSX9msUgqVXkSPZH0a5rLIvDXS39LUv0IvdFSlvl2sdw/9sXh8uoXuGLhX1PnPYxLDgPGgPezq+9BFhXOr2rhhxf+CVlUWFZwAkg5kC6qOXEqb9FkjnPjrrMIq4bQubUnRpe2Er/UhUQUHRFRP/V81aMhCDpXVBuiY749e8GzyXBR5TNpr//5/Db+9olCrJLAdy+e26aIY4kbQYDCEZfEmLCaQ6ENrHZmhvfrWcTHsDL1br6BpI0Q63HzWtpyXSxF0IZyAGfepz605F4AluUfRRfqprRPos+JFhi7uFSTCu9fJfLt876XsW6Jfzdt6jXDr3eMyJfZGPadUv+Cio1n2xae0j6GeLX3XVw4crJAsLO8wLiHfnnDT/nyBmPx0uJz+cbxIJ8unfmcvCYmJrMTUzWbIj7zmc+wZ8+enP9+9atf5dz2K1/5yrDIuXbtWu699162b9/Ovffey9q1awH4xS9+wVe/+tUZeS8mJpNBicaJduROeD9wtIN4X7oo0PNW/Tu6KFG0rW9qhc5YCwBq30HQjYdgvfPp0baYEEFzosVkihnL6aILpx7WXe01BA+LpCOiYxEzHR/b+wt5pqeM+ohMbwLc1jjrymFpscjFla/zqXXHKPUMzg1LNjR/rfG3MLHrl2SXSRy+E8HuIaBMXuR0WES2VGWfwnBbc7skpxOLoLKqNPPzGHLEvnveX/jUurZx5810SCE+smo/TjmEXTa+Q6sk4LYYxV3WFe8fLrhU6kx3dOZZcxeAMTnz6U+kO63vbMpHxUq7UksC3+np1DRQ5jIKzHz1ggGW+nef5t5Mnqiwjtv3v5uuWHro+dOd1/DzIxeiiVWZGwmZXp3AFKcBGeL1vvNOOraPiD4i/6SQXphnJAvzDkwql/NotOSNL/Q7oMF7l+zJub43OXVF8KaL+06sRxusvg6gCz7clsz0LFfUTd2EgomJyZmBOWqdIoqLi1mxYkXOf/Pmzcu63eHDh/nOd74DwIYNG3j11Ve55ZZb2LhxI7fccguvvPIKGzYY01W33347R48enbH3ZGIyEbSEQrwn++BSCcdJ9IVJ9qfPQEfbA8RGEUfnEpMRbMNNvWM3mgB60CjeIug6RIz8b8nGqQtlOziJMGMTk9F4I5i6NwbIDHWL6qV0aStBGHSDZxlQvh7eMlzUKBvVef18ZpOGz65ww4JnuLr2LxltXuwW+Ps9Yb5zJEpXQuc9C55iQ1mAWl+CGs9Rbpz/JzZWGJMSqr+WmMsIpxTU8Vf1tritOKI/AiUK9rxR28ojcrqdU2MM3jdV2VhZavx9VpUFhyV7iF65u2vcfZpKrFKS5YW9FLnSBdzPbjRSDJS5mvjI0t+Ne392OcqVg644hxTF75B55oOvDK9f7EsN4MsczcOCapnHwsaS7ZN9GyZzEEUYTAEh2NGEQk5E0icBvn14gKRu40v73XxydwVfOHQeijC1RcBOB35bP6tKbXxu1a9Pd1dykhCN63qjcpPx/YgjK20bBXC+e/iTaIh0x3081/cl7m77Jne3fotHW5aT1CUebPs4xpA1JWRq2DmZkDI9QuczbUuJCKmii4pQwIHQWjTROO/iVPFC4O/QxeKMba1SHItNR8hP3aNEa5aASkFAKBhf5fBvdCYRbRZEr3FfFGQRClPip2i3IBS4aU9qnFf+/EnHSX1u3fHZ737UEDkcvWj4dZJ8nHLmWOPd85/HIglcOv/MGFOYmJicOqbQeZr5wQ9+gKIYg6c77rgDhyM9tNfpdHLHHXcAoCgK3//+92e8jyYm40HXQYlkhlHCYKEiQImd5EDSIdadmYh/LhJpmbhoGWkPTGkf1M4dw39rvUZ4r6BPXfy4+fhoMtW0xFLi+fFopvjXkfTx0Z0eYhgDyKBekdHmkXaZOLmLUKwpOsJ7F7/OAv8AxY5WCuwdGW0GFJ2ehEZjJElnTKPI0cbi/BacFgVB0JFElfcsNnJ/vlZwBfHB3LT6sV8gjrPKq9Wjora+bLwQRn/88tqNfdplkTuvuof1FTa+ccEr/Ot5b+O2SWwoDyLmcEaWOsYvvk4lVinJAl87F89Pd9OtKz4w/LcsTszBLg5WXrdJUc6uFlhd+MbwupHOUIuUoHhQYF1WLGRNa2BypiJyX4cRJhvWK3kusJSekxydqg4vB8p4tC3CI21h7moIkcyZaGfuIAo6/3bezoz8i7MFTSzn1w0fA+DlrrW0KJezvf/6EeuLCbJpOFQ6ocm81LmQlzvm83JnahLs6bbFNCnXoY4QElXG52qcCgIJGz89/hEGOMfop+6nOVLMmwPXAfDmwIVs615AffyirNsftssc9Bj3DEES0fKcGW0SZX6OuscWOkWXjdcDcdpK8znoN+6Zar6Hh6ypScDmknxedro5mlQzrrnqiJynXTEvc4GmcGpSIqxmiskAla4T/NUanfMqD85Ut0xMTGY5ptB5GtF1nYcffhiAJUuWsHnz5qztNm/ezOLFRm6qhx9+GH0KhQsTk6lEzeJqjPeGUKLx3Ot7zhShc+I5v2JdmeE3k0V2WdFj3cOvlc43Rmk9cQTZRrt2ehLqm5y5/LlN4+n+80gKFRwJWVGFkuF1CaGaz+y28GpPlK5kAfXJDfzwRBknP7ps700S0nIPelfm72RVwQ6unrctZ5veEcLIm4EEILGx+C3eXff28PILyp/nfSslvtW7jgabMQjXlX7crpfxVGQPI5fsKeeOJAaAwRyfYm5x1G2TKHAa68+qslDibObea+9mY9FWtpS9ws+vOcTNi15GEnQ8NomlxSkX08pSW9YiTTPBqoIDnFW6lYX5qWu6LApUTUEVaIcU5vMbXhu1zcJC47xYVHB6QvdNTg/1yXX834k4IPFyoIzP7TK+f6dswW9NCUq37UqPKAmrucON5wqLffu5pGrq0tNMNfWx89nRU4EulrCnr5yfHb2Ge09sYm/0o+yJfgwFD893XzLcPqpaCCQynZoA3z5wIyfi56ALRq7wxtiqGXkPYLgKAwk7/7LnVhSxjpjmYWvXPB5s3MDe6Ed5qGktzWEvz7RvBMHJycWLft2n8dPuBH3VxeB18LbTOezGHOJl0cruLLcR0ZGed/R4ofH+/60jwYMDKqLLRofDzg+aQoSqCkEQ+GGvwjebwnTrqfuaLhayN/pRXuq9afgz7JgjQufW7jr2Rj/K3uhHaY/X5Gz3r5vvxmOdeN5sExOTMxNT6DyN1NfX09pqFE644IILRm07tL6lpYUTJ05Md9dMTCbFyeHbuqZz9DcvEe81wkzUkx2dnDmOznBzz4S30ZWpc2FYTjICCOrU5j7tWHYZXZiTLCZTyyNtYd77eoiX+ufRFod+LZUz7ECknNd6DNHi7aCbT+yU+c7hAXRh5ODMwpuBGKqe+3HGIhkVZxfkZRa0MBDY1pMSxxojSXTBSaGjnbNLX0rbz7sXHqY+7mC7OjjYku0k990BXQ9lHtdrw5E/4jeuBgBIlqxCsfty9veqhQJVecZvbXGh0a9iRyuCoOOSQ1xd8yiLfXuQRJ2lxTKfWGfk5s13yvzd5iPD+SxnmlrvEdyWIAv8qVxpVy2W8dlOPUWHIOhsLnl51DbvW9YIwAJ/4JSPZzJ3+GObi7cDcQ4n1vFgK3TGDQfbIk8p5xetosppiDrdifT77c6gb6a7OuV4rYHT3YVRiWvGJMzx2EX0Jhy0Rz1EVSs/OnQFdxy6jO5kHY82Lx9u3xHzElWz5y6OqzJ/aDiPt0LvBcHHr49fkrXddBFTZaKqhee634OqG4JsT8LJjw5dQSDhIKlLdEQ99GpnkRTT05VFdJ2Xe+N8oDFKn8fJr7sT9OWlP7QFVJ1doXT3peiy0VycKgKplfh4/1HjmXlHf4KmmMrWAj/7VYGQovOHuESgqpDnumN0xTWWl6TO+Yg+jx8duoJ7T2ygTTkXgO743BD7WyJefnToCn506Apao0U52/lsE38ONzExOXMxhc4p4g9/+APLli3D6XTi8XhYuHAhH/nIR3j++edzbrN/f2rQtWTJklH3P3L9gQMHRmlpYnL6GApRH2LgaDuxzgHanjMqJKrxTKFzZF5PXdPQVS2jzVwg0tqHruto4xAvh97jqb5XQRZxlcm4ykVkefpmsbWKFfxn4eJp2/9UUO4wHthXef1YRnHLmcxOvntEZXe/xpFIHppQBIgcCKWcircfSfBmwLi+JEiFuCtCEaoOh8JewApkyX02Bprgzwx1JfsAMM9m/M62RosocVvQLYYrR4+dFC4uCjisOxCEBIiC8S9o5JQMOUrYmn/lcFOfQ0YSBYrdFiRR4JqFR6nJSyKJAjV5uV3fkqCzvCjBjXVPIQpw3RKViypenPD7n2rWFO5jy2Be0VuWzlwY4bXzn8Bllaj1ZqYmMJlr5B6eaIKRpkIRSlGEch5oMSYDPvqWxNYRExYl9kJ84gLOKkg5/0RBQBxM5vrbJp0prxLzjmDouzm5wnlmfkxdNz7fexsuzLqnu+qvSnvdEPKNeuTjoXyeaF3DXc1fpjM2syJdXDXuLQ82rmZ3/+qsbXridh5quZKIVpK2fCi7SVdc46vdKkfCCgdPKqYU1mD7QBxBSp37+wv9hBAQZBFBEvl8UCSpgTSYw/l4NMk3GiP8pNVwK/+hM8o/dqbE0pXFqUijkJqaRHy45UJAoDueGUI/2+mM+9DFEjRxZI5dEVPSMDExORnzqjBF7N+/nwMHDhCNRgmFQhw9epTf/OY3XHzxxdxwww3092fmi2puToWXVVZWZqwfSVVVquJgU1PThPvX3Nw86r+2traxd2JiMgaJQJhkyBhohBq6qL9vK8CwoxMt0xEY7wkOp2PoePlQzjyfsxktoZAIhNESCj1v1o/ZPni8E13VSAxM3nll9dlwlSiob96C9sb7ENTp+w3fv/BCnp7l+vMVXmMk8Ul7E4vdcyMcyyTF1p4YD7aE+Od9GnsidSSEch5vT00avB1IXRcUPeX46VSMfF03vx4hLpSRFNIHmOMhhj9jmZKl0AVAmdMQNLcH8/jE+gE0izFQ1MMtae0sLgvJt7+FQAJHgQV3mUry8N0A9Fvy+XTb2QCUeixcWgdry62cW6OzvNjK+WUv47cnWF5spcqT26EiiTqrSzrx27oo91r54vpHZoWjpdZ7hH8828gXPM878eeVyZJnDbCgQKbYdXqKMZlMHQkhMxfvEPujCwD4fsNiftW6kINBI3ph/0Cc5mhK5MmT/UTj5biGChUB1a585rkNwefh1jC6MHpRMJOTEHzoYjGaWE6vfu6IFSJvRT6S0TykGtfHxnD2z7k+lH7tzeXmHElj2MerXbXj7vJUMdQ3HYH7G9blaGPlte5quhLpYzqLmHr2fa0vTntc5f86Us9/glXmnvYIXXGN7oqUIFmvQBI4WFGMWuDhtT7jPnhWlSEyd8U12uMqJ6LGvbIzrrKjPxXNU+RMRUxFR6Rq2NlbDoJ7WLydS7zWVU1L4mx+Wv8lhlIE9LMla6FCExOTdzam0HmKOJ1ObrnlFv7v//6Pl19+mZ07d/L000/zla98hYICY9b5oYce4rrrriOZTHezBYOpG5B7jATULlfqAh4KZa9sPRpVVVWj/tu0adOE92likoEOofpOBo62c+TOF7KGqp+MllRJDkSJdQdpfW4vWnJ2JtUfjVhPEHRQQjE6XjmEnkXQHUnf3iZD/B2j3WjYXT0I7b9B0Ac/r+C+Se9rLI6IYw8+Tidei40FQj/5Vgf5Wj+r7WaI/VzlaDjJ0bCN3eFqHmvP7lLWENEFDwgutvcbonZc06mPlTCgZYqWoyPQmfRlLI3r2YXOSlf9cHXva+u2DhvC1FBLmjlMdgy9iGGVmxDa7hpeFx1R9XZjJdT5w1wyb4AKT5xPrmvEb+9hS8VR3Dao8eSewJAEnQU+I/3NRfMUajxHx367M4SAjl0W8c+w8LqwQKXA3j12Q5NZTWN8qGCKwMku7WMRGxEW8HxXgrsbck+MOkSjorSm+IednGt9Syix+yiyu5EFkRizv+r0bCImVJPET2tiEy93n4Mu+NAFH8eS7+WljhWABIJvuH1P/J0pJB8OpoeuZ6tXt2sgiThYlKizNH84quB7AXW4KntY0/l9QOFn3QnqRxSrvWrB+K5xXmsqL21MS88JqgoTvVfODqKqhe29q9nVV8be6IfQBR9/bH43OrP7OdXExGTmmXtTObOMlpYWfD5fxvLLLruM2267jauuuoqdO3fy4osv8pOf/ITPf/7zw21isVSIjdV6cghIOjZbKiQkGj09+bdMTMZD8Hgn0c7+CQmWSihG/6E2dEWdk0JnMmj8lgeOdxLvCRJq6MJe6MHiyV7VNdzSy8CxUwyv7HoMpfGp4Zd66MSp7W8UDo6S/3A28H1fCyuDb/AuKU5xzzHy8y7lHrKHlg0hIFDtdNMQOTNyxJ4p9Cc1Pv7W6EW6OpNeNm7L4wNVDr53JPX9vdLr4IoihYIJPNnogpc1f8m0Kyc0S9apYLscxS6LSKLAYt8eGiXj3ixoCqIsDV+/rOwmARA5gq5GUJpSBUNe0RYBUOK2sLwwyEXVe8i3B4irVlbk7wTg0qqn+NPh5Sz05U5Vs8DfRanTuI5cOu/4+N/0DOC3B/i7LWHKXDPn6ATIsytmxfU5jiqU8Gy3k9LyhUQ0BwOKlQJLBL9gpHu684RCnlzK1p4x0rWohsgWV9xcVLKC3kQ/9uQmKgULlV7YF/8tES2Ow4xeHzdJzYWOyIPNF7I3UMJjLT9JW9+tX8Q/7/o4P173VQAeblp5Orp52tnfX8bVBanXxa4kVy2y8sRhw21Z5rHQFkzystfLueEYN9dH8NgkzqsVefxQjP8skIkXevlRY5iIakzcvtRriPqSKPCp5b/lN29/kQInvNYYJ98pc9F8+ONew9G8tNjGggKNshHu9r6EL62P3cpy5ip7AoZL+0eHLgcuB+CWqlqcnHo+aBMTkzOH2T16nQNkEzmHKCkp4YEHHsBiMWaZ7rjjjrT1dnvK1ZFIjF44JB5PzVo7HNnFk9Foamoa9d/27dsnvE8Tk2wEj3cSn2CBITWhEG0PAIwrx+VsQxssftD7lhG23reniVhnbrEm2R+hd1fDpI9n9dlI1j+UtkxPTN/gPi7M7pGgVxvAoYYoihpiT54ytousyOagymY6AOYidzU6aY8pHAunC5QPtyVRJ5xzL3v7hJ5bLbXLInX5xnrVmoq2EOTUI5UWMKq1qyf+iD6QcloKnmJ+3DUfgLoCkTp/N/O9x/Fa+lngTc9necuyXTjl3BEcW8p2kGc1crCtKdybs93pwGPp57KaXTN+XAFwyebkxVzm8d7FNER07m0r539O+HmgzcUP640CJIpQyovdUV7pHTsPc0JJpTCptK5ilWcT6oi0FxZRIqKObjIwyaRfKaYrR37M5zrPB+CV3ut4qvN96O/QHKjHgvmMrLx+0+JdXDrPSHvisUlU+Yx7xd8dG+BERREhRed9K1W2VBrPLp0FXq5uTgyLnCOZ57dik+N8dE0nf7XSeI7cVCly27qXsEjG5/2R1R18bOUuaj3HhrdriRSk7ee5znOm7g3PMIF4ZsTF4XD2dAImJibvXExH5zQzf/58LrvsMh5//HGOHj1Ka2sr5eXGTJTH4xluN1Y4ejicmrkeK8w9G2PlADUxmSpiXaO7sbKhxRUig0LnwKE27EVeJOvcuTypCSNEP9RghBMF9jXhKM3DVVVArCeIs2xE1UxFRYnEMwo3ZUOQRXQl021md3VzclIApXff1A0pBBF0DbVqNXLHYRpPIcR+Jlge2oYv0T6sWZVFDpJvfRe9iezu9/V5+fw8+RuI62zgWvRxVpP3W+1U2x0cDAVRdQ1Fn+WJS89Q7jhmCFlPtkfSlr/cHWVAsaU92ehCHoJuTAJoQiGiHgBSefzalPQQwyHimgQ5tJTFRRL+wfQII4VOq0fA4mtDa7yXZPvbCIAWakYLGfm4BX8V7/N8m3hEpNxr4c6r7sFn7clZJf3c0tzFDAEqXCeG/55NYesADjnK2qLXZ/y4xc4oomD+LucuNr74dpiEBglNJ64ZUplVFPj3+RLH49VAkv89NrqY/dHqDxCJpYSmaHQwT+eIm2SZo4ijkV6qzJTO4yauu2iIVOcsBPRc20IA7juxHu0d7KVRdZEBNuERDtKvr+Tc0hdYX+TCa7uSn75Zxz9veYtvbV3H9qY47z0SBATOrzqBxxIGlvOuIyHUwUJOq0pt7G43nhcFAf7r4l0AfHL57zg2sJjN1TWsLB5gTeF2/vn81fzwtTxuWfQIedZeBGHo2Ubmrd70ceAL7XUz82FMA+EsExR/bt7ImkW/4Xj0LJb7Zr5PJiYms4937l1oBlm2bNnw3y0tqYIFI8XHkYWJsjGyANHIwkQmJrMFXZv84DIZjg0XLOrb10Tbs3umqlszwsm5SJPBGAOH2+jZeYKBw20Z68apqyHbs4u9QjSzkrGgKVlaTg7BYoTjPjnvbFqWX05kjPanE1kQDZFzBDY9ygf9uW9vFzkilEUPURY9TKFt/A75OqeTcx0JZFGg1D73qpWeKQz9fOJZBPiDwfQB0ICeKkQS0f0MsCBtfThHMYaYltsx9v4VzXhshvNcsaTOH6v6OnrHE6idbyComVEa4fzF7IkYAoFFEih1NucUOYERg9S5h8sy8QmvqWBV8cyGyptMLb36AnoSGkFFG/596xi/dVXIJ6oav8toFqfbSFT1pNyQggAnRSYUyBX84Kgpik+EzngFewLVYzo138ki5xBh1c8vm77MA81XIwg6TjnEe+r+yFUL+pifd4w1pUbKoyFB0yImqfU2pC1bX2HjigWpa+lnN6lcWmWkLLJKcbzWfv7+rF1sKTcmui6u2sX/29KHz9aTdv+ICKvpjp/ZxXqaI15a1St5u2/h6e6KiYnJLMG8E80AQo6wz5EC6MGDmcLFSEauX7p06dR0zMTkFFETI8S1U3D9RVsDw9tHO/rp2HqYRP9sltfS0ZKZImP/IUPoDJ1ITxqfHBj/+5IdArLLEG68pU14KwwXi9r5yin0dhw4/QhWJ9+VXPydf8HY7U8T5+cXcHF+9oT618ZeAuAHJTFcspVSu/GQLwsi7w0+NNzuW3ktGdsu9/ootDn4cmlKNLuqsIB/kHfywfAj2EWZ/3Yd4sYis5DFbON/6xMcS25kgMUA3NlUTFyoAUDBws5gIQh2wIomFPJiT3bBOqLmFjpvmP8Yq0uMXGADzlSV98SB/yXZktuF2WGvBsBllZDO8IhO1ygh99PJ5pLXTstxTSbHyVXPdwVzF0iJ6n5a49nTjZQ6jAgpqyjhtzpRVFvWdmnHTtaytTfBz1ovIMLsvc/NJpojJezuKx27oQk/PHQj27ur2N5dhS4aldQFQeezq39HqaOF86vS8yoXOvqodJ2gxJ06xz+0qgWbpFLjt+J3yPzLWb9I26bY3sbFlc9wbtmLAKzIf4tPLL83rY0qzuO3je+fjrc46/jewRuJjOO3b2Ji8s7AFDpngP379w//PRS2DjBv3rzh1y+++OKo+3jpJWPQXlFRQW1t7dR30sRkEkSaU7kQdX3yQmdipPin6aDpBE+1WM8Mki28XFc1EoEwoYautM8m3jdGAYURWKxd2H0RrD4b6vE7IfAKok1G6XxjSvqdi4GypXQvvoAOHfbMYsPLSkuMW6Tsk0TFCcMZ8e6e35JnsXBlnuHc81ltVEZSFerf1XUni9zpg+3P2Zu43mfhsmhKUF4v93NuzwNUh9+m2mHnop772CzOnXP0ncLbgTjfO2bn923GYPyRtjhN8WIAFF0kpgkE9Ro0wc2jPct4tjO7Ezqk5H488loDrChoBOBX6rkgDbpCk+FRndXdoiHirCuXKXCe4UrnacJnM4tRzB1E3o4sS1vSFc89wdCnuOmIZf/dXFS0BYDF3lIuKlmPqo2dezOpOih1ePny3gGOxgon0O93LnHNijrLixPOFnoTKbe/RspN6ZRDWKU4F1S8hCQa53Ot38qGom1YpASf29TL4GJ8tjA+e4x/v+AoZ1WJGREAFimBKGhYJCOCQBJVHHL6ZPru0GXs6KmYjrc46xhImiKniYlJCvNuNc3U19fzzDPPAFBXV0dFRepmIwgC1113HWA4Nl97LbsT4bXXXht2dF533XU5HaImJjNNuDk1qNTHCCUbjWQwM3wzWN856f3NNLqaXQ1MhmKosSSxjlShoMQoQqcgiww94QqyCL1/QQxvx+bqBzUKuoLdLyCcgqg8JpKFw/4qflS0ZPqOMUX4hTjn9j2WdZ0v3spfl+QhaXGWO+28L/ESoiCwwZPp4LvGbQwSPBYrTsnCeQNP8ZngPVj1BB8o9vPXJXmsTR4CQERjmc34/JcnDlLpmHjOZJPp5dG2CD86FuVYcgOtMZWWuI24UE1Sk9nWI/K71lK2h5by1f0xXu2JZd3Hc10iupDbXbbIdxiAo/E8ti/7ItH5F2dtJ1hSRRNeGcwHWu5R+OTaY1nbm5ic2YgMFWkJsITft1oGXZ3GZEH9KAEPHQk7oSy1Cs8vXoJFNX5biz0LcShrxt2bOncZAK0xszCdQbZhYUo01nRz/DEZNDKL53gs/WyuMj7bf9jSOBxq/ldL/0zeYNqiMlc3N9Y9yfnlr/JXKw5M6tgPNW2YZK9NTExM5jam0HkKPPLIIyhKbvdGR0cHN91003BF9c9+9rMZbb74xS8iScYM9m233UY0mi74RKNRbrvtNgBkWeaLX/ziFPXexOTUSQ6kzlddnXy19GQwU2wIHp87QqeWQ+gcCscPnugaXjSa0Ck7LXjKjM/CVayjdO9AaXkCIbwTPREGTcGS2Dp1Hc+CUrmKbsnGA9rsvz2sSh7FnaPCukWP883Of8Wqx7habmF14FkWuLx8kMzq1KvUegBWu90U2uwUxBsoix7GpoX5z+6v883Of+Xs3oeG25+L4eZbG3ia8zxzp2jWO4X+pEZjJMn651XaYwpvBiR+1jSPtoSTHxwd4Mt7B7jy1QiNkSTBLG5sMAoedam582GXuYxckG4r/HXb+fyv7aaMNoK7iGDNBcOvH+gzRJViV5z3LnzgVN6iickcxIYqFBDAyKHXk3Tx42NBWpX5dOvGxNru/tzPEQ0RmcOhzN9rrX05saSXi0qW46KGpDr+vMs1tpUA7A/O/vvdTKCJ5WmvVbGGhJgK61f0savdm2Si6dkdxv9+3suUuC18YPF9w8v8ti7cVpH/vqyPzSUvk2/vpMDewbtqH5n4gQU7bVHP2O1MTExMzkDMO/spcNttt1FTU8PnP/957r33XrZt28auXbt49tln+epXv8qKFSvYuXMnAOeeey6f+9znMvaxaNEivvSlLwGwY8cOzjnnHO6//3527NjB/fffzznnnMOOHTsA+NKXvsTChWaSZZPZgxJJVQ7XcggG4yGb0JnoC5MIjD/M+3SSy9E5RHiwGruu6cRHeU+iBNrhbyJaZcTwiwhKHD3Ugtr4ELoSRhs4Snz/j6e07ydzrGQxQXF2i3du2YrPYmf1wOgpP4ZYGjcc8Ze5FGoSmU46vxpAFkTOtYVY4kgNSApjjVj0eEb7c4LPDP9dLc6dXLLvVO5pjPLz+ghbeyfm2upKONAFF5rgJylkD/3z2IzffkviJHFFEHl73vuJyIMlnQVh2A3ltk5d4TATk7mCLjgI6YXsD/nRBT8hxbjPvNrn5c6mApJCBY2R3L+NHQHY3pvAO+iS9ludFNhc6KqRmqLKci6KMrES6tFYJSt8FewLvtMFPBFVrKYzuZqRQ8O3gleT1FNRC8lRirSZ5EbFDlkKOG0s3sr/XDWy+Kbx2X/9oiPcuvKuUfY4PmetkuO+ZWJiYvJOYHaPZucAra2t3HHHHdxxxx0529x000384he/wGbLnjvkm9/8Jp2dndx5553s3LmTW265JaPNxz/+cb7xjW9MWb9NTKYCJZwSgXRl8o7OXNsGj3dSsG7epPc7U4wldCbDMcJNPSiR+Bih66AFjuBaFEKrfx1diYESRQsaDkK1661xPt5OnhM2D/WSBWZxbs7r851UiWE8Hd1jNwZW9T8HwEbtGAuCr2esz092sDZvC5/v+EracoeavXJ0YezE8N9L1GageHwdNzktHAsnAfjqvolVAj8asWETl/HnDif/cWCAwBV9oKcL297B6uuNyfSUCIKnmPe3XcoTJX9EL11BzFnEwIDxyHVOxaHJvhUTkzlLRC+iI+GhNylRn6jjaNgCxPjUW8bv8lsHi4HMiaUhfnLcKMb37opNPNKynWvKLkdHIz7oWIsl8nJumxuJZdYPUup4HoRtoGem0XknoAs+PvPWfwPw36vD+IUX0MQyfnN8C9dXurnEvx1VrKE1OjEh2cQgpBagimfjwYjI0cVCBM14frms6kmjkeBhQF+Fl1e5fv6fRt2fIs5H1sZOf7Kj/6pT67iJiYnJHMZ0dJ4Cd911F1/72te48sorWbRoEfn5+ciyjM/nY+XKldx6661s3bqVBx54AJ/Pl3M/oijyy1/+kscee4zrrruO8vJyrFYr5eXlXHfddTz++OP84he/QBTNr8tkdqFEEsN/a6cgdOZiruTpHEvo1JIq9X94DSUcJxHI7QAUxMH9dDyIGjiMrmbPHziddEsW3prlc2DzxQE2JveP3fAkVoazF3EqidWzwZbIum4sVoW3T2o7k9nP630Q00QebTPEFwVfRhuvzXCgNcTSJzJVl1HcJCI4OFJ4Dv9nuwGAijwrW0rH50Q2MTmTaIjncyJqozsusLXPxSvZs46MiVvys8hbgqCWICrlY28wDsKKC513cJ5OITW++NWJGwGZl3rfT1yVOdBvfMatibUcGTCLNk2GZzvP5XDYSJOA4EIh83NsVS6iMbpoXPtrjq8ZV7uQkpmT3MTExOSdwuwezc5yLrjgAi644IKxG46Tq6++mquvvnrK9mdiMp1oSTUtdP1UihHlYjrzdAaPd+CZXzIl+xpv6Hq8N5TZVhBwlYqIYhjlbSOPr9IwiVxME0QorEXvPpG27LHzP80Top1Dqj7eyKhT5r3Ffn7f2Tehbcq0AJt6H53wscqih7Mudys93BR/fsL7M/Z5CIt4HUlt6oV+k9PLz44HuadRpD9p/GbjujPjoWldSQtQRVSTEKxO9IQxkfFG4VUI7ZDIK+btgJufddUyP9/Kyx/6MaIwi+3SJiZTjhVIcDhs4zM7QwCoOqijFNUrsXvoiAWz702vYHVenFjMC1NUnDOh5jFjN71ZiEYqPP1gfxEDnMX9DesB2BMo4Z/2/5Klvg6z4vokeaG9jlc7ammvKODy4j/yQOuHuLHsPmx6Kmf4weAigkkHK8ZMMSvwsyNX863lz6MJHiStAQQHMRZh198GDMdoglK64qYD18TE5J2LeccyMTGZFMlgFDWacsHp2tQP3qcrT2cyFKPthYk7AnOhjzM/abb3YvVakfofQuh/BeITE/xOhRM1mZU498gOWnWd+AyN97wWG2cJHRPezq2FEKc4tr4sOvkq2G75HewEOoNRdYZFToBEloIS7659lALnoPw5osL6tmQVF8+3ss+9kENJo3r7smIdlxya3k6bmMwyNMEQ0RojAlFVJ6rqJDSd0eZGl+ZlLwRW6vASjRfiFIunTOQEEPU89HfwkCiqlaa93tpz3rCoqSPQk3BSH8w/HV07Y0jqEg83r+Rw5Gwaw356ldq09YomciQ4dhocXSyiJ+GkIXEJB8IXAxBjEU92XsfQsP54/FK29V7O4X7TgWtiYvLO5Z17VzcxMRkXWiJVHCARCJMMGeHUyWAMNa6QDMXQFHXcYt9ECTf1THlYfLixm+DxTpRo7nBlXRvboTrkzhxv/+JZ8nNanCqJY78ncWS0xPNTz8uesvQFosRWXaJj6o25WVmXl8/dnre5bOAR7i1s4t7CJnwjhKJcXFZQwLrgS1PeH1+8ddLb/tKzlyKbGSJ2pnMw7M9YZpPj/OnmF/iPi4No3nKal/0Vv1z+XZ6KVPOdix6iQ8zj8b4iABbmZ0tbIdKhrR71uHGhBoCEkLsKvInJbKU+UcdLwXM5Gh7fM4JbtlJuq6bU4aXOU8S6/BqqnMZvb63fqACejE9NyPoQmuZiW3AFDcr6k9YIaEIWgU+YTD7QIXJMjAkeQAZhmu8lgpOkOFTYVGBX5BPc0/SetCaPNK/I2MzMzzk1/PTIJTSG8tgZWJm2vC3q51gwH10sGl7Wol5LkC1p7XaGrgfg50ev4LWepWhiJV3JeTzVupg29WrAyv0NF/CHhrW0RE/lPDUxMTGZ25hCp4mJyahEu4xCAbqqcfzerSjDQmcUdJ3gsQ4irX2oseS0HD/eFyY5MLUFAuK9IdB0+g/mFrfGU1xpSCgdEn/HIlt+TlEMI2gKgjazlZhPnFRZPVG7kWOjhBJOJQVWBz9P/paNfY9RGDvBBT2/54Ke37PZO/YA7ybpGP5Ey5T3SRAm/9439z5MhT17sTmTM4ffNWd/ZFpVsIPr6l7g1cJruEs9h+91LMTmdDDPexiPJUl80BlV4sqc6EgIFRyLuDOWp7DwnjcrSAoVfOvY/Cl4FyYmM0t73Mp3j2js7x/fM8J5xSuwkM95hes4y7+Bpe4VnFu4CQC7aMT1Klqmu/pU0DSZ57ud/PfR9HtQiAX0apmiapd61qSPpYvZxad+fS2aWEJCqJ70vsdDjIXccew2dLGUo4lb+PHhS3izJ706d1LPrK6uv4ND+6eSuCqT1CWebVvMUAY5Tazk1a5aVF1kT+hahobnR4IL6E2mJqUHOIefHr4IgO64i764k1f7buJIaAGqLvJS9yaalKs5EfKR1M3sdCYmJu9sTKHTxMRkVGJdA+i6Ttvz+wg39aAOOjyTQUN8DDV0M3CkHaZJJEsEIsMCoRKOkwzG0EccS1e1tNe5GNkm3msIDv0HDcFMU9S0CvIAakJBS44udva8VW/0a7xCZ38WoVMLjGvbqUSwuWgZuvyLEkc23sLPaiY/cJsIoiDwC/fblEcPZKz7OG9R6TBEn/mulHtEEkQKrA5qnB7O739sRvo5UT5mb+Gi/ILT3Q2TaeT3zWE6tVVZ11W56/lG3wb+HDDy/m6qMEQdvyOG0yLitIhsKd970lYSLYkSmqIy7epIV6cNXXADFsLU8nJ3lOt31PC/x4L0s3REOzNlgsnspzcpsbUnxp6B8RV8KxI3oik+bOpy9MRiSNQhJJcAYBOnx+2YVOzURyvpSBShC67h5S8HyhhQ3CA4MEQp4765tce4Xw5wzoSP1Zw4L+vy9ngNByKXoTG1Iu7JHAxv5GB/Ef/X8Pfcvv/d03osk9yEFBtRwXB1vtT73uHlvz1xDghuQKQpUoiiWwy3r2Dn9oMfTdtHa8TDA43reWzQgbu1s5afH33XTL0FExMTk1mNKXSamJiMSrzHKKDTt7cJSIWyJ4OGuBdp7SPU0DVtx4929KPGEmhJlaN3v0TDn7ajxVPux3hfGCUUH2UPBiMdp4nBEPJQYw+6plF//zaiHYG09ko4TqixO2dYeqihm5anjMTvyfDYxwcgSzi8Hm8e37ZTiFpYyzYNBKuDZPVarndV8NMZmv2/qiCfs/qyF1s6p/ePnOsxxJs1TplyhzHgLLU7ucZn5WKPiC/RPiP9nCjv6fwJN8kNp7sbJtNIXNP510PZ3ViioNGPg5BqOKGumG/kfN1cdoD3rND5yFqFVQU70rZRhGKOR+080aHyvydS++3SFhGlhJhQQVvCB8CrPVGSus5HduYzVDRlgLopfocmJlNPe0wgqevEx5EOZom3lFgij7jiJqG4UDUrSc2OotrItzmxTFdYtyDgEZZQZT2bR3tT4esxzUtbvIJ90VXEhXIQXIDMs+2LSIqL+Jc9n5pgqLmFnxzJLkSFFCevdS9D0aY3dD2QMCYRd/RUmC7N08w9Te9HF4v43YmNw8sCCQe64GBb8HO83DmPhGZjZ/j9xIRFdMTS3f9h1UpUtRBUjIiSqGrJaGNiYmLyTsX0tZuYmIxKvDdEsj9CrNMIYR8WOgcMd2K0I4AwhUUBTibS2oeWVDnxx9cJN/YA0PnaEcouXIauafQfasVdW4TFk5nfUdc0BNGYz1HCcWSHdfg9AST7Ixy/dyuBfc0Ubqwb3EZHEAWSoRhqNEGooRtvXUnGPluf2wM6KJE4+hjOz9HQQ5MvgjNZBnwVJIFExQr2lC6b0WP/tf7GqOuXi0ZBJgFY57LTFY8xz27jBmUrPdLsdkwWaz2AOcg4k3mqPQpLRUBDF1wIeioc3WURKXBKVHgFVhfuA2Bt4Xbca0I45ZPd3BYORat5qlPk5e4wV5Q6SQhVWPVmnujKx2vxc2l+GzsHHECq+vQLXREOJzbil6P0K3a8OcxfuuBB0LNXrTYxmU40oRBR7x5+rYyib0qCiKqncncu9dZBDuNnhcOPMI0TcslkAToin98V5ZKL63Dqx1G0Wh7tiHFooINfrnEjSwIIInFV5rmuG4mqVjrV8ykWnxxj7xKgkhDr6I67MHwmI3OWWokodvYHiomW5+GeRhtKUjOHfrOF7d1VeC23ZSx/rPMT/HnQpfloywajMNTUpqU1MTExOeMxHZ0mJiajEuscINGfypGpRBPoqkb/YcNZp8WVacvPaew/iZZQhh2lAKEThoM03hum+bGdJLOEhPcfbkvLidk+WGU9GYoR6x4YXh7YZzgqh3Jyhuo7jeMmFOJ9YQYOt6Xtt3d3IwCR5l4A+vadoiMz3ntq20/mkLIx+9/hr+Qt28wlq3fJVlYPvDhqmw91/phz/AV4RJUCUeGbRTE2WiNs6nuUq7pntmDTRKmN7j/dXTCZZvqSKkMh42+FVzMyfPyKhQrfvGg/j97439R4jgIgiwpL/buHXw+hCT7OeSnBz48H6UlodMU1PryrmqRQzo+Px/jojiCtCT9ffDuzSvumF5IsfFZGG8WN1ZhcdOpv1sRkEtzfOXLyzEZwFKXznKLFaa+dOfJXAlQ7yxF1V871p0pSdaAoVs4v3sD2/jKSQgUv9xTSl8xHkOahkcfr/dfSGN8AwINNRrqJtwPZ01mMJCEuIi6uIKoNFZpJFxu7tAs5MFBJULHRr0xndXOB13vMXL+ziWfbFmYs+/OIYlBHgoUcD+Xzk8HcnCYmJiYm48MUOk1MTHKi6zqxrgG0ZCpUXAnH6T/cNu68lFNBrDuYFvY91J94j+FYSmQpVtTx0oHhIkEDR9vp2Wnk0wwebYcs4y5tsGp88HgnyYEouqoRbQ8Y+UdH0P7CAbRkStztfv1oxr4mgq5ObaGlcTHowNUFkV3izOX5W+JyY1cGRm1j06P8PPI/rKeVG5XXubnr/1ij1c9QD0+NivABXPL05lczOf3ogvEd//yEBEJKsPjYypdZV7RrfPs46XVjROHF7igvBuZzMGhY2r53zEZYzS0SqXpuobMjbhbHMjkdiDzcqjI0vNAEJ305HJrz3YVU2eelLZOE3OdtvlyBqk6zY14QcGlnsaM/j2OxcgQsWLUaqizreLbjSv7Svpwn2zanbdKT8Iy526Tu5r6mDxJRB4VcYeTwy8aDLZezs9ew7IWVaRRzxUU0hs1K3CYmJiYmZz6m0GliYpKTRCCCllDQEqnQbCUSp+fNmRWeoh39aa+HigQFjxvuy2R/xMi1+fttJAJhIq19BI93EjrRha5qND3yFugQbu4h1pPpkIKUozPaNUCkrQ81niTWOUCsKyXMBes7iXX2E25KuTAjrX2n9uaUmROMAShZSFg2wvyb7D6OzUyhdf6q2Mf/qr9HYuzq8v5EKzd1/pSNfY9h06Nc1n3PDPTw1BEEnX8uHGe+VpM5i44FsHF/cwiNVD69VQU7KHWO7fDWhMLBfaQ4FEwQVXXe83rq+nRfU/Zr1fB+cvx2dcHF3+/Vsq80MRmDEAvRBd+42yeFCjTBcCG2qqt4siOC7+nVtKpr+PS+FfzkeHoKhQUew9W40FNFMraCLUULWeQdTA+j5XYzxmOLiCvTnxpEUW0cCNXxnjdcRCPziCXyicRLea7dEAmHBMkhXu+qhhGfly74SYojXXoS/3XgU7za9f/bu+84ucq6//+vM322903vnQSCJJBAAglVidIFFWk3ooJ64y0/8VZvUVHQm1u/ipUqTaXX0BNKICEkJCQQ0nuy2WR73+nn/P6YZHY322Y3s2V238/HI4/MnHOd61wzs9fMnM9c1/UZw883XAlAtXUypi1aT9A2lrUVw6PTk4GNNWPabJdpG9mlxxEwprM18PXDiW0gbBtPRUjr+oqIyOCgQKeItMtfGg0wNh/R6S+tpWZrcZ+04wgrHMEyTSrX7wGiIzr3Pv8Rlev3UvTaJ5Su3AZAxcd7KFm+NRasLF/TfoDWjEQDA6FaH3W7ywjV+AhWN2BFzFhCokPLopnCGw8eY3Cz+WOJ9G6gc/uokzjkjl74POfKpLoXAp1um4MvmZ8wquGTnj9ZH5sW3N7XTZAeZuEkaOQfvm3v8vE1ZgF1ZtYxtyPSztT1ELnUHsO6wTK4RbB36e+6eUKbT+uaRje+WprJ1vrWy9pMz5yI02bHY4uO3ix0F/K5rBmHT957Mww6kmoMZVrm6Njsh440RFxs9l3QdJ/JmDSNTPUbM1oliPmgYh4loc8B0GgOabFvWck4LFthi20YHkpCJ3TpMXxWP49PqiexvuGrAJQEj6M0OKSTo0RERAYGBTpFpF3Bw2tfBputgVmz9SBWpHdHCzVfaxPADEao3X4olvm96tN9sVGmVRv2Ubk+mv3aX1pD8dINseOqNuxrdxjUkYRCodpGfAerCFTWEz6cTb1hbznBmsbYep2+BAU6HWkurFDvJAxpmLwADBu3pY/g0OERna+bBh1PJG/tibx9vJb1CeNSM1rty3F5W20bl5rBKxkrObXiuW60OvnMrF7KnwpbrxkrA0dpeCgNZvTvP2C17gedqQyn8NWPj336qGkZbA/OppYpLbZvbhzOfl+Y9b65LKmZf8znkcHEQcSy88d90zsvetjf9o/nxo3HYRrZ3LmlKbD5qy31fFbTNMLdbtg4LX8SHlsqp+SOx2OPTtFOMU/EFpzONSOvIdCD07a7IhgYQYExL+7y920/C4guaXEoMBbTagrYHghOaVV+cdFxPLR7EaZtJPXhrBb7LAzerfw6jx28I/bvvn2/pi7ctfeMPQ1DePvgeO7dvgDLyGF99XSe3ju3S3WIiIgkKwU6RaR9h4OCR7KUA2D10lznDpjhCGWrm7KVHx14bX6/+e2IL0j9/nLaYkZMLMsiVOcn7Au2GLV5aPkWKtbuit1vLK4+1ocAQEpmFWZjaULq6oiRks2TQ4/H8GbwqWnxmT062qSDJf7aZDdsnFbxPCfULMVrb/3xcWpGSqttXruNaTXvYWNwTKV1Wz4W1rza182QHvRaWSY+MxrUqIp0vj7f0erDTj6sOPaR3BHL4N2KFP5d3HL0V3nQQcSC+/c6+MsujeyU+FlGKhHLxr/3xb929LtlYZ4sqmdt/VSKfE2BzpqQSfMlZtMcLoZ6huHEwwjvKDzkARAKewmbLnyBwm6NkO4JpuUg2IWga0PEhXU4kdLehhEt9oXM1qNUI5aNPfVZrK65kC11rROHrakYw/sl42L/1lQMp66L0/Z31eVhYiNi2SgOzef1g1NbjSwVEREZqBToFJF2HYlpHj2isq+FGwPdnj5/JGP70axwJJaEKOIL4i9ttjbnzhIOvb8ldt931FR6AJurGxdoZS9jWD0fiGgcPp1/Gk78Q6MjS14zu/fW/5NCW2yNzatTypmS1jTCJMPpZrYjunbpzMxsxqSkMz8nl+969h1j65NPbmAvdxaajPCmkabkRAPOH3f42NkYDRjs8bUO7nemNOjovFAc6iM21tWY3LGlHnCyMzQLy8hmc320fz93oIH3ynxEjMKOKxI5bIt/Co8dyGFvYxjaWRqhOdPIpvFwIr9bNpgdJs/KcHlJtSZgmENxhScQDg2sv8uKyEwAPqkeiXlkDV4jpc1A5xFP7Z3F4qLjWm3fVd96rdLq5kmPjI5Hd5q2Eeyqz47d//O2CwlEEvO+IyIikgwU6BSRDkQvWoLVDX3cjpassNl+Jo54jm1ne+326NT0sC/YclRo2MQMNEui08a5U/I7T7JzNNNX0uVjuuPNYTMosWDJ8JkAXZ6ufsQlNc/Gbl9Q+TgzU5o+Qi7LcTMhvJ8R3jQeCT7IxelhvubYzYVl9x9Dy5PXtaV/4NR0J167Li4Hmn2NIVZURv/2f7XVpGtfpQz+sKPr7xVteaPUxp6GMHVhk7CRx1dW2wmQyfvl0fp9EQsLeKd6YscViRz2zEEPt2+uJWRZWEZnQXwn9x84Hv/hz8NPawMEOvhcHps6BF8wB38wC384g1DEk8CW97311Sdi2kawpSafxkgWAJXmKdSG2h9FWR9244u0/jHsSGKi5mpCTa/H/tDCduuM2Ebzqy0/a1FHZbD1sjIiIiIDmQKdItKKGYxeKFuHL1qar9E5UJmRCDVboqNEI/7WCRQ6Y2tYCQYYbUzpble4559Xw+XlLiN6kfM3+7FNW3ObTUsYpIUqmWMcxGWzU+BO4bLgcqY0rudR51Ly/bu5wPc2p9S9e0znS3ZfsLbx+UwXF+TnsCAnl1Ozc3DaWo/8nZqexQX5OVyQn8PolK5PhZbe91559D3iwwo/axrn0MiEo0rYKTWPxzKym21zstF/Mh8kYNo6wGN7G9hWF23HS+UT2d4QZEPDMDbUBFuUu21zmJZf9/rH9GDpf7bVNc0w2BOcCrQ/GvFgZBp3bq2nPNDxrATj8MjQQvfAGsF5tLWVo1lb9yUAasK5ACyvOI1tdcM6Oixu5YHD6wEbHpaXzyJiG9uqjGkbye2bf8qBxq6vHSwiIjKQaKiJiLRSsW4Pnvx0/CXRKdrtjYIcSCL+MLU7Do+w7MZo0ci+F3EMXYA3q466A+7OD7AZhKu2xDE58Bh5M6k+fHPvMayvek5uLlmVh2L37YS5qOxBVub9D9sCMLN6CQBD2QrA5LoPun2ugeK88kc57/DtAynT2O8ez0M5c1hcXtmi3F9sbzC1fDkADxd8n580KhDV3zUPVp693MfFw4bw0PQdsW2mkc2kpXY+PXMsoxzR9X79xghOey/Yqq7uqgubHEll9h9ro7fOWd56bcVNtQECxkjcVjRJW5U1mWxjU8LaIQOE4eX1Q00/vs16N8KnZ05nqGMvNquyVfGtDenUhBqoCXX8/SDD6aYm5MdjyyTQYcnktrMuh511pwPwWc0ExhRO4OU2pqV318bqAkKjJ1MUOJ4KfwrvV17Mgqw/QrP1r18quY6DPv1YJiIiohGdItJKw4FK9r20lvp9FX3dlF5Tu+NgbCRrV7my3Jh1+3BnRLD2/h2MzsOXrgwXRqRnL/sMVwrYjv33rDy3l2+zutV2l+XneFsl13kOHPM5Broc/z7ywqVcYNtBgTuFAncKWU4P5+flMrV2eazcGQ3vxUZASfJ4r9xHdEi3B8vIpM6KJlopDzVNzy0NZbdzdM/b0DAccIDhZXFpfp+1Q/qvOmskoWY/hkUsWFebzns10w5vsWEZmWBEk/TsjPMHmUJvBplODzar6+vZJqtlhybwaulXElqnL+LkuYNX8tjus6kOeVleNgnL1tSXfcbnePXA1ISeU0REJFlpRKeItBKqaWyRjCcuNqPb62b2B8HK7q9D6vBEsABzzeUAeE90EvZBqK7t0VupQ21AOOF5yGumnUNm2Q4o243hcHPTvBv5y+ZXulzPpLRMttU3JVx60/YEQyp3tFn2upL/1+32DiZes54JdavwRupYH3wIgPVZ5zCzYkmLcmMbPmZS2kVsrW+d8Er6r4qgiWWk8tDBk/jBp03vnauqnHzO66SesWxvSAXq26+kB5293MfucybxWFE+d2yp4+tDcrFZg+eHLOlYwBjNXl820PIz68PK6HqRp2aOIGh5GfFGGlePSuNPU96nOM7E7MdnTiM1azSWOXguORoiroSO5jzirYMt19v9uO4iTkq9FwwP9+66NuHnExERSVYa0SkirUS6MbLRsA3eUWg2W8s1ylzGZlzp7T+HDv+HOIJrEt6Oj3LH8thxiwDwj/4c75rwysQFXa5nXmrLgLXT6vqapdI2u9n0XBb697RZZopXU9eTUYhsXixu2Vfu2+3DNNL5274hHAz07VeuuoiHB/b4CJgWy2o08kuabGwczgeVrZMDLSsL8GFliP3BIWxqiI4efPWQD7BRHYrvh00bBuFQBuFwaiKbLECZPzpK/OOGq9lUo5HaIiIiRwyen1dFBrlgdQOurPguNMxA1wNb0SQ8Bla448QEA5FhtHy+wrsfxTbxx2TmfEbINZfGQy33Ww27CO556ZgmKBvuNMzs4fz3tEVUY3Dfint5wpnBStNiy5k/4Pra6HTy/za6fnF5HOV8mLYMvy2VLzScQXqwd7LDDwb5/t2x20N8O2jrj+DO2r+x1HE1DeHErecoPW9PYCjLylsOc9vdEOKsVZNZX11HrqtvA9gXfGhnX2P0vejqNT42nDmNLLRW52AXNoaws8HBzzfXtdq3oTb6HrSnMY1NdTbAR3kwwrbgLNZXx/f+5DYyCESU9bsnVIXSCNmmcO+2BX3dFBERkX5FIzpFBomqz4riLhtu7HqAxe604Ri0I9FaPl9m1TZs9WsIF7+JM7y2VelIzQ6MY0gMBFA3djbvTDyDl02D5SaUTF7AysNLB7xgGrydFs1wa3Ujmppi+RnV8CmT6lby1TwvLisxWaIlmsTpCMNo+28gO3iA0d7Bs57dQPH4gbaDOeuq/VhAebBvfwTa09j0t1cXNvFH2s+oLYNHZaSAmpCBL9L+Z1JdxGBLfdNiKy+XeFlbHd8a04YxWL8X9DwLeP7g17C0rrOIiEgLCnSKDBK12w8SiXOkZrix60ly3BmhQTt93Wgjl2xw2z+IVG4itPV+DEezCz3DIFKz/ZjP+UH+JH5qb8qu+kBey7W77qFlEGNOVg4Amc6OM8KfmZtLhtk0suc/ax891qZKN4xyKziQbO7Z1XpEXH929+5MAsbovm6G9CmDB/dnU9nJV4OH90ZYUtL0g9fvt7X/t76wsGltSpthgKX3sp7yUdlIlh61bqeIiIgo0CkyaJjBMLXbDnZaLhIIYYW7nibHbhW1OQ13UDDbGPEY9mFYESx/OakFTSO5HClOjMixTUk2XF7+15FO83RR+496O28+gTbV4eIG5zYAzs3qeKTgfGcVw4N7Y/cL/DuPqa3SPfm2wbcERLLraERcf/T3XXXsCRT2dTOkD/mMsfx9Vz0HfR3/7b5b1khpoGlEcEMHf+uj3NNjt9MdbgytktVjGiKuvm6CiIhIv6RAp8ggEar3U735QOfl6ro5Tdl/ANtgHbhhdpx+1u5bFbvtSGkdDTa8GdH/XV7ieRIrJp3BoaOmvu/qYI76ienpzKldysS0TL5irmFBTi4X5ue0Kve1gmymh3YxzLet0zZIzzrL2saX8lq/RiKJtKSso7UT7ZhGXq+1RXpT9HPm3aoR1IZMPqrq/o9vWS4vKY7oDIKRKdmEg4WcP2wWQ7zpzMmbghXJSEiLRUREROKlQKfIIBGoqKduV2mn5ao+3dtpmTaZARzurk95HxAiDR3utoKVsdtOV8uyhiedVSdeiuFJx8oewcHjv9jp6R7Nn9xqW1EHa35e5DpIdvAA30wtY07Fi3zHWMvNgVdblJmclsnvyv6H8Y2fkhau6LQN0rPOLX+Mv1f8jBMzs/u6KTKA/XJTHe3lpQwYw6mIDO3dBkmv8BujAFh5+K3+s9ruf3YXeDLIcEYD5idmTyJkekgLn8nc3OMptM3GH8o85vaKiIiIdIUCnSKDgHU4SU2o1oe/ov21tSzTonzNrm6fx0ZZ3GUNRxK8/RjxzcU3Io0dFwjV4s52Y3PasYX3tdgVzh/L3e4cDk1eQEXBRL6XMwHDlQLGUc9P/jiM7BGQP477rfimAua7U3DbHCyqegqAs2tfwzAsJjeuxdEsKc6U9CyuSqsBIDsQf9Iq6Vk2TG63LSfVoemJ0jNClkWVNYmQMZyQMbzFCM59gULqI0fW9E2C92uJj+Flp68A08hhr6/ry9QcLd+dyaiU6N9Nln1UbHuGMZFwREnVREREpPdp4RyRwaDZaL/63WV4ctPbLFa77SDB6k6Cdh0wQuVAfqflPHluXL7nqA0v6va5ekNKoYNQg0GoruNpfVawvMP9od0vYOMFvLOfwKr8pMW+uowhrLfgzOxJ0Q0mhAsnUFwwkVE7V2JVFwNw1YyLOcUKc1IwvoQnKXYnr9uf5HrP1WTWlgBQ6N8BQJ5/DymhamzGfManZvB2/c+gPnqc2+p4Gr70rpOqX+e8vPk8V1bZeWGRbhi7xA0UAHDZ8FQeOG45ADsbPexssPGtEUOpM7PJNjb1YSslUbYHprPf7+Kj6hm8WFzb+QGdGO9agD+URSTnSYKBEbHtvkDBMdctIiIi0h36iV5kELDMplEb9Xvan75etnrHsZ0nVNVpmdShdowt1xPa/UK/T15kGBFSXKs6LWc1xDcK0m40Ei5+t8W2Cm9Wq3Kvjj2V5zJG4M8bE9vWiMFBw85trvimMs/LymCobxv/5drS5v6USDUTUzM4NzXc5n7pP0bbFHyW3vFWqZ8jXw1NC7bWm9y2YyIB09m3DZOEWVebQk3I1mmm9XhZVvTvZVrazMRUKCIiInKMNKJTZBA4MnUdwF9R32aZUL2fmjiysjeXPjxI3YHotFoLCwIdrO1oM/Bku7A2fhsC0YBo6hAHDQebAm3eAjcOZz2NFV4i/r4PwBm2MMFNf4bCf8S2efLd+Mui65kZDhtW2MSsi29dUyO4C8vXMtBc7GmdqOG/bamcaVgUZ41gxJhZuGoOUW/BCx0kHAL4Yl4uv6v5Aw3OHP7p/DIA55T/s93y81ItZpl74mq79J3RVAEeclxeKoMKekrPqQpFCBtDqIjkc8PHDTRGLCzgyf0O5uXN45Hpy/u6idINESOfme+P4c/Hu/ne+jpsRjSQ3ZYTc0ZT1FhBmb/t7wrNzcufxJHAeMA3Ke7lXkRERER6kkZ0igwCzQOdtJO0pvqz/e1f+bTDFmkWGLVCWP72R4t685y4PMUtAn322pewuaO/txgOG/aSP0DZ86Rl9I8pkjbqIezDsDe9VboCb8ZuO7wOsBlE6va1dXgrZtn7rbZtdbS9htkmy8ba1DzWDZvBmzMWUd9BsqEjTrOXkhEuY6hvK/NDGzot78BiZHB35w2XPjU8HF2+YIzXi8eu3yelZxWFhrK0PIuGw0FOgIqgyeuHGtHXxuRUGRnC/sYw/y4yCJgWvohFoJ3Pe7fNiePoNaLbMCIli3Hu07GO/E0oyCkiIiL9hL6xigwCEV/TGpOWabHj0fc4+G5TMNGKmJR9tLPTepzpLhypTYlRrMY9TTvNCGb1lnano7sc+6Dqgxbbgjsex50VfRtKK/QTKX6f0N7FBNb/Ak+uu61qWrE57d1KbOTN76R+m4ERjgZlbS47EH38wS334kh1kZGzFm/4adxZLgwrEtc5Q8WtR0PtsLU9JfSQZfF3Wwq3u3P4kZFGzVHXpC6bnVEp6fyjoIzH8/bjsTuY62uaZj+78pVO25NtBBgSUKCzvzuh9j0ez9vPr2zLGJOShtumYKf0nJs/dXPHltZrNQdMi6AxjKMnA5lG5+syS996qCgHgGcPdD5K02HYOCf/bABGpea0W+6k7Cn4gzmEwvF9VouIiIj0FgU6RQaB+r1NyXLC9X5qthRT9WnTdOtD72/Bd7C6wzoMu4E38BjO1KZtZs3GpjtWGLO+CHd22xc9ZulbmFUtR2oaZhinI9o2I7Q7ts2wLNzhpfE8NJzpDlyZXVs/zua0Y9v1Xy2Ctm2VMavWHr4dfatMSdmCYVk40yD42e8J7XgCt3Nz3OdtKyDaQPsjNQ9ZFrstCBhw9Kz107KyuDajkc+XPcoZFU9xTnYGk+pWxvbb6Xzq/ynBz/CG40tuJH0nLVzBGRVPcWL1mxQ67QzzKpOx9Jxl5T6K21k6ZJtvOGBvsW1xxdReaJUci8XFfgAicUzasBl2Av5xOAwb0zLGMDt3bJvlUu3R9aKto/4eRERERPqaAp0ig0DzBETB2ugaf/6yOqyIib+0loNvf9busYYjehGTXlgazR7uOHwBbBhEytZhcx6+yDGjmQ1c3pYJiRypLmwuB6F9rxGuamNKekP03FZ1y2zkgU1/azWq05HijAYnD0+RMxx23LY1ON3RNTPdOe7Y9ozh1U1tO4on14ZZu5fUlI/bfdx2t53wgXcB8KYfwuZyEPzsfwFwOkoxDk8lD2++u9064tHYwbqbHU0fPNdZytcqH47d/2HwpS6fe2b1UtwRBTqTyZWOHcxLtZFiV3IY6X2/2+EEw0bT10cbP9zgo8Ka3pfNkk5sqYsv89AZhVMZ7Z2MhY1LRi7AY/cwNe1EvHYn2a4ULhk5n7OGzADAaaT3ZJNFREREuk2BTpFBoHZHSdOdw+tyWRETX2kte55bhRU22zkSUgosMMA68AwANiM6MsSZ7sIK1ePNM7B7HFjBaIDTVt8seGiAN/AQ7mwbhhXBiARb1R8pXgIGRA62XL/SgBajOg2HjZTwP0mxL8GREg3yuDIchD65ExtleHLd2HfeSNrw6DT40OobcaS2PcXXbo8G98L7X2z3cbtSwxCsBiC49vuk5IchWBvdWdf0GI9OLtRVHaWWmZDa9oWkw7DxxZrnyQg1nXtCXefZ4Y/mtnzYaP+1l/7ni2X/4NLQKi7KTevrpsgg9EJxAxHSMI1cAELGEEoDYZ49mNvHLZP22QjFscYzwFj3zGhSIQD/LDLs+djMTE7IHs3ncsbhCMxluP3U6H5TP7aIiIhI/6RAp8gAF6ioI1jV0Oa+/S+toWFfB5nSAUd4E64MN+Hi9wAwiNblTIlgAHb240yzYzVGg6mhfc/jLXThLXSRPixMeO/LOMrva7d+s2oL3nwXlr+81b7gpr/hznWDARkZqwntfoHQ5ntISd+Jze3A7T0cwC1/G9u+H2I1lmDt+DUceCjadnfTxd2RpEcARqQseu6Kz0gdasdb6Irtd2ZER4XajUPNygdh/59j98P7Xu7wOYubYcOHgdMWHXnafASn02ZnkteO6/C+2Vk5TM+IThU8Jzeb3EB8md5l4Dmh5i2+HlrGtPSsvm6KDEJ7gqPZ5h+LZWSyPzgMgM/q9INJ/xX/mr6W1XJZjEhwFIFgFsM8QxjiGgmAP5jByNRsQIFOERER6Z8U6BQZ4FqM5jxK87U722QYhHb/C4e32dqSh6c6O+yHRzfWrsflLiNSswMAq74YPr4UPr6U8OqrAAjve6PD0zid7QdbXZ5anOluApuaAo3WoddJyy0ntPpGAEK7X8CqjiZTMis3Ej7wTrRe2y4APPluUvx/aqrUvz9201xzOXx8KZ7s6BTyFNvbuLLcUPdpi3ZEDjYlUrIaDpIIgXGnUGuzc3OBE7fNwbjUdC7Iz8FmGPy8IMIMey0X5WVwek4uDwbu53bnRwB81Wh/qQEZ+NyWj5nVS/i1a01fN0UGoZPeiTBnWYgdgUlsqfcC8HRRA5ahUcb9khHfGppeuxN/IKvFtlDES8Ry4ral4ODwPsPg1JwTCYayE9tOERERkQRRoFNkgKvdcajzQkc7vGykt8CJVb0Dm71pyrkRqjyckTwa7AuXLMc6+AyEOs/m2u7pQgfa3Wczq/Ck17eY9m427Mfc80Cn9YZ23EPacBNj49VEit+Prdlp1W1r3QZbdO1Rs3433pS9RA4t6+rD6LJXR5xIfmo6FzW8zpysTAqcDv7b9wzXFGRwSdW/mBnazpns4VZrGamhKlymnxHeNBaUP93jbZP+b6R/e183QQaxsqCL4OE1hn0Ri32hyX3cImmLFefIy2mZw9pNLGQ33FhmUyDbbY0joqnrIiIi0k/FP59FRJJO48FqarYUd/m4jKwP8YVPx+GoJQzYw7s4MqYz+On/4gWChwdFWjW7CNfsOqZ2thV4jAnsx0ZRi01mdXwBHqt6J5HVV8bupxYEaCh1Ez6wvFVZmxECHJi1O8Dmivsc3eGfcCreA59xp+HlbLfBuPK1PM7a2P47GtYBcFrlcy2O+1z1G6ym49GxMngUNm7H4Hws4lt/TySRzv+gscX9LQ0pjM50AG1nbJfeV8tk6sPeTstNyihkuHcItJOzKOib2uK+P5iTiOaJiIiI9AgFOkUGKCtisueZD7EiXV87zfIVk+J9H4vjATBL3k5081qIVKxrf19p66Bkd9kaP8abdyrmntZrlhoEwOYkUrMTy4q0cXTivDZ8JpNzx9IIjLC1TtAkEg8HIfLdXkoDjZ0XFulhDWEDy3BjWAp09hchy8mKqgygrsNyx2VMIN2ehz++5OwiIiIi/ZqmrosMUMVvf4bvYHXsvifPHf/BgUqCn/2RyM7/B0Co+N3Oj7HZMVydjxxpi1m1pd194dKPCJd+1K16jxba82SLJEMt+XFnujDMMFb1ji7XHRkZDQpTMAEAI6OQ9XOvoWbaOa3KrrF7+LpnCAAjqO3yuUSOeNL9Fq9nref1rPWM8Eanln6nMJXXs9bz9YIssl0eXs9az1UFWX3bUBnw6sIGFZFxfd2MQWW9by6Nxvh29tr55bZsfrrR12k9KfYsgn69diIiIjIwKNApMgA1FFVwaNnmFttcoSWxjOKdMRuj093NimjSG8PqfGqs4c3EyijsYks7Z1hWXOePh1VfDDVtJ3AxzDDulLJu1/3ziWdjpGTx6pSzAagdPp03vDlcVng8Rs7IpvM4PbwWMQgcXgd1ZKQba6iKHDa57gOOr3mL42veYpzXRYbTzfeq7uH4mrdYYO3kuNRUjq95i9G27q+hKxKPxgi8U6kENb1pW4OLkmDbz/mO4Ik8uree0kDnI2ztuDAtrbkpIiIiA4MCnSID0P5X1oF5VHAwWE2KY0Vcx5t1+zsvdJS6kSdgetK7fFxvC+1+pu0dVggquzdFPzJqJs+bBk/NvpKf21IxckfT4E7jGdNGsQVPz7ggVjYw8oRYkDPd6WJYqKidWkW65ibbeu7N3EFGqBSAU+re5j/tHwNwhm8V41MzcNrs3FFockehycS0zL5srgwwrx8K8YcdQbYGT2ZHcHaLfRGjIM5a4ssQPpgFjRG8UTOfN2rm89LBMH/fm0I9k5oKGF6W1sznPz6Ob3Uqp82OYbl6qLUiIiIivU9rdIoMQOF6f6ttlhUmsvtJyJpFR7lLbE57tzKob88exWinh5yiDV0+tleFWq/PGd1eTnD380cSzndJTeZQAH5heAD44/EXcVHtAY6snFhqa7p4f3f4CbHbF2SnkNZY3Y0zirR2esXTLe7nBvYxL7APgONq32Vczrkc9Nu4rvQPALybcyfbNdBTEmRZeXSK9E82eTkh08FtYw/vMLysrp/AKM8whtvXd1hHxMjDbpX0bEOT3MFQIVesatlxT80ZwkU50aR+L1TM5to1Ha/J2dzwlCywurC0jYiIiEg/pxGdIgNQWwmIrMZizPoi3NkdX9A4Urr3+8duVyp70zoZteNoGjViZMQ7wqd3hHf9CyPSvcRAVZ6MFvfvsxz8MWsMs7NyyHensNdwUDv1LIzsEfyvI4PRKdGRr1eEV5IZ1EW99I7TnFVckJsWuz/SocwjknirKwNEmv2YVmGOZ2mpky9+6OJg5AT8xtjYvkrrOErN42P/9gVHtlGjNLemOq3VtmcPmJSax7M5cDLXdSHICTA9cxxmpHWdIiIiIslKgU6RAaitQGfkYHTaustb3eGxnrTurVPZYNgocXra3W+k5VI/cR4AtdPO5kezrurWeXqKWd/9KeTlrtRW2xoycvhPx0b+lraRV0wbcwtnsmLauRyyLO51vc+41AxmVb0am2Ys0tO+WfJ//L+y/4ndP9Xc3YetkYGqLmy2CHTetTOH32+vZXdDiKlv2fiPT4Yf3uPkzBUpTFpqj/17pbT1e6k05+ab61onsFt8sIFJS+3MXRbqaMJGm3Jt0wiEFegUERGRgUOBTpEByIocdaljNE3ItjV+2v6BBph7H+zmWQ3KbO0nM6gcM5vdmcPZe9JlzCs4gaUmYB8Yq2cccjQFePPdKRgYjHSazGhYxWmVz3HjkOjF+/3ubMamZnB8zVvc4d3YV80VASDbrO7rJsgA5W/2W9um2pbJcF491EDAGIVpZFESiLTYF2z9G10f6QeJeYwULCMTy0jnSHvqGcXRH+/HytL6nCIiIjLAKNApMsBE/EHCvkCLbYa9KdBpNrafaCil0EmkZHW3zmszDEqM9gOXK3PGUO708LX00UQAH1A57ZwWZeqnnomRO7pb5++q9XOvSVhdn9pcXFsYTezyUej/uKkwlXQjQoF/JwBnBj8BYLUJX0iLXsmfUfFUws4v0h1zK1/AM0B+bJD+5fkD0bWQI0Yhyw+v3dlc4Ru55LwxAt9RUbstdf0j0vl27Sl93AI3P985i+w3xjHjvSmsaZyNaeRx956hCT1LlstLIKikZCIiIjKwKNApMsA0FFW2SjZk2Jt1dav9C0lnYHm3z2u32zhotP+W8pgjjQqbk+pm2/6SPwUjLTfaxpQs/mPI5wim53e7DfEyckZypTsP38T5CajM4AObhx9W38vY1Axclp8flP+eqbS9BMCl/reO/ZwiIv1YRdDEMjJZUTuxS1Opl5T46OuvphEjn0f29WkTMI00niyKBoiLfGEeL3KwzT+O1ZXhTo7smpNzJ2HpUkBEREQGGH27ERlgGg9UttqWnr42dtug7UCn3eMguOXebp/3JFcjO5wpGBmFLbbXTT0LI3s4n5oWfzC8LfY9adqoGHsyAJ8e/yU2WhY/Gnc6hjv+ddoMbyZG1jAANp9yJUZKNkbeGL515i0Y7QRNS0bOBOCekSe1X29qDtawqRhHrTtqDZ3aVMblJTLiBCZnZZAdPMAL5sMAeM16rij5a6zciTVL+TBtCVcVZDG1tvvBZJFES3do2qr0jPNWT+OaNf4uHVMVimAaWUdtdXLbrjMS1q62LKmZT9gYQj0TORAayeuHGvmw4bQePWdHrtswlUP+pqDmg3vquGSVxfKK1qNjuyPv8GfsUOfkhNQnIiIi0p8o0CkywDTsbxnoNOwGoa33x+5bZtuBTm+uH8Ldv4gaZpaBw8mKGYuazu1JZ9GQmewbG50GWN3GcX/JnwLA3SnRAOkbpsGqky6P+7yR3FHsGz+XLad8jcu8Q1h+4iV8OPlMlptgthPo/CBrBAAvmg5oZxRqJGsoDRlD2Dbzohbbn510ZtOd9HyWjp3DMHv0gjTf35TcxTCaxjF5zXpGNXzKhZGP435cIr1hhMfd102QAWp1lZ+qUKTzgkeJkNLiftjI5cXixAT42rO7wUatmUttJJWSgIeAafFxdd8t6/BeWesAcbE/nLD1OY/LGhW9YbWfQFBEREQkWWlxLpEBxlda0+K+J9eJta8idt+s/ITMcdOx3GOpPZAOgCPVhVH8wDGdN9OsJMvj4BZnNj89/dsYQJHdTYUFV2aOBQsKPSmU+BtbHPekaeM/p5/HSrPpCu7bzhxWjp+De+eHLU9SMB4wMKqKiBSM57Xx89lt97DEsLPjcPz2e44ssmyABbVZw8ks3gRA/ZSFpG15B4B/21LBsijD4skzbiLNDLNo61tQsp2SmRdQuOFV/Gl5NLpT+W7aCN44fHojPZ9fGx6+nDWMpTO+SLHdzV8MFzfZ4hu1NLvq1S4+qyI9a4hTv3dK//KHveMZ5hnH6Tn1jHJ8TK2Zy77GEP8sPT1W5si+RPGbcMf2XEwLDvqjwdnt9RaWkc77tSewz2fjtOxGxjrXJOyc7bN1K0Acr+OzR1DoHsoXhqUQDmX12HlERERE+ooCnSIDjBlquYaX01FEqPn+un0EP/kNuLKwDbsPT44Ndt1KuHrnMZ3XZ3cwyWWyBviR7fDU88OxywoLJqdlMjvF4J9HBToBXsub0OJ+wICzRp3G2xa4dkWDnUZaLjdMv4gRmPx0+1u8PvZUbrWlRs9htTy25PD9lwqmcNWWt1k59xr+05nNR1vewRo2lY1W0wG34wabm1Pzx5Fdsp3bcybyu3FzCDrcvJ81iiLLwkjJxmqsYu308wkBmycv5D/t6bHHmG/Vx/UcOa1A54VEepHHSHAKZ5FjdOeWWgDu/1w6o/JgS0MWFo18d31drMyZBV6em5m4c9ZHotPDm9tYG6LOGsZPN4bYUBvkBxPTuW1s4s7ZHsvI6NH6J6dNwGl4yHdm4fdpRKeIiIgMPAp0igwwVrhparrNaccqfrHtgsFq0jxvEFz/CIbZfoID38R5eLcvJzjuFCozhjB06ztYvuiFKIUTMaqKsCIhqp1epthq2q3nrLQIw6njqwU5eAyT8oidxeXRafb3G55WCZSqLDhz9Gm8F6jHdmgr/3fyVawwAWz4J57NMtNodY6j/cFyUbvgu/zNjL7VWUMms2/o9DbLlnuzyckoYFkE3hh2PHNrinjA5gULiiYvYMTGN/ihJx8six+lDqH5UqcFZut1UUWSwZm2/WQVDmNHyMH7lRWdHyDSSwKH3+NXVLb+qvp2qY9qppLF5oScqybUOuC/oTbA8yVD2FYfDYC+XhLktnGpYDUQNoZhYeC0DlBuTSfP+KzNei0jnV3BlutgjnYVUREppND2SZvHNFqJT8i3oHAaKfYU9jYWk8JYDDOCZTkTfh4RERGR/kCBTpEBxopEI3DuXDfOst8TPrii3bKhLQ/SYbjQ4eKCEaewdO/H3DZmHotN2JC7C1vRBgCWTFrI/IOfEXCnUeFwMSZcDAxts6r54c2U2PP437Jf4iCEz57BEvuN+CPh2AjMo1VZsH7USQzNH89Dpj22/cU4gpwQHd15JMgJ8Jepn+fMxraDOXUON2+ccBGWAcsND56MYew73K6LMsfxzrhTOHR4JOiOo5Y5He/fEld7RPqbS0vv4VLgxfwbeJ+eHUkm0hWNh39/K/a1/QHxYXUen89KzLmKfK2nivsiFjd/Uhu7v6k2QL01jDS2szc4nMUlKXx/xAH+e1MWDxzXdr0B8jjpnZZ1P3PKBO7aFuHN2Xag9XnLQhnQTtLA7hrpOJ1AKIOTMnbi8yc+kCoiIiLSn2hxLpEBxoqYpA8PYtt8NZHmQc52ku60xciMBit9407B8KQRHDaNj12pTE3PIpiSHSv3gjeX7Xnj+XXhDAwjzNjgjjbrc9rszK5+k1HhIhyHJ9J7I7VckJveaVvu8ebx85wJnZaLxz2Wg8dTC9rc96o3hx/You1ZjcE/7GmxfY3Ar4d9DgDjqNCwx+5gVH3bI3NEkkWmWYu9C+8RIj1tn88CXNSE2w50bq+3ETKGEzKGQ8c/2XXM8LK7Ib41Mbf78ggZwzkYcPObLXU0MoGygEnAGB1rS8gYjmVkEzEKKQ9nt6rjn/uhyBcGo+1p43v93u4/lnaEwtEET2ao7R8iRURERAYSXdWIDCCWZWGGTazdf4ZQy3Uj937ukrjrueqkr2ENnUJlah4vGk+xauSJ/C1lLW/V/4xIRvTCzRo2jTNzQqz2ZPGqCamResbXrWZ2Vk6r+sanppMSqWZO5Usttv+s9v5WZY+2wuTwlPXEeL6d0aCPmzasw7sqLFqs4wmw+HAbLshvunDNdnk4PycjFrwVSVYLKp5kmDel84IiveQvO+soMafy2qGGNvf/bFMt+W8UkP9GARjdDw4eikxiU2186ycvfN9P/hsFfPGDBgKmxbA301lW7qPwjZxYW/LfKOCp0uM5eflopr/VOkj7QnEDxf4wJu5W+xqYwIUr23683WUzDEwrOrMhGFEfFxERkYFPgU6RAcQMRcCyMENVrfY9mTmS2qlndVqH4U5jrQn/b8rnybOHGebbzKqMQk6ofguAmvQsALaNOIH5jStYYnMBkBaOnvOH9taZcCe47a22AeQG9lLoSa4Lr++F3oiN6sx1urgm8kEft0gkMVJtbfdTkb5y9+5MfJHOE2aZdP9zpD7s6vax7VldZbGzoeMfwExan/eJQ8MT3haHRmqLiIjIIKNvPyL90MG3N7baFvYFAQhUNdBQ1Dr5TfWmIsxgGJvTjlm3v9X+quxcbh46E+wdL827eeYFLM7eyGJXOg+NOxGA4ekhXJYfgGfyx3Luwlv4cd4kJtV+yIbDIx3zA/sAmFf5LFudj7DF+Wjs391Vd7Z7vs9nRBMi/M8QB1ucjzLCm9Zu2bbkuLyMTc3AwOC3hZG4AqdXF2bx6yFdOg0AJ2XmMK3mPU7MzGaD5xleC97N7KpXul6RSD+0OPDHWJ+9LL/1yGyR3va3nXWdFwLqrdxun2NlVeJ/bPvHns7b7bMyW9yvYSq3bqhtp3T3OfUDhoiIiAwyCnSK9COWZbHvxTUUv/UZltlyvra/LHoBVLx0A/V7y1rsC/uC7H3uI8INAdzZdoxIsGXFhsF11ipC6dmUHff5ds/fOPkMvp46gpnVS/l5ZimBwyNB5vk/ipUZaavjgAXz020YhoXNMHDa7KSFm5L8pIfLyQiXxf55zfpW5zriOv9r2AyDS2qeIyNcxnB310bXjPV6+GJahDsKI1xd+kf+J7Os02POMHdwTcndfC6za8Gc77k2AfAN9x5yA3tJDSvbugwcqeHKpj5rJDYZikhP2lCf1+1jS4Kdl+mqzsegwl5/Vov7NWEvcQxe7TKXTXlHRUREZHDRtx+RfqRizS7KVkUT+oTq/ASrG0gbHc2QGiivw+5yULl+L+F6P4WnTQbADIXZ9/xHhBsD1O8tw+msar1ipM3O1PpV3JHq51+5x/H9Ns5tuFK4eNhszsvNxF4e5uLS+5iZHk3Ac1zNu7FyX6x5gfF5JzGpbj0A/8rdxy/906Gby4pNqlvJ1wvOZ0jpdgB+xVIq8vL5FzN5ubztDOkpdicz0tP5vuMTcsMfM7byk1jQ8ZKSeynIvQzTMHjImsmbFdE6rirI4rHSamyGwZzapdgJc6tzPV9hVLttm5WVw385NnBl+XCGeFI5p+zfYMCi8ke792BFksT1/lc5P29ki21/jpzAB1UK7kv/8/IhO6d1krOuzJzBTl8Gc1KjSfperDydrfXw5H5fL7SwtVs32liQf3rs/qc1EaKp7xIr25Vcy8OIiIiIHCsFOkX6EV9pTex2+eqdVH6yl2k3fx6b04G/rJaqz/aDZVG7/RD1e8pwZnrZ+a8V+Iqj62PWbCkG35ZW9RoONxmhUmZWL2Fj6gltnrt6wqmkpWZwV/X/ix5jWIyrXwuAjabRXQX+nRT4d8bun1HxFFcXDO92oBPgvMhnsdvTa94B4FTjRYy821hc3jqwMjUtnRuc2zmj/KlW+wzDYn7l0wDYcyIss03gj3mVnF/+F/7J9zgxI5vs2gMAHF/3PnBlu+0a4oCFFU+Q6/ofZqe5MQLR4TZOK77EFSLJalLdSiaxssW2ZYXT0Iq00h89VdTAbybYgPZGIrv5yppUJqbbmDM1uuWvO0OsrvL3VhNb+aDCzwcVPX/+XHd6j59DREREpD9RoFOkF5jhCLXbDpI5eRiGve0VI8INAer3lsful67cRsQfovitjYz4/AlUbzoQm74OsPeFNYTqfUQam+bd1e0sITW4ulXdqVNOBJYDcLJtM1tP/ipD68vI2LQUAMPl5dEhM3jAeLHFFPR4XVr5WJePaW5O9WuttjmtAH+pvJ3y7NtYV1vLN/NdOA9fxE6NbOfsiic6rffUyud5OeN0jit7F4DPZWZzqicAh5/GrOAhbhtipwEnT9c62ddYx7m5uSytrGSkN41h9ujY2FuyG5gUbr1uqshg8vngGlKHRH8o+Xe1nYP+BqalZzHda/BUaesEaCK9pSJo0miMJcVq+hGuwprOHl8GIzz1lAZTWFsdoCQQYW3jqQBsr++BOeu97NT8iexvLGd/Q9v9b0RKFlPSTiDQN4NWRURERPqEAp0ivWDvc6upXL8XZ4aX/JMnkHfyeJxpHgCsiEnpyu0cfPszIv6mSedHbpcs30LOCaPxV7RMbuBvNvrzCDMUwQy0vOBxFozBkd00MqvBHuSSlGGMTh3Oq1uXQc5Ibp1xEbVZuYyrWtutx5ceLu+8UAe8kbYTMDitAIvclZyUn8p/l9ze5XptmBxX+27s/h3G2ywzTm5R5tsldwGwO+8O9jXCj0MvU5+1iBNdAeZFoqNjry39Q5fPLTLQnFz1MifzMgAl+b/in36Ym2Jyte9VnmJeH7dOBrtHDozgxuHFYPnASGXh8hT2Nfq4bnQWC/MBAhT5wpy1PNzXTU2YsSmTSLF72w10jkzNI+Cb1MutEhEREelbCnSK9LBD722mcv1eAEK1PoqXbuDguxvJnj6S9PGFHFq2mUB5yyCm4bBhhQ9PwTMt9jy7CsymLAWG3cBqJ2uBFWk2dMMwSD2uAIM9sU0Z4UrmZedQHjZZNvdafunMoMSEvzj2JeYBJ9gXahcnrK7ja94iLdI6QAww3BYgzeFiQt1qbsibQE6ogsn1H7VZVmSwO8/czJ7s45hOMSMaN3Ni5pdYVxMNtgz1pDLe625RviZisaFWoz6l59yzy8dlQyaQb9vAmoYT2NcY/SxcWRmg0OPp49YlTrYrhfHpBQA4rHQKXSPIce+gMtB6fc98Vx6tF+0WERERGdgU6BTpYTWbD7TaZoVNKtfvjQVAm7N7naTyDLXhC2PbjqzBCZAyxIlhmDQcjLR9wnD0YseekU/6rJEYVsup7OPq1/IUaylKOY6THZ/Ha3Pyl9wqLim7tzsPr8cN9W1LaH3j6te0uT3L8PP9PLCXhDlPyYZEOnRWxb85q9n9h4MPcAKXAnBJJvy09KctyvvsmZzi/h7lmkMrPWRvY4iasId8F6ypdgLRv7UtdUF+uzX5p6kfMStnAtnm5wHwHV7ic0bWbpaVbG5RbkxaLt7QvLgywIuIiIgMJG0vFigiCROqjz9xjSPFSYrvb4R2PIHhaLt72ssfxm4carcOK+TDO+FzZMyyMKyP2y03onEjVxZk8Vrqsn4b5OxNM8K7uL70z33dDJGklO/fQ47LC0CW0Tqo5I3UcFN2ELuhrx3Sc8KWAdgoGcD54lLsqa22OQx7i/t2w8b8nPlY+povIiIig5BGdIr0sFB9/COYUrLKCG1/GwB3lhOXu5LaA9GLGne2G6c3SPijl7H7S8H1gxbT2QGwGVjBajyjysHqfN3M/yv7WfwPZICbV/FMXzdBJKldlWNw9yGYE1jf5v5vl9zFt4EFabezrb7tJSREjsWcZSHgBGIZ5wYYu2HDG57TKrf8MPcE4DMATsoZzXj75QT8Rq+3T0RERKQ/0E+9Ij3IDIUxA/EnPjDCTSM13eZyQuv/P1yZ0bXu3CmHYP/dAERKVpM+tPWQFUeKE8OyAP+xNVxEpIsmmyUM9aTyuao3Oiyn8ItI94xJy8W0nK2226wUAFIcTo7zfh4M9TIREREZvDSiU6SHVG8+QPFb0REWrkw3HucaQsYsfGVtz6lLHWYQ3v7v2P3AZ3djWBE8kZcIch6RTXdi1hfF9kc+u5X0glNi9w3vEIKuz2NPy8WyKhVMEJFedXbVs5zgHo1hdLwq4J8d73C+MYuwZWIzDExLqwiKdOSsIdNZXbGdOTknE2pjkkggUMg1I6/Bstz4g5m930ARERGRfkSBTpEeEqisx1dchc3twFX1e0IHVwCQPnoRVuFXaShxYoVNPLluXI1PE/ro8RbHG1Y02VBo68OknXwO4eIDLYKXVmMJ4T0vtTjGPWsinmnTMVjWo49NRORoaeEK0sIVnZabXvMOp+ecw9sVFXhsDhojSgst0pGhrjHMyrFwRIa0mUTdtJz4AoW93i4RERGR/kiBThlUwo0BaneUkHP8qNi2hgOVuLNScaS6E3ouMxidsp6etobgrhVNbdj7Cux9hZSMsThGfIHAhnsJWe1kUD9S16YfYnelYgbqsWcUgGEQqSlpVS702W9JPS2bVgt4iYj0I/+f+Q5nFU7HTQMBHPy63I1PAU+RmPOGnkiOMx8AIzKSUc4CAqGMPm6ViIiISP+nQKcMChF/iJLlWyhZsRUzEMYMhck7aRxVn+1n99MfkjVlGOO+elpCz3kk0Bkuernt/bW7CW76W1xTzK36YrxTTyFYeoD0mTaCpSNo2NA60Gn5K8DSpHUR6d9mVi9hJkti91/KvINV1ZV92CKR/qXQPgu/PxuA6E+h6X3ZHBEREZGkoUCnDGhWxKTkg20cencTEV8QiK6Xue/FNTQWVVK2egdYULVhP9UnHiBryvDEnNeyiDTWkDbcIrJ6Y5ePt3kzMH212NPziNRFs6e7hoZwDQuDeQhH1pgOjm7oXqNFRPrI5e5DDMkfwopaH+WBNhYhFBlE0p1u/IEsZe4SERER6QZlXZcBy1dSw5a/L+HAa+uJ+IKkDHGQ7vgX9u1X4c52UrYqGuQ8orEoMaOJGour2HrvW/iLdxFZ/bUuH+/IGkLmqXl4Rk8nY7aFd/yJ0R3WBgwzmpXd5liLPT2v1bGGKwUsBQlEJLl8tfTP/L38p5yYltJie5rD1UctEuk7ee50ZU4XERER6SaN6JQBxzItSpZvoXjpBqywibfAhbPuaUJrnyAMYLNj3/sT3MPvJBI0AYNwQ5BI4NjWh4v4gxx4c0N0lKhpkTE82LKAzQ5mx2txOgvGkDYjAuYuvBOmg1mBe1QVztwzjkow1EDazJOo/2Rz0+OOhLF70oDGY3ocIiJ9ZbgjTKGnKdg51O3mYKDpq0rYtKgI6sccGdgKPVl93QQRERGRpKVApyS9xu0PkTLxOgDq95azb/HaaLZzp52Mgm0E1/2cEGBPzyPt+GnYPLuoW1ON7bNLYkOaPbP/RcTXvUCnZVlUrttD0WvrCTcEmu3wx26mTJuDe8h2Iv7pNG7eQbjqQIs6HJlDSJs5HowVTYmEzM8AMDCxp7bOom5zvEfGSc1ORwaB/fnA/m49DhGRvnZn6W3c2XxDoOX+Es8ETuTC3mySSK8b51xEuOPfRUVERESkHQp0SlKzwn7q1tyKPefzFL+9l8r1e8ACb4ELe9GdBPesxZaSSdoJM7F7PwLrPTAh/aTjqH6vCiscvYq2Nv8ICv7V5fM3Hqxi30tradhb3nqnGQ10ukdMxT3kE7B82N3LSJtpA07BvzdAoGgr6SeejD31I7BWtK6jCwxqcY+0H1MdIiL9WaF/B9kuD1VBf+eFRZJUxNRnuYiIiEh3KdApSS1UuQ4zUE7F62fiNtIYehyABeEyjBwLGAlmJbCsxXqcWBvJOr0ADDdg0Lg9HbN6PWboVGzOzruFFTEpXrqBQ+9vAdNqtT91mI3IzkcBSJnkarFupoEJrMI7GjyjPdEp6a2r6B7rIyUvEJEBbbTXq0CnDFinF0zBsvT1XERERKS79E1KkpsVnedthLZ049jSWIAxZeI4GqoqKHl/K0PPPK7Dw3wlNex++kN8xVWt9rky3XjMVwh99GDTaazd7cYeDRJ7sa7cBSIy0Hn0RicDWLojneiC4iIiIiLSHQp0igCYu3BnHOTQ+1vInDqclKFZbRZrKKpk631vYR21eJbhsJNeUExo/U8JhRoA8IybiWekF4OVPd16EZFB4xb7WsoLcltsCxkObi5JxUrY8HgZTBYNm8Wayq2U+Ov6tB2ZTg959un4FOgUERER6TYFOkUOs0W2kJK7gO0PvsPE6xe2Geys3X6wVZAzdagNY8+dhD5a32K7My8Tw9Y6iZCIiHTfaZXPtbn9wYxf80lt65H2Ip3JdY5kTFpVnwc6zyg4AV8gv0/bICIiIpLsbJ0XERkcbM5a2PW/WGaE7Q++Q/2+1gmGanccit12prvIyHgLc80VRMrXtyjnyB2BI62hp5ssIiKH3ejZg8eu32+l6wzsTEqdzsjU7ITWm+NO4fxhs1r8G5eWx5lDprcqO9SbQZYxM6HnFxERERmMdEUgcoT1Cc60GRihB2l0Xs/We9+i4NSJDD/neGwuB+Uf7aR+dxkAacMjmBtuJOQrjR5r2PCMOg7X8Bzs3iIwd4JV1IcPRkRkcLmg7AH+nP4rNtZW93VTJNlYDgL+cUzJ2MP+hsSNCh6RkkNa+MwW207OWYczMoF053bqQoHY9ikZI/EHMxN2bhEREZHBSoFOkWa8E0yq3n6TlJHQ6PkGpSu2Ub3pAEMXTGP/yx/jynLj4V1Cq/8Edicp0+bgyrNjOLaAtSFaidm3j0FEZLA6zRvBsrJabNvna6Q+HOybBklyOJzlPNuRw6SMQgBqgo3HNJV9bFouQzy50HK1G9zmKIIRNzOyRlEeqI1tz3PlQwAREREROUYKdIo0Z24k6/TTqH7vTdyZ27FNvIP64gb2Pv8R3gIX1ieXEzLDuIZMIPU4G5gfRo9T/gsRkT73i9JftNp2e8HPuadEgU5pn2W5ozcCs5npmQ2AJ2snj+57ttt1npp2JaGIp9V2XzCaSGuEcTEjmu9WkFNEREQkIbRGp8hRDNsKsk6fi1Wzm8hHXyEj6wPcOW5s+36OYUVIn3U6KVP3gbmtr5sqIiKdOMXc1ddNkH7Oslytt0UKul3fEG8GIbN1kFNEREREep5GdIq0wbCtIHvhTOo/rSS08c/Y+DO2nOFknpkH5nt93TwREYnTOeX/Yqsz/iQzb2dfwo2lGT3YIulP5hdMJhBMA6Pl9kAona8O+X73KrUMIprpISIiItInFOgUaY+1nrTjvYRrz6B+/UrST8wG87O+bpWIiHSBDZP0cEXc5ceEdgMn9FyDpF9Jc6RB2GhzX8RsPdJTRERERPo3BTpFOmL5cKQvI+uMfAU5RUQGgUl1q5mTtZAPqysB+GZhOgsjm2L7r6saiz8S7qvmSYJcOfp8HFY6mBn4+roxIiIiIpIwCnSKxMMs6+sWiIhIL/BGapnsinA41Rznhdcxt/LF2P4s920cUqAz6dnCo/GF0vu6GSIiIiKSYAp09jN79+7lT3/6E6+88gr79+/H7XYzfvx4Lr/8cr7zne+QkpLS100UEREZ0M6PbCBvyCQAplatarFvgtfDIX9Dj537yoIshtj8nZZb0ujl09qqHmvHQHJK3jiGe4e32BYKKlmQiIiIyECkQGc/snjxYr7+9a9TW1sb29bY2MiaNWtYs2YNDzzwAK+88goTJkzow1aKiIgMbPMrn2Z+O/vOd5WxHFuPnNdls3N75e/wRmo6LVtV8Es+re20mADjUyYT9s9osc3so7aIiIiISM9SoLOfWLduHVdccQU+n4+0tDR+/OMfs3DhQnw+H0888QT3338/27ZtY9GiRaxZs4b0dE23EhER6W1nNrzNvOzLe6Tuya4w3tLOg5wALmPwpPWelTumxf1Sfy37Gio7PGZMWi557uh3JSeZaLEBERERkcFBgc5+4uabb8bn8+FwOHjzzTeZO3dubN+ZZ57JxIkTufXWW9m2bRu///3v+cUvftF3jRURERmkRjV8wlN80tfNwGENjjGJ2S4v4+wtA8vH5RbxSMO/2z3GYdg4PfPL+EMZAPg6XwlARERERAaInpl7JV2yevVq3n//fQCuv/76FkHOI2655RamTp0KwN13300oFOrVNoqIiEj/4TEi2A0bNsPo66b0qBEpOa22+f3DyHOnYjdsbf47Z+jMWJBTRERERAYXjejsB1544YXY7euuu67NMjabjauvvpof//jHVFdX884773Duuef2UgtFRESkP/lByR38ANifOoNT6gfu94GT0s+iMdBym4WNMzO/0/5BmqcuIiIiMmhpRGc/sHz5cgBSU1M56aST2i13xhlnxG6vWLGix9slIiIi/dvIhg2MTEnr62b0IHtfN0BEREREkohGdPYDmzdvBmDChAk4HO2/JFOmTGl1TLyKioo63L9///7Y7YMHD3ap7r4ULCulquN8BCIiIgPa3anP0WDrP1O1N3km85vSY/+KaTNs1DjqCJlarkdERDpW6fJQlJ08P/w1v+YOhzUVQSSRDMuyBk/azn7I7/fj9XoBWLRoES+//HKH5dPS0mhoaGDOnDmsXLky7vMYA3wNLxEREREREZFks3r1ambPnt3XzRAZMDR1vY/V1dXFbqeldf4LVGpqKgD19fU91iYREREREREREZFko6nrfczv98duu1yuTsu73W4AfD5fl87TfGp6e+3YsmULhYWF5OfndziFvr84ePAgJ598MhD9FWzo0KF93CLpCr1+yU+vYfLTa5j89BomN71+yU+vYfLTa5j8kvE1DIfDlJWVATBjxow+bo3IwNL/o1kDnMfjid0OBoOdlg8EoqlHj0x3j9eIESM6LTNhwoQu1dmfDB06NK7HKP2TXr/kp9cw+ek1TH56DZObXr/kp9cw+ek1TH7J9BqOGTOmr5sgMiBp6nofS09Pj92OZzp6Q0MDEN80dxERERERERERkcFCgc4+5vF4yM3NBTrPjF5VVRULdI4cObLH2yYiIiIiIiIiIpIsFOjsB6ZNmwbAjh07CIfD7ZbbsmVL7PbUqVN7vF0iIiIiIiIiIiLJQoHOfmDevHlAdFr62rVr2y23bNmy2O3TTjutx9slIiIiIiIiIiKSLBTo7Acuuuii2O2HHnqozTKmafLoo48CkJWVxcKFC3ujaSIiIiIiIiIiIklBgc5+4OSTT2b+/PkAPPjgg6xcubJVmd///vds3rwZgJtvvhmn09mrbRQREREREREREenPHH3dAIm6++67Oe200/D5fJx77rn85Cc/YeHChfh8Pp544gnuu+8+ACZNmsQtt9zSx60VERERERERERHpXwzLsqy+boRELV68mK9//evU1ta2uX/SpEm88sorTJgwoZdbJiIiIiIiIiIi0r8p0NnP7N27l7vvvptXXnmFoqIiXC4XEyZM4Mtf/jLf/e53SUlJ6esmioiIiIiIiIiI9DsKdIqIiIiIiIiIiEjSUzIiERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU5JSnv37uWWW25hypQppKamkpOTw+zZs/m///s/Ghsb+7p5g9KaNWu4/fbbOffccxkxYgRut5u0tDQmTZrEddddx/Llyzut4+GHH8YwjLj+Pfzwwz3/oAaZeJ/7BQsWdFrXa6+9xsUXXxz7WxgxYgQXX3wxr732Ws8/kEFqwYIFcb+GR/69++67LepQH+w5paWlvPzyy9x222184QtfIC8vL/ZcXnvttV2uLxF9LBwOc8899zB//nzy8/Pxer2MHz+eb33rW2zcuLHLbRroEvEaNjY28txzz3HjjTcye/ZssrOzcTqd5ObmMnfuXH7xi19w6NChTuvpSn+XJol4DRP9PtnY2Mhdd93F7NmzycnJITU1lSlTpnDLLbewd+/eY3vAA8yxvn579uzp8ufkmDFj2qxLfbB7EnG90Jw+C0WkTZZIknnppZesjIwMC2jz36RJk6zt27f3dTMHlfnz57f7ejT/d/XVV1uBQKDdeh566KG46gGshx56qPce4CAR73N/xhlntFtHJBKxrr/++g6P/8Y3vmFFIpHee2CDxBlnnBH3awhYNpvNKioqalGH+mDP6ei5vOaaa+KuJ1F9rKyszJo9e3a7dbjdbuv+++8/xkc9sBzra/jJJ59YaWlpnfatjIwM64knnuiwrq70d2mSiH6YyPfJ7du3WxMnTuzwb2Hx4sXH/sAHiGN9/Xbv3t2lz0nAOvfcc9usS32w6xJ1vWBZ+iwUkY45EEki69at44orrsDn85GWlsaPf/xjFi5ciM/n44knnuD+++9n27ZtLFq0iDVr1pCent7XTR4UiouLARg2bBhf/vKXmT9/PqNGjSISibBy5Up+//vfc+DAAR599FFCoRD//ve/O63zjTfeYNiwYe3uHzFiRMLaLy3deOON3HTTTe3uT01NbXffT3/6Ux588EEATjzxRG699VbGjx/Pzp07ueuuu1i3bh0PPPAA+fn53HnnnQlv+2D20EMP0dDQ0GGZTZs2ccUVVwBw1llnMXz48HbLqg/2nFGjRjFlyhTefPPNLh+biD4WiUS4+OKL+eijjwC45JJLuOGGG8jJyWHVqlX8+te/prS0lG9961sMHz6cL3zhC91/sANUd17D2tpa6uvrATjttNP44he/yKxZs8jNzaWsrIznnnuO+++/n9raWq688koyMjI6fe5nzZrFQw89dEyPZbA6ln54xLG8T9bV1bFo0SK2b98OwA033MBXvvIVvF4v77zzDr/5zW+ora3liiuuYMWKFcycObPb7RyIuvP6DR8+nA0bNnRa7je/+U3su+o111zTYVn1wfgl8npBn4Ui0qG+jrSKdMWRXwIdDof1wQcftNp/1113xX6B+/nPf977DRykFi1aZD355JNWOBxuc39ZWZk1adKk2GuzbNmyNss1HyWxe/fuHmyxtOVY+87WrVsth8NhAdasWbOsxsbGFvsbGhqsWbNmxfqwRl73vltvvTX2Oj/22GOt9qsP9pzbbrvNWrx4sXXo0CHLslqOLIp3JFmi+tiDDz4YO/dNN93Uav/27dtjMycmTJhghUKhrj3YAepYX8MVK1ZYl19+ubVx48Z2y7zwwguWYRgWYI0fP94yTbPNckdGk3U0wl5aS0Q/TNT75M9+9rNYPXfddVer/StWrIj1d73OUYl4/ToTDoetYcOGWYCVnp7e6n32CPXBrkvU9YI+C0WkMwp0StJYtWpV7MPoW9/6VptlIpGINXXqVAuwsrKyrGAw2MutlPYsXrw49vp973vfa7OMgix961gDnTfeeGOsjpUrV7ZZZuXKlR1+qZSeE4lErOHDh1uAlZaWZjU0NLQqoz7Ye7pzgZ6oPnbkczInJ6fNvwPLsqzf/OY3sXqeeuqpuNo32PREkMWyLOvSSy+N1bt27do2yyjIkhh9FegMBoNWZmamBVhTp05td3rtt771rdi5Vq9e3a1zDWQ90Qdff/31WJ3XXXddu+XUB3tGPNcL+iwUkc4oGZEkjRdeeCF2+7rrrmuzjM1m4+qrrwagurqad955pzeaJnFYuHBh7PbOnTv7sCXSEyzL4sUXXwRgypQpzJkzp81yc+bMYfLkyQC8+OKLWJbVa20c7N566y0OHDgAwGWXXUZKSkoft0i6IlF9bNu2bWzevBmAyy+/vN2/g+aJPZ5//vljbb50gT4vB7533nmHmpoaIDo12mZr+5JM/bD3Pfroo7HbnU1bl8Tr7P1Pn4UiEg8FOiVpHMnCl5qaykknndRuuTPOOCN2e8WKFT3eLolPIBCI3bbb7X3YEukJu3fvjq291LwPtuXI/gMHDrBnz56ebpoc1vzi7cgPQpI8EtXHmme07aieIUOGMGnSJECfpb1Nn5cDX7z9cNasWbEAjPphz6urq4sNrBgzZgynn3563zZoEOrs/U+fhSISDwU6JWkc+dVtwoQJOBzt59GaMmVKq2Ok7y1btix2e+rUqZ2Wv+666xg2bBgul4u8vDzmzJnD//zP/8RGpEnPefrpp5k2bRopKSmkp6czceJErrnmmg5HSG/atCl2u3kfbIv6aO+rr6+PjUQYPXo0CxYs6PQY9cH+JVF9rDv17N+/v9NEV5I4Xfm83LJlC6eccgpZWVl4PB5GjBjBhRdeGEvmIT2ru++T8fZDh8PBhAkTAH1e9oZnnnmGxsZGAK666ioMw+j0GPXBxOrs/U+fhSISDwU6JSn4/X7Ky8uBzjP9Zmdnx7JC79+/v8fbJp0zTZPf/va3sfuXX355p8e8++67HDx4kFAoREVFBatWreKOO+5gwoQJ3HvvvT3Z3EFv06ZNbN68GZ/PR319PTt27ODRRx/lzDPP5OKLL45Nt2uuqKgodruzPjpy5MjYbfXR3vHss8/Gvpx//etfj+viTX2wf0lUH+tOPZZltThOes4nn3zCK6+8AsCMGTM6DXSWlJSwevVqampqCAQCHDhwgJdeeolrrrmGmTNnKjjWw7r7PnmkP6WmppKVldXhOY70w7Kyshaj3STxujPzQX0wceK5XtBnoYjEo/1hcSL9SF1dXex2Wlpap+VTU1NpaGigvr6+J5slcfrDH/7A6tWrAbjkkks6XHpg3LhxXHLJJcydOzf2xWLXrl08++yzPPPMM/j9fr797W9jGAbf/OY3e6X9g0VKSgoXXHABZ511FlOmTCEtLY2ysjKWLVvGPffcQ0VFBS+88AIXXnghS5Yswel0xo7tSh898kMEoD7aS7py8aY+2D8lqo+pr/ZfgUCAb3zjG0QiEQDuuOOOdsvabDbOOusszj//fE444QRyc3Opq6vj448/5t5772Xz5s1s2rSJhQsXsnr1akaNGtVbD2NQONb3ySP9MN7vtEfU19fjdrsT9CikuX379sVGE5566qmxkbTtUR9MvHiuF/RZKCLxUKBTkoLf74/ddrlcnZY/8iXQ5/P1WJskPsuWLeO///u/ASgoKODvf/97u2UvvvhirrnmmlajzWbPns0VV1zByy+/zCWXXEIoFOK//uu/uOCCCxgyZEiPtn8wOXDgQJsjS8455xy+973v8YUvfIF169axbNky/v73v/Of//mfsTJd6aPNL9LUR3teUVER7777LhBdnP/IWlNtUR/svxLVx9RX+6/vfve7rFmzBogmQfnSl77Ubtnnnnuuzffr+fPnc9NNN3HDDTfwyCOPUFJSwve//32ee+65nmr2oJOI98kj/bAr32lB/bAn/fOf/4wlrIlnNKf6YGLFe72gz0IRiYemrktS8Hg8sdvBYLDT8kem9ni93h5rk3Ru48aNXHzxxYTDYTweD08//TQFBQXtls/MzOxwSu0Xv/hFbrvtNgAaGxt58MEHE97mwayj6XOFhYU888wzsVGcf/7zn1vs70ofbT71Tn205/3zn//ENE2g8wyy6oP9V6L6mPpq//Sb3/yGBx54AIgGzP761792WL6j92un08kDDzwQyzj8/PPPa23dBErE++SRftiV77SgftiTHnvsMSAa1Lriiis6La8+mDhduV7QZ6GIxEOBTkkK6enpsdvxTBk4shZdPFOCpGfs3r2bc889l6qqKux2O0888URCsld+85vfjF1gNF+wXHreuHHjOOeccwDYsWNHLOsldK2PNl/IXX2053X14q0z6oN9I1F9TH21/7n33nv5yU9+AkSTXrz66qstpkp2h8Ph4Prrr4/dV1/tXZ29Tx7ph135Tgvqhz1l9erVbNmyBYALLrig03VT46E+GJ+uXi/os1BE4qFApyQFj8dDbm4uQKeLQFdVVcU+kJovQi29p7i4mLPPPpvi4mIMw+Af//gHF154YULqLigoiP0t6Nfx3jdt2rTY7ebPf/OF3Dvro80XhFcf7Vlr1qyJZRb94he/SHZ29jHXqT7YNxLVx7pTj2EYnSZrkO55/PHHuemmmwAYPXo0S5YsIS8vLyF1t/d+LT2vs/fJI/2poaGB6urqDus60g/z8/O1PmcP6U4SonioD3asO9cL+iwUkXgo0ClJ48iXhR07dhAOh9std+QXWaDTbKWSeOXl5Zxzzjns2rULiE5xTuSXRiCujNHSM9p77pt/mW/eB9uiPtp7ml+8dTZtvSvUB3tfovpYd+oZOXLkMY8wlNZeeuklrr76akzTZOjQobz11lsJvYhWP+1bHT3/8fbDcDjMzp07AX1e9pRQKMQTTzwBRAPUn//85xNWt/pg+7p7vaDPQhGJhwKdkjTmzZsHRH/9Xrt2bbvlmk8NOe2003q8XdKkpqaG8847LzaC7Le//S3f+c53EnqOsrIyysvLARg2bFhC65bOHXltoeXzP3bs2Nj9zqZnvffeewAMHz6cMWPGJL6RArS8eMvPz+cLX/hCQupVH+wbiepjRz5LO6vn0KFDbNu2DdBnaU946623uPzyywmHw+Tm5rJkyRLGjx+f0HO0934tPa+z98l4++GaNWtis5TUD3vGK6+8QkVFBQBf+9rXcDgSl6tXfbBtx3K9oM9CEYmHAp2SNC666KLY7YceeqjNMqZpxkYwZWVlsXDhwt5omhBdcH/RokV8/PHHAPz0pz/lRz/6UcLPc99998WyYp5xxhkJr1/at3v3bpYsWQLA+PHjGT58eGyfYRix6UZbtmzhww8/bLOODz/8MPbL+IUXXqjRDj3otddeo6ysDEjsxZv6YN9IVB+bNGlSbGTLU089RWNjY5v1PPzww7HbF1988bE2X5r54IMPuPDCCwkEAmRmZvLGG29w3HHHJfQc4XCYf/zjH7H7iVgjW+LX2fvkggULyMzMBOCRRx6JlT2a+mHP66mZD+qDbTvW6wV9FopIXCyRJDJ//nwLsBwOh/XBBx+02n/XXXdZgAVYP//5z3u/gYNUIBCwzj333Nhzf/PNN3e5jt27d1sff/xxh2UWL15suVwuC7C8Xq9VVFTUzRbL0V566SUrFAq1u//QoUPWiSeeGHuNf//737cqs3XrVstut1uANWvWLKuxsbHF/sbGRmvWrFmxPrxt27aEPw5pcumll8Zer7Vr13ZaXn2wd+3evTv2+lxzzTVxHZOoPvbggw/Gzv2d73yn1f4dO3ZYGRkZFmBNmDChw/eGwaw7r+G6deusrKwsC7BSU1Ot5cuXd/m8b7/9tlVVVdXu/mAwaF1zzTWxtn3pS1/q8jkGi66+hol8n/zZz34WO/ddd93Vav8HH3xgORwOC7DOOOOMeB7OoNOdPthcRUVF7LWaMWNG3MepD3ZPIq4XLEufhSLSucSNzRfpBXfffTennXYaPp+Pc889l5/85CcsXLgQn8/HE088wX333QdEf6W75ZZb+ri1g8dXv/pV3nzzTQDOPPNMrr/+ej777LN2y7tcLiZNmtRi2549e1i4cCFz587lS1/6EieccAIFBQUA7Nq1i2eeeYZnnnkmNurhd7/7XYsRhXJsvve97xEKhbj00kuZO3cuY8aMwev1Ul5ezrvvvsu9994bm4Y3b968NqcYTZo0iR/+8If89re/Zc2aNZx22mn86Ec/Yvz48ezcuZP//d//Zd26dQD88Ic/ZOLEib36GAeTqqoqXn75ZQCmT5/O5z73uU6PUR/sWcuXL2fHjh2x+0f6E0TXnm4+agTg2muvbVVHovrYNddcwz/+8Q9WrFjBX//6Vw4dOsQNN9xAdnY2q1ev5le/+hW1tbXYbDb+9Kc/JXQqZzI71tdw586dnHfeebHkM7/+9a/JzMzs8POyoKAg1g+PeOSRR7jgggu44IILWLBgAZMnTyYjI4P6+nrWrl3LfffdF5sSWlBQwN13392NRzswHetrmMj3yR/+8Ic8+eSTbNu2jVtvvZUdO3bwla98Ba/XyzvvvMOdd95JOBzG6/Xyxz/+8dgf/ACQiPfR5p544gmCwSDQtdGc6oPdk4jrBdBnoYjEoY8DrSJd9tJLL8V+XWvr36RJk6zt27f3dTMHlfZei/b+jR49ulUd77zzTlzHpqSkWPfee2/vP8gBbvTo0XE9/5deemmHoxgikYj1H//xHx3Wcf3111uRSKT3Htwg9Pe//73DkUJtUR/sWc1H98Tzrz2J6mNlZWXW7Nmz263D7XZb999/f6KfhqR2rK/hQw891OXPy7Zmp8TbjhkzZlgbN27shWcmeRzra5jo98nt27dbEydObLeejIwMa/HixT3xVCSlRL2PHnHKKadYgGW3262DBw8mvB3qgy119f2vreuFI/RZKCId0c8SknS+9KUv8emnn3L33XfzyiuvUFRUhMvlYsKECXz5y1/mu9/9LikpKX3dTOmik046iX/+85+sXLmSNWvWcPDgQcrLywmHw2RnZ3Pcccdx1lln8Y1vfKPV6BY5do888gjLli1j5cqV7Nq1i/Lycmpra0lLS2PkyJGceuqpXHPNNcydO7fDemw2Gw8++CCXXnop9913Hx999BHl5eXk5eUxe/ZsvvWtbyUsKY6077HHHgPAbrdz5ZVXxnWM+mBySFQfy8vL44MPPuD+++/n3//+N5s3b6ahoYFhw4Zx1llncfPNNyd83UhJjB/96EfMnDmTlStXsmnTJsrKyqisrMTtdlNYWMisWZjyAVUAAAeQSURBVLO47LLLuPjii7Hb7X3d3AEl0e+TEyZMYN26dfz1r3/l6aefZseOHQSDQUaOHMn555/PzTffzOjRo3vhkQ0+27dvZ9WqVQCcc845DBkyJO5j1Qf7nj4LRaQjhmW1s/q1iIiIiIiIiIiISJJQ1nURERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvQU6BQREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIj0sYcffhjDMDAMgz179vR1c0REREREkpICnSIiIiLdtGfPnliA8lj+iYiIiIjIsVOgU0RERERERERERJKeYVmW1deNEBEREUlGoVCIrVu3trt/xowZAMyaNYuHHnqo3XLTp09PeNtERERERAYbR183QERERCRZOZ3OuIKUqampCmaKiIiIiPQwTV0XERERERERERGRpKdAp4iIiEgf6yzr+oIFCzAMgwULFgCwY8cOvv3tbzNu3Di8Xi9jxozh+uuvZ+/evS2O++yzz7juuusYN24cHo+HkSNHcuONN1JaWhpXu1544QW+/OUvM2rUKDweD1lZWcyaNYtf/vKXVFVVHevDFhERERFJKE1dFxEREUkiS5cu5ZJLLqGuri62be/evfzjH//g5ZdfZtmyZUyZMoXHH3+ca6+9lmAwGCtXVFTEPffcw2uvvcYHH3zAsGHD2jxHVVUVl112GW+//XaL7YFAgLVr17J27Vr+9re/8eKLLzJnzpyeeaAiIiIiIl2kEZ0iIiIiSaK4uJjLL7+crKws/vznP7Nq1Sref/99vv/972MYBqWlpXzjG9/go48+4uqrr2b8+PE88MADrF69mnfeeYerrroKiAZGf/CDH7R5jkAgwNlnn83bb7+N3W7nqquu4vHHH+fDDz/k/fff54477iA3N5fS0lLOP//8VqNIRURERET6ikZ0ioiIiCSJ7du3M3HiRFasWEF+fn5s+7x583A4HPzud79jxYoVLFq0iJNPPpklS5aQkpISK7dgwQL8fj9PP/00zz77LGVlZS3qAbj99tv5+OOPycrKYunSpZx00kkt9s+bN48rr7ySuXPncvDgQX7yk5/wr3/9q2cfuIiIiIhIHDSiU0RERCSJ/OlPf2oVnAS46aabYrfLy8t54IEHWgQ5j7jxxhsBCIfDrFy5ssW++vp6/vrXvwLwq1/9qlWQ84jRo0fzs5/9DICnn36ahoaG7j0YEREREZEEUqBTREREJElkZWVx3nnntblv7NixpKenA3D88cczderUNsudcMIJsdu7du1qsW/ZsmXU1NQAcNlll3XYltNPPx2AUCjE2rVr43sAIiIiIiI9SFPXRURERJLExIkTMQyj3f1ZWVnU1dUxadKkDssc0TyhEcCaNWtit4cOHRp3uw4dOhR3WRERERGRnqIRnSIiIiJJoq2p6M3ZbLZOyx0pAxCJRFrsKy0t7Va7Ghsbu3WciIiIiEgiaUSniIiIiAAtA58ff/wxTqczruNGjBjRU00SEREREYmbAp0iIiIiAkBubm7sdn5+vgKYIiIiIpJUNHVdRERERAA48cQTY7dXrFjRhy0REREREek6BTpFREREBICzzz47tr7nn/70JyzL6uMWiYiIiIjET4FOEREREQGiGdm/+93vAvDBBx/wX//1X5im2W75kpISHnjggd5qnoiIiIhIh7RGp4iIiIjE3H777SxbtoxVq1Zx99138+6773LDDTcwc+ZMUlNTqaqqYuPGjSxdupTXXnuNGTNm8I1vfKOvmy0iIiIiokCniIiIiDRxu90sWbKEa6+9lueee45PPvkkNsqzLRkZGb3YOhERERGR9inQKSIiIiItpKen8+yzz7J8+XIeeeQR3n//fYqLi/H5fGRkZDB+/HhOPvlkFi1axLnnntvXzRURERERAcCwtMq8iIiIiIiIiIiIJDklIxIREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU4RERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvT+f+WvZVe2hlgcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'fitness_function_mutation_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_sequences=6,\n", + " # Track the 6 most represented genomes overall (remaining genotypes are\n", + " # lumped into the \"Other\" category).\n", + " track_specific_sequences=['BADD']\n", + " # Include the initial genome in the graph if it isn't in the top 6.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a heatmap and dendrogram for pathogen genomes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate a heatmap and dendrogram for the top 15 genomes, include the ancestral genome _BADD_ in the phylogeny. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPeCAYAAAARWnkoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6v0lEQVR4nOzdfZxXdZ03/tcMo0MyCAXiDKagSzqChmabN/tDYUUdSswyK6/chFo3UfcGNpUpVwajZvXaDbvWwEtuxL2sxWjZXZdcciOxLF1brbx32/byZmtG1CAZZMaU+f3hxTdH7hkO35nh+fRxHg+/57zP+b7P3DGv+XzOORWdnZ2dAQAAAPa4ynI3AAAAAH2V0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCq7uz85NP37Kk+yqp+5GnlbgEAAIA+qFuhe1Pnpj3VBwAAAPQ53QrdnZ2de6oPAAAA6HO6N9IdoRsAAAC2pZsj3aaXA5RbY2Nj2tvby90GAL1M//7909zcXO42oM/r5jXdRroByq29vT1z584tdxsA9DLTp08vdwuwT+jeSHeMdAMAAMC2GOkGAACAgnRzpFvoBgAAgG0x0g0AAAAF6Wbodk03AAAAbIvp5QAAAFAQ08sBAACgIEI3AAAAFMRzugEAAKAgRroBAACgIEI3AAAAFMTdywEAAKAgRroBAACgIN0L3Ua6AQAAYJu6N73cSDcAAABsk+nlAADs8xobG9Pe3l7uNvaqNWvWZPr06eVuY6/r379/mpuby90G+xDTywEA2Oe1t7dn7ty55W6DvWBf/EMD5WWkGwAAAArimm4AAAAoiOnlAAAAUBDTywEAAKAgppcDAABAQUwvBwAAgIJ0c3r5nmoDAAAA+h7XdAMAAEBBKruzc2cf+W93fPWrX83IkSPTv3//nHjiiXnggQe2W79u3bpcdtllqaurS3V1dY488sjceeedu/XeAAAA9A5GunfD7bffnhkzZuSmm27KiSeemBtuuCFnnXVWnnrqqQwbNmyL+ldffTVnnHFGhg0blm9+85s55JBD8swzz2Tw4MF7v3kAAAD2GqF7N3z5y1/OxRdfnKlTpyZJbrrppnzrW9/K4sWLM3PmzC3qFy9enF/96lf54Q9/mP322y9JMnLkyL3ZMgAAAGXQzenlfWPZFa+++moefPDBTJw4sbSusrIyEydOzH333bfVfe64446cfPLJueyyy3LwwQfnmGOOyZe+9KW8/vrru/juAAAA9CZGupN0dHSko6Ojy7rq6upUV1dvUfviiy/m9ddfz8EHH9xl/cEHH5wnn3xyq8f/r//6r3z3u9/NJz7xidx55535z//8z1x66aX5zW9+k1mzZu25EwEAAKBH6dZI96bOzj6xNDc3Z9CgQV2W5ubmPfUxzqZNmzJs2LDcfPPNOeGEE/Kxj30sn//853PTTTftsfcAAACg5+neSPee6qLMGhsbM2PGjC7rtjbKnSRDhw5Nv3798vzzz3dZ//zzz6e2tnar+9TV1WW//fZLv379SuuOPvrotLa25tVXX83+++/fzTMAAACgJ+reNd2dnX1iqa6uzoEHHthl2Vbo3n///XPCCSdk1apVpXWbNm3KqlWrcvLJJ291n9/7vd/Lf/7nf2bTpt/+meI//uM/UldXJ3ADAAD0Yd2cXt43ll01Y8aMLFiwILfeemueeOKJTJs2LRs2bCjdzfyTn/xkGhsbS/XTpk3Lr371q/zpn/5p/uM//iPf+ta38qUvfSmXXXZZdz78AAAA9HBupLYbPvaxj+WFF17INddck9bW1hx33HFZuXJl6eZqzz77bCorf/v3jEMPPTTf/va3M3369Lz73e/OIYcckj/90z/NVVddVa5TAAAAYC/oVuju3OUHbvUdl19+eS6//PKtblu9evUW604++eTcf//9BXcFAABAT9LNke491QYAAAD0PaaXA1tobGxMe3t7udtgJ61ZsybTp08vdxvsgv79++/RR1MCAD1X96aXy9zQJ7W3t2fu3LnlbgP6LH8kAYB9h+d0AwAAQEFMLwcAAICCmF4OAAAABTHSDQAAAAVxTTcAAAAUpJvTy410AwAAwLZ0c3r5nmoDgH3Jvv4seM9W96xyAPYdbqQGwF7nWfDs6390AGDf4UZqAAAAUBAj3QAAAFAQ13QDAABAQbo30r2nugAAAIA+yDXdAAAAUBDXdAMAAEBBXNMNAAAABTHSDQAAAAVxTTcAAAAUxEh3L9Te3p7+/fuXuw0AAAB2oLI7O2/q7BtLb7Bp06Z84QtfyCGHHJKampr813/9V5LkL/7iL7Jo0aIydwcAAMDWdCt0d3b2jaU3mDNnTpYsWZLrr78++++/f2n9Mccck4ULF5axMwAAALbF9PJe4m//9m9z88035/TTT88ll1xSWj927Ng8+eSTZewMgCI0Njamvb293G0UZs2aNZk+fXq52yhE//7909zcXO42AOghPDKsl/jFL36RUaNGbbF+06ZN+c1vflOGjgAoUnt7e+bOnVvuNtgNffWPCQDsHiPdvcTo0aPz/e9/PyNGjOiy/pvf/GaOP/74MnUFAADA9nQzdEvde8s111yTiy66KL/4xS+yadOmLF++PE899VT+9m//NitWrCh3ewAAAGyF6eW9xAc/+MH88z//c6699toMGDAg11xzTd7znvfkn//5n3PGGWeUuz0AAPYBfeF+E33hnhLuHdG7mF7ei4wbNy7/+q//Wu42AADYR7nfRM/Q2/9osK8RunuJH/3oR9m0aVNOPPHELuv/7d/+Lf369ct73/veMnUGAADAtnhOdy/5w8Fll12W5557bov1v/jFL3LZZZeVoSMAAAB2xEh3L/H444/nPe95zxbrjz/++Dz++ONl6AgAAIAdcSO1XqK6ujrPP/98jjjiiC7rW1paUlXVrU8jAAAABTG9vJf84eDMM89MY2Njfv3rX5fWrVu3Lp/73OfcvRwAAKCHMr28l/irv/qrnHrqqRkxYkSOP/74JMlPfvKTHHzwwfk//+f/lLk7AAAAtkbo7iUOOeSQPPzww/na176Wn/70p3nb296WqVOn5oILLsh+++1X7vYAAADYim6Gbql7bxowYED+6I/+qNxtAAAAsJO6F7o37ak2ep+vfvWr+Z//83+mtbU1Y8eOzd/8zd/kfe973w73W7p0aS644IJ88IMfzD/+4z/u0nv+7Gc/y9133501a9Zk06auH/xrrrlml44FAABA8Uwv3w233357ZsyYkZtuuiknnnhibrjhhpx11ll56qmnMmzYsG3u9/TTT+ezn/1sxo0bt8vvuWDBgkybNi1Dhw5NbW1tKioqStsqKiqEbgD2SY2NjWlvby93G12sWbMm06dPL3cbJf37909zc3O52wDYZwndu+HLX/5yLr744kydOjVJctNNN+Vb3/pWFi9enJkzZ251n9dffz2f+MQnMnv27Hz/+9/PunXrduk958yZky9+8Yu56qqruts+APQZ7e3tmTt3brnb6NF60h8AAPZFHhm2i384ePXVV/Pggw9m4sSJv/0gVlZm4sSJue+++7a537XXXpthw4bl05/+9G59rNeuXZvzzz9/t/YFAACgPIx0J+no6EhHR0eXddXV1amurt6i9sUXX8zrr7+egw8+uMv6gw8+OE8++eRWj3/vvfdm0aJF+clPfrLbPZ5//vm56667cskll+z2MQAAANi7hO4kzc3NmT17dpd1s2bNSlNTU7ePvX79+vzBH/xBFixYkKFDh+72cUaNGpW/+Iu/yP33359jjz12i8eE/cmf/El3W6VgPfG6w23padcjbovrFAEA6OncvTxvhKEZM2Z0Wbe1Ue4kGTp0aPr165fnn3++y/rnn38+tbW1W9T//Oc/z9NPP53JkyeX1m2+83hVVVWeeuqp/M7v/M4Oe7z55ptTU1OTe+65J/fcc0+XbRUVFUJ3L+C6wz2vN/xhAACAfZuR7mx7KvnW7L///jnhhBOyatWqnHvuuUneCNGrVq3K5ZdfvkV9fX19HnnkkS7rrr766qxfvz5f+cpXcuihh+7U+/7f//t/d6oOAACAnkPo3g0zZszIRRddlPe+97153/velxtuuCEbNmwo3c38k5/8ZA455JA0Nzenf//+OeaYY7rsP3jw4CTZYj0AAAB9i9C9Gz72sY/lhRdeyDXXXJPW1tYcd9xxWblyZenmas8++2wqK7t1Y/it+u///u/ccccdefbZZ/Pqq6922fblL395j78fAAAA3SN076bLL798q9PJk2T16tXb3XfJkiW7/H6rVq3KOeeckyOOOCJPPvlkjjnmmDz99NPp7OzMe97znl0+HgAAAMXr3nO6N3X2iaU3aGxszGc/+9k88sgj6d+/f/7+7/8+zz33XE477TTP7wYAAOihuhe6O/vG0hs88cQT+eQnP5nkjbueb9y4MTU1Nbn22mtz3XXXlbk7AAAAtqZ7Fx539pGlFxgwYEDpOu66urr8/Oc/L2178cUXy9UWAAAA2+E53b3ESSedlHvvvTdHH3103v/+9+fP//zP88gjj2T58uU56aSTyt0eAAAAW+FGar3El7/85bS1tSVJZs+enba2ttx+++1517ve5c7lAAAAPZTQ3UscccQRpf8fMGBAbrrppjJ2AwAAwM5wTXcv+cPBEUcckZdeemmL9evWresSyAEAAOg5XNPdSzz99NN5/fXXt1jf0dGRX/ziF2XoiH1RY2Nj2tvby91GyZo1azJ9+vRyt9FF//7909zcXO42AADoIbo5vbyXDBP3YnfccUfp/7/97W9n0KBBpdevv/56Vq1alZEjR5ahM/ZF7e3tmTt3brnb6NF62h8BAAAoL9d093DnnntukqSioiIXXXRRl2377bdfRo4cmb/+678uQ2cAAADsSLdCd0wvL9ymTW98kA8//PD86Ec/ytChQ8vcEQAAADvLSHcv8X//7//dYt26desyePDgvd8MAAAAO8Xdy3vJHw6uu+663H777aXX559/ft7xjnfkkEMOyU9/+tMydgYAAMC2dCt0d27q7BNLb3DTTTfl0EMPTZL867/+a77zne9k5cqVmTRpUq644ooydwcAAMDWmF7eS7S2tpZC94oVK/LRj340Z555ZkaOHJkTTzyxzN0B7HuKfoTe3ngknkfcQd+yNx7tWfTPpr7wc8nngbfq3o3UhO695u1vf3uee+65HHrooVm5cmXmzJmT5I3Htm3t+d0AFKsvPELPI+6gb/FzqWfweeCtujfS7e7le82HP/zh/I//8T/yrne9Ky+99FImTZqUJPnxj3+cUaNGlbk7AAAAtqabI92GuveWuXPnZuTIkXnuuedy/fXXp6amJknS0tKSSy+9tMzdAQAAsDVGunuJ/fbbL5/97Ge3WG/qBwAAQM/lmu4e7I477sikSZOy33775Y477thu7TnnnLOXugIAAGBndfPu5VJ3kc4999y0trZm2LBhOffcc7dZV1FR4WZqAAAAPVD3RrpNLy/Upk2btvr/AAAA9A6e090LbNq0KUuWLMny5cvz9NNPp6KiIkcccUTOO++8/MEf/EEqKirK3SL0Gp6tDPQ0fi4B9G3uXt7DdXZ25pxzzsmdd96ZsWPH5thjj01nZ2eeeOKJTJkyJcuXL88//uM/lrtN6DU8OxPoafxcAujbTC/v4ZYsWZLvfe97WbVqVSZMmNBl23e/+92ce+65+du//dt88pOfLFOHAAAAbEtld3bu7OzsE0tP9nd/93f53Oc+t0XgTpLf//3fz8yZM/O1r32tDJ0BAACwI90K3dnUR5Ye7OGHH05DQ8M2t0+aNCk//elP92JHAAAA7CyPDOvhfvWrX+Xggw/e5vaDDz44a9eu3YsdAQAAsLNc093Dvf7666mq2vanqV+/fnnttdf2YkcAAADsLHcv7+E6OzszZcqUVFdXb3V7R0fHXu4IAACAneU53T3cRRddtMMady4HAADombo5vVzqLtott9xS7hYAAADYTd2cXr6HugAAAIA+qHvTy410AwAAwDYZ6QYAAICCuKYbAAAACtLNu5cL3QAAALAtld3au7OPLLvhq1/9akaOHJn+/fvnxBNPzAMPPLDN2gULFmTcuHF5+9vfnre//e2ZOHHidusBAADoG7oXujd19o1lF91+++2ZMWNGZs2alYceeihjx47NWWedlTVr1my1fvXq1bngggty991357777suhhx6aM888M7/4xS+69eEHAACgZ+vmSHdn31h20Ze//OVcfPHFmTp1akaPHp2bbropBxxwQBYvXrzV+q997Wu59NJLc9xxx6W+vj4LFy7Mpk2bsmrVqm59+AEAAOjZPDJsF7366qt58MEH09jYWFpXWVmZiRMn5r777tupY7zyyiv5zW9+k3e84x1FtQkAAEAP4JFhSTo6OtLR0dFlXXV1daqrq7eoffHFF/P666/n4IMP7rL+4IMPzpNPPrlT73fVVVdl+PDhmThx4u43DQAAQI9nenlnZ5qbmzNo0KAuS3Nz8x76EHf1l3/5l1m6dGn+4R/+If379y/kPQAAAOgZPKc7SWNjY2bMmNFl3dZGuZNk6NCh6devX55//vku659//vnU1tZu933+6q/+Kn/5l3+Z73znO3n3u9/dvaYBAADo8bo10t3Z2dknlurq6hx44IFdlm2F7v333z8nnHBCl5ugbb4p2sknn7zNj9X111+fL3zhC1m5cmXe+973dufDDgAAQC9hpHs3zJgxIxdddFHe+9735n3ve19uuOGGbNiwIVOnTk2SfPKTn8whhxxSmqJ+3XXX5ZprrsnXv/71jBw5Mq2trUmSmpqa1NTUlO08AAAAKFY3b6S2b4buj33sY3nhhRdyzTXXpLW1Nccdd1xWrlxZurnas88+m8rK304imD9/fl599dV85CMf6XKcWbNmpampaW+2DgAAwF5kpHs3XX755bn88su3um316tVdXj/99NPFNwQAAECP073ndO+jI90AAACwM0wvBwAAgIKYXg4AAAAFMdINAAAABXFNNwAAABTE9HIAAAAoiOnlAAAAUBAj3QAAAFAQ13QDAABAQUwvBwAAgIKYXg4AAAAF6eZI96Y91AYAAAD0Pa7pBgAAgIKYXg4AAAAFcSM1AAAAKIhrugEAAKAgrukGAACAgrimGwAAAArimm4AAAAoSDenl7umGwAAALbF9HIAAAAoiLuXAwAAQEHcvRwAAAAKYqQbAAAACtK9kW7XdAMAAMA2eWQYAAAAFMT0cgAAACiIG6kBAABAQYx0AwAAQEG6OdItdAMAAMC2dG+k293LAQAAYJuMdAMAAEBBPDIMAAAACmKkGwAAAApipBsAAAAKYqQbAAAACiJ0AwAAQEEqu7V3Z2ffWHbDV7/61YwcOTL9+/fPiSeemAceeGC79cuWLUt9fX369++fY489NnfeeeduvS8AAAC9R7dCd2fnpj6x7Krbb789M2bMyKxZs/LQQw9l7NixOeuss7JmzZqt1v/whz/MBRdckE9/+tP58Y9/nHPPPTfnnntuHn300e58+AEAAOjhhO7dCN1f/vKXc/HFF2fq1KkZPXp0brrpphxwwAFZvHjxVuu/8pWvpKGhIVdccUWOPvrofOELX8h73vOe3Hjjjd358AMAANDDmV6+i9PLX3311Tz44IOZOHHibz+IlZWZOHFi7rvvvq3uc99993WpT5Kzzjprm/UAAAD0DRWdnbv/3K9jR5y2J3spm3//j7vS0dHRZV11dXWqq6u3qP3lL3+ZQw45JD/84Q9z8sknl9ZfeeWVueeee/Jv//ZvW+yz//7759Zbb80FF1xQWjdv3rzMnj07zz///B48E3ZXX/haHnbOmeVugT7ihIaacrfQbQ+ubCt3C6RvfC3RM3xqzHHlbmGPuOyv7y13C8TPpp7i+g/8ablb2Gu6dffyR565Z0/1UVZNTU2ZPXt2l3WzZs1KU1NTeRoCAACgT+hW6O4rGhsbM2PGjC7rtjbKnSRDhw5Nv379thihfv7551NbW7vVfWpra3epHgAAgL6he9d09xHV1dU58MADuyzbCt37779/TjjhhKxataq0btOmTVm1alWX6eZvdvLJJ3epT5J//dd/3WY9AAAAfYOR7t0wY8aMXHTRRXnve9+b973vfbnhhhuyYcOGTJ06NUnyyU9+Moccckiam5uTJH/6p3+a0047LX/913+dD3zgA1m6dGn+/d//PTfffHM5TwMAAICCCd274WMf+1heeOGFXHPNNWltbc1xxx2XlStX5uCDD06SPPvss6ms/O0kglNOOSVf//rXc/XVV+dzn/tc3vWud+Uf//Efc8wxx5TrFAAAANgLhO7ddPnll+fyyy/f6rbVq1dvse7888/P+eefX3BXAAAA9CSu6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAQI81ZcqUVFRUlJYhQ4akoaEhDz/8cKnmzdvfvCxdujRJsnr16tK6ysrKDBo0KMcff3yuvPLKtLS0dHm/pqamUm1VVVWGDh2aU089NTfccEM6Ojp2uX+hGwAAgB6toaEhLS0taWlpyapVq1JVVZWzzz67S80tt9xSqtm8nHvuuV1qnnrqqfzyl7/Mj370o1x11VX5zne+k2OOOSaPPPJIl7oxY8akpaUlzz77bO6+++6cf/75aW5uzimnnJL169fvUu9Vu3XGAAAAsJdUV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyq2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLdVVVVWVjjV8+PAce+yxOeOMMzJ27Nhcd911mTNnzk73bqQbAACAXqOtrS233XZbRo0alSFDhnTrWG9729tyySWX5Ac/+EHWrFmz3dr6+vpMmjQpy5cv36X3MNINAADAXtXR0bHF9dHV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7bbi/19fVJkqeffjrDhg3bYe1dd9213Zq3Erp7kMbGxrS3t5e7DQAAgEI1Nzdn9uzZXdbNmjUrTU1NW62fMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjkiRz587NxIkTu+w3fPjwHfbS2dmZ5I2bse1M7c7UvZnQ3YO0t7dn7ty55W5jn3Ts8tPK3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBaXrq2tra7vU7KwnnngiSTJy5Midqj388MN36fhCNwAAAHvV9qaS74zNj/7auHFjt/rYuHFjbr755px66qmlG7Jty5NPPpmVK1emsbFxl95D6AYAAKBH6+joSGtra5I3ppffeOONaWtry+TJk0s169atK9VsNnDgwAwYMKD0es2aNWlvb8/69evz4IMP5vrrr8+LL764xc3RXnvttbS2tmbTpk156aWXsnr16syZMyfHHXdcrrjiil3qXegGAACgR1u5cmXq6uqSvBGk6+vrs2zZsowfP75UM3Xq1C32a25uzsyZM0uvjzrqqFRUVKSmpiZHHHFEzjzzzMyYMWOLR4099thjqaurS79+/TJo0KCMHj06jY2NmTZt2i6P0AvdAAAA9FhLlizJkiVLtluz+WZo2zJ+/Pgd1mzW1NS0zRu67Q7P6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCqcjcAPcGwc84sdwvdtuaOu8rdQrf1hc8DPcMJDTXlboE+4sGVbeVugSTJT8rdwB7hZxPsm4x0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9hbGhsb097eXu42tmvNmjXlbgEAAIA9aJ8J3e3t7Zk7d26529iu6dOnl7sFAACAHmXKlCm59dZbS6/f8Y535Hd/93dz/fXX593vfneSpKKiYqv7/t3f/V0+/vGPZ/Xq1ZkwYUKpduDAgTniiCNyxhlnZPr06amrq0uSjBw5Ms8888w2e7nooouyZMmSXep/nwndAAAA9E4NDQ255ZZbkiStra25+uqrc/bZZ+fZZ58t1dxyyy1paGjost/gwYO7vH7qqady4IEH5uWXX85DDz2U66+/PosWLcrq1atz7LHH5kc/+lFef/31JMkPf/jDnHfeeaV9kuRtb3vbLvcudAMAANCjVVdXp7a2NklSW1ubmTNnZty4cXnhhRdy0EEHJXkjYG+u2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLR0reWNE/c377C43UgMAAKDXaGtry2233ZZRo0ZlyJAh3TrW2972tlxyySX5wQ9+UNg9tox0AwAAsFd1dHSko6Ojy7rq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYdtt5f6+vokydNPP51hw4bt8rnsiNDdy/WGu7L3DkPL3QAAAOwzmpubM3v27C7rZs2alaampq3WT5gwIfPnz0+SrF27NvPmzcukSZPywAMPZMSIEUmSuXPnZuLEiV32Gz58+A576ezsTLLtm7F1l9Ddy/WGu7L3Bqf/8RfL3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBZkzZ06SN671fnPNznriiSeSvHHn8iII3QAAAOxV25tKvjMqKipSWVmZjRs3dquPjRs35uabb86pp57a5SZqe5LQDQAAQI/W0dGR1tbWJG9ML7/xxhvT1taWyZMnl2rWrVtXqtls4MCBGTBgQOn1mjVr0t7envXr1+fBBx/M9ddfnxdffDHLly8vrHehGwAAgB5t5cqVqaurS/JGkK6vr8+yZcsyfvz4Us3UqVO32K+5uTkzZ84svT7qqKNSUVGRmpqaHHHEETnzzDMzY8aMHT5qrDuEbgAAAHqsJUuWZMmSJdut2XwztG0ZP378Dmv2xD5b4zndAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKUlXuBoA9Y9g5Z5a7hW5bc8dd5W6h2/rC5+HBlW3lbqHbTmioKXcL9BG+lnqGT405rtwt7BGLH/tJuVsg/p1j7zPSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwN8Fv9+/fP9OnTd2mfNWvWFNQNAAAA3SV09yDNzc27vM+uhnQAAAD2HtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAAHqsKVOmpKKiorQMGTIkDQ0Nefjhh0s1b97+5mXp0qVJktWrV5fWVVZWZtCgQTn++ONz5ZVXpqWlpcv7NTU1dTnGoEGDMm7cuNxzzz271b/QDQAAQI/W0NCQlpaWtLS0ZNWqVamqqsrZZ5/dpeaWW24p1Wxezj333C41Tz31VH75y1/mRz/6Ua666qp85zvfyTHHHJNHHnmkS92YMWNKx7jvvvvyrne9K2effXZ+/etf73LvQjcAAAA9WnV1dWpra1NbW5vjjjsuM2fOzHPPPZcXXnihVDN48OBSzealf//+XY4zbNiw1NbW5sgjj8zHP/7x/OAHP8hBBx2UadOmdamrqqoqHWP06NG59tpr09bWlv/4j//Y5d6FbgAAAHqNtra23HbbbRk1alSGDBnSrWO97W1vyyWXXJIf/OAHWbNmzVZrOjo6csstt2Tw4ME56qijdvk9qrrVIQAAAOyijo6OdHR0dFlXXV2d6urqrdavWLEiNTU1SZINGzakrq4uK1asSGXlb8eRL7jggvTr16/Lfo8//ngOO+yw7fZSX1+fJHn66aczbNiwJMkjjzxSer9XXnklAwcOzO23354DDzxwF87yDUL3PqyxsTHt7e3lbqOHGFruBgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDd9hLZ2dnkjduxrbZUUcdlTvuuCNJsn79+tx+++05//zzc/fdd+e9733vzp3k/yN078Pa29szd+7ccrfRI5z+x18sdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJktra2i41O+uJJ55IkowcObK0bv/99+9yrOOPPz7/+I//mBtuuCG33XbbLh1f6AYAAGCv2t5U8p2x+dFfGzdu7FYfGzduzM0335xTTz01Bx100HZr+/Xrt1vvJ3QDAADQo3V0dKS1tTXJG9PLb7zxxrS1tWXy5MmlmnXr1pVqNhs4cGAGDBhQer1mzZq0t7dn/fr1efDBB3P99dfnxRdfzPLly7vs99prr5WOtXl6+eOPP56rrrpql3sXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bM0uujjjoqFRUVqampyRFHHJEzzzwzM2bMSG1tbZf9HnvssdL7HXDAAfmd3/mdzJ8/P5/85Cd3uXehGwAAgB5ryZIlWbJkyXZrNt8MbVvGjx+/w5rNmpqatnlDt93hOd0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAApSVe4G6J7+/ftn+vTpu7XvmjVr9nA30D3Dzjmz3C1025o77ip3C902ad6Hy90CABTmhIaacrfAPkbo7uWam5t3e9/dDesAAADsHNPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACgx5oyZUoqKipKy5AhQ9LQ0JCHH364VPPm7W9eli5dmiRZvXp1aV1lZWUGDRqU448/PldeeWVaWlq6vN8rr7ySxsbG/M7v/E769++fgw46KKeddlr+6Z/+abf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vU3HLLLaWazcu5557bpeapp57KL3/5y/zoRz/KVVddle985zs55phj8sgjj5RqLrnkkixfvjx/8zd/kyeffDIrV67MRz7ykbz00ku71XvVbu0FAAAAe0l1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZPDgwaWabRk2bFip7sgjj8wHP/jBHH/88Zk2bVruvffeJMkdd9yRr3zlK3n/+9+fJBk5cmROOOGE3e7dSDcAAAC9RltbW2677baMGjUqQ4YM6dax3va2t+WSSy7JD37wg6xZsybJG6H+zjvvzPr16/dEu0a6AQAA2Ls6OjrS0dHRZV11dXWqq6u3Wr9ixYrU1NQkSTZs2JC6urqsWLEilZW/HUe+4IIL0q9fvy77Pf744znssMO220t9fX2S5Omnn86wYcNy88035xOf+ESGDBmSsWPH5v/7//6/fOQjH8nv/d7v7fJ5JkL3Pq1///6ZPn16udvoIYaWuwEAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48B320tnZmeSNm7Elyamnnpr/+q//yv33358f/vCHWbVqVb7yla9k9uzZ+Yu/+ItdOs9E6N6nNTc3l7uFHuP0P/5iuVsAAIB9RmNjY2bMmNFl3bZGuZNkwIABGTVqVOn1woULM2jQoCxYsCBz5sxJ8sa08DfX7KwnnngiyRvXbm+23377Zdy4cRk3blyuuuqqzJkzJ9dee22uuuqq7L///rt0fKEbAACAvWp7U8l3xuZHf23cuLFbfWzcuDE333xzTj311NIN2bZm9OjRee2119Le3i50AwAA0Ld0dHSktbU1yRvTy2+88ca0tbVl8uTJpZp169aVajYbOHBgBgwYUHq9Zs2atLe3Z/369XnwwQdz/fXX58UXX8zy5ctLNePHj88FF1yQ9773vRkyZEgef/zxfO5zn8uECRNy4IEH7nLvezR0NzY2pr29fU8eco/ZfCc6AAAAepeVK1emrq4uyRtBur6+PsuWLcv48eNLNVOnTt1iv+bm5sycObP0+qijjkpFRUVqampyxBFH5Mwzz8yMGTO6PGrsrLPOyq233prPfe5zeeWVVzJ8+PCcffbZueaaa3ar9z0autvb2zN37tw9ecg9xg3DAAAAep8lS5ZkyZIl263ZfDO0bRk/fvwOazZrbGxMY2Pjzra3Q57TDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIFXlbgB6ghMaasrdAkkeXNlW7ha6bdK8D5e7hW77l0uXl7uFbusLnweg7/nUmOPK3QJJFj/2k3K30G2+lnoXI90AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlWxyvvr4+1dXVaW1t3WLb+PHju+x/8MEH5/zzz88zzzyz2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1Sc++992bjxo35yEc+kltvvXWr73XxxRenpaUlv/zlL/NP//RPee6553LhhRfudu9CNwAAAD1adXV1amtrU1tbm+OOOy4zZ87Mc889lxdeeKFUM3jw4FLN5qV///5djrNo0aL8j//xP/IHf/AHWbx48Vbf64ADDkhtbW3q6upy0kkn5fLLL89DDz20271X7faeAAAAsJe1tbXltttuy6hRozJkyJCd3m/9+vVZtmxZ/u3f/i319fX59a9/ne9///sZN27cNvf51a9+lW984xs58cQTd7tfoRsAAIC9qqOjIx0dHV3WVVdXp7q6eqv1K1asSE1NTZJkw4YNqaury4oVK1JZ+dvJ2xdccEH69evXZb/HH388hx12WJJk6dKlede73pUxY8YkST7+8Y9n0aJFW4TuefPmZeHChens7Mwrr7ySI488Mt/+9rd3+1yF7v+nsbEx7e3t5W6DMtlv4shytwAAAPuM5ubmzJ49u8u6WbNmpampaav1EyZMyPz585Mka9euzbx58zJp0qQ88MADGTFiRJJk7ty5mThxYpf9hg8fXvr/xYsXd7k2+8ILL8xpp52Wv/mbv8nAgQNL6z/xiU/k85//fJLk+eefz5e+9KWceeaZefDBB7vU7Syh+/9pb2/P3Llzy90GZXLlt75S7hYAAGCf0djYmBkzZnRZt61R7iQZMGBARo0aVXq9cOHCDBo0KAsWLMicOXOSJLW1tV1q3uzxxx/P/fffnwceeCBXXXVVaf3rr7+epUuX5uKLLy6tGzRoUOk4o0aNyqJFi1JXV5fbb789f/iHf7jL5yp0AwAAsFdtbyr5zqioqEhlZWU2bty4U/WLFi3Kqaeemq9+9atd1t9yyy1ZtGhRl9D9VpunrO/se72V0A0AAECP1tHRUXqu9tq1a3PjjTemra0tkydPLtWsW7dui2dvDxw4MPvvv3/+z//5P7n22mtzzDHHdNn+h3/4h/nyl7+cxx57rHSt9yuvvFI6zvPPP58vfOEL6d+/f84888zd6l3oBgAAoEdbuXJl6urqkrwRpOvr67Ns2bKMHz++VDN16tQt9mtubs673vWuvPTSS/nQhz60xfajjz46Rx99dBYtWpQvf/nLSZIFCxZkwYIFSZK3v/3tefe7350777wzRx111G71LnQDAADQYy1ZsiRLlizZbk1nZ+d2t7/++uvb3Pb444+X/n/16tW70tpOqdxxCQAAALA7hG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRuAnuDBlW3lbqHbTmioKXcL3dYXzqEvmDTvw+Vuodv+5dLl5W6h24adc2a5W6CP8LO151j82E/K3QJJPjXmuHK3wD7GSDcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAIAea8qUKamoqCgtQ4YMSUNDQx5++OFSzZu3v3lZunRpqWbBggUZO3ZsampqMnjw4Bx//PFpbm4ubW9qairtV1VVlaFDh+bUU0/NDTfckI6Ojt3uX+gGAACgR2toaEhLS0taWlqyatWqVFVV5eyzz+5Sc8stt5RqNi/nnntukmTx4sX5sz/7s/zJn/xJfvKTn+QHP/hBrrzyyrS1tXU5xpgxY9LS0pJnn302d999d84///w0NzfnlFNOyfr163er96rd2gsAAAD2kurq6tTW1iZJamtrM3PmzIwbNy4vvPBCDjrooCTJ4MGDSzVvdccdd+SjH/1oPv3pT5fWjRkzZou6qqqq0jGGDx+eY489NmeccUbGjh2b6667LnPmzNnl3o10AwAA0Gu0tbXltttuy6hRozJkyJCd2qe2tjb3339/nnnmmV1+v/r6+kyaNCnLly/f5X0ToRsAAIC9rKOjIy+//HKXZXvXTa9YsSI1NTWpqanJwIEDc8cdd+T2229PZeVvI+0FF1xQqtm8PPvss0mSWbNmZfDgwRk5cmSOOuqoTJkyJd/4xjeyadOmneq3vr4+Tz/99G6dq+nlfVhjY2Pa29vL3UYvMbTcDQAAwD6jubk5s2fP7rJu1qxZaWpq2mr9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkSSZO3duJk6c2GW/4cOHJ0nq6upy33335dFHH833vve9/PCHP8xFF12UhQsXZuXKlV3C+9Z0dnamoqJid05V6O7L2tvbM3fu3HK30Suc/sdfLHcLAACwz2hsbMyMGTO6rKuurt5m/YABAzJq1KjS64ULF2bQoEFZsGBB6Trr2traLjVbc8wxx+SYY47JpZdemksuuSTjxo3LPffckwkTJmx3vyeeeCKHH374jk5rq4RuAAAA9qrq6urthuwdqaioSGVlZTZu3Ljbxxg9enSSZMOGDdute/LJJ7Ny5co0Njbu1vsI3QAAAPRoHR0daW1tTfLG9PIbb7wxbW1tmTx5cqlm3bp1pZrNBg4cmAEDBmTatGkZPnx4fv/3fz/vfOc709LSkjlz5uSggw7KySefXKp/7bXX0tramk2bNuWll17K6tWrM2fOnBx33HG54oordqt3oRsAAIAebeXKlamrq0vyRpCur6/PsmXLMn78+FLN1KlTt9ivubk5M2fOzMSJE7N48eLMnz8/L730UoYOHZqTTz45q1at6nIH9Mceeyx1dXXp169fBg0alNGjR6exsTHTpk3b7ZF5oRsAAIAea8mSJVmyZMl2azo7O7e7/bzzzst555233ZqmpqZt3sitOzwyDAAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gb2lv79+2f69Onb3L5mzZq92A0AAAD7gn0mdDc3N293+/YCOQAAAOwO08sBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKMg+85zuojQ2Nqa9vb3cbWzVmjVryt0CQFkMO+fMcrfQbWvuuKvcLXTbpHkfLncL9BGLH/tJuVsA2G1Cdze1t7dn7ty55W5jq6ZPn17uFgAAAPZpppcDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAECPNWXKlFRUVJSWIUOGpKGhIQ8//HCp5s3b37wsXbo0SbJ69ept1rS2tiZJmpqaSuuqqqoydOjQnHrqqbnhhhvS0dGx2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1S89RTT21RM2zYsNL2MWPGpKWlJc8++2zuvvvunH/++Wlubs4pp5yS9evX71bvVbu1FwAAAOwl1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSZLBgweXarZl2LBhGTx48Da3V1VVlY4xfPjwHHvssTnjjDMyduzYXHfddZkzZ84u926kGwAAgF6jra0tt912W0aNGpUhQ4YU/n719fWZNGlSli9fvlv7G+kGAABgr+ro6NjiOunq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYeVXr/zne/ssn3EiBF57LHHdthvfX197rrrrh3WbY3Q3Yf1798/06dPL3cbvcTQcjcAAAD7jObm5syePbvLulmzZqWpqWmr9RMmTMj8+fOTJGvXrs28efMyadKkPPDAAxkxYkSSZO7cuZk4cWKX/YYPH97l9fe///0MHDiw9Hq//fbbqX47OztTUVGxU7VvJXT3Yc3NzeVuodc4/Y+/WO4WAABgn9HY2JgZM2Z0WbetUe4kGTBgQEaNGlV6vXDhwgwaNCgLFiwoXWddW1vbpWZrDj/88O1e070tTzzxRA4//PBd3i8RugEAANjLtjeVfGdUVFSksrIyGzdu3INdbd2TTz6ZlStXprGxcbf2F7oBAADo0To6OkrP0167dm1uvPHGtLW1ZfLkyaWadevWlWo2GzhwYAYMGFB6vWbNmrS3t3epGTJkSGma+WuvvZbW1tZs2rQpL730UlavXp05c+bkuOOOyxVXXLFbvQvdAAAA9GgrV65MXV1dkjeCdH19fZYtW5bx48eXaqZOnbrFfs3NzZk5c2bp9VFHHbVFzX333ZeTTjopSfLYY4+lrq4u/fr1y6BBgzJ69Og0NjZm2rRpuz0yL3QDAADQYy1ZsiRLlizZbk1nZ+d2t48fP36HNU1NTdu8kVt3eE43AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCVJW7AegJTmioKXcLAF1MmvfhcrfQbf9y6fJyt9Btw845s9wtdFtf+DfuU2OOK3cL0KMsfuwn5W6h264feVq5W9hrjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgnhk2P/Tv3//TJ8+fZf3W7NmTQHdAAAA0BcI3f9Pc3Pzbu23O0EdAACAfYPp5QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlpZoFCxZk7NixqampyeDBg3P88cenubm5tL2pqWmrx6ivr+9W/1Xd2hsAAAAK1tDQkFtuuSVJ0tramquvvjpnn312nn322VLNLbfckoaGhi77DR48OEmyePHi/Nmf/Vn+1//6XznttNPS0dGRhx9+OI8++miX+jFjxuQ73/lOl3VVVd2LzUI3AAAAPVp1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSNwL25pq3uuOOO/LRj340n/70p0vrxowZs0VdVVXVNo+xu0wvBwAAoNdoa2vLbbfdllGjRmXIkCE7tU9tbW3uv//+PPPMMwV3tyWhGwAAgL2qo6MjL7/8cpelo6Njm/UrVqxITU1NampqMnDgwNxxxx25/fbbU1n520h7wQUXlGo2L5unn8+aNSuDBw/OyJEjc9RRR2XKlCn5xje+kU2bNnV5n0ceeWSLY1xyySXdOlfTy8uosbEx7e3t5W6DJPtNHFnuFgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDkyR1dXW577778uijj+Z73/tefvjDH+aiiy7KwoULs3LlylJ4P+qoo3LHHXd0OcaBBx7YrXMVusuovb09c+fOLXcbJLnyW18pdwsAALDPaGxszIwZM7qsq66u3mb9gAEDMmrUqNLrhQsXZtCgQVmwYEHmzJmT5I0p5G+u2ZpjjjkmxxxzTC699NJccsklGTduXO65555MmDAhSbL//vvv8Bi7SugGAABgr6qurt5uyN6RioqKVFZWZuPGjbt9jNGjRydJNmzYsNvH2BlCNwAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+eXKpZt25dqWazgQMHZsCAAZk2bVqGDx+e3//938873/nOtLS0ZM6cOTnooINy8sknl+pfe+21LY5RUVGRgw8+eLd7F7oBAADo0VauXJm6urokbwTp+vr6LFu2LOPHjy/VTJ06dYv9mpubM3PmzEycODGLFy/O/Pnz89JLL2Xo0KE5+eSTs2rVqi53QH/sscdK77NZdXV1t+7FJXQDAADQYy1ZsiRLlizZbk1nZ+d2t5933nk577zztlvT1NS0zRu5dYdHhgEAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRsA9owHV7aVu4VuO6GhptwtAHvQsHPOLHcL3bbmjrvK3UK3PZje/3lIflLuBvaIT405rtwt0Ef4WupdjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBV5W6gt+vfv3+mT5++W/uuWbNmD3cDAABATyJ0d1Nzc/Nu77u7YR0AAIDewfRyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPl2revP3Ny9KlS0s1CxYsyNixY1NTU5PBgwfn+OOPLz2NauTIkds8RkVFRaZMmbLb/XtkGAAAAD1aQ0NDbrnlliRJa2trrr766px99tl59tlnSzW33HJLGhoauuw3ePDgJMnixYvzZ3/2Z/lf/+t/5bTTTktHR0cefvjhPProo0mSH/3oR3n99deTJD/84Q9z3nnn5amnnsqBBx6YJHnb2962270L3QAAAPRo1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSd4I2Jtr3uqOO+7IRz/60Xz6058urRszZkzp/zcfI0ne8Y53JEmGDRtWCu3dYXo5AAAAvUZbW1tuu+22jBo1KkOGDNmpfWpra3P//ffnmWeeKbi7LRnpBgAAYK/q6OhIR0dHl3XV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7LrFmz8uEPfzgjR47MkUcemZNPPjnvf//785GPfKTLMYogdO/DGhsb097eXu42eoT9Jo4sdwsAALDPaG5uzuzZs7usmzVrVpqamrZaP2HChMyfPz9Jsnbt2sybNy+TJk3KAw88kBEjRiRJ5s6dm4kTJ3bZb/jw4UmSurq63HfffXn00Ufzve99Lz/84Q9z0UUXZeHChVm5cmWhwVvo3oe1t7dn7ty55W6jR7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3phC/uaarTnmmGNyzDHH5NJLL80ll1yScePG5Z577smECRO6cTbbJ3QDAACwV21vKvnOqKioSGVlZTZu3Ljbxxg9enSSN6arF0noBgAAoEfr6OhIa2trkjeml994441pa2vL5MmTSzXr1q0r1Ww2cODADBgwINOmTcvw4cPz+7//+3nnO9+ZlpaWzJkzJwcddFBOPvnkQnsXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bMTJw4MYsXL878+fPz0ksvZejQoTn55JOzatWqnb4D+u4SugEAAOixlixZkiVLlmy3prOzc7vbzzvvvJx33nk79X7jx4/f4fF2hed0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9iX9e/fP9OnTy/b+69Zs6Zs7w1QpBMaasrdAukbn4cHc2a5W+i2NXfcVe4Wuq/hw+XuAGC3Cd1l1NzcXNb3L2fgBwAA2BeYXg4AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAAD3WlClTUlFRUVqGDBmShoaGPPzww6WaN29/87J06dIt9n/rMnLkyO1ur6ioyNNPP73b/QvdAAAA9GgNDQ1paWlJS0tLVq1alaqqqpx99tldam655ZZSzebl3HPPzVe+8pUu695a+/3vf7/L9pNPPjkXX3xxl3WHHnrobvde1a0zBwAAgIJVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyqebP+/ftn0KBBXdZtqzZJ9t9//xxwwAHb3L6rjHQDAADQa7S1teW2227LqFGjMmTIkHK3s0NGugEAANirOjo60tHR0WVddXV1qqurt1q/YsWK1NTUJEk2bNiQurq6rFixIpWVvx1HvuCCC9KvX78u+z3++OM57LDD9nD3u0bo3of1798/06dPL3cbPcJ+E0eWuwUAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48D3f/C4Suvdhzc3N5W6hx7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3rjW+801PYXQDQAAwF61vankO6OioiKVlZXZuHHjHuyqGEI3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT55cqlm3bl2pZrOBAwdmwIABe7XXtxK6AQAA6NFWrlyZurq6JG8E6fr6+ixbtizjx48v1UydOnWL/ZqbmzNz5sy91eZWCd0AAAD0WEuWLMmSJUu2W9PZ2bnTx9tR7erVq3f6WDvDc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwNQE/wqTHHlbuFPeAn5W6g2/rG5wH2jMWP/aTcLXRb3/ie/km5G+i+hg+Xu4Nu+5dLl5e7hT1jXrkb6L6+8H3dF36+9gXXjzyt3C3sNUa6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAgB5rypQpqaioKC1DhgxJQ0NDHn744S1qP/OZz6Rfv35ZtmzZFtuampq6HGfzUl9fn6effnqr2968LFmyZLf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vUvPLKK1m6dGmuvPLKLF68eKvHGTNmTOk4m5d77703hx56aJd1f/7nf75F7cc+9rHd6r1qt/YCAACAvaS6ujq1tbVJktra2sycOTPjxo3LCy+8kIMOOihJsmzZsowePTozZ87M8OHD89xzz+XQQw/tcpyqqqrScd7qzetramq2W7srjHQDAACwV3V0dOTll1/usnR0dOzUvm1tbbntttsyatSoDBkypLR+0aJFufDCCzNo0KBMmjRpt6eD72k9bqS7sbEx7e3t5W6Dfcxn/vTccrcAAAD7jObm5syePbvLulmzZqWpqWmr9StWrEhNTU2SZMOGDamrq8uKFStSWfnGOPLPfvaz3H///Vm+fHmS5MILL8yMGTNy9dVXp6KionScRx55pHSczS688MLcdNNNe+rUttDjQnd7e3vmzp1b7jbYxzz59D3lbgEAAPYZjY2NmTFjRpd11dXV26yfMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjsnjx4px11lkZOnRokuT9739/Pv3pT+e73/1uTj/99NJxjjrqqNxxxx1djn3ggQfuqdPaqh4XugEAAOjbqqurtxuy32rAgAEZNWpU6fXChQszaNCgLFiwILNnz86tt96a1tbWVFX9NuK+/vrrWbx4cZfQvf/++3c5zt4gdAMAANCrVFRUpLKyMhs3bsydd96Z9evX58c//nH69etXqnn00UczderUrFu3LoMHDy5br0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnutdJzNKioqcvDBBxfWu9ANAABAj7Zy5crU1dUlSQYOHJj6+vosW7YsRx99dL71rW/l61//+hb7VFZW5kMf+lAWLVpUCt2PPfZY6TibVVdXF3ozb6EbAACAHmvJkiXbffzXb37zm21umzdvXun/m5qatnl39Lfaldod8ZxuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFqSp3A9ATXPbX95a7hW47oaGm3C102+LHflLuFkjyqTHHlbuFbvO1xJ7SF74f+oR55W5gz/iXS5eXu4Vue/CctnK3QF/xgXI3sPcY6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAANBjTZkyJRUVFaVlyJAhaWhoyMMPP7xF7Wc+85n069cvy5Yt22JbU1NT6RhVVVUZOnRoTj311Nxwww3p6OjoUjt+/PhSbXV1dQ455JBMnjw5y5cv3+X+hW4AAAB6tIaGhrS0tKSlpSWrVq1KVVVVzj777C41r7zySpYuXZorr7wyixcv3upxxowZk5aWljz77LO5++67c/7556e5uTmnnHJK1q9f36X24osvTktLS37+85/n7//+7zN69Oh8/OMfzx/90R/tUu9Vu3aqAAAAsHdVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSZYtW5bRo0dn5syZGT58eJ577rkceuihXY5TVVVVOs7w4cNz7LHH5owzzsjYsWNz3XXXZc6cOaXaAw44oFT7zne+MyeddFLq6+vzqU99Kh/96EczceLEnerdSDcAAAB7VUdHR15++eUuy1uneG9LW1tbbrvttowaNSpDhgwprV+0aFEuvPDCDBo0KJMmTcqSJUt26nj19fWZNGnSTk0dv+iii/L2t799l6aZG+nuwxobG9Pe3l7uNnqJoeVuAAAA9hnNzc2ZPXt2l3WzZs1KU1PTVutXrFiRmpqaJMmGDRtSV1eXFStWpLLyjXHkn/3sZ7n//vtLYfjCCy/MjBkzcvXVV6eiomKH/dTX1+euu+7aYV1lZWWOPPLIPP300zus3Uzo7sPa29szd+7ccrfRK5z+x18sdwsAALDPaGxszIwZM7qsq66u3mb9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkcWLF+ess87K0KFvDKa9//3vz6c//el897vfzemnn77Dfjo7O3cqnO9qbSJ0AwAAsJdVV1dvN2S/1YABAzJq1KjS64ULF2bQoEFZsGBBZs+enVtvvTWtra2pqvptxH399dezePHinQrdTzzxRA4//PAd1r3++uv52c9+lt/93d/d6d6FbgAAAHqVioqKVFZWZuPGjbnzzjuzfv36/PjHP06/fv1KNY8++mimTp2adevWZfDgwds81pNPPpmVK1emsbFxh+976623Zu3atTnvvPN2ulehGwAAgB6to6Mjra2tSd6YXn7jjTemra0tkydPzg033JAPfOADGTt2bJd9Ro8enenTp+drX/taLrvssiTJa6+9ltbW1mzatCkvvfRSVq9enTlz5uS4447LFVdc0WX/V155Ja2trXnttdfy3//93/mHf/iHzJ07N9OmTcuECRN2unehGwAAgB5t5cqVqaurS5IMHDgw9fX1WbZsWY4++uh861vfyte//vUt9qmsrMyHPvShLFq0qBS6H3vssdTV1aVfv34ZNGhQRo8encbGxkybNm2L6e4LFizIggULsv/++2fIkCE54YQTcvvtt+dDH/rQLvUudAMAANBjLVmyZLuP//rNb36zzW3z5s0r/X9TU9M2747+VqtXr97J7nbMc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKskfvXt6/f/9Mnz69W8dYs2bNHuoGAAAAymuPhu7m5uZuH6O7oR0AAAB6CtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIJUlbuBvqaxsTHt7e3lbiNJsmbNmnK3AADQbZ8ac1y5W9gjHjynrdwtdNuaO+4qdwvdNmneh8vdAvsYoXsPa29vz9y5c8vdRpJk+vTp5W4BAABgn2Z6OQAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPZ8mSJV22bW15+umn09TUVHpdVVWVoUOH5tRTT80NN9yQjo6OLu83fvz4Um11dXUOOeSQTJ48OcuXL9+t/oVuAAAAerSGhoa0tLSkpaUlq1atSlVVVc4+++x87GMfK61vaWnJySefnIsvvrjLukMPPTRJMmbMmLS0tOTZZ5/N3XffnfPPPz/Nzc055ZRTsn79+i7vt/kYP//5z/P3f//3GT16dD7+8Y/nj/7oj3a596o98hEAAACAglRXV6e2tjZJUltbm5kzZ2bcuHFpa2srrU+S/fffPwcccECXdZtVVVWV1g8fPjzHHntszjjjjIwdOzbXXXdd5syZU6p98zHe+c535qSTTkp9fX0+9alP5aMf/WgmTpy4070b6QYAAGCv6ujoyMsvv9xlees0721pa2vLbbfdllGjRmXIkCHd6qO+vj6TJk3aqanjF110Ud7+9rfv8jRzI919WP/+/TN9+vRyt9FLDC13AwAAsM9obm7O7Nmzu6ybNWtWmpqatlq/YsWK1NTUJEk2bNiQurq6rFixIpWV3R9Hrq+vz1133bXDusrKyhx55JF5+umnd+n4Qncf1tzcXO4Weo3T//iL5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7rVS2dnZyoqKvZ47WamlwMAALBXVVdX58ADD+yybC90DxgwIKNGjcqoUaPyu7/7u1m4cGE2bNiQBQsWdLuXJ554IocffvgO615//fX87Gc/26naNxO6AQAA6FUqKipSWVmZjRs3dus4Tz75ZFauXJnzzjtvh7W33npr1q5du1O1b2Z6OQAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+evNPHeO2119La2ppNmzblpZdeyurVqzNnzpwcd9xxueKKK7rUvvLKK2ltbc1rr72W//7v/84//MM/ZO7cuZk2bVomTJiwS70L3QAAAPRoK1euTF1dXZJk4MCBqa+vz7JlyzJ+/PidPsZjjz2Wurq69OvXL4MGDcro0aPT2NiYadOmbTG1fcGCBVmwYEH233//DBkyJCeccEJuv/32fOhDH9rl3oVuAAAAeqwlS5ZkyZIlO1W7evXqra5vamra5p3Rd/YYu8s13QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gbeqn///pk+fXq529hta9asKXcL7IYTGmrK3QJJHlzZVu4Wuq0vfC0tfuwn5W6h2z415rhytwDsQX3h51JfMWneh8vdQrf9y6XLy91Ctw0758xyt9B9Hyh3A3tPjwvdzc3N5W6hW3rzHwwAAADYs0wvBwAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAACAHmvKlCmpqKgoLUOGDElDQ0MefvjhLWo/85nPpF+/flm2bNkW25qamkrHqKqqytChQ3PqqafmhhtuSEdHR5fa8ePHd3nPgw8+OOeff36eeeaZXe5f6AYAAKBHa2hoSEtLS1paWrJq1apUVVXl7LPP7lLzyiuvZOnSpbnyyiuzePHirR5nzJgxaWlpybPPPpu77747559/fpqbm3PKKadk/fr1XWovvvjitLS05Je//GX+6Z/+Kc8991wuvPDCXe5d6AYAAKBHq66uTm1tbWpra3Pcccdl5syZee655/LCCy+UapYtW5bRo0dn5syZ+d73vpfnnntui+NUVVWltrY2w4cPz7HHHps//uM/zj333JNHH3001113XZfaAw44ILW1tamrq8tJJ52Uyy+/PA899NAu9y50AwAAsFd1dHTk5Zdf7rK8dYr3trS1teW2227LqFGjMmTIkNL6RYsW5cILL8ygQYMyadKkLFmyZKeOV19fn0mTJmX58uXbrPnVr36Vb3zjGznxxBN36phvVrXLe9BrNDY2pr29vdxt9Ar7TRxZ7hYAAGCf0dzcnNmzZ3dZN2vWrDQ1NW21fsWKFampqUmSbNiwIXV1dVmxYkUqK98YR/7Zz36W+++/vxScL7zwwsyYMSNXX311KioqdthPfX197rrrri7r5s2bl4ULF6azszOvvPJKjjzyyHz729/e1VMVuvuy9vb2zJ07t9xt9ApXfusr5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7J48eKcddZZGTp0aJLk/e9/fz796U/nu9/9bk4//fQd9tPZ2blFOP/EJz6Rz3/+80mS559/Pl/60pdy5pln5sEHH8zAgQN3+lyFbgAAAPaq6urq7YbstxowYEBGjRpVer1w4cIMGjQoCxYsyOzZs3PrrbemtbU1VVW/jbivv/56Fi9evFOh+4knnsjhhx/eZd2gQYNK7zlq1KgsWrQodXV1uf322/OHf/iHO9270A0AAECvUlFRkcrKymzcuDF33nln1q9fnx//+Mfp169fqebRRx/N1KlTs27dugwePHibx3ryySezcuXKNDY2bvc9Nx9748aNu9Sr0A0AAECP1tHRkdbW1iRvTC+/8cYb09bWlsmTJ+eGG27IBz7wgYwdO7bLPqNHj8706dPzta99LZdddlmS5LXXXktra2s2bdqUl156KatXr86cOXNy3HHH5Yorruiy/yuvvFJ6z+effz5f+MIX0r9//5x55pm71LvQDQAAQI+2cuXK1NXVJUkGDhyY+vr6LFu2LEcffXS+9a1v5etf//oW+1RWVuZDH/pQFi1aVArdjz32WOrq6tKvX78MGjQoo0ePTmNjY6ZNm7bFdPcFCxZkwYIFSZK3v/3tefe7350777wzRx111C71LnQDAADQYy1ZsmS7j//6zW9+s81t8+bNK/1/U1PTNu+O/larV6/eye52zHO6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUpKrcDfQ1/fv3z/Tp08vdRpJkzZo15W4BdskJDTXlboEknxpzXLlboI9Y/NhPyt1Ct/l+gL5n2DlnlruFbltzx13lbqH7/ubz5e5grxG697Dm5uZyt1DSU8I/AADAvsr0cgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAA6LGmTJmSioqK0jJkyJA0NDTk4Ycf3qL2M5/5TPr165dly5Ztsa2pqal0jKqqqgwdOjSnnnpqbrjhhnR0dHSpHT9+fJf33Lxccsklu9y/0A0AAECP1tDQkJaWlrS0tGTVqlWpqqrK2Wef3aXmlVdeydKlS3PllVdm8eLFWz3OmDFj0tLSkmeffTZ33313zj///DQ3N+eUU07J+vXru9RefPHFpffcvFx//fW73HvVLu8BAAAAe1F1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZNmyZRk9enRmzpyZ4cOH57nnnsuhhx7a5ThVVVWl4wwfPjzHHntszjjjjIwdOzbXXXdd5syZU6o94IADSrXdYaQbAACAvaqjoyMvv/xyl+WtU7y3pa2tLbfddltGjRqVIUOGlNYvWrQoF154YQYNGpRJkyZlyZIlO3W8+vr6TJo0KcuXL9+dU9khI919WP/+/TN9+vRyt9Er7DdxZLlbAACAfUZzc3Nmz57dZd2sWbPS1NS01foVK1akpqYmSbJhw4bU1dVlxYoVqax8Yxz5Zz/7We6///5ScL7wwgszY8aMXH311amoqNhhP/X19bnrrru6rJs3b14WLlzYZd3//t//O5/4xCd26hw3E7r7sObm5nK30Gtc+a2vlLsFAADYZzQ2NmbGjBld1lVXV2+zfsKECZk/f36SZO3atZk3b14mTZqUBx54ICNGjMjixYtz1llnZejQoUmS97///fn0pz+d7373uzn99NN32E9nZ+cW4fwTn/hEPv/5z3dZd/DBB+/U+b2Z0A0AAMBeVV1dvd2Q/VYDBgzIqFGjSq8XLlyYQYMGZcGCBZk9e3ZuvfXWtLa2pqrqtxH39ddfz+LFi3cqdD/xxBM5/PDDu6wbNGhQl/fcXUI3AAAAvUpFRUUqKyuzcePG3HnnnVm/fn1+/OMfp1+/fqWaRx99NFOnTs26desyePDgbR7rySefzMqVK9PY2FhIr0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnstra2t2bRpU1566aWsXr06c+bMyXHHHZcrrriiy/6vvPJK6T03q66uztvf/vZd6t3dywEAAOjRVq5cmbq6utTV1eXEE0/Mj370oyxbtixHH310vvWtb+W8887bYp/Kysp86EMfyqJFi0rrHnvssdTV1eWwww7L+PHj841vfCONjY35/ve/X7pR22YLFiwovefm5YILLtjl3is6Ozs7d/2UoW9xIzX4rU+NOa7cLdBHLH7sJ+Vuodt8P/QMfeFrKUkeXNlW7ha67YSGmh0X9XB94fOw5o67dlzUwz3yzD3lbmGvMdINAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAonUDh2tvbO2fNmtXZ3t5e7lZ2m3PoGZxDz+Acegbn0DM4h57BOfQMzoGtqejs7Owsd/CHvu7ll1/OoEGD8utf/zoHHnhgudvZLc6hZ3AOPYNz6BmcQ8/gHHoG59AzOAe2xvRyAAAAKIjQDQAAAAURugEAAKAgQjfsBdXV1Zk1a1aqq6vL3cpucw49g3PoGZxDz+Acegbn0DM4h57BObA1bqQGAAAABTHSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAADslGeffTbuwQuwa4RuYAuf+tSnsn79+nK3wTa89tpraWtrK3cbwC7qCz9bDz/88LzwwgvlbqNb/vZv/zYdHR3lbgPYhwjdUIANGzbkmmuuyTHHHJOampoMHDgw7373u3PttdfmlVdeKXd7O3Trrbdm48aN5W6j29avX58HH3ywFFAfeuihfPKTn8z555+fr33ta2Xubsf++Z//OUuWLOmy7otf/GJqamoyePDgnHnmmVm7dm15muuGDRs2ZPHixfnqV7+an/3sZ+VuZ6f09u/ppPefw+jRo/OrX/2q9PrSSy/Niy++WHq9Zs2aHHDAAeVobaf1hZ+tfWGUe+rUqfn1r39d7jb2iO9+97u5/PLLc/bZZ2fy5Mn5kz/5k3zve98rd1u7pC+cw5v1xn/jLr300i5/zP+7v/u7bNiwofR63bp1ef/731+O1vqOTmCP6ujo6DzhhBM6q6urO88999zOmTNndl511VWd55xzTuf+++/fedJJJ3W++uqr5W5zuyoqKjqff/75crfRLffcc0/nwIEDOysqKjrf8Y53dH7729/uHDhwYGd9fX3nmDFjOisrKztvvvnmcre5XePHj++88cYbS69/8IMfdFZWVnbOmTOn8+///u876+vrO6dPn17GDnfsmWee6Tz11FM7a2pqOidOnNj5zDPPdB555JGdFRUVnRUVFZ0HHHBA5z333FPuNrerL3xP94VzeOvPpYEDB3b+/Oc/L71ubW3trKioKEdrO60v/GytqKjoXLNmTbnb6Ja+8Hno7Ozs/MxnPlP6N+6kk07qPPHEEzvf8Y53dFZWVnZefvnl5W5vp/T2c+gL/8Z1dnZ2VlZW7vDna2VlZTla6zOqyh36oa+ZP39+/vu//zs//elPc9RRR3XZ9uSTT2b8+PG56aab8sd//Mdl6nDnrF+/Pv37999uzYEHHriXutl1V199dc4///xce+21Wbx4cT72sY/l8ssvz5e+9KUkyZw5c/LVr341F198cZk73bbHHnssX/7yl0uvv/nNb+aMM87I5z//+SRJ//7986d/+qddanqaz372s3n11Vdz00035Rvf+EbOOuusvOtd78r3vve9VFZWZtq0aWlqasp3v/vdcre6TX3he7ovnMNbdW5lxLWioqIMneya3v6zNUn+4i/+YoezCnryz6Wkd3ytbM8//MM/5JZbbsnixYtz0UUXlc5n06ZNWbJkSaZNm5Yzzjgj55xzTpk73ba+cA594d+4ZMufp1v7+Ur3VHT6qMIeddppp+WjH/1oLrvssq1u/5u/+Zt885vfzD333LOXO9t5lZWV2/2FpLOzMxUVFXn99df3Yle7ZvDgwbn//vtTX1+fV199NW9729vy0EMPZezYsUmS//zP/8zxxx/fo6+vfNvb3pannnoqhx12WJLkfe97X84///xcccUVSZJnnnkmo0eP7jIFrKepra3NHXfckfe973351a9+laFDh+YHP/hBTj755CTJT3/605x++uldpgn3NH3he7ovnENlZWVaW1szbNiwJMnAgQPz05/+NEcccUSS5Pnnn8/w4cN79M+lvvCztbKyMieffHL233//bdZUVFT06JBRWVmZY445JlVV2x97euihh/ZSR7vunHPOyZgxY9Lc3LzV7VdddVWefPLJ/NM//dNe7mzn9YVz6Av/xiV94+drT2ekG/awxx9/POPHj9/m9gkTJuTaa6/dew3tpm9+85t5xzveUe42dtvLL79c6n///ffPAQcckIEDB5a2Dxw4sMdfx3rIIYfkiSeeyGGHHZa2trb89Kc/zdy5c0vbX3rppR5/DeuaNWsyYsSIJMk73vGOHHDAATn44INL22tra3v8del94Xu6L5xDRUXFFoG1N45W9vafrckbI5Sbfznvrc4666zU1NSUu43d9tBDD+Xqq6/e5vYPf/jDOe+88/ZiR7uuL5xDX/g3jr1D6IY9bN26dRkyZMg2tw8ZMqRX3MDl937v93r1L1Vv/QV9a7+w93Tnn39+/uzP/iyf+9zncuedd6a2tjYnnXRSafu///u/bzFVuCd66+eht+kL39N94Rw6Oztz+umnl0YnN27cmMmTJ5dGXF977bVytrfTevvP1r7iiiuu6NWfhxdffDHvfOc7t7n9ne98Z1566aW92NGu6wvnkPT+f+M2u+aaa0p/yH/11VfzxS9+MYMGDUqSHj9I0RsI3bCHbdq0Kf369dvm9srKStNz9oK3/oL+yiuv9Lpf0K+55pr84he/yJ/8yZ+ktrY2t912W5evrb/7u7/L5MmTy9jhzunt/5D3he/pvnAOs2bN6vL6gx/84BY1PX1UjJ6hNwejzV599dXst99+29xeVVWVV199dS92tOv6wjkkvf/fuCQ59dRT89RTT5Ven3LKKfmv//qvLWrYfa7phj1sR9eKvfbaa3nsscd69C+4hx9+eP793/99uyNjPd3s2bN3qu6tv8izZ40fP36nfsG9++6790I3u6cvfE/3hXPoC/rCz9bDDz889957bw455JByt7Lb3nr9am9UWVmZP/qjP9rmJUavvPJKFixY0KO/p/vCOfSFf+PYO4Ru2MP6Wth78cUX8/TTT6eioiIjR47s1b8s9mY+D+XTF76n+8I5bMs999yTDRs25OSTT87b3/72crezW3rTOfTr1y8tLS29OrA+88wzOeyww3r1iHdfCHt94RxgZwndwFY99thjmTZtWn7wgx90WX/aaadl/vz5veJa4s16c2Dd3udh3rx5qa+vL1Nne8YTTzyRRYsW5a/+6q/K3Qo93HXXXZe2trZ84QtfSPLGJSSTJk3KXXfdlSQZNmxYVq1alTFjxpSzze3qC+fQF0aJR48enXvvvbd0Q7tLL7001157bYYOHZrkjZtjjRw5stdMDYY9YcOGDbnuuuuyfPny0u9Mhx9+eD7ykY/ks5/9bI+/cWtPJ3RDgXpr2Gttbc0xxxyTgw46KJdccknq6+vT2dmZxx9/PAsWLMhLL72URx99tMf/0tXb/3DQVz4Pb7Vhw4YsXbo0ixYtyv3335/Ro0fn0UcfLXdbu6w3jU6uWbNmu18nr732Wh566KG8733v24td7Zr3vOc9ueqqq/Kxj30sSbJs2bJcdNFF+dd//dccffTR+eQnP5kDDjgg3/jGN8rc6bb1hXOorKzMrbfeWrpmdVt68rOV3/qHgwMPPDA/+clPujweqa6uLps2bSpnm/QSfSGsvvrqqznllFPy6KOPZtKkSaXfN5544omsXLky73nPe/K9731vu9fgswOdwB736KOPdo4bN66zsrKyyzJhwoTOJ598stzt7dCVV17Z+Z73vKdz48aNW2x75ZVXOt/znvd0zpw5swyd7byWlpbOIUOGdNbX13fecMMNnStXruz8l3/5l86//uu/7qyvr+886KCDOp9//vlyt7ldfeHz8Gb33ntv59SpUzsHDBjQWVlZ2fnnf/7nnU888US529qhv/zLv+y8+uqrS683bdrUedZZZ3VWVFR0VlRUdB588MGdjz76aBk73LHKysouX+/HHHNM57PPPlt63dra2llZWVmO1nba4MGDOx9//PHS6ylTpnT+wR/8Qen1fffd9/+3d+8xVdZ/HMDf5xzkIrccOBDamN1gKDnAJtbC7nhEAkpjNIzINRrlllsKrbFmly3basxprgiwmBcIrUEXWQuS4cJBKzQvg2IpkuHUEA5yCfj+/nCc/Q5yOdLhPM/z8f3aWn57zh+fT99zjt/3c57n+arbb79di9KcJqGH8ff9dP/o/b1kMpkcPg9+fn7qjz/+sI+N8HlQSimbzaYKCwvVkiVLlK+vr/Lz81MxMTFq27Ztqr+/X+vynGL0HoaGhlR8fLzy8vJSaWlpqqCgQOXn56snn3xSeXp6qoSEBDU8PKx1mTMqKipSISEhk65RT58+rUJCQtSOHTs0qEwOhm4iF5MQ9mJjY1VFRcWUx/fv369iY2PdWNHNkxBYJcxDd3e32r59u4qMjFShoaFq8+bNqrm5WXl4eKiTJ09qXZ5TYmNj1YEDB+zjyspK5ePjoxobG9Xly5dVcnKyWr9+vYYVzsyZkGEymbQozWkTa46MjFS7d++2j8+ePau8vb21KM1pEnqY+F4yIgmhW0LYk9CDlLCamJiodu7cOeXxHTt2qMTERDdWJA9DN5GLSQh7gYGBqr29fcrj7e3tKjAw0H0FzYKEwCphHry9vVVWVpY6fPiwGh0dtf93I4VuKb9OGj1kLFu2TJWVlSmlrodTk8nk8B46evSoCg8P16g650joYeJVE0ZkNpvVxYsX7WM/Pz/V0dFhHxvh8yAh7EnoQUpYDQ4OnvaKrRMnTqjg4GA3ViSPWevL24mk+f7775Gfnw9vb+8bjvn4+GDLli2ora3VoDLn9fX1ISAgYMrj/v7+sNlsbqzo5nV0dCAuLm7K48uXL79hD0q9kTAPERERaGxsRENDA9ra2rQuZ1ZGRkbg5eVlH//000+4//777eOwsDBcunRJi9JuKS+//DJeeeUVbNy4EVarFStXrkR0dLT9eF1dHWJjYzWscGYSelACHgWklMKjjz6KuLg4xMXFYWBgACkpKfbx448/rnWJMzp06BAKCwsnfTZJVFQU3njjDVRVVWlQmfMk9HDq1Ck89NBDUx5/+OGHcerUKfcVNEs9PT3TPncoKCgIV69edWNF8ky+YScRzZqEsAdcD3yTnTgAgN7eXt0vvCQEVsD483DmzBkcPXoUJSUluO+++3DPPfcgKysLAAyzXc+dd96JhoYG3HHHHTh37hza2tqQmJhoP37+/HndPyTRZDLZ30tKKZhMJthsNvT29gKA/d969uKLL8JisaCmpgaJiYk3bG/2119/IScnR6PqnCOhh+zsbPj4+Ghdxn8y8f97amrqDa95+umn3VXOrDgT9t566y33FTQLEnqQElbHxsZgsVimPG42m3W9X7oR8OnlRC420x6m3d3dCA8Px8jIiJsrc57ZbJ42EI0v2vX8BWyxWNDW1oaFCxdOery7uxtRUVG67kHCPPw/m82G/fv3o6ysDE1NTVi1ahWeffZZpKWlTTlPelBcXIzNmzcjIyMDTU1NuO222xyeiP/OO+/g2LFjqKmp0bDK6U18L42/dyaOjfJeIu1UVlYiLS0Nnp6eAK6fdAoLC4PZfP3iyWvXrmHnzp3YunWrlmWKN2/ePHR2diI0NHTS4xcuXEBERASGh4fdXJnzJPRgsVjw999/T7vWCAsL0/13q9lsxtKlS+HhMfnvsSMjIzh58qTu+9Azhm4iF5MQ9o4cOeLU61atWjXHlcyehMAqYR6mMr4/d3l5Oa5cuYJ///1X65KmVVpaipqaGoSGhuLNN990WCTm5eXhsccew1NPPaVhhdOT8F6SEPYk9DDxxPJk220ZIWRMpbe3F3v37kVJSQlaWlq0LmdKEsKehB6khNVt27Y59bqJV4mQ8xi6iVxMQtiTQELIuBWMjIygurpa14GV9EFC2JPQw8Q9rv39/dHa2mqoHiZTX1+P0tJSHDp0CIGBgUhPT8euXbu0LmtKEsKehB4YVslZvKebyMXq6+u1LuE/k/BrjIQwLWEeZupheHgYv//+u5YlzuhWmAcj9DDxNwIj/mYgoQdJurq6sGfPHpSVlaGnpwf//PMP9u3bh2eeeUb3z5xwJsTp/b70W6UHozPK1R+659ZnpRORIUzcEsbf399w2wtVVFSooaEh+7izs9Nhy6r+/n61fft2LUpzmoR5YA/6IKEHCduesQd9qKqqUlarVfn6+qp169apr776Sg0NDRlqK0MJzp496/D3sjRXr15VH330kYqPj9e6lFmpq6tTWVlZav78+WrRokUqLy9P65IMjVuGEblYZWWlw0M/zp8/j7GxMfv42rVreP/997UozWlKwK8xmZmZ6OnpsY+jo6Px559/2sd9fX14/fXX3V/YTZAwD+xBHyT0QPpRW1uL6upqVFdXY2xsDD/88IN9rPctMQEgIyMDsbGxuHDhAr744gukpqbarwKRoLe3F7t378by5cu1LmVaixcvFrndYn19PTZs2IBFixbh7bffxooVK7QuyWldXV149913cdddd2H9+vXYt28fSktL0dXVpevbLYyAl5cTuVhmZqbDPXvR0dEO9+yNhz09X8YpAUMGkTy1tbUIDAwEAHvY++233wDA4SSbnknoITs722Gcm5vrMNb7pdkbN27Erl278OOPP2LDhg3IyMjAggULtC7rP5vsvnQ9k/T3spFvVQCAgwcPoqSkBA0NDbBarfjggw9gtVrh6+uLmJgYQ/SgdwzdRC7GsEdENDeMHvYA4/fw/1duGdXHH3+MoqIiVFZWorS0FK+++iqSkpKglDJcf0YPe0aocTpSwmpGRgby8/NRUVEBf39/rcsRiaGbiCYl4dcYCSTMA3vQB6P3YLQwNBkJPYy7fPkygoKCAACdnZ0oLi7G4OAgUlJS8OCDD2pc3cx8fHyQnZ2N7OxstLe3o7S0FC0tLXjggQeQnJyMdevW6XpXBSlhr7CwEPPnz5/2NR9++KGbqrl5UsKq1Ks/9IRbhhG5mITtVMafaDwdvW97Zjab8dlnn9lDRmZmJoqKihASEgLgesjIycnRfQ8zMcI8zIQ9zD0JPYwzetgDjN3DiRMnkJKSgs7OTtx99904cOAAVq9ejf7+fpjNZvT396OqqgppaWlal3rTxsbG8O233+LTTz/Fd999h6GhIa1LmpKHhwfy8/NRUFDgEPbmzZuH1tZWREdHa1idc8xmM1auXDnt/fQmkwl1dXVurOrm5ObmoqKiAkuWLHEIq0aah3EDAwP2qz+OHTuGpKQkfPPNN/j111+xdOlSrcszPIZuIheTEPYkkBQyiEhG2JPQg9VqhYeHBwoKClBeXo6vv/4aSUlJKC4uBgBs2rQJP//8M5qamjSudGaTnfwYGBhASkoKoqKi7CfP9UhC2Jv4I4VRSQyr41d/fP7557DZbIa4+kPvGLqJXExS2DPyrzGSSJgH9qAPRu5BQtiT0ENwcDDq6upw7733wmazISAgAM3NzYiPjwcAnDlzBgkJCbq+ZUHCyQ/A+GHPYrE4PHhWAmlh1UhXf+ieO/cnIyJjOH78uIqIiFBms1lFRkaqX375RYWEhCg/Pz8VEBCgLBaL+vLLL7Uu0ymXLl2y//ncuXOqsLBQbdmyRTU0NGhYlXMkzAN70AcJPQQFBanW1lallFJ9fX3KZDKplpYW+/HTp0+rwMBAjapzjoQeJOzTvXr1arV27VrV2NiocnNzVXh4uHrhhRfU6OioGh0dVXl5eWrFihVal3lT2traVEFBgQoLC1MBAQEqMzNTHTx4UOuypjXxvSTJ6OioqqmpUampqcrT01Prcpw22ZrptddeU0eOHBE7V+7C0E00R4wc9iQsSCSEDAnzwB70QUIPEsKelB4uXrxoH/v5+amOjg772Ag9SDj5MRUjhb09e/aowcHBKYOeEdZL44weViWsmfSOoZvIxSR8cUlYkEgIGRLmgT3og4QeJIQ9KT2sWbNGpaenq/T0dOXh4aGeeOIJ+3jNmjWG6MHoJz/GGTnsSVgvSehBKRlrJr3jPd1ELibhnj0JT2CXcN+hhHlgD/ogpQer1QovLy8AQE1NDR555BH4+voCAIaGhnD48GH2MMdycnKcel1ZWdkcVzJ7ZrMZ3d3dWLhwIYDrn4fjx49j8eLFAIzxeZBwX7qE9ZKEHgAZaya94z7dRC7W3Nxs/+JatmwZPvnkE+Tl5dkfsLZp0yYkJCRoXOXMJu7xaZQ9P8dduXIFoaGhAAA/Pz/4+vo67Dm5YMEC9PX1aVWe04w+DwB70Auj95Cdne0wzsrKuuE1zz33nLvKmRUJPeg5TN+M559/3n7yY3BwEC+99JLDyQ+927p1K2JiYrB3716Ul5dj7dq1SE5Odgh77733nq5Dt4T1koQeADlrJj1j6CZyMSlfXEZfkADGDxmAjHlgD/pg9B4khD0JPUgg4eSHhLAnYb0koYdxEtZMesbQTTQHjP7FJWFBAhg/ZEiYB/agDxJ6IHIVCSc/pIQ9o6+XABk9AMZfM+kd7+kmcjEJ9+xJIOG+QyIioslIuC9dwnpJQg8A10zuwNBN5GL84iIiIqK5JCHsSVgvSeiB3IOhm4iIiIjIQBj2iIyFoZuIiIiIiIhojpi1LoCIiIiIiIhIKoZuIiIiIiIiojnC0E1EREREREQ0Rxi6iYiIiIiIiOYIQzcRERERERHRHGHoJiIiIiIiIpojDN1EREREREREc4Shm4iIiIiIiGiO/A8/R108Dj/1CgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap( \n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'fitness_function_mutation_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='fitness_function_mutation_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=15,\n", + " # How many sequences to include in matrix.\n", + " track_specific_sequences=['BADD']\n", + " # Specific sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wTZf4H8M+kJ9sbvUoVAemioGIB64meHvZe7uedeHqn3tk9y6mnnu3OjmLF3gALoDRReu+9LbC9piczvz/CZjOZSTLJZjfZ3c/79eLF5plnZp5kk8nOd77zfQRJkiQQERERERERERERUUroUj0AIiIiIiIiIiIiovaMQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiFDqgdATeNyubBhwwYAQFFREQwG/kqJiIiIiIiIks3n86GsrAwAMGTIEFgslhSPiIjaEkb0WrkNGzZgzJgxqR4GERERERERUbuxfPlyjB49OtXDIKI2hOUOiIiIiIiIiIiIiFKImbStXFFRUfDn5cuXo3PnzikcDREREREREVHbdPjw4eCdrKHn4kREycAgbSsXWoO2c+fO6NatWwpHQ0RERERERNT2cT4YIko2ljsgIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFDKkegBEzcVvPwDHttchGLNhG/B/0JmyUz0kIiIiIiIiIiIiBQZpqU0S3dWo+G48/Pb9AABv5VrknfpRikdFRERERERERESkxHIH1CbVrX0kGKAFANeejyG6KlI4IiIiIiIiIiIiInUM0lKb463eDMfW/4a1SnAfnpeS8RAREREREREREUXDIC21KZIkoXb5HYDkVyxzF//Y8gMiIiIiIiIiIiKKgUFaalPcB76F59Bc9WWHfoQkSS08IiIiIiIiIiIiougYpKU2Q/K5ULvirxGXi45DcO//pgVHREREREREREREFBuDtNRmOLa9Bn/dbnmjzih7WDX/IoheewuOioiIiIiIiIiIKDoGaalNkCQJ9u2vy9qMHcbB2vc6RV/75v+00KiIiIiIiIiIiIhiY5CW2gRv2TL4a7bK2rJGPIHMIfcq+to3/Bt+Z2lLDY2IiIiIiIiIiCgqBmmpTXDufEf2WJ/VF6aOp8CQ1Rv5E3+ULZN89ahf92hLDo+IiIiIiIiIiCgiBmmp1ZN8Djj3fCxrs/a9DoIgAADMXSfB2uda2XLHttfhq9neYmMkIiIiIiIiIiKKhEFaavVc+76C5K0NaRFg63uNrE/WiMcAnbmxQfKhdtU/IElSywySiIiIiIiIiIgoAgZpqdVz7HpP9tjUZSL0Gd1lbfqM7sgY9BdZm3v/V6hefDUkn6PZx0hERERERERERBQJg7TUqkmiD97SX2Rttr7XqfbNHHIvBHO+rM21+0OUfzcOvrq9zTRCIiIiIiIiIiKi6BikpVbNV71ZkQlr6nKmal+dORc5Y15SbqNyLcpnjYT70NxmGSMREREREREREVE0DNJSq+YtXy57rM/sDb2lKGJ/a58rkXfaVxCMWbJ2yV2Jyrlno37Dv1mnloiIiIiIiIiIWhSDtNSqecKCtMbCMTHXsfS8EIXnLYc+e4B8gSSibtXfUb3wUoje+mQOk4iIiIiIiIiIKCIGaalV85aFB2lHa1rPkDsQhecvh7nHhYplrr2foWL2WPidpckYIhERERERERERUVQM0lKrJfmc8FVvlLWZimJn0jbQmbKRd9oXyBz+OABBtsxXvQn1ax5MxjCJiIiIiIiIiIiiYpCWWi2/swSQ/LI2Q97QuLYhCDpkHX8/8s6cDcGUK1vmrd7U1CESERERERERERHFxCAttVqSL7xurKCYEEwrS7dzkD3qWfn2/c4ER0ZERERERERERKQdg7TUakneOtljwZABQUj8La0I8PoYpCUiIiIiIiIioubHIC21WuGZtIIxs0nbEwxW2WMxLAhMRERERERERETUHBikpVZL8oYFaQ1NDNLqw4K0joOoX/9Uk7ZJREREREREREQUC4O01GqJ3lrZ46Zn0toUbXWr74XfXtyk7RIREREREREREUXDIC21Wt7ylbLHemunJm1Pn3mMaruvZnOTtktERERERERERBQNg7TUanmOzJc9NnU8pUnb09s6IXP4Y4p20V3ZpO0SERERERERERFFwyAttUp+Zyl81ZtkbaZOE5q83azjH4Ahf7isTXRXNXm7REREREREREREkRhSPQBqfyRJgugohrdqI3xV62Du/jvVfoLODH3WMRAEQdbutx+AY8fb8r6GDBgLRyVlfHpbV/gq1zSO16PMpBVd5RBMuRB0yfkIie5KCHorBIM1dmciIiIiIiIiImpTGKSlFuU+/DOqfr4Qkrcu2Fa36h8R+xtyByN/0o/Q27pA8rlQOfcseEoWKfqZOoyHoDMmZYw6c77scWi5A9FTi+pFV8J9cBZ0Gd2Rf8YsGPOHNml/tSv+Bvum/0AwZiNvwqcwdz2rSdsjIiIiIiIiIqLWheUOqEXprJ1lAdpYfNUbUb3wCkiiH/YtL6kGaAHA1Pm0ZA0RgilP9tjvOAQAkPweVM2/GO6DswAAov0AqhZcAsnnSHhfvuqtsG/6T2D73lrUrX4g4W0REREREREREVHrxCAttShDdl9AiC+B21OyEPUbnoRr3xfqHQR9xJIJiTBk95Hv/9BcSKIX1UtugOfwPNkyf+0O1K15KOF92be8KHvsrViZ8LaIiIiIiIiIiKh1YpCWWpSgM8KQ0z/u9erXPgJv+XJFu87WBdljXoAxd1AyhgcAMHc7X/ZYdJejat7v4Nr9oWp/++bn4SldmtC+GrJ0iYiIiIiIiIio/WJNWmpxhpxB8FVvlrXlnvoxrL0vDT72lP6Kiu9PASR/oKHh/6MEYzY6XlYGQW9K/viyesOQdzx8VeuCbe5DP0ZeQRJRveR6FP1uDQSDJa59ic7DKpvzJq2+LhERERERERERpT9m0lKLM6hkveosRbLHpg4nIXPYIxG3Ye56TrMEaBtYel4UeaGgh6XnJbImf81W1Cy7DaK3Dt6KtcE6taKrAt7qLZAkKdjXV7Md7kNz4T40F76a7YrNSz5ncp4EERERERERERG1CsykpRZnyBmgaNOZCxVtmUPuhefQPHhKFiqWWXpc0Cxja9z+hahf+4jqspyT3oS1z9WomL1XVkPWuWManDumAQD0GT2RefwDqFn6Z0D0wNLzEuRO+BT16x6NuN0Gkt8JIDtJz4SIiIiIiIiIiNIdM2mpxekzj1G06cz5ijZBp0fuKR9ACF8m6GHuek5zDQ8AYMgbCn1mb0V75vBHYet3PQSdATnj3wEilCXw2/eh5tebAdEDAHDt+xze0l9Rv/5fMffdkIVLRERERERERETtA4O01OKMhSOhz+gRfKzP6gOdratqX31GN+SeNE3WZu7+O+jMec06RkEQYO1zjazN1v8WZA59IPjYmDdY9jgW1/4vg0HbaBikJSIiIiIiIiJqXxikpRYn6IzIPfVjmDqeDFPHU5B76scQBCFif0vPC5Fz8nswFoyEuceFyDnhvy0yzswhf4e1300w5A1B5tAHkD32f4pxZg69X/P2vOUr5Q06E3S2Lop+kp9BWiIiIiIiIiKi9oQ1aSklTB1ORME5izT3t/W5GrY+VzfjiJQEgxW5496M3kenR+4pM1C96PKY2/OULZM9tva5CrnjpuHIjAJI7spgOzNpiYiIiIiIiIjaF2bSEjWRpceFyrq5akS37KExfwQAQNDbZO2Sz5m0sRERERERERERUfpjkJaoiQSDBdZjrop7PWPByKPrhwVpWe6AiIiIiIiIiKhdYZCWKAls/W6MbwVBB2P+0MCP4UFaljsgIiIiIiIiImpXGKQlSgJj/lCYOp+hub/O1jUYnBV0JvlC0ZPMoRERERERERERUZpjkJYoSXJPfi9Y9kBnLozaV7ZcFzZ/n+hL9tCIiIiIiIiIiCiNMUhLlCR6WxfknvI+Ol8noePlZVH76iyNQVpBkAdpJdHbLOMjIiIiIiIiIqL0xCAtUQrIM2mN8oUSM2mJiIiIiIiIiNoTBmmJUkDy1gZ/ZiYtEREREREREVH7xiAtUTMRjFkRlxmLTmx8oJdPHCb57M01JCIiIiIiIiIiSkMM0hI1k+zRz0VcZu11SfBnfUZ32TJ/7c5mGxMREREREREREaUfQ+wuRJQIa7+bAAjwlq+Apfel8Nfvg7dsGSzHXAFDzoBgP0POsbL1fDVbWnikRERERERERESUSgzSEjUTQRBg638T0P+mxsZ+1yv6GXIGyh77arZCkiQIgtDcQyQiIiIiIiIiojTAcgdEKRYepJV8doiO4hSNhoiIiIiIiIiIWhqDtEQpprN1hWDIlLWx5AERERERERERUfvBIC1RigmCAH1Of1mbv35vagZDREREREREREQtjkFaojSgM2TJHkt+T4pGQkRERERERERELY1BWqJ0oAubw0/ypWYcRERERERERETU4hikJUoDgs4oeyyJ3hSNhIiIiIiIiIiIWhqDtETpQAjLpBUjZ9K6jyxE9ZKbYd/6GiRJauaBERERERERERFRczPE7kJEzS6s3IEkqtek9dXuQOWPpwOSCOeOtyB5qpE59B8tMUIiIiIiIiIiImomzKQlSgM6Y7bssWv/V5AkUdHPtfczIKS9bvW9EF0VzT4+IiIiIiIiIiJqPgzSEqUBc7dzZY99lWvh2velop+3Yo2izb75+WYbFxERERERERERNT8GaYnSgKXnJTDkDpK11a99GJLol7WJbmXWrH3LS8ymJSIiIiIiIiJqxRikJUoDgk6PzGGPyNp81Zvh2vOxrM1ft1uxruStYzYtEREREREREVErxiAtUZqw9LwYhrzjZW116/4JSfTBV7sLVfMvgd++T3Vd+5aXILorW2KYRERERERERESUZAzSEqUJQdAha/ijsjZ/7Q649n6OqgV/gGvfFxHXlbx1cGx7vbmHSEREREREREREzYBBWqI0Yu7+OxgLR8vaXAdnwVepnDAsnKd0SXMNi4iIiIiIiIiImhGDtERpRBAEWHtfIWvzli1V7WvIPU722F+/t7mGRUREREREREREzYhBWqI0E55J66/bpeiTe9oXyB77P3m/+j2QJKlZx0ZERERERERERMlnSPUAiEjOkD8MEHSAJEbsYyoco1gu+RwQXWXQWzs08wiJiIiIiIiIiCiZmElLlGZ0xgwYcgbF6CVAZ+sKCPLrLCx5QERERERERETU+jBIS5SGjIWjoncQBAg6PfSZPWTNaqURiIiIiIiIiIgovTFIS5SGTEUnRl0uGDIAAIasfrJ295H5zTYmIiIiIiIiIiJqHgzSEqUhyzGXR1yms3WFzpQDADB1mShb5j4wC1KUWrZERERERERERJR+GKQlSkM6YxZ01s6qy4z5xwd/tnT/nWyZ6DwMb8WqZh0bERERERERERElF4O0RGmqoaRBOEP+sMafc/pDnz1Atty9/1tIkqRYT5IkSJLITFsiIiIiIiIiojRjiN2FiFJC0Ks2G/OOlz229LgA9o3PBB/Xr38c9RueAiQfAECfdQyMRSfCc/gniM4jsnUzhz+KrOMfTPLAiYiIiIiIiIgoHsykJUpTgk79GkpouQMAsHS/QNnpaIAWAPx1u+Ha/aEiQAsA9WsegrdyXdMGSkRERERERERETcIgLVGa8lVvUrQJhgzos/rK2oxFJ0YsjaBF3ap/JLwuERERERERERE1HYO0RGkqtPZsA2PRiRB08jIIgk4PnaVDwvvxO0sSXpeIiIiIiIiIiJqu3QdpPR4P3nrrLZx11lno3LkzzGYzMjMzMWDAAFx//fX49ddfNW3n+++/x0UXXYRu3brBbDajW7duuOiii/D999838zOgtspUdKKyreN41b46c0HC+5E81QmvS0RERERERERETdeuJw7bt28fzjvvPGzaJL+t3OPxYPv27di+fTumT5+OqVOn4sUXX4QgCIptiKKIW265BdOmTZO1FxcXo7i4GF9//TVuuukmvP7669Dp2n1MnOIg+Z2KNlPHk1X7NiVIK7rKEl43Gkn0AaIP0BkV2b8Jbc/nBPQWxedQEn2AJELQmwI/QwIgBGv6Sn53YAwCP39ERERERERElJ7abdTC6/XKArRDhw7F9OnT8dtvv2HOnDl46KGHkJERqPP58ssv4+mnn1bdzv333x8M0A4fPhwzZszA8uXLMWPGDAwfPhwA8NZbb+GBBx5ogWdFbYm3fKWizVh4gmpfwdKETFpfPSrnnpPw+mpcB2biyHtGHPnAiiPvGeCtWNOk7dUsvQ1HPshA6ec9ZduqW/sojrxvRunnPVH58+8D+3zPhCPvGeEunoPqJTfhyPsWlH3RF96qDU19WkREREREREREzUKQJElK9SBS4fPPP8cf/vAHAMCJJ56IxYsXQ6+XZ/utWrUKJ554IrxeL3Jzc1FWVgaDoTH5ePv27TjuuOPg8/kwatQoLFq0CFarNbjc4XDg1FNPxcqVK2EwGLBlyxb07Suf9KmpDh48iO7duwMADhw4gG7duiV1+5Q65bPGwlu+TNbW+Tr1j2vNstvh2PJyk/ZXdPEeGLJ6NWkbACBJEo68K7/+Y+wwDoXn/pLQ9jwli1Hx/SnBx+buk5F/xtfwOw6h9NOumrdj6XkJ8k77LKExEBERERER8fybiJpTu82kDa01e++99yoCtAAwcuRInH/++QCA6upqbNmyRbb8hRdegM/nAxDItg0N0AKAzWbDyy8HAmc+nw/PP/98Up8DtW22/jfKHmce/3DEvsa8IU3en2Pba03eBhDIzA3nLV2S8PZqfv2j7LH7wDeBbZYtU+sekWvf5wmPgYiIiIiIiIioObXbIK3H4wn+fMwxx0Ts16dPH9V1JEnCN98EgkUDBw7E2LFjVdcfO3YsBgwYAAD45ptv0E4TlykBlt6Xw9zjIkBngrnLWcg47q8R+1qPuTLQtykkb9PWP0p0lqhvXvQntD1fzRbVdsGQkdD2iIiIiIiIiIjSTbsN0jYETgFg9+7dEfvt2rULACAIAvr16xds37NnDw4dOgQAOPXUU6Puq2F5cXEx9u7dm+iQqZ3RGTORf/qX6HS1C/mTfoDOlB2xr2CwBfpe5YRgyExof5JXmQGbiEhBWtGl3h5NtIsakhR/0FcSkxOIJiIiIiIiIiJKpnYbpL388suRnR0Iej399NPw+5UBnzVr1mD27NkAgCuuuCLYHwA2b94c/HngwIFR9xW6PLxkAlEsgiBo72uwQJ8VOTM8Gl/dbnjKlsFTuhSe0qXwO0vhtx+A6K6MuI7fXqxY7o8QjPU7DsFbsVbTBF6SzwV//X7463YqlgkGW+CHBAKu3sq1UZ8PEREREREREVEqGGJ3aZsKCwvx/vvv4/LLL8eSJUswevRo3HHHHejfvz/q6+uxZMkSPPfcc/B4PBgxYgSee+452foHDx4M/hyrWHhDYXEgUFw8HqH7UXP48OG4tkdtnz6zF3xV6+Nez3N4Hipmz1Mu0JmRe/J7sPaeImsOTlamtwaW97oEACA6S1W3XzFrdOMmLR3Q8TL1YK63ahMq554F0VGsulyX0QNAYlmxFbPGQDBkIvfUGbB0Pz/u9YmIiIiIiIiImkO7DdICwAUXXIBVq1bhueeew7Rp03DttdfKlnfs2BGPPfYYbr75ZthsNtmyurq64M+ZmdFvL8/IaKydWV8f3y3loQFeIi30mb2Su0HRjbo1D8qCtL7anYEALQD4nahf+3AwSOuv2xF7k65SeCtWw1gwQrGsfsOTEQO0AABJPLqRxEoXSL561K99hEFaIiIiIiIiIkob7bbcARCYCOy9996LOKFXSUkJPvjgA8ybp8wudLlcwZ9NJlPU/ZjN5uDPTqezCSMmis3U4aSkb9Nfu132GXHu+Vi23FcdKP8hiX7FskjsDUHeMK4Y60tHyxVIfoem/ajxVqziJH5ERERERERElDbabZDWbrfjzDPPxJNPPonKykrcc8892LJlC9xuN2pqajBnzhyMHz8eK1euxIUXXoj//Oc/svUtFkvwZ4/HE3Vfbrc7+LPVao1rnAcOHIj6b/ny5XFtj9o+S8+LYTv2L9BZioJtgiETOmtnWPvfDHO3cxPbsL/xAoPkUwZIJUmE+9AciI5DmjYnOo8otyH6gRgTgonuckh+DySfXdN+IpG8tU1an4iIiIiIiIgoWdptuYNHHnkEixcvBgBFqQOTyYSJEyfitNNOw6RJkzB//nzcfffdOOOMM3D88ccDALKysoL9Y5UwsNsbg0mxSiOEi1XvliicoDMg54QXkHPCC1H7Vcw5C55DczRvV/TUQt8waZdfJSPc74Jz5zuat+d3KOsp++37tY3FeQSSN77SIWrb0JlymrQNIiIiIiIiIqJkaJeZtJIk4e233wYA9O/fX1GLtoHBYMBjjz0GABBFEdOnTw8uCw2exprcK3SyMNaYpXQh6Ixx9Xcf+hGS6AMAiCpZrH5HMVz7v9G8PV/VOjh2fQBf7U5IkgS/vRjOHW9rWtdbsRrOPTM070tN7cq7IfndsTsSERERERERETWzdplJW1JSgsrKQF3L4cOHR+07cuTI4M9bt24N/jxo0CDVdjWhy4899ti4xkrUbHTRaymHq/nlOrgPzETeaZ+rljtw7HgbEENKf+hMyBn7P9T8enPkbS6+GgBg6jIRnpLFgN8VsW+oqvkXxTV2Ne4DM3HkfQs6Xe2CoDfHXoGIiIiIiIiIqJm0y0xag6ExNu3z+aL29XobZ5APXa93797o0qULAGDhwoVRt7Fo0SIAQNeuXdGrV694h0vULIQIQVp9Vt+I67j2fQFf3R7VerDOne/KHlt6XAjrMVdoGovn0FzNAdpkq1/3WEr2S0RERERERETUoF0GafPz85GdnQ0A+O2336IGakMDsL179w7+LAgCJk+eDCCQKbt06VLV9ZcuXRrMpJ08eTIEQWjy+ImSIVK5g6zh0YOWovMw/HW7VdtDWXtfDsFgg63/LYkPsgXUr38i1UMgIiIiIiIionauXQZpdTodzjvvPADAoUOH8MQT6kGaqqoq/P3vfw8+Pv/882XL77jjDuj1egDA1KlT4XTKJ1NyOp2YOnUqgEAW7h133JGsp0DUdHr1TFpTx/HIGT894mqipxa+mm0xN2/qeDIAIGv0c7ANuBUQ4j/cWPtcDUvvy2P201k7R80AJiIiIiIiIiJKZ+0ySAsADz30EGy2wEz1jzzyCC644AJ88cUXWLNmDX777Tc8//zzGDZsGDZv3gwAOOOMMzBp0iTZNvr374+7774bALBy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eCz5AoOkFQz6QVTDmw9b0W1j7qE+r5qjcCYvQJtwy5g6CzFAAAdMZM5Jz4Cjpf60fn6yR0usYbdd1Q+sxeyDv1I2SNfCpin/xJc9Dx0kPocPEOFP1+u+ZtExERERERERGli3Y5cRgADBw4EN988w0uv/xylJeXY+bMmZg5c6Zq39NPPx2fffaZ6rInnngCpaWlePvtt7FmzRpcdtllij433ngjHn/88aSOn6jJ1DJpBR0EQyYAQJfRVXU1d/GPMTdt7DAu4jJBp/2wI+itgbHYukTsozMXhT7SvO1QkiRCSCDTl4iIiIiIiIgoGdp1VOLMM8/E1q1b8fTTT2PChAkoKiqC0WiE1WpF7969MWXKFHz99deYN28e8vLyVLeh0+kwbdo0zJ49G5MnT0aXLl1gMpnQpUsXTJ48Gd999x3eeust6HTt+qWmNKQ2cZhgzAnWTdZb1QOjnsPzYm7b1GF80wbXMJ6jQdpIYwEAnaWwyfsRHcVN3gYRERERERERUaLabSZtg4KCAtxzzz245557mrSdc889F+eee26SRkXUAlQmDtOZcoI/623qmbRamDomKUhrCJQkiZ5JWxDyILFDmq92F/QZ3RNal4iIiIiIiIioqZjeSdReqdzeLxgbg7SRyh1ooc/sHXW5beBtsTci6GA8OvmYPkKQVp/RE4LBGvK4B/TZjbWfjUUnIufk9+TrZPVRbEd0V8QeDxERERERERFRM2n3mbRE1EiWSRulxEA0lp6/D5ZMiCR71L8hmLLhr98LS48L4S39FaKnBpLfCdFVDsGYBVv/m2DMPRYAIBizAb0V8Dtl2zEdDeI2EAQB+RPnoH79ExB0RmQOvRc6WzdI3jp4jiyCpcdkmLtfgJIPM2XrSZ6qhJ4rEREREREREVEyMEhLREFCSJBWZ+2Y0Db02QNi78dgRfaIJ4KPrb3+EL2/IEBv6wJ/3S5Zu1GlrIIhqxdyx70pa8sY+CdkDPxT8LGpyyR4Ds0JPhY91THHTERERERERETUXBikJaIgXUi5AyHB+q6C3pys4ciJPkVTeCatVjpTrnzTUTJpJZ8Djp3vQTBYYT3myoRfFyIiIiIiIiKiSBhtIKKg0EzaRPlqtydhJEp++z5FmyFnYELb0pnyZI8ld+QgbeXcs+EpWQwA8Byej9yTpye0TyIiIiIiIiKiSDhxGFE7JUBZN1YwZssfh2WcamHqoCxBkAy2Af8ne6yzdYOgMvmZFoJZHqSNVO7AW7UhGKAFAOeudyGJ3oT2SUREREREREQUCYO0RO2UYMhQtoWVKsg58TV5B71V9tBYMApZo/8TstwCS/fzkzbGUNY+V8vHNvZ/CW8r/LlLPodqP1/NVkWb5LUnvF8iIiIiIiIiIjUsd0DUTgnGLJVG+SHB0msKcgUDvOXLYOl+AQy5g2Df9B/YNz8PW/9bkHn8QxCM2dCZ8uCr2Qxr78ugz+jeLOM1dTgJ+ZPmwn3wO5g6nQpz998lvC3BYJM9lvxO1X6S361s89UD5tyE901EREREREREFI5BWqJ2Si1IGz4pliAIsPa6GNZeFwfbskY8jqwRj8v62fpd1yxjDGfucibMXc5s8naEsIzgSJm0UA3SMpOWiIiIiIiIiJKLQVqidkpLJm1bFZ5Ji6OZtL7qrXDseAv6jO6w9PoDapf/RbGu5K1viSESERERERERUTvSPiIyRKSg05BJ21YpMmn9TojualT8cApEVxkAoHb5Harrij4GaYmIiIiIiIgouThxGFE7JXrrlI06U8sPJAUEg7LcQf2Gp4IB2mhEd0VzDYuIiIiIiIiI2ikGaYnaK9GnaDJ3Pj0FA2l5gj5s4jCfE86db2ta11+3qzmGRERERERERETtWPu4t5mIlARB0aTP6JGCgbQ8RSat3wFJLbNYhb92Z3MMiYiIiIiIiIjaMWbSErVbKh9/oX0cEhSZtBoDtADgq2OQloiIiIiIiIiSq31EZIhISSWTFlBra3vCM2njwUxaIiIiIiIiIko2BmmJ2ilBNZO2vQRpbbE7ReC3H4DkcyVxNERERERERETU3jFIS9ROGfIGKxsFfcsPJAUEQ1YT1pbgdxxM2liIiIiIiIiIiBikJWqnDNl9Ye5xUfBxxuC7IbSTmrQ6cy50lqKE1xdd5UkcDRERERERERG1d4ZUD4CIUidvwmdwF/8AwWCDqdOEVA+nRRlyB8NzZH5C64puBmmJiIiIiIiIKHkYpCVqxwSdHpbu56V6GClhyBuSeJDWVZbk0RARERERERFRe9Y+7m0mIgpjVKvJq0ZnhLHDOFlTzZIbILqrkz8oIiIiIiIiImqXGKQlonZJnz1AUz9T0UnQZ/ZUtNevfyzZQyIiIiIiIiKidopBWiJql4z5wzT1M3edBJ25QNFu3/SfJI+IiIiIiIiIiNorBmmJqF3SmbKROfSBqH30WcfAduxUCMasFhoVEREREREREbVHnDiMiNqtrBGPwdJ7Cvz2A9AZc2AsOgHeitXwlCyEsWAkTB1PhqAzQmdQD9KKnlroTNktPGoiIiIiIiIiamsYpCWids2YNwTGvCHBx6aiMTAVjZH1EYyZquv67QegMx3XrOMjIiIiIiIioraP5Q6IiGKQRI9qe/26f7bwSIiIiIiIiIioLWKQlogoBslbp9ru2vsZ/I4jLTwaIiIiIiIiImprGKQlIorB0n1yxGWufZ+14EiIiIiIiIiIqC1ikJaIKAZD/vGwHHOl+kJJatnBEBEREREREVGbwyAtEVEMgiAg9+T3AUE516LO0iEFIyIiIiIiIiKitoRBWiIiDQRBAARBZQkzaYmIiIiIiIioaRikJSLSSvQqmiSVNiIiIiIiIiKieDBIS0TUFAzSEhEREREREVETMUhLRKRR1ognFW2S6EnBSIiIiIiIiIioLWGQlohII2v/G5WNzKQlIiIiIiIioiZikJaISCO9pQjmLmfJ2liTloiIiIiIiIiaikFaIqJ46Izyxyx3QERERERERERNxCAtEVE8woK0zKQlIiIiIiIioqZikJaIKA6CziRvYCYtERERERERETURg7RERHEQDFbZY8nnSNFIiIiIiIiIiKitYJCWiCgOgjFL9lj01qVoJERERERERETUVjBIS0QUh/AgrcQgLRERERERERE1kSHVAyAiak10hrAgrU8ZpBW9dfAcWQRBZ4TO1gWCzgS/fR/0mb1gyO7XUkMlIiIiIiIiolaCQVoiojjEyqT11e1G2Rd9Iq6fOewRZA17uFnGRkREREREREStE8sdEBHFIVZNWvvmF6KuX7/+CU42RkREREREREQyDNISEcVBFyOT1rHl5egbEL3w1e5M9rCIiIiIiIiIqBVjkJaIKA7JmDjMV7sjWcMhIiIiIiIiojaAQVoiojjEKneghZ9BWiIiIiIiIiIKwSAtEVEcwoO08DvhKVkC0VUB14HZmrbhq90OAJBEL9yH5sJbtSHZwyQiIiIiIiKiVsSQ6gEQEbUm4TVpAaDi+/FxbcNXuwOSJKHih9PgLV0CQEDOSW/C1v/GJI2SiIiIiIiIiFoTZtISEcVBMCiDtPHy1+6Au/j7owFaAJBQ8+tNTd4uEREREREREbVODNISEcVBMGY2eRuiqwSuPR8nYTRERERERERE1BYwSEtEFAdBF3+VGEPeUEWbt2pjMoZDRERERERERG0Aa9ISETWjTtf4IOj0KP38GPjr9wTbfdUM0hIRERERERFRADNpiYiakaDTAwD02f3kC0Svoq/oroRj+1twH1nUEkMjIiIiIiIiojTBTFoiohZgyO4Hz6E5UfuUfTMEouMQACBn3DTY+t3QEkMjIiIiIiIiohRjJi0RUQswhGfSqmgI0AJA3er7m3M4RERERERERJRGGKQlIopT1ujn4l5Hn9krrv6i80jc+yAiIiIiIiKi1olBWiKiOGUMugNZI/4V1zp6W7dmGg0RERERERERtXYM0hIRxUkQdMgcei86XaOc/CsSna1rM46IiIiIiIiIiFozBmmJiBIk6LTPvaizdoh7+/Ub/g3RXRX3ekRERERERETUujBIS0TUAgQh/sNt3aq/o+LH0yFJUjOMiIiIiIiIiIjSBYO0REQtRDBkxr2Or3It/PV7mmE0RERERERERJQuGKQlImoC27FTgz8L5nxAbwk+zh7zgqxv9ujnEtqH5KlNaD0iIiIiIiIiah20F1QkIiKF7NHPw5g3FKKrFNZ+N0LyOeHc/QEMOQNg6XmJrK+1/83QWYpQt+4x6K0d4S7+QdtO4qh9S0REREREREStD8/8iYiaQNDpYet/k6wt6/gH1PsKAiw9L4Kl50UAAOfez1G94A+xdyKJTR4nEREREREREaUvljsgIkoRvbWTto4hQVrJ70H9xmdQ89ut8FasbqaREREREREREVFLYiYtEVGK6LQGadEYpK1b90/Y1/8LAODY8Q46TjkInaWwGUZHRERERERERC2FQVoiohTRWTsDgh6Q/FH7SSGZtA0BWgCA6IZj5zvIHHx3cw2RiIiIiIiSSJIk2O121NbWwuVywe+Pfi5AROlDp9PBZDIhIyMDmZmZMJlMSd0+g7RERCmiM2bAesxVcO5692iDGZC8yhq0UWrS+mp3NOMIiYiIiIgoWURRxP79++F0OlM9FCJKkMfjQX19PUpKSlBUVISCggIIgpCUbTNIS0SUQjnjpsHc/XeA6IWl18XwVa5H+axR8k5Hg7Si165YX2/p0BLDJCIiIiKiJpAkSRGgFQQBer0+haMionj4/X5IkhR8XFZWBo/Hgy5duiRl+wzSEhGlkKDTw9rr4uBjY+FICMZsSN7akF5Hg7TOw4r1dZai5h4iERERERE1kd1uDwZo9Xo9OnXqhMzMTOh0nM+dqLWQJAlutxu1tbWoqKgAANTU1KCgoABms7nJ22eQlogo3QjyP9Qq556LrGGPwFAwXKUvr7xHs7nCg38urQYAdMnQ48Gxuci38DUjIiJKd4ftPnyyzQ5BAC7tn4FOGTx1pdattrYxCaNTp07Izs5O4WiIKBGCIMBiscBisUCv16O0tBQAUFVVhU6dtE4MHhkv2RARpZuwIK3krUHtijvh2PqKomt96ERiJOPwisEALQAcsvvxwurayCsQERFRWpAkCc+urMFvh9349ZAbz6ysSfWQiJrM5XIBCAR5MjMzUzwaImqq3Nzc4M8OhyMp22SQlogozQg69dskXHs/VbTpbcmpfdMW7avzKdq2VXllNYSIiIgo/Ry2+3GwvnHG+4P1fpQ7/VHWIEp/fn/gPazX61nigKgN0Ov1wZrSDZ/vpuKRgYgozeizemvuK7ormnEkrZtfVG/3RmgnIiKi9ODwKS+o+kReZCUiovQiCEJSt8cgLRFRmjFk9dXc1+8ohiQx6qgm0qviVDnxIyIiovTBgCwREbVHDNISEaUZfXY/7Z1FL0RnSfMNphUTI5Q1cPoY1CYiIkpnal/V/PomIqK2jlNkEhGlGUM8QVoApZ8G6tIaC0Yic+j9sPS8qDmGlVRev4R3NtdhfZkHZU4RGUYBOSYdJvW04pzeNnj8Eu5fUon9dYHaPv8+OR89s2N/Ze2t8eLdzfXwS8DgAqNqHxczaYmIiNLW/ANOvLa+TtHO7FoiImrrmElLRJRm4il3EMpbsQpVC6ZAdFcmeUTJ98NeJ37a70KZM5AWY/dKOGT3Y/rmeuyp8WLOPmcwQAsA9yyO/ZwkScJLa2uxudKLbVVefLFTfYZNp58neUREROmouN6H11UCtABryhMRUdvHIC0RUZqJZ+IwBckHx/Y3kzeYZvLTAWfEZTurfXh/S72i3R8jg6bGLaK4Pvasmm4GaYmIiNLSh1vqEelb2hehjBEREVFbwSAtEVGaEUy5TVpf9NQkZyDN6Ig9cjC1zqOeKhOrSoHWKgZ+ZuIQERGlpe3V3ojLmElLlBwejwczZszANddcg4EDB6KgoABGoxGFhYUYOXIkbr31VsybNw+iyA8dUUtjkJaIKM0IQtMOzU1dvyVEi6fWRTgLS1YtOta0IyIiSk91nsjf0bHuqCGi2L788ksMGDAAV1xxBd5//31s27YNlZWV8Pl8qKiowOrVq/Haa69h4sSJOPbYYzF79uxUD7ld6tWrFwRBwHXXXZfqoaSlBQsWQBAECIKABQsWpHo4ScWJw4iIWimduRCiu1xlidDiY0mmiJm0R5ulo7c7CoL8eWo9d/NLgW2Er09ERKkV6fhOBDT+HUBEiXnsscfw0EMPBR9PnDgRF1xwAQYNGoTc3FxUVlZi27ZtmDlzJubOnYvt27fj/vvvx3nnnZfCURO1LwzSEhG1UrqM7upB2laQSRvN4mK3artXlDD/gBMzttkhihIu7JuB84+xAQC+3WXHh1vtmrb/4ppavLgG6JGlx2Mn5cFiaN2vFxFRa+f2S3h1XS1WlLhh1Quy4zu1H44Y9Qy8zKQlStg777wTDNB26NABn376KU499VRFvzPPPBN//vOfsXHjRtx5550oKytr6aEStWs8MyUiSkd6S+wuGT3UF7TyIG0kmyo8eGNDHWrcIuq8Et7fUo9Shx+VLr/mAG2o/XV+/HTA1QwjJSKieMw/4MRvh93wiQge38scsSeCpLblUJR69QDLFRElqri4GLfddhsAICMjAwsXLlQN0IYaPHgwfvzxR9x1110tMUQiOqptnskTEbVyGQNujdnHmD9UfYHU+k9srQblra77an2KkgYH63zYWhl5kpFYVh5Rz9olIqKWs7/Op2g7WK9so7atyhUrk7aFBkLUxjz//PNwOBwAgEcffRQDBw7UtJ5Op8NVV12luuyXX37B1VdfjV69esFisSA3NxfDhw/HAw88EDX7NryWqCRJmDZtGsaPH4+CggJkZ2djzJgxeP/992XreTwevPbaaxg7dizy8/ORlZWFcePG4dNPP424r7179wb3NX36dADAZ599hjPPPBMdOnSA1WrFwIEDce+996K6ujrqa7Fx40Y8/vjjOOuss9CtWzeYzWZkZmaiX79+uPbaa7F06dKo6z/yyCPBsQBATU0NHnvsMQwfPhy5ubnBMU6YMAGCIGDfvn0AgHfffTe4XsO/CRMmRH2OX375JSZNmoQOHTogIyMDxx9/PF5++WV4vY3nTJIk4aOPPsKECRPQoUMH2Gw2jBgxAq+99lqw9FA0NTU1ePLJJzFu3DgUFRXBZDKhc+fO+N3vfofPP/886jYaxvvII48AAFasWIHLL788+Lp27doVV199NbZs2aJYt+H5nnbaacG20047TfEaNbwWrRHLHRARpSHbsbfDdeBb+Ot2Rexj6T4Z9eseU7RL/vQOPIoavvg72PTYVys/QXd4leu5RQkuX+KZNfUq2yQiopblVDmOu/w8Prc3kWrSN/DwPUEUN0mS8O677wIIZNHefPPNTdqeKIq4/fbb8b///U/W7na7sXbtWqxduxb//e9/8dlnn2HixIlRt+X1ejF58mTMnDlT1r5ixQpcc801WLlyJV588UVUVVXhwgsvxKJFi2T9fv31V/z666/YuXMn7rvvvphjv/HGG/H222/L2rZt24annnoK7733Hn766SfVAPaCBQtkQcEGHo8HO3fuxM6dO/Hee+/hH//4B5588smY49ixYwcmTZqEvXv3xuwbrz/96U949dVXZW3r16/H7bffjgULFuDTTz+Fz+fDVVddhc8//1zWb82aNbj11luxevVqvPHGGxH38dNPP+HSSy9FRUWFrP3IkSOYNWsWZs2ahXPPPReffPIJMjMzo473lVdewV/+8hf4fI3nfYcOHcIHH3yAL7/8Et9//z1OOeUUrU+/TWAmLRFRGjJk9ULR77dH7SMYMmDueraiPd2DtH4NmTBelRMxu8pJvMcvoa4JqTU84SMiSj21i21NuQBHrVOs73PWpCWK36ZNm1BeHpjD4uSTT0ZWVlaTtvePf/wjGKDt3bs3XnvtNSxfvhzz58/HnXfeCaPRiJqaGpx//vlYt25d1G09+OCDmDlzJq688krMnj0bq1atwowZMzBgwAAAwEsvvYR58+bhuuuuw6+//opbb70Vc+bMwapVqzBt2jR06dIFAPDQQw9h06ZNUff1yiuv4O2338aYMWMwY8YMrFy5Et999x2mTJkCIBAYPOuss1BXV6dY1+fzISMjA1OmTMFrr72GBQsWYPXq1fjhhx/w3HPPoWfPngCAp556Cu+8807M1/CSSy5BcXExpk6dirlz52LlypXB5/3OO+9gw4YNwec2efJkbNiwQfYv0j5ee+01vPrqqzj33HPx5ZdfYtWqVfj6669xwgknAAhk2L7zzju4++678fnnn+OKK67ArFmzsGrVKnz88cfBAPWbb76JH374QXUfS5YswTnnnIOKigp07NgRjz/+OGbOnIlVq1Zh5syZwczr7777Dtdee23U1+HHH3/E1KlTcdxxx+Htt9/GihUrsGjRItx5553Q6XRwOBy4+uqr4fF4gut07doVGzZskAXb3377bcVrdOGFF8b8PaQrZtISEaUpIVZtWUEA1LJSxTQP0mrIpC11Kks2qGXYuHxSzNsjo2GmFlHb4fVLMOgQvJWQWo5PlKAXEn/tHQzSEoB6T/TfOd8T6UWUJNi9EjKNAo+7aSw0UDpy5MgmbWvDhg147rnnAARq1i5evBi5ubnB5RMmTMCkSZNw3nnnwePx4JZbbsGyZcsibm/ZsmV44YUX8Je//CXYNmLECEyYMAH9+/dHXV0drrjiCpSXl+PLL7+UBd5GjBiBUaNGYfjw4fD7/XjjjTfw4osvRtzXihUrcO655+Kbb76BwdAYBjvnnHMwePBgPPTQQ9i/fz8ee+wx/Pvf/5atO2zYMBw8eFD2XBucddZZuO2223D++edj7ty5+Oc//4lrrrkGer0+4lg2btyI77//HpMmTQq2hf9ujEYjACA3NxeDBw+OuK1Qy5Ytwx133IHnn38+2DZixAhMnDgRgwYNwr59+/CPf/wDlZWVqq/7qaeeGnzdX331VZx9tjwZyOv14qqrroLX68XZZ5+NL774AjabTbaN888/H6eccgpuueUWfPnll5g7d27EjOqlS5fi3HPPxVdffQWTyRRsP/nkk1FQUIAHHngA+/fvx+zZs3HRRRcFX5fBgwcHLzwAgYsFWl+j1oCZtERErZUkQYIyQJnumbRaTrJ8KnHXLSq1Z9/eVI/v9zoTHku1W8Qh1j0katVEScILq2tw1Q9l+NuiShyx8zPdUvyihJfW1ODK78twV4KvvcMrqtYWn7c/8WM7tU71MTJpv9jpwH/X1sDPjNqU21XtxeXfleGmueW47Lsy7K1JfH4Aal6ht6R36NChSdt69dVXIYqBz+lbb72lGrQ8++yzccMNNwAAli9fjhUrVkTc3gknnCALFDbo1KlTMChXVlaGKVOmqGZGDh06FOPHjwcALF68OOrYzWYz3nzzTVmAtsH9998fDPJNmzZNlrkJAIWFharPtYHJZMIzzzwDANi3bx/Wrl0bdSzXXXedLECbLN27d1cEmAHAZrMFs1orKio0ve5qr+fHH3+MvXv3wmKx4L333pMFaEPdfPPNGDNmDABErQ1rsVjwzjvvyAK0DW6//fZge6zfbVvDIC0RUSsl+uog6JRfapLflYLRaLe8JL2CyN/ucqR6CETUBKtKPPjtcOC4Ulzvx8zd/Ey3lPXlHiw5FHjtD9b7MWt3/IHVBQfVv7MO1vtVS99Q21UXI5MWABYXu7G5CROGUnLct6RK9vjx5dWpGQjFFHr7fkZGRpO2NW/ePADAcccdF7yFXk1o3duGddRcdtllEZcdf/zxcfXbvXt3xD4AMGnSpGAJgXA6nS4YxKysrMTq1aujbsvtdmP//v3YvHkzNm7ciI0bN8omyopV5uHKK6+MujxRv//974MZuOFCX89LL7004jYa+lVVVSkmU/v2228BAKeeeiqKioqijqWhjuxvv/0Wsc/EiRMjXjjIyspCv379AMT+3bY1DNISEaWxzKH3q7YLhkwYc4fA3PUc5ULRo2xLI/Y0m6xrfoQAARG1DtM2yuvHzdvPz3RLeTvstZ+bQPZrmUp5mwb76pgV3Z64NQblF/J7O+1oCbBTaoTWoLXb7Qlvx+12Y8eOHQAQNUALAMOHDw8GCzdu3BixX//+/SMuC81c1dJPrZZsqNGjR0dd3pD5CQTKOoSz2+148skncfzxxyMjIwM9e/bEcccdhyFDhmDIkCEYPnx4sG/orfhqhg4dGnV5opL5egLK13TlypUAArVkBUGI+u/ZZ58FEJhMLBK1SdpC5efnq46jrWNNWiKiNGY7dio8pUvgKf0NOmMWIOggSX7kjHkRgsECa99rUbvsNtk6kpjeJ7U+3qZIRElU5U68LjU1jUqp8LhFK1PelJrj1Ppo/fvAFLnUIxGFKSgoCP5cUlKS8Haqqhqzp2OVTTAajSgoKMCRI0dQWVkZsV+k2+WBQHZrPP0ayjBEEmvMHTt2DP4cPua9e/fi9NNPx549e6Juo4HTGf2CZV5enqbtxCuZrycA+P3yi6ilpaVxjynaaxFtHKFjCR9HW8cg7VH79+/HtGnTMHv2bOzbtw91dXUoKipCr169cNppp2HKlClRixF///33eOONN7BixQqUlZWhqKgIo0ePxi233IJzzlHJdCMi0kBv7YiCs+dHXK4zZiJr5FOoW/WPxkYpvW8DDK83O66LGZlGHX7c1zz1B0/pasGfh2XD45dQ6vDjb4si/7FIRETaNfdFN7VJJKntCn8/je1sxtLDyhJJRVZGaVNJ1DABLKWP0NvcY93Gr1VrnCiuKWO++uqrsWfPHgiCgOuvvx6XXXYZjj32WBQVFcFkMkEQBIiiGJwsTIrxGYk2qVg6awiWnnPOOaq1byk5GKQF8PLLL+Pee+9VpP8fPHgQBw8exC+//ILa2lq88MILinVFUcQtt9yCadOmydqLi4tRXFyMr7/+GjfddBNef/112VUJIqKk0clrD7W2TFqDTkCXzOb7Y6XIGjj2mvQCOtiSv58at4jdNV4UWfXomqlvlX+4kjrJ54SvZisMOcdCMFhSPRyitKM2yaNW5U4/rAYBjiiTSZbYGaRtT8LnDevWjH8bUOIila2qcYvIMfN8N90cd9xxKCwsRHl5ORYvXoza2lpkZ2fHvZ3Q7M9YGbk+ny84YVnDLeupFmvMoctDx7x161b88ssvAID77rsPjz/+uOr60TKG24qCggIcOnQIHo8nagIjNU27P4o+/vjjuP3222G329G/f38888wzWLBgAdasWYN58+bhmWeewUknnRQxwHr//fcHA7TDhw/HjBkzsHz5csyYMSNYl+Stt97CAw880GLPiYjaF0EIu94mpXeQdluVPNPXoAO6ZDbfNcPskBMGk149gOqKEiSIZnGxC7fMK8dTK2rwt0WVuH1+BWedbiM85StQ8klnlM8cgZLPusJbsTbVQyIVnFgqdbx+CS6V1/+ghjqyr6yrxZ9/rsANc8qj1hctcTBI2554w74/O2Wo/23Aj31q1Uaoc/LHeeWYzYkb044gCMFJsex2O956662EtmM2m4MTOS1btixq3zVr1sDrDfy9ny7BvBUrVmheHjrmTZs2BX+ONuFWQ73WZEnHpI+G+NbKlSvh8aR2DpR0fH2SpV0HaX/66Sc8+OCDAIBrrrkGGzduxF133YVTTz0Vw4YNwxlnnIG77roLS5YswVNPPaVYf/v27cGCyKNGjcKSJUtw2WWXYfTo0bjsssvwyy+/YNSoUQCAZ555Bjt37my5J0dE7Ycu7CRGTO9yB3tr5SfwBkFAl4zmy5bRMhHJmlLl7ZRa/HdtrexxqVPEipLEtkXpxb7xGUjeGgCA5K5E/aZnUzwiUlPhUg/i8WJJ89tYoX6C9t3e6EGa3TVezRM/MUjbvoR/XZsjXFjl5zu16iIEaSUA722ph4dR9LRz5513But/PvTQQ9i6daum9URRxIcffhh8fOaZZwIIBC6XL18ecb3QQHDDOqk2Z84cHD58WHWZKIp49913AQQyhkeMGBFc5vM1nrdEm3jttddeS9JIAyyWwB1cbnf6nFdccMEFAICamhq88847KR1Lw+sDpNdrlAztNkgriiJuvfVWAIE6LdOmTQvOQKjGZDIp2l544YXgh/bll1+G1WqVLbfZbHj55ZcBBD7czz//fLKGT0QUJBgyZY9FT02KRqJNr2x5ULm43od8S/N9HTk1ZMmWJzA5TaTs2y92JD5zLqUP197P5I93fxihJ6VSpM93eEYeJV9FhONmWYzA6nd7tGfaMdjTvoR/bo064LTuylIzfFukVq0n+i+gjLWk007Xrl3x3//+F0Ag0Hjqqadi4cKFUdfZvHkzzj77bDzzzDPBtltvvTV4h/Ett9yC2tpaxXpz5swJ3mk8ZswYjB49OllPo0ncbjf++Mc/qk5C9dRTT2HDhg0AgBtuuAFmszm4rCF7GACmT5+uuu1XX30V33zzTVLH27lzZwDArl27krrdprj22mvRvXt3AMBdd92FRYsWRe3/yy+/xHyfJarh9QHS6zVKhnZbk3bOnDnYsWMHAODvf/87DIb4XgpJkoIfxIEDB2Ls2LGq/caOHYsBAwZg27Zt+Oabb/Df//63TadmE1HL05kLZI9Fd0WKRqKNcuIwC3SCAL3QTCdeGraZyC3TxfXqt/QmWjqBiOIXXsOygUcEWEW4eUXKZoxUr7JBtVv7RTHG2tuX8M+zXidgSv8MzD8gz7xu7gnrKLpI5Q4aREiAphS7/vrrcfDgQTz00EMoLS3FhAkTMGnSJEyePBnHHnsscnNzUVlZie3bt2P27Nn44Ycf4Pf7ZROPDRkyBH/729/wzDPPYN26dRgxYgT+/ve/Y/jw4bDb7Zg5cyZeeukl+P1+mEwmvP766yl8xnKjRo3CzJkzMW7cONx5553o168fSktL8e677+Ljjz8GAHTr1i14p3WD4cOHY/Dgwdi4cSNef/11VFVV4eqrr0bnzp1x8OBBfPDBB/j8888xbtw4LFmyJGnjPemkkzB//nysWLECTz31FM455xxkZGQAAKxWK7p27Zq0fWllNpvx6aefYsKECaivr8fpp5+Oyy67DBdeeCF69+4NURRx+PBhrFq1Cl999RU2bNiAl19+GaeeemrSx9KjRw9069YNBw8exLPPPotu3bphwIABwUnZOnbsiKysrKTvtyW02yDtZ58FMmQEQcD5558fbK+srERFRQUKCgqiFrnes2cPDh06BAAx33Snnnoqtm3bhuLiYuzduxe9e/dOwjMgIgpodUHasBlPzYbAX/NGnQB/M0RptYQDEsm6OxgpSMsUH6IWEynTkrVqm1+kScNiBWlr4gnSxjMgavXCg69GHZBv0eOMHhb8tN8V0q+lR0ahamN8hnVMSEpbDz74II477jj87W9/w969ezFnzhzMmTMnYv/jjjsO//73v2VtTz31FOx2O1555RXs2rULt9xyi2K9nJwcfPrppxg2bFiyn0LC/vznP2PhwoWYPn06LrvsMsXyzp0748cff0ROTo6sXRAEvP/++zj99NNRVVWFTz/9FJ9++qmsz5AhQ/DZZ5+hS5cuSRvvrbfeildffRWVlZW49957ce+99waXnXrqqViwYEHS9hWPsWPHYsGCBZgyZQoOHDiADz/8UFYSI1wik9Rpdd999+FPf/oT9uzZg8mTJ8uWvfPOO7juuuuabd/Nqd2WO1i6dCkAoFevXsjKysJHH32EIUOGoKCgAP3790dBQQEGDBiAZ599VrXGxebNm4M/Dxw4MOq+Qpdv2bIlSc+AiChAZ5EHaeF3QfKl78QNFU75H/dHY7QwaixLG++f/pKGWM2vh+KvZbSuTL0eY6zbACm9OLZPQ/WSGyG6ylM9FErAYbv6bbUbKzywR0qzbQXqPCJWlbjx2yEXZu52YFd1+tUaD7/g1uCIwx8x01GUJOyv034rtF+UsLrEjcUHXa369xnKW7UB3oo1qR5GWlIGaQPf+IawoB/LYCSuuN6HXdVeSFr+OIpgR4zjkb8J26bm9/vf/x7btm3Dhx9+iKuuugoDBgxAXl4eDAYD8vPzMWLECPzpT3/Czz//jA0bNmDSpEmy9XU6Hf73v/9h0aJFuPLKK9GjRw+YzWZkZ2dj2LBhuO+++7Bjxw7FeungnXfewUcffYQJEyagoKAAZrMZ/fv3xz333INNmzZh0KBBqusNGzYMa9euxf/93/+hZ8+eMBqNyM/Px5gxY/Dss89i+fLlstvvk6Fr165Yvnw5brzxRvTt21dWgzXVxo4dix07duC1117Deeedhy5dusBkMsFisaB79+6YNGkSnnjiCWzduhXXXHNNs43j1ltvxRdffIFJkyahQ4cOcd8dn64EqSlH6FZKFEUYjUaIoojRo0fjxBNPxEsvvRSx/0knnYTZs2cjNzc32Pbaa68Fa9p+9tlnuOSSSyKu//nnn+MPf/hDcL0//vGPmsd68ODBqMsPHz6MMWPGAAAOHDiAbt26ad42EbUNorsSJTPkgdr8sxfA3Cn5t5Y01c5qL+5fUiVru2dUDkZ2NOPmuWWaApxWg6CpzmyD3x1jw1XHNtbtvXR2qWq/IqsO/z29UNM2t1R68Mhv1RGXf3B2EYy83y/tHZ4u/x0VXrgJxtxBsG9+EbXL71D073xdu/uTKa2tLXPjyeWRa3AXWHT454l5KLI138SEzeFAnQ8P/1oFe9hxbnIfG64YmBlhrZb34pqaqBe4PjynCAZd42dMkiRc9l1Zk/b5v9MLUGhtXb/PUHWrH0T9+scBALZj/4KcE15I7YDSzBXflcrKHj09Pg+9cox4d3MdvtvjlPUNf39RbN/vceDdzfWQAJzc1YzbhuXEXCfcT/udeGNDXdQ+z52Sj25ZbSNYoubgwYPBupzxnn/v2LEDPp8PBoNBVuuUmkfoXcytObOS0luyP9ftMpO2pqYGohi4Gr9hwwa89NJL6Ny5Mz744ANUVlbC4XBg4cKFwTqzv/76K2644QbZNurqGr+cMjOj/8HcUDsEAOrr6+Maa/fu3aP+awjQElH7JZhyFW329U+2/EA0+HGvU9Fm0DX8r+1kq0tGfCfoWSZt2y1ziqjXmKn1+vroJyhbqtIv643kRK/yd1i94FIAUA3QUvoJD9qEq3CJmLMvep90NP+AUxGgBYBvdjkgplFuRawJwn47LA/grilVv/sgHvMPtL7fZwNJ9MK+uXESYceWF+Gr35fCEaUXUZIUdekNETJpAWDJIZeijaKbfjRACwCLi904FKFsUzSxArQAJ24kImqKdhmktdsbZ952uVyw2WyYP38+rrzySuTl5cFqteKUU07Bzz//HCyU/dVXX2HZsmWy9RqYTKao+wudHdDpbL1/XBJRehIE5aHcfejHFIwktkXFypMq69Eo7XEF0Y+lDW4fHrm2kUUvYFTHxu3oBWBiD6usz5T+GeGrBRVrvA030i3WDapcnNk43fmqN6u0bYQk8nfXWkQqORLq293pW/olkqoo9R49afT27BAjQ3lBWEBV7fgfzmqIflHt8x2t7/fZQPLaIfnssjb3wdkpGk36Uasz23BHSpVb+cZXu+hLkandPLuponkuKJc520ZpEiKiVGi79yFEEV7P46abbsKAAQMU/axWK5544ongxGKffPIJTjjhBMU2PJ7oJwmhNW2tVmuUnkoHDhyIujy03AERUWuUaQychF03KHBXws5qLw7b/cg0CqhXmYCmU4b6V9fgAiMu7peBrpkGWA31qHL5MblvBmxGeRD7/GNsWF/mwVaVbNdk1TxMp0AKqfPb96u2S/7IQSBJ9EHQtcs/nagFRau36fZLsMQIZLaUWIfL8GQ6LROG/WN0Dh6OUkrG3HorHajylq9M9RDShlod44a3+rguFiwulmdmu1mXNi5qL1dzZbwGMnTNMfsREZFSuzzTyMrKkj2OVtT6jDPOgMFggM/nw4oVK1S3EauEQWjmbqzSCOFYY5aIEiVJEoRWMMNupkkX/P+2YfIs2Uj1Y8P1yjbgwbF5wcfh2wll1gv487BsTJ1foVimtdxBLC6ePKY9f/1e1XbJa1dtDyyrhWDOb6YRUXMwtsJ7xqJd5EmnwFSsyZvCa4eXOaNfvZrYw4o+OcaofTJb4y80Cm/FqlQPIW2off02TByWZVK5YyiNPgutgVqmcnMFaWPdbURERJG1rb90NDKbzSgqKgo+bij8rcZisaCwMDCRTFlZ42QHocHTWJN7hWbDRtsXEVEyufbMSPUQNMlIQlZYvCcaGUb1fapl7oZy+UT8tD/2LZaceTr9+SPUgnRG+dyIbmVgn1JDa23WdMk61covSlhfHvkOrZY+tuys9mLhQScWHXRie9jdB7GOu3tqA/Uuy51+/LDXEfMWaItBgFEvwBJl0sUKl5hWdXnjoxy3r2q96m3o7ZHa+6mhZn22SpC2Oiwzu94rYskhF/bXxl9ntS3ZVe3Fb4dcqHaLmLvPiX/+VoWPt9WrXoRWuyC0rdKLZYdd8DbhWHOIQVoiooS1y0xaADjuuOOwYMECAIDfH/2LpGG5wdD4cg0aNCj489atW6OuH7r82GOPjXeoREQJqV50JfyOYmQOvjvVQwGgXg8NAPRJmJ1Z7TbJaCLVPfxpvxPn9rapLhMlCY/8Vh0MPETDDJ/0FylIW7firxHXqV54BQp/tyLicmo5N80t19SvztO6Pov/XlkTdXmZ099is6YvOODEq2GTJN5wXCbO6hU4RmoJ4qwqceO/a2vhUJkILVzl0VreWSYBLmfk/m9sqMP/DY18t0Rr47fvhyGzZ6qHkXJ1HmUQ0RDMpFV+Z4fGHO1eEX9bWIlqtwi9APxtZA5Gdmx/t9svLnbhf2trFZcDNld68dVOZSmf8L+dvtvjwLubA3eIHpNjwBPj8qBL4I6sw/b2HSin9NGrVy9eCKNWp11m0gLAKaecEvx59+7dEfvV1taivDxwItC1a9dge+/evdGlSxcAwMKFC6Pua9GiRcH1e/XqleiQiYjiZt/ycqqHEFRcH39mRfidrQUW9a+teGvARjrpiBZI2Ffr0xSgBQCXhoAEpZbo1hbkC+WtWAnJ13onLmorKl1+2GNkvbdG+2p9WBtjMrS9LZgl+OZG5Szub29qLPGlElNT+PfKGk0BWgDocTT4rHZre6hFB12t9EKY+pi9pb+18DjS0yyVSf4aMmmjZVcDwLe7HMHMWr8EzGyFEwYmw8fb6iO8y9SFZy83BGgBYHeNTzE5o0utZoKKOo8Ep8a+REQk126DtBdffHHw56+++ipiv6+++ip49eXkk08OtguCgMmTJwMIZMouXbpUdf2lS5cGM2knT57cKupDElHrY+4+WbVdtB9ImyvIarfandzVotKz0Z+Ol2dLRcqeijeTFgBO6qLMsukUZbbyeDLyWO4g/Qn66O+9SHx1e5I8EorXkThupTXHCO6kk721sWdajxWsSqZIMZaGcgPJPM4JAE7qEvhM5ke4GNfAL2mbhCzdSH6XarvnyPwWHkl6+uWQW9HWcEFVEASEv/MLrY3vk9l75EHZLZWxP0ttUXmMkiLhYh1NNoaVXilxaN8+Y7RERIlpt0HaoUOH4pxzzgEAzJgxAz/99JOiz5EjR/DAAw8AAEwmE66//nrZ8jvuuAN6feCEfurUqXA65XUKnU4npk6dCiBQKuGOO+5I9tMgIgIA5I6fHnGZ5KlquYFEofYH+81DspSNIU7sbMYtQ7Jwclczpg7LxtAik2o/TwJB2psHK/cdbSvR6i/2yZHffsyJw1oBKbGaef66XUkeCDWnGEmZaUXL9bR0SNKvPXrBqqmTDg0tNGFK/wyM72LG/SfkosPRi2Qdolwsa6B2a3y6i5SF7z78cwuPpHX628gc2ePQiemSNOdnuxOrlEH4nzKlDu3fm2lwqCIiapVa0Z+uyffCCy8gNzcXoiji/PPPx7333ovFixdj5cqVeOWVVzB69OjgpGCPPfaYrNwBAPTv3x933x2o9bhy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eyT5CI2g2dORfZY19RXSY6S1t4NOp8YRGIPLMuZpabIAg4o4cVtw3LwfgoWbfxljsAAJtRh5vCArXRgiTRssaOCZuRnJm06U/SGKQVTHmyx/66yCWSqGXE8+kytqJMWi3SYdKshtqx4XHS+0/IxT2jclTWUDe2sxkX98vA1OE5GFLYeAGug7V9BWn9dTvhr9/fwqNpfTqGBe8dXiktPg/pIpE7imKt0aQgLX81REQJabcThwGBIOvMmTNxySWXoKSkBE899RSeeuopWR9BEHD//ffjnnvuUd3GE088gdLSUrz99ttYs2YNLrvsMkWfG2+8EY8//nizPAciogaG7L6q7X5XKQwY2MKjkXP6RHy/R363gSGJlwkTPRcITyIREbjleGWJB26fBL0OGFxgwuBCU9Rs3fDbc1eVevDNLjsG5Zuwvy5QQ/LUbpbgJCiUBkRtJ5umjifDfeDb4GMfM2lTLp6T/0qXiPt+qcRtw7LRJbP1/9m7ucKLyX2adx+1HhFLitVvzQeAj7bW4/TuVsXFKJMOyDHFDrDGoi2TtvVFgCSvssZvA/eR+bD1vbYFR5NetAT/MsMmD5MQCNSGtzc30V0J5673obN0gKX3pRAEHdxHFsJbtgzmbudBZymCa/dH8JQuhj67P0xFY2HufkGzl7xLpE53rCD3nH1OTO5jQ+HRCyelTmbSEhE1t9b/12oTjR8/Hps2bcLLL7+Mr7/+Gnv27IHH40Hnzp0xYcIETJ06FcOHD4+4vk6nw7Rp03DxxRfjjTfewIoVK1BeXo7CwkKMHj0af/zjH4NlFYiImpM+Sz1IK7pKWngkSs+urMHGCnmNuERmDE628Djx/lofHlhSJbt18qudDvx1RHbU2ylzzMqI80db7QDswcerS924e1Ruk8ZLSSRpmIBJb4WxYIQsSOuvZyZtqpXFESgAgF01Pty5sBL/O70gGGxordaWebC+zBOx9EtT+UQJ/1hciQpX5APehnIvNpQra36a9IKsTmiiijQEaWtbYSZtxffjIy7zHP653QZpq1x+3LO4Mma/zPCZRAHUeUUsjHBBQZKkpAdGJb8H5bNPhL92OwAgo3INTB1PQdVPFwCQULf6XkCSvzftALLHvIiMQbcndSzh1Or+x/LzAReuGRS4oyjS/AX/WFyJF04rQKZRF2cmLcO0RESJaPdBWgAoKCjAI488gkceeSThbZx77rk499xzkzcoIqI46TO6q7aLrvhnsU+mGreoCNACQEkcf+yHsxoEWT26/nnGKL0jC09sjVRL9rfDbgyIsg8tkxOtLPGg1i0iWyWgSy1PEmMHafW2ztBnHSNr423JqTdja33sTiq+3GnHLUPUJx9MB1pDGj8dcDZbkHbJIVfUAG00Rp0AmyEwwZOW5xIpoNtBQ6A3kYBUOvOULE71EFLm8x122fd5JCa9AKNOXn/W7pXw3mb140GZU9SUlR0P174vggFaAHDueAeiswTBd7yk/r50bH+j2YO0iWTSZocU7Y50s1CdV8LaUg/Gd7UoJibLMAoR98sQLRFRYnimSETURgg6A6zHXKVcIKZ2luPmyHi6fVhjoEUAcPWxmQltx6aSmaPG7ZcinsCc1dMKjZtpc4GF1kzyRb71uIFgzIbOEFa3OMIM7dRyahK81f03ldnj00mWxlnOVpU03/PYWa0hwzwCoy5QJqxTRuzAWEebTlaHNpTFoENRWKA2/Bjb2g6lUozyKv76PSm/oJoqK0o8qu02g/LipyXsgqg7Sv335pjA07nnY9lj0V0O5673Yq7nq96U9LGES6Q+b+hdQNFervXlgd+RM2wG2Jwoxywm0hIRJYZBWiKiNiTnpDcUbZKW27qbkZYMmXiN6GjG30flYHIfGx44ITfhTNpMo7ZbISUpUK823LWDMnHNoEzNtWb1rEmbNkRPjbxBUN5cJBhsgN4sa5PE9A70tVeT+9jw5sRCjO5ojtjH30aiBs15GGnKPGsNx8Hbh8fOVn70pPyoJW+ePaUAw45mC98yJAvju8gnjmx1v0sNxw1P+coWGEj6iTTR5jWDlBdfTWFv0GiTdPoTmEgrFr9KTXLBXKBp3ea+/V9t6yM7RM+4Dw3sRpt4rPPRCy+OsL/not1F1Mo+oUREaYNBWiKiNkQwWGHuFlZ6RcNt3c3JESHlKUtjgDSSER3NuGJgJgZHyMbSIlNj5poE5QnW8CITzu1tg0EnaJ4EjV+66UGSJEjeWlmbPks5G5Ogt0EIC9LCzyBtOrpiYCayTTpM6Z8RsY878QorLUJrDCdQUKB5JCNIm6ehpEtujD4Wg4B7x+Tik/M64IweVsWFMF9ry6T1q2eLhvJWrGiBkaSfSIFWtUza8KBg1CBtkqOEkuiFr3ancoHGv7GiTRyXDOHHjyyjgAv7Rj4eAoA/5HMU7fWSpMD3ZvhF92jZyq3tOgoRUbpgTVoiorYmLCPQU7IQGHJPigajzLxoUJAGE/hoDRSvLfNgbZn8JDs0CUxrwOD7vQ5cMVB75i1F5vFL+H6vAw6vhLN7WZFn0f5+chf/qCgDYsg6Bv7abbI2wWCDoJNfBBBdpfBWbYQxb3DcY5YkEc4d78BXsxXmrmfBc2QBPCWLYcgbDEv3C2Duelbc2wQAX90eOLa9Cr21C2zH/hmCTp5Z7tr3NWpX/T1YS9HU+XRkjXwaelsX2Lf8F6KrDKKjGO7i72EbcCuyRj4JnSknobGkmtYLJpFIkoTfDruxu8aHMZ3MCWfpx0uUJPx8wKmpr8sv4YMt9TiuwIjhHcyQJAmLil04UOfHSV3MOCYn8TE3Jdu/4bXP0Fr/JYFtN9hd0/QyPu7DC1D542mAYED26OcgGDPhq9oAfdYx8Nfvg7FwDKy9pzRtH4fmwn3wO3gr18bs6z2aSStJIurX/wv1ax6Etc/VyB77KnTG6MG21sQvSvj5gAslDj8mdLNEDA5aVIK04Zm0/1ldq+jTuJ8mDVPBW7FGNSNa8tao9FYSXaUQDDY4tvwXzt0fQJ/ZE9Y+18BvPwh/3S5Y+90IY95xmraldpxSvIwaPsp7an341/JqXDEgI+qFk0+22zEw36go+xTpIjzATFoiokQxSEtE1MYIOvmh3X3wO/hqtsGQMyAl44lU7iDfkvq8UrXZorU6VN+YlhctmyfU7D1OePzATUOyYnemqF5fX4tfjtYYXXLIhZdOK4h6+3QDb+U6VM07R9EePkEYAAh6q6LcAQCUfzMEna71QxDie//YNz2HupX3HP352WC7p2QRHFtfQf5ZP8Hc+fS4tin5nKiYNQaiO1DP0le/GzknvBRc7jowC1XzL5Kt4zn8MypmjYZgyoPkqZItc2x7Fd6qDSg8t3VOZBTrAkisGd8XF7vwv3WBjLdZux149pR8dMtq/j+XZ+52YHVp7GzL0P4zdwP3jcnBEbsfb28KTJ70/V4HXji1AEUJTph0sC7xOy8MR19Xk16ASQcksxx5eIbvzmofaj2ibOKjePhqtgcCtAAg+VC7/C+q/STRA1sflVrvGnhKfkHlnEmROwgGIKQckbd8OSRJQv36J1G/5kEAgHPX+/DbD6Dg7PkJjSEdfbnTgc932AEAc/Y5Ivaz6JW/2/AgbTTJLonhKV3SpPVFVynsW16CY8vLAABvxSq49n0ZXO7Y8RY6XLwHOkvs8gmhx6nZexx45uR8Reaq1k/GujIP1pV58PhJeVH7/XNptaLNHqWcFYO0RESJSf0ZMhERJZVgUAYAXfu/bvmBHBUpSDusmWYnj4exCff2HnE0Bmk7apgop8Hc/dqy5SgyUZKCAVogMIv31kptmXWqnwXBAEPOsYpmnTlPkUkb3M6+LzTtL1RDgDaS6sXXxr1N574vggFaAMEAQAP3we8irhseoG3gLf0FfvuBuMeSDmwxsuPDZycP1xD4AAJBho+32ZMxrJg+2prYft7cUBcM0AKBrP6ZuyMHvmJpSpZ/6DWvaNm0sepkqm9bOa5lhxMvPVK3+j5N/WqW3JDwPuo3PhN1eUbYHS6i8wi8ZUtRv+YBWbvnyAJIvrYzYWFDgBaIXoJEUgnzxXHDRNJLYviqNzZx/S2K43MoyVsH+5aXIi4PFXqcEqXAaxp+sVgnCHHVr/5hb/zHjTO6WyMua46awERE7QGDtEREbYxF5fbMlphZOJJIk1GcHuWP+9amd7YBfXN5c0pLqfUo31NVbm1n5L6arYo2S8+LYelxIQRTbmOjoIOl1x8g6NQnovLXKieQaSrRcTDudXyVaxRtUkgph0TrIIruyoTWawnhZUpyTI2PM406HB/lApA3zsDBhnLt2a2pUKYSdN5RnXgpgG5ZiZehCQ0IZZrUo0NGHTBlQPy37mepZMwesiee9es+/LO2jmLir6X7wLdRl2cNewT6rL6yNseOaap9/Y7WedEkXLTJqcKp9cwxx1HWJslFaUXnkSat7z78U8w+zr2fJrTtzRUelDnlEe8Cqw5WlZIRkWyqiP+9PrGnNeLkYc0xaSxRW3DddddBEAT06tUr1UOhNMUgLRFRG2Ppdi4sveSBWm8Kg7Rq50lvnFnYpCzWZLosgYBBOEEQ8OAJebhpcBbO6912gs/pqtKlTL9Sm2RGja9GXnfWWDASuSe/C31GVxSevxxZI/6FzOMfRsE5vwRKD6iUOwAA6OILZkliM81aJSjrj4qOw4379SeYgSel78xM5rDf9f8NzZY9/uuIbNw8pO18Fif1jO95WJpwbG1KHc/QMhKRSsn8a1w+emXHXzM3W6VeZpOCcCl+f+szekDQGWHrJ8/Ude35RLW/v35fSwyr2YUHEqNRq1ZQEEeZpGQHaf1NDNJ6NFwYEBO8g8GsF1DikL+2HWx6zd+LQHylJBp0ztDjyfF5uG5QpmJZpPkIiFrSggULIAhC8N+ll14ac52GIGq00khEzYlBWiKiNsg24I+yx77qzc0XJIohPHPmxM5m5GiY/bulZGicPCwWi0HAxJ5WnNmjbQSG0lmVSxlg0XJrqySJisnBskb9G8LRQKwhux8yh96LrOGPwNThRACIWO4gfIK+WER3RVz9NZOU2YR+x6HGxYkGadO4oqDdKx9beIkDi0GHM3tYceVAZeAg3meVDudogwriC2qqTbikVbLiWmrH1QyDgB7Zid1xkK2Smau1Frgqqfm/DwVj5Mn3dLauAABr32uBkNrWkq9etX9bCdIesccRpFVpi6eWfbpl0oqukph9JJ8dkj/+Mh5mg4DSsCBtR6setjjq7psSTKLvmmnAOb1t6BhWBzvapGJEqfLZZ59hw4YNqR4GUVTpc5ZMRERJY8gNmyHY74K/fg+8letweLqAw9MFOHd/3CJjWVQsDxI1dfb1ZLOqTE7SFFoCJGKSJzRpbypVgrTvbKqDM0akVrQfhOST190z5AyMuo4QIZM2fII+APDV7kD1L9ejZumf4XeWyvet8QRfipHh561YHfwMl88cBfum5xR9/I7i4M/ug7M07TfecTQnvyjhsaVVuHR2Ka75oVQWjPOLkuI22mj1T7VaVeLGpbNLY3dsBrGOB/FkwwHxZSuGjuH7PY4m1bMNpZZJa2hChq/aBGGuJmTqSSoXN5rCdfAHVC26EvXrnwqWGxGMUe7SOBqY1du6wNz13Jjbr/n1Johe9QBuqkiShIUHnXhxTQ3m7nNC0vC9djieIK3K5vLjKErblPdHKE/JL6icey7EkItfzenI+xa4D0UujXBYpcxHIJNWfszuYNMjnnn1DtTFf9wI/USHH6eYSUvpSJIkPPzwwykdw/Tp0yFJEvbu3ZvScVD6SrNTZSIiSgadpQMEs3yGYG/lGpR/Oyz4uHrR5Ypbv5PtiN2nmKhHnw6paSGaknWmRksNuN8OJT7hDQHzVCZfq3CJmLYxehDDF5ZFKxgyobN2jr4zjZm0kuhH5Y9nwrlzOhxbX0H1oitky0XnYWjhLVsWcZnotaN85sjGvhWr1Ps5A8EEX+0OTftUHUcTZzJvimmb6rDxaH1Etx+4aW7jxGhqdQ4jZcOrHWrUAj8un4R/r6xR34aG8TZVrGCSNc4rWwfq/HFP2rPwoAvTNycvCKj2O4knYBROrSZthcrFGs2aUGs2nK96K6rmnQPX7o9Qt/pe2Dc9DwCQPOrvKQAQQrJnbf1v0rSf2mW3N22gSbauzINX1tXh10NuvLWxDks1TOQWT5BW7bcbqdaxGlcSMmn9jiOomDMR7uLvm7yteFTOOVO1LrgoSXhyufJ9ZdYrM2k72PTNfrt26ObD72hgkJbSTWFhIQDgq6++wpo1ynr+ROmCQVoiojZIEARFhqBj6yuKfrWr/tGs4/hVJRjpSbMZf8PrW2o1OMItyGa9EDOw89La2oT2SQGdM9SzqRYXR7+13x9W70+f3TfmSaxgUC9foc/oLnvsLfsVfvv+4GPP4Z9kM7JrnYjLVxX5Njznrvc1bcNvD2TSug8mHlho7mNDND/tl/8eQ29bVgvSRrowIkAZZFWbuCjarOYtcbiKNcFOpIl5oimOIxgGAB9ubVqANvwzqZZJqzbJmVa5KiVycpoQ9RWMWQmvG65u3aPyx6v+Dkn0QfLZI64jhgRwzd1iZ9ICgHPnO4kNsJm8tl4+KeG0TbEnKazWOMEjAHS2KY/zXTK0l8uoSCCjPJx983+AhEvGNHXfLyjaSh1+Re1ZIFD6Izwo3UHl9Uum8I+4IpPWm15/6xHdfvvtMJsDd0c99NBDKR4NUWQM0hIRtVGCQX6rZWgAqYG35JdmHYNa1syQgsgzr6fCMTnx10g06wVcrlLvEgB0goDMJNW5JXWJ1hqUwm4X1plyY64j6IzIGHSHol1n6SB7HF7eAABEd2MGqNaJisLLMcj2Ub9H0zYaMmlFT7Wm/uo7S01gIhavStTUqIuUSSsoMu9qVQIHe2oj3/qe7LqWamIFaROpEmCPsx5knadpz/PsXvKLGfFkPGphUPkdq00mppWp8ISmDEfGV71Z0RarrmjoRVRBZ4Q+e0DSxtNSqsICrlreQ1pL/fTI0qNIJciYY9bhlK4WTdvYUd30khbuw5HLDsQmIGf8uwmv7aveomiLFOT2hDXrBaDQ2ryn+Wf2sEIXcpEzvP5trPJDRC2te/fuuOWWWwAAs2bNwvLly+PehiiK+Pnnn3HXXXdh3LhxKCwshNFoRG5uLoYNG4a77roL+/crz7dCNUxM1qtXL1n7o48+GpywbMeO2HdCnXXWWRAEAZ07d4bfr35R6uuvv8Yf/vAH9OjRAxaLBbm5uRg1ahT++c9/oqqqSvPzppbFIC0RURulmPBI5eRIFkRqBmrBhz658c/s3Zyi1Xs8s4fyZPCkLmb8++Q89I3yPNRuzaXkSbTWYHhmm2CwaVova/R/NGxc+Qey6CprXKxxoiIxwsRB8QjWpG2ByZFaWnjsUUD0IGZ4LdNalSBHXXiEI0RL5ILFCtImUsc7WVlsE3tYccVA9dqq2SYBk/vY8NhJeTi7l/yzpFYneESHpl2gu7CPfB9qWdGaCck7Rqtm24vRg7S2fjfIHmccOzVp42nNxnY246bBWXj65PyIfW49Pgv/GJ2De8fk4F/j8vB/Q7Nw2YAMRTb3gTofXE0MFIr24tidQuRO+Bw5499F9thXUPi71bD1vSbhfUt+ZVmfmghB2iqX/FhfZNXLAqih8pIwcev9Y3JxzSD5hWrWpKXW4N5774XVGjhmP/jgg3Gv/+ijj+KMM87Ac889h19//RUVFRXw+XyoqanBunXr8Nxzz+HYY4/FV199Ffe2r7iisUzWRx99FLVvSUkJfvopcBHpsssug14vP/5VVVXhjDPOwEUXXYTPP/8cBw4cgNvtRk1NDVatWoVHHnkEAwcOxNKlS+MeJzU/nkUSEbVVuvAgYsv/wayWzZVmJWmhE4SIt0tP7Kk8+T6pswWdYtxyqTbJTbj6KIEhii7RWoPKIG2UiX1C+wlCzICu6FFmJIQGabVn0ka+RVprhVT/0QluJG/s249bm/BMWoMOUUtWKIK0Kp+7aEHalhA7SBv/QTPeTNpILuyrnLUdAMZ1MePNiUW4YmAm+ucpL1ip3U2QwNOQCX8dmhJ/k5KYKa52bJD8nqjr6MyF8m2YcpI2nnQWK65+54gcTOxpjRhgBALf2cM7mDGsyIw+uUac1t2Ki/pm4OmT82UXbCQAu2ualk0rukri6m/MGwJb32uQMfBWGAuGBcYbq+55pH2rfKdEyqSt9WgvdaBWOkRNtPkYhxaZFL8jljug1qBz58649dZbAQBz5szBL7/Ed0ehz+dD586d8ac//Qnvv/8+lixZglWrVuHrr7/GPffcg8zMTDgcDlxxxRXYskWZDR9N3759ccIJgbs8YgVpP/nkk2D27JVXXilb5na7ceaZZ+Lnn3+GXq/H1VdfjRkzZmDp0qVYvHgxnnjiCRQUFKC0tBTnnnsu9u3bF9c4qfnFf48nERG1CuGZtP76var9PGXLYSoa0yxj2FypnJwlzWK0AAInF2qBEptKCpuWQEOWhlt9jzj86MuM24REy6Qtc/gVt8lKkgT75hdQv/4JWbvWIK0WavVfK+eeFfd2RGcgKOA6MBNVP10QbNdn9tZc7sBfsxXl341LaZBWdFeidtlf4K1cDWPBSGSPeRE6c17C27t0trKcBBC51EGD8CDtu5vrcUInMwqsje+R8ABHOEmSmnUCnli3BSdSNtuuMUBS7fIraouGyrfokKMS1FGrORtKLZM2drXu6MI3qVb6QitfjfaT55KPOyFr5L9g63cDXAdmoeqn3wEATF0mIveUDyHolUHa0s97Rd1m+MSeOoN6+ZxwkuiFoLgAmz5cPgkzttVjX60Pp3S14LTuluBnp9YjYnVp9OB1U5j1AnpkGWTlS3ZUezEogRJLzn1fonr+xXGvJxizlW2mHEDjxJGhRFeFom1dmbbXT+3CSgO/xpITnTL0OFCn/W6M8AkOWe4gcZIkQnQrf/9tlc5cIJtMsbn9/e9/x+uvvw673Y6HHnoIP//8s+Z1b7rpJjz88MMwGuXH4REjRmDy5MmYOnUqxo4di+LiYvzrX//C++9rm0ugwZVXXolly5Zh+/btWLlyJUaNGqXaryGI279/f0WfRx99FKtXr0Zubi7mzZuHkSNHypaPHz8eV155JU488UQcPnwY9913Hz788MO4xknNi0FaIqI2StBrOzGp+ukCdLj0UNL/QJIinAikY5A2UiatReU+ai31IbWUO5i33xm1ZAJFFi2T9pV1tXj4RHkw0HNoLupW/FXRN1lBWkn0wX3gm6Rsy7nzHWSNfFIWoAW016Nt4C39NSnjSVTt8jvg3P0BgKM1O3VG5I6bFnO9XdXKCzvRxIgVqma1v7q+Fg+c0PgeiZVJ6/JLEY8RyRArM1yfQAqq1luN39pYhzVRAj86QVCdoCvW666WSduk8gRIbiat6Dyiva+rBDVLboQ+o3swQAsEjiu1S6eqZ9nHKHegs8gzaSV/5FrUoeybX0Tm4Ls09U2Fmbvt+GFv4Db9LZVe9M4xoHdO4HvuHQ0TizVV31yjPEhbFX8mrd9+MKEALaA+IZ3OkIlECs+El6OSJAmrNAa5owVptX5uOtriC9Lawj7zLHeQONFdgdKPO8Tu2EZ0uKwUektRy+2vQwfcdtttePrppzF//nzMnz8fp512mqZ1w+vIhuvWrRvuvvtu3HHHHfj222/jvsh76aWX4s4774Tf78eHH36oGqTdtWsXli1bBkCZRVtfX4///e9/AIDHHntMEaBt0LNnTzz44IP405/+hM8++wxvvPEGMjKSl7hATcMUHiKitkpjto3oKoFoP5j03ddHyORq7sksEpFvUT+hUYuNaPlbS8us46am3vvbjkXLpN2hEuRzbH9Tta+gV6klGYkQ9h4RG/fjLUteTS9j0Ylw7novadtrikgXWrRw7vlY/njH25rWW10aPbgVLtYI1Y43G8rl75ECS/TPq9as1ETFui3YahAQb9K9Q2O5Ay2ZjfkWveLiVJfM6HkeuWblMbXQ2rTZ5i1hgfL6BEs6iN5oJUUiq5wzSdHm2vtJ/Bd7BINiHVOH8ZpW9ZavjG9fzaTSpQzemfXA5zvkweb3tzTW2N4VYyKvZFwI6ZMrf18etscfpHXsfCexnQt61YC96FK/CyAWY+5g2eNI9WjVdLA1HjB6ZMk/d2f3smJ8F3PMbZzTS73ET1GEv+HCL8xUOJlJS+nr7rvvRlZW4KJKIrVpG9TW1mLPnj3YtGkTNm7ciI0bN8Jms8mWxaNDhw6YOHEigEBJA1FUfo5CSyGE1rEFgIULF6KmpgYAcMkll0Td1ymnnAIA8Hq9WLVqVVzjpOaVfmfKRESUFIKg/WYJrZMaxUPtBPrMHhZYEpkFp5md21sZrLtuUKZqkFZLuCZfQyDa0wKzxrdFkiRFreHpFZUziEe8tTk88BpF+C3NoZlvyf38SBFLk4Qz5A+D7djbk7jvsJF4ahJfWYwvI7aBO86XslOUjDEAOKVb7JngY9V8TXSiOq0iZdLqBOD/hmbBoBNwTm9tk9w1sGscc7TD0CMn5gIIBEfP6dV4jOxk02NMp+hBHotBwHkhx1WrQcAZKhMxxqMwLJhe5kzsc+er3tikcYSLr76tgOxRzygyq/SZPWDu/jtZm1EtcCs1rcZqsqxRCe53UanVXupo/B2FH5fDJSNIG16LtcIVf6BQclfG7qRTvv8Dt2wrn0NDjfBo1H7XOpu8lm08pbNDM2lvHJwVfG17ZBlwSjcLLuqboVrGJNRxBUbFZH86AZjSX/2iROewCzdVbpElDyhtFRQU4I477gAALFmyBD/++KPmdfft24epU6eiV69eyMnJwTHHHIPBgwdjyJAhGDJkCG655ZZg3/Ly+CdobsiOPXz4sGophoYg7QknnIC+ffvKlq1c2Xghr3PnzoE5FSL8Gzy48ULQkSPa7y6h5sdyB0REbZUunkN88oMQ9Sp1Hm8eoqzXlg6GdzDjldMLsL7cgxKHH+O6WNA9y6B6gqElubAgQmZuKHcTb/1tr7xi7HeryyfJb72MNGlXHCU+BGMGEBKLkUKy8QSVE3Yt8ifNg3PPx3DueCtkw35N2xOMOSj83WoIggBbvxvg3PUe7Jv+E3UdS8/fw7XvS83jE91l0JlzNfePRfK5IBiiB+rizRi9fGD0Wp6RsuRDb0GMdVtuohPVaRV+0WFcFzPO621DhlEITlJ4+YAMjOtiwfd7HJh/MHZQsCmT9tgMAp45JV+W+XrVsZk4uasFtR4J/fMMmi62XX1sJk7pakGlS0TfPKOmCRWjCa81XeeR4PKJcV/481Wua9I4wvnrdsfsIxizUHDWfAjGTBhyBqj2yTv9G3hLl8BbtR7mbufBkNkT1YuvlWXWSxonIGxuakFatXdc6NdcrK+8JiTuB4VnxTt9EhxeEbZY9TlCaJnoq/D85Sj/9nhZm6CPcGxTCax3vLwCks8J18FZMBWOgbFgOGp+/SMc299o7CTKX+N4LuyGBqsH5pvw/Kn5KHeK6JltgEkvoFuWDs+dko/Ddj98ooR/Lq1WbEMQBNw9Kgd7anzIMAqo90rIMukillLoZNNDgPx9cKjejz656XdhnggA/vrXv+Lll19GdXU1Hn74YZx1Vux5BL7//ntccsklcDi0lahxOp1xj+vCCy+EzWaDw+HAhx9+iDPPPDO4bPXq1di6dSsAZakDACgtTSxzX+vzoZbBIC0RUVsVRyat1pnn4xE+u3iexhmFU6XAqsdp3eUZtYnm9ajdPt0tU4+D9Y1ZRcykTYyWrEaPX4ItpNpHpMBGPHWYw29PlnyNQVpJjH8yHFOn02Ducgb8jmJZkFaS/BA1TPhl7jopGGQ05h8Pb8WQmOvoLPHVuBNd5UB2v7jWib69Uugze0TtY9JS9DlE1xi33Ufilxon5Ao/VoWLlrmdDOHbtxl06BNWr1oQBPTMNmBCd4umIG2s5wRELmcxuY9NUZpAEAT0yomvhnbDOr1y4lotoiKVcgllThHds+L7bvFWRQ/S6qydIcYx0VN4vWhj4Qnwli+TtQk6M4yF6rUBg30EAaaO42Hq2JhVqc/uL++UBkFanyhhQ7nymKdWczi0JVaQNhnPTO0CablLRI84grRqk3+F0pkLYVA5LopaMnCD28gHzEDGgD8G2/SZvWR9JL/8NY5norzwoHSeRY+8sNcmy6SLWT9fJwiKY1EkJr2ADjY9SkKypwNBWtbej5fOXIAOlyUWbGuNdGETKbaU3Nxc/PWvf8VDDz2EZcuWYdasWTj//PMj9i8vL8cVV1wBh8OBzMxM3HXXXTjrrLPQp08f5OTkwGQKZJ7//PPPOOOMMwAkVjYqMzMTkydPxowZM/Dll1/i1VdfhcUSuAjUkEWr1+tx6aWXKtb1+xs/f6tXr1ZMcBZJt27d4h4nNR8GaYmI2ighzkxav7MUNb/eAl/Velj7XY/MoQ+o3ronShJmbLVjYbFLViOtyKqDQScgwyjgxsFZ+GyHvO5fhspEMulO/fnHXi9fJZjgDgvKhj9uKatK3PhgSz0kAJcNyMDYzsrsH58oYfqmeszd35gBcOvQLEzoriwLYd/2Omp/+z9ZW864t2Hrd33Sxw4Au2ti30Yfmvkoemrgr92m3jGecgdhQdrqxVehevFVAABT59M1byfoaIkEIWwMvorV8FWs1jKisIexgxCCOV/r6AAoJ64J5fFLeG19LZYcaqwhO21SITIbggN6CxB2G7i3erMsSCtJEurXPQrH9jehz+yJ3HHvYG9tR83jyzQKyDYldlzxiYBBB3j9EmLFMxsuDDh3fYi6dY9CZylCzomvw5h3XEL7BoBfil34Yocdh+zKW/bDa6+G0poRuLHCi80Vnqgz20e6fTpdLx+Z9AJyzDrZ906pw4/uWZG/63z1+1Dzy/XwlP2meD9GIvniyygKrzlq6nSKIkgLjRN5hgu/kOQ+8A0qvj8F2WNegLFgBIDAxIVV8y8JTl6YfcJ/Yet3PWqW3wHP4fkwd52E7FHPxcxiBwKfyc932LHwoAtlThE6ofE7r3NGIFNS7T0LQPVzFPp9Get91ZQa2A2MegE5JgE1IXfyVDj9yDHpcMu8xuPZvWNy8Nl2O1w+CVcdm4nhHULuXpCif8eI3loIBuV3oeSrV+kdB538PeI+OEv2OMESzC2qa6Y8SLu31ovtG71YV+bB4AIjrj0uC+Y4L8S1R4Kga9GJtNqzO+64Ay+++CIqKirw8MMPRw3Sfv7556iurgYAfPXVV7IM11CVldov2ERy5ZVXYsaMGaitrcWsWbNwySWXQBRFfPxxoN7/xIkT0aGD8sJ7QUFjwLuoqIjB11YqvdOaiIgocXFm0to3PAn3gW/gr9+D+jUPwVv2m2rXtaUefLvboZjEoswp4rDdj53VPjzyWxV2hk0SkhlHJku6SPRUIkt1ZnP5Y3cKZj72iRJeWlOLQ3Y/Dtv9eHltrWpm6i/FLlmAFgBeW1+H6rDJYnz1+xQBWgCoWXIDRE9tcgd/1KvrY2eZ7qppfO85tv4vcscmZNKG8hxW1gyLRfTWxj2GsBGFPYy9HZ0pziCtK3KQ9se9TlmAFgA+3x5yYUYlu7h+7UOyx56Sxahf+whERzG8pb+i+rc/47fD2icO65ppiGvW5FC+owEhtdqtuWFZ/y6fBNFVjuol18Nfux3e0iWoXTY1of0CQL1HxCvraiMGu6LV5syIo27nE8uro9YB/Xl//Ldhplr4pEWhNU/V1K34GzxH5msO0ALyetOJUJ0ELNEApMrn2lOyGFULLw/eIeAu/iEYoAWA2mW3oX7T83BufxP+up1wbH0Fzn2fadrd5kovPt/hQNnRSZ9Cg6yH7f6I71lAPZM29P0XKwibrG/EAquyLu2/V1bL2p5cXoOd1T4crPfjpTW1srGHZ7AqJHDnhEyEsgiCSiBf9DYGflvD3TddMuSv/aw9TszZ50SJw4+fDriwuDie+s1EzS8rKwt33303gEDm6VdffRWx76ZNmwAA+fn5EQO0gLwubKLOOussFBYWAmjMnl24cCGKi4sBqJc6AIDhw4cHf16yZEmTx0Gp0frOmImISJO4ZpyWJNg3vyBrql1xl2rXfXWxJy5Rm/zH1gozadVKHfbPi33rkCAIipOV8AmM4pioOWnKnX5ZlqlPBA7WK3+f26qUmUQSgNl75EEd155PIu7LFRI0SKZYk88E+jT+XLf6/sgdkxSkTYQxf1hgu8boNVUjCZ9FPDwjV40hp3/MPqEkb+RAu9px4Pu9gfeHJHrVb8vWyT877v1fyx7XlKyIa3ydM7RlQodPfgM01mw9EPY89IJKXUu/CNf+b2SToXmOzIckJjZx1cKDrqgTdnVQycRvkBHHxS6fiGCwTU1phIm3TuycWI3llhBeDzP89xfOU7Ys6nJVok9TXVI1gjk/+NmWbTKO8gmhpAgT8Plrt8NbHvi81K36h2J5/ZoHZI9rFl+jaX9fht0BEw+12/FrQzJaW6ImLQBFqY5Sh19x0TiUwydhY2j5hhiTHmaPDVz4yxgif92zRj6t2t/a7ybZ45wxL6r209uUGW/+msa7QLSWO7g0wsReLSFW+Zk3N8S+yErU0m677bZgVurDDz8c8YKSzxc4jrhcLoii+nerw+HA+++/3+QxGQwGTJkyBQDw3Xffobq6OhistdlsuPDCC1XXO/PMM2GzBf4+fOmll5JyhwK1PAZpiYjaKL21k+a+kko1OH/dLtW+atkyWkS7hTdd6QQB/zc0Cw13513SLyNmDbcG1wzKDGbEndzVgj458pOXVGTFqP3q1P5+i3QyqKjNGWWmcdFVFs/QNNPyqvk1v0dTE6QVzAXIGHQnAMDU4eSEtpEx6C9hG439XAxZkevLCsYc6MPqLEarteuP8od/pNvFRWdJWD95QMiH+G4JL7Bq+/39QSVoUXV01vftYRckemUbkGlSZtKqZVf6HQe1DlXGE+X92TfXgFGdIr8OZu0VOgBED2KqDeOsntbgZGXpqHe2PNC/uyZ6kFby1iSwFwlZIx5PYD1A0Nti1l2OaySeyON3H5gJQPm5aopdMV7PaGpVJgsFGi+sxboumaxYQnggvyRGtjUg/16JdtwzFoyEtVegDmTGwNuCNYMNeUNg7Xut6joZg26HztYFAGDqeErEfuauykmLJLHxzgIt5Q66ZOgxsaeyFEMs94ySF45+9MS8uLcBAD2y0/fYQRRJRkYG/v73vwMANmzYgO+++061X79+gb+RHA4HPv30U8Vyv9+Pm266CYcOHUrKuBqyZd1uNz766CN88cUXAIDJkycjM1P9An9ubi5uu+02AMCvv/6KO++8M2JAGQBKSkrw1ltvRVxOqcEjKRFRG6WzxZEJpHJ2FGnyokTrohkSvC051U7rbsWojmb4JeVt0NEM72DG/04vgNsvIc+sw7qwiVZSVZM2nNoo7BFmhhfDeuuiXAiIt66jZmFDu39MLl5bX4sKV+MbU2slCS3Zp8G+cQZpC3+3BoacAfA7DwOiN3CS7nfDb98PQ+5xEPSBbEXBFH2SGjX6zN4w5stnFo8VpLUecxUES+TJOTpcshvVv9wAf+2OYFu02379UY4DkYO0R2SPBZM8EOAX4ptgJk9jxPKYHCNyzTpUh6SvV7n9AIyKrPEB+UZUhGWfBkqCKI9f/rrdMGT2jGvMAKCLcih87KQ86KIcK9XKO3S06XD78Bzcv6RKsexAnQ+jOqpnxob/Dkd3NOGGwVmRB5cGjsmVn7rsr/PB65dgVKlzKfk9kDRMwqfG1u8G6KydUDXvvLjWa/hcJ4voqY64zHXgW2SNeByCMQuIUj86Hs3xvXSw3o8eWYaYQdhk3VwSHqQ9EqVEQwN96IcyLJPW1PEU5E/8EaK7DDprJwhH7wjQZ3RF0eT18DsOQ2/rolquAACMeUPQ4fc74HeVQZ/RI2KJFsFgg85cKKsFLoWU6fCG/W66Z+nxwAl58PgliJIEQRBQaNHJn4tGIzua8c6kQuyq8aFfrgEWtduINOiRZYCA9K1rTRTJrbfeimeffRaHDx9Gebn68XTKlCm477774Ha7cf3112Pt2rWYOHEicnJysGnTJrz88stYtWoVxo0bl5RSAyeddBJ69+6NPXv24P777w/Ww41U6qDBo48+ioULF2LZsmV48cUXsWDBAtx8880YNmwYMjIyUFVVhU2bNmHevHn4/vvvMWTIENx0001Rt0kti0FaIqI2Sm/tor2zWkakX71eYTwzDIeKlj2W7rRmz4bLMOqQcTTuFD5ZRiqCtFp/BY5IQdrws+goM42HZ0kmS/jIDLrASXlokFZzJm0zljswFgwDABiyjglpzILOUijfrqCDYMiI6/UyFo5SGWD0gKVgzoPOFCk7SoBgylMGGUQ3pKMn/w0k0Q/J74yaSSt6lMFCIPCeEL126IyB11JnDgvSIr4gbb5F+++vk00vD9K6RIiShK2V8kB0/zwj1nrlbU6/BNGrfE7+ut1A59PiGjMQOWMwz6yLGqCNRICAvrlGZJsERTZjpExaSZJkpU8A5W3i6ah3WKaeXwoEakNnkJd8LggGC0R30yZv0SdQ8kCIUG80UdEygX1VG+Cr2xMI0iZIlKTge84nSpq/I+Kxo8qLHlmGFit30DEj/kza0Bt9wjNp9Rk9IBgs0Bu6K9YT9GYYsnrF3L5gsGm7oBP2/pH8jZm04X9DGXVCXBeOY7EZdRhSmNgEdw1MegFdMvUork+sFAxRqlitVtx3332YOjVyvflu3brh1VdfxU033QSXy4Wnn34aTz8tL3Ny6aWX4uabb45aszYeV1xxBZ544olggLawsBBnnaXMug9lNpsxd+5cXHfddfjyyy+xbt26YHatmuzs+JMFqHkxSEtE1EbFk0lb/u0w1XZf/T7ZiYUoSfhuT2KTzbSGSS+aU3iQtimvh69mO8q+GhB8nH/WfJg7T4jYf/kRN55bpX6yv7LELauz6xMlbFWpSQs0ZjpJkoS6FX+DffPzEffp2vcFnDvfheRzwNTxZHjLl0GSROSc+Cqsvf4Q+cnFUK8SQNaHnadqnpMtriCtLXanBAmGzLiCtIa84xVtQozSDYIxC4LOAMGUCyksO08w2CAIAgSdPAvQX78PFd+dBG/5Slh6T4E+sxfs6/8FAFhbuA8QlAGpw9OjBxlFVwl0xkDgOjyg5Y9nskPEF6TNC+tb5Rbx3KoaRf3sAXlGbK2Uv/9dHp9i0jMA8Nfv0T5YBC4evLWxDj8fUJ88J/x9rFXDBZ9csw61HvkTOlCnDJasK3PjX8uVx4MEEvBanM2oQ+cMPQ6HZEfurvGhm/MXVP54enJ3lkhWbNIzaaOXayj74pjoy3W98G72mzhoHArMLoVeACZ0s+CmIVlYU+rBGxvq4PVLuPa4TPTNje8iiVZvbKjD/ANOxUWBcMn6C6FTWCatokyPin8urca9o3MwrINZWZNW1zyvixpFkN/vxuYKD/63rhblYRn+pjT9wPbMNjBIS63SzTffjH//+984cOBAxD7XX389BgwYgGeeeQZLlixBdXU1CgsLcfzxx+P666/HlClTsGDBgqSN6corr8QTTzwRfDxlyhQYDLH/VsrKysIXX3yBX375Be+++y4WL16MQ4cOwel0Ijs7G3369MGYMWNw3nnnYdKkSUkbLyVH2gZpd+3ahfLycvTq1QsdO3ZM9XCIiFodnaVDk7dRv+5x5I57M/h4c0X0CTWiCQ9StjfhJ1ReUZ7FFI/aFX+TPa788TR0vi5yPcC3Nka+5febXQ5cNiAjOI61ZZFvcW/IovaWLY0aoAUgu23efXBW8Oea326FpfvkiLeGRlOjMtuaIChLaWium5zCicNk2zZmAi7tdSUVpQ6AmM9FOFpKQGcugF8RpD363MJ+J85d7wV/du3+SLbMpxKg1UJ0HgEasovDUufEuDNptWd+hmecbarwKCYTKrLqkG/Rwxp2rKqv3ae6TV/dbs37B4CNFZ6IAVoA0CdYEqbh0JJr1mF/WFC2uN4HvyjJboGetrEeahLdf0s7JscgC9LuqfVi2K7bE9uYzgyE1P0MFX7RQotgkE1vAfxJmMk+St1vLeZm3BEI0B7ll4CfDrgwoqMZb6yvRc3RzOtpG+vxx6HNV+piR5SJuxoka4Kb8In/tHpyRQ0+PrdIkUkr6JqWXRqP8HIZkt+FdzfXKwK0AGBM08T3nlkG/Ar1zxRRS5swYYLmY4vZbMb+/ftj9jvppJPw1VdfJbzP6dOnY/r06ZrGdOyxxzbp2Dh+/HiMHz8+4fUpNVp84rDS0lK88soreOWVV1BTo7w6vHPnTowcORL9+/fHSSedhK5du+Liiy9GVZX6rXNERKRO0DX9OpyveqPs8SfbE7+FfWwazxjeEtSC1Ilm04YGPRtE+iOuwimqBjdDhWYaHaqPfDLd8AxqV/w19iAjkNwV8IUEcOOhdttqB6tekYEYrV5qqFjZp6F0ppzYnRIUbx1LfVYflbboGXXGorEAAkHacA11LyOXQ5BrSigltEZoeFkEhy6+1zjLpD2oWBB2K7/abO/HFwWCMYawz6rXo15jV/LWat4/ELs2Zgebtvfjeb3lEwNdPSgwgchlA5QTifglZWmVSLd/t5braOEzyNe4fIrvKs1ENzKHPSJryhn3DgAkVEagIUibO/5dWXvDRIHxyhz6QELrNVhuuVy1/ZmVNcEALRB4jxyobVpAOF5DC+UXZf40LDm33CZSk7WBR0RqM2nD63Q7D2FvhN+LMU0zaTtnpGn0mIiolWjxIO2XX36J2267DS+++CJycuR/jLvdbpxzzjlYu3YtJEmCJEkQRRFff/01Jk+e3NJDJSJq9RpONkOZu56jef3wmn5NuZo7skM7D9IalCdU4bdaN0mErC21CXXChQZpPVECnA0TijV5NvEImWuxqL39Cqx6RQagL6SjYIxy4q/TfjJp7hbfBEJxiVJPVi2DV63upSH3uIjbMHU+HeYuZwBQD9JmHBfIzNZn9Y05VAAQkfhJeGiNRb/joGxZjS7yRHTh7hieHVcWehcNgYMp/QNBzvCtRj7qxXc8jJbgnWfWqQZZ1Zzb2xaszTqmkzl4bO2Ta1S9GBb6kY52DNe1+FlBYqxhx1KnJ3L2fyw6WxfY+v8RxqITAQQ+55ZelwSWmQugNmFcNA3Zt5YeF8LSM7AdQ97xsA36S0LjM3U8GdY+18jHbClKaFvp5nfHZOCYHOX7OJX8oqTMpE3gro9EGbLlx2Bf9faIfdM1SJthbCUHEiKiNNXi5Q7mzJkDQRBw0UUXKZZNnz4du3btgiAIuOCCC3DGGWdg3rx5mDlzJpYsWYJPPvkEl156aUsPmYio1bL1uw7WPldBdFcAou/o7MF5ODxdBy0BBiksSGtKMNVqYL5RU7CwLVPLpE1k8jBJjDARkN8JwWBVXRaLKyRIGz6DdKh9RzN6RHdFQvtpEG3G8miksPdsxtFgTfhE1LJM2qhlAOIod5DkCYG0jsOQNxTest/CxqIMZqjOGC7o0fHyClkWsKCSEWztNSWwr+x+mkYbbYIvEQJ00cKaIQF6v11e961WJy9vNSjfiIfG5sIvNd7S7/JJMOuFuLPlumZGD9J2ydAjJ9IkPJECm3FetIrW+9UzCiLO+h6u0KrHv8YHMu7CA9XXD8rE0sPyiyChw4w2htZS7sASdix1+RLPALUNuBV6WycUnLsEgVdHCP4eBJ0egjkfUjzHu6OfTUFvQt5pn0ESfU26q0XQGZB78rvIGf8OIPoAQQ+/fX/MWrSJiHYDwrRJhXhxdS3Wl0cPiJ/azYIbjsvEy2trsbIket9OGXr8a1xj5qjW939z8omAFJ5JK7RcJq0hu7/ssTtKSRVTmiashl9EISKi+LT4pa5t27YBAMaOHatY9tFHgXpnp59+Or7++mtMnToV33zzDc4880xIkoSPP/64RcdKRNQWCDoD9NaO0Gd0Dc6mLhi1ZWyJ7nKI3sYSB2qBxtBJpyIJP6luj9SSS7ZUelDrESF6aoKvs+i1KyaL8YkS6r2B2eira8tRo1PWG5Z8jpCfXRDd1ZrH5vRJqPWI8ImSYgbpUFVuEQfrfKjzNe0ar99RDK9fQr1HhCRJ8NXtlpVAcPlEuHzi0edRGcz+C8/ybYjTGcICdg1xZkmSIHnV628CiKsmbbOKMg61wKnWGomCwaYs0yAqAyf6jG6BfeX0VyxTI0bJ/PUhejDbV7MVoqcWHr+EOnuVLGi4zzBC1jfPooMgCDDoBOiEwD+bUZfQ7cxFVr0imB8q+iYjfSYa20WvHaK3DhVOPw7W+VDi8Afft5IkodThx4G6KKVE4gxQNbweau3hGj7SoqcWYpTPQ5om5ilYwoJALm/iQVrD0TIhgiBAEHSK34Nq1mqUCe6EsGXJKDsU2K4Ogt4EQaeHTmMZBjHO07xomd6ZRh0cvth1ZAotOlgMOgwpjH2MMugaXnchLQK0AOB0lCvuSmnJTFp92PG+rrY4Yt90zaS1GeMbl+itizlBHhFRe9LimbRlZWUAgG7dusnanU4nli5dCkEQcMstt8iW3XDDDZg3bx5Wr17dYuMkImrLBEOmrDZkNCUf5SJ/0o8wdz4dtSr3wg/IM2J7VfQJxdr7pGFAIHgiQB7ueWVdHYA6DPT8jFtdt8Ha6w9w7nofks+BzOH/RNbxD+KI3YenVtSETJSjAwo2IEMsx+MVxwVvxhWdJdBndIOn5BdUzb8YoqsU1n43wT/i1Zhje+DXQG3QIqtOUbsz3N8WVQKFWzDeOQ2X1N8X78sAANj42zN4e9dpqPKaMMz1Da6p+2Mw+3LtqfV4f4sdOkj4g+ufGFP7Kiy9pqBy2Pt4Ylm1bDsN5/Xhby9fY1QqxsQ7cbwvw7OrkilKgCL8pB0AoHUiG0lZT0PyOZW7P1oCQWfrqmnCo2iZtB7BCpOk3EeD+jUPYfOGL/F24deoNs3GyKwvMKXuLryV8x52mE6W9c2LlNmaAL1OQCebHgcjzDoeGtwM/22s9fSHS8iERZIHON3FPwAAnLs+RNmvf8a0zNew1XR6cHn3LD3uGJ6D/66txZ4WqvepFrfxihLq1j6K+rWPQDRkA3nqt1BrnW8v1cIv+jkc5QlvS58ZPSNVb+kAf81WWZshpz981ZsT3mdTaa2V6xLiq6kbekeFmmgXGRo0BFu1BGnTMch41xIHHq74GbIiMy1YkzY0k3al+WJ8kPFKxL7p+PoBgDXa1bAwzj2fombJjZB8dmQOewRZwx5qxpEREbUOLZ5CUl1dHdhxWOGrpUuXwuv1QhAEnHnmmbJlvXv3BhCYdIyIiJpOn9lLe2fJh7qV9wBQn2xHJwAdbdEDe+Ezq7dXkU6Bt5pOh9tth2Pba5B8dgAS6tc+CtFVjtl7nLKZzBvYdYXYZxgZfOzY/gYAoG7NgxBdge9L5463sOfQTs3jK3OK2FqpLRj5i/VGlOt6at52qJ+sU1HlDZzEr7VMxg5jIDjngQUzttbCLwFeScCXxr/CDz1cez/FV5uUM+7WHp34JjyTtiHhK2oWLeKb+EnyRw48NpWvcn3EZYacAYo2zZm0KvV4dZZCZb+G27sFHQwa6tKKUYK0XiF2WYjvMu5BtT9QmmOV5WLMyrhfEaAFgFxLcu/n7ZIZOTchVrxjtVlZpgsIZMnWrrwbW/QnyQK0AHCgzo9Hlla1WIAWUI/3ry6uQP26RwFIR48v6iqcySyS3XzCM2k9grJus1b6rN5Rl6tl0hpyjo2yRvNHurVONOgQcuPa7roy9VrhDTG3bFPs7/GGz5GWGtDpWLrUI9iw0nKxrE1o0XIHgeOvBODbjOgBy0TLTzU3m8ZyB5Ikonb5HZB89QAk1K97FH4nz/WJiFr86zEzM3CL7ZEjR2TtCxYsAAAMGjQIeXnymS2NxsCXo8HQ4om/RERtUtbIp+Lq761YBUkSMbhAebLSNVOPPx8ffVbm8V2bs55n23DEMFDeIPngPjQPc/ZFDg4usP4x+HNDkNZzZIGsT93+WUkbY7hKffeE1ltrkU8G+n1G4CJAsWEw3GLjyb1Ll43ao5NJraiO/B4LP1f1N9xmHiP7VWs2ORAhozWCnHFva+4bGEiE2bsLRsHc9f/ZO+8wKaqsjb9V1TlMTsAMOeeco2AgKogJAxgx5/Ctri6ucXXX1cWVYEKMBHUVxwCiKCIISM45D2ly6Fz1/dF0T1dX6OqenpkeOL/n4aH73lu37nRXVVe999z3jAGjr7Ys4JLbB30vw7F1+5t4HAPflrSxdhAnMApPSqTPGhBxuD4VuwMtIu0uw0jR+5WW22TbBZJjxQs14SjUs1bOv7ZAJyfMMRC8VeAdBShhG8v2W+6OLNpd3TZ2kTEcObH5gz18MKq6kkmVNjiHMwaP7PogXKR1xSjSckltwZqk1jGhyIm0xtwxiu1DbWfqG5+KLYNse4Wv/6Ge/uvPhFYWUfk1MsdtIBqbYZiIImyirrD50vaC6D1rTKuzfTM6/2fshRFlnHoixUQUuQH/uHIiTNwDgK/iEHhHQXWB4IOncH0tjowgCKJhUOeX9/bt/Q+h33//vaj8888/B8MwGDZsmGSbgKCbnZ0tqSMIgiCix5AtjVoD4F/qrABfdQJyqyEHNTahXZo+mMRJjjYpNMkWCR4yDzURPFMZLcnf5PqNArXgKV+cXJO88IuOOkj9Ur2MFm9D+UjaSFFtQoRl/aEwDIvkgXNV27DmHJhbTYW5Rc2TnOpSOiOp/3/B6q1IHvQOOGszcMntkTLwbUX/RmuHe2HMGw/WnANL+3thbHKptN/0nrB1nwHWlA1D9hDYuj8rqreHCb1yqNodILbkdeGMa2FGR5lJoZrQWCV52JT21T7dvbOlIngRKzchIQDnEqEJMXpq5to4XNIsPp8ZIO9J6xWqT+ISTl5MBkLPm8Qm3O7Ay5iiuhYxOgu45PZIVjmXAsiJtIwhBfqsQbLteVfs1gv1TamMndHo5mb0zPJfg4c2MWNQYyPsBgaDGhtxWXPpcSuEZKn7xxBlcTPFKPX/TVQ4e6s63V9Sn39rmnhIVLsDhmEwvasdjWQmxUJPXW/RZunGPvloboIgiAuJOn9qHjt2LNasWYO5c+eiQ4cOGDJkCObNm4cdO3aAYRhMmjRJsk3Ai7ZJkyZ1PVyCIIjzEoZhoEvrDm/RJlF5zvUVODlf/qfBV3EQVZ6OorJ7uycFBbLLW1vwyS7pUlo9mxhZmxMd2SQvcUhsJUQZTRVO82Rlz2E+bBkoa8yISaTwMH5RjJWJKPWoiH6BZbhKkbSRiNbCwNzyBpT+LvbNNzS+BOmX/BBVP1rIvGJr9X6bT4a5+eSI27CmDKSN/Fq1DcMwsHf/G+zd5cVYzhr5XotXOaY8TPX31WiaAFfBChT9MCJY5lUReAMMbGzEjR2j89PUQmOr8rgzQryYOZbBnV3tmL2lOtJaKWq82uM3+mvc//VJRo8sbUvXtRJpFEoRvwDAazxv6pvwSFoAcDEWWASpfYkhZzjSL/s55n3JRdoyrAHmZpPhOb1KUse7CmPeV10xpb0Vl7eyYt72cnx3qPoaGC7Sd880YFqn6vPQpGNwf4/qqH5B5ngJ9TVWi1wf1TR+ExPRomOBj0f7v9dr8iMvr69rkdbU4hq4//xXxHb6BI1EBoCO6Qa8PjwdR8u9ePTXomC5T/AfNwzDwCMj0jaE84cgCKK2qfNI2nvvvReNGjWC2+3Gvffei27duuHf//43AGDAgAEYMWKEZJslS5aAYRj06dOnrodLEARx3sLoZCI1FMTUKiYZWwsKcaRc7FkY6j3mUEg64mkg0Vn1jRAiyAoAzrDNsfKsulDFhyw790KPg2fOooqptgU4w7XAyarYfSaTDIxq8qbw6DXGkKzQUp1TunbwgYNPJmq2QNcemwzj5Pd/7tgKz1NyrLgEPx04hS1n3dhgvBylrPyS5mgiaQGA0UmFBd55Jqo+zgfUImlDRVoAYA0poveVrPJy+wC6WprUUYukDSczLIFega6DbFy28+jXqGDScVAX/T1qbSz3VgquO6jrjUK2KXYYRsk3gPJy90QjPJIWAMpY+dV2vqrjNdqXbCQta1BMJsU7E19kMpw7SCJ5h0ZaTi83+Rp6DKlNzspZitQV0UaMc9bYbH1ihTVnw82lRGynwSK43pE7hgL3ikWnt6KAay+6j3AeWlxXQyMIgkhY6jySNjk5GT/++CNuvPHGYIQsAAwZMgSffvqppP3mzZuxbt06MAyDiy++uC6HShAEcV4T8D6LxGFdD8xKXgjncaknqFVf/RB2uA6T45yPOEKSvHxr+QuWWR8ETqlvE3i4cTB2zEz5CifW8rCnrcJdJddgo3ECllkfqlEem6Z2HU6piLy+sEhaLSLtEV032fI3Ur5BD9dXkvIPk2Yp9hX407gwMeCww4w5OwHADCT5LQqml1yLDh5xRF20Iq0ccRFpGS7oGdoQ4FVuH8M9acOPiUomPWL/USQHjwprFCaOWTKeih/bZ+KG8vtEZev+/Ayz07dCUPHpVaI2Ev8oibRvpOZH3LahiLRy4vbLab/h6cI+SOfFCQb5qhM12pecSAvWAEZBpBU8pTXaX10QWP1iiXA+hNvIaEFrNLaWxGKJAsPW7VgZhoXHEjl6N1HtDkKRu8bdtvQMpnfw4V33K3Cl2dHSswZ3lVwNPVxwnYj/qhSCIIiGRr3MwXXo0AHr16/H/v37sWrVKhw4cAC//PILGjeWX4L1/vvv47333sNFF10kW08QBEFED2dtpqndz+a74GTlkzZZQtQUpczPLZPJj1YLB/X+SDw3TFhuuVfTNgFP2lWmaTih6wQAKGez8LXtac19qNEsSYdDKuJ7eEQlX3k0Yp8rzbfKlh/R98RXtmdl65RIMvgfABlPccS2c1I+k5SxhshRnZHQJbeP3CgC0SQlSwTUEhJ5IBZppZG0kZPwhIvutU2KTLR4mklatt50tShSHQCWWh6MSaAFaieStiY92vSJL/oAfjsKOVaZp0rbJrWt0b5kRVqGVYykZS3KdhJ1j/znFNBmrRG+71gmESIJvwFyVKxHEgldapd62a/P3CJim0S2OwhgkDlXfWDw1k4dXKx/pdABfX/sNQyu66ERBEEkLPW6UKJFixYYMGAAmjdvrtimW7dumDp1KqZOnQq9Pr4JJAiCIC5kbF2fQuhDnLnNLWAYFrpUcaTjMZ38Q4pZx4gSQwzLlU86NrRJ5GzvFwo3hCQnCsfC+4VGB5uk6vkZSjOPf0XKN7a/isp3GS6S+MXGQpcM9aRd4XYHWqJKi9ncGo0plAfO+SMy5btj2t7a+dGot7F0uF/03tzy+pj2HUpy//+K3tt7vljjPmuCPkN56b6h0Uj1xGFhdgeMIQWcvXXwfSUTWaSV8xyNFy2SpOeWXOIupSjCSrY6ElgAsN8gn0AqEmYdoykDerTUxP97cpvIyYoSmZ9kJqZs3f4q01I7crZADMOA4eQ9VZP6/LtG+9OKMXeMpEyX1h1J/d8Kvncz8qtlzOfOr1bJNf+N6JdT7anMMsDFYefS3d2klj3tUvW1eo4DwMRWyiuFuob8rvXNkXpCN/VsDL62tJGfVKxtfMaMiG0agt2BRePEz0bj5QAAxhh5pQVBEMT5Tp1f3v/+97/j73//O86e1Z5YpLi4OLgdQRAEER909uZIHvIB9Om9YGp+VVAYShn6cbCNGyYUctKI29YpOjzcK1kUydEhTY8b2tuCyxhTjCwua26WPLRdyFzczIxLmpllo4sD2ZzVlpKHk8RH8ENQwazwkJxqZNHIyuHqtlZ0y1QXacOFYE4mqtTc9nbRey1Zq7XQv5ERHdP9++c4bWIXDwam5ldDn94byUPmQ2fTFk0eir37szC1nAIuqR2snR6FudWNUfcRjiFnOOy9/gFdek9Y2t4BS4f7Im9Ui6QMng9Do1HQpXRCUv+3kDpyCfQZfWFsMhrJA2aDh/LnHbA7MDS+BIBf0EodvgCG7CEAgAoNkbRKx2Y8eLp/iuj9kCZGjG+pzfoFALyoPicqmMhCihxy1894cmPL6Gw8WibrML2LHY1tDSO6UQu6lI6wdXsaprwJNexJLqGjDoxeeh3jktrB1EyaALk2SOr/Foy51V7dhkYjkTL4A1ja3AJrp4ehS+sOByNvPxOIdm2apMNtnZV9z8e0iPzbPbWjDX2yDWiVrMODPZIkK2oGNTbh8hDBtGOaHtO7xj8pYDgTWlkwLNeElsk63NTBhrEtzMi2cOieacAdXar3f3Mn6cRpYPLR2vEhWNreIamvC3g28u9kQ7A7YDVOGqX4CsCassGZc2p5RARBEIlPnd+NzZgxAwzDYPLkycjI0HZzW1RUFNzumWeeqeUREgRBXDhYWt0IS5jIpE/tFHx9hmspWcr7waUZMMmYRjIMg/GtLBivEsFyoWPSMbj13EPx7M1l+PlYtZjiYvwPi2oCWDjGvHFgT0gzjCuRZvBh1sWNAABbz7rx/B8lovqbOtowtoX27y88kpbV2xHurJoycC4srW5E4XdDAQBORjmaWCuDGhtFWcZ1Gj0DPY0mInX4ghrtmzWmIDVkIiMeMAwLW5fHYevyeFz7jRVdSnukX7pMVGbKqxaEmLTeil7HgcRhupBl5vr0nkgf/SsAwLkkctby2oyys+pZLBgrn0hOC6E+zKd10Wd9f7JvMrplSqP34kmu2Q1A2wqGMS3MmNqx9kWzuiLj8i3Qx3WJusyBzurA6KTXseT+b4Jh6+bRSmdrhrRRS2Trkvr4zzH+t7cBGYvcUJuDi5uZUeHh8dnuSlEbI+f3JI9EupnDo71TlMfJMpjS3oYpKqtIagOLnsXd3cTWJDd1lLZLM3F4vHcyXllf/UFVsmlIHblEdM2ra3hOg0jbAOwOtJLMFyD72pP1PQyCIIiEoAEslCAIgiDqg2K2CVZY7hSVpfqOygq0RPSEC1FFXB526kfgNBeF8MOZYGp6uebmGfpqUdguswwxKYrESgBQzmZgs2EMjnF+YZ/hTHDBgp364TjNtaxuyBrhgw579ENwRtdaobfY0WmMpC2PMfKREMPLCFQBthsuAQ8WDCcvElawKRH7Nyew+OCFAQVcO2wxjMYyywNRbx9N8rJYYSVTJcqUuKJMdZ/gyImnNULwQgBwQNcHB3R9IABgGA6Mzuq3u9D3w0Fdb/++w/yX6xuHIH8Ohh+DcmJssyS95ijIho49LPq3kk0Fo5f34a8rfGzkyVK94K6DkdQcK8ojthFIkiAIggjSINY1eTweACBPWoIgiDrikK4XZiUvhIsVP/Cm8AX1NKLzD4NQhVBP4K3GMdhqlPoMqsGwRphyLwcKtbVP56qjhcIfTAGAi/I56QfrY8HXV5U/ioH8cbyW+j1O6dqBE1y4pexWNALAcEZ8aH8Lm0zaBWU1wjOIc0phnWFsEnqjftLAnF8cg3Kis72GwZiT/CkeZbfK1lciJWL/Zk7b91kfrDDfWaPjuC6Sc3FQTvYXTomjYQg9WmH0cRZpeR++sL0YTHg4pOodTGd0AOPDQts/sdrsX4kyouot3FbPwl44VUoibdgEoZxIm6zudHNeEZ7DzMNY4OWSULvx7ur4uMgiLcdXAqjbCOVYSGJKUSmoR+vvNFBycIIgiAANYtpq06ZNAIDMTJkMqwRBEETc+db6fxKBFgCO6zrJtCZiQVe+vcZ9CKwRhpzhmtun4XTwtU0nFcKsvtg9bn+y3Iv1psk4pWsHAPAxRnxifx0AUOozx02gBYBs3wHRe62i1AFBWVwktLOfV4/23m0Yjv1sV9m6SiaykKWv2hfTuOqCmh7HVtYTp5Eow0Qh0mb4DtfiSOoeXkMEYjRUCsagQAsAKy23oYqxoYK3BgVaAPjZcncwW32i4FQQac1homSGWfo42JI9WBtDSkhsrEtSVoH6Fdx5NrIfsM5XVgcjqTnJcp4bYewwXlwHIyEIgmgY1Hok7fz582XLv/rqK6xfv151W5fLhf379+O9994DwzDo00c52zBBEAQRP/YYhsqWu+OU9IkAWjN7AHSuUR9e6HHSqX2+NcV7NPha7ytBS/dqHDAMAAAk+06glWcvAHEyrevKHsCnSW9E7LuQa471hjwgJGdRJeu3F6gyNIOsOWKMDCh/C8A7wfcctEUDGviquI3hQsaMyoht9povRg+Zcg9jVvSzDdCcPQJAXuStS4ZWvY1fLbdHbhgFFr4QQG5c+wyHE7SLtENKXwGwsPYGU8e4YEI8192V6/IAFInKSrmmcIIHUCIqr+CykEi/kDwjFWnbuVeA8Y0FQhJTCZ5y9HYuxHrT1QAAvVCFniWzALxdV0OtVyx8EcI9nF0abFlqE7cGT2kToksQWF/o+MrQRUMEQRBEBGpdpJ02bRqYME8jQRDw17/+VXMfgiCAZVk88ED03l8EQRAEkYi05qKLFmzvXo5dhpGiMhfPYf1J7cuVk9z7g69551ncVH4X8q3/BzdjwaWVr4GDNDlnH9dCVFak4UfLfahi01T7Z3UmANJIQW+cF+4kc2KRkNUqSiV1iOs4LlQ81jZAhCAur8ItJs9EXkRsQXEsw4o74ypfiEmkTfadQBf39/jNfIuofETVW+DdV4Kz1q5Iq/V8mFZ6K3KztScqTCT+frYznsnYJil3+eK7AJyVEZd8ggCdTIXLm1g2HQInPdemlN8PwT0I0FeLtN6SbZhY8QyMQiVK2CYY5piLJGPiL6OPG+5CGIQU0SS0s54npF1CZL8JC9MwJh19Pk8DMVgkiJqxbds2vPzyy/jll19w6tSpoGXnxo0b0b179/odXAIzbdo0fPDBB2jWrBkOHTpU38NJCOrE7kAQhOA/uTK1f3q9HoMGDcLXX3+NYcOG1cVwCYIgCBUEXntSGkIZwVOBHs4vI7YbWTUTr5/Jxp2lU9DNJc7m7RJ0WHdKulRTCZtzZ/A17ypECl+A68sfwM1lt6Oxbyd4jzTalQWPixxv4cXCDujqylft38fLixSeOB4ybd2/AIz49sXr0yaO8Ky2jPeEOi4h8hO3W+E74Vl1kbaF5w8I7sRYxmuAQ9M5Gs4A54cYU/mSpDyJPwXeVSSzRXzRYv8x2PEeuru/AWfOrvXx1AZJwhn860wTSblT47VAK3IiLS/IH98VngRLwhaWvK+3cyGS+VPg3eJJEE/xVliFYlxV8X+4vexGtPWshKdEKoCfr/CuQph4cXIrRz3f5jiFyPHgBsFRByOpOT66ZyTqkRUrVoBhGDAMgxkzZtTafv7880/07dsXH3/8MY4dOxYUaAkiFmp9XuvgwWpPI0EQ0LJlSzAMgx9++AFt2ih7wzEMA5PJhPT0dHAaszYTBEEQ0VHp4fFHgQtZFg6dM/yRG0pCW4DS32+HIWcYTM2uBBuWpMVbcRjuEz9C4N0A74YhZzj0ad1qbfwNEU/hRngKN8BTtBEpfGSBxMyXBF/7k41V81VhG8hFriphK12Nop8mwZA1CKwpQ1JftuZe8M6zYHVWGJtOgM7eUlTPQF2EkEsUX+T04ZPdFZrHGAkGApwHPoG3x/PQ2VsAADy8NnHEJRiwvdCN01U+9Mk2wiaTPE0LO4vcOFjqRdcMA3Jlku7EwlmHD5vPuNEiWYeWyfWbKJUXBKw76UKJi0efHCMsOhZrCpywG1j0zDKg0hd5fJ6Q64iXF/DHSRcOlXpx0JOjup2JL4fgiZwNvCY4Dn2OkhWTYcgZDnvvV2HI6K3YNhYhxCA4YBKkx7ybMaNy2yvwVRySvX7GC1aIfE1gBb9w4i3bg6q978GUN0H2mpDIcPBCJzjhDVnW/91BBzql61HlFdAxXY9G4VmhooRlpCqtTwCcMlGz+0u86JheNxm3BEHApjNuFDl5MACsegZ9coxgGQbHyr3YXezBCU+KaBvmnM+I4C4JlvmqTqBs9V2S/vnKo/A5z4AzRc4H4jq+FL6qEzA1vxKsXurL6y3dA9fx7+GrOgZD1iAY8yZIVlnWBu4zf8BbsgPGJpeBdxXCdfwH6JLbwZg7Nrh/QRDgOPAxTMJtKEP1tSn/oAOZZg6NbfUTAqolkpbhG4bdgaAxJuzzvZUwcgzGtYyvrzRB1AV/+ctf4HA4kJSUhJdffhm9e/eG2ez3lm7dunU9j87PjBkz8OyzzwKAKHiSSDxq/ZenWbNmsuWNGzdWrCMIgiBqH7dPwOMri3DW4Re4butsx8XNzHhvu7JAYhCq4Nj3/rl/85B+2c/BOl/lMZxd0guCq7B6A1aP9Et/hiF7UK39HQ0J14kfUbTsMuCcQJJijuy7aRGqo1t1Qs0ysdv4s3Ad+RKuIwrRgYIXFRv9dkTMpr8h4/It4Q1U+z9cJo3gu2t5oUzLmuAfw5nPWyLrqiPgrHkiQVCN3SU+/H1NCQBgsbkS/x6WDgMXnViw6rgT/9nkj/TUs8DfB6bWWFQtdPjw2K9FqPIKYBngid7J6J5Vf7nFP9hRge8P+cXJL/dVQccCZ85dJya1tuBQVeSI5B+POHF7F3/yndlbyrDyuLaIb5NQAd5beyJt5c6ZKPvjfgCA++QKFH7TB6mjvoMp9zLZ9uETI1owCA6wMhMabsYC17Fv4Tr2reT6GU+qNv8NMC5SbcOei7Z1n1wB98kVKLc0RubEXbIiWyLjDfNdXXbEgWVH/MeukWPw4qDUuE2kBOAFAS6ZSNqPdlWgW6YBTZNqX9hbvLcKi/eKbV9G5plwUVMznv69GP5LYoqoPjDJxp8TaXlXMc5+0wdK1/WqXW/B3v1vquOo2PYqytc/7n+99WVkXrENDFv993uKNvv3wfsnDirxKqydHkVSn1e1/aEx4jj8BUp+ngy5v83W7RnYe/iFisrt/4Rj3zyYUq4Vtdl8xo2HfynC3wemom1q3U+aaVmtAF/ii7SCIIDXaEi7cE8l7HoSaYmGh8fjwS+//AIAuOOOO3DXXdKJL4KIhjqxOwiF53n4fD507NixrndNEARBhLDimCMo0ALAO9vKIQgCVh5XvvFv414ZfO0+uQLeiurM4M6jS8QCLQDwHjj2fxi/QTdwytY+GBRoASDFdyLiNla+enn0Pv2AGu2fg/Zlh4KnDM4Dn4rKPIiccbq20YVECZZv9HvoJrPRR+qedfCqx7oSXx+oFu08vF+0rSlf7qtC1bnIPF7wi6T1ybLD1dGjxS4+KNACwBf7ohMt3T4Bv2kUaAHAKFTUaiRtQKANpWrXfyVlgSgTA6KPpNUL8sdEuu9I8LX75Ar4Ko7ItqspbMWuyG3CLBH4qhOo2vOOQuuGicsn4KejNVsS7pWZAOIFZVuF0OtDbRIu0ALA8qNOvL6hFEpzVsy5Yzog0roKfgRfpfwbpFYXICDQAoCvbDecR74S1ZetfTAo0Aao2j0LglC71hAlv1wLJfE59J6kcsfrAAAe0lWbAoDvD9WP72uVL3IkrdAQRFpvBRr7pNcjCy9v++JOMMcQgtDC2bNn4Xb7gyjatm1bz6MhzgfqXKQlCIIgEoM/T0mjMgX4E68ocWXFk6L3vONU8LVj/3zZbar2zIlpfOcj3pLtovd6RBavWnlWB1+f0cW+ZGqw472ot/EUbUJoWuYk/rRq+2Z1EEHW1vNr8LVj3zwAQCfDYSRrELzD2VYYfWTyobBo4ViE3nDChaQTlfXr4RdPW88KDx8h/lqMHi7AV7OI8WhxHftGUhaYcLLxZ6PujztnQTLY8W6wzMSXobdzsagdHz6pFQcEQUASfxqNvDtV29lkRBLX8e/iPp7aIJplmvkHaybSVnjk9+VVEJPicT2oCaETKuEE7WrOiXuhv99y8N7oJ4s8Z34XvXefXCFpI3gra22CIgivbPnhq6i24gsI0SVcI9m2q05on2CKJ4Ue8UqKyypfAReykubSylcbiEhbhVFVr4vGPqbyZdwq/EO2vVyEOkEkOi5X9XVCr69fuyri/KBeRNqqqipUVSnPTM6cORNDhgxBhw4dMGbMGCxZskSxLUEQBBEbSol9lOjA7kQaf0xUJoQkmtKn9YjLuIhq+js+gk3Qnmhosvl72fKxlS/i8ooZUe/fU7wZpmaTgu/7Oj9TbR/Jz1gr4yv+Llt+Zfn/YajjbUk5I7jxQMl49HEuAAC0c6/AmMqXcVX5o6r70ctlBYqSWH1tQ2noz6WPFF+sWFelIHIpwQluCHztCCOCinATjrfiEIDIExONrNLvPyCGXVExA2MrXsBgx7t4qGS0JCpX8NZClJ7gAwPgjtIpGFo1F72di9DX8amkmV3m72LYBvJw6dMuvKaZanZ+lsmE9nkFwKcgFOsTOPwlcFwKPv/5xbuliSJF+GI4DxlteUR8Zbuj77sWGV6VWJPJZ93ic7GZZwMeLBmLgY55uKLiGVxS9e+GIdL6nEjmT+OBknEY5HgfEyv+iiu7tsegsYn1eRMXJqFJxVasWAEAWLhwIUaOHInMzEyYzWa0a9cOjz/+OIqKpPfiM2bMAMMwaNGiRbDs5ptvDvaplKzM6XTizTffxMiRI5GTkwODwYCsrCyMGjUK7777LrzeyMk/XS4X5s6di7Fjx6JJkyYwGo2wWq3o1KkTbrvtNvzwww/BCc158+aBYZigHy0A0RgD/w4dOiTZj8/nwwcffIBx48ahcePGMBqNSE9Px+DBg/Haa6/B4Yj8e7xz505MmzYNeXl5MJlMyMvLw5QpU7Bu3bqI216o1Lkb+pIlS3DFFVfAZrPh2LFjsNvF3le33HILPvjgAwD+mfI9e/bghx9+wPPPP4+//OUvdT1cgiCI85ZoIxYm9OwPblU70cMVH5KAhLMp+Iwz9ZN4o2Gg/h30HXg3sPSR4HsTXwonm6zY/qqLbsLifLH4Mjz1OC4+80ZMo/OV7YHO1iKkRH28lVEKckr0cn2OJbZnRGWDHO9jiPN9ccPAscV7kMYfw/Xl9+P68vthan4NUod/hmKnD4tUPHENUYq0vIwwkxQHkbYh09G1DHnecO/iaqpkEiypwcHjTzxYC/jKD0ZuFGgbFGnVow2f6puKe38WH2Oc4H/A0sGNix3/UdxW8NWOSAsAqfwJTKp8GgCwzXAJ1pqvEzWTFZ+ZhiHS8h7tEZ6pxhqKtDLZEH28AJ9CwKotgVXaapHWL+6FJhCTIyYRUKNI6y3dDWOTS6Pvv5ZQS4pZ4ebjMhmnFaeXR7lX/Dmm8UeR7duHvIqQa20DEGnh9Qs4Tb2b0bRiMwDA2vYtMKwOlzYz44fDYoHn5k61k0yRICLB8zxuvPFGfPTRR6LyPXv24NVXX8WXX36JlStXIidHPflpJDZv3ozLL78chw8fFpWfOXMGy5cvx/LlyzFnzhwsWbIE2dnyyYU3bdqESZMm4eBB8T2N2+3Gjh07sGPHDrz77rs4ePAgmjdvHvNYjxw5ggkTJmDz5s2i8qKiIqxatQqrVq3CrFmzkJ+fr2jzsHDhQtx0002iaONjx47h008/xaJFizB79uyYx3c+U+dPzgFVf8KECRKB9rfffgsq/RaLBW3btsWuXbvgcDjwzDPPYPz48ejcuXNdD5kgCOK8JHzZNgB8tFP54TfLwoE1JItcTV3HvoW5+VUAAG/ZPvkNhcgzwhcu6iJheE4rPVyI9rGMF2rwcCnwEosGNYplBA01THwZnGySpNzOn5GUORnlhEbhop7WiEC9Nj0hSKHMUuKdRR7M216OPLsOJS4eXTIMcUk0s/RwFS7KM0PHMqjy8Fh2xAEDy2BUUzP0KsnONp12YX+pF72yDGiukNDsZKUXv51woZGVw8BGRlGm9Wgz/mb6DgCQn0CY8u1pdEqP7rPQCW44D3wCT5f/gz61S1TbRsJbquzVKgiC6HNwHvJbEyTxJ1X7NMp8F+F+r0oULb1ENWlZTMh4fXKCNIJY7hwLTfiUyAhRLMPfX+rFX34rQvs0PSw6Fo2tHM46fZrOJQAolYuk5f02HnLYDTWPzq8tAsnsytc/Cl/5flTtnqXa3nUsH57ibdCnVj97uU7+AnfBTzA2vhj6TKlHOhMyKSt4lSOsPIV/Rjv8uFL8yxR4zq4NvhdUFpeeqvLVqUgrZ3eT6jsmKUvkSFrBW4Wq3XPhOLRQXMFwweuMnD2S/QKf9CTqj6effhq///47rrjiCtx0001o1qwZTp06hf/+97/Iz8/Hvn378NBDD+HTT6tXptx9992YPHkyTpw4gUsv9U86Pf/887j88suDbbKysoKv9+3bh2HDhqG0tBRJSUm455570LdvX+Tl5aGwsBBff/015syZg3Xr1uHyyy/HypUrJfYJO3fuxJAhQ1BR4f8dnDhxIq699lq0bNkSPp8Pe/bswdKlS/Hll9UJgq+44gr07t0bb731FmbN8l/3t27dKvkMmjRpEnxdWFiIwYMH4+jRozAajbj99tsxbNgwNG/eHBUVFVi6dCneeOMN7Nu3D6NHj8aGDRuQnCy+B1y3bh2uv/56eL1eGI1GPPTQQxgzZgyMRiP++OMPvPjii7jrrrsoV5UMdX43tmbNGjAMgxEjRkjq5s6dCwBo3LgxVq9ejdzcXBw9ehSDBw/GsWPHMGfOHMycObOuh0wQBHHeUeL0yS6xVvPvy7RwqDCIf4Ad++bB0v5ucLbmcOxVTjrjqzoJzlKz2efzkSI2T7U+PFpLLrlJJNQePrXgq6z2DmSicheNjFGogBNikVYvVMkmOJMVaQMTAOHL2M+JtJHkkmjtDp7+vVi2/LtD1efNoj2VcckI/u62Chwo8WJ6Vzue+6MEB0r9f+uuYg8e6ikfTf1HgROvbSgDAHyxrxKvDElDE5v4Vq/czeOJlcXBxEclThvGhmTTXnYkOg/PDJ8/ksPGF0pEWp8AbDmr3WIAqPZzLcwfgMyJu8BZc6PaXg2vyhLryu3/hK3zYwAAT/F2OA/5rTOSI0TSygn9rEpUXjjFP45G6ogvYGo2UfM2agiC9NxxsdLoNPlI2gYi0kYRSQsAB0q9wfMnlN3FHjyocC4FKJcRaT28gMV75aOgEzmSNnQlhJxAyxozwLvEHsxnv+6BzEl7oLO3gOvkLyj64SJA4FGx+e9Iu2SpdBchkbSlq5UznDv2z0fKkA9i+Bvig/Og2AKkQNdBse2pKh9apdRdlPnLa0tE75N8p2CQmZ5NZJG2ZOVUOA8vllaEXJ/kRNpoV7ecr/CCgAp3A/dBigKbgQHL1O93//vvv+P555/HU089JSq/7LLLcNlll2Hp0qVYvHgx/vOf/yAzMxOAX4DNysqCzVb9G9ukSRPFoMKpU6eitLQUPXr0wNKlS5GRkSGqv+SSSzBu3DiMHTsWf/zxB+bNm4fbb79d1OaGG25ARUUFWJbFxx9/jGuvvVZU369fP9x4440oLCyExeK/t0tJSUFKSopIMI4U+Hj//ffj6NGjaNasGX7++WeRpQMADB8+HFdddRWGDBmCAwcO4JVXXsELL7wganP33XfD6/VCr9dj6dKlGDp0aLCub9++mDRpEvr37y+J1CXqQaQ9fdp/U9iuXTtJ3ffffw+GYXDfffchN9d/U56Xl4f77rsPjz/+OH755Zc6HStBEMT5yv/2R7/M1sgxKCnZISl3Hc0H71QXMpyHFsDa8YGo93m+ExC4lMiycABnCi5r7OBejvWmq2XbWnXyN7gtzOU1G2QIeqFmSXjC6er6Fistt4nKurvkfehb+5S9q8K9Rhn2XGbsCDf9hghRdKGUOH2aIoUFAG9vLcOrQ9M1963Ez8ecGNnULBKY1hS44OMFcDIPszM3lQVfe3lgwe5KPNxLLEL9fNQhykw/f2eFSKSNNlFOGn8UANDYtxNndS2j2lYO3bkEM4K3Eq5j38LS7o4a9xlALZLWeeR/QZHWdeKHYLlRUBcE5YT+NN/RqMZV/Mt1aHRTnAQXGZE2O7M1wnMUWmS8rhuKJ200kbRqrC5w4U6vAJPCtROQ96TdV6I88WBNYJGWlYmyFsGZpGWCF2Vr7kbaxd/BsecdUaR28U9XSNsz1X+/Y7+6CCv4XGA4o2qbuqK5Zx3+NF0pW1fojG6FSE3gBQFlYeJcMi+fFDNRRVqB98F55H8R2+XZpTJEpjlxz5+6pMIt4PYfo09a2VB5e1QGkoz1K9L26tULTz75pKScYRg8/PDDWLp0KbxeL1avXo0JEyZE3f/KlSvx++/+xIoffPCBRKANcNlll2Hy5MlYuHChRKRdunQpNmzYAMAvooYLtKGkp8d+D3ro0CEsWOCfqH7zzTclAm2AHj164J577sErr7yCefPmiUTadevWYf369QCA6dOniwTaAE2aNMG//vUvXHPNNTGP9Xylzq+EZ874l1eFWx1s374dZ8/6L0ahIeIA0Lt3bwCQeHcQBEEQsbHuVHRCzBWt/CIO75I+2Au8C1W71T2F3Gf+iGp/FwqtPauR7CuQrWtq16F1ig4pg6sfdC+t/JdiX7d38f+uXtXWGixLMjAY0Vz+RlARFU/BRr5dSPcdiq4/BQY73sPYqhcl5deY/Rnmr6h4Olhm1jEY2V4a6cQaz/1t4R6m58QmU4TAY7te+0OBMwoP5yPlUqFMjcZW5YHKCUIKK60l5ZvOSM/zrWfV/V4LZJbaqtHC4xfPezk/j2q7HO8usDJWKIFIWgDwVUmX+NYEb6lyJG1oEq/QZdqRjhAdy2BAo2qhqZnnTzT2BSazGNh7vhjZpzOeidJkhLjO3W9Anr16DH2dn4KViYpn4xi1XJuERtJOKbu3Rn2ddagf7+GCGQDsLVYWaesiEFDOG1sLRqFStV6fLp/803Xcn5DScUDs1aiW+C5iUjKo2yHUNe09K6AX5P8eb5wSYmqh0MFLzsz27hWybRNWpPWUabK5MnIMhjSpnhjIs3Oy0bUEURdMmTJFZHkUSq9evYKvDxw4EFP/X3/9NQB/oGKXLupWTgFBc926daIkYt98803w9YMPPhjTOLSQn58Pn88Hi8WC0aNHq7YNjPXEiRM4cqR65d2PP/4YfH3zzTcrbj9x4kSkpKTUbMDnIXV+JeQ4/01ieIa83377DQCQmZkpibJNTU0F4M+ERxAEQdQcZxTJfO7oYseIPP+NtLHJpXCFRUj4KiNHjcUr8qkhIwiCX6wJiXTTwY1HvfdgW7uvkGaxYGBjE3455oTDy2NkUzMYhoG5xdVg9HZ4CjcgLXswpq99BnO4v0v6DyzHvLK1Bdlmv+/isFwTjJGipwAk9fsPeFcx9Gnd4DrxI6p2vSnbjoMPj9rfx1+qnpWt10qndD1uyW4Nvuz/8M+cKjy63j8J8K+haWhsWoSqPXMwHjo0SzajwMFicBMTssx3oqx8M6r2VGeFFs49zkojaf2fRaRI2WiW10UTdRstcr6mAU5WSUUkv2gQeTyMTBu5v8PtE2Dg/N63pVH6ClsEvxijj8IteVgTI25MOoXH9uSi2Cdeis8J1SKyr0p+AiNW1CJpwYeKCuLr41D3p/jVIE68BSDot3tv9yR0SHPAUXECAx1rYMy5GwxngjF3HIyNRsCQPQTOI/9D5XblSZa4IRNJy1mbYMaAVCw/4oCZAzqueFR2U1avvvQ/UeBDfk/6uhbhoO8yrObGxdTXqSofcmUi+gLInQ8FMudkXRLN73cokaLCdUnt4IL8SgYA4JLawFe2V30n544/d8HPEccjxHNyooZk+g7igZLx2Nv2XXxb2Fw04VWXIq3csTWm6mX5xgkq0vKessiNzjG9ix1tUnRw+oTgPQ9B1Aft27dXrEtLSwu+Li+PbXVaIKp09+7dmo9zj8eDoqKioE3Bxo0bAQBNmzZFs2YKyZrjQGCsVVVV0Om0y4UnT55E06ZNAVR73hoMBnTr1k1xG71ejx49euDnnyP/ZlxI1LlI26RJE+zbtw+bNm3C8OHDg+X5+flgGAZDhgyRbFNa6n8AUAoLJwiCIKJDa1SgiWMwsqk5+F7wSiNxnIe/iNhPtB6C5yW8RyKgZE7ag0ZJbRCaE/XiZmaEY8odDVOufzZ74JihmPODNOlPQOhjGAZDcqujU3wagpUM2UOhT/PfRLlPr1JuyJnRYtib0P9QqBjNqYXxLS2wZk0GANgBLBgbWquDrdPDAICBYduZW10vEmmDUYMST1q/3QHLMDByDFwKx3s0EWm1+eioNoqTMpGtWkUDuag+ueX5RU4fcqw6WUFYK4yMOCjH/T2SMKixCcBVyCwoQnGJOOJKh2qRlnfIL/ONBd55FoKrULmByvgNlnTI5QILfJY6lsGlzS0AWgOQTmAYsgfDkD0YnDUPZWsfjG7gUSLnScswHGx6Fpe3skIQeJxUSGwmNJAkj+G/JwOYn7AasYm0pyMc83KetOUqXpF1IedFE9UfSsSEdozyAkuB90Gf2kWDSOv/vFwFP6q3AwBf4oi0AJDr3YaeXZrh7C6jyPYl3Bu+NimoEH9HLZJYMNKfewAJHEmrIYo6gJ4LXDsJon4J+LfKwbLV10afL7b7pIDlZ7RUVVVH+AdWnTdq1CimvrQSj7EGAjLT0tKCQZpKZGdnx7S/85k6F2mHDBmCvXv34s0338QNN9yAjIwMrFu3Dt9/719KE8iMF8rOnTsBADk5lHSGIAgiGhxeHvf9XIhyt4Bcm38p2YBGJng1PnSEZ6qWXd6oQQV0n6QZUrnPjtFZZVqqo+SfaFC8B9IQcamvtiBiOKlIHECf2hkM6xd8tPizKhG7b6N4O8HtT+QlhNkdhHprmnVqIm2Mw4gzauMoqJQKK1oD6aq8Aq7JP42n+6Wgc4ZfuJY79wsq/SJttFYHoWhNlhUqEqebOSBcpA2JpHUd/x6lf9yPqp0zYcwdC95xEp7CP6HPGoS0i/4H1qR98l7N6sBfvxOCIJyLcBF/wHLWAEAMwr2KCFa++TnYOj+uyaNTEAQ49r4Lz9l1MDWfDGPji4N1nsI/o9qvCL6BiLRhKzOSOE/M6uihMi8EQcDK407sKvagd5YRPbP934EgCLKetGqETqBsPevG6hNOtEzRY2SeKeYowd1FHry9rQxHy324ob0N5ihsWkLxIYLnsIotx8n52h4ZK7Y8D1/VcTj2vR+xreBzompP4Di+UnQc1xcMawAX9j3FGLgcE+ETZY2syp97woq0UUTSEvLYDAzeHnXhBKfZDOd/BHVA3O3WrRs++uijCK2radKkSW0NSZHAWDMyMqKKcJXzrqXo+Nioc5H27rvvxrx583Dw4EG0bNkSbdu2xY4dO+D1epGWliZrHPzTTz+BYRh07NixrodLEATRoJn2Q3XigWMVPhyr8EWVGChcTBO0hGUq4CnaHIzWvBARfDIiLRe/CBLFrMjhfq0yiEVameQx5+CS/DG/dgOD4hoEQSkLyhGQEZsEr1NidwDOEHxZoiImR/Psfais9gQstYjeU1XS8ctF0laoiEnP/VGC14enoZFVhwqZEOj/bCzD+5dm1kikZTSLtNWv00zS7zPUkxYCj6qdMwEArmP5wWLP6VU4++1AZE3ao3l8qlYH53DsmwdLG6l3mtLfFv2zh7JYWrHxGfCO00juPzNiL46976L0d38ykao9c5ExfiP06d3BOwtR/ONY6QYi8U1l0A00ktau9wGRL3OyrDjmRNdMA/672b+EdfkRJ/4+IBXt0vRw+oSoVwwEzs0j5V48/0eJv8+jTgiC/CqJSJyp8uGZ1cXB9x/tin1Vio+pm8c+LQItAFTtmYPK7a8FXweO43qFNUDHiq+DdWp3UNHwRdpo7A4IeViGqfdEWkR8CSTyqqioQOfOnWPqI7CqvKAgvlZQ4QTGWl5ejg4dOkSMhJUjYFdaWFgIn8+n2sepU+rJpy9E6jxxWM+ePfHqq6+CYRhUVFRgw4YNcDqd0Ov1ePvttyUJxUpLS5Gf778xD7VHIAiCINQRYkwuEkqKUfwzYWo6Mea+HAcX1HQ4DRr5SNr4ibScgkgbKsAqEepFyRpVMsKeE3wHNFIWcrWQaoxNpZX7WzzFmyV2BwyjLUt9NKfIwdLaFGmjay+XzEgt4zwAbDjl/+7klm8HrDKKnNGJtBa+WjzK0JhQLjSSNlUms1toJK0avrK94D3qiZBC8VaIk30whlRJm6o9c/0vePHnYGHkxZBok0RFOhc1LREHggJtgPLNfouFiq0vye+XrZ60UItqERpIJK2v6rjovUWv7XyXw8gxmLlRLCp9sMMv2Fao2BooETi9Ptgu9i0M9Bkt+QeVk3NFSwvP+uBrS3tpwjXWlBm3fWkhINAGKFv3cJ3uXw6GM0ojaevQ7qAobFIxy6LyW5moIm3Y+UkQBNCjhz8x44EDB3Dy5MmY+ujZsycA4MiRIzh8+HDU22uNag2M1eVyBf1poyWQHM3tdmPz5s2K7bxeLzZt2hTTPs5n6lykBYCHHnoIGzduxNNPP43bb78dzzzzDLZs2YKJE6UP/ytWrECfPn0wdOhQjBsXm98UQRDEhYgjDmv0hueJxThruztj7stbuKGmw2nQSPx8GQ5gYxMX7u4mFnsubqococUakmFqIU16FIBLagMmJPLUmDtGsW0gynZMCzNSjbHdQvRvZERyjNvqUmRW1PBuid2B1s81mmdvbxwmPZRQsmNQ4rBMVG+kiL/ycw0qPNJ9uc/tP1yMyLVVCwRmGZuNG8rvCb5O448hz7NRfRAAkkK+e7l8aRahJGIfAaIRA/gqsb+tuflVkjaewj8heB2S5fTdDftk+8wwRzfZYGx8CVhTlnKDGEUXz+nfAQDuUysldawlF4xOfH2wtL9bvqMGEkkbbumgT+2E8S1jm/By+wRJRP3+cxMynhgiKANRl9sKxZMmsXp4y53rsdLG4z8+GGMa7N1nwNzmlmCdscloGDL7xW1fEjRYbnjO/hGXXfGuosiNZDC1nAKG1UEXNlRfLV77w/GE/RaYdQysnR+XbZuokbSeImVBhiAuVCZMmADAH0DzxhtvxNTH+PHjg6///e9/R729yVT9TOdyKS+HGz9+fFDQff3116PeDwCMGjUq+PqDDz5QbPfll1+iuLhYsf5CpV5EWsCvrj/77LOYM2cOZsyYgXbt2sm2u/zyy/Hzzz/j559/JlNhgiCIKChyan8q7JNtkC0Pj5hkTRkwyYgbmohj1GhDJDySltFZYvZqGpZrxtP9UtAlQ4+7u9lxa2ebavuUIR8iZfgiGHKGS+qSB74jes9Zc5WFpHPLZU06Fv8cmobWKcpLMce2MOPRXsm4v3sSPrwsEw/2TMKDPZLwQI8k9T9OBYZhJQ/7giBII2k5+eM5nGiizV21aEwYbbZ2OeEmUhI0L+//e+UiaQOJiMJFqT45Rrw0OBV3dLHj1SFpmH9ZJi5uakaujcP9+n+io3u5qP2DJWNxfXurrI1BgBRDdZ3ckC18ierfEUp4RKUafJV4eSBna4HMKw+ENfL4hVqPOOqxkcmBAY2kXrFZUYq0nCUHGePXg0tqI1svse3QSCAin3dIlwzqUzpJypL6/gcpwxfJ7D/xRVqB98FbJJ4M0Kf3wvXtrXi8dzIuyjPh2nZWzaKt2lkTi7Dqjt0xRBZLBP/ZS6OwUEgf+TWSB76DzCt2gDWlI3nAXKSM+BwpQz9F6kVfQpfcoabDlYWzt0L62DUaPNjjs7zbWyY/qaKGselEpAz5EIA/EaCovzqMpA2/ButYBvZeLyN15BLJ7zeJtATRcLjkkkvQt29fAMCrr76KhQsXqrbfunUrlixZIiobNWoUevXqBQCYOXMmPvvsM8XtCwsL4XCILepCE47t379fcdt27drhqqv8z3qfffYZXnvtNcW2AHDw4EF8+umnorK+ffsGI39nzZqF3377TbJdQUEBHn30UdW+L1TqTaQlCIIgahc1L85wrm4nFfnkotwAgLM2i2k88Vza3xCRiLQ19KPtnGHAX/ulYliuOaLYy7AczM0nI7n/LJk6adSpTsk7OMTb0mZgMUolgtekY9Anx4hBTUwwcAwGNDJhQGMT2BomEWAMKWElglTc0mh3EE2gnCvO4ksAQRCiztZ+uEwq5kXqocLDw+kTILcrn+CPAAwXI3Qsg5bJeoxsakamhYORY3BbFzv+NSwdHfXSG3wOPkxoZcVzA6VWAoDfHiA0QUiljPphEbRHwYVHx6rhc4jbspbG0NlbQJcqPtbdp1eBDxNpGb0drVKkx5TqUmQFOGseLG3vkK+MUSQNiF8+h3QJpS5V6n0XuB5Y2k4XVzSASFpv6S7JtVSf3gsMw6BXthHTuyZhYmsrbuhgw7xLa5Z4J5ZI2li2UcMSHtYZglXH4KaONjS2ajsOTXnjYGl7KzizP+iFYTmYm02CueW1YDgjWKP8eVtTkgfMhiGjj2pisnMDisv+fOXiaxNnbxVxG2uHe/2TgADCFw3UaSRt2CVRzzJgGAamvHEwt7lVVJeIIq0gCPAWb6nvYRBEQvLJJ58gLS0NPp8P11xzDSZMmICPP/4Ya9euxZ9//onvvvsOL774IgYMGICuXbvil19+kfTx4Ycfwmazged5XHfddbjyyiuxaNEi/Pnnn1i7di0++eQTTJs2Dc2aNZN4vQ4cODD4+qGHHsKvv/6KvXv3Yt++fdi3bx+83up7gFmzZqFly5YAgEceeQTDhg3Du+++izVr1mDjxo348ccf8a9//QsXX3wxWrdujc8//1wy1rfeegs6nQ4ejwcXX3wxnnzySfz2229Yt24d3nzzTfTq1QsFBQXo1u3CzVeiRJ0nDpNDEAQcOHAARUX+G/O0tDS0bNmSssERBEHUgOIoRFq5q61JQaXVkn1cfh8N85ruqzyO8g1/geB1wNbjWejlltzLwDsLUb7xr/BVHYe10yOSxGH1IlrLPgRLvxdWxq8TAJiwh2y1CFCjkspfY8T9lm94Cp7Tq8QtNNodRPPoHa2Q+tdVRShx8Tjj8J+HPTINEOAXSzulG3B1Wyt0LAMvD1nhVI09JV74eEHkQxxJR9h+1o1yFY/NBbsrg7YHAWQcDqpRSUKk9N0nG1iRSF8pY71grYVIWsHrhLd4q6iMs/gjSgxZA+Etro78cp/+HeFHBqOzQc5GOTsGkRaAJPI7WOw8haq982BpMy2q7rwl23F2SR+Aly5f1KWoJChhxd9h1a7/wtzqxtpd9l5Dwq0OWEsuOLN85L+JY8Ax0Z9fAFDo8OH1DaVRbxfvJFNqkbTdswzQsUxcrI2CcGagBglC5dBn9PG/iCTCRhJxNeKVEWnDhVsJIeckFzbMVSdcsOnLccbhQ69sI0bmmcAwDHy8gPyDVdhe6EH3TAMubW6WnYT08gIW763EwVIvhuaaMKixsqd7+OS6PuQjCU/q6S3ejKJlo+E6/n2wLKnfm7C0vysoOGuFd5fh9OLmENzFYK15yJq0N6Z7PV/FIQiUOIwgZGnVqhVWr16NK6+8Etu2bcOSJUsk0bKhJCVJV5516NABK1aswMSJE3H06FF88cUX+OKLLzTtv3Xr1rj66quxcOFCLF26FEuXLhXVHzx4EM2bNwfg1+NWrVqFq6++GitXrsSvv/6KX3/9Naqx9uvXD/Pnz8e0adPgdDrx0ksv4aWXqr3zdTod3nrrLaxatUrVt/ZCpF5F2h9++AFvvvkmVqxYgaoq8cOrxWLBiBEjcO+99+KSSy6ppxESBEE0XIqjSAIkK9IqKTRcbEmj+HBP1gZCya/XBb0e3WdWI+uqI5oegMrWPQzH/vkAANfxH5DU7z+i+voRaWW+U5kyxYezMFHnrEP5GKstkZYBI5LQwgVaAIBGu4PoImmjE0L2loijEjeeqfbN3VfihYFjMLmNFUcrYoteXLinEte1r46AjzQlc9rBo1Rl4ubrA9IERXq1zFgqQriiSBvmRSwn0uqgLXEYoF2kLd/ynKSMNTcGABiyBqFqd3WEufv0KuhTu4jb6u2yQliWJbbIP0ElYrV01c3QJbeFIWugbL2SJYKnUD65h1wkbRAZob3oh1HIvvZUwq58CP879Rm9FdsyDAOrnpFNtKcGA+CNjWXBCZZocPOQTHbUBKvKTEnvbP91Op4iLaOzQIhRpGV0FtkEmazhXGLKiL+b8fnNCBdkdfZWEa8qob7m4YnDAOCHw/7PZMNpNzLNLLplGrHqhBMf7/Lf12w640aGmUOfHOlv55IDVfhyX1WwXRMrh+bJ0uvnoVLpuR16DQ4XaQGIBFoAKPvjXnC2ZjDlRZfHpfD7YRDcfl9IvvIoildcjbSRX0XVBwB4yeqAIFRp27YtNm3ahIULF+Lzzz/HunXrcObMGfh8PqSnp6Ndu3YYPHgwJk6cGLQLCKdXr17YvXs33nnnHfzvf//Dtm3bUFRUBJPJhBYtWmDAgAG45pprgoJrKB999BF69+6NxYsXY/fu3SgvLwfPy//W5eTk4Ndff0V+fj4+/fRTrF69GidPnoTH40FKSgratGmDAQMGYMKECRg6dKhsH9dddx26deuGl19+GcuXL8fZs2eRmZmJQYMG4eGHH0a/fv2wapXMffwFTr2ItG63G9OmTcOCBf5M33KecJWVlcjPz0d+fj6uueYazJs3DwaDtocugiAIQj5BkBIsA7RP02NXUfVDwtgW8g/pnFriGxUaYnSF4HOLkvHwVcfhPrUSxpxhEbcNCLT+Dd1w7H1PVF8fIohchCxrkvq9K3lmGnPHit73zjHim4PyD/Qd02vnN1uSJEyOECGrfaoeu4rlha1opI14Ci8AsOWMG5PbWFFQGZuPwpkwgVyL4HxARgRQQ68S2MbJZYLn/PYXegUtJlzz7ZZpwMrj1Ut2003RiTS+8gORGwGo3PKidCznoi/1mX1F5YKrEL7Ko6IyRm9HtwwDPoF4osmkshRdDWOjUajY+IxivfvUSkWRlneXRLUvNZ9RRi/1CBW8FXAc+BSWtrfKbFH/eEt3id7r03qots8wcyhzRz8RslvhmhGJSg8ve54prUyJhFFBpOUYoHum/xp7RWsLPtstPjbtBkYUOT88V9vkqr3H8yhbc1dMY2UMKVJbH311dBXDcOrX3LjZHRwUvefsLSNuo0upnpiJdFp/uLMC3TKNeGuz2Bbli32VsiJt+Hczd2s5XhycJmm3p0R63CSFeHjLibRylKy8CTlTokue5i3aJHrvOvp1VNsH8JRsV603NpUmCSeI2mT48OGK+QfU6sJRa9e8efOochxwHIfrrrsO112nnNQ3EmazGffddx/uu+++qLbT6/V47LHH8Nhjj2neZuzYsRg7dmzkhgp07NgR8+fPV6yfN28e5s2bF3P/5yP14kk7ZcoULFiwAIIggOM4jB49GjNmzMDs2bMxe/ZszJgxA2PGjIFOp4MgCFiwYAFuuOGG+hgqQRBEgyXaVZdXtrYGxZVsC4uRTeUfCIx5E8Ba81T7snV7WjoedwPM3ikT8SZ4KmQahm8mFS7Do/5q6kkbC6wpA6YW1TeFxrzx0NmbS9qZW0wBaxT7OeqzBsPY5DJRWbtUvWzyMLueQVN77cwDm1vdFLGNPq178PUNHZSTqkVzUx2t3UEkAom+YrU7DD+/tfwt5VFM3ACA3aB8m2huNVVSln7JMgD+CEY5oaNHpkHyPifEMuCK1laA1b7E1lu6U3PbcAKCB2vOkdT5Ko+J2+ptaJakQ5eM6ui3WzqpJ+tTQ5/ZH4ZGoxTreZUJLSEKkdbS4QGwMkJsAHOLa+X375QmIEsUfBWHRO91ChNKAcY0j/46a6jBqnsvD+wvkf5uWCMkAFNC6bSe3MYKy7kf7HAB1sgxmNE/FbZz+0w2MJjYWtvnYG51PThb85jGysicuwwX6luu/tgZ7RJ9JXxV4kkWztYMKcMXi8p06dURaqaW14t+Bzm1FQQAjpX7J8jCv5oDpdomA/YrtPPIzNeF+l5rFWmFerzX8oVNohgaXxJMRMoY02Hv+UJ9DIsgCKJBUeeRtPn5+fjiiy/AMAxGjBiB9957D82aySehOXLkCG655Rb89NNP+Pzzz/Htt99izJgxdTxigiCIhkk0yS5YBuiaacA/h6bhZJUP7VMNinYHnCUHmRM2w3XyZwiecvjKD4CztYAxdzS8pbvB6qzQZ/SCLrkjSn6tFgQFV8MTaWWFLw1+6XLLsBm9Xfy+npYTpwyZD3fb2wHBB0O2/PIkXVIrZFyxHe5Tv0BwFYOzt4IhZ6jEK55l/GLA1rNuFFT5UOjwIc+uwzCNUVuxYOv6F1TtelO1DRsS5dkmVQ8D61+GHE5UdgdhS4qHNjGha4YBKSYWAoAX/ijR3hkAw7nIOl7mGOucrse2QvVIvvCttPwplVGmq7crhcQC0Kd3R9ZVx+A89g18ZftgaTcduqTW1eORGdCgJuLjwmZg8dLgVGwv9CDTwqJ5kh4VPZ9D+frHNY3PV3EQgtcJRhf98cacSy7H6Gz+CD4h5LMJ83ZldHYwDIO/9EnBjiIP7AYGzZO0+R7L75tB2sXfwX3qVzD6JJT8PBm+ysPBeiEscVko0UTSJvX9t2q9LqWT0gg176MuEQQevorDorJIguKQXBOaJ+twsNQD3Tnx7fO9lThWoRzBbuCYqOxN9Kw44dPOImm0f6yOBOGb2fUMnhmQijxbtXiXauLw7sUZ+PmYE0kGBoMbm8CxDP41NA1Hyn1olqSTWI0owertyLh8G9ynfgVnzoav4og/4prRg+FM4GzN4Cr4EaUrZSbLWJnVEywn/1p+75rGqIYg8JJJFs6SB0NWf+gmbIZj/4cwt74J+tQucJ9dB/ic0GcNFrVX9eKG3wpK7rpdU4cfb1ifoZNC/h3U3u9qvAiPdDfljYNpyIfwFm+GLqULOIt0UowgCIIQU+cibSCUuVu3bvj++++h1yvf5DZt2hTfffcd+vXrh82bN+P9998nkZYgCEIjvujt9JBj1SHHGvmngTWmwtxskqQ8kDUa8GdPD4V3Rbf8LjGQe7LWINKGLZf2dyUWBQIZ2esahtXB2GhExHacOQvm5ldFbKfnGPTMji2ZXCwwusgRjOGfbYaZwwkZW4FooljDRZue2QYMaOR/aN5dFP3S6MC+w4Xilsk65Nl1kUXasO20CM4VUXpzJqlE0gIAZ20Ca7vpsnVyGpecUGTRs6IlwnJR6IoIPLxle6BP66p9mwDnPHUZhvEv01a5PrHnJlg4lkGXjPjYePjPw4sAAKbmV6Jy+2vBOjWRVmskrTF3XMQEvMqRi4kp0vJVBUCY3QlnaxFxuzy7/5wKcKrKJ1mCHoqJY1AehRlKloXD8RDRd6fM9cAbYyR++HndPk0vu0rBZmAxvqV44i/FxCHFFH1YMKu3wpQ7GgCgD4k4DWBpdSMqd7wOb+EGUTkj5wUuSgYWKXFYzUVa3nlGeoycW/mjT+sKfdqrwXJDIKFZeB8RviqLjkGRU3qDpbbyQAvesC7DLTK0RtICgMB7wbB1+5gvCIJEpNUltwdnzgJnvrhOx0IQBNGQqXORds2aNWAYBo888oiqQBtAr9fj0UcfxQ033IA1a9bUwQgJgiDOD6KJEpTLSFxTWKPY/1TwlMJ95o+EzBzOOwtRsupmuI5WZ1nNnLRH1q9Vy5JMX9UxaVnZXnE/CZqYJ9HRIm6Ht1FavRrNPEa4SBv6AB3L6bOjyINr8k9LyllGW1TsHyddWHfSBbuBwce7KrFHg4fmryH+r1qwG+J7XVBLghQg2qRFrhM/qIq0Ai8fMcmERPWx+mT4VERaRh+7tYEWGJ04yt5x4GN4i7eBNWUiqf9/obO3gPvsOpStfUg+UZ4MrCEl5vGUb/gLyjf8BdlTSsEa/J6i7tOrUbbuYfDOszC3ngZb1ycjisD+bR6Br+oYjI0vRXK/mTFFPQcItzoAZwJrll6jI9EsghVLtAnDssNEWjk/+EqvgKdWFcHEMbi5kx25MmPYfMaFF9eWAgCyzCxu7WzHwj1iMTnSZ15XmJqMQUW4SCtndxAizEb87YzD3yaZIGU4WUsTNdQSLAJAoZPHbzLX0mgsqv+zsRRbz7qDSe2e6pci+a7DbReiEWl9lUehs/snMHhXCcrWPghP8RZYWk+FpcP9gM+Fsj//D1U731Dtx3n4S1RseRGewvVgTZnQZ/T1X5Ns0lWwfNUJCF6xHZQuub3mMRMEQRB+6tyT9syZMwD8BsJaad/ef4E/e/ZsrYyJIAjifCQau4PagDVIE2MU5vePyge0rij78/9EAi0AFC0bLYl+9RP5QZKXi6QN74VE2phgWC6YoEq+ASdZdqtTUGmjORTDPWmNISJtVZQ2Amqw0D6uf/5ZipfWlmoSaGOhppFh4WgRmOSyw6tR/udfVOudhxZG7CPciiTa+prCGJLEBbwHnsL1cB3/DmV/3AtBEFCy4mrNAq2/z5Qaj6t01c0A/EvIi1dcDc+ZNfCV70PFxr/CfWKZ6rb+ba6C58xq8JVH4dj7Dip3qNsvRCJcpOWszWISLZslxTdGJVWjlcC+Ei+2FXowZ4vUc9jlE4ICLQCcdvB4aV2ppF0Eu9Q6IzyJJAD45LyMQy0OmNq3Owj/7WUtjUUTMloo03A9/1QmErtcYaWC3GTXqhOuoEALyNvlhP8ORCXSlu8Pvq7Y/ioc+z+At2ijX6w9uw5V+96PKNDyzkL/eV+4/tz7M3Ady0fZH/fLtg+PomV0VrCWJprHTBAEQfipc5HWavVHtxQWFmreprjY72NosdADLUEQhFa0rq5kmfhHzAFiX9BQQh8eEoXAQ0govvL9Yp/KcwgyZZJtHScjthH42hHWLgRYFdGMs+RKhJtRTeVF3XAPQDW8YaHp+hC1pFVK7P6k4Ryr8GFIE+0P4/FOaBaKkrithQ5petX3Shiyh0S1n0iRlJ6z6yRljFE8gRQpARmrT1Ktrylqx7Pr2LcQ3KXSKNJIfWoUaXWpylHIzsNfAAD4quPgw1YHuE/9qtovX3UCfJg3t/v075rGpNinSxyswYVZ6mglzRTb48+YFtLrSOsUHRxRnoN7SryS68n2s1IfWzmS4zxxEit6GasAvvIoDI0vEZXZujwZfB0pojX8GIsFT/EW0XtdDEnQhkZx/Q3F5RMk3ysApMVgOQEAu8Im31hjuuZtfeUHgq8rt7woqitf/xjK1twdsY/yzX+XTZ7qOvq1/D7DznfO3jJuyeAIgiAuJOr8ytmuXTsAwIIFCzRvE2gb2JYgCIKIjNzDghyjm5thjmadnkZk/ekACLy2h9G6RFDIpi6EJRDyFyonnAnAOyOv/DCEJSshtKO2/NzW7WlJWf9GRuTapA/K4cnAohpDiH4Zz4jTNBOL1ik6dEqPn/BbH0xoaQkm0tGzwBUas8sbm1wW1X4En7qFA+88IylL6iOO6IxkoRGPqFTV/nXqkbqxXDO1jtnW7a8R2/gc0gjJSBHPvFyG+Rp6ZAq+8IRuKhH1KsQSfds6RYfr2tnQJ1v8u3ZFKys8MUyUVIRlMtR6Kbq4WWx/c7xRik6193wezDkxUZ/RD+aW1clDbV2eqPVxec78IXovJyZHom2qHl3Dk3ZpxCHzRca6eCg8b2M0x7s3RKQNJ3yyQwm5yWs1BI848ps1pCq0JAiCINSoc0/aCRMmYM2aNXj//fcxaNAgTJs2TbX9hx9+iPfeew8Mw+CKK66okzESBEGcD4QnobDrGZTLeOXd2KH2/Bb1GX3hObtWXKghErWuEdzyIi3vli431SbSSoWhcAw5wyO2IeRRSx5maXurpMxuYPGPIWl4aW2JKCFXPKNQp3a04YMdYj++a9tZ0SfbCDcvYOlhB34+GtkTtnumAQzD4Ol+KThc7sWZKh5eQUCnNAP+t78S+Qe1eba+MTwN3x504IfD0Xm8xoue2UbMHpWBo+Ve5Nl1EZOQBWAVBPj00b9B8FVB8Fah+Kcrqit8MhMpIYSfi5YO98HSWpyZnjVmwKeSkKu2E/BI7A7CiUGk1RpJa25+FQzXnMTpBfJRjry7FLxT6p3MR0hgJpsosoZWNxKxmo09iVv7ND12aUz49+rQNDS2ctCxDB7plYzjFT6UuHjk2nVIMbJYKnOO3d3Njrc2KyeAK/cISAkJ2NRqT5QXwU+3vjFk9EHWpD3wVRVAl9wWDFstdpqaXg59Rj94zv6h0kPsCIIA99lwkTZ6D3yWYfCXvik4XuHDo79Gl/DU4RVgN4SXxXbPYwtXaQHYe7+K8vWPRdxWdcWSxvPGVxbdqqfw+yXGkBzV9gRBEISfOo+kve+++9CoUSMIgoBbb70V48aNwxdffIHjx4/D4/HA6/Xi+PHj+OKLLzBu3DhMmzYNPM+jcePGuPfee+t6uARBEA2W8Ic+k0LSntpMRCK7PC8BRVpeKZJWRojQYlOgJVKFs+ZGbEPIE0siJx3LoGO6+OE0PBlYTbDLPFB3Sjcg165Dy2S95uX+xnPnKcMwaJ6kR58cIwY0MiHJyILTeK62TtEhx6qDWUOirtokycCiU7pBs0CrhiF7EIyNLwZnbSoqD4+uDMfnEou0+rTukjZK1ix1hZrdARCbNUo00b+cimWEt2wveJlIWt5VCEEQFO1fBFmRNvIElyrhkbQ1EGmjOSSb2nVB6w+GYZBr16FzhgEp57xo3TKrVnpkSZNohVIeFklbJTOB2lBhjWnQp3YSCbTBOnOW6rZa7ISk2/g/O1/5Pslxp48xUSnLMMiz60QJIrXg8AoQBAF8yP1XrN9tkowNlaK9S9i54K1QjqSV+17k4OU8hlUQwkRaVk8iLUEQRCzU+XSs1WrFN998g1GjRqG4uBjfffcdvvvuO8X2giAgNTUV33zzDXnSEgRBREF48Ibco4YxNqs0zcgJBYJHObqoPhB8LsVItcJvB0rKSlZMhrPZJCQPfBesMUV2Oy12B7UdnXc+oxZJq4Yx7IFbq0i7o9ANVwR9ySBzLoU+ZLMaEs4BUBUFtD7qBzwQa+Ipm7BwYeKX4IUg8Ireh+GRtHKCLGvKiNvwYoGJ5HkbUyRtfASSwm/6yI7PdfRrnPzA/5nrUjohZfgi6FM6BOvl7A4ief9GwhWWrIwJPxaiIJ7nhlvmOhJpfuRouVc0aXS4TOr9eX6iro6f/MB/7UoZ+onIKiEU59FvUPbHffBVHIbaVZE1ZUsmdaIlzcTiRKX2yYXHVxbByDFw+wS0TdXjgR5JqIzRVsfIST8rTsHXl7O3hC8kcZdPxe5Azqc7WgrmMUi7bAWMOcOCZbyHImkJgiDiQb24effo0QNbt27FlVdeCZZlz83ES/+xLIvJkydjy5Yt6NatW30MlSAIosES7kkrFzErt5wunsgJBVW7Z9fqPqPFW7Ij6m2ch79A1d53ZesEQdBkd0DEjtKS+EhIRFoND8+CIGDOFunEQnjwnNz5FepVqzVgXSniHdCe2T2Qbf581GgZVkaYU/ClFQQBvEO8VJ81yoi0RhWRNoqM6rHC1HMkbSSUPLsDeEu2o3ztQ6IyObuDmiSNFAQhrsvkT0YhvEVCTqTVRzj5lhwQe/rWly1JnaPxQljy6xTZ417wuVG66tZzifTUr9/6zP41XimUYY5+JtvlEyAA2F3swXN/lMS8b7mJP9YkH0nL6MSBTIK7RN5yJI6UrhJbC4VH0pJISxAEERv1lnKxcePGWLRoEY4cOYKPP/4Yf/nLXzB9+nRMnz4df/nLX/Dxxx/jyJEjWLhwIZo0aVJfwyQIgmiwFDrFobQj8qRiwy2d1cWBmmJqNklaWIPop9rA5yiIabvy9Y8qdOgC5BKOhWDtpLAtoQmf46RsuS6lo+p29rDlo+HniBwun4CTVVJBJzzyrWOaHqEacLqJhSVEcDVoXDZrVZk4kTuH5Qhkr2+dEnu09sVN6y9BEWtupFgnl+SL91YqtBYk56Kc/6u1s7LHY02W1GslkkgbSyStztYiqvbWzjVL6uQqEEe5ykXSclGOSdSfjIWMp3hrzP0VxFGkvb69eNJoYGMjdCygdsqHin8nKrRF0bZPTaxkgvY+/xK9t/V4PuI2bBSrINynfpOUeYu3ynoky6FP7aJ5X0pMbqOeVDASNTnOxrWUriDl7C1kPWVZfTIQtprAV34w5n1rwVe+HwJf/feR3QFBEER8qPe1lo0aNcJ118kvZyEIgiBiw+0TJJFCXTIMOFDqxdqTftGCAdAjs3YFCNnkWDFEhdUm8bZfELwVEdtYOz0c131eaOjT+8Bz+ndJeVLf11W3a2QV3/YUOnk4vYJq9KpSzpdwz2ebgcU17az4dFclDBxwQwebKIor4F8ZiV5ZyudkI6sO/RsZsaZAfRIg9ZxI2yk99vN7QOP6m0xJu+QHnP2qa/B9yvBFwddyCbEEdwkg5ysrm4xJ+l3rUzqAMabJ+6jWAWwEuwNeIbGhap8mGT9wFawd7oFj37yofSiDhHmJyn2WQoTJKzXkLGRYk7q/qRosA8TLkrpLhgF9sg1Yd8qNbAuHK1tbwTAMbHoGpW75nYQemj9pSCgIAFe3q5lgGG8srafBeWgxPGdWQ5feE5Y2t0TchktqrX0HMv60vFv7ORoxIZ8G2qbqMCLXhJ+PafuO4kWOhUOLJOljOqu3w97zBUnyMIF3g7M2PRdh7MdbcQD6jF61PNLqA5nsDgiCIOJDvYu0BEEQRPw5UeGVLATMtXF4pFcyKtw83LyAVCNbq0nDAH+CCmvXJ1G55cVgWSxLd2uTeIu0vIb+OItypCARGUNmf1TtfENUljL0YxgbX6y6XSMrBwbiRbIFlV60SFaOUAu3DQkgJ/Bc3sqKS5qZwYCRCL9aRVqTTr3dQz2TUeXhUejkwQB4f3s5thWKz6lQT9rumQZsOhN9JGZ9Jh3Tp3ZBzk1eeEu2Q5fUFoyuOoKY0ZkA1iiKkA3PKl6N9EtiFLyBc64rhK+qAKcXNo7YR7yJ5K0qeJT+PnmMTa+IegycNQ9ZVx9D6apb4Nj/YdTbhyO31DpSkjc1BJlIWtaYFnN/OhbwxSmYVs8xeKRXMhxeAQaO0eR3G5AfvbyAX49Ftjq4vr21RpMutQFrTEP66JUQPOVg9HYwbGRrAF1SG+07kPGZ9lWd0L65TNR9tDAMgzu7JeGGjjbctvRsHVwNgH8OTUOeXfkR3db5UalI6630+9KGiLS+8gNR3W8xxnQIrsIoR1v9iYTbolAkLUEQRGzUqkh75MiRuPfZtGnNDOAJgiAuBI5WiJ8+M81sUPyxxSHTejQwjFgAi+RvWNcInsiRr5r74n3+qD6iVuGsUhskLR6cBo5BhpnFGUd1hNaRcrFIW+nh4eWB5HOiqkchkpZXKDcriKxaRVotWPQsLOdsEVql6CUibWrIvmK1na5vO1uG5aBP6ypbxxpSRBGfcuec4HPBV3VcpmPlvyxRJ0/4KK+ZgqL9gzoMqwNrDhepY0PO7kDwVEAQhJgmB30yPt/hPpzRwDLh0zU1g2EYWPTiv0stYRR/LpR242m3YrRtKDnWxIyrYVgOjEICTTm4pLbRdC4p8lUe0755HETaADY9i0ZWLqokYuFwGqO31QRaJQRvJbj03gB+Cpb5yg9AiCIKnzVmwBe1SHtu/7wHvEt8zlMkLUEQRGzU6i9+8+bN4xqlxTAMvN4LJfspQRBEbBQ5fXhzk/jGPJab/njBcOLoH9exfJz5X2dkXrGtnkYkxnF4UeRGGqjc/jrK1j8GCPQ7VduwFhmveo0RQ01sOpxxVEeWvrW5HHqWQd8cI97cVIbV56wEWibr8ESfFHhll8wDfJQCj1ZP2miRC/QNeNLWZL+1HGRfI8LFOdeJH2FsPCr4vmrP2yj94wHAJxehGOUfpvD91yWlK2+Kqn1NJp7Cr9exImsdwbtQtOxSpA5fJJtUUo3wBHAAwHCx+ybXxeGtZJUCAPtK/L8TPx0VH6NtU/XYUyy9lmWY6y2NSFyJJpKWkRFpebmJF6Xt4yjSAv6JtpqItG1T9dhZpP47FXrtjgbBWwWdvaWozFt+QGJBoNqHrypyo/BtPJUo/u0muI4ukdRFe44TBEEQfmr9F18QhLj+IwiCINT59qBUmMi11WMUDitdSu4t2Q5P0ZZ6GIwUOW/TaOFdJSj783ESaOsITibaT+tS6kZW6ZLceTsqsOmMOyjQAsCBUi+WHa5SjKRNlFsSOT/dUKuCSFnmlVCyBUgEfBXihDiV2/4RfC343Chb+5CCQIuo1WdGrz3RUcIgI25pRfBGL9QEtw3xEJWLpAUA94llcBz8LOq+5ZJFyfkTa0XNhzpe2PTq+9hf4pFYkVykkBwwyxzZSqAhEI1wJ8h40vqq6ieSFgBSYhRQA3TOiDwB0lzGh1YLDKsHFybS+ioOSJJ5qRGLPYHz6FeyAi0AMGR3QBAEERO1+tQ+depU1fqSkhJ89dVXYBgGN90UXZQAQRAEIc9pmUz0besxKzTDyS9Jrdj8HFJHxCeKNVb8D4E1X/bqKlimOZJTNpkaERWMzgRdald4i88J/axeFEmpRptUPb47JBbwSl089spEr52s9Cl60o5qGn0U35AmJqw8rpyAZlrH6AXBoU1MWLSnenl7xzS9aBVTY1v04o6OBfLsDVMU4p2nVJf7c5Zc1e2tXf4PlVtfDr5P7v9W3MamhrnVTXDsnx/1dkl934C3dCeqds8Oltl7PB/zONwnf4l5W/jcwDn/YDlP2gBlq++Etd30qLqW+05NzSZFN74QbutsxyvrIwtYE1vFbqlwbTsb3tmm7FH+7w2lokh4PQsMaGTE+lMurD8lFm+tEQTfhoSx6US4jnwZsZ1cpHQ0oiPDyQvesZJZQ6G8TYoOndOl9jShXNlGm7Bs7fyEaHIqqe/rYPR2URvBUwGB1+5Hbu3yBEpX3qi5PQCUb3hKsS7enz9BEMSFQq2KtO+//75q/fbt2/HVV19paksQBEFoIzzrPAD0VMkYX9soZViOOYt4HPF7WcYm0BqbXBZ8zTAaf05ZI+y9X4lpf4SYpH4zUbryJvDuEth7vaw5iVC/HCN6Zhmw4bT44fWUzOSGm5dfstwlQx+Tt/PkNhYcK/fiRKUPOgao8grBo693tgHDcqN/qM2ycJjS3oov9lYh1cTixjCh9+KmZmw545YIA5c1N6N5kg4f7qxApUd8DtzfPemcZ2fDI1JENaNTF9etHe6H5/Tv8BSuh6n51TDmjo3n8BSxdftrVCIto7PC0OgimFvdBN5TCk/RJniLt8LceioM2UNiHochZxg8hetj2lbg3WBgOufNHV2ys4jIiE26tB4xd9ct04DGYR6jRo6B65xpqIEFWqfocVnz2C0VhjQxYvMZN9adkj8mQ72xAX8UpUnH4vr2Nqw/VS1yP9UvpdaTfNYl9p4vwFe+D77y/bC0v08kNoYiJ8xHE+nNyKziqQk1nexONXK4voMNr64vRZHT/91nmFn4eKDCw2NsCwtap2jbh7XjA/CcWQ1P4Z/+61ST0XCfXhXWStC85MPS/l4Yc0aoN+JMgE88yajqf12DiH6CIIgLmcR0oScIgiBiJjzwb0p7K7gYlzzHA6UldL7Ko3U8Eilq0V6hGBtfCkOji1D+5xPVhUxIVI1Gb8SsK/eCs+ZFM0RCAWPOUGRddSjq7XQsg8d6J+O6b8WJiGRFWp8AT9gJZdMz+Gu/1Kj3C/iT/7w8JPaM9Epc3sqKy1vJR2BZ9Cye7p8Kt0+ATxDAMQxYBsEM9MNyTeAFaMpI3xCIJnJMDs7SCOmjaxBNGiO6pDZIHfElin+eGLEto7cj5/pq33HWmIKMsavjM5CaWCXwfjFS8JQinkm5/H2LJxks7e6skXCpYxn8e3g6BEGAyycEE2vGE5OOxaO9/b9/5W4ety07q9q+5bkEho1tOiwYmxX38SQK+pQOyLy82u5IUaT1SKOQhTAbk+SBc1H6+x3yO4q3SKsgoLKMvDd4OElGFilGFrNGZtR4LLLXqbBz179SSH1gupTOyLxiKwD55HwBbN1nwNb1rzg5XywdsPpk+JSSpZJISxBEAyFwP/G3v/0NM2bMqN/BoA48aQmCIIi6pcQljs6p74g4pQy/vorDNepX8DrhrTgMwRe7KMNrzWTMsJIHDm/prhCRV5sgIfCxJx0h4gfLMCLfVkDeJsTlEyR2B7F6vNY3Bo6BWcfCwDEiQZZlmPNCoPVVFQAABLVzOs6iTdzReq2W8eqMGxptW2Q5dy3WOvkVsbvK43Cf/h2C1yEV3+P0XTIMUysCbTh6DbtolXKBxs4oTHIKXmkCvPBIWtaco9it5hUuGkkyskiX8aVNMWo7fuy1blkh7l9wFUZeWRBiScAwyucUw5nBsJzE55dR8YVOZF9z4sJhxYoVYBhG9p/FYkFeXh7GjRuH9957Dy6XttwGBFHbkEhLEARxHvHbcScOlIqTV9VSUnnNsHp5u4OaRFp5Kw7jzNfdcGZxc5zN7wefTOZvLWgWE2REWl/5fpz6NB3OI18DGpNWUWKxxMESJtJWeKTHo1+kFZdpEVuIuuf0wsYoWn4FCr8bqthGzuMyodAYeSaXUClehEesRretX0it2j0nYtuydY+q1lds+ydOL8pF4beDcPIjC7wlO0X1DFt/Fj6xoGUipFVygk8i1BKMTt7313nkK0lZuEirek7XwqRMtkXqSxuwLohEba9oYmSuH0U/RLAwYEOEbJXPK2BPxSjez8kNiH4sicTG4XDg2LFjyM/Px6233opevXrh0KFD9T0sgiCRliAI4nxBEAR8sksaeVLfQXJKkbQ1oXLry/CV7QEAeIs2wbFvXkz9CFGItAwjnzSk9Pc7gst8iYZDeCStHC6fAHdYJO35EHV6vuI6KhV1QuGs6knD6hu55d1y6GzNa20M4ZFyUXFusqpy+z8jNq3c/i9FyxuB96F8/WOiMs/p38SNEj0qOoxIk6VmHRNTkr/zAc7cSLbceWihpCzc7kBdpI1/ZHIbGV/athoioOtkci8WUTRkGzUP30AC2PD7Od6tdg9Fv5VEYnHXXXdh69atwX/Lly/HG2+8gdxc/73B9u3bMWHCBPh8tOqNqF9IpCUIgjhPqPAIKJSJ6NAiRtUmnLUpGJmkTqylccx9hmYyByD2io0CreKqLrWLoijgzybvkK0LhbM2A2dvFdX4iNpDi21BmZuXREnZY0gYRsQXa5f/i2m7pL7/ifNI4kukpckBzK2n1doYrB0fiHlbwefU/DcAgOv497LlvqpjEbdVXqGRmETyz22VrKt3a6L6InnALE3tBN4HwVMmKmMMyTA2lfdx1tla1nhs4VzSzIxQd4zO6Xp0zzJG3K5/o8htakpASI0Gz+nfq9+oiLSm5lcBADiT2CuZV8stQJG0RIKRlZWFzp07B/9ddNFFuP/++7Fjxw40b94cALB161Z8+eWX9TtQ4oKHrp4EQRDnCXKJjwAguZ5FJYbVIXXopzLltf/QEhFB/JnpM/rC2vEhsKZsMDobGEMqTM0mw9bl/1QjdgSFxBm6lM7QJXeALq0HUoZ+eF5l6G7oaAmILXcLOF4htqiQW+5K1C3GRqOi3sbU4joYGkVY+lvvaLs+WDvcW2sj4CyNkTzoPXBJ7VTbGbKHScoEnxO+quNR7E3+7/VVHIq4JWuqefKluuaatspRyp3SG5Z9QzzRZw2CrcdzEdvJ/c6yxjQk9/+vbHtGZ5ItrwkZZg53dklCYyuH9ml63NzJjjEtzBjU2IhMM4vxLS2Y3sUuOrK7Zhgwpb0t7mMJh5WZDI+EudWNwddK9yf23q/6J6oBcLYWUfRO9ztEw8But+Ovf/1r8P2PP/5Yj6MhCBJpJTzxxBMiQ+kVK1ZE3Oa7777DxIkTkZubC6PRiNzcXEycOBHfffdd7Q+YIAjiHCcrFURajUktahNjk0uQOupbUVlNvA/jhcTbkdUjqe9ryL72JHJuKEfOlCKkjlgEVm8XJdgIJ1yYMDa5DI2mCci8YisyJ+5A5oQNMGQPqY0/gYgRra4Fu4vEx2kWibT1j4L1iByctSkaTROQOuwTWc/Ghoa954uKHp7xwtLmZmRN2qVYnz76V6SPXgHGmC4qF3xORQsDeRRE2vKDEbdkjQ1PpO2epSzEds64cEVahmFg7/bXiO3kEn2yhlRwFnm7hNpiSK4J/x6ejmcHpCLXroNZx+L+Hsl486IM3NDBhouamvHZ2CwsOPfvqX4pSDPV/u+G3IqlSLCmbNV6S7s7Yev8aFDA5exRRCfTpDTRgOjSpUvw9dGjyr9jP//8M6ZOnYqWLVvCYrEgKSkJXbp0wWOPPYYTJ05o2teqVatw2223oV27dkhKSoLBYEBubi7GjRuH//73vygpKVHcdsmSJZg8eXJQd0pPT8eAAQPw8ssvo6JCankHAK1atQLDMBg0aFDEsR0/fhwcx4FhGDz++OOybUpLS/HSSy9h0KBByMzMhMFgQKNGjTB+/HgsXrwYgqCccySgsc2YMQMA8NNPP+Gqq65CXl4e9Hp9MKI5lJMnT+Kpp55C7969kZaWBqPRiLy8PFx99dWaBfVPPvkEw4cPR2pqKmw2Gzp37oy//e1vqp91fXKBphGVZ9OmTXjttdc0t+d5HnfccQfeffddUfnx48dx/Phx/O9//8Ntt92GOXPmgGUb/oMBQRCJzcbT8stME0GkBaR+Z7yGJa0AwDvPwlu2B7qUTmCV/G1jjMr1lYqFCDURJxqRtka+jkSdwGl8gDxWIZ78yCGRtv6J4uFf8DlrcSBxRsvflQBerKylCQC/H2joo5jr2Deo3P4vzf0IvAe+ymPwVRyGPr1XMPLRV6FBpDVlRjXmRMCoYExr4hi0TKZHskhIEn1yZjC6BE8GWIfEdN8RaeKKER+XnD2KSNrzYFKMuHAwGKonyvR66e+s0+nEzTffjM8++0xSt23bNmzbtg2zZs3Cp59+ivHjx8vuw+Fw4NZbb8Wnn0pXFwb0o/z8fJw5cyYoYobuf8qUKRIrhqKiIqxZswZr1qzBzJkzkZ+fj+7du4vaTJkyBc8//zxWr16NQ4cOyQqhAT799FPwvD+A5frrr5fUL1++HNdccw0KC8WTZidPnsQ333yDb775BmPGjMGCBQtgs6mvIHjqqafw4osvqrb5+OOPMX36dFRWVorKjx07hkWLFmHRokW49dZbMXv2bOh00t9Rr9eLKVOmYNGiRaLy7du3Y/v27fjoo48SMnK6Vu8I/v73v6vWnz5dnY07UtsAzzzzTI3GpERAcPV6vcjKyhKNTYmnnnoqKND26NEDjz/+OFq1aoX9+/fjlVdewcaNG/HOO+8gMzMz4gFIEARRE74/VIXfTsiLtEmJ4qEpIy44Di6EucXVipt4S3ah8Pvh4J2nwFmbIn3Mb+CseZJ2agKqElV73kHljtfDO1LeQGUfzoPiGy4SaROfWPN/USRtw6JBibQq0ScBGKb+xTzO7PcTD7/uRiPQAkDZmrtQtuZuAAJ0ad2RMWY1GJ1Jm0jbACNplUTaDml6SkiogYqt4mcpNiyS+0InNjsl9WtO+OS6Lgq7A4bsDogGxM6dO4Ovw0VMQRAwefJk5OfnAwDGjx+Pq6++Gi1btgTLsli7di3+9a9/4ciRI5g8eTJWrVqF3r17i/rgeR6XX345li1bBgBo06YN7r77bvTu3RsWiwUFBQX4/fffsXChNGEiAEydOjUo0Hbr1g2PPPIIOnTogKKiInz22WeYN28eTpw4gZEjR2LLli1o0qRJcNvrr78ezz//vD/B9Cef4Mknn1T8HD755BMAQKdOndCtWzdR3apVqzB69Gh4PB5kZ2fjvvvuQ7du3dC4cWOcOHECCxYswEcffYRvv/0WU6dOxeeff664ny+++AJbt25Fly5d8NBDD6Fz585wOBzYtGlTsM3ChQtx4403QhAEtGzZEvfeey86qIf7TAAAceRJREFUduyIzMxMHDp0CO+++y6+/fZbvPvuu0hKSpINtnz00UeDAm27du3w+OOPo2vXrigtLcWiRYvw9ttv45prrlEcZ31Rq3d6M2bMiPiDEah/9tlnNfVZWyLtf/7zH6xbtw7t27fHxIkT8dJLL6m237NnD/75T3/22t69e+PXX3+F2eyfze3Tpw8mTJiAYcOGYf369Xj11Vdxyy23oHXr1rUydoIgiPe3yy9xARInG72cB23JL9eoirTlW54D7zwFAPBVHkHF1pdl/ecYLvpI2rJ1j0jKBN6t2D6aJca1vRyZqDnSFHvayLaSSFvfsDrt/o6Cp7wWRxJfFFcKhJIA0WmBiNf4RDH6RSJv0Sa4jn8PU7MrNHnSMqaGJ9AZFH6LO13AVgehsJZcyQobQRCCz4quo0tEdbzrbPC1PnMAPGdW1/4gzzcE9Sz2rDlH9D46u4P6v1Y1VHiBR6Grqr6HUWekGy1g6/F48fl8ePXVV4PvJ0+eLKp/5513kJ+fD71ej6+//hqXXXaZqL5///648cYbMWTIEGzfvh0PPvggfvvtN1GbN998MyjQTpw4EZ9++imMRvGzy9ixY/Hcc8+hoKBAVJ6fnx8Ub0eOHIlvv/1WFPl7ySWXYMCAAbjjjjtQVFSEhx9+GAsWLAjWt2/fHj179sSGDRtURdpdu3Zh48aNAKRRtB6PBzfccAM8Hg8uu+wyfP7557BYqp91evbsiXHjxmHo0KG444478MUXX2DZsmW4+OKLZfe1detWjBw5Evn5+aLPYejQoQCAs2fP4o477oAgCLjlllswZ84cUaRsz549MWnSpGA07htvvIHp06ejXbt2on3MnDkz2P6XX34RRfeOHDkSAwcOxNSpU2XHWJ/U+nS8midFtNRWwpUjR47g6aefBgDMnj0bP//8c8RtXn/9dXi9/mQiM2fODAq0ASwWC2bOnIkBAwbA6/Xi3//+N/77X3lje4IgiNqil4oHXl2jS+0c9TbOA5+I3lftektBpI0+kjY8SzQQluk4DH1qN8U6yXgokjbhifVxINmQGJMeFzK69B5RtI7ffWhtY8wbB8aYBiF8WXc9YWl7B6r2zBWVmVpOCb7Wct01tbhOstJACcehBX6R1nlGtR2X1LZBRtIqOZ91SKt/C4tEILnff1D88yRxoeAFGL28h31IlHxyv5k4+0115Jqt29O1NcyExtL+HlTtiuJ5Mywy39T8KjgPnVsWzBphaTddVM+aNfr/sgYweg2TToQsha4qZH06o76HUWecvm4GMk21n1wvnDNnzmDr1q145plnguLk5MmTMXjw4GAbQRDwj3/8AwBw//33SwTaAKmpqXj11VcxZswYrFq1Cnv37kWbNm0A+KNoAyJwbm4u5s+fLxFoA7AsK4qCBRDUkPR6Pd5//32RQBvg9ttvx8KFC/Hjjz/iiy++QEFBARo1qj5fr7/+emzYsAHbt2/H5s2bJVGygN9aAPBrblOmTBHVffbZZzh06BBMJhPmz58vEmjDx/HOO+9g7dq1mDdvnqJIy7Is3nnnHcXPYdasWSgtLUWTJk3w1ltvyVoZAP5Azw8++ADHjx/H/Pnz8cILLwTrZs+eHbRumDt3rqz9wk033YTPPvss4XJJ1apIq0XsTATuueceVFRUYOrUqRg2bFjEcQuCgK+++gqAf2aif//+su369++Pdu3aYffu3fjqq6/w5ptvUmZvgiDqjKZ2Drd3sdf3MIKwevkbsNBImZiJUqQVvA7Zcls35dUarDEFqaO+Q/GPoyP2T5G0iU+GmQMgffBPMbIoccnH2T7cM4l+xxMAhmGRPmY1Cr8dELltAxIKGFaPtFHfojBf/r4SAAw5w+psPPZe/4Ag+ODY67f2Mre6EfZerwTrtYi0KUM/QmV6L5SvfzRi24DPrOA8q9oudcQX59V52Mxe/xYWiYAuvaekTPC5wLB68E5p0rBQ9Bm9kDzoXTj2fQBdWjfYuvxfbQ0zobH3eA6CzwVf2V6wlsaiCRJ7r3+g/M8nRO3Dz+Gkfm+CYY3wOQpg6/J/kuh+reedLqk1GJZWnRCJxbPPPqu4ettiseDOO+/Eyy+/LCrfsWMH9u/fD0AaYRtOIAoUAFavXh0UaTdt2oRjx/yrBG6//faIXq2heL1e/PLLLwD8EbN5eVLLtwC33347fvzxR3i9XqxYsQLXXXddsO7aa6/FY489Bp7n8cknn8iKtAGv3EGDBqFZs2aiuq+//hoAMGzYMGRmqnvCDx06FGvXrsXq1cqrGwYNGqTqjRvY37hx4xSFXADQ6XQYMGAAFi9eLNlfwGu2S5cu6NWrl2Ift9xyy4Ul0g4bVnc3krGycOFCfPPNN0hLSwvaF0Ti4MGDwex9kf7GYcOGYffu3Th+/DgOHTqEFi2iMFwnCIKoAS8MSoNBwQMvkRC8FWD0NROTo42k5d3FsuVyfrehmHIvQ6NpAgrmRbDyoUjahCfTLB/W9uKgVNz9k7wg0DaVIt4SBUOWspApIsJy3kTDkNkPhkYXwV3wk2x9XV5bWGMKUga9g5RB78g34NTtDnTJHcAwLGydH4Gt8yM4+UkqBHeJYnuG4SAIPHi3ciQxZ28FfWonLcNPOOR+NVKMLPQN4He6LmBYmZU/5yyIeJc0upo1ZYveW9rcAkubW2plbA0F1piKlEFvVxcMq16NxLvLZERasfjBmbOQMvTDGo+DS2oXuRFBJBDdu3fH/fffL0katn79+uDrAQMiTwwHOHnyZPB1IEoXAIYMGRLVuA4cOICqKr/1Rb9+/VTbhtZv27ZNVNe4cWOMGDECy5cvx6effoqXX35ZNOnyxx9/BMVouYRhgc/hhx9+0DxZE/oZhNO1a1fFOp/PF/SmnTNnDubMmRP1/lwuF/bu3QvAb0WqRt++fTX1X5dc0GYxJSUleOCBBwAA//jHP5CRoW3p1I4dO4Kv27dvr9o2tD7UkJogCKK2aQgCLSDO2Ow+vRqVO2eicscbcBzQtkQWALzFW+A49DkEb1WwH+fhLyF45ZMGuU+tlC1nDKlRjFwZiqRNfDIVEoApJfcBAKv+gr5tapAIXmW/7kSFURE/E+naEmlyjAlL7KRLaqPa3nFoMQRXMSAoO0YrTbA1VFomUxRtADlvecHnT4jKy0RXM1o8nIkgsiJ4DFZRWtAlta2VfgmiJtx1113YunUrtm7dio0bN2LJkiWYOnUqWJbF77//juHDh+PMGfGEkJZk8nIEhFXA768aINSCQAtFRdXPSFlZWaptc3KqPaRDtwsQEF+PHj2KX3/9VVQXsDrQ6/W46qqrJNvG8jk4HPKrFgG/PYQSRUVFQVvRaAj9zIuLi4O2q5E+t+zsbNX6+uCCvjN4/PHHcfLkSQwaNAi33nqr5u0C4eqA31dEjdCQ9KNHj0Y9xtB9yRFuLE0QBNHQEFxFgK0ZKnfPQdnqOyO3P/fQFk7Jiskw5IyAqekVKFvrn4DTp/dC+ri1YEISEjiPfY+SX66V7YM1psXwF0ihSNrEJ90cvUhLGi1RF6iLtIlzbVEbJyDNDB8e+RgOX3UMpavvUG2TKH69sSB3ZSGRNgQZETHwe+8+vUpSl0jnQoOAla4EkUvoGg90yRRJWxPSjRacvm5GfQ+jzkg31s3kY1ZWFjp3rs6P0b17d4wbNw4jRozAtGnTcOjQIdx2221BW0vAH9UZYMmSJapL9MP3FW9qavNz5ZVX4u6774bT6cQnn3wSXBHu8/mCickuu+wypKdLE3MGPofRo0fjlVdekdRHC8cp26GEfua33XZbMKgyEnJevUDt5bWqTS7YO4OVK1finXfegU6nw+zZs6P68srLqzMFR/IUsVqrbyAqKqKP5lDzHSEIglDCrEvMHyQuqR18ZbtFZYHIqKrdszX1Ub5phmKd++TPcJ+s9hX3FP4J17HvYMobGywrW3OX8vgsjTWNIRI1tW8gap8chUhanYoQ2xBv9M5nGH2SbALAUHQpDW9pPKPg3w0kViRtJHQpHUTv9em94Dr2jeo2zsNfqNbrMxJvWaJWWJnrR4e0xEnuWd/IRdIG7Q4qpUEr+ozekjJCGTmP2EgWT7FCkbQ1g2XYekmkdaEydepULFmyBJ9//jm+/vpr/PTTT7jooosAQCRYpqSkiERerYSu1i4oKIi4EjuUtLTq4JFTp06ptg1d7h+6XYCkpCSMGzcOixcvxuLFi/Hmm29Cr9dj+fLlwb7lrA4A/+dw4sQJuN3umD6DaAgduyAIMe0vJSUl+DrS5xapvj64IGNC3G437rjjDgiCgIceeijqL97prF4+q6TYBwg1OlYL+SYIgogVl0+avfzK1okZYWJtf7ekLBAp46vUttogPNt4JNynfhG991UcUmzLaXywsPf6h2q9IXOgpn6I+iNLRqS9t5s/MVh7yrbeILB0uDdim6Q+/6qDkcQXQ84I2XLWmCGJTq1PvCVbVettXf8qem/t9FCN92nv+WKN+6gvTDoGrVOq42NybRw6pifO91nvMDqExxsLvP/+gNFL72nsKok+CXmMueOCr1lzIxhzx0Tdh6mF/EqkUBhDStT9EkR98uKLLwajO5988slgeY8ePYKvV62SRvRroWfP6qSI4TYDkWjZsiUsFv/k7B9//KHadu3atcHXSvpWQIQtKioKJssKWB3Y7XZMmDBBdrvA57B+/Xq43e4o/oLoMRgM6NTJP8Ee62duMpmCidvWrVun2jZSfX1wQYq0L774Inbt2oWmTZvib3/7W9Tbm0zV/j2RDlKXq3pZrtmsvixMjqNHj6r+Cz0ZCYK4MCl3S/37RuTVjs9YTZEVVc5FyjCMtkzAgifaVQnaoh8zJ+3RHClp7fSwaj1nbaKpH6J+eXVI9Wz9oMZGDG7in1h9rDd5HTYE7N1nQJfWQ7ZOn94bKUM+grHJpXU8qppjbnUjkvrNhKHxJcEyztYCmRMTK7eBuaV8xA0ApF2yDJxF7L3HGpKRPlreD1wLyYPehbHxyJi3TwQe65WMi5uacVGeCY/1TpaNrr1QYRhGYnkQmMQVeI+onLO3BGdVt5wjpKQMmQ9Lhwdgbn0z0i9bAYaNflFt8sDIE+WJNJlEEFpo27Ytrr76agB+MXTZsmUA/AJrwN5y7ty5omA9rXTr1i24Ovqdd96JanW1TqcL2hIsW7ZM1QrznXfeCW4zfPhw2TZjxowJ+sF+/PHHcDqd+PLLLwEAEydOVNSrAuJtaWkp3n//fc3jj5XA/nbt2oUffvghpj5GjRoFAEEPYiXee++9mPqvTS44kXbXrl146aWXAAAzZ84U2RFoxW6vXsYa6SSrrKwMvo5kjSBHbm6u6r9ozacJgjj/qAgTaRkAFn1iPvgxDAtdsngJrHBOpA38HxGt7ar3GrGFtcv/RUxqI+qR1cHe5zX5OrI6aDA0TdJhwdgsLBibhft7JAdFehuZzzYIGFaPpF4vy9aljFgMcytlETGRYRgG1g73Iv2SH9BomoBG0wRkTT4A1qQtwW2doeBnyVmbwth4lGydIXswOHsr7bswZQU/A0ubW2IaZiKRYuJwWxc7pndNQo71gnWdU0RieRD4vQ8TaY1NLqujEZ1fsMZUJPd7HSmD34MuOTZLAlZvl0TJSxvRsU00PJ588sngfeDzzz8PAGBZNhhZe+DAAdx0002iILxwysrK8Oabb4rKWJbFY489BsCfb+imm25SDPTjeR4nTpwQld1zzz0A/MGBt956Kzwej2S79957D0uXLgUATJo0SVEjMhgMmDx5MgC/x+4nn3wStPJUsjoA/JYQAaH50UcfjRgR/Ntvv+GXX35RbaPGAw88ENTObr75Zmzfvl21fX5+PrZs2SIqmz59evD7vOOOO0S6XICPP/4Y3377bczjrC0uuCvov//9b7jdbrRs2RJVVVX47LPPJG22bdsWfP3TTz8F/T3Gjx8Pq9UqShYWKbFXaLIw8pclCKI2KPeI7Q5seiaxo3PCH8J850RaX/Sz05pgIgtukRLgyKFX8Lpk9BSFSRB1BaOTP3eZWspaTlSjFC0Xaakza86Br3y/1p1EOSqiIcNwRggh+kMgktZ55KuwhhSpWZ8k3IQRQcSBzp07Y8KECfjqq6/w66+/4rfffsPgwYNx5513YtmyZfjyyy+xaNEibNiwAdOnT0ffvn2RnJyMsrIy7Nq1CytWrMDXX38Nk8mEe+8Vrxy85557sGTJkmA/Xbp0wd13343evXvDYrHg5MmTWLNmDT799FNMmTIFM2bMCG47duxYXHXVVVi0aBGWLl2K/v374+GHH0b79u1RXFyMzz77LBgNmpaWhtdekw8iCXD99dfj7bffhsPhwCOPPAIAyM7OxsiRyitVjEYjFi5ciOHDh6OiogIXXXQRrr32WlxxxRVo0aIFeJ5HQUEB/vzzT3z55ZfYunUrZs6cGYwCjpbs7Gx88MEHmDx5MgoKCtC7d29MmzYNo0ePRm5uLjweD44dO4a1a9di8eLFOHDgAJYsWYKuXbsG++jWrRvuuecevPnmm1i/fj169+6NJ554Al26dEFpaSkWLVqEuXPnonfv3li/fn1M46wtLjiRNjDzceDAAVx33XUR2z/33HPB1wcPHoTVakXHjh2DZbt27VLdPrS+Q4cOKi0JgiBiIzyS1mZI7IdaJmw5o/vUSphaTgFqTaSNLFjHIugoJSRSS/pDEEScUZhgIZG2DmDl8zKwEURazpwNaRyQAhptcIjzhPBjinejcvcc8I4CUTEtp69fWFOmegPBp15PEAnKU089ha++8k8KPffcc/jhhx/AMAwWLFiABx54ALNnz8b+/fvx+OOPK/aRlZUlKWNZFv/73/8wdepULF68GHv27MGDDz6oeVzz58+H1+vFl19+iQ0bNuCGG26QtGncuDHy8/PRpIm65drQoUORl5eHo0ePoqSkBABw7bXXBj15lejfvz9WrFiBq6++GkePHsXHH38c9LOVIykpKfIfpsKkSZPw1VdfYdq0aSgqKsLs2bMxe7Z8kmmWZWVXyL/22ms4ceIEvvjiC+zatQs333yzqL5FixZYsGABWrXSvsKnLkjsJ/kEpUWLFmjc2J8BPFIYdyAUvEmTJmjevHltD40giAuQSq80kjaREbxVove8pzRihvaawGj4qYtFWGUtjWXLjY0uirovIvFoZOVU3xOJgVIUPKOwFJ+IH3LJnACAMabLlgcw5Gi/Rmr1KifOD8LtDgSfC5XbXpE25NQTNxO1SySRltHRZDXRMOnTpw8uvvhiAMDSpUuDSaX0ej3eeustbN68Gffddx+6dOmC5ORkcByH5ORkdO/eHbfeeisWL16MnTvl/eMtFgsWLVqEn376CTfeeCNatGgBs9kMg8GAvLw8jB8/HnPmzAlGt4ZiMpnwxRdf4Ouvv8akSZPQuHFjGAwGpKamol+/fnjppZewe/dudO/ePeLfyDCMJFhRzeoglP79+2Pv3r2YPXs2xo4dGxyHyWRCXl4eLrnkErzwwgvYtWsXbrrpJk19qjF+/HgcPHgQ//znP3HRRRchOzsber0eZrMZLVq0wLhx4/Daa6/h0KFDGDFCmnRVr9fj888/x4cffoghQ4YgOTkZFosFHTp0wJNPPok///wTLVu2rPE44w0jCII0LfgFzowZM/Dss88CAH7++WdZ4+W7774bs2bNAgCsXr0a/fv3l7RZs2YNBgwYEGz/3//+N+5jPXbsWNBG4ejRoyIrBoIgLgy+P1SF97dX+2N3TNPjbwNS63FE6hTME4vIlnZ3wtzmVhR+06dW9pfUfxas7e9U3D/gTxoWjSdtgMLvR8B9coWoLOvqAnCWnKj7IhKLbw5U4cOd1efVLZ1suLS5pR5HRMjBu4px6tM0SXnOVF5zIkAiNnyVR3F6UVNJefKg92FpM01xO8HrwOnFzcE7T0fchz5rIDLGxJbdmWh4nPmyI7yl1QJHyvCFKFlxtaSdrdvfYO8xow5HRoTiKdyEs0vkkzYasochffSKuh1QHVOT5++9e/fC6/VCp9MFs88TBNGwifd5TZG0MfLggw8GQ8Lvu+8+OBwOUb3D4cB9990HwJ9hL5pwdoIgiGjwid0OwCX4ld3a8UHRe4F3w1e6u9b2J7iLQ/YlvwQvFoEWANIu/h6m5lf53zAsMi7fSgLtecLYFmbc2dWOi/JMuLubHZc0i963mKh9lPxPSaCtfTirfK4FNYEW8PsIp4/9A9bOTyCp7+uAytJ1XRRJxojzgDC7A77qhEI7sjuoT5QiaW09/o7UkV/X8WgIgiDOLy44T9p40bZtWzz22GN4+eWXsX79egwaNAhPPPEEWrVqhf379+Mf//gHNm7cCAB47LHHaKaMIIhawxe2IIJLdHEifBmyzw1vqbq/d00IjdYS3CVx7ZvhjEgdvjCufRKJAcMwGJFnxog8EmcTGRJj6xfGkBLTdVVnb46k3i8DALzlB1C18z+y7TgSaS8owu0OvCXyy4bJk7Z+UUocZu/2dB2PhCAI4vyDRNoa8MILL+D06dN47733sHHjRlx77bWSNrfeeiuef/75ehgdQRDnC6tPOLG3xINumQbsL/HCywu4rIUFSecShP15yi1qzyW4ZsGEeck5DnwEfdbAWttf5Y7X4as6DlfBcgiuolrbD0EQxIUGwxpQc9805R8tEmkvLMJF2qo9c2Tb8a7CuhgOoUD490QQBEHEDxJpawDLsnj33Xdx5ZVXYu7cuVi3bh3Onj2LjIwM9OnTB9OnT8fo0aPre5gEQTRgfjvuxMxN/qRa+QerbVXWn3bjlSFp2HbWjV3F4jzZbKJHlslkBPec/r1Wd+k8tKhW+ycIoh7hzIDPEbkdEX9krufRohYNzVko18IFhcbjyVuLFkkEQRAEUZ+QSCvDjBkzMGPGDM3tx4wZgzFjxtTegAiCuGBZvLdStvxwmRcFlV6sOuGU1OkS3JOWYeinhyCI+GFpexuqds4MvueS2tXjaC4szM0no3LH68H3jN4edR+MzqpYp0um7/JCguFMmtoZcykIhiAIgjg/SfBHeYIgiAubgkr5RFcA4PEBZx3Sej2b2JG0hkYX1fcQRCQPmV/fQyAIogbYujwpEvrs3WfU32AuMKxd/k8kzCYPmBt1H8amlyvWcZZGMY2LaJiwhtSIbRhjGkxNJ9bBaAg1rJ0fF723dX+2nkZCEARxfkHhTARBEA0Uf8SsVJDVJ/j0my65fdz6MuQMh/vkihr1YWl1Y3wGQxBEvcBZcpBxxXa4Dn8JXVpXGBNsIuh8hjNnI+PyrXAd+Qq61C4wNhoRdR+GjD7+Ze682F/d3uvleA2TaCAwxnT1ekMqMsb9Cc6cVUcjIpRI6v0PcOZGqNj+Kmxd/wpLuzvre0gEQRDnBQn+KE8QBEGoIWflp0vwSFotWZnlksUYc8dKyswtb4CtBlFznK15zNsSBJE46GzNYO30IAm09YDO1gzWjvfHJNAGMOQMk5Rpiaokzi9YY5pqva3z49DZm9fNYIiIWDs9iOyrj8Pa/i5Vb2mCIAhCOxRJSxAEkYDwgiBKFCaHAGDzGbekPNE9aaFBpGU4s7TMkCIt01nAmjJjHgqjs8S8LUEQBBEfWH2SpIzR2+phJER9wkaKpNXoWUsQBEEQDRUSaQmCIBKQ5Uec+GhnhWqb/SUe2fJE96QFw0VsIgheSRmrINIyPlfsQ1FJWEMQBEHUDXIJx+j6fOERSaQFibQEQRDEeQ6JtARBEAnIL8fUo2gBYMtZaRQtAHAJHkmrZUmcr3SXpIw1ZkjLTJlgTdkxj0Wf0SfmbQmCIIj4wJpzpGUm8h290Ii0MobhjHU0EoIgCIKoHxL8UZ4gCOLCZG+JNJI0nDMOvg5GkjiYWlwNQ06156EurTv0GX2hz+wrK+BqwdLm9ngNjyAIgogRc8spYHTV9ga6tB40iXYBoktqo1pPIi1BEARxvkORtARBEA2UQodPvkKo23HEG2PTK+A68j9JOWtIRdqofLiOfw+B98CYOxoM6/8Zy5x8EBUbn0bljtcj74A1wtJ6GqxdHofO3jK+gycIgiCiRp/aBRmXb4W7YDkYvQ3G3DHB6ztx4cBacyM0IJGWIAiCOL+hux+CIIgGSqFTPpK2ocfXcjLLXgGAYQ1gdGaYmk2U1LF6G6wdH9Ik0qYM/Qjm5pNrOkyCIAgijujszaGz31rfwyDqEYZRX+TJcIY6GglBEARB1A9kd0AQBNFA4ZUiZhtCJK3Kg5iidUGkZY4avG79u9ZrakcQBEEQRB3DKMcQMRRJSxAEQZznkEhLEASRYLh9NVNZG4JGC4ZTrGJN8iItw0aKoNEm0iJiPwRBEARB1Ae65HbKlfT7TRAEQZznkEhLEASRYBQ5FbxmNdIzK/EjTSxtblOs46zNYGg0UloRIQJWa/KwyGIvQRAEQRD1gbXz44p1lDiMIAiCON8hkZYgCCLBOFkZu0jbM8uAtqmJbzduaX8XGH2ypFyX1h3GJpcgqe/ronJrp0fBRLAzYHQm2Lo/G3zPJbeXb6e3Rz9ggiAIgiBqHXPL66HP7C9bR5OsBEEQxPlO4j/JEwRBXGAURCnS3trZhvapBrh5AS2TdRHFzERAn9oFWVfuh/vsWujsLeGrOg6AgSGzPxidGfrUzsi+9gwchxbDkNEH+oxemvq1d38GpmZXAoIPvqoTKP5xtKQNibQEQRAEkZgwLIf00b+hYssLqNj0N3ElRdISBEEQ5zkUSUsQBJFgnKqKTqQdnmtG0yQdWqfowTYAgTYAa0qHKXc0dMntYGx0EYyNRoDRmUPqM2Btf6dmgTaAPrUT9GldwbDyvrcsibQEQRAEkbAwLAdjoxEy5RRJSxAEEQ0Mw4BhGMyYMaO+h0JohCJpCYIgEoxoImntBgYGruEIs3WL/DwkRdISBEEQRIIjJ8iy9OhKEIR2VqxYgREjpBM+HMchKSkJycnJyMvLQ69evTB48GCMHz8eBgNNBhH1C0XSEgRBJBjRRNKmm+SjRQkAjPxnw+hsdTwQgiAIgiCiQTZqlvfW/UAIgjjv8Pl8KC4uxqFDh7By5Uq8/vrrmDx5MnJzc/H888/D66VrDVF/0HQkQRBEglHh5mXLkwwMytyCqKzYJd+WADhrE2kha1C0QSAIgiAIIjHQJbcTF7B6cLZm9TMYgiAaPHfddRfuvvvu4PuKigoUFxdjy5YtWL58OX788UecOXMGTz/9NJYsWYJvvvkGmZmZ9Thi4kKFImkJgiASDDnZNdfG4fr20gjQvtmUREMJzt4a5lY3isqSB75dT6MhCIIgCEIrjM4Ce5/X/KtiGBZJvV4BQ4nDCIKIkaysLHTu3Dn4r3///hg9ejSeeOIJLF26FNu2bUOPHj0AAGvXrsXEiRPhdrvredTEhQhF0hIEQSQYgjhYFvf3SEK/HCOOVUiX3jRLosu4EgzDIGXIfNh6PAdfxWHoU7uANabW97AIgiAIgtCArdNDMLe6AQDAmSiijSCI2qNjx45YtWoVBg0ahI0bN2LVqlX473//i4ceeqi+h0ZcYFAkLUEQRAIghCizTp9Ypc00c9CxDNKM0mX65QrWCEQ1OlszGHOGkkBLEARBEA0MzpRJAi1BEHWC2WzGhx9+CIbxJ2X+5z//CY/HI9v25MmTeOqpp9C7d2+kpaXBaDQiLy8PV199NX788UfV/RQXF+P999/HDTfcgI4dO8Jms8FgMCAnJweXXnop5s6dqzmK95NPPsHw4cORmpoKm82Gzp07429/+xtKSkqi+tuJxIFCsAiCIOqR9adcmLOlDD4emNjGirUnXeDDImmZc//bDIxk+zISaQmCIAiCIAiCIGpMp06dcPHFF2Pp0qU4ceIE1q1bh4EDB4rafPzxx5g+fToqKytF5ceOHcOiRYuwaNEi3HrrrZg9ezZ0Oqnk1qNHDxw+fFhSfurUKSxduhRLly7F7Nmz8e233yInJ0d2nF6vF1OmTMGiRYtE5du3b8f27dvx0UcfRRSLicSEImkJgiDqCV4Q8M7WcpS5BVR6BXy0swJ7iqWztecmc8EyUpHWE67oEgRBEARBEARBEDExatSo4OuVK1eK6hYuXIgbb7wRlZWVaNmyJV577TV8//33+PPPP/H5559jzJgxAIB3330Xjz/+uGz/Pp8P/fr1w3PPPYdvvvkG69atw6pVq/DRRx/hsssuAwBs3LgR1157reIYH3300aBA265dO7z77rtYt24dfvzxR0yfPh2HDh3CNddcU6PPgagfKJKWIAiinihx8Sh2RY6EZUO02d7ZBqw/Vb38ZWRTc20MjSAIgiAIgiCIOkYQeAh8WX0Po85g2CQwTGLFDvbs2TP4es+ePcHXZ8+exR133AFBEHDLLbdgzpw5okjZnj17YtKkSXjqqafw4osv4o033sD06dPRrl07Uf8//fQT2rRpI9nvwIEDcf311+P999/HLbfcgl9++QXLly/HyJEjRe22bt2KmTNnBvf5yy+/wGarTjA9cuRIDBw4EFOnTq3ZB0HUCyTSEgRB1BMlGgRaoNruAACuamvF0XIfTlX5cGkzM1pQ4jCCIAiCIAiCOC8Q+DKUn7yyvodRZ9hzPgfDpdT3MESkp6cHXxcXFwdfz5o1C6WlpWjSpAneeustWSsDAHj22WfxwQcf4Pjx45g/fz5eeOEFUb2cQBvKzTffjP/85z/YtGkT/ve//0lE2tmzZ4Pn/c+Rc+fOFQm0AW666SZ89tln+O6779T/WCLhoKd7giCIeqJUq0gbotI2T9Lj9eFpAOTtDwiCIAiCIAiCIIjYCBU9y8vLg6+//vprAMC4ceNgNBoVt9fpdBgwYAAWL16M1atXq+5LEAScOnUKZWVlomRhTZo0waZNm7B582bJNgGv2S5duqBXr16Kfd9yyy0k0jZASKQlCIKoIW6fALdPgM3gX6pT4eZh5BjoORkPWZ/ff7bKw2N7oXy20HBYiPshcZYgCIIgCIIgCCL+hAqzSUlJAPw+sps2bQIAzJkzB3PmzNHU18mTJ2XL8/PzMWvWLPz666+i/YVz9uxZ0XuXy4W9e/cCAPr06aO67759+2oaI5FYkEhLEARRAzaeduH1DWVw+QSMbWFGoZPH6gIXUo0sHu+TjJbJ+mDbI2VePLayKPqdkCZLEARBEARBEARR64QKo2lp/hWMRUVF8Hq9UfdVVVUlei8IAm6//Xa8++67mrZ3OByi98XFxRAEf+LorKws1W2zs7OjGCmRKJBISxAEUQM+210Jp8//Q/nNweof0WIXj6/2V+GhnsnBsv/tr4xpH15eqNkgCYIgCIIgCIJIeBg2Cfacz+t7GHUGwybV9xAkbNy4Mfg6kPTL5/MFy2677TY88MADmvoyGAyi9++9915QoO3evTsefPBB9OvXD02aNIHFYgHHcQD8nrIffvhhUJCVg6HVleclJNISBEHUgENlyjOqawpcoverTrgUWipj5Bjk2uhSTRAEQRAEQRDnOwzDJlwirQuNZcuWBV8PHjwYQHVELeCPhu3cuXNMfb/99tsAgNatW+P333+H2WyWbVdUJL/6MiUlJfj61KlTqvuKVE8kJmx9D4AgCIKQJ9PM4q5udhhkvG0JgiAIgiAIgiCI+LFt2zYsX74cAJCXl4fevXsD8EfEdurUCQCwatWqmPvfvn07AGDChAmKAq0gCNiwYYNsnclkQps2bQAA69atU91XpHoiMSGRliAIIkZ4leUn4Ti8fNT9v3lRBgY0MkW9HUEQBEEQBEEQBKEdh8OBm266KWgx8Oijj0Knq17ROGHCBADArl278MMPP8S0j4CvbWWlsg3eV199hYKCAsX6UaNGAQC2bt0qsmYI57333otpjET9QiItQRBEDJS7efxxUrt9QZEzepGWIAiCIAiCIAiCqF127NiBwYMHB0XPYcOG4a677hK1eeCBB2Cz2QAAN998czAqVon8/Hxs2bJFVBaIgl2yZImspcH+/ftxzz33qPY7ffr0oB/tHXfcISv4fvzxx/j2229V+yESEzI6JAiCiJI9xR48/XtxVNsUkkhLEARBEARBEARR55w+fRrbtm0Lvq+srERxcTG2bNmC5cuXY9myZcEI2v79+2Px4sXQ6/WiPrKzs/HBBx9g8uTJKCgoQO/evTFt2jSMHj0aubm58Hg8OHbsGNauXYvFixfjwIEDWLJkCbp27Rrs46abbsJjjz2GEydOYMCAAXjiiSfQuXNnOJ1O/PTTT3j99dfhcrnQs2dPRcuDbt264Z577sGbb76J9evXo3fv3njiiSfQpUsXlJaWYtGiRZg7dy569+6N9evX18KnSdQmJNISBEFEyYLdFVFvU+TwRW5EEARBEARBEARBxJVZs2Zh1qxZqm0yMzPx4IMP4vHHHxfZHIQyadIkfPXVV5g2bRqKioowe/ZszJ49W7Yty7KwWq2isgceeADLli3D0qVLsWfPHtx6662ierPZjPnz5yM/P19RpAWA1157DSdOnMAXX3yBXbt24eabbxbVt2jRAgsWLECrVq1U/2Yi8SCRliAIIkq2FXqi3uZkVXQi7aim5EVLEARBEARBEAQRT1iWhd1uR3JyMpo1a4ZevXphyJAhGDduHAwGQ8Ttx48fj4MHD+Ltt9/Gt99+i+3bt6OoqAg6nQ45OTno1KkTLrroIkyePBl5eXmibfV6PfLz8zFr1izMnz8fO3bsgCAIaNKkCUaNGoUHHngA7du3R35+vuoY9Ho9Pv/8c3z00UeYO3cutmzZAo/Hg2bNmmHixIl49NFHkZqaWqPPiagfGEGIIvMNkXAcO3YseOIfPXoUubm59Twigjj/uSb/tOa2C8ZmAQD+vaEUawrUPWzv7GrHD4ccaGTjcHMnO5IMZBtOEARBEARBEIlCTZ6/9+7dC6/XC51OF/QmJQiiYRPv85oiaQmCIGoRQRDAMAxOVkaOpB2RZ8aIPHMdjIogCIIgCIIgCIIgiESCRFqCIIha5McjTuhY4FCZV1SeaWZxxkHJxAiCIAiCIAiCIAiCIJGWIAgiKqJ1iHlnW7lsea5NhzMOdzyGRBAEQRAEQRAEQRBEA4cMDwmCIKLAFV3+L1n0LNA2VV/zjgiCIAiCIAiCIAiCOC8gkZYgCCIKnN6aWxQ0snK4rLkZ+pAr8JAmphr3SxAEQRAEQRAEQRBEw4TsDgiCIKLA4ZPaHfTJNqJNqg6bTruxo8gTsY8cqw4WPYu/9kvBNweqkGricF07a20MlyAIgiAIgiAIgiCIBgCJtARBEFHg8IpFWo4BHumVBIZhcHkrK67JPx2xj0ZWDgDQPs2A9mmGWhknQRAEQRAEQRAEQRANB7I7IAiCiAJnmEhr0jFgGCaqPgIiLUEQBEEQBEEQBEEQBEAiLUEQRFSER9KaddEJtACQQyItQRAEQRAEQRAEQRAhkEhLEAQRBZJIWk4s0iYbI19WG1lIpCUIgiAIgiAIgiAIohoSaQmCIKIgPHFYeCTt7Z3tqtu3TtEhxUQiLUEQBEEQBEEQBEE0ZARBmli8JlDiMIIgiCiIZHfQO9uAO7rYMXdrOQC/KGtgGVj0DLIsHC5vZa2zsRIEQRAEQRAEkRhwHAev1wufzwee58GyFDNHEA0Zn88Hn88HwH9+xwMSaQmCIKLA6eVF70068c0VwzAY2dSMkU3NdTksgiAIgiAIgiASGJPJBJfLBUEQUFFRgaSkpPoeEkEQNaCkpCT42mKxxKVPmrohCIKIgngkDiMIgiAIgiAI4sIiVJQ9efIkysrKwPO8yhYEQSQagiDA6XTi9OnTOH36dLA8NTU1Lv1TJC1BEEQUREocRhAEQRAEQRAEEY7VaoXZbIbD4YDP58Px48fBMEzclkkTBFH7+Hw+iQ9tcnIyjEZjXPonkZYgCCIKnGGJw0wUSUsQBEEQBEEQRAQYhkHTpk1x5MgROBwOAP6oPK/XW88jIwgiVjIzM5Ge/v/t3Xl8lOW9///3LJksk40tQgiLBCKgqJSgILK5YBWVIop2EeSgtdrF9vhVe/R0OVarpfXXqg+PG4hLW7GidedUq4gKCAapVhbZkbAmELJNktnu3x8xQyYzk5kkM7mTzOv5ePhwZu7rvuaaTK4Z5p1rPlefuPVHSAsAbdCiJK1SKBoDAAAAIAZWq1VDhgxRbW2tqqurA6tqAXQPVqtVDodDTqdTmZmZcjgcce2fkBYA2sDX4qsNNgsraQEAAADExmKxKDMzU5mZmWYPBUAXwxowAGiDlitp7byKAgAAAACADiJeAIA2+FeZO+i6zcpKWgAAAAAA0DGEtAAQo/WHGkJuY98wAAAAAADQUYS0ABCj5dtrQ25jJS0AAAAAAOgoQloAiNHeKm/IbaykBQAAAAAAHUVICwAdwEpaAAAAAADQUYS0ABCjbEdoIMtKWgAAAAAA0FGEtAAQg01H3apyGyG3u7yhtwEAAAAAALQFIS0ARFHj9uvedcfDHqto8HfuYAAAAAAAQI9DSAsAUXx8qEG+CAtmz+jr6NzBAAAAAACAHoeQFgCiqGxltWxhrr0TRwIAAAAAAHoiQloAiCIzJfzuYL+emCurhZ3DAAAAAABAxxDSAkAU7ggLaftn2Dp3IAAAAAAAoEfie7oAktaO4x49+lmVSmt8kqTzB6Xp3X31gePfPsWpbw13qt4bPqXNSeXvXAAAAAAAoOMIaQEkJb9h6KGNVTrs8gVuax7QStLzX9ZqcJZd9d7wu4ZR6gAAAAAAAMQDIS2ApLS/xhcU0Eay+kC9UmyhYew38hyJGBYAAAAAAEhCfFcXQFI6UOONqd2/j3pU1RBa7mBWYUa8hwQAAAAAAJIUIS2ApPRVdfRVtJJU2eDX5mOeoNvmFjk1sjcraQEAAAAAQHwQ0gJISvuqY1tJK0l1LWrS5mfa4j0cAAAAAACQxKhJCySxjw/W67ktNXJYLbrx9KykWh3alpC2pWwHf98CAAAAAADxQ9IAJCm3z9Bjn1ervM6vA7U+Lf6i2uwhdRqPz9DB2tjKHYSTRUgLAAAAAADiiKQBSFL/LncHfY1/X7VPXr/Ryhk9R43Hr4480txUXjoBAAAAAED8kDQAScqXHHlsWA0dePAZdouyUixxHA0AAAAAAEh2hLRAkjKM5E1p3f72n9vfaZPFQkgLAAAAAADih5AWSFLhItokqXYgd4uVtNY2ZK4nZdjiPBoAAAAAAJDsCGmBJBUuj/UkSUrbMqR12mNPafs7CWkBAAAAAEB8EdICSSpctYPPytydPxATtKxJ67BZNKp3Skzn9mclLQAAAAAAiDNCWiBJOcNsflXZ0IFird1Iy5W0DptF143OjOnc3mmEtAAAAAAAIL4IaYEk5Q2Tx/qSo9qB3L7g6w6bRUNzUjS3yKlUm5TvtGlWYUbYc9PaUBoBAAAAAAAgFnazBwDAHHXe0ETWF64GQg/kblF7N/XrP1fNGeHUFcMzZLE0BrF9061a8kVNUFtCWgAAAAAAEG+spAWSVLiQNty+YQ0+Q0dcPnm/Pujy+PVVtVfH608sR633+nXE5ZM/wSGv12/oUK1Xng4u+Q1X7qBJU0ArSam20EA2LcxtAAAAAAAAHcFKWiBJ1ccQ0h6s9eredcdVVufXsBy7vpHn0PLtrsDxq4ucOqOfQ/d9clzVbkOn9UnRz8fnKiUBQWZVg1+/WVehr6p9yku36lcTe6lvevvqw4bbOCwcu5WQFgAAAAAAJB4raYEkVecLLUrra5HSrthdp7K6xna7Kr1BAa0kvbCtVk9tqla1u/G8L4569Hm5OyHjXbW/Xl9VN67ePVLn12s7XVHOiKxluYOUMGGsJDnDlDZIpdwBAAAAAACIM0JaIEn5w2wcVt9ihek/9tZF7WfHcW/Q9Q2HGzo0rkje2h0cysYytkhcnuDHmREheB3dx6HMlBPHBmfZwpZAAAAAAAAA6AhCWgABLcPL9nCmJOZlpWWJAkmqdodJmmNQ0+JxOlPCB68Om0U/OjNbg7NsKsyx6wenZ7fr/gAAAAAAAFpDTVoAAa5mdWqNdm4ClqCMVjkOq2o9vqDbvqzwqPik1Db35fIEh7utBctj81I1Nq/t9wEAAAAAABArVtICCHB5/c0uty+kDbfiNZwjLp+2HnPLbxg6UOPVV1VeHXH5tP5Qgz4vd8vdop9qT+iq2a3HPCG3GYah3ZUefVV1ogxDZYNfm4+6Ve89UV+3uUgraQEAAAAAADoDK2kBBDQvd1BR375SAm/srtO1o7NabbPuYL0e3Fil1vLcQVk23T2xlzJSrPL4jMDmZM1tPRa6SdnSTTWBerVXjsjQ2QPSdPfHFap2G+qdZtXMkzNU0RD7SloAAAAAAIBEI5kAklS4fLT56tlj7QxpJanO2/q5b+xytRrQStK+ap8+K28MYY83hO9vV6VX/mZlGVwev9756sSGYsu3u/TmLlcg4D1W79dzW2pC+mElLQAAAAAAMBMhLZCkwoWkwSGtL7RBjLZXeFs9vu1468ebHP86KG658rWJzwjeBKzS7Ze/xeN6v7Q+6v30SbPFNB4AAAAAAIBEIKQFkpS3ZZqp4A21IgWjsdhaEVqGoD08X4+xopXAuNp9YpxWS/tWxPZ3EtICAAAAAADzJG1IW1JSorvvvlszZsxQQUGBUlNTlZmZqaKiIi1YsEAfffRRm/pbsWKFZs+eHeiroKBAs2fP1ooVKxL0CICOCbeS1uM/Ed5GKndw2bCMqH1/GWZDryaGEfuGZE35a2uBcfOQti19N+ewUe4AAAAAAACYJyk3DpsyZYo+/PDDkNvdbre2b9+u7du36+mnn9a8efP05JNPyuFwROzL7/fr+9//vpYsWRJ0+/79+7V//3698soruv766/X444/Lak3aTBxdULiVtFLj5mFWq6G399aFPV6YE/1lY/txr7x+Q3ZrY/j5VbVXe6sa68furoyt1IEkuX2Gthxz650IY5GkV3a4dMUIi/bXeFVyuCHmvgEAAAAAALqKpAxpDxw4IEnKz8/XVVddpcmTJ2vw4MHy+Xxau3atHnjgAe3fv1/PPvusPB6P/vrXv0bs66677goEtGPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W875fEBsYi0cVd5vU9/KKmMeF5OqlV90qw62srGYg0+Q3urvCrMTdG6g/X6/z6tatcYX93p0qs7Xa222Vjm1say+JRXAAAAAAAAMIPFaO/3g7uxSy+9VPPmzdOcOXNks4XWoiwvL9ekSZO0bds2SdKqVas0ZcqUkHbbtm3TqaeeKq/Xq+LiYn3wwQdKT08PHHe5XJo6dapKSkpkt9u1ZcsWDR8+PK6PpbS0VIMGDZIk7du3TwUFBXHtHz3XQxsrtfpA6MrT8wen6d2vIm+2dd+5vfT81hp9Xh65pIEkzRmRoatGOHXL+8d02NX+TcgSrSDTpgem9jF7GAAAAAC6OD5/A0ikpPz+/RtvvKG5c+eGDWglqW/fvnrggQcC15cvXx623Z/+9Cd5vY1f3X744YeDAlpJysjI0MMPPyxJ8nq9+uMf/xiP4QNx4Y2wELa1gDYrxaLBWXZlOkJfOsblBZcF+aC0XrurvF06oJWk24pzzB4CAAAAAABIckkZ0sZi+vTpgcs7d+4MOW4Yhl599VVJ0siRIzVhwoSw/UyYMEGnnHKKJOnVV19t98ZGQLz52vi7ODTbrv+ekCu71aJUa+hGWxcOCf4jRVmdX0u/qI7a76T8VD08vY/mFjkVptuwzugXuU50W1w3OlP9nUlZ9QUAAAAAAHQhhLQRNDSc+Bp4uBW3u3fvDtS2nTp1aqt9NR3fv3+/9uzZE79BAh0QaSVtJLcV52hodookyWELTVNP6ZWiwVnBc2Xb8cibhA1w2vTCzDz9ZGyO8jJsmjPCqfsm9YppLPNGZWpukbMNow9137m9dPHJGR3qAwAAAAAAIB5YQhbBqlWrApdHjRoVcnzz5s2ByyNHjmy1r+bHt2zZopNPPjkOIwQi21Pl0SeH3DpW75PdalGazaI0u0Vn909VWZ1P2yo8+lcbN9tKt58IZsOFtA6bRdMK0vXslpqY+stJDf0bUX9n+BIkLfVOsyo1zBjaoleY+wcAAAAAADADIW0Yfr9f999/f+D63LlzQ9qUlpYGLkcrFt5UWFxqLC7eFs3vJ5yDBw+2qT/0fF9Ve/XfqyvkCbNS9m/batvdb/OQNjVMlmq3WjR5YJr+srVGvhgqKeSGCUnT7NGD01Rb41g6GtJmh6mrCwAAAAAAYAZC2jD++Mc/av369ZKkK664QuPGjQtpU119otZmZmZmq/05nSe+ll1TE9sqwybNA14gFh8frA8b0HaU1XIiFB2cFf6lIzvVqm/kOfTJ4eirdE/rE76u7KjeKdpyzBPxvByHVRZL4+rgjrDFWgAXAAAAAAAgwVhK1sKqVav085//XJKUl5enRx99NGy7+vr6wGWHo/VNjFJTUwOX6+rq4jBKILIjLl/c+5xakBZ0vfikVPVNP/HyMb3Z8ZG9Y9vUq2Wf0W5vYv86XLXHVhkhrIuHpkdvBAAAAAAA0ElYSdvMpk2bNHv2bHm9XqWlpenFF19UXl5e2LZpaSeCJLe79VWDzTchS09vWzgUrTzCwYMHddZZZ7WpT/RsZa72L6OdWpAm/9elClKsUorVon7pNn2zRahps1r0m3N66e09dcp0WIOOh6s1K0kLT8vUs5trZJH0+ym9w9a1bRpDut2iXZVeZTuseq5FjduGr2sp2C1tXwl7Tn6qinJTdOEQQloAAAAAANB1ENJ+bffu3ZoxY4YqKipks9m0bNkyTZkyJWL7rKyswOVoJQxqa0/UAY1WGqGlaPVugZbK6tq3knbKwDTdfEZ2zO17p9l0zcjQ3+dIIe2Yvg79+eLwf/RozmqxaMKANE0YILl9RkhIe7S+MYRuT7WDG8dkK81OmQMAAAAAANC1ENJKOnDggC644AIdOHBAFotFTz31lGbNmtXqOc3D02ibezVfDUuNWbTFZ2UN+leZW6f2cWhcnkOWVlaP/qusQWsONARCzLbKdMQnvMyNsCFXr3C7jUURabWtJNnaUaylHUMAAAAAAABIuKQPacvLy3XhhRdq165dkqSHH35Y8+bNi3re6NGjA5e3bt3aatvmx0eNGtXOkSLZbDnm1n3rK2VIemt3nW4vztG4k1LDtt16zK37v27bXrZ2lA8IJzvCStr2rmDNSrGo2hP6yOq8bX+0rYXcAAAAAAAAZknqjcMqKyt10UUXafPmzZKk+++/Xz/84Q9jOvfkk09Wfn6+pMbNxlrzwQcfSJIGDhyooUOHtn/ASCprDzQEha6LSiojtv30iLtDAa0kFebG52822XFakdukZf3YwVmNy2FPymjbslhnCgEtAAAAAADompI2pHW5XJo5c6Y+/fRTSdJdd92lO+64I+bzLRZLoCTC1q1b9fHHH4dt9/HHHwdW0s6aNYuVfIjZmoP1Ibf5jfBRbFVD+zcLa3J2//CrdNvKarHo3PzgvuaPblst5uZmFWYot9nq3GkFjaHtkGy7BmZGDmqnFaQps1kw++1T2j8GAAAAAACARLIYRoTUpwdzu9267LLL9Pbbb0uSbrnlFv3pT39qcz/btm3T6NGj5fP5VFxcrA8++EDp6SdW/dXV1WnKlCkqKSmR3W7X5s2bNWLEiHg9DEmN9XCb6tzu27ePjcZ6kN+XHFfJYXfQbQ9M6a2CrNAVr+HatsVTM/rKmRK/v9n4DUNv7q7T+/vqdOUIpybmp3Wov+MNfq0+UK/+Gbagkg81Hr9W769XlsOqb+Q59M5X9frkUINmDEnXOfmpqmzwa+3BBg1w2jQ2Lz4hNAAAAIDkxOdvAImUlDVpv/3tbwcC2vPOO08LFy7UF198EbG9w+FQUVFRyO1FRUW67bbbdP/996ukpESTJk3SHXfcocLCQu3cuVO/+93vtHHjRknSbbfdFveAFj1b77TQVaJbKzxhQ9oad/v/1tI7zRrXgFZqXE172bAMXTYsIy795aZaNfPk0L4yU6y6aOiJ21veZ680my4Jcx4AAAAAAEBXkpQh7csvvxy4/N577+n0009vtf2QIUO0Z8+esMfuvfdeHTlyRE899ZQ2btyoa665JqTNwoULdc8993RozEg+Db7Q4HXrMY8uGJwecnu1p/3lDjLauaEXAAAAAAAA4iNpa9LGi9Vq1ZIlS/Tmm29q1qxZys/Pl8PhUH5+vmbNmqW33npLixcvltXKjxpts6o0tCbt1mPhSxrUuDsQ0sZ5FS0AAAAAAADaJilX0iaiDO8ll1yiSy65JO79InmdlGHTYZcv6LayOr+q3H5lO04Eq+V1PlV2oNzBOQOo1QoAAAAAAGAmltABXZQ9wuzcW+UNur7hcEO776N/hk3nhymfAAAAAAAAgM6TlCtpge7AH2Fx7N4qr8b0dQSubzgSXAKhqFeKphakaWCmTQ1eQ7JIo3s79FmZW0frfbJZLEqzW+SwSmf0S5XDRk1aAAAAAAAAMxHSAl2UL0JK23wlbZ3Xr01Hg0PaS4ama2J+Wsh54/tT1gAAAAAAAKArotwB0AUZhqEjdeE3A9tbfSKk/bzMLW+zZjaLdEY/R5izAAAAAAAA0FUR0gJd0OZjnojHSqu98n69yrZlqYNT+6QoI4VpDQAAAAAA0J2Q5gBd0L9ahK/N+Qyp2t24fLblJmJj8yhpAAAAAAAA0N0Q0gJd0K7KyCtpJampWu0Rly/o9oIsykwDAAAAAAB0N4S0QBfjNwztrPS22sYwpFqPXy5v8OZieelMaQAAAAAAgO6GRAfoYg7V+lTXInxtyVDoKlqLpL7ptsQNDAAAAAAAAAlBSAt0MbtarKJNt1tC2tz50TGVHG4Iuq13mlV2a2hbAAAAAAAAdG2EtEAXs+lo8KZhhTmhdWYr3YaWb3cF3ZaXwSpaAAAAAACA7oiQFuhCyut8+mB/fdBto/s45EyJvkI2P5OQFgAAAAAAoDsipAW6kJe318rrP3HdbpWmFqRpbpEz6rnTCtITODIAAAAAAAAkCiEt0EUcqvVqZWnwKtoLB6erb7pN3xyaocUX9o147ul9HSrqlZLoIQIAAAAAACABCGmBLuKl7S75jRPXHVbpW4UZgetZDquGhalPK0lXjoi+0hYAAAAAAABdEyEt0AXsr/Hqwxa1aC8amqHctOA6s7mpoVP29L4pOqU3q2gBAAAAAAC6K0JaoAtYua9ezRbRKs1m0eXNVtE26e8M3RxsDqtoAQAAAAAAujVCWqALOOzyBV2fPihN2Y7Q6TmqtyPo+pi+KRrZ4jYAAAAAAAB0L4S0QBfgN4yg6zlhyhpIUvFJDk3KT5VF0uAsm24+I7sTRgcAAAAAAIBECr8LEYBO5fUHX7dZwrezWiz6ydgc3XS6oZRIjQAAAAAAANCtsJIW6AJarqS1WVoPYAloAQAAAAAAeg5CWqAL8AVntLKSwQIAAAAAACQNQlqgCwgpd8DMBAAAAAAASBpEQUAXUF7nC7qe5WBqAgAAAAAAJAuSIMBk9V6/jtYHL6Ud6GRPPwAAAAAAgGRBSAuY7EBt8Cpai6T+Tps5gwEAAAAAAECnI6QFEqjG49eeKo+8fkMNPkN7q7zyG8G7hO2vCQ5p8zJsctjYOQwAAAAAACBZ8J1qIEH2VHl077rjqnIbslslw5B8hjQ4y657JvVS6tdB7P4ab9B5AzNZRQsAAAAAAJBMWEkLJMjbe+tU5W5cNev1Nwa0kvRVtVdrDtQH2h1sUe4gn1IHAAAAAAAASYWQFkiQd7+qj3jsi3J34HK9N7j8QU4q0xIAAAAAACCZkAYBJmgey7asUWuzUI8WAAAAAAAgmRDSAiZo8J0IZr3+4GM2ZiUAAAAAAEBSYeMwII52VXq0r9qrzJTWk9aqhhPJrD94IS0raQEAAAAAAJIMIS0QJ6/trNVfttbG1Lba02wlbUi5g7gOCwAAAAAAAF0cX6wG4sDl8ccc0EpSRb0/UIvWR7kDAAAAAACApEYcBMTB6gMNbWpf7zN0xOWTJHla1DtwWFlKCwAAAAAAkEwIaYE4eG9fXZvP2V3plRS8iZgkOah3AAAAAAAAkFQIaYEO2lPp0a6vA9e22F3VeI6bkBYAAAAAACCpsXEYTOHzG/r4YIMsFuns/qmyRfmKf7Xbr08ONahvuk1j+qbIYumcIHN3pUfbj3t0el+H+jvDT5e/bK2Jqa98p00Han2B6yWHG5Rms6jSHRzSphLSAgAAAAAAJBVCWpjiwY1VWneosY7rpPxU/WRsTsS2x+t9+u81FSqra9xh69pRmbp0WEbCx/h5uVv3rjsuSXJYpTvG5+q0vo6gNtsqPPq83BNTf8Ny7EEh7f4an17YFrrZmMPW/jEDAAAAAACg+6HcATpdeZ0vENBKjZtuuTz+sG39hqFHPqsKBLSS9OrOWvkNI2z7eHp1x4kA1e2X/rChUnurTpQ1cPsMPfpZVcz9je7jiN5IrKQFAAAAAABINoS06HR7qkLrtx5vCB/SvrHLFbJStcptaHtF22vAtkWN26/Nx4Lvt85r6L71x1Ve17gadvn22qCVsS31STsxvTLsFk0emKZhOdEXrxPSAgAAAAAAJBfKHaDTHXGFBpvV7tCVsTuOe7Tsy9ByAJK04UiDTumdEvexNe/fH2axbkWDX/etP655ozP12k5XyPEbxmRpV6VHZ/R1aNxJqXpzt0tH6/z65tB0OWwW3VGco1d2ulT2ddBbctgd0ocjSn1eAAAAAAAA9CyEtOh0pTWhq2CrW5Q7cHn8emhjlXwRqhqUHG7Qd0ZmJmJ4kqRPDoWGp01Ka3z67frKoNtsFun+yb01OMsuKT1w+6xCZ1C73DSbrjs1K3D91lVHVVoTHFo7WEkLAAAAAACQVAhp0en2V4eupF2x26V/HTkRjO6r9upwmBW3gT5qfHrs8yrlpds0eWCa+mXEb7etBp+hz8oagm5LtUkNkYejK0c4vw5o2yY31RoS0qZQhAQAAAAAACCpENKiUxmGoX1hVtJ+cdSjL456wpzRqCjXrsN1flU2q127cl/91/+v0++n9FaaPT7p5udlbrmbLey1SPqfib30u08qVRGmdu7QbLsuL8xo1331SrNJCn7cFgsraQEAAAAAAJIJa/bQqSrdhmo9EWoYRJBht+jHY3M0Ls8R9viROn+r5Qnaasfx4NB0VO8UnZyTov86K1fp9uAA1WaRbjojS/Z21pEd0zdxdXUBAAAAAADQPRDSolOVVoeuom2NRdL3T89SXoZNF5+cEbEUwKaj8Qtpq93Bq2UHfV3GYEi2Xf9vXI6aL9i9+hSnhma3P2idlJ+mfuknOrzk5PRWWgMAAAAAAKAnotwBOlVBll0/OjNb+6u9emuPSw0+acaQ8MFkilUad1KqTu3TuIJ2cJZdd5/TSx8fbNCrO11BbTcfi19IW9NipW9myolVsqf1degPU3przYEGDc6ya3z/1A7dl91q0T2TemvlvjrlOKyaNiitQ/0BAAAAAACg+yGkRafKTbVq8sDGIPKakZltPn9YToqG5aTonPxU3fFhReD2wy6/yut86pve8Q3EajzBK2mdjuDluwOcds0ZEb+pk5tq1ezhzrj1BwAAAAAAgO6FcgfolgZn2YNWuErxKXlQWu3VphYbmLW8HwAAAAAAACCeCGnRLVktFo3qHbyRWMtwta28fkN3rzsecntmpEK4AAAAAAAAQByQPqHbGt0neMOutm5K1tJX1V5VNvhDbs9NZZoAAAAAAAAgcUif0G31ahGe1vuMCC1jU+cNPX9Itl0n51C6GQAAAAAAAIlDSItuK80eXCu2PkzI2hbuMCHvrybkymqhJi0AAAAAAAASh5AW3VaqrUVI28GVtC1D2gFOm5zUowUAAAAAAECCkUCh20qP90raFuVoU6ysoAUAAAAAAEDiEdKi22pZ7sBnSF5/+4Laeq+hjw/WB93msLV7aAAAAAAAAEDM2BEJ3ZbTHvo3hiMun/Iz2/ZrfajWqwc2VOqral/Q7dkO/oYBAAAAAACAxCOFQreV5bCoV2rwr/DO49429fGvIw2686OKkIDWIumCwekdHSIAAAAAAAAQFSEtui2LxaLC3OBVszsqPTGdaxiG/r6jVvd/UqnaFrVsM+wW3V6co3EnpcZtrAAAAAAAAEAklDtAtzY8N0Ulh92B6zuORw9pXR6//vezan1yuCHkWEGmTf+vOEcDnEwNAAAAAAAAdA6SKHRrhbkpQdf3VHnl9RuyWy1h25fX+XTvuuM6UOsLOXZ2/1TdfEaW0sLUugUAAAAAAAAShZAW3VphTvCvsNcv7ar0qqhXSkhbwzD08L+qQgJai6Rvj3Tq8mEZsljCh7sAAAAAAABAorBkEN2aM8WqfKct6LY1B+rDti057NbWY8HlEDJTLLrzrFzNKnQS0AIAAAAAAMAUhLTo9s4eELzB10f76+X1B28G5vMb+uvWmqDb+qRZdd+5vXV6P0fCxwgAAAAAAABEQkiLbm9aQVrQ9WqPoQ0tNgVbWVofUubgOyMzlZcRvAoXAAAAAAAA6GyEtOj2+jvtGtU7uAbt+6UnSh7Ue/3627baoOMnZ9t1Tn7wClwAAAAAAADADIS06BFarqbdeMStinqffH5DC94uV2WDP+j490ZlykoNWgAAAAAAAHQBhLToESYMSFWq7UToakh6a3ed/rG3Ti3K0+rMfg6d1pc6tAAAAAAAAOgaCGnRI6TZrZrYYgOxt/a49PbeupC23xmZ2VnDAgAAAAAAAKIipEWPMaswQ80W08rrlw622Czs9L4pGpJt7+SRAQAAAAAAAJER0qLHyM+065tD01ttc+u43M4ZDAAAAAAAABAjQlr0KFeOcCrHEX5DsNP6pCjNzmZhAAAAAAAA6FoIadGjZKRYdc0p4WvOntGPzcIAAAAAAADQ9RDSoseZNihNw3JC686e0S81TGsAAAAAAADAXIS06HGsFouuG50VdNtJGTYNzrKZNCIAAAAAAAAgMkJa9Ein9E7RwtMy5UyxKC/dqh+cniWLhXq0AAAAAAAA6HpCvxMO9BAzhmTowsHpMtS4uhYAAAAAAADoighp0aNZLBYRzwIAAAAAAKAro9wBAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESFtHO3du1e33nqrRo4cKafTqd69e2v8+PH6/e9/L5fLZfbwAAAAAAAAAHRBdrMH0FO8/vrr+t73vqeqqqrAbS6XSyUlJSopKdHixYv15ptvavjw4SaOEgAAAAAAAEBXw0raONi4caOuvvpqVVVVKTMzU/fee6/WrFmjd999VzfccIMkadu2bZo5c6aqq6tNHi0AAAAAAACAroSVtHFwyy23qK6uTna7XW+//bYmTpwYOHbeeedpxIgRuv3227Vt2zY98MAD+vWvf23eYAEAAAAAAAB0Kayk7aD169frww8/lCQtXLgwKKBtcuutt2rUqFGSpAcffFAej6dTxwgAAAAAAACg6yKk7aBXXnklcHnBggVh21itVs2bN0+SdPz4ca1cubIzhgYAAAAAAACgGyCk7aCPPvpIkuR0OjVu3LiI7aZOnRq4vHr16oSPCwAAAAAAAED3QE3aDtqyZYskafjw4bLbI/84R44cGXJOLEpLS1s9fvDgwZj76gpq3JVau+s2s4cBAAAAAOgi/ErVRSMfNnsYAGAqQtoOqK+vV3l5uSSpoKCg1ba9evWS0+lUbW2t9u3bF/N9DBo0qENj7Gq8PrfOytpp9jAAAAAAAF3EMQ/RBABQ7qADqqurA5czMzOjtnc6nZKkmpqahI0JAAAAAAAAQPfCn6s6oL6+PnDZ4XBEbZ+amipJqquri/k+oq26PXjwoM4666yY+wMAAAAAAADQtRDSdkBaWlrgstvtjtq+oaFBkpSenh7zfUQro9DdOOzp+qCGUBkAAAAA8DVLqk42ewwAYDJC2g7IysoKXI6lhEFtba2k2Eoj9FQZKZn65in3mT0MAAAAAAAAoMugJm0HpKWlqU+fPpKk0tLSVttWVFQEQtqethkYAAAAAAAAgPYjpO2g0aNHS5J27Nghr9cbsd3WrVsDl0eNGpXwcQEAAAAAAADoHghpO+jcc8+V1FjKYMOGDRHbrVq1KnB50qRJCR8XAAAAAAAAgO6BkLaDvvWtbwUuL126NGwbv9+vZ599VpKUm5ur6dOnd8bQAAAAAAAAAHQDhLQddNZZZ2ny5MmSpCVLlmjt2rUhbR544AFt2bJFknTLLbcoJSWlU8cIAAAAAAAAoOuymz2AnuDBBx/UpEmTVFdXpxkzZujOO+/U9OnTVVdXp2XLlumJJ56QJBUVFenWW281ebQAAAAAAAAAuhJC2jgYO3asXnjhBX3ve99TVVWV7rzzzpA2RUVFevPNN5WVlWXCCAEAAAAAAAB0VZQ7iJPLLrtMn3/+uX72s5+pqKhIGRkZys3NVXFxsX73u99p48aNGj58uNnDBAAAAAAAANDFWAzDMMweBNqvtLRUgwYNkiTt27dPBQUFJo8IAAAAAICeh8/fABKJlbQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmsps9AHSM1+sNXD548KCJIwEAAAAAoOdq/pm7+WdxAIgHQtpurqysLHD5rLPOMnEkAAAAAAAkh7KyMg0dOtTsYQDoQSh3AAAAAAAAAAAmshiGYZg9CLRffX29/v3vf0uS+vXrJ7u96y+OPnjwYGDV7/r16zVgwACTR4S24jns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz6HXq838G3WMWPGKC0tzeQRAehJun6ih1alpaVp/PjxZg+j3QYMGKCCggKzh4EO4Dns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz2HlDgAkCiUOwAAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMZDEMwzB7EAAAAAAAAACQrFhJCwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0qJT7d27V7feeqtGjhwpp9Op3r17a/z48fr9738vl8tl9vCSUklJie6++27NmDFDBQUFSk1NVWZmpoqKirRgwQJ99NFHUft4+umnZbFYYvrv6aefTvyDSjKx/uynTZsWta8VK1Zo9uzZgd+FgoICzZ49WytWrEj8A0lS06ZNi/k5bPrv/fffD+qDOZg4R44c0RtvvKFf/vKXuvjii9W3b9/Az/K6665rc3/xmGNer1ePPfaYJk+erH79+ik9PV2FhYW68cYbtWnTpjaPqaeLx3Pocrn08ssv66abbtL48ePVq1cvpaSkqE+fPpo4caJ+/etf69ChQ1H7act8xwnxeA7j/Trpcrm0aNEijR8/Xr1795bT6dTIkSN16623au/evR17wD1QR5/DPXv2tPm9cujQoWH7Yh62XTw+LzTHeyEARGAAneS1114zsrOzDUlh/ysqKjK2b99u9jCTyuTJkyM+H83/mzdvntHQ0BCxn6VLl8bUjyRj6dKlnfcAk0SsP/upU6dG7MPn8xkLFy5s9fzrr7/e8Pl8nffAksTUqVNjfg4lGVar1SgtLQ3qgzmYOK39LOfPnx9zP/GaY2VlZcb48eMj9pGammo8+eSTHXzUPUtHn8PPPvvMyMzMjDq3srOzjWXLlrXaV1vmO06IxzyM5+vk9u3bjREjRrT6u/D66693/IH3IB19Dnfv3t2m90pJxowZM8L2xTxsm3h9XjAM3gsBIBq7gE6wceNGXX311aqrq1NmZqb+67/+S9OnT1ddXZ2WLVumJ598Utu2bdPMmTNVUlKirKwss4ecFA4cOCBJys/P11VXXaXJkydr8ODB8vl8Wrt2rR544AHt379fzz77rDwej/76179G7fMf//iH8vPzIx4vKCiI2/gR7KabbtLNN98c8bjT6Yx47K677tKSJUskSWPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W/jPvZktnTpUtXW1rbaZvPmzbr66qslSeeff74GDhwYsS1zMHEGDx6skSNH6u23327zufGYYz6fT7Nnz9Ynn3wiSbriiit0ww03qHfv3lq3bp3uueceHTlyRDfeeKMGDhyoiy++uP0Ptodqz3NYVVWlmpoaSdKkSZN06aWXqri4WH369FFZWZlefvllPfnkk6qqqtJ3v/tdZWdnR/3ZFxcXa+nSpR16LMmqI/OwSUdeJ6urqzVz5kxt375dknTDDTfommuuUXp6ulauXKn77rtPVVVVuvrqq7V69WqdeeaZ7R5nT9We53DgwIH697//HbXdfffdF/j36vz581ttyzyMTTw/L/BeCABRmJ0SIzk0/QXWbrcba9asCTm+aNGiwF8+f/WrX3X+AJPUzJkzjRdeeMHwer1hj5eVlRlFRUWB52bVqlVh2zVfnbJ79+4EjhjhdHTufPnll4bdbjckGcXFxYbL5Qo6XltbaxQXFwfmMCveO9/tt98eeJ6fe+65kOPMwcT55S9/abz++uvGoUOHDMMIXs0V6wq+eM2xJUuWBO775ptvDjm+ffv2wDdWhg8fbng8nrY92B6qo8/h6tWrjblz5xqbNm2K2OaVV14xLBaLIckoLCw0/H5/2HZNK/ha+2YDQsVjHsbrdfIXv/hFoJ9FixaFHF+9enVgvvM8nxCP5zAar9dr5OfnG5KMrKyskNfaJszDtonX5wXeCwEgOkJaJNy6desCb6Q33nhj2DY+n88YNWqUIcnIzc013G53J48Skbz++uuB5+/HP/5x2DYERObqaEh70003BfpYu3Zt2DZr165t9R/ESByfz2cMHDjQkGRkZmYatbW1IW2Yg52nPcFCvOZY0/tk7969w/4eGIZh3HfffYF+/va3v8U0vmSTiHDIMAxjzpw5gX43bNgQtg3hUHyYFdK63W4jJyfHkGSMGjUq4leyb7zxxsB9rV+/vl331dMlYh7+3//9X6DPBQsWRGzHPIy/WD4v8F4IANGxcRgS7pVXXglcXrBgQdg2VqtV8+bNkyQdP35cK1eu7IyhIQbTp08PXN65c6eJI0EiGIahV199VZI0cuRITZgwIWy7CRMm6JRTTpEkvfrqqzIMo9PGmOzeffdd7d+/X5J05ZVXKiMjw+QRoS3iNce2bdumLVu2SJLmzp0b8feg+QY8f//73zs6fLQB75c938qVK1VZWSmp8av0Vmv4j1LMQ3M8++yzgcvRSh0gvqK9/vFeCACxIaRFwjXt9ul0OjVu3LiI7aZOnRq4vHr16oSPC7FpaGgIXLbZbCaOBImwe/fuQK2x5nMwnKbj+/fv1549exI9NHyt+YfOpj9mofuI1xxrvnN2a/30799fRUVFkngv7Wy8X/Z8sc7D4uLiQHjEPOwc1dXVgYUhQ4cO1ZQpU8wdUJKJ9vrHeyEAxIaQFgnX9NfO4cOHy26PvFfdyJEjQ86B+VatWhW4PGrUqKjtFyxYoPz8fDkcDvXt21cTJkzQf//3fwdWAiJxXnzxRY0ePVoZGRnKysrSiBEjNH/+/FZXpm/evDlwufkcDIc52vlqamoCK0CGDBmiadOmRT2HOdi1xGuOtaefffv2Rd2UDvHTlvfLrVu36uyzz1Zubq7S0tJUUFCgWbNmBTbeQWK193Uy1nlot9s1fPhwSbxfdpbly5fL5XJJkq699lpZLJao5zAP4yfa6x/vhQAQG0JaJFR9fb3Ky8slRd9RvFevXoHd5/ft25fwsSE6v9+v+++/P3B97ty5Uc95//33dfDgQXk8Hh09elTr1q3Tvffeq+HDh+vxxx9P5HCT3ubNm7VlyxbV1dWppqZGO3bs0LPPPqvzzjtPs2fPDnxFs7nS0tLA5WhzdNCgQYHLzNHO8dJLLwU+WHzve9+L6UMnc7Bridcca08/hmEEnYfE+eyzz/Tmm29KksaMGRM1pD18+LDWr1+vyspKNTQ0aP/+/Xrttdc0f/58nXnmmQR7Cdbe18mm+eR0OpWbm9vqfTTNw7KysqBVhkiM9nzrhHkYH7F8XuC9EABiE3lZIxAH1dXVgcuZmZlR2zudTtXW1qqmpiaRw0KM/vjHP2r9+vWSpCuuuKLVchXDhg3TFVdcoYkTJwb+UbRr1y699NJLWr58uerr6/WDH/xAFotF3//+9ztl/MkiIyNDl19+uc4//3yNHDlSmZmZKisr06pVq/TYY4/p6NGjeuWVVzRr1iy98847SklJCZzbljna9EcUSczRTtKWD53Mwa4pXnOMudp1NTQ06Prrr5fP55Mk3XvvvRHbWq1WnX/++brkkkt0xhlnqE+fPqqurtann36qxx9/XFu2bNHmzZs1ffp0rV+/XoMHD+6sh5EUOvo62TQPY/03bZOamhqlpqbG6VGgpa+++iqwkvOcc84JrGKOhHkYX7F8XuC9EABiQ0iLhKqvrw9cdjgcUds3/QO2rq4uYWNCbFatWqWf//znkqS8vDw9+uijEdvOnj1b8+fPD1nlN378eF199dV64403dMUVV8jj8ehnP/uZLr/8cvXv3z+h408m+/fvD7ui58ILL9SPf/xjXXzxxdq4caNWrVqlRx99VD/5yU8CbdoyR5t/wGSOJl5paanef/99SY0baTTVVguHOdh1xWuOMVe7rh/96EcqKSmR1LhZ0WWXXRax7csvvxz29Xry5Mm6+eabdcMNN+iZZ57R4cOH9dOf/lQvv/xyooaddOLxOtk0D9vyb1qJeZhof/7znwMbTMWyipZ5GD+xfl7gvRAAYkO5AyRUWlpa4LLb7Y7avunrYOnp6QkbE6LbtGmTZs+eLa/Xq7S0NL344ovKy8uL2D4nJ6fVr2Ffeuml+uUvfylJcrlcWrJkSdzHnMxa+8rlSSedpOXLlwdWzz788MNBx9syR5t/XZM5mnh//vOf5ff7JUXfpZo52HXFa44xV7um++67T4sXL5bUGPY98sgjrbZv7fU6JSVFixcvDuxs/ve//51a0nEUj9fJpnnYln/TSszDRHvuueckNYZyV199ddT2zMP4aMvnBd4LASA2hLRIqKysrMDlWL5m0lR7MZavkSExdu/erRkzZqiiokI2m03Lli2Lyw653//+9wMfjppvLoDEGzZsmC688EJJ0o4dOwK760ptm6PNN11gjiZeWz90RsMcNEe85hhztet5/PHHdeedd0pq3KDmrbfeCvp6bXvY7XYtXLgwcJ252rmivU42zcO2/JtWYh4m0vr167V161ZJ0uWXXx61VnAsmIfRtfXzAu+FABAbQlokVFpamvr06SNJUQu2V1RUBN5MmxeMR+c5cOCALrjgAh04cEAWi0VPPfWUZs2aFZe+8/LyAr8LrEjofKNHjw5cbv7zb77pQrQ52nzzBuZoYpWUlAR2ML700kvVq1evDvfJHDRHvOZYe/qxWCxRN1ZB+zz//PO6+eabJUlDhgzRO++8o759+8al70iv10i8aK+TTfOptrZWx48fb7WvpnnYr18/6tEmUHs2DIsF8zCy9nxe4L0QAGJDSIuEa/pHzo4dO+T1eiO2a/oruKSouyIj/srLy3XhhRdq165dkhq/Fh/Pf+xKimlneiRGpJ998w8hzedgOMzRztP8Q2e0UgdtwRzsfPGaY+3pZ9CgQR1e2YlQr732mubNmye/368BAwbo3XffjWsAwDw1V2s//1jnodfr1c6dOyXxfplIHo9Hy5Ytk9QYsH/zm9+MW9/Mw/Da+3mB90IAiA0hLRLu3HPPldS46mDDhg0R2zX/KtGkSZMSPi6cUFlZqYsuuiiwcu/+++/XD3/4w7jeR1lZmcrLyyVJ+fn5ce0b0TU9t1Lwz//kk08OXI/2db4PPvhAkjRw4EANHTo0/oOEpOAPnf369dPFF18cl36Zg+aI1xxrei+N1s+hQ4e0bds2SbyXJsK7776ruXPnyuv1qk+fPnrnnXdUWFgY1/uI9HqNxIv2OhnrPCwpKQl8O4x5mDhvvvmmjh49Kkn6zne+I7s9fntiMw9DdeTzAu+FABAbQlok3Le+9a3A5aVLl4Zt4/f7AyvHcnNzNX369M4YGtS4OcbMmTP16aefSpLuuusu3XHHHXG/nyeeeCKw8+7UqVPj3j8i2717t9555x1JUmFhoQYOHBg4ZrFYAl9R27p1qz7++OOwfXz88ceBFQmzZs1ihUkCrVixQmVlZZLi+6GTOWiOeM2xoqKiwIqiv/3tb3K5XGH7efrppwOXZ8+e3dHho5k1a9Zo1qxZamhoUE5Ojv7xj3/o1FNPjet9eL1ePfXUU4Hr8agJj9hFe52cNm2acnJyJEnPPPNMoG1LzMPOkahvnTAPQ3X08wLvhQAQIwPoBJMnTzYkGXa73VizZk3I8UWLFhmSDEnGr371q84fYJJqaGgwZsyYEfjZ33LLLW3uY/fu3cann37aapvXX3/dcDgchiQjPT3dKC0tbeeI0dJrr71meDyeiMcPHTpkjB07NvAcP/DAAyFtvvzyS8NmsxmSjOLiYsPlcgUdd7lcRnFxcWAOb9u2Le6PAyfMmTMn8Hxt2LAhanvmYOfavXt34PmZP39+TOfEa44tWbIkcN8//OEPQ47v2LHDyM7ONiQZw4cPb/W1IZm15zncuHGjkZuba0gynE6n8dFHH7X5ft977z2joqIi4nG3223Mnz8/MLbLLruszfeRLNr6HMbzdfIXv/hF4L4XLVoUcnzNmjWG3W43JBlTp06N5eEkpfbMw+aOHj0aeL7GjBkT83nMw7aLx+cFw+C9EABiEb/vhACtePDBBzVp0iTV1dVpxowZuvPOOzV9+nTV1dVp2bJleuKJJyQ1/nX01ltvNXm0yePb3/623n77bUnSeeedp4ULF+qLL76I2N7hcKioqCjotj179mj69OmaOHGiLrvsMp1xxhnKy8uTJO3atUvLly/X8uXLA6tN/vCHPwSt5ETH/PjHP5bH49GcOXM0ceJEDR06VOnp6SovL9f777+vxx9/PPDVzXPPPTfs19KKiop022236f7771dJSYkmTZqkO+64Q4WFhdq5c6d+97vfaePGjZKk2267TSNGjOjUx5hMKioq9MYbb0iSTjvtNH3jG9+Ieg5zMLE++ugj7dixI3C9aT5JjbXWm6/WkaTrrrsupI94zbH58+frqaee0urVq/XII4/o0KFDuuGGG9SrVy+tX79ev/nNb1RVVSWr1aqHHnoorl/97c46+hzu3LlTF110UWCjqHvuuUc5OTmtvl/m5eUF5mGTZ555Rpdffrkuv/xyTZs2Taeccoqys7NVU1OjDRs26Iknngh8jTgvL08PPvhgOx5tz9TR5zCer5O33XabXnjhBW3btk233367duzYoWuuuUbp6elauXKlfvvb38rr9So9PV1/+tOfOv7ge4h4vJY2t2zZMrndbkltW0XLPGy7eHxekHgvBICYmBwSI4m89tprgb9qhvuvqKjI2L59u9nDTCqRnotI/w0ZMiSkj5UrV8Z0bkZGhvH44493/oPs4YYMGRLTz3/OnDmtrhzx+XzGf/zHf7Tax8KFCw2fz9d5Dy4JPfroo62u0AqHOZhYzVdUxfJfJPGaY2VlZcb48eMj9pGammo8+eST8f4xdGsdfQ6XLl3a5vfLcN8KinUcY8aMMTZt2tQJP5nuo6PPYbxfJ7dv326MGDEiYj/Z2dnG66+/nogfRbcVr9fSJmeffbYhybDZbMbBgwfjPg7m4Qltff0L93mhCe+FANA6/qyETnPZZZfp888/14MPPqg333xTpaWlcjgcGj58uK666ir96Ec/UkZGhtnDRBuNGzdOf/7zn7V27VqVlJTo4MGDKi8vl9frVa9evXTqqafq/PPP1/XXXx+yqggd98wzz2jVqlVau3atdu3apfLyclVVVSkzM1ODBg3SOeeco/nz52vixImt9mO1WrVkyRLNmTNHTzzxhD755BOVl5erb9++Gj9+vG688ca4bWCFyJ577jlJks1m03e/+92YzmEOdg/xmmN9+/bVmjVr9OSTT+qvf/2rtmzZotraWuXn5+v888/XLbfcEvc6qYiPO+64Q2eeeabWrl2rzZs3q6ysTMeOHVNqaqpOOukkFRcX68orr9Ts2bNls9nMHm6PEu/XyeHDh2vjxo165JFH9OKLL2rHjh1yu90aNGiQLrnkEt1yyy0aMmRIJzyy5LR9+3atW7dOknThhReqf//+MZ/LPDQX74UA0DqLYUSoeA8AAAAAAAAASDir2QMAAAAAAAAAgGRGSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAANBOTz/9tCwWiywWi/bs2WP2cAAAAAB0U4S0AAAg6ezZsycQrnbkPwAAAACIB0JaAAAAAAAAADCRxTAMw+xBAAAAdCaPx6Mvv/wy4vExY8ZIkoqLi7V06dKI7U477bS4jw0AAABA8rGbPQAAAIDOlpKSElPA6nQ6CWIBAAAAJBzlDgAAAAAAAADARIS0AAAA7fT0008HNhHbs2dPyPFp06bJYrFo2rRpkqQdO3boBz/4gYYNG6b09HQNHTpUCxcu1N69e4PO++KLL7RgwQINGzZMaWlpGjRokG666SYdOXIkpnG98soruuqqqzR48GClpaUpNzdXxcXF+p//+R9VVFR09GEDAAAAiDPKHQAAAHSCf/7zn7riiitUXV0duG3v3r166qmn9MYbb2jVqlUaOXKknn/+eV133XVyu92BdqWlpXrssce0YsUKrVmzRvn5+WHvo6KiQldeeaXee++9oNsbGhq0YcMGbdiwQf/7v/+rV199VRMmTEjMAwUAAADQZqykBQAASLADBw5o7ty5ys3N1cMPP6x169bpww8/1E9/+lNZLBYdOXJE119/vT755BPNmzdPhYWFWrx4sdavX6+VK1fq2muvldQY6v7nf/5n2PtoaGjQBRdcoPfee082m03XXnutnn/+eX388cf68MMPde+996pPnz46cuSILrnkkpDVuwAAAADMw0paAACABNu+fbtGjBih1atXq1+/foHbzz33XNntdv3hD3/Q6tWrNXPmTJ111ll65513lJGREWg3bdo01dfX68UXX9RLL72ksrKyoH4k6e6779ann36q3Nxc/fOf/9S4ceOCjp977rn67ne/q4kTJ+rgwYO688479Ze//CWxDxwAAABATFhJCwAA0AkeeuihkGBVkm6++ebA5fLyci1evDgooG1y0003SZK8Xq/Wrl0bdKympkaPPPKIJOk3v/lNSEDbZMiQIfrFL34hSXrxxRdVW1vbvgcDAAAAIK4IaQEAABIsNzdXF110UdhjJ598srKysiRJp59+ukaNGhW23RlnnBG4vGvXrqBjq1atUmVlpSTpyiuvbHUsU6ZMkSR5PB5t2LAhtgcAAAAAIKEodwAAAJBgI0aMkMViiXg8NzdX1dXVKioqarVNk+abj0lSSUlJ4PKAAQNiHtehQ4dibgsAAAAgcVhJCwAAkGDhyhc0Z7Vao7ZraiNJPp8v6NiRI0faNS6Xy9Wu8wAAAADEFytpAQAAurnmoe2nn36qlJSUmM4rKChI1JAAAAAAtAEhLQAAQDfXp0+fwOV+/foRvgIAAADdDOUOAAAAurmxY8cGLq9evdrEkQAAAABoD0JaAACAbu6CCy4I1LN96KGHZBiGySMCAAAA0BaEtAAAAN1cbm6ufvSjH0mS1qxZo5/97Gfy+/0R2x8+fFiLFy/urOEBAAAAiIKatAAAAD3A3XffrVWrVmndunV68MEH9f777+uGG27QmWeeKafTqYqKCm3atEn//Oc/tWLFCo0ZM0bXX3+92cMGAAAAIEJaAACAHiE1NVXvvPOOrrvuOr388sv67LPPAqtrw8nOzu7E0QEAAABoDSEtAABAD5GVlaWXXnpJH330kZ555hl9+OGHOnDggOrq6pSdna3CwkKdddZZmjlzpmbMmGH2cAEAAAB8zWKwswQAAAAAAAAAmIaNwwAAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIn+f55wLxEAZEGGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'fitness_function_example_reassortment_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## B. Transmissibility function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single\n", + "population scenario, illustrating pathogen evolution through independent\n", + "reassortment/segregation of chromosomes, increased transmissibility,\n", + "and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector),\n", + "the pathogen with the most fit genome has a higher probability of being\n", + "transmitted to another host (or vector). In this case, the transmission rate\n", + "**DOES** vary according to genome, with more fit genomes having a higher\n", + "transmission rate. Once an event occurs, the pathogen with higher fitness also\n", + "has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal\n", + "genome and every other genome is less fit, but fitness functions can be defined\n", + "in any arbitrary way (accounting for multiple peaks, for instance, or special\n", + "cases for a specific genome sequence)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define an optimal genome\n", + "`/` denotes separators between different chromosomes, which are segregated and recombined independently of each other (this model has no recombination)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST/BEST/BEST/BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # the genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a custom transmission function for the host\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence gets 1/20 of the fitness of the optimal genome. There is no middle ground between the optimal and the rest, in this case." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostContact(genome):\n", + " return 1 if genome == my_optimal_genome else 0.05" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='host-host', \n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " contact_rate_host_host = 2e0,\n", + " # Rate of host-host contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " contactHost=myHostContact,\n", + " # Assign the contact function we created (could be a lambda function)\n", + " # In general, a function that returns coefficient modifying probability of a \n", + " # given host being chosen to be the infector in a contact event, based on genome \n", + " # sequence of pathogen. It should be a functions that recieves a String as \n", + " # an argument and returns a number.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function)\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " recombine_in_host=1e-3,\n", + " # Modify \"recombination\" rate of pathogens when in host to get some\n", + " # evolution! This can either be independent segregation of chromosomes\n", + " # (equivalent to reassortment), recombination of homologous chromosomes,\n", + " # or a combination of both.\n", + " num_crossover_host=0\n", + " # By specifying the average number of crossover events that happen\n", + " # during recombination to be zero, we ensure that \"recombination\" is\n", + " # restricted to independent segregation of chromosomes (separated by\n", + " # \"/\").\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population\n", + "We will start off the simulation with a suboptimal pathogen genome, _BEST/BADD/BEST/BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add pathogens to hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BEST/BADD/BEST/BADD':10}\n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a second suboptimal pathogen genome. _BADD/BEST/BADD/BEST_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts(\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD/BEST/BADD/BEST':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 500 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 500, # Final time point.\n", + " time_sampling=100 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 out of 8 | elapsed: 0.3s remaining: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 3 out of 8 | elapsed: 0.3s remaining: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 4 out of 8 | elapsed: 0.3s remaining: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 5 out of 8 | elapsed: 0.3s remaining: 0.2s\n", + "[Parallel(n_jobs=8)]: Done 6 out of 8 | elapsed: 0.3s remaining: 0.1s\n", + "[Parallel(n_jobs=8)]: Done 8 out of 8 | elapsed: 0.3s finished\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
795500.0my_populationHostmy_population_95NaNNaNTrue
796500.0my_populationHostmy_population_96NaNNaNTrue
797500.0my_populationHostmy_population_97NaNNaNTrue
798500.0my_populationHostmy_population_98NaNNaNTrue
799500.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

800 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 NaN NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + ".. ... ... ... ... ... ... \n", + "795 500.0 my_population Host my_population_95 NaN NaN \n", + "796 500.0 my_population Host my_population_96 NaN NaN \n", + "797 500.0 my_population Host my_population_97 NaN NaN \n", + "798 500.0 my_population Host my_population_98 NaN NaN \n", + "799 500.0 my_population Host my_population_99 NaN NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + ".. ... \n", + "795 True \n", + "796 True \n", + "797 True \n", + "798 True \n", + "799 True \n", + "\n", + "[800 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'transmissibility_function_reassortment_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 2 genotypes processed.\n", + "2 / 2 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiQAAALmCAYAAADCCvxNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADO8UlEQVR4nOzdd3hUddrG8XtCD6E3gaDAIorY6EUFXERFKSLYFUUR69rWuroqtte2gmV1bUgREUFUOohIC4TQBCFSJISS3uv0Oe8fbGYJ6cnMnCTz/VwX105mzvzOnclElvPM73kshmEYAgAAAAAAAAAA8KMQswMAAAAAAAAAAIDaj4IEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6trdgBUjc1m0++//y5JatOmjerW5UcKAAAAAICvuVwupaSkSJIuuOACNWzY0OREAADUPFy9ruF+//139e/f3+wYAAAAAAAEjaioKPXr18/sGAAA1Di0bAIAAAAAAAAAAH7HDokark2bNt7bUVFRat++vYlpAAAAAAConRISErwdCk79tzgAACg/ChI13KkzI9q3b6/w8HAT0wAAAAAAUPsxvxEAgMqhZRMAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAOADhtthdgQAAAAAAIBqjYIEAABV5Ezfrdw9r5kdAwAAAAAAoFqjIAEAQBUYhqGsyAdlPTxHhmGYHQcAAAAAAKDaoiABAEAVWP+cKWfyZrlzY+VM3mx2HAAAAAAAgGqLggQAAJXksWcqZ8cz3q+tMXNNTAMAAAAAAFC9UZAAAKCScnY9L48txfu1LXaBDI/LxEQAAAAAAADVFwUJAAAqwZm2U/kH/lPoPo89Vfa4VSYlAgAAAAAAqN4oSAAAUEGGYShry4OS4SnyGG2bAAAAAAAAikdBAgCACrIe+kLO1K3FPmY//pM8ztwAJwIAAAAAAKj+KEgAAFABHnu6snc8V+LjhitftmM/Bi4QAAAAAABADUFBAgCACsjZ8ZwMe1qpx9ho2wQAAAAAAFAEBQkAAMrJkRKl/ENflHmcPf5nua3JAUgEAAAAAABQc1CQAACgHAzDo+zI4gdZFz3YLVvsfP+HAgAAAAAAqEEoSAAAUA75Bz6VM21HuY+3HqZtEwAAAAAAwKkoSAAAUAaPLVU5O5+v0HOcqVvlyv7TT4kAAAAAAABqHgoSAACUIXvHMzIcGRV+njXmGz+kAQAAAAAAqJkoSAAAUApH8hZZD31VqedSkAAAAAAAAPgfChIAAJTA8LiVFfmQJKNSz3dnH5AztfxzJwAAAAAAAGozChIAAJQg/8AncqXvqtIa1hiGWwMAAAAAAEgUJAAAKJbbmqycnS9UeR3rkW9lGB4fJAIAAAAAAKjZKEgAAFCMnO1PyXBmVXkdjzVBjoS1PkgEAAAAAABQs1GQAADgNI6kjbIenu2z9WjbBAAAAAAAQEECAIBCDI/rv4Osfcd2dJEMl82nawIAAAAAANQ0FCQAADhF/h8fyZXxu0/XNJzZsp1Y4tM1AQAAAAAAahoKEgAA/Jc7P0E5v73kl7Wth2nbBAAAAAAAghsFCQAA/it7+5MynNl+Wdset0Iee4Zf1gYAAAAAAKgJKEgAACDJnrBOtphv/HcCj0O22AX+Wx8AAAAAAKCaoyABAAh6hsel7K2+HWRdHGsMbZsAAAAAAEDwoiABAAh6edHT5cqM9vt5HEkb5c495vfzAAAAAAAAVEcUJAAAQc2dF6fc36YG6GyGrEfmBehcAAAAAAAA1QsFCQBAUMve9oQMV27Azmf155wKAAAAAACAaoyCBAAgaNnj18gW+11Az+nK2CNnxt6AnhMAAAAAAKA6oCABAAhKhtuhrMiHTTk3w60BAAAAAEAwoiABAAhKefvekzv7gCnntsV8I8MwTDk3AAAAAACAWShIAACCjjv3mHL3vGre+fOOyZm8ybTzAwAAAAAAmIGCBAAg6GRve1yGK9/UDNbDtG0CAAAAAADBhYIEACCo2ONWyXZ0kdkxZD26QIbHaXYMAAAAAACAgKEgAQAIGobbbtog69MZ9nTZT6wwOwYAAAAAAEDAUJAAAASN3L3vyJ3zp9kxvKwxtG0CAAAAAADBg4IEACAouHJilbvnDbNjFGI7vkQeZ47ZMQAAAAAAAAKCggQAIChkRz0qua1mxyjMba0W8ywAAAAAAAACgYIEAKDWsx1fJvvxxWbHKBZtmwAAAAAAQLCgIAEAqNUMl03ZUY+YHaNEjoS1cluTzI4BAAAAAADgdxQkAAC1Wu7vb8qdE2N2jJIZbtmOfGt2CgAAAAAAAL+jIAEAqLVc2YeVu/cts2OUibZNAAAAAAAgGARtQWL79u165ZVXdOWVVyo8PFwNGjRQWFiYunfvrkmTJmnTpk0VWm/FihUaN26cd63w8HCNGzdOK1as8NN3AAAoS3bUI5LbZnaMMjlTt8mVfcjsGAAAAAAAAH5lMQzDMDtEoA0ZMkQbN24s87iJEyfq888/V/369Us8xuPxaMqUKfryyy9LPGby5Mn69NNPFRLi+/rPiRMn1KlTJ0nS8ePHFR4e7vNzAEBNZDv2kzLWXmd2jHILu+glNen1stkxAAAAUAL+/Q0AQNUF5Q6J+Ph4SVKHDh306KOPauHChYqKitKWLVv03nvvqWPHjpKk2bNn66677ip1reeff95bjOjVq5fmzZunqKgozZs3T7169ZIkffHFF3rhhRf89w0BAAoxXFZlb33U7BgVQtsmAAAAAABQ2wXlDolRo0Zp4sSJGj9+vOrUqVPk8dTUVF1yySU6ePCgJGn9+vUaMmRIkeMOHjyonj17yuVyqW/fvtqwYYMaNWrkfTw/P19Dhw7V9u3bVbduXf3xxx/q1q2bT78XPqEBAEXl7HxBuXteNztGhbW6dqvqt+lvdgwAAAAUg39/AwBQdUG5Q2Lp0qW68cYbiy1GSFLr1q31r3/9y/v1woULiz1u+vTpcrlckqQPP/ywUDFCkkJDQ/Xhhx9Kklwul6ZNm+aL+ACAUriyDyl377tmx6gUdkkAAAAAAIDaLCgLEuVx+eWXe28fPny4yOOGYeinn36SJJ177rkaOHBgsesMHDhQ55xzjiTpp59+UhBuSAGAgMqO/JvksZsdo1JsR+bL8LjNjgEAAAAAAOAXFCRKYLf/72JWcTspjhw54p1FMXTo0FLXKng8Li5OsbGxvgsJACjEGvu97PGrzI5RaR5bkhwJa8yOAQAAAAAA4Bd1zQ5QXa1fv957u0ePHkUej46O9t4+99xzS13r1Mf/+OMPdenSpdw5Tpw4UerjCQkJ5V4LAGozjzNP2dseNztGlVlj5qpBx6vMjgEAAAAAAOBzFCSK4fF49Oabb3q/vvHGG4scc2qhoKxBVgVDr6STg68q4tTnAgBKlrv7VXnyKvbf2OrIdvQHGYPyZakbanYUAAAAAAAAn6JlUzGmTZumqKgoSdL111+vPn36FDkmJyfHezssLKzU9Ro3buy9nZub66OUNV9insvsCEC15c5PVMa6G+VIjjQ7So3gytyvvOj3zI7hE4YrV7Zji82OAQAAAAAA4HPskDjN+vXr9eyzz0qS2rZtq08++aTY42w2m/d2/fr1S12zQYMG3ttWq7VCecraUZGQkKD+/ftXaM3qIiLervFn8xYEiuNMiZQtdoFssQtUr81ANe75hBqeeb0sIUVn2kDK2vqw5HGaHcNnrEe+UaOuN5sdAwAAAAAAwKe4GnyKffv2ady4cXK5XGrYsKEWLFigtm3bFntsw4YNvbcdDkep6546ILtRo0YVylRWO6iabHO8TePPblz2gUAQcqT8b2eEMyVSmetuVJ2wzgrt8YhCu09WSL0mJqarXqxH5suR8IvZMXzKHrdSHluaQhq2MjsKAAAAAACAz9Cy6b+OHDmiK6+8UhkZGapTp46+/fZbDRkypMTjmzT538XAstow5eXleW+X1d4pmCTkufVnZu35RDPgS87UrUXuc+fGKmfbE0r+LlzZUU/IlXvUhGTVi8eZq+xtT5gdw/c8TlljF5idAgAAAAAAwKcoSEiKj4/XFVdcofj4eFksFs2YMUNjx44t9Tmn7lw4dcB1cU5tu8SQ6sIi4m1lHwQEGcPjljN1e8mPO7OVFz1NKd//RRm/3hDUcyZyf3tZnvx4s2P4hTVmrtkRAAAAAAAAfCroCxKpqakaMWKEYmJiJEkffvihJk6cWObzzjvvPO/t/fv3l3rsqY/36NGjkklrpy3xdnkMw+wYQLXiytwnw1X6zitJkuGW7ehCpS0fpNRlg2SNXSDD4/Z/wGrCmbFPedHvmx3Db5zJEeyCAQAAAAAAtUpQFySysrJ01VVXKTo6WpL05ptv6qGHHirXc7t06aIOHTpIOjkIuzQbNmyQJHXs2FGdO3eufOBaKMPuUXQabZuAUxXXrqnM5/x3zkTKom7K3feePI5sPySrXrIjH5IMl9kx/MiQLeYbs0MAAAAAAAD4TNAWJPLz83Xttddq586dkqTnn39ezzzzTLmfb7FYvG2d9u/fr8jI4lumREZGendIjB07VhaLpYrJa59NtG0CCjl1oHVFnZwz8XclL+h0cs5ETqzvglUj1sNz5UgqvRhcG9C2CQAAAAAA1CZBWZBwOBwaN26cIiIiJEmPPvqoXnvttQqv89hjj6lOnTqSpL/97W+yWq2FHrdarfrb3/4mSapbt64ee+yxqgWvpaIS7HJ5aNsEFHCmVHyHxOm8cyYWdfvvnIktPkhWPXgc2cre/qTZMQLClblPzvTdZscAAAAAAADwibpmBzDDLbfcotWrV0uS/vrXv+qee+7R3r17Szy+fv366t69e5H7u3fvrqeeekpvvvmmtm/frksuuUTPPPOM/vKXv+jw4cN66623tGvXLknSU089pbPPPts/31ANl+cytCvZoX5nNDA7CmA6jyNbrqw/fLfgf+dM2I4uVL02A9X4vMfV8KzxsoTU8d05Aixn14vyWBPNjhEw1pi5qtfyIrNjAAAAAAAAVJnFMIJvonBF2yadddZZio2NLfYxj8eje++9VzNmzCjx+ffcc48+++wzhYT4fkPKiRMn1KlTJ0nS8ePHFR4e7vNz+Muty5Pl/u+7b1D7BnqsdzNzAwHVgD3+F6WvvsKv56jT+CyFnveIQs+erJD6Tf16Ll9zpu9R6pLekhE8w7tDQsPV9oajsliCclMjAABAtVGT//0NAEB1wdWNKgoJCdGXX36pZcuWaezYserQoYPq16+vDh06aOzYsVq+fLm++OILvxQjapMdSXbZXB6zYwCmq8xA64py5x3975yJcGVHPV5j5kwYhqGsyIeCqhghSZ78E3IkbjA7BgAAAAAAQJUFZcsmf2wKueaaa3TNNdf4fN1g4fBIUYl2DQlvZHYUwFRVGWhdUYYzR3nR05X3x4dqeOY4Ne75uOq3HRyw81eU9fBsOZM3mR3DFNaYuWrQfpjZMQAAAAAAAKqEj+2j2oiIt5sdATCdLwZaV9h/50ykLb9EqcsGyXrkOxme6rULwWPPVM72p82OYRrb0YUy3A6zYwAAAAAAAFQJBQlUG7+nOpRtp20Tgpcr54g8tmRTMzhTIpW5/ialfP8X5e79lzyObFPzFMjZ9YLpr42ZDEem7CeWmx0DAAAAAACgSihIoNpwG9KWBJvZMQDTmLI7ogTuvKPK2f5ktZgz4UzbpfwD/zHt/NWFNWau2REAAAAAAACqhIIEqhXaNiGYBWKgdUUVzJlIWdRNGb9OkCN5c2DPbxjKinww6AZZF8d2Ymm12bECAAAAAABQGRQkUK0czHAqJZ8LjwhOgRxoXWGGW7aj35+cM7F0oKxH5gdkzoT10Aw5q/PrEkhum2xHvzc7BQAAAAAAQKVRkEC1YkiKiKdtE4KP4XbImbbL7Bjl4kzdqsz1N58yZyLLL+fx2NOVs+NZv6xdU9G2CQAAAAAA1GQUJFDtUJBAMHKm/yZ5albLsv/NmeikrK2PyZVzxKfr5+z4hzz2VJ+uWdM5En+VOz/e7BgAAAAAAACVQkEC1c6xHLeO57jMjgEEVHWcH1FehjNH+X+8r5RFZ5+cM5EUUeU1HanblH/ocx+kq2UMj6xHvjU7BQAAAAAAQKVQkEC1FBHHLgkEl2o9P6K8CuZMrLi0SnMmDMOj7C0PSobHDyFrPto2AQAAAACAmoqCBKol2jYh2DhTau4OieL8b85EV+XufbdCcybyD34uZ9p2P6ar2VxpO+XK3G92DAAAAAAAgAqjIIFqKdnq0cEMp9kxgIDw2FLlzjlsdgy/cOcdU872p8o9Z8JjS1XOzn8EKF3NxS4JAAAAAABQE1GQQLW1ibZNCBKOWrY7ojiF50yML3HORPaOZ2XY0wOcruaxHvnG7AgAAAAAAAAVRkEC1VZkgk0ewzA7BuB3NXmgdYUZbtmOLvrvnIkBssZ8K8Nzcoi9I2WrrIdmmBywZnDnxMiRvMXsGAAAAAAAABVCQQLVVpbD0O+pDrNjAH5XKwZaV4IzNUqZG25Ryvd/Ue7ed5UV+aAkipDlZY1hlwQAAAAAAKhZKEigWouIt5sdAfArwzDkTIkyO4apCuZMuNJ2mh2lRrHFzvfuLgEAAAAAAKgJKEigWotKtMvh5hPTqL3cWQdkOLPMjoEayGNLkT3+Z7NjAAAAAAAAlBsFCVRrVpehncnskkDtFaztmuAb1pi5ZkcAAAAAAAAoNwoSqPY2xVGQQO0VVAOt4XP2Yz/K48wzOwYAAAAAAEC5UJBAtfdbil35To/ZMQC/YIcEqsJw5cl+/CezYwAAAAAAAJQLBQlUe06PtDWRXRKofQxXvlwZv5sdAzUcbZsAAAAAAEBNQUECNUJEvM3sCIDPOVK3S4bb7Bio4exxq+W2pZgdAwAAAAAAoEwUJFAj7EtzKtPGhVvULsyPgE8YLtmOfGd2CgAAAAAAgDJRkECN4DGkzQm0bULt4kyhIAHfoG0TAAAAAACoCShIoMagbRNqGwZaw1ecKVvkyokxOwYAAAAAAECpKEigxvgz06WkfNo2oXZw58XJkx9ndgzUItaYb8yOAAAAAAAAUCoKEqhRNsWxSwK1A7sj4Gu0bQIAAAAAANUdBQnUKLRtQm3BQGv4mjtrv5xpu8yOAQAAAAAAUCIKEqhR4nLdis1ymh0DqDIGWsMf2CUBAAAAAACqMwoSqHEi4u1mRwCqxPC45UzbbnYM1ELWI/NkGB6zYwAAAAAAABSLggRqnM0JNhmGYXYMoNJcGb/LcOWbHQO1kCc/Xo7EdWbHAAAAAAAAKBYFCdQ4qVaP9mfQtgk1FwOt4U+0bQIAAAAAANUVBQnUSBFxtG1CzcVAa/iTLfZ7GW7+GwkAAAAAAKofChKokSITbHJ5aNuEmomB1vAnw5kl2/GlZscAAAAAAAAogoIEaqQcp6HfUx1mxwAqzOPIkitrv9kxUMvRtgkAAAAAAFRHFCRQY22Ks5kdAagwZ2qUJHb3wL/sJ5bLY880OwYAAAAAAEAhFCRQY21Pcsju5sIuahYGWiMgPHbZji40OwUAAAAAAEAhFCRQY9nchrYnMbgVNQvzIxAotG0CAAAAAADVDQUJ1GgRtG1CDUNBAoHiSFwvd94Js2MAAAAAAAB4UZBAjbY71aFcp8fsGEC5uLIPy2NPNTsGgoYh65F5ZocAAAAAAADwoiCBGs3lkbYm0LYJNYMzld0RCCxrzDdmRwAAAAAAAPCiIIEabxNtm1BDMNAageZK/03OzGizYwAAAAAAAEiiIIFa4I90p9JtbrNjAGVifgTMwHBrAAAAAABQXVCQQI1nSIqIp20TqjfDbZcz/TezYyAI2WK+kWEYZscAAAAAAACgIIHaYXM8bZtQvTnTdkkeh9kxEITcubFyJm82OwYAAAAAAAAFCdQOMVkuxee6zI4BlIiB1jATbZsAAAAAAEB1QEECtUYEuyRQjTHQGmayxn4nw+M0OwYAAAAAAAhyFCRQazBHAtUZA61hJsOeJnvcKrNjAAAAAACAIEdBArVGQp5bhzP5BDCqH7c1We7cI2bHQJCjbRMAAAAAADAbBQnUKrRtQnXE/AhUB/bji+Vx5podAwAAAAAABDEKEqhVtiTY5TEMs2MAhTA/AtWB4cqX7dgPZscAAAAAAABBjIIEapV0m0fRabRtQvXC/AhUF7bDtG0CAAAAAADmoSCBWoe2TahODMMjZ+o2s2MAkiR7whq5rclmxwAAAAAAAEGKggRqna2Jdrk8tG1C9eDK/EOGM9vsGMBJhlu22PlmpwAAAAAAAEGKggRqnTynod9SHGbHACQx0BrVj5W2TQAAAAAAwCQUJFArbYqjbROqBwZao7pxpm6VK/tPs2MAAAAAAIAgREECtdLOZLtsLo/ZMQAGWqNassZ8Y3YEAAAAAAAQhChIoFayu6VtibRtgrk8zjy5MveZHQMowhpD2yYAAAAAABB4FCRQa22Kp20TzOVM3SYZbrNjAEW4sw/Kkbrd7BgAAAAAACDIUJBArfV7qkPZDto2wTwMtEZ1ZmOXBAAAAAAACDAKEqi13IYUmcAuCZiHgdaozqxHvpXhYQcPAAAAAAAIHAoSqNUi4uxmR0AQY6A1qjOPNVGOxLVmxwAAAAAAAEGEggRqtQMZTqVa+QQwAs+dd1wea4LZMYBSWQ/TtgkAAAAAAAQOBQnUaoakCIZbwwS0a0JNYDu2SIbLanYMAAAAAAAQJChIoNaLiKdtEwKPdk2oCQxnjmzHl5gdAwAAAAAABAkKEqj1jma7dCLHZXYMBBl2SKCmsMZ8Y3YEAAAAAAAQJChIIChsom0TAsjwuORM22l2DKBc7HEr5LFnmB0DAAAAAAAEAQoSCAqbKUgggFzpuyU3fflRQ3gcssUuMDsFAAAAAAAIAhQkEBSS8j06mOE0OwaChCOV+RGoWawxc82OAAAAAAAAggAFCQQNdkkgUBhojZrGkbRR7txjZscAAAAAAAC1HAUJBI0tCXZ5DMPsGAgCDLRGzWPIemSe2SEAAAAAAEAtR0ECQSPT7tHeVNo2wb889gy5sw+ZHQOoMNo2AQAAAAAAf6MggaCyibZN8DNHylZJ7MRBzePK+F3OjN/NjgEAAAAAAGoxChIIKlGJdjncXCyG/zgZaI0azHqYXRIAAAAAAMB/KEggqFhdhnYl282OgVqMgdaoyWxH5slg1g4AAAAAAPATChIIOhHxFCTgPw52SKAGc+cdkyNpo9kxAAAAAABALUVBAkFnZ7Jd+U6P2TFQC7myD8mwp5sdA6gSG8OtAQAAAACAn1CQQNBxek7OkgB8zZESaXYEoMqsRxfK8DjNjgEAAAAAAGohChIIShHxNrMjoBZifgRqA8OeLvuJFWbHAAAAAAAAtRAFCQSlvWlOZdpp2wTfcrJDArWElbZNAAAAAADADyhIICh5DGkLuyTgQ4bLJmfGHrNjAD5hO75EHmeO2TEAAAAAAEAtQ0ECQYu2TfAlZ/pOib77qC3cVtmOLjI7BQAAAAAAqGUoSCBoHcp0KTnfbXYM1BIMtEZtQ9smAAAAAADgaxQkENQ2xbFLAr7BQGvUNo6EtXLnJ5odAwAAAAAA1CIUJBDUaNsEX2GgNWodwy3bkW/NTgEAAAAAAGoRChIIaidy3Tqa7TI7Bmo4d36i3HnHzI4B+BxtmwAAAAAAgC9RkEDQY5cEqsqZSrsm1E7OtO1yZR00OwYAAAAAAKglKEgg6G2Ot8kwDLNjoAZjoDVqM3ZJAAAAAAAAX6EggaCXYvXoQIbT7BiowRhojdqMggQAAAAAAPAVChKApIh4u9kRUEMZhkfO1G1mxwD8xp1zWA6KbgAAAAAAwAcoSACSIhNscnto24SKc2Xuk+HKNTsG4FfWmG/MjgAAAAAAAGoBChKApGyHoT2pDrNjoAaiXROCge3IfBket9kxAAAAAABADUdBAviviHib2RFQAzHQGsHAY0uSI2GN2TEAAAAAAEANR0EC+K9tiQ453LRtQsWwQwLBguHWAAAAAACgqihIAP9lcxvakcRwa5Sfx5kjV1a02TGAgLAd/UGGK9/sGAAAAAAAoAajIAGcYhNtm1ABztRtkuExOwYQEIYrV7Zji82OAQAAAAAAajAKEsApfktxKM/JBWaUj5P5EQgytG0CAAAAAABVQUECOIXLI0Um0LYJ5eNgfgSCjD1+lTy2NLNjAAAAAACAGoqCBHCaCNo2oZwYaI2g43HKGvud2SkAAAAAAEANRUECOE10mlPpNrfZMVDNuXJi5bElmR0DCDjaNgEAAAAAgMqiIAGcxpC0JZ62TSidM5XdEQhOzuTNcuXEmh0DAAAAAADUQBQkgGJsom0TysBAawQvQ7Yj35gdAgAAAAAA1EAUJIBixGS5lJDnMjsGqjEGWiOY0bYJAAAAAABUBgUJoASb4mjbhOIZHqec6bvMjgGYxpUZLWf6brNjAAAAAACAGoaCBFCCzbRtQgmc6b9Jbt4fCG7skgAAAAAAABVFQQIoQXyeWzFZTrNjoBpy0q4JkDVmngzDY3YMAAAAAABQg1CQAEoREcen4FGUg4HWgDz5J+RI3GB2DAAAAAAAUINQkABKsTnBLo9hmB0D1Qw7JICTaNsEAAAAAAAqgoIEUIp0m0d/pNO2Cf/jsaXJnfOn2TGAasF2dKEMt93sGAAAAAAAoIagIAGUIYLh1jiFI5XdEUABw5Ep+4nlZscAAAAAAAA1BAUJoAxbE+xyeWjbhJNo1wQURtsmAAAAAABQXhQkgDLkOg3tTnGYHQPVBAOtgcJsx5fK48gyOwYAAAAAAKgBgrYgkZycrKVLl+rFF1/UyJEj1bp1a1ksFlksFt11113lWmPmzJne55T1Z+bMmX79fuBfm2jbBEmGYciZGmV2DKB68dhlO/q92SkAAAAAAEANUNfsAGZp166d2RFQg+xIssvmMtSwrsXsKDCRO+uADEem2TGAascaM1ehZ99tdgwAAAAAAFDNBW1B4lRnnnmmzj33XK1evbrSa6xatUodOnQo8fHw8PBKrw3z2d3S9iS7Lu3Y0OwoMBEDrYHiORLXyZ0frzqhJf89CAAAAAAAELQFiRdffFH9+vVTv3791K5dO8XGxqpLly6VXq979+7q3Lmz7wKi2omIt1GQCHIMtAZKYHhkPfKtwno+YXYSAAAAAABQjQVtQWLq1KlmR0ANszvFoRyHR03qB+3olaDHQGugZNaYuRQkAAAAAABAqbiyCpST25AiE+xmx4BJDJdVrozfzY4BVFuutJ1yZe43OwYAAAAAAKjGKEgAFbAp3mZ2BJjEmbZdMlxmxwCqNWvMXLMjAAAAAACAaixoWzb52qRJk3TgwAGlpqaqadOm6tatm6644go98MAD6tixY6XXPXHiRKmPJyQkVHptVNyBdKdSrW61blTH7CgIMAfzI4AyWY98oya9XzU7BgAAAAAAqKYoSPjIunXrvLfT0tKUlpamrVu36l//+pemT5+u++67r1LrdurUyUcJ4QuGpM3xNo35S2OzoyDAGGgNlM2dEyNH8hbVbzvI7CgAAAAAAKAaoiBRRV27dtX111+vQYMGeYsHMTEx+v7777Vw4ULZbDbdf//9slgsmjJlislp4QsR8XYKEkGIgdZA+eT+/n9qMfQ7Weo2NDsKAAAAAACoZihIVMG4ceN05513ymKxFLq/X79+uummm7R06VJdf/31cjqdevzxxzVmzBidccYZFTrH8ePHS308ISFB/fv3r3B2VF5stksnclwKb8KvT7Bw58fLk196+zQAJ9mPL1Hq8sFqMWyB6jb9i9lxAAAAAABANcJQ6ypo1qxZkWLEqUaNGqUXX3xRkpSfn68vv/yywucIDw8v9U/79u0rnR+VF8Fw66DC7gigYlzpu5S6pLesRxeZHQUAAAAAAFQjFCT8bMqUKd6ixfr1601OA1+JiLebHQEBxPwIoOIMZ7Yyfx2vrK2PyfA4zY4DAAAAAACqAQoSfta2bVu1atVKkhQXF2dyGvhKUr5bf2ZygS1YONkhAVRa/h/vK23FELnzSm9BCAAAAAAAaj8KEgFQWlsn1Fyb4mjbFAwMj1vOtB1mxwBqNGdKpFIW95LtxAqzowAAAAAAABNRkPCzlJQUpaamSpI6dOhgchr40pYEuzyGYXYM+Jkrc68MV57ZMYAaz7CnKWPNtcre+bwMj9vsOAAAAAAAwAQUJPzss88+k/Hfi9ZDhw41OQ18KdPu0d402jbVdgy0BnzJUN6eN5S++gq58xPNDgMAAAAAAAKMgkQlxcbGateuXaUes3TpUr3yyiuSpEaNGmnSpEmBiIYA2kzbplqPgdaA7zkS1yl1SS/ZE9aZHQUAAAAAAARQXbMDmGXTpk36888/vV8XtFWSpD///FMzZ84sdPxdd91V6OvY2FhdfvnlGjRokEaPHq2LLrpIbdu2lSTFxMRo4cKFWrhwoXd3xLvvvquOHTv655uBaaIS7brnfEP16jAnpLZioDXgHx5rotJXX6Gwi6cq7MJ/MG8JAAAAAIAgELQFiS+++EKzZs0q9rGIiAhFREQUuu/0gkSBLVu2aMuWLSWeJzQ0VNOmTdOUKVMqnRXVV57L0K4Uh/qf0cDsKPADjyNLrqz9ZscAai/DrdxdL8iZvEnNL/taIQ1bmZ0IAAAAAAD4UdAWJKqqT58++vrrr7VlyxZt375dCQkJSk1NlcvlUosWLdSzZ08NHz5ckydP9u6cQO20Kc5GQaKWcqZuk8TgcsDf7HErlbKkl1oM/U712w40Ow4AAAAAAPATi1HQUwg10okTJ9SpUydJ0vHjxxUeHm5yovK7dXmy3LXg3VcvRPp8RGs1qstIltomZ/dryt31T7NjAMEjpJ6a9HlLYT0fNzsJAABAETX5398AAFQXXEEFqsjpOTlLArUPA62BAPM4lbPtCWX8Ol4eR5bZaQAAAAAAgI9RkAB8ICKegkRt5EylIAGYwXZ0kVKX9JEzbZfZUQAAAAAAgA9RkAB8YG+qQ1l2j9kx4EOunBh5bClmxwCCljvnsFKXD1begU/NjgIAAAAAAHyEggTgA25D2pJgMzsGfMiZEml2BABum7K33K+MDbfL48wzOw0AAAAAAKgiChKAj0TEUZCoTRzMjwCqDVvMXKUt6y9nZrTZUQAAAAAAQBVQkAB85GCmS8n5brNjwEcYaA1UL67MaKUt7a/8w1+bHQUAAAAAAFQSBQnAhyLi2SVRGxhuu5zpDNMFqhvDlaesjXcoc/MUGS7+ewsAAAAAQE1DQQLwIQoStYMz/TfJ4zA7BoASWA9+rtTlg+XKPmx2FAAAAAAAUAEUJAAfOp7j1rFsl9kxUEUMtAaqP1f6LqUu6S3r0UVmRwEAAAAAAOVEQQLwsU3skqjxGGgN1AyGM1uZv45XdtTjMjxOs+MAAAAAAIAyUJAAfGwzBYkaz5lKQQKoSfKipyttxRC5846bHQUAAAAAAJSirtkBgNomxerRgXSnzmlZz+woqAS3LUXunBizYwCoIGdKpFIW91Lzy+aoYfhIs+MAAACUyGazKTMzU/n5+XK73WbHAQCgkDp16ig0NFTNmzdXw4YNfb4+BQnADyLibRQkaign7ZqAGsuwpyljzbVqfOFzanLxK7KE1DE7EgAAgJdhGEpISFBWVpbZUQAAKJHL5ZLdbldGRoaaNWum9u3by2Kx+Gx9ChKAH0Qm2HTneWGqE+K7X1YEBgOtgZrOUN6eN+RM3qzmQ+apTugZZgcCAACQJKWlpRUpRtSty2UZAED14nK5vLezsrJUv359tW7d2mfr8zcf4AdZDkO/pzp0cdsGZkdBBTHQGqgdHInrlLqkl5oPmacG7YeZHQcAAAQ5h8OhlJQU79dt27ZV8+bNVacOOzoBANWL2+1WZmamkpOTJUkpKSlq2rSp6tev75P1GWoN+ElEvN3sCKggwzDkTN1mdgwAPuKxJip99RXK2f26DMMwOw4AAAhiubm53tutWrVSq1atKEYAAKqlOnXqeP+uKnDq32NVRUEC8JNtSXY53FwAq0lcWX/IcNLPFahVDLdyd72gjDXXymNLMzsNAAAIUnl5ed7bTZs2NTEJAADlc+rfV6f+PVZV1bYgYbfblZSUJI/HY3YUoFKsLkM7ktklUZMw0BqovexxK5SypJccycyJAQAAgedwOCRJFotFDRrQ2hcAUP01aNDAO8y64O8xXwh4QSI3N1fLly/X8uXLi93qkZqaqvHjx6tp06bq0KGDWrRoob///e+y27mwi5onIs5mdgRUAAOtgdrNk3dcaSuHKHffNLOjAACAIFPwYcs6dep4L+4AAFCdWSwWb3tBX24aCPhQ6++//16TJk1SeHi4YmNjCz3m8Xg0cuRI7dy509vrOScnR9OnT1dsbKy+//77QMcFquS3FIfynB41rldtNyPhFAy0BoKAx6mcbU/ImbxJzS6ZoZD6zcxOBAAAAABA0Aj4VdJVq1ZJksaNG6eQkMKnnz9/vnbs2CFJ6t27tx5//HH17t1bhmHoxx9/1MqVKwMdF6gSp0eKSmR3T03gcebJlbnX7BgAAsR2dJFSl/SRM+03s6MAAAAAABA0Al6Q2Lt3rywWiwYPHlzksdmzZ0uS+vTpo8jISP3rX//Sli1b1L9/f0nSrFmzApoV8IVNtG2qEZxp2yXDbXYMAAHkzjms1OWDlH/gM7OjAAAAAAAQFAJekEhOTpYkdenSpdD9TqdTGzZskMVi0UMPPaS6dU92k6pXr57uv/9+GYahqKioQMcFqmxfmlOZNi50V3cMtAaClNumrC33KXPDHfI488xOAwAAAABArRbwgkR6erokqX79+oXu37Ztm6xWqyTp6quvLvRY9+7dJUmJiYkBSAj4liEpIoG2TdWdg4HWQFCzxnyttGX95cyMNjsKAAAAAAC1VsALEqGhoZL+t1OiwIYNGyRJ3bp1U7t27Qo91qhRo8CEA/wkgrZN1Z4zlR0SQLBzZUYrbWl/5R/+2uwoAAAAAADUSgEvSPzlL3+RJK1bt67Q/T/88IMsFouGDBlS5DkpKSmSpLZt2/o9H+APh7NcSsxzmR0DJXDnHZcnP97sGACqAcOVp6yNdyhr830y3OxuAwAAQM3jcrn0/fffa8qUKbrgggvUtm1b1atXT82aNVO3bt00btw4vfPOOzpy5IjZUQEEoYAXJEaMGCHDMPTxxx9rxYoVys3N1Ycffqht27ZJkkaPHl3kOXv27JEkdejQIaBZAV+KiOfCVnXlYH4EgNPkH/xMqcsGyZV92OwoAAAAQLktXrxYPXr00IQJE/T5559r7969SklJkcvlUnZ2tg4fPqwff/xRTz/9tLp27apRo0Zp7969Zsf2q5dfflkWi0UWi8XsKAAk1Q30CR999FH95z//UU5OjkaNGlXosR49ehRbkFi2bJksFot69eoVqJiAz22Ks2n82Y3NjoFiMNAaQHFc6buUuqSPml06Q43Out7sOAAAAECpXnvtNb344osyDEOSNGzYMI0aNUoXXnihWrVqpfz8fCUkJGjDhg1aunSpYmNjtWzZMoWHh+s///mPyekBBIuAFyTat2+vJUuW6Oabb1ZCQoL3/q5du2rhwoVFqpWHDx/Wxo0bJUlXXHFFQLMCvhSf59aRLKe6NKtndhSchoHWAEpiOLOU+et4Oc97TE36vi1LCP8NBwAAQPUzY8YM/fOf/5QktWvXTt9++62GDRtW7LE33HCDpk+frm+//Vb/+Mc/ApgSAEwoSEjSZZddpiNHjigiIkKJiYlq3769Lr30UtWtWzROQkKC9z+oV155ZaCjAj4VEW+nIFHNGB6XnGk7zI4BoJrLi54uR0qkWgz7TnUadzI7DgAAAOB1/PhxPfTQQ5Kkpk2batOmTerWrVupz6lTp45uu+02XXvttd4PAgNAIAR8hkSB+vXr6/LLL9ctt9yiYcOGFVuMkKRLL71UL730kl566SWFhoYGOCXgW5vjbd6tk6geXBl7JLfV7BgAagBnSqRSFveS7cRKs6MAAAAAXu+9955sNpsk6fXXXy+zGHGq5s2bF9s+vUBiYqKef/559e3bVy1btlSDBg3UqVMn3XjjjVqzZk2Jz4uNjfXObZg5c6Yk6eeff9bo0aN1xhlnqEGDBurSpYseeOABnThxosycDodDH3/8sS6//HK1adNG9evX1xlnnKFrrrlGX3/9tTweT5HnzJw5UxaLRVOnTvXeV5Dp1D+xsbHas2eP9+s333yzzDwffvih9/ioqKgi5yxY1263691331Xv3r3VrFkzNW3aVAMGDNDHH38st9td5nncbrdmzZqlUaNGqUOHDmrQoIFatWqlSy+9VO+9956sVq5noOaxGFwdrdFOnDihTp1OflLz+PHjCg8PNzlR+d26PFnuIHz3vTSwuc5rVd/sGPivvP2fKDvyQbNjAKhRLAq78B8Ku3iqLCF1zA4DAAACpCr//j506JBcLpfq1q2rs88+218REYQMw1CbNm2UlpamJk2aKCEhQY0b+2Z+5dy5c3XfffcpLy+vxGPuuece/ec//ynyQePY2Fh16dJFkvTVV1/pwIEDJV7ob9OmjdavX68ePXoU+3hsbKxGjhyp/fv3l5jj0ksv1U8//aSWLVt675s5c6YmTZpU4nMKHDlyRJ07d1b//v21bds2nXvuufrjjz9KfU7v3r21a9cu9ezZs9BQ8FPPuXPnTt17773asaP4rgxDhgzRsmXLFBYWVuzjx44d05gxY7R79+4Sc3Tr1k3Lli1T9+7dy/o2gUrxx99fpu2QAIJVRLzN7Ag4hZP5EQAqzFDunteVvnqE3PmJZocBAABAENu7d6/S0tIknWyR7qtixHfffac77rhDeXl56tq1q9577z2tXLlSO3bs0Pfff69rrrlGkvTll1/q6aefLnWtzz//XG+++aaGDh2qb775Rtu3b9eaNWs0ceJESVJKSoruvvvuYp+bm5ur4cOHe4sR1113nRYvXqzt27drwYIFGjp0qCRp06ZNGj16dKFdB9ddd51+//13PfDAA977fv/99yJ/OnbsKEmaPHmyJGn//v3asmVLid/P7t27tWvXLkkqMbck3XfffdqxY4duuukmLV++XNu3b9c333yjfv36SZI2bNigO+64o9jnpqWl6dJLL9Xu3bvVoEEDPfzww1qwYIG2bdumX3/9Vc8995xCQ0P1559/auTIkcrKyioxB1DdmDJDosDu3bu1ceNGxcTEKCcnp8ytShaLRV9++WWA0gH+sTXBrkk9DdUNsZR9MPzOkbLV7AgAaihH4q9KXdJLzYfMU4P2w8yOAwAAgCC0Z88e7+3evXv7ZM3U1FRNmTJFhmHo7rvv1qefflpoB0Tv3r11/fXX6/nnn9cbb7yh999/X/fdd5/OOeecYtfbvHmz7r33Xn366aeyWP53LWT48OGqX7++vvjiC0VGRmrXrl3q1atXoedOnTpVMTExkqQXXnhBr776qvexPn36aPz48brjjjs0d+5cbd68WZ999pm3ANG8eXM1b95cbdu29T7n/PPPL/H7vuWWW/TEE08oLy9PX331lQYNGlTscTNmzJAk1atXr8SCgiRt27ZNb7zxhp577rlCmW+44QaNGjVKq1at0o8//qjly5d7CzwFHnnkER0/flxnnXWWfv31V+9ukwLDhg3TDTfcoMsuu0wxMTF6++239frrr5eYBahOTClIHDhwQHfffbciI8v/yWTDMChIoFbIcRraneJQn3YNzI4S9Dz2TLmzD5odA0AN5rEmKn31FQq7eKrCLvxHoX9gAQAAAP6Wmprqvd2mTZsSj/N4PIqOji7x8XPOOUf16tWTJH3yySfKyspSx44d9fHHH5c493Xq1KmaNWuW4uLiNHv27BIviLdv3947c+F0Tz75pL744gtJ0saNGwsVJOx2u/exnj176uWXXy7yfIvFoo8//lgrV65UWlqaPvroo0I7IiqiSZMmuvHGG/XVV19p/vz5ev/999WoUaNCxzgcDs2dO1eSNGrUqFJf8wsvvFDPPvtskfvr1q2rL774Ql27dpXT6dTHH39cqCARGxur+fPnS5I++uijIsWIAr169dJDDz2kt99+WzNnzqQggRoj4C2b4uLiNGTIEEVGRsowDBmGocaNGys8PFxnnnlmiX/OOussnXnmmYGOC/gFbZuqB2fqVklBOMgEgG8ZbuXuekEZa66Vx5ZmdhoAAAAEkZycHO/t0to1ZWdn64ILLijxT1xcnPfYxYsXSzp5wb1Bg5I/TFm3bl3vLoLSWhxNmDChxHXOOecc7wyFgp0QBXbs2KHMzExJ0l133aU6dYqf39a0aVPdeOONkqTo6GglJCSUmKUsBW2bsrOz9f333xd5fMmSJd4WWaW1a5KkO++8s8QPLIWHh+vKK6+UJK1bt65Q15hly5bJ7XYrNDRUI0eOLPUcQ4YMkSTFx8fr2LFjpR4LVBcBL0i8/vrrSklJkXTyl3z//v3Kzs7W0aNHdeTIkTL/ALXB9iSH7ME40buaoV0TAF+yx61QypJeciQzmwYAAACB0aRJE+/t0oZPl5fb7dZvv/0mSd4WS6X9WbhwoSQpMbHk2Wrnnntuqeds0aKFpMLFFUmFhkUPGDCg1DVOffzU51XU4MGDdd5550k6OYz7dAX3tW/fvsxiQcGsiJL0799f0smf26nFmO3bt0uS8vPzVbdu3VJf/1GjRnmfV9rPAKhOAl6QWLlypSwWiyZOnKjPPvuMKfAISna3oe2JdrNjBD0GWgPwNU/ecaWtHKK8fdPNjgIAAIAg0KpVK+/tgg8AF6d58+beTiUFf+68884ix6Wnp8vlclU4R35+fomPhYaGlvrckJCTlydPny2bnp7uvX3qHIjinHHGGcU+rzLuueceSdKvv/6q2NhY7/0JCQlauXKlJGnixIkl7tgoUFbmdu3aeW+fmjk5ObmikSWV/jMAqpOAz5CIj4+XdPIXFwhmm+JtuqRjQ7NjBDVHapTZEQDURh6nsrc9LkfyJjW7ZIZC6jc1OxEAAABqqYsuush7e9euXVVe79SiwOTJk/Xoo4+W63n169ev8rlLE8hZbRMnTtRzzz0nh8OhWbNm6aWXXpIkzZ492/v6lNWuSap85oJztG7dWr/++mu5n1fSrAmgugl4QaJFixZKTk5W8+bNA31qoFrZneJQrsOjsPoB36gESa7sP2XY6fUOwH9sR7+XM/03tRi2UPVaXWx2HAAAANRC559/vlq1aqW0tDRt3LhR+fn5Ze5IKE3Lli29tw3D0Pnnn++LmFXOkpSUVGqXlVPbFZ36vMpo3bq1xo4dqwULFmjWrFl68cUXZbFYNHPmTEnSJZdcUq6OL2VlTkpKKjZzwa6XnJwc9ejRo8ydGEBNE/AroX379pUkHTx4MNCnBqoVtyFF0rbJNI7kCLMjAAgC7pzDSl0+SPkHPjM7CgAAAGohi8Wi22+/XdLJQcyzZs2q0nr169dXz549JUkREeb+u/nUYsjWraXPgIyK+l8HhNOLKJXZqVAw3PrIkSNat26dNm/erP3790sq3+4ISdq2bVu5Hg8NDVXXrl299/fq1UuSZLfbvfMkgNok4AWJRx55RIZh6LPP+Ic5EBFnMztCUHLnHlPO9mfMjgEgWLhtytpynzI33CGPs+qDBgEAAIBTPfHEE2rY8GRL6Oeee05Hjhyp0npjxoyRJO3fv1+rVq2qcr7K6tOnj7fDyqxZs+TxeIo9LicnR999950k6bzzzlP79u0LPV7w2kgnL/KXxxVXXKGzzjpL0slB1gXDrMPCwnTjjTeWa405c+bIMIxiH4uLi9Pq1aslScOGDSu0C2L06NHeIsr06dPLdS6gJgl4QWLEiBF65pln9Ouvv+qBBx6Q0+kMdASg2vgj3ak0q7vsA+EzHmeu0n8ZLY8tqeyDAcCHrDFfK21Zfzkz/zA7CgAAAGqRM888Ux988IEkKSsrS5deeqk2bdpU6nMMw1BmZmaxjz366KMKCwuTJE2aNEn79u0rda1ly5Zpz549FQ9ehgYNGnh3Kuzdu1evvvpqkWMMw9DDDz+s1NRUSdLDDz9c5JhTCxSHDx8u17lDQkK8OyG+//57zZ8/X5J0ww03eF+bsvz222965513itzvcrl07733yuFwSJIeeOCBQo+fc845uuGGGyRJ3377rd57771Sz3PkyBHNmzevXJmA6iDgMyRmz56tHj16aPDgwfrss8+0ZMkSTZgwQeeee265etwxDBu1iSFpc7xdo/9S+f6OKD/D8Chzw21yZfj+/ygBQHm4MqOVtrSfmg36VI3+cpvZcQAAAFBL3HvvvYqLi9PUqVMVHx+vyy67TH/96181evRoXXDBBWrZsqXcbrcSExO1c+dOfffdd95CQ506dQoNpW7Xrp1mzZqlCRMmKCEhQX379tVdd92lkSNHKjw8XE6nUydOnFBUVJQWLlyomJgYLVmyRBdeeKHPv68XX3xRixYtUkxMjF5++WX9/vvvmjRpktq3b68jR47oo48+0rp16yRJgwYN0pQpU4qsMXjwYO/txx9/XM8//7zat2/v3YXQuXNn1a1b9BLp3XffralTpyo/P7/QfeXVt29fPfPMM/rtt980ceJEtW3bVocOHdJ7773nbTE1evRojRo1qshzP/nkE23fvl0xMTH6+9//rp9++kkTJ05Uz5491aBBA6WlpWn37t1auXKl1q5dq3HjxumWW24pdzbATBajpL1DfhISElLpKfMWi0Uul8vHiWq2EydOqFOnTpKk48ePKzw83ORE5Xfr8mS5A/ruq546N62rty6r2sAllE/29qeVt7fopxMAwAyh3aeo6YAPZKnTwOwoAACgHKry7+9Dhw7J5XKpbt26Ovvss/0VEdAPP/ygJ598UjExMWUea7FYdNVVV+mdd94pdnj1kiVLdNdddyk9Pb3UdUJCQrRmzRpdfvnl3vtiY2PVpUsXSSdbHt11110lPr9z5846evSo7rzzTu/g6FPFxsZq5MiR3hkOxbnkkku0ePHiEgda33TTTd62Tqc7cuSIOnfuXOxj11xzjVasWCFJ6t69uw4cOFBiBkmaOXOmJk2aJEnauXOn7rnnHu3atavEzCtWrFCTJk2KfTwxMVE33nijNm7cWOo5pZM7WWbMmFHmcUBF+ePvr4DvkJBUYv80IBjFZrsUn+tShzBTfh2DRv6hmRQjAFQr+Qc/kyN1m1oMW6C6Tf9idhwAAADUAuPGjdPo0aP1ww8/aNWqVdqyZYuSk5OVmZmp0NBQtWrVShdccIEGDRqkm266yVs0KM7o0aN15MgRff7551q+fLn27dun9PR01a1bV2eccYZ69uypv/71r5owYYK3WOcPnTt31u7du/X5559rwYIF2rt3r7Kzs9WyZUv16tVLt912m2699VaFhJTcmf7rr79W3759tXDhQh04cEA5OTklzqQ41R133OEtSBQUGsqrRYsW2rx5s6ZPn6758+fr8OHDMgxDPXr00MSJE/XAAw8Umh1xujPOOEMbNmzQsmXLNG/ePG3ZskWJiYlyOp1q3ry5zj77bA0aNEhjxozRkCFDKpQNMFPAd0gcPXq0Ss8vGCiDk9ghUTuMPztUN3YvXw9CVJwjaaPSVl0heRxmRwGAIiz1mqnZpTPU6KzrzY4CAABKwQ4JIPg8//zzeuONN1SnTh0dP368yMDs0526Q6K0nRdATVErdkhQUACK2hxvpyDhJ66cI8pYez3FCADVluHMUuav4+U873E16fuWLCH1zI4EAAAABD23263Zs2dLkkaOHFlmMQJA+ZS8lwlAwCTkufVnptPsGLWOx5GtjF9GyWNPNTsKAJQpL3qa0lYMlTvvuNlRAAAAgKA3d+5cnThxQpJ0//33m5wGqD1oWg9UExHxNnVrzqdifcXwuJW5/ia5MqPNjgIA5eZM2aKUxb3U/LKv1TD8arPjAAAAAEHlzz//lNPp1Pbt2/X4449Lki666CJdc801JicDag9TCxJut1s//vij1qxZo7179yo9PV2S1LJlS51//vm64oordN1115U64AWoLbbE23VHjzCFWCxmR6kVsrf9Xfa4lWbHAIAKM+xpylhzjcIu/IfCLp4qSwj/PwgAAAAIhNN75NerV0+ffPKJLFyrAXzGtILEypUrNWXKFMXFxXnvK5ivbbFYtHnzZn322WcKDw/XZ599pquuusqsqEBAZNg9ik5z6vzW9c2OUuPlHfhU+X+8b3YMAKgCQ7l7XpcjebOaD/lGdULPMDsQAAAAEDRatGih3r1765VXXtGgQYPMjgPUKqbMkJgzZ45GjRqluLg4GYYhwzB01llnaeDAgRo4cKB38LVhGDp+/LiuvfZazZ0714yoQEBtireZHaHGsyesVXbkw2bHAACfcCT+qtQlvWRPXG92FAAAAKDWK7hOmZ6erjVr1mjw4MEVev5dd93lXaNz587+CQnUcAEvSBw9elRTpkyRx+NRaGioXnvtNSUmJiomJkabN2/W5s2bFRMTo8TERL3++usKCwuTx+PRvffeq2PHjgU6LhBQUQl2uTyG2TFqLFf2IWX8OkEyXGZHAQCf8VgTlb5quHL3vOHdTQoAAAAAQE0U8ILE+++/L7vdrrCwMG3cuFH/+Mc/1LZt2yLHtWnTRs8995w2btyosLAw2e12vf8+LVhQu+W5DO1Kdpgdo0by2DOUvmaUDEeG2VEAwPcMt3J2Pq+MX0bJY083Ow0AAAAAAJUS8ILE6tWrZbFY9NRTT+niiy8u8/iLLrpITz75pAzD0KpVq/wfEDBZBG2bKszwuJSx7ga5sw+aHQUA/Mp+YrlSF/eSIznS7CgAAAAAAFRYwAsSBW2XrrjiinI/Z8SIEYWeC9RmO5Lssrk8ZseoUbK3/k2OhF/MjgEAAeHOO6a0lUOUt2+62VEAAAAAAKiQgBck3G63JKlOnTrlfk7dunUlSR4PF2lR+zk8UlSi3ewYNUZe9AfKP/Afs2MAQGB5nMre9rgyfp0gjyPb7DQAAAAAAJRLwAsSHTt2lCRt3ry53M8pOLZDhw5+yQRUNxHxFCTKw3ZipbK3PWF2DAAwje3o90pd0lvOtN/MjgIAAAAAQJkCXpC4/PLLZRiG3nzzTcXHx5d5fHx8vN58801ZLBb99a9/DUBCwHy/pzqUbWdHUGmcmdHKXH+TZLjNjgIApnLnHFbq8kHKP/i52VEAAAAAAChVwAsSf/vb3xQSEqKUlBQNGDBACxcu9LZxOpXH49HChQs1aNAgJSUlKSQkRA8//HCg4wKmcBvSlgSGW5fEY0tVxi+jZThpUwIAkiS3TVmbpyhz40R5nHlmpwEAAAAAoFh1A33C888/X6+++qqef/55xcfH66abblLz5s3Vu3dvtW3bVhaLRUlJSdq5c6cyMzNlGIYk6dVXX9X5558f6LiAaSLi7bqqc6jZMaodw+1Qxq/Xy50TY3YUAKh2rIfnyJm2Q82HLVS95j3MjgMAAAAAQCEBL0hI0nPPPadmzZrp6aefVn5+vjIyMrR27dpCxxQUIkJDQ/XOO+/ogQceMCMqYJqDGU6l5LvVJrT8A+CDQVbkA3IkbTQ7BgBUW67MaKUt7admgz5Vo7/cZnYcAAAAAAC8At6yqcCDDz6o2NhYvfXWWxoxYoTOOOMM1a9fX/Xr19cZZ5yhESNG6K233lJsbCzFCAQlQ1JEPG2bTpW7911ZD80wOwYAVHuGK0+ZG29X1ub7ZbjtZscBAAAAAECSSTskCrRu3VpPPfWUnnrqKTNjANVWRLxN13VrbHaMasF2fIlydjxjdgwAqFHyD34qR2qUWly+UHWbdDU7DgAAAAAgyJm2QwJA2Y7luHU8x2V2DNM50/coc/2tkuExOwoA1Diu9F1KXdxbtqM/mB0FAAAAABDkKEgA1VxEXHC3bXJbk5Txy2gZrlyzowBAjWU4s5Tx6/XKjnpChsdpdhwAAAAAQJCiIAFUc8E8R8Jw25WxdpzcecfMjgIAtUJe9DSlrRgqd95xs6MAAAAAAIKQ32ZIdO16sk+xxWLR4cOHi9xfGaevBQSDZKtHBzOc6t6intlRAi4z4h45U7aYHQMAahVnyhalLO6l5pd9rYbhV5sdBwAAFCNhpsXsCH7T/i7D7+dYt26dLr/88hIfb9y4sTp06KABAwZo0qRJ+utf/1rutWNjY9W1a1cZxsnvY+7cubr11lvL9bwuXboUud9isahp06Zq1qyZ2rdvrz59+mjgwIEaN26cwsLCylx32LBhWr9+fZH7GzVqpGbNmqlly5Y6//zz1bdvX40dO1bdu3cvx3dZ2ObNm3XJJZcoJCRESUlJat26tTd7SRo2bKjWrVvr4osv1g033KBbb71VdeuWfBmyc+fOOnr0aLkzNWvWTJmZmcU+lpeXpzlz5mjx4sXavXu30tLSZBiGmjZtqs6dO+uCCy7QoEGDdPXVV6tTp06SpJdffllTp04t9/mLc+edd2rmzJnFPjZlyhR9/vnnGjNmjH766SdJ0syZMzVp0qRij7dYLAoLC9OZZ56pSy65RFOmTFGfPn0qlGf9+vUaNmyY9+uIiAgNHjy4zOeV9PtTp04d73u1U6dO6tOnjy699FKNHj1a9evXL3Pdkn7GjRs3VrNmzdS6dWtddNFF6tevn66//np17NixzDVP98033+i2225Ty5YtlZycrDp16pT4u1cgNDRUbdu2Vd++fXXbbbfpuuuuK/Ucpb3vi3PRRRfpt99+K/axtLQ0ffXVV1q5cqX27t2rjIwMWSwWtWjRQp07d9bFF1+swYMH66qrrlLbtm0lSXfddZdmzZpVoQyne+mll/Tyyy9XaY2q8FtBIjY2VlLRH1LB/ZVR0R84UFtsirMFXUEiZ/frssXMNTsGANRKhj1NGWuuUdiF/1DYxVNlCaljdiQAAICAycvL06FDh3To0CF9/fXXmjhxombMmKE6dcr+/0SzZ8/2FiMKvi5PQaIkhmEoKytLWVlZOnbsmLZu3aqPP/5YTZo00eTJk/Xqq6+qcePGFV7XarXKarUqMTFR0dHR+u677/TMM8/o8ssv13vvvaeLLrqo3GstWbJEkjRo0CBvMaIsNptNJ06c0IkTJ7R06VK9//77Wr58udq1a1fh76UitmzZoptvvlnHjhXttJCamqrU1FRt375dX331ldq1a6fExES/5pFO/oyXLl0qSRo9enS5n5OTk6N9+/Zp3759+vzzz/Xss8/qjTfeKPd5T79oPXv27HIVJEridruVkZGhjIwMxcbGauPGjZo+fbratGmjRx55RM8++2ypRaeS5OXlKS8vT/Hx8dqzZ4/mzJmjxx9/XGPGjNF7772nzp07l3utgvfqyJEjy/X7LEn5+fmKjY1VbGysFi5cqCuvvFKLFi2q1O9dRSxevFh333230tLSijyWmJioxMRERUZG6j//+Y8GDBigyMhIv+YJJL8VJO68884K3Q+gZJEJNt3VM0whQVKUs8Z+r9xd/zQ7BgDUcoZy97wuR/JmNR86T3Ua+fcfhwAAAGZ44IEH9OCDD3q/NgxD6enp2rJli6ZNm6bk5GTNnj1bnTp10muvvVbmenPmzJEkhYWFKTc3V2vWrFFCQoLat29f7kxjx44tdK78/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wy1/3999+9t10ulzIzMxUXF6fIyEgtXLhQiYmJWrt2rfr3768PP/xQU6ZMKVfegou8JV1M79u3r7766qtC9+Xm5mrv3r366KOPtHv3bu3cuVMTJkzQxo0bSz1Xhw4dtGrVqjIzFXex+eDBg7rqqquUk5MjSRozZowmTJig7t27q379+kpNTdXu3bv1888/69dffy303AcffFATJkwo9lw//fSTXnjhBUnSa6+9prFjxxZ7XIsWLYq9f8eOHUpISJDFYtG1115b7DGnr+vxeJSSkqJ169Zp+vTpys3N1f/93/+pa9eumjx5crFrnMpqtWrhwoWS/vde/e677/T++++rQYMGZT6/wOm/P7m5ucrIyNCePXv0yy+/aM2aNUpJSdE///lPLVmyREuXLlWbNm1KXfP0n7HT6VRGRoaOHj2qzZs3a8GCBcrKytIPP/ygX375RV9//XW5Cjkul0srV66UVPJ79fTfPUnKysrSjh07NH36dB05ckSrV6/Wfffdp6+//rrU8xX3vi9Oo0aNity3ceNGTZgwQU6nU3Xq1NEtt9yi0aNHq0uXLqpTp46SkpK0c+dOrVy5Ups3by703Ndff11PPvlksef6+OOP9cknn0iSZsyYoX79+hV7XMFuC7P4rSBR0g+kPD8oAIVlOQz9nurQRW3K/5dGTeVM3aGsTRMl+X8bLwBAciT+qtTFF6v50G/V4IyhZscBAADwqbZt2+r8888vcv/QoUM1ZswY9enTRzabTR988IFefPHFUlvPbN68WX/++ackadq0abr//vvldrs1d+7cEi8QFqd58+bFZrryyiv12GOP6dixY5o8ebJ+/vlnHTx4UKNGjVJkZGSJF7wLFLemJN12221699139f777+v555+Xw+HQAw88oA4dOmjUqFGlrnnkyBHt27dPUskXeRs3blzsuQcOHKjbbrtNvXv31v79+7Vp0yZt2bJFgwYNKvF89erVK/H7KMvzzz/vLUZ89dVXuuuuu4ocM2LECD355JNKSUnRd999572/bdu2JV6k3b59u/d2x44dK5yvoKDTt2/fEgtXJa07fPhwDRs2TCNGjJBhGHrnnXfKVZD44YcfvK/FBx98oLvvvlsZGRlasmRJiYWX4pT0+zNy5Eg988wzio6O1u23365du3YpKipK48aN09q1a0v9PSrtZzxp0iRNmzZNL730kt577z1lZ2frpptu0oYNG9S3b99Ss27cuFGZmZmqV6+err66+Na0Jf3uXXLJJbrpppt0wQUXKCUlRd98843efvttdejQocTzlfS+L48nnnjCW4xYuXKlrrjiiiLHjBw5Us8//7yOHj2qX375xXt/x44dS2xndep7uEuXLpXO528MtQZqiIh4u9kR/M6dH6/0tWNluPLNjgIAQcVjTVT6quHK3fNGoRYEAAAAtdl5553n/cR6Tk6O9u/fX+rxs2fPliS1bt1ad955p4YPHy7pf7smfOXMM8/UihUrvNkOHjxY5X7vDRo00NNPP+3N6vF4NHnyZNlstlKfV3AxvWvXrjrvvPMqfN5GjRrpoYce8n69bdu2Cq9RHm63W8uWLZN08sJ/ccWIU7Vp06ZQLn8qeA3LKv6UZPjw4erdu7ekk++F7OzsMp9T8F698MILNWnSJJ1zzjmF7veV8847TxEREerVq5ekk3Mq/v3vf1dpzbCwMP3rX//Sm2++Kenkbo/yFGEKXudLL71UzZo1q/B527Vrp4kTJ0o6uZPq1EKUL8XHx3vXHjduXLHFiFOdddZZuvvuu/2SxSwBL0gcO3ZMx44dk9vtLvdz3G6393lAsIpKtMvhrr0XiQyXVRm/jJUnP87sKAAQnAy3cnY+r4xfRsljTzc7DQAAQECcOuzWbi/5g4B2u937ifobb7xR9erV0x133CFJ2rNnT4lDayurTp06mjlzpkJDQyVJn3/+uVJTU6u87s0336wbbrhBkpSUlKQZM2aUenzB7IPKXkyXyv8aV0VKSoqsVqskqVu3bn45R2XExcVp165dkso/P6I4FXkNExIStGbNGknS7bffXuh/V65cqZSUlErnKE6jRo00Z84c7+zfd999V06ns8rrPv300xowYIAkaffu3Vq+fHmpx1d0TkdxAvFePfX6dnV6rwZSwAsSnTt3VteuXXXgwIFyPyc2Ntb7PCBYWV2GdibXzl0ShmEoc9Odcqb5p/oMACg/+4nlSl3cS46UrWZHAQAA8LujR496b5955pklHrdkyRJlZGRI+t/F3XHjxnkH3/r6k+fSyZ0YBeeyWq1avXq1T9Z9/PHHvbd//PHHEo/LycnR+vXrJVXtIm95X+OqOLVF0B9//OGXc1RGwUXy8PBw7y6Cyih4DRs1alTmjIa5c+fK7XYrJCTEO3D9tttuk8VikdPp1Lx58yqdoyQ9e/bUiBEjJJ3cAeCLnTAWi0WPPvqo9+vS3qsHDhzQoUOHJPFerQlMadlU2VYAtBBAsKutbZtyf3tJttgFZscAAPyXO++Y0lZcprzo982OAgAA4Df79+/3XjAeOHCg2rVrV+KxBQWHv/zlL94ZCI0bN9Z1110nSfrmm28q1A2kvE5t51LWQOjyGjBggJo0aSJJ2rJli1wuV7HHrVq1Sg6HQ02bNtXQoZWbNWa1Wr0tfBo3blxme5rKatmypc466yxJJz9N/9Zbb8nj8fjlXBVR1XZNkrRu3Trt2LFD0slB3WUpaMs1bNgw76yBLl26aPDgwZL8UzyT/PNeLe+aBa/zueeeW+ldBwUD7iWpU6dO3jZZvtajRw81bNhQkrR48WLNnTvXL+epzvw21NqXCgoRISGMvEBw25VsV77To9B6ted3wRozT7m7XzU7BgDgdB6nsqMekyNpo5pdMkMh9ZuanQgAAKDCkpOTtXfvXu/XhmEoMzNTW7Zs0bRp02S1WtWsWTNNmzatxDVSUlK0cuVKSSc/aX6q22+/XXPnzlVSUpJWrVqla665xqf5T70oevDgQZ+sGRISoosuukibNm1Sbm6uEhIS1KlTpyLHFVzkvfLKK1WvXr0S18vLyyv0GktSfn6+fv/9d/373/9WdHS0LBaL3n77bbVq1arUbE6ns8haxSluCPXf/vY373DxZ599Vv/5z380ZswYDR48WP379y/UjicQrFar1q5dK6nsgkRcXFyh79vj8Sg1NVXr16/X9OnT5fF41LFjR7322mulrvPbb79pz549kv63k6fA7bffroiICO3YsUPR0dGVmglSGn+8V9u0aaPw8HCdOHHCO1C+OOUt/GRmZhZ5f2VnZ2vnzp16//33lZSUpPr16+vDDz8s9T0vFf++L054eLiaN2/u/bpRo0aaPHmyPvroIxmGodtvv11vvPGGRo0apUGDBql///6lDtOuDWpEQSIhIUGSvNVbIFg5PdLWRLsu79TI7Cg+4UjZqsyI2jWYBwBqG9vR7+VM360WwxaoXquLzY4DAABQIZ988ok++eSTYh8LCQnR/fffr8cff1zdu3cvcY158+Z5e+KffpF3xIgROuOMM5SYmKjZs2f7vCBx6gX8gpZR/lj39IKEx+PRihUrJJXdAmf79u264IILSnz8yiuv1LPPPqvLL7+8zFzx8fGlrlXgpZdeKjLo+/HHH1d0dLR3LkZsbKw++OADffDBB5JODi0eNmyYbrvtNo0aNco788Bf1qxZI6vVqtDQUO8A9JK88MILeuGFF4p9rEGDBnrmmWf0yCOPlHmhuuAT/o0aNdL48eMLPXbjjTfq0UcflcPh0OzZs71Do33Fn+/VEydOyOVyKTs7W02bFv6gVEZGhjZv3iyp7PfqTz/9pJ9++qnEx2+66SY99dRT6tOnT5m5ynrfF/jqq6+KDFl/++23dfjwYe/vWHR0tKKjo72Pn3nmmRo+fLgmTpyoYcOGlXmOmsa0j1mX55fe6XRq//79ev311yXJOxEeCGYR8TazI/iEO++4MtZeJ7lrx/cDALWZO+dPpS4fpPyDn5sdBQAAwGc8Ho++/fZbffLJJ6UOsC24yNu/f3+dffbZhR6rU6eObr75Zkkn269kZ2f7NGNYWJj3dk5OTsDWjYyMVEpKikJCQqpcZPn111/14Ycf6vjx41VapywhISH68ssvtXr1al199dWqW7fw57CTkpI0f/58jRkzRv3799fhw4f9mqfgU/tXXHGFt0VPZdjtds2aNUszZswotQ2Vy+XSN998I+nkhfnTL9y3bNnS+7OcO3euz1tamfVeXbFihVwul1q2bKlLLrmkSudasmSJPvroI2VmZlZpnbI0atRIy5Yt0/z583XZZZcVuU5+7NgxffXVV7r88st19dVX+3wQudn8XpCoU6dOoT/Sye1x559/fpHHTv/TsGFD9ezZUz///LMsFosmTJjg77hAtbcvzalMm+/7UgaSx5mn9DWj5bEmmh0FAFBebpuyNk9R5saJ8jjzzE4DAABQLi+99JIMwyj0Jz8/X3v27NFTTz2l3NxcTZ8+XVdccYXy8/OLPH/fvn3e/v2n744ocOrg6QULfDsf8dQLsKdfYPbnugUX0wcNGqTWrVuXutbQoUOLvMYOh0NHjhzRv//9bzVr1kw//PCDBg4cqP3795e61llnnVVkreL+nL474lQjRozQihUrlJaWpuXLl2vq1KkaPXq0mjVr5j1m+/btuuyyy7xdWXzNMAzvfJLyDFn+6quvinyPOTk5ioqK0uTJk5WYmKh//vOfuummm0osJKxatUpJSUmSyn6vnjhxQr/++mtlvrUSmf1eHTlypPfac0nuvPPOIq+zzWbTgQMH9MYbb8hisWjmzJm65JJLvK9lSYp73xf35/TdEQUsFotuvPFGbdiwQcnJyfrxxx/1/PPPa8SIEWrU6H+dUVatWqXLL79cubm5peapSfxekDj9h1DS/WX9ueGGG/TYY4/5Oy5Q7XkMaUtCzR1ubRgeZW64Ta6M3WZHAQBUgvXwHKUt6y9n5h9mRwEAAKiURo0a6YILLtDbb7+tjz/+WJK0adMmvfHGG0WOLdgdUbduXe9OiNP16dNHPXr0KHS8r6Smpnpvt2zZMmDrVnUYc7169dS5c2c9+OCDWrdunerVq6f4+HhNnjy5coEroWnTpho5cqRefPFFLV68WElJSZoxY4ZatGgh6WSL+H/+859+OfeOHTuUkJAgi8Wia6+9tlJrhIWFqV+/fvr888/1j3/8Q5K0cOFCb0uq0xW891q1aqWrr7662GNGjRrlnWdQ096rdevWLdLO3+Vyeee7VPa92qBBA3Xv3l3PPfecFi1aJOlkC6W///3vVUhdMa1bt9bYsWP12muvafXq1UpOTta7777r3Vmzb98+TZ8+PWB5/M3vMyReeumlQl9PnTpVFotF999/f5HhM6eyWCxq2LCh2rdvr8GDB+svf/mLv6MCNcameJtGdgk1O0al5Ox4TvbjJffrAwBUf67MaKUt7admgz9To663mh0HAACg0u655x49++yzSk9P14wZMwoNDfZ4PJo7d66kkxc+S7uOVWDjxo2KjY1V586dfZJv165d3tu+amXu8Xi8g4+bNm2qM844o9DjsbGx2rdvn6Tyfbq/LD179tQ111yjn376SRERETp48GCpMzv8pUGDBpo0aZI6dOjgvWC/aNEiffbZZwoJ8e1ntgt2R/Tp00ft27ev8np///vf9eabb8rj8WjGjBlFCjtZWVlavHixJCktLU3169cvc81Fixbp448/VuPGjaucT/LPezU5OVnx8fElrrlp0yZlZmaqbt26JRZhKuLKK6/URRddpN27d+u7777Tp59+6rPXpyLCwsL097//XWFhYbr//vslSQsWLChxzkhNY0pBQpIeeughn09zB4LFn5kuJeW71S609K1o1U3+n7OUt/dts2MAAHzAcOUpc8NtciRuUNMB78tSp4HZkQAAACosJCREZ599trZu3aqEhASlpaV5h/P+8ssviouLq9B6hmFozpw5Pvvk/c8//+y9femll/pkzS1btnjbvwwaNKhIm5uC3RFdunRRz549fXLOc8891ztM+PfffzelIFHgqquuUqdOnXT8+HFlZGQoLS1Nbdq08ek5Cl5DXxR0pJM7Dtq0aaOkpCT9/vvvRR7/7rvvZLNVbEZnbm6uFi1apDvuuMMnGf3xXi1rzYLX+bLLLvPu/Kiqc889V7t37/bONi7PgGt/mTRpkh5++GG5XC79+eefpuXwNb8XJE731VdfSZLCw8MDfWqgVtkUZ9P4swNfpa0sR9ImZW2eYnYMAICP5R/8VI7UKLW4fKHqNulqdhwAAIAKc7lcxd4uaGnToEEDzZgxo8xP0b/99tvatWuXzwoSKSkp3iHFjRs31pVXXlnlNSUVav0ybty4Io/7+mK6VPJrbJYOHTp4h2yfPlC4quLi4rRz505J/nkNi3v9Ct6r7du313vvvVfmWk899ZROnDih2bNn+6QgsXfvXv3yyy+SpE6dOqlv375VXtMwDH3wwQfer4PxvVq/fn21atVKSUlJPn+fmingBYk777wz0KcEaqWI+JpTkHDlHFHG2nGSx2F2FACAH7jSdyl1cW81v/QrNTyr6D8UAAAAqqv8/HxFR0dLOjlbomCAc25urn744QdJJ4ck33pr2W0qExMTtWvXLh06dEhbtmzRoEGDKp3L4/Horrvu8g7anjJlik/68n/77bdauHChpJMXr08fuJuTk6P169dL8u1F3u3bt3tvd+rUyWfrVsapP/OmTZt6d8T4SkG7pvDwcPXq1csna8bGxiotLU1S0dfvyJEjioiIkCSNHz++xFknp4qMjNT777+vtWvXKi4uTh07dqx0NqvVqokTJ3pnBz/55JOqW7fql5zfeustRUVFSZJ69+6tq666qtDjBw4c0KFDhyT57r1qGIZ3iL3kn/eqYRjlLi4cP35cycnJkqSuXWvPh7/8PtS6OMeOHdOxY8dkt5c9mNdms3mPB/A/cbluxWY7zY5RJo8jWxm/jJbHnlr2wQCAGstwZinj1+uVHfWEDE/1//sJAABAkl5++WVZrVZJJ1v5FLQv+v7775WXlydJmjBhQrnWGj9+vPdCY1UGBh87dkxXX321li9fLulkC5nTW6JXlMPh0DvvvOP9NHydOnX05ZdfqkGDwm03V61aJYfDoSZNmmjo0KFVOmeBZcuWeYscrVu3Vv/+/X2y7qlyc3M1YMAALV26VB6Pp8TjPB6P/va3vyknJ0eSNGbMGJ9/8rzgU/uVHWZ9Oo/Ho2effdb79enrzp4921sMKO97teA4j8ejr7/+utLZoqOjdemll3rnRwwdOlQPPPBApdeTTv4sn3zyST333HOSpNDQUH3xxRdFjit4nc855xx169atSucs8PHHHys2NlaSdPHFF6tDhw4+WfdU0dHRuvLKK7Vhw4ZSj7PZbJoyZYr3Zzt27FifZzFLwHdIrF69WiNHjlRYWJhiY2OL/IfvdPn5+erZs6esVqvWrFmjYcOGBSYoUANExNnVuWk9s2OUyPC4lbn+Zrky95kdBQAQIHnR0+RI3aoWQ+erTmNadAIAAHMlJydr7969he6z2Ww6dOiQZs+erZUrV0qSGjZsqFdeecV7TEFBoV69ehozZky5ztWpUyf169dPUVFRmj9/vt5///1ihwtnZmYWymS1WpWZmano6GitX79eS5Ys8baKOeecc7R06VI1a9aszPOfuqbb7VZmZqbi4uK0ZcsWLVy4UImJiZJOtqD697//rZEjRxZZo+DT/VdddZXq1Svf9Ya8vLwir7HT6VRcXJyWLVtW6GLy//3f/5X66Xmn01lkrZJ069ZNDRs29H4dFRWl0aNHq2PHjrruuus0aNAgnXXWWWrSpIkyMzO1a9cuzZgxwzuDoVmzZnr11VfLda7yslqtWrt2raSKfWo/Li6uyPedl5en6Ohoff7559qyZYskqVWrVnrmmWcKHTdnzhxJUtu2bXXZZZeV63yDBw9W+/btlZCQoDlz5hRZs8Dpvz95eXnKyMjQnj179Msvv+jnn3/2XjAfOHCgFi5cWOb75vSfsdPpVGZmpmJjY7V582YtXLhQmZmZkk7+jObOnVvsTpOC92pFXufTf/ekk8W62NhYLVy4UPPmzZN0crbMW2+9Vepaxb3vS3Leeed5W74ZhqGff/5ZP//8s7p166axY8dqwIABCg8PV2hoqFJTUxUVFaXPP/9cR44ckSSdeeaZevLJJ8v9fVZ3AS9ILFiwQIZh6LrrrlOLFi3KPL5ly5YaP368Zs+erfnz51OQAE6xOcGmW89tXG37yGVv+7vscSvMjgEACDBn8malLu6lZpfNUcPwq82OAwBAjdP+LsPsCLXGJ598ok8++aTUY9q0aaOvv/5aF1xwgaSTbVLWrVsnSfrrX/9arutXBSZMmKCoqChlZGRoyZIlGj9+fJFjfvrpJ++A55I0bdpU9957r1555RWFhoaW69wF+UtisVg0fPhwvffee8Ue6/F4vLsyKnKRd/v27WWeu169enrttdc0efLkUo+Lj48vc60Cu3bt0sUXXyxJqlu3rs444wwlJiYqLi5O//73v/Xvf/+7xOeeffbZmjdvnjp37lyuc5XXmjVrZLVaFRoaquHDh5f7eS+88IJeeOGFUo/p0qWLFi5cqDPOOMN7X0REhA4fPizp5IyFsuacFAgJCdG4ceP08ccfa9++fdqxY0exw5vL+/vz2GOP6emnny5Xq6by/Izr1q2rMWPG6L333tNZZ51V5PGMjAxvm6qKvFfL87sXFhamTz75pMyZLeV53xfIyMjwDt1u3LixWrRooYyMDP3555/617/+Vepz+/btq/nz55erKFlTBLwgsWXLFlkslgoN4rnqqqs0e/ZsbzUQwEmpVo/2ZzjVo2XRT1yYLf/AZ8r/432zYwAATOKxpypjzTUKu/AfCrt4qiwhdcyOBAAAIOnkoNiWLVuqZ8+euuaaazRp0qRCRYevv/7a2/anuIJCacaPH6+nn35a0sldFmU932KxqEmTJmratKk6duyo3r17a/DgwRo3bpwaN6783MiGDRuqWbNmatmypS644AL169dPY8eO1dlnn13icyIjI5WSkqKQkBBdc801lT63dLIlVLNmzdStWzddfvnlmjx5ss/a6hSnYcOGiouLU2RkpNasWaPIyEgdOHBASUlJstlsaty4sTp06KCLLrpIY8eO1fjx44vdvVJVBW2ErrjiikK7NyqjYcOGat26tS666CKNGTNGt99+e5Hi1KmtwSrzXv3444+96xRXkDhVSEiImjRpombNmumss85Snz59dNlll2nUqFFVei1DQ0PVrFkz7/fav39/jR8/vtR2SStWrJDL5VLLli11ySWXVPrc0sliWbNmzdSjRw+NGDFC99xzj19aNRXo0qWLkpKStGHDBq1du1ZRUVE6ePCgUlJS5HQ6FRYWpk6dOql3794aP368rr322nIXmmoKi1GwryZAwsLCZLVaFRkZqX79+pXrOdu2bdOAAQPUpEkTZWVl+TlhzXLixAnvgJXjx48rPLzmtEa4dXmy3Hzoo8pGnNlIky9oYnaMQuwJvyr956skeogDACTVP+NyNR86T3UatTM7CgAAlVaVf38fOnRILpdLdevWLfWCMGCm5557Tm+++aYGDx7s/fQ5ys8wDIWHhys+Pl6fffaZ7r33XrMj1Vq33HKLvv32W916662aO3eu2XFqNX/8/RXw8kpBD7yCIUHlUXCszWbzSyagJotMtMntqT6VHVf2IWWsm0AxAgDg5Uj8VamLL5Y9cb3ZUQAAAFCCyvTkx//s3LlT8fHxslgsGjVqlNlxai2Xy+Wd/cJ7tWYKeMum1q1bKyEhQTExMerdu3e5nhMTEyPp5DwJAIXlOAztSXWoV9vSB8QHgseeqfQ1o2XY082OAgCoZjzWRKWvGq4mvV5V4wuerbbzjwAAAIKRw+HQhAkTNH78eN1yyy1mx6mR3G63XnrpJbVo0ULt27c3O06tlZ6erkcffVSSih3Mjuov4AWJiy++WAkJCZo/f74mTJhQrud8++23kqTzzz/fn9GAGmtTnM30goThcSlj3Q1yZx8wNQcAoBoz3MrZ+Q85kjep+WVzFNKAD5sAAABUB/Xr19dLL71kdowarX///urfv7/ZMWq9tm3b6uWXXzY7Bqog4C2bxo4dK8MwtGjRIi1YsKDM47/77jstWrRIFotF1113nf8DAjXQ9iSH7CYP5Mje+ogcCWtMzQAAqBnsJ5YrdXEvOVK2mh0FAAAAABBAAS9I3HnnnercubMMw9Ctt96qJ598UsePHy9y3PHjx/XEE0/otttuk8ViUadOnTR58uRAxwVqBJvb0PYku2nnz/vjQ+Uf+MS08wMAah533jGlrbhMedHvmx0FAAAAABAgAW/ZVL9+fS1atEhDhgxRbm6upk2bpmnTpunMM8/09ldLSEjQsWPHJJ2cUB8WFqYffvhBDRqY3yMfqK42x9t0SYeGAT+vPW6VsqMeD/h5AQC1gMep7KjH5EjaqGaXzFBI/aZmJwIAAAAA+FHAd0hIJ+dIbN26Vb169ZJhGDIMQ0ePHtXWrVu1detWHT161Ht/nz59FBUVpV69epkRFagxfktxKNfpCeg5nZl/KGPdTZLhDuh5AQC1i+3o90pd0kfO9N1mRwEAAAAA+FHAd0gU6NGjh3bs2KGff/5ZS5cu1a5du5SamipJat26tXr37q3Ro0dr+PDhZkUEahSXR9qaYNfwMxsF5HweW5oyfhktw5kVkPMBAGo3d86fSl02UM0GfKDQ7veaHQcAAAAA4AemFSQKjBgxQiNGjDA7BlArbIqzBaQgYXicyvj1erlzDvv9XACAIOK2KWvzFDmSNqnZoE9kqRtqdiIAAAAAgA+Z0rIJgH/8ke5Uus3/7ZOyttwvR9IGv58HABCcrIdnK3Vpfzkz/zA7CgAAAADAh6pFQcLj8Sg1NVXHjh2T200veqCyDEmb4+1+PUfu3ndlPTTDr+cAAMCVuU9pS/vJGvON2VEAAAAAAD5iWkHC7Xbryy+/1GWXXabQ0FC1a9dOXbt21YEDBwodt3TpUj399NN6/fXXTUoK1CwR8Ta/rW07vlQ5O57x2/oAAJzKcOUpc8Ntytp8vwy3fwvuAAAAAAD/M2WGRHJysq677jpt3bpVhmGUemznzp01ZswYWSwWXXvttbr44osDExKooWKyXIrPdalDmG9/vZ0Zvytzw62S4fHpugAAlCX/4KdypG1Ti2ELVLdJV7PjAAAAAAAqKeA7JNxut0aPHq3IyEhZLBbdeOON+uijj0o8/vzzz9eAAQMkST/88EOgYgI1mq93SbitycpYM1qGM8en6wIAUF6utJ1KXdJHtqM/mh0FAAAAAFBJAS9IzJo1S9u2bVO9evW0bNkyffvtt3rwwQdLfc6YMWNkGIY2bdoUoJRAzRbhwzkShtuujF/HyZ131GdrAgBQGYYjUxm/jlN21BMyPE6z4wAAAAAAKijgBYl58+bJYrHovvvu01VXXVWu5/Tq1UuSisyXAFC8hDy3YrJ8c6EmK2KynMmbfbIWAAC+kBc9TWkrh8mdd8LsKAAAAACACgh4QWLPnj2STu56KK+2bdtKktLS0vySCaiNNsVVvW1T7p43ZI352gdpAADwLWfyZqUu7iXbiZVmRwEAAAAAlFPACxKZmZmSpFatWpX7OW63W5JUp04df0QCaqUtCXZ5yhgaXxrr0UXK2fmCDxMBAOBbHnuqMtZco5yd/5RheMyOAwAAAAAoQ8ALEi1btpQkHT9+vNzPOXTokCSpTZs2fskE1EbpNo+i0yrXtsmZtlNZG++QVPmCBgAAgWEod89rSl89Qm5rktlhAAAAAAClCHhBomfPnpKkbdu2lfs58+fPl8ViUb9+/fwVC6iVIuIr3rbJnZ+g9F/GyHDl+yERAAD+4UhYq9TFvWRPXG92FAAAYLJ169bJYrGU+CcsLEzdu3fXHXfcobVr15a4TmxsbKnrFPfnuuuuK3G9EydO6OWXX9Zll12mNm3aqF69emrUqJHCw8M1ZMgQPfroo1q4cKGysrK8zxk2bFiFM5z+Z+bMmSVm6t69uywWi6ZNm+a976677ipxrbp166ply5YaOHCg/vnPf+rEiYrP9Jo6dap3vWbNmslmK9+1i5dffrnYTA0aNFDbtm119tln65prrtGLL76oDRs2lGvNkn7GISEhat68uc466ywNHDhQDz30kObMmaPc3NwKf7+SNGXKFFksFo0dO9Z738yZM0t8nUNCQtS0aVOdf/75uu+++7Rjx45S1y/rPV/cn8cee6zE9Q4ePKinnnpK/fv3V8uWLVWvXj01btxYnTt31vDhw/X0009r2bJlys//37Wjzp07V/m9um7dumLz2O12NWnSRBaLRT/88IP3/tJ+P+rVq6c2bdpoyJAhevPNN5Wenl6+H9YpJk2a5F3vnHPOKffzSvodatiwodq1a6dzzjlH48aN0+uvv66dO3eWa82SfsYFv5NdunTRkCFD9Pjjj+v777+Xw+Go8PcbKHUDfcLrrrtOa9eu1UcffaQnnnhCLVq0KPX4hQsXasmSJbJYLBo/fnyAUgK1w9ZEu+4531DdEEu5jjdcVmX8Mkae/Dg/JwMAwPc81gSlrxquJr1eVeMLnpXFUr6//wAAqG5uWpZsdgS/mX9tW7MjKC8vT4cOHdKhQ4f09ddfa+LEiZoxY4ZfW4V//vnneuyxxwpdwJUkl8uluLg4xcXFaePGjfrggw9000036dtvv/VblgIHDhzwdiUZPXp0uZ7jdruVkZGhrVu3auvWrZo+fbpmzZql66+/vtznnT17tvd2dna2fvzxR918880VC38Kh8OhlJQUpaSk6M8//9SKFSv06quvqkePHpo6dapuuOGGCq9pGIaysrKUlZWlY8eOaevWrfr444/VpEkTTZ48Wa+++qoaN25c7rWWLl0qqfyvs2EYysnJ0b59+7Rv3z59/vnnevbZZ/XGG29U+HupqKlTp+q1116Ty+UqdL/L5dLRo0d19OhRrV27Vu+8846eeeYZvfnmm37PtG7dOuXm5qpBgwYaMWJEuZ7jcrmUmpqqjRs3auPGjZo2bZoWLVqkSy65pFzPz8/P18KFC71fHzx4UJGRkRo4cGClvgfpZGElOTlZycnJOnjwoH788Ue98MIL6tevn9566y1dfvnlFV6z4HcyIyNDsbGx2rhxo6ZPn642bdrokUce0bPPPqu6dQNeAihVwNPce++9evfdd3X8+HFdeeWVmjVrls4777wixyUnJ+v999/XO++8I4vFovPPP1833nijz3IkJycrKipKUVFR2rZtm7Zt2+Ydmn3nnXeWWj0uzooVK/TZZ59p27ZtSklJUZs2bdSvXz9NmTJFI0eO9FluoCLynIZ+S3Gob7sGZR5rGIYyN90pZ9r2ACQDAMBPDLdydv5DjuRNan7ZHIU0aGl2IgAAYKIHHnhADz74oPdrwzCUnp6uLVu2aNq0aUpOTtbs2bPVqVMnvfbaayWuM3bs2FIfL9C0adMi982bN09TpkyRJDVs2FCTJk3SVVddpfDwcBmGofj4eG3fvl1Lly7Vrl27Cj33q6++Ul5eXrHneuGFF/TTTz9JklatWqUOHToUe1x4eHix9y9ZskSSdO6556pbt27FHnP6uk6nUydOnNDChQu9OwZuvvlm7d69Wz169Ch2jVNt2rRJMTExkqSwsDDl5uZq9uzZFS5IzJgxw9tJpaB4kJKS4n0d9+zZoz/++EM33nij7rnnHn322WcKCSm9UczpP+P8/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wys+7YsUMJCQmyWCy69tpriz3mtddeK7R7wuPxKCUlRevWrdP06dOVm5ur//u//1PXrl01efLkUs93+nu+JK1bty5y35tvvqmXX35ZktSsWTPdd999Gjp0qNq3by+Hw6ETJ05o69atWrJkifbv31/ouatXry7xU/mTJk3S9u0nrzf9/vvvJWbq0qVLsfcXvFcvv/xyhYWFFXvM6es6HA7FxMRozpw5Wrx4sZKTkzV69GgdOHCgXGMBFi1a5N0R07hxY+Xl5Wn27NkVLkic+jvk8XiUmZmppKQkRUZG6scff1RMTIy2bdumK664Qi+88IKmTp1a5pqn/4xzc3OVkZGhPXv26JdfftGaNWuUkpKif/7zn1qyZImWLl1arUYhBLwg0aBBA/30008aNmyYduzYoQsuuKDQlpfbb79dubm5iomJkWEYMgxDrVq10vfff+/TT7m1a9fOJ+t4PB5NmTJFX375ZaH7C6rbP/74oyZPnqxPP/20zP/wAf6wKc5WroJE7m8vyxa7IACJAADwP/uJ5Upd3EvNh32n+m0GmB0HAACYpG3btjr//POL3D906FCNGTNGffr0kc1m0wcffKAXX3xR9evXL3ad5s2bF7tOWdxut5544glJUpMmTbRp0yZdeOGFRY4bM2aMXnnlFf3xxx+FLqyWdIG2IFOB7t27q3PnzhXKVnCRt7RP7Re3bq9evTR69Gh17txZr7zyipxOp6ZPn65PP/20zHMW7I5o166dHnvsMT333HNavXq1kpKSKnStrkuXLsX+PAra4CxZskR33323UlNT9eWXX6ply5Z6++23S12zpJ/xlVdeqccee0zHjh3T5MmT9fPPP+vgwYMaNWqUIiMjy+z+UvA69+3bV+3bty/2mI4dOxZ77uHDh2vYsGEaMWKEDMPQO++8U2ZBoqT3fFlSU1O9F8PDw8O1efNmderUqdAxAwYM0Pjx4/X2228rKirK++Fu6eR7pSSn7iapTLbyvFeLW7d3796aMGGC7rzzTs2ePVsZGRn64osv9Nxzz5V5zoL3ap8+fTRgwAB9/PHHmj9/vqZPn17ifyeKU9Lv5g033KB33nlHs2bN0sMPP6z8/Hy98sorateuXZkFpZJ+xiNHjtQzzzyj6Oho3X777dq1a5eioqI0btw4rV27tkK5/cmUK+QXXXSRtm3bpkGDBskwjEIVtd27d+vPP/+Ux+ORYRjq37+/tm7dWmKl1hfOPPNMXXnllZV67vPPP+8tRvTq1Uvz5s1TVFSU5s2bp169ekmSvvjiC73wwgs+ywtUxM5ku2wuT6nHWGPmKXf3KwFKBABAYLjzjiltxWXKi/7A7CgAAKAaOu+887yfWM/JySnyiW9f2Lp1qxITEyVJ9913X7HFiFP16NHDpx1CSpKRkaGIiAhJ0qhRoyq1xpNPPum9XZ5ZsTabTQsWnPwg5E033aQ77rhDISEhcrvdmjt3bqUylGT06NHavHmzmjRpIkl65513yt2rvyRnnnmmVqxY4X3PHDx40LuboDQFF9Mr+zoPHz5cvXv39p4zOzu7UuuUZfXq1d55Hs8++2yRYsTp+vfvH5CuMHv27NGxY8ckVf41fOqpp7y3y/NejY+P1y+//CJJuu2223T77bdLktLT073tt3whJCREkyZN0qpVq7xtlZ544gklJCRUad3zzjtPERER3mvTERER+ve//13lvL5i2kf2u3XrpoiICG3YsEFPPvmkhg0bph49eqh79+4aPHiwHnroIa1atUqRkZHq2rWrz8//4osvasmSJUpMTNTRo0fLVcU93cGDB/Xuu+9KOlnljIiI0M0336x+/frp5ptv1qZNm9S3b19JJ//D9+eff/r0ewDKw+6WtiWWPMjGkRKlzIi7A5gIAIAA8jiVHfWoMn69QR6Hf/7xBgAAaq5TdyDY7Xafr19wIVWSXz9sW1ErVqyQ2+1Wy5Yty91T/3RNmjTxtv0pz2u3ePFiZWZmSjrZIaVjx47envmnzpXwlbPPPrvQfANfzDqoU6eOZs6cqdDQUEknZ4OkpqaWeHxcXJy3DVd550cUx9/vU6n6vlcLCgAXXnihzjzzzEqtUdHX7+uvv5bH41GdOnV0yy23aNCgQd7XxB/v1UsvvVSPP/64N9+pQ+Yrq1GjRpozZ46349C7774rp9NZ5XV9wW8FiT179mjPnj1lTvS+9NJL9fbbb2vt2rXau3ev/vjjD23atEkffvhhuYeUVMbUqVM1atSoKrVumj59unfAy4cffqhGjRoVejw0NFQffvihpJODVHzxZgIqIyLeVuz97rzjylg7VnIX/zgAALWF7ehCpS7tK2f6brOjAACAauTo0aPe25W92FmaU1uk/PHHHz5fv7IKPrU/cuTISg/zzsvL87bsKc9rV3Ah95xzzvHOfyj45Pnu3btLnS1QWXfddZe3tdWyZct8ckG2devW3txWq1WrV68u8diCi+nh4eHeT6tXRsH7tFGjRn6bBVDd36tVKehU9Pd8zpw5kk7uTjnjjDMkndwpIUnLly8v1KrKVx555BFvu/8ff/zRJ2v27NnTe309Pj6+XLtDAsFvBYmLL75YvXv3LrIr4JVXXtErr7xSavWwJjAMwzs46Nxzzy1xoMnAgQO9MzJ++uknGYYRsIxAgT2pDmU7Crdt8jjzlP7LGHmsiSalAgAgsNzZh5S6bKDyD35udhQAAFAN7N+/33vBeODAgT6bN3qqUy9Cf/rpp1q7dq3Pz1FRLpdLK1eulFS1i7zvvvuu9zrXqQOZi5OcnKxVq1ZJ+t+FXUkaP3689wO+s2bNqnSWkoSGhmrw4MGSTg6prmrbpgJXXHGF9/bGjRtLPK6q7Zokad26ddqxY4ekk7NG/KWgLZQkvfHGG9q92/wP8iQnJysqKkpS1d6r77zzjvd2We/VnTt3au/evZL+VzA79bbT6dS8efMqnaUk4eHhOvfccyVJhw4d8rZ6q6ryvlcDya9DrYu7+P7yyy/LYrFowoQJxU5zrymOHDmi+Ph4SScHIZVm6NChOnDggOLi4hQbG1vqQCLAH9yGFJlg05VnndxSaBiGMjfeLlf6b+YGAwAg0Nw2ZW2eIkfSJjUb9IksdUPNTgQAAPwoOTnZe3FR+u+/hzMztWXLFk2bNk1Wq1XNmjUrs6tFZmZmoXVK0qVLl0IDfLt06aJRo0Zp6dKlstlsGj58uPr166eRI0dq4MCB6tevX8Cvj23cuFGZmZmqW7eurr766lKPPXjwoHJzc71fu1wunThxQj/88INmzpwpSRoyZIgmTZpU6jrffPONt8vIqRd5mzRpojFjxmj+/Pn65ptv9NZbb1V6x0ZJevfureXLl3u/nwEDBvhkzQIHDx4s9hir1eotQJVVkIiLiyv0/vJ4PEpNTdX69es1ffp0eTwedezYUa+99lqZ2U5/z5fknHPOUb169bxfDxkyRBdeeKH27NmjlJQU9erVS0OHDtWIESM0cOBA9enTR82aNStzXV9atmyZPB6P2rZtq/79+5d67Onfs8PhUGxsrL7++mv98MMPkk7OLinrPV+wkyc0NFTjxo3z3t+tWzcNGDBAW7du1ezZs/Xwww9X5lsqVe/evRUdHS3pZFGiYHdGVdcsUNJ7NdD8VpCoV6+eXC6XrFarv05hqoI3hyRv9er/27vz8Cirg/3j94Q1JEBERUUQlUWkUkUILoCAIgi0IlJxK5uIvu62VNHXVix9axWtVq3VsqO+gkIVSFgkbIGwL4oga2QRCEImC1lmksnMnN8fvJlfQvZkJs/M5Pu5rlzXkOeZM3fiyZjMPc85ZSl6fN++fRQSsMSGk/m+QiJ7x8vK/2mhtYEAALCQ88dPVJC2Qxf0XaD6MeX/LgcAAELXRx99pI8++qjUYxEREfqv//ov/e53v1PHjh3LHWfRokW+lTLKs2bNGvXt27fY52bNmqXBgwf7lkvZtm1bsaVTOnbsqAEDBmjs2LHFXjwMlMKrQnr37l3hC8wDBw4s81irVq00ceJEPf7442rUqFG54xS+yHvrrbeWeF1s5MiR+uKLL3Tq1CklJCRU+IJxVV144YW+2xkZGbU25sqVK+V0OtWkSRPdcccd5Y73xz/+UX/84x9LPdaoUSNNnDhRzz77rFq1alVhtvLmfFFHjhzRlVde6ft3RESE/vOf/2jQoEFKTk6WMUZr167V2rVrJUk2m03XXXedBg0apHHjxlX4M+MPhXN1yJAhvr0QytKlS5cyj11zzTV66aWXNHr06HLHcLvdvqsf7rnnHkVHRxc7PnLkSG3ZskXbtm3T/v37K3xNuKqsmqu1LWBLNhVe5lZ4SVG4OXHihO9269atyz236K70x48fr/LjlPdR013XUXccyCiQ3emRI3mOcve8aXUcAAAs5878Qfb4WDkP+/+SawAAEPy8Xq/mzZunjz76KGAbBUvn9hzYsGGDpk6dWmrhcPDgQf3zn/9Ut27dNHLkSOXm5gYsi+SfNfmlc2vST5s2zfeicVn27Nnj29i56NURhQYOHOjbF6Fw7X5/KvqicnZ2dq2NWfh97t+/vxo3blztx8rPz9ecOXM0c+ZMeb3eiu9QA+3bt9euXbs0ZcqUEoWDMUa7d+/WlClT1LlzZ02YMMF31Usg5Ofn+/bnqOlcPXDggP79739r3bp15Z63fPlynTlzRlLpc/X+++/3XVUSTnO1tgXsConbbrtNn3/+uSZOnKgff/xRHTt2LHYZ0KJFi7R9+/Yqjztq1Ch/xqy2ov8Bz2/Lzlf0Ur2il7lVRtEyI9y0i8qTly01atXeg+vUYddjVscAACBoGHeOMtc9JNfpdWrW4x+y1Sv/3X0AACC0TJo0Sa+99lqxzzmdTiUnJ+vTTz/Vu+++q3/84x/avn27vvnmGzVpUvpyjqNHj/YtUVQdDRo00Pjx4zV+/HilpKRo/fr12r59u7Zs2aLNmzf7Nlv+7LPPlJKSohUrVvh96SLp3Auzhw4dklS5F3nPfxe9MUYZGRnaunWr3njjDSUmJuq+++7Tu+++q+eee67UMQr3hmjQoIFGjBhR4nj9+vV1//3365///KcWLlyo7OxsNW3atBpfXemKvobXrFmzWhnTGOMrairzfZ41a5bGjBlT7HM5OTnat2+fpk6dqunTp+tPf/qTdu3apS+++MK3+XFpSpvzVdGkSRO98MILeuGFF/Tjjz9q48aN2rFjhzZt2qTt27fL6/XK4/HonXfekd1uD8jeH9K5vTNycnLUqFEj38bM5Tl/64DCZa+SkpI0efJkbd68WQMGDND//u//6je/+U2pYxR+LS1btiz1MS+66CINHDhQ8fHx+uyzz/Q///M/FV65URVWzFUrBKyQePnll/X111/r7Nmzevvtt4sdM8aUeRlSeWw2W9AUEnl5eb7bRXehL03Ry9bCdQmr6njyaDvJBK5JRSmOWh0AAIDg5DjwsVz2rbqg73zVb3q11XEAAEAARUZGqkuXLpoyZYo6dOigxx57TElJSXr99dcrtUZ/TbVq1Ur333+/7r//fklSenq63n77bb355pvyer1avXq15s6dW+o7tGuq8F3711xzjdq3b1/l+9tsNrVo0UJ33XWX7rzzTvXr10/r16/XhAkTNHDgwBJL2Hg8Hn3++eeSpEGDBhVbPqaokSNH6p///KccDocWLFhQ4Z4UVWG32323W7RoUStj7tixQ6dOnZLNZtOQIUOq9RjR0dGKjY1VbGysWrZsqddff10LFizQzJkz9eijj1Y7e1W0a9dO7dq108iRIyWd2+vitdde0/Tp0yWdW4pr/Pjx6tWrl98fu3Cu9u3bt8I3g5cmIiJCLVu21L333qsBAwaoW7duOnjwoB555BHdfvvtJf67ZWZm+h7zgQceUP36pb9sPnLkSMXHx+unn37S2rVr1a9fvypnK4sVc9UKAVuy6Re/+IXWrVun/v37q0GDBjLGFGuqCv9d1Y9gUfRSK5fLVe65RS/7i4yMrNLjHD9+vNyPwp3mAQAAUDPutJ2yx3VT3rGFVkcBAAC1ZNy4cb4X6WbOnGlJhhYtWuj111/Xiy++6Pvc/PnzA/JYVXnXfkXq1aun3//+95LOFQ+F+0QUtXLlSqWkpEiSFi9eLJvNVupH0Y2mSxunJgqXi5LOFTG1MWbh97lbt2667LLLavx4EyZM8F0VYdU8laTLL79c06ZN0wMPPOD7XCjM1ejoaD3xxBOSzl0xsGDBghLnfPHFF77XcN9///0y52phkSgFdq76a4+OQMz/mgrYFRLSuR+6FStWyO12y263Ky8vT1dffbVsNpu++eYbdejQIZAPH1BFLx2raBmmomv/VbXRq2h/CgAAAPiPcWUqY80wRXX+nZp2f1O2iAYV3wkAAISsiIgIdejQQVu2bNGpU6eUlpZW5rv4A238+PF64403JEnJycl+Hz8jI0MbNmyQ5J8XeSUVuyJi9+7dJY5X5wXbxMRE/fTTT7riiitqlE2SHA6HNm7cKOnca3I33HBDjceUpISEBN/t0q4O8Nc+HYVatGihiy++WKdPny71+1zbxo8fr3nz5kkKzFzdvXu3jh07Jim45+p//vMfffjhh2Uu9VYVx48f14EDBySdKw4K91WpqYrmqhUCWkj4HqR+fV166aXFPteqVSu1bdu2Nh4+IIoWBUU3uC5N0Y2sw3lPCAAAgHCRu/dduexbdEGfL1QvijeIAAAQzopuzBvITXor0qpVK99tf65LX2jZsmVyu91q0aKFevbs6Zcxy/veZWdna+HChZKkO+64o8JlhrKysvT444/LGKNPP/1Ur7zySo3zzZo1S2fPnpUk/epXvypzGZ6qSE1N9S1DFRUVpQEDBhQ7fvLkSe3cuVOS/15Ml/7/99fKOVoo0HO1sND55S9/6ZdiSip/rhbulSGdW65p6NCh5Y51+PBhvfLKK8rOztbXX3+thx9+uMb53n//fd+m5cOGDavxeNK5DeVXrVol6dxr0t27d/fLuDVVK4VEUZMmTZJ0bnOQUNa5c2ff7f3795d7btHj1157bcAyAQAAwH8KzmyUfXFXxdz2mRpdPtDqOAAAIAAcDof27t0r6dwy2xdddJFfxzfGVPoF2+3bt/tuX321//e0KnyRd9CgQX7bMLto5vPfhLtgwQI5HA5J0hNPPKHhw4dXON6//vUv7dq1yy+FxKFDh/Tyyy/7/v3SSy/VaDzp3EbJY8aM8X1djz32WIl1+QuXGmrdurW6du1a48eUpKNHjyotLU1S4N7sHIxz1Z+FTnlztejVEX/4wx/UrVu3csdyu9165513lJaWpk8++aTGhURSUpL+8Y9/SDq3TcDzzz9fo/Gkc/sYjxo1yrcFwh/+8Ae/FHL+ELA9JMoyadIkTZo0ye9P8LXtqquu8rWBiYmJ5Z67bt06SefWWbvyyisDHQ0AAAB+4s23K33lYGXv/JOM8VodBwAA+Nlrr70mp9MpSRo4cKDfXqgvtGzZMo0YMaLYOu6lSU9P17PPPuv7d0Xv0K4qt9ut5cuXSzp3pYA/ZGRk6G9/+5vv3+dv3lz4Im+TJk00aNCgSo35m9/8RpJ04MABbdmypdrZ4uPjdeuttyo7O1uS9PLLL+v666+v9niS9NNPP+muu+7S0qVLJZ1bAqjwjddFFb6YXt3NrM/n9XqLlSn+Gvd806ZN02OPPVbhEkzHjh0rVhb5e66eOXPGt2euv+bqsWPH9OGHH/r+PXjwYN9tY4w+++wzSdKVV15ZYRkhnVsN6J577pEkrVq1SqdOnapWLq/Xq9mzZ2vgwIG+qzbee+89XXLJJdUar9DevXvVq1cv3/NOnz59fHtoBIPgqEVCkM1m09ChQ/XRRx9p//792rx5s26++eYS523evNl3hcTQoUMDchkTAAAAAsh4lfP9/8iVulExt32uepE1+wMBAADUnjNnzmjPnj3FPpeXl6dDhw7pk08+8b1I37hxY02ePLnMcTIzM0uMU5p69eoVWx3D6/Vq/vz5mj9/vq6//noNGTJEsbGxuuyyy9SwYUOdOXNGSUlJmjp1qs6cOSPp3J6so0ePrs6XW6akpCRlZmaqfv36uuuuuyp9v4MHDxbbO9UYo8zMTG3ZskUffPCBfvrpJ0lS7969dffdd/vO++mnn3xv4B00aFCl19gfPny4/vSnP0k6V2gU3ey6qCNHjvje7GyMUVZWllJTU7V9+3bFxcXp+++/95372GOP6a9//WuFj33+f2On06nMzEzt3btXiYmJiouL871ofM011yg+Pl7NmzcvNobT6dTq1aslVe3d/SdPniwxv3Jzc7V3715NmzZNmzZtkiRdeOGFmjhxYrljlTbnSxMZGal27dr5/u1yuTRt2jRNmzZNPXv21IABA9StWzddcsklioiI0MmTJ7VmzRpNnz7dV/QMHTpUd9xxR6W/zspYunSpvF6vWrZsqR49elT6fud/zV6vV2lpaVq/fr3ef/993xUmDz/8cLG9RJKSknT48GFJqtRVPIWGDx+uGTNmyOPx6LPPPtMLL7xQ6nlFf4a8Xq/Onj2rn3/+WVu2bNHXX3/te+yIiAhNmjRJjz32WIWPff5/49zcXGVkZOj777/XqlWrlJCQ4Lsy4uabb9aCBQvUoEHw7I1naSGRlpamTZs26fDhw8rOzpbH46nwPq+++motJKuc559/XlOnTpXH49EzzzyjdevWKTIy0nfc6XTqmWeekXSuOfPH5TYAAACwhuvU6nNLOPWZq0aX9rE6DgAAqISPPvpIH330UbnnXHzxxfrss8/UpUuXMs9ZtGiRFi1aVOHjNW/eXJmZmb5/X3DBBYqKilJubq527dqlXbt2lXv/O++8U3PnzvX70iqF79rv3bu3YmJiKn2/gQMrXrayX79+WrBgQbE34X766ae+F0QLr3qojGuvvVadO3fW3r179cUXX+jdd99Vw4YNS5z3yCOPVDhW586d9Ze//EX33ntvpR67Mv+NmzVrpvHjx2vy5MmlliwrV66U0+lUkyZNqvRC/R//+Ef98Y9/LPecq666SgsWLCixT+/5KjPnJen666/Xd9995/t3y5Yt1bBhQ7lcLm3YsMG3AXpZHnroIU2fPr3Cx6mqoleYRERUfnGf8n5+C91///2aMWNGsc8VXa6pKnO1f//+iomJUWZmpj799NMyC4nK/Az16NFDU6ZMUZ8+lfsbo7LPa88//7xefPHFoFmqqZAlac6cOaPf/e53WrBgQZU3YvFXIZGUlFTsEiS73e67nZycrNmzZxc7f8yYMSXG6Nixo1544QW98cYb2r59u3r27KmJEyeqXbt2+vHHH/Xmm2/6Lo154YUX1KFDB79kBwAAgDW8zlNK/+YONe36P4rqMpGrXwEAAfHFkNDedzPYNWzYUC1atNAvfvELDR48WGPHjtUFF1wQkMfq2bOnUlNTtXLlSq1du1Y7duzQoUOHlJaWJo/Ho2bNmunKK69UbGysHnjgAfXt2zcgOfy5Jn90dLQuu+wyxcbG6sEHH9SQIUNK/E706aefSpIaNWpU5SWGhg8frr179yotLU1LliypcIPfBg0aqFmzZmrevLmuueYade/eXQMGDFCvXr2q9oUVYbPZ1LRpUzVr1kyXX365brzxRt16660aNmyYoqKiyrxf4fe5f//+aty4cbUfXzp31c5FF12k66+/Xnfffbd++9vfVvpKk+oYMWKEBg4cqBUrVigxMVE7d+7U4cOHlZGRIelcGdO+fXvdcsstevjhhyu1tFFV5efna8WKFZJqPldtNpuio6PVpk0b3XLLLRo1apRuu+22Yufk5eVp/vz5ks4ttV/WFTmladCggX7961/r008/1e7du/Xtt99WuGdIw4YN1bx5c8XExKhz586KjY3VkCFDil2xUVURERFq2rSpmjdvrrZt26pbt27q3bu3fvWrX5Va5gUDmymsK2tJRkaGbrrpJv3444+qzkMX7jZeU2PGjNGcOXMqfX5ZWb1er8aPH6+ZM2eWed9x48Zp6tSpVWr1KuvEiRO+jViOHz+u1q1b+/0xAuXUnAaSqVohBQAAECwatR6imN6fKKJRi4pPBgCEvJr8/X3o0CG53W7Vr1+fNyui1h04cECdOnWSdG75GOZgYBhj1Lp1a6WkpGjq1KkaP3681ZFCzjfffKO77rpLjRo1kt1uV3R0tNWR6rxA/P+r1je1fuONN5ScnCxjjAYMGKDly5crNTVVHo9HXq+3wo9gExERoRkzZmjJkiUaOnSoWrVqpYYNG6pVq1YaOnSoli5dqunTpwekjAAAAIB18k8skX3xjXKlbrU6CgAAQJni4+Mlndv3gDIicHbu3KmUlBTZbDa/bcZc1xTO1b59+1JGhLFaX7Jp0aJFstlsGjJkiBYvXlzbD+8ze/bsEssy1cTgwYOL7dAOAACA8OfJPaa0Zb3UrPvbiur8rNVxAAAASmjTpo0mTZpU4XIyqBmPx6NJkybpggsu0GWXXWZ1nJDUpUsXTZo0Sf369bM6CgKo1guJn376SZL01FNP1fZDAwAAAP7nLVDW1ufkOr1ezXvOUETDZlYnAgAA8BkxYoTVEeqEHj16qEePHlbHCGmPPfaY1RFQC2p9HaHCy20uueSS2n5oAAAAIGDyji2QPb67CtJ3WR0FAAAAAIJSrRcSXbp0kSQdO3asth8aAAAACChP1iHZl9wsx8HpVkcBAAAAgKBT64XE448/LmOMPv3009p+aAAAACDwPHk6u3G8MtePlnE7rE4DAAAAAEGj1guJESNG6OGHH9bXX3+tN954o7YfHgAAAKgVzh8/kT2+h9yZ+62OAgAAAABBodY3tV63bp3GjRunI0eO6JVXXtFXX32lhx56SJ06dVKTJk0qvP9tt91WCykBAACAmnNn/iB7fKya3zpVkVc/aHUcAAAAALBUrRcSffv2lc1m8/17x44d2rFjR6Xua7PZ5Ha7AxUNAAAA8DvjzlHmuofkOr1OzXr8Q7Z6jayOBAAAAACWqPUlmyTJGFPtDwAAACAUOQ58LPvSW+XOPmx1FAAAAACwRK1fIbFmzZrafkgAAAAgKLjTdsoe100xPWepcdt7rI4DAAAAALWq1guJPn361PZDAgAAAEHDuDKVsWaYon7xezXt9qZsEbX+KzkAoJbVq1dPbrdbHo9HXq9XERGWLFgBAECleb1eeTweSef+P+Yv/B8QAAAAsEDuD+8obXkfeXJPWB0FABBgjRs3lnRuCeucnByL0wAAULGcnBzfFgqRkZF+G5dCAgAAALBIwZmNsi/uqvyT31gdBQAQQM2aNfPd/vnnn5WVlSWv12thIgAASuf1epWVlaWff/7Z97mmTZv6bfyAXh8+efJkv4/56quv+n1MAAAAwCrefLvSVw5W9C9fUfQNr8lm4z1DABBuoqKiFBkZKafTKY/Ho5MnT8pms/l1CQwAAPzB4/H4royQzl0dERUV5bfxbabo6H4WEREhm83m1zEL163COSdOnFCbNm0kScePH1fr1q0tTlR5p+Y0kIzb6hgAAABBo+Fltyvmts9VL/ISq6MAAM5T07+/vV6vfvrpJzmdzkDEAwDA7yIjI3XFFVf4de+jgO+g58++w9/lBgAAABBMXKdWy764q2L6zFOjS2+zOg4AwI8iIiLUtm1b5ebmKjs723e1BAAAwaRevXqKjIxU06ZNFRUV5ffX5ANaSKxZsyaQwwMAAABhx+s8pfRvblfTrv+jqC4TeVMOAIQRm82m6OhoRUdHWx0FAABLBLSQ6NOnTyCHBwAAAMKT8Sh758tynUlSTO9PFNGohdWJAAAAAKDG2DEPAAAACFL5J5bIvvhGuVK3Wh0FAAAAAGqMQgIAAAAIYp7cY0pb1ku5e9+3OgoAAAAA1AiFBAAAABDsvAXK2vqcMtaOkNeVZXUaAAAAAKgWCgkAAAAgROQdnS97fHcVpO+yOgoAAAAAVBmFBAAAABBCPFmHZF9ysxwHp1sdBQAAAACqhEICAAAACDWePJ3dOF6Z60fLuB1WpwEAAACASqGQAAAAAEKU88dPZI+/Se7M/VZHAQAAAIAKUUgAAAAAIcyduUf2+Fg5D8+1OgoAAAAAlItCAgAAAAhxxp2jzHUP6eymJ2Q8+VbHAQAAAIBSUUgAAAAAYcJx4GOlLe0pd/YRq6MAAAAAQAkUEgAAAEAYKUjbIXvcjco7ttDqKAAAAABQDIUEAAAAEGaMK1MZa4Ypa9sEGa/b6jgAAAAAIIlCAgAAAAhbuT+8o7TlfeTJPWF1FAAAAACgkAAAAADCWcGZjbIv7qr8kyusjgIAAACgjqOQAAAAAMKcN9+u9JWDlP3tqzLGa3UcAAAAAHUUhQQAAABQFxivcnb9Rekr7pTHedrqNAAAAADqIAoJAAAAoA5xnVp9bgmnn9dZHQUAAABAHUMhAQAAANQxXucppX9zu3K+f0PGGKvjAAAAAKgjKCQAAACAush4lL3zZWWsulve/HSr0wAAAACoAygkAAAAgDos/0S87ItvlCt1q9VRAAAAAIQ5CgkAAACgjvPkHlPast7K3fu+1VEAAAAAhDEKCQAAAACS16Wsrc8pY+0IeV1ZVqcBAAAAEIYoJAAAAAD45B2dL3t8dxWk77I6CgAAAIAwQyEBAAAAoBhP1iHZl9wsx8EZVkcBAAAAEEYoJAAAAACU5MnT2Y2PKnP9GBm3w+o0AAAAAMIAhQQAAACAMjl/nCN7/E1yZ+63OgoAAACAEEchAQAAAKBc7sw9ssfHynl4rtVRAAAAAIQwCgkAAAAAFTLuHGWue0hnNz0h48m3Og4AAACAEEQhAQAAAKDSHAc+VtrSnnJnH7E6CgAAAIAQQyEBAAAAoEoK0nbIHnej8n5aZHUUAAAAACGEQgIAAABAlRlXpjJW36OsbX+Q8bqtjgMAAAAgBFBIAAAAAKi23B/+rrTlfeTJPWF1FAAAAABBjkICAAAAQI0UnNko++Kuyj+5wuooAAAAAIIYhQQAAACAGvPm25W+cpCyv31VxnitjgMAAAAgCFFIAAAAAPAP41XOrr8ofcUAeZxnrE4DAAAAIMhQSAAAAADwK9epVbLHdZXr9HqrowAAAAAIIhQSAAAAAPzO60hR2vJ+yvn+DRljrI4DAAAAIAhQSAAAAAAIDONR9s6XlbHqbnnz061OAwAAAMBiFBIAAAAAAir/RLzsi2+UK3Wr1VEAAAAAWIhCAgAAAEDAeXKPKW1Zb+Xu+8DqKAAAAAAsQiEBAAAAoHZ4Xcra8qwy1t4vb0G21WkAAAAA1DIKCQAAAAC1Ku/ol7LHdVNB+vdWRwEAAABQiygkAAAAANQ6T9Yh2ZfcLMfBGVZHAQAAAFBLKCQAAAAAWMPj1NmNjypz/RgZt8PqNAAAAAACjEICAAAAgKWcP86RPf4muTP3Wx0FAAAAQABRSAAAAACwnDtzj+zxsXIenmd1FAAAAAABQiEBAAAAICgYd44y1z2os5uelPHkWx0HAAAAgJ9RSAAAAAAIKo4DHyltaU+5s49YHQUAAACAH1FIAAAAAAg6BWk7ZI+7UXk/LbI6CgAAAAA/oZAAAAAAEJSMK1MZq+9R1rY/yHjdVscBAAAAUEMUEgAAAACCWu4Pf1fa8r7y5J60OgoAAACAGqCQAAAAABD0Cs5skD2uq/JTEqyOAgAAAKCaKCQAAAAAhARvXqrSE+5S9reTZIzX6jgAAAAAqohCAgAAAEDoMF7l7Jqs9BUD5HGesToNAAAAgCqgkAAAAAAQclynVske11Wu0+utjgIAAACgkigkAAAAAIQkryNFacv7Kef7N2SMsToOAAAAgApQSAAAAAAIXcaj7J0vK2PV3fLmZ1idBgAAAEA5KCQAAAAAhLz8E/GyL+4ql32b1VEAAAAAlIFCAgAAAEBY8OQeU9rSXsrd94HVUQAAAACUgkICAAAAQPjwupS15VllrL1f3oJsq9MAAAAAKIJCAgAAAEDYyTv6pexx3VSQ/r3VUQAAAAD8HwoJAAAAAGHJk3VI9iU3y3FoptVRAAAAAIhCAgAAAEA48zh1dsM4ZSaNlXE7rE4DAAAA1GkUEgAAAADCnjN5tuzxN8l99oDVUQAAAIA6i0ICAAAAQJ3gztwje1x3OQ/PszoKAAAAUCdRSAAAAACoM4w7R5nrHtTZTU/KePKtjgMAAADUKRQSAAAAAOocx4GPlLa0p9zZR6yOAgAAANQZFBIAAAAA6qSCtB2yx92ovJ8WWR0FAAAAqBMoJAAAAADUWcaVqYzV9yhr2wsyXrfVcQAAAICwRiEBAAAAoM7L/eFtpS3vK0/uSaujAAAAAGGLQgIAAAAAJBWc2SB7XFflpyRYHQUAAAAISxQSAAAAAPB/vHmpSk+4S9nfTpIxXqvjAAAAAGGFQgIAAAAAijJe5eyarPQVA+VxnrE6DQAAABA2KCQAAAAAoBSuUytlj+sq1+n1VkcBAAAAwgKFBAAAAACUwetIUdry25Wz+00ZY6yOAwAAAIQ0CgkAAAAAKI9xK3vHS8pYPVTe/Ayr0wAAAAAhi0ICAAAAACoh/3ic7Iu7ymXfZnUUAAAAICRRSAAAAABAJXlyjyltaS/l7vvA6igAAABAyKGQAAAAAICq8LqUteVZZay9X96CbKvTAAAAACGDQgIAAAAAqiHv6Jeyx3VXQfr3VkcBAAAAQgKFBAAAAABUkyfroOxLbpbj0EyrowAAAABBj0ICAAAAAGrC49TZDeOUmTRWxu2wOg0AAAAQtCgkAAAAAMAPnMmzZY+/Se6zB6yOAgAAAAQlCgkAAAAA8BN35h7Z47rLeXie1VEAAACAoEMhAQAAAAB+ZNw5ylz3oM5ufkrG47I6DgAAABA0KCQAAAAAIAAc+/+ltKU95c4+YnUUAAAAIChQSAAAAABAgBSkbZc97kbl/bTY6igAAACA5SgkAAAAACCAjCtTGauHKmvbCzJet9VxAAAAAMtQSAAAAABALcj94W2lLe8rT+5Jq6MAAAAAlqCQAAAAAIBaUnBmg+xxXZWfkmB1FAAAAKDWUUgAAAAAQC3y5qUqPeEuZX87ScZ4rY4DAAAA1BoKCQAAAACobcarnF2Tlb5ioDzOM1anAQAAAGoFhQQAAAAAWMR1aqXscV3lOr3e6igAAABAwFFIAAAAAICFvI4UpS2/XTm735Qxxuo4AAAAQMBQSAAAAACA1Yxb2TteUsbqofLmZ1idBgAAAAgICokastlslfro27ev1VEBAAAABLn843Gyx90ol32b1VEAAAAAv6OQAAAAAIAg4sk5qrSlvZS7759WRwEAAAD8qr7VAcLFE088oSeffLLM41FRUbWYBgAAAEBI87qUteUZuU6vV/Oe0xXRoKnViQAAAIAao5Dwk5YtW+q6666zOgYAAACAMJJ39EsVpH+nC/rOV4MWv7Q6DgAAAFAjLNkEAAAAAEHMk3VQ9iU3y3FoptVRAAAAgBqhkAAAAACAYOdx6uyGccpMGivjdlqdBgAAAKgWCgkAAAAACBHO5NmyL7lJ7rMHrI4CAAAAVBl7SPjJ/Pnz9eWXX+ro0aOqV6+eLr30Ut16660aM2aM+vXrV+1xT5w4Ue7xU6dOVXtsAAAAAKHHnbFb9vhYNb91miKvut/qOAAAAECl2YwxxuoQocxms1V4zj333KPZs2erefPmARm/0PHjx9W6desqP4ZVTs1pIBm31TEAAACAkNWk05NqFvuubPUaWh0FCHsnTpxQmzZtJIXe398AAAQLrpCooSZNmujuu+/WHXfcoU6dOik6OlqpqalKTEzUxx9/rLS0NC1cuFBDhw5VQkKCGjRoYHVkAAAAAGHCsf9fKkjdqpi+X6p+06usjgMAAACUiyskaigzM1MxMTGlHjt9+rQGDRqkb7/9VpL03nvv6dlnn63S+JVZsqlHjx6SQu8dGlwhAQAAAPiHrWGMYnrNUeMr7rY6ChC2uEICAICao5AIsMOHD6tTp04qKChQ+/btdejQIb+OH8q/EFFIAAAAAP5kU9QvJqhpt7/JFsHF8IC/hfLf3wAABIsIqwOEu6uvvlp33nmnJCk5OVkpKSkWJwIAAAAQnoxyf3hbacv7yZN70uowAAAAQAkUErWgc+fOvtsnT/KHAQAAAIDAKTiTJHtcV+WnJFgdBQAAACiGQqIW2Gw2qyMAAAAAqEO8ealKT7hL2d9OkjFeq+MAAAAAkigkasXevXt9t1u1amVhEgAAAAB1hvEqZ9dkpa8YKE9eqtVpAAAAAAqJQDty5IgSEs5dKt2uXTtdfvnlFicCAAAAUJe4Tq2UffENcp1OsjoKAAAA6jgKiRqIi4uT2+0u8/jp06c1fPhwuVwuSdKTTz5ZW9EAAAAAwMfrSFHa8n7K2T1Fxhir4wAAAKCOqm91gFD2zDPPqKCgQMOHD9ctt9yiK6+8UpGRkbLb7Vq7dq3+/e9/y263S5J69eqlp556yuLEAAAAAOos41b2jolynUlSTK85imh0gdWJAAAAUMdQSNRQSkqKPvjgA33wwQdlnjN8+HBNnz5djRo1qsVkAAAAAFBS/vE42eNuVEzfL9Xwolir4wAAAKAOoZCogTlz5igxMVGbNm3S4cOHZbfblZWVpejoaLVp00a33nqrRo8erVtuucXqqAAAAADg48k5qrSlvdQs9u+KuvZpq+MAAACgjqCQqIE+ffqoT58+VscAAAAAgKrzupS15Rm5Tq9X857TFdGgqdWJAAAAEObY1BoAAAAA6rC8o1/KHtddBRm7rY4CAACAMEchAQAAAAB1nCfroOzxN8lxaJbVUQAAABDGKCQAAAAAAJLHqbMbHlFm0lgZt9PqNAAAAAhDFBIAAAAAAB9n8mzZl9wk99kDVkcBAABAmKGQAAAAAAAU487YLXt8rJxHvrA6CgAAAMIIhQQAAAAAoARTkK3MxAd0dvPTMh6X1XEAAAAQBigkAAAAAABlcuz/UGlLe8qdfdTqKAAAAAhxFBIAAAAAgHIVpG2XPe5G5R2PszoKAAAAQhiFBAAAAACgQsaVoYxVQ5W17QUZr9vqOAAAAAhBFBIAAAAAgEoyyv3hbaUt7ydP7kmrwwAAACDEUEgAAAAAAKqk4EyS7HFdlZ+y0uooAAAACCEUEgAAAACAKvPmpSo9YaCyv31NxnitjgMAAIAQQCEBAAAAAKge41XOrj8rPeEuefJSrU4DAACAIEchAQAAAACoEVdKguyLb5DrdJLVUQAAABDEKCQAAAAAADXmdaQobXk/5eyeImOM1XEAAAAQhCgkAAAAAAD+YdzK3jFRGauHypufYXUaAAAABBkKCQAAAACAX+Ufj5M97ka57NutjgIAAIAgQiEBAAAAAPA7T85RpS3tqdx9H1odBQAAAEGCQgIAAAAAEBhel7K2PK2MtQ/IW5BtdRoAAABYjEICAAAAABBQeUe/kD2uuwoydlsdBQAAABaikAAAAAAABJwn66Ds8TfJcWiW1VEAAABgEQoJAAAAAEDt8Dh1dsMjykx6RMbttDoNAAAAahmFBAAAAACgVjmTZ8m+5Ca5zx60OgoAAABqEYUEAAAAAKDWuTN2yx7fXc4jX1odBQAAALWEQgIAAAAAYAlTkK3MxPt1dvPTMh6X1XEAAAAQYBQSAAAAAABLOfZ/qLSlPeXOPmp1FAAAAAQQhQQAAAAAwHIFadtlj7tRecfjrI4CAACAAKGQAAAAAAAEBePKUMaqocra/qKM1211HAAAAPgZhQQAAAAAIIgY5e55S+nf3C6PI8XqMAAAAPAjCgkAAAAAQNBxnV4v++IblJ+y0uooAAAA8BMKCQAAAABAUPLmpSo9YaCyv31NxnitjgMAAIAaopAAAAAAAAQv41XOrj8rPeEuefJSrU4DAACAGqCQAAAAAAAEPVdKguyLb5DrdJLVUQAAAFBNFBIAAAAAgJDgdaQobXk/5ex5S8YYq+MAAACgiigkAAAAAAChw7iVvf1FZay+R978DKvTAAAAoAooJAAAAAAAISf/+GLZ426Uy77d6igAAACoJAoJAAAAAEBI8uQcVdrSnsrd96HVUQAAAFAJFBIAAAAAgNDldSlry9PKWPuAvAU5VqcBAABAOSgkAAAAAAAhL+/oF7LHdVdBxm6rowAAAKAMFBIAAAAAgLDgyToge/xNchyabXUUAAAAlIJCAgAAAAAQPjxOnd0wVplJj8i4nVanAQAAQBEUEgAAAACAsONMniX7kpvkPnvQ6igAAAD4PxQSAAAAAICw5M7YLXt8dzmPfGl1FAAAAIhCAgAAAAAQxkxBtjIT79fZzU/LeFxWxwEAAKjTKCQAAAAAAGHPsf9DpS3rJXf2UaujAAAA1FkUEgAAAACAOqHAvk32uBuVdzzO6igAAAB1EoUEAAAAAKDOMK4MZawaqqztL8p43VbHAQAAqFMoJAAAAAAAdYxR7p63lP7N7fI4UqwOAwAAUGdQSAAAAAAA6iTX6fWyL75B+SkrrY4CAABQJ1BIAAAAAADqLG9eqtITBir7uz/LGK/VcQAAAMIahQQAAAAAoG4zXuV895rSE+6SJy/V6jQAAABhi0ICAAAAAABJrpQE2Rd3let0ktVRAAAAwhKFBAAAAAAA/8frOKm05f2Us+ctGWOsjgMAABBWKCQAAAAAACjKuJW9/UVlrL5H3vwMq9MAAACEDQoJAAAAAABKkX98sexxN8pl3251FAAAgLBAIQEAAAAAQBk8OUeVtrSXcvd9aHUUAACAkEchAQAAAABAebz5ytrytDISH5S3IMfqNAAAACGLQgIAAAAAgErIOzJP9rjuKsjYbXUUAACAkEQhAQAAAABAJXmyDsgef5Mch2ZbHQUAACDkUEgAAAAAAFAVHqfObhirzKRHZNxOq9MAAACEDAoJAAAAAACqwZk8S/YlN8t99qDVUQAAAEIChQQAAAAAANXkzvhe9vjuch750uooAAAAQY9CAgAAAACAGjAF2cpMvF9nNz8t43FZHQcAACBoUUgAAAAAAOAHjv0fKm1ZL7mzj1odBQAAIChRSAAAAAAA4CcF9m2yx92ovONxVkcBAAAIOhQSAAAAAAD4kXFlKGPVUGVtnyjjdVsdBwAAIGhQSAAAAAAA4HdGuXumKP2b2+VxpFgdBgAAIChQSAAAAAAAECCu0+tlX9xV+SkrrY4CAABgOQoJAAAAAAACyJt3RukJA5X93Z9ljNfqOAAAAJahkAAAAAAAINCMVznfvab0hLvkyUu1Og0AAIAlKCQAAAAAAKglrpQE2Rd3lev0BqujAAAA1DoKCQAAAAAAapHXcVJpy/sqZ8/bVkcBAACoVRQSAAAAAADUNuNW9vYXlL5qqLz5mVanAQAAqBUUEgAAAAAAWCT/+GLZ426Uy77d6igAAAABRyEBAAAAAICFPDlHlLa0l3L3fWh1FAAAgICikAAAAAAAwGrefGVteVoZiQ/KW5BjdRoAAICAoJAAAAAAACBI5B2ZJ3tcdxVk7LE6CgAAgN9RSAAAAAAAEEQ8WQeUtuQmOZLnWB0FAADArygkAAAAAAAIMsbt0NmkMcpMekTG7bQ6DgAAgF9QSAAAAAAAEKScybNkX3Kz3GcPWh0FAACgxigkAAAAAAAIYu6M72WP7y7nkS+tjgIAAFAjFBIAAAAAAAQ5U5CtzMT7dXbzMzIel9VxAAAAqoVCAgAAAACAEOHY/0+lLestd84xq6MAAABUGYUEAAAAAAAhpMC+VfbFXZV3PN7qKAAAAFVCIQEAAAAAQIgxrgxlrLpbWdsnynjdVscBAACoFAoJAAAAAABCklHunilK/+Z2eRwpVocBAACoEIUEAAAAAAAhzHV6veyLuyo/ZaXVUQAAAMpFIQEAAAAAQIjz5p1ResJAZX83WcZ4rY4DAABQKgoJAAAAAADCgfEq57tJSk8YJE9eqtVpAAAASqCQAAAAAAAgjLhSVsi+uKtcpzdYHQUAAKAYCgkAAAAAAMKM13FSacv7KmfP21ZHAQAA8KGQAAAAAAAgHBm3sre/oPRVQ+XNz7Q6DQAAAIUEAAAAAADhLP/4YtnjblSBfYfVUQAAQB1HIQEAAAAAQJjz5ByRfWlP5e7/l9VRAABAHUYhAQAAAABAXeDNV9bmp5SR+JC8BTlWpwEAAHUQhQQAAAAAAHVI3pG5ssd1V0HGHqujAACAOoZCAgAAAACAOsaTdUBpS26SI3mO1VEAAEAdQiEBAAAAAEAdZNwOnU0ao8ykR2TcTqvjAACAOoBCAgAAAACAOsyZPEv2JTfLnXXI6igAACDMUUgAAAAAAFDHuTO+lz2um5xH51sdBQAAhDEKCQAAAAAAIFOQrcy1I3R28zMyHpfVcQAAQBiikAAAAAAAAD6O/f9U2rLecuccszoKAAAIMxQSAAAAAACgmAL7VtkXd1Xe8XirowAAgDBCIQEAAAAAAEowrgxlrLpbWdtfkvF6rI4DAADCAIUEAAAAAAAog1HunjeV/s3t8jhSrA4DAABCHIUEAAAAAAAol+v0OtkXd1V+yiqrowAAgBBGIQEAAAAAACrkzTuj9IQByv5usozxWh0HAACEIAoJAAAAAABQOcarnO8mKT1hkDx5qVanAQAAIYZCAgAAAAAAVIkrZYXsi7vKdXqD1VEAAEAIoZAAAAAAAABV5nWcVNryvsrZ87bVUQAAQIigkAAAAAAAANVj3Mre/oLSV90jb36m1WkAAECQo5Dwo2PHjmnChAnq1KmToqKi1KJFC8XGxuqtt96Sw+GwOh4AAAAAAAGRf3yR7HE3qsC+w+ooAAAgiFFI+ElcXJx++ctf6p133tGBAwfkcDiUkZGh7du368UXX1TXrl2VnJxsdUwAAAAAAALCk3NE9qU9lbv/X1ZHAQAAQYpCwg++/fZb3X///crKylJ0dLT++te/auPGjVq1apXGjx8vSTp48KCGDBmi7Oxsi9MCAAAAABAg3nxlbX5KGYkPyVuQY3UaAAAQZOpbHSAcPPfcc3I6napfv75WrFihW265xXfs9ttvV4cOHfTiiy/q4MGD+vvf/67XXnvNurAAAAAAAARY3pG5KkjbqQv6LVCDC66zOg4AAAgSXCFRQ1u3btX69eslSePGjStWRhSaMGGCrr32WknSe++9p4KCglrNCAAAAABAbfNkHVDakpvkSJ5jdRQAABAkKCRqaOHChb7bY8eOLfWciIgIjRo1SpKUmZmpNWvW1EY0AAAAAAAsZdwOnU0ao8wN42TcTqvjAAAAi1FI1FBSUpIkKSoqSt26dSvzvD59+vhub9iwIeC5AAAAAAAIFs5DM2VfcrPcWYesjgIAACzEHhI1tG/fPklS+/btVb9+2d/OTp06lbhPZZw4caLc48ePH/fdPnXqVKXHDQan041krE4BAAAAAKgV6d/r+LGuahr7tiLb/MrqNFVW9G9ut9ttYRIAAEIXhUQN5OXlyW63S5Jat25d7rkXXHCBoqKilJubW6xEqEibNm0qfW6PHj0qfS4AAAAAALUvV9IT//cRulJTU3XllVdaHQMAgJDDkk01kJ2d7bsdHR1d4flRUVGSpJycnIBlAgAAAAAAAAAgGHGFRA3k5eX5bjds2LDC8xs1aiRJcjorv5FXRVdT5OXlaf/+/brkkkt08cUXl7tsVLA4deqU72qOrVu36rLLLrM4EVB9zGeEG+Y0wgnzGeGE+YxwE4pz2u12KzU1VZLUpUsXi9MAABCagv/V6yDWuHFj322Xy1Xh+fn5+ZKkyMjISj9GRUtBSef2rwhVl112WaW+RiAUMJ8RbpjTCCfMZ4QT5jPCTSjNaZZpAgCgZliyqQaaNm3qu12ZZZhyc3MlVW55JwAAAAAAAAAAwgmFRA00btxYF154oSTpxIkT5Z6bkZHhKySqslE1AAAAAAAAAADhgEKihjp37ixJSk5OltvtLvO8/fv3+25fe+21Ac8FAAAAAAAAAEAwoZCooV69ekk6txzTjh07yjwvMTHRd7tnz54BzwUAAAAAAAAAQDChkKihe+65x3d71qxZpZ7j9Xr1ySefSJJiYmLUr1+/2ogGAAAAAAAAAEDQoJCooR49eqh3796SpBkzZmjTpk0lzvn73/+uffv2SZKee+45NWjQoFYzAgAAAAAAAABgtfpWBwgH7733nnr27Cmn06kBAwbov//7v9WvXz85nU7NmzdPU6dOlSR17NhREyZMsDgtAAAAAAAAAAC1z2aMMVaHCAdxcXH67W9/q6ysrFKPd+zYUUuWLFH79u1rORkAAAAAAAAAANajkPCjY8eO6b333tOSJUt04sQJNWzYUO3bt9d9992np59+Wk2aNLE6IgAAAAAAAAAAlqCQAAAAAAAAAAAAAcem1gAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBKoVceOHdOECRPUqVMnRUVFqUWLFoqNjdVbb70lh8NhdTyEuTNnzig+Pl6vvvqqBg0apIsuukg2m002m01jxoyp8njLli3TsGHD1Lp1azVq1EitW7fWsGHDtGzZskqP4Xa79fHHH6t37966+OKLFRkZqXbt2unxxx/XDz/8UOVMqDu2b9+uyZMna8CAAb45GB0drY4dO2rs2LFKSkqq0njMZ1gpKytL8+bN04QJE9SnTx+1b99ezZs3V8OGDdWyZUv17dtXU6ZMUVpaWqXG27hxo37729+qbdu2aty4sS699FINHDhQc+fOrVKuuXPnasCAAbr00kvVuHFjtW3bVr/97W+1adOm6nyZgCZOnOj73cNms2nt2rUV3ofnZ1it6Jwt76Nv374VjsV8BgAAMkAtWbx4sWnWrJmRVOpHx44dzaFDh6yOiTBW1tyTZEaPHl3pcTwejxk3bly54z366KPG4/GUO05qaqqJjY0tc4xGjRqZadOm1fCrRjjq3bt3ufOv8GPUqFEmPz+/3LGYzwgGCQkJlZrTF110kVm+fHm5Y02aNMlERESUOcaQIUOM0+ksdwyHw2EGDx5c5hgRERHmtdde8+e3AHXAt99+a+rXr19sLq1Zs6bM83l+RrCozPOzJNOnT58yx2A+AwCAQhQSqBU7d+40kZGRRpKJjo42f/3rX83GjRvNqlWrzPjx44uVEllZWVbHRZgq+sfKFVdcYQYMGFCtQuKll17y3a9r165m7ty5ZuvWrWbu3Lmma9euvmMvv/xymWO43W7Tq1cv37n33nuvWbZsmdmyZYt5//33TcuWLX0vei1dutQPXz3CSbt27Ywk06pVK/Pcc8+ZBQsWmK1bt5pNmzaZd955x1x++eW+ufXggw+WOxbzGcEgISHBtGnTxowaNcq899575quvvjKbNm0yGzZsMF988YW57777TL169Ywk07BhQ/Pdd9+VOs7HH3/sm4ft2rUzM2bMMFu3bjULFy40/fr1q/TPxQMPPOA7t1+/fmbhwoVm69atZsaMGb6fP0nm3//+dyC+HQhDHo/H9yJq4XNiRYUEz88IFoXz54knnjC7d+8u8+Pw4cNljsF8BgAAhSgkUCsK381bv359s3HjxhLHp0yZ4vvFctKkSbUfEHXCq6++auLi4szPP/9sjDHmyJEjVS4kDhw44Ht3Y/fu3Y3D4Sh2PDc313Tv3t0338u66mfGjBm+x37yySdLHD906JDviqL27dubgoKCqn2xCGtDhgwxX3zxhXG73aUeT01NNR07dvTNscTExFLPYz4jWJQ1l4v6+uuvffNs2LBhJY6npaWZ5s2b+0rn1NTUEo/x61//usIXgletWuU759e//nWJbKmpqeaKK64wkkxMTIxJT0+v/BeKOuvdd981kkynTp3Myy+/XOE85PkZwaSmf6cxnwEAQFEUEgi4LVu2+H5xfPzxx0s9x+PxmGuvvdb3x73L5arllKiLqlNIPPHEE777bNq0qdRzNm3aVO4fS8YY33xv0aKFyc3NLfWcv/3tb75xvvzyy0rlAwrFxcX55s8zzzxT6jnMZ4Saa665xkjnlm4635tvvumbY3Pnzi31/sePH/ddaTF48OBSzxk0aJDvRbHjx4+Xes7cuXN9jzVlypTqf0GoE44dO2aio6ONJLN27VozadKkCgsJnp8RTGpaSDCfAQBAUWxqjYBbuHCh7/bYsWNLPSciIkKjRo2SJGVmZmrNmjW1EQ2oEmOMFi1aJEnq1KmTbr755lLPu/nmm3XNNddIkhYtWiRjTLHjBw8e1L59+yRJI0aMUJMmTUodp+hG219//XVN46OO6devn+/2jz/+WOI48xmhqGnTppKkvLy8EscKf99o1qyZ7r333lLv37p1a/Xv31+StGrVKmVnZxc7np2drVWrVkmS+vfvr9atW5c6zr333qtmzZpJYj6jYk899ZRycnI0evRo9enTp8LzeX5GOGE+AwCA81FIIOCSkpIkSVFRUerWrVuZ5xX9A23Dhg0BzwVU1ZEjR5SSkiJJFb6gUHj85MmTOnr0aLFjhT8TFY1z6aWXqmPHjpL4mUDV5efn+27Xq1evxHHmM0LNgQMH9N1330k696JWUS6XS1u3bpUk3XLLLWrYsGGZ4xTO0/z8fG3fvr3YsW3btsnlchU7rzQNGzb0vai2bds2FRQUVO2LQZ3x5ZdfKj4+Xi1atNDbb79dqfvw/IxwwnwGAADno5BAwBW+k6V9+/aqX79+mecVfXGh8D5AMNm7d6/v9vkvhp2vvPlcnXGOHz+u3NzcSmcFEhMTfbevvfbaEseZzwgFDodDhw4d0jvvvKM+ffrI7XZLkp5//vli5x08eFAej0dS7c9nt9utQ4cOlf+FoE7KzMzUc889J0l68803ddFFF1Xqfjw/I1jNnz9fnTt3VpMmTdS0aVN16NBBo0ePLvfqduYzAAA4H4UEAiovL092u12Sylz2oNAFF1ygqKgoSed+eQSCzYkTJ3y3K5rPbdq08d0+fz5XZxxjTLH7AeXxer164403fP8eMWJEiXOYzwhWs2fPls1mk81mU1RUlDp27KgJEybo9OnTkqSXXnpJDz30ULH7WDmfSxsHkKQXX3xRP//8s3r27Klx48ZV+n48PyNY7d27V/v27ZPT6VROTo6Sk5P1ySef6Pbbb9ewYcN09uzZEvdhPgMAgPOV/XZ1wA+Krs0cHR1d4flRUVHKzc1VTk5OIGMB1VKV+VxYrkkqMZ/9NQ5Qlnfffde3fM29995b6nJ5zGeEmhtuuEFTp05VbGxsiWPMZwSb9evXa/r06apfv74+/vhj2Wy2St+X+Yxg06RJE919992644471KlTJ0VHRys1NVWJiYn6+OOPlZaWpoULF2ro0KFKSEhQgwYNfPdlPgMAgPNRSCCgim46Wd56zoUaNWokSXI6nQHLBFRXVeZz4VyWSs5nf40DlCYxMVEvvfSSJKlly5b66KOPSj2P+Yxgdc8996h79+6Szs2TH3/8UV9++aW+/vprPfjgg/rHP/6hX/3qV8Xuw3xGMHG5XHrsscdkjNHvfvc7XXfddVW6P/MZwebkyZOKiYkp8fk777xTzzzzjAYNGqRvv/1WiYmJ+uijj/Tss8/6zmE+AwCA87FkEwKqcePGvtuFm0SWp3AT1sjIyIBlAqqrKvO56IbC589nf40DnO+HH37QsGHD5Ha71bhxY82fP18tW7Ys9VzmM4JVTEyMrrvuOl133XWKjY3VAw88oK+++kqffPKJDh8+rKFDh2r27NnF7sN8RjB5/fXXtX//fl1xxRWaNGlSle/PfEawKa2MKHTJJZdowYIFvqsiPvjgg2LHmc8AAOB8FBIIqKZNm/puV+Zy2cJNxyqzvBNQ26oyn4tuoHf+fPbXOEBRR44c0YABA5SRkaF69epp3rx5uu2228o8n/mMUDNy5Ejdd9998nq9evrpp5Wenu47xnxGsNi/f7/+9re/STr3wmzRpWMqi/mMUHP11VfrzjvvlCQlJycrJSXFd4z5DAAAzkchgYBq3LixLrzwQkmqcEOxjIwM3y+PRTc0A4JF0Q30KprPRTfiO38+V2ccm81W4QZ+qLtSUlLUv39/paSkyGazaebMmRo6dGi592E+IxQVzuvc3FwtX77c93kr53Np46Duevfdd+VyuXT11VfL4XBo3rx5JT727NnjO3/16tW+zxf+HszzM0JR586dfbdPnjzpu818BgAA52MPCQRc586dtX79eiUnJ8vtdqt+/dKn3f79+323r7322tqKB1Ra0T+0is7X0pQ3n88f54YbbqhwnDZt2lTrXZYIf3a7XXfeeacOHz4s6dw7ckeNGlXh/ZjPCEUXX3yx7/axY8d8tzt27Kh69erJ4/H4dT5XZpz69eurQ4cOFYdHnVC4VMzhw4f14IMPVnj+X/7yF9/tI0eOKCoqiudnhKSyNm5nPgMAgPNxhQQCrlevXpLOvZtxx44dZZ6XmJjou92zZ8+A5wKq6qqrrlKrVq0kFZ+vpVm3bp0k6fLLL9eVV15Z7Fjhz0RF4/z88886ePCgJH4mULqzZ89q4MCB2rt3ryTpjTfe0FNPPVWp+zKfEYqKvuu26DIcDRs2VI8ePSRJmzZtKnd98cJ52qhRI9/m2YViY2N9m6WWN59dLpc2b97su0/h2umAP/D8jFBU+LuIJN/8lZjPAACgJAoJBNw999zjuz1r1qxSz/F6vfrkk08knds0rV+/frURDagSm83mWy5k//79vhejzrd582bfO7OGDh1a4h1jHTt29L3r68svv5TD4Sh1nKKbtg4bNqym8RFmHA6HhgwZop07d0qSXnnlFU2cOLHS92c+IxTNnz/fd7tLly7FjhX+vpGVlaWvvvqq1PufOHFCK1eulCTdcccdxdYkl86tUX7HHXdIklauXFnmsiBfffWVsrKyJDGfUdzs2bNljCn3o+hG12vWrPF9vvAFWJ6fEWqOHDmihIQESVK7du10+eWX+44xnwEAQAkGqAW9e/c2kkz9+vXNxo0bSxyfMmWKkWQkmUmTJtV+QNRJR44c8c270aNHV+o+Bw4cMPXq1TOSTPfu3Y3D4Sh23OFwmO7du/vm+8GDB0sdZ8aMGb7Hfuqpp0ocT05ONs2aNTOSTPv27U1BQUGVvz6Er/z8fDNgwADfHHruueeqNQ7zGcFi1qxZxul0lnvOO++845tnV111lXG73cWOp6WlmebNmxtJpm3btsZutxc77na7za9//WvfGGvWrCn1cVatWuU75+677y7xOKmpqeaKK64wkkxMTIxJT0+v+heMOm3SpEkVzkOenxEsFi9eXO68+Pnnn03Xrl198+zvf/97iXOYzwAAoCgKCdSKnTt3msjISCPJREdHm9dff91s2rTJrF692jz22GO+Xyw7duxosrKyrI6LMLV+/Xoza9Ys38dbb73lm3s9e/YsdmzWrFlljvPSSy/57te1a1czb948s23bNjNv3rxif5C9/PLLZY7hdrtNz549fecOHz7cLF++3GzZssV88MEHpmXLlkaSiYiIMEuXLg3AdwOh7N577/XNndtvv918//33Zvfu3WV+HDhwoMyxmM8IBm3btjUtWrQw48ePN3PmzDFJSUnmu+++M+vXrzf/+te/is2vhg0bmoSEhFLH+fjjj33ntWvXzsycOdNs27bNLFq0yPTr18937MEHHyw3zwMPPOA7t1+/fmbRokVm27ZtZubMmaZdu3a+Y//+978D8e1AmKtMIWEMz88IDm3btjWtWrUyzzzzjPn888/Nxo0bzbfffmsSEhLMK6+8Yi666CLf/OrVq5fJy8srdRzmMwAAKEQhgVqzePFi3ztWSvvo2LGjOXTokNUxEcZGjx5d5vwr7aMsHo/HPPLII+Xed9y4ccbj8ZSbJzU11cTGxpY5RqNGjcy0adP8/W1AGKjKPC58t3hZmM8IBm3btq3UXG7durVZsWJFuWO9+uqrxmazlTnG4MGDK7waw+FwmMGDB5c5RkREBFd0otoqW0jw/IxgUNnn5+HDh5uMjIwyx2E+AwCAQjZjjBFQS44dO6b33ntPS5Ys0YkTJ9SwYUO1b99e9913n55++mk1adLE6ogIY2PGjNGcOXMqfX5FT49Lly7V1KlTtW3bNtntdl100UWKjY3V448/rkGDBlXqMdxut6ZNm6bPP/9c+/btU25urlq1aqU77rhDzz33nH7xi19UOi/qjvPXVa5I27ZtdfTo0XLPYT7DSgcOHNCSJUu0YcMGJScn6/Tp00pLS1NkZKRatmypG264Qb/61a80YsSISv2usHHjRn344Ydav369Tp8+rZiYGF1//fUaO3asHnzwwUrn+vzzzzV79mzt2rVLmZmZuuSSS9S7d289/fTTuuWWW2ryJaMOe+211/TnP/9Z0rk9JPr27Vvu+Tw/w0qJiYlKTEzUpk2bdPjwYdntdmVlZSk6Olpt2rTRrbfeqtGjR1f6OZH5DAAAKCQAAAAAAAAAAEDARVgdAAAAAAAAAAAAhD8KCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAACAapo9e7ZsNptsNpuOHj1qdRwAAAAAAIIahQQAAKhzjh496isSavIBAAAAAAAqj0ICAAAAAAAAAAAEnM0YY6wOAQAAUJsKCgp04MCBMo936dJFktS9e3fNmjWrzPOuu+46v2cDAAAAACBc1bc6AAAAQG1r0KBBpcqEqKgoSgcAAAAAAPyEJZsAAAAAAAAAAEDAUUgAAABU0+zZs30bXB89erTE8b59+8pms6lv376SpOTkZP3Xf/2Xrr76akVGRurKK6/UuHHjdOzYsWL327Nnj8aOHaurr75ajRs3Vps2bfTEE0/ozJkzlcq1cOFC3XfffbriiivUuHFjxcTEqHv37vrzn/+sjIyMmn7ZAAAAAABUC0s2AQAA1IKVK1fq3nvvVXZ2tu9zx44d08yZMxUfH6/ExER16tRJc+fO1ZgxY+RyuXznnThxQh9//LGWLVumjRs3qlWrVqU+RkZGhn7zm99o9erVxT6fn5+vHTt2aMeOHfrXv/6lRYsW6eabbw7MFwoAAAAAQBm4QgIAACDAUlJSNGLECMXExOiDDz7Qli1btH79ej3//POy2Ww6c+aMHn30UW3btk2jRo1Su3btNH36dG3dulVr1qzRyJEjJZ0rMH7/+9+X+hj5+fnq37+/Vq9erXr16mnkyJGaO3euNm/erPXr1+uvf/2rLrzwQp05c0aDBw8ucVUGAAAAAACBxhUSAAAAAXbo0CF16NBBGzZs0MUXX+z7fK9evVS/fn29/fbb2rBhg4YMGaIePXooISFBTZo08Z3Xt29f5eXlaf78+frPf/6j1NTUYuNI0uTJk7Vz507FxMRo5cqV6tatW7HjvXr10sMPP6xbbrlFp06d0n//93/rf//3fwP7hQMAAAAAUARXSAAAANSC999/v0SJIElPPvmk77bdbtf06dOLlRGFnnjiCUmS2+3Wpk2bih3LycnRhx9+KEn6y1/+UqKMKNS2bVv96U9/kiTNnz9fubm51ftiAAAAAACoBgoJAACAAIuJidHAgQNLPXbVVVepadOmkqRf/vKXuvbaa0s97/rrr/fdPnz4cLFjiYmJOnv2rCTpN7/5TblZbrvtNklSQUGBduzYUbkvAAAAAAAAP2DJJgAAgADr0KGDbDZbmcdjYmKUnZ2tjh07lntOoaIbY0vS9u3bfbcvu+yySuf6+eefK30uAAAAAAA1xRUSAAAAAVbaEkxFRUREVHhe4TmS5PF4ih07c+ZMtXI5HI5q3Q8AAAAAgOrgCgkAAIAQV7Sg2Llzpxo0aFCp+7Vu3TpQkQAAAAAAKIFCAgAAIMRdeOGFvtsXX3wxRQMAAAAAICixZBMAAECI69q1q+/2hg0bLEwCAAAAAEDZKCQAAABCXP/+/X37T7z//vsyxlicCAAAAACAkigkAAAAQlxMTIyefvppSdLGjRv1u9/9Tl6vt8zzT58+renTp9dWPAAAAAAAJLGHBAAAQFiYPHmyEhMTtWXLFr333ntau3atxo8frxtuuEFRUVHKyMjQDz/8oJUrV2rZsmXq0qWLHn30UatjAwAAAADqEAoJAACAMNCoUSMlJCRozJgx+uqrr7Rr1y7fVROladasWS2mAwAAAACAQgIAACBsNG3aVP/5z3+UlJSkOXPmaP369UpJSZHT6VSzZs3Url079ejRQ0OGDNGAAQOsjgsAAAAAqGNshl0PAQAAAAAAAABAgLGpNQAAAAAAAAAACDgKCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAAAAAAAAAAAQcBQSAAAAAAAAAAAg4CgkAAAAAAAAAABAwFFIAAAAAAAAAACAgKOQAAAAAAAAAAAAAUchAQAAAAAAAAAAAo5CAgAAAAAAAAAABNz/AzuTh3g5cPjbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'transmissibility_function_reassortment_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data\n", + " # Dataframe with model history\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a heatmap and dendrogram for pathogen genomes \n", + "Generate a heatmap and dendrogram for the top 24 genomes. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcsUlEQVR4nO3deZzVdb0/8NcwCKggIsgi+BN3VNwXEhVcMJfCLLdME7Vr4lriQqSCS4p6b6LXTHMBUskdSy01wy0VU3EjEbKruAUKKLKDMOf3hzjXkRmcw/AN5T6f93Eel+/2Pp851ffMaz7Lt6JUKpUCAAAALHeNVnQDAAAAYGUldAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgII0bcvH4iY8vr3asUF0691zRTQAAAGAl1KDQXVWqWl7tAAAAgJVOg0J3qVRaXu0AAACAlU7DerojdAMAAEBdGtjTbXg5wMpkwIABmTdv3opuBgAFadasWQYPHryimwH/pzRwTvf/3Z7uq6++Ov/5n/+ZyZMnZ+utt85VV12VnXbaqc7zp0+fnrPPPjsjR47Mhx9+mPXWWy9XXHFF9t9//39jqwGWbt68eRkyZMiKbgYABTnttNNWdBPg/5yG9XTn/2ZP9+23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzl+wYEH23nvvtG3bNnfddVc6duyYt956K2uuuea/v/EAAAD82+jpXgaXX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vyhQ4fmww8/zNNPP51VVlklSdK5c+d/Z5MBAABYARo15OLSSvJ/8+fPz4wZM2q85s+fX+vPvGDBgowZMya9evX63w+xUaP06tUro0ePrvWae++9NzvvvHNOOumktGvXLl27ds3FF1+cRYsWNeTjBwAA4CuuQaG7qlRaKV6DBw9Oy5Yta7zqWmBi6tSpWbRoUdq1a1djf7t27TJ58uRar3njjTdy1113ZdGiRfnTn/6Uc889N7/85S/zi1/8oiEfPwAAAF9xDRxevnLM6R4wYED69etXY1/Tpk2XW/2qqqq0bds21113XSorK7P99tvnvffey3/+539m0KBBy+19AAAA+Gpp4EJqK8ec7qZNm9Y7ZLdp0yaVlZV5//33a+x///330759+1qv6dChQ1ZZZZVUVlZW79tss80yefLkLFiwIE2aNFn2xgMAAPCVZXh5mYvBNWnSJNtvv31GjRr1v59DVVVGjRqVnXfeudZrdtlll/zzn/9MVdX/jgz4xz/+kQ4dOgjcAAAAKzGhu8zQnST9+vXL9ddfn9/+9rd57bXXcsIJJ2T27NnVq5kfddRRGTBgQPX5J5xwQj788MP85Cc/yT/+8Y/88Y9/zMUXX5yTTjqpIR8/AAAAX3Ge070MDjvssEyZMiUDBw7M5MmTs8022+TBBx+sXlzt7bffTqNG//v3jHXXXTcPPfRQTjvttGy11Vbp2LFjfvKTn6R///4r6kcAAADg38BzupfRySefnJNPPrnWY4899tgS+3beeec888wzBbcKAACArxKhGwAAAApi9XIAAAAoiJ5uAAAAKEjDQreebgAAAKhTw4aX6+kGAACAOhleDgAAAAUxvBwAAAAKoqcbAAAACmJONwAAABTE8HIAAAAoiOHlAAAAUBDDywEAAKAghpcDAABAQRo4vHx5NQMAAABWPuZ0AwAAQEEaNqfb8HIAAACok55uAAAAKIjQDQAAAAVp4PByAAAAoC56ugEAAKAgQjcAAAAUpGGhe3m1AgAAAFZCDZvTracbAAAA6tTA4eXLqxkAAACw8jGnGwAAAArSwEeGCd0AAABQF8PLAQAAoCCGlwMAAEBBGrh6+fJqBgAAAKx8PKcbAAAACmJ4OQAAABTE8HIAAAAoiJ5uAAAAKIg53QAAAFCQBg4v19MNAAAAdWng8PLl1QwAAABY+VhIDQAAAApiITUAAAAoiJ5uAAAAKIg53QAAAFCQhvV0L69WAAAAwErInG4AAAAoiDndAAAAUBBzugEAAKAgeroBAACgIOZ0AwAAQEEaNeTiUmnleC2Lq6++Op07d06zZs3SrVu3PPvss/W67rbbbktFRUUOPPDAZXtjAAAAvjYaFLqrSivHq1y33357+vXrl0GDBuWFF17I1ltvnX322ScffPDBUq+bOHFizjjjjOy2227L+Il/at68eQ26HgAAgH8PPd3LELovv/zyHHfccTnmmGOy+eab59prr81qq62WoUOH1nnNokWLcsQRR+T888/PBhtsUPZ7VlVV5cILL0zHjh3TvHnzvPHGG0mSc889NzfeeGP5PwQAAACFE7pLyfz58zNjxowar/nz59f6My9YsCBjxoxJr169/vdDbNQovXr1yujRo+v8rC644IK0bds2P/rRj5bps/7FL36R4cOH57LLLkuTJk2q93ft2jU33HDDMtUEAACgWIaXl5LBgwenZcuWNV6DBw+u9WeeOnVqFi1alHbt2tXY365du0yePLnWa5588snceOONuf7665f5s77pppty3XXX5YgjjkhlZWX1/q233jrjx49f5roAAAAUxyPDkgwYMCD9+vWrsa9p06bLpfbMmTPzwx/+MNdff33atGmzzHXee++9bLTRRkvsr6qqyieffNKQJgIAAFCQBobulSN1N23atN4hu02bNqmsrMz7779fY//777+f9u3bL3H+//zP/2TixInp3bt39b6qqqokSePGjTNhwoRsuOGGX/q+m2++ef76179mvfXWq7H/rrvuyrbbbluvtgMAAPDv1cDndC+vZnx9NGnSJNtvv31GjRpV/divqqqqjBo1KieffPIS53fp0iVjx46tse+cc87JzJkzc+WVV2bdddet1/sOHDgwffr0yXvvvZeqqqqMHDkyEyZMyE033ZT777+/wT8XAAAAy5/h5cugX79+6dOnT3bYYYfstNNOueKKKzJ79uwcc8wxSZKjjjoqHTt2zODBg9OsWbN07dq1xvVrrrlmkiyxf2m+853v5L777ssFF1yQ1VdfPQMHDsx2222X++67L3vvvfdy+9kAAABYfoTuZXDYYYdlypQpGThwYCZPnpxtttkmDz74YPXiam+//XYaNWrQGnW12m233fLwww8v97oAAAAUQ+heRieffHKtw8mT5LHHHlvqtcOHDy/7/Z577rlUVVWlW7duNfb/7W9/S2VlZXbYYYeyawIAAFAsz+n+mvzh4KSTTso777yzxP733nsvJ5100gpoEQAAAF/GQmpfE+PGjct22223xP5tt90248aNWwEtAgAA4Mvo6f6a/OGgadOmSzymLEkmTZqUxo0b9LcTAAAACiJ0f01C9ze/+c0MGDAgH3/8cfW+6dOn5+c//7nVywEAAL6iLKT2NfFf//Vf6dGjR9Zbb71su+22SZKXXnop7dq1y80337yCWwcAAEBtGhi6pe5/l44dO+aVV17JiBEj8vLLL2fVVVfNMccck8MPPzyrrLLKim4eAAAAtWhY6K5aXs2gPlZfffX8+Mc/XtHNAAAAoJ4ML/8aef311/Poo4/mgw8+SFVVzb94DBw4cAW1CgAAgLoI3V8T119/fU444YS0adMm7du3T0VFRfWxiooKoRsAAOArSOj+mvjFL36Riy66KP3791/RTQEAAKCehO6viY8++iiHHHLIim4GAAAAZfCc7q/JHw4OOeSQ/PnPf17RzQAAAKAMVi//mthoo41y7rnn5plnnsmWW265xGPCTj311BXUMgAAAOpiePnXxHXXXZfmzZvn8ccfz+OPP17jWEVFhdANAADwFSR0f028+eabK7oJAAAAlEnoBgAAgIII3V8j7777bu699968/fbbWbBgQY1jl19++QpqFQAAAHVp4EJqUve/y6hRo3LAAQdkgw02yPjx49O1a9dMnDgxpVIp22233YpuHgAAALXwyLCvyd8NBgwYkDPOOCNjx45Ns2bNcvfdd+edd95Jz549Pb8bAADgK6pBoTulleT1NfDaa6/lqKOOSpI0btw4c+fOTfPmzXPBBRfk0ksvXcGtAwAAoDae0/01sfrqq1fP4+7QoUP+53/+J1tssUWSZOrUqSuyaQAAANTBQmpfE9/4xjfy5JNPZrPNNsv++++f008/PWPHjs3IkSPzjW98Y0U3DwAAgFoI3V8Tl19+eWbNmpUkOf/88zNr1qzcfvvt2Xjjja1cDgAA8BXVoND9dZkPvTLYYIMNqv+9+uqr59prr12BrQEAAKA+GrZ6edXK8fo62GCDDTJt2rQl9k+fPr1GIAcAAOCro4HDy3V1/7tMnDgxixYtWmL//Pnz8957762AFgEAAPBlzOn+irv33nur//3QQw+lZcuW1duLFi3KqFGj0rlz5xXQMgAAAL5Mw+Z0f02GZn+dHXjggUmSioqK9OnTp8axVVZZJZ07d84vf/nLFdAyAAAAvoye7q+4qqpP/7Kx/vrr57nnnkubNm1WcIsAAACoL6uXf028+eabS+ybPn161lxzzX9/YwAAAKiXBq5eXlopXl8Hl156aW6//fbq7UMOOSRrrbVWOnbsmJdffnkFtgwAAIC6NCx0l1aO19fBtddem3XXXTdJ8vDDD+cvf/lLHnzwwey3334588wzV3DrAAAAqI3h5V8TkydPrg7d999/fw499NB885vfTOfOndOtW7cV3DoAAABq08Dh5SvH6+ugVatWeeedd5IkDz74YHr16pXk02el1/b8bgAAAFa8BvZ06+r+d/ne976XH/zgB9l4440zbdq07LfffkmSF198MRtttNEKbh0AAAC1adgjw74mvcQrgyFDhqRz58555513ctlll6V58+ZJkkmTJuXEE09cwa0DAACgNuZ0f02sssoqOeOMM5bYf9ppp62A1gAAAFAfDevpNry8UPfee2/222+/rLLKKrn33nuXeu4BBxzwb2oVAAAA9dWwnm7Dywt14IEHZvLkyWnbtm0OPPDAOs+rqKiwmBoAAMBXUAN7updXM6hNVVVVrf8GAADg68Hq5V8DVVVVGT58eEaOHJmJEyemoqIiG2ywQQ466KD88Ic/TEVFxYpuIgAAALVo0HO6U7WSvL7CSqVSDjjggPzHf/xH3nvvvWy55ZbZYostMnHixBx99NH57ne/u6KbCAAAQB0spPYVN3z48DzxxBMZNWpU9thjjxrHHnnkkRx44IG56aabctRRR62gFgIAAFAXPd1f8Z7uW2+9NT//+c+XCNxJsueee+ZnP/tZRowYsQJaBgAAwJdpUOgulUorxeur7JVXXsm+++5b5/H99tsvL7/88r+xRQAAANSXR4Z9xX344Ydp165dncfbtWuXjz766N/YIgAAAOqrYcPLS6WV47UMrr766nTu3DnNmjVLt27d8uyzz9Z57vXXX5/ddtstrVq1SqtWrdKrV6+lnv95ixYtSuPGdf9tpLKyMgsXLiy7/QAAABTPc7qXwe23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzn/sscdy+OGHp3v37mnWrFkuvfTSfPOb38yrr76ajh07LvW9SqVSjj766DRt2rTW4/Pnz18uPxMAAADLXwOHl//fTN2XX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vwvLnR2ww035O67786oUaO+dNXxPn36fGl7rFwOAADw1dSw0L2SZO758+cv0WPctGnTWnuXFyxYkDFjxmTAgAHV+xo1apRevXpl9OjR9Xq/OXPm5JNPPslaa631pecOGzasXjUBAAD46mnY6uVVpZXiNXjw4LRs2bLGa/DgwbX+zFOnTs2iRYuWWNysXbt2mTx5cr0+t/79+2edddZJr169GvLxAwAA8BWnpzvJgAED0q9fvxr76ppD3VCXXHJJbrvttjz22GNp1qxZIe8BAADAV4M53al7KHlt2rRpk8rKyrz//vs19r///vtp3779Uq/9r//6r1xyySX5y1/+kq222mqZ2wsAAMDXQ8OGl5dKK8WrHE2aNMn222+fUaNGVe+rqqrKqFGjsvPOO9d53WWXXZYLL7wwDz74YHbYYYdl/swBAAD4+jC8fBn069cvffr0yQ477JCddtopV1xxRWbPnl29mvlRRx2Vjh07Vs8Lv/TSSzNw4MD87ne/S+fOnavnfjdv3jzNmzdfYT8HAAAAxTK8fBkcdthhmTJlSgYOHJjJkydnm222yYMPPli9uNrbb7+dRo3+dxDBNddckwULFuTggw+uUWfQoEE577zz/p1NBwAA4N+ogT3d/zdDd5KcfPLJOfnkk2s99thjj9XYnjhxYvENAgAA4CunQaG79H+0pxsAAADqw5xuAAAAKIjh5QAAAFAQC6kBAABAQRo2p1tPNwAAANRJTzcAAAAUxJxuAAAAKIiebgAAACiIOd0AAABQEMPLAQAAoCCGlwMAAEBB9HQDAABAQczpBgAAgIIYXg4AAAAFMbwcAAAACqKnGwAAAApiTjcAAAAUxPByAAAAKIjh5QAAAFCQBvZ0Vy2nZgAAAMDKx5xuAAAAKIjh5QAAAFAQC6kBAABAQczpBgAAgIKY0w0AAAAFMacbAAAACmJONwAAABSkgcPLzekGAACAuhheDgAAAAWxejkAAAAUxOrlAAAAUBA93QAAAFCQhvV0m9MNAAAAdfLIMAAAACiI4eUAAABQEAupAQAAQEH0dAMAAEBBGtjTLXQDAABAXRrW0231cgAAAKiTnm4AAAAoiEeGAQAAQEH0dAMAAEBB9HQDAABAQfR0AwAAQEGEbgAAACiI4eUAAABQkEYNubhUqlopXsvi6quvTufOndOsWbN069Ytzz777FLPv/POO9OlS5c0a9YsW265Zf70pz8t0/sCAADw9SF0L0Povv3229OvX78MGjQoL7zwQrbeeuvss88++eCDD2o9/+mnn87hhx+eH/3oR3nxxRdz4IEH5sADD8zf//73hnz8AAAAfMU1KHSnVFo5XmW6/PLLc9xxx+WYY47J5ptvnmuvvTarrbZahg4dWuv5V155Zfbdd9+ceeaZ2WyzzXLhhRdmu+22y69+9asGffwAAAB8tTVsIbWqlWMhtfnz52f+/Pk19jVt2jRNmzZd4twFCxZkzJgxGTBgQPW+Ro0apVevXhk9enSt9UePHp1+/frV2LfPPvvk97//fcMbDwAAwFdWg0L32LceX17tWKHOO++8nH/++TX2DRo0KOedd94S506dOjWLFi1Ku3btauxv165dxo8fX2v9yZMn13r+5MmTG9ZwAAAAvtIatnr5SmLAgAFL9ETX1ssNAAAA5RC6U/dQ8tq0adMmlZWVef/992vsf//999O+fftar2nfvn1Z5wMAALByaNhCav8HNWnSJNtvv31GjRpVva+qqiqjRo3KzjvvXOs1O++8c43zk+Thhx+u83wAAABWDhWl0jIs3/1/3O23354+ffrkN7/5TXbaaadcccUVueOOOzJ+/Pi0a9cuRx11VDp27JjBgwcn+fSRYT179swll1ySb33rW7ntttty8cUX54UXXkjXrl1X8E9DXbZcr+eKbgIABbvz8QtWdBMAKFCXziv+d3rDy5fBYYcdlilTpmTgwIGZPHlyttlmmzz44IPVi6W9/fbbadTofwcRdO/ePb/73e9yzjnn5Oc//3k23njj/P73vxe4AQAAVnJ6uqEOeroBVn56ugFWbl+Fnm5zugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAJLnpppsyf/785VpT6AYAAGClNH/+/MyYMaPGa2mh+phjjsnHH3+8XNvQeHkWGzBgQObNm7c8SwIAAMAyGTx4cM4///wa+wYNGpTzzjuv1vNLpdJyb8NyDd3z5s3LkCFDlmdJWGG2HNlzRTcBAABogAEDBqRfv3419jVt2nSp11RUVCzXNizX0A0AAABfFU2bNv3SkP1Fe+21Vxo3XnpUfuGFF+pdT+gGAACAxfbZZ580b958udUTugEAAGCxM888M23btl1u9axeDgAAAFn+87kToRsAAACSFLN6udANAAAASd58882svfbaS+xfuHBhZs2atUw1hW4AAABI8sorr+S3v/1tjX0XXXRRmjdvnjXXXDPf/OY389FHH5VVU+gGAACAJL/85S8ze/bs6u2nn346AwcOzLnnnps77rgj77zzTi688MKyalq9HAAAAJKMGzcu3bt3r96+6667svfee+fss89OkjRr1iw/+clPcvnll9e7pp5uAAAASDJz5sy0bt26evvJJ5/MXnvtVb29xRZb5F//+ldZNYVuAAAASNKxY8e89tprSZJZs2bl5ZdfrtHzPW3atKy22mpl1RS6AQAAIMkhhxySn/70p7n55ptz3HHHpX379vnGN75Rffz555/PpptuWlZNc7oBAAAgycCBA/Pee+/l1FNPTfv27XPLLbeksrKy+vitt96a3r17l1VT6AYAAIAkq666am666aY6jz/66KNl1zS8HAAAAJJ88MEHSz2+aNGiPPvss2XVFLoBAAAgSYcOHWoE7y233DLvvPNO9fbUqVOz8847l1VT6AYAAIAkpVKpxvbEiRPzySefLPWcLyN0AwAAQD1VVFSUdb7QDQAAAAWxejkAAADk017smTNnplmzZimVSqmoqMisWbMyY8aMJKn+/+UQugEAACCfztfeZJNNamxvu+22NbbLHV4udAMAAECW7TncX0boBgAAgCQ9e/Zc7jWFbgAAAKhDqVTKo48+mrlz56Z79+5p1apVWddbvRwAAACSTJ8+PX369MmWW26Z4447LjNmzMhuu+2WXr16pXfv3tlss83yyiuvlFVT6AYAAIAkZ5xxRkaPHp3vf//7GTt2bPbdd98sWrQoo0ePzt/+9rdsttlmOfvss8uqaXg5AAAAJHnggQfyu9/9Lj179szRRx+dddddN4888ki6deuWJLn00ktzwAEHlFVTTzcAAAAkef/996sfGdaxY8c0a9Ys6667bvXx//f//l+mTJlSVk2hGwAAAJJUVVWlsrKyeruysrLGc7nLfUZ3Yng5AAAAVLvhhhvSvHnzJMnChQszfPjwtGnTJkkyc+bMsusJ3QAAAJBPh49ff/311dvt27fPzTffvMQ55RC6AQAAIMnEiROXe01zugEAACDJUUcdlbvvvjuzZ89ebjWFbgAAAEiy0UYb5eKLL06bNm2y33775Zprrsl7773XoJpCNwAAACQZOHBgxowZk9dffz29e/fO73//+2y44YbZfvvtc8EFF+Sll14qu6bQDQAAAJ/TqVOnnHjiiXnooYcyZcqU9O/fPxMmTMiee+6Z9dZbLyeffHJeffXVetUSugEAAKAOLVq0yKGHHpoRI0ZkypQpGTp0aCorKzN69Oh6XW/1cgAAAPiCqVOnZuLEiamoqEjnzp3TunXrVFZWZq+99spee+1V7zp6ugEAAGCxV199NT169Ei7du3SrVu37LTTTmnbtm323HPPjB8/vux6eroBAAAgyeTJk9OzZ8+svfbaufzyy9OlS5eUSqWMGzcu119/fXr06JG///3vadu2bb1rCt0AAACQZMiQIVlvvfXy1FNPpVmzZtX7991335xwwgnZddddM2TIkAwePLjeNQ0vBwAAgCQPP/xw+vfvXyNwf2bVVVfNmWeemYceeqismkI3AAAAJHnjjTey3Xbb1Xl8hx12yBtvvFFWTaEbAAAAksycOTNrrLFGncdbtGiRWbNmlVXTnG4AAABYbObMmbUOL0+SGTNmpFQqlVVP6AYAAIAkpVIpm2yyyVKPV1RUlFVT6AYAAIAkjz766HKvKXQDAABAkp49ey73mkI3AAAAfM7HH3+chx9+OBMnTkxFRUXWX3/99OrVa6mLrNVF6AYAAIDFbrnllpx88smZMWNGjf0tW7bMtddem8MOO6yseh4ZBgAAAEleeOGFHHPMMTnwwAPz4osvZu7cuZkzZ06ef/759O7dOz/84Q/z8ssvl1VTTzcAAAAkueqqq3LggQdm+PDhNfZvt912uemmmzJnzpxceeWVGTp0aL1r6ukGAACAJE899VSOP/74Oo/37ds3Tz75ZFk1hW4AAABI8q9//Wupz+neZJNN8t5775VVU+gGAACAJHPmzEmzZs3qPN60adPMmzevrJrmdAMAAMBiDz30UFq2bFnrsenTp5ddT+gGAACAxfr06bNc6wndAAAAkKSqqmq51zSnGwAAAOqhqqoq999/f1nX6OkGAACApfjnP/+ZoUOHZvjw4ZkyZUo++eSTel+rpxsAAAC+YO7cubnpppvSo0ePbLrppnn66aczcODAvPvuu2XV0dMNAAAAiz333HO54YYbctttt2XDDTfMEUcckaeffjq//vWvs/nmm5ddT+gGAACAJFtttVVmzJiRH/zgB3n66aezxRZbJEl+9rOfLXNNw8sBAAAgyYQJE9KjR4/ssccey9SrXRuhGwAAAJK88cYb2XTTTXPCCSekU6dOOeOMM/Liiy+moqJimWsK3QAAAJCkY8eOOfvss/PPf/4zN998cyZPnpxddtklCxcuzPDhw/OPf/yj7JpCNwAAAHzBnnvumVtuuSWTJk3Kr371qzzyyCPp0qVLttpqq7LqCN0AAABQh5YtW+bEE0/M888/nxdeeCG77757WddbvRwAAACWYsGCBVmwYEG22Wab/Pd//3dZ1+rpBgAAgMWGDRuWU045JSNGjEiSDBgwIC1atEjLli2z9957Z9q0aWXVE7oBAAAgyUUXXZSTTjop48ePz6mnnpoTTjghw4cPzwUXXJBLLrkk48ePzznnnFNWTcPLAQAAIMnw4cNz44035vDDD8/zzz+fbt265Y477shBBx2UJOnatWv69u1bVk093QAAAJDk7bffzq677pok2WGHHdK4ceN07dq1+vhWW22VSZMmlVVT6AYAAIAkn3zySZo2bVq93aRJk6yyyirV240bN86iRYvKqml4OQAAACw2bty4TJ48OUlSKpUyfvz4zJo1K0kyderUsusJ3QAAALDYXnvtlVKpVL397W9/O0lSUVGRUqmUioqKsuoJ3QAAAJDkzTffXO41hW4AAABIMmrUqBxwwAFp06bNcqtpITUAAABIcsstt6RTp07p3r17Lr300rz22msNril0AwAAQJJHHnkkkyZNyoknnpgxY8akW7du2XjjjXP66afniSeeSFVVVdk1hW4AAABYrFWrVjnyyCNzxx13ZOrUqbnqqqsyd+7cHHHEEWnbtm2OOuqo3HXXXZk9e3a96gndAAAAUIsmTZpk3333za9//eu88847efDBB9O5c+dceOGFufzyy+tVw0JqAAAAkGSDDTbIc889l9atW9d6fIcddsgOO+yQCy64IJ988km9aurpBgAAgCQTJ07MokWL6nXuKqusUq/zhG4AAAAoiOHlAAAAsNhDDz2Uli1bLvWcAw44oN71hG4AAABYrE+fPks9XlFRUe8h6Inh5QAAAFBt8uTJqaqqqvNVTuBOhG4AAABI8mkv9vImdAMAAECSUqm03GsK3QAAAJBP53Ovuuqqy7WmhdQAAAAgyXXXXZeqqqoa+95///1ce+21mT17dg444IDsuuuuZdUUugEAACDJj3/84zRp0iS/+c1vkiQzZ87MjjvumHnz5qVDhw4ZMmRI/vCHP2T//fevd03DywEAACDJU089lYMOOqh6+6abbsqiRYvy+uuv5+WXX06/fv3yn//5n2XVFLoBAAAgyXvvvZeNN964envUqFE56KCD0rJlyySfzvl+9dVXy6opdAMAAECSZs2aZe7cudXbzzzzTLp161bj+KxZs8qqKXQDAABAkm222SY333xzkuSvf/1r3n///ey5557Vx//nf/4n66yzTlk1LaQGAAAASQYOHJj99tsvd9xxRyZNmpSjjz46HTp0qD5+zz33ZJdddimrptANAAAASXr27JkxY8bkz3/+c9q3b59DDjmkxvFtttkmO+20U1k1hW4AAABYbLPNNstmm21W67Ef//jHZdczpxsAAACSnHjiiTUWSrv11lsze/bs6u3p06eX9YzuROgGAACAJMlvfvObzJkzp3r7+OOPz/vvv1+9PX/+/Dz00ENl1RS6AQAAIEmpVFrq9rIQugEAAKAgQjcAAAAUxOrlAAAAsNjAgQOz2mqrJUkWLFiQiy66KC1btkySGvO960voBgAAgCQ9evTIhAkTqre7d++eN954Y4lzyiF0AwAAQJLHHntsudc0pxsAAAAKInQDAADAYq+//nruvvvuvPnmm0mSP/7xj+nRo0d23HHHXHTRRWU/RszwcgAAAEhyzz335NBDD02jRo1SUVGR6667Lscff3x23333rLHGGjnvvPPSuHHj9O/fv9419XQDAABAkosuuihnnXVW5s2bl2uuuSZ9+/bN4MGD88ADD+T+++/P1VdfneHDh5dVU+gGAACAJBMmTMixxx6bioqK9OnTJwsWLEivXr2qj3/zm9/MW2+9VVZNoRsAAACSzJ49Oy1atEiSNGrUKKuuumr1M7uTZNVVV838+fPLqil0AwAAQJKKiopUVFTUub0sLKQGAAAASUqlUjbZZJPqoD1r1qxsu+22adSoUfXxcgndAAAAkGTYsGHLvabQDQAAAEl22223bLDBBsu1pjndAAAAkGSrrbZK165d8/Of/zzPPvvscqkpdAMAAECSqVOnZvDgwfnggw9ywAEHpEOHDjnuuONy3333Zd68ectUU+gGAACAJM2aNUvv3r1zww03ZNKkSbn77rvTunXr9O/fP23atMmBBx6YoUOHZsqUKfWuKXQDAADAF1RUVKR79+655JJLMm7cuLz44ovZbbfdMnz48HTq1ClXX311vepYSA0AAAC+xMYbb5zTTz89p59+eqZNm5YPP/ywXtcJ3QAAAPA5jzzySEaOHJmJEyemoqIi66+/fg4++OD06NEjSdK6deu0bt26XrUMLwcAAIDF+vbtm169euXWW2/NtGnTMmXKlIwYMSJ77LFHTjnllLLrCd0AAACQ5J577smwYcMydOjQTJ06NaNHj84zzzyTKVOm5Prrr891112Xe++9t6yaQjcAAAAkGTZsWPr165ejjz46FRUV1fsbNWqUY489Nj/96U9z4403llVT6AYAAIAkL7zwQr773e/Wefx73/texowZU1ZNoRsAAACSTJ06NZ06darzeKdOnTJt2rSyagrdAAAAkGTBggVZZZVV6jzeuHHjLFiwoKyaHhkGAAAAi5177rlZbbXVaj02Z86csusJ3QAAAJCkR48emTBhwpeeUw6hGwAAAJI89thjy72mOd0AAABQEKEbAAAAFps9e3YGDhyYrl27pnnz5mnRokW22mqrXHDBBeZ0AwAAwLJasGBBevbsmb///e/Zb7/90rt375RKpbz22mu56KKL8sADD+SJJ55Y6grnXyR0AwAAQJJrrrkm7777bl5++eVsuummNY6NHz8+u+++e6699tqccsop9a5peDkAAAAkGTlyZM4999wlAneSdOnSJWeffXbuuuuusmoK3QAAAJBk3Lhx2X333es8vscee2TcuHFl1RS6AQAAIMn06dPTunXrOo+3bt06H3/8cVk1hW4AAABIUlVVlcrKyjqPN2rUKIsWLSqrpoXUAAAAIEmpVMpee+2Vxo1rj8oLFy4su6bQDQAAAEkGDRr0peccdNBBZdUUugEAACD1C93lMqcbAAAAvsSMGTNyzTXXZIcddijrOj3dAAAAUIdHH300Q4cOzciRI9OyZct897vfLet6oRsAAAA+57333svw4cMzbNiwTJ8+PR999FF+97vf5dBDD01FRUVZtQwvBwAAgCR333139t9//2y66aZ56aWX8stf/jL/+te/0qhRo2y55ZZlB+5ETzcAAAAkSQ477LD0798/t99+e1q0aLFcaurpBgAAgCQ/+tGPcvXVV2fffffNtddem48++qjBNYVuAAAASPKb3/wmkyZNyo9//OPceuut6dChQ77zne+kVCqlqqpqmWoK3QAAALDYqquumj59+uTxxx/P2LFjs/nmm6ddu3bZZZdd8oMf/CAjR44sq57QDQAAALXYeOONM3jw4LzzzjsZMWJE5syZk8MPP7ysGkI3AAAAfM60adOq//3OO+/kvPPOy+OPP55+/frlnXfeKauW0A0AAABJxo4dm86dO6dt27bp0qVLXnrppey4444ZMmRIrrvuuuy55555+umny6opdAMAAECSs846K1tuuWWeeOKJ7L777vn2t7+db33rW/n444/z0Ucf5fjjj88ll1xSVk3P6QYAAIAkzz33XB555JFstdVW2XrrrXPdddflxBNPTKNGn/ZXn3LKKfnGN75RVk093QAAAJDkww8/TPv27ZMkzZs3z+qrr55WrVpVH2/VqlVmzpxZVk2hGwAAABarqKhY6na5DC8HAACAxY4++ug0bdo0STJv3rz07ds3q6++epJk/vz5ZdcTugEAACBJnz59amwfeeSRS5xz1FFHlVVT6AYAAIAkw4YNW+41zekGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgjRe0Q2Ar6o7H79gRTcBgIId0nPgim4CAAUa+9bjK7oJeroBAACgKEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCNF7RDQAAAIAizJ8/P/Pnz6+xr2nTpmnatOlSr/v444/z8MMPZ+LEiamoqMj666+fXr16ZY011ii7Dcs1dDdr1iynnXba8iwJK8zxPzlwRTcBAABogMGDB+f888+vsW/QoEE577zz6rzmlltuycknn5wZM2bU2N+yZctce+21Oeyww8pqQ0WpVCqVdQX8HzF+4uMrugkAFOyQngNXdBMAKNDz//hzWT3dL7zwQrp165Yjjjgip512Wrp06ZJSqZRx48bliiuuyG233ZbnnnsuW2+9db3bIHRDHYRugJWf0A2wchv7Vnm/0x9zzDGZNWtW7rzzzlqPH3zwwVljjTUydOjQete0kBoAAAAkeeqpp3L88cfXebxv37558skny6opdAMAAECSf/3rX9lkk03qPL7JJpvkvffeK6um0A0AAABJ5syZk2bNmtV5vGnTppk3b15ZNT0yDAAAABZ76KGH0rJly1qPTZ8+vex6QjcAAAAs1qdPn6Uer6ioKKue0A0AAABJqqqqlntNc7oBAACgIHq6AQAA4HMeeeSRjBw5MhMnTkxFRUXWX3/9HHzwwenRo0fZtfR0AwAAwGJ9+/ZNr169cuutt2batGmZMmVKRowYkT322COnnHJK2fWEbgAAAEhyzz33ZNiwYRk6dGimTp2a0aNH55lnnsmUKVNy/fXX57rrrsu9995bVk2hGwAAAJIMGzYs/fr1y9FHH11jlfJGjRrl2GOPzU9/+tPceOONZdUUugEAACDJCy+8kO9+97t1Hv/e976XMWPGlFVT6AYAAIAkU6dOTadOneo83qlTp0ybNq2smkI3AAAAJFmwYEFWWWWVOo83btw4CxYsKKumR4YBAADAYueee25WW221Wo/NmTOn7HpCNwAAACTp0aNHJkyY8KXnlEPoBgAAgCSPPfbYcq9pTjcAAADUw2uvvZYzzjijrGuEbgAAAKjD7Nmzc+ONN6Z79+7ZYost8uCDD5Z1vdANAAAAX/DUU0/l2GOPTbt27fLjH/843bt3z7hx4/L3v/+9rDpCNwAAACT54IMPctlll6VLly45+OCDs+aaa+axxx5Lo0aNcuyxx6ZLly5l17SQGgAAACRZb731cvDBB+fKK6/M3nvvnUaNGt5PracbAAAA8mnofvLJJ/PEE0/kH//4x3KpKXQDAABAkvHjx+eWW27JpEmTsuOOO2b77bfPkCFDkiQVFRXLVFPoBgAAgMV22WWXDB06NJMmTUrfvn1z5513ZtGiRTnxxBNz/fXXZ8qUKWXVE7oBAADgC5o3b57jjjsuTz/9dF599dVst912Oeecc7LOOuuUVUfoBgAAgKXYbLPN8stf/jLvvfdebr/99rKutXo5AAAA1KFUKuXRRx/N3Llz071793zve98r63o93QAAAJBk+vTp6dOnT7bccsscd9xxmTFjRnbbbbf06tUrvXv3zmabbZZXXnmlrJpCNwAAACQ544wzMnr06Hz/+9/P2LFjs++++2bRokUZPXp0/va3v2WzzTbL2WefXVZNw8sBAAAgyQMPPJDf/e536dmzZ44++uisu+66eeSRR9KtW7ckyaWXXpoDDjigrJp6ugEAACDJ+++/n0022SRJ0rFjxzRr1izrrrtu9fH/9//+n0eGAQAAwLKoqqpKZWVl9XZlZWUqKiqqtz//7/oyvBwAAAAWu+GGG9K8efMkycKFCzN8+PC0adMmSTJz5syy61WUSqXScm0hrCTGT3x8RTcBgIId0nPgim4CAAUa+1Z5v9N37ty5Xr3Zb775Zr1r6ukGAACAJBMnTlzuNc3pBgAAgCRHHXVU7r777syePXu51RS6AQAAIMlGG22Uiy++OG3atMl+++2Xa665Ju+9916DagrdAAAAkGTgwIEZM2ZMXn/99fTu3Tu///3vs+GGG2b77bfPBRdckJdeeqnsmkI3AAAAfE6nTp1y4okn5qGHHsqUKVPSv3//TJgwIXvuuWfWW2+9nHzyyXn11VfrVUvoBgAAgCRvv/12vviArxYtWuTQQw/NiBEjMmXKlAwdOjSVlZUZPXp0vWpavRwAAACSrL/++pk0aVLatm1b6/HKysrstdde2WuvvepdU083AAAAJEv0ci8PQjcAAAAsVlFRsVzrGV4OAAAAi5177rlZbbXVlnrO5ZdfXu96QjcAAAAsNnbs2DRp0qTO4+X2hAvdAAAAsNg999xT50Jqy8KcbgAAAMjyn8+dCN0AAACQxOrlAAAAUJhhw4alZcuWy7Wm0A0AAABJdt5557z88ss19o0aNSp77LFHdtppp1x88cVl1xS6AQAAIEn//v1z//33V2+/+eab6d27d5o0aZKdd945gwcPzhVXXFFWTauXAwAAQJLnn38+Z511VvX2iBEjsskmm+Shhx5Kkmy11Va56qqr8tOf/rTeNfV0AwAAQJKpU6emU6dO1duPPvpoevfuXb29++67Z+LEiWXVFLoBAAAgyVprrZVJkyYlSaqqqvL888/nG9/4RvXxBQsWlL3CudANAAAA+bQn+8ILL8w777yTK664IlVVVdl9992rj48bNy6dO3cuq6Y53QAAAJDkoosuyt5775311lsvlZWV+e///u+svvrq1cdvvvnm7LnnnmXVFLoBAAAgSefOnfPaa6/l1Vdfzdprr5111lmnxvHzzz+/xpzv+hC6AQAAYLHGjRtn6623rvVYXfuXxpxuAAAASLL55pvnww8/rN4+8cQTM3Xq1OrtDz74IKuttlpZNYVuAAAASDJ+/PgsXLiwevuWW27JjBkzqrdLpVLmzZtXVk2hGwAAAGpR2+PBKioqyqohdAMAAEBBhG4AAADIp73YX+zJLrdn+4usXg4AAAD5dDj5XnvtlcaNP43Kc+fOTe/evdOkSZMkqTHfu76EbgAAAEgyaNCgGtvf+c53ljjnoIMOKqum0A0AAABZMnQvD+Z0AwAAwFIsWLAgs2bNWqZrhW4AAABYbNiwYTnllFMyYsSIJMmAAQPSokWLtGzZMnvvvXemTZtWVj2hGwAAAJJcdNFFOemkkzJ+/PiceuqpOeGEEzJ8+PBccMEFueSSSzJ+/Picc845ZdU0pxsAAACSDB8+PDfeeGMOP/zwPP/88+nWrVvuuOOO6sXTunbtmr59+5ZVU083AAAAJHn77bez6667Jkl22GGHNG7cOF27dq0+vtVWW2XSpEll1RS6AQAAIMknn3ySpk2bVm83adIkq6yySvV248aNs2jRorJqGl4OAAAAi40bNy6TJ09OkpRKpYwfP7565fKpU6eWXU/oBgAAgMX22muvlEql6u1vf/vbSZKKioqUSqVUVFSUVU/oBgAAgCRvvvnmcq8pdAMAAECSUaNG5YADDkibNm2WW00LqQEAAECSW265JZ06dUr37t1z6aWX5rXXXmtwTaEbAAAAkjzyyCOZNGlSTjzxxIwZMybdunXLxhtvnNNPPz1PPPFEqqqqyq4pdAMAAMBirVq1ypFHHpk77rgjU6dOzVVXXZW5c+fmiCOOSNu2bXPUUUflrrvuyuzZs+tVT+gGAACAWjRp0iT77rtvfv3rX+edd97Jgw8+mM6dO+fCCy/M5ZdfXq8aFaXPr4UOVBs/8fEV3QQACnZIz4ErugkAFGjsW8X9Tv/JJ59klVVW+dLz9HQDAADAYrNnz87AgQPTtWvXNG/ePC1atMhWW22VCy64IHPmzKk+rz6BO/HIMAAAAEiSLFiwID179szf//737Lfffundu3dKpVJee+21XHTRRXnggQfyxBNP1DtwJ0I3AAAAJEmuueaavPvuu3n55Zez6aab1jg2fvz47L777rn22mtzyimn1Lum4eUAAACQZOTIkTn33HOXCNxJ0qVLl5x99tm56667yqopdAMAAECScePGZffdd6/z+B577JFx48aVVVPoBgAAgCTTp09P69at6zzeunXrfPzxx2XVFLoBAAAgSVVVVSorK+s83qhRoyxatKismhZSAwAAgCSlUil77bVXGjeuPSovXLiw7JpCNwAAACQZNGjQl55z0EEHlVVT6AYAAIDUL3SXS+gGAACAL5g6dWomTpyYioqKdO7ceakLrC2NhdQAAABgsVdffTU9evRIu3bt0q1bt+y0005p27Zt9txzz0yYMKHsenq6AQAAIMnkyZPTs2fPrL322rn88svTpUuXlEqljBs3Ltdff3122223/P3vf0/btm3rXVPoBgAAgCRDhgzJeuutl6eeeirNmjWr3r/vvvvmhBNOyK677pohQ4Zk8ODB9a5peDkAAAAkefjhh9O/f/8agfszq666as4888w89NBDZdUUugEAACDJG2+8ke22267O4zvssEPeeOONsmoK3QAAAJBk5syZWWONNeo83qJFi8yaNausmuZ0AwAAwGIzZ86sdXh5ksyYMSOlUqmsekI3AAAAJCmVStlkk02WeryioqKsmkI3AAAAJHn00UeXe02hGwAAAJL07NnzS8/58MMPy6ppITUAAAD4En/+859z6KGHpmPHjmVdJ3QDAABALd56660MGjQonTt3ziGHHJJGjRrlpptuKquG4eUAAACw2IIFCzJy5MjccMMNeeqpp9KrV6+8++67efHFF7PllluWXU9PNwAAACQ55ZRTss466+TKK6/Md7/73bz77ru57777UlFRkcrKymWqqacbAAAAklxzzTXp379/fvazn6VFixbLpaaebgAAAEhy880359lnn02HDh1y2GGH5f7778+iRYsaVFPoBgAAgCSHH354Hn744YwdOzZdunTJSSedlPbt26eqqirjxo1bpppCNwAAAHzO+uuvn/PPPz8TJ07MLbfckoMOOihHHnlkOnXqlFNPPbWsWuZ0AwAAQC0qKiqyzz77ZJ999sm0adNy8803Z9iwYWXV0NMNAAAAX6J169b56U9/mpdffrms64RuAAAAWOz111/P3XffnTfffDNJ8sc//jE9evTIjjvumIsuuiilUqmseoaXAwAAQJJ77rknhx56aBo1apSKiopcd911Of7447P77rtnjTXWyHnnnZfGjRunf//+9a6ppxsAAACSXHTRRTnrrLMyb968XHPNNenbt28GDx6cBx54IPfff3+uvvrqDB8+vKyaQjcAAAAkmTBhQo499thUVFSkT58+WbBgQXr16lV9/Jvf/GbeeuutsmoK3QAAAJBk9uzZadGiRZKkUaNGWXXVVbPaaqtVH1911VUzf/78smoK3QAAAJBPHxFWUVFR5/aysJAaAAAAJCmVStlkk02qg/asWbOy7bbbplGjRtXHyyV0AwAAQJJhw4Yt95pCNwAAACTZbbfdssEGGyzXmuZ0AwAAQJKtttoqXbt2zc9//vM8++yzy6Wm0A0AAABJpk6dmsGDB+eDDz7IAQcckA4dOuS4447Lfffdl3nz5i1TTaEbAAAAkjRr1iy9e/fODTfckEmTJuXuu+9O69at079//7Rp0yYHHnhghg4dmilTptS7ptANAAAAX1BRUZHu3bvnkksuybhx4/Liiy9mt912y/Dhw9OpU6dcffXV9aojdAMAAECSY489NjNnzqz12MYbb5zTTz89TzzxRP71r3/lm9/8Zr1qCt0AAACQ5Le//W3mzp37pee1bt06G2+8cb1qCt0AAACQpFQqLfeantMNAAAAi82cOTPNmjVb6jlrrLFGvesJ3QAAALDYJptsUuexUqmUioqKLFq0qN71hG4AAABY7K677spaa6213OoJ3QAAALDYLrvskrZt2y63ehZSAwAAgIII3QAAAJBkvfXWS2Vl5XKtaXg5AAAAJHnzzTdr3f/4449n9uzZ2XnnndOqVauyagrdAAAAkOTSSy/NrFmzcuGFFyb5dLXy/fbbL3/+85+TJG3bts2oUaOyxRZb1Lum4eUAAACQ5Pbbb0/Xrl2rt++666488cQT+etf/5qpU6dmhx12yPnnn19WTaEbAAAA8unw8q222qp6+09/+lMOPvjg7LLLLllrrbVyzjnnZPTo0WXVFLoBAAAgycKFC9O0adPq7dGjR6d79+7V2+uss06mTp1aVk2hGwAAAJJsuOGGeeKJJ5Ikb7/9dv7xj3+kR48e1cfffffdtG7duqyaFlIDAACAJCeddFJOPvnk/PWvf80zzzyTnXfeOZtvvnn18UceeSTbbrttWTWFbgAAAEhy3HHHpbKyMvfdd1969OiRQYMG1Tj+r3/9K8ccc0xZNStKpVJpeTYSVhbjJz6+opsAQMEO6TlwRTcBgAKNfWvF/05vTjcAAAAkueOOO7JgwYLq7XfffTdVVVXV23PmzMlll11WVk2hGwAAAJIcfvjhmT59evX25ptvnokTJ1Zvz5w5MwMGDCirptANAAAASb44+3p5zMYWugEAAKAgQjcAAAAUxCPDAAAAYLGHHnooLVu2TJJUVVVl1KhR+fvf/54kNeZ715dHhkEdPDIMYOXnkWEAK7dyHxnWqNGXDwavqKjIokWL6l1TTzcAAAAkNR4PtrwI3QAAAPA506ZNS+vWrZMk77zzTq6//vrMmzcvvXv3zm677VZWLQupAQAAQJKxY8emc+fOadu2bbp06ZKXXnopO+64Y4YMGZLf/OY32WOPPfL73/++rJpCNwAAACQ566yzsuWWW+aJJ57I7rvvnm9/+9v51re+lY8//jgfffRRjj/++FxyySVl1bSQGtTBQmoAKz8LqQGs3MpdSK1NmzZ55JFHstVWW2XWrFlZY4018txzz2X77bdPkowfPz7f+MY3ylrFXE83AAAAJPnwww/Tvn37JEnz5s2z+uqrp1WrVtXHW7VqlZkzZ5ZVU+gGAACAxSoqKpa6XS6rlwMAAMBiRx99dJo2bZokmTdvXvr27ZvVV189STJ//vyy6wndAAAAkKRPnz41to888sglzjnqqKPKqil0AwAAQJJhw4Yt95rmdAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBKkqlUmlFNwKAFW/+/PkZPHhwBgwYkKZNm67o5gCwnLnPw4ohdAOQJJkxY0ZatmyZjz/+OGusscaKbg4Ay5n7PKwYhpcDAABAQYRuAAAAKIjQDQAAAAURugFIkjRt2jSDBg2yuA7ASsp9HlYMC6kBAABAQfR0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBlYKRx99dCoqKqpfrVu3zr777ptXXnlliXOPP/74VFZW5s4771zi2HnnnVddo3HjxmnTpk169OiRK664IvPnz69x7u677159btOmTdOxY8f07t07I0eOrLWNc+fOzeqrr55//vOfGT58eI32Nm/ePNtvv/0S137+PT7/6tu3b/U5jz/+ePbcc8+stdZaWW211bLxxhunT58+WbBgwRKfyxdfnTt3rvF+e+yxR2644YZMnDixxnlNmjTJRhttlF/84hep7aEX7777bpo0aZKuXbvW+rN/vtbqq6+ejTfeOEcffXTGjBlT47zHHnus+rxGjRqlZcuW2XbbbXPWWWdl0qRJtdY+//zzc+SRRyZJOnfuXH19ZWVl1llnnfzoRz/KRx99VOt7fPE1efLkJMmcOXMyYMCAbLjhhmnWrFnWXnvt9OzZM3/4wx+W+Gxqew0fPrzWtgLLrj73+br+N3nbbbdVn3P99ddn6623TvPmzbPmmmtm2223zeDBg5PUvIfU9jr66KOr6yzLPf0zt956ayorK3PSSSctcayc+2A531mfKfc+//n3+PyrS5cu1ee8+eab+cEPfpB11lknzZo1S6dOnfKd73wn48ePX+Kzqe01ceLE6lrl3tM/r0uXLmnatGn1vfzzyvnOru93FtSX0A2sNPbdd99MmjQpkyZNyqhRo9K4ceN8+9vfrnHOnDlzctttt+Wss87K0KFDa62zxRZbZNKkSXn77bfz6KOP5pBDDsngwYPTvXv3zJw5s8a5xx13XCZNmpT/+Z//yd13353NN9883//+9/PjH/94iboPP/xw1ltvvWy00UZJkjXWWKO6vS+++GL22WefHHrooZkwYUKt7/H512WXXZYkGTduXPbdd9/ssMMOeeKJJzJ27NhcddVVadKkSRYtWpQrr7yyxnVJMmzYsOrt5557rvp9Pvzwwzz11FPp3bt39b6//OUvmTRpUl5//fWcf/75ueiii2r93IYPH55DDz00M2bMyN/+9rdaP9fP3vfVV1/N1VdfnVmzZqVbt2656aabljh3woQJ+de//pXnnnsu/fv3z1/+8pd07do1Y8eOXeLcP/zhDznggAOqty+44ILq//xGjBiRJ554Iqeeemqt7/HFz7Vt27ZJkr59+2bkyJG56qqrMn78+Dz44IM5+OCDM23atKy77ro1rjn99NOr/zvz2euwww6r9TMAGqY+9/nP3+M+ex144IFJkqFDh+anP/1pTj311Lz00kt56qmnctZZZ2XWrFlJkueee676mrvvvjtJzXvFlVdeWf0+y3pPT5Ibb7wxZ511Vm699dbMmzev1p+1vvfBcr6zlvU+/8V73KRJk/Lkk08mST755JPsvffe+fjjjzNy5MhMmDAht99+e7bccstMnz49hx12WI3rdt555yW+19Zdd93q91rWe/qTTz6ZuXPn5uCDD85vf/vbWj/Tcr6zy/nOgi9VAlgJ9OnTp/Sd73ynxr6//vWvpSSlDz74oHrf8OHDS9/4xjdK06dPL6222mqlt99+u8Y1gwYNKm299dZL1H/ttddKTZo0KZ199tnV+3r27Fn6yU9+ssS5Q4cOLSUpPfzwwzX2H3vssaX+/fuXSqVSadiwYaWWLVvWOL5o0aLSKqusUrrjjju+9D0+M2TIkFLnzp3rPP5FSUr33HNPrcduuummUrdu3UqlUqn05ptvlpKUXnzxxRrn7LXXXqUTTzyxxr6qqqrSBhtsUHrwwQdL/fv3Lx133HH1ft+jjjqq1KJFi9KHH35YKpVKpUcffbSUpPTRRx/VOG/OnDmlTTfdtLTLLrvU2P/222+XmjRpUvr4449LpVKptN5665WGDBlS45wLL7ywtPnmm1dv1/Uen9eyZcvS8OHD6zz+eXX9dwZYvupzn1/aPa5UKpW+853vlI4++uh6vd+X3SuW5Z5eKpVKb7zxRmnVVVctTZ8+vdStW7fSiBEj6vW+td0Hy/nOKpWW7T7/Zfe4F198sZSkNHHixDrP+bylfa8tyz39M0cffXTpZz/7WemBBx4obbLJJvV+39q+s+v7nQX1pacbWCnNmjUrt9xySzbaaKO0bt26ev+NN96YI488Mi1btsx+++1X72HAXbp0yX777VfnUMHP69OnT1q1alXj3Kqqqtx///35zne+U+s1ixYtqv7L/HbbbVevNiVJ+/btM2nSpDzxxBP1vqYu9957b53tS5Lnn38+Y8aMSbdu3Wrsf/TRRzNnzpz06tUrRx55ZG677bbMnj27Xu952mmnZebMmXn44YeXet6qq66avn375qmnnsoHH3xQo82777571lhjjVqve++993Lfffct0eYv0759+/zpT39aopcI+Oqo6z6/NO3bt88zzzyTt956q0Hv3ZB7+rBhw/Ktb30rLVu2zJFHHpkbb7yxXu9Z132wNnV9Zy3rfX5p1l577TRq1Ch33XVXFi1aVO/rarOs9/SZM2fmzjvvzJFHHlnd6/7Xv/61Xu9Z23d2Xer7nQVfJHQDK437778/zZs3T/PmzdOiRYvce++9uf3229Oo0ae3utdffz3PPPNM9dDfI488MsOGDat1jnJtunTpUmPeWV0aNWqUTTbZpMa5zzzzTJLU+EXh448/rm5vkyZNcsIJJ+S6667LhhtuWKPer3/96+rzPnuNGDEiSXLIIYfk8MMPT8+ePdOhQ4d897vfza9+9avMmDGjXj/TZ+bPn58HH3ywxpC+JOnevXt1+3bccccceuihOeqoo2qcc+ONN+b73/9+Kisr07Vr12ywwQa1zpevzWdzAuvzudZ27heHISZJ//7907x586y66qrp1KlTKioqcvnlly9Rr1OnTjU+0y222KL62HXXXZenn346rVu3zo477pjTTjstTz31VL1+JqA4X3afT5LDDz98iXvm22+/nSQZNGhQ1lxzzXTu3Dmbbrppjj766Nxxxx2pqqoqqx3Lek+vqqrK8OHDq+csf//738+TTz6ZN998s17vW+498/PnNeQ+P3bs2CU+08/WFunYsWP++7//OwMHDkyrVq2y55575sILL8wbb7xRr5/p85b1nn7bbbdl4403zhZbbJHKysp8//vfr/cfM2r7zq5LOZ8/fJ7QDaw09thjj7z00kt56aWX8uyzz2afffbJfvvtV92jMXTo0Oyzzz5p06ZNkmT//ffPxx9/nEceeaRe9UulUioqKpbp3D/84Q/59re/XeMXwxYtWlS398UXX8zFF1+cvn375r777qtR64gjjqg+77PXZ7+UVFZWZtiwYXn33Xdz2WWXpWPHjrn44our59/V1yOPPJK2bdvWCJ5Jcvvtt+ell17Kyy+/nDvuuCN/+MMf8rOf/az6+PTp0zNy5MjqXyCTlNVz89kfPOrzuX7x3BkzZuTxxx9f4he0M888My+99FJeeeWVjBo1KknyrW99a4kemL/+9a81PtM//elP1cd69OiRN954I6NGjcrBBx+cV199NbvttlsuvPDCev1cQDG+7D6fJEOGDFninrnOOuskSTp06JDRo0dn7Nix+clPfpKFCxemT58+2XfffcsK3st6T3/44Ycze/bs7L///kmSNm3aZO+9965zjZEvKvee+fnzlvU+nySbbrrpEp/pBRdcUH38pJNOyuTJkzNixIjsvPPOufPOO7PFFluU1SPckHv60KFDl/geuvPOO+s9Wqm+3+/lfP5Qwwob2A6wHNU212/hwoWl1VdfvXT22WeXFi5cWOrQoUOpoqKiVFlZWf1KUvrBD35Qfc3S5q717t27tMUWW1Rv1zU/bOHChaVWrVqVTjrppOp9Xbp0Kf3+97+v3q5t/l+pVCrts88+Nebrfdmc7tp8+OGHpTZt2pQGDhy4xLHUMU+tb9++pZ/+9KfV23XN9Rs8eHCpcePGpblz55ZKpVLp6quvLiWp8Zk2atSolKQ0YcKEL33fMWPGlJKU7rzzzlKptPQ5lL/85S9rzN287bbbSttss02Nc2qb/zd69Oga8/XqM6e7NhdeeGFplVVWKc2fP7/GfnO64d/jy+7zpdKXz+muzWfzwh955JEa+5d2r1jWe/ohhxyyxD2zoqKitO6665YWLVr0pe/7xftgOd9Zy3qfX5Z7XFVVVWnvvfcu9ejRY4ljdX2vLes9/dVXXy0lKTVq1GiJ7/frrrvuS9+3tu/s+n5nQX3p6QZWWp89bmXu3LnV83NffPHFGn+pv/XWWzNy5MhMnz59qbU+W8H6oIMO+tL3/e1vf5uPPvqo+tzXX389b731Vvbee+8vvbaysjJz586t189Xl1atWqVDhw71nlddKpVy3333LXWe3+fbt3DhwixYsCDJp0PLTz/99Bqf6csvv5zddtutXj03V1xxRdZYY4306tVrqefNnTs31113XXr06JG11147yac9TfVt82c1GmLzzTfPwoUL61xpGPj3+/x9flltvvnmSVLve+ay3tOnTZuWP/zhD7nttttq3DNffPHFfPTRR/nzn/+81Fq13Qfr8sXvrIbc55fFZ48Uq+9nmiz7Pf3GG29Mjx498vLLL9f4XPv161evUVdf/M5emvp+Z8EXNV7RDQBYXubPn1/9bM6PPvoov/rVrzJr1qz07t07V1xxRb71rW9l6623rnHN5ptvntNOOy0jRoyofl7qwoULM3ny5FRVVWXatGl57LHH8otf/CLbbLNNzjzzzBrXz5kzJ5MnT87ChQvz7rvv5p577smQIUNywgknZI899kjy6S8SvXr1ymqrrVbj2lKpVN3euXPn5uGHH85DDz2UgQMH1voen9e0adO0atUqv/nNb/LSSy/lu9/9bjbccMPMmzcvN910U1599dVcddVV9frcxowZkzlz5mTXXXdd4ti0adOqf76xY8fmyiuvzB577JE11lgjL730Ul544YWMGDGixvNak0/nVF5wwQX5xS9+kcaNP/2qmT59eiZPnpz58+fnH//4R37zm9/k97//fW666aasueaaNa7/4IMPMm/evMycOTNjxozJZZddlqlTp1YvdLNw4cI88MADOeOMM5Zo88yZMzN58uSUSqW88847Oeuss7L22mune/futb7H57Vu3TqrrLJKdt999xx++OHZYYcd0rp164wbNy4///nPq392YMVY2n3+M5/daz6vRYsWWX311XPCCSdknXXWyZ577plOnTpl0qRJ+cUvfpG11147O++8c73asKz39JtvvjmtW7fOoYceusTw5P333z833nhj9t133+p9X3Yf/Ex9vrOW9T7/xff4vIqKirRr1y4vvfRSBg0alB/+8IfZfPPN06RJkzz++OMZOnRo+vfvX6/PdFnv6Z988kluvvnmXHDBBenatWuN6/7jP/4jl19+eV599dXqIfX1+c7+TDnfWfClVmQ3O8Dy0qdPn1KS6leLFi1KO+64Y+muu+4qTZ48udS4ceMlHtvymRNOOKG07bbblkqlT4fRfVajsrKytNZaa5V23XXX0pAhQ0rz5s2rcV3Pnj2rz23SpEmpQ4cOpW9/+9ulkSNH1jhv1113LV1//fU19g0bNqxGe5s2bVraZJNNShdddFFp4cKFtb7H51/77LNPqVQqlV544YXSkUceWVp//fVLTZs2LbVu3brUo0eP0r333lvrz5pahsydc845pSOOOKLGvs+GHX7+s+jUqVPpuOOOqx7WePLJJ9f62JZSqVSaNGlSqVGjRqU//OEP1e/72atZs2alDTfcsNSnT5/SmDFjalz32bDKJKWKiopSixYtSltvvXXpzDPPLE2aNKn6vL/85S+lTp06LfG+6623Xo33WnvttUv7779/jeGTn3+PL75Gjx5dKpVKpYsvvri08847l9Zaa61Ss2bNShtssEHp1FNPLU2dOnWJ9zS8HP49lnaf/0xd/9sePHhwqVQqle66667S/vvvX+rQoUOpSZMmpXXWWad00EEHlV555ZUl3q+uYd7Lek/fcsstl3jk4mduv/32UpMmTUpTpkyp932wVKr/d9ay3ue/+B5f/BlLpVJpypQppVNPPbXUtWvXUvPmzUstWrQobbnllqX/+q//qh4y/3m1DfNe1nv6XXfdVWrUqFFp8uTJtX6um222Wem0006rft/6fGeXSvX/zoL6qiiV6rlsLwBlmzp1ajp06JB333037dq1W9HNqdVWW22Vc845J4ceeuiKbkq9nXrqqVm4cGF+/etfr+imAP+HfB3u6bX5qt/n3dNZ2RleDlCgDz/8MJdffvlX9pezBQsW5KCDDsp+++23optSlq5du9Z7KCjA8vJVv6fX5utwn3dPZ2WnpxsAAAAKYvVyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoyP8HDFrZf5rgVMQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap(\n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'transmissibility_function_reassortment_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='transmissibility_function_reassortment_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=24\n", + " # How many sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXsAAALmCAYAAAAT90eJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADa5ElEQVR4nOzdd3hUZfrG8fvMTHohJHRC74LSi4sISFEQQRQRcRVU0B8qq66iiwWwo667KqjIUi00EUREBFG60kFpoSOEDoH0NjPn90fMkCGTAGGSkOH7ua5cnJzznvd9ZhAwd948xzBN0xQAAAAAAAAAoESzFHcBAAAAAAAAAIArR9gLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA+wFXcBuDqkpaVp69atkqSyZcvKZuM/DQAAAAAAvM1ut+vUqVOSpOuvv16BgYHFXBEAX0KiB0nS1q1b1apVq+IuAwAAAACAa8a6devUsmXL4i4DgA+hjQMAAAAAAAAA+AB29kJSVuuGbOvWrVPFihWLsRoAAAAAAHzTsWPHXD9Zm/NrcQDwBsJeSJJbj96KFSsqOjq6GKsBAAAAAMD38bwcAN5GGwcAAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4gGs27D158qS+//57jRgxQt26dVOZMmVkGIYMw9DAgQMve76FCxeqd+/eio6OVkBAgKKjo9W7d28tXLjwkuew2+0aN26c2rVrp7JlyyooKEi1atXSY489pu3bt192TQAAAAAAAACuHbbiLqC4lC9f3ivzOJ1OPfroo5o4caLb+SNHjujIkSP69ttvNWjQIH322WeyWPLO1k+fPq3u3btr/fr1buf379+v8ePHa+rUqRo7dqwGDRrklboBAAAAAAAA+JZrdmdvTlWrVlXXrl0LdO9LL73kCnqbNm2q6dOna926dZo+fbqaNm0qSZowYYJefvnlPOdwOBzq3bu3K+i96667tHDhQq1du1YfffSRypUrp/T0dD322GOXtVMYAAAAAAAAwLXDME3TLO4iisPIkSPVsmVLtWzZUuXLl9fBgwdVo0YNSdKAAQM0ZcqUi86xe/duNWzYUHa7XS1atNCKFSsUFBTkup6SkqL27dtrw4YNstls2rlzp2rXrp1rnkmTJumRRx6RJD3++OP6+OOP3a7v3btXzZs3V0JCgmrXrq2dO3fKZvPupuzY2FhVqVJFknT48GFFR0d7dX4AAAAAAMDX3wAK1zW7s/fVV19Vjx49rqidwwcffCC73S5JGjNmjFvQK0nBwcEaM2aMpKx+vP/97389zvPvf/9bkhQZGan33nsv1/XatWtr+PDhkrKC37lz5xa4ZgAAAAAAAAC+6ZoNe6+UaZqaN2+eJKl+/fpq06aNx3Ft2rRRvXr1JEnz5s3ThRupd+/erZ07d0qS+vbtq+DgYI/z5HxoHGEvAAAAAAAAgAsR9hbQgQMHdPToUUlS+/bt8x2bff3IkSM6ePCg27VVq1blGudJhQoVVLduXUnS6tWrC1IyAAAAAAAAAB/m3cav15AdO3a4juvXr5/v2JzXd+7c6eoNXJB5du/ercOHDys5OVkhISGXXG9sbGy+148dO3bJcwEAAAAAUFxMR7rsCbtlP7dT9vidf/0ao5BGzyq41gPFXR4AFCvC3gLKGZ5erJl6duN1Kav5+pXOY5qmYmNjXe0hLkXOGgAAAAAAuNo5M+LPB7rxWYGu/dxOOZL2S6Yz13h73BaJsBfANY6wt4ASExNdx6GhofmOzbkDNykpqVDmAQAAAACgpDFNU87UYzlC3RjXbl1n6uX9BKr93M5CqhIASg7C3gJKS0tzHfv7++c7NiAgwHWcmppaKPNczIU7ii907NgxtWrV6rLmBAAAAADgUphOhxxJ+10tF3K2XzAz472yhj0+xivzAEBJRthbQIGBga7jjIyMfMemp6e7joOCgvKdJ+fnlzPPxVysRQQAAAAAAFfKtKfKHr/rfKCbHeom7Jac+X/tfLkswdGyRTSQrdRfHxHXeXV+ACiJCHsLKCwszHV8sZYKycnJruMLWzVcOE9+YW9+8wAAAAAAUFSc6XGuHro5Q11H0kFJpvcWMqyyhtU+H+q6wt16sviFXfx+ALjGEPYWUM6dsjkfsuZJzhYKFz4o7cJ5ypQpc9F5DMNgpy4AAAAAoFCZpilnypEcLRfO/+pMO+nVtQxbsKyl6ufYpdtAtlL1ZQurLcOaf8tDAMB5hL0FdN115388JCYm/75AOa83aNAg33maNGly0XmqVKni9rA2AAAAAAAKynTa5Ujcl2uXrj0+Rqbduw8HtwSUce3OdYW7EQ1kDakiw7B4dS0AuBYR9hZQjRo1VKlSJR09elTLly/Pd+yKFSskSZUrV1b16tXdrt10002u4+XLl6tfv34e5zh+/Lh2794tSWrbtu0VVA4AAAAAuBY5M5PlSNiVO9RN3Cs5M726ljWk2vnduTnaL1gC8/5pVgDAlSPsLSDDMNSrVy99+umniomJ0Zo1a9SmTZtc49asWePakdurVy8ZhuF2vW7dumrQoIF27typWbNm6f3331dwcHCueaZMmeI67t27t3dfDAAAAADAZzjTTntovRAjR/Kf3l3I4idbeJ3zgW72Lt3werL48dOoAFAcCHuvwNNPP63x48fL4XBo6NChWrFihYKCglzXU1NTNXToUEmSzWbT008/7XGe5557To888oji4uL0/PPPa+zYsW7X9+3bp7fffluSVLt2bcJeAAAAALjGmaZTjuTDrkDXER/jCnad6ae9upZhC80KdF0PR/sr1A2rKcPi59W1AABX5poNe1etWqW9e/e6Pj99+vw/hnv37nXbSStJAwcOzDVH3bp1NWzYMI0ePVobNmxQ27Zt9cILL6hWrVrat2+f3nnnHW3evFmSNGzYMNWpU8djLQMGDNCkSZO0evVqffzxxzp+/LgGDx6s0qVLa926dXr99deVkJAgi8Wijz76SDbbNfvbBgAAAADXFNORIXviXtnjY9zaLzjiY2TaU7y6liWwnFvLBVfrheDKuX5KFQBwdTJM0zSLu4jiMHDgQE2dOvWSx+f1NjmdTg0ePFiTJk3K895HHnlE48ePl8WSd7P506dPq3v37lq/fr3H6wEBARo7dqwGDRp0yTVfjtjYWFWpUkWSdPjwYUVHRxfKOgAAAACA3JyZibLH78rVfsGRuE8y7V5cyZA1tHquXbq2UvVlCYj04jrIC19/AyhMbBG9QhaLRRMnTtTdd9+t8ePHa/369Tp9+rTKlCmjli1b6rHHHlO3bt0uOk+ZMmX066+/6n//+5+mTZumnTt3Kjk5WZUqVVKnTp301FNPqWHDhkXwigAAAAAAhcE0TTnTTrkHutmtF1JivbuYxV+28Lq5Q93wujJsQRe/HwBQIl2zO3vhju8sAgAAAIB3mKZTjqQ/PYa6ZsZZr65l+IV7aL1QX9bQGjIs7O+6GvH1N4DCxN/8AAAAAAAUgOlIlz1hT67WC/aEXZIjzatrWYIq5tilW98V7FqCKtJPFwDgQtgLAAAAAEA+nBnxuR6QZo+P+aufrtN7CxkWWUNrunbnutovlKovS0CE99YBAPgswl4AAAAAwDXPNE05U49f0HohRvb4nXKmHPXuYpYA2UrVy91+IayODFugd9cCAFxTCHsBAAAAANcM0+mQI+lAjlA35nw/3cx4r65l+Ee4B7p/HVtDqsmwWL26FgAAEmEvAAAAAMAHmfZU2RN2uwe68Ttlj98tOdO9upYluLLHUNcSWI5+ugCAIkXYCwAAAAAosZzpZ91252aHuo7EA5JM7y1kWGUNq5W79UJ4PVn8w723DgAAV4CwFwAAAABwVTNNU86Uo+d35547/6sz7YR3F7MGZT0cLecu3VL1ZQuvI8Pq7921AADwMsJeAAAAAMBVwXTa5Ujcn2uXrj0+RmZmolfXMgKiLmi9UF+2Ug1kDa0qw7B4dS0AAIoKYS8AAAAAoEiZ9hTZ43flDnUT9kjOTK+uZQ2pev7BaH8FuraIBrIGlvXqOgAAXA0IewEAAAAAhcKZdiZ364X4GDmS/pR3++naZAuv4xbo+pVqIGuperL4hXpvHQAArnKEvQAAAACAAjNNU87kw7kCXXv8TjnTTnl1LcMWcr7lQo6eutbwWjIsfl5dCwCAkoiwFwAAAABwUaYzU/aEva5Q1/FXoGuPj5FpT/bqWpbAcq4euq5QN6KBLMHRMgzDq2sBAOBLCHsBAAAAAC7OzCTXzlx7fIxrt64jYa9k2r24kiFraLULHpKWtWvXEhjlxXUAALh2EPYCAAAAwDXGNE05007lCnTt8TvlTD7s3cUsfrKF1/UQ6taVYQv27loAAFzjCHsBAAAAwEeZplOOpD/P79TNEeqa6XFeXcvwCzsf5Eac36VrDaspw8KXngAAFAX+xQUAAACAEs50ZMiesMcV5J4PdXdJjlSvrmUJqpAr0LWVaiBLcCX66QIAUMwIewEAAACghHBmJHjcpetI3C+ZDu8tZFhkDa2RI9Stf76fbkBp760DAAC8irAXAAAAAK4ipmnKmXrCwy7dGDlTjnh3MUuAbKXqnd+hm71bN7yuDFugd9cCAACFjrAXAAAAAIqB6XTIkXTwfKib40FpZsY5r65l+EfkDnRLNZA1tLoMi9WrawEAgOJD2AsAAAAAhci0p8mesDtXoGtP2C050ry6liW48vmWCzlCXUtQefrpAgBwDSDsBQAAAAAvcKafOx/o5mi/4Eg6IJlO7y1kWGQNq+UKcnM+KM3iH+69dQAAQIlD2AsAAAAAl8g0TTlTjp4PdHOEus7U495dzBp0vp9ujl26tvDaMqwB3l0LAAD4BMJeAAAAALiA6bTLkXTgfMuFHA9JMzMTvLqWERDpYZduA1lDq8owLF5dCwAA+DbCXgAAAADXLNOeKnv8rly7dO0JeyRnhlfXsoRUuSDUzeqtawksSz9dAADgFYS9AAAAAHyeMz0ux+7cnP10/5Rkem8hwyZreG1XD123frp+od5bBwAAwAPCXgAAAAA+IaufbqzH1gvOtJNeXcuwhchWqr6sf+3OdYW6YbVkWP29uhYAAMClIuwFAAAAUKKYzkw5Evad36UbH/NXsBsj057k1bUsgWVd7RZyhrqWkGj66QIAgKsOYS8AAACAq5IzM1mO+Bhlxu+UIz7m/G7dxL2SM9Ora1lDqp3fnZvjIWmWwCivrgMAAFCYCHsBAAAAFCtH2inZz10Q6MbvlCP5kHcXsvjJFl4n1y5dW6l6MmzB3l0LAACgGBD2AgAAACh0pumUI+lQVsuFCx6SZqaf8epahl+Yx9YL1rCaMix8CQQAAHwX/6cDAAAAwGtMR4bsiXtzPBwtK9R1JOySaU/x6lqWwPIeWi/UlyW4sgzD8OpaAAAAJQFhLwAAAIDL5sxMzPFgtBytFxL3SabDiysZsobVuGCXbtauXUtAaS+uAwAAUPIR9gIAAADwyDRNOdNO5tqla4/fKWfKEe8uZgmQrVTd86FuqfpZwW54XRm2IO+uBQAA4KMIewEAAIBrnOl0yJH8p4dQN0ZmxlmvrmX4lXJrueDqpxtaQ4bF6tW1AAAArjWEvQAAAMA1wnSky56w+4LWCzGyJ+ySHGleXcsSXMnjQ9IsQRXopwsAAFBICHsBAAAAH+PMiM+xSzfm/EPSkvZLptN7CxkWWUNr5tipe76nrsW/lPfWAQAAwCUh7AUAAABKINM05Uw9dn53bo72C87UY95dzBooW3i986Fu9q/hdWRYA7y7FgAAAAqMsBcAAAC4iplOhxxJ+7MC3QvaL5iZ8V5dy/Av7WGXbgNZQ6rSTxcAAKAEIOwFAAAArgKmPdW9n252qJuwW3JmeHUtS3C059YLgeXopwsAAFCCEfYCAAAARciZfjbH7tydOfrpHpRkem8hwyprWO0LWi/Uzwp1/cK8tw4AAACuGoS9AAAAgJeZpilnyhH3UPevX51pJ726lmELlrVU/fO7dEvVzwp2w2rLsPp7dS0AAABc3Qh7AVwyZ2aSUndPkD0+RrbIxvKv0EG2UvX5cU8AwDXLdNrlSNyXu/VCfIxMe5JX17IElDnfQzc73I1oIGtIFRmGxatrAQAAoGQi7AVwUaYzUym7Jyhpy6typp1wu2YJLC//Ch3kX6GDAip0kLVUPcJfAIDPcWYmy5GwK0eoG5P1a8IeyZnp1bWsIdVytFw4/5A0S2AZr64DAAAA30PYCyBPpmkq7c/ZStz4ohyJez2OcaadUNrBmUo7OFNSjvC3Yses8De8LuEvAKDEcKaddtud6+qnm/yndxey+MkWXud8oJu9Sze8nix+Id5dCwAAANcMwl4AHqUfW6rEjS8o8/T6y7ovV/gbVCHHzt+OsobXIfwFABQr03TKkXw4K8TNDnT/CnWd6ae9upZhCz3fQzdnqBtWU4bFz6trAQAAAIS9ANxkntmixI3/UvrRRXmO8SvbRo7kw3KmHLnofM7U40o7MENpB2ZIkixBFV0tH/wrdCD8BQAUGtORIXvi3qwdujl66jriY2TaU7y6liWwnFvLBVfrheDK/DsHAACAIkPYC0CSZE88oMTNryht/1d5jvEr00phzd9RQMUOMk1TjsT9yji+TOnHlyrj+LJLDH+PKe3AdKUdmC5JsgRXcg9/w2rzRTEA4LI4M5PcWi64Wi8k7pNMuxdXMmQNre6+S/evXbuWgEgvrgMAAAAUDGEvcI1zpJ1S0u9vKmXXJ3k+YMYaXldhzd5SYLW7XEGsYRiyhdeSLbyWgus+8lf4u++v8HeZMo4vlTPl6EXXd6YcVdr+aUrbP03SheFvR1nDahH+AgBkmqacaafcA93s1gspsd5dzOIvW3jdHKFudl/dujJswd5dCwAAAPAiwl7gGuXMTFbyjv8qedu7MjMTPY6xBFVQWJNXFVTnoYv2FcwKf2vLFl5bwXUH/RX+7j0f/h5bKmfqsYvXlSv8rXzBzl/CXwDwZabplCPpz9yhbnyMzPQ4r65l+IXnaLlQ/3w/3dAaMiz8bzIAAABKHv4vFrjGmM5MpeyeqKTfX5Uz9bjHMYZfuEKvf0HBDZ4q8BPBs8LfOrKF11Fw3cHnw99jS//a+bvsEsPfI0rb/5WrvYQlONoV/GaFvzUJfwGgBDId6bIn7Lkg1I2RPX6X5Ej16lqWoIruge5foa4lqCL/hgAAAMCnEPYC1wjTNJX25zdK3PSiHAl7PA+y+Cuk/hMKveFFWQLLeHV9t/C33qNZ4W/CHveev3mEzzk5U2KVuv9Lpe7/Mqvk7PC3Yses8De0Bl+4A8BVxJmR4CHQ3SlH4n7JdHhvIcMia2hNVw/dnD11LQER3lsHAAAAuIoR9gLXgPRjy5S48QVlnl6XxwhDQbX+rtAmr8kWVr1IajIMQ7ZSdWUrVTdH+Lvbtes349hSOdNOXHSeXOFvSJUcO387yhpanfAXAAqZaZpyph7PEerGuNovXEr/9stiCZCtVL0c7Rf++jWsjgxboHfXAgAAAEoYwl7Ah2XG/a7EjcOVfmRhnmMCKndTWPO35RfZuAgryy0r/K0nW6l6Cqn3WFb4G7/rfPh7fNmlhb/Jh5W67wul7vtCkmQNqepq+eBfoYNsYTUK+6UAgM8ynQ45kg6c36F77vxD0szMeK+uZfhHuAe62f10Q6rJsFi9uhYAAADgKwh7AR9kTzyopC0jlLrvS0mmxzF+ZVoqrPk7CqjYsWiLu0SGYcgWUV+2iPoKqf9/F4S/f7V9SDt50XkcyYeUuu9zpe77XJJkDal2QfhbvZBfCQCUPKY9VfaE3e6BbvxO2eN3S850r65lCa7sMdS1BJbjJzMAAACAy0TYC/gQZ9ppJf3xlpJjPpacGR7HWMPrKKzZWwqsdneJ+iLaU/hrj49x7fq99PD3T6Xum6rUfVMlXRD+VuwoW2i1wn4pAHDVcKafPd9yIUeo60g8oLy+WVgghlXWsFq5Wy+E15PFP9x76wAAAADXOMJewAc4M5OVvOMDJW97V2ZmgscxlsDyCm0ySsF1H5Fh8SviCr3PMAz5RTSQX0QDhdQf8lf4u/OC8PfURefJFf6GVnff+Uv4C6CEM01TzpSj53fn5mi9cCntcS6LNcjjA9Js4XVkWP29uxYAAACAXAh7gRLMdGYqZc8kJW0ZJWfqcY9jDL8whTR6QSHXPS2LX0gRV1h0ssLf6+QXcZ1C6j9+Pvw9tvR8+Jt++qLzOJIOKnXvFKXunSJJsobWcAW/ARU6yBpatZBfCQAUjOm0y5G4P9cuXXt8jMzMRK+uZQRE5dilW98V7FpDq8owLF5dCwAAAMClI+wFSiDTNJX25xwlbnpRjoTdngdZ/BRS/wmF3PCirIFli7bAq4Bb+Nvgiazw99yOv4Lfpco4vvwSw98DSt17QKl7J0vKEf5W7JgV/oZUKeyXAgBuTHuK7PG7Lgh1Y2RP2JNnC5+CsoZUzQpxc+7WjWhwTf67AgAAAJQEhL1ACZN+fLkSNzyvzNPr8hhhKKjm/Qpt+ppsYTWKtLarmWEY8ivdUH6lG/4V/jpzhL/LlH58mcz0MxedJ1f4G1ZLoY2eV1DdwSWqBzKAq58z7cwFrReyeus6kv6Ud/vp2mQLr+MW6PqVaiBrqXqy+IV6bx0AAAAAhY6wFyghMuP+UOKm4UqP/SHPMQGVb1NYs7flF9Wk6AoroQzDIr/SjeRXupFCGjz5V/i7PUf4u/zSwt/EfYr/7THZE3YprMW/CXwBXBbTNOVMPpwr0LXH77ykvuOXw7CFnG+5kKOnrjW8lk/0cgcAAABA2Atc9exJfypp8wil7vtCee3k8otqobAW7yig4i1FW5wPyQp/r5df6esV0mCoW/ibfmypMk4sl5kel+f9ydv/I9ORpvDWY+hXCSAX05kpe8LerJ258TFu7RdMe7JX17IElj3/cLQcrRcswdF8QwoAAADwcYS9wFXKmXZGSVvfUvLOsXn2YLSG1VZY87cUWK0PX8B7mcfw9+w2V8sHT+FvSswnMh0ZKnXjOBkWazFVDqA4OTOT/tqdG+PWU9eRsFcy7V5cyZA1tFquXbq2UvVlCYzy4joAAAAAShLCXuAqY9pTlLzjQyVtHS0zM8HjGEtgeYU2GanguoP40dsiYhgW+UXeIL/IGxRy3T9kmk6l7vtC8asflkyna1zqngmSM12l2k6SYeGvWMAXmaYpZ9qpXIGuPX6nnMmHvbuYxU+28LoeQt26MmzB3l0LAAAAQIlHEgFcJUynXal7Jytx80g5U495HGPYQhVy/fMKue4ZHppTzAzDouDaA2TYgnVueX+3HXup+76Q6UhXxM1fEsYDJZhpOuVIOnTBQ9KyPvJr61IQhl9Y7tYLperLGlaTbxwBAAAAuGR89QAUM9M0lXZorhI3vihHwi7Pgyx+Cq73uEIbvyRrYNmiLRD5Cqp+jwxLgM4uu8et3UbawVk660hX6Q4zZVgDirFCABdjOjJkT9jjIdTdJTlSvbqWJahCrkDXVqqBLMGVaMcDAAAA4IoR9gLFKP34CiVueF6Zp9fmOSaw5v0Ka/qabGE1i7AyXI7Aqj1V+pZ5Oru0t+RIc51PPzxPZ3/prdIdv5FhCyrGCgFIkjMjwWPrBUfifsl0eHElQ9awmufD3BzBriWgtBfXAQAAAAB3hL1AMcg8u1WJG4crPXZBnmMCKt2qsOZvyy+qaRFWhoIKjL5NkZ2+19lfesq0p7jOpx9ZqLife6r0Ld/K4hdSjBUC1wbTNOVMPXHBLt2sgNeZcsS7i1kCZCtVz7U71xXqhteVYQv07loAAAAAcAkIe4Ei5Eg6pMTNI5S673NJpscxflHNFdb8HQVU6lS0xeGKBVTqpMguPyrup+4y7Umu8xnHlujsku4q3fl7WfzCirFCwHeYToccSQf/CnXdd+uaGee8upbhV+p8kJvjIWnW0OoyLFavrgUAAAAAV4KwFygCzrQzStr6tpJ3jpWc6R7HWMNqKazZWwqs3keGYSniCuEt/uXbKbLrT4r76TaZmfGu8xknVihu8a2K7LJQFv9SxVghULKY9jTZE3bnbr+QsNutbYo3WIIreXhIWgNZgsrTTxcAAABAiUDYCxQi056i5B0fKWnraLfgLydLYDmFNhmp4DqDZFj9i7hCFAb/cm0UdevPOvNTV5npca7zmad+U9yizorsukiWgMhirBC4epn2VKXsHq/0o0uy+ukmHZBMp/cWMCyyhtXyEOrWl8U/3HvrAAAAAEAxIOwFCoHptCt17xQlbhkpZ8pRj2MMW6hCGg1TSMN/yuIXWsQVorD5lWmuqFuXKm5xZznTTrnOZ57ZoDM/3qLIW3+SNbBsMVYIXF1M01T6oW+VsP6fciQdvPIJrUF/9dN1D3Rt4XVkWAOufH4AAAAAuAoR9gJelBVWzFPCpuFyxMd4HmTxU3C9/1PoDS/LGlSuaAtEkfKLvEGRty1T3KJOcqYed523n/1dcT92UGTXn2UNrlCMFQJXB/u5GMWve0oZRxdf9r1GQOQFu3Tr/9VPtxotcQAAAABccwh7AS/JOLFSCRteUOap3/IcE1jjPoU1fV228FpFWBmKk1/EdYrqtkJnfrxFzpRY13n7uR0682N7Rd36s6wh0cVYIVB8nJmJStrympJ3fCCZ9nzHWkKqnA91S9V37da1BJalny4AAAAA/IWwF7hCmWe3KXHTi0o/PD/PMf6Vuiq8+dvyi2pWhJXhamELr6OobisUt+gWtx9PdyTs1pmFNyvy1l9kC6tebPUBRc00TaXu/0qJG56XM/WYxzH+5dsrqO4j5/vp0u4GAAAAAC6KsBcoIEfSISVuGanUfZ/n+fAgW1QzhTd/RwGVOhdxdbja2MJqKOq25TqzqJMciXtd5x1JBxT3Y3tF3vqzbOG1i7FCoGhkntmi+LVPKvPkao/XLcGVFd7yfQVW78uOXQAAAAC4TIS9wGVypscp6Y+3lbxzjORM9zjGGlZTYc3eUmD1e+gZCRdraFVFdfsr8M3R09mRfCirpUPXn2WLqF+MFQKFx5kep8RNLytl92eev0Fm8VdIw2cVesOL7OIFAAAAgAIi7AUukWlPVfLOj5T0x9syM+M9jrEEllVo45EKrjtYhtW/iCtESWANrqSo25YrbnFn2c9udZ13phzVmb92+PqVblSMFQLeZTodStkzQYmbXpKZfsbjmIDo7gpv9YFs4XWKuDoAAAAA8C2EvcBFmE67UvdOVeKWkXKmHPE4xrCFKKTRMIU0/KcsfmFFXCFKGmtQOUXdulRnfuoq+5lNrvPOtJM682MHRXX9SX5RTYuxQsA7Mk7+qvi1Q93+O8/JGlZL4a0+UGCVHkVcGQAAAAD4JsJeIA+maSr98HdK3Dhc9vidngcZNgXX+z+FNn5Z1qDyRVsgSjRLYJSiuv6suJ9uU+bpta7zZvoZnVl0iyK7LpZ/mZbFWCFQcI6U40rc+EJWT3NPrEEKveElhTZ8VoYtsGiLAwAAAAAfRtgLeJBxYpUSNr6gzJO/5jkmsEY/hTV9nYdqocAsARGK7LpYcUtuV+bJVa7zZsY5xS3qpMjOC+Vfvm0xVghcHtOZqeSdY5S0ZZTMzESPYwKr36PwFv+WNbRqEVcHAAAAAL6PsBfIIfPsdiVuelHph7/Lc4x/xc4Kbz5afmWaF2Fl8FUW/3BFdlmosz/3VMbxpa7zZmai4n66VaU7fa+Aih2Kr0DgEqUfXaKEtf/I8ychbBHXKbz1GAVUvKWIKwMAAACAawdhLyDJkXxYiVtGKXXvFM9PiZdki2yq8BbvKKBSl6ItDj7P4heqyM4LdPaX3ko/ush13rQnK25JN0XeMk8BlbsWY4VA3uxJfypx/bNK+/Mbj9cNv3CFNXlVwQ2ekGHxK+LqAAAAAODaQtiLa5oz/aySto5W8s6PJEeaxzHWsJoKa/qmAmv0lWFYirhCXCsMW5BK3/Ktzi7vq/TD889fcKQp7uc7VLrjNzzEClcV056qpG3vKWnraMmR6nFMUO2BCms+mp7mAAAAAFBECHtxTTLtqVl9Jbe+LTPjnMcxlsCyCm08QsF1H5Vh9S/aAnFNMmyBKt1hts6t6O++S9KZobNL71JE+xkKqnZX8RUI6PzDKxPWPSNH0gGPY/yimiu89Vj5l2tTxNUBAAAAwLWNsBfXFNNpV+q+z5W4eYScKUc8jjFsIQpp+JxCGj0ri19YEVeIa51h9VdE+xk6t2qA0vZPO3/Bmalzy/pK7b5UUM1+xVcgrmn2+F1KWPuUW7uRnIyAKIU3f1tBtR+WYbEWcXUAAAAAAMJeXBOydqLNV+Km4bKf2+F5kGFTcL3HFNr4FX7kGMXKsNgUcdPnirf4Z/WRzmY6dG7l/TKd6QquPaDY6sO1x5mZqKTf31Dyjv9KzszcAwyLgusNUVjT12QJiCz6AgEAAAAAkgh7cQ3IOLFaCRtfUObJ1XmOCax+r8KavSFbeO0irAzIm2GxqlTbiTIsAUrZ/dn5C6ZT8asekpwZCq47uPgKxDXBNE2lHZiuhA3D5Ew56nGMf/l2Cm89Rn6RjYu4OgAAAADAhQh74bMyz+1Q4sYXlX54Xp5j/CveorDm78i/TIsirAy4NIZhUfiNn0rWAKXs/CjHFVPxvz4q05GukAZPFlt98G2ZcX8oYe2Tyjix0uN1S3Alhbd4T4E17pNhGEVcHQAAAADAE8Je+BxHcqwSt4xS6t7Jkun0OMYW2UThzd+Rf6UuhBS4qhmGofBWH8iwBih523tu1xLWDpXpSFdoo2eLqTr4Imf6WSVuHqGUXZ94/jvU4qeQ6/6p0MYv0dccAAAAAK4yhL3wGc70s0ra+o6Sd34oOdI8jrGG1lBYszcUWKOfDMNSxBUCBWMYhsKavyPDGqik3193u5a44TmZjjSFNX6pmKqDrzCdDqXunaTEjS/KmX7a45iAyrcpvNUHspWqV8TVAQAAAAAuBWmXl2RkZGjChAm69dZbVbFiRQUEBCg0NFT16tXTQw89pF9//fWS5lm4cKF69+6t6OhoBQQEKDo6Wr1799bChQsL+RWUXKY9TUnb/q2T39RS8rZ3PAa9loAyCm/9kcr2jlFQzf4EvShxDMNQWNPXFNr0jVzXkja/rMRNr8g0zWKoDL4g49RanVnQRvG/Puox6LWG1lDpW+apdOcfCHoBAAAA4CpmmKQDV+zPP//U7bffru3bt+c7bujQofrwww89tg1wOp169NFHNXHixDzvHzRokD777DNZLN4PKmNjY1WlShVJ0uHDhxUdHe31NbzNdDqUuu8LJW4ZIWfyYY9jDFuIQho+q5CGz8riH17EFQKFI2nb+0rc8Fyu8yGNhmXtAL4GW5OY9hQ5Uo/LmX5G1pCqsgaVL+6SSgRH6gklbvyXUvdO8TzAGqjQG15UaMPnZNiCirQ2AAAAX1USv/4GUHLQxuEKZWZmugW9N9xwg/75z3+qXr16SkxM1KpVq/T+++8rOTlZY8aMUaVKlfSvf/0r1zwvvfSSK+ht2rSpnn/+edWqVUv79u3Tu+++q82bN2vChAkqW7as3nrrrSJ9jVcb0zSVHvu9EjcOl/1cHgG7YVNwvUcVesMrsgZXKNoCgUIW2uhZGdZAJax1fzhb8rb3ZDrSFN7K8zeVShrTmSln6kk5U49nBbk5fnWmHpcz7YTrczMz0e1ev3I3KahmfwVW7yNrYNliegVXL9OZqZSdHytxy0iZmQkexwRWu1thLd+XLbRaEVcHAAAAACgodvZeodmzZ+uee+6RJN14441auXKlrFar25iNGzfqxhtvVGZmpiIiInTq1CnZbOdz9t27d6thw4ay2+1q0aKFVqxYoaCg8zuoUlJS1L59e23YsEE2m007d+5U7dq1vfo6StJ3Fk3T1JkFNyrz9FqP1wOr91VYszdkC69TxJUBRStl9/8U/+tjktz/Gg+u+6jCb/z0qmxXYppOmelxHsNbtyA39USefWMvi2FVQKUuCqxxnwKr3skOf0npx35Rwtp/5PnNMmup+irVeowCKnUu4soAAACuDSXp628AJQ87e69Qzl68w4cPzxX0SlLz5s3Vo0cPzZ07V+fOndPOnTt1/fXXu65/8MEHstvtkqQxY8a4Bb2SFBwcrDFjxujGG2+U3W7Xf//7X3388ceF9IqufoZhKKzFO4r7sYPbef8KHRXW4h35l2lZPIUBRSy47mDJEqD41Q9JptN1PmX3eJmOdJVqO1GGJfffSd5mmqbMzMRcu209B7knJdNe6DWdL86h9CM/Kv3Ij4q3Biow+nYF1uyvwMrdZdgCi66Oq4Aj6ZASNjyntINfe7xu+IUptPFIhTQYKsPqX8TVAQAAAAC8gbD3CmVkZLiOa9asmee4WrVqebzHNE3NmzdPklS/fn21adPG4/1t2rRRvXr1tGvXLs2bN09jx471iR/TLqiACu0VEN1d6bE/yFa6scJbvCP/Sl2v6fcE16bg2g/KsAbo3Ir7JdPhOp+6b6pMZ4Yi2n0uw1Kwv+pNe5ocaScuCGxPeAxy5Uj11ku6QoYu3Ons4khT2p/fKO3Pb2T4hSuwam8F1bxP/hU7Ffg9KglMe5qStr+vpD/ezPP3KajWgwprPlrW4IpFXB0AAAAAwJt896vbIlKv3vmnku/fv18NGzb0OG7fvn2Ssnal1qlzvr3AgQMHdPToUUlS+/bt812rffv22rVrl44cOaKDBw+qRo0aV1p+iRbW/B0F1eivwJr3XZU/rg4UlaAa98qw+Ovs8nslZ6brfNqB6TrnzFDEzdNcOzVNp0POtFOed96muQe5Zsa5YnpFFzBssgSVkyWogqxBFWT568Oa89fA8rIEVZBhDVD6kUVKPTBdaYfm5RlumpkJSt03Van7psoSWFaB1e9RUI375Ffubz7190na4e+VsO4pORL3e7xui2yqUm3Gyr/c34q4MgAAAABAYSDsvUL33XefXn75ZSUkJOidd95R9+7dc7Vy2Lx5sxYsWCBJ6t+/v8LDz/eM3LFjh+u4fv36+a6V8/rOnTsvK+yNjY3N9/qxY8cuea6rhV/pRvIr3ai4ywCuCoHVeqt0x7k6u/RuyZnuOp/25zc6Pb+pZPhlBbvpp9xaPhQnS0AZWYLK5wpvLwxyjYDIywpgA6v2VGDVnnJmJin98HdK3T9d6UcXuQXhOTnTTikl5hOlxHwia0hVBdbop6Aa98kW2bjE/rSAPWGPEtY9rfTYHzxeNwIiFdbsLQXXGVQkrT4AAAAAAEWDsPcKlSlTRl988YXuu+8+rV69Wi1bttTTTz+tunXrKikpSatXr9b777+vjIwMNWvWTO+//77b/TlD2Is1Zc9u4C5lNXG/HDnvBeCbAqvcrshO3ynulzvddrTaz+3I+yYvM/zC3IPbv3bcWnMFuuVkWPwKtRaLX6iCavZXUM3+cqbHKe3Pb5S6f7oyji9TXq0eHMmHlLztXSVve1fWUvUVVOM+BdW8r8Q88NGZmaSkP95S8vb3JWdG7gGGRcF1H1NY09dlCYwq+gIBAAAAAIWKsNcLevbsqY0bN+r999/XxIkTNWDAALfr5cuX1+uvv67BgwcrODjY7VpiYqLrODQ0NN91QkJCXMdJSUleqByArwmo3FWRnX/Q2Z97yLQne2dSi7/HXbfZu3Ldgl2/kIvPVwwsAZEKrjtYwXUHy5FyVGkHZin1wDRlnl6f5z2O+BglbRmppC0j5RfVXIE17lNQjXtlDbn6npZsmqbSDsxUwobn5Ew54nGMX7m2KtV6jPyimhZxdQAAAACAokLY6wUZGRn6/PPPNW/ePJlm7t1iJ06c0JdffqkaNWqoZ8+ebtfS0tJcx/7++T/9PCAgwHWcmnp5D0O62E7gY8eOqVWrVpc1J4CrU0DFDorsulhxP3WTmZngeZBhkSWgbJ7tE7LDXGtQBRn+ESW2nYEn1uBKCmn4tEIaPi17wl6lHpihtAPT890BnXlmozLPbFTihmHyL3+zAmvep6Bqfa6K3bGZZ7cqYc1QZZxY7vG6JaiCwlq8p6Ca9/vU7yMAAAAAIDfC3iuUnJysbt26aeXKlbJarXr++ef10EMPqWbNmkpLS9PatWv12muvadWqVbrzzjv173//W//85z9d9wcGBrqOMzI8/MhtDunp5/twBgUFXVadF2sRAcC3+Jf7m8r22qrU/dMkw8gd5AaUoVerJFt4bYU1flmhN7wk+9mtWQ922z9djuQ/87jDVMaJ5co4sVwJa55UQOWuCqxxnwKr9pLFL6xIa3emn1PilhFKiflEMh25Bxg2hVz3tEIbvyKLf3ju6wAAAAAAn0PYe4VGjRqllStXSlKuFg7+/v7q0qWLOnbsqK5du2rp0qUaNmyYOnXqpMaNG0uSwsLOhwMXa82QnHz+R7Iv1vIBAKyhVRV6w7+Ku4wSwTAM+UXeIL/IGxTW7C1lnvpNqfunK+3gLDnTTnq+ybQrPfYHpcf+oHhrkAKr9FBQjfsUULmbDFug53u8wDSdSt0zWYmbhsuZdsrjGP9KXVSq1UeyReT/4E8AAAAAgG+59MebIxfTNDVp0iRJUt26dXP16s1ms9n0+uuvS5KcTqemTJniupZzx23Oh7V5krMVAw9cA4DCYRiG/Mv9TaXajFG5vkcU2XWxgmo/JMMvn92xjlSlHfxaZ5fepRMzK+jcqoeVfvQnmU67V2vLOLVOZxa0UfyvgzwGvdaQairdcY4iuywi6AUAAACAaxA7e6/AiRMnFBcXJ0lq2jT/B940b97cdRwTE+M6vu666zye9yTn9QYNGlxWrQCAy2dYbAqo1EUBlbrIbPOJ0o8szGr1cHi+5EjzeI+ZGa/UvZOVuneyLIHlFFi9r4Jq3ie/sjcWuGeuI/WkEjcNV+qeSZ4HWAMV2ugFhV7/ggzb5bX5AQAAAAD4DsLeK2CznX/77Pb8d29lZmZ6vK9GjRqqVKmSjh49quXLPT9cJ9uKFSskSZUrV1b16tULUDEAoKAMW6ACq/VWYLXecmYmKu3QPKUdmK70I4sl0/O/Ac60k0qJGauUmLGyhlRTYI1+Cqp5n2ylb7ik4Nd02pUS84kSN4+QmRnvcUxA1d4Kb/kf2cKqX8nLAwAAAAD4ANo4XIHIyEiFh2f9WO9vv/2Wb+CbM8itUaOG69gwDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr14onqAFCMLH5hCq71d0V2XqDy9x5T+I3j5F/+Zkl5/93sSP5Tydve0envmuj0vEZK/P0N2RP25Tk+/dgynf6uqRLWPeUx6LWG11Nkl0WKvGUOQS8AAAAAQBJh7xWxWCy6/fbbJUlHjx7Vm2++6XHc2bNn9cILL7g+79Gjh9v1p59+WlarVZI0dOhQpaamul1PTU3V0KFDJWXtCn766ae99RIAAFfIElhGIfUeU1S35Sp3zyGFtfi3/KKa53uP/dwOJW1+Rafm1Nbp71spaft/5Ug5KklyJMfq7LJ+ilvUUfZz23Lda9hCFdbiXZXt9YcCKnctlNcEAAAAACiZDNM0zeIuoiSLiYlR8+bNlZKSIkm64447NGDAANWsWVNpaWlas2aNPvjgAx06dEiS1KlTJy1ZsiTXPMOHD9fo0aMlZfX/feGFF1SrVi3t27dP77zzjjZv3uwa99Zbb3n9dcTGxroe+nb48GG3B8cBAC6fPX63Ug/MUOr+aXIk7LqEOwz5lfub7HGbZdpTPI4IrHm/wlu8K2twJe8WCwAAgCLD198AChNhrxcsWbJE9913n06fPp3vuFtuuUWzZ89W6dKlc11zOp0aPHiwJk3K4+E7kh555BGNHz9eFov3N2Tzjw0AFA7TNGWP26LUA9OVemCGnMmHL3sOW+nGKtVmrPzL31QIFQIAAKAo8fU3gMJE2OslZ86c0cSJE7Vw4UJt375d586dk81mU4UKFdSyZUv1799fPXv2vGiv3R9++EHjx4/X+vXrdfr0aZUpU0YtW7bUY489pm7duhVa/fxjAwCFzzSdyjz5q1IPTFfagVlypuf/TULDv7TCmr2h4LqPybBYi6hKAAAAFCa+/gZQmAh7IYl/bACgqJnOTKUf/VlpB6Yr7dBcmZmJOa4aCq77qMKavSFLYJliqxEAAADex9ffAAqTrbgLAADgWmRY/BQYfZsCo2+TaR+ntNgflB77vSRDIfWfkF+Z/B/yBgAAAADAhQh7AQAoZoYtSEHV71ZQ9buLuxQAAAAAQAnm/Sd9AQAAAAAAAACKHGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4ANsxV0AAAAAAAAALp1pmkpOTlZCQoLS0tLkcDiKuyQAl8hiscjf318hISEKDQ2Vv7+/V+cn7AUAAAAAACghnE6nDh06pNTU1OIuBUABZWRkKCkpSSdOnFDZsmUVFRUlwzC8MjdhLwAAAAAAQAlgmmauoNcwDFmt1mKsCsDlcDgcMk3T9fmpU6eUkZGhSpUqeWV+wl4AAAAAAIASIDk52RX0Wq1WVahQQaGhobJYeCQTUFKYpqn09HQlJCTozJkzkqT4+HhFRUUpICDgiufnbwMAAAAAAIASICEhwXVcoUIFhYeHE/QCJYxhGAoMDFS5cuVUrlw51/mzZ896ZX7+RgAAAAAAACgB0tLSJGWFRaGhocVcDYArFRER4TpOSUnxypyEvQAAAAAAACWAw+GQlNXCgR29QMlntVpdPbez/3xfKf5mAAAAAAAAAIBiYBiGV+cj7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAuGQZGRmaPn26HnzwQdWvX19RUVHy8/NTmTJl1Lx5cw0ZMkRLliyR0+ks7lKBaw5hLwAAAAAAAC7JnDlzVK9ePfXv319ffPGFdu3apbi4ONntdp05c0abNm3SuHHj1KVLFzVo0EALFiwo7pKvSdWrV5dhGBo4cGBxl3JVWrZsmQzDkGEYWrZsWXGX41W24i4AAAAAAAAAV7/XX39dI0aMcH3epUsX9ezZU9ddd50iIiIUFxenXbt2af78+frpp5+0e/duvfTSS7r99tuLsWrg2kLYCwAAAAAAgHxNnjzZFfSWK1dOs2bNUvv27XON69y5s5544glt27ZNzzzzjE6dOlXUpQLXNMJeAAAAAAAA5OnIkSN68sknJUkhISFavny56tevn+89jRo10qJFizRt2rSiKBHAX+jZCwAAAAAAgDz997//VUpKiiTptddeu2jQm81isejvf/+7x2urVq3SAw88oOrVqyswMFARERFq2rSpXn755Xx3A1/Ya9U0TU2cOFE33XSToqKiFB4erlatWumLL75wuy8jI0Pjxo1TmzZtFBkZqbCwMLVt21azZs3Kc62DBw+61poyZYok6euvv1bnzp1Vrlw5BQUFqX79+ho+fLjOnTuX73uxbds2vfHGG7r11lsVHR2tgIAAhYaGqk6dOhowYIDWrFmT7/2jRo1y1SJJ8fHxev3119W0aVNFRES4auzQoYMMw9Cff/4pSZo6darrvuyPDh065Psa58yZo65du6pcuXIKCQlR48aNNWbMGGVmZrruM01T06ZNU4cOHVSuXDkFBwerWbNmGjdunEzTzPe1ZNf/9ttvq23btipbtqz8/f1VsWJF3XHHHZo9e3a+c2TXO2rUKEnS+vXrdd9997ne18qVK+uBBx7Qzp07c92b/Xo7duzoOtexY8dc71H2e1EimYBpmocPHzYlmZLMw4cPF3c5AAAAAAD4pCv5+nv37t3mjh07zN27dxdSdbk5nU6zTJkypiQzJCTETEhIuKL5HA6H+cQTT7jeA08fpUqVMhcvXuzx/qVLl7rGLV682LzjjjvynOcf//iHaZqmGRcXZ9588815jnvzzTc9rnXgwAHXmMmTJ5sPP/xwnnNUqlTJ3Llz50Vrzu/jX//6V57v28iRI13jdu/ebVavXj3X/ZMnTzbbt29/0XXat2+f52scMmRInvfdddddpt1uN9PS0sw+ffrkOW7w4MH5/jewZMkSMyoqKt8au3fvbiYmJnq8P3vMyJEjzY8//ti02Wwe5wgODjaXL1+e5+9pfh+TJ0/O9zV4k7f/XLOzFwAAAAAAAB5t375dp0+fliS1a9dOYWFhVzTfv/71L3388ceSpBo1amjcuHFat26dli5dqmeeeUZ+fn6Kj49Xjx499Pvvv+c71yuvvKL58+fr/vvv14IFC7Rx40ZNnz5d9erVkyR99NFHWrJkiQYOHKhff/1VQ4YM0eLFi7Vx40ZNnDhRlSpVkiSNGDFC27dvz3etTz75RJMmTVKrVq00ffp0bdiwQT/88IP69u0rSTp69KhuvfVWJSYm5rrXbrcrJCREffv21bhx47Rs2TJt2rRJP/74o95//31Vq1ZNkjR69GhNnjz5ou9hnz59dOTIEQ0dOlQ//fSTNmzY4HrdkydP1tatW12vrVevXtq6davbR15rjBs3Tp9++qm6d++uOXPmaOPGjfr222/VunVrSVk7fidPnqxhw4Zp9uzZ6t+/v77//ntt3LhRM2bMcO34/t///qcff/zR4xqrV69Wt27ddObMGZUvX15vvPGG5s+fr40bN2r+/PmuneA//PCDBgwYkO/7sGjRIg0dOlQNGzbUpEmTtH79eq1YsULPPPOMLBaLUlJS9MADDygjI8N1T+XKlbV161ZNmjTJdW7SpEm53qM777zzor8PVy2vRMYo8djZCwAAAABA4StpO3u//PJLV70vvfTSFc31xx9/mBaLxZRkNmrUyDx79myuMQsXLnSNadWqVa7rF+6S/eCDD3KNOXbsmBkWFmZKMsuWLWsahmHOnTs317jff//dtVb2LuCcLtwF2r17dzMzMzPXuNdee801ZtiwYbmunzp1yuNrzZaenm526dLFlGRWq1bNtNvtucbk3NlrsVjMRYsW5TmfaZpmtWrVTEnmgAED8h134Wt8+umnc41JTk52zRcVFWUahnHR971nz565rmdkZLh2JN92221mcnKyx5rGjx/vtnv7Qhf+nqSnp+ca88Ybb7jGzJkzJ9f1nP8dLV261GMdRYWdvQAAAAAAACgSZ86ccR2XK1fuiub69NNP5XQ6JUkTJkxQRERErjG33XabHn74YUnSunXrtH79+jzna926tZ566qlc5ytUqKDevXtLkk6dOqW+fft63Kl5ww036KabbpIkrVy5Mt/aAwIC9L///U82my3XtZdeekmNGjWSJE2cONFtJ6kklSlTxuNrzebv76/33ntPkvTnn39qy5Yt+dYycOBAde3aNd8xBVGlShW9++67uc4HBwe7dtmeOXPmkt53T+/njBkzdPDgQQUGBurzzz9XcHCwxzoGDx6sVq1aSVK+vXMDAwM1efJk+fv757r2j3/8w3X+Yr+3voawFwAAAAAAAB7lbEsQEhJyRXMtWbJEktSwYUNXawBPBg8enOseT/r165fntcaNG1/WuP379+c5RpK6du3qao1wIYvF4gpD4+LitGnTpnznSk9P16FDh7Rjxw5t27ZN27Ztc3sg2cXaV9x///35Xi+ou+66S35+fh6v5Xw/77333jznyB539uzZXA+t++677yRJ7du3V9myZfOt5eabb5Yk/fbbb3mO6dKlS57fgAgLC1OdOnUkXfz31tfk/nYEAAAAAAAAILn16E1OTi7wPOnp6dqzZ48k5Rv0SlLTpk3l5+enzMxMbdu2Lc9xdevWzfNazp20lzLOU6/dnFq2bJnv9eydqJK0detWtWnTxu16cnKyPvroI82YMUPbt2+Xw+HIc67sHsl5ueGGG/K9XlDefD+lrPc05+cbNmyQlNVr1zCMS6rp+PHjeV7L7hGcl8jISFcd1xLCXgAAAAAAAHgUFRXlOj5x4kSB5zl79qzr+GLtIPz8/BQVFaXjx48rLi4uz3F5tQGQsnbbXs647PYSeblYzeXLl3cdX1jzwYMHdcstt+jAgQP5zpEtNTU13+ulS5e+pHkulzffT0m5Au2TJ09edk35vRf51ZGzlvyCdV9E2AsAAAAAAACPcv74/sXaE1yqS93VeTW5kpofeOABHThwQIZh6KGHHlK/fv3UoEEDlS1bVv7+/jIMQ06nU1arVZLcWjp4kj2upMkOXbt16+axNzC8g7AXAAAAAAAAHjVs2FBlypTR6dOntXLlSiUkJCg8PPyy58m5G/ViO4TtdrvrwXDZP4pf3C5Wc87rOWuOiYnRqlWrJEkvvvii3njjDY/357eD2VdERUXp6NGjysjIcD3QDt7HA9oAAAAAAADgkWEYroePJScna8KECQWaJyAgwPXArLVr1+Y7dvPmzcrMzJSkqyYUXL9+/SVfz1nz9u3bXcf5Pdgsu5+tt1yNu6ebNm0qKeu1ZmRkFGstV+P74y2EvQAAAAAAAMjTM8884+qPOmLECMXExFzSfU6nU1999ZXr886dO0vKCkDXrVuX5305A+Xse4rb4sWLdezYMY/XnE6npk6dKilrB3OzZs1c1+x2u+s4vwfcjRs3zkuVZgkMDJSU9WC8q0XPnj0lSfHx8Zo8eXKx1pL9/khX13vkDYS9AAAAAAAAyFPlypU1duxYSVmBZfv27bV8+fJ879mxY4duu+02vffee65zQ4YMcT0069FHH1VCQkKu+xYvXqyJEydKklq1aqWWLVt662VckfT0dD322GMeH/Y1evRobd26VZL08MMPKyAgwHUtezezJE2ZMsXj3J9++qnmzZvn1XorVqwoSdq3b59X570SAwYMUJUqVSRJzz33nFasWJHv+FWrVl30v7OCyn5/pKvrPfIGevYCAAAAAAAgXw899JBiY2M1YsQInTx5Uh06dFDXrl3Vq1cvNWjQQBEREYqLi9Pu3bu1YMEC/fjjj3I4HG4PeLv++uv17LPP6r333tPvv/+uZs2a6YUXXlDTpk2VnJys+fPn66OPPpLD4ZC/v78+++yzYnzF7lq0aKH58+erbdu2euaZZ1SnTh2dPHlSU6dO1YwZMyRJ0dHReuWVV9zua9q0qRo1aqRt27bps88+09mzZ/XAAw+oYsWKio2N1ZdffqnZs2erbdu2Wr16tdfq/dvf/qalS5dq/fr1Gj16tLp166aQkBBJUlBQkCpXruy1tS5VQECAZs2apQ4dOigpKUm33HKL+vXrpzvvvFM1atSQ0+nUsWPHtHHjRs2dO1dbt27VmDFj1L59e6/XUrVqVUVHRys2Nlb//ve/FR0drXr16rkefle+fHmFhYV5fd2iQNgLAAAAAACAi3rllVfUsGFDPfvsszp48KAWL16sxYsX5zm+YcOGevfdd93OjR49WsnJyfrkk0+0b98+Pfroo7nuK1WqlGbNmqUmTZp4+yUU2BNPPKHly5drypQp6tevX67rFStW1KJFi1SqVCm384Zh6IsvvtAtt9yis2fPatasWZo1a5bbmOuvv15ff/21KlWq5LV6hwwZok8//VRxcXEaPny4hg8f7rrWvn17LVu2zGtrXY42bdpo2bJl6tu3rw4fPqyvvvrKrdXHhQryMMBL9eKLL+rxxx/XgQMH1KtXL7drkydP1sCBAwtt7cJEGwcAAAAAAABckrvuuku7du3SV199pb///e+qV6+eSpcuLZvNpsjISDVr1kyPP/64fvnlF23dulVdu3Z1u99isejjjz/WihUrdP/996tq1aoKCAhQeHi4mjRpohdffFF79uzJdd/VYPLkyZo2bZo6dOigqKgoBQQEqG7dunr++ee1fft2XXfddR7va9KkibZs2aL/+7//U7Vq1eTn56fIyEi1atVK//73v7Vu3Tq3tgLeULlyZa1bt06PPPKIateu7dajtri1adNGe/bs0bhx43T77berUqVK8vf3V2BgoKpUqaKuXbvqzTffVExMjB588MFCq2PIkCH65ptv1LVrV5UrV042m2/siTVM0zSLuwgUv9jYWFfflMOHDys6OrqYKwIAAAAAwPdcydffe/bskd1ul81mc+sFi8Jx8OBB1ahRQ1LJ3umJq5u3/1yzsxcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADAB9iKuwAAAAAAAADgalO9enWZplncZQCXhZ29AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDs9bJDhw5p5MiRatGihcqWLavAwEBVqVJF7dq104gRI7Rt27Z871+4cKF69+6t6OhoBQQEKDo6Wr1799bChQuL6BUAAAAAAAAAKIl4QJsXjRkzRsOHD1dycrLb+djYWMXGxmrVqlVKSEjQBx98kOtep9OpRx99VBMnTnQ7f+TIER05ckTffvutBg0apM8++0wWCxk9AAAAAAAAAHeEvV7yxhtv6JVXXpEk1a1bV4MHD1bLli1VqlQpnTlzRps3b9bcuXPzDGpfeuklV9DbtGlTPf/886pVq5b27dund999V5s3b9aECRNUtmxZvfXWW0X2ugAAAAAAAACUDIZpmmZxF1HS/fzzz+rcubMk6cEHH9SECRPk5+fncWxGRob8/f3dzu3evVsNGzaU3W5XixYttGLFCgUFBbmup6SkqH379tqwYYNsNpt27typ2rVre/U1xMbGqkqVKpKkw4cPKzo62qvzAwAAAACAK/v6e8+ePbLb7bLZbKpTp05hlQigCHn7zzX9AK6Q0+nUkCFDJEmNGzfWxIkT8wx6JeUKeiXpgw8+kN1ul5TVCiJn0CtJwcHBGjNmjCTJbrfrv//9r7fKBwAAAAAAAOAjCHuv0OLFi7Vnzx5J0gsvvCCb7fI6Y5imqXnz5kmS6tevrzZt2ngc16ZNG9WrV0+SNG/ePLEhGwAAAAAAAEBOhL1X6Ouvv5YkGYahHj16uM7HxcVpz549iouLy/f+AwcO6OjRo5Kk9u3b5zs2+/qRI0d08ODBK6gaAAAAAAAAgK/hAW1XaM2aNZKk6tWrKywsTNOmTdPbb7+tbdu2ucZkP7Bt6NChCggIcLt/x44druP69evnu1bO6zt37lSNGjUuuc7Y2Nh8rx87duyS5wIAAAAAAABw9SHsvQJOp1MxMTGSpDJlyuipp57SRx99lGvc7t27NWzYMM2dO1cLFixQRESE61rOEPZiTdmzG7hLWU3cL0fOewEAAAAAAAD4Hto4XIH4+Hg5nU5J0tatW/XRRx+pYsWK+vLLLxUXF6eUlBQtX77c1Yf3119/1cMPP+w2R2Jious4NDQ03/VCQkJcx0lJSd56GQAAAAAAAAB8ADt7r0BycrLrOC0tTcHBwVq6dKnrQWqSdPPNN+uXX37RjTfeqN9//11z587V2rVr1bp1a9d92fz9/fNdL2cLiNTU1Muq9WI7gY8dO6ZWrVpd1pwAAAAAAAAoOgMHDtTUqVNVrVo1nucEj9jZewUCAwPdPh80aJBb0JstKChIb775puvzmTNnepwjIyMj3/XS09Pd5rwc0dHR+X5UrFjxsuYDAAAAAADwZcuWLZNhGK6Pe++996L3DBw40DUeKA6EvVcgLCzM7fOuXbvmObZTp06y2bI2Uq9fv97jHBdrzZBzJ/HFWj4AAAAAAADAe77++mtt3bq1uMsA8kXYewUCAgJUtmxZ1+f5PQQtMDBQZcqUkSSdOnXKdT7nQ9lyPqzNk5ytGHjgGgAAAAAAQNExTVMjR44s1hqmTJki0zRp4YA8EfZeoYYNG7qOHQ5HvmOzr2fv8JWk6667znUcExOT7/05rzdo0OCy6gQAAAAAAEDBZG/gmzt3rjZv3lzM1QB5I+y9QjfffLPreP/+/XmOS0hI0OnTpyVJlStXdp2vUaOGKlWqJElavnx5vmutWLHCdX/16tULWjIAAAAAAAAuwz/+8Q8FBARIkkaMGFHM1QB5I+y9QnfffbfreO7cuXmOmzt3rkzTlCS1a9fOdd4wDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr1otE3AAAAAABAEalSpYoeffRRSdL333+vdevWXfYcTqdTv/zyi5577jm1bdtWZcqUkZ+fnyIiItSkSRM999xzOnToUL5zZD8A7sJNgK+99prrwXB79uy5aC233nqrDMNQxYoV8/xJ9W+//Vb33HOPqlatqsDAQEVERKhFixZ69dVXdfbs2Ut+3ShahL1X6IYbblC3bt0kSdOnT9fPP/+ca8zx48f18ssvS5L8/f310EMPuV1/+umnZbVaJUlDhw5Vamqq2/XU1FQNHTpUUlYLiKefftrbLwMAAAAAAAD5GD58uIKCgiRJr7zyymXf/9prr6lTp056//339euvv+rMmTOy2+2Kj4/X77//rvfff18NGjTIdzNhXvr37+86njZtWr5jT5w44cqv+vXr58qksp09e1adOnVS7969NXv2bB0+fFjp6emKj4/Xxo0bNWrUKNWvXz/PDYsoXoS9XvDBBx8oIiJCTqdTPXr00PDhw7Vy5Upt2LBBn3zyiVq2bOl6+Nrrr7/u1sZBkurWrathw4ZJkjZs2KC2bdtq5syZ2rBhg2bOnKm2bdtqw4YNkqRhw4apTp06RfsCAQAAAAAArnEVK1bUkCFDJEmLFy/WqlWrLut+u92uihUr6vHHH9cXX3yh1atXa+PGjfr222/1/PPPKzQ0VCkpKerfv7927tx5WXPXrl1brVu3lnTxsHfmzJmu3bz333+/27X09HR17txZv/zyi6xWqx544AFNnz5da9as0cqVK/Xmm28qKipKJ0+eVPfu3fXnn39eVp0ofLaLD8HF1K1bV/Pnz1efPn104sQJjR49WqNHj3YbYxiGXnrpJT3//PMe53jzzTd18uRJTZo0SZs3b1a/fv1yjXnkkUf0xhtvFMprAAAAAAAAJZ9pOuVMP1PcZRQZS0CUDKPo9jK+8MIL+uyzz5ScnKwRI0bol19+ueR7Bw0apJEjR8rPz8/tfLNmzdSrVy8NHTpUbdq00ZEjR/TWW2/piy++uKza7r//fq1du1a7d+/Whg0b1KJFC4/jssPgunXr5hrz2muvadOmTYqIiNCSJUvUvHlzt+s33XST7r//ft144406duyYXnzxRX311VeXVScKF2Gvl9x0003avn27xowZo2+//VYHDhxQRkaGKlasqA4dOmjo0KFq2rRpnvdbLBZNnDhRd999t8aPH6/169fr9OnTKlOmjFq2bKnHHnvM1S4CAAAAAADAE2f6GZ2cUa64yygy5fqdlDWwbNGtV66cnnzySb3zzjtaunSpli5dqo4dO17SvRf22b1QdHS0hg0bpqefflrfffedTNO8rGc23XvvvXrmmWfkcDj01VdfeQx79+3bp7Vr10rKvas3KSlJH3/8saSsn0y/MOjNVq1aNb3yyit6/PHH9fXXX2v8+PEKCQm55DpRuAh7vSgqKkqjRo3SqFGjCjxH9+7d1b17d+8VBQAAAAAAAK8ZNmyYPvnkEyUmJuqVV1657HYO2RISEnTmzBmlpKTINE1JUnBwsOvagQMHVLNmzUuer1y5curSpYt+/PFHzZw5U++//74sFvddzzlbPOTs8ytJy5cvV3x8vCSpT58++a518803S5IyMzO1ceNG1+cofvTsBQAAAAAAAC5RVFSUnn76aUnS6tWrtWjRoku+988//9TQoUNVvXp1lSpVSjVr1lSjRo10/fXX6/rrr9ejjz7qGnv69OnLri17t+6xY8c8tpjIDntbt26t2rVru13Lfl6UlNWf2DCMPD8aNWrkGnv8+PHLrhOFh7AXAAAAAAAAuAz//Oc/FRERIUkaOXLkJd2zcOFCXXfddRo7duwlPdgsNTX1suu68847XbuDL+ylu2nTJsXExEjK3cJBkk6ePHnZ60lSSkpKge5D4aCNAwAAAAAAgI+wBESpXL+ChXYlkSUgqljWjYiI0D//+U+NGDFCa9eu1ffff68ePXrkOf706dPq37+/UlJSFBoaqueee0633nqratWqpVKlSsnf31+S9Msvv6hTp06S5GrtcDlCQ0PVq1cvTZ8+XXPmzNGnn36qwMBASed39VqtVt1777257nU4HK7jTZs25XqQXF6io6Mvu04UHsJeAAAAAAAAH2EYliJ9YNm17Omnn9aHH36oM2fOaOTIkfmGvbNnz9a5c+ckSXPnzlXnzp09jouLi7viuu6//35Nnz5dCQkJ+v7779WnTx85nU7NmDFDktSlSxeVK5f7IX5RUeeD87JlyxLillC0cQAAAAAAAAAuU1hYmIYNGyYpayfs3Llz8xy7fft2SVJkZGSeQa/k3je3oG699VaVKVNG0vndvMuXL9eRI0ckeW7hIElNmzZ1Ha9evfqK60DxIOwFAAAAAAAACuDJJ5907ZIdOXJknq0X7Ha7JCktLU1Op9PjmJSUFH3xxRdXXJPNZlPfvn0lST/88IPOnTvnCn2Dg4N15513eryvc+fOrn6/H330UYHaSKD4EfYCAAAAAAAABRASEqIXXnhBkrR161b98MMPHsfVqVNHUlagO2vWrFzXHQ6HBg0apKNHj3qlruzdu+np6Zo2bZq++eYbSVKvXr0UGhrq8Z6IiAg9+eSTkqRff/1VzzzzTJ7BtCSdOHFCEyZM8Eq98B7CXgAAAAAAAKCAhgwZoooVK0rKehCbJ3379lVAQIAk6aGHHtK//vUv/fzzz9qwYYOmTp2q1q1ba/r06Wrbtq1Xavrb3/6mGjVqSJJeeuklnT17VlLeLRyyvfbaa2rdurUk6cMPP1SzZs308ccfa/Xq1dqyZYuWLl2qsWPH6s4771TVqlU1btw4r9QL7+EBbQAAAAAAAEABBQUF6cUXX9TQoUPzHBMdHa1PP/1UgwYNUlpamt555x298847bmPuvfdeDR48ON+evpejf//+evPNN10PhitTpoxuvfXWfO8JCAjQTz/9pIEDB2rOnDn6/fffXbt9PQkPD/dKrfAedvYCAAAAAAAAV2Dw4MGqUqVKvmMeeughrVy5UnfeeafKli0rPz8/VaxYUbfddptmzpypGTNmyGq1eq2mC3fx9u3bVzbbxfd9hoWF6ZtvvtHKlSs1aNAg1atXT2FhYbLZbIqMjFTLli31xBNP6IcfftBPP/3ktXrhHYZ5lXZb3rdvn06fPq3q1aurfPnyxV2Oz4uNjXX9pXT48GFFR0cXc0UAAAAAAPieK/n6e8+ePbLb7bLZbK4esABKNm//uS7ynb0nT57UJ598ok8++UTx8fG5ru/du1fNmzdX3bp19be//U2VK1fW3Xff7eotAgAAAAAAAADIrcjD3jlz5ujJJ5/Uhx9+qFKlSrldS09PV7du3bRlyxaZpinTNOV0OvXtt9+qV69eRV0qAAAAAAAAAJQYRR72Ll68WIZhqHfv3rmuTZkyRfv27ZMk9ezZUx9++KHuuOMOmaap1atXa+bMmUVdLgAAAAAAAACUCEUe9u7atUuS1KZNm1zXpk2bJkm65ZZb9O2332ro0KGaN2+eOnfuLNM0NWPGjCKtFQAAAAAAAABKiiIPe0+dOiVJuRqQp6amas2aNTIMQ48++qjbtYcffliStGnTpqIpEgAAAAAAAABKmCIPe8+dO5e1sMV96TVr1igzM1OGYahz585u12rUqCEp6+FuAAAAAAAAAIDcijzsDQ0NlSQdP37c7fyyZcskSdddd51Kly7tds3Pz0+SZLPZCr9AAAAAAAAAACiBijzsrV+/viTpxx9/dDv/zTffyDAMtW/fPtc92cFw+fLlC79AAAAAAAAAACiBinyr7O233641a9Zo/PjxatCggdq1a6cpU6Zox44dMgxDd911V657snv1Vq5cuajLBQAAAAAAAIASocjD3ieffFKffPKJjh07pieffNLt2o033qiOHTvmumf+/PkyDEMtW7YsqjIBAAAAAAAAoEQp8jYOpUqV0pIlS9SsWTOZpun6aNeunWbNmpVr/O+//67169dLkrp06VLU5QIAAAAAAABAiVAsTzxr0KCBNmzYoAMHDuj48eOqWLGiqlevnuf4yZMnS5JuueWWIqoQAAAAAAAAAEqWYgl7s9WoUUM1atTId0zjxo3VuHHjIqoIAAAAAAAAAEqmIg97X3vtNUnS448/rjJlylzSPWfPntWYMWMkSSNGjCi02gAAAAAAAACgpCrysHfUqFEyDEN9+vS55LA3Li7OdR9hLwAAAAAAAADkVuQPaAMAAAAAAAAAeF+JCHszMzMlSX5+fsVcCQAAAAAAAABcnUpE2LtlyxZJUtmyZYu3EAAAAAAAAAC4ShV6z97PP//c4/l58+Zpw4YN+d6bnp6uffv2adKkSTIMQy1btiyMEgEAAAAAAACgxCv0sHfgwIEyDMPtnGmaevnlly95DtM0ZbFY9NRTT3m7PAAAAAAAAKBYbdu2TaNHj9by5ct14sQJV0vTzZs3q0mTJsVb3FVs4MCBmjp1qqpVq6aDBw8WdzlXhSJp42CapuvD07n8Pvz8/NS2bVt99913at++fVGUCwAAAAAAgGvcsmXLZBiGDMPQqFGjCm2djRs3qlWrVvrqq68UGxvrCnqBgij0nb0HDhxwHZumqZo1a8owDC1atEh16tTJ8z7DMBQYGKioqChZrdbCLhMAAAAAAAAocsOHD1dqaqrCw8M1evRotWjRQkFBQZKk2rVrF3N1WUaNGqVXX31Vktw2c+LqU+hhb7Vq1Tyer1SpUp7XAAAAAAAAAF+XmZmp5cuXS5IeffRRDRkypJgrQklX6GHvhZxOZ1EvCQAAAAAAAFx1Tp8+rYyMDElS3bp1i7ka+IIi6dkLAAAAAAAAwF16errr2M/Prxgrga8olrA3JSVFKSkpeV4fM2aM2rVrpwYNGqh79+6aP39+EVYHAAAAAAAA5C3nw9uWLVsmSZo1a5Y6deqksmXLKigoSPXq1dPzzz+vuLi4XPePGjVKhmGoRo0arnMPPfSQa868HgqXlpamsWPHqlOnTqpQoYL8/f1Vrlw5de7cWRMnTpTdbr9o7enp6Ro/frxuv/12Va5cWQEBAQoJCVHDhg01aNAgLVq0yNWXd8qUKTIMw9WvV5JbjdkfBw8ezLWOw+HQ1KlT1aNHD1WqVEkBAQGKiorSTTfdpP/85z9KTU29aK07d+7UwIEDVaVKFQUGBqpKlSrq37+/1q9ff9F7r1VF3sZh/vz5uvPOOxUaGqrY2FiFhYW5XX/44Yc1depUSVkNn3fv3q1FixbpjTfe0PDhw4u6XAAAAAAAACBPTqdTDzzwgL788ku387t379Z7772nuXPnauXKlapQocIVrfP777+rV69e+vPPP93Onzp1Sj///LN+/vlnffbZZ5o/f77Kly/vcY4tW7borrvu0oEDB9zOZ2RkaMeOHdqxY4cmTpyoAwcOqHr16gWu9dChQ+rZs6d+//13t/NxcXFavXq1Vq9erU8//VQLFizIs33FrFmz9OCDD7rtfo6NjdX06dP19ddfa9y4cQWuz5cVedib/d2Bnj175gp6V61a5fqOQXBwsOrWrauYmBilpqZqxIgRuuOOO9SoUaOiLhkAAAAAAADw6JVXXtGvv/6qO++8Uw8++KCqVaumEydO6OOPP9aCBQu0d+9ePfPMM5o+fbrrnscff1x9+vTR0aNHdeutt0qS3njjDfXq1cs1ply5cq7jvXv3qn379oqPj1d4eLieeOIJtWrVSlWqVNGZM2f03Xff6bPPPtP69evVq1cvrVy5MldbiJ07d6pdu3ZKSkqSJPXu3Vv9+vVTzZo15XA4tHv3bi1evFhz58513XPnnXeqRYsW+uSTT/Tpp59KkrZu3ZrrPahcubLr+MyZM7rpppt0+PBhBQQEaPDgwWrfvr2qV6+upKQkLV68WB9++KH27t2rbt26adOmTSpVqpTbfOvXr9f9998vu92ugIAAPfPMM+revbsCAgK0du1avfXWWxoyZIiuu+66y/798nVFHvauWbNGhmGoY8eOua6NHz9eklSpUiX99ttvio6O1uHDh3XTTTcpNjZWn332mcaMGVPUJQMAAAAAAJQITtNUUoZZ3GUUmVB/QxbDKNYafv31V73xxht66aWX3M7fdtttuu2227R48WLNnj1bH330kcqWLSspK8gtV66cQkNDXeMrV66c5ybHAQMGKD4+Xk2bNtXixYtVpkwZt+tdu3ZVjx49dPvtt2vt2rWaMmWKBg8e7Dbm73//u5KSkmSxWPTVV1+pX79+btdbt26tBx54QGfOnFFwcLAkKSIiQhEREW7B88U2Yv7jH//Q4cOHVa1aNS1dutStVYUkdejQQffcc4/atWun/fv3691339Wbb77pNubxxx+X3W6Xn5+fFi9erJtvvtl1rVWrVrrrrrvUpk2bXDuHUQxh78mTJyVJ9erVy3Xtxx9/lGEYGjp0qKKjoyVJVapU0dChQ/X8889r+fLlRVorAAAAAABASZKUYWrwktPFXUaR+V/nMgoPKN6wt3nz5nrxxRdznTcMQ//85z+1ePFi2e12/fbbb+rZs+dlz79y5Ur9+uuvkqSpU6fmCnqz3XbbberTp49mzZqVK+xdvHixNm3aJCkrjL0w6M0pKirqsmvMdvDgQc2cOVOSNHbs2FxBb7amTZvqiSee0LvvvqspU6a4hb3r16/Xhg0bJEmPPfaYW9CbrXLlynr//fd17733FrhWX1XkD2g7deqUJOVq4bB9+3adPp31l1HOLeuS1KJFC0nK1ZMEAAAAAAAAKE79+/eXkcfu4ubNm7uO9+/fX6D5v/vuO0lZGyevv/76fMdmB6Pr1693e1jb999/7zp++umnC1THpViwYIEcDoeCg4PVrVu3fMdm13r06FEdOnTIdX7JkiWu44ceeijP+3v37q2IiIgrK9gHFfnOXqvVKkm5nkS4atUqSVLZsmVz7fotXbq0pKwnDgIAAAAAAABXi/r16+d5LTIy0nWcmJhYoPmzd7nu2rUrz1D5QpmZmYqLi3O1X9i8ebMkqWrVqqpWrVqB6rgU2bWmpKTIZrv02PH48eOqWrWqpPM9gf39/dW4ceM87/Hz81PTpk21dOnSK6jY9xT5zt7shs1btmxxO79gwQIZhqF27drluic+Pl6S8tymDgAAAAAAABSH7P62nlgs56M3h8NRoPmzW6JerpSUFNdx9k/TV6xYsUBzXSpv1Jq9QTQyMtK1aTQv5cuXL9B6vqzId/a2a9dOe/bs0dixY/X3v/9dZcqU0fr16/Xjjz9KkusJhDnt3LlTklShQoUirRUAAAAAAKAkCfU39L/O185muVD/4u3XWxSyQ+LGjRvryy+/vOT7sjdcFqXsWsuUKXNZO2499fa91F3McFfkYe/jjz+uKVOm6MCBA6pZs6bq1q2rHTt2yG63KzIy0mNj5V9++UWGYei6664r6nIBAAAAAABKDIthFPsDy+Bd2Q9MS0pKUqNGjQo0R/ZPyx87dsxrdXmSXWtiYqIaNGhw0Z25nmS3cz1z5owcDke+c5w4caJghfqwIm/j0KxZM7333nsyDENJSUnatGmT0tLS5Ofnp//973+5HtwWHx+vBQsWSJI6dOhQ1OUCAAAAAAAAxaZp06aSsh7wdvz48QLN0axZM0nSoUOH9Oeff172/Ze6yza71vT0dFf/3suV/RC6jIwM/f7773mOs9vtudrEohjCXkl65plntHnzZr3yyisaPHiwRowYoT/++EO9e/fONXbZsmVq2bKlbr75ZvXo0aMYqgUAAAAAAACKR8+ePSVJpmnqww8/LNAcd9xxh+v4v//972XfHxgY6DpOT0/Pd53sYPiDDz647HUkqXPnzq7jqVOn5jlu7ty5Onv2bIHW8GXFEvZKWSn9q6++qs8++0yjRo1SvXr1PI7r1auXli5dqqVLl9J0GQAAAAAAANeUrl27qlWrVpKk9957T7Nmzcp3/NatWzV//ny3c507d1bz5s0lSWPGjNGMGTPyvP/MmTNKTU11O5fzwW779u3L89569erpnnvukSTNmDFD//nPf/Kt9cCBA5o+fbrbuVatWrl2In/66adatWpVrvuOHTum5557Lt+5r1XFFvYCAAAAAAAAuLhp06YpMjJSDodD9957r3r27KmvvvpK69at08aNG7Vw4UK99dZbuvHGG3XDDTdo+fLlueb44osvFBoaKqfTqfvuu0933323vv76a23cuFHr1q3TtGnTNHDgQFWrVi1XL9y//e1vruNnnnlGK1as0J49e7R3717t3btXdrvddf3TTz9VzZo1JUnPPvus2rdvr4kTJ2rNmjXavHmzlixZovfff19dunRR7dq19c033+Sq9ZNPPpHNZlNmZqa6dOmiF198UatWrdL69es1duxYNW/eXMeOHVPjxo299Rb7jCJ/QJsnpmlq//79iouLkyRFRkaqZs2aPHUPAAAAAAAA17xatWrpt99+0913361t27Zp/vz5uXbv5hQeHp7rXIMGDbRs2TL17t1bhw8f1pw5czRnzpxLWr927drq27evZs2apcWLF2vx4sVu1w8cOKDq1atLysr1Vq9erb59+2rlypVasWKFVqxYcVm1tm7dWp9//rkGDhyotLQ0vf3223r77bdd1202mz755BOtXr06376+16JiDXsXLVqksWPHatmyZUpJSXG7FhwcrI4dO+rJJ59U165di6lCAAAAAAAAoPjVrVtXW7Zs0axZs/TNN99o/fr1OnXqlBwOh6KiolSvXj3ddNNN6t27t6sNwoWaN2+uXbt2acKECfr222+1bds2xcXFKTAwUDVq1NCNN96oe++91xXc5vTll1+qRYsWmj17tnbt2qXExEQ5nU6P61SoUEErVqzQggULNH36dP322286fvy4MjMzFRERoTp16ujGG29Uz549dfPNN3uc47777lPjxo01evRo/fzzzzp9+rTKli2rtm3b6p///Kdat26t1atXF/j99FWGaZpmUS+akZGhgQMHaubMmZKydvZ6kr2z995779WUKVPk7+9fZDVea2JjY1WlShVJ0uHDhxUdHV3MFQEAAAAA4Huu5OvvPXv2yG63y2azqU6dOoVVIoAi5O0/18Wys7d///6aO3euTNOUzWZTly5d1Lp1a1WoUEGSdPz4ca1bt04//fSTMjMzNXPmTNnt9os2oAYAAAAAAACAa1WRh70LFizQnDlzZBiGOnbsqEmTJqlatWoexx46dEgPP/ywfvnlF33zzTf64Ycf1L179yKuGAAAAAAAAACufpaiXnDKlCmSpMaNG+vHH3/MM+iVpKpVq2rhwoVq0qSJJGny5MlFUCEAAAAAAAAAlDxFHvauWbNGhmHo2WeflZ+f30XH+/n56bnnnpNpmlqzZk0RVAgAAAAAAAAAJU+Rh72nTp2SJF133XWXfE/9+vUlSadPny6UmgAAAAAAAACgpCvysDckJESSdObMmUu+5+zZs5Kk4ODgQqkJAAAAAAAAAEq6Ig9769WrJ0maOXPmJd+TPTb7XgAAAAAAAACAuyIPe3v27CnTNDV58mTXw9ry88UXX2jSpEkyDEN33nlnodcHAAAAAAAAACVRkYe9Q4cOVcWKFWWaph555BH16NFDc+bM0ZEjR5SZmSm73a4jR45ozpw56tGjhwYOHCin06lKlSrpySefLOpyAQAAAAAAAKBEsBX1giEhIfr+++/VuXNnnT17VgsXLtTChQvzHG+apkqXLq3vv/+enr0AAAAAAAAAkIci39krSU2bNtXWrVt19913y2KxyDRNjx8Wi0V9+vTRH3/8ocaNGxdHqQAAAAAAAABQIhT5zt5slSpV0tdff61jx45p2bJl2rZtm+Li4iRJkZGRatSokTp06KCKFSsWV4kAAAAAAAAAUGIUW9ibrWLFirrvvvuKuwwAAAAAAAAAKNGKpY0DAAAAAAAAAMC7CnVn76FDh7w+Z9WqVb0+JwAAAAAAAACUdIUa9lavXl2GYXhtPsMwZLfbvTYfAAAAAAAAAPiKQu/Za5pmYS8BAAAAAAAAANe8Qg17BwwYkO/1c+fOad68eTIMQw8++GBhlgIAAAAAAAAAPq1Qw97Jkyfne3379u2aN2/eJY0FAAAAAAAAAOTNUtwFAAAAAAAAAEBJZBiGDMPQqFGjirsUSYS9AAAAAAAAQC7Lli1zBXkXfgQHB6tKlSrq0aOHJk2apPT09OIuF5BE2AsAAAAAAABcltTUVMXGxmrBggV65JFH1Lx5cx08eLC4ywIIewEAAAAAAID8DBkyRFu3bnV9/Pzzz/rwww8VHR0tKeu5VD179pTD4SjmSnGtK9QHtAEAAAAAAAAlXbly5dSoUSO3c7fccoseeugh3XDDDTp48KC2bt2quXPnqk+fPsVUJcDOXgAAAAAAAKBAwsLC9PLLL7s+X7JkSTFWAxD2AgAAAAAAAAV2/fXXu44PHz6c57ilS5dqwIABqlmzpoKDgxUeHq7rr79ew4YN09GjRy9prdWrV2vQoEGqV6+ewsPD5e/vr+joaPXo0UMff/yxzp07l+e98+fPV58+fRQdHa2AgABFRUXpxhtv1OjRo5WUlOTxnlq1askwDLVt2/aitR05ckRWq1WGYej555/3OCY+Pl5vv/222rZtq7Jly8rf318VK1bUHXfcodmzZ8s0zTznz3443qhRoyRJv/zyi+655x5VqVJFfn5+ql69eq57jh8/rpdeekktWrRQZGSkAgICVKVKFfXt2/eSg/lp06apQ4cOKl26tEJDQ9WoUSONHDky3/e6ONHGAQAAAAAAACggf39/17Gfn1+u62lpaXrooYc0Y8aMXNe2bdumbdu26dNPP9X06dN1xx13eFwjNTVVjzzyiKZPn57r2pEjR3TkyBEtWLBAp06dcoWhOdfv37+/5s6d63Y+Li5Oa9as0Zo1azRmzBgtWLBATZo0cRvTv39/vfHGG/rtt9908OBBj4FqtunTp8vpdEqS7r///lzXf/75Z9177706c+aM2/njx4/r+++/1/fff6/u3btr5syZCg0NzXMdSXrppZf01ltv5Tvmq6++0mOPPabk5GS387Gxsfr666/19ddf65FHHtG4ceNks+WOSO12u/r376+vv/7a7fz27du1fft2ffnll1flTu5CDXtfe+21fK+fPHnyksdmGzFixBXVBAAAAAAAAHjLzp07XccXhqGmaapPnz5asGCBJOmOO+5Q3759VbNmTVksFq1bt07vv/++Dh06pD59+mj16tVq0aKF2xxOp1O9evXSTz/9JEmqU6eOHn/8cbVo0ULBwcE6duyYfv31V82aNctjfQMGDHAFvY0bN9azzz6rBg0aKC4uTjNmzNCUKVN09OhRderUSX/88YcqV67suvf+++/XG2+8IdM0NW3aNL344ot5vg/Tpk2TJDVs2FCNGzd2u7Z69Wp169ZNmZmZKl++vIYOHarGjRurUqVKOnr0qGbOnKkvv/xSP/zwgwYMGKBvvvkmz3XmzJmjrVu36vrrr9czzzyjRo0aKTU1VVu2bHGNmTVrlh544AGZpqmaNWvqySef1HXXXaeyZcvq4MGDmjhxon744QdNnDhR4eHh+s9//pNrneeee84V9NarV0/PP/+8brjhBsXHx+vrr7/W//73P91777151llcDDO//dFXyGKxyDAMr87JUw0LR2xsrKpUqSIp60cOsp8mCQAAAAAAvOdKvv7es2eP7Ha7bDab6tSp43GM03TqTHqKV2otCaICgmUxCqdL6bJly9SxY0dJ0siRI3PtmJWycqqWLVtq8+bNkqSVK1fqpptucl3/3//+p0cffVR+fn767rvvdNttt+Wa4+zZs2rXrp22b9+utm3batWqVW7XP/roIz311FOSpN69e2v69OkKCAjINY/T6dSxY8fcwtoFCxaoR48ekqROnTrphx9+cNuJnLNGSerbt69mzpzpdr158+batGmTGjZsqG3btnl8r2JiYtSgQQNJ0ltvvaXhw4e7rmVmZqpu3bo6ePCgbrvtNn3zzTcKDg7ONUfOOhYvXqwuXbq4Xc+ZMXbq1EkLFizw+D6cPn1atWvXVnx8vB5++GF99tlnHnfuZu8Otlgs2rFjh+rVq+e6tnXrVjVp0kROp1PNmjXT8uXLc+02/vzzzzVgwADX53n9N3Ixl/Ln+nIUehsHb2bJ3g6OAQAAAAAAfMmZ9BSVmz6quMsoMifvG6Wygfn/yH9hOHXqlLZu3aoRI0a4gt4+ffq4Bb2maeqdd96RJP3jH//wGPRKUunSpfXee++pe/fuWr16tfbs2eMK/ZxOp9577z1JUnR0tD7//HOPAaeUtekyZ9ArSR9//LGkrPYSkydPzhX0StLgwYM1a9YsLVmyRHPmzNGxY8dUsWJF1/X7779fmzZt0vbt2/X777/n2rUrZbVMkLKyu/79+7tdmzFjhg4ePKjAwEB9/vnnHoPe7DomTJigdevWacqUKbnC3pyvc8KECXm+D59++qni4+NVuXJlffLJJx6DXkl69dVXNXXqVB05ckSff/653nzzTde1cePGuVpSjB8/3mNbiQcffFAzZszQwoULPc5fXAo17F26dGlhTg8AAAAAAAAUuldffVWvvvqqx2vBwcH6v//7P40ePdrt/I4dO7Rv3z5JWUFwfm6++WbX8W+//eYKe7ds2aLY2FhJWWHoxXrZ5mS327V8+XJJUteuXV07yj0ZPHiwlixZIrvdrmXLlum+++5zXevXr5+GDRsmp9OpadOmeQx7s3sJt23bVtWqVXO79t1330mS2rdvr7Jly+Zb880336x169bpt99+y3NM27Zt8+0dnL1ejx498gyEJclms+nGG2/U7Nmzc62X3Yv3+uuvV/PmzfOc4+GHH762wt727dsX5vQAAAAAAABAsWrSpIn+8Y9/5Ho424YNG1zHN9544yXPd/z4cddx9q5hSWrXrt1l1bV//36lpGS19GjdunW+Y3Nev7BVQ6VKldSxY0f9/PPPmj59ukaPHu320/dr1651hdqeHsyW/T4sWrTokn9qP+d7cKEbbrghz2sOh8PVu/ezzz7TZ599dtnrpaena8+ePZKkli1b5ntfq1atLmn+olQ4TU0AAAAAAAAAHzFkyBBt3bpVW7du1ebNmzV//nwNGDBAFotFv/76qzp06KBTp0653XPy5MkCrZUd0EpZ/Wez5WytcCni4uJcx+XKlct3bIUKFTzely07xD18+LBWrFjhdi27hYOfn5/uueeeXPcW5H1ITU3N81rp0qXzvBYXFye73X7Z6+V8z8+ePetqS3ux9618+fKXvVZhK/SevQAAAAAAACgaUQHBOnnfqOIuo8hEBXju/+pt5cqVU6NGjVyfN2nSRD169FDHjh01cOBAHTx4UIMGDdK8efNcYxwOh+t4/vz5+bYeuHAtb7vS52Ddfffdevzxx5WWlqZp06a5fprf4XBo1qxZkqTbbrtNUVFRue7Nfh+6deumd99994rqkCSr1ZrntZzv+aBBg1wPtrsYT72MpZL5/DDCXgAAAAAAAB9hMSzF8sCya9WAAQM0f/58ffPNN/ruu+/0yy+/6JZbbpEkt+AzIiLCLSy+VGXKlHEdHzt2TPXr17/keyMjI13HJ06cyHdszjYGOe/LFh4erh49emj27NmaPXu2xo4dKz8/P/3888+uuT21cJCy3oejR48qIyOjQO/B5chZu2maBVovIiLCdXyx9+1i14sDbRwAAAAAAACAAnrrrbdcu01ffPFF1/mmTZu6jlevXl2guZs1a+Y6vrB9wsXUrFlTwcFZO5/Xrl2b79h169a5jvMKSLPD3Li4ONdDybJbOISFhalnz54e78t+HzZs2KCMjIzLeAWXz9/fXw0bNpRU8Pc8MDDQ9YC89evX5zv2YteLA2EvAAAAAAAAUEB169ZV3759JWWFqj/99JOkrKA2OjpakjR+/HilpaVd9tyNGzdWlSpVJEkTJkxQUlLSJd9rs9lc7RZ++uknxcbG5jl2woQJrns6dOjgcUz37t1d/XK/+uorpaWlae7cuZKk3r17KygoyON92SFwfHy8Jk+efMn1F1T2ejExMVq0aFGB5ujcubMkuXo052XSpEkFmr8wEfYWkhdeeEGGYbg+li1bdtF7Fi5cqN69eys6OloBAQGKjo5W7969Xd8tAQAAAAAAwNXnxRdfdPV3feONNyRJFovFtdN3//79evDBB5Wenp7nHAkJCRo7dqzbOYvFomHDhkmSYmNj9eCDD+a5O9bpdOro0aNu55544glJUkZGhh555BFlZmbmum/SpElavHixJOmuu+7K80Fw/v7+6tOnj6SsHsTTpk1TYmKipLxbOEhZrS6yA+vnnnvuojuUV61apeXLl+c7Jj9PPfWUQkOzWpk89NBD2r59e77jFyxYoD/++MPt3GOPPeb6/Xz00UeVnJyc676vvvpKP/zwQ4HrLCyEvYVgy5Yt+s9//nPJ451OpwYNGqTu3bvr22+/1ZEjR5SRkaEjR47o22+/Vffu3TV48GA5nc5CrBoAAAAAAAAF0ahRI9eO0hUrVmjVqlWSpP/7v/9T7969JUlff/21GjZsqPfee0/Lly/Xli1btGLFCo0fP179+/dXpUqVNGrUqFxzP/HEE+rSpYskae7cubr++uv14YcfavXq1dq8ebMWLlyokSNHqn79+ho/frzbvbfffrvuueceSdLixYvVpk0bffXVV9q4caOWLFmiQYMGadCgQZKy+t1eLM/KDnVTU1P17LPPSpLKly+vTp065XlPQECAZs2apYCAACUlJemWW27R3//+d82ePVsbN27U+vXr9d1332nkyJG64YYb1K5dO23dujXfOvJTvnx5TZ06VYZh6NixY2rRooWGDBmi7777Tps2bdLatWv1zTff6IUXXlCtWrXUo0cPHTp0yG2Oxo0bu4LyDRs2qEWLFpoyZYo2btyoX375RUOGDNGDDz6oFi1aFLjOwsID2rzM6XTq0Ucfld1uV7ly5XTy5MmL3vPSSy9p4sSJkrL6mDz//POqVauW9u3bp3fffVebN2/WhAkTVLZsWb311luF/RIAAAAAAABwmV566SXNmzdPkvT6669r0aJFMgxDM2fO1FNPPaVx48Zp3759ev755/Oco1y5crnOWSwWffvttxowYIBmz56t3bt36+mnn77kuj7//HPZ7XbNnTtXmzZt0t///vdcYypVqqQFCxaocuXK+c518803q0qVKjp8+LDOnTsnSerXr5+rZ3Fe2rRpo2XLlqlv3746fPiwvvrqK1e/X0/Cw8Mv/sLycdddd2nevHkaOHCg4uLiNG7cOI0bN87jWIvFopCQkFzn//Of/+jo0aOaM2eOYmJi9NBDD7ldr1GjhmbOnKlatWpdUa3exs5eL/voo4+0fv161a9fX4888shFx+/evVv//ve/JUktWrTQ6tWr1a9fP7Vs2VL9+vXTqlWrXN8leO+997R3795CrR8AAAAAAACXr2XLlq4duIsXL3Y9vMvPz0+ffPKJfv/9dw0dOlTXX3+9SpUqJavVqlKlSqlJkyZ65JFHNHv2bO3cudPj3MHBwfr666/1yy+/6IEHHlCNGjUUFBQkf39/ValSRXfccYc+++wz127bnAIDAzVnzhx99913uuuuu1SpUiX5+/urdOnSat26td5++23t2rVLTZo0uehrNAxD9913n9u5/Fo45NSmTRvt2bNH48aN0+233+6qIzAwUFWqVFHXrl315ptvKiYmRg8++OAlzZmfO+64QwcOHNC///1v3XLLLSpfvrz8/PwUFBSkGjVqqEePHvrPf/6jgwcPqmPHjrnu///27jw+qvLu+/j3zEwmk5nJQoAASQDZQkCsooALKOKCtyvFqlVrUWrV21pv7NPWpT6tbW2tdnF9rLgvbRXXuqHeIlpEFgHFhX1fQhJIIOvMZNbz/BEyZJLJSkKSyef9euWVwznXOXMlXJnJ+eaa35WUlKTXX39d//jHP3TqqacqPT1dTqdTY8aM0a9+9St98cUXGj58+GH3s6MZpmmaXd2JRLFr1y4dffTRqq6u1n/+8x998skn+t3vfidJ+uSTT+IWuP7JT36ixx57TJK0bNkynXTSSY3aLF++XCeffHK0/aOPPtrhfS8oKIjWT9m9e3e0gDgAAAAAAOg4h3P/vXnzZoVCIdlsNo0aNaqzugjgCOron2tm9nagm266SdXV1br66qujqx02xzTN6PT+/Pz8uEGvVPuXj9GjR0uS3nrrLZHPAwAAAAAAAGiIsLeDvPLKK3r33XeVmZkZLcvQku3bt0dXSWwpHK47vmfPHu3YseOw+goAAAAAAAAg8bBAWwcoLy/XnDlzJEn33Xef+vXr16rz1q1bF93Oz89vtm394+vXr9ewYcPa1MeCgoJmjxcVFbXpegAAAAAAAAC6F8LeDnDrrbequLhYkydPbtWibHXqB7At1eipq+cj1db0aav65wMAAAAAAABIPJRxOEyLFy/WU089JZvNprlz58owjFafW1VVFd12u93NtnW5XNHt6urqtncUAAAAAAAAQEJjZu9hCAQCuv7662Wapn72s59p3LhxbTq/pqYmum2325ttm5ycHN32+Xxt66hang1cVFSkSZMmtfm6AAAAAAAAALoHwt7DcM8992jDhg0aMmSI7rrrrjaf73A4otuBQKDZtn6/P7qdkpLS5sdqqUwEAAAAAAAAgJ6NMg7ttGHDBv3pT3+SJD3yyCMxZRZaKzU1NbrdUmkGj8cT3W6p5AMAAAAAAACA3oeZve30wAMPKBAIaPjw4fJ6vZo3b16jNmvWrIluf/zxxyouLpYkXXjhhXK5XDGzbesv1hZP/TIMLLYGAAAAAAAAoCHC3naqK6uwbds2XXHFFS22v/vuu6Pb27dvl8vl0tixY6P7NmzY0Oz59Y+PGTOmrd0FAAAAAAAAkOAo49CFhg0bpuzsbEnSokWLmm376aefSpJycnJ01FFHdXbXAAAAAAAAAPQwhL3t9Nxzz8k0zWY/6i/a9sknn0T314W1hmFoxowZkmpn7i5fvjzuYy1fvjw6s3fGjBkyDKNzvzgAAAAAAAAAPQ5hbxe75ZZbZLVaJUk333yzfD5fzHGfz6ebb75ZkmSz2XTLLbcc6S4CAAAAAAAA6AEIe7tYXl6efvnLX0qSVq1apcmTJ+vll1/WqlWr9PLLL2vy5MlatWqVJOmXv/ylRo0a1ZXdBQAAAAAAANBNsUBbN/DHP/5R+/bt0zPPPKPVq1fr8ssvb9Tm2muv1R/+8Icu6B0AAAAAAACAnoCZvd2AxWLR008/rfnz52vGjBnKzs6W3W5Xdna2ZsyYoffee09PPfWULBb+uwAAAAAAAADEZ5imaXZ1J9D1CgoKNHjwYEnS7t27lZub28U9AgAAAAAg8RzO/ffmzZsVCoVks9ko8wgkiI7+uWaqKAAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAGjEMQ4Zh6Le//W1XdwWtZOvqDgAAAAAAAADdzX/+8x9Nmzat0X6r1aq0tDSlp6dr8ODBOuGEEzRlyhRdeOGFstvtXdBT4BBm9gIAAAAAAACtFA6HVVZWph07dmjx4sV68MEHdckllyg3N1d/+MMfFAqFurqL6MWY2QsAAAAAAAA048Ybb9RPfvKT6L+rq6tVVlamb775RgsXLtRHH32kkpIS/frXv9Y777yjd999V/379+/CHqO3IuwFAAAAAAAAmpGVlaVx48Y12n/uuefqtttu07p163TVVVdp9erVWrFihWbOnKmPP/6Ysg444ijjAAAAAAAAAByGsWPHasmSJRo/frwkacmSJXr00Ue7uFfojQh7AQAAAAAAgMOUkpKif/zjHzIMQ5L017/+VcFgMG7b4uJi3XnnnZowYYIyMzOVnJyswYMH67LLLtNHH33U7OOUlZXp2Wef1VVXXaWxY8fK7XbLbrdr4MCBOuecc/TEE08oEAi0qs8vvviiTj/9dPXp00dut1vjxo3TXXfdpfLy8jZ97eg+KOMAAAAAAAAAdICjjz5aZ599tj788EMVFhZq5cqVOuWUU2La/Otf/9INN9wgj8cTs7+goECvvvqqXn31VV177bWaO3eubLbG0d348eO1c+fORvv37t2rDz/8UB9++KHmzp2r9957TwMHDozbz1AopCuvvFKvvvpqzP61a9dq7dq1+uc//9li6IzuiZm9AAAAAAAAQAc566yzotuLFy+OOfbKK6/ohz/8oTwej4YPH677779fH3zwgb744gu9/vrrOu+88yRJTz/9tG699da41w+HwzrxxBN19913691339XKlSu1ZMkS/fOf/9R//dd/SZJWr16tyy+/vMk+/uIXv4gGvaNHj9bTTz+tlStX6qOPPtINN9ygHTt26Pvf//5hfR/QNZjZCwAAAAAAkCBMMyIzUtnV3ThiDEuaDKN7zWU8/vjjo9ubNm2KbpeWlur666+XaZr60Y9+pMcffzxm5u7xxx+viy++WHfeeafuuecePfTQQ7rhhhs0evTomOt//PHHGjVqVKPHPeWUU/SDH/xAzz77rH70ox9p0aJFWrhwoc4888yYdt9++60eeeSR6GMuWrRIbrc7evzMM8/UKaecoquvvvrwvhHoEoS9AAAAAAAACcKMVKqq+Htd3Y0jJnXg6zKsGV3djRh9+/aNbpeVlUW3H3vsMVVUVCgnJ0d///vf45ZokKTf/e53ev7557Vnzx698MIL+uMf/xhzPF7QW9/s2bP18MMP66uvvtKbb77ZKOydO3euIpGIJOmJJ56ICXrrzJo1S/PmzdP777/f/BeLbqd7/ekDAAAAAAAA6MHqh6dVVVXR7bfffluSdMEFFyg5ObnJ8202m04++WRJ0rJly5p9LNM0VVxcrE2bNmnNmjXRj5ycHEnS119/3eiculq8xxxzjE444YQmr/2jH/2o2cdG98TMXgAAAAAAAKCD1A9409LSJNXW2f3qq68kSY8//rgef/zxVl2ruLg47v758+frscce06effhrzeA2VlpbG/Nvv92vz5s2SpIkTJzb72JMmTWpVH9G9EPYCAAAAAAAAHaR+wJqZmSlJOnDggEKhUJuv5fV6Y/5tmqauu+46Pf3006063+fzxfy7rKxMpmlKkrKyspo9d8CAAW3oKboLwl4AAAAAAIAEYVjSlDrw9a7uxhFjWNK6uguNrF69Orpdt7haOByO7vvxj3+sOXPmtOpadrs95t/PPPNMNOg97rjjdMstt+jEE09UTk6OnE6nrFarpNqau//4xz+iwW48hmG07gtCj0LYCwAAAAAAkCAMw9LtFizrbRYsWBDdnjJliqRDM3yl2tm548aNa9e1n3zySUnSyJEjtXTpUqWkpMRtd+DAgbj7MzIyott79+5t9rFaOo7uiQXaAAAAAAAAgA6wZs0aLVy4UJI0ePBgTZgwQVLtDN2jjz5akrRkyZJ2X3/t2rWSpIsuuqjJoNc0TX355ZdxjzkcDo0aNUqStHLlymYfq6Xj6J4IewEAAAAAAIDD5PP5NGvWrGjphF/84hey2Q69qf6iiy6SJG3YsEH/+7//267HqKv76/F4mmzz1ltvqaioqMnjZ511liTp22+/jSk50dAzzzzTrj6iaxH2AgAAAAAAAIdh3bp1mjJlSjQ8nTp1qm688caYNnPmzJHb7ZYkzZ49OzpLtynz58/XN998E7OvblbuO++8E7dUw9atW3XTTTc1e90bbrghWq/3+uuvjxsc/+tf/9J7773X7HXQPVGzFwAAAAAAAGjGvn37tGbNmui/PR6PysrK9M0332jhwoVasGBBdEbvSSedpNdee01JSUkx1xgwYICef/55XXLJJSoqKtKECRN0zTXX6Nxzz1Vubq6CwaAKCgq0YsUKvfbaa9q2bZveeecdfec734leY9asWfrlL3+pwsJCnXzyybrttts0btw41dTU6OOPP9aDDz4ov9+v448/vslSDscee6xuuukm/b//9/+0atUqTZgwQbfddpuOOeYYVVRU6NVXX9UTTzyhCRMmaNWqVZ3w3URnIuwFAAAAAAAAmvHYY4/psccea7ZN//79dcstt+jWW2+NKd9Q38UXX6y33npL11xzjQ4cOKC5c+dq7ty5cdtaLBa5XK6YfXPmzNGCBQv04YcfatOmTbr22mtjjqekpOiFF17Q/Pnzmwx7Jen+++9XYWGh3njjDW3YsEGzZ8+OOT5s2DC9/PLLGjFiRLNfM7ofwl4AAAAAAACglSwWi1JTU5Wenq6hQ4fqhBNO0KmnnqoLLrhAdru9xfMvvPBCbd++XU8++aTee+89rV27VgcOHJDNZtPAgQN19NFH64wzztAll1yiwYMHx5yblJSk+fPn67HHHtMLL7ygdevWyTRN5eTk6KyzztKcOXOUn5+v+fPnN9uHpKQkvf766/rnP/+pJ554Qt98842CwaCGDh2qmTNn6he/+IX69OlzWN8ndA3DrJtjjl6toKAg+gSye/du5ebmdnGPAAAAAABIPIdz/71582aFQiHZbLZo7VYAPVtH/1yzQBsAAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAA0AVM0+zQ6xH2AgAAAAAA9ABWq1WSFA6HFYlEurg3AA5XOBxWOByWdOjn+3AR9gIAAAAAAPQADodDUu1MwOrq6i7uDYDDVV5eHt12Op0dck3CXgAAAAAAgB4gLS0tul1cXKzKykpm+AI9jGmaqqmp0b59+7Rv377o/j59+nTI9W0dchUAAAAAAAB0KpfLpZSUFPl8PoXDYe3Zs0eGYXTY278BdL5wONyoTm96erqSk5M75PqEvQAAAAAAAD2AYRgaMmSIdu3aJZ/PJ6l2lmAoFOringFor/79+6tv374ddj3CXgAAAAAAgB7CYrFo6NCh8ng8qqqqis7yBdAzWCwW2e12uVwuud1u2e32Dr0+YS8AAAAAAEAPYhiG3G633G53V3cFQDfDAm0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAArB1dQcAAOjtymrCWlrk15d7/TIM6b+OcuqELLsMw+jqrgEAAAAAehDCXgAAukB1IKLPi/1aUlijdfuDMusd+7a0Qsf1t+vqsW5lu3mpBgAAAAC0DneQAAAcITUhU1/srQ14vyoJKGw23farkoC+/fSALhju1MUjnXLYqLwEAAAAAGgeYS8AAJ0oFDH1VUlASwpr9MVev/zh1p8bNqW3tnq1eE+Nrsp365TsZEo7AAAAAACaxDShw7Rq1Sr9/ve/1/Tp05Wbm6vk5GS53W7l5eVp9uzZ+uyzz9p0vffff18zZ86MXis3N1czZ87U+++/30lfAQCgo0VMU2tKA3r8m0pd/1Gp/rKqQksLmw96HVZDp2QnKyO58UvzgZqIHv6qUr9bXq6dlaFO7DkAAAAAoCczTNNs5k2kaM5pp52mxYsXt9hu1qxZevLJJ2W325tsE4lEdP311+vpp59uss2Pf/xjPf7447JYOj6jLygo0ODBgyVJu3fvVm5uboc/BgAkMtM0taU8pCWFNVpe5FeZP9LiOUkWaXxWsiZnJ+v4rGTZrYa8wYje2OLVe9u9ccs8GJKmD03RZaNdcifxN1sAAICehvtvAJ2JMg6HobCwUJKUnZ2tSy+9VKeeeqqGDBmicDisZcuW6W9/+5v27NmjF154QcFgUC+++GKT17rzzjujQe/48eN16623asSIEdq6dav+/Oc/a/Xq1XrqqafUv39/3XPPPUfk6wMAtGx3VUhL9tRoaVGN9npbDngthnRMP7smZydr4oBkORsEts4ki64a49bpuQ49v65K35QGY46bkv53p09Li2p0xWi3pg12yEJpBwAAAACAmNl7WC644ALNmjVL3/ve92S1WhsdLy0t1eTJk7Vp0yZJ0qJFi3Taaac1ardp0yYdffTRCoVCmjBhgj799FOlpKREj3u9Xk2dOlWrVq2SzWbT+vXrNXLkyA79WvjLIgC03j5vWEsKa7S0sEa7qlpXhHd0nyRNzk7WSYMcSo9TqiEe0zS1cm9AL6yrUokvfpA8It2mH41L1ciMpFb3HwAAAF2H+28AnYmZvYfh3XffbfZ4v3799Le//U0XXnihJOm1116LG/Y++OCDCoVqazA+8sgjMUGvJDmdTj3yyCM6+eSTFQqF9MADD+jRRx/toK8CANAa5TVhLSvya0lhjTaXt65u7lFpNp2SnaxTBjnU39n4j4ItMQxDkwYm69j+dr291aO3tnoVbJD5bq0I6c4lZZqW69AV+e5WB8kAAAAAgMTDzN5O5vF45Ha7JUnnnXee5s+fH3PcNE3l5uaqsLBQ+fn5Wr9+fZPXys/P18aNG5WTk6Pdu3d36Irs/GURABrzBCNaUVwb8K4pDao1L5iDXNZowJub2rF/U93nDeuFdVVauTcQ97jTZujSPJfOGZoiq4XSDgAAAN0R998AOhMzezuZ3++Pbscr9bB9+/Zo7d+pU6c2e62pU6dq48aN2rNnj3bs2KFhw4Z1bGcBAPKHTX2xtzbg/aokoFDLZXiV6bDo5EHJmpLj0LA0W4f+Ma6+LKdVv5iQoa9K/HpubbWKPLElJLwhU8+vq9bHu32afXSqju7b9MKgAAAAAIDEQ9jbyRYtWhTdHjNmTKPj69ati27n5+c3e636x9evX9+msLegoKDZ40VFRa2+FoCeYVtFUP/ZXSNJSk+2KKPeR92/bcz+lCSFIqa+KQloSWGNVu4NyB9ueQ6vO8nQSYOSNTnbofzMpCO6SNpx/ZP119Psem+7V69v9qqmQX93V4X1++XlOnlQsq4a41a/lLaXkAAAAAAA9DyEvZ0oEono3nvvjf77sssua9Smfgjb0ls36t7mIdW+1aMt6p8LIPGtLPbrgS8r1FJm6U4yGgXAsf+2KiPZolS7cUTDzCMhYppafyCoJYU1+rzIr+pgywFvstXQpIF2Tc526Jh+9i4Ny20WQxeNcGlKjkP/Wl+tzwr9jdosK/Lry31+zRzp0gXDnEqyJtb/IQAAAAAgFmFvJ3rggQe0YsUKSdLFF1+sE044oVGbqqqq6HZdbd+muFyu6HZ1dXUH9RJAollWWKNHvqpsMeiVpOqgqepgWAXV4WbbWQwp3R4bCDcMh+s+UmxGp5UxOFymaWpbRUhLCmu0tNCvMn/LNRpsFml8/9qA9/gByUruZoFppsOqm8en6+yhAT2ztlo7K2MXj/OHpXkbPfpkd42uGevW8QOSu6inAAAAAIDORtjbSRYtWqTbb79dkpSVlaXHHnssbruamprott3efG3F5ORDN+g+n69N/WlpJnBRUZEmTZrUpmsC6H4WF9To0a8rW7WQWFtETKnMH2lVOJpkUROBsLXRPvsRCk4LqkJaWlijJYV+FXubD7YlyZB0TL8knZLt0KSByXIlWTq/k4cpP9Oue6f00YKdPr28ySNPg5nKe71h3beqQsdn2XX1WLcGuvgVAAAAAAASDXd6nWDt2rWaOXOmQqGQHA6HXn31VWVlZcVt63A4otuBQPzV1evUX+wtJSWlTX1idU8g8X28y6cnvq1qFPSO65sku9VQuT+iCn9E5f5Iq2b9tlcwIpX4IirxtRwMp9iMRjOD45WTSLdbZG1jyYQSb1hLi2oD3oazXZuSl2HTKdkOnZztUEZy9w94G7IYhs45yqmTsx16eWO1Fu6qaTQevtwX0DelB3ThMKe+O9Ilh617zVQGAAAAALQfYW8H2759u6ZPn66ysjJZrVbNmzdPp512WpPtU1NTo9stlWbweDzR7ZZKPvQGm8qCWrc/oHOHObvd26qBI+1/d3j1zNrGzyHnDE3RNUe7Y+rtRkxTnqCp8oPBb/0QuHY7HN2uCpgdPku4Pl/IlC8UVpGn+dm2hqRUe/36wta4AXGy1dDqfX4tKfRrY1mwVX0YkmrT5OxknZLtUJYzMRYyS7NbdN0xaTpzSIqeXVOlTeWxYXcoIv17q1ef7qnRVWPcOnlQcrctvQEAAAAAaD3C3g5UWFios846S4WFhTIMQ88884xmzJjR7Dn1Z9zWX6wtnvqlGHr7gmumaeqf66u1sSyoD3b4dGmeS6fnOto88w9IBPO3efXC+sZB7/nDUvTDMe5GIZ7FMJRqN5Rqt2hwaqPTYoQjpioDkZhguHE4XPvZG+q8WNiUVBkwVRkIa1dVWFLrgtymDHBaNTk7WZOzHcpNTdyXwuHpSfrdKX20eE+N/rXBo4oGZTj210T00OpKLdiZpNnjUjUkgb8XAAAAANAbcFfXQUpLS3X22Wdr27ZtkqRHHnlEs2bNavG8sWPHRrc3bNjQbNv6x8eMGdPOniaGL/YForP2yvwRPfFtld7d5tWV+W5NGGBnhhp6jTe3ePTSRk+j/TNHOPX90a7D/lmwWgz1cVjVx9HyjNdA2IwTBodV4TdVXm+2cLk/omDLFR46XJ9ki04+GPCOSLf1mucJi2Foam6KJg5I1mubPfpgh69RGY91B4K6bfEBnTM0RZfmuXpEjWIAAAAAQGOEvR2goqJC55xzjtatWydJuvfee3XTTTe16txhw4YpOztbhYWFWrRoUbNtP/30U0lSTk6OjjrqqMPqc09mmqZe2tB4FmOhJ6y/flGhvAybrhzj1pjM5he8A3oy0zT12maPXtvsbXTssjyXvjfKdcT7ZLcaynJaWyyFYJqmfKF4wXDj2cMVgYgihzFh2JVk6KSBtSUaxvZNiiln0ds4kyyaNTZVZwxO0bNrq7Rmf+zs6Igpvb/DpyWFNboy362puY5e/f0CAAAAgJ6IsPcweb1enX/++fryyy8lSXfeeaduu+22Vp9vGIZmzJihxx57TBs2bNDy5ct10kknNWq3fPny6MzeGTNm9JoZafEYhqGbjkvTSxuq9U1p47dybyoP6bfLynVCll2X57t5WzISjmmaemmjR29tbRz0Xpnv0owRRz7obQvDMORMMuRMsii7hfLjEdNUdaB+feFwk6UkqoK1qXCyVZowoHYG77H97bJR3iVGbqpN//fEDK0o9uuF9dUqbbCQXmXA1NxvqvTRLp9mH52qkRlJXdRTAAAAAEBbGaZpdubaOwktEAjowgsv1IcffihJmjNnjh588ME2X2fTpk0aO3aswuGwJkyYoE8//VQpKSnR4z6fT6eddppWrVolm82mdevWadSoUR31ZUiqrRdcVwd49+7dMbWEu7NvSgN6cX21tleG4h43JJ2W69BleS71S0mMhZfQu5mmqRfWV+u97b5Gx64Z69a5w5xd0KvuIRQxVR005U4yCHhbyR829dYWj97e5o1bWsOQNG2wQ1eMdistmdIOAAAAHaGn3n8D6BkIew/D9773Pb3xxhuSpDPOOEMPPvhgszNu7Xa78vLy4h674447dO+990qSxo8fr9tuu00jRozQ1q1bdd9992n16tXRdvfcc08HfyU9+8UmYppaXuTXvI3V2uuNXwg0ySL911FOfXeEU247gQV6pohp6pk11Vqwq3HQ++NxqTp7aEqcs4CW7fWG9cK6Kq3aG4h73GUzdNlol84eksJCmAAAAIepJ99/A+j+CHsPQ1tLKQwdOlQ7duyIeywSiei6667TM8880+T51157rZ544glZLB0fVibCi00oYmrhLp9e2+xRZSD+sHbaDH13pFPnHuWU3UpggZ4jYpp64psqfVJQE7PfkPTf30nV6YMJenH4vtrn13PrqlXkCcc9PiTVqtlHp2psX2qiAwAAtFci3H8D6L4Iew9DR4a9dd577z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999zD6G3zEunFxheK6N1tPr2zzSt/wyXnD8p0WHTpKJem5jqYpYZuLxwx9fevK/VZoT9mv8WQbjo2TVNyHF3UMySiYNjUezu8en1z08+hk7OTddUYtzIdlMcBAABoq0S6/wbQ/RD2QlJivtiU+yN6Y7NHH+3yqYm8Qjluq64Y7daEAfZevegduq9QxNTDqyv1eXFs0Gs1pDnj03TiIIJedI4DNWH9c321ljT4I0OdZKuhi0c6df4wp5J4pwQAAECrJeL9N4Dug7AXkhL7xabYE9LLmzxa2kRgIUl5fZL0g3yX8jN5azK6j2DY1IOrKxrVUbVZpP9zfLpOGJDcRT1Db7Juf0DPrq3Wrqr4C2EOcll19Vi3xmcxHgEAAFojke+/AXQ9wl5I6h0vNtsqgnpxQ7W+LQ022WbCALsuH+3W4FTbEewZ0FggbOpvX1Toq5LYoDfJIv3ihHQdR7CGIygcMfXRLp9e3uiRJxT/14YTsuyaNdatgS6ePwEAAJrTG+6/AXQdwl5I6l0vNt+UBPSvDdXaURl/lpohaWquQ5fmudQvhXqUOPJqQqb+sqpca/bH/mEi2SrdOiFD4/oxAx1do9If0byN1fp4d43i/fKQZJEuHO7Ud0e6lExpBwAAgLh60/03gCOPsBeSet+LTcQ0tazIr5c3VmuvNxK3TZJF+q+jnPruCKfcdssR7iF6K18oontXVmjDgdigN8Vm6PaJ6ZQaQbewtTyoZ9ZWaUt5/D+a9XVYNGusWycOTKYeOgAAQAO97f4bwJFF2AtJvffFJnTwrcmvb/aoMhD/R8FlMzRjpFPnHuWUnZlq6ESeYER/WlGuzQ0CNKfN0K8mZWhUn6Qu6hnQWMQ09WlBjV7cUK2KJp4/x/VN0uyjU5VLaRwAAICo3nr/DeDIIOyFJF5sfKGI3t3m1TvbfPKH4/9IZDosuizPpdNyHLJaCH3RsaoCEf3x83Jtb1BexJ1k6M4TMzQ8naAX3ZM3GNGrmz36YIdPkThPn1ZD+q+jUnTJKJecSbxLAgAAoLfffwPoXIS9kMSLTZ1yf0RvbPboo10+NZH5Ktdt1RX5bp2QZeftyegQFf6I/vB5uXZVxQa9aXZDvz6xj4akMSsS3d/uqpCeXVultfvjL4KZnmzRD/JdOjXHIQvPnQAAoBfj/htAZyLshSRebBoq9oQ0b6NHy4r8TbYZ3SdJV+a7qKGKw1JWE9bdn5drT3U4Zn+fZIv+74kZvP0dPYppmlpe7Nc/1lVrf038euh5GTbNHpfKbHUAANBrcf8NoDMR9kISLzZN2Voe1IsbqrWmiZlqkjRhgF1XjHYTyqHNSn1h3b28XMXe2KC3r8OiX5+UoUEuxhR6ppqQqTe3evTONq9CcTJfQ9IZQxy6fLRbaSyACQAAehnuvwF0JsJeSOLFpjmmaeqb0oBe3ODRjsr4K88bkk7PdejSPJf6pliPbAfRI+3zhvX75WUq8cUmYf1TLPrNSX2U5WQcoecr9oT0wrpqfbEvEPe4K8nQ9/NcOntoCqUdAABAr8H9N4DORNgLSbzYtEbENLW00K+XN1Zrny/+25OTLNK5Rzk1Y6RTbhYiQhOKPCHdvby80dvcBzqt+vVJGerHHwyQYFbv8+u5tdWNZrHXGZpm04+OdlMWBwAA9ArcfwPoTIS9kMSLTVuEIqYW7PTp9S0eVQXi//i4bIa+O9Kp/zrKKbuV2Wo4pKAqpD98Xq4yf2zQm+O26tcnZqiPg6AXiSkYNvXudq/+vcUjf/zMV1Oyk/WDMW5l8nMAAAASGPffADoTYS8k8WLTHt5gRO9u9+rdbT75w/F/jPo6LLo0z6Wpuaw+D2lXZUh3f16mygZ/JBiSatX/PbGP0pOZDY7EV+oL65/rq5tcANNhNfS9UU6dN8wpm4XnTQAAkHi4/wbQmQh7IYkXm8NRXhPW61u8WrjLpyYyX+W6rboy363js+wyCH17pW0VQf3x83JVB2MHybA0m+48MUOpLFKFXmbt/oCeXVul3VXxp/lmu6w6NcehHLdVOW6bBrqshL8AACAhcP8NoDMR9kISLzYdocgT0ssbPU3OVpOk/D5JujLfrdGZSUewZ+hqm8uC+tOKcnlCsU+3IzNs+tWkDLmo74xeKhwx9eFOn17Z5JE31PyvI1ZDGuCsDX5rA+BD2w4bP0MAAKDn4P4bQGci7IUkXmw60pbyoF7cUK21+4NNtpk4wK7LR7uVm2o7gj1DV9hwIKB7V1bI1yDIys9M0u0T05VCSAWowh/RSxur9cnumnad39dhqRcCH/qcZjd4NwUAAOh2uP8G0JkIeyGJF5uOZpqmvi4N6MUNHu2sDMVtY0iaNtihS/NcLEaUoNaUBvTnVeWNFqMa1zdJv5yQIYeNEAqob0t5UM+sqdLWivjPm23lTjLihsD9UizUUQcAAF2G+28AnYmwF5J4seksEdPUkkK/Xt5YrRJfJG6bJIt03jCnLhrhlJu38yeMr0r8+uuqCgUb/Lcf19+un5+QLruVoAmIJ2KaWlns15r9Qe2pDmlPdVjl/vjPn+1lt0jZDULgbLdNg5xWJfGzCQAAOhn33wA6E2EvJPFi09mCYVMLdvn0xmaPqoLxf+RcSYZmjnDpnKNSCAJ7uC/2+nX/lxUKNcinTsiy62fHpxMmAW3kCUa0pzocDX/rPu/zhtWRv8RYonWBY2cCZ7uscvLHOAAA0EG4/wbQmQh7IYkXmyPFG4zo3W1evbvd2+it/XX6Oiy6LM+l03IdvM24B/q8qEYPra5UuMEz64kDk/U/49Nks/B/CnSUQNhUkadxCFzkCTWaVX+4+iRbGoXAuW6r0pMt1AUGAABtwv03gM5E2AtJvNgcaWU1Yb2+2auFu32KNPETmOu26sp8t47PshMk9BCf7anRo19XNvo/nZydrJuOTZOVoBc4IiKmqX3ecDQALqwXBHtCHftrj8tmKLtBCJzjtirLaeUPdgAAIC7uvwF0JsJeSOLFpqsUVof08iaPlhf5m2yTn5mkH+S7ldcn6Qj2DG31yW6fHv+mqtFbyk/PdeiG76QS+gDdgGmaqvBHVFAv/C301H4+UNOxU4GTLNIgV10AXBcC2zTIZaVUDwAAvRz33wA6E2EvJPFi09W2lAf1r/XVWncg2GSbiQOSdUW+Szlu2xHsGVpjwU6fnlpT1Wj/2UNS9KNxboJeoAfwBiMqjFMSYq833OQ7MNrDkJQVpy5wjtsqF3WBAQDoFbj/BtCZCHshiReb7sA0TX1dEtC/Nni0qyoUt40h6YzBDl2S51Kmw3pkO4i43tvu1fPrqhvtP/eoFF091k0JDqCHC4ZNFXsbh8CF1SEFOrgucEaDusDZB+sC96EuMAAACYX7bwCdiSmCQDdhGIaOy0rWd/rbtWSPXy9vqlaJLzZJMCUt3F2jxXtqdO4wp2aMcDITrIt4ghF9sMOnVzZ5Gh2bMcKpK0a7CGeABJBkNTQ41abBqbG/MkVMU6W+SKMQeE91SNXB9v0dvdwfUbk/orX7Y9/lkWIzGs0EznZZNcBppRY4AAAAgBiEvUA3YzEMnZrr0EmDkvXhLp/+vdmjqgbBQSAivbXVq492+TRzpEvnDE2hBmQn8wYjWn8gqHX7A1p3IKjtFaFG9Xkl6ZJRTl0yiqAXSHQWw1CWs3YhtvFZh/abpqnKgBk3BN7fzrrAvpCpLeUhbSmPfdeHzSINdNaGv7n1wuBBbpuSeU0AAAAAeiXKOEASbyPpzrzBiN7e5tX8bd4m3zLc12HR90e7dGqOg/qwHcQbjGjDgaDWthDu1nf5aJdmjnQdkf4B6HlqQpGDJSBqw9+6heL2esMKd3Bd4H4plkY1gXPdNrntvBsEAICuxv03gM5E2AtJvNj0BGU1Yb2+2auFu31NLhY0ONWqK0e7NT7LzszSNqoLd9cdDHhbE+7WN2uMW+cPd3Za/wAkrlDEVHG9xeEKPXWzgcPyd2QKLCnNbjQKgXPcNvV1UBcYAIAjhftvAJ2JsBeSeLHpSQqrQ5q30aPPi/1NthmTmaQr893K65N0BHvWs3iDEW0sC2rt/trSDNvaGO5KUpJFGpWRpItGODU+K7lT+gmg94qYpg7URFRQrxRE3azgykDH/vqWbK2rC1wXAtcGwQOcVtmoCwwAQIfi/htAZyLshSRebHqizWVBvbihWusOBJtsM2lgsq4Y7VK2m/LcvtDBmbv7g1p3oDbcbWqGdFNsFikvI0lj+9p1dN8kjcxIolYygC5RFYi/OFzDhT0Pl9WQBroOBsB1n1OtynbZ5LDx/AcAQHtw/w2gM5EAAT3UqD5J+s1JGfqqJKAXN1RrV1W4UZsVxX6t2uvXtMEOXTLKpUyHtQt62jU6NtytDXhHEe4C6CZS7RblZ9qVnxm73x82VRgnBC7ytK8ucNhUtKREQ/XrAme7DtUFTkumLjAAAADQVQh7gR7MMAyNz0rWsf3t+mxPjV7e5FFpg1ldEVNauKtGiwtqdP4wpy4a4ZQzKfFuxH2hiDbWq7nb3nB3VF24m2lXXh/CXQA9S7LV0LD0JA1Ljy3jE46Y2usNNwqBCz1h+ULte5NXqS+iUl9AX5fE7k9Niq0LnH3wc78UC4uIAgAAAJ2MMg6QxNtIEkUgbGrBTp/e2OJRdTD+j7Y7ydDMkS5NH5rSo4PMmlBEG8oOztzdH9DWdoS7VqN2hvTRmbUzdwl3AfQ25sG6wHs8Ye2pqjcj2BNWhb9jS0IkW6VBrkMhcK7bqmy3TYNc1AUGAPQu3H8D6EyEvZDEi02i8QYjenurV/O3exVo4l69X4pFl+W5dGqOo0fMtKoJ1S6otm7/oZm7bX1LstWonbl7dF1Zhj5JSibcBYC4qoMR7akKq9BTvyxESPu8kTYvaNkciyENcNZfHO7Q5xRb4r0TBQAA7r8BdCbCXkjixSZRHagJ67XNHn2yu6bJWa9DUq26Mt+t4/rbZXSj0LcmZGpjWSBm5m57w926mrt5hLsAcNgCYTMmAC6sVxc42LGTgZXpsMQJgW1Ktxvd6jULAIC24P4bQGci7IUkXmwS3Z7qkOZt9GhFsb/JNmMzk3Rlvluj+iQ12aYz1YRMbSqrDXbXHghqa3mwXeHuyPrhbkYSq8UDwBESMU3tO1gXuOBgXeC6xeK87awL3BRXkqEc16HwN8dtVU6qTf2pCwwA6AG4/wbQmQh7IYkXm95iU1lQL26o1voDwSbbnDgwWZePdinb3bnrN/rD5sGyDLWzd7e0M9wdUa8sA+EuAHQ/pmmq3B9ptDjcnuqwyjq4LnCSpXFd4JyDdYGTeGcHAKCb4P4bQGfq3DQHQLeS1ydJd52Uoa9KAnpxQ7V2VYUbtfm82K+Ve/06Y7BDl4xyqY/D2iGP3aHhbr0F1Qh3AaB7MwxDfRxW9XFYNa6fPeaYNxg/BN7rDberLnAwIu2qCmlXVUjSoXezGKqtC5zdoCRErtsqZxJ1gQEAAJA4CHuBXsYwDI3PStax/e1avKdGr2zyqNQXO7MqYkof7arR4j01Om+YUxcNd7b5ZtgfPlSWYd3+oDa3N9xNt2lsX7vG9k3S6D5JcrBYDwAkDGeSRaP6WBqVEAqGTRV5G4fAhdWhdtUFNiUVe8Mq9ob15b5AzLE+ybV1gbMbLA7XJ9lCXWAAAAD0OIS9QC9lMQxNzU3RyYMc+nCnT//e4lF1MDaN9Yelf2/x6qOdPs0c6dL0oSlNvg02EI6tubulPKhQG2/ILQ3C3XzCXQDolZKshoak2jQkNfZX1YhpqtQX0Z7qkAoazAj2BNtXmazMH1GZP6I1+2NLHKXYjDiLw1k1wGmlLjAAAAC6LWr2QhI1gyB5ghG9vdWr97Z7FWgipO2fYtFleS5NyXEoFKmtAbzuQEBr97c/3B2ebtPR9WbuphDuAgDayDRNVQRM7akOqTAaAtcGwftrOrYusM0iDXI1CIFdtTOD7dQFBgC0AvffADoTYS8k8WKDQw7UhPXaJo8+3l3TZL3Evg6LKgKRwwt3M5M0OpNwFwDQuXyhQ3WBC+vNBi72hhXpwN+CDdX+UTR2JnDtttvOax0A4BDuvwF0Jso4AIiR6bDq+u+k6fzhTr20waOVe/2N2rR2llRduDs289DMXRbCAQAcSSk2i0ZmWDQyI7YucChiqtgTjpaEKKyrC+wJyd94/dIWmZL2+SLa5wtodUnssXS7ERP+1n3OdFAXGAAAAB2LsBdAXDlum34xIV2byoL614ZqbTgQbPEcQ43LMhDuAgC6I5vFUG6qTbmpNp1Yb3/ENLX/YF3g6OJwB0PhqkD7pgJXBExVHAhqXYPXUofVUHa98De3Xl1gq4UQGAAAAG1H2AugWXl9kvTbkzK0el9AL26s1u6qQ9Od6sLdsX3tOppwFwCQACyGof5Oq/o7rTouK/ZYZaBBCHxwRnCJr311gWvCprZVhLStIhSz32pIAxvWBXZble2yyWEjBAYAAEDTCHsBtMgwDB0/IFnHZdm1stivguqwhqXZlJ9JuAsA6D3S7BalZdo1JjN2f03IVKEnNgTeUx1SsSescDsmA4dNHbxG43oS/VMsym4QAue4bUqjLjAAAABE2AugDSyGoRMHOWLe7goAQG/nsBkanp6k4emN6wLv89aGtgX1QuDC6rBq2pMCSyrxRVTiC+jrBnWBU+vqAjeYEdw3xSILdYEBAAB6DcJeAAAAoBPYLIay3TZlu22aqOToftM0tb8mEg1+D80IDqminXWBqwKmNhwINqqxn2yVsl0Hy0C4bco9GAIPdFlloy4wAABAwiHsBQAAAI4gwzDUL8WqfilWHds/9lh1IBKdBVxYbzZwiS+i9sTA/rC0vTKk7ZUhSf7ofqshDXBaY2sCH/ycYqMkBAAAQE9F2AsAAAB0E267RfmZduU3qAvsD5sqqr84nKf2c5EnrFA71ocLm1KhJ6xCT1gr9wZijvV1WOqFwIeC4HS7IYOSEAAAAN0aYS8AAADQzSVbDR2VnqSjGtQFDkdM7fOFGy0Ot6c6LF+ofSUh9tdEtL8mom9KY0tCuJKMmHrAdSUh+lEXGAAAoNsg7AUAAAB6KKvF0CCXTYNcNk0YEFsXuMwfaRQCF1aHVeZvx1RgSZ6gqU1lQW0qiw2BkyyKloCoHwYPclqVZCUEBgAAOJIIewEAAIAEYxiGMh1WZTqsOqafPeaYJ9g4BN5THdY+b7hddYGDEWlnZUg7G9QFNiQNdFmV7YoNgXPcVjmTqAsMAADQGQh7AQAAgF7ElWRRXh+L8vrEloQIhE0VH6wFXFAvBC7yhBRsx2RgU1KRJ6wiT1hf7IutC9wn2dJoJnCO26qMZAt1gQEAAA4DYS8AAAAA2a2GhqTZNCQt9hYhYpra5w2rsLp+beDaINjTzrrAZf6IyvwRrdkfWxLCaTOi4W+226rcgyFwltNKXWAAAIBWIOwFAAAA0CSLYWigy6aBLpuOH3Bov2maqvBHVFAdVqEntiTEgZr21QX2hkxtLg9pc3koZn+SRRpUrxxEXY3gbJdNduoCAwAARBH2AgAAAGgzwzCU4bAqw2HVuAZ1gb3BiAo9jesC7/WGFWnHZOBgRNpVFdauqnBsHyRlOS0HQ+BDAXBOqlVu6gIDAIBeiLAXAAAAQIdyJlk0MsOikRmxdYGDYVPF3sYhcGF1SIF21gXe641orzegLxvUBU5Ptiin/uJwqTbluKzKdFAXGAAAJC7CXgAAAABHRJLV0OBUmwanNq4LXOqLNAqB91SHVB1sX13gCn9EFf6I1h2IrQucYjOU7Wq8ONwAp1VWCyEwAADo2Qh7AQAAAHQpi2Eoy1m7ENv4rNhjlf6ICuKEwPvbWRfYFzK1tSKkrRWxdYGtRmxd4Pr1gZOpCwwAAHoIwl4AAAAA3VZaskVjk+0a2zd2f03oYF3gqtrwt+BgCLzXG1a4HZOBw6ZUUB1WQXXjusD9UiyNQuAct02pduoCAwCA7oWwFwAAAECP47BZNDzdouHpsXWBQxFTe73hejOB62YDh+VvRwpsSirxRVTiC+irkthjaXZDOW6bsuuFwLlum/pSFxgAAHQRwl4AAAAACcNmMQ4GrzZJydH9EdPUgZr4dYErA+2rC1wZMFV5IKj1DeoCJ1uNg7N/rcp2HZoJPNBllY26wAAAoBMR9gIAAABIeBbDUL8Uq/qlWHVs/9hjVYH4IXCJr311gf1hU9sqQtpWEZLkj+63GtIAZ23wm+u2xswIdtgoCQEAAA4fYS8AAACAXi3VblF+pl35mbH7/WFThXFC4CJP++sCF3rCKvSEtXJv7LG+jvh1gdPsBiUhAABAqxH2AgAAAEAcyVZDw9KTNKxBXeBwo7rAtZ8LPWH5Qu0rCbG/JqL9NQF9Uxq7351kxA2B+6VYZCEEBgAADRD2AgAAAEAbWC2Gst02ZbttmlivLrBpmirzR1RQHdaeqnozgj1hVfjbVxKiOmhqY1lQG8ti6wLbLVJ2nBB4oNOqJCshMAAAvRVhLwAAAAB0AMMwlOmwKtNh1Xf62WOOVQcjKmwwE3hPdUj7vBG1Zy5wICLtqAxpR2VsXWBLtC5wbAic7bLKmURdYAAAEh1hLwAAAAB0MneSRXl9LMrrE1sSIhA2VeQ5FP7WrwscbMdk4IgpFXnCKvKEtWpvIOZYn2RLoxA4121VerKFusAAACQIwl4AAAAA6CJ2q6GhaTYNTYu9NYuYpvbFqQu8pzosbzvrApf5IyrzR7Rmf2xJCJfNUHaDEDjHbVWW00pdYAAAehjCXgAAAADoZiyGoYEumwa6bDphQGxd4HJ/JG4IXNbOusCekKnN5SFtLg/F7E+ySINcdQFwXQhs0yCXVXbqAgMA0C0R9gIAAABAD2EYhvo4rOrjsGpcg7rA3mBsCFzoqf1c7Am3qy5wMCLtqgppV1VsCGxIyopTFzjHbZWLusAAAHQpwl4AAAAASADOJItG9bFoVIO6wMGwqSJv7EzgusXi2lMX2JS01xvWXm9YX+6LrQucEacucI7bqj7UBQYA4Igg7AUAAACABJZkNTQk1aYhqY3rApf6ItpTHVJBg7IQnmD76gKX+yMq90e0tkFd4BSbETcEzkqxymohBAYAoKMQ9gIAAABAL2QxDGU5axdiG591aL9pmqoMmA1qAtdu769pX11gX8jUlvKQtjSoC2yzSAOdteFvbr0QONttoy4wAADtQNgLAAAAAIgyDEPpyYbSk+0a2zf2mC8UiZaAqF8fuNgbVqQdk4FDEamgOqyC6rA+r98HSf1SLI1mAue6bXLbqQsMAEBTCHsBAAAAAK2SYrNoRIZFIzJi6wKHIqaKPY1D4EJPSP5w2x/HlFTii6jEF9BXJbHH0u2GshuEwDlum/o6qAsMAABhLwAAAADgsNgshnJTbcqNUxd4/8G6wHsahMFVgfbVBa4ImKo4ENT6A7F1gR1WQ9lua70QuDYIHuC0ykZdYABAL0HYCwAAAADoFBbDUH+nVf2dVh3X4FhlIHJoBnC9ELjE1766wDVhU9sqQtpWEZLkj+63GtJA18EAuO5zqlXZLpscNkJgAEBiIewFAAAAABxxaXaL0jLtGpMZu78mZKrQcyj8rasRXOQJK9yOycBhUwev1bieRP26wNmuQ3WB05KpCwwA6JkIewEAAAAA3YbDZmh4epKGpzeuC7zPWxvaFjSYEVzTnhRYUqkvolJfQF83qAucmmQ0Whwu221TvxSLLNQFBgB0Y4S9AAAAAIBuz2apXZgt223TRCVH95umqQM1kZiF4Wo/h1TRzrrAVUFTG8qC2lAWWxc42SoNch0KgXMPfh7ooi4wAKB7IOwFAAAAAPRYhmGob4pVfVOs+k5/e8yx6kAkJvytXxe4PTGwPyztqAxpR2VsXWCLIQ1wWmNmAtd9TrFREgIAcOQQ9gIAAAAAEpLbbtHoTItGZ8aWhAiEY+sC76lXFzjUjvXhIqZU5AmryBPWqr2BmGOZDkucENimdLshg5IQAIAORtgLAAAAAOhV7FZDR6Ul6ai02BA4HDG1zxdWYb26wHVhsC/UvpIQB2oiOlAT0belsSUhXEmGclyHwt8ct1U5qTb1py4wAOAwEPYCAAAAACDJajE0yGXTIJdNJwyIrQtc5j9UEqKwXghc5m/HVGBJnqCpTeUhbSoPxexPsqi2NrErti7wIJdVSVZCYABA8wh7AQAAAABohmEYynRYlemw6ph+sXWBPcHYxeEKD37e6w23qy5wMCLtrAxpZ4O6wIYO1QXOdscuEudMoi4wAKAWYS8AAAAAAO3kSrIor49FeX0a1wUu9tSGwAX1wuAiT0jBdkwGNiUVe8Mq9ob1xb7YusB9kg/VBc6uVx+4T7KFusAA0MsQ9gIAAAAA0MHsVkND0mwakhZ72x0xTZX4ItpTVb8mcO22p511gcv8EZX5I1qzP7YusNNmxIS/dZ8HOK3UBQaABEXYCwAAAADAEWIxDA1w1gauxw84tN80TVUEzJjwt+7zgZr21QX2hkxtKQ9pS4O6wDaLNMjVIAR21ZaHsFMXGAB6NMLebmbnzp16+OGHNX/+fO3evVvJyckaMWKELrvsMt10001yOp1d3UUAAAAAQAczDEMZyYYyku06um9sXWBvMKJCT7hRCLzXG1akHZOBQxFpd1VYu6vCsX2Q1D/F0mAmcO22205dYADoCQzTNNv3PhF0uHfeeUdXXXWVKisr4x7Py8vT/PnzNXLkyA5/7IKCAg0ePFiStHv3buXm5nb4YwAAAAAAOk4oYqrIU7soXEGDReIC7ZsM3KR0uxET/tZ9znRQF7ituP8G0JmY2dtNrF69Wt///vfl8/nkdrt1xx13aNq0afL5fJo3b56efPJJbdq0Seeff75WrVql1NTUru4yAAAAAKAL2SyGBqfaNDjVphPr7Y+Ypkp9Ee2pDqmwOnZGcFWwffO9KgKmKg4Ete5AbF1ghzW2LnBuvbrAVgshMAAcaYS93cScOXPk8/lks9n04Ycf6uSTT44eO+OMMzRq1Cjdeuut2rRpk/72t7/pt7/9bdd1FgAAAADQbVkMQ1lOq7KcVo3Pij1W6Y+ooF74W1ceotTXvqnANWFT2ypC2lYRWxfYahyqC1w/DM522eSwEQIDQGehjEM3sGLFCp14Yu3fYW+44QbNnTu3UZtIJKJx48Zp/fr1ysjI0L59+5SUlNRhfeBtJAAAAADQe9WEDtYFrqoNfwuqwyr0hFTsCSvcwalB/brA2fXKQqT1krrA3H8D6EzM7O0G3nzzzej27Nmz47axWCyaNWuW7rjjDpWXl+uTTz7R9OnTj1APAQAAAACJzGGzaHi6RcPTYycVhSKm9nrD9RaGq5sVHJa/nSlwiS+iEl9AX5XE7k+N1gU+OBP44MzgvikWWagLDACtQtjbDXz22WeSJJfLpRNOOKHJdlOnTo1uL1mypFeHveFISAdq9nZ1NwAAAAAg4dkt0rC02o86pmmq3B/RXm9Y+zwR7fWGtNcb1l5vWNWhpq/VnJqQtLW89iPm8Q0py2VRltOqAU6bBjitGuC0qF+KVbYGdYEzHQNktRB1AOi9eAbsBtavXy9JGjlypGy2pv9L8vPzG53TWgUFBc0eLyoqatP1utqBmr2yl83q6m4AAAAAQK81QNIAQ5L74MeRFDj40cCBPi+ovzPnCHcGALoPwt4uVlNTo9LSUklqsU5Pnz595HK55PF4tHv37jY9Tl09IAAAAAAAAACJqXdUP+/Gqqqqottud8t/CnW5XJKk6urqTusTAAAAAAAAgJ6Hmb1drKamJrptt9tbbJ+cnCxJ8vl8bXqclmYCFxUVadKkSW26JgAAAAAAAIDug7C3izkcjuh2IBCn4FADfr9fkpSSktKmx2mpRERPk+kYoAN9XujqbgAAAAAAuoAnGFGJN6y93sjBheFCOmmgQ1MdA7q6awDQpQh7u1hqamp0uzWlGTwej6TWlXxIZFaLjaL7AAAAANBL9Zd0VHpX9wIAuh9q9nYxh8Ohvn37SpIKCgqabVtWVhYNe1lwDQAAAAAAAEB9hL3dwNixYyVJW7ZsUSgUarLdhg0bottjxozp9H4BAAAAAAAA6DkIe7uBKVOmSKot0fDFF1802W7RokXR7cmTJ3d6vwAAAAAAAAD0HIS93cB3v/vd6Pazzz4bt00kEtELL9QuSJaRkaFp06Ydia4BAAAAAAAA6CEIe7uBSZMm6dRTT5UkPf3001q2bFmjNn/729+0fv16SdKcOXOUlJR0RPsIAAAAAAAAoHuzdXUHUOuhhx7S5MmT5fP5NH36dP3qV7/StGnT5PP5NG/ePD3xxBOSpLy8PP385z/v4t4CAAAAAAAA6G4Ie7uJ8ePH6+WXX9ZVV12lyspK/epXv2rUJi8vT/Pnz1dqamoX9BAAAAAAAABAd0YZh27kwgsv1DfffKOf/exnysvLk9PpVEZGhiZMmKD77rtPq1ev1siRI7u6mwAAAAAAAAC6IcM0TbOrO4GuV1BQoMGDB0uSdu/erdzc3C7uEQAAAAAAiYf7bwCdiZm9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACcDW1R1A9xAKhaLbRUVFXdgTAAAAAAASV/177vr34gDQEQh7IUkqKSmJbk+aNKkLewIAAAAAQO9QUlKio446qqu7ASCBUMYBAAAAAAAAABKAYZqm2dWdQNerqanRt99+K0nq37+/bLbuP+m7qKgoOgt5xYoVGjRoUBf3CGg/xjMSCeMZiYYxjUTCeEai6YljOhQKRd9de8wxx8jhcHRxjwAkku6f6OGIcDgcmjhxYld3o90GDRqk3Nzcru4G0CEYz0gkjGckGsY0EgnjGYmmJ41pSjcA6CyUcQAAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEYpmmaXd0JAAAAAAAAAMDhYWYvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS96JF27typn//858rPz5fL5VJmZqYmTpyov/zlL/J6vV3dPSS4ffv26d1339VvfvMbnXvuuerXr58Mw5BhGLrmmmvafL33339fM2fOVG5urpKTk5Wbm6uZM2fq/fffb/U1QqGQ5s6dq1NPPVX9+/dXSkqKRowYoRtuuEFr165tc5/Qe6xatUq///3vNX369OgYdLvdysvL0+zZs/XZZ5+16XqMZ3SVyspKzZs3Tz//+c81depUjRw5Uunp6bLb7crKytLpp5+uP//5z9q/f3+rrrd06VJdddVVGjp0qBwOhwYOHKhzzjlHL730Upv69dJLL2n69OkaOHCgHA6Hhg4dqquuukrLli1rz5cJSJJuu+226O8ehmHoP//5T4vn8PyMrlZ/zDb3cfrpp7d4LcYzADTDBHqYt99+20xLSzMlxf3Iy8szN2/e3NXdRAJrauxJMq+++upWXyccDpvXXntts9f78Y9/bIbD4WavU1JSYk6cOLHJayQnJ5tPPvnkYX7VSESnnnpqs+Ov7mPWrFmm3+9v9lqMZ3S1BQsWtGo89+vXz/zggw+avdZdd91lWiyWJq9x/vnnmz6fr9lreL1e87zzzmvyGhaLxfztb3/bkd8C9BKrV682bTZbzHj65JNPmmzP8zO6i9Y8R0syp06d2uQ1GM8A0DLCXvQoX375pZmSkmJKMt1ut/nHP/7RXLp0qblw4ULzuuuuiwl8Kysru7q7SFD1fxEcMmSIOX369HaFvbfffnv0vPHjx5svvfSSuWLFCvOll14yx48fHz12xx13NHmNUChkTpkyJdr24osvNt9//33z888/Nx9++GEzKysrGiq89957HfDVI5GMGDHClGRmZ2ebc+bMMV977TVzxYoV5rJly8z777/fzMnJiY6tK664otlrMZ7R1RYsWGAOHjzYnDVrlvnQQw+Zb7zxhrls2TJzyZIl5ssvv2xeeumlptVqNSWZdrvd/Oqrr+JeZ+7cudExOGLECPPpp582V6xYYb755pvmtGnTWv0zcfnll0fbTps2zXzzzTfNFStWmE8//XT0Z0+S+fjjj3fGtwMJKhwORwOquufElsJenp/RXdSNnxtvvNH89ttvm/zYtm1bk9dgPANAywh70aPUzUKz2Wzm0qVLGx3/85//HH3Rvuuuu458B9Er/OY3vzHfeecds7i42DRN09y+fXubw96NGzdGZ+VMmDDB9Hq9Mcc9Ho85YcKE6Hhvarb6008/HX3sn/zkJ42Ob968OToTfuTIkWYwGGzbF4uEdv7555svv/yyGQqF4h4vKSkx8/LyomNs0aJFcdsxntEdNDWO6/v3v/8dHWMzZ85sdHz//v1menp69I95JSUljR7jwgsvbDFgW7hwYbTNhRde2KhvJSUl5pAhQ0xJZkZGhnngwIHWf6Ho1R544AFTkpmfn2/ecccdLY5Fnp/RnRzufRrjGQBah7AXPcbnn38efVG+4YYb4rYJh8PmmDFjojdPgUDgCPcSvVF7wt4bb7wxes6yZcvitlm2bFmzv4iaphkd75mZmabH44nb5k9/+lP0Oq+88kqr+gfUeeedd6Lj5+abb47bhvGMnmT06NGmVFvOoaH77rsvOr5eeumluOfv3r07OkP4vPPOi9vm3HPPjYYNu3fvjtvmpZdeij7Wn//85/Z/Qeg1du7cabrdblOS+Z///Me86667Wgx7eX5Gd3K4YS/jGQBahwXa0GO8+eab0e3Zs2fHbWOxWDRr1ixJUnl5uT755JMj0TWgTUzT1FtvvSVJys/P10knnRS33UknnaTRo0dLkt566y2ZphlzfNOmTVq/fr0k6bLLLpPT6Yx7nfqLxv373/8+3O6jl5k2bVp0e+vWrY2OM57R06SmpkqSampqGh2r+10jLS1NF198cdzzc3NzddZZZ0mSFi5cqKqqqpjjVVVVWrhwoSTprLPOUm5ubtzrXHzxxUpLS5PEWEbr3HTTTaqurtbVV1+tqVOnttie52ckEsYzALQeYS96jLoV4V0ul0444YQm29X/5XfJkiWd3i+grbZv367CwkJJavFmre74nj17tGPHjphjdT8TLV1n4MCBysvLk8TPBNrO7/dHt61Wa6PjjGf0JBs3btRXX30lqTYsqC8QCGjFihWSpJNPPll2u73J69SNUb/fr1WrVsUcW7lypQKBQEy7eOx2ezSsWLlypYLBYNu+GPQqr7zyit59911lZmbqr3/9a6vO4fkZiYTxDACtR9iLHqPuL7AjR46UzWZrsl39m7e6c4DuZN26ddHthmFDQ82N5/ZcZ/fu3fJ4PK3uK7Bo0aLo9pgxYxodZzyju/N6vdq8ebPuv/9+TZ06VaFQSJJ0yy23xLTbtGmTwuGwpCM/lkOhkDZv3tz8F4Jeq7y8XHPmzJEk3XffferXr1+rzuP5Gd3Vq6++qrFjx8rpdCo1NVWjRo3S1Vdf3ey7MhnPANB6hL3oEWpqalRaWipJTb4dsk6fPn3kcrkk1b4wA91NQUFBdLul8Tx48ODodsPx3J7rmKYZcx7QnEgkonvvvTf678suu6xRG8YzuqPnnntOhmHIMAy5XC7l5eXp5z//ufbu3StJuv3223XllVfGnNOVYznedYA6t956q4qLizV58mRde+21rT6P52d0V+vWrdP69evl8/lUXV2tLVu26IUXXtAZZ5yhmTNnqqKiotE5jGcAaL2mp0cC3Uj9enhut7vF9i6XSx6PR9XV1Z3ZLaBd2jKe6/5wIanReO6o6wBNeeCBB6Jva7/44ovjltBhPKMnOe644/TEE09o4sSJjY4xltEdLV68WE899ZRsNpvmzp0rwzBafS5jGt2N0+nURRddpDPPPFP5+flyu90qKSnRokWLNHfuXO3fv19vvvmmZsyYoQULFigpKSl6LuMZAFqPsBc9Qv1FVJqroVcnOTlZkuTz+TqtT0B7tWU8141lqfF47qjrAPEsWrRIt99+uyQpKytLjz32WNx2jGd0R9/97nc1YcIESbVjZOvWrXrllVf073//W1dccYUefPBBXXDBBTHnMJbR3QQCAV1//fUyTVM/+9nPNG7cuDadz5hGd7Nnzx5lZGQ02n/22Wfr5ptv1rnnnqvVq1dr0aJFeuyxx/Q///M/0TaMZwBoPco4oEdwOBzR7bpFT5pTt6BQSkpKp/UJaK+2jOf6i2M1HM8ddR2gobVr12rmzJkKhUJyOBx69dVXlZWVFbct4xndUUZGhsaNG6dx48Zp4sSJuvzyy/XGG2/ohRde0LZt2zRjxgw999xzMecwltHd3HPPPdqwYYOGDBmiu+66q83nM6bR3cQLeusMGDBAr732WnQ27yOPPBJznPEMAK1H2IseITU1NbrdmrfQ1BXQb03JB+BIa8t4rr8YRMPx3FHXAerbvn27pk+frrKyMlmtVs2bN0+nnXZak+0Zz+hJfvjDH+rSSy9VJBLRT3/6Ux04cCB6jLGM7mTDhg3605/+JKk29Kr/dvLWYkyjpxk+fLjOPvtsSdKWLVtUWFgYPcZ4BoDWI+xFj+BwONS3b19JarE4fllZWfSFuX5xfqC7qL8YREvjuf6iEg3Hc3uuYxhGi4tRoPcqLCzUWWedpcLCQhmGoWeeeUYzZsxo9hzGM3qaujHt8Xj0wQcfRPd35ViOdx30bg888IACgYCGDx8ur9erefPmNfpYs2ZNtP3HH38c3V/3ezDPz+iJxo4dG93es2dPdJvxDACtR81e9Bhjx47V4sWLtWXLFoVCIdls8Yfvhg0bottjxow5Ut0DWq3+L7H1x2s8zY3nhtc57rjjWrzO4MGD2zU7CImvtLRUZ599trZt2yapdibZrFmzWjyP8Yyepn///tHtnTt3Rrfz8vJktVoVDoc7dCy35jo2m02jRo1qufPoNerePr5t2zZdccUVLba/++67o9vbt2+Xy+Xi+Rk9UlOLEDKeAaD1mNmLHmPKlCmSamfifPHFF022W7RoUXR78uTJnd4voK2GDRum7OxsSbHjNZ5PP/1UkpSTk6Ojjjoq5ljdz0RL1ykuLtamTZsk8TOB+CoqKnTOOedo3bp1kqR7771XN910U6vOZTyjp6k/U6z+23LtdrsmTZokSVq2bFmztRzrxmhycnJ0Ibg6EydOjC7609xYDgQCWr58efSc+qvOAx2B52f0RHW/i0iKjl+J8QwAbUHYix7ju9/9bnT72WefjdsmEonohRdekFS7AMC0adOORNeANjEMI/o24g0bNkRv9htavnx5dEbBjBkzGs10yMvLi85WeOWVV+T1euNep/4iRDNnzjzc7iPBeL1enX/++fryyy8lSXfeeaduu+22Vp/PeEZP8+qrr0a3jznmmJhjdb9rVFZW6o033oh7fkFBgT766CNJ0plnnhlT/1GqrQd55plnSpI++uijJt8m/MYbb6iyslISYxmNPffcczJNs9mP+ou2ffLJJ9H9deEWz8/oabZv364FCxZIkkaMGKGcnJzoMcYzALSBCfQgp556qinJtNls5tKlSxsd//Of/2xKMiWZd91115HvIHql7du3R8fd1Vdf3apzNm7caFqtVlOSOWHCBNPr9cYc93q95oQJE6LjfdOmTXGv8/TTT0cf+6abbmp0fMuWLWZaWpopyRw5cqQZDAbb/PUhcfn9fnP69OnRMTRnzpx2XYfxjO7g2WefNX0+X7Nt7r///ugYGzZsmBkKhWKO79+/30xPTzclmUOHDjVLS0tjjodCIfPCCy+MXuOTTz6J+zgLFy6MtrnooosaPU5JSYk5ZMgQU5KZkZFhHjhwoO1fMHq9u+66q8WxyPMzuou333672XFRXFxsjh8/PjrO/va3vzVqw3gGgNYh7EWP8uWXX5opKSmmJNPtdpv33HOPuWzZMvPjjz82r7/++uiLdl5enllZWdnV3UWCWrx4sfnss89GP/7yl79Ex97kyZNjjj377LNNXuf222+Pnjd+/Hhz3rx55sqVK8158+bF/LJ7xx13NHmNUChkTp48Odr2e9/7nvnBBx+Yn3/+ufnII4+YWVlZpiTTYrGY7733Xid8N9CTXXzxxdGxc8YZZ5jffPON+e233zb5sXHjxiavxXhGVxs6dKiZmZlpXnfddebzzz9vfvbZZ+ZXX31lLl682Pz73/8eM7bsdru5YMGCuNeZO3dutN2IESPMZ555xly5cqX51ltvmdOmTYseu+KKK5rtz+WXXx5tO23aNPOtt94yV65caT7zzDPmiBEjoscef/zxzvh2oBdoTdhrmjw/o3sYOnSomZ2dbd58883miy++aC5dutRcvXq1uWDBAvPOO+80+/XrFx1fU6ZMMWtqauJeh/EMAC0j7EWP8/bbb0f/0hrvIy8vz9y8eXNXdxMJ7Oqrr25y/MX7aEo4HDZ/9KMfNXvutddea4bD4Wb7U1JSYk6cOLHJayQnJ5tPPvlkR38bkADaMo7rZjo2hfGMrjZ06NBWjePc3Fzzww8/bPZav/nNb0zDMJq8xnnnndfiLGKv12ued955TV7DYrHwLiQcltaGvTw/ozto7XP09773PbOsrKzJ6zCeAaBlhmmapoAeZufOnXrooYc0f/58FRQUyG63a+TIkbr00kv105/+VE6ns6u7iAR2zTXX6Pnnn291+5aeZt977z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999xWPUYoFNKTTz6pF198UevXr5fH41F2drbOPPNMzZkzR0cffXSr+4veo6kVr5sydOhQ7dixo9k2jGd0lY0bN2r+/PlasmSJtmzZor1792r//v1KSUlRVlaWjjvuOF1wwQW67LLLWvV7wtKlS/Xoo49q8eLF2rt3rzIyMnTsscdq9uzZuuKKK1rdrxdffFHPPfecvv76a5WXl2vAgAE69dRT9dOf/lQnn3zy4XzJ6OV++9vf6ne/+52k2pq9p59+erPteX5GV1q0aJEWLVqkZcuWadu2bSotLVVlZaXcbrcGDx6sU045RVdffXWrnxcZzwDQNMJeAAAAAAAAAEgAlq7uAAAAAAAAAADg8BH2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAHSx5557ToZhyDAM7dixo6u7AwAAAKCHIuwFAABopx07dkRD2sP5AAAAAICOQNgLAAAAAAAAAAnAME3T7OpOAAAA9ETBYFAbN25s8vgxxxwjSZowYYKeffbZJtuNGzeuw/sGAAAAoPexdXUHAAAAeqqkpKRWBbUul4tAFwAAAECno4wDAAAAAAAAACQAwl4AAIAu9txzz0UXa9uxY0ej46effroMw9Dpp58uSdqyZYv++7//W8OHD1dKSoqOOuooXXvttdq5c2fMeWvWrNHs2bM1fPhwORwODR48WDfeeKP27dvXqn69+eabuvTSSzVkyBA5HA5lZGRowoQJ+t3vfqeysrLD/bIBAAAAdDDKOAAAAPQgH330kS6++GJVVVVF9+3cuVPPPPOM3n33XS1atEj5+fl66aWXdM011ygQCETbFRQUaO7cuXr//fe1dOlSZWdnx32MsrIyXXLJJfr4449j9vv9fn3xxRf64osv9Pe//11vvfWWTjrppM75QgEAAAC0GTN7AQAAeojCwkJddtllysjI0COPPKLPP/9cixcv1i233CLDMLRv3z79+Mc/1sqVKzVr1iyNGDFCTz31lFasWKFPPvlEP/zhDyXVhsP/5//8n7iP4ff7ddZZZ+njjz+W1WrVD3/4Q7300ktavny5Fi9erD/+8Y/q27ev9u3bp/POO6/RbGIAAAAAXYeZvQAAAD3E5s2bNWrUKC1ZskT9+/eP7p8yZYpsNpv++te/asmSJTr//PM1adIkLViwQE6nM9ru9NNPV01NjV599VW9/vrrKikpibmOJP3+97/Xl19+qYyMDH300Uc64YQTYo5PmTJFP/jBD3TyySerqKhIv/rVr/Svf/2rc79wAAAAAK3CzF4AAIAe5OGHH24U0ErST37yk+h2aWmpnnrqqZigt86NN94oSQqFQlq2bFnMserqaj366KOSpLvvvrtR0Ftn6NCh+vWvfy1JevXVV+XxeNr3xQAAAADoUIS9AAAAPURGRobOOeecuMeGDRum1NRUSdJ3vvMdjRkzJm67Y489Nrq9bdu2mGOLFi1SRUWFJOmSSy5pti+nnXaaJCkYDOqLL75o3RcAAAAAoFNRxgEAAKCHGDVqlAzDaPJ4RkaGqqqqlJeX12ybOvUXeZOkVatWRbcHDRrU6n4VFxe3ui0AAACAzsPMXgAAgB4iXlmG+iwWS4vt6tpIUjgcjjm2b9++dvXL6/W26zwAAAAAHYuZvQAAAJAUG/5++eWXSkpKatV5ubm5ndUlAAAAAG1A2AsAAABJUt++faPb/fv3J8QFAAAAehjKOAAAAECSNH78+Oj2kiVLurAnAAAAANqDsBcAAACSpLPOOita7/fhhx+WaZpd3CMAAAAAbUHYCwAAAElSRkaGfvrTn0qSli5dqp/97GeKRCJNtt+7d6+eeuqpI9U9AAAAAC2gZi8AAACifv/732vRokX6/PPP9dBDD+k///mPrrvuOh133HFyuVwqKyvT2rVr9dFHH+n999/XMcccox//+Mdd3W0AAAAAIuwFAABAPcnJyVqwYIGuueYavfHGG/r666+js33jSUtLO4K9AwAAANAcwl4AAADESE1N1euvv67PPvtMzz//vBYvXqzCwkL5fD6lpaVpxIgRmjRpks4//3xNnz69q7sLAAAA4CDDZOUNAAAAAAAAAOjxWKANAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJ4P8D+twzsjcgztgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'transmissibility_function_reassortment_example_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/index.md b/docs/index.md new file mode 100644 index 0000000..4ffed79 --- /dev/null +++ b/docs/index.md @@ -0,0 +1,40 @@ +Opqua ![Opqua](../img/opqua_logo.png "opqua") +===== + + +[![DOI](https://zenodo.org/badge/249037110.svg)](https://zenodo.org/badge/latestdoi/249037110) + +**opqua** (opkua, upkua) +\[[Chibcha/muysccubun](https://en.wikipedia.org/wiki/Chibcha_language)\] + +* **I.** *noun*. ailment, disease, illness +* **II.** *noun*. cause, reason \[*for which something occurs*\] + +_Taken from D. F. Gómez Aldana's +[muysca-spanish dictionary](http://muysca.cubun.org/opqua)_. + +Opqua has been used in-depth to study [pathogen evolution across fitness valleys](https://github.com/pablocarderam/fitness_valleys_opqua). +Check out the peer-reviewed preprint on +[biorXiv](https://doi.org/10.1101/2021.12.16.473045), now peer-reviewed. + +Opqua is developed by [Pablo Cárdenas](https://pablo-cardenas.com) in +collaboration with Vladimir Corredor and Mauricio Santos-Vega. +Follow their science antics on Twitter at +[@pcr_guy](https://twitter.com/pcr_guy) and +[@msantosvega](https://twitter.com/msantosvega). + +Opqua is [available on PyPI](https://pypi.org/project/opqua/) and is distributed +under an [MIT License](https://choosealicense.com/licenses/mit/). + +```{eval-rst} +.. toctree:: + :maxdepth: 2 + :caption: Contents + + about + requirements_and_installation + usage + tutorials + model_documentation + API +``` \ No newline at end of file diff --git a/docs/intervention.ipynb b/docs/intervention.ipynb new file mode 100644 index 0000000..94b829c --- /dev/null +++ b/docs/intervention.ipynb @@ -0,0 +1,861 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Several interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors in a single population scenario, showing the effect of various interventions done at different time points.\n", + "\n", + "For more information on how each intervention function works, check out the documentation for each function fed into `newIntervention()`." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `my_setup_2` with the same parameters, but duplicate the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup_2', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " contact_rate_host_vector=4e-1, \n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100,\n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`my_population` starts with _AAAAAAAAAA_ genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define the interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. At time 20, adds pathogens of genomes _TTTTTTTTTT_ and _CCCCCCCCCC_ to 5 random hosts each." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 20, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'TTTTTTTTTT':5, 'CCCCCCCCCC':5, } ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. At time 50, adds 10 healthy vectors to population." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addVectors', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 10 ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. At time 50, selects 10 healthy vectors from population `my_population` and stores them under the group ID `10_new_vectors`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', '10_new_vectors', 10, 'healthy' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. At time 50, adds pathogens of genomes _GGGGGGGGGG_ to 10 random hosts in the `10_new_vectors` group (so, all 10 of them). The last `10_new_vectors` argument specifies which group to sample from (if not specified, sampling occurs from whole population)." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'GGGGGGGGGG':10}, '10_new_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. At time 100, changes the parameters of my_population to those in `my_setup_2`, with twice the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 100, \n", + " # time at which intervention will take place.\n", + " 'setSetup', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'my_setup_2' ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. At time 150, selects 100% of infected hosts and stores them under the group ID `treated_hosts`. The third argument selects all hosts available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_hosts', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7. At time 150, selects 100% of infected vectors and stores them under the group ID `treated_vectors`. The third argument selects all vectors available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_vectors', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8. At time 150, treat 100% of the `treated_hosts` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_hosts' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "9. At time 150, treat 100% of the `treated_vectors` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "10. At time 250, selects 85% of random hosts and stores them under the group ID `vaccinated`. They may be healthy or infected." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'vaccinated', 0.85, 'any' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "11. At time 250, protects 100% of the vaccinated group from pathogens with a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'protectHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'vaccinated' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 47.82778878187784, event: RECOVER_VECTOR\n", + "Simulating time: 78.3366736929209, event: RECOVER_VECTOR\n", + "Simulating time: 105.91879303271841, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 118.47279407649962, event: RECOVER_HOST\n", + "Simulating time: 131.35992383183006, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 142.51592961651278, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 155.0493103157924, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 166.15922138729405, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 178.45033758585132, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 191.46530199493813, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 202.95353967543554, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 215.14396460201561, event: RECOVER_VECTOR\n", + "Simulating time: 227.37567502659184, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 239.10997595769174, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 251.43868107426454, event: RECOVER_VECTOR\n", + "Simulating time: 270.88105008645147, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 307.90286561294283, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 357.4327138889326, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 400.04897821206066 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 400 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18432052612304692s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016484975814819336s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030623912811279297s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.043166160583496094s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04822254180908203s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08920669555664062s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.16597485542297363s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1528 tasks | elapsed: 1.4s\n", + "[Parallel(n_jobs=8)]: Done 3192 tasks | elapsed: 2.2s\n", + "[Parallel(n_jobs=8)]: Done 5368 tasks | elapsed: 3.2s\n", + "[Parallel(n_jobs=8)]: Done 7449 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8243 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8591 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8822 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 9064 out of 9079 | elapsed: 3.6s remaining: 0.0s\n", + "[Parallel(n_jobs=8)]: Done 9079 out of 9079 | elapsed: 3.6s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/opqua/model.py:1008: DtypeWarning: Columns (5) have mixed types.Specify dtype option on import or set low_memory=False.\n", + " data = saveToDf(\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0AAAAAAAAAANaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
1898145400.0my_populationVectormy_population_105GGGGGGGGGGNaNTrue
1898146400.0my_populationVectormy_population_106NaNNaNTrue
1898147400.0my_populationVectormy_population_107NaNNaNTrue
1898148400.0my_populationVectormy_population_108NaNNaNTrue
1898149400.0my_populationVectormy_population_109NaNNaNTrue
\n", + "

1898150 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 AAAAAAAAAA \n", + "1 0.0 my_population Host my_population_1 NaN \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "1898145 400.0 my_population Vector my_population_105 GGGGGGGGGG \n", + "1898146 400.0 my_population Vector my_population_106 NaN \n", + "1898147 400.0 my_population Vector my_population_107 NaN \n", + "1898148 400.0 my_population Vector my_population_108 NaN \n", + "1898149 400.0 my_population Vector my_population_109 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "1898145 NaN True \n", + "1898146 NaN True \n", + "1898147 NaN True \n", + "1898148 NaN True \n", + "1898149 NaN True \n", + "\n", + "[1898150 rows x 7 columns]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'intervention_examples.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 4 genotypes processed.\n", + "2 / 4 genotypes processed.\n", + "3 / 4 genotypes processed.\n", + "4 / 4 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAALmCAYAAABio+lSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xUVf7G8eemE3qviqiLothFBUQUUVaKigKWXQt217p21/1Z1rKuuq676+ouFhRUVFBRQUFRlKqIBUXpRVoIpNcp997z+2OSIZMpmUB6Pu/XKzJz77lnzgwjSZ588z2WMcYIAAAAAAAAAIAmJKG+FwAAAAAAAAAAQE0j/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE0O4TcAAAAAAAAAoMkh/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE1OUn0vAA2Dx+PRTz/9JEnq3LmzkpJ4awAAAAAAUNNs29bu3bslSUcccYTS0tLqeUUA0HSRcEKS9NNPP+mEE06o72UAAAAAANBsLFu2TAMGDKjvZQBAk0XbEwAAAAAAAABAk0PlNyQFWp2UW7Zsmbp3716PqwEAAAAAoGnKyMgI/uZ1xe/FAQA1j/AbkhTS47t79+7q1atXPa4GAAAAAICmj/22AKB20fYEAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgCgkTHGre8lAAAAAADQ4BF+AwDQ6PjrewEAAAAAADR4hN8AADQ2xi9jTH2vAgAAAACABo3wGwCARsYYRzLF9b0MAAAAAAAaNMJvAAAaHVeO/9f6XgQAAAAAAA0a4TcAAI2OK8e3sr4XAQAAAABAg0b4DQBAo+PK9q6o70UAAAAAANCgEX4DANDIOL41ktjwEgAAAACAWAi/AQBoZFwnS4TfAAAAAADERvgNAEAjZExJfS8BAAAAAIAGjfAbAIDGyLj1vQIAAAAAABo0wm8AABol2p4AAAAAABAL4TcAAI0S4TcAAAAAALEQfgMA0IgYQ+gNAAAAAEA8CL8BAGhkXHuHqPwGAAAAACA2wm8AABoVI+NmyRB+AwAAAAAQE+E3AACNjDF+UfkNAAAAAEBshN8AADQSgX7fjmT89b0UAAAAAAAavKT6XgAAAIiTKZHr7JSRXd8rAQAAAACgwaPyGwCAxsYtqe8VAAAAAADQ4BF+AwDQaAT6fBu3QPT8BgAAAAAgNsJvAAAaE0PoDQAAAABAPAi/AQBoVNz6XgAAAAAAAI0C4TcAAA2MMb7o52QCDU+oAAcAAAAAICbCbwAAGhoTrbrbaE+vb8JvAAAAAABiIfwGAKCOuU6ejLFjjIgcbLvObsk4ZecdmaghOQAAAAAAIPwGAKCuGZ9kPHKd/CgDHBnjRL7UzZaMt0IIDgAAAAAAIiH8BgCgjhlTKGN8sj1LI4bcxngk44l4re39TsbNlZEjKXJADgAAAAAACL8BAKhzxi2Ra2+R6+yKMsCR3/O1bN+ayif2tEsxflH5DQAAAABAdITfAADUMWOK5fg3B9qfRDrvFspf8omcsPBbKq/2NsYbY2NMAAAAAABA+A0AQB0zbokc/3pF39hyl1wnS1KEcNuUX+OPfB4AAAAAAEgi/AYAoO6ZUhk3TyZK+G2MN9D3O2JPb7d8kGh7AgAAAABAdITfAADUMdfJlnHyFD28diRTEt4WJSTwNmXV4wAAAAAAIBLCbwAA6phxcxWo4DZlG1dWPl8s4xbJdQsrn9Ge8NsRld8AAAAAAERH+A0AQB1zfOsCN4wr18kMO+/amyU5MhHOGVPeCsWw4SUAAAAAADEQfgMAUIdcJ0flFdzGlEjGGzamPOB2nezQ43Ik2cF70XqGAwAAAAAAwm8AAOqUa/+q8k0rjZsrY0rDB5Udc53dlY47gY8gWwAAAAAAILKk+l4AAADNiXELZIxHrpOtRCtdxs0LH2M8ZTc8lc8o0Ou77F6lynAAAAAAALAHld8AANQhY/yBcNsUS8YjY3wRBgVCb+OWVD4hU6FNiutk1eJKAQAAAABo3Ai/AQCoI6a8bYnxl90vjjKuvOK7cjBu5Ph+Dt5z7YxaWCUAAAAAAE0D4TcAAHXFlEpy91R7h/TvrjDM3dMH3Bi3wu3A9Xv4a36NAAAAAAA0EYTfAADUkUDLEifQ8kSSkZGMG2FgxYrvPQG5499QaT4nJBwHAAAAAAB7EH4DAFBHAhtd5u054BYpsIll5XF72qG4zu6KZyqNdCJeDwAAAAAACL8BAKg7xiPX2dOn25hCRQ6/PcHbrr2l4olKAwm/AQAAAACIhvAbAIA6YlxPpZYmUmgP7wqbYu65qOyPorCxjn+9CL8BAAAAAIisWYbfBQUFevPNN3X77bdr6NChOvjgg9W2bVulpKSoS5cuOvXUU/XEE08oOzs7rvmWLFmi3//+9+rdu7fS0tLUrVs3jRgxQtOmTavWuqZNm6YzzzxT3bp1U1pamnr37q3f//73Wrp06d48TQBAQ2O8eza73HOw0l2fKvb5Lg+8jSkNC86Nmx1+PQAAAAAAkCRZxlT+Heqmb968eTrjjDOqHNepUye99tprGjFiRNQxDz74oB5++GG5buQNx0aNGqUZM2YoLS0t6hylpaUaN26cPvroo4jnExISdP/99+uBBx6ocs17a9u2bdpvv/0kSVu3blWvXr1q7bEAoLnyFn0g27NQtve74LG0drcqteWY4H3jFqkgY6zKQ+/0DvcrucVQ+YrnyPFvkK/43ZA523T/UFZCep2sHwAAAPuO778BoO40y8pvSdpvv/106aWX6p///KfeffddLV26VIsXL9Zbb72l8ePHKzExUVlZWTr77LO1YsWKiHP873//00MPPSTXdXXQQQfppZde0rJlyzRz5kyddtppkqTZs2friiuuiLmWK664Ihh8n3baaZo5c6aWLVuml156SQcddJBc19WDDz6oSZMm1eyLAACoW8YjY/yVjlVue+JXxfYmpqwFiuvmSsYbYdLIP3wFAAAAAKC5a5aV347jKDExMeaYmTNnauzYsZKksWPH6t13QyvtcnJydOCBByo/P1/777+/vv32W3Xq1CnkMcaOHasPP/xQkjR//nydeuqpYY/z+eef6/TTT5ckjRkzRu+9917I2rKysnTcccdpy5YtateunTZu3Kj27dvv1fOOhZ88A0Dt8xROk126WI5/VfBYWts/KLXV+cH7jn+zinZdGbzfot1tSmk5Sp78F+U6WfKXfhoyZ+tu7yohsW3tLx4AAAA1gu+/AaDuNMvK76qCb0k699xzdcghh0iSFi5cGHb+xRdfVH5+viTpb3/7W0jwXf4Yzz33XPCxnnzyyYiP89RTT0mSkpKSQsaX69Spk/72t79JkvLy8vTiiy9WuXYAQANl/IEK7pBj9p6bbmnYJa4TGG9MsYwpijApld8AAAAAAETSLMPveLVu3VqS5PF4ws7NnDlTktSmTRudd955Ea/v1auXhg8fLkn67LPPVFhYGHK+sLBQn332mSRp+PDhUX/ae95556lNmzaSpPfee6/6TwQA0EDYMs7OkCMV26AYN1eVN7B0ne0yxsi4xXLt0GvLRtTCOgEAAAAAaPwIv6NYs2aNfvjhB0nSoYceGnLO5/Np2bJlkqSBAwcqJSUl6jxDhw6VJHm9Xi1fvjzk3DfffCOfzxcyLpKUlBSddNJJwWv8fn/UsQCAhstUqPLeo0L4bUpVOfyWCXyecJ0suc6OsKsd/8YaXCEAAAAAAE0H4XcFJSUlWrdunZ5++mkNHTpUth0IKW699daQcWvXrpXjBDYgqxyMV1bx/KpVq0LO/fLLLxHHxZrHtm2tW7cu9hMBADRMEcLv0MpvjyqH38Z4ys7lR9zw0ji7anaNAAAAAAA0EUn1vYD69sorr2jixIlRz99zzz26+OKLQ45t27YteLuqjSnKN7GQAhtZ1NQ8hx12WMzxlVV8rEgyMjKqNR8AYG84YUeMsztwxr9ZkpFM6BhTFniXh+Bh19P2BAAAAACAiJp9+B3N0UcfrUmTJmnAgAFh5yr27m7VqlXMeVq2bBm8XVQUulFZTc0Tj4rhOQCgvkQIv4OV3bmSkmRUqTrcLZbkBtufhE9A+A0AAAAAQCTNvu3Jueeeq59++kk//fSTli1bpmnTpmns2LH64YcfdNFFF2nWrFlh11TcADNWv29JSk1NDd4uLS2tlXkAAA2DMaaK8xHCbzev7M8iSUbGDd0c2fGvl+NfJxMt/K7cIxwAAAAAAEii8lvt2rVTu3btgvcHDBigCy+8UFOnTtVll12mc845Ry+99JIuv/zy4Ji0tLTg7fINK6Pxevf0Z23RokXIuZqaJx6VW65UlpGRoRNOOKHa8wIAKnJljGRZiRHPGmdnhIOB8Nq4RbIS2kbsC+74fonY77vs7N4uFgAAAACAJq3Zh9/RXHLJJZo1a5befvtt3XjjjTr77LPVoUMHSVLr1q2D46pqQVJcXBy8Xbm1SU3NE4+qeooDAGqCE2hPYkX+d9r2/hD1ymDltykJP+dkS/KHHS87W+1VAgAAAADQHDT7tiexnHPOOZICwfOcOXOCxysGyVVtJFmx4rpy3+2amgcA0DC4doTK7jKBjSsj9ecOHHPdHMk4Mm5B2AjH3hJ9XievmqsEAAAAAKB5IPyOoXPnzsHbv/76a/B23759lZgY+JX21atXx5yj4vl+/fqFnDvssMMijos1T1JSkn7zm99UsXIAQH0wbn6Mc56o5wLni2SMN0KYbeT6N8e4rjDqOQAAAAAAmjPC7xi2b98evF2x1UhKSkqwP/bSpUtj9uv+8ssvJQU2rDz++ONDzg0YMCC40WX5uEh8Pp+++uqr4DXJycnVfCYAgLpi3PC2JQGRP1cYuXLtTMl45bpZMqZySG7kRqgGr3geAAAAAACEI/yOYfr06cHbRxxxRMi5c889V5JUUFCgd999N+L127Zt07x58yRJp59+ekiPbynQ8/v000+XJM2bNy9q65N3331XBQWB4GPs2LHVfyIAgBpnTKQWJpLrZEYYa4IbW4aftMsCbyPjFsqY0ghjom12GXstkccSlgMAAAAAmodmGX6/8sor8nhi//r5P/7xD3300UeSpD59+mjIkCEh56+66iq1bdtWknTPPfcoOzs75LzjOPrDH/4gx3EkSXfeeWfEx7njjjskSbZt64YbbgiOL5eVlaW7775bktSuXTtdddVV8TxFAEAts73fhR0zpkSuE9732/GvUtQKbeMt2+TSke35VsbNjfRoUddhKvw3Hq4de48JAAAAAACaimYZfj/44IPq2bOnrrnmGk2ZMkWLFy/WihUrtGjRIj3//PM6+eSTddttt0kKtDiZNGlSsMd3uQ4dOuhvf/ubpEA/8BNPPFGTJ0/W8uXL9cEHH+iMM87Qhx9+KEm66KKLdOqpp0Zcy7Bhw3ThhRdKUvC6Dz74QMuXL9fkyZN10kknacuWwEZnf/vb39S+ffvaeEkAANUWHkgbt1gy/vChxi8jJ/y4JGM8Mk52YENMUyrXyYo0KsY6jCJvpBlteITKcgAAAAAAmqCk+l5AfcnJydELL7ygF154IeqYXr166eWXX9bw4cMjnr/22mu1Y8cOPfzww9qwYYOuuOKKsDEjR47Uyy+/HHMtL7/8sgoKCvTRRx9p/vz5mj9/fsj5hIQE/d///Z+uueaaOJ4ZAKBOmPDw27U3y0poFz7U+GVFCZ2N8cq4eTJuiYzxSVFC8ioWE98o45RVmQMAAAAA0PQ1y/B77ty5mj17thYvXqz169crMzNT2dnZatGihbp06aKjjz5ao0eP1oQJE5Senh5zroceekgjRozQf/7zHy1cuFCZmZlq166djjrqKE2cOFEXXXRRletp0aKFZs+erTfeeEOvvPKKVqxYoby8PHXt2lVDhgzRjTfeqIEDB9bU0wcA1AATIfw2rkeWFaFFifFFHB84VyrjFsu4RWUtUIqqtQ7X3iYZV7LiWnWgwhwAAAAAgGagWYbfhxxyiA455JBga5N9NWjQIA0aNGif57n44ot18cUX18CKAAC1L7y9iTGlgTYmxsiyrNCx0cJvuXKdLBlTKBlHxi2o1ipce6vi7/ntRm7LAgAAAABAE9Qse34DALCvXDsj/KDxyPauUOUe3Mb4Jfmiz+XsllyPjCnei5U4ij/8pvIbAAAAANB8EH4DALAXIvXONsYv19mhsM0wjT/QmiTaXG6+jHx7VZVtjKu4N7w0RjLRQ3gAAAAAAJoSwm8AAPaC698S4ahfMh65TnbwiDGu/J5lct38qHMZUywZr+IOsUNUp/LbLdtUU3Kd3L14LAAAAAAAGg/CbwAA9oKJ0MbEuAWBSmy3wqaV5aF2rKpuN7yKPP6FOGXV33EMdfPK1iPJeIJBOAAAAAAATRHhNwAAe8P4QkJnY/xyfL9IMmV9v8uOuwUKVHRH2/AysFHm3ou/8tv2rQ72FTemRKZChToAAAAAAE0N4TcAAHvBODkKCZ2Np/yGHP86uW5B2T07UJ1ddj/iXPsUfrt7qrmrYNxcGbdYjr1Njm+9TNztUgAAAAAAaHwIvwEA2AuVe3ib8vDb+OXaW2WcrLL7tiRXrrM7+mR7sdFlhYv3PHYVXDtTxi2U698sx/5Ve9djHAAAAACAxoHwGwCAveKE3vOtKbvll6mwsWSgPYqnLASPZl9D6HgruP0ypijweMYjGSq/AQAAAABNF+E3AAB7o1KY7TqZFc45Uln4bYxPxpQG2p/U2lri27jSGFvGeBWoFrcVf2gOAAAAAEDjQ/gNAMBeCfT23nPXH3LO9v1Udtsn17+xisrvfVO5pYrj37qn8rwi45fr/1XGLVEg+KbtCQAAAACg6SL8BgCgmowpC40r9NoO6bttvDL2rrLjfgVC5tqrsg7v+R3YZDN0jBNoeWL8ct0cyfjLNu0EAAAAAKBpIvwGAKC6TIlUsa+3JMf3S/C262TImCIZ42hPdXUtVlkbb6UDEcJ2UyLHt1ZGrlz/r3LtbfKVflZ7awIAAAAAoJ4RfgMAUA3GLZVjbyu745frZAVuhlVfG0lOcFNJU6kSu0bXVKnFSaCft1vpmLdsPT4ZU1x2n7YnAAAAAICmi/AbAIBqMKYoWOVtjF9uMAivHDa7Za1HykPv2tzwslLlt/HIRAq/jSPJL+MWyJiSsDUDAAAAANCUEH4DAFAN/tIlcvybJUmus13l7UVcZ0elka4CgXdZ+F2LG16asPDbCQu2XTtDRv6y8X4ZN1+B1i21V5EOAAAAAEB9IvwGAKAaXHtTMOg2Tt6etiZuYaWRJhAyl4XQRrUZMptK9yr2Gi875mRK5e1RjC0FN+Ik/AYAAAAANE2E3wAAVIMxboWg26+wjSXL2N4VZePKK799EcfVjMrtSxy5TmboEf+6CuMCPcEDwXzk9QMAAAAA0NgRfgMAUC1Gxi0K3DK2TDA8rhRAm9LAsbK2IoE2I7W1JCf8vvGHHqpw35RXfRtvsHIdAAAAAICmhvAbAIBqMZJbXHbTp0B7k0gBsivJlVGg4tu1t9biivyVjjiKVdFtnJ1la9oScxwAAAAAAI0Z4TcAAHEyxlYg7C4uu+8rq7CO0tLEODJObh0srHKVtytjPMF+41EvkxE9vwEAAAAATRXhNwAAcTKmpMJGkZKMT8YUy5RXglceL1fGya6DdXkrHbHLWrNUFWzvaeECAAAAAEBTQ/gNAEAVgm1NjB3SO9uxt5Rtahm5wtr1bwrbeLJ2FugLab1i3Lz4Ntg0jhz719pbFwAAAAAA9YjwGwCAKpUF3sarij2yjZMl45ZIxo54letkyHVrv+2JKes9HrzvFpUdqziocnW4JPlknN1VtkcBAAAAAKAxIvwGAKAqZeF2oOq74gaRjiRfoB1KpMuMXzJ10VPbDl2XsWV7loSvpRJjnLKWKfT9BgAAAAA0PYTfAABEsaeVSFk4XKnCOrD5pV+ukxNlAlvBqvHaZByVt14xxpGRX8YtqDQoUnW6W9bzm8pvAAAAAEDTQ/gNAEA0JrAZpAlWfnsqD5CMIxOltYlxCyNWXNc0x79Rxs2TMX45/jVlvckrhd0RW5uYQM9y2p4AAAAAAJogwm8AAKIwxitjnODmkcaUSmEBuCPjZEW+3i2I2g+8JlUM5QM9yP0ypjCeKyNUiAMAAAAA0DQQfgMAEIVxciQ5csvDbeOX61Su8nbl2DsiX288weC8VpnisuptI5nSQNsTZ3cc17mBQJ+2JwAAAACAJojwGwCAKIzxyLW3ybh5ZUdsVQ6KjbEjVIOXc8rC5boTqE6PtIGliXzM2FHOAQAAAADQuCXV9wIAAGiojPHI2AUybn7gvluisCpp44/QC7ycq8gbTdYGo0AbkxJVDrNNxDBcCvb8BgAAAACgCaLyGwCAaIxXxviCbU8CleAZlQa5Mm5xlOvrsqLalYyR69+05+HdksCfTrakSAG4I8feWDfLAwAAAACgjhF+AwAQRWDzSM+e6mjjkeSvNMqJ0dc7WsV1zQtUd7tynd0qr04v3/TSmCIZE6Wvt/HWzQIBAAAAAKhjhN8AAFRi3KLAn6Y08OEWyRif/N7lYWP9pV/IhAXiAY5/ba2usyJjCuX3LJbrZKq87YnjWyNj/DLGS8gNAAAAAGh26PkNAEAlxvhkSTJugWQly7g5UrTKaSnKBpN1zHjLeo+7MsF2K4F1Gbc48FwAAAAAAGhGqPwGAKCysjYmgdDbHwiPjTdGAB658rsuGdcjGTuwOWdZlbcp/9PNletsr8/lAQAAAABQ5wi/AQDNjqliI0pTHn4bvwLV027gw3iijK//ym/j5gb+NB65zo6yg77QPwEAAAAAaEYIvwEAzVAVldrl/bHLq77lSjIypjTK+Pqv/HbdXElGMm5wg85AGxRTFuIDAAAAANC8EH4DAJqfKsJgE6yUdgKbXxqnbOPLksjj3fwaXmD1Ob5VCmx0aQd7kPuLP5ZxC2V7V9Tr2gAAAAAAqA+E3wCAZscYu4oR5eG3kTHFCrQ88ZVVUkdS/5XVxskpvyVTttGl6+wMrNvNiX4hAAAAAABNFOE3AKBZMcbd0xM72hi3eM9Ye5skI9vzjRpCyB1NIKQvv1O+TiPH3tIg2rIAAAAAAFDXkup7AQAA1AXjFklWsgI/94294aVUvoGlCVZ7G/kl49biCvdNeXuWgIobcNLzGwAAAADQPBF+AwCaBdu3WgmJHZWQ2F0yscNvUxZyG7dQxslSoO2JX6GhcsNijCcQ0EuSKoT0xpVUVZsXAAAAAACaHtqeAACaD+NX1VXfknEyy/4sC76D1zbcym8ZrxTcqLMil7YnAAAAAIBmifAbANBMuDKyFQi/Ywfgjr1VxvhlTEnwWMNvHWJkIoTfxpSWPW8AAAAAAJoXwm8AQPNgbLn2zmAP79hjvXL8G1Wx0rtiEN5QufbOsGPGLZFx8up+MQAAAAAA1DPCbwBAM2HLuEVl4XdVPb+9cu1tMqZCj++ILUUaFuPmRDhYIqmhV60DAAAAAFDzCL8BAE1acPNK45b1xfaqqo0rjVssf8lnCu3x3XA3uywXqarduA2/Yh0AAAAAgNpA+A0AaOLKq55dSY6MWyxjvFVc45YFyXsC75Aq8IbKhG/I6bq59bAQAAAAAADqH+E3AKBpK9+o0vhk5Mh1MqQq+34bSXalMLkRhN8R2rk4vjX1sA4AAAAAAOof4TcAoEkzprTsT5+MWxS8XcVVMk6OQiq/3fxaWmFNCq/8luw6XwUAAAAAAA0B4TcAoEkzbomM8Uvyy7iFkoxUZQsTI9fJVMUw2fVvqcVV1pQIG3kaNrsEAAAAADRPhN8AgCbNmBLJ+OQrmSsZWzJGjn9tVRepchW1MUW1t8ga4jpZYccM4TcAAAAAoJki/AYANGnG2SVjPHL9G4IbXbpOzt7MVLMLqw2mJPxQIwjtAQAAAACoDYTfAIAmzbV3Bft+u84OxRNiO3ZjaHESpyo39wQAAAAAoGki/AYANFnGOHLdHBm3OHDALVagnUkVAXhZhTgAAAAAAGi8CL8BAE2WcXMkt0SunRG4L1vGjacNiF27CwMAAAAAALUuqb4XAABAbTHGK9fZLcvZXnbAJ8e/RjK+GNcQfAMAAAAA0BQQfgMAmi7XI8ferPI2J8Ytkb/0CyWmHB71kvgqwwEAAAAAQENH2xMAQJNl5CsLs8uruf2B426JjPFHvMb2LKmbxQEAAAAAgFpF+A0AaLqMLRmvjFtS6bg3ausTx7+uDhYGAAAAAABqG+E3AKDJ8nuWSLJlTHHYuWi9vW3vj7W8KgAAAAAAUBcIvwEATZZxcgJ/uqHht5EjyYl8jfHU9rIAAAAAAEAdIPwGADRZxpSW3Qjt722c3YoWfpdvjgkAAAAAABo3wm8AQNMVtYrbDfQDj3xRba0GAAAAAADUIcJvAECT5Tp5kiQTIdCO1vOb8BsAAAAAgKaB8BsA0GRF2uhyz0lvlONu7SwGAAAAAADUKcJvAECTVXmjy5BzovIbAAAAAICmrNmG38uXL9df/vIXnXnmmerVq5dSU1PVqlUr9e3bVxMnTtSiRYuqnOOVV16RZVlxfbzyyitVzldSUqInnnhCAwYMUIcOHdSyZUsdeuihuv322/Xrr7/WwLMGgObDdXKkWJXf0a+s8bUAAAAAAIC6l1TfC6gPp5xyihYuXBh23Ofzad26dVq3bp1eeeUVXXrppXrhhReUkpJS62tav369Ro4cqXXr1oUcX7NmjdasWaMXX3xRr7/+ukaPHl3rawGAJsH4FLuKO1rITeU3AAAAAABNQbMMv3fs2CFJ6tGjh8aPH68hQ4Zo//33l+M4Wrp0qf7+979r+/btmjJlivx+v954440q55w7d6569OgR9XyvXr2inissLNSoUaOCwffVV1+tCy+8UC1atND8+fP117/+VQUFBbrgggu0ePFiHX300dV7wgDQDJmK4bYpijDAyBgjy7IqHafyGwAAAACApqBZht+HHnqoHnvsMZ1//vlKTEwMOXfSSSfpkksu0eDBg7V27VpNmzZN1113nU455ZSYc/bt21cHHHDAXq3nySef1Nq1ayVJTzzxhO68887guYEDB+rUU0/V0KFDVVJSoltvvVVffPHFXj0OADQrxol92hRKclT5U6FR7OsAAAAAAEDj0Cx7fs+aNUsTJkwIC77LderUSX//+9+D92fMmFFra/H7/frXv/4lSerXr59uv/32sDGDBg3SlVdeKUn68ssv9c0339TaegCg6YgdYjv+TZKJtOkl4TcAAAAAAE1Bswy/43HaaacFb2/YsKHWHmf+/PnKz8+XJF122WVKSIj8V3L55ZcHb7/33nu1th4AaDKMv6oBklyZyhXiVVSMAwAAAACAxoHwOwqv1xu8Ha1CvCYsWrQoeHvo0KFRxx1//PFKT0+XJC1evLjW1gMATUXV7UuMJKdsY8yKCL8BAAAAAGgKmmXP73h8+eWXwdv9+vWrcvzEiRO1Zs0aZWVlqU2bNjr44IM1fPhwXX/99erZs2fU63755Zfg7UMPPTTquKSkJB188MH68ccftWrVqjifxR7btm2LeT4jI6PacwJAw1bFxpUmUPVtWXs+FQaqwE3tLgsAAAAAANQJwu8IXNfV448/Hrw/YcKEKq+puAlldna2srOz9fXXX+vvf/+7nnnmGV177bURrysPpVu2bKl27drFfIz99ttPP/74o3bv3i2v16vU1NSqn0yFawGgWamyfYlfgSrvCiG5Ka3FBQEAAAAAgLpE+B3BP/7xDy1btkySdN555+m4446LOvbAAw/Ueeedp4EDBwYD5o0bN+qdd97RjBkz5PF4dN1118myLF1zzTVh1xcWFkqSWrVqVeW6WrZsGbxdVFRUrfAbAJqf2JXfxvjkOruVmNRrzzG3uLYXBQAAAAAA6gjhdyVffvml7rnnHklSly5d9Pzzz0cdO3bsWF122WWyLCvk+IABA3TBBRdo1qxZOu+88+T3+/XHP/5RZ599trp16xYy1uPxSJJSUlKqXFvFsLu0tHrViVu3bo15PiMjQyeccEK15gSAhsp1C6oOso23rNI70ObEuCUyVH4DAAAAANBksOFlBT///LPGjh0r27aVlpam6dOnq0uXLlHHt23bNiz4rmj06NG6//77JUklJSV66aWXwsakpaVJkny+yhuuhau4CWeLFi2qHF9Rr169Yn507969WvMBQEPmeFfIsX+NOcYYv4xbKmMCFeKOf1OEzS8bqqp/YAoAAAAAQHNH+F1m06ZNOvPMM5Wbm6vExES9+eabOuWUU/Z53muuuSYYkFfcRLNc69atJQXamFSluHhPFWM8bVIAoLkyxpaMv4pRjozxSLLLr5Kp8pqGwVhp9b0EAAAAAAAaPMJvSTt27NDw4cO1Y8cOWZall19+Weecc06NzN2lSxd17NhRkrR9+/aw8716BXrNFhcXKy8vL+Zc5a1LOnfuTL9vAIgpjvDbOAoE4OW/VeMqsAlmw2eUKDqXAQAAAAAQW7MPv7OysnTGGWdo48aNkqR///vfuvTSS2v0MWK1RjnssMOCt1evXh11nG3b2rBhgySpX79+Nbc4AGhijDGScWWCFd1Rxrllv3Fj9owzjaTtSbHpItuK3pYLAAAAAAA08/A7Pz9fI0aM0C+//CJJevzxx3XDDTfU6GPs3r1bWVlZkqQePXqEnT/55JODtyO1RSm3fPnyYNuTwYMH1+gaAaBp8Sueyu9AyxNJcsr+dGXcktpcWI3xuCkqNm3rexkAAAAAADRozTb8Likp0ahRo/Tdd99Jku677z7dfffdNf44kyZNClQhSho6dGjY+VNPPVVt2wYCjFdffTU4trJXXnkleHvs2LE1vk4AaDKMX0auVEXlt4wnEICbQPjtOrsl0zjC71y7hV7dRuU3AAAAAACxNMvw2+fzaezYsVq8eLEk6ZZbbtEjjzxSrTk2b96s77//PuaYWbNm6S9/+YskqUWLFpo4cWLYmJSUFN18882SpFWrVumpp54KG7N06VK99NJLkgIB+oABA6q1VgBoToyxZdyCwKaXMbhuvuSWSnJljFt2TWMIvy25RspvHO3JAQAAAACoN81yt6yLLrpIn3zyiSRp2LBhuvLKK7Vy5cqo41NSUtS3b9+QY5s3b9Zpp52mgQMHasyYMTrqqKPUpUugCm/jxo2aMWOGZsyYEazkfuqpp9SzZ8+I899555166623tHbtWt11111av369LrzwQrVo0ULz58/XY489Jtu21aJFCz3zzDM18AoAQNMUCLwdOb7VsqyWscc62XLsLUpMPUoyXhknR7Iaz2bC2b7IvykEAAAAAAACmmX4/e677wZvf/755zryyCNjju/du7c2b94c8dzSpUu1dOnSqNemp6frH//4h6655pqoY1q3bq3Zs2dr5MiRWrdunSZNmqRJkyaFjGnTpo1ef/11HX300THXCgDNmyspsJmllZhWxVi/jJsrKRAiG7mSKa3d5cUtUXt6kVdmKcufIjdKmywAAAAAABDQLMPvmnDcccfptdde09KlS7V8+XJlZGQoKytLtm2rffv2Ovzww3X66afrqquuClaEx3LwwQfr+++/13/+8x9Nnz5d69evl8/n03777aeRI0fqlltuUe/evevgmQFAI2YcSW5ZP+8qen5Lcu1dgfEygT/dhhJ+Jyl6+C2tKkyUUxb0AwAAAACAyJpl+B1tU8nqaN26tX73u9/pd7/7XQ2sKKBly5a66667dNddd9XYnADQvBgZ45UxPllVbXgpSbIlY2RMsWRc2b6fan2F8TBWiiwjSd5KZ1LkWm1V6kguhd8AAAAAAMTULDe8BAA0HcZUrIA2kvFLcsqqwKu62FZgw0ufJFeuk1U7i6wmo2TJSgw/YSXJVgvCbwAAAAAA4kD4DQBo5PakwMaUKND2xJXiaAsSCLuNZFwZN68B9fxO0L3rjtdW+9hKxy0ZifAbAAAAAIA4EH4DABo5J1j9bVxPWcW3UcVQPDp/2ThbxpTfrn9Gllbk+1XsJFU6HjiX7zcyDWStAAAAAAA0VITfAIBGz7iFZTe8MnJljEfxVH4HQ3Ljj3N83XCUph2lthxjRTiboA3F8fQzBwAAAACgeSP8BgA0bsZVoHLbyHW2K1AJHn/7EuOWyBi/jFtSa0usrmK3tbaXOvKb0E/TRqkyZa1PqPsGAAAAACA2wm8AQIMXaEkSjStjvJLxyPauDGxiabwy8Wx4Kcm4uYHxbl6NrLUmFLup8hujEif007StdBmTIEPyDQAAAABAlQi/AQANnnFyo59zCyW3SMb4ZNx82d5vFQjE46vkNnJle79TfdRSe63eksJbm2wtTZckrSpKqnTGkltW+e0QgAMAAAAAEBPhNwCgwTOmOMrxQIuTwOaPfhlTLMe/ueykN87JHdn+1TWyzura5OmqSOH3Dk8g9N4aIb83SpCRkUv4DQAAAABATITfAIBGINpmlGbPeeOX62QFx7r2jrjndv1byja9rBuu1UlSkrL9yRHPe8uS7dIICffivC76Ntcrn2sUKTgHAAAAAAABhN8AgIYvav9uN/BhPDLGloynwlg7zsldyfhkFF+P8JrgUysZq7UcEzm89riB44V2aPhtZGmXN0Fe18jjSnwaBwAAAAAgusrNRAEAaHCM8UQ54cq4JTLGK0v+sk0uo1WJR+bau2Tkyopzg8yaUOqma5fTQf4orUuKynL7b3N9lc5Y8rnlY1wFwu+6WzcAAAAaBmOMiouLVVBQII/HI8fha0IAjVNiYqLS0tLUpk0btWzZUpZVs7/hTPgNAGjwjFssY/yyrMptQmxJTiAAT/BLsuU62dWb2xQHWp5YKTW13NisFip2UrXV00KusSQrTaq0OWdWWea90xNavR7o9x2Q63MkK7FO27UAAACg/rmuqy1btqi0tLS+lwIA+8y2bXm9XuXn56tFixbaf//9lZBQc7/lTPgNAGjwjCmVcXJkJXUN3Hc9shLSykJxr2RKAyGwseU6G6s5uU+ST1Jaja87Ep86q9BO1nd5Serb2pVHXZSmzSFjtpQEKncK/aFV7K5JDG50me1zJCXWwYoBAADQUBhjwoJvy7KUmMjXhQAaJ8dxZEzZvlelpdqyZYt69+5dYxXghN8AgIbPlMp1c5WgrjJuqYxbKCshTa6bI+PmSTKBCm5F6SMSg+NbE3gIU712KXuryG2tJbktlOE1OriVpQKnjdIq/VA7r6wfSmBFlsqfl5HklD1Fv2vkU3ulqLhO1g0AAID6V1xcHAy+ExMT1a1bN7Vq1apGqyQBoC65rquioiLt3LlTjuOotLRUxcXFatWqVY3Mz7+OAIAGz7glMm5B2e28QLW3JOMWybgFMsYr4xaruv2+Jcl1tpffqqHVxlbkpGpFnqt8v1GJbclnwn8Oneev2LOx4nlLZUXhso3kMS1rda0AAABoWAoKCoK3u3XrpjZt2hB8A2jUEhIS1KZNG3Xr1i14rLCwsObmr7GZAACoJUY+GbcocNt4tWeTRyPjlsjxb5Rr79jHB4myqWaNSpRjLNkKVHGvKVKwjUlFOb49QXyRDgjeNpJe3BzoD+5zjYxqdiMQAAAANGweT+BrVsuyaqwqEgAaglatWgVbndTkngaE3wCARqLi5o9libFx5DpZgarwsmrwvVf7ld/GSpffJMrvSD7HaKfXjRhg5/r2VH57Teqe65UQ3AQz0AKF3o4AAADNieMEvk5MTEyk4htAk5KQkBDcv6D837oambfGZgIAoLYYI+OW/9qTkUzgE6Hj3yDX3i7X3iYjRzLV7/ldl1yl6fv8FsrwOJqxvVg7St0Ild+pKrT3BPHG7AnH15Z0DBm53du6FlcLAAAAAEDjRvgNAGgUjPHKGEeBCu2ycNh4ZNx8GeOTZGT2YsPLuuQoTUWOtL2setsxRm6lym/XSg+9X3beWC3Dnt12T3KtrRUAAAAAgMaO8BsA0Ag4krFlTLFcJ1emLPw2xiPX2R2oCjeO1MDDb79JU6EtbSr2S5IcI7kmNPx2FLqJZfn5ArN/WGH71lI+jQMAAAAAEA3fNQMAGgFXkiO5xWUbUwbCb9fZJckvmZJA3+866Nu9L/KcVsrx7bm/sdgfUvkdqbrbKftUnelrHfbsvI4kNr0EAAAAACCipPpeAAAAVTKuZFkycmWMT5YJtA1x7R2S8UsyMqZIMnbseepZtj9Vef49Efa2UlteZ8+Glq5aqXKY7ZRVfm8sSVVypZzbY1Q2vmFXvAMAAAAAUB+o/AYANAJGtnelZGz5ij+UMZ7AUTdfe/p/O5Jqbkfo2uBxEjRnpyfkWKkb+FRsWz3kV3rYNX4T2O06y5egfDs0/Z76a6n4VA4AAAAAQGRUfgMAGgXj5kvGJ9feURZ6BzbBDJ43XjX0ticeN0G7vHbYMUkqdNspxfJJVuhzyLeTpGRpt1dqW6n0+9cSv2h7AgAAANQd27b1/vvva+7cuVq6dKkyMzOVm5ur9PR0de7cWUcccYQGDRqkcePGqU+fPvW9XKDZo1wMANBIGHkKXpRkl/X6lqQKQbLxRbqojsUOor1u+PnVhYHK7gKnhSRLXtMi5PwXWSmSpOV5tn7IjxDuW/wcGwAAAKgLH3zwgfr166dx48bphRde0MqVK7V7927Ztq2CggJt2LBBM2fO1F133aUDDzxQo0eP1sqVK+t72bXqwQcflGVZsiyKctAw8R0zAKARMDJucdnmkK6Mk1N22K4wwl8/SwuRoED/7cgV6J4I4XdB2VPI9aeofVKCPG5KyPn1xYG5sryuNhWHt3UxSqD2GwAAAKhljzzyiO6//34ZE9hv59RTT9Xo0aN15JFHqmPHjiopKVFGRoYWLFigWbNmafPmzZo9e7Z69eql//73v/W8eqD5IvwGADR4Rq6MmyVZCTLGrdDupEIY3CAqvxMlK1kyxRHPeiO0JN9RGvji2eNaKnJaaLevhaQ9fcG/zfVKspTldbShOFLAzy9xAQAAALXp5Zdf1v/93/9Jkrp27ao333xTp556asSx48eP1zPPPKM333xTf/rTn+pwlQAiIfwGADQCpuwPb9ltR8aEBsHGya3zVVVmWx2UIJ8SFCn8TtK83SbsqFP23IrtRNkmQfl2Ysj5XJ+Ra3XUDo8ddm0A4TcAAABQW7Zu3aobbrhBktSmTRstWrRIBx98cMxrEhMT9bvf/U6jRo3SwoUL62KZAKLgO2YAQMNnAq0/ghXfxoS0PAkcKqzrVYXxmtYqNp0injNWut7cWhR23C3Lw3f7ElTiJCnfH9rEJNtna7PvAJU64cG5FGh7AgAAAKB2PP300/J4Ar+Z+eijj1YZfFfUrl07jRkzJur5nTt36r777tPxxx+vDh06KDU1Vfvtt58mTJigefPmRb1u8+bNwT7br7zyiiTp008/1ZgxY9StWzelpqaqT58+uv7667Vt27Yq1+nz+fTcc8/ptNNOU+fOnZWSkqJu3bpp5MiReu211+S64W0dX3nlFVmWpYceeih4rHxNFT82b96sH3/8MXj/8ccfr3I9//73v4Pjly1bFvaY5fN6vV499dRTOvbYY9W2bVu1adNGJ554op577jk5ToRfu63EcRy9+uqrGj16tHr06KHU1FR17NhRJ598sp5++mmVlpZWOQcaPr5jBgA0eI5/TeCG8UrGI8lUaH3ScNhKUp7dKvy41UNGKRGukPyu5FidleuXvstvoUxv6Kdm10iritKjPmaO02vfFg0AAAAgImOMpk6dKklq3bq1Jk6cWGNzv/766zr44IP12GOP6dtvv1Vubq58Pp+2bdum6dOn64wzztBVV10l2472G6B73HvvvTrzzDM1a9YsZWZmyufzafPmzfrvf/+rY489VqtWrYp67ebNm3XUUUfphhtu0BdffKGsrCz5/X5lZmbq448/1iWXXKKhQ4cqJydnr5/rkUceqQEDBkiSXn311SrHT548WZJ0+OGH64QTTog4Jjc3V4MHD9add96p77//XgUFBSosLNSyZct0ww03aNiwYSoqCi8+KrdlyxYdd9xxuvzyyzV79mxlZGTI5/MpJydHixcv1u23364jjzxSa9eu3YtnjIaE8BsA0OC5TnbZrUDLE8lIpqQeVxSZbRLkdRPDjntMS5ko21IWOa6KTQdl+aSNJdLPBaEV3kYmrBq8onwnbd8WDQAAACCilStXKjs78L3IkCFD1LJlyxqZ9+2339Yll1yi4uJiHXjggXr66ac1Z84cffvtt3rnnXc0cuRISdJLL72ku+66K+ZcL7zwgh5//HENHTpUb7zxhpYvX6558+bp0ksvlSTt3r1bV1xxRcRri4qKdPrpp2v16tWSpHPPPVcffPCBli9frunTp2vo0KGSpEWLFmnMmDEh1dTnnnuufvrpJ11//fXBYz/99FPYR8+ePSVJV111lSRp9erVWrp0adTns2LFCn3//feSFHXdknTttdfq22+/1QUXXKCPPvpIy5cv1xtvvBEM2RcsWKBLLrkk4rXZ2dk6+eSTtWLFCqWmpurGG2/U9OnT9c0332j+/Pm69957lZ6ervXr1+uss85Sfn5+1HWg4aPnNwCgQXOdfEmh1Q6umyPjRv8pfn35Kq+j2iU7OrhSkbejREX7eXOmx1WO3Uqbil2tLfTr54LKFe2WHlwVPeh3TPRgPOJ4q6sSTWa1rgEAAACaox9//DF4+9hjj62RObOysnTNNdfIGKMrrrhC//vf/5SUtCeeO/bYY3Xeeefpvvvu02OPPaZ//vOfuvbaa3XIIYdEnG/JkiW6+uqr9b///U+Wted7g9NPP10pKSl68cUX9dVXX+n777/XMcccE3LtQw89pI0bN0qS/vznP+vhhx8OnjvuuON0/vnn65JLLtHrr7+uJUuWaNKkScGwu127dmrXrp26dOkSvKZ///5Rn/dFF12k2267TcXFxZo8ebIGDhwYcdzLL78sSUpOTo4aXkvSN998o8cee0z33ntvyJrHjx+v0aNHa+7cuZo5c6Y++uij4A8Tyt18883aunWrevfurfnz56tPnz4h50899VSNHz9eQ4YM0caNG/XEE0/o0UcfjboWNGxUfgMAGjZTIlXe3NItkuvW8waXVouwQ4W2pe/ykqRKLU4ckyg3ys+bNxT5VeIkaUuJrQLbVaTO3vn+6P3q3MitwKPyK1ILlWpOAgAAADQDWVlZwdudO3eOOs51Xa1cuTLqh9+/5/uZ559/Xvn5+erZs6eee+65kOC7ooceekg9e/aU67qaMmVK1Mfu3r17sEd2ZXfccUfwduWNN71er1588UVJgfYiDz74YNj1lmXpueeeU8eOHSVJzz77bNR1VKV169aaMGGCJOmtt96K2E/b5/Pp9ddflySNHj065mt+5JFH6p577gk7npSUpBdffFHJycmSpOeeey7k/ObNm/XWW29JCjyfysF3uWOOOSa40Wl5X3U0ToTfAIAGzZgSmUrht+tfJ9eueuOW2pTrhn+RlOuXXthcKsdqH3LcNokqcttGnsfvKMefpN1eR6VO+EYykuSLkXA7UdqpRJYgr6FNCgAAABCPwsLC4O1YLU8KCgp0xBFHRP3Yvn17cOwHH3wgKRDupqamRp0zKSkpWB0dq03IuHHjos5zyCGHqFWrwJ5E5RXe5b799lvl5eVJki6//HIlJoa3b5SkNm3aBEPrX375RRkZGVHXUpXy1icFBQV65513ws5/+OGHwTYzsVqeSNJll10WMfCXpF69eunMM8+UJH3xxRch7Vpmz54tx3GUnp6us846K+ZjnHLKKZKkHTt2aMuWLTHHouEi/AYANGiBkDt8kxfb+0OdryXk8U3lLw4tfZXjyHGNcp0uMtaeL463eVup1I284aUkbShO0k6PHTXkjlWXneevTgezBHnd5LLb0dcDAAAAIFCtXK64uHif53McRz/88IMkBduUxPqYMWOGJGnnzp1R5zz00ENjPmb79oHCnIpBvhToZ17uxBNPjDlHxfMVr6uuQYMG6bDDDpO0Z1PLisqPde/evcpgury3dzTlG2UWFxeHBP/Lly+XJJWUlCgpKSnm6z969OjgdbH+DtCwEX4DABo0x78xrO1J4PimeljNHn4TGjobq5Xe31Esv5G+yGkvv8qrvy19lZMsf1hYvseaIiOva+R1qt9+JNObKMVd/Z0gX9m6XatVtR8LAAAAaE7K231IgY0jo2nXrp2MMSEfl112Wdi4nJwc2XZ4YU9VSkqi7wGUnh6preEeCQmB6K9i9XP5WspV7NsdSbdu3SJetzeuvPJKSdL8+fO1efPm4PGMjAzNmTNHknTppZdGrUQvV9Wau3btGrxdcc27du2q7pIlxf47QMPGhpcAgAbNuMWSIrQDMeE94urSdm8L9ajwdeYO+2BJUq7P0bI8aXTnwKdYY7WRx429MWWePxB6e6rbwFuSMZYCP8uO3hc8yEqQx0mUEiVXabKstrIMO5cDAAAAkRx11FHB299///0+z1cxgL7qqqt0yy23xHVdSkrt/tZmtPYhteHSSy/VvffeK5/Pp1dffVUPPPCAJGnKlCnB16eqlifS3q+5/DE6deqk+fPnx31dtN7gaPgIvwEADZpxiyIfN946XkmoPH9oJcIuX5okj/zGaJfHlW0C7UVcpcpfRfid6YkjuI4isEVmfOG3UaJ8JlD54VeqLDlKFOE3AAAAEEn//v3VsWNHZWdna+HChSopKamy0jqWDh06BG8bY9S/f/+aWOY+ryUzM1N9+/aNOrZiy4+K1+2NTp066ZxzztH06dP16quv6v7775dlWcFNJQcPHhxzLfGuOTMzM+Kay6v5CwsL1a9fvyorzNH40fYEANCgRd3Ysp4rv7/PT1DFdiNfZO2pxrCNUbHbQlIgcPa40o8F0b9IzvBE3ugyHkblld9V2+0cpLXFqco1h+m7wh5l1wIAAACIxLIs/f73v5cU2KTx1Vdf3af5UlJSdPjhh0uSFi9evM/r2xcVg/evv/465thly5ZFvE7auwrs8o0vN23apC+++EJLlizR6tWrJcVX9S1J33zzTVzn09PTdeCBBwaPH3PMMZIkr9cb7P+Npo3wGwDQYBljy9RzyB3NukJXFTeNXFe8J8Au9Bvt9AY2vHSVqPVFjopjFGb/Wuzb63UU2pKs+D6de9wk5fgs+UyySp0E8WUAAAAAENttt92mtLQ0SdK9996rTZv2be+hs88+W5K0evVqzZ07d5/Xt7eOO+44tWvXTpL06quvynUjF+QUFhbq7bffliQddthh6t69e8j58tdGCgTK8Rg+fLh69+4tKbDJZflGl61atdKECRPimmPq1KkyJnLbyO3bt+uTTz6RJJ166qkh1d1jxowJBvbPPPNMXI+Fxo3vegEADZZrZ8gYT30vI6IvszwqsXoG78/YVlzhXKmW5aVISpCjFH2YUSw7Rjvv4r3Y6LLc5M1exbvh5c9FLbXTIxU5ycr1WzJ8GQAAAADEtP/+++tf//qXJCk/P18nn3yyFi1aFPMaY4zy8vIinrvlllvUqlVg8/mJEyfq559/jjnX7Nmz9eOPP1Z/4VVITU0NVmCvXLlSDz/8cNgYY4xuvPFGZWVlSZJuvPHGsDEVw/ANGzbE9dgJCQnBCu933nlHb731liRp/PjxwdemKj/88IOefPLJsOO2bevqq6+WzxcoMLr++utDzh9yyCEaP368JOnNN9/U008/HfNxNm3apGnTpsW1JjRM9PwGADRgtuLayLEe5PsdOWV9vSWpctGB35WkRDkmscL9mlfquDKy4oq/S+wEbSx2tN2Tpmyfpd12Z/VIjNJWBgAAAIAk6eqrr9b27dv10EMPaceOHRoyZIiGDRumMWPG6IgjjlCHDh3kOI527typ7777Tm+//XYw1E5MTAzZsLJr16569dVXNW7cOGVkZOj444/X5ZdfrrPOOku9evWS3+/Xtm3btGzZMs2YMUMbN27Uhx9+qCOPPLLGn9f999+vd999Vxs3btSDDz6on376SRMnTlT37t21adMmPfvss/riiy8kSQMHDtQ111wTNsegQYOCt//4xz/qvvvuU/fu3YPV1QcccICSksLjxyuuuEIPPfSQSkpKQo7F6/jjj9fdd9+tH374QZdeeqm6dOmidevW6emnnw62aRkzZoxGjx4ddu3zzz+v5cuXa+PGjbr99tv1/vvv69JLL9Xhhx+u1NRUZWdna8WKFZozZ44+//xzjR07VhdddFHca0PDQvgNAGi4jC2Zhhl+O8bIZ5KDRddGoem3bSRZFcLvvS/ujqnUMYqv8jtBRY7RslyfTuzQQr8UumqV1Ea/71I76wIAAACakgcffFBHHXWU7rjjDm3cuFGff/65Pv/886jjLcvSiBEj9OSTT6pHjx4h58477zy9//77uvzyy5WTk6P//ve/+u9//xtxnoSEBLVs2bJGn0u51q1b67PPPtNZZ52l1atX65133tE777wTNm7w4MH64IMPIm4OefDBB2vChAl6++239cknnwTbjZTbtGmTDjjggLDrevXqpREjRujjjz+WJPXt21cnn3xy3GufNGmSrrzySk2bNi1iZfbgwYP1+uuvR7y2Q4cOWrx4sSZMmKCFCxdqwYIFWrBgQdTHatOmTdzrQsND+A0AaLCMKZFUSyXT+yRVjpG2e1upbYseSjI7VDnbdkxgs0vXBFqL+Gqt8ju+8NtYLbQoy2i319bWUinH58p2EySxuzkAAAAQj7Fjx2rMmDF67733NHfuXC1dulS7du1SXl6e0tPT1bFjRx1xxBEaOHCgLrjgAvXp0yfqXGPGjNGmTZv0wgsv6KOPPtLPP/+snJwcJSUlqVu3bjr88MM1bNgwjRs3Tvvtt1+tPacDDjhAK1as0AsvvKDp06dr5cqVKigoUIcOHXTMMcfod7/7nS6++GIlJERvmfjaa6/p+OOP14wZM7RmzRoVFhZG7SFe0SWXXBIMvydOnFitdbdv315LlizRM888o7feeksbNmyQMUb9+vXTpZdequuvvz5iWF+uW7duWrBggWbPnq1p06Zp6dKl2rlzp/x+v9q1a6ff/OY3GjhwoM4++2ydcsop1VobGhbCbwBAgxXo911LJdP7wFhJMpJ2epPVJ62VWisQdlcUuJ8ktyyYLt2Hvt6xlDiu4tnCw6iFfirwqdQx2lHqaGupI9skifAbAAAAiF9SUpLGjx8f7Bu9L9q0aaPbb79dt99+e7WuO+CAA6Ju9ljZ5s2bqxyTkpKiG264QTfccEO11lEuOTlZd955p+68885qXbdy5UpJgdYwl112WbUfNy0tTffcc4/uueeeal9bbtSoURo1atReX4+Gj52uAAANl/HLuIX1vYoQxmqnrf5DJEle15KJUnX9/MYiOWoRPF9g1856vK6RrdZVjst1u2m3N7CIQttofaGvbBPO+DbLBAAAAICa4jiOpkyZIkk666yzQjbOBGoS4TcAoAEzamhtTxyla6c3TZLkc8rD7/Dq6WyfK6NEOWVtT34trr3e5X6TVulIhPX401VQ1ni8yDYqcYxKHEkW4TcAAACAuvX6669r27ZtkqTrrruunleDpoy2JwCABssYf30vIcxH2QdrRb4lqVQljmRkyVitIo41SgiG33MySyKOqQl5TiulV8i7/VZ3JZvdkrzBY9/nt5DfFEiSFmeXSpI+3+XXbfsTfgMAAACofevXr5ff79fy5cv1xz/+UZJ01FFHaeTIkfW8MjRlhN8AgIbLeKseU8f8rqVNJYFq9Fy/5HOTZaJspGJkyTYJqu2+5aVuUkixt6MkJVsJVT6szzXyq4NofQIAAACgtv3mN78JuZ+cnKznn39eFr+NilpE2xMAQINlVEuNsveBI2lVgU+SlOOTcvxpivbp1ChRXrf2N5QsdUIfw29SZOL4FF9gu9rm6y43zs1yAAAAAGBftW/fXqeffrq++OILDRw4sL6XgyaOym8AQMPVAENZY6S1RYHw+5tcv0Z3S5Ib5dNppr+D1pe0kFS7m3YWVwq/XSUqUt/vykocI6+bIMdYcYwGAAAAgL1n9vH7u8svv1yXX355zSwGzQaV3wCABqxhbXYpBTqJOGVfs/1U4FWpkyCvaR1x7ObSFtpUXPu/wlf5VQr0Ga/6U7zfdZVvJ8nf8H7GAAAAAADAPiP8BgAgGqtF2P2KObHXMfK6llaVdI54eZ4/QSvyaz/Ad41V6X6CvGofcsyJEHD7XSnblyjX8OUAAAAAAKDp4btdAEADVr+V30ZJqtg+xCglpBOLzw2E31tLI7c92VJiaXupU8urlLxuaPjtKEF+kxxyrDjCMvzGaJc3QS6V3wAAAACAJojwGwDQgNVvKutRZwW2xwh8unSVojz/nvNGkm2k3d7IrU12e41y/bUf4Of7K346T5ZtLBU5LVRxa4+SSOG3a7Sx2DTE1uoAAAAAAOwzwm8AQMNl/FWPqRWBT4+lbgu5VmvJSpEUCL8rs11L2VGWWeJKmR671lYZfBzHkhT4cKx28rjJ8prQanRfhAze6xqtyK/99QEAAAAAUB8IvwEADZZxi+rnca2WkiSPm6xct5uMAi1EHKWENWIpcoyyvJFLp/2uUZav9tueFNlSIPxOUrbTXbt8yfK6iSFjIrU2cYz0ZVZpra8PAAAAAID60GDDb6/Xq8zMTLlu/fZ7BQA0RZHblJQzSpUkedwk+dxEuUqTJHlNaliLkLmZrorsyOH397l1U7m+osCVKducs9hJke0m6Ovc0M066WwCAAAAAGhu6jz8Lioq0kcffaSPPvpIRUXhFX1ZWVk6//zz1aZNG/Xo0UPt27fX7bffLq/XW9dLBQA0WZE3qCznlIXfJU6SXCXIY9pKkmyTGBYif7SzWEVO5B/U/lhQN5+7fszzy6iFJEsFdrJKXEvzdlWuOCf+BgAAAAA0L7G/+68F77zzjiZOnKhevXpp8+bNIedc19VZZ52l7777TqastK6wsFDPPPOMNm/erHfeeaeulwsAaCI8Vh8lq0iJZrdkJcfsJ+4oRcmStnmS1TLRVqFaqmWiZJskrS8OD7oL/fUbLK8r8smU9fyenZmifq2NFlZoZ2KsNmXnAQAAAABoPuq88nvu3LmSpLFjxyohIfTh33rrLX377beSpGOPPVZ//OMfdeyxx8oYo5kzZ2rOnDl1vVwAQBPhNalyFGgFUt7DOxq/CZzf5U2Q3yQoxw60PSl1k7TLEyH8jtL2pK54XSOjQI/vtUWOih1LuX5H5e1dHKWHtWsBAAAAAKCpq/PK75UrV8qyLA0aNCjs3JQpUyRJxx13nJYsWaKkpCT5/X4NGTJE33zzjV599VX99re/reslAwDqia/kkxqYJVGSI6MEOUqUlKBSdVK68qNeUeqmqXWCVOJIpU6iNpcm67DUFHmcRM3JLAkb/32epwbWuW98StdOp4d8ruQry+eN1UqWyVWpaav8eg7oAQAAAACoa3Ve+b1r1y5JUp8+fUKO+/1+LViwQJZl6YYbblBSUiCXT05O1nXXXSdjjJYtW1bXywUA1CNjwveGqDYrRZLkGks+kyYpUTKxW4C4ZRXTflfKtxO1qjBwP9OXsu/rqSU+k6pSJ1GuMcHu3j61kZSsPLulNhdX7gEOAAAAAEDTVufhd05OjiQpJSU0QPjmm29UWhroT1q5urtv376SpJ07d9bBCgEADYExRjL7vmGkKdu80jaJ2u1rJSlBporNH92ycHyHx2hLaYK2lQZKqT/fXeefNuNW6qTINgmyjeSWPb0Mfye5Vmv9XNRScyNUrAMAAAAA0JTV+Xfx6enpkvZUgJdbsGCBJOnggw9W165dQ861aNGibhYHAGhAaqJNR4L8al02myWfSZAsS1V9+sv0tZCUoF8KbK0pLGsjYiU26E0jfyhsKyMp1+cEw2+PE+gDvqqw4Yb2AAAAAADUljrv+X3QQQfphx9+0BdffKEzzzwzePy9996TZVk65ZRTwq7ZvXu3JKlLly51tk4AQH2rifA7UTl2B3VL3CrHWLJdS5Ilu4pPf9/lp+iYFsna5XW0tTShbDUpyveHb3bZUHy00+j6PtKP+T6d2yNQ7V7qBnqc/1xAyxMAAABgX9m2rffff19z587V0qVLlZmZqdzcXKWnp6tz58464ogjNGjQII0bNy6s3W80K1as0Lvvvqv58+dr8+bNwQysXbt2+s1vfqPjjz9eZ599tk455RQlJMRX1JKXl6c333xTn332mX744QdlZWWpqKhIbdq0UY8ePXT00Udr2LBhGjt2rNq1axfXnMYYzZ07Vx999JEWLVqkHTt2KCcnR6mpqerYsaMOP/xwnXjiiRo3bpwOO+ywuOaUpA0bNujtt9/WZ599pvXr1ysrK0u2batt27bq06ePjj32WI0aNUpnnnmmkpOT45qztLRU06dP16effqrly5dr165dKigoUKtWrdS1a1cdddRRGjJkiMaNG6du3brFvdbFixfr/fff15dffqlt27YpOztbiYmJat++vfr166fjjz9e5513ngYMGBD3nBkZGXrrrbc0b948rVq1Srt375bH41Hbtm2133776ZhjjtGIESM0evToYEFxVWrjfSrVznu1LljGmDrdAeuee+7RE088oTZt2mjatGkaMmSIJk+erFtuuUWWZem9997T2WefHXLNU089pbvuuksDBw7U4sWLa2Qdy5cvD/4P+8svv2j37t1KTk5Wjx49NHjwYF155ZU6+eST457v448/1qRJk/TNN99o9+7d6ty5swYMGKBrrrlGZ511Vlxz2LatF198Ua+//rpWr16toqIi9ejRQ8OHD9fNN9+sww8/fG+fbpW2bdum/fbbT5K0detW9erVq9YeCwDiYYxfBTv2cZNjq4VWlByto1os1XrfABU4STomfZWynP3UOeGnqJc9uHGo7jhwh4Ysbq/D2yTLMdLzR+bqqh/aa96uhtk+5NTO6Xq0n63BC3wa3iVd83aV6Ldd0/X60et04Q+/0acx2p7kXvQXtUuL7wspAAAA7Jt9+f573bp1sm1bSUlJ+s1vflPl+IxXGu5vLu6r7pfX7YbuH3zwgW6//XatX78+rvGjRo3S448/rv79+0c8v23bNt18882aOXOm4onmDjjgAD3wwAO6/PLLo45xXVdPPvmkHn/8ceXl5VU5Z2pqqq6++mo98MAD6tSpU9Rxixcv1k033aTvv/++yjkl6eSTT9bjjz+uwYMHRx2Tl5en22+/XVOmTJFt21XO2aVLF91999265ZZblJiYGHXcSy+9pP/7v/9TRkZGlXMmJibqoosu0iOPPKLevXtHHffLL7/ohhtu0BdffFHlnJJ0xBFH6NFHH9WYMWOijvF6vfrzn/+s//znP8E20LG0bt1at956q+65556YIXhNv0+l2nmvRlPdf+PiUefhd0ZGhvr166fCwsKQ48YYHXbYYfrpp59kWaH/OJ922mlasGCBrr/+ej377LP7vIZTTjlFCxcurHLcpZdeqhdeeCGsP3lFruvqmmuu0UsvvRR1zFVXXaX//e9/MX/qkZWVpZEjR+qbb76JeD41NVXPPvusrrrqqirXvTcIvwE0NMb4VLAjvh8eRp3Daqn5+cdoWJtFWuk5SaVOgo5ttUGZdg/1SIz+hdvd60/RHw4o1oglCTqqbYocIz3dv1TjliVrbZFvn9ZUWzqlJGrGick6daFHh7VJ1S8FXiVaUuaZGTprWR99k+uJei3hNwAAQN0h/K4ZdRl+P/LII7r//vuDwd+pp56q0aNH68gjj1THjh1VUlKijIwMLViwQLNmzdLmzZslSddee63++9//hs337bffasyYMcGAtlevXrrgggs0ePBgdevWTcnJydq1a5d+/PFHzZkzRwsWLJAxRqmpqfJ4In9dX1paqosuukjvv/++JCk5OVnnnXeezjjjDB144IFq166dcnNz9euvv+qzzz7TrFmzlJ+fL0maNm2aLrzwwojzvvLKK7rmmmvk9/slSccdd5zOPfdcHXfccercubP8fr927typpUuXavbs2frll18kSSNGjNCcOXMizrlx40aNHDlSa9askSR16NBBF110kU455RT16NFD6enp2r17t1avXq25c+fq008/DQbkGRkZEau1XdfVH/7wB/3vf/+TJFmWpVGjRum3v/2tDj30ULVv316FhYXavn275s+frw8//FCZmZmSpL/+9a+65557Iq51zpw5mjBhQjDHPOSQQzRu3DiddNJJ6ty5syzLUmZmZrDIdvny5cFxq1evjjhnVlaWzj77bC1dulSS1LJlS02YMEHDhg3T/vvvr9atWys7O1vr16/Xp59+qo8//jgYkC9dulQnnXRSxHlr+n0q1c57NZbaCL/rvO1J9+7d9eGHH+rCCy8M+SnMgQceqBkzZoQF3xs2bAgG1cOHD6+RNezYsUOS1KNHD40fP15DhgzR/vvvL8dxtHTpUv3973/X9u3bNWXKFPn9fr3xxhtR57rvvvuCwfcxxxyju+66SwcddJA2bNigJ554Qt9//71efPFFde7cWY899ljEORzH0dixY4PB93nnnaerr75aHTp00Ndff61HHnlEu3bt0rXXXquePXvGXUkOAI3bvn8x66itCuwEGautRiz26ZmjWunoVsnym9i/gmUkTdnaSqVOkRZllarEMcqzU7XbW3VFQn3J8jkqdQM/rPU6gfYsjpHy3U5aHiP4BgAAABDdyy+/rP/7v/+TJHXt2lVvvvmmTj311Ihjx48fr2eeeUZvvvmm/vSnP0Uck5GRoVGjRgWD1/vvv19/+tOflJqaGjZ25MiRuueee/Tjjz/qz3/+sz755JOo67z22muDwfdJJ52kN954I2pLi4kTJ6qgoEDPPvusHnnkkahzzps3T1deeaVc11WrVq00efJkjRs3LuLYsWPH6oknntDs2bOjBsmSVFxcrNGjRweD76uvvlpPPfWU2rRpEzZ2xIgRuuWWW7Rp0yY9/PDDmjx5ctR5H3zwwWDw3bdvX7399ts66qijIo69+OKL5fF4Qv5uI1m5cqXOP/98lZSUKDk5Wc8884yuu+66iMWtY8aM0UMPPaRFixbp3nvvDbYEqcxxHI0fPz4YfJ999tl64YUXIrZ6Hj58uK677jplZmbqySef1DPPPBN1rTX9PpVq771a1+q88rucz+fT4sWLtXPnTnXv3l0nn3yykpLCs/hFixbps88+kyTdeeedcfe3iWX06NG69NJLdf7550f8VYmsrCwNHjxYa9eulSR9+eWXEXuRr127Vocffrhs29bxxx+vBQsWhGzOWVJSoqFDh2r58uVKSkrSqlWrdPDBB4fN8/LLL+vKK6+UJP3hD3/Qf/7zn5Dz69ev13HHHaeCggIdfPDBWrVqVcTXal9Q+Q2goTGuRwUZo/ZpjiL9RpO39dClvTLV+5MWmnRMa43qvEObPJ3UP+2rqNfdse4U5flcvb+jRLYxMpI+HdxC533tVaHdcPt+TzuhtS5aVqiuqUnKLAvq1w531Hde9F8LlKj8BgAAqEtUfteMuqj83rp1q/r27SuPx6M2bdro22+/jZjrRJKXl6eFCxeGtb4YPXq0Zs+eLUn629/+prvuuivu9UydOlWXXHJJ2PEZM2Zo/PjxkgKV2QsXLgzJp2Ipb7t7/PHHhxwvLi7WgQceqF27dikpKUlffvmlBg0aFNecHo9HH374YXBNFd14443B3CtSBhbLhx9+qCFDhoT1KV+2bJlOOukkGWO033776fvvv1fHjh3jmnP79u1as2aNhg0bFnLcGKOjjjpKP/0UaJf51ltvacKECXHN6bqupk2bpt/97ndh55566indeeedkgLvhffffz/u/thLly5Vly5ddNBBB4Ucr433afn6avq9WpUmUfldLiUlRaeddlqV404++eRq9d6Ox6xZs2Ke79Spk/7+978H/+JnzJgRMfx+5plngr928e9//zvsH5b09HT9+9//1sCBA2Xbtv7xj39E/J/6qaeekhT4NY8nn3wy7PzBBx+se++9V/fee6/Wr1+v9957L+I/IADQtOx7lfU2b3v9dU2hvKarpAIZWcqx2+jL7FT17xn9OmOkj3aWyF/h58OlboK8br38vDhu3+QG/iy292xwmeNPk+SvnwUBAAAAjdjTTz8dbN3w6KOPxh0oSoFNACsHiitWrAiGiQMGDAiGoPGKFiaWdxqwLEuTJ0+OO/iWpEMPPTTi8RdffFG7du2SJN1yyy1xB9+SlJaWFjG3yszMDHZP2G+//YJ5WLyi9dD+61//Gmz18dxzz8UdfEtSz5491bNn+DeHH3zwQTD4Pv/88+MOviUpISEhYvDt9Xr197//XVIgM3zppZeqtTHkwIEDIx6v6fepVHvv1frQcLbebGAqBvMbNmwIO2+MCf46yaGHHhq1385JJ52kQw45RJL0/vvvhzWGX7t2rVatWiVJmjBhQtTK9opN4t977734nwgANFLGOFUPqkKWP0V+Vyoty9H9Jr5mKq6RSp3QkR7Xkq+Bh987PIH1FVdY++Lc+L/wBQAAABBgjNHUqVMlBTYbnDhx4j7P+eqrrwZv33TTTWGtf/fGjz/+GNyI8rTTTtMRRxyxz3NKe9ZqWZZuuummGpnzrbfeCoa0V199dbVC+mjy8vL0wQcfSJIOOuggjRq1b789XK7i39Utt9xSI3POnTtXO3fulCRdeOGFEVudVFdtvE+l2nmv1hfC7yi8Xm/wdqTWKJs2bQr2Dh86dGjMucrPb9++PdhMvtyiRYvCxkXSrVs39e3bV1Jgl10AaPr2PfxeV5QovzFaUxRIvwvLQvCqImwTYYzHafif7D1loXfFtS/ObrhtWgAAAICGauXKlcrOzpYkDRkyRC1bttznOb/88svg7d/+9rf7PF9tzZmfn68VK1ZIkvr166fevXvXyLy1sdaFCxfKdQPf84wYMaJGQlpjjBYsWCApECgPHjx4n+eUauf518b7VKqdtdaXemt7IgVK6BcuXKiNGzeqsLBQjhM76LAsK/jrEbWt4l9yv379ws6X714rRf8VkUjnV61aFbLhQHXnWbt2rbZu3ari4uJqvaG3bdsW83zFzUcBoEEw+972ZENxIAZeUxCY69tcRyO7qMr0+7tcX9ixPH/DD7/9EbbxKGnAPcoBAACAhurHH38M3j722GNrdM5evXqpc+fONTqnVHPrXLlyZTBQrqk5pT1rTUhIiLoZ5d7OKdXcWnfs2BEMlI866qhqtSaJpTbfUzU5Z8V5a/K9Wl/qJfxes2aNrrjiCn31VfTNxiozxtRZ+O26rh5//PHg/Uh9fSqGyVVtTlG+kYUUaEK/r/MYY7Rt27ZgO5V4VFwDADQGxpTs8xybSgI/VPWbwBdum0scSVWH2BuKw8Pvon3P4mudEyHnLnEadqsWAAAAoCHKysoK3o4V/rmuG1LYWNkhhxyi5ORk5efnB/eNqypM3LJliwoKCiKe69KlS0i7jHjXWVhYqF9//TXiuZSUlGC3gerMKQWKPKMVs/bp0yekcLN83rZt2yolJSXqnDt37gxZQ0Xt27cP6dEd71o9Ho/Wr18f9Xz//v2rPacUaJVcWloa8VyvXr1CNueMd97s7OyoRaotW7YMKaqt6feppFp7r9aXOg+/t2/frlNOOUVZWVnB/tetWrVS+/bta+wnKfvqH//4h5YtWyZJOu+883TccceFjSksLAzebtWqVcz5Kv6PXlRUVCvzAECTYyoG0AmSql/BvL008EWYKQu8t5XaOmtJgsb0iB0IRwqMfY2ggPqzXeFfdOU0hoUDAAAADUzFvCbWb94XFBTE7LO9adMmHXDAAXHPJ0k333xzcJ+5yh544AE9+OCD1V7nZ599prFjx0Y817t375A2vdVZ68CBA5Wfnx/x3Pz583XqqaeGzVvVnI8//rj++c9/Rjx32WWX6ZVXXqn2WlevXq1jjjkm6vmKe/RV5/mff/75wRYxlU2ePDlkD7945506dar++Mc/Rjw3dOhQffHFF9WeM973aXXmlKr3Xq0vdR5+P/roo9q9e7csy9JVV12lO+64I+SnS/Xtyy+/1D333CMp8BOK559/PuK48gb9kmL+tEqSUlNTg7cr/zSopuapSuWK88oyMjJ0wgknVGtOAKgzVppU7UrwRG0t8Uva0+Vkt9eWE9zM0lLk/icJEY/u8jX8CupIbU82RahiBwAAABBb69atg7eLi4sb3Hy1OW9trjUvL69ZP/+K87Zp06bG56wJtfX860udl1rPmTNHlmXp0ksv1aRJkxpU8P3zzz9r7Nixsm1baWlpmj59etTy/LS0tOBtny92sFBx88zKO9nW1DxV6dWrV8yP7t27V2s+AKhLPnWs9jWu1UHZlaqeywu6fy12AoF6BMaK/O/rcxsKIx5v6IppewIAAABUW8eOe74H2b17d9Rx7dq1kzEm5OOyyy4LG9e2bVslJSVVOZ8kzZw5M2S++fPn7/M6zz333LB1RtvIMt45JSkvLy9kzgceeKDKtebn58fMwJ555pmQOTdt2lTlnFWt9eijjw57/kOHDt2nOSXphx9+CJlz8uTJ+7zWW2+9NWyt+zpnvO9Tqfbeq/WlzsPvHTt2SJIuvfTSun7omDZt2qQzzzxTubm5SkxM1JtvvqlTTjkl6viKPwWpqgVJxZ+SVG5tUlPzAEBTYkxoaG324tNVxWuK7dAedJleRybKLz+t9x5W7ccCAAAA0LRU3JDx+++/r5E5jzzySEmB/d+i9bSurtpYZ//+/YOtiWtqTmnPWl3XDdmosSbmlGpurT179gyGyitWrAhu/rmvamOttTGnVDvv1fpS5+F3+/btJSmk4Xt927Fjh4YPH64dO3bIsiy9/PLLOuecc2JeU3FzyoqbVkZSseVI5Y0n92Yey7Kq3BwTABo1E9rayWsiV2nHnEKJwduVK8DXFvqiht83/1Qve0EDAAAAaED69+8fDEAXLlyokpLqtmEMV7HSeM6cOfs8X23N2a5du2CoumrVKm3ZsqVG5q2NtQ4ZMiQY1M+dOzdmlXS8LMsKFsQWFhZqyZIl+zynVDvPvzbep1LtrLW+1Hn4ffzxx0uS1q5dW9cPHVFWVpbOOOMMbdy4UZL073//O66q9MMO21MZuHr16phjK57v16/fPs+z3377VdlwHgAaM9v3s4z2VGuXuqmSlR739V6rt9wY21q4UtTw22F/SAAAAKDZsyxLv//97yUFNgt89dVX93nOinnTs88+WyNB7ZFHHqmjjz5akvT555/rl19+2ec5pT1rdV1X//nPf2pkzgsuuCC4n90LL7wQsg/e3mrXrp3GjBkjSVq/fn2NBbUV/67+/e9/18icI0aMUNeuXSVJb775ZpUtReJRG+9TqXbeq/WlzsPvm2++WcYYTZo0qa4fOkx+fr5GjBgR/Ifh8ccf1w033BDXtX369FGPHj0kBTbJjGXBggWSAr82Ub5zarmTTz45eDvWPDt37gz+wGDw4MFxrREAGivX3iGZPeG3z02SrXZxX59jt5dbxae4aOG3rxF/UgcAAABQc2677bbgXm333ntvzN7T8Tj66KN11llnSZK+/vpr/eMf/9jnNUqBtUmSMUaXX355jYTKV199tTp37ixJ+sc//qGvv/56n+fs2rWrrrjiCknSli1bdNddd+3znFLg+VuWJUm6/vrrlZOTs89znnPOOTr88MMlSW+//bbefffdfZ4zNTVVt912m6RAa+Orr766Rlqq1PT7VKq992p9qPPw+4wzztDdd9+t+fPn6/rrr5ff76/rJUiSSkpKNGrUKH333XeSpPvuu09333133NdblhVsjbJ69Wp99dVXEcd99dVXwYrtc845J/g/Y7m+ffsGq8HffvvtqL+e8MorrwRvjx07Nu51AkDj5ChQnx3gcRNVbOLfCds2CVX2CbeVGvG4j8pvAAAAAJL2339//etf/5IUKKA8+eSTtWjRopjXGGOUl5cX9fwLL7wQDJXvuOMOPfzwwzE3f5Sk3NzcmOcnTJigiy++WJL0zTff6IwzztCvv/4a85qSkhJ5vd6o51u2bKmpU6cqISFBfr9fZ555pmbOnBlzznjW+re//U2HHHKIpEBF9R/+8Icq98Cras4TTzwx+AOAX3/9VSeffLJWrlwZ8xrbtmM+rmVZev3119WiRQtJ0oUXXqhJkyZVGVZXtdbbbrst2FLl/fff17hx46rsqV3VnLXxPpVq571aH+q8semUKVPUr18/DRo0SJMmTdKHH36ocePG6dBDD1V6etW/0l4TG2X6fD6NHTtWixcvliTdcssteuSRR6o9z6233qpJkybJcRzddNNNWrBgQfB/CkkqLS3VTTfdJElKSkrSrbfeGnGeO+64Q1deeaVycnJ011136dlnnw05v2HDBv31r3+VJB188MGE3wCaPhO6QWWJkyS/SZKsKOMrcWXJNbEHmyiT+R0qvwEAAAAEXH311dq+fbseeugh7dixQ0OGDNGwYcM0ZswYHXHEEerQoYMcx9HOnTv13Xff6e2339bPP/8sSUpMTFRKSkrIfD179tSsWbN09tlnKzMzU/fff79efPFFXXjhhRo8eLC6du2q1NRU5eXlac2aNfr44481a9as4PXRsrMXXnhB+fn5mj17thYtWqS+fftq3LhxOuOMM3TggQeqbdu2Ki0t1ZYtW7RkyRJNmzZNu3btijnniBEj9L///U9/+MMfVFBQoLFjx2rAgAEaO3asjjvuuGCv6aysLK1YsULvvvtuSIV4xYysXOvWrTVr1iyNHDlS69at0/PPP6/p06froosu0imnnKIePXqoZcuWKigo0Pr16zVv3ryQqutoa/3LX/6izMxMvfTSS1q1apWOOuoojR49WmeddZYOOeQQtW/fXj6fT9u3b9eyZcv05ptvavPmzVHXKQU2k5w+fbouvPBCFRUV6dprr9Uzzzyj8ePH68QTT1Tnzp2VlJSknJwc/fzzz/rggw/02WefxVxrUlKSpk+frjFjxmjZsmV677339Omnn+rCCy/Uaaedpv3331+tW7dWcXGxNm7cqAULFuitt96q8vnX9PtUqr33al2zTB03bUlISAirfo6XZVmybXuf13D++ecH/8cZNmyYnnnmmZhrSklJUd++fSOeu/fee/X4449Lko455hjdfffdOuigg7Rhwwb97W9/C+60eu+99+qxxx6LOIfjOBo6dGgwjD///PN19dVXq3379lq2bJkefvhh7dq1SwkJCZo1a1bw1w5q0rZt24KbcW7dupUNNQHUC2McWVaiPIXTlJTST8VZt0uSlpcMUqcUrw5I+jaOWRK10X+MuiTnq9cnraKOyhiRrxZmY9jxIxedoC0l9fNbSfUl96K/qF1aw/jCBAAAoKnbl++/161bJ9u2lZSUpN/85jdVjs94Ze/yl8ag++V1W7Ty3nvv6Y477gjuGReLZVkaMWKEnnzySfXv3z/imC1btuimm27SBx98ENfj9+7dWw888IAuv/zyqBmW67r661//qieffFL5+flVzpmWlqaJEyfqL3/5izp16hR13IIFC3TzzTdrxYoVca114MCBeuKJJ0Ja/VaWm5urP/7xj3rttdfkOE7UceW6dOmiu+66SzfffLOSk5Ojjps0aZLuv/9+ZWZmVjlnUlKSxo0bp8cff1y9e/eOOu6nn37SjTfeGGxrXJXDDz9cjz32mM4+++yoYzwej/70pz/p+eefj6tNTZs2bXTjjTfqT3/6U8x9AGv6fSrVzns1mur+GxePegm/95ZlWXH9DxHPPNXRu3fv4E+DKnNdV1dffbVefvnlqNdfeeWVmjRpUsznnpWVpZEjR+qbb76JeD41NVXPPvusrrrqqmqtPV6E3wAaAmP8sqxkefJfVEJSN5XmBfqKfVMySO2S/PpNSuR/I0NYafqp9Gh1SSnRIfMSow7bMaJA6WZD2PFDFwzQTs++/6C1MSH8BgAAqDuE3zWjrsNvKdAq47333tPcuXO1dOlS7dq1S3l5eUpPT1fHjh11xBFHaODAgbrgggvUp0+fuOb84Ycf9M4772j+/PnavHmzsrOzJUnt27dXnz59NGDAAI0ePVrDhg2LO1PLy8vTtGnTNG/ePK1YsUJZWVkqLi5W27Zt1bVrVx1zzDE65ZRTNGHCBLVr1y6uOY0xmjNnTrCyPCMjQ7m5uUpNTVWHDh102GGH6YQTTtD48eNjBqmVrV+/Xm+99ZY+//xzrVu3TtnZ2XIcR+3atdP++++v448/XmeeeaZGjRoVM/SuqLS0VG+//bY++eQTLV++XLt371ZhYaFatWqlzp076+ijj9bgwYN1wQUXqFu3bnGvdeHChXr//fe1YMECbdu2TdnZ2UpKSlL79u3Vt29fnXDCCTrnnHM0cODAuOfMyMjQtGnT9Nlnn+mXX35RVlaWvF6v2rVrpx49eui4447TsGHDNHbs2LgrqWvjfSrVznu1siYRflfVc6gqsX4SE6+aDL/LffTRR5o0aZK++eYbZWVlqVOnThowYICuvfbauCu1bdvWCy+8oDfeeEOrVq1ScXGxevToodNPP1233HJLsNF+bSD8BtAQGOOVZaWqOOsuSUmyvYFfmfumeJBaJ9k6NHVZhKsSVLE/uLFaa07uMeqUYuuMRaVRHyta+H3g/OOU429ejb8JvwEAAOpOXYbfANCY1Ma/cXXe87smwut9VRt5/8iRIzVy5Mh9miMpKUnXX3+9rr/++hpaFQA0MsaVLMnxrZWV1HXPYUlet2IVd8XAu/LtRG0psdQyMfZPmrP9bZUe4bOgx6XnNwAAAAAATcHe9yABAKDGuTLGL2MKZZy84FHbWCp1K3zKslIrXFPxt3kSZGRpl08qcWL/ls9uf6oifRr0sOElAAAAAABNAuE3AKDBcJ3dkvEG7pT/KckxlmwTCLMdq6sctalwVcVPZYlylab1RY5Kqwi/bdeSVLlnXKKaV8MTAAAAAACarjpve1KR4ziaOXOm5s2bp5UrVyonJ0eS1KFDB/Xv31/Dhw/Xueeeq8TE6BuWAQCaDmM8MmWht9GeTSeNJLsslXaVLKtiRG0lBgZIkpUgV4kqto08buzw22cSQq+VZKwWNfAsAAAAAABAQ1Bv4fecOXN0zTXXaPv27cFj5b24LcvSkiVLNGnSJPXq1UuTJk3SiBEj6mupAIA6YpxMmYSyqm6zZ7NKI+mlX41OPbKlfCZNKVb5uQT51U7JKpEkuWohowS5MvI4sR/L41gySpSlVEnlgXtazT4hAAAAAABQb+ql7cnUqVM1evRobd++XcYYGWPUu3dvnXTSSTrppJOCm2IaY7R161aNGjVKr7/+en0sFQBQh4wxIe1O9hwPBOCO2shRkkzw01eCAj2/y3+WmyijBBX4jTxV9C8pcSy5SpOswFzGaimH8BsAAAAAgCajzsPvX3/9Vddcc41c11V6eroeeeQR7dy5Uxs3btSSJUu0ZMkSbdy4UTt37tSjjz6qVq1ayXVdXX311dqyZUtdLxcAUKdsyfgjnjHGUr7bUR43RSa4yWUg/Hat1pKVJkfJck2S1hb5VFpl5bfkVRuVb5hZYrrJr9TYFwEAAAAAgEajzsPvf/7zn/J6vWrVqpUWLlyoP/3pT+rSpUvYuM6dO+vee+/VwoUL1apVK3m9Xv3zn/+s6+UCAOqS8cl1c8MPS/ox36ttntb6aFd7GQX2gvBbncsqwtNllCxbqVpV0kXFtltl25N825LfJFcI0i35TEqNPh0AAAAAAFB/6jz8/uSTT2RZlu68804dffTRVY4/6qijdMcdd8gYo7lz59b+AgEA9ca4xTJOTthxx1jaVmrrp8IUTdrslW0CbU6K3UDltqtEGSXJNilamJMsx0hVZN/K9hn53GSVfyo0slTiUPkNAAAAAEBTUefhd3nrkuHDh8d9zRlnnBFyLQCgaTKmWMbNCz1otVSxE6jO/mino2LbDVZo7/C1kc8ENrk0Stb0nd3kc03ZZLEfq8CWvCZJpqzVSZGTriInuSafDgAAAAAAqEd1Hn47TqAWLzExMe5rkpICFX6uW8XuZQCARs0Yr4zxhRxzla6SsvB7ZYFProwKnMDGlFm+ZPlMsgLV30lamu3K51pl18WW7zcyJnCdJBU4qcr3E34DAAAAANBU1Hn43bNnT0nSkiVL4r6mfGyPHj1qZU0AgIbBtbfI8a0JOWYrTc9u8EqSMj22XFfa4QmE3wW2pQxvK7lKkKtk5fgdPbW2QJK0pjB245MPM0q0LK9VoH+4laatnhTl2PH/YBYAAAAAADRsdR5+n3baaTLG6PHHH9eOHTuqHL9jxw49/vjjsixLw4YNq4MVAgDqS6DqO7RfSaHbVkV2oI7b5xp5XFcZnkC19k5PgnwmQbZJkt+kqNC/59ocf+zwu9DvarfPklGCJEuOsfRLQZ1/WgQAAAAAALWkzr/Lv+mmm5SQkKDdu3frxBNP1IwZM4KtUCpyXVczZszQwIEDlZmZqYSEBN144411vVwAQB0xxi/j5Kly+P1dQXsVlgXZRlK2z1VJ2aeNL7JslTgJ8ptkFbnp8jh7rv0q2xP78SR9leOUhd+S15EmbSquoWcDAAAAAADqW1JdP2D//v318MMP67777tOOHTt0wQUXqF27djr22GPVpUsXWZalzMxMfffdd8rLy5MxgSDj4YcfVv/+/et6uQCAumL8kvwyblHI4Ty/pXw7tIN3ecS9qsCvXd409W6RrAI7RV5TxS6XlRQ7RkaWjFK125egAj97SwAAAAAA0FTUefgtSffee6/atm2ru+66SyUlJcrNzdXnn38eMqY89E5PT9eTTz6p66+/vj6WCgCoI8b4JWPLNTkhx3N8lpxKmbZbdn+X11Gu31KJk6zdvmQ5buhmmVUptl0ZJchRmnJ8gTAcAAAAAAA0DfUSfkvSH/7wB02YMEGTJ0/WvHnztHLlSuXkBAKPDh06qH///ho+fLgmTpyoTp061dcyAQB1xXgCVd+WFXL458LwauzyIyWOq62l0pfZLXRgevWrtn/K98nIkpSgjSVUfQMAAAAA0JTUW/gtSZ06ddKdd96pO++8sz6XAQBoAIzxyci3p6y7zObi8H0hAiMS5Bhpt9dVvl/av0X1H7PQdmWMJddKVJ6Pqm8AAAAAAJqSOt/wEgCAyBzJeCXtaV1iW91UaIeH0vf8VChjpUuSlmZ7tTjbpzVFCdqb+NrIkt+kya1mv3AAAAAAANCw1WvlNwAAQcYOO+QoVV43PJT2GyMpWZKU73dVaLvyumkq3Yue3baSVOKkKby+HAAAAAAANGZUfgMAGgSj8PDbY1rIHyXQdsvC7yLbldc1KvQb5fmrH2Hn+Fvqje1tVGjT8xsAAABAbF9++aUsywp+LFmyZK/neuihh4LztG3bVh6PZ5/WdtpppwXnO/PMM/dpruLiYrVu3To432OPPbZP89Xk6ybx2u2Lmn7tGrpaq/w+8MADJUmWZWnDhg1hx/dG5bkAAE2ICQ+uS5w05UYJtB2lSpI8ZZXhuX6jCB1SqmSbBK0scOTZi6pxAAAAoCG7YPau+l5CrXlrVJd6edxXX3015P6UKVM0aNCgvZprypQpwdsFBQWaOXOmLrzwwr2a69dff9WXX34ZvP/ZZ59px44d6tGjx17N984776ioqCh4f+rUqfrTn/60V3NJNfu6lV9fjteuemrytWsMaq3ye/PmzcGPaMf35gMA0FSFh9zFTrKyfJHD72y7Y+h9n5EdoUVKVVwjrSr0E34DAAAAiKm0tFQzZsyQJLVq1UqS9Pbbb8vr9VZ7rkWLFmnjxo0hc1UMJatr6tSpMsYoNTVVSUlJcl1Xr7322l7PV76W8rWtXr1ay5Yt26u5avJ1k3jtGtJr1xjUWuX3ZZddVq3jAIDmy7F3ROz57cqKes3G0paSSoL3l+V4tDeNS3L9yfI4fll7tV0mAAAAgObivffeU2FhoSTpX//6l6644grl5ubqww8/1Lhx46o1V3ng2LVrV916662699579cknnygzM1Ndu3at9tqmTp0qSRo9erRKS0v10UcfaerUqbrrrruqPde2bds0f/58SdKDDz6oRx99VLm5uZoyZYpOOOGEas9Xk6+bxGvXkF67xqDWKr8nT54c/Ih2fG8+AABNj3HzZSJUfseKo7eXJobcj1YhXpWd3kT5XDfixpoAAAAAUK48ODzyyCM1ceJEHXLIISHH4+XxeDR9+nRJ0gUXXKBLLrlECQkJchxHr7/+erXX9dVXX2nt2rWSpN/97nf6/e9/L0lauXKlvvvuu2rP99prr8l1XSUlJenSSy/V+PHjJUlvvvmm/H5/teerqddN4rVrSK9dY8GGlwCA+mdcyYT/2paJkUdP3RpeKb43Cm1LOz2Odnr2LjwHAAAA0PRlZGRo3rx5khQMSMv/nDNnjnbv3h33XB988IHy8vKCc/Ts2VOnnXaapL0LNcuvad++vUaNGqVzzz1XrVu33uv5yiuhzzzzTHXu3FmXXHKJJCk7O1uzZ8+u1lw1+bpJvHYN6bVrLOo8/N6yZYu2bNkix4k/ZHAcJ3gdAKBpMm5+2LFYbU9WFfhq5HF3egMV5tR9AwAAAIjm9ddfl+M4SkhI0MUXXywpUClsWZb8fr+mTZsW91zlQeMhhxyiAQMGSNoTaq5YsUI//fRT3HP5fD699dZbkqTx48crJSVFLVq00HnnnSdJmjZtmmw7/sKh5cuX65dffglZ0+DBg9WnT5+QtcerJl+3io/Pa1e/r11jUufh9wEHHKADDzxQa9asifuazZs3B68DADRFrowpDTsaK5De2zYnlT22uqBG5gEAAADQdJVX9J566qnq2bOnJKlPnz4aNGiQpPiDzV27dmnu3LmSAkFmufPPP18tWrSQJL366qtxr2vWrFnKycmRtCfIrHh7165dmjNnTtzzlT+P1q1b65xzzpEkWZYVDF9nz54dfLx41NTrJvHaSQ3ntWtM6qXtiYn1e+y1cB0AoGEzxhtofVKJ102MMBoAAAAA6s4PP/ygH3/8UVJoSFrx/rfffhus+o3ljTfeCFYTV5yrdevWOvvss4Nj4u2YUB6AHnDAATr55JODx4cNG6YePXqEjKmK3+/Xm2++KUkaO3as0tPTg+fK1+rz+YJjqlKTr5vEa1d5vvp87RqTRtHzuzz0TkhoFMsFAFSXKY644WWhzb/7AAAAAOpXeQDaokULnX/++SHnJkyYoJSUlJBx8cw1aNCgYDuMcuX9oTMyMvTpp59WOVd2drY++ugjSdLFF18sy9rTNrJiq4wPP/ww2Os5lo8//jjYR7py4HrooYfq+OOPD3kOVanJ163iOF67+n3tGptGkSpkZGRIUrDhPACgaTHGyDhZ9b2M5suK3lsdAAAAaM5s29Ybb7whSRozZozatGkTcr5Dhw4aOXKkpECPZtcN/43WcitXrtT3338vKTwglaQRI0aoc+fOkva0vIhl2rRp8vv9UecrP+bxeDR9+vQq5ysPSLt3767TTz896nxff/211q1bF3OumnzdJF67iur7tWts6i38tuL4Rtvv92v16tV69NFHJQUasgMAmiIj195e34totgzbfQIAAAARzZ07V5mZmZIiB4cVj2/btk3z58+POld5T+Xk5GRNmDAh7HxSUpIuuOACSdLMmTNVWFgYc23l8x177LHq169f2PmjjjpK/fv3l1R1hXBubq4+/PBDSdJFF10UsfvCRRddpMTExLjmq8nXTeK1q6w+X7vGptbD78TExJAPKVDh179//7BzlT/S0tJ0+OGH69NPP5VlWRo3blxtLxcAUMeMcWTcHBk3/BPscxsJZQEAAADUn/KgsmPHjvrtb38bcczo0aPVrl27kPGVOY4TrOY966yz1LFjx4jjyltQlJSUaMaMGVHXtWrVKi1fvlxS9IC04nyLFy/Wpk2boo5788035fP5Ys7XpUsXnXnmmZKk1157LebefDX1ukm8dpHU12vXGNV6+G2MCfmIdryqj/Hjx+vWW2+t7eUCAOqa8QU+IlQff5/nq/v1AAAAAICk/Px8ffDBB5ICPaJTUlJkWVbYR1paWrAv9Lvvvqvi4uKwuebNm6cdO3ZIkj744IOI81iWpRNPPDF4TaxQs+K52267Lep8d999t6RADhfvfMcee2zU+T7++GNJ0ubNm7VgwYJaf9147RrWa9cYJdX2AzzwwAMh9x966CFZlqXrrrtOXbp0iXpd+V9k9+7dNWjQIB100EG1vVQAQD0w8ssoco+yXV67jlcDAAAAAAFvv/22PB5Pta4pKirSu+++G6ykLbc3geKXX36pLVu2aP/99w857rquXn/99WrPN3Xq1LCcTpLWrVunr776qtrzTZkyRUOHDg07XpOvW/njVBev3Z7Hqa5or11jVS/htyTdcMMNOuyww2r74QEADZgxRjJ+ybgyciqdbRR7MgMAAABooipuYvj0009XOf7OO+/Utm3bNGXKlJAgsrCwUDNnzpQknX766brqqqtizlNQUKBrr71WxhhNnTpV9913X8j5+fPna+vWrZKkm266SYMGDYo539dff61nnnlGGzZs0OLFizV48OCIz1OSnn/++WA7jWgmT56sTz75RDNmzNCzzz6rFi1aRJxvX183ideuKnX52jVWtR5+VzZ58mRJUq9ever6oQEADY5d1vLEL+PkVjpH+A0AAACgfmzatEmLFy+WJJ1//vm68MILq7zmq6++0j//+U99/vnn2r59u3r27ClJmjFjhkpKSiRJ119/vc4///wq53ruuee0YsWKiCFkeUCamJioP//5zzE7K0jS8OHD9eyzz8q2bU2ZMiUkwDXG6LXXXpMk9e/fX9ddd12Va0tLS9Mnn3yigoICzZw5UxdddFHwXE2+bhKvXVXq8rVrrOo8Wbjssst02WWXqU2bNnX90ACAhsY4MjIybomMm1/ppFUvSwIAAACAKVOmBPeuGzduXFzXlI9zXTcYipbPJUnp6ek666yzqjXXmjVr9PXXXwePFxcX691335UkDRkypMrwVpI6deoUbLHx9ttvy+v1Bs8tWLBAmzdvDnnMqvz2t79Vq1atJIW31ajJ163i/Lx2kdXVa9eY1UtZ3ZYtW7Rly5aQN0w0Ho8nOB4A0LQY45HkypgSSZX7e1P5XWdi7DQOAAAANEdTp06VJHXp0kVDhgyJ65pBgwape/fuIddv2bJFX375pSTprLPOUnp6elxzVazSrRiSvvvuuyoqKgobE+98eXl5wQ0VK88d73xpaWkaOXKkJOnTTz/Vzp07g+dq6nWTeO3iUVevXWNW58nCJ598oj59+uiII44Ilt7HUlJSosMPP1wHHnigvvjii9pfIACgDvklY2Sc3eGnLMJvAAAAAHVv8eLF2rBhgyRp7NixSkiI73uT/2fvvuPlLOv8/7/uaaef9ARCAqGDgIIUG4rdFRDEdUFld5UV11XXtquu/nSxl11cZRUbX1RQEUR6WZpIMRFCCDUQ0vtJcnqbdt/3dV2/P+45c86cM6fXJO/n4xEyc5frvmYyOUPe85nPFYvFuOCCCwB44YUXWL16Nb/97W9HXc0LcPzxxxfXyvvDH/6A7/tAbyDpeR7vec97Rjzee97znuLj6Bkjm81y0003AXDsscdy4oknjni8nsdijCkuIDmRzxug524Epuq525dNec/vP/7xjzjnePe7382cOXOGPX7u3Ln87d/+Lb/5zW/4wx/+wBvf+MbJn6SIiEwNZwCLs9mBu6b+LUpEREREZL/yh3OGb+sgA42lorfv8T/96U+L49x3330AVFRUcM4554x6rBdffJGWlhbuvvtuzjjjDP785z8D8JrXvIbFixePeKxFixbxute9jr/85S/ce++9NDU18ac//YnOzs7itUbj7LPPpqqqimw2y29+8xv+/d//fUKft1NPPbVYyaznbmiT/dz1hOv7Ks+5qf2u84knnsjatWv5zW9+w8UXXzyic66//nouvvhiXv7yl/PMM89M7gQPUDt37mTp0qUA7NixQwuSisiUCP2XcKaZXNdvscHGkn3Om8Wc+46YppkdWFrf/3XmVNZM9zREREREDgjj+ff3hg0bCMOQRCLB0UcfPVlTFBGZFpPxM27Kv1Pe0wj+mGOOGfE5Rx11FBCteioiIvsHazpwNuq3huvf7xsc8SmekYiIiIiIiIjsT6Y8/A7DKOCIx0ceavQcm8vlJmVOIiIy9UywHhvu6rk3YL8lNbUTEhEREREREZH9ypSH3/Pnzwdg8+bNIz6n59i5c+dOypxERGQauBDnunHOx5n2AbuNwm8RERERERERGYcpD79PPvlkIFoxdKRuuOEGgFGtnCoiIjOdwYYN4PI41zVgr8ObhjmJiIiIiIiIyP5iysPv888/H+cct9xyC3/84x+HPf7GG2/klltuwfM83v3ud0/+BEVEZEqYYAM2bMC5/IB9oXfwNMxIRERERERERPYnUx5+f/CDH2TZsmU45/jABz7A5z73OXbs2DHguB07dvBv//ZvXHzxxXiex9KlS7n00kuneroiIjJJnO3CuTTOtg3Yl3O1oMpvERERERERERmHxFRfMJVKccstt/CGN7yB7u5ufvjDH/LDH/6QQw89lIMPjir9du/ezfbt2wFwzlFbW8utt95KRUXFVE9XREQmjcUGm3Cpkwbs2ZGfw6EVLdMwJxERERERERHZX0x55TdEfb9XrlzJKaecgnMO5xzbtm1j5cqVrFy5km3bthW3n3rqqTzxxBOccsop0zFVERGZJM4Fhd/9AfvSJoEqv0VERERERERkPKa88rvH8ccfz+rVq3nggQe46667ePrpp2lubgZg/vz5vPKVr+Rd73oXb3nLW6ZriiIiMomc7Sj83t5nawywrGpPcly1wu/B1Ccr6Qxy0z0NERERERERkRlt2sLvHm9729t429veNt3TEBGRKeZsNvrd9O35HQcs9+0NefWc+cCBGfAmvBihs4PuP6xmHntyHTTluqdwViIiIiIiIiL7lmlpeyIiIoKLgu2eCnAAvARQwTPtOR5oSk7PvGaAVDw+5P65FfUsrZ43RbMRERERERER2TfNiPDbWktzczPbt2/HGDPd0xERkSnQ0+vbud7q5ZA5OK+K9sDyXMeB+35Qn6ykOjF4+F8dr+b4uhOncEYiIiIiIiIi+55pC7+NMfzyl7/k9a9/PdXV1SxatIgjjjiCdevWlRx311138YUvfIFvf/vb0zRTERGZHC76b2HhS4CQJIYqAHZmD9zwOxlLkPTKV397eCS8OAlXN8WzEhEREREREdm3TEvP78bGRt797nezcuVKnHNDHrts2TLOO+88PM/jnHPO4eSTT56aSYqIyNRwYfFmh5nNzlwNkKXVH7zn9f6uOp7ijQvfR7N7gnsaVpfs8zyYHV+M5yqmaXYiIiIiIiIi+4Ypr/w2xvCud72Lxx9/HM/zuPDCC7nyyisHPf7EE0/kVa96FQC33nrrVE1TREQmXc+Hn73ht3Ex2oOo4jkdHriV3wdXzcMPqkl5pa1PYp5HVTxJzEvi8KZpdiIiIiIiIiL7hikPv6+99lpWrVpFMpnk7rvv5oYbbuDjH//4kOecd955OOdYvnz5FM1SREQmX0+43fsNoJyNs7ojemtqOYArvw+pWIYjTiKWKtlem6jg0Jp54BKg8FtERERERERkSFMefl9//fV4nsdHP/pR3vGOd4zonFNOOQVgQD9wERHZ91jTDICz6QH7uk0CO0w7rANBrFDxXe3NKtnuATE8sFUo/BYREREREREZ2pSH38899xwQVXOP1MKFCwFoaWmZlDmJiMjUMX70QaZzA8PvzjCOdQp1PRe1folTX7rd84h5Hs6lyp0mIiIiIiIiIn1Mefjd3t4OwLx580Z8jjHRV+Pj8fhkTElERKaIc5Yg+xecK9/PuykfxxxAhd+vmLOUmDcw7PeoBMDampLts1PVxL1YoVOMPiQQERERERERGcqUh99z584FYMeOHSM+Z8OGDQAsWLBgUuYkIiJTxWDNbvouctlXs++RtQdO+n1Y9SHld7io7UkYVpdsrowlicfiOPp2ShcRERERERGRchJTfcETTjiBxsZGVq1aNeLWJ3/4wx/wPI/TTz99kmcnIiKTygWAxQRbYED1d4xHmw07s+Wrwvcny2rnsahyFlXxmvIH9ITfNoWHhytE3Z7ncWzNceSzdVTG2kr2iYiIiIjI5PJ9n5tvvpl77rmHJ554gqamJjo7O5k1axaHHXYYZ5xxBn/7t3/Lm9/8ZmKxoetNn3zySW6++WYeeughduzYQXNzMxUVFSxYsIBTTjmFt73tbVx00UXMnj172Hk1Nzdz/fXXc//99/PCCy/Q3NxMPp9nzpw5HHfccbzuda/j/e9/PyeeeOKwY1lrueuuu7j77rv561//yt69e2lra6Ouro5DDjmE008/nfPOO49zzjmHZDI57Hhr167lxhtv5MEHH2TLli00NzcTj8eZN28eL3/5y3nTm97EBz7wAQ466KBhx0qn09xwww3cd999PP300zQ1NZHJZJg9ezZHHnkkr3nNa7jwwgt59atfPexYAA899BC33347jz76KA0NDbS2tlJdXc1BBx3Eqaeeyjvf+U7e8573UF1dPexY27dv54YbbuCBBx5gw4YNNDU1Ya1l7ty5nHjiibz+9a/n4osv5vDDDx92rIl8ncHEvtb2RZ5zU7uy2JVXXsmnPvUpZs2axebNm5kzZw4AsVgMz/N4/vnnednLXlY8/qabbuLCCy/E8zx+//vfc9FFF03ldA8YO3fuZOnSpUBUlb9kyZJpnpGI7I+saSXTchkVde8j0/rV0p1eJe95+pWsbsvTEdjpmeAUOW3eMg6pOpiqWA237XqYnCmthP+HxR8nH9YC8ED7j2nzswCcMHsxp846nVz2WCqTHdyw+2p8O/4PC1rf/3XmVA4SxIuIiIjIhBrPv783bNhAGIYkEgmOPvroYY/3fv25Mc9zpnOXfH9Kr3fLLbfw7//+72zdunXYY4855hh+8IMfcM455wzYt23bNv71X/+Vu+66a9hxqqqq+OxnP8tXvvIVqqqqBuy31vKd73yH//7v/6arq2vY8d72trdxxRVXlORufT3yyCN88pOf5Pnnnx92rMWLF/Ptb3+bD33oQ2X3t7a28pnPfIbrrrsOa4f+910ikeDSSy/l29/+drFjRH+/+MUvuOyyy2hsbBx2bqeffjpXXHEFr33ta8vuf+655/jEJz7B8uXLhx1rzpw5fPnLX+azn/1s2aA5l8vxpS99iZ/97Gfk8/khx/I8j7/7u7/j+9//fvFnQH8T9TqDiX2tTZXR/owbiSkPv/P5PMceeyw7duzgla98Jddeey0ve9nLBoTfjY2N/O///i+XX345xhhOPPFEnnnmGbwyvVFl/BR+i8hUMGED2dZvk6o5j2z7f5fsc14d568+iUebs9M0u6nzjoNPZlHySAI6ebZjDS927C7Z/4GDPk1oKwBocLezvClaJPSUuYdxYu0ryeeOJpXo5tbGq0mH/rjno/BbREREZOoo/J4YUxl+f/Ob3+Syyy4r3n/b297Geeedx8te9jJmz55Na2sr69at48477+SBBx7AWssrXvEKnnnmmZJxnnzySc4991z27t0LwLJly3j/+9/Pa1/7WhYtWoTv++zcuZM//elP3HrrrbS0tADw9NNPc/LJJ5eMlc1mueiii7jzzjsBSKVSXHTRRbztbW9j2bJlVFdXs3fvXp588kluvfXW4lw+/elPc8UVVwx4jL/+9a/56Ec/ShAEALz61a/mPe95DyeffDLz5s2jo6ODTZs28X//93/cfffd+L7PrFmzimv79bV582be+c53sn79egAWLlzIBz7wAd7whjdw8MEH43keDQ0NPPzww9x8883s2rULgFtvvZV3v/vdJWNZa/nYxz7GVVddBUTFs+effz5nn302Rx11FPX19TQ1NfH8889z++23FwPt888/n9tuu23A3O655x4uvPBCuru7gahDxUUXXcTpp5/OggULSKfTbNu2jXvvvZc77rijeFxbW9uAyujm5mbe9a538fjjjwNQV1fHBz7wAd785jezZMkSkskke/bsYcWKFdxyyy3Fts4//OEP+cxnPjNgbhP1OoOJfa1NpckIv6e87UlFRQW33347b3zjG1m9ejUnnXQSxx57bHH/3//939Pd3c3mzZtxzuGcY968edx8880KvkVE9nUuB1hgYLWyI0m7v39XfAMsrZnD/ORiYlQSJ8/8illAb/gd8zyMTfa531td4AFe4b61KRZU1pHubpmqqYuIiIiIHHB+/etfFwPJhQsXcuONN3LWWWcNOO6tb30rn/jEJ1izZg2f/exnaWpqKtm/Z8+ekjDyK1/5Cv/5n/9JKpUaMNZFF13ED37wA/7nf/6H73znO2Xn9bGPfawYfL/qVa/ihhtuYNmyZQOOO/vss7nsssu46667ygauAA8++CCXXnop1lpqamq45ppreO973zvguDe96U1ceumlbN26lS9+8Yvce++9A47JZDK8613vKgbfH/7wh/nhD39IXV3dgGMvuOACLr/8cn7+85/z5S9/uezcvv71rxeD76OPPpqbbrqJl7/85QOOe8c73sHnPvc5VqxYwac+9amyY73wwgu8973vJZPJkEgkuOKKK/jYxz5WtqL7H/7hH2hqauLrX/86P/nJTwbst9Zy4YUXFoPvc889l1/+8pcsXLhwwLHvete7+M53vsN1113H5z5X/gOpiXqdwcS/1vZ1Ux5+A7ziFa9g1apVfPCDH+Sxxx7jpZdeKu579tln6VuMfsYZZ/D73/+eI444YjqmKiIiE8rhsDjbOWCPJcWuXDANc5pax9QtIeEW4vCIe/VUxUu/UlaTSOH6rEcdLwm/PTwXByC0CRZWzmKrwm8RERERkUmxa9cu/vVf/xWAmpoaHnnkEY477rghzznxxBO57777+P3vf1+y/aMf/WgxjPzmN7/JV77ylSHHqaur42tf+xpvectbmDVrVsm+W2+9lWuvvRaAl7/85Tz44IPU1Az9Tc5zzz2XM888k0cffbRkeyaT4e///u+x1hKLxbj77rvLhq59LVu2jBtuuIHf/OY3A/Z96Utf4sUXXwTg0ksv5f/9v/835FipVIpPfepTvOUtbyGXy5XsW716Nd/61reAqM3K8uXLy4bLfb3uda/jr3/9K7fffnvJduccF198MZlMBojC5r//+78fcqwFCxZw5ZVX8qY3vWlAf/P//d//5aGHHgKi4P3WW28lkRg8Zo3FYvzDP/wDb3rTm4ofDPSYyNcZTOxrbX8wLeE3wFFHHcWKFStYvnw5d9xxB08++SSNjY0YY5g3bx6nnHIK5513Hm9729sm5fqNjY088cQTPPHEE6xatYpVq1YVS/w/+MEPcs011ww7xjXXXMMll1wyouv9+te/HrQPUo9MJsOVV17JH//4RzZt2kQ+n2fp0qWcc845fOpTn+Kwww4b0bVERGYsZwBH6L9Qstl4C3HEad/Pe30nvBgJLw4uSWiqiMfjJZXdAHNTpf/TmohFb9VH1S1gYeU8TLigsCfG7OTA6gkREREREZkYP/zhD4th6Te+8Y1hA8kesVisJFhds2YNd9xxBwAnn3wyX/rSl0Y8h9e//vUDtvWt0P31r389bPDdY/bs2Zx33nkl2371q1+xZ88eAD7xiU8MG3z39Y//+I8l95uamoph98EHH1y2vcpgTjjhhAHbvvvd7xb7hf/4xz8eNvjuUVFRwYUXXliy7e677+bZZ58Fokrs4YLvvv72b/+25L7v+3z/+1HbncrKSn71q18NGXz3tWTJkgGtjibqdQYT/1rbH0xa+P3cc88BcNxxx5Utq+9x5plncuaZZ07WNAa1aNGiKb/mUDZu3MjZZ59d7P/TY926daxbt46rr76a6667jnPPPXeaZigiMn6OEJzDmr0l231qiRNipnQViqk3t6KauJfA2iSBqSQe84lRGn5XxksrCuKF/UuqF1Adr8HP9/6P7azEnMmftIiIiIjIAcg5V6yurqmp4SMf+ciYx/r1r39dvP3JT36SeDw+5rGef/55nnzySSAKK1/5yleOeay+c/M8j09/+tPjGuuGG24gm43WcLr00ktHHMqX097eXuzZvWzZsgG9wEer75/BYO1fRuq+++6joaEBgL/7u79j8eLFYx5rIl9nMLGvtf3FpIXfJ598MrFYjOeee65kFdlvfOMbAHz84x9n/vz5k3X5UTn00EM57rjjuP/++8c8xn333Tfki32oBSy6uro455xzisH3Rz7yEd73vvdRVVXFQw89xHe/+106Ozu56KKLWLFixbQ2nhcRGRfngBBcrN/mGNYb2GdtfzMnVcOc5ELy2WoA8kEtiVT0VvyKOUtpznfiUbq+RU+P74MrlmBdSN/PB6q88iuhi4iIiIjI+Lzwwgs0NzcDUchcrmf1SD3yyCPF2+ecc8645jWRY3V2dhYXSzz22GM58sgjxzXeRM5t+fLlGBOtFfU3f/M3Zftyj8Zf/vIXIAqYR1PdXs5EPs6JfJ1N9Nz2F5Pa9qRv7+4eX/va1/A8j/e+973TGn5fdtllnH766Zx++uksWrSIrVu3cvjhh495vGOOOabswgIjcfnllxf7/fz3f/83n//854v7XvOa1/DGN76Rs846i0wmw2c+8xkefvjhMc9TRGR6OZxN48VK+1xbPGD//0R6TqqOBNUEhWpuR4wKrxKApdUHkTN+SY9vgJSXLPw+G+vlyffZ51FJzPOwZd5vRURERERk7HpaZACceuqp4xqrpzvCIYccMu5OBBM5r+eff77YVmS8Y0Hv3GKx2LgLNyfyce7atau4MOTJJ5887mroiZzbRI4FE/ta219MWpldTyP4nq87zDRf//rXOffcc6f9hRAEAT/60Y8AOP744/n3f//3Ace89rWv5cMf/jAQfYKzatWqKZ2jiMjEsTiXx5qBizRat/9Xfh9UuRBcZcm2ithsACpj1RxStYDaZOkHA7Pj0YLPLpxLzJa2OcnmlgwIy0VEREREZPx61oUDRtxrupzOzk6CIBj3OBM9r4keq+94s2bNoqKiYkLGgpn7OCdivIkca6Jfa/uLSfsXc0+ovHr16sm6xH7hoYceoqOjA4gW2hzsaxx9F8u89dZbp2JqIiITzjkfXB6cX7I9JIGZvjWYp0xFrApnaku2xVz0P4UJL0k8Fqc2UV16ko2quwNTRRjUDxgzofBbRERERGTCdXV1FW+Pp3f1RI0zGeNN1twOlMc5EePN1LH2J5OWNLzhDW/g97//Pf/xH//Bpk2bOOaYY4rV4AC33357sUH/aPRfSXZft3z58uLtoXoOnXbaaVRXV5PJZFixYsVUTE1EZMI52wUEA7bnTKrQ+mT/liBFrl+A7RXD72pixKhPzqJvb5MwrCEVi2NsEkPpYpgAqVicrBn4nIqIiIiIyNj17b2cTqenfZzJGG8y5tbW1nZAPM6+49XXDyxSGutYEzkviUxa+P2lL32JW2+9lY6ODr7//e+X7HPO8ZWvfGXUY3qeN2PD70suuYR169bR3NxMfX09Rx11FG9961v52Mc+xiGHHDLoeS+++GLx9nHHHTfocYlEgqOOOornnnuOtWvXjnp+O3fuHHL/7t27Rz2miMjo2bJbu0wK4zzKBeP7i1QsTtwuGfAIHR5xL0bcVTA/tRicKznGuCSHVM9hMPFxLvwiIiIiIiIDzZs3r3h77969Yx6nvr6eZDJJEATjGmei5zXRY/WM19bWRkdHB/l8flytT2b64+w73njC74mc20S/1vYXk/Yv5hNOOIFHH32Ut771rSSTSZxzJQtg9twf7a+Z6uGHH2b37t0EQUBLSwsrV67k29/+NkcddRS/+MUvBj2vJ5Suqalh9uzZQ15j6dKlADQ1NZHP54c8tty5Q/0644wzRjWeiMhYOJcpu73bJMjb/XvBy7pkJTl/YIjt4TG/ogaPFEm7gASzS/Zbl+CwmsHXp0h6+/fzJiIiIiIyHV7xilcUbz/11FPjGuvlL385AA0NDeMOJSdyXieddFKx/e54x4LeuVlreeaZZyZkLBj/3A455BDmz58PRAtMGmNmzNwmciyY2Nfa/mJSy8VOPfVU7r//frq7u2loaGDz5s1AVMF9//33s2XLllH96jl/JjniiCP43Oc+x80338wTTzzBE088wQ033MDf/d3f4XkeuVyOf/mXf+Gqq64qe35PP57a2tqy+/vq26+nu7t7Yh6AiMgUMcFmsOUWQY7jgGc6U1M9pSlVESv/ZStrk5ww+zCsqcHYKvL5gwYcc3DFoYOOe+LsZRM1RRERERERKTjhhBOKgelf/vIXOjs7xzxW3za3d99997jmNZFj1dfXc/LJJwOwbt06Nm7cOK7xJnJuZ555JvF4VOhzzz33YG35bxGP1Bve8AYgagfyyCOPjGusiXycE/k6m+i57S+m5LvSiUSCgw46iGXLlhW3LV68mMMOO2zUv2aSCy64gI0bN3L55Zfznve8h9NPP53TTz+diy66iBtvvJE77rij2Of8s5/9LHv27BkwRi6XAyCVGj706ft1kWy2XIA0uB07dgz564knnhjVeCIio+VcDkeZT9i9CozzeKlr5n67ZyIkYuUrtANTzZzkXEJTjbEprBsYkieoLnNmpCpeOWFzFBERERGRiOd5fPCDHwSiwPTqq68e81gf+tCHird//OMfjyvIPemkkzjttNOAKCwdb7XwJZdcAkQdGn70ox+Na6z3ve99VFVVAXD11VePq+/07Nmzefe73w3Atm3buO2228Y1t57HCXDFFVeMa6x3vOMdLF68GIA//vGP7Nq1a8xjTeTrDCb2tba/mPJGoV/96le57LLLWLhw4VRfesLNmjULzxt8gbZzzz2Xyy67DIBMJsMvf/nLAcdUVkahhe/7w16vb6uTnh8mI7VkyZIhfx188MGjGk9EZLScacXZjoHbifp9P9W+//b7BqhLlA+pjU2R8qoJbQpry78tZzOHDzpubOrfykVEREREDgif/exnqa6OClEuu+wyXnrppRGdZ63luuuuK94/6aSTOO+88wB45pln+M53vjPiOSxfvpwtW7aUbPv//r//r3j7kksuGXHI3N7ezp133lmy7Z/+6Z846KDo26c/+clPRlUV/dvf/rbk/oIFC/jIRz4CRGvLfeYznxnxWC+++CKrV68u2falL32p2Jblk5/8JI2NjSMaK5/Pc+ONN5ZsO+ecc4otRu68805+97vfjXhut9xyS8lznEql+NznPgdERa0f/vCHR9xKZdeuXfz5z38u2TZRrzOY+Nfa/mBawu+vfvWrxZL+/d0///M/FwPycj9AelZiHUkbk75/0UbSJkVEZCZxzgcXDtxOnHQYY2P38B8C7qtmp6qoTQ7+oWXSi9paWTvIOtRDfNCaio2u8rsqnhzV8SIiIiIiB6pDDjmEK6+8EogymbPOOmvYcPjFF1/kb/7mb7j88stLtv/iF79g0aJoLZ///M//5LLLLhuyEDKdTvP1r3+dN7/5zXR0lBYRXXDBBfzjP/4jAM899xxvectb2LZt25Dzuueeezj99NN58MEHS7ZXV1fzu9/9jlgshrWWc845h5tvvnnIsbZv38773/9+PvnJTw7Y953vfIfjjz8eiKq/P/KRjwyZeQVBwJVXXsmrXvUqduzYUbLv1FNP5Stf+QoQ9bA+88wzef7554ec22OPPcbrXvc6fv/735ds9zyP6667rhgyX3LJJfz0pz8dsjK6ubmZT33qU7z3ve8lCEqLtT796U/zpje9CYD77ruPCy64gKampkHHcs7x+9//nlNPPZXnnnuuZN9Evs5gYl9r+4NB/pUtE2XhwoXMmzeP5ubmsl+DWLJkCStXriSdTtPe3j7kopc9PwQWLFgwrhVzRUSmh8G5gYv1OuK0BzFa/H3/61gxz8OWWZz5iNqF1CVqYLCHaAoLYQ4Rcg+mIlY76HX7S3gxDquZx0udA9twiYiIiIjIQJdccgk7d+7ksssuo7GxkTe+8Y28/e1v5/zzz+f4449n9uzZtLa2sn79eu6++27uvfdejDElCxkCHHTQQdx1112ce+657N27l29+85v89re/5QMf+ACve93rWLhwIb7vFyuDb7755iHD1J/97Ge0tbVx5513snLlSo499lguvPBC3vGOd7Bs2TKqqqrYu3cvTz31FLfeeuuAquq+3vKWt3D11Vfz0Y9+lHQ6zXvf+15e/epX8973vpeTTz6ZuXPn0tHRwebNm7n33nu54447yOfzzJo1a8BYNTU13HXXXbzzne9k/fr1XH311dxxxx1cfPHFnHXWWRx88ME459i9ezePPvooN998M9u3bx90bl/96lfZs2cPV111FRs2bODkk0/m3e9+N+eccw5HHXUUdXV1NDU1sWbNGu64445iaLxkyZIBY51wwgncdNNNXHjhhXR3d/OJT3yCn/3sZ1x00UWcfvrpLFiwgHQ6zfbt27n//vu57bbbBu3BHYvFuPHGGzn33HNZuXIld955J0ceeSQXX3wxb37zm1myZAnJZJI9e/bw+OOPc/PNNw9Z0T1RrzOY+Nfavs5zbgT/Wp4kLS0tPPbYY2zevJmurq4RfUWgp43IRNu6dSuHHx59rfyDH/wg11xzzYSNvXDhQpqamnjZy17GCy+8ULLvsssu45vf/CYQfTr16le/uuwYYRgye/Zs0uk0b3jDG8bdnL+/nTt3snTpUiAK2cv9kBARGQ8/8wBhbhVBtrTSIPQO4sfbj+Xra8e3sMdMkPBiJGNxsqa0KuC1C46mPlFHvXlr2fOS8SyBGV07q+K5lS/wx5334tvh30MrYglOnnsoK5tLF5Buff/XmVNZM8hZIiIiIjKRxvPv7w0bNhCGIYlEgqOPPnrY471ff27M85zp3CXfn9Lr3XLLLfz7v/87W7duHfbYE044gR/84Ae8/e1vH7Bv27ZtfOITnxjRYoQ1NTV8/vOf54tf/GLZIkhrLd/+9re5/PLL6erqGna8c845hx/84Accc8wxZfc/8sgj/Ou//itr1qwZdqxDDz2U733ve7z//e8vu7+1tZXPfOYzXHfddcP2nU4mk3zsYx/jG9/4RtlAHeDnP/85l1122YhC2te+9rVcccUVnH766WX3P/fcc3z84x9nxYoVw441b948vvrVr/KJT3yi2IKlr1wuxxe/+EV+9rOfDdvS2PM8Lr74Yv7rv/6r2DO8v4l6ncHEvtamymh/xo3EtITfjY2NfPazn+Wmm24iDAd+BX4oI+2hM1qTFX43NTWxaNEinHO89a1v5YEHHijZf//99/OOd7wDgO9973v8x3/8R9lxHn/8cV7zmtcAUc+j0fTsGQmF3yIy2fzMAwTZFYS5v5RsD72D+cK6o/jV1uHbP810qVicZbXz2NjVVFKJ/cZFL6M6Xk1t+Oay58W8sOxClyO6ZtWL3LzzvgGBezk1iRSvnn8MD+4p/Z9Zhd8iIiIiU2cqw2+ZWL7vc9NNN3HPPfewatUqGhsb6erqor6+nmXLlhWrpd/4xjcOuUYcwKpVq7j55pt56KGH2LFjBy0tLaRSKRYuXMgrX/lK3v72t3PRRRdRX18/7Lyam5u5/vrruf/++1mzZg3Nzc34vs+cOXM47rjjOPPMM7n44ouL7UiGYq3lrrvu4q677uKvf/0re/fupb29ndraWpYsWcIZZ5zB+eefz9lnn00iMfy/YdauXcsf/vAHHnzwQbZs2UJzczPxeJz58+fzile8gje/+c184AMfGNHagN3d3dxwww3cd999PP300zQ1NZHNZpk9ezZHHnkkr33ta3nf+943aOjd35///Gduv/12Hn30URoaGmhtbaW6upqDDz6Y0047jXPOOYcLLriguF7fULZv387111/Pn/70J9avX09TUxPOOebOncuJJ57IWWedxcUXX8xhhx027FgT+TqDiX2tTbb9Ivxua2vjVa96FZs2bWIsl56sVUonK/z+9re/XexP9M1vfrN4u4fv+yxcuJCOjg6OP/54XnjhhbIv3H/5l3/hF7/4BQBPPPHEiP8ij5TCbxGZbH7mAXIdV+Fsa5+tKdo5kv94cT5/2Lnvh9+nzD2M+RWzeaF9K3Evxo5MGwAXH/pOAvKQO23Cr1mZauPWvb+hKxjYUqa/1y44mjnJWdzd8CTzKmpIxmLsyXYp/BYRERGZQgq/RUTKm4yfcVO+4OX3vvc9Nm7ciHOOt7/97dx77700NTVhjMFaO+yvmWLr1q08/fTTQx5z11138Y1vfAOAqqoqLrnkkgHHpFIpPvWpTwHRp2Hf//7Ar+089thj/PKXvwTgrLPOmvDgW0RkajicbS/d4lUR2AQZM20duCZUbaKK2Yk51CYrqE1G1QFxL0bCqyM+SctshKaKuDeyt/OaeBXJWAqAeRW1VMVTkzInERERERERkZlgyhe8vP322/E8j3POOYc77rhjqi9ftHz5cjZu3Fi839zcXLy9cePGAZXfH/rQh0rub926lTe96U285jWv4V3veheveMUril/R2Lx5MzfddBM33XRTsbr9+9//PoccckjZuXz+85/nD3/4A+vXr+cLX/gCGzdu5H3vex9VVVU89NBDfOc73yEMQ6qqqrjiiivG/+BFRKaBszn6r/joCm9Debvvhd9nLjiW5U3rSrYdXnU8LlzIa2YdxjPdfwZgcfUsPBcn4VUzGY27nIsTG8FX3eZWVLMwtQSv8Ll3baKSziAzCTMSERERERERmRmmPPzuWcH1E5/4xFRfusTVV1/NtddeW3bfihUrBjS97x9+93jsscd47LHHBr1OdXU1P/zhD/nnf/7nQY+pq6vj7rvv5uyzz2bDhg1cddVVXHXVVSXH1NfXc91113HyyScPOo6IyIzmcqV3vRoCarDEaMlPznoOk6k+WTdgm+dqCW0lsVhAfbIagKp4Cmvr8OK5AcdPhNDEqUlU0JofOsheXDWHBPU4fOZV1LCgYi6V8RSbupqHPE9ERERERERkXzXl4XdtbS35fJ5FixZN9aUn1Kmnnsrvfvc7HnvsMZ588kl2795Nc3MzYRgyZ84cTjjhBN7ylrdw6aWXjqhp/1FHHcXTTz/NT37yE/74xz+yceNGfN9n6dKlnH322Xz6058eUVN8EZGZqzTg7nCH0RpUE/Mcq9uH71c909Qn5pTeT1aSzR0MQCKeZnHlEpKxjdQmKsn5s6msbJuUeXhejMOqF7IjPfT4S6sPws8fRKqikZNmH8ZBiZNYmGzjqfiWSZmXiIiIiIiIyHSb8vD7pJNO4uGHH2bbtm3TWsV8zTXXjGtRy7q6Oi6++GIuvvjiCZtTTU0NX/jCF/jCF74wYWOKiMwU/RubGBfDOA9vwJ59Q9KrLrn/+gUnQRjdNqaKing9qVicykJf7dgkvuVWJYZffbw+PgsTJHFhPUkvAa4C58WIMXzLFBEREREREZF90ZQvePnRj34U5xy//e1vp/rSIiIynVxQcte4GBYPt4+GrzFXX7LQ5PzEMcXbgakClyQVS/Qe4yombS5Vsaphj0l6NeB55MJ6quLVhLaCmBcjHpvy/xUQERERERERmRJT/i/eCy+8kIsvvphbb72V733ve1N9eRERmSbOpUvub8rU0ewnsW7fCr/PPeQMzlxwLIE/jyNq53PcrIMACIN5JceZYBGzU1XECuF3zp8zYKyJUhErrfxeUj2bili/SvM+i2LOji8lCCvBzOMVs5ftox8/iIiIiIiIiAxtytuePProo3z4wx9my5YtfPnLX+aWW27hAx/4AMcddxzV1dXDnv+GN7xhCmYpIiITzdmukvvNQZyOwGNOMpymGY3NrPgCUhUVhH6KWamaYtuQwKRKjgtMFalYgoSXAAfWJSdtTgmv9Nq1iUq64jnytve59Vy8z+1aIIYxlcxJzWYaPgsXERERERERmXRTHn6/8Y1vxOtTfbZ69WpWr149onM9zyMM962QREREIs6WVn6HFp5scxxenQD86ZnUGHh41MWWkQWOqF7G9uyOaIfz6F9CHfdiJL3JC717r9Nb+V0ZT1CbrCSRj5ccE6NP2xUXvf074lTEKol5pceKiIiIiIiI7A+mpdTLOTfmXyIism9ytrPkft56bM+G7MhO+eew4+N5mLAegIRXQcKLk4zFS9qK9KhP1lCdqJn0KSVcDZXxBB4eB1fNIhlLUJ+sxBukoYntCb9tjMpY3aDHiYiIiIiIiOzLpjxxeOihh6b6kiIiMgM401Jyf3cO/tyY5dVzZ374nYrF8a2J7jjwwyjQ9khQl6xlfkX5gPuI6qNJUE1ukucXhnOZm6qhOd/NsXWHkTEZjqhdzM5MO0Fh3n0D7nxQV3goHnFXheep7YmIiIiIiIjsf6Y8cTjrrLOm+pIiIjKNnM3ixapwlLatag+ib/M0ZKdjVqMzK1VFU66bVCyOR2+LkLiXpDpezbyKurLnJanHI1V230QyJkXcixHzPOalDiYe7C3ZHwXfA6u7rY2DnY1D36wSERERERGR/Y9KvUREZFI524FzBpwp2d7mR4HrjuzMX8thXqoWgLpkJZ7X+7lxjBRJr5KFlXMGOTNFWGiRMpmMS5KIxfDwSJiFVMVrScZ6e3xXJRI4V+bzbs8j6w82dxEREREREZF9m8JvERGZVA4DGHD5ku2dYRR+787ZaZjVyFQnosUqZxfC7+p4KlrYssAE84iRYGHq4LLnB8FcgrBq8icK1CWrOHH2EhwJEl6CendCcd+ymvkEgUJuERERERERObBMatuTb3zjGxM+5mWXXTbhY4qIyCRyAc604FxXyWZb6LTRGZgyJ80MFbEEYcyysGI+sJHqRKqkeUg+rCaZ9EhRV7avd2gqymydHPWJGuqSteA8ElSSC2YX57qwcg6hnbq5iIiIiIiIiMwEkxp+f+1rX8PzBvYYHQ+F3yIi+xgXYkzzwM2F37vDmVf5PSdVRZufZXHVHGanapmVWAhAfbIaXN/+3jFiLkmM6umZaB9HVL2cdrOd0FSTKFSsnzHvKF7s3MHBFUsxk73qpoiIiIiIiMgMM+kLXjo3cYtoTXSQLiIik8/hgxuYvPYsstg1ReF3dSJJaC2+Hb7SvD4Zhd+zUjXUJmqIU4WHR0UshbOlC1jGqASXnKxpj5jnavDwCG2KpKsEoCKeIuHFSHo1zNz6ehEREREREZHJManh90MPPTSZw4uIyD7AmWacG7ioZVDIvM3EfUY6QCoWL4bdL599GK1+F+s791IZT5Azgy+0WZeM+nTXJWpJxZI4W0VFPE5NoppcULqAZTZ3GJWp9kl7DCNlTC2xWDy6Hc4FoCpeSUU8CWbBdE5NREREREREZFpMavh91llnTebwIiKyDzDhDmLxRYV7HhnvCKrdJvbkJ78WORGLkYjFyIQBAEkvCocXVtazPd066Hn1yaiNSX1iFhaDc9F5c5MLMGWmHU7RopZD8cNKKitrMYBz0XrWc+NLSXpbCMPK6Z2ciIiIiIiIyDSITfcERERk/2bDBihWfse5ec8SAHakg0m/dsKLc3TdQQDEPI9ELE7CizE3VTPkeRWxqLVJpVdHdWwOPW+XKeaXPX5mLCYZI8U8AIyNPtvO5w6nJlExQ+YnIiIiIiIiMrUUfouIyORyBkch6PaSbEjDVL39HD9rMYdVLwaiIHx+xSwSsRieN/T1F6SiBS49khAuJgxrOGHWIXgz/W3TRRXottCD3BHn5bNOnsYJiYiIiIjsW7Zu3Yrnefo1zb+WLVs27XOYCb+uueaa6f4rsc+b9AUvRUTkQBeAi8JvQx3p0DFVbz9zU3Oojkc9upOxBFXxKmKex3DLJ1fG5hD3opA8F9QCMeZXzMWaoSvGp1tPu5O+EuYgJr/GXkRERERmoo5db5nuKUyaWYc8ON1TEJF9gMJvERGZNM5mcC7A2XYADBWEzpH3DiZvJ3Gly4KklyRpjgIeoCpeTcJL4OGRLCwMORjPVvPKuYdhwwX0VKlXx6vxg+pJn/N45P36AdscQz9WERERERHpdcghh/D8888Puv+kk04C4LTTTuPXv/71gP3OOTyvfLnNV77yFW6//XYA7rvvPhYvXjzgmPb2dgBmz549YN+qVav4p3/6JwA+9rGP8fGPf7zsdYaawzve8Q4aGhpYvHgx9913X9ljWlpamDt3btkxfvrTn/Kzn/0MgF/96lecfvrpA44xxtDR0cHcuXMH7GtoaOAd73gHAOeffz7f+ta3ys4hlUrh+37ZfZdccglPPvkkwKB/Vq2trcyaNYt4fOC/h26//Xa+8pWvAPCtb32L888/f8AxzjlaW1uZN29e2fGHex30jDGe1wLAkiVLym6XkVP4LSIik8bZdnA5nO0ubPEIHXSaetJm8sPvilglJkxRFU9SFavG4Yh7MarjwyxQ6XksqlyAsanipmSsAoatGZ9e5YJua5PTMBMRERERkX1TMpnkxBNPHPa4mpqaER3XV99A+5hjjmHZsmWjOr+5ubl4e+HChaO+PkSPr+f3sZy/cOHC4u3DDz981GPU1tYWb8+ePXtMc6ip6f1G7ljO7wnOIfqwYyxj9J3LWM4f72tBRm6GNy8VEZF9mbPdmLABa1oBMMTJG0emT6g8mao5FGs9XrvgOLz8GVTE6piTqiYVG/r6nvOYFz+2pI1InGTZtiIznR/O7FYtIiIiIiIiIpNl3/tXvIiI7DOcS4PzcTYKvx0xLB7twdSE385W4lycOcno63YeHgsrZ1GXGNgepOQ8z8OFNRjbW0mdIIXT26aIiIiIiIjIPkP/ihcRkUnjbBow2GB7YQNY53iyY2rCb2tTOOJUu6OK15+Tqqc6tmDoE50jF9bT923So2LyJioiIiIiIiIiE049v0VEZBJZnAvBZQBweDhgY/fk9/uek6omMJXRLEzU4ztBPR7esJ27rakdsM2ZYQJzEREREREREZlRVPktIiKTyIHzAVu452EdNObtpF95Tqq62Kak53dravHwcMNk7/lgYJ/sfFA34XMUERERERERkcmj8FtERCaNsznAB8D3lpK2VezOGfJ2ciu/Xz3/KCrjyd55FGq9ja1gvvdaYlQNem5NIgXecLXhIiIiIiIiIjLTKfwWEZFJY01j8XZIitDF6Qotk134XZesIRHrXawSF4XZoUnihzVDLlx5cNWsyZ2ciIiIiIiIiEwJhd8iIjIpnHOYYFPxfrepIW/jZI3j2XZ/0q6b8GLEiZPwesPv0EYLbDqibd4QfU9eU/+3kzY3EREREREREZk6Cr9FRPYTbrhG1lPOFvp9R0IXpy1I0REYOgIzaVetS1ZQGa+kLlk9+MxsJXFvsLdAtTwRERERERER2R8o/BYR2V+49HTPoB+Hc5niPYvH3nycjsBOas/v2alqamJzWJg6aNBjcsFs6pIVZfc5Fy+7XURERERERET2LQq/RUT2E9Y097vfOq7xxl1J7gKgt8LbOUibya2qnpWsJBVLkGQOKa9yyGP7LojZl7N6axQRERERERHZH+hf+CIi+wHnQly/sNuGu8YxngPG15fbuTy40pUt2/zJDb9rkxXEvBjWVuN55cPtHoOG33prFBEREREREdkv6F/4IiL7ARvuwLnukm0m3DqO8bYPCK5Hy9lWoHcM38X4zfb8uMYsx+vTo7siliQZixOGVcRIDHleTaJ82xPr9NYoIiIiIiIisj/Qv/BFRPYDznbhbHe/bZ1jHs+aPfQNrsc0J9OG6zNG1iRY2zXx4Xci1vtWNitVQ1U8hbEJPDd05XfCK9/b21r1/BYRERERERHZHyj8FhHZDziXx0/fVbxvTRvY7NjHM23A+Hp+W9NUMofAeZgxDpnwBn+76rtvcdVCjq0+DUccb5i3uGRsYMhdl6wAb3Jbs4iIiIiIiIjI1FD4LSKyP3B5XJ/FJcHgXG7Mw1lbWrU9tjFacC49rjF6zEpVUZ8sv4BldSJVvF0Xn4Xnqgv3hm57MjtZP2DbwsqB20RERERERERk3zR0MiAiIvsE53xwfcNvN67g2Zk2cOOs/A4242x78b5vx15RfVTdIkJnWd2yFYCqeJKsCYh5HvMqaugMctQkUqTsMrL+3Oj6tnxY3mNB6mBSsRfwbe/zVpcY+hwRERERkX3JrEMenO4piIhMK4XfIiL7AxfgbBvOZvBi1dhwN86OI/zuE1qPeYx+ledd4dh7aVfHq4q351XUUBlPsCvTUWh5EgXgCS+G69Pn25ihg+y4l2ROqppWP0NgDYurZlE1yCKY+7u+i4aKiIiIiMjg3DiKhK655hquueaaMZ//xje+cVzXB9i6deu4zv/a177G1772tTGfv2zZsnE/hocffnhc53/oQx/iQx/60LjGGO9jGO9rQUZObU9ERPYLFmfbsaYRgNBfM77w203AwpQllejQmB/7W04ilqAyHoXZ8ypqqS6E1HEvRgyPWckqqhMVONcbsAemquxYPeKuhtmpaioKvb8Prp7DrETdmOe4Lxvf/7aJiIiIiIiIzEwKv0VEZjhnu4c9Jsw/A0CQ/TMm2EKYW4kNt47jogHjiURNuAv69Qxv9sc+nZSXpDIWhd81iUqq4lGf7zMXvowl1QupTlQwN1WHc6OoYHa1HFpzEPHCgpn1iRpqDtDwW0RERERERGR/pLYnIiIznDWNxGO1wxzTFP0e7iTIPY41zeOq/IYAMMMeNRgX7sH1C8/35McepidjKeJeksp4gtnJWnwbADAvuZCs6SafyJOKpUaV1zsbZ3ZiDrFC+F0Tr6bSqyUY8yxFREREREREZCZR5beIyAxnTcsIjoqC6iD7KMZ/EVye/pXXI2WCTVEluRt7+G1tO7jS6z/bHo55vBhxYngsqqxnaeJM5qRmAVDpDiYRS1KbqGF+csGoxgxNNdXuKGalqqhJpKhNzMYFR495jiIiIiIiIiIysyj8FhGZ4ZxpHsFBPT1FHM5lcc5nrG1LnM0RBefjqPy27QOub8bRRsXzPJJeJbNS1Riboi4+NxrT1FLp1QAecS8Fo1i40boYxlZSEUuQisWJk8K5A/NtcbyLtYiIiIiIiIjMRGp7IiIywzk3dPsSZ9OYYHOf+93gMn3uZ/FiQy/+WDpgLvptHGG1czlcnzlAjNCML2BN2CWcWOewfow4Uf9v31RSGV9Awmsl6dUReKMJvxP4YYKEF2d2qpoE1WRtclxzFBEREREREZGZ48AscRMR2Yc4N3gXaucMof880NtSxIYNRFXXDmezBLnHRn4tm8a5bM+9sc/XZnC2q8/WOJmxdWEpCk0VSTcf5+J4gIeHcwlwKeYkFoNLjKlyOx6LkYzFoRCoi4iIiIiIiMj+QeG3iMhMV2xp0m+z87FmNzbc029Hb6W4DXcQZP408kvZzt4q8jEumGnN3qhPeZ/znVfL2s78mMYD8IgRmEqCYC7WJcDzqIjHAQhMFUHuMLBVhCY+6rFjxKhNVOGswm8RERERERGR/YnCbxGRGcw5gwm2lN9nO8h1/L/C4pblhcE6nO0c8hr5rutJt1xG6L+Ew2HDrYXxeyu3remI2qmMZM6mFWfbcT3tU7w6ut2CcTRRgZgXvV2FpiLaECxmVrKquM24FPlgFp43+re1RCzGsbXHght9cC4iIiIiIiIiM5fCbxGRGc0UFo8cyNksJliHY/B+IjbYwXALV4b55wlzKwoV5C6q2gZs37YlLl9YRHMEXFA4NpqXpZK8S43s3EF4Pcl5oad3PqylOtEzZvRWZt3Y+nXHiJFiPtYq/BYRERERERHZnyj8FhGZ8cqH285lcKYF468b9Mww//Qg5xpCfy3OhVjbUtga4GwXrhB+B9kHAPDTd9PTQ3wkHKbQqsUU7icJ7PjWV3ZlFrKsSUxMm5J5FXMw4Zwx9QsXERERERERkZlL/9IXEZnJXAAuHGRfDrAlPb4HHGJbcX1Ca+cs1naC83GmMaoq71lQ0/nYcDvWthXOjdqWWNsRBdpDVJj3n3PfavWASiwDw+vRiJU5f15F/bjG7JHyUuA8jBtfQC8iIiIiMtnihXVvjDFYO84V5UVEZhBrLcZERXQ9P+smgsJvEZEZLPTXMljFtSuE4tY0D3p+FEL3Od9l8NN345wfLZgZ7qQn1HbOxwSbCqE6gI+zmajlSd8WKMNwLlMM0AE6TS2hG1/4TZnw++CKJeMcM1Idr8e6+JjbpoiIiIiITJXKyujbj845urtHtiaPiMi+oLu7G+ei/KKqqmrCxlX4LSIyg5hga8l9G+7A9VRm9+MKobcrhtWj4UeV3qaxt5e3yxfHBHC2G2c7ouu7ENzIKktsuLfQ9iSyLVtLOI7FJCtiCbwyb1cVzBvzmCXjuEVYLXYpIiIiIvuA+vrebz/u2bOHzs5OVYCLyD7NWktnZyd79uwpbqurq5uw8fUdbxGRGcTP3E/VrH8u3g/zz+JcpuyxJtwe3Rgu/HZ9F7x0xW3OhWDTOBtVjFjbWVLh7Ww31rYX2q6EWNtKjEXDPgYbbqFvi5QN6ST1iUFat4zAQVX1JLyKAct2mmD+mMfsK5M/aELGERERERGZbDU1NVRVVZHNZjHGsGvXLjzPm9AWASIiU8kYU6z4hqjqu6amZsLGV/gtIjKDONP7Safx1xPmn8bzBvlRXQjFe3pzD643NnbOgjOE+WcIMvcRTx7VZ5zuYiuV6H4XfvftmGADicozwA7eW7xkWv0qxAMLzUEKKF/BPpxj65cSMwsGbPfNxCx4KSIiIiKyr/A8j0MPPZTt27eTzWaBqAVKGI692EREZKaoqqri0EMPxfPG2zq1l8JvEZEZxPWp0rZmL7huHNVlj7WmqXBrmP/R7Vv57fJAgAnWYYJ1eLFaenuC2z63iY7z12DNbpztwPNSI5x/afidMbApPfYuWzXxOvJBucUt1blLRERERA48sViMww47jHQ6TVdXV7EKXERkXxSPx6mqqqKuro6ampoJDb5B4beIyIxh/A30DY6d7SzcyJc9vqddSf+wecBxxQUtA8L8U+AszkZVIjbcU3qsy/a7H/Xu9rtvoaLuwpE8Cvov0Plku+Xw6rEH1fXeMrJajFJEREREpMjzPGpra6mtrZ3uqYiIzGgKv0VEZghrdpfc7w2io/7cA9ufjHRhm6gKxNlubLgTh6GnBUkxYC+M50xj6amF8NuE20p6cA0mCtVLj2vxDePqQOjU3kRERERERERERk/ht4jIDBHknihpUWKCbcXbNtxFPHlY6QkDwug4DFgWksLilhZcgLVt0e+mpTBEnwUuTSvOdpSeil+4kWUkYXs0Xt/j4rQHlkeasoOdMiyrqm8RERERERERGQM1TBURmWIm2DRgUUgAZ9t7b/cLtsP802VGKh3DeYN95TEEHNY2Y8NdUbsUN7BPeE+Lk9KNfbeNoNLcZkvGcV4Vu7Nj7z9Yl6zAOn1OKyIiIiIiIiKjp/BbRGSK+ZkHy/fxdlFIDUQV2H2OMcGmgYf3q/LOMa/s9ZztxJlmjL8O4z+PDXfQvzVJdGD/8DtVetwgvcdLhnDdONtbTZ52B9MRjD38XlI9t+xURURERERERESGo/BbRGQMXJnK6ZGy4Taiauyye6P/mr0Y/8U+F0z3uXZhAUvT3ue8GFk7WG9sR7bjxxh/XWHsPTiXG3jlPj3HrTcfvNK3iHLnDLiSK13w8umuReTt2NPrOalajFXbExEREREREREZPYXfIiJj0Le6ebRsuAvngkHG7S4e0zeMNv763lYoLo9zBmdb+pwZJzNo+A1h7jFC/5meGeD6hOm9124v3u5y8wCv3/6R9O22UGzpEmNzZlxLXZKKJdX2RERERERERETGROG3iMhYuDxB7kkAguwjIz/NBdhwL860DLI/g3MGk3+mZHsUhAc453AEhfN7K6rz3sFcs6Nu6Gubpj63y1+/R5epxvV/ixhB5Xe0YGch/PaqGEe7bwCq49XjG0BEREREREREDlgKv0VExsC5PM40Y00HJmwY8Xk2bAB8nBukitoFONuBNc1l9oWAARdiben+nKthe2YEC1L2zmTIva1BBf3fIhzlq9UHjmsKx6fIjWZKZcS98VWOi4iIiIiIiMiBS+G3iMgoOWfIdfwMZ7vobvwnwvxTIz/XdhTG6L+4ZNTyxDmfIHN/8bjS6waF6mtDmFtVsi9vk/jj6K3dX2O+TKuREfU5NzjbCUCWuWxLj29OXr/WKyIiIiIiIiIiI6XwW0RklJxtx5rdONuBs12j7P9d6APi8gP2WNuMczlMuAPbp0VJ74XTxYrw/oH79lwtDVkDTMzikA25MhXXg/QpLznE2eJioO1hPcaNL/xW5beIiIiIiIiIjJXCbxGRUbLBNqxpx9o2wIDNDHuOcz2hty3cHxh+O9sVBdzB5n6LWUZMsA1r9uBsDuOvKdl3c0OCJ9pyOK9vj+zUiB9Tf80DC9NxjKSBdwBE4fdL6RqCcRajJ72K8Q0gIiIiIiIiIgesAzb8bmxs5K677uKyyy7jne98J/Pnz8fzPDzP40Mf+tCox7vnnnu44IILWLJkCRUVFSxZsoQLLriAe+65Z8RjhGHIz3/+c17/+tezYMECqqqqOPLII/noRz/KCy+8MOo5icjkcATg0sWKb+fSQx/vfJxtLdwuLBrpMljT0ecYV1xQ0oa7y45jwq3gTGHxSwAPSAAx1nVHgfOO4MjCrkrSHDrqxwZgvTnc3+gz4C1iJG1PnA8uwHpz2JOLkzET14pFRERERERERGQ0yjR1PTAsWrRoQsax1vLP//zP/PKXvyzZvmvXLnbt2sVtt93GpZdeyi9+8QtiscE/a2hububss89m1arSPr6bN2/mqquu4tprr+XKK6/k0ksvnZB5i8g4uBBwONsd3S38PvjxATbcSSy+oHisNS040wjxWYWDequqHWXKrgFnO6OFNgtBOl4lIXMAx58bowU0H26p4x8XgaOKBn8OR4+h+DvPHB5vyTHw89Hhw++owt2SdgtozENLfpwrXoqIiIiIiIiIjNEBW/nd16GHHsrb3/72MZ375S9/uRh8n3LKKVx//fU88cQTXH/99ZxyyikAXH311XzlK18ZdAxjDBdccEEx+H7Pe97DPffcw8qVK/nRj37EwoULyefzfPSjHx1VJbmITJYoBLamoXjf2eygR5tgPTZsBHorv51tLy4MGW3v0zql32KYre4EAILMg1F4XgjQfebz9Y1HsT7XW+Hd7EPeO5RGcygZM7bPN0MXnef6vUUUW7cMKTqm21TRFcLT7bkxzaFHyhw/rvNFRERERERE5MB1wFZ+X3bZZZx++umcfvrpLFq0iK1bt3L44YePaoz169fz/e9/H4DTTjuNRx99lKqqKgBOP/10zjvvPM466yyefPJJLr/8cv7pn/6Jo446asA41157LcuXLwfg4x//OD/5yU+K+8444wze+c53cuqpp9LZ2cmnPvUp1q5dSyJxwP7RiUy7ngUdnWnv3Wa78GJVZY+3pgUTbiscWAi/ncHaTpxzeJ7Xr6VIaauQ5qCauSmiPuAuh3NR0O67Kpa3BLz74N5FIdsDeD69hLz1CJ03psfXG373W2zS+Thn8IZchDKq9O40FQQO0uNoexL3YvhhzZjPl5HzvLG9VkRERERERERmsgO28vvrX/8655577rjan1xxxRWEYRRY/fjHPy4G3z2qq6v58Y9/DET9vH/4wx+WHacnQJ87dy6XX375gP1HHXUUX/rSlwDYuHEjt95665jnLCITwAWFG0Fxk+1pRUJvOG7CnRh/IzZswIYNOJvDFarGw/wqwvwqgsz/YcIGch29H3r1l7O9YXOQexxnowDdEOPp9hyPtCSL+3+0sZNHW5L8cCO0+KP/EW+8hTQHPYFzaSAa5lfS3fhPg55rbScUqsNb/CTPtAeDHjsSCe+AfYuaemrNLiIiIiIiIvshJQtj5Jzj9ttvB+C4447j1a9+ddnjXv3qV3PssccCcPvtt0eL2vWxfv161q5dC8CFF15IdXV12XH6LsKp8FtkejmGCXVdPlrk0jQBltB/DmcasaYJXFQZ7UwbzrTjXAAuGKKlSJzOsPebHibYiHNR25O0qQSiau++2n1He2DZmx9LNa/HM53lK9ih0Hd8sBYvLiw+N3vzcbrC8SWq8ZiqkUVERERERERk7BR+j9GWLVtoaIj6/Z511llDHtuzf9euXWzdurVkX0+7k+HGOeiggzjmmGMAWLFixVimLCITxZVbkLI36LXhLmy4Fz99D87lscEWTLAO8PscF+BcHlweCHGmueylrDeLHdk+bUZcGhtsAeCldC0A67tKF6JsDRwdvqUpP/rw2eHxYFN0ns/AD+Oc7cSEWwY52+AKvc03pj3a/OEXyBxKcsj2KiIiIiIiIiIiQ1Pj6DF68cUXi7ePO+64IY/tu3/t2rUlvcVHO8769evZsWMH6XSampqR98LduXPnkPt379494rFEDnRh/vkh95tgM/HU0dhwV9Sfu1DVHfov4ly6z5EBzuVwLsS5LgCy3hFUuc3FIzJuHnv6rRlpCwtlpk30+WWzb0v2P9nmsycfsrI1DodD1L5k8CB8t3kF23M1nFq7FUOSu3dHi292mjqqej4i9aoBG/Uct2mczeDFSsNxa1ox4Q4gSbPv2JsfyQKZg0vEFH6LiIiIiIiIyNgp/B6jvmHykiVLhjx26dKlxds7duwY9zjOOXbu3FlspzISfecgIuMT5p8us7VP5bdpJGYXY4LN4LK4wiKQYW410BsIO5vGmZaoXUihlcij7Yfwjlm94fea9EL29qvgdjYKyjeno7YgrX5pyPxSV1SZ/kx7YXFNrwav0CqlnOt2zeZbL3Xy4lsWkrMJusJovK4wxaJU4TFRhYfBIwcug7OdA8LvMP8kzjQSevPpDBzZcSx2Cer5LSIiIiIiIiLjo2RhjLq6uoq3a2trhzy2b4V2d3dpADVR44jIFHL5Mtt6q69NsIFcx1WAjwm20RN4O9tOmH+u9xSXxdpWnOvG2Q4ANqd7fyynOYovPG8Y0Dq7UD3ekIt2NA1SYR0VhKdY3nly70avkt3m5JLjtmSiuedsgkdben/O/Km577dLPFxhAUxnu7Fmb+Ex9LaAMfnncBhyrpbMOINvgFmp8msgiIiIiIiIiIiMhCq/xyiX6+1DkEqlhjy2oqKieDubLV0obqLGGU7/ivP+du/ezRlnnDGqMUUORNHClAMXvHSu9++yDXf3hsO2rdj2xJq9UFKBbQuV3zkg6o8d9ulgkrbVPNeZ55Q5ybJz6Sn4zhhbdn/gLKE3l0dbYry+rjBP4uz2qzi4z5qWHUFP+B1nZ58WK5vSveM6PLxi+J0pPl5nu/Hicwu30+AMhjg7MuPr9w2QVNsTERERERERERkHhd9jVFlZWbzt++UWv+uVz/dWiVZVVZXs6z9O3/ujGWc4w7VUEZERcrmym/PdfyBZeVp0iEvTU+3tZ/5MT1juTFvpUKYJY5rJtH4HgIx3JH1j7M6wAggJBimi9l20Y/Aia48Xs8vYlXMl2yIx0hxJtbeXQvZNZ5gg12ewHRkLVLDefwWHVewlRkgMsOEOwEHlq8h1XEXV7E/jxapwhOB88jbFuq6hfy6ORCpWPvQXERERERERERkJtT0Zo7q6uuLt4VqQpNO9C9z1b20yUeOIyNRwxZYnXr8dfmG/jW73tEFxmT4HRdXQ1pvb53xX3N4a1mP75NRdJvp80h8k3W7zh28t8kJXBaWF4R7OeeCl6DTVZN3CYouSxny8JGjvDh3Wq6MzTGBIkHazADDhdqzZiw0bsKYJcDgXFH7Pkjapcbc9qYoniXve8AeKiIiIiIiIiAxC4fcY9a2k7rtoZTl9W470X3hyLON4nqdKbpHp0hNye6X9qJ0tfHjlMjjbTu/Cln2T5ygQfqTjZcDANkd/aa0vCZ83pqPK5525/j29oxZIDzVlGM4fdoYlgTok8B04koQuToepYWc2Ct9zBrame6/VZSwBNXSHMayL4dsojDf+8zjbhZ99GOOvARzOdtIT5L/YXc14O34fU38QMb1FiYiIiIiIiMg4KFkYo5e97GXF2y+99NKQx/bdf/zxx497nKVLl5YsfikiUyeqcIZd4TEYbxEAvrc06t0NWNNaOLJ8H26A9d1xnDew69SuXGnPb+uiyufGfuG38xI4r47sCKqrX+z06Xt22s0ntB6OJIGL0Wkq2J6JHlNn6PFEa297pV2ZkJWdS/GdhyVenA+ADXcVHnMIuKiveaENS1c4/ortpdUHcXjN4eMeR0REREREREQOXAq/x+jwww9n8eLFADzyyCNDHvvoo48CcMghh7Bs2bKSfWeeeWbx9lDj7Nmzh/Xr1wPwute9bixTFpEJEQIJfripjqbwICDG2swSXGEhS2t2DzvCQ03RGP0FFpryPYF2jJ4i7L25/otHJgiYNaLZNuZDfNubqK/LLCB0Ho44oYvRGiSKPcN356At6I3Km33D/2y0OAfGxbCUht9RyxOIKr4NPYF/58D1QEdtfvxokuEx4x9IRERERERERA5YCr/HyPM8zj//fCCqyH788cfLHvf4448XK7bPP/98vH49bI855phiNfiNN95IJlO+jcE111xTvH3BBReMd/oiMlYuwPcWs7E7xHdxft/4ev7cnCLqd21xNjvMAHGe6fAJqB84NLA3HwXIzqvl2u1RFXbaOJxX0+e4OLv8g0Y85d7C8Tjbswma/Rhb8sv4zvoUL3b1LirZXaaSvCOw/GyLZUX7fIzrfctwLgMuW5iPw9k0PeF3/yYto5HwYsS9GLn8IpzTmswiIiIiIiIiMnYKv8fhM5/5DPF4HIBPfvKTZLOloVc2m+WTn/wkAIlEgs985jNlx/nc5z4HQGtrK1/4whcG7N+0aRPf/e53ATjqqKMUfotMI+dyZF0NDmgOKvjPF7tZ3tJT6txTAT240FvAnlxI4CrL7k8X+p50u4N4tr23BUmbXVZy3OPtI299lCuE2s6rIWM8GvMez3dVcVtDmk3p3sC7OxwYfncGloebMly5OSBn4332mN6g3zmcy+MKYbgZvOPLsCriCQ6qqsO6JNbFhz9BRERERERERGQQB2xZ3fLly9m4cWPxfnNzc/H2xo0bSyqtAT70oQ8NGOOYY47h85//PN/73vd48skned3rXsd//Md/cOSRR7Jp0yb+67/+i6effhqAz3/+8xx99NFl5/LBD36QX/3qV6xYsYKf/OQn7Nmzh4985CPMmTOHJ554gm9+85t0dnYSi8X40Y9+RCJxwP6xyX7Cho3EEgunexpj4mw3xnk0+5bt2RQtfo4N3VFbEhvuJNv+oyHPz7qo4jtkYLDbHji6Qgsk2evPImqxEvnljvl8/lAAD/D4t+e6RjznnHWAx/bgaL64ppt3L66mNhF99vlCR+81btyRHnBuR6ENyuMtOTKmNLA3wbrohsuCy4PNAUN1Ox/e0uq5HF9/JPhg7MBFQUVERERERERERuqATVGvvvpqrr322rL7VqxYwYoVK0q2lQu/Ab797W/T2NjIr371K55++mne9773DTjmwx/+MN/61rcGnUs8Hue2227j7LPPZtWqVdx8883cfPPNJcdUVFRw5ZVX8s53vnOYRyYy8zlXvr3PTOecwZpGjIuzJe3TlK8AYEcmAGLYcBcUen8PxhR+7IYuAf3WhVzTEdDiW/LeYpqDFH3D79/vyPL5Q3t+ZHsjWuyyR8ZE4XejX0FXmOW+vTkOr6kGYEum9xqBGzhme9AbZWdM/y8LRfusacQR4FwOiI8r/K5KVFARqxrXGCIiIiIiIiIioLYn4xaLxfjlL3/J3Xffzfnnn8/ixYtJpVIsXryY888/n//7v//j6quvJhYb+qmeP38+f/3rX/npT3/KmWeeybx586isrOSII47gIx/5CKtXr+bSSy+dokclMrmcHTognqmc2Uuu48eELkbWOBoLi1M6opYiNtw+7BjdJgrMfTvws8fN6ZBtmYDbGpdxf2NpZfiWdABeCudVEVK+ZcpgNnT5OK+On26Ofg415kMeaopatWzPDL06Zd+MPWu9ssfYcDfOtALRHO3Ic/kB5qVmUcH8sQ8gIiIiIiIiIlJwwFZ+X3PNNQNam4zH2Wefzdlnnz2uMRKJBB/72Mf42Mc+NkGzEpmZbLgVKk6c7mmMmnNRD25DHHC81NVbnxxSjwm2DjtG3iaAkJxN0L/zyd5cVIX9TIfjL83+gHMNdRgq6DCzRjXvwDkebH85f2rsrbjf0D106F2OP0j4DVHlO4Clms7RD11Unxy4EKiIiIiIiIiIyFio8ltEppzxNwy6z7mZ2/CiJ/z2bfSj84nW3gUpQ1I421m4V65XdXRO1kSJd6Pf/5g4PQXTz3eErOnM01+bXUCXrWd7rm7Uc3/vyu5CP/HInlw4xNHlDRZ+O+dDYfYBNezNj/3PsDa2EM8bLGQXERERERERERk5hd8iMqWcCwmDlwqBad/tAc524ezIF3KcKsW5Fn4PXG/7kF4ejqjk2XnJkvPz3mEYbx4AuUJwvjdf+sUb5/W2Mlndnis7j82ZenI2SWc4PT+6c4NVfrsAE+4AIO+qCMeYfce9GDFbB07ht4iIiIiIiIiMn8JvEZlSznZiwx3g+vXGcCHOZrFm1/RMbCiF0Lt/5Xdpa2uHsx2F26XBdms4h7SLwu+eftjBgCC595zBFrPsDONkTIKsmZ5w2B8k1HbOx+SfAyBwSXJjbPpdl6zAugqcO2A7comIiIiIiIjIBFL4LSJTypo9WGoJ808Xtznnk23/PuCwwXZMMPzCkVPJuUKFdyEE/+pL5X50ejgThd8+s7HefKy3AN9bSt7GaQlqoyEKR4cOQm9x8ew7Wl4x7Dw+9WyO+5qqWd46s8LvMLcSE0StbKzz2JYefUsVgPpkFTm/npy/YKxTFBEREREREREpUvgtIlPK2S4MlSWLQzrTTph/FmvbsKYJG26ZMb2/nbPF0BuiUPeFjoErOjq8YuX3mvQhGCoJqCbvqmgJKtiQqYpGKLT0aA2gxcwHKoAYu3PDB9oNuZDfbc+xsduM+3GNxWDht7VtQLTTuBgdY+h7kozFqU6kgBjOxYc9XkRERERERERkOAq/RWTKONtNkPkzljg27K3uDv01ONtGtu37WNOECXfibMs0zrSXs+2YYH3hdhaAVn9g+GxdHAo9v6/flcCQ5Oa9y8i7FB9/NmR9dwzn1bOuO2rp8aU1nTzcMof1/isw3gI2pkfWKuSlLp9tmbFVVo/XoG1PzJ7i7ZAY3eHow/njZx3MrGT1WKcmIiIiIiIiIjKAwm8RmTI23IM1e+gwszHB5ijkdgFh7q89RxBaH5zBmbZpnWuRCzDhNkJ/LdbsBpIEbmBQvTU3t3h7Y7ehw9TzTKejNagmYxyr2gx7wsN5qKk3GN6Rg/YggSXJjszIA+PN3QMrz6fC8x2WVnfCEEckCGyczmD0Pb9jeNQmasY+ORERERERERGRfhR+i8iUsbYd469hdedsbLiFfNeNOJvBhDt6jqAzCHAuiwm3TetcezgCbLAFv/s2TLAN51WUPe66nani7c7AsD5dx227smzKVJIOLLc3pLl1z2zu3J0uHtfuO3bnExgSNOVHHn6XC9+nwh93dfOPT80adL/zagidN6b5xbwYtYm68UxPRERERERERKSEwm8RmTJh7nEgwep2r3B/BWAKvbITGCpp9ONkwoAguxw/fe90ThcAZ1qw4S6sacC5NI7y4XfaRIFv6B3EtkzAL7dBYz7ktgZX7IG9M1caCneGjm0ZD99Vsik9PdXco/VCp4/15pfdl2U+oRvb20p1vJK43pJEREREREREZAIpaRCRKWP8tTivhoebogUknW3H2Q6c7QQviXEpGnIpduYSGH8tYf6paZ4x2HAXzqaxwQ6cacQOEn5vTUeV2x12Pi2+5aGmqD/43bvTFHJxHmspDbh35ywb05acTdERzIwFPofTFhgybk7Zfc92Lyou6DlaqXgSz9NClyIiIiIiIiIycRR+i8ikc65ngUZLjnk8256HQohs/HXg8vxu7xl4roWmXI7mzF4scWD6A2Fr27C2Hee6sWEDIamyxz3dngcgb6MFLfOFxLvb9FZ7P9OeKznn0aYst+7K8P4n962FHvOu/HNwz94kG9Ll9w3HA+q8JeOYlYiMVOeqz0/3FERERERERKaEwm8RmQJRVbTDkncVUU/oQpVvkFsOwM835zEuQTq0GBcWwu/p6W1dwgWFWTjAkbHlF2XsCi3gke0Jv+3AufffkreOrtCyuhCc7ytyNkUUV5fqDBwvdY2t8tsjhnPJcc5MREYi7HgRZ/eNVkszmZum9RdERERERGTkFH6LyORzUZsT6xy3710QbSr8+Alzj2G8hazpzPPh55bxQpcjb2OkbT3OTX/ld1R9HgXaxlvIEQ8MXtkceIfwqod7gv79V8YksN68wr3ewDodOh5sHH2QXxlPUJ+chbVVEzRDERlK0Pocue13FO+b9K5pnM2+y3Ssm+4piIiIiIjIMBR+i8ikC/2tOOezNbeYDd3RNp95xf3N5iAAAuvYlDbszcfYmptDY7hwOqZbwtgQQxTKhlQOeWybmUt4AFQCtgZJwsJzkvWWFrc7HPkxfF5Rk6ggTpzQDP38yuTxvLFV7Mu+xdkAZ3wwOVzQWdzu73lYVcxDGOy5CdqexVkTPaciIiIiIjIjKfwWkUmX674V46/jq+sSXLmpC4A/tR5W3P9c1ywgagOSDR0NOY/PPe/xnfXTH4bmwm7aTVSt7rvyi1322J6rpVw7kP3NS90Jum0dANc19ITfHhaPFj8c/MRB1CYqSHqVGKu2J9NlX4g9XZiZ7ins81zQhc23YIOOkuczt+NObK5xGmc2s9l8c9nt/u6HcH47Nt86xTMSEREREZGRUvgtIpPOml2E+dVkQlPc9tPNId0cDVTwux1R9LahO2BrJuDO3T5784aKmI8Jtk7PpAFnu3DhNhqDaEFKf5CFHns803FghLc37gzpCKPn5E+NIZAErxLrHI15M/TJZcyvqCNJ/QTPcv8W96DuwHi5FeV23DndU5jRXJgjaHue7NabBz3GpHfgN64AG+CCDgCClqfwG/9C2PoMuR13D3sdm2/FhdkJm/dM5Uwev3kVAKZzw4D9YdcWwq4NWL8drCq/RURERERmKoXfIjLpnAswwVba/N4F1la0ZLl+92Kcl2J5cxSk7MyG7MyGPNmWY28uZE6iCxtun65pY00rnm3h+c6oAj10Q//IbA32hfrZ8VvRkmV5aw0Q58HGLHgJLFWEzmHG8BTUJKrxXPmFRKW82qTjoIr9P4DsK/PSz6Z7CjOazTfjN/6V/M7BA+yg9Vn8PY8AELavBSC75QZspoHcjjvIbv7dsNcJO17CdG+bmEnPYC7oImx7HojawvSX33UPNt+KzTXh9onvToiIiIiIHJgUfovIhHEuKLv94fYjyYWttPmlVcHfeSmNI0GLP7BRdM46amMZch1XE+afnpT5Dsv5dNk5LG+xrEy/Ft8mhjy8O9z/W570uHFXwKrMqwicAzxCasbU77sqHpUv5/zZEzq//d3xlXt4s3/tdE9jzPIND47u+F33E7Q9V3afelWDzbdj/Q6C5ieHbA+T3fhrcltuACC/5yFs0E124zXRvk2/I2gZ/mdt11NfJrfrngmZ90zmTBab3QOAv3c5uR13FffZfBu5bTdjOteTWfczTPfWaZqliIiIiIgMR+G3iEwYZzvKbMtxz96Q3fka0v3KgtsCQ0DdoONZF7VMseHeCZ/rSDgsLUENu3KGNV1J2sOh255sz4y+5ce+alsm5LnOKLh2eISkaB1lyxMPj1mpKjwPrDvAeniMUw1dzM69ON3TGDOT2Tm649PbcGF3+aDbjb7P/P7GpLdh0tuw2d0lC1n2F3a8VOxfbbO7Md1bsLnovgs6cWH3gHOcK/1UK+zcQND41wmc/cxk/U5cmME5h+neWqwCBwjaniPsWI8LM+R3/xl/71+mcaYiIiIiIjIUhd8iMmHKhd/WNrOy1Wd5axUtZcLR9dnFg46XK2QuzuUmbI4j0VvB7mgOkvy5Mcv1O3yu2jp0QLu5+8AJ4bZnAvbkeoLIGIFL0FSmgn8or1lwFKfPPY6qWNXET3A/5gFH5h7GG+SbFjOdM3nC1meHPMb6HdhcM0HbC9igG2dyYIPoV59xbL4d07lpsqc86YJhno/+THpHyX0Xpsnv/D9MeicmvQNny38Q5YI+4baztD/yAfoud+rCDCazu+SczpWfJmheXZynzewit/NubDAwKN9XOTvw75Lp3oyzPt3PfYewcx2ZjdfgTB6A7ObrsIUPcGxmJ2FrVDFv/cE/eBARERERkemh8FtEJowz7b23CxWazqbJG8czHa7QIqPUL7cNXk3dHoDz6oAprqh2+eLv6TAOwJa0z+MtQy9qtiF9YC169nxHz59LjNAlacqPLvyvT9SR8JJ43oHTLma8Yh5UxqHO3wz7ULsPF2aLAaPp3oozQ/crd2GGsGMtNt+CSW8n7Hgp2h504pzFOYfNNRJ2rsftB5XfYduaUR1vsnvxm58Eosps67fjgk5M1was30rY/gI2SPc7p3FAyGv91pL7LugiaFpZOreOl7B+O2HHumhxx2gwspt+O6o5j4WzYb/7k/Ne4IKuAdtsrgkXZvAb7gdnwfrYQlV9T7/04rF+OybXRNi+734bQ0RERERkf6XwW0QmTDofVcI5240NC1VxYQNb0gEPN5Wv3r5m28DQocdTbQHNZhnODn7MZOipNLemmY3p6Mdki2+HDbezY1ntcR92796ot7Chhs6wctSPf15yEZWxWjwUfo9URRwWVvjU5tYTt/vOgpdhx1pMpgGA/K77sPm2IY+3fjvdL/wQf8/DhG1ryLz0UwBMejs2vROb3UvQ8hSZ9VcNG6TvC4L20YXffsOf6Fh+Cc4GBC1PYTO7cWEaF2awmQa6nvoyQeOKknMy638BNl+yzRb+TIpcSNCyumST6dqI6d5C5+ovEjQ9Xtye234rLpzc5950lVb1B61PTcp1ws6NA7bZXDM214TJ7ALAOYMrhP99W6AAOJMjv/028jvv6j+MiIiIiIhMM4XfIjJhuv3dOBcQZB/G+NHidB25neStY2P36Fs0rGrLcfOeuTTmp/ZHlTNRMJc1cR5o3PerSidbh507pvNiVFDhFhFT5fcA8UGekpq4Y1migcr8dirD3TP2YwObaykJRk12b7G6NuzaSNj23JBVvC7fQtDyJCa9A5trLG73m1YStD1LfvcD+I0rMOkdA1qA7ItsIWAdqbBjLSbbQH7HXaTXXE7QvIqwz6KLQctq0i/9pKTS29/90IjGNtneQDzs3oZJ7yC75QaCppXktt/W50CfsHP9oONkt940oHJ7tMKuzSX3/b1/GfC6GWrB07B727DHAATNq6LjCouFhh3rMZkGTNfmYqsT53dgcy09Vy0dwPjkG/6EKSyQKSIiIiIiM4fCbxGZME25PM60EfovYYINAOSDaLHKsRRF563ji2s6WdNVOZHTHJYt9C5v9hP8qTEzpdfeF3WElf2joBGJU0smt4iqWM2Ez2lflxgk1a6KhxwWrKLK30FFvoHkDH0XN+ltmGxv72ib3dMbLLavjVqa5AZfyDbs3IBN78BmdxcXZIQopDSdm/B33Y/fuAIXdmP6BaT7IlMIaUfCOYfJ7sblW8ntuJPc1hvxG5djOnqDaJvdTX7HHaUfQHSNrDe669O3OmxbA87g734Qm91dUvntTHbI5z794hXjrso36e291wtz2PSOYvV1cXuZliU9gp7WMP7A9SiK51tDvuGB6HrZxuj+7j9jurcWWp+kC9fp7H3N9mu140wmCuaHmIuIiIiIiEyPGfrPZhHZF+3MBjjbgSOGb6KKw85w/K1AMmZk1YPDVfeNVE+bldzo1m88YOVtjBe6Rr9opbOV4HlUewsmYVYz35KqkNfXbytbvX1EdZqK+MDtHpAqvD7jtpslVfmBB80AJttI2L4Wf+9fovtdm4utIlwQBZH5hj8Nen5YaANi/faSNhymayPpdT+L2p/kmqMKczO1C+JOtKD9xeIHA33ltt9RrDruy3RvK4a6+Z3/B0R9uV04cAHKvuGzHSIALjnH9VZW23zLoMfZfCv+3kejULpM6Gs61mFzTSO65mD83X+O5hRmcSaL3/gYYdcmwj5BvyksPFmO6d4SnR904sIsQftanOltX2Uyewia/krQ/AQuzBb6m7eS2fD/om8eZPcUX68AQUvUdqV/9XnYtQWbayr5loKIiIiIiMwMCr9FZMKs7fJwGDpNLc1BNQCto1wEsZyESw9/EAATlVZHc3ZO6fdIZG2cO3YPf9yg7OyJmso+pS6e5yBbvnJ2Tqy9bPW3hyNlesLvLHWxmdfv2llD2L4mWoAxE70wbK6JsHNdtL9QjTxU1bALugu/d2HzvZXfYddmTNfGqL910Bm1C7Gjb6k0k9hcc9nwOGh7tmz4bbO7cX5b4dyeSuRBWsj03e5G+Dz1+TDBDhEsY32CtudwLizb+9sGneOuhPZ3/xlnA8KuzTgbRN8EyO7G+r094+0QrUZcYYFKZ6JgO2heVfKNBBd0RMG134bJ7MJm90Sv1fYXsdm9UY/0Pu8Dxddi/0VWTRZcqPBbRERERGQGUvgtIhPi4d0beaixk+7Ms3xr/Sx+vzOqBL6vcfxdiYMRL+xnsGbwSsWRsi6ac8IO3pZBel21NcEfdw2sOh2OK9Q8B6Z6oqc0481JOV4d3sqC3HO8qn5geHd0sIKv7z2Cf018v2R7KmY4evd3i/dPCe6bMX2/ewLcoOlxulZ/MVqMsfUZgtZno0ra5lXkdz9UDBD7VhXndz/cO47fQdi5oXBMc2n4mNkFzkaLPGb34MLukr7W+5Kwa2t0w4XYTG/f8p7AO7f1j8WWG31l1v18xNfw9zxM2L0NF+bKVpeX42xvZXR+z8ODH2eyUW/sjnUDWthkNl4bheP9Fs/sYYM03WsuJ7fzXgCCthfKH5dvIfPSz8g33Edm3c8x6e2kX/xfup78Qslj7Hj8X8vPMeii88kv0PnkfxC0PY9J7yBo/Ct+42MA5HbcGQX8Jkf38/+FSW+Lqs1NbmDADWTW/SJ6nQ/yYYMLM7iw98OD/j3LRURERERk6in8FpEJsb6zmWfb83T7u/Gtw3NRELYnN/iidiPVnh9hWwMX4Oz4e3TnbRQn5iemi8p+b0PXyMPHqniSo+qiNifOJQAITXJS5jWT1SdC5ubWMDezmhjR35G+bU7qgu0kbJqD22+ntvD01Ceh2svj9emwPje/hsQMeSd3YRabb41abTiD6d6CzTVGFbTOEna8RHbjNcXQ26QLixFaU1xI0VlD0LKaoO1ZIKrqtf16PBeu1nuzT1g7onkOsdDmVMpt+yPO+FGIb01xMUXrd0Tb861le1X37YM9HNO9HUyuJNAeVp9jbXbwDwCt347N7CS75XqCQphc3FeogO6p4Ico1Ld+B84GmPQ2XJgptiUJO14qOc6F2UKI7Aja12A61hM0/jU6tmsjJru32As+7NxIvuF+THpglbpJ78Tf82gUau99BJvbS9D6DPndD2Iye6IWMu1R8O433B+10xmi1QvOFFvOlN3tTPSaLzxu07Vl8LFERERERGRKzJB/MovIvu6h3RtpyIWE1sc4i+c6saaJhuzogqlyciMMq2y4Cxh/FWiQfwHnDA3ZMk2XZYDV7SPvO31Y7TxeN+cdAARhz0KmB95b0ex4mqVNv2Z+x33UuijgfFl1a3H/3HS0sGBNdj1HV0bb31yxguPt4yXjHNp4Vdne4NPB5puLCwUCZF76CUHTSsJCwGnzrWQ3/67YpsTf8ygQtZ7Ibbm+cLuT3JY/4PKF58JZTOd6huLs6ForzYRFCZ1zxUrm3LZbwObJbbs52hdmCDvXYzO7iv3M+7Zg8oeoxu7P5psJOzcWe1WPaG59ns9ylee9g0d/jpkNvyS75XpMpvcbDD2hec9rAaIgOLftFsK2NbigOwrDM7uiMdb+GGcNzjn8PQ/jN60sBvZh63P4ex8l33BfNHZ6B6ZzHel1P8eZPEHLakznBtIv/M+AKfrNKwmaVxK2PkN2w6/wdz9E5qWfkN14TRTaN6/C3/NINL/0dvy9K4Z9fWTW/WLQfS7oIrfzbsLWZ7H5NrVBERERERGZARLTPQER2T9kCwtcdvg+i5LtZI0jyK5gU3r8YXQ4TPjdEwyZYCPx5FHjvp4J1uJsBzOjPnT/Evdi4HrC7pnSsGPqHez1VqkuCtcCL+NI9zwvxs8isFDf3RtWVng+HnB8+zU4BibdiyuyrA9Gv+DoWDiTx4tXlN+Xb8N0bsRLRHOxfjteak5vJXG/6mMXdOJMHpPZFVX72iCqrG19ZlRzCtvLt8wYjM23EKuYPapzIKow9lKziCVn4cVToz6/hMlhurdHCywWwlYbdOLvXU6scgG2EP7bIKqUdiaHl6wr2wN8KH7T4+AlcOEoAn8X4owfPcYRtJRxQSdB2/MELauJV5+Dc5awbU1x/jZIE0vW4EyW7KbfYv02knNPiSq/Cz3FnckStj1LvPYI0mt/RMUhf4PNR4tlmszOsoF00PxkSfV4/28IOBsOqJx3Ybpw3QZM5/po7D7nme7NmO5tQz5ev+mvgz8XYRp/94M4v61QBT6+BT9FRERERGT8FH6LyITIm6hacHWbZUlFE0+2gfFfpDMYf4S8N29xzsfzygdOznYAHibYRCxx2Liu5WyWvI3jbJpQC15OuKQXpyf0tjZ+wObfy7IPF2/XB1Ebi9nBZuoSbyBtPBK2t+I2iU8qDoua7ig71pLYLtYz/g99huOMj0lvJ1F/dNn9Jr2doGU1iVnHRRtsACaPzbeVPR4cNtdEbvttuLArCky9GEHzE6Oa12iPN91bSNQfOapzAPy9y4nXHkpy3mnjDr/Drk3gwmjuPQGz9Umv+zm1J/wbrqc1TPdWgngVNt9K5ZK/wQyxuGM5QWNUyezCkffkd84QdqwlOfcVxcrzoU+wuHwLQdNjVC49B+d34rdErUHC9rXYXFMx/Pb3PIQXryRedRCm46UofHYWm2siaHseYhXkd/4fzvj0tLbpqQ7vz3RvjSrTC8/fgIDc+sUFL4ub8s3RuCaL3/jXgWPbAL955ZAPd8hA2wb4TSsJmp+kItOAlzjw1jMQEREREZlpFH6LyIRozEXhyuoOx/G1Hn9qzGCsodUff4C8udviTDteYiEQhTOe11sB62yhSjJsAHq/sm/CXcQTh4zqWs5lyJgKcHmMVfg90TzPA+Kcs/h0CA+85DsVg2XVWWa3ryluq/U3cUx9hrrujbyhdjkrvNeWnPPK7mug9oODjjnP7sDjKCazRb0NujHpHbh8KyGUDcDDjnX4e/9SUrntnCFoenzAsT0y668ms/FX4Cy5nXeRnHfaqOfmTI6wc8OgoXx/Pa04bNBNLFk74uuY7i3gxUjOO3XUc+wvaF4FQH73Q3he9E2I/J5HCFpWk1rwGrx41BLI3/0guc3Xk1r8NvyKOSVVyiMV9nmtjYTLNRM0rQQbYv3BPrgYKGh/kfyeR8Fki21rgtanCQuvh57FH/2mx7FBV9T3O+ima/X/hymE0D39toOmvzJcOySbbyLf8EDxftixtt/+gXPvG5AP9rzYMr3DSwzzgUBPoJ7b8gdSi98afWMgWU+8auHQ44qIiIiIyKQ48BqtisikyIZR9Z0pJHA7syHNQQ15O/5IbnM6wPXt5e2yJfutacWGDTiXB9dbaW6DLTg3yspzFxC6GM7l8Sagf7iUinkxwGNOctF0T2VaHFzpszDWTGWwo7htVveTHOOtZX73Xzim4/dUx0t7WC/suJ9lweCL7FXYjklf9NIF3Ti/HZPeQdhWvs2I9Vuxub2Yro19zxyyWjlsX4NNR8+FSe8YVYVy7yVCgpanR3y4LVQDm65No7pM0LIa07UZJuAbIbbwnNjs7mJ1ddD8BC7fQti+prgt7FiP3/QYNreXsP1FTKZh9BdzdlRzNrkmwq7N0YcYI2h70sNmGggaV5Df+yjFBUlNjrDjRUzXJkzHumg6fhtB8ypsrhkXdOI3Lo9a4jhXbGHiwsywrwWbaSgJv/u/zmy/qu8BBn1Oxvue5QAXVZnbENO9bUwfWoiIiIiIyMRQ5beIjNuHl9/I+s5mAK7Z2k2iUND756bR9acdzK6coW8gYU0T8VhUsemcw/gv4nlVONuGK1R+h/mnybR9l7pFv8OLzxl0bOcCcCFerIquPX9PRf2HaAtT5DqvIgzmTcj8JXLC7MXMTtaBA8/NkFUaJ1jc6/0AqJyjE1s4PL+cWd2ri9uq81s4tutGarLrSIQdHD+7tIK1OreRkxouG3TMY5t/SrL+3QST+EUFm2vEdG+JWlNYH5tvJrX4bSRqe9sMlQv4XNCFHaK3Td/K4tyWP5CoP3b0k3N2VAsLms6NNN58JLUnf43k3FeM/LzMLoLWZ6k+9l9GP8d+evpTm+4tOBN9mNfz/IXta6Ne6UDQ8mTUB73piWihyLF8ODBaJkt2029wQcfwx/bhwu5C1X/pn3fYHr2eczvv7t1oe98beh530Pp0yQKZI5HbemPvOPk2nA3xYtH/2o52rMnSU+WfmHVMtJioFy98A6aXswFeLDkd0xMRERER2e+p8ltExq0h04EpVNHlrSNdSP8aR9AudiSyxoKLFstzLsT4Lxb3ObMb47+ItS0452MLleYm2AEuh7NDf23fhruwJgrurWnE2U5e6q4gDPcSTkDV+lRKeDP7R3plLEnci+GIEaP8oon7kvoyWdXcCkvVELl+rW1lbuYpvH7VpfO6lgOQCNtK+oEDeDiSYcugY1ZlN1IZH/lrNT6GbjMu6CJofQa/4U8Ebc9HVbb9FrAs1wvZBZ04v3XQcftWMhergMfChsMe4lyhh3S+BdO9vVhxPhLOGnAm6iE92m+TlFFcVNFZnF9aoRy0r8F0ri/sj65l/Tb8pseLQfJks/lmXJgZ5TktuKALkyl9Xk22gaD1GcK2Z8ue1xNS+3seGXaxyQFK/iwcLuj9cKCn0nw6OZMjaFmFKy76GkKfRUudc9h8KzbXPE0zFBERERHZ/83spERE9gmdQfkK78aJKfymI7D4+SgMsuFuTFD4arwzWNtJEOzCmTbyrp6mIEoeo0UwKQbbg8l2XIkNt+CcDxicy7KixWJcnHDfyr45vHb+dE9hSPMqZpOKVWBMBfn86Hqxz0RvTz08YNt57je8smbwnsGVroODW28asL06F7UKibs8x+z+7oD9/cPyvhI2zZEVQyzC1/dYDw6tHv1fTBt0Ena8RNixFn/vXzCd63FBuvSYfPmAfqgQ1XS8VHK/p0p2tJwd/jG5MI0z+ahVhguj0LHfYxiMzTZErTiCzmiRxXHK96mC7l/N7fItA0LgsOMlnN9WWLBxCoyi3UnxlOwegvY1BI1/LdkeNK8maHpi0DYjPc9n2PbsoAH5SJns7mhMZ0mv+/m4xpoIYdtz5LbdErXLIfrw1oXdUQU40Z99ZsOvyO9+cDqnKSIiIiKyX1P4LSLj1j1I+P1Em192+1ik/Z5AMSwE1eBsJzbcRejimHAnDf4sugMfa9qL4bfxh17szYZ7CLLLCTJR71hnmrmjIYslSd7uOwsyenjMStVM9zSGFCNGbbweY1O4/aDtyaxwK/VJmJ2KgulX1reyILOSY/xHqez38OqTUBGHxelHJ2UuC9zIekEvqgyZF+8a/sD+nC305E5HfZy7NpdU+LowU1y0cDxsdu+YzutZyDAo9CN3tkx1tslHiyAWqnBNdjfOb8WNoB+2zTVjC4s42tzY5licq/GHbV9isv3+PMcQRk8Hm9k9YJsLuwY+nkmSXX8V2a03EbavnboPCoZgCt+G8Pc8jLNB1DLIb+9deNMGOJMn7FiLzQ3+7Q4RERERERk7hd8iMm45U77lwF9bJqjvCWCC7dENF+BsFBzYsIEwt4qcq8YPu1jbXQXhdkzwEjaMwpYwH1USDrbwpbPtBNlHyHb8AoAgaKQtMBgSdA/fSWHGSMZi1CdmdvidiqVIMQvrErj94O1nQfpxDq5IszgVBZlv7vguB7XewjF7f8CsZGmgelhlB/UJy6FNv5yUudSbgaFjOUuTzcxmDCGbDUoWiHR+W0l1ctjxEnYsizH258b2l8760Ydd+R13RPfL9AC3QUdUQV3osR22vYDNt+L84Xtbh53rcYX+5GYU7VLKcXb4DwUHPpf7yNdQyv35OTtl4X36xSvoXPmp4uKh067wWgvansXfuxzTvZWgeRVh5wYAXJgFmydoXhX1dxcRERERkQm376cPIjJtbBhVQPoj6Lc7XnG7B4gWqLQmqqZztpkwv5oGfzatZj7Pd3qk7FpsuAsTFNopuKAw19KqVOfyWNtZCGtCcIWv3tsosL+3eSk37Ji4yvXJdljNPJZUHj3d0xhS3Etgw4Omexrj9tr6XbypfiOz0k+yLLaV2liG6gTM7Y76VaeCRt4Yf4C5qd7A8hj3LIdVTF4YVxcOX3V9eE2eV2Zu4FD/CQ6pGtnfWVvooexcWNpPuXt7yWKDue23jW7CE62nN3bQiTM+Jr0dF5Z++JbfeQ+5bTcV22+Yro2YzC7yDfcPO3zQtLJ4uye4HPtUs+M6X4Zms3sImp+Y7mmUsJlddK76N7qe/Rb5XfcStj4DRB+E5HfdS9C0kvzuP0/vJEVERERE9lMKv0VkzPxMFBqFdvi2AePluZ4gy8e6oBheW2d4uLmKRr+K9sCRcG2EudV9en5HgaOz7SXjmWBLVEHupUq228J1/nt9nifaJq5yfbItrp6HZ+dM9zSG5Hkefjizq9NH4vDwKU5v/zFV/g4WhBuZx17qEpbqXNTXN+7yHNH+R+Ymo3ZAHnBo+k8c5Ea5mN8oJO3wfagPje9mcftt1PlbmJ0YWQAbND0e3XCWvtXHLuwmaFldvB92rB/VfCdasa+4yeNMFpPeQdi1seSYsHMD+V339jknTX7n/5HdeO2w45s+leTjXpzQ7Ds/V/ZNbsYFyS7MELY+g7/3EWy+pc/8HEHrs7igk6D16Wmdo4iIiIjI/krht4iMWWM6WnjSuMn/Sn5zOB/nDCbcSWB9bLgbnE+eOdy4M09DPsWmboPDEeajr49nvSOwhcDO2Q5MELVtcM4SZv8CzufaPacBFQB8aM2ZNPlVAKztmvlV38lYnFnJSg6tmcuyipNghvbRPqiqDoAYM3N+oxVzIQe13gzA8Y3fZ0GwnpNSpdXA8zvu57X2TuIezKlwLGn+Da/f8ZFJm9Oyxp9SMczTe2jwNNW59Sxt+g2nhfdwdt2zzK8Y+u9u+oX/AcovWunCDKZ7O865Cen3PR4234zf9ATO5km/8ANy228tzr3PQZjuLSWbMuuvxh+mSjhsf6lkIU5nBl/Ac0RzDcbQc11GxYyzOn+yuDCLv/cvBK1Pkd1yI65PD3p/zyO0/+WD0zxDEREREZH9j8JvERkTE+7knsZKAMJB+mlPpC3ZWpzZiwmbaPAXgPOxJoPvKljfHdAVxGjMW4yLAQZIsjM/j9BV4ZzF2TQm2IZzITbchTV7cC7Pn5sMOW8xAPftzdARpoacx3SoSZSf05xUFS+fs4yFlfXganAuTsyLFumMeR7J2MwIm1OxJABJb+Y9tyPVd+nTGAGxQjudqtwWqkwjh+eXlxwfd3lm5zdQnYDKmCFus1QEk7foX8q0kxhmfdZK20rMGRK2i/nZp6izjdQnhv6QJ+zciLMhJl2+at1vXBEtgNn+wlinPiHCjnUEzStxQZqg7TlM50ZM1yaciarvnQ2i0Ln/4pY2j8u3RosRDsKZXGmrEjP2D8acs5hprpI/MMzQHunWx4VpTHoHNre3tNrb+pjsnumbm4iIiIjIfkrht4iMSZBdyc83ZwmtoSU/vkrIkbhjT5zupk/TldvEmq4arGmhPbueB1sW0RVaukJo8Q3WRQlgizuW0x8OSbs6nGnGuSy5jp9gwx1kWr+OsxlwPk+25vnXNYcASbLGkTEzIzDu6w0LTyq7/YjagziY8zix+k1k8wvIBfXMq4jaiiyoqOWouoVTOc1BVcZ7wu/6aZ7J2NUkem9Xmrbi7ZgLOH7X15mXHlg9fMTe/2VWMqA6NjWL/VXEhw78Uqa9eHtp0685pu1XvN7eTqrM/wmYbCM214zp3krYuWHQPtedT36esGNtcTHI6WK6NpJ+8X+xfjumYx1B8xP4e/9CfvdDAOQb/gSFIHwghxuiFUnQvqbYUxwYMigfTtixju7nvzPm82Uf50z0y+QIO17C3/uXkt02s3OaJiYiIiIisv9S+C0iQ3LO4AptTZwLC7/neaG7lhc706zvbMJOQduTx1sDnPPxbBM542FNEx2mmrv3RJWcq9otTfmQnI2C1r1+FAK/lJ5LkH0EG+7GuSzO5XC2A2vbyGWfoj0w7MwZdpkTAWjIJ8pPYBqlBqmYnpWsBcDa3v09xb8vn304c1K1kz21EVlaHYXwnpk1rfOYnXJUJSDmQW1ydOcuqojC0WQMUmZg0Fuffa78NeM5qqYo/E7FLB5QV+axeVCsVu9Rn36GOfm1LKwM6V8pGzSuIOx4CZzB+R24QVp1uKCL7JY/TMwDGCcXdGOzu7F9gnibb4paTTTcDwy+NoHNt0ZjlAm2c1tvwgV9eqq7AGfD4s/F0QhbnyZsf3HU58n+xwXdhF2bS7aFHeuxfuc0zUhEREREZP+k8FtEhmSDLeCi4CfMRwvcWdPC460W31oe2DU1vVVf6sqDy4MLafTBBptoC5LctCua23Xbu8kax/NdUejdEUYV3Dc1xPEzdxEGG8HlcaYJZ1vJmxx+5j7SxvFse553PhYlhs+0D9M7YhokYuWT2jnJ+QBY27u/p+3JwcnTWZCaP/mTG4GDKw6jOpEkm583rfNYUtHFwpRPMgaLUqNbdPDIWBRSLagIqcsNbFvRs9hlf/O9JhKEo5/sGByU6CQRgxOqBrZXqUkODO2TYSuL2u7ktNgqUq70+cjveYig+UnAYbN7Sha37MsFnWQ3XjNRD2FcbG4vJr0d26d1hM3uxeaayDf8qTTA7qfn8eUbHigdM0jjNy7HBR292/xO/L3LcX4Ho+HCLPld9+HC4Rcnx7R19wAAa+xJREFUlf2fSW8naCxtl4QLS16/IiIiIiIyfgq/RWRQJtiECdYT+i+R776dTOYx/MwDdPoBmTDqe/vHrc9OyVyyxgEGQ4K1XRYTbMJz3QOOu3a7xXgLachGgXDGOKxpIxf6WG8+JtgKwPrMYizJ4tg7MlHF55bM4NWhfU1WP+1XzT+y5H7Ci1HjlQ+x40QV32Gfyu/XzHs5r5p/JM4kScUqJmWOo+W5OIfXLgBvej9YSGA4LrGBw6oyxLyhq3YrC3+8cyscHrA4eJ64B4sSndRlyld5l1Pvmkl4UxN+n+bfyrLqLCdnb+GgSkOyzzv80oo087qWDzgnFTTy8pYfYhpL2y8ELU8Tdm+Nbrc9ix1iQcvxtAGZaDbXWHI/bFtDbtc9mPQOgrbB/9zC1mewQZrM2h+XbHdhGleoCu8d8zky636OzbcMO5/u576Ds6YwVoawa+NIH4rs5wZ7PfZ8w0pERERERCaGwm8RGZQJNmPN3igAz/2VpzqqCHOraM/tJh1G/XOfaN4xodeMDRmQxjEuzs6swYQNxBjYw/evLTlazSJeLOTi6zsDcGny1pB287BmL3jVPNVRiaG3xUlPFLotPbIgb3aqaoSPaHSOrD665H7M8/CoKXtsgqitibG9P8pnxQ7l+JrTsC5J0pucOY6WR5I5ybrpngZJL2Bh8BILYq14wyyIt7Aieh0sSqapTPz/7d15fBvVuT/+z4x2yfsex87qmCQQIJBwE5YGylbCDoXCLWUp26WF0pYfLS23QNsLpdAFSrnsELjfEnYSAoQSIAkhCdkJkH1xnHjfLVvbbOf3h2LFimVZtmXLUj5vXnkhz5w580jHI9vPHD0HyFR2QZaAbKkFDiX273mb0QEnhmem74Sm5zBJ2olczxoUWdyhBD4AFMl1cPp7Jl5NIoAc93IY7d+EbTf8jTC8wecZqPkk6nlH1Ezmwxa01Nw7odQtg1DbYfhqez1MbdkMvXMf1Jbwm3mGvxGHl4Qx/A1QGlbC8Nf3GY53x7PQ2rcdDE2BCCS2NjqNHIffVAlt7+cnCoiIiIiIKDomv4kojDB8ULzBReLWtVrh0xQono/w130TsLS+GR/VA7bA68iQgokk1dCjdddvBfZgkjTP1jPh+5vds1EdyMKaZj9UpEEzeibKOzQD31/vwosVwYTcroPJbLfuwi+3FMCtCvx9/0zUBQBd9Cwn8nW7ElOc5xTOifk59YdFCq/TfVLuREBEviEgCXvw/9Kht3J/YBT8/tFQNTvMknNQsZilwf2IkCUJJ+dPgmRkwWVOXCI+1yYwLd2NC+t+hLHt7+B7dT9Ghhw9YXuO/n8AgHTZg6OdTbDpzZiVth9TPW/369zT6/4bM9zPDDj2/nD692Jyx+vI7liJc9x/QJm9BaaD9c2nd8yLeqzoVmdYc++C3lkBteUrAIDatCb6iY3YrplE0Fq/QaDqgz7bKXXL4K98O6y2uaG0hxLXhzN8NdC9PcvLdPHvXwih+aB7q0KlVJSGVZz5TX1qW/EjCM2X6DCIiIiIiFIGk99EFEaITqh6cOZZva8DOz3p0AWwvlVFrV/Frk4N+7wOdGr9q5ncXbTZ3aXOXMiSBJe5Z8mOj+r9qPLb4NEFDJjhNSKXHtncFkCrGkzKt6sGABlNih2rW/zQDBXLmzR0aIDX6JmQVWNYxE6CBLNe1Ge7geh+eotswlhnGXp7tQR6Ls5pCDMMYQYkCbIRecZ4LCyyCXbT4Bb/tMlmFNuLoRt22GT7oPoajNFWN1ySBxmer5DZuQ7pns1w9TEbO0OpgEUGclGPLDTDqjagyNiNovbF/Tq3078XuR0r+m4YJ06lEmbDg6yO1RiNCphlwCwJZHo3Rj3O6FbTWm3eCBjKoeTuCCpr0l9C8/S6WGdYO7UDavP6YHthQAgBoXkQOPB+LwcYEGrPsktdAjVLIAwFEHpoxrneuS+pX0saHnrHHvirPkx0GEREREREKYPJbyIK0+bbh4W1BgytFopWh12dPmzzjYNf8+L5ig7c860bp3yu4PUDAy91MCm9oNd9BbY8HJM1GkWOrB772hUdbx/Mx3UaaXi6Ira3MEPKxqvVFlT5NATUBixr9OKFig5M+mRgyd10iw2a7kS6Jf41taVuNwZOyT8Kqu8YiMPeql1mK2yyGb5ATtS+vIH8AcdxXHYpTIOc+T0poxBOOReGYUKWedSg+hooiwxcUXcZXAgmKi0Hb+xM9v876nGSUHFsWhNOq74Vk72LkNf+CTLVfXD0srBlNJHKjQyVvPZgiRJnoAJn7Z2Lma79SDPpyOxcH/U4oR+6mdW2/OrgA33gN7hGjr5vZnW109q2oWuBT72zEoa/CWrbN70eoTb3/pqqTeuhNn4JAPB8+yh0bw10T2U/4qYjmXvtzxIdAhERERFRymDym4gAAMLwQxid8Pp3IqB5oOpu7OkMoMbTjlUtVuRYwj+G3a4OrNSBBAnjXMW97k8zpWOCawxKHKNxdFZ4u3bNwKcNwYRcm+aEFmNea4PnKFR6gjPBG9XgbGivHmtSrKdMiwOqbkN5enxnf5el50Pq9rZslg4m50V4kt5ltuKYrNHo+y3cBJtshtTr3PHe5VlzIA8y+Z1vy4YkrNCFGZKeO6i+Bh6DDpvSgDHK2rDtZsMb9Ti7Woep6grYlFrkuz8FAOT4NkMWI7fERySTlM9RZtkfc/tA7TLEnjBOLbonWONc79gLvXMfhO6LWqNb74yczBbCgO6tgr/y3dA2//4FLGVBMTNYG56IiIiIKG4G95l2IkoZhtECobegoqMJOzscqOpswVZ3B9JNAbxV5cFoe3h97FZlYLW+s6x2FJmmA9gUcb9FdsEqMqEGxuGEjFxsaVsQ2qcLoCGgAQA2ux3QRGwxnP3FoaTT1247AGVQ6b3RzlwAMsrTJmNT634YMZRKMUky9MMW4zvcf2SfBBiHZpPbZRtgALoRXjLEJMkoSyuDiGFi7lGZRajxtqIp0L+Z+pnmLERdezQG+dYiQNgghAk+Jfos9aEyxbIHVq0BZY1Phm23a3VRj8tp/wz5bcESJ5meYMmQ4ubXhibIIXTcgbswOvPcvhsaGgzFDfe6Xwx9UCOVEVxA11A7oNR+CkvuCdA7K3ptLlR3xO1a+w4Y3mr4qxaFtvn2zoc5oyy+8VLqMnou5kxERERERAPDmd9EBE3ZinbFi6bOLfimvQMdShvcSgOa/T58VOeHWxX42h3+x3h/Zk53L59R6MiEqqfDKofX655bPAOZFjtMwg7oRTAMc9gs6MOtbAa2uvtfP7c+DjkFqxy8b2hDDi4vmYOzio6N2v6ojEIUOdJDX5+SXw6L3LNeuUVKgyGsoa9d5gwAgKrbkG0N1ic3STKsshk2PbZE2tT0KTgt//iY2nYpcmTAJiZAHsCM8S6jnZmwwAVdS++78RCRAIxR1gEArGpT2L4szwZYevn2MkuASaRO8ind23vpji66twqerY9xdjIAw1cLf9UH8PexUKYRaA49FgdvbAk9gMCBRQf7OXSDRWvbEppZTtQnYUDoyfUpEyIiIiKikYrJbyKCruyAx7cD7sABvF0dgFf1YX9nO3Z0BFDpVWNaBDIaW7dEb5rZDk23wWW2hrXJk05EusUOGOkIqOkITjvuPfn6QZ0PFZ7+J7/rAoMv6WCRg7PgDT0TFvV4jLZMj9p+vGs0Sp2H6m+XOsZGrBcuhAyI4GtlkmSY4Ti43YQzCmbAJpuRZXWg0J4Fv5oZU6xWYywy5HExte0yypEFv5ITSvIPxFHppTBJDii6c8B9DJZZBsa1zgdwqNZ3l3TvN0i3RP5ecPWyPVnZ1Jo+22gtX8O355WwhO2RKlD7KfT27dBaNkdtJ7RDpXOE0gYA0D1VwYUtAaDbJz2E0tpnf0TdCYPJbyIiIiKieGDym4iwshmo97diYa2CpQ0+vFfrQYXHjX1eLS79z8wrQ6krG98vnYNJrnIAwMl5R4f259pc8CsZ+G7e2RDdZj5LUSoz1fkHFttbVYOf2WqRgsnvgJoGzbBCVbPD9h++UGSheTrGOccBAGyyGWatHEX2nslrCSaIg8lvq2wKq7lt107EhPR8jE/LR4lzdMyxBpQsQFj7bNelyJGO0Y5CAIg4Oz1WWdZsGFrGgI8frFkZdTjXtQHpB0uWRJJpjnzz5Brjb0MV1ohl+Ouhe/ZDqO19N05xgf0LAQC6tzpqO2GoMNQO6J5q+CvfhjBUqE1rwpLe3RmBpojbiSJRapYkOgQiIiIiopTA5DcRoS3QgFXNAt+2B2thNysGKjo649Z/msmFYzPL4JLGwCwFZwLnWcZBPlhUempmSXCmt54TttaeJGwDWqwxmq6a4YNhNwVrcIuDb6GaYUWezRXa7zAdStpLkKCoGbAimAguSy+AorngMPec+W3oLhgHk98usxWSOFRnXTOsGOscBZfZAbvk6nFsb4IxRn+rt8gmWGQTJEhwmmzIlaYFY+9W9Lu/42CTnNB0R7+OiaciYy9GB9ZBjlIX3ixF3lfQsXyowhrZjP5/kiIVCS1YH1+oHdHbqe3QWr6C5t6BQM2nEKoHvoo3IARfRxq83hZUJSIiIiKi/uGCl0RHOEOrxZ6ONhzwA69UHkp4b3V7oxzVPznmEshwQVVzoOmjAAA+3wR8v+R0vHFgKcbZpyDgR49SHt5AEU4rmIzPG7bFLZZ4cGkzcHh6q9iZHVpUssgRfB67OxoxPWcMdMMC3V8Gm2xGibMQ0AGL1PPtV9Md0AwrMix2TMkshd8/MWx/hn4WCux7IBlZ6FcKX/SeuB7jysHpWVfAr2aiWV6MfGsRfP48AEC6+dBCm0dnFaPB344Gf983RewmM6zIg8+IfcZ5vB3T8k+0OY6L2maStAO7cHyP7fYAk04EoI8FdYXaAe+e/4PasBqGvxGB6o8QqPkYtqI5wxQgpTKleR1iv81JRERERES94cxvoiOc4t+AtS1+WNAStn1dqz9u55BFLgAzDCP8LcchJsIsycDBhHgkRbaisFnVI4HWR1J3rKsIRfYcOEwWlDiKQtuLHBlwmoIz3w+vp22RTdD04EzvsvRCjHMcFbFvXRmNgNq/ciICh0qpdJdjc2KMMw+KFowpzZwGm3ToBsQEVykkSCh1ZcMsyT3KufQm35YOiMTdW5WlYI1vsxH9Bo5V+BCpsrxFaxyy2Ci16O07oftqIYwAfBXzAd0HI9DS94FEfdDduxMdAhERERFRSmDym+gI1+jZgc8bfaj1BcK2t6uR69YOhK7bIQw7jG5lPADAp+Qg2+YMLnDZm8BMHJ89sff9w8xltobKnXTXvSxIhjkTo+yjMMqRiSwcmn3sMFshS8EEdNeimV0yLfaDi3wC09JORsAXOfmtRngd+2IYMmRJQm63mwhW2YRpWWORZ8sL9WeTHIA4NNs7W56C0c5MnJx7AqyyBbm2KOPUzShnNgx9+G5YmLtlr11mIMsikOb5Gq7AvqjHZWr7YTcD9m73BNIsiFoqhag7pWktRKAZQmlD4MB7AAC1eUOCo6JUoDat5Y0UIiIiIqI4YPKb6AgmhIL36rPRGNCwqMYzJOcY7cyEplsRUCInTvNiSKja5J71sYdTlvVQ7epCe+RZ12OdxQCA8oxCZEgT4JJGY2b2sQhoh5LA0sH/AMAqh88ePzFnUuixohTGLXYA0HQ7Li+ZA7Nsgk0244ScsXCYLLBIFmTIxaF2FtkB4FAmWNEycFreTMiQUeocjRxrbDPO8605UIa43nf32doZlkOF4uc4NmOSvQEmocAViD5zMt+3HiU2H2ymQ8dnWeKzyCsdIYxAz228eUJxYvgaEh0CEREREVHSY/Kb6AimK7uwuM4PAaBTF322H4jJGWNgCEvE2dIAcHRGeZ99yFJ8F73srxJnTuhxljXyjOYsUykAYKyzEL5AEXz+UZDVYyG6zdKWu6VsLVL47O1Cy4TQYz3OtbINYYEUOAkWyQSH2YKxzlI4zBZYZSuEVhBqJ0GG0S1prek2mPUyABJcUhHMh5VN6U2GOQdCxNZ2oJwHq6pYZMBp1kOv7IymP2Kc/nWwjT968jvLsw65plY4TIc+5eCUuVgh9YOI3ydkiA4nDCXRIRARERERJT0mv4mOEELoEIbv0NdGJzo7FmCUtX1Iz1tgLY6636Yd22cfZql/ZT7iqciRjlJnsG53sSMT01xnRmwniTSUurJRbJ4JABCQeySxZ2bNgU0KJs+dpjQAwNziGShyZEAS2UP1FEK+k30+Lin6PkySCafkTUeefAICB+t9A4AJDgTUtLBjdN0Cs1YGXS2CWYotoW2RhnbW9yiHjkJbcMbtea61GGeuxWinhlybgE2txzGNj8bUj8O/F8f5F8Aq6RjvUjAzowEZ8tB8AoKIqN8EP4lCRERERDRYTH4THSGE8MDQqkJfa4FvUBcwIEtDO7PMjOizmNUYymPYZWefbYaKy2xHvjk4K7vYmQ1fIC9iO1134ZjMCfApub32pSgFMCNYOsQkBV+XHEsxsixO6ENcJgQAvIFCeP2jIEsmOKRs+JUsdP8xIBl2HP5jQRdmBLQ0qLoDFjm2GekShvZmRabJjxJTLQBgSvsryDWqkWfqQJ7FBwgd6Z7NMfVjEgEUdiyDRTKQIXuRL6oxxtg2hJETEcVOaNEX7SUiIiIior6ZEx0AEQ0PReuE17Ma6XoNJFM+3O3z8bstOXi7ujPu53KYLMiw2FHv74AJaX0f0AczEpf8HuMsgN8/Hj8acyFqlH1AL1UOFM2FXMdoKFEm6hmGDJ+vNFiwWsiYnV8Gk3Ahx5YORRu+52iTMmAyMnD4bQ+vvzC8mDYAIQ79mDi8VEsksiQBIv5laia4ApAhsNtjx/dbbkNVxlx8jnEoaH0fjc7/QIu1GOPEdsj9LBOQ416OY3PX4/j6P8JvKUFe++K4x05ENBBC9yc6BCIiIiKipMeZ30RHiDZFQZXXjU5Vg19TsdWThf1eDfGs9N1Vm/vY7FJMSg+WOzGM2BZJjMaUwOR3tjVY71uW7Mi25ERtaxLR4zQMM3DwNTIjDeMcEyCMdBTZi+ITbIxkkQ5xeJYbCMXWG4vU98xvl9mK7otmxkum7EGG7IHTDDiUCqSplbCbAJPhg11rhhUB2I02mHV3v/suCHwFe6AGsvBD5mKFRDRCCN3XdyMiIiIiIoqKyW+iI4RPqcTmlmZ80uTArvYa3L5Zx9rW+M4q+07BFJglGZOcR2OsYyIAQNUGX85DGIOfPT5QaVI+AEBXC+HCxKhthZ4evbNuyWWffwzM+kT4lSyYA7MHHWd/+HxFGMgHf+QYjilx5gDCPoCoorNJARShCulmAy7fTpTV/Q3pluA0/EL3xyjStiNH2QmL3v8a9pNr/gir1gCbWhfvsImIBszwNyc6BCIiIiKipMfk9yBJkhTTv9NPP73PvhYvXoxLL70UJSUlsNlsKCkpwaWXXorFi/kxfBq8pkAAb9cY6NR0SNoObHPHt9Z3sSMTY+yTMSN3AiBJkCUrJEgQYvBvM9ph9bAtcvjMYrmPGcsDlWGxQzKCNbxV3QZVjT6LPdDH/sPpum3AsQ2KJEFR+0jURyBLfY9lhsUBKdKs8kGyQMEoZRNk6dBnFcZYWwEANqUOpe4PkOtdPahzOPyVgzqeiCieNPfORIdARERERJT0mPweAQzDwE033YS5c+diwYIFqK6uhqIoqK6uxoIFCzB37lzcfPPNMIxeig0TxWBbewALazxQ9QA2t/mgingWPAEmZ5ZCaAWY4JwESUiQjUxMTM+DIQa/tIBuhCe7yzMKw77Otw3NzPB8ezp8SjYAQAgTNCN62Q/Rz3IfffU3lPQBnFuW+h5Lh8kelxseh7PDh6LO5ZC6FeqZrK0M7lOrUdT6LnLblw7qHGajY1DHExHFk9qwKtEhEBERERElPS54GSe33XYbfvKTn/S63+Vy9brv3nvvxQsvvAAAmD59On71q19h4sSJ2LNnDx555BFs2rQJzz//PPLz8/HQQw/FPXY6Mni0NgBAqfkrPLkv/otojbaOh+JPg9koAyQdAd2GE7OPhYjDqQxhCs4iP5j4LHUUYUtbTWj/KEcW6v0dkCUJ2VYnmgOeQZ3PLMnQhAG73PcCj0cSKYbkvkkyQTfiX/bEKvzI8GzE99Lnh7ZNbvxH3M9DRDRSqC2bYATaINuyEh0KEREREVHSYvI7TgoKCnDMMcf0+7idO3fiL3/5CwBgxowZ+Pzzz+FwBEs8zJw5ExdddBHmzJmD9evX49FHH8WPf/xjlJWVxTV2Sn3C8EDXmgAAkuHGly3xT37LSIOADLVbiRInCuGNU+9OswUeLViqxWUOn+ld6hyFr1oPwG4yo8iROejkd6bVgeaAByaZH47pTo7hw0IWyQxNj/9NAwEBm1qHSfWPhbale7+J+3mIiEYKoboPLnqZlehQiIiIiIiSFjM7CfbYY49B0zQAwBNPPBFKfHdxOp144oknAACapuHvf//7sMdII5cwfGFfa4FNEdt5Wu7Hzo5gSYer1vnRrMS3hM6Pxl4Ev390j+1ef3HczpF3sLTJ+LRcpEnBc01KL8BVY85CjnQsyjMKMD4tH2nmwc86HuvKAwDk27IH3VdK6aOEzfi0XFhlGwwR/3IuVhH8XncoVXHvm4hopFLqlic6BCIiIiKipMbkdwIJIbBw4UIAwOTJkzFr1qyI7WbNmoWjjjoKALBw4UKIONdqpuQkhA5d3Ru2TfF+HLFtq5qB5Q0BAEC7Gv/a8SaRDhHx7SR+bzF59uBikmlmOyCcAIBRjhzYRBEULR0TXCUYZc+DpVtdarvJPKDFMF0HE+jmGGpcH0kk4cCkjALY5Mivy5SM8bCbnENybhO0IemXiGgk0zr2JDoEIiIiIqKkxuR3AlVUVKCmJli3eM6cOVHbdu2vrq7Gvn37hjo0SgLCaIfifR9CGDD0dgCArlb0bCcCuHpDGr52B4YsFk3LHLK+uxzjPA0AYJUt8PlzIEsSMizp8AWKoRsWZJgzkWvNh0k+VJf6+OxxKLCn9/tchbYiyJIEWeJbZHe+QDGm26/H0Vk9Z/kDQL65HHZ90pCc26XXD0m/REQjmVDbEx0CEREREVFS47TGOHnzzTfxxhtvYN++fTCZTCgqKsLJJ5+M66+/HmeccUbEY7Zu3Rp6PHny5Kj9d9+/bds2jB8/vl/xVVVFLxVQW1vbr/4o8QytFkJvhhCdEEYTlMBG6IYPwvBDkg+V/jB0NyzS0CS+p2SOwrb2WhhG/MtcHE7Xgwn2LGsaYEgosmdA7rYAo1mywYIc2OUWAECRIx1lrino1Hyo87n7dS6HlI18WxpcpjRwwnFP6ZaeC/hKkCAJK/Q+SqMMxFFpXhS3fRr3fomIRjqhD92NayIiIiKiIwGT33HSPZENALt378bu3bvxyiuv4JJLLsG8efOQmRk+O7Z7QrqkpCRq/6WlpaHHBw4c6Hd83Y+n1KCr22HozdD86yGbsuF3v4AtnrGYbbRAkg/V2vZqPjjl+C9wCQD/kXEOaryvQxuG5LeiOmCTzci3FsHwAxlWR9jMbJNkh6bkINdSBAA4OnMcFN8UZFt39ftckpGHHFsaHHI2mHboKc3UM/ltlmUImKAb8V/scra2EEWt78a9XyKikc7wNyQ6BCIiIiKipMbP9A+S0+nEVVddheeeew4rVqzApk2b8PHHH+Pee+9Fbm4uAGDBggW4+OKLoapq2LEdBxcgBIC0tLSo53G5DiWbOjs74/gMKFkZeiOE0Q5d+RaqbzWE0YJ/VVnRrmjBfUIBALT5KvFV2+BSuKaDSeZs66EFWc8oPBreQD4uKv7eoPqOmSThytILYNXLAADpZgcyTd3Kb6jFUHU7zMYYAECGOVgjfJw9+qcqTJIM68FSKdeMvQAT0vLgV7JwQuYJgBq/BTtTSZ7pWBybHbxhZz74vTElcxRUNQ26Hv/kt83o38x9IqJUobv7fwOXiIiIiIgO4czvQaqurkZWVlaP7WeffTbuuOMOnHfeedi0aROWL1+Op556Cj/72c9Cbfz+Q7NxrdboM2dtNlvosc/n63ecfc0Wr62txUknndTvfilxDK0GgAFDb4QW2AyIAPZ4dDQrAg5tMSyOU2CyTERArUeNf3C1OzKtdrQEvPiP3Cn4qHYjACDbmgMEZKj+/pXgGQzFPxFCBBPVTrMdQj/0aYqAFryBFFCD/zdLB68pLXoCO9NqR6bFgRpvOxTfVIx27gIgQ1LHI6APzeKNyc4XyEWRPRdfowpW2QRNN5BjzYBm2ID+ry/aJ/ngjRwioiON7q1JdAhEREREREmNye9BipT47lJYWIi33noLkydPhqqqeOKJJ8KS33b7obrMihI9uRMIHJq563A4orSMrK+yKpQ8hDAgSTIUXYcqsmHzr4EqjcL9e07E0oZOCHUzGrQDyJCakCG5sKd9cLPGSpxZOCZzAvKsJTDBjqvG5OKLpnWwSy5oAAwR/5m+velKfAPAWPsUBHxZEdv8qPgngFyDAABFCyawT80/Ck1KO7a314W1v7DwImhaPqQMA4oGpJldgAYoTHxHVST/B64eUwCzNgnvNDwPk2QCRPzPc1x6G7Jav4l/x0REScDw1cFQPdDdOyGEBmvezESHRERERESUVFj2ZIhNmDABZ599NoBgHfCamkMzeNLT00OP+ypl4vF4Qo/7KpFCKU4Eb4QowoomLRuADp9IwxeNClQhINTdeL/ehl0eCX7386j3D3zWrMNkwYnZk5FjKYRJZEIyHLAhC8dkjocFWfF5PgOl50D08hYW0NJgMoKzwgVkTEjLQ74tDyWOAlgOljixyCaYJBmGlgNVc0DRgqWFrJItYp8UTtWdsIni4GstyaHSOPGWIzXDorcNSd9ERCOfgO6phKG0Qmv9FkLnJ2GIiIiIiPqDye9hMHXq1NDj6urq0OPus7G7L34ZSfeyJVy88simBTbB0FuxqSMXb9ZmAJCxzp2Hr93BpPj6lg4sqe9AILAD7f79+MmmgdeIP61gKjJNJdD80+D1FcIbKITPPx4Z+tkIBEbF6RkNjF/JibrfGygMPT416xJkyBNQKH0HE9LyAACn5U9BiTMrVC6li0Ue+sU7U4FuWEOvsUmSIA/Rj5NMow457uVD0jcRUTLo2PAb+PbOR/vKH0NpXJ3ocIiIiIiIkgqT38NAkiIXwe2eFN++fXvUPrrvnzJlSnwCo6SkqzthaNWoC8hYUq9CSA60q4cu5Vf269jUpqAl0I67txXDow+sFoVZkpFrKYIkgslh6bCZvYaRPFWTDMMOYTigGxbIkoxT88sx2jYeTnPPWd4OKTsBESa3QkcmhqTYN4CiwKYh6ZeIKFlo7p1QW4LrbajNGxMcDRERERFRcmHyexhs3bo19Li4+NDie+PHjw99vXx59JmNn3/+OQBg9OjRGDduXPyDpKQghIDi+xyashnbO1Q0KzrqtDI8v08Ntfl3vReVXhXb21vwr/0Dn/U9Li0XFqMUutZLmZ1ebuqMRIrmhF/JgiEskCFhom0OZLjgMEWY5a0ndkZ7MproKu31Jt9gmCRgcs0f494vEVEy0du3QzuY9PZXvpXgaIiIiIiIkguT30OsoqICS5YsAQBMnDgRo0ePDu2TJAkXX3wxgODM7i+//DJiH19++WVo5vfFF188JEkmGvmEMKAr30LRdSjez9Do74QA8Jc9mVjV7O/R/t3avuuCOs2WHrWa7SYzTi+cigJ7FvxKFlQ9tWpgT80oh6K5YOhZODZ9Vo/9qmaPcBRFk2spRqF5at8N+8nMn1BERGFEoDXRIRARERERJRWmFgZh0aJF0DSt1/319fW4/PLLoSjBJORPfvKTHm1+/vOfw2QKLsB3xx13wOfzhe33+Xy44447AABmsxk///nP4xQ9JRthdMDQG1CrFkDV/dB0FUIA2zrUiO2/jJAQP1xZeiEyLOHJ3iyrAyX2MjhMdgAyBEzxCH/EcEmjoRtWBNQ0eH1je+w3hCUBUSU5PR9ef/xnzJt5n4+IKIzub0h0CERERERESSV5ivaOQHfccQdUVcXll1+O2bNnY9y4cXA4HGhqasKyZcvwzDPPoKmpCQBw6qmn4qc//WmPPsrLy3H33Xfj4Ycfxvr163HKKafg17/+NSZOnIg9e/bgz3/+MzZtCta8vfvuuzFp0qRhfY40MgihQPG8A9k0Cgvr0nHZqFFwawIVHhWV3oH1mWdzYVrGcSh11MNmsuOdA18AAMrTS2AWaciyZAGB+D2HkcIfKDj4iPf+4iWgZA5JvznWyDd2iIiOVCLQAkP1QLa4Eh0KEREREVFSYPJ7kGpqavDEE0/giSee6LXN5Zdfjueffx42W+TyEQ8++CAaGhrw4osvYtOmTbjqqqt6tLnxxhvxP//zP3GLm5KLoTdC8S6B4bgST+71otCegRqfAlUIYADrWZolGdOzJ8Is0pBhViHDAlmS4DRZMMF+AoSwIR0TMcC8+ojGmd3xN1SfDjBLA1uslYgodQlorZthLTg50YEQERERESUFJr8H4eWXX8by5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3bUfmRZxgsvvIDLL78czz77LNatW4empibk5eVh5syZuPXWW3HeeecN07OikUjojRBGJ/a2bUGdX8MtG92D6m9adgmK5FPh86cBGAubvQalzmycnncWvL7RfR5PNBwsUu9lpYiIjlSd3z6KnO++m+gwiIiIiIiSApPfgzBnzhzMmTMnbv3NnTsXc+fOjVt/lBo0/0boejO8GAUzOqK2TbfY0KH2XqukwJ4GWZLhMNmgaI7Qdl1Pg8NkhdCy4hU20YCVufxwygEUY3+iQyEiGnEMfwN0Xz1MjsJEh0JERERENOKx6C3RCOdpuR9e/1b8tWI0FCN62zkFx/a6L9Nix6l5x2Na5jiMc5SFlaoIqGmYmjkJfjUrTlETDdy5gSfxwwNz8J3qmxIdChHRiGN4qqE2rE50GERERERESYHJb6IRTBg+QHjRogAv7/NgWbMzYrsiRwYAINc0CRkWe8Q2kzNHIw1TYZWtkLSyw/bKcOq9J86JhovNBMhChVWtg1VtTHQ4REQjju6vhzBScEVqIiIiIqIhwOQ30YimAwAkowFtqo5n9voitiq0ZwIAhOFCrs0VsU2poxR+JQs2kwNqt5InXRQt8nFEwynHqsOqt0KCgNnwJDocIqKRR/cDQk90FERERERESYE1v4lGMGF48LcDczAtw4AmAtjtUXu0kSBhYtpYHJ92JvxKBmwmS8S+0uRCeAE49eOgDHHcRAN1vGULimreS3QYREQjmjB6/j5AREREREQ9ceY30QimGioe3O7GHk/vl6rNZIJdSocvUAAhTDBFuKzz7WnQtRwAgKJFLp1CNBJk6A2waC2JDoOIaEQTavQFsImIiIiIKIjJb6IRzK8L6AL4xh15pctMix0XFX8Hmn9aaNuEtBJMSi8IfZ1mtmJu3hUIqOlDHi/RYJW3PJfoEIiIRjx/5duJDoGIiIiIKCkw+U00gql6KwDg33U9a31bZBOmZpXAidKw7TmmKRjjKoAECQAwMb0Qhoi8CCbRSGKRAbtal+gwiIhGPM78JiIiIiKKDZPfRCNYwLcWANCk9FzYKsfqRLljJnQ9fPFKn78QJbbJGO0MLoJ5VFoZZ31TUsix6nD5tic6DCKiEU/3NyQ6BCIiIiKipMDkN9EIJhm9z4Id48qDqhRAN3rO6lYDJRjjyofdZIZTKh7KEInixmXSEh0CEVFSMPyNMJR2AIDm3gPd35jgiIiIiIiIRiYmv4lGMuHtdVexvQiaYYNmWHvs0wwrbLIVZxedAK9/9FBGSBQ3LjmQ6BCIiJKD7oc4mPxWGlfBYPKbiIiIiCgic6IDIKLebXJnAgj/g1aCBIfZjCxTKXxq78cW2UoAZQp6FkwhGnmKHTryJCZviIhi1br8KkgmO3RvFWR7ASzZ0yDZcpBxwoOJDo2IiIiIaMRg8ptoBFvd0nNbusWGAns6IJxRj7VI6fBHmBVONBKlmRQ4RXuiwyAiShpq4+rQY929C4a/CZLJBjD5TUREREQUwuQ30Qj2ZbPSY9u5RbPQqXcAIvrl6/eOB6ShiowovrJkN6a0v5roMIiIkpbu3gHZVZroMIiIiIiIRhTW/CYaYYRQoCk7YGh1UIyeCwC65FHIN0+IuNBlGImZb0oeDvhg05oSHQYRUXLTA1AavoQRaA1tEpo/gQERERERESUWk99EI4we+Baepl/C734eNb6eM79VJQ9+/3goWvSyJ0TJwmkGivQdyG9bnOhQiIiSmuFvQPOHsxGo/QwAIISA0vBFgqMiIiIiIkocJr+JRhhdqwBEALqyHZoI33d0ZjFU3ZGYwIiGSKFNwZjOfyc6DCKilGH4gwsI+3a9AN/ul6G2bUtwREREREREicHkN9EIIww3AAFDr0W7qoftG+XIS0xQREMoW+7AqObXEh0GEVHK0N07AAC+Pa/At/f/wb+XayoQERER0ZGJyW+iBBBGR8Ttht6OFsWE52vnYIdyEtpUI2y/WTINR3hEw8oh+SALve+GREQUk1DZE80b/LpuWQKjISIiIiJKHCa/iRJA9a+PuF1XtmBXpw/3be3Au7U9F7S0ytahDo1o2KWL1r4bERFRzHRvFQBA69wX/H/blgRGQ0RERESUOEx+Ew0zIXQYWlXEfYGOV6GqVfDqAn/d2Rm2rzyjANnS0cMRItGwytP3JjoEIqKUIgIt0D0HIALNwa+VVnh3vZjgqIiIiIiIhh+T30TDTkAY7RH3GEYrOrXgZamK4GqX49NyAQA51gyoevrwhEg0RKwykG87VM7HaQYKvasSGBERUWpSGteGfa17DkBr3wnNvTtBERERERERDT8mv4mGnQHFuyRsi67uBwB0iCLUBcLrep+c/kMAgMvsgKbbhidEoiEyxuHHNYHfhb6e6axAaeO8xAVERJSi2pZ9P+zrQM0naPn4HDR/eGqCIiIiIiIiGn5MfhMlggiEfan6V0BTduDLthw8W6GEtrvMVqi6Hcdnl6LAWjTcURLFnUNWYDGCJX2mpbsx2b84wRERER0Z1KZ1MFQ3DH8DhKEmOhwiIiIiomFhTnQAREccYQBQIQwvJNkJANCV7RBaPZ6rCGBTmz/U1CQF708dlzELuloAPRHxEsWRQ/LBZPgAGfiu5zGMr38y0SERER0ZjACEcvDmu6ECsiWx8RARERERDQPO/CYadsFa3pqyFYZWA2F0QhidUP1r0BAwwlqmmYNlTgL+Uiiaa9gjJYqHSWk+AECh3UCxsReZnetxbsYW5HcsS2hcRERHKs+2fyY6BCIiIiKiYcHkN9GwCya/hd4EXa2EpnwbnPltNMGvH5b8ttgBAIbghzQoeeXKbQAAl0lBvvIt7Go1yrwfwxqoSWxgRERHqI6vHoARaE10GEREREREQ47Jb6JhJ/Do/jkQIgDN/yW8LQ9CSE4IKRM7O5WwlidkTUtQjJSMih1aokOIqExbAwCYYKpEed2jAIBxDU/BorclMCoioiOY7kPju0eh89u/JjoSIiIiIqIhxeQ30bATePWAD4ZeD12vAYQX1dp4NBul0AVglmSMdmYi2+qEDQWJDpaSSJmlOtEh9CAByPV/C7MEpBnNsOjtAACL3g7p4KcgiIho+Bn+Rhjekfdzg4iIiIgonpj8JoqzzY0BGKL3pJ5qABUeFUrnO9ADGwEA79ZmoGxJcOGp43PG4LT0H+OCorPh85cMS8yU/MwSMLv10USH0YPNBBS2f4CJLi9Oqr070eEQEVE3vn1vJDoEIiIiIqIhxeQ3UZx926TiswP+XvfrBxPjAakYQkoDYEanfmh/sb0QhmGGZHDWNwUV2o0+20xNa4czsAeWg+/q09LdcI2AUvF5Vg0WtRkn6f+GTeEMQyKikUQordDcexIdBhERERHRkGHymyjOfJrAi992wKdFTlh2Jb8b1Fy4RQl80hi8U3UoWW6VHYAkwa9kD0u8NPIda93RZ5vvdv4NmZ6NcJqD31+XNt2EQltgqEPr0yhLCyx6O07c/18wGb5Eh0NERN0IzQtfxauJDoOIiIiIaMgw+U0UR9WdGra1KNAFsKyX2d+6kAAAijBhS2cufr19NHZ5Di10aZFswxIrJQeTBIwJrOl1f7ZVYG76V8jrWA4AuEx+FT90LkRG53qMN1UOV5gRSQCO0lYnNAYiIorOt/dVtK+6FbqnGkrTehiKu999KPUrhyAyIiIiIqLBY/KbKI72d2ioOljD5JP9PuhGz9rfhgjOCO/UTNjYZsYrlZ1h+y1wDX2glDQkAJmBnb3uH2Nrx8zGPyDNtw0AcNyBX2Jm5S0wGx5M9C8bniB7YZKA4s6lCY2BiIii09u3w7vzWejeamhtW6B7DvS7D6XxyyGIjIiIiIho8Jj8Jopgc2MAd3/eDC1C8jrqcQ2HZnBXdepoV4KJbkMIuAPBx10zv2/5SuCx3Z6w4/8jbwKUwNjBhE4pJt+uI9O3GQCQbgHGuwLIsABZVoEylx/fr78SLt+uiMeW1f0VszJqB3xuU/BbFWdm7MJoh4Z8W9+1x7vLshrIb/twwOcnIqLh07b8B/DvXwihtIRtNwKtUY8TQsCz7XF0fv0ndH7z56EMkYiIiIio35j8JjqMZgisqglgf4eO/R1an+19mgEhBBRdYFebGrbPHTCg6MF9W1qCiXFdGMiw2LGjQ0GTEpwlLkvBLGOGJR2GsMT5GVGyMktAgbkDGZ0bkGMVSDPryDe1wyYbmGRvRJapA+mezTDrkRMTVr0Npcb2AZ3bJAUT7C4zUKjvRLbZh2Jr/z4Kn2lWYNHbB3R+IiIaXnrnPqhNa2H4myH04JoRQleg1C2HMPRej9Nav4HhOQDNvRNq6zfB47XeF/4mIiIiIhpOTH4TddOhGPigwos1dcE/+r5tUvo4AnhsoxtbW1Qs2usNlTzpUtmh4Z3dHiyv8uOTyuBif7oALi36YVi747JLAQDFphnxeBqUIo5La8INe4+CBIH7qotwvvEy/nPPNEy1VeKHe6bhmj3HAABkofbaxykVV4VmcPfH9PQm/Nh/F37VcT5O2vdj3LS3DNlSS98HdjNN3tj/ExMRUcIY3mq0Lr0Und8+AgDwVbyG1qWXQmv9ukdbzb0HANCx4Z5g293z4N/7L9S/lofOb/40fEETEREREUVhTnQARCPJgQ4NSyp98GnBciebGhScXupAhjXyfaLqTg1eTWBTg4ImX89ZUStrAlB1gXqvDr8WnAHu02SoanpYu4muCUg3u6Drjvg/KUpaGVJb2Nelbe8AACb7/92vfia5PNjeGXsteacZmOmbD4dyAGneLaHt6aIZwISY+3Hpzf0Jk4iIRohA9cdwjL8Khrcq+HXNEuidlbAWnwm1eRNEoAVKw0pYC06B7qvrcbzasgm6vxEme/5wh05EREREFIbJb6JuPKpAo+9QXeOtLSq2NSv4j1H2iO1f2dqJWo8GCcCO1p6zbzc3hs8cdysGmrxWaIYVLrMVHi2436ZPQxFOgtL7p4rpCDRa/Sbs68zOdQCAKdX396ufs31PYDvuibn9OHsnjqr4H/isY2AyfKHtDqOfZU+UPf1qT0REI4Pa8AU82/4JI9AEAOjY8GsAQM73lqN91S3Q3TsAAJ4tf4l4fODAIqiNa2AqvWB4AiYiIiIi6gWT30TdfF7ds0blN00qsu0mlGeH1+LuUAxsaVagGcA+ve/a4ADwxk4POg8ugjklsxg13laUOHOhapzxTUGnZFRhpbsEACChfwtM9sapVgEy4DADvj6+Vaemd2Kq2AAAsGqNYfts/Uh+H5XmhcnHmq9ERMkqUL0Yh1dI9Hz7KHTP/piO9+58Fqa0sbBkTwMAdH79MCRrJlyTb4t3qEREREREvWLNb6KDmnw61h6s9d3dxoZAxNrfH1f6oBqAABDQRUznWF7lx4aGYF+51iyMTytEiXP0oOKm1HKM7z0AwcUurYYnLn3alSpIANLMfSfTy8U3mNLyFACEzfoGALsRe83v8dIemETP64mIiJKD7t4VmuHdJVD1PqD7ejkiXODAIqhN60Nfe7Y/wVrgRERERDTsmPympKbGmHTuy5paPx5a2xZxX7PfQIs/PGnY4NXx3h7voM5pkS0Y4xgPp37coPqh5HNGxm6UOnuWyfmBawlyfJsAABlWgbKGf8blfBmer3C3+AVu6rwVd4tfYk5GRWgRzCKHjrvFL3G3+CVOy6hEsX8NctqXRexnQsNTuFv8EmOdkReCnZbuhs0UfDzJ+wGKm9+KS/xERJScArWfAAA6v3kEhq8ehucAmt4/CZ6t/0hwZERERER0pGDym5Jap2pANwafAF9R7Ud1Z+8FtxsPW8yyUzXgH2Ti3SY7YJOyoGjOQfVDySdfr0SWKXjzRJa6bfdvhCuwB2YJyDIrcCiVcTmfyfChuOlVFLa+h9FN/0KhvhfpFgEJwBRLBUY3/Qujm/6FYn07bHoLJET+3nYoBzC66V+YYD4AkxScnW7uFv847ECWxYAEwBXYB6vWEJf4iYgoOemd+2CoHij1ywER/F1KbVoHtWVTgiMjIiIioiMFa35TUhMI1t7Ospv6fezXjQqOzbfCr4lQKZLefNWowKMacFmC94se29i/hf8iMQVmYXBzxykZmSRgVuWPsH/CegCZ+E/7u1iGC+HWzCir+RsA4C/ewiGNYVbldTgwYS38Njsu3nNKaLvV6IRdre3z+Iv3nIwxY57A9P13wGsvw2/TVwIAprS/Al9mOmrMJbA3Hhiy+ImIKDmoDatQ/6+0HtuNQGsCoiEiIiKiIxGT35T02gaQ/FZ1gdd3dgJIQ3Wnhlgmj1d36ih2AZCAtkB8FiKkI0+ezYAsdGSjCU5zMca6F2JqbjlaLAXDFoMsVEzU1qJTDk+yZyl7kdm5IaY+sv1bAABmzQ1ZAlxmwNFZg1zjADymTFjV5rjHTUREqUHovP1PRERERMODyW9Kes0+A+My+nfMnnYVu9s0PNhLne9Illf5kGWToRqxL3BJdLhMsx8AkKNVotQ+Efm1izG3bfGwxzGj8tYe2ybW/SXm48c1PA0AsGoNsJuASfZmZNd8gam6D1Lez+AMVMQtViIiSi1Ci23RTCIiIiKiwWLym5LethYVJxbasGivF6eNtiPL1rOUfZtfR4Vbg9Msw6cZfZY5ieSL6gBMMmA3SX03JupFmhxMfpe6P4CS5UpwNPFRYvfBKgWvKWegAmM7FiU4IiIiGsn0zr3w7Z0Px4Srw7YH6pbDVjQnQVERERERUSpi8puS3if7ffhBuQuv7ehErl3GycX2Hm2e+roDDrMEQwBOs4Svm/qf/PbrAtABj8pZ3zRwmQjWOS1qfRe2FFkQcqK0C53IAgBYtBaMankrsQEREdGIZnhr4N3xTI/kt2/PK0x+ExEREVFcMflNSc+nCdy3uhWaAVR3aqHtjV4dT33thhDA1hYVFhmQADjMEjqYwKYEcYqO0ON0z1eJCySOZjX8FqopM9FhEBFRElFbNkLrqIA5fTwAIFC7FP79C9DcUQHrqDPhLL8JQmmHObM8wZESERERUTJj8ptSwt72YNJb77YO5f4ODVua1dDX6sF9isLENyWOjEM3aMyGJ4GRxE9m57pEh0BERElGqB3Q3TtDyW+9Yy9EoAVK3VLonftgH3MxdPcuJr+JiIiIaFCY/KaU4tEEPtrnxbq6ALa2qH0fQDRAdhPg12Nv/0jLUXhuzFc4o+KioQuKiIgoiXRs/gNso8+F2vot2lffEtqud1ag6b3pAASyvvMqhOaBc9INiQuUiIiIiJIWk9+UUvZ3aBAiOBPc4ARvGiISgMnOVmzxZIc+UdBXe7PRgVK5GrLoR8aciIgohRmBFigNX0Jr+xYQh/1AFcFPSnm3PwlD7YA5cwoAwJJzPCRzz/VdDic0L3TPAZgzj4KhemD462FOnwAj0ArZlh3350JEREREI5Oc6ACI4ml7i4ol+33wasx809Cxm4Hr905Gvk3ru/HB9rLQcdGeU4Y4MiIiouSht29H84ez0b7q5l7bKPWfQ2vZhOYPZ6P5w9nQ2rfG1Ld39zw0f3w2ACBQ/RHca+4EAPj2/r/BB05ERERESYPJbyKifsqyBGdvO2QN+XYDZ2dsQ5a15w0Xlxk4N+NbnOnYMNwhEhERpSTdUxV67Kt4I2IbpWEVvDueheE5APeG38C36wWoLZsQqF2KQNVi6N664Qo3qkDtZ70+ByIiIiKKDya/iYj6aZSlHQCQb2rDWGsLvrf3HORYAj3aZVo0nLfnTJy1d+5wh0hERJSSfHteDj12r/kZDH9TjzaB2qXQWjcDADzfPIxA9WIY3mp4tz8Jpf5zqC2bhi3eaPz73oJn2xOJDoOIiIgopTH5TUTUh1GO8DrdczoeAwB8t/lenNl6P0xCwQW+v4X2T0nrxI22ebgy8OBwhklERJTy/PsXQmg+GIE2GP56tHx2KbS27aH9bStvgm/PKxGPDdR+CqF5oNR/DqXhS6ht26C2bO53DEJXoHVUhG3z7XsLLZ9eBP+BRRGPUepXwF+1GACgd+5Hy6cXIVD1AYTSBiPQ1u8YKHa+va/yNSYiIjqCMflNRNSHiZaa0GObCRjb8AwAoKDtfYxqeQsAMK7hf0Nt8uQWTKn5PcbV/y+IiIgojoQO3VcLIxCc8a02fBF6DACB6n9Dd++MfKjSBgDQO/dBa98OEWiG1kvb6CH4odR+ErYtUP0RAgcWwVfxWsRjAtX/ht4ZTJjrvjoEDiyC7tkPzb0Lgdol/Y6BYqe1bYPa2v+bHERERJQazIkOgIhoJLvGuQDH7fsVxpU8iqzAdpQ0vx6xnSxUXONcgKn1f4altQ1mwzvMkRIRER0Zmt47HoAU+rpt5Y0ouGwHvDufg+Gt7vN4f+Xb8O9fCEk2I+24+xCo/QytSy9H9pzXYRt9zsE278I+9tKIx6tN69C+5mdwr/9VaJvQPMHjKl5HXdWHPY4RmheQTOjYeC8gun2izAggsP89OMZdEcMzHznc6++BtfAU2Esv7LGv4a0JMJTWiMeZnMXIv2TLkMbW+fXDcB39C7R8eiFyz/kYwghA9xyA1rYd7WtuR+65n/TdCREREaUMJr+JiHrhNAO5/q9h0duR6/8Gaf4dsKu9/1Gd498Cp3/vMEZIRER05BFqR9jXunsnlMa10Ny7APRcgLoHQwWgQuiA1vo1hO6DUNrg3T0PsrMYhrcGnm1PwJQxCQAgyVaYM8uD5/I1oPObhwHdD6H7IwSnh2aYR4xd9/XYprZtgdr6LcwZ5ZBM1r7jHyCtbTuE0CCZXTCnjx9cX+6dkEx2mNJ69qN7KgFhRD5OaYPaugWW7KMHdf7DGf4m6L7gQqbe3S/BWngqlNpPobl3Qyjt0Dv3QTFU6J2VMFQPZIur17409y4I/dBaLrItFybnKAhDByAgyan/J7QQApIk9d2QiIgoCUhCiBh+Q6RUV1VVhdLSUgDAgQMHUFJSkuCIYtPi13Hbp82JDoNS1MkZ1bhyzwmJDoOIiIgSSHaWoPDKAwAA94bfwvPNn4bkPHkXboIl9/gh6RsA6v5fOoTWCUvuici7cP2g+mr6YDbUxi8HdKzr6LuQMfMvgzr/4VqXXQn/vjcjnktt2QSl9rPQtqzT34Jj3OW99lX/ejEMX23oa+fk25E56wko9SshWdJgyTkurrGPRP6qxbCXnJfoMFJasv79TUSUjFL/tjURUT+5zIDDZGCy8lnfjYmIiCilCdUNzb0b5oyyYPmSIaK5dwxJ8ttX8QaMQHNo1rnuqYLua4DJUTCg/tTmjTC8NX037PX4DfBsfwoAYEobD3vJ9wbcl+6thX//uwhUfdDLuTZCbfkqbJu/8i1Ishn2MRf3aK80rg2rIQ8EPx3g2f4UlLplkO35sI3+HuylFwTb138Ba+GpA44/ngJ1y6G1bQUAOMZfBdmWPaB+NPcedH4dXLSdCXAiIkoFTH4TER2m2O7DaLkOx+75/xIdChERESWYUN0I1HwMc0YZtJaNQ3Ye746n4Rj/g7j2KQwVbV9cD3Qrt2L466G1fgOT48wB9enb+y/onv0DjkmpWwalbhkAwFZ60aCS356tj8Hz7SNRzrW0xzZ/xWvQPVU9kt+6tw6tn5x/sCxOtz7qP4dS/3noa++OZ5B38dcwZ05Gx6bfIfd7Pc8x3AylHa1LL4MItAAAJJMdzkk3DKgv/4H3oDashHfbP5j8JiKilMDkNxGlpOnpLZiuvB+27V/atQjoPduWOlWcrc8PfZ3h2QOnUjXUIRIREVGS0Np3QvccgNK4dsjOodQth//AIthLL0T76ttgKO0AAGv+LLim/iy0Lf2E/4E5fULvsXZWwpw2FkIPoHXZlWGJ7y6dm/8A764XAAC20efCWXZdzHEavoZ+PrPeqc0b0Lr8P2Et/A5ck/8rpmOEocP95U+QefIz8O15ZUDn1du3Q+/cD1PamNC29lU39Zj1HTkADW1LL4c5awp0T7AcTtvKm0OLnqZP/wPMGWUDiitWvr2vwpI7A+bMcnRsuh+B2k9CiW8A6PzmTwjULEHatF/D8DeFxrrre0lpWAXPtn/CNfVOeLY+HtxXcApkRxG8O54BAKgtX/V4jYiIiJIRk99ElJLGiJ04turusG1vFUdOfheZW3Fs5d09dxAREREB8Fe+DRiB4L8hI+Df/x7spRfCt3c+hBpMfsNQ4Jr6M/j2vQkRaIZrys+AKMlv/95XYS0+GzA0BA68F7FN95nMhq+uf8nvWBLEsfblrYa/Yj6E7o85+a137oNv3xtwHXM3jIOLXPb7vIEmBGr+DWf5zcE+ffUIVC+O+XitfRu09m0wucZCbf4Kvl3Ph/Y5Jl475Mlvz7Z/Iv2E/4HJNQad3z4CHLb4qu7eBd29C/aS8+GreA2BquCEEKH74Jr6M6gtXwdfd6UVgeqPAACGrxaaexcMb/XBr+ug++uZ/CYioqTHBS8JQPIuuMEFLwkALkjfAANmKJIdp9X9AgBgV6phU8P/IOpwHYenchejxmfCVc7F+NQ4F7e3XACL1gJnoCIRoRMREVHSkAAM8Z9OJjtkW97BBGTwXNZR34VszYZ//7uAMCDbCwDZ2msXQmkDZDMgmSACMfyeLJkhO4pgchRB99Uh/cSH0LHht3BOugHp0/8Qata28iYEqv8Nw98Y/5sAB5+3tfA0ZM95NWrTzq8fQsfG/4ZszwvGMkCSJR2SJRMZM/8KSBLall05gE5MkKyZYbOuJVsuJJMj9HXGjEfgmHD1gOPsrnXZD6A0rILhq4FsywUkU9QbAJI1O3gTRRjBDQdfZ6F1Br9P+pDxH/+Ea8pP4xI7hUvWv7+JiJIRZ34T0YhkkQHViLwv0ypgkQ798XlM2/NodRwX3OfZ0Guf6Z7NKCh0Q7FlIj+wGWNdM6K2JyIiIjpkGOYM6X4Y3vDSa2rLZkDooQSm4Y9f2REAgNBgeKtCSW2lfgUMbxU8256AY+KPINtyYSjt8Fe+HVPCdEAOPm+1YRW0jn0Rm0gmO0zOImgdewGIQSW+AUCoHRBqB9TmjQB6+aWzz070sMQ3AIhAc9h3StsX10OypMOcdUxom2zNgmzLOnSMEJAkKfS1oXZAtqSH9WuoHdBavwl9f8Ty/IXSGr4hwvdXNIEDi+CcdCMksz3mY2Jx+PPtixFoA2BAtuXENQ4iIjoycOY3AUjeO8+c+Z2abCZggsODbZ2uiPv/P3EXSpr+3zBHRURERHTksZXMRaDqw0SHAdlZgoIrKtHw1jgYB2ttJytz9nHIu3ADdG8VzGlj4d3xLJxH3RLa37Hxv5E2/Q+QJDlsW+fXDw57rKa0cciY9dSgFiY9XKD63zBnHQ2TK7a/OdvX/Bxay1fIPW9Z3GJItGT9+5uIKBlx5vcIU1lZiX/84x/44IMPcODAAdhsNkycOBFXXnklfvrTn8LpdCY6RKIhd4yrCWONbdDTZmBnpyNs3+yMGmTXrE9QZERERERHFqV+RaJDAAAY3ip0rP9V0ie+AUBr3YyO9XcDZgfMaRPgXv8rwGQDDia7A3VLYdo9D5AtoWMCdcsSEqveuQ+tn5wH+/irYSs5r1/H2ksvhmzN6LFdaVwD757/Q9Zp/wdJkqB76xCoXQIAcIy/GpIcnqYwvAegNKyA4W+CbM8b+JMhIqIjEpPfI8iiRYtwzTXXwO12h7Z5vV6sX78e69evx/PPP48PPvgAZWVDu4AKUaKd7n4EpY0vI7vkz9iJ60PbbSbgB3umJy4wIiIioiOMUDsSHUKIZ8tfEx1C3Hi2/j3s6/Yvrg//umHVMEbTN3/FfPgr5vfvoFNfhrPs2h6bNfcO+Pe+Cm3aPbBkHwNfxavoWHcXAMBeciGkbiVhAEBt2gAIA5p7J6xMfhMRUT8x+T1CbNq0CT/4wQ/g8/mQlpaG3/zmNzjjjDPg8/nw2muv4bnnnsPOnTtx/vnnY/369UhPT++7U6IkNN4VQGHVYgBASftC/DAnK7TPYvh7OYqIiIiIiEYSzzcPQ2n4osd25eAs9o71dyPzlBfg3fF0aJ977c8AU7ca40KH7qkMtv/q9zCljQ3tsuafDOek64ckdiIiSh1Mfo8Qd955J3w+H8xmMz7++GPMnj07tO+73/0uJk2ahF/96lfYuXMn/vrXv+KBBx5IXLBEQ6jQ1AqrFlzIKbtjFWZ2jKxZL0RERERE1DetfRu09m297g9Uf4SOTfdBd+8KbfPt+b9e2ys1H4cfX/kuHBP+E5LJOvhgiYgoZcl9N6GhtnbtWqxYEayld+ONN4YlvrvcddddmDJlCgDg8ccfh6qqwxoj0VC7w/Qo7lWuxfl1PT8aSUREREREqce3+6UBH2sEmtD47mQ0vDsF7atujWNURESUSpj8HgEWLFgQenzDDTdEbCPLMq69NpgUbGtrw9KlS4cjNKJhYTcBpU3zkN/+b6R7Nic6HCIiIiIiGg7CGNThemcF9Pbt0D374xQQERGlGia/R4AvvgjWQXO5XDjxxBN7bTdnzpzQ45UrVw55XETD5SY8DKvWlOgwiIiIiIiIiIgohbDm9wiwbVuwDlpZWRnM5t6HZPLkyT2OiVVVVVXU/QcOHAg9rq2t7VffidTq1+Ftak10GDQIFhlAxyLUcC1LIiIiIiIaAKvVD28ff/OOJN3/5tY0LYGREBGlPia/E8zv96OpKTjjtaSkJGrb7OxsuFwueDyesGR1LEpLS2Nue9JJJ/Wrb6LBejfRARARERERURJbBiD2v3lHksbGRowbNy7RYRARpSyWPUmwjo6O0OO0tLQ+27tcLgBAZ2fnkMVERERERERERERElOw48zvB/P5DtR6sVmuf7W02GwDA5/P16zx9zRT3+/3Yvn07CgsLkZ+fH7X8ykhRW1sbmqW+du1ajBo1KsERUX9xDJMbxy/5cQyTH8cw+XEMkxvHL/lxDJNfMo6hpmlobGwEAEybNi3B0RARpbaRn+FMcXa7PfRYUZQ+2wcCAQCAw+Ho13n6KqkCBGuOJ6tRo0bF9Bxp5OIYJjeOX/LjGCY/jmHy4xgmN45f8uMYJr9kGkOWOiEiGh4se5Jg6enpocexlDLxeDwAYiuRQkRERERERERERHSkYvI7wex2O3JzcwEAVX2sTt3a2hpKfvdnAUsiIiIiIiIiIiKiIw2T3yPA1KlTAQC7d++Gpmm9ttu+fXvo8ZQpU4Y8LiIiIiIiIiIiIqJkxeT3CHDqqacCCJY02bBhQ6/tli9fHnp8yimnDHlcRERERERERERERMmKye8R4JJLLgk9fumllyK2MQwDr7zyCgAgKysLZ5xxxnCERkRERERERERERJSUmPweAU466SScdtppAIAXXngBq1ev7tHmr3/9K7Zt2wYAuPPOO2GxWIY1RiIiIiIiIiIiIqJkYk50ABT0+OOP45RTToHP58M555yD3/72tzjjjDPg8/nw2muv4dlnnwUAlJeX46677kpwtEREREREREREREQjmySEEIkOgoIWLVqEa665Bm63O+L+8vJyfPDBBygrKxvmyIiIiIiIiIiIiIiSC5PfI0xlZSUef/xxfPDBB6iqqoLVakVZWRmuuOIK3H777XA6nYkOkYiIiIiIiIiIiGjEY/KbiIiIiIiIiIiIiFIOF7wkIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8pqRUWVmJu+66C5MnT4bL5UJOTg5mzpyJRx99FF6vN9HhHZEkSYrp3+mnn95nX4sXL8all16KkpIS2Gw2lJSU4NJLL8XixYuH/omkqIaGBrz//vu47777cN555yEvLy80Jtdff32/+4vHGGmahqeffhqnnXYa8vPz4XA4MHHiRNx6663YsmVLv2NKdfEYw3nz5sV8rc6bN6/P/rxeLx555BHMnDkTOTk5cLlcmDx5Mu666y5UVlYO7gmnmPXr1+MPf/gDzjnnnNB1k5aWhvLyctxwww344osv+tUfr8HhF48x5DWYOG63G6+99hruuusuzJkzB2VlZcjMzITVakVBQQFOP/10PPLII2hubo6pv1WrVuGaa67B2LFjYbfbUVRUhHPPPRfz58/vV1zz58/HOeecg6KiItjtdowdOxbXXHMNVq9ePZCnmdLiMYbLli2L+Rp84IEH+oyJ76Px8+tf/zrs9V+2bFmfx/BnIRERxUQQJZn33ntPZGRkCAAR/5WXl4tdu3YlOswjTm/jcfi/OXPm9NqHruvixhtvjHr8TTfdJHRdH74nliKivabXXXddzP3Ea4waGxvFzJkze+3DZrOJ5557bpDPOrXEYwxfeumlmK/Vl156KWpfu3btEpMmTer1+IyMDLFo0aLBP/EUcNppp8X0ml977bUiEAhE7YvXYGLEawx5DSbOkiVLYnrd8/LyxEcffRS1r/vvv1/IstxrH+eff77w+XxR+/B6vWLu3Lm99iHLsnjggQfi+RIkvXiM4dKlS2O+Bu+///6o8fB9NH42bdokzGZz2Ou3dOnSXtvzZyEREfUHk9+UVDZu3CgcDocAINLS0sSDDz4oVq1aJT799FNx8803h35RKS8vF263O9HhHlG6XvvbbrtNfPPNN73+27t3b6993HPPPaF+pk+fLubPny/Wrl0r5s+fL6ZPnx7a95vf/GYYn1lq6P6L/JgxY8Q555wT+ro/ye94jJGmaeLUU08Ntb3sssvE4sWLxZo1a8Q//vEPUVBQEPrD/8MPP4zDs08N8RjD7om3f//731Gv1dbW1l77cbvdory8PNTXzTffLD799FOxatUq8eCDD4q0tDQBQDidTrFp06a4PP9kNnHiRAFAFBcXizvvvFO89dZbYu3atWL16tXib3/7mxg9enTotbz66quj9sVrMDHiNYa8BhNnyZIlorS0VFx77bXi8ccfF++8845YvXq1WLlypXj99dfFFVdcIUwmkwAgrFar+OqrryL28/TTT4de94kTJ4oXXnhBrF27VixYsECcccYZMV/LV111VajtGWecIRYsWCDWrl0rXnjhhdD3GwDxzDPPDMXLkZTiMYbdk98vvvhi1Guwvr6+11j4Pho/uq6HEtBdr1tfyW/+LCQiov5g8puSStfMK7PZLFatWtVj/yOPPBLzbA2Kr8G+7jt27AjN+JgxY4bwer1h+z0ej5gxY0Zo/Dm7v3/uu+8+sWjRIlFXVyeEEKKioqLfidN4jdELL7wQOvdPfvKTHvt37doV+nRHWVmZUFW1f082RcVjDLsn3ioqKgYcy+9+97tQP4888kiP/StXrgx9r0T7tMeR4vzzzxevv/660DQt4v7GxsawROby5csjtuM1mDjxGkNeg4nT29h19+6774Ze10svvbTH/ubmZpGZmRm6CdnY2NjjHBdeeGGfybtPP/001ObCCy/sEVtjY6MYM2aMACCysrJES0tL7E80hcVjDLsnv6MlV/vC99H4+fvf/y4AiMmTJ4vf/OY3fY4PfxYSEVF/MflNSWPNmjWhX1BuvfXWiG10XRdTpkwJ/bGgKMowR3nkGmzy+7bbbgv1sXr16ohtVq9eHfWXVIrdQBKn8Rqjrms0JydHeDyeiG3+9Kc/hfp54403YorvSJOo5LeiKKHkz5QpU3r9SPGtt94aOtfatWsHdK4jyaJFi0Kv1x133BGxDa/BkS2WMeQ1OPIdddRRAgiWzjjcn//859BrOn/+/IjHHzhwIDT7eO7cuRHbnHfeeaHE3IEDByK2mT9/ftQbHNS7aGMYr+Q330fjo7KyMvRJlWXLlon777+/z/Hhz0IiIuovLnhJSWPBggWhxzfccEPENrIs49prrwUAtLW1YenSpcMRGg2SEAILFy4EAEyePBmzZs2K2G7WrFk46qijAAALFy6EEGLYYjzSxWuMdu7ciW3btgEArrzySjidzoj9dF/A8d133x1s+BRHS5cuRXt7OwDguuuugyxH/lWCY9g/Z5xxRujxnj17euznNTjy9TWG8cJrcGilp6cDAPx+f499Xb+LZmRk4LLLLot4fElJCc466ywAwKeffoqOjo6w/R0dHfj0008BAGeddRZKSkoi9nPZZZchIyMDAMevv6KNYTzwfTR+fvrTn6KzsxPXXXcd5syZ02d7/iwkIqKBYPKbksYXX3wBAHC5XDjxxBN7bdf9F6eVK1cOeVw0eBUVFaipqQGAPn/x7dpfXV2Nffv2DXVodFC8xqjrOu6rn6KiIpSXlwPgdTzSxDqGM2bMCP0xyTHsWyAQCD02mUw99vMaHPn6GsN44TU4dHbs2IGvvvoKQDCx1p2iKFi7di0AYPbs2bBarb320zUugUAA69evD9u3bt06KIoS1i4Sq9UaSuytW7cOqqr278kcoaKNYbzwfTQ+3njjDbz//vvIycnBX/7yl5iO4c9CIiIaCCa/KWl03Z0vKyuD2WzutV33X3S7jqHh8+abb2Lq1KlwOp1IT0/HpEmTcN1110Wdhb9169bQ477+UOH4Jka8xmgg/Rw4cAAejyfmWCk2N9xwA4qLi2G1WpGXl4dZs2bhv//7v1FdXR31uFjH0Gw2o6ysDACv1VgsX7489HjKlCk99vMaHPn6GsPD8RocGbxeL3bt2oW//e1vmDNnDjRNAwD8/Oc/D2u3c+dO6LoOYPivQU3TsGvXruhP5AgW6xge7t5778XYsWNhs9mQnZ2N6dOn4xe/+AV27twZ9Ti+jw5eW1sb7rzzTgDAn//8Z+Tl5cV0HH8WEhHRQDD5TUnB7/ejqakJAHr9eGiX7OxsuFwuAMFfUmh4bd26Fdu2bYPP50NnZyd2796NV155Bd/97ndx6aWXhj6q3V1VVVXocV/jW1paGnrM8R0+8RqjgfQjhAg7juJj2bJlqK2thaqqaG5uxpo1a/Dggw+irKwMzzzzTK/HdY2Fy+VCVlZW1HN0jWFjY2PYrFgKZxgGHn744dDXV155ZY82vAZHtljG8HC8BhNn3rx5kCQJkiTB5XKhvLwcd911F+rr6wEA99xzD/7zP/8z7JhEXoOR+jnSDWQMD7dq1Srs378fiqKgra0NX331FR577DFMmTIFDzzwQK/l9fg+Oni/+tWvUFdXh1NOOQU33nhjzMfxZyEREQ1E79NniUaQ7vUS09LS+mzvcrng8XjQ2dk5lGFRN06nExdddBHOPPNMTJ48GWlpaWhsbMTy5cvx9NNPo7m5GQsWLMDFF1+MJUuWwGKxhI7tz/h23dgAwPEdRvEaI4514k2YMAGXXXYZZs+eHfqDbu/evXj77bfx1ltvwe/347/+678gSRJuueWWHsd3jWGs78VdOjs7YbPZ4vQsUsvf//73UDmFyy67LGJpL16DI1ssY9iF1+DIdfzxx+PZZ5/FzJkze+zjNZgcoo1hl1GjRuGyyy7DqaeeigkTJsBsNmP//v14//338corr0BVVfz+97+Hoih46KGHehzPMRycFStW4Pnnn4fZbMbTTz8NSZJiPpbXIRERDQST35QUui9YE63GYpeuP+58Pt+QxUThqqurI85AO/vss3HHHXfgvPPOw6ZNm7B8+XI89dRT+NnPfhZq05/x7f6HO8d3+MRrjDjWiXXppZfiuuuu6/GH5syZM/GDH/wA77//Pi677DKoqopf/OIXuOiii1BUVBTWtmsM+/NeDHAMe7N8+XLcc889AICCggI89dRTEdvxGhy5Yh1DgNfgSHHJJZdgxowZAIKvy549e/DGG2/g3XffxdVXX43HHnsMF1xwQdgxvAZHloGMIRC81iorK8MmYQDACSecgEsuuQS33HILzjnnHLS3t+Phhx/GD37wAxx33HFhbTmGA6coCm655RYIIfCLX/wCxxxzTL+O53VIREQDwbInlBTsdnvocdciQdF0fbTX4XAMWUwULtpHrwsLC/HWW2+F/tB44oknwvb3Z3y7f2yb4zt84jVGHOvEyszMjDrD6oILLsB9990HIFhD9YUXXujRpmsM+/NeDHAMI9myZQsuvfRSaJoGu92ON998EwUFBRHb8hocmfozhgCvwZEiKysLxxxzDI455hjMnDkTV111Fd555x288sor2Lt3Ly6++GLMmzcv7BhegyPLQMYQCM7iPTzx3d1JJ52Ef/7znwCCZS66HnfHMRy4hx56CNu3b8eYMWNw//339/t4XodERDQQTH5TUkhPTw89juXjZl2LkcTykWAaHhMmTMDZZ58NANi9e3dopXagf+PbfaEZju/widcYcaxHvltuuSWUnOu+gF+XrjHsz3sxwDE8XEVFBc455xy0trbCZDLhtddew3e+851e2/MaHHn6O4ax4jWYOD/60Y9wxRVXwDAM3H777WhpaQnt4zWYHKKNYayuuuoqZGRkAIh+DQIcw/7Yvn07/vSnPwEIToTpXk4kVrwOiYhoIJj8pqRgt9uRm5sLAH0uNNLa2hr6JaX7QieUeFOnTg09rq6uDj3uvtBMX+PbfcEaju/widcYDaQfSZL6XIyI4qegoCD0ftv9Ou3SNRYejwdtbW1R++oaw/z8fNYa7qampgZnnXUWampqIEkSXnzxRVx88cVRj+E1OLIMZAxjxWswsbrG0ePx4KOPPgptT+Q1GKkf6l1vYxgrs9mM8vJyANGvQYDvo/3x97//HYqiYMKECfB6vXjttdd6/Pv2229D7T/77LPQ9q6/7fizkIiIBoI1vylpTJ06FStWrMDu3buhaRrM5sjfvtu3bw89njJlynCFRzHo7aPe3ZPi3ccvEo5vYsRrjA7v5/jjj++zn9LS0gHNDqKBi1aWYerUqXj77bcBBMdo1qxZEdtpmoY9e/YA4LXaXVNTE84++2zs3bsXQHD227XXXtvncbwGR46BjmF/8BpMnPz8/NDjysrK0OPy8nKYTCbouh7XazCWfsxmMyZNmtR38ASg9zHsj76uwS58H41dV/mQvXv34uqrr+6z/R//+MfQ44qKCrhcLv4sJCKiAeHMb0oap556KoDgLI4NGzb02q77xxNPOeWUIY+LYrd169bQ4+Li4tDj8ePHh76O9PHS7j7//HMAwOjRozFu3Lj4B0kRxWuMuq7jvvqpq6vDzp07AfA6Hm6NjY1oamoCEH6ddol1DNevXx+aqcUxDGpvb8e5554bei98+OGH8dOf/jSmY3kNjgyDGcNY8RpMrO4zfbuXOLBarTjppJMAAKtXr45aJ7hrXGw2W2hRxi4zZ84MLbAXbfwURcGXX34ZOiZanWoK19sYxkrTtND732CuQb6Pxh9/FhIR0UAw+U1J45JLLgk9fumllyK2MQwDr7zyCoDgQjhnnHHGcIRGMaioqMCSJUsAABMnTsTo0aND+yRJCn1Edfv27aE/9g735ZdfhmZfXHzxxVFn5VB8xWuMysvLQ7Nv3njjDXi93oj9dF+k6tJLLx1s+NQPzz77LIQQAIA5c+b02H/66acjMzMTAPDyyy+H2h6OYxjO6/Xi/PPPx8aNGwEA9957L37961/HfDyvwcQb7BjGitdgYr355puhx9OmTQvb1/W7qNvtxjvvvBPx+KqqKnzyyScAgDPPPDOstjAQrDV85plnAgA++eSTXksuvPPOO3C73QA4fv0VbQxj8frrr6O9vR1A5GuQ76MDM2/ePAghov7rvgjm0qVLQ9u7ktf8WUhERAMiiJLIaaedJgAIs9ksVq1a1WP/I488IgAIAOL+++8f/gCPUO+9955QVbXX/XV1dWL69OmhsfnrX//ao82OHTuEyWQSAMSMGTOE1+sN2+/1esWMGTNC479z5864P48jSUVFRWg8rrvuupiOidcYvfDCC6Fz//SnP+2xf/fu3SIjI0MAEGVlZVG/t45k/R3DiooKsXHjxqhtFi1aJKxWqwAgHA6HqKqqitjud7/7XejcjzzySI/9q1atEmazWQAQc+bMieXppLRAICDOOeec0Gt25513DqgfXoOJE48x5DWYWC+99JLw+XxR2/ztb38Lva7jx48XmqaF7W9ubhaZmZkCgBg7dqxoamoK269pmrjwwgtDfSxdujTieT799NNQm4suuqjHeRobG8WYMWMEAJGVlSVaWlr6/4RT0GDHsKWlpdcx6bJmzRqRlZUlAAhJksT69esjtuP76NC4//77+7x++LOQiIj6i8lvSiobN24UDodDABBpaWnioYceEqtXrxafffaZuOWWW0K/wJSXlwu3253ocI8YY8eOFcXFxeKOO+4Qr776qli1apXYtGmTWLJkibj33ntFXl5eaGxOPfVU4ff7I/Zzzz33hNpNnz5dvPbaa2LdunXitddeC0ue/+Y3vxnmZ5j8VqxYIV566aXQv0cffTT0ep5yyilh+1566aVe+4nHGGmaJk455ZRQ28svv1x89NFHYs2aNeKJJ54QBQUFAoCQZVl8+OGHQ/BqJKfBjuHSpUsFADF79mzx0EMPiQ8++ECsW7dOrFu3Trz++uviiiuuEJIkhfp88skne43F7XaL8vLyUNtbbrlFfPbZZ2L16tXioYceEmlpaaHk3aZNm4buRUkSl112Wei1+u53vyu+/vpr8c033/T6b8eOHb32xWswMeIxhrwGE2vs2LEiJydH3HzzzeLll18WX3zxhfjqq6/EihUrxP/+7/+GXRNWq1UsWbIkYj9PP/10qN3EiRPFiy++KNatWycWLlwozjjjjNC+q6++Omo8V111VajtGWecIRYuXCjWrVsnXnzxRTFx4sTQvmeeeWYoXo6kNNgx7LppfOyxx4r77rtPLFy4UKxdu1Zs2LBBvPvuu+LGG28M3XwCIO6+++5eY+H76NCIJfktBH8WEhFR/zD5TUnnvffeC92Fj/SvvLxc7Nq1K9FhHlHGjh3b63h0/3f55ZeL1tbWXvvRdV38+Mc/jtrHjTfeKHRdH74nlyKuu+66mMao619v4jVGjY2NYubMmb32YbPZxHPPPRfvlyGpDXYMuxJvff1zOp0xJVt27dolJk2a1Gs/GRkZYtGiRUPxUiSd/owbEJxR2hteg4kRjzHkNZhYsf6uUlJSIj7++OOofd13331hNyoO/zd37tw+Zyh7vV4xd+7cXvuQZZmfYjzMYMew+yemov0zmUzigQceEIZhRI2H76PxF2vymz8LiYioPyQheikUSDSCVVZW4vHHH8cHH3yAqqoqWK1WlJWV4YorrsDtt98Op9OZ6BCPKMuXL8fy5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3ZM/X344Yd49tlnsW7dOjQ1NSEvLw8zZ87ErbfeivPOO2+In01quv766/Hyyy/H3L6vHw3xGCNN0/Dcc8/h1VdfxbZt2+DxeFBcXIwzzzwTd955J44++uiY4z0SDHYMOzo68N5772H16tVYv349amtr0dTUBE3TkJ2djaOPPhpnnnkmbrrpJhQUFMR0Do/HgyeffBJvvvkmdu/eDUVRUFpairlz5+LOO+/E2LFj+/UcU1V/1ycYO3Ys9u3bF7UNr8HhFY8x5DWYWDt27MAHH3yAlStXYvfu3aivr0dzczMcDgcKCgpw/PHH44ILLsCVV14Z0++Rq1atwpNPPokVK1agvr4eWVlZOO6443DDDTfg6quvjjmuV199FfPmzcPmzZvR1taGwsJCnHbaabj99ttj/r3pSDHYMVQUJXQNrl27FtXV1WhqaoLf70dmZiaOOuoonH766bjppptiXlSd76Px9cADD+D3v/89gGDN79NPPz1qe/4sJCKiWDD5TUREREREREREREQpR050AERERERERERERERE8cbkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3ERERUYLNmzcPkiRBkiTs27cv0eEQERERERGlBCa/iYiIiAZo3759oaT1YP4RERERERFR/DH5TUREREREREREREQpRxJCiEQHQURERJSMVFXFjh07et0/bdo0AMCMGTPw0ksv9drumGOOiXtsRERERERERzpzogMgIiIiSlYWiyWmxLXL5WKCm4iIiIiIaJix7AkRERERERERERERpRwmv4mIiIgSbN68eaHFL/ft29dj/+mnnw5JknD66acDAHbv3o3/+q//woQJE+BwODBu3DjceOONqKysDDvu22+/xQ033IAJEybAbrejtLQUt912GxoaGmKKa8GCBbjiiiswZswY2O12ZGVlYcaMGfj973+P1tbWwT5tIiIiIiKiIcWyJ0RERERJ5JNPPsFll12Gjo6O0LbKykq8+OKLeP/997F8+XJMnjwZ8+fPx/XXXw9FUULtqqqq8PTTT2Px4sVYtWoViouLI56jtbUV3//+9/HZZ5+FbQ8EAtiwYQM2bNiA//3f/8XChQsxa9asoXmiREREREREg8SZ30RERERJoqamBldeeSWysrLwxBNPYM2aNVixYgV+/vOfQ5IkNDQ04KabbsK6detw7bXXYuLEiXj++eexdu1aLF26FD/60Y8ABJPlv/zlLyOeIxAI4KyzzsJnn30Gk8mEH/3oR5g/fz6+/PJLrFixAg8++CByc3PR0NCAuXPn9phtTkRERERENFJw5jcRERFRkti1axcmTZqElStXIj8/P7T91FNPhdlsxl/+8hesXLkS559/Pk466SQsWbIETqcz1O7000+H3+/Hm2++ibfffhuNjY1h/QDAH/7wB2zcuBFZWVn45JNPcOKJJ4btP/XUU/HDH/4Qs2fPRm1tLX7729/iX//619A+cSIiIiIiogHgzG8iIiKiJPKPf/yjR8IaAH7yk5+EHjc1NeH5558PS3x3ue222wAAmqZh9erVYfs6Ozvx5JNPAgD++Mc/9kh8dxk7dix+97vfAQDefPNNeDyegT0ZIiIiIiKiIcTkNxEREVGSyMrKwrnnnhtx3/jx45Geng4AOPbYYzFlypSI7Y477rjQ471794btW758Odrb2wEA3//+96PG8p3vfAcAoKoqNmzYENsTICIiIiIiGkYse0JERESUJCZNmgRJknrdn5WVhY6ODpSXl0dt06X7opkAsH79+tDjUaNGxRxXXV1dzG2JiIiIiIiGC2d+ExERESWJSGVMupNluc92XW0AQNf1sH0NDQ0Disvr9Q7oOCIiIiIioqHEmd9EREREBCA8Gb5x40ZYLJaYjispKRmqkIiIiIiIiAaMyW8iIiIiAgDk5uaGHufn5zOpTURERERESY1lT4iIiIgIADB9+vTQ45UrVyYwEiIiIiIiosFj8puIiIiIAABnnXVWqF74P/7xDwghEhwRERERERHRwDH5TUREREQAgKysLNx+++0AgFWrVuEXv/gFDMPotX19fT2ef/754QqPiIiIiIioX1jzm4iIiIhC/vCHP2D58uVYs2YNHn/8cSxbtgw333wzjj/+eLhcLrS2tmLLli345JNPsHjxYkybNg033XRTosMmIiIiIiLqgclvIiIiIgqx2WxYsmQJrr/+erzzzjvYvHlzaDZ4JBkZGcMYHRERERERUeyY/CYiIiKiMOnp6Xj77bfxxRdf4OWXX8aKFStQU1MDn8+HjIwMTJw4ESeddBLOP/98nHPOOYkOl4iIiIiIKCJJcCUjIiIiIiIiIiIiIkoxXPCSiIiIiIiIiIiIiFIOk99ERERERERERERElHKY/CYiIiIiIiIiIiKilMPkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3EREREREREREREaUcJr+JiIiIiIiIiIiIKOUw+U1EREREREREREREKYfJbyIiIiIiIiIiIiJKOUx+ExEREREREREREVHK+f8BeuVVcZN/SbQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot( \n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'intervention_examples_composition.png',\n", + " # Name of the file to save the plot to.\n", + " data \n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot\n", + "\n", + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5gb1dUG8HfUt1d3G9sYN9wrpto0A8ZgWsB0UxMgEEgChFBCQgmhfBBMaMH0aoohpprmAgZ3g3vvfXtXm/n+WK+8oymakUbSSnp/z0Mi3blz566s1WrOnDlXkCRJAhERERERERERERElhS3ZEyAiIiIiIiIiIiLKZAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESOZI9AYpNU1MTVqxYAQBo164dHA7+kxIRERERERFZLRAI4MCBAwCAQYMGwePxJHlGRJROGNFLcStWrMDo0aOTPQ0iIiIiIiKijLFw4UKMGjUq2dMgojTCcgdEREREREREREREScRM2hTXrl270OOFCxeiU6dOSZwNERERERERUXras2dP6E7W1ufiRERWYJA2xbWuQdupUyd07do1ibMhIiIiIiIiSn9cD4aIrMZyB0RERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERFFIIl+1K96CjVL7kKwbrtqH9++edjzugv7P+yl2se3bx72vCpgz6sCapbeDUmS4j1tIiIiIiIiShEM0hIREUVQs/BW1Cy6DfUrHkHZp6MhBX2y7f7KVSj/4gRA9CNYuxn7P+gu6xOs39G8/aD6Xx9G/eqnEjV9IiIiIiIiauMYpCUiIoqgYe2zocdi0z40bnlXtr1m0R8V+zRufjv0uGn7J4rttSr7EBERERERUWZikJaIiMikYM0G2XPf3u8VfQLVa0KPxcZ9cZ8TERERERERpS4GaYmIiGIlBpRtknjosWBP3FyIiIiIiIgo5TBIS0REFDO1RcBaBWltjoTNhIiIiIiIiFIPg7REREQmid6yyH18NaHHkq8yntOhDCB6K+Dd/S0CtZuTPRUiIiIiIooDBmmJiIh0SK3LFhzUsO55+PbN092vccNLCNRshHfvXNSv+r94TY8ygHfvXOyb3gUVs07BgQ97oe7Xh5M9JSIiIiIishiDtERERDr85UtU26t+uDrivg0bXkbNzzdZPSXKMPUrHwOCTaHndb8+BEkMJnFGRERERERkNQZpiYiIdPjLl6q2B2s3RtxXbNyLQNVKq6dEGcZfvlj2XAo0QGoVtCUiIiIiotTHIC0REZEOQYjhT6UU0N5mc0U/LpHETFoiIiIionTCIC0REZEuIeo9JVE7SCs486IelwgqtZKJiIiIiCh1MUhLRESkJ16ZtAyyUUz4/iEiIiIiSieOZE+AaPl+L95dV48tNc3BjCOLnbhpaD5Ks+xJnhkRZQLv7q9Ru/RuCM485B/1DJyF/SH661Dz0w3wHZiPYO3mqMfWy6RlkJZise+dktDj9hfugj27cxJnkxokMYi6Ff9E09b34SwdjfzRT8LmzE32tIiIiIiIADCTlpLMF5Tw5NKaUIAWAFZX+PH66rokzoqIMoUU9KLy+wvgL1sE357vUD3/OgBA3Yp/onHzmxEDtKKvOsIB9IK0rClK1qiad0Wyp5ASfHu+Qd2yexGo/BWNG15Cw9pnkz0lIiIiIqIQBmkpqfbWB9EUlBTtC/Z6kzAbIso0TTv+B8lfE3ru3/8jAKD+14cN7R+oWq27XQrqfZYxk5aMERz62Z6+Pd8maCaprerHa2XPa5fcmaSZEBEREREpMUhLSaUWoCUiShQp0BjrAM3/b3Oqbxd92ruy3AEZJGi9v8gUsWFnsqdARERERKSJQVpKKi+DtESUTIIQ0+4tNWe1gmiSTpCWNWnJKAb0iYiIiIjSH4O0lFR6QVpJYgCXiOJLiPXP4MFMWknUqC8b1AvSsiYtGcW/h0RERERE6c6R7AlQZvMGtE88gxLgiC3JjYhIn0omrZkLRMH6XQd3Ul8gTPSWa++cAdmR/soV8O7+Gq52Y+Bqf0yyp5OSJElCsGZ9sqeRcnz7f4Zv/w9wdzoZzpJhmv2CTQdg97RL4MwonvY01OCtTUuxt7E22VMhIpOyHU78Y/jpyZ4GEVFSMUhLSaVXk3b6+npc0k9/sRQiotioXAkKGq9TW/3jVcjqdblmVmywbovO3hIkSYIQY8mFtspfuQJlM0cBohcQbCg+9Su4O5+S7GmlnNqlfzXUT/TXw+bMifNsUoN37xxUfHUSIImotTlReubPcJYMV+1bNnME2p+3EYLdleBZktX8YhDHf/4fbKrVuThGRG1WiTubQVoiyngsd0BJ5dMJ0i7aq7cqOhFR7AS7R9HmK1tkaoxA1coYZpC+t7HXLPpzc4AWACQRVT9cldwJpaj6FY8Y7PfPOM8kddT8fNOhTHXRj5qFt2r2Fet3oHHr9MRMjOJqefkuBmiJiIgopTFIS0mld7OvT0zf4AURtQ323O6KNilQb2oMyV8X/QTSuC6tb/cs2XOxYWeSZpIZvLu/TvYU2oxA1SrZc9++efr9y5fGczqUIHUBnRrgRERERCmA5Q6ozdJbVIyIKG5E9fqyWqRYAq0ZUJeWEiU9y2ZYSXDmQfKr1Cq1ORM/GbKcGFZP3GN34OLDtesRE1HbkutwJ3sKRERJxyAtJZdOHFZvUTEioniRRL/JHRikpTZA4M1RkWkEsm38OpwOgmGfp8XubLx83EVJmg0RERGRefxWSkkTECXsqNXOWPOJQHljEHYBqPFL8AYktMuyodBjT+AsiSidSIFGBGo2wJ7TDTZ3kXqnBAZpJUlk/mOGE/21CNZtByDCkd836gWspAgL3vkrVwGiD86S9M4sFNUyZUPUf9sEgZm0qaQh4MOGmjJF+8awNjsvXBAREVGKYZCWkmJrjR8PLahCjU8/W/bG75QLQJxymAfXDcqP19SIKE15d81C5ffnQgo0AIINeSMfg6vdGEW/+lVPmBo3WB9DrdU0rklLkTVsfA3VP0wJPRccuSge/zVc7Zvfl5KJTOtAxXI0bHgZ2b2vVmzb86o8ONlpSnreqdKw8TVU/3it5nbJX62+gZm0KeOTbStx0Zw34Q1GLktjF3gJjIiIiFILLzFTUnyyqSFigFbLN9ubsLfeXM1IIqLaZfc1B2gBQBJRt+xeePd8r+jnL19saly9leMjyrByB1LQm+wptBmSJKF28R3ytkAd6n59KPTcX2buvVj94zWKtkDdNkWbb98PpsZNBZIkoXbJXYCk/v3AX7VGc19BYJA2Vdyz9EtDAVqAmbRERESUevjthZJid11s2WMHGjMrsEFEsfNXLJc9lwINgBh70FAzO8+QzPosE72VyZ5C2yEFITbtVzT79v8Yety09f2YD9O44RVFW/X862Met+2RIDbu0dzauPFV7V25cFjK2NFQZbjvkYUd4jcRIiIiojhgkJaSotqrHpgoctvQKSdyzdmAmJ63ahJRPCk/N6Rgk6kRCk94y6rJNB8/48odZFZQWpeokQ3Y6hZtKdgQ82EkSVljWdJbtTNVSfo/k17NXoHlDlJGMOz7n00Q4BBssv+cNjvGtOuOJ0efnaRZEhEREUWH30op4URJQo1P/UR9TCc3pgzIw73zK7G+UnvxHl8wDU8wiSjO1IK05jJpHQX9rZrMwQlkWNAy44LS2iSN2/JbL25l9iKCKlHlNY8Q0ExNEYK0AZ2F1ZhJmzICYZ8hP595M0a1OyxJsyEiIiKyFjNpKeEa/BK0YqzZzuaTU3eEZFp/hsU1iMgCagFRszVSbS5r5tIiw4K0klrAMFNpZNIKrYO0eoFFo1QD42kYpI3wu6SXlcyatKkjGHaBwWGLfPcVERERUargt1JKuCqNUgcAkO1ovm4QqZpBrUYmbmsBUcJ76+rxv82HTsz6Fztxx8gCZDt5fYIo8yg/WBrWv2BqBMFubZA2ULkC9uxOhvoGG/Zi//TOACRAsKPjpXUQHB5L56NFEoOoW/43eHfPgqNoMPJHPQGbqyCKgYIINuxF7ZI7IHrLkTv4Xrjaj7F+wikgULVCfUOrxY4kb4XpcSVJgtCqZILoUxlD1L5TJXXpf3Fo2vy29p4W1Kam+Pty51r4wy702Fu914mIiIhSHSNVlHCfbdHOZsk5mEkbKUj71tq6iMf5YkujLEALAGsq/HhtdeR9iSgNWXGLt8WZtBVfnw7J4LzKPh2FUCBKCqL8i+MtnYuehrX/Qd2vD8FftgiNG6ahZuGtuv0Ddds0toionn8dGje9Ae/Oz1Hx9XjTJSfSgSRJqPj6DI2th4JO3t1fRTG4PIjVuOFlRZdg3Rbz47ZxsZSGqFlwi4UzoXgoa6rHWd8o38t2gacyRERElD74zYbalCJP81vyjB5Zuv06ZEe+ve1NjUDu7J0W1PgjooxkcxdbPKIEf/liQz3Fhp2y50b3s0LD+v/KnjdufFW3v798ifoGMQjvzk9DTyV/LRq3To91eiknWL0OUqBefWOroJM9J4pam2FlFARHjqKLPb+P+XHbuKYt7yV7ChRHy8p3IaBS0qLUo3x/ExEREaUqBmkp4bTqyfbMd+DI4uYstREd3KGsWvUx0rCeHhHFWeyfGzZnHlydTpa1OUtHxzSmFNC+u6CtCFSvNbeDRr1VSaU+quSrimJGqU170TAArW7ftnnaRzF22O3guT0UfdTaUl2waX+yp0Bx5FP5TJnccyg6ZOUlYTZERERE8cGatJRwgbAAa6ccO6YMyMWRxS647M0npw6bgBdOLsXS/V6UNYl4b10dvK3OOxsDDNISUXI4CgfCt+fb0HNblrGaspqsKMPQ5mj8TKqLWGVeTUnB7tbbGnokiT7zg4cHgFWyD9MyMB7Na0UpIyAq38dvnnBJEmZCREREFD8M0lLCBcK+Zx/fxYOh7ZQnrE67gKM6NS+K07fIibt/rAxtY5CWiMyQIqz8boYQvlCNlI6LMMVI6/VWbc+8IK1uYL71axTNAl9hGYeSSsBcTMMgrZSWi6FRi/BSB30L2sFu4w2BRERElF4YpKWEC4adnDoMfMf22OUn8X4R+HhjPXoUODCk1KUMmgBw2QCfdXEZIjJJEoNo2vEJBMEBd7eJEBK0wIskBtC07UM0rHseNncpXB2Os7juqfzzRvLXxjhc5CClv3KFarskSaqff5bTuz2/1VwaN72BmoV/0MzUDFSvVjam6MI//spVqF18OzyHnYPsvtdH7B+o3Qrf/h/gKhmpGjhtITbuCT2OJpNWkgIINuxGzeLbIdbvQFClVEU6ZNIG6rbBt28enCUj4Czsr1liw/B4tVvhyOthzeTIcuGZtI4U/dwgIiIi0sMgLSVceD1Zh4EAQ5ZD2eeddc2LrlzYJwfn91YuHFHksWNfg9qttYAoSbAlIrBBlMGq5kxG07YPAABZva9F4bH/jbCHNWp+vgkN618MPW+Zg2XCggO+ffOsHT+Md+9cVHw5TnVb3bL7kDf8gbgeXzJYjqF6/nVo3DBNt0/V3EuV4/troppXMvmrVqPsk4EAAO+uL+DdNxdFJ7yp2T9QvQ5ln45qDujbPSg4aqr++BW/wFk8JKpMWt++H1A1+wLdPqKvKnEB/jgIVK8/+HrWADY3Sk7/PuZM2rL/DUHpxIVwFPS1aJZkpQVl22XPHbbIC8gSERERpRpehqaECy93YCSTNltnEbHvdjSqthe5tQfeVhNbxg0R6QvW75IFRxs3vATRXxf340piQBagtZKzdNTBR9YGtgRB/3ppw7rnoVXjte7XBy2dixr//h8N9YsUoNUSrNsW1X7JVPbxANnzps1v6favWfKXQxnXwSZUL7hFt3/l9+cDiC6TNlKAFgAg+iAF6k2P3VbULrvnUHBf9KJm4R9iLjsi+WtQu/RuC2ZH8bCpplz23C+qX4QnIiIiSmUM0lLChS8c5rAZyaTVfqtWNomGM71a1PtZ05YonoJ1WxVtkq867seNZ+Apu9/vmx8I1mZw2dwlutubtrxj6fHM8pUtiuv4kX7+dODd/rG8Iah+cTG0uXZT8wMLaymHExt2x23seGva+r7sub9sEWBB0K5p24cxj0HxUeqR3zG1umpfkmZCREREFD8M0lLCRZNJCwBdctUDI0FJfSExn6gdiA0vuUBEFlO9jTr+v3dSoCEu4xYc/QKyel3e/CTK22zzRz2p2q5Xn7RNiGOgEIChmrxkvWDDrmRPwVKSgbrJlLqagvJM6T8PHJukmRARERHFD4O0lHCKmrQGMmkBoMCl/XatU8mM9Qa1Ax/hgWIiSg/xCtJm970+VL8zUnkCNZ2mSMgZcKvG1jYepEXkD0wppkAug7Ta4vfeSLcgbawLh1Hb1hSU//vmOtxJmgkRERFR/GT8wmE+nw+vv/463n//ffz666+oqKiA0+lEly5dcMwxx+C6667DMcccE3GcL774Ai+++CIWLVqEAwcOoF27dhg1ahSuv/56nHHGGQn4SVJHeOxUZU0wVXqnqrU+Ee2z5dltPt0gbVsPihBRNKRgfIK0MhaXO4DJci2JJIl+SH4DJSRiXLSJNMTxvSHW74zb2OGkQCNg98R3oTKJNUoTyRcMoMKbgM/bg2r8TbLnHnvGn8IQERFRGsrobzjbtm3DmWeeiVWrVsnafT4f1q9fj/Xr1+PVV1/FzTffjH//+9+qJxeiKOL666/HtGnyBVN27dqFXbt24eOPP8a1116LF154ATYbE5cBZYDUaTCTVu9UdVW5D70KnbK2A43amV3z93hxdGePoeMSkXlqK61LcV44rGHTm6ied3lcjwHA+iBtG82kbdj4Gmp+/j2kQOR/NymmLEZm0qppWP8SRG9Z3MavXXoXsvv+FjZ3kWVjir4a7Hu7IPS8+NSv0LRjJhrWPQ9bVgcUnTQDrtACfNZiuYPEmbr6B/xlyWdoCCTv4oybQVoiIiJKQxkbNfT7/bIA7eDBg/Hqq6/ip59+wqxZs3DfffchJ6d5kYKpU6fiX//6l+o4d999dyhAO2zYMLzzzjtYuHAh3nnnHQwbNgwA8NJLL+Gee+5JwE+VGpQ1aY2doGfrpNy+tVae6VXj1b/1duFer+nFxojIOO/uWYq2ho0vx+14UtCHmgW3xG381gSLg7SSr1JzWzCB2Y6tSaIfNQtuNhSgBRBbJm2a1KSNreSDUvX86ywdT03jptctHa9u+d9kzyu+Pg0Na58BpADEhl2oXXKXpceTYSZtQtT5vfjjwv8lNUALMJOWiIiI0lPGBmk/+eSTUID26KOPxtKlS3HllVdizJgxOPXUU/H3v/8dc+bMgdPZnJ35r3/9C4GAPEtj/fr1ePzxxwEAI0eOxI8//ojJkydj1KhRmDx5Mn744QeMHDkSAPDYY49h48aNCfwJ267wTFqjC4dN6pVt+Bh7GyKfrOlUQyCiGNlcyuy8+pWPxe14/orlusFOKwUb95jqnzPgT/odbNq1FevXPWfqWFYRmw5A8tca7i+JvqiPpfZeSUWSrybux8jqfa3see6Qe2Mar2bhrTHtH65+9VO62317vrX0eK05CgfGbWw6ZEd9FQLxXkzQgD757ZI9BSIiIiLLZWyQdv78+aHHd911F+x2ZWbUiBEjMHHiRABAVVUV1qxZI9v+1FNPhQK3U6dORVZWlmx7dnY2pk6dCgAIBAJ48kn1lb0zjT/KTNq+RU6c3iMLdgPdwxcnU8NEWqJ4SnB2ZAKDBu7Op0Tsk3XEFMDmgrP0KOQc+YdQe8kZc5WddTIAhSSVApCCXnM7xBCkhZB6X0Wc7Y5WaY3/H5Wcvr+Dp+dkwOaCq8PxyO57I1wduMp9s9hff/V/V2pNSnJ5Fodgw7V9jsLYjr2SOg8iIiKieMjYe4V8vkMnlIcffrhmv169Dn0JbL2PJEn45JNPAAD9+vXDmDFjVPcfM2YM+vbti3Xr1uGTTz7BM888E9+FM1JAQIouk1YQBFw1IA9XDcjDRZ/t1+1rKEhr7LBEFJVEZ1rF/htdetZSlM0crmi35/eRPRfskbP6C497BYXHvaJod3U4HoKzAJK/+lCj7m3akf9eSJIIwepAp8mgq+mgrmzn5GflmSXYnCqt8f+rIrgKUDT2HVmbq/Op8O2bE/djW0USgxBsVtd1hqmSGzmD/oL6FY8o2gVHjpUzSktqF7jLLv57wo6f7XAhy6H2+0dERESU+jI2SNu3b9/Q482bN2PAgAGq/TZt2gSgOUDYu3fvUPuWLVuwe/duAMDYsfpZLGPHjsW6deuwa9cubN26FT179ox1+ilLkqSoa9Ka4TdQmo5BWqI4SniqugXHUw28QZnpGWtN2rAAlaQXpDVyUU8SLc9GNRt0lcTMCtKq1p9NxHte5T0q2FLrq5zkr4XgLrR+XBNBWvUgu/X1ptORGPY+FyCgxMPgNhEREZEVUuubvYUuvvhi3HPPPaipqcG//vUvTJgwQVHyYNmyZfjss88AAJdccgny8/ND21avXh163K9fP91jtd6+Zs0aU0HanTv1F43Zs8dcbcRkU6sDq7MemCl1fhG5zuZAxfID8oCBywb4ws6pWe6AKI5iCLyJ/nrsn94Zkr8GuUP/jryh9xk4ngW/0BoBmvAs1VizAAXBLg8pHwzSBpsOoG75PyD5qpBz5K1wlo5A/dpnIw8oBWHFn/NA7RbU/fowpGADXO2PNbdzMPpyB7pB6rZKdc4JyKQVVP6dtS4umCQFfSj/chz8B34CAJROXAxn6QhLxpYdx1+Dpn1z0LTtQzhLRyO7342y37HGzW+jcev7CFavg6NoIFwdxyG77w0R70KqX/mo8UkYvSBDCuHlDjL85jAiIiIiS2VskLa0tBRvvPEGLr74Yvz4448YNWoUbr31VvTp0wd1dXX48ccf8cQTT8Dn82H48OF44oknZPu3Dp527dpV91jdunULPd6xY4epebbeNx2ELxoGWJdJ+9wvNbh9ZCH2NwTxzfYm2TaXXYAv7Ng76wI4opC3zBHFR/QBq31v5YX2r1v+N7g6HAd3p5Mi7BV7NqZmFl14AFgtUGbqQGHHORjwq5pzCXx7vgEANO34H0pOnw3JWx5xuGD9Djjyj4hpSpIkofKbMxGobq693rT57Yj7+KvWwFnYv/lxxdKoj924+S3kDoywuFpbo3IRIiG1OlWyZrWyQs2qnDM5FKAFgLJPR6LjZfUQHMYX7TTCu+cbVP94DQCgcdMbEOweZPdpXhDNu/tbVM29NNQ3UL0GTVvfh2DPQnbvqyybgyBovGYpmNWdaF/sXCt7nqy62URERETpKKNTBs4++2wsWbIE1157LZYvX44rr7wSRx99NE499VTcf//9yM7OxlNPPYV58+ahQ4cOsn1raw+tep2bm6t7nJycQ7eB1dXVWftDpJjwUgeA8Zq0kawoa87k+mBDvWJbvkt5kDUVxm+NJCKzYglYyfet+OrkyHuIgRiOd5DGbeNZvS6TN8R6S3TY/pIYhCRJoQAt0JxtqFYfV03t0r/GNh8AYtP+UIDWqKrvzw89rllwc9THjjXAnBzJKXdgc+YrG7UCjiZ5t89QtPkrfrFk7Naq51+n+bxh/Qvq+/x4tbWT0PhdlyQLPkfS3Lb6StnzIAPbRERERJbJ2ExaoHkhsNdffx2ffPIJJJWTq3379uHNN99Ez549cfbZZ8u2NTUdytR0uVy6x3G73aHHjY2NpuYYKfN2z549GD16tKkxk8mqTNpbh+fjqaU1sjZvsHn8HbXKk6xCtw276+W3p1Y0peAttkQpQrVmZ1wPaMHvs0bw1XP4pfJuEYK0uYPv1j9MeCauFDC16FG4QJW54KqqKBb+ah3UlQINUR9asGdFvW/SqL6/E1DuwKF8razKpFUT04JwmoNqfzb4yxZbfzwVgk3je5sVF3vSXHhNWiIiIiKyTsYGaevr63HGGWdg3rx5sNvtuOOOO3DVVVfh8MMPR1NTExYsWIB//OMf+OGHH3DOOefg8ccfxx//+MfQ/h6PJ/TY59Ovxef1HjrJycoydzIaqZRCqvE4bLhuUB78QQkBqTmo6rGbD9Ie3ckDaRjw72XyQG1DQIJazNdlF3DW4dmYuflQIOFAA4O0RPGT4BN5C4LCqvU+AThyu8sbIizUlDf8Qf0Dhde0lYKQxOhrulrxWic1gzAFM/HUFw5L0s8RIUgruIthc5cg+4irzGddJ7hecGy/ByZovGbMpI2sPiD/N/rzQP3Fc4mIiIjIuIwN0t5///2YN28eAGDatGm48sorQ9tcLhdOPfVUnHjiiRg/fjy+//573H777Tj55JMxZMgQAEBeXl6of6QSBvX1h26/j1QaId15HAJOOcyarKnh7d2Ktga/CJvKKhYOG9ApRx4YOdCYeoEBopSR4ICVJYtPGS1jYHW5AykIxBKcsuK1TmIGoWRBPeGEi1MmrS2nG8R6c7Xr9TJpBWc+Ol7cXNc4ULU2iiBtgt8XMWSUm6H5mjGTNqI6v/yzKs+p/C5GRERERNHJyJq0kiTh5ZdfBgD06dNHFqBtzeFw4IEHHgAAiKKIV199NbStdYZr60XE1LQuWZBuC4Elk9sORdZso0YmrdMmoF22PDCytSaA5fu92Fuvf1K2tz6AebuaMHdnI7bX8ASOyIhg/XbLx/RXrUbTjpkQfdXKjVZk0kbIkD3U0dogLaQgpGD0QVorSkskN5M29W6floIqpYskCcG67ahZ9Cc0bHojqlIBWtncuvQyaQWb+uNW9Oo5W3LxwwS9TNqmbTMQqN0M0VsV+4G0XjNm0uryi0HM3LFa1pbrYJCWiIiIyCoZmUm7b98+VFRUAACGDRum23fEiBGhx2vXHlrR9sgjj1RtV9N6e//+/U3NlbQJgoBsh4A6/6ET/C+2NqpeeXDZBbTPUm7556JqOG3An0YUYJhKZu6y/V48urgarUvpXj8oDydblA1MlI58BxagccPLUe3btPNz1fbGzW+HVn235x2B0okLYHMXtzrm/KiOJ2Mw+Go4mKu1f9hxAhW/wlV6VNTjBWvWxTQfAKhf9X8xjxG1FCt3IEkSgjXrFe2B6tWomDU+9Lx28Z1of+EuSN4K44NHcQFAL5NW8lVFHLviq1NQfPr36gMkOrNUJ0hb+f15lh1G6zWzZAHCNHbJnLcUC4XlOPTXZSAiIiIi4zIyk9bhOHSCHQjofyH3+w/detd6v549e6Jz584AgDlz5uiOMXfuXABAly5d0KNHD7PTJR3hi44t2eeFQ+Vd7bQBJR71E1S/CLy6Sr1kxaxtjQhf6+zLreYWfyPKNA1rn4t638pvzlRtr1vxaOhxsHYjmnbMlG337Z0d9TFDbE7YsrtE7hdrJm1YkMNfvgSSGIcFmkxo3DAtiUdPrSBtsHazanvF12fInouNexCoWoX6dc8bGldw5kX33jK6cJjG2L59c+Dbqx6kTXSGdSwZ5abYNLI/mUmraXdDNT7Y+quiPZflDoiIiIgsk5FB2uLiYuTn5wMAfvrpJ91AbesAbM+ePUOPBUHApEmTADRnyv7888+q+//888+hTNpJkyZBUKmXStELhEVQsxzKsgYA0LfICafOAmV7NRYRq/Epgwd1/tQKKBAlWuOm11Tbne2PjWo8m6c9ApW/yI+x+W3Zc3tWx6jGlh3HmYvCY+UZwAXHvKTsGGOQNlC9Rn7c7C6JC07FiafHb6LfOcUyaUWfRmasSmkA0VuBhjVTDY1bePybulnaOYP+otoenpmtRdAodwAA3l1fqW9IcLmDRAXs7VkdYM/rpWhnJq22sqZ6RZtNEHB0++4qvYmIiIgoGhkZpLXZbDjzzOZsrd27d+Ohhx5S7VdZWYk777wz9HzixImy7bfeeivs9uaTo5tvvhmNjfIMy8bGRtx8880AmrNwb731Vqt+BDro6gF5sudS6H/kju/iiWr8oMr5YjD1yicStQmCPbrfQ0fRYOVYYdmDkmgsmGTL7qy73dX5VBQc/QLc3c5C3ohHkHXEFOWxo6kb2kp23xvkDVIgpoXDBFdRTPOxgj3viKj3taKmbkKZqaErBQED5THyj5oKd7ezdC8AuDuO09hi8OKvXjDX5oAtq5Oy3WTQMtLvV0QW1yd2dTpFfYPgQNHJM4Hw32Vm0mryqXzGfnTilTg8ryQJsyEiIiJKTxkZpAWA++67D9nZ2QCA+++/H2effTY+/PBDLFu2DD/99BOefPJJDB06FKtXNy+QcPLJJ2P8+PGyMfr06YPbb78dALB48WIce+yxeO+997B48WK89957OPbYY7F48WIAwO23347evXsn8CfMDDlO+cmpJDWXL2jtrMOzo85gDqicMIrh9Q+IyJhog3Eqv7+CPewWW4MZf4IzP8KhBGT3vR7FJ/8PuYPuhGBTCWzFmEkruApkzyXRr7tgUmvZ/W5UNop+ZVuixZJxmWpBWrUrgZpdRdX6p6VnLUOnKVLov5z+v2/+O6X33tLappMha7SfINhV/w3NLhwm2LNN9Y+ngmNeRNYRV6hvtNnhLOyPopNmyNuZSavJF5S/F/KcbkzqPjBJsyEiIiJKTxm5cBgA9OvXD5988gkuvvhilJWVYebMmZg5c6Zq35NOOgnvv/++6raHHnoI+/fvx8svv4xly5Zh8uTJij7XXHMNHnzwQUvnT81sYcEbUVIGVtVq1EYiHRyDmbREFoo6GKdykUUIC3wl8rZstcCtCYpMXNFEJm34z43E1w1VFVOgNcWCtKayPUVltiageuEBiLAoXcxBWv0AsGpAViVo2fL3URAE2eODW43NJUEEm/qiVqESEWH/Nm3id6mN8oW9F1wxfg4SERERkVLGBmkB4JRTTsHatWsxbdo0fPHFF1i1ahWqqqrgcDjQsWNHjBo1CpdccgnOPvtszUxMm82GadOm4fzzz8eLL76IRYsWoaysDKWlpRg1ahR++9vf4owzzlDdl2IX/s9S6RUxf7d8AZ7wxcW01PpE5Lls+HRzA95Yo76QGAA0BNrWSShRqvDta67xHajdgqp5VyBYuwk5/W9G7uC79PfbPUvZGBZQCmgs5hQPRmuAagrLrGza+h6ye19t7NhqgZFgU9RT8e6Zjer510W9/55XLaizniKZtIG6baiedzl8++YZ3kcStcodaLxuuoFUrWCssX8D3fet4IDkLVc0S4Ha0GN/+VKUzRwRtls2bJ72yD/qGXi6nRl1JmrDpjeR3esyWBrklSTtRdUOvhbhQXGxYRf2Te8CSCJcHU5AwTH/hc2ln32fKcLLHbgMlPEgIiIiInMy/htWSUkJ7rjjDtxxxx0xjTNhwgRMmDDBolmRUUbirw6DMYRPNjVgfPcs3QBtC1GSFFm8RASI3ird7ZIkoW753+Df/wMAoHbpX+E+bBKchUeaqk3atPMz2fNgzTrTc42W2VvAw6llS9avedrgzuqBNtFbBZu70NQ8JElC9Y9XI1i3xdR+1kuNC191y+83FaBtJqrXMNb6+6FbkkBjmwXlDvwH1Bc/bdz8DnL6N9fWr/7pd4rtUqABwbqtqP5hCtyT90WdiVo973J4Djs3qn21SJBgixCkVctyFht2AwCatk6Hq/2xyDnyFkvnlar84UFaOzNpiYiIiKyWsTVpKT04DARKSzyHTiR65Gtfl1i234ttNcZOMGu8qZH5RZRo/spfdLdLgXo0bnpD1la37G/N23xVxg8UlC/U6CgapOiSdfhlirb84Q/D3eV048dRYXMVa25ztj8u4v6Bmo2KNm9Y0FlLdp/rVdsbN75qaH8Z0d8GArRImUzaqF5jSYQ9p5ui2Z6lvsCW5Ne5SKgRoNcM3hrcHwC8Oz9VbXcUHao56i9bpLm/6C2D2FQWU9kRq9+Lnm6TYM/tob5RI5M2XM3CP1g6p1SmzKRlkJaIiIjIagzSUkrzGEiTHdXx0AJDl/TL0ewXlIC68FXHiMikCL+TKotcSaK35UHUR5WCXkVb/phnYM857NDMHLlwdz0TuUP+FvVxAI2SAwAEZwHyRzwScX9X+6OjPrYj/wjVQLAkRbF4WCLr+Oowk0GdcqQg7Hk9Fc02T0kUg5kvd+DqdHKrblF85TOzKJ0UjHHhLesyqrP73wx7dkc4CtUXttKqSUvawhcOczJIS0RERGQ5fjullJZlIEjbOpA7pJ0bIzu4sHifcpEem9Bcl9aI1Lg5lyjxItVrVb8dWji4LYZgXViQtujk/8HmKkD732xDoHbrwdqZ7SAIAlztx8BR0B+B6jXRH8+epcjm7TB5HwS7W2OHQwRHXlSHzDnyVgBA9hFXovpguYiQKF67RAVH3V3OQMFxrwAQINjdqFv+d9SvfrLVRNI5SCsqApfZB8sHqNP5mxZFuQNXx3GHukVRS1k6uKCdZGSxNNEf28JbonUXDfKG/gMANNcTCNUJZl1Vw5hJS0RERBR//HZKKc1IJm24LIf6Ca1dAOr8DL8SxSZCwE01M+/g73EMmZ2hbNyWEe2e0GNHXg/lDo6sqI8FHFzZPrzNQIC2uWO0N7EcfJ3UVqyPKtCZmOCoJPpgz+oQeq7MLE3fIK0kiYrApWqN2tBGvZq0WkExg/tEs+Bdy++rgd9NSQrEmJ1t4fsgUgCxpdwBM2kN84VdbGCQloiIiMh6/HZKKc1jNx+kdWqcz+6qC6J3ETNpicwK1G5Gw7oXYc/pCkdBf92+VXMmKxsPBqa8Oz+P6viSJEJs3CtvtOkHTAVBY0Ehw2JYODCaYBkQep0ElSBtVFmxicpgFcPvXAj7EDYwj0DVWjSsfxE2T3vkHHkLBEe2dfOLo9pFf4Lgypc36mVv6tVZ18yk1dundZDW/MWBYP1O1Cz+C+pX/iti3wMf9jI9fmtqJUuiFSlrOLSdmbSaJEnCS+sX4Id9WxCUJGyoOSDb7rLztSMiIiKyGr9hUUrTCrjq76N+QhuUgH31baNGI1GqkAINKJs5EpKvEgDgLBmp29+3b56iTRBs8O6di+r515o8dhMEhwf1K5R1YCNmtWqt+m5Y9EFawws9KXY8uJ9dJZM2mizEBAVppWBYkDb8548wD9Ffj/IvjofoLQMA+KtWouiEN62cYtwE67cB9WGNOtmbgsXlDmRByCguDvgP/AT/gZ9M7xeNmkV/sm6wSD8rM2kjemLlHNy+WH1BOYCZtERERETxwIXDKKUJggCNmKumHKf2DivLo1h8hyiDNax7MRSgBQB/+WLTY4j+WjSsf9H0ft493wIAmlQycG3OAt193V1OM3281jw9LpA9F1yFxneOOkAsHNw9X7nFHkX5hgQFaT09LwxrkX8GR8oC9u6YGQrQAkDT5resmlpSSP5qna3af5+0Mk0Fg+UONOuzthH+Az9ZcPHkoAhBWrHpYFYoM2k1fbZTv2Z3vtOju52IiIiIzGOQllLeGT3MBSdGdXRDoywtEZnkr1oV8xj27M7w7Ztrer9gw04Azdm8ijEL+urum9P/FtjcpaHnBUe/YOrYuUP+BsGRe/CZgMLjXjW8r7PdUaaOFXIwY9LZ7mjFJkfhANPDSQmoBSu4ipDV46KwxvBgoX4BmUDNOmsnlWT27G7aG/WyYlXrOcN4uQMA2X1+qzOz5LPndLdmoEgLGLZ8ZkRbeiQD1AeUC6y2dlHPIQmaCREREVHmYAoBpbzL+ufipz1eVDQpAw6/G6xcRf3wAicePKYIP+/x4uNNyuCOEUYWuibKCBZk5wmOnOh2bKl1GrZYUf5RUyNmDdpc+Sid9Cuatn0AR34f05m1jrweKD17Gby7voCzeChcHY43vK/NVWzqWCEHA3g2p/L1ilSDU1UcM2kLjnsVYtMBeA47B/acLrJtylv6I3ygptkHrrNkmM7WKMod6F1vD3tf5B/9LBrWm7sgkVBhi6xFK2LWcEsGbdSL+KU/nyj/XD2r25EYUNgRDpsNYzsejlM690nSzIiIiIjSF4O0lPJsgoAJPbLx5to6xbZsh/qJWs8CJ3oWOLGtJoBlB/SzRYhIm24NTTOiCMSFap2GBXZsnnaG9rdnd0JO/5tNH7eFI/8IOPLN7y9EWcux9W3ttuzOEBt2t9oaRSBTil8Nbk/XM2HzlKpvDA+gRfy3T9ACZ4misvBbiG7QUON3TWcfIex2fkGwQXDkQAqEF8qNr/wxz6Hm5xsi9pPCsoUdhUciULXa8vkIB8sqRF0fOgP4w4K0l/Uajgt7Dk3OZIiIiIgyBIO0lBby3eonr1kR6hp4NIK4RJQ4geq1EBt3R+4Y7mAmrRQWTNBbmCmlyYKbxj67xKYyBBv3QGzYA0CSZwzHsyatmWBjpHnEME9JEhGoXIFg/XbYc3vAUTgw6bVZBb26q7pz0whmmyh3oNkWZ4aDoWL4InMW1agNF/qMYJBWjSRJWF21T9bmYv1eIiIiorjjNy5KCwVu9ROtrAhB2GiDtOl18y1R9MIz36LhO7gAmOljtyykFJZJG9Wt/ynBXEDJt38+Kr6ZKFvYDQA6TTn4CRbXhcOMB2n9ZQt0R5Ki/MSVJAmV350H745PQm3uw85F8UkfRTWeZfQyaXWD71qvg/FyB81tSQhMGgyMh3+e6Aa0Y9HyGrTxxdSS5XfzP1S0uaK8A4CIiIiIjGMKAaWFAleUQVo7T9CIYhGo1l8BPJ6klqw7MayOZZpmfAV0FmmTVEoG1Cz4gyJACwCBmk0AgGDDLusmF85kIFD01WhvjLImbaBqlSxACwDe7TPgL1tieqxg3fao5qBGL/BocxVq76gV3NV7rVWCtPbsrtr948VucIHP8Is+cQrStpSBEHQD5pnpQFMdXlz/s6LdZWeQloiIiCjeGKSltNAl16GoP5vjFNAxR/+kQm2xMSIyTnAqF+dLlJaap1J4bdU0zaRt2vZBq2eRLzD5yxerj7N9RvMDkzVpzSzwpve+cBT2V7SJ3nLtwaLM+BUb96q2N23/2PRY3n1zo5qDKrtbc5PnsEma25wlw1Xb9epCCyqlPwqOfk5ncvEgwN3xRGT3uyliTyms3EG8gqj2vCMAQLtucgbb11iraLMJAgYXdUrCbIiIiIgyC4O0lBZcdgG3jSjAEYUOFHts6F3owB+HF8Bh0w9kHNtZ+2SZiCKzZ3VO3sFbMmjDyx2kaSatZcHnUC1f44smOtsdjaKTZgB2T8S+ucMe0K376iwepmzUDcQqM2nVMoeVQwbUN0SRnWnZAnkABJv2352sI67S3k8rY1Yvk1blFnVn+2ORO+Rv2vtYyJ7THYUnvAV7Thd4elwYeYfwTFq7fpBWcBZENa9k1yVuy/yi8nfx3bGXoX1W8i7IEREREWWKND2TpUw0uNSFwaXFpvZxRSh38MhxReiYY8eUr8pk7VHefUuUfpJYp1ASW2rSZsjCYSYDmdrDNAfCQjV9I3AUDUbpmfMBNGdmRjqSq3SUfgfVoKLOqKo/t4SI2cSSepA2bnVODRJ0MmmjusBgstyBIAjIHXQn6n75u/ljmVR6zgrYDmZVC45s0/tH+rdqN+lXHPhkECS/TrkMMsUfthBjtsOJ3/QckqTZEBEREWUWZtJSRouUaeu0WZk/RZSOkvgbcjDIqMiYTNNyB7JAZiyZgC3ZigYzaWWBMiOvbaQguVpQUTcArbLNSAkEzUzaaAKhFr7PdYK00dErd6Dx75WgQHXr4+sFp7UHiDBPuxtJ/QxKQ+FBWkfafp4SERERtT0M0lJGc0T4DdDazkRaomb+cvOLMFlF9FU1PwjLpE3bcgcWaSlzYDSTVhbQM5I5HXHRMGVQTbf0gtqiaAv/EHH+YkBZW7P58Ml9fwgGSkaYG1Avk1bjZ01U4K3V8aOpLxspk1awua0NoKtoWP/fuI7flgRFEbct/J+szWnjqQIRERFRovCbF2U0R4STO6dNALN0iLQFKpYn7diNG19pfhB+W3tGZn4Zv3TUsO7F5j1EY0Ha1oEyzcxMM3NRCSo2rH9JezSVrNmGtc+icdObuodpWKu+QFY0QXy1OURLryZtlAPqbFP/90pYTdbWr3U0P3ekIK3dhXj/ja6efz0CNRvieoy2YvrWX7CobIeszZnEkjZEREREmYZBWspoRR79X4E8F39FiNoqV6dTASjLHaitaJ8O8kY+GnocqRCLFNTOTJX81c0PdPq0FqheH3osNh2I2N9ZPDRCD+XcG9apB1SbqQd9q+dfq3sU/4GfVNuDtZt191NjaR3bCGPlDX/Y1HB67wV7didTY1mt9WJn0dSkzT7iSv0Odg/yhv1D1uTudpbseVYv+Ri5Q+6T9z/snIjz8B34OWKfdLC0fKeirVNWfhJmQkRERJSZGIGijFaapZ0hUui2wWUX4n0nJVHKktrKCnqKhcPSM/Mru8/1xjtrLJol62Iwk9bV8YTQY0fR4Ij9bW79BRxVszh1yx1Yl8XaPFzk10Yhmn00RMpize5zPex5h8vacgb/VWdA7a9yjqJBmtvCj2G18GCzzVVgegxn+2Ph6XFR8xN7FuwF/ZofC3bkj/kPBMGGrF5XwFkysvkYWR2RN+wB2Ri5Q+6BPac7AMBROBDZ/W6Sz3Po3yMHkNvKZ12ceYNBRdvdQ05OwkyIiIiIMlN6phsRmXBmzyx8tqVR0X71gNwkzIYohVgcPDNPbA4Uhwdp07QmrW6QKyyIJIW/JmpUMmnbnb8JBz7sJWtzFA4IPfZ0Px91lb9qDim4iiIf1zSLA2QRa+aqzMDgImtWsHlK0O6c1QjUrEegchWcJcPhKOijNzvNLYLOz5o37EFUzb0khplqjDv8IXh6ToYjLAgczcJhgs2JwrHvIDjsHxBcBbBndUCgdgsEmxP2nK4AAJsrHyVnzkewdjNsWR0VvyeO/CNQes5KiA27YM/pDsEhrwnsLB6M9hfuRrB+O+p+fRhNW95VmUhmXK31hV2MmNxzKM7vEfnCDBERERFZIz3PZIlM0Dr10it1kBk5NUQRGAkExvX4omqgOF3LHchFCBoZyPwMz6R1d50Am1qQtXWgL0Jg3tKyAIcOavF4UQTcRL/Fc9An2N1wFg2CUycTtoUkRvl7GEWwOhJ7Tnfk6mX9mmVzQhAEWZDakddT0U2wOeEo6KszTC5settdBbC5BiGr1xXqQdqkX5BKDG9Q/rnROZulDoiIiIgSKRPOZIl0ad162hKkVdt6y/flAICjO7nx+6H5cNgyI8uGqDXf3tlJPb5352fqt8lzoRtIEcod+MuXQwqGlTvQXNipdTAvQrAqHlnMFgfIolk0S0pwkNacKF+fOARp4ciybizBrpsJHA9ax2vc8DIkXzWyel8FmzMPQPN7onHja5BEH7KPuAqClT97HK2vPoDpW35BlU95B9GCA9tlz11pelcCERERUVvFb19EGvKckU/kf9rjxcK9B/D2hPYJmBFR2+Hd/Q0qvj4t2dNA9YKblY0ZkUkbLizbNEJ2ZdnMYYdqfR7UfDu68nOvdeAqUhkFReDXClbXA23j5Q5MizqIbf3FRSlQb91gccnKjkT9NfHtmwvfvrlo2PgKSs9aCkEQUDX3cjRtfQ8A0LTtQ5Sc9m0iJxqVvQ01OPqzqajwNhjq77bzghcRERFRInHhMMp4WqepuTrlDloLSkCdLzNuhSRqUb/mmWRPAQDQuGGaok1IgYXDXJ1OMtVfschTpGxQAwuHtQSYQkPaXBrjtmqLEBCUvOURj6tGcOrU27W7ohpTiy2ro/md2nAmreCM9pZ064O0Yv0Oy8YSbNb+uxs8qO7mQMVy+PbNgxRokP3++PZ8h0DNhnjPLmbf7dloOEALADmOJPwbEBEREWUwBmkp43kc6ieqZkoYVHkZpKXM4t3xiaF+eSMfRf5RCQ7opsAtukXj3jfVP3/kE6b6SwZq0irY3aqBMVnphDjV5nR30c7KtukFcHXY83urtjsK+pkeqy1n0tqzoryTIwmLYXl6TjbeuQ1l0rYWrFkHKaAMdAbrd8ZjQpaqCxh/HzttdpzWRbuOLxERERFZr+2fyRLFWY5KWYMpR+aGHhs5jfUGuZQYkZqswy+DLasjvLu+aK4ha4LNXYrsvr8F7FmoW36f8QBhCpQ7sLmLNbc5igYjUPmrrM1ZOiLCiGGfQVEs6ibYXIBdpS5t6yxSi4K0OYPuQv2KfxrqG6nEghZ7TjcE1bIboymf0IaDtFoKjn9Dd7tgMpPW2f44OIuHomFt9Bddisa+gwp/Hbw7P4XgLmkujxBsUp9fUjJpDbwmkgT1bwZt/3tAMOz3t0NWHiZ0VV60yHW4cVHPIRhc3DlRUyMiIiIiMEhLhGyVTNr22eZul673t/2TM6KksDkgCAKyDr/MdJDW2f4Y5A1/EACQN+Ru1K/5D2oW/D7ifqlQ7kCL4MyHu/MpiiCtMigUe7kDxbHtbtWFk+RZpNYEaYXwYLBeIDbKIG2kurxmtO2Fw4Dm94P875DiNVbsYu5mqqzDL0VOv9/FFKQFgOJTZoYe7327CJJmkDYZmbSRXxNJEtVfuzhlmVspIMrn2L+gPV4+7iKN3kRERESUaAzSUsbLdipPtvJa1aM1klhT3mRdMICorTOzOJTQktVqsyBwajSolALlDrRIog8QYg9ORVXuQCtzUYxDuYOwf0tJZ1zJVxXlQbTGTMNMWsGmEsyO9PtiLpPW5io01d8IQXBo/2skI0hr5A9+sEl9gbQ2FqSVJAnb6ipR7T8UBN9RXyXrY49iET0iIiIiip/UPZMlsohaSdp8l7mT1+d/rUWWQ8CYTh6LZkXUNgVqNqLimwnGdwhltVoQDDAaUEjhTFoEvRBUF8qKlDkbXu4giiCt1tCtskj1gqlmKLKdNbJlG7e+j4b1L2qOE6jbBkdud0W7JPrh2zdPfacoyh349s83vU9CqQVpIwUcTdakFeIQpBW9ZZrbgg27LT9eZJFfk5pFt6Fm0W0qW9rOHTVNAT/O/vYVfL17vW4/exLqEhMRERGRNl5Cp4xnV1kgLN9l/lfj3XUqmTVEaaZuxT/V63xqEA5mtUZTgkBw5MieG82oFFKgJq02CYLdwMWeSMGVKEoE+PZ8q36oVkHj8H+T6IV9xmoEf6tmX6g7Sv2qJ1XbfXvn6uxlPpjmP/Cz6X0SSW1xtUg1XQVbhHII4cdwF0XuZOS9a1Sw0bqxjIohY9qqCxhW+GrXuogBWoCZtERERERtDb+dUcbrW+SU1aXtkmtHllp6bQR76lnygNJf44aXze1wMDjrKDzS9LE8PS6QPdfMjAxnRWmFJHK2GyN7LrgKYcvqaGqMaBbb8pctAgC4DztH1p7T/5bQY0/3c02Pqyr83yjKurMNa/6t2t646XXNfaQosowdxcM0txWfPsf4OAX9TR/bCLVFwtydT9Xdx9n+GFPHcJY0L16XN/xhzT75o58yNWZbI3rLo97X5mln4Uxis62+0lC/AUUd4jwTIiIiIjKDQVrKeC67gBuH5KNjth2H5dlx/aA8CFHeAihGs2o4UTo7mNXqKOhjarfs/jfD021SlMdMjSCtPV/9NXF1PBE5A++E4C6BPe8IFB7/JoSIgefwcgfRfxblj/gXnO2PhT2nO/LHPAt7TtfQNmfJSOQO/TtsnvZwFA2J+hhGMmmlGH4G3UBs0Hy2pKSS1WnPOQx5wx+Cq8PxhscpOuVT08c2wt35FNk8Co59OeLCYTZnLmxZnQwfoyUrPrvvDfD0+A1s2V0VfbKPmGJ4vDapDWXDxqIpqHz/OwRb6D+P3YEJXfvhrsEnJ2F2RERERKQlle8JJbLMqI5ujOqofkJrJlzrFwF3asSHiBIjittpO1xSBZtLefu20d9GIUVu4XUU9EewRnlLsiAIyB/5CPJHPqKzd6TXIvoAp6OgD0on/KB+VEFA3tD7kDf0PgDAnleju6AVXv5CNfM3yuzaSCTR+MJ3IcEm2dOik/8HT7ezTA3RYfIB2Dyl5o9tgGBzoOQMvRIP6rJ6XYH6lf8ytY/NXYiicdNNHysVRJOBHhLNYn1x4g0L0p572EB8dPKU5EyGiIiIiAxLjTNZohThCzKTlqi1qLLSUyTIGrN4LtrT1jMCFf/GKvONU9BLiiaTNiDPpBXsWVEcue0t0qS+SF0GiyVIG6eLCtEIz6T1OJxJmgkRERERmcFMWqIIzMRRvEEJefGbClFGiGaRsYynKA3Qxi8YhQVpfXu+w55XBQjuEmT3uR55Q/9mOKsxWL8D9pxuxo8dRSZteLmDqIK08QzKR8vG4J1MDBc3osrQtohfDOLuJV/g2z0b4BdF7GmokW13p3idbiIiIqJMkSHpSkSJcaCx7WTSEFlNEhP1/uafpsgiBPzaen1sjUC85C1H/Yp/on7NVMDgAl9Vcy9XGUg72CYFLQjSOqLJpG17BIFBWpkYsmHrfnnAwomY88TKOXhs5WwsLd+FFZV7UOatl2332PnvTERERJQKeCZMZKEGfxsPjBDFIFi32VR/W1bH6A6kcQu2p/u50Y3XRmX1vDiOo5vPCHRHu1BbK4YXE4tQ0qJ28e2GA2a+fXMUi4z59v+o2V8SzZU7kCQJEP3yRpu8hrmn+3lhzy9QjCM4ck0dNxHcnU9VtOUceWviJ6LCUTgg4cd0tj826n19e2dbNxGTFhzYrru9Q1bbe+8RERERkRKDtEREZIiRDER7Qb/Q49yBd8q25Qz4k+y5VhBXa+Evd+fxEY+fSsIDe7GRBynDg5ZG5Bz5B/P7DLxD9rz41C8N7WekpIVkqiZt2M/vq9LuajqTVuW1DHuPZvf/QyhwK7gKkTv0fmT3+W1oe+6Qv7XJ+q/O0hGtgvMC8sf8BzkDb4c9p7usX/6YZ+Ny/PyjntbcljdCb+G8+HAW9oenx4UJP26sgjqZ46XuHFzWa0QCZ0NERERE0WJNWqIIzFQRFJlIS+nMQAZi6cRF8O2bB3tOVziLBsm25Y96HO5uZ8O3bx5y+t2Aiq9Ph9i41/DhBUeOkV6Gx0s2wRbDn+CI9U3NfxjZsjqY3id/5L/g7nomfPvmIqffjbC5i43taGRxODO3nktB+Zh65Q5MZtKqjRV+IcHd8QS0P38j/BXL4Cw9Cvas9sg/+jlk9b4ags0FZ8lQc8dMoKKTPoJ//08Q3EVwFh4JACg9ezn8FcshesvhKOwfardaTv+bUbPgFtVtnm4T43LMSArHvou9W6cn5djREsMuykzuORRnHzYAWXYnjuvQE6UeI5+dRERERJRsDNISWSj8RIkonUjByMEtmzMXnq5naG53dzwB7o4nHHxmMqBqIPtScHLpPgBR1aQV7J6oDiX/NzV8sMh9DNakBQCIQdkiWJKVNWnVxlIJMttzusKe0/VQF0GAq91oc8dKAkGwwdVBfpu/zV0Id6dxyZlQkgmCAFt2Z4gNu5M9FcOksIsyw0q64OLDhyVpNkREREQULZY7IIpAMLEiNzNpKZ2ZzkCMyGyQNvKfLMGZmbUXWwdp/OVLUfndOabHiDZIGxUD/5ZmFqqTFFm3Oh/Gpt/HamPx61N6S52MfADYUFMme55asyciIiKiFjzLILKQ+aV6iFJHoHKFtQMaueW9dXcjmbSOTMmkVQ/DeHd9hbKZIyD5q82PGLYYVjwJBr5+NGz4r4kRwz59dTJpG7e8Y2JcjbFMXLwjiqeVlXsUQVob359EREREKYlBWiILMZOW0lmgaqWl4znM1rk0UMPVWZT4FeFj4eowVvbclt05pvEqvj496n0FR1ZMxzZ3sMgB9/pfHzY+XljWrT3vcM2uNnep8XGhVTqBX5/SmbNkZLKnYNgHW39VtDltBsqJEBEREVGbw7MMIguxJi2lM8FVZOl42UdcpWjL6nWl9vFb1RzVkqUyZluW3f9m2fOcI/8Y3UAWfPYIjuyYxzB+MIu/foSVO8jqcaFm19Z1Y42JvHAYRS932APJnoJC3oh/mt/JSJ3lOKj0NiraTuigfZGCiIiIiNounmUQRen83sqABjNpKa3p3EIOAKWTlBldelwdjkXh8W+Gnru7nYWCo5+PamotkrUifLSyepyPgmNfgafHb5A36gnkDLjN4J7mb2fO6nOd5jZ3t7NNjxcTiwNa4TVpJb1FxxT1ayMNbmzhMIpO7qC/JHsKCs7C/ig6+VNT+9hzu8dpNvr8Ye/n7rlFGFrSJSlzISIiIqLYRL53lIggQLl0zFEdPfjlgA8bqw4FA5hIS+lNP0grOMwv2pXV61Jk9bo02gmlhezeU5Dde0pcj2HL7orCY15E4/qXoLYQlvns0thYnokaHkgV/dpdTQdp1T7YWfPTKoKBMibJ4Ol2pqn+UrApTjPR5xfl7/1zDhuYlHkQERERUeyYCkJkgNopul1Q/gJx4TBKV1LQh2D9Dt0+Rhb2oniJcIWoZSEhrX8jIcGBMqvfK+GZtEGfdl/RZJBW7ZOdmbQURgo0JOW4vqA8a9xp43uTiIiIKFXxmxxRlOw25QrK/11RC1+Q6bSUXupXP429b7jRtOVd/Y4M0iaOydXbhZbMT40yAAkPsMe5Jm3Dmn8b7ht5bAZpKTLJVwXv3jkJPWZZUz1e37RE1uZqo5nJRERERBQZzzKIomQXBNhU4iRL9nsTPxmiOJECDahZ+AdjnRmkbcP0g7qiryox02hhcZCzdQkDf+VK/b4m73mQVGsxs9wBKdUsinLhvyg9u/ZHRRszaYmIiIhSF7/JEUWp0G1DRZPy5P2dtfVJmA1RfAQbdhvvnIDswvxRT8b9GKkpQgZ/hOy6pm0fWjgXA0Sdhb2i0SqQWvfLgxGObTKTVqW+bVuto5ouHIWpWVc1WLslocfbUFOmaOud3y6hcyAiIiIi6zBISxQll13AxMOzFe0iVw+jDJWIW+azjrgy7sdIBYLJTE7BnqW/3ZkXy3SSr3UJA0l70TBFXyNDi8q7IwS7x9QYpK/gmJdkz4vHf52kmaQWX1D5Xj6/+6AkzISIiIiIrMBUEKIo5DmbAyTtspTXObIcvPZBGSoBQVqbuwiCuxiStyLux0ongt2tv92Rm6CZtIj+YlbHKwLY+7r860vrcgeSSuarvLPJIG2wSdlo0389yZzsPtcgu881yZ5GyvGGZaQ/OPx0eBzOJM2GiIiIiGLFaBJRFFrW7BFV4gzZTtYqpAxlS1BNWmarK0V6TSJkftqcCQ7SqtZ5NUitrEbrwGuEIK16jVkdwbBMWsEBIVHvdSId3qA8SOvi+5KIiIgopTFISxSFljBsrV95sp/jYJCWMlMiyh3QQUL454yE+rXPanePEKQVHDkWTMo4KYZMWkEQlIHaVoFXSfRFOLi5TNpg4x758VnqgNqAn/dvw5e71sna3HbeIEdERESUyvhtjigKwsEASbVXGaR1M0hLaSRQvdZ454QFaZlJG65p+ydo2vKO5vaI5Q4Snkkb47+hYJdn47YKvPr2fBfh2OaCtJXfnCnfPVBnan8iq1V6G3DyV88r2t1c0I6IiIgopTGTligKLWHY3kXK2m+BGO7iJWprgnUmVisXkhsgcHUcl9TjJ5NegBZAxBqqrk4nWzibyBx5PaPbr3DAwUfyry+SmcCrySAtZS7BXWxuh0hZ3BZZcGA7GgLKsh7FbuVipkRERESUOhikJYpCy9pgfVWCtP4gs/wojRgMvGb3uzGpdToFRw7yRz2RtOMnnrmMfcGmv5iQp9tZsUzGNEfxsKj2Kzi6OXtQ8V4zEXg1E9CVwhZmosxSeNzrpi4+SYH6hLxnqnyNirbuuUU4pXPvuB+biIiIiOKHQVqiKNgPljuwCQIu7iuv5ehXW02MKFUZDGjlj346zhNpReVW+dKzf4GzZHji5pBqIgRphQiZtlYTBAHtL9hmah9Xp5Ph6nDcwQHCg7QmbmEw0VcK1Bsfl9KOp9uZKD17KQrHTYer44mK7e4uZyjaJF9V3OdV6/cq2had9QcUMZOWiIiIKKWxeBVRFGytkthynPJrHSpriRGlLgMBLVt216Svdu/I75XU47d1kTJpEaFmbTwIrkJT/R0F/Vo9C184LD7lDiR/rfFxKS05iwbBWTQIUqARvr3fy7bZPKWK/qKvUrXdSuFB2lM790E7T4LrShMRERGR5ZhJSxQFR6vfnLAYLdZV+rGyzIcAM2opDUgGaiwKjqwEzKQ1/m6ZLXcQ6ZbtRGfSNh/T5HViodWHbdhFgZpFf4borTA0jNi0H1LQWO1Qo2NSBhCUX5kFezZg98jaRG9l3KdS42+SPc9zJv73l4iIiIisxyAtURRayh0AgNOuDJY8sKAK/15Wk8gpEcVF7eLbI/YR7IkO0pJZkTJphSRk0kYqwaDQqsyFEFbuwF+2APveKTEcVN37hhuSqJ9RK4lBlP1viLk5UtoSVIK0EGywhWWES774B2n/vvxr2XMGaYmIiIjSA4O0RFHoknsoQOCyqWe0LdzrRUUTVxGn1BVs2GOoX6KDtI6igQk9XlpQCzC1ZjZgagUTCzIBgHfnpxH7lH95kuHxmnZ8on+8Hf9TbRfcxYaPQelE/XfI5iqSPRfjXJNWUqnJ7TablU5EREREbRKDtEQGTOolX4zjN30OLRbm0PktqvPxtmxKXWLTAWMdExwgyO5zve5zUgrUbAAA5Bx5q+p206UHLCAI5ko2BOu2hh5rvTcDlb8YHs+7/WPd7U3b1YO4hce9ZvgYlEZULnRIok9Rz1kS/XGdRkClTni3nMK4HpOIiIiIEoOX3okMuKB3DkQJ2FUXwEndstAx59CvjkMjkxYARJWMF6JUYaQebTJk9boCYuNeNO34FM7iwcgb8a9kTynxTAY4s3peDADIHfYg6lc/FYcJJZar44mKRZxa2HK6QazfEXpuz++LYM06RT8p0gJiGovhubueaXyilD5UgrTZva9GdcUyeaOBxRZjERCV408+fGhcj0lEREREicEgLZEBLruAy/qrr5ysFyqJ76kaUZwZDtKaXMQqRoIgIHfQncgddGdCj5vKBGdz9r/NmaMb4EwV9pxu2hvDFgXL7n01apeovFci1KTVel+bzQCmdKH8dxccuYr6yIgU/I9RQGV8p403xhERERGlA36rI4qRTiItRCbSUgqTgl5D/Ri0avsER07kTilE7+eRRPn7VnBka3TUDqY11/3k+5paUblo1fw+DPsqnYRMWkd4oJiIiIiIUhIzaYniKMhUWkplbbTcAQFmA4jpF6TVCLxCeXFBq69auYNg/S5UzpkM//4fYpsgpR0p2KhoExw5KmUx4vuH36+SAe5gJi0RERFRWuC3OqIY6SURimAqLaUu4zVpmXHY1smCtOmQ+ax3S3lYME2wG8+krV1+HwO0pErtzgLBmYvwr9JSxDIasfl0xxpFm0OlXi4RERERpR5+qyOK0eEFTs1tLHdAKU0MGOqWO/juOE+EwgUqfzW3g2zF+bYTpHW2O1r2XHDma/bN7v+H0OOmnZ8bPoY9r6f6Btlr0ixQudLwuJRZXGHvVZunHQRHtrImbZwzaSt9DYq2ApcnrsckIiIiosRgkJYoRm67gKM7uVW3BRmkpRQmGait6OlxEVydTk7AbKg1V6dTkj0FS+SN+Cds7lIAQHa/G5HV63LtvkPvDz0W7OqfuWpsng5wlAxXtEuBOmWbpH9hIrvfjYaPS+nFUTwYWUdc1fzE5kTeyMcgCDYgPIs1zguHqc5NUXKBiIiIiFIRa9ISWeDW4QW41i/imlllsnZRYpSWUpkySOvucjoKx02HYHNBCjRCcBVw4bAkcLUbA9+eb4zvIAu4t51/L3fHsWj/mx2QRC9srgLULLxNtV+HiytgcxeGngv2LMPHEOxuFJ/yOfa/11HWLvprlZ1VsmtbcxQOMHxcSi+CYEPhcS8jb8QjEBw5sDkPlhAJz6SN88Jh4U7r0jehxyMiIiKi+GGQlsgiuU4bSrNsKGs8dILGGC2lNJVggz3vcNiceQDMZTOSxUzWoFRbJKutEBweCGi+XVsze9smLytj5r0n2N2K/QFA8tco2yIEaQWVcSiz2LPayxvCfhfb8u8aEREREbVtDNISWSg8bMJyB5TS1AJmvPLQNphdKKj1bfxtOfNZI8ClqPtpN16DU7B7AJsyqCv55EHaupVPIFi9Vn8wm8vwcSkzCGG/i2LDnrgdS5IkvL15WdzGJyIiIqLkYk1aIgvtb5QHtVaW+ZI0EyILqGY1MkjbJpgO0rYOfqZekBY2+TVlM+UOYHNDUKnZKbbKpG3c+iFqF/854lDMpCWFsAsI9asehxSni1lvbFqCpeW74jI2ERERESUfg7REcfTF1sZkT4EoapJKQNZZelQSZkJK5v5823MOCz12dxxn8VysI2hlyIYFwpwqC4FpjqmxqJKjoF/ocdXsCwyNJQWbDB+XMoPaBQOxfkdcjjVj20pFW7adFw6IiIiI0gWDtEREpE4lkzbr8EuSMBEKF36LdSSOgkOLC2X3/z1snnah5/ljnrVsXrESnPmKNlenkxU/r7vzaTEfy93pJNP72HO6x3xcSi+enpMVbcGmfXE51ra6SkXbhT2HxOVYRERERJR4rElLRETqwoK09tyeEOysydkmGAzSenpciMLjXpO12Zx5KD37VzRtex/2vCPg6XpGPGZomeJTv1I2RlFXN6v3NWjcMC30XHORMh2amb6UsbJ6nI+qsDaxqSwux9peLw/S3jFwHCYfPiwuxyIiIiKixGOQloiINMiDWK2zLynJDAZpi8a9p9puz+6InP43WzmjuFEvV2A+SCuEL/rVejE1gySRdcZJyVE0GIHKX0PPxaYDlh+jIeBDubdB1jal9yjLj0NEREREycNyB0RkiCT64StbhGDD3mRPhRJFkWnYhhecyjjp+uc7ju+xsMXHJNFveggp6LVqNpRGwi9gxSNIu6O+StHWLafQ8uMQERERUfKk61keEVlI9Neh/LOjUf7paOx/vwsat36Q7ClRIoQHaU3WQaU44r9FFOQB4Mb1/zU/hMggLSmFB2lrF//Z8mM8/Mu3sufF7mzkOt2WH4eIiIiIkodneURxJkpSsqcQM++uL+AvX9L8RBJR9+vDyZ0QJYSEsPcuA4NthtmFw1KF4Cow1i+K2rC+3V+b3kfB5ox9DEo7Nnexok0KWlsa472tv8ied8k29rtCRERERKkjPc/yiJLEqfIbFTC/Nk2b07j5bdnzQMWyJM2EEioskzZdA4MpycC/hbvzaQmYiLWye18DtKod6+52lmo/R9Eg02MHqtdEPa8W7s6nxjwGpR9HXm9Fm+SvtfQYHru8XIeDn8dEREREaYff8Igs9MAxRYq21M+jBViLNEMpatLyT0bbof9v4e56JvKPfi5Bc7GOzZWPopNmwNluDNzdzkbBUc+o9hMEaz+T7HlHRJ5bdlcIzKQlFZ7DL1G0SVEsTKenMSCvofzoqDMtHZ+IiIiIks8RuQsRGZWrkkrbXO4gtYOcgqC2ujqlP9akbbN0/i1KJvwEV/sxCZyMtTxdJ8DTdUJiD2og6OvudGICJkKpSGiV/R0iWhekDYoifGJQ1tYpK9+y8YmIiIiobeAZN5GFbCrn+WlQklaxKjplCMXCYal9sSGt6AXM+e9knhSM3IcXq0iL2t9II+8pg5qCfkVbloNZ3URERETphkFaIgupxUaumlWGy77Yj7311t76mEiBypW625u2f4IDM0egYtbpCNRuTtCsKN5EX5XsueSvT85ESEG/PjCDtGYFjXxuMZOcNKjdbWJVuYM9DTU49asXFe1ZdgZpiYiIiNINzziILGTTyGDzi8C0ldYuIpJIgSplkFY6mGUp+qpROfsiBMqXwrv7K9QsuDnR06M4qVt+v+y5v2xBciZCSnpZncykVafxmgUb9xkcgF+ZSEMcM2n/uPB/+OnANkU7g7RERERE6YdnHEQW0vuF+rVMebtiKhObDgAAGjZMA0RvqN278/NkTYkog2h/2tg9HRI4j+TxdD8/Yh9X5/GhxzlH3qrap/qnGwwdTz97mTKaWiatRTVpF5btULQVuDzIc7otGZ+IiIiI2g6ecRBZSK0mbaqTtIrqHjwBlbyVCZwNEQHQvfXenntYAieSPLlD7oUtq6N+n0F/CT3WCupK3gpjB2RNWtLQHMAP+wJgUbmD/Y11irZ7Bp8Cu41f4YmIiIjSDb/hEVkoHYO0Wieakug/+P++RM6GiADNIG1W72sTPJHkcRYPQbtz18Ke30ezj7vTiaHHgt0j32g7eLu43WBGIjNpSU94yQMx9nIHTQE/6gJeWdvXp12PPw8aF/PYRERERNT28IyDyEJpWQpS1CjT0BK81dpORHHDW++b2VwFcBQOMNg5rIan6IckSRDC27XwNSc9YZnWViwcdqBJuVjjsOIuMY9LRERERG2TykoHRBQtrYXDUlGw6QAaN70JmzNfvUNLuQMGaYmSQCtgqFGeJI0JBssQCILyK0/9ysfg3fmZsQMdXCyRSI0gOOS/fRYsHLa6Wr6onV2wocidFfO4RERERNQ2MUhLZKFIIdqmgAiPo+1nY0lBH8r+Nxxiw07tPqFMWpY7IEo4razOTAwkht9mbqJf7ZI7DR8m2LDLcF/KQOEXC2JcOEyURJw+67+ytlJPDmzM6CYiIiJKW/ymR2ShSDVpv9/RlJiJxKhx85u6AVoAoTIHzKRNT4GajcmeAunRCMYKNleCJ5JCjJY10ODfP9+iiVBaCrsIEGu5g18r9ijaOnhyYxqTiIiIiNo2BmmJLGSPEKRdV5kaAU1/2eKIfUInoGlU4oEOCdZHCNJTUknBRtV2wV2U4Jkkn+DIMdZPpdyBGVbUGKX0JYTfSyPFVnpkX1Odou3c7gNjGpOIiIiI2jYGaYksJAgC9KoZuCJFcdsKI4HXg7dyqgU+JAtWtaYkU3kP5A3/ZxImQmqkoEZWfoyBoVRkcxkMTJvIpM0/+nllYyaWkqCkqfA2KNruG3pqEmZCRERERInCIC2RxZw6NQ+cKfMbZ2CioUxa5aI9mgEkSiEq72ObsQWaKP60MmmBzAsk2tzFhvoJBmvXerqfj5y+v1VuYJCW9CgubMV2waS8qV72/PgOPVmPloiIiCjN8dsekcX0kmX1ArhtioFM2lAtWpUgrb9sAaQAA7WpTFANBvBPRpvBTNoQwepMWs1F2XiHAOmxJkjrCwawsnIP1lTvl7UXu7OjnBcRERERpYrYCrQRkYJeHHZXXaqc5EcOxgVrtwCd1LPTKr46GRAcKD7tG7g7jo3HBCnuVN7IzOJqM6SAViZt5gVpbQbr8BquSaty4QkAJGbSkglig3Lhr0gWl+3AabP+q1rqgEFaIiIiovTHM24ii9l0slB/LfMlcCbRU8+ilGvc+t7Bzhq3wEsB1P3yDwtnRYnkr/xV0SaYqOlJcabxbyHYPQmeSPLZ3CUGOxp8/2pkI9uc+QZnRJlJ/re/aftHpkd4+JdvVQO0AFDsYpCWiIiIKN0xSEtkscMLtLO1+hWlRpDLnn9ExD42V0sdSO3MvWD9DotmRInm3f21os3V6aQkzITUZPe5Tr293+8TPJPkc5aOAmyuyB21LiiFkfw1AIDcYfKLTAXHTjM9N8ocYtM+2XObp73pMXY0VGluG1bSxfR4RERERJRaGKQlstiVR+aid6FDtTZtqtwsa3MWROzTEsgI1aZV7ZQq5R0onKAS9HLk903CTEiNPbsTCo55UdaWO/ge2LM7JmlGyWNzFaDw2Jcj9hMM1Npu7tgczM3pdxM83c+HLacbcgb8Ee4u42OZJqU5d+fTZM91/zZqCIryi542QUC+04Pr+4zBb3oMjml+RERERNT2sSYtkcU65jjw4LHNWabfbm/EiytqQ9ukFFnUR5ICEfuIB4O0COqUcBAjj0NtlEqtYWpbsvtcp5lRm2myel2K6p9+BylQZ8FozZ/TNncxik78wILxKBM4igbBu/urQw1R/P0LhNU9fuP4i3FJr+GxTo2IiIiIUgQzaQ/avn07/va3v2HkyJFo164dPB4PunXrhuOPPx733XcfVq5cqbv/F198gXPPPRddu3aF2+1G165dce655+KLL75I0E9AbVH4ImJiasRoDZ1cHsqk1Q7SSsykTVmCwVvDidIOFwijaITVPJakKDJpw957Dhu/phMRERFlEqZKAZg6dSruuusu1NfXy9p37tyJnTt34ocffkBNTQ2eeuopxb6iKOL666/HtGnyWnW7du3Crl278PHHH+Paa6/FCy+8ABu/bGec8JtrUyVGKwXqI/YJVK7AgY8HIVClcwGDmbSpi0FaylQM0lIUwhdWlLwVhvddXbUXdy/5Equr5HVt7QYW8SQiIiKi9JHxQdoHH3wQ9957LwCgT58+uO666zBq1CgUFBSgvLwcy5Ytw4wZMzQDrHfffXcoQDts2DDccccd6NWrFzZt2oRHH30Uy5Ytw0svvYR27drh4YcfTtjPRW1DqmbS1v36oKF+ugFagDVpU5lqkDZF3sBEMZBSpno4tSlhJWK8u740vOt5372GddUHFO0M0hIRpSdJklBfX4+amho0NTUhGOQ5E1GqsNlscLlcyMnJQW5uLlwuAwsYm5DRQdpvv/02FKC94oor8NJLL8HplGdCnHzyyfjzn/8Mn095S/f69evx+OOPAwBGjhyJuXPnIisrCwAwatQonH322Rg7diwWL16Mxx57DFdffTWOOOKIOP9U1JaEL1STKkFasUl5shgNI7VtqW1yloxA44aX5I0MGFAbljPgNtT98kDoubN0dHQDMZOWoiA2hmXBGlxoscrbqBqgBYB2npyY50VERG2LKIrYvn07Ghsbkz0VIoqSz+dDXV0d9u3bh3bt2qGkpMT4IsURZGyQVhRF3HDDDQCAIUOGYNq0aXA4tF8Otej4U089hUCgOQg1derUUIC2RXZ2NqZOnYqjjz4agUAATz75JP7zn/9Y+FNQWxeeSStlWiYiM2lTlj2nq6JNYJCW2rCc/regcfPbCNZuguDMR/5RT0c5kjVfsCizOAqPjGo/UeN7wdHtumN0u8NimRIREbUxkiQpArSCIMBuZ5kxolQRDAZlC8IfOHAAPp8PnTt3tmT8jA3Szpo1Cxs2bAAA3HnnnboBWjWSJOGTTz4BAPTr1w9jxoxR7TdmzBj07dsX69atwyeffIJnnnnGsgg7tX3hIa1UyaS1isSatKkrLJvQnnd4kiZCZIzNU4rSs5fBX74UjrwjYM/pkuwpUQax53STN+gsqhnJ68dfjN/0GAynjSftRETppL6+PhSgtdvt6NixI3Jzc7l2DVEKkSQJXq8XNTU1KC8vBwBUV1ejpKQEbrc75vEz9tPg/fffB9B85WrixImh9oqKCmzYsAEVFfoLPmzZsgW7d+8GAIwdO1a3b8v2Xbt2YevWrTHMmlKNIpM2w4K0zKRNYYp/u4z9c0EpxObMg7vjWAZoKeEEm/yOK8lgkFZS+WJwSufe8DicKr2JiCiV1dTUhB537NgR+fn5DNASpRhBEODxeNC+fXu0b98+1F5ZWWnJ+Bn7ifDzzz8DAHr06IG8vDy8/fbbGDRoEEpKStCnTx+UlJSgb9++ePzxx+H1ehX7r169OvS4X79+usdqvX3NmjUW/QSUCsKzpn2ZlkobQyZRJhD9tahddh+q5/8OgbptyZ6OTLBhp7xBdSExIiICAIQFaUVvedRD8X4rIqL01NTUBKD5HDE3NzfJsyGiWBUWFoYeNzQ0WDJmRpY7EEURa9euBQCUlpbiD3/4A55+Wlm7bv369bj99tsxY8YMfPbZZ7J/gJ07DwUwunZV1m5srVu3Q7fA7dixw9RcWx9HzZ49e0yNR4kVfqJV1ph5C9IEajbAkd872dNocyTRj31v5YeeN6x/Ae3OW98mXqtg/U7ULLhF1sZ6tERE2sIzaRFsgiRJLHFFREQhwWDznWp2u50ZtERpwG63w263IxgMhn6/Y5WRnwzV1dUQxeZg2YoVK/D000+jU6dOePPNN1FRUYGGhgbMmTMnVGd2/vz5uPrqq2Vj1NbWhh5HugqWk3Nodd66ujpTc+3WrZvuf6NHR7l6NSVEeLkDAGjwZ1agtmnbjGRPoU1q3Py2oq122X1JmIlS7fK/KxuZSUsZQvLXRu5EFEZwZCvaAtWR757KsPtriIiIiNKK1RfkMzJIW19fH3rc1NSE7OxsfP/997j00ktRVFSErKwsnHDCCfjuu+8wZMgQAMCMGTOwYMEC2X4tXK6w7IkwrYsHt17JkdJf93xlsnqdP3VPydxdJ0buFEb0V8dhJqnPt/sbRVvTlneTMBOlxo0vKxuZSUsZQgowSEvmOQoHKNokr/76BgDQFPQr2jx21qMlIiIiykQZedbt8Xhkz6+99lr07dtX0S8rKwsPPfRQ6Pl7772nOobPp193s3VN26ysLFNz3bFjh+5/CxcuNDUeJVaJR/kr1hBo+5m0jqLBqu15Q+83P5gYiG0y6aot3wIrqbxHmUlLacBuoJyIs92YBMyE0o1gV16wl4LKNQ3CNQaUQdosLhpGRERElJEysiZtXl6e7Pn48eM1+5588slwOBwIBAJYtGiR6hiRShi0ztw1WyA8Ur1batsEQUCOQ0B94FD2bGMgBTJpJfV6KoIzF4KrEJKvyvhYovIElFIPa9JSWpAMfP6qXaQgMsCW0w1i/aG1ByQxcpC2ISyTVoAAl40XxYiIiIgyUUaedbvdbrRr1y70vPXCXuE8Hg9KS0sBAAcOHAi1tw6eRlrcq/ViYXrHovSU5ZRnTFZ5234AQNII0sLmNn3buyRFn0kbFCU0pkDmcUZgJi1lCgZpKUqCzS1vMJBJu7O+SvY8y+HgYmNEREREGSojg7QAMGDAodphkVZha9nucBxKPD7yyCNDj9euXau7f+vt/fv3NzVPSn0eu/xk66mlNXhtdS0kIxldSRKsVn9PC3a3oRp7rTWsmQrRXx+5Y5j5u5twzddluOqrMjy1tBoBse2+XmY0bfsYe98qROOmN5I9FVWBum3qG5hJS2kh8ueI5kUqoggEuzxIq1fuYFd9NYZ98n+Y+I28Bni2StkEIiIiIsoMGXvWfcIJJ4Qeb968WbNfTU0NysrKAABdunQJtffs2ROdO3cGAMyZM0f3WHPnzg3t36NHj2inTCnKZVdmxHy+pRHba9tmICBQu1VzW/gJqFFNW94x1V+UJLy8qhaNAQkSgJ/2eLFsv37t51QgSSKqF/weUhteTK1+1ZOq7YGqVQmeCVEc8GIDxVN4kFan3MHjK2djecVuRTvr0RIRUbz5fD688847uOKKK9CvXz+UlJTA6XSitLQUI0aMwA033IBvvvkGosi7i4gSLWPPVs4///zQ4xkzZmj2mzFjRijj8fjjjw+1C4KASZMmAWjOlP35559V9//5559DmbSTJk3iLWwZaE+9ejB2b33bXFCrbsXDqu323J4QXEUR98/qdaWiLVC7ydQcmgISan3yjLc1FakfpBUb90Fs2JXsaehqWPNv1XbJzxXvKfUVjHlW9jy73+/hPuxcWVvu4L8mckqURgQhLMCqs3Dmptpy1fY++e1U24mIiKzw0UcfoW/fvrjkkkvwxhtvYN26daioqEAgEEB5eTmWLl2K559/Hqeeeir69++Pzz77LNlTzkg9evSAIAiYMmVKsqfSJs2ePRuCIEAQBMyePTvZ07FUxgZpBw8ejDPOOAMA8M477+Dbb79V9Nm7dy/uueceAIDL5cJVV10l237rrbfCbm+u03jzzTejsbFRtr2xsRE333wzgOZSCbfeeqvVPwalALdKJi0ABNvo3fuSX20hPAH5R03Vv8hgcyHnyFuRf9TTym06J6pq1F6btKh2wNuoiZLK1XEcsvpcB9hccJaMRM6APyFv2N9hz+8L2NzIGXQXnIVHRh6ISI0iU1v7D5dfVP496JFbhEdHnmnxpIiIiJo98MADOP/887F161YAwKmnnoqpU6fi22+/xZIlS/D111/jmWeewWmnnQabzYb169fj7rvvTu6kiTKMI3KX9PXUU0/hp59+QlVVFSZOnIhbb70VEyZMQFZWFhYuXIh//vOfoUXBHnjgAVm5AwDo06cPbr/9djzyyCNYvHgxjj32WNx5553o1asXNm3ahH/9619YtmwZAOD2229H7969E/4zUvK5NC6FBNvo3SNSQFk/tsMlVbC58nX363hJNQSHBwCQ1fsaNG6Y1npQU3NoqwHsWLHWJVFyCTYHCo95EYXHvChrb3+efm15IkPCL2TqLEIXCNt275BT8Pdhp/GOKyIiiotXXnkF9913HwCgffv2mD59OsaOHavod8opp+Cmm27CypUrcdttt8kWTyei+MvoIG2fPn0wc+ZMXHDBBdi3bx8eeeQRPPLII7I+giDg7rvvxh133KE6xkMPPYT9+/fj5ZdfxrJlyzB58mRFn2uuuQYPPvhgXH4GavvUatICQKCNLhwmBZSZtEZq0bYEaAFAEOQfLZLJTFpR5bVpm6+WSQzSEhGlMflVWUkvSBtW56+9J5cBWiIiiotdu3bh97//PQAgJycHc+bMQb9+/XT3GThwIL766iu8/fbbiZgiER2UseUOWhx33HFYtWoV/va3v2HIkCHIz8+Hx+NBz549cdVVV2HJkiV44IEHNPe32WyYNm0aPvvsM0yaNAmdO3eGy+VC586dMWnSJHz++ed46aWXYLNl/EudsTSDtGHnbpIk4dvtjXh0URXeXluHpkBywpKq5Q5sJlebtoVd/xH9pnZv8Ct/9i+3NmLGxnoEVeoeLN3nxX+W1+DzLQ2qAd42g0FaIqK0JUQodxAURTzy63c4Y9Z/saxCXp/cwe+JREQUJ08++SQaGhoAAP/4xz8iBmhb2Gw2XHbZZarbfvjhB1x++eXo0aMHPB4PCgsLMWzYMNxzzz262bfhtUQlScK0adNw3HHHoaSkBPn5+Rg9ejTeeOMN2X4+nw/PP/88xowZg+LiYuTl5eHYY4/F9OnTNY+1devW0LFeffVVAMD777+PU045Be3bt0dWVhb69euHu+66C1VVVbqvxcqVK/Hggw/itNNOQ9euXeF2u5Gbm4vevXvjyiuv1FyjqMX9998fmgsAVFdX44EHHsCwYcNQWFgYmuO4ceMgCAK2bdsGAHjttddC+7X8N27cON2f8aOPPsL48ePRvn175OTkYMiQIZg6dSr8/kPn5JIk4e2338a4cePQvn17ZGdnY/jw4Xj++edDazLpqa6uxj//+U8ce+yxaNeuHVwuFzp16oSzzjoLH3zwge4YLfO9//77AQCLFi3CxRdfHHpdu3Tpgssvvxxr1qxR7Nvy85544omhthNPPFHxGrW8FqkoozNpW5SUlOD+++8PvUmiMWHCBEyYMMG6SVHaCGgUUw1v/3mvFy+uaF6cacl+H2q8In43RL/EQDyolTswnd0TnklrstzBtJXqi1S9u64eogSc3zsn1Lal2o9/La4GAMzdBdgF4LQe2ebmmygqNQiJiChd6Jc7eHzlbNy15HPVPR02e7wmRUREGUySJLz22msAmrNor7vuupjGE0URt9xyC/7zn//I2r1eL5YvX47ly5fjmWeewfvvv49TTz1Vdyy/349JkyZh5syZsvZFixbhiiuuwOLFi/Hvf/8blZWVOOecczB37lxZv/nz52P+/PnYuHEj/vrXyAu/XnPNNXj55ZdlbevWrcMjjzyC119/Hd9++61qAHv27NmyoGALn8+HjRs3YuPGjXj99dfxl7/8Bf/85z8jzmPDhg0YP358qDawlW688UY899xzsrZff/0Vt9xyC2bPno3p06cjEAjgsssuwwcffCDrt2zZMtxwww1YunQpXnxRXhqstW+//RYXXXQRysvli6Du3bsXn376KT799FNMmDAB7733HnJzc3Xn++yzz+IPf/gDAoFD8YLdu3fjzTffxEcffYQvvvgCJ5xwgtEfPy3wsj1RnFV51W93DK+7+t32Jtnz73fKnyeKo3hozGMINuMrXKvZU68dzPx8S4Ps+eur5Zm/L69SW/isjVBkWSlJQW8CJmKe4CpM9hSIiNo2xWe8/O//93s3ae5a5MqKw4SIiCjTrVq1CmVlZQCA448/Hnl5eTGN95e//CUUoO3Zsyeef/55LFy4EN9//z1uu+02OJ1OVFdXY+LEifjll190x7r33nsxc+ZMXHrppfjss8+wZMkSvPPOO+jbty8A4Omnn8Y333yDKVOmYP78+bjhhhswa9YsLFmyBNOmTUPnzp0BAPfddx9WrVqle6xnn30WL7/8MkaPHo133nkHixcvxueff44LL7wQQHNg8LTTTkNtrTJZKBAIICcnBxdeeCGef/55zJ49G0uXLsWXX36JJ554At27dwcAPPLII3jllVcivoYXXHABdu3ahZtvvhlff/01Fi9eHPq5X3nlFaxYsSL0s02aNAkrVqyQ/ad1jOeffx7PPfccJkyYgI8++ghLlizBxx9/jKOOOgpAc4btK6+8gttvvx0ffPABLrnkEnz66adYsmQJ3n333VCA+r///S++/PJL1WP8+OOPOOOMM1BeXo4OHTrgwQcfxMyZM7FkyRLMnDkzlHn9+eef48orr9R9Hb766ivcfPPNGDBgAF5++WUsWrQIc+fOxW233QabzYaGhgZcfvnl8Pl8oX26dOmCFStWyILtL7/8suI1OueccyL+O7RVzKQlirPOuQ7UVChv9w+G3QKwq85cIDNenCXD0bT5Lc3tuYPvQd2v8hrLRSd+JO9kiy2TVi9xty6sFMKWmrbxullFEgOGagAnWnbva5I9BSKitk2xcJj871VTUL30T4/cIpzciYvLEhGR9VoHSkeMGBHTWCtWrMATTzwBoLlm7bx581BYWBjaPm7cOIwfPx5nnnkmfD4frr/+eixYsEBzvAULFuCpp57CH/7wh1Db8OHDMW7cOPTp0we1tbW45JJLUFZWho8++kgWeBs+fDhGjhyJYcOGIRgM4sUXX8S///1vzWMtWrQIEyZMwCeffAKH49C56hlnnIGBAwfivvvuw/bt2/HAAw/g0Ucfle07dOhQ7Ny5U/aztjjttNPw+9//HhMnTsTXX3+Nv//977jiiitgt2vfIbNy5Up88cUXGD9+fKgt/N/G6WxOeiosLMTAgQM1x2ptwYIFuPXWW/Hkk0+G2oYPH45TTz0VRx55JLZt24a//OUvqKioUH3dx44dG3rdn3vuOZx++umy8f1+Py677DL4/X6cfvrp+PDDD5GdnS0bY+LEiTjhhBNw/fXX46OPPsLXX3+tmVH9888/Y8KECZgxYwZcrkPlFY8//niUlJTgnnvuwfbt2/HZZ5/h3HPPDb0uAwcODF14AJovFhh9jVIBM2mJ4qzEo/5rFl6Tts0Iy3p1dzlD9jxv+AMoPP5NAIDgLkHJmT/D0/1cWZ/whcPMZtKq1Z3V0pZL0IaTjNTmbaN1ax3FQ5I9BSKiNi7s731YuQN/2GJhv+kxGK8edxEWnvUHFLqZSUtERNZrfUt6+/btYxrrueeeg3jwb9lLL72kGrQ8/fTTcfXVVwMAFi5ciEWLFmmOd9RRR8kChS06duwYCsodOHAAF154oWpm5ODBg3HccccBAObNm6c7d7fbjf/+97+yAG2Lu+++OxTkmzZtmixzEwBKS0tVf9YWLpcLjz32GABg27ZtWL58ue5cpkyZIgvQWqVbt26KADMAZGdnh7Jay8vLDb3uaq/nu+++i61bt8Lj8eD111+XBWhbu+666zB69GgA0K0N6/F48Morr8gCtC1uueWWUHukf9t0wyAtUZxpxRvDA5FtZlHn8KzX8EXAAGT1uhSdpkjoeHEZXO2OUo4Rvo/JTNrwUhB6UihGa2wBtTYapFXUWiQiIrmwcgdSWLmDQFhd8tO79MOVvUehnUe/XhsREVG0Wt++n5OTo9Mzsm+++QYAMGDAgNAt9Gpa171t2UfN5MmTNbcNGTLEVL/Nmzdr9gGA8ePHh0oIhLPZbKEgZkVFBZYuXao7ltfrxfbt27F69WqsXLkSK1eulC2UFanMw6WXXqq7PVrnnXdeKAM3XOvX86KLLtIco6VfZWWlYjG1//3vfwCAsWPHol27drpzaakj+9NPP2n2OfXUUzUvHOTl5aF37+a7jCL926YbljsgijOtIGIgbINaCKyiKYhiT2IWE5EkEY0bX0Xdikfk8wqvL2tA+D6GMkgB7K0PYFtNQFHSINz6Sj96FzoOLmhmJutWgm/v9/DtnQtXh+Ph6nhCVD9ftCQp8uvg2zsbgjMPznZHweaMrWaUnga/iDUVfpRm2dE93wEp0ATf/h80+ytXLSciotYExcJh4eUO5BcsnVwsjIiI4qx1Ddr6euUC0UZ5vV5s2LABAHQDtAAwbNgwOJ1O+P1+rFy5UrNfnz59NLe1zlw10k+tlmxro0aN0t3ekvkJNJd1GDNmjGx7fX09nn76abz77rtYtWoVgkHtxJrWt+KrGTx4sO72aFn5egLNr2nr54sXLwbQXEvW6MLie/fu1dymtkhba8XFxaF5ZBIGaYniTOt2/ICBW/pv/LYcDx9XhMML4h9I3PtGNiAqF60SfTXmBwsvd2Agk3b5AS8eXVRtKIv23vmVOL1HFq4akGeq3EHNzzeiYd3zoefurhNRfMpMnT2sFazbHrFP5ffnAQDseb1QOnERbO4iy+fR4Bdx94+V2H1wgbZrj8zC0F+PR6BS76ovM2mJiHRFWDjs18o9sucOGy9+ERFRfJWUlIQe79u3L+pxKisrQ48jlU1wOp0oKSnB3r17UVFRodlP63Z5oDm71Uw/UdSvJRhpzh06dAg9Dp/z1q1bcdJJJ2HLli26Y7RobGzU3V5UZP35HWDt6wlAEYjev3+/6TnpvRZ682g9F72AeDpikJYozkqy1E/CwoORdpWrURKAOTub4h6k9Vf8qhqgBQDfHu1bVDSFLxxmoCbt51saTZU5+HJrI37Tx/gtO2JTuSxACwDenZ8iULcNjtzuxg8cA/8B7ds9wgVrN6F+7X+QN+Qey+exeJ83FKAFgE83HMBA3QAtILji82WCiChthAdpW9WkrfQ2KLo7eIcCERHFWevb3CPdxm+U0SzKtiSWOV9++eXYsmULBEHAVVddhcmTJ6N///5o164dXC4XBEGAKIqhxcKkCFlEeouKtWUtwdIzzjhDtfYtWYNBWqI4m3R4Nj7foryCFAy72Nc934G9DcqrRLW++K8w5tv/o6XjKRYOM5BJ+8sBX8Q+4cobjb82gdpNqu2StxxIUJBWcBWY6t+w7vm4BGkX7JUH5Pf69eshCs4CuDurr8pJREQttMsdVKgEaYcUq9fGIyIissqAAQNQWlqKsrIyzJs3DzU1NcjPzzc9Tuvsz0gZuYFAILRgWcst68kWac6tt7ee89q1a/HDD80l4f7617/iwQcfVN1fL2M4XZSUlGD37t3w+XyhhdbIeryETxRnhR47bhmm/EMYXu7A41C/umcmuzRagmDx1bzwhcMMZNJGy/DLo1EXV2qzC3XFj4FKGzIlE+ZBYO1EIiJ9OuUO/Cq3YR6e1zZOXImIKH0JghBaFKu+vh4vvfRSVOO43e7QQk4LFizQ7bts2TL4/c3nXm0lmLdo0SLD21vPedWqVaHHegtutdRrtUpbzFYeNmwYgOaf1eczn2Blpbb4+liFQVqiBDi2swdnHy6vuRK+cJjWXRFBsxG1aFgcpI124TCzJFOLhmkEisUEBmnNFNAFEK86sAGTydnOokFxmQcRUXqRf2ZLrcodBFQuCNpZ7oCIiBLgtttuC9X/vO+++7B27VpD+4miiLfeeiv0/JRTTgHQHLhcuHCh5n6tA8Et+yTbrFmzsGfPHtVtoijitddeA9CcMTx8+PDQtkDg0Dmk3sJrzz//vOa2aHg8HgDNC7a1FWeffTYAoLq6Gq+88kpS59Ly+gBt6zWyAr8dEiWIPey3LTyTVit8l4hMWmX2T6zjmS93EC3jmbQac0hoJq3Zf0zr//ElSULQdLCYiIgiUvwtPfRZG55J6xBsaZ0FQkREbUeXLl3wzDPPAGgONI4dOxZz5szR3Wf16tU4/fTT8dhjj4XabrjhhtBiTtdffz1qapQLTM+aNQvTpk0DAIwePRqjRo2y6seIidfrxW9/+1vVRageeeQRrFixAgBw9dVXw+12h7a1ZA8DwKuvvqo69nPPPYdPPvnE0vl26tQJALBpk3rJvmS48sor0a1bNwDAn//8Z8ydO1e3/w8//BDxfRatltcHaFuvkRVYk5YoQcIXBvtpjxeHbajHuUc0X9Wct6tJdb+l+32QJCkuJ3P+8qUomznC8nHDyx34y/RvL9lcHV2m7Z3zKiN3Oqhp2weq7YG6zXB1ODaq45slNplbEVPyK7/46PFX/IKqH66C2LQfeUPvR3afa0Pb9tQH8PSyGmyujl/AnIgokwlhQVrJfyjjpiEgvy3QyRIyRESUQFdddRV27tyJ++67D/v378e4ceMwfvx4TJo0Cf3790dhYSEqKiqwfv16fPbZZ/jyyy8RDAZlC48NGjQIf/rTn/DYY4/hl19+wfDhw3HnnXdi2LBhqK+vx8yZM/H0008jGAzC5XLhhRdeSOJPLDdy5EjMnDkTxx57LG677Tb07t0b+/fvx2uvvYZ3330XANC1a1fce++9sv2GDRuGgQMHYuXKlXjhhRdQWVmJyy+/HJ06dcLOnTvx5ptv4oMPPsCxxx6LH3+0bp2XY445Bt9//z0WLVqERx55BGeccQZycpoXzc7KykKXLl0sO5ZRbrcb06dPx7hx41BXV4eTTjoJkydPxjnnnIOePXtCFEXs2bMHS5YswYwZM7BixQpMnToVY8eOtXwuhx12GLp27YqdO3fi8ccfR9euXdG3b9/QomwdOnRAXl6e5cdNBAZpiRLEoZKs+t76eozs6IYvQrrs5uoAehU6dftEIy4BWgCCSpK+JImKE9gW01bWxmUerTWsU78FpXbJX5Hd6/K4Hx8AGtabqwEl+c29LjWL/ohAxTIAQPVPv4PnsHNh85QAAF5fXacboN1nPwIdghtNHY+IiFqTX0z17vwMGPkIAGD6ll9k2xw23sxGRESJde+992LAgAH405/+hK1bt2LWrFmYNWuWZv8BAwbg0UcflbU98sgjqK+vx7PPPotNmzbh+uuvV+xXUFCA6dOnY+jQoVb/CFG76aabMGfOHLz66quYPHmyYnunTp3w1VdfoaBAvtCzIAh44403cNJJJ6GyshLTp0/H9OnTZX0GDRqE999/H507W7cg6A033IDnnnsOFRUVuOuuu3DXXXeFto0dOxazZ8+27FhmjBkzBrNnz8aFF16IHTt24K233pKVxAgXzSJ1Rv31r3/FjTfeiC1btmDSpEmyba+88gqmTJkSt2PHE78hEiWIw6aeCbuyzIf31mnXtwGAxfuSV2fF1elk0/sEapW3HASq12n231UX35IDkk7dWZu7SHOb1Vwdx8V1fN+e7w49kYJo2Phy6OnS/frF3Xc7jozXtIiIMoJvn/yWPlfHQ5kjOU6XbFutP73qpxERUWo477zzsG7dOrz11lu47LLL0LdvXxQVFcHhcKC4uBjDhw/HjTfeiO+++w4rVqzA+PHjZfvbbDb85z//wdy5c3HppZfisMMOg9vtRn5+PoYOHYq//vWv2LBhg2K/tuCVV17B22+/jXHjxqGkpARutxt9+vTBHXfcgVWrVuHII9XPh4YOHYrly5fjd7/7Hbp37w6n04ni4mKMHj0ajz/+OBYuXCi7/d4KXbp0wcKFC3HNNdfgiCOOkNVgTbYxY8Zgw4YNeP7553HmmWeic+fOcLlc8Hg86NatG8aPH4+HHnoIa9euxRVXXBG3edxwww348MMPMX78eLRv3x4OR3rkoKbHT0GUAlwal0QCooSmCJm0jeGrjCVQ1hFXmt5HsKl8tOjUfk3I4mga4rWomcbBEncsADDxszUIBZE7ERGRJmfJSHh3fdGq5dDftvBS4AWutnOyRUREmcXlcuGSSy7BJZdcEvUYxx9/PI4//njT+40bNw6SgfUxpkyZYigT8v7778f9999v+PgXX3wxLr74YsP9Wxx22GF47rnndPvo/Vxm5wkAvXr1ki3CpqZHjx6GXk+rX3e3243f/va3+O1vfxuxbzgj8wBgKFv4vPPOw3nnnWd6Dm0ZM2mJEsRlV8+klQDl2VuYQIJje63ZXMXR7KRs0wlQxn9xNJ0DiPoZptZK4j9kBI0M0hIRxcSe20Pe0Opvuxj2N3BStwEJmBERERERpRIGaYkSRCtICwCREmX9Scw0Va5WbWQX40FaSZKSGqRN60xaGF9srtFWGL9pEBFlAsUCn4f+9gTDLsba4rAYKBERERGlNgZpiRLEpVGTtjEg6S7oBADzdjXFY0qGCEIUK1Db1BY5Uw9QxiP+rLiFQidTWazfYWpsb1DCxxvr8fLKWmyuNh7glQJN8O2dbepYsTMeBKgXElebl4goPcm/VkvBQ3VnRYQHafkVnIiIiIjk+A2RKEFcGrHOGRsbIu4blIDV5dbelu87sMBYxyiCtOqZtOqB0nhkCStHjFBOomaD4bFf/LUG76yrx1fbGnH/T1WobDK26FnZpyMMH8MyBzO1jNT8/TnrsnjPhogorfkrlsmeN258JfRYZCYtEREREUXAIC1Rgjg1MmmNev7XGotm0qx+1f8Z6xhNJq3drWiSNBYO21lnLMhpRnhMUmzcp9vfu+c7w2P/sPtQZpQ3KGH+bmMrdAeqVmtuc5aOMnx8LcH6XcrGg8HybbX6mdoA0D6wXrXdUTQopnkREWUK//4fNbcpgrQm7nQgIiIiosygsgQ7EcVD59zYft32NVhbz7Rp24eG+tlc+abHNlOTtiFSQd4ohAdppaB+uQgpEDmbWYuRAKjuCpY2NwqOfhG1S++Cd9eXsk2uDsZXTBWblIFoR34fAECDP/JrbId6sDyn/82G50BEROrCFw5jJi0REVF89ejRQ/88jKgNYiYtUYI4TPy29SlMxPUTY3+wBGeB6ZEFEzVpG/36wedxXT2Y3DcHF/bJQZHb2IsYvkCLJEYoFRHD4mE+I6ueaWQRZ/W6EqVnLYKzZCiKTp4Je25P+W4mgsdiU5nmtiYDc5Q0srqy+1xneA5ERKROWZOWQVoiIiIikmOQlihBzPyydYkx69ZKNpf5IC1sKvPXuIoZKZP2yBInzj0iB+f3zsHzp5Sif7FaAFhOEZOMEKSVDAZpw29XBWIL0uYMuhPOg+UEBJsDeSMflR/PX2doXgAgNh1QOzAAwGsgW1krSEtERLFjTVoiIiIiioRBWqIEMXM+5tVY6GlnbUB2y0a1V8R32xuxv8H6uq4tBKf5cgfqdWxFiJKEBXuasLHqUFA00q34jrBavm575Bey1ici2LgP/soVkMQgpKA1mbRq/yybqwORb6PRCNIKjuyw57ny3QK1huYFAKJXLZO2eV5GMmmDiBz8JiIic1r+PrAmLRERERFFwiAtUYIIJk7ItLIz/zS3Aq+ubs6uXLbfi+u/KcMLK2px8/flmLXNZF1Vg/V5BLtKfdlI+6gEaYNBPy7+/AD+b2kN7v6xEv9cWAUAaAjolztwhL1sLgNB2ltnV+CXGRNQ9slgVMw6FVJQ/7Vp2v5RxDEBQG2qlV4RL6/Sz3j17p2r2h4epLU55UFasWG3oXkBGpm0B2sgGgnSljkOh8g/CURE1jpYE52ZtEREREQUCc/IiRLEQGwxpMCl/av55dZG1PlFPLGkWtY+baXxW+MBAKp1Y60hOHIUbT+W58meLz/ggyhJEcsd2MMyaZ0GP7U+ybodAODb+z2ats3Q7RuoXGFozE3V6hm3s7Y1os6nHWyuXfwn1XbBniV/HpZJCwDBRuWCYGpUa9IeDAo0GVycbZPzaEP9iIjIGF/ZQgCsSUtEREREkTFIS5QgThNR2omHZ+tur/GKiLDeVkSuDsfFNoAOZztlsO/VHd0UbUFRPTu1tfBM2kKDi4etdZ0Uetyw9j+6fe053Q2NuWCPV3NbtU6QNlC1WrU9PHPWUdBX0Uc0GKSVDmZrydoOLtbmNVI3F8A611hD/YiISKlw3PuKNslfA4CZtEREREQUGYO0RAk0uDRy9mqh24bOuQ6celiWZp9IgU0j7NldYx9Eg2BTq0mrJAIIRii7EJ5Je1oP/QC2Ov1jSIF6Q6P4NWoFAyqLlUVQdMoXijbBofJvLgWMDahW99ZkJm344mG5wx40dmwiIoLnsHOUjaxJS0REREQGMUhLlEDd8hwR+5xymAcA0C5b+9dTL1holBQW1MsZ9BfA5o553BaCuzhin6AoqS7G1Vp4ArLRcgdmiAFjpSL0XnfR5L+Jq3SU+oawEgjh/05aJNVgbvOcjGbShgdp7TnxC+QTEaUbweaAPe9w1W3KTFp+BSciIiIiOX5DJEogI3E8+8FbID065RGsyKSFKA/qCYIDsPCkUQj7eFH70UUp8mviCMukNbjemb7wYHSwCZIYORjq0+liNpMWKourASqLrokGM2nV+plYOAwApPA/CZa82ERExJq0RERERBRJ5LQ+IrKMoSDtwTiZWydIu79RPVr44YZ6LNjrRddcO64akIc8jQXIpKAPTVvfkzcKdgiCLUJhABPCgo2SGAAEl6wtYChIK39uZn4iBKj9RDZ3McTGPfJxA/UQXPnaY0kSFuzVrkk7dd4i7LEdAQDoW+TApVkfo3j7v+EoGqS+g2ZJCHkEvm7Fv1B88seh5wFRwu++KUOtv/nnsglAx2wb3NVX4HzHWnQNrGz9UwEAtlYbDPQqbr9lkJaIKCYH74ZYVr5L1swgLRERERGFYyYtUQIZCdI6WjJpw1fMauWZ5TWq7dPX12NbTQA/7vZixkbtOqsN6/+rbLQ5IDiiqfeqwUBW7pZqv+IW0HC2GM5jl7rPUx/TXaRokyKUPPh6W6Pu9pYALQCsqwzgxW3dEKj8FU2b31Ltr8iYDc2jQfbcu+MT+MuXhZ5/u70xFKAFmt9Tu+tFbHEehdfzngsbrLnf3gaDJRPCg7SSFSnbRESZRP452rT9YwDA2ur9snYGaYmIiIgoHIO0RAl0fBdPxD4tmaPOWKKTAD7boh1U9FcsU7TZszohZ8CfZG3ubpOiPn54pupA35eKPlVeMWLgusgtD2YWqGQHa71Sux391efmq1a0RVo87OVVxurWttjpHBKhh/GP38ZNbxiax35HH/jRupRDc5DVbWwdN5QEt8meuzqdbHiOREQEBGs3yZ7bsjogoFJOJyjyIhgRERERyTFIS5RAfYocOKqj/uJc9oPBWSOLjEVNpX6pp/u5yOp1RWjRE8GRjdyBf7bskCXB7arteuVSx3fPQoFb/jHltAu4rF9uKDD7mz45KPaof5QF4VRt93Q/X1mOwW8uCGuEqPcRq1nuQCnYuNdwX7/Q6v11MJPWbzAW4JIOZfFm97kejrweho9LRESAzdNB3iD64VMJ0k46bECCZkREREREqYJBWqIEEgQBtw3Ph1PnN6+lFG08b4SUJHmQNmfAH2FzF8Oe3QntzlmDkomL0P7CPXB1OC7qYzhLR8ueB6AenA4vd3BRnxz8e1wxnhpXjKsH5Kruc1avbDxzUgmeObEEF/TOQZZGaQhRUA/SujudDMEhHztSuYNoiHplvzXKHagyUXbALxzK1pYgIihKhspsHJxU8/86slFwzAvG50dERAAAT48LZM+lQCN8QWWQtnN2QaKmRERERHG2cuVKXHbZZejWrRtcLhcEQYAgCFi+fHmyp9amTZkyBYIgoEePHsmeSpvBIC1RggmCgHZZ2gG6lpq0cV2ySZKfMAr2rFaPXXCVjoRNZxEtQ2zyAGUgbNEwoDnRMzyAaLcBHXMc6JTjgKBTs680y4522c2vo1aQNqCRSSs48yA4c2Rtol+/3EE0gjpBWsFAzd5DjAdpA2hVUkOS4DceoQ1xFKiXiSAiIn2t/54CgBRshE/l7hWX3cSFOiIiIjJt9uzZoWDp/fffH7fjLFmyBKNHj8Zbb72FnTt3wu/3x+1YlP7ieD81EWkJ6iyWZT8Yu7MiSPvp5gZIAI7q6Eb7bDvWV/qxdt8BdN7+K7q07ihY/1EgHBwzCAcWei7C/KwrFX0O7JiDpVXDZW3RLKaS5dAod6CRSSs4cyE4ciEB+MFzFb7LvgkTd1dgbNWTCHo64V97x2NzdQCX9c/FhB5ZeOYX9YXaIgkKzpj/IVe6xqPCOxZHlvnw4IKqiP39ghtVto5Y5j4H3n1HoHrLlwBGGjqW1PLax+H9QESUCQSHWpBWmUnrMlHyhoiIiNquu+66C42NjcjPz8cjjzyCkSNHIiur+fvAEUccEWHvxLj//vvx97//HQAgRVi4m5KLZ+JESRDQSYx0HKxJa8WH5xtrmm/h/3BDPa4dmIdnltdAggP2oi/xp8rT0Tm4urljPE4WD2bSvpn3HyzznKPa5aOwAC0ARLNemkcjk3ah52JcUnurytTyIDhz8WnOPfg2+2YAwBsHumF3wxx8m30pgOaspzfX1OHNNdGXQdjmGIb+/tlR7/+DZwo+yPsXEAA+MhCgBYBqWydMzf8E9bYSwNgurRx8HW3qwW0iItKnyKQNNMIbVMmktfErOBERUarz+/2YM2cOAOD666/HDTfckOQZUapjuQOiJDiyRHnrf4uWmrTZGtmh0WgMSJi6vCaU1BkU3JiR+4/Qdslfa9mxQmMGGuFDlmaAVsuGSvO3h6zT2KcwuFO1XXAVwubICQVoW3ybfYvpY+tZ4Lkkpv0/yPuX6X2+yLmjOUAbBanlT4KkDCgQEZEBdo/sqRRsYiYtERFRmiorK4PP5wMA9OnTJ8mzoXTAIC1RElzQOzsUjA3X0p7vju+v5wbX8XEd33/gJ/iErMgdw+ytV57MRlLtVU9NzhErFW2CuwT27I4JuaV/j6OfarujeJjmPva82G6J2eocpbt9aDsXhrdXv0ggHsyktWV1imkORESZSlAsCikqgrR2wQa7jV/BiYiIUp3X6w09djp5NyLFjt8QiZKgY44DDx5bpLrN3up+/9dOK4VHK5prIWexsuxArLL7/BZCFAVZoyl3oEWtJm3J6d83PzC1cJdSl9zIWVBaP3/BMS9q7pM79L6o52TEH4bl49bhBbikX45im4Tmn8mR2yOucyAiSlvhf1skEb6wcgfMoiUiIkqu1ouKzZ49GwAwffp0nHzyyWjXrh2ysrLQt29f3HHHHaioqFDsf//990MQBPTs2TPUdtVVV4XG1FqsrKmpCc888wxOPvlkdOzYES6XC+3bt8cpp5yCadOmIRCIfEej1+vFiy++iDPPPBNdunSB2+1GTk4OBgwYgGuvvRZfffVVqHTiq6++CkEQQvVoAcjm2PLf1q1bFccJBoN47bXXMHHiRHTu3BlutxslJSU47rjj8H//939obGyMONc1a9ZgypQp6NatGzweD7p164ZLLrkEixYtirhvpmJBLKIkObxA/Upb65isx2HDa6e3Q3ljEDd+Vx6/ycShBmnz4inmg7TRxKTtAhBUOZQI5YmwPeew5geKbCdzTuyahY/Xl6FO9Gj20QrSCna3zsjxC8oXBbcj29keADCpVw6W7/dhdcWhUhGh1yvGADYRUeYK+wyXJEUmrcvOIC0REVFbIYoiLr/8crz55puy9vXr1+Oxxx7DjBkzMG/ePHTs2DGm4/zyyy+YNGkStm3bJms/cOAAvv32W3z77bd44YUXMHPmTHTo0EF1jOXLl+O8887Dli1bZO0+nw+rV6/G6tWrMW3aNGzZsgU9evSIeq7bt2/H2WefjV9++UXWXlFRgR9//BE//vgjnnvuOXz22WeaZR6mT5+OK664QpZtvHPnTrzzzjt4//338fzzz0c9v3TGIC1RG6OWSeqwMr20FRE22CBCiMdCUY7sKDNpzf+sLruAxoDyWEHBCQlAua07CsU9cMAHwdGcQaq8JdUchw2wC/o/nwCtFeLinx2txg55oCD8bSWGXpPkzI+IKOUpLnIpyx0wk5aIiKjtuPfeezF//nycc845uOKKK9C9e3fs27cP//nPf/DZZ59h48aNuO222/DOO++E9rnxxhtxwQUXYPfu3TjttNMAAA8++CAmTZoU6tO+ffvQ440bN2Ls2LGorq5Gfn4+brrpJowePRrdunVDeXk5/ve//+GFF17AokWLMGnSJMybN09RPmHNmjU4/vjjUVfXvLD1ueeei8mTJ+Pwww9HMBjE+vXrMWvWLMyYMSO0zznnnIORI0fi2WefxXPPPQcAWLFiheI16NKlS+hxeXk5jjvuOOzYsQNutxvXXXcdxo4dix49eqCurg6zZs3Cv//9b2zcuBFnnHEGli5dioKCAtl4ixYtwqWXXopAIAC3243bbrsNEyZMgNvtxoIFC/Dwww/jhhtuwJFHHmn63yvdMUhL1MaoBRstXENMZmrhx7iu+jIUxSOT1p6FDc7jotjR/C5aQdpyew88VvQtdjsGwi3W4vraKeh0cEXteuSZP1Ardhtgk/wAtOvuClI0Qdrmn2OfPbbatGpsYQuC+cLSjz/OfQAnNP6XmbRERNEK+/yUJBGvbVwsa3PZ+PWbiIjUSZII0RvHOyjbGJu7BEKSzz3mz5+PBx98EHfffbes/fTTT8fpp5+OWbNm4YMPPsDTTz+Ndu3aAWgOwLZv3x65ubmh/l26dMHAgQNVj3HllVeiuroaw4YNw6xZs1BaWirbPn78eEycOBFnnnkmFixYgFdffRXXXXedrM9ll12Guro62Gw2vPXWW5g8ebJs+1FHHYXLL78c5eXlyM7OBgAUFhaisLBQFjDWmmOLW265BTt27ED37t3x/fffy0o6AMC4cePwm9/8Bscffzw2b96MRx99FA899JCsz4033ohAIACn04lZs2bhhBNOCG0bPXo0zjvvPIwZM0aRqUsM0hK1OWq37ccrk3aL8ygs9FyM8+IQpJUC9fgq54+m93NF8bO6dP6u73Y0/xHy2vLwVdYtaAkb/9zQO6ZPQIcgwBasB4R8zT52aNQU0skWFmzNpRBmZ/0u+slpsIVl0q6vUs5voedinGLXLuFARETaFCeaKkFaJxcNIyIiDaK3HPvfbR+5Y5poP3k/7J52SZ3DiBEj8Ne//lXRLggC/vjHP2LWrFkIBAL46aefcPbZZ5sef968eZg/fz4A4LXXXlMEaFucfvrpuOCCCzB9+nRFkHbWrFlYunQpgOYganiAtrWSkhLTc2yxdetWvPfeewCAZ555RhGgbTFs2DDcdNNNePTRR/Hqq6/KgrSLFi3C4sXN331++9vfygK0Lbp06YInnngCF110UdRzTVf8lkiURNcNUmZzDixxKdr0gpCx+jj3H3GpSSs27kWTTgBTyzUDcyN3CmM0iL3eNTb0+APHLaaPIz8mYItwy2q3wHLVdntOd8193F3PBACU2XtEOzVNdgOlJN7NexLZ/W6y/NhERBkhfMFK0R9VGR8iIiJKjEsuuQSCxt/qESNGhB5v3rw5qvH/97//AQD69u2LQYMG6fZtCWguWrRItojYp59+Gnp86623RjUPIz777DMEg0FkZ2fjjDPO0O3bMtfdu3dj+/btofZvvvkm9Piqq67S3P/cc89FYWFhbBNOQwzSEiXRcZ096JZ3KNB345A8eBzKPxCCIODYznqLTcUmHjVpBXsWgjA37uBSFzrmmE9vlcyXvo2ZwyYoaryG06pJa3PmaO5jc+Yg/6ipaBLMB6sjsdmN/XvYszLn6j0RkZXCF4YMBL0Qw/5ITR1zbiKnRERERDr69eunua24uDj0uLa2NqrxW7JK161bB0EQdP/7/e9/DwDw+/2oqKgIjbFs2TIAwGGHHYbu3bUTfmLVMteGhgY4HA7duU6cODG03969e0OPW2reulwuDBkyRPNYTqcTw4YNi9NPkrpY7oAoiTwOAY+fYOx2hBO6evDjbm/kjtGIR5DWkYVAeEZRBHcfVRjVsaQoFiiLVXOQVqOcQUh02VOeHheiaf3GqPbVY9dcyIyIiKwghJWL8QV9ij79C3ghjIiIqK1oqd+qxtaqRFEwqJ+go2X//v1R7dfQ0BB6XFZWBgDo1KlTVGMZZcVcW4LLxcXFsNv17zzt0KFDVMdLZwzSEqUIZ5zq0gKAYDKYamhMexaCUJZuiAcxGZm0grLGazgxypsVBMEGrxDbwmZqIs2XiIhipMik9Su6OCOUyiEiosxlc5eg/eToAmWpyOaOvn5qqmgJ7g4ZMgRvvvmm4f26dOkSrylpaplraWkpvv/+e8P7qdWu1SohQfoYpCVKEfEM0sYjkxZ2D5ps5mvSRiMJMVo4bAJskn7Qc37WFMzPmhJ63i6wEXdWnhh5cMGOJhuDtEREqcZIJi2DtEREpEUQbElfSIus1bKQV11dHQYOHBjVGC2Lje3Zs8eyealpmWttbS369+8fMRNWTVFREQCgvLwcwWBQd4x9+/ZFN9E0xpq0RCnCIcQvFCnFIZM2YNOuu2q1YEB5EhxvNrEBtojlDuQOOI7Ax7n3R+wXlAT4BO3bbqIlJCWcTUSUOZRBWmbSEhERZbKWuqubN2+W1W41Y/jw4QCA7du3Y9u2bab3N5rV2jJXr9cbqk9rVsviaD6fD7/88otmv0AggOXLl0d1jHTGIC1RiigJan8YZ4uVMY1dLhVH7mTScteZpvoXBXdEfayxgfei3jdaOY0bDNSkVfoh65qIffwmF1yLllNqTMhxiIgyhWCTlzvwBZV/J1wM0hIREWWMs88+GwAgSRL+/e9/RzXGWWedFXr85JNPmt7f4zl0Ednr1V7n5qyzzgoFdJ966inTxwGAU045JfT4tdde0+w3Y8YMVFbGFsdIRwzSEqWILKlKtf2cuvtwaoP5D+rWRGdhTPurqXGYq6FzffWlUR9rTN1/0S5gbqEtIUKpAj19fd+jk6sWNsl8kNYI0eaJ3CkK4Zm0N1WdH5fjEBFlrLBM2oCo/DvBTFoiIqLMMX78eIwePRoA8Nhjj2H69Om6/VesWIGZM2fK2k455RSMGDECADB16lS8++67mvuXl5ejsVGejNN6wbFNmzZp7tu3b1/85je/AQC8++67+L//+z/duW7ZsgXvvPOOrG306NGhzN/nnnsOP/zwg2K/PXv24M9//rPu2JmKQVqiVBH04tjGVxTN4xpfwImNL+COCgO1TrWGFmOZmDqfiRhorngAnYLroj5WjtCAP1eeistrbjC8TzT1Wc+ofwQ3VZ2L66ovB0RfVJm0xsSr/rA8SNsjsCROxyEiykxC2MJhfpWv2k4bv34TERFlkrfffhvFxcUIBoO46KKLcPbZZ+Ott97CwoULsWTJEnzxxRd4+OGHcfTRR2Pw4MGYM2eOYow33ngDubm5EEURF198Mc4//3y8//77WLJkCRYuXIi3334bU6ZMQffu3RW1Xo855pjQ49tuuw1z587Fhg0bsHHjRmzcuBGBwKHz2uf+n737Do+qTNsAfp/p6SGFEjpIFUQQBERERGVFELEAYu9rYcW17drbWr513XV1FTtWQARERRQVRUWRrhQpUgRCDenJZOr5/ggZZk6bcyZTk/t3XV5mTpt3JpNh5j7Ped6XXkKXLl0AAHfccQdGjBiB119/HcuXL8fatWvx1Vdf4V//+hfOOussHHfccZg7d65srC+++CIsFgs8Hg/OOuss3Hvvvfjhhx+wcuVKvPDCCzjppJOwf/9+9OvXL1pPcZPBicOIUoToc8Em1qquL/JtivjYXjH6vUrdPv3HzPftbtydCSbYUYvjPPKzdKq7wHgyPTq4YtnvhkkUYpKn+g38OgY738fPaVN0bs2etEREsSTtSeuBvGrWLDCkJSIiak66du2Kn376CRdeeCE2bNiATz75RFYtGyw7Wz4Bd69evfDtt99iwoQJ2LNnD+bNm4d58+bpuv/jjjsOEydOxAcffIDFixdj8eLFIet37tyJTp06AQDy8vKwbNkyTJw4Ed9//z2+++47fPfdd4bGOnjwYLz99tu46qqrUFdXhyeffBJPPvlkYL3FYsGLL76IZcuWafatbY4Y0hIlmLdyG6rWPQJr7vHIOP4OCGab4nait0YzpG2MmFTSGkgazaifWMXvroDJlmP8zo5+4TUZCJsbO4mW6HfDpPDlOxqMPHfpKm0wFMUgjCciomOkIe1GhM7QbTOZdU/eQURERE1H9+7dsW7dOnzwwQeYO3cuVq5cicOHD8Pn8yE/Px89evTAqaeeigkTJgTaBUiddNJJ2LJlC1577TV89NFH2LBhA0pLS+FwONC5c2cMHToUkyZNCgSuwd59910MHDgQH374IbZs2YKqqir4/cpBQOvWrfHdd99h4cKFmDlzJn766SccOHAAHo8Hubm56NatG4YOHYrzzjsPp512muIxLrnkEvTr1w9PPfUUvv76a5SUlKCwsBDDhg3DX//6VwwePBjLli2L+PlsqpI2pN2+fTtKSkrQqVMntGrVKtHDIYoJz5F1KPmkfgbFOgA1G59Fq0sOK25btmQ87Gk3x2Qcsaik9RiopPUdfSs6+H4uWl/uUg2qVQn1YWkk1bER87thFmPzFvrEinLd2zrESt3benW+5ftFESaGCERExgW1O/hZbIu/YEzIavajJSIiio/TTz8dosr3XK11UlrbderUSfdxAMBsNuOSSy7BJZdconsfqbS0NEydOhVTp041tJ/VasVdd92Fu+66S/c+5557Ls4919iE4MF69+6Nt99+W3X9jBkzMGPGjIiP3xTF/XqrQ4cO4cUXX8SLL76IiooK2frff/8dJ510Erp3745TTjkFbdu2xYUXXshZ36hJqlx1R8htv6sEnrKNsu3EoxOP5Pt2xWQcsaikNRL77rb0D/xcu+WlCO6s/gGY4da9i6WR/WRFnxseWCPat8Sp3g93V6UHxdX6++X6DZxr2yEcr2u7tYf0P49ERHRMcCXtfPSUrU8zR/bvBhERERE1fXEPaefNm4dbb70Vzz33HHJyQi9rdrlcOOecc7Bu3TqIoghRFOH3+/HRRx9h/Pjx8R4qUcy59y+RLfNWyifQEn31szP2cX+BHN++wPITXJ+GbDfUqX6WSkssKmkL0/RXC4nCsW2dO2cbvi/RVwcASBOrNLezB4W4nbONVTNNqL5fcqceVAj5ho7RoM6r/nz/Uak/PG7t3QyxEU1xTY5C2WsIADaXeiI+JhFRcyaYjoWwFXDI1o8q6hbP4RARERFRCol7SLt48WIIgoAJEybI1s2YMQPbt28HAJx33nl47rnnMG7cOIiiiGXLlmH2bOPhDVGqMdly5Qt99eGiGT5MLT8fpzhnYFTt85hS9ZeQzSZW34Xeri8BAOn+UvSvmw8A6ONahL+XDlO9z1hU0kYa/AZ/wdWrIcQOxw1b4HIUR1qu5raTqo5VOQ+vfQ3Dna9J7tONwZ6PjQ20YV+NdWqRa3AA7/BXYpjzTdxQcWmgn28kLC36YUjde4bGR0RE+ngVPma/OuyiBIyEiIiIiFJB3HvSbtlSXyU4ZMgQ2br3338fAHDGGWfgo48+AgBMnToVZ599Nr766ivMmjULkyZNittYiRJBKaQU/ccqQAv8f2Bi9T3K+wK4ofKykGVXVv057H0aaB+rm1v/FfshRNF4Yix69U2oJgLw+AGbGQg3N9fQuncxtO5d9WP53fCJkVWxauXXgkpMe0H1/ZhULe8fZGpMH17RB5PC822krxIRESnzSELaB4vSkWWVV9cSEREREQEJqKQ9fLh+UqR27dqFLHc6nVi+fDkEQcANN9wQsu6aa64BAKxZsyY+gyRKoIb+syHLPPonh9JiE5XDTF+4xDIC7kiTXzGCXrE6K2kBoO7ouPyNDSJ9LngR2QQwmveskvuaoJx6myJ5vgID8SuGvIxoiYgazynpW26J5+SWRERERJRy4h7SlpeX19+xKfSuly9fDo/HA0EQcOaZZ4as69y5M4D6SceImgLR50bZd5eqrDwWulWtexT7Zwg4PF8++Ugk0v2lisudGj1SI7WvJsLwUCGkjqbPd9UH1Y3NpavW/B1eX2StBjaUqE/MtadK+fELKl/uBYORqnPXh6j7Yz4OvJcL98GliseNRWU1EVFz8rrYH9+jY8gy377PIfo4MSMRERERKYt7SJuZmQkAOHDgQMjyb7/9FgDQu3dvtGjRImSd1VpfiWCxxL07A1FMuPYtRt2O9xXXiX7P0f/7UL3uoajeb55/r+LyzWXRnygq0smnxBhXGs3dVgu3T2x0SAsYD0gbvP1bteq6BduVq53VQ1pjfSUql9+Kip+nQvRUAAC8kLfX+L2cE4cREUWqWrTiUYyQLbfAD1fx5wkYERERERGlgriHtD171lcEfv556IfUuXPnQhAEjBgh/1DbEOi2atUq9gMkioPK5beqrzwa0vqqd0X1Pm1FZ2Ns9T8U17VOj+yyfS098/RPAHZB1b2Bnx3txxu+L1ubUYGfz655Nuz25S4/PBop7XHuZbrut4f7O13bRYNa99te7m90H2N0zTPw1x2Ev7Y4sOygpbtsO4spsl67REQEFCMbHoV2OF1QBl/VjgSMiIiIiIhSQdxD2nPPPReiKOKVV17BSy+9hA0bNuDOO+/Epk2bAAAXXHCBbJ+GXrRt27aN61iJEqGhkhZCtIIyAendb0Tu8LfRoyALw51vyLaIRe2qL8xBe7u+hFl0oZfrKwx0zQksF6xZhu9LsKQHfu7jDl+l5PSKgd60DYq8G2AV/CgwV2FszeOB5Rl9lCdpA4AO3vj0ybaL6pW3rXxbVdd19vwccntU7fOybcwKPW39MehRTETUXLgUAtqJ2IDh+AOiyCsViIiIiEhZ3PsH3HrrrXjxxRexf/9+3HpraDXh0KFDMXLkSNk+n3zyCQRBwKBBg+I1TKLYMmlUmTaEtKq1k/q1uSo0bCv401e4FYBnTQWW73cdu8sYhHLhDnlD5WXIOeVVOHfOgrsyaGK0CCbCEj1VgZ8dYpXGlvWcXj9ckj68lw4ZhoGt7EdvrQ5Zlz3wKeyfIf99mFTaHWT7DqDS3DrsOPTqX5SPNmPr70s6Dq1XyTkDz8SpBXXYN6sVLFAOBswKyzm1DRFR5OokH69t8OI/whf1N2Lcd52IiIiIUlfcK2lzcnLw1VdfYcCAARBFMfDf8OHD8cEHH8i2/+WXX7By5UoAwFlnnRXv4RLFhGC2qa4ToxjSqjFLDh2LiaJ8oo6DCqaQKlgAgN9Yj1UA8HuOhbxW0aWxZb06n7yS1i59UhrBpKNPrKjn+Tkq0pEJAEyWNNWAFgDMonwSm3BV0EREpM4lCWlzcOzfpWP/xhMRERERhUrITFy9evXCqlWrsHPnThw4cABt2rRBp06dVLd/8803AQBnnHFGnEZIFDueI2vhLd+kvoH/aGgWtXYHcibJsX/aX4dLetZP6rd0rxMrD7jROceC8V3TI+5PWuPRE0IKgBB6WainfAPKf7gaAJDR525Yc3vJ9vI5D6L6l0cBvw+Z/R6A6D4W0lp0hLS1HhF1kkpaRxRDWj2TeYnQH75G+lIQIABmu+Y2ZsirunZWerG/xos2GZyskYjIqHI4Qm7bg95n/a6SeA+HiIiIiFJEQr+Bd+7cGZ07d9bcpl+/fujXr1+cRkQUW35PFUo+1W7b0VBlI7qOxGwc0jzyYK0fW8s8qPH48eIv9e0CVh50wecXMbFHZkT3sa9GT0WsAEEIfRuq2/Fe4GfXvi/R8qI/IJhCg9yyJefDc3g5AMB9aBnEoEpaC8KHtB9srYFbUi3qsESzkjZ8KapfBPTm3xGPTAAEQQBMtmPhv2wT5TB92relmDmmUBboExGRtr9jVMhte9CJu9rfnkfO4P/Ge0hERERElALi3u7g0UcfxaOPPoqSEv2VBGVlZYH9iFJZ7ZaXATFMeHk0pPVWbW/UfcnaCATJsMqDt99K3Vj8hzNk2aJdTtl2emUq3IecCJjUzxX5a4vhrQydGMtXdzgQ0AKAt3wD/HWHArdtYvgxWxXS0XDtDsxZXRSXt/WsD7nd1b0MA+vmKG4bzEgb4H6Fx9pj2IrOlq3v4f5Gcb/AG7xKQAsARd6NquvWHlLfj4iIlNklV1OUBVfWmtTbHRERERFR8xb3kPbhhx/GI488gkOHDoXf+KjS0tLAfkSpzFe9K+w2gX51Gn3rHB0v0D6IYELO8HdUVw8rcsiWefzAxiOh91nrjbxZrVabhCmV9ZMGWguHyNodyPgklbG+Os3NlS7fl3IpNF0NV0mbd+ZnistPc74W+FkQ/RjhfBUjnK8i11Rfkaz2NPgN9KQ9NqEZkH3SU7L151WrnMDSkZO38W1RXVcpLTcmIqKw7Pa8kNsnozjws6A1cSgRERERNWtsOEgUT4KO8yIN7Q68NaqbpPe6DXV/zJMtb3VJKVz7voQluxus+f1V9++aa0WnbAt2VQb1yfOLgMql75GQTow1uvbfOGA+DsOcM9Dd8wMAwOQogBAmpBVlVaCNv/y+2i1/nOF60lpyesCc3R0+SWXvYNcstCrbiiM9nkFXewk6WEbDknMbninoiPVHvCjKNOOe78tkx1OrpE2zCHAGheN3npSDDOux1401vz8KJ2zGkc9PhzmzM3JHzETOwe/Qblct9taFVk837GVvfx5cez5WfWw93V9js22UbDkbHRARRcCaCbiOve9fgg2BnzlxGBERERGpSYmQ1uOp/0BrtbL6gFJd+JBWFI+GtB71kFZQmQzKZG+BtM4TdY2kbaY5NKQVjV2CH470WMd5fsQ5NaFVoIJgDV9JK/tC2/josEZSISwAsOrIz615/WUhLQB08q7BwC45sOaPDCyzAzilSKOVg8pzLV2ea5cPzJLTA60m7T92O/NytK+owN79kqrjo0+VYM1SHQcAWETl0IDtaImIjJNeKRHS+9vvhiiK9f3CiYiIiIiCpERIu27dOgBAYWFhYgdC1EiCjkpa0V0/CZbfW61+HJNySGuEdEKo+dtrG33MYNKw0aRUpWuyaPakBZSqjqKYJB/lsAi6vjALljStlYbu06fyMNySFXonF1ParmGRyZKhua+gY6IzIiLSRxrSyv79E32G/80gIiIioqYv5p8Q3377bcXlCxYswKpVqzT3dblc2L59O9544w0IgoBBgwbFYohEcVOz6d/ht9n4DLL6PwbnjvfUNzI3fuIRIz1RIyGvVpUHgYJgDtvuQDrplefImkaPTSpcq4MGglneyzcgTNgs9cSKcjw9PE+2XPpb0Tk0WegOHAtpBWum5r5qIe3Xu+swop1GME1ERDLS93FZSOv3GP43g4iIiIiavph/QrzqqqtkFWqiKOL+++/XfQxRFGEymXDbbbdFe3hEcSP6feE3Oqpu90fwVWxWXa8ZFuq0tSx2ffFK6+SP1ZTdDShZJlloCVtNJK2kde76wPB4WqWbcLBWvVrUrHMKRXNGe9V1gsEZu3dVeuHzizAHlcCWOOXPm1lnKa1SmNvw3iuEqaQ1icqvzS0xfI0QETVV4U6Cin43BPAEGBERUXNz1VVX4a233kLHjh2xa9euRA+HkpDOaKJxRFEM/Ke0TOs/q9WKYcOG4eOPP8aIESPiMVyi2JBNgKXOuf0t1XWmtDYwZ3aCo/MlkuWtDQ2nxBm7S9z3VslDP8eJT8qWCSZr2ABR1pNWJVAMNqL25ZDbF3bTvg+9z0Vat2sVl5scrWDO7Ky63586KX8Zr5O0Nih3ycfRJiNMpfFR6VaNSlpLuEra2FZVExE1JyLCtDvg5GFEREQx9+2330IQhMB/kyZNCrtPQ5Ehe8dTosS8knbnzp2Bn0VRRJcuXSAIAr744gt069ZNdT9BEOBwOJCfnw+zWV9IQZTMRB3hYgPBkq643N7hfGT1ewiCYELOKa/AW74J3rJfAACF52+KyjilIpngRKmKyJaWh+xB/0blytsBAIXn/wYAMNlytO9fEm6L3vC9cy9qdwQZWXYcdIo4u2MaHBbt8Z+jEqJKmazKY8076zMIJvX3qQu7ZeDzXU7ZcpdPREbQfIh1XvnzZtFZSZttk59za/i1hQvC2ZOWiCh6wvWklfdaJyIiolibM2cO7r//fvTt2zfRQyFSFfOQtmPHjorLi4qKVNcRNUmi/iBMMCuHtHlnzA/8bLJmonD8usaOKqw6n4i0MCGnlNKkWGYByDh+GjKOnxayXAgT0korjvSEtAX9H8CVjmPH/b1c+wtxpkLAqUihh6C9aDSs+QM0d1PreSudJExaWdsyTf/FDllKIW3D/yPsSUtERMZJQ1rZvwAMaYmIiOJOFEU89NBDmDdvXsLGMGPGDMyYMSNh90/JLy7tDoL5/X74fD707t073ndNlFgGQlpYkqdXXa3H+KXwfoVdBPnXVADq1akNRL8n0CpFFEWI3prwA5CEqZYw73R6J+eC0iRnKlXPIcNROb5LUlwtraQNVwEcTLGStuH/4XrSQn+VNxERaQvX7kB6hQgRERHFVkFBAQBg/vz5WLt2bYJHQ6Qu7iEtUfOlP6R1bn01huOop7eDgVPhEvxwfArtDtTuL1wlbcWyq3HgLRP2zxBw4C0TPId/Cj8AyWRkljAPNtz6wGEVtlNrTRFMLaS9+/tSvPhLJVw+ERtK3Hh+XWXIerUKXCVZNoWxBdodRF5JqzQJHBERqTviCr3ig+0OiIiIEusvf/kL7HY7AODBBx9M8GiI1CUkpK2trUVtrfoly88//zyGDx+OXr16YcyYMfjkk0/iODqi2PDV7kv0EEJk6KzSrI0kpFXI/NTuLVxP2kgIRitpG/FOaLJmhx+Pxrqle+uwfH8dHvu5XLZOYR4xVUqVtNVHq6BNVu1KWpegHuLO3qKjcpmIiAAATq9CACs9wceQloiIKK7at2+PG264AQDw6aefYsWKFYaP4ff7sWTJEtx5550YNmwYCgoKYLVakZubixNPPBF33nkndu/erXmMhonJOnXqFLL80UcfDUxYtm3btrBjGT16NARBQJs2beDzKRfVfPTRR7j44ovRoUMHOBwO5ObmYuDAgXjkkUdQVlam+3FTfMU9pP3kk0+QlZWFNm3aoKqqSrb+mmuuwbRp0/Djjz9iy5Yt+OKLL3D++efjySflM8MTpRJ/3eFG7Z818P+iNJJ6F3fXDu4aSPum6uE1UElrSm9r+PhhSdoShOs5W5imf3JCc07PkNuOTheFH06YSt0Xf5G/FwLAH5Ve3eMqUHgMDVWw5swumvv+Yh+nuu7bvXW6x0BE1NztrD4iW1ZkkkyA6ZNPJElERESx9fe//x1pafVtBR944AHD+z/66KMYNWoU/vWvf+HHH3/EkSNH4PV6UVFRgV9++QX/+te/0KtXL8yfPz/8wSSmTJkS+Pn999/X3PbgwYP4+uuvAQCTJ0+G2Rz6PbCsrAyjRo3ChAkT8OGHH2LPnj1wuVyoqKjA6tWr8fDDD6Nnz55Yvny54XFS7MU9pP3iiy8giiLOO+88ZGVlhaz74YcfAk2U09PT0b9/fzgcDoiiiAcffBAbNmyI93CJokbtS5k5s7Ou/dOPuzqaw8Hwtg5d2yn1lw3Hq1ABqnbJvzm9nfE7CEcS0trV7vyofoU23YfOPukpwFz/j7uj44WwtTpN134398sKv1Ej2BVaIzRk5eYM7SC8lXdLLIZERNTs1CpU0na0Sdod6OmtTkRERFHVpk0b3HTTTQCAxYsX44cffjC0v9frRZs2bXDzzTfjnXfewbJly7B69Wp89NFHuPvuu5GZmYna2lpMmTIFv/32m6FjH3fccRg8eDCA8CHt7NmzA9Wzl156acg6l8uFM888E0uWLIHZbMbll1+OmTNnYvny5fj+++/xj3/8A/n5+Th06BDGjBmDP/74w9A4KfbkU5XH2PLlyyEIAkaOHClb98orrwAAioqK8NNPP6Fdu3bYs2cPTj31VOzduxcvv/wynn/++XgPmSgqRK9ySJve40Y4d86Gt1S9gbmjyxSYHAVRHU+6Vd85Gj8iqKRVSHZVY1JT9N+GpJWrWoWsLewm2Az0fnV0GI/Wl5TC7y6DOb2N7v1GtEvD57uc2FGhvzo2XnL8B3EQPRI9DCKilFfrDa2abWFLOzp547GraRjSEhGRGr8ootodQZVMisq0CTDpnSwlCu655x68/PLLqKmpwYMPPoglS5bo3ve6667DQw89BKvVGrJ8wIABGD9+PKZOnYohQ4aguLgYTzzxBN555x1DY7v00kvx888/Y+vWrVi1ahUGDhyouF1DiNu9e3fZNo8++ijWrFmD3NxcfPXVVzjppJNC1p966qm49NJLMXToUOzfvx/33nsv3nvvPUPjpNiKe0h76NAhAECPHvJA4PPPP4cgCJg6dSratauvrmvfvj2mTp2Ku+++G0uXLo3rWImiSf3yRgGCSbuSUzCHn5wqVhQ6F4TlUepJqzZxmGACBBMgGmjAGkXh+tUqESwOmC36A9oGaTr7AEdL8/l4R0SUHKSVtOkW29GQ9hjRw5CWiIiUVbtFXP9VSaKHETevnlmAbHv8viO1bNkSt956K55++ml88803+OabbxQLCJVI+8hKtWvXDnfddRemTZuGjz/+GKIohm17F2zSpEm4/fbb4fP58N577ymGtNu3b8fPP/8MQF5FW11djf/9738AgMcee0wW0Dbo2LEjHnjgAdx8882YM2cOXnnlFWRk6GuFSLEX93YHhw/XVxJIWx1s3LgRJSX1b0bjx48PWdfw4mQpNqU0tZBWEMJWkwpmewwGpE9k7Q7kO5m0ps8SYnu+SOufRkuYVgjxGgcREaU+eUhrhWAJnZzR7y6P44iIiIgo2F133RXIoyLpTdugsrISO3fuxMaNG7FhwwZs2LAB6enpIeuMaNmyJc466ywA9S0N/H55EVNwK4TgPrYAsHTpUlRUVAAALrpIe96U006rb9nn8XiwevVqQ+Ok2Ip7SNvQ1Li0tDRkeUM/kMLCQlmVbYsWLQAAdXWcwIZSl1q7A0AAROUZGQNbhKm0jaVt5cZnoVaaa0zrJKJgsqqvjAKt+zbQ6aDR4pgHG8SaWyKiaKj1hbY7SLfYIFhDq1MqV/wlnkMiIiKiIPn5+Zg2bRoAYNmyZfjiiy907/vHH39g6tSp6NSpE3JyctClSxf06dMHffv2Rd++fXHDDTcEtm0oQjSioTp2//79iq0YGkLawYMH47jjjgtZt2rVqsDPbdq0gSAIqv/16dMnsO2BAwcMj5NiJ+4hbdu29RPYrFu3LmT5woULIQgChg8fLtun4WxAQUF0e3ISxZPoUz7JYM7sCHvbczT3teQeH4sh6TL/91rD+6QrXNafbVN/uxGssZ1US4tLKVGOkdK6+LZ06JB1rELZlKbenkFgSEtEFBVOSSVtmtkqO0lrsufHc0hEREQk8de//hW5ubkAgIceekjXPosWLULv3r3xwgsv6LrK2+lUK9JSd/755weqcaW9YtesWYPNmzcDkLc6AI61FjWqttb4932Knbj3pB0+fDi2bduGF154AZdddhkKCgqwcuVKfP755wCA0aNHy/ZpmBmvdevWcR0rUTSJfrdsmSm9LexFo2FvMwrV69T/cXB0OD8mYxrQ0oY1h+TjaqxMhUA2x64e0qZ1noyaTf+J+jgaaDWj75wT2yreYJG0jjDi/K7p+Gh7/T+yRRlm9G95rAI7o9etqFpzX2wHQETUzPkljdzNggBLbm94Dv90bGGMrx4hIqLUlWkT8OqZzac4LdOWmEsNc3Nz8de//hUPPvggfv75Z3z66acYO3as6vYlJSWYMmUKamtrkZmZiTvvvBOjR49G165dkZOTA5ut/nvXkiVLMGrUKACAGMHkLpmZmRg/fjxmzpyJefPm4aWXXoLD4QBwrIrWbDZj0qRJsn19vmNX565Zs0Y2wZmahvmgKDnEPaS9+eabMWPGDOzcuRNdunRB9+7dsWnTJni9XuTl5Sm+2JYsWQJBENC7d+94D5coevzytgEF5/4Eky0bAGBrfTrcB76VbWPO6gqTIzZVN/cMysV7v1Xj4x3RPXsm/ZIaXNGpJGvgMxGFtBnH34majc/o2vbvg3Lw5MoK2fJzO6cZvt9InVLkwIfb9E8Yk+cwdrHD5B4Z6JRjQaXLj+FtHSHhdEbfv8Oc0xPuA0tR+9t/DR2XiIj0ESVXJgiCgLTOk+Hc9vqxhb7onxwlIqKmwSQIcZ1IqzmbNm0annvuORw5cgQPPfSQZkj74Ycfory8HAAwf/58nHnmmYrbSdt6RuLSSy/FzJkzUVlZiU8//RQXXXQR/H4/Zs2aBQA466yz0LJlS9l++fnHMoPCwkKGrykq7u0OBgwYgH/+858QBAHV1dVYs2YN6urqYLVa8eqrr8omFKuoqMDChQsBAKeffnq8h0sUNaIkpHV0mQJzRvvA7eCfg1lyY3ty4tJemfjzCdFtN+CTXNVvM2tvL5jCbKAirculgM5+vWoThGlV2UZbrO9KEAQMbePA6E7pSLeaZOvSOl6AnMHPwdZG+qGC7Q6IiKJBepLSBEH275TSlTVEREQUX1lZWbjrrrsA1Feezp8/X3XbjRs3AgDy8vJUA1ogtC9spEaPHh1o9dlQPbt06VIUFxcDUG51AAD9+/cP/Lxs2bJGj4MSI+4hLQDcfvvtWLt2LR544AFcf/31ePDBB/Hrr79iwoQJsm2//fZbDBo0CKeddprmmQ2iZCaKfrj2fBKyTD4ZmHKCF+tJtYDoX4YvbfNqjlU6KQhQe96kzCrvds3xPLVgCq1sZk9aIqLokIW0giD79170VMVzSERERKTi1ltvDVSlPvTQQ6otCrxeL4D6yez9fuV5Rmpra/HOO+80ekwWiwUTJ04EAHz22WcoLy8PhLXp6ek4//zzFfc788wzA/1s//vf/0bUboESLyEhLQD07dsXjzzyCF5++WU8/PDD6NGjh+J248ePxzfffINvvvkGrVq1ivMoiRpP9Ptw4C0zvOUbQlfIwleVuFBIxZBW2pMvusc/RtBdnqoWFKsU2MZE0gTCBoP/NzcyUCAi0uOj3RtDbgsABLPkpKzohc8Z2eQeREREFD0ZGRm45557AADr16/HZ599prhdt27dANQHsR988IFsvc/nw3XXXYd9+/ZFZVwN1bIulwvvv/8+5s6dC6A+H8vMzFTcJzc3F7feeisA4Mcff8Ttt9+uGigDwMGDB/Haa69FZbwUPQkLaYmaC1fx54rLpRWy3soturaLBXtk3QZUySppY/ROU1+dpC/6VGu5ELsAWc5oFp6rMdlaY5gzOoTczvSXaG7/+S4nSpw+zW2IiAj4ev+2kNt+iIonxup2zozXkIiIiEjDTTfdhDZt2gConyBMycSJE2G32wEAV199Nf72t7/h66+/xqpVq/DWW29h8ODBmDlzJoYNGxaVMZ1yyino3LkzAOC+++5DWVkZAPVWBw0effRRDB48GADw3HPPYcCAAfjf//6HZcuWYd26dfjmm2/wwgsv4Pzzz0eHDh0wffr0qIyXoicpQlpRFLF9+3asXLkSK1euxPbt21maTU2G8/c3FZdLL3/0Ow8qbmfJHxD1MUkNaeNQXVeQZvxtQnrCTk+7g4zetxu6D3NmZ5hzekDQWUnbMcsCSZtW2ExAm8z4zZ/olabXYVx9fHR7BTdIO+6qkNvnZa8Nu8+WMvnEd0REFKprVuhEnwecVRAUrohxHVgaryERERGRhrS0NNx7772a27Rr1w4vvfQSTCYT6urq8PTTT+PMM8/EoEGDcNVVV2H16tWYNGkSHnnkkaiNa8qUKQAQmLCsoKAAo0eP1tzHbrfjyy+/xAUXXAAA+OWXX3Drrbfi1FNPRf/+/XHGGWdg6tSpWLBgAdxuN7Kzs6M2XoqOhIa0X3zxBcaNG4fs7Gx0794dQ4YMwZAhQ9C9e3dkZ2fjvPPOw+LFixM5RKLGE1T+zGSVNfIAL73nLcjoeUv0xyRhMwuY1l/5DbprjvFKXmm7Az0tBTJPfBhpXS+HObt72G1trU9Hi9Pn6A5ogfqJsx4e2iJw22IC7jgpB/Y4ltKe1Mqua7sOWWZc1TsT3XJjEyDbCgYie/DzsOT2gb3dWBx3yqO4uV8WuuSo3x/PmxERhSd9q3yg31nKLWZ8dXEZDxEREYV3/fXXo3175Ym8G1x99dX4/vvvcf7556OwsBBWqxVt2rTBn/70J8yePRuzZs2C2Ry9S1SlVbMTJ06ExRL++2FWVhbmzp2L77//Htdddx169OiBrKwsWCwW5OXlYdCgQbjlllvw2Wef4csvv4zaeCk64ldCFsTtduOqq67C7NmzAUCxarampgYLFy7EwoULMWnSJMyYMQM2m75Z3ImSi0oIKP3SpvB3kDPkhRiMR9nQIgeGFjkwd1sNPthaE1gunQRFD/nEYeH3MdmykTv8bQDAgfdbQHSXq26b/6dvDI8JAI7LtWL2uS0j2jca9LR9eO2sAmTZYn/+LKPXrcjodWvg9ogMYES7NExaqNwnkRktEZFxWVa7Ytsi0e9KwGiIiIiaj9NPP133Fdp2ux27d+8Ou90pp5yC+fPnR3yfM2bMwIwZM3SNqVevXo26wvzUU0/FqaeeGvH+lBgJCWmnTJmC+fPnQxRFWCwWnHXWWRg8eDBat24NADhw4ABWrFiBL7/8Eh6PB7Nnz4bX61Vs0EyU/JQTSmm7g2SJwaSBqsEr9I/uI5/d2ghBsBh4NpJmOq6w9LR9iOdEZoYkx8uTiCj1KIW0Poa0RERERBQq7iHtwoULMW/ePAiCgJEjR+KNN95Ax44dFbfdvXs3rrnmGixZsgRz587FZ599hjFjxsR5xESNpBLMSStrxCRJwcySlLC42htyu6zOhz9/fSRwWwDwqqT6U9qT1mK0MNTQZGnJmmrK6aooTtKH42W/AyKisHZUHZEtU5wAlO0OiIiIiEgi7j1pG0q7+/Xrh88//1w1oAWADh06YNGiRTjxxBMBAG++qTwBE1Eyc+//WnmFoSAyfrz+0DDuYG1o4jr1m9AvoCKAudtqQpZJq2+NVtLCZOD8kdFjJ5CesNrwcxUn3+5hoEBEpMUnPUOJo6cRZVfOsJKWiIiIiOTiHtIuX74cgiDgjjvugNUaPqSyWq248847IYoili9fHocREkWXYFWekEva7iCt6+Uht635J8VsTFpWHND+4uiRfwfFol3OkNvSdgfRnJvL0fGikNtZJz4actveflz07izK9LSOsCZ0Okd1m8s8iR4CEVFS211TJluWa0uDYMmQLbfmD4jHkIiIiIgohcQ9Djh8+DAAoHfv3rr36dmzJwCgpKQkJmMiiiWTvUBlRehJivRu18OU3rb+hmBG5gn3x3hkyvxRuKo9konDgmX2/qvicsGSiYzj7whZltbtaljzBwIATGltkDXgH8buLI70PA3JWklLRETa3H6fbNmggvYQTPKZnk32vHgMiYiIiIhSSNx70mZkZKC8vBxHjsh7dqkpK6uvTEhPT4/VsIhiRlTpOyftUWfJ6oSWF/wOT+k6WLK7weTIj8fwZBwWeUjoF0VD4aFPUm1rNHh0dLoQlStvD1lmLTgZeWd/CZMttDLZZMtB/phl8FXvhCmtNUy2HEP3FU/J2m+WiIgaz+2Th7R2c/1H7bTu18O59dXAclFUuCyFiIiIiJq1uFfS9ujRAwAwe/Zs3fs0bNuwbyzdc889EAQh8N+3334bdp9FixZhwoQJaNeuHex2O9q1a4cJEyZg0aJFMR8vJT/R51ReodCjTrA4YGs5JGEBLQA4FMpelVocaPFL2h0YnjhMkJ8/shYOkQW0gc3NNlhyeiR1QAuwSpaIqCmTVtLaTGYIR9/3BelHboa0RERERCQR95D2vPPOgyiKePPNNwOTiGl555138MYbb0AQBJx//vkxHdu6devw7LPP6t7e7/fjuuuuw5gxY/DRRx+huLgYbrcbxcXF+OijjzBmzBhcf/318CtMJEHNh+itVVyuONtzErArhLSLdzllE4pJzf+9Bodq67+gbpH0LzVcQao4cVjqB5yspCVKvAM1Xnyyoxa/HK7vvy2KIlYccOHTHbUor5NXQhLp5fZ7Q27bgv8tE6QfufnZkIiIiIhCxT2knTp1Ktq0aQNRFHHttddi7NixmDdvHoqLi+HxeOD1elFcXIx58+Zh7NixuOqqq+D3+1FUVIRbb701ZuPy+/244YYb4PV60bJlS1373HfffXj99dcBAP3798fMmTOxYsUKzJw5E/379wcAvPbaa7j//sT0FqXkoF5Jmzoh7bubq/HiL5Wa+83aUoP7fyzDukMu7K0ODTrMBitIBYVKWqEJVKEypCVKrNI6H/72Qxne/a0aT6yowPfFdfhkRy3+tboC7/xWjbt/KINLzwx/RArWle4LuW0zB/WilYa0rKQlIiIiIom4h7QZGRn49NNPkZubC1EUsWjRIlx88cXo0KEDHA4H7HY7OnTogIsvvhiLFi2CKIpo0aIFPv3005j2pP3vf/+LlStXomfPnrj22mvDbr9161Y888wzAICBAwdi2bJlmDx5MgYNGoTJkyfjhx9+wMCB9ZMZ/fOf/8Tvv/8es7FTcjMpzOoMQHG252RwXK5yq+pl+1xwhwkvKlx+vLahSrbcZnDmMMHskC0zpbU2dIxkpNRKgojiZ/7vtXB6j72PvbCuEu9trgncrnD5sWS3yok1ojB+rwyd4LbK4zp2gyEtEREREYUR95AWqK86Xb9+PS688EKYTCaIoqj4n8lkwkUXXYRff/0V/fr1i9l4du/ejQceeAAAMH36dNhs8l6hUv/5z3/g9dZf1vb8888jLS0tZH16ejqef/55AIDX68W///3vKI+aUoXJUShbJtjzYCs8JQGjCW9UhzTVdXXe8BVmh53yL579W4b/mwomWNJga3PmsQUmOxwdzjd0jGSUbjVhgMHnIt5uOiFLcXn7LPns5ESppqHFgZZt5Z6w2xApybCEvr97QnrUhn7k5sRhRERERCSlXDIXB0VFRZgzZw7279+Pb7/9Fhs2bEBpaSkAIC8vD3369MHpp5+ONm3axHwst9xyC6qrq3HllVdixIgR+OabbzS3F0URCxYsAAD07NkTQ4YMUdxuyJAh6NGjB7Zs2YIFCxbghRdeaBKXbJMxfk9omwBTWmvkjV4Ckz03MQMKw6JxTb7HLyLLJqDKrf9y4HaZZhyXa7y1Q4vT56B2y4vwOQ8hrcslsOTEfuLAeJg2IAef76rF+0HVe8nk9PZpeOlXeTW0UhsMotQT/nXMtiQUKa8keL240wmBnwX2pCUiIiKiMBIW0jZo06YNLrnkkoTd/wcffIBPP/0UeXl5gfYF4ezcuRP79tX3HRsxYoTmtiNGjMCWLVtQXFyMXbt2oXPnzo0eM6UW0R0a0uYOfxvW3F4JGo0+bTPNKK6WT6Dj8YsIM3+YTN+CyCpHTfZcZJ5wb0T7JjO7WcD4rhnYU+XD98V1iR6ObiLbdFIToCd/FZrAJIWUGF7JRLFp5qATlILkagRW0hIRERGRRELaHSSL8vJy3HbbbQCAp59+GgUFBbr227RpU+Dnnj17am4bvP63336LYJSU6qSVtII1O0Ej0U+tkszjh+FJdbQqcyl1GA3niZKRnotZ+JZFkZJW0lpNnDiMiIiIiPSLaSXt7t27o37MDh06RO1Yd999Nw4cOIBhw4bpmiyswd69ewM/t2vXTnPb9u3bB37es2eP4TEG35eS/fv3Gz4mxY/ocwO+0EloUiGkVes9u7XMA6/B75UMPNSkVuqZWqMlUlZaF/4NrM7giSiiBlsrDofctpiCgllJSFv3x1xg+FvxGBYRERERpYiYhrSdOnWKag9WQRACk3U11vfff4/XXnsNFosF06dPNzTOqqpj/RozMzM1t83IyAj8XF1dbXicwSEvpR5PyQrZMlMKhLRKk38BwOsb5L1Kw2ErU2U2hfQ6WZ6qLKuAKk9oUOVnvwNqAvRcCbCtjBOHUWTWle4LuW0K+WwZ+g4vepOzLzkRERERJU7M2x2IohjV/6LB7XbjhhtugCiKuP3229GnTx9D+9fVHesjabNp99u02+2Bn51Op8aW1BT53WWyZaa01gkYSXREUmDWNjPhra+T0vnHZciW/aV/cgT4N/eTj4PtDqi5KMo0h9+ISMHQlh1Dbi89sCPws+itDVknWLPiMiYiIiIiSh0xTU+uvPJKzfXl5eVYsGABBEHAFVdcEcuhhHjiiSewefNmdOjQAQ899JDh/R0OR+Bnt9utua3L5Qr8nJaWZvi+wrVI2L9/P04++WTDx6U48csn3xJMzSsAGNrGHn6jZqhluhmTe2Rg1pb6aqp+hTYMapUcz1W/QhsK0kwoCaqoZkhLRKRNWkxwXvvjAz+ndZ6E2t+eO7atPzpXhhERERFR0xHTkPbNN9/UXL9x40YsWLBA17bRsnnzZjz55JMAgOeffz6kHYFeWVnHqh/CtTCoqTl2OVu41ghKwvW8peQmIrRtgDm7e4JGkhhmATCzKa2qCcdlYIJCRW2imU0CruiViWfXHJv0jhktEZE2aVuYdIs18LNglpyo97OtBhERERGFanbXIf/73/+G2+1Gly5dUFtbi1mzZsm22bBhQ+DnJUuW4MCBAwCAcePGISMjIyQ4DTexV3AlLPvLNkOipJJWOrtzE8d8NnWZJH26WUlLRKTNLzmdJQT3oTVZQzcWvRBFMapzNxARERGRMQ2fxR566CE8/PDDiR0MmmFI29B+YMeOHbjkkkvCbv/YY48Fft65cycyMjLQu3fvwLLNmzdr7h+8vlevXkaHS6lODK2kFZpdSMsvn6lKGrAfdspbdxAlE1EU8e3eOvy034Uu2RZc1D0DFp4pojiSTp0Q/G+gYFL4yC36AKHZfRQnIiKKi2+//RYjR45UXJeWlob8/Hz069cPF1xwAS699NKQ+YSIEqV5JUZR0rlzZxQVFQEAli5dqrntd999BwBo27YtOnXqFOuhUbKRhLQQmlc/WuYjTQcraSnZbS3zYvqvVfjlsBvzt9di0a7IJuuM0hyl1Az5JS2OQk5USitpAbY8ICIiShCn04m9e/di4cKFuPbaa3HSSSdh165diR4WUfMLaWfMmAFRFDX/C55M7JtvvgksbwhZBUHA+PHjAdRXyi5fvlzxvpYvXx6opB0/fjwvaWuGRGm7g2b2J2fmSz5lbTwinxTRx6SWktgbG6tCbr/7m3bPeKJokwb8wf8ECgohrciQloiIKC5uuukmrF+/PvDf119/jeeeey7QynLjxo0477zz4PPx6kFKrOaVGEXRtGnTYDbXV0VOnToVTmdoxY7T6cTUqVMBABaLBdOmTYv3ECkZSCtpTalRSXtKUXQu9WAlbeqq9cgDWZ5nomR2oCY6H6rZpoUiJZ04LOS1pNTWQPTGeEREREQEAC1btkSfPn0C/51xxhn4y1/+gk2bNgWK8davX4/58+cndqDU7DGkjVD37t1x1113AQBWrVqFYcOGYfbs2Vi1ahVmz56NYcOGYdWqVQCAu+66C926dUvkcClRJJW0Qor8yfXJt+na7r8j8zXXmxl2pCx/+E2ImiSeXKJISScOC+1Jy0paIiKiZJOVlYX7778/cPurr75K4GiIGNI2yj/+8Q9cc801AIC1a9di8uTJGDRoECZPnoy1a9cCAK699lo8/vjjiRwmJVKK9qTVE1J0ybGgVboZZ7R3NOo4lJykFWFEzQXftihSouR9U0C4nrSspCUiIkq0vn37Bn7es2eP6nbffPMNrrzySnTp0gXp6enIzs5G3759cdddd2Hfvn267mvZsmW47rrr0KNHD2RnZ8Nms6Fdu3YYO3Ys/ve//6G8vFx1308++QQXXXQR2rVrB7vdjvz8fAwdOhRPPfUUqquV23x17doVgiBg2LBhYcdWXFwMs9kMQRBw9913K25TUVGBJ598EsOGDUNhYSFsNhvatGmDcePG4cMPP5R9FgomCAIEQcDDDz8MAFiyZAkuvvhitG/fHlarVXEOpwMHDuC+++7DwIEDkZeXB7vdjvbt22PixIm6A/X3338fp59+Olq0aIHMzEz06dMHDz30kOZznUicUrYRTCYTXn/9dVx44YV45ZVXsHLlSpSUlKCgoACDBg3CjTfeiHPOOSfRw6QEcO1fAs+RNXD+PiN0hZAa50X09JJNt9RvpDV7OkPa1MX2s8mvzivi++I6LNxZi36FNkzpmQl7M20EXecVUeeLzos2+AKA3ZVe/FHpxfEFVuQ5UuMkGyWOViWtUrsD5473YLLnwd5+HMxprWI9PCIiIlJgsx27itRqlZ9Uraurw9VXX41Zs2bJ1m3YsAEbNmzASy+9hJkzZ2LcuHGK9+F0OnHttddi5syZsnXFxcUoLi7GwoULcfjw4UCIGXz/U6ZMkbViKC0txfLly7F8+XI8//zzWLhwIU488cSQbaZMmYLHH38cP/30E3bt2qU5mf3MmTPh99cXmV166aWy9V9//TUmTZqEI0eOhCw/cOAAPv30U3z66acYM2YMZs+ejczMTNX7AYD77rsPTzzxhOY27733Hm688UbU1NSELN+7dy/mzJmDOXPm4Nprr8X06dNhscg/Z3m9XkyZMgVz5swJWb5x40Zs3LgR7777blJWTsc0pH300Uc11x86dEj3tg0efPDBRo1Jj4cfflj2h6FlzJgxGDNmTOwGRCmleuO/UbXyr8orUySk1TPJXVogpFXfhr0dU5dS3uXyiYHfOyWWXxTxtx9Ksf9oH9b9NU58vsuJmWMKm93fnSiKeHJFedSPu6HEjSdWlMMnAplWAU8Pz0NBGoNaUqfVk1ap3UHV6nvqt8toj8LzfoHJ3iK2AyQiIiKZ3377LfCzNMQURREXXXQRFi5cCAAYN24cJk6ciC5dusBkMmHFihX417/+hd27d+Oiiy7CsmXLMHDgwJBj+P1+jB8/Hl9++SUAoFu3brj55psxcOBApKenY//+/fjxxx/xwQcfKI7vyiuvDAS0/fr1wx133IFevXqhtLQUs2bNwowZM7Bv3z6MGjUKv/76K9q2bRvY99JLL8Xjjz8OURTx/vvv495771V9Ht5//30AwPHHH49+/fqFrFu2bBnOOecceDwetGrVClOnTkW/fv1QVFSEffv2Yfbs2Xj33Xfx2Wef4corr8TcuXNV72fevHlYv349+vbti9tvvx19+vSB0+nEunXrAtt88MEHuPzyyyGKIrp06YJbb70VvXv3RmFhIXbt2oXXX38dn332GV5//XVkZ2fj2Wefld3PnXfeGQhoe/TogbvvvhsnnHACKioqMGfOHLz66quYNGmS6jgTJaYh7cMPPxw27GlY/8gjj+g6ZjxCWqLGcG57XXWd6C6P30AaYX+1nksw6/92tfrOWlMjkyYFDoWKzPUlHpzcOjqTylHjrD3kDgS0wVYfdGNQM/sd7a32YXNZ+N6eelt4NLzyX/61MnCyotojYv7vNbi+b3aEo6TmQLvdgfpHbn/NHrj2LUZa5+T7okBERPHlF/044qpN9DDiJt+eDlMCC5l8Ph/++c9/Bm5fdNFFIetfe+01LFy4EFarFR9//DH+9Kc/hawfMmQILr/8cgwfPhwbN27EtGnT8MMPP4Rs88ILLwQC2gkTJmDmzJmw20M/r5977rl47LHHsH///pDlCxcuDIS3o0aNwmeffRZS+Xv22Wdj6NChuOGGG1BaWoq//vWvmD17dmB9z549MWDAAKxZs0YzpN28eXOgZae0itbj8eCyyy6Dx+PBn/70J8ydOxfp6emB9QMGDMDYsWNx2mmn4YYbbsC8efPw5Zdf4qyzzlK8r/Xr12PUqFFYuHBhyPNw2mmnAQBKSkpwww03QBRFXHPNNXj55ZdDKmUHDBiACy64IFCN+9xzz+HGG29Ejx49Qu7j+eefD2y/dOnSkOreUaNG4ZRTTsGVV16pOMZEinm7A62eFEbpqe4jSjR/3SHVdd7yjXEcSeRqveH/bhsqKrWCjz4F+iYgo+RzalsHvt1bF7LssFMeClJibFEJJTeXNr+Q9mCtvtel3hYejqPvbYecoT3Fl+6tY0hLmjQnDgvzBdTvKo3JmIiIKLUccdWi5cyHEz2MuDl0ycModGhfGh8Lhw8fxvr16/Hggw8GwsmLLroIp556amAbURTx9NNPAwD+8pe/yALaBi1atMA///lPjBkzBsuWLcO2bdsCE8f7/f5ACNyuXTu8/fbbsoC2gclkCqmCBYD//e9/AOrbMLz55pshAW2D66+/Hh988AG++uorzJs3D/v370ebNm0C6y+99FKsWbMGGzduxC+//CKrkgXqWwsA9ZnblClTQtbNmjULu3btgsPhwNtvvx0S0ErH8dprr2HFihWYMWOGakhrMpnw2muvqT4PL730EioqKtC2bVu8+OKLiq0MgPpCz7feegvFxcV4++238Y9//COwbvr06YHWDa+88opi+4UrrrgCs2bNwqJFixSPnygxDWm/+eabWB6eKDlphJbpvW6L40Bia3jb+gnD1NpAXtQtA+d3VX4Dp+SnVAXNucSSh1Wl4XNzPJlZ4/GH3wiAV99mqmEue2xTONL3SGnrEVN6O/hr96rszRcYERFRrDzyyCOqV2+np6fjz3/+M5566qmQ5Zs2bcL27dsByCtspRqqQAHgp59+CoS069atw9699f/2X3/99WF7tQbzer1YunQpgPqK2fbt26tue/311+Orr76C1+vFt99+i0suuSSwbvLkybjrrrvg9/vx/vvvK4a0Db1yhw0bho4dO4as+/jjjwEAI0aMQGFhoeaYTzvtNKxYsQI//fST6jbDhg3T7I3bcH9jx45VDXIBwGKxYOjQofjwww9l99fQa7Zv37446aSTVI9xzTXXNK+QdsSIEbE8PFFSEkWNVgFa65KInizOfDTEUwo03ji7ABnsdZDSlF4DDGmTh42tUQOq3fpemHrbHaiHtAzRSJu0klb6ijGntVYPacXwLTuIiIgo+k488UT85S9/kU0atmrVqsDPQ4cO1X28AwcOBH5uqNIFgOHDhxsa144dO1BbW9/6YvDgwZrbBq/fsGFDyLqioiKMHDkSX3/9NWbOnImnnnoqpLDj559/DoTRShOGNTwPX3zxhe6CkODnQOqEE05QXefz+QK9aV9++WW8/PLLhu/P5XJh27ZtAIBBgwZp7nfyySfrOn48MUUhija/W3WV6KtTXZdM9GQZDS1LlYIPG0vOUp7Sa0AaQFDiqP2NNce/PN2VtDpfvmqbNcfnloyRTxwm+ZitMHlYA19NcVRbhBEREdExN910E9avX4/169dj7dq1+OSTT3DllVfCZDLhxx9/xOmnn47Dhw+H7BM80b0RDcEqUN9ftUFwCwI9SkuPtUJq2bKl5ratW7dW3K9BQ/i6Z88efPfddyHrGlodWK1WXHzxxbJ9I3kenE6n6roWLdQnSi0tLYXXa7ywLfg5LysrC3ymCve8tWrVyvB9xVrMe9ISNTeiz6WxLkVCWh3bNEwYplR1ZuHpn5Sn9BrYXZkaleDNgU1hYjcAaI7FntUenRWyOpvSrjjgwi1LSmTLee6JwpGGrNLqa0Fj8rCaDU/DueMdtBg5H7bC5KvqICKi+Mi3p+PQJQ8nehhxk2+PT3u8li1bok+fPoHbJ554IsaOHYuRI0fiqquuwq5du3DddddhwYIFgW18vmPzHnzyySeal+hL7yvaGtvS7MILL8TNN9+Muro6vP/++4Gr3n0+X2Bisj/96U/Iz8+X7dvwPJxzzjn4v//7v0aNAwDMZvVLAoOf8+uuuw633aavXaRSr14gNVvBMaQliiJR9ANi6k+upOetTKvdQSq+GVJ4P+xzYWr/RI+CAOWewQDg0zs7VhMS7UpaAChxyo/JtzUKJ1y7A61KWgDw1+5D1eq/If9PS6I7MCIiShkmwZSQibSaqyuvvBKffPIJ5s6di48//hhLlizBGWecAQAhgWVubm5IyKtXQUFB4Of9+/ejZ8+euvfNy8sL/Hzw4EHNbYMv9w/er0F2djbGjh2LDz/8EB9++CFeeOEFWK1WfP3114FjK7U6AOqfh3379sHtdkf0HBgRPHZRFCO6v9zc3MDP4Z63cOsTgfVuRNHk1640zOxzV5wG0jjndgl/RrOhqozBRdPUPVc7TKDEUps4rEpnVWlTovcRNza/zmKfbQrD4w89SWuRtDuwZHULewxv1e9RHRMRERFpe+KJJwLVnffee29gef/+x6pTli1bFtGxBwwYEPhZ2mYgnC5duiA9vf57+c8//6y57YoVKwI/qwWbDSFsaWlpYLKshlYHWVlZOO+88xT3a3geVq1aBbdbvbVjNNhsNhx//PEAIn/OHQ5HYOK2lStXam4bbn0i8BsHUTSFqaK1tFBvkp1MWqWbcXH3DFhNQJZVOQyyHE1nLUxpmySryuX0lBzU8sbm+I+63vDV28iUtlc+T1yQNpcv9ESt3Rx6wVrmCffCknei5jFEb63meiIiIoqu7t27Y+LEiQDqw9Avv/wSQH3A2q5dOwDAK6+8gro6460L+/Xrh/bt2wMAXnvtNVRXV+ve12KxBNoSfPnll9i7V2Xy0aPHbtjn9NNPV9xmzJgxgX6w7733Hurq6jB//nwAwIQJE5CWlqa4X0N4W1FRgTfffFP3+CPVcH+bN2/GF198EdExzjzzTAAI9CBW88Ybb0R0/Fhqjt/niGJGFLUvu02lNgAXdcvAu+e0xPNnyPvSAMcqadl/lij+VOcXSp23mKjRm70qbTdzTCEGtlLuYSWlVr1M1MDlCz1RKw1pzZkdUHjeWrSaUo5Wk+V9jwEAPvWJNoiIiCg27r333sB39ccffxwAYDKZApW1O3bswBVXXAGXS33+mcrKSrzwwgshy0wmE+66q/5q2r179+KKK65QrUb1+/3Yt29fyLJbbrkFAOB2u3HttdfC4/HI9nvjjTewePFiAMAFF1ygOkGZzWbDRRddBKC+x+7777+PqqoqAOqtDoD6lhANQfOdd94ZtiL4hx9+wNKlSzW30XLbbbchM7O+5cfVV1+NjRs3am6/cOFC/PrrryHLbrzxxsDv84YbbkBNTY1sv/feew+fffZZxOOMFcYrRNHUBPrRSplVgmXz0cCCBZdE8ad2Oqg5/jn6VRPrUF5R3i/UJAjw6mtpqx6MEx1V5wv94uQwK0/9YLLlwORQPgEqep2yCciIiIgotvr06ROo4Pzuu+/www8/AAD+/Oc/Y8KECQCAOXPm4Pjjj8c///lPLF26FOvWrcN3332HV155BVOmTEFRUREefvhh2bFvueUWnHXWWQCA+fPno2/fvnjuueewbNkyrF27FosWLcJDDz2Enj174pVXXgnZ99xzz8XFF18MAFi8eDGGDBmC9957D6tXr8ZXX32F6667Dtdddx2A+n6uzz77rObjbAhjnU4n7rjjDgBAq1atMGrUKNV97HY7PvjgA9jtdlRXV+OMM87AZZddhg8//BCrV6/GypUr8fHHH+Ohhx7CCSecgOHDh2P9+vWa49DSqlUrvPXWWxAEAfv378fAgQNx00034eOPP8aaNWvw888/Y+7cubjnnnvQtWtXjB07Frt37w45Rr9+/QIB96pVqzBw4EDMmDEDq1evxpIlS3DTTTfhiiuuwMCBAyMeZ6xw4jCiaGqCIa1apaw5UEnbHGMhosRSC3H2VGn3xW5K/KKIRbucWHlQvTeW1y8G3qPUKm71tkFgbEbh7K2tCLltN0XyMVsE/G7AbI/OoIiIiEiX++67DwsWLAAAPPbYY/jiiy8gCAJmz56N2267DdOnT8f27dtx9913qx6jZcuWsmUmkwkfffQRrrzySnz44YfYunUrpk2bpntcb7/9NrxeL+bPn481a9bgsssuk21TVFSEhQsXom3btprHOu2009C+fXvs2bMH5eXlAIDJkycHevKqGTJkCL799ltMnDgRe/bswXvvvRfoZ6skOzs7/APTcMEFF2DBggW46qqrUFpaiunTp2P69OmK25pMJmRkZMiWP/vss9i3bx/mzZuHzZs34+qrrw5Z37lzZ8yePRtdu3Zt1FijjZW0RNEUpt1BKjKpVdKy3QFRwqgFhtvKvY3uvZoqFv/hxNubtPt6zd5y7NKmEmfo+3PDs8RKWooGt09+gkTa7kAv0cuWB0RERPE2aNCgQMXr4sWLA5NKWa1WvPjii/jll18wdepU9O3bFzk5OTCbzcjJycGJJ56Ia6+9Fh9++CF+++03xWOnp6djzpw5WLJkCS6//HJ07twZaWlpsNlsaN++PcaNG4eXX345UN0azOFwYN68efj4449xwQUXoKioCDabDS1atMDgwYPx5JNPYsuWLTjxxBPDPkZBEHDJJZeELNNqdRBsyJAh2LZtG6ZPn45zzz03MA6Hw4H27dvj7LPPxj/+8Q9s3rwZV1xxha5jahk3bhx27tyJZ555BmeccQZatWoFq9WKtLQ0dO7cGWPHjsWzzz6LXbt2YeTIkbL9rVYr5s6di3feeQfDhw9HTk4O0tPT0atXL9x7771YvXo1unTp0uhxRhsraYmiSGyClbRqHJb6lLZHng0AJzohiietHHZPlRedc5r+JFdvbgw/8cLHO2pxaa/6nlYfbFXe/rR2Dmwuk/f3ktLbVoGapw1lB2TL8uzp2juZbPVVsxKiz/jEJERERBTq9NNPN9xCqKG3q5K+ffviv//9b6PGNHLkSMVAUY9x48Zh3Lhxjbp/AHj66afx9NNPR7Sv3W7HjTfeiBtvvNHwvpG0c8rOzsYdd9yhGF7rddlllylWHzdmXLHEGjiiaNKopM0a8GQcBxJ7aUdLaPvmW9Et99j5nik95ZcaUGrqlM3zeMlK67OEL7k+ZySNPVXKJ9FGtnfo2r/pXSdB0eT0yYP+njnySx6DtRgxO1bDISIiIqIUxG/gRNGkUElrLRiMrJOehL1NZGfMksEpRXb8uE95JktBEPDQkBZYc8iFLJsJvfP1zZROye+0dg7sCrqcvE9+06/OTBVaOWySnQxOeiZBQI7dhAqXdgzL55W0uP2h//6nW6yBWYXVODqej7yzv0Lp4jNjOTQiIiIiShEMaYmiSSGkzTt7MUy2xjXOTrRw4YTVLGBwG33VaJQ6eKlF8mombWfjJs0soCLMNnzKSYs0pG1hC9Pq4Chr3okKS/lqIyIiImqO+B2cKIpEpXYHgvZMiamAgVDzJC0C4+sgeYgaIc6GI27sqgzfYzVZ+UURG0rc+KNSPhFTrJi0Cx4BAD7+AZAG6cRhNpPOf/sVqm39rhJ4K39H3R/z4as7HI3hEREREVEKYCUtURQ5f39DtkwQUv9ciI/X+TZL0uiAr4LkofUnOWtLDWZtqcFVvTNxTmd91XzJQhRFPLmiHL+WeCAAuKZPJs7uGPvHcNgZftLHH/a5MLV/zIdCKeqP6rKQ2zZz5CdoSxacEPjZ5ChE/rnLYclKvtmHiYiIiCi6Uj89Ikoi1b88Jl/YBCppW6en/mMg40ySCi9m9clDT1HnjKB+wqliS5kHv5bUVwGLAF7foPwYKt3RncbLo/NwB2vDh7nUPG2uOBRyW/f7ZZjPCP66w3DueD/CURERERFRKmFISxRjgjn1J9Ia3i603+ywInuCRkKJxNntk0dT/V2sL9HXpuFQBGFpNN63dlWkbhsJiq1WaVkht7dW6mtTYLLlwJLTS3Ob2i3TIx4XEREREaUOhrREFFanbCv+0j8bffKtGNXegWv7ZIXfiVKetE+nyFLapNF0fxWxe2DZttCPPCe3Nh7aWvU0r6VmySvpST+mXU/d+7Y4Y77mekFgdzIiIiKi5oCf+ohIl2FFDgwrcoTfkJoM9qRNXk03pI0daYuIbJvxwNXCkJZUePyh1d25tjTd+1pyeiCt6+Vwbn9Hcb1gzWjU2IiIiIgoNbCSloiIFEknHWcwmDz8TTQyj+Wjkk6AaJa+wHWw8FMTqZCGtFaT0V7u6i8uwcKQloiIiKg54NcNIiJSJC0a3F7hTcxASEZvYD5p4SEs2lkr2VfEvG01uPGrEjz0U1lE/V3j6bdSt2xZJCcMdkhev+YIPgGxkpbUrDlSHHLbcEgrqL8gPSUrIfpckQyLiIiIiFIIQ1oiIlKkFEeVOJM70GsujGSUMzZVwxt0rf+eKh9mb61BucuPzaUefLitJvoDjJC0JQEAPPxTuWxZtcf41GnSkLbWYzzpPVDDExWkbMn+30NuWzRCV0VhKruduz4wOiQiIiIiSjEMaYliyFowONFDIIqYoBDTfrqjVmFLijelMFPLb6WewM+zt1aHrFu6ty4aQ4qKarfyA/NJHrCRMatNeLds37FjnNTSputYkbRIoOYh354ecrvc7TS0v7d8k/b60l8Nj4mIiIiIUgtDWqIoEqxZIbfTu1+XoJEQNZ5SHuU1XsBIMdCY3q1uX/L2s1XLQKWhtNOr/zF4/cpBbXDgesMJ2bqOJe1rS9TA5Qu9ymBy5xMN7W9rNVxzvd9TYXRIRERERJRiGNISRZHJnh96O611gkZC1HgsGkxeatWhalKllaraMKW5ssdAKbHHLyqeXEi3Hru3XLsJ759TGPZYSZxvU4LV+TwhtztktjC0vyXrOM31opshLREREVFTx5CWKIpEv6RfoWB0dmei5KH0DwSD2+RgtKAzOKRN5pxRLUz2Sx6wkZa0Xj/gUkhX0yyhd2Y2CWiXqf2ezUpyUuL1++AVQ18cDrPF2EEs6ZqrRU+l0WERERERUYox+AmSiJT46g7j8LzuEN3lIcsFE//EKHUpBbKL/3DiQI0PvfOtqPGIGNHOgfZZfJ3Hm4Gr/QEApqAa1WS6Yt/nF7H4DyfKXH6M6pCmehJg0S4nLuyWEbjtMVDS6vGLOFInT1elIS0AWMKUHHuNNgOmJmVPlRdf73Yiw2rCuZ3TkG6tP5Xl8sknlDMa0gphQlo/K2mJiIiImjx+syaKgkOzWiqvYCUtpTC1uOrXEjd+LXEDAD7fVYv/nVGAHDsvzIinBduNTeCWrBXQM7fU4JOjk9F9tduJrjnKH0s+2FqDHi2s6FNQP8FXnYGQ1u0X8cCPZbLlSiGtOczz9NVuJ87prB2mUdNU6/HjoZ/KUOOpf+39Xu7B30/OBQB8uW+bbHuH2Wro+CZLhuZ6kT1piYiIiJo8fqsmaiRvxRb1lQxpKYWZdCR7Hj+wYHtNHEZDwfIdxv75TtaetA0BLQDUeET8WuJR3fb5dccu9y5M0//491X7FJdbFZ4UpeA22F6VY1HTt77EHQhoAWDdYXegsnrJ/t9l22dZ7cbuwJymuZqVtERERERNH0Naokby1x1SXScILFan1GXR+S/E9gr5pb4UWxlWY/98N4Wr9Mtdx1oWdM5Rr1KUVsPWqDSwVQquTylyRDQ2avoq3fI/orqjfUfK3U7ZukyDIa0193jN9Zw4jIiIiIwSBAGCIODhhx9O9FBIJyZIRI0kihozybCSllKYWW/5ZRMIAJs6I+0BUoFb4/FYTQJ8QetdKsWvZoVK8VEd0pDvMOHXEjcW7pQHb9R82RT+Oa/zicgEcLiuOmT5A/3ONH4HZpvmatFbDdHvg2Di5woiIiI9vv32W4wcOVK23Gw2Izs7Gzk5OWjfvj1OOukknHrqqRg3bhxsNu1/j4lijZW0RI2lNQsPv0xRCgtz5TcllLHQ1RU001hTiGtdmiFt6G21QFftHMSJLe24oncWRrVnVS0dY1NoWNzwOjxcF9rypUNmiwjuIfxHctFTGXYbIiIi0ubz+VBWVoZdu3bh+++/x3/+8x9cdNFFaNeuHR5//HF4vbxKkBKHlbREOvnqDsNfux+W3OMllSzqYYHASlpKYUo9O5UkIvSr84rYWelB2wwLsjlpWVjBoWaFS6P6P0VohrRmAQjqHapWRRyu5XJTaBFB0aP0LtPQ7mB71ZGQ5YV27UnAlAhC+Pcxv6cSJnskATAREVHzdtNNN+Hmm28O3K6urkZZWRl+/fVXfP311/jqq69w+PBhPPDAA/jkk0/w6aeforCwMIEjpuaKIS2RDq4D36Hs63EQPZWwtjwF+aO/gdBwaaKocaaNPWkphentSRtvB2q8eOincpS7/DALwF0Dc9C/pcFJepqZ4ur696lfS9xNYvKrZftcquvK6kJD6A+2Kk9sp1AYGUItyi6t8yHPwRNwzY3S62FvtReVvkOynrSFjkzjd6AjpPWWroMls6PxYxMRETVzLVu2RJ8+fWTLzznnHNxzzz3YtGkTLrvsMqxduxYrVqzAhAkTsGTJErY/oLhL0q/gRMmleu0DgcsMPYd+RN0fcwPrRJ96WAATQ1pKXXoraeNtyZ66wCRSPhH4aHttgkcUf0aLPP+orA9pX/1V+XJpUattS4zE6j71HjXLpv0RKNOq/Pr/jL1qmyWll+svh914btP3suWFDuOVtHp62Nft+tD4cYmIiCis3r17Y9myZejfvz8AYNmyZfjf//6X4FFRc8SQlkgH98HvQm7XbHw28LPoq1PcR7BkwpLVNabjIoql1hn6qgU9cb4u/OvdoSHZ5lJPXO8/FRWk1f8uDzmV60MTMa+Y0bsc2uZYtXSOTTlA/euAbN3HG9clXXP9WJX1n+xoficFSDmkzbSacMQlr9TunJVn+PiCnpO6YSYXIyIiosilpaXhnXfegXC0J9YzzzwDj0f5e8aBAwdw3333YeDAgcjLy4Pdbkf79u0xceJEfPXVV5r3U1ZWhjfffBOXXXYZevfujczMTNhsNrRu3RqjR4/GK6+8ArfbrWvM77//Pk4//XS0aNECmZmZ6NOnDx566CGUl5cbeuyUPFjmRxQBMajFgVJIay0YjKwBj0Mw8xJsSl0Wk4D+hTasPaz9IUFtYqZYYa9Q43xhqlY9fhGWOFdO+wy2xs0N6j2s9BrolmvBya31vedO6ZkRtmVBnsOM8V3TsaAZVmqTnNLL1S8CPsmL8bz2x8MSo0lDRS+ruImIiGLp+OOPx1lnnYXFixdj3759WLlyJU455ZSQbd577z3ceOONqKkJPVG7d+9ezJkzB3PmzMG1116L6dOnw2KRR279+/fHH3/8IVt+8OBBLF68GIsXL8b06dPx2WefoXXr1orj9Hq9mDJlCubMmROyfOPGjdi4cSPefffdsGExJSdW0hJFwh90Rk3S7sBaMBgFY5fDXnRmnAdFFH0nFIav3Ip3SEvKVX1awgWi3gTMJRYuOJYKzsKkw31oSC4eH5YXqHzQkmUTML6rvsvRR3VIMzBCasqU2nP4IcIvqQkf0bpLxPdhye2tPQYfQ1oiIqJYO/PMY9/jv/8+tK3RBx98gMsvvxw1NTXo0qULnn32WXz++edYvXo15s6dizFjxgAAXn/9ddx9992Kx/f5fBg8eDAee+wxfPrpp1i5ciWWLVuGd999F3/6058AAGvXrsXkyZNVx3jnnXcGAtoePXrg9ddfx8qVK/HVV1/hxhtvxK5duzBp0qRGPQ+UGKykJYqAGBTSSitpBbMj3sMhihk9tZWuBAR8ZEy4HD3eLSsA4y0WgjeXDtdIEbBJR5DbwBFudjFqNpRern4R8Imhb4BGXl8y4frSspKWiKjJE0U/RL/yHAJNkWDKhqBj8sx4GjBgQODnrVu3Bn4uKSnBDTfcAFEUcc011+Dll18OqZQdMGAALrjgAtx333144okn8Nxzz+HGG29Ejx49Qo6/ZMkSdOvWTXa/p5xyCi699FK8+eabuOaaa7B06VJ8/fXXGDVqVMh269evx/PPPx+4z6VLlyIz89ikpaNGjcIpp5yCK6+8snFPBCUEQ1qiSASFtM6d74euY4sDakL0hF8VLj92VnjQOcca+wGpmLGxClN6ZsLGUE1RuKrVRFTSfvS7sTYCi/9w4tKemXBYBIWQVv/v3cjXAIeFr6fmrMbjx5sbq/Hz/jq4Ff5GDtb44Jf8bZkb80VT0P5Y7tr3BUo+G4ack/8La8FJkd8PERElLdFfiaoDFyZ6GHGT1XouBHNuoocRIj8/P/BzWVlZ4OeXXnoJFRUVaNu2LV588UXFVgYA8Mgjj+Ctt95CcXEx3n77bfzjH/8IWa8U0Aa7+uqr8d///hfr1q3DRx99JAtpp0+fDr+//oPJK6+8EhLQNrjiiiswa9YsLFq0SPvBUtJJrlMWRCmioZLW7yqF59CPIetYSUtNid7w6/l18TvjrzSiRbuc+L5YeRI/Ch/Clse5HLrW48fHEUzA9dXRSeOkl54bq6TVv62Nn5KatU+21+L7YuWAFgA2lXqiWkkrhKukBeA59CPKlk5WbL9AREREjRccelZVVQV+/vjjjwEAY8eOhd2uXphlsVgwdOhQAMBPP/2keV+iKOLAgQPYunUrNmzYEPivbdu2AIBffvlFtk9Dr9m+ffvipJPUT9pec801mvdNyYmVtESRODpxmHPXHNkqhrTUlEirxNQUV/vgTcDkU8FeWV/VbHuItrCbUKYRtIarpF38Ry26t8iJ9rBU/VaqPFNuOO/8Vo2xXdJlPWljFdLq6XFLTdd8HZPGSd8jGxPSmtLbAEfCb+er+h2itwaCVV45Q0RERI0THMxmZ2cDqO8ju27dOgDAyy+/jJdfflnXsQ4cOKC4fOHChXjppZfw3XffhdyfVElJSchtl8uFbdu2AQAGDRqked8nn3yyrjFScmGNCFEkGr6U+b0K69igk5qOnnnhJw5rELe2pszNZMZ01g6nPWHeliriXEnrbeSLRdbuIOjnPIf2Rxuj5xGGtgmtlODLj4JJT4A0pt1BxvF3AuZjf8vmnJ6q23ISMSIiotgIDkbz8vIAAKWlpfB6Fb77h1FbG3rCVxRFXHfddRg7diwWLlyoGdACgNMZ+u99WVlZ4Gqali1bau7bqlUrw+OlxGMlLVFE6gMNU5r8jdHvqYj3YIhixh7+6tuA+ooyRljxII04C9PMeGt0Ia784rDi9p4ws3TVeeN76XRjK1SlhcHB1YvtMi0orXOr7mu00nFsl3T8tN8VuG3h6W0KEs1KWnvr09Bq0n54Sn+BOb0NRF8dShacoLyxj+1diIiaIsGUjazWcxM9jLgRTNmJHoLM2rVrAz83TPrl8/kCy6677jrcdtttuo5ls4UWvLzxxht4/fXXAQAnnngipk2bhsGDB6Nt27ZIT0+H2Vz/5euKK67AO++8o9neiFd8NU0MaYkicfTN0mSV/6MiuhnSUvMUt0pakhO0J7lyh/nl1IUJcaOtMR8pRVGUhdTB1bHhQlSj922VlN56/fVj4AdjAgC/5OoZcyNfFyZbDuytTwMA+GqVL5EEAJEhLRFRkyQIpqSbSKu5+fLLLwM/n3rqqQCOVdQC9Z8D+/TpE9GxX331VQDAcccdhx9//BFpacpXw5WWliouz83NDfx88OBBzfsKt56SE+tBiCLgd9fP8qh0ZsvPkJaaqXhdMF/jYRpsVLiJw+JfSRv5vnO21WgeL1w7A6PtDqyST0oigDhn2k2eKIq45/tSTFp4CF/sMj6hXCJ5pZW0UbyawOTIV10netnugIiIKNo2bNiAr7/+GgDQvn17DBw4EEB9Rezxxx8PAFi2bFnEx9+4cSMA4LzzzlMNaEVRxJo1axTXORwOdOvWDQCwcuVKzfsKt56SE0NaokiI9Zc7OLe9Ll/lLo/zYIiSQzwqaTeXql/G3pwYndjdHa7dQQqljnO3yUO84OA1XCWj8ZBWvoOHZeNRNfmzw9hVWd/n7Y2N1fi+OHWqREvrQvvTmU3R+2gtmKyq61hJS0REFF1OpxNXXHFFoBDrzjvvhMVy7OLz8847DwCwefNmfPHFFxHdR0Nf25oaedFBgwULFmD//v2q688880wAwPr160NaM0i98cYbEY2REoshLVGEfM6D8FZukS23tzsnAaMhig2LgUQrHrnVq+u1m+s3V+F+S+Em6sq1x/fjQLQbBQT3Ae2aq93JyWjPUGklLQB4fPJlFD0vrKtM9BB0K5OGtI2YOMwIhrRERETRs2nTJpx66qmB0HPEiBG46aabQra57bbbkJmZCQC4+uqrA1WxahYuXIhff/01ZFlDFewnn3yi2NJg+/btuOWWWzSPe+ONNwbabt1www2Kge97772Hzz77TPM4lJwY0hJFSPRUw2TLlS3P6HNX/AdDFCP5DhMcZn2hlnQCnVjYW810LBLhfjN9C2xhtoiuqIe0QT+P7qh86VhgW4N3rhTqso6WGnhEV8jtbKs9qsfP7Pegyhq+ComIiPQ6dOgQNmzYEPjv559/xueff47/+7//w+jRo9GnT59Ai4EhQ4bgww8/hNUaekVLq1at8NZbb0EQBOzfvx8DBw7ETTfdhI8//hhr1qzBzz//jLlz5+Kee+5B165dMXbsWOzevTvkGFdccQUAYN++fRg6dCjeeOMNrFixAt999x0efvhhnHTSSSgtLcWAAQNUH0u/fv0CQe6qVaswcOBAzJgxA6tXr8aSJUtw00034Yorrgi0aqDUwonDiCLl90CUTBiS1vVyWHN7J2hARNEnCAKeOz0PL6+vwppD2q0GeAV48mr41ZgF5X6q8f7VRfv+gnNUh8WEEwttWHdY+fVqNKRVKrzVmmmXmhe3GFrR2sKWHtXjZ574EMwZ7VHx4/WhK/gaJCIi0u2ll17CSy+9pLlNYWEhpk2bhrvvvjukzUGwCy64AAsWLMBVV12F0tJSTJ8+HdOnT1fc1mQyISMjI2TZbbfdhi+//BKLFy/G1q1bce2114asT0tLw9tvv42FCxeq9qUFgGeffRb79u3DvHnzsHnzZlx99dUh6zt37ozZs2eja9eumo+Zkg8raYkiJIreQG/aBrZWwxM0GqLYyXWYcc+gXIzroh0+MDNInHC5Y8PvRi1I98Vr1jdojyNS0uC1baZZfVuDx1YKaeP8dFGS8os+eEVPyLIWdu1KbqMEwYT07tfBZC+I6nGJiIiaK5PJhJycHHTo0AHDhw/HtGnTMHfuXOzduxf33nuvakDbYNy4cdi5cyeeeeYZnHHGGWjVqhWsVivS0tLQuXNnjB07Fs8++yx27dqFkSNHhuxrtVqxcOFC/Pe//8XAgQORnp6OtLQ0HHfccfjzn/+MNWvW4OKLLw77GKxWK+bOnYt33nkHw4cPR05ODtLT09GrVy/ce++9WL16Nbp06dKo54kSg5W0RLoIkNV++Vzw10oaegvqwQBRqgsXBEYSXImiiD+qvIAItM6wwGGJ9oXwyc8vijhU60Nhmhlmo2WeOtV4RLh9omoFa7yroKPdGkPakkCrl7JgsCet0tY8IdH06XmNuiWtDgCg2KT/wwAAn45JREFUhS26IW2A7HXLFyEREZGW008/PWZXP2VnZ+OOO+7AHXfcYXhfi8WCqVOnYurUqarbzJgxAzNmzAh7rMsuuwyXXXaZ6npe/ZV6GNIS6SJ/cyv57BTAL7mcliEtNWHhsq1FO2tx1fFZuo9X6/Hj6sUlIcvuOzkXJxRG3h+13OWP+yRYjVFa58Njy8uxr8aHXLsJ9w/ORfus8P80G/24VecTcfnnh1XXf7nbiev66v/dNVa0Py5KM1mtrN9wuwOFZfy4Gz07KjzhN4ozt0/EFRp/Lw08fvnkXbmxCmml931kNextRobfkIiIiIhSRup8kyVKNtKAFgDiNKszUSKEy7YW7XIaOt5P++VVaP+3qlx1ez1ngr/ZY2wMibZkTx321dS3TSl3+fHJjtqEjSUeE78du6/oHk/6zlvpVr8D4xOHyZexKCF63t9cneghyKw84NIVxEsraR1mCxwWq8rWjRX6Qqzd/L8Y3Q8RERERJQoTJaIoElhJS01YhTu6nTi/L5ZXoXk07kJrXYPlCsFvMpu3rSbk9tK98ufEiPFdI5+0qM4bv+RRT8hpN+tPU6VB6hKNsH7jEWOVm0rtEZjRRs/6kuSrpH1XZ3Dsl/SlTzPHKqAF/O6y0AWmyK84ICIiIqLkxJCWKJoY0lITNrSNParH8xksp9Szda2eJDeJ+KKc9o3rkg5rhP+yx/Op0/Orf3BIru7jSUNarWrZQa2MhVtsd0DJIGfwCyG3fTV72GeOiIiIqIlhSEsUhqEvQQxpqQkzUtmoh9FMUM/l+HXRTj1TREO1Z5bNhHfPaYkHBucaPoYnjrOH+XXEnDk2/R9RpBOHaclzGHufVm530DxfZ81FMv567W3/FLrA54ToOpKYwRARERFRTDCkJYom9qSlJsxitJlnlOnJEJ1xvGQ/mRnILAPccQy49fwuzQbeTqUPV+ulaonC23Qc82xKavF7IZjSi2SfMXw1e+J2/0REREQUe+GnkCZq9vR/CWNPWmrK9IRb3+114us9dch3mHBZr8yQqsVylx83flUCADi5td1w0KWnui3Fuh1ELNxzEUmcHslzV+ny4/qjv9PBre24fUC2Yg9XKT2/SyNZqjSUFSBA7b3bavBkg2IlreS21y/i/c3V2FbmQb+WdlxwXDr2Vvswe0s1rCYBU3pmomV6cv77sLXMg3nbapBpq/+bzbEJ+HK3E+9vroHTK2JYkR1X9M5Crj36JyG1+iDXeUU4LPE/MfR7uQdlLn1/DEe8+2M8mmMEkwWmtCL4a/cGlpV9ezEKz98IwRzdVjRERERElBgMaYmiiSEtNWEWHeHb/36pCvxc5fbjvsEtArcbAloAWHHA+ARf+2t84TdKIaV10Xs80t9MJJW028o96Jht7GPB9UG/058PuLDigAuD2zjC7qcnnzcZCFNlIW0UK2kVe9JKHsBH22uxcGf9ZGVby71oYTdh7rYaHKmrD/sO1frwxKl5xu44Dtw+EU+sKA9UoNd4/DinUzpe33Bs4qxl+1xw+UTcNTA36vc/7Vv1y/Xf31yNa/pkRf0+tXj9Ip74uVzXtn7Rh1+rv43peKTMmR1CQlpf1XZUr38KWSc+FNdxEBEREVFs8NpsonCMNKfze2M3DqIEyzbQIxQAfo1w1navSont98V1ER0vWX30e23Mjh1J/eHrG6rCbxTGs2sqdW0Xroq6S44FRlogS6t3O2uEzUbbdgiCIHs+pZ0hPtke+rt8ZX1VIKAFgO0V3qSc1O6H4rqQFiFrDrkx/Vf573DVQXdM7l+rYvWLP5wxuU8tqw+6UKOzZUq1r1y2LM+eHuURhbJkd5ct8xz+Oab3SURERETxw5CWKIosLY5P9BCIYiY7Bpc7K1EL8A47WUnbIBadMOPZZ1VrErg0i4Crj8/S7CsbbErPDNmyFg7116rRdgcAYJNcJCGdZE3PhHXJOKddhVsekgaHy81NjUf/L8kryk9CTes9PJrDkUnvcZN8odh8f19ERERETQ3bHRBFkWCJ76WZRE1Rc5mUKZYP0xRJv4M4Uvod33tyDsyCgKJMM/IcZt0TmY3vKg9ptUQycZjVJMAVNJ54TrIWS17meyGM5Pc+UX7lzK29T43iaORshScjo/ftqNn075jeDxERERHpIxq58loHhrREYRmYOMySFsNxEDUP9VWWyR0yUuNI31X75FvRrzB08qMICl51iaySVgA8jQtpkzHW9UX5Q2WqM/LS8CM0pE0zGTtZEClTetu43A8REUWf2WyG1+uFz+eD3++HycQLm4lSmc/ng89Xf3Wk2Ryd+Yn4rkAEQPR74Nw1B3V7Pm3UmRDBzJCWKJjWZe1qvvjDicO1jWgFkCLBk1YeVFrnw5d/OPHT/jqVQFD7MTY239x0xI0fiutQp1BqWe7yY8luJ9YeMj75WwNpJa1S5W+sQtpIKmltksFsKvXg+711qFZoF6Bm9cHIny89Sut8+O/aCnywpRo+neXoRi7vD7anyovv99ZhW5kHV39xGJMXHsK+6tTvyS7tbaxFWklrERJT9yD6Y9MvmIiIos/hqJ9cVRRFVFdXh9maiJJdeXl54Of09OjMTcBKWiIAZUvOh2vvZwCA9J63ImfI80FrDXyJNVmjOzCiFOcX68M2I5WHs7bU4JMdtXjq1Dy0TDd+RjJV6nBXqkzGVO7y428/lKHi6KRKg1rZcOfAXM1jSbOlxnQ7WLSzFjM21X9xaJtpxj+H58F8NKSs9vhx37JSlDgbd528NEdXCmRj1bLB6MRhgLwn7YKjE4XlO0z414g8XceY/msVajwixnaJ/uRSR5w+3LzkSOD2R9tr8f6Ylpr7iKKIxRFMzrXpiBv/WFEua5Vw+9JS/N/wPHTUmLQt2TWm3YE5QSGt+8A3CblfIiIyLjs7GxUVFQCAAwcOAAAyMzNZUUuUQkRRhMvlQmVlJY4cOfb5u0WLFlE5fup+kiaKEm/l9kBACwC1m19A9qB/QTDbDB/LSBUOUXPQUNC3tUw+yY6WGo+I74vrcGG3Y5cQZ9n0fYBtCIZT1eqDrkBAC9SHuTUePzKs+j/AN+bhNwS0AFBc7cPKgy4MaeMIjK2xAS0A+CUnv6L9+2qXaQGgXLlqieC+1ApTj9T58cyqCt3Heee36piEtHN/rwm57ROB4mov2maqf8wrrjZWrV5a50Oew4zXN1Sp9rJdsL0Gf+mfY+i4ycRIKwyfGPr8mRCdS9zCEuW/N9FbC8ES/dcVERFFV0ZGBtLS0uB0OuHz+VBcXAxBEKJ2mTQRxZ7P55NduZmTkwO73a6yhzEMaanZ81Zsli3zu47AnN6m/obOS6cdHS+I5rCIktKNfbPw8voq3ds39Jet9Rq/rHpHRWiw2y3XiqV768Lu5xNT+x+30jp5AubyicgIKtQP97ZkjiCIPK2tQ3H5piOeQEi7oyI6l7RLQ0+14Q5sZcMqlYpjALj1xGzF5cPbOjB7a43iukgqdPdqBJobjhg7ARELSn8XxdU+zZD2oMGWIvuq60Naredi2T4X/tLf0GGTSpbNyGtD+kcYnzND1rx+8pEwpCUiSgmCIKBDhw7YvXs3nM76q1lEUYTXm/otg4iaq8LCQuTn50fteKn8PZYoOgT5mUu/q+RYSKuDyVGInGFvRHNURElpZHsH/ABe1RnUNnQ5iKQ3baStZVN54jGzAMV+ouGeC+mjjSSILEhTrtQN7uEarWdV+njUhntLv2xcvbhE9TinFimfsS6MoE2GlrM7pkXUGiBelF4f4XozG/3zckZwoiWcbJuASrfycdtkxL+qSM97Tp7DhH4FNry5LfbjUWLNHyhbJvr55Z6IKFWYTCZ07NgRNTU1qKqqClTVElFqMJlMsNlsyMjIQGZmJmw241dga2FIS82e6JU3bffXHQ7eIuwxck55FSZb6l7iSaSXIAg4s0Oa7pDWL4b+vzH0Br0G2t8mHYtJQDSysEjaB3hULmE3ByWo0WpLIL0rtVA53WrCuC7p+GRHreJ6rRYzvfKs+K00OlWu9khKk+NI6e8r3MvI6EmQWrUeB42g9b6gd/KzaNJzjxOOS8ewIoc8pI3XS8Sk8NFdZEhLRJRKBEFAZmYmMjMzEz0UIkoy7FBNzZ7oLpctCw1pwzPZ9U0cQ9TcNASmkVbFNnD5RN3hqz/6WVLcWEyAV6mSNsxtKXME/7p7/aJi9aU5JpW0ofejddxIg2G13SJpHR5JH9t4Uno9NPZvTqrGE50DiqII19E/Zq0cNgaFu2Hpec4ECCrbxelFojBBGStpiYiIiJoGVtJSs+dXCGlrt76GtM6T6m/o+NYmWJX7IhI1dyVOH5xeP/67rtLwvqsPuTFp4SHD+0XSWiFZ1HhELNolv6y+zmBiFUm7A69fuQrZEpSSRmtyxPUloRWuWkFstM8mR/IIzCk4E92GI24MLVLuMwwYb3fw1qZqvLVJfuWJEbsqPLjnhzJd2yaiklYPQVB+7uL1ChEUWjSJriNAVqc4jYCIiIiIYoWVtNTsiW75zNzu/V+F7ecXTLBkhN+IqAlJ01laOP/3Gny8XflS9VhJhXYHvxx2Gdr+5wPGto/k6nyvX1Ss4g0+VrSyyi1loSFtjVqvBchbI+i1SaXVgSeC8M+SxJ+W1E5KfLVbe5I9I//GRYvegBZITCWtnteagPqQVjQcc0eJQruD2u1vJWAgRERERBRtSfy1gyg+RL9y+CF69M9gb87sFKXREKWGcV30zSS+6qAbS/Zoh0WN0TZTYeK/FAhpn1ghPzmk5YOtNYa21xOmSidm8vjDt5SIVbXgryXqvWO1AtxIbC0z3qfWksSVtAdqIptsJNn/TGLQAje8ME+KxQQMbWNHllX+enDEq2+xQiUt2O6AiIiIqElgSEukUk3kdx1p2EBz9+yh0yEoTeRB1ISN7piGrjmJf91f2Vs+4YIvhdsdREoaD4Vrd5BuEXBya3vIMo8/fHAXLqvMd0T/Y4UQtwvJ1SVzT9pI8+NY/JW0UzhpEqlE/B1rVcc6zAKu7J2JdKsJgiCgteQkR5Q6gYQlCAIsuX1Clhk5qUxEREREySvx37CJkpTfdQTI6qy4rmDcWpizusBkYy9aap4ybSY8PLQFLv/c2CR70dS/0Ibj822y5alQSRtr4Yr63hxdiPm/h1bnqoViwc9nuCAqFq0moh1+RTLESCZii5dI+g8DiElKG83qV5+/viVDtPog66GWC//5hCyMbJ8WsqxjtgU4EIdBKXB0noTqtRsCt/0e4z2/iYiIiCj5JPHXDqJ4Uf5WJmpU0gq2bAa01Owl+gpwQVAeQ3MIacM9RD1XXlsk4ZfHr3zg4EXhqlpjUf0Y7ZdZJEOUPlfJJNKRxeLPxB3FPz4R8f9bVru7RL/XSZkkk5WykpaIiIioaWAlLTV7nrL1isvdJatgbztaZa8k+8ZGlACJDi5MQn0VYcNEPg1SYeKwaJNmiHp+N9LJsH457MZDP8kndgqemMoV5smtcif/k58KlbQ/76/Ds2vqqyPNAvDaWQVItyoPItK/w+oo9/oFgNI6PyYtPAQAeP2sAmTajo1ZbYIzLT4R2FPpwWc7ncizm3BqWwc+21kLm1nABd0ykH30+GsPufDjPhc65VhwTqe0kOpiURTx9Z46bCn1YEArG4a2cYTch18U8fkuJ97aVK06DqWnOJFdVQRrVsht94FvcHBWK9jajEJG79tgKxys6zjOHbPg3DkL5vQiZPZ7AOb0NrEYLhERERHpxJCWmjXR54Z732LFddVr70dWv/sSMgM2USqI+DLrKGm4d5MQGsxGEgalgh0VHnTJseraVs/vRmkyrL3V8kmoluyuw8Tu9b1/P9lRG/a40b5EPRmKWONZSbu51B0IaIH61/bVi0sw+9yWittrvdprPX7VcPf1DeqhZDRc92UJZgWNuc5r/O+yxuPHgz+WB04OzN9+7PW3p8qLB4a0wB+VXjy1sn4ivu+K60PtP3U6NrHhsn0uvLq+6uj6OmQPMYW0SfnyD+2AFtBb0Ru/14g0pAUAf90h1O2cCdeej9FyYjFMthzNY7j2f4vy7y4J3PaU/YqCMT9EfaxEREREpB/bHVCz5i3fqLneV6fWbzMJUgOiZq7EWV8JKM0am2olbUPQBISv4pNWySpRye5kWgRNBmbXMS/UzkrtmeaVTnz1yVcPn9XebU8slPcj1iPbZvyjTzRfUuFOIry50Vh4qnW47RXav4tYEhH6u3ZGENIu/sOpWr294YgHXr+ItzeFXuovff6eXxfarzX47wgA3tDxfOfYk+vjsjmtleo60VsDT8mqsMeo+2NuyG3PoWUQ/Z5Gj42IiIiIIpdcnzqJ4kz0ObXXe2sRm859RNRYDdmNWVLl2FR70u4wELhpVdIObFUfbipV0iqxBm1n09Hsttaj/QtQWnuGZFKmYEoPxSwAk3tkaN7PuZ2Vj5luMX6SLZovqXBdBnaFCbmltMbmTfAfQ/DdeyIYy/4aeWV3MK9fxE6DQXS4Y0q1yTCjV15kJwRixVo4BJbcPqrrRV/4ind/3UGFhcaeGyIiIiKKLoa01KyJPrf2Bj6X8vJkuP6WKAmMbOcIv1GM9G9ZH5xIs8am2u4gWtpm1nc60ltJGzwZWDQyP6VfT+cc9e5LSu+2z5yWh85hWj/0aKG8PpJK62i+40cSVmrROpraXcWrjU/wc+2NoAVuuN+V2x/706iPn9ICjgiC/VgSTFbka7QmEH11YY8h+pXCbb53EhERESUSQ1pq3vzaIa3oVwlpiaheArOLhkv6pcWdTbXdQbSe6oa8SW8lbXC4pidfDLeN0mqt815Kq1pnhO+7YFZ5fL4Eh/jeKL9AtQJXtd9FvP5GGltJG64SOB6Vwpkq7TESHduabDmwtxujuE5UO8EcslHiWmEQERERkTJOHEZNhuj3wn1gKXy1xTBntIet1XAIJu2XuBgmpHX+PiOxUzgTJblE/nk0XIYvr6RNwGASzEhg1BBe6ulbC9Rffr/xiBu98qy6qpTDhaBKvx+t8Uc6CZlaZ4ZIKjrj2e7AKO1KWuW11e4oD0LF6kMuDGplh80sxKSS9kCND7UR9LqNBjEZqk5NduXlPhd8tQfgLV8PS96JMDsK5dso9J/1Vm2HtYV6GwUiIiIiii2GtNRklC+9BHV/fBi47eh8CVqMeF9zH2/Fb5rrazY+q7hcSHgNDVFySGTPS0sgpBUQHFUlulIy2TWEs1adlbQA8OjycgxsZdMVgM/YWI3+LVXCI0AxVNMKYpXW6Bm52sNLdDsMrYrSvVXGqxu1Ho5SyFnl9uPGr48Yvp9I/HdtJY7LteDRoS2wryb8YzMJoSG+L8wL7pHl5Y0cYfQk4lOBYFb+O/OUrkXl6rshukphcrRE/pgfYcnuGrKNq/hz2X4lC/oi76wvYG97dkzGS0RERETa2O6AmgRfzd6QgBYA6nbOhM+pMDFGEM+RNbEcFlGTd7A2cRPNeI4mUGbJv2RNNaPNtkUnBmpxdKZ6owWqqw66dVWBHqj1aYb3m47Ir2DQmo9MaZx6qmvV2jlkqVy+riXTGr0ITus5XLJHfTLLCpfyjlo5ptK6RTvDTyoVTb+Xe7GlzIMPt9aE3Vb6OohVkWzt0V+CO8V7owhm5Z7gtZv/B9FVCgDw1x1C9a+P6z5mzeYXojI2IiIiIjKOIS01Cb7qPxSX+50HNPcz2fMiu0NOHEYEAEjXO/tUDDRUJEpHkOK5i6qR7dMCP+t5iBd1S1dcfmrb+mAnK4a/O63wq04hectzqI8l0nfbTtkWxcnRTo9gsrsTCmwRjkJOq9L793L1atP9OipRpZSqhr/4Qz0IjpX9NT4ccoZP+KXBerhK2kiV1tWPpSbavSfizNZymK7tnL/PkC0zpbdT3NZX+XtjhkREREREjcCQlpoEX51yxazfXaG5n+ipisVwiJqNwrTE/TPSEOhIJ4hqqj1ppRXDIRSSzPFdMzC+azrSgmamv3tgztH2EIjpjPVa0Zf012MzITAmJZGeE8uwmvC3Qbnollvf2ckkAI8ObQGH3ma8QdQmIYuEVm9WrZeuWpsdreda6W8hmSvNpS/JSPrYGpHET4Uuad2uiXhftc8/IicUIyIiIkoY9qSlJsHvPKS4XPRUau8XcUjLSloiIDohx+iOaVh10IUjdcYSmYasTfrX2GR70hp8WDazgCk9MzGlZ6bi+ijmjjJGfgUds7U/ijRmmH0KbHi8IMIrJmJEs4+zxhOnFlYb7UmbiNpRvSdO6sPw2PeXbhhPYw6fDBfUCEJkJ8lE0a/++cjPkJaIiIgoUVhJS02CX6WSViukFUWRlbREjZXAPPRYJW3ocn+SX8EsRpgMBT+saGRXscyYRFH9cUqXhhtHMoRh0aTVZzWSX6uosZdSOJqIidO0xhhM2pM2Vt0IGsLfxjwT8td36rxQRW8N1B696PfEdzBEREREFMBKWkp5niNrUL3uYcV17kM/Iq3LlJBlorcOFT9eD+eOdxtxr6nzZYyoqWq4NNosSfGW7HFiWFvtvqOiKGLu77VY/IcTbTLMuLVfNgrTzbrv2+sX8e5v1fhpvwtdciy46YRsZNv1nfeMtGducCZUJplEKpJ3JK0WA4314E9lqHT5cUaHNEzpmaF9X2HG0dTebbX69Wq9NNSyVa3MVRrIbi3zwJWAuf5e31CtaztpT9r9NZENVhRFzcnlfFGopE01oijCX3cIh2a31tzOX7sXpV+eg9zT3ou8bz8RERERRYSVtJTyKpbforqudvP/ZMucO95tZEBLRA2ikXEcrPXBLi2h08F6NNCRXra/4YgnMHu7mj8qvZiztQYVLj82l3owd1v4meeDrS9xY9EuJ8pdfqw55Mbnu2p177u7KrLLiRue633V8v2r3MZ/E7GsUN1f40ONV8QnO2qx6UhoZZ40GAs3jFiGyYmw4oBLdZ1WaKhWjar1m5dW0r6+IbmvHvFEqaF0uKP4jr49JHnRfVR5Di1D2dfjdW3rKv4c1RueifGIiIiIiEiKIS2lPM/h5Ya295ZvVF1ncrTUd5AmFhoQRWp0x7RGH8NmFnBWBMfpnW8FABSkyStgD9RqV+DN2hIayn6zt87Qfb+yPjTsmvu7/pD2iI5Z7pU0BHjF1fLHFu7xKonXB4Avdzs114d7Nx3c2h5yuyhDf8VzMspzqD/zWuGi2kRv2pW0wduJ2FWZvP1GzQJQarAvtZpwWW/B0QkPfU1glsHswc/r2s5b8Rs8JT/rPq63fFOkQyIiIiKiCDGkpZQmisa/0Ik+9TDGVnRWY4ZD1Ox0yrHirA71AWu2TcDF3TMiOs5pbR3Ishk7+dE6o75jz4Tj0mXrPGEyyxqtxqA61Hoi3z/SnqANe3kV9o/ktFG8zjVJgzfp4w83gVnbTDNGdahvX2EzQXUitFQRcS6o1u5A530lexw5qUdk7x1Kwj3HDa/9JpDRIq3LFJjStFsYADDe20Fkb1oiIiKieGNISylN9Ojrcxeyj0/5UlNLi34w2QsaOySiZue6vll48+wC/O+MAvTOs2pu+49hLWTLRBHItJnwf8Mj63/YJceKDGto0hfusunGVtA1asKhCPdrCDe9CuemwgWdSuJ1PYC0AFQ23VKYgQiCgBv6ZuPVMwvw+tmFGCSprE1mN/TNwoh2of2RtV57mlWxass19xF1bafm5NZ2vHl2ga6/zb8PyjF+B0H6FtgatX+wcI+1YX2k/aGTicmeh5YX70XmCfdrbqd1Ujut65VI7zU1dHtOIEZEREQUd5w4jFKa6I0kpFWppBW9BibJYLsDomDp1vpzfuHCwgLFS73rk5LGnDW0mwXUBFW3esOFtI0MZ+Qzu+sXaT4cqKRVOEBkE4dFNg6jLJJfrNGetA30TsyWTDKtAqTtlrVee5FMHKYl+KUSyevOLNT/bbdXabUQrCjTgnSLgNoIq9Sj+XKsP6GhfsRjIW0TSGkBCCYzzFmdw2ylHtKaMzvK2z353I0fGBEREREZwpCWUproMTYJiuhzoW7nTOV1fiMhLRFFwqyQDDbEJFqzsYdjleR3W8s8OLGlHVvLPHhiRTnqvCIeO6UFurWwwh+F3pxuhbzji121OKtjWtiJriLNhUqO9rJVarUQyVPXmOfbiHKXH5ctOgSPHxjYyoZVB0PDn3iFxYlgEgSYJc/zIY3+wUYmATu2XH0vT1AiHMnLzhKYnC/8L8ksNO53Gc2XY2mdP3DiSEnDc9YU2h00EGy5musrNSZZBQQIptCrINwHlzZ+UERERERkSOqVpRAF8esIaT1lGwI/V66Ypr4hK2mJGi1chaq0qhA4FpQ0JuCxSHae+3stfjnswgM/lsHpFSECuP/HMhyu9WHO1hrlgzTSGxur8cGW8MeONCBeccAFr1/E27/JryAwRfCeFK93sd1VPniOhtrSgBaIX1icCIIg7yG8+pBbNVjVqtBWW6P1Jxc8oV0kvZClVdBazILy37deeoJgve7/sQx+UUStR7l6NFBJG515ypKCydqIdhOCAJjk7SY8R9ZFfkwiIiIiMowhLaU00Rt+RnXXvsWBn2u3TFfdzpLdTd/kGwAES+NntCdqiqS9YaVsCilO77z6cMDaiJS2SqG09YkVFbJlc7bVYNEuZ8T3AwBOpaawR83fHv49SYlG0V+I74uV27W0zzYbvk8jAVwspUpEG0kAaQLwh0Iof6BGuZpWerIhmHqwq28skVRwK/1dqbFbhEYFrY7GJLwSTq+IXw+78Xu58gkRve0O2mcZ/7tKFJOjMOJ9BUsGBFu2bHnw5yciIiIiir0k+YpGFCFRR0WaWg9aibRu18LWchjMGR3DbmuyNW6CFKKmqkOWdhcdi0nANcdnBm7n2ASc1bF+YiWHjr6XDbrkhN5PpVtfArWtzANnhD0zG2hktLooPc7JPTIVtpQrrlYO9/pFMOmSSRBwalHiJ+FKlZD26uOzDO8jCIBbobxcpcAzTEirvFzvq1nr0v7xXdMVl2cEnT04p5P6yckBLW1Is5girobPd5hQmBbdj6QldX64VEr7G54LrefEJADX9jH+O08US4s+Ee0nWNLhaDcW9tany9aJ3thcdUBEREREytiTllKbxmzFgU18Ll2HSut0EQAg/9yf4Nw5E67iL+BWrCJJlUiBKP60KumOy63/J2d0p3S0TDfjQI0PQ9vY4YigpLMoI7TCrV+hDb8cTo2JbqQVkb3yrOico++fY7VqykhbBvz5hGz0KajD9F+N9fduUJRhxgmFNmw64sHuqsjaOKRKt4OzOqahIM2E74vrsGyfvn9XBEG5BYioEq1qtSRQbXegM6XVCiTtKlWsvfKO9Sm9oncmuuZa8cK6SgDA5b0yYRLq9x1WVH+iJdJi2P87LS8mbS+krSYaNDzPSpW0T57aAltKPejewoquuVbZ+mNC9xUS/NlAEEzI7Pcgqn95VNf2lhYnwNFpIhwdxsOS2xMAYG05DJ5DywLbiP7UeE8lIiIiaioY0lJqE0OrykzpRbC1Hom6He8d28TglwxzehtkHv9XZB7/Vxz+6Hh4yzeFrA83OQcRKbMFldn1b6m/gvOEAht+LQn9O5ZWIsbzspDGTjYk7YOZ5zDBojOgUqritTXiwVvNAka2T4s4pP336fkAgHd/q444pE2licP6t7Qj02rSHdKaBMFQL1it15baYXRX0mrer4gsm4AqSUV68O/GJAgY3taB4W0dqseJtN1B5tGKXQGRTXCmRIB6z1mfSiVtvsOELjlWdMnRCmeTlzmjg67tcoa9ifRuV8mWW7K7h4S0YEhLREREFFfNtt3BqlWr8Oijj+Lss89Gu3btYLfbkZmZie7du+Pqq6/GDz/8YOh4ixYtwoQJEwLHateuHSZMmIBFixbF6BEQAIjSSlrBDEEy+YXoKov8DgT5FzXBxHMbRJGIPIyTxzbSCrhoBn0un4jdlV7VSYfC9bEMR1pZaRIE3f1hS5zydgfmJEg5GzOExI/eGCM5pAnKlbTbyrzYXu7BllIPdlR4UHe0BYdWSKva7kB3Ja36hj5ROWA1GwxdG/u3EU1rD7lUx+MX6ydp2ytpHxLFtrgJIVgy9G1nVg7apZ+f/O5K+OuOwLXvK7iKF8NXU9zoMRIRERGRumaZNp122mn4/vvvZcvdbje2bduGbdu2YcaMGbjiiivw6quvwmZT7/Xn9/txww034PXXXw9ZXlxcjOLiYnz00Ue47rrr8PLLL8NkaraZeMzU/TEv5LYAk+xLRu3Wl5HR925YsroYPr5gUqimEZrlnw1Ro0V6NXOdQg9ZaUWp3pBwn8qETQ3KXX488lMZ9tX4kOcw4YHBuSjKDP2bb2wl7drDoVWYFkG7F2mw1YfklW3JkIt5G/GkxOIy92QhCMrVnK9tCK1czneY8PiwFpohZ4XKJF5+nbWnWq8TvwhUuOTHNxq+H3Y2smFzFK086MbKg8qVoH4RmLWlBh9JJvpLhhMejSFYlHsLy7ZTCWlhDr3CwbntNTi3vRa8J3KGv4X0rpdHOEIiIiIi0tIsU8N9+/YBAIqKinDbbbfhww8/xIoVK/DTTz/h2WefRdu2bQEAb7/9Nq666irNY913332BgLZ///6YOXMmVqxYgZkzZ6J///4AgNdeew33339/7B5QM+bc/k7oAsEEv1teOevc9ibESJIMs0JAz0paIk2ZVuWgY2dFZJfDb1WYoT0/ypMMAfVB4+c7awNBbmmdHx9uk0+c09iQdk+VJCgWoLuSVkmdyuRI8bTygL7L/5WkWixmZLwmob6dRThH6vz4dEet5mtr8R9O5RVR6EmbpjJpX7wrS+OV19f5/PhkR61subGMNvleuXoraaFWSWsO14ZGRM2vTxobFBERERHp1ixD2p49e2L27NnYvXs3/vOf/+DCCy/EoEGDMGTIENx+++1Yt24dunfvDgCYOXMmvvvuO8XjbN26Fc888wwAYODAgVi2bBkmT56MQYMGYfLkyfjhhx8wcOBAAMA///lP/P777/F5gM2IyZ4XctvvqYTfVSLbzufcD9FVqnqcjOPvUFxuzRugaxkRHTO2i3I1V7UnfJo0qJVySDCsKHT56e1CZ5pXqgI0yu0TMV9SWafUe9RIj1ElHbJCJz07XOvTXUkbK9ZGfho41IgKylQrXmybaVZcPrpjmmxZ+ywLLu+dqeu4C3c6NYPUrWUexeV6M3q135BZAM7qIB87EHmP2UjF67VQ7REVn7dUb3dgzTsREEJfn/b24yRbCfXbKe4f/vONr2ZPZIMjIiIiorCaZUj76aefYuLEiTCblb9oFRQU4F//+lfg9ocffqi43X/+8x94vfUVXs8//zzS0kK/5KSnp+P5558HAHi9Xvz73/+OxvApiOipDLmde8qrgF9edSf66uCr3qV4jLSulyPzhPsU12UNeByOLlNgzugAU3o72NuPQ87QFxs9bqKm7NzO+i65VXLriVmKy6/snYWTW9vRPsuMK3pnonuL0FYk56oEw0boDrsaWbgq3f/09mlQKWTUpVW68r9lRtw+IKfRx4hUqnU7cKiUPY/tko7CoArvaf2zkWk1oWcL/ZNQRXICQOt1Gxy+q11NcvuAHGSqzD4X7wA93AR6I9o5MKFrFP7WVf6IjYTSia9flzM58pE7YjYs+QNgzjoOGX3/hhYj5yHzhPthzu4GS15/5I6YBXN6a8X9HZ0nhr0P0Vsjnw+AiIiIiKKC122rGDlyZODn7du3y9aLoogFCxYAqK/MHTJkiOJxhgwZgh49emDLli1YsGABXnjhhSbdfy+eRL8Xojf0UmRzTg+IokLPSV8dvJKQ1pzRES0v3iXfNojJloMWp73XyJESNS82s4CLuqXjw23yy4nDUQvAcuwm3HGSepBoj0IJnN7wNdohrdUEWBuRhkWj+q91RuOD3kil4r+IHbLM2C1pW2ExAS+cUSDb1si/+ZG8ttQCRyD0daW22aDW6pe4xzuktZqAOpW20bPPbRn4WVrxbpRasJ3qlbQAkNbpQqR1ujBkWdaAx5A14LGw+wqCCWndrpP0oZUSIXqdEKw6WysQERERkW7NspJWD5fr2CWuShW3O3fuDPS2HTFihOaxGtYXFxdj165d0RtkMyd6qmTLTNZsQCGkFX0uWSWtOatzrIZG1OzF+2RUNO5N78z0jW0BK93fLAiN6kkbjac6keFUKuZiSq/vaDyOSEJahXn1AoJXRXJsc5z/juM1cZd04sHA/afiizHKFCdMlVD6/EVEREREjcdKWhVLly4N/NyrVy/Z+k2bNgV+7tmzp+axgtf/9ttv6NxZfzi4d+9ezfX79+/Xfaxk4HMexJFPB0P0uyD63YDPjZYX74HJnmvoOH5XKQ7OzJctF2w5KiFtHZzb3wpZZs7sZOg+iUi/eGcd0eidqRZiiaIYEsqFuyS9tM6HPId6Zap0f5OARvWkjcZzHe/eo8FS8eoSpUw9Go/iSJ3xy8i1KmmdXhGTFh6KeDxxb3cQp9IBtb9hU6o1SI4FHSFt2ZLxyBv9FUxW5fY0RERERBQZhrQK/H4/nnrqqcDtiRPlPbqCw9N27dppHq99+/aBn/fsMTbhQvC+TYJggq/mj5BFot/4rOCVK6YpHRyCJROiYk/aWnjL1ocsY0hLFDvxjjqikfOpZV1rD7kxIGhCs3AViXcsLcWbowt13099SKt3lHLRyJUSWUGYirmY4ustQWFzYyu7tcT7d2OLVyVtE2530Fh6Kmk9JStQ/cvjyB74dBxGRERERNR8sN2Bgn//+99YsWIFAOCCCy7ASSedJNumqurYpV6ZmdozN2dkHOvbVV1dHaVRpibBZJMv9LsNH8e5/R3ZMnNmRwiCgMy+98jW+ap2yLfP6Gj4folIn2jmVYNaqffMbBCNcEWtuu7L3c6Q2+FCsVqt688hD2kFob6SNcsW+iCGtgn/uAFgTCMmamuQaTMZfg4n9zj2b9vwtvrGqmR3pfzEWrJTyhLjke9VueWVtt7GNknWkGuP/sfEYUWhr5Xgv+8zOqRJNweg/29BL7XnzNjfQOgxUrAgXJHfdUTXdp7SdbEdCBEREVEzxJBWYunSpfjb3/4GAGjZsiVeeuklxe3q6uoCP9tsCsFjELv92JcLp9OpsaXcnj17NP9rCJNThVJIK/qMh7RKMvs9CABwdDhffh9e+SQj9vbnRuV+iUiuMXlFcPgHAH8+IfwltdEowFPLug7V+iTbNS4Uk8ZsDa0GLu527HEPaWPHzf2ydR1vSBQCLLtZwHldj4W9LXSEc+cGhcMj2yuHa3oclxu+ci/ZxKrdQThKrQ2iVUn7t0GhE/P1zLOiTQwmlBvTOR2ds+sv5MpzmCRhv0N2n/kOEy7qFt1JqtT+1hPZ9iNZ2IvO1reh3xPbgRARERE1Q2x3EGTjxo2YMGECvF4vHA4H5syZg5YtWypu63A4Aj+73dohY/AkZGlpxr7IhmulkHKUQtoIKmmVpHe7GgAgmO3IHTEb5UsnHbsPnzwcF8yNrz4jImWNyTomHJeBoW3sKK724YQCG6w6ytuEKERkesOuxhYuynrSHv3/6E7pGNTajlqPiLaZZgiCgAld08POZG+N0iXik3tk4oz2aXD5RHj8Iv7+Q5nm9rag30uWNfJzvrEIAmNNsY9uHPI9pSJtn/E2tor6t7Tj9bMK8PMBF7rmWtAxyxKTfsEFaWY8dkoLHHb6kGs3IT3otZNrN+GZ0/Kwq9KLfIcJTq+IFg4T0nT0A+nRwootZfqCQ7WJwwgwZ+j73CkypCUiIiKKOoa0R+3cuRNnn302ysrKYDabMWvWLJx22mmq22dlHavsCtfCoKamJvBzuNYITZ1gMgOCOXRyryiFtCH3Y5FU3Sh8mRAEFpITxUpjo53WGRa0ztD/T1Qse9JKlzc+pA29HZyx5jnMyHMor1MTzTaeLdPrA9M9VcZaEDSmp24qFi8qjTke/6IonUjwNrKyO1imzYRRKi0HoiXdIsBqFlCUqfz3bTEJgerqFgaO2zNPf0irNtlaY6vkmwRBZ2W7mHptSoiIiIiSHUNaAPv27cOZZ56Jffv2QRAEvPHGGxg/frzmPsEVrsGTiCkJniysyU0EFgmTDQiqbBV9+icO89XsgXPn7LDbCWY9l/+mYDJAlCKiUdkab0v2KLejkQZjekLa/TVerDroRqdsC/oWHLuCQBRF1HhCD2DWSCn1REaxeKaNFsZaGpEUp94rRSWQjcMD8flF7K3yYu1hN7rmWNA73wZPLGcOi4FGFF1rshh4/t0qf8Qp9lTGhJ6JwwCw3QERERFRDDT7kLakpARnnXUWduyon1jq+eefxxVXXBF2v969ewd+3rx5s+a2wet79eoV4UibDsFkC20/oLOS1u8qw+EFJ0B0l4e/D7Mj7DZgJS1RzMS7OjIad/f5LuWQ9qCkJ21xdfgKsnu+L4PraOIzbUA2hrapf096ZnWFbFutfFNXSBuDJ9to6NqY4C2alcDxslfhNRCPh7GzwouXfq2Ex19/f3cPzMHc37XbYSSbWLxeAcBs4IW0cKfy33pxtU9xuR5NpghXZ0gr+llJS0RERBRtzTqlqqiowOjRo7Fp0yYAwFNPPYVbbrlF176dO3dGUVERgPrJxrR89913AIC2bduiU6dOkQ+4iZBWuertSVu75WVdAS0ACNbwEw1BSL0+iESposYjb/qYZqTUzaCcGMxCr6bMFb6hpSuoJO/5tZWBn1cdlL/feTRKc9saaPkQTQ5j09w3qi+uU6nRapKrdMvH3JhqYr0aAlqgPsCfvr6qUcdrlR7ffwdj+RSV6/i7jOUxUvHqASWydlFqRFbSEhEREUVbsw1pa2trce6552LNmjUAgPvuuw/33HOP7v0FQQi0RNi8eTOWL1+uuN3y5csDlbTjx4+PWQVJSpFMHib69IW0dXsXqq6z5PUPvZ3bJ+zxBBNDWqJYUQp/bjpBx8mTCLVMN6NHC52X6TaS0bA53CXU6RrHG1qkp3VL9GXaTIaez8aEbwp5fkqyGwy2IyF9rioaGUzeGOW/yfsH54bcbpVuRkbQ6/vczrGbsLPK3UReSAlmzuoCS478qq/0XreF3GYlLREREVH0NcuQ1u12Y8KECVi2bBkA4LbbbsPjjz9u+DjTpk2D2VwfREydOhVOZ+jlc06nE1OnTgUAWCwWTJs2rXEDbyIEc2hIq7fdgVbAnX3yv0O3DRPA5gx9Wdd9ElFk2ihUgDZMBhQrfxuUg8GtYx9qNnbiMCmTRsIZj+pMNXcNzMHE7vqq6ho3ztSrpI2H984pjOnxO2VbcHy+LfyGBvQtsOHmfvXB7+DWdvzn9Dw8ckoLnNclHdccn4lLeuis0oxAKrbNSEaCICBv9FfI7PdAoC1UzqkzYC8aFbohe9ISERERRV2z7El7ySWXYPHixQCAM844A9deey02bNigur3NZkP37t1ly7t374677roLTz31FFatWoVhw4bhnnvuQdeuXbF9+3Y8/fTTWLt2LQDgrrvuQrdu3WLzgFKNtJLWr3fiMPVzCiZ7gWyZOes4+Kp+V9xesOfrvE8iioSYgOAt3WrCpB4Z+PmA/skIIxHtGeCTNVvKsplwYbcMWE3Ae5trNLdtTBEpI1plFpOALJuAKoXWCtFwRnsdvdsjMKJdGka0Swvcbp9lwaW9MmNyX8FMvFIpaszpRcjq/yiy+j8aWFa3d1HINqLISloiIiKiaGuWIe28efMCPy9ZsgQnnHCC5vYdO3bErl27FNf94x//wKFDh/DGG29g7dq1mDx5smyba6+9NqJK3aZKkIS00NnuQGuiL5NC6CpY1C+rlPbFJaKmIVaXnPtFMRACRVJJu6XUg24tlP/JTfZoSU+bHlYxxkYsn9Y8R9Nq+ROHbhPNmiCdUIyVtERERERR1yzbHUSTyWTC66+/joULF2L8+PEoKiqCzWZDUVERxo8fj88++wyvvfYaTCY+1Q0inTjMfeAb1XUme57C/aQpbKk8BiJqGmwxSmpu++YIDtfWz/weSUj74E9luOSzw4rrkr0AUM/wGtVvnaW0qmIb0jatzyU8URBjkpBWZEhLREREFHXNspJWjPKlqgAwZswYjBkzJurHbZJk7Q7Ch7RaE1QI1ix5n1sAgkU9pJWOgYiiy6wQ2sUjjIxVJe0hpx+L/3Di0l6ZYScCM8obZr4jqymxk2vZYlxwyemeNAgCYpViN7WQVuk9J7Ykv5cmHhILguQrA0NaIiIioqhrWp/QKSXI2h3oCGn97jLVdda8E1X2qVDdR2nmYiKKnq65FuTYjqUWrdLNaGGP/T85NhOQZY1NWvLxjloA0T/RVxMmgZ1wnPpkS/lxCNpOLYpN79IG1THquRpLl/Y0NgHWX07MDrk9Mkw/2Ov61E++Fck5h4Gt9J2EzLal7kfAv/QPfT6v6JUJcxQejvS4FMQkCWlFnl4hIiIiirbU/YROKUsa0oo6etKKnirF5Zb8Acge8qLiOn9tserxzGktw94nEUXOJAi4uV82ijLMaJdpxp9PyGrcJfE6CYKAOwbmxPQ+4h0pjumchkGtlFu0/P3k3Jjff7pV30eFJ09tEXabogx5WW7H7NS7qOecTukhhZPhHvvJre04q0MaCtJMGFZkxxntNa70AHBau/oQN5KQ9sreWTilSLulT5pFgDmF+wOc3MqOszseez5Htnc0uiftWR3ScLLK3xlBNi+AKPoSNBAiIiKipiv1vhlR6pP2g/WHn4ldFtIKJrS+wqsZ+vjrDkUyOiKKkhNb2nFiy/iHHr3ybJh9buiJGJ9fxJRFyj1hG6tfoQ2/HNY5AWIE0iwm3DkwB5MWyt/T2mfF559xs4CwbR665FgDz/sPxXV4fl2lbJup/bPx9x9Cr4wQU7AprdUsYNa5+k/2Wc0CruubBaC+QnZftXoLn1y7KdC2wxJBkOowC7itfw5u619/+/Zvj2BfTWiglm5J3YAWqH8+r+2ThWuPPp9AZM9VsPrfD6kRpHUdrKQlIiIiijpW0lLcRaOSVrBkxqUqj4iahmgWDUonDkvxvCsm1N6elX4PMWgTn/S0Xo/BqyKpDpXOU6r0u8iIUUuQRIpRO2pqIEiq4FlJS0RERBR1rKSl+JNM8lX9yyNwH/gW6b2mIq3ThYHlzl1zUf7tRYqHEKyseCEi/aJ5UkdaUWriCSMZtWdE6bmSht7NgVZVcvBTFEl1qDSsVDqC3hYWqSTef4fSX6HQ5GcOk1bSeuGvKwHMaahadRfcJT/Dmtcf2YP+BZMtti1niIiIiJoqhrQUd7KJwwC4Dy6F++B3sF64HZaszvBWblcNaAGGtESUGKIo4vviupBlv5bErtVBqlKtpI3vMJKWRyOlDa4sjqiSVvLkK92TowmWnVr44ootaUgLoOKnP8OU3ha1W14CAHiPrAFEP3JPfSPeoyMiIiJqEviRluJO9KsFGiI8h38CANT89l/NY/idB8Lej6PzJYrLLS1OCLsvETU90Yilylx+OL2hsZcrXLPWMIoyk/986WltHSG3O4eZ7CtLpVJTqTC0V7414nGlqsJ0+QRqDYJfTdsr1HvXqpHmr8XV8svS18Wwh3KiHJ8vPwFM0WOyF8iWuQ8vh3NbaCDr/P3NeA2JiIiIqMlhSEtxZy8arbrO7y4HAHjLftU8hq3lKWHvJ6P3bYrLM0+4N+y+RERKvFGeK2dASxty7fr+KZ7cIyPk9i394ndFwdmd0gLVlwKAcV3TNbfv3kI5eDUJwDXHZwYC80Gt7OiU3fxC2gyrCacUKU+qJwaV0kZWSRt6u4XO11eq6xTmxIGWvgXN7zVolDm9NUwOyWR5fjdEb3ViBkRERETUBCV/+Q41OfbWp6uuE90V9T8oXFYXzNFpUtj7sRUORsuL98J9aBk8h3+CKIrI6HULLNndjAyXiJoIQZBPUtWjhRVbyjy6j+GJcgPV6w3MKD/huAz0LbDhx311GNEuDR0bEUoZ1SXHiudOz8PWci/aZ5nRJkP7vm0q6aJJEDC6UzqOz7ehxiOiW4vm+zHkmuOz8OM+l2x58CtsUGs7lu+Xb6NF2u7glCI7Fu50hixrk6FeyZuqwrXvHdTKhpUHlSuIh7ZxKC6nULkjZqP0i5GB26Jf/3snEREREYXXfL8dUcLIKjGC+BtC2jAXJgtmfV+ozBltkdZ5ItI6T9Q7PCJqopTeVTpmWwyFtNGupDVa43hcrhXH5Sam6i/XYcbJrRsX7jX8Dtpl8eOHWpVs8IkEWwQTh0kpTajV9DrShpem0bTWJz17E4HmMP+d7LMXQ1oiIiKiqGoe18BRUhEsDgjWbMV1ftdhOHfNhXv/19rH0BnSEhFpMTrJvTfKlbRCnGekT7QoZI5NhlnlyQh+hVmjUPDaBOcIUxTuYdo1nghfRCdfQt8LmsPTLJhCTxCJ3hrF7SrX3Ifara/B5zwYj2ERERERNRksZaGEMKW1gs9TKVvu3PaGbBIKJYJZuZcfEZEaQYCs3M1qMDV8bUNV9AaE5hdaNrfHq0W1kjbo5+hU0sqXNcVzA+Eek00j8I7yuZemy6Tva0PNr08AAMwZHVAw/leYbDmxHBURERFRk8FKWkoIk6NVo/YXLBnhNyIiCpJuUbjs22BYtaPCG6XRRHb/qc5oKN6UqT0VWUHl3dHoHdta4Rhdc5reRFnhXllafZSj0e6gORDMaYa299XsRt2eT2I0GiIiIqKmhyEtJYSj3TkR7yvYcmHNHxDF0RBRc3BSy9AK/I7ZFrTPbPwFJUPbRF7Z39z+Ec60NbdHrM4kCOiTLw9LBwe9noYWGWvtk22TR5WnKhzj2j6Zho6bCgRBQN8C9fB5RDv159LHjFYXc/Zxhvfxlq6NwUiIiIiImiZ+W6KEyOhzD7IG/p/h/az5A5E/+hsIlvQYjIqImrKr+2RhwnHp6F9ow+iOabh7YA7aZMqrDG/om2XouCPbR94ju7lV0lKo2wbkYFhRfSibYREwqXsGJnY/dqVItsFQ+7nT82XLzCYBjwzNDdz+64BsODQm0Uplf+mfg3M7K1d72rR60jKk1UUQTDCltzO0j+j3xWg0RERERE0Pe9JSQggmMzL73AUIZlStvENlIwvaXMmZg4koOuxmAZN7hFYQVrrlMwalW40lp6ZGJK2N2ff/27vv+Laq+//j76tty9txFhlkmSQkQCBhNKEQZlmFpC2lfCmjFOimlG5aoPQHBbpLB+XLKv22QGkZBQolQKAhCRkklJlBJtlO4njJ1jy/PxwrlnQlS7Zsxcnr+XjkEenOIx1dj7fP/Rz0f2Ueh742pVxfm9LzYx1W6VZxmpnwxld59Og5A3t+kv1cmcehSyeW6tl1rbbri12WApHURDaWl6K0B8e17K46SsHApux3MIS0AAAA2Towh1KgH0n/Sw2jZQEUgjPH4LQnZVYPjlgHfcFQV7VL6d4hm9y2+wc7wFnu3EplmHCDjEn9YxgAAABSEdKioKyMIS2TgwHoXXZfgTLcFW2rJyEt82ghX4jBuhZLE2TnZSDtQSLXn81a1/xZ2x8ZqODWub3UIgAAgAMHIS0KK8OINUbSAuhtbTbFKJ05fmd09GA8LBkt8oXSGV0Lcud9j1mu3CedM8FdakxX2goAAABxhLQoLEf6mZgdRYP6sCEADka7W1PHHw4qTp1MLJNB/ty27+xAHkn7pSMTJ2C76DDujuiOiVXpv092dvnE3MOzA9Ul4xPfi64mAzxjpP1kY7DRzRqzkd3L89wQAACAAw8hLQoq021zZVN/3octAXAwsrvLOZeQdnyVWxXe7o+ltQ7g0Y/HDfbpuMFeuRzS4dVunTqcIKw7Lh6fXfg6upy5YDucPNynIwa45XJIUwd59JGh3rTbXljr18Ac/zBzMCsadVHadaVTfyY501/n1E0GAADIjJ/oUVCZQlp3zbF92BIAByO7yCCX2HTW2PayLA5LsqmcoEPLXFrfGLHd98CNZ9v5XJa+cUx5oZvR742rdGuI36mtLZlHMB7IgX+uSj0O3XBcZVbbfmJc90Z4m6SvHgfLu295ytKu80/8mvyHf0MN8z+n1g8eTN0gFpacnt5rHAAAQD/HSFoUVKaQ1rL4eALoZTbBai5hl3PvtukmG3Nl+DJ2IJc6QH7xUcH+I8On0XLKsiy5K4+0XW0igV5qEwAAwIGBkbQoqFxnCQaAfEoeDZerjnC2fdKm1GO5MgS+hLQA+p20f0C34n9cd/iH2W5R//LHVXLUzfIOOcV2vTFGgfd+rcYl10mSvMPPl+X0Khbao0j9W3JVHiF31RSVHPlDOdz8/AgAAA48hLQoKAchLYAC6mmFxI6gtc2u1oEyj6Qlo0W2qGSA/UeaD6Nj368UzuJDbDcJbZ+n3XPO0sDZq+UsGZG6fuvL8YBWkoIfPpW4vnWbQlteUCxYp4rp93Wj7QAAAPs37idHQTl8NYVuAoCD2Mgy+79VHlWTXd1Evzvzt1FXhuGy1BBFttoiTLiUD6ePSJzUalSa6z8rB+nl6/DY15l2eCrij50lo9IfIBZSaMcC21UN8z+XVRtaV9+f1XYAAAD9DSEtCspZMkLeoWemLC877jcFaA2Ag82hZW4d2SmQnTWmfSKws0YVZVWOYFhJ5lnhqUmLfEgzUDvu85NK+6Yh/dysscUq9bRfeG6HdOnEkjwe/eC4oJ3FQ+U95GMpy4vGXdlpm8HyjpiV9hgm2ma7PNqysecNBAAA6Mcod4CCqzzlCbVtelbR5nUy4SZ5h54pz6DphW4WgIPEd6aWa9mOkHwuS5MHtAe2R9V4dceMKq3eE9bWlqieXms/4U1Xo2EdmWrSdr/JgL4+pUyLtgV12ogiTRqQ3cjvg111kVM/O7FK7+8Oa3ipS8NK+TG4OypnPq62Tf9SrOVDSZKrYqI8Q09P3OakR9T24T8V/PCfal3z58QDmHBfNRUAAKBf4adTFJzlKlLRoZ8sdDMAHKScDkvTBntTlo8oc2lEmUsvb2zt/rEzTYR+cAy8Qy+ZXOPRCUN9hW5Gv1Phc+qEoZlHwCOz9p/bPpF5G6dHRYd+UkWHflLR5g0Kbf9PfJ2Jhnq7iQAAAP0SIS0AABn0pBpoppIGhLTIlt1HhZHY6Dcc7oSnkcaVal3zFzlLRsg9cLosq399mmNtOxXc9opMJCB35SS5q48udJMAAMABgpAWAIAMehLSOjMksU0hJoNC9xHyo7+wHInlOALv36WA7pIkFR/2BZWf8AfFgvU5HTMWakg7iVlvijSt165nj1OsbUd8WenUn6pk0jf7vC0AAODA07/+dA0AQB8rcnU/Dcs0cRiQLbvPYKY/AAD7laSRtJ0FVt6tWLhZwU3/yumQwS1zetqqbmnb8FhCQCtJgfd/W5C2AACAAw+/PgIAkMHkNJMyzRpT3OW+tZVunZ/FdkAmxwxKrJl8aJlLnkwFj4H9iMNXk3F9rK1OsdCenI6ZHJT2lVhwd+qyUOoyAACA7qDcAQAAGZR57P+eOXucv8t9Tx7mUzgmPbUmkO9m4SByYa1fMWO0YndYA4uduuiwrj976GWGciXZcvpHZFxvQnskE7XZ0SdF2+z3SbO815mYzTKbtgMAAHQDIS0AADmaPba4y5GMZ48qkmVZ8jiliw7z65GVLX3UOhxoPE5Ll04sLXQzgG7pKqSNhRpSwk/PkNNUfeYctW14QvVzZ6fuVKiQ1qZKubELbgEAALqBkBYAgF7QOcKNMugOwEHKWdL1SFqjpKDTar+DwXLZjxo30TYZY2R1ozZz8n6m06hou+N1rLcsy37ULCFtr0l473HAMTZ3JNDXAA52hLQAAPSQw5JiJnnZvl80YtwaDeAg1dVI2vq5s1KWWZaz/X+XfU3v5v/+WM3//bGKx39FZcf+SpbD2WU7QjsWaM9rVyjWVqeSSd+Uf/L31LTsBgVW/E4m3Cg5vPKNnKWK6ffFzxtY839qWvptxYI7pVjY/sCxkKItm+X0H9JlG5AdE4uqcfHX1PrBn2S5ilVy5I3yT/hKoZuFvRqCMf3+v41a2xDWCUN8uvzwkoSfebqyqzWq3yxv1Mr6cMLY9FK3pXvPyFzDGgAOdEwcBgBADzlsfjfpvCzGQCvggGaJ0V/pOIuH5b5TFyNpOwRW/FbBzc9ndciG+Z9XtHGVTKheTctuUOvq+9Xy9k/aA1pJigXVtu4RBT74U/vTcJMa5n9esdat6QPavZrf/klWbUB2gpueUWDF72UiLYq11alx0VcVDWwtdLOw17/WBfRmXUiNIaN/b2jVsh2hnPZ/bFWLViQFtACAdoS0AAB0Yag/cZTWR4f5Ep5feXhqvdCTO20zsdqTsr62gptZgP7KEC9kzXL5ZHkqc9rH6R/e/n/JyHhgm064bmFWx4w0vJ/wvOnNm+y32/1fSVK0YZUUC2Z17MCK32W1HbIT2fO+zbJ3C9AS2HkyaTLU+99pymn/NQ2RfDYHAA4ohLQAAHThisNL5Xe3j5Q7d1SRhvgTA9aPDPUljKObNsijoSX7tplY7U455pWTmQgKwMGhqxGxyfyHf0OS5PBWqeSIH2bc1nQxyjWdWGCz/fJQfcL/KITU209MOLcgEH1nV1tutwvVt9nUdgYASKImLQAAXTqixqO7Tx2gSMyo2J36902fy9Jfz65RYzAmp8NSqSdxG5fD0qPnDNS2loiiRhpY5JTbye3RAA4OuYS05R+5V66ycfHnpVNulqN4iBoXfsF+B7vJvJI3yaEueCy4u/1/QtqCMTaTscUIaQ8IoahRUzjxevzG0WU6pMRlWzoKAA42hLQAAGTB47TkyRCsOixLFb7Mk9cM9vNtFzggECbkJN0EYLacqeVhHL70kwmZWBa3TtuEfunEQu0hrQkS0haMTfDOSNoDw26bUbRH1HhU5OIGXwCQCGkBAAAA9KJcQlrLSv31xG5Zh8D7v5ZMVMXjrpDlKlFg1f/KWTJSxYd9UZaj4w9n2Y+kjTauVv1/LkmpYXsgCG6dq7Z1j0oy8o36tLxDTpHUXjIi8P7vFN71RsZ6y66yWvkPv04Od/7L9YR3vqGWFb9V69q/SrHUiagaF31FsdAe+SdeK4e7JO/nxz4bmyJ6eWOrmkKpf9xIF6Y+szag9Y1hJQ9ary5yqqbIqTUNYYVtRtEWuSwCWgDohJAWAAAAQK/JqSatw+bXE7tlnQRW/FaBFb9NWBZt2aSyqbe3P8lhJK0JN6lt7V+y3r6/CO9apt0vnB4fpRpYfZ+qz3ldngFT1fTGd9Xy7i+yPM4bqjr1qby2LdqyWTufO1GKtmbcrnn5DxTZ/aYqZz6W1/Njn5ZwTDctqFcgktvkiH9+v7lb56v2EdACQGd8VQQAAABykVt+cdBzeCqz3tZypY7SdLjLcj5nyzt3xB+baFvO+x9ogptfSCwjYKIKbXlBktS26V/ZH2fTs9mVmMhB28Ynugxo9237eF7PjUTv7QrnHND2xICizGWiAOBgQ0gLAAAAoNcUjboo6209g6anLHMPmCZnyahunz/asqHb+2bDWTqmV4+fDyaSOtIxFmnZu64lhwNF8z6pWrRpTQ7nz35UNHK3J9i37++Jh/j69HwAsL+j3AEAAACAXuMbeYGqzpyr0LaXZWJhOYsGq3Hx11O2cxQPta13ajm9qj57vlrX/lVNS7+Z8/mjzetTlvknf7f92C6/PIM+qkj9W4oGNqdsF9nzvqSYXBWHS5JcFRPlcJWofu7sfRv1g+DQRIOpC6N7a7/GwgmLfaMukrPk0L07moRRyZIUa9spZ4bJ3HJuWySQ2/bGyLKYva83NCTVoR3id+rYwV69sT2oTc2pk37ZOWGIV8t2hBSMpo7IHV/l1mGVbjktaUK1R0cMSJ0oEAAOZoS0AAAAQE4IiHLlHXKyvENOliSZWNQ2pHX6R6bd31k8RCWTrpdk1LT0WzmdOzmkddecoLJjfpLYvsEfzfp4wS0vJTzPNWQsBLuSD2bvBF0mKaQtrr0m3leSFFj5B5lw4779gjvz2rZYLiN5pfayDRkmk0P3NSaNpJ1Q5dbF40vUGIxlHdLOHO7T+saItrakbn/MQI8+PiaHGtUAcJDhuxsAAADQI4S2ubAcTlmu4tRwM4vRkZYz+9ujg5tfkLPkUEUaViYsj48S7SbLVZTwPNa2XSYWkdXFBGfdEQ1sU2TP25JpH5XoKh8vZ8mILvcLRY22tkQ1oMghv9shE0sdSRttWtNeqzapHqzlcCc8d/gGKNoppI215RbSNgZj2tAU0bASpyp9+2qQRtvqFNz4VO4TtZmokn+NjbXtVHj3m4mjmi2n3NVTFAvtkQnWy1V1lCxHz2qghqJGaxvC2h6IyhipyueU6VSkOhA2cjstuTsVFfQ4LY0pd8vj7N2vE9HAFsWCu+WqODxhpHFDMKYNjZGEdqbzYVNiveFyb/sLyaXtliwVu+y37+33AAD6O0JaAAAAAH3KcpXajEDteroMy+nN+hy755xpu7zHIa2zOGXZrudPUvUZL8ly5a/GZuu6v2nPfz6TUk6h7PjfyT/+S2n3awrF9KPX6/VhU1TlXod+cFyFymxG0gY3PavgpmdTD5Ac0noHKNq0Nv68bdMz8o2cldVreHNHUD99o0GRmOS0pGunlOm4IT6F6hZp17PHZ3WMZLG2nXL6D9n3OrbM0e4Xz5X2jgxOxzPkVFWd/ny3w/TmUEw/XFCvLTYjRLtSU+TQLR+pVJWvdybKal3/d+35z/9IsZB8I2er4uS/y7Iszd/SpruWN3Z7rsNyT/s16c0lXLWkYrf99jkdBwAOQkwcBgAAAOQgmxFpyMxyl6Qus7L41SSHkbTpuHo8kjY1pA3vWKDQ9ld7dNxkze/cYVvvtvmtWzPut3Brmz5sag8SG4Ix/eX9ZvuatGlYjsQ6oZanIuF5eMfCrI/1z7UBRfa+hKiRnvigPZjvbkArSW0bn0x43vLOz7sMaCUptPUlhesWdfu8r21p61ZAK0l1rTHN35x9H+Sq+e2fxN+Dtg2PK7zjNbVFYrrvnaYefbUqi4+kzX4fh6Ril/217HEQ0gJAJoS0AAAAAPqUe8CxKctcVVO63q/q6J6fe9CMHu3vLB0ly1OZsjzauq1Hx00WS3O8WGCLjEkfvT28IrHG65t1IclE0mydyHIVy1V+WMKyyJ73Ep47iodkdSxJendXYr3bdY2RjG3PRiy0J+F5tHVr1vuGdy7p9nnXN2T3Hqazq617AW82IruWJTwPrL5fcz9sU0u4Z+/1uIr2UdW+NKFrMkvSiFKXfGnKHfjTjLAFALSj3AEAAACAPlV27K9kom0K71oqS5Y8gz6q0im3dLmfu/JwlX/kHrW8f5dMqEHR1m1y+ofJRIOKBTZndW53xcQetd1yuFV5yhPa/fzJiStiPQvxUtiMot13rrDk9NiuKvVYCkQSwzlj0zZH8SEJz53Fh6h0yi0pNXf9E7+mpqXf7nTunoWNrZEejkRPKt1gkkfROrySTQ1eST0aib25Obf+dVrto4c7tPX0decgHKjTs+sSy4kUuSwVpQlPk5W4HTp3dJEGFrcPoU1XY3ZshUu729o/p+Uehy4YW6wyryOhJm9nHTVuAQD2CGkBAAAA9Cln0UBVnfJ4t/Ytrr1KxbVXpV1vYmFte8g+wPSOuKBb50w5zuCT5B44Q+Edr+07b5ajVbNm0oehJhaUlSakLXE7tF1JAW9S20qPuV0lk7+TVTMsV3JpigzhcedTphkxu6stZvtL6JDLjVpW/EGNr6evtytJJrm+blJI6x12loJJJRF6yhijzc25hdMTqtx6p9NI4tZo34W0y4JjVBdO7KfvTCvXhCr7z0xX7ELaC2v9+sQ4v+327jRlDSoIaQEgI75KAgAAAD3ADbz7GSv9OJSs6t5me5rkCajyPJLWZBpJm6HGbKkn9TXGoklty/AepUh6zzK2q5O2NKHkrtYMYWcW/ZMc0ppoYkhrOdJPLmeirV0e305DMKaWHEfCJo9a7auRtEbSi+b8hGVjK1waX+m23yELdiNwBxSl7yu7kNaSVGbz2QQA7MNIWgAAAAB9qr4tqnvebtKahogcksZXuXXV5FL5090nnQPLsiSHu70kQIo8hkRJQacJN8Ufv7MzpB8v2iNJOmGIV18/ujzrw8bCzWpc+EWZ4K6025hoUJGY0d9WtWjJtqC2tERV7rFU4nHYjvhcssurozo3PTlgziA52A7XLdL2RwbLVXWkyk/4o7ZomO57p0lbk8oBpItyNy69XYOyPJckWd7qhPeiZcVv9YL/es3bWapwzGis85v6pL4nj9oD2HQjjCWpack3FNz4hCJNa+QqH6/yE+6Wq2yc7bbPrw/ohQ2tag7F1J18tTjps/xmXWKYbExMzW/eotY1D8lEWva+1iqVHH69ims/n/sJ9/pX8fe00TkpYdm5o4vbr4tuKrKpSTugKP1sYm6bVSUeS04mDgOAjPhTFgAAAIA+9af3mrVsR0gNwZjqgzEt3BrUY6taut4xS5YjTVDXg6Aq9RyJQWfggwfijzsCWklauDWoD5uyH2Xb8vbtal37fxm3CW6bqyXbgnpqTUBbWtpD2YZQ+lvyHyy/VyF1qsea00japMTNRBRr267QlhfUuPAL+t2bjVqxO6yGkEn41xSyTzZ3NjdnOlnKEoevJuH5KvdH9feNxdoeiGp3W0yLfZ/R3OIvdNoh/UhaSQptn6dYYItCW19Ww3z7MHRVfVgPvNuszc1RNYRMtybgsisRsL5x3x8Ogpv/reb//kjR5nWKte1QrG2Hog0r1LDgKkUa12R9nmjrjvjjkHya4/96wvqBRQ4dOyjze9IVu8umMkPpAruRtOWMogWALvGVEgAAAECfWtuQGlqub8xfuYCOkYkpHN2/5TtZrK0u4bm7sn30YiSWGujdtKA+6+OGdi7pchsTqtfv/tuY9TElaYdrbPyxo3hI1vs5iganXResfzvnfgs4qlKWFY25LO25PAM/kvB8k2tyyjabXEfEH7urj8m6LaHt/7Fd/vrWNtvl6Qzxpw4dHVOR+llb3+lzH9r2atrjhXcuzvrckfr/xh937uMOZ48q7vEI1mElTjk7HcJpSTUZRtJW+VJjBrv3CACQiJAWAAAAQJ+yq1eaZp6pbrFcxbbLHZ7KvJ3DVXVUwvNo63ZJUtDmteVSz9SEsgh0Y1GFsysNu68N1r5w1Dv0zKz38w4+Re6BM2zXJYzOzVJEqaOcS4/5Sfu5hpwq98Dp+849/HyVHn1bwrZhK3VUaMja19/FYy+XZ9BHc25XZ+/vtiuVYW9AkUPfPKZctZ1qvp48zKePDLFpZ6cAP9q0Ou0xk/8AkIkJ7xuZ3LmPO5w2oijrY6VT7Hbo42Pa32NL0v9MKJHbmT74nTbIq5Fl+0Zre52WzhttP8kYAGAfatICAAAA6FNtkdSEMcfMMaOicVcq8P5dKcsdnoq8ncM77Gy1rr4v/jwW2CLJPqTNRSy4O+F56dG3KrR9noKbn48vMyb7ELFDi6M9oPYOO1cOd/aBmeXyqfpjryhS/5aCW19S09JvxdcFrdQw/FtTy+XrFOD9ZUVzwsjpiJUY0g66uEEOT9necxWp+mOvKlL/luTwyFUxUZZlqfrshdr1rxMkSVHZhbTtQWTZcXfJcvlU9bG5iux+S7FQvUwkoPqXzs369bZGYlqXNNL7isNLNKzEJZdDGlnmUnPIKGKMorH2kNbncuhHJ1RoQ2NEXqelIX6nLMvSpGq33tm1r69CnapRRBpWpW1DrG1H2nUp20Y6hbRJo5SH+p0Zw9RcXHRYiU4ZXiSHlbkerdQe6v5keqXWN0YUjBqNLHPlpd40ABzoCGkBAACAnmAunJzEjFHQrnRqHofSWmnqklp5DGmdRUMTnkcDW2SMUVt3ZpnqJJY0ktZd8xGF6l5P2ij30hAdoywtV+4jKy2HU+7qKYolTWYWVGpIe1SNR65Ot9cfWeNJDGmTQlbLlRgYd5wrYVmnycCSQ15JCu1tR0epA8tyyF19VHy9q3yCIg3v2762ZCvrw+rcg05LOmV4kTydws4im9+iHZalUeWJJQ68SQFpeO9IWmNiijSmH0kbzSGkNeF9pT1arMSR4qV5rgM7sDj7kgVOh2Vb8gEAkB4hLQAAAJCTPN6Xf5B4qy6kd3aFFI0ZlaeZcGhHa/7G0lpOr4yk/3rO1W7nCB0T/LvKYzvyWu7AWdwe0jZaNVrq+5SaHDWqfPnPOsTbLOmTKds/8J9/y1E6Xg5v6i3pJtqmjXWbFFKRhrq+omF6W0cHn5AlyeGtTJnoa8+HL0q6Mqf2Pl5yq8aGF2pUuknVctRo1eg55+UJy5yWEgJaKXUSqeW+CzQ+NFdTg4/JqahkZR8k7nYM09ziL6Usbx9Ja8lVeUTqTpJcFftC2qCKtcR3oXY5R2h45L+asfibWhUervei46XS8VrXVpaw79gKd0JAm4vk/R5Z2aING5epVI0q83xGx7Y9Ko9aE7bZ4JqidzdVqXjOAzqhdKMcMlrUNlGNzho5TFS72oyGtbysGVX1cvuqNHd9nXzeT2tq8O/x0dIdSj38BQkA+hNCWgAAAAC9ZtHWNv1iWdeTXO0JxhQIx1Scj9uinV69WPQ1PVtygyTp5eIv6Ye7js3rSFpH0WBF5dJvKp/WTueo9oVte//ZeL5pitQkKSmU2+cQSdLK4i9LkupaRutjgZ/L4a2SlTTh2T2ha2RT2jUjYzn1y8p/6UbzO/U0qo7Kpd9U/FM7XaMTlvtcqaGgXXc+XPZrbQpM1idabpBlZRMkWmqz/Ppl5XO2a8NWkVzl49OWcXCVT5T0uCTpT2X36D3v6fF18zcv0Fr38TKWY2//JJaSmFDV/dGgduHuwtbD2h+UTtMKz0x9vvGy+LoNrin6TcU/FbU8UkiaU7dTDsXU5BiYcIwlniP1asNGefe0aGvJBEnS+tZpcpvED5/fEex22wEAfY/CMAAAAAB6zcKt2QdFK+tzr7Vqx3L69Jz/2/HnzY4aLfF9Kq81aS2nRx96jt4X0ObZMu8F7efxVCWUBGixKrTSc3K3jhmy/Ho3OqHbbbKc7aUKNrsOTwloJclvE9Kms7DokuxP7PTqA/f0lLCyQ5tVKldSiYTOXBUTJbWPou0c0ErSGs9H2gPaNHoS0hZ18X686zkjoWTE296z2gPavVocA9K+5t3OEdrq2teXC4s+q2ZHdeL5gxu702wAQIEQ0gIAAADoNS3h7MsYtPVw0q0ODm+NYlZiuPa29yw5Sw7Ny/E7tKis6426qdkxQJanQg63X77h5+07pyO1XIKdT4wrti2X3GZlP2lYMnf1MXIUDVbQKrFdf8yg1FrAw0vtb96MWD45/COzOq+r7DA1OAalXd/mKFPUf1ja9d5DPibLXaaQzURnmQwrcWrSgO6Xhzh6YOZ9jeVQs6Na/iO+L8tdrrY072u26pyJwbnbpBu1DQDYH1HuAAAAAOgJQ93HTGwnCUsjlqeytCHP0JRlQatUzpLsQsFsWaOukHbnts9o7y6NqDkk/nzjzm1a21aRsl2rVa7K0+dIknwjZ6ly5hMKbn5ekYaIlPQ+WWqvlDy2wqVRZW4dPdCjowd5NbHKox8v2pOwbdTq/shQy1Ws6rPmybz0o5R1l08s0ekjUyclG+5Pf30UnfhYdud1OBXwT864TYNnjAakWefwVqr67AVqW/6z9NUm9hru3q0xg4ZqYLFTJw3zpdTYzcWRNV59d1q5bl/SkHab8IBTVTrl/6lo9P8o+qJ9OYdsbXPVJjx3KT8j0wEAfYOQFgAAAECvCeYwOjZq8jOStsllE9I6K2U58vvrT9BRkfM+x5ds0PlH7rtN/dnFi21DWmM5FSoaoY6xqb6RF8g38gLp/XnS2n3blZpduvdc+xIGkwZ4NNW1TEsjR8eXRXItZpvEVTZWvtqrpfX7llXGtuqsUUfabu+x0pe7aHPVZD0WucU3TgqlX9/oGpZxf3fl4So+8kfS65nPM614rT595PgsW9W1KQO9mub+r5aE7d+fyMjLZVmW3BUTpbJ1ySVxcxJOGinsNBneMADAfoeQFgAAAMhBfmLEVIFwTDtao6ryOlXm7V5Vsvq2qFojRkP8ziwnZOp9uYS0dpURGoMxGUnlObwnjY6a1GVW6rKeSnfbfyYmVK/w7v/GnzuDmyUdYbttm1Wu0r2PY8ZoS3NUm0KJ5Q680QaFdy2XHC7JxGQ5vHKWjZPlcMoYI0doV0KRu6i6P5K2w65w4ohZp2mTibTKcqWOpPWagGRbeCG39y+53mqyPVb6cgiSZIxRXVvXv/5a4fb+cRYPk8OX+ZzZMCam4taVkss+pG3sNI1bXSzdWODuYSQtAPQvhLQAAABAgc39sFX3vN2k2N48c9aYYl00PrcA8J63G/XSxvbZ3UeUOvXD4yq7HfbmUyiHkPaet5s0ocqtoSXtv6Y8sqJZT6wJSJLOH1Osi7N8TxpMmaSmhGUtVpmaQjGVevL3nixuPqTrjZKEtszRzrUXx583+S6XSs+y3faptSF9frJXdYGobnm9XjtaY5ISw+Yi06idT5+ZsMxZVqvKmX/XnnmXyhH6rNQpO+1JuQNjjP74dpPmbh6RsNxhItr+yABVznxc3kMS22IFd6a0ucMr2936bJY56NK29DVnJWlPp7DTrt2/XNaoRdu6/vU3uuM/2vnPSyTLKf/k76js6Fuza6DdsQJbtev5mSqJfCztb973rB+skYeE9fTagD6I5ncSOqfJftI+AEDhFf6nNgAAAOAgZozRwytb4gGtJD2xJqCmUPYFWre2ROIBrSRtbIrq1c1tGfboO7lOBvbsuvZQtikU05N7A1pJ+ueagBqD2b0nDUH7c25ryaFAbhbWtpZ2vVESK2kstkPp2zRnY6uiMaMXNrTuDWhT+UxTyrJo4yrt+tcMRXa/KVdSjYBID0bSbmmJau6HqZ8rh6IykYCalt+Usi609QW5TSBluSQ9sy67EHGPTb8nB5C7I6mjeDusqA9r0bbszuU0e0efmqha3vqJIntWZLWfncDqexVtXKmS2M6M2925ZI9e35r/QJVyBwDQvxDSAgAAAAUUNVKDTQhVn2UgKUk7AqlB3+62/AaS3RGKGrWEcwtpd7e1v+6drdGEONNI2pnla0oXDDfmEHx3xRgjl5V78YtB0VUJzycHn5PDRNJu3xw2GV/30Mh79u0LN0rqFDruFfN0/xb+XW3279/gyEpJUrR5nV1LNCzydrfPKbWX8Uh2VPCZhOcfNqV/j9buSf/+JhscXdnpmVFw60tZ75ss2rxekjQ88t+M2zWEeqeIylBt6JXjAgB6ByEtAAAA0BM9LP2abq6sXObQCtrkU3mag6tHdnUjKO4YUWxXyzac5eHCMfsXH8gxMM6kOWwUMamd71BUjqRg1GHC8sd267TAXRobWSxZrvi/Uu3Rhc3fVGV0o+3t6S3hmKJJ2aglI7dp1fjQSzo98KuM7XQmjaQ1RZkn2MrV6PDrOr/lR+3HjjSnbhAN6lNN39Gw8Ft5Pe+U4JMJz9c3RhRL86Hf1Jw+pHXIyKHovv4JL0xYH9r+n2630UTbRx0fEnlHZ7fcrpLYzoyBfDJLRk7FUoL2Dk5l/qPDyC7CYQDA/oWatAAAAEBO8pt+pjuaySFlDUZSt90PMlrtTHOLfodvHlOu7YGo/vz+vnCvI1+1Gw2bLnxNFklz2ma7mcm6qd5mVOlfzqqRaXhPO5+alLJuyOVG0o/3/ks0a+8/Sbr0+R0JoXtz2Cia9Fm4sLZEJ8wfnFU7XUkBX7r3pjvK3TF9re78+HMTCcjEorIczn3LokENjb6vb+45XV+v2Z5yDGNMl5PcJfe604Q0LJIY+rZGjHYEohrsT/0Vd3Nz+nT/4XM6JhwbIunHCqwepYb5V8bXh7b/J6s22rY70iqp/e84ZwR+qdm1FSo96ka1RYwu+3dd2v1OPMSrrxxVntU5nlsX0IPvpYbjxbHdMqFdObcZAFA4jKQFAAAACijd6L9cQtagTXi5P4yk3dmaeehrsdtScvZl9r7ykM2u2Ya0aUfS2oTZ3bU7afhymceSy2HJcvl7dNwSd+KvaHYjaZ05/BaXPJI2nyGtXXBpooGk55lrI2fZpclnUXlsm0piiUHnusbUUarGmIwjaZN5Bn00sX2t2xRt+qA7jZSirQlPLVd73Vyfy1KVL30nluUwuZ3PZR8eW4opFiSkBYD+hJG0AAAAQJ7sCcb05/eatCcY01mjijV1kLfLfdKFVAu3BvWn95rVFIppV1tMNUVO2UW3LoeltQ2pIVRrxOiZtQEt3Nomn9PSeaOLddTArtuTT12NpPW7rJRRI2/vDOvTz+6w3f72JQ0q81gaUORUzLSXRCh1W3tH3VoaWebUZyeUqi5gf96WPI6kTT5Hpa999Kjl7llI63db2tUp17x9SUPKNs4cRnUm3yq/ZHvuE1TN39KmFza0aldK6J7ajl3PHCc59v2aGanPXI/2l8sa9I1jyuXY+5pe29ymORtb5bKk80YX68gaj/61rjVlP0vSsMjbWuE5Jb7s2bUBnTDEpwV729sUimlThlG0dpylY+QoGqJY69b4st3/Pl2Wp0yyXHIWDZZMTMEt/5azZJSKxn1OJZO/o7b1jymw8m5ZzmKVHHmDPINOVHDz84ltdvrij4f4nfH6y8lyCmmd6UJaKbL7zayP05Xw7rfUtPyHshwelR59q1zltRm3D6z6XwU+eFAmEpBn4AyVTb1Dlqs4b+0BgAMRIS0AAACQJ/e81ag3drSPXHxvd4N+O7Na1UXOjPukG9351JrEEYkbm7IfDShJ/9ncJm3e9/z93Q26+7QBOQVAPZUa6iUqdjvkyPEu8saQUWNo33uxtdO6jU0RtUXSB5H5rEn79NrE/qn0tr+vDldJj47rdzskZX7f0uRytlxKrWe6tiGs0eXurPbf1BTRb5Y32q+0CYsjDe9n3zhJS7aHtGRbUMcN8WljU0R3vbnvXO/vbtA1R5Rq3ubE0bjW3j9WJIe0q/dEtLYhrN8sb+x2uQ/LsuQZ9FG1rX80vizaskFqaX/c+SqMNq9T8/IfyoT2qOXdn8eXh3bM14DzlqYe21kUfzzE79S7u+xrzZZ78zOSVpJCdYvkqTku6+PZMSam+pfOU7RloyQp0rxWA85dmrYERGj7PDUsuDr+PLL7TVlOn8qm/bRH7QCAAx3lDgAAAIAesDqNJuwIaKX2EbKvb+t61OLWltwn1+qOqGkP5/pSUxcjV8s8DhW78/sryTu7QkqXQ7fa1LntrkNKEsP3xtDe19pptGSHkimpdWjTGVCU3ftRPP5LWW1XEtuZsmzNnuwD/zUZPjMlbocsb3XWx5rRep/t8l8sa9zbrsRzRY30nM0o2uLYHknSiPDylHWvfNiWdUBbnabkgHfIKbbL0+kc0ErtE6gFVj+Qsp2jaFD88fDS9OOlarr4w05nlWkCXX9stySp+a2fZH2sdCL1b8cDWkmK7FqWMNI4Waju9dRl21/tcTsA4EBHSAsAAAD0ErvJpZJFuleUs1vCfZMHx2Wqf/qxQ4vkc1k6eqAnr+dsjRiF0pw3n3V6k19bR+hmWZbcA6cnrCuZ9O2sj3v6iOK0IXOHidUe+Q//lhzFQ7s83oTQSynLcvnMZerDs0YVq+Twb2R9rNMDv8q43q5ZjTadOTP2d0nSxNCLKeuCOQTx5462v/2+aMylclVMzPo4dmKh3SnLPIP3hb8fGeJTjU0gP6bcpfFV2Y1ylqQRZfZh70db75UkBT/8pyINq7I+nh27usLRwJb020dSg/VYa+qkcQCARJQ7AAAAAHJg0k30ZbPclcWQiLYcR3fOGlus4SUuLdke1MKtudUXDfVhICylhoHnjCrSuAq3BhQ5Nbai/VcRf55H0vaV5AnfRnUKywac/ZraNjypSONK+Sd+XZYz+yD6sCq3fnVytb70cvpJn8q9Drm8h6rm/LcVrn9bDm+1oo2r5Swbpz2vflqRPe/Ft/WbPRpX7tTqhn0JfS4fg+RNh/id+lStXyNLXRpW6pJGfF/eQ85OKXNgIs0Jt7xLUnlsh343foG+vOIjWZ1LSg1pD6t066Kp31Ro+7Ey0TYVrzQKRPaNZs80udypw32aNdavDxrCOsTvShtwWi6fBnz8TYW2vaJY207FWrerccl1aY9r+1pCiSUi3DUnyNGpXnGZ16E7TqzSit1hte0teVLisTShyiNXDjVAHGlKDnyk7c8dLVHLe79U+Ql/yKn9nZlIS8qyWMuH0oCp9tvHUr8uRVu3yxiTtkQCAICQFgAAAMgLuzv7s5ngKZRjSDt5gEeHV3u0OxjLOaQN5/F2/2wkn25QsVMnDE0tB9BX8plRJ5cSdiZlzb6RF3T72NVFTpV6LDWF7BvckWs7vFXyDj6pfVnlpL3LUssP+D1Oda5zG81hSHHypuUeh6Yn9aG7+ii5q49K3C8WTglpJamsdHDW55JSr6uxFS45PKXyDT9XkuRfu1OBTsN9M438HVHmUk2xUzXFXZcTsBxueYee3t6uaEiNS78pmeyHoptw4oRvnUsddPC7HTomi8kFczXImTiKN/DBgyqZcoucvppuHS85cJaUUP4gdWXqyFvFgjLhRlme8m61AQAOBoS0AAAAQA7S5a6bmlPrfO4JRrWuIax3doW1riGsIX6XvM720W8uR3tIU9fadUkEO92Z/+sPbzVpWKlLYyvsb6fe1hLRf+tCCkaNqn1OTR3slXfvLFXBqNHS7cGEycCGlbh01EBPwmi+UNRo8bagFm0L6v3diTVGcxkh2Bsa0tVByFEoarQi6bVlE8jnov09TRfSpj9XLJh6m33y5k8mTUonSVU+p6YO8qZMRJU8Yjjbl2k57D9jTv8w2+W/Wd6gN+tCtus6S37tyZ8pu+sw3bbZspweOUvHKtq4Mut9Ig0rEp73dEK5XFSWVEgOtxTb+xmNtqlx4RflznICMYe3Wr7h58vhaw/8Y+HUkDa86w21rvmLoq3tZQ8cvkHyDf+4HN4K2/IIkhRr3SYHIS0ApEVICwAAAPTQluaIvvdafcryFze26cWNnQOL3Ea+2umImTIFdZncML9et06vTAlqNzVF9IMF9WrtNET08Gq3bjy+UpL006V79PbO1EmkzhtdrEsm7AugfrWsIWECtc6cBb7TeVV9WG2RmHzZ1KHI4OdvNKQsy3f+nKmFmZofC6aWSUh+31vCRn9ZkXoL+/gqt24+viLhlvTk4LSnr9NRNERSahvnb8nu2kgOWpNf2+bm9KNdezKS3FUxIaeQNtq8PuG55S7t9rlzVVlcpKJRF6t1zZ/iy9o2/ENtG/6R9TGaS3+imvPfluXypYwKlqTWNX9W65o/JyxrqZysAectSxvSRlu3y1V+WNZtAICDTf8sAAUAAADsRx5ZmRp49ZaOjMrdg8TzB/NTA+VF24IJAa0kvbsrrJ2tUe1sjdoGtJL0yqZ9kwTVt0XTBrSS5EnT5kHFffdrSTajNTOpb4vaHsOT55Q2XRDrdqSvQypJ7gHHpizLtH1nK3aHtT2QGHLuymLyu3QcxYekLLMcXZcayCT5ffHmcB2UdGf4ecd5yyd0e19JstxlPdo/F2PK3fJPur5Hx4g2faDgtlckSTGbcgd2IvVvK7x7efqRtG07etQmADjQEdICAAAAPbRoW89HyGbD77I0qrx9BKyrB5mg3XjCFruiupKawzEFwulHIHZel6l0g9sh1Vba3wJ/zRF9F2Bta8m+rqidJpv3wmm1T/iVT5Oq7Scbmzwg8yRkJUf+IOF5+UfuzWoCuw4tSa/Pn/RB25lDeY6iURclPC+uba9Re8GY4uwblOSwpM/QpC7ejw4eh3Rkltva8Q3/eLf3lRSvb9sbZg7fVyO42GXp9JE+uSsnyzfykz06biywSZJkoqnlMdIxoUaZUOrIW0kykeyPAwAHI8odAAAAADno26m32g0ocmhStUdnHVoUHzmY79vr090JHo1JMSv9q+48GdeuNvsAdFK1W58Y59eAIvtRlIdXe/T5SaW6950mSdJHhnrltCy1hGPa3BzRsBKXNjZFbEPg6UO9Om1EkVwOS/9eH1Bzp5BxYLFTL2xoTdi+rrVnIa3dRG8/OK4i7WvrrismlarC59D6hkj8M3dIiVOzx/kz7ucZME2Vpz6jto1PyD1gmorGXSHPW80p21X7HBpe6tJbO0MJfZj88hqT6vh+qjbz+TsrPfo2We4yhXcukbvqSJUccYMk6aLD/NoeiOY88Z2klDIdF9b65XNaWr0nnPA6HJY0xO9UJCYFIkZnjCxSmbf7Y5Q8A49X5cwnFFh9r4Kbno0vd5aOlatsnEykWaHt8yRJ3kPOiq+3XMXyHXqhvENP7fa5u/K5w0tV5XOovi2ms0YVx8t5lM94QK7ywxTevdx+VrYk4V3LFGvbHn8ebd37OKdw1ShGSAsA3UJICwAAAOznbj6+MmVGemeWKe3nDi/R/e+mhnTJomkGSEZimQNho/bJpRyWpd1pRllef0y5it2ZA7LTRxbp9JFFaddvaY7oulcTJ8U669AiXX74vlqftZWpkxJVeh16dNW+chTdnaitQ3JIW+q2NDHNqNee8DotXXRY9yab8g0/R77h58Sf202YNXWQV5+bVKrPvVCXMHo2Ekt8fckjh8tzKBlgOT0qPerG1OWWpa8fXa6vS/rFGw05jURPfikuh9VlcJ0vvpEXyDfygj45Vy48TksX1qZ+VhzuEpUe/f+yPs6e1z6n1g8eiD/vKE+QU7hqYjKhPfaroq22ywEA7QhpAQAAgP2c16a2QbalOLOtR9oSsQ8vo8Z0OXq4PdczWttgX7c2XS3aXNgFxdnk1Mnh9ur6sPbsHfHrcVoqdjsUjhrbcg8upyVL+yacKvM6FEwKafPx2nqb22aQb0cJhOSPVkMoFn9/jKSmpJG0pZ78vl5fjnU78j2CHPs4fAMTnkdbNioa2KZYcHeaPVLFgrsUC6XWvJakWOt2RQPbZDlcsrzVCRPUAQAIaQEAAIAeyVSvNV98NkGg0ybg8DikpExN6XKQny7do2unlMvlkO57p0kLttiPZmwKxTRvs/1EQB2eXhvQ31a1KJbmrchHjmkXNtu9B8lqihJHfgYiRte8tKtbbShxWxqYFPr2i5DWJtnsGF3bPiJ7X8f9alnmSaJKezD5lh27z3Ym2f7RAblzFA1KeB7c+KR2bHwyp2Ps+c/Fade1vHOHWt65Q5LkqpioylOflqt0dM7tBIADFROHAQAAAPsxh9U+6Zbd8mR2JQXSRVpLt4f0+tY2ra6P6MWN6UPYuR+2acn2UMY2PrIyfUArKS8j5uyyvGzyveRQtSeaw0ZrGyIJy3o6EVlfsPv8dAxgzTVjzndI63cTuu4vnEkjaXtTZM97an7rJ312PgDoDwhpAQAAgFxkMQFPPg31O21DziH+1PBxysDU2qiDip0aV2F/A932QEzbAhHbdR3CmdLXLIwuz8/Ne+Veh4qSbo0fkzSJlJ2yPIeKyQoxkVyuhvhT+2Dw3s+P3econYFFjvjEdfkyeUD29XyH5tBW5M5VOblPzxepf6tPzwcA+ztCWgAAAKCPlLgtTR2U2yRTnSfG6qy6yKlP1/rlcbSPlPzE2GJdMqFEk6rbg0unJZ06wqeJ1W5dd3TqhFrtTNoJwzq0RVNjyJIsRz9WeB26dGL3Jr9K5nJY+tzhJSp2WXJY0vShXttQGqmOHezVcYO9stQ+svrYwV4dP8QnSbp4fElKSQg7pR5Ln5tk/1nsifFVbp0+Iv2EcR3KvQ5dkeZaQH64KifLf/g3JUdu15XlqejW+aKBTd3aDwAOVNSkBQAAAPLoosP8emRlS8ryM0cW6fLDS+SwLEVjRoFI+4RcHXGn22Hpsn/XJewzptyVcaTh7HF+fXxMsYyR3HtHOP7w+Eq1RmJyWla8Xmp1kVOPnjNQdyzZo2U79pUuMJIiXYwMTp4oy2FJV00u1S+7qF168jCfvnBEaV4nB/rosCLNOMSncExZj+jMZaKpoX6nbvlIpV7a2KqHbfqwv/I4LX3jmHK1Rdr7svNkXaPK3bprZrVawpkniPO7rV6pB+uwLH1+cqkunVgil0N66L1mPbe+NWGbWWOL9elaPxNN9TLLslQ27acqPfr/yYSbU9e7irTt//wpywd9ZrdMqD7lLgPLUy7L4VIs3CRFQwrveUe7nz85vj4W2CoTC8tydD0iHgAOBoS0AAAAQB6lmwipwuuIh1xOh6VST9eBU3JAasdlk0IWuexHRqYEm0ZdjqQNRlJD2mwm7PI6rV4J1RyWJW8v3fVe5nGo1ONQte/AvK3e57LvD8uyVJLF57E3dfxBwa7mbU2RfckP9A7L6ZXl9Ga/vWXJ8lalXe9wl0puyV1xeNIao1jrNjn9w7vZUgA4sBDSAgAAAD2SGB6lG7np7EahsWxC2p74xweBLrfZ0ZqY4jqU3ejUXEaw9qZcmtERVDKZVeHYvfPJtYjRP1neasnhlWLB+LK6JybIXXOCHJ4yVc78RwFbBwCFR0gLAAAA5FG6AX/ZjD5NFu5ilGuu8jEY0bKsrALn/SaktXnRHocUsnlv/W5Hwv/oe3afUULaA4NlWXL6D1G0aW18mYm0KLT1xfYAFwAOcvz0AQAAAOSgq7Gt6QK+bEZn1lYm1mY8Zbgv22ZlpavSBlL7hGOZ+N2WSrIIMUeX7z91JpPvoJ862P5W7kpv+4aVvux/TRqYxaRbyJ7ddVLu5T3eX3gGz0x47j/8mznt7ywZnc/mAMABhe92AAAAQB7VFDk1qToxoKz0OjSlpusZ088ZVRS/3bvIZWnGIfkNaY8ZlLkNTkv66lFlGbeZOdynUWWZb8gbWOTQ0QNzmyG+N50+sij+eIjfqcsmlKgmKVz1OS1NH9r+fg8sduqIAdmFzJ+dWJq/hkJHD/SqrFN93NHlLh3axecNfafkiO9Leyf6srzV8k/KLaQtPuwa5VaEBAAOHny3AwAAAHLQVckAhyV9e1qFlu8IaldbTMUuS0fVeFSRxWRUxw/x6bYZTm1ojOjwao8GFud3AqujB3olNaVdf8eJVRpe6tLdbzWpzaYe7heOKNXJw3xpJ3G66DC/qnwOTRnoVfF+VDLgkgklOqLGo8ZgTEcP8qrE7dBt06u0bEdQLREjj8PSETUeDer0fn9raoWW7QiqMRTT+EqPfrp0T0p9Xkk6Ns2oXHTPgCKn7jixSm/uCMnrtHT0IE98wj0UnnfoaRpw3nJF6t+SZ+hpcvpqctq/6NBPynXuEoXqFkix6L4Vzvz+QQoA+iNCWgAAACCPLElep6Xjh3QvdBhd7u61UgGZanvWFDk0vLT914Mqn0NbWqIp20wb5E0b0ErSrLH+njeyFzgsS0fVJIapZV6HTh5elGYPyZPUh8cN8enptYkTre1HOfQBpcrn1Ckj0vcNCstdebjclYd3f/8Bx8g94Jg8tggADgz8WAEAAADk0f486M/lsNIGi50nNks36ZfvIJ7Aye6VH7zvBgAAyDdCWgAAACCP9vfgLl0Zgs7BrNMmpXU52kPeg5Vd+M5t+AAAIF8IaQEAAIBcpJZqTeDcz4O7kE2tWSlxlKzdgNkiZ+LCTKUTDkR2+bTz4HoLAABALyKkBQAAAHJQVZT+R2i/y9LQkvxO9pVvrRH7kPaoGk/8cW1lak3cw6oSl80c7sv4/EBTW5H6noyzeZ8AAAC6g4nDAAAAgByUeRJDWr/boVFlLlX5HJo11r/flwSorXBp1Z5IwrLTRxRpdqdJvz4zvkRG0qr6sCRpeKlLl4wvSdjnosNKZIy0ek9Yo8rc+p8J++ekYfly9CCvPnd4iRZsCSoYNRpR5tLFSe8JAABAdxHSAgAAAD1weLVHt59YVehmZK3EkzoS+LMTS+TudO++12npisNLMx7H67R0eRfbHGjOPLRYZx5aXOhmAACAAxDlDvJow4YNuv766zV+/Hj5/X5VVVVp2rRp+ulPf6pAIFDo5gEAAAC2tVX377G/AAAABz5G0ubJ008/rUsuuUSNjY3xZYFAQEuXLtXSpUt177336tlnn9XYsWML2EoAAAD0lOli4rD93f4+sRkAAMDBiJG0ebB8+XJ9+tOfVmNjo0pKSnTrrbdqwYIFeumll3TVVVdJklatWqVzzjlHTU1NBW4tAAAADmZOm98AiG0BAAAKi5G0eXDttdeqtbVVLpdLL7zwgk444YT4ulNOOUXjxo3Tt7/9ba1atUo///nPdfPNNxeusQAAADioHV7t0YItwfjzco8lF0M3AAAACoofx3po8eLFmjdvniTpyiuvTAhoO1x//fWaMGGCJOnXv/61wuFwn7YRAAAAvae/jUL9yBCvaivax2o4Leni8SWyKIEAAABQUIS0PfTkk0/GH19xxRW22zgcDl166aWSpD179mju3Ll90TQAAAAgRbHboVs+UqnfzqzW/WfU6OThRYVuEgAAwEGPkLaHXnvtNUmS3+/XMccck3a7k046Kf54/vz5vd4uAAAAIB3LslRT7JTPxQhaAACA/QE1aXvo/ffflySNHTtWLlf6t3P8+PEp+2Rj06ZNGddv3bo162PtD5pDDVq49luFbgYAAEC3HeZo1R8ntcafj/DvUWD3lgK2CAD6N8sqUlHldYVuBgAUFCFtD7S1tWnnzp2SpGHDhmXctrKyUn6/Xy0tLfrwww+zPsfw4cN71Mb9TSQa0rGlawrdDAAAgDyqV7h1XaEbAQD9luUoU5EIaQEc3Ch30ANNTU3xxyUlJV1u7/f7JUnNzc291iYAAAAAAAAA/QsjaXugra0t/tjj8XS5vdfrlSS1trZ2seU+XY263bp1q4499tisjwcAAAAAAABg/0JI2wM+ny/+OBQKdbl9MBiUJBUVZT+DbldlFPobj6tI/2kmVAYAAP2fw7J0aEmlRvgrC90UAOjfLG+hWwAABUdI2wOlpaXxx9mUMGhpaZGUXWmEA1Wxu0QfO+wnhW4GAAAAAAAAsN+gJm0P+Hw+VVdXS5I2bdqUcdv6+vp4SHugTQYGAAAAAAAAoPsIaXto4sSJkqQPPvhAkUgk7XYrVqyIP54wYUKvtwsAAAAAAABA/0BI20MzZsyQ1F7K4I033ki73auvvhp/PH369F5vFwAAAAAAAID+gZC2hy644IL44wceeMB2m1gspoceekiSVFFRoZkzZ/ZF0wAAAAAAAAD0A4S0PXTsscfqxBNPlCTdd999WrhwYco2P//5z/X+++9Lkq699lq53e4+bSMAAAAAAACA/Zer0A04EPz617/W9OnT1draqjPOOEPf//73NXPmTLW2tuqRRx7RPffcI0mqra3V9ddfX+DWAgAAAAAAANifENLmwZQpU/Too4/qkksuUWNjo77//e+nbFNbW6tnn31WpaWlBWghAAAAAAAAgP0V5Q7y5LzzztNbb72l6667TrW1tSouLlZFRYWmTp2qO+64Q8uXL9fYsWML3UwAAAAAAAAA+xnLGGMK3Qh036ZNmzR8+HBJ0ocffqhhw4YVuEUAAAAAABx4+P0bQG9iJC0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFJCr0A1Az0QikfjjrVu3FrAlAAAAAAAcuDr/zt35d3EAyAdC2n6urq4u/vjYY48tYEsAAAAAADg41NXV6dBDDy10MwAcQCh3AAAAAAAAAAAFZBljTKEbge5ra2vT22+/LUmqqamRy7X/D47eunVrfNTv4sWLNWTIkAK3CLmiD/s3+q//ow/7P/qw/6MP+zf6r/+jD/u//tiHkUgkfjfr5MmT5fP5CtwiAAeS/T/RQ0Y+n0/Tpk0rdDO6bciQIRo2bFihm4EeoA/7N/qv/6MP+z/6sP+jD/s3+q//ow/7v/7Uh5Q4ANBbKHcAAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVkGWNMoRsBAAAAAAAAAAcrRtICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0qJPbdiwQddff73Gjx8vv9+vqqoqTZs2TT/96U8VCAQK3byDkmVZWf07+eSTuzzWc889p1mzZmnYsGHyer0aNmyYZs2apeeee673X8gBaseOHXrmmWd044036qyzztKAAQPifXL55ZfnfLx89FEkEtHdd9+tE088UTU1NSoqKtKYMWN0zTXX6N133825TQe6fPThgw8+mPW1+uCDD3Z5vEAgoDvvvFPTpk1TVVWV/H6/xo8fr+uvv14bNmzo2Qs+wCxdulS33HKLzjjjjPh1U1JSotraWl1xxRV67bXXcjoe12Dfy0cfcg0WTmNjox555BFdf/31OumkkzR27FiVl5fL4/Fo4MCBOvnkk3XnnXdq165dWR1vwYIFuuSSSzRy5Ej5fD4NHjxYZ555ph5++OGc2vXwww/rjDPO0ODBg+Xz+TRy5EhdcsklWrhwYXde5gEtH334yiuvZH0N3nzzzV22ia+j+fOd73wn4f1/5ZVXutyH74UAkIYB+sg///lPU1ZWZiTZ/qutrTWrV68udDMPOun6I/nfSSedlPYY0WjUXHnllRn3//znP2+i0WjfvbADRKb39LLLLsv6OPnqo7q6OjNt2rS0x/B6veZ///d/e/iqDyz56MMHHngg62v1gQceyHis1atXm3HjxqXdv6yszDz99NM9f+EHgBNPPDGr9/zSSy81wWAw47G4BgsjX33INVg4c+bMyep9HzBggHn++eczHuumm24yDocj7THOOecc09ramvEYgUDAnH322WmP4XA4zM0335zPt6Dfy0cfzp07N+tr8KabbsrYHr6O5s/y5cuNy+VKeP/mzp2bdnu+FwJAZoS06BPLli0zRUVFRpIpKSkxt956q1mwYIF56aWXzFVXXRX/hlpbW2saGxsL3dyDSsd7/8UvftG8/fbbaf+tXbs27TG++93vxo8zZcoU8/DDD5vFixebhx9+2EyZMiW+7nvf+14fvrIDQ+cfOEeMGGHOOOOM+PNcQtp89FEkEjEzZsyIbzt79mzz3HPPmUWLFpnf/OY3ZuDAgfFfUP/1r3/l4dUfGPLRh50Don//+98Zr9X6+vq0x2lsbDS1tbXxY1111VXmpZdeMgsWLDC33nqrKSkpMZJMcXGxWb58eV5ef382ZswYI8kMHTrUXHvttebvf/+7Wbx4sVm4cKH5xS9+YQ455JD4e/mZz3wm47G4BgsjX33INVg4c+bMMcOHDzeXXnqp+fWvf20ef/xxs3DhQjN//nzz6KOPmk996lPG6XQaScbj8Zg333zT9jh33313/H0fM2aMue+++8zixYvNk08+aWbOnJn1tXzRRRfFt505c6Z58sknzeLFi819990X/7xJMn/84x974+3ol/LRh51D2vvvvz/jNbh9+/a0beHraP5Eo9F4UNrxvnUV0vK9EAAyI6RFn+gYyeJyucyCBQtS1t95551Z//Ub+dXT933lypXxv6BPnTrVBAKBhPUtLS1m6tSp8f5ntHRubrzxRvP000+bbdu2GWOMWbduXc4BX7766L777ouf+0tf+lLK+tWrV8dHy48dO9aEw+HcXuwBKh992DkgWrduXbfb8sMf/jB+nDvvvDNl/fz58+OflUyj5w8W55xzjnn00UdNJBKxXV9XV5cQuL366qu223ENFk6++pBrsHDS9V1nTzzxRPx9nTVrVsr6Xbt2mfLy8vgfy+rq6lLOcd5553UZMr300kvxbc4777yUttXV1ZkRI0YYSaaiosLs3r07+xd6AMtHH3YOaTOFgF3h62j+/PKXvzSSzPjx4833vve9LvuH74UA0DVCWvS6RYsWxb+RXnPNNbbbRKNRM2HChPgPtaFQqI9befDqaUj7xS9+MX6MhQsX2m6zcOHCjD9MIXvdCfjy1Ucd12hVVZVpaWmx3eYnP/lJ/Dh/+9vfsmrfwaZQIW0oFIqHFBMmTEh7K+E111wTP9fixYu7da6DydNPPx1/v7761a/absM1uH/Lpg+5Bvd/hx12mJHab5lPdscdd8Tf04cffth2/w8//DA+mvPss8+23eass86KB0gffvih7TYPP/xwxiAe6WXqw3yFtHwdzY8NGzbER/6/8sor5qabbuqyf/heCABdY+Iw9Lonn3wy/viKK66w3cbhcOjSSy+VJO3Zs0dz587ti6ahh4wxeuqppyRJ48eP1/HHH2+73fHHH6/DDjtMkvTUU0/JGNNnbTzY5auPVq1apffff1+SdOGFF6q4uNj2OJ0nwnriiSd62nzk0dy5c9XQ0CBJuuyyy+Rw2P8IQB/mZubMmfHHa9asSVnPNbj/66oP84VrsHeVlpZKktra2lLWdfwsWlZWptmzZ9vuP2zYMJ122mmSpJdeeklNTU0J65uamvTSSy9Jkk477TQNGzbM9jizZ89WWVmZJPovV5n6MB/4Opo/X/7yl9Xc3KzLLrtMJ510Upfb870QALJDSIte1zFrst/v1zHHHJN2u87f4OfPn9/r7ULPrVu3Tlu2bJGkLn9A61i/efNmrV+/vrebhr3y1UedZz/PdJzBgwertrZWEtfx/ibbPpw6dWr8lx76sGvBYDD+2Ol0pqznGtz/ddWH+cI12HtWrlypN998U1J7ANRZKBTS4sWLJUknnHCCPB5P2uN09EswGNTSpUsT1i1ZskShUChhOzsejyceQC1ZskThcDi3F3OQytSH+cLX0fz429/+pmeeeUZVVVX62c9+ltU+fC8EgOwQ0qLXdfy1c+zYsXK5XGm36/wDWcc+6DuPPfaYJk6cqOLiYpWWlmrcuHG67LLLMo5qfu+99+KPu/qBmv4tjHz1UXeO8+GHH6qlpSXrtiI7V1xxhYYOHSqPx6MBAwbo+OOP1w9+8ANt3rw5437Z9qHL5dLYsWMlca1m49VXX40/njBhQsp6rsH9X1d9mIxrcP8QCAS0evVq/eIXv9BJJ52kSCQiSfr617+esN2qVasUjUYl9f01GIlEtHr16swv5CCWbR8mu+GGGzRy5Eh5vV5VVlZqypQpuu6667Rq1aqM+/F1tOf27Nmja6+9VpJ0xx13aMCAAVntx/dCAMgOIS16VVtbm3bu3ClJaW8L61BZWSm/3y+p/Zsp+tZ7772n999/X62trWpubtYHH3yghx56SKeccopmzZoVv0Wzs02bNsUfd9W/w4cPjz+mf/tOvvqoO8cxxiTsh/x45ZVXtHXrVoXDYe3atUuLFi3SrbfeqrFjx+qPf/xj2v06+sLv96uioiLjOTr6sK6uLmGUIRLFYjHdfvvt8ecXXnhhyjZcg/u3bPowGddg4Tz44IOyLEuWZcnv96u2tlbXX3+9tm/fLkn67ne/q4svvjhhn0Jeg3bHOdh1pw+TLViwQBs3blQoFNKePXv05ptv6le/+pUmTJigm2++OW1ZLb6O9ty3v/1tbdu2TdOnT9eVV16Z9X58LwSA7KQf1gjkQed6XiUlJV1u7/f71dLSoubm5t5sFjopLi7Wxz/+cZ166qkaP368SkpKVFdXp1dffVV33323du3apSeffFLnn3++5syZI7fbHd83l/7tCOAl0b99KF99RF8X3ujRozV79mydcMIJ8V881q5dq3/84x/6+9//rra2Nn3hC1+QZVm6+uqrU/bv6MNsvxZ3aG5ultfrzdOrOLD88pe/jN9GPXv2bNuSPlyD+7ds+rAD1+D+66ijjtI999yjadOmpazjGuwfMvVhhyFDhmj27NmaMWOGRo8eLZfLpY0bN+qZZ57RQw89pHA4rB/96EcKhUK67bbbUvanD3tm3rx5uvfee+VyuXT33XfLsqys9+U6BIDsENKiV3Uu/J+pBliHjl9CWltbe61NSLR582bbET2nn366vvrVr+qss87S8uXL9eqrr+oPf/iDvva1r8W3yaV/O/+CSf/2nXz1EX1dWLNmzdJll12W8gvRtGnT9OlPf1rPPPOMZs+erXA4rOuuu04f//jHNXjw4IRtO/owl6/FEn2Yzquvvqrvfve7kqSBAwfqD3/4g+12XIP7r2z7UOIa3F9ccMEFmjp1qqT292XNmjX629/+pieeeEKf+cxn9Ktf/Urnnntuwj5cg/uX7vSh1H6tbdiwIWGwgCQdffTRuuCCC3T11VfrjDPOUENDg26//XZ9+tOf1pFHHpmwLX3YfaFQSFdffbWMMbruuus0adKknPbnOgSA7FDuAL3K5/PFH3dMtpBJxy19RUVFvdYmJMp0y+WgQYP097//Pf4D8V133ZWwPpf+7Xy7Jv3bd/LVR/R1YZWXl2ccsXLuuefqxhtvlNRe4+++++5L2aajD3P5WizRh3beffddzZo1S5FIRD6fT4899pgGDhxouy3X4P4plz6UuAb3FxUVFZo0aZImTZqkadOm6aKLLtLjjz+uhx56SGvXrtX555+vBx98MGEfrsH9S3f6UGofFZkc0HZ27LHH6re//a2k9tvbOx53Rh9232233aYVK1ZoxIgRuummm3Len+sQALJDSIteVVpaGn+czW0mHUXds7kVEH1j9OjROv300yVJH3zwQXxmVim3/u1csJ/+7Tv56iP6ev939dVXx0OkzhMhdejow1y+Fkv0YbJ169bpjDPOUH19vZxOpx555BF99KMfTbs91+D+J9c+zBbXYOF89rOf1ac+9SnFYjF95Stf0e7du+PruAb7h0x9mK2LLrpIZWVlkjJfgxJ9mIsVK1boJz/5iaT2ARudywhki+sQALJDSIte5fP5VF1dLUldFmyvr6+PfzPtXDAehTdx4sT4486zV3cu2N9V/3Yu/E//9p189VF3jmNZVpeTOiB/Bg4cGP96azfLfEdftLS0aM+ePRmP1dGHNTU11MLsZMuWLTrttNO0ZcsWWZal+++/X+eff37GfbgG9y/d6cNscQ0WVkc/trS06Pnnn48vL+Q1aHccpJeuD7PlcrlUW1srKfM1KPF1NBe//OUvFQqFNHr0aAUCAT3yyCMp/95555349i+//HJ8ecfvdnwvBIDsUJMWvW7ixImaN2+ePvjgA0UiEblc9h+7FStWxB9PmDChr5qHLKS7xbNzeNu5/+zQv4WRrz5KPs5RRx3V5XGGDx/erdEW6L5Mt2NPnDhR//jHPyS199Hxxx9vu10kEtGaNWskca12tnPnTp1++ulau3atpPbRRJdeemmX+3EN7j+624e54BosnJqamvjjDRs2xB/X1tbK6XQqGo3m9RrM5jgul0vjxo3ruvGQlL4Pc9HVNdiBr6PZ6ygbsHbtWn3mM5/pcvsf//jH8cfr1q2T3+/neyEAZImRtOh1M2bMkNT+V/E33ngj7Xadb0uaPn16r7cL2Xvvvffij4cOHRp/PGrUqPhzu9vKOvvPf/4jSTrkkEN06KGH5r+RsJWvPuq4jrs6zrZt27Rq1SpJXMd9ra6uTjt37pSUeJ12yLYPly5dGh/5Qh+2a2ho0Jlnnhn/Wnj77bfry1/+clb7cg3uH3rSh9niGiysziMnO9/a7PF4dOyxx0qSFi5cmLGOZUe/eL3e+ORWHaZNmxafqChT/4VCIb3++uvxfTLVUUWidH2YrUgkEv/615NrkK+j+cf3QgDIDiEtet0FF1wQf/zAAw/YbhOLxfTQQw9Jap9QYObMmX3RNGRh3bp1mjNnjiRpzJgxOuSQQ+LrLMuK35q2YsWK+C8lyV5//fX4X7PPP//8jKMckF/56qPa2tr4aIa//e1vCgQCtsfpPNnHrFmzetp85OCee+6RMUaSdNJJJ6WsP/nkk1VeXi5J+tOf/hTfNhl9mCgQCOicc87RsmXLJEk33HCDvvOd72S9P9dg4fW0D7PFNVhYjz32WPzx5MmTE9Z1/Cza2Nioxx9/3Hb/TZs26cUXX5QknXrqqQm1L6X2WpinnnqqJOnFF19Me6v1448/rsbGRkn0X64y9WE2Hn30UTU0NEiyvwb5Oto9Dz74oIwxGf91nkxs7ty58eUdISvfCwEgSwboAyeeeKKRZFwul1mwYEHK+jvvvNNIMpLMTTfd1PcNPEj985//NOFwOO36bdu2mSlTpsT75uc//3nKNitXrjROp9NIMlOnTjWBQCBhfSAQMFOnTo33/6pVq/L+Og4m69ati/fHZZddltU++eqj++67L37uL3/5yynrP/jgA1NWVmYkmbFjx2b8bB3Mcu3DdevWmWXLlmXc5umnnzYej8dIMkVFRWbTpk222/3whz+Mn/vOO+9MWb9gwQLjcrmMJHPSSSdl83IOaMFg0Jxxxhnx9+zaa6/t1nG4BgsnH33INVhYDzzwgGltbc24zS9+8Yv4+zpq1CgTiUQS1u/atcuUl5cbSWbkyJFm586dCesjkYg577zz4seYO3eu7Xleeuml+DYf//jHU85TV1dnRowYYSSZiooKs3v37txf8AGop324e/futH3SYdGiRaaiosJIMpZlmaVLl9pux9fR3nHTTTd1ef3wvRAAukZIiz6xbNkyU1RUZCSZkpISc9ttt5mFCxeal19+2Vx99dXxb7S1tbWmsbGx0M09aIwcOdIMHTrUfPWrXzV//etfzYIFC8zy5cvNnDlzzA033GAGDBgQ75sZM2aYtrY22+N897vfjW83ZcoU88gjj5glS5aYRx55JCHk/d73vtfHr7D/mzdvnnnggQfi/37605/G38/p06cnrHvggQfSHicffRSJRMz06dPj237iE58wzz//vFm0aJG56667zMCBA40k43A4zL/+9a9eeDf6p5724dy5c40kc8IJJ5jbbrvNPPvss2bJkiVmyZIl5tFHHzWf+tSnjGVZ8WP+7ne/S9uWxsZGU1tbG9/26quvNi+//LJZuHChue2220xJSUk8ZFq+fHnvvSn9xOzZs+Pv1SmnnGLeeust8/bbb6f9t3LlyrTH4hosjHz0IddgYY0cOdJUVVWZq666yvzpT38yr732mnnzzTfNvHnzzO9///uEa8Lj8Zg5c+bYHufuu++ObzdmzBhz//33myVLlpinnnrKzJw5M77uM5/5TMb2XHTRRfFtZ86caZ566imzZMkSc//995sxY8bE1/3xj3/sjbejX+ppH3b8cfOII44wN954o3nqqafM4sWLzRtvvGGeeOIJc+WVV8b/SCLJfOtb30rbFr6O9o5sQlpj+F4IAF0hpEWf+ec//xn/q6bdv9raWrN69epCN/OgMnLkyLT90fnfJz7xCVNfX5/2ONFo1Hzuc5/LeIwrr7zSRKPRvntxB4jLLrssqz7q+JdOvvqorq7OTJs2Le0xvF6v+d///d98vw39Wk/7sCMg6upfcXFxVqHA6tWrzbhx49Iep6yszDz99NO98Vb0O7n0m9Q+Qi8drsHCyEcfcg0WVrY/qwwbNsy88MILGY914403JgTqyf/OPvvsLkd8BgIBc/bZZ6c9hsPh4K6wJD3tw853oGT653Q6zc0332xisVjG9vB1NP+yDWn5XggAmRHSok+tX7/eXHfddaa2ttYUFxebiooKM3XqVHPHHXeYlpaWQjfvoPPKK6+YH/3oR+ZjH/uYqa2tNVVVVcblcpmKigozefJkc80119iWp0jn2WefNeeff74ZOnSo8Xg8ZujQoeb888/nr9g9kK+QtkM++igcDpvf//73ZsaMGaa6utr4fD4zevRoc9VVV5l33nmnJy/3gNTTPmxsbDT/93//Z7785S+b4447zowYMcIUFxcbj8djBg0aZE455RRz6623mu3bt2fdpubmZnPHHXeYqVOnmoqKClNcXGwOO+wwc91115n169fn8+X3a/kI+JJxDfatfPQh12BhrVixwvz85z83s2fPNkcccYQZNGiQcblcprS01IwZM8Z84hOfMA888EDWP0fOnz/fXHzxxWb48OHG4/GYgQMHmtNPP9389a9/zaldf/nLX8zpp59uBg4caDwejxk+fLi5+OKLc/q56WDR0z4MBoPmscceM9/4xjfMjBkzzKhRo0xpaalxu91mwIABZvr06eaGG24w69aty7pNfB3Nr2xD2g58LwQAe5YxaWYtAAAAAAAAAAD0OkehGwAAAAAAAAAABzNCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAACAbnrwwQdlWZYsy9L69esL3RwAAAAA/RQhLQAAOOisX78+Hq725B8AAAAA5AMhLQAAAAAAAAAUkGWMMYVuBAAAQF8Kh8NauXJl2vWTJ0+WJE2dOlUPPPBA2u0mTZqU97YBAAAAOPi4Ct0AAACAvuZ2u7MKWP1+P0EsAAAAgF5HuQMAAAAAAAAAKCBCWgAAgG568MEH45OIrV+/PmX9ySefLMuydPLJJ0uSPvjgA33hC1/Q6NGjVVRUpEMPPVRXXnmlNmzYkLDfO++8oyuuuEKjR4+Wz+fT8OHD9cUvflE7duzIql1PPvmkPvWpT2nEiBHy+XyqqKjQ1KlT9aMf/Uj19fU9fdkAAAAA8oxyBwAAAH3gxRdf1OzZs9XU1BRftmHDBt1///165pln9Oqrr2r8+PF6+OGHdfnllysUCsW327Rpk+6++24999xzWrBggYYOHWp7jvr6en3yk5/Uyy+/nLA8GAzqjTfe0BtvvKHf//73euqpp3T88cf3zgsFAAAAkDNG0gIAAPSyLVu26MILL1RFRYXuuusuLVq0SPPmzdPXv/51WZalHTt26POf/7yWLFmiSy+9VGPGjNG9996rxYsXa+7cufrsZz8rqT3U/cY3vmF7jmAwqNNOO00vv/yynE6nPvvZz+rhhx/W66+/rnnz5unWW29VdXW1duzYobPPPjtl9C4AAACAwmEkLQAAQC9bvXq1xo0bp/nz56umpia+fMaMGXK5XPrZz36m+fPn65xzztGxxx6rOXPmqLi4OL7dySefrLa2Nj322GP6xz/+obq6uoTjSNItt9yiZcuWqaKiQi+++KKOOeaYhPUzZszQ//zP/+iEE07Q1q1b9f3vf19/+ctfeveFAwAAAMgKI2kBAAD6wG9+85uUYFWSvvSlL8Uf79y5U/fee29CQNvhi1/8oiQpEolo4cKFCeuam5v1u9/9TpL04x//OCWg7TBy5Ej98Ic/lCQ99thjamlp6d6LAQAAAJBXhLQAAAC9rKKiQmeeeabtulGjRqm0tFSSdMQRR2jChAm22x155JHxx2vXrk1Y9+qrr6qhoUGS9MlPfjJjWz760Y9KksLhsN54443sXgAAAACAXkW5AwAAgF42btw4WZaVdn1FRYWamppUW1ubcZsOnScfk6SlS5fGHw8ZMiTrdm3bti3rbQEAAAD0HkbSAgAA9DK78gWdORyOLrfr2EaSotFowrodO3Z0q12BQKBb+wEAAADIL0bSAgAA9HOdQ9tly5bJ7XZntd+wYcN6q0kAAAAAckBICwAA0M9VV1fHH9fU1BC+AgAAAP0M5Q4AAAD6uSlTpsQfz58/v4AtAQAAANAdhLQAAAD93GmnnRavZ/ub3/xGxpgCtwgAAABALghpAQAA+rmKigp95StfkSQtWLBA1113nWKxWNrtt2/frnvvvbevmgcAAACgC9SkBQAAOADccsstevXVV7Vo0SL9+te/1iuvvKKrrrpKRx11lPx+v+rr6/Xuu+/qxRdf1HPPPafJkyfr85//fKGbDQAAAECEtAAAAAcEr9erOXPm6PLLL9fjjz+u//73v/HRtXbKysr6sHUAAAAAMiGkBQAAOECUlpbqH//4h1577TX96U9/0rx587Rlyxa1traqrKxMY8aM0bHHHqtzzjlHZ5xxRqGbCwAAAGAvyzCzBAAAAAAAAAAUDBOHAQAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAAf1/JwrsUWtU3I8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'intervention_examples_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/make.bat b/docs/make.bat new file mode 100644 index 0000000..32bb245 --- /dev/null +++ b/docs/make.bat @@ -0,0 +1,35 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=. +set BUILDDIR=_build + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.https://www.sphinx-doc.org/ + exit /b 1 +) + +if "%1" == "" goto help + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% + +:end +popd diff --git a/docs/metapopulation.ipynb b/docs/metapopulation.ipynb new file mode 100644 index 0000000..976e621 --- /dev/null +++ b/docs/metapopulation.ipynb @@ -0,0 +1,1397 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Metapopulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Migration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by migrating hosts.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population 4** (both are one-way connections). **Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a migration rate of 2e-3 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=2e-3, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " host_host_contact_rate=0, \n", + " # host-host inter-population contact rate between populations\n", + " vector_host_contact_rate=0,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration( \n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `population_A`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 83.06461341318253, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 100.06274296487011 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19491923660278324s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.027785778045654297s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.024601459503173828s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.040442705154418945s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.06669497489929199s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0938570499420166s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 606 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 714 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 793 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 810 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 829 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 848 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 869 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 890 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 918 out of 918 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2NaNNaNTrue
30.0population_AHostpopulation_A_3NaNNaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
293755100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
293756100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
293757100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
293758100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
293759100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

293760 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "293755 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "293756 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "293757 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "293758 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "293759 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 NaN NaN True \n", + "3 NaN NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "293755 NaN NaN True \n", + "293756 NaN NaN True \n", + "293757 NaN NaN True \n", + "293758 NaN NaN True \n", + "293759 NaN NaN True \n", + "\n", + "[293760 rows x 7 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_migration_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAALmCAYAAADlpH2lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUZdYG8HtKOmmkQKgBRKnSAlJUQBGWjkhRUAEbUuy4u6KLILqwn1hWERVYCFgQbEgTaQJSQzf0llATSO9tyvdHnCHztimZFub+XVeuK/PWZ94kk5nnvOccldFoNIKIiIiIiIiIiIiIiMiLqT09ACIiIiIiIiIiIiIiImsY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvB4DGkRERERERERERERE5PUY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvJ7W0wOgmqO0tBTJyckAgJiYGGi1/PUhIiIiIiIicjadToeMjAwAQNu2bREYGOjhEREREXkHzkiTzZKTk9GlSxdPD4OIiIiIiIjIZyQlJaFz586eHgYREZFXYMkpIiIiIiIiIiIiIiLyeszQIJvFxMSYv09KSkJcXJwHR0NERERERER0e0pLSzNXSKj6WZyIiMjXMaBBNqvaMyMuLg4NGjTw4GiIiIiIiIiIbn/sX0lERHQLS04REREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiNzuSdQ1/P7AOy88fhNFo9PRwiIiIiGoEracHQERERERERORLLhfmoOu6T1Bu0AMA8stLMbXVvR4eFREREZH3Y4YGERERERERkRu9f3y7OZgBAC/sX+25wRARERHVIAxoEBEREREREbnR3puXPD0EIiIiohqJAQ0iIiIiIiIiNwrS+nl6CEREREQ1EgMaRERERERERG4UrGFAg4iIiMgRDGgQERERERERuREzNIiIiIgcw4AGERERERERkRsFSWRo6Ko0CSciIiIiaQxoEBEREREREbmRVIZGQUWZB0ZCREREVLP4bEDj5s2bWLduHWbMmIH+/fsjOjoaKpUKKpUK48ePt7p/amqqeXtbv+Lj4x0eb3x8vMvPQURERERERK4nlaHBgAYRERGRdVpPD8BT6tSp4/Zz3nXXXW4/JxEREREREXmXQI34ozgDGkRERETW+WxAo6pGjRqhRYsW2LRpk8371K9fH8nJyVa3mzNnDr799lsAwLhx4xweo8nQoUPx7rvvyq739/ev9jmIiIiIiIjIdYwSyxjQICIiIrLOZwMaM2bMQOfOndG5c2fUqVMHqampaNKkic37+/n5oU2bNorb6PV6bN++HQAQGhqKhx9+uDpDBgBERERYPS8RERERERF5L53BIFqWX1HqgZEQERER1Sw+G9CYNWuWy8+xZcsWXL9+HQAwYsQIBAUFufycRERERERE5N10Rr1oGTM0iIiIiKzz2abg7rB8+XLz984oN0VEREREREQ1n1SGBgMaRERERNYxoOEiBQUFWL16NQAgPj4e999/v2cHRERERERERF5BbxR30WBAg4iIiMg6ny055Wo//PADiouLAQBPPPEEVCqVU467c+dOtG/fHhcuXIBer0edOnXQpUsXPPbYYxg6dGi1znP16lXF9WlpaQ4fm4iIiIiIiCrpDCw5RUREROQIBjRcpGq5qSeffNJpx01JSbF4nJqaitTUVKxatQo9evTAypUrUb9+fYeO3bBhQ2cMkYiIiIiIiBTojCw5RUREROQIBjRc4PLly9ixYwcAoHv37rjjjjuqfUx/f38MGTIEffv2RZs2bRAeHo7c3Fzs3bsXn3/+Oa5cuYLdu3fjoYcewt69exEeHl7tcxIREREREZHzSffQKPXASIiIiIhqFgY0XODrr7+G8a+aqM7KzkhKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGHdp/jypUriuvT0tLQpUsXu49LREREREREt0hlaOQzQ4OIiIjIKgY0XOCrr74CAAQEBGD06NFOOaZUMMMkNDQUq1atQtOmTZGdnY2FCxdi7ty58Pf3t+scDRo0qOYoiYiIiIiIyBrpDA0GNIiIiIisUXt6ALebpKQknD59GgAwZMgQxUCEM4WHh+PRRx8FABQVFeHgwYNuOS8RERERERHZR2dkU3AiIiIiRzCg4WSuagZui1atWpm/v3btmlvPTURERERERLZhDw0iIiIixzCg4UQVFRX47rvvAACxsbH429/+5tbzq1Qqt56PiIiIiIiI7CfVQ4MZGkRERETWMaDhROvXr0dWVhYAYMyYMdBq3dui5OTJk+bv69Wr59ZzExERERERkW30DGgQEREROYQBDSeqWm5q3Lhxbj13Xl6eOTskODgYCQkJbj0/ERERERER2Uay5JSOAQ0iIiIiaxjQcJLs7GysX78eANC2bVu0b9/e5n179eoFlUoFlUqF1NRU0fqNGzeipKREdv/CwkKMGjXKnB3y9NNPIyAgwK7xExERERERkXvIlZwyGo0eGA0RERFRzeHemkheZNeuXTh//rz5cWZmpvn78+fPIzEx0WL78ePHKx7vu+++Q3l5OQDnZ2fMnTsXY8eOxfDhw3HvvfeiWbNmqFWrFvLy8rBnzx588cUXuHz5MgDgrrvuwsyZM516fiIiIiIiInIeqQwNg9GIYl05Qvx4cxoRERGRHJ8NaCxevBjLli2TXLd7927s3r3bYpm1gIap3JRGo8HYsWOdMsaqsrOzsXjxYixevFh2m549e+Kbb75B7dq1nX5+IiIiIiIicg6pDA2gMkuDAQ0iIiIieT4b0HCmc+fOYf/+/QCAhx56CHXr1nXq8efNm4etW7di7969OHPmDDIzM5Gbm4vg4GDUq1cP99xzDx577DH07dsXKpXKqecmIiIiIiIi59IZ9JLLCyrK4NxPk0RERES3F58NaCQmJorKSjmqefPm1ap1un37dsX1CQkJbPJNRERERER0m1DK0CAiIiIieT4b0CAiIiIiIiLvdDI3HT9fOo7Ciso+hSoV0KF2fYyIv9ulWelGoxE/XUrGoayrULpn7WpxLi7kZ6FrbGOcy89A64i6UMH6uDQqFZqFReFMXobk+l+vnUbH6AaODp+IiIjotseABhEREREREXmNc3kZ6LL2ExTpykXrZrbvi7c79HXZuef8uQ1vHv7V5u33ZlwCAKy7csop53/r8EZ0jKqP/g1aOuV4RERERLcbtacHQERERERERGSy5soJyWAGAHx78YhLz73Cxce3xY+pyZ4eAhEREZHXYkCDiIiIiIiIvMb14nzZdTnlxS49d055iUuPb4tifYWnh0BERETktVhyioiIiIiIiLxGRmmR7LpinWsn+0sFwYSH6t2J2MBa5sdXi3OxI/2i7P6PNG6LQI2faHlKYTb23Ex12jiJiIiIfBUDGkREREREROQ1MkoLZdcV6ypgNBpd1hi8RBDQmN2xH+6JaWx+vO7KScWAxqIeIxEZECxavvLiUcmARreYxngg7g689+dW8zKjUjdyIiIiIh/HklNERERERETkNZQyNIwwokyvc8l5jUYjSgXHFmZbaKwEUvzUGruWh/oFuCw4Q0RERHQ7YkCDiIiIiIiIvIZShgYA2Ybh1VVh0MMgyI4IEgU0lD9Cywc0pPcL9QuwY4RERERExIAGEREREREReQ2lDA3AdX00hOWmACBQY1ml2XpAQ3q9UoaGEAtOEREREcljQIOIiIiIiIi8QlFFmWRgoapivWsyNITlpgAgSGuZoaFWKA+lVqmglgl4aGUzNALBglNEREREtmNAg4iIiIiIiLxCZplydgbgwgwNieOKS07Jhx+0Ctkbchkatfz8bRwdEREREQEMaBAREREREZGXEJab8lNrRGWZil3UQ0MqQ8OeklNKpaL8VHaUnDKy6BQRERGRHAY0iIiIiIiIyCsIG4JHB4QgRGuZxeCuHhpalRpaQWaFtR4acmSbgmsDoFLI+iAiIiIiSwxoEBERERERkVcQZmjEBIoDGkUuytAQlpwKFJSbApR7aChlVtjTFJyIiIiI5DGgQURERERERF5BmKERE1gLwaIMDVeVnLIMaARptaJtHC45JRvQCJQ4DktOEREREclhQIOIiIiIiIi8glSGRrDWMlOiWO+eklPChuCAclNwJVqZklNsCk5ERERkHwY0iIiIiIiIyCuIAxq1ECwILLirKbjdJacUMiuUSk6xgwYRERGR7RjQICIiIiIiIq8gLjkVIlFyyk0ZGlqpDA2FklMKlaL8VLb30GDBKSIiIiJ5DGgQERERERGRV7Cp5JTbmoLb10NDiZ9MySk2BSciIiKyDwMaRERERERE5BWkmoKHuClDQ1hyyt4eGo6VnAqESlB0yqiU6kFERETk4xjQICIiIiIiIq+QWWaZoREtUXKqyFUZGjY0BVfqoaFEtim4lk3BiYiIiOzBgAYRERERERF5XLleh7zyUotl7iw5Vap3Zckp6QwNf4lzEBEREZE8BjSIiIiIiIjI44TZGUBlySlRU3C9i5qC6wQlp+xsCq5ELqABAMKkDxacIiIiIpLHgAYRERERERF5nLAhuAoq1PYPRrDGTU3BRRkaTiw55WAghIiIiIgs8V0VEREREREReZywIXhUQDA0arU4Q8NlTcGFPTSkSk45FtBQObgfEREREVliQIOIiIiIiIg8TpihERMYAgAIEQU0XJShIQiUSJackmnu7QhT1oYKlsEOo5FFp4iIiIjkMKBBREREREREHifM0IgJrAUAoqbgRR4sOeVoDw0pUgETIiIiIlLGgAYRERERERF5nFyGhvtKTgmagkv10IDzSkcFSpS0IiIiIiJlDGgQERERERGRx9maoVGsd01AQ5yhIdFDQ+28gEaAuvL4opJTTjsDERER0e2HAQ0iIiIiIiLyuExBhka0KUND454eGqIMDakeGk4sOSVV0oqIiIiIlDGgQURERERERB4nX3JKkKGhq3BJ42xRU3CWnCIiIiLyOgxoEBEREREROdn+jEv45dJxlP1117/RaMS26+fw69VTMBgNHh6ddynVVeCXS8ex88ZFi+WmklMhgh4aeqMBFQa908dhW8kpJ2ZoaP8qOSWIkVwoyMJnp3bj+5RjKKgoxb6blr9LRERERL6Mt4QQERERERE50acnd+HF/asBAF2iG2LfoBfx2oG1+OjETgDA6Cbt8V2vxz04Qu8yfNsy/HrttGi5XFNwoDJLw9/JGQ62NAXXCKMP1SBXcio5Jw1T9/0sWt4luiH2DnoBaieWvSIiIiKqafhOiIiIiIiIyIlMwQwASMq8grVXTpqDGQCwMuUoUguyPTAy73O1KFcymAEAsTJNwQGgyAV9NEqFGRoS51UKJrSOqGPX+dpG1gUAaG0MUCRlXsGma2ftOgcRERHR7YYBDSIiIiIiIhfacPWUaNnJ3BseGIn3yS0vkVxeNygUrf4KEEhlMgiDD86gM1iWApMLNPSrf5fk8s+6DVc8/j/a9jZ/r1ap8Fa7PgCAe+s0sXmMO9IvWt+IiIiI6DbGklNEREREREQupJdoYF1mYD8EAJDq7T2maQe8cfcD0Ko1AIAAjUa0jSuun17Q20SuvNQ394/B20d+Q0FFGSL8g5BRVoQhDVuhZ91misef1aEfAjRanMvPxMS7uqJecDgAoEedJljRcyy+vnAYhboy7Ll5SbZHiNqJJa+IiIiIaiIGNIiIiIiIiFxIanKaDZ4rGWAZ0dCo1Pim51iLZWqVGn5qjcV1LNU5//oZjOKxSIkKDMF8K9kYUgI0Wszq0E9y3aNNO+DRph0AAPW+ewdpJfmS2zGcQURERL6OJaeIiIiIiIhcSCqgUS5zB76vMQqCCHIT9oGCBuCuydCwHIs3ZkOovHBMRERERO7EgAYREREREZELCXszAAxomAizIuSCCAFqy4BGqQsyXMQlp7zv47I3BlmIiIiI3Mn73qERERERERHdRlhySp6whYZcBoIoQ8MF109ccsr7ggdqFp0iIiIiH8eABhERERERkQtVGBnQkGMQZEXITdgHaNyfoaFmhgYRERGR1/G+d2hEREREREQ1lLAnBABUSJScckUPiJpInKEhvZ07MjSEPTS8MUNDxQwNIiIi8nEMaBARERERETmJsGwRIF1yqlhX4Y7heD1RDw2Zj6iBGj+Lx6V6518/cckp7/u47IUxFiIiIiK38r53aERERERERDWUsGwRIN0UvEhX7o7heD2jIEdDbsJeWHKqzMlN1Y1Go2gs3ljeyRvHRERERORODGgQERERERE5iU4ioCGdocGABiCRoWFjU3BnZ2hIZdZ4ZYYGS04RERGRj/O+d2hEREREREQ1lFSGhlRTcGZoVBL10JBrCq52bVNwqZ+bN/bQYIYGERER+ToGNIiIiIiIiJxEb7CtKXhRBQMaAGAQBBJszdBwdlNwYUNwpbG4mtJp1czQICIiIh/HgAYREREREZGTSGZoSJScYoZGJXGGhjRhDw1nZ2gIAyuAl5acYjyDiIiIfJz3vUMjIiIiIiKqoRjQsI+jPTTckaHhjQENtReOiYiIiMid+G6IiIiIiIjISaSaguukSk4xoAEAMAoCCbI9NFzcFFwqEOWN/SqE14uIiIjI1zCgQURERERE5CTSPTSYoSHHAFszNPwsHpdJXNNqjUMyQ8P7AhpS4yQiIiLyJQxoEBEREREROYlkySmJZcU652YY1FTC+Xm5DA1hySl3ZGho1N73cVlqnERERES+xPveoREREREREdVQUhPOOmZoyLI1Q0NYcsodPTTUsi3KPUdqnERERES+hAENIiIiIiIiJ5GacK5gDw1Z4h4a0sQZGs4NaEiXnPK+j8vM0CAiIiJfp7W+CREREREREdlCZxRnY0j10Kgw6FFh0MNPrXHHsLyWMJAgm6GhdnWGhlTJKW/M0GBAg2xXXl6OwsJCFBUVoby8HAaJ4CoREZGzaTQaBAYGIiwsDCEhIVA5uS+ZzwY0bt68iaSkJCQlJeHAgQM4cOAAsrKyAADjxo1DYmKi1WMkJiZiwoQJNp1v6dKlGD9+fDVGXCkzMxOffPIJVq9ejdTUVABAfHw8hg0bhpdeeglRUVHVPgcRERERETlGqil4uUwD66KKckQEBLl6SF7NKCg5JfeB1xMZGiw5RTWV0WhEZmYmMjMzPT0UIiLyQTqdDmVlZcjLy0NQUBAaNWoEtRN7k/lsQKNOnTqeHoLd9u/fj2HDhiE9Pd1ieXJyMpKTk7F48WKsXr0aXbp08dAIiYiIiIh8m9Qd9HJ31RfpGNAQZWjIBBGEPTTc0hTcQyWn5BqjA9KBFyKhtLQ05OXlWSxTqVTQaHw7I4yIiNxDr9eby4qWlJTg8uXLaNy4sdMyNXw2oFFVo0aN0KJFC2zatMnhY/z222+oV6+e7PoGDRo4fGwAuHLlCgYPHoyMjAxotVq8+uqrGDRoEABg3bp1+PDDD5GWlobBgwfj0KFD1T4fERERERHZz5476NlHAxBeLfkMDT+Lx2UyWS+Okvq5aZx4J6GzsOQUWVNaWmoRzIiKikJYWBgCAgKcXvKDiIhIisFgQGFhIdLT06HX61FSUoKioiLUqlXLKcf32YDGjBkz0LlzZ3Tu3Bl16tRBamoqmjRp4vDx7rzzTsTHxztvgAJvvvkmMjIyAADffvstRo4caV533333oVOnThg9ejRu3ryJt956y6aSWURERERE5Fz2TDgXM6Bhc4aGuOSUczM0ak7JKQY0SFlubq75+9jYWJalJiIit1Or1QgLCwMAXLt2DQBQUFDgtICG991y4iazZs3CoEGDakTpqfT0dHzzzTcAgH79+lkEM0xGjRqFfv36AQC++uorUVkqIiIiIiJyPZ0dTXeZoSHVQ0N6O2HJKXc0BZdrUO5J7KFB1hQXF5u/j4iI8NxAiIjI59WqVcucHVhSUuK04/psQKMmWbNmDQx/fTBSakJuajpuMBiwZs0adwyNiIiIiIiqsOcOegY0JDI0PNQUXPhzU6tUXlmeR29HwIx8k15fWY5Nq9WyZwYREXmUWq02/y8y/X9yynGddiRymV27dpm/79mzp+x2Vdft3r3bpWMiIiIiIiIxBjTsI8rQkGsKrnZthoatpa88jSWniIiIyNf5bA8NZ5swYQLOnDmDzMxMhIWF4Y477kCfPn0wadIk1K9fv1rHPnnyJAAgPDwcdevWld0uLi4OYWFhyM/Px6lTp6p1TiIiIiIikne9OA9Hs66jXe16qB8SjvzyUuzLuISkjCs2H2PXjRRoVMr3mGlVauiMBoT7B6JrTGNR6SVHXCnMxdHsaxahhHD/QNwT3QiBWj/Z/ZzFaDTidN5NnMvPxAHB9XIkQ8NoNCI5Jw2phTm4MywGLSJiZc9dVFGGfRmXRcGkQ1lXLR57Y0NwALhQkIU1l09YLNOoVOgU1QB1g8OQUVqIAxlXoJMIfNQJqoWEqIZe+9yIiIiIbMGAhpNs377d/H1WVhaysrKwf/9+fPDBB/j4448xceJEh4999Wrlm+sGDRpY3bZhw4Y4ceIErlyx/YOU8Dxy0tLS7D4mEREREdHt5terpzB0ayIqDHpoVGp82GUw5v75O9JK8u06zocnduLDEztt3r5jVH3sGjAVQdUIOvyQegyjt38t2QS7bWQcdg2YgjD/QIePb4vZxzbj7SObJNfJ5UWIemgYdDAajVCpVPjHwfV4//h287r3OvbH9HYPio6RXpyPbus/RWphjtUxSl0fb7Dx2hlsvHZGtNxfrcGM9g9hzp/bFDN/BjZoibV9nvLKclpEREREtmBAo5qaNm2K4cOHo1u3bmjYsCEA4OLFi/jxxx/xww8/oLS0FM8//zxUKhWee+45h85RUFAAADZ1gg8JCQEAFBYW2n0e0/iJiIiIiEjef5J/R4Whsg6w3mjAS/t/cct5D2ddw2/XzmBY4zYOH+OD4ztlJ+uTc9Lw27UzGNmkncPHt0ZvMGDe8R2y6+UyVgI1lkEcg9EIndGAcp1OdLz3j2/HP+/uDbXgWD+k/mlTMAOA+efrCY6UlSo36PHW4Y1Wt1t/9RRO5t5A60j5zH8iIiIib8aARjU8/PDDGDdunOjuls6dO2P06NFYt24dhg8fjoqKCrzyyisYMmSIYskoOaWlpQAAf39/q9sGBAQAcG7neCIiIiIiumVH+kWPnftCQWa19reWRZJZVlSt41tTbtCjoKJMdn2naOmsdK1EmSS9wYDrxfmiPhy55SXQG41QC5IQbpTaf9OXJ+SUu/aznKt/xkRERESuxOKZ1RAeHq6Yqjto0CDMmDEDAFBcXIz//e9/Dp0nMLAy5bu83HrTwLKyyg8HQUFBdp/nypUril9JSUl2H5OIiIiIyNdE+t96L15LG4BmoVFoFhqFJrVqAwDuCI02L5P6qhccJnvs68X2lbUSKnVyM217CYMPANAoJALNw6IxtmlHfNB5sOR+Uk26DTDKTs4bJbJQdAbLzIeqPxtv8mW3R2TXVf09iQkMUTxOdEAImoVGifqSSF0bIiKqNHPmTKhUKq8pzRcfHw+VSoXx48d7eihEXoMZGi723HPPYcaMGTAajdixYwfefPNNu48RGhqK4uJim8pIFRVVvqG3pTyVkC09OoiIiIiISNk/2vbGP+5+wOH9d91IwX0bPpNcl1ZS4PBxAaBMENBQQSUZZHCnHf0nIz60tuI2Us3C9UYDMkqlAxpSZbWEpZwebtwGy+9/DACgWjrNYl1ckHxQydXqBYdLLp/XeRBea9PL/Pir84fw5B8rZI/zfudBGN+8M2JXvC17nYiIgMq+sL1795ZcFxQUhJiYGHTo0AGjRo3CqFGjoNVyOpGIPIcZGi4WGxuLqKjKO36uXbvm0DFMgQZrTbsBmJuBsx8GEREREZFnhLuwqfb14rxq7V+qr7B4HChotu3qu/cdPb5UQMNgNCJDpoyUQSJIIwxoaBTuvvXkjblSzxUA/NWWPyupMlxVCX+2JszPICJ7lJSU4PLly/jll18wduxYdO/eHenp6Z4eVo3Wq1cvqFQq9OrVy9NDIaqRGNBwg+qmqbVq1QoAkJeXp/hPIy0tDfn5lSnoLVu2rNY5iYiIiIhIzJYJ+TC/6gU0lD49pBU7nqFhNBpFJafkJr1dRerq2fJxSapZeGVAw/aSU3rBMq1aY/3EHiAX0AgQ/KyUAjLArUbqKrDkFBHZbtKkSUhOTjZ/7d27F59++ini4+MBAAcOHMDQoUP5WuImqampMBqNSExM9PRQiLwGAxoulpGRgczMysZ99erVc+gY9957r/n7HTt2yG5XdV2PHj0cOhcREREREcmrMOitbhNWzQwN4QR0Vdaaeisplxi7adLb2zkjQ0MneP7WAgKeIjcuf0EARqtSDsi4O1hFRLeH2NhYtGnTxvzVtWtXTJ06FYcPH8Ydd9wBAEhKSsK6des8PFIi8lUMaLjYwoULzVHrnj17OnSMIUOGQP1XOvHSpUtltzNFa9VqNYYMGeLQuYiIiIiISF6xrsLqNmF+AS47f0FFGQoryhzaV1huCvBEhoY40KAUwDGRDGhAKUNDvEyYoSGV9WHPmFxFLTMuYUDDeoZG5c9WWDGA91QTkSMiIyPxxhtvmB9v3LjRg6MhIl/GgIaDUlNTceTIEcVt1q1bh3feeQdAZROlCRMmSG5nqp2nUqmQmpoqWl+3bl2MHTsWAPDbb7/hhx9+EG3z/fff47fffgMAPPHEE6hbt649T4eIiIiIiGxQrC+3uk21S05ZmUtPK3YsS0PYEBwAgrQ1JENDIsCgmKFhQ1NwrUJAw5OknisA+GsEGRpWe2jUjJ8tEdUcXbp0MX9/6dIli3UZGRl466230KFDB0RERCAwMBDx8fF44oknsGvXLsXjxsfHQ6VSYfz48QAqy1o99thjaNiwIQIDA9GwYUNMmDABp0+flj1GYmKi4tyaSWpqqnk7R8o4lZeXY+3atZg6dSo6d+6MyMhI+Pn5ISoqCvfccw9mzpxprtQiNH78eKhUKnOFlR07dpjHYvoylfYyEV4bOWvXrsWIESPQoEEDBAQEICoqCt26dcPcuXNRWCj9vxIQXzeDwYCFCxeie/fuiIyMREhICO6++2689957KC4ututaEbmKz+ag7tq1C+fPnzc/rvpic/78edGLmvCFIzU1Fb1790a3bt0wePBgtGvXDrGxsQCAixcv4ocffsAPP/xgzs6YN28e6tev7/B433vvPWzcuBEZGRl47LHHcPDgQQwaNAhAZeDkgw8+AADExMTg3Xffdfg8REREREQkz6YMDReWnAKA6yX5aB4eY/dxhf0zACBA0Gja1XfvS2VOOJqhoTca5DM0pEpOCZuCWwkIeIqtTcGVMkyAKhkaguVS14aIyBZ+frcCpXr9rTJ+mzZtwsiRI819XU0uXbqES5cu4euvv8aUKVPwySefmCuQyFmyZAkmTpwIne7W/6yrV68iMTERK1aswFdffYWRI0c66RnZ77nnnsOyZctEy7Ozs5GUlISkpCTMnz8fv/zyi1vKwZeWlmLMmDH4+eefRePZt28f9u3bh08//RTr169H+/btFY9VXFyMvn37YuvWrRbLTf1U1qxZg23btiEkJMTZT4PILj4b0Fi8eLHkCxAA7N69G7t377ZYJhcJ3bt3L/bu3St7nuDgYHz00Ud47rnnHB4rADRs2BBr167FsGHDkJ6ejv/85z/4z3/+Y7FN3bp1sXr1ajRo0KBa5yIiIiIiImnFOtdnaFjjaIaGVECjpvRZsLuHhlSGhkEQ0KhhPTSETcGZoUFE7pacnGz+3tQn9ujRoxg8eDDKy8vh5+eHqVOnYsiQIQgJCcGRI0cwd+5cpKSk4LPPPkNISIhoLquqo0eP4ttvv0VsbCzeeOMNdOnSBaWlpdiwYQM+/vhjlJWVYezYsWjSpAkSEhJc/nyl6HQ6NG3aFA8//DC6dOmCRo0aQavV4tKlS9iyZQuWLFmCrKwsPPzwwzh+/Lj55meg8mbladOmYcKECTh48CASEhJEpeX9/f3tGs+4cePMwYx27drhtddeQ8uWLZGdnY3vvvsOiYmJuH79Oh588EH8+eefijdbP/vss9i3bx/GjRuHUaNGoW7durh8+TL+7//+D3v37kVSUhLeffddzJkzx64xEjlbzXj36oU6deqEr7/+Gnv37sXBgweRlpaGzMxM6HQ6REZGonXr1njwwQfxzDPPWLx4Vcc999yD5ORk/Pe//8Xq1avNKXRNmjTB0KFD8fLLLyMqKsop5yIiIiIiIjFbMjRCq9lDw9o8+3WHAxqWY1dBJSpj5GqSPTRsiCvIBTQyy6QzNKSagtvTQ8OTbO+hYWuGhqCHBhM0iMgBOp3OXB0EqCyfDlRmLJSXl0Oj0WDdunXo27eveZvOnTtj5MiRuPfee3Hy5EnMmzcPTz75JFq3bi15jmPHjqFx48bYt2+fRSn1+++/H/369UPfvn1RUVGByZMnIykpyTVP1IpZs2ahadOmov5ECQkJeOSRRzB58mR0794dGRkZ+PTTTzF79mzzNvXr10f9+vXNGQ4hISFo06aNw2NZv349Vq1aBQB48MEHsWHDBouASN++fdGtWzc899xzyM7OxquvvoqVK1fKHm/Pnj346quv8Pjjj5uXdezYEf3790dCQgKOHz+ORYsWYfbs2dBqOaVMnuOd7+DcIDExEUaj0eYvodDQUIwdOxbz58/Hvn37cOnSJRQVFaGsrAzp6enYunUrpk+fblMwY/v27ebzCGvlCUVHR2P27NlITk5GQUEBCgoK8Oeff2L27NkMZhARERERuZi1DI0AjVZ0J729rJVgSitxToZGoEbr9ubXjpackpq8L9SVyQaYpD7D1ZgeGrIlpxxtCm65nCWniMgeRUVF2LFjBx566CHs27cPANC4cWOMGjUKSUlJOHDgAIDKu/urBjNMIiMjsXDhQgCAwWDAggULFM/3wQcfSPaF7d27N5599lkAlT02Dh48WK3n5ahmzZqJghlVtW3bFs888wwAYPXq1S4dy2effQagshTY0qVLJbM7nn32WfTp0wcA8NNPPyEtLU32eMOHD7cIZpgEBARg6tSpAICsrCycPHnSGcMncph3voMjIiIiIiLyQsV65QyNsGpmZ9girbjAof2ETcGlyk1JBQK8gVSj7Bsl8k1OpUpO2dNDw5PFqOQCFcKAhlalnF3DklNE5IhZs2ZZNKmuVasWevXqhe3btwMAYmNjsXr1agQEBGDLli3m/Z5++mnZY/bo0QMtW7YEAIt9hCIjIzF06FDZ9U899ZT5e6XjuFNOTg4uXLiAEydO4Pjx4zh+/DgiIiIAACdPnkRFhfXMTkfodDpzc/G+ffuiYcOGstuaAkE6nc78c5QyduxY2XWdOnUyf3/x4kU7R0vkXMwPIiIiIiIispG1DA1n9M+wNpl+vTjPoeOKMzTcP+HtzJJTN0rkAztSYZma0kNDLkNDmPmjUduYoSEsOVWNsRGR72rSpAlGjBiBadOmmauRHD9+HEBl3wdrDafvuecenDp1CufOnUN5eblkNkGHDh0USxm1b98e/v7+KC8vt+jn4W7Jycn46KOP8OuvvyI9PV12O4PBgJycHKeVoq/q4sWLKC4uBlB5bZVUXW/6mUlp0aKF7LratWubvy8ocOzGCiJnYUCDiIiIiIjIRtZ6aDgloGFloj1NYSJfibCHRoCb+2dUh3RAw74MjZrTQ0MuQ0PQFNxKhkZ1S58RkW+aNGkSJk+eDKDy/1FgYCCio6MRHh4u2jY7OxtA5WS3tZ4KpjJSRqMROTk5qFOnjmgbaxP/Wq0WtWvXRnp6uvnc7va///0Pzz//PHQ6nfWNAZSUlLhkHFWfv7XrVrWEl9J1Cw4Oll2nrpLVqNfrbRkikcvwHQ4REREREZGNrGZo+Fe/5JS1nhKONwUXZ2i4O0dBKjvAlh4aUpP86YoZGtXroWEtqORKcoEWYQN3pQyTAI3W/ByEW3lrWTEi8g6xsbF2N6p21mumJ197bXH69GlzMCM2Nhavv/46HnjgAcTHxyM0NBR+fpWZj0uWLDGX4HLHa663XzciZ2NAg4iIiIiIyEYlVntoVD9Dw5r8ilIU68oRrBWX61Ai1RRcyNXTLo5O7EgFPW6Uygc0bOqh4a0ZGjIBHlEPDYUeIFI/WyIiZzOVIcrKyoJOp1PM0jCVZlKpVIiMjJTc5saNG4rn0+l0FlkhVVXNIDAISgxWVVRUpHgOJYmJidDpdNBoNNixY4dsiSZ3ZI9Uff7WrlvVsljC60ZUE3nnOzgiIiIiIiIv5JaSUzZsk+ZAlkaZwfM9NKTY8nxVKpUoS0Oph4Z0ySnbm4J7ks09NBQCMlV/tsI7d6WyV4iIHGHK5CgvL8fRo0cVt01KSgIANG/eXLJ/BgAcPXpUsZTTsWPHUF5ebnFuk9DQUPP3OTk5ssc4e/as4jiVnDhxAgDQrl07xX4TBw8eVDyOMzIqmjZtai4RtX//fsVtTdceEF83oprIO9/BEREREREReSFrAY1wf9f30AAcKztVKhi7J+7ir85UujBzQamHhmTJKYPtJac8SbbklFpYcsqxDA1WnCIiZ+nTp4/5+yVLlshut3fvXpw8eVK0j1B2djbWrl0ru77qOYTHadKkifl7pYDCihUrZNdZYwq2KGV5pKWlYc2aNYrHCQysfK9QVlbm8Fi0Wi169uwJANi8eTOuXr0qu+3ixYvN+/Tq1cvhcxJ5C+98B0dEREREROSFrPbQcEPJKQBIK3EgoCFRcsob6m7bOobqZmiIS055/rlLsbkpuI0lp7zzWRLR7aBLly5ISEgAACxatAhbt24VbZOXl4eJEycCqCwLNWnSJMVjvvrqq5IllHbs2IGFCxcCADp16oTOnTtbrG/Tpo25nNL8+fMlgwWrVq3C999/b8Mzk9a8eXMAwLlz57Bnzx7R+uLiYowZM8ZqI/C4uDgAwMWLF6vVY2PKlCkAKjNknn76aVRUiG+6WLJkCTZt2gQAGD58uPncRDUZAxpEREREREQ2KrbWQ8MpTcGtcyhDQxDQEJYwAlxfjqg6xxcFNEqVMjTE9IJJI6/toSEb0LC9KbhSOTGWnCIiZ1q0aBH8/f2h0+kwYMAATJs2DTt27MDBgwexaNEidOzYEcnJyQCAadOmKZY8ateuHa5du4ZOnTrhs88+w4EDB7Br1y5Mnz4df/vb38x9Oj777DPRvlqt1hw4OX78OB544AH88ssvOHLkCDZu3Iinn34ajz32GLp37+7wc33iiScAVPboGDhwIP79739j586dSEpKwueff4727dtj+/bt6NGjh+JxTGO4efMmXn31VRw6dAjnz5/H+fPncenSJZvHM3DgQIwcORIAsGnTJnTt2hXffPMNDh06hC1btuCZZ57BM888A6Cyd8aHH37oyNMm8jrsFEZERERERGQjd2Ro2JKx4EgPjVK9sOSUHwoqHC934QipO1FtzSAQTvRXGPSy29bkHhpygRbheLUqjeR2gCBDw0szUYjo9tC+fXusXbsWI0eORH5+Pj744AN88MEHou2mTJmCOXPmWD3W1KlTMWnSJEydOlW03t/fH8uWLcM999wjuf9bb72F33//Hfv27cOePXswbNgwi/W9evXC/PnzHe4j0blzZ8yaNQtvv/02cnNz8eabb4q2ee2119CmTRvs3r1b9jiPPvoo5syZg4sXL+Ljjz/Gxx9/bF7XuHFjpKam2jym5cuXQ6fT4eeff8bhw4fx+OOPi7apV68e1q9fj/r169t8XCJv5p3v4IiIiIiIiLyQO5qCS2lSq7bF4+sOlJwSNwX3jvvbbC45ZcfHV1sCGko9NDwZApDL0BBSztCQLznF/Awicra+ffvi/PnzmD59Otq3b4+wsDAEBASgUaNGGDt2LP744w/Mnz8fahsCyc888wz++OMPjBo1CvXq1YO/vz/q16+PJ598EkeOHMGjjz4qu29wcDC2bduG9957D23btkVQUBDCwsLQuXNnzJ8/H1u2bEFISEi1nuuMGTOwfv169O3bF5GRkfD390eDBg0wfPhwbNq0CfPmzbN6jFq1amHPnj146aWX0LJlS3Nzb0cEBgbip59+wpo1azB8+HDzNYuMjMQ999yDOXPm4MyZM2jfvr3D5yDyNt7xDpaIiIiIiKgGsJ6h4ZqSU01Do5BSmG1+nFYs3z9CjmQPDTdP3VerKbgdmQZSZZV0BmEPDe+8v8/W56lVy2doBCmVnGJXcCIS6NWrV7VfG2JiYvDee+/hvffeq/Z4unbtipUrVzq0b1BQEKZPn47p06dLro+Pj1d8rjNnzsTMmTMVzzFgwAAMGDBAdv348eMxfvx4xWPUqVPHIjNDjq3ZGoMHD8bgwYNt2rYqW8YKWL9uRO7kne/giIiIiIiIvJD1HhpOKDklEWRoFhpl8dg5TcHFk96emKuwNahiTxNv6QwNYQ8N7yzFZGugxdYeGu4OWhERERG5EgMaRERERERENnJHDw0pzcIsAxqONQUX9tBwf8J+de7urG6GhqiHhlLJKQ8GO9Q2BiC0CqVblH62vL+WiIiIajIGNIiIiIiIiGxkvYdG9UtOSWkaatlDI7e8BCVWxiIkVXLKGzjaFFyJVIaGsOSUUkDAk6Sep1S/D6WADJuCExER0e3KO9/BEREREREReSGrGRpOKDklbN4NAM1Co0XL7C07VSYIaARotHD3XHf1emjY/vFV6jz2ZGh4kmRAQyL4ohzQYA8NIiIiuj15xy05RERERF5AbzDgRmkBogJCEOAldy4TkefoDQaczrtpEQiwVurJGSWnpDIv6gaFIkjjh5IqZaN2pl9EblmJzcfNKC2yeCw16X2lKBeHM6/aMVr7ZJQViZbZmkFgaykmADiSdQ0twmMtXsuFGSpKPSg8mdMgFajQqsQNwKWyNkwsMjQE687lZ8JoNIque6muAjnlJYgNrAWNl2avEBEREfGTOhERERGAgopS9N+0GLtvpuKO0Gj82vcZ3BEmviOaiHzD1aJc9Pr1c1woyLJ5H61K7ZQyTiUSjceDNH6oFxxmMZ4Ju1ZW6zxSY/3gxA58cGJHtY7rKvaUnJqwayVeO7AWm/s+h47RDfBn9nVcK86z2Eap5JQncxhszdBQuh5KGRqvH1yHX66cwKa+zyFIW7nd2bwMDNi8GBcKsnB/naZY99BTCHVRPxgiIqHU1FRPD4GIahDedkFEREQEYNm5g9h9MxUAcL4gE/NP7fbsgIjIoxad3W9XMAOoLDflqn4FgRot4oLDnHrMALV33N9m6xVTyqiQkl1WjLnJ2wAA7x/fLnE8+Y/DrmrubgupQEUtrb9omUqlkn0OAZpbGR0qiSu860YKVl8+bn783rEt5t/3nTcuYmXKMbvHTUREROQODGgQERERAXhh/2qLx/89+YdnBkJEXuFqUZ71jQTaRcY55dw96zazmFBvV7seArV+6Bzd0CnHN2kbWRetI+o69Zj2igsKQ4R/kE3btoqoY/fxz+VnApD+eVY93t/b9LJY91nXh+0+l7P4qTVoLsgQHNiwpeS2rWWuSdsqv4utI6W3+TM7zfz98guHLNa9vP8Xm8ZKRERE5G4MaBAREREREQkY7Sg6FKDRokt0Qyzo9ohTzh2g0eLr+x/DXeEx6FC7PhZ2HwEAmH73gxjQoAWCtX7wV2sc/qoTFIrZHf6GhOiG+Fe7Pk45piNfrSLq4Kv7H7M5q+XTrg+jW0xjBGi05mOE+wdiQvPO2DfoBXSoXV+0T1ZZMQDxz7NNRF00CIkwP57WtheGNmqN+FqRmNH+IfSoE+/YD89Jlt33KNpGxiFI44eH6t2Jdzr0k9xuyb2j0b52PfP1qB0QjBdb3othjdqYt/moyxD0iI0X7XuhIFP2/N7aMJ2IiIjIO3KMiYiIiIiIvIjRaFtAI3fsbITbmGFgj8GNWmNwo9YWy6IDQ7D+oWecep4oFxzTVe4Ii8aeQS/Irj889BXsz7iErus+NS/L/KsRukHw85zcsrvF45jAWlj94AQnjrZ6usXG489hr1ndrlN0AxwZ+qriNk1Co7Br4FR8fnoPJu/9ybz8YkG27D729CshIiIicifedkFERERERCRga35GsERvA/KcqIAQi8cl+goU68pFAQ1fnK5vGhpl8fiiQo8Ye/uVEBEREbkLAxpEREREREQCwglwKRqVGn5qjdXtyH2iBQENAMgqLRYFqNQ+WFKpaa3aFo9zykuQ81dJLiGWnCIiIiJvxXcpREREREREArb00AjW+rlhJGSPcP9A0WR8ZlkRMzQANK4VKSolJVd2igENIiIi8lZ8l0JERERERCRgSwsNlpvyPiqVClEBwRbLMkuLRAEqX+wR4a/RomGVRuiAfNkplpwiIiIib8WABhERERERkYBNGRoaZmh4o+hAy7JTWRIZGr4Y0ADEZacuyAU01JwqICIiIu/EdylEREREREQCtvTQYMkp7yTso5FZKlVyyjcDGs3Coi0ey2VoqH30+hAREZH3Y0CDiIiISIKW9cOJfJoNFadYcspLiUpOlbHklEnTUMsMDfbQICIiopqG71KIiIjI5xkl7sTmRCWRb5N6XRBihoZ3EpecKmbJqb80C42yeHyhIFNyO1+9PkREROT9GNAgIiIin1eq14mWcaKSyLfZ1kODgU9vJAxosOTULU0FAY3LRbmoMOhF22nZQ4OIiIi8FN+lEBERkc8r1JWJljFDg8i3sYdGzSVdcsqSr2YgCAMaBqMRlwpzRNux5BSR66WmpkKlUkGlUiExMdHTwyEZM2fONP+cyLW2b99uvtbbt2/39HAwfvx4qFQqxMfHe3ooJMB3KUREROTzCiskAhoaTlQS+TL20Ki5hE3Bs0qLYTAaLJb5atPr2gHBiPAPslgm1RjcVwM+REREBIwePdocXFKpVEhNTfX0kCwwoEFEREQ+r7CiXLQsQKP1wEiIyFuwh0bNJSo5JZGh4cvz9eLG4OKAhsaXLxARAfC+u+WJnIEZN9atW7cOq1at8vQwFDGgQURERD5PquSULfXziej2xQyNmisqwHoPDV/OQBA2Bj+fLxXQ4FQBERH5tsTERBiNRq/LTnClwsJCTJkyBQAQGxvr4dHI47sUIiIi8nlFOnGGhi3184no9mVTDw2WpvNKwgyNEn2F6HVe7cMfhYV9NM7k3xRt48sBHyIiIl/11ltv4fLly3jwwQfRv39/Tw9Hlu++iyMiIiL6i1TJKQY0iHybLVlazNDwTsIeGgCQUVpo8diX5+tFAY28DNE2zNAgIiLyLQcPHsSnn36KgIAALFiwwNPDUcR3KUREROTzpEpOMaBB5NtsC2gwQ8MbhfsHiibkS/U6i8e+2hQcEJecOpefKdqGPTSIHLN7924888wzuOuuuxAWFgZ/f380aNAAgwYNwmeffYbc3FybjzV+/HioVCrEx8crbpeYmGi1ce+2bdvw2GOPoUmTJggKCkJwcDAaN26Mrl27Ytq0adi2bZt529TUVKhUKvTu3du8rHfv3hYNglUqFRITEyXP9fvvv2PcuHFo2rQpgoODERYWhrZt2+L111/H9evXZZ+HsLdBXl4eZs+ejQ4dOiAiIkL2nKtXr8bIkSPRqFEjBAYGIiIiAgkJCZg1axZycnIUrx0AXL16FVOmTEHTpk0RGBiIevXqYciQIdiyZYvVfR1lusZVn9P333+PPn36IDY2FkFBQWjRogXeeOMNm35nysvLsWDBAvTu3RsxMTHw9/dH3bp1MWDAAHz99dcwGAyy+wp/z65du4ZXX30Vd955J4KDgxETE4OBAwdi48aNdj0fOfHx8VCpVBg/frzV5yVl3759eOutt9CrVy/UrVsX/v7+CAsLQ6tWrTBp0iScPHlScj/T38msWbPMy4S/08K/IVv/BpOTk/Hcc8+hefPmCA4ORmhoKFq3bo1XXnlFsVyV1HXbvHkzBg8ejLp16yIgIABNmjTBpEmTcPXqVVsvkUN0Oh2effZZGAwG/POf/8Sdd97p0vNVF7tdEhERkc8rrJAIaLCHBpFPsyWmGcSSU15JpVIhKiAYNwVZGcJtfJWwKbgUZmgQ2aekpARPP/00VqxYIVp37do1XLt2DevXr0dGRgZmzpzp1rG98sor+Pjjj0XLL1++jMuXL2P//v1ITExEZqY4uGmP0tJSTJgwAd99951o3fHjx3H8+HF8/vnnWLFiBQYPHqx4rHPnzqFv376Kk8E5OTkYMWKERTAGAMrKynDo0CEcOnQICxYswC+//IKuXbtKHuOPP/7AoEGDkJ+fb16WlpaGtWvXYu3atW77WT399NNYsmSJxbIzZ85g7ty5WL58ObZu3YoWLVpI7puamor+/fvj9OnTFstv3LiBX3/9Fb/++iu+/PJL/PLLL6hdW/n1/+DBgxg4cCBu3rxVirCkpAQbNmzAhg0b8Oqrr+KDDz5w8FlWX2JiIiZMmCBaXlFRgVOnTuHUqVNYtGgRPvnkE0yePNktY5ozZw7eeustUdDo5MmTOHnyJD7//HMsXLgQTz75pNVjvfHGG5g7d67FstTUVHzxxRf48ccfsWPHDrRs2dKp4zf58MMPcfToUTRv3hxvvPGGS87hTAxoEBERkc9jySkiEpJqIi1cxpJT3is6MEQxoOHLPSIahkRAq1JDZ5S/Y5cBDSLbGQwGDB06FJs3bwYANG/eHJMnT0ZCQgKCg4ORlpaGPXv2YNWqVW4f27p168zBjLvvvhuTJk1Cy5YtER4ejtzcXJw4cQJbtmxBUlKSeZ/69esjOTkZBw4cwFNPPQUAWLJkCTp37mxx7AYNGpi/NxqNGDFiBNavXw8AGDx4MEaNGoWmTZtCrVYjKSkJH3zwAS5fvowRI0Zg9+7dSEhIkB33iBEjcO3aNbzwwgsYMmQIIiMjce7cOTRu3BhAZdCiT58+OHz4MDQaDcaMGYMBAwagSZMmqKiowM6dO/Hhhx/i5s2bGDBgAI4cOWLe1+Ty5cvmYIZarcZzzz2HESNGIDw8HH/++Sfmzp2LmTNnKo7TGRYsWIADBw6gS5cueOWVV9C8eXPcvHkTiYmJWLVqFa5fv45+/frh+PHjCA0Ntdi3sLAQDz74IC5evAgAGDZsGJ566inUq1cPKSkpmD9/Pnbs2IFdu3Zh8ODB2LlzJzQajeQ4iouLMXLkSOTl5eGf//wnBgwYgICAAOzfvx9z5sxBWloaPvzwQzRq1AgvvfSSS6+JHJ1Oh8jISAwdOhT3338/mjdvjpCQEFy/fh2HDx/GJ598gszMTEydOhUtWrTAAw88YN532LBhSEhIwIIFC/D5558DqMysEKpfv77N41mwYAGmT58OAIiJicE//vEP9OjRA3q9Hlu2bMH777+PoqIijB8/HtHR0RgwYIDssRYtWoQ9e/agZ8+emDhxIu68807k5uZi+fLlWL58OTIyMvDUU09h7969No/PVikpKebMlQULFiAgIMDp53A2BjSIiIjI57HkFBEJCUtOBWn8RI2lWXLKe0UFBCuu9+WSU1q1Bo1rReJCQZbsNr4c8PEVRqMBhjL534HbjTogCioXBermz59vDmY8/PDDWLFihWhCcODAgZg9ezbS0tJcMgY5piBK48aNsXv3btSqVctifa9evTBlyhRkZ2ebl/n5+aFNmzYWGRtNmjRBmzZtZM+zePFirF+/Hn5+flizZg3+9re/Wazv2rUrnnjiCdx33304ceIEXn75ZezatUv2eMePH8evv/6Kvn37mpd16tTJ/P0777yDw4cPIyIiAlu2bLFYBwD33nsvxo4di27duiEtLQ3Tp0/HN998Y7HNa6+9Zs7M+Prrr/HYY4+Z1yUkJGDkyJG47777cPDgQdlxOsOBAwcwYMAA/PLLL9Bqb03T9u/fH23atMGMGTNw+fJlzJ49G//3f/9nse+sWbPMwYy33noLs2fPNq/r1KkTHnnkETzxxBP45ptvsGfPHixcuBCTJk2SHEdGRgZyc3OxZcsW3H///eblXbp0wSOPPIJ77rkHV69exZtvvokxY8YgJibGmZfBJv3798eYMWMQHGz5P75Dhw4YOHAgXnzxRdx///34888/8fbbb1sENCIiIhAREYHY2FjzMqXfaWsyMjLw+uuvAwDq1auHffv2oWHDhub1PXr0wJAhQ3DfffehqKgIzz33HFJSUuDnJ/3ecc+ePXj22Wfx5ZdfWmSRPvjgg/D398fixYuxb98+HDlyBB06dHB43FKef/55FBcX47HHHkOfPn2cemxXYUCDiIiIfJ5UhoZe4c5VIrr9CUOagRotAxo1iFRj8Kp8fb6+aWiUYkCDPTRuf4ayLNz8Ltb6hreJ2EdvQhPo/AlYg8GA999/H0BlxsLy5ctl725Wq9V23f3tDOnp6QCAjh07ioIZVVkrRaTEaDTiP//5DwDgxRdfFAUzTCIjI/H+++9jwIAB2L17N86dO4fmzZtLbjt+/HiLYEZVhYWF+OyzzwAAs2fPFgUzTBo3box//etfmDx5Mr7//nssXLgQISGV/xvS09Px888/AwAGDRpkEcwwCQ0NxcKFC3HPPfcoPPvqCwgIwKJFiyyCGSZvvvkmVq1ahePHj+N///sf3n33Xfj7V2aHlpWVYfHixQCA1q1bS5bHUqlUWLBgATZu3IisrCzMnz9fNqABABMnTrQIZpjUq1cPH3zwAUaPHo2ioiIsW7YM06ZNc/AZO87a3094eDjeeecdDBs2DLt27UJWVhaioqIU93HU0qVLUVxcDKCyXFPVYIZJhw4d8MYbb+Ctt97CtWvXzP1epMTFxeHTTz+VLIk5bdo088/6jz/+cGpA4+uvv8amTZsQHh6Ojz76yGnHdTXmkRIREZHPE05SAszQIPJ1RhvKS7HklPeKDlQOaKh9vKSSsDG4EDM0iGxz9OhRc7PeZ599VjFo4AlxcXEAgJ07d+LChQsuOcfJkyfNxx4xYoTitlUny5VK54wdO1Z23Y4dO5CXl2fX+SoqKnDo0CHz8t9//x16vR4AJHsymHTp0gWtW7dWPEd19e3bF/Xq1ZNcp1arMW7cOABAdnY2Dh8+bF536NAhc8Pw8ePHy5aSCgsLw6hRowBU/qyUsoSUrsXDDz+MiIgIAHBpw3R7FBUVITU1FSdOnDD3aamaAXHs2DGXndt0DSIiIjB8+HDZ7Z555hnRPlJGjBghGwy96667zK8tpowcZ8jKysKrr74KAPj3v/+NOnXqOO3Yrubb7+KIiIiIIFNyik3BiXya8DVAqgF4MJuCe60oKxkavlxyCrCtMTgRWXfkyBHz9/fdd58HRyLN1Ig4KysLbdq0waOPPoqlS5fi/PnzTjtH1ZJM3bp1g0qlkv2qGvAxZY9Iufvuu206X1xcnOL5qpYUqnq+qr0ThL1BhLp06aK4vrrsOX/VcR8/ftz8vbUskqrrq+5Xlb+/P9q1ayd7DD8/P3NmgFTvCXfJzMzE9OnTcddddyE0NNRcDq1t27Zo27YtBg4caLGtq5iuY8eOHWXLSAFAnTp1EB8fb7GPFLmm7yaRkZEAgIKCAjtHKu+1115DRkYGunTpgueff95px3UHBjSIiIjI57EpOBEJCV8CAjTiUhDM0PBe0YHKPTR8PQGhWWi04no9/wcS2aTqhKkpG8KbPPjgg5g/fz6CgoJQWlqKlStX4qmnnkLz5s3RoEEDPP/889W+i/3mzZsO7Wcq1yPFNHnrqvNV7RlStaeCFFfftW7P+auO257nULduXcn9qqpdu7ZslodwLHLHcLVDhw6hRYsWmDNnDs6ePSvKphUqKSlx2VhM18DatQduXX+l6ybsCyKkVldO4Zsyi6pr27ZtWLZsGTQaDb744gvz8WsK9tAgIiIin8em4EQkJGwKLvWhmT00vJe1HhrM0FDO0OD/wNufOiAKsY86NjFcE6kDXFNHvyaYMmUKRo4ciW+//RabN2/G7t27kZeXh2vXruHLL7/EwoULMX36dLz77rsOHb/qBOvatWvNd6NbozQRrDSxXvV8hw8fVrw7vqoGDRpILpfqWeBOzji/txzDlcrLyzFq1ChkZWXBz88PL7zwAoYOHYo777wTkZGR5nJNFy9eRLNmzQBIv3dzNm+/bnJMfW8SEhJw5swZnDlzRrRNSkqK+fu1a9eaG8E/+uij7hmkAgY0iIiIyOcxQ4OIhGx5DWCGhveKstpDo2ZOQDhLUys9NPg/8PanUqld0iTb10RH38p2SktLs1o2xh6mO6YNBoPidkVFRVaPFRsbi5dffhkvv/wyDAYDjh49ip9//hnz589Hbm4u3nvvPXTu3BlDhw61e5xVmy5HRERYlHlyharni4mJkQ1UKKmaAXLjxg3Jhs5V17uSteNXXV+1eXvV72/cuIE777xT9hhVy23JNYDPysqCXq9XDCaZxiI8RtW7+53x+ypl27Zt5v4RCxYssOhNUZW7skdq166NtLQ0m34/TNdf7tp7QllZ5Q19+/fvx2OPPWZ1+xdffNH8vTcENGpWPgkREVENVqIzIL/MAJ2BkwSelFdegozSQouvvHJxOvKN0gLoDM5J6SWimkeYoSGFGRrey1qGRk29o9JZwvwDFa9Rekk+9FYmpYiosn6+yc6dO5167NDQUAAwN36Wc/bsWbuOq1ar0bFjR8yePRtbt241L1+1apXFdra+Tpr6KgDA7t277RqLI5xxvrZt25q/P3DggOK21tZXlz3nrxosqvr9/v37FY+RlJQkuV9V5eXliuXHdDodjh49KnkM0+8qAOTk5MgeIzs7G1lZWYpjlXPixAnz96NHj5bdrmqPFSnO+v9vugaHDx+GTqeT3e7mzZu4dOmSxT5UfQxoEBERuVipzoA5SbkY/1smnt2Siac2ZWLzJdfV8yRpmaVF6LF+PiK++RdiV8y0+DqVJy65YDAaEfXt21hx8YjE0YjodnYuLwM70i9aLJMKcEg1CifvEG0tQ8PHS04BymWnTuTeQPSKt/FDavVq6xPd7tq1a2e+u3/x4sUoLCx02rGbNGkCoLIJsFQ5GKByEvrHH390+BwdO3Y0ZysIGygHBgaavzfdzS13DFOWxMKFC1FaWurweGzRp08fc7+BTz75xKGyQr179zZnIixbtkx2uwMHDig2cnaGTZs2IS0tTXKdwWAwjy8yMtIigNapUydEREQAqHwOcpkRBQUF5mBVq1atFHu9KF2Ln3/+2Rys6NOnj8W6yMhI81iUAgrfffedw2WgqgYN5LI8DAYDFi1apHgcW3+vrTFdg9zcXPz000+y2/3vf/8zP2fhdfOk7du3w2g0Kn6NGzfOvH1KSop5uTdgQIOIiMjF/rhWhqMZt0oalemNWHayAKU63vnoTp+d2o09N1Pt2ie/ohRT9/2MCmZqEPmUWUc3i5ZpVOKPTlq1cvNM8pyoAGtNwRnQaBam3Bg8t7wEU/b+DIOR71eI5KjVarz++usAgKtXr+LJJ59Eebm4lClQOdl6/fp1m4/ds2dP8/cffPCB5Davvvoqrl27JnuMlStXKjZGPnjwoHmS2hRAMak68X3hwgXZY6jVakyfPh1AZf+CJ598UnGiOD8/H/Pnz5ddb01ERASmTp0KANizZw9eeeUVxTJHN27cwOLFiy2WxcXFmctrrVmzRpSdAgCFhYWYOHGiw+O0VVlZGSZOnCjZ7Hnu3LlITk4GADz11FPmPhEAEBAQYC67dPz4ccyePVu0v9FoxNSpU83BKtN1k/P5559j165douXp6emYNm0agMrm1VUnuk3uv/9+AMAvv/wi+fty5swZ/Otf/1I8v5LmzZubv09MTJTc5o033sDhw4cVj2Pr77U1EyZMMAfWXnvtNcm/w2PHjuHf//43AKB+/foYNmyYw+cjS+yhQURE5GI3isVvTisMwI1iAxqH8d4Cd7lQ4Fh6c3ZZMa4X56FxLe+peUpErvVnjvhOyX+07Y0n//gO+r8mdztG1Xf3sMgOEf5BqBcchuvF+ZLrrTXF9gWdoupbzUK8WVqIYl0FavkFKG5H5MumTJmCtWvXYvPmzfj555/Rtm1bTJ48GQkJCQgODkZ6ejr27duHFStWYMyYMZg5c6ZNx+3QoQO6deuGvXv3YtGiRSgvL8e4ceMQHh6Oc+fOYeHChdi2bRu6d++OPXv2SB7jH//4B55//nkMHToU999/P+68806EhIQgKysLu3btwqeffgqgsgm3sCdBo0aN0KBBA1y9ehXz5s1DgwYNcNddd5kzG+rUqWMuNfT888+bn//333+Pw4cPY+LEiejSpQvCw8ORn5+P06dPY/v27VizZg0CAwOtTq4reeedd7Bjxw7s378f//3vf7F9+3Y8++yzaN++PUJCQpCTk4MTJ05gy5Yt+PXXX9G2bVvR8/vggw+wefNmFBQUYMyYMdixYwdGjBiBsLAw/Pnnn5g7dy7Onj2LhIQEq2WMqiMhIQFr165Fjx498Morr6B58+a4efMmli1bhu+++w5AZUNzqWDAjBkz8NNPP+HixYuYOXMmkpOTMWHCBMTFxSElJQXz58/H9u3bAQDdunXDc889JzuOmJgYBAcH46GHHsIrr7yCAQMGICAgAElJSfj3v/9tDsbNnj1bsqH75MmTsWbNGpSUlKBXr16YOXMmOnTogMLCQmzduhX//e9/ERMTA41Gg4yMDLuvU79+/RAbG4ubN2/irbfeQmpqKh5++GFER0fj/PnzWLRoEbZu3YoePXooliLr3r27+ftXXnkFb775JuLi4sw3OsTHx0OrtT5dHhMTg/fffx9TpkzB1atX0alTJ/zzn/9E9+7dodPpsGXLFrz//vsoLCyESqXCwoULbW5gT9YxoEFERORicmmZBeW849GdbKmHLyetuIABDSIfkiaYBG8QHI5RTdrhRmkh3ji0AbX9g/FB58EeGh3ZQqVS4bOuwzFh10rkVumTFKTxw/S7H0S94HAPjs47PN38Hvx69Qy2pp3z9FCIajS1Wo3Vq1dj3Lhx+OGHH3D27Fm8/PLLTjn2kiVL0LNnT/MEt7Ak0LRp09C6dWvZgAZQWRJHal+TgIAAfPHFF0hISBCtmz59OiZPnoyUlBRRw/ClS5di/PjxACpfc1euXImXXnoJX3zxBS5cuIC///3vsmOSmhC3R0BAADZv3ozx48fjp59+wrFjxxQDJGFhYaJl8fHxWLNmDYYMGYKCggIsWLAACxYssNhmxowZUKlULg1oTJkyBTt27EBiYqJks+W4uDj89ttvCA8X/98KDQ3F1q1b0b9/f5w+fRo//vijZAmyHj16YM2aNYoNv4ODg/HDDz+gf//+mDNnDubMmSPa5sUXX8Srr74quX+/fv3w4osv4pNPPsHVq1clA2Rr1qxB//79ZcegJCQkBMuXL8ewYcNQWlqKL7/8El9++aXFNr169cL8+fMVe1XccccdGDVqFFatWoVNmzZh06ZNFutTUlIQHx9v05gmT56M3Nxc/Otf/8KNGzfwyiuviLYJCAjAwoULMWDAAJuOSbZhQIOIiMjF5KbRGdBwL2Fc6YWW9+Jf7S3rmIb5VdZUjfp2Bop0t8oFyN3hS0S3nzK9DplllrWZN/Z9Flq1Bq+0vh+vtL7fQyMjew1r3AaDG7ZCdnmxeVmYXyACNPwYDAARAUHY8reJyC8vRZlBBxVUyCgtRKuf3/f00IhqnODgYHz//ff4/fffsXTpUuzatQvp6enQ6/WoU6cO2rdvj0GDBuGxxx6z67gtWrTA4cOH8d5772HDhg1IS0tDeHg4OnXqhBdeeAEDBgyQLb8DAL///jvWrl2LnTt34uzZs0hPT0dOTg6Cg4PRrFkzPPjgg5g0aRKaNm0quf+kSZNQp04dfPnllzh69Ciys7NlGyD7+flhwYIFmDRpEhYtWoTt27fj8uXLKCwsRK1atdCkSRN06tQJ/fv3x6BBg+y6DlJCQ0Px448/YteuXVi2bBn++OMPXL9+HSUlJQgLC0OzZs3QpUsXDBw4EH379pU8Rq9evXDixAnMmTPHfH0jIyORkJCAF154Af369bM5o6Y6li5dir59+2LhwoVITk5GYWEhGjdujGHDhuGf//ynuc+JlPj4eBw7dgyLFi3C999/j+PHjyM/Px+1a9dGhw4dMHbsWIwZMwZqtfXKAAkJCTh8+DDmzZuH9evX49q1awgJCUHnzp3x4osvWg1G/Pe//0XXrl3xxRdf4OjRo6ioqECjRo3w8MMPY9q0aYiKirL72lTVr18/HDx4EHPnzsW2bduQkZGBiIgItGrVCmPHjsXTTz+Ny5cvWz3O119/jYSEBPzwww84c+YMCgoKFMuWKZk+fToGDRqE+fPnY9u2bbh+/TrUajUaNWqEvn374uWXX7Y5QEK2Uxm9pZsHeb2rV6+am11duXLF3PSJiIiULT9ZgPUp4tq1T7WuhX7xyjW+yXke3/Etvrl4q6bqP9s+gDkJ0nfK9Fg/36LfxvyuD2NKyx6uHiIReYFLhdmI//7fFsuyx7yDSCs9GYhuB5cLc9D4+/csluU//i5C/QJl9iBXcfTz97lz56DT6aDVai1qzhOR90hNTTX3LKma6eIJ48ePx7Jly9C4cWOkpqZ6bBx0+3LF/yUW7iYiInIx2QyNCt5T4E7CklNK/WDjgkItHgvLzxDR7SutuMDicYBGiwj/IA+Nhsi9VGCzdCIiIvJuDGgQERG5mFwuZH4ZS065kz3ho7hgyzq710sY0CDyFcISc/WCwsyNIomIiIiIyLN8NqBx8+ZNrFu3DjNmzED//v0RHR0NlUoFlUplc6pXcXExfvrpJ0yaNAmdO3dGZGQk/Pz8EBUVhW7dumHmzJlIT093ynjj4+PN41P6Yl02IqKao6CCAQ1PUroLtZ4goMEMDSLfkSYIYAoDnES+hkWqiYiIyJv4bDe0OnXqVGv/P//8Ez169EBhYaFoXXZ2Nvbt24d9+/bho48+wsKFCzF69OhqnY+IiGouNgX3DsK2YUr3W8cFCQIaJQUyWxLR7UaUocGABhEREVWRkpKCoqIiu/eLjIxE/fr1XTAi8jVFRUVISUlxaN+77roLfn5+Th6Re/lsQKOqRo0aoUWLFti0aZPN++Tn55uDGT169MCgQYOQkJCAqKgoZGRk4KeffsKiRYuQn5+PsWPHIiwsDP3796/2WIcOHYp3331Xdr2/v3+1z0FERM4ld2djQTlveXQne662cALzenGecwdDRF5LlKERxIAG+Q5WVyMism7ChAnYsWOH3fuNGzcOiYmJzh8Q+ZwDBw6gd+/eDu2bkpJS4yv8+GxAY8aMGejcuTM6d+6MOnXqIDU1FU2aNLF5f7VajVGjRuHtt99Gq1atROv79u2L/v374+GHH4Zer8cLL7yAc+fOVbv+bkREBNq0aVOtYxARkXsxQ8M7Kf1PFk5gZpQWocKgh59a4+phEZGHMUODiIiIXCk+Pl6UPe4piYmJDLJQjeOzAY1Zs2ZVa//u3buje/fuitsMHToUw4cPx48//ogLFy7gyJEj6NixY7XOS0RENY9sU/ByA4xGI5vNuoldJackJjDTiwvQsFaEcwdFRF6HAQ0iS0a7chyJiG5/27dv9/QQyMf16tXLa4JinuCzTcHdpWr6z4ULFzw4EiIi8jYVBqBM7+lR+A57JmSiAoJF2RjCMjREdHtKK2bJKSIiIiIib8WAhouVlZWZv9doWKaCiMgXKU2ks+yU5yhlxqhUKsQFhVosE05yEtHtp1yvQ2aZZZNPZmiQL1Ep5i8SEREReR4DGi5WtUlQy5Ytq328nTt3on379ggNDUVwcDCaNGmC0aNHY/Xq1T6dakRE5M2UXp0LKhjQcBfhz8HalI2w7NR1ZmgQ3fbSSwpEy6RK0BH5En7MJCIiIm/isz003OHYsWNYv349AKBt27ZOCWikpKRYPE5NTUVqaipWrVqFHj16YOXKlahfv75Dx7569ari+rS0NIeOS0Tk8xQmAvLLGNBwF3sD//UEZWaYoUF0+xP2zwjQaBHpH+Sh0RARERERkRADGi5SVlaGZ555Bnp9ZXH09957r1rH8/f3x5AhQ9C3b1+0adMG4eHhyM3Nxd69e/H555/jypUr2L17Nx566CHs3bsX4eHhdp+jYcOG1RojERFJUwpZFJTztkdPsVZWQ5ShwYAG0W1P1BA8KEyxPB0REREREbkXAxouMnXqVBw8eBAAMG7cOAwePLhax0tKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGH1TofERE5kVKGBktOuY2o5JSVOUphI2A2BSe6/Qn/zlluinwN43dERETk7RjQcIE5c+Zg8eLFAIDOnTvjs88+q/YxpYIZJqGhoVi1ahWaNm2K7OxsLFy4EHPnzoW/v79d57hy5Yri+rS0NHTp0sWuYxIRkZUeGmwK7jZ2l5wKFpacEtfWJ6LbiyhDgwENIhgV38kQERERuRcDGk725ZdfYvr06QCAFi1aYMOGDQgJCXH5ecPDw/Hoo49iwYIFKCoqwsGDB9G9e3e7jtGgQQMXjY6IyLcxoOGdrJecCrV4zKbgRLc/UYZGEAMaRERERETeRO3pAdxOVqxYgcmTJwMAGjdujM2bNyM6Otpt52/VqpX5+2vXrrntvERE5Dj20HAfUckpawENwUTmzZJC6Ax6J4+KiLwJMzSIiIiIiLwbAxpOsmbNGjz55JMwGAyIi4vD1q1b3Z7xwIaFRETeSanSETM03MfekhnCiUwjjLhRUujMIRGRl2FAg3ydVLCft14QERGRN2FAwwm2bt2KUaNGQafTISoqCps3b0azZs3cPo6TJ0+av69Xr57bz09ERNKUJgLyGdDwGGv3AUQHhkCrsnyrxMbgRLe3tGKWnCIiIiIi8mYMaFTTnj17MHToUJSVlSE8PBy//fYbWrdu7fZx5OXl4bvvvgMABAcHIyEhwe1jICIiaUrNqJmh4T7CH4O1klNqlRp1gyz7aAgnO4no9lGu1yGzrMhiGTM0iIiIiIi8CwMa1XD06FEMHDgQRUVFCAkJwfr169GpUye7j9OrVy+oVCqoVCqkpqaK1m/cuBElJSWy+xcWFmLUqFHIysoCADz99NMICAiwexxEROQaik3BK4wwKNWkIqext+QUAMQJJjOF5WiI6PaRXlIgWiZ8DSAiIiIiIs/SenoAnrJr1y6cP3/e/DgzM9P8/fnz55GYmGix/fjx4y0eX7hwAf369UNubi4A4N1330V4eDiOHz8ue87Y2FjExsbaPda5c+di7NixGD58OO699140a9YMtWrVQl5eHvbs2YMvvvgCly9fBgDcddddmDlzpt3nICIizzAYgWKdEbX82AfJ3WxpPSUsN8OSU0S3L2HAMkCjRaR/kIdGQ+QZUv8alTJNiYikjB8/HsuWLUPjxo0lb9x1N1PP2bfffptzZkS3AZ8NaCxevBjLli2TXLd7927s3r3bYpkwoPHHH3/g5s2b5sevvPKK1XNW54UzOzsbixcvxuLFi2W36dmzJ7755hvUrl3boXMQEZFrWJsGKCg3oJYfkyZdzZEMDWG5GWZoEN2+hAHLuKBQ8wQIERERUU3Su3dvbN++HQDw0EMPYdOmTZ4dEJETcfakBpg3bx7mzp2LoUOHokWLFoiOjoZWq0VYWBhatGiBcePGYePGjfj9999Rv359Tw+XiIgErN3YWFDOOx/dwd4eGgAQFyzoocEMDaLbljBgWS843EMjISIiImvi4+OhUqlENyATcOnSJezYscP8eOvWrbh+/boHR0TkXD6boZGYmCgqK2WP8ePHO+1F0xQxlZOQkMAm30REtzE2BvcMW+67FpWcKhbX2Cei24M4oMH+GUSA9UxTIiJv52ul87766isYjUYEBARAr9dDp9Ph66+/xt///ndPD43IKbwqQ+PChQvYv38/bty44emhEBEROY21t8/5DGi4BUtOEZEScckpBjTI97DMGhFRzffVV18BAAYNGoS+fftaLCO6HbglQ+PmzZv44YcfAABjx45FeLhl+vb58+cxevRoHD16FEDlm6ihQ4di8eLFiIyMdMcQiYiIrNIZjPjmdCGS0svgr1ZBZzAiu0w+GJFbkYF9eRuQq8uU3Uaj0mDfH3dg4h1D8GKH2uZeGsUVBiw4lo8/Myugl7mjKNRPjSHNgjGgSbDiuM/nVuDLPwtwvUhn9TmqADQO02JKuzDUq+X6twnXivIwYddKnMm7iQfi7sDJ3Bs4lpNmcRdVveAw9Kl3J3bfSMGFgiwAQKDGD0MbtcbC7iMQqPWD0WjEe8e2YvG5/WgVXgeL7x0pKhdzLt/y52DLpI1UU/CM0kLEBNYCAGSXFePJnSvwe/p56AzWA1NRASGY1qYnXm3T0+q2Um6WFOCJnSvwx40U6I2OB8LUKhW6RDfC8vsfReNa7L1FYgvP7MO//9yK+sHhWHLvKNwVHuvpITmsTK/DpL0/4sfUZJTqK2S3qxD8Dd8uGRrFFQYsTC7A+dwKJNQJwOMta0Gr5qQ1ERHR7Wjfvn04e/YsgMo52NLSUmzYsAHHjx/H4cOH0bFjRw+PkKj63JKh8dNPP2Hq1Kn473//KwpmlJWVoX///jh69CiMRiOMRiMMBgNWr16NoUOHumN4RERENjlysxwbUkqQWWLA9SI9bpYYoDNA9ispfzOydTdggF72q8JYjstlJ/H9pSSsvVBsPteai8U4cKMcZXqj7PFzygxYdrIQ6VYCFV/+mY/LBTrFsZq+KgzA+VwdlpxwT2mld45uxubrZ3G5KBeJ5w8iKfMKyvQ6lBv05q/UwhwsPrsfp/JumpflV5TiqwuHsPjsfgDAwcwr+NeRjbhUmINfr53Ge8e2is4lCmjYML44iQnN15LWmr9/99gWrL96CsW6Cosxy32lleTjtQNrcSbvpn0X6i+zjm7GputnUaK37XxyX6V6HXbeuIh/Htzg0Djo9pZakI3Je3/CpcIc7LmZileT1nh6SNWy7PxBLD13APkVpYp/F8IsrrigUJkj1iybL5dgb1oZMkoM+DW1BEdulnt6SEREt5WZM2dCpVKZb5bJzc3F22+/jdatW6NWrVqoXbs2evfujRUrVlg9VmpqKl555RW0bt0aoaGhCA4ORvPmzTFx4kQkJycr7msaw8yZMwEAW7ZswZAhQxAXF4fAwEA0bdoUU6dOxbVr12x+LnK2b99u3s5aGXUpRUVFWLlyJZ555hm0b98e4eHh8PPzQ0xMDHr27Il58+ahsLBQct9evXpBpVLh0qVLAIBly5aZx2L66tWrl8U+wmsjxWAw4Ouvv8aAAQNQt25d+Pv7IyYmBr1798aCBQtQXi7//1N43UpLS/H++++jY8eOCA0NRWhoKLp06YL58+dDp7N+k1l1LF++HAAQGRmJgQMHYtiwYQgNDbVYR1TTuSWgsWnTJqhUKjz88MOidYmJibhw4QIAYMiQIfjvf/+LwYMHw2g0Yvfu3Vi5cqU7hkhERGTVspP2TfLn6TLs2DYT53Nv3Tl8pcD2N7pXCvSy6wxGIy4rrJdz1YF9HLHw7L5q7Z+ckw4AeO9PywDGgtN7RNvWF2Rs2FI+KvavTIyqqpalOZnrWJnMY9mONeU7/tfzdZaDmVedejy6PQgzgGr674mjf28tI+o4eSSe8e3pIovHn//J0nkkTy0xiVmdjEAiX5OSkoKEhAS88847OHnyJIqKipCTk4Pt27djzJgxGD16tOyE9vLly9GiRQt8/PHHOHnyJAoLC1FSUoLz589j4cKF6NChA+bMmWPTOGbNmoWHHnoIa9euRXp6OsrKypCSkoLPPvsMrVu3xh9//OHMp223gQMH4tFHH8X//vc/HDt2DPn5+dDpdMjMzMTOnTvx+uuv4+6778bp06fdMp7s7Gzcf//9eOKJJ/Drr7/ixo0bqKioQGZmJrZv344pU6agffv25iCKkhs3bqBbt274+9//jiNHjqCwsBCFhYU4cOAAXnjhBQwfPhwGGzK7HVFeXm6eRx05ciT8/f0RFBSE4cOHAwBWrFjh8oAKkTu4JaBx5swZAEDXrl1F67799lsAwAMPPIDVq1fjhRdewC+//II+ffrAaDTiu+++c8cQiYiIrMpVKC8lRW+0/c2iEUZkld46vs6OU8mVpAKAUt3t3QCv5K/yMfnlpXbve2+dJla30ajVuDsyzmKZLaWlrCmoKHNovzKDcz+ACHsGEAHAaUEGUbFOvkxTTZBfYf/rw8j4u9E5uqELRuN5RRW39/8Fqh6tSjxFwIAGke1Gjx6NlJQUPP/889iyZQsOHDiA//3vf7jzzjsBAKtWrcLrr78u2m/9+vUYP348ysrKUKtWLbz99tv4448/sHfvXnzwwQeIjo6GXq/H9OnT8fnnnyuOYf369Zg5cybuuusu/O9//8OBAwewZcsWTJw4EWq1Gnl5eRg0aBCuXLnikmtgC51Oh7Zt2+LNN9/Ezz//jP3792Pfvn1YuXIlHn30UajVaqSkpGDYsGEoLbX8P7506VIkJyejXr16AIChQ4ciOTnZ4mvp0qU2j0Wv12PQoEHYvXs3AKBnz574/vvvcfDgQaxZswbDhg0DAJw6dQoPPvigbOaIyfDhw3Hy5Em8+OKL2Lx5Mw4dOoRvv/0WLVu2BACsXbsWixYtsnl89li3bh2ys7MBAI8//rh5uen7mzdvYuPGjS45N5E7uaWHRkZG5R2qDRo0sFheUlKCffv2QaVS4bnnnrNY99RTT2HLli04fPiwO4ZIRERklb9GhQqD9ETQSx3CUDdEY36sNxqw6mfLLIeF3caiY3Q0VFDho5M78fWFW//jjDAgq0QPo9EIlUolClIMbBKEe+sHAgA+PpyPG8W3jq1XmJsqlghovN01AoFayzswz+VUYMkJ5Tfn3sgU0Ajx87e6rUFwTUP9Amw6x+QW3fH83h/NjysM8tkrL7e6D0806yRaPmnvj0jKvPWh0dGARrne8tzvdOiHgQ1a2rz/teI8DNl66wNeka4cBRWlCPULdGg8dHsSBTT05ebXppoov9zy721yi+54unkX2e2jAoPZW4Z8llYtDmg4I5BP3sdgNKKw3HcCnLX8VZIZSM524MABfPvtt3jsscfMyxISEjBy5Ejcd999OHbsGD755BM8/fTTaNOmDQCgoqICzz33HIxGI2rVqoU//vgD7du3N+/ftWtXPPLII+jWrRvS0tIwbdo0jBw5EtHR0ZJjOHjwIDp27IgdO3agVq1b2cYPPvggevTogSeffBL5+fl47bXXsGrVKtdcCCuWLl2K5s2bi5bfc889GDVqFJ5++mn069cPZ86cwTfffIOnn37avE2TJpU3Jfn5+QEAIiIizNfSEV988QX27t0LAHjyySeRmJhofs/TqVMnDB48GG+++Sb+/e9/48KFC5g9ezb+85//yB7vwIED2LRpk0XZq44dO6Jfv35o1aoVbty4gQULFmDixIkOj1mOqaRUfHw87r33XvPyBx54APXq1cP169exfPlyDBo0yOnnJnIntwQ0cnNzAQBqwZujffv2oaKiAmq1Gn369LFYZ3qBunnTsRrTREREzuavVqEI0h/8GoVq0SD01r/VIokJ6z71G6FJaBQAoEFwhMU6o9GIcgNQUGFEmL8KesHcQWywBk3DK9+0BwmCEXqZIAsAlEgENFrU9hN9oKupH2hL/rpzPFgjDmgIJ2CF9fFt/VDrp9ZYPFYKaDQICUfH6Aai5ZUNym8FNBy5YxwAygUZGneFx0ieT85dFTGiZWnFBQgNZ0CDbhEGNAxGI8r0OgRq/Tw0ouoR/r3Z+3dD5Es0EhkaOmZo3JYKy414dkum9Q1vE4v6RCMswPUBjUGDBlkEM0xCQ0OxcOFC3HPPPTAYDPjiiy8wf/58AMDPP/+M69cryyO+9dZbFsEMk8aNG+P999/H448/juLiYixdulQy08Nk4cKFFsEMkyeeeAIrVqzAr7/+ip9//hnp6emoW7eug8/WcVLBjKr69OmDIUOGYPXq1Vi9erVFQMPZPvvsMwBATEwM5s+fL3kDx6xZs/DTTz/h9OnTWLRoEd555x0EBEjfHPXCCy+IengAQO3atTFhwgTMnTsXycnJyMvLE/UZro6srCxs2FDZH2/MmDEWz0OtVmPMmDGYN28e1q5di9zcXERERDjt3ETu5paSU6YX0fR0y7rPpsZBrVq1QmRkpMU6U6RVq3VLzIWIiMgqf438Oo3gP2qJXlwaKEhzazJQI3ijbETlZEFWSeVkuU4QpNCqq7whFbzHVsrQEAY0AjTuuTvNXYp1lc35giUmWgt1lkElYYaGyqa24OK7VR2Z2BFmgzicoSEIpvir7XufFOIXIBpLOstOURU6gx7n8sUTXMX6mlt2ShjQCGNGEpEsyZJTzNAgstmECRNk13Xp0gWtW7cGUNmw28T0vUqlwlNPPSW7/8iRI80T4FX3F2rbti06dRJnDJuYzqHT6Rxq6O0KGRkZOHfuHI4fP27+iompvBHn2LFjLjvv9evXcerUKQDAqFGjzM2zhbRarflnm5OTo1hNZuzYsbLrTD8Xo9GIlJQUR4ctacWKFaioqHy/VrXclIlpWWlpKb7//nunnpvI3dwS0GjRogUAiOq0/fjjj1CpVOjZs6doH1Pwo06d26MZHxER1Xx+wkhCFcIARYlEzfmgKpPuGsEkuSl7wNRHQ5hYoalyeEGCBhQSNFAsaMYRLNzZi9XSWi8JZQochWjFGRq5ZZaTmM7L0PBcQKNMECjzVytE2WTEBYVZPE4rtq/ZPd3eUgqyJbOQTMHDmkj498aABpE8yZJTzNAgslnnzp0V13fpUlny8OzZsygvr/zfevz4cQCVlUpMk/hS/P390aFDB4t9qjMGAEhOTlbc1pV2796N0aNHIyoqCrGxsbjzzjvRtm1b85epz0Rmpusyiapex3vuuUdx26rrla6/aQ5USu3at0paFhQ49z34smXLAFSWtzL166iqXbt25tJcptJURDWVWwIaAwcOhNFoxMKFC/H555/j+PHjmDZtGk6ePAmgsmGOkCnaWb9+fXcMkYiIyCp/jfwEuDDWUSJxN3PVDA3hHZDCDA1h1oXWImXY8mTCbA6LcQgiI8JyVd7Mlh4XpuscqBFnaOSWl1g8FmZo2B7QsPxZKZWckiOcQM13VoaGxv6ARt0gyzvP2BicqhKWmzIpqsEBDeHfW5i/bf1ziHyRWqUWZTCyhwaR7WJjYxXXm27aNRqNyMnJAQBzE2dr+wIwl4cy7VOdMVg7jivNnDkT9957L1atWmV1DCUlJYrrq6Pqua1dt6qluZTGHBwcLLuuail+vd7+zxRyTp06hYMHDwKQzs4weeKJJwBUBpOcnSFC5E5uqec0depULFiwAGlpaZg6darFum7duqF3796ifdauXQuVSmU1skxEROQu/ooZGpaPhQENtUplcae/sEa10SjI0BCVnJI/l1KGRmkNDWgEafxEgQQppkwYvcTdo9YCGrZeCa3KMmjgyMSOOEPD0R4awpJTDmRoBFtmaKSXMEODbpELaBRLZJ3VFPnlLDlFZA+tWm0RvGeGxu2plr8Ki/pIN5W+HdXyd897YKn+C+7Y1xXHcZWtW7di1qxZAICmTZti2rRpuPfee9GoUSOEhISYS8/PmDEDs2fPdtu4vP26KamacfHqq6/i1VdfVdzeaDRi+fLlePvtt109NCKXcEtAIzw8HFu2bMETTzxhUWfuvvvuw4oVK0TbHzt2DAcOHIBKpcJDDz3kjiESERFZpfRx3lrJqSCNn8WbZLkeGpmmDA3ByTRq+X2VemgU19CARojWH1obJutNgSPhRD8gDmgIL5Naok64FFGGhtH+u6mc1kNDcCdXgMb+t3JxwgyNYmZo0C2nZAMaNTNDo8KgFwWYbcn+IvJlWpUaFagS0HAgM5G8n1qlckuTbF9z48YNNGzYUHE9UDl5buolaypDZFqnxFSevWrpIrlz2LJeeJyqGQQGg8HicVVFRUVWxyrHVEoqMjIS+/btky2z5Y7skarP39p1q9oXWOn6u5vBYMA333xj935fffUVAxpUY7mt43bLli1x8OBBpKSkID09HXFxcYiPj5fdfunSpQCABx54wE0jJCIiUlahEDkQNwUXBzSqEtaoNvfQKKmMZOgF2QRVszKEGRrCbS3GIQpoyEziC46pECNxi2CtnyhwI8UUOJIOaFjele1whoaoh4YjJacsJ1Dzyx0tOSXsoeFAQEOQoZHGDA2q4nTu7VVySip4yAwNImVatRpV4hnM0CCyw4EDBxQDGgcOHAAANG/eHP7+lT3g2rRpg7179yIlJQUZGRmyE/wVFRU4cuSIeR9r57BlvfA4VZti5+TkICoqSvIYZ8+eVTyHkhMnTgAAevfurdgzxFRCSY4zMiqqPv/9+/ebSzJJSUpKktzP037//XdcuXIFAPDCCy+ge/fuitvv378fH3/8MS5cuIDdu3ejR48e7hgmkVO5LaBh0qRJEzRp0kRxm3bt2qFdu3ZuGhEREZFtKhRqO4lKTgkzNLSWAQ1xyam/emiUVs4gCHp5W5acEsQkhNkcFuOoEDQF96sZd+JJNfmWYgocSQUZnNZDQ/CzcqzklOUEqiMZGkaj0Sklp4Q9NFhyikyMRuNtV3JKqrybL/XQMCoEvInkCN+jKN04QUSWli1bJtknFqgMJJiaSffp08e8vE+fPli0aBGMRiOWLl2Kv//975L7//DDD8jLyxPtL5ScnIwjR46YG4gLLVmyBACg0WjQq1cvi3VV5+sOHjyIfv36SR7ju+++kz2/NTpd5Q06SlkeR44cwf79+xWPExhY+f66rMyxG4UAoF69emjZsiVOnTqFVatWYe7cuahVq5ZoO71ej8TERACVmSUdO3Z0+JzOZio3pdFo8NZbb1ntBdKnTx/Mnz8fOp0Oy5cvZ0CDaiS3NAV/55138M477yAzM9PmfXJycsz7EREReYNyhQwN4eR4sd7ybmZhhoZwssDwV8mp7FIDDEYjdKIMDcdKTgkzNAIVGpt7kxA/f9E1klKir5Cc6AeAnPJii8dGONoUvPoZGsISN/kO9NCQOq9DPTSCBBkaLDlFf8koLUROuXTjzZpackqYDaWCyuaA6e1A6v9DzfgvQJ6kFQXyWXKKyFZr1qzBqlWrRMsLCwsxceJEAJVlnUzfA8CwYcNQr149AMB7772H5ORk0f5XrlzBtGnTAFQ2nZ4wYYLiOJ577jnJgMG3336LDRs2mM8bFxdnsb579+7mHhYfffSRZGD8/ffft8hWsFfz5s0BALt27cL58+dF6zMyMhQzJUxMY79w4YLDYwGAKVOmmM/74osvSm4za9YsnDx5EgDw7LPPIiDAO26OKCoqwk8//QSgsqy/LY3lo6Oj0bNnTwDAqlWrqhUQIvIUtwQ0Zs6ciVmzZuHmTek7vqRkZ2eb9yMiIvIGFQo35oszNCxLAwkzNORKTumNQG6ZQTFDQ9ibXOnOSWEPjeAa1ENDY0NTcIPRiAqDXiZDw1rJKduuhfBnVeFAhobwjnBHMjSkgjYO9dAItszQyCwrQrleJ7M1+RK57Ayg5pacEgYPQ/0CbO6fcztQCsQTyRH+32PJKSLbJSQkYMyYMZgyZQp+//13HDp0CEuXLkVCQoK5XNSUKVNw9913m/fx9/fHwoULoVKpkJ+fjx49emD27NnYs2cP9u/fj48++ggJCQm4fv06AGDevHmIjpZv6J6QkICDBw8iISEBiYmJOHToELZt24bJkyebAwWhoaGYN2+eaN/Y2FiMHDkSAPDbb79hyJAh2LhxI44cOYJffvkFI0aMwN///nerZY2UPPnkkwAqJ+N79uyJTz/9FHv27MGePXswb948tGvXDidPnkS3bt0Uj2Maw4EDBzB37lwcO3YM58+fx/nz53Ht2jWbx/P888+bz7V06VI8+OCD+PHHH3H48GGsX78ejzzyiLk5ebNmzfCvf/3LkaftEj/99BMKCwsBAI888ojN+5m2zc3NxZo1a1wyNiJXcnvJKSIiopqqXKHklDDIYK2HhqjkVJXsgawSA/SCc2ktmoJbnkthWOIeGjWk5FSwxh+FKtsmUIt1FaJm2YBUU3DnZGjonNAUvERfAZ1Bb1PjcxOpgIZjJafCRMtulBSiYa0Iu49Ft5fTeRmy62pqySmpgIYvUQrEE8kRZ2jwF4nIVqtWrcKDDz6IBQsWYMGCBaL1jzzyCD788EPR8oEDB2Lp0qWYOHEiCgoKMGPGDMyYMcNiG41Gg9mzZ2PSpEmKYxg4cCAGDhyIWbNmSWZyhIWFYc2aNbJ9bT/66CMcPHgQ586dw7p167Bu3TqL9Y8++iieeeYZxbJXSkaMGIEJEyZg6dKluH79uigrQqPR4KOPPkJOTg727t0re5xJkybh888/R3Z2Nt544w288cYb5nU9e/bE9u3bbRqPRqPBunXrMGTIEOzevRvbtm3Dtm3bRNu1bNkSv/76q2RJKk8xlZtSqVSypc6kDB8+HFOnToXBYMDy5cvNQSyimsJrb0+qqKj80OTn52dlSyIiIveQawquVomb0ol6aAjupBeWjTJWufsxq1QvKhNi0RRcED0RBj+qKhU1BZeexBcuddc9vXKlXypLTtkWcCjRV4iaZQNAbplyDw1bMzTEJacc6KGhFTchtjdLo0wii8LfgQyNqIBg0XNKL2HZKVLO0BCW0asphCWnwnwuoCF+NXdCD1W6zTFDg8hxTZo0waFDhzB9+nS0bNkSwcHBCA8Px/3334+vv/4aP/zwg7mkk9C4ceNw+vRpvPTSS2jZsiVCQkIQFBSEZs2a4dlnn8WRI0csJu2VzJw5Exs3bsTAgQNRp04d+Pv7Iz4+HpMnT8aJEyfMJYek1KlTB/v378c//vEPNG/eHAEBAahdu7b5OaxYsQIajf031VS1ZMkSfPXVV7jvvvsQGhqKgIAANG7cGE888QT27NmDl156yeox6tevj6SkJDz99NO44447zD01HFG7dm3s3LkTy5cvx9/+9jfUqVMHfn5+iIqKQq9evTB//nwcPXoUjRs3dvgcznbt2jVz4KVbt27msmW2qFOnjrl3xsaNG5GRIX9TC5E38toMjaNHjwIAYmJiPDsQIiIiVDZWlbvTVaothShDQ1hySpShcevgmSUGUUBDKUNDqaKIsORUkNa77mUI1vpJlrIJ0frbnL1Qoq+QDDI4qym48GelNxpgNBpFQSwlUk2ICyrKEBkQbPMxpII2jmRoqFQq1A0KxZWiXPOyNDYGJwCncxVKTlXUzIBGgU4Q0PB3fLKjJpIqOcV4BlmjVVn+b9EzQ4PILpGRkXjvvffw3nvv2b1vfHw8Pv74Y6eMo1+/frJNva2JjIzE3LlzMXfuXMn1vXr1kuyvYZKYmGhuoi3n8ccfx+OPPy67fubMmZg5c6biMZo1a4bFixcrbgNAcawmarUaTzzxhE39O4RsGStg/brZo379+tBLZKnbaufOnU4ZB5EnuCSgYUp5Evrll19w8OBBxX3Lyspw4cIFLFmyBCqVCp07d3bFEImIiOyiN8pnLUhlElgtOSXTQwMAbhaL35haZGjY1RTcchLC23poyNWyD9b62Z6hoZPJ0BD00BBeJkdLTgGVd6v6qWwPJtTSSgc07CFVVsuRgAYAxAkDGmwMTrCWoVFDS04JXgfC/HwroCEViDcYYXdQlnwLMzSIiIjIm7kkoDF+/HjRG2Sj0Yi33nrL5mMYjUao1Wqb0syIiIhcTamxqmSGhrDklNZKD40qd+rckAhoWGRoCGIASk3BRT00vCygYZCZJAnR+ouukRy5DI2c8mLBuYQlp2wjnNgBgAqDXjLQIUejViNE62+RjSKs7W+NVA8Ne8ZQlbCPRjozNHxeia4CqYU5sutraoaG8O+MJacqg7t6I+Bl/w7IiwhvKGAPDSIiIvImLqs7YTQazV9Sy5S+/Pz80KNHD6xZs0axrh8REZG7KDVWlZjvtpqhoVRySjqgcet7UckpmbEZjUZRQCPQy2awhEEGk8qSUzYGNGzO0HCwKbhEJoYjkzvCZsTV7aHhr9Y4fId1XHCoxeM09tDweefyM0R/I1XV2B4agr8zX2sKLheMlwp0EJkISz4yQ4OIiIi8iUsyNFJSUszfG41GNG3aFCqVCr/99huaN28uu59KpUJgYCCioqKq3WCIiIjImZQzNCRKTomaglvJ0KgS0JAuOXXrHMKJeLmhVRjE62wuOeWk2q5WTyOz3N4MDalyTHnlpTAYDVCr1JK1am1vCi6doWGvUL8Ai0yI6mZo+KsdfxsXJ8jQSCtmhoavUyo3BQDFOpacqonkAhcVeiDIa7spkqcJb7rQOfA/j4iIbHPt2jXk5MhnycoJCQlBkyZNXDAiIu/nkrexjRs3llxer1492XVERETezN67Wa01BRcGQareGS0VoKhaZkoYk5DLchA2BK8ch3SQwFN5G3JjD9b6iyZU5JToKlBhFE+2GGFEQUUZwv2DJM9jc1NwibJOjgQ0hBOpdvfQEGSh+Ffj5o+6QZYZGunM0PB51gIaVcul1STCvzNfawoul13IDA1Swh4aRETu8+abb2LZsmV279ezZ09s377d+QMiqgHccl+OgTU3iYiohitXmPwplQgcWMvQEE4WyPWSMG9fNUNDMM+vk9m1VGKF9/XQkC85Vd0MDQDILS9BuH+QZCkd25uCi8fhyOROdUtOCTM0AqqToREsyNBgDw2fdzovw+JxgEZrUeasuIYGNHy9hwZLTpEjhDcUKPXqIiJg5syZmDlzpqeHIZmRTER0O3JZDw0iIqLbSYXCDfmlEhNGwgyNYCtNweWLL1Wy7KFhORFva4aGRgX4edl/fuWAhm0Bh8qm4HIBjVLZ89hecso5GRrCgEZ+eTV7aFQjQyNOlKFRwA/BPu50rmWGRrvIOIvHNbbklDBDgyWn/lru5oFQjSLK0GDJKSIil0lMTLS553DVL2ZnkC9z27RGcXExiouLZdd/+umnuO+++9CyZUsMGDAAa9euddfQiIiIrKp2ySkrPTRUKuXjV20ELmoKLrOrsCF4sFblcBNpV5FrQhys9bO5KXixrkKUvWCSW14CQDqgYXPJKYlMkQoHsk/FJaeq20OjOiWnLDM0Kgx6ZJXJv0+j25vBaBCVnOoU3cDicU0tOSXsoeF7TcGllzNDg5RoVWwKTkRERN7LLQGNtWvXIjQ0FHFxcSgoEJc0eOqpp/Dyyy9jz549OHPmDH777TcMGzYMc+bMccfwiIiIrFIqOSVFVHJKq1xyCpCfLNCoYBGIEGYu2BrQsKfclLumupxSckohoJFTVhnQkDqLrVdDKkNDJ9GzwxpRySmdnSWn9M4LaNQJqiVaxj4avutKUa4oCNsxyjKgUVNLTgn/znyvh4Z8U3AiOcL3GTqWkCYiIiIv4paAxm+//Qaj0YghQ4YgNNSyxMGuXbuQmJgIAAgODkaHDh0QGBgIo9GIGTNm4Pjx4+4YIhERkSJ7J39KBOWBxBkawul0+RCCMCNDGAvRy0xYlVQIAhreVm8KgEHmeYdo/W3O0FAuOWXK0BBPxtiaoaFSqUTBFUcyNKpbckqcoeF4Dw1/jRbRASEWy9KK2UfDVwn7Z4T5BaJZaJTFshpbcqrct3toyJecYoYGyWNTcCIiIvJmbpnZ2LdvH1QqFXr37i1at3DhQgBAvXr1cOrUKRw6dAinT59Gw4YNYTAY8OWXX7pjiERERIrsLjllJUNDOEFuVMjQ0KotJ96FiRZyQysWNAUPEkZGvIBshoafnU3BrQQ0pM5ia0ADEE/uONJDQ1xyyt6AhmWQLEDjeEADkGoMzgwNXyXsn9EiPAYhWn+LZTWx5JTRaPT5HhosOUWOEJac0jOgQURERF7ELQGNmzcrPyTdddddonUbN26ESqXCCy+8gAYNKlPbGzZsiBdeeAFGoxE7duxwxxCJiIgUlcvVdZJhrYeGcIJcrpcEAGgE/62FE/E6F5Scche5RtTBGvmAhrCnRYnOlgwNx5uCA4CfsJ64EzI07O2hIWoKXo2SUwBQV6IxOPkmYf+MFuGxCBYEYUv0FZKZTt6sRF8hmoj1tR4abApOjhA3BecvDBEREXkPtwQ0MjIq09iF5aZOnDiBzMxMAMDQoUMt1iUkJAAALl265IYREhERKbN38kcU0LCSoaE0UagVBDCEiRZyWQ6lwoCGn/cFNGRLTvn5SzbjBoDIgCCLx8I7sKvK/avcTHWaggPOydAQlZyyO0NDUHJKU72ARpwgoJFWzAwNXyUKaETEIliQoQEApYKgmrcTlpsC2EPDvNzOID35FuH/X5acIiIiIm9SvVoFNtL89YE7OzvbYvmuXbsAADExMaLsjcjISABAaal9dy8SEdHtr8KgxxsHN2DD1VOypYaqCtH64/FmHTGtTS+L5tr2sLUpeLleh78fXI/ssmKL5eIeGpaTBWUGHTZkLZQ8ploFbPlBg8iAIExp0QNNgtpYrD+fq8OMPTkYcWcI7o72R2GFAUuPF2DXdcsJ86oZGjqDHm8c2oANV0+jTK+D3qCCUV8H/qpA3Ci/BAN0+P4r6ecYqg1H98jeqBMQhwa1NBjfOhSxwY5Nris2BVdL/6wi/IOQUVpkfrwy5ajs8ZecS8KqlBMo0Yl/T+wJaPgJAhqP7vgaQRo/XLcjCBDmbxnQOJR1FXP/3IZ/tO0t+Xt5qTAbr+xfg9zyEvSKa4a3j2yyWF/dDA1hyanFZ5Ow9spJZJUVIyYwBG0j4/BRlyEo1evw8v5fkFFWiCktemB8887VOq+t8spL8OK+1dibcQkqqNCjTjw+uWcYatXwO+zPZFfguzOFyCo1IDZYjcdb1EJ8uJ/s9qU6I1acKcTFPB161AtAv8ZBot+XH1P/xMcn/0DjkEjM6zwIRbpyvJz0C04JSknJuVSYY/G4RXisqOQUUPm3NqF5FwCVQdj/S96OtVdO4r46TTCzfV8EauWfh60uFWbjxX2/4ERuuk3bh/oFYPwdnfFS6/tE65acOyBa5i0lp4orDPjqVCGuFujwQKMg9G4YhEv5Onx9qhA3iq3/XwvUqtCzfiAGNLn1+7AhpRg7rpZaZOfll0tPRH9yNB8bUosxID4YPepbvyYGoxGrzhTh0M1yNAnXYnyrWgh2Yl+mHVdLsDG1BEUV0v8T/NRAQp0AjL4rxK7XbnKMMIj/ycld+ObCYacdX61SoUt0I3zadRgiA4Lt2regohQv7f8F+25eQufohvik6zCE+wdZ35GIiIhuG24JaNSvXx/nz5/H0aNH0atXL/Py9evXQ6VS4b77xB9A8vLyAADR0dHuGCIREdUgn5/egw9O2FeS8O8H16NtZBz+1qCFQ+e09W7W/578A/89+YdouajklET2QaE+V/a4+QUACoAJu1ZiefdYAJYf3s/kVOCDg3n4sk8Uvj5ZKApmAECw9tY5Pz+9F/OOC69hpuz5q8rT5WLtjR8xKOp53CjWo0iXj1ndIm3atyq5clMAEKjRimp4m0QIJi6UavsXVJTJ9qqwq+SUIHhgTyDDJFRiIvWNQxtwd2QcBjRsKVr39K7vsTXtHADg9/QLovUB1WgKDohLThXqylBYUHmtcstLcC4/E8W6cmSUFuFQ1lUAlb9/XWIaolVE3Wqd2xZvHNqA5RcOmR+fzc9AmF8gPr5nqMJe3k1nMOKDQ7nIK6/83b9RrMe8Q3n4tHeUbLB1Q0oxNqZWlk47m1OB+DAtWtS+FWy4VpSHkb9/BSOM2IUUaNVqnMnLwL4Mx7OcW4bXEZWcAoCndq3C0EZtUDsgGOuunMIbhzYAAPbcTEWjkAhMbtnD4XNWPce2tPN27fNy0i9oVzsOveLuMC+7WpSLNw//arGdv1pT7d4zzvLT+WJsu1J549bZ3AI0i/DDh4fykG5DMMNkeX4hGodp0SbaH8czy7HsZKFdYzifq8MnR/PRPNLPalB6x9VS/HyhMlB/uUAHf7UKz7QNVdzHVtcKdVhwzHrJu6uFxagTrMEDjTh57WrC9yi55SXmEo7Oci4/E/4aDZbcO9qu/d46tBFL/wpWnsq7iRA/fyzo9ohTx0ZERETezS0lp+677z4YjUbMnz/fXGLqwIED2LhxIwCgX79+on1OnToFAKhb1/UfmImIqGZJyrji0H4HM686fE65PhUAkFDn1uTi4axrktvUDbac+IkJDHF4LGfzpc9RqjciNV+H83kVkutrB976t38w07FraFJiKECxoXJS/2Ku9PmsUcquUavUiA2sJbmuQ+36Dp2vKj+1BuF2lJ6pE2jbxF10gPzPtWFIuORyU9DC1uXmMQVVbzLxjjDrN41svHbGHMwwj+u6fZPNjjog8TsqHEtNc7VAZw5mmGSUGFAoc1c6AKw8W2Tx+KtTlpPW+zIuWfTg2XTtbLX+voO1fmgaWhshWn/Jv5FDf72Ovndsi8XyKft+dvicJkajEXtupjq0b5LgOUv9/jQIiXDo2K6w9qJlFt+i5AK7ghkm5/56/U3Jd7wc2HkbXsM3X7KczN582XmT22eybf8fcjGvZpU9q6lig6T//zpbUsZlu/dZfG6/xePPT+911nCIiIiohnBLQGPy5MlQq9VISUlB06ZNkZCQgJ49e0Kn0yEyMhKjR4vvyti2bRtUKhVatWrljiESEVENUqxwR76SCqP9k0XWhGhVePiOW5PYUiWUnmreBTGCyfm6wWF4slknh86p9Dwyig0ok4i+xASp0T3uVqmeCifUwy41VE7IOVqKPV+mKfbn3YYDAB5v1hFxQZZlkfrWuxOzO/ZDs9Aox076lxda9pDsESDn9ba9rGZ0tAiPxeBGrWXXtwyvg8ENxe9rTubesHkcJmF+gZh4V1e796uqT1xzdI5uaPd+Sg3snalcL/4919fwxrRpRdJ/uzobS9oBwJUCy2MIm8WnleRXq979G20fhL9GC7VKjb+36S1an1Ne+Xd/oSDL4XPIKdKVO9yno1TQtyhPon/GP9qKn4+3SJUJRFtjer1XynizRq7MU1WXC1wXSMgps/331Z6/FXLcU827IMrOUlCOcOTvvVjn2N8KERER3T7cknPdsWNHvP/++3j99ddRWFiIw4cr62/6+flh0aJFombheXl5WL9+PQBYlKgiIiICgGLBxNX4OxLwcOO2ou3mHd+OP26kmB9XZzJUOFfUMdYfjzQPQUyQBuEBt+4PEE72Dm7YCot6jJA85tL7RuOlVvfhanGeeVl2qR5ZpZXjVAGIDdZgbvJGnKgy6a1XmKy8WaKHcG5oWLNgPHxHCAIFPTSs6RFzJx5u1MX8+N/Jq5Fdfuvu8FJD5feOzi9JNew9NvRV3F27HgAgPrQ2zjzyd+y7eRkl+grEBtZCQnQDaNUa/DnsNey7eQmFguBWk1q10SwsCvszLqOgogxf/pmPPEEN+c97NUWbSPsyQB9r2gE9YuNxLPu65HR+qF8AusY0FjV/r0qlUuHnB8Zj2oG1+LhKWbJTebb1OagqZeR01K7mZFOg1g9/DJiCpIzL2JtxCf84uN6m/YTl01xFKoNHrol8TSEf0LD9GMIJXVv6CH3ebTjqBUtnCFXVLDQKrav8bUxv9yDmHd+OnCqlZnLKKr9vFBKJLEGvoOrKKBWXTFrZ63EESvzOfXhiB3akXzQ/Fk6MCgMajUIi8Fw1g4CuJNXq4vm7QxHqb3n/2aZLJTiWcet1r+SviLLwL6NpuBaPNL8VbPfXqFAnWIPrhTqsOltkkelQbMMvoCv/8nIF/7Taxfijb+PKslI7rpYiKf1W2UClbElynpYRdXD+kTewP/OyKGhaHYezrmLW0c3mx848NhEREfkOtxWRfeWVV9CnTx/88MMPSE9PR1xcHB577DFRM3AA2L59Ozp3rmw4OWjQIHcNkYiIaogSwd15naIaYIjEnfHfpx6zCGhU565l4XSOn1qFOyKsT+x2jKoPtUS/DKCyrFLH6AboiAaKx0g8v8cyoKEwgZlRohdlaHSqE2ARzACAChuCOx2jY/Ha3e3Nj1dd2oGkzKoBjcpSOEZU3h1sb8N14YSjRqVG28g4i2WhfoF4qP6don2Dtf54oF5z2WP3/quW/u8Xs3BdMInctnasXeM0aVQrEo1q2d8rpCqNWo1xdyRYBDQuFeagqKIMITY2u25cK7LawQyTAI0W99VtCn+N7Q3GlQJqziQZ0KjGXejeQDagYcfzEmZE2RLQ6Ff/LjRxMKupW2xjbLh62vw4+68Mjca1InEk27L8XUFFqWSvGFtllFqW1/JXazAyvp3ka8svl09YBDSE/xeEGWAdoqpfqs7d2sX4o3ag5d/myaxyHMu49bhEZoY/IkCNhDri15Q6wRrsvFZqGdCwIUPDlX96OaWWrynNwrXmsZ/Psfy56mv4a0BNEhEQhH71xZ/VqyPULwBAlYCGgQENIiIisp9bu+K1bdsWbduK76AVGjp0KIYOrbkNH4mIyLWK9ZZ35cuVDhI2tdS5oVyNK6Za/NSC56EwoZxRrEeZYMYzQCOeDNTZUH5LLZhEFPZsMJWcAiqzNCROo0g44RjuH2h3UMQardq5x3OGu8JjoYLKIpvndF4GOkUrB7ZMXJEhoZEJuklx14RiucSdu+4qd+Uq6UXSk3f6arw0SV0nIWFTe3sIg2emDI0GEj1hLhXmoI0gKGkPYYZGTGAt2deEIEFzb2sZGuHVCLR4E2FwutSBlIUQreXfuy0lp1wpt8zy/1FElaxHjeClqTp/K+R5AWrLv9syidKCRERERNa4pYcGERGRMwnvxJUr8yOcpK3OneWenO4RTkbqFYIR14v0orEGSMxl2hLcEQY06ooCGrfupnakj0Z+RZnF4zAbMxTs4e/4PK7LBGn90CS0tsWyU3m299EIVihr5Shh8E+Ju7IkbssMDZmmz9XpC2BLhoY9P1+hSH/LgEb2X2WmAjXi+6IuFeY4fB5AnKERExgisyVEZahEPTREAdOgao3NWwQJZvhLHXjxDfazfG23peSUK1tXCEtORVbJStEI/g8xQ6NmCxC8bjgrQ6Om91ciuh2NHz8eKpUK8fHxnh4KgMrSryqVCjNnzvT0UIjICTwW0DAajbhw4QIOHDiAAwcO4MKFC9VqZkdERL6jRHAnbrDMHetaOzIb7GVrIoG1RtK28BcENJSyK7JLxc9ROkPDhoAGrGVo3Jp8dGSyS3QHtQsmHL0xQwMAWkVYlr2ypzG45zM0WHLKEYUVBhSUS49f7iZ7W56vLROC1cvQsPy7NPXTkBpadQMamaKARi3ZbYUBFeH/BWGPHlcETD1BmKFRYm4KbvsxggXHsKXklKsYjUZRU3ClDA17+s2Q9wkQlDcs0+vsmgOQ27ZI0E+LiMjX9OrVyxy0EX75+fkhJiYG999/P+bOnYvs7GxPD5eo2twe0Pjtt98wePBghIWF4c4770TXrl3RtWtX3HnnnQgLC8OQIUOwadMmdw+LiIhqkGLBB1e5DA2nlpyy8fO2K4LzwslIWxp6VyUZ0LDhWgiDNsIMjTKLgIb9z1tYcsolGRoS73S84QaKluF1LB6fyrW9MbhS43FHaewI/LgroFFxmwU00mX6ZwDyGRrlMnffV/0dLrehZEt1AhpyGRpS5b+qn6FhWXIqWiFDQ/h3YD1Dw7tKTjkaahWXnJL+e1Q6foifoOSUBzttF1UYRUGKyCoBDS0zNG4rwswqwLYsMxO5JuIMaBD5pvj4eKhUKowfP97TQ/FqOp0OmZmZ+OOPP/DGG2+gZcuW2L17t6eHRVQtbuuhUV5ejvHjx2PlypUApCcTioqKsH79eqxfvx6jR49GYmIi/P2l66ITEZHvKhFMXMndsa4VZTY4MUPD1u2ckCAgCmjY+Tz8JQIaUpPFQsIMDaWSU45kaIgDGs6fcJTK0KgweL4UVasIy4CGpzM0tCp7moJ7ruRUTZ7KlGsIDsjfdS7XH6FMbzRPbNsyGejUHhqmDA2JbS8V5Tp8HgDIKBNkaAQolZyys4eGl5WcCvZTOdS7Ikimh4Y9RxJnaFj/n+Kqvz1huSmAPTRuZ8IeGkBlkEJYikqO8P2fifBGFyIiIW+4ocldkpOTLR6Xl5fj4sWL+Oqrr7BmzRrcvHkTgwcPxpkzZxATE+OhURJVj9sCGmPGjMHPP/8Mo9EIrVaLhx56CPfccw/q1q0LAEhPT0dSUhI2b96MiooKrFy5EjqdDqtWrXLXEImIqIYQ9tCQawourr3t+h4arnirLCw5pdRDQ0ijkp7Ut6nklCDDxfUlp5wf0PCTeO5leqNkkMedWgpKTl0oyLJ5Usc1Jae8K0PDaDTKZGjU3NnMNJmG4ACgk/mQLdcfobDCiMC/flXKbSo5VY0eGoKSU6YMDSnOztBQLjll+Xcg/L/gjgyw6nB0XiVQ8NpV4pQeGp6b5BGWm6rlp4JflecofG3y4FDJCYQlpwD7+mjIBTSYoUFEdEubNm1Eyzp27IgRI0Zg3LhxWL58OXJycrB48WK88cYbHhghUfW5JaCxfv16/PTTT1CpVOjduzeWLFmCxo0bS257+fJlPPXUU9i2bRt+/PFHbNiwAQMGDHDHMImIqAbQGwyiO5KDtNL/zpxacspBzuihIby72pbsChPh5JeJM5qC64wV+H/2zjs8iqr/4me2pjcgQGihd+kdJL4gXUBFfMUCCKKADcXeQH4qiu1VBAWlWQEpIkUp0mtCb1JDS4BAet06vz+W3ezcuTM7W7NJ7ud5fAw77e7s1Hvu9xyT1QitSufRqP1AVGhoKf24BguPSPHHAYW0nLLwVpzLu4VWsTVdLusXyyl3MjT8mQ58B6ljvKJaTkmNOpcSNPKNVlQNtV0XlFhOufP7ksQRllPZBnuGhj8sp5SHgpPCnshyKgCCqTd4Wukktpyir0dOowzTCI+HsszQyCmRzs8AAI2oQqP8XgMY4lBwACgxKxc0isxM0GAwGAxveOWVV7BkyRIAQHJychm3hsHwnIBkaCxatAgA0KZNG/z111+SYgYA1K1bFxs2bEDbtm0BAAsXLgxACxkMBoNRXqCNzguE5RTZheILKymlkIKGOyPkpSoRlFVokKHg4tHS9hwNX1Ro+GMEtVSFRlkTpQtBrbBowWfOORpyZfF+sZxyYwR/ICo0pGyUrOXYdEreckqiQkOis7rAqQPaleWUhlOB8+KCRVZoFJgNMFkt1F/ienGepMe9EsSChvJQcNJyKhCCqTd4Gm5NWk6ZrNLHjxThRIVGiYUvM6Eg2yA8fmNDCEFDVGnp9yYx/AgtQ8OtCg0maDCClGnTpjkCmAEgJycH7733Hlq2bImIiAjExcXhnnvuwa+//upyXZcuXcKUKVPQsmVLREZGIiwsDI0bN8bTTz8tshIisbdh2rRpAIDNmzdj6NChqFmzJkJCQtCgQQM8++yzSEtLU/xdpNi2bZtjvm3btrn8XiSFhYVYunQpxo8fj7Zt2yI6OtoRXt27d298+umnKCgooC5rD8C+fPkyAGDx4sWiIOykpCTBMuS+oWG1WvHTTz9h0KBBqFGjBnQ6HapVq4Z77rkHc+bMgdEofa0h91tJSQlmzZqF9u3bIzIyEpGRkejcuTNmz54NsxtCrq+pX7++42+DwVBm7WAwvCUgFRr79u0Dx3F4+eWXodW6fgnXarWYOnUqHnvsMezbty8ALWQwGAxGeYEmaEhZTpGdtO6GaQsow1Bw0nLKzFug1BGfHM3rWIeSDA3iRSZCo0eYRisYIVnCFyECsT7J0PCLxz3l6weDoAHYcjTSinId/3bO0aAFLtsp8wqNshQ0ymmFBs/z8oKGxNeStpwq/Q1cdQZ6k58BiDM0ACBbxnbqamEOGkVV9WhbYsspuQwNwnLK6d5gsVqRbxK+pAdbhYaSaybt6k2ruiux8G5ZWJGWU4DNdipS557wxfO8V2IZIM7QiNELj1cyQ8Nd8YYRXJDPM4B00DcNScspExM0GMFDamoq7r33Xly4cMHxWWFhIbZt24Zt27Zh9erV+Pnnn6GhVJgvWbIEEyZMEHU0nz9/HufPn8cPP/yAGTNmKLIJmj59uqjzPjU1Fd988w1++ukn/Pnnn+jVq5dnX9IHDB48GNu3bxd9fvv2bezYsQM7duzAnDlzsH79ejRr1szv7cnKysLQoUNFYdm3b992/HazZ8/Ghg0bZAdpA8DNmzcxYMAAHDlyRPB5cnIykpOTsXHjRqxevRoqLyxBPcUuAgG2AeUMRnklIGfPrVu3AAAtWrRQvIz9gnX79m2/tInBYDAY5RNa8KPUiHVxhobvOkIUh4L7wXLKHessqQoNkxLLKaLtHMehRmiU4LMSi21EtUeWU0bhy5o/KjRofV/GIBE0mkcLczRO52ZIzCkkrMwzNMrOcqqc6hnIM/IoljH/l+qkNUhVaBidKjRcWE55K2jEUoTGLEOxpHjrqe2UwWIWiRByFRqk1aBzhQa5HgCI1gZPKLiVl5Ms5SErNADpSh4pSMspwLMcDV+cjmSGRixhOUXewoLk8s3wEI7jRKKGTwQNVqHBCCIefvhhpKam4plnnsHmzZuRnJyMH374AU2aNAEALFu2DK+88opouXXr1mHMmDEwGAyIiIjAe++9h507d2Lv3r347LPPULVqVVgsFrz55puYO3eubBvWrVuHadOmoWnTpvjhhx+QnJyMzZs34+mnn4ZKpUJubi6GDBmCq1ev+mUfKMFsNqN169Z46623sGrVKuzfvx/79u3D0qVL8d///hcqlQqpqakYPnw4SkqEg6AWLlyI48ePIyEhAQAwbNgwHD9+XPCfO24vFosFQ4YMcYgZvXv3xvLly5GSkoI1a9Zg+PDhAIDTp0+jT58+kpUjdh544AGcOnUKzz//PDZt2oSDBw/il19+QfPmzQEAf/75J+bPn6+4fb5k1qxZjr+HDRtWJm1gMHxBQCo0wsPDkZOTg8zMTMXLZGfbXobCwsSjwhgMBoNReSmmlOhKjVjXcJ4LASRlGQpOBvqaeeUv/3ofWk4BQPWQCFzML72fl3hjORWACg1au6RGvQeaFjHCHA1BhYZMEytFhYZEJ315tZySCwQHpO2HlFRouAoF9yYQHAB0ag3CNTpBh2G2sUjyl/BU0LhN2E0BQFU3KjScMzTI6i8AiNIFTyi4VGaKEmhVdyVmsUAiJ1Hq1TahwPnwKjRZAcW1fzYsVsBLvUycoUFaThG2gSxDo/yjV2sEVXjuWE7RBrUAQJGE0MGQx8pbkSlTcVfRqKIPg8qLTCmlJCcn45dffsEjjzzi+Kxjx4546KGH0KtXLxw9ehRfffUVxo0b5whvNplMmDBhAnieR0REBHbu3OmwYQeArl274sEHH0S3bt1w/fp1TJ06FQ899BCqVqVXRKakpKB9+/bYvn07IiJKBwf06dMHPXr0wBNPPIG8vDy8/PLLWLZsmX92hAsWLlyIxo0biz7v0qULRo4ciXHjxqF///44c+YMfv75Z4wbN84xj902ye4AExMTQw3CVsq3336LvXv3AgCeeOIJLFq0yFGB2KFDB9x3331466238OGHH+LChQuYMWMGPv74Y8n12aswnG2v2rdvj/79+6NFixa4efMm5syZg6efftrjNstx4sQJwb+NRiMuXbqEn376CatWrQJgE94GDBjgl+0zGIEgIIJG06ZNsX//fixduhR9+/ZVtMzSpUsdyzIYDAaDYYccnafhVJIjkEWWU7wXllMe4ousDZ1KeLt2R5jRS3Q2eWI5BYiDwb0RNPICkKFBsygyBv4woNI8RlihcTbvFsxWCzQqtbzlVKXI0KB3cFkDsG1/IGc3BUhXvUiNvC90I0PD2woNwFal4SxoZMl0gF0p9EzQIO2mVByHOL20yEmeB85iN5nPw4FDpB+uL57iTZWTiuOgUwFGp1NBrvqHBsdxCNNyyHeq9PEkGNzC89B6WYXIKjQqH3qVBvkoraIi82/koA1qAZjllKdkGooQ/+u0sm5GwMh4ZJps5Z+vGDJkiEDMsBMZGYl58+ahS5cusFqt+PbbbzF79mwAwKpVq5Ceng4AePvttwVihp169eph1qxZeOyxx1BUVISFCxdSKz3szJs3TyBm2Hn88cfx66+/YsOGDVi1ahVu3LiBGjVqePhtPYcmZjjTt29fDB06FKtXr8bq1asFgoav+eabbwAA1apVw+zZs6l2itOnT8fKlSvx77//Yv78+Xj//feh19OfLZ577jlRhgcAxMXFYezYsZg5cyaOHz+O3NxcREdHi1fgJa1bt5ac1rRpU7z++usYPXq0z7fLYASSgFhODR06FDzPY+HChY6AcDl+/PFHLFiwABzHOUq7GAwGg8EAxKPz5Eara4hRWN50Iikd/eq5kYg04goN5T3yvq7QqBHmQ0GDDO31g8c9rV3Bk6EhfHk0WMxIzc8CIF/pU/YVGv7ffxUtQ+OGC0HD7QoNp95sV5ZT5HXQE8gcjWxjseS1ztMKDTIQ3NVIWnEouHSFRqRWH5BRuUrx9hJE2k4VU1coLzSQtlOeWE754lIqztAgBA2iQsODZjKCDPLcZZZTjIrG2LFjJad17twZLVu2BGAL7LZj/5vjODz55JOSyz/00EOODnDn5Ulat26NDh06SE63b8NsNnsU6O0Pbt26hXPnzuHEiROO/6pVqwYAOHr0qN+2m56ejtOnTwMARo4cicjISOp8Go3G8dtmZ2fj0KFDkut89NFHJafZfxee55Gamuppsz3mzJkz+O6777Bjx46Ab5vB8CUBebJ/7rnnULNmTfA8j3HjxmHIkCFYuXIl0tLSYDKZYDabkZaWhpUrV2LIkCEYM2YMrFYrEhIS8OyzzwaiiQwGg8EoJ5Avs1KB4IC4k9Yby6myhBxhLZUvQENK0FCyDjJDAwCqh0gJGu71MvE8LxpFHa2tXIJG1ZBwVNULLXXsORpy4fL+qNBwS9AIwHlU0QQNVxUa7mZo5AsspwJQoUFUSmQZinyeoSEOBJcfRUtaTpl5q6PyjLy2+KP6yxuUWk5JSRIhhBjhboYGAIQTweCFJvfPa28vpSVmcbaMSNAgdgILBS//6JmgwajgdOrUSXZ6586dAQBnz56F0Wg7du0WQfXr13d04tPQ6XRo166dYBlv2gAAx48fl53Xn+zevRsPP/wwqlSpgvj4eDRp0gStW7d2/GfPmfBntq7zfuzSpYvsvM7T5fa/XIh5XFyc4+/8/HwlTXQbnucF/1ksFty8eRMrVqxAmzZtsG/fPvTr1w+///67X7bPYASCgAga4eHhWLt2LWJiYsDzPDZs2ICHHnoIdevWRUhICPR6PerWrYuHHnoIGzZsAM/ziI2Nxdq1a1mGBoPBYDAEFJuFL7Ohamn3RH9aTim1kvJFKDgZoKmkusKxrFSFhpJQcDcsp9zt2CqxmEXfo7JVaADyORpSVArLKYkOruD55dzDteUU/XPpDI3Sz135z/tC0IjTERUahmLJeS8X5ni0DbJCo5pMfgYgDgUHSq1rxPk8vr+2eIPZS2GOzNEoMYvTZVzdo8KIdXhiOWX1UlzIMYjPi1iXGRpebZIRBIgEDR9kaDBBgxFMxMfHy06vXt327MfzvCM7NisrS9GyABz2UPZlvGmDq/X4k2nTpqFnz55YtmyZyzYUF0s/d3iL87Zd7Tdnay65Nsv1Y6qcnrktLqpsfYVKpUJ8fDweeOAB7Nq1C02aNIHRaMSTTz5ZZr8/g+EtAcnQAIB27drh+PHjeOGFF7B69WrJE1etVuP+++/HF198gVq1agWqeQwGg8EoJxSJBA3lllOBqNDwxwByskPSbLUoHpIQ4utQcB9laNBCe/3R6UizxTEGkaDRPCYeO25edPz79B1BI/CWU8qFt0AEc1ekCg0rz+NmkbDDLlInzC+QGnUuNfJeaDnl31BwAIglLKeyDNKh4FcLc2DlrW5bPHlboQHYBI0IrZ6SzxNcgoa3RQahxHXd3QwNAAjTkpZT7t8fvbV/IvMz9GoOoRpXGRrl7xrAEKJXkRUayjv0yEEtdqSEDoY8VfRhyHhkWlk3I2BU0QdmsCwtfyEQy/pjPf5iy5YtmD59OgCgQYMGmDp1Knr27Im6desiPDwcmjuDFt59913MmDEjYO0K9v3mCyIiIjBx4kRMmTIF+fn5+P333zFhwoSybhaD4TYBEzQAICEhAcuXL8f169exbds2nDhxwqEGxsXFoVWrVkhKSkLNmjUD2SwGg8FglCPcsZwiR517laEhWlTZA68vnou9sZzyrkJD3CFJVmgYrDbrGXc76EhLGMA/nY7lrkIj946gIXOshvlB0HCn89kSAMsXqWM8EGKKr8kusYIciF4nQoNTWaXXMnczNAIdCk6Gc2cbixGhpV97TVYLrhflo1a4eyGXtw3uVWiQPvxAaWdn0FdoeHkOiSo0LLzbYnq4hrSckl6BlJDo7aUgp0Q+EBwA1MRHHugujCCDrNAokbCRosEsp3yLilMFJCS7snHz5k3UqVNHdjpg6zyPjY0FUGpDZJ8mx40bNwTLyG1DyXRyPc4VBFarVfBvZwoLC6mfK8FuJRUbG4t9+/ZJ2mwFonrA+fu72m/2fU8uV95wtsQqS8sxBsMbAipo2KlZsyYeeeSRstg0g8FgMMo55Mus3Gh1UYaGF5ZTZRkKrlOTllOBCQWnLUkKGhaYYeKNbotFZIWGTqUWdXL4gmAXNJpHCwWN0zkZNr9bmWX8YTnlDgGxnJKs0Ch/vZmk3ZReDVQLUwMCQUMiQ0PScsoKnufBcVyABA1xhUa4jJh8uSDbbUGDtJwi82VIaOeBvWNUlM+jCxXNW5Z4KwSILad4UUWdKy09jMjQkAsFlxIRvK2WICs0YkLEnWYa4nvxsAkstApCRvnAq1BwiQoNJmgwgonk5GRZQSM5ORkA0LhxY+h0tntpq1atsHfvXqSmpuLWrVuSHfwmkwmHDx92LONqG0qmk+txDsXOzs5GlSpVqOs4e/as7DbkOHnyJADgnnvukc0MSUlJkV2PLyoqnL///v378fjjj0vOe+DAAepy5Q2z2Uz9m8EoTwQkQyMYycjIwNq1a/Huu+9i4MCBqFq1KjiOA8dxGDNmjNvr27BhA+6//37Url0ber0etWvXxv33348NGzb4tN1FRUX45JNP0KlTJ8TFxSE8PBzNmjXDyy+/jMuXL/t0WwwGgxGMkLYCYXKWU2SGRhmEgvsiQ0PLkZZTyr8HTdDgeV5ZKLgCyykAKLEWeF2h4a8R1MEuaJAVGoVmI64W5sgKY5Vb0Aie304ppKBRI1wDwlVHOkNDopPZZAXsrlNGF3YtpPWeJ8TqxBUaclwudD8Y3F3LKa1KLbq+2jM0SME02ELBFVs1SXTU+MVySiYUXEq48DbPIsfgfoWGL7bLKFu8ydAolhA/mKDBCCYWL14sOS05OdkRJt23b1/H5/a/eZ7HwoULJZf//fffkZubK1qe5Pjx4w7hg8aCBQsA2Czfk5KSBNPq16/v+FtOUPjtt98kp7nC3okuV+Vx+PBh7N+/X3Y9ISG29weDweBxWxISEtC8eXMAwLJly1BQUECdz2KxYNGiRQBslSXt27f3eJtljfPvKie+MRjBTKUVNKpXr4777rsPM2bMwF9//YXMzEyP1mO1WjF+/HgMGjQIq1evRlpaGoxGI9LS0rB69WoMGjQITz31FKw+6EQ7f/482rZti9deew0pKSnIzs5GUVERzpw5g88//xx33XUX1q5d6/V2GAwGI5gpJkaRyFVo+DNDI5CDQ0WWU7z4hT5aR28QTdBQ2imsoogxoRqtyBrKYC2Cu3tW3OHoL0EjuDM0EsKiEEl0tp7OzZBdxh8ZGu4QCA97qU764PnllHOjUHi+1ghTi0adu2s5BZTmaAQkFJyaoSHdtssFngga7llOcRwnGuldLFmhEVyWU96GadMqNNw9O9yxnJKu0HBrkyKyCcupGJqgQbnZshyN8o03GRqSoeAmJmgwgoc1a9Zg2bJlos8LCgrw9NNPA7DZOtn/BoDhw4cjISEBAPDBBx9QbYCuXr2KqVOnArCFTo8dO1a2HRMmTKAKBr/88gvWr1/v2C5p+d69e3dHhsUXX3xBtUGdNWuWoFrBXRo3bgwA2LVrF86fPy+afuvWLdlKCTv2tl+4cMHjtgDA5MmTHdt9/vnnqfNMnz4dp06dAgA89dRT0OuDa7CEUi5fvoxvvvnG8e9BgwaVYWsYDM8JuOVUZmYm9u7di4sXLyI/P18yHNyZd999169tqlu3Lpo1a4aNGze6vexbb72FH374AYAt+PzVV19Fw4YNceHCBXzyySc4fPgwvv/+e1SrVg0ffvihx23Mz8/H4MGDce7cOQC2C+h///tfhIaGYuvWrfjoo4+Ql5eHhx9+GLt370bbtm093haDwWAEMyLLKTcqNAIxsjwgllMUYSZar0KJxSLy6tdT+jKV2E0B9AoNAKgeGiEQJEqshW530AUqtJfWrJIgqqzmOA4tYqpj/60rjs9O5dxEz/hEyWUqR4UG/UcqjxUaN4qEJ2VCuBpG4sB0NxQcAApMPKqEBiZDI1ZHETRkfgrPBA33KjQAm7jnfE+wW06Rgmm0Nrgsp7wN0yYFjWIPlAV3LKekcnO8FRZyiBtWLM1yijL8ztv9xyhb9MQzDcvQYFQ0OnbsiFGjRmH79u0YMWIEoqKicOzYMXz88cc4c+YMAFsH+l133eVYRqfTYd68ebjvvvuQl5eHHj164JVXXkGfPn2gVquxZ88ezJw5ExkZtkEvn376KapWrSrbhpSUFHTs2BGvvfYaWrdujdzcXPz+++/47rvvANispT799FPRsvHx8XjooYfw66+/4u+//8bQoUMxefJkVK9eHVeuXMGPP/6IFStWoHv37tizZ49H++iJJ57An3/+icLCQvTu3Ruvv/46OnToAADYs2cPPv/8c9y4cQPdunXD3r17JdfTvXt3bN26FcnJyZg5cyYGDhyI8HDbgIjQ0FDUqlVLUXueeeYZ/Pzzz9i7dy8WLlyIy5cvY9KkSahfvz6uX7+OBQsWYOXKlQCAhg0b4p133vHoewcKexWQHavViszMTOzcuRNfffWVY0D3o48+yvoOGeWWgAkaGRkZmDJlCn7//Xe3Pdr8IWi8++676NSpEzp16oTq1avj0qVLgtI6JZw9e9ZxA+jYsSN27NiB0FDbC1OnTp0wdOhQ9O7dGykpKZg1axaefPJJNGrUyKP2zpo1y+FR+Mknn+CVV15xTOvWrRuSkpLQu3dvFBUV4cUXX8S2bds82g6DwWAEOyLLKRkfd3GGhucdsXIhzXL4opCD7JCkZWioOA7VQtW4VkD69YtbYFYYKi4laNQIjcS5vNuOf5dYC923nApQaC/tFyc7k8ua5tHxAkHjdM5N+QyNylChUYEsp9ILSMspNdIJGyqzxPeSq9DIv1OhYXThP6+VCPN0B7JCI9tY7NMKDYvViiyD0MbKVYUGIPbit1tOkRUaUbrgGkXprWVSKKVCQ5Tz5OLmE6ZRbjklJSD42nJKcYUGs5wq14QQorwvMjSKJD5nMMqCZcuWoU+fPpgzZw7mzJkjmv7ggw/i888/F30+ePBgLFy4EE8//TTy8/Px7rvvivrC1Go1ZsyYgYkTJ8q2YfDgwRg8eDCmT59OreSIiorCmjVrkJiYSF3+iy++QEpKCs6dO4e1a9eKnED++9//Yvz48bK2V3KMGDECY8eOxcKFC5Geni6qilCr1fjiiy+QnZ0tK2hMnDgRc+fORVZWFt544w288cYbjmm9e/dW3C+mVquxdu1aDB06FLt378Y///yDf/75RzRf8+bNsWHDBkREuB50UZa0bt3a5TwPP/ywY3A2g1EeCYjlVHZ2Nnr27InffvsNJpPJFnbpxn/+YPr06RgyZAiqV6/uemYJvvzyS4c48/XXXzvEDDthYWH4+uuvAdg8Ar/44guPtmMymfDVV18BsF1AX375ZdE83bt3x7hx4wAA27dvdxkCxWAwGOUVcYWGtDbvT8spKfxx29Iq+B4cgGqh4pHYVEFDcYUG/TGBDAYvsRa6bT2SZxR63QayQiOYMjQAcY7GqZyblT5DQyrjpbwJGlaeR0axWNAgT0tJyymZoeiFdzqgA1KhoRc+45qsFtkR0e5maGQaCkXHvJIKDbJj1N7ZKbKc8tP1xVO8FQVD1DTLKfcIJyo0CmVDwf1ToUGGgsdSSgqpGRrl7DrAECLO0FBuOcUqNBjlgfr16+PgwYN488030bx5c4SFhSE6Ohp33303fvrpJ/z+++8OSyeS0aNH499//8ULL7yA5s2bIzw8HKGhoWjYsCGeeuopHD58WNBpL8e0adPw119/YfDgwahevTp0Oh0SExMxadIknDx5Er1795Zctnr16ti/fz9ee+01NG7cGHq9HnFxcY7v8Ouvv0Kt9u75YsGCBfjxxx/Rq1cvREZGQq/Xo169enj88cexZ88evPDCCy7XUatWLRw4cADjxo1Do0aNHJkanhAXF4cdO3ZgyZIlGDBgAKpXrw6tVosqVaogKSkJs2fPxpEjR1CvXj2Pt1FWcByHyMhItGjRAuPGjcP27dvx22+/lVvbLAYDCFCFxsyZMx2+eP369cNLL72EDh06IC4uDlwgTch9CM/z+OOPPwAAzZo1Q9euXanzde3aFU2bNsWZM2fwxx9/YPbs2W5/561btzqCn0aPHg2VxEi7MWPGOMoHV61ahU6dOrm1HQaDwSgPkKPz5Co0fGk5JRr9qnA5X9zndMTLP82OR8UB1cLELxY6iqBhUijsSFtOiQUNdzuaRZYwfgsFF7fLEGR+Jc1pgoZME8u8QiMAwqBUJ70/LN38ye1iq0isSAjX4GSm8DomJWjIiW8FdzIPXAkavggFjyMspwAg01AkOf/lgmzwPK/4+nfbIPb4rqqgQoMUtCVDwYMsQ0Oppiq196iWU8Q6Xe35MGIdRSZe8jeTaq83xW5mK498o3AFMTTLKcoXkTpfGOUDPSGyulOhIVWJwQQNRrARGxuLDz74AB988IHbyyYmJuLLL7/0STv69++P/v37e7RsbGwsZs6ciZkzZ1KnJyUlyQ5AXrRokSNEW4rHHnsMjz32mOT0adOmYdq0abLraNiwIb7//nvZeQBl1fYqlQqPP/64ovwOEiVtBVzvN09hLi2MykZAKjT++OMPcByHIUOG4K+//kK/fv1QpUqVcitmAEBqairS09MBQFbZdp6elpaGS5cuub2tXbt2idZFo2PHjggLs71w7t692+3tMBgMRnmgiKzQkA0FJ62afBgKLvG5PzpcScsYaoUGB1QLFd/WyY4v2/IKLackviWtQsPdPSuyhNH6Z4RQeazQyDYW42ZxPnVeDafyyYh7byjLUPDyVqGRTgSCh2k4ROo4US4AbZ+arTxkXIBQYLKC53nJahY7vjheonR6cMT1IEtG0Cg0G2Wnk5CB4NG6EEXtJis0SqRCwStYhUYocQB5UqERphWug4e0xZk/QsFJuykAiGWh4JUCcYWGG5ZTMhUa/nJ2YDAYDAaDEXwEpELjyhWbL/TkyZMDsbmAcOrUKcffzZo1k53Xefrp06fdzupQui2NRoNGjRrh2LFjOH36tFvbAIBr167JTr9+/brb62QwGJWXM7kZ+ODoFhSajXi2eQ/cU1NZhtC6q6fw04VDuCuuJqa2SkKR2Yh3D/2NY9nXwYPHiewbgvnl7HfIjpD0ojz0/es71NLXR4OQjgA4hGo49Kkbig7VxR3qh24asOVqMYpMvCjYN5BoCWGmyFI6ErHEWogTBbuwLz8bG26pRBkaj+7QQE+IGtcKcxVtVy5Dw5nrxot47eBS9KxZDW/e1QcRTuKExcpj9YUinMo0CsSFjdeE95Sjt4Dpe0ttasK0HPrWDUW7eOHvwvM8Nl8pQfJNA6w8j1ZVdBjaMAy3i634/VwhbhG/E5lfAAC3ii2CbQE2QahJjBYPNg6HllLV4k/qhcciRK1xjC4HgIe2/Uidt6yrMwBgV0YqkjaIPaHdQc2pcHf1BnirTR9o7nRc5xlL8N7hv3EkKx1XCnOoy5VYzNRtN42Kx7R2/VAzLEo07UZRHqYd2Yh/czNctis+JAImqxW5xmJYwcPK89h5MxUA0CW2E/rF94WaU+Hf/DM4kXcKNUNqoltcZ0l7NrLTtka4GhzHQUOcW7uuZ2LLhvWoE6nBtLb9UCciBusv5eJYwXYUWfLQOKwjqmhrCpbZeLkYKTfEooFepYfBWmrpdjrLdrzHhagwrGE46ka5//iv4lSI1YcKRAryWkwycNP3CFN4vGaWCL9HNb0yb2oyQ+ODY1uw8HwysozC9S09Y8LOy/I2WPWiNBjaMAxrLxYhNdd1B2vtSA1GNglHpE6FM1kmrL9UhDxKJz2NfDmlSgGkUJ1ZYsH2tBKJuemQllMA8OH+HGhU4s+LJQSTJafyEaH1bHwcKZ5oVEAEpU00y6mvD+cJ7BTD79wv2sYHh3VGRpGFej8CgGi9CkMahKFRTNlfy+1suVKMAzcMMDr9JmoV0LKKDsMahlGfBS7lmbDmQhGyS+jHctVQNe5vFIaEiNJzlOd57Eoz4Ngt4X5Zd/W04nvKqZyb1M8tvBVGq0UkljAYDAaDwaiYBOSOHxERAYPB4FVeRbDh3Plfu3Zt2Xnr1Knj+Pvq1asebys8PBwxMTEut3Xs2DHcunULBoPBLU8853YyGAyGN1h5KwZu/B6pBVkAgLVXT+HSQ29ROxudOZVzA0M2LwAA/JZ6BGpOhUOZaViaekRyGbkOM9JyCgC2XD8H4BzaR/BoFNYOAHAow4jPesehltOLd1qBGbMO5kpbaijs8/ZF17iO4lFrtwbZl7sWGabLAIArxaLZcOu2+DOlKLWcAoCdt45j5y2bJdgXXYY5Pl9zsQjLzortZC4VXRb8O7dEi1NZwpGXhzKM+KJ3HGqEl/4u+24Y8P2J0uqF47dN0Ko4/HO1WCTmSGGyQrQtADiZaYKZBx5rHtigP7VKhWbR8TiSle747KjT386UdX4GYBuZv/3GRa/X88/181BxHN5pey8AYNLelfj54iHZZXjw1G1vv3ERZ/IysG3gJNG0R7b/jG03Lnjd3v3ZySgyhqKGLhGbsn8HAJzIP4VbxUCTsA6K1lEz3HYuk520u3NXItt8E7gBpNy+it/ufg4vHViLC8VHAADXDGcxtOqz0KlKn+tuF1txvVCYRQMAYaoYGKylnX75xtLj/XimCXP/UwVqSqe1K2J1QkFDaqS0neTb7j/z2lESCA6IBb5zebdxLk980buap0JOkXx7T2WZsOES5SIqM//tYguebRuFDw5kwxBAzZvM0DBbbceDO5DB4gBwNkf5SHkAuJJvAeCbLx6jV1Gr91UcBxUnrLa7QBGcDmUY8TlxvygrPk7Okb0fHbllxLd9qlIrKANN8g0D5h2nVwQev22CTsVhcAOh5ZzZyuOD/TnIM8pVRJhwJtuI/yWVujIczzRh9tE8XCceCTJKCpBxo8CbrwEAKDIbmaDBYDAYDEYlISB3/NatW2Pbtm24fPky2rZtG4hN+p38/NIHv4gI+Y6P8PDSl7KCAvcf1uzbcrUd2rZYyA+DwSgLUvOzHGIGYPN435txGQ8ktpZd7p1Dfwv+/VrKOmrnuTNV9dIdX7EU33c7t0xX0Qg2QYMHcOimUSBonM02yfqDk/7jdsh8CrUP/OtpgdmF1lxEqGNwy+R5p6ErYnSh1M/rhcdKLvPlqZ0CQeNfinBAt4UQf2blgTPZJkEH1elM8fr23TAoFjNccTqrbHy4W8fWFAgaUijt6PUENacKSOC3MztulooTO296J5LsvJkKK28VVEvwPC/YhrecLUrBTaNQjDtSsEWxoGG/xkQ6jWovsuTZxIw7HMu+jm1pNx1iBgBYYcH54kNoEd5NsD4rxewtSlNVsD69qvQ8zjVYcb3QgtqR7r8C1AqLxoX8TLeX84Q64TGK5pO7/jujV/nnvDmdZcKFXLNfxAwVB0EVgjMxFGsmkjBKtYNw/Rxi9Cqq9VNZUC1U2mIsQsu56Dy32V+dyzaXuaCRb7S6vB8Vm3mk5pnQPE46AyxQuLrnncoyigSN9AKLy98DAG4WWZFtsCIuxPbbfn3YVh2q56Sfzbyh2GKC9NMJg8FgBC9paWnIzpavJKURHh7utgMMg1FRCEiGxtNPPw2e5/Hjj3T7hPJISUlpWbdOJ/8w6iwqFBcrH/lFbsvVdrzd1tWrV2X/O3DggHsNZzAYlRaad7qZd93jczgzTfRZnlHaRqNeRCwG1Ja24msZWx3d4xOp0yy8cIRnap6JmC7dTr0a6FmL7smeaxRee30Rdk3r3EuMNsDKW8G7nV6hjEaRVZFUoyF1WqvYGrLLOnv6mxWmxlbV1qJ+TuZdGCnry/Vhb2JZhc0+3bQrdAoyA55u2s3lPJ7yXfcHRZ+FqDVY9Z8xqBkqX13lKc5ZGd5m3Fh5XhSmbuGtPs3dMPBFyDHTLU9cEaHl0OvOdeOuajpH5o2ZF4t0BZSA21BdvsiSh3b+NwxpAw1ne2bUcDrU1bcQTPc09+Dppl0lp0VpQ/B+u/6inA1P0HAqjG/SRdG8Tzbu7DL0vK6+haCyxZdYeQhsejyleZy48qpnQojkCP74MDXaVJN+L9CqgLsl7lHO9K0bPNki99ajC+gA0Leu9DRnzEGQoaD0eCg2lX1bAdfB7rTpJjfS4C1Olyi7CJKgb4QQP4iMQfDzMxgMhke89dZbaN26tdv/jR07tqybzmCUGQEZwjJy5Ej8+eef+OWXXzBz5ky8/vrrgdisXwkJKX0BMBrlR7YYDKV2AKGhyh7IadtytR1vt+XKOovBYDCUkm0UC6pKQjxpdhOkrck7bfqiemgkYnSh6F+rKeL00iP9VJwKG/s9hb/TzuLl5DW4VFA68sVK2GSQnulkc6uHqTC4fhg0Kg6tqupQPYze+ZxDCDBSVQ7uwHEc6oTH4KpTrkDP2hYkhkbid2FRC95tcy+MFtt9o9Ydv347t0sKMe3IRtH6VRyHVf8Z41h/rC4UA2o3Q5SEGMNxHNrG1cKRLLEABQDXCnNQP7IKAHHdRZcaejSLU2P5NuHno5pURZ3wCPx1qRjphaW/jYnQKiyUPm9ypKiaA0a3EFY16u6MdCY7my7kmrH9WulvVlb9IT2q18ex4S9j+42LAkHoTO4tXC3MQVKNhuhcrQ66SQh0vmBcky5oE5eAq4U5aBOXgCOZ6WhbJQENIqugW3w9bEw7izyTez79JLtupuI3Jws5uYqQyc26o01cAjpXq4vU/CykFQmzXzJKCvD+kU2Cz6zg4Xxmmq3i9b/X9l5UCyk9Pniex3P7Vyv+DqEaFYyEBvFkS/kqWp2aw11VdahyZxR6pE6FD3vGYca+bJzMFl/3eMp+aV1Vh1kd43DslhEGC4+V54twvUg838RWdTHO+gJO5V5B48gEbLioFRzXngbnjmrYHs2i47H/9hWBSBSq1qJvQmPUjYjFfXVaYN+tyx6HNms4FXrVqI8WMfKiqZ17azXBseEvY8eNiw5BrNBkxW9nbJ424epo1NDVx6PNwqnVDumFFvwlYzN1b91Q1IksPaIyiixYmyqc30RcU2L0KjzQSNkIdI4DGkRr0ShGi4u5JpzPMYHnbYLFXVXlBzJN7RCNo7eMyCoRXiQ1Kg4tqmhRU0GlwojG4WhRRYdr+cqtpowWQOd9zrwDjgMaxWjRIFraTm9kk3C0rKJDWoGwnX9eLMItN622/A1Nz3iieQT+vFiEbKdqmGIfCGFlBdl0jcr2Hc1WYMlpoRsB7VuGqSNxb+xo3DRewhMtPRMb9WoNntq9nNhW+d2njPLPtGnTMG3atLJuhsf3eAaDwShv+FTQ2LFjh+S0J598EqmpqXjrrbewcuVKjBo1Cs2aNUNYmOsH/rvvvtuXzfQJkZGlFiiubKQKC0uNQpXYRkltS4ldlbfbYjAYDF+QbaAJGq47HZSM7R3fpAvqRig3FQjX6vFAYmukFeXieadOS7JC43qhBSVmK0I09NG+sXo1+ie6vmdlE2G0vhA0AKB+RJxA0LhZkof76opv42Mbd0JiZBx1Han5mVRBI0YXiqF1W7rVnkiKDVbpdrJKBQ3ivapFFS361BV3YPSqHYqm0WE4essoEDTIigxaRykZWBuh5RT9VgCwO61EKGiU4Ytg0+h4NI2OL7PtA0DHqnXQsaotU6vBnd8QsOWmPN5Ima2SHDqVmhA0Svc3ueuH1W2Fe2s1AQC0iUsQretC3m2xoEGsxESpDBvbuBPqRZSeI+4KGiEaNXIJQUPp8eZMlE6Fu2uH4iTFYUDqKIwLUSOpju2asulKMdKLxHP2qxdxR4y0ZddtvJQhqDzypvu3fdXaaF9VegBM2yq10LYKvdrKXzSPqY7mMaU5fbeLLTh4VWiN1bduKMIo4dUnbhtlBY0O1XVo5xQ0fS7bJBI0yGtUjF7l0fHQIFq+U59Ep+bQqYZ3lSccx6FlFR1aVil76yM5OM42kKAVIfLsSCsRCBpuFA74DVpV4oDEUOy5XiIQNEokgtbLA+R1Vq+y3XMNFl4kaEgRqo5AYmgrTG7u2T0vz1giFjTK7y5lMBiVnEWLFmHRokVl3QwGo1zhU0EjKSmJOrqW5ODBgzh48KCidXIcB7PZvYC6QOBczeAcEE7DOQjck+Dt2rVrY//+/SgsLEROTo5sMLh9W9WqVWP5GQwGo8wgO/UBwEIZKU2ixK4kUuv5aD5nSO95HsClPDOa3fG0Fo30U6C28DzvlwoNAKgVHi34d3pRnmAkvx2tjG2RVMi3J0HTcjYvzvkpZP8CB7pooLqzg3XEKGpy9LMSS6hQCVGKBrlLgqFDrCJDZsp4k9lBO57JjjZahYaGE54jSp5dnVG7Ob8cUtnctOOQvCZx4KgZGmT7yE1U9E4/2r7zIANdMeQ1SRcQQ18GoGwQRKCh3aNUnDiEvTwLGmSFhurOMU/7PeS+ZaSLnBc5aJdhVqHBYDAYDEblweeP3DzP+/y/YKRFi1I/4n///Vd2XufpzZs399u2zGYzLly44PF2GAwGw1d4bjnlet3hGs9GkpL5BFZeLJY7206RzVXy2l1sMYlEhhgfZGgAQAKRYSAtaEjf2lUSt/0QtfvjG+QEDWdrL3I/qjiOmmlg71TWEj2PRqJzSMlx5CoMV7hd4b+D86mj4kB2tvta0CDXR8vl0FDOEXeyH0hRxhtUd7ZOQnv+JT/jOLo1lYa41pGd+RX9GKddX6TEXFcoWYq0sdP4Uz1hCCDFyGAQpMkcD43K1s4QQqwPFsspT1ohEjRkzi/7dYt2XkZ6of7RrtlM0GAwGAwGo/Lg0wqNrVu3+nJ1QU39+vWRkJCA9PR0bN++XXZeuxVXrVq1kJiY6Pa2evbs6fh7+/bt6NqVHsqYkpLisJzq0aOH29thMBgMX+G55ZR8R5BOpYbOg853gFKhQbGiSc2TrghU0kWVQxFyfFWhkRAmFDTSinJhoow+96RCwyNBQ0Y4Sc0vrdAgW8hx9A4Ue9u0RPPJ8FFlFRpuCBrEv4N0HEWFQU0cN94EdtMEOmUVGuLlVBynOPfBl93VKo6+PquCjjkO9A488vtxd+Z0rLuCH+PuVGj4otiGvEaRVWYM/xGMe5q8R2nuHGSknWV5rtCwEse8/ZCX+z2KKCHoUV4JGmLY/ZvBYDAYjMqDTwWN3r17+3J1QQ3HcRg2bBjmzp2Lf//9F/v27aMKDfv27XNUVQwbNsxtWwPAZuUVHR2N3NxcLF68GK+++ip1Pc6ee/fff7/b22EwGAxfQavQoI2UJnF1iYzw0G4KAPQq4S3PAoqg4Vyh4cE2aIJGtI8qNGqFiS2nzBRRRk7QkNq/oRr3LafUnPR2BJZT5KhyAFbKsWBvmo6s0CCGgiqq0PBG0FC8JMMTVMQeF2RokJZKLn5Gjy2nqBUayjFQKqM8RcVxVFGC5sNPtW+jWE6R+0Vsq1axj3K3BA1XK1NwYJiIn4AS1cHwE8F4bJPnrl3HqMiWUw5Bg2oDZSOPLLcEEKnzrSTFKjQYDAaDwag8sEduL3jxxRehVts6dJ577jkUFws7soqLi/Hcc88BADQaDV588UXqesaMGQOO48BxHLZt2yaartPp8PzzzwMATp8+jU8//VQ0z969e/HDDz8AsAlLnTp18vRrMRgMhtdkGzzL0HBFhId2UwCgV5OWU+JOyWsFZkcHuif9IjkGYX5GhEYvsn/xFKUVGnJWUGRnsp0QTzI0ZCo0LslkaKhcVGiIMjTIUHAfZ2iQnb8VffR6WeP3DA3i6KKJflIVGkopsZhcz6QQ2/lAETQo7SbhOLE4qOZUokEv5Let6Ic4XdDwn+UUeY3SsgqNgBGMe5rUKewWZCLLKSXlhkEKeY7JW07Z/p9LETS8sWejDe6r6Nc2BoPBYDAYpfi0QqM8sWvXLpw/f97x79u3bzv+Pn/+vKDaAbCJDiRNmjTBK6+8gpkzZyIlJQU9evTAa6+9hoYNG+LChQv4+OOPcfjwYQDAK6+8gsaNG3vc3ldeeQVLly7F2bNn8eqrr+L8+fP473//i9DQUGzduhUffvghzGYzQkND8eWXX3q8HQaDwfAFHmdouOie8KZCQ6ciQ8HFHYZWHriSb0ajGHEHv5L+MLJCw1f5GYBY0Cg0G5FpKBTNFyjLKbmsjvSiPJSYTQjRaKlZJNQMDdgzNISfG4mfScmgVq8yNIJghG9FRk10YHkjaNDCuZVVaIjPEXcqaIvNvhU0aJgpVSC0aidSDKHle4iPcbeaWO4gjwFvIi2UZKuYiOHqZA4Qw3+QezoYBGmLhB1TCFmhESQZGp5AnmNKLKfyDL4VcKgZGhX94sZgMBgMBsNBpRU0vv/+eyxevJg6bffu3di9e7fgM5qgAQAffPABMjIysGDBAhw+fBj//e9/RfOMGzcO//d//+dVeyMjI7Fu3ToMGjQI586dw7x58zBv3jzBPFFRUfj555/Rtm1br7bFYDAY3uJ5hoY8/q7QAGy2U1RBQ8E2xIKGb/IzACCBsJwCgMtO4duA7QWfzChwRiVRvRHqSYWGjOUUAFwuzEbT6HixTY7EiHRHhgbRGSiu0HDdYeFVhobiJRmeIKrQ8KIHknY8kxULNKs7mhjnThe0UUJs8MRWVKpCw2gV5/nQzyXh96OJlmJbHrebWa4gf3E5fcHlT8Ysp4KaYNSORBkadxoZrJZTnmgA4lBw2//lLad8+32D8KdnMBgMBoMRQNgjt5eoVCr88MMPWLduHYYNG4aEhATodDokJCRg2LBhWL9+Pb7//nuoZDqYlNKoUSMcPnwYH3/8MTp27IiYmBiEhYWhadOmmDJlCo4dO4YhQ4b44FsxGAyGd2QbKZZTCgQNV6+7XmVoEFUIljuCRsNo4eepeSZFbaFBChqxet8JGqEaLWIJgYQUNOSqJgDpDgBfh4IDwKU7bSM7T11VaJCWU+IMDddtc0fQIDvEgqOLqeIiZzklzoiQ/x09ydDgwFGFEE8tieyYPMzVkMrQMFEFDUqFBnFdpdppidZTsRHZ4XixLo8sp4Kxl72SEAwmTmbiGmR3QBRbTpXfM1GUoSFzzNt3By1Dw5s9wCynGAwGg8Go3FTaCo1FixaJbKW8YdCgQRg0aJDf2xIeHo5XX30Vr776qkfbYjAYjEDgqeWUK2/6CI3vQsHtllNNYrW44BQGbg8Gp42GdkWOUZih4csKDcBmO+W8b8WChnzVhLTllCcVGvLdhKn5mQBo+5HegStdoSGcjxaWTBLmRoaGqEKD9Yj4FdImisy8cAdaJgx5nSErNKSEOCXWQnKUWMzQeSAMqjixKAFIVGiQ4iDlXJLOB3EKX6/gx7g7/v6+kB5IQYMUZRn+Q9SPHgTHttIKjfIsaHhkOUUTNLzYBbRtMcspBoPBYDAqD6xCg8FgMBg+xWK1Ipfo2AeUVWgUufCmj9B6bjmlIyyneFjB8zwaxwo786/km22d5pTKAlf403IKAGoRtlOXC4WChquqCV9maLjaVmq+LRic7GBQgV6hURoKLvxcZDmlJEPDHcupSmbHU9aQx6CFknHh6boAWoWGsHJCSojzVtAwUAQIJdj6OpVaTonnsxJj0mmWc6JjPBh6ff2IbzM0XEPm/LihpzK8hhRIyx5SdJfK0DCU4wwNC7GjSy2npKsmcn2docEqNBgMBoPBqNSwR24Gg8Fg+JRck1jMAOjhvCTFAazQAAALzGhM5GWYrcC1AjPlxdh115a/BQ0yGPxyQY7g31oXuRZSgoZnGRrKLKeUZmjYW0ZWaJCWU4oqNNwKBRfOyzpE/IvYcsq5csC9vU8VNCCfoSElxHlrOWWweChowPMMDYuVV1ShUdmqkMQVGv7dHrOcKjuCsUKD1CnsFRqkoFGeKzTEGRoyllN3/p/va8sp6rbK7z5lMBgMBoPhHkzQYDAYDIZPyTaI8zMAZRUaxX6s0CAzNABbgHCMXoX4UOHtMDVXLGgos5wiBY0Qd5spCxkMfqkgS/BvV5ZTUqPQPanQcLWt1AJ7hQbRBk6qQsP2G5B2LZ5UaLiVoUH8m1lW+Be5DA0SV7+iJxkakhUaXvZBl3gqaHActQvOaBVfC8nvZrLy4gwNimAjyomp4Ic4KWjIOUC5qsxRclyQIquOCRplRjBUH5HHg/12FErJ0Civ9xspyymAct2+M2uuzy2nKBUa5XN3MhgMBoPB8AAmaDAYDAbDp9DyMwDXGRpmq0U0mprEm1BwHaUD3gozNCqgfrSwQuFSntlDyyn/ZmjUIio08k0Gwb9dhYJLWk5pPKjQUGg5RQvopXXilFZoCD8n7Vwsvs7QENnxMPwJmaGhROiUgpahIRI0lFZoeGs55bGgYbO/I6FVaJDB4yareFlFFRruN7Nc4VaGhoufXZHlFPHzaeW1XoYPCUbtSCpDg6zQ4CE+dsoLolBwmd/BPmuekXbl8fxqRDt3WYUGg8FgMBiVByZoMBgMBsOnZBukBA35N3dXdlMAEKHxbYUGYIGK41A/WjjNVqHh/otxtlFYneJ7y6lo2ekuQ8Eluuf8YTl121CIApOBuhdpo2ilQ8HJDmrXbXOnQqOy2fGUNWSFBq1aR/G6KOKE6woN+jlC82N3B88rNEA96EwUQYMUOYwWseUU7RpAfreKnhPjywwNJZgs5G8QhL3slYRgOLZFFRp3LlMhFKG9pJzaTsmJhuSllAcPK8/73HKKBhM0GGXJokWLwHEcOI7DpUuXyro5DrZt2+Zo17Zt28q6OQFlzJgx4DgOiYmJZd2UCk+wHf9JSUngOA5JSUll3RSGH2GCBoPBYDB8Ctmpb8eVoOEqEBzwrkKDlqHBcbY21Y8STruUZ/aoYyTHENgKDRKXgoYvQ8FdCBqAzRKL7KtVcRxVNLDbR5CWU2SGBhlGSsOdDI3KZsdT1ohCwZ0zNNzsjKJWaIAUwIhQcIkKDW+7oL2r0FAoaFiE38Vs5WH1wHLKGxGpPCD29/fv9liGRtkRjLtaXL1gayRNaC8myznKCWTFrSvLqUIT73OxiVlOMRgMBoNRuWGCBoPBYDB8inSFhvybpqv8DMC7UHCdWtzZr+JsHYSJhOWUwcIjvVDYeajMciqwGRokrkQGqVHoHgkaLsQTwGY7RXbWSmdo3BE0RBUaQosqV8cR4G6FBjF6XfGSDE9wJ0PDFTSBjlyf0gwNr0PBKQKEEmwZGhRBg6dVaFiIf4stp0hLL4BZTsl1erv61ZUcFibScoq9XZUZwVyhoVOJj7dgqNBw1QLaLVeUUyNzzPMA8iS8tbzK0KCcnKxCg8EoG6ZNm+YYnc9g+AtWccMgcb8HQ4YGDRr4cnUAbA8rFy5c8Pl6GQwGg+EfpDI0yI5FEkWWU16Egqs4FTScSuCpbxc0YvQqxIWokFVSOi01V9geV8/oPM9TBA3fVmhUD42AiuMkR1gH0nLKVV4HAFwqyAbPVxd8xoHe6WDfv6T/PA/biFe7RuFqQKtezbnVOS2yx2D9IX7FnQwNVy/GtOni4Gzh+qXOEVfh0K4oUXD9omHrbBcfdLQMDVLQMFl5cYYG1XJK+O+KfoyLLaf8m6FBVmiQVWYM/+HteesPpDI0OI5DiIZDsZOIUUKWc5QTxFVQhOWU03QeQK5BQtDwcbsq+rWNEdyMGTMGY8aMKetmMBgMoNLZq1VWfCpoKPVKs7+AkqGgtM+ZystgMBjli2yDZ5ZT/q7QAACtSgOzxVj6AVfaQZgYpUFWSem0K/lEGrULisxGUQBxjN63goZGpUb1kEhcL86jTvc4FNyTDA0FgkZqQZaow0IlVaEBeoYGYLOd0qhsQo6r/oowN6oz7O1xho3w9C/iCg3v9jcp8IlDwRVaTnlboWFx73phR9pySnw9JEUOs1X8LK0kFLyiVyGR38/fbxIsQ6PsIE/boKjQIM9Jp1MylBA0ioOgQsMTrMSOlrWcAqj5Gb6Ag7DCjd2/GQwGg8GoPPhU0Bg9erTs9CNHjuDo0aPgeR4xMTFo164dqle3jdy8efMmjhw5guzsbHAchzZt2qBNmza+bB6DwWAwAoBUhYZPQsG9qNAAbKOzi536HTmnrq/60RocyjBSlrLPK0+OsUT0ma8rNAAgISxKRtCQr9DwqeWURLiyM6n5WahJtgFSFRr0DA3AZq0TBtfVGYB7dlP29jgTDB1iFRkyyNv5uuCJtqECJ8jNcB0KLmE55WW3t8cZGuBEogQgUaFBEU2sCiynSCGzoo9idsdyyhVKKgDIvlpK9jPDT9BMh8oaMudJ43T+hRD3t2CwnPIEd3JqeB7I9YPlFGATtJzXUT73JoPBYDAYDE/w6SP3woULJf/r1asXTp06hdq1a2Pp0qXIyMjAli1b8Msvv+CXX37Bli1bkJGRgaVLl6JOnTo4deoUevbsiYULF/qyiQwGg8HwM9KChvyrpqJQcC8rNESd8JyToBElX6XgagA3aTcFAFFehJhLkSATDO5K0ADoHXShGv9UaFyiVGhIZmjYQ8Epq7WPgFYymt+dQHB7e5xhHSL+hexw9zagmuysF1douA7NBpRlJcjhjeWU4lBwq1jQUGI5VdmC78WChozllIt1KTkuyMwEZjkVOILRTk0qQwMAQgjBvUJaThHz2jI06N/T229PPs/QxGEGI1AsWrTIkSNBcy45ePAgxo0bhyZNmiA8PBwhISGoU6cOOnTogMmTJ2PNmjWyx/Cff/6JESNGoHbt2tDr9ahSpQq6deuGmTNnoqCgwKu279u3D2+//TaSkpJQo0YN6HQ6REVFoUWLFpg4cSJOnTol+52nT5/u+My+D5z/o+0Pi8WCxYsXY8iQIUhISHB8p549e+Lzzz9HcTH9fdKZ06dPY8yYMahTp45jf44aNQrJycke7wtXbNu2zfG9tm3bBqvVivnz56N79+6Ii4tDeHg42rRpg48++gglJeLBbiQFBQWYOXMmunXrhri4OOj1etSuXRsjRozA2rVrZZdNSkoCx3FISkoCAJw5cwYTJkxA/fr1ERISgpo1a2LkyJHYt2+f4u8jh32+adOmufxeJFarFf/88w+mTp2KHj16oGrVqtBqtYiJiUHbtm0xdepUXLlyhbqsPaNl8eLFAIDLly9TjzNnyH0jxa5du/D4448jMTERISEhjoH3b7/9Nm7duiW5HG2/LVu2DH369EG1atUQGhqKpk2b4tVXX0VWVpbyHcVwC59WaEiRkpKCZ555BtWqVcO+ffuQkJBAnU+tVuOhhx5Cz5490aFDB0yaNAlt2rRBx44dA9FMBoPBYPgA6VDwYKjQEN72OK6007B+tHe3RFLQiNTqFQVnu0stmWBwJSKDiuNEwoBnFRrKLKe6hAs/s1lE0NsF0O1a7B715MhXGm5bThH/Zv0h/oXWuWzlrVApsEqiYbOwKu3otxJHV8AqNChigxKkMjTMCkLBAU8tpyr2QS7O0PDn1nhKKDgTNAJFMAbek0UXGqfjgawgDAbLKU/ueeQ5JrCcohz+eRIZGt4SjL8/g0Hjiy++wNSpU2ElnkmuXbuGa9eu4dChQ5gzZw7y8/MREREhmKekpASjRo3CqlWrBJ9nZWVh37592LdvH77++musW7cObdu2dbttixYtwtixY0Wfm0wmnD59GqdPn8b8+fPx1VdfYdKkSW6vn8aVK1cwdOhQHD16VPB5VlYWdu/ejd27d2Pu3LlYt24dmjRpQl3HsmXL8MQTT8BgMDg+u3btGn799VcsX74c3377rU/aKofRaMTgwYPx119/CT4/duwYjh07hp9++glbtmxBjRo1qMsfPnwYQ4YMQXp6uuDztLQ0rFixAitWrMADDzyAn3/+GSEhIbJt2bBhAx566CEUFhY6Prtx4waWL1+OFStW4LPPPsOLL77o2Rf1Ae+//75A+LKTm5uLo0eP4ujRo5g7dy5++ukn3H///X5vj9VqxfPPP49vvvlG8LnBYMCRI0dw5MgRzJ49G8uXL8e9997rcl2PP/44fvrpJ8HnZ8+exaxZs7Bq1Srs3LlT8jhgeE5AiqK/+OILWCwWvPnmm5JihjM1a9bEm2++CZPJhM8//zwALWQwGAyGr8g2SmRouAoFV1Kh4WXFg9gmqbRNVUJUiNR5PpLX34HgdmQrNBTYQNE6lD3L0HC9rVxjCYqtwtFJUhUa9pE1ahUHcoCz8c5wUCV9P6Fu+r2QI3qY5ZR/ITM0gNLKG0/8z92v0JAIBfc6Q8NDyyl3KjQo21BiORWMo9j9CXkOyxVMeFuZQ4oZAKBlllMBIxiPbVGFhlMbg1HQ8ASyQkN4jokt7vL8laHBsjYZ5YBjx445xIz69evjs88+w5YtW3D48GHs2LED8+fPx6hRoxAeHk5dfvTo0Q4xo02bNliyZAmSk5Px999/Y+zYseA4Dunp6ejTpw/S0tLcbp/ZbEZsbCzGjBmDBQsWYOfOnTh06BDWrl2L999/H1WrVoXFYsGzzz6Lf/75R7Ds8OHDcfz4cUycONHx2fHjx0X/1apVyzE9MzMTPXv2xNGjR6HX6/Hss89i+fLlSE5OxtatW/HGG28gLCwM58+fx8CBA5Gbmytqc3JyMh599FEYDAbo9Xq8/vrr2LFjB/bv34+vvvoKVatWxcSJE3HkyBG394c7vP322/jrr7/Qr18/rFq1CikpKVi1apWjA/zUqVO47777YKFYhqalpaFPnz5IT08Hx3EYO3Ys/v77b6SkpGDJkiUO+/2VK1e6DJtPT0/HqFGjoNFo8OGHH2LPnj3Ys2cPPvjgA0RFRcFqtWLKlClYvXq1r3eBYsxmM2rWrIlJkybhxx9/xO7du3Hw4EGsXr0ar776KiIiIlBUVIRRo0bh9OnTgmUnTZqE48ePY9iwYQCAhIQE6nHmDq+//rpDzKhfvz6+/fZbHDhwAFu3bsWUKVOg1WqRm5uLIUOGiIQ3knfeeQc//fQThg8fjpUrV+LgwYNYv349Bg8eDAA4f/48pkyZ4lb7GMoISIXGzp07AQBdunRRvEzXrl0B2EqAGAwGg1F+kK7QkH9xV1Sh4YNQcGd4pwoNjuNQP0qLY7elcjTkX5zJDI0yETQUWU6JCfVA0HAVQG4n35QDLeIF26d14DqPkNeqOFicekzsfSEWBWqDuxUazHIqsFAFDatV0bFLw6WgQVQ1SFVoeNst5rnlFEcXNJRWaHhiOeVmG8sbvs3QcG9bAKvQCCTBOEKfzHpSOx0P+gqSoSFn60a3nJLI0PCyHaJtBYOiVc7geSt4Kz2XrSLCqaLAKagw9iW///47rFYrwsPDsXfvXkeGrJ1evXph/PjxyM3NRVhYmGDaunXrsGzZMgBAnz59sH79euh0pdXq/fr1Q7du3TBhwgRkZWXhpZdewtKlS91q38CBAzFq1CjRttu1a4fBgwfj+eefx913341jx47hvffew3/+8x/HPDExMYiJiUF8fOlzfqtWrWS39/zzz+Pq1auoV68etm7divr16wumJyUl4aGHHkKvXr1w8eJFfPLJJ/jggw8E80yaNAlmsxlarRYbN27E3Xff7ZjWuXNnPPDAA+jatavLjmhvSU5OxoQJE/Ddd985PuvQoQOGDx+O8ePH44cffkBKSgq+++47UXXLiy++iOzsbADA/PnzMW7cOME6Ro4ciYEDB2Lr1q1YunQpRo8ejYEDB1Lbce7cOURHR2Pv3r1o3ry54/Nu3bph2LBh6N69O/Ly8vDss89i8ODB0Grdf+/zlvHjx+O9994Tbbt9+/YYNmwYnnvuOXTt2hVpaWn48MMP8eOPPzrmiY+PR3x8PGJiYgAAWq3W5XEmx/Hjx/HZZ58BsB2vO3fudKwbsB2D/fr1w+DBg2E0GjFhwgTs379fcn179uzB//3f/+Gtt94SfD5gwAAMGDAAGzduxO+//46vvvoK1apV87jdDDEBETTs3mPO5WCusM8r51vGYDAYjOBDKkODHClN4krQUHGcR9ZIzqhlKjQAm+2UlKDhboZGjE6+NNhT5CynlIgMtN/Bk/2qpBoEAPIsOaiiLn3RUUlWaDitWw2UOPXdOiynFPRVuJuhQdtjPM+zkZ9+glZB4MqOTg5S0CDXpTRDQy5nQQkGyug7JbhToWGiWk65ttSqbMH37mRouMKTRbUsQyNgBKOgQQ7ecC4aJCs0ym+GBmE55fQdaedMroTllK/1h/K5N8sW3pqH/BsPlnUzAkZkjRXg1DEB3eaNGzcAAE2aNBGJGc5ER4uf7+0jyLVaLRYuXCgQM+w89dRTWLZsGTZv3oyVK1fi+vXrqFmzpuL2OVdPSLXr/fffx/Dhw7Fr1y5kZmaiSpUqitfvzKVLlxyCy+zZs0Vihp127dph8uTJ+OSTT7Bo0SKBoJGcnIyUlBQAwNNPPy0QM5y/02effYaHH37Yo3YqpXr16vjiiy+o07788kusWbMGt27dwpw5cwSCRnp6uqPqZsCAAQIxw45er8eCBQvQuHFjmM1mzJ49W1LQAGxVAs5ihp2WLVvirbfewmuvvYa0tDT88ccfGDFihLtf1WsSExNlp9euXRuvvPIKXnzxRUeejL/exebOneuwf/v+++8FYoadAQMG4Mknn8T333+PAwcOIDk5GZ06daKur0OHDnjzzTdFn3Mch5deegkbN26E2WzG3r17MXToUJ9+l8pOQORpuwq1YcMGxcusX78eAFC1alW/tInBYDAYvsfKW5FrpAegueq0LDJLVUbYiNDovX6wIS2neAg7CL3J0QgKyykFo9xpYoJnllPKHiHyTMJScU6iA9c53FNHjHB2WE4p6IklO4xcQTukWKeI/6BVaEhlOig538nsC3GFhrIMDTJc1l0MFAFCCSoO1F49s+JQcLJjkWY5Vbls1dzJ0PDHq7KOWU4FDPLYDoYB+mSFhsapjaQlYnm1nCIdROU0PJ4H8iUtp7z7/qLfn929GUGIXVw4deoUDhw4oHg5s9mM7du3A7BVYtSpU0dy3qeeesqxjKtgZ1cUFhbi0qVLOHnyJE6cOIETJ04IRtV7U/Wwbt06WCwWhIWFyXbOA3AIFenp6YKw6M2bNzv+pmV/2Ln//vupHdW+ZOTIkaLKFjsREREYOXIkAODkyZMOYQuwBUrbbahoYoadxMREh32V8zIkHMdh9OjRkuuxW5MBwv1XluTl5SE1NVVwnNn3pX2av7Dvg5YtW8q6CNnPK+dlaIwaNUrynaVDhw6Ovy9evOhuUxkuCEiFxn/+8x8sWbIEn3/+OQYOHIgePXrIzr9nzx588cUX4DgOffr0CUQTGQxGkHIl34wd10pQM1yNe+qEKB5peavIgo2Xi5FVYkFChAaD64cixE1v/fKKxWrFvLP7kJqfhQitDqn5WTC5yK8g0ahUSKrREKMbdXTZqXgmNwPzzuzDzeICmHmr5AulVIZGtqEI/zu1E9OPbJLdjtJA8PQCMzZfKaaOCCwyCY+BA1mH8dj20gfMYrMVKblCYYXjOFTV1kInvrPsdtdeFfp9+k/QkKvQ8My2J1TjgaChsGT/TOEx3DTcdPz7tYM6WCGu2HQ+znRE78gfF4qwK60ERQo6f9zO0KB8ZrECUruS53nsTCvBlXwLuifo0SA68GXb5RmaoDFu1zLoVBrkm5RX8toh7wnvH92E6mciHf8+lXNTMF1KiPNWLF1x6RhS87Oo00LUGgyt2xJD67YUTZOq0Mgy5Yg+KzKb8Nj2Xxz/3pdbglyLsJJZnBNECb4Hj3+zjNiVZkAx2fsqQZVQNQYkhiIupHT9zvdZKWpHajC4fpjonPYFWSUW/HWpGJFaFQbWD4VGxaHAZMXys4WC+QItaDDLqcBB7umDGQbcLLJg/w3btaRHgl40j1bFoV28Dl1quq6ivJZvxparxcg3WlEvUou6UWocuGFAqEaFfvVCER8mPt9S84RipPMtibScOpVpxNeHS0V/FcehRRUtkmqH+GVk6u60Ehy9bRTYN17IlRdjL+WZBW0EgLPZwopaOcup388VIM9Iv3fL3dH3Xy/B4Qyjo0KTBvlYySynGMHII488go8++ggGgwE9evTAgAEDMHjwYPTs2RMtW7aUPNcvXryIoiJbLqEr63bn6SdOnHC7jbdv38bnn3+OFStW4Ny5c7Ln0u3bt91evx17ZUVRURE0GuVdkTdu3EDdunUBwJGVoNPpHDkTNLRaLdq1a4etW7d63F5XSI3Yt9O5c2dHlc3x48cdodDOv5GS33bDhg0oKirCxYsX0bhxY9E89evXlx0IXq1aNSQmJiI1NdXtrAlfcvnyZXz66af4888/cfnyZdl5b9++jQYNGvi8DQaDAefOnQPget+3a9cOWq0WJpNJ9rxq1qyZ5LS4uDjH3/n5+W62luGKgAgar7/+OpYuXQqDwYA+ffrgmWeewZgxY9CmTRvHBZzneRw9ehSLFy/G3LlzYTQaHQE/DAajcpJrsOLNXVmO0M0CkxXDGtID05yx8jze35eNjGL7m44Bl/PMeKmDdEdwRWLakY34v6Pej75YfD4FJRYTnmnWXXKeYrMJd6+fg4ySApfrk8rQGLntR2xOP+dyeSX5GUYLj2l7s5Er8fJssgq79q4WX8fPF6+7XO/lkpOoccuMqRhEnX4q5wb23RI+mPlL0KiiD4NOpaaO1lZaNUHiieWU4goNSybyLJmOf1+5Jp6H7JQmQ3VPZynPJ3A3Q4PW97jsbCEebR5BnX/TlWL8cMJ2vK9PLcL/kqqgGqVTi0GHJkovv3TMZ+tzdS2hdfgD8Los53RuBk7nZkhO/+HcAazrOw6D6gjtAKQyNGjw4PHzxUOy89DOS3KXX8u3YPGpAtFIclck3zDg895x4DgOVp7HjP3ZuFnkaiUGpBdYMLmtdGWZJ1isPN7enY3MEtv20wrNeOauKHxxMBf5JuUVGq4UDXe7lFUcvUqG4R/IYzutwIK0gtJ74+50uki69VoJXu7AoXMN6eeKErMV0/ZmO46nnYQQv+96Cb66p4rgGlRosooGU2icjgeygjCzxIpdRBt3pJWgxMxjYH36qF9P2ZlWgtlH3M9KyDaI20jirNOQR/+x29L3b6k+0/3XS/D5IddtJbUOJmcwgpFmzZrh119/xVNPPYXs7GysXbsWa9euBWBzIxkwYAAmTJiAXr16CZbLyiodJOGcUUHD3lFOLqeEgwcPon///sjMzHQ9M4DiYrq1sBIyMqSfk+SwCztA6feLi4uDWi3//C1n8eULXP0uztt3/l18/du6Woe9LampqW4fH75iw4YNGDFihOC3lMOb40wOe24J4Hq/abVaVKlSBTdu3JDdb1JVOgCgcnoul6qwYXhOQASNZs2aYfHixXjsscdgNBrx9ddf4+uvv4ZOp0NcnO3FKDMzE0ajbVQsz/PQaDRYuHChrNrFYDAqNutTixxiBgD88m+hIkEjvcDiJGbYOJhhqDS++L4QM+ysv/avrKBxKPOaIjEDoFtOlZhN2JJ+XtHycXrXL/dns02SYgYAaDnPQ8XPFEi3k/Yd4kPoHeLewnEcIrV6ZBrED4RRWtcjTqN1ISJbME8EDSk5g4PyDlo74Rph9U2YVgXAs4e+SDf9XmjXhDUXiyQFDbuYAdgyPZafK8SkNr7trK3IkL+1HGEKrNAitSG4VVLocr7S+enXABXn/0qbDWn/igSNUDUnCvb2hgjK/iWLI47cMrotZgBAeqHt3lo9TI30AosCMcNGyk33K2+UrNMuZgDA1qsleLJlJE5mijtPQ2SqQ8gR866mu5rfXUGV4R1yv60rDmcYZAWN8zlmkTjmzK1iK64VWFA3svT++S9FfHcWMSJ1ytp7KMPoc0HjSIay81CvBgxu3n5DnL6jXsOhUKGVllTxxZFb8hakdjibh6XT+pik4S6cKgqRNVaUdTMCBqcqm+e1Bx98EH379sXSpUvx999/Y+fOnbh16xZu376Nn376CT/99BNGjx6NBQsWCDpA7fjr/dVoNGLkyJHIzMyEVqvFc889h2HDhqFJkyaIjY2FXm+7Rl68eBENGzYE4F0llL1Dt2rVqm5VTtCyNoLhnd4XbQiWdfiT27dvY9SoUSgqKkJERASmTp2K/v37o2HDhoiOjnZkw/zzzz8Oh55AVNwF+35juCYgggZg85erX78+Jk2ahIMHDwKwlftcvy4eGdu+fXvMmTMHnTvL23swGIyKzfkc5aOynaGVp5uttvBFd/31KzslFnkrAlfTnaF1chdbTIo7v0c1aOdynhyJ4Ek7dUKa4arhX0XbI9Gppd/wafkfw+uJ7WV8xZA6LbD4fIro8wfrtXa57JONO+OLkzsc/360QXtoPLCqknoG7BQ5CEcK/oGRVz6yZmSisGS8R4Ke2jHkihi9Ci2ruNcx7e0VgbTeYMgTpQvBoNrNsP6a/HnYOKoq2laRD6oEgIfrt8FHx/5RvP2R9en2BEnxrXA+/4bgs+raeghTRyO1xPMKEmeKzeJjJUqvQs1wDnB/4LQIDhweShR/v3Ci5EnOIsoVhjsdle6EGReZeRgtvE9tp9ILxd/BbKXfTbolSAu9NcLUSIzS4FKe+F5WN1KDhAjhtbF2pBq1I9S4VkDfh91ltsXwPV1q6rHpSrFHuTAGF8ewkmPcRMyTR8mKaFW1VGRsU1WHCC2HAhmhROm23cWkQH9Uc8BTraLww8l8xfkeOhXQoXqpMNStph7rUpXd/6XspJS01YZ8hhLDNRynCnhIdmUlOjoaEyZMwIQJEwAAp0+fxh9//IGvv/4a6enpWLx4Mdq1a4cXXngBgNCq5ubNm9R12nHOZ3BezhX//POPw9d/zpw5GD9+PHU+X43qt4eJ5+fno3nz5i4rLGjExsYCADIzM2GxWGTX4Wq/eYur9TtPd/5dyN9WLh9FyW+r5Hva5yHX4SygWWUsqgsLlQ8eIvn999+Rk5MDAFi1ahX69u1LnS8Q1SP24wdwvd/MZrOjcsmd84oROAImaAA2j7nk5GSkpKRg8+bNOH78uOOgjY2NRevWrdG3b1+XXnQMBqNy4KkPtdTrTIGRR2hAr3qBxyoTvN2zen30jBePcHEmJfOqwLLFVZA3+fIYrtHhueY9AQB/Xj2Jk07+9bT3TJpt0rPNe6B/raa4mJ+J60X5UHEculariyF1Wsi2BYDI6qFaqIroYGqLe3Kj8W/eJVQNA2L19IfgjCIzjmbdwMHss47PtGrpF2XSTisxIhatYmu6bK+nvNf2XpGgoeI49Krh2mt0Vsch6FS1Do5lXUeT6KoY1aC9R22gjWqZ0HAYese3Q0ZJI+zPPIlCc2klSIiGQ+0IjWiEc/OYeDxCiFX96oWhSoga57JNkmPX60RooFUDl3LNsAKI0HLonhByp7rDje/h1twMX7As6XH8cvEwLkpkTtQIjcR/G7RVlAnzf+0HoE1sAo5mp8sGAmtVKvRJaIzeNRpSpz9c726cuh2BLNMNADyq6WMwunF76FVa7LndECWWYtSP1qLIUvpCd9tQiBhdiKSN1T/Xz+HA7auOf0tdT/9TV4fVMs53dfTN0LNGNdSLEot1WSUWZBusqBWhwwP1mlKvAeSocLKzsHqYGl1r0keq/3mxSNBZbL6zk8mOSK0KGHRnRLnFymMt0aGZY7BS8wY8xUzpCKX9/JPaRKKHjMjAcRze6RKDXeklyHKq+IjVq9Czlji3S8VxeK9bLHanlSCbuN/UidCge4LnVYAM92lZRYfp3WJx9JYBJitwIceEE0SVTq9aIYgLUeHfLBPOOAnQrjQDuewGO+QspFBRPUyFGH3pPSkmRI0PesRi33WDIBPqar4ZhzJKB0aQQokvINvaLE6LprGl1xR7tkijGC3qR2uQfNPgUtTQqzl0rK4XVKk81jwCDaO1uJwvFgnPZZtwymmwgmRWOHE2N4rRoGWVUmFod3oJbhdbwRF3cFfPrAxGMNG8eXM0b94cjz76KJo3b47CwkIsW7bMIWg0aNAAYWFhKCoqwv79+2XX5Rw23qpVK8VtOHnypOPvhx9+WHI+e/aFFEpHurdr1w6//PILDAYDUlJSXGYY0GjdujV+++03GI1GHD16FO3b099jzGYzjhw54vb63SE5ORmPP/647HQ7zr+L89/79++XFTTsv21YWJhkpkRqaioyMzMdghHJrVu3cOnSJdG2ASAysjR3ztmOieTs2bOS01xhP87i4uIkxQzAd8eZHHq9Ho0bN8a5c+dcnleHDx+GyWS7Z7lzXjECR5l07XXs2BEdO3Ysi00zGIxyhMbHPtSFJiuqoWJ73cuF6t6b0Bjvtu0nu/w3p3cLBA1Xo93I8bAxulB81NGWMxGnD8WrKesk5wUAI8VL8sMOAxGpwDqJRi7xdtwoRotRzUjroNZ3/pNn6cUj+O/20oc3M0V8cUzjhdPaxbkeWe4NtI7ezlXrKlpWrVLhkQbtRCKCL3i1bXM0jIoAEAFA+uFcCR2q6wWjPqXo6qVuxKqNA0+4Vo+nmnb1ybpUnAoPN2iLh9HWq/VYAdTWN0FtfRMAts6+cS1to7geQw+P1vla8lqBoGGW7GyT7oRrHX43mod3xaSmUehZy7ProisbtrqRasp10sbGy8WCTk3TnUsdKYqEa1WOdfA8j78uFwtsrXJ9LGhYKLuMdrtqU9W1xVmEToUBicrtfaJ0Kp/bATE8p0msFk3udMyvvVgkEjQGJIaiUYwWK84VCgUNF4KFWUEhE7mGQuIZpEG0WISsEa7B8EbCV/A96SVCQcOTkhOXCNfZpqoODzSm27jWjtSgdqRn3QQqjkOPWiHUq+a+6yVCQUOhcNOyik5wjbqYa7ojaAivbUzQYJRH6tSpgyZNmuDw4cOCwG2NRoPevXtjw4YN2LRpE65du4batWtT1/H99987lklKSlK8bbO5VHgsLCwUdG7bsVqtmD9/vux6QkJKn08MBoPDqorkvvvuw6uvvgqe5/Hll1/i119/VdxWO3379sVbb70FAFi8eLGkoLFq1SrZDnpfsHz5cnz88ccIDRXnJtoFKgBo0aIFatYsfWFJSkqCWq2GxWLBggULMGLECOr6r1y5gk2bNgmWocHzPJYsWYIpU6ZQpy9atMhh4UQKComJiY6/U1JS8OCDD1LX4clvZcd+nJWUlMBqtVJt1YqKivDjjz/Krsd+nBkM3lmZ9u3bF+fOncPJkydx4MABSWcg+3llX4YRfHiWHspgMBgBQEu5Z3vjp+iqxL8ikEXJVXAHcjSquxUanOBv1z3FRqt4BJ9O5bnWTlZoOI+MdBcyXNckU4ZLVmh4Gs6tFDVX9rdvWrhzefQiZfm9DEDcQe4LdyS1iuxso9+DDDLWfao757o3dk2RLqqWaOeyHQ2xqL1Cw2whr3mlf3Mch2hCRCHFZm+hDRyn9Y2Wx2sSw7fYTx3yWPZNhYZwHvI5M0JhxSBZkewPQYNcY1mcGjqF39PVo779miWu0Kj4z/mM8sfq1asddjs0rl69in//tdlwklkRkydPBmDLuhg3bpxjtLgzCxYswMaNGwEADzzwgKDj3BWNGzd2/L1o0SLqPG+88QYOHTokux7nbV64cEFyvqZNm+Khhx4CAPz222/4/PPPZdebmpoq6kjv3LmzQ8SYO3cudu3aJVru+vXrmDp1quy6fcGNGzfw8ssvU6e99NJLjhD0iRMnCqYlJCTg/vvvB2ALy168eLFoeaPRiCeffNLxmz/77LOybZkxYwbOnDkj+vz06dP44IMPANh+p2HDhgmmx8bG4q677gIALFy4kGr7tGvXLvzvf/+T3b4c9uOsqKjIIfI4Y7FYMH78eKSnp8uux36cZWRkID8/3+P2TJw40SGqTJgwAXl5Yt/XjRs34ocffgBgO+aYi1BwUmY9IteuXUNKSgp27NjhtwR7BoNRvqFZTikJKpR6nylUbspbbsk2eHc9JTvKXVVokNOdO8bIl2XammiWU1ovxABS0IhyMyBa2A6hoiY9uhowE2KHvwUHdRB00pV9C3xDRfkeDO8g+9V8IWhoiOuAVJUX7TpoR3WnqtCLS5nLIGK1zLo1HL0DUmw5JZwvmhCTyWuzt9A6Lmk2VEFwqWSUMfb7JXnfNLs4JD2znBKuNEKr7AAkB/AYPY+5kYRsa1mcGqQwq7RCg8R+dSEFS1ahwQhGvvzyS9SqVQsjR47Et99+i+3bt+PIkSPYunUrZs2ahR49ejj6w5555hnBsoMHD3YIABs3bkTXrl3x888/4+DBg9i8eTPGjx/vyL2Ii4tzKRCQ9O/fH/Hx8QCAt99+G8888wz+/vtvHDx4EEuXLkXfvn3xySefoEcP+UrV7t27O/6eMmUKduzYgXPnzuH8+fM4f/68oBJk7ty5Duukl19+Gb1798YPP/yAffv24fDhw9i8eTM+++wz3HvvvWjUqBFWrBCH1s+ZMwcajQYmkwn33nsv3nzzTezatQvJycmYPXs2OnTogOvXr6NNG3pumq/o2LEj5s6di4EDB+KPP/7AoUOH8Mcff2DAgAGYN28eAJvNFvm7AsAXX3zhyHN48skn8dRTT2Hz5s04ePAgfv75Z3Tp0gVbtmwBYMsjHjhwoGQ7GjVqBKvViq5du2LmzJnYt28f9u3bh5kzZ6Jbt27Izc0FAHz99deOAG5n7MLZzZs30atXL/z22284fPgwtmzZgpdeegl9+/b1ymFn5MiRjqqdsWPH4vXXX8eWLVuQkpKCxYsXo0uXLvj1118VH2dWqxXPPPMM9u3b5zjGzp8/r7g9rVu3dghRdtuy+fPnIyUlBdu3b8fUqVMxZMgQWCwW6HQ6fPfddx5+c4a/CajlVH5+Pj755BMsWrRIoL4dP34cLVqUeqP/9ttvWLlyJaKjo12WtzEYjIoLOZoOAErMVoRoPLOtKKwMFRpGX1douGc5JTcallZdQ3bkaTiVY0SyJ5CjgMlONXcghRWTTKcj+RJdGSo0aBU45bHvkI3gZgDia51c1YJSyOuA1PWUVqlW2o47goY3FRou1BC5VZMDzO2VLGSFBHm/JqvjfC5oUFZHq9oo+yslI5DQzjC71kYe566eb5SMgRFZThELhSus0CArF2jinK8pkwoNkaBBn8/Vt7eLsMxyilFeKCoqwvLly7F8+XLqdJVKhenTp2P48OGiaUuWLIHZbMaqVatw6NAhPPbYY6J5EhISsG7dOtSq5Z7lbXh4OJYsWYLhw4ejpKQE3333najzNikpCbNnz5bNEGjUqBFGjhyJZcuWYePGjY6KETupqakOa6O4uDjs3r0bI0eOxM6dO7Fjxw7s2LFDct1RUVGiz7p06YIlS5ZgzJgxKCkpwUcffYSPPvrIMV2j0WDOnDnYvXs3jh49qmRXeMQHH3yAzz77DH/99Rf++usv0fRmzZph7dq10GjE3a61a9fGli1bMGTIEKSnp+P7778XWBzZeeCBB6gVHM7UqlULX375JUaOHIk33nhDNF2lUuGTTz6RtJMaP348NmzYgNWrV+PUqVN45JFHBNNbt26NFStWuFX940zt2rUxd+5cjB8/HiUlJfj444/x8ccfC+Z5+OGH8dRTT8laO/3nP/9B165dsW/fPvzyyy/45ZdfBNPdcfKYOXMmCgsLMWfOHFy4cAETJkwQzRMdHY1ly5ahbdu2itfLCCwBe84/d+4c2rdvjw8//BBpaWngeV7ygOvatStWrlyJBQsWUEvIGAxG5YBWoVGsYDSXZCh4JajQkLOcUmIBpSLmkQsZt00nOgGdlie3R63QIKxWdBLeoErxqeUUEfQrJ2gEvkKj7LvpaJ0hSo6xYKPs9yQjGCBvLTRB3V3I85S8TtgxULKE7DgqNPwoaMhbTtE7WskOV/J+TVbH+d5yilVoMMTQqkrtnd/ksUwTxZxRUqFBbk5kOeWiOsoO2TYfny4AgqRCg7gUGRUKN2Rb7c8azHKKUR749ddfMW/ePIwaNQpt27ZFjRo1oNFoEBERgZYtW2LixIk4fPgw3n77beryISEhWLlyJdasWYMHHngACQkJ0Ol0iI2NRZcuXfDRRx/hzJkzHne69u/fHykpKXjssceQkJAArVaLatWqoXfv3pg3bx62bNmC8HB63o4zP/30Ez755BN07twZ0dHR1JwEOzVq1MCOHTuwdu1aPProo44AdPu2u3fvjpdffhnbt2/HggULqOt45JFHcPjwYTz++OOOfWKvhNm1axeeeuopj/aHO+h0Oqxfvx5z5sxB165dERMTg7CwMLRu3Rr/93//h0OHDiEhIUFy+Xbt2uHMmTP46KOP0KVLF8TExECn0yEhIQEPPPAA1qxZgxUrVggySqQYPHgwUlJSMHbsWNSrVw86nQ7x8fF48MEHsWvXLklrLMAmePz+++/45ptv0KlTJ4SHhyM8PBx33XUXPvjgA+zfvx81atTwaB/ZGTt2LHbu3Inhw4ejWrVq0Gq1qFmzJgYMGIClS5fit99+k8wIcW7nxo0b8fbbb6NNmzaIiIjweGCaSqXCN998gx07duDRRx9F3bp1odfrERUVhbZt2+LNN9/EuXPn0K+ffP4oo2wJSIVGSUkJBg8ejAsXLiA8PByTJ0/G3XffjSFDhlDnT0xMxD333IN//vkHa9asQc+ePQPRTAaDEWTQbk/FtCGYCqkMFRreW065W6EhRGg5RQoaris0vMnP4Hle1GnmneWUss5IQGxHRVrN+Bo1Reyj6rTNmQAA/HZJREFU7V9/Uh7FCxredniy/pOKAdmv5pMKDVLQ4KUspxRkaHgR9uJNhQbZ0WofF0CODyDn87flFM0uiNYBXTGuUgyl0ESKUssp4ec0UUww3QPLKbJCQ2mGBnmK+icUXEhZ3MNJYdbK2/Yzef1whX12UYWGzHMag+FvxowZgzFjxog+r1mzJp566imvO9jvu+8+3HfffW4vl5SU5HLkesuWLWUDmRMTE12uQ6vV4pVXXsErr7yiuG2DBw/G4MGDFc9P0qJFCyxZskRy+qJFiySzQXyFWq3GxIkTRTkZSomIiMDrr7+O119/3eu2NG/eXFIAcoVarcakSZMwadIkyXnkjgGp49+Z7t27Y9WqVZLTlRyrkZGRmDFjBmbMmCE737Zt22Sn2+nVqxd69eqlaF5nlLTVjjcZsAx5AiJozJ07F+fPn0d4eDh27typSD0eOHAgtmzZgr179/q/gQwGIyihdViUMEFDFu8tp7zL0OAEFRpCaKsiw3B1Ks8rNIrNvOiY8c5yiqjQkOiMBMQ2B5WjQoMWCl4GDfGS8thmhu8hxVufhIJzpB2KlOWU6woN0mPfHSJd+PjLZfKIQsHtGRpkKDixCn8LGrR7E+2ZwQsdiFEOoR1lDsspCfs0KZQU9VqJgQQFRuG/wxVnaIg7+i1Wnjp4wVNEFRpBYDkF2HI0XAka5FSHoOHmIBwGg8FgMBgVh4D0iKxcuRIcx+GFF15QXApnD/A5d+6cH1vGYDCCGdqLiZIKDan3mcpgOeX7Cg35fUZWBQgqNESWU0oqNDzvtcuhdJh5I2iQ/vfuWE5VjgyNikHZ70lGMEAO7PVFPyJ5HZC2nFKQoeFFg0I1nKxAI7dqqQoN8lZMdsjGEEPOaddnb6CJF3TLqYpypWIowUo5BuyHJhlw76rzW0mFhvMqrDyPIuLEUFqhQbNY9X2VBjkAJfDQvifNXsvVNy+t0GCh4AwGg8FgVFYC8h5/+vRpAHDLf6xKlSoAgJycHH80icFglANYhYb7eJ2hwZGjBN2s0ODofwPKQsF1as8LB0m7qRA1B70Xw6y1RIaGnOWUKBTc7xUaZd9JRw8FL/t2uYvXllO+aQajjCEzNHxxjokrNOjXECUVGt5kaHAcJ2s7RY5cd4bsj5XO0BDOJ6rQ8HWGBlXQEH9W/q5IDG+gPSI6LKdEx7L8uhRVaDhtr8gkHrahNEODdnr6egxOcFRoiD8zKsjGI09k+7MqCwVnMBgMBqPyEhDLqYKCAgA2fzilGAwGADYvPgaDUTmh+RuXsFBwWeQEDSUo7YCzI6rQkAkFp0F6x3tToZFHjAD2pjoDoFVoKM/QUFeGCo0KEgrufZuZpFER8IfllKhCwxNBw56h4WWDIrQccgz0afKWU2QouO3/5Ohxcr4o4vpbaOI98sqXgja6nvbMwCynKhe0oga7kCGuQJVfl6JQcKe/ac+Y4UorNCjnt79zNMomFJxuOUXiyjnKvruY5RSDwXCXs2fPwmg0ur1cfHw84uPj/dAiBoPhKQERNKpUqYIbN27g0qVLaN++vaJlTp48CQCoUaOGP5vGYDCCGNroORYKLk+20TvLKVGFhovOWnGFhkyGBmV5o8V/llPRCkdGSkFmaPDgYbFaqWKFyHLKz4JDMNiolEfxgoZUhyfP80GxnxmBQRQK7oNTWBQK7onllD1Dw8v2ROlUAOjCiazllESQMnl/JucjLacAIM9oRVyIF2EgTtA6o1mFBoNWVeqwnCIzNHxsOVVAPGNqVfTKCxpUKyYllQtuEAwVGmqVzf7O+asZFexnyQwNZjnFYDDcpF+/frh8+bLby7333nuYNm2a7xvEYDA8JiBDPO0ixo4dOxQvs2TJEnAch27duvmrWQwGI8ixUF5yvBM0Kv6LjrcVGqSgQfsNnCH7AwQVGsS6FGVoqD3v7CItTbyt0CAFDUB6hHWgQ8GDAVpfSHns/5dqsp8HxzKCjLK1nJLP0NCqxNdmd4mQs5xyI0PDEQouspwSzheh40RCiS9zNGidzfQMDZ9tklEOoGkA9nNHVKHh4nA0ShdOOXAWUMgKjXCtSrEoTootgO8tp8hdU1anBllt5olwUypoMMspBoMRWJKSksDzPHieR1JSUpm2Zdu2beB5Htu2bSvTdjAYZUVAelxGjBgBnucxb948XLlyxeX8X375pUP8eOSRR/zdPAaDEaTQtIsSV6bHkC5VLzTxLjMhyjtyFRpK3qvJDjiXFRpkyKRchQZlVeJQcM8LB/MMwg14bTlFESWkgsEDHQpOg5ZRwnCN1HnBBI3KRUAspyQqNMhKNWdUUHkVCG4nUqZiTU4sITtaHaHgZIUG0UYVx92pCikl14eCBq0TlFVoMGgihf1cFmVo+KBCw3lzZBVwhFb50afiOMq55tubkEjQKKOTg9RWlQg34goNe4YGs5xiMBjucenSJYcg4c5/rDqDwQg+AtLj8vjjj+Ouu+5CSUkJkpKSsGHDBkHHC8dx4HkeycnJePTRR/Hyyy+D4zj06tULAwcODEQTGQxGEEJ7mSz2ogSfh3eh4uUBn1douBjtRgpEch1j1AoNi+8yNMSWU76v0JASNMQVGhW/G432W5dHGyqpvmKlXa+s/6RiQGoNvsheUFqhYXBRoeFtfgYARMl4Vsmtnqy8kKzQoFy6RcHgvhQ0qKHghMCO4LDnYwQO2iAM+yFMHueuKjSUdLQLLKeIgzLCTZ848lzzteUUea8qq/u1Tys0yGusTNYZg8FgMBiMikVAMjRUKhXWrFmDnj174tKlSxgyZAjCwsIcLxlJSUnIz893BIHzPI+GDRti2bJlgWgeg8EIUmijLZUIErSOczsFJh5hWm9aFbwYLWYUmt0POXOG7Ih3VdFC7mvnpcWWU2LEFRpehIL73HKKkpUh0SFJfq7hfOMTH8zQOgrLY9+hVJMtVt43w/QZ5QJ/WE6JMjSkLKdkKzTU0PngciJrOSVzqSRHjZsdFRryllOAOMeItAX0BmqFRhBkBDDKFlp/tv1eRVYR+SJDw3kWMkMj3I0KDcBWueBcY6ugINktgqVCQyTcUPazqz3PMjQYDAaDwWAEzBOjbt26OHLkCB555BGoVCoUFhY6yrdu3bqFkpISR9XGyJEjceDAAcTHxweqeQwGIwihvWx6k6EBiD2OKxLeBoIDgErhiGI7chUaYsspP2dokBUa3lpOeVGhURaWU4GmovQVSo3grrhXCgYNf1hOqUUdqFIZGjKCBqemigXu4rnllFSFBjEfZRV+rdCgCBomi7TAzqgcyA32J89pV4KBEssn58sGmdMmJyLS0BIN9LnlFB8c54dHFRpEY9USllMV3VaWwWAwGAxGKQGp0LATFxeHn3/+GR9++CHWrVuHlJQUZGRkwGKxoEqVKmjXrh3uu+8+NGnSJJDNYjAYQYqnFRpykB7HFQlv7aYADyo0ZAUN16/LZBiuNxka5Ohf0r/dXWgVGkozNCqD5RTt9y2PllNSsAyNygX5e/tCkyQrtaQyNAwWGcspqHxjOeVhKDgpppgkKjRI4QMQ2/75PUOD/A0rzuWIoRC5qguxwGh7hpEStZWMf3G2uPK2QsPvllPEv4NH0BDP40qXkA4FZzduBoPBYDAqCwEVNOzUq1cPkyZNKotNMxiMcgSt3L9EwQue3BzkCLqKhCtBQ0lns8rN8n1RKLjT8oospyy+sZwyWnhR9U6Mt5ZTFNsoqQ5JkeWUF9ZZ5YWK7k1vVahosO6TioFfLKfIUHAPKzR8IWjI+fnLrZ6svLAHKZMDDqiWU2SFhi8tpyjnJy1Dg1G5kLts06qI5JwF3bWcElVouJ2hIfy3rx9XRRkaQRIKTjuXSUSh4PbP3cx9YzAYDAaDUXEIiKBx5coVAECtWrWgVmgnYrVace3aNQA2uyoGg1H5oGkX3lpOVeQKDV9YTqmJDjjXFRrCf3ttOeWhEEAb+eu95RStQoP+skwGUZZFhUagj2zaN5TLrylvsG6RyoXYPs/7dZLXAanAWrJSTdAOqKErS8sporfXLmSQdjhk1gbgP8spnudhoGhApMhS0UVXhhhZyynKeWThAamnDnctp8gKjQgvKzR8bjlF/Dt4KjS8CAUXVWiwOzeDwWAwGJWFgAgaiYmJUKlUOHbsGFq0aKFomdTUVDRu3BgqlQpms/SLHoPBqLhQKzSUhILLzFKRMzR8YTklrtCQ399eV2iIMjQ8uy2RI381KiCMNhzTDdScuIfOzEtYTolCwSt+hgaNiuT2wCynKhcW4tbgiwwNkeWURGebQS4UnPNNKHikh5ZTogoNqQyNAFpOSd3GLVbfi1KM8oXcIAzacW628pIVUEoeF523VkA8h4S7W6Hh9wwN4b/LrEKD/J6KBA3hMpxEhgaznGIwGAwGo/IQsB4X2shcfy7HYDDKP7QMDVahIU22wReh4L7M0CDmpUga5MhkvY8qNKJ1Kq9H53IcBy3RHskKDVGgcMUXNGijuitUhUbF+SoMBfjDckpUoSFpOSU9cIeDyieh4GEaTrKDXy1zuZIKBScHHND6bskKjTwj75PQXimLGrIDmOkZlQ93Lafk+tKVCApCyynvKjRIzdEkrXN6RLBUaIiyQiiXRVd7vrRCg1lOMRgMBoNRWQnaHhd7J5nKF6mMDAajXCKVoeFNh0iFrtAwusjQUPD2SnbEu9rX5HRO8DdRoUGznCIzNDyt0CAEDW8Dwe2QlRbSoeDCz2l2VRUNWiZLRRqDwEZ6Vi78YTklytCQtJySq9DwTSg4x3GSVRpyllNSvv5iQcN1hgYPIN/oA0FDoheaHO/AHKcqH25bTsmIFrRBNSTO1w3y+TLCzecQcUe/ny2nyugEISvOlFhOkU21XxI5jllOMRgMBoNRWQnaHpfr168DACIjI8u4JQwGo6yQKsYweOC3a6ciV2j4xHLKzYBFckS+oEKDI+cV47MMDWKIn7f5GXbICg2pDkmy87syWE7R+kJYhQajvELeb+SqFpRCWk5JiWQGi7y1qi8yNAAgUmLEuKzllESFhthySrwsTVj2he2UpKBBWk55vSVGeUNOoKBaTnlZoWGfw2jhRedEuJsVGuS55nvLqeCoYCKvZ7Tz2dV4AukKDXbjZjAYDAajshDQZ30lI0FMJhP+/fdffPDBBwCApk2b+rtZDAYjSKFVaACubafkphZW4AoNX1hOiSo0XHRQiys0pK/zdMsp/4SC+07QICo0FGZokOHqgSDQYoLcb10RYIJG5cJK/OA+sZwixQDK9YPnedkKDUA8otlTpCo05AUN4b/dqdDQqDiRiJJD85dxE6PE7hKHgnu9KUY5Q9ZySiIUnAbP8worNGz/p1X/RriZoUGe5363nAqSDA0llShkU1VSGRoSg04YDAaDwWBUPPwSCq5Wi9+8eJ5Hq1at3FoPx3EYMWKEr5rFYDDKGVIvk66CwWVDwX1gdxGs+KVCw8XLodimxTlDw/XbspEYmaxT+SYUnAyj9RSNKENDoeVUZajQoHzGKjQY5RWyY9MnllNkKDjleioVFO6MLyynAGlBQ85ySnmFBn0dUXoV8p16Zn1SoaE0Q4MpGpUOWcspWoaGxLGkRMwASp83CyjVv+5WaJCioN9DwX26duWIBA3qY5X8dy+t0CAtp9iNm8FgMBiMyoJfBA2pIG93A75HjhyJF1980QctYjAY5Q0rL901WuKV5VTFHb3lMkNDwesrOSrZVYWGXMikKBScsipRhQZFEFeC3yo0OGUe+JUxFJzWWeiLwN9ggXWMVC7EoeDer1McCi4+plzZTQFlbDlFTLPvJ7KzlWY5BdjE5TT4VtCQsp0kO6Er/lWYQSJ33aadRlLjY5SKCfZDroAYVBGm4WSFQhp+FzSIf5dZhYao6sv97+kQNNy0SWUwGAwGg1Fx8Iug8d577wn+PX36dHAch2eeeQbx8fGSy3Ech5CQENSsWRPdu3dHw4YN/dE8BsMnWKw8dqeX4FqBfE14qIZDp+p61I70y+lWYZEbHbfuYhGqhEp3fN8ulv5NMoptK84qsWB3ugH5RitO3DYiPkyN+LDSdVYJUaFnrRCcuG1EtsGKnrVC3LYP8DUnsjLwxYlDyDcZUCdCgzyjFbeKLbDyts6ks7m3ZZc/csuAX/4tcPw7TMOhS009aoaXHpsmCyFo8Dx+Pp0PjuMQo1ehR0KIQCwQV2iUTiNfNA9mXsNvFw9jZP02sPA8fr5wCOuunRbM447lVM6d3zDXaMW1fGGnoK8EDTLU94dzB7D9xkXRfDeL82WXY5Q//rpUjBi9weV8t4qtgvPKjoYDWlXVoUUVnWia2cpjx7USAMDdtUMkR7crxcrz2HfdgMt5Zqg4oHmcDndVE2+3MlFstmLHtRJklijr4MoqEd43fGE5RV4HLLwVb6SsF3xWYjG5XI/fKzRkLldkJ2tWiQUlZl6UR0WznALE1+L9NwzIc+r8DVFz6FxD/hnJ+X4NABlF9Hv85TzhfYAVaFQ+5PrGOY6DmhOKl+suFjmOUY0KuKuqDs3idKIKJCkO3bQdlzeJYzLCzeoMQHye70wzYHwr3u1Ko5OZRpy8bRSJNaSYGCwVGkduGQX/LjFbkXxT+BmJVIXG1usXRNdYKXpVr49BdZormpfB8CeXLl1C/fr1AQALFy7EmDFjyrZBDCrTpk3D9OnTAbg/UJvhHtu2bcM999wDANi6dSuSkpLKtD1jxozB4sWLUa9ePVy6dKlM28IQEjBBAwAmT56MFi1a+GOTDEbAWXyqAH9fVpZZ8MeFInzcKw7Vw3xkhF0JkMrPAIBd6a47GeU4eNOAH07kCzq6LuSKR8kuOFnaSbk+tRhf9I4TeaIHirTCXHT68yuUWEs8XsepTBP4EmEVx5qLRfj07jjEhdiOzZ9Oiztm/7hQ5Hih3nS5GJ/1jnOMPJQNBae8Lj+y/WecyL6B68X5WHDugGi6UkHDZOHx7t5s3Cyi9zr4ynKKDAX//dIxRctVhgoNFeX3rUiP99uvKT/X/rhAr45acb4Ir3SMRsfqesHnXx7KdXTYHMww4JWOMR63EwCWnS3EqvPObSjCs22j0KtWiFfrLc98kpyLU1muxQIpfKFJ0q4DM4//4/Z6fJWhESGZoaHccspgAT47mCOaT0rvjyEEjbPZJpzNFv4uf1wowid305+RjBYe7+zJxu1i1z3MN4hOZaZnVD5cDfbXqACL02GyjbjOrzxXhDc6R6NWhLJX5FNZJup1JtyDATDkIgYLj5Xni/Bg43DF60i+YcCnB3MVzRssoeAAsDe9BN0SbPerzw/liaaTS6glMjRSMq8iJfOqonaYrL2ZoMFgMBgMhhMnTpzA119/jc2bNyM9PR0RERFo1qwZHn30UYwfPx4aTXAN0g5Ij8vChQuxYMEC1K5dOxCbYzACwu505Z1dxWYeRzK864SvbJCjP33JopP5ikft2rlZZMH+G2X3G66+fMorMQMQVk/YKTTxOHZndFyRyYoz2eKRr1Ynu5D0QotgFCxpweQsaISo6Te8ny4ewi8XD1GnhWuUjSq/mGuWFDMAICbEN7c3pe0hCVVrfbJ9d+hctW5At1clJEz0WYSH+6sis++68LzNNQhHn6bcNCLHSxueHRTxZXead9eL8kxmscUrMQPwjc1TmMY314FQtW+uZzESgobcdw0hPacAHLst3rd6ynyAWNCgUWLhcUDi/vpvlkmRmEHDV5UtjPJDoxj5F21XxwQPYN91g+ygGiVIVUPJQTvX9rjxrgG4924iVVXlb0Ip1Sv/XLW1u9BkxdFb4uoM0tLOfs1Sc8HVscJgVES2bdsGjuPAcRy2bdtW1s1hMHzCtGnTHMc1w8b8+fPRoUMHzJs3DxcvXkRJSQlu376NXbt2YeLEiejRowdu35Z3BAk0ARE0Ro8ejdGjRyMqKioQm2Mw/A7Pi+0WXCHl+cygk5rn2lfcU267KWbYuUip4ggUN4rFlRPuUl2bSP3cfmwWmnhoVXrRdCMhpBQ7+RhkG4VVStHa0hHhPavXR4RGvL4rBTkoofjGh6q1SKqpzGqw2CL9G9YIU6N2hG+GNA+q7f7ovTh9GLpU87+48EXnoY6/9WoN3m7T1+/bdKZeRBx6xCc6/v2fmo0QHxoZ0Db4invrhvpt3QZCI6RlCJD+6+5gtPBUgTbPi3WWd7I8vMbbCdNwaBrrvRhRNzwWLWKqe7x8y/Ae0KuBFlV8I4y0qqqFnrg0RutVqB8t3SlYP8p1h2G1UBVqSFSgto/XK8ojyZSwiswskbf1lKNtJbddq4zc3yhc0Pk9pkWEYHr7ePEzCUmxmVccCi5Fx+ruH3ttqoqXcffdoUgqFIQgXMOhiQ+ucZ7QPE78Pa/csQ01Snzfu4h907yK7VpWU9fA9w1kMBgMBsOJRYsWgef5Cm03tX79ejzzzDMwGo2oXr06vvrqK+zfvx8bNmzAAw88AAA4cOAA7r//flgsnj+b+5qADWu4cuUKAKB69erQ6+UfJktKSpCRkQEAqFs3sCNOGQwlWHixtUrH6jqEOL21n8w0Idup44rJGe5xIUc8ArRXrRC3PCs5DqgXqcWtYovAHszTgXdl6ZeZaxSKCuGqaFTR1hLNVyNMjd61qmDWiW2iaTHaeLSI0yKtwIxcIy2cloeOE3fsWlEMoLRTwPlFP9NQKJjXedR+zbAo7Bg0CW8eXI+/0s44PqfFvT/RsAOebd4D9SLiRNNokD+FXg10qq5HXIga/RND3Q7jlOL9dv1RMzQSB25fVRR4XS0kHE817YIonf+tfl5o0QsxulCcyrmJxxq2R82wwA8aWHfvOHx5cidUHIcXW/YK+PZ9xZiWEYgLUWHpWdvx3CNBL2vHcTrLhMwSK5rFalE1VDg25Eq+xdE5A4iPVdpx5M1AWak8gWKFHVsVkVxCzAlRc4o7GCN1KvynTqikPZM7cByHTf0nYPbp3bhSkONy/voRVRClTsTfaSdQVReLvjU64j91Q2Uzo9whNkSNad1ise1qCQpNVsToVehbL1R21LpWgRoxvVus5Ai3ulEavN0lBrvTS1DidExeyTfjSn7psZstUaVECoBxISq0iLN1xHIch+uFZtQM1wjuzxwH1I/Son+i/4RKRnBSNVSND3rEYneaAbUj1bibsN0b3yoStSLUuOI0aIY8Fq08YKZcp++tG4oisxUpN40I03BoSREa1SoOLeK06F3b/WeAxGgthjUME1gYuvu8aiIEgYbRGtQMF14/fHmN84QYvQovtIvC/w6XWkvlGKzIM1ip70pTO0QjMVq4r6uGqvFe11isOt8M1iv3I91wHhbe9ht2q6lXlEvVvor4GZrBYDAYjMqGyWTCc889B6vViqioKOzevVuQZz1gwABMnjwZc+bMwa5du/Djjz8GTdZPQASNjRs3YuDAgYiIiMClS5dcChpFRUVo2bIliouLsXnz5jIPgWEwSGgjiMa2jERVp06HmQdykE0pm2Yo40KuUNAY1jAMo5pFSMwtz9+X6P727lKW3YO5JmElRE19A7SPvFc0X+caerzcIZoqaADA/Y3DsepcIXKd7Fjs38tg4aHiVNByepj4UvsPjaZE8OWdrRiyDMJ9W0Uv9HpuV6UWfrx7FKr9KsxWckbNqbCo13/dKvkkX/KjdSo81y5a8fJKUatUeLZFT5+v1xdwHIcxjTuVaRuidaF4r12/Mm2DL9CoODzQOBwPuOFVLsWKc4UCQYO8ctC6bb0RNG5JjGxXOlK3IkJ2gidEqP1yfVBCQlg0PuwwyK1lXmnb1E+tARpEa9Eg2r2R2SFqDiUSI6ejdJxLwaVFFR1aVBEKShtSi7DoVGnlYbZEVQ0pTrWqosPktqzimyFNYpQWiVH0Y1yn5jCsofA6v/JcIa7klw7OsPDiCg2dChjf2v8ViK2q6LwSNIzEAn3qhqKPHysQPaVrTT3mHIUgfP1KvhkJlOpaqQq1hjFaPH1XFJJvNkYtfWPH53O7VUFsCMssZDAYDAZDCatWrcLFixcBAG+88YZAzLAza9Ys/Prrr8jOzsasWbOCRtAIyNCM5cuXg+d5DB8+HLGxsS7nj4uLw4MPPgir1YqlS5cGoIUMhnuYKO/dvvDbZtjgeR4Xc4SWRA1lLDFcESrh7V2eyCEqNLQcXRguoh2czsupbKNXnbEPRLRbG+hVwpdf0nLKuZ80kxA04vTiXIUYF9UKcfpQt/0ryZd8X1VkMBj+xktrdhFSFRqurgUVGTKTREmOA8MzQklze4XEETlH2RLWUuRvGc1+S4aPISNqLFaIMjSUjPj3BeRmlFSGOkNe9oP13UTFcagTKXyuv5zvvq0rrbqMWfwygoHdu3dj/PjxaNq0KaKioqDT6VC7dm0MGTIE33zzDXJychSva8yYMeA4DomJibLzLVq0yJEJIGWN888//+CRRx5B/fr1ERoairCwMNSrVw9du3bF1KlT8c8//zjmvXTpEjiOwz333OP47J577nFsw/7fokWLqNvaunUrRo8ejQYNGiAsLAxRUVFo3bo1XnnlFaSnp0t+DzLbIDc3FzNmzEC7du0QExMjuc3Vq1fjoYceQt26dRESEoKYmBh07NgR06dPR3Z2tuy+A4Br165h8uTJaNCgAUJCQpCQkIChQ4di8+bNLpf1FPs+dv5Oy5cvR9++fREfH4/Q0FA0a9YMb7zxhqJjxmg0Ys6cObjnnntQrVo16HQ61KhRA4MGDcJPP/0Eq1X63YA8ztLS0vDSSy+hSZMmCAsLQ7Vq1TB48GD89ddfbn0fKRITE22D8zzsGN+3bx/efvttJCUloUaNGtDpdIiKikKLFi0wceJEnDp1irqc/TyZPn264zPymCbPIaXn4PHjxzFhwgQ0btwYYWFhiIyMRMuWLTFlyhRZuyraftu0aRPuu+8+1KhRA3q9HvXr18fEiRNx7do1pbtIMatXr3b8LfV7hIWFYeTIkQCAU6dO4ezZsz5vhycEpEJj79694DgO/fopH8XZv39/LFmyBHv37vVjyxgMzzBReqS0xGAgqU5jhmtuFFlQSIwubhjjudevOx0uHKQrMXzdEekOuURWhZSg4SrbRS4E0l55pOfCUICc0s/5Ijj771icdgQpaFShCBoalRrRuhCRbZadWJ14GVeQL/lB+s7OqISQhyJ5RtKuI95cW6QEDeOdTrlAdcQFE2SFRnQZWatUBjwdMECOoM42WMHzvEjcFv2WTNBg+Bg1cczRKjQ81O3cRixouLc8aTlFvpsEE3UjNYJsuit5ZnSr6TrjxBkt5XepxPFRjCCguLgY48aNw6+//iqalpaWhrS0NKxbtw63bt3CtGnTAtq2KVOm4MsvvxR9fuXKFVy5cgX79+/HokWLvA79LSkpwdixY/Hbb7+Jpp04cQInTpzA3Llz8euvv+K+++6TXde5c+fQr18/2c7g7OxsjBgxQiDGAIDBYMDBgwdx8OBBzJkzB3/88Qe6du1KXcfOnTsxZMgQ5OWVWuFdv34df/75J/7888+A/Vbjxo3DggULBJ+dOXMGM2fOxJIlS7BlyxY0a9aMuuylS5cwcOBA/Pvvv4LPb968iQ0bNmDDhg347rvv8McffyAuTt7iOSUlBYMHD3bEAAC2Y3v9+vVYv349XnrpJXz22WcefkvvWbRoEcaOHSv63GQy4fTp0zh9+jTmz5+Pr776CpMmTQpImz766CO8/fbbItHo1KlTOHXqFObOnYt58+bhiSeecLmuN954AzNnzhR8dunSJXz77bdYsWIFtm/fjubN3c/5lGLXrl0AgKZNm6JGjRqS8/Xu3RvfffcdAJto26RJE5+1wVMCImjYL0DufOFGjRoBAFJTU/3RJAbDK2iWU3IdxQDL0HAHsjojWq9ClRDP3yb1bnS4ROo45FHyJcqaPBNRoUEJ7waAIhdJlhqVuMPVjn1Um04lrKgwWksE9XzOmxBbTtHFiVhdqKSgQavqcIW4QsPtVTAYfsFVsRBtxK03gsbNIulzvtjMI1JX+U4O0qaIdYJ7h9wxHeapoEH8JiarTZCP0MkLGqzahuFryEH+FkqGRtlVaLi3PDngKlgrNABbvo4zVyQqNOS+gYrjoFUJK1OkgsUZDH9jtVoxbNgwbNq0CQDQuHFjTJo0CR07dkRYWBiuX7+OPXv2YNmyZQFv29q1ax1ixl133YWJEyeiefPmiI6ORk5ODk6ePInNmzfjwIEDjmVq1aqF48ePIzk5GU8++SQAYMGCBejUSWh3W7t2bcffPM9jxIgRWLduHQDgvvvuw8iRI9GgQQOoVCocOHAAn332Ga5cuYIRI0Zg9+7d6Nixo2S7R4wYgbS0NDz33HMYOnQoYmNjce7cOdSrVw+ATbTo27cvDh06BLVajVGjRmHQoEGoX78+TCYTduzYgc8//xwZGRkYNGgQDh8+7FjWzpUrVxxihkqlwoQJEzBixAhER0fj2LFjmDlzJqZNmybbTl8wZ84cJCcno3PnzpgyZQoaN26MjIwMLFq0CMuWLUN6ejr69++PEydOIDJSaIFYUFCAPn36OGyDhg8fjieffBIJCQlITU3F7NmzsX37duzatQv33XcfduzYAbWarngXFRXhoYceQm5uLl5//XUMGjQIer0e+/fvx0cffYTr16/j888/R926dfHCCy/4dZ9IYTabERsbi2HDhuHuu+9G48aNER4ejvT0dBw6dAhfffUVbt++jWeffRbNmjXDf/7zH8eyw4cPR8eOHTFnzhzMnTsXgK2ygqRWLeU5S3PmzMGbb74JAKhWrRpee+019OjRAxaLBZs3b8asWbNQWFiIMWPGoGrVqhg0SNqKdv78+dizZw969+6Np59+Gk2aNEFOTg6WLFmCJUuW4NatW3jyySd9NvC/oKAAV69eBQBJscyO8/TTp0/7ZPveEhBBw2y2PaBInTQ07POWlNA7wIKBpKQkbN++3a1ltm7d6nYmyLRp0wQlUb5eP8N9SI9aFRe4l53KAJmf0TBa47YlkTOhCkJN7YRrVcgz0kc8l+UrEilo6Di6jZMnFRrOGRoAoFcJBYYSq1C0cH7RJ0PBpcSJOH0YLhXQy31jde77OzNBg1FeofW1eCNoSGVoALYcjUhlWdgVCjaqP3B4WqFBEyayDFZRUDH7LRn+RmQ5xdtsp5wJlHMpaZ/pbrEBWZ2gdeP5N9DUIyynruabRftdCTo1JxBymKDhHlYrj8yiypP5WCVMB5WfXhpmz57tEDPuv/9+/Prrr6Ls2MGDB2PGjBm4fv26X9oghV1EqVevHnbv3o2ICGEuZVJSEiZPnoysrCzHZ1qtFq1atRJUbNSvXx+tWrWS3M7333+PdevWQavVYs2aNRgwYIBgeteuXfH444+jV69eOHnyJF588UXH6HAaJ06cwIYNGwROLx06dHD8/f777+PQoUOIiYnB5s2bBdMAoGfPnnj00UfRrVs3XL9+HW+++SZ+/vlnwTwvv/yyozLjp59+wiOPPOKY1rFjRzz00EPo1asXUlJSJNvpC5KTkzFo0CD88ccf0GhKr48DBw5Eq1at8O677+LKlSuYMWMGPvnkE8Gy06dPd4gZb7/9NmbMmOGY1qFDBzz44IN4/PHH8fPPP2PPnj2YN28eJk6cSG3HrVu3kJOTg82bN+Puu+92fN65c2c8+OCD6NKlC65du4a33noLo0aNQrVq1Xy5GxQxcOBAjBo1CmFhwn6Hdu3aYfDgwXj++edx991349ixY3jvvfcEgkZMTAxiYmIQHx/v+EzumHbFrVu38MorrwAAEhISsG/fPtSpU8cxvUePHhg6dCh69eqFwsJCTJgwAampqdBq6e4je/bswVNPPYXvvvtO0P/Vp08f6HQ6fP/999i3bx8OHz6Mdu3aedxuO84WVs7iJA3n72UXQcqagAgaVatWxfXr13Hx4kW0b99e0TL2E9JVOVR5QqVSoXHjxq5nZAQ9JqL/iNZJHLyvEMHPBaJCw90AUxJ3OlwitNLzlqVtmKhCQ8ZyipdpqFbFie3Q7vzfcOe41nFCgaHEKrS7sldolJhNKDILxScyFNyOXBWGbyo02BnHCE7I05H0Zgfc90l3RspyCrDnaASx54ifYJ3ggcNTQUOr5hCp45DvVBGZXWJBXadOTrOVRz4h0scw+zCGjxFZTln58puhQVpOBfHpUpcQNExW4LrM/UwKnYpDodOQI3LQGUOezCIj4t/bWNbNCBgZ0/uhWoR71mZKsFqtmDVrFgBbp+CSJUtEYoYdlUrl1uhvX3Djxg0AQPv27UVihjPe9L3xPI+PP/4YAPD888+LxAw7sbGxmDVrFgYNGoTdu3fj3Llzkn1kY8aMkbStLygowDfffAMAmDFjhkjMsFOvXj288847mDRpEpYvX4558+YhPNz2vnrjxg2sWrUKADBkyBCBmGEnMjIS8+bNQ5cuXWS+vffo9XrMnz9fIGbYeeutt7Bs2TKcOHECP/zwA/7v//4POp1txJLBYMD3338PAGjZsiXVHovjOMyZMwd//fUXMjMzMXv2bElBAwCefvppgZhhJyEhAZ999hkefvhhFBYWYvHixZg6daqH39hzXJ0/0dHReP/99zF8+HDs2rULmZmZqFKlil/asnDhQhQV2QZ/fv7554JOfzvt2rXDG2+8gbfffhtpaWmOvBcaNWvWxNdff00dzDt16lTHb71z506fCBr5+fmOv+WuDQAc5w1gO/+CgYA85rRt2xYA3Ar4tnvueaOW+ZuFCxfi+PHjsv85f+c+ffp4ffNytT2yBJDhH8iHZdr7NcvQ8AyLlUdqnrCTvFGMd9priFuCRnC+/eWRGRoSllM8gBKZ0WlUH+g7sxslQsFLLKSgYZsvyyis3ACkLafiZHIyYvUeVGgQ9TKsQoMRrJBnI80VztMBpQUmK4rM0gvLTavIsAyNwOFpKDgAxOqJHI0S4e+WRzHDZ+IUw9fQLaeIecpLhgb5fhLEFRpRepXIeu5KnvfB4OSgMwYjEBw5csQx0vmpp55y2TEYaGrWrAkA2LFjBy5cuOCXbZw6dcqx7hEjRsjO69xZLmed8+ijj0pO2759O3Jzc93anslkwsGDBx2fb926FRaL7aJBy2Sw07lzZ7Rs2VJ2G97Sr18/JCQkUKepVCqMHj0aAJCVlYVDhw45ph08eNARGD5mzBhJV5yoqChBqLNclZDcvrj//vsRExMDAH4NTHeHwsJCXLp0CSdPnnTktDhXQBw9etRv27bvg5iYGDzwwAOS840fP160DI0RI0ZIiqFNmzZ1XFvsBQDe4uyIZBfJpHBuV3FxscycgSMgFRrDhg3D+vXrsXLlSixfvlxSjbKzbNkyrFy5EhzHYfjw4YFookfUr1/f5Tw//vij428lATCuCGaBpzJBjoAK5heG8kZagcVRKWCnoZcVGm4JGjJ+82U16MtgMcNgFb7kSVVoAPK2U1oVpyBDQygwFJEVGndWn1kiFDQ4cIiRsI/yf4WG26tgMPyCq0ORXqHh2bbkqjMAW4ZGZcNk4VFIfG+Wu+A/wmSqGl0RF6LCldKBYcgmhChSmOKASpkJw/Av4lBw8XVaE6AqUPJK5Y7YzfO8IEsCcJ3vV9bUidQg21Bqd0TL0XC163VE3x2znGKUBYcPH3b83atXrzJsCZ0nnngCS5YsQWZmJlq1aoVhw4ahf//+6NWrlyO71lucLZm6deumeDl79QiNu+66S9H27IKNu9tzzk5wNTC4c+fOOHnypOLtuIuS7ds5fvy4I+D8xIkTjs9dVZF06dLFkRtx4sQJ6n7T6XRo06aN5Dq0Wi3atWuHrVu3UrMnAsXt27fx+eefY8WKFTh37pysQ4W3Qfdy2Pd/+/btJW2kAKB69epITEzEpUuXBL8Ziasci9jYWBQUFAgqK7whJKTUxtxolLcfNBgMjr9DQ90fkOoPAvKGN3r0aCQmJoLneYwaNQpTp06lem5dvXoVL730Eh599FFwHIc6deoIlKzyhtVqdXj0RUREyCp2jPKFJy8M7PFaGWR+RrVQFaK87IwKcTNDI9jINYoVcDlBo8jMQ8PRv4ft6wn3hzhDQ3iDKjYTGRp3XvTJ/IwYXQjUKvp25aowfJKh4fYaGAz/4KrzhVah4S9Bo4i8WVUCyEBwgI3q9yeeWk4B4mBwskIjhxA0ovQqZi/I8DnkY4vNckr4mReFSO61hczQcOPeQLvcB+EjrYB6RDD4ZU8qNIh3MGY5xSgLnDtM3elcDxR9+vTB7NmzERoaipKSEixduhRPPvkkGjdujNq1a+OZZ57xehR7RkaGR8vZ7XpoxMbG+nV7zpkhzpkKNKpXr+7R9pTizvad2+3Od6hRowZ1OWfi4uJcZh/b2yK1Dn9z8OBBNGvWDB999BHOnj0rK2YA/q0msO8DV/seKN3/cvuNzAUhUd15aLFXFnmLc8C8KxupwsLSvp9gqUILSIWGTqfDypUrcffdd6OgoABffPEFvvjiC9StW9dxwb9+/TquXLkCwDbCJCIiAqtWrZIstykPbNmyBWlpaQBspUOuDk5G+YEc/aOlXPPZK7dn+Do/A7B5H2tV9Jc9Ejnxgy8jWSrXWCL6TKeih4IDtk5MjUoFMyVdUSOboXFH0CAyNIpEllO2/2cZhJ9L5WcA8pZTLEODUZERZWhQHrpJCzWluBQ0KmGFBjmqX80B4V5UETDk8UrQCBH2tmaVyFdosEobhj8gD2ErrUKjjDI0bO3hFT3jkHZTQPBXkNeNFL5A0QQNV9+A/I4GVqHhFlXCdMiYTs8oqIhUCZO3VKnITJ48GQ899BB++eUXbNq0Cbt370Zubi7S0tLw3XffYd68eXjzzTfxf//3fx6t37mD9c8//0RiYqKi5eQ6guU61p23d+jQIdnR8c5IBR/TMgsCiS+2Hyzr8CdGoxEjR45EZmYmtFotnnvuOQwbNgxNmjRBbGyso//44sWLaNiwIQC4FDx8QbDvNymcIxGcA8JpOBcl0LJCyoKACBqALUdj//79eOyxxxwleZcvXxaIGHY6dOiAH3/80WW5TbCzZMkSx9++sJtiBA/k6J9gL+kuT5AVGg29zM+wE6LhYDK6vpnJvfyV1StSDlGhoYIaak56vxSaeGg4NQDhiyEHsVc0AFGGBmk5VWI1wMJboOZsD5UWnl6hESdTheF7yymWocEon9CEVc8rNORV2iIZ+7mKCtkJHqVjo/r9iS8FjWzCb5KstmFZKAx/QF4fLDwvytAIXIWG+DMrr+wZh7TDBYL//aQuUaHhyR1LTzzYMssp91CpOL+EZFc2qlat6vj7+vXrPu3Hso/Itlrln/mcR09LER8fjxdffBEvvvgirFYrjhw5glWrVmH27NnIycnBBx98gE6dOmHYsGFut9M5dDkmJsbvVunO26tWrZqkUCGHcwXIzZs3ZTtpb9686fb63cHV+p2nO4e3O/998+ZNNGnSRHIdznZbUgHwmZmZsFgssmKSvS3kOlROJY++OF5p/PPPP478iDlz5kg6+gSqeiQuLg7Xr19XdHzY97/Uvi8LIiMjUadOHVy9ehX//vuv7LzO05s3b+7vpikioG8GzZs3x8GDB/H333/jueeeQ8+ePdG0aVM0bdoUPXv2xPPPP49NmzYhOTm53IsZBQUFWLVqFQCgXr16SEpK8sl6+/Xrh/j4eOh0OsTHxyMpKQkzZ85Edna21+u+du2a7H9ywUGVDWWhe3RbH4Y0JgsvGp3lbX6GnVCFo9Rk7anK6EfMISo05OymAFsnppryEqtR2UYPuMrQIC2nAMDolKNRWqEhLBGWrdCQES18YjkV3O/sjEoEeSiKQ8HFFxJP+18yilmGBomoE5yN6vcauctrmBc9vXEh8qHgonB39lsy/AB5CJdphoaEoKEEitte0AsatcI19IE2AuRnIL8jbT8wGP6mffv2jr937Njh03XbLWHswc9SnD171q31qlQqtG/fHjNmzMCWLVscny9btkwwn9KR5+3atXP8vXv3brfa4gm+2F7r1q0dfycnJ8vO62q6t7izfWexyPnv/fv3y67jwIED1OWcMRqNsvZjZrMZR44coa7D2b5Irn8yKysLmZmZsm2VwjnH5OGHH5aczzljhYavKirs++DQoUMwm6VtEzMyMnD58mXBMsFCz549AQBnzpyRzbTZvn274+8ePXr4vV1KKJM3g3vvvRf/+9//sGPHDpw6dQqnTp3Cjh078OWXX6JPnz5l0SSfs2LFCofq+Nhjj/nshNm0aRNu3boFk8mEW7duYfv27XjjjTfQoEED/PHHH16tu06dOrL/OQcRVXZMRB8SbdAgGxDqPpfzzaKOvQbRvqrQUHa5k6vQKKt3pFyTsEJDp5IXNArNVmqGhtSLrd1Kyz44VsdRBA3eWdCwV2gQgkaIjGjhYfWGFEzQYJRX6BkavrGcCiNGyxfRNlbBIXMXmE2Rf/FlhkaOwSo4F9hvyQgE5PODxSq+TpdVhgagXNCgWU4Fe4aGVs0hIULeq90VLBScEQy0adPGMbr/+++/d+lF7w7169cHAOTn5+PMmTPUeYxGI1asWOHxNtq3b++oViADlJ1Dg51DgWnrsFdJzJs3DyUlYstkX9K3b1+HpftXX33lka3QPffc46hEWLx4seR8ycnJskHOvmDjxo2SA4itVqujfbGxsQIBrUOHDoiJiQFg+w5SlRH5+fkOsapFixayWS9y+2LVqlUOsaJv376CabGxsY62yAkKv/32m8c2UM6igVSVh9Vqxfz582XXo/S4doV9H+Tk5GDlypWS8/3www+O70zut7Jm+PDhjr8XLVpEnaeoqEhw/MhVAgWSIH/MKb/42m6qdevWeOedd/Dnn3/i4MGD2LdvHxYvXox+/Wyelzk5OXjwwQexYcMGr7fFcI0nllMBsO4r91zIEdpNJYSrEeajt7EQhZ0uFaFCo9DEQ6MSvyDad6XUCHJ7hYaKU4m2YXCq0LC/K5KChmxOhsw031RoMEWDERxI10DZoFVoeHJ/sPI8bhEVGomEfQfL0GCj+v2NLy2nLDyQ52QNKfotmeUUww+oKZZTFuI6Tat69QdSGRpKIC2n1Fzg2u0NdSO9G7hEDkRiggajLFCpVHjllVcA2FwvnnjiCRiNRuq8VqsV6enpitfdu3dvx9+fffYZdZ6XXnrJkd1KY+nSpbLByCkpKY5OaruAYse54/vChQuS61CpVHjzzTcB2PILnnjiCdmO4ry8PMyePVtyuitiYmLw7LPPAgD27NmDKVOmyNoc3bx5E99//73gs5o1azrstdasWSOqTgFszitPP/20x+1UisFgwNNPP00Ne545cyaOHz8OAHjyyScFOcN6vd5hu3TixAnMmDFDtDzP83j22WcdYpV9v0kxd+5c7Nq1S/T5jRs3MHXqVAC28OrRo0eL5rn77rsBAH/88Qf1eDlz5gzeeecd2e3L0bhxY8ffUp3vb7zxBg4dOiS7HqXHtSvGjh3rENZefvll6nl49OhRfPjhhwBsmRXOAkIwcP/996NBgwYAgI8++oi6P1555RXHNcJ+rQsGApahQWK1WpGVlYWioiLUqlVL1qOtvHHt2jVs27YNANC1a1ev1asXX3wR06ZNE33epUsXPPHEE/juu+/wzDPPwGKxYPz48bhw4YJAcVSKc8gLjevXr7MqjTuQLw20Uf3iT9gDtisu5BJ2Uz7KzwCUd7qQI72cKatfMJfI0NBy8ud3kYleoeEq1NL5JVCvCoXJUvoQKrScss0nspySqdCQtZzypEKD+DXKwTs7o5IispyiXEg8ydDILrGKRhHXi9LgVFapMFwpMzRY7kJA8UbQiNapwEF4jmSXWByVGGL7MHahZ/geNc1yiszQCNChRxU0FC5LWi0Fu92UnbqRGuyGdKenq/EqOpHlVOW77zGCg8mTJ+PPP//Epk2bsGrVKrRu3RqTJk1Cx44dERYWhhs3bmDfvn349ddfMWrUKGr/Do127dqhW7du2Lt3L+bPnw+j0YjRo0cjOjoa586dw7x58/DPP/+ge/fu2LNnD3Udr732Gp555hkMGzYMd999N5o0aYLw8HBkZmZi165d+PrrrwHYQrjJTIK6deuidu3auHbtGj799FPUrl0bTZs2dfTfVa9e3WE19Mwzzzi+//Lly3Ho0CE8/fTT6Ny5M6Kjo5GXl4d///0X27Ztw5o1axASEuKyc12O999/H9u3b8f+/fvxv//9D9u2bcNTTz2Ftm3bIjw8HNnZ2Th58iQ2b96MDRs2oHXr1qLv99lnn2HTpk3Iz8/HqFGjsH37dowYMQJRUVE4duwYZs6cibNnz6Jjx44ubYy8oWPHjvjzzz/Ro0cPTJkyBY0bN0ZGRgYWL16M3377DYAt0JwmBrz77rtYuXIlLl68iGnTpuH48eMYO3YsatasidTUVMyePdvRP9mtWzdMmDBBsh3VqlVDWFgY7r33XkyZMgWDBg2CXq/HgQMH8OGHHzrEuBkzZlAD3SdNmoQ1a9aguLgYSUlJmDZtGtq1a4eCggJs2bIF//vf/1CtWjWo1WrcunXL7f3Uv39/xMfHIyMjA2+//TYuXbqE+++/H1WrVsX58+cxf/58bNmyBT169JC1Iuvevbvj7ylTpuCtt95CzZo1Hc46iYmJ0Ghc90VVq1YNs2bNwuTJk3Ht2jV06NABr7/+Orp37w6z2YzNmzdj1qxZKCgoAMdxmDdvnuIA+0Ch1Wrx9ddf47777kNeXh569OiBt99+G507d0Z2djbmz5/vqADr2bMnHn/88TJucSkBFTQsFgsWLVqERYsWITk5GSaTCRzH4dixY2jRooVjvrVr12LHjh2Ijo7GW2+9Fcgm+oSffvrJoQ7TVEt3sZdtSfH0008jOTkZP/zwA9LT07FixQo8+uijbm/HkyClykp5fWkIdi6SgeA+ys8AXFReOKGXeWstu1BwokLDpeUULxpxaFvO9pnUy6HBSdCw2U7llE7jxRkaZCi4JxkaYRot9Gr3b0Xk+yo7AxlBg4uD0UwZPepJ/wuZn6FVATXDhYpspczQYBUaAYW0OXMHtYpDjF6FbKffLLvEivrRtr/FllMVZ/ATI3gQVWhYKRkaAavQ8J3llLacnC71onxdoeHV6hgMj1GpVFi9ejVGjx6N33//HWfPnsWLL77ok3UvWLAAvXv3dnRwk5ZAU6dORcuWLSUFDcDm6EFb1o5er8e3336Ljh07iqa9+eabmDRpElJTU0WB4QsXLsSYMWMA2HIJli5dihdeeAHffvstLly4gFdffVWyTbQOcXfQ6/XYtGkTxowZg5UrV+Lo0aOyAklUVJTos8TERKxZswZDhw5Ffn4+5syZgzlz5gjmeffdd8FxnF8FjcmTJ2P79u1YtGgR/vvf/4qm16xZE3///Teio6NF0yIjI7FlyxYMHDgQ//77L1asWEG1IOvRowfWrFkjO5g8LCwMv//+OwYOHIiPPvoIH330kWie559/Hi+99BJ1+f79++P555/HV199hWvXrlEFsjVr1mDgwIGSbZAjPDwcS5YswfDhw1FSUoLvvvsO3333nWCepKQkzJ49WzarolGjRhg5ciSWLVuGjRs3YuPGjYLpqampSExMVNSmSZMmIScnB++88w5u3ryJKVOmiObR6/WYN28eBg0apGidgWbQoEH49ttv8eyzz+LmzZt47rnnRPN07twZq1atCqpihIC95WVkZKBXr16YMGECdu/eDaPRCJ7nqd5piYmJ+PTTT/Huu+86AmfKEz/++CMA20ErF1TjS5zL4JzDWhj+gSxnVvLSUPm6ldyjxMzjWr7wLaSBLwUNX1hOlRG5HoSC0yynpDyg7ZdhA1Gh4Yyz5ZSZp2doyFVhhGq0CKEIF3JWVHKwDA1GsCKydCOOVZrGYPHAc4rMz6gWqkY4YdFXGTM0mKDhe+Qur6Fe2kKStlN2ccNi5VFgFJ4X7Ldk+APysc/C82WYoSH+TLGgQVaPl5MHI1eWU66+BcvQYAQTYWFhWL58Of755x88/vjjqF+/PkJDQ6HT6VCnTh3cd999+O677/Dyyy+7td5mzZrh0KFDmDhxIurVqwedTodq1aphwIABWLduHWbNmiW7/NatW/G///0PDz74IFq3bo1q1apBo9EgKioK7dq1w9SpU3Hq1CmHMEEyceJErFixAv369UN8fLzsyHWtVos5c+bg6NGjeO6559C6dWtER0dDrVYjOjoabdu2xbhx4/D777/j9OnTbu0HGpGRkVixYgV27tyJ8ePHo2nTpoiMjIRGo0FcXBw6deqEyZMnY/369di0aRN1HUlJSTh58qRg/1avXh2DBw/GX3/9henTp3vdTiUsXLgQv/zyC5KSklClShXo9Xo0adIEr776/+zdeViU5foH8O/MMAwMOwgKLqDmrhVKprnh0dzXRM/JStFSU8rS7JRmRdkpy+x3LMNES/RkpmamHrWjuGBuiWIumEsKKYqCCArIPvP7gxhn3nlnn2FYvp/r8hLe9Zlh1ud+7/v+J1JTU3UuAhcKCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4GL7Qssq3336LTz75RJNBJJVa/2Y/b948nDx5ElOmTEHLli3h7u4ODw8PtGvXDq+88grOnz9vl1YEjjRlyhScOHECU6ZMQYsWLTR/9549e2LZsmU4dOgQGjRo4Oxh6qiWDI2KigoMHz4cycnJkEqlGDt2LHr37m0wetqxY0c8/vjjOHbsGDZv3oxHH320OoZpF8ePH8e5c+cAAMOGDdM0V3I07Rc3Y/UTyT6EV0GJfWnQu8iKn6+NSrtXpnMXSSVAmJ0aggOWlJwy0hTcaT00LGsKft9EU3BTPTQAQCHVDTRol5yq+OuLvl7JKROlo/xclcgsuqe7zIpyU4B+TWn20KCaS/exKtZDw6oMjfu6M24NlTL9puD1seQUAxrVRioBbK3oJWwMfqe48u93r1RYWJB/S3IM/YDGgws3qlRfhob+MrN7aNTS7HF/Nyk85BIUWvl+pWAPDaqB+vbti759+5q1bVhYmFkNkhs3bqyXOaAtOjraYECiefPmmDlzJmbOnGnWmMQ89dRTeOqpp8zevlOnTvj8888tPk9sbKzZ5bi09ezZEz179rR4vypNmzY1ev9aOy5LPf3003j66aet2tfV1RUxMTGIiYmxeRxNmzbFkiVLTAYvDDF1O9LT0w2ui4yMNPmc6NChg+ZCcjHmPK/kcjlef/11kz0hqqoMmfLwww8jPj7e5HZC5r4GAMbvN3vo2LGjVbfBWarlm8Hq1auRnJwMuVyO7du34/vvv8eMGTOM7jNixAio1WrRZjQ1mXYzcHuUmzKXhJN51UovoGFWDw0y5nKebv+Mpl4uel9SbOFu5rGMZ2g450uSpRkahWWGSk4ZP0+pTskp3T4duiWnKrPrhBkaxkpOAYC/Qr/5t9gycwi/r9aS7+1UD5h6KIolTVgX0NDN0AhSyuAuFwQ06lnJqXKVGvmCSTFfToI7jLuLxObPn/oZGpWPa2FgSgLA25Uv9GR/UsEHCJVa/3W62npoiCwz9/3BmuzxmkAikSDUhsbg7KFBRERUP1XLt7x169ZBIpFg2rRpGDhwoFn7hIeHAwAuXLjgyKHZVVlZmaZhT2BgoNV14axRlRUCACEhIdV23vpKWJ/VnIoL/Hht3GW9/hn2TSAz1htDm7EMDSuqwtiFMEND2BRcGPgxXHJKvIeGeMkp3cwJ3ZJTQEF5CcpUuk8EU8EJsZJUfiw5RXWN8PklWC0MiAPmX4GrTdhDI1Apg1JQF6W4XG3VsWure8IGVwB82RTcYWzpn1HFz033vSr3rwyNPMHf0ttVwkw8cgixh3FJhbMyNKzvoSGcyK8tGRpA5UVM1tLvoVF/3vOIiIjqs2r5lnf69GkAlVkX5qpqEJSTk+OQMTnCzp07kZ2dDQAYP3680dqC9qbdCKdPnz7Vdt76Sq/xnhlfGvjx2jhhhkZLX/v1zwDMLzllLEPDWX/Du2XGMzT8BVe4FhoqOWW0nJZap9m9q6CHhnbJqXKVWq/cFGBOhoZ+8MJY3w1jGNCg2kKvh4adSk5lCzI0xEpOqVEZ1KgvhFf1SyWAJ6/qt52Bu9Dc91VjhCWnqgIaLB1G1UXs84NwUlzm1B4a5pacqp09NADjjcFN9tDQy9Cww4CIiIioxquWGfe8vDwAQEBAgNn7VFRUflGvSR3UTdEuN2Vuw5eEhARMmjQJAPDuu+/q1eU7c+YM3N3d8dBDDxk8Rnx8PFauXAkAaNSoEUaPHm3hyMlSwi86xq7qJ9MKylS4dV/YENy+L0/26KHhLKZ6aPgppMgsfHD/VWZoiPXQqPxfrIeGMOtIITHcFLxCBeQU6wY0XCRSeMmNl8Lyc9XP4BBbZg720KCaymTJKdGm4Jado6xCrek1UCXIXQqlXP/s98vVUNo3PlxjCSfBvV2lfG1wIHc7dEoWBuSrmoIL/5YsHUaOIpZ9oZehUU2vI7Y1Bdf9vbaUnAJMNwY3hk3BichZ0tLSUFhYaPF+fn5+aNy4sQNGRPVNYWEh0tLSrNq3TZs2kMtr95fEaglo+Pv7IysrC9euXdOUkjLl0qVLACpLN9UGubm5+O9//wugspFK586d7XLcEydO4IUXXkDfvn0xePBgdOrUCQEBASgvL8f58+exdu1a7Nq1C0Bl8Cc+Ph4eHsavkibbCa/+EcvQYFNw810RZGfIpbZ9uRFjvDeG7rklEP9z1ZSm4MIMDWEN8go1IBGZVjVWMkH4BVAhzNDQ7qEh0j/DX6E0WUvdoRkaVh2FqPrZI0Mju6hC7zUqSCmDm0jgtj710bhbyqv6q5MjMjTulqhQoVIzQ4OqjdhHI/2SU84bS/0oOSUz+NnbFJacIiJnmTRpEpKSkizeb+LEiWY1mSYyJTk5GX379rVq37S0NISFhdl3QNWsWgIaHTp0QFZWFpKTk80uO7V+/XpIJBI89thjDh6dfaxfvx4lJSUAzM/OMFdFRQUSExORmJhocJuAgAB8/fXXGD58uF3PTeLK9DI09LdhPMN8wv4Zod4udq9XLDbRJySXVjYndHORoKiGTAKq1CrcKy3RWSYXZGiIXbkqFSs5pVmkX5ZG+OVdWHKqTF0ClboCUokM5SrolZwKMCMwIdpDw8qm4Cw5RTWVqdd+8abglr3eCPtneMglUP71BHeTSVCs9XwuKqsZr2XVIU84Cc7+GQ5ll4CGoIeGGpWBKf4tqbrIRC7GEE6K14YeGtaUw60p3FykaKiU4aYgWxsQuUBMQHg72RSciGqLsLAwqGtIr7uEhAQGWajWqZaAxqhRo7B3714sXboUs2fPhp+fn9Htf/jhB2zbtg0SiQRjxoypjiHa7D//+Q+AyiyJZ555xm7HHTJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7W2385JxtblObU10OU/YENz+qW/mlMao+lLkKhMPaDjj40Z+WQnUgjMLm4L7KfQjahKRnAVDTcEB/YCGMEMDqCw75S7zRLlKjZwS3fTaADfTmWGiGRp2awrO5yDVDnbJ0LivO9nbUPngNUAp1w1o3BeLoNRRvKq/etmjKbiXqwQyiW7ZtTvFKmbbULUR64/hrAwNoPICDe33BLN7aAhiAWIXW9VkzbxdRAMapuhnaNhrRERExu3fv9/ZQ6B6LjIyssYExZyhWgIaU6ZMwaeffopr165hwIABWL16Ndq3b6+3XVZWFpYsWYJFixZBIpGgY8eOGDduXHUM0WaHDh2yar/o6GhER0cbXB8UFITJkydj8uTJVo6MHEF45ZaxZstV6u/LjGmX7wobgtv/pcncDA0AcJMBd0XWO+O94m5psd4yYckppVyid1W2WECjKmCjdwW5Wv/Lu1LmBqFSdTHc4YkKNfRLTpkRmBDbxuoMDcEzijFFqqn0m4Lrb2NpyCFLMOkT6K4V0HCR4I7WunpVcop9FxzC0MurUm77/SuVSOCrkCJHqydMbrGKwSmqNmIf4UsEk+LV1UMDEAlomLlfbc7QAIBmXjIcu2n5fgqRklNqtdpkGVQiIiKq3aoloKFQKLBlyxZERkbixIkT6NSpE9q0aaNZ/+yzz6KgoABXrlyBWl35ISQgIACbNm3ihxGqkcr0emjob2PvR+7togqcuV1qU23Ylr5yPORre/bD3RIVTmWX2KUsU6kKes1tHZGhYU4PjarAlPBqrztlmbhTdhP3s2R48k4HdPRrhNScMlwvqAzEBLrL8HCgqyYDQq1WY//NyziXdwsdfBuiT6OWAIA9mZdQpqrAwMZtdEpCqdQq/JxxAa5SGQJdQ3FTq8H3lYJc/XFKXHV+d5VJ4CG4Kvtuif7fxtAVhn/klaFIMMvqLnOBr6u7Tv+OtKLT8JD54mqJBPk5f+hsH+BmOqAhFry4lCuDuuy+yNbGXcvXnW2oZd/bqQ4Tfmw5d6cM/0t/8BjPKda/fPT3nDK4SAw/DxQyCR4OdIX/X+V5bgkCGkFaGRrCMkAnbpWgQNj4SWTMD/nK0cKG1161Wq3zumiOnOLK0kKjH1Ii2MOyj6T3y1Q4mV2quW3eCqne1b0sU+RY9ig5BVT2gdIOaBzJLMbtIganqHqIlZwqFHzQF8vicBThqQ7fKMGl3DLRbbWlCS4OEn6Wrems7Z0nzERRo/LCgdrUFJ2IiIgsVy0BDQB45JFHkJycjIkTJ+LIkSM4f/68Zt2pU6d00mS6du2K7777Di1atKiu4RFZpLob72Xkl2P+4Vy7BBCmdvJCv2bWXRUPAPdKVJh78I7O5IM9uckkCPG0/7cQcyZeqv6O2ld7pRWdQXL+TgBASgGwY+v/MLvNP3D1TlOdfZ8IUeCVcB8AwPyUn/Hh6T2ade88+iRyigvx5fnDAICnW4Tjuz4PStONT/oO69N+AwC0cu+CcK9+mnXZpboBDblEoRfoVcgkUMolyNFK5rhTrP9YMfQ4/S27FL9l6y5TuEgQoFDqBDQuFh0X3R8APF1MP6bESk7tuFwBT5cCk/uawoAG1WTfpBp/jCffKkHyrRKj23i5SvBhD38EKWXILhIGNB5MgQmvmj90owSHbhg/dpWYR7zQu4l17w/fXyjET5ctD04CQFJGMT7u6YcwMwMqJRVqvH04FxkFxmuL+Cj4wuBI9gpoVAbqHkzGij1emaFBjiI27y+8cKm6emgAVSU0H3yG23bFutfV2pahEeotPi1h6laIlf0tVanNyp4nIiKi2qtavx089NBDOHToEA4cOIA5c+YgMjIS7dq1Q+vWrfHEE08gJiYG//vf/3D06FEGM6jGUqvV+g2URT40Cy/4sqVH3ZFM+2RDAMDea0WmNzLiZHaJw4IZANDCx8Uh/RDMmXhp+tfVYdrbXik6pbONSq3GhnT9if0jN0pw/69vwP+XekBn3Uen92LFxV81v6+7chKZ9+8BAP64d1sTzACAS0UnoFI/mKQrUwsaggvKTQGAQgZ4CCYxvWT+ettVPU7NqQWtkEkQ6OZpesO/lJTpj0tIrHG4sPm4tapzsoHIGEc9EvNL1Th2s/L1IEcY0NAqOeUht34Ee67pl7gzV+JV295bvjx1z+xtL+SWmQxmAPqvi2QdQ/OC9uihAQB+ZgQrfJltQw4ilZi+KKI6e+XZ62VLpL1ajaadaajN1FcCse9gtmSzExERUe1g1wyN06dPAwDatm0LV1dXg9v17NkTPXv2tOepiapNYZlarwa6t8gXbWEKu7lN/cTPab8AQmGZbR/yC2zc35SIRqYnxq3hIpWgrZ8c542k7T/TtrKxdYcAV5y5XbmdMKAAAEUV+pN+agDFFWoo5UBRhe45ylT6E28X72UjWOmN5NvX9NapUAEpKr/YlatLddYJy00pZJWlYjoGyHH+zoPztvV4HJeKTmgaird2j0A7/8qrn9v6y01esd0hQA5Pr4dwNPtPo9tVae/T3OQ2YZ7+aOMTiAt3K9NB/F2C4SrV79VhjarbRuRsjqyUee+v8krCtwTtHkEdA1xx2MyMDCFTpakMUavVNr83XM03v5NrkZnviQ0NTJCRZdr6u+LXm7qPKamk8r3EHh4JdMX//jQcEGvqJWOGBjmMRCJBO385UnPEPx/KpUArB/R2M6RdgKsmeG3TcfwNfxeviaQSCboHK3Ak88Ftb+snN3mRk1gASKxXFREREdUtdv109uijj0IqleL06dM6Tb/ff/99AMCMGTPQoEEDe56SqNoJ+z0AgL+b4QbMVWyJSQgvNPJTSBHsYd5Ezb1Slc6VrLY2tlYJboeHXIJQK+veapNJKyfiBofZ54p9Ma929sbGi4XI/KtHRUOlDK4yCfLLVIhs4oZGf9VwH9FCCZUaOJdTip05YneY7UGdtPw76NOoJW4XF+ofXa0GJEAbPzmK7qoArQuXFbLKL6it/eTwd5NiSJgSHnIpRj9UGYw5f6fsr2wgXwQon0Ny3gkEuvrhrUf7o0NA5b79m7mjpBw4fbtE9EtfS185xrb2gARPQiaV4uCtNBSUViCnWIVylVqnybCLRI4wt45o493E5G2WSCTY+eQLWHAqEedyyhEk6aZZF+gu1WlsbC5XmQTdghUID3JMIIzIUhKRHA3ha7YKlc9VCYwH4zILK5Cr1Ry5+K/nnvAVSHvC529N3VBUrsapbPHntzbh+4O1k0BiF8M+5Oti8KrmqttvLXNfgT1tyFahB6Y97AU/Nymu3qssC+Uhl6BfM3fNe6atujRUYGonLxy7WaJ3ZXWgUoaoVh7sqUcONTPcBxsvFuCGIPPLy1WKAaHu8HWrvuDotIe94KeQ4lq++f2ItClkEvQIcUPHBrUroAEAUzp5wVchxZ/3yhHsIUNUaw+T+4hl6Jbb+mWHiIiIajy7X26iFvkAERsbC4lEgqioKAY0qNYTNnT1cZWIfpgWlvUpt6HmVIVg327BCkR38DJr3+O3SrDo+F3N77Z+xK8QPMfb+MnxxmO+Nh61evi5yTD1YW+T28mkEoxp5YExrTzw+WVAeOGwsftQ7DVQzJX8HADA7RKRgMZfZ3inmy+++N0F224+WPdwAw+sHxikt4+LVIKxrYUlovwAPKy3rVQiwfCWSgxvaaqRtwveCx+ot/Tv27NM7GdYc68AfNPz7/j0eB6Sbz3IPvlbU3c81cr0F1eimk5s3tWS12xta87lY3vagyvXi/+a7BW+nWi/BUkkEgxrocSwFqae38DJrBIsTH7w/mDtJJBYIOSVcB+DJUTKVWo8szNbdJ09sRSdfXjIpZhkxePXEv2audvU34vIFr4KKaZ0Mv35sDp4yqWY3NGxz7eaykMutfi9UqwkXgUzNIiIiOo8u+Zvy+WVVxkWFdlWR5moJhNmaPgbuGpLOJFizwwNS+ZohJuaO+Fu7ljqes898Ztn+D40t7RYWsEdABDP0IAKClnlY6igTLfsgKdLzcxE4MVwRJXEXjOsnVd3E7zAVmVoCF9nrH0ZlgkGZm2GhlggxFivHlvjDOa+3MhYpYiIqE6TSCR630VsuYiMiIiIage7ftVr2LAhAODEiRP2PCxRjXJHkKER4C7+NLJrhoZgssiSq071AhpWj6KScCLNEQ28axSJ/j1mKCikVgMqM+/hK/mVAY3s4gL940AN978eQHoBDXntKyFAVJ+IBzSse51UCJoul1SIl5yy9mVY2NPZ2vcpsUBITciOcKnr709ERKT/nYvxDCIiojrPriWnevfuje+++w5vvPEGLl++jNatW2uyNgBgy5YtOH78uMXHnTBhgj2HSWSTHEGGhp9CPEND2EPDtoCG7u8WZWgItrW95JTu7/XxCli1PTI08o1kaKhVUP4101hYrtsUvKZmaFiK3zWprhKbQ7dXhoYmoGHDe4I2e2USir2/CYMl2mwOM5j5AlIf35+IiOobF4kEJVpvDMzQICIiqvvsGtCYO3cuNm/ejLt37+LTTz/VWadWqzF//nyLjymRSBjQoBolVxDQMD9Dw/pzCmvBWlLmSb/klPXjsHUstZNld1iF2rw/dGbRPRSVlyFbtOSUGu5/zQYWCAMazNAgqtFEMzSsPJbCYMkp4fGteyG2VyahaEDDSJSlOho8SyX1IIOQiIjs+p2LiIiIage7XrvWoUMHHDhwAP3794dcLodardYpzVL1u6X/iGoSYVNwfzdDAQ1BhoYNj2VhySmZBZM09s/QqGclp0TYI0MDANIL7hhsCq6U/xXQqCU9NIiokl0zNERKTqnV+q9A1r4MCzMJK9TW9VkSLzll3ZjMYc4I636wnYiIAJHvXMzQICIiqvPsmqEBAF26dMGuXbtQXl6O27dvo7i4GC1atIBEIsH//vc/tGrVyt6nJKpWZjcFF0ym2NIUXPi53JIyGhLBlbu2xgj1xlLnJ43E7jD7BDSu5OcYLDml6aEhyNDwcGGGBlFNJvaSaG1Ggl6GRoV4ONX6klP6yyrUxstFiREG7CVwfrC7JvTwICIixxN+FxGWxyUiIqK6x2HXz7m4uKBRo0YICwvTLAsJCUFoaKjF/4hqiuJyNQrLdD8lB5iboWHD1ULCq19tydCwNQtbr4dGnc/QEGkKbiCgoYb5JacA4EzuTZSLbK+GWtNDg03BiWoXseCF3TI0ytV6QWXA+p4UYk2zrXmvEpYidGR2BmBehoalQRkiIqqdmKFBtVl6ejokEgkkEgkSEhKcPRwyIDY2VvN3Isfav3+/5r7ev3+/s4eD6OhoSCQSnbltqhnsnqEh5t133wUABAUFVcfpiBzmjqDcFGC45JTcjvVchVf929JDw9YUDf2SUzYdrs6xJEPjaPafost1Sk7p9dComSWnbP3qyM+GVFeIPZStzWQTzdAQebLZM0PDmvcq4T7WZkeo1Gq7ZXYwQ4OIqH5gDw0iIiLrXbt2DceOHUNycjKOHTuGEydO4N69ewAq5/NjY2OdO0ADqjWgQVTbCctNKV0kcDNwKapdMzRsKTll5wwNlTBbxMFX4jqbWDaGsRrzKgum9o9kGQpoqB40BWcPDaJaxa49NAQBjQo1UCbyXmLt1WJik/7WvFcJS05Zm6FRpgIU4lUcdZkxxLr+3kRERJXs2beQiHTt378fffv2BQDs27cPkZGRzh0QkR3ExsbivffeA2Bd/8C65M8//6y12Sf8ukdkAWGGhqHsDEC/2apNPTRUwgwNC0pOCRfY+Hpd/0pO6TPWFLxCGPExIqu4QPz4ajWUBnposOQUUc0m9opobdaBsOQUANwXRrhh/Yc50QwNK94jhEEQsVJW5ii1Y+Fza8dARES1i/CtkhkaRERkLwkJCVCr1UhPT3f2UBxCO6AjkUjw0EMPoXfv3k4ckfmqJUNDW05ODo4cOYIrV64gPz8fFRX6JXyE3nnnnWoYGZFp5jYEB8TSn+2YoWFJySm799CwvvxV7WRhU3Cbiy8xQ4OoNrNnhoaw5BQAFIlEHKydu7dXDw39klPWjcfcgIY5WzFDg4iofmAPDSIiIut4eXnhgw8+QNeuXREREQE/Pz+dzKyarNoCGllZWZg1axZ++OEHlJeXW7QvAxpUUwgDGoYaggNi6c/Wn1f4udyWDA1bM+r0x2Lb8Wo60ZJTRjM07BHQqOyhoVKrUFhLMjT41ZGokti7gqMDGtYeX2zS35psQr0MDSsHVGrHSSj20CAiqh+E72W2fOciIiKqTwICAvDWW285exhWqZbr13Jzc9GzZ098//33KCsrg1qttugfUU2RY0HJKb0MDRtKaQgniyy58lRY6sTWZ5TwZkjr5aSRsQwN2/Pc1VDD3UWC++VleuuYoUFU+1jftFui915SJFJLw9oPc1KJRC8obc2VrfqlCK0bT6nppF0A5r2PiVTrIiKiOkiYbcgMDXK2Q4cO4YUXXkCbNm3g7e0NV1dXNGnSBMOGDcOXX36JvLw8s48VHR0NiURissZ9QkICJBIJJBKJwdI4e/fuxdNPP43mzZvD3d0dSqUSoaGh6NatG+bMmYO9e/dqtk1PT4dEItG5Srtv376ac1T9S0hIED3Xvn37MHHiRLRo0QJKpRLe3t7o1KkTXn/9ddy4ccPg7YiNjdUcGwDu3r2LBQsWIDw8HL6+vgbP+dNPP2Hs2LFo1qwZ3Nzc4Ovri4iICLz33nvIzc01et8BQEZGBmJiYtCiRQu4ubkhJCQEI0aMQGJiosl9rVV1H2vfpo0bN6J///4ICgqCu7s72rZti7lz55r1mCktLUVcXBz69u2LwMBAuLq6olGjRhgyZAi+/fZbqIyUxhY+zq5fv47Zs2ejdevWUCqVCAwMxNChQ/Hzzz9bdHsMCQsLg0QiQXR0tMnbJebo0aOYP38+IiMj0ahRI7i6usLb2xvt27fH9OnTce7cOdH9qp4nVf0zAOg9poXPIXOfg2fOnMHUqVPRqlUrKJVKeHl5oUOHDpg1a5bRclVi99vu3bsxfPhwNGrUCAqFAs2bN8f06dORkZFh7l1UL1RLhsbChQvxxx9/AAAGDBiA2bNno0uXLvD397e6kSWRM+iVnHI3XHJK2EPDlgZ19syKsD1Do36VnBLeXsD4ZJrY9pZSq1VQukhRUFakt85TzoAGUU0m1i/D2h4aQGWWhvbkjHjJKeuP7yKVoEIrImFN7XG7ZWjYsYeGrF4G24mI6h/9Mr/OGQdRUVERnn/+eaxbt05v3fXr13H9+nVs374d2dnZiI2NrdaxzZo1C//+97/1ll+9ehVXr17Fr7/+ioSEBNy+fdum8xQXF2PSpEn4/vvv9dadPXsWZ8+exbJly7Bu3ToMHz7c6LEuXbqEAQMGGJ0Mzs3NRVRUlE4wBgBKSkpw4sQJnDhxAnFxcdiyZQu6desmeoxffvkFw4YNw7179zTLMjMzsW3bNmzbtq3a/lbPP/88vvnmG51lFy5cwMKFC7FmzRrs2bMHbdu2Fd03PT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2HX9tVS0BjS1btkAikWDo0KHYunVrdZySyCEsKjklmEuxpSm4Xt8KCyZqhJsaK5dk1lgEt6PuzxlZ1kND+LeyhgoqKF0keg3BAcDTpWaWnGLNKSLDbEmHdZNJUFhmKqBh/fFdpECJVmaENcF3e/XQKDE3oGHGZszQICKqH4RBdHuUfyWylEqlwsiRI7F7924AQKtWrTBjxgxERERAqVQiMzMThw8fxoYNG6p9bP/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc+wmTZpoflar1YiKisL27dsBAMOHD8e4cePQokULSKVSHDt2DIsXL8bVq1cRFRWFQ4cOISIiwuC4o6KicP36dbz88ssYMWIE/Pz8cOnSJYSGhgKoDFr0798fKSkpkMlkGD9+PIYMGYLmzZujrKwMBw4cwGeffYasrCwMGTIEJ0+e1Oxb5erVq5pghlQqxdSpUxEVFQUfHx+cPn0aCxcuRGxsrNFx2kNcXBySk5PRtWtXzJo1C61atUJWVhYSEhKwYcMG3LhxAwMHDsTZs2fh5eWls29BQQH69euHK1euAABGjRqFyZMnIyQkBGlpaVi6dCmSkpJw8OBBDB8+HAcOHIBMJn5h7v379zF27FjcvXsXb775JoYMGQKFQoFff/0VH330ETIzM/HZZ5+hWbNmeOWVVxx6nxhSXl4OPz8/jBw5Er1790arVq3g4eGBGzduICUlBZ9//jlu376Nl156CW3btsXf/vY3zb6jRo1CREQE4uLisGzZMgCVmRVCjRs3Nns8cXFxmDdvHgAgMDAQb7zxBnr06IGKigokJiZi0aJFKCwsRHR0NBo0aIAhQ4YYPNaKFStw+PBh9OnTB9OmTUPr1q2Rl5eHNWvWYM2aNcjOzsbkyZNx5MgRs8dXl1VLQOPq1asAgJiYmOo4HZFDlKvUuFuiO2vjZ0EPDZW68up9a67UtVc5D8D2DA39puB1e9ZINJxh5E60S4bGXz00cu7rBjRkEikUsmprfeRQrCZIdZVYkNeWwK+wj4Y9e2gAVe9VNmZoqO2ToVFm1x4adjsUERHVYHoZGvyMaTa1SoWKghxnD6PayDwDIJE65gPC0qVLNcGM0aNHY926dVAodDPrhw4digULFiAzM9MhYzCkKogSGhqKQ4cOwdPTU2d9ZGQkYmJicOfOHc0yuVyOjh076mRsNG/eHB07djR4npUrV2L79u2Qy+XYunUrBg0apLO+W7dueO6559CrVy+kpqbi1VdfxcGDBw0e7+zZs9i5cycGDBigWdalSxfNz++//z5SUlLg6+uLxMREnXUA0LNnTzzzzDPo3r07MjMzMW/ePKxdu1Znm9dee02TmfHtt9/i6aef1qyLiIjA2LFj0atXLxw/ftzgOO0hOTkZQ4YMwZYtW+Di8uD7/uDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOhn4/fr1g6urK1auXImjR4/i5MmTCA8Pt3rcdUW1zIx5enqipKQEDRs2rI7TETlEXolKb3I7wM1wySmxyZRyFeBqeBeDbMmK0M/QsI09gyu1gSUBCrXa9PZ+ru7ILdUvJaVznL96aBSUlegs95S7skwfUQ0n9gy1JeDg5mJGQMP6w+tlMlhTe1wvQ8PqHhrmnducTEM2BSciqh+EF1exh4b5KgpycPHlINMb1hGtv8iCi7f9J2BVKhUWLVoEoDJjYc2aNXrBjCpSqdSiq7/t4ebNmwCAzp076wUztJkqRWSMWq3Gxx9/DACYOXOmXjCjip+fHxYtWoQhQ4bg0KFDuHTpElq1aiW6bXR0tE4wQ1tBQQG+/PJLAMCCBQv0ghlVQkND8fbbb2PGjBnYuHEj4uPj4eHhAaDyftm8eTMAYNiwYTrBjCpeXl6Ij4/H448/buTW206hUGDFihU6wYwqb731FjZs2ICzZ8/i66+/xgcffABX18qqDSUlJVi5ciUAoEOHDqLlsSQSCeLi4vDzzz8jJycHS5cuNRjQAIBp06bpBDOqhISEYPHixfj73/+OwsJCrF69GnPmzLHyFlvP1PPHx8cH77//PkaNGoWDBw8iJycHAQEBDhnLqlWrcP/+fQDAZ599phPMqBIeHo65c+di/vz5uH79uqbfi5jg4GB88cUXonM+c+bM0fytf/nlFwY0UE1NwTt16gQA+PPPP6vjdEQOkVOkO2MjlwKecsMTJmKTKdZ+wLYlK0K4pd2bgtfxOSOxiTNjk2kVauOXNz8e2MyMk6rgJtMvOcWG4EQ1n9jLsy09NNzMyNCwreSUcCLI8mPYr4eGeduZ8z5W14PtRERUiT00yNl+++03TbPeKVOmGA0aOENwcDAA4MCBA7h8+bJDznHu3DnNsaOiooxuqz1Zbqx0zjPPPGNwXVJSEu7evWvR+crKynDixAnN8n379qGiovLDp1hPhipdu3ZFhw4djJ7DVgMGDEBISIjoOqlUiokTJwIA7ty5g5SUFM26EydOaBqGR0dHGywl5e3tjXHjxgGo/FsZyxIydl+MHj0avr6+AODQhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqoyc+q5aAhrTpk2DWq3Gf/7zn+o4HZFD3CnRnWnxd5MZvVpe2BQcsL6PhjBDQ2bBM1cvoGFrU3DBxFVdb7wq3hTc+pJT5gQ0XGWVV1KIZWjUVLwWjqiSvTM09EtO6b+R2BIw0S/V4bweGqV2LTlVt9+biIiokl5gnnVNqZqdPHlS83OvXr2cOBJxVY2Ic3Jy0LFjR/zjH//AqlWr8Mcff9jtHNolmbp37w6JRGLwn3bApyp7RMzDDz9s1vmCg4ONnk+7pJD2+bR7Jwh7gwh17drV6HpbWXJ+7XGfPXtW87OpLBLt9dr7aXN1dcUjjzxi8BhyuVyTGSDWe6K63L59G/PmzUObNm3g5eWlKYfWqVMndOrUCUOHDtXZ1lGq7sfOnTsbLCMFAA0bNkRYWJjOPmIMNX2v4ufnBwDIz8+3cKR1U7UENMaNG4dnnnkGmzdv1uvWTlRb3CkyvyE4YKjklLUZGrq/W5ShIdjW1vmi+lZySjx4YSSgYWJqv2sD0wENuazyGMKAhkdNbQhORA/YuYeGOSWnbHkZtkeGhr16K5lbcsocdf29iYiIKumXTnTOOKj+0p4wrcqGqEn69euHpUuXwt3dHcXFxVi/fj0mT56MVq1aoUmTJnjxxRdtvoo9KyvLqv2qyvWIqZq8ddT5tHuGaPdUEOPo8vmWnF973JbchkaNGonup83f399glodwLIaO4WgnTpxA27Zt8dFHH+HixYtG+5sCQFGR8XLftqi6D0zd98CD+9/Y/SbsCyIk/asHUFVmUX1XLT00Dhw4gOeffx5paWl466238OOPP2L8+PFo27atyT8YANH6bUTV7U6x7ouGsYbggHiGhrVN6vQni8zf194tF+pbQMOSDA01gAqV8W9R7X0bwtNFgYLyEoPbuEr/Cmiw5BRRrSMVCS/YkkHh8KbgjuihwQwNIiKqJvqBeWZomEvmGYDWX1g3MVwbyTwdU0e/NoiJicHYsWPx3XffYffu3Th06BDu3r2L69evY/ny5YiPj8e8efPwwQcfWHV87QnWbdu2aa5GN8XYRLCxiXXt86WkpBi9Ol5bkyZNRJc7u0+lPc5fU47hSKWlpRg3bhxycnIgl8vx8ssvY+TIkWjdujX8/Pw05ZquXLmCli1bAoDJgIc91PT7ra6qloBGZGSkzh/4xIkTOrXrjJFIJCgvL3fU0IjMllMszNAwHrkWm9Aps/LqU70ggi0lp1D5om7ti65wgt/aK3FrC0v/YqYyNILcPdHcyx9ncg3XrXT566FVm0pOWUp4L9XtRxHVKw7O0Lhv54CGMPjuzB4aJeY2BTdjM0veJ4mIqPYSfueyY7JfnSeRSh3SJLu+adCggebnzMxMk2VjLFF1RbbKxEVzhYWFJo8VFBSEV199Fa+++ipUKhV+++03bN68GUuXLkVeXh7+9a9/4bHHHsPIkSMtHqd202VfX1+dMk+OoH2+wMBAg4EKY7QzQG7duiXa0Fl7vSOZOr72eu3m7do/37p1C61btzZ4DO1yW4YawOfk5KCiosJoMKlqLMJjVD1WAfs8XsXs3btX0z8iLi5OpzeFturKHvH390dmZqZZj4+q+9/QfU+Wq7ave2q12up/RDXBHUFAw99EhoZUItGbZLKmpqtardYrE2VLU3DAtn4Hek3B6/ikkdhrkLHXJWM9NDxcXKF0cUULL+NvYrUxQ4Ov1ESVxF4SbXmZFGZoFNu95JTu71ZlaAh2sTpDw47Z0y51PNhORESVhN+LmKFB1a1z586anw8cOGDXY3t5eQGApvGzIRcvXrTouFKpFJ07d8aCBQuwZ88ezfINGzbobGfuRZBVfRUA4NChQxaNxRr2OF+nTp00PycnJxvd1tR6W1lyfu1gkfbPv/76q9FjHDt2THQ/baWlpUbLj5WXl+O3334TPUbVYxUAcnNzDR7jzp07yMnJMTpWQ1JTUzU///3vfze4nXaPFTH2yqioug9SUlKMXoiflZWFP//8U2cfsl21ZGjs27evOk5D5FDCklOmAhpAZSmPUq3P1NbVJtdf5sySU7YEV2oj8QCF4S9KFWrDf+RANw8AQHNP4wENFwM9NDzlNTegQUSVxF4SHd0U3JYP5fbooaGXoeHgHhrmbGVtUIWIiGoX/cC8c8ZB9dcjjzyCpk2b4tq1a1i5ciVee+01ncbXtmjevDmAyibAFy5cQJs2bfS2KS0txaZNm6w+R+fOneHn54fc3Fy9Bspubm6an0tKDJdM7ty5M5o0aYKMjAzEx8fjlVde0dnX3vr37w+lUon79+/j888/x7hx4yz+PNy3b1/IZDJUVFRg9erVeOqpp0S3S05ONtrI2R527dqFzMxM0R4sKpUKq1evBlCZVaIdQOvSpQt8fX2Rl5eH1atXY/bs2TqZElXy8/M1war27dsb7fWyevVqnXNo27x5syZY0b9/f511fn5+mrEYCyh8//33Vl+4rh00KCws1AmiVFGpVFixYoXR4wgf11WlqizVv39/7N69G3l5efjxxx8xbtw40e2+/vprzW0W3m9kvWr5utenTx+b/hE5m0qt1svQCHA3XnIKsE9NV9GAhgWzY2Jb2nLhUoVg57reQ0M8nGFdhkaQW+UH2xZexuu3Vn0x08/QqDslp4jqKrGXRFt6aJgqOWVrqwi9iSArvmCwhwYRETkLe2iQs0mlUrz++usAgIyMDEyYMAGlpaWi26pUKty4ccPsY2vPhy1evFh0m9mzZ+P69esGj7F+/XqjjZGPHz+umaSuCqBU0Z74vnz5ssFjSKVSzJs3D0Bl/4IJEyYYDYDcu3cPS5cuNbjeFF9fX7z00ksAgMOHD2PWrFlGyxzdunULK1eu1FkWHBysKa+1detWvewUACgoKMC0adOsHqe5SkpKMG3aNNFmzwsXLsSZM2cAAJMnT9aZfFcoFJqyS2fPnsWCBQv09ler1XjppZc0waqq+82QZcuW4eDBg3rLb968iTlz5gCobF49ceJEvW2q+h9v2bJF9PFy4cIFvP3220bPb0yrVq00PyckJIhuM3fuXKSkpBg9jrmPa1MmTZqk6Qv92muviT4PT506hQ8//BAA0LhxY4waNcrq85GuasnQIKqt7pepcDGvDPmlar3AgjkZGnLBJmXWZGiIfCi3JIggNqdz4laJTlAk2EOGxp7mvRxkFN7HnbJMqKCCn0tDSCU+5g+mFlGr1UjNuymacWEooHHmdimuFIp/eAUAV4kSx2+VoLxc/0oCbRn3b0ClVtWqDI1r+eU4fkv8Q6sEQHMfF/ib6DtDVBfYO0PDTfCCf79M9/XH1ml7e5TquF2k++XL2mDCrcIKg68j2tLvme6tVteD7UREVEkYRD+bU4Yzt0vRyleud1EAkaPExMRg27Zt2L17NzZv3oxOnTphxowZiIiIgFKpxM2bN3H06FGsW7cO48ePR2xsrFnHDQ8PR/fu3XHkyBGsWLECpaWlmDhxInx8fHDp0iXEx8dj7969eOKJJ3D48GHRY7zxxht48cUXMXLkSPTu3RutW7eGh4cHcnJycPDgQXzxxRcAKptwC3sSNGvWTJN58emnn6JJkyZo06aNpsdCw4YNNVfJv/jii5rbv3HjRqSkpGDatGno2rUrfHx8cO/ePZw/fx779+/H1q1b4ebmZnJy3Zj3338fSUlJ+PXXX7FkyRLs378fU6ZMwaOPPgoPDw/k5uYiNTUViYmJ2LlzJzp16qR3+xYvXozdu3cjPz8f48ePR1JSEqKiouDt7Y3Tp09j4cKFuHjxIiIiIkyWMbJFREQEtm3bhh49emDWrFlo1aoVsrKysHr1anz//fcAKhuaiwUD3nnnHfz444+4cuUKYmNjcebMGUyaNAnBwcFIS0vD0qVLsX//fgBA9+7dMXXqVIPjCAwMhFKpxJNPPolZs2ZhyJAhUCgUOHbsGD788ENNMG7BggWiDd1nzJiBrVu3oqioCJGRkYiNjUV4eDgKCgqwZ88eLFmyBIGBgZDJZMjOzrb4fho4cCCCgoKQlZWF+fPnIz09HaNHj0aDBg3wxx9/YMWKFdizZw969OhhtBTZE088ofl51qxZeOuttxAcHKzJ8gkLC4OLi+n5scDAQCxatAgxMTHIyMhAly5d8Oabb+KJJ55AeXk5EhMTsWjRIhQUFEAikSA+Pt7sBvbV6eeff9bpsXL+/HnNz7/99ptO8MjT0xNRUVHVOTyDGNAgMuBGQTneOZKL/FL9yR2pBPBVmFFySiqB9jX+dsvQsPGz+Wcp9/SWPdvWE8NbKo3ut/bCVezIiUepurhyHHDByJxohAfZr/FZTfHm8e345Ox+A2vF/47xZ/Jx8b7hCH9GvisWHb+Lu+XG38R23zqGib+Uo6C89jQFT8ooRlJGscH1Mgkwp4sPOjesuUEZInsQz9Cw/njCgIZeHyN7Z2hYGHg/e7sUZ3PKjB7TXOfulOHcnbvW7SzADA0iovpBrMzhB7/mIdBdig+e8IMvL6ihaiCVSvHTTz9h4sSJ+OGHH3Dx4kW8+uqrdjn2N998gz59+mgmuKvKD1WZM2cOOnToYDCgAUBTkki4bxWFQoGvvvoKEREReuvmzZuHGTNmIC0tTa9h+KpVqxAdHQ2gsgTq+vXr8corr+Crr77C5cuX8c9//tPgmMQmxC2hUCiwe/duREdH48cff8SpU6eMBki8vb31loWFhWHr1q0YMWIE8vPzERcXh7i4OJ1t3nnnHUgkEocGNGJiYpCUlISEhAT84x//0FsfHByM//3vf/Dx0b+Y1MvLC3v27MHgwYNx/vx5bNq0SbQEWY8ePbB161ajDb+VSiV++OEHDB48GB999BE++ugjvW1mzpyJ2bNni+4/cOBAzJw5E59//jkyMjJEA2Rbt27F4MGDDY7BGA8PD6xZswajRo1CcXExli9fjuXLl+tsExkZiaVLlxrtVfHQQw9h3Lhx2LBhA3bt2oVdu3bprE9LS0NYWJhZY5oxYwby8vLw9ttv49atW5g1a5beNgqFAvHx8RgyZIhZx6xuCxcuRFJSkui6LVu2YMuWLZrfQ0NDa0xAgxWGiQxIyigWDWYAlcEMc0qICCdU7JehYf5EjbmlTjZfLjRZy/Dzc79qghkAUIFyfJumn45Y2xWXl2HJ74Zvl7GSU9dLLhlcp5C6AwA8ZKazWr69nIKLd3VrmHrU4pJTFWpge9p9Zw+DyOHEXnNtCmiYuLrUlnJWgO2lOnam6z+va0JDbvbQICKqH+QG3mSzi1Q4kmk664/IXpRKJTZu3Ii9e/fiueeeQ/PmzeHu7g5XV1c0bdoUw4cPx/Lly/Haa69ZdNy2bdsiJSUF06dPR2hoKFxdXREYGIhBgwZh+/btWLRokdH99+3bhyVLlmDMmDHo1KkTAgMD4eLiAm9vb4SHh2POnDk4d+6cJjAhNH36dGzatAkDBgxAUFCQ0SvX5XI54uLicOrUKbz88svo1KkTfHx8IJPJ4OPjg0cffRTPP/88fvjhB/z+++8W3Q9ivLy8sGnTJvzyyy944YUX0KZNG3h5ecHFxQX+/v547LHHEBMTgx07dmD37t2ix4iMjERqaqrO/duwYUMMHToUP//8M9577z2bx2mOVatW4bvvvkNkZCQCAgKgUCjQunVr/POf/0Rqairat29vcN+wsDCcOnUKS5cuRZ8+fRAQEAC5XI6GDRti0KBB+M9//oMDBw7A3994L0+gMlskJSUFM2fORMuWLeHm5oaAgAAMGjQIO3bswJIlS4zuv2TJEnz33Xfo3bs3vL294e7ujjZt2uDNN99ESkoK2rVrZ/F9o23gwIE4fvw4nn32WYSEhEAulyMwMBB9+vRBfHw89uzZAw8PD5PH+fbbb/HJJ59oMojEeo+Ya968eTh58iSmTJmCli1bwt3dHR4eHmjXrh1eeeUVnD9/HhMmTLD6+CROora2G4sB77//vj0PB6AyIkrOl5GRgaZNmwIArl27hiZNmjh5RI711al72GfgivPuwQq82tn0pPQbv9zRKY0x/WEvRDZ1t2gcV/PL8fqBOzrL1g4ONPvqU5VajWmJt3HPQHBG2/J+AUavYmqzPgEX7+s2xGrpFYA/ouaaNZba4lZRPhp9b/iDixRSzGz+BiQS4HqBbqmVQ3d/wvWSi6L79fAZjcaKyrqPe3O/w+2yDKPjkECiEzxZ1fPviG71mLk3w2GSMooQdyrf4v2aecmwqHdl/5CFx/JwMvtBea7xbT0wsqXpDx5ENV1RuQpTdt/WBLBdpMCK/g2gFNYgNFNucQWm78kxGEZt5y9HbHc/6wYLIP7MPey5+uC9blCYOyZ1MF4WT9tbh+7gjzzdElBzu/rg0UDj2VjLTt3DfiNZXbZ6+3FfdGxQe4PARERknusF5ZiddEd03eiHlPhHG/s0Z3YGa79/X7p0CeXl5XBxcdGpOU9ENUd6erqmZ4l2poszREdHY/Xq1QgNDUV6errTxkF1lyPel+xecio2NlZTd8xeGNAgZxCW9VC6SODtKkVzHxezJ3s85brPhYIyy+OHeYJm5F5yiUWlNKQSCV6P8MX6CwXILtI9Vtb9Cp1JsqwildGARoVI/PNqYR4qVCrIbIho1zRlKv1mXNpUUGFmZy+4SKT49vcCZBY+2N41X/8+CpAHorVHe4T7tNG8Pg6WD8XBO3tRqi5BuPfjuHL/As4VnNbZT5gJ4uPqZu1NsqseIW64ll+BbVcqr8wOdBfPWCquUONuyYPHnHYpG2GyktTmTgBENYO7ixRzuvhg8x/3oUblZIq1wQwA8HOTYVZnb2y7cl8vMN3US4aJ7c0PPogRZlOUWZihISxRFertgkfMCCQ8084TFWrgl+uVQY2GSstLgkglQGs/ORp7ynD4RgmKytVwd5GgdxM3dAioefVpiYjI/hp7umDGI174Ob0IV+7qBtgtLaNIREREtYNDemjYM+nD3sERInMJJ+8HhLrj6baWXeHj6ao7iVVgRc2pvBLdyXVfM5qRC7X2k+PtbvpX8L6yLwc37z84fnZRBVr7GZ4EEgtolKkqcP3+XTTztP4K4Zqm1ERAAwAC3dXwlLtgbldfneVXdrsgTSvx4uOIofhnp74iRwgAoB2Zfhx+a99GXmmRwXP6yGtGQMNFKsGz7TzxbDvjz4fkmyX49MSDevjaQULh+wTL3VNd8miQAo8G2a9fzOPBbng82DHPf2GsxdLJH+H7wsiWSrM+u3m7SvHSo9546VH9esbWYIYXEVH91aeJO/o0ccfy0/ew99qD7D9r+hcSERFRzWf3gMa+ffvsfUgipxBmaFjTiFsvQ8OMsk9CeSW6s0vmNCM3V6BSqhPQyLpveCJfrVZDZSBYeSU/p04FNExlaABAUUUZPOX6E5blat2/l4vE/L+Xq9T4Fco+rpaVK3M24XNGe+JT+P2SsWsi57C1h4YwAGKi5QcREZHD6L+nOWkgRERE5FB2D2j06dPH3ockcooKwQdgmRWXkHvK7ZGhIQxoWF6Ww5AgdxmAMs3v2UWGJ/LLVIBar1BQpSv5dxAZbLdhOV1phRkBjfIy0eXlKkFAw4JSXKYDGjUjQ8NcMsFN135OCedMmaFB5BzC5tkWZ2gInsyWlEQkIiKyJ+F7mlh2ORGRPaSlpaGwsNDi/fz8/NC4cWMHjIjqm8LCQqSlpVm1b5s2bSCX1+4SvQ4pOUVUFwizEayZo7FPySlHZmjoTqBnG8nQKFUJOzo8cCU/x25jqgmEGRrC5txAZYaGmHK17r4WZWjIjL8k17qAhiDtQvtLpfCxxClQIucQBiAsnfwpF2Yz1p12SkREVMsIP3syQ4OIHGXSpElISkqyeL+JEyciISHB/gOieic5ORl9+4qVNzctLS0NYWFh9h1QNWNAg8iAmlJyKrfYcQGNygyNB4RNw7WVVqj1JvWrpBXcsduYaoIyQVDC3cUFJRUVqNAqJ2V+hob5GTUmMzRqSA8Nc1mWocGQBpEzCJuC25yhwecyERE5iV7WITM0iKiGCgsLs2v/YVskJCQwyEK1DgMaRAYIr1IVXvFjDkeUnPJzZIZGUQVUarXo5HKZCoDBHhp1K6AhLDnlKnWBFFIUlJdolhnO0HBMDw03mYvJDI6aRu8qOTYFJ6px9EtO2dhDgxkaRETkJOyhQUTVZf/+/c4eAtVzkZGRNSYo5gz82klkgH4PDcuP4ekqyNAos/zF5q4goOFjz4CGu+6xylX6AZQqxjI06nrJKblUCncX3WCCQ3poyAwHNLxrWXYGoD+xqV3GTfgoYzyDyDlsnfwRXv3KHhpEROQsLoK3IEuD9ERERFQ7MKBBZIDw8689MjSKytUWfbAurVCjUFCg3M/Nfk9bX4UUgiEiy0AfjTKV4YBGVnEBCstKRNfVRqUq/QwNd5luwyRzMzRkFmVoGM7AqG39MwD9rItyIyWnWKWGyDmEgccyGzM0rCnPSEREZA/M0CAiIqofGNAgMkB41ak1F516yfV3KrQgS0MsW8KePTQkEgkChX007hvO0NBv5fxAXeqjIZ6hYWZAQ2VDU3AjJadqY0BDWEtfjQdZGsLMSF7UTeQcej00LIhnqNVqvX5TzNAgIiJnsbWMIhEREdUODGgQGaCfoWH5MTyE6Q+wrI+GMKAhlwJKYS61jYIEfTSyisQzNEpVMJihAdStPhplgrJRohka5eWi++r10LCk5JSxgIbc3ezj1BRiZdqqSrkJnwVSFp0icgoXwcuOJZM/wmAGwAwNIiJyHmFGvdj7FBEREdV+DGgQGSD8ACyz4qpTuUwChWB2p6DU+gwNX4UUEjvX5tHL0DAQ0Cgz0kMDANLqUECjVKUbrJBLpeaXnBL20LAkQ8NID43amKEhVqat6nnFpuBENYNehoYF5TnEtmWGBhEROQszNIiIiOoHBjSIDKgQfAC29qpTT7mwMbglGRq6wQV7lpuqEqjUPWa2gR4apSq1fp0gLXWpMbhohoaw5JShpuA2ZWjUrR4aYs+Zir8eQ+yhQVQz2DL5UyHyniA8HhERUXXR66HBeAYREVGdxK+dRAboZWhYG9Bw1X2aWRTQKBZmaBi+gt9aQWZmaJSayNC4UlB3Ahp2zdAwUkZKyHjJqVoY0BC5UltTcooBDaIawZbJH9EMDT6ZiYjISZihQUREVD8woEFkgEpw5ak1JacA/cbgtpacsrdAQQ+N20UqvdsOAGUmemjUpZJT+k3BZeY3BRdmaNTrpuD6y8qrmoILlvPNiMg5bJn8EdtWrHcOERFRdbCljCIRERHVHvzaSWSAvTI0hI3BLcnQyBUGNNzs/5QVZmhUqIE7xfpjNJmhkX9Hry9CbaVfckom0hTcUIaGbjDEopJTMmMlp+pGU3CVpoeG7nIpr+omcgpbJn/Emq2yhwYRETkLMzSIiIjqBwY0iAyoEEzqWDtH4+kq7KFhfYaGnwMyNLxcJRBWssoS6aNRplJD/7r6B4oqynCrKN/Oo3MO/ZJT+gGN4grdbao4LEOjNpacEglSVH2xFGYBMZ5B5Bz2ztAQy8wiIiKqDsKMerHAOxEREdV+DGgQGSBsdio2OWsOTxsyNO5WQ8kpiUSCQDP6aJRWqE1mYKQV1I2yU3oZGjILSk7p9dCovyWnxJuCV/7PklNENYMwo6JCrR9wNESs3wYTNIiIyFmEQXVmaBAREdVNnEMiMkCv5JSVzxZPK3toqNTqaumhAQBBgj4aWff1gy6memgAlWWn6gK9DA2JBSWn9DI0zG8KLjcS0PCuhRkaYhObbApOVLPIRd5WhBmKhggnilyklUFyIiIiZxAG6dlDg4iIqG5iQIPIAOGEq7UZGl6u1mVoFJSp9YIqjgpomJuhYazkFABcyc+x57CcRj9DwwXuLrr9LZihYZpEItHL0qjKfBI+v3hVN5FziPW8KDczQ0MY+LD2fZKIiMge9Moo1pH+fkRERKSLAQ0bSSQSs/5FRkba5Xzr1q3DgAED0KhRI7i5uSE0NBTPPvssjhw5Ypfj0wMVghlXq3toCEtOlZoX0BBmZwCAj6MCGoIMjWyRHhpiTcE9XFx1fq87AQ3d2y+XSs3K0FCr1aiwpYeGrG4FNAD9slOGSk7xqm4i5xDreWHuFa3CiSLhRBIREVF1EsvQMFUyl8iZ0tPTNXNGCQkJzh4OGRAbG6v5O5Fj7d+/X3Nf79+/39nDQXR0NCQSCcLCwpw9FBLgV89aoqioCEOHDsX48eOxe/du3Lp1CyUlJbh69SrWrl2Lnj174r333nP2MOsUvZJTVr53eQhLTpnZFDyvWHdGyctVInolrT0Eueu+FIhmaIiUnHrIu4HO73Wlh0apXkBDpOSUSIaGMJgBADKLmoK7GFxXG5uCA/rNGQ01BeebEZFziGZomFlzXBj4YENwIiJyJrH3ITYGJyIiEqdSqXDgwAHMmzcPkZGRaNSoEVxdXeHt7Y2OHTtixowZOH36tLOHKcrw7BlZZPr06ZgxY4bB9R4eHjYdf/LkydixYwcAoG/fvnjllVcQEhKCM2fO4MMPP8Tly5cRGxuL4OBgTJ061aZzUdWV9rrLhBOz5vIUlJy6X65GhUpt8nh5JbqT6o4qNwXoZ2jcLlKhXKXWmegqFfk28JBXAE7duaH5va700BBmaLhKzWsKLiw3Bdiz5JS72cepSYRfLDUZGiw5RVQjiGVVmJuhIcxkdFTQnYiIyBziQXpmEBJZa//+/ejbty8AYN++fXarPELkTLGxsZoLwut7Fl9YWBiuXbumt7ysrAypqalITU3F8uXLMWfOHCxcuLBGZSkxoGEnQUFB6Nixo0OOvXfvXnz//fcAgOHDh2Pz5s2Q/VWa5rHHHsOIESPQpUsXXL16FW+88QbGjh0LPz8/h4ylvhB7SbM2Q0PYFBwACsvV8HY1fsBcQckpPwcGNIIEPTTUAO4Uq3SahZep1FALMhBaegXo/J5ReBclFeVQyGr3S0tphRkZGiIlp8QyNCwqOWUgoCGXyuBWS+/TysDdg2dUVUBDeE/VoPdFonrFlh4a5YLNOGFERETOJPY+VNm/jR80iYjIcgkJCXW6HNyNG5UXKD/00EMYM2YMevTogZCQEBQVFWHfvn34v//7P+Tm5uKTTz6BTCbDhx9+6OQRP8CvnrXAp59+CgBwcXFBXFycJphRpUGDBvj4448BAHl5eVi5cmW1j7GuEbs61fqAhv7TzJw+GncFAQ0fheGr923lIZfAXXApfZagj4ZYDw1hySk11LhakOuYQVajMrWVGRpiAQ1LMjQMBC185G41KhJuCb0eGirxpuC189YR1X5i723WZmiwKTgRETmTi8j7kLnvaURERPVN165d8fPPP+PixYtYuHAhhg8fji5duqBnz554++23kZycjMDAQADAokWLcOXKFSeP+AEGNGq4/Px87NmzBwDQv39/NGnSRHS7p556Ct7e3gCAzZs3V9v46iphfX8AkFo5UeMqk0AYizCnj4awKbgjS05JJBIECrI0hH00ykR6aPgp3OEnKIV0pQ700dBvCm5ehoZoySk7ZGjU1obggJGm4HolpzgRSuQMEolE73lqdQ8NfqokIiInEi+jWL/LiRARERly+PBhDBw40OAFtC1btsQ777wDACgvL8dPP/1UjaMzjl89a7jk5GSUlpYCAPr06WNwO1dXV3Tr1k2zT1mZ/mQrmU+seZwtEzXCLA1zMjRyi6uv5BQABCkFjcFFMjSExbikkKKFoOzUlfwch4yvOglLTtmWoWF+Zk2dDGgIytlUGGoKzngGkdMIy06VmXk1q7A0FTM0iIjImcR6FArLIxI52qFDh/DCCy+gTZs28Pb2hqurK5o0aYJhw4bhyy+/RF5entnHio6OhkQiQVhYmNHtEhISIJFIIJFIkJ6eLrrN3r178fTTT6N58+Zwd3eHUqlEaGgounXrhjlz5mDv3r2abdPT0yGRSDT9M4DKXq5V56j6Z6gUz759+zBx4kS0aNECSqUS3t7e6NSpE15//XVNiRsxsbGxmmMDwN27d7FgwQKEh4fD19fX4Dl/+uknjB07Fs2aNYObmxt8fX0RERGB9957D7m5pitIZGRkICYmBi1atICbmxtCQkIwYsQIJCYmmtzXWlX3sfZt2rhxI/r374+goCC4u7ujbdu2mDt3rlmPmdLSUsTFxaFv374IDAyEq6srGjVqhCFDhuDbb7+FSuTiyyrCx9n169cxe/ZstG7dGkqlEoGBgRg6dCh+/vlni26PIWFhYZBIJIiOjjZ5u8QcPXoU8+fP12ti3b59e0yfPh3nzp0T3a/qeVLVPwOA3mNa+Bwy9zl45swZTJ06Fa1atYJSqYSXlxc6dOiAWbNmGXxOAuL32+7duzF8+HA0atQICoUCzZs3x/Tp05GRkWHuXWRX2q8Dly9fdsoYxNTOouw10MaNG7Fhwwakp6dDJpOhUaNGeOKJJxAdHa3zx7eU9hOxbdu2Rrdt27Ytdu3ahfLycly6dAnt27e3+rx1wR937+Fcrm62QKCbFxq6e5vc9/5fGRTFqkKUqIrgLQsweAX57eJCXC3IRVNPXwS6eYpu4yGXIkcrQJF2rxy+blLcKroHT7kCHi4KvX1yiquvKTgAnQyNYtV9HLyVAzfFg+yL9MICVKjLdfaRSiRo4eWPEzkPXliPZV/F4w2a6R2/tU8gPOUPbmduyX2o1GoEuHlYNE61Wo0r+Tlwd5Ejv6wEhWWlFu1vjuziAp3fxTI0CstLkXJb9w0lS7AfYGGGhsxAQENeiwMagqfNjcIKXLlbphc0ZECDyHnkUqBE6y3nWn65WUH8W4W671PM0CAiImdyEfk8mX63DIWCSL2PqxQB7o4r50v1U1FREZ5//nmsW7dOb93169dx/fp1bN++HdnZ2YiNja3Wsc2aNQv//ve/9ZZfvXoVV69exa+//oqEhATcvn3bpvMUFxdj0qRJmh6w2s6ePYuzZ89i2bJlWLduHYYPH270WJcuXcKAAQOMTgbn5uYiKipKJxgDACUlJThx4gROnDiBuLg4bNmyRXMBsNAvv/yCYcOG4d69e5plmZmZ2LZtG7Zt21Ztf6vnn38e33zzjc6yCxcuYOHChVizZg327NljcE4wPT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2Hb8pJSUlmp+FLRCciQENOxFGAP/44w/88ccfWLNmDUaNGoWEhAT4+PhYfFztCJyhclNVmjZtqvn52rVrFgc0TEX7MjMzLTqes31y6hhWXNaPID/kHo7OXk+a3D+18DBSCw8CALxk/rhdHANfhe7f8MNTe/BWyk7N7x9HDMU/O+kHsISNwddfKMCs5K24VnIBrhJ39PAZhUDXpnr7afN1c3BA468G4KmFh5BaeAi4DXxhIvgqk0jQ3FP3DTHhj+NI+OO43rYKmQs2RD6HEc06IOFSMl48sgmlFRVY0Hkg3nqkv1ljLCovw/DEb7An85J5N8pOxAIaxRXl6LLt3yb3taiHhtRADw1BWa/aRHil3PcXCvH9hUK97RjPIHKeygyNB1HG+DP5Vh1H7MpYIiKi6iKVVH6m1L5u5rOUe3rbDWvujufae1XbuGoqtUqN8vslpjesI1yUCkgc9FlFpVJh5MiR2L17NwCgVatWmDFjBiIiIqBUKpGZmYnDhw9jw4YNDjm/Mf/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc2ztOSq1Wo2oqChs374dADB8+HCMGzcOLVq0gFQqxbFjx7B48WJcvXoVUVFROHToECIiIgyOOyoqCtevX8fLL7+MESNGwM/PD5cuXUJoaCiAyknW/v37IyUlBTKZDOPHj8eQIUPQvHlzlJWV4cCBA/jss8+QlZWFIUOG4OTJk5p9q1y9elUTzJBKpZg6dSqioqLg4+OD06dPY+HChYiNjTU6TnuIi4tDcnIyunbtilmzZqFVq1bIyspCQkICNmzYgBs3bmDgwIE4e/YsvLx0X7sKCgrQr18/TW+DUaNGYfLkyQgJCUFaWhqWLl2KpKQkHDx4EMOHD8eBAwcMTkrfv38fY8eOxd27d/Hmm29iyJAhUCgU+PXXX/HRRx8hMzMTn332GZo1a4ZXXnnFofeJIeXl5fDz88PIkSPRu3dvtGrVCh4eHrhx4wZSUlLw+eef4/bt23jppZfQtm1b/O1vf9PsO2rUKERERCAuLg7Lli0DUJlZIdS4cWOzxxMXF4d58+YBAAIDA/HGG2+gR48eqKioQGJiIhYtWoTCwkJER0ejQYMGGDJkiMFjrVixAocPH0afPn0wbdo0tG7dGnl5eVizZg3WrFmD7OxsTJ48GUeOHDF7fPaQlJSk+bm6gynGMKBhI6VSiREjRqBfv35o27YtPD09kZ2djaSkJHz11VfIycnBTz/9pHlzk8vlpg+qJT//waSCp6f41f9VPDweXOleUKB/pbgp2gGRuuyPopNoq3wcSpnhTI1SVTF+Lzys+T2/4g7WXknGu+EPJt7vl5fi/VO7dfZ75+T/MKPtEzqZCADg5ao7qX27LAPXSi5UnktdhHP3j6CPqYCGo0tOuctQpirBuULzXxwlEoleySlDSirK8XbKzxjWtB2mHNqoKc8Ue3IXXm7XE95mlFXadf1CtQczAEAuleqVnDKXzA49NLzl+hk8tYVYw2ExrFRD5Dz2yqwQuzKWiIioukgkErhIzS+dWN+V3y/B6Q9/cvYwqs3D80ZB7umYzPelS5dqghmjR4/GunXroFDofocbOnQoFixYUO0XilYFUUJDQ3Ho0CG9eaXIyEjExMTgzp0H1S3kcjk6duyok7HRvHlzdOzY0eB5Vq5cie3bt0Mul2Pr1q0YNGiQzvpu3brhueeeQ69evZCamopXX30VBw8eNHi8s2fPYufOnRgwYIBmWZcuXTQ/v//++0hJSYGvry8SExN11gFAz5498cwzz6B79+7IzMzEvHnzsHbtWp1tXnvtNU1mxrfffounn35asy4iIgJjx45Fr169cPy4/gWb9pScnIwhQ4Zgy5YtcHF5ME07ePBgdOzYEe+88w6uXr2KBQsW4JNPPtHZ97333tMEM+bPn48FCxZo1nXp0gVjxozBc889h7Vr1+Lw4cOIj4/H9OnTRceRnZ2NvLw8JCYmonfv3prlXbt2xZgxY/D4448jIyMDb731FsaPH69pFl2dBg8ejPHjx0OpVOosDw8Px9ChQzFz5kz07t0bp0+fxrvvvqsT0PD19YWvry+CgoI0y4w9pk3Jzs7G66+/DgAICQnB0aNHdeZVe/TogREjRqBXr14oLCzE1KlTkZaWZnBe+PDhw5gyZQqWL1+u09OiX79+cHV1xcqVK3H06FGcPHkS4eHhVo/bEvfv39cERBUKBUaOHFkt5zUHiwPY6Pr161i3bh1eeOEF9OzZE48++iiefPJJfPDBB0hNTdU8yJKSkjQRQEsUFxdrfnZ1dTW6rfYbZlFRkcXnqk/uq4xffZpfkQsVdD8JZ9zXrb14qygfJRW6JZhKKspx4W623vHCvHVjh3nlutvklxtvpO0hl6Ch0rGpXS19XVCsKoAa5n8D6ODbEN2DQk1v+JdL927jTkmRTq+JcrUKv2ZfNWv/a4V5Zp/Lnjr6BaOZhy+8LSz91MIrAG4y8+PGHXwbiS5/NMD8KwRqmqZepm+/ixRopGR8nchZmnra5/lnzvOdiIjIkfheRNVNpVJh0aJFACozFtasWaMXzKgilUotuvrbHm7evAkA6Ny5s9GLZE2VIjJGrVbj448/BgDMnDlTL5hRxc/PT3NfHTp0CJcuGb5YMTo6WieYoa2goABffvklAGDBggV6wYwqoaGhePvttwFUlokvLHxQKeDmzZvYvHkzAGDYsGE6wYwqXl5eiI+PNzhGe1EoFFixYoVOMKPKW2+9pZl0//rrrzU9doHKLJWVK1cCADp06CBaHksikSAuLg4BAZUXoi5dutToWKZNm6YTzKgSEhKiKTVVWFiI1atXm3fj7Kxx48Z6wQxtPj4+eP/99wEABw8eRE6O43q8rlq1Cvfv3wcAfPbZZ6IXiYeHh2Pu3LkAKuePjTXVDg4OxhdffCHaoHvOnDman3/55RcbR26+N954A1evVs7XxcTEICQkpNrObQoDGjby9fU1uK5hw4b44YcfNNG3L774wuLju7k9mEDVfuESo13XzN3d8hI1165dM/pPOwWxNpBJpJBCBin0AwEySeUkqqF/Jeq7evsUles2gS4RNI6ucvGefkBjcHN3dAtWwE0m+ev4ugGVUnWRwbE0UsoQ84i3XtNWe/N3k2HEQ/pBs6r7UPtfA4U3Pn98FJp7BeBh/xB81GUIGrl7wVUq0/knF2QcFFWUIatYP5jkZWYGQoVavKufBBK9c9vjXwOFB/7ZMRJPhrSCq8wF/+n9NB7yamDWvh18G2JNr3+IvhkZ0tTTF8u6P4UmSh+4SmXwkiswvkU4prURr/dZGzzdxgMdA+RwNfD4DnKXIuYRb7jx0m4ip4nu4InWvi6QG3lfNPZPIQPCA10xppVlPZGIiIjsbVonL4R5uxh93zLUG5HIGr/99pumfPeUKVNMVtaobsHBwQCAAwcOOKyh77lz5zTHjoqKMrqt9mS5sdI5zzzzjMF1SUlJuHv3rkXnKysrw4kTJzTL9+3bh4q/5nTEejJU6dq1Kzp06GD0HLYaMGCAwYliqVSKiRMnAgDu3LmDlJQUzboTJ05oGoZHR0cbLCXl7e2NcePGAaj8WxnLEjJ2X4wePVozB+rIhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqowcR1u7dq0mANauXTt88MEH1XJec/HyBQdr0aIFnnzySezYsQN//PEHbty4YVFES7s+nqkyUtrRZmveRE316KhtlvX6G5b1qkwv8/l2Pu6VPch2ie3mhycaBhnaFZ+eOYeDgqzCgnLd+qIlKt3sjCoXRTI03F2kmNX5Qf+NZ5JKcU7rNahcXYZVA/zhasHV/I7QqYFujNNLrsC9Z/9lcr83H/4b3nz4b3rL80qK4Pfd2zrL0vL1s1GUZpZzUkE8oDGu+SP4PvJZs45hixHNOmBEM8d+mHmx7RN4se0TDj1HdfJzk+Htbn7OHgYRGdHIwwULelh/VR4REVFNEeYjx8e9+J5G1efkyZOan3v16uXEkYibMGEC1qxZg5ycHHTs2BEjR47EwIED0atXLzz00EN2OYd2Sabu3bubvV9V9oiYhx9+2KzzVQVsLD2fdu8EYW8Qoa5duyI1NdXs81jKnPNXOXPmjKbB+dmzZzXLH3/8caPHePzxxzVVY86ePSt6v7m6uuKRRx4xeAy5XI7w8HDs27dPtPdEdbl9+zY+++wzbNq0CZcuXYLawIWvVds6StX937lzZ6PtBRo2bIiwsDCkp6fr/M2EDDV9r+Ln54eCggKd1gSOsn//fjz//PMAKrO3Nm3aZNWF847EgEY1aN++PXbs2AGgMsXIkoCGdpAhIyPDaDOia9euaX6uL/0wzCW8CEdtYGK8SnqB/qR7Ybluhoyw3FSVS/dMv2CKlU7KLS1CQ3fnNqcrqtDNQhE2wraUj6sbZBIpKrRKTF3O10/5M/7XeKBCxYK4REREREREtnJRKvDwvFHOHka1cVE6pi+h9oSpJZPr1aVfv35YunQpXn/9dRQVFWH9+vVYv349gMryPcOGDcP06dONTmSbkpWVZdV+VeV6xPj5Gb4ozh7n0+4Zot1TQUzDhg2tOp+5LDm/9rgtuQ2NGj0ob629nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUlCPL8VfdB6bue6Dy/k9PTzd6vxkrpQVUZusA0GQWOcrx48cxYsQIlJSUwNPTEzt27KhRzcCrMKBRDSwpOSPUvn17zc/nz583um3VehcXF7Rq1crqc9ZFEuj+DUxNoP9ZmKu3rKDMvICGWMkpIbGARk5JofMDGoKyWtY2wq4ikUgQoFAiq/hBdtHle/pvPOYGKrQDIzrnsW54RERERERE9ZJEKnFYk2yqWWJiYjB27Fh899132L17Nw4dOoS7d+/i+vXrWL58OeLj4zFv3jyrS8poT7Bu27YNYWFhZu1nbCLY2MS69vlSUlKMXh2vzVBVElvm7OzBHuevKcdwpNLSUowbNw45OTmQy+V4+eWXMXLkSLRu3Rp+fn6ack1XrlxBy5YtAcBo9oa91PT7zRKpqakYNGgQ8vPzoVAo8NNPP5nM/nEWBjSqwblz5zQ/W9pA5bHHHoOrqytKS0uRlJSEN998U3S70tJSHD16VLOPuS/o9YXw5cXUi9qfBXl6y/QyNAyVnLqXDbVabfBFTaVW4fr9e3rL75Q4v5G7vTM0AKCBm4duQEMkQ8NQKSkhgz006tAbCBEREREREdUODRo00PycmZlpsmyMJaquyFaZuABQu/y4IUFBQXj11Vfx6quvQqVS4bfffsPmzZuxdOlS5OXl4V//+hcee+wxjBw50uJxVjWcBir7CVQ1sXYU7fMFBgZaVT5dOwPk1q1bRquc3Lp1y+LjW8LU8bXXazdv1/751q1baN26tcFjaJfbMtQAPicnBxUVFUaDSVVjER6j6rEK2OfxKmbv3r2a/hFxcXE6vSm0VVf2iL+/PzIzM816fFTd/4bu+5rg8uXLePLJJ5GTkwMXFxesX78e/fr1c/awDGJTcAdLS0vD7t27AQAtW7ZE48aNLdrfy8tL8wBKTEzUNJsS+vHHH3HvXuUk+ejRo20Ycd0knPA2VnJKrVbjzwKxDA1BDw0DGRp3S4uRXWy438mtogKUqfRTxO6UGE63rC7CDA1ze1sY00Ch2yRWLKBhKPPC3O0YziAiIiIiIqLq1rlzZ83PBw4csOuxq3qqVjV+NuTixYsWHVcqlaJz585YsGAB9uzZo1m+YcMGne3MvXAwPDxc8/OhQ4csGos17HG+Tp06aX5OTk42uq2p9bay5PzawSLtn3/99Vejxzh27JjoftpKS0uNNtEuLy/Hb7/9JnoM7f6/ubn682lV7ty5Y3a5KCHtPiZ///vfDW6n3WNFjL0uiK26D1JSUlBeLj4/CFSWSPvzzz919qlpMjIy0L9/f2RmZkIqlWL16tVWBTerEwMaNti2bZvRB+2tW7cwZswYlJZWXtk/Y8YMvW0SEhIgkUggkUgQGxsrepw5c+YAqHzxiImJ0auXdvv2bbzxxhsAKqPhhqKU9ZlehoaRbfNKi3QaiFfR76FhuG7dRSN9NMTKTQGVJaeczVEZGtquiGVomJkGaO52RERERERERI72yCOPaK7uX7lyJQoKDF/caKnmzZsDAPLz83HhwgXRbUpLS7Fp0yarz9G5c2dNtoKwgbKb24OSZCUluhd4Co9RlSURHx+P4mL9+RR76t+/v6bfwOeff25VWaG+fftqMhFWr15tcLvk5GSjjZztYdeuXcjMzBRdp1KpNOPz8/PTCaB16dIFvr6+ACpvg6HMiPz8fE2wqn379kZ7vRi7LzZv3qwJVvTv319nnZ+fn2YsxgIK33//vdVloLTnXw1leahUKqxYscLoccx9XJtSdR/k5eXhxx9/NLjd119/rbnNwvutJsjKykL//v2Rnp4OAPjqq68wfvx45w7KDAxo2ODll19GaGgoZs6ciXXr1uHIkSP47bffkJiYiPnz56Njx444efIkAKBnz56IiYmx6jx/+9vf8I9//AMAsHXrVjz55JPYunUrjh8/jlWrVqFbt264evUqAODjjz822jypvtLroWHkBVQsOwMACsp1X+hKDZScAoBLRvpoGApo1IQMjft27qEB6GdolIpkpxgqJaW/naEMDeZoEBERERERUfWSSqV4/fXXAVRe5TxhwgTNRa1CKpUKN27cMPvYffr00fy8ePFi0W1mz56N69evGzzG+vXrjTZGPn78uGaSuiqAUkV74vvy5csGjyGVSjFv3jwAlf0LJkyYYHSi+N69e1i6dKnB9ab4+vripZdeAgAcPnwYs2bNMlrm6NatW1i5cqXOsuDgYM0V6Fu3btXLTgGAgoICTJs2zepxmqukpATTpk0Tbfa8cOFCnDlzBgAwefJkTZ8IAFAoFJoLms+ePYsFCxbo7a9Wq/HSSy9pglVV95shy5Ytw8GDB/WW37x5U3OxtVKpxMSJE/W26d27NwBgy5Ytoo+XCxcu4O233zZ6fmO0ewUnJCSIbjN37lykpKQYPY65j2tTJk2apAmsvfbaa6LPw1OnTuHDDz8EADRu3BijRo2y+nyOkJeXh4EDB2oCpv/3f/+HKVOmOHlU5mEPDRvduHEDX3zxBb744guD24wZMwYrV67UeeGx1DfffIN79+5hx44d2LdvH/bt26ezXiqV4u2338bUqVOtPkd9Ymz63FBA4355GVRqFaSSyjigoZJTAHDxruUZGnW1h0aAm9LkNiqzS04Z6qFh0ZCIiIiIiIiI7CImJgbbtm3D7t27sXnzZnTq1AkzZsxAREQElEolbt68iaNHj2LdunUYP368weocQuHh4ejevTuOHDmCFStWoLS0FBMnToSPjw8uXbqE+Ph47N27F0888QQOHz4seow33ngDL774IkaOHInevXujdevW8PDwQE5ODg4ePKiZy5LJZHrVPpo1a4YmTZogIyMDn376KZo0aYI2bdpoMhsaNmyoKTX04osvam7/xo0bkZKSgmnTpqFr167w8fHBvXv3cP78eezfvx9bt26Fm5ubycl1Y95//30kJSXh119/xZIlS7B//35MmTIFjz76KDw8PJCbm4vU1FQkJiZi586d6NSpk97tW7x4MXbv3o38/HyMHz8eSUlJiIqKgre3N06fPo2FCxfi4sWLiIiIMFnGyBYRERHYtm0bevTogVmzZqFVq1bIysrC6tWr8f333wOobGguFgx455138OOPP+LKlSuIjY3FmTNnMGnSJAQHByMtLQ1Lly7F/v37AQDdu3c3OmcYGBgIpVKJJ598ErNmzcKQIUOgUChw7NgxfPjhh5pg3IIFC0Qbus+YMQNbt25FUVERIiMjERsbi/DwcBQUFGDPnj1YsmQJAgMDIZPJkJ1t+CJgQwYOHIigoCBkZWVh/vz5SE9Px+jRo9GgQQP88ccfWLFiBfbs2YMePXoYLUX2xBNPaH6eNWsW3nrrLQQHB2tKUYWFhcHFxfR0eWBgIBYtWoSYmBhkZGSgS5cuePPNN/HEE0+gvLwciYmJWLRoEQoKCiCRSBAfH1+j+h2XlJRg6NChmjJizzzzDPr37280I8nDw0Mv8OksDGjYYPXq1UhKSsKRI0dw5coV3L59G/fu3YOnpyeaNm2KJ554AhMnTkT37t1tPpe7uzu2b9+O7777DgkJCTh16hTy8vLQsGFD9OrVCy+99JJdzlNXWTLh/Weh4Xp/98vL4CmvDEyViGQaVLloRYZGjSg5JczQsEfJKUGGhhhmaBAREREREVFtJJVK8dNPP2HixIn44YcfcPHiRbz66qt2OfY333yDPn36aCa4hSWB5syZgw4dOhgMaACVV2GL7VtFoVDgq6++QkREhN66efPmYcaMGUhLS9Orqb9q1SpER0cDqOxLsH79erzyyiv46quvcPnyZfzzn/80OCaxCXFLKBQK7N69G9HR0fjxxx9x6tQpowESb29vvWVhYWHYunUrRowYgfz8fMTFxSEuLk5nm3feeQcSicShAY2YmBgkJSUhISFBU51FW3BwMP73v//Bx8dHb52Xlxf27NmDwYMH4/z589i0aZNoCbIePXpg69atRht+K5VK/PDDDxg8eDA++ugjfPTRR3rbzJw5E7Nnzxbdf+DAgZg5cyY+//xzZGRkiAbItm7disGDBxscgzEeHh5Ys2YNRo0aheLiYixfvhzLly/X2SYyMhJLly412qvioYcewrhx47Bhwwbs2rULu3bt0lmflpaGsLAws8Y0Y8YM5OXl4e2338atW7cwa9YsvW0UCgXi4+MxZMgQs45ZXTIzM3VeN9auXYu1a9ca3adPnz6aAJmzMaBhgz59+uikAFojOjpa8wZgjvHjx9eKWmY1jSUlp9INZGgAlX00NAENoxkatbPklF6Ghj1KTrmZDmiY2xvD3ObhRERERERERNVFqVRi48aN2LdvH1atWoWDBw/i5s2bqKioQMOGDfHoo49i2LBhePrppy06btu2bZGSkoJ//etf2LFjBzIzM+Hj44MuXbrg5ZdfxpAhQwyW3wGAffv2Ydu2bThw4AAuXryImzdvIjc3F0qlEi1btkS/fv0wffp0tGjRQnT/6dOno2HDhli+fDl+++033Llzx2AvWblcjri4OEyfPh0rVqzA/v37cfXqVRQUFMDT0xPNmzdHly5dMHjwYAwbNsyi+0GMl5cXNm3ahIMHD2L16tX45ZdfcOPGDRQVFcHb2xstW7ZE165dMXToUAwYMED0GJGRkUhNTcVHH32kuX/9/PwQERGBl19+GQMHDjQ7o8YWq1atwoABAxAfH48zZ86goKAAoaGhGDVqFN58802jpeXDwsJw6tQprFixAhs3bsTZs2dx7949+Pv7Izw8HM888wzGjx8PqdR014GIiAikpKTg008/xfbt23H9+nV4eHjgsccew8yZM00GI5YsWYJu3brhq6++wm+//YaysjI0a9YMo0ePxpw5cxAQEGDxfaNt4MCBOH78OBYuXIi9e/ciOzsbvr6+aN++PZ555hk8//zzmpL8xnz77beIiIjADz/8gAsXLiA/P99o2TJj5s2bh2HDhmHp0qXYu3cvbty4AalUimbNmmHAgAF49dVXzQ6QkPkkamu7sVC9k5GRoWl2de3aNU3Tp9qg0ffv4VZRvub3xIHT0C+klei2Y/auxo9/nhFddzlqLlp4Vb4Af3pmP14//l/R7dxkLih87kNNeSpt3f/7BY5m/6m3vF9wKyQOcnx9RmNmHNmEZeePaH6f3rY74rqPsemYO679jqGJXxvd5n8DpmBA4zYmjzX72Fb8X+oBveUTWnbB6t6WfTAkIiIiIiKqqaz9/n3p0iWUl5fDxcVFp+Y8EdUc6enpmtI92pkuzhAdHY3Vq1cjNDRU0xiayJ4c8b7EpuBULwgLEqmNdNEw1EMDAArKHjS2KjHSFLy4ohwZhXdF19XoDA0HlJwyp4eGuZkXhjI5JGyiQUREREREREREVOcxoEH1gn7JKcPbGgtoFJaXan42VnIKEO+jUa6qQGbRPdHta0IPjftO6qFha8kphjOIiIiIiIiIiIjqPgY0qF4QXsBvKEOjsKwEt40EFgrKLAhoiPTRuHH/nsHJ+zslRUaPVx2c1UPD1qbgREREREREREREVPexKTjVS4amz/8sNJydAQgyNFQVRre9eO+23jJD5aYAoKC8BKUV5XCVOe9pqRfQsEOGhrfcDS4SKcqNBCPMztBQseQUERERERERETlPWloaCgstr7Lh5+eHxo0bO2BEVN8UFhYiLS3Nqn3btGkDudz2+T5nYkCD6gX9klPiE+PGyk0BlUGHKqYyNC6JlJwyFtAAKvtoNFJ6G93GkYQ9NJR2yNCQSCRo4OaBm1pN2YXMzbwwXHKKAQ0iIiIiIiIicrxJkyYhKSnJ4v0mTpyIhIQE+w+I6p3k5GT07dvXqn3T0tIQFhZm3wFVM5aconrB3KbgpgIahdolpwRNwYPcPHV+v3jXsgwNALhT6tzG4I7I0ACAAIXxxuDsoUFERERERERE9UFYWBjUajXUajWio6OdOpaEhASo1Wqkp6c7dRxElmCGBtULwpJEhubP023I0OjkF4w9mZc0v6cV3NErIXWt8K7R4zu7j4ZeU3A7ZGgApvtomJuhYW7gg4iIiIiIiIjIEfbv3+/sIVA9FxkZabD6TH3ADA2qF8y9gt9khka54abgHf0a6fxeoVYhreCOzjJTGRo5xZbXYLQnR2VoNFAYD2iYn6HBHhpERERERERERET1FQMaVC/oZWhYWXKqwEjJqYbunggUZCJcEjQGr/Elp5yWocGSU0RERERERERERGQcAxpUL+j30BD3Z6FuQCNE0KBbN0OjQmedQuqC1t6BOssu3tVtDC4MaMgkuk/BOyV1s4eG6QwNNgUnIiIiIiIiIiIi4xjQoHpBOOEtVmeupKIcN+7f01nWwVe3jFRBmeEeGgqZC1r7CAIa97J1ts8qLtBZ31awvbN7aAgzNJQurnY5boDdMjTqb31AIiIiIiIiIiKi+o4BDaqXxKbFxcpBtfdtqPO7ToaGSj+g0cq7gc4y7QyNDJHjP+IfovN7TonzemiUqSpQLsiAqK4MDVubgrOFBhERERERERERUd3HgAbVC3o9NEQmxoX9M7zlbmgsKDlVYKQpuGjJKa0eGsKAiZdcgeae/jrLnFlySpidAQDuLi52OXYDN6XR9eY3BWfJKSIiIiIiIiIiovqKAQ2qF8zpoSEMaIR5+sFTrtBZVmgsoCGT6QU0rt+/i8K/ylRdK7yrs66phy/8FboT/c4sOSXsnwHUvAwNgwENxjOIiIiIiIiIiIjqPAY0qF7Q66EhEtJIL7ij83uopx88BD0kdHpoqPSbgj8kKDkFAH/k5wDQz9Bo6uGLAEFAw5klp8QzNOwU0DDRQ8P8DA320CAiIiIiIiIiIqqv7FNPhqiGE17Bf7e0GNmCBt2XtMpDAeIBjXtlJZr9hAEAhcwF7i5yNPXw1QlenLidgRClN/7I1z2+WIZGdnGh3riM3i5IEKBQ6pXUskRpRTnulhXrNUQH7JehEWAiQ+Numf7fQ0yxSBYJwJJTRERERERERERE9QEDGlQvCCe8Jx1cb3KfUA/9klNX8nMQtC5WdHuFrPLp1No7UCeg8fyhDcAh/e2bevjoBTSu379r8PiGhCi98UPfCegeFGbRfgDwf6kHMD9lJ+6LZGfIpTK4SGUWH1OMl+B+FJqf8jPmp/xs9fEZziAiIiIiIiIiIqr7WHKK6gVrEhjCvPQzNIxRSP8KaPjol50SU1lyynjmgjlu3L+H15P/a/F+d0ruY07yNtFgBmC/7AxAvym7vTn6+EREREREREREROR8DGhQvdDCM8DifR71b4xW3g3MLmfU0rvyHF0bNDP7+KGeflDaoU/FxXvZFu+Tln/HaO8KcwMzNUELL8v/vkRERERERERERFS7MKBB9cJHEUMQ5uln1rYKmQvefqQ/HvJugIbuXvioy2Cj2QruMjk+6jIEDd29AAB/b/4oRjbrYDAQIpfK8Gr7XnjUPwTuLnJ8/vgoeLoYL8lkiqEsC2NKKsoNrmvk7oXPHhthy5CqTb/gVpjc6jFnD4OIiIiIiIiIiIgcjD00qF54xD8EV6Lm4U7JfahgOCsBALxcFHDTypp44+G/YVaH3rhbViy6vY/cDa6yB08ldxc5fuo3CfllxSgWCRp4uijgrnX851s/jgkPRSCvtMjs2/N73i302blM8/v98jKo1WqLSi+VqHTH5q9Q4vxT/wQANFB4OLyM0+DGbbG2z3iUq1UW76uUyVGiqoCLRApvVzcHjI6IiIiIiIjIcdLT09G8eXMAwKpVqxAdHe3cAZGo2NhYvPfeewAAtZEqF2S7/fv3o2/fvgCAffv2ITIy0qnjiY6OxurVqxEaGor09HSnjoV0MaBB9YZEIkGAm3U9K1xlLgiUeVq0j5fcDV5mVpOSS2UIdDP/+HeVusEVNdQoqSjXCcSYIszQcJfJLRqDPfgJmqJbwvbuI0RERERERERERPVPVlYWdu7cieTkZKSkpCAzMxO3b99GaWkp/P398fDDD2PUqFGYMGECPDxq1iwcS04R1UJifTfuV1hWdkoY0FDIqje+qTaRKUNEREREREREzrF//35IJBJIJBLs37/f2cMhsovY2FjN47q+27p1K6Kjo/Hll1/iyJEjSE9PR0FBAUpLS3Hz5k3s2rULM2bMQIcOHXDixAlnD1cHMzSIaiGlzFVvWVF5GWBBKw5hOSyFVGbrsIiIiIiIiIiIiGq9hIQEJCQkOHsYDiORSNCqVStERkYiPDwcjRs3RnBwMIqLi/Hnn3/i22+/xf/+9z/8+eefePLJJ3H27FmEhIQ4e9gAGNAgqpVEMzTKSy06hrCHhpuRxudERERERERERERUN0ycOBHPP/+86LpevXrh2Wefxb///W/MmjULubm5+PTTT/HZZ59V8yjFseQUUS0kl8ogk+g+fWtbySkiIiIiIiIiIiKqfi4upucBX3rpJXh6Vvbb/eWXXxw9JLMxoEFUC0kkErgLMiosztDQC2hUb8kpdtAgIiIiIiKiuuTQoUN44YUX0KZNG3h7e8PV1RVNmjTBsGHD8OWXXyIvL8/sY0VHR0MikSAsLMzodgkJCZqeAOnp6aLb7N27F08//TSaN28Od3d3KJVKhIaGolu3bpgzZw727t2r2TY9PR0SiQR9+/bVLOvbt6/mHFX/DJXi2bdvHyZOnIgWLVpAqVTC29sbnTp1wuuvv44bN24YvB3C3gZ3797FggULEB4eDl9fX4Pn/OmnnzB27Fg0a9YMbm5u8PX1RUREBN577z3k5uYave8AICMjAzExMWjRogXc3NwQEhKCESNGIDEx0eS+1qq6j7Vv08aNG9G/f38EBQXB3d0dbdu2xdy5c816zJSWliIuLg59+/ZFYGAgXF1d0ahRIwwZMgTffvstVCqVwX2Fj7Pr169j9uzZaN26NZRKJQIDAzF06FD8/PPPFt0eQ8LCwiCRSBAdHW3ydok5evQo5s+fj8jISDRq1Aiurq7w9vZG+/btMX36dJw7d050v6rnyXvvvadZJnxMC59D5j4Hz5w5g6lTp6JVq1ZQKpXw8vJChw4dMGvWLIPPSUD8ftu9ezeGDx+ORo0aQaFQoHnz5pg+fToyMjLMvYvsysXFBW5ubgCA4uJip4xBDC/JJqqllC5yFJSXaH6/X25hhoZK2EODLwdERERERERElioqKsLzzz+PdevW6a27fv06rl+/ju3btyM7OxuxsbHVOrZZs2bh3//+t97yq1ev4urVq/j111+RkJCA27dv23Se4uJiTJo0Cd9//73eurNnz+Ls2bNYtmwZ1q1bh+HDhxs91qVLlzBgwACjk8G5ubmIiorSCcYAQElJCU6cOIETJ04gLi4OW7ZsQbdu3USP8csvv2DYsGG4d++eZllmZia2bduGbdu2Vdvf6vnnn8c333yjs+zChQtYuHAh1qxZgz179qBt27ai+6anp2Pw4ME4f/68zvJbt25h586d2LlzJ5YvX44tW7bA39/f6DiOHz+OoUOHIisrS7OsqKgIO3bswI4dOzB79mwsXrzYyltpu4SEBEyaNElveVlZGX7//Xf8/vvvWLFiBT7//HPMmDGjWsb00UcfYf78+XpBo3PnzuHcuXNYtmwZ4uPjMWHCBJPHmjt3LhYuXKizLD09HV999RU2bdqEpKQktGvXzq7jN2XPnj2a1wZDj0Fn4AwmUS0l7KNheYZGhc7vLDlFRERERERUP6jV6hp1ta2jubm5aa78tzeVSoWRI0di9+7dAIBWrVphxowZiIiIgFKpRGZmJg4fPowNGzY45PzG/Pe//9UEMx5++GFMnz4d7dq1g4+PD/Ly8pCamorExEQcO3ZMs0/jxo1x5swZJCcnY/LkyQCAb775Bo899pjOsZs0aaL5Wa1WIyoqCtu3bwcADB8+HOPGjUOLFi0glUpx7NgxLF68GFevXkVUVBQOHTqEiIgIg+OOiorC9evX8fLLL2PEiBHw8/PDpUuXEBoaCqAyaNG/f3+kpKRAJpNh/PjxGDJkCJo3b46ysjIcOHAAn332GbKysjBkyBCcPHlSs2+Vq1evaoIZUqkUU6dORVRUFHx8fHD69GksXLgQsbGxRsdpD3FxcUhOTkbXrl0xa9YstGrVCllZWUhISMCGDRtw48YNDBw4EGfPnoWXl5fOvgUFBejXrx+uXLkCABg1ahQmT56MkJAQpKWlYenSpUhKSsLBgwcxfPhwHDhwADID1Tnu37+PsWPH4u7du3jzzTcxZMgQKBQK/Prrr/joo4+QmZmJzz77DM2aNcMrr7zi0PvEkPLycvj5+WHkyJHo3bs3WrVqBQ8PD9y4cQMpKSn4/PPPcfv2bbz00kto27Yt/va3v2n2HTVqFCIiIhAXF4dly5YBqMysEGrcuLHZ44mLi8O8efMAAIGBgXjjjTfQo0cPVFRUIDExEYsWLUJhYSGio6PRoEEDDBkyxOCxVqxYgcOHD6NPnz6YNm0aWrdujby8PKxZswZr1qxBdnY2Jk+ejCNHjpg9Pmvl5+fj2rVr2LBhg07PDGf93cVwBpOollK6uOr8XmRpDw1hhgYDGkRERERERPVCcXEx/vOf/zh7GNXmueeeg7u7u0OOvXTpUk0wY/To0Vi3bh0UCoXONkOHDsWCBQuQmZnpkDEYUhVECQ0NxaFDhzS18KtERkYiJiYGd+7c0SyTy+Xo2LGjTsZG8+bN0bFjR4PnWblyJbZv3w65XI6tW7di0KBBOuu7deuG5557Dr169UJqaipeffVVHDx40ODxzp49i507d2LAgAGaZV26dNH8/P777yMlJQW+vr5ITEzUWQcAPXv2xDPPPIPu3bsjMzMT8+bNw9q1a3W2ee211zSZGd9++y2efvppzbqIiAiMHTsWvXr1wvHjxw2O0x6Sk5MxZMgQbNmyRaenweDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOsHXfv36wdXVFStXrsTRo0dx8uRJhIeHWz1uQ2JjY3XKcWmTyWRYsmQJevbsaffzWos9NIhqKf0MDRubgrPkFBEREREREZHZVCoVFi1aBKAyY2HNmjV6wYwqUqnUoqu/7eHmzZsAgM6dO+sFM7SZKkVkjFqtxscffwwAmDlzpl4wo4qfn5/mvjp06BAuXbpk8JjR0dE6wQxtBQUF+PLLLwEACxYs0AtmVAkNDcXbb78NoLI/RWFhoWbdzZs3sXnzZgDAsGHDdIIZVby8vBAfH29wjPaiUCiwYsUK0QbNb731lmbS/euvv0Zp6YPKHCUlJVi5ciUAoEOHDqLlsSQSCeLi4hAQEACgMvhmzLRp03SCGVVCQkI0paYKCwuxevVq826cnTVu3FgvmKHNx8cH77//PgDg4MGDyMnJcdhYVq1ahfv37wMAPvvsM51gRpXw8HDMnTsXQGXpuZ9++sng8YKDg/HFF1+IZpLNmTNH83N1N+bu168fzp49i5iYmGo9rykMaBDVUkqZboaG7U3BqzegoVazLTgRERERERHVXr/99pumWe+UKVOMBg2cITg4GABw4MABXL582SHnOHfunObYUVFRRrfVniw3VjrnmWeeMbguKSkJd+/eteh8ZWVlOHHihGb5vn37UPFXGW6xngxVunbtig4dOhg9h60GDBiAkJAQ0XVSqRQTJ04EANy5cwcpKSmadSdOnNA0DI+OjjZYSsrb2xvjxo0DUPm3MpYlZOy+GD16NHx9fQHAoQ3TLVFYWIj09HSkpqZq+rRoZ0CcOnXKYeeuug98fX3x1FNPGdzuhRde0NtHTFRUlMFgaJs2bTSvLVUZOfY2Y8YMnDlzBmfOnMHRo0exatUq9O3bF3v27MHf//53/Prrrw45r7UY0CCqpdxtzNAo1gtoiL/5EREREREREZG+kydPan7u1auXE0cirqoRcU5ODjp27Ih//OMfWLVqFf744w+7nUO7JFP37t0hkUgM/tMO+FRlj4h5+OGHzTpfcHCw0fNplxTSPp927wRhbxChrl27Gl1vK0vOrz3us2fPan5+/PHHjR5De732ftpcXV3xyCOPGDyGXC7XlDoS6z1RXW7fvo158+ahTZs28PLy0pRD69SpEzp16oShQ4fqbOsoVfdj586dDZaRAoCGDRsiLCxMZx8xphpu+/n5Aajsb+EIQUFB6NixIzp27IjHH38c0dHR2Lt3Lz744AOcPn0akZGR2LVrl0PObQ3WmCGqpZQyQUCjwsIMDUEPDTeZ4RdgIiIiIiIiqjvc3Nzw3HPPOXsY1cbNzc0hx9WeMK3KhqhJ+vXrh6VLl+L1119HUVER1q9fj/Xr1wOoLN8zbNgwTJ8+3ehEtilZWVlW7VdVrkdM1eSto86n3TNEu6eCmIYNG1p1PnNZcn7tcVtyGxo1aiS6nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUVFFRkcPGUnUfmLrvgcr7Pz093ej9ZqyUFlCZrQNAk1lUXd566y1s3boVx44dw5QpU3D58mXR8mjVzfkjICKr6DUFLy83sKU49tAgIiIiIiKqnyQSicOaZFPNEhMTg7Fjx+K7777D7t27cejQIdy9exfXr1/H8uXLER8fj3nz5uGDDz6w6vjaE6zbtm3TXI1uirGJYGMT69rnS0lJMXp1vLYmTZqILhfrWVCd7HH+mnIMRyotLcW4ceOQk5MDuVyOl19+GSNHjkTr1q3h5+enKdd05coVtGzZEkD1lDqv6febPYwcORLHjh3D1atXcezYMTzxxBPOHhIDGkS1lX5TcFt7aFRvySl20CAiIiIiIqLarEGDBpqfMzMzTZaNsUTVFdkqlcrodtrNrg0JCgrCq6++ildffRUqlQq//fYbNm/ejKVLlyIvLw//+te/8Nhjj2HkyJEWj7Oq4TRQ2U9Au8yTI2ifLzAw0GCgwhjtDJBbt26JNnTWXu9Ipo6vvV67ebv2z7du3ULr1q0NHkO73JahBvA5OTmoqKgwGkyqGovwGFWPVcA+j1cxe/fu1fSPiIuL0+lNoa26skf8/f2RmZlp1uOj6v43dN/XdIGBgZqf//zzzxoR0GAPDaJaSpihcb/Csh4awpJT1d0UnIiIiIiIiKg269y5s+bnAwcO2PXYXl5eAKBp/GzIxYsXLTquVCpF586dsWDBAuzZs0ezfMOGDTrbmXvleVVfBQA4dOiQRWOxhj3O16lTJ83PycnJRrc1td5WlpxfO1ik/bOphs3Hjh0T3U9baWmp0Sba5eXl+O2330SPUfVYBYDc3FyDx7hz547Z5aKEUlNTNT///e9/N7iddo8VMfbKqKi6D1JSUlBupGJKVlYW/vzzT519apvr169rftbug+NMDGgQ1VK2Z2jo1t2r7pJTauZoEBERERERUS32yCOPaK7uX7lyJQoKCux27ObNmwOobAJ84cIF0W1KS0uxadMmq8/RuXNnTbaCsIGydt+RkpISo8eoypKIj49HcXGx1eMxR//+/TX9Bj7//HOrygr17dtXk4mwevVqg9slJycbbeRsD7t27UJmZqboOpVKpRmfn5+fTgCtS5cu8PX1BVB5GwxlRuTn52uCVe3btzfa68XYfbF582ZNsKJ///466/z8/DRjMRZQ+P77760uA6UdNDCU5aFSqbBixQqjxzH3cW1K1X2Ql5eHH3/80eB2X3/9teY2C++32kClUum8xmgHA52JAQ2iWspd2BS83MIMDb2SU8zQICIiIiIiIjKXVCrF66+/DgDIyMjAhAkTUFoqfrGhSqXCjRs3zD52nz59ND8vXrxYdJvZs2frXD0ttH79eqONkY8fP66ZpK4KoFTRnvi+fPmywWNIpVLMmzcPQGX/ggkTJhidKL537x6WLl1qcL0pvr6+eOmllwAAhw8fxqxZs4yWObp16xZWrlypsyw4OFhTXmvr1q162SkAUFBQgGnTplk9TnOVlJRg2rRpos2eFy5ciDNnzgAAJk+erOkTAQAKhUJTduns2bNYsGCB3v5qtRovvfSSJlhVdb8ZsmzZMhw8eFBv+c2bNzFnzhwAlc2rJ06cqLdN7969AQBbtmwRfbxcuHABb7/9ttHzG9OqVSvNzwkJCaLbzJ07FykpKUaPY+7j2pRJkyZpAmuvvfaa6PPw1KlT+PDDDwEAjRs3xqhRo6w+nyOsWLHCaJNxlUqF1157TRPU69Wrl9k9chyNM5hEtZTNGRpOLjklQd1vnERERERERER1W0xMDLZt24bdu3dj8+bN6NSpE2bMmIGIiAgolUrcvHkTR48exbp16zB+/HjExsaaddzw8HB0794dR44cwYoVK1BaWoqJEyfCx8cHly5dQnx8PPbu3YsnnngChw8fFj3GG2+8gRdffBEjR45E79690bp1a3h4eCAnJwcHDx7EF198AaCyCbewJ0GzZs3QpEkTZGRk4NNPP0WTJk3Qpk0bTWZDw4YNNaWGXnzxRc3t37hxI1JSUjBt2jR07doVPj4+uHfvHs6fP4/9+/dj69atcHNzMzm5bsz777+PpKQk/Prrr1iyZAn279+PKVOm4NFHH4WHhwdyc3ORmpqKxMRE7Ny5E506ddK7fYsXL8bu3buRn5+P8ePHIykpCVFRUfD29sbp06excOFCXLx4ERERESbLGNkiIiIC27ZtQ48ePTBr1iy0atUKWVlZWL16Nb7//nsAlQ3NxYIB77zzDn788UdcuXIFsbGxOHPmDCZNmoTg4GCkpaVh6dKl2L9/PwCge/fumDp1qsFxBAYGQqlU4sknn8SsWbMwZMgQKBQKHDt2DB9++KEmGLdgwQLRhu4zZszA1q1bUVRUhMjISMTGxiI8PBwFBQXYs2cPlixZgsDAQMhkMmRnZ1t8Pw0cOBBBQUHIysrC/PnzkZ6ejtGjR6NBgwb4448/sGLFCuzZswc9evQwWopMu//DrFmz8NZbbyE4OFhTiiosLAwuLqbnxwIDA7Fo0SLExMQgIyMDXbp0wZtvvoknnngC5eXlSExMxKJFi1BQUACJRIL4+HizG9hXl6lTp+K9995DVFQUunXrhtDQUCiVSuTm5uLkyZNISEjA6dOnAQDe3t748ssvnTxiLWoiM127dk2Nyl7O6mvXrjl7OPVe3O+H1PjmNc2/XtuXWrT/oz8t1tl/zaXjDhppJe1z4ZvX1P1//sqh5yMiIiIiIqqtrP3+ffHiRfW5c+fUFy9edODoSKiwsFAdFRWl+ZsZ+vfuu+9q9klLS9MsX7Vqlehxf//9d3VQUJDB482ZM0e9atUqze9paWk6+4eGhpock0KhMHj+uLg4g/sJ9yktLVVPnz5dLZFITJ6zefPmeud69913NevNce/ePfVTTz1l8lwA1H379hU9xr59+9ReXl4G93vnnXcsHpc5hH/76Ohog2MIDg5Wp6amGj1W27Ztjd7+Hj16qHNyckT3nzhxohqAOjQ0VJ2cnKxu0KCBwePMnDnT6O2aOXOmwX2bNWumPnfunOYxOXHiRL399+3bp9l+3759eut//vlntZubm8FzREZGqs+ePWvyeTVu3DiDx9B+DmnfN4b861//UkulUqPPr9WrV4vua85rQBVj95u1zHnuAFC3a9dOfeLECavP44j3JZacIqqllDaWnCrWKzkls3lMRERERERERPWNUqnExo0bsXfvXjz33HNo3rw53N3d4erqiqZNm2L48OFYvnw5XnvtNYuO27ZtW6SkpGD69OkIDQ2Fq6srAgMDMWjQIGzfvh2LFi0yuv++ffuwZMkSjBkzBp06dUJgYCBcXFzg7e2N8PBwzJkzB+fOnUN0dLTo/tOnT8emTZswYMAABAUFGb1yXS6XIy4uDqdOncLLL7+MTp06wcfHBzKZDD4+Pnj00Ufx/PPP44cffsDvv/9u0f0gxsvLC5s2bcIvv/yCF154AW3atIGXlxdcXFzg7++Pxx57DDExMdixYwd2794teozIyEikpqbq3L8NGzbE0KFD8fPPP+O9996zeZzmWLVqFb777jtERkYiICAACoUCrVu3xj//+U+kpqaiffv2BvcNCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4eJg8zrfffotPPvlEk0EklVo/PT5v3jycPHkSU6ZMQcuWLeHu7g4PDw+0a9cOr7zyCs6fP48JEyZYfXxHOnHiBD744AMMGzYMHTp0QIMGDTSvD23btsX48eOxceNGnDp1Sqd/S00g+SsiQ2RSRkaGptnVtWvXNE2fyDk2pp3CuP3/0fzezicI5576p9n7t9j4IdIK7mh+39JvEkY062DXMWqTrJqj83u/4FZIHOT4epRERERERES1jbXfvy9duoTy8nK4uLjo1JwnopojPT1d07Nk1apVBgNK1SE6OhqrV69GaGgo0tPTnTYOqrsc8b7EDA2iWspd2EOjwsKm4E7uoUFERERERERERERkCQY0iGop/ZJTFjYFF5ackrLkFBEREREREREREdVcDGgQ1VJKF1ed3y3toVFSUaHzOzM0iIiIiIiIiIiIqCbjDCZRLaUUlJwqqiiDWq2GRCIxa3+9klPS6n05UIPte4iIiIiIiIiodklLS0NhYaHF+/n5+aFx48YOGBHVN4WFhUhLS7Nq3zZt2kAul5vesAZjQIOolhJmaKjUaijWvAnzwhlAmYoZGkRERERERERElpg0aRKSkpIs3m/ixIlISEiw/4Co3klOTkbfvn2t2jctLQ1hYWH2HVA14wwmUS0lzNAA9IMUlmBAg4iIiIiIiIjIscLCwqBW14yqFQkJCQyyUK3DGUyiWipA4QEPF1cUWtgMXIxcKkMjdy87jMqw3g1b4MCtK5rf53Ts49DzERERERERERHZ2/79+509BKrnIiMja0xQzBnYFJyollLIXPB++EBIzC4yZdjbj/SHp1xhh1EZtuixYZqgyehmHTEgpI1Dz0dERERERERERER1CzM0iGqx2R37YOJDEfizINfqYzT19EWgm6cdRyWua2Az/DHmTeSXlaChu5fZzcuJiIiIiIiIiIiIAAY0iGq9ADcPBLh5OHsYZvGQK+Dh4EwQIiIiIiIiIiIiqptYcoqIiIiIiIiIiIiIiGo8BjSIiIiIiIiIiIiIiKjGY0DDRsePH8f777+PAQMGoEmTJlAoFPD09ETr1q0xadIkHDx40C7niY2NhUQiMevf/v377XJOIiIiIiIiIqo9ZDIZAKC8vBwVFRVOHg0REdVnKpVK815U9f5kD+yhYYPevXvjl19+0VteWlqKS5cu4dKlS0hISMCECROwYsUKuLq6OmGURERERERERFQfKJVKlJSUAADy8vIQEBDg5BEREVF9VVBQALVaDQBwd3e323EZ0LDBjRs3AAAhISEYO3YsevXqhWbNmqGiogJHjhzB4sWLcf36daxZswZlZWX47rvv7HLeM2fOGF3fvHlzu5yHiIiIiIiIiGoPX19f5ObmAgCysrJQUVEBb29vKBQKSCQSJ4+OiIjqA5VKhYKCAty8eVOzzMvLy27HZ0DDBm3btsWHH36IMWPG6KXNdOvWDc899xx69OiBixcvYt26dXjxxRfRu3dvm8/bsWNHm49BRERERERERHWLm5sbfHx8cPfuXQBATk4OcnJyIJFI7Frug4iIyJCKigpNZgZQmZ3h4eFht+MzoGGD//73v0bXN2jQAIsXL8bw4cMBAD/88INdAhpERERERERERGKCg4Ph6uqK7OxszTK1Wo3y8nInjoqIiOojd3d3NGvWzK5ZggxoOFjfvn01P1++fNmJIyEiIiIiIiKiuk4ikaBBgwbw9vZGQUEBCgsLUVpaCpVK5eyhERFRPSCTyeDu7g4vLy94eHjYveQhAxoOVtWMC7BvN3ciIiIiIiIiIkNcXV3h7+8Pf39/Zw+FiIjIbqTOHkBdl5SUpPm5Xbt2djnmgAEDEBQUBFdXVwQFBSEyMhILFy7UNP4iIiIiIiIiIiIiIqprmKHhQCqVCgsXLtT8Pm7cOLscd/fu3Zqfs7OzkZSUhKSkJHz88cdISEjAyJEjrTpuRkaG0fWZmZlWHZeIiIiIiIiIiIiIyFYMaDjQ//3f/+HYsWMAgKeeegpdunSx6XidOnXCqFGj0LVrV4SEhKCsrAwXLlzA2rVrsWvXLuTl5WHMmDHYtm0bBg8ebPHxmzZtatP4iIiIiIiIiIiIiIgcRaJWq9XOHkRdlJSUhP79+6O8vBxBQUE4c+YMgoKCrD5eXl4efH19Da5fvnw5XnzxRQBASEgILl++DDc3N4vOYUmDlmvXrqFJkyYWHZ+IiIiIiIiITMvIyNBcdMjv30RERA8wQ8MBUlNTMXr0aJSXl8PNzQ0bN260KZgBwGgwAwCmTZuG5ORkfP3117hx4wY2bdqEZ555xqJzXLt2zej6zMxMdO3a1aJjEhERERERERERERHZAwMadpaWloYBAwYgNzcXMpkM33//PXr37l0t5542bRq+/vprAJUZIpYGNHjFBxERERERERERERHVVFJnD6AuuXHjBvr3748bN25AIpHgm2++sbpBtzXat2+v+fn69evVdl4iIiIiIiIiIiIiIkdjQMNObt++jSeffBJXrlwBAHzxxReYMGFCtY7Bkh4YRERERERERERERES1CQMadnD37l0MHDgQ586dAwAsXLgQMTEx1T6OqvMDlY3BiYiIiIiIiIiIiIjqCgY0bHT//n0MHToUKSkpAIC33noLb7zxhlPGsnz5cs3Pffr0ccoYiIiIiIiIiIiIiIgcgQENG5SWlmL06NE4dOgQAOCVV17BBx98YPFxEhISIJFIIJFIEBsbq7f+zJkz+OOPP4weIz4+HitXrgQANGrUCKNHj7Z4HERERERERERERERENZWLswdQmz399NPYtWsXAOBvf/sbnn/+eZw9e9bg9q6urmjdurXF5zlx4gReeOEF9O3bF4MHD0anTp0QEBCA8vJynD9/HmvXrtWMQyaTIT4+Hh4eHtbdKCIiIiIiIiIiIiKiGogBDRv8+OOPmp/37t2Lhx9+2Oj2oaGhSE9Pt+pcFRUVSExMRGJiosFtAgIC8PXXX2P48OFWnYOIiIiIiIiIiIiIqKZiQKMWGDJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7e3s4RIRERERERERERER2Z1ErVarnT0Iqh0yMjLQtGlTAMC1a9fQpEkTJ4+IiIiIiIiIqO7h928iIiJxbApOREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERET/3969R3ld1/kDfw4MMDDAQUELAvOCI2pmrMDq4l2jU1hEF9tuXgJ1rVhsXXUt827mWnnh7K5bYOa2kdlFS+P8CkVEEBFl21QQL2AqEiCgyG0Y+P7+4PBdxhmYGZhhvjM8HufMOZ/5ft6f9/v91Zee73yfn/f7AwCUvPLWngAAAABAU9W880re+Z9rsnnNy42+puKgz6Vy0IUtOCsAoCUJNAAAAIA2Z9VDo1Kz6k9NuqZTnyEtNBsAYE+w5RQAAADQpmzZuKrJYQYA0PYJNAAAAIA2pVCztrWnAAC0AltOAQAAAG1KYfP6Oq/1HHZbUtZxp9d12vdDLTQjAGBPEGgAAAAAbUqhZt27XilLt8PHpaysrFXmAwDsGbacAgAAANqUQk3tFRpl5V2FGQCwFxBoAAAAAG1KnS2nOnZtnYkAAHuUQAMAAABoU94daJQJNABgryDQAAAAANqUultOdWulmQAAe5JAAwAAAGhTrNAAgL2TQAMAAABoW94daJQLNABgbyDQAAAAANqUQs26Wr9boQEAeweBBgAAANCm1H2GhkADAPYGAg0AAACgTfEMDQDYOwk0AAAAgDZFoAEAeyeBBgAAANCm1N1yqlsrzQQA2JMEGgAAAECb8u4VGrFCAwD2CgINAAAAoE2ps+WUh4IDwF5BoAEAAAC0KYWadbV+9wwNANg7CDQAAACAtqXOMzQEGgCwNxBoAAAAAG1KnS2nrNAAgL2CQAMAAABoUwQaALB3EmgAAAAAbUrBllMAsFcSaDSjV155JRdffHEGDRqUysrK7Lvvvhk6dGhuvvnmrFu3ruEOGmnKlCkZPXp0+vfvny5duqR///4ZPXp0pkyZ0mxjAAAAQKmqu0KjWyvNBADYk8pbewLtxe9+97t86Utfyttvv118bd26dZk7d27mzp2biRMn5sEHH8zAgQN3eYwtW7bk/PPPz6RJk2q9/vrrr+f111/Pfffdl7Fjx+Y///M/06GDrAoAAID2qU6gYYUGAOwVfOvdDObNm5fPfe5zefvtt9O9e/fccMMNmTVrVh566KGcd955SZKFCxdm5MiRWbNmzS6P861vfasYZgwePDiTJ0/OnDlzMnny5AwePDhJMnHixFxxxRW7/6YAAACgRBVq3rULgmdoAMBeoaxQKBRaexJt3YknnpgZM2akvLw8jz76aI477rha52+++eZceumlSZKrrroqV199dZPHWLhwYY488sjU1NRkyJAhefTRR9O16/99YFu3bl1OOumkzJ07N+Xl5Zk/f/5urQapz2uvvZYBAwYkSV599dX079+/WfsHAACAxnjj7opky8bi773PmJPOfYa24oyal7+/AaB+Vmjspjlz5mTGjBlJkjFjxtQJM5Lk4osvzuGHH54kue2227Jp06Ymj3PrrbempqYmSTJhwoRaYUaSdOvWLRMmTEiS1NTU5JZbbmnyGAAAAFDqCoUttcKMJCmzQgMA9goCjd103333FY/PPffcett06NAhZ511VpJk9erVmTZtWpPGKBQKuf/++5MkgwYNyrHHHltvu2OPPTaHHXZYkuT++++PxTcAAAC0O5s31HlJoAEAewcPBd9Njz32WJKksrIyxxxzzA7bnXTSScXjmTNnZsSIEY0eY9GiRVmyZEmdfnY0zvPPP5/XX389ixcvzkEHHdTocdqb6g0b8+pLz7T2NAAAAGhGhZq1eXv9YbVeW/vSyynrvLrBawcc8oF0rujSQjMDAFqaQGM3zZ8/P0kycODAlJfv+B/noEGD6lzTWM8991y9/TRmnKYEGq+99tpOz7/xxhuN7qsULJr735n+XE1rTwMAAIDm1vGfav/+5KIkixq87LQkhxy545sRAYDSJtDYDRs2bMiKFSuSpMEHdO2zzz6prKzM2rVr8+qrrzZpnO2DhobG2fbQsCRNHmf7a9uDzWuXJNm/tacBAAAAAEAz8AyN3bBmzZricffu3RtsX1lZmSR55513WmycbWPsyjgAAAAAAFCqrNDYDRs2/N+DyDp37txg+y5dtu7TuX79+hYbZ9sYuzJOQys63njjjQwbNqxJfQIAAAAAQHMQaOyGioqK4nF1dXWD7Tdu3Jgk6dq1a4uNs22MXRmnoe2s2poDjjguf7fp/7X2NAAAAGghHbv2Taf3DE9ZWcdGtR9wyAdaeEYAQEsSaOyGHj16FI8bs73T2rVrkzRue6pdHWfbGLsyTnvTfcBp+cCA01p7GgAAAAAANAPP0NgNFRUV6d27d5LaD+6uz6pVq4phQ1Mfvr39yomGxtl+26j29pBvAAAAAAD2XgKN3XTEEUckSV588cXU1NTssN2CBQuKx4cffvgujfHufpp7HAAAAAAAKFUCjd10/PHHJ9m61dNTTz21w3bTp08vHg8fPrxJYxx00EHp169fnX7q8+ijjyZJ3ve+9+XAAw9s0jgAAAAAAFCqBBq76ZOf/GTx+Mc//nG9bbZs2ZK77747SdKrV6+ccsopTRqjrKwso0aNSrJ1Bcbs2bPrbTd79uziCo1Ro0alrKysSeMAAAAAAECpEmjspmHDhuWEE05IkkyaNCmPP/54nTbf//73M3/+/CTJ+PHj06lTp1rnH3nkkZSVlaWsrCznnHNOveNcdNFF6dixY5Jk3LhxWb9+fa3z69evz7hx45Ik5eXlueiii3bnbQEAAAAAQEkRaDSD2267LV27dk1NTU1GjBiRG2+8MbNnz860adNywQUX5NJLL02SVFVV5eKLL96lMaqqqnLJJZckSebOnZvhw4fnnnvuydy5c3PPPfdk+PDhmTt3bpLkkksuyaGHHto8bw4AAAAAAEpAeWtPoD0YPHhw7rnnnnzpS1/K22+/nW9+85t12lRVVeXBBx9Mjx49dnmcG264IcuWLcudd96ZefPm5e///u/rtBkzZkyuv/76XR4DAAAAAABKkRUazeTjH/94/vd//zff+MY3UlVVlW7duqVXr14ZMmRIbrrppsybNy8DBw7crTE6dOiQSZMm5cEHH8yoUaPSr1+/dO7cOf369cuoUaPy+9//PhMnTkyHDv61AgAAAADQvpQVCoVCa0+CtuG1117LgAEDkiSvvvpq+vfv38ozAgAAgPbH398AUD+38gMAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACWvvLUnQNtRU1NTPH7jjTdacSYAAADQfm3/N/f2f4sDwN5OoEGjLV++vHg8bNiwVpwJAAAA7B2WL1+eAw88sLWnAQAlwZZTAAAAAABAySsrFAqF1p4EbcOGDRvy5z//OUmy3377pby89Bf4vPHGG8XVJHPmzEnfvn1beUaw69Qz7Yl6pr1R07Qn6pn2pK3Wc01NTXGXhKOOOioVFRWtPCMAKA2l/400JaOioiJDhw5t7Wnssr59+6Z///6tPQ1oFuqZ9kQ9096oadoT9Ux70tbq2TZTAFCXLacAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5AAwAAAAAAKHllhUKh0NqTAAAAAAAA2BkrNAAAAAAAgJIn0AAAAAAAAEqeQAMAAAAAACh5Ag0AAAAAAKDkCTQAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5Ag3brlVdeycUXX5xBgwalsrIy++67b4YOHZqbb74569ata+3psZebO3durr322owYMSL9+/dPly5d0r1791RVVeXcc8/NY4891qT+pkyZktGjRxf76t+/f0aPHp0pU6a00DuAxrnssstSVlZW/HnkkUcavEY9U2r+8pe/5KqrrsqQIUOy3377paKiIgMGDMgJJ5yQK6+8Ms8888xOr1fTlILq6upMnDgxH/nIR9K3b9/iZ4/DDjss5557bmbNmtWoftQzLWnZsmV54IEHcuWVV+ajH/1o+vTpU/wMcc455zS5v+ao15qamtxxxx054YQTst9++6Vr16455JBDcsEFF+TZZ59t8pwAgN1UgHbot7/9baFnz56FJPX+VFVVFV544YXWniZ7qRNOOGGHtbn9z1lnnVXYuHHjTvvavHlzYcyYMTvtZ+zYsYXNmzfvoXcH/2fevHmF8vLyWvU4bdq0HbZXz5Si22+/vVBZWbnTuhw/fny916ppSsXixYsLRx55ZIOfPcaNG1fYsmVLvX2oZ/aEndXX2Wef3eh+mqtely9fXhg6dOgO++jSpUvhRz/60W6+awCgKazQoN2ZN29ePve5z+Xtt99O9+7dc8MNN2TWrFl56KGHct555yVJFi5cmJEjR2bNmjWtPFv2RkuWLEmS9OvXL+PHj88vf/nLzJkzJ48//nh+8IMf5H3ve1+S5O67727wTrRvfetbmTRpUpJk8ODBmTx5cubMmZPJkydn8ODBSZKJEyfmiiuuaLk3BPXYsmVLzj///NTU1GT//fdv1DXqmVJz/fXX5x//8R+zdu3aVFVV5eabb84jjzySefPmZerUqbn55pvzd3/3d+nQof6P1GqaUrBp06aMHDmyeCf5Bz/4wdx11115/PHH84c//CFXXnllKisrkyQTJkzITTfdVG8/6pk97YADDsiIESN26drmqNfNmzdn9OjRefLJJ5Mkn/rUpzJlypQ88cQTuf3227P//vtn48aNueCCC6xQAoA9qbUTFWhu2+5+Ly8vL8yaNavO+X/9138t3lFz1VVX7fkJstcbOXJk4Z577inU1NTUe3758uWFqqqqYp1Onz693nbPP/988e73IUOGFNatW1fr/Nq1awtDhgwp/vdgVRJ70i233FJIUhg0aFDh8ssvb3CFhnqm1EydOrXWirnq6uodtq1vNZ2aplTce++9xVo+7rjj6v38MXfu3EKnTp0KSQq9evUqbNq0qdZ59cyecuWVVxZ+97vfFZYuXVooFAqFRYsWNXmFRnPV66RJk4pjf/WrX61z/oUXXijuCjBw4MA6/90AAC3DCg3alTlz5mTGjBlJkjFjxuS4446r0+biiy/O4YcfniS57bbbsmnTpj06R3jggQdy5plnpmPHjvWe79OnT77//e8Xf//lL39Zb7tbb701NTU1SbbeUdm1a9da57t165YJEyYk2br37y233NIc04cG/eUvf8m3v/3tJMkdd9yRzp07N3iNeqaUbNmyJRdeeGGS5Oijj86kSZPSqVOnHbavr8bVNKVi+2djXH755fV+/jjmmGNyxhlnJElWr16d+fPn1zqvntlTrrnmmpxxxhl5z3ves8t9NFe9fu9730uS7Lvvvrn55pvrnB84cGAuv/zyJMmLL76Y3/zmN7s8ZwCg8QQatCv33Xdf8fjcc8+tt02HDh1y1llnJdn6B9u0adP2xNSgSU455ZTi8UsvvVTnfKFQyP33358kGTRoUI499th6+zn22GNz2GGHJUnuv//+FAqFFpgt1Pa1r30t77zzTs4+++ycdNJJDbZXz5SaP/zhD3nhhReSbH2wfXl5eZOuV9OUkurq6uLxwQcfvMN2hxxySL3XqGfakuaq14ULFxaDvTPPPDPdunWrt5/tt4cVaADAniHQoF157LHHkiSVlZU55phjdthu+y/YZs6c2eLzgqbauHFj8bi+OykXLVpUfBZHQ18Ybzv/+uuvZ/Hixc03SajHL37xizzwwAPZd999i3c2NkQ9U2ruvffeJElZWVnxrvUkWblyZV544YWsXLlyp9eraUrJti9tk+Tll1/eYbttN1CUlZXl0EMPLb6unmlLmqtet/1d2VA/733ve1NVVZXE35UAsKcINGhXtt1FM3DgwJ3eTTlo0KA610ApmT59evF42xZp23vuueeKx9vXc33UO3vK6tWrM378+CTJTTfdlD59+jTqOvVMqZk9e3aS5MADD0yPHj3ys5/9LEcddVR69+6dqqqq9O7dO4cddli+973v1Qqgt1HTlJLPf/7z6dmzZ5Kt/2/evHlznTbz5s3Lgw8+mCT5whe+UGyfqGfaluaq113p59VXX83atWsbPVcAYNcINGg3NmzYkBUrViRJ+vfvv9O2++yzTyorK5Ns/eAJpWTLli357ne/W/z9zDPPrNPmtddeKx43VO8DBgwoHqt3WtKll16apUuXZvjw4RkzZkyjr1PPlJItW7ZkwYIFSbY+02j8+PH54he/mGeeeaZWu4ULF+aSSy7JqaeemtWrV9c6p6YpJX369Ml//dd/pVu3bpk5c2aGDh2au+++O7Nnz87UqVNzzTXX5KSTTkp1dXX+5m/+ptZzvBL1TNvSXPW6K/0UCoVa1wEALUOgQbuxZs2a4nH37t0bbL8t0HjnnXdabE6wK2655ZbMmTMnSfKpT32q3u3TmlLv22o9Ue+0nBkzZmTixIkpLy/PHXfckbKyskZfq54pJW+99Va2bNmSJPnzn/+c22+/PX379s1Pf/rTrFy5MuvWrcv06dOL+7LPmjUrX/nKV2r1oaYpNZ/4xCfy1FNPZezYsfmf//mfnH322TnuuOPy4Q9/OFdffXW6deuWW2+9NTNmzKjzMGb1TFvSXPWq7gGgdAk0aDc2bNhQPO7cuXOD7bt06ZIkWb9+fYvNCZpq+vTp+Zd/+Zckyf7775//+I//qLddU+p9W60n6p2WUV1dnfPPPz+FQiHf+MY38oEPfKBJ16tnSsn224Vs2LAh3bp1y7Rp0/LFL34x++yzT7p27ZoTTzwxDz/8cI4++ugkWx8E+8QTT9S6bhs1TSmorq7O3XffvcOHdf/1r3/NT3/600ydOrXOOfVMW9Jc9aruAaB0CTRoNyoqKorH1dXVDbbftud1165dW2xO0BTPPvtsRo8enZqamlRUVOTee+/N/vvvX2/bptT79vu7q3dawne+850sWLAgBxxwQK666qomX6+eKSXb12OSjB07ttZDlbfp2rVrbrjhhuLv99xzT719qGla29q1a3P66afnxhtvzMqVK3PppZdm/vz52bhxY95666384Q9/yPHHH5+5c+fmk5/8ZH7wgx/Uul4905Y0V72qewAoXQIN2o0ePXoUjxuz1HfbHZiN2Z4KWtqiRYsyYsSIrFq1Kh07dszPf/7znHjiiTts35R63/5uY/VOc1uwYEFuvPHGJMmECRNqbbvQWOqZUrJ9PSbJiBEjdtj2tNNOS3l5eZLkySefrLcPNU1ru/rqqzNjxowkyaRJk3LTTTdl0KBB6dy5c3r27JkPf/jDmTZtWk455ZQUCoVccskl+dOf/lS8Xj3TljRXvap7AChd5a09AWguFRUV6d27d958880GH8a2atWq4gfP7R8GB61hyZIlOf3007NkyZKUlZXlzjvvzKhRo3Z6zfYPJ2yo3rd/yKF6p7ndcsstqa6uzsEHH5x169bl5z//eZ022z9M+eGHH87SpUuTJB//+MdTWVmpnikpXbp0yX777Zfly5cn2XmdVVRUpE+fPlm6dGmxfeL/0ZSOQqGQO++8M0lSVVWVs88+u9525eXlue6663L88cdny5Ytueuuu3LLLbckUc+0Lc1Vr+/up0+fPg32U1ZW1uADxAGA3SfQoF054ogjMmPGjLz44oupqakp3jX5bgsWLCgeH3744XtqelDHihUr8uEPfzgvv/xykq13uJ911lkNXnfEEUcUj7ev5/qod1rStm0WXn755Xz+859vsP11111XPF60aFEqKyvVMyXnyCOPzCOPPJIk2bx5807bbju//WcONU2p+Otf/5qVK1cmSQYPHrzTtsccc0zxePu6VM+0Jc1Vr+/u50Mf+lCD/QwYMGCXVqoCAE1jyynaleOPPz7J1mW/Tz311A7bTZ8+vXg8fPjwFp8X1Oett97KRz7ykTz33HNJku9+97v52te+1qhrDzrooPTr1y9J7Xquz6OPPpoked/73pcDDzxw1ycMLUQ9U2q23/JvW+Bcn7fffjsrVqxIsrUmt1HTlIrtg7aampqdtt20aVO916ln2pLmqtdtf1c21M/SpUuzcOHCJP6uBIA9RaBBu/LJT36yePzjH/+43jZbtmzJ3XffnSTp1atXTjnllD0xNahl3bp1GTlyZJ5++ukkybe+9a1cdtlljb6+rKysuC3VggULMnv27HrbzZ49u3jX2KhRo1JWVrabM4fa7rrrrhQKhZ3+bP+g8GnTphVf3/blgXqm1Hz6058uHv/mN7/ZYbvf/OY3KRQKSZITTjih+LqaplTsu+++6dmzZ5Lk8ccf32mosf2XtgcddFDxWD3TljRXvVZVVRVXbfziF7/IunXr6u3nrrvuKh6PHj16d6cPADSCQIN2ZdiwYcUvFCZNmpTHH3+8Tpvvf//7mT9/fpJk/Pjx6dSp0x6dI1RXV2f06NGZOXNmkq11eP311ze5n4suuigdO3ZMkowbNy7r16+vdX79+vUZN25ckq13Wl500UW7N3FoQeqZUvLBD34wH/3oR5MkkydPzkMPPVSnzdKlS3PFFVckSTp37pxzzz231nk1TSno0KFDRo4cmWTrM7tuuOGGetutWrWq1o0VZ5xxRq3z6pm2pLnq9Z//+Z+TJCtXrsyll15a5/xLL72UG2+8MUkycOBAgQYA7CFlhW23lUE7MW/evAwfPjzr169P9+7d881vfjOnnHJK1q9fn5///Of54Q9/mGTrXTdz585Njx49WnnG7G0+/elP59e//nWS5NRTT82tt96607sYO3funKqqqnrPXX755fnud7+bZOve2JdddlkOOeSQvPTSS7npppsyb968YrvvfOc7zfxOoHGuvvrqXHPNNUm2rtA4+eST622nniklCxcuzN/+7d9m9erVqaioyEUXXZSPfexj6dq1a+bMmZMbb7yx+MDZm266qd4vu9Q0pWDBggU55phjineYf/zjH8/ZZ5+dgw8+OBs2bMjs2bNz66235i9/+UuS5LTTTsvUqVPr9KOe2RMee+yxvPjii8XfV6xYkUsuuSTJ1i2dxo4dW6v9OeecU28/zVGvmzdvzkknnVS8CenTn/50zjvvvOyzzz6ZM2dOrrvuuixbtiwdOnTIAw88UAzCAYAWVoB26Le//W2hZ8+ehST1/lRVVRVeeOGF1p4me6kd1eWOft7//vfvsK/NmzcXvvKVr+z0+jFjxhQ2b968594gvMtVV11VrMdp06btsJ16ptTMmDGj8J73vGeH9VhWVla44oordni9mqZU/PGPfyz06dOnwc8cp556amHlypX19qGe2RPOPvvsJn1O3pHmqtfly5cXhg4dusM+unTpUvjRj37U3P8YAICdsEKDduuVV17JbbfdlgcffDCvvfZaOnfunIEDB+azn/1svv71r6dbt26tPUX2Uk3dU/r9739/Fi9evNM2v//97/PDH/4wTz75ZFasWJE+ffpk6NChueCCC9wtRqtr7AqNbdQzpeTNN9/MhAkTct9992XRokWprq5O3759c/LJJ2fcuHEZPHhwg32oaUrBm2++mUmTJmXKlCl59tlns3r16pSXl+e9731vhg4dmi984Qv5xCc+0eDnFPVMSzrnnHPyk5/8pNHtG/o6oznqtaamJj/60Y/ys5/9LPPnz8/atWvTr1+/nHbaaRk/fnyOPPLIRs8XANh9Ag0AAAAAAKDkeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAJe6uu+5KWVlZysrKsnjx4taeDgAAALQKgQYAQAtZvHhxMYjYnR8AAABAoAEAAAAAALQBZYVCodDakwAAaI82bdqU559/fofnjzrqqCTJkCFD8uMf/3iH7T7wgQ80+9wAAACgrSlv7QkAALRXnTp1alQYUVlZKbQAAACABthyCgAAAAAAKHkCDQCAEnfXXXcVHxC+ePHiOudPPvnklJWV5eSTT06SvPjii/mHf/iHHHzwwenatWsOPPDAjBkzJq+88kqt65555pmce+65Ofjgg1NRUZEBAwbkwgsvzLJlyxo1r/vuuy+f/exnc8ABB6SioiK9evXKkCFDcs0112TVqlW7+7YBAACgFltOAQC0I1OnTs2nPvWprFmzpvjaK6+8kjvvvDMPPPBApk+fnkGDBmXy5Mk555xzUl1dXWz32muv5Y477siUKVMya9as9OvXr94xVq1alc985jN5+OGHa72+cePGPPXUU3nqqafy7//+77n//vtz7LHHtswbBQAAYK9jhQYAQDuxZMmSnHnmmenVq1cmTJiQJ554IjNmzMhFF12UsrKyLFu2LGPHjs2TTz6Zs846K4ccckgmTpyYOXPmZNq0afnyl7+cZGsA8k//9E/1jrFx48acfvrpefjhh9OxY8d8+ctfzuTJkzN79uzMmDEjN9xwQ3r37p1ly5blYx/7WJ1VIQAAALCrrNAAAGgnXnjhhRx66KGZOXNm9ttvv+Lrxx9/fMrLy/O9730vM2fOzMiRIzNs2LD88Y9/TLdu3YrtTj755GzYsCH33ntvfvWrX2X58uW1+kmSa6+9Nk8//XR69eqVqVOn5phjjql1/vjjj88Xv/jFHHfccXnjjTfyzW9+M//93//dsm8cAACAvYIVGgAA7cjtt99eJ4RIkq9+9avF4xUrVmTixIm1woxtLrzwwiRJTU1NHn/88Vrn3nnnnfzbv/1bkuS6666rE2Zs8/73vz/f/va3kyT33ntv1q5du2tvBgAAALYj0AAAaCd69eqVj3zkI/WeO+igg9KjR48kyQc/+MEcfvjh9bY7+uiji8cvv/xyrXPTp0/PW2+9lST5zGc+s9O5nHjiiUmSTZs25amnnmrcGwAAAICdsOUUAEA7ceihh6asrGyH53v16pU1a9akqqpqp2222f7B4kkyd+7c4nHfvn0bPa+lS5c2ui0AAADsiBUaAADtRH1bSG2vQ4cODbbb1iZJNm/eXOvcsmXLdmle69at26XrAAAAYHtWaAAA0CjbBxxPP/10OnXq1Kjr+vfv31JTAgAAYC8i0AAAoFF69+5dPN5vv/0EFQAAAOxRtpwCAKBRBg8eXDyeOXNmK84EAACAvZFAAwCARjn99NOLz9+4/fbbUygUWnlGAAAA7E0EGgAANEqvXr3y9a9/PUkya9asfOMb38iWLVt22P6vf/1rJk6cuKemBwAAQDvnGRoAADTatddem+nTp+eJJ57IbbfdlkceeSTnnXdePvShD6WysjKrVq3Ks88+m6lTp2bKlCk56qijMnbs2NaeNgAAAO2AQAMAgEbr0qVL/vjHP+acc87Jr3/96/zpT38qrtqoT8+ePffg7AAAAGjPBBoAADRJjx498qtf/SqPPfZYfvKTn2TGjBlZsmRJ1q9fn549e+aQQw7JsGHDMnLkyIwYMaK1pwsAAEA7UVbwNEcAAAAAAKDEeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUvP8PEIIbP2eDbHwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Create plot with aggregated totals per population across time.\n", + " 'metapopulations_migration_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8,\n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot the isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## B. Population contact" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by \"population contact\" events between vectors and hosts, in which a vector and a\n", + "host from different populations contact each other without migrating from one population to another.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population** 4 (both are one-way connections).\n", + "\n", + "**Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup(\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A', \n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a population contact rate of 1e-2 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=0, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " vector_host_contact_rate=2e-2,\n", + " # host-host inter-population contact rate between populations\n", + " host_vector_contact_rate=2e-2,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to one of the clustered populations with a one-way population contact rate of 1e-2 for `population_A` hosts and `clustered_population_4` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'clustered_population_4',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way population contact rate of 2e-2 for `population_A` hosts and `population_B` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_B',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_A` starts with `AAAAAAAAAA` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 100.1491768759948 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19925533388085942s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.017675399780273438s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030938148498535156s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.039101600646972656s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.07192206382751465s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 453 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 528 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 545 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 562 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 581 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 611 out of 611 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2AAAAAAAAAANaNTrue
30.0population_AHostpopulation_A_3AAAAAAAAAANaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
195515100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
195516100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
195517100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
195518100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
195519100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

195520 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "195515 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "195516 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "195517 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "195518 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "195519 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 AAAAAAAAAA NaN True \n", + "3 AAAAAAAAAA NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "195515 NaN NaN True \n", + "195516 NaN NaN True \n", + "195517 NaN NaN True \n", + "195518 NaN NaN True \n", + "195519 NaN NaN True \n", + "\n", + "[195520 rows x 7 columns]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_population_contact_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhkAAALmCAYAAABfB/XFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd7gU5dk/8O9sO53DoRepBhUVC00BDajEBpaoqLFiw56qyavmRYghkp8afSOSiAXskRgbYouFIggcEBBEUBCQXg+nn20zvz+W3bPzzDOzvX8/1+UlZ2d29tnZ/tzPfd+KpmkaiIiIiIiIiIiIiIiIYmTL9ACIiIiIiIiIiIiIiCg3MchARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXBhkICIiIiIiIiIiIiKiuDDIQEREREREREREREREcWGQgYiIiIiIiIiIiIiI4sIgAxERERERERERERERxYVBBiIiIiIiIiIiIiIiiguDDEREREREREREREREFBcGGYiIiIiIiIiIiIiIKC4MMhARERERERERERERUVwcmR4AJaalpQVr1qwBAHTs2BEOBx9SIiIiIiIiomTz+XzYt28fAGDAgAEoLi7O8IiIiIiyA2ekc9yaNWswdOjQTA+DiIiIiIiIqGAsW7YMQ4YMyfQwiIiIsgLLJRERERERERERERERUVyYyZDjOnbsGPr3smXL0LVr1wyOhoiIiIiIiCg/7dq1K1RJIPy3OBERUaFjkCHHhfdg6Nq1K4444ogMjoaIiIiIiIgo/7EfIhERUSuWSyIiIiIiIiIiIiIiorgwyEBERERERERERERERHFhkIGIiIiIiIiIiIiIiOLCIAMREREREREREREREcWFQQYiIiIiIiIiIiIiIooLgwxERERERERERERERBQXBhmIiIiIiIiIiIiIiCguDDIQEREREREREREREVFcGGQgIiIiIiIiIiIiIqK4MMhARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXAo2yLB371689957mDhxIs477zx06NABiqJAURSMHz8+oWM3NTWhb9++oeP17t07KWMmIiIiIiIiIiIiIsomjkwPIFM6d+6csmNPnDgRmzdvTtnxiYiIiIiIiIiIiIiyQcFmMoTr2bMnzj777KQca+XKlXjiiSdQXFyMioqKpByTiIiIiIiIiIiIiCgbFWyQYeLEiZgzZw52796NrVu34umnn074mH6/H7fccgv8fj/uv/9+tGvXLgkjJSIiIiIiIiIiIiLKTgUbZJg8eTLGjh2b1LJJ//d//4cVK1bg6KOPxh/+8IekHZeIiIiIiIiIiIiIKBsVbJAh2bZu3YqJEycCAP75z3/C5XJleERERERERERERERERKnFIEOS3HHHHWhsbMS1116LUaNGZXo4REREREREREREREQp58j0APLBv/71L7z//vuoqqrCY489ltRjb9++3XL7rl27knp7RERERPlG9dSh8dv/g692Q8R9FcUOZ6fhKD3qFigK1+NEq8mr4oMtzdjZ4Atd1q3cgTF9SlDs4HkkIuCrPW5U73HD49cM24odCm4Z0CYDoyIiIqJkYJAhQTU1Nfj1r38NAJg6dSo6duyY1OP36NEjqccjIiIiKjSHFl4D97Y5Ue/fvOlFaO4alJ/wPykcVX55clUdvtrrES51Y2udD78dVJmRMRFR9li734O/Lq813V7hVHDLgDQOiIiIiJKKy4oSdO+992LPnj0YNmwYbrnllkwPh4iIiIjCaJoK9/YPYr5ey/a5KRhNflI1Dav3iQGGgBV73dA046plIiosq0zeI4iIiCg/MJMhAQsWLMDzzz8Ph8OBf/7zn1AUJem3sW3bNsvtu3btwtChQ5N+u0RERER5we8BNF/k/QSarzEFg8lPqgZIqp8AAHwq0OLXUOJI/vdkIsodshJJRERElD8YZIiT2+3GhAkToGkafvWrX+GEE05Iye0cccQRKTkuERERUSHQNK/hstJj7oDi1Nf+9h1aB/e2d1svUI3Xo/g0ejWU8FcHUUFThRhDnzYOnNDRFfq7yM5AJBERUS7j1/04TZkyBRs2bECPHj0wefLkTA+HiIiIiGT8xhId5Sf8EfbSrrrLmre8oQsyaCpLe0RLnDwUNXk1oCQ9YyGi7KQKZdOObufEVceUZ2g0RERElGwMMsTpr3/9KwBg9OjRmDNH3kiwsbEx9P9//etfAIBOnTrhzDPPTM8giYiIiAqcJslIUGyuyJcxkyFqkYqgNHjVtIyDiLKXGIy0MXGBiIgorzDIECePJ7C6bebMmZg5c6blvvv378cvfvELAMDIkSMZZCAiIiJKF0m5JNicES+TBSdILlJj5yYfa7ETFTox1GjLyCiIiIgoVfjZTkRERER5S5OUS4ouk4HlkqIVqVxSIzMZiAqeWC7JpjCVgYiIKJ8wkyFOkVZsAUDv3r2xdetW9OrVC1u2bEn9oIiIiIhIT5aRwEyGtGr0MpOBqNCxXBIREVF+YyYDEREREeUtYwNnBYrNbtiPmQzxi5SnwCADETHIQERElN8KNpPhiy++wMaNG0N/79+/P/TvjRs3YtasWbr9x48fn6aREREREVHSiBkJklJJAKAwkyFukRJ8m3wsl0RU6IxBBkYZiIiI8knBBhmeffZZvPDCC9JtixYtwqJFi3SXMchARERElHvEYIEYTAgRL1c90DQNCifCIooUZGAmAxEZezJkaCBERESUEiyXRERERER5y1AuySTIIGsGDc2fghHln8jlkpjJQFToWC6JiIgovxVskGHWrFnQNC3q/+KxZcsWaJrGps9EREREmWLIZJCXS5IGH1gyKToRvis3MZOBqOD5GWQgIiLKawUbZCAiIiKi/Bd1JoPdGHwwNo0mmYiZDD4GGYgKHXsyEBER5TcGGYiIiIgof4mZDJJgQmADMxniFbHxM8slERU89mQgIiLKbwwyEBEREVHeEhs/S4MJYCZDIiLlKTSwXBJRwTNkMmRmGERERJQi/GwnIiIiovwlBAoUk3JJsjJKhgAFSYmTh6Jmn2ZYxUxEhUXMZ2ImAxERUX5hkIGIiIiI8pYhUGBSLkmRlktiJkOyNLEvA1FBY08GIiKi/MYgAxERERHlLzGTwaRcEjMZ4hdNlkIjSyYRFTT2ZCAiIspvDDIQERERUd4yBApMyiUpNjugCF+NGWSISjThg0Y2fyYqaMZMhsyMg4iIiFKDQQYiIiIiyl9CoEDW4DnEpt/Gxs/RkSUylDn0M4hNzGQgKmgMMhAREeU3BhmIiIiIKG+JgQLTckmQNIVmJkNUZI2fy136GURmMhAVNrFckp09GYiIiPIKgwxERERElL+ibPwMwJjJ4GcmQ7zKnPqfGezJQFTYmMlARESU3xhkICIiIqK8ZchkMOnJIN2mMZMhGmKOggKg3ClkMvgYZCAqZAwyEBER5TcGGYiIiIgof4mZDBblksSm0MxkiI7Yk0FRgFIhk6GJ5ZKICpoxyMAoAxERUT5hkIGIiIiI8pYWQ+NnRSiXxJ4M0dGEKIMCY+NnlksiKmxiTwZmMhAREeUXBhmIiIiIKH8J5ZLEbAWrbRrLJUXFUC5JkfVkYCYDUSET3wE4EUFERJRf+NlORERERHnLkMlgUS7JkMnAcklxUQCUCj0ZmtiTgaigsScDERFRfmOQgYiIiIjyltj4GZblkoRMBpZLiops8rBMbPzMcklEBY09GYiIiPIbgwxERERElL/ETAbLckliTwZmMkTD0PgZCsocLJdERK3Yk4GIiCi/MchARERERHnLkI0gBhLCMJMhPmKOgsJMBiIS+FkuiYiIKK8xyEBERERE+UvIRrDOZBCDDMxkiIa4QjnQk0H/M6PJx0wGokLGngxERET5jUEGIiIiIspbxkyGGBo/M5MhLrJMBrcf8ImzjERUMNiTgYiIKL8xyEBERERE+cuQyWBeLsmYycAgQzQMk4cAyhzGCUSWTCIqXOzJQERElN8YZCAiIiKivJVYJgPLJUVD1pNBLJcEsPkzUSFjuSQiIqL8xiADEREREeUvIcgQW08GZjJEQ1igDAWAy65AjDM0+ZjJQFSoGGQgIiLKbwwyEBEREVHeMjRvtiiXxEyG+Ij5CcrhWutlQpSBmQxEhUnTNEPGE3syEBER5RcGGYiIiIgofzGTIfUkmQwAUCr0ZWBPBqLCJHvlcyKCiIgovzgyPQAiIiIiomRQ3YfQuO4J+GrXwVuzBs72g+Cr26jfyTKTQQgy+JtTMcyc46vbiKbvnoG9vBdKj7oVis0OILA6ed72Fry2oVG3f7AMSrlTH2SYu7kJK/a4LW+r2KFgeLdiHNde/zhpvmY0rvs/aL4GlPb/JewlnRK8V0SUSvub/fhoSzMOtvjlQQYmMhAREeUVBhmIiIiIKC/UzL8cnp3/Df3tr11v2Mc6k0E/sd383TNoO3xG0saXi1RvPfbPGQTNWwcA8DftQJuBUwAAH2xpxgvrGgzXCVZBEZs/bzzkw8ZDvoi3+fm2FvxlRBV6V7Y+VocWXoeWrW8AAJq3vIGOP/82VJaJiLKLqmn405JD2NPkN92HQQYiIqL8wixFIiIiIsp5mq9FF2AwozjbWBxDWJFfzNXyTRtmhAIMAND49V9C/161T96zosgemD2sLIrvp4ZfA77e33psTVNDAQYA8NdtgHffl3Edm4hSb2eD3zLAAADFDk5FEBER5RN+shMRERFRzlN99RH3sZV2h6vTCNPt9vLewgVFCY4q9/lqvjbd5vXLeywM6xo4b8O7FiHexcrhPaI1rzFbwt+0M84jE1GqReq/cmw7J9rGGYQkIiKi7MRySURERESU8zRvo+m2kn43w1F5NEr6XAGbyzyTQQxAaL6mpI0vZynRTwSWOBTcdkIFTukSCDKc1KkIk4a1xdf7PfCp1tddttuNXY2tK5/DpyjDMylah2VR9oqIMqrZr3/BlzgUnN2rBADQscSOEd0YwCUiIso3DDIQERERUc7T/OYBgfLj74Wj8qiIx1AcJfoL2PgZUOymm8S1yr84ugyndi3WXXZMOxeOaWfebDtod6NfH2TQWo+ueiVZKgwyEGUtt0//7tC2yIarjinP0GiIiIgoHZijSEREREQ5T+ynoGOLbl2NYtcHGTRfs26yuyDFkMmQCLEJbPhp12RBBs263jsRZU6zEGQocbDLMxERUb5jkIGIiIiIcp5VuaRoS+sojlLxqIDfncCocp8i+bkQDLwkM/yiCHOQ4cVWZOWSNB+zTIiyVYvQr6XYziADERFRvmOQgYiIiIhynlW5JChRBhmETIbAcQt8MtsmKZekeqW7ioGCWIhXjZTJoPlb4r8xIkopMZOhmJkMREREeY9BBiIiIiLKeVblkpRoyyWJPRnAIIPs54KmHs7uSGIqg6FcUti/VUkmAxhkIMpaYk8GBhmIiIjyH4MMRERERJTzrMolRdskWLGL5ZIAzWeRIVEIZD0ZTEpIKYZ8hBhuRriuykwGopzVLJRLKmG5JCIiorzHIAMRERER5TzrTIboggywF0Es3FPomQyKYiyXFJzgT2VPhvCG2wwyEOWWFmYyEBERFRwGGYiIiIgo51n3ZIiyXJKiAPZi/XELvcGwJJNBO5zJkMwgg3grkcolFXrwhyibsScDERFR4WGQgYiIiIhynnW5pOiCDACgOPQlkwq+XJKkBFKoJ4O4ZyLziBY9GZjJQJRb3EK5pGKWSyIiIsp7DDIQERERUc4zLZek2KDI+gqYUOz65s8Fv2Je8xsvC07wa8nLZTBkMkToycDGz0TZS8xkKHFw2oGIiCjf8dOeiIiIiHKeabkkJcp+DMHdHQwyhNM0n/Ey08bP8ROzIMIbP8vLJTHIQJStDOWSmMlARESU9xhkICIiIqKcZ1YuKeqmz8H97SyXpKN6DReloieDIjbcDv83yyUR5RS3X9X9zZ4MRERE+Y9BBiIiIiLKeablkmLoxwAYMxlQ6JkMkiADTHoyJMIm9mSIUC6p4BtyE2UxNn4mIiIqPAwyEBEREVHOMy+XFNvXXUNPhkKfzJZmMgSyCJKaySCWSwo7OsslEeWWFkNPBgYZiIiI8h2DDERERESU88zKJcXanFhxsFxSOFkmQ0p6Moi3wcbPRDnJr2rw6KslsScDERFRAWCQgYiIiIhynmm5pBgZMhkKvFySNJPBpFySmI0QC0O5pPB/M5OBKGe4/cbALsslERER5T8GGYiIiIgo55mWS4qR2JOh0IMM0p4MwXJJSayXZJbJoGkaNG+DcVwMMhBlJbEfA8AgAxERUSFgkIGIiIiIcp5puaQYOwcYezIUdrkkaNGXS0qEIqRBBB+1QIaK8TEs9OAPUbZqkWUysFwSERFR3mOQgYiIiIhyXtLKJYk9GQp8MtuqJ0NSGz8Lf6vBTAZJqaTAGJjJQJSNxEwGpw1wiPXQiIiIKO8wyEBEREREOc+0XFKsNX0MmQyFHWSQ9mQwmeBPqPGz2JPh8OMmbfoMsPEzUZZqEYIMLJVERERUGBhkICIiIqKcpmlq0soaGXoyFHi5JGlPBpPGz4kQf5QEpylVkyADMxmIspNYLomlkoiIiAoDgwxERERElNOSmW2g2FkuSceqXJKQJCJmI8RCvC7LJRHlJjGToYSZDERERAWBQQYiIiIiymmmpZICW2M6lpjJgAIPMsh7MiR/gt9QLin4f9NMhsJ+XIiyldiTgZkMREREhYFBBiIiIiLKaZo3OU2fAUAx9GQo7HJJ0HzGy1LS+Fk/ERnMkjArlwTVC031J3EERJQMhnJJDk45EBERFQJ+4hMRERFRTtN8SQwyOFguKZw0k8GkJ0Mi65VtppkM8nJJAFLSG4KIEtPiU3V/s/EzERFRYWCQgYiIiIhymnWQIcZySYZMhsIOMsh7MqSgXJJ4G4dTGczKJaVqHESUGPZkICIiKkwMMhARERFRTktmSSOxJ0PBl0uyavwsXC6WPIqFWU8G1SKTgUEGouzTLJZLYk8GIiKigsAgAxERERHltKSWS7KzXFI4WbmkVJQpEqch1cPzlJaZDIWeZUKUhcRMBpZLIiIiKgwFG2TYu3cv3nvvPUycOBHnnXceOnToAEVRoCgKxo8fH9Uxmpqa8Oabb+L222/HkCFDUFVVBafTifbt22PYsGGYNGkSdu/endo7QkRERFTgLIMMWozlksRMhgIPMliVSzKc2gTmEg2ZDNEEGZjJQJR1DEEGZjIQEREVBEemB5ApnTt3Tuj6X3/9NUaMGIGGhgbDtoMHD2LJkiVYsmQJHn/8ccyYMQNXXHFFQrdHRERERHJJLWkk9GSA6oWm+qDYCvNrs7Txsz8FjZ+Fa0fV+JlBBqKs08yeDERERAWpMH8tCXr27IljjjkGH3/8cdTXqaurCwUYRowYgbFjx2Lw4MFo37499u3bhzfffBPPPPMM6urqcPXVV6NNmzY477zzUnUXiIiIiApWUhs/O0oNl2n+Zii2ihhHlSc0SbmkUJAhtnNrRcxkCJZLUpnJQJRTWsSeDAwyEBERFYSCDTJMnDgRQ4YMwZAhQ9C5c2ds2bIFffr0ifr6NpsNl19+OR588EEce+yxhu1nn302zjvvPPz85z+H3+/H3Xffje+//x6K+AuKiIiIiBKS3J4MJYbLNF8z4CzMIIM8k0E+uZ/It1xj4+fARCXLJRHlFvZkICIiKkwFG2SYPHlyQtcfPnw4hg8fbrnPRRddhEsuuQT/+c9/sGnTJqxcuRIDBw5M6HaJiIiISC+Z5ZLEngxA4fZl0DRN3pPhcOPn5OUxGBvFtfZkMC+XVKiPC1E2M2QysCcDERFRQSjYxs/pcsYZZ4T+vWnTpgyOhIiIiCg/JbVckjSTIYk9H3KJ5pdffrhcUkobPx/+P8slEeUW9mQgIiIqTAwypJjb3doYz263Z3AkRERERPkpqeWSbA7A5tRfWKgr5iVZDECKyiWJtxHKZGCQgShXaJpmLJfETAYiIqKCULDlktJl/vz5oX/3798/5utv377dcvuuXbtiPiYRERWu1fvcWLrLDY+qwaYoKHcq6NXGgZ92LzbtG6RpGhbuaMGP9X6M6FaEPpVO6X6Uu5btduO7Gi8GdXahfztXpodjybPnCzT/8Ipuhbt335dJvQ3FXqLrRaD5CjPIIOvHAACqpwY1C66Bv+n3ALqELm/8dhpqNq4CADgqj0HZsb+CLcpeFjbh/UcF0ODx4wPHzdhXJO+b5tx+NBx1tZbHPKadE2f2MH9/I6Lk8ajG3DH2ZCAiIioMDDKk0OrVqzF37lwAwIABA+IKMvTo0SPZwyIiogK1/qAHDy+rlRaPafZpOLd3qfR6H29txvPfNAAA3t/chL+f0R4dSpidly+W7GrB418F6t6/90MT/nJaFfpmaSDJe+hbHPjoLED1pPR2FEeprheA98ByuDqPSOltZiPTfgiqFy0/vAKtagLgaA0yePcuRIv73da/D3yFdme+GdVtGcolacD/fXUIX5fda36lBgANbvPtABbsaEGLX8OYPvL3NyJKnrX7je/NxQ4WTyAiIioE/MRPEbfbjZtvvhl+f6CW7ZQpUzI8IiIiKnRf7/eYVqefeTiIIPN82Da/Bvzn++SVpqHMm7aqdSJZA/DSOvPnQqZ5dn0ac4ChuNdlMd+O2rJf/7fHfLV8PvPVfmu5XYtQIMm9/f2ob0v8UeL2a1hzwKQnRIy+2mMdiCCi5Piuxpj9VMpMBiIiooLATIYUueuuu7B8+XIAwPXXX48LLrggruNs27bNcvuuXbswdOjQuI5NRESFxZuc+TpskEwiUO7yqvq/1x3M3sdXi7E3guIoQ/lJD8ZxQz7hOMZm0AXB0NlZT4U+o8kmNopW3dBUPxRb5MynImEistatxtiy25zYiJaIUkP2SnOxJwMREVFBYJAhBR5++GE8++yzAIAhQ4bgqaeeivtYRxxxRLKGRUREBY7TbJTzNH1ExF5xJIp7jwv9bXNWoKjnz6G5D8B74CsUHXEeHBV9Y76ZoiPO16/CV5MUocsxmhg0AFA24H9a/9jXAQjbpbj7z4DNc/VXUL1AFEEGsTlsrUc17DOq6R+wQx8EKz/ud4ZG3TsafFi+pzXjxe3nux9ROvhU/WtteLeiDI2EiIiI0o1BhiR7+umncf/99wMAjjnmGLz//vsoKyvL8KiIiIiSJ8LiZqLUESa9HW2PQ5tBD0t3dXU+Lf7bUcSvyMYJ74IgBnXKe+vP92f7gebWfUp7XwZs/rVwCA8UFEe8KbE5rCp5n7mg8c+wQ59l0qn3XbCXVukuW77HrQsyeBhkIEoL8XUrBg8pQNM0NDY2oq6uDi0tLaESy0RERKlkt9tRXFyMNm3aoKysDIrYFC1BDDIk0WuvvYY77rgDANCrVy/897//RYcOHTI8KiIiogCN0QHKcYaV9UqK2osJx5Wt6C8MQnBFOC/ihKJNlrGgRld+K9JkpE3zGgIMAKD56gF00V0mlmdxF2iMiCjdfMJrzZ7kyYt8oKoqfvzxRzQ3x1b+j4iIKFE+nw9utxu1tbUoKSlBz549YbMl7/cUgwxJ8u677+K6666Dqqro2rUrPv30U5Y6IiKirMIQA+U8YWW9okQuwxMPw3G1Ap2lNpSJsg4y2O3GnxZalI26xUwGkVNrAewlgX4ZYYELzVNn2LfIpj8WMxmI0kMVFjM4UhQHzlWaphkCDIqiwG5PzWcZERFROL/fH1p42NzcjB9//BG9evVKWkYDgwxJ8Omnn+Lyyy+Hz+dD+/bt8d///hdHHnlkpodFRERElF8MmQwpmpgRMyQKNJNBM2Qy6M+3GHqx2SQ/LZKUyeBCMxSbC7CVQnMfCDt8vWHfImEYbr8GTdOSnhJORHpij3UbX3I6jY2NoQCD3W5Hly5dUF5entRVpERERGZUVUVDQwN2794Nv9+P5uZmNDY2ory8PCnH56dZghYvXoyLLroIbrcblZWV+Oijj3DcccdlelhEREQGkdbyspwSZT0xoyBl5ZKYyQDAEFxRDOWS9O8ZdqEBM5C8TAaX1gzF7oLNWaE/vleSyWA39ndgMgNR6vlVMZOBUYZwdXWt71ddunRBmzZtGGAgIqK0sdlsaNOmDbp0aS01Wl9vXLAT9/GTdqQCtGrVKowZMwaNjY0oKyvD3LlzMWjQoEwPi4iISCpSDIGTcJTtjD0Z0pPJULA9GQxBHSGTQVy1LC2XFF0mgxgYEDm1ZsDmguJsox9DFEEGAGjhGxxRyokvM8YY9FpaWgAESiQla9UoERFRrMrLy0MZvsnsEVSw5ZK++OILbNy4MfT3/v37Q//euHEjZs2apdt//Pjxur83bdqEc845B4cOHQIA/PnPf0ZlZSXWrl1repudOnVCp06dEh47ERFRKnj8GlcdUnaLsLI+WdiT4bAImSOGngyKLRCICH+cosxkcNgUOG2A1+RUu7RAuSQxyKBJyiWJjZ+Bw30ZjIkWRJREYpCBjZ/1/P7Ae6PdbmcGAxERZYzNZoPdbofP5wt9NiVDwQYZnn32WbzwwgvSbYsWLcKiRYt0l4lBhoULF2Lv3r2hv3/zm99EvM0HH3wQkyZNinmsREREyRBpHa9HBUrTMhKiOEVYWZ887MkAyDJHrMsl2RQANicQ9mMl2nJJQKAvg1eMXBwWzGSIqlySJFjqZiYDUcoZyyVlaCBERESUdvzYJyIiKhCRyiV5JJNw7NNAWSVd5ZJszGQAYLjfYoaHoVySgkBzZt1O0ZVLAqz7MjgR6MkQTSaDwwaIR2KQgSj1WC6JiIiocBVskGHWrFnQNC3q/0Tjx4+P6fqapjGLgYiIsppsBTHn5SibRFpZnzzsyQBAEtSxLpcUymTQHSL6TAarvgyt5ZL0mQyyngyKohiO5SnQh5AonfzC72YHyyUREREVjIINMhARERWaiOWSJBEFn2QBN+MOlDERVtYnC3syHBZr42dFMWYyaMnJZHAFyyW5ImcyAECR8BAyk4Eo9fzCW4adsw1EREQFgx/7REREBSJS5SNZw1VxVSJRRqUrk0E8bqFmMsC88bOmaYaAY6BcUvyZDMUWmQzOYCaDI3JPBsDY/FkWRCWi5GLjZyIiosLFIAMREREBiD6TgShj0tX42RBkKMwXgqaKwZXW8yLrzxwol5SingxaC2B3QREyGVSPPMgglktiJgNR6okLEyzihkREMZs0aRIURYGSJQHM3r17Q1EUjB8/PtNDIcoKDDIQEREVCOO6Yz15kIETc5Q9xN4IqSqXJAYvCrYnA8zLU5kFGRS7PsigqcnJZHAhkMlgc4qZDGblkhhkIEo3lksiSr558+aFJtbF/0pLS9GrVy9cfPHFePXVV+Hz+TI9XCIqYPzYJyIiKhCRptjY+JmyXprKJSmG4xZmJoPV+ZadEZuiAIq+XFIsmQwlDvPHM9iTQXGKPRmiy2RguSSi1DNmMmTHamOifNXc3Iwff/wR77zzDq6++moMHz4cu3fvzvSwctqoUaOgKApGjRqV6aEQ5RxHpgdAREREaRJhjs0jWazNTIb8puZaz420lUti42cAludb9tyxIcFMBstySU2BngxCkEE1yWQQezIwk4Eo9cQSi8xkIEqu22+/HXfccUfo74aGBixfvhyPPfYYtmzZgurqalx00UVYsmRJ1pQUymdbtmzJ9BCIsgqDDERERAUi0hSbRxJQkPVkYNwhf+Razw1j2SI2fk4lzRBkiNyTQbPFn8kgZh+Ec2nNUOyycknR9mSIehhEFCfxfcHBSU6ipOrUqROOP/543WWnnnoqrr76agwdOhQbN27EsmXL8N577+GCCy7I0CiJqFBxbQEREVGBiBhkkPVkkKxWFsshUO7KucdSnOy3pasnQ45FY5LF0AMjcpBBsaUqk6HFpFxSPTTJ85iZDETpJ36m2BhjIEqLqqoq3HfffaG/P/zwwwyOhogKFYMMREREhSJSuaQoMxlybfU7mRObdGY9zbwRcVIxkyHAslyScXebogBCJoMWQyaDZeNnrflwuaQKYYsGzddo2L9IeGqwJwNR6rFcElHmDB06NPTvrVu36rbt27cPf/zjH3HyySejbdu2KC4uRu/evXHttdfiiy++sDxu7969oSgKxo8fDwCorq7GL37xC/To0QPFxcXo0aMHbrjhBqxfv970GLNmzQo1q7YqMbRly5bQfrNmzYp4n0Uejwdz5szBXXfdhSFDhqCqqgpOpxPt27fHKaecgkmTJmH//v3S644fPx6KomD+/PkAgPnz5xsabffu3Vt3HfHcmJkzZw4uu+wyHHHEESgqKkL79u0xbNgwTJ06FQ0NDabXE8+bqqqYMWMGhg8fjqqqKpSVleGEE07AlClT0NTUFNO5IkoFlksiIiIqEJEbPxsvk/VkYJ+G/OHLtYcyTeWSDMELZjIE6DIZJD0ZJJkMSFYmA5qh2ItgEzIZgMMlk5zlusuM5ZJy7clOlHvE9wWWSyJKH6ezNcjv97d+fn/88ccYN24c6ur05QW3bt2KrVu34uWXX8add96Jv//977DZrL9XPf/887j11lvh8/lCl23fvh2zZs3Ca6+9hpdeegnjxo1L0j2K3YQJE/DCCy8YLj948CCWLVuGZcuWYdq0aXjnnXcwYsSIlI+npaUFV111Fd566y3DeJYsWYIlS5bgySefxNy5c3HSSSdZHqupqQlnn302Pv30U93la9aswZo1a/Duu+/is88+Q1lZWbLvBlHUuLaAiIiIAJiVSzLux0yG/OGXBIyyeUrIULYoVeWSxK/IBZrJYOzJECmTASnNZIA0kyFQMsmwP4MMRGknfmdguSSi9FmzZk3o3926dQMArFq1ChdccAHq6urgdDrxm9/8Bp9//jmWLVuGp59+Gn369AEAPPXUU7pySzKrVq3Cbbfdhk6dOuHJJ5/E0qVLMX/+fPzhD39AUVER3G43rr76aixfvjx1dzICn8+Hvn374ne/+x1ef/11fPnll6iursYbb7yB2267DS6XCwcOHMDPf/5z7N27V3fdKVOmYM2aNRg8eDAAYPDgwaEJ/OB/H3/8cUzjuf7660MBhhNPPBEvvvgiqqur8dFHH+GGG26AoijYuXMnzjrrLOzYscPyWLfccgs+//xzXH/99Zg7dy5WrFiBt956C8OGDQMALFu2DH/+859jGh9RsjGTgYiIqEBEzmSQ9F+QZTLkWh1/MpVz866GHgEpCjLY2JMhQCxPFXtPhqRlMgTLJdldgK0IUN2tNyFp/ixmMrBcElHqiSX4HIwyEKWFz+fDY489Fvp71KhRAAIr+z0eD+x2O9577z2cffbZoX2GDBmCcePG4bTTTsO6devw6KOP4rrrrsNxxx0nvY3Vq1ejV69eWLJkCbp06RK6/Kc//SnOOeccnH322fB6vbjjjjuwbNmy1NzRCCZPnoy+fftCEbKoBg8ejEsvvRR33HEHhg8fjn379uHJJ5/EQw89FNqne/fu6N69eygToKyszNBkOxZz587F7NmzAQBnnXUW3n//fbhcrd+Rzj77bAwbNgwTJkzAwYMH8dvf/havv/666fEWL16Ml156Cddcc03osoEDB+K8887D4MGDsXbtWjzzzDN46KGH4HBwqpcyg5kMREREBMAkk8GkJ4Os0SrlnpwrfZWmcknMZDhMNT/fsrBLansytAD2wI9zm5DNIMtkYLkkovQTGz9bvKSJKAkaGxsxf/58/OxnP8OSJUsAAL169cLll1+OZcuWobq6GkBgFXx4gCGoqqoKM2bMAACoqorp06db3t5jjz2mCzAEnXHGGbjlllsABHo2ZCqb4cgjjzQEGMINGDAAN998MwDg7bffTulYnnrqKQCBMlYzZ87UBRiCbrnlFowePRoA8Oabb2LXrl2mx7vkkkt0AYagoqIi3HXXXQCAAwcOYN26dckYPlFcGGQgIiIqEJHiAh7JPKpZ1gLn6/JDzj2OaSqXxJ4MQVblkiQ9GZDKTIam0LEVl74vg+ZhJgNRNhBfZgwyECXX5MmTdY2Iy8vLMWrUKMybNw8A0KlTJ7z99tsoKirCJ598ErreTTfdZHrMESNGoH///gCgu46oqqoKF110ken2G2+8MfRvq+OkU01NDTZt2oRvvvkGa9euxdq1a9G2bVsAwLp16+D1Rr8QIhY+ny/UQPrss89Gjx49TPcNBmd8Pl/ocZS5+uqrTbcNGjQo9O8ffvghxtESJQ9zaIiIiApEPOWSzPov+DV+icgHsnJYGgITyLYsbNippSuTQWEmAyA531GVS0pRJgMCPRkAQHHoMxlUXxQ9GQo1TkSUJpqmGd4X7CyXRJQWffr0wWWXXYZ77rkHnTp1AgCsXbsWAOByuSI2FT7llFPw7bff4vvvv4fH45Guuj/55JMty/CcdNJJcLlc8Hg8uv4Q6bZmzRo8/vjj+OCDD7B7927T/VRVRU1NTeh8JdMPP/yApqYmAIFzayV8e/AxkznmmGNMt7Vr1y707/p643cionTh/AAREVHBsA4zyFb6yiahgUCZHXGlMOUeWWNvIBBccqWqp3Ii0tWTgZkMAZrYkyGaxs/CxIQ/uT0ZAMDGTAairCN7ifFrAlFy3X777bjjjjsAAIqioLi4GB06dEBlZaVh34MHDwIITEBHqtEfLIGkaRpqamrQuXNnwz6RJuMdDgfatWuH3bt3h2473Z577jncdttt8Pl8Ue3f3NycknGE3/9I5y28/JTVeSstLTXdZrO1LgLx+wtzYQxlBwYZiIiICkTEcknSJs/yfc0yHCi3iE06gwKlcLJwdihN5ZLETAZjBkWBEM+3RSaDgsCEhzGTIYYgQ4SeDMrhngyKUwgySBo/i0Ey9mQgSi1pkIGZDERJ1alTp5ibEVv1KMjEcVJl/fr1oQBDp06dcO+99+LMM89E7969UVFRAacz8P3k+eefD5WPSkePuWw/b0TJxCADERFRgYhYLknWk8Eik4Fyn9ikM8gsuJRxaSqXZMyQKNCommW5JP2TJDSXaOjJEH25JIctsPJZnKxUND/s8LSWSxIaP6ts/EyUcbLMR2YyEGVOsITOgQMH4PP5LLMZgmWFFEVBVVWVdJ89e/ZY3p7P59NlT4QLX2mvqubfqRobGy1vw8qsWbPg8/lgt9sxf/580/JC6ciyCL//kc5beEkn8bwR5Ro2fiYiIiIA8kwGs5XuWTsJTTExexzNHvdM0wwr69OTyQCVmQwAhMbP+k3BIEMw26D1ENFnMiiKIs1mcGnNgUyJYLmkKDIZWC6JKL1YLokouwQzHjweD1atWmW577JlywAA/fr1k/ZjAIBVq1ZZliFavXo1PB6P7raDKipaFwfU1NSYHuO7776zHKeVb775BgBw4oknWvYvWL58ueVxkpF50Ldv31B5o6VLl1ruGzz3gPG8EeUaBhmIiIgKRKQpNtkknM9spTszGfKCWc8NswyHjDP0ZEhV42dmMgCxNX4ONQpPoPEzIO/L4MThmskmmQyaJJPBJZRp8arG7AsiSh5pJgPLJRFlzOjRo0P/fv755033+/LLL7Fu3TrDdUQHDx7EnDlzTLeH34Z4nD59+oT+bTXJ/9prr5luiyQYALHKhti1axfeffddy+MUFxcDANxud9xjcTgcGDlyJADgv//9L7Zv326677PPPhu6zqhRo+K+TaJswCADERFRgYg0v+aV9WQwy2QozDnXvGP2OGZrJoOxfA97MqRUDI2fQ5kMhnJJ0WcyAPIgg0sLBBnMejKoUWQyACyZRJRKspeXRS93IkqxoUOHYvDgwQCAZ555Bp9++qlhn9raWtx6660AAiWNbr/9dstj/va3v5WW/5k/fz5mzJgBABg0aBCGDBmi23788ceHSgFNmzZNOoE/e/Zs/Pvf/47insn169cPAPD9999j8eLFhu1NTU246qqrIjZ77tq1KwDghx9+SKhnw5133gkgkEly0003wes1Lrp4/vnn8fHHHwMALrnkktBtE+UqBhmIiIgIAOBhT4aCY5axkL2ZDOkpl2TIkBBvt2BYNH6GWU+GBDMZJMEBZzDIEEMmQ5FkdtNdoLEionSQBRlsbHhKlFHPPPMMXC4XfD4fzj//fNxzzz2YP38+li9fjmeeeQYDBw7EmjVrAAD33HOPZbmeE088ETt27MCgQYPw1FNPobq6Gl988QXuv/9+nHvuuaG+D0899ZThug6HIxTMWLt2Lc4880y88847WLlyJT788EPcdNNN+MUvfoHhw4fHfV+vvfZaAIGeD2PGjMFf/vIXLFiwAMuWLcM//vEPnHTSSZg3bx5GjBhheZzgGPbu3Yvf/va3WLFiBTZu3IiNGzdi69atUY9nzJgxGDduHADg448/xqmnnopXXnkFK1aswCeffIKbb74ZN998M4BAL4a//e1v8dxtoqzCxs9EREQFImK5JFlPBpMrMZMhP5j23MjSx9eqfE9SicGLQs1kMPSisCqXFPh/KjMZkEBPBoB9GYhSSbb4wMEljUQZddJJJ2HOnDkYN24c6urq8Nhjj+Gxxx4z7HfnnXfi4Ycfjnisu+66C7fffjvuuusuw3aXy4UXXngBp5xyivT6f/zjH/H5559jyZIlWLx4MS6++GLd9lGjRmHatGlx9yUYMmQIJk+ejAcffBCHDh3CAw88YNjnd7/7HY4//ngsWrTI9DhXXnklHn74Yfzwww944okn8MQTT4S29erVC1u2bIl6TC+++CJ8Ph/eeustfPXVV7jmmmsM+3Tr1g1z585F9+7doz4uUbbixz4REVGBiLQ4XdqTwSyTIVtXulNMzB7HrE1UMfRkSFG5JPErcoFmMmiGTAarcklJ6skQRyaD6jEGGZySXzksl0SUOrLPDbZkIMq8s88+Gxs3bsT999+Pk046CW3atEFRURF69uyJq6++GgsXLsS0adNgs0WeHrz55puxcOFCXH755ejWrRtcLhe6d++O6667DitXrsSVV15pet3S0lJ89tlnmDJlCgYMGICSkhK0adMGQ4YMwbRp0/DJJ5+grKwsofs6ceJEzJ07F2effTaqqqrgcrlwxBFH4JJLLsHHH3+MRx99NOIxysvLsXjxYvzqV79C//79Qw2c41FcXIw333wT7777Li655JLQOauqqsIpp5yChx9+GBs2bMBJJ50U920QZRNmMhARERGAQGNUTdOghJU3yLma/RQT00yGbA0iGcolpWi9jE0fvNAKNMhg1WhbbKIc3JKSTIZg42eTngyaz1guyaYocNkAT9hDxyADUeqInxsKWC6JKBlGjRqVUG8AAOjYsSOmTJmCKVOmJDyeU089Fa+//npc1y0pKcH999+P+++/X7q9d+/elvd10qRJmDRpkuVtnH/++Tj//PNNt48fPx7jx4+3PEbnzp11GQxmos1quOCCC3DBBRdEtW+4aMYKRD5vROnCIAMREaWNX9Xw8dZmHGhRMbpnMbqUJf9jyOvX8MGWJjR5NZzbuwRti1O10jlx+5v9+GhLMw62tE7kKYqCIysdOKd3SUI/ztfu92Dxrha4fa1fODceiryi+MlVdQi/1Y2HfNL9cqEnQ7NPxfubm7GzIXAfFAXoU+nEub1KYI9ieeWinS1Yvc+DUoeCM3uUoGeb9HxtWnfAg6/2enB0lRNDuhQl7bibDnkxf3sLGr2ts667m+RlgNIdRGr0qnh/cxN2N/rRpcyO8/qUoly2FD1NjZ8VIZPBd3AlGtf/A6VH3wpFsUFT/Wj6bgb8DZtR2u9mOCqPSsk4YqVpGlp+eBXemtUo7n05XB0GR3U9X90mNG2YDn+zvpmjd9+XaFDaY0HJTThg7wVH3bFwrqwFANS49U8Ss54M3v3VOLR4Akp6XYai7mdHHIssk8ElZDLYXEKQQZLJAARKJoWXgXt9QwPauGzoXGbHeb1LUeFiUjdRPFRNw3+3NuP7Q77QxFaDV/+9gKWSiIiICguDDERElDavrG/A3M2ByaLPtjVj+pkdpKtWE/H0mjos3OEGEJgk/r8z2mflSjpV0/CnJTXY02SczV24AzjkVvGLY8rjOvYPtV5MWXYorpI3i3a6o9rPl/0xBjy1qh7Ve/T3Z+EON2paVFzT3/rcLtzRgmmrWicuF2xvwd/PaI/yFE9KbjrkxZ+WHIIGYA6AewZVJiXQsL/Zj0lf1uhWdVtJd+PnJ76qxdf7W4NgG2q8+OMpVYb9DBkFqSqXJDlu3ZI7oLoPouLEB9Cw+k9oWP0nAEDT+n+g0+XbYXNVpmYsMWj+/lnULp4AAGj85nF0/Pl6ONocaXkdzdeCAx+cBrV5t3T7M23nYqvzcLDCDcDkPcK0JwOA5u+eQfP3z6H9eV/A1WmY5XhknwlOreXwjZg0fvY1QNNUQ8Nul10BwiY+w59j3x7w4sFhxucYEUX2xneN+M/GJst97Fn43YuIiIhSh+sLiIgobap3t05ONXo1rD0QWxmNaAQDDACwt1nF6n3Jv41k2NXolwYYgpbviW6yX2b1Pk/Ka+rnQibDqn3yc7hyb+Rzu3SXfp9Gn4bvamKrLR+PWd/U6xp0hwc6ErF2vyfqAAOQ3sbPHr+mm/wFgDX7vfDKSttYlO9JJsUpD0K5d7wPAKEAAxCY4G7a8HRKxhGrYIABAKD5UL/qwYjX8ez70jTA0KRUtgYYIig5HBwQSxm1jkeFe8dHEY8jy2Ap0Q4BQCiQY3MaAzqau8ZwWZksG+awdQe9aMnWDudEWW7F3sjfrUqSvIiEiIiIshuDDERElDb1Qip9eJmgVNljUg4m0yLVBhdLkcRCOjmbZNkeY1A1DV6TUxhNXXbZ8yYd2RvfCeWpWpL0WDbGOPh09mQwezykF4v1/e3JKycVztXpNNhKuhou1/wt0v29NatTMo5EefcsjLiPv36T6TYfjFkJZoZ1LQYAuDqPgK20u3QfTY0c4BvcpQhOtAadbJoPJ7nnwNnpNNhLuwUuK+kCQD+B6W/abjjWiG7Wz49YAm9E1KrJ7AM2zPAIrz8iIiLKLyyXREREaeFXNTQLE52HWpI7wyM2Ig1cltSbSJpINe8bvRp8qgZHFL0DROJ9PqLcjkGdW3/sF9sVnNTJha11Puxp8sPt1+CMcDvvbNKXRUh3OZ1YWZ3fSPP2mqZhb5YGp+LVIrz2upbZMTSsDJPh8U1zJoOMBg3iRLImBBlkpXmSwVbUFh3GLMHBTy+ELzyAYNIAWlGc0stzga/+B93fjsr+KOp5EQDA6y8D9un3P693SaAM0WEKgL6VjtDzyeasQIcxS9C8+XXUL79Hf+UoGmj3rHDgvrazsHzHAfhhR3/P5+jtW4F2ow+13qbdBVtJZ10Ghr9xG5ztTtQd66IjS9Gt3IEfDnnR4tfwwZZm3XZ/tn5AEGU5MTg8olsROpS0lpnrWeFgkIGIiKjAMMhARERp0SRZSZ3Ian0Z2XxRGhb1xyWaSfo6j4p2cTSuFs9qn0oHrpL0d+hbGf3E6Jr9HvxQ27rKPtvn5qzOb6SJxXqPlrQMgmwhTggdKTwnqne7sbOxNbCSznJYHpPbkj2Eml9YCZ+iIAMA2Mt7onzA73FowdVhAzB5z7LlbpDBLwQZio44H20GPQwA8LX4gU8P6LZfdlSZvCl3GHvZESg//nfw1axG86aXwrZE97w6wrEX7Zr+Hvq79KgJhp4X9rIehiCDSFEUDO1ShKFditDkVY1Bhvx6mROljfgZeW7vUhxVlbvvg0RkbsuWLZkeAhHlCJZLIiKitGiUpNbXJDmTQVZeW5bdkA3EedVypwIxl6A2ziCMOImejMbXYqJDtgcZrKoDRaoclK0lthIhZhGVOPRfAcWMmfT2ZJBfLn2Y0pTJ0Er4qqyp0FSfYS8la4MMkV/7/gZ9kMFe0Tf0b9nbZ2zvJuL5i/aNI/J+9rIeur9lQYZwsqywXOgtQ5RtVE2DW3jfljVsJyIiosLCIAMREaVFOjIZZKvXs3UOSTwdDpuCNkX6j+XaOAuGi9dKxoe9GKjI1vMapFqcukhjNyuVpGVpwCoaYrkkcUJIiDnAm85MBtNySZLLxCCDPcVBBkNjaRWar9G4ny13k4PFckn28rAgg2T/mKYSDQHOeN/zjbdqL+upP3KEIIOsIly2v48RZSNZYLjYziADERFRoWOQgYiI0qLBa5zNOZT0IIPxsmydRFKFgdkVoNIlBBniPD/ifY6jrYOBMZMhS0/sYVaNiyOtXs7HTAaxtEWRXQwyCJkMaXx4oy2XpGkaoHr1F9pSXPNbCDJomjzIkL2ZDNZUTy00t74ckiMsk0EmtsQoYeckvm/YDJkMP1ruL5sDTefznChfyMoJip8pREREVHgYZCAiorRokpRLqnWrSW28KTtWtjYoFn+j2xWgskj/I73OHd/YjUGGxH/8i/MH2Rq8CUqk8XO+NX0GImcyiCX209qTIdpMBjHAgAxkMpgEGZCjjZ/99ZuFSxTYy3uF/kq4XJIhEyTK51UU79uxlktSFMXwPsbGz0SxE3v8ACyXRERERAwyEBFRmjRKMhk0xF8SSCaXMhkMQQabgjZiJkO85ZKECbrUZDIkfsxUsgouqZp16aO8zGQQmiyIpS3ETAZJTDBlzIIM4ny0WCoJQEobPwOAogiN1zU/NK8syJCbE2w+oR+DrewIKPbW7BD5IxPLfdXvq5k1zo54GEm5pFIhyNC0PeLxDUGGLH8fI8pGbiForQBwcVaBiIio4PHrABERpYWs8TOQ3JJJuRVkMAYC2oo9GbKqXFJu9WSI1LjYanJxb3MeBhmEO1wi9mQQniPpzGQwC2gYLva7DfukvPFztJkMkiyLXOCv36T721FuXSoJiDGeYtg5dY2foXqhNu+1vo6hwXmWv5ERZSFZ+T0lRwOtRERElDwMMhARUVo0STIZAKCmJYlBBsmEUbbOIYmNie1KMjMZ9H8nJcgg3kbUk4WZEWmFslkQwqdqONCcxmX8aRK58bM4+ZryIYWYZzLoL5dlMqQ8yCA+802CDNIsixzgF5s+C/0YEm38rBjOX7zvG8ZbtZV0ARR9w21/k3XJpFwr+0aUjQxBBpZKIiIiIjDIQEREadJo0mGzJomZDLKbyNaeDGJj4kBPhlRlMiQ+AZBP5ZIA88bV+5r9WR4+iY84KWQsl6TfP609GUxuS3z2Syfy09yTQYNJJoM/N4MMvkhBhkTfPw3vPdG+p0W+XcVmh720u+6ySH0ZDJkM+fhiJ0oxsVxSsd1kRyIiIiooDDIQEVFamJVLSmYmgyqZrPRmaeUbcah2G1ApZDLUZVVPBv1Bsr2WuVXjZ8B8cjEf+zEAQHPMmQyZb/xsIM1kKJLsmDyKpFySmkuZDBECjGImgyPJmQyGveMNWpjcD5tQMklt+NHyMOKCazZ+JoqdsVwSpxSIiIiIQQYiIkoTWeNnADjkTt6krmzi2GyVdKYZGj8rijSTIZ6VxOL8emoaP2fneQ2KlMlgNrm4Nw+DDH5VM/Q9iJjJkMaH1yyWJj5EmixbwOZM/oDCyXoyeBsMu2VtkMGCpvrhb9iiu8xeLmYyGK8XW08G8adGlE+sKN9fxL4MsZZLyvZgKVE2chsy4zI0ECIiIsoqDDIQEVFaNKUhk0G2et2brUEGYVyyckl+zbzMlJXUNH62vo1sE2/j5z2N+RdkECeEAGMmgzMXMxlszjQ0G42y8bOkKXW6aVps76X+pu2A5tNdJpZLkkkskyHe93v5rRqCDDGWS2ImA1HsxB4/7MlAREREAIMMRESUJg1mjZ+T2JNBtnrdm6VLVcVh2RQYGj8D8fVlYE+GyJkMZpPoe5rysOlzFEEGcY7IJCaYEmZBBkMmgxBkSH3TZ0hW4mdx42fVG9PuYqkkxVEGW3FH3WXSckkxZTLod9aS3PEk5iADMxmIEmbMZGCQgYiIiBhkICKiNGkyWZF/KKlBBuNl6ZwsjYU4VodNgcuuoESY7Y0vyCD0ZIj5CEZioCLrgwxxZjLsbTbPZMjyu2xK7McAyMolZTCTIcrb0sRsgbQEGfR1QDSzTIYsCDJoCQYZ7BV9DZkhiVdFEzNBoj1gtOWSeur+jj2TIcrhEFGIGGQoYpCBiIiIwCADERGliVnj50NuNWn1/WWlL6IuxZJm4liDc19txb4McTR/TkW5JHEOIft7MsS+XdO0vOzJIJa2cNqMQQVjkCHlwwrxmJxyw3MsA5kMxsbP/izOZIhtDL4GMchwZFTXiy2RQdw7teWS1OZdlsEW8X3Ml+XvY0TZSPxMETPjiCh7jR8/HoqioHfv3pkeCoDA9wRFUTBp0qRMD4WIkoBBBiIiSjmP39h4NkjVgDpPkoIM0kyG7JxEMjZ+DvxfLJlUl5RySTEfwiDfyiXJAlL1Xk266j/XieWSZKUtDI2fs7Ang6Fckr0oFcPRkzV+lgUZZE2p0yzRTAaHpB+DvFxSDG8ohvOX2sbP0FT4m3aa7i/OhWZpDJooq4mfKcxkICKK3hlnnBEKrpx99tmZHg5RUjHIQEREKWfW9DnoUEtyVo/LJoziSARIC3GVdrCMh9j8OSnlkgqxJ0Mc5ZLyMYsBiG7VqSGTIY2Pr1kg0HCpOJGfjnJJ0TZ+zopMhgTLJZVHF2SIjfhci/OIJu9hSlF7wF6su0y1KJlkY+NnooSxJwMRWenduzcURcH48eMzPZSss3XrVsyfPz/096effoqdO80XRxDlGgYZiIgo5RojzFgmq/mzbMIoVxo/B3+jV7qys1xSrvVkiFQGRbZSf0+BBBlkq07FuEM2ZDKID6Exk4GNn/VjkAUZzF/8sp4MhmMKj0HsbyXCNbRo38+ie/4pihJT82dmMhAlzvCZwnJJRBQnTdOgaVrBlEt66aWXoGkaioqK4HA4oKoqXn755UwPiyhpGGQgIqKUa/RGCDK0JCnIkEvlkoS7HJzEryxKRuNn8dgxH8LAmMmQnec1iJkMrQzlkiQTQk4h8JDOhummQQbxb3EiPy2Nn/VflTVNhebN/UwG1VMH1b1fd5m8XJL+UYg5KcoQpIn3fcP8hmMJMrDxM1HimMlARBSfl156CQAwduzYUKmk4GVE+YBBBiIiSjmzps9BSctkkEx8Z2u5JHGswXlfsSdDbRz9KtLR+DnbVwDH0/g5UiZDlt9lU+Kq0xJZuaRMZjKYvEYNL+esaPycaz0Z5I+jmMUAKLCX9Yp49UQzGbQoMxnE4IYVe1lP3d+WQQY2fiZKWDTZcUREpLdkyRJ89913AICrr74a11xzDQBg7dq1+OqrrzI5NKKkYZCBiIhSrilCJsOhJAUZfJLDZGu5JEMg4PAnstiTIb7Gz6noyZBb5ZLiafycrZkMWoITodE1fhZ6MmRjJoPfrfs7LY2fc7wng1kzaF+DPshgK+0OxVFs2C/hl7nhvSfDmQzCeLL044EoqxkyGVguibLUpEmTQg12AeDQoUN48MEHcdxxx6G8vBzt2rXDGWecgddeey3isbZs2YLf/OY3OO6441BRUYHS0lL069cPt956K9asWWN53eAYgiWBPvnkE1x44YXo2rUriouL0bdvX9x1113YsWNH1PfFzLx580L7zZs3L+L9EjU2NuL111/HzTffjJNOOgmVlZVwOp3o2LEjRo4ciUcffRQNDQ3S644aNQqKomDr1q0AgBdeeCE0luB/o0aN0l1HPDcywZJC559/Prp06QKXy4WOHTvijDPOwPTp0+HxmH8HE89bS0sLHnnkEQwcOBAVFRWoqKjA0KFDMW3aNPh8vthOVoxefPFFAEBVVRXGjBmDiy++GBUVFbptRLnOkekBEBFR/muMMGOZrHJJsonvbC2XJJ4Se6hcUhJ6Mgh/J2NFAcslpZ7ZOdUQzwryVs1RNH52Ck+SdGYymDZ+jpDJkJZySTa7OAiTTAa34bJ00zRJQMEkyCBmMshKJQHGkEDC5ZKifd+I4f3FGGT40XxfYThqln4+EGUzMcjATAbKBZs3b8bPfvYzbNq0KXRZY2Mj5s2bh3nz5uHtt9/GK6+8AofDOEX24osvYsKECXC79Z/1GzduxMaNG/Hcc8/hoYcewn333RdxHJMnTzZMqG/evBlPPfUUXn75ZcyZMwenn356fHcyCcaMGaNrTBy0f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7wQixYtMown+NhNmzYNH3zwAXr1kmRkhtmzZw/OPfdcrFq1Snd5dXU1qqur8fHHH+Ptt9+GzZb8tdgejwevv/46AGDcuHFwuQLfYS+55BK88MILeO211/Doo49Kn39EuYSZDERElHIRezK4kzO5K5sY9arZOSEujsms8XOzTzNd6W1+bP3fSenJIN5G4odMqUhlUMRMBp+qYX9zZu+VWWAk0brxYmmLYnGmFbJMhixo/Cz+nYFySbJMBtVnXMGXDY2fISnZZJbJEE3TZ5mYYwxxN34WjmMR3bCV6oMMakzlkuIaDlFBM3ymMJOBcsAVV1yBzZs347bbbsMnn3yC6upqPPfcczjqqKMAALNnz8a9995ruN7cuXMxfvx4uN1ulJeX48EHH8TChQvx5Zdf4rHHHkOHDh3g9/tx//334x//+IflGObOnYtJkybh6KOPxnPPPYfq6mp88sknuPXWW2Gz2VBbW4uxY8di2zbzz7FU8/l8GDBgAB544AG89dZbWLp0KZYsWYLXX38dV155JWw2GzZv3oyLL74YLS0tuuvOnDkTa9asQbdu3QAAF110EdasWaP7b+bMmVGPxe/3Y+zYsaEAw8iRI/Hvf/8by5cvx7vvvouLL74YAPDtt9/irLPOMs2wCLrkkkuwbt06/PKXv8R///tfrFixAq+++ir69+8PAJgzZw6eeeaZqMcXi/feew8HDx4EgFCZpPB/7927Fx9++GFKbpsonRgmIyKilBODDCUORbe6Olnlkszm4n0q4BIXJGeYONZQkKHIOAFc61bRsTT6O5Cexs+JHzOVIk3Mi5OL+5v9hkntqiJb0vqFRMOsxJNfA5wJHDeaxs9i3CGdk6/mPRn0gzD0PchA42cA0LySH7FZEGSQBhQSDDIkHp9NVrkkc2Img+reD83XDMVRYthXDKbJyqYRkTXxM4WZDMmlaSpU94FMDyNtbEXtjf2PUqC6uhqvvvoqfvGLX4QuGzx4MMaNG4fTTz8dq1evxt///nfcdNNNOP744wEAXq8XEyZMgKZpKC8vx8KFC3HSSSeFrn/qqafi0ksvxbBhw7Br1y7cc889GDduHDp06CAdw/LlyzFw4EDMnz8f5eXlocvPOussjBgxAtdddx3q6urwu9/9DrNnz07NiYhg5syZ6Nevn+HyU045BZdffjluuukmnHPOOdiwYQNeeeUV3HTTTaF9+vTpAwBwOgPfWtu2bRs6l/H45z//iS+//BIAcN1112HWrFmhRQeDBg3CBRdcgAceeAB/+ctfsGnTJjz00EP461//anq8YLZCeMmmgQMH4pxzzsGxxx6LPXv2YPr06bj11lvjHrOZYDmk3r1747TTTgtdfuaZZ6Jbt27YuXMnXnzxRYwdOzbpt02UTgwyEBFRyjUJjZ+7l9ux8VBr3cuaFhWapkWsMxqJ2SStR9XgyrIfweJY7Ycnv0odChw2fTmlWk+sQYYU9GQwTM4lfMiUirUng9j0ucypoMypoCY8Mz7F85FmE/uBxzP+x7BFqM0lCzI4lOzPZDA0frZnoPGzZBxAlmQySMolRduTwVEeZbmkWMdkOH/RPq/iL5cEAP6m7XC0MU6S5FoDe6Js41M1w+tG1ueH4qe6D2Dvvzplehhp0+nKvbAXd0z57YwdO1YXYAiqqKjAjBkzcMopp0BVVfzzn//EtGnTAABvvfUWdu7cCQD44x//qAswBPXq1QuPPPIIrrnmGjQ1NWHmzJnSjIigGTNm6AIMQddeey1ee+01fPDBB3jrrbewe/dudOnSJc57Gz9ZgCHc6NGjceGFF+Ltt9/G22+/rQsyJNtTTz0FAOjYsSOmTZsm/Z04efJkvPnmm1i/fj2eeeYZ/OlPf0JRkbxn1913323oCQEA7dq1ww033ICpU6dizZo1qK2tRWVlZdLux4EDB/D+++8DAK666ird/bDZbLjqqqvw6KOPYs6cOTh06BDatm2btNsmSjeWSyIiopRrEDIZupfrY9x+DaiPUFIpGmYT39nY/Nksk0FRFEPJpNoYV9Ono1ySluoZ9wRFesjF7Xub9Oe4cwxBnWQxLZeU4KmOpvGzU3iSeNMURPJLJqyCIpVLylQmg5TqTbhBd6KkAQVp4MEPf8MW3WXRZjLEHghOTrkkq/CGzdUGilM/GWDW/Fls/JzOBudE+UD8PAFYLolyww033GC6bejQoTjuuOMABJoyBwX/rSgKbrzxRtPrjxs3LjQpHX590YABAzBo0CDT7cHb8Pl8cTVtToV9+/bh+++/x9q1a0P/dewYCAqtXr06Zbe7c+dOfPvttwCAyy+/PNQgWeRwOEKPbU1NDb766ivTY1599dWm24KPi6Zp2Lx5c7zDlnrttdfg9Qa+j4WXSgoKXtbS0oJ///vfSb1tonRjkIGIiFKuyWfMZBAdSkLzZ7PV6+maMI2FOKEcnm3QRggy1MXY/JnlkmJv/CxmMnTKRJDBolxSIqKpn+3IUONnj8XtGE6H0FxZsctXqiVXDF+VTbIG0kYaZFChCRP7atMOw76mQQbh79gzGeItlxTb88/Q/LlB3vzZ0Pg5C/v1EGUztyTljuWSKBcMGTLEcvvQoUMBAN999x08nsCihrVr1wIIlAEKTqzLuFwunHzyybrrJDIGAFizZo3lvqm0aNEiXHHFFWjfvj06deqEo446CgMGDAj9F+xbsH///pSNIfw8nnLKKZb7hm+3Ov9WjarbtWsX+nd9fX00Q4zaCy+8ACBQminY/yHciSeeGCorFSyrRJSrGGQgIqKUE3sytHHZUOHS/yhNRvNns4nlWBsnp4OhXFLY6RD7MsTas0KctxVX78Yj54IMMZZL2isEGTKRyWC2qjrRiVBx5WmJZELI2Pg5oZuMmsfiZZ8VjZ9jqBOd6ZJJZqWRxICCT+jHoDhKYSuOrjRH7IkM+vMXd7ZHhBs2BBmazDIZ9H+z8TNRbNyS71MMMlAu6NTJ+nOuc+fOAAKfUzU1NQAQatQb6boAQqWNgtdJZAyRjpNKkyZNwmmnnYbZs2dHHENzc3PKxhF+25HOW3hZKasxl5aWmm6z2Vq/r/j9if8mDfr222+xfPlyAPIshqBrr70WQCDAk+xMCqJ0KtieDHv37sWyZcuwbNkyVFdXo7q6GgcOBBosXX/99Zg1a1ZMx/vggw8wY8YMVFdXY9++fejYsSOGDBmCCRMm4LzzzkvBPSAiyh1ikKHMaUNVkQ31YTOMyWj+bBZLsFotnSmGQEDYXJwYZIg1k0GcYE9OJoP+INm+AjjSJLk4uZgNmQxm2QOJ9r+IJpPBKcylawgEYuzJePJYsAoAik+xrC6XBGS++bNJkEFTvbqsD7/Qj8Fe3te0DFLSGz9HWy4pxhs2BBlMyiWx8TNRYsSgtcNmfF1RYmxF7dHpyr2ZHkba2Irap+V2Eun7lmjPuGQfJ1U+/fRTTJ48GQDQt29f3HPPPTjttNPQs2dPlJWVweEITB9OnDgRDz30UNrGle3nzUp4ZsJvf/tb/Pa3v7XcX9M0vPjii3jwwQdTPTSilCjYIEN4lDgRqqpiwoQJeO6553SX79ixAzt27MDbb7+Nm2++GU8//bQuOkpEVEjExs9lTgVVxXb8WN86sXswleWSkrcgJWmMPRlav0BnY0+GXGuYGksmg6ZpUQUZUn2Xzc5poq8MMcggW3UqmyTyaUCqQy2W5ZLEC/zpz2RQlOjPgObPjUwGv5DJYFYqCTD2Xon9rSTeckmRjqNnE4IMqmlPBv3f2f4+RpRtovk8ocQoii0tjZALzZ49e9CjRw/L7UBgQruqqgpAawmd4DYru3fv1l3H6jai2S4eJ3wuSVVV07mlxsbGiGM1EyyDVFVVhSVLlpiWiEpHlkX4/Y903oLnXrxepqmqildeeSXm67300ksMMlDOKtggQ7iePXvimGOOwccffxzzdR944IFQgOHkk0/G73//exx55JHYtGkT/t//+39YuXIlnn32WXTs2BF/+ctfkj10IqKsp2kaGoUfpWUOBW0TLAkkY7Z63ZuFq1XFFbThv9PbFCU3yJCMBUC5Vy4p+u2NXg3NwnM0M42fzTIZklsuKZqeDEAgsyLVE0gJZTLYmckQze2LwQexXJKj4siobyLmakmG85eqngw9dX+bNn7OUFkwonwhlksqZpCBckR1dbVlkKG6uhoA0K9fP7hcge8Xxx9/PL788kts3rw5VK1Cxuv1YuXKlaHrRLqNaLaLxwlvfFxTU4P27eUZIN99953lbVj55ptvAABnnHGGZQ+KYPkfM8nIPAi//0uXLg2VE5JZtmyZ9HqZ9vnnn2PbtsD3kbvvvhvDhw+33H/p0qV44oknsGnTJixatAgjRoxIxzCJkqpggwwTJ07EkCFDMGTIEHTu3BlbtmxBnz59YjrGd999h0cffRQAMHjwYCxYsAAlJSUAAk19LrzwQowcORLLly/HI488ghtvvBE/+clPkn5fiIiyWYtfM0xIlx4ulxSuJgmZDGZzsVkZZLDINmibaONn4W+x1FE8jOWSEj5kSsXS+Hm3kMVgU4D2xenPPjSrD5/IufapmqHxuWxSSJbJkI6G6dY9GYQ7nomeDDG0L9NUd+SdUig1mQyC2Ds/CweM90kVY0+GKDMZsr3sG1G2EYPWzGSgXPHCCy/gkksukW6rrq4ONQwePXp06PLRo0fjmWeegaZpmDlzJn7/+99Lr//GG2+gtrbWcH3RmjVrsHLlylCTaNHzzz8PALDb7Rg1apRuW/hc1fLly3HOOedIj/Gvf/3L9PYj8fl8AKyzIVauXImlS5daHqe4uBgA4HbH/72oW7du6N+/P7799lvMnj0bU6dORXl5uWE/v98fKnVeVVWFgQMHxn2byRYslWS32/HHP/4xYm+J0aNHY9q0afD5fHjxxRcZZKCcVLD1eyZPnoyxY8cmVDbpiSeeCL0RP/nkk6EAQ1BpaSmefPJJAIE37Mcffzz+ARMR5SixHwMAlDsVVAmTuDXJyGQwmTDKzsbP+r/DJ3nbFOl/tMeeySD0ZIhtaFLGTIbsO6fhYimXJDZ97lBsy0iNabPASCJPX3FCCABKZJkMkrtr1iMimawCgJEbPxch5WJp/JzhcklWPRnCGXoyWAUZxKyoWMdkCHCm5jklBhk0bx1UT61xP5ZLIkqIO4oeP0TZ6N1338Xs2bMNlzc0NODWW28FEChJFPw3AFx88cXo1q0bAGDKlClYs2aN4frbtm3DPffcAyAw/3PDDTdYjmPChAnSSfxXX30V77//fuh2u3btqts+fPjwUE+Exx9/HJrke+4jjzyiW9Ufq379+gEAvvjiC2zcuNGwfd++fZYZBUHBsW/atCnusQDAnXfeGbrdX/7yl9J9Jk+ejHXr1gEAbrnlFhQVpeG7YRQaGxvx5ptvAgBOP/30qJqHd+jQASNHjgQAzJ49O6EgDVGmFGyQIVGapuGdd94BABxzzDE49dRTpfudeuqpOProowEA77zzjvTDgIgonzUJQQYFgR+lYibDoZbEGyeYTdKmY0V2rMQSOOFz2sbGz1pMk/qp6MmQa+WSIpVBCZ9cNOvHkO4+c2aBkUgBEyti/WzArFySpCdDGh7kmMol+YUfW2kol2Qs92Mhw+WSTDMZtNbLVW891JZ9us2O8ugzGWJ+TYjnL9rncqyNn0uPMFwmy2YwlkvK8jcyoixjKL/HTAbKEYMHD8ZVV12FO++8E59//jlWrFiBmTNnYvDgwaFSR3feeSdOOOGE0HVcLhdmzJgBRVFQV1eHESNG4KGHHsLixYuxdOlSPP744xg8eDB27twJAHj00UfRoUMHyzEsX74cgwcPxqxZs7BixQp89tlnuOOOO0KT9xUVFaFqGeE6deqEcePGAQA++ugjXHjhhfjwww+xcuVKvPPOO7jsssvw+9//PmJJHivXXXcdgMAE+ciRI/Hkk09i8eLFWLx4MR599FGceOKJWLduHYYNG2Z5nOAYqqurMXXqVKxevRobN27Exo0bsWPHjqjHc9ttt4Vua+bMmTjrrLPwn//8B1999RXmzp2LSy+9NNSA+sgjj8T//u//xnO3U+LNN99EQ0MDAODSSy+N+nrBfQ8dOoR33303JWMjSqWCLZeUqM2bN4c+TILRRjMjR47Ehg0bsGPHjrjKMhER5bIGYYa/1KHApihoW6SveV/jVqFpWkJ1PM0mY3MhkyH8d7rY+FkDUO/RUFkU3blJR5AhC0+pTqSJeZ9FJkMm+jEAqSmXJAsyyBs/S8aTjnJJsTR+zkS5pFgyGTLekyFyJoNYKgkA7OW9TQ+ZcCZDssolRfhcUBzFsBV31AVQ/I3b4KzS12YW42vZ/j5GlG3Engwsl0S5Yvbs2TjrrLMwffp0TJ8+3bD90ksvxd/+9jfD5WPGjMHMmTNx6623or6+HhMnTsTEiRN1+9jtdjz00EO4/fbbLccwZswYjBkzBpMnT5ZmPLRp0wbvvvsuevfuLb3+448/juXLl+P777/He++9h/fee0+3/corr8TNN99sWbLJymWXXYYbbrgBM2fOxM6dOw3ZA3a7HY8//jhqamrw5Zdfmh7n9ttvxz/+8Q8cPHgQ9913H+67777QtpEjR2LevHlRjcdut+O9997DhRdeiEWLFuGzzz7DZ599Ztivf//++OCDD6TllDIlWCpJURTTMl0yl1xyCe666y6oqooXX3wxFFgiyhUMMsQpmJIFBDIZrIRv//bbb2MKMmzfvt1y+65du6I+FlEh8Po1fLClCQ1eDef2LkG74sxMFhYyTdPw+bYWfHvQC1XTcFDotVDqDPwgFcsleVXg76vqok6xqyyy4We9StC1rPWjzGxS9JMfm/HNAesJwDZFNvysZwm6lTvgOfw8+rHOF+VoYrdPmNgOX2HbxmU8C9NX1+Gm4ytCq+zNNHhUQxPjVPRk2FLnw/ubm3BCBxc+29Ycc0mnoHqvhtX7PChzKDi5kwsOm4KTOrkwrGtxzMdq8qr4YEszdjb4sOmQ9WO3cq8Hte5afH/Iiz1N+rGbneMPtzRjxR556vL2Bj86l9rhNHkCdy6147w+pahw2dDkVfH+lmbsamgdY4XLhvYm71fRBslUTcPHW5ux8ZAvlDnZIGQSOW3yrAWbosCu6Cddn1hZi9O6FeP8PqVwRTmRpGkaPtvWgl2Nfow8ohg9KoxfNX+o9WLethY0elXsbTZ/3rz5fSM++7E59Hdz81VQKi7DEb6vcXrzc1nXk6Hh6ymoGjkbiiP2526imn94DfVf3SffGBZk8NXpyx/YSrvHNN7YyyUJ7/M1q1Gz4JrQ347y3ijt/0vYSzpB0zS0/PAq3Ls+gWfPglhvCbayHrogQ8Pqh9D8wyuBbUXtUdrvJtht/XTX2d7gw5MrW8sqdS6z49zepdL3YKJ8tXKvG2v3ezCgowsndbQuNSKWSyqSZMb5m3ahcf00+Bu2xjQOm6MclcP/GdN1iKLVp08frFixAo8++ijeeustbN26FU6nEyeeeCImTJiAq6++2vS6119/PUaOHIknnngCH3/8MX788Ueoqopu3brhzDPPxN13340BAwZENY5JkyZh2LBhePLJJ7F8+XLU1NSgW7duOP/883HffffhiCOMmXlBnTt3xtKlS/HXv/4Vb775Jn788UeUlZXh+OOPD92HaCfwzTz//PM488wzMWPGDKxatQoejwddunTBT3/6U9x1110YOnQoJk2aZHmM7t27Y9myZXj44Ycxf/58bN++HS0tLXGNp127dliwYAFeeeUVvPrqq1i5ciUOHjyINm3aYMCAAbjssstwyy23hJp1Z4MdO3aEgiHDhg0LldyKRufOnTFixAgsXLgQH374oWXDcaJsxCBDnMIn/60+CACgR4/WOrHB7vLRCr8uEUX2zNp6zN8e+BKzaGcL/j6qvaE8AqXWB1ua8cK6BtPtZYdnYdsWGSdxFu+MrfbkFzvdeOqM9nAengBdult+/U21PmyqjRwwWLijBU+d2QHPr63HvO3xfRmOV/gcrt2moMKpoD5sgnjVPg8mfVmDJ8+wfk4/ssJYhzwVmQwALB/nWDX6NHxx+PGft70FGIiYAw3TVtVhxd7oVpPvbPRjZ6O8RJdZJsOGGi821Jgfc0uEoNQ3B72YPKwKf19Zh5X7ol/1/vK3DfjLae0i7jd7QyPe2tRkuY9V/WyHDfCHnZJt9X68tqER2xt8uOukyqjG+u4PTXh1faDW8IdbmjD9zA5oE/ZaP9Tix4OLaxBNL/O1B4SV+a6LAADLMQ61tq64LssyGdzb5qB26d1oO+KZFA7IqGnTy6hdaF4jOTyToX6Fvmmlw6IfAwAs2SW8p8ZeL0n3l9q8Gy2HJ/6D3Ds/Roexy9C8cRZqF90Y1XFk7GU94TvwVehv774v4d3XutKyeeMLUIZ9r7tOvaf1fSfom/1eTB5eFfH2iPLB1/s9mFod+N7w3uZm/O8pbXF8B/P31kjlkjRNw8H/ngtfzdcxj0Upas8gA6VUVVUVpkyZgilTpsR83d69e+OJJ55IyjjOOecc08bNkVRVVWHq1KmYOnWqdPuoUaMsS3TPmjUr1CjZzDXXXINrrrnGdPukSZMiBhqOPPJIPPvss5b7AIiqnLjNZsO1114bVT8IUTRjBSKft1h0794dfn/8ZYAXLIh9oQVRtuAynTjV19eH/h0pLausrCz072BdNiJKjeVhq4z3N6v4IYqJZUquapOJ/qDgClGXXUGlK7HZ71q3io21rRNoHUoS+1ir92jYUOPFir3pb7QlTv5WSVa1H2hRsa3B/Dnd4FGx/qCxZIqs0W+sStJcEmFVlMGCIFXTLCfuK5zRj79zWeDcJ7sMxPqDXtR5VKzeH9t9E3tGmPkqisBFuVmqBYBSWc0kxPZYBAMMQCA76Z1N+uaGq/Z5ogowRLLOdRYUV5vEDxSBYi8ClOgz4tw73k/haExu88e3rXcICzLYioXGg4r1eqODQq+cWDOWbI6yiPt491dDbdkP93bzc6c4SiMex1FunSmseWvhatwQ8Tjra7xoysZGPkQp8PK3+t+mM9bUWe7vET6OxM9JtWlnXAEGIiIiyn0MMsQpPN0rUmpWeIf75uZmiz2Ntm3bZvnfsmXLYhs4UZ4T64/XJmM2i2Kyv9l6QvS07kVh/068rEi9p/UxT0YDwlq3sdxQqrUvtuHoKqfustO7y0sWuC3iZockE4Ddy+3oVpZ42bBj2jkNzbpTyRtjIwK3XzPtXVDqUHDzgApE8/ToWeFA7zaBidfhcZRsiuRQixpzj4Vo68aLZSxkRnQzv0/Du8mfc4nMt35Xow967Y3w/hAtn1KMoi6jknIsK4q9CMU9fx71/obm1Gngb7QurRk+JnF89rKelteVlUKJhav7OVCckbNgNH8LNL9J9pitCMU9Lox4jOI+VwI2p+U+xxTvjSq4neaPAKKM2Spk4InlA0VivyMxy9H0dUxERER5j+WS4lRc3Poj3eOxXuHndrf+oCspKYnpdiKVYiKiVqqmGSbj6uKsE0/xUTUNB4VzPuqIYlQW2WBTgP7tnDgxrN7vNf3L0bfSiR/ro884WbC9BTVht1FvEUjqWmbH0C7W9YW/3Nmiqwt/yK0aejuc1aMY5Smq0V3hsmF41yKUCKvIL+hbii5lDjwmlD/yWaTy1knOxeRhVQk10w4qddrw5xFVmLGmHqtNVsxXuBSc2SP6z7mFO1oMPTviJa6uBIDzepegssiGU7oUoVu5A51K7fhqrwcev4bPtzWjzqM/lwqAB09tG+o/cX6fEnQqtWPTIS9ko2z2BXogiI6qcqJ/u8Bk55wfmnRBBdljFEmzT4PHr0XsiyAGZk7tWhQq/aQA6F3pwKkWr4fg6/Hzbc26UkWasQVz1MQAxT5hAusnbR04rr0LNgU4psqJJp+GrXU+wy3u3Pcjqus6hP72wwFbUeQSUsnQ9vQX0XzEefDVtZbaUWxFKOp+Lpp/eAVN66eF7Z3+2Wl/807rHdSwwILQHLqou3W5BjEgdslPImcUhHOU90KHsUvRsvVNqN7DK6RVDxq/0TfX1DQ/ILzKXJ1HwtXtLBQfcQGc7U+KeFuujkPR4fwv0bL9vdBEZ/P3z+n6NJTbW/DnEe2wZFdLqF+J26/hwy2xLQIiKlTie4KhlKJm/DAuO/73UZWeiyZjiYiIiLIXgwxxqqioCP07UgmkxsbWUgHZ1PGeKN/IVtvWs+RBWtV5NMME/RVHl5k24LYpSszZDFvqfKgJm+RuCHuMxem9K44qwzCLldsAsLfJj73N4WW2jD+QL/5JWcSGy8mmKAqGdilCu2KbbiLeZ7EMXpzA7lJqR0USgyMdSuy4+MhS0yBDxxI7rjom+s+5PU1+Y833OLkly/2vPLoMxWHBm76VTvStDEz+r97nQZ1HH9wa27dUF0xSFAVDuhRhiMnE/MEWvzTIcEIHF8YdFSgTIwYz4gkyBK/XocT6OSiuvj6rZwlOsKitLQq+HruU2fHAotbmE4mUqBUDH/uE19fwrsUY01c/sTRc0h+v2rdHF2TQ0tL0OUBxlKC0n0mvAM2rDzIkqZ5vtDRNhdq0y3qfsJXFmiq8diOcR/HuxNNE3lF5NMpPaG1KrfmaDEEGaH5A0782inqMQfnx98Z0W84Og+DsMCj0t3vHh7ogg6b50anUjguPbC3jdMitGoMMzGQgkjIGGcRUBuNnXMWgh6HE0N+GiCgb7NixAzU1Fs3YTJSVlaFPH+sSjkT5ikGGOIVnGIQ3gZYJb/bMRs5EqSMrr8JMhvQS63fbFHmD50SUC7X1G8OaIxvm96KYD2sjTMLLggyRVpCnklitRAzihBMnsNsk2PNCOh6LLtLJPE+xzvF5JEEGq/HINsXaINtuMuEanpRS5rShLizNIqVBBuE90KL9giVD+Yv4DgPA+HwVgwwdowze2RT9KNSsqfhpWMab1ltXW/YDmj5YprjaQvMcah2R3zyTQYlQXkiNUBolLrIeF5ofmmFyMvHHWBFvSzW+v8vuEmMMRHJiZpvh80KSyRDVlzEioizzwAMP4IUXXoj5eiNHjsS8efOSPyCiHJAtv9ByzrHHHhv69/r16y33Dd/ev3//lI2JqNB5JZOM9V5OFaTTgWb9JFFVkS2ula9WxMa1DRaTttHcchshCLKv2Xi8ovQmMeiIk/pWmQy1bv028b4lg9XEdayNkpP5zBAzGRw261XXdslsaawxErvJuXCE3a7YdDveIEM0DXfFCX1Hkl57sfaQCBde3sunaob3iI5RNmtXhIktDRl8UeoYZtjSeutq0w79BYrN0GdBCyuXpAlBhkg9DCKWRomHNMigGldAJ2Pls3hb0glQyXASv2WinBDrS9rwnmDcw3ALySjZSBSPSZMmQdM0aGn+bBYFxzBp0qSMjoOIKNUYZIhTnz590K1bIJ9//vz5lvsuWLAAANC9e3f07t071UMjKljSckls/JxWB4RMhvbFyf+YKRdW5zeEZzII+0YVZBCOt79JksmQlJm1+AitGiwzGcTnu5ilkZzxWGQyJPE8xfp70CPMfBRFGIs8kyG28ZsFJey6TAb9TvWe+H7oRhOcEANQ4nMnWsl81oS/Lx9sUQ2v0ZzPZDA8Z9I7keFv0vdjsJV0MdY1D2/EKpRLUiKUS0pNkMH42Ml6MiSlvIpNSNqWBBmkdynDE1JE6RLr4oCI7wlitpAsqEhElANmzZoVChDF8h+zGKiQZckvtNyjKAouuugiAIFMhSVLlkj3W7JkSSiT4aKLLuJKDqIUkpZLYpAhrcQmvu0ilHeJh5jJkGggqVKYiG/0GSdqZave08WQyRBD4+dUBBmsMxliO1YyPxLFTIZIpZvSVS6pVJjpT1UmgyZpfG8VELIkXC2hTIawQe0VAnglDgVlYj0wE1kbZMh0uSSh6bO9pBsUu74PTXi5pFgzGcR7Y0tC/pE0eKD5jRP7SQgyiOWSpKVc+NWcCphL8rltlTEpbjL+tk1BRhIRERHlBH7qJ+DXv/417PbAN7O7774bzc36pnHNzc24++67AQAOhwO//vWv0z1EooIiCzIwkyG9xH4GKclkcJpnMsQjUmPkTGYxALH1ZBAnolNRLslq4rooygnjoGSeWY8wdxhpdWYyyiWZZQqEBx/ETIZ4+8TURciAkD0v4s9kSN4jEx4UM/RjKLFHvfjCpolBhmxZHZvZckmGTIbSblBs+kbl+p4MsWYypKAnA2Bc3awaGz8n5WeKoVySz7iL5GrMY6BCIfusbPJFH2SI2JOBmQxEREQFo2AbP3/xxRfYuHFj6O/9+/eH/r1x40bMmjVLt//48eMNxzjqqKNw7733YurUqVi+fDlGjBiBP/zhDzjyyCOxadMm/PWvf8XKlSsBAPfeey/69euXkvtCRAGySbZIE3OUXGImQ/vi1GcyNIbVYzEshI1iArMywkR8rKUEki2WngzpyGSwDDIksSdDoo2fZaszw8mGapaZYMZsb7Hxc7hEGj9bkWW4xNuTQbxaIu+i4eWS9gmZDJ1Ko39+Zm0mQ4bLJalCkMFe2s0QeNDCyiWJmQyRGz/r/05qkCF8MlJSLiklPRnY+JlIR5b11+RVTb8/RGr8LAYLk1L2jIiIiHJCwQYZnn32WdNO8YsWLcKiRYt0l8mCDAAwZcoU7N27F88//zxWrlyJK6+80rDPTTfdhD//+c8Jj5mIrImTjADQ7NPg9WtwZniiuFAcFHoytIuyqWssyoUfvg3hQQZh3+h6MkTIZMh4kEH/d2w9GZI/dstySTHOQFrNgce6IDwT5ZIURYFdgbFMUdgdKxWyO+LNropULkn2vLB6rKxIJ101LWLQTtZYMXySeq+h6XP0QUgbciSTIe09GfSNn22l3aC6D+p3Otz4WdM0QCyXZI+tJ0PSSpxJyhhpaWj8LC2XRFTAZJ97jRYZohEDj4bXcba8VxMREVGqcWlBgmw2G5577jnMnTsXF110Ebp16waXy4Vu3brhoosuwvvvv49nn30WNhtPNVGqmU2+1ss6QlPSqZqGA2nJZND/onX7wwNMsU/wlTkVy8nlSCviUy3angyqphkyd8R+E6kYT7jYAzLJC4KIQcZIWRWyJs/xrNKWZkSE92QQyyWlqPGzLMMl3p4MsonkaEYtifPqGMolRdn0GQBsiv7+a9nyFTbDvbbErAV7aXcodpNySZof4iOpKBEyGYS/k5XJIPZKgKamZAW08XbYk4EonF/y0SL2pgpnCDIYSsaJ5ZKy5L2aiIiIUq5gMxlmzZplKImUiPPPPx/nn39+0o5HRLGT9WQAgHqPhnbF0k2URPUezRDoSUlPBsnEeaNXhctul5RLinw8m6KgwmUzXSme6XJJYgkfs2Bag1csYpCangzWjZ8zd64MmQwRZkNl/QrscZwuu00xzLroejIINxTvOvfIQQbjZfH2ZJBnMphsCBMxyCCWS4opk0EYj2KLKrsi3WTZHKkklkuylXQDDD0ZDpdLErMYgIiNn42rlpMVZZBM/qeiJ4NN+KkjCTKYPt+JCoAsQN1ssTgnUnZTSjKSiIiIKCfwU5+I8oZZkCHeGugUmwNCqSSbAlSlIMhQJmkuXH84tT+eckkAUGlRVijjjZ8N5ZJMnueSIEkqejLYFMX0vMaayWB1amPuySCcl0hjkU2WxtqTATA25gb0j5mYyRCvWrdqOYEt7cmQ7kwGk+empmnwqZqhZ0vHGMqpiZkMgHGyKzMyVy5JU71QW/bqLrOXdoNiF6LqhzMZNKHpMwAoEcslCfXX4xinlE1Wxigz5ZLYk4EKmSxpwbpcUqSeDPrXmCGbiIiIiPIWgwxElDe8JqWW462BTrE5INRbryqyJW/Vaxi7TTHUuW9I8DG2mozPdE8Gp6Hxs3w/MZhW6lDinmSOPCb55UUZnEvwCK//SFkVsuBAPKfLJrmSPeyysiQFGbwq0GKRKiBbeBrvU1d2tWgm9M0qbPhU4ECLapi4jalckmTaN1LmRDoYQm5pXAKvNu+BOB0eCDIImQyHezJIMxkilUtKUU8GRfwJIstkSEW5JNWX8DGJ8ols4UJM5ZIi9WTgdAMREVHB4Kc+EeUN83JJDDKkg6HpcwqyGILEvgyNCWYyVFgEGTJdLsmQyWAyiSkGGVKRxRBkFryI9VxZ7Z1o4+eIPRkkpyeeIIM0kyHsstJ4uy9LWPVzECeK7AriLiUU7/XMMhla/Br2CqWSSh0KymI4N7LHJisyGQznKn2DEps+w+aCUtQeMPRkCJRL0iRBhkiZDOLrMGlxS0m5pHQ0fpb2ZJBguSQqFLKFC01W5ZKEvyNlMohZS0RERJS/GGQgorzBckmZZWj6HEO99ViJfRkaDv8gjqcnAwBUWvQuyHQmg6Hxs8nTWewpkYp+DEFmc8OxnivrvWOb5TP0ZIjw9HMkqVySbNI1/DETs24SYdY3BDA+L8QMmFjEm8lgllnQ4tMM/RhiyWIAAJthastYtiMzMhdkEPsx2Eu7QVEUQ7kkzaJcUsSeDOLuyUplECceJZkMhmyHeERTLim72noQpZUsk6EppkwG/QvIECzkdAMREVHB4Kc+EeUNs4VX9Rarfyl5DjTrJ29S0fQ5qFyY5W5I8DG2LpeU0KETFnVPBuEctLHoM5GoZGUyWEUZYu7JYAgyROrJEN1lkcjORfhNJ6tcEmAdMBWfF/E2fQbMHpbIj4jZc7PFr2Gf8P4QSz8GQF4uKTvCx5krl+QXmz6XdgMAKELjZ1g0flZsMfZkSFEmQ6p6MhjKJbEnA5FOrD0ZxN5AhtcPezIQEREVLAYZiChvMJMhs8Smru2KU5nJoP9ZWx/MZBD2i3Y+zCrIkPFyScIqQfNgmn5DZQbKJcXc+DkZgzlMDDJE7MkQITgQLdmpsIfdsWK7eaNsILZMB1lz7yBxoiiRfhyyld0JZzIYggwxZjIokiBDNswEZ7JcUrOQyVByOMhg0pMhrkwGcdVyjGM0Y5z8V1PSkwE2h3A7snJJTGWgwqRqmvR91LJcUsQSail4HRMREVFO4Kc+EeUN9mTILGO5pDRmMpiUS4p27shq1X9RiponRyvaTIbatPZkkF+ezEyGWBnLJcWTyZCkcklhx1EUxTKbwWpbsXAfxMc4nNgPIfmZDJH5TYbn9mvY16Tf2CnmcklZGmTIonJJwUwGmJRLMmQyKDYoESYA09mTwRhkSEKgOppMBsl9yoqnFlGKmZVfjK1ckrBDKoKFRERElBP4qU9EecPsx5JVs1RKDk3TDI2f26cyk0GYmDUrlxTtfJhVTwZnpjMZouzJIK5yr0hpT4YklUuyEGvVGXH+3RVhNlSWQJCsCVRxgt8qkFBiEQ2oEkqOWWVliQtPZT0noiXNZIjiemZNyeXlkpKRyZAF7+3iyUpruSR942d7hHJJhsbPEUolAZHrr8dNUi4pFY2fxYwJTfUlfEyifGG2aMGqXFKkPi2Gvicsl0SUVcaPHw9FUdC7d+9MDwVAYDGOoiiYNGlSpodCREnAIAMR5Q2xXEoQMxlSr96jGSY526WxJ0OjSWq/daGaVlldLkkYmt9kElOcgE5tuST55clt/BwbY7kk6/1tSSqXJHs4xAbSpRaBhFKLAESVECiybvyc4kyGKObOzQJgDR7VUE6tY2mMPRkMzUSZyWDMZOgOAKaNnyGUS1IilEoCjIGcpMUYpBkGqW/8HHVPhmwIYBGlmFnCQpPZmzmMrw3Dq5SZDEREIaNGjQoFUsT/nE4nOnbsiJ/+9KeYOnUqDh48mOnhEiWMn/pElDfMMxlUThik2H4hi0GBcYI0mcSeDA2HV93F+yi3sRhrxoMMipjJEF2QIbXlkswyGWI7jlUQKNbHUiyXFOlxk22WBR7iYRdOvVUgodiumAY3xEwGq4CpMciQSCaD8brRhGrNAmA7GvyGxzNvejJksJ6/2Pg5lMlg2pMhjkwG4e+kvauIE4+qrFxSeoIMRIUqrkyGiOWS2PiZqND17t0biqJg/PjxmR5KVvP5fNi/fz8WLlyI++67D/3798eiRYsyPSyihDgi70JElBvMejL4NaDZp1lO9FFixFXKVcU22FPYy8C0J4O4Y5RDKHMEJnplyTCuDP8+NvZkMO6jahrqhZJRVn0mEh6TyaEjlShKJTGTIVJWhWxzsuJJ4gS/VSaDXQkERGQ1sA2ZDBal38TnRSKZDLKrRhOnNevJ8GO9vkRNmUNBmTPGTAZpT4YsiDJIAjKapkkDNcmk+ZqheWp0lwUbP0MMMhwulxRPJkNmezIkP8hgKOUCk0yGxG+ZKOuZvWe3+DSomiYtj8aeDESUTIW0EHDNmjW6vz0eD3744Qe89NJLePfdd7F3715ccMEF2LBhAzp27JihURIlJqs+9Tdt2oSlS5diz549mR4KEeUgsyADYF3LnBJ3oFnsx5DajxcxyBCaYBdLe0R5PEVRTFf+x1oCKNmMPRmMz/MGj2aYFLPKzkiUrCeDw4aYA0vJjEnEHGSQ3HjSejIIx7HqyWC3KaZZF1VCXxOx70Y4sR9CIpkMshdOND8BzXoybBOCDB1jbPoM5FomQ+oH5m/eZbjMFspkKBZ2NstkiKZcknCVVPVkgJqSyUnFJqynijKToYDmPKiAmb1nawgszpGJ9J7AngxERHLHH3+87r+BAwfisssuwzvvvIPrrrsOAFBTU4Nnn302wyMlil9aggx79+7F9OnTMX36dNTW1hq2b9y4EYMGDcJRRx2F4cOHo3v37rj00ktRU1MjORoRkZxJWX4AMKzypuQ6IGQytEth02fAWC7J7dfg9Rsn2mOZDqswCTIUZXB1PiDJZJA8lWVBtNSWSzJeluzzFOskXzLKJYm9FKIhG6YYwLAMMijmYxX7mliVfjNkMiTwcMgzGSI/IGarYsX3h44lsT83ZZkMJm140kpa8isNM9Sq0PRZcZRBcVYE/m0TMxmCPRn0QQYlqsbPaerJoPoDgQadFJRLkjR+TnHSCVHWsmi9YFoySXxPYCYDEVHi7r333tC/q6urMzgSosSk5VP/zTffxF133YX/+7//Q2VlpW6b2+3Geeedh1WrVkHTNGiaBlVV8fbbb+Oiiy5Kx/CIKE94LWac2Pw5tQ4KPRnaxzGJGAsxkwEINH9OZGrPrLxQxjMZoujJIAYZyhxKYivZI41Jcux4zpPV5F4sj6WqaRBf4pHLJSUnk0E2nyxO8JdalAZy2MzHKvZk8GtAo8nq0mT2ZIg3kyHaSf94MhkUBVCEFbJZkckgfRKnIZNB0vQ5VKLJpFySJpRLii+TIbZxmoqiXJKSpnJJRIXKrCcDADSZrNyJuJhD7MmQXYUTqMBMmjQp1GQXAA4dOoQHH3wQxx13HMrLy9GuXTucccYZeO211yIea8uWLfjNb36D4447DhUVFSgtLUW/fv1w6623GsrgiIJjmDRpEgDgk08+wYUXXoiuXbuiuLgYffv2xV133YUdO3aYHkO8L2bmzZsX2m/evHkR75eosbERr7/+Om6++WacdNJJqKysDDUoHjlyJB599FE0NDRIrxtscrx161YAwAsvvGBodjxq1CjddcRzI6OqKl5++WWcf/756NKlC1wuFzp27IgzzjgD06dPh8fjMb2ueN5aWlrwyCOPYODAgaioqEBFRQWGDh2KadOmweczLkRIlz59+oT+7Xa7MzYOokSlpSfDxx9/DEVR8POf/9ywbdasWdi0aRMURcGFF16Is846C5988gnmzJmDRYsW4fXXX8cVV1yRjmESUY5juaTMOdCsP7/tU5zJIFsZ3uDVDL9+Y1mhWmlSXijjQYYoejLUik2fU1gqCZBPYBfHsXQ+WWdWNhcSV+PnJA1IPE6ZxbmxK4ppw2xZ8/Q6tyoNsonnIDM9GaKbXI+16fPhEcAGP/xovW5W9GTIVLkkk6bPgKRckuoOZKLEk8kg/J20IIMtPT0ZDBkT7MlAFGKVySDrEwTE05OB5ZIoO2zevBk/+9nPsGnTptBljY2NmDdvHubNm4e3334br7zyChwO4xTZiy++iAkTJhgmfzdu3IiNGzfiueeew0MPPYT77rsv4jgmT55smFDfvHkznnrqKbz88suYM2cOTj/99PjuZBKMGTMG8+fPN1y+f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7zQ0BB5//79ocdu2rRp+OCDD9CrVy/LY+3ZswfnnnsuVq1apbu8uroa1dXV+Pjjj/H222/DZkt/cDQYmAGAnj17pv32iZIlLa+eDRs2AABOPfVUw7ZXX30VAHDmmWfi7bffxt1334133nkHo0ePhqZp+Ne//pWOIRJRHmC5pMwRy6GkuieDw6agRJi4bZBkMsQyH2ZWXijSZHWqRdOTQazVb1b6KVlkC/MzGYwR+zEAQKRTYJdsT1a5JHGVmVXTebvN/DlWbDc+z8WAUpA4wZ/sTJboejJEd6xOcWQyAIANOZLJkJZySWImQ3iQoUjcHVC90PyxN342TCgmKTQoTv5raWr8LA0yZOYhJMo4s54MgFW5JP3fhj4thp4MzGSg7HDFFVdg8+bNuO222/DJJ5+guroazz33HI466igAwOzZs3Ula4Lmzp2L8ePHw+12o7y8HA8++CAWLlyIL7/8Eo899hg6dOgAv9+P+++/H//4xz8sxzB37lxMmjQJRx99NJ577jlUV1fjk08+wa233gqbzYba2lqMHTsW27ZtS8k5iIbP58OAAQPwwAMP4K233sLSpUuxZMkSvP7667jyyiths9mwefNmXHzxxWhpadFdd+bMmVizZg26dQt8J7nooouwZs0a3X8zZ86Meix+vx9jx44NBRhGjhyJf//731i+fDneffddXHzxxQCAb7/9FmeddZZphkXQJZdcgnXr1uGXv/wl/vvf/2LFihV49dVX0b9/fwDAnDlz8Mwzz0Q9vmR65JFHQv9mRRfKZWnJZNi3bx8A4IgjjtBd3tzcjCVLlkBRFEyYMEG37cYbb8Qnn3yCr776Kh1DJKI8YJXJUG8VgaCEaJpmKJeU6p4MAFDuVHSNCeslzY9jYR5kSOCgSRBdTwb9hZUmpZ+SRTaBHU/yRLLKJYn9GIDIwSFZA9tUxUlKLdIKHIp542e7LdCQvNnX+voya/4sPi8sKjRFJItPZDyTQdOgCOvqsyLIkLHGz0ImQ0lYkMFmDDJo/hZAExs/R9OTQf930voXSCf/U9CTwcZySURmrDMZ5Bsj9WTQmMmQMFXT0FBAi6PKXYr0O1myVVdX49VXX8UvfvGL0GWDBw/GuHHjcPrpp2P16tX4+9//jptuugnHH388AMDr9WLChAnQNA3l5eVYuHAhTjrppND1Tz31VFx66aUYNmwYdu3ahXvuuQfjxo1Dhw4dpGNYvnw5Bg4ciPnz56O8vDx0+VlnnYURI0bguuuuQ11dHX73u99h9uzZqTkREcycORP9+vUzXH7KKafg8ssvx0033YRzzjkHGzZswCuvvIKbbroptE+w5I/TGVjE0LZt29C5jMc///lPfPnllwCA6667DrNmzQot5Bk0aBAuuOACPPDAA/jLX/6CTZs24aGHHsJf//pX0+MFsxXCSzYNHDgQ55xzDo499ljs2bMH06dPx6233hr3mK2sXbtW97fH48GWLVvw8ssv46233gIQCIade+65Kbl9onRIS5Dh0KFDAGBIO1qyZAm8Xi9sNhtGjx6t2xZ8g9q7d286hkhEecCqtqzZxBwlrt6rGbJIUt2TAQj0ZdgXVqapwasmVC7JrMRQ5sslxd6TIZVNn4HkZTIk68xKMxkiBRlkl6XoobZs/GzRk8GuBHqF7GlqvUwMKAUZejIk8INdVu83qT0Z4nx/sGl+3ZMma4MM6chkaNTXbQ7PZIBYLgmAprqhGcolRZPJEKHJa7zE1c2aXzI5mYxyScJPHQYZiEKsvjebZjIIfxs/LlLQW6XANHg03PLJ/kwPI22eGd0BbYpS/1177NixugBDUEVFBWbMmIFTTjkFqqrin//8J6ZNmwYAeOutt7BzZyCo/8c//lEXYAjq1asXHnnkEVxzzTVoamrCzJkzpRkRQTNmzNAFGIKuvfZavPbaa/jggw/w1ltvYffu3ejSpUuc9zZ+sgBDuNGjR+PCCy/E22+/jbffflsXZEi2p556CgDQsWNHTJs2Tfr9dPLkyXjzzTexfv16PPPMM/jTn/6EoiJJRieAu+++29ATAgDatWuHG264AVOnTsWaNWtQW1tr6CWbDAMGDDDddvTRR+N//ud/cP311yf9donSKS2f+sE30d27d+suDzaiOfbYY1FVVaXbFox+ymriERHJWJZLYiZDyhxoFpv8AW1T3BMACKx8CtfgNWYyxPKTpdJkYj7jQQbhC7XsqWwIMmSgJ0Oyy0rFMk8rBhnsSnzlgpLV+FlkWS5JUVBscu5simLoFWJWLklcdJpIuaR41+ZbTVgFlTkVy0bYVsRySf5sqGmThtWXMoZMhtLuoX9LyyX53YA/9sbP4hlOVeNnTVPT0vgZqrGpI3syUKFKTU8GsVwSMxkoO9xwww2m24YOHYrjjjsOQKApc1Dw34qi4MYbbzS9/rhx40KT0uHXFw0YMACDBg0y3R68DZ/PF1fT5lTYt28fvv/+e6xduzb0X8eOHQEAq1evTtnt7ty5E99++y0A4PLLL0dFRYV0P4fDEXpsa2pqLCuhXH311abbgo+LpmnYvHlzvMOO24YNG/D0009jwYIFab9tomRKS5Ah2BDmww8/1F3+n//8B4qiYOTIkYbrBAMSnTt3Tv0AiSgvWDd+5pRBqhwU+jG0LbIlvR68jNj8ttFj7MkQiwqTEkNFabgvVoyNnyP3ZEh1JoOs+k/yMxmifzTdwpxGVGOR7JKsngyiMstySZEyGfTXNS2XZOjJEMXATEgnXaOY0I+mJ0N8TZ8B7XDj53DZkckgk9qBaZpm6Mmga/xsUi5J0+Jo/GzoyZAc0obMaejJICuXFG/mDlGus+rJ0GSyOCdin5ZUvI6JkmDIkCGW24cOHQoA+O677+DxBILywfI2ffr0CU2sy7hcLpx88sm66yQyBgBYs2aN5b6ptGjRIlxxxRVo3749OnXqhKOOOgoDBgwI/RfsW7B/f+oybsLP4ymnnGK5b/h2q/Nv1ai6Xbt2oX/X19dHM8SYaZqm+8/v92PPnj34z3/+gxNPPBFLlizB2WefjTfeeCMlt0+UDmn51B8zZgw0TcOMGTPwj3/8A2vXrsU999yDdevWAQg0YBEFI5Ddu3c3bCMikvFa1OqoN1n9S4k7IPRjSEepJMAYZGiQpPYrMeQyiCvGgxKZrE0GY7kk4z7pL5eUnEwG2eReUEw9GYRZj2iCDLI9ZM2gkyHexs92mzHDRnysg8T5oIQyGWQVgKK4XjQ9GeINMgCHyyWFyY539fSvg9e89dB8jbrL9OWSZEEGt6HxczSZDBGbvMYrTT0ZpMGMaDDKQAXAKpMh+sbP+r8NgTwGGShLdOrUyXJ7cHGrpmmoqakBABw8eDCq6wIIlTYKXieRMUQ6TipNmjQJp512GmbPnh1xDM3NzSkbR/htRzpv4WWlrMZcWlpqui28tLvfn57SijabDZ06dcIll1yCL774AkcddRQ8Hg9uvPHGjD3+RIlKSy2iu+66C9OnT8euXbtw11136bYNGzYMZ5xxhuE6c+bMgaIoEaO9RERBVhWRzCbmKHEHmvXntn0amj4DsnJJxsc4pp4MJhPzVhPh6SAGOTQE6qSHT/alvVyS5JzEFWRIxmBgLJcU792P72qRZyNLHIFwl2xPu6KgSPJtTEFgQrdCLJdk2vhZ7MkQcVim5JkMka8XTU+GTqXxPzcVQyZDNswES1bBa1rSntsyYhYDANhLuraOSFECTZ3VsKCC6gYMPRmsMxlk5zdV5ZJSlslgizPIQFQA4unJIGa1GcsliWXPWC4pVuUuBc+MljcOzkfi9/lUSeT7fLJ+C2T6N0Ukn376KSZPngwA6Nu3L+655x6cdtpp6NmzJ8rKykKlzCdOnIiHHnoobePK9vOWDOXl5bj99tvxm9/8BvX19XjjjTcwYcKETA+LKGZpCTJUVlbik08+wbXXXqurkXb66afjtddeM+y/evVqVFdXQ1EU/OxnP0vHEIkoD1iVS2r0avCrGuwZLn2Tjw4I5ZIylclQ71ET6rdamsisbArJVqT7VMB1+He7qmmoF8qBtUnxD7aklUuyuEoiPRnizWSwxfH+EM04bYqCEocirXFttwFOyWiCQ4k2k8HQkyGBHhnxZjJYrYoNij+TwVguKTtiDOnPZPA36Zs+K64qKI4S/WX2ImhhQQZZuaRImQyy85u6ngypafwsz5iQ7Ab9o5YNTy2iVLN6z2422Rix8TMzGRJmU5S0NEIuNHv27EGPHj0stwOBCe1gv9BgCZ3gNivBct/hZXfMbiOa7eJxwlfaq6qq+ztcY2Oj9PJoBMsgVVVVYcmSJaYlotKxyj78/kc6b+G9X63Of7YLL+eUyXJZRIlI26d+//79sXz5cmzatAmLFi3CDz/8gPnz56Nbt27S/WfOnInnn38eZ555ZrqGSEQ5TNM0y0wGAKg3WZVFiTkolEtql65MBqEEjazxcyyydZWMLPYRvvqwwWO836nvySDLZEjpTVpyxxFkkPdkSNKAJMpMSiY5TDIZgmMRs1LMgwzZkMkQRbmk0gTKJQnTW9nQk0Feki3FQQaLps9Bir1YPyJJ4+fImQzGy5JWLcnQkNmYyZCMxs+Kon9xyXoyyCT2aUKUG+LJZIjc+FkMFjKTgbJDdXV1VNv79esHlyvw+Xj88ccDADZv3ox9+/aZXtfr9WLlypW66yQyBtlxwhsfB8s5yXz33XeWt2Hlm2++AQCcccYZlj0oli9fbnmcZPymCr//S5cutdx32bJl0uvlGp/PJ/03US5J+9KCPn36YNiwYejdu7fpPieeeCKuv/56XH/99XA6I9eLJSKKpkwH+zKkhrFcUpoyGYSJ9EavCnFyLzvDBrExy2QIkk06p74ng/GyeDIZksVQLineTIY47kK0U5GlspMG854MwawrMZOh3qNJy9gYMhkS6skQXyNcfxRvsZ3izWTQNNg0/Q+uaN73U06a9pHagYnlknT9GEIX6vsyaP4WaGpsmQyyhzNlPRmgSm4xBZkMqvxHu3E1duI3TZTtrN5Dm8wyGSL0aTEG8pjJQNnhhRdeMN1WXV0dahg8evTo0OXBf2uahpkzZ5pe/4033kBtba3h+qI1a9aEghEyzz//PADAbrdj1KhRum19+vQJ/dtqkv9f//qX6bZIghPbVtkQK1eujDjpX1wcWOjgdrvjHku3bt3Qv39/AMDs2bPR0NAg3c/v92PWrFkAAhkYAwcOjPs2My38cbXKuiHKZmkpl/SnP/0JAHDHHXegQ4fo6gvW1NTgySefBBCo+UZE+emHWi/mbWs5PEEcv2gmm15c14AeFXaM7lmCbuXRvf35VQ0fb23GwRYVP+tVgk4RVuHubPDhvz82o86kbno4RQH6VjpxTq+SnC3jpGmasfFzhjIZatyqYZIzS5MTYiIrTbS7yR9a4V4rBBnKHEpCE8zRjSn1PRm21fvw5MpaOG0KBnUuwpAuxma2AHDIreLFb/U/POINMthT+IQpM0ktsCuKNEATymQQSl9pAP5vZZ0hU2FrvX7yNNGG5WL5mFfXN0QsKfbFzsg/JjuElVPTVC+avn0K3gMrQivH7WU9Udb/LtglE+diT4Zpq2pxbf8KnNWzWDfRte6AB4t3uk3LfXQsteO83qWmzd5jYzwntYtvDvREENgc5SjucwWKuhp7kUXSvOUNuLe/D031wHfgK9026bkSmj83rvkr/M07sco1Futco+FCE36q+tFWcluapmHBjhYs3+MxbEvadKGQpdCy9U1Dz4hUlEvy7l+GmnlXoPyEB+Bsd0LrbsLVnlpdj/P7lGDUEcVZm+WWTr66TWj6bgbspd1ResztUKJoGk7p4969AC2bX4PqrTfd5wd/LyzxDkaLFpj8sxW1x27bkab7N0kyGaQB7t3zcejrf0HzBxrA+mr0JT4UsS8KUYa8++67mD17Ni6//HLd5Q0NDbj11lsBBEoSBf8NABdffDG6deuGnTt3YsqUKTjvvPMwYMAA3fW3bduGe+65B0CgsfANN9xgOY4JEyZg3rx5KCsr013+6quv4v333w/dbteuXXXbhw8fDofDAZ/Ph8cffxxnn3224fPpkUce0a3qj1W/fv2wfv16fPHFF9i4cSN+8pOf6Lbv27cP1157bcTjdO3aFevXr8emTZviHgsA3Hnnnbjrrruwb98+/PKXvwwFYcJNnjwZ69atAwDccsstKCqS/17Idlu3bsVTTz0V+vv888/P4GiI4peWIMOkSZOgKAouu+yyqIMMBw8eDF2PQQai/FTT4seDi2uQqgSDUqEG+tf7Pfh6P7BwRwueOrNDVCuvX1nfgLmbAz+cPtvWjH+cZX49t1/DxC9rDPXxrSzc4cbBFhXX9C+P+jrZpN5rLFOVqZ4M0dSDz0WyCf2Ji2vw6vkdYVOUtDd9BuSZDMkOMtR6tNCk9efbW/A/QypxcifjD4epyw4ZHntnnEGW1GYymJRLsgHFFkGGCklWypJdkSfzEw00KYp+Qf5Xe40TzrEqdyq6jI76Ff+Dxm/+ZtjPvW0OOlz0teHHs1guye0Hnl1bjwavip//JPBj/cc6H/689FDEwPOa/R5MGZGMur3G89yy5d+mezd9/yw6jF0GZ/voV9o1b30Th+aNM90uy2QQyyV59szHatcYzKp8LnTZ0jovHm/yG0pYffJjC55dK5+sTFb8UiyX5Dv0jWSnFDR+BtCyZTZafnwLnS77EfbSLtKr/Vjvwz+/rkezT8P5fUoTH0cO03xN2D93KDR3oAa3v3Er2gx5LMOjoiBvzRoc/Hi0MUgXZp+9D/5W9Rf4lLD3BR8AmJcPa/RpgSb2Ye/DsiStuiW3osRvNZHITAbKDoMHD8ZVV12F+fPn47LLLkObNm3w9ddf469//Ss2bNgAIDCpfcIJrQFol8uFGTNm4IILLkBdXR1GjBiBe++9F2eddRbsdjsWL16MqVOnYu/evQCARx991HK+a/DgwVi+fDkGDx6MP/zhDxgwYABqa2vxxhtv4OmnnwYQKIv06KOPGq7bqVMnjBs3Dq+99ho++ugjXHjhhbjzzjvRuXNn/Pjjj3jppZfwn//8B8OHD8fixYvjOkfXXXcd5syZg8bGRowcORL/8z//g0GDBgEAFi9ejL/97W/YvXs3hg0bhi+//NL0OMOHD8fnn3+O6upqTJ06Feedd14oqFJSUoLu3Y1lHmVuu+02vPLKK/jyyy8xc+ZMbN26FXfccQf69OmDXbt24fnnn8ebb74JADjyyCPxv//7v3Hd73QJZssEqaqKAwcOYOHChfj73/+OAwcOAACuvvpqnHTSSRkYIVHi0hJkICKSWbXPk7IAgwKgS5kdP9QaSyPUeTRsPOTFse2t61EDCAUYgEDN/8+3NeOc3vIJh/UHPTEFGIKW73HnbJDhkCRjo20aJrkBRLUKWTZ5a+WMHsX4fFtL6O/j22d+tabTFpiIDp9I1wBsb/CjZ4UDDcJzrsJkMjuZSiRRhjKTckBW+lRG/zVkxR6PIchwsMWPzXXG17iY5SLTpcx42/FMoA7uXIQPt7S+T5g95cxKWJU4FOm5Kz6ciuCwKah0KaiN8b2lJMFG5kV2Bc2SRtWJEDPBWrbNke7nO7QWatMO2MuOaL1Q86FIk6fKV+92h4IMa/Z7osps23jIh3qPKg3ixEJxxDgBrfnh3vnfmIIM7u1zLbfbS40p9YqrreGyr4vG6P72wol1Bz0YWapvGr1ij3kQK55goozirIi8j6Ms4j6R2Bwmt6N60bBmKipPeQJA4LOiUfJ8X7nXU/BBhuatb4YCDADQ+M3fGGTIIp6dn1oGGADge+dp+gBDFFQtsHimOOyzRNbCwRahz4nizM3vt5R/Zs+ejbPOOgvTp0/H9OnTDdsvvfRS/O1vxoUPY8aMwcyZM3Hrrbeivr4eEydONCyCtdvteOihh3D77bdbjmHMmDEYM2YMJk+eLM14aNOmDd59913T0uKPP/44li9fju+//x7vvfce3nvvPd32K6+8EjfffLNlySYrl112GW644QbMnDkTO3fuxC9/+Uvddrvdjscffxw1NTWWQYbbb78d//jHP3Dw4EHcd999uO+++0LbRo4ciXnz5kU1Hrvdjvfeew8XXnghFi1ahM8++wyfffaZYb/+/fvjgw8+QHl5dr/fiFkwMldccQWee+65iPsRZausXVrg9Qa+LLEnA1H+2t0YXQPGeAzuXITRPUtMt8fbn2FbvfmY9zfHd8xoSitlqxafsRZ+qkv1BFW4bDipo3mgqGeFHd3KY0vTH92zRDdJfEYP8+dQutgUBadKSgUFnzdi48Z09EY4qq1T13ujbZENx8URkBnSpQhdy6J7jGT1oc0aU57aLXKqdK82DhxT1TrmM3oUx1Vv/qIjS3UT+nef3Ea637BuxYY175UuBce2d6FvpQNdhAn44V1b78Np3WObHGrjUjAgiiCqlfDbT5aRR+jvhxo2cSkKlt4I/e2tx8nud6T71oS9h4pNwK2I71/xsBVVwdXt7Jiuo/ljq1GseeXBFQBQnJUo7nGB4fKSPlcaLjtg72m4TJYB1mBSvvCEDk5DL5x4Ffe61DJTwdl+MOzlvRO+HVeXkbCVyLMVvAdaG2wOM3nP8GRDd/EM89dtNFymic19KWPE90oZb4wBhiDxM1b2alAs8/kUFPc2z8IiSqc+ffpgxYoVuP/++9G/f3+UlpaisrISP/3pT/Hyyy/jjTfegMMhX/xy/fXXY/369fjVr36F/v37o6ysDCUlJTjyyCNxyy23YOXKlbqJdCuTJk3Chx9+iDFjxqBz585wuVzo3bs37rjjDnzzzTcYOXKk6XU7d+6MpUuX4g9/+AP69euHoqIitGvXLnQfXnvtNdjtiZUoe/755/HSSy/h9NNPR0VFBYqKitCrVy9ce+21WLx4MX71q19FPEb37t2xbNky3HTTTfjJT34S6tEQj3bt2mHBggV48cUXce6556Jz585wOp1o3749Ro0ahWnTpmHVqlXo1atX3LeRKYqioKKiAsceeyxuuukmzJ8/H//6179ytuQTEZDFmQyrVq0CAMuu9kSU2/Y06Sfsj6pyon+7xAOLnUvtOL17MVx2Be2KbdhQ48VbG5t0+zSYTE5GIk7ohtvfrL8/3cvtGNzZ+CWhwaPi07DV8o2+QCPXpDXUTKMWYUKvOMHV07H6zcBKLNzRgn3Cua8qsuG07rFPGv+krRN/HlGF1fs8OLLSiRMsghjpdNsJbfDFzn26y4ITgV7hOZmOIE+xQ8GfR1Rh0U43NE3DsK7FcWUy2BQFU0ZU4YsdLagssqFXGweW7nKjyRfINvrmQOvqTNmqetllk4e1xTHtonvcHjilLRbsaEGRTcGI7vF9oW9XbMf/O70dVuxxo2cbB44zmdw/oYMLk4dV4ev9bnhVoMypYFjX4lCGw+ThVVi0swV1bhW92zhwStgk/zX9y9G30okf6+VNa8OFjptgRtGNx1fgmHZObG+ILhi8o8FnqOFf7lRwVs8S2AD0q3JikPB+qFnUD4cwial6ajGyeQY6+Lfii5LxWO86M7St1q2G3kPFqc+uZXYMPRyke2eT/nNAfO3Eq+qM/6Dlh1fha9gs3d6y9S346zaEXRLb7YpBCVfnn8LZaThszjYo7n0Z7GXGsgOlx9wJe3lvePZ9GTqXNXuPNfRWlp0C8XXVscSGi44sw+lxvkZkirqdhfbnfQH3jo+gqfr7Zy89AiV9r0pKLwRbURXaj1mCfW/0lmxtPf4Nx1Xg6ConXljXoPt+oDLIAFtJZ8NlmvsglOLoSuBSaomNlu1t+gWCeGEcjQOBsLfb9v6tOOlw0LbsuN/C6XDhuPYu/GnJId31mnwa2scwFkf7gSg6HHRVbC4UdRsNV+fTYzgCUWpVVVVhypQpmDJlSszX7d27N5544omkjOOcc87BOeecE9d1q6qqMHXqVEydOlW6fdSoUdBktc0OmzVrVqhRsplrrrkG11xzjen2SZMmYdKkSZbHOPLII/Hss89a7gPAcqxBNpsN1157bVT9IETRjBWIfN7iFW3WBlG+SEmQ4cUXX5Re/s477+g6psu43W5s2rQJzz//PBRFwZAhQ1IxRCLKAmKQ4fTuRTi7V3LLEpzcqQgndyrCD7U+rN7XOgEWb6Npq4WvYibDCR1cuOoYY9rmwRa/LsgABIIeYoPXXOAWTkiaej633p5Dwc96JTfboG+lE30rsyuLzmlX8JO2Dmw81DrJHCzNJa5ETrThb7TaFdtxQd/EX69lTpuuBNnFPwl8NfloS1MUQQb9na8qskUdYAACWR9WGU/R6lRqx3lRlFQ5up0TR5sEUtsW2TDG5Bg2RYk5myFRDpuCnx4R/bn5cpexUfDp3Yul74HA4Ylz1bzPgzhxpnnroAA43vMRjvCtxqT2q0Pb/BrQ4NHQpkgxTAr3buMIjWHOD026SfVkrVK3OctRevQE0+3+uo36IEOsP2KFSfiiHmNRfvy9lldRFAXFPcaiuMdYAIDHr6H2w32W1wkSX2s3HFdhCBAlg6vTMLg6DUv6cUWO8l6ArchwHpWwTIrg892vAf/8unU2luv1Aw2CRf7mXbAxyJAdVH3w2Vl1AtoMelh/2aZGYH1j6O9Ovu9xQWNgkrXjEdfD0aYfgECZvfDXv/hdOVImg6vTaYbbJiIiosKRkiDD+PHjDauPNE3DH//4x6iPoWkabDZbVOlYRJSb9gjlkjqXpm6Gukyo0W5WZiUSv8Xk0IEW/f1pXyK/PxWSFd8NHtW0Zns2EzMZiuy5dx9yhfi8CWYyiNk18TY9zjZiT4FoMhnSnUlDrRwxrjpXvXXWOwhBBtVTG/p3hbrfsPsht4o2RTZDP4bwl4PTFmgWHZS2ZvGGc5NYJoNii33CX8y0C1Iln2liGalE+3tkBWlpJuNl4tunn1EGQDF+l1GbdwNVkWtLUxqIPRFkj5f4vhgWPlObdwOHgwylQpChSSyXJH3rar1QsWVtkQQiIiJKg5TNBmmaFvpPdpnVf06nEyNGjMC7775rWZOOiHJXg0c1NFlMaZBBWN4dd5DBYsJBzGToUCJ/i3XaFUPzzHgaRmcDcTKKk7ypI9ZCbzjcV0Sce09XJkOqlQh3JJogQ15MhuYoWWzLKu6geSIEGVQxk6E1yGCHD+U2fR3yYBN6w2Ra2CDEAJwnhv4NiUkwyCCswIc99iDD3qboyl5pmoYm4XVVmgevK0UWZJBcZheetGl7imQ14xcff/PuDIyDZMSsr+iCDK3ZD/6mXaF/l4oLcgyfu8YXhK4ng+S2iYiIqHCkZLnB5s2tNWk1TUPfvn2hKAo++ugj9OvXz/R6iqKguLgY7du3T7hhDRFlt93ChIdNATqYrPxPBjGTwayxZSRmmQyqphkzGSxqB1W4FLibW48V73gyzdCTgW/dKVNueA4Hzn0mejKkgxiwapEsO2eQIXvI+o1bPRqW/RgAiBObYlCirb0FDWprOaeawykK4nu0XZfJoCB8kixZPRkiE85ErOWSkpDJsK9Z/hkjjsTtN16WH8Hj6KJg4vNYlulRcCRNntWwiWnKMCHIoEQVZGi9jhoWMAosyGnd1hRjuSQGGYgon+zYsQM1NTUxX6+srAx9+vRJwYiIsl9Kggxmnd27deuWk13fiSj5xH4MHUtsKZ0cTVa5JLPyGnUezbDNLJMBAMqdNl3mQ64GGdwsl5Q2FWImQ6hckn6/WMvWZCsxYCCurgYYZMgmthjfvyOVSxJX56phmQwAUOn0Yntryw6LTIbWf4uV6nK2XFIcmQz7TMoliXPosmBeaT6kR8VbLokxBnmQgZkM2UPMZJCULBKDZUrYYxqelSJmMoifuxHLJTHIQER55IEHHsALL7wQ8/VGjhzJhs9UsNJSOFFVc3PyjIhSJ539GIBAc9lwcTd+Nln5Kta7tiuBRq5mxFXpLJdEkZg9Z8TV2M48+Y0vBgy8auD1Fx6MZJAhe8SeyRBjuSSPGGTQv4fXmgQZwsvfOIVBJqvxc2RCn7IsKpckjkQWzMuL9/VoyyUJUQZmMkAaZGC5pCwSV7mk8EyG1qyUeBbk6DMZ2JOBssukSZMwadKkTA9DV0KciCif5cHSJCLKRWImQ+fS1P4wESdo485kMLnaASHI0K7YpqsFLjKsSvfkZjDWEGSQzTRSUhh6MhRYJgNgfL4ZG9Tya02mSIMMFs/FiEEGoVySmPnQ1qXfu+ZwkEEsl6TPZBACV+lapi6eB8mkraWklEuKMpNBOCd2xZgBkpuMz0VZnwbxEmYyAJqkJ0P4xDRllpj1FV25pNaeDOFZKWLWklguSfbOpYRfasuTVQ5ERABmzZoVdV/Z8P+YxUCFLG0/G5qamtDU1GS6/cknn8Tpp5+O/v374/zzz8ecOXPSNTQiygBjkCE3Mhn8ZpkMLWLTZ+v7Uy6Mpz5HyyUZejLkw4rXLFXhlAemxOya/JgQlAcZxMyFJiHCwkyGzLEKqsqokXoyaNaZDG2FBjCHWmIvl5S+t93EejIkpVxStJkMQgC+1KFYBotyhjSwY7xfNuE5krZkl2zGTIbsFlUmgxB8DctksGr8bMhsYrkkIiIispCWqYg5c+agoqICXbt2RX298UfljTfeiF//+tdYvHgxNmzYgI8++ggXX3wxHn744XQMj4gywBBkKEt1kEHIZPBpcaWumq1qFDMZrPoxAIHGz+Ea4sysyDRjT4Y8mIzKUuWS54ymaYZySWK5j1xVZFcMU4BikIGZNNkj2eWStLBySZrqh+Zr0G1vW6yfaD8UymQwH5chkyFNM8jGZ3Ji5ZJiDTK0+DTUmpTkEz8GxddY3gSONZ/xMlm5JCGgwkwGGCexwZ4MWUWNIsgg/G0LCxwZGz+3ErN+pY2fw99EGGQgIiIqaGkJMnz00UfQNA0XXnghKioqdNu++OILzJo1CwBQWlqKk08+GcXFxdA0DRMnTsTatWvTMUQiSiOPX8NBYeV/ujMZVM04mRIN854M+vvTvji2TIa8KZeULxNSWUh8zvgPP4fFckn5kslgUxTD80l8zbInQ/aQl0sy31/zRF8uSZNkPbQrLdH93dqTwTzo5hIG6ZUv7k8+w2R2YpkMiLFcktgzSD+SwihBpqle44XSIIP+b5WpDNJMBs1zCJqvOQODIZFYLkk20e8XHkIlvCeDe18oqGvMZNBfURpk0P3BngxERESFLC2/HJYsWQJFUXDGGWcYts2YMQMA0K1bN3z77bdYsWIF1q9fjx49ekBVVTz99NPpGCIRpZGsAWXn0tS+HYk9GYD4+jKIE7pBB1rETIYIQQZhVXp9jmYyGMolcSV5yojZL0Agm0EMfDnyJJMBMD6fmoWZEgYZsoctxued2GPBIGziTPXWGja3LSvT/d3o0+Dxa5La463E+fJ0ZTIkWi4JCWYymPVjAGSNn/O0BJksk0HyM0h8GjOTAaY9RPzNe9I8EJISntuKpC+CVeNnaCrUlr0AJEEG8bspyyURERGRhbQEGfbuDXxxOfroow3bPvzwQyiKgrvvvhtHHHEEAKBHjx64++67oWka5s+fn44hElEaiaWSKotsKE7xaslih7FgRTx9GcwmHMRMhojlkvIkk0Esl8QgQ+oU2xXDKtsGryrJZMifx0Cc4DSUS/IzyJAtZC99qzl8WXaCbnt4uSSPGGRQUFVWbrjOIbdqeI8Or7GfqXJJxpSO6G9XU32GSd5YGz/LAvuh40do/Jw3rynZRDnLJUVFMwkysGRSloimJ4PwnmMTCigFH0tDuSThM1eeyRB2KRs/ExERFbS0BBn27dsHAIZSSd988w32798PALjooot02wYPHgwA2Lp1axpGSETptDvNTZ+BQOkVsS9DPH0Q/JIVqF6/FqoHHhSxXJJLaPyco0EGlktKH0VRpM8bcaI0T6qbADBOcIrPN7EpZb6UdslF8iCD+XtspJ4M4RNn4r6Ksw3KnHZDabBDbtVQFiS8IbWhXFKmGj/HEmQQSyUBQMyZDOZ3VBxJszdPgwwSiizIYGj8zCiDsaL/4Uubd0kvp/SKplySGE+1C+8hwUbexkyGyOWSdJeyXBIREVFBS8uvcbs98GXn4MGDusu/+OILAEDHjh0NWQ5VVVUAgJaWljSMkIjSaU9j+oMMgLEvQ1yZDJKriKWSgMiZDGL5Jo8a6FWRa8RVr0V5PCGVDcTnTYNHg9haJJ/KJYkTnGJQoSVfS7vkIHEFOGCdyRCxXFLYxKYqZDIorjZQFAVti/Tvs4fcqqHHQHhcIWPlksRzE8vEtWoMMsRaLimWTAZj4C6fX1PG+ya+fbIlAyzKJTGTISsIjZ8VyUS/oVySU9/TJhgwEhfjeMXvppL3LoXlkoiIiOiwtAQZunfvDgBYtWqV7vK5c+dCURScfvrphuvU1gZ+UHbo0CHl4yOi9BLLJaUvyKD/8RRfTwbjdQ60GCc6SyN0361wGbc3pG9ZbdIYMhlYLimlDGW2vCq8/sLMZPCrGtx+6/0pfcQV4ECEckmRGj+Hl0sSejLYnJUAIAky+CWZDK3/donlktIW2E1uJkOs5ZJi6cmQt+WSpIyfuTZJuSSt0LMZWC4pu0WVySB8T3CIQYbDmQySLxDhgcfImQwMMhARERWytExFnH766dA0DdOmTQuVR6qursaHH34IADjnnHMM1/n2228BAF26dEnHEIkojcQgQ5c0BRnEVeBxBRkkV9kvTOC0L4781lrmNPaIqPfk1kSGqmmG7AsGGVJL1jBcLOGVTz0ZxF4t4T0ZxMlQIN8nRLObODkLRAgy+CL0ZAhv/CwEJBRXGwCyIIOkJ0PYuMTXRvqq1OlvN5ZJ66SUS7LKZBD+Fhu95vNrSlONzaBlH2G59cmcAqaZDCyXlA0M5ZKiafwsBBn8TYHHslTyeg8vmRSxJwODDERERAUtLUGGO+64AzabDZs3b0bfvn0xePBgjBw5Ej6fD1VVVbjiiisM1/nss8+gKAqOPfbYdAyRiNJE1TRD6YbOZblTLkmWyWBs+hz5/sh6RORaXwaP3/iDkz0ZUqtc0jBcfBrn00MgTng0h5VHEptAA/k9IZrtpD0ZLKZnxcCB7NpB5pkM+vfaQy2qYcVu+LjEBDPZ+3lKJND4OdFySc0+FfUWAXVj42cxMy+PUqNEWnRBBlmZxEKimfZkYCZDVtDEckmRgwwOZ6l+++HH0mlXICbaRl6QE974mT0ZiIiICllafjkMHDgQjzzyCBRFQUNDA7766iu0tLTA6XTimWeeMTSErq2txdy5cwEAo0aNSscQiShNDjQbV5pmqlxSfI2fjZeJPRki9WMIEieM4wl6ZJJsJTkzGVJLLLPV4FUNE6X51JNBDFqFBxZkQQYGuTJH3vjZfP+IjZ/DyiWJ/RsU1+EgQ7Exk8HQ4DQ8yGBo/JyeIIMxby2RTAYlpuaq+5oifa7oxyK+rvI5cCfLZJBl5ORgu6TkYrmk7BZP42dnme7v8P4aYrnPxrDgviwJiz0ZiIiIKChtyw1+85vfYPTo0XjjjTewe/dudO3aFb/4xS8MDZ8BYN68eRgyZAgAYOzYsekaIhGlgVgqqdiuoI0rPZMYhkwGX+yT+rI5qQNCJkP74uh+ZJW7FKCp9W+r1abZSGy6C7Dxc6qJJb/qPZoxkyGPFh6LE5xWQYYiuyKdIKT0iKVckqap0LzW5ZLCJ840j5jJYF4uSQyyWZZLMq8ilGTxN37WxEwGexGUGJ7nVv0YZEMppCADVK/hov/P3pmHx3T2b/w+M5mZLLInSFBB7ZTYahel9rVFf3QRraUoRemi2lerLW+9uuCNWlqhXoqiKFr7XsS+q5ZQa4gEWSfJnN8fYyZznrPMmclkkky+n+tymZz1mTNnzpzzfJ/7vqWLZTykQqJLDXJ2SRlkl1QscCKTQasrI5xvY33l68Uh1eayk2lzb0p2SQRBEARBKOFWTWP9+vVRv359u8v17t0bvXv3dkOLCIJwN6LQZz+tQx0mBcEVwc9SsJkMapUMbIhvSbNLYkN3OUAksydcSxkVSgZPymRQCn7OzBUHrhNFhyNKBj43HWx3FacPBm9MyV/G1i6JKTJYlAzBEkWGEEbdYPt1KJF2SYySwdHQZ9aekIVtSakqMqi1SypZ9X/XI6dkyLoLnjeB4+iHvygRZTJIdPSz57C4yJCvZBDdK0uFkQlboLhvgiAIgiBKD3RXSBCEWxEVGdxklQQUjj0Rz/NOZTIAEh3GJazIkMU8eHp7cW4rGJVW/FnLLyMPVlDiSXZJjigZPLoztASglbijZEfPWpBSMWj0QczKCnZJTzIZAlUEPwszGdjgZ3f1HhfELilLuCVHQ59JySCLpF2SxPXTbadJsUXm3sSUAz47RXoe4T6Y81hVJoNeWGTgc9NhykkDoJxfJmmXZDORo0wGopgRHx8PjjM/nyQmJhZ1c6zs3r3b2q7du3cXdXPcSmxsLDiOQ1RUVFE3xeMpbud/TEwMOI4jS3wPp8juBHiex5UrV/DgwQMAQEhICKpWrUodVATh4dxJL7oiQ2EoGTJyeVE2QajKIoM/YxNV4uySmDRMA+UxFDrsw/9Dozhalx2tXZJhQ2epyFB8kTr6skoGidBnji0yKNkl6aXtkvJ44GG28LokUDKIMhmk2+dy2HtbR+ySWCWD1tuhXSfZyWSwbYmJ50XFYwp+BvIc+Lw8EV5GyQAAeZm3ofEOdWNrCBFOZTIEiJfJvA2NrrrotzTDjl2SvX0TBEEQBFF6cPuTw++//46ePXsiICAANWrUQPPmzdG8eXPUqFEDAQEB6NWrF7Zu3eruZhEE4SaKUsnAdtCmuaCHiVUxcABCDOourSU9+Jm1S6LQ58KHDX6WCj/2JCWDKPg5j4oMxRWpQSJyRQZWmQCtt7jznLdVMjB2SU+UDGyRAQAeZAmvo1pBJoNw2Ry3+eAUQMkgkcngCHaVDDavs/N4Ucs8+XvFS2QySF0+S72Sge3EtoHCn4sekV2ShJpAlMngpQen8xcu8+SzZAfkZNixS6JMBoIonkydOtU6ip0gCgtSphAsbisyGI1GDBo0CN26dcPmzZuRnp4OnucF/9LT07Fp0yZ07doVgwYNgtFodFfzCIJwAzzPS2YyuAspJQNfwBGKbB5DkEEjGi0rh1SIb0mCDX5mO4QJ18OqX6TwpIHHvmyRwaYQR0WG4o+8XZKwyKDRBQCMr7vt6GnJ5WEuqLEWYuweNTabZe2ScorKLsmR350CZjLcY35z2RwL26ZIFS09+nslYZekleiMoUwGJSUDFRmKHKbIoMYuScMBGp/ygmmWIG9FuyTpBijumyCKktjYWGtfE3WCEkTRsnv3bvA8X+oswkobbrNLGjRoENatWwee5+Hl5YXnn38ezz77LMqXN9/g3LlzB0eOHMG2bduQk5ODlStXIjc3F6tWrXJXEwmCKGQeG3lRJ0b5IsxkMPFAVh5foE6U5Czhw12oytBnQDwqvaQFP7M2UaRkKHzYc1gKj1IyMOeU0QTkmXhoNRwVGUoAsnZJTCYDpwsQd07ZKhlkgp8Bcy7D4xz5kda235jiYpfEy3ncSyC2S1JfZEjPMYlCW8v6apGSLd1pWNqKDLyEXZLU5TOvtEsZFIoMpszbbmwIIYkTdkkaDtD6lEfeo8v5yzwpGLHFfYFdkkSBVKBkoEwGgiAIgijVuOVOYNOmTVi7di04jkP79u3xww8/oHLlypLLXr9+Ha+//jp27tyJNWvWYPPmzejWrZs7mkkQRCFzhxlRqeWAUG/3DbtmlQyAWc3gI3MlVKNyYO2SQr3VF01Ewc8lzC6J9e42eHBnVHFBr+Wg15g72+XwpI/BV+I7m5nHo4yGEwePSyUPE0WKWrskTucv7hh70nHG87xEJkN+kSHIoMGNNPkig9am11hkl1QClAwFsUtiVQwcgDAfDS7ZZPXa/s6xRQadxrOKliLILkkVSkUxsksqekR2SZJFBsYuieOg8YkQTLOoUtjfXVu7JKmvAtklEQRBEARhwS1P5PHx8QCABg0a4LfffpMtMADAU089hS1btqBhw4YAgMWLF7uhhQRBuAPWKincRyvoACpsfLw4kTO2Use+XL+C7cMaa5cU5oCSgbVLSnOBfZM7ySYlQ5HAKmBYWEuYkozUOWUpLmQydl1SBQmiaJG7ukrbJbFFhidr52WJAno5m9DSYDuFaoGSgbVLKgGZDAWxS7rHFMFDvDWiY6CkZPBkFQMASbskDSe+TyjtRQaySyrmmFTYJTF/S9klWVQpfl4KdkkS3wXOZutkl0QUN+Lj4625BImJiaL5x44dwxtvvIEaNWrAz88P3t7eqFSpEho3bozRo0djw4YNis9mGzduRL9+/VCxYkUYDAaEhoaiRYsWmDFjBtLS0grU9kOHDmHKlCmIiYlB+fLlodfrERAQgDp16mDkyJE4f/684nv+5JNPrNMsx8D2n9TxyMvLw5IlS9CjRw9ERkZa31Pr1q3x1VdfITMz0267L1y4gNjYWFSqVMl6PAcNGoSEhASnj4U9du/ebX1fu3fvhslkwsKFC9GyZUuEhITAz88PDRo0wPTp05GVlWV3e2lpaZgxYwZatGiBkJAQGAwGVKxYEf369cOvv/6quG5MTAw4jkNMTAwA4NKlSxg+fDiqVKkCb29vREREYMCAATh06JDq96OEZbmpU6fafV8sJpMJO3fuxMSJE9GqVSuEhYVBp9MhKCgIDRs2xMSJE3H9+nXJdS2ZH0uWLAEAXLt2TfI8s4U9NnLs378fr776KqKiouDt7Y2goCBER0djypQpuHfvnux6Usdt1apV6NChA8LDw+Hj44OaNWvi3XffxYMHD9QfKMIh3KJkOHToEDiOwzvvvAOdTmd3eZ1Oh4kTJ+KVV15R/PIRBFGyKMo8BsDceeCr45BuI/22fa2WXBOgf9L0ZCZkNNRH/Xvyl7BvyszlS0xnqWgkuad3SBUT/HQa0XlniycN6Jc6pzKtRQYqchV35DIZTEZGyaAPENkCWUbnslZJ5uVtlQzK11zbTAa9KJPBPJK/sEMROY79UjqvZHDELikpU1zYZ9+qcpHBgy4mEkjZJQHma6htDTOvBBX/CwUlu6QMsksqcgpglyRYRoWSQaYBNvsmuySi5PD1119j4sSJMJmE17gbN27gxo0bOH78OOLi4vD48WOUKVNGsExWVpbVDtyWBw8e4NChQzh06BDmzJmDTZs2WQfPOkJ8fDyGDBkimp6Tk4MLFy7gwoULWLhwIWbPno1Ro0Y5vH0prl+/jl69euHUqVOC6Q8ePMCBAwdw4MABzJs3D5s2bUKNGjUkt7Fq1Sq89tpryM7Ov3e5ceMGVqxYgdWrV+O7775zSVuVMBqN6N69O3777TfB9NOnT+P06dNYtmwZduzYYbVtZzlx4gR69OiBW7duCabfvHkTa9aswZo1a/DCCy/gf//7H7y9vRXbsmXLFvTv3x/p6enWaXfu3MHq1auxZs0azJo1C+PGjXPujbqATz/9VFCMsvDw4UOcOnUKp06dwrx587Bs2TL07du30NtjMpkwduxY/Pe//xVMz87OxsmTJ3Hy5EnMnTsXq1evxvPPP293W6+++iqWLVsmmP7nn39i5syZWLduHfbt2yd7HhDO45anB0u1qU6dOqrXqVWrFgDg/v37hdImV2M0GrFo0SJ07twZERERMBgMKFOmDGrWrIkhQ4bg4MGDRd1Egihy7qYzRQY35jFYYNUDSkUGudGLthYbyaySwQH7J6kQ38dOFD2KCjaTwUCdvG5BKfxZy5mLaZ6ChuNExQO5IoPHj7ougbgik4HPERcZNDZKhkCD8jXXNsiX7TPn4aZQX1HPvgNFBqb4AkeUDKx60Fcr1lQIgp+FHS0e/52SUDIA5uuoLRT8THZJxRq2yKBRUWSAvF2SOPjZAbskiX0TRHHk9OnT1gJDlSpVMGvWLOzYsQMnTpzA3r17sXDhQgwaNAh+fn6S6w8ePNhaYGjQoAGWLl2KhIQE/P777xgyZAg4jsOtW7fQoUMH3Lx50+H25ebmIjg4GLGxsfjhhx+wb98+HD9+HL/++is+/fRThIWFIS8vD2+99RZ27twpWLdPnz44c+YMRo4caZ125swZ0b8KFSpY5ycnJ6N169Y4deoUDAYD3nrrLaxevRoJCQnYtWsXPvjgA/j6+uKvv/5C165d8fCh+N4sISEBL7/8MrKzs2EwGPD+++9j7969OHz4MGbPno2wsDCMHDkSJ0+edPh4OMKUKVPw22+/oVOnTli3bh2OHj2KdevWWTulz58/j549eyIvT2y1efPmTXTo0AG3bt0Cx3EYMmQIfv/9dxw9ehRLly5FgwYNAABr165FbGysYjtu3bqFQYMGwcvLC1988QUOHjyIgwcP4vPPP0dAQABMJhPGjx+PX375xdWHQDW5ubmIiIjAqFGj8OOPP+LAgQM4duwYfvnlF7z77rsoU6YMMjIyMGjQIFy4cEGw7qhRo3DmzBn07t0bABAZGSl5njnC+++/by0wVKlSBd999x2OHDmCXbt2Yfz48dDpdHj48CF69OghKoaxfPTRR1i2bBn69OmDtWvX4tixY9i8eTO6d+8OAPjrr78wfvx4h9pHqMMtww38/PyQmpqK5ORk1eukpJgNY319fQurWS7j2rVr6N69O86dOyeYbjQa8eeff+LPP/9EfHw8xowZg2+//bbQR8wRRHFFpGQogiKD+eEp/4E53YkcBEs/jInnRSPKwxxQMhi0HLyYEZOPjaYiOS7OIPbEp2ubO1AKf/ZE/3QfL05Q0LJ0hFKRofgjX2Rg7ZL8kccqFp50bLL5DdAYBKP5g+0UGWy/EnqJa1SOiXfD98aFdkmOZDIwRfCyPhqkKgS6lLbvFM+LMxkAS6E2/1iUerskhUwGsksqetRkMrBqHEm7pCeqFDb4OTuPR56Jh1bDydRH8yeSXZJrMPEmJGdnFHUz3EaowRcakeKvcPn5559hMpng5+eHP/74A+XKlRPMb9OmDYYOHYqHDx+K+qM2bdqEVatWAQA6dOiAzZs3Q6/XW+d36tQJLVq0wPDhw/HgwQNMmDABK1eudKh9Xbt2xaBBg0T7jo6ORvfu3TF27Fi0bdsWp0+fxr/+9S8899xz1mWCgoIQFBSEsmXLWqfVq1dPcX9jx47FP//8g8qVK2PXrl2oUqWKYH5MTAz69++PNm3a4MqVK/jyyy/x+eefC5YZNWoUcnNzodPpsHXrVrRt29Y6r1mzZnjhhRfQvHlzu53DBSUhIQHDhw/H/PnzrdMaN26MPn36YOjQofj+++9x9OhRzJ8/X6QCGTdunLUfcuHChXjjjTcE2xgwYAC6du2KXbt2YeXKlRg8eDC6du0q2Y7Lly8jMDAQf/zxB2rXrm2d3qJFC/Tu3RstW7bEo0eP8NZbb6F79+6qHF9czdChQ/Gvf/1LtO9GjRqhd+/eGDNmDJo3b46bN2/iiy++wI8//mhdpmzZsihbtiyCgoIAmN1o7J1nSpw5cwazZs0CYD5f9+3bZ902YD4HO3XqhO7du8NoNGL48OE4fPiw7PYOHjyIzz77DB9++KFgepcuXdClSxds3boVP//8M2bPno3w8HCn202IcUuRoWbNmjh8+DBWrlyJjh07qlrHciGuWbNmYTatwOTk5AgKDM888wwmTJiAmjVr4vHjx9i/fz9mzZqF9PR0zJkzB5GRkXj//feLuNUEUTQUjyKDeiWD3GBTi5IhNdsk6nxwxC6J4zj46zRIyc5/gE9TSvQtZogyGTy8Q6q4UEZByaBQfyix+HhxSLHpZ7V0hLJKGk/vEC2JqA9+DgCYDgZLx5lS6DNgDn5WwrauIJVXkpMH+BT63bDrgp8dskvKEP6ehPtq8ZD5jTEJlAyl7Dslo2RgTxOyS1LIrjKmgM/Ldui8JFwMm1mjxi5JA2j1TJEh+x54U56kZWdGLi+roqTgZ9eTnJ2BsiumFnUz3EbSwKkI9y5jf0EXcueOuUBao0YNUYHBlsDAQNE0y0hrnU6HxYsXCwoMFoYNG4ZVq1Zh+/btWLt2LW7fvo2IiAjRcnLYqgzk2vXpp5+iT58+2L9/P5KTkxEaGqp6+7YkJiZa+97mzp0rKjBYiI6OxujRo/Hll18iPj5eUGRISEjA0aNHAQAjRowQFBhs39OsWbPw0ksvOdVOtZQrVw5ff/215LxvvvkGGzZswL179xAXFycoMty6dcuqTunSpYugwGDBYDDghx9+QPXq1ZGbm4u5c+fKFhkA82h62wKDhbp16+LDDz/Ee++9h5s3b2L9+vXo16+fo2+1wERFRSnOr1ixIiZNmoRx48ZZ80kKa8D0vHnzrNZlixYtEhQYLHTp0gWvv/46Fi1ahCNHjiAhIQFNmzaV3F7jxo0xefJk0XSO4zBhwgRs3boVubm5+OOPP9CrVy+XvpfSjlu6I3r16gWe57F48WJrCLQSP/74I3744QdwHIc+ffoUevsKwvr1660FhhYtWuD48eMYPHgwmjdvjueffx6ffPIJ9uzZY60O/vvf/0ZurvRDDUF4Mlm5PFKzhQ+q7s5kAKRk4I4HP+c+eVq7z4Rq6jRAgEIHsHR7xOHPJQW2k5eUDO6BzfKwxROVDGzxytIRyvpEe7p/fElErnOWVTJwksHP0pkMtqHPgP0ig619mNRXx+iOYeqiB7LCt0vieV6kZAj30UIca5xPqSsyyGUysEWGklP7LxR4hSIDQGqGIsfkRCYDAI0v0+HJm2DKShLdJwP598rSdkm2f1AmA1EysHT4nz9/HkeOHFG9Xm5uLvbs2QPArFioVKmS7LLDhg2zrmMvvNce6enpSExMxLlz53D27FmcPXtWMPq8IOqATZs2IS8vD76+vood5gCsxYNbt24JAoG3b99ufS2VJWGhb9++kp3HrmTAgAGybihlypTBgAEDAADnzp2zFpsAc2iwxUJJqsBgISoqymq9ZLsOC8dxGDx4sOx2LLZagPD4FSWPHj3C1atXBeeZ5Vha5hUWlmNQt25dPPvss7LLWb5XtutIMWjQINmCSOPGja2vr1y54mhTCTu45Yl8zJgxiIiIAM/zeOONN9CjRw+sXbsWN2/eRE5ODnJzc3Hz5k2sXbsWPXr0QGxsLEwmEyIjI/HWW2+5o4lOY5u18MEHH0CrFd/YNW7cGD169AAApKamivzMCKI0kJQh/gEu7koGOSz2RveZDpxQb63Dfvj+euFl+HEJUjKwdkkGT++QKiYo2SV5qpLBFst5l8X4x5OSpvihNpNBo1fKZGCslRxUMmjsKBly3eKF4367pPQcXlQ0KOsrDn4uzUoGXjaTQfi+S71dkp0iA+UyFC1iuyRxR784+JmDxhAmUpCZMu9ArxEX2ixFfXtfBbJLIkoKAwcOhE6nQ3Z2Nlq1aoWePXviu+++w9mzZ8ErqNeuXLmCjAyzlZVSRyg7/+zZsw638f79+5g8eTJq1qwJf39/VKlSBfXq1UP9+vVRv359q7e8ZVlnsSgQMjIy4OXlBY7jZP9Z+rQACDroLd77er3emlsghU6nQ3R0tNNtVYPcyHYLzZo1s762zQyw/YzUfrYZGRmyndRVqlRBWFiY7DbCw8OtSgJHswtcybVr1zBmzBhERUUhMDAQVatWFZxnw4cPty5bWHm52dnZuHz5MgD7xz46OtpaYFP6XlkyfqUICQmxvn78+LHscoRzuC2T4ddff0XHjh2RkpKCLVu2YMuWLbLL8zyP4OBg/Prrr8U+k8FoNFpfV61aVXa5atWqSa5DEKUF1iop2KApkqBgtoM2rQBKhmRGyRDq43gPryPtKW6I7JJIyeAWlOySPFHJwHZ0ZuSa/aGzmX4V1keaKHoKYpdk6dhk7ZI4psjgpxNn29hie1mSEru4p67rfrukJKYIzgEI8dYo6BikigweWLW0xSSXycAsVtrtkhQyGQAqMhQ5TJGBkwx+FmcycBotNN7lYMq8bZ2el3kHOo6Dr47DY2P+OhmWATnMV4FjC1AU/EyUEGrVqoUVK1Zg2LBhSElJwa+//opff/0VABAWFoYuXbpg+PDhaNOmjWC9Bw8eWF/bZh5IUb58viWZ7XpqOHbsGDp37qw60zQzM9Oh7duSlJTk1HqWYguQ//5CQkIkB93aomRP5QrsfS62+7f9XFz92drbhqUtV69edfj8cBVbtmxBv379BJ+lEgU5z5Sw5GAA9o+bTqdDaGgo7ty5o3jclPqRNZr8+1s5JQrhPG7TNEZHR+PMmTN4++238csvv8h+mFqtFn379sXXX39t14uuOGCbGXHlyhXUrVtXcrm///4bgFk2Vb16dbe0jSCKE3eKQR4D4JpMBks/zP0s4XtyJPTZAutxa/tQV9wRBT9TJ69bYNUvtnhin6CUkoG16gLo/CuOyCoZjGyRwV9k8WEZnStZkLD9m+MQZNCI7Oss2I5K5zgOOg1gW8vNkTiXXA4zMp53g13SvQz290kDLw0nVjLYtCWTqdR4upIB4MHzJnBMgUtkl1RyfpYLB3t2SRm3FecThYyK4Gf2Wmw5xzU+5QVFBstrPy8NHhvztytvl8RWHajI4ApCDb5IGji1qJvhNkINRTOo9MUXX0THjh2xcuVK/P7779i3bx/u3buH+/fvY9myZVi2bBkGDx6MH374QdApaaGwvOmNRiMGDBiA5ORk6HQ6jBkzBr1790aNGjUQHBwMg8F8H3DlyhXrQFYl9YU9LP1yYWFh2LVrl+r1pLIbCuuYOIIr2lBctlGY3L9/H4MGDUJGRgbKlCmDiRMnonPnzqhWrRoCAwOtWSM7d+5Ehw4dABTsPFNLcT9uhH3capwYGRmJ1atX4/bt29i9ezfOnj0rqHrWq1cPMTExDoXiFDUDBw7ElClT8OjRI/z73/9Gt27dRNXbEydOYNOmTQDM3mABAQFSm5Lkxo0bivNv36Ybe8I1/JmSg703skSdDEpwHFA1UIfOlX2gVRhBfSstF8supAmmFUUeAyDOZLjyMAdzTjyUXFauY2HlpTQE6DW4lCIcBRnmXXAlw9lkI344+1gyK4LjOFQJ9IKJB649ygHPm49jjyq+8H2ynZNJ2Zh3+jE4AHVDdaJtOEJkGS90q+IjGs2aZjRhc2IGkphOvaJQppRGykiEMlrw8sAbM/b8S7ibLSpaAqRkKI6YeB7G+0eR+Vc8TMZU6/S8jJuC5TQ6sV1SxqV50OgDkXbyX8yy4hBGpSID+9Ok03DIselxyykCu6Scu/uRsvcVVWsak/YLt6RaycCEPj8pgrPfkrP3838D/0oV2geVhsJd6u7+yLq2FgBQpuFUlKn3nuh+ZuOVDBy8lWX9W6/l0Ky8AdFlPT/smOd5ZFz+QXGZjEvfic5TC1rfSPjWHAUv/6gCtSMv/SbSL86FxhAG/unR2HI9F3fThb8DfjoN2lfyRpVAHc7eN+LkPSNqh+jQuFzJ+pxMOenIuPAtclLPAwA0hjD41hgGXbD0QDZTFjMKWU0mw5N7Ba1Pedh+69MvzEX27Z0wZI0D8JR1+i8nT2H/6QfI4H0A1MnfFVNk4CiTwSVoOI3bg5BLK4GBgRg+fLjVEubChQtYv3495syZg1u3bmHJkiWIjo7G22+/DUBos3L37l3FbdvaCdmuZ4+dO3daLXji4uIwdOhQyeVcNfrdEhj9+PFj1K5d264SQYrg4GAAQHJyMvLy8hS3Ye+4FRR727edb/u5sJ+tUt6Gms9Wzfu0LMNuw7aoZQlDliI9Pd3uPuT4+eefkZqaCgBYt24dOnbsKLmcO1QWlvMHsH/ccnNzrQofR75XhPsokjuBiIgIDBw4sCh27XLCwsLw448/YuDAgThw4ACaNm2KcePGoUaNGkhLS8OBAwcwa9YsGI1GNGrUCLNmzXJo+0oXN4JwFbfTc/HpoRQ449Sz72Y2HmSZ8Ept6ZthYx6Pj/9IEU0vLkqGR0Ye+29lyywtzen70hYLoU4oGVjrm5tpebiZJi9F3HdTPO1ySi4+fDYIp+8bMT0hv2Di6PsSk40rD3MwqUmQYOqsYw9x/oH4GJBdknso7ZkMt9PzcDtdXGQoDR2iJQ2TKRcPfmsHPldZhi1ll8QbU/H42PviZfXSRQY5REUGLZcvRwNw7VEuaoXoFdtXYJjiX176NeRduebcppxUMoQ/+c1l65B3M/JEdoYWSkPhzlJgAIC0k1ORl34dGu5LwTIXJH7vdv6ThSnPBqF+WCGfO0VMxsU4wKRs85qbcgq5KfKho1lXVyH8xb8lbXzUwJtycX/TszA9KU7Ou9kSl3KrSS6750YWRjcMwFfHHoIHsPEK8G6TwBJVaHh44HVkJa4STMv8eynK9rsqyqSRQioXQcouCRCHP+c+OIHcBydgCOwD6POLDFdMVXDFJB61TEoGwtOoXbs2ateujZdffhm1a9dGeno6Vq1aZS0yVK1aFb6+vsjIyMDhw4cVt2UbKF2vXj3VbTh37pz19UsvvSS7nCVLQQ61I8Kjo6OxfPlyZGdn4+jRo3Y98aWoX78+fvrpJxiNRpw6dQqNGjWSXC43NxcnT550ePuOkJCQgFdffVVxvgXbz8X29eHDhxX74Syfra+vr6xl+tWrV5GcnGwt4rDcu3cPiYmJon0DgL+/v/W1rZUQy59//ik7zx6W8ywkJES2wAC47jxTwmAwoHr16rh8+bLd79WJEyeQk2O+L3Pke0W4Dw/sjnA/vXr1wrFjxzB06FCcPHkSgwcPRosWLfD8889j6tSp8PX1xTfffIN9+/YVugcdQTjD2fs5ThUYLBxPku/MvpSSI2kBVL6IlAyBClYzBSXcicKJUoexWk7fNyIr14S4k4/sL+wgJ5KMAmlkVi4vWWAAlLMCCNeh1KHq44FVBn8V78lPxzkcuk4UPvUN1+wWGABA4x2GPJW+7hpvcYheqLf8tZctPrFnU0p24YcyaLz8XLYtqSKLFOz7sijtHFGcKVmzlThUFmcyL/+g2ibq1D3Pz1jLvimVoefYtTYv/RpyU8/ZX1CuDf9stBYYsuErW2AAgKw8HrOeFBgszCmEe6PCJPvGZtE03piCnHvijpe8TAkvdY248CVWMpj/1/pWlGxDGZO6cE89L7y+cy681hFEUVKpUiXUqFEDgDDs1svLC+3atQMAbNu2TdF1YtGiRdZ1YmJiVO87NzdfXyQ3Ut1kMmHhwoWK2/H29ra+zs6Wf1bv2bOntaP4m2++Ud1OW2w7qZcsWSK73Lp16xQ7zV3B6tWrZbMDLEUjAKhTp47AQSUmJsaqwPjhB3kF3/Xr17Ft2zbROiw8z2Pp0qWy24mPj7c+Y7Od/JZAaEC5k3/FihWy8+xhOc+ysrJk1RIZGRn48ccfFbdjOc+UzjE1WI7BuXPnBAU6Fsv3ynYdonjhQU8PRYfRaMTSpUuxfv16SZ+yu3fvYtmyZdi+fbvD2/7nn38U/yl9AQlCLQW1i2ADgG1JyRKPkAzUc4gOL5rRfzWCdSjrRECzPcJ9NKgd7Lg9katGX9/PNBVKZ1keL7SNMsp81lUDvVC+iNQppY0yeg0aynx/WkWWnNGaamlcTm+3Y7RVpLfifMI9jG2Ybwfp58Whi/9pu+vowppBW6YKkJdld1loveH9VB/R5JaRBpFiAQBqBesQwhQg2OtkhkIuj6swVOoJaAt+jnK6ABgqdFW1LDty2WIB1LScQVV2S7BBgzohBbPcK04EtZF/0GdpEaHus5L7PfQkeInvZWCbpYDWx7Ht5Dx2ug25aVetr7M0jlvIsIHmxR027F1pOm9jQ2dBFywe2cmeqpasGu+ofpLXpkbZ61S0FIjO3mB9bajQBRpDkKr1CKKo+eWXX6xWMVL8888/uHjxIgBx9sDo0aMBmPuA3njjDeuoalt++OEHbN26FQDwwgsvOGQHbpvfGR8fL7nMBx98gOPHjytux3aflnxQKWrWrIn+/fsDAH766Sd89dVXitu9evWqqHO7WbNmVvXCvHnzsH+/2ELv9u3bmDhxouK2XcGdO3fwzjvvSM6bMGGCNeh65MiRgnmRkZHo27cvAHMgslSxxGg04vXXX7d+5m+99ZZiW6ZNm4ZLly6Jpl+4cAGff/45APPn1Lt3b8H84OBgPPPMMwCAxYsXS1oW7d+/H99++63i/pWwnGcZGRnWwosteXl5GDp0KG7duqW4Hct5lpSUhMePnf+tHzlypNUmavjw4Xj0SDxAYOvWrfj+++8BmM+5pk2bOr0/ovBwu11ScnIy/vjjD1y5cgWPHz9Wleb98ccfu6FlzpGeno6uXbti37590Gq1ePfddzFkyBBUrVoVWVlZOHz4MD799FPs378fffr0wX/+8x9MmDBB9fYrVpQeYUIQroStjZX10aCFQqfdvcw8HLSx4lGKcXiYLX64+6J1iDVDwN14aThMaxmMA7ey8dCovlP+79QcVCjjJVkU8Ndr0DrSYLbhcBClztNwHw1aRnqLjrcUyRLFHAB4JkyHKoHqO4oycnhsuy4c/ZFryg8UzpUopA6o4YfOUT4U1ORGxjcKxL6bWbiXaf7cNRxQK0SHhuGeV2SILOOFz1sFI+FOtmTgc6UyXmjpgcWVkkirCt4INGjwz+NcNClngM+VFNg+bmj9q8I7akD+374V4VP1ZXAcB95OuKyhUk/4R38GXXB90bxaIXpMaxmME0nZVlVemI8GrSV+x1542hdr/8offSt37XQluuD6COt+GFn/bACf65x/rkYXAO/KLzjtbW+5OlcL0mFay2AcTzLKdpKX0XFoGeldZL/ThYFPlQHQeJdFzr2DMOWkAeBhyriFzL/FxYfuVXxQzleLv1NzYHtWnr5nxNVH+SNM89wQgFj0CN+jT7XB8K32CnQhDZB1fb3s+ZxxYY5gnlSxQi22Pv/ZnLjIEOKtwYOswlckFTkS10jJ4y9RAGLPVe2Tr7b52nToybUp/7r4LIBg4ypcyH4KeTJjEiO8HqBpuQfw4t6HV5kq8K46SP17IYgi5ptvvsHLL7+M7t2747nnnkPt2rURGBiIlJQUHD16FHPmzLGOhn/zzTcF63bv3h39+/fH6tWrsXXrVjRv3hwTJkxArVq1kJKSgp9++sk6Ej4kJMRupz1L586dUbZsWSQlJWHKlClITExE3759ERYWhr/++gsLFy7Ejh070KpVKxw4cEB2Oy1btrS+Hj9+PD788ENERERYn9eioqLg5WW+vs6bNw9Hjx7FlStX8M4772D9+vV47bXXULduXRgMBiQnJ+PUqVP47bffsHPnTvTt21dkfx4XF4fWrVsjJycHzz//PMaPH49u3brBYDDg8OHD+OKLL3D//n00aNAAp07JW+wVlCZNmmDevHm4evUq3nzzTVSqVAn//PMP5s2bh99//x2A2SKK/VwB4Ouvv8aOHTuQkpKC119/Hfv378dLL72E4OBgXLx4Ef/5z3+sdk8DBgxA167yAz+efvpp3Lt3D82bN8d7771nVbPs3r0bM2bMwMOHZovjOXPmWEOWbRk9ejRGjBiBu3fvok2bNvjoo49Qs2ZNPHjwAJs2bUJcXByaNGmCgwcPOnWcBgwYgMmTJyM7OxtDhgzByZMn8fzzzyMwMBDnzp3DnDlzcOzYMdXnmclkwptvvokxY8YgLCxfdfz000+rak/9+vXxzjvvYObMmVbLrffeew/R0dFIT0/Hxo0bMXv2bOTl5UGv12P+/PlOvW+i8HFbkSEpKQnjx4/Hzz//LJCAqaE4FxmmTp2Kffv2AQC+//57DB482DpPr9fj+eefR/v27dGpUyfs2rULkyZNQocOHdCgQYOiajJBiGCFDJFlvDColvxosfPJRqbIIP+gzXbkt4o0IMyJ7AJXEuStRfeqvkXaBgt6hcDsSv7mz+HiA6P9IoNM6Gmz8t54vrL6EYcPsvJERQbzw6m5nVIFpe5VfMkP3814e3EOfa4lnUr+XqjkT4GSJYF6YXrUe+JT/5ixStKFNERA4+kyayp3Evo3+Bd0Ic/Izn86SIeng+wXVMOZ3597MtdOV6MLeUax/e6kaqAOVR0oPnsKhogYGCJirH8b7x2RLDJwHIem5Q1oWl5YvDTmPWaKDIXW1GKLLtQ8UlUXXF+y4Gch6+pPyEuzLTLIZ03Zxcb+J5sT2vFoOaBCGa1nFRnkileSRYY0wd+cLlBywAd7rtreeupCGkAXIn4ubfLkH0F4KhkZGVi9ejVWr14tOV+j0eCTTz5Bnz59RPOWLl2K3NxcrFu3DsePH8crr7wiWiYyMhKbNm1ChQoVHGqXn58fli5dij59+iArKwvz588XdajGxMRg7ty5ip70Tz/9NAYMGIBVq1Zh69atVmWFhatXr1pteUJCQnDgwAEMGDAA+/btw969e7F3717ZbQcEBIimPfvss1i6dCliY2ORlZWF6dOnY/r0/Hs+Ly8vxMXF4cCBA4VaZPj8888xa9Ys/Pbbb/jtt99E82vVqoVff/3VWmCxpWLFitixYwd69OiBW7duYdGiRQJ7HgsvvPCCoi0UAFSoUAHffPMNBgwYgA8++EA0X6PR4Msvv8SLL74ouf7QoUOxZcsW/PLLLzh//ryoqFO/fn2sWbPGIZWMLRUrVsS8efMwdOhQZGVl4d///jf+/e9/C5Z56aWXMGzYMEVboueeew7NmzfHoUOHsHz5cixfvlwwX8rpRY4ZM2YgPT0dcXFx+Pvvv62B7LYEBgZi1apVaNiwoertEu7FLUOUUlJS0Lp1a/z000/IyckBz/MO/Suu8DxvrVLXqFFDUGCwxcvLC9OmTQNgrvDJyd4IoqgwMSPVFPq9AZjVALYoKRlSGWsKJT/50oheod6if6JyUBOofF9mNK4aWwzB8hIPp7afr1RBydF9EARROmDzGDitQnHXjpLBVYGiYYyt2/3MwlcyFAXs7TMJzQoO+1NcQKfJkoGzz2GMBU9BigycJr8gZmSKDN5aDjp7N60egpTay5QjVDJwOukBQnnMqlL3egRRmlixYgUWLFiAQYMGoWHDhihfvjy8vLxQpkwZ1K1bFyNHjsSJEycwZcoUyfW9vb2xdu1abNiwAS+88AIiIyOh1+sRHByMZ599FtOnT8elS5ec7gjt3Lkzjh49ildeeQWRkZHQ6XQIDw9Hu3btsGDBAuzYsQN+fvYzUJYtW4Yvv/wSzZo1Q2BgoNWORory5ctj7969+PXXX/Hyyy9bQ64t+27ZsiXeeecd7NmzRzazYODAgThx4gReffVV6zGpUKECBgwYgP3792PYsGFOHQ9H0Ov12Lx5M+Li4tC8eXMEBQXB19cX9evXx2effYbjx48jMjJSdv3o6GhcunQJ06dPx7PPPougoCDo9XpERkbihRdewIYNG7BmzRpB5oUc3bt3x9GjRzFkyBBUrlwZer0eZcuWxYsvvoj9+/fL2joB5iLEzz//jP/+979o2rQp/Pz84Ofnh2eeeQaff/45Dh8+jPLlyzt1jCwMGTIE+/btQ58+fRAeHg6dToeIiAh06dIFK1euxE8//SSbOWHbzq1bt2LKlClo0KABypQp47S7gUajwX//+1/s3bsXL7/8Mp566ikYDAYEBASgYcOGmDx5Mi5fvoxOnTo5tX3CPbhlWOCMGTPw119/AQA6deqECRMmoHHjxggJCSnR9hp37961+qNFR0crLtu4cWPra4u/H0EUF0SdEXaWZzuVpSx0LDxkigyBVGQQoGSXZFE5GFSoBOSUDI46OGklPh7bwoLUyE0nXKIIgigFiIoMXgUoMmhcVGTwFl7k0nN4ZOaa4ONh1dLS0P9dYBx8BtEyndl5paPKIPxT5THjGMuegtglQWNrl8QUGbw8scggd16Jp4uUDBLByyaeF63pcYeMIGSIjY1FbGysaHpERASGDRtW4E7vnj17omfPng6vFxMTY3cwbd26dRVDd6OiouxuQ6fTYdKkSZg0aZLqtnXv3h3du3dXvTxLnTp17AYeF/agW61Wi5EjR4pyF9RSpkwZvP/++3j//fcL3JbatWsrBkkrodVqMWrUKIwaNUp2GaVzQO78t6Vly5ZYt04+h0fNuerv749p06ZZB1bLsXv3bsX5Ftq0aYM2bdqoWtYWNW21UJwHs5d03FJkWL9+PTiOQ/fu3bFhwwb7K5QQbCVW9iygbAOBpKRZBFGUsM/JdpUMHPugbb5QSxUNWbukQL1ndeQUFKUig2WevdBbQN5XnFWd2ENqedvCAqtk0HIo0cVigiAKDz7PgSKDvW5xVykZJOz67meaUMnfs3+b6CqtHp43gePE5wP78+hBBj3yiB7C1RYZmBGeuQVRMsjbJZmLDPa3IXePWqJQkckgpWSQqoV5WE2VIAiCIIhigltuMa5fvw7AHF7iSYSEhFj96P744w/FQsOePXusr6tUqVLobSMIRxA9Qtp5EGMfTnjI2waQkkEZvZKS4UlfmCq7JBcpGaREE0pKBnpQJQhCDlbJgAIoGTgXFRn0Wg6BeuGFzlMtkwh7yPxAmqTv59nfU9aCxjNxssjg5SYlg5aDTsWNTrYnfMWligw5QiWDRkLJIGVpqinpBReCIAiCIIolbukeKlPGPKqiXLly7tid29BoNFYp2a1bt/D5559LLpeSkoL33nvP+nePHj3c0j6CUAtbILBvlyTh2y9RZDDxPB6xSgYqMghQtEtyRMkg00nmqJJBanGlTAby9SUIQg5HMhmk/MaZlV3RJABiNYNckbYkQ5kMBYCXLjKwHbOm0ii1d9ouqQDBzzbXBiklg17FfU6GUnhYsUPuvFKhZPCSUjKIt0c2lwRBEARBFAZu8e2pX78+du/ejWvXrnlcCvjHH3+M9evXIyMjA1OnTsWxY8cwePBgVK1aFVlZWTh06BC++eYbq5qjQ4cOFFRCFDtYTzp7z2tSDye5Jl7UGZ5m5EUFDAp+FqImk0Gr4eClUQ7YNsrMk8pYUILjxPuyzdxg20BKBoIg5HBpJoOLiwx/P8zvSL7ngUqGUtj97TCczJAKns+TnCNSMpSKg+zcm2TtkvgC2CWBz/9+SgU/q7kPycjhEWI/o7N4I1EsUJPJIJmlRaEMBEEUI/78808YjUaH1ytbtizKli1bCC0iCMJZ3FJkGDFiBHbt2oUff/wRvXv3dscu3UatWrWwfv16DBw4EPfv38fGjRuxceNGyWWfe+45rF692s0tJAj7sF07djMZpJQMEv1DqRI93wGUySBAyUvYtgBh0HIiFYEanFEaeHEcciFdWGBDvulBlSAIOVyZyeAquyQACPMRXnhLg10SXakdQNYuiVUyuKMxRYs4GNH9wc+8TZHBeSVDyf+weDVKBolMBqmAclIyEARRnOjUqROuXbvm8Hr/+te/MHXqVNc3iCAIp3FLkWHAgAHYuHEjli9fjhkzZrgkpb040bFjR1y8eBHff/89tmzZgnPnziE1NRVeXl4oX748mjZtikGDBqFXr14lP3SM8EhEtgp2lpcaNSbVAc7mMfjrOIftezwdjuNg0Er7BdvmNXhrOaTnOP6Q7KiSwbqOTXsEmQyskoE+ToIgZCjOSgZbPNEuiUVu1H6pRu6enJcuOmmY39O8UmGX5FyRAaJMhgIoGUw2RQZIKBlU9Jhn5JSg77jceaUik0G1koEuBwRBeBAxMTESRfGiYffu3UXdBIIoUlxaZNi7d6/svNdffx1Xr17Fhx9+iLVr12LQoEGoVasWfH2VRrWZadu2rSubWSiEhobi3XffxbvvvlvUTSEIhxFlMtgNflaXyUChz+rQazhkSzwF6m36wdTkMkjhlJJBw8G2Y8H2s2WLSaRkIAhCDkcyGaT8xpmVC96gJ4SLigyep2QoHo/aJROegp9tcC7cQ2SXVKBMhvzPQ0rJoKQIteAJSgapIoNJlMlAdkkEQZQ8EhMTi7oJBEG4CJcWGWJiYlSN1D927BiOHTumapscxyE3V/pmnyAI18A+f9i1S5LJZGChIoM69FoOkFApsHZJzuCMkoH9fG2l9uxzOmUyEAQhhyNKBrvBz5rCs0t6kGVCron3KKWdky43BCCrZCiNdkksahUxrF0SXGSXZOSE1xBvLQedx9klybVVIpOBVTJI2SVR8DNBEARBEG7C5XZJxUWmRBCEekxs8LOd5TWcub/Cdi2pEX2pVGRQhVwBwdZn2OCkL5EznWZs4UCQycAqGcgCjiAIGRzKZLBTZHBtJoNwWzzMhYayvq7bR9EjvFbTlVoKueBn6cFN7M9pqbBLcvI9ijIZXBT8zCoZDF4qiwwlyS5JDim7JDVKBom37kH1VIIgCIIgihEuLTLs2rXLlZsjCMJNiO2SlJfnOA5eGiBHIRAYAB4ywc+BFPosiV6uyMBkMjiDM7UJtnBg+9mKMhnoIyUIQgaHMhnsGfy4sMhQRsfBoBXa1N3PzPOwIoMQ6lN0ALV2SaWgxlAs7JJsPo9sjXCkvreWE1hLylGylAwySBYZhEoGjZdYySC6xwegoQEiBEEQBEEUAi4tMrRr186VmyMIwk04apcEmEfI59ja6EiMlCK7JHXIKhlcYpfkbCZDPnkKxSRPshchCMJ18LxJZJGimMngxuBnjuMQ5qPBzbT8EdKelsvgAV2qbkAuYJfskqw46bvFiYKfXWOXxAY/+3hxqu5zMiQsKUsaUpZyapQM7H2bMzaaBEEQBEEQaqDbDIIgRM+Qajx32T5vqUwG1i4piIoMkhhk+s5ckcngjJJBbJekoGSgGgNBEBJI2aMUF7skQCr82QPsVGygTAYVyFgBydolMb+NpcIuSVSIUXkiuTT4Wd4uydtLI7CWlMMjlAxOZjKwt+eUx0AQBEEQRGFBPX4EQYgeQNQqGWxRpWQguyRJ5O2S8l+7VcnAFpBszg/2cyYlA0EQUrB5DEDBigyuVDIAQCgT/uxpSgYWulKL4R1WMgj/lvK693hU2yW5MJPBxi7JyBYZtJwq28ZMqZvUkoaLMhkoS4sgCIIgiMKCevwIgoCJedBWV2QQ/s0qGUw8j0dsJgMpGSSRKyDYTveWkAz4eXHQ2TmkzikZWLskG1ssVnZPz6oEQUjA5jEAxSeTARArGe55mJKBhS7VUsicc7KZDKXQLslJ4y3WLom1TnOoBYpKBnXBz+klxC6JV1THqCkyiJUMrOKG7tsIgiAIgigsqMePIAixXZKaIoMoHFg4Pz2HF4UiUpFBGlklg82Ds5SlkpcGCPFW7nhzJphZXECSfm1elp5WCYIQI1lkYEY3C5a3q2Rw7e9HmDdrl+RZSoaS0aVaxMjaJUmfC+zPXamwS3I2k6EQ7JJM4GDkhIVKc/BzKbFLYq6RPG8SFxl0EkoGVq1M920EQRAEQRQS1ONHEIRoNJ6axw97SgbWKgkguyQ55PyE7QU/azXm8FIlnJHFs+vYqhfymM+ZAgQJgpCELTJo9OA0XgorKBQZOA04F1t8hPmK7ZKURxGXLDzorRQijikZ2J/q0qlkKAK7pCcZGTnwAc8UG7291NklZeR4gFKJ+VJL597YVzJQlhZBEARBEIUFdQ8RBCF6hNSo6MwRW+oI57Ohz35eHHSk0ZZEqoDAAQIrJMkiAweE2lEyOFMEUFQyMCcLq2ghCIIAxJkMylZJUM5kcLFVEiBWMhhNwOMSYqniDHSplkCuEiMT/Fwa7ZJEuRXOZjK4wC6JzWMAnigZPCr4Wb6dPFOI5XPTRMuoyWQgIQNBEARBEIUFFRkIgnAy+Fn4N+vV/5DyGFQjJfXXayEYuSuVyaDlOFF4KYuaghGLYiYDc7I4Y8dEEITnw9olFbciQ4i3RvRb50mWSc6NPy9tkF2S4xSBXZLJ/Hlkc+JriFolQ2YuX/KVSqxdEmOVBAAanVjJwN7jU/AzQRAEQRCFBXUPEQQBE/PgpcouibXUYfqHWLskKjLII5W3wI7Mk7ZLAsJ8XN/5xu7KdgAg+znTwypBEFKIigxa54sMXCEUGbQaDiHerGWSB1iqEA7gYPAzcxvDet17JM52zLPBzyYjeJOTRTzeUmQQjtK3KD7VZDKYeCC7JHxgSsebLTLksEoGDpDIvREFP9PtOEEQBEEQhQTdZhAEIWGXZH8d9iHFXiYDFRnkkSogsA/N0nZJHEK9XX9cWSWD7Wcr8valj5UgCAkcVTKwViDClQvnQsNaJt3zYCUDIYGsXZL0eVAa7ZJEZ5KTdkkAAFO2k00wF33YIoO3FweO40T3LHKUHMskOdhMBib02ctPMruGtUsi51KCIAiCIAoL6h4iCEL0nK3mGVLcES2cLyoyUOizLNJ2SfaLDF6FpGRQzGQwscvS0ypBEGIcz2RQ8CIvgJ+7EmGM3VyyBxUZnOwbLmXI2SWpC37OKw1VBtH30jm7JMD58GdeRsng88RGUu3tZUZJz1wR2SUJlQxSeQyAeHCIMzaaBFHaSExMBMeZC5nx8fFF3RxChqlTp1o/J6Jw2b17t/VY7969u6ibg9jYWHAch6ioqKJuCsFAvX4EQYhG43EqHiLZiADKZHAeqQICO006kwGFomRgR2vafrYiJQPd0xEEIYFLMxlMOS5okRi2SHvPg+ySxF3DdLFWjZxdkiiTwQ1tKXJYO03nlQxOFwtlgp+9n3wgOo9SMigUW0V2SYySQSKPARCfp6RAJQiCIIiSw9mzZzFixAhUq1YNPj4+CA8PR5s2bfDdd98hN1f6nrUoodsMgiCcDH6Wt9QBgFRGyRBERQZZJO2SNPaX4QD46jTW0XyuwhElA3n7EgQhhcOZDEp2SYUEW2TwpOBnQg1kl+Qwqu2SJJQMzoY/m+TtkgBzvoqaVmXklPQiovCEM6lWMgj/JiUDQZR8ituocoJwBaRMEbNw4UI0btwYCxYswJUrV5CVlYX79+9j//79GDlyJFq1aoX79+8XdTMFeLlyY1WrVnXl5gAAHMfh77//dvl2CYLIhwcrpba/jlJHNECZDI6gc9IuyTIoL8xHg38eu65zjC0g2VpCsMUksksiCEIKlyoZCgnWLsmTigwiJQNdqkXwMhZdau2SeAAmnvfwTlsnKylaA8xDIfLXd7bIkG+XJByp721zX6TXAtl2vr7pJULJoIDILkmlkoG9b/Pk05UgCIIoFcTHx3u8ldnmzZvx5ptvwmQyoVy5cvjwww/x7LPP4sGDB1i4cCHWrl2LI0eOoG/fvti9eze0WtfbaDuDS4sMiYmJqpazVKbYm3up6VTFIojCR2yXZB9RR7TNNnieF9slUSaDLAaJjnq2yOAtVWR4cohDvbWuLTKIrLDyX4tk93SNJghCAoczGYogqjicUTI8MvLIzuMli7olDoWMC8KCzDEyySgZJG5jTLy6gRklFmczGTgO0HoDNoWFgtolySkZAPM9abYd/6qSkcmg0EaRXZKzSganGkYQBEEQhJvIycnBmDFjYDKZEBAQgAMHDqBatWrW+V26dMHo0aMRFxeH/fv348cff0RsbGzRNdgGlxYZBg8erDj/5MmTOHXqFHieR1BQEKKjo1GuXDkAwN27d3Hy5EmkpKSA4zg0aNAADRo0cGXzCIKQwangZ7Yj2qZSkZ7Li5QNZJckj0Gi6KxKyfDkmIf6uPbYahWssFglA9klEQQhhaNKBtZv3B2wSgbAHP4cWcalt8dFgnNdw6UMmXNOTsnA2iUB5g7ckn+2KOH8mcRpvQXqBWeDn+Xskmzvi/QaDul2CpUZ7I1picOOksFLXSYDe49HEARBEETxYt26dbhy5QoA4IMPPhAUGCzMnDkTK1asQEpKCmbOnFlsigwu7R5avHix7L82bdrg/PnzqFixIlauXImkpCTs2LEDy5cvx/Lly7Fjxw4kJSVh5cqVqFSpEs6fP4/WrVtj8eLFrmwiQRASsI9laqT/4o7o/NesVRJAdklKsAUFQBwwKRXUZwlhDvN2rTSO3VeebSYDBQgSBKEChzMZiqDI4O2lQRmd8GJ7z4Mskwh7OJbJINU3y1rReB5OjEKxLOrFhD8X2C5JXsmgU3EvklkSlAxKCiRmHs9kMmhklAwmZj1PEGoRhDMcOHAAQ4cORc2aNREQEAC9Xo+KFSuiR48e+O9//4vU1FTV24qNjQXHcYiKilJcLj4+3uoxL+f6sXPnTgwcOBBVqlSBj48PfH19UblyZTRv3hwTJ07Ezp07rcsmJiaC4zi0b9/eOq19+/bWfVj+ydnI7Nq1C4MHD0bVqlXh6+uLgIAA1K9fH5MmTcKtW7dk3wfrlf/w4UNMmzYN0dHRCAoKkt3nL7/8gv79++Opp56Ct7c3goKC0KRJE3zyySdISUlRPHYAcOPGDYwePRpVq1aFt7c3IiMj0atXL2zfvt3uus5iOca272n16tXo2LEjypYtCx8fH9SqVQsffPCBqnPGaDQiLi4O7du3R3h4OPR6PcqXL49u3bph2bJlMJnk73/Z8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOKc7qw8dOoQpU6YgJiYG5cuXh16vR0BAAOrUqYORI0fi/PnzkutZvieffPKJdRp7TrPfIbXfwTNnzmD48OGoXr06fH194e/vj7p162L8+PGKTjxSx23btm3o2bMnypcvD4PBgCpVqmDkyJG4ceOG2kOkml9++cX6Wu7z8PX1xYABAwAA58+fx59//unydjiDWwbfHD16FG+++SbCw8Nx6NAhREZGSi6n1WrRv39/tG7dGo0bN8aoUaPQoEEDNGnSxB3NJIhSC/sAoqbfWJzJkL8Ntsjg48VJdqQTZtRYc0hZx1ntklysZBCFevMKSgaySyIIQoKSkMkAmMOf03LyR67fzyzpo53NkJJBBXIduiY5JYPEoiWg39q1OKJkEBYZCmqXZGSLDDa3PmryoTJKeCYDb1fJIF1kYAUcdDtOlDYyMzPxxhtvYMWKFaJ5N2/exM2bN7Fp0ybcu3cPU6dOdWvbxo8fj2+++UY0/fr167h+/ToOHz6M+Pj4Age7ZmVlYciQIfjpp59E886ePYuzZ89i3rx5WLFiBXr27Km4rcuXL6NTp06KHbQpKSno16+foEACANnZ2Th27BiOHTuGuLg4rF+/Hs2bN5fcxr59+9CjRw88evTIOu327dvYuHEjNm7c6LbP6o033sAPP/wgmHbp0iXMmDEDS5cuxY4dO1CrVi3JdRMTE9G1a1dcvHhRMP3u3bvYsmULtmzZgvnz52P9+vUICQlRbMfRo0fRvXt3JCUlWadlZmZi8+bN2Lx5MyZMmIBZs2Y5+S4LTnx8PIYMGSKanpOTgwsXLuDChQtYuHAhZs+ejVGjRrmlTdOnT8eUKVNEhZzz58/j/PnzmDdvHhYsWIDXXnvN7rY++OADzJgxQzAtMTER3333HdasWYM9e/agdu3aLmv7/v37AQA1a9ZE+fLlZZdr164d5s+fD8BcSK1Ro4bL2uAsbikyfP3118jLy8PkyZNlCwy2REREYPLkyRg7diy++uorLF++3A2tJIjSiyiTQZVdknxHNFtkIKskZZz1/8558sGF+bhYySCywpJ+DZCSgSAIaRzPZCiqIoMGifnPrx4V/kzYw7HgZzm7JI+mANkenNZbuCln7ZJ4GbskTf53Vc1AlhJvl2Qvk0Em+Fk0kIgGhxClCJPJhN69e2Pbtm0AgOrVq2PUqFFo0qQJfH19cfv2bRw8eBCrVq1ye9t+/fVXa4HhmWeewciRI1G7dm0EBgYiNTUV586dw/bt23HkyBHrOhUqVMCZM2eQkJCA119/HQDwww8/oGnTpoJtV6xY0fqa53n069cPmzZtAgD07NkTAwYMQNWqVaHRaHDkyBHMmjUL169fR79+/XDgwAHFQb79+vXDzZs3MWbMGPTq1QvBwcG4fPkyKleuDMBcSOjYsSOOHz8OrVaLQYMGoVu3bqhSpQpycnKwd+9efPXVV0hKSkK3bt1w4sQJ67oWrl+/bi0waDQaDB8+HP369UNgYCBOnz6NGTNmYOrUqYU+GDkuLg4JCQlo1qwZxo8fj+rVqyMpKQnx8fFYtWoVbt26hc6dO+Ps2bPw9/cXrJuWloYOHTpYLW/69OmD119/HZGRkbh69Srmzp2LPXv2YP/+/ejZsyf27t0rG9ybkZGB/v374+HDh3j//ffRrVs3GAwGHD58GNOnT8ft27fx1Vdf4amnnsLbb79dqMdEjtzcXAQHB6N3795o27YtqlevDj8/P9y6dQvHjx/H7Nmzcf/+fbz11luoVasWnnvuOeu6ffr0QZMmTRAXF4d58+YBMCsQWCpUqKC6PXFxcZg8eTIAIDw8HO+99x5atWqFvLw8bN++HTNnzkR6ejpiY2MRFhaGbt26yW5r4cKFOHjwINq1a4cRI0agRo0aSE1NxdKlS7F06VLcu3cPr7/+Ov744w/V7VMiLS0N//zzDwDIFrAs2M6/cOGCS/ZfUNxSZNi3bx8A4Nlnn1W9jqWiaangEARReIjtkuyvI1Yy5L9OZYoMFPqsjLMqj/zg58JVMtjaQeQxD6tqRg8SBFH6cFzJUDS9tWz4s8coGZx3uSlFOGiXpGBb6KnwBbFLEikZnLRLMsnYJWnyi0FqBjx4XPCzSiUDWwijwSHFH543gTc9sr+gh8BpAsBxhXNizp0711pg6Nu3L1asWAGDwSBYpnv37pg2bRpu375dKG2Qw1LYqFy5Mg4cOIAyZYSFwpiYGIwePRoPHjywTtPpdKhXr55A2VClShXUq1dPdj+LFi3Cpk2boNPpsGHDBnTp0kUwv3nz5nj11VfRpk0bnDt3DuPGjVPsgzt79iy2bNmCTp06Wac1btzY+vrTTz/F8ePHERQUhO3btwvmAUDr1q3x8ssvo0WLFrh9+zYmT56M//3vf4Jl3nnnHauCYdmyZRg4cKB1XpMmTdC/f3+0adMGR48elW2nK0hISEC3bt2wfv16eHnld5127doV9erVw8cff4zr169j2rRp+PLLLwXrfvLJJ9YCw5QpUzBt2jTrvMaNG+PFF1/Eq6++iv/97384ePAgFixYgJEjR0q24969e0hNTcX27dvRtm1b6/RmzZrhxRdfxLPPPosbN27gww8/xKBBgxAeHu7Kw6CKrl27YtCgQfD1Fd7vR0dHo3v37hg7dizatm2L06dP41//+pegyBAUFISgoCCULVvWOk3pnLbHvXv3MGnSJABAZGQkDh06hEqVKlnnt2rVCr169UKbNm2Qnp6O4cOH4+rVq9DpdJLbO3jwIIYNG4b58+cL3CU6dOgAvV6PRYsW4dChQzhx4gSio6OdbrcFW/sl24KhFLbvy1KYKGrcUmS4d+8eAHNVUy2WZS3rEgRReIiUDCrWEVnq2NolGZkiAykZFJHyElbzKGxRMoQWciaDrcOASMlAHVcEQUjgcCaDqque6wkVFRlIyVBqILsk+4iOkfOZDAW1S8rmhNcQ2yKDvhTYJbHXSLVKhjzmvo2UDMUf3vQIj++8WNTNcBv+5deA0wa5fLsmkwkzZ84EYO6oW7p0qajAYEGj0Tg0StoV3LlzBwDQqFEjUYHBFns2OkrwPI9///vfAICxY8eKCgwWgoODMXPmTHTr1g0HDhzA5cuXUb16dcllY2NjBQUGW9LS0vDf//4XADBt2jRRgcFC5cqV8dFHH2HUqFFYvXo1FixYAD8/c6H0zp07WLduHQCgR48eggKDBX9/fyxYsMChQczOYDAYsHDhQkGBwcKHH36IVatW4ezZs/j+++/x2WefQa/XAzD3ZS5atAgAULduXUlrJ47jEBcXh99++w3JycmYO3eubJEBAEaMGCEoMFiIjIzErFmz8NJLLyE9PR1LlizBxIkTnXzHzmPv+xMYGIhPP/0Uffr0wf79+5GcnIzQ0NBCacvixYuRkWF+Dvnqq68EHfEWoqOj8cEHH2DKlCm4efOmNT9EioiICMyZM0fSvnrixInWz3rfvn0uKTI8fvzY+lrp2gDA+r0BzN+/4oBbev4slbQtW7aoXmfz5s0AgLCwsEJpE0EQ+bDPkGoeQJSUDKxdEhUZlJH6wVKD5ZjrtJxLjzFrCWFbQGJDLknJQBCEFA4rGYqIcCbTxlOCnymTQQ1ydknS54CUXZLHFxkKciaxdklOKhnkMhkMnNH6ujRkMrBKBpNqJQMFPxOlk5MnT1pHBA8bNsxuZ527iYiIAADs3bsXf//9d6Hs4/z589Zt9+vXT3FZ2w5sJduXl19+WXbenj178PDhQ4f2l5OTg2PHjlmn79q1C3l55uu+lMe/hWbNmqFu3bqK+ygonTp1krV712g0GDx4MADgwYMHOH78uHXesWPHrKHQsbGxsjZIAQEBguBeJTWN0rHo27cvgoKCAKBQQ7EdIT09HYmJiTh37pw198NWKXDq1KlC27flGAQFBeGFF16QXW7o0KGidaTo16+fbIGyZs2a1muLRblSULKy8gdlWApXcti2KzPTyfssF+MWJcNzzz2HpUuX4quvvkLXrl3RqlUrxeUPHjyIr7/+GhzHoUOHDu5oIkEUOYkPc7DrRhbSjI5bNZT11aJLlK/THc3sHlXZJTEP21cf5WLOCfNNxYUHOYJ5VGRwHDUODLaLhHprRMUdZ2ELSPcyTZhz4iG0Gg5JjJUIPawSROkm+/ZOZF1dKerwyktLFPxdXIsMbKZNcpbJ+ltWEPx0GsRU8kbVQGnpNQAcuZON43ezrao0V5KUIewop8HLDiCTySB1b+TpdkkinLBLuqCLwWV9G1Q/uREt/CrBJyp/pOD9zDxsvZaJZIXiXnbOMJj8e+CetqpguunKYqTc/su8r8xhAJQDF689ysX3J26iWdZPqBqghW/t0eA04u+nKfsB0s9/gxupadib0wJpvLnzQGMIgldALcAJWxdT5h3kpV8HL6OSyYdHnv9/BVPK5v2FdpkLob2xCUnp2dhtbImUzCzwuQMB//wRvhVSG6Kn0YQAvQY3Hudixz+ZyDMBVx4K78m1dEtOlBJOnDhhfd2mTZsibIk0r732GpYuXYrk5GTUq1cPvXv3RufOndGmTRs8/fTTLtmHrZ1QixYtVK9nUVlI8cwzz6jan6WI4uj+bL342awJlmbNmuHcuXOq9+MoavZv4cyZM1bL97Nnz1qn21NbPPvss9YcgrNnz0oeN71ejwYNGshuQ6fTITo6Grt27ZLMMnAX9+/fx1dffYU1a9bg8uXL4BXukQoaZq6E5fg3atRI1gIJAMqVK4eoqCgkJiYKPjMWe7kIwcHBSEtLEygQCoK3d/4gDaPRqLCk0C3Ix8dHYUn34ZYiw/vvv4+VK1ciOzsbHTp0wJtvvonY2Fg0aNDAOoKX53mcOnUKS5Yswbx582A0GmEwGPD++++7o4kEUaSkZpsw9VAqMgswyur0fSM+b+WcnJINhVNnlyT8OzXbhP23pC3RKJOh8An11uLKQ3sPr+pgRwRm5vKyny0pGQii9JJz/xgebH1eNMJWipJSZDDxkL3eOcruG5n4JiYUIRKWdsfuZmPWsYIXMwjnkX34NclkMkgVGTwjwkOBggU//6lrjflBKwEAO33fgvbAi2gGDj5R/WDieXx2OBW30+2ph1oB3uKpmvt7kJWz27wv/3aAt3KRAQC23tJhN/8CJl9uici0qwh89lvRMik7++Lx3aOYGXoU6RobK4dcAOk5ouXVEfzknwq8xUGm170a4Y2Hg/GVdimStZXNT/DMU/yxZODPYw/xQdNATP0jBY9lMiikFDkE4YnYdmI60uHtLjp06IC5c+di0qRJyMzMxMqVK7Fypfl6WaFCBfTo0QMjR45U7Fy2R1JSklPrWaxmpAgOlr+WuWJ/thkUth79UpQrV86p/anFkf3bttuR91C+fHnJ9WwJCQmRVUOwbZHbRmFz7NgxdO7cGcnJyaqWL8xR95ZjYO/YA+bjn5iYqHjc2JwJFs2T0C6LAqeg2IaI27NASk/PH+RVXNRabiky1KpVC0uWLMErr7wCo9GIOXPmYM6cOdDr9QgJCQHHcUhOTrZWaXieh5eXFxYvXmy3akQQnsClB8YCFRgA4K/UXDx6MoLJUViffTWjnHwcMOMPcXEwcWmgTqi46l7OV4u7NqNTny1vsJknPsblfJ3LanDks6URcQRResm68auqAgMAcHrlDjbDU32Qff0XmZUL73Y1UM/BoAWyC8ElKTsPOJecgzYVxNfiE0nKI5NcjYFkZyK8ykRJTudllQwctJwwSDebTdX1NJjvN+eA065GH4zVZcYJpq0u8288kzgbPlH9kJSRp6LAII8fn2p97cOrL9gZOT9c0TVHyLWfRUUGU3YKjHf34pqujbDAUMRc0LfHHW0tc4FBgYsPcnA2OUe2wACQArUkwGkC4F9+TVE3w21wmoCibkKRMXr0aPTv3x/Lly/Htm3bcODAATx8+BA3b97E/PnzsWDBAkyePBmfffaZU9u37fTcuHEjoqKiVK2n1Dmr1Nltu7/jx48rjiK3RS7c1llLYVfhiv0Xl20UJkajEQMGDEBycjJ0Oh3GjBmD3r17o0aNGggODrZa+ly5cgXVqlUDoDDQw4UU9+Mmh22+hW0ItBS2Yc9S2RNFgVuKDAAwYMAAVKlSBaNGjbJ6rmVnZ0v6jjVq1AhxcXEC+RFBeDJsJ7+zGJ182E3LETagjFQSMcMzYXqU0XFIU3iQAYBggwZ1Q5W95AjgtdplsPSCuVIdZNAgpqJY7ja8vj8+O5wKHuaw6P418v1321T0xq9XhSMC3nzGH85QPUiHcB8N7mXaPzFpRBxBlF5MWepGrGkDakIX0lBxmYBG03Hv5u+AhG97YKtFzjRPFRzHoW0FH2y7XjgjqjJypK+jWW7snA7Uc6hDv8MivIJqQV++PYx3djFz5D+bYG8N7tv8NiZnmVCtkNpXHOBNTDFMq/488o7qj3spwqNzz+tp5D68CABwwh3USnjuX6iQm28J0TB7Iw55vwyeUze4Ihd6mDLvgud5QSeEKfMuACCTK16dniZOh0yNunu6dJlrjgVSoBZ/OE5TKEHIpQ3bbM/bt2+7dPCqZeSyyaT8fbMdZSxH2bJlMW7cOIwbNw4mkwknT57EunXrMHfuXKSmpuLzzz9H06ZN0bt3b4fbaRusGxQUhHr16jm8DWf3Fx4eLls8UMJWKXH37l3FjtO7d+86vH1HsLd92/m2Ad22r+/evYsaNWrIbsPWKkou5Ds5ORl5eXmKBR5LW9htWM5VwDXnqxQ7d+605hHExcUJsg5scZfKIiQkBLdv31Z1fliOf0EC1l2Nv78/KlWqhH/++QcXL15UXNZ2fu3a9hWd7sBtRQbA7GmWkJCAo0ePYvv27Thz5oz1RAsODkb9+vXRsWNHu95nBOHp+Os5PFdJ2VMtz8SLOpWdtXV+xHj5+6tQQwR5a/F5q2AcvpONdJlCg79Og5aRV/DhvwABAABJREFUBng7MDK+tNK9qi/K+2mRlJGHlpHe0EsMNasXpsdnrYJxOSUH9cP0qOiffwmPCtBhZtsQbL6agVwT0CXKB08HqRs9wqLXcvi0ZTAO3srGI6MJN9NycfSu9KhbelYliNKLKUvop6or2wr6ckLfY61PeXhXHQROo3zL6RVUC2E9j8F4ezt0oU2h9auErGtr4BVUG4bI513edluG1C2D6sFeuJlWcDnD4dvZuGOjOJMrJrBe/jWCdagd4tw1Wwk/HYcWEd5OqRxLAyEdN+POMuZ+S2F0XZi3VlBkuO8hQeGy5Al/+zmN+iKDIbIDcEJciMx99Cd43iR5mHtXYywJeB5p52YJcjKC/fzRIiIbARUnwXhrO3KSj6Jmzl6MTe2Fv8tPgLZiTwDmPLAGYXqcuW9E/Hmh3QAPDuDzwBsfgjMEWaebss3XtGxO2I6AvLtomr0SHKeDX713VB8DADDe3gXj/cPWvzWGMHgFKPutp5u8sTdT6HuuqfgCYPM2dHwGmmcuxz5fYWeOvYFLdCkgSguNGjWyvt67dy/at2/vsm1b7Ews4b5y/Pnnnw5tV6PRoFGjRmjUqBH69u2Lxo0bAwBWrVolKDKoHaEdHR1tfX3gwAG0bt3aofY4Cru/l156yeFt1K9f3/o6ISFBsciQkJDg8PYdwd72befbFnBsXx8+fFgxE+TIkSOS69liNBpx6tQpwTltS25uLk6ePCm5DVvrnZSUFNl2PHjwQLXVEYttLobSZ26b2SGFq5QH9erVw+3bt3H8+HHk5ubCy0v6GSQpKQnXrl2zrlOcaN26NVasWIFLly7hzp07AlstW/bs2WN9bS/72F24tchgoUmTJmjSROw3SRCEmWCDFoNqKXuq5UoUGXKdqDJk5/Gi0WQBenUX+PJ+XuhdrUguIx5J43IGu8s8HaSTLR485e+FN59xzei7EG8telQ1P2Qn3MmmIgNBECIsHXIWvCu/iDJ1xzu9PV1QbeiC8kfh+NUZ6/S2HEGr4dBOQj3mDEkZeYIig5wVItsR2CBcj37V/SSXJQoPzssb3pVfRNY1W2sShSKDjwaweUb39CIDbxLmk3Ba+/cpdsnLRF76P+ARKZis4SC69zUZH+Lu4U8E08K7XIGXfxUAwCNTDnKSzZ0WVXKPoo7hdwTVGihYvqK/F/bdzMLfNrlV/JPwZlP2fWhsiwxZ9wCYLZVsCTNdRc/0zwGtNyJq/cuht/vo0S6kX/va+rdP5OsIajVOcZ076bnYu1s44lNTqT9wIf9vP1MKOmV8LVFkUH4WICUDUVpo0KCBdTTwokWL8M4777jMs7xKFfM16PHjx7h06RJq1qwpWsZoNGLNGudtrxo1aoTg4GCkpKSIQnJtg2Ftg1+ltlGxYkXcuHEDCxYswNtvvy1Y19V07NgRvr6+yMjIwOzZszFgwACHO47bt28PrVaLvLw8LFmyBC+88ILkcgkJCYphva5g69atuH37tmSmh8lkwpIlSwCYB0zbFgAaN26MoKAgpKamYsmSJZgwYYJAUWDh8ePHWLVqFQCgTp06itkhS5YskS0yrFu3zlpA6Nixo2BecHCwtS1Knfw//fST0xZGubn5v6/p6emCwoYFk8mEhQsXKm6HPa8tNkuO0rFjR2zbtg2pqalYu3YtBgwYILnc999/b33P7HEravr06YMVK1YAAOLj4yWzijMyMgTnj5Jixp3QWAaCKKFIPSM4o2RgVQyAOiUDUXpQymigZ1WCKL2wSgaNd5jMkqUHVrmXJVtkEE4nn/SihDn4SkoGJij8vgpbwRINa5ekcUGRAUDew0uiWo7UV8CUIbbV1frYdMJohIMueF46mFncx2WewF7D8osMQiWDnn9iIWGSzutQgs344FRkzGgkOuWyeeG558Vng5MoiNmLeNPRjRtRStBoNJg0aRIAs6/5a6+9Zs0AZTGZTLh165bqbbdr1876etasWZLLTJgwATdv3pTdxsqVKxXDb48ePWrtOLYUNSzYdkb//fffstvQaDSYPHkyALMf/muvvaZYlHj06BHmzp0rO98eQUFBeOuttwAABw8exPjx4xUteu7evYtFi4SWmBEREVbVxoYNG6ydqLakpaVhxIgRTrdTLdnZ2RgxYoRkoO+MGTNw5ozZtu/1118XdIgbDAarZdDZs2cxbdo00fo8z+Ott96yFpAsx02OefPmYf/+/aLpd+7cwcSJEwGYA4oHDx4sWqZt27YAgPXr10ueL5cuXcJHH32kuH8lqlevbn0dHx8vucwHH3yA48ePK25H7XltjyFDhljDmt955x3J7+GpU6fwxRdfADBnIPTp08fp/RUGffv2RdWqVQEA06dPlzwekyZNsl4jLNe64kCRDUG+ceMG7ty5g4yMDDRt2hQ+Pq4ZQUYQJRFnasYajgPHrOuMxfNjxrtVywG+ZG9E2KBkd0WZDARRemGVDBoDFRm8teqKDOzvNY0uLhmIiwwermTIY5QMDtglKZH78CJMZexbl+RlCosMnD4InFf+SEeOKTLAJF1kYOEtRQbmGpZvlyRUMhj4jCcr5opyHOzCtoltswRSW88xCc89HbIh9QRhX8lgd/cE4TGMHj0aGzduxLZt27Bu3TrUr18fo0aNQpMmTeDr64s7d+7g0KFDWLFiBQYNGoSpU6eq2m50dDRatGiBP/74AwsXLoTRaMTgwYMRGBiIy5cvY8GCBdi5cydatmyJgwcPSm7jvffew5tvvonevXujbdu2qFGjBvz8/JCcnIz9+/djzpw5AMxBy6zH/VNPPWVVKPznP/9BxYoVUbNmTatnf7ly5ayjyd98803r+1+9ejWOHz+OESNGoFmzZggMDMSjR49w8eJF7N69Gxs2bIC3t7fdDm8lPv30U+zZsweHDx/Gt99+i927d2PYsGFo2LAh/Pz8kJKSgnPnzmH79u3YsmUL6tevL3p/s2bNwrZt2/D48WMMGjQIe/bsQb9+/RAQEIDTp09jxowZ+PPPP9GkSRO7FjwFoUmTJti4cSNatWqF8ePHo3r16khKSsKSJUvw008/ATCHVkt10H/88cdYu3Ytrly5gqlTp+LMmTMYMmQIIiIicPXqVcydOxe7d+8GALRo0QLDhw+XbUd4eDh8fX3x/PPPY/z48ejWrRsMBgOOHDmCL774wlogmzZtmmRo96hRo7BhwwZkZmYiJiYGU6dORXR0NNLS0rBjxw58++23CA8Ph1arxb179xw+Tp07d0bZsmWRlJSEKVOmIDExEX379kVYWBj++usvLFy4EDt27ECrVq1w4MAB2e20bNnS+nr8+PH48MMPERERYf3NjYqKkrU+siU8PBwzZ87E6NGjcePGDTRu3Bjvv/8+WrZsidzcXGzfvh0zZ85EWloaOI7DggULVIeUuwudToc5c+agZ8+eePToEVq1aoUpU6agWbNmSElJwcKFC61KqdatW+PVV18t4hbn49Yiw+PHj/Hll18iPj5eUCk+c+YM6tSpY/37p59+wtq1axEYGGhXUkMQpRmtRmi5wHo8q0Eqj8FVfniEZ0BKBoIgWHieJyWDBOz1Ui6Tge0IpNp+ESK657Fjl2TD/SzPVTLwpjyAZ4oorrBLApD76BJQQThNUqHLFBkEKgZArGSQKTKIN21RMgg7U+wqGcw7AVQGTJsXZ9QPKpQMUrfh2SbhuefFZ0krGeyckjqSTRGlCI1Gg19++QWDBw/Gzz//jD///BPjxo1zybZ/+OEHtGvXztrpbLHOsTBx4kTUrVtXtsgAwGqnw65rwWAw4LvvvpO0Gp88eTJGjRqFq1evikKhFy9ejNjYWABmn/uVK1fi7bffxnfffYe///4b7777rmybpDqpHcFgMGDbtm2IjY3F2rVrcerUKcWiRUCA2Oo3KioKGzZsQK9evfD48WPExcUhLi5OsMzHH38MjuMKtcgwevRo7NmzB/Hx8fi///s/0fyIiAj8/vvvCAwMFM3z9/fHjh070LVrV1y8eBFr1qyRtM9q1aoVNmzYoBjq7Ovri59//hldu3bF9OnTMX36dNEyY8eOxYQJEyTX79y5M8aOHYvZs2fjxo0bkkWrDRs2oGvXrrJtUMLPzw9Lly5Fnz59kJWVhfnz52P+/PmCZWJiYjB37lzF7IOnn34aAwYMwKpVq7B161Zs3bpVMP/q1auIiopS1aZRo0YhNTUVH330Ee7evYvx48V2rgaDAQsWLEC3bt1UbdPddOvWDd999x3eeust3L17F2PGjBEt06xZM6xbt07x/HE3bhvLcPnyZTRq1AhffPEFbt68CZ7nZT2/mjdvjrVr1+KHH36QlAQRBGGGfU7Ic+JZ97FR+D1Um8dAlB7Ykbm20LMqQZRO+Nw0kZUKKRnU2yWxv9ekZChKHCkyCB/iHmabYHRGRloSYK2S4GIlg4rDlsfYJWl8hMGHHKdOycAOnpFVMmTZUTIAghBqVTBtEqkvJJC6GhiZIoOckiHPzoHVkZKBKGX4+vpi9erV2LlzJ1599VVUqVIFPj4+0Ov1qFSpEnr27In58+fjnXccC3WvVasWjh8/jpEjR6Jy5crQ6/UIDw9Hly5dsGnTJsycOVNx/V27duHbb7/Fiy++iPr16yM8PBxeXl4ICAhAdHQ0Jk6ciPPnz1uLBSwjR47EmjVr0KlTJ5QtW1ZxhLdOp0NcXBxOnTqFMWPGoH79+ggMDIRWq0VgYCAaNmyIN954Az///DMuXLggux21+Pv7Y82aNdi3bx+GDh2KmjVrwt/fH15eXggJCUHTpk0xevRobN68Gdu2bZPcRkxMDM6dOyc4vuXKlUP37t3x22+/4ZNPPpFcz9UsXrwYy5cvR0xMDEJDQ2EwGFCjRg28++67OHfunGCwNEtUVBROnTqFuXPnol27dggNDYVOp0O5cuXQpUsX/Pjjj9i7dy9CQkLstqNJkyY4fvw4xo4di2rVqsHb2xuhoaHo0qULNm/ejG+//VZx/W+//RbLly9H27ZtERAQAB8fH9SsWRPvv/8+jh8/jtq1ayuub4/OnTvj6NGjeOWVVxAZGQmdTofw8HC0a9cOCxYswI4dO+DnZz97bNmyZfjyyy+tShupLAu1TJ48GSdOnMCwYcNQrVo1+Pj4wM/PD7Vr18bbb7+Nixcv4rXXXnN6++5g2LBhOHbsGIYNG4aqVataP/fWrVtj3rx5OHDgAMLCitfzl1uUDFlZWejevTv+/vtv+Pn5YfTo0Wjbti169OghuXxUVBTat2+PnTt3YsOGDWjdurU7mkkQxQa1QgKzVU3+w4RTSgajWMlAELYoKxmoY4wgSiOsigEgJQMgLspmyikZmN9rKtgWJeozGUK9xfdIyVl5iPArMgfaQoO1SgJcFPwMIPfhJfG2JZZjlQwaX9coGSyfsMOZDDArExw5DmwmAzTOKRmMJuFEymQgCMdo37492re3b9MGmPuj1ITgVqhQQTTC3pbY2FjZIkGVKlUwduxYjB07VlWbpHjhhRdkg5GlqF+/PmbPnu3wfqZOnaraSsqW1q1bF6gvr1KlSorH19l2OcrAgQMxcOBAp9bV6/UYPXo0Ro8eXeB2VKpUCd9++63dgoIc9t5HYmKi7LyYmBi734m6devixx9/lJ2v5nul0+kwadIkuxkD8fHxsvkPtjzzzDNYsGCB3eVY1F4DAOXj5grq1avn1HsoKtxyRzxv3jz89ddf8PPzw759+9CwYUO763Tt2hU7duzAH3/8UfgNJIgSCtsp4Uzw82OmyBBARQaCQSmTgZ5VCaJ0wo4AhkYPzqtM0TSmGKE++Fn4N/mkFyEO2CX56jTw8+KQbvO53s80IcL+4LwSBy+hZICLlAymjJsw5WQIpklZdbKZDKxdktpMBvEnbP7CyWUyiIsM7lUySF0OzHZJ+RcOHe9cJgMVGQiCIAiCKCzc8kizdu1acByHt99+W1WBAQAaNGgAwGyzRBCejrNCew3zoOCMYp+UDIQ9NBwHudOCnlUJonRiykoW/K3xDqM8H6gPfhZlMtDFtAhhrXSUb6ZCS0v4s6nwlAwAkJt2XbhtqSaI7JKcUzKIN27JZJBWMijaJbEZC/ZgixKqMhnERyObVTLAuUwGKmgSBEEQBFFYuOU2w+Lr1qlTJ9XrhIaGAjCH4RAEIY0ok8EpuyTKZCDsI2eZpKVORYIolbAjgCmPwYxIySBT/Wcnk11SEcL+jtm5lwpnw589tMjA5xVeJgMA5KYzRQaJ74BIyeDrKiWDdCZDnhq7JAeVDGzhQ1Umgwq7JJ2sXRIpGQiCIAiCKBrcYpeUlpYGAChTRr2MPjvbPHpGp7N/I0YQpRXXBD+TkoGwj7eXBg+N4o4UelYliNIJz4wApjwGMz7MMGFSMpQEHDv2bPjz/Uwnbr5KALyEksFVdkkAkJt2DUBT698uUTLw6ooMUkoGPjcDyMsE4GIlA7u8ikwGqTtxqUwGabsk5W1TkYEgCE/m6tWrSE9Pt78gQ3BwMCpUqFAILSJKG+np6bh69apT69asWbPE94G7pcgQGhqKO3fuIDExEY0aNVK1zrlz5wAA5cuXL8ymEUSJhh1F7kwmA2uXRJkMhBRyuQz0rEoQpRNSMkgjskvK42HieWiY32u2I1BLP73FCHt2SaVDyQBWycBpwWm00ss6QW76DeHmmfl8bib4nIeCaU5nMrBiFQklg0XFAChnMhRYycCp6DyQUjIwp5kO2eAkVAt2Mxlc9xESBEEUO4YMGYI9e/Y4vN7gwYNVBQkThD0SEhJUh8yzXL16FVFRUa5tkJtxyyONpbCwd+9e1essXboUHMehRYsWhdUsgii2qO23ZTt4nbFLIiUDoQYfGS8PsvggiNIJ62VOSgYzUgVZo4RlEvt77UXWc0UGx9512bVLEvbSJmeVDiWDK/MYACCPzWRg72kZqyQA0Pg6l8kgKmBw5ntdPjsF/BOlga06S6xksBkVW9BMBieVDNlsWDyfJbmu/UwGutYQBEHIERUVBZ7nwfM8YmNji7Qt8fHx4HkeiYmJRdoOgnAEt/Qm9uvXDzzPY8GCBbh+/brd5b/55htrQWLgwIGF3TyCKHqcTH5mRz46Gvxs4nmk5bCZDFRkIMTIKxnoYZUgSiOkZJBG6lopZZnEdgRSGGsRIvodU76ZEtsl5cHkxCCPYo+JUTK40CoJAHIzlJUMrFUStD7gdAHCdVhVgFzwMwNv3RsPkzEFAKNkgLySQVQ0sLcvtk3OZjIwN/lymQz2Bhzp6FpDEIQHs3v3bmuRwJF/pGIgXEVMTIxT5yDP8yVexQC4qcjw6quv4plnnkFWVhZiYmKwZcsW8DY3QBzHged5JCQk4OWXX8Y777wDjuPQpk0bdO3a1R1NJIgSCWuXlOegX1KakRc9nvhT8DMhAdklEQRhCykZpGHtkgAgU42SgS6mRYijRQbh41OOCXhk9LwiA5/HKBk0jikZ5Aovlqk8qwiwo2TQ+kaAY3vfnbRLst2Z6UlxwVI45SG2S7LNZBC12x7M8hxnX8kgUtcAyGbskrxAmQwEQRAEQRQv3JLJoNFosGHDBrRu3RqJiYno0aMHfH19rTeKMTExePz4sTXsmed5VKtWDatWrXJH8wiixCIKfnbwGZfNYwBIyUBII2eXRM+qBFE6ISWDNDqN+bfZ9vdYlZKBrqVFiGN2SUEGjegzvp+ZhyCDZ90/8aySQeuYkkGuszsPenjBaKMmMMMePVOmndBniDMZ5O2ShPuy/YQtBVNLsSEHPlY7JQt6W7skR5UMbBi1CiWD1L2VWMmQJalksJvJQDduBEEQBEEUEm67G37qqadw8uRJDBw4EBqNBunp6VZJyL1795CVlWVVNwwYMABHjhxB2bJl3dU8giiRsP2+jgY/s0UGHy+ORlMSkkgpGTiQXRJBlFZIySANx3EiNUMmU2TgeV40KEBLv71Fh4N2SRqOQ6h3KQh/LqCSQa6zO5czFyt49jGUVecydkls6DMA1ygZsoVFBlbFAAiVDOAd/KxZJYOKTAYpjMzx9JKxS7KvZHBq9wRBEARBEHZxi5LBQkhICP73v//hiy++wKZNm3D06FEkJSUhLy8PoaGhiI6ORs+ePVGjRg13NosgSiwaplPC0eBnNvSZVAyEHFJFBuoTI4jSCc/zEkqG0CJqTfHD24tDuk1hIZupKEipDimToShxrMgAmHMZkjLz76HuZ3pe+DOrZOBcpGTIhfR2RJkMrJKBDX2GI0oGIbYFDkvgs+WaxoY+A0Ilg+N2Sa5RMrDXEZ2cXZKdZwEaTEQQBEEQRGHh1iKDhcqVK2PUqFFFsWuCKJaIkxHUIbJLcvAZl/UQpjwGQg4fKjIQBPEE3vhQNJqX7JLyYYuyrF2SVOcrm7FEuBEnjn2ojxZAfuexJyoZ2EwGOKhkyFFSMvAQ2SXZC35WpWRgrYlk4B1UMuiQabOyo3ZJzmQyiGHtkpxVMlBBkyAIgiCIwsItRYbr168DACpUqACtVqtqHZPJhBs3bgAwWy0RBCGmoJkMpGQg1CIVZkpWSQRROmFVDADZJdlizy5JaqQxdfwVI1SoQsN9WLskz1MygFUyaBxUMsgcxjxI2yWxtxRs8LOqTIY8o2gZQErJYBv8fF/wP6tk0PMZ0Nh05rtDySB1e5XDnGI6PgvSwc/y56+Wo3s3giAIgiAKD7cUGaKioqDRaHD69GnUqVNH1TpXr15F9erVodFokJvr4M0cQZQS2JGPjtolsZkM/lRkIGSQskuSyYImCMLDYfMYoPUB5yUe/VtaYZVfWXn2lQxe1PFXhDhnl2RLaVAycFoHlQwyI1+smQycHSUDU2TQStglgS188LngeR6caNtsW9QrGQx8puBvh5UMbFHCSSUDixeyJacrDTjS040bQRAEQRCFiNt6FHkHOz8Luh5BlAa0zDfY0eBnUjIQavGRGGZLdkkEUToR5TGQikEAW5RllQx5Ej/WpGQoSoSfl5pnj1BWyZDlgUUGRskg6tC3g2zwMyzFCqYQYPMnb8qxdvpbd69CyWBeWaoIIPx8JJUMMpkMejBFhgIqGSTbzMBxnN1Cg07WLkn+/KXrDEEQBEEQhUmxvdWw3OBrNMW2iQRR5LCSZ0ftkiiTgVALKRkIgrDAKhkoj0EIa5fEBrZK2choqWpbdIhUJCqUDN5CJcNjIy/6nEs8BVQyyNkl8X5R5v9ZuySb16bMu6L1pIKfJa2HJMKfOZ6RD3FCJQNvygOf/QCAhJKBKTKwGQv2EC2vcY2RgJesXZL8Ojq6zhAEQRAEUYgU2x7827fNEll/f/8ibglBFD7yIm5lxMHPjj3gkpKBUAtlMhAEYYGUDMrYC36WVDLQ5bTIEI8Zd9wuCfA8yyTexAY/O6ZkkAt+5v2qmf9XCH5m8xjAeUFjCBVtS0oVwEsUGdigetsChynrPkzZybB87mIlA3Mc3KBkAOyrRXWQUTIoKHF0dJtPEARBEEQh4tZbDdYfU4qcnBxcvHgRn3/+OQCgZs2ahd0sgiixsA8gjisZqMhAqIP1GCcIovRCSgZl7AY/s4OqQfZzRQtz8FXYJXl7cfDXCdfzvCIDE/zsaCaDzIh63q+q+X+F4GdTBhv6XB4cJ3GPyqlVMrBFBpvFs+4JCqeuVjKI7JtUZDIA0uHPtnjx2ZKDkpSUDF50oSEIgiAIohAplOBnrVY8uofnedSrV8+h7XAch379+rmqWQThcbAPCwXNZKDgZ0IOqSKDku8vQRCeCykZlPFmjM9Fwc9MJ7ZWo24gDlFIOGGXBAChPlo8zsnvQL6fqdC7WxJh7ZIcVDLIqWtNvpUBiJUMtsUeVskgGfoM9UoGTiGTgc9Ngyn9hvVvcZGhYEoGtj1qlQz2MxmyJKcr3ZuRXRJBEARBEIVJofQo8jwv+Cc33d6//v37Y9y4cYXRRILwCMRKBvWdvlm5PJgaAwIok4GQQcouyeP8pwmCUAUpGZQR2yUJf2zZkcZeVGAoYpw7/uFM+HOyhysZ4Colg28lyekaRSWDdJFBbSYDa5fEfua5Dy9aX4vtkpjj4KiSgS1KqMxksFcP8HpS/GAXU85kULVrgiAIgiAIpygUJcO//vUvwd+ffPIJOI7Dm2++ibJly8qux3EcvL29ERERgZYtW6JatWqF0TyC8BjEmQzq12VVDADZJRHySAU/S5xCBEGUAkjJoAxblBVlMkgoGYjihLoCOpvLcM/jlQyOFhlklAyGCgDEdkmCZVglg0yRwflMBrbIcMH6WqRk4ISKAd4BJQNvygN7PnFSFk+ScKJ1bdHx2ZLTlc5eUjIQhDoSExNRpUoVAMDixYsRGxtbtA0iJJk6dSo++eQTABAMbiZcz+7du9G+fXsAwK5duxATE1Ok7YmNjcWSJUtQuXJlJCYmFmlbCCFuKzIAwOjRo1GnTp3C2CVBeBRqBzVqmQUdUTKweQxajnz3CXnIx5cgCAukZFCG/S0V2SWxSga6vhYt7E2XynupUKbI4PmZDI7ZJcnZ9uTpAsHpAhwKftbI2CU5q2RgCxxCJQNrl1QAJYPUsq5SMjwpMnCc6lOWrjUEQRAEUUL4559/cOTIESQkJODIkSM4duwYHj16BMDc5z516tSibaAMhVJkYFm8eDEAoGLFiu7YXZFy/fp1fP/999i0aROuXbuGx48fIzw8HFFRUWjfvj0GDBjgcDYFQcjBjn50xL2GVTIE6DXkCU0QBEHYhZQMyrDKL3Hws/Bvqu8XNc5lMoSxdklZHlZkYJQMcFDJIGfbk2sCvAJrAY+YIoOCXZKckgGcVA6g/eBnkV1Sqo2SAaySgSkyOKRkkCh4uCiTQc4uSQmySyIIz6C4jSonCFdAypR8rl27hqioqKJuhlO4pcgwePBgd+ymyJkzZw4++OADpKenC6bfuHEDN27cwP79+/Ho0SN88803RdNAwuNglQyO5PCySgZ/ymMgCIIg7MCb8sBnPxBMIyWDEJFdUh5rlyRc3os6/ooY55QM4SIlgwkmnofGUwZssEoGB4Of5eySck08vAJrwvT4kXD7Nq/VKhk4jjN32tt25jsY/AwApqy71tdsJoOBE26Pd0TJIFGQ4Dh1j99Kp5GGz4EWjhe1dBL5WgRBEARR0oiPj0d8fHxRN6PQsC2ycByHatWqITIyEnv37i3CVqnDLUUGwDzCHwDKlSsHg0F5JExWVhaSkpIAAE899VSht80VfPbZZ/joo48AADVq1MCwYcPQtGlTBAYGIjk5GSdOnMC6deug0dCTJOE6RMHPDlQZHhuFy1IeA0EQBGEP3pgCdqQ3KRmEiIOflZUM7IABws2Ijr9KJYO38L4pjwdSs00I8RaPri+JsEoGzsHgZ7tKhhsJwu0/+Rh43gRT5l3BPNngZ5hzGWwVA5LqAVFnv/x3TpzJUAAlg4SqQq2SQemu3DaPgVOObhCuR7f6BEEQBFHs8ff3x2effYZmzZqhSZMmCA4OFiiYijNuKTJs3boVXbt2RZkyZZCYmGi3yJCRkYG6desiMzMT27dvL/byrx07dlgLDK+99hoWLVoEnU54A9mhQwdMnDgRRqNRahME4RSi4OcCKRnoyYMgCIJQhs1jAACNIbQIWlJ8YZUMOSbzIADtk5EBeaJMBne1jJBG+HnxKntsAwwaeGmEnen3Mz2oyMAoGeAiJUOOiYc2oCZ4HBNMt3wKpqz7oiwDWbskAGCDlNUoGRQKe4WuZFCZyaBUe/RCfhi1IyVKymQgCIIgiOJPaGgoPvzww6JuhlO45bFm9erV4Hkeffr0QXBwsN3lQ0JC8OKLL8JkMmHlypVuaKHzmEwmjBw5EgDQoEEDfP/996ICgy16vWM36ETpwFnLOVaSX9BMBoIgCIJQgs1j4HT+Do9w9nTY4GdAaJmUy/zoU8dfUeOcXZKG4xDKFBSSPSn8ucBKBrkig1nJwFoWgTffl5oYqySAg8annOx+OEYZIKlksBP8bItYycBszwElg2QItQsyGWyVDI6go2sNUYo5cOAAhg4dipo1ayIgIAB6vR4VK1ZEjx498N///hepqamqtxUbGwuO4+x6psfHx4PjOHAch8TERMlldu7ciYEDB6JKlSrw8fGBr68vKleujObNm2PixInYuXOnddnExERwHCcYzdy+fXvrPiz/5Gxkdu3ahcGDB6Nq1arw9fVFQEAA6tevj0mTJuHWrVuy72Pq1KnWbQPAw4cPMW3aNERHRyMoKEh2n7/88gv69++Pp556Ct7e3ggKCkKTJk3wySefICUlRfHYAWbb8dGjR6Nq1arw9vZGZGQkevXqhe3bt9td11ksx9j2Pa1evRodO3ZE2bJl4ePjg1q1auGDDz5Qdc4YjUbExcWhffv2CA8Ph16vR/ny5dGtWzcsW7YMJpOM7A/i8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOMTGxtp9X1IcOnQIU6ZMQUxMDMqXLw+9Xo+AgADUqVMHI0eOxPnz5yXXs3xPLHkMAETnNPsdUvsdPHPmDIYPH47q1avD19cX/v7+qFu3LsaPHy/7nQSkj9u2bdvQs2dPlC9fHgaDAVWqVMHIkSNx48YNtYeoVOAWJcMff/wBjuPQqVMn1et07twZS5cuxR9//FGILSs4W7duxeXLlwEA7733Hry83OZARRCi0Y8mB6oVlMlAEARBOIopO1nwN+UxiGHtkgBz+LPfk75F1kaGbNKLFk5pyLgdwn00uJuR34F9z4OKDKySwdFMBjm7pDwTD6+ApwFOeBPLmcwd53lM6LPGO1x59D/baS9ZZBAWBpTultkig55jPlMHlAxSqgf1mQzyPkhetnZJqltDdklE6SQzMxNvvPEGVqxYIZp38+ZN3Lx5E5s2bcK9e/cwdepUt7Zt/Pjxknmd169fx/Xr13H48GHEx8fj/n2xitQRsrKyMGTIEPz000+ieWfPnsXZs2cxb948rFixAj179lTc1uXLl9GpUyfFDtqUlBT069dPUCABgOzsbBw7dgzHjh1DXFwc1q9fj+bNm0tuY9++fejRowcePcrP77l9+zY2btyIjRs3uu2zeuONN/DDDz8Ipl26dAkzZszA0qVLsWPHDtSqVUty3cTERHTt2hUXL14UTL979y62bNmCLVu2YP78+Vi/fj1CQkIU23H06FF0797daisPmM/tzZs3Y/PmzZgwYQJmzZrl5LssOPHx8RgyZIhoek5ODi5cuIALFy5g4cKFmD17NkaNGuWWNk2fPh1TpkwRFXLOnz+P8+fPY968eViwYAFee+01u9v64IMPMGPGDMG0xMREfPfdd1izZg327NmD2rVru7T9JRW39IhbLkA1atRQvc7TTz8NALh69WphNMllrF69GoD5RrBHjx7W6Q8ePEBycjJCQ0PtXjAIwlnEmQzq16VMBoIgCMJRWLskymMQw9olAcJcBnaENykZihvqB2yE+mgB5Hdq38904EasmMObmNHyDioZlOySOK0BMJQV7i/PbAHEKhmU8hgAdUoGTtTZr94uyVvDFCiKg5IBTCaDSkjJQJQ2TCYTevfujW3btgEAqlevjlGjRqFJkybw9fXF7du3cfDgQaxatcrtbfv111+tBYZnnnkGI0eORO3atREYGIjU1FScO3cO27dvx5EjR6zrVKhQAWfOnEFCQgJef/11AMAPP/yApk2bCrZdsWJF62ue59GvXz9s2rQJANCzZ08MGDAAVatWhUajwZEjRzBr1ixcv34d/fr1w4EDB9CkSRPZdvfr1w83b97EmDFj0KtXLwQHB+Py5cuoXLkyAHMhoWPHjjh+/Di0Wi0GDRqEbt26oUqVKsjJycHevXvx1VdfISkpCd26dcOJEyes61q4fv26tcCg0WgwfPhw9OvXD4GBgTh9+jRmzJiBqVOnKrbTFcTFxSEhIQHNmjXD+PHjUb16dSQlJSE+Ph6rVq3CrVu30LlzZ5w9exb+/v6CddPS0tChQwdcuXIFANCnTx+8/vrriIyMxNWrVzF37lzs2bMH+/fvR8+ePbF3715otdJ2ixkZGejfvz8ePnyI999/H926dYPBYMDhw4cxffp03L59G1999RWeeuopvP3224V6TOTIzc1FcHAwevfujbZt26J69erw8/PDrVu3cPz4ccyePRv379/HW2+9hVq1auG5556zrtunTx80adIEcXFxmDdvHgCzAoGlQoUKqtsTFxeHyZMnAwDCw8Px3nvvoVWrVsjLy8P27dsxc+ZMpKenIzY2FmFhYejWrZvsthYuXIiDBw+iXbt2GDFiBGrUqIHU1FQsXboUS5cuxb179/D6668X+wHy7sItRYbcXPPNmNyXRgrLsllZWXaWLFoOHToEwCwt8vf3x/LlyzF9+nScPXvWuowlCHrMmDF28yhY7Elvbt9mJcVEaYINizxxz4iz942oF5Y/2uxuRh5+T8zAw2zhg+8/j4UPSZTJQBDqMeWkIf38t8h9eEFyPsd5QV++HXyeji3QKNnSQNb19cj6ZwMADt5P9YZ3JekRVNl39iLrynKYctMk5+uC6sKvztvgvHwl5xOugbVLIiWDGK2Gg05jtoWx8OOFNJTRma8Ft9KFI6NJyVDUMBkaycdVrxnmI7x3Ss7yDCWDKecxcpnjoEbJ8CArD78lZiI5Mw9/P5TujD+eZERq9kPcMgwS1HP4rDtI2TtV9Luq9VUuMrCd9mmnpiE35RRyUvNtGUxpnQBtHevf5wxd8VBTXnJzWZywo8jACd9HVuJq5D76U7lNT+CND8UTOXXPw0r1AC/e9vlYffIzFTRLBiYTj+SM0pPjGOqrh6aQzs25c+daCwx9+/bFihUrRP0x3bt3x7Rp09zer2IpbFSuXBkHDhxAmTJlBPNjYmIwevRoPHjwwDpNp9OhXr16AmVDlSpVUK9ePdn9LFq0CJs2bYJOp8OGDRvQpUsXwfzmzZvj1VdfRZs2bXDu3DmMGzcO+/fvl93e2bNnsWXLFoFLSePGja2vP/30Uxw/fhxBQUHYvn27YB4AtG7dGi+//DJatGiB27dvY/Lkyfjf//4nWOadd96xKhiWLVuGgQMHWuc1adIE/fv3R5s2bXD06FHZdrqChIQEdOvWDevXrxc4lnTt2hX16tXDxx9/jOvXr2PatGn48ssvBet+8skn1gLDlClTMG3aNOu8xo0b48UXX8Srr76K//3vfzh48CAWLFhgtWFnuXfvHlJTU7F9+3a0bdvWOr1Zs2Z48cUX8eyzz+LGjRv48MMPMWjQIISHh7vyMKiia9euGDRoEHx9hc9h0dHR6N69O8aOHYu2bdvi9OnT+Ne//iUoMgQFBSEoKAhly+YPPlA6p+1x7949TJo0CQAQGRmJQ4cOoVKlStb5rVq1Qq9evdCmTRukp6dj+PDhuHr1qqzt/cGDBzFs2DDMnz9f8FzfoUMH6PV6LFq0CIcOHcKJEycQHR3tdLs9BbcUGcLCwnD79m1cuXIFjRo1UrWO5QtZnFUAJpPJKn0KCwvD22+/jdmzZ4uW+/PPPzFp0iSsW7cOmzZtQlBQkOp92H4ZCIJFqmPi8yOp+LxVMKoG6pBr4jH1jxQ8yLI/so6UDIQ9NBwgMzCx1PFwfyyyrq1RXCbz7yXgc9PgV3uMm1pV8si6sRkpO/tY/868/D1Cnv8NhgqdBcvlPDiNB793ULSpyAKQk3oWwW3/J7sMUXBIyaAOby8OOTaKwZP35DuMqOOviGEKwbkPTiAv4w60vtKd0LaE+wg7jD1FyZC69xXxRDtKBhPP4/PDqbiRplxouZWe96TQ9rRwRm46sq6Ir9/2lAxskSHn/mHk3D8smMb7NwVsPqq72mq4q62mvN0n6LXC95Obeha5qWdllrYD56V64IHSYgIlgwO7J7ukkkFyhhFl/7W1qJvhNpI+6YTwMq7PdjKZTJg5cyYA88j+pUuXyg741Gg0Do2SdgV37twBADRq1EhUYLClIP1hPM/j3//+NwBg7NixogKDheDgYMycORPdunXDgQMHcPnyZVSvXl1y2djYWFkb9LS0NPz3v/8FAEybNk1UYLBQuXJlfPTRRxg1ahRWr16NBQsWwM/PrCK7c+cO1q1bBwDo0aOHoMBgwd/fHwsWLMCzzz6r8O4LjsFgwMKFCyUt0T/88EOsWrUKZ8+exffff4/PPvvMmr+anZ2NRYsWAQDq1q0rae3EcRzi4uLw22+/ITk5GXPnzpUtMgDAiBEjBAUGC5GRkZg1axZeeuklpKenY8mSJZg4caKT79h57H1/AgMD8emnn6JPnz7Yv3+/1fWlMFi8eDEyMjIAAF999ZVkn2p0dDQ++OADTJkyBTdv3rTmh0gRERGBOXPmSP5+T5w40fpZ79u3j4oMcFPwc8OGDQHAoRBni19cQSpYhc3Dhw+t/l5nzpzB7NmzERERgWXLluHBgwfIyMjAnj17rD5zBw8etMraCMIWtuNW7QODlO+ziQdOP+nM+Cs1R1WBAQCCDPTkQSjTKtJb8Heod+k9Z7JvblG33I3NhdySkk32jU2iaVkSxyz71jZVPtjZN9R9LoTzmIzCoD5OH1xELSne+DvQmycVFE24D85L3LljvLNTYkkxwczvYEp2yS8y8Dwv+Run0QUornczLc9ugUEJPZ8hOV3rpzzgyl67lLatBke+y/bgdP72F3qClO2aBR+TeYSvoWJ3GBy4flBBkyhNnDx50uoKMWzYMMWO/KIgIsJcQN27dy/+/vvvQtnH+fPnrdvu16+f4rK2HdhKti8vv/yy7Lw9e/bg4cOHDu0vJycHx44ds07ftWsX8vLMvyVSHv8WmjVrhrp16yruo6B06tQJkZGRkvM0Gg0GDx4MwGyVfvx4vvrv2LFj1lDo2NhYWUeXgIAADBgwAID5s1JS0ygdi759+1oHMhdmKLYjpKenIzExEefOnbPmftgqBU6dOlVo+7Ycg6CgILzwwguyyw0dOlS0jhT9+vWTLVDWrFnTem2xDJQv7bilh6h3797geR5r1661ZhgosWrVKqxduxYcx6FPnz6F30AnSU9Pt77OysqCr68vdu3ahZdffhnBwcHw8fFB27ZtsXPnTjRo0AAAsG7dOhw+fFhukyL++ecfxX+2Hn1EySU7T1hlMKj0TmgQroefTsL7+cn27qSre9irEuCFCmXU25kRpZOXavjB8OQ04QAMqav+YdnTsHhH218u2/5CpRg+R2x9JGUvwctYJIlgPcQJ18MLO1EVA1lLMa0qeNtf6AktIlw/gpNQj/dTvUXTTNkPJJYUo2c6bU2eIPfjcyWzBPRlWyqudjPNgawCCaKz14snar3hHaXcUeVd5f/sbrtB9iZwvOMFkPphOoRX6SYKqXYWHxVttdAiUv4aEp39C6D1hn+TL9HSgesHuTcSpYkTJ05YX7dp06YIWyKNJWw2OTkZ9erVw//93/9h8eLF+Ouvv1y2D1s7oRYtWoDjONl/tkUYi8pCimeeeUbV/iIiIhT3ZzuY2HZ/tl78bNYES7NmzRTnFxRH9m/bblvrdHtqC9v5tuvZotfrrf2JUuh0OusIeqksA3dx//59TJ48GTVr1oS/v7/Vyqt+/fqoX78+unfvLli2sLAcx0aNGslaIAFAuXLlEBUVJVhHCrlgbwvBweYBV48fP3awpZ6JW54MBw8ejOnTpyMxMRGDBg3C4cOH8fbbb4tkK//88w++/vprqxSlUqVKgupSccPbW3jzN3ToUNSsWVO0nI+PDz7//HNrMPTKlStVS7tsQ3sIzyWLKTJIKRSkCPHW4vNWwRi3W/gwnPukDygpQ/hAFemnRdPywoeRYIMGbSp6k288YZdwXy2+bBOC40lGVAn0Qu0Q+/7MHgvT0epT/Q1ovMORc/8ojLdtR0J4QIdTISJVrOHzxCNOeZPQasYrqA4MlXrBlHELmX8vLbT2EYSzvPi0LyqW0eLqw1zZq4AXB9QJ1QtylAj3owttBI1vRZgy8nPQTFJe+hKwA8PzPOGSbxJ3xod02WM37+Ymo2Io76vFsxEG6LUcQr01SM4ywcgcIJMxFaaH51FVk4hnykcAeN86j/PyhXelXtAF11fcr1+dcTBl3EL6uf9IzveuOggN/Z7Ce8ZVOJdTHfCvAY1PeeQkHzOr5Bg0+mD41hyBcB8t2lQwwODVAaFd9yP75u/iMGwH8AqqA58qYtsPOaSuIVoOqK79GzVz2kEf8Sl0QXXwWiCPakE6QdbahWQj/kwVF33oTp8oTdh2YlpUA8WJDh06YO7cuZg0aRIyMzOxcuVKq/NHhQoV0KNHD4wcOVKxc9keSUlJTq1nsZqRwtKhWlj7s82gsPXol6JcuXJO7U8tjuzftt2OvIfy5fOtGW3XsyUkJMRuvq2lLXLbKGyOHTuGzp07Izk5WdXymZmZhdYWyzGwd+wB8/FPTExUPG5szgSLRmMeiGBR4JR23FJk0Ov1WLt2Ldq2bYu0tDR8/fXX+Prrr/HUU09ZL/i3b9/G9evXAZhlumXKlMG6descDkp2J2yCvJw3HWD+EfHy8kJubi4SEhIKu2lECcNZJQMARPh5oUMlb+z4J7+zLufJSLo7TJGhQbgeg2oVL6koUbIo7+eFblVK98hlnhf3IvnVnQBdUB2kX5jLFBkIJSSLDLnp4gUZRYgurBkCGk+H8X6CoMgg9dkQroY9xtRtJQXHcWge4Y3mxa9fg5DAUD4GmVeWWf/mc9QWGRglgwdcgngJazptmcp212OVDOruOcsAKNiAKo7j4B3VX7bI4FdzJPTlWiMagK1TcubVu0i9/LloeS+v2giv9Y5gmr5sC+jLtihQOx1F/hrS4Mk/MxqOQxtGOfVXag4+PJACFrpalwxCffVI+kS+X8HTCPUtvYX20aNHo3///li+fDm2bduGAwcO4OHDh7h58ybmz5+PBQsWYPLkyfjss8+c2r5tp+fGjRuto7btodQ5q9TZbbu/48ePK44it0VuYG1RD4J0xf6LyzYKE6PRiAEDBiA5ORk6nQ5jxoxB7969UaNGDQQHB1v7dK9cuYJq1cx5SO54Zivux81TcVtPUcOGDXH48GG88sorVunatWvXBIUFC40bN8aPP/5oV5ZS1BgMBoSHh+PevXsAlEOavb29ERYWhjt37liXJwgLWbnOKRkssB6rliIDq2Qo50uWSARRYHix5zZndR9kvrvU6a2IdJHBvpKB08g9kNLxdj90A0+UfDh9oOBvkzFV1XrsmJA8T7jmmyRGwHP2HxlZJYM7bTg5rYI9mYzVEeflI728Rl2nWHFG78BgJaL4odFwhRKEXNoICwuzvr59+7ZL+5YsI5ct+Zxy2Npry1G2bFmMGzcO48aNg8lkwsmTJ7Fu3TrMnTsXqamp+Pzzz9G0aVP07i229rOHbbBuUFBQoeed2u4vPDzcKVcOW6XE3bt3FfvY7t696/D2HcHe9m3n2wZ0276+e/cuatSoIbsNW6souZDv5ORk5OXlKRZ4LG1ht2E5VwHXnK9S7Ny505pHEBcXJ+tG4y6VRUhICG7fvq3q/LAc/4IErBNC3JraWbt2bRw7dgy///47xowZg9atW6NmzZqoWbMmWrdujbFjx2Lbtm1ISEgo9gUGC7ZhM/bkMZb5Uun0ROmGVTIohb1JwWbSydklUZGBIFyBRCeSZaSEaMSEB3Q4FSZOKhlgLTJQR4rb8YROVIJgYIsMUtkwUrB2SZ6gZICEkgGc8v2jiedxi1EyVCjjvucdxSKDzOMup5UuMnCeUGSQecKnQZ1EaaJRo0bW13v37nXpti2OFpZwXzn+/PNPh7ar0WjQqFEjTJs2DTt27LBOX7VqlWA5tSO0LT79AHDgwAGH2uIMrthf/fr5Fnn2HEAK2yHEkf3bFnBsX9vLY7XNWJUrAhmNRsWg5NzcXJw8eVJyG7buKykpYoWbhQcPHqi2OmI5d+6c9fVLL70ku5xtZocUrlIeWI7B8ePHkZsrnxeVlJSEa9euCdYhCo5biwwWnn/+eXz77bfYu3cvzp8/j/Pnz2Pv3r345ptv0KFDh6JoktO0bdvW+lopTfzRo0dWX8AKFSoUeruIkoUok8HhIoNYyZCZa8JDo3C7ZanIQBAFR0LJIB8K6Qk9ToWH00oGrXmEH0fKkSKAOcbUa0V4ABp9kOBv9UUGT7RLEg+ashfwfj/TBCPz0+hOJQO0CqO+5ZQMMkUGT1Yy0NWaKE00aNDAOgp+0aJFSEtLc9m2q1SpAsAc9Hrp0iXJZYxGI9asWeP0Pho1amQd1c+G5Npmg2Zny2fFNGrUyKomWLBgAbKyxPfdrqRjx45W//rZs2c7ZYnTvn1764j9JUuWyC6XkJCgGNbrCrZu3Yrbt29LzjOZTNb2BQcHC4pajRs3RlBQEADze5BTEDx+/NhaQKpTp45idojSsVi3bp21gNCxY0fBvODgYGtblDr5f/rpJ6ctjGw78uXUECaTCQsXLlTcjtrz2h6WY5Camoq1a9fKLvf9999b3zN73AjnKZIigyfx4osvWl+vW7dOdrl169ZZT+A2bdoUeruIkgVrl2Rw1C6JeZjIyQOSMsQ/ZlRkIAgXIFVkkLFLoowAZdRmMvCySgbRki5oFeEY1G1FlHw0OtfYJfHwgOu+hF0S7NglsSoGHy8OQQb3PWYq2yXJdLjL2CV5hJKB7JIIAhqNBpMmTQIA3LhxA6+99hqMRqPksiaTCbdu3VK97Xbt2llfz5o1S3KZCRMm4ObNm7LbWLlypWL47dGjR60dx5aihgXbzui///5bdhsajQaTJ08GYB4Q+9prryl23j569Ahz586VnW+PoKAgvPXWWwCAgwcPYvz48YoWPXfv3sWiRYsE0yIiIqzWUBs2bBCpOAAgLS0NI0aMcLqdasnOzsaIESMkHUtmzJiBM2fOAABef/11QZaswWCwWgadPXsW06ZNE63P8zzeeustawHJctzkmDdvHvbv3y+afufOHUycOBGAOaB48ODBomUsA6PXr18veb5cunQJH330keL+lahevbr1dXx8vOQyH3zwAY4fP664HbXntT2GDBliLXa98847kt/DU6dO4YsvvgBgHgTep08fp/dHCCky3x6TyYQHDx4gIyMDFSpUsJuWXlx55pln0LVrV2zZsgUrVqzAkCFDRGqMO3fuYMqUKQDMIdhDhgwpiqYSxRjX2yXxuMtYJYV4a+ihgyBcgpRdkkwmA6GIWiUDZJQMNIq+KCjhHagEIYEok0F18LN4mokXFx9KElLBz7CjZJDKY3Bn4KJSkYGTG1PnwUoGg9SJCfrJJEofo0ePxsaNG7Ft2zasW7cO9evXx6hRo9CkSRP4+vrizp07OHToEFasWIFBgwZh6tSpqrYbHR2NFi1a4I8//sDChQthNBoxePBgBAYG4vLly1iwYAF27tyJli1b4uDBg5LbeO+99/Dmm2+id+/eaNu2LWrUqAE/Pz8kJydj//79mDNnDgBz0DLrcf/UU0+hYsWKuHHjBv7zn/+gYsWKqFmzprVPrVy5clabnDfffNP6/levXo3jx49jxIgRaNasGQIDA/Ho0SNcvHgRu3fvxoYNG+Dt7W23w1uJTz/9FHv27MHhw4fx7bffYvfu3Rg2bBgaNmwIPz8/pKSk4Ny5c9i+fTu2bNmC+vXri97frFmzsG3bNjx+/BiDBg3Cnj170K9fPwQEBOD06dOYMWMG/vzzTzRp0sSuBU9BaNKkCTZu3IhWrVph/PjxqF69OpKSkrBkyRL89NNPAMyh1VId9B9//DHWrl2LK1euYOrUqThz5gyGDBmCiIgIXL16FXPnzsXu3bsBAC1atMDw4cNl2xEeHg5fX188//zzGD9+PLp16waDwYAjR47giy++sBbIpk2bJhnaPWrUKGzYsAGZmZmIiYnB1KlTER0djbS0NOzYsQPffvstwsPDodVqncqP7dy5M8qWLYukpCRMmTIFiYmJ6Nu3L8LCwvDXX39h4cKF2LFjB1q1aqVoo9WyZUvr6/Hjx+PDDz9ERESE9X4iKipKlfV8eHg4Zs6cidGjR+PGjRto3Lgx3n//fbRs2RK5ubnYvn07Zs6cibS0NHAchwULFqgOKXcnv/32myCz4+LFi9bXJ0+eFBR0ypQpg379+rmzebK4tciQl5eH+Ph4xMfHIyEhATk5OeA4DqdPn0adOnWsy/3666/Yu3cvAgMD8eGHH7qziU7xzTff4I8//kBqaip69OiBcePGoVu3bvDx8cGRI0cwffp03LhxA4D5i092SQSLSMng4NOpVPAzW2QgFQNBuAZeUslAmQxO4aSSgZPNZKDjXeiIRmlTrxVR8nHeLkk8LY8HSvQdl2Tws/I7ulmEeQyAk8HPcpkMXPHraHAUL435yiy+WtP1mihdaDQa/PLLLxg8eDB+/vln/Pnnnxg3bpxLtv3DDz+gXbt21k5n1s5m4sSJqFu3rmyRATDbuUita8FgMOC7775DkyZNRPMmT56MUaNG4erVq6JQ6MWLFyM2NhaA2ed+5cqVePvtt/Hdd9/h77//xrvvvivbJqlOakcwGAzYtm0bYmNjsXbtWpw6dUqxaBEQECCaFhUVhQ0bNqBXr154/Pgx4uLiEBcXJ1jm448/BsdxhVpkGD16NPbs2YP4+Hj83//9n2h+REQEfv/9dwQGBorm+fv7Y8eOHejatSsuXryINWvWSNpntWrVChs2bFAcdO3r64uff/4ZXbt2xfTp0zF9+nTRMmPHjsWECRMk1+/cuTPGjh2L2bNn48aNG5JFqw0bNqBr166ybVDCz88PS5cuRZ8+fZCVlYX58+dj/vz5gmViYmIwd+5cxeyDp59+GgMGDMCqVauwdetWbN26VTD/6tWriIqKUtWmUaNGITU1FR999BHu3r2L8ePHi5YxGAxYsGABunXrpmqb7mbGjBnYs2eP5Lz169dj/fr11r8rV65cbIoMbtOxJiUloU2bNhg+fDgOHDgAo9EInuclJcVRUVH4z3/+g48//tgaYFKcqVGjBjZu3Ihy5cohKysLM2bMQNu2bdG0aVNr9YzjOEyZMkXxgk6UXkRKBgftkqSCn++mU+gzQRQO4iID96QTQ/wAT53eSsgpGdh7AzaTQdZ/u6TblBAEUSRwjF0Sr1rJIL5fK/G5DBKZDHaVDOliJYNbkbXQg3yRQcYuyd57LQlwHAc93fYTBABzB+3q1auxc+dOvPrqq6hSpQp8fHyg1+tRqVIl9OzZE/Pnz8c777zj0HZr1aqF48ePY+TIkahcuTL0ej3Cw8PRpUsXbNq0CTNnzlRcf9euXfj222/x4osvon79+ggPD4eXlxcCAgIQHR2NiRMn4vz589ZiAcvIkSOxZs0adOrUCWXLllUc4a3T6RAXF4dTp05hzJgxqF+/PgIDA6HVahEYGIiGDRvijTfewM8//4wLFy44dByk8Pf3x5o1a7Bv3z4MHToUNWvWhL+/P7y8vBASEmLtJ9u8eTO2bdsmuY2YmBicO3dOcHzLlSuH7t2747fffsMnn3xS4HaqYfHixVi+fDliYmIQGhoKg8GAGjVq4N1338W5c+cEg6VZoqKicOrUKcydOxft2rVDaGgodDodypUrhy5duuDHH3/E3r17ERISYrcdTZo0wfHjxzF27FhUq1YN3t7eCA0NRZcuXbB582Z8++23iut/++23WL58Odq2bYuAgAD4+PigZs2aeP/993H8+HHUrl3b4WNjS+fOnXH06FG88soriIyMhE6nQ3h4ONq1a4cFCxZgx44d8PPzs7udZcuW4csvv7QqbTQa57usJ0+ejBMnTmDYsGGoVq0afHx84Ofnh9q1a+Ptt9/GxYsX8dprrzm9fUIajneDcWheXh5atmyJhIQEaDQa9OvXD23btsVbb70FjuNw5swZ0ZezRYsWOHLkCKZMmeK2C0hBSU5Oxpw5c/DLL7/g6tWrMBqNiIiIQExMDMaMGYPo6GiX7/PGjRvWQKN//vnHGuxDlCxG77yP+5n5HZfvNglE43IKIXYMu/7JxHenH1v/rhbohTJ6DU7dy++YG1DDDy9Wt39hJwhCGZPxIe4uDxJMK9v/H2j9KiLj0gI8/CPfI1QX3gJh3eVHMJV27vwvSLIzr/wrGYIOoOQtMTDezR/JEfDsHPjVfgs5ySdxf6PNbyvnhYjBOYXa5tJOyt5XkHXlf9a//eq/j4DG4hFVBFGSyEm9gPu/CJ9Fyr9mtOvPfz8zD6N3JgumLe4UBl929EcJIif1PO7/UlcwrfzgPGsxXYqh2+7hsTH/kXJSk0A0ceA+1hXcXuoNmMRe42G9T0MXXF803WR8hLvLxaNPDU/1Qchz8jl7JYWhW+/hcY7wMX9YfX90fEqmuEKopiDP35cvX0Zubi68vLwEPuYEQRQPEhMTrRkYtoqQoiA2NhZLlixB5cqVkZiYWGTtIDyXwvhNcstQjSVLliAhIQE6nQ4bNmxA586dASiHm/Tq1QuHDx+WDDcproSGhmLq1KmqvfwIwkJ2bsGUDGK7JFIyEEShIVmbJ7skZ5BSMgBmyyTbIgOrZJDPZKDj7X7IfoMo+Wj04s5m3vgQnHeY4npS7pYlXsnA2iVxGsUCwyOjSVBgAIpAyQCzZRIvUWSQE+57cvAz8CT8mSky0NWaIAiCIIjCxC3DbFasWAGO4zBixAhrgcEellH/ly5dKsymEUSxICuvYJkM7IA5Yx6Pe5mUyUAQhYNEJoNc8DPZ98jC87zkqFNAHP4s6jiStcag41340DEmPA82kwEwq9bsrueRdklskUF5TNotJo/BSwOU9SmKIoOMckIm7ZjT6ACprAlPKjIQBEEQBEG4EbcUGU6fPg3ArE5QiyVwJjk52c6SBFGyyTPxyGH6LL0dLjIIl7+XmQembkFKBoJwFVLBz3JFBkKePOkCAwCY2PDnPEbJoLF0JtHxdjts4UymA48gShRaH1FnuppcBqnbtbwSXlzm2UwGu6HPwuXL+2qhlUrELmTkwp85hcddqfBnTwh+BqSLDHS1JgiCIAiiMHGLXVJqaioAs52QWvLyzDesSinrBOEJsKHPgDN2ScK/2U16azkE6OnRgiBcAS81kttSZCD7HtXIWSUBAOwpGbRPlAzs8S7hnXslEXHYOUGUPDiOA6cPBJ+dP7jJZEy1u55UX3qJVzIwdkmcvdBnRslQoUwRBSfLFBnkgp8Bs2USn5smnOgpSgaJt001YYIgPJ2rV68iPT3d/oIMwcHBqFChQiG0iChtpKen4+rVq06tW7NmTeh0Jfs+xC13gSEhIUhKSsI///yjOvz48uXLAIDw8PDCbBpBFDmsVRJQcCUDS1lfLTh6siAI1yChZMjvaKUig1qUigz2lQxkl1R00DEmPBONPhB5NkUGXpVdknhaiS8yOGiXxCoZKhZBHgOgZJfkoJLBU4oMZJdEEEQpZMiQIdizZ4/D6w0ePBjx8fGubxBR6khISED79u2dWvfq1auIiopybYPcjFvskurWrQvAfLDVsnLlSnAch6ZNmxZWswiiWJCVK34adTSTgQ1+ZiGrJIJwIYp2SeyyJb23qfBQKjLYy2TI70yiThS3Izqn6TMgPAOOyWVwNpOhxNslFVDJEFlESgY5uySlIgMkigyw835LCnqJZwO6WhMEQSgTFRUFnufB8zxiY2OLtC3x8fHgeR6JiYlF2g6CcAS3FBn69OkDnucxd+5cpKSk2F3+559/xsaNGwEAL774YmE3jyCKFNYuScuJ7Y/swQY/s5TzdctXnSBKB1JFBshlMpTszqZCRbHIIFQy8CahkiE/+Jm6TAiCcA0aXaDgb7602iU5kMmQncfjfqbwN7FCkSkZZIoMCr8TnFfpUjKQqJkgCE9n9+7d1iKBI/9IxUC4ipiYGKfOQZ7nS7yKAXBTkWHYsGF46qmn8OjRI3Tq1Annz5+XXC4pKQkffvghBg0aBI7jUK9ePQwYMMAdTSSIIoO1S/LWcg5bG9mzSyrnR0oGgnAdUpkMnPB/wi6KSoY8oZKBDYnOD36WWLeEjyIu/lDwM+GZcHphkcGkIvjZE4sMrJJByS7pdlqu6BexqJQMTmUySCkZPCb4uahbQBAEQRBEacMtd4EGgwHr169HTEwMjh07hvr166NmzZrW+a+88grS0tJw5coVawUnNDQUa9asIR95wuPJZuySDA6GPgP2lQ9lyS6JIFyHol2S8PsrGRJNALBTZMhRVjJwcsHP5qVBCgd3Qsea8Aw0jF2SukwGcyKP7ZW+pBcZ2EwGJbskNo8h3EfjsOWnq5ArPnN2gp/F2/GUIgPZJREEQRAE4V7c5qHSoEEDJCQkoEWLFuB5HhcvXrTOO3XqFP766y+YTCbwPI9mzZrh8OHDePrpp93VPIIoMqSUDI5CmQwE4T54JbskttObRtXLwuYsCObZKBl43gSYcoQLaCiToeigc5rwTDid40oGQKxmMJX0674DSgY2j6FCUakYoGSX5KCSwVOKDJKZDPSbSRAEQRBE4eHWO8Gnn34aBw4cwP79+7FhwwYcPXoUSUlJyMvLQ2hoKKKjo9GrVy88//zz7mwWQRQpbCaDMyPAlOySOADhPlRkIAjXIe5Akh8pWcI7mwoTtZkMbIEBNkoGyZV5qj0UJhT8THgoGr3jmQyAuchgeyuXV8Iv+zybyaCgZLjBKBmKKo8BcC74WarI4MlKBrpcEwRBEARRmLi0yHD69GkAQK1ataDXy3cAtG7dGq1bt3blrgmixJLF2CV5O2GXpBT8HOajsat0IAjCASSVDBzzv2XZEt7bVIgo2iXl2igZ2NBn5NtiSI/KpGPuVsjWkvAQRJkMKuySALNlku11x+PskhSCn2+lC5ctsjwGANDKZPU4aJfkMUoGsksiCIIgCMLNuPROsGHDhtBoNDh9+jTq1Kljnf7pp58CAEaNGoWwsDBX7pIgSjysXZIzSgalIgJZJRGEq5HPZBB3epf03qbCQ7nIYKNkyJOwVdIoZTIQhQud04Rn4kwmA/6fvTOPb6Ja3/gzk637BgXK2oJsQlWgoohAuSKrCCqi4hWKCggoiuKG6EXxJ1y5eC+IRQpXCq6giICKlx0EZC2yCiK0YKFshZbubZL5/RETMmdmsk7SJLzfzwdNZjlzOk2mM+c9z/MAYG/bTMFeXHbRLslkFlBQFgRKBgdD67JKBgf2UMGEXqa2Qn8xCYIgCILwJarfRQkyN9ZTp04Fx3EYMmQIFRkIgoENfvZEyeAo+JlCnwlCZRwFP9Ogt8t4pWRQmrFq2cObbhFuQ595IjRQL5NBrR7VDoKLwc8XK0wwMn8OAzGTwVHwM0I5k4HskgiCIAiC8DOqBj/rdJabsoqKCjWbJYiQRg0lA89xkpl0VkjJQBAqIztLVcEuiQa8FXFVySA4UjLIjZgE+yzigIfOLxGaeJrJwN5/BXuRAWwmg8LM/nNMHkO0nkOM3PR5f6GSXVKoZDLIPU9QjYEgCIIgCF+i6p1g/fr1AQD79u1Ts1mCCGnYIkOYB0UGQDn8mYoMBKEuggO7JMpkcAMXlQyQVTKQXVJtIVGs0u+ACBG8y2Sw2y/YL/usXRIvfx+ZXyrerlFk7doMKdsluRf8HDJKBpnnArpaEwRBEAThS1S9G+zevTu++OILvPrqqzh58iRatWplUzcAwMqVK7F371632x0+fLia3SSIgEINuyTAEv5caZIuJ7skglAZGbskTnGgNdhHm3yH50oGTnFm7V97eNcxwk1o2IoIDdhMBpirIRgrwWmVBq//2k+iZAjua5DELknhenu2NHDyGAAHRQYKfr4OXa4JgiAIgvAhqhYZXn/9daxYsQLFxcX417/+JVonCAKmTJnidpscx1GRgQhp1LBLAqzhz9IH2/qRVGQgCHVhZ3LbDWBIig3BPdjkS1wuMrBKBl5vV9QhuyT/Q+eXCE3YTAYAMFcXQaNt4HA/tshgCvavCGuXpJDJcI5VMtRiHgPgqMjgZvBziBQZdDK3/1RjIAiCIAjCl6hql9SuXTts3boVvXr1gk6ngyAIIlm99b27/wgilKlSzS5JuixSyyFKbgVBEJ4jUTJwCq8JR7ga/AxGySAOfabz7Xck92X0OyBCAzaTAQAEF8KfQ80uSWDtkmSUDIIgSJQMDWtbycArZDKQXZINuloTBEEQBOFLVJ9y0qlTJ6xduxZGoxGXL19GZWUlmjdvDo7j8L///Q8tW7ZU+5AEEdRUqmSXpJV5mCAVA0H4ALbI4EjJQIVyZeQCnf/CkZKBs4U+K+7tTa8IN1G2CiOI4ILTGABNmCgvxpVcBmnwc5Bfg1i7JBklQ1GVGeXM/WttKxmgoGTg3A1+dmjHFzzI2iURBEEQBEH4EJ9NcdZqtWjQoAGSk5Ntyxo2bIhmzZq5/Y8gQhnVlAwy+1EeA0H4AImSwf5Pqfh7KNCAtyKuKhkkmQz2SgbZAW46576Fzi8RuvCMZZJrSgbx+2BXMkiCnznpvSSrYtDzQN3w2lXOepTJEMJKBk/tVwmCAPLy8sBxHDiOQ3Z2dm13h1Bg6tSptt8T4Vs2b95sO9ebN2+u7e4gIyMDHMeJxpuJwMAvUzX+8Y9/AADq1avnj8MRRFDBKhkMXgQ/s9SnIgNBqI6kcODoxjbYZ7T6EFczGeBQySA994IgkCWEX6GzTYQOnD4WqLxge2+uLnK6T6gVGQQ2k0FmZv9ZJo+hYZRWYhvlb8RWevYrHBQ/QjiTQU7JYGTnSBAEQRAEEXCYzWZs27YNP/30E3bs2IFjx47hypUrCAsLQ9OmTdG9e3c888wzuOWWW2q7qxL8WmQgCEKKWkoGWbskKjIQhPowSgaxFQMFP7uKy0oGswMlA1EL0GeaCF14fSzsh9gFF+yS2MF1U7AXl83O7ZJYJUOjWs5jABwoGRxlMsjYJYWKkkEv82NXB3sFjCAIAJZZ5T179gQAbNq0Cenp6bXbIYJQgalTp+Ltt98GgBs+mzc5ORl//vmnZHlNTQ2OHDmCI0eOYP78+Zg0aRJmzJgRUGqe0DCdJIggppIpMngqb5ZTMpBdEkH4AEd2SZI/8Df2DZIjHBUZIBghmKrBafSAyT0lA51zH0PBz0QIw+njRO9dyWQINSUDm8ngipKh1vMYAMVMBkdqQzm7pFBWMtQE/YeTIAiCIIDs7OyQtjI7d+4cAOCmm27CQw89hK5du6Jhw4aoqKjApk2b8O9//xtXr17F+++/D41Gg/fee6+We3wdv98RFhYW4pdffsGpU6dQUlICk8nkdJ+33nrLDz0jCP9jFgRUMV8BT4OfdaRkIAg/wdolXS8ycDTg6jqOigywqBk4jV6iZBAVGSiTofYJoJkzBOEtkkwGF+ySpMHPKnaoFhBYJYNMJsO5MvHNa8NAUDLwSio3B0UGOSVDqAQ/yzwXVDt/7CYIgiAIopbp3Lkz/vGPf6B3794SlcLdd9+NYcOGoUuXLrh06RJmzpyJp59+Gs2bN6+l3orx213UxYsXMXHiRHzzzTcwGo3Od7CDigxEqFJtkj6JeqpkYO2SNBxQJ6x2Q/gIIiSRKBk4hdegTAYHOFQy4K9cBkMcBEbJQHZJtQ19ponQhdOLiwxml4KfWbskVbvkf9hMBsYuqbzGjCuV4r+DgaBkkLdLchwIKhv8LPkbH5xoZR4BSMlAEARBEIHPjh07HK5v0aIF3nrrLTz33HMwGo347rvv8OKLL/qpd47xyx3h1atXcffdd+PkyZM3vLfWjU55RSnmbf3Z7f00MKGN9gQ6a/epMmlSE9EYEa2egjampVv7mSsvo+zobBhLcwFYxg/3GDviT1MjdNIfQZumbRHe/DGn7RRWmPC/0xXILZYW3DxXMojfJ4ZroJGZxUSIqchbjppLOxDWdDD09btJ1purrqDsyL9tv3NX0cXfgsibn1cOInSTmsIclJ9YBHP1VQAAb6iLiFajoItvp0r7oUrl6RWozP8egqnK+cYuYq68KF7gIFTSXHEeV7f+3eW2OU0YwpoOQliTgZ52LygQzCZUn9/kcJvinePA6aJhKj4uWm6vZJBTjhRvf9olT21NRCNEthkPTVRTF3vtOubKQpQd/Q+MpbngOB66up0R0XosON712b41Vw+h/Pf/wlx1WbSc10UjvPkw2euV2phrSlB29D+A2YjIm58Hb0hAVf4PzFb0d4YIHXjGLqn8tw8R0WIEdHU7Ke4jVTL451mnqmATKnO/Ah9WDxFtn0Vl3teoubwbgpeD5DWF+8QLOC12FVRi/8Vq1JgFlBvFPx8HICkAlLPyRQbHvwv5IoN7k+ECFbniSk3QV8AIwnO2b9+ORYsW4eeff0ZBQQEqKytRr1493HbbbejXrx8ef/xxxMXFudRWRkYGFi9ejGbNmiEvL09xu+zsbIwcORIAkJubi+TkZMk2GzduxIIFC7Bz506cP38eHMchMTERSUlJuPvuu9G/f3/87W9/AwDk5eUhJSVFtL81m8GeRYsWISMjQ7J806ZNyM7Oxs8//4zz589Dq9WiWbNm6Nu3LyZOnIiGDRvK/hysV35xcTHmzJmDb7/9Frm5uSguLpY95nfffYfPP/8cu3btwsWLFxEWFoabbroJAwcOxIQJExAfH6947gAgPz8f06dPx5o1a3Du3DkkJCQgLS0NEyZMQK9evRzu6yn259j6M3399deYP38+Dh48iJKSEjRr1gwPPPAAXn31VaefmerqaixcuBBff/01Dh8+jOLiYiQkJKBjx44YNmwYhg0bBp6Xf5ZkP2dnz57FrFmz8P333yM/Px+RkZHo3LkznnvuOfTt29fln0eJ5ORknD59GiNGjPDIimjnzp34/vvvsW3bNlFQcePGjdGjRw8899xzuPnmmyX72X9PrMj9DbP/Drn6HTx06BA+/PBDbNq0CWfPnoVGo0HTpk3Ru3dvPP/887LfSUD+vK1btw5z5szBnj17cPXqVTRs2BB9+/bFG2+8gcaNG7t2klTE/rt/8uRJvx9fCb8UGWbMmIE//vgDANC7d2+8+OKL6NSpExISEgIqoILwPSZTDXYblR/UHPGLsTMqSvbgzsovVelLZe5XqDvoIHh9jMv7XNk4GDUXt9ve7wx7DF9FWwYQN1Tfjde2d0dLwYSIFsqDioIg4N1dRRKpuRW1gp8pj8E5FbnLULTlEQBA2ZEPUPf+X6FLuFW0zdWND6D6wla3267E5zBeO4G4rgu87qep/BwK13QTheECQMXJJag3JBc8M/OSsFB5ZhWubnrQ9wfilDMZBGMpKk997lZzFSf+i4Tea2FoeK8avQtISn/9h9Ntqv5cJbtcVLiTuYeozFvmcj8qT3+DxAdPMOHd3nN10wOovnC9oF5x8lOYK84juuO7Lu1vrixE4Y/dICjMoi4/8V/UHbgPuvhUVfqrxNWND6K6YD0AoOrsGkS0fU66Ed3HESEEq2QAgMKfeiDxgePQRDaS3ac2MhlqCnNwZe29NtVB6UHXri2ecMDYDpk51xTXN4jUQOfhvauqKAY/O0CmIM3aRYUS1aEh0iAIt6ioqMBTTz2FL7+UjiGcPXsWZ8+exQ8//IBLly5h6tSpfu3bxIkT8Z///Eey/MyZMzhz5gx27dqF7OxsXL58WbqzG1RWVmLkyJH46quvJOsOHz6Mw4cPY968efjyyy8xcKDjiU4nTpxA7969HQ7sXr16FUOGDMHGjRtFy6uqqrBv3z7s27cPmZmZWLlyJe68807ZNn7++Wfcd999uHbt+t+fgoICrF69GqtXr/bb7+qpp57CJ598Ilp2/PhxzJgxA0uWLMGGDRvQpk0b2X3z8vLQr18/HDt2TLT8woULWLNmDdasWYP58+dj5cqVSEhIcNiPvXv3YsCAAbh48fpkt4qKCvz444/48ccf8eKLL2LWrFke/pTeI1coACxBxb/99ht+++03LFiwAHPmzMG4ceP80qfp06djypQpMJvFf/yOHj2Ko0ePYt68ecjKysLw4cOdtvX6669jxowZomV5eXn4+OOPsXz5cmzZsgVt27ZVtf/OqKq6PolSowmcsT+/FBlWrlwJjuMwYMAArFolP2hAEK5wWN9HtSKDqew0KvOWIaLV0y5tb666IiowAMBX0f+5vp7TYV3E82h6ZqXDIsOFcpNigQGQD3B2hSid+AEvKTJwLjSBSuWZ78TvTy8XFRnMlYUeFRisVP25EoD3RYbq85slBQYAEKqvoubSLhga9fb6GKGIdMa1b+C1kbbXnDZKlTar8n8M6SJD5Z+rPd6X010vDHOaCK/6YSo5BWPxceji1LspNFddERUYrFTm/+BykaH60i+KBQbLQWpQfW6DT4sM5poyVBdssL2vubwH5cc/lmzn7e+AIAIJ3pAoWSYYy1B9YauiUrU2igyVp1dIbY18xCGjY8VkowDIYwAgO2mI0zq+PvG6aMkyTaT/ZyP6i+axtW9rRRD+xGw2Y9CgQVi3bh0AoGXLlhg3bhzS0tIQERGBgoIC7NixA8uWuT5BRS2+//57W4HhlltuwdixY9G2bVvExsaiqKgIR44cwfr167F7927bPo0aNcKhQ4ewZ88ePPnkkwCATz75BLfffruobftZ1YIgYMiQIfjhB8tz0cCBAzF06FA0b94cPM9j9+7dmDVrFs6cOYMhQ4Zg+/btSEtLU+z3kCFDcPbsWTz33HO4//77ER8fjxMnTqBZs2YALAOfvXr1Qk5ODjQaDYYNG4b+/fsjJSUFNTU12Lp1Kz744ANcvHgR/fv3x/79+237Wjlz5oytwMDzPEaPHo0hQ4YgNjYWBw8exIwZMzB16lSH/VSDzMxM7NmzB507d8bEiRPRsmVLXLx4EdnZ2Vi2bBnOnTuHPn364PDhw4iOFv89KS0txT333INTp04BAAYPHownn3wSDRs2RG5uLubOnYstW7Zg27ZtGDhwILZu3ao4UFxeXo6HH34YxcXFeO2119C/f38YDAbs2rUL06dPR0FBAT744AM0bdoUzz//vE/PiRJGoxHx8fEYNGgQunfvjpYtWyIyMhLnzp1DTk4O5syZg8uXL+PZZ59FmzZtbOocwHJu0tLSkJmZiXnz5gGwKBBYGjWSn+whR2ZmJiZPngwASExMxKuvvoquXbvCZDJh/fr1mDlzJsrKypCRkYG6deuif//+im0tWLAAO3bsQI8ePTBmzBi0atUKRUVFWLJkCZYsWYJLly7hySefxC+//OJy/9Rgy5Ytttf+LnA4wi93GmfOnAEAjB8/3h+HI0KYMt5xhdddKnKXulFkuOp0mz90XWGu/MbhNjVOZhF5qu65MykMP+VVwCRYHnjTm3gwo+sGQ6gW/05N5QWi9+5aJLGYKy9BMNeAc8G6xWE7Dj57gqnCq7ZDGXNNiV+OE5byiO21LvFOaCKbwlR2xqs2zTWl3nYroDFXXZEsC28xHBUnlzjd1/5882F1oE/qZZtt7xFOsiHcbo65jlgR3PidyhUVJduY1bMAk8VUAdZqxHRNKsU1NJKXZxNEMBLWZABK9sVKinyOv5P+n8VvqrzgnwNxWhgjmgMOLpM9GstYDtUCvCEB+oa9UX1urW1ZePMnHO7DacMR3vzvqDj1GQBAn/Q3aGNu8mk//cnQVpFY9nsZACAxnEfnBpRpFAwIZjNMpYW13Q2/oYmqA07BLsZb5s6dayswPPDAA/jyyy9hMIi/BwMGDMC0adNQUCB//+YrrIWNZs2aYfv27YiKEk9USk9Px/jx43HlyvV7Zp1Oh/bt24uUDSkpKWjfvr3icRYuXIgffvgBOp0Oq1atktjq3HnnnXjiiSfQrVs3HDlyBC+88AK2bdum2N7hw4exZs0a9O59fZJbp07XnSreeecd5OTkIC4uDuvXrxetAyyhtY8//ji6dOmCgoICTJ48GZ9/LlZ9v/TSSzYFw2effYbHHrte5E9LS8PDDz+Mbt26Ye/evYr9VIM9e/agf//+WLlyJbTa60On/fr1Q/v27fHWW2/hzJkzmDZtGt5//33Rvm+//batwDBlyhRMmzbNtq5Tp0546KGH8MQTT+Dzzz/Hjh07kJWVhbFjx8r249KlSygqKsL69evRvXt32/LOnTvjoYcewh133IH8/Hy88cYbGDZsGBITpRMmfE2/fv0wbNgwRESIi/sdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmaPPtDMuXbqEl19+GQDQsGFD7Ny5E02aNLGt79q1K+6//35069YNZWVlGD16NHJzc6HTyY/Z7NixA6NGjcL8+fNFY3X33HMP9Ho9Fi5ciJ07d2L//v3o0KGDx/12h/LycluR0mAwYNCgQX45riv4pcgQFRWFqqoq1K9f3x+HIwIYvc6AfpHbnW/4FwXGBPxadf1mvzL8JkQ2ec3j45vKzqDy1Be299XnN8JUcQGacOefTaGGkYrL2GtohSqYKi85bsfBDLdb6no+GN0qXod3u8bjt8IapNbVo2kMzVZyhmAsE703Mw/tJqbIwBkSENFqtHKDpkqLf7mozUvQRMj7W7rcT/azJ1pJ2ndFzOLAYF29u6Gvf7eqh9DF34qwlKG297wuEnX670BF3lKYnVwL7Kk+vxk1l3ZeX6DywHegITAFoLjunyMs+REYGvZGTdFh2X04Xgd9g7/BkJQuWh7/t29RceoLmErzXDp22eF/iTy3BZX9t9nriO047vxOmRnKfFgiOF0MTCV2g/w+9n0XmO8PIP3ZwlsMhzamhU/7QRD+RBPZBHXv241LK1qLlgvmmlrqkQJOcobCkh+BJjrF4TbO4DRhMDTuD9PpugCuH69NvA6tE3TQckC7unq0q6NXbsTPxPdcjspTX8BYmgtt3M0IT3GekxZ79yLoG94LmKucFiWCjQdvikDTaC2uVJrQtWGYxFqVCExMpYX4/bl6zjcMEVp9eBHaGPUHRc1mM2bOnAnAMrN/yZIlkgKDFZ7n3ZolrQbnz58HAHTs2FFSYLDHmY2OIwRBwD//+U8AwIQJExR9++Pj4zFz5kz0798f27dvx4kTJ9CypXx2ZUZGhqjAYE9paSk++ugjAMC0adMkBQYrzZo1w5tvvolx48bh66+/RlZWFiIjLcrw8+fPY8WKFQCA++67T1RgsBIdHY2srCzccccdDn567zEYDFiwYIGowGDljTfewLJly3D48GH897//xbvvvgu93vL3sKqqCgsXLgQAtGvXTtbaieM4ZGZm4qeffkJhYSHmzp2rWGQAgDFjxogKDFYaNmyIWbNm4ZFHHkFZWRkWL16MSZMmefgTe46z709sbCzeeecdDB48GNu2bUNhYSHq1Knjk74sWrQI5eWWySEffPCBqMBgpUOHDnj99dcxZcoUnD17Ft999x0efvhh2faSkpLw4Ycfyk4GnjRpku13/fPPP/utyPDqq6+KJvMr5anUBn4ZhUxNTcXmzZtx+vRp3Hbbbf44JBGgGAwRyEi/z+Xtf71UhV93X59NVqFJREyn6R4fXzCW48KZldcHlwUzKk8vR2Qb575w7KxoTif17dULFRAqHXsmmh2E0Gm89LZuHqtD81jvZs3fSLCzxc0V4kBfdtBSF3+rw8+fYDah7Lc5ooF/c8UFr4sMjmbkC36ySwhG2LDnsMb9EXXL6z4/riayEaLavejWPiX7p4qKDG4NSAcZgiBICmfauPbgeA3CWzwOd+fE8rpoRLYe4/L25cc+Ehc5zOp+h9jriA03fqds4YOPaAxNRCNxkcFJoKm3CCZpkYFFG+/5LCOCCFS0sa2gb5CO6vObry8UAqvIYK4ucrg+os04GBpIByM8wZgrPlaHenoMvilSfuNahtdFIaK1g8kgMnC8FhE3OfdjDkY4jsPtpF4gblB+/fVX5OfnAwBGjRrlcCC/NkhKSgIAbN26FSdPnkSLFupP2jh69KgtEHbIkCEOt7UfwP7ll18UiwyPP/64YhtbtmxBcXGxW8erqanBvn37bO83bdoEk8lyby7n8W+lc+fOaNeuHY4cOeLwON7Qu3dvxcFbnucxYsQIvPzyy7hy5QpycnJs+RL79u1DUVERAEtRRskGKSYmBkOHDsW8efNw9OhRFBQU2D4XLI7OxQMPPIC4uDib2qE2igwsZWVluHTpEsrKyiD8NTHKXilw4MABkZpBTdavtyjc4+Li8OCDyvmMTz/9NKZMmWLbR6nIMGTIEMUCZevWrREVFYXS0lKbcsXXfP7555g7dy4Ai03Su+/6LpfLE3yjS2MYM2YMBEHAp59+6o/DESFEFBNQUFZjtl2kPIHTRsDQ5H7RsspcaQCSHOygmL0vuBUdKmGuKoTgYNDKUfcpP9O/OFUylIiVDJqoZIftcbwGvKEu06bCgKMbsLO+xStJyaCExE5GE7gP2hwTWBnSRQZjGdgBck7GF9tncMyNfiAqGZjgUY7XyvyB8LHxu4ySQQJ7LgkiVODE87ACLQyYtXtkYf+meEMNEzKho9nwBEEEAfv377e97tatWy32RB5r2GxhYSHat2+PRx99FIsWLcIff/yh2jHs7YS6dOkCjuMU/9kXYawqCzluueUWl46XlJTk8Hj2djj2x7P34mezJlg6d+7scL23uHN8+34fPnxdle1MbWG/3n4/e/R6PW699VbZdYBl8N46g14uy8BfXL58GZMnT0br1q0RHR1ts/JKTU1FamoqBgwYINrWV1jPY8eOHRUtkACgfv36SE5OFu0jh1Kwt5X4+HgAQEmJ762aN2/ejKeeegqAReW0fPlyhIcHhm2lFb8UGYYOHYrHH38cK1askCRyE4Qj2DDjGjNQ7eWYaridnzcAVF/YBlNZvtP92CJDjV4qY9UJVQAEhw9/fsgDJFxEMIqVDKaKC6IiFqtkcMV6gGest0wV3vsmO7ZLIiWDIoySgeOpyBAIyBXNeJmirc9gBsbVVgMpfefds0tiBjQ5LVjfd28K7i51wYUiA0dFBiJEkWQpBZhdkrOcME6r3gMnmyWm9cvTI0EQhHfYD2IqzQ6vTe655x7MnTsX4eHhqKysxNKlS/Hkk0+iZcuWaNy4MZ555hkcOHDAq2NcvOjZZDer1Ywc1gFVXx3PPoPC3qNfDl/bsbtzfPt+u/MzNGjQQHY/exISEhTVEGxflNrwNfv27UObNm0wffp0/P77706fUyoqfJcraT0Hzs49cP38OzpvbM4EC/9XpoxVgeMr9u7di/vvvx9VVVWIiorCjz/+GFCBz1b8Ype0detWPPXUU8jNzcUbb7yBb7/9FsOGDUObNm2c/sIAyHqPETcGrJIBsKgZDE4uso4wNOoLTmcf6iegIu9rRLWb6HA/c7V4oLdCK71Z0QmWi6Wp8hL4sLqS9QBgpipDwCDUiJUMMFVAMJaB01lmcrDBz86UDADAh9UHcH0GgdKsZncguyTPYO2SOE3g+EZLuKGKDNKimT+VDBynFRd7Vf4OKaqXBCMEs9GiSnCCZNY0p4E0XDYQlAyU/UOEKEyRwZ1MBn/c5pn9qGQwkpKBIPyKJqoOWn3ovRI6WNBE+caXPRgYP348Hn74YXzxxRdYt24dtm/fjuLiYpw9exbz589HVlYWJk+e7LEdiv2g5+rVq22ztp3haHDW0WC3/fFycnIcziK3p3HjxrLL5Tzw/Ykaxw+UNnxJdXU1hg4disLCQuh0Ojz33HMYNGgQWrVqhfj4eJvV0KlTp2y2YL6eLAUE/nlzhyNHjqBv374oKSmBwWDAd9995/NMEk/xy9Nhenq66Be8b98+7Nu3z6V9OY6D0RhYEmXCf0TopBeG0moBCV48O3EaA8KaDkbFycW2ZZW5S50WGdiBsUptPYD5aGphGZSxBL7KVxX9cD0lXEAQBIldEmDJUOB1URAEQaJk0Ea5omQQ35SZfa5kILskJSR2SUGkZIDJd7M7ahsz+3nmDf4tAPHMw5HKNiiOvvOCqcqlIgNb+KgNuyRXMhnILokIVQJdySA4yWTgNL5TMlCRgSB8C8fzPglCvtGoW/f6hL+CggKnlifuYJ25bDY7fg4rK5M+a7LUq1cPL7zwAl544QWYzWb8+uuvWLFiBebOnYuioiL83//9H26//XYMGjTI7X7aB+vGxcWJLIp8gf3xEhMTFYsHjrBXSly4cEE2tNd+vS9x1r79evuAbvvXFy5cQKtWrRTbsLeKUgr5LiwshMlkcljgsfaFbcP6WQXU+bzKsXHjRlseQWZmJp5++mnZ7fylskhISEBBQYFLnw/r+fcmYN3XnDx5Evfeey8KCwuh1WqxdOlS3HPPPbXdLUX8JngVBMHjf8SNC89xiNSKH2ZK2acdDwhLeVT0vubyLhgZ/30WdqC3Qiu9+TPB8lBqrlL2mCMlQ4Bgrpb1YrcqD8yVFyVBra4oGTRhYtmm7zMZSMmgiETJEDxFhtBWMog/z7zej1ZJgM/tkhyql1z9vUqUDFK7JF9XrF2yS2ILNgQRKrAqHQfZLf6eKCeYa2QnSdijaiaDiVEy0NeeIIggoGPHjrbXW7duVbXt6GiLAtca7qvE77//7la7PM+jY8eOmDZtGjZs2GBbvmzZMtF2rs7Qtvr0A8D27dvd6osnqHG81NRU2+s9e/Y43NbZem9x5/j2BRz717t27XLYxu7du2X3s6e6utqhdZbRaMSvv/4q24b1swoAV68qqyCvXLmCwsJCh31Vwj58+5FHHlHczj6zQw61lAfWc5CTk+NwwvrFixdx+vRp0T6BRn5+Pnr16oWCggLwPI/Fixd7VHD0J34pMmzatMnjfxs3bvRHF4kAJpJRM5TVeD+wYmh4DziDWJpZmbdMYWsL7OzbCo1U2lnDWQYxLUoGeQQHs09pbpj/UHpAt85CZkOfwevAhzv38/RNJgMFP3sCq2SgTIbAQGCs5/wa+gyLXZIItYOfK5QLi67+XgVBGvwsvfEOBLskGm0kQhNWyeCOXZKvcZbHAABQVclAdkkEQQQft956q20W/MKFC1FaWupkD9dJSbGo20tKSnD8+HHZbaqrq7F8+XKPj9GxY0fbrH42JDcs7PpzQ1UVo9xm2rCqCbKyslBZ6dvni169etns0OfMmePRhOGePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccTvO0H8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rwFAhcvXkSvXr2Ql5cHAPj4448xbNiw2u2UC/ilyNCjRw+v/hE3NlF68cdUDSUDx+sQ3uwh0bKK3K8c7sMOjFXwUkmV0YUiAykZAgOhRv5G0/SX8kAS+hzZzKVZuzyrZFChyCCxl7GHlAyKSOxeAljJcCNlMrCfZ86foc+AdGDcrN53SBAEmBwoGVz+vQaEksGFQVUqMhChSgDbJQlO8hgAtTMZxO8p+JkgiGCA53m8/PLLACyzgYcPH47qavkJFGazGefOnXO5bfsxqlmzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSbaZ2qtWrZKoOACgtLQUY8aM8bifrlJVVYUxY8bIBvrOmDEDhw5ZchiffPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCikeMGCHZxppxu3LlStnPy/Hjx/Hmm286PL4jWrZsaXudnZ0tu83rr7+OnJwch+24+rl2xsiRI23Frpdeekn2e3jgwAG89957AIBGjRph8ODBHh/PFxQVFaFPnz62Iua///1vjBo1qpZ75RqU2EcEPKySoVQFJQMAhKU8gvLfs2zvjVd+hbH4OLSxrWW3F4zi2eQVfKxkGyOsRQZluySqMQQGZmdKBg9CnwGpkkGN4GdHSgYKfnYAq2QI4CLDDaVkYO2S/F1kYDIRWNWANwg1JQ4tkVxXMjDf6wANfpaoQggiRAhqJQOvU9XKjJQMBEEEK+PHj8fq1auxbt06rFixAqmpqRg3bhzS0tIQERGB8+fPY+fOnfjyyy8xbNgwTJ061aV2O3TogC5duuCXX37BggULUF1djREjRiA2NhYnTpxAVlYWNm7ciLvuugs7duyQbePVV1/FM888g0GDBqF79+5o1aoVIiMjUVhYiG3btuHDDz8EYAlaZj3umzZtisaNGyM/Px//+te/0LhxY7Ru3dqmAKhfv77NJueZZ56x/fxff/01cnJyMGbMGHTu3BmxsbG4du0ajh07hs2bN2PVqlUICwtzOuDtiHfeeQdbtmzBrl27MHv2bGzevBmjRo3CbbfdhsjISFy9ehVHjhzB+vXrsWbNGqSmpkp+vlmzZmHdunUoKSnBsGHDsGXLFgwZMgQxMTE4ePAgZsyYgd9//x1paWlOLXi8IS0tDatXr0bXrl0xceJEtGzZEhcvXsTixYvx1VeWCaqNGzeWHaB/66238O233+LUqVOYOnUqDh06hJEjRyIpKQm5ubmYO3cuNm/eDADo0qULRo8erdiPxMRERERE4N5778XEiRPRv39/GAwG7N69G++9956tQDZt2jTZ0O5x48Zh1apVqKioQHp6OqZOnYoOHTqgtLQUGzZswOzZs5GYmAiNRoNLl5QnyyrRp08f1KtXDxcvXsSUKVOQl5eHBx54AHXr1sUff/yBBQsWYMOGDejatatDG6277rrL9nrixIl44403kJSUZFNzJycnQ6t1/uyRmJiImTNnYvz48cjPz0enTp3w2muv4a677oLRaMT69esxc+ZMlJaWguM4ZGVluRxS7g+qqqowYMAAmwXW448/jl69ejlU7kRGRkqKkbUFPR0SAU+UTjxlqqxaHXsYff0e4MPqiwaBK3KXIvq2t2S3NzNKhnJIB8ZsdklVDuySHIwL+dvX90ZGMMorGayfB4mSIdq1i7YmjAl+rrwEQTCD4zyb+icIAtkleYjAZjIEkV2Sy979QQibb+N/uyRm8E3FQp3TDBZXf68ydkl+D34muyTiRoYNaA+kIoMTJYOaoc+ANPhZS0UGgiCCBJ7n8d1332HEiBH45ptv8Pvvv+OFF15Qpe1PPvkEPXr0sA06s3Y2kyZNQrt27RSLDIBltrLcvlYMBgM+/vhjpKWlSdZNnjwZ48aNQ25ursSjfdGiRcjIyABg8blfunQpnn/+eXz88cc4efIkXnnlFcU+yQ1Su4PBYMC6deuQkZGBb7/9FgcOHHBYtIiJkY6pJCcnY9WqVbj//vtRUlKCzMxMZGZmirZ56623wHGcT4sM48ePx5YtW5CdnY1HH31Usj4pKQn/+9//EBsrnXwaHR2NDRs2oF+/fjh27BiWL18ua5/VtWtXrFq1ymGoc0REBL755hv069cP06dPx/Tp0yXbTJgwAS+++KLs/n369MGECRMwZ84c5OfnyxatVq1ahX79+in2wRGRkZFYsmQJBg8ejMrKSsyfPx/z588XbZOeno65c+c6zD646aabMHToUCxbtgxr167F2rVrRetzc3ORnJzsUp/GjRuHoqIivPnmm7hw4QImTpwo2cZgMCArKwv9+/d3qU1/UVBQILpufP755/j8888d7tOjRw9b0aq2IcErEfD4SsnA8RqEJT8sWlaZq+xFxw6MlXNRkm1cUTLQkHBgINQoKRksg4RGRsmg9VDJAMEEoeqK2/2z7W4sg8PBRFIyKMIWGQLZLulGUjIEnF2SmkUGJ/ZowWSXBNZuTA4KfiZCFY5RMrihePK1YtWZXZKaVkkAYJQoGVRtniAIwqdERETg66+/xsaNG/HEE08gJSUF4eHh0Ov1aNKkCQYOHIj58+fjpZdecqvdNm3aICcnB2PHjkWzZs2g1+uRmJiIvn374ocffsDMmTMd7r9p0ybMnj0bDz30EFJTU5GYmAitVouYmBh06NABkyZNwtGjR23FApaxY8di+fLl6N27N+rVq+dwhrdOp0NmZiYOHDiA5557DqmpqYiNjYVGo0FsbCxuu+02PPXUU/jmm2/w22+/uXUe5IiOjsby5cvx888/4+mnn0br1q0RHR0NrVaLhIQE3H777Rg/fjx+/PFHrFu3TraN9PR0HDlyRHR+69evjwEDBuCnn37C22+/7XU/XWHRokX44osvkJ6ejjp16sBgMKBVq1Z45ZVXcOTIEdx8882K+yYnJ+PAgQOYO3cuevTogTp16kCn06F+/fro27cvPv30U2zduhUJCVIbbpa0tDTk5ORgwoQJaNGiBcLCwlCnTh307dsXP/74I2bPnu1w/9mzZ+OLL75A9+7dERMTg/DwcLRu3RqvvfYacnJy0LZtW7fPjT19+vTB3r178fe//x0NGzaETqdDYmIievTogaysLGzYsAGRkZFO2/nss8/w/vvv25Q2PO/5TcfkyZOxf/9+jBo1Ci1atEB4eDgiIyPRtm1bPP/88zh27BiGDx/ucfuEPKorGd555x21m8Rbb8nPLCduDFglgxqZDFbCUx5F+bHrvoPG4t9gLDoMXXyqZFtJ8LMQIdnGpeBnXw8MES6hGPyspGSIck3JwIdJZ3+YKi6AD6vrXgf/wqGKAWSXpIQgCEFtlwTBBMFstMxgDzECzi6JHdD3Akd5DIDnwc/gtdLCAykZCMJnsHZJjpQM/p7X78wuSU0lg1kQYGIuNWSXRBBEMNKzZ0/07NnTpW2Tk5NdemZv1KiRZIa9PRkZGYpFgpSUFEyYMAETJkxwqU9yPPjgg3jwwQdd3j41NRVz5sxx+zhTp0512UrKnrvvvht333232/tZadKkicPz62m/3OWxxx7DY4895tG+er0e48ePx/jx473uR5MmTTB79mynBQUlnP0c1oBhOdLT051+J9q1a4dPP/1Ucb0r3yudToeXX37ZlqeiRHZ2tmL+gz233HILsrKynG7H4uo1AHB83jzBnWMHIqqPXkydOtXmmaUWVGS4sWGVDGUqKRkAQFevC/iIxjCX59uWVeYulS0ySJQMgvQhzpXg5yC+XoQUSnZJpooLEAQzTKWnRctdzWTgNHpw+njRTENL4aKdZ/10UmQguyQFZAaEAtkuiQ1+BiwD0hwvVUwFOyFtl1Th2C7JUyUDx2khcOJ+CgFQZKBMBiJkCeRMBmfBzz4MfQYo+JkgCIIgCIKQxye3iYIgqPaPIHypZOA4HuEpj4iWVShYJglMJkOZWS/ZxmaXVHVZ2XbJ084SqqKsZLgIc3mBJPTU1SIDIFUzOBt4dASroJFASgZZBEbFAADgpd/ZQEHW3iJELZPYfBtO72+7JGZgXMXgZ2dB7y4XGdjvNS8T/OzreyRSMhA3MO4oGfyNU7skrXpKBjb0GSAlA0EQBEEQBCGP6lPQNm3apHaTxA2OL5UMABCW8ijKjsyyvTeVnISxMAe6up1sywTBLJn5Xm6WJtBb7ZJgqoRgLAOnk85Clnles0GPbf5DqJFXMgjVRTBeOy5eqAkDH97A5bY14fVhsmvD2cCjI0jJ4CFsHgOCzC4JoZvLIBhr2S6JGRgXzP7LZHC1cMTaJVmUDH4OfnYlk4GKDESowtqqqViM9BZzdZHD9WpmMsjN69Fp6G6VIAiCIAiCkKJ6kaFHjx5qN0nc4ETpfadkAABdnU7QRDeHqeSUbVlF7lfiIoPMgHS5UTq4YuIMEGApFpgrL4N3s8hA+A8lJQMA1FzaLXqviWzmlg0cG/5scjbw6ADKZPAMOasXKjIEBqwqLKTskip9Y5dkGfAMPCUDR8HPRIjCcYGrZPBnJkMNG8gACn4mCIIgApfc3FyUlSk/5ysRHx+PRo0a+aBHxI1GWVkZcnNzPdq3devW0Omkk5mDCTLTJQIeVslQXiPALAjgVcr+4DjOomY4+J5tWWXeMkSn/RMcZ3mSYj3EAaDMKH98IwzQoQrmqktAdLJkPdUYAgNHRYbqSztF77XRroU+W+HDxEUGb5QMZJfkGYKMkgEBnckg7VuoFhnYzzRXy8HPatolOSsoehz8zGnBSbRutZ/JQEoGImTxJpPBxzd6Tu2SVFUykF0SQRAEETyMHDkSW7ZscXu/ESNGuBQkTBDO2LNnj8sh8yy5ublITk5Wt0N+huaiEAEPm8kgACg3qvsEF54szmUwlZ1Bjd1AMzsoZoQOVQqCihon4c+Os0bowc1fmBXskgCg5vIu0Xt38hgAqZLBm0wGskvykGCzS+I4SREkVIsM7Ge61u2SVFUy+CaTgeO1gL/tklwqMtBcFSI0CeRMBqdKBhUzGeSCn8ktiSAIgghVkpOTbfmwGRkZtdqX7OxsCIKAvLy8Wu0HQbgDPR0SAU+UTvo0U1YjIEpFFZE2PhXa2LYwFv9mW1aRuxT6encBkNp7VOqSFNuyhT9XXpZdT0PCgYEjJYO54rzovbtFBg0b/OxVJgMpGTxBEvzM8ZaB2gCG04SJ+x2yRYZatktiPwesNZEXsAVFThcLoabYbgMZhY1sQ6ySoRaCn13IZJBYTxFEqOBDxZO3OFMyQE27JEbJoOPhln0kQRAEQfiTzZs313YXiBuc9PR0JxOLQxtSMhABj0HDSWZNlVarO1RvsUwSqxkq85bZAkHZQbEKXUPFtoxOlQyO+uFKbwk1YIO8HaGJctMuSaJk8GEmA5WtZJHYJQWyVdJfsBYXoahkEMwmSYHP73ZJPspkEIyV4oICAE1UM+ZQntslSZVugaBkoCIDEZqwSga37JJ8jLkW7ZK0ZJVEEARBEARBKEBFBiLg4ThOomYoq1F/cIW1TDJXnEf1hZ8tryVFBmUlg3O7JG96SaiFIyUDi9t2SWHS4GdPq9lmZ3ZJZlIyyMLMGA9kqyQrN0SRQaa4x+tDwy5JLvTZ0yIDq2SoDbskl+xhKPiZCFUCNPhZMBudTj5QM/iZtUui0GeCIAiCIAhCCbpVJIKCSOapprRG/dnb2rg20MbfKlpWmfsVAKmSoVIrtsOxx2aXVEV2SYGM4CCTgUXjbvAzo2SAucp5toICZJfkGaySgQsCJQNuhCKDzOeZ0/rZLonNEVDJLsnE2qLxOvDhDUSLXM9kcEHJ4OOKtStKBsm5JIgQIVCVDEJ1kdNtfKlkoNBngiAIgiAIQgkqMhBBgT+UDAAQnvKo6H3l6eUQzDWSAeIKbaJiG87tkpT7To9u/sNVJQOnjQBvqOtW23yYtAjlaS6D8+IEla3kkBQZSMkQEJirZYoMfs5k8JVdEpvHwIfVk8wodtkuyVz7wc8guyTiRsaL4GfBh99NZ1ZJgG+Dn8kuiSAIgiAIglCCigxEUBCl972SAQDCUoaK3purLqO6YKPULklTR7ENW5FBScng4NnTTF5KfsPVIoMmKsXtkENeFwlOGyla5mkugzO7JHYwkvgLdoCU19dOP9xAMvs0BIsMbNGM00aA87flDhPoKsk/8BC2kMiH1/f8dypRMkiDn30dKCa4EPxMRQYiZPHRdcJbzFUuFBl8qmRQrWmCIAiCIAgixKBbRSIoiPSTkkEb3Ry6up1Fyypyl0JgZt9W8PGKbdTAiZLBwfGrTFRk8Beu2iW5m8dghbVMMnlYZJDay7AFD1IyyEFKhsCE/Tz7PfQZAOczJYP4O64Jq+f575S1cArQ4GfJuSSIEIG1SwqYTAYX7JKgYiYD2SURBEEQBEEQrkJFBiIoiGIzGap9N7AaliIOgK48/a2kYFDBxSrub+Qsg0pKRQZHSoZKmpTuN1xXMiR71D4b/qyWXRKnj2M2oA+NHAIT/AwqMgQErCqsNooMPrNLqmTtkqRKBpftkoRACH52QcnAUyYDEaJwrmcy+HPY3SW7JFWVDOL3pGQgCIIgCIIglKBbRSIoYJUMpT5SMgBAeLLYMkmoKUZl/mrRsnJOeWDMCIsti1BdJPtQ6qjnlUZSMvgLs9FVJYN7oc9WWCUD69fuKmyRgWeLDGSXJA8FPwckrJKB93ceAyC1QVEr+LlCapfk8e+ULXxwWnABGPxMdklEqBKoSgbX7JJUVDIwClvKZCAIgiAIgiCUoCIDERSwSoYyH2UyAIAmsjF09e4WLROqrojeVyBKcf8a7vpgprmyULLe0bgQ2SX5B8Fsctkb3VMlg4YJf/ZUySCZ+c0UGQSyS5KFVTIEo13SDZHJEEp2SWwmg4xdkqu/U0nhg/e/XRJcyGQguyQiZAnQTAahloOfdRoqMhAEQRAEQRDyUJHBR7z66qvgOM72b/PmzbXdpaBGqmTw7cBqeMqjDteXI0JxndUuCZAPf3YU7kxFBv8gmMpd3lYbrY6SwZNMBkEQZJQMjFUX2SXJIslkCAIlA9kl+QmOsfhRScnAqpXkgp9dVzIwdkmcxu92SaRkIG5kAlbJ4He7JAp+JgiCIAiCIFyDbhV9wK+//ooPPvigtrsRUkiVDL4dXAlLHgJwyl+PcrPyA5zVLgmQz2Ugu6TaRy70mc1QsFKrmQymCkkRQZLJQHZJsrBFBspkCAyE6gCwS2IGxgUfKRk03hQZXAl+9rFdkkuZDFRkIEIV3vVMBhZffjP9bZdkNJNdEkEQBEEQBOEaVGRQGbPZjNGjR8NoNKJevXrOdyBcIpINfvaxkkETXh/6Bj0V15eb9YrrxHZJMkUGskuqdeRCnzXRzSXLOF0MOH28R8dQI5PBzKgYAICX9IfskmQJQrukGyOTgQ0yrwW7JF59uyTBbIS5UqxcUzP4GbUQ/OyKkoGj4GciROG4wFQyuGKXxP4t8QYKfiYIgiAIgiBchW4VVWbOnDnYs2cP2rRpg6eeeqq2uxMyROnFgytVJmkYndqEpzyiuK7MrFNc59QuycExqcTgHyRKBo6HJrKpZDtNVDI4ycCea/AqZDKwA7KA1C5JrVnYoYbA+MmTXVJgEJB2SSp4rZurCsFewfmweqoFP3O1oGRgv0OykJKBCFVYuyTBBEHhO+fhbYJHsHZJfERDyTZqZjKwdkmkZCAIgiAIgiCUoCKDipw5cwZvvvkmAODjjz+GXq88251wD1bJAPg2/BkAwpo+KB2MAmAGhwqT8lenBo6VDGaqJNQ6rJKB00ZJlAeA51ZJgEUNIzpmTQkEY4VbbQjMgCw4LThtJLMRKRlkMQe/XVJoBj+Hpl2SWZK5woEPq+v57zQQgp/JLom4gZFV6QRA+DNrl6SJaCzZRs1MBknwMxUZCIK4AcjLy7Nla2ZnZ9d2dwgFpk6davs9Eb5l8+bNAZU3m5GRAY7jkJycXNtdIRioyKAi48ePR2lpKUaMGIEePXrUdndCiiid9A9HqY9zGfiwOjA0vFeyvJKLhiAZ7LmOkbPPZJAqGZRmwhH+QzCKlQycNlJSFAAATZRnoc+AfMaDu+HPrF0Sp4uWDuqRkkEWafBz4Bd9bwQlg8QuqRaUDJLBQxWCn1mlEh9WFxyvVc0uSS74WQgAuyQqMhAhC6tkAALCMom1S5KbIKFmJgMFPxMEQRAEQfiXixcvYvHixXj22Wdx1113ISUlBdHR0TAYDEhKSkKfPn0wb948lJVJbcBrG7pVVIlly5bh+++/R0JCAv71r3/VdndCDi3PwaARD7D4OpcBAMJSHpUsq+DiHO4jsktyM/iZ8A9miZIhUmJvBABaL5QMnD4WYAa2zZXu5TKwA7K8LloaSE5FBlmEIMxkuBGKDIFhl6R+oY7NXLFeT1QLfpZTMvg8+Nn5gCplMhChCidTZHAn/NlXmKuLRO/5sETJNmoqGaRFBpotShAEUdsE2qxyglADUqZcZ9WqVcjIyMBHH32EX375BXl5eSgtLUV1dTXOnz+PtWvXYty4cWjXrh327dtX290VQU+HKlBUVITnn38eAPDPf/4TdevWVa3t/Px8h+sLCgpUO1agE6XjRMHIZT5WMgBAWNNBKOb1ItuIcj7WwR7Ab7qe+DT6I8uboggc+OEsorgytNKcBACcMzcA0MhXXb6hMJacQvmxeTBVuPc9MJXmid5zOgW7pGjPlQwcx4EPrw9z2Z+2ZSU5r4MPT3Kjn6eZfsZIBkirL+3G1a1/97ifLJqIRohsMx6aqOsZFYK5BmW/zYWxMMfns6cBy+COoeG9CG8+zO19qy/vQcUf2ag48Yl4RRBkMrD+/carByW/W01kE0S2eRaayNq7hhivnUD58fkwVZx3e19TyUnR+4CwSzJXo+y3j1BzeRcED+3HTMXHRe9t1xO2uGWuwdWtj8NaMJD7fdZcOQhTaS7TZ8d2SYKxEmW/zUbN1UOy/eN1MQhv8QT09bpI1gnGcpQdnY2aoiPirjIzpjltpMRqjpQMRMjCBj8DKN7+tKz1Xk35UwDa2d7vOFeFM9eMEMxVMBYfR4LpDP6m24po3vvZZkJ1se11BReNDTUDURMRh/SKLIQJFpWmWkoGo1nA9nPigj1lMhAEQRAEUdtkZ2eHtJUZx3Fo2bIl0tPT0aFDBzRq1AhJSUmorKzE6dOn8dlnn+F///sfTp8+jXvvvReHDx9Gw4bSnK7agIoMKvDKK6/g/Pnz6Nq1q+phz02aNFG1vWAmUsejsPL6ANDOgip0qu/bgUNeHwtD4/6oOvOdbVkFn+Bwn8va5risbS5aViTEYbexky+6eMMimGtQuKYHzOWOC3GuYFEyqJvJAACasHqiIkN1wUav2uN00RbbFDvM5fmoPPW5V+2yVJ7+BokP/A6Otxzr2p6XUf7bbFWP4YyKP7IhCGZEtHC9gGIq+xOFa7rL+t4Ho5LBXHlJ9ndbeeY7JA4+WiuzPARjJQrXdIfZgwKDHLVil8Rk7VT9uRpVf65W9RjW64ncjOLKU1+Ij39mJeoOPgKO42CuvGz5DDNwvFbm9329yFC8cxwq/ljksE/lJz5B4uBD0Ma0FC0v2jHapWsIH9EIpmu/Mx2jIgMRmsipdCpPfyO7rSmmH2C4XmTIu2ZE3jWrGqk1gNY4WpaAiUX9Ve3jgtjPcKrsTiDyLvyhuxvPFj9o6btKwc+f/VYqWUZ2SQRBEARBEL5lxIgRimPL3bp1w9///nf85z//wcSJE3H16lX861//wgcffODnXspDt4pe8vPPP2PhwoXQarX4+OOPSdrjQ+IM4nN7pdI/NjHhyY+I3lfrfTeDuHEUDdi4ivHqEVUKDADAGxKgiWB/r5xXmQwAwMsEMnrVXlhdcLooVduUw1RyCsbio7b3Vfnf+/yYclT9ucq97c+tUwzW5fSOFUiBAK+Pc2k7U/ExmEpO+bYzCtRc2a9agQGwfKb9jh8sfjQRlpkkvM75585Y/JtNtVR96RcINcWSbThtFBzZJVW68l0xV6Hq3HrJ4qo/Xft+SzKKOJ7ueYiQhdNGSu0JFdAL5U63Oa3rhFLO8SQVd7jKN8Ip3Z2293/ou+Ia95d1kkrKvf0XpbksETIZaQRBEARBEIR6aLXOn1efffZZREVZxoZ+/vlnX3fJZajI4AXV1dUYPXo0BEHAxIkT0b59e9WP8eeffzr8t3v3btWPGaiEa8Uf19PXjH4JUQ5rOhjauJtt77UN0iXb6FX4JnEARtxcC9YhQYqafvXhKY9BE9kI+qRetmVhyUPB672bZR3e4nFvuyZuL+UxGBr1+2vA0beYq67YXguMj76/MFcVurW9qfyc7HJOG4mwxvep0SWfom+QDj68gUvbSmxr/IRgqlCtLW1cO2jjU1Vrz1U4bYRvD8DrEJY81PIyrA70DXs73+ev65ncdU0T3QK6Op0kwc9WJYNgNkFw8bvC5rwIglm2qMGiTbgNUbe+Cc5wfZA0/KYMl45JEMEIpw2Hockgl7a9rcq1gnglp949XhkfL1lWxUchvOWTNhWit1SYpPfYtyUGviqQIAhCju3bt+Ppp59G69atERMTA71ej8aNG+O+++7DRx99hKKiIpfbysjIAMdxSE5Odrhddna2zWM+Ly9PdpuNGzfiscceQ0pKCsLDwxEREYFmzZrhzjvvxKRJk7Bx43UlfF5eHjiOQ8+ePW3LevbsaTuG9Z+SjcymTZswYsQING/eHBEREYiJiUFqaipefvllnDsn/xwFSL3yi4uLMW3aNHTo0AFxcXGKx/zuu+/w8MMPo2nTpggLC0NcXBzS0tLw9ttv4+rVq5LtWfLz8zF+/Hg0b94cYWFhaNiwIe6//36sXy+dNKMW1nNs/zN9/fXX6NWrF+rVq4fw8HC0adMGr7/+ukufmerqamRmZqJnz55ITEyEXq9HgwYN0L9/f3z22Wcwm5WtWtnP2dmzZ/Hiiy+iVatWiIiIQGJiIgYMGICffvrJrZ9HieTkZHAch4yMDKc/lxw7d+7ElClTkJ6ejgYNGkCv1yMmJgY333wzxo4di6NHj8ruZ/2evP3227Zl7Gea/Q65+h08dOgQRo8ejZYtWyIiIgLR0dFo164dJk6cqPidBOTP27p16zBw4EA0aNAABoMBKSkpGDt2rFOLe1+h1WoRFmZRzVdWBk6WI9klecF7772HY8eOoWnTpvjHP/7hk2M0bqzuTOhg5u9to7Dr/HVv2JIaAefKTGgU5duPMacNQ52+W1CR+yV4QyLCwgYB+68P1DSK0uCFDrHYc6EKVSYBQk0pjEVHcaC8Ps4axYF8bfRnkMyfQc2VHGiEGrSq+RnR5ks412U3bqoThVbxUg9gQgnmDzKvQ2S7l9xqgeO00DfoAUNDS3Eh4Z7VqDj1KcBpEe6GTY8S4ckPg++zAdUFmyAIRuc7uNjPOvftQtWZ72BmBgy9ofz4xxDsAiXtfZ8Fo3hgObzFE+Alyg/vMV49LFJNsAGXzpCbYR/V4V1LoTC2lbfd8zm8IQ51B+xCRd4ySYGl7PC/ALvPEBts7TeYzAJOG4GIthPcbkYTnoTw5sPAuThTWE04jeMiQ1izB6GJ8ezzwmnCENb4PujqXrfHi++5HBWnPhdlwZQdmiHaT7Bez2QK53X6bQOn0UNJySBXJIho+xw4bSQqz3wHU/Gx67sYxTOu5YpVEW3GiWysNBGNEN58GHhDAuoO2I3K09+AD2+A8JTHJPsSRCgR3/1zVJz6AsaSPxxul/bnKkQWPYgTuq4wcTroE7tAV/d2rM4zQ7C7xvEtnkZkmDoF4ghdR+BP8bKYtJmIbT1YlfYBwMgUGUanRqNeBCluCYIILioqKvDUU0/hyy+/lKw7e/Yszp49ix9++AGXLl3C1KlT/dq3iRMn4j//+Y9k+ZkzZ3DmzBns2rUL2dnZuHz5slfHqaysxMiRI/HVV19J1h0+fBiHDx/GvHnz8OWXX2LgwIEO2zpx4gR69+7tcID26tWrGDJkiKhAAgBVVVXYt28f9u3bh8zMTKxcuRJ33nmnbBs///wz7rvvPly7dn2yW0FBAVavXo3Vq1f77Xf11FNP4ZNPxFl/x48fx4wZM7BkyRJs2LABbdq0kd03Ly8P/fr1w7Fjx0TLL1y4gDVr1mDNmjWYP38+Vq5ciYQEx2rHvXv3YsCAAbh48aJtWUVFBX788Uf8+OOPePHFFzFr1iwPf0rvyc7OxsiRIyXLa2pq8Ntvv+G3337DggULMGfOHIwbN84vfZo+fTqmTJkiKeQcPXoUR48exbx585CVlYXhw4c7bev111/HjBni57e8vDx8/PHHWL58ObZs2YK2bduq2n9nbNiwwXZtUPoM1gZUZPCQY8eOYfr06QCADz/8EJGRkbXco9AnMZxHQhiPK3a5DMeu1Pi8yABYLD0i2z5neXNOXCXkADSN0aJpjLUfUQAaYP7Bazj7p3jbO266GX3qN8TFZQ+Jlt/SRABvoAKDWzCDcZwmHDGdpnvVJKcNQ0SrUV61wWJI+hsMSX9TtU1d3M3Q2alr1KAq/0cY7Qb1zXbqBXZ2deTNE6Gr00HV4wNA5envREUGocr5DBd72CJD1C1vIPrWN1Tpm7/QRDVFVPtJkuXlx+aJB5NNUhsLvyCIbeo4fZzX3zt/40zJEH7TkwhrMkC14/G6KES2HiNaVnb4fXHBxnpemSKONj4VmgirukVeyWCW+Z7EdJoBThsBc1k+KuyLDIwSRaiReq5H3/YO+LA6sj+LNqYFolJflV1HEKEGpw1HRCvnWWtFFefRsigbLWu2AwAik19EZIvb8VNeBapx/flAe9MYxNRPVGrGLQxFNcCf4u9+RLPBqqkYAKDGLL7PahZDj40E4Q8EswBjeS1NJqkFtBEGcD4KlTebzRg0aBDWrVsHAGjZsiXGjRuHtLQ0REREoKCgADt27MCyZct8cnxHfP/997YCwy233IKxY8eibdu2iI2NRVFREY4cOYL169eLnCsaNWqEQ4cOYc+ePXjyyScBAJ988gluv/12Udv2E1UFQcCQIUPwww8/AAAGDhyIoUOHonnz5uB5Hrt378asWbNw5swZDBkyBNu3b0daWppiv4cMGYKzZ8/iueeew/3334/4+HicOHECzZo1A2ApJPTq1Qs5OTnQaDQYNmwY+vfvj5SUFNTU1GDr1q344IMPcPHiRfTv3x/79++37WvlzJkztgIDz/MYPXo0hgwZgtjYWBw8eBAzZszA1KlTHfZTDTIzM7Fnzx507twZEydORMuWLXHx4kVkZ2dj2bJlOHfuHPr06YPDhw8jOlqsViwtLcU999yDU6csFreDBw/Gk08+iYYNGyI3Nxdz587Fli1bsG3bNgwcOBBbt26FRiP/N7y8vBwPP/wwiouL8dprr6F///4wGAzYtWsXpk+fjoKCAnzwwQdo2rQpnn/+eZ+eEyWMRiPi4+MxaNAgdO/eHS1btkRkZCTOnTuHnJwczJkzB5cvX8azzz6LNm3a4G9/uz4+MnjwYKSlpSEzMxPz5s0DYFEgsDRq5Pokx8zMTEyePBkAkJiYiFdffRVdu3aFyWTC+vXrMXPmTJSVlSEjIwN169ZF//7KuVkLFizAjh070KNHD4wZMwatWrVCUVERlixZgiVLluDSpUt48skn8csvv7jcP08pKSnBn3/+iWXLlokyGGrr9y4H3S16yL///W9UV1ejefPmKC8vV6wKW9m4cSPOn7cMgA0cOJCKEh7AcRxax+vwS8H1m67jV2twT1N1Au5chRW0KVlSa2RWcADAS4sJgrnG637deDAzfmthRnQowTOZBVYlg2A2imbQAwBkwmzVgDOI7R/cVTKYKi6I3rtqPRQMcBo9BLvLRG0pGQSBvQIG3/fOWZGBk7lGqw8P0V8T23l1cH4V7JLM1VfEi3kDoPnr7yITACspMhilRQZ/5L4QRCjBMRkIgslyfdYLFajmrt/vV6kYJWaWcQtVc4xOEATUMJcjbfBd7gkiKDGWV+Hge9/Vdjf8xi2TB0MX5Ztni7lz59oKDA888AC+/PJLGAzia/aAAQMwbdo0FBQU+KQPSlgLG82aNcP27dtt3upW0tPTMX78eFy5cv0+T6fToX379iJlQ0pKikPb7oULF+KHH36ATqfDqlWr0LdvX9H6O++8E0888QS6deuGI0eO4IUXXsC2bdsU2zt8+DDWrFmD3r2v24F26nRdwfvOO+8gJycHcXFxWL9+vWgdANx99914/PHH0aVLFxQUFGDy5Mn4/PPPRdu89NJLNgXDZ599hsceu66eTUtLw8MPP4xu3bph7969iv1Ugz179qB///5YuXKlyCO/X79+aN++Pd566y2cOXMG06ZNw/vvvy/a9+2337YVGKZMmYJp06bZ1nXq1AkPPfQQnnjiCXz++efYsWMHsrKyMHbsWNl+XLp0CUVFRVi/fj26d+9uW965c2c89NBDuOOOO5Cfn4833ngDw4YNQ2KiOhMa3KFfv34YNmwYIiLEz1kdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmTdW9JcuXcLLL78MAGjYsCF27tyJJk2a2NZ37doV999/P7p164aysjKMHj0aubm50OnknwF37NiBUaNGYf78+aI8unvuuQd6vR4LFy7Ezp07sX//fnTooP5EzKlTp4qspOzRaDSYPXs27r77btWP6yl0u+ghVVWWB4hTp07hsccek/23fPly2/bTpk2zLb906VJtdTvoaZMg/uIfu+L/2bysmwUnmV1qQe5hj+cAjpO5eFGRwQPYJ2wKI/QGe3sU4LoFi5wHP6fxTWGPDT4WaoplBrWVYZUMoVRkYIM8hUBRMnDBZ53BaZ0U+f1RZGCLon99ziWfd1FhQcEuiVEy8IZ42w0waw3FWp9JlAycFuD1TjpPEIQIDXt9rgQgSAKh1S0ySKsMahYZTIL0Lkvno5nGBEEQvsBsNmPmzJkALDP7lyxZIikwWOF53q1Z0mpgnYDasWNHSYHBHmc2Oo4QBAH//Oc/AQATJkyQFBisxMfH287V9u3bceLECcU2MzIyRAUGe0pLS/HRRx8BsIx/sQUGK82aNcObb74JwJJ3UFZ23Urw/PnzWLFiBQDgvvvuExUYrERHRyMrK0uxj2phMBiwYMEC2RDeN954wzYQ/t///hfV1defzaqqqrBw4UIAQLt27WStnTiOQ2ZmJurUsaiH586d67AvY8aMERUYrDRs2NBmk1RWVobFixe79sOpTKNGjSQFBntiY2PxzjvvAAC2bduGwkL3shfdYdGiRSgvt9yDffDBB6ICg5UOHTrg9ddfB2CxTfvuu+8U20tKSsKHH34oKjBYmTTpugOBv8OX77nnHhw+fBjjx4/363GdQUUGIqhow2QWXCg340qlik9tLsA+1yk9c2lkvl0cB1IyqITjwTjCXThGyWC2KhmMMkUGrW+KDBxTZIBglgTVOoItMmhCqMhg8eS3o9YyGZjrrYrWHP4iIJQMTJFBULBLEm8nvsYJNrsksZKB119XBLHfVcHEZjKIiwycLlr2BpogCGU4Vt1nUzL4ssgg0w/1modR5gBUZCAIIpj49ddfbYGso0aNcjiQXxskJSUBALZu3YqTJ0/65BhHjx61tT1kyBCH29oPYDuyfXn88ccV123ZsgXFxcVuHa+mpgb79u2zLd+0aRNMJssfTDmPfyudO3dGu3btHB7DW3r37o2GDRvKruN5HiNGjAAAXLlyBTk5ObZ1+/bts4VCZ2RkKNogxcTEYOjQoQAsvytHahpH5+KBBx5AXFwcAPg0FNsdysrKkJeXhyNHjthyP+yVAgcOHPDZsa3nIC4uDg8++KDidk8//bRkHzmGDBmiWKBs3bq17dpiVa6ozbhx43Do0CEcOnQIO3fuxKJFi9CzZ09s2LABjzzyCHbt2uWT43oKFRk8JDs7G4IgOPxnHwa9adMm23JnCeiEMk1jtAjXih9yjl/17wC9wMztUnrkkrdL4uQHsKjI4D5sJgNdzryC1ynYJdWikgFw3TLJXFMmGTDlw+ur0KvAQGLHYa4tJUPo2yWB872TpEQBYjuvDq5rinZJYiUDZ7g+4439rrJFQ3MNW2QIrAdwgggGOFbJYFYoMrguzHOKTI0BvIoFQtYqCQB0wXe5JwjiBmb//v221926davFnshjDZstLCxE+/bt8eijj2LRokX4448/VDuGvZ1Qly5dwHGc4j/7IoxVZSHHLbfc4tLxkpKSHB7P3g7H/nj2Xvxs1gRL586dHa73FneOb99ve9v0O+64w2Eb9uvt97NHr9fj1ltvVWxDp9PZbHrksgz8xeXLlzF58mS0bt0a0dHRNiuv1NRUpKamYsCAAaJtfYX1PHbs2FHRAgkA6tevbxubVTr3gPNQ5fh4ywSvkhLXJ0e6Q7169dC+fXu0b98ed9xxBzIyMrBx40a8++67OHjwINLT07F27VqfHNsTKJOBCCr4v3IZfr10fYDt+JUadEnyjY+jHBKTHsVMBukyUjKoCetbRTPsvEGiZLCGDDOhz4APlQy6aMvMbbuBbKG6CEAzxX2smCsvSJaFll2SWMlg9fz2NwKrZAhGuyRN4CkZbJ95N5QM1kKrO0oGOMlk4LVUZCAIt5HLZBAEGPytZFDxNogNfQZIyUAQ/kIbYcAtkwfXdjf8hjZCfoawt9gPYlpVA4HEPffcg7lz5+Lll19GRUUFli5diqVLlwKwWM/cd999GDt2rMPBZWdcvHjRo/2sVjNyWAdUfXU8+wwKe49+OerX9+2EMneOb99vd36GBg2uP6/a72dPQkKCohqC7YtSG75m37596NOnj8s2SBUV0omMamE9B87OPWA5/3l5eQ7PmyMbKMCiagFgU+D4izfeeAOrVq3C7t27MWrUKJw8eVLW2svf1H4PCMJN2CLDsSv+HaBnn7uUlQzSZRws/nvgNGLbESoyuI9kRjU9/HqDopKBtUviND4bhOU4HpwuFoLdzGwz4zevBGuVxGkjwIXQgCk7UxYBomTggtIuKQAyGVgFiCt2SQpKBoFRMvAiJYOzTAbxjBtSMhCE+0iuz38VgXWC+PtWaVLvPkUmkkFV5JQMWioyEIRf4HjOZ0HIRGAxfvx4PPzww/jiiy+wbt06bN++HcXFxTh79izmz5+PrKwsTJ48Ge+++65H7dsPeq5evdplRw1Hg7OOBrvtj5eTk+NwFrk9jRs3ll1e2xaeahw/UNrwJdXV1Rg6dCgKCwuh0+nw3HPPYdCgQWjVqhXi4+NtVkOnTp1CixYtAFjyQnxNoJ83NRg0aBB2796NM2fOYPfu3bjrrrtqu0tUZCCCDzb8Oe+aEeU1ZkT4ScctCX5WuHbxMg9jtkW8DrD7IywIVGRwHwp+VhMlJQNrlyTxnlYZXh8Hk92gqeCiXZJJJvQ5pG4sAkTJIMlkCEW7JH8UGSTFGTPzfyuc3SsFJQNrl+ROJgNrlxRChTmC8Bcu2yWZ1Huglgt+VpMamb6SXRJBEMFE3bp1ba8LCgqcWp64g3Xmstns2AfPPtBYiXr16uGFF17ACy+8ALPZjF9//RUrVqzA3LlzUVRUhP/7v//D7bffjkGDBrndT2uoMGDxp7e3KPIF9sdLTExULB44wl4pceHCBdnQXvv1vsRZ+/br7QO67V9fuHABrVq1UmzD3ipKKeS7sLAQJpPJYYHH2he2DetnFVDn8yrHxo0bbXkEmZmZoqwDe/ylskhISEBBQYFLnw/r+fcmYL02SUxMtL0+ffp0QBQZ6HaRCDpaxOlEKgEBwIki/w3Ss49dSl8iOSWDFclMcFIyeABb7aHLmTfwegUlg6TI4BurJFv7BrEE1+VMBrbIEBY6eQxA4CgZQsIuyYndlz/sktgMGWuQvTTQ3oFdklLwsxuZDNLgZyoyEIS7sMV3wVQJQJAUGap9nMmgJmzwM88BGlIyEAQRRHTs2NH2euvWraq2HR0dDQC2cF8lfv/9d7fa5XkeHTt2xLRp07Bhwwbb8mXLlom2c3UildWnHwC2b9/uVl88QY3jpaam2l7v2bPH4bbO1nuLO8e3L+DYv3YWyrt7927Z/eyprq52GJRsNBrx66+/yrZh/awCwNWryg4BV65ccdnqiOXIkSO214888ojidvaZHXKoNUHQeg5ycnJgNBoVt7t48SJOnz4t2ifYOHv2rO11oITb06icD5k6daot7Dk9Pb22uxMyGDQcmseKRTjH/WiZJM1kkL8YyhUZREoG+zapyOA+ksE4evj1Bo6xSzIr2SX5KI/BChv+zM7SVsJcIZ6pEFJ5DAC4gFEyOBoEDw44XudYrRBAmQycK3ZJVaxdkr2SgbFLMjkJfiYlA0G4j1wmAwADWCWDevcpcpkMasLaJZGKgSCIYOPWW2+1zYJfuHAhSktLnezhOikpKQAsQa/Hjx+X3aa6uhrLly/3+BgdO3a0zepnQ3LDwq4Xt6uqlJ8JOnbsaFMTZGVlobJSmrWnJr169bL518+ZM8cjS5yePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccWRvYD+UpqCLPZjAULFjhsx9XPtTOs56CoqAjffvut4nb//e9/bT8ze96CAbPZLLrG2BfoahO6ZSSCkjYJ4gG3Y1f9WGRwOZNBusa6hB0wJCWD+0j/CFKRwRskSgabXZL4ZtTXSga2yOCqXRKrZNCEWJEBEjuO2spkECsZuCBUMgCOcxlqJ/jZel4daeWU7JLESgaRXZJEycDYJZGSgSC8Rqo0q4KckqFSVbsk1ZqShQ1+pjwGgiCCDZ7n8fLLLwMA8vPzMXz4cFRXy98/m81mnDt3zuW2e/ToYXs9a9Ys2W1efPFF0SxjlqVLlzoMv927d69t4Nha1LBiPxh98uRJxTZ4nsfkyZMBWPzwhw8f7nDw9tq1a5g7d67iemfExcXh2WefBQDs2LEDEydOdGjRc+HCBSxcuFC0LCkpyWYNtWrVKomKAwBKS0sxZswYj/vpKlVVVRgzZoxsoO+MGTNw6NAhAMCTTz5pyx0AAIPBYLMMOnz4MKZNmybZXxAEPPvss7YCkvW8KTFv3jxs27ZNsvz8+fOYNGkSAEtA8YgRIyTbdO/eHQCwcuVK2c/L8ePH8eabbzo8viNatmxpe52dnS27zeuvv46cnByH7bj6uXbGyJEjbcWul156SfZ7eODAAbz33nsALEHrgwcP9vh4vmDBggUOg6TNZjNeeuklW6GtW7duLmeu+BrKZCCCkjYJOqw+df39ias1MJoFvzwEsT64ipkMcsHP1o1JyaACZJekJmwmg1BTAsFs8r9dkt0AKeC6XZJcJkMoISlMBkomQ9AWGSKUC1h+KTIw501ByeCaXZKD4GdJJgMb/CwuMvCkZCAIt+EUlAw6SSaDesf0eSYDU2TQU5GBIIggZPz48Vi9ejXWrVuHFStWIDU1FePGjUNaWhoiIiJw/vx57Ny5E19++SWGDRuGqVOnutRuhw4d0KVLF/zyyy9YsGABqqurMWLECMTGxuLEiRPIysrCxo0bcdddd2HHjh2ybbz66qt45plnMGjQIHTv3h2tWrVCZGQkCgsLsW3bNnz44YcALEHLrMd906ZN0bhxY+Tn5+Nf//oXGjdujNatW9sUAPXr17fZ5DzzzDO2n//rr79GTk4OxowZg86dOyM2NhbXrl3DsWPHsHnzZqxatQphYWFOB7wd8c4772DLli3YtWsXZs+ejc2bN2PUqFG47bbbEBkZiatXr+LIkSNYv3491qxZg9TUVMnPN2vWLKxbtw4lJSUYNmwYtmzZgiFDhiAmJgYHDx7EjBkz8PvvvyMtLc2pBY83pKWlYfXq1ejatSsmTpyIli1b4uLFi1i8eDG++uorAJbQarkB+rfeegvffvstTp06halTp+LQoUMYOXIkkpKSkJubi7lz52Lz5s0AgC5dumD06NGK/UhMTERERATuvfdeTJw4Ef3794fBYMDu3bvx3nvv2Qpk06ZNkw3tHjduHFatWoWKigqkp6dj6tSp6NChA0pLS7FhwwbMnj0biYmJ0Gg0uHTpktvnqU+fPqhXrx4uXryIKVOmIC8vDw888ADq1q2LP/74AwsWLMCGDRvQtWtXhzZa9nkCEydOxBtvvIGkpCTbGFpycjK0WudD2ImJiZg5cybGjx+P/Px8dOrUCa+99hruuusuGI1GrF+/HjNnzkRpaSk4jkNWVpbLIeX+YvTo0Xj77bcxZMgQ3HnnnWjWrBkiIiJw9epV7N+/H9nZ2Th48CAAICYmBh999FEt9/g6VGQggpJW8eKLQLUZyC02omW87y8Ors6f18iMeVsXUSaDGjDFHlIyeAXP2CUBlkIDaiH4WdQHl+2S2CJDaGcy1J6SIfjtkgCA0yiHP3Oc/5UMgmKRgZN/bdnY8l9GycDbF+ook4EgfA97fbbaJfmyyKBeU7IYmQNog/NSTxDEDQ7P8/juu+8wYsQIfPPNN/j999/xwgsvqNL2J598gh49etgGnVk7m0mTJqFdu3aKRQbAYucit68Vg8GAjz/+GGlpaZJ1kydPxrhx45CbmysJhV60aBEyMjIAWCY5Ll26FM8//zw+/vhjnDx5Eq+88opin+QGqd3BYDBg3bp1yMjIwLfffosDBw44LFrExMRIliUnJ2PVqlW4//77UVJSgszMTGRmZoq2eeutt8BxnE+LDOPHj8eWLVuQnZ2NRx99VLI+KSkJ//vf/xAbK32Ojo6OxoYNG9CvXz8cO3YMy5cvl7XP6tq1K1atWuUw1DkiIgLffPMN+vXrh+nTp2P69OmSbSZMmIAXX3xRdv8+ffpgwoQJmDNnDvLz82WLVqtWrUK/fv0U++CIyMhILFmyBIMHD0ZlZSXmz5+P+fPni7ZJT0/H3LlzHWYf3HTTTRg6dCiWLVuGtWvXYu3ataL1ubm5Ls/WHzduHIqKivDmm2/iwoULmDhxomQbg8GArKws9O/f36U2/c3Zs2cxe/ZszJ49W3Gbtm3b4rPPPgsYqySA7JKIICVGz6NRlPhC7C/LJHbymNLkLjm7pOt+SaRk8Bp2MI6KDF7BKhkAwFxTLBmUdBaa630/4sR9cNkuSZzJEHJ2SQGSyRAKwc+ANKtARC0EP9sUIpLrmrKSQRAECKZqiQWSWMnA/JzmKlG4NKtk4HTRIAjCPSTFd3MVIMgEP6tYZPCxkEGiZNCRkoEgiCAlIiICX3/9NTZu3IgnnngCKSkpCA8Ph16vR5MmTTBw4EDMnz8fL730klvttmnTBjk5ORg7diyaNWsGvV6PxMRE9O3bFz/88ANmzpzpcP9NmzZh9uzZeOihh5CamorExERotVrExMSgQ4cOmDRpEo4ePWorFrCMHTsWy5cvR+/evVGvXj2HM7x1Oh0yMzNx4MABPPfcc0hNTUVsbCw0Gg1iY2Nx22234amnnsI333yD3377za3zIEd0dDSWL1+On3/+GU8//TRat26N6OhoaLVaJCQk4Pbbb8f48ePx448/Yt26dbJtpKen48iRI6LzW79+fQwYMAA//fQT3n77ba/76QqLFi3CF198gfT0dNSpUwcGgwGtWrXCK6+8giNHjuDmm29W3Dc5ORkHDhzA3Llz0aNHD9SpUwc6nQ7169dH37598emnn2Lr1q1ISEhQbMNKWloacnJyMGHCBLRo0QJhYWGoU6cO+vbtix9//NHhQDQAzJ49G1988QW6d++OmJgYhIeHo3Xr1njttdeQk5ODtm3bun1u7OnTpw/27t2Lv//972jYsCF0Oh0SExPRo0cPZGVlYcOGDYiMVLartfLZZ5/h/ffftylteN7zIevJkydj//79GDVqFFq0aIHw8HBERkaibdu2eP7553Hs2DEMHz7c4/Z9yb59+/Duu+/ivvvuQ7t27VC3bl3b9aFNmzYYNmwYvv76axw4cECUBxIIkJKBCFraxOtwtvT6E9vxK9UY2NzBwJFKSIOf5beTDX627kNKBhVg7ZLoAdgbLIOLHOzPq1BdXAuZDGK7JFcyGQRBCH27JFnP71pAEkwcrEUGR5kMfrg14tnzZjmvAjs/2Unws1wwuqNMBsCiZuB0lp/fXFMi3pfskgjCbSRKs7/+bkozGdQ7ps8zGZi+UiYDQRDBTs+ePdGzZ0+Xtk1OTnYpBLdRo0aSGfb2ZGRkKBYJUlJSMGHCBEyYMMGlPsnx4IMP4sEHH3R5+9TUVMyZM8ft40ydOtVlKyl77r77btx9991u72elSZMmDs+vp/1yl8ceewyPPfaYR/vq9XqMHz8e48eP97ofTZo0cTqz3RHOfo68vDzFdenp6U6/E+3atcOnn36quN6V75VOp8PLL79sy1NRIjs7WzH/wZ5bbrkFWVlZTrdjcfUaADg+b57SsWPHgCseuAopGYigpU2CeKD+2NUaly8E3uBV8LN1kSSToZasT4IZyS+CLmfewHG8ZBazUFMszWTwsZKBtUti/eblEKqLJYPuIVdkYD2/AyT4OVi/d7WtZJDcfinYJXGOMhkEAeYqsVUSAPAGx0UGews0sksiCO9RymRgiwxVKnoc+VvJoA/OejJBEARBEAThR4JzdIAgALRJENuHlFQLKChTcZqYAhKTHoUZ9HLKLptbEikZvIfsklSHtUwyV0vtkliPd/X7EMf0ocjpPmweAwBowkIrk4HsktRFscjA8czAvq86wGYyWM+ro+KpVMnAZpZw2ijR3xe5oqB94ZCCnwlCBSRKs2oAZmmRwaReZcAs0dWqC1tkICUDQRAEQRAE4QwqMhBBS2I4j3iD+CP82xXfD9azagmlxy6tnF2StSAhUTJQkcF9XI3gJlyFDX+22CWxwc8+VjIY3LdLMlWK8xg4XSw4rW8Dqv2N1C4pMIKfg9YuSSn42R+hz5A5b0rBz3bXNWlBW6pk4Jjvj1wxxb5wSEoGgvAeyfUZgGCqhh7iv5+qBj/7WMnABj/r6ImRIAiCIAiCcAJlMhBBC8dxaJOgwy8F12f0Hr9ag3ua+nYQlH2uU5rcxTvICJAoGQQqMriL4HDGL+EJEiWDnF0SG3Cpeh/iRO8FYykEs9GhTz6rZAg1qyQAAaNkCHW7JMm12WcdcM0uyaGSQZBmMvB6cXAcx+ssahO735t9ULQk+JmUDAThNqxdEgAI5ioZJYN6x/R5JgMFPxMEQRBBSG5uLsrKytzeLz4+Ho0aNfJBj4gbjbKyMuTm5nq0b+vWraHT+el51EdQkYEIalrHi4sMx/yiZHBtO9ngZ8VMBioyuA3ZJakOr5cqGcAGP/s5k8HSjyJwYXUV92GLDJoQLDIEqpIheO2SFIKfa63IYBl9FCTXNSd2SUxmCasEAizqI3vFgrVwKAhmCEbxQxgpGQjCA+SK7yZpkcEkAEazoIr1kK8TyKjIQBAEQQQjI0eOxJYtW9zeb8SIES4FCROEM/bs2eNyyDxLbm4ukpOT1e2Qn6EiAxHUtGXCny+Um3C10oT4MN8NfLmsZKBMBh/DKhnoAdhbOJ3zTAaf2yXppYOk5uoi8A6KDCaJkiHE8hgAcAGiZJBmMpCSwTMUlAxs6o/9+XXBLok3JICF0yoUGYwVYK+jpGQgCPeRt0uqhIEpMgCWXAY1igxmHyc/1zCXIm1wXuoJgiAIwi2Sk5Ml9ti1RXZ2NhU+iKCDigxEUNM0RotwLYcK4/U/BMev1uDOJN8VGViJunImg3SNbRFHSgavYbMxgnSwM5CQKBlk7ZJ8W2SAJsxiDWQ3U99Z+LO5QpzJEJJ2ScwgllBrSoYQD372V5GBF583AfJ2SZybdkmcTJGOzZ+wFg7ZPAaAlAwE4QmydkmmSomSAbAUGSJVuMz4evzDSEoGgiAIIgjZvHlzbXeBuMFJT08PmEJVbUCjckRQw3McWsWLn9Z8bZkkiRtWmEEv9zxm3ZSUDGpAwc9qI6tkYIsMPrZL4jhOYpkkMAOpLDeEXRKjZECtZTKESPBzLSsZOCUlg+SG1O66JqNkEFglg0yRAcx3VjBZBj6FmhLJpjwpGQjCfTR6ySJLkaFCsrzSqM5Dp+8zGcTvqchAEARBEARBOIOKDETQ09rfRQYXlQwaOSWD9QVlMngPZTKojqySgbFLkvWeVhl2NrYzJYPULikEiwwBq2QIztuIQM1kcGiX5Erws5xdEqM+sikZmNBncBq/fL8JItTgOF567TBVQYNq8IJRtLjapFKRQZVWlKlh+qkLznoyQRAEQRAE4UeCc3SAIOxow+Qy5F0zosLou8cvgfWwVhjb1shlMvy1MSkZ1IAyGdSG08spGZjgZ1/bJUEa/iw4tUsK/UwGBEomg2QQPDhHnlgLIdtyzk8ukux5E+TtkhwVGQSZTAZZuyRGtXE9k6GU2S5KUZlHEIRjOKZAJ5irwAESy6RKtYoMPlcykF0SQRAEQRAE4R5UZCCCnpvidNDYPfsIAE5cNSpu7y2uKxmky2xfOFIyeI/EVoQuZ97C61glwzW/2yUB0iKDuUrZLkkQzDBXXhQtC0m7JDZYtLaUDGaxkiHU7JJqT8lgKS4IjooMcsHPHikZLIOeZkbJQHkMBOE5bC6DtUDPFhmqVCoy+Nrrl4KfCYIgCIIgCHehW0Yi6DFoODSPFc8+PXbVdwNw7HOd0uQuWbskpUwGgYoM7iKdUU2z7LyF08eI3gvVxYDRz8HPADiD63ZJ5qpCiYVPSNolsUoGc21lMoSKXVItZzIw502wnlc28wKO7ZKEKrbIIKdkYL6zDpQMBEF4CFsI/kttJi0yqHM4XysZKPiZIAiCIAiCcJfgHB0gCIY2CeIBuOM+zGVwNQlA7nnMVqCQDBhSkcFtHAWkEh7hUvBzgNklsVZJAAc+LFH1PtU6PDuAVUtKhlCxS6rtTAal4GcHNnCc5BonwFzNBj97nsnAk5KBIDxGkptjVTJA/De0SqXgZx/XGCj4mSAIgiAIgnAbKjIQIQEb/nyiqEYyC8tXuJPJYH1mo0wGNWCzMehy5i3S4OdrNmsVK/6wS+JYu6RqZbskSR6DoY7fZqP7E04TGEoGwcwqGYK1yFC7Sgbw7HlTyGSAsl2SUFMq+dvBqoAA9zIZCILwDJftklS6N/V/JoNvj0cQBEEQBEEEP3TLSIQErZnw5yqTJQDaF7APdtLZpRbk7JJsHrqUyeA9ksE4mmXnLaySARCkA5FMuKUv4JnwWkdKBlPFBfG+IWiVBMgNYNWSkkFgMxmC8zai1jMZ2NsvW/HG9eBnVsUASL87gHImg1BTIt6OlAwE4Tkywc+ATJFBJSWDv4sMWlIyEARBEARBEE4IztEBgmCI0fNoFCWeGXrMR5ZJbNieopLBgV0SKRnUQNlWhPAMVskgSy3YJTnMZGCVDCFaZJD4fZurfB78KU+I2CVpFJQMXO0EPwtKSgYHwc/mqkK2UXAy32FWfWRVMphJyUAQqqFol8QUGSqDJPjZKLFL8unhCIIgCIIgiBCAbhmJkKENY5nksyID817pSyRXZLBNDCMlg/dQJoPqcLoY59v4I/iZLTJUuW6XpAnRIgMb/AygdoqTEruk4LyNqO1MBo4tzvxVXBAcFRmYa5xQJVYycPo4WWWJq5kMpGQgCM9h1WbW4GeDJPhZJSWDKq0oI7FLkrupJQiCIAiCIAg7gnN0gCBkYC2Tjl+t9slML8nQtsJzFy8jLbfuK5kta66tENdghlUy0OXMWzhe43Q2sz8yGdwJfjZJlAz1fdCjAIBVMgAQauG6IYSKkqG27ZLY65Ugr2QQ2/E5HuTjDdLQZ4AyGQjCLygoGXQCE/ysVpHB13ZJJjaTgYoMBEEQBEEQhGNoVI4IGdokiGf6XqsWUFBmUtjac9i6hdJjFykZfAxlMvgEObsV0Xp/KBmY8FrHdkk3SiaDjJLBVAvhz5JMhmAtMsh/jv0W/CwpMljPq4PiqRNLOLk8BgASi7PrmQziIgOvi3bYPkEQyrhql6RWkcHXbnk1zC2Wlp4YCYIgCIIgCCfQLSMRMtQL5xFvEH+kfWGZJAl+VsxkkK4w//VUSJkM3iNQJoNPcJbL4J/g5zjxAnOVzeKF5UbJZGAHsIDaUTKEjF0Sr5NXLfBaP/WAyWRQUDI4sktiYYtztuVskUFJyUB2SQThMZK/jb62S/J5JgMpGQiCIAiCIAj38NfTNEH4HI7j0CZBh18Krs/uXX2qHEcK1R2IO1lsFB9XYeBHVslgfcEMbhmLDuPq1r+r0Dv34Hg9DI36IDzlEb8f21vMZfnMkuAc7Aw0OJ2DIgPH+8VOhs1kAICin58AZAocxpKTovehmskAGSVD8c5xytkCCnAcD11iF0S0HiPr369ERd7XqMpfg+oLW5kGg1PJAFhyGVgrLn8FP3M8e94sfx2MRUeZ5a4XGXi9kl2SuMhgLP4NV7f+HTWX9zHbUZGBIDyFzWSwXiv1YIoMRs+LA7sKKrH/YjVqzAKOFEonpyw8VII4A4+/NQlDcqx317KSGioyEARx45KXl4eUlBQAwKJFi5CRkVG7HSJkmTp1Kt5++20A8IlNNnGdzZs3o2fPngCATZs2IT09vVb7k5GRgcWLF6NZs2bIy8ur1b4QYqjIQIQUrePFRYZzZSac84Flkj1Kz10amfE7698+VslgrryEylOfq9wz16j4YxEgCAhv/mitHN8TBEFA6cF3Rcs4UjKogiMlA6cJ98t5ligZAFSeXu7aviGaySCnZKg6851HbVWc/BTmqiuIvvUN17bPXYaiLQqFyKAuMkRI8z78ZZfEFkXNJphrylB9YYt4uTt2SUpKBjaToeqK7N8bUjIQhBcw12hT2RkA6tkl7T5fhQ9yrjncZtd5y/3vlvxKzO5ZB3EGzyZf/HpRasWno3kcBEEQBEEQtc4jjzyCZcuW2d7n5uYiOTm59jrEQLeMREjRJsFfA0TXMchJFiA/57RBpGVAjtPF+LBH7lN19sfa7oJbmEpzJcs4jUKQK+EWfFg9xXVyCgNfwPE6cEr+8k7QRDRSuTcBAqeVeOt7Q1X+925s+4PiOneVFIGEXIYBr/fTtZmxZRLM1ai5vFuymf35dXau+TD5AptiVgO7nUJwNEEQzpErjgPSIkOlh0WG/TID/0pUmgT85oWKd/8l6b4RVGUgCIIIGDZv3gyO48BxHDZv3lzb3SEIVZg6dartc03I8/3334sKDIEI3TESIUVyjBa31PVfoUHDAbc3kM4wBiwz63s1vW7v0jJOi+Z/ydcNSX8DH5bolz66gjWgMFgQakoky8KC0PIpELGcR/k/7OEp/lO7hDd/3O19DI37h+xAKcdxqp5/NvTXEYrB25owhDW9X50O1QJhKY+JF3BahDV90C/HZgckheoiSUYCAIQ1HWx7bUi6B5zS51sThrBm8n3X17sLfGQTx/0JT4K+fg+H2xAEoUxYswctxWCGcHOx6H15jWdFBncVEOVe2DJVyuxbL5weGQmCIAiCCAyys7MhCMINZZVUWlqK8ePHAwDq1VOeGFrbkF0SEVJwHIeJHWOx+3yVz22SdDyHjvX0aBGnXNR4qn002iboUWEU0L3x9YIDH1YXdQbsQmXe1zBXX/VpP+Woubgd1Rd+tr0XzEYHWwceckWRiJYja6EnoUdY4/6o028Lqs6tFwUL6+JTEZbsv0JOTOf/QJd4B4xFR1zaXhOVjIgWT/i4V7VLbJePoW/QA8biY27va7p2QmQ5ZQ3/dQV28Fuf1Av6Bj0Q1uR+6OJT3e5LoBB1y2RoY9ugpnAfOI0Bhsb9oa97u1+OzRYLzFVXIJiks4f1iZ1trzURSag7YDcqT38jKvxw2gjL7yLhFvljaSNQt/8vqMj9Cuaqy5L1vKEOwlMe8Z+KgyBCEH29u1BnwA5U5f8oukeJr2oK2N3mlXk4+M/kMKNVvA4pMVrsOl+FxHAeRVVmXKq4Hhxf7UXANBv63KtpGM0qJAiCIAiCqEWmTJmCM2fO4J577kHjxo2xePHi2u6SLFRkIEKOCB2P9Cbq2Yp4A89xuLuRNKwWALTRKYhKfcXPPbJQevA9UZEBgm8LMmojGMUDpJyhTi31JDTR1+8Gff1utdoHjtcgooX/w9ADGU6jR8RNIzzat+rs/5gig+vqJVb1EJ7yKCJaPeVRPwIJjuMQnvwQwpMf8vuxWQsjc/UVwCwuMmhlCjjamBaISn3V7eNpIhshqv1Lbu9HEITr6OveLilUJhbVANuvVxnKa8zsbi7BFhluqavHw60i8WT7aADAjN1FuFRx/RpSze7gBmwdJNbDbAeCIAiCIAjCe/bu3YsPP/wQBoMBmZmZeO+992q7S4rQXSNB3Iiwkv5gKzIwA6Scil71BBGSaMTFTm+UDBQQ7D2srZdQdVWkHAIAjtf7s0sEQfiASJ1YAVBj9kxlYBLE+7BxYHpmgZpKBh1PKgaCIIKf7du34+mnn0br1q0RExMDvV6Pxo0b47777sNHH32EoqIil9vKyMgAx3FOw1azs7NtHvNKti4bN27EY489hpSUFISHhyMiIgLNmjXDnXfeiUmTJmHjxo22bfPy8sBxHHr27Glb1rNnT9sxrP+ys7Nlj7Vp0yaMGDECzZs3R0REBGJiYpCamoqXX34Z586dU/w5WK/84uJiTJs2DR06dEBcXJziMb/77js8/PDDaNq0KcLCwhAXF4e0tDS8/fbbuHrVuZtDfn4+xo8fj+bNmyMsLAwNGzbE/fffj/Xr1zvd11Os59j+Z/r666/Rq1cv1KtXD+Hh4WjTpg1ef/11lz4z1dXVyMzMRM+ePZGYmAi9Xo8GDRqgf//++Oyzz2A2K08+YD9nZ8+exYsvvohWrVohIiICiYmJGDBgAH766Se3fh4lkpOTwXEcMjIynP5ccuzcuRNTpkxBeno6GjRoAL1ej5iYGNx8880YO3Ysjh49Kruf9Xvy9ttv25axn2n2O+Tqd/DQoUMYPXo0WrZsiYiICERHR6Ndu3aYOHGiQ6slufO2bt06DBw4EA0aNIDBYEBKSgrGjh2L/Px8V0+RRxiNRowaNQpmsxmvvfYaWrVq5dPjeQspGQjiRoTTiN8HmV0SJEUGebUIQRAWJIU4L5QMnJaKDN7C6xm7pOorgIkJdtXI5/0QBBE8yAUml9eYoddoZLZWhhUmsOP+bJGhyou5I0ZmvENLVkkEQQQxFRUVeOqpp/Dll19K1p09exZnz57FDz/8gEuXLmHq1Kl+7dvEiRPxn//8R7L8zJkzOHPmDHbt2oXs7Gxcviy1u3SHyspKjBw5El999ZVk3eHDh3H48GHMmzcPX375JQYOHOiwrRMnTqB3794OB2ivXr2KIUOGiAokAFBVVYV9+/Zh3759yMzMxMqVK3HnnXfKtvHzzz/jvvvuw7Vr12zLCgoKsHr1aqxevdpvv6unnnoKn3zyiWjZ8ePHMWPGDCxZsgQbNmxAmzZtZPfNy8tDv379cOyY2Or2woULWLNmDdasWYP58+dj5cqVSEhwnCu4d+9eDBgwABcvXrQtq6iowI8//ogff/wRL774ImbNmuXhT+k92dnZGDlSal9dU1OD3377Db/99hsWLFiAOXPmYNy4cX7p0/Tp0zFlyhRJIefo0aM4evQo5s2bh6ysLAwfPtxpW6+//jpmzJghWpaXl4ePP/4Yy5cvx5YtW9C2bVtV+2/lgw8+wK+//oqWLVvi9ddf98kx1ISKDARxA8IxRQYh6JQMjF0SFRkIwiHsd0QwVkAQBJd8ts3GMnFb2khV+3YjIpvJQEoGggg5IrTSa2yZUUCcm+2wRQYNc+02MDULNZUMWtK9E4RfEQQBlZWuTwYJdsLCfJf7YjabMWjQIKxbtw4A0LJlS4wbNw5paWmIiIhAQUEBduzYgWXLlvnk+I74/vvvbQWGW265BWPHjkXbtm0RGxuLoqIiHDlyBOvXr8fu3btt+zRq1AiHDh3Cnj178OSTTwIAPvnkE9x+u9iqr3HjxrbXgiBgyJAh+OGHHwAAAwcOxNChQ9G8eXPwPI/du3dj1qxZOHPmDIYMGYLt27cjLS1Nsd9DhgzB2bNn8dxzz+H+++9HfHw8Tpw4gWbNmgGwFBJ69eqFnJwcaDQaDBs2DP3790dKSgpqamqwdetWfPDBB7h48SL69++P/fv32/a1cubMGVuBged5jB49GkOGDEFsbCwOHjyIGTNmYOrUqQ77qQaZmZnYs2cPOnfujIkTJ6Jly5a4ePEisrOzsWzZMpw7dw59+vTB4cOHER0dLdq3tLQU99xzD06dOgUAGDx4MJ588kk0bNgQubm5mDt3LrZs2YJt27Zh4MCB2Lp1KzQKExDKy8vx8MMPo7i4GK+99hr69+8Pg8GAXbt2Yfr06SgoKMAHH3yApk2b4vnnn/fpOVHCaDQiPj4egwYNQvfu3dGyZUtERkbi3LlzyMnJwZw5c3D58mU8++yzaNOmDf72t7/Z9h08eDDS0tKQmZmJefPmAbAoEFgaNWrkcn8yMzMxefJkAEBiYiJeffVVdO3aFSaTCevXr8fMmTNRVlaGjIwM1K1bF/3791dsa8GCBdixYwd69OiBMWPGoFWrVigqKsKSJUuwZMkSXLp0CU8++SR++eUXl/vnKrm5uTaFR2ZmJgyGwJ+ERkUGgrgR4Vm7pOBSMkjskrRkl0QQjpB+RwTAXANonA9kS5QMZJfkNRK7pOoiqYUVFRkIIujR8hwMGg5VdoP+ZTXe2yXxzMC/mnZJbGyEluySCMKvVFZW4tNPP63tbviNJ554AuHhvnmWmzt3rq3A8MADD+DLL7+UDNINGDAA06ZNQ0FBgU/6oIS1sNGsWTNs374dUVHi++v09HSMHz8eV65csS3T6XRo3769SNmQkpKC9u3bKx5n4cKF+OGHH6DT6bBq1Sr07dtXtP7OO+/EE088gW7duuHIkSN44YUXsG3bNsX2Dh8+jDVr1qB37962ZZ06dbK9fuedd5CTk4O4uDisX79etA4A7r77bjz++OPo0qULCgoKMHnyZHz++eeibV566SWbguGzzz7DY489ZluXlpaGhx9+GN26dcPevXsV+6kGe/bsQf/+/bFy5UpotdfHT/r164f27dvjrbfewpkzZzBt2jS8//77on3ffvttW4FhypQpmDZtmm1dp06d8NBDD+GJJ57A559/jh07diArKwtjx46V7celS5dQVFSE9evXo3v37rblnTt3xkMPPYQ77rgD+fn5eOONNzBs2DAkJiaqeRpcol+/fhg2bBgiIiJEyzt06IABAwZgwoQJ6N69Ow4ePIh//OMfoiJDXFwc4uLiUK9ePdsyR59pZ1y6dAkvv/wyAKBhw4bYuXMnmjRpYlvftWtX3H///ejWrRvKysowevRo5ObmQqfTyba3Y8cOjBo1CvPnzxcVRO+55x7o9XosXLgQO3fuxP79+9GhQweP+y3HM888g/Lycjz22GPo1auXqm37CpqbQhA3IqxdUtApGcguiSDcQe474koug2CuAcxiGx+e7JK8hi0yAIC54qLoPSkZCCI0YHMZPAl/NjG7sJkMBqYQUOVN8DMpGQiCCAHMZjNmzpwJwDKzf8mSJYqzgHmed2uWtBqcP38eANCxY0dJgcEeZzY6jhAEAf/85z8BABMmTJAUGKzEx8fbztX27dtx4sQJxTYzMjJEBQZ7SktL8dFHHwEApk2bJikwWGnWrBnefPNNAJa8g7Ky66rp8+fPY8WKFQCA++67T1RgsBIdHY2srCzFPqqFwWDAggULRAUGK2+88YZtIPy///0vqquvK5KrqqqwcOFCAEC7du1krZ04jkNmZibq1KkDwFIQc8SYMWNEBQYrDRs2tNkklZWVYfHixa79cCrTqFEjSYHBntjYWLzzzjsAgG3btqGwsNBnfVm0aBHKy8sBWKyG7AsMVjp06GCzHjp79iy+++47xfaSkpLw4YcfyiquJk2aZHv9888/e9lzMZ999hnWrl2L2NhY/Pvf/1a1bV9Ct40EcQPCMUqGYLdLYkNtCYIQIxeOzhbr5BBqyiTLSMngPbw+XrLMVCGeQcdRJgNBhASsZVKZ0f0CgLuZDF7ZJTG7kpKBIIhg5Ndff7UFso4aNcrhQH5tkJSUBADYunUrTp486ZNjHD161Nb2kCFDHG5rP4DtyPbl8ccfV1y3ZcsWFBcXu3W8mpoa7Nu3z7Z806ZNMJksYxNyHv9WOnfujHbt2jk8hrf07t0bDRs2lF3H8zxGjBgBALhy5QpycnJs6/bt22cLhc7IyFC0QYqJicHQoUMBWH5XjtQ0js7FAw88gLi4OADwaSi2O5SVlSEvLw9Hjhyx5X7YKwUOHDjgs2Nbz0FcXBwefPBBxe2efvppyT5yDBkyRLFA2bp1a9u1xapcUYPCwkK8+OKLAID33nsP9evXV61tX0NFBoK4EaHgZ4K4sZBTMhhdUDIYSyXLKPjZezhtuOR3Yq44L96IlAwEERJEMuHP5R7YJZkZuyQ2k0FVuyRmX5nsaoIgiIBn//79ttfdunWrxZ7IYw2bLSwsRPv27fHoo49i0aJF+OOPP1Q7hr2dUJcuXcBxnOI/+yKMVWUhxy233OLS8ZKSkhwez94Ox/549l78bNYES+fOnR2u9xZ3jm/f78OHD9te33HHHQ7bsF9vv589er0et956q2IbOp3OZtMjl2XgLy5fvozJkyejdevWiI6Otll5paamIjU1FQMGDBBt6yus57Fjx46KFkgAUL9+fSQnJ4v2kUMp2NtKfLxl8lhJSYmbPVXmpZdewqVLl9C5c2c888wzqrXrDyiTgSBuRELOLokyGQjCEbKFOJeUDDJFBh0FP6sBb0iAufyc7b254oJoPdklEURowNollXlil+REyWBgigxVXtzWsfkPpGQgCP8SFhaGJ554ora74TfCwnwzWcx+ENOqGggk7rnnHsydOxcvv/wyKioqsHTpUixduhSAxXrmvvvuw9ixYx0OLjvj4sWLzjeSwWo1I4d1QNVXx7PPoLD36JfD17O73Tm+fb/d+RkaNGggu589CQkJimoIti9Kbfiaffv2oU+fPi7bIFVUOJ/s5inWc+Ds3AOW85+Xl+fwvDmygQIsqhYANgWOt2zcuBGLFy+GRqPBxx9/bGs/WKAiA0HcgHBckNslMTOwSclAEI7heC3AaUUh7y5lMhgZuyReD45XnhFCuA6vFxcZWLskV0K5CYIIfFi7pHIP7JLYIgObyaBnxh6qvLFLYoOfqcZAEH6F4zifBSETgcX48ePx8MMP44svvsC6deuwfft2FBcX4+zZs5g/fz6ysrIwefJkvPvuux61bz/ouXr1atusbWc4Gpx1NNhtf7ycnByHs8jtady4sexyOQ98f6LG8QOlDV9SXV2NoUOHorCwEDqdDs899xwGDRqEVq1aIT4+3mY1dOrUKbRo0QKAJS/E1wT6eVPCmqOSlpaG48eP4/jx45JtcnNzba9Xr15tC/t+9NFH/dNJB1CRgSBuRILcLomCnwnCfThtOISa6zJOVzIZzIxdEuUxqAcb/ixUiWf+cDxlMhBEKMDaJXmiZGDtknhf2iVJgp+D8yGdIIgbm7p169peFxQUOLU8cQfrzGKz2fH13D7QWIl69erhhRdewAsvvACz2Yxff/0VK1aswNy5c1FUVIT/+7//w+23345Bgwa53U9rqDBg8ae3tyjyBfbHS0xMVCweOMJeKXHhwgXZ0F779b7EWfv26+0Duu1fX7hwAa1atVJsw94qSinku7CwECaTyWGBx9oXtg37WfBqfF7l2Lhxoy2PIDMzU5R1YI+/VBYJCQkoKChw6fNhPf/eBKyrTVVVFQBg165dssHnLBMmTLC9DoQiQ3DpLgiCUAc+tOySQHZJBOEUthjnkpKBsUviKY9BNTiD45tZjpQMBBESREjskrwPfmaVDAamEFDN7uAGEiUDPS0SBBGEdOzY0fZ669atqrYdHR0NALZwXyV+//13t9rleR4dO3bEtGnTsGHDBtvyZcuWibZzdYa21acfALZv3+5WXzxBjeOlpqbaXu/Zs8fhts7We4s7x7cv4Ni/3rVrl8M2du/eLbufPdXV1Q6Dko1GI3799VfZNqyfVQC4evWqYhtXrlxx2eqI5ciRI7bXjzzyiOJ29pkdcqilPLCeg5ycHBiNypNpL168iNOnT4v2IbyHbhsJ4gYk2O2SKPiZINyHzS5xRcnABj+TkkE9WCWDdAMqMhBEKBDJjNKrYZfEigvUVDIYSclAEEQIcOutt9pmwS9cuBClpdKcMU9JSUkBYAl6lbMyASwDw8uXL/f4GB07drTN6mdDcu1zLKyznpXasKoJsrKyUFnp/N7fG3r16mXzr58zZ45Hljg9e/a0zdhfvHix4nZ79uxxGNarBmvXrkVBQYHsOrPZbOtffHy8qKjVqVMnxMXFAbD8DEoKgpKSElsB6eabb3aYHeLoXKxYscJWQOjVq5doXXx8vK0vjgb5v/rqK48tjOwH8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rzVJps3b4YgCA7/jRgxwrZ9bm6ubXkgQEUGgrgRkQQ/B5tdEmUyEITbsEoGo/tKBk5Loc9qweuVg/MACn4miFBBqmTw3i5Jwzu2S/Im+JntHikZCIIIRniex8svvwwAyM/Px/Dhw1FdXS27rdlsxrlz52TXydGjRw/b61mzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSTZrqFWrVklUHABQWlqKMWPGeNxPV6mqqsKYMWNkA31nzJiBQ4cOAQCefPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCiu0Hn610794dALBy5UrZz8vx48fx5ptvOjy+I1q2bGl7nZ2dLbvN66+/jpycHIftuPq5dsbIkSNtxa6XXnpJ9nt44MABvPfeewAsQeuDBw/2+HiEGMpkIIgbEUkmQ3ApGSSZDFqySyIIZ7BKBlYRJIdEyUB2SarhTMnAaSiTgSBCgUimyFCugl0SO+5vkFEyCILgtvWAWRDA9k5HSgaCIIKU8ePHY/Xq1Vi3bh1WrFiB1NRUjBs3DmlpaYiIiMD58+exc+dOfPnllxg2bBimTp3qUrsdOnRAly5d8Msvv2DBggWorq7GiBEjEBsbixMnTiArKwsbN27EXXfdhR07dsi28eqrr+KZZ57BoEGD0L17d7Rq1QqRkZEoLCzEtm3b8OGHHwKwBC2zHvdNmzZF48aNkZ+fj3/9619o3LgxWrdubVMA1K9f32aT88wzz9h+/q+//ho5OTkYM2YMOnfujNjYWFy7dg3Hjh3D5s2bsWrVKoSFhTkd8HbEO++8gy1btmDXrl2YPXs2Nm/ejFGjRuG2225DZGQkrl69iiNHjmD9+vVYs2YNUlNTJT/frFmzsG7dOpSUlGDYsGHYsmULhgwZgpiYGBw8eBAzZszA77//jrS0NKcWPN6QlpaG1atXo2vXrpg4cSJatmyJixcvYvHixfjqq68AWEKr5Qbo33rrLXz77bc4deoUpk6dikOHDmHkyJFISkpCbm4u5s6di82bNwMAunTpgtGjRyv2IzExEREREbj33nsxceJE9O/fHwaDAbt378Z7771nK5BNmzZNNrR73LhxWLVqFSoqKpCeno6pU6eiQ4cOKC0txYYNGzB79mwkJiZCo9Hg0qVLbp+nPn36oF69erh48SKmTJmCvLw8PPDAA6hbty7++OMPLFiwABs2bEDXrl0d2mjdddddttcTJ07EG2+8gaSkJNu9THJyMrRa50PYiYmJmDlzJsaPH4/8/Hx06tQJr732Gu666y4YjUasX78eM2fORGlpKTiOQ1ZWlssh5YRzqMhAEDcgHB/cdkkU/EwQ7uNRJoNRLHkluyT14PRkl0QQNwIRbPCzGnZJTJXBwApUYclW0ClnRMrC5jEAZJdEEETwwvM8vvvuO4wYMQLffPMNfv/9d7zwwguqtP3JJ5+gR48etkFn1s5m0qRJaNeunWKRAbDYucjta8VgMODjjz9GWlqaZN3kyZMxbtw45ObmSkKhFy1ahIyMDAAWn/ulS5fi+eefx8cff4yTJ0/ilVdeUeyT3CC1OxgMBqxbtw4ZGRn49ttvceDAAYdFi5iYGMmy5ORkrFq1Cvfffz9KSkqQmZmJzMxM0TZvvfUWOI7zaZFh/Pjx2LJlC7Kzs2UDdZOSkvC///0PsbGxknXR0dHYsGED+vXrh2PHjmH58uWy9lldu3bFqlWrHIY6R0RE4JtvvkG/fv0wffp0TJ8+XbLNhAkT8OKLL8ru36dPH0yYMAFz5sxBfn6+bNFq1apV6Nevn2IfHBEZGYklS5Zg8ODBqKysxPz58zF//nzRNunp6Zg7d67D7IObbroJQ4cOxbJly7B27VqsXbtWtD43NxfJycku9WncuHEoKirCm2++iQsXLmDixImSbQwGA7KystC/f3+X2iRcgwSwBHEjEmJ2SawNDEEQUljFjyuZDGaJXRIVGdTCqZKBigwEERJEalklg/t2SWyRQcM5tksCgCoPwp9rZPbRUo2BIIggJiIiAl9//TU2btyIJ554AikpKQgPD4der0eTJk0wcOBAzJ8/Hy+99JJb7bZp0wY5OTkYO3YsmjVrBr1ej8TERPTt2xc//PADZs6c6XD/TZs2Yfbs2XjooYeQmpqKxMREaLVaxMTEoEOHDpg0aRKOHj1qKxawjB07FsuXL0fv3r1Rr149hzO8dTodMjMzceDAATz33HNITU1FbGwsNBoNYmNjcdttt+Gpp57CN998g99++82t8yBHdHQ0li9fjp9//hlPP/00WrdujejoaGi1WiQkJOD222/H+PHj8eOPP2LdunWybaSnp+PIkSOi81u/fn0MGDAAP/30E95++22v++kKixYtwhdffIH09HTUqVMHBoMBrVq1wiuvvIIjR47g5ptvVtw3OTkZBw4cwNy5c9GjRw/UqVMHOp0O9evXR9++ffHpp59i69atSEhwMvEIFlVFTk4OJkyYgBYtWiAsLAx16tRB37598eOPP2L27NkO9589eza++OILdO/eHTExMQgPD0fr1q3x2muvIScnB23btnX73NjTp08f7N27F3//+9/RsGFD6HQ6JCYmokePHsjKysKGDRsQGencdvezzz7D+++/b1Pa8OysCjeYPHky9u/fj1GjRqFFixYIDw9HZGQk2rZti+effx7Hjh3D8OHDPW6fkIcTAiUdgvCI/Px8W6DRn3/+aQv2IQhHVBVswpX//c32ng9LRP1HL9Zij9zj0upOMBZe9/SLvXsxIm6iPxAE4Ygr6/qh6uxPtvfRae8jqv3LDvcp3jUB5b99aHsf3moU4u7K8lkfbySqzq3HlbX3Kq6PuXMeIts848ceEQThC86XGfH85iuiZZ/2TZQtDCjx9NpLKLGzWfrHnXG4uc71QmRpjRlPrRUHg867pw4SwtyTMhRXmTF6vbidBb3qIsZA89IIwoo3z98nTpyA0WiEVqsV+ZgTBBEY5OXl2TIw7BUhtUFGRgYWL16MZs2aIS8vr9b6QYQuvvibRHeMBHEDEux2SayXPNklEYQLaNxXMrDBzzwpGVSDMhkI4saAtUsC3FczSDIZmPqEQcbSqJqVP7iAUU7JQE+LBEEQBEEQhAvQbSNB3IhIgp+DzC7JKLZLoiIDQThHkslgdCWTgbVLci5zJVzDWSYD2SURRGgQIeM35G4ugySTgbFL0vIAe5QqD+aPyNolUSYDQRAEQRAE4QJUZCCIGxFJJkNwKRkkwc+M1zxBEFIk3xMPlAwU/KwevCHe8QYaKjIQRCig5TkYGGukshp3iwzi7VmnJY7jJPZLVR4pGaTLSMlAEARBEARBuIJyOgxBECELxwW3XZKkyEBKBoJwikTJwAaoyyBVMlCRQS04XYyl4Ktw/SUlA0GEDpE6TjToX+alXZJcnINBI1YveGSXxBQzeE6qmiAIgiCIQCU3NxdlZWVu7xcfH49GjRr5oEfEjUZZWRlyc3M92rd169bQ6XQq98i/UJGBIG5Egt0uiR0cpSIDQTiF8yCTwWwU36STkkE9OI4Dr4+Hueqy/AY8ZTIQRKgQoeVgH/1c7qaSQZrJIB34tygZrm/oWSaD+L2M0xNBEARBBCwjR47Eli1b3N5vxIgRyM7OVr9DxA3Hnj170LNnT4/2zc3NRXJysrod8jNUZCCIGxE+eO2SBEGQCX4muySCcIZHmQysXRIpGVSFMyQACkUGjuySCCJkiNTxAK7fa5XJ+RIpYBYEsOUCuZgEPbOwWiZfwRls8LOO8hgIgiCIG4jk5GTLeEMAkJ2dTYUPIuigIgNB3Ihw7FdfgCCYwXFBYLxrrpYsIrskgnABD5QMFPzsW3hDApRKvGSXRBChQ6TO80wGuVqBRuZ2jc19UCOTgfIYCIIgiGBi8+bNtd0F4gYnPT09YApVtQHdOhLEDQjH2iUBQaNmkJt9TUUGgnCOR5kMjJKBJ7skVeENCQ5WUpGBIEKFCMZ3yB27JLlagUbRLuk61R7c1tUwFQ0tKRkIgiAIgiAIF6EiA0HciMgVGcxBUmSQmX1NdkkE4RxOy3xPnCgZBEGg4Gcfw+uViwychjIZCCJUsNglXcdduyQWubF/A3Nrp0omAxUZCIIgCIIgCBehIgNB3IjwUqc0QQiO8GdZixdSMhCEU9xWMpgqAUE84kTBz+rCGeKVV5KSgSBChgidukoG2UwGNeySBFbJ4HYTBEEQBEEQxA0K3Tp6yd69e/HOO++gd+/eaNy4MQwGA6KiotCqVSuMHDkS27Ztq+0uEoSEoLZLkhkYJbskgnAOq/hxlskgGMukbZCSQVUcKhmoyEAQIUMkM1rvViaDjOjBNbskD4oMzK0gKRkIgiAIgiAIV6HgZy/o3r07fv75Z8ny6upqnDhxAidOnEB2djaGDx+OBQsWQK+nAQMiQAjiIoPE4oXXgeNlfh6CIERIlAwy+Sb2mJk8BgDgdBT8rCaOMhk4Dd0zEESoIFEyeGmXpJGzS2IKAtVyidFOYJUMOpqORhAEQRAEQbgIFRm84Ny5cwCAhg0b4uGHH0a3bt3QtGlTmEwm/PLLL5g1axbOnj2LJUuWoKamBl988UUt95gg/kLOLskcnHZJpGIgCBdxW8kgU2TQRKjapRsdzmHwM2UyEESoEMkUGdxRMvjVLonNZJBRTBAE4TkajQZGoxEmkwlmsxk8T5U8giAIwv+YzWaYTJaJxhqNepN2qcjgBW3atMF7772Hhx56SPJLufPOO/HEE0+ga9eu+P333/Hll1/imWeeQffu3WuptwRxnVCyS6IiA0G4hruZDEING/ocQaohlXGoZCC7JIIIGSIYSUB5jetKBvkig3O7pCoPbutqzJTJQBC+JCwsDFVVVRAEAaWlpYiJiantLhEEQRA3IKWlpRD+UrCGh4c72dp16NbRC77//nsMHTpUsepTt25dzJo1y/b+m2++8VfXCMIxnEx9MWiKDKySQb0LIkGEMpyW+a64qWSgPAb1cZjJQHZJBBEyRGoZJYNRsD3YOcNluyTmccSjTAZJkYGUDAShJvZFhfPnz+PatWswywWvEARBEIQPMJvNuHbtGs6fP29bFh0drVr7pGTwMT179rS9PnnyZC32hCDskFEyBKtdEkjJQBAuIadkEAQBnIIdhkTJoKMig9rwhngHK6nIQBChAmuXZDQDNWZA74I4TC5awRW7JM+KDOL3pGQgCHWJjIxEeHg4KioqYDKZcPbsWXAcp6pVBUEQBEEoYTKZRBNdwsPDERmpXu4iFRl8TFVVle013TwQgUIw2yXBSHZJBOEJEtWPYAYEI8DpZLcXjGXi/UnJoDqKmQwcD04mO4cgiOCEtUsCgLIaM/QuPBu4nMmgRvAzKRkIwqdwHIemTZvizJkzqKiwPNMIggCjMTgmexEEQRChQ3h4OJo2bao46dAT6AnWx2zZssX2um3btm7vn5+f73B9QUGB220ShFzw87U9E8HpnPuC8vpYhLcYAX1iZ9n15srLKDv6HxhL87ztpSymErEiiOySCMI15ApyRVufkL0eAIDp2h/i/bXqzXAgLPB6BSUDqRgIIqSI0Eof3hYeLkHYX+qD4mozDl2uAQDc3zwCfZLDUTfcUoAwMXZJPAfZh0EDo2Q4U2LEh/uLxdtoOdyVFIb2deWvMUamLiFTGyEIwkt4nkezZs1QVlaGkpISm6qBIAiCIHyNRqNBeHg4oqOjERkZqWqBAaAig08xm82YMWOG7f3QoUPdbqNJkyZqdokgLMgoGar+XO3y7uUnPkHi4N+gjU6WrLuycRBqLu7wpnduQUoGgnARNpMBQGXeUpd3J7sk9eF4LThdDISaa8xyKjIQRCih5TkYNByq7GQJey9Uy2676lQ59lyowgc9EsBznMQuSS6PAZDaJZVUC9h2rkqy3aY/K/F/XePRPFaqYpMoGVR+8CQIwgLHcYiKikJUFN1bEQRBEKEDzU/xIf/+97+xe/duAMCDDz6ITp061XKPCMICx3HezUo2VaL6/Ebp4ooLfi0wAACnj/Pr8QgiWOG1UbIFRpf3dxBSTHgOH15fsswVVRlBEMFFrN71AfuCMhMKyiwzm6sYvySNwsB/lM619s0CcPCSfIGjmplMTXZJBEEQBEEQhKtQkcFHbNmyBa+99hoAoF69epg3b55H7fz5558O/1mLGAThLmEpj3i1v1BTIllmKj3tVZueEJ7yqN+PSRDBCKcNR1jTQR7vT9813xDe/HGZZY/VQk8IgvAldzdyT3lZVmMpLlyuEKcxx4fJP761SdAhQWEdC1u4sFLJLA+TsXkiCIIgCIIgCDnILskHHDlyBA888ACMRiPCwsLw9ddfo169eh611bhxY5V7RxAWYrt8DH397jAWH3Np+8q8b2Aque7RLjABzABgKvtT9J7TxyOi9RjvOqoAx2mhb9ADhoa9fNI+QYQicd0+Q0Wjz2Fksk0cwfE66Bv8DYakdN917AYm6ta3oI1rh5rCHAACdPG3IizFfXtFgiACm4dbRaJJtBanrxlhP5S/70IV8kulfuzWAf9L5eJ1ieHyirQwLY9374rHjoIqlFSLCxPsMRRqDKg0ivejIgNBEARBEAThKlRkUJnc3Fz07t0bV69ehUajwVdffYXu3bvXdrcIQgLH6xBx0wiXtzdd+0NcZDBJiwxmpsigjWuHmE7TPe8kQRCqwmnDEdHq6druBmEHx3EITx6C8OQhtd0VgiB8CM9xuKthGO5qyCwHkF9aLtm+ymhVMrBFBmW1Qp1wDQY2j5AsL6oyi4oMbPaClQom+TlcKQCCIAiCIAiCIBjILklFzp07h169euHcuXPgOA6ffPIJBg3y3JqCIAIJjgmNlSsymMrFRQZNVFOf9okgCIIgCCKYMSssr/xrwP8SY5dUV0HJ4AhWkKCoZCC7JIIgCIIgCMJDqMigEpcvX8a9996LU6dOAQA+/PBDDB8+vJZ7RRDqwWmYIoMLdkmaiCY+7RNBEARBEEQoUmGyFBekSgb3iwwaJsDZpFDZqDRSkYEgCIIgCILwDCoyqEBxcTH69OmDo0ePAgBmzJiB8ePH13KvCEJlNOLAQsFUKdlEUmSIpCIDQRAEQRCEEgrORag0ChAEAZfYIkOE+49vWmYXo0B2SQRBEARBEIS6UJHBS8rLyzFgwADk5OQAAN544w28+uqrtdwrglAfiZJBzi6p7IzoPRUZCIIgCIIg3KfSJKC4WkANozrwxC5Jw4mLBUZSMhAEQRAEQRAqQ0UGL6iursYDDzyA7du3AwCef/55vPvuu7XcK4LwDWwmA5gig2Cugbm8QLSMigwEQRAEQRDKCAqqgkqjILFK0nBAQpgHSgZJJoP0mIIgUCYDQRAEQRAE4THa2u5AMPPYY49h7dq1AIC//e1veOqpp3D48GHF7fV6PVq1auWv7hGEqjjLZDCVnwMgfjilIgNBEARBEIQyCm5JqDRKrZLqhPHgOfcH/jVMXUIuk6HGLA2EDqciA0EQBEEQBOEiVGTwgm+//db2euPGjbjlllscbt+sWTPk5eX5uFcE4RtYJQNrl2Rm8higCQdnqOPrbhEEQRAEQQQtikUGk4DL5eJqgCdWSYDULklOycBaJQGUyUAQBEEQBEG4DtklEQThEk6VDDKhz5wHs+0IgiAIgiBuFBTckmSVDIkRHhYZ2OBnGSUDa5UEkF0SQRAEQRAE4TqkZPACJQ9VgghFnAU/U+gzQRAEQRCEezhSMrBFhrrhns0P0/LOlQwVjJKBA2AgJQNBEARBEAThIlRkIAjCNZzYJckpGQiCIAiCIAhlHCkZSqrFkoNED+2SWEGCnJKhglkYpuVIkUoQBEEQBEG4DBUZCIJwCU/skgiCIAiCIAhlzApFhgqjgKtV6hQZNKySQeagbCZDGKkYCIIgCIIgCDegTAaCIFyC04SJ3jtXMjT1eZ8IgiAIgiBCkatVZomFkad2SWy9QCbjWZLJQHkMBEEQBEEQhDtQkYEgCJdglQwwVYremknJQBAEQRAE4RaCQiqDXEZCXY/tkthMBufHC6ciA0EQBEEQBOEGVGQgCMIlOJlMBmv4uWCsgLnqsmg9T0UGgiAIgiAIhyhlMrDEh/GSAGdX0TBPfGSXRBAEQRAEQagNFRkIgnAJiZJBMAPmGgBSqySAlAwEQRAEQRDOcLHG4LGKAYCkOCGnZCC7JIIgCIIgCMIbqMhAEIRLsEoG4HouA1tk4HSx4HXRfukXQRAEQRBEsOKqkiHRwzwGQCaTQUbJQHZJBEEQBEEQhDdQkYEgCJeQKBlgsUkC5EKfScVAEARBEAThDFeVDIleKBlYuySjWbqNxC6JigwEQRAEQRCEG1CRgSAI15ArMliVDOVMkSGqqV+6RBAEQRAEEcz4xS5JEvzsXMlAmQwEQRAEQRCEO1CRgSAIl3DHLkkTQUoGgiAIgiAIZ/jFLkkS/Czdhs1kILskgiAIgiAIwh2oyEAQhEtwHA/wevHCv+ySzEyRgSe7JIIgCIIgCKcILmoZvFEyaBglg1Eu+JnxUArT0mMiQRAEQRAE4Tp090gQhMuwuQzXlQxnRMspk4EgCIIgCMI5LisZIrywS2KVDGSXRBAEQRAEQagMFRkIgnAZThMmeq9ol0RFBoIgCIIgCKe4UmOI0XMweDHoz2YyGM2AwBQayC6JIAiCIAiC8AYqMhAE4TJsLoNgqoS5uhhCTYloORUZCIIgCIIgnONKkcEbqyRAmskAAGbmwJVGKjIQBEEQBEEQnkNFBoIgXEZil2SskKgYAEAT0dhfXSIIgiAIgghaXLFLSvS2yCBTL2CEC1K7JCoyEARBEARBEG5ARQaCIFxHomSQFhn4sHrgtGJbJYIgCIIgCMIzEsO9e2TT8tKCgZGRMlAmA0EQBEEQBOENVGQgCMJl5JQMZspjIAiCIAiC8AjWtkgOr+2SnCgZjGZBomwguySCIP6/vTsPsqq888f/bmigoYEvCphgwBVb1KghiKPjigtWgiaiianERCRoHJM46DjqaIxrjDJq3GpmLAUlTiZqTKImOlQpigyyiCiTiQYCLqiMIiCgyNY03N8f/LhDQwPNpTfw9arqqtP3POf0p62P1L39Ps/zAMC2KG/uAoAdxyYhw5oVWbvqo1qvtRIyAADUS332ZOjeYftChrpmMqzZIN3YeBZDYrkkAAC2jZkMQL1tvPFz6lguyUwGAID6aa49GTbMFeoMGSyXBADANhAyAPVWn42fhQwAAPVTqMdchsbek2HlxmslxUwGAAC2jZABqLe6lkvaNGTYoylLAgDYaXUoL0uHNtv3kW1rezKs3GgmQ7vWZWlVJmQAAKD+hAxAvW28XFKhZnnWLJ9b6zUzGQAA6mdrGz9v76bPSVLHRIasWft/xytq1tY6ZxYDAADbSsgA1FtZ64pa369Z9l6yZmWt14QMAAANY7cO2/9xraysbJPZDDUbbAax8UyG9vZjAABgGwkZgPrbaLmkmk9m1T5f1iqt2vdowoIAAHZcTTGTIUnKN/rUt+FMho33ZDCTAQCAbSVkAOpt4+WS1nwyu9b3rdrvnrJW5U1ZEgDATqvBQoaN9lhYs8FMhhU1QgYAALaPvwYC9bbxxs9J7Q+llkoCAKi/rUxkSPf2DfNMWOuNbvPb2cvy/9quSJLM/XRNrXOWSwIAYFsJGYB62zRkqK115R5NVAkAwI6vUNhyzNC9gWYytC4ry4aRxp8Xrt7sWDMZAADYVpZLAuqtVbtdtni+dce9mqYQAICdwIFd227x/G4dGiZkaL8NwUGntj4iAgCwbbyDBOqtbY8TU9aua90nW7VN+73PatqCAAB2YKfs2T6d29YdAPT/XNsG+4P/3+5eUa9xrcqSI3q0a5CfCQDAZ4flkoB6a93+c+l26tSsnPNY1lYvKb5e1rp9KnqdljZd+zZfcQAAO5gObVrln4/ZNVM+WJUela1zUNe2+a//XZlWZckxX6hfMFAf39ivQ3p1ap23P67Z7D4QbVolh3Zvl6pd2jTYzwUA4LNByABsk/JO+6TjwVc0dxkAADuFXSpa5yt7dyh+f+IeW94DqxRlZWU5okdFjujR4LcGAADLJQEAAAAAAKURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMjSgd955J5deemn69OmTysrK7Lrrrunfv39uvfXWLF++vLnLAwAAAACABlXe3AXsLP74xz/mu9/9bj755JPia8uXL8+0adMybdq0jBw5Mk8//XR69+7djFUCAAAAAEDDMZOhAUyfPj3f+ta38sknn6Rjx4656aabMmnSpDz33HM5//zzkySzZs3KoEGDsnTp0mauFgAAAAAAGoaZDA1g+PDhWbFiRcrLy/PMM8/kyCOPLJ474YQTst9+++Xyyy/PrFmzcvvtt+e6665rvmIBAAAAAKCBmMmwnaZOnZoJEyYkSYYNG1YrYFjv0ksvzQEHHJAkueuuu7J69eomrREAAAAAABqDkGE7PfHEE8XjoUOH1jmmVatWOeecc5IkS5Ysybhx45qiNAAAAAAAaFSWS9pOL774YpKksrIy/fr12+y44447rng8ceLEDBw4sNFra4lWrliRmbNebe4yAAAAaEH6VH05Fe3bN3cZAEAJhAzbacaMGUmS3r17p7x88/85+/Tps8k19TF37twtnv/ggw/qfa+WYOasVzP1pdebuwwAAABamC8delRzlwAAlEDIsB1WrlyZhQsXJkl69uy5xbG77LJLKisrs2zZsrz33nv1/hm9evXarhoBAAAAAKCx2JNhOyxdurR43LFjx62Or6ysTJJ8+umnjVYTAAAAAAA0FTMZtsPKlSuLx23btt3q+Hbt2iVJVqxYUe+fsbVZDx988EEOP/zwet8PAAAAAAAaipBhO1RUVBSPq6urtzp+1apVSZL227CZ1daWYdrR9Kn6cnOXAAAAQAvjsyIA7LiEDNuhU6dOxeP6LIG0bNmyJPVbWmlnVdG+vc28AAAAAAB2EvZk2A4VFRXp2rVrkmTu3LlbHLt48eJiyGAzZwAAAAAAdgZChu104IEHJkneeOON1NTUbHbczJkzi8cHHHBAo9cFAAAAAACNTciwnY4++ugk65ZCeuWVVzY7bvz48cXjo46yXBAAAAAAADs+IcN2Ov3004vHDz74YJ1j1q5dm4ceeihJ0qVLlwwYMKApSgMAAAAAgEYlZNhOhx9+eI455pgkyahRozJ58uRNxtx+++2ZMWNGkmT48OFp06ZNk9YIAAAAAACNoby5C9gZ3HXXXTnqqKOyYsWKDBw4MFdddVUGDBiQFStW5JFHHsl9992XJKmqqsqll17azNUCAAAAAEDDEDI0gL59++bRRx/Nd7/73XzyySe56qqrNhlTVVWVp59+Op06dWqGCgEAAAAAoOFZLqmBnHbaafmf//mfXHLJJamqqkqHDh3SpUuXHHbYYRkxYkSmT5+e3r17N3eZAAAAAADQYMoKhUKhuYugdHPnzk2vXr2SJO+991569uzZzBUBAADAzsfnbwCom5kMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABAScqbuwC2T01NTfH4gw8+aMZKAAAAYOe14WfuDT+LA8BnnZBhB7dgwYLi8eGHH96MlQAAAMBnw4IFC7LXXns1dxkA0CJYLgkAAAAAAChJWaFQKDR3EZRu5cqV+fOf/5wk6d69e8rLW/7klA8++KA462Lq1Knp0aNHM1cEpdPP7Gz0NDsT/czORD+zs9kRe7qmpqa4msDBBx+cioqKZq4IAFqGlv8XabaooqIi/fv3b+4yStajR4/07NmzucuABqGf2dnoaXYm+pmdiX5mZ7Mj9bQlkgBgU5ZLAgAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASlJWKBQKzV0EAAAAAACw4zGTAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQgSb1zjvv5NJLL02fPn1SWVmZXXfdNf3798+tt96a5cuXN3d5kGnTpuWGG27IwIED07Nnz7Rr1y4dO3ZMVVVVhg4dmhdffHGb7jdmzJgMHjy4eK+ePXtm8ODBGTNmTCP9BrB1V1xxRcrKyopfL7zwwlav0cu0NO+++26uvfbaHHbYYenevXsqKirSq1evHHPMMbnmmmvy2muvbfF6PU1LUV1dnZEjR+aUU05Jjx49iu899t9//wwdOjSTJk2q1330NI1l/vz5eeqpp3LNNdfkK1/5Srp161Z8D3Huuedu8/0aoldrampy77335phjjkn37t3Tvn377Lvvvrngggvy+uuvb3NNAMB2KkAT+cMf/lDo3LlzIUmdX1VVVYXZs2c3d5l8hh1zzDGb7c8Nv84555zCqlWrtnivNWvWFIYNG7bF+5x33nmFNWvWNNFvB+tMnz69UF5eXqsXx40bt9nxepmW6O677y5UVlZusS+HDx9e57V6mpZkzpw5hYMOOmir7z0uuuiiwtq1a+u8h56msW2pt4YMGVLv+zRUry5YsKDQv3//zd6jXbt2hfvvv387f2sAYFuYyUCTmD59er71rW/lk08+SceOHXPTTTdl0qRJee6553L++ecnSWbNmpVBgwZl6dKlzVwtn1Xvv/9+kmT33XfP8OHD89vf/jZTp07N5MmT84tf/CJf+MIXkiQPPfTQVp/a+slPfpJRo0YlSfr27ZuHH344U6dOzcMPP5y+ffsmSUaOHJmrr7668X4h2MjatWvzgx/8IDU1Ndltt93qdY1epqX52c9+lr//+7/PsmXLUlVVlVtvvTUvvPBCpk+fnrFjx+bWW2/N3/7t36ZVq7rf5uppWorVq1dn0KBBxaeuDznkkIwePTqTJ0/OM888k2uuuSaVlZVJknvuuScjRoyo8z56mqa0xx57ZODAgSVd2xC9umbNmgwePDgvv/xykuSMM87ImDFj8tJLL+Xuu+/ObrvtllWrVuWCCy4wiwcAmlJzpxx8Nqx/Qry8vLwwadKkTc7/8z//c/HJk2uvvbbpC4RCoTBo0KDCo48+Wqipqanz/IIFCwpVVVXFXh0/fnyd4/76178WnxQ/7LDDCsuXL691ftmyZYXDDjus+P+EGTw0lTvuuKOQpNCnT5/ClVdeudWZDHqZlmbs2LG1ZpVVV1dvdmxdM870NC3JY489VuznIwXwsRQAABQ+SURBVI88ss73H9OmTSu0adOmkKTQpUuXwurVq2ud19M0hWuuuabwxz/+sTBv3rxCoVAovP3229s8k6GhenXUqFHFn/3DH/5wk/OzZ88uzp7v3bv3Jv/PAACNw0wGGt3UqVMzYcKEJMmwYcNy5JFHbjLm0ksvzQEHHJAkueuuu7J69eomrRGS5KmnnspZZ52V1q1b13m+W7duuf3224vf//a3v61z3J133pmampok6548bN++fa3zHTp0yD333JNk3Xqyd9xxR0OUD1v07rvv5qc//WmS5N57703btm23eo1epiVZu3ZtLrzwwiTJoYcemlGjRqVNmzabHV9Xj+tpWpIN91q48sor63z/0a9fv5x66qlJkiVLlmTGjBm1zutpmsL111+fU089NZ/73OdKvkdD9eptt92WJNl1111z6623bnK+d+/eufLKK5Mkb7zxRh5//PGSawYA6k/IQKN74oknisdDhw6tc0yrVq1yzjnnJFn3AWrcuHFNURpsswEDBhSP33zzzU3OFwqFPPnkk0mSPn365IgjjqjzPkcccUT233//JMmTTz6ZQqHQCNXC//nRj36UTz/9NEOGDMlxxx231fF6mZbmmWeeyezZs5Os27y8vLx8m67X07Q01dXVxeN99tlns+P23XffOq/R0+woGqpXZ82aVQzazjrrrHTo0KHO+2y4rKmQAQCahpCBRvfiiy8mSSorK9OvX7/Njtvwj14TJ05s9LqgFKtWrSoe1/XE4dtvv13c22Frf8hdf/5///d/M2fOnIYrEjbym9/8Jk899VR23XXX4hOAW6OXaWkee+yxJElZWVnxye4kWbRoUWbPnp1FixZt8Xo9TUuz/o+pSfLWW29tdtz6hxrKysqy3377FV/X0+woGqpX13+u3Np9Pv/5z6eqqiqJz5UA0FSEDDS69U+b9O7de4tPHfbp02eTa6ClGT9+fPF4/RJfG/rLX/5SPN6wp+ui52kKS5YsyfDhw5MkI0aMSLdu3ep1nV6mpZkyZUqSZK+99kqnTp3y61//OgcffHC6du2aqqqqdO3aNfvvv39uu+22WoHwenqalubb3/52OnfunGTdv89r1qzZZMz06dPz9NNPJ0m+853vFMcnepodR0P1ain3ee+997Js2bJ61woAlEbIQKNauXJlFi5cmCTp2bPnFsfusssuqaysTLLuzSC0NGvXrs0tt9xS/P6ss87aZMzcuXOLx1vr+V69ehWP9TyN5fLLL8+8efNy1FFHZdiwYfW+Ti/TkqxduzYzZ85Msm5/nOHDh+fss8/Oa6+9VmvcrFmzctlll+WEE07IkiVLap3T07Q03bp1y7//+7+nQ4cOmThxYvr375+HHnooU6ZMydixY3P99dfnuOOOS3V1db785S/X2hcq0dPsOBqqV0u5T6FQqHUdANA4hAw0qqVLlxaPO3bsuNXx60OGTz/9tNFqglLdcccdmTp1apLkjDPOqHP5r23p+fX9nuh5GseECRMycuTIlJeX5957701ZWVm9r9XLtCQff/xx1q5dmyT585//nLvvvjs9evTIr371qyxatCjLly/P+PHji+t8T5o0Kd///vdr3UNP0xJ97WtfyyuvvJLzzjsv//3f/50hQ4bkyCOPzMknn5zrrrsuHTp0yJ133pkJEyZssumunmZH0VC9qucBoOUSMtCoVq5cWTxu27btVse3a9cuSbJixYpGqwlKMX78+PzTP/1TkmS33XbLv/3bv9U5blt6fn2/J3qehlddXZ0f/OAHKRQKueSSS/LFL35xm67Xy7QkGy51sXLlynTo0CHjxo3L2WefnV122SXt27fPsccem+effz6HHnpoknWbfb700ku1rltPT9NSVFdX56GHHtrshswffvhhfvWrX2Xs2LGbnNPT7Cgaqlf1PAC0XEIGGlVFRUXxuLq6eqvj16+h3L59+0arCbbV66+/nsGDB6empiYVFRV57LHHsttuu9U5dlt6fsM1w/U8De3nP/95Zs6cmT322CPXXnvtNl+vl2lJNuzHJDnvvPNqbZq7Xvv27XPTTTcVv3/00UfrvIeepiVYtmxZTjrppNx8881ZtGhRLr/88syYMSOrVq3Kxx9/nGeeeSZHH310pk2bltNPPz2/+MUval2vp9lRNFSv6nkAaLmEDDSqTp06FY/rM011/ZOK9VlaCZrC22+/nYEDB2bx4sVp3bp1HnnkkRx77LGbHb8tPb/hk7l6noY0c+bM3HzzzUmSe+65p9aSAfWll2lJNuzHJBk4cOBmx5544okpLy9Pkrz88st13kNP0xJcd911mTBhQpJk1KhRGTFiRPr06ZO2bdumc+fOOfnkkzNu3LgMGDAghUIhl112Wf70pz8Vr9fT7Cgaqlf1PAC0XOXNXQA7t4qKinTt2jUfffTRVjfcWrx4cfHN4IYbfkFzef/993PSSSfl/fffT1lZWR544IF8/etf3+I1G25Ct7We33AzOz1PQ7rjjjtSXV2dffbZJ8uXL88jjzyyyZgNN8x9/vnnM2/evCTJaaedlsrKSr1Mi9KuXbt07949CxYsSLLlPquoqEi3bt0yb9684vjEv8+0LIVCIQ888ECSpKqqKkOGDKlzXHl5eW688cYcffTRWbt2bUaPHp077rgjiZ5mx9FQvbrxfbp167bV+5SVlW11k2gAYPsJGWh0Bx54YCZMmJA33ngjNTU1xacLNzZz5szi8QEHHNBU5UGdFi5cmJNPPjlvvfVWknVPg59zzjlbve7AAw8sHm/Y03XR8zSW9UsEvPXWW/n2t7+91fE33nhj8fjtt99OZWWlXqbFOeigg/LCCy8kSdasWbPFsevPb/ieQ0/Tknz44YdZtGhRkqRv375bHNuvX7/i8Ya9qafZUTRUr258ny996UtbvU+vXr1KmtEJAGwbyyXR6I4++ugk66asvvLKK5sdN378+OLxUUcd1eh1weZ8/PHHOeWUU/KXv/wlSXLLLbfkRz/6Ub2u3XvvvbP77rsnqd3Tdfmv//qvJMkXvvCF7LXXXqUXDI1AL9PSbLhU3foAuC6ffPJJFi5cmGRdT66np2lJNgzAampqtjh29erVdV6np9lRNFSvrv9cubX7zJs3L7NmzUricyUANBUhA43u9NNPLx4/+OCDdY5Zu3ZtHnrooSRJly5dMmDAgKYoDTaxfPnyDBo0KK+++mqS5Cc/+UmuuOKKel9fVlZWXFJp5syZmTJlSp3jpkyZUnzC6utf/3rKysq2s3L4P6NHj06hUNji14abQY8bN674+voP9HqZlubMM88sHj/++OObHff444+nUCgkSY455pji63qalmTXXXdN586dkySTJ0/eYtCw4R9T99577+KxnmZH0VC9WlVVVZzd8Jvf/CbLly+v8z6jR48uHg8ePHh7ywcA6kHIQKM7/PDDix/yR40alcmTJ28y5vbbb8+MGTOSJMOHD0+bNm2atEZIkurq6gwePDgTJ05Msq4Xf/azn23zfS6++OK0bt06SXLRRRdlxYoVtc6vWLEiF110UZJ1TyRefPHF21c4NBK9TEtyyCGH5Ctf+UqS5OGHH85zzz23yZh58+bl6quvTpK0bds2Q4cOrXVeT9NStGrVKoMGDUqybg+om266qc5xixcvrvWww6mnnlrrvJ5mR9FQvfqP//iPSZJFixbl8ssv3+T8m2++mZtvvjlJ0rt3byEDADSRssL6R72gEU2fPj1HHXVUVqxYkY4dO+aqq67KgAEDsmLFijzyyCO57777kqx7OmXatGnp1KlTM1fMZ9GZZ56Z3//+90mSE044IXfeeecWn/Zr27Ztqqqq6jx35ZVX5pZbbkmybq3lK664Ivvuu2/efPPNjBgxItOnTy+O+/nPf97Avwls3XXXXZfrr78+ybqZDMcff3yd4/QyLcmsWbPyN3/zN1myZEkqKipy8cUX56tf/Wrat2+fqVOn5uabby5uKjpixIg6/wClp2kpZs6cmX79+hWfxj7ttNMyZMiQ7LPPPlm5cmWmTJmSO++8M++++26S5MQTT8zYsWM3uY+eprG9+OKLeeONN4rfL1y4MJdddlmSdcsRnXfeebXGn3vuuXXepyF6dc2aNTnuuOOKDwWdeeaZOf/887PLLrtk6tSpufHGGzN//vy0atUqTz31VDGcBgAaWQGayB/+8IdC586dC0nq/KqqqirMnj27ucvkM2xzvbm5rz333HOz91qzZk3h+9///havHzZsWGHNmjVN9wvCBq699tpiL44bN26z4/QyLc2ECRMKn/vc5zbbj2VlZYWrr756s9fraVqSZ599ttCtW7etvuc44YQTCosWLarzHnqaxjZkyJBteo+8OQ3VqwsWLCj0799/s/do165d4f7772/o/wwAwBaYyUCTeuedd3LXXXfl6aefzty5c9O2bdv07t073/zmN/PjH/84HTp0aO4S+Qzb1jWK99xzz8yZM2eLY/7zP/8z9913X15++eUsXLgw3bp1S//+/XPBBRd4sopmVd+ZDOvpZVqSjz76KPfcc0+eeOKJvP3226murk6PHj1y/PHH56KLLkrfvn23eg89TUvx0UcfZdSoURkzZkxef/31LFmyJOXl5fn85z+f/v375zvf+U6+9rWvbfV9ip6msZx77rn55S9/We/xW/sTQ0P0ak1NTe6///78+te/zowZM7Js2bLsvvvuOfHEEzN8+PAcdNBB9a4XANh+QgYAAAAAAKAkNn4GAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAACjR6NGjU1ZWlrKyssyZM6e5ywEAAIAmJ2QAAD5z5syZUwwHtucLAAAAPuuEDAAAAAAAQEnKCoVCobmLAABoSqtXr85f//rXzZ4/+OCDkySHHXZYHnzwwc2O++IXv9jgtQEAAMCOpLy5CwAAaGpt2rSpV0BQWVkpSAAAAIAtsFwSAAAAAABQEiEDAECJRo8eXdwEes6cOZucP/7441NWVpbjjz8+SfLGG2/k7/7u77LPPvukffv22WuvvTJs2LC88847ta577bXXMnTo0Oyzzz6pqKhIr169cuGFF2b+/Pn1quuJJ57IN7/5zeyxxx6pqKhIly5dcthhh+X666/P4sWLt/fXBgAAgCLLJQEANIGxY8fmjDPOyNKlS4uvvfPOO3nggQfy1FNPZfz48enTp08efvjhnHvuuamuri6Omzt3bu69996MGTMmkyZNyu67717nz1i8eHG+8Y1v5Pnnn6/1+qpVq/LKK6/klVdeyb/+67/mySefzBFHHNE4vygAAACfKWYyAAA0svfffz9nnXVWunTpknvuuScvvfRSJkyYkIsvvjhlZWWZP39+zjvvvLz88ss555xzsu+++2bkyJGZOnVqxo0bl+9973tJ1oUS//AP/1Dnz1i1alVOOumkPP/882ndunW+973v5eGHH86UKVMyYcKE3HTTTenatWvmz5+fr371q5vMngAAAIBSmMkAANDIZs+enf322y8TJ05M9+7di68fffTRKS8vz2233ZaJEydm0KBBOfzww/Pss8+mQ4cOxXHHH398Vq5cmcceeyy/+93vsmDBglr3SZIbbrghr776arp06ZKxY8emX79+tc4fffTROfvss3PkkUfmgw8+yFVXXZX/+I//aNxfHAAAgJ2emQwAAE3g7rvv3iQYSJIf/vCHxeOFCxdm5MiRtQKG9S688MIkSU1NTSZPnlzr3Keffpp/+Zd/SZLceOONmwQM6+2555756U9/miR57LHHsmzZstJ+GQAAAPj/CRkAABpZly5dcsopp9R5bu+9906nTp2SJIccckgOOOCAOscdeuihxeO33nqr1rnx48fn448/TpJ84xvf2GItxx57bJJk9erVeeWVV+r3CwAAAMBmWC4JAKCR7bfffikrK9vs+S5dumTp0qWpqqra4pj1Ntw8OkmmTZtWPO7Ro0e965o3b169xwIAAEBdzGQAAGhkdS1/tKFWrVptddz6MUmyZs2aWufmz59fUl3Lly8v6ToAAABYz0wGAIAd3Iahw6uvvpo2bdrU67qePXs2VkkAAAB8RggZAAB2cF27di0ed+/eXXgAAABAk7FcEgDADq5v377F44kTJzZjJQAAAHzWCBkAAHZwJ510UnE/h7vvvjuFQqGZKwIAAOCzQsgAALCD69KlS3784x8nSSZNmpRLLrkka9eu3ez4Dz/8MCNHjmyq8gAAANiJ2ZMBAGAncMMNN2T8+PF56aWXctddd+WFF17I+eefny996UuprKzM4sWL8/rrr2fs2LEZM2ZMDj744Jx33nnNXTYAAAA7OCEDAMBOoF27dnn22Wdz7rnn5ve//33+9Kc/FWc31KVz585NWB0AAAA7KyEDAMBOolOnTvnd736XF198Mb/85S8zYcKEvP/++1mxYkU6d+6cfffdN4cffngGDRqUgQMHNne5AAAA7ATKCnYGBAAAAAAASmDjZwAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCT/H28R1YIirC5pAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Plot infected hosts per population over time.\n", + " 'metapopulations_population_contact_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8, \n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot th isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/model_documentation.md b/docs/model_documentation.md new file mode 100644 index 0000000..f0c8dfa --- /dev/null +++ b/docs/model_documentation.md @@ -0,0 +1,173 @@ +# `Model` Documentation + +All usage is handled through the Opqua `Model` class. +The `Model` class contains populations, setups, and interventions to be used +in simulation. It also contains groups of hosts/vectors for manipulations and +stores model history as snapshots for specific time points. + +To use it, import the class as + +```python +from opqua.model import Model +``` + +You can find a detailed account of everything `Model` does in the +[Model attributes](#model-class-attributes) and +[Model class methods list](#model-class-methods-list) sections. + +## `Model` class attributes + +- `populations` -- dictionary with keys=population IDs, values=Population + objects +- `setups` -- dictionary with keys=setup IDs, values=Setup objects +- `interventions` -- contains model interventions in the order they will occur +- `groups` -- dictionary with keys=group IDs, values=lists of hosts/vectors +- `history` -- dictionary with keys=time values, values=Model objects that + are snapshots of Model at that timepoint +- `global_trackers` -- dictionary keeping track of some global indicators over all + the course of the simulation +- `custom_condition_trackers` -- dictionary with keys=ID of custom condition, + values=functions that take a Model object as argument and return True or + False; every time True is returned by a function in + custom_condition_trackers, the simulation time will be stored under the + corresponding ID inside global_trackers['custom_condition'] +- `t_var` -- variable that tracks time in simulations + +The dictionary global_trackers contains the following keys: +- `num_events`: dictionary with the number of each kind of event in the simulation +- `last_event_time`: time point at which the last event in the simulation happened +- `genomes_seen**: list of all unique genomes that have appeared in the + simulation +- `custom_conditions`: dictionary with keys=ID of custom condition, values=lists + of times; every time True is returned by a function in + custom_condition_trackers, the simulation time will be stored under the + corresponding ID inside global_trackers['custom_condition'] + +The dictionary `num_events` inside of global_trackers contains the following keys: +- `MIGRATE_HOST` +- `MIGRATE_VECTOR` +- `POPULATION_CONTACT_HOST_HOST` +- `POPULATION_CONTACT_HOST_VECTOR` +- `POPULATION_CONTACT_VECTOR_HOST` +- `CONTACT_HOST_HOST` +- `CONTACT_HOST_VECTOR` +- `CONTACT_VECTOR_HOST` +- `RECOVER_HOST` +- `RECOVER_VECTOR` +- `MUTATE_HOST` +- `MUTATE_VECTOR` +- `RECOMBINE_HOST` +- `RECOMBINE_VECTOR` +- `KILL_HOST` +- `KILL_VECTOR` +- `DIE_HOST` +- `DIE_VECTOR` +- `BIRTH_HOST` +- `BIRTH_VECTOR` + +KILL_HOST and KILL_VECTOR denote death due to infection, whereas DIE_HOST and +DIE_VECTOR denote death by natural means. + +## `Model` class methods list + +### Model initialization and simulation + +- `setRandomSeed()` -- set random seed for numpy random number +generator +- `newSetup()` -- creates a new Setup, save it in setups dict under +given name +- `newIntervention()` -- creates a new intervention executed +during simulation +- `run()` -- simulates model for a specified length of time +- `runReplicates]()` -- simulate replicates of a model, save only +end results +- `runParamSweep()` -- simulate parameter sweep with a model, save +only end results +- `copyState()` -- copies a slimmed-down representation of model state +- `deepCopy()` -- copies current model with inner references + +### Data Output and Plotting + +- `saveToDataFrame()` -- saves status of model to data frame, +writes to file +- `getPathogens()` -- creates data frame with counts for all +pathogen genomes +- `getProtections()` -- creates data frame with counts for all +protection sequences +- `populationsPlot()` -- plots aggregated totals per +population across time +- `compartmentPlot()` -- plots number of naive, infected, +recovered, dead hosts/vectors vs time +- `compositionPlot()` -- plots counts for pathogen genomes or +resistance vs. time +- `clustermap()` -- plots heatmap and dendrogram of all pathogens in +given data +- `pathogenDistanceHistory()` -- calculates pairwise +distances for pathogen genomes at different times +- `getGenomeTimes()` -- create DataFrame with times genomes first +appeared during simulation +- `getCompositionData()` -- create dataframe with counts for + pathogen genomes or resistance + +### Model interventions + +#### Make and connect populations: +- `newPopulation()` -- create a new Population object with +setup parameters +- `linkPopulationsHostMigration()` -- set host +migration rate from one population towards another +- `linkPopulationsVectorMigration()` -- set +vector migration rate from one population towards another +- `linkPopulationsHostHostContact()` -- set +host-host inter-population contact rate from one population towards another +- `linkPopulationsHostVectorContact()` -- set +host-vector inter-population contact rate from one population towards another +- `linkPopulationsVectorHostContact()` -- set +vector-host inter-population contact rate from one population towards another +- `createInterconnectedPopulations()` -- create new populations, link all of them to +each other by migration and/or inter-population contact + +#### Manipulate hosts and vectors in population: +- `newHostGroup()` -- returns a list of random (healthy or any) +hosts +- `newVectorGroup()` -- returns a list of random (healthy or + any) vectors +- `addHosts()` -- adds hosts to the population +- `addVectors()` -- adds vectors to the population +- `removeHosts](#removehosts)` -- removes hosts from the population +- `removeVectors()` -- removes vectors from the population +- `addPathogensToHosts()` -- adds pathogens with +specified genomes to hosts +- `addPathogensToVectors()` -- adds pathogens with +specified genomes to vectors +- `treatHosts()` -- removes infections susceptible to given +treatment from hosts +- `treatVectors()` -- removes infections susceptible to +treatment from vectors +- `protectHosts()` -- adds protection sequence to hosts +- `protectVectors()` -- adds protection sequence to vectors +- `wipeProtectionHosts()` -- removes all protection +sequences from hosts +- `wipeProtectionVectors()` -- removes all protection +sequences from vectors + +#### Modify population parameters: +- `setSetup()` -- assigns a given set of parameters to this population + +#### Utility: +- `customModelFunction()` -- returns output of given function run on model + +### Preset fitness functions + +- `peakLandscape()` -- evaluates genome numeric phenotype by +decreasing with distance from optimal sequence +- `valleyLandscape()` -- evaluates genome numeric phenotype by +increasing with distance from worst sequence + + +## Detailed `Model` documentation + +```{eval-rst} +.. autoclass:: opqua.model.Model + :members: +``` \ No newline at end of file diff --git a/docs/opqua.internal.rst b/docs/opqua.internal.rst new file mode 100644 index 0000000..f772a8a --- /dev/null +++ b/docs/opqua.internal.rst @@ -0,0 +1,77 @@ +opqua.internal package +====================== + +Submodules +---------- + +opqua.internal.data module +-------------------------- + +.. automodule:: opqua.internal.data + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.gillespie module +------------------------------- + +.. automodule:: opqua.internal.gillespie + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.host module +-------------------------- + +.. automodule:: opqua.internal.host + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.intervention module +---------------------------------- + +.. automodule:: opqua.internal.intervention + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.plot module +-------------------------- + +.. automodule:: opqua.internal.plot + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.population module +-------------------------------- + +.. automodule:: opqua.internal.population + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.setup module +--------------------------- + +.. automodule:: opqua.internal.setup + :members: + :undoc-members: + :show-inheritance: + +opqua.internal.vector module +---------------------------- + +.. automodule:: opqua.internal.vector + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: opqua.internal + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/opqua.rst b/docs/opqua.rst new file mode 100644 index 0000000..d17549e --- /dev/null +++ b/docs/opqua.rst @@ -0,0 +1,29 @@ +opqua package +============= + +Subpackages +----------- + +.. toctree:: + :maxdepth: 4 + + opqua.internal + +Submodules +---------- + +opqua.model module +------------------ + +.. automodule:: opqua.model + :members: + :undoc-members: + :show-inheritance: + +Module contents +--------------- + +.. automodule:: opqua + :members: + :undoc-members: + :show-inheritance: diff --git a/docs/requirements.txt b/docs/requirements.txt new file mode 100644 index 0000000..f1cddc1 --- /dev/null +++ b/docs/requirements.txt @@ -0,0 +1,21 @@ +cycler==0.10.0 +joblib==1.2.0 +kiwisolver==1.3.2 +matplotlib==3.4.3 +numpy==1.22.0 +pandas==1.3.3 +Pillow==9.0.1 +pyparsing==2.4.7 +python-dateutil==2.8.2 +pytz==2021.3 +scipy==1.7.1 +seaborn==0.11.2 +six==1.16.0 +textdistance==4.2.1 +# Sphinx requirements +sphinx_rtd_theme +myst_parser +nbsphinx +sphinx==7.2.4 +sphinx-autoapi +pypandoc \ No newline at end of file diff --git a/docs/requirements_and_installation.md b/docs/requirements_and_installation.md new file mode 100644 index 0000000..a9d2007 --- /dev/null +++ b/docs/requirements_and_installation.md @@ -0,0 +1,25 @@ +# Requirements and Installation + +Opqua runs on Python. A good place to get the latest version it if you don't +have it is [Anaconda](https://www.anaconda.com/distribution/). + +Opqua is [available on PyPI](https://pypi.org/project/opqua/) to install +through `pip`, as explained below. + +If you haven't yet, [install pip](https://pip.pypa.io/en/stable/installing/): +```bash +curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py +python get-pip.py +``` + +Install Opqua by running + +```bash +pip install opqua +``` + +The pip installer should take care of installing the necessary packages. +However, for reference, the versions of the packages used for opqua's +development are saved in `requirements.txt` + +Check out the `changelog` file for information on recent updates. \ No newline at end of file diff --git a/docs/tutorials.rst b/docs/tutorials.rst new file mode 100644 index 0000000..32ca0d1 --- /dev/null +++ b/docs/tutorials.rst @@ -0,0 +1,11 @@ +Tutorials +============= + +.. toctree:: + :maxdepth: 2 + + basic_usage + evolution + intervention + metapopulation + vital_dynamics \ No newline at end of file diff --git a/docs/usage.md b/docs/usage.md new file mode 100644 index 0000000..a89d28e --- /dev/null +++ b/docs/usage.md @@ -0,0 +1,83 @@ +# Usage + +To run any Opqua model (including the tutorials in the `examples/tutorials` +folder), save the model as a `.py` file and execute from the console using +`python my_model.py`. + +You may also run the models from a notebook environment +such as [Jupyter](https://jupyter.org/) or an integrated development environment +(IDE) such as [Spyder](https://www.spyder-ide.org/), both available through +[Anaconda](https://www.anaconda.com/distribution/). + +## Minimal example + +The simplest model you can make using Opqua looks like this: + +```python +# This simulates a pathogen with genome "AAAAAAAAAA" spreading in a single +# population of 100 hosts, 20 of which are initially infected, under example +# preset conditions for host-host transmission. + +from opqua.model import Model + +my_model = Model() +my_model.newSetup('my_setup', preset='host-host') +my_model.newPopulation('my_population', 'my_setup', num_hosts=100) +my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} ) +my_model.run(0,100) +data = my_model.saveToDataFrame('my_model.csv') +graph = my_model.compartmentPlot('my_model.png', data) +``` + +For more example usage, have a look at the `examples` folder. For an overview +of how Opqua models work, check out the Materials and Methods section on the +manuscript +[here](https://www.science.org/doi/10.1126/sciadv.abo0173). A +summarized description is shown below in the +**How Does Opqua Work?** section. +For more information on the details of each function, head over to the +**Documentation** section. + +## Example Plots + +These are some of the plots Opqua is able to produce, but you can output the +raw simulation data yourself to make your own analyses and plots. These are all +taken from the examples in the `examples/tutorials` folder—try them out +yourself! See the + +### Population genetic composition plots for pathogens +An optimal pathogen genome arises and outcompetes all others through intra-host +competition. See `fitness_function_mutation_example.py` in the +`examples/tutorials/evolution` folder. +![Compartments](../img/fitness_function_mutation_example_composition.png "fitness_function_mutation_example composition") + +### Host/vector compartment plots +A population with natural birth and death dynamics shows the effects of a +pathogen. "Dead" denotes deaths caused by pathogen infection. See +`vector-borne_birth-death_example.py` in the `examples/tutorials/vital_dynamics` +folder. +![Compartments](../img/vector-borne_birth-death_example.png "vector-borne_birth-death_example compartments") + +### Plots of a host/vector compartment across different populations in a metapopulation +Pathogens spread through a network of interconnected populations of hosts. Lines +denote infected pathogens. See +`metapopulations_migration_example.py` in the +`examples/tutorials/metapopulations` folder. +![Compartments](../img/metapopulations_migration_example.png "metapopulations_migration_example populations") + +### Host/vector compartment plots +A population undergoes different interventions, including changes in +epidemiological parameters and vaccination. "Recovered" denotes immunized, +uninfected hosts. +See `intervention_examples.py` in the `examples/tutorials/interventions` folder. +![Compartments](../img/intervention_examples_compartments.png "intervention_examples compartments") + +### Pathogen phylogenies +Phylogenies can be computed for pathogen genomes that emerge throughout the +simulation. See `fitness_function_mutation_example.py` in the +`examples/tutorials/evolution` folder. +![Compartments](../img/fitness_function_mutation_example_clustermap.png "fitness_function_mutation_example clustermap") + +For advanced examples (including multiple parameter sweeps), check out +[this separate repository](https://github.com/pablocarderam/fitness-valleys-opqua) +(preprint forthcoming). \ No newline at end of file diff --git a/docs/vital_dynamics.ipynb b/docs/vital_dynamics.ipynb new file mode 100644 index 0000000..81a9154 --- /dev/null +++ b/docs/vital_dynamics.ipynb @@ -0,0 +1,511 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Vital dynamics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A. Vector-borne disease with natality spreading" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simple model of a vector-borne disease with 10% host mortality spreading among hosts and vectors that have natural birth and death rates in a single population. There is no evolution and pathogen genomes don't affect spread." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " mortality_rate_host=1e-2,\n", + " # change the default host mortality rate to 10% of recovery rate\n", + " protection_upon_recovery_host=[0,10],\n", + " # make hosts immune to the genome that infected them if they recover\n", + " # [0,10] means that pathogen genome positions 0 through 9 will be saved\n", + " # as immune memory\n", + " birth_rate_host=1.5e-2,\n", + " # change the default host birth rate to 0.015 births/time unit\n", + " death_rate_host=1e-2,\n", + " # change the default natural host death rate to 0.01 births/time unit\n", + " birth_rate_vector=1e-2,\n", + " # change the default vector birth rate to 0.01 births/time unit\n", + " death_rate_vector=1e-2\n", + " # change the default natural vector death rate to 0.01 deaths/time unit\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation( # Create a new Population.\n", + " 'my_population', \n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100, \n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 66.7483164411631, event: BIRTH_HOST\n", + "Simulating time: 175.53517979111868, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 200.00318125185066 END\n" + ] + } + ], + "source": [ + "my_model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.1995853034973145s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019458293914794922s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020659446716308594s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0252227783203125s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04323148727416992s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08730292320251465s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18108701705932617s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1233 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1613 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1888 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1977 out of 1977 | elapsed: 1.1s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
443810200.0my_populationHostmy_population_120AAAAAAAAAANaNFalse
443811200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443812200.0my_populationHostmy_population_117AAAAAAAAAANaNFalse
443813200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443814200.0my_populationHostmy_population_112AAAAAAAAAANaNFalse
\n", + "

443815 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "443810 200.0 my_population Host my_population_120 AAAAAAAAAA \n", + "443811 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443812 200.0 my_population Host my_population_117 AAAAAAAAAA \n", + "443813 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443814 200.0 my_population Host my_population_112 AAAAAAAAAA \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "443810 NaN False \n", + "443811 NaN False \n", + "443812 NaN False \n", + "443813 NaN False \n", + "443814 NaN False \n", + "\n", + "[443815 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'vector-borne_birth-death_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hb5fk+8PtoD+8ZO3FiZzjOJpOEBBI2CYFAoexZRr+0DaO/QqFQSgstUEqhDVBKCbtAy0wh7BGyyHbI3tOO4z1lbZ3fH45lnaFly5Zt3Z/r4sI6S68dWzq6z3OeVxBFUQQRERERERERERERxYUm3gMgIiIiIiIiIiIiSmQMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKI4a0RERERERERERERHHEkJaIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojjSxXsA1DUOhwNbt24FAGRnZ0On4z8pERERERERUax5PB5UV1cDAMaNGweTyRTnERFRf8JEr4/bunUrpk2bFu9hEBERERERESWMdevWYerUqfEeBhH1I2x3QERERERERERERBRHrKTt47Kzs/1fr1u3Dnl5eXEcDREREREREVH/VFFR4b+TNfCzOBFRLDCk7eMCe9Dm5eVh0KBBcRwNERERERERUf/H+WCIKNbY7oCIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojhiSEtEREREREREREQURwxpiYiIiIiIiIiIiOKIIS0RERERERERERFRHDGkJSIiIiIiIiIiIoojhrREREREREREREREccSQloiIiIiIiIiIiCiOGNISERERERERERERxRFDWiIiIiIiIiIiIqI4YkhLREREREREREREFEcMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKo4QPaV0uF1588UWce+65yMvLg9FoRFJSEkaOHIkbb7wRq1evjug4n376KS6++GIMGjQIRqMRgwYNwsUXX4xPP/20m7+DxCGKIr45YscbO1twtNkT7+EQERERERERERHFhCCKohjvQcTL4cOHcf7552P79u0ht1u4cCH+9re/QRAExTqfz4dbb70VixcvDrr/zTffjH/+85/QaGKfiZeVlaGgoAAAcPToUQwaNCjmz9FbLNlvw5u7bAAAvQZ49owspBoT/joDERERERER9YBE+vxNRD0vYRMut9stCWjHjx+PV155Bd9//z2++OILPPjgg7BarQCARYsW4fHHH1c9zv333+8PaCdOnIi33noL69atw1tvvYWJEycCAF588UU88MADPfBd9W/tAS0AuH3ARwda4zgaIiIiIiIiIiKi2EjYStp3330XP/7xjwEAM2bMwIoVK6DVaiXbbNy4ETNmzIDb7UZaWhqqq6uh0+n86/fs2YMxY8bA4/FgypQpWL58Ocxms399a2srZs+ejQ0bNkCn02Hnzp0YPnx4TL+PRLqSd/nSKsnjsZl6/HZ6epxGQ0RERERERIkkkT5/E1HPS9hK2sBes/fdd58ioAWAyZMnY/78+QCAhoYG7Ny5U7L+6aefhsfT1ht10aJFkoAWACwWCxYtWgQA8Hg8eOqpp2L6PSQ6rUbZfoKIiIiIiIiIiKivSdiQ1uVy+b8eOnRo0O2GDRumuo8oiliyZAkAoKSkBNOnT1fdf/r06Rg5ciQAYMmSJUjQwuVuoWVGS0RERERERERE/UDChrTtwSkAHDhwIOh2+/fvBwAIgoARI0b4lx88eBDHjh0DAMyePTvkc7WvLy8vx6FDhzo7ZJJhIS0REREREREREfUHuvCb9E9XXnklHnjgATQ1NeHxxx/HvHnzFC0PSktLsXTpUgDAVVddhZSUFP+6HTt2+L8uKSkJ+VyB63fu3ImioqKIx1lWVhZyfUVFRcTH6i2e3NiIdced/sePnJKOEel6yTYtbh/e32uD3SNiwTALBliVv6qVrV4890MTvD4RWo0Aj0/EnAIzxmcZuv17ICIiIiIiIiIiipWEDWmzsrLw+uuv48orr8SqVaswdepU3HnnnSguLkZLSwtWrVqFJ598Ei6XC5MmTcKTTz4p2T8wPA3XLLy9sTjQ1lw8GoH79heBAS0A/GVjI/55VpZk2TOlTSitbmsvsaXGhUWnZyqOc7TZi6PNXsmyNRVOPDk7A3kqoS4REREREREREVFvlNBJ1oUXXoiNGzfiySefxOLFi3H99ddL1ufm5uLhhx/GLbfcAovFIlnX3Nzs/zopKSnk81itVv/XLS0tMRh5/9Lg9CmWtQe0AFBj96G0yqXYRo1XBP6904ZfTUmN2fiIiIiIiIiIiIi6U0KHtC6XC6+99lrQCb0qKyvxxhtvoKioCBdeeKFkncPh8H9tMIS+vd5oNPq/ttvtUY0xXOVtRUUFpk2bFtUxezu1f4vjrV6VLdWtr3SG34iIiIiIiIiIiKiXSNiQ1mazYe7cuVixYgW0Wi3uuece3HjjjRg6dCgcDgfWrl2LP/zhD1i5ciUuuugi/OUvf8Evf/lL//4mk8n/tcsVusrT6ewIDc1mc1TjDNdKoT9SRrSAzaWstiUiIiIiIiIiIuoPNPEeQLw89NBDWLFiBQBg8eLFePzxx1FSUgKDwYCUlBScffbZ+Pbbb3H66adDFEXcfffd+OGHH/z7Jycn+78O18LAZrP5vw7XGoEAn0pK2+xWi26Da1RpoUBERERERERERNQbJWRIK4oiXnrpJQBAcXGxohdtO51Oh4cffhgA4PP58Morr/jXBVa4Bk4ipiawZUF/nAgsFnwBLQ5Uuh1EHboeaHR3dUhEREREREREREQ9IiFD2srKStTV1QEAJk6cGHLbyZMn+7/etWuX/+vRo0erLlcTuH7UqFFRjTVR/GZlPT7YZ4MoiqrtDtYej67P7GPrG7G2whF+QyIiIiIiIiIiojhLyJBWp+toxevxeEJu63Z3VGQG7ldUVIT8/HwAwHfffRfyGMuXLwcADBw4EIWFhdEONyEcbPLg7d02LC93qLY76IynNjXhuC30vy8REREREREREVG8JWRIm5GRgZSUFADA999/HzKoDQxgi4qK/F8LgoAFCxYAaKuUXbNmjer+a9as8VfSLliwAIIgdHn8fZ1RG3zd3noP1GtpoycC2FXHtgdERERERERERNS7JWRIq9FocP755wMAjh07hj/+8Y+q29XX1+PXv/61//H8+fMl6++8805otW2J48KFC2G32yXr7XY7Fi5cCKCtCvfOO++M1bfQp905MTXoOh/EmFXSAkCzK4YHIyIiIiIiIiIi6ga68Jv0Tw8++CCWLFmC1tZWPPTQQ9i4cSOuv/56DB06FA6HA2vWrMHTTz+NI0eOAADOPPNMnHPOOZJjFBcX4+6778Zjjz2GDRs2YObMmfj1r3+NYcOGYf/+/Xj88cdRWloKALj77rsxYsSIHv8+e6NJuUY8PScDq485sWS/DU5vwEpRfeKwa0qSkGbSoMXlQ53Dh4JkLQRBgFknwKAR0OjyIdWowZMbGuHwdhyg2R3dhGNEREREREREREQ9LWFD2pKSEixZsgRXXnklampq8NFHH+Gjjz5S3faMM87AO++8o7ruj3/8I6qqqvDSSy+htLQUV1xxhWKbm266CY888khMx9/X5Vl1uGSEDs0uHz49JK1AVotVTx1kQpoxfOH3nAITPgs4XpOLIS0REREREREREfVuCdnuoN1ZZ52FXbt24fHHH8ecOXOQnZ0NvV4Ps9mMoqIiXHbZZfjwww/x1VdfIT09XfUYGo0GixcvxtKlS7FgwQLk5+fDYDAgPz8fCxYswCeffIIXX3wRGk1C/6ijolZJq4mwlW+KQfpzbmZIS0REREREREREvVzCVtK2y8zMxD333IN77rmnS8eZN28e5s2bF6NRJa4V5Q5sqHQqlkcacScbpGluE3vSEhERERER9Si3z4tfrvsfPj66A4VJGXhm+sUYkz4g3sMiIurVWN5JvYrLBzSqBKtChJW0yaykJSIiIiIiiqt/7voez+xchUMt9Vh2fD+uXv5mvIdERNTrMaSluEqNoM+sUSvAqI0spbXqpcdr5cRhREREREREPeqTsl2Sxz/UHYPH5w2yNRERAQxpKc5OHWhCljn0r+GCYRboImxKKyukBQtpiYiIiIiIepbd61Ysc3o9cRgJEVHfkfA9aSm+ssxaPDU7Ewca3XCpXFgdYNUix6KN+HgGWcWt28eetERERERERD3JoFF+hnN4PbDqjXEYDRFR38CQluLOoBVQkmGIzbFkFbceH+ATRWgibWpLREREREREXWLUKqMGBytpiYhCYrsD6lf0Kr1r2ZaWiIiIiIio55hUQ1plCwQiIurASlrqV/Qqlx1u+qIaSXoNLh5uwbmFlp4fFBERERERUQL4+OgO3Ll2CfY31yrWDX/vMRg0Wtw6cjr+e/AHVDlaAABaoe1DXMPVDyOJ7RCIKIGxkpb6FXlPWqCtkrbe6cNL21tQ5+CMokRERERERLHm8Xlx7fK3VAPadi6fF8/sXOUPaAHAK/rgFXn7IxERQ1rqV+Q9aeWONLMPEhERERERUawda21Cg8se72EQEfVZDGmpX9GF+Y12sZCWiIiIiIgo5pycGIyIqEsY0lK/ohGEkEGt0yv23GCIiIiIiIgShNOnDGk/PfvmiPc3a/WxHA4RUZ/DkJb6nVAtDxjSEhERERERxZ7LK71t0aDR4pScwoj2PTl7MLQaxhNElNj4Kkj9jl5l8rB2DGmJiIiIiIhiT15Ja9TqYNFFVh1rYRUtERFDWup/DCF+q10MaYmIiIiIiGJKFEX8v3UfSZYZNFroNNqI9jdHGOYSEfVnDGmp39GHanfgYUhLREREREQUS7saq/B99WHJMqNWF/H+Fp0h1kMiIupzGNJSvzPAGvxqLTNaIiIiIiKi2NrXVKNYNjw5CwBgiiCsbd+WiCiRMaSlfufykVZkm/mrTURERERE1BN8orIa5s9TzwcAfHXuT0PuOyVrEO4YPatbxkVE1JdEfv8BUR9RmKLHotMz0eQS8czmJmypccV7SERERERERP2WPKIdlpyJk7OHAABm5hZBvPEvsLmdaHY7AbS1QnB6PTBodcgwWnp4tEREvRNDWuqXBEFAqlFAmpEVtURERERERN1JXkmrEZTzhFj1Rlj1xp4aEhFRn8MEixKKy8umtERERERE1Dd5fT40uuzw+LzxHoqEiPAhLRERhcaQlhLK54ftWH3MEe9hEBERERERRaXO2YrZnz6HtH//FtM++juOtTbGe0gAAFEUcf2KtyXLBDCkJSKKFkNaSjhv7mqJ9xCIiIiIiIii8sb+jVhVdQgAUFpXjhd2r4nvgE744tge2DzSeUAY0RIRRY8hLfVr+UlaxbJquy8OIyEiIiIiIuq8O9YukTz+/eYv4zQSqS/L9yiWlaTmxGEkRER9G0Na6tfOKzQjz6oMauWN7YmIiIiIiCh6q09U9wZ6Yur8nh8IEVEfx5CW+jWzToN7pqQqlvuY0RIREREREXWJw+PGxtoyybLPz7kFw1Ky4jQiIqK+iyEt9XtajbIjEkNaIiIiIiKirtlUWw6Xz+t/LEDAydmD4zgiIqK+iyEt9Xtqv+RetjsgIiIiIqI+zhMQkMbDvw9skjwemz4AqQZznEZDRNS3MaSlfk+lkJaVtERERERE1OdNXPIU6pytcXnuX637CM/tWi1ZdkrOkLiMhYioP2BIS/2eViWk9TKkJSIiIiKiPiJYxey2huN499CWHh4NUOdsxVM7liuWn5JT2ONjISLqLxjSUr+nEdiTloiIiIiI+i6bxxV0XXlrYw+OpM1RWwN8shZyFp0eZ+cX9/hYiIj6C4a01O9pVH7L5ScUREREREREvZXb5wu6zuFx9+BI2jS67Iplr596FfIsKT0+FiKi/oIhLfV7ar/krKQlIiIiIqK+wh1igjCH19ODI2nT4HJIHhcmpeNHheN6fBxERP0JQ1rq97QqM4exJy0REREREfUVnlCVtHEJaaWVtGkGc4+PgYiov9HFewBE3U29kpYpLRERERH1Tm6viN31bjS7fTBoBIzJ1MOkY31NImn1uLCy8iAaT1SsVjlagm5b6WiO6Jj1zlasqT6M0Wm5qHW0Yn9zLTyiDy1uJ9IMZlh1BszKLYIIESsrD6L1RBuFYcmZGJ2Wi1VVh1DnbAUALD9+QHLsVIOpM98mEREFYEhL/Z5W5Xy2utWHPGvPj4WIiIiIKBSPT8Tv19Rjb0NHdaRFJ+DPp2Yg26KN48iop7S4nZj+8d+xvaEyou2XHNmOMlsDBlnTgm5zoLkWpyx9BpX20IGuVtBAhBh1UQsraYmIuo6XY6nfUzY7ADZXO3t8HERERERE4eypd0sCWgBo9Yh4b68tTiOinvZp2a6IA9p27xzaEnL9q/s2hA1oAcAr+jp112GqnpW0RERdxZCW+j1BUMa0OpU+tURERERE8dbsUu89urnaBZEtuxLCUVtD1PvUOkKH+It2rOzkaCJzSk5htx6fiCgRsN0BJYSSDD121bn9j308vyUiIiKiXijY9FD1Th/KWrwoSOZHuP5OPilXit6EgZYU/+OS1Bx8cGRbVMd0+bwxGZt8PEatDvMLRuPm4pNjdnwiokTFd3hKCHlWrSSk9bIKgYiIiIh6oxCnqVuqXQxpE0DDicnC2l1WNAH/mvljybIrl72Btw9ujviYYqhfrChdN3wyFk2/OGbHIyKiNmx3QAlBK+tu4A1WokBEREREFEehTlO31Lh6bBwUP/JK2jRD1/u9dqbPbDB55pTwGxERUdR4GZYSglbWl/bzw3ZMzjVAKwgob/Eg3aTFhGwDjPI0l4iIiIj6NVEUsaXGBQECxmXpVeczCKe61YutNS64fSKseg1OyjEgSd/JepgQWdqOWhdcXhEGnrP2S6IoorS2HK/v3yhZnmYwd+p4x1ob8UX5HtQ6bXB4PeF3iFCeJTlmxyIiog4MaSkhqM0T9qd1jZLHozL0+N30tE6dmBMRERFR3/T8lmYsK2u7vfyswSbcMi66KsGyZg8eWF0Pu6cjXc2zavHYrHSYdNEHtaEqaV0+YHe9G+OyDFEfl3q/p3eswC/X/U+xPD2CkPbVfRvwyOS5/seHmusw9aO/ocYZekKxzmAlLRFR92C7A0oI3gju7tlZ50aFLXYN9YmIiIiod2ty+fwBLQB8dcSBVnd0fbFWlDskAS0AVNi82FbrDrJHaJ4wM9zuqe/ccal38/p8+MPmL1XXqVXSamSFJWWt0gKUD45s65aAFgDyLAxpiYi6A0NaSgimCG8Ja/VwQjEiIiKiRFFjV16gb3JFF9JWtqpf5G90dm4ShPKW0EUD8kCY+odtDccVvWgBQCdocGruUMVyeY/ZLKNV8rjK3tLlMd1aPB3DkjMly/LMKRiTltvlYxMRkRLbHVBCmJxrwP8OtIbdLob99ImIiIiol1O7jB/t6WB9kDDWEcmtXCqONofuHepgSNsvraw8qFh28eCx+NmoU1CQlKZY95vxZ+Ltg5v9j2ucNji9Hhi1bR/x7d7QFdezBwzFYGs6Ug0mPLNzlWL9RYPH4qmTL0S5rRF/+OFLHLU1YKAlFfeNPwM6jTa6b46IiCLCkJYSgnziMCIiIiKiWKh3qFe+djZMlYe06UaNJAh2hWmHQH3TqqpDksfXDZuMV0+7Muj2BdY0xbJjrY0oOlH52upxqe53yZBxePeM6yXLBlpScd/GTyTL/jHjR7DoDBiRmo3XT7sqgu+AiIi6iu0OKCFoI/xN5ykvERERUWKLJgMVRRF1jiCVtJ0IaVvdPtTKjjc8Td/l41LvJ6+knZlbFHL7VIMJFp30d6PM1tGXttWjXkmbYjAplrl8yurtZL0x5PMTEVHsJWQl7Zw5c/Ddd99Ftc+3336LOXPmqK779NNP8cILL2D9+vWorq5GdnY2pk6diltvvRVz585V3Yd6libCQtrPDrUi25yEdBNv4SHqrURRxIdHtuGHumOKCyupehMuKRyHIUkZcRkbERH1LfJAFAA+OdiKVKMGKQYNStL12F3vhsfX0b6gJEOPOocPFTYPPD4g2Dxj35U7YNELGJtpwIh0veo2Hp+INRVOHLO1hWStbuk7m1YAilJ1WF/p9C870uzBf/d09BsVACQbNNAIwOBkHUoyDNH8CKgXONJSj6O2BsmyWbmFIfcRBAEDLanY21TjX7Zo50qsqT6MFL0J/z6wSXW/FL1KSOtVVoNbdPw9IiLqaQkZ0kZLo9FgxIgRiuU+nw+33norFi9eLFleXl6O8vJyfPjhh7j55pvxz3/+ExoNi5bjKdJ2B6uOObG73o0nT8uESccWCUS90YOln+ORH74Kuv73m7/Ezh/djXxLag+OioiI+hqb24cnNjQqln91xBGT4zc6fXh7tw0CbPjNtDSMz1aGXi9ua8a3R4M/X55VC6teek5aYfPivb3qcy0IAO6alIKT85RBHPVe8lYH6QYzSlJzwu43SBbSvnNoC945tCXkPmoVsk6VSlqB7eKIiHpcQoa0L7/8Mmw2W8htduzYgcsvvxwAcOaZZ2LgwIGKbe6//35/QDtx4kTcc889GDZsGPbv348///nPKC0txYsvvojs7Gz86U9/iv03QhEzaCM/yaix+7Cr3oWTsnmLD1Fv9OaB0pDrm9wOPLdzNR6ZzDsZiIgouJ11oSdWihURwJdH7IqQVhRFrCoPHQgPTNLBHEXhgAjguR+aGdL2MVvrKySPZ+QMgUYIX+QzSKUvbThpKu0OilOyoz4OERHFXkKGtEVFofv7AMDrr7/u//q6665TrN+zZw/+8pe/AACmTJmC5cuXw2w2AwCmTp2KCy+8ELNnz8aGDRvwxBNP4Cc/+QmGDx8eo++AopVj1iDPqkWFTX1iBzmbi72+iHqrJlf4CqeVVcoZkomIiALZ3T13vvdDtXISJ68IuIK0SmiXY9FiTKYBek3wtgpy7W0ZqO9weKWVrAPMKRHtt2DwGLy+f2PEz6MVNDgnf6Ri+TXDJuOeDUvR4LIDAG4fNSviYxIRUewkZEgbjs/nw7///W8AQFJSEn70ox8ptnn66afh8bS9mS5atMgf0LazWCxYtGgRZsyYAY/Hg6eeegrPPvts9w+eVAmCgAdOTsMnB1vR6hHh8orwiYDTK2JrjUtx0uvkyS1Rr+UVpX+wpw8YBkEQ8E3FPv+ytdVH4PJ6YNDybY6IiNT5VKaMnZRjwJFmD2rsESaiJ/YxagUcafagvEW9IEDt3NITwQxl5xeZkW7S4sHp6VhWZoctIFj2+iDpVUt9l8cn/X2LtFXbJYXj8ebsq/FJ2U4sP34AR2R9bduNTM3GzJwiXDNsEsZl5CnWm3V6rL/gDjy3azXyzSm4fTRDWiKieOCnVxVff/01ysvLAQCXXnopLBaLZL0oiliyZAkAoKSkBNOnT1c9zvTp0zFy5Ejs3r0bS5YswTPPPMPePnGUZdbiutHJquv+sKYe22s7bnljSEvUe3lkIe0fJ8/FyNQcZL75oH+Zw+tBaV05Ts4e0tPDIyKiPkKekQ5L1eHXU9Pwxs4WfHRAveermp+OS0aaSYvSKiceW6/scdtOFEXJZwFPmNNNrQCkGttueS9O16NYNvmYKIq47rPqsNW41PvJL0DropjP5MqhE3Hl0In4ycr/4OW96xXr35x9Na4cOjHscYanZOGv0y6M+HmJiCj2OJuVitdee83/tVqrg4MHD+LYsWMAgNmzZ4c8Vvv68vJyHDp0KHaDpJgyynrWuiKobCCi+JB/kNEKGmQYLRiTlitZvrKSLQ+IiCg4+eme5sTpYK5FG9VxtCd2tOpDf7SyyVJZT5hwNcusgSZEgYcgCMgyRzdW6p3Uzm2iZdSo118FW05ERL0PX7FlWlpa8MEHHwAAhgwZgjlz5ii22bFjh//rkpKSkMcLXL9z586I+uEGKisrC7m+oqIi5HqKjHxisZ7sUUZEkfP6fGj1SCd6af8gMzOnCNsbKv3Ln9+1Bv9v7JxuGYfD48Y/dn+Pemcrrh42CSNDzMD81bE9+PjoTjhl/ebSDGZcM2wSxqQP6JYxEhH1Vz5RxLdHHahz+HB6ganTQaUypG07H8yxRBeQtZ9GJulD3zF30xc1GJupx12TUpFk0OBosyfk9pF8XzkWLY5FOOdCT/P4RLy2owWfH7ajJEOPuye3fd8EbKopw9sHN6PZ7USawYzS2nLJel0nQlqDRv33xcTWT0REfQZfsWXee+892Gw2AMA111yj2p4gMDgdNGhQyOMVFBT4vz569GjU4wncn7qPvJL2g/2tuKIkKU6jIaJgflv6mWJZ+y2Bs3KL8MKeNf7l+5prcKy1EfmW1JiP44aV/8F/Dm4GADy/+3tsvehXyDUr26l8dWwPzv78haDHeXbXKuz50a8xwBLZBCFERAS8ucvmb0fwzVE7npqdAZMu+lDLJ0pT2q5W0kYSQG6rdeOmL2uw+JwsPLK2IeS2kYS02b24kvbpTY1YX9k2Ydquurbv+z/nB7+omSj2NdVg1ifPwu51B90mmnYH7YxBwthgy4mIqPfhpUyZcK0OAKC5udn/dVJS6CDParX6v25paeni6Ki7GDTSkJadg4l6pw8Pb1Mss+oMAICZuYWKdZ+V7Y75GOweN949tMX/uNphw+I961S3DdxOTbPbia8q9sZ0fERE/d3qYw7/13UOHz4/bO/UceTtBtqv2UdTmasVAN2J/ay6yM8g/70z/OeCbHP4j2rRVv32pPaANlCjkw10vzy2J2RAC7Sda0QrRW9SXZ6sN0Z9LCIiio/e+64eB2VlZVi2bBmAtkm/iouLVbdzODpODA0GQ8hjGo0db4p2e/QnkEePHg3537p16sEARacgWXoyLgKwh2sURkQ9rsWj/MA3LDkTADD0xP8DHWttivkYtjccV/SOe+tAqeq2ZbbgE8i0q3bYYjIuIqJEUeuQvgZ/c8QRZMvQGmSBYcqJSbp0GgGnDVQPvOSm5Br9lbRaTeQh7YZKZ8j1WgGYNiD8GKbk9q0AjpPzAja38lxGbqA1+ruAzi8YBb2s5UFhUjomZg6M+lhERBQfvPchwBtvvAGfr+1k7frrrw+6ncnUccLkcoV+k3U6O07AzGZz1GMK106BYuP0AjNe2i6taKhq9WFICq9jEPUmLp+0796/T7tK0pbmx4Xj8U5A9epxe+xD2s11xxTLtjUcR0VrE/JkbQsqZM9/Zt4IHLHVY29TjX9ZnTPyGcSJiBKdKCpDvuOtXoiiqNqmLJR6p/Q9Jd3Ycd730/HJGJGug90j4vQCM3bUulBh82JYqh67611odonIs2pxxuDoz+8BoMkl/T50GuD2k1Kwq94NnSDg5DwjhqSE/6iWn6TDgmEWLNnf8V4yKKn3tkDwcHJeeMTwhSCnDxge9XEnZg7E8rk/wweHt8LmcWGAOQU3jJiiCG6JiKj3Ykgb4PXXXwfQVv16+eWXB90uObmj72C4Fgbt/W2B8K0RKH4MWgEZJg3qAiozKlu9EZ0cE1HPcctC2kGyShP5BF7H7c2ItR9UQloA+OjoDtw6crpkWUWr9PnvGnMqPjq6QxLS1jpZSUtEFCl3kHzrmM2LgUnRnbfVyypy040dYZZOI+CcIRb/4+l5HUUa47ND30nXGTeNScbJeSacnBdZBW+gYanS77s35KDyfr8dy3t4IL2Q/G4cNUn6zv2OTc8Zguk5Qzq1LxERxR/LBE/YsGEDduzYAQCYP38+0tPTg24bWN0aOImYmsDJwjgJWO+WI5skorK1d86US5TIXF7p36W8OmSAbPKuim4IadUqaQFlv1yvz4cqh/RCXp45BRlGi2RZnbNzvRSJiBKRw6Oe8m2tCX8LuZy83UGaKX4fjQYld74wQCOrIO4NQWiwrmGeIOFtIokopNX1rTYWREQUGywTPCFwwrBQrQ4AYPTo0f6vd+3aFXLbwPWjRo3q5OioJ+RatNhV19Gk/42dLfD4RFww1AJdFD3GiEjdh4e34atje3DagKE42FyHDbVl/kobrSDgtNyh+NmoU6ARNBBFEa/sW48vyvfA7fNiQkY+5heMRotH2sMvXEi7pa4Cl3zzKgBgXPoA3DPudOg1Wvx123dYX3MU4onnPiWnEAtHzYI2zGzKDo8bKysPqq77qmKv/7mAtqpf+QexPEsKMgzSkLa0tjzkcxIRUQdHkJ6mL29vQVGKHt9XOBQ9awEgz6rFgmEWrDvuxMFGD6bnGVUqabse0uo1wat9QxnYhRYF8tPUYFWsPckVJCn+9Yp6zMgzIsOkwQVDLUg3Jc6t+G6fF4/88BX+sPnLsNsmcbIvIqKExJAWgNvtxttvvw0AyM7Oxty5c0NuX1RUhPz8fBw7dgzfffddyG2XL18OABg4cCAKCwtjMl7qHrkW5Uni27ttaHT6cMOYZJU9iChSX5TvxsXfvAIAeHbXatVt3jm0BXavG3ePOx2v79+In6z8r3/de4e34sHSzxX7hAtpWzxOvH94KwDg/cNbcaC5DjmmJDy5Xfra/c6hLbB5XLh/wlkhv4/Llr0edJ3b5/U/lxqNICDHlKSopN3TVN2pXopERIkoWCUtADz4fX3IfQP7tn5+WHkXQ3oMKmmTDdL2WZFIM2pg1Xf+uRUhbaePFDueEBOEfV/RdsF1R60bj52a0VNDirsHNn6KP29bFtG2SbrYt9QgIqLej+0OAHz66aeorq4GAFx11VXQ6UJn14IgYMGCBQDaKmXXrFmjut2aNWv8lbQLFizgB/BeLtus/udQWhX97XNEJHXLqnci2u6LY3sAAJ+X745o+1S9tHffYGvwVjUA8GnZLrx3eIvquo+P7gz7fFvqKyIal5p8cwq0Gg1yzMr+5IdbQgcLRETUpjXYffQxkBqDStpTB0bfU7arE31pZZ8x3CEC0p7S4g4/hoNNHjS5ekOk3DP+uUf9M6OcVWeAUctaKiKiRMSQFtJWB9ddd11E+9x5553QattOqBYuXAi7XXo13m63Y+HChQAAnU6HO++8MzaDpW6j16qH6I0JdPJI1F2O2Boi2s7h9QAAmt3OMFsCs3KLMCRJGsoWJKXhzLwRQfepcdpwKEggWmFvCvl8oiiiUtbj1qTVKXoBBnPjiKkAgNMHDFOss3l4MYiIKBKNzu47LzPGoL3VgmEWJOujO86Zg81des4kg/T5WtwixDi3PChr8US0XajK6P6m0eWIaLvrhk9mcQ8RUYJK+Et09fX1+PjjjwEAY8eOxaRJkyLar7i4GHfffTcee+wxbNiwATNnzsSvf/1rDBs2DPv378fjjz+O0tJSAMDdd9+NESOChwbUOwQ7FbJ7RHh8IvvSEvUAj6/tw3d7WBvKJ2ffpPohZsmZN+C/h37AUVsDGlwOPLV9eUTPfdzeHLLtgM3jUoxry4L/B7vXjc/Kd8PhdavuJ0DAuPQ8LBg8BgBgVekz5/JxokIiokg0uSIP9X5cbMWH+2wR94jVxaB8xarX4C+zM7Gh0okvDttxuCn0+9nvpqdhdGbXbm1PMUgH7hWBVo8Ia5RhcSwdbY7sfc3ZC6p+4+m+8Wcg3WCG/cQ5RElqDi4ZMj7OoyIionhJ+JD2P//5D5zOtoqtSKto2/3xj39EVVUVXnrpJZSWluKKK65QbHPTTTfhkUceiclYKX5aXD6kJdDEBkTx0j7Rlj1I4Nlu3qASJOvVbym16o24ccQ0AEC1oyXikNbp9aDR5UCaUb2iqdrRoliWa05GisGE8Rn5ET2Hf4w6g6R61hlBKE1ERJHf4SQAuHSEFSvKHDjeGj4w1GkQs+rFNKMGZw02Y3+DO2xI29WAFmjrgyvX7PJ1qc9tV0VaSetKkJA2WGXzLcUnoyg5s4dHQ0REvVXCtzt4/fW2SWC0Wi2uvvrqqPbVaDRYvHgxli5digULFiA/Px8GgwH5+flYsGABPvnkE7z44ovQhJktnHqHUKflTRH01SKiruuopA0d0mablH1d1aQECXKDOS5rZxCo2mGTPDZotEju5OzL8l5zTh9DWiKiSDRF2O6g/QaojAgnA9N3wx1T3dg+V8KoFSDPaaOpOO4OZc2Rva8lSiVta5C2RmatvodHQkREvVnCV9KuWrWqy8eYN28e5s2bF4PRUG919/I6AECuRYsRaTr8uNiKAdaE//OhBLf06A68tHc9xqYPwP3jz4ThRPC4u7EKj/zwVdDer6HsbqrCqZ88ix0NlSG3yzZZIzqeUauDUauLuFJ1R0MljFotflf6BQ621EnWra85KhtDUqerrowaWUjLSloiorA2Vzvx+WF7+A0BCFGHtJ0dVXBuX88FkMkGDWodHanwsRYPitOVAWCj04f/7G5BeUtbdfGu+hO32Qdsm2rUYF6RGSUZnavy3VjpRFlLZO0O+nslbbPbgd9u+hxLg0xOamJIS0REAZgyEUWhstWLylYvDjZ58ORpGWzqTwlrb2M1LvjqZYgQ8f7hrQCA3088F6IoYu4XLyoCzki1etxYWXkw7HaRVtICQKrehCqvslWBmh8vew2jU3OxreF4BGOILChWY9BK26ewJy0RUWg1di8eX98Y8fbtZ2iZ5sjaVXVPJW3PBZApspD2H1uaMadA2b7nmc1N2FKjrOpsD2vbba524vkzs2CJMr2uavXizxsi/3fq75W0t6/5EK/s2xB0vUnLj+NERNSB9+ETnTAkJfKTpPIWr+REmCjR3L3hY4jo+GD1h81fAgCOtTZ1OqCNRoE1LeJt8ywpwdeZpet8ohhRQAtEFxTLWXXS6qQ6Z2unj0VElAh21rkRTeaZdCJczLFEFtKq9XXtqpPzQrfcGZwcu4Au1agcv1oAurNO/bZ75b7AwTD9dNXsrg/drkj5PP07pF0e4sJz+90+RERE7RjSEp0wwKrDyQMi7y953MbKN0pc31bsV10ebW/Vc/KLMS49L6p9ipIyMG9QScTb3zZyhurySwvH4+5xc6J67kD5IcLfcIqSMiSP9zfXdvpYRESJINJetO3OHNxWRTotN7Jzu7MGq08a2RXTBxgxMKktJBYA/GRMEjJPtF/Qa4BrR3f+Yp/cnAJlIHywURqYiqIIdxQ/xs5UAgdrX2DUqlcqt3r6d0gbqsf+wlEzeVceERFJ8NIdUYA7J6VgS40LRq0Ai06Db47a8dkh9d5nla1ejO3h8RH1Fk1uh+pyt8pt+89MvxhaQUCNoxVraw7j5KwhyDJZUGBNw9n5xXB4Pfji2G7UyCbmAoBkvQlCwPOlGcw4Z+BIpBoi/zD905IZmJQ5EJtqy/3Vv4OsaThv4Eh4RRG/XPe/oPumGcy4ZtgkPLNT2b+8KyHt8JQsyeO9TTWdPhYRUSJocinTxZfOyUKTy4d1x51odPqQd2K+gEHJWn+P1RSjBg+cnIZH1jYo9j8p24ApuUYUpeowPC32vUH1WgF/mpmBbbUuZJu1GJKiw8yBJuysdWNgkhb5SbH7KDYjz4RFQhMCM9K9DR5JX9loi1Y7061BrQ9vrkWDB6enY1edG4s2N0nW2fr55Lzy86LzBo7E0ORMXFo4HnMGDIvTqIiIqLdiSEsUQCMIOCm7o+LizAJzyJCWiKQ8PuWH6J+VnBKyUsSg1eHSwgndOSxMzR6MqdmDFct1AAaYk3Hc3qy6X2FSOu4ff6Z6SGvuQkibnCl5vI8hLRFRSPKQ9twhZlj1Glj1GiwYFvojTbC2AhcOs2BMZucmx4qUSSdgSkA1b5Jeg6lR3LkVjTkFJnx9pOMi6r4GaRVntJWxnelE4FY5PXZ5gSyzFrMGarG52okV5U7/Ons/r6SV95z/7YSzcUpuYXwGQ0REvR7bHRCFEuIOpCqGtEQK8ooRnaDp9bfyDQ7R3zbPnIIBlhSMkFW+AqF73YYjr6RlSEtEFFqzLKSNpodsskGA2t32Fl3vfn+K1ghZNfBeWX/YaFodAJ2rpHWp7BQYDlt00n+31mgH1ce4vNLzIr2GH7+JiCg4VtISdRIraak/E0URf9m2DG8d2AyTVodfjj0NlxZOwJGWely34i3VfUa+97ii95quD3wYGZyUjnU1R1XXtQexp+YOVbQk6Eq7A3noW++yo/i9xyCcuDKUrDfixhFT8fNRMzv9HERE/cn6SumEVymGyANWjSDApBMUt9Zb9L3/PSoa8pC21uHDO3ts+HGxFUD0lbRPbmzEuUPMuGZUEgxBesrKVduV58eB+bpFLz3O10cdmJJrxKQIewf3NfJKWgMnCiMiohD4LkEUgi3E1f1KThxG/djSsp24Z8NS/+PLvn0Dh388BDevegffHT+gus+epmrFMr0mslm146kgZCVtMgBgbPoAxbquhLRDktKhEzTwiB2vMfIQeGNtGcan5+HUAUM7/TxERP2B2mRUKVFU0gJtE1cpQtp+Vkmbn6SFWSdIWgi8u9eGc4eYkWLU4GhL9Oeunx+2I9mg8Qe94Xx7VNmz3i2ppFX+zP+ysREvnJWFpCj/TXs7n+iDV5R+ljD0gfMiIiKKn/71TkgUY+0TUKixeUQ4+nkfLUpc31cdljwWIWJN9WF8eWxPVMfJMcVu5uruMjIlO+i6YSltvWMvHiydJtCqMyCvCz1pdRotSlJzwm63PkiFLxFRIilr8SiWZVuiC7tKMqRVpiat0O9CWo0gIFmv/J4+O9QKAGhwdK7AYE+9K/xGJ5hUKm4vCwh4M83KfzevCBxsUv4b93XyVgdA37h4TURE8cOQliiENKMGpw8yBV3f0s/7aFHiqne1KpZVO1qiPs6vxs6OxXC61aWF4zE8WdlzdmRqNi46Ec4WJmfgtpIZ/nX3jJvT5VsW7x1/hr+9QTDyHr9ERIlIXgELAENTo3sNnltogTEgQJw/1AKtpn+FtAAwp8CsWFZ1ogVBqG4HBclaLDwpBWo/kmZXZEUJLW4fHCpVz2cEjGlitgGDkpRBpVq1dF/n9CmDZ6OGN7ISEVFwfJcgCuOn45NxbqEZeo2Au1fUSU5wm1w+ZKlUBBD1dfVOu2JZeWuT6ran5hbhrjGnKZaPS89TTJDVG2WarChdcBe+rzqMFk/bjNPJeiNmZA+BVd/RI++5GZfg5hEnw6jVYYxK+4NoXT1sEmbkDMGWugqIaHtheXzrt1hbfcS/jdvHC0FERPLJpbLNGmiinJSyOF2Pv5+eif0NbmSbtShI7p/nb+OyDPjvHptkmevE9T55DlqYosM1o5IgoO3nY9AKGJWhxzt7bZK2Bc0RFiWoTaq7+GxpGwOLXoNHZ2Xg2s+kLZLUJhzr65xelZBW2z9/74iIKDYY0hKFIQgCilLbbpFLNmjQ6Ow4UZXPNEzUX9S7lCFtma1BddvLi07CxUPGdfOIuleS3oizBxaH3W5S1qCYPu/Q5EwMTc70P37zQKkkpPWIrKQlIpJX0kbbj7ZdmlGDyf10gqp2atF1e09Y+cRhFp2AcVkGybJMsxanDzJLQ9oIK2nlIW2WWaPaZ9agFVCYosOhgBYH7v5YSavS7sDIicOIiCgEtjsgioJ8JuFIT1qJ+pp6p7LdQbBKWvZXix35z9LDSloiIthkcwBYVfquUhuPqDw3bW8lIJ9KQRvkk2Cy7HzX6RUjakcgD2lzQtxtJs9u+2Pdg8PrVixjuwMiIgqF7xJEUUjWawB0nICykpb6E5fXg/+3/iO8d2grKuzKQPbb4/tU9+NMxbGjE6SfWv+y/Ts8u2s1AMCk1eGCgtF4dsaPFGHum/s34Q8/fIlKe/C+wWatHpcWjseT0y5gsE5EfYJPFPHmLhs+OiC9cGjRs84kGLXOBPsb2ypW5ZW0uiAtI9Qqla/9rBpWnQARQGtA2nvPlFR/dXJVq/TJc0JM7maQTTDWl3rS2txO3LF2CVZUHsT5BaPw+JTzFe+rr+3bgOtXvK3Y18B2B0REFAJDWqIoJMtOWhnSUn/y5oFSPLNzVdD1PpXqHICVtLGk00hfY5xej6Sn3b/2rEWBNQ2/Pels/7JqRwuuX/E2PGLo16MG2LFo50pMzhyI60dMje3AiYi6wfrjTkVACwBWHStpg/GohJ32E6GqV/Y2EayS1qJvm9ZSfiR5RTMA/HlDI/49Nxs6jeCfoKxdqJBWr1FW6/YVL+5Zh8V71wEA9myvxrSsAlwxdKJ//fb64/jJyv8q9tNrtNAIvMBARETB8V2CKAoW2e119j50QkkUzvLKA53ab5A1NcYjSVwDLeF/li/uWQtfQCC7qbY8bEAbaH3N0U6NjYiopx1pVk68BADZIcK/RDciXa9Y1l606pVdbNUGqaTVCILinDeU9jYHgfM2AG09aYORFz7sb1D/t+6N7ly3RPL4p6vfkzxevHcdvCrvywXWtO4cFhER9QMMaYmiILvoj344ES0lsN2N1eE3kjl34EicklMY+8EkqJuLp2FwmA9xR2wNWFV5yP842IRuwVQ7bOE3IiLqpQZYtJg9yBTvYfRayQYNTsqWTgbWfr7qkeWGuhCfBOWVrqG0F9jaZU9gCfEEY7OkYfLWGlefnTysyd0xyZrH58W/929SbKMRBDx00jk9OSwiIuqD2O6AKAoa2Zy5DGmpP9ndWCV5fO+4M3BT8TQ4vR40uOz+5T5RhNvnRb4lFSNTsyEEqcSh6A1JysDeS+7FlvoKSZuDW1a9g50B/z5v7N+EUwcMBQCU2Rolxzg1twiPTp7nf/zOoS34244V/sfVjuB9a4mIerNciwZPzs6ALooAMRFdMyoJm6vr/I9FAKIoQp6Bhvo5qrX9nTbAiHXHnYrlvhMnxK2ydgjmEG0pTso2QkCzv6WCwytiZ70b47MMQffpC74o34Mq2fvs4pmXYcHgMcg0WeM0KiIi6isY0hJFQVlJy5SW+odahw21Tmnfv5+MmIrhKVlxGlHiMmh1mJJVIFl27fDJ+M3GT/2P3zn0AxZNvwgGrQ5lrdKQdmz6AMzMLfI/PthSJ1lf41T2dyQi6gsKU/QMaCOgVfkR+US1icOCH0Pt51ySrlcNab3+Slrp8UO1TEg1ajAsTYd9AW0OSqucfT6kfW3/Rsnjk7MH4yfF0+I0GiIi6mvY7oAoCmx3QL2ZKIpweT3+/9w+b/idTpC3OtBrtChKzoj1EKmTrgqYkAQA6l12fHR0B1xeD4601EvWDbKkSR5nGaWVO1WOFsnvSeB/ouzCk8vrgdfng9vnVWzri6IPLhFROKIowuNr+48XwbtGLcd2+US4ZSeu2igrafOT1HsBe0XA7RUV7RRCVdICwMQco+RxaZUr5Pa9WYvbiRqHDR8e2SZZft2wyXEaERER9UWspCWKgvxctrwl8hCMqDu9tGcdfr1hKWqcHf1GBQiYlVuIt+dcg/wwE1J9UrZT8nhYciZ0Gk7M0lsMScrAqblFWFF50L/s0m9fU91WPpFbtilJ8rjS3gzja/eq7ptrTsZfp16AUWm5uOq7f2OXrAVGoCyjFfeOPx3/b+ycCL8LIiJ1myqdeGFrM+qdvPgTCxqVNkQ3fF6jWBaqJ628KhYA8pPUPzrurHNhgMpkbuZQTwBgUo4B7+zpOG+psHmxt96NarsXr+1ogUEr4KfjkzEms/dU1zo8btXlyW/cr1im12hxedFJ3TwiIiLqT1hJSxQF+Unv7nr1EzWintTgtONna96XBLQAIELEisqD+NMPX4c9xot710kej0zNjukYqeuuHjopou0GWuQhbeQ98Crtzbh51Tv4v9XvhgxoAaDGacPd65eitLY84uMTEcl5fSKe39LEgDaGIu0IoQ3RU15tDq9ss/pHxzd32dAqL6MFYAlTSVuYokOaUXrMTw+1+gP7ylYvXtzarLjLI55WVx2KeNsLCkazDy0REUWFIS1RFFrd0hPQnCAnq0Q9aXvDcckkU3Jra46EPUaGwSx57OWt7L3Oj4smwKQNfQOMAAGj03Ily3LNydAJkb9W2b1urKs5GtG2IkR8cHhrxMcmIpI70uxBoyuyEC6L510RSTFoYIjgRxUsdAWgqF4dnqaDRhBwdYkydNRrlJW3WkG9ZUIgjSAo+ueuO+6UHOuYzQt3LzolqXNF3tf9huFTunEkRETUH/FMhygKk3OlvbOa3b3nyj4lrqO2hpDr9zbVhK1CaXJLJwK5rPCkLo6KYi3DaME/ZlwCq079tk+NIOCBCWciz5IiWW7U6jA5a1C3jeuz8t3ddmwi6v/2NkR+V9K8Iks3jqT/MGgFXFWSpDqBWLvidD1mDTQFXX/RMAsyTW0fFS26tuMBwJxBZtXt5SGtWSdACFGp2+6UfOkY1AJZeS/deIqkqFcjCLil+GTMLxjd/QMiIqJ+hT1piaKQK+u3Zfe0TXDBmYYpnuQh7ZCkdBwOmEyq0eVArbMVWSFuuWtyOySPhyVnxnSMFBs3jJiKy4tOQplKMJ9jTkKqQf3D86m5RVhbLa2oTtYbsfGCOwEAxe8/HtHzvzTrMpi0elz13b/9yzbUlKHGYQv5+0VEFMze+uB3ggT651lZilvjKbi5RRacXmBGvVM5f4JRKyDDFLrv/KBkHZ45IxM1dh8yTBr/uW6KUYM/zUzHb1ZJJ61UC2kjEUl1tMsrwqqP6HA9Tq/RYvtFv5IsyzRZkWHkBQUiIooeQ1qiKKSofDhodvmQHuZEl6g7HbU1Sh7PyinCsdYmuH0dH8z2NlUHDdF8og/NskraFINRdVuKP7NOjxFR9gw+NXco/rLtO8kyo0bnP45W0ETU4mJs2gCMz8iHRadH64nJU0SI+PLYHlw5dGJUYyIiAiKvpE0x8IJ4tEw6AXm6zn/c0wgCclQmBJMXyIoAWhUhbWSBuiGCQofe1O5AhPT7HJ6cGfV7MhERUTC8HE0UhSS9APmp5NEWL+od3l41qQH1Lz7Rhyp7M8psDaiyN0vWiaIoqZoFgMKkdBQlZUiWrak+gjJbA8psDah3SvuptbhdiudM0Qe/BZL6npk5hYplgRPNhZo8JlCG0QKjVocz8oZLli85sh1ltgbJhQEiSlyiKOJYa6Pi/Uau2eVDhS2y1w355K0UP/J/CVEE7LKJw8JNGtbOGKonwwkurwhRFFHv8KLW3vaf68TMZh6f2KPn4HWy3+lIWjoQERFFipW0RFHQCAKS9IKkF+0f1zYAaJt84d6paRiUzD8rip1dDVUY9cGfJcsmZQ7E0rNuQpWjBWd9/k9UO2yS9QXWNIxIycKepmr/sl+u+x9+ue5//sfzC0bhnTnXodXrxsQlf1U8L0Pa/iXc7NJaQQMgfFCSaWw7zrn5I/Hx0Z3+5f85uBn/ObgZyXojFs+8DD8umtCl8RJR37W9/jjO/2qx/wLigsFj8J8518KoMvHhkxsbFcuo7/GKwOpj0jtyIm13YIggpH17tw1Hmj2obO14n9JrgIFJOhy3eeEVRdw6LhmnBemXGwsNTjsWfP0yllce6LbnICIiYiUtUZSSg0yXW2334d29NtV1RJ017eO/KZZtqi3Hop2r8PAPXykCWqAtpB2ekhXyuB8f3Yn3Dm/Fv3avwRGV/qbJerY76G/SgvSrBdpD2vDa22CcN6hEdX2z24k71i7hnQVECez3m7+Q3OGx5Mh2fHh4m2K7RqcPO+ukrQ6Gp6lf6I4gx6MepPbPIf+3NOsjDWnDb7O+0ikJaIG2FgiHmjxweEW4fcCrO1rg6cYJxl7et141oOWvJhERxRJDWqIoDU4JXilb3sJbfSm25L1i2+1vrsW7h7aorhufkYdpWQVhj722+gj2Ndcqlo9MzYZWw7eH/ua1U6+QPL6l+GT/18WpoUN9oK0freZEmDs8JQvj0vNUt6uwN8HFtgdECWtfk/J9ZX3NUcWylcccimXDUvUYmqo8zzqvsPsqJCl62Sp9auUineQtknYHkWhxi2hwdl/z2hd2r1Fdvr2hstuek4iIEg8/hRNF6fJiKwYlqZ+c2nrTzAbUrzm8wSdaGWRNwyWF48MeY2djJVo9yn60z07/UZfGRr3T/ILR+OnI6TBotJicOQi/GX+mf93fT74o5L75lhQsmi7d5qVZl6EkNacbRkpEfZnT51Es29VYpVimFs2lGDW4fnQSAuecKk7T4YKhlhiOkLrKqtdgco4h5DbnF0X2b5YZw8l3u7OqtdrRorp8TFpuNz4rERElGjbPJIpSfpIOT87OhN3jw556N/60rqOfms3NW3ypZzi8yg/BAHDD8CkAAKNWh1m5RVhZeTDoMXY2VCEpS9rW4PcTz8GZ+SNiN1DqNQRBwPOnXIp/zLhEMdHJzNwibF7wS5yk0p/463N/itPzhiv2mZJVgB0X343S2nJM/ujp7hw6EfUhTpX3p92N1YplaoFasl5ASYYB/57bdgHI7RWhZ6+DXumqkiRsrKpTXTch24Asc+zC10h5u/E03COqF2KMDXJXCRERUWewkpaok8w6jeLqv8Mrdms/LEosofp6Bquk1QT0Fs03p4Q8fnlrIyrtzZJlFm3oyhjq+4LNRJ1rSlJfbk4Ouo8gCEg1cJI5IuqgFtIeaKlVLFd7WUmS9f1nQNt7ZZmDf4ycmB35uUSQt5dO8XVjP3RvkPN7TSy/ASIiSnispCXqAqvKpAg2t4hUI0/YSEkURexrqkGz24lUgwlDkzMl4ZfT60GNw4ZccxJ0Gi0aXPagx6p1tKouD/ywkGcJHdICwOa6Y5LHFp0+7D7UP2UHCWk7M4lcaW05SlJzkGZkH0mi/sTjE1He4oUIEaIItMdWWkFAQbIWoiiirLVRsZ9PFLH06E4UJqXD7RPR6PJhf6NVsZ1FF9vzp+OtTfCIPgyypsXkeD7Rh2OtTcg2JcGoTeyPUSadBkl6AS0qd5FNDNMKobsE5qg+UcRxmxdpRg0s+rZAuf331yuKyDJrkaIyGfCRlno0uhwoScuBVhCwu7Eado8bLR71OQI0nDqMiIhiKLHPLoi6yKpXntwt2tyIB05Oj8NoqDezuZ0494t/YVXVIf+ys/OL8dFZP4FRq8Oh5jqc88UL2NtUg2lZBXj/jBsw6X9PBT3etobjqssDPyzkRxDS2mUVuWaGtAkr2GRx4UJatSrbGUsXQSMIeH7GJbhl5PSYjI+I4utoswcPr21AY5DJmfQ6G76ueyvo/pd8+6rksQANpqXMwxDTaP8ycwxD2p9//z6e27UaQNtEiS/M/HGXjmdzO3HW5y9gTfVhDE3OxOfn3ILhKeEnXezPssxatLilFdJ5Vi0GWOPzEXNluQOXjUxCi9uHR9Y04GCTB1oB+L/xyRiaqscjaxtQH/D7e8VIKy4e3naxQBRFXL38Tbx1oBQAoBM0EAQB7jATYbKSloiIYontDoi6wKAVIM9pt9a4Ud3Kmc1J6n9Hd0gCWgD48tgefHVsDwBg0c6V2NtUAwBYV3MUV373BqqCTFIRSuBnhUhCWjmzliFtIss0Kid66UwlLdBWxXT/pk9Dtu0gor5j6YHWoAEtAJQ2lOK4Q71HqRoRPmxrWSFZlqRy8bszVlYe9Ae0APCvPWuxI8jFzUg9t2s11lQfBgAcaK7F87u+79Lx+gO1lgcnRdHqINbe29d2l9HqYw4cbGoLj70i8PZuGz451CoJaAHg3b02OE80si2tLfcHtEBbD9pwAS3QvZOVERFR4mFIS9RFRSnKaoFqO0NaktrbpJw0BQAONLd9oP3r9uWS5StCTPgVypi0Af6vp2YVKNaPSs0Juf/4DE6AkcguHDxG8nh0Wi50mtCTvxRY05CkUw9yqx22oJPcEVHfUusIfW7T5K2N+pitPmlf9Pyk2Ew29Z+DmxXLNtSUdemY92xYKnn85PbvunS8/mBYqvLC7oy86PqUpxs1sMaogrq9hXFplUuyvNbhQ6VN+fvr8QHNrrbgdl9zTaeec0z6gPAbERERRYghLVEX3TJOWa3o8LByjKTqnOr9ZZvd6j3OgknRm2DQaGFQCc6uHTYZtxSf7H88MjUHT069AHnmFKQaTLhpxDSsOv8XuHLoRCTrjf7jGDRa5JlT8MSU+Ridxg8bieyRSefhzLwRMGv1GJ+eh5dnXR52H71GizdOuxLDk7OgV/m9dPkY0hL1B+HmRbV7m1WX6wQ9NNBCJ2ghyD56iOiobJyUY4jJreM+0Yf3Dm1VLN9W37VKWlKaW2TG9DwjTFoBmSYNrilJwsiM6O7I0WoELJyYgjxr5AH98DSd4k42oK1q1ieKcHmVv6yNLvUq8PZN65zqvf7bCbKa2WS9EVcUnYRfjJoZ2aCJiIgiwJ60RF00OEWHQUlalLV0XKG3q5wcUmKrddpUlze5HRHdDv7AhLPw8KTzon7eX46djV+OnS1Z9ubsq6M+DiWGfEsqvjrvp1Hvt2DIWCwYMhZV9mbkvv17yTpXBLeLElHvFyyk1WsAtw+wy6piZ6ZejIHGEf7HZw82490DR/F53UuS7URRhCAIuGSEciKxzlhddRgV9ibF8liHtDqBtS5mnQZ3TUrt8nEm5hgxMUd6R8Z9K+twoFF5kW9ekRnXj04GAFS1erHwW2kFt8srQq1WIlirDu+JX+z6EJO1Am19jf8589KQ2xAREXUVzy6IYsAku02LlbQkF6xCo9ntRE2QADdQjikp1kMiijmDRnnt1+VlSEvUHwQLaU/JN8En+mD3SfuomzXJkscun6ioRgQ6qmmzzLFpdfDuoS2qy4NNuBmJZrdDsWxEgk8a1t1SDOofUzNMHb8napu4fB3Ba6Aml/ovsC/CSloiIqKewEpaohiQz0bsYCUtBWhyOfBJ2S7Vdbsbq/HOwR/CHoMhLfUFBq0yZKl3tWKgteuVVkQk5fR6sKHmqKJtTrrRjEmZg1TbjwCAx+dFaW05aqMIpRqdPiyrbEG6LhcCBNR7KuET2y7A+LRWlDnrIEJ67mPRSkPa6lavot0BAFS4DkADLVZX1SraHSTpjZiSOQgmXdst9OW2RmxrOK64A8WqM2BKVgGMWi3+tkM6GVm7o7YGLDm8DZkmq+SYaipam7C1vgK+E89zuKVesY1By49R3SnVGCyk7Vhu0CpD/2aXL6rz8PLWRmxvqmE7DCIi6hV4dkEUAyYtK2lJ3Y6G4zj1k+eCrv+6Yi++rtgb9jg5Zoa01PsZVSppx334JKqufAjZvNBAFDMNTjtmffIMtjdUqq6flVuEb8/7P8XEfz7Rh3lfLsaXx/bEbCwr1iuXaaCBUbBIlu2oc0Oj0iJgVeMHbcf5Sv34I1OzsXLeL/B5+W5cu/wtRRjcbnhyFnSa0DcJXvTNKwCAktQcrDr/F8gwWhTbfFq2Exd9/UrYVi0/1B3Dm/s34aphk0JuR52TGqSSNjNMSPvL7+oifo4jjp2Y8cnHQX+niIiIehrbHRDFANsdUDD/2r02JrfQZZti06uPqDtpNRpoVUKYV/duiMNoiPqvj47uCBrQAsDKyoP4umKfYvmqykMxDWiDMWuSIahMAqZWSRvO7sZqvH94Kx7f+m3IMG1fcw12NVZFdMxdjVX44LBycjEA+NOWbyLupf2HH76MaDuKXkrQStqOCw9aAdB0Ya65na1rIg5oYzCnHRERUVgMaYliQCs7c/NGMBEUJYbjdvXZrqORbjCjOCU7BqMh6n6TMgcqlm2oLYvDSIj6r+MqE2PJba4tVywrrVMu6w6Z+nzV5WZNEkya6C86VrQ2oczW0MVRSZW3NiqWiaKIH+qORXyM3Y3VsMnaTVBsjEhT3pmRadIgy9zx8VUQBAxN7fyNoa3e8H9H7SZmKN/biIiIYo3tDoiIupFXVM4mfEbecFTam9Hokk5EUnbiA2OqwYRkXdssxwXWNPxp8lz2vqM+443TrsLI9x+XLIsm9CCi8Dyy9xaTVgedoEWLpyMw3KlSVbqzQbrMqjMg3WAO+jxeEah1OOESlRNnAUC2MQnGE72o7R4RLi+QZRiAi/PPxS1j07Cn3o1lZQ7UOXywe0QIgoBTUi/ClpbvYPM2nhi7AIteOqVYrbMVdq/b/9jh9aA14DHQ1qvd5nHB5nEFHX/Nlb/HHWuXYGXVQVQ7WtDq6TiGza3cr8LepOjxm29JgQYCRKgHu7sbqzEpa1DQMVDnjEzX47rRSfjmiB12j4gssxbXjkpS9C3++YQU3BVFi4N2oijCLUr/rXPNybB73GhyO1BgTYMoijBp9bhw8GjcVDytS98PERFRJPipnygGeAcUBSOvqv79xHPw4EnnxGk0RN2vODUba+YvxPSPF/mX7Wmqht3jhjnERD1EFDmPTxrSzh1YgtMGDMVd6/7nX7ZTpR3CDtmyByachXvHnxH0ebbUuPCL5ZuwovFd1fUbL7wTBUlpQfcvyTDgwmFWfLDPhrd32wAAWfqBOCP9KkzPM+KuSeqTCt608r94ae86/2ObxwWn1yPZZtnc27B4zzo8uf071WOsmPdzZJqseGP2VQCA/1v9Lv65e43kmHK7VELso5c9IOmlO+zdR3Ggudb/eEdjJUPabiAIAs4vsuD8ImXf4ED5STrcMDoJr+xoier48oAWANbNvx2Dk9KjOg4REVEssd0BUSzIUlo2O6B28kpatX6dRP3N2LQBCKyL84kittVXxHFERP2L4r1Fo8GotFzJsp2NVRBlFwrlIe2o1JyQz1Nr90IvGFTXWXR6DLSmRDpkhRFpwS/atFfntqt3KXu7W3R6JOnVx5ZvScEpOUNk20u3VQtpdzdVSx4Xp2QrJjuT/8zkP1PqeclBJhkLRS2kTQtRVU5ERNQTWEl7wpEjR7B48WIsXboUhw8fRnNzM7Kzs1FYWIjTTz8dl112GcaOHRt0/08//RQvvPAC1q9fj+rqamRnZ2Pq1Km49dZbMXfu3B78Tige5JW0bElLoihiTfVhLDmyXbKcIS0lAqveiBEpWdgTEHg8tWMFXj/1SmjDzL5ORMGJoojVVYfw0t71kuU6QaMID5vdTjy3azWS9W3tcxxeD2qcNsk2o2XBriiK2Fnnhs0twuUT8fZuG3Qao+pYRqgEmMHYVSZUDRXSmrTSddvqjyu2segM/u9N7pIh4xVjs8pC2p2NVXht3wbkmJJwet5wGDRavLpPOslhSZoyxB6dloulZTv9jz8v340/TZ4X9Hvp71o9LnxbsQ+1sklSs01WzBkwvEfuoEgyRH9Pm8snbeGhEYSgoT8REVFPYUgLYNGiRbjvvvtgs0lPXMvKylBWVoaVK1eiqakJTz/9tGJfn8+HW2+9FYsXL5YsLy8vR3l5OT788EPcfPPN+Oc//wkNP5gSJYx7NyzFn7ctUyyXTzJH1F9NyMiThLRvHSiFBoL/1mMiit7d6z9Wvb1fp9FgkDUVFp1e0nf1F2s+CHoso1aHouQMybJFm5uw6pi0wjBYJe3IKCa03N/gViwrCjHhk0nWh32zSl9rq86AZL1Jdf/Liiaobh9obfURrK0+AgCYPWAoZuYU+R+3U/se5cH2ptpyrK8+gqnZg1XH0p+5vB6c+smz2KQySR0AnJw9GCvm/Rx6jVZ1fawk67teSZtmMEd80YGIiKi7JPw70SOPPILbb78dNpsNxcXFeOKJJ7Bs2TKUlpbiq6++whNPPIFTTjklaMB6//33+wPaiRMn4q233sK6devw1ltvYeLEiQCAF198EQ888ECPfU/U8+Sxm4+VtAnN4/PimV2rVNd19wcVot5ifLpydvd/H9iEoy0NPT8Yon7A4XGHfG/RCBqUhGlfEKg4JRu6gPek4zaPIqAFAL2gXq1anBp5SJufpAxkDdrgFy3N2tDVlwIEmLQ61UpatVYHAJCkC14l+d3xA/jTlq8Vy9V+nqNUqmuf2an+79Lfrao6FDSgBdqC8PXVR7t9HLFod5AaJPAnIiLqSQldSfv111/jt7/9LQDguuuuw4svvgi9XnpSeOaZZ+JXv/oVXC5l36o9e/bgL3/5CwBgypQpWL58Oczmtl5GU6dOxYUXXojZs2djw4YNeOKJJ/CTn/wEw4cP7+bviuJBL/ug4WFKm9AaXA5JJVOgGSofHIn6o3mDSvDb0s8UyzfWloWcaIiI1B2xNSgmz2p3Sk4hAOC8gSUhQ7NA5w4sljzeWaf+vqUXjNBCBy+kz51tskb0PAAwM9+ILw7b/Y+vKUkKuX379xP0eLmF0AgazMgeAo0gwBfQZ+qnI6erVkTOzC2KeLzt5uQNUyw7KWOgYtnG2rKoj90fHLc3h91G3mKjO2SZNcg2a1Bt94Xf+ASvKP195sSWRETUGyRsSOvz+XDbbbcBACZMmIDFixdDpwv+4zAYlFffn376aXg8bW/wixYt8ge07SwWCxYtWoQZM2bA4/HgqaeewrPPPhvD74J6C6MspHUxpE1oDS67Ytm0rAL8fNRMnJzNkJYSw6SsQXj9tCtx7fK3JMtL68px0ZDgPd6JSN3hlnrFshnZQzC/YDR+MmIqAOC3E86C0+vB8soDisnF2mkFDWbmFOL3E8+VLHeo9I0FAEEQYNWmoclbI1ku7xsbSkmGAbeNT8b3FU4MS9PhvMLQEzSdmT8C/zzlUvx7/ya0eKQVjyWpOXhs8vkAgMLkDHxwxg1YtHMlmt1OnJ1fjPvGn6l6zImZA/Hv067Ci3vWotHtwJ7GGsWxAz0340fINScrlhu1Ovz95Itw+9oP/ct2NVbD4XHDlGBBX4tb+vOz6gzwiD7JxQS3z9vt49AIAu6Zkob/7rGhxu6FUStgTKYe7+1TTjgHALeOS8Zv1kn/Pgy804mIiHqBhA1pv/jiC+zduxcA8Otf/zpkQKtGFEUsWbIEAFBSUoLp06erbjd9+nSMHDkSu3fvxpIlS/DMM89AYE/Kfkevkf6bOrv/fJR6MXlIa9BosWb+7fzbp4RzzbDJKK0tx1+3L/cvK42wyo+IpI7YpCHthIx8rJ6/ULLMpNPjL9Mu6NTxW9zBqxCTVEPa6M6d5xSYMacgdDgb6NaR03HrSPXz60AXDh6DCwePieiYVw2bhKuGTQIAXPT1y4rJPQOdP2hU0HU3jJiCO9YugYi2YNsr+rC9oRKTswZFNI7+osUjvdPwlJxCHGttxPaGSv+ynghpAWBwig6/mpLaMTa3L2hIOzRVBx+k42JIS0REvUHC9qR95513ALRVB8yfP9+/vK6uDnv37kVdXV3I/Q8ePIhjx9omMZg9e3bIbdvXl5eX49ChQ10YNfVWRtl5ncvLStpEVu+UhrRpBjMDWkpYEzOltwYzpCXqHHkl7RBrekyPX+sIHtJatamKZdGGtL1NrklZJRtIF2LC32S9CcNTMiXLNtcl3mubWiWtvPe+2xd5C4JYCvUh16rXKEJaHUNaIiLqBfr22VUXrFmzBgBQWFiI5ORkvPnmm3j00Uexbds2/zbFxcW45ZZbsHDhQhiN0okJduzY4f+6pKQk5HMFrt+5cyeKiqLviUW9m6LdAUPaPmVN1WG8daAU6UYzknRtf+tajQan5AyJqj3BgeZafFa2SzE7dJoh8sohov5moqx/Y1lrI/70w9dIN5oxb1AJhiRJZ5f3iT7878gOCAAuGDyas21TQvD6fFhathN7Gqv9y3SatrYEDS4Hfqg7hod/+Eqyz5Ck2Ia0Zc3q/W4BIEmrfK5o2h30Rrnm0H1xdWFeeyZk5GNvU0d18Rv7N0ku0moEAVOyBuG0Acq+tl0hiiI+ProDHtGHCwvGQBsiTA7n+6pD+L7qsKSnbyhaTVsf4Okn+uvvDvh9BYAkvTKk3VRbhmuHT+70GDtLqwl+cdyiF2D3tki3FxjSEhFR/CVkSOvz+bBr1y4AQFZWFu644w78/e9/V2y3Z88e3H333fjggw+wdOlSpKWl+deVlXVMEDBoUOhbmwoKCvxfHz0a3Qyngc+jpqKiIqrjUfeQz1DsZEjbZ7yydz1uXPmfoOvfmn01rhg6MexxdjdWYepHf0OzW9nfLt3IkJYS18jUbJi0OjgCehTev+lTAEC6wYxNF96FwuSOoPaa5W/hrQOlAIDrh0/BK6de0bMDJoqDn695H//cvSaqfYbEcAI+j0/E3oZQIa3yufp8Ja1Kv9lA4SorT8rIx7uHtvgfLzu+H8uO71ds9/yMS/DTkhmdG6SK/1v9Hl7Y0/a7cmnheLxz+nWdOs6re9fjhhDnP6H8+7SrMCdvGP59YJNkeZLOqAhpn96xAgsGj8GcvJ6dPDlUdO3xObGz9XvJMlFkSEtERPGXkOUpjY2N8J249Wbr1q34+9//jry8PLzxxhuoq6tDa2srvvvuO3+f2dWrV+MnP/mJ5BjNzR2zmSYlhb4Sb7V2zH7b0tISYkulgoKCkP9NmzYtquNR92BI23eFCmgB4KW96yM6zjsHt6gGtEBbEEWUqHQaLcan56muq3fZ8f7hrf7H5bZGf0ALAK/u24Bmt6Pbx0gUT16fD6/t2xj1foNj2O7gu7LQf2dq7Q7MfbySdkCYkDZcj9KTMvIjep7nd38ffqMI2dxOf0ALAO8e2oIyW0OnjvXqvg2dHsfivevwadkuxfIUvVH19+L1/ZsUy7qbNsin3GyzBl9X7FUs9/kY0hIRUfwlZEhrs9n8XzscDlgsFnz77be4+uqrkZ6eDrPZjNNOOw3ffPMNJkyYAAD44IMPsHbtWsl+7QwGQ8jnC2yVYLcrZ32nvk+W0cLHjLbfqHJEdmHlmL0x6LpzBo6M1XCI+qQfDRkXdF1Za8ffzraG44r1LW6XYhlRf+IVfbB73VHvl6w3ht8oQivLQ4e0ydoMDDR39GBNM5j7/CRZswcMCxo0T8sqQFKYn+/sAcMiugi7q7EK3hj1Za13KT9HHGlp6NSxGrtwAayitUnRfx8Azsovxpn5yorZWqdNsay7aQQB47OUn9FuHJOM8lblOduE9KE9MSwiIqKQ+vZ9Sp1kMpkkj2+++WaMHKkMUcxmM/74xz/6Jxb7z3/+g5NPPllxDJcr9AdIp7Ojus5sjq6iLlx7hIqKClbT9gIa2aRQzGj7jyZXZB9iah3SGYSHJWdiVFoOTh8wHHeMntUdQyPqM341dg60ggbfVe7HjoYqHGiu9a+rsreoft0u0l6JRH1VZ3/D5beVd0WTK3SIeMOYZDyaeSse3/oN3D4v7hh9Kiy60EUKvV2WyYqvz/spnt25WhIiDk/Jwn3jzwi7f5LeiG/O+z88tX255IKuVxTx5bE9/scOrwdHbPUoSs5UO0xUPCphb6gJzkLxyl5bx6fnId+SorptrbMV62s6PpM0uBxwi17FdmcPLMYZecPxtx0rUWnvuOvQ7on+IkQs3DEpBR/steGbow4Upuhw5mAzJucasaRcGRqfnTs1DiMkIiKSSsiQNjlZenvTOeecE3TbM888EzqdDh6PB+vXd9z2HHiMcC0MAit3w7VGkAvX75Z6B/ncBAwV+o+mCCtN6lzSkPa2khn4f2PndMOIiPoerUaDX42bg1+Nm4Mntn6LezYs9a8LDDeqHM2Kfd0+ZRBAROFvx49Go1MZ/j1xWgYGJwd+VLDghZk/jtlz9gYzcgoxI6ew0/uflDkQr552pWSZKIpIf/O3aAy4yLu7sTo2Ia2oEtJ2cnJF+bnqvePPwJVBevCvrT6M6R8v8j+ud7UqXpsvHjwWQNvr/YMTzsLP13zgX9eZSvFYSNJrcO3oZFw7WvrZr0ZW2TvUNAFhrlMQERH1iIRsd2A0GpGdne1/HDixl5zJZEJWVhYAoLq6YwbTwPA03ORegdWwoZ6L+i75HxLbHfQNkdx+2OR2QowgdJdX0mYYLZ0eF1F/lmOSXqyUhLQqlbRqoQRRfxLJe4yaWFbSNruVY0jIDwkxIAgCRqZkS5btbqwOsnV01C5adb6SVvraqpXdFRYo3SA9p3F4PYpWNIG/j2adtI1EvELaYGoc0pDWqLHAwfkkiIioF0jISloAGDNmDJYtWwYA8HpDV+m0r9fpOn5co0eP9n+9a5eycX6gwPWjRo2KdqjUB8jPa6vtDBV6i31NNfjo6A6clJGP0/OGY09jNd459AMaXY6IKvTcPi8e+eErNLudKExKx7XDJyNZ39HupMzWgLcOlKK0rlyyX6bRKj8UEQHIMUtD2gPNtbhn/ccAgCe2LVNsz0pa6qu8Ph/ePFCKrfUVIbdzeD2dOn6sQtpgITEzq84bmZqDdQHtAd44sFG1D6qcRhAwI3sI8i0p+Lhsp6JNQLVKn/ynti9HtikJOo0Gp+UOxXmDSiIaozyklbfuCpRuVLZr+7x8t+Rx4O+jSdbrd0NNGZ7duQpHWur97T1GpGThmmGTFYFuT6h1Si+sGzVmVLTwvYaIiOIvYUPa0047zR/SHjhwABMnqt/e09TUhJqaGgDAwIED/cuLioqQn5+PY8eO4bvvvgv5XMuXL/fvX1hY2PXBU68jb3cAAM0uH5INrEOJpyMt9ThpyV9h87RVe/zt5AX4XekXaFCZeCOUB0s/93/94ZHt+OLcWwEArR4XTln6DI6qzKycyUpaIlU5Jultp81up2o42+7f+zfhkclzu3lURLF394aP8dT25d12fH0nKyjlmlzqaaybtwV1WklqjuTxhpoybKgJfeddZ72yb4P/60fxDd447SpcPWxS2P3k7Q60IdompKlMkLZFdvEhsKJXbUK2XwS0P2j3xbE9eOf068KONdbklbQGwYzSahdcXhEG+WzAREREPShhE6RLLrnE//UHHyhPGgLXtVcYnHrqqf7lgiBgwYIFANoqZdesWaO6/5o1a/yVtAsWLIAQ4io19V1qJ3Q763rXrV2J6E9bvvYHtABwx9olUQe0cl8e24P6ExUYa6oOqwa0AJBtiq7/NFGiGGBODr9RgFVVh7pnIETd7I39G7v1+NYYTdxVYVOv5E3S85y1s+QhbU96PcLfO/kkZBoE//fWa7RINZiCrgcAS0BFbIreGNEYPjy8Da5OVpJ3hbKStu1728VzdyIiirOEDWnHjx+PuXPbKnPeeustfP3114ptjh8/jgceeAAAYDAYcOONN0rW33nnndBq227tWbhwIex2afhjt9uxcOFCAG2tEu68885YfxvUSwxLVVYMOD2sQIm39w9vjXqfJF34DxatJ24/bHY7VdePTsvFiJSsqJ+bKBEMtKZiSlbkk2KatAl70w/1YQ6PG9UO5QzykQqsREw3mHGPbCLKUak5GBqDiagA4GCjMiQbnqbDACv/9jrrrPwRSFepPu0J+5tqI9quVdYn1qoPHfpfWDAm5Pr5gzpawZ2cPRhZEbR98oi+uLS0CbyADwA6oe17r3Ww5QEREcVXQp99Pf300/j+++/R0NCA+fPn484778S8efNgNpuxbt06PProo/5JwR5++GFJuwMAKC4uxt13343HHnsMGzZswMyZM/HrX/8aw4YNw/79+/H444+jtLQUAHD33XdjxIgRPf49Us8waAWYtAInHehjBpiTcXZ+sb/q5Nbi6bitZAYm/u+pkPu193FTm9Do/vFn4uejZrJqniiET86+Gc/sXIXDLfUAgA8Ob0OT26G6rbeTkyoRxVOFvUmx7JphkyS3lNc4bFhatlN1/+/m3oY39m+CUavDtcMmY2z6AJSk5WBl5SHkW1JwW8mMmL3PHGpShrS/mZYWk2MnqhSDCavO/wVe3LNWUbWp5lBLHb47fkB13bj0PEzK7PgM0upx4Z1DWwAAlxedBLvHjf8d3e5ff9hWD6/PB22YdhgtsgvN4Sqz/3nKpRiXPgDbGyoly40aHeYXjMK8go55N6x6I1ad/wuMfP/xkMcEAB96/jVeGdK2XRRpcHJOCSIiiq+EDmmLi4vx0Ucf4dJLL0VlZSUee+wxPPbYY5JtBEHA/fffj3vuuUf1GH/84x9RVVWFl156CaWlpbjiiisU29x000145JFHuuV7oN5jgFUr+aAjxuGkk6SEELfuAW0ffF477Uq8dtqV/mWR3HbX3sdNfqvgmLRc9s4kikC2KQm/n3iu//GhlueCBhTyyW2I+oKK1mbJY5NWh9dOvVISrJbWlquGtBpBwNTswZiaPViy/MYR03DjiGkxH+tBWUh7w+gkWPUJe7NdzIxKy8WT0y6MaNslh7cFfQ28rHACHjjprKD7Vtqb8b+3O0Jat8+LY61NKEhKC7qPT/T57wpqF+5OIrNOj7vHnR5ym0DFqdlI0hnR4lG/66hjLD17vuz2eRXVu9oTIW0jQ1oiIoqzhD8DmzVrFrZv347f/e53mDBhAlJSUmAymVBUVIQbb7wRGzduxMMPPxx0f41Gg8WLF2Pp0qVYsGAB8vPzYTAYkJ+fjwULFuCTTz7Biy++CE2MJneg3kseBzKi7f1CzWQcSrBKWl2MZtomSjShbtuWXwwh6guO2Rslj/MtqYrKV0OQ94xwFxhjyeUVUdYsDWmLUhO6hiMuDNrg5w/h2hDkmJIk/WAB4GBL6JYHdo9bUUwQ7nk6I5LzrJ4OaVtlVbRARyVtPUNaIiKKM56FAcjMzMRDDz2Ehx56qNPHmDdvHubNmxe7QVGfIz8PPdocuq9Vi8uHzw7bUe/wYnKOEZNyI5tkgcJ779AWfF6+G1WOlpDbaTsZ0g5/r63iXt5XUxdiZmQiCm5YiJB2eaV6dRlRb7ansUbyOE9lwrxgIW1nLyB2xof7bAjs1CQAGJLCjwc9zaAJ/jMP14ZAEAQUJmVgR0AbggdLP0dhUkbQfZwqdw0lxWgiOunYwm9j97qRHmabOmcrntm5EtUOG64dNhnTZFXmoTg8bjy7axW21h9vez6PcnKw9kraNRVONDp9SDUGtCWxe/HVYTvSTRqcNdgMrYbtrIiIqPvwLIyom3x0oBUXDrMgxaAe3D25sRE7Tswi+9URB+6bloqTshnUdtU7B3/AZctej2hbbRdD1Q01ZZLHOlbME3VKjikp5Pp11Uei+lBOFG/3b/pU8jjfkqLYJlj1ZE9FQKVVTry3T9ovdYBVC7OO72U9LVhgD4QPaQGgSBbSfnf8AL5DdBe4InmeaGki+G3+xfcf4P0zbwi5zY++ecXfDuJfe9Zix8V3Rzxx3s/WvI+X964PuU17JS0APLquAY+d2hZwu70i7ltZhyZX25WMylYvrhutvOBCREQUKzwLI4oRo1Z5IrqnXnm1HgBa3T5/QNtubUXonl0UmQ+PbIt4W7UPJFpBE/LDUijJeobsRJ0xMXNgyPXvnZgkh6gv8KjMVp9usCiWJetNqvt3R1im5uMDygmtCllFGxcpBvXfBQDIMJrD7j88JatLz2/U6mCWtUyIhUh+l789vj/k+iaXQ9Kv1+n14L8Hf4h4DB8f3RFyvRY6aNBx3newyYM6R9vf8JrjTn9ACwBLD9ojfl4iIqLOYEhLFCMz8pQBndOr3mfLpbLc5mYX21gI1+Ig0KWF4xXLtBoNLlFZHokfF07o1H5EiW5y5iBMyMgPun5XY3UPjoaoa+pdyiBn3qASxbIMowVn5Y9QLO+p95JttcoLyTkW9laPh7FpA1CSmqNYnmdOwam5Q8Puf0XRSV1quXR54QRouqFl02VF4X+X5ZN4yTW5HYpluxurIh5Dszt0EURx0ihFv+j2c/IKW/jJZImIiGKJl8uJYuScIWa8tF0aEPqC5K4eleVscRUbtQ5pZdDUrALsbarBydmDMT49DwCg12hxRt5wnKny4RgAXpp5Gc7IG449J4KhTKMF9278RHXbcweOxMSMgZiVW4jzC0bH8DshShyCIGD53J/h1X0bkKI3YndTNR7d8o1//c7GyhB7E/Uu8vchADhPJaQFgPfPuB6v79uIQy31AIAxabm4atikbh1fKOlG1m/Eg1ajwXdzb8O/D5SiorUJAJBlsuKKopOQFMFdOtNzhmDV+b/Ax0d3wKHSbzaUkanZuHbY5E6NO5w/T5mPSZmD8EPdMQBArjkJQ5Mz8aNvXvVv0+pxQxRFRVAauF7uuL05oucXRRFOrzQEvmH4FGSfaLFTkpqD+YNOwsJvGyTb2E+cqJtU7pLziWKP9o0mIqLEwpCWKEYEQUBRig4HmzpOjoPNWOtRSW9VzgOpE2qdNsnjByachQsHj4nqGCadHjcXnyxZFiyk/XHheNwk25aIopdiMGHh6FkA2nrQBoa0B5rr4PR6YNTytIV6vzqnNKS16gxBf3eT9Sb8bNTMnhhWRDJMDGnjJcecjLvGnNbp/adlD+51vbu1Gg2uHjYJVwdceDjQXCvZRoQIh9cTtN1Cq8elWFZma4zo+T2iDyKk59z3jj8DI2VVy6lGDRqdPv9jR3tIq1OenLd6RCTpedJORETdg2diRDGklf1FBaukVeuCwNliY6NW9uE406jsAxhL4W7TI6LojUzNljz2ij7sa6qJ02iIolPnkr4PZXTz+1BniEEuIqeb2O6AupdFqwxjbSpBbDu1StqDLXVBf4cDOVWqio0a5QUTecWs3dMW2JrlJ/YA7GxPRkRE3YglKUQxJD+Ve35LM2YPMvlvi7J7fHh/bytWHlP216Kua/W4FCf6mUZrtz6niyEtUcylGszIt6Tg2InbfgHghpVvI6sLf89DkzPxm/FnYqA1Nep9HR43Ht36DTbUHA16h0Qow5Iz8ZsJZyLf0vbcr+3bgA8Ob4PDqz65pF6jxTn5xfj5qJlBbwGm3mVzbTme2r4cVY4WVMhuxe7ui4XR2FrjwrKjdslkSIHY7oC6m0VlMrFapw1ZJitEUcSbB0rx1bE9OCu/GPMLRuFna95XbG/zuHDuF/9CgTUNvxo7G1pBg4VrPsAXx/bglJxCpJxoEeH2+RT7qlW1m2UVs44T1RQGlWsWrSeqbF1eER/ut6HO4cO8IgsGJ6t/rD7S5MHHB1uhATB/qAWDgmxHREQEMKQliimNSjXso+sacP/J6QCAF7c2Y+Ux9QkMOvG5n2TuWf+xYlmmiZW0RH3RqNRcSUi7oaasy8dcU30YGy+8K+r97tmwFIt2ruzSc6+rOYp1F9yB/x3ZjutXvB12+4+O7oBeo8VPS2Z06Xmp+9ncTpz+2fNoUJkwDOg9lbTlLR48vr4BbmVu5ZfGkJa6mUWlrcHNq97Bink/x9Kynbhm+ZsAgFf2bYBRq1OthgWAL4/tAQB8dHQ7PD6ff8K+1VWHQj6/Wkgrb2vgUJs84oT2KttXdjTj6yNtRRdrKpx4/swsxXFcXhF/WFOP5hPVt5uqXXjujEzoePccEREFwTMxohhSaV2FLTXugK+D384l75lF0VtTfUSxLN1g7tbnnJpV0K3HJ0pUY9JyY37MTbXlqHHYwm8o81n5ri4/9/qao2hxO/HB4a1RPO/uLj8vdb9VVYeCBrQAkGdO6cHRBLfsqCNkQGvQAHo2yKduptMoy1PbJ2r9xZoPJMuDBbSBqh02f0Abjl6jhVWlktesaHfQdk6ultW2r2sPaNuXfXlYOYZ9DW5/QAsAjU4fjrXw4j4REQXHkJYohowhPtyIooiWEH2sgvWvpcgdtTVIHhdY01Q/DHTGvePOUCybllWAU3OHxuT4RCR1w4ipMKv0Luwq+eSCkahojWwm8XC8og9b6isif157U/iNKO72huiXrBU0uGHElB4cTXCbq9Xv5Gl3wbDeUfFL/d802QXu9tZRh1vqu/V5rx46MbJK2hPtDpwqKa3avBIAUG5TBspVrcpA1sNb54iIKAS2OyCKIbVZYNs5vSKD2G5kcztR5WiRLFt61k0xO/6fJs/FnLxhaHTZkaI3odHlwILBY9gvkqibTMwciNIFd+HL8j1wRFBNFcxvSz+T7F8nm1wwHJvbiRaPNNy6b/wZyDCEDrQa3Q488sNXkmUenw/bGyoly34xaiaGWNta4uxqrMLivev86ypaGdL2BfKQdkrWIFxeeBL0Gi3m5A3DhIz8OI2sQ53DiyPN0sBoflHbnSaVrT6cNdiECdnKCkOi7vD8KZdi0v+e8j9ucjsimghs4ahZGJKUhl+ptLeS++OkuTAEXKgfnpKF8wtGqW4brN2BXSWR9QY5mXepbFttV4a0/CxAREShMKQliqFQIa0tzGywPGnrmkMq1RdDkzNidnxBEHDuwJExOx4RhTcyNQcjU3O6dIy/71wpqbKPNqStlF38Adoq61MMppD7ldsaFSHt3qYaxe27vzvpHGSZ2iZEW1d9RBLSHrc3QxRFXgzq5fY2VUsezxs0Cr8aNyc+gwlic5W03ZJVJ+CqkiRo2RuT4iBN9vrpE0XFxK9q/jrtAug0Wry0dz12yC54yf1yzGkwqfS/VSOfOKy9pYFab9pg7WrVQtqqVmV/ERbSEhFRKGx3QBRDphDtDmwhJiEAwI60XXSwpU7yOMeUBOuJ2X2JKHHJJ22qjTaktUtbHZi0OiR38rVF3uog35LiD2gBZe9Sl88bca9Fip89jdJK2hEpWXEaSXCbq6UB2LhsAwNaipsUvfIiV5PbobJlh2S90d/CKpLXYE0UF7fkPWn97Q6iqKR1qrSaVauk5fk+ERGFwkpaohgKVkn7zh4bvGEunfPKeuR+qDuGh0q/wBFbW/XsUVsDqmWTARXFsIqWiPquTFlIe/2Kt/Gfg5tx//izcEpuoeo+NrcT9278BGuqD6PeKQ1JB5iTO13Z+rvSzyWPx6fnSR7nmpMU+xxrbVQEzWrjvW/jp/i++hB8J95MzFo9flw4AbePnoUf6o7hz9uWYXdjFQAg3WDBz0edgouHjJMcp9ntwK83LMX6mqPwiSLMWj1+NGQc7hpzWkJV87a4fHhjVwuqWr04vcCMUwcGr5p2+7zY19y7QlqXV8R7e234cH/bBYmiFB3KWqQV3CextQHFkdqdCOd8/kLIfQJfB2Md0hpl5+9rKpx4dF0DalRC1h+qXRicrPwIvaXGhcuXtr3GDkzSwqARFH93APyv0UQulwstLS2w2WxwuVzw+ULM7EhEvYZGo4HBYIDVakVSUhIMhtieUzGkJYqhYJW07+4NP1ENT9ki4xN9mPflizgWpldjURJDWiJSVtICwCdlu7Cy8hAqrngQFpWZvu/b+Cme2blK9Xi55uROj+W4rCpX3qvUoNUh02iRVPv+Zdt3eOXUK0Ie9zcbP8WinSsVy1dVHcIAczLu3/Qp9jfXStZ9U7EPey75NYYHBIq/XPcRXtyzVnGMAmsaflw0IfQ314+8sLUZa4+39SHeXuvGwCQthqaq3zb90p51imUjUrK7dXzhLD3Y6g9oAeBgkzIoYkhL8aTXaGHW6mH3uv3L5P265dINZv/XybrwIa1WiPyGUXm7A0BZfd5u5TEnvq8IPQlfeYtKWe0JPN8nURRRU1ODmprgk04SUe/WfpGlsrIS2dnZyMzMjFlBA0NaohhKN2rDbxSEO9h0sSRxuKU+bEALACVd7GNJRP3DIEuq6vImtwMba8pw6oChinXLKw8EPV6kF4BSDEZoBCFk1dTEjIGKZS2yvoyRVF2tqDwYdN2DpZ8rAloAECHi+6rDkpD2+6pDqsdYXXUooULa9oC23bKjjqAhbXlro2JZuMrn7vb27tAXhgtTdEg3df58hSgW8i0pqq9NwQyydryW51tSQmwJpBpMUX1YDtWuTE1XTtlZSEsVFRVobJS+dwiCAK2Wr8tEfYHX65VMdlldXQ2Xy4X8/NhMFMuQliiGJuZEXpkyOkOPHXUdFQQtbt7iEgmnN3h1QrssoxXXDZ/cA6Mhot7uxhFTsXjvOjS7lZVPagEbADQG6QNr1OpwW8mMiJ43WW/CDcOn4qW9ykpLoO1C0oWDxyiWD7GmY0/ARFRq45YL1ctxj2xSq0DNsv08ovr7kMsX/nW3P6uwBf/+g/3MerOrSqzhNyLqZneMPhW3r/0wom11ggY/L5npf/yTEdPw6r6NaPGovz7ePmpWVGPpyf7MnCg4sTkcDklAm5mZiZSUFBiNxoRqK0TUl4miCKfTiaamJtTWtl1sbGxsRGZmJozGrs+Jw5CWKIaSDBq8fE4Wvj7qwBs7lTOCtxubqcdZQ8yykJZnbZFwRxAWbL/4V8jpwi3JRNR/jM/Ix64f3YMVxw/iiu/ekKw7amtQ3afRJQ0v7x9/Jkan5eKUnEIURtHv+oVTLsX1wyfjUEu9ZHmq3oQz8ofDrDLz+M9KTsGd65b4H4ebTAeILMhVI6/aDVbh5UnwPnmeEKmKvNL5mmGTuns4ITW71P+tpuYacXKeEaMz9Mg0s1qL4m/h6Fk4NbcIW+uPQwxoAuDx+XDU1oAhSenQCAK0ggYnZw+WVP1PyhqEXT+6BysrD8Lpa2vncdzeDLvHjbmDSjA1qyCqsQSZUqLLzi8yY+lB6UU/nu0ntoaGBv/XOTk5yMzMjN9giKhTBEGAyWSCyWSCVqtFVVVbP/L6+noMGDCgy8dnSEsUYxa9BhcMtSDDpMHfS9Vvy586wIhkvbRXFitpIxMupE3RmxjQEpFEviUVlw89CZ+W78Kr+zb4l5fZlJW0oiiiSRZ6Xlo4HidlKlsThKPVaHDagGE4LYp9UgzSK/CRBLCdDmll+4lB4oO+WC0aS9GEtALiWwkVrOp3RLou5ARoRPFwUubATr22AsBAa9vreizouqmSdkK2AauPOVHv7HgNZbuDxNba2tEvPC0tLX4DIaKYSEtL84e0gX/fXRF5R3UiioolxGX5/CQdkvTS9S0ukTO+RsAthg5ptbxViIiCkPenLVNpd9DqccErCyXVZiLvLvJZy8NV0np8XsnkO9GItP+tJ8HbHYS6hioPtqOZUb47VNiUk4QBgKEHb+cm6muibEkbxXEFyP/0fKylTWjeE23bdDode9AS9QNardb/t+yNoC1jJFhJS9RNLLrg10Dyrco3ZRGA3SPCqucHqVDcYW67jWY2XyJKLAXWNMnjj4/uQMF/HpYs86oElan6ngtpU2TPtbepRjHGQGof+ItTskP2om33wu41eG3vZji9bVGj3avepuedQ1vwTcU+/2OzTo9LhozHHyefB02Ur7n1Di9e3NaMg40dYaJFL+C8QgvOGtw2e/vRlgbc9v17KK0rl0wU2R6yG7Q6zB04Ek9OuxBGbexOZbfVV+COtUvwfU3HLPNWbSpma2bh07JKPFT6hWLiygZZa4x4hrRNTh+e+6FZdZ2hu1Ioon6guypptRpA/pLAegwiov4l1v2kGdISdRNzkLDVqBWQYdLApXKhZXutG9MGdL3ZdH8Wrt2BTsOQlojUBc4ODrRNiKVWTSvXk5W08pDWJ4oRjTHQzNzCiEJam8cFG1xht7N73YoxPLb1G4xKy8F1w6dENbaXtrdgQ6X0OWsdwL+2NqM4XY/ByTrcuvodfFa+W7Fv4Bie3bUaQ5Mz8cuxs6N6/lCu+u5NbK2vkCyz+5rxwfF38N7xyKojNHFsd7Bos3qLJYCVtEShaLvp1FErKBugMKQlIqJQmGYQdZMMk/pHtSHJWmgEAUaVO1yCTfhBHcKFtLnsR0tEQYxMzYl6nwHmZOg1PXdLorzaN1qpBhPOyBuuui5LP6hLx5YrrS2Pep/9DcFbM+w+MZnmhpqyiI61qupQ1M8fjMfnVQS07XyI/Pa1eL0H7axzYUtN8MA93cRTfqJg0o3d8/eRbtSotDsgIiIKjmdsRN0kSa/BuYVmyTKtAFw03ApAvSze6eXl9XBcIUJaAQLuHXd6D46GiPqS4SlZuGroxKj2uX/8md00GnUDram4Icrq1ED3jTsDlwwZj4kZ0sl4pmYWYkbKhUjSpnd1iH6decdyhHifq7G3vb7bPOGrewHgqK2hEyNQ5wnTSicSueZk3DhiagxGE71399iCrivJ0KMkQ9+DoyHqW3ItWkzP69ydbDPyjDCptBOZmW9EtkWraIESYh5CIiIitjsg6k43jE7C2YPNqLF7IQjA4GQd0k0dFVmTcgzYVNXxYZQhbXjyStpkvRHvnH4dAGBc+gDkyyYGIiIK9PppV+KecaejojX4reHtSlJzUJic0QOjknpp1uX45ZjZKI+yzcGIlCwMS8kCAHw/fyE21pShye1AjikJoicLf97YhHMzbkSduwIeMXhF66Mz8zExcwA21Zajxe30L//bjhWqbQiiEep9rtruhU/0RTwRWkxDWjHykHaQJRX/mvljyTKjVoepWQVI0vd8y6JddS5sq5X+zCblGHDuEDOSDBoUpeigZbsDoqAEQcAdE1Nw8XAPGpw+pBg0+M9uGzZXSy8YXTHSisIUnf9OufwkHXIsWtjcPhxo9CDfqkWrR4RPBAqS28735X96an3PiYiI2jGkJepGgiBgULIOg5LV/9SMsivvLoa0YblksyYOsabj3IEj4zQaIuprNIIGEzLyMSEjP95DCUoQBIzLyMO4jLxOH8Oo1eGU3EL/488PtQIAtIIO2YaCkPuOSs2ERafFrNwiyfL3D2/t9HgAwOsT4QmRhdbYfbB7IgtoAaDS3gKX1wNDDCYP80YR0uaak3HeoJIuP2esvLtXWkWbbtTgrkmpnCyMKAoaQUBhSkfF+ZRcoyKknZFnxACr8vXGqtdgXJYBAJCpOK70MStpiYgoFLY7IIoj+QcoVtKGJ293YND2XK9IIqK+qsYeeQjp8HTPe1G497gauxetEVbRAoAIEcciqIiOhFp1W5pOvYdxShyqZYPZVefC1hrpz2zBMAsDWqIu0ql8Su7M35Wi3QGb0lIv4HK58NZbb+G6665DSUkJMjMzodfrkZWVhcmTJ+O2227DV199BR9/YYl6HCtpieJIXkm79KAdSw/acfvEFMzM77nZxPsSl88jeWzQ8GWMiKid3ePDP35oxg/VLngCgkdvFJ+z7vquDreflIKZA0O/D/19x0os2rEaAGDWWDEp9VTcOGIKrhuVpHp7/aEmD3a3rsfu1nVw+Ryqx3wxxJxhKXoTPKIXrQHVtif976/Yf8l9ePNAKR7f+i2qHS0AAK8Y7Szqyo0LjCVo8FQpx2HoHe/Pnx5sxSs7WiTL0o0anDnYHGQPIoqUTuU1zNCJtiHyXNfXqW7eRLHz/vvv4//9v/+HQ4cOKdbV1taitrYWmzZtwvPPP4/i4mL89a9/xfnnn9/zA01whYWFOHz4MK6//nq88sor8R5Or7Ns2TKcfnrbXDTffvst5syZE98BxRDTDaI4koe07f5e2oSJ2QZY9Cx2l5NX0uo1/BkREbX75KAda487w28YxrM/NGFSrgHmgHIyeUseESJEnJjsy9eElfWfIPPAMIzJNGDaAGW16eMbD+GHlm9DPm+ooh29RoM8UzJ2N1b7lzW6HPjp6nfxXhdbMagZaByBbbYVEGWhSoo+/iHtcZtHEdACwIWsoiWKidhV0kofR3PBjCjWHn74YTz44IP+x2effTYuvPBCjB49Gmlpaairq8Pu3bvx0Ucf4csvv8SePXtw//33M6Ql6kEMaYniKNscPGD8vsLJahgVDq+0ktYYg16ERET9xaEmT/iNIuAVgQqbF0NTO96nrLrkkPuIENHkrcWe+gxFSOv1idjfcqxLY3pi6nx8fHSnJKQF0C0BrU4wIEmbhhz9YFS6D0vWDY3DZHJyR5u9imVpRg3O4nkDUUyMzTRIHmeYNOhM7YRew9Zm1Du8/PLL/oA2JycH//3vfzF79mzFdmeddRZ+/vOfY9u2bbjrrrtQXV2t2IaIug9L0IjiaGa+CYUp6iFjd/UE7OtaPdJJHKw6Q5AtiYgST4srdmVa8km+5g+cgiRtetj9KmzKoLisxYtWr73TYzkjbzguLzoJvxl/ZqePEY2x1lnQCFpMTD4LJo3Fv3x4chZuLj65R8YQikell8PPJiSzipYoRpINGlxWbIUAQK8BrhhphSBE//dl1Uv3aXHz/J56Xnl5OX7xi18AAKxWK7777jvVgDbQ2LFj8fnnn+NXv/pVTwyRiE5gSEsUR0kGDR6blY5ci/JPUe0DGAE2WUhrYUhLROQnDwAuL7bi0VnpeHRWOgYnKydafGxWOl47LxuvnputWCefTCtJm4y5GTfj3Iyf4Oz063Bl/o3KC2WiiOM2ZZXnvgY3nD5pSHtm3gg8M/X/cHb6df7/fpR7AzZccAc2XnAnGq9+BPZrH8Wxyx/El+feCovOgMlZg7Bm/sKQP4M0XYbkmE9P+j8sOf0XWHL6L3B53o2SdYH/nZtxHZac/gv8b859KLZMAQCk6DIxP/NnKL3wLmy76FfY9aN7MMiaFvL5e4L8luk8qxYTsnvPhGZE/cElI6x44ews/POsLMwe1Lkq9SRZ+a3NzX4H1POeeuoptLa2AgD+8Ic/oKSkJKL9NBoNrrnmGtV1K1euxLXXXovCwkKYTCakpaVh4sSJeOCBB0JW3y5btgyCIEAQBCxbtgyiKGLx4sWYNWsWMjMzkZKSgmnTpuH111+X7OdyufD8889j+vTpyMjIQHJyMmbOnIn//ve/QZ/r0KFD/udq7+v6zjvv4KyzzkJOTg7MZjNKSkpw3333oaGhIeTPYtu2bXjkkUdw7rnnYtCgQTAajUhKSsKIESNw/fXXY82aNSH3f+ihh/xjAYDGxkY8/PDDmDhxItLS0vxjnDNnDgRBwOHDbXfxvPrqq/792v8L7L+q9j2+//77OOecc5CTkwOr1YoJEyZg0aJFcLs7evqLoog333wTc+bMQU5ODiwWCyZNmoTnn38eYgQ5RGNjIx599FHMnDkT2dnZMBgMyMvLwwUXXIB333035DHax/vQQw8BANavX48rr7zS/3MdOHAgrr32WuzcuVOxb/v3296PFgBOP/10xc+oL/fx5X3CRHEmCALyrTpUtkrDR3kFE7UJnDAGACxafZxGQkTU+8gDgMIUHYamtr1OFqfrcUR2m3xRasdraKpBQKOr46Ra/j7U6vFBEASk6rIAACOS9dDXSINfESKOt3rhE0XJrOb7G91witKQdlhyJi4pKsTyw3WBB0C2IQODA+4yydNJX+dHpuSofu/ttDAiXT/A//j8IekYntZ2jO/L6iB61VtCZJs1uLAwC1WtXryxo9a/XCNoMCotN2gf+Xjw+KQffsy63jM2ov4kxdC1mqYkVtJSnImiiFdffRVAWxXtLbfc0qXj+Xw+3H777Xj22Wcly51OJzZv3ozNmzfjmWeewTvvvIOzzz475LHcbjcWLFiAjz76SLJ8/fr1uO6667Bhwwb87W9/Q319PS666CIsX75cst3q1auxevVq7Nu3D7/5zW/Cjv2mm27CSy+9JFm2e/duPPbYY3jttdfw9ddfqwbYgZNUBXK5XNi3bx/27duH1157Dffeey8effTRsOPYu3cvzjnnHNXJ27rqZz/7Gf7xj39Ilm3ZsgW33347li1bhv/+97/weDy45ppr8O6770q2Ky0txW233YZNmzbhhRdeCPocX3/9NS6//HLU1tZKlh8/fhwff/wxPv74Y8ybNw//+c9/kJSUFHK8zz33HO644w54PB3nZseOHcMbb7yB999/H59++ilOO+20SL/9foGVtES9gNrpmlcU4fSKaHX74EvAqtoWtxONLrvivwaX9EM+2x0QEXWQBwBJAQGDvDeinFa2vvVE4CuKbe9FTbJWCmadIAliAcAjutDqceJAow2NLjuaXG64vR7sqG2Bwyed6CrLZEWuRavoz76lRnrRUi7NaEaaIXhVmyBIg+MMU8fxQ7UDyDBpg25T7/Ci1e2Do4tXUNt/ll3pS+kTRTS7pPv3ovyYiAJYY1xJ6/D44PV1/XOBKIqKiz3UP23fvh01NTUAgFNPPRXJyaH7y4dz7733+gPaoqIiPP/881i3bh2+/fZb3HXXXdDr9WhsbMT8+fPxww8/hDzWb3/7W3z00Ue4+uqrsXTpUmzcuBFvvfUWRo4cCQD4+9//jq+++go33HADVq9ejdtuuw1ffPEFNm7ciMWLFyM/Px8A8OCDD2L79u0hn+u5557DSy+9hGnTpuGtt97Chg0b8Mknn+Cyyy4D0BYMnnvuuWhublbs6/F4YLVacdlll+H555/HsmXLsGnTJnz22Wd48sknMWTIEADAY489hpdffjnsz/DSSy9FeXk5Fi5ciC+//BIbNmzwf98vv/wytm7d6v/eFixYgK1bt0r+C/Yczz//PP7xj39g3rx5eP/997Fx40Z8+OGHOPnktjZN77//Pl5++WXcfffdePfdd3HVVVfh448/xsaNG/H222/7A+p//etf+Oyzz1SfY9WqVZg7dy5qa2uRm5uLRx55BB999BE2btyIjz76yF95/cknn+D6668P+XP4/PPPsXDhQowZMwYvvfQS1q9fj+XLl+Ouu+6CRqNBa2srrr32WrhcHeeFAwcOxNatWyVh+0svvaT4GV100UVh/x16K1bSEvVS7+1txXt7225LSdILuGlsMk7Jj/+M0t2t3NaIH33zCtbVHI1oe7Y7ICJqU+/wKsK/wCqucCGtvBjzr5uaADRBrwHUcgWzXoD8iCsa3wMAfPhB+PFmGi0QBAHjswz4+qjDv/z1nS347x4bLiu2Yv5Qi+q+RUkZKK0rV12nQUdIqxHaJtRqZwjxM2gPc03KrhC4Y1lHtW9hig6/mpyKbIvKhiFsrnLiuR+a0OgSIQAYl2XAXZNS0OTySY7/8CnpKE5Xv0tkY6UT/9zSJKl4BgBdmH9bIoqPJENsKmkrW734y4ZGHGn2wKQVcMVIK+YWqb8+hvPStmZ8frit6CHHrMHfTs9UXHCj/iMwKJ08eXKXjrV161Y8+eSTANp61q5YsQJpaWn+9XPmzME555yD888/Hy6XC7feeivWrl0b9Hhr167F008/jTvuuMO/bNKkSZgzZw6Ki4vR3NyMq666CjU1NXj//fclwdukSZMwZcoUTJw4EV6vFy+88AL+9re/BX2u9evXY968eViyZAl0uo4YbO7cuRg7diwefPBBHDlyBA8//DD+/Oc/S/Y96aSTUFZWJvle25177rn4xS9+gfnz5+PLL7/E73//e1x33XXQaoOfI2zbtg2ffvopzjnnHP8y+b+NXt92HpCWloaxY8cGPVagtWvX4s4778RTTz3lXzZp0iScffbZGD16NA4fPox7770XdXV1qj/32bNn+3/u//jHP3DeeedJju92u3HNNdfA7XbjvPPOw3vvvQeLxSI5xvz583Haaafh1ltvxfvvv48vv/wyaEX1mjVrMG/ePHzwwQcwGDo+05966qnIzMzEAw88gCNHjmDp0qW4+OKL/T+XsWPH+i88AG0XCyL9GfUFrKQl6gXCna61uEW8uK05Ia54/3Ld/yIOaAHAomO7AyIiAPhgX6tiWWA/RH2YTFFeSdsuWOGXWSdAGdNGLstkBQCMy1ZebHN6RbyxswU1dmV/WwAoSs4IelxtQCVtmlEjCR+MIX4GmSdC2nCTbx1q8uC9fbaQ28iJYtv7eHu4KqKtYvjrIw68vF1aYfy77+uDHuNfW5sVAS3ASlqi3krek7azkzu+s8eGI81ttwM7vCJe39miuLshEg6Pzx/QAkCV3Ydtte4Qe1BfF3hLek5O6HZB4fzjH/+Az9f2e/fiiy+qhpbnnXcefvKTnwAA1q1bh/Xr1wc93sknnywJCtsNGDDAH8pVV1fjsssuU62MHD9+PGbNmgUAWLFiRcixG41G/Otf/5IEtO3uv/9+f8i3ePFiSeUmAGRlZal+r+0MBgOeeOIJAMDhw4exefPmkGO54YYbJAFtrBQUFCgCZgCwWCz+qtba2tqIfu5qP8+3334bhw4dgslkwmuvvSYJaAPdcsstmDZtGgCE7A1rMpnw8ssvSwLadrfffrt/ebh/2/6GIS1RL1CQFL4ax+YW0ejs341qHR43Pi7bEdU+I1Kyumk0RER9y9FmZa/VwCquMwukLQLk1Zq5UVaG5ll1IcPScEaltn1YHJtpUI16RQAryh0qa4CJGQODHteqTfN/nWmSnuoOsAa/iay9D65GEML+LCpUJkcLpcklotqufA+vsHmwuVr6YTDY9ViXD6gPch6Qa43u346IeoZJdgXF3cmCiwqb9PXdK6q/5oeztUYZyH59xK6yJfUXgbfvW63WLh3rq6++AgCMGTPGfwu9msC+t+37qLniiiuCrpswYUJU2x04cCDoNgBwzjnn+FsIyGk0Gn+IWVdXh02bNoU8ltPpxJEjR7Bjxw5s27YN27Ztk0yUFa7Nw9VXXx1yfWf96Ec/8lfgygX+PC+//PKgx2jfrr6+XjGZ2v/+9z8AwOzZs5GdrZxwNlB7H9nvv/8+6DZnn3120AsHycnJGDFiBIDw/7b9DUNaol7g/CC3c8rZPP27knZl1UHFxGChXFAwGgsG959bG4iIOksURRxqkn5gn5FnlFSRZpq1uKzYCgFtk4RdOVL6Ye3ykVZJ/9ZQSjL0OL3AhCemzkeWMboPfQIE/HTkdEzJKgAAJBs0konCAjUHqRT7v5IZmJ49RLE8RZuFkZZp/sc5srB1XpEZQ1Sea2K2AdPzOloKXT86CZYQk3FF2xOyslU91I2mPWWw58y3arFgWNc+eBNR99DKXlI729Zabb9gdxqEohYS9/cikEQX2IPWZovuLpBATqcTe/fuBYCQAS0ATJw40R8Wbtu2Leh2xcXFQdcFVq5Gsp1aL9lAU6dODbm+vfITaGvrIGez2fDoo49iwoQJsFqtGDJkCMaMGYNx48Zh3LhxmDhxon/bwFvx1YwfPz7k+s6K5c8TUP5MN2zYAKCtl6wgCCH/+8tf/gKgbTKxYNQmaQuUkZGhOo7+jj1piXqBDJMWt41Pxj+2hH4Bau3iZAO93adluySPJ2cOwodn3qC6rVVnQLqxc724iIj6myq7D62yC3nXjFLOqHvJCCsuHm6BAECQ9SAcmqrHc2dkot7pw4Or61UrP/8wIx15SVr/jOezBwxD5ZW/Q0VrM3yiDz/7pq236sbmL1Dh2i/Z1yiYcXbGDRiaYsHfTsmTrBudocfhJmVVWLAJtrJMVnw/fyGqHS1wej247etaaAQNjIJF8n3JK2IzTFr8+dQMNDp90GoAUQQESCdYA4DJuUa8eHYWGk6EF2uPO/Hqjo62BNEGLcdt6hVv0VTVqT3lo7PSUZSiU/xbElHvoJX9bXZ2MmC1lmc1Kq/R4ag9vaOfF4EkuszMTP/XlZWVnT5OfX1HK55wbRP0ej0yMzNx/Phx1NXVBd0u2O3yQFt1azTbtbdhCCbcmHNzc/1fy8d86NAhnHHGGTh48GDIY7Sz20NXp6enp0d0nGjF8ucJAF6v9EJQVVVV1GMK9bMINY7AscjH0d8xpCXqJcL1wAPaWh70Z5+V75Y8nl8wCoOsafEZDBFRH3KwUXoXQrJeUNzq3y7UBDGCICDDpMUFQy14SdYrFQAyzRp/QNtxPA0GWlMBAAVWL2odPli1KSrPq4VFmwyrSj+40ZkGfHpIeSIfLjzINiVBFEVYtC7V9fJK2napxvAVw1qNgEyzVnV7T5RBy/EglbTRhL1qeW6GScuAlqgXU1TSdvJUXq1OozOVtGqvI44gF8Oofwi8zT3cbfyR6ovvO10Z87XXXouDBw9CEATceOONuOKKKzBq1ChkZ2fDYDBAEAT4fD7/ZGFimHOEUJOK9WbtYencuXNVe99SbDCkJeoljBGEtK39OKQ91FyHHQ3Sq7tzB4W+BYKIKJG1uHzw+ESkmbQ41Cit1CxK7Vp15fQ8k2pIG+6tqv2Co1GjvP1eONFlS68yQVlJhnoPtV31btTavcg0a9Hg9EErtFXX6jQC0k4Ep80h3huj7bMbjLzzgccHNDh90ABIiSDwrQzSw1beZzJwuUYQkG3umPhMLVwJMtcbEfUS8kraVrcInyjC5QXqnV4kGzQwagTUOKSvEQLaLjK1//2rVdJWBbn4I9fg9CFJL6DO4UOdU7kPK2n7tzFjxiArKws1NTVYsWIFmpqakJKivJAaTmD1Z7iKXI/H45+wrP2W9XgLN+bA9YFj3rVrF1auXAkA+M1vfoNHHnlEdf9QFcP9RWZmJo4dOwaXy+WfaI1ijyEtUS8RSSXttloXTh1kCrtdX7Ol7hgmLPmrZFmG0YIpmQVxGhERUe8liiJe3NaMr460Tao1Idug6FdamKIeekYq1ahBYYpO0edWHjjItU+oZdIob2HTCG1hpk4l05RX57arsfvws29qVddNzjFgwTArHvy+XnU9ELySNlo6WRpaYfPip1+19ZybnmfE7SelQBsiMQ1WSVvWor78zmVtH/bSjRr8ZloaBqfosLxMWWnMkJaod5Of3osArvykOqJ904wa3Dc1FTkWLWodylLabbVuHGh0Y2iq+uu9w+PDnzc0Yntt6PkeWEnbvwmCgP/P3n2HR1GubQC/Z3s2vUIKvTfpTUBAwIIUsSBgoYoHFDt61E/FemzHo6JSBEUUkY5iUBCpIr33XkMo6X3rfH+EbDI7syXJpt+/6+K6dqftu0uy2b3nmecdPXo0/vvf/yI7Oxtz5szB888/X+zj6PV6NGnSBKdOncKOHTvcbrtv3z5YLPk/d5UlzNu1a5fX64uO+ciRI47b7ibcKujX6iuVsVq5ffv2uHLlCnbv3g2z2QydTldhY6mMr4+vcOIwokpC58U3rW2JpnIYSfl794B81s87YppCreJbFBGRs0uZNkdACwAHbphx2OlLeIPg0p+HvzVGL1vm6U9VbEB+KGooZiUtUPyq1z3XzW4DWgBeT4TmiVKwXGB7oglHU9yHIK4mDvMk1WTH8tPZsIsiFhyXT/jCv5JElZsXNRgupZnsWHY6B1sS8lxus+yU64mgtieaPAa0QMn75FLV8dxzzzn6f77xxhs4fvy4hz3y2e12LFiwwHG/f//+APKDy507d7rcb86cObJ9KtratWuRmJiouM5ut+P7778HkF8x3KFDB8c6q7XwZLW7iddmzpzpo5HmMxjyC7NMpsrz/X/IkCEAgPT0dHz33XcVOpaC1weoXK+RL/CzHVElEROghqfPcRF+1fNX9nCqfNbHB+u3VdiSiIgSXFwiX1SdwNKHtP3r+sGvyHX+oXoVjFr3f6nuqOcHAAjWRMrWBarzLx90rkotML61fKKz0mgconHbf7c4QvXuA2R3lx3bRRGZ5pKHINdybIr7a1SQ/P8QUeXjrsLeG0m5NpeV+ABwxUU1PpA/4aE3utSWn5Cj6iU2NhZffvklgPygsXfv3ti0aZPbfY4ePYq77roLH3/8sWPZpEmTHJM5TZw4ERkZGbL91q5di7lz5wIAunTpgs6dO/vqaZSKyWTCE088oTgJ1QcffIBDhw4BAMaNGwe9vvB3okmTJo7b8+bNUzz2jBkz8Msvv/h0vNHR+ROsnjlzxsOW5Wf06NGoUyf/StcXX3wRmzdvdrv933//7fHnrKQKXh+gcr1GvsB2B0SVRKBOhfGtAzHncKbLbbKqaU/aK7nSP/DtwmIwrF7luDSGiKiyyfIi8Iv0K/1l/v5aFSa3DcJ3RzKhFoDxrQM9hp594gw4mmzBwaRQDKzdD+uu/Q2zaEKIJgptA/oAAHQuhnZLhA6DGxqx6mxOqccO5I/XV+IC1fDXCi4n8DS5uVy4tJN+5lpFJOfJv1Q+3yG4Wl/uR1QdlKaSFsjvRZ3r5j0kW2lGsZtYIEtFjR07FpcvX8Ybb7yB69evo0+fPrjjjjswdOhQtGjRAiEhIUhJScHJkycRHx+PP/74AzabTTLxWJs2bfDCCy/g448/xoEDB9ChQwe8/PLLaN++PbKzs7Fq1Sp88cUXsNls0Ol0mDVrVgU+Y6lOnTph1apV6NGjB5577jk0adIE169fx/fff4+ff/4ZABAXF4fXX39dsl/79u3RunVrHD58GLNmzUJqaioeffRRREdH4/Lly/jxxx+xdOlS9OjRA1u3bvXZeG+99VZs2LABu3btwgcffIC7774b/v75Vyn5+fkhNjbWZ4/lLb1ej8WLF6NPnz7IysrC7bffjhEjRuDee+9FgwYNYLfbkZiYiD179mDFihU4dOgQpk+fjt69e/t8LHXr1kVcXBwuX76MTz75BHFxcWjWrJljUrZatWohMNB3nwPLE0NaokpkQD0/9K9rQMF3vfMZVry2tfBSziyzHaIoVqsvZdkWE9LN0su4FvV5tFo9RyIiX8py86UcAAK1Agw+qrDsUluPzrV0Xr8nGzQqPN8x+Oa9u/Gfnd2w93oeVEJhMuuqklYQBDzSIgCPtAiAKIrIsYoYtzbJ67GqBGDB3ZE3b/v2b4hKENAiTIvd18yK692HtO7/vwDg0RYBGNjAD3YROJRkxge70h3rcqwiUp36UYbqVehYi9VvRJVdcSppBQBP3BKImQcLCzZEALlu3l+yLKLL7wau2r10rqXHrmuFVbbpJs/vUVQ9vP7662jVqhVeeOEFnD9/HmvXrsXatWtdbt+qVSt89NFHkmUffPABsrOz8fXXX+PMmTOYOHGibL/g4GAsXrwY7dq18/VTKLEnn3wSmzZtwrx58zBixAjZ+ujoaKxZswbBwcGS5YIg4IcffsDtt9+O1NRULF68GIsXL5Zs06ZNGyxZsgQxMTE+G++kSZMwY8YMpKSk4JVXXsErr7ziWNe7d29s3LjRZ49VHN26dcPGjRsxfPhwXLp0CQsWLJC0xHBWkknqvPXqq69i8uTJOHfuHIYOHSpZ991332HMmDFl9thlqXpeO01UhQmCAI0q/5/zRCo20f0XwaooMVdeORxtrJpnvYiIykOm2f0X6ggfVNEWVZqTZs3DdJKAFgC0Xnz6FAQB/loVGod4X09QNzC/vYGvA9oCLcNcT5Bh9hCieBKkyx+3RiUgwOkFyrXYkeIU0vqq1y4Rla3iVNIG6QTZRMJ2UUSu1fV7iE2Ey/XBeuX3Cef31TRT9fpuQe7dd999OHHiBBYsWIBHHnkEzZo1Q2hoKDQaDcLCwtChQwdMnjwZ69evx6FDh3DHHXdI9lepVPjqq6+wefNmPPzww6hbty70ej2CgoLQrl07vPrqqzh16pRsv8rgu+++w08//YQ+ffogPDwcer0eTZs2xUsvvYQjR46gZcuWivu1a9cO+/fvx7/+9S/Uq1cPWq0WYWFh6NKlCz755BPs3LlTcvm9L8TGxmLnzp0YP348GjduLOnBWtG6deuGU6dOYebMmbjnnnsQExMDnU4Hg8GAOnXq4I477sB7772H48eP47HHHiuzcUyaNAnLli3DHXfcgaioKGg01aMGtXo8ixLw9guHN2cpfv/9d8yePRu7du3CjRs3EBkZic6dO2PixIm4++67fTBaqqkCFHr/Xc+1o26gCla7iIuZVqgA+GlV8NPIQ92q4EpOuuR+oFaPQG3l+SNERFTZeAr9Ios5AVdZahoqn3XcXow8oHmoFqfTPPfgBYC4gLJ93i3DlWdQB4BjKRZY7SI0KgFZFjsuZ1phF/Orey+76RlZoGgw49xn1mwH9t+Q9pYMM1Se/2Micq1YIa1eJaugEsX8EzXuZFlEGBXenlydsKrr1LM83cOJP6p+dDodRo0ahVGjRpX4GL169UKvXr2KvV+fPn0getGLY8yYMV5VQk6bNg3Tpk3z+vFHjhyJkSNHer19gbp162LGjBlut3H3vIo7TgBo1KiRZBI2JfXr1/fq9fT1667X6/HEE0/giSee8LitM2/GAcCrauH77rsP9913X7HHUJnV2JDWF+x2OyZOnOhojF0gISEBCQkJWLlyJSZMmIBZs2Y5GmwTFYefRoBKkH6hnbo5Bf+6JRDLTmXjRq70Q9VzHYLQLbpqBZzT9kkvsYkxlt0lEURE1cGmy65n+gaAyEo0yWSjYHlycDHTu9AVAJqF6fDbuVyvto3zwWRp7tQL0sBfIyBboWrtWIoFz25MxuCGRnx7JMvtcQK0gixoLxqlKE3O5txmgZW0RFVDcdodBOtUcM5V7SJw0sOJqiyLHVGQn7hZdVZ5JvpQp/ePDJMddlEss6sQiIjIezU+pJ00aRImT57scn1Bc2Ylr732miOgbd++PV566SU0atQIZ86cwUcffYR9+/Zhzpw5iIyMxPvvv+/zsVP1l3+5pyCb1blor6qi5hzOrHIh7Yar0tkYa/ux1QERkSt5Vs8VT75ud1AaSr1xQ/Xej6+ZQiWuK3EBZfuxViUIaBHuui/tjVy7x4AWyP//ybJIQ5eir5NzJa0ShrREVUNx2oMH6VWyoNSbNmdKV1eYbSJMCkX8KkHeBkEEkGkWEaxnSEtEVNFqfEgbFRWF1q2LP4v8yZMn8cknnwDInylw8+bN8PPzAwB07twZQ4YMQe/evbF79258/PHHGDduHBo3buzTsVPN0DBYiwM3lL8QOnMOcys7pUsdArWcCIWIyJU0LyZ4UWoxUJEeaOKPpacKK7r61PH+ZGKwXoWmIRqPlWRqAWhSDs+7W22Dy5DWW83DtLCLhRXFgVpB0u/W4MX10eXxXImo9Pw0AiL8VEjK9fze3TBYixCnADU5z/N+VoUgN9XF34p+dfzgr9AYPM8mIlhheyIiKl88DV9Cn332GazW/A/X06dPdwS0BYxGI6ZPnw4AsFqt+N///lfuY6TqYXzr6ltZalcIaV+7pX8FjISIqGpQKqRtG6mDv0ZApJ8Ko5r7o1Fw5ToHP7ihH3rHGRDtr8bQRka0j3Q9AZeSibcEIdq/sPq2YbAG0f5q+GsE+GsERPurMemWIFm4URZ6xuoxtJERoaV4rAeb+GNS20A0DdWifpAGU9oHQVskmPU0b8KDTf3RMowhLVFVIAgCnm7nOv4M1AkI1qvQN86AO+v5oX6QxmMfW+dqe6Vi29Q8eRltmwgthjfzV5y80d3kh0REVH4q16f4KkIURfzyyy8AgObNm6Nbt26K23Xr1g3NmjXDiRMn8Msvv+DLL78s1QzJVDPVMqrxfIcgfLo3o6KH4nM2UZ42hOmNFTASIqKqweo065ZaAF7tElIxg/GSQaPC5LYl7zdeJ1CDz/qE+3BEJScIAkY1D8Co5gEAgPlHMxHvZc9cAOgerUeAToUAnQrv3BrqcrvYADUSFCYcu7OeHx5o4roVFxFVPs3CtHiiTSBmHZK2K3uhYzC61JZfQVYvSIOz6a6vHtA4haxKRQ/pTpW0tYwq/F/XwvccrQooOh8ZQ1oiosqBIW0JnDt3DleuXAEA9O7d2+22vXv3xokTJ5CQkIDz58+jQYMG5TFEqmaK08i/KjX+V/pQqa4iYyciqgjOk3xrijEpDflecV99b/+/XG3lPOEPEVUNWoXffVdvB41DtO5DWkFAfifZfIqVtE4hbYhTL3CdWoClyEk/s50hLVU/9evXV2yvR1SZ1fhPekuWLEHLli1hNBoRGBiIJk2aYPTo0diwYYPLfY4ePeq43bx5c7fHL7r+2LFjpR8w1UjFyS29mFOmwuVZLdiQeBq/XT4qW1dVAmYiovJyLceGXVdNuJptlfWkda6oovJV3L9ZOi//v1wdlxOGEVVNGoX5El39NjcOcV9H5fy+fyFDHug6V+I7t4PRqYo/QRkREZW9Gl9JWzRwBYDTp0/j9OnTmD9/Pu69917MmzcPwcHSPkKXL1923I6Li3N7/Dp16jhuX7p0qdjjK/pYShITE4t9TKp6ivMV0GoXofNi0pGKkmu1oEf8l9iXkqC4Xi3wCygRUYHNl3Px1YFMl+uVqrOo/BT3vKK3lbSuNgs1KCQ9RFTpFaeStkmI+57Tzu8jK8/kwKARMKxxfiuUK1lWrL0gbcMiC2mdvitY5N1ViIioAtTYkNZoNGLIkCHo168fmjdvjoCAANy4cQObNm3CzJkzkZycjJUrV2Lo0KH4888/odUW/rHMzCz8shQQEOD2cfz9C/uGZWVlFXucRUNeqrmKF9KW2TB84s8rJ10GtACgUTGkJSIqsOJ0jtv1ShPAUPkpbkbu7UlUlyFtOUyORkS+p/RerXLxi1775sSI2Vbl6lalwPfXMzkY2sgIlSBg0+U82fpgWUgrXc+etERElUONDWkTEhIQEhIiWz5gwABMmTIFd999N/bt24dNmzZhxowZePrppx3b5OUV/uHT6dzPUKzXFzaDz831fmIJoqKMWu+/BebZRJR8epaydzEr1eU6P7UWkQb3Jz6IiGqSK9nuy5sae6i4orJV3EpmT5cxF2gULO9JGawTEOPPSlqiqqhBkBZqobB/rFoA6gcpvx+oBAHto3T4+4pJti42QI1W4VpczJS+P+RYReRYRQRoBdmkYQDQIkz6t0LjdBmAjX07iYgqhRob0ioFtAVq1aqFpUuXonnz5rBYLJg+fbokpDUYDI7bZrPZ7eOYTIV/XP38/Io9Tk8tEhITE9GlS5diH5eqFudLlNzJdXHWvbJIMbuuCutRqz60Kn4BJSLy1rhWgRU9hBpN76EyNtyggk4tQK8W0C1aj64KM7krGdXcHxa7iJOpFog3j/NQswCo2d6CqEoK0qvwQsdg/Hom/3PwkEZGBLlpUj26Zf57+9l0q2OKsNpGNR5uEYBIPxUyzHZsdQpxs8x2BGhVsDoFrno10DJcWljk/FbCQloiosqhxoa0njRs2BADBgzA6tWrcfr0aVy5cgUxMTEAgMDAwi9EnloYZGdnO257ao2gxFPPW6oZnGdkdSe3kvc7SDG5rijvU7tROY6EiKhqG9XcH0G8/L1CuQtp3+wWIgtGvGXUqjCpbWW+LoaIiqtjLT061vLuRE2QXoUp7YNdrp/SLgg7r96ApcjH/kyziNr+8tZn9zQwyvZ3fuuyM6QlIqoU+MnejZYtWzpuJyQU9tAsGpx6mtiraCUs+8tSSRk03lfOVPpKWpPrSlqGtERE3nOenZvKn7tzqGEGfswmorIhCAICnBrdZt1MbJ1DWqUKfJVTuwOGtERElQMrad0QXEzZWzS8PX78uNtjFF3fokUL3wyMyI3KHtKmumh34KfWonMET2QQEXnL20moqOy4q6QNM7B9DxGVnUCdgNQiHQ+2XslDuEGNXdekbRCU3qacc9s1F3IQF6hG81AtBEGA2SZi/tEsJGZb0ShEi0g/NaKMKrSJ0MkCXiIi8h2GtG4cPXrUcbug1QEANGjQADExMbhy5Qo2bdrk9hibN28GAMTGxqJ+/fplMk6ioip7SOuq3UGPWvWhU/MtiYjIW576oVLZcxWUB+kEhuhEVKbyK2kLJ5fckmDClgT5ZGMahUpa55z1UqYN07alYXhTf9zX2IhH/7jhWHc42eK43a+uARPbsBULEVFZ4XVYLpw7dw5//vknAKBRo0aIjY11rBMEAUOHDgWQXym7fft2xWNs377dUUk7dOhQl5W5RL6UbancPWlTXbQ7YKsDIiIpu4fZthnSVjw/F+2IWEVLRGUt0M3EY0VpFTa7nGlV3HbthVysPud6/oiNl/Jg5ixjRERlpkaGtKtWrYLVqvyHCQCuXbuG+++/H2azGQAwefJk2TbPPvss1Or8D+BTpkxBbq70j1lubi6mTJkCANBoNHj22Wd9NHqqqZ7ycgKRlLzKHdJaRfn4DGoNRjRoV/6DISKqxPLcXBmhUQFNQrXlOBpSUj9IC4NCWH5LRMkmDCMi8pa3J+rqBMqvVMtzEbSmm+z45Uy24joAsImVvyCEiKgqq5HXFk+ZMgUWiwX3338/unfvjvr168PPzw9JSUnYuHEjZs2ahaSkJABAz5498eSTT8qO0bRpU0ydOhUffPABdu/ejR49euDll19Go0aNcObMGXz44YfYt28fAGDq1Klo0qRJuT5Hqn56xOpxJduI5afzK1Gbh2oRoBOw+5pZsl1yJQ9pnSvDNIIKv/Qbi0ZBERU0IiKiyilHIaSNC1Aj2l+Nu+obEaKvkefaKxWDRsBrXUPw29kcpJvsUAn54fmDTfwremhEVM3pvCzYbxUuP2mU31dW/jfGmxpZEytpiYjKTI0MaQHgypUrmD59OqZPn+5ym/vvvx9z5syBXq9XXP/ee+/h+vXr+Pbbb7Fv3z6MGDFCts348ePx7rvv+mzcVHOpBAEPNQvAQ80CJMvXXsjB3MNZjvspeTbnXSsV55B2Rb8xuCO2WQWNhoio8lIKaT++LYyTtlQyTUO1eL5jcEUPg4hqGG/6XveIUf4eq9Cm1sHuIYN1VYVLRESlVyNLML7//nu89dZbuOuuu9C0aVOEhYVBo9EgJCQEbdq0wRNPPIF//vkHS5cuRUhIiMvjqFQqzJ07F/Hx8Rg6dChiYmKg0+kQExODoUOHYvXq1ZgzZw5Uqhr5MlM5CXfqe5ecW8kraZ3O0avAsIGISEmO0yWlfhqBAS0REQEAdO6S1puauWiL4y7fzbK4D2HdteIhospHEAQIgoBp06ZV9FDICzWykrZ3797o3bu3z443cOBADBw40GfHIyqOcD/pSYBUkx1Wu6g4k2tFyrGasfjcAVzISpUsZ+BARCSXa7XLJm8xupikioiIah5vKmldh7TK7Q7gcmmh+HO5iPHXIKgULXfOpFlwJNmMxiFatFRox0DkKxs3bkTfvn1ly9VqNYKCghAcHIw6deqgY8eO6NmzJwYPHgydjj+TVHFqZEhLVJ1EKMwgfTjJjHZRypc3VZT713+PPxJOyJYzpCUikvtoVzqOplgky/wY0hIR0U3eVNIqTRoGuG934MnOqyYcTzHj8z7hMGqLH9QeTjLjvZ1pjrYKT7UNQq84Q8kHRFQCNpsNqampSE1Nxfnz57FlyxZ89tlniIyMxNNPP41///vf0GgYl1H543X4RFWcv1b+KeuY0xf7inY1J0MxoAUAvZp//IiIikrOtckCWgAIKMGXYSIiqp48TRwWblBB7SKNbR6mXGHrrQyziPhzOSXaN/5cjqTv7eaEvFKNhchbkyZNwqFDhxz/tm3bhtWrV+ODDz7AgAEDIAgCbty4gddffx09evTAjRs3KnrIVAPx0z5RFScoVKJaPXX8L2eXstMUl4fq/NAxPK58B0NEVMnluuj31y6Kl98REVE+T1ejPdYywOW64U39Sz0rxIZLJQtX9143S+4fTDK72JLIt6KiotC6dWvHv27duuHuu+/Gyy+/jLVr1+Lw4cNo3749AGDnzp0YNmwYzGb+fFL5YkhLVA3cFiu9RMhkq6CBuHA1N1O27F/NumPT3ZMRoK1cbRmIiCqa0vSPY1oGYGgjY7mPhYiIKid3Ge3T7YPQtbbrz9i1/TV4q3so7qznp7g+UOc5wk3Oq9yTFRMVV8uWLbF161ZHULt161Z89dVXFTwqqmkY0hJVA0FOH6TMlayS9lpeluR+p4g4zLj1frQJi66gERERVV6i01u4AODuBkb28CYiIgd3X+R7xBgUr7YrqlmYFuNaB6JfHXk/2H/dEoRF90Rh0T1R6BXru4KKHIs82NV7MQEaUXnx8/PDDz/84Pj9+eSTT2CxKLcSvHr1Kl577TV06tQJYWFh0Ov1qFOnDoYPH45169a5fZzU1FR89913eOSRR9CyZUsEBARAp9Ohdu3auPPOOzF79myvq3h/+ukn9OnTB6GhoQgICEDr1q3x5ptvIi0trVjPnSoHNoMkqgb0TpPJ5Lm4VLaiXM2RVtLW9gusoJEQEVV+olNKW5oJXoiIqHry1Xm7cD95c9uic14YNa7jYFEUPYbBRV3LkV/uF25g3RhVLq1atcKAAQOwdu1aXLlyBbt27cKtt94q2WbBggV44oknkJ2dLVl++fJlLFmyBEuWLMH48eMxc+ZMxQnI2rdvjwsXLsiWX7t2DWvXrsXatWsxc+ZMrF69GrVr11Ycp9VqxahRo7BkyRLJ8iNHjuDIkSP48ccfPYbFVPnwHZGoGnA+A73jqgl51oq9BCk5LxvvHVgH4/xX8Pq+PyTravsFVdCoiIgqP+d3bxbQEhGRM1+dwAvRyyOBohNVGhUmKS5wJNn7yYovZVrxxb4M2fIMM9smUOXTv39/x+0tW7ZI1i1evBiPPvoosrOz0bBhQ3z66af4448/sGfPHixbtgwDBw4EAMydOxcvvfSS4vFtNhu6du2Kd955B7/99ht27dqFrVu34scff8Rdd90FANi3bx9GjBjhcowvvviiI6Bt1qwZ5s6di127dmHdunV44okncP78eTz00EOleh2o/LGSlqga0Cl8Svt8XwZe7hxS/oNB/ln1u/78BruTLiuuZyUtEZFrSu0OiIiIivLV3waDRn6kopW0/m4qad/ZkYavbw9XrMYtKiXPhtf/SVWcGDPLIsIuimzpc5Mo2mE3JVf0MMqVSh8OQahc9YMdOnRw3D558qTjdlJSEiZOnAhRFDFu3DjMmjVLUinboUMH3HfffXjttdfw/vvv4/PPP8cTTzyBZs2aSY6/fv16NGnSRPa4t956Kx5++GF89913GDduHDZt2oS//voL/fr1k2x36NAhTJ8+3fGYmzZtQkBA4WSB/fr1w6233orRo0eX7oWgcseQlqga8Fc4w73vuhlmmwhdBfR5Op2R5DKgBYAog+vZZomIajrnr7Bsd0BERM5c9XKtZXQfmDqL9ZdvX7SS1tMkYgeTzOhbR3kCsgKHk8yKAW2Bc+lWNArRehhpzWA3JeP6z1EVPYxyFTXiOtSGyIoehkR4eLjjdmpqquP2jBkzkJ6ejtjYWHz99deKrQwA4K233sL333+PhIQEzJ8/H++9955kvVJAW9TYsWPxxRdfYP/+/Vi5cqUspJ05cybs9vwq9NmzZ0sC2gKPPfYYfv75Z/z+++/unyxVKpXrdAURlUjrCJ1smQjAbKuY3rSnM5Pcrjdq+CGMiMgV57kfBdbSEhGRk+ZhOsVCjcfbFO+KtXpBGjQKLgyautTWS4o8bonUweCm6CPL4vn7hruAFgDSTGx5QJVL0dAzM7NwfpVff/0VADBo0CDo9a4n1dNoNOjevTsAYNu2bW4fSxRFXL16FSdPnsThw4cd/2JjYwEABw4ckO1T0Gu2TZs26Nixo8tjjxs3zu1jU+XDSlqiaiDMoMbrXUPwzo40yfKKmj/sbGaK2/U6Fd96iIhckbU7YEZLREROgvUqvN09FH8n5OFIshk6tYD7mvijVbi8eMMdQRDwf11D8OfFXOhUAvrVlVbFhhnUeOfWUPx9JQ9ZFjv+upgnWZ/rxTwYnupGMtmXliqZosFsUFD+fCo2mw379+8HAMyaNQuzZs3y6lhXr15VXB4fH48ZM2Zg8+bNksdzlpQkLYAymUw4deoUAKBz585uH7tLly5ejZEqDyYlRNVEg2D5r7PNuRyrnJzNdN9HSa8u3mVYREQ1iejU8IDtDoiISElcoAYjmpe+jZhRq8LQRv4u19cN0mBUUP7jWO3ApsuFQW2eF1UhVg/fSTh5GFU2RYPRsLAwAEBKSgqsVmuxj5WTkyO5L4oiHn/8ccydO9er/XNzcyX3U1NTId48ox8V5b41Rq1atYoxUqoMGNISVRNKVyFVULcDVtISEZWC83dZ9qYiIqLKwug00ZinVgaAN5W0FfSlpRJS6cMRNeJ6RQ+jXKn04Z43Kmf79u1z3C6Y9MtmszmWTZgwAc8884xXx9LppNXt3377rSOgbdeuHZ599ll07doVsbGxMBqNUN8saHrsscfwww8/OAJZJQIvt6p2mJQQVRNqhTdoT2etS0MURcw7vQvrrpyCxW5DhsWEQ6mJ6BFVH5uvnXW7LytpiYjkbHYRq8/nYtWZbMlyfv4mIqLKwuAU0q6/lAd/rQo3cm0QAET4qWEXRSTn5VfHCgAO3jC7PeavZ3NwPdeGJ9sGVcikx5WJIKgq3SRaNdGff/7puN2zZ08AhRW1QP534datW5fo2N988w0AoHHjxvjnn3/g56c88V5KinLhU0hIiOP2tWvX3D6Wp/VU+TCkJaom1AqlVtdybIgJKJtf8+9O7cL4rYtly5ecP+hxX1bSEhHJLT6ZjZVncmTLWSVBRESVhZ9G/jdp1Vn5367i2p5owqRbRICTZVIFO3z4MP766y8AQJ06ddCpUycA+RWxrVq1wpEjR7B169YSH//IkSMAgCFDhrgMaEVRxN69exXXGQwGNGnSBKdOncKuXbvcPpan9VT58Ao6ompCpfAlPjHbprClb8RfPlbifYN1Bh+OhIioeth51aS43N2s2kREROWJf5OoOsvNzcVjjz3maDHw4osvQqMpLDAaMmQIAOD48eNYs2ZNiR6joK9tdna2y21++eUXJCYmulzfv39/AMChQ4ckrRmcffvttyUaI1UchrRE1ZitDHvwp5hKdsa8RXAU2oXF+Hg0RERVm10UcSNX+cRazxh9OY+GiIhImdoHs1l2iNIhUMuwlyqXo0ePomfPno7Qs3fv3pg0aZJkm2eeeQYBAfmT6I0dO9ZRFetKfHw8Dh6UXmnapEkTAMCqVasUWxqcOXMGTz75pNvjPvHEE44rrSZOnKgY+C5YsACrV692exyqfHjNMVE10qW2XlKJlWMtu5Q23Zzndv3rbfujbkAoTqRfx9LzBzG0bms0C47Eg/XbQqNiT1oioqLSTHZYnN6y+9U1oF2kHp1r6ZR3IiIiKme+KKQNN6gxtmcgdl41Sb6vKM2xQeQr169fx+HDhx33s7OzkZqaioMHD+Kvv/7Cn3/+6aig7datG5YuXQqtVis5Rq1atfD999/jgQceQGJiIjp16oQxY8bg7rvvRlxcHCwWCy5fvoydO3di6dKlOHv2LFatWoVbbrnFcYzHHnsMU6dOxZUrV9C9e3e8/PLLaN26NfLy8rB+/Xp89tlnMJlM6NChg8uWB23btsWTTz6JL7/8Ert370anTp3w8ssvo02bNkhPT8eSJUswe/ZsdOrUCbt37y6DV5PKCkNaomrE+Yx0tqXsJg5Lt7gOaQ1qDd7ucJfj/sedB5fZOIiIqoNrOdIqWq0KeLx1IPvREhFRpeKDQlqoVUCUUY1BDY2lPxiRl2bMmIEZM2a43SYyMhLPPvssXnrpJUmbg6Luu+8+/PLLLxgzZgxSUlIwc+ZMzJw5U3FblUoFf39/ybJnnnkGf/75J9auXYuTJ09i/PjxkvV+fn6YP38+4uPjXYa0APDpp5/iypUrWL58OY4fP46xY8dK1jdo0ACLFi1Co0aN3D5nqlwY0hJVI0attINJ2VbS5rpcF6jlpblERMVx3SmkjTKqGdASEVGl44tqV7a1pYqmUqkQGBiI4OBg1KtXDx07dkSvXr0waNAg6HSer2AaPHgwzp07h2+++QarV6/GkSNHkJKSAo1Gg9q1a6NVq1a4/fbb8cADD6BOnTqSfbVaLeLj4zFjxgzMnz8fR48ehSiKiI2NRf/+/fHMM8+gefPmiI+PdzsGrVaLZcuW4ccff8Ts2bNx8OBBWCwW1KtXD8OGDcOLL76I0NDQUr1OVP4qbUh75swZJCUloX79+qhVq1ZFD4eoSvB3qqTdkmDCXfUtaByidbFHyYiiiGQ3PWkDtZwYjIioOJxD2lpGtoUhIqLKxxcBq8YX5bhEXujTp4+jhYGvBQUF4YUXXsALL7xQ7H01Gg2mTJmCKVOmuNxm3rx5mDdvnsdjPfLII3jkkUdcri+r509lo9wnDrt+/Tq+/vprfP3110hPT5etP336NDp27IimTZvi1ltvRWxsLO6//36kpqaW91CJqhyjRv6B590daTDZfPvGfDlb/rtbFCtpiYiK51qO9MqHKIa0RERUCfkiX1X4ykJERKiAkHb58uV46qmn8PnnnyM4OFiyzmQy4e6778b+/fshiiJEUYTdbsfKlSsxdOjQ8h4qUZXjp/CJJ9cq4ny61aePs/3GBbfraxkCfPp4RETV3eVM6fs0Q1oiIqqM/LWljxD8deUeQxARVQnl/u64du1aCIKAYcOGydbNmzcPZ86cAQAMGTIEn3/+OQYPHgxRFLF161YsWrSovIdLVKW46l/o60ra63lZrscAARObdfPp4xERVWcWm4iLTiFt/aBK25GKiIhqsKahWtQJLN2JxC61eNUdEZGScv8GcOLECQBAt27yEOenn34CANx+++1YuXIlAGDKlCm44447sG7dOvz888946KGHym2sRNWFr0Paq7mZkvt9azfCv5p3R4opB90i66FdeKxPH4+IqDq7mGmF89t0A4a0RERUCenUAt7uHor9N8xIybNDowIEAGEGNUINKpxLt8Iuioj21+Bajg1zDku/N7zSORiRvFqEiEhRuX8DuHHjBgAgLi5Osjw3Nxfbt2+HIAiYOHGiZN24ceOwbt067N27t9zGSVSdmO1lG9K2DKmF4Q3a+fQxiIhqirNOLWmi/dUw+uByUiIiorJg1Kpwa4zyRMFFJyxec14+0XBcIE9CEhG5Uu7fANLS0vIfWCV96O3bt8NisUAQBPTv31+yrkGDBgDyJx0jouIz+7iSNjEnQ3K/tl+QT49PRFSTnEm3SO43DOYXWCIiqvpyrPLvIP5azhpGRORKuYe0AQH5EwpdvXpVsnzjxo0AgJYtWyI0NFSyTqvNPxun0fBLC1FJ7L1u9unxnCtpaxsDfXp8IiJXTDYR849mYtq2VPx5IRei6NuTUOXNbBOx4VKeZFmjYK2LrYmIiKqOXIWQ1qBmSEtE5Eq5h7TNmzcHAPzxxx+S5cuWLYMgCOjdu7dsn4JAt1atWmU/QKJqaOdVE/Ksdp8dzzmkjfZjSEtE5SP+bA7iz+XiWIoFcw5n4kSqxfNOldgvZ+SXgjZgJS0REVUDORZ5SOtqomMiIqqAkPaee+6BKIqYPXs2ZsyYgcOHD+PFF1/E0aNHAQD33XefbJ+CXrSxsZyMiMidQJ3rDz0XM20+e5xUszRUCNf7++zYRETuLDqZLbm/4rQ85KxKDifJr3RgSEtERNVBt2i95D7brRMRuVfu3wKeeuopfP3110hMTMRTTz0lWde9e3f07dtXts+qVasgCAI6d+5cXsMkqpJahunQMFgjm4QG8G1fWpvT5cUaFT9xEVHFOJLs23Yu5UkURVzMlL5fxwWo4afheyoREVV9LcO1aBGmxbEUC9QC8GQ7zmNBROROuYe0wcHBWLduHR599FFHhSwA9OrVCwsXLpRtf+DAAezatQuCIGDAgAHlOVSiKkenFvBW91CcSLXg3R1pknU+DWnt0tYJaoGBAhGVPatd/j6msKjKSM6zyyZVeaVLSMUMhoiIyMdUgoDXu4bgTLoVwXoVahnVFT0kIqJKrUKup2vRogV2796Nc+fO4erVq4iOjkb9+vVdbv/dd98BAG6//fZyGiFR1aVTC2gToUOMvxpXsgtbHJh9mGQ4V9Kq2VuKiMpBSp68t3ZVDmkvZEiraI0aAeEGnvQiIqLqQ60S0DSUE2ISEXmjQpueNWjQAA0aNHC7Tdu2bdG2bdtyGhFR9aFzmjnVV5W0oihChHNIy1CBiMre9Rx5b20RQI7FDmMVbHTn3OqgbpCGE6oQEREREdVQ5R7Svv322wCAyZMnIyIiwqt9UlNTMX36dADAG2+8UWZjI6pOnPOK8xlW3OaD4/50dp9smYqhAhGVgWMpZvxwNAsqAQjRq7DrmnL/2cPJFnSprVdcV5msOZ+D38/nIsucXxGc53TyrF4gJwwjIiIiIqqpyv3bwLRp0yAIAh544AGvQ9qUlBTHfgxpibzjXDcbfy4Xj7UMLNUxk/Ky8cjmn2TLWUlLRL5mF0VM35eBZIUWB86+PpCBLrUjy2FUJXcp04pvj2S53aYOQ1oiIiIiohqLyQpRNXU6zep5o2I6mHJFtkwlCIgyBPj8sYioZjufYfUqoAWAPKuIDJN321YU5/6zShqFMKQlIiIiIqqpqkRIa7FYAABaLRuOE5WGKJauL22mxSRb9lzL2xCi9yvVcYmInOVYvH+/EgEcuKHcCqGysHt4/+0WrUeDIIa0REREREQ1VZX4NrB//34AQGRk5b6Ukaiys9oBrbrk+2dapSFtkNaAT7oMLuWoiIjk3E12GKpXIcJPhVNFrhjYd8OEXnGG8hhaididnk60vxoT2+S3oAnSqRAboOakYURERERENViZh7Tz589XXP7LL79g9+7dbvc1mUw4c+YMvv32WwiCgM6dO5fFEIlqDItdhFZd8hAgy6mStk1o7dIOiYhIkclNSNsyXIsWYTqcSst0LDtwwwy7KFbaiQydn42/VkDLcF2FjIWIiIiIiCqfMg9px4wZI6sMEUUR//d//+f1MURRhEqlwjPPPOPr4RHVKNZStmx0bncQoK38s6kTUfkraK1SmsrQLDftDnRqAe2jpAFnlkXE6TQrmoZWrtZIoihCBOCcOVfOKJmIiIiIytKYMWPw/fffo169ejh//nxFD4cqmXLpSSuKouOf0jJ3/7RaLXr06IFff/0VvXv3Lo/hElVbj69Lwie709xeRuxK/KWjeGl3vGRZgIZVYEQktT0xD1M2JGPiuiT8dTG3RMfIMtsx53Cmy/U6lYAIPzXiAqT9W3446nqfsrTuYi6eWJeEqZuTcT7d4li+IzEPk9cnY+TqG/jmkHRslbXil4iIiKi62LhxIwRBcPx76KGHPO5TUGjINlRUEcq8kvbcuXOO26IoomHDhhAEAWvWrEGTJk1c7icIAgwGA8LDw6FWl6KJJhFJ7LpmxpaEPPSr6/1kXza7HWO2LJItD2QlLREVkWGy4+sDmY5WBXMPZ6JTLT2C9cU7J/zb2Ry363U327a0j9LjclbhtifTrBBFsVw/VKfm2fDt4UzYRCDNBHx/NAtvdg+FxSZi5sFM5FiVT4qp+LmfiIiIqFwtWbIE//d//4c2bdpU9FCIFJV5SFuvXj3F5TExMS7XEVHpPdUuCF/uz1Bc98f5nGKFtMmmbCSZsmXLGwVGlHh8RFT97LhqkvSStYnAqTQLOtUq3gmdS1lWt+ujjPmhb5MQ+ceYPJsIP035JaB/XsiVtDI4mpJfSXsj1+YyoAWACL9yuZiJiIiIiG4SRRFvvvkmli9fXmFjmDdvHubNm1dhj0+VW7l/Q7Db7bDZbGjZsmV5PzRRjdLZTShyLad4zWnzbPLApH5AKCY07VLscRFR9bU9MU+27HyG+8BVSZ6bcLNJiAY9YgwAgGZh8pYrllL23i6upDzlB0w3ux5IqF6FoY38y2pIREREROQkIiK/wGjFihXYt29fBY+GSFmZV9ISUcUwaAQsHBiJxSezseK09NJhu1i8nrRKIe2J+16GTs23ECLKl26y40iyRba8aI9Wb5mc+mbf08AP/er6Qa8WEG5QOdoZaBVONVtK0HO7NNJNymFshtPyCD8VXu0SApUA1DKq2ZOWiIiIqBw9/fTTeO+992AymfDGG29g1apVFT0kIpkKudYuJycHOTmu+81Nnz4dvXr1QosWLTBw4ED+8hCVkEoQUDdQHqQWN8PIs0lDFpUgQKtir2giKrTzqglKby0lqaR1DmkbBGsRG6BBhJ9a0m9Wq9DY1WIv35A2zUVI61xJG6ZXITZAg2h/DQNaIiIionJWp04dTJw4EQDw22+/YefOncU+ht1ux/r16/Hiiy+iR48eiIiIgFarRUhICNq1a4cXX3wRFy9edHuMgonJ6tevL1n+9ttvOyYsO3XqlMex3HnnnRAEAdHR0bDZbIrbrFy5Eg8++CDq1q0Lg8GAkJAQdOrUCW+99RZSU1O9ft5Ufso9pF21ahUCAwMRHR2NzEz5LMzjxo3Ds88+i3/++QcnTpzAmjVrcO+99+I///lPuY3x5ZdflswAuHHjRo/7/P777xg2bBji4uKg1+sRFxeHYcOG4ffffy/7ARO5EaST/5oXN8NwrqQ1qDWc7ZKIJP65Im91AAA3cu3ILmYPAueQ1qBWfr/RKHyKsZZzuwOlStq0PBsuZkg/LAcVc/I0IiIiIvKtV155BX5++XOzvP7668Xe/+2330a/fv3w3//+F//88w+Sk5NhtVqRnp6OAwcO4L///S9atGiBFStWFPvYo0aNctz+6aef3G577do1/PXXXwCAESNGQK2WFlClpqaiX79+GDZsGJYuXYpLly7BZDIhPT0de/bswbRp09C8eXNs37692OOkslXu3xjWrFkDURQxZMgQBAYGStb9/fffjgbKRqMR7du3h8FggCiKeOONN3D48OEyH9/+/fvx6aefer293W7HhAkTMHDgQKxcuRIJCQkwm81ISEjAypUrMXDgQDz++OOw28v5WyPRTYEKIS0A/HgsC6KXbQ+cK2kNam2px0VE1ce6i7mOCbOUjFubhCseJgMrYBdFWd9svYuQViUIcF5VnpW013NsSFUIaZ/4Kxl/XsyVLFM6YUZERERE5Sc6OhqTJk0CAKxduxZ///13sfa3Wq2Ijo7G5MmT8cMPP2Dr1q3Ys2cPVq5ciZdeegkBAQHIycnBqFGjcOzYsWIdu3HjxujatSsAzyHtokWLHNWzDz/8sGSdyWRC//79sX79eqjVajz66KNYuHAhtm/fji1btuC9995DeHg4rl+/joEDB+LChQvFGieVrXJvKLl9+3YIgoC+ffvK1s2ePRsAEBMTg23btiEuLg6XLl1Cz549cfnyZcyaNQvTp08vs7HZ7XZMnDgRVqsVUVFRuH79usd9XnvtNcydOxcA0L59e7z00kto1KgRzpw5g48++gj79u3DnDlzEBkZiffff7/Mxk7kSpBOOdxYdTYHt9cxICbA89uAUiUtERGQP0vugmNZHrdbfjoHT7UL8rjdUYW+tgaN68p9jUqArUjlrXMVbln67azr1k3OXLVFICIiIipgF0Vkmcu3dVNFC9AJ5doK6uWXX8asWbOQnZ2NN954A+vXr/d63wkTJuDNN9+EVistWurQoQOGDh2KKVOmoFu3bkhISMD777+PH374oVhje/jhh7Fjxw6cPHkSu3fvRqdOnRS3KwhxmzZtKtvm7bffxt69exESEoJ169ahY8eOkvU9e/bEww8/jO7duyMxMRGvvvoqFixYUKxxUtkp96SlIPhs1qyZbN0ff/wBQRAwZcoUxMXFAcjvGzJlyhS89NJL2LRpU5mO7YsvvsCuXbvQvHlzDBs2zGOLhZMnT+KTTz4BAHTq1AmbN292lM537twZQ4YMQe/evbF79258/PHHGDduHBo3blymz4HIWbCbS2yvZttKGNKykpaI8tlEIMfq+cvEtRzlXlnOLmXKK25rG133wA7Vq3C1yLFPpVrRPEzn1WOV1poLuZ43uinDzJCWiIiI3Msyi3h8XVJFD6NcfdM/AkH68gtpo6Ki8NRTT+HDDz/Ehg0bsGHDBsUiQiXOfWSdxcXFYerUqXj22Wfx66+/QhTFYrUJfOihh/Dcc8/BZrNhwYIFiiHtmTNnsGPHDgDyKtqsrCx89dVXAIB33nlHFtAWqFevHl5//XVMnjwZS5YswezZs+Hv7+/1OKnslPu1dzdu3AAAWauDI0eOICkp/81o6NChknUFP5hlWYZ98eJFR0+SmTNnQqfz/AXvs88+g9Wa/2Vy+vTpjoC2gNFodFT+Wq1W/O9///PxqIk8UwkCnm2vXL3m7WXB8nYHrKQlonxKPWBf7BissJ137zfOE24B7vu5toqQnjTaf8Pk1eOUNzY7ICIiIqocpk6d6sikStKbtkBGRgbOnTuHI0eO4PDhwzh8+DCMRqNkXXFERUVhwIABAPJbGii1zSzaCqFoH1sA2LRpE9LT0wEADzzwgNvHuu222wAAFosFe/bsKdY4qeyU+3eGgobGKSkpkuUFvUAiIyNlVbahoaEAgLw85UlJfOHJJ59EVlYWRo8ejd69e3vcXhRF/PLLLwCA5s2bo1u3borbdevWzfF8fvnlF697gBL5UvcYg+Jyb+fyca6k1asY0hJRPrvC37WGwRo87dTawNuQNsOpLcCd9fxcbJmvXaRecv94qgV5XlT2lpU3u4Vg7oAI+QpOtkhERERUKYSHh+PZZ58FAGzduhVr1qzxet8LFy5gypQpqF+/PoKDg9GwYUO0bt0abdq0QZs2bTBx4kTHtgWFiMVRUB2bmJio2IqhIKTt2rWr7Ert3bt3O25HR0dDEASX/1q3bu3Y9urVq8UeJ5WNcg9pY2NjAeRP0FVUfHw8BEFAr169ZPsUnAmIiFD40uMDixcvxm+//YawsDBH+wJPzp07hytXrgCAx1C3YH1CQgLOnz9fqrES+ZL3lbTsSUtEypTyULUAaJw+YXh7Usi5ktZdFS0AtA7XSiYPs9qBo8lm7x6sDATqVAhQmCSMlbRERERElcfzzz+PkJAQAMCbb77p1T6///47WrZsiS+//NKrK71zc71vjVXg3nvvdVTjOveK3bt3L44fPw5A3uoAgFfzKinJyfF+ngUqW+WetPTq1QunTp3Cl19+iUceeQQRERHYtWsX/vjjDwDAnXfeKdunYFa82rVr+3w8aWlpeOaZZwAAH374oddB8NGjRx23mzdv7nbbouuPHTuGBg0alGCkRL5XNKTNs4pIM9lQy6iW9c1huwMicsWucLJHrRKgUUnfR5Qqae2iiGs5NslkXzdypSFtsELgWZRRq0LTUC2OpRS+T+2/YUaHWno3e5Udl/WyLKQlIiIiDwJ0Ar7pXzbFaZVVgIuJrstaSEgInn/+ebzxxhvYsWMHfvvtNwwaNMjl9klJSRg1ahRycnIQEBCAF198EXfeeScaNWqE4OBgR8vM9evXo1+/fgBQoiupAwICMHToUCxcuBDLly/HjBkzYDDkXxlbUEWrVqvx0EMPyfa12Qrnadi7d69sgjNXCuaEoopX7knL5MmTMW/ePJw7dw4NGzZE06ZNcfToUVitVoSFhSn+oK1fvx6CIKBly5Y+H89LL72Eq1evokePHhg/frzX+12+fNlx29MPdJ06dRy3L126VKzxFX0cJYmJicU6HlFRBZVtu66a8Pm+dFjsQNMQDV7tGgK/ImVwnDiMiFxxVUmrdQppb+TakWW2O6pMc612vLM9DWfS5ROFFRXkxQf3tpE6SUh7MKniKmldFQwzoyUiIiJPVIJQrpNo1XTPPvssPv/8cyQnJ+PNN990G9IuXboUaWlpAIAVK1agf//+its5t/YsiYcffhgLFy5ERkYGfvvtNzzwwAOw2+34+eefAQADBgxAVFSUbL/w8HDH7cjISIavVVC5X33XoUMHfPzxxxAEAVlZWdi7dy/y8vKg1WrxzTffyCYUS09PR3x8PACgT58+Ph3Lli1bMGfOHGg0GsycObNYs+5lZmY6bgcEBLjdtugseVlZWcUaY506ddz+69KlS7GOR1SU+Wb12qKTWY7A9mSaFTsSpRPvOFfS6llJS0Q3KVXIqgRB1u4AALYk5EluewpoASDYQ7sDID+kLSox24aUPJuLrX3D1fFNLvrhGtT8wkVERERUmQQGBmLq1KkA8itPV6xY4XLbI0eOAADCwsJcBrSAtC9sSd15552Oq7wLqmc3bdqEhIQEAMqtDgCgffv2jttbt24t9Tio/FVIi7TnnnsO+/btw+uvv47HH38cb7zxBg4ePIhhw4bJtt24cSM6d+6M2267ze1ZjeIym82YOHEiRFHEc889J2ma7I2ik5gVlLW7otcXXnJZkp4kRL5wS4T85zTzZu/HS5nSsGHXNWlIa3WaVVKrYndFIsrn/P5hUAvQq4HYAPnJnBu5hdseT7HI1jtTC0BcoOeTQvWDNHDOQJ0nIPO1pFzl4zcIzh/v7XWkEzaObO7+hC4RERERlb+nnnrKUZX65ptvumxRYLXmFxfk5eXBblf+HJiTk4Mffvih1GPSaDQYPnw4AGD16tVIS0tzhLVGoxH33nuv4n79+/d39LP94osvOHF9FVRhSUubNm3w1ltvYdasWZg2bRqaNWumuN3QoUOxYcMGbNiwAbVq1fLZ47///vs4fvw46tat63WT6KIKeoIA+YGvOyZTYeDl5+d+lmpnly5dcvtv586dxRs41VhjW8kDgpQ8O2yKfSKl9523EHjhLhHddCZNGrY2CtFAEAQE61XQOn3KyCvSe/acUxWtAEAlFP4LN6jwxC2BCHA+iAKVIEDnlNKayraQVrGCeGqnYEcv3vub+KN1uBbhBhVGNPNH3UB12Q6IiIiIiIrN398fL7/8MgDg0KFDWL16teJ2TZo0AZAfxC5evFi23mazYcKECY4J5kuroFrWZDLhp59+wrJlywDkZ2SuruYOCQnBU089BQD4559/8Nxzz7kMlAHg2rVrmDNnjk/GS75RI69ZPn78OP7zn/8AAKZPny5pR+Ctom0ZPLUwyM7Odtz21BrBGXuIkK/EBGgwpmUA5h0t/HlNybMj16Z0qbL0vvMZOFUxWoMQUfV2yimkbRxS2LP67vpG/Hq2cLbYglYAORY7rmRLU9T3eoSiUUjJ+13r1QJyi7QaMCmEqL5kdfq8G6pXoVORycoi/NR4vVtomY6BiIiIiEpv0qRJ+OSTT5CYmIikpCTFbYYPH45XX30VJpMJY8eOxf79+zFgwAAEBwfjyJEjmD59Ovbs2YMePXr4pNXArbfeigYNGuDcuXN47bXXHP1wXbU6KPD2229j06ZN2LFjBz7//HNs3LgRjz/+ONq1awd/f3+kpqbiyJEjWLduHX7//Xe0adMGEyZMKPV4yTcqRUgriiLOnj3raLAcFhaGhg0bFqtHbHH873//g9lsRsOGDZGTk+NovlzU4cOHHbfXr1+Pq1evAgAGDx4Mf39/SXjqaXKvopOFFZ1EjKi8hRmkFWkpeTbkWuRBhnOlrN2plrasfjeJqGqxi6Ksr2zRkFavca5uzX8vOZ8h3UctAHW9aGvgjs6p4NascALKlyxOIbBSD14iIiIiqvz8/Pzw6quvYsqUKS63iYuLw4wZMzBhwgTk5eXhww8/xIcffijZ5qGHHsLjjz/utmdtcYwaNQrvvfeeI6CNiIjAnXfe6XYfvV6PP//8E2PGjMHy5ctx4MABR3WtkqCgIJ+MlXyjQkPaNWvW4Msvv8TGjRuRk5MjWWc0GtG3b1889dRTuOOOO3z6uAXtB86ePYuRI0d63P6dd95x3D537hz8/f3RsmVLx7Ljx4+73b/o+hYtWhR3uEQ+E2qQXm57I9eOTIv88gebU+WscysbRrRENVu6yY4LmVak5dkk1asA0Dik8KOFXtaCIH9b52C3bqAG2lJOrOXc7qAsQ1q7KOJkqrSCWON8CQIRERERVRmPP/44PvroI0mRnbOxY8eiWbNm+Pjjj7F161akpaUhIiICbdu2xdixYzF8+HBs3LjRZ2N6+OGH8d577znuDx8+HBqN5xgvMDAQy5Ytw99//43vv/8eW7ZswZUrV5Cbm4ugoCA0atQIXbp0wT333OPzvI1Kp0JCWrPZjDFjxmDRokUA5JdSA/ktAuLj4xEfH4+HHnoI8+bN8zhBV3lq0KABYmJicOXKFWzatMnttps3bwYAxMbGon79+uUwOiJlzpW0APDK36myZXuvm5GWZ0PIzVB37qkdkvXsSUtUc+26asKne9NlvauB/PeYsCIngwxOwWnezQ4H59KlAWfD4NJ/HHEVCPuaxSbi3R1pOC4Lacvk4YiIiIiohPr06eP15Fl6vR4XL170uN2tt96KFStWlPgx582bh3nz5nk1phYtWpRq8q+ePXuiZ8+eJd6fyl+FfKUYNWoUFi1aBFEUoVarcffdd2PatGmYOXMmZs6ciWnTpmHgwIHQaDQQRRGLFi3CI4884rPHnzdvHkRRdPuv6GRiGzZscCwvCFkFQcDQoUMB5FfKbt++XfGxtm/f7qikHTp0KC8TpwoVold5Ha9uTSyc8O5GXrabLYmoJvn1TLZiQAtIWx0AgN5prqyC4PSCU7uDBsEl70Vb+FjlE9IeS7HIAloA0PDvOxERERERlUK5V9LGx8dj+fLlEAQBffv2xbfffot69eopbnvx4kWMGzcO69evx7Jly7B69WoMHDiwnEfs2rPPPovZs2fDZrNhypQp2Lx5M/z8/Bzrc3NzHT1NNBoNnn322QoaKVE+jUqAt7FFWl5hGwSDWoM8W2Go4tyjlohqjjST6xli20VKr3iRBac3WyNkO/XCjjKW/pyxv1Z6jHQ34ywNV8dt4INqYCIiIiIiqrnKvZK2oKy7bdu2+OOPP1wGtABQt25d/P7772jXrh0A4LvvviuHEXqvadOmmDp1KgBg9+7d6NGjBxYtWoTdu3dj0aJF6NGjB3bv3g0AmDp1Kpo0aVKRwyUCAAxv6u/VdkX70lrs0lDi2Za9fDomIqo6nE/R+GsFRPqpMLCBH3rHGSTrXE0cZnYqxXXuJ1sS8okRyyakFRVOUnWtrcfDzQPK5PGIiIiIiKhmKPeyj+3bt0MQBLzwwgvQaj1f3qjVavHiiy/ikUcecdlSoCK99957uH79Or799lvs27cPI0aMkG0zfvx4vPvuuxUwOiK5pqHeXVZccKWwXbTDJkrDjgBt5ekPTUTlyzminNIuCO2j9IrbynvS3gxpnVoRaH0w6Vb5hbRS9YM0eL5jcJk8FhERERER1RzlXkl748YNAEDLli293qd58+YAgKSkpDIZU2moVCrMnTsX8fHxGDp0KGJiYqDT6RATE4OhQ4di9erVmDNnDlQqzihClUOg1rswxHYz33CuogUAraCWLSOimsF57gJ37yhKfWJFUYTF6W2lbCppbaU+pjfYiZaIiIiIiHyh3Ctp/f39kZaWhuTkZK/3SU3Nn33eaDSW1bBkpk2bhmnTpnm9/cCBAytVv1wiVwJ03p0w2JaYh4ea+cMimmXrdGqGtEQ1ldV51jA3KaVzSGsXgeu58hM/Xr4tuRVmkL4vJWR5DmnNNhHHUszIMBc+J50KaBWhQ4DWu0FxvjAiIiIiIvKFcg9pmzVrhh07dmDRokXo37+/V/ssWrTIsS8RlY63wUOWRcTzm5KxP3ehbJ1WxZCWqCay2ESkm6UhrbuM0qCRr316g/wkrS8qaUOdKmlFAEm5NkT4Kb9fWe0i3t6eilNpVtk6nQr4oFcYYgPkH5OuZZdPhS4REREREdUs5X4N/pAhQyCKIr777jvHJGLu/PDDD/j2228hCALuvffeMh8fUXWnV3t/ee6VnBTsTr4oP4aKs5gT1URbEvJky9RuSkmde9K6UhbtDgBgx1WTy+1Pp1kUA1oAMNuBxSezFdddzJTu41xYTEREREREVBLlHtJOmTIF0dHREEUR48ePx6BBg7B8+XIkJCTAYrHAarUiISEBy5cvx6BBgzBmzBjY7XbExMTgqaeeKu/hElU7giAgws+7X/08MUe2rElQBML05dd6hIgqj8PJ8vYn9YNcn7QxalWoE+i+8j7GX+11hb87fhr5MfKsrhPUTLP7dPXgDbO8tQOAcKfK3PMZykEvERERERFRcZR7SOvv74/ffvsNISEhEEURv//+Ox588EHUrVsXBoMBer0edevWxYMPPojff/8doigiNDQUv/32W7n2pCWqzp5uL5+JvHW4FmNaBkiW2UX5Zb2/9BsLgU0YiWocURRxNNkiWda1tt5jn+sXOsrfb4p6sZP79cXRPFQruZ/rJqS1Oc2A5pzx5lhFnEyVPl9A3pO3d5yhmKMkIiIiIiKSK/eQFgDat2+PQ4cO4f7774dKpYIoior/VCoVHnjgARw8eBBt27atiKESVUtRRnll2131jbi7gRH96xYGDs4hbYwxCC1CapX5+Iio8knMtiHVJJ30a0Qzf4/7RftrcH9j5ZOs4QaVYt/XkqrnVNWbY5VPUlbA5pTf1jaqZVXB+2/IK4edDxmg5UkrIiIiIiIqvQprLBkTE4MlS5YgMTERGzduxOHDh5GSkgIACAsLQ+vWrdGnTx9ER0dX1BCJqi2Fq4IdVWVF+0vaIQ1p2YuWqOY64lRFG6pXIdrfu0kEA11U22pUvg04jU4TlbmrpLU7ha0alYD2kTpJ+4J9180Y1Vy6nXMlra+fAxERERER1UwVnrhER0dj5MiRFT0MohpFqxAqFOQORQNckz1Xso1eXeFvGURUBkRRxKEkCy45TYp1LccGk01E3UANtiVKJw1rGa71uvVJkIuQ1getaCX8nKpacy3KIe3JVAtWnZP23FYJQLsoHVacKVx+MdOKlaezJe+Zl7KkJ6+UTnoREREREREVFxMXohpIKRgpuPS3oJJWFEXsyvxdso1O5V3VHBFVLUtOZWPZKflEge60Ctd5vW2g3lVI69sqVD8vKmk3XMrFzIOZsuUaAWgSooW/VkB2kXB34Ylst4+pYY9uIiIiIiLygTINaS9evOjzY9atW9fnxySqaVQKoUKgLn+Z7mYOm269IdvGqPE+lCGiquOvi3meN3LSMlzreaObgnTKQaZe7euQVhoGZyv0pF1/Sfm5alQC1CoBt0TosC3R5PVj6nz8HIiIiIiIqGYq05C2fv36Pp0FXhAEWK1WzxsSkUcdo3TYcz1/UpxQvQq3ROQHsC3DdcCpHJhEeVVd3+hG5TpGIip7dlFEmsn1BFtKWoZpUVthAkJX6gRoEKpXySYeaxXhfdDrjUCndgdZZnklbbrJJlsGAK1vvgcOqOfndUgroHhhNRERERERkStl3u5AFF1P2kFEFefJdkFYfiobuVYRQxoZHdW1rcJ1GNjAD98ct8j2eav9neU9TCIqYzkKfVvrBqpxMVMaZtYyqlHLqEK9IC0GNvAr1klYtUrA/3UNwa9nc5CaZ4NKENAsVIuhjYylHn9RQU5tFTLMdoiiKBmr8/PVqoD7m/hjSMP8sbQK1+G5DkHYesWEPIVK3AIGjQq3xRrQMJghLRERERERlV6ZhrSjR492uz4tLQ2//PILBEHAY489VpZDISIn/loVHm0ZqLiuV6wBM49JQ9rWIbWhZU9aomonyyIPIse2CsRb29MkywbU9cPgUoSqcYEaTG4bVOL9vRHo1HDbJgI5VhH+2sJe2zlOfWrfvjVUFrR2izagW7ShTMdKRERERERUVJmGtN99953b9UeOHMEvv/zi1bZEVH50KgFWUdpaxJ/9aImqpWynylK1AET4yU/IiKj8V8Y4V9ICQKbZDv+b4a3FXjhJYgGjhj1liYiIiIio4ilPt0xENZpGBVhFaSWtn4aX9BJVRzdypW0N/LUCArTy4FKh4LbS0asF6Jw+2VzPtWPthRz8dDwLPx3Pku3jPNkYERERERHVHIIgQBAETJs2raKHUvY9aYmo6tGqBJzJ3SdZZlAzpCWqbkRRxP/2ZkiWBWhV8FOoLrXaK38lLZBfTZuUW5gov7cjze32rKQlIiIiqp42btyIvn37Kq7z8/NDeHg42rZti/vuuw8PP/ww9Hp9OY+QSIrlI0Qko1UJUDm9PZhsyjOiE1HVdTlL/nsdqFMpTgoWE1A1zusGaL3/aKNXA1o1Q1oiIiKimiY3NxeXL19GfHw8xo8fj44dO+L8+fMVPSyq4RjSEpGMVg1oVNKziGY7Q1qi6uZyplW2rGOt/P7Td9X3cywL0gnoVrtqVBYUp3tBh6iq8ZyIiIiIqHQmTZqEQ4cOOf799ddf+PzzzxEXFwcgf86kIUOGwMbiJKpAVaMshojKlVYlQBSlf5zuq9u+gkZDRGVFqZJ2cEMjAODRFgGoZVQjzWTHgLp+1aLi1F8joH1UfggdF6jB3fWNFTwiIiIiIioPUVFRaN26tWTZ7bffjrFjx+KWW27B+fPncejQIaxYsQIPPPBABY2SajpW0hKRjFoA7JDOEqSCfLZ3IqraErKklbR31/eD6marA41KwMAGRoxqHoBIY/X4/W8UosWU9sGY0j4Ywxr7w8B+tEREREQ1WmBgIP7v//7PcX/dunUVOBqq6RjSEpGMIAgQnUJaCHy7IKpunEPa2CrSd7akIo18HyMiIiIiqTZt2jhuX7p0yeV2GzZswOjRo9GwYUMYjUYEBQWhTZs2mDp1Kq5cueLVY23duhUTJkxAs2bNEBQUBJ1Oh7i4OAwaNAhfffUV0tLSXO67atUqPPDAA4iLi4Ner0d4eDi6d++ODz74AFlZWYr7NGrUCIIgoEePHh7HlpCQALVaDUEQ8NJLLyluk56ejv/85z/o0aMHIiMjodPpEB0djcGDB2Pp0qUQRdeTDQuCAEEQMG3aNADA+vXr8eCDD6JOnTrQarWoX7++bJ+rV6/itddeQ6dOnRAWFga9Xo86depg+PDhXgfqP/30E/r06YPQ0FAEBASgdevWePPNN92+1hWlen8bI6JiScrLxtfHt+JCVhpybJmSdQeuW2G1i9CoWHlGVB3YRRGJ2dJ2B7EB1aNi1pVIv+r9/IiIiIio+HQ6neO2VquVrc/Ly8PYsWPx888/y9YdPnwYhw8fxowZM7Bw4UIMHjxY8TFyc3Mxfvx4LFy4ULYuISEBCQkJiI+Px40bNxwhZtHHHzVqFFasWCFZnpKSgu3bt2P79u2YPn064uPj0a5dO8k2o0aNwrvvvott27bh/PnzikFogYULF8Juzy/Wevjhh2Xr//rrLzz00ENITk6WLL969Sp+++03/Pbbbxg4cCAWLVqEgIAAl48DAK+99href/99t9ssWLAATzzxBLKzsyXLL1++jCVLlmDJkiUYP348Zs6cCY1GHm9arVaMGjUKS5YskSw/cuQIjhw5gh9//LHSVU6XaUj79ttvu11//fp1r7ct8MYbb5RqTETk2j1/zsHOJOUzh6fSbJh/NAvjWgeW86iIqCxcz7HB4lQwHxdY9c/dujuNxJCWiIiIiJwdO3bMcds5xBRFEQ888ADi4+MBAIMHD8bw4cPRsGFDqFQq7Ny5E//9739x8eJFPPDAA9i6dSs6deokOYbdbsfQoUPx559/AgCaNGmCyZMno1OnTjAajUhMTMQ///yDxYsXK45v9OjRjoC2bdu2eOGFF9CiRQukpKTg559/xrx583DlyhX069cPBw8eRGxsrGPfhx9+GO+++y5EUcRPP/2EV1991eXr8NNPPwEAWrVqhbZt20rWbd26FXfffTcsFgtq1aqFKVOmoG3btoiJicGVK1ewaNEi/Pjjj1i9ejVGjx6NZcuWuXyc5cuX49ChQ2jTpg2ee+45tG7dGrm5udi/f79jm8WLF+PRRx+FKIpo2LAhnnrqKbRs2RKRkZE4f/485s6di9WrV2Pu3LkICgrCp59+KnucF1980RHQNmvWDC+99BJuueUWpKenY8mSJfjmm2/w0EMPuRxnRRBEd7XIpaRSqSAIvq2640x7UpcvX0adOnUA5JflF8xMSFRciTkZiFnk+mRJ75CH0Cq4Ab66PaIcR0VEZeVgkhnv7Uhz3PfXCvj2jsiKG5CPvLM9FYeTLcrrbg1F01B5dQQRERGRN0rz/fvUqVOwWq3QaDRo0qSJ4jZ20Y5kU45PxlpVhOuNUJVRa72NGzeib9++AIA333xTVqEK5GdMnTt3xr59+wAAW7ZsQc+ePR3rv/nmG0ycOBFarRa//vor7rrrLtkxUlNT0atXLxw5cgQ9evTA33//LVn/xRdf4JlnngEADBs2DAsXLoRer5cdx263IzExURKyxsfHY9CgQQCAfv36YfXq1ZLK36JjBIDhw4dj0aJFkvUdO3bE3r170apVKxw+fFjxtTp+/DhatGgBAHj//ffxyiuvONZZLBY0bdoU58+fx1133YVly5bBaJRPwFt0HGvXrsWAAQMk64vmg/369UN8fLzi65CUlITGjRsjPT0d48aNw6xZsxQrZQuqcVUqFY4ePYpmzZo51h06dAjt2rWD3W5Hhw4dsGnTJll17/z58zF69GjHfVc/I+5483tdHGVeMuPLDNjXgS8RFUo2Zbtc56cKQLg2BmZbmZ3TIaJyZrNLf5/9qskkWl2j9YohbbS/Go1Dqn6lMBEREVVfyaYcRC2cVtHDKFfXR05DpMH9pfFl4caNGzh06BDeeOMNR0D7wAMPSAJaURTx4YcfAgCefvppxYAWAEJDQ/Hxxx9j4MCB2Lp1K06dOuUI7Ox2Oz7++GMAQFxcHObPn68YTAL5hY5FA1oA+OqrrwDkt2H47rvvZAEtADz++ONYvHgx1q1bh+XLlyMxMRHR0dGO9Q8//DD27t2LI0eO4MCBA7IqWSC/tQCQn7uNGjVKsu7nn3/G+fPnYTAYMH/+fMWAtmAcc+bMwc6dOzFv3jxZSFv0ec6ZM8fl6zBjxgykp6cjNjYWX3/9tWJACwBvvfUWvv/+eyQkJGD+/Pl47733HOtmzpzpaN0we/ZsxfYLjz32GH7++Wf8/vvvisevCGX6bWXDhg1leXgi8qE0c57kvl6lQa+ITriWrUM9Q0toBC3Kru6eiMqbU0YLdfXIaDGgrh9C9WqcSLXAfvNNK1ivQu84P6h4speIiIioRnrrrbfw1ltvKa4zGo3417/+hQ8++ECy/OjRozhz5gyA/ADXndtuu81xe9u2bY6Qdv/+/bh8+TKA/BDTU6/WoqxWKzZt2gQAuOOOOxxV3Eoef/xxrFu3DlarFRs3bsTIkSMd60aMGIGpU6fCbrfjp59+UgxpC3rl9ujRA/Xq1ZOs+/XXXwEAvXv3RmSk+yvvbrvtNuzcuRPbtm1zuU2PHj3c9sYteLxBgwa5DHIBQKPRoHv37li6dKns8Qp6zbZp0wYdO3Z0eYxx48bVnJC2d+/eZXl4IvKhdHOu5H6UXwC+6D4E07alOZY5hzpEVHU5F8ZXlwBTEAR0rq1H59quP9ARERERERVo164dnn76admkYbt373bc7t69u9fHu3r1quN2QZUuAPTq1atY4zp79ixycvLbX3Tt2tXttkXXO7c0iImJQd++ffHXX39h4cKF+OCDDyRXqu/YscMRRitNGFbwOqxZs8brK9yLvgbObrnlFpfrbDabozftrFmzMGvWrGI/nslkwqlTpwAAnTt3drtfly5dvDp+eSmbxh9EVOWkO1XSBmsNUDlNweM0xxARVWE2p9J4VfXIaImIiIiIZCZNmoRDhw7h0KFD2LdvH1atWoXRo0dDpVLhn3/+QZ8+fXDjxg3JPkUnuy+OgmAVyO+vWqBoCwJvpKSkOG5HRUW53bZ27dqK+xUoCF8vXbqEzZs3S9YVtDrQarV48MEHZfuW5HXIzc11uS40NNTlupSUFFit1mI/XtHXPDU11dF61dPrVqtWrWI/VlliczYiAgCkW5xCWp0BzifJcq0spSWqjLIsdqw8nYOtV/IQ6adGXIAaAxsYEReo/Gf+eIoZX+3PkCyrLu0OiIiIiKqqcL0R10dOq+hhlKtwvXJ/U1+LiopC69atHffbtWuHQYMGoW/fvhgzZgzOnz+PCRMm4JdffnFsU3Ti+lWrVrm9RN/5sXyttHM03X///Zg8eTLy8vLw008/Oa58t9lsWLx4MQDgrrvuQnh4uGzfgtfh7rvvxkcffVSqcQCAWq12ua7oaz5hwgTHhGueKPXqBare3FYMaYkIADDrxHbJ/RCdn2JlnV0Uq81l0UTVxed7M3AwyQwASMmz40SqBbuvmfB1vwhonH6Rr+fY8P7ONFicSuP5e01ERERUsVSCqkIm0arJRo8ejVWrVmHZsmX49ddfsX79etx+++0AIAksQ0JCJCGvtyIiIhy3ExMT0bx5c6/3DQsLc9y+du2a222LXu5fdL8CQUFBGDRoEJYuXYqlS5fiyy+/hFarxV9//eU4tlKrAyD/dbhy5QrMZnOJXoPiKDp2URRL9HghISGO255eN0/ryxvbHRARAKBhgPSNPMtqUpzt/VqOTbaMiCqO2SY6Atqi0s0iLmbKLxX6OyEPJoVfY6PC7zsRERERUXX3/vvvO6o7X331Vcfy9u3bO25v3bq1RMfu0KGD47ZzmwFPGjZsCKMxv9J4x44dbrfduXOn47arYLMghE1JSXFMllXQ6iAwMBBDhgxR3K/gddi9ezfMZvn3Dl/S6XRo1aoVgJK/5gaDwTFx265du9xu62l9eWNIS0QAALNdmtroVRrE+MsvQzA5zzZERBXK7OZ3Mk+hRcmxFOUPVr3jDD4bExERERFRVdG0aVMMHz4cQH4Y+ueffwLID1jj4uIAALNnz0ZeXp7LY7jStm1b1KlTBwAwZ84cZGVleb2vRqNxtCX4888/cfnyZZfbzpkzx7FPnz59FLcZOHCgox/sggULkJeXhxUrVgAAhg0bBj8/P8X9CsLb9PR0fPfdd16Pv6QKHu/48eNYs2ZNiY7Rv39/AHD0IHbl22+/LdHxywpDWiICAGRbpcHNoDotFfu3WDl7GFGlYrW7DmktTuusdhEnUi2SZU1DNHirewj61FH+UEZEREREVN29+uqrju+/7777LgBApVI5KmvPnj2Lxx57DCaTyeUxMjIy8OWXX0qWqVQqTJ06FQBw+fJlPPbYYy6rUe12O65cuSJZ9uSTTwIAzGYzxo8fD4vFItvv22+/xdq1awEA9913n8sJynQ6HR544AEA+T12f/rpJ2RmZgJw3eoAyG8JURA0v/jiix4rgv/++29s2rTJ7TbuPPPMMwgIyG/7MXbsWBw5csTt9vHx8Th48KBk2RNPPOH4/5w4cSKys7Nl+y1YsACrV68u8TjLAkNaIgKQ396gKH9NfuNtf600qHUOfYioYrmbz8+57+yZNKus1cHUziFoHqbcaJ+IiIiIqCZo3bq1o4Jz8+bN+PvvvwEA//rXvzBs2DAAwJIlS9CqVSt8/PHH2LRpE/bv34/Nmzdj9uzZGDVqFGJiYjBt2jTZsZ988kkMGDAAALBixQq0adMGn3/+ObZu3Yp9+/bh999/x5tvvonmzZtj9uzZkn3vuecePPjggwCAtWvXolu3bliwYAH27NmDdevWYcKECZgwYQKA/H6un376qdvnWRDG5ubm4oUXXgAA1KpVC/369XO5j16vx+LFi6HX65GVlYXbb78djzzyCJYuXYo9e/Zg165d+PXXX/Hmm2/illtuQa9evXDo0CG343CnVq1a+P777yEIAhITE9GpUydMmjQJv/76K/bu3YsdO3Zg2bJlePnll9GoUSMMGjQIFy9elByjbdu2joB79+7d6NSpE+bNm4c9e/Zg/fr1mDRpEh577DF06tSpxOMsC5w4jIgAANkW6dm8AG1+aKNVCQAKUyALW9ISVSruTpxYnFohHHVqdVA3UI0gHc/XEhERERG99tpr+OWXXwAA77zzDtasWQNBELBo0SI888wzmDlzJs6cOYOXXnrJ5TGioqJky1QqFVauXInRo0dj6dKlOHnyJJ599lmvxzV//nxYrVasWLECe/fuxSOPPCLbJiYmBvHx8YiNjXV7rNtuuw116tTBpUuXkJaWBgAYMWKEoyevK926dcPGjRsxfPhwXLp0CQsWLHD0s1USFBTk+Ym5cd999+GXX37BmDFjkJKSgpkzZ2LmzJmK26pUKvj7+8uWf/rpp7hy5QqWL1+O48ePY+zYsZL1DRo0wKJFi9CoUaNSjdWX+M2MiADI2x0UVNJqnd4lWElLVPFyrXbMO5KJh+Kv49mNKS63Mzv9vh5Nll4e1TKcFbRERERERADQuXNnR8Xr2rVrHZNKabVafP311zhw4ACmTJmCNm3aIDg4GGq1GsHBwWjXrh3Gjx+PpUuX4tixY4rHNhqNWLJkCdavX49HH30UDRo0gJ+fH3Q6HerUqYPBgwdj1qxZjurWogwGA5YvX45ff/0V9913H2JiYqDT6RAaGoquXbviP//5D06cOIF27dp5fI6CIGDkyJGSZe5aHRTVrVs3nDp1CjNnzsQ999zjGIfBYECdOnVwxx134L333sPx48fx2GOPeXVMdwYPHoxz587hk08+we23345atWpBq9XCz88PDRo0wKBBg/Dpp5/i/Pnz6Nu3r2x/rVaLZcuW4YcffkCvXr0QHBwMo9GIFi1a4NVXX8WePXvQsGHDUo/TlwRRFJm4VGGXL1929Aa5dOmSo6k1UXGF//QGUkw5jvsb756E3rUb4dmNyUjMLiyffb5DELpGc4Ihooo0+2AG/rrkeeKCCa0DMaBefq9Zm13E2LVJksn/+PtMRERE5L3SfP8+deoUrFYrNBqNY+Z5IqrafP17zUpaIoIoisi0SHvSBmj0AJQqactrVETkijcBLZBfcVsg3WyXBLQA0CRU69NxERERERERUckwpCUi5FjNsNilzWZDdPnVdRqVdOIwG4vviaqMDHPh76tSpxKDWpAvJCIiIiIionLHkJaIkGaWV+WF6o0AAI1ThmNlJS1RlZFmKvyFVTq/ohIY0hIREREREVUGDGmJCKnmHNmyYK1yJa2VE4cRVUr3NTZiVHPprKbpRUNahX1UzGiJiIiIiIgqBU1FD4CIKp5zJW2Q1gC1Kv8cjsbpVA4raYkqJz+NgCCd9Bc23Vz4C2tXKKVlRktERERERFQ5MKQlqiGWnz+E+zd8DwCo52fC+80SEKq1Yt6VJtiYHIDHYpPwSGwyjmf5YXZCS9htychL/xoPRCVCMA/CgYxOAABrkaAnJc+Gbw9n4nyGFQBg0AjoG+eHgQ38ILi4jPpIshmLT2QjJc+GxqFajG8ViABd9Szq33olD7+dzcHZ9PzXp22kDo+2CECdQL71Uskpha0A4KdRIVjvFNKaioa08n3Y7YCIiIiIiKhyYFJAVANkWvIcAS0AfNriEvpFZAIA2gYdxL27G+OLVpcAAF1CcqBRJyAvfQYsuRtRWwf8q8EpTD08A1m2IEkl7ZxDmdhz3Sx5rPnHstAgWIOW4TrZOKx2EZ/sTkeONT8tup5rgkEt4Ilbgnz9lCtcUq4N0/dlSC4xP3DDjHRTBj7sFVZh46Kqb0eiSXG5QSMgxCmkzTDbYRdFqASB7Q6IiIiIiIgqsepZvkZEEj+e2VvknugIaAHAX23Hn11PSrYfFX0WltwNjvtqwY7eEX8CkPakLagQdXbGxfKr2TZHQFvgVJrFq+dQ1VzIsCqGYuczrMixsGcEldxJF78z4QYVAp2q0u0ikHvzd06pAJcZLRERERERUeXAkJaoBsgo0nPWX12ygNBfkwUAsBUJeswuJhFzNbmYTWFxjqV6TkTmbn41s9ILQeSl5Fz573DLMC2ahWphUMtjV9PNnzel33xXbUmIiIiIiIiofLHdAVENoFEVno8J09pKdAxRzD9G0QDW1SRirpbbFEr5nCtrqwt3zyqPIS2VQnKe9He4V6wBk24JhFolQK+Wb19wUsD514+tDoiIiIiIiCoPVtIS1QBaVWFyE6pVbkXgiXjzwuiiAazLilmXFbbyZblW0eX2VZnoYnIngCEtlY5zJW33aD3UNxNXjUrewiDPEdJKf+6Y0RIREREREVUeDGmJagCNUPirXtKQ1u5USWsXRcX2BQDgqjhWqZIWKOyZWVOYSvZfQASrXUSaSRrShhsKf78FQYDeqeWB+WbhrfM5ElbSEhERERERVR41st1BRkYGVq9ejV27dmH37t1ISEjAjRs3kJubi5CQELRs2RIDBw7E+PHjER4e7vF4//zzD77++mts2bIF165dQ0hICNq2bYsxY8Zg5MiR5fCMiNyL1l5A2h37SnWMu2qtQpugffg5YTTGrW2DbDe9ZAuC3DyrHTMPZuLADTP0agH1gpTfcsb/mYTaRjVGNPdH92iD12M6n2HBrIOZuJxpRYBOhcENjehbx4D3d6ThZFphEuqnEWCzizBqVehf14AHmvhDEATsvmbCx7vTHdvd39iIB5v6l6hP58lUC745lImr2fmP665Y9o1tqehSW49JtwTCqOW5MvJeap5d1koj3E/a40CvESTV2m9tT4UK8hYczGiJiIiIiIgqjxoZ0u7cudNleHrjxg1s2rQJmzZtwscff4wff/wRd955p8tjTZs2De+88w7s9sIapWvXrmHt2rVYu3YtFixYgKVLl8Jg8D54IvIlUbTjdr+5PjlWrN9lTKj3JV468jXcFeIXtDWIP5eLbYkmAPm9Z1NvmF3uczXHhq/2Z6B9pB4GjXfx0ayDmTibnh+KpuTZ8f3RLCRkWSUBLVBYqWs22bH0VA5aR+jQMFiLz/amS7ZbdjoH7aL0aBqq9erxC4iiiC/3Z+Bajvf9fndeNSHWX40RzQOK9VhUszn3o9WpgACt9PdF7/Sr6apHNCcNIyIiIiIiqjxqbAlXnTp18Nhjj+Hzzz/H8uXLsW3bNmzduhWLFi3Cgw8+CLVajaSkJAwZMgQHDhxQPMasWbPw1ltvwW63o1GjRpg7dy527tyJlStXom/fvgCA+Ph4jBs3rjyfGpGEaE/z6fGCtekI0GS63aagkvZCRvGu67fYgSvZ3u0jiiLOpcu3XXcxz+O+FzOsuJRphUUhvDqTZvHq8YvKtYrFCmgLnC/m60Pk3I823E8tC1sjjQqzhykIM9TYjwBERERERESVTo2spO3bty8uXrzocv3w4cOxcuVKDBs2DGazGW+99RaWL18u2SYlJQUvv/wyAKBu3brYvn07IiIiHOsHDRqEYcOGYdWqVVi4cCEmTpyIPn36lMnzIXJHtGf4/JhqwX0gab3Ze9ZSggnBzF5OqpVrFWWXb3vLJgKJ2crPIdPsouzQjYwS7AMAuZxAjIopyamSNlwhaL2vsT9Op6XB5ObXVC0Aw5v6+3p4REREREREVEI1MqRVqz1XGd17771o1qwZTpw4gS1btsjWz5kzB+np+ZdKf/jhh5KAtuAxvv76a6xevRo2mw0ff/wxQ1qqEJ4qaf0jvwIAZN940utjegxpb2aW3gauRZm9LEjNKcVkYzY7HL1jnaWXKKSVjkWrAqZ1DwWQPzlTmEGNlDwbNl/Ow+/ncx3b1bQJ06j0lCppnbWO0OGbAZFIyLLC1XmSGH81+yETERERERFVIjUypPVWYGAgACAvT3759MqVKwEAQUFBuO+++xT3j4uLQ//+/bFmzRr89ddfyMzMdByTqLyI9nSX61TqaGh0zYt9TLXg/jL9gnYHJSkwNXkZ7GYp9SrwklUUXVbSppuKH5w6V98G6VRoHCLtaxuiVyElzy4JaXNK8RyoZnLuSRvhomWBXi2gYXDxeisTERERERFRxWEZjQsnTpzA/v37AQDNm0tDLLPZjJ07dwIAunfvDp1O5/I4vXv3BgCYTCbs3r27bAZLNZ7FbkOWxQSzTR6e2m1pLvcT1BEu17njKaS12POraC0lqKTNMNuRZy385+oYOZaSV6Fa7cr9bAHgRq40BBNFEXlWO+yi68dzbncQqFN+a/VzmhAtqxTPgbxjv/n/l2e1w1aC9huVicUmIiHLqd2BQiUtERERERERVT2spC0iJycHCQkJWLVqFT766CNYrfkhzrPPPivZ7uTJk7DZ8r8oOwe4zoquP3bsmGNCMW9dvnzZ7frExMRiHY+qF7toxzM7fsE3J3fAZLNCI6jwUIN2+LbncGiQjsyrw93uryphSBukSUci6rhcv/+GGY/+caNEx559KBOzDxVOTCYA6FhLhyntgmEoEnJmlyLgXHoqx+W68xlWTN2cjMltg5BtEfH1gQwk59nhrxHwSIsA3F7XT7L9rqsmzDwonUgtyMuQNtcqYtmpbNzfhL1BizqfYcEX+zKQnGvHkEbGEr8+ay/kYOHxbEdrDL0aGFjfiBHNA3w53DKXZxUxfX869lwzy/owK/WkJSIiIiKi8nX48GF88MEH2LRpE65duwaLJX9C6n379qFdu3YVO7hKbMyYMfj+++9Rr149nD9/vqKHU+FqfEg7b948jB071uX6f//73xg1apRkWdHgNC4uzu3x69QpDLIuXbpU7PEV3Z/I2earZ/Hlsa2O+1bRjgVn92JwnZYYGr7L4/4lraTtG/EnTmS1LtG+xSUC2H3NdMq6ugAAsFhJREFUjI2Xc3FXfaNjeXYZtgq4mGnD7EOZyLWKSM7Lf5xsq4jvjmSiW7Te0cvTLor45pB8YrYgnSBbBgBGjXz54pPZ6BGjR23/Gv927LDgWJajYnTxyWx0i9YjNqB4r0+W2Y55R7JQtBDbZANWnMlB9xgD6gVVndd70+Vc7L5mVlzHSloiIiIiImUbN250FMq9+eabmDZtWpk8zp49e9CrVy/k5uZ63pjIDZbguNCuXTvs3LkT//nPfyAI0mAlM7Owai4gwH1Flr9/YQVYVlaWbwdJNd7x9OuKy09m3IAp62eP+wuqYMdtXYD7qtuizHbXLT7KyrEUi+R+XglaKRTH2XSrrG+t2Q5czCxsk5BtEZFulo/DVaAYZlBDr5CpXcr0cra0GsAuijiYJP2/3npF3hfck4QsG1z9iJzPsCivqKROpSmPV68WUMvIkJaIiIiIqCK98soryM3NRVBQEL7++mvs3LkThw4dwqFDhzxefV1epk2bBkEQZPkWVS5Vp5SojNx7773o1KkTACA3NxdnzpzB4sWLsWLFCowcORKfffYZBg0aJNmn6ERi7vrRAoBer3fcLslZFU/Vt4mJiejSpUuxj0vVQ65CD1oAEGUXRSsThMKfX33A/TBnLfZyPxH96hpwLduGw8kWNA7R4HSa+z61pXXeqYestYLm3LqabUPzsPzbFoUep9H+avR3aolQQKfOb5kw97D0hE1pJkGrbpJy5a+FyVqCydzcvKYpeVXr9b6SJQ/xtSrg0RYB0Kn5IYuIiIiIqKJYLBZs2rQJADBx4kRMmjSpgkdEVVmND2lDQkIQEhLiuN+5c2eMGDECP/zwA0aPHo2hQ4di7ty5GDNmjGMbg8HguG02K1+CWsBkMjlu+/kpBzfueGqnQDVbnk25ws7NHFdSRUJalToCQTF/AmIuRHsmzNmrXFbjdo/W447wIIiiCJsIqIX8lgSf7El3+VB6tYD/3pafbj61IdntsL7sG46ELCv+s6vweFdzbMix2B2tBpwD0lbhWky6JchxX6sCrCKgEoAQvQrj1iYhVyHsm9U/AgFaARa7iLe3p+GsiwnFChStrjUrlGp+1CvMbXB2Rz0jtl4x4XiRymBOIFYoIUv++pfk1ckwuQ5iU6tQSCuKIq44VXQ/3iYQt8UaGNASEREREVWwpKQkRy7UtGnTCh4NVXVsd+DCo48+igcffBB2ux1PPfUUUlJSHOsCAwMdtz21MMjOznbc9tQagai4cq0uQlpvK2mhld4XVBBU/lBpakOlqetyv4JsSBAEaFT5l0z4a90HRpF+KkQa1Yj04vLsSKMarcJ1cM6gzmcUBnjOlbQB2sLjRxrVCDGoEeGnRphBDZUgoFmo9LkC+ZOSBenyn4OfRoXb63g+kSINaeXH03rxrhqql26UZa46oWFZU6oaTXMTuLqS4eY1TcmrOu0l0k122cmFWyJ0DGiJiIiIiCqBooV5Wq38OydRcTCkdWPo0KEA8oPWP/74w7G8aHVr0UnElBRtV8BJwMjXcl1U0uZaUr07gOD6j4igMrhcB8gDMKVJsYoK0Rfv7UarFhAXKC32P51mcbQGMDlVsWo8HL55mPy5GrUCVEV68rSJ8PxH9XKRSk+zUzWvVgWvevwE6pxCWrY7cFCqpL2RY8O1HBusCu0lihJFEUm5+dtey3EdxJZ3u4PUvMIxKf1z/v9PN9mRlGuDKIo4lyF9PbQqIMKPf7qJiIiIiEpj48aNjh6tGzduBAAsXrwY/fr1Q2RkJPz8/NCsWTO89NJLkqK9AgU9Xhs0aOBYNnbsWMcxBUFQnKgsLy8PX375Jfr164fatWtDp9MhKioK/fv3x9y5c2G1em4jaDKZMHv2bNxzzz2IjY2FXq+Hv78/WrVqhQkTJmDNmjUQb15eO2/ePAiCgLfeesuxf9ExFvw7f/687HFsNhu+//57DBo0CDExMdDr9QgPD0fPnj3x6aefetXS89ixYxgzZgzq1KkDg8GAOnXqYNSoUdi1y/NE5zVRjW934E5kZKTj9oULFxy3mzZtCrVaDZvNhuPHj7s9RtH1LVq08P0gqca6kJWCTw5vkixTQcTXrS9gRMw+r45RtCetfKW7kFbO6KGENNjLkLZogWD9IA0uFAmpFhzPxk/HsxHup5L1LtWo3IejLRRCWucR1fbXIMpPhesKfVELJGTZcPCGGbdE6mTtDrytbgxwqjpmu4NCf12STxJ2Ms2Kpzckw6AW8FS7IHSurZdtcy3Hhvd3pOGqm3C2QHmFtFkWOz7cmYaTHvo1CwBur2vAYy0C8d896TiY5LqNTrS/WnJigYiIiIiISsdut+PRRx/Fjz/+KFl+8uRJfPzxx1ixYgW2bNmC2rVrl+pxDhw4gKFDh0ryJQC4ceMG/vrrL/z111+YNWsWVq1ahVq1aikeY//+/bjvvvtw7tw5yXKz2YyjR4/i6NGjmDt3Ls6dO4f69euXeKwXL17EkCFDcODAAcnylJQUbN26FVu3bsWMGTMQHx/vss3D4sWL8dhjj0mqjS9fvoyFCxdiyZIlmDlzZonHV12xHMeNhIQEx+2irQp0Op1jsq5t27a57Utb0EBar9c7Jigj8oX/HdkiW9YlJBsjYrysogXcV9IK8iCsgCgqVNJ6aHfgbUhbtCK3QZD8PJII5cmlPLUZaBQsf64GherfNhHuJwMEgG+PZAKQ96TVegiKCwRo2e5Aic1DpWyeTcSPx5RbzPxyJturgBbIb5/gqSrXFzZdzvMY0AL5P9N/XczD4pNZbgNaAIj257lVIiIiIiJfev311/Hjjz/i3nvvxfLly7Fnzx6sXr0a99xzDwDg9OnTeO655yT7TJ48GYcOHcKaNWscy959910cOnTI8W/y5MmOdadPn0bv3r1x4cIFBAUF4ZVXXsGKFSuwe/durFmzBk8++SQ0Gg127dqFoUOHwmKRXzV77Ngx9OrVyxHQDhs2DIsWLcKuXbuwfft2zJ8/H4888gj8/f0d+9x77704dOiQZEKzomMs+BcbG+tYn5ycjJ49e+LAgQPQ6/V46qmnsGTJEuzatQsbNmzAK6+8AqPRiNOnT+Puu+9Gerp8bppdu3bh4Ycfhslkgl6vx7///W9s3rwZO3bswBdffIGIiAhMmjQJ+/fvL+b/VvXGb3tuLFmyxHG7TZs2knX33nsvtm3bhoyMDCxfvhwjRoyQ7X/58mWsW7cOANCvXz9JL1ui0jqWdk22rI7BfcDjzF3fWXfrAHkY5q8R3Fah1i8SuHaupcOua8pjndy2cPIv53YH7hg99DvQqgV0jNJhz/XCx20ZLg9ku0TrFas5iyqYlMq5IjNA511I6xwOO7duqKm8qSi+mmODXRRl1aSnUpVbfygRkd+2on5Q2faMSlTor+vOHhe/E0U1VeitTERERETVgyjaIdozKnoY5UpQBUEQKrZ+8J9//sG7776L1157TbL8rrvuwl133YW1a9di6dKl+OKLLxxXXEdFRSEqKkpS0BcbG4vWrVsrPsbo0aORnp6O9u3bY+3atYiIiJCsv+OOOzBo0CDcc8892LFjB+bNm4fHH39css0jjzyCrKwsqFQqLFiwQJZDde3aFY8++iiSk5NhNBoBACEhIQgJCUFUVJRjO1djLPD000/j0qVLqFevHjZs2CBp6QAAffr0wYMPPohevXrh7Nmz+Oijj/Dee+9Jtpk8eTKsViu0Wi3Wrl2L2267zbGuS5cuuO+++9CtWzdZpW5NVyND2nnz5mHEiBEwGFxfzv2///0Pq1evBgA0aNAAvXr1kqyfMGEC3n//faSnp+Pf//43BgwYgPDwcMd6m82GyZMnw2bL/5I+derUMngmVJMlmbI9b1TEzjQjuoTkOO7rg8ZBrYlxub1KHQa1tgVslmPylaI8TBIEAY+3CcKsQxmSSle1AHSL1qN7dOHv26jmAbiWk4HLWVbUCdRALeRPyNUzxoBbIguDU+cJtty5p4HnSb8eaxmATHMGTqVZ0TBYgweb+Mu2aRepx5CGRvx5MVc2YVOBvJuh6nWnys1aXkyKBsirftmSNl+u82xwLuRZRUnlttUuIsFFIKpVAbfFGXDghlnyc3kuvexD2hwvn0+B67nuQ92OUTr0q1u8NiREREREVHWI9gxkXr2/oodRrgJrL4OgDqnQMXTs2BGvvvqqbLkgCHj++eexdu1aWK1WbNu2DUOGDCn28bds2YJ//vkHAPD999/LAtoCd911Fx544AEsXrxYFtKuXbsWe/fuBZAfoioVChYomk0V1/nz57Fo0SIAwJdffikLaAu0b98eTz75JD766CPMmzdPEtLu2rULu3fvBgA88cQTkoC2QGxsLP773//ioYceKvFYq6MaGdJOmzYNL7zwAu6//3707NkTjRo1QkBAADIzM3Ho0CEsWLAAW7duBZDf2mD27NlQq6XhS1hYGD788EP861//woULF9C1a1e89tpraNOmDa5cuYLPPvsMGzZsAACMHDkSffr0Ke+nSdVcUp40pP2131j0C0uAJf1D2bZvnozBDdVd6NP8wZsTbKkhCJ4DRX3gCOSkvClbLiqEtABwS6QOX92e/wfHLoqw2gGVIO8XGxOgwce3hcFmF6F20yIgzOB9SOtNO4Xa/hq80yMMVrvotoftwy0CMKKZPwoKXK/n2PDC5sJm8TYxPxi8lluykNb5scvj0vuqIM+polgAMKNfOP71V7Jkea5VhLFIvpqQZYNzMfKs/hEwagSoBUCtEvDpnnQk5Rb2QjqXbkXfMp7LMcepMnh4U38Mbmh03P/6QAa2JRaOyd2PwcQ2gehX1/OJCCIiIiIiKp5Ro0a5nAC6Y8eOjttnz54t0fF//fVXAECzZs1kV2k7u+2227B48WLs2rULVqsVGk1+bPfbb785tnn22WdLNA5vxMfHw2azwWg04u677/Y41o8++ghXrlzBxYsXUbdu/tW4BVeUA/mTqbkybNgwhISEIC0tzSdjrw5qZEgL5Dc7/uabb/DNN9+43CYuLg7ffvst+vfvr7j+iSeewJUrV/DOO+/gzJkzGDdunGybgQMH4ttvv/XZuIkKOFfSRhoCoFGp4Oqi71CdH7Rqz/1WJQQXbxEuQtqiVIIAnYfM0l1ACwB+GgF6NWDy4qpxV39UlXiaZAzIH1vB8JV615ptIq5ll7SS1jmk9Wq3ai/PqXLZTyMohu/OFc4XM6R9XyP9VAhx2q9BsAY7rhYGomfTvW+PUFLZTuMM0qkkk8sV5yREx1que0QTEREREVHJNW/e3OW6sLAwx+3MzMwSHb+gqvTEiRNef2+1WCxISUlxtCnYty9/cvC6deuiXr16JRqHNwrGmpOT4wiIvXH16lVHSHvo0CEA+UWPbdu2dbmPVqtF+/btHQWOVEND2jVr1iA+Ph5bt27F6dOnce3aNSQnJ8PPzw9RUVFo164dBg0ahOHDhzv6eLjy1ltv4c4778RXX32FLVu24Nq1awgJCUHbtm0xduxYjBw5spyeFVUHdtGOY2nXEWsMRoheuWpOFEUcSk1EjlUaMkUY5JfuF2VQF//SbgHK+4guo2DfEgQBIXo1rnk5IVRZ0avlf0iPJFtwJl0aDkZ5XUkrvW9hJS0AeUhr0AhQCQL0akHSt/dAkhkhehXUqvwq2u1XpT2E6yr0Mm4YLF12IcMKm128ORGdDeEGNbQ3/5/NNhEXM60wqAXEBKihEgRkmPMnGwszKP8f28X8lgtqIb96PMMsIt3p7ILRKex3DpJdaRSs8XpbIiIiIiIqHne5j0pV+Dm8oJ1lcV2/fr1E++XkFLYrTEpKAgBER0eX6Fje8sVYU1Lyr0INCwuTXZXurFatWiV6vOqqRoa0zZo1Q7NmzfD888/75Hi33norbr31Vp8ci2qudHMu+v0xC3uSL0MtqLDgtlF4qGE7yTaiKOL+9d9jxcXDsv0j9P5K83nl7wfAoC7Br7vgItj1opLWV0INqkoZ0n6yRz6DJdsdlM6hJOnPleHm627USEPa+UezMP9olsvj1AuS/6w3CJb+LJvtwJEUC749nInEbBtiA9R4vWsIUk12vLsjDdk3WxU0CdGgbx0/fHckExY7cFd9P4xtJZ0EMs8q4t0dqTiVJg3tnRXtowt416IDANpHFbMCnoiIiIiqJEEVhMDayyp6GOVKUAV53qiKKwh327Ztix9//NHr/WJjY8tqSC4VjDUiIqJYFa5KvWuLc7Ur5auRIS1RZbT0/EHsSb4MALCJdkzbv1YW0u5KuqQY0KoFFYJ1BlhylcO+bJsKET4MaV31pC0L3kweFqQr2zd/54m+lAgAIv1KVkmbZ8sP4Gv6H7F/ivRnBQrbTPhpBKSalPZQVlchpA3SqRDhp5JMHvbF3nRk3gxjE7Js2JyQh/MZVkdACwCn0qw4lVZ4WdMf53MxtJFRUlG7+5rJY0Bb8DyK8rY6tn0UWx0QERER1QSCoKrwSbTI9wom8srKykLr1q1LdIyCycYSExN9Ni4lBWPNzMxEixYtPFbCKgkNDQUAJCcnw2azuT3GtWvXSjbQaorXTxJVEkvOH5TcP54uv8xAaRkAdAiPhSAIEMU82bo8m4AliWFoFxZT7DGpNXWheC5HLJ92BwDQOMRzm4YhDd23eigtQRDgr3UfoIqA43J5TyKcLpk32URcyqrYauHKIEgn/ZN04+bEbPWDi3eCwVVFc1yA9DiZThN7rTidg0Qv/h8SnLa5nOU5oFULQB2nNgwNgjz/bNcyqmWtGoiIiIiIqOpo3749gPyJx65evVqiY3To0AEAcPHiRVy4cKHY+3tbEFQwVpPJ5OhPW1wFk6OZzWYcOHDA5XZWqxX79+8v0WNUVwxpiSqJbKvn6tTEnAzZsq6RdTG3x/D8O3b5JeAvn2yOfzXvh3vqtCj2mASVP/xCX5GvKMdK2jvq+aF3nAGBLkLSaH817qhf9rPeP9nW/WU4Y1oGeH2sSKMakX7St98jSeX3mlZWRVsaAMDwpvnh+6MtAtAmwvueyv4uSp89TdSlUwHpZs+zuDln8cm5yvsIyG/ZEO2vxlPtgmTjCvJQSdswWIMp7YKgquEV1kREREREVdmQIUMA5F89+fnnn5foGIMHD3bc/t///lfs/Q0Gg+O2yeT6MsXBgwc7At3PPvus2I8DAP3793fc/v77711ut2LFCqSmppboMaorhrRElUSu1XN16hWnkHZ0407YPuhptAnLbx4u2rMl67V+t2Ne/y/xYedBUAkl+3XXGfvAP/IryTIR5Rco6tQCJrcNwpw7IrHonijZv8/6hCv2jPU1pT6nRXlT8VtUq3Bpn9HDyQxpnUPagvYRYQY1/q9rKD7sGerVcfw1yj8PoR5C2pgADdJNnkNaq9MmyXnK1bdxgWp8f1ckPusTjltjDIrbdIuWtzL4d+dgLLonCv/pGYYmocWf8I+IiIiIiCqPO+64A126dAEAfPzxx1i8eLHb7Q8dOoRVq1ZJlvXv3x8dO3YEAEyfPh0///yzy/2Tk5ORm5srWVZ0wrEzZ8643LdZs2Z48MEHAQA///wzPv30U7djPXfuHBYuXChZ1qVLF0fl74wZM/D333/L9ktMTMSLL77o9tg1EUNaokoi1+Y5pE3MlYa00X7S6k5RlIa0gsr76k53BMFp4iLRDFGsWZNdqTzkwLpiBsWtnULaY8kW2GvYa+rMZJU+/5KG784TdBUIM7jvpyQAsHnxX+A80ZurStoci+eDGcrhBAMREREREVWsn376CWFhYbDZbHjooYcwZMgQLFiwADt37sSePXvw+++/4/3330f37t1xyy23YNOmTbJj/PDDDwgICIDdbsfIkSNx//33Y8mSJdizZw927tyJn376CWPGjEG9evVkvV6LTnb/3HPPYfPmzTh16hROnz6N06dPw2otbOE2Y8YMNGzYEADwwgsvoHfv3pg7dy62b9+Offv2Yd26dfjvf/+LAQMGoHHjxli2TD7Z3ddffw2NRgOLxYIBAwbg1Vdfxd9//41du3bhyy+/RMeOHZGYmIi2bdv66iWuFtjojqiCJeZkYE/yZZzOSJKt+/XiEcn9Y2nSnrTRRuks86JTuwNB8FGvVueQFiJEexoEtXJloyjaYLOchkodBpU60jdjqGCeojRvJhcrqpXT5fvZVhHnM6yobVTjdJoVMQFqRHg5EVlVcjXbistFerpqVPlVyAFaFfKcElKDc0WsF3mmn0Zw2R4gzEN7gcRs7/oCn0i1wKgVEG5Q42KmFVdzlPdLzvNclasURLO7ARERERFR9dKoUSNs27YN999/Pw4fPoxVq1bJqmWLCgqSt9tr0aIFNm7ciGHDhuHSpUtYvnw5li9f7tXjN27cGMOHD8fixYuxdu1arF27VrL+3LlzqF+/PgAgLCwMW7duxfDhw7FlyxZs3rwZmzdvLtZYu3btivnz52PMmDHIy8vDf/7zH/znP/9xrNdoNPj666+xdetWt31raxqGtEQVaE3CCQxe9y0sduWQZ+hf37nd37mS1pK7XnJfUPkmpBXgHNICmVdHIaDWN1Br4iTLRdGG7KTnYTMfBgQ9jGFvQmvo6pNxVCRPuVlxK2nDDGpE+6slweCGS3nYddWE1JuX3I9rFYA76xuLO9RK64/zOfjuiLxvcqBWwBvdQmVVrCWppHU3wZundgepXrQ6AICVZ3Kw8kxOscbliiyIhldZNBERERERVTFNmzbF/v37sXjxYixbtgy7du3CjRs3YLPZEB4ejmbNmqFnz54YNmyYo12As44dO+LEiROYM2cOVq5cicOHDyMlJQUGgwENGjRA9+7d8dBDDzkC16J+/PFHdOrUCUuXLsWJEyeQmZkJu135O1Dt2rWxefNmxMfHY+HChdi2bRuuXr0Ki8WCkJAQNGnSBN27d8eQIUNw2223KR5j5MiRaNu2LT744AP89ddfSEpKQmRkJHr06IHnn38eXbt2xdatW0v8elZHDGmJKtBnRza7DGi9EW10P5kVBB9NqCWrpAUAMyzZf0AdPEGy1Jq3Iz+gBQDRhNy0z6CtvVBh/6rF0+RNOk/9EBS0DtchMbuwV9DaC9K+QT8cy0KfOn7l0nO3PKw6qxxsZlpELD+dLVvu/Ly9mUDLqHEdxHpqd+Br3lRXK/3fcqIwIiIiIqLS69Onj8s2fe7WOXO3Xf369YvVClCtVmPkyJEYOXKk1/s48/Pzw5QpUzBlypRi7afVajF16lRMnTrV633uuece3HPPPcUdokPLli0xf/58l+vnzZuHefPmlfj41Q170hJVoMTczBLva9Ro0S4sxnFf6Q+Dz3rSqoIhqGvLlttt8hYN5pw1kvui7bpsm6ooUCcgwk/5LTPKT4VAXfGDtWZh7ieFstiBgzeqz4RiaW4qVbclSmcY9dMICHVqTxBtVHvs4do01PW5xyCdgGj/8gtq723suZK9idOEcyrB8yR1REREREREVP3wmyBRBTLZrC7XNQoMd7ku2hiEN9oOQIC26Mzw8mOptc1KMzwHQRDgHzYNWTf+JVkuinkK21bP2egFQcALHYOx8HgWzqRZkW0VEW5QITZAjYebB0AoQfVjvUDPb8G7rpnQubbe43ZVgc27bgIAgA5ROqidqpO1agFTOwVj2alsJOfZoVcLSDfZ4K9VQUR+b9tRzV2fmBAEAc93CMYPxzJxLSd/MNdu9pOtZSwa3oqO9c70asDkovi9Q5QO0f5qnEy1oGGwFkMaem5V0SZCi0daBGBLQh70KmBoY38E6Xj+lIiIiIiIqKZhSEtUgZxD2l/7jcXguq1KdjBRHtIKgu+qBtW6JjAEPYG8jFlFHlPp8vXq+7bSMFiL17oqT5ZWEjEBaqgFyHqxFrX3mgk2uygLLKsauyjC+4uAgK4ugunWETq0jlBqv+GdukEar/4P/7mSh8/3ZUiWPd8hCLuumbAlwSTb/qVOwehYq/hhuiAIGNzQiMFeBLpERERERERUfbFch6gC5TmFtHp1aQJOpfI+3wamgkoaJIlirsJG1Tek9TWNSkBsgPsgPdMi4kSqpZxGVHasxaii1auBdlEVWz2sNAGZn0blsspVW8VDdCIiIiIiIqpYTFOIysHl7DRsvHpGFspmWKTtAgylCGnt9nT5Ql8Hpk4TkdnMRyGKVgiCBqI9B1bTAVicetICgChaqm0bhNKqE6jBxUz3k8f9djYHidn524QZVGgToYOmioWCtmI0028Xqa/wydL8FWb9MmgEBOuVQ1o385URERERERERecSQlqiMHUm9ilvjv5QFskpKWkkr2rOQdX2iwhrfTpIkOIW0AJCT8h6MoS8h6/q/YLcluBhgHsCQVlG9IA22XpFfPl/Unutm7LleOIFYp1o6TO0UUsYj863i9KPtGl3xPXiNGnlIrBLgspK2qoXmREREREREVLkwpCUqYwvO7vUqoAUAP3XJgkyraU9+EOpEEEreu1OJoJLPVm/N2wxTVgPXAS0A0Z4DQRXo07FUF3W9mDzM2e5rZiTl2hDh59sQvixZ7d5V0mpV+RNwVTQ/hZDWoBYQ7CKk5VxfREREREREVBr8WklUxhJzMjxvBCBcb0SLkFolegy7LVW2TKVtBEElr3wtDbW2KZTO7Zizlrvdz2675tNxVCfNQrWKgaAnKXnFKE2tBPIUZkcLVWgd0CvWAL9K0Dsg1KBGw+DCn/VofzViA9RoGqqFcyeEAK2AuBKE7UREREREREQF+K2SqIxlWKSXstfxD0GcMViyLNY/GK+0uR1aVQkrI0X55fL+YW+V7FhuCCo/+Ed8jOyk55xWqAE3hZJ26xVAf4vPx1MdGLUqvNolBL+cyUaGKT94DdSp0Lm2HmfSrLiQkT9p2LkMKyxFctlsSxULaa3SHxABwBvdQrD0VDZu5NggCAKahWpxXxOj8gEqwAsdg7H4ZDZsdhEPNvWHIAgI0Al4tUsI4s/lIMNkR6hBjXsbG9nugIiIiIiIiEqFIS1RGct0CmmfadkTL7Tu49PHEJ1CWo2hF1SaaJ8+RgG1ro3SUrf72G2JZTKW6qJpqFaxx2zfOoW3p25OlkwwlmX2fiKuyiDXqZLWTyMgJkCDp9sHu9ij4kX4qTG5bZBsectwHVqGV3xLBiIiIiIiIqo+Kv6aUqJqzjmkDdIafP4YopgruS8Ivn+MwmMLkL11CB5CWitD2tIKcLrGPquKV9KWpMUDERERERERUWUhir4tnmIlLVEZ237jguR+oLbkM9eLoghr3jaIYha0fn0AqGHN+wfmrMWS7QSh5I/hHRWAoiEhK2nLmr9TSJtmKnz97aKIPdfMuJxlVdw3yqhGl1p6aNUVF4w6h7T6ChwLEREREVF5U6vVsFqtsFqtsNlsUKurziTARCRns9lgs+Vf7eqr32eGtERlaG/SZdmy0lTS5mXMgjlrCQDAnL0Kam1TmLNXyjcsl5C2yMNB5a4lLStpfSBAKw01V57JwcjmAQCAhcez8evZHLf7d62tx/MdK661wIbLeZL7rKQlIiIioprEaDTCZMq/yjItLQ3h4eEVPCIiKo20tDTHbaPRN3OrMKQlKkOLzx+QLQvR+ZXoWKIoOgJaALCZj8JmPqq4raAq48mXBJV0ojAP7Q5EeypE0QxBYB/PkvLXykPNHIsdRq0KmxLyFPaQ2nnVhDyrHQZNxXS5Sc2rWu0ZiIiIiIh8KSQkBKmpqQCA69evw2azISgoCHq9/mZLOSKq7ERRhMlkQkZGBpKTkx3LQ0NDfXJ8hrREZeh6XpZsWYfw2JIdTJQfyxWNvmPJHsNLgioIoq0wGBTt2R73Ee0ZENQRZTmsaq1NhA6/nZP2Hk7Oyw9ps8yeA1ARQJ4NMFTQu77RqXI2y1K1Jj4jIiIiIioNg8GA4OBgpKenAwCSk5ORnJwMQRDY+oCoirDZbLI+tMHBwdDrfXM1M0NaojKUbpZWOD5Y/xYYNNoSHctuS/a8EQCtX29o9G1K9BjeUqnCYbNdd9wX7c5jEwCnBgiiPRNgSFti7aLkb/qpeXbEBoiwOeWdrcO10KoE7Lthliy3+7ipeXFYnR57aKMyrvYmIiIiIqpkoqOjodPpcOPGDccyURRhtSrPLUFElVtkZKRPW5cwpCUqQ84hbfeo+iU+lmhP9Wo7rV//Ej+GtwR1KGBxvV4XMBzm7N8AsbDCVrRnlvm4qru6gRpczCz8AJeSZ4PZJn8bf+KWIARoBYxdmyRZbq/A4lWLU7GvTsVLuoiIiIioZhEEAREREQgKCkJWVhays7NhNptht7M1GFFVoFKpoNPp4O/vj4CAAOh0vm3pyJCWqAxlWKQhbZC25CXw3lbSlnk/WgAqVZj7MQhaCKoAiDaGtL4UZlDhYpGXMSXPDqVOBzq1AJVCX6uKDGmtTg+u4RVdRERERFRD6XQ6hIWFISzM/fcqIqpZGNISlSHnStpgnaHExxJtKV5tJwhlH9IKak/l/BoIqkCItmuOJTmpH0FvfQg64wCo1JFlO8BqKtQgnfRr0clsZDqXqALQqQClQtUlJ7MlE5Dp1AI6RunRLKxkLTiKQxbScnIEIiIiIiIiIgeGtERlSF5JW/KQ1m73LqSFyr/Ej+EtQe1+5kJByA9pJcQsmDLmwpwdj8Ba30MQ+PZTXGFOIS0A/H979x0nR1n/AfzzzMz2vZbk0kMSUkjokYQWegkCQgwoYKFJExRB/SEKVhRFBBUiIhCahSJFqihICRBKCEQpSUgCSSC9Xd86M8/vj73bu9mZ3Z3d273du/u8Xy9e3M4888xz2Zvdme985/v8M2MyMSAVfHUKgb68IWZb9uTHEfzsoAZMbShvoFbPiCV77L8KERERERER0aDFy2SiMmpLxi2vexOkdZ9JGy56H24pSn2eQQSgKHWOq6SxGUbiw9IPahAY6s9fI8CjAKpIZdJqLj7hTQks2RLP37AXdFOiLaMug1dlJi0RERERERFRFwZpicooblhn6fSrxWePusmkVb17Q1Gdg6OlpHr3zrHWC823HzT/oVlbSGnP/qT8Zgz3wpcnuDlzhA9CCAiRKmXgRodDyYRSWtmUtNTOFQDG1jCTmoiIiIiIiKgLr5KJysSUJnSZmT1Y/GxJbjJpQ0OvKbr/QmQLBHvDX4QncARUzzionnGINv08Sw9G+QY3gA3xq7jm4Hpc+UqT4/pZI3y4eJ/a9OtL9qnFlIYoNrVbbxasatbxSVv3skSZ3473tycsryfUaqj18h4hERERERERURcGaYnKJGHYI18+pfhDLm+QVvjsdWD7kKKNR6Du65ZlQm2ENLbZG8tkH41q4JlQ68GXdgvh/g87bOs+t2vAkmnr1wRO2tU+kdyDH7Zbg7QZk3qV2nsZQdo9h3nLuj8iIiIiIiKi/oapTERlkjDtQVpvkUFaKROQsi1Po/I+sp6PlO7rmkoGaXtlcn3vJvnKrAebMMoXpI0kTaxusWby7jWsvJOUEREREREREfU3zKQlKrGkaWD+slfxrw32ybF8RZY7kIbz4+1WlQ3SQsYKaKznb0JZ7VqnQQAoNrSaGaT9cGf5gubLdibRM1FXU4BpQ5hJS0RERERERNQTg7REJXbV2//EDe8vdFxXbCatfdIwD4DMwFp5H1nPp5BMWshE/jaUVdCjYExYxfr24orJehVrkLZDl9gZMzDEX3zN5GwySx3s1uDJO/kZERERERER0WDDcgdEJfbM+hWOyzWhIKAV95i3NFstr4VSB0XbxbLMGzy+qL6LJZQh1v0HjrK3EX7HbWVBWbfkZIpDyQO3wc+wx95uRZmyade1WrOm9xjKLFoiIiIiIiKiTAzSEpVY1HB+lP/UCXvDpxaZvJ5Zb1Z44K+7GEBnsE344a05o7i+ixRouCLv/j2BIx23lUZz+QY2SBwxzo+eCbFjwip2qXH397WHw8Rd8TLVpW2JW/92R4VKn61LRERERERE1N+x3AFRiekZE4Z9ZugYXDr9EHxp1xm96NUaQBMAPP79EWq8GUZiJTT/TKja6F70X7jU/ufDSHyYdf++mrOgenZFZOdPLcvt5RuoUNOGePGLgxvw320JhDwCB4/yQ1XcZdLWehUM9SvYEesOoOplKmnckrB2XOvlvUEiIiIiIiKiTAzSEpWYnpH1et1+J+LYMVN72WtmBC0V6NK8u0Pz7t7LvouneadD807Pul4IAU/gUPhqv4Z4613p5e4mQqN8JtV7MMmh7IEbI0NqRpC29Jm0uinRkbT2W+djkJaIiIiIiIgoE6+WiUpMN60BVU3hYaYoDZbX0mSQttK0jKzbclQ7aE3Y03MZpCUiIiIiIiKyYyYtUYnNbtiB44dtwrutAfxx3XBowl1QSkoD0abrkIy+AADwBOfAV3Mm9OgixFr/ZG3sss9qIVTrJGNGciVaNhwNiCA8/v0hzQ4ACjTfXvCGT4MQrFtabplzjP1leTs8CnDs+AAU4a5sQj6tGfVoBZwnLSMiIiKi/kVKiWT0P9Bji6H59oUneAJEic4hiYgGKwZpiUrISK7F3XstAwCcNqoJEsJ1Jm287f50gBYAkpFnkYw8m6V1/zoBUpQhzitkBMnoS+mXevxNABp8NV/sk3ENZpmZtABw1wft8KkCR4wLlGQftnq0PqVkAWAiIiIiqhw9vgTRpusAAMnoCxBKGJ7A4RUeFRFR/9a/0vGIqly05Y+W19futgEexV1WaLztbtf7ESJU0LgqTaiNrtvG2+8v40ioS7b5u259t61k+2jPqEdbwyxaIiIiogEh1jzf8jrafEuFRkJENHAwSEtUQkZihW1Zvbc0WYk9eUPHl7zPclLUBmj+w1y1lWZLmUdDADA6XP4HKZIZhW69mTUWiIiIiKhfMo0NltfS3FGhkRARDRwM0hKVkJRx27KGEgZpVc9UhBrnwxs6sWR99pXgkKsQHHJNpYdBnT47ofQ3DzIlM+YNcyqxQEREREREREQM0hKVlIBuW1bKTFpfzVegeXcvWX99SQgPPIHZEOqIvG2lTPTBiAa3kEfB8EB5vwJ005pJ6+E3DhEREREREZEjXjITlZnqcuIwN4QSLllflZP/30MafFyqL4yv9ZS1fz0jk9bDTFoiIiIiIiIiR4M2SLtkyRJcc801mDNnDsaOHQufz4dwOIypU6fi3HPPxauvvlpQf8888wzmzZuX7mvs2LGYN28ennnmmTL9BlRt9Pj/HJe3bTkfHTt+DCP5qW2dqW9By4aj0bLhaFf76G8ThjkRyB+oi7V1Tx4mpYFY6z1o33ox2rdegljb3yClmWNrcmtiXe/r0iYNib8ub8fVi3bivhXtMEyJTR06bljSgr+uaLe01QbtNw4RERHRwJGMvuK4vG3LBWjbehEiTTdAmu2ObYiIKLvyzxxThQ477DC88or9iyWRSGDVqlVYtWoV7rnnHpx11lm444474PV6s/ZlmiYuvPBC3HnnnZblGzZswIYNG/DYY4/h/PPPx2233QalhBmVVF2k2YGO7Vc6rjP1NTD1NYjoG1EzYoFlXduWLxe0n4GRSZs/SJuMPA09eBw03x5IRp5BvO0v6XVG8kMo6nB4g8eWc5CDwoRa56+AlriJOp+7z6un1kTw5McRAMDqZh21XgWvbIhhbau99Adr0hIRERH1b6axDZGdP3Vep3+c+n9yNQAg2PB/fTUsIqIBYVBGDTdu3AgAGD16NC677DI8/PDDWLx4MV5//XX89re/xZgxYwAAf/7zn3HOOefk7Ovqq69OB2hnzJiB+++/H4sXL8b999+PGTNmAAAWLFiAH/7wh+X7hajiktEXASRztjH1NZBmNP1aSqPAvWgQSn3BY6s6wt29oWTkWQCAHn/Xts5IfFDSIQ1W2TJp17XZA6zZPPhhh+X10q1xxwAtANR5B+VXDhEREdGAYSSWu2qXjDxf5pEQEQ08gzKTdtq0afjlL3+JU089FaqqWtYdeOCBOPPMMzF79mysXLkS999/P77+9a/jsMMOs/WzcuVK3HDDDQCAmTNn4uWXX0YgkJokatasWTj55JNx+OGHY8mSJfjNb36Dr33ta5g8eXL5f0Hqc9LsyN8IgEQSAoHObdoK2oc39DkIpXSTkFWKUGpctUvGF8MvJUxju22dNCOlHtagNMSv4oixfry0PmZZnjRkli2sDFMis+X7O5xvVgQ0gaPG+YsZJhERERFVCffXMJwImIioUIMyrempp57CaaedZgvQdhk2bBhuvPHG9OuHH37Ysd3vf/976HoqY2z+/PnpAG2XYDCI+fPnAwB0Xcfvfve7UgyfqpBQXNaKld0ZhtJsdWziqzkHNSPuQ3j47Qg0XI1Aw9UINf4B/rpvlmKoFec2SCuNrTD1TyDNnfZ1kkHaUrlob/v7EXMZpN3QYc8GHxWyf66es3sYvz98CCbUlXeiMiIiIiIqr2zXMERE1HuDMkjrxpFHHpn++aOPPrKtl1Li8ccfB5DKzD3wwAMd+znwwAOx2267AQAef/xxSOku+EH9jNsJvWR3lqHTXWjFMwX+2jOhaCOgeibBGzwK3uBR0LzTIcTAqOfpNkgLAHpsMUxjh205M2lLRxECkzLKHiRcBmk/arZnzfpU+9/pAaN8qPc73xQjIiIiov4jc0IwoQzN0nJgXLsQEfUlBmmziMfj6Z+dMm7XrFmTrm17+OGH5+yra/2GDRuwdu3a0g2SqoYQ2SeX60miZ5DWfhdaDIJDUgj3Qdpk7GXAIWuWmbSllRlYjenugrQft9hrzzoFeNUBcoOBiIiIaLDLTDTR/DMd2w2IuTSIiPrYoKxJ68bChQvTP0+fPt22ftmyZemfp02blrOvnuuXL1+OiRMnuh7H+vXrc67ftGmT676qRdvmsyBlByB88AQOhb/2QgjR37PsXGZIy9xB2sFw36SQTFojscxxuZlchbbNX4UnOAe+mjMHTJZxpWQGae9b0Y69G71Y8F4bNrTrGBFUcc4eNZhUby1X8Oy6KDJtciiBoPDtISIiIuqXpJRIdDyCRPsTkDJqK0WmqMOctzObYOpbocffQbz975BmC4TSAF/Nl+ANHt0XQyci6ncYpHVgmiauu+669OvTTjvN1qZn8HTs2LE5+xs3blz6508//bSgsfTcdqAwzWZApibaSrQ/3PlY/5zKDqrX7IEpRz2DtNKh6H6/D1bnV0iQNhfT2IR4271QvbvB4z+gJH0OVt6MIG3CBL6zsPsEvCWh46alrbjpiCHpgPjKJucJwpxuVzBIS0RERNQ/GckPEWu5Net6IcIQ6ihIw5481LHjKpj6mvRraTYj2vQraL4ZUNQhZRkvEVF/NvDT9orwu9/9DosXLwYAnHLKKdhvv/1sbdraugNs4XA4Z3+hUHe90vb29hwtB4nOAG0XI/FhhQZSOlK6C9JK2V1GQ5ox23pf+AslG1O1UrRRuderowvqz0iu7s1wCMCwQP6vgi0RA9EeZRDWtdpLHTjxq8KxTi0RERERVb9812qKNgqBuosc1/UM0HaTMJL2OV+IiIiZtDYLFy7E97//fQDA8OHDceutzncNY7HuAJvXm7seqc/nS/8cjdofD84lX+btpk2bsP/++xfUZ7VxmkCr35H2gKtjM0stVdO2XvMfVKIBVS/NNwOqd08Yifd7LFUBGPCGToU3eAzat38HkC6PFYdgNxXmmF0CeHpN/n/vhCER7Kx4YLicBPHzk4PQmEpLRERE1C/JjAQbKy803yxAeKB694GR+J/LTjm/BBGREwZpe/jggw8wb9486LoOv9+Phx56CMOHD3ds6/f70z8nEomc/fachCwQCBQ0pnylFPojzXcA9Pib6dfOtVn7l54ZsjnbmT1PcqxBLs1/KIQY+IekEF6Ehv0WZvJjQHihaLtAmjsgZQKqlsqirR31SOdd++4MZUWbAGm2oGPHDy2PU7n9t6fsRoc1fGa4F+9szfNZ1uO+Qub8YDVegctn1FmWjQypGBYY+CU8iIiIiAYqaWZ/ErR21EMQSuq6ODTsRiQiTyHW/HsXfRaWuERENFgM/IiQS2vWrMGcOXPQ1NQEVVXxwAMP4LDDDsvavqamu65mvhIGHR3dgbl8pREGA09gdkaQtv9n0uqGu7vB1jvR1kza/j95mntCqFC9U7pfZ0w4IIQPmm9v+4ZqAzz+A5Ho+Ed6kXSZxUy5BbT82a7xHpFZMyNIu2udB3sOy/1UARERERH1M6ZzJq1QhkAo3de2QgionqmuupTMpCUicsSatAA2btyIY445Bhs3boQQAnfddRfmzp2bc5ueGa49JxFz0rNkwUCcCKxQQqm1vB4IQdqYnusxoB6ynOSk8JFwN4TwWxcwSFsSisj/95ewBGmtUVqWnSUiIiIaeKR0TkhSNPs8EkJ4XPbJTFoiIieDPpN2+/btOPbYY/Hxxx8DAObPn4+zzjor73a77757+ucVK1bkbNtz/fTp04sc6cAhlBrLa9PYgLbNX4W//lvw+Ku/vq6pb0Gk6RcwEisg1XG4etU0jBBLcdnE/NvG2x+Er+aM1AuZWZOW90xcET7LS5Y7KA03QdarFzXhl7MbEPII3LfCesOBZWeJiIiIBh6ZJcnEKUgLuAvSxlvvQrz1rvRrzX8Qgg3ft2TmEhENRoM6KtTS0oLjjjsOy5YtAwBcd911+MY3vuFq24kTJ2L06NQX08KFC3O2ffnllwEAY8aMwYQJE4of8ACRGaQFANPYhGjTryFtgcvqE2tdACOxDIAJYazD54e8goDqbtzSbIVp7Ox6VbYxDmQiI0gLBmlLwm0m7N0ftOGvy+0ZFW4ycYmIiIiof8k2cZiijrEtE6K40ld67HXE2x8talsiooFk0AZpI5EITjzxRLzzzjsAgKuvvhpXXnml6+2FEOmSCCtWrMAbb7zh2O6NN95IZ9LOnTsXgoEMKOoIOCVxS7O5X5Q+SEZfsrzevz4Cr+I+4Grq6wAAEsykLUrGyR8zaUvD7QRfq5p1rGnVbcuH+vn3S0RERDTQSNO5fqzqmWRbJtR6AMUFao3kmqK2IyIaSAblVXUikcC8efOwaNEiAMBll12GX/ziFwX3c/nll0NVU4GNSy+9FNGotbZONBrFpZdeCgDQNA2XX3557wY+QAglDF/t2VnWGn06luLYs2azHUhCbbQt657NNCOwywC+K/ZaV/aAIRXuqHF+jA27C9Q2xezHwPETg6UeEhERERFVmNMkvZrvAGj+WbblQvjgrz0XRYUZmHhBRDQ4a9J+6UtfwrPPPgsAOOqoo3Deeefh/fffz9re6/Vi6lT7TJVTp07FFVdcgeuuuw5LlizB7NmzceWVV2LSpEn46KOP8Otf/xpLly4FAFxxxRWYMmWKrY/Byl/zZXgDR6Bty5kZa6q73IGUzkHkoGpd7g2dDF/4dAh1BNq3XgBT774z3P3IUGb2LYO07mR8bEkGaUuh3q/ihsOGYEvEQLLzMEyaEj94tcnW1sj4073piCEYEXQX4CUiIiKifiQjSBtouBLe4JyszX01p8EbOgGtm+wTcdeM+AvatnwNQNK+GwZpiYgGZ5D20Ue769288MIL2HvvvXO2Hz9+PNauXeu47tprr8XWrVtx1113YenSpTjjjDNsbc4777yiMnUHOqHU2hdWeU1aaTrPbhrWMsftgaKNBAAIJZTRR7Trh4xtGKR1JSOTVkr7SR4VRwiBkaHCvxYa/AzQEhEREQ1EUlqfFlW0cXm3EUoYQhkKae7I2HY0hNoAaWx12BGDtEREg7LcQSkpioI777wTTz/9NObOnYvRo0fD6/Vi9OjRmDt3Lv75z39iwYIFUBT+U9s5BXaqPUjb6rg8nGPiMCGsj4FLcwdMo9l2V5qHoztCWIOI0tgO02iBlJyIrRICmoDP7axjRERERIOYlImyT5QszXaYRjOkTLhoG021NWOQUredU5tGiy14KoTf5Uicn3YTjteAgGls5fk8EQ16gzKTthwf/ieccAJOOOGEkvc7oAl7UNI0m6FgZAUG445pbHZcHsood9CzvqxQrEHaeNtfEW/7q60PwUxalzKCtLINbZtPSb8ONf4Bmnd6Xw9q0Krz8uYCERERUT6x1rsQb/s7hBJAoOEH8Pj3L2n/prENHTt+BDO5qnOJF76aL8Nfm1leDpBSR7TpeiSjLyIzSUYowxCovwSxtr/BTH5k29ZtkDbr027COQQhzR2pJBYRcNU/EdFAxKtrqiD7n1+i46kKjMO9ZPQVx+X2cgc9Aq7C7YRKDNK6Yps4zCrWsqCPBjI4NAZyf03U+fg1QkRERJSLoW9AvO1vAJKQZitizX8o+T7ibQ/1CNACQALxtntgGttsbfXYYiSjz8PpKUZpbkdk5zWOAVoAgMsgrVDCWdbkPpcnIhrMeHVNFeR0F7W6H3HJrC/bJZyRSSt6/G6qi7pNQKpGE+WXWe4gk5H4b98MZJA4f6+anOt3qRmUD2QQERERuabHllhem8aGrBMSF8s0Njgv1+3LTf3TovYhlFrneUUceEOfs7zW/IcCAAL1lxS1byKiwYBBWqoYIQQUbRfrwhKfrJSecw0pWyat0v2Yjjd0AlTfZ3L2qnr3gTd0Yq9HNzhwkqq+tM8wL4b4nb8qdqnRMHeS20xxIiIiosHK4RoiY0KuXstS69ap7IAsZpIuEYK/7lII4e5c3Bs6Cao3NUG3oo6Bv/ZcAJ3XPcETwVAEEZEdU6Coojz+QxBvv6/HkioP0mY5+anJCNKKHrWUhBJGeNhvIM0Ox5MkITxZM3TJQZ5MWiotIQRuPXoYDFOiI9md6a4oQNjDk2siIiKivBzOX6UZyVESoBhZrqMcg7SFBYgDDd+HJ3CU6wAtAChKLcKNv4M0o4DwQ3TO2SGEgkDDdxBo+E7nWBKQZiS1ketJyYiIBiZGO6iyROYkUM6zgFYPd7OxCoeC90IJsepsCQh+bFWEqgjU+vgXTERERFQo4VCHVcpISfeRvXyCwwReBWbSKtq4ggK0PQkl90RgQnghVG9RfRMRDTRMg6IKy/yyr/JMWrdBWoWPgJeNixNEKbPXNpYyDtNoydmGiIiIiKh07Nc4pQzSSilh6usd15lGk0P7WEH9Ky7r0BIRUe8wSEsVZbsjW+2ZtG5r5vJRnTLKn0nbvu1imGarbbke/wBtm7+Mts2nINr0KwZqiYiIiKjsnEqeJdofL0nfptGC9m1fhzS3O66PtcxHvO3vGQMqLEjrdrIwIiLqHQZpqcIysyKrO0gre1HugErERU1aM7kKyciztuWx1tshzWYAQDL6PIzk8lKPjoiIiIjISiZsi5LR/5QkYSAZ+TfM5OqcbWKtd0Ga3YHZnj/npwKC82cQEfUFBmmpooRSY3ltGjsrNBKXXD6WpGjjyzyQwUtRG11lKhvJjyyvpRmFkXjfskyPLSnp2IiIiIiIMkmnurAASpGgYhpbXLRKwjR3FLffHpN+ERFReTFISxWlaKMsr01jU1U/gm4aLXnb+MJnQFHr+mA0g5MQXgQbroRQh0MoQ+ENn+7YztQ3W14biWUOffnKMkYiIiIiojSHcgep5fYM25L1ncnsTjZx+3RgqnFhpRGIiKh4nCadKkpRrUFayBik2QyhNlRmQHlIM3+Q1lvjHDSk0vEEDoMncFj6daDuQiSjryCy86fpZaZhDdLqifds/RR0gkpEREREVIwsgVQpExDoXSmBzCxdb/iLCNR9HS0b5wKyvce+oj02KmSy5mqf2JmIaOBgJi1VlFCHIbMubWZwrZpIh8moMgnWbKoIRR1peS2NbZZJGvS4PUjbM6OAiIiIiKgcnCYOS60oRSattXSBgCf1fyWYMYYeQVomKhARVSVm0lJFCaFCUUfCNDakl5n6JsA7vSLjkVLC1NdDCA+EEoKR/BhSGljf0YpPYvXYG81572wIkTkZGvWFzNIZgEQy8jwUbQQADUbiv7Ztuk5WTX0jIDyperc5mMZ2GMm1ne+xgq4TXEUbD0Ud0uvfgYiIiIhKQ8oEjMQqSNkGaUag9HhSzzSaAJmEUGqg+fYGRAim/gkg4xDqMJj6us6WHqjeqRDC26uxmPp6x+XJ2KtQPbumXyva2Lzno5lsAWDRGaQVfvQsIhff8TgM0QohVJhmYfOAxDe9UFD7YnlHHAahMERBRIMXPwGp4hRtlCVIG2tdAG/wqIqMJdZyMxIdT9iWD+n8j6qXUMKACFse64o2/ybnNlJGEG25HYn2BwEo8Nd9A77w5x3bJjqeQbT5hmx7R6DhSniDxxY3eCIiIiIqGVPfjPZtl0Ga2121VzyTYGZMOttFKMMQbrwJijbScX0+sbb7oMffdF7X8kfbMn/dZfCFT3bdvx57xbqgM0grDWu2rIE3kWz9D2JL3kHwyMOz9ieTSQiPx7Js57+Pdj2e3hjxlbbUOT0R0SDFcgdUcfbH1N3MUFp6ptHsGKDNZVOM9zmqSaEnz6a+oTNACwAmYq13QErnx79irQty9CQRb/tbQfsmIiIiovJIRJ5xHaAFkDVACwDS3I5E5JmixiGljnjbfQVtE2/7S1H76iI6S8mZ7fYSckpNDbSRuc+Xzda2Xu2fiIiKxyAtVZxweKRHmlGHluUlzR0FtW9JKrh7/TDLMm/wxFIOiQpU6ONhRuJ96wIZA6S9Tq2UBqTZnLMv02gqaN9EREREVB6mUdjj/PnIYs/zZDT1XyGbmDuz17B15Ml4LVL9JJ33qwzN/nygsWMn9PUbrMt28hyXiKivMA2QKs4bPhnxtrsty6TZBKEE+nQchZ0MAetjAbwXOxhRbSeCcjlUz1T4as8r0+jIDaHU97oPKaMQyHjMytWkDjJ/EyIiIiLqA9UxMZbMmNTL/YaxdNmC/Ky/q+bbN9WFnoQ9gAso4RrHXoymduhrtkNGBfRPtkFprIOMJaB/tA2Kf3gBg+8N0Uf7ISKqTgzSUsUJUQPAC6A7EGYaTVC00X07kAKDtPs0fgb/nPaNMg2GiqGUIkhrRoCMud+kjPW6XyIiIiLqI9JwXKz5D7XXcC0r+zi8oVOR6Hgk51bSjEIozsFUh9bWl6LzYVnd+dpGCYYBWIPHgYbvwzvmWGBPhw2clhERUVmw3AFVnBACosdsq0Aqk7bPFRik7fMgMuUl1Ppe9yGdHkljkJaIiIioH3HOpBXCX1RvRT8v5RAsFi4yZB3PR7O3ztxD566zPQlmz+4VwlfA/oiIqFyYSUtVQVEaYPSYMMzsRZBWSgkzuQqm2QrNuyeE4u5kTKKwIK3KIG3VKUm5A7MZUuow4v+DabZ0Lmt3sWFHr/dNRERERClSxmEklkFRR0PRRmRtZyQ/gpH8FEASqmdXqJ5JyBqkVYJFjSUZeRrtLW0QMgwhR6Yn58pHohXIiH8mm1fmvQqPrX8cisxfYkBCB3zWIG1s/b+gyCGAKKDkA4O0RERVgUFaqgpCHYKeMdKii/MDiLfdg3jbXwEAimcywo03u7s7XGgmrcogbbUpRZA2suNqKNo4mPqnBW+bjC2Gx79/r8dARERENJhJM4r2bZfA1D8BhA+hoddC882wtYu33Y9Y6wLLMn/t+UhGX3TsV4jigrQAYHheTv1/ZxPiby91tY0IBhGYfaBlWWzNQ/BOmZRzu45V18HYuCl354oC//77QfFZyyK0LbkCsiMC797u6xQI4XXdloiIyoflDqgqCKU05Q6kNBBvfyj92kyuhh572+W28YL2xXIH1acUNWkBFBWgBYBEx+Ml2T8RERHRYJaI/icVoAUAGUes9S+O7WJtD9iXZQRtexI5MnLdUoc0QKl1WS9WOEyEZTrXy7Xso64ubxuloR5KjcM4OhNrZcx9ua7UHCFERFRpDNJSVcisDyVlthpKecgYkBFsNZIrXW1qGltd70ZRR0OofTXLKbkl1PwntOUkjZaK7p+IiIhoIEi0/d3y2kj8z9ZGShOQ2UpSOVzmigC8gWMg1FG9Hp/wuSwPoFiDtNI0Yba02pZlklkm/bKMwWOvbSsTCchoqp6t/ul6d2MEoHhyZ/YSEVHfYLkDqg4i409R2gvau+GcDeuuHpOp2x8punf9ULzeMgrnjNmCCUEDIwM10Dyj4K89H0LwHke1EUqt43LVu3vnLLkhCOGDlHFIM1VDVsoopLG5iJ2FHS4MCqj9RURERESOpMPkVvZGuZI6rOdkQh2JYMP3IZQAwsN+i7YtX8q6pVBHQNHGAACM+DuObdSa8RDJkXmHKEKZ1zgCitgF+ppWKMP8gAkYmyNQh/uhNHQnrSj+Rmj1gZx9KyH7vBv66nZodXukXydXt0Ab2QARDgJwDmgHGq6EcMr4JSKiPscgLVUF+yynxQVpHU/WpMsgrbHR8vqnK0fh92tHYuHxF+Owkby73B9kqz0cbpyfc7u2LefB1Ne62ofqmY7w8D8AABKR5xBtui69TiL/42tERERElIfMf05VSKmy8LAboWipoKqiDUd4+D1o33qOpY3mOwChYb+0LGvZcLRzf/v9BL7QSXn3q8c/QMf2b6VfCy2Mxs+/YG20OxBt+i0SkafTiwKTvoLAft/M2Xei41+INv8m/Vr17Ia6Y/+YtX3H9qugx9+0LVc9U/P9GkRE1EeYCkhVwnq/QJYwk9Zt4Cwzk3Zt1AevomL/YbsUNRbqR4S7GXoBQNHG9niVsZ2LCwoiIiIiysd+LSBt51kFlEfLmBhLKKG8bXIyIy4bWn8Pke2c07bczTllZiJKnkv7LL+fqwmWiYioTzCTlqpDRrkDPfYqYq1/BWBCKGEAgKKOgOqZCD3+X0jZXQhf0cZC881MlR9wuqPe2dbQNyDeeg8UdSQUz3hIM1UPypAmljVtwRTV+sj7mogP+zfuAr9mr/dEA437+1WKZ1z658wTbVNfg2T0FWj+AwqaJVeaUSRjr0OabdB8e0L1TIKUJvT424BMdvZnP6k39A3Q4+9AiBp4/AdAKLkfiyMiIiLqa3rbWiQ2PQepR3O2k5CQWmqOCBmy1/lvX/UjCH0EoO6AVFsBoQP2J/4dRT68GwLd5/QSBpAxlYHRugYdW262Lswy3UG8/e/Q/AdD7XFeKKUOPfYGpEzA498/dQ1jCyxnSwwo5sa/tL7MU7IgazCWQVoioqrBIC1VBeHwpxhvu9v19t7QPATqv+k44Vii4wl4Q6fYHmnqaYrD+dLaqBeXTJzoegzUf4ksJ8yafzb02CLLMjVXJi2AyM6fOj4ul42UJjq2XwEjubxziYLg0J9Dj72JRMcT6XGEhl5j2c5IrEb79m+lb0wkPNMQapzPWslERERUNZLNy7Hj6QMgk21523r3mA5tdPZJvczQmzA7OqCEHLJg82h76wpAWoOawWOPso5162J0LP9zzjZdpNmM9q0XItT4W2je6QCAyM5fQI+9AgCIa+MRbrzFXls3cx6ONOv5m3Qxz4G9Te5zwGxBWmbSEhFVD17NU3Uo5PEiB4nIM5DStGTY9hRr+UNB/cUMgRZdw2Ejdu3VuKgSrH9Lqme3/JvYaiIDgApv0F6HTFHH9NjO+e9Wj78JU9+af78AjOSKHgFaADARb/1LOkALAHpsEUxju2W7ROQpS+a4kVwBU1/jap9EREREfSG25gFXAVp4PDkDtF2KCdBK07QFaJ2Y7c4Ta2WXQDLyfGpbY1s6QAsApr4OicizDpMhuyt30DXBbU62eTfyTP7l+MSVYCYtEVEVYZCWqoLm2wu9+nOUMQB6uoRBJj2+pKDu/KrErjVDcTgnDOt3Ag3ftrz2112UdxvNt49tmSdwFDTfTEB0P0cn1OFQPN3Z1apnt6wntqa5w9V4jeRHDstW2PszrEFfPbHM1kaaLi6CiIiIiPqIGd2cvxEAJeCybkExY2hqdlyub+ieNFjqOvSNm2xtEqvs52k9STMV2DUSq2zrkpFnIaU12OpYCxeAqo2xvHY6F7Tv3PoEoX0iZivNaz/fVb17QWTN7iUior7GT2SqCqpnVwSH/AyJyL+hx14trhOpQ5r2+lXFeKV1Lzxx9LkIsB5tv+MJHANpRmEkPoDmP9AxAJvJV3MmABVG4n1ISGje3eELfwFCCSE07AYk2h8BoMFX82VLbVhFrUNo6PVIdPwDyehLlj6z3TDIZCY/dtVOGs09+o7CTDpkzXLiMiIiIqoiZtJ6PqSGJ0CtsT+pJgpPkM2+z54JsXFAbh0C7yiHsgUtgOkF4AHM7Rq8ww+3t4kDxmZACXqh1k6BiQ8yGqQydLPddDcybqoLEXYcs+rd09qrsRWmvhWKNtyxfWrPGWXe8mTEegIHI1B/BZLRlyGRgKqNha/mrJzbEBFR32KQlqqGJ3AwPIGDEW/7O2KttxW8vUTpgrTHjN0f/pqRJemL+pYQCnzhuQDmFrCNBn+t80mq5p0ObcgPs26r+faE5tsTbVvWWcoNuA3SGm6DtGZzj21WwT6jL+x1z4iIiIgqSGYEaYO7fR3hva60tUtE/oNo0696ta/w8HssE3mVQ6xlAeLt9/dYkj1IC8BSvgoAhFLr2E7RdgFEGJDdEWY98T68mnNN3NSurRMmu6kt6w19Ft7QZ/O2IyKiymC5A6o6Qm0obsMSZtIKUb5HrmhgyjzpdhOklVLCcMqIdWD2DNImsjwCx0xaIiIiqiJmwnpuLjzOQUppNPV6X0JkqfdaSrYJWlM3zc3kapebO2fSCqFA8+5hWWYkMrN2rWRGkLa3c3wQEVHlMZOWqo5Q6oraLt52H/T4u6UZAwvoU4Eyg7TJ6KuQZjs03z7QfPs6biONrYB0MTEEgET7Y/CFz4A0tmTNNDeSK+AJHOx6zHr8A+jxtwHoMPWtqbq3MoZAw3eherrrMRv6RujRlyFlJL1M0cbDEziiby6IiIiIqKTMeDOia+6DGdmYv3EvGK3W4KXitZ/nSzOKeNvfSrC3vjgnyZycy0Qy+hpMw17P1nFrpSbrOtW3J/T4m+nXiY7HoKgj4AkckS57IGUcych/UnMmmNYJk3n9QkTU/zFIS1VHUeqL2i7R8Y/SDYKZtFSgzCCtkXgXRuJdxNuA4JAfwxOw1zkzdHdZtAAgzR2INt8IPfZa1jbxtr9B8x0AzbdH1jZdkrHFiOy4Cl2P6fXUvvVChBtvheqdCtPYgfatF1sev0uPP/EBAvXfcv07EBERUeVJKbHzuTlIbn+rz/ftlEkb2fkTSFmCyU/75MaxNUibjC5EMrrQ/dZZyh0AgObdExm5sYi13oZ4+8OoGXEXIELo2H5FjgxbZtISEfV3LHdAVafocgelHIMIVHoI1M8oan3WdYnI847Ls5YtyCIZ+VfeMgrJ2Mvu+oouhFOAtkuk+bed7RY5BmhT43nB1b6IiIioehitqyoSoAUAxWs9zzeNls6nekqgDx73l2Ykf6McspU7AADVuxuccqikuQN6/L8wEstylkBgJi0RUf/HIC1VHaEMg+KZkqeVB4o6ptf7emF7DZa2ZARkRQiqb0/nDYiy0HwHwP4IXErPSb960uP/Lf1AMh59y0aaucssmMlVqf/r67P3IdsgZfZALxEREVUfM7a1IvtV/MPhGbqfdWFmXdUMmm8WVG/+83LVMw1KjizVknGRresNnQqhDHHePEcgVQgfvEHnSb1MsylvjdpcpRSIiKh/YLkDqjpCCISG/hKJ9kcgYcAXmgcjuRrJ2CJAJiBECJ7gHKie8Yi3P5wliKRBT7wLaWxx3McHbX78e/sQrDePgCpMbDeXY49agQm1E+ANndA3J3k0oGi+PRAc+kskowth6uthJN5Pr5OmPRNVmjEYieWWZZ7A0UjdO9OheqYAShCx5t8XNA6ZIzvWKumqlWnkq1WXBB+vIyIi6j9sk3lpQfjGnVzWfaqBkQjudjGElllSzH7eIpRaaL79oGhj4Qt/AVIaSHQ8AlNPnZNIMwI9/iZU7x5Q1OFQ1JHwhk8p6/i7qJ6pOdcr6hj4674Ob+gExFr+BD2embGcO8jrr/s6FM8ExFr+YF1htsPMM0FyrlIKRETUPzBIS1VJUYfAX3dB92ttBDyB2bZ2/tpzsvZhJNeifet5juu+8t9dEfLtgvfnOa8nKobHvz88/v07673+IL3cKUirJ94HoPdYoiBQfzmEEuzeTiZzBml9NedAmm1IdDzSY6npbrBSz9/EjKQviLI3inM2YSIion5EJq3BPjU8EQ2H31+h0djVjPib5XxIAPDXfq1yA7Jwfmqqizf8eQihQPVMQKD+W2jbcmZB2wslAF94HozEMiSj3WWlpNkBaezIsy2DtERE/R3LHdDAJTxZVxlSYLg/e00oot7IfNxMOk26lVHqQPXsZrkgAQAhPIDI/neqqMMAkfkx7i5IK2X+TFpD/zRvkFbmeUyRiIiIqostk9ZbV6GRDEQ9zstyXIvkk1m7Vsp2mHmDtCx3QETU3zGTlgYskePP25BAI4O0VCYiM7Aq42jZeDI0754I1H8TijYa8faHLU003wzHvhS1HqbuPHGXUIcC+ieWZaa+uXu3ZhSJjidh6OshhBeewOz0fozk6ry/R8e2S/K2MRIroQSG5W1HREREKVKPIfLhn5BsWVa+nSgGEG4FNPtNWRnfCe/03SBNE8a2HVA8DNK6JUTuTFhrpmzxTxoJEbK81mPvwMxSxi29DTNpiYj6PQZpaeDKcfdalwKN/lDW9US9IRSHvy3ZAT3+Jtq2vIlQ4x+QWRM2W5BWKPUAnCfvUtRhEBkPRBiJ/0FKHUJoiDT9GnrslfS6RMfjCA37LRRtDCBzTxzmPBifbYKPyM4foWbko1BUXuARERG50fL6RYh+9Oey7sM3az+o9c7fzaLGAwWpCXg9u4yDuSHg2K4vSJlwWJovEFrFejzhJEqYSWsaG1xswyAtEVF/x3IHNHCJ3Jm0o4I8kaHySD1ulv3jNbrzl7Zlqm8Px7a5ygkoaiMgMifgAIzECkgpocfeyFhjQo+9CT2j1IJbQoQAYQ9AG4n3iuqPiIhoMIp98lh5d+DxZA3QOlFqKxcUNY1N9oUi9+Ra1UwIX48XTtci7iZ4Td2kL4TKIC0R0QDAIC0NWAK5M2k/v8uefTgaGkyE8EDz2ye662Ia9jqvlpN6S2PnUgdAKhjs8R/g0P8WpGrTOjziKBOQxWTRAlA9E+EJHO7QZ7So/oiIiAYbaRqQyday7kOohQU5lZrRZRqJG/agpajiCUkVz5TsK0Uo48mo4oPNmn+m443xbDyBwyD6cXCbiIhSWO6ABq4cmbSmFNijYWQfDoYGm+CQHyDRsS9iLfPztvUEjsy6TgscikT7323LveEvAgBU71RABAEZSa+TxlYARpYeTVvJAts+fTOhx5fYlvtqzoTqnYZk5J/WFVLP2R8RERGlSN1+ozQw5WsQWgnnSlATAFZal7UPAWRnxqw3Cvi6zxsUfwUnnJIxy0uhDq/QQNxR1BFZ14Ub56eeckpzylB2N8Grog5DuHE+ktEXIM3uv5lExz9sbb2hefDXXeiqXyIiqm4M0tIAlv3Pe98hY/twHDQYCeGDL/x56PG3ocdey91WHVpw/z0vAjyBQ5GM/Dv92jS2ATJbkDZ3CQUACA37Ndq3XQYj8b51nMIPITxQvXta1kkwSEtEROSGTLbZltXOvAGKr6Fk+zCSn6J96znWfUy9L10jNd7+mOUmsjQr90RM5jmJUKq7xr0QKoSogZTW99FfeyFUz/jM1r3al+oZD9VzrmWZkVxtKzPlqzmzqrOPiYjIPZY7oAErNfuqc6DWp2V5tJyoAoqpIZaqe5tizdroDNJmzdQwAcdJOjL6F0GHhV31bzOOK2bSEhERuSJ1exkjoZV6Mlunc4DuR+GFsE4UVmwZpFKwBWmzlX+qIo7nbQ5zBKSuRTK5q0mbjczIPE6Np4RZ2EREVFGDNpN269atWLx4MRYvXoy33noLb731Fnbs2AEAOPvss3HPPfcU1N8zzzyD22+/HW+99Ra2bduGxsZGzJo1CxdeeCGOP/74MvwG5IrQHANIfrX6TwBpgJD2urCZhCj8McOe2ygZjwYa8fcQ2Xmt43bJ2JsQbmqkOcxI3HXhJDJKicgcdXOJiIiqXbLpPXQsnw8zurXs+5LJFusCxQuhljoL0h6kFaI7N0coGTdii8ikNZKfItHxKKTZCs1/ILzBYwvaXkqJROQpxJp/nzHO6j9HF0otYGzIWBbI0jqD7F2QFg7zALAWLRHRwDFog7QjRmSvJ1QI0zRx4YUX4s4777Qs37BhAzZs2IDHHnsM559/Pm677TYoChOX+1qHLhFyOG8JMpOW+oh0k7WqFBGk7ZHFITIyaaVsgx5/03k8xmZXORzCIUiLrgunjCBtvO0e+GvPdNErERFRdTGTHdjxryMg4zsrsn/hKX0WpKlvzliScQ1iy6SNoBBSGujY/n+Q5nYAQDL6EoTwwxM41HUfycjTtgBtamzVf47ulEkrHDJpnfU2kzZ3ySoiIurfGDUEsMsuu2DOnDlFbXv11VenA7QzZszA/fffj8WLF+P+++/HjBmp2T0XLFiAH/7whyUbL7m3M2l/zKhVVzDUX+rHyoicKVr+G0JKjpq0jmUHAChqQ4+fRxU+sCw0/+xUn1pmXbWeWSL2rw7Z28wQIiKiCkhseaViAVoAUHzDSt6naWzJXGJ5JRTrebB0yM7M2b/+aTpA20WPv11QH8mYfYLS1NgKLwHV14Rqf8/c1tJVPBN6te/MyWYVbWKv+iMiouoyaIO0P/7xj/Hkk09i8+bNWLduHW677baC+1i5ciVuuOEGAMDMmTOxaNEinHHGGZg1axbOOOMMvPrqq5g5cyYA4De/+Q1Wr15d0t+B8ntks/0k6qFNQ/GliTMqMBoajLzB43KuV9QxUL27Z13vCRxiq3OmeveGoo3u7kMbC9W7Z+8GmuoJvtDczv0eCfQIEHsCx6YnpdB8M+2bSpY8ICKi/kdvWVbR/Qcnn136TvM8xZNZkxYyBpljwlF7//ZSYgVneDoGhhV4A0cX1k8FeIPHoGeN39S53HTntuHT0j+r3j2heaf1ft89zgt94VN61R8REVWXQVvu4Gc/+1mv+/j9738PXU+dpMyfPx+BgPWEJxgMYv78+TjooIOg6zp+97vf4ZZbbun1fsm96z8ehdd2erFHTRQCwPDQNHx2yjnYZ+jYSg+NBgnNty/CjX9C+7avO64PNc631XjtSfVMRLjxT9DjiyFlDIraCI/f+jihEAKhodchGV0I09xh70QmOk/oMzJphA+abxYgE9AT70Hz7gnVO7Vzv+MQHv4n6LE3IJShqWBxJ2/oBMRabrb0ZepboHoLL9tARERUSXrLCstrz7AD4N/l5D7Ys4A2ZF/4xny25D1Ls9Xy2hM4wrpnp6d0ZBQQbksvODw9U0iQF/ZyUEIdidCQn6TPQ6qZ5tsb4cY/Qo+/A6GEoPkPSd/IzuSvvRCady9IGYEncFiv9616JiHceCv0+BKonl2h+fbtdZ9ERFQ9Bm2QtreklHj88ccBANOmTcOBBx7o2O7AAw/Ebrvthg8//BCPP/44/vCHP2SZ6ZPKIWGYeHZ7HZ7dnnoE6b9zv4Z9hozOsxVRaaneKdB8M6HHrY/2CWUoFDX/43GqZxxUz7icbYQSgDdU/IWe6p1iX6aNgRo+1b4v4YFQhlkedTSNzVAxuej9ExERVYLevNzy2j/hVIT3vKJCoykNMyNIm/kovm3iMADSjEAovQjSorAgLTIyb/01X+kXAdouqncyVG/+8x4hBDyBg0u7b88uUD27lLRPIiKqDoO23EFvrVmzBhs3bgQAHH744Tnbdq3fsGED1q5dW+6hUSdTmtClNXPQq3D2U6oMp8nBMmvC9SeKNtLy2l7/joiIqPrpLdYgrVbn/Nh6f5KZSWs7B8ksd4DCJw+zb28vgZC7fUZJhn4wYRgREVG5MZO2SMuWddevmjYtd22hnuuXL1+OiRPdF3hfv359zvWbNm1y3ddgkzRN2zIPg7RUIc4zAffjIK06AgbeT7+OtfwRyehLljaqNhG+2vNcZQsT9QdmohVt71yN5M53AE6WR9T/SRMybi0TVO4gbSLyApKRf0PKKFTPJPhrzysgg9UdI/5fy+vMcxAh1FQZJBlLL8sM0kqZRLz1XuiJ95BZLkma9nqyeuxV1+NLRhfC1NdkjIlBWiIiIgZpi9QzeDp2bO76puPGdT+m/Omnnxa0n57bUmESpv2OPjNpqVKcM2kdasL1E4o6wrbMSCyzvTbNnQgN/UVfDYuorFoXX4bo6nsqPQwiKhfFBzU8oWzd64kViDZdm35tJD6ANDsQHHJVyfYhpQEp2yzLnG8UByF7BmlNa5A23vZXxNvvL2jfyejr8AQOytnGSH6EyM5r7Cuy1HQlIiIaTFjuoEhtbd0nP+Fw7rvfoVB3tlx7O2dA7ysJw14bi0FaqhRFHW5bJpQhFRhJibi8mDLi7+dvRNRPJDa9WOkhEFEZafW7Q5TxXNGIv2tbpifsy3rD1DfalinqMNsyIfzWBRk1YvUivr/d/C56/D3H5YpSX/D+iIiIBhpm0hYpFuu+8+z15g5W+Hzdj+9Eo/bHg3LJl3m7adMm7L///gX1OVgkTIcgrco/eaoMzX8whPoXSGNb5xIPvKETKjqm3lC97h4HlUiWeSREfceMb8/fiIj6rdAe3y5r/1J22BeaMfuyXrE/SaZ697I3E5m5OhllwjKCtq6Y+evaStOesKJ6pkPxcPJRIiIiRqyK5Pd3331OJBI5WgLxePdJTiBgL9SfS75SCpQdyx1QNVHUBoQbb4MefweQCai+vaBqoys9rKIpakOWNRosF4iywNmeiaqUNOKQujXAUvOZa6H47VnyRNTPCAWeIZ+BZ+i+Zd2NUy1XidzXEYXvxP69K4TTJV/uIG3mTVZP8HhoGTdoo82/A9Bdn1vK/MkotkC1CCM07AYIW9CYiIho8GGQtkg1Nd31JfOVMOjo6D4ZyVcagUqH5Q6o2ihqHbzBIys9jBJx/voQIpBRC49BWhoYzIzJhQAgOPVCKH77Y8RERE4cg5gyDiklhBAl2kvmxLmeLO2sQVEpMzNprcFjzTcT3uAR1j0ZTYi33d2jDxdB2oxMWm/wGAjFn6U1ERHR4MJblkXqmeHacxIxJz1LFnAisL7jVO7AwyAtUWk4ZuUAUDKfFjDtF35E/ZA9SCsgvNkyyomIHMhs5QBKVxpIZt4cFdnOfTODwjLjpXVMQtiDvSLzO1+6KN2QkUkrlFCWhkRERIMPM2mLtPvuu6d/XrFiRc62PddPn+6ujiP1zpq2HTju2TssyzyKWsIsBaLBTWTNpPVlXuahfctZSF8MKkF4g8fDF/58zv6TsSWIt/0FkAZ8NafDEzi012MuljTbEW3+A4zEMgASijYK/rqLoXomVmxMuZhGC2It82EkVsJ20Q0AQoHq3ROBum/aL7A7SSOBtrevRHzDvyHNEj+K2w+oo2qhDAtBJnToa5uAuA5pWIMPwltf1gmGiGhgMY0WJKMvOa+UcdcTcmaTjL6KeNsDMNO177tkycnJCN7GWm5BvO3P0Hwz4K+7GDIjSAunIG3G5GN6/B20b/0GvOG5MBIrocffBqTeubsG+Gq+DGlmBGkFg7RERERdGKQt0sSJEzF69Ghs3LgRCxcuzNn25ZdfBgCMGTMGEyZM6IPR0Zkv348NkRbLMpY6ICqhbJm0mbNFAzCNTd0vDCDWMh+qZxI0n8NEJkjV7Ivs/Ek6Iyey8xrUjHwQijqk18MuRqzlDiSjz6Vfm8ZGRHZeg/Dwu6ryxk+s5Y9IRl/M2cbU10MoYQTqLnZc37F8PjqW/b4Mo6t+6vBGaOPHp16EvIBIIv7W27Z2im9oH4+MiPqzWMstWddJGYdATdb1+ZjGTkR2/gz2UgeAgLtMWmk2Q5rNSOifQij1QEatXKdMWgj7jT4juQLRJocEFmMjIjt+AkUbae1CYSk4IiKiLix3UCQhBObOnQsglSn7xhtvOLZ744030pm0c+fOrcoL+oHore2f2paNCBR/8ktEVqmLKvsFm6qNh5uvFiO5Mse6VRmPTJqpZRWiJz+0LTP1TyDN1gqMJj8jsdxlu+xPgSS3Ly7VcPodbcJ4y2u1vs6xnRoe77iciMhJrs/czNICBfed/BhOAVoAEGq943JFcV4OpMYqzYzSBQ43YRW10JrcOkw9o0ycQ6CXiIhosGKQthcuv/xyqGrq7vSll16KaNRaLD8ajeLSSy8FAGiahssvv7yvhzgomdJ0rEf7vT2P6PvBEA1QQvjgDc/LWBiCL/xFeEMn5+8gxwWpNJscFlbwkfssY5WmfSKpaiDd1ATM007q2eomDnCKArWu1r5czchEUzwI7fGdvhkTEQ0IEnqOdb2t3Z69b1/4NMfl3vCpyPZQpTRbYMukVew3rFTvHlC9zk/FuJVZMoGIiGgwG7TlDl599VWsXr06/Xr79u3pn1evXo177rnH0v6cc86x9TF16lRcccUVuO6667BkyRLMnj0bV155JSZNmoSPPvoIv/71r7F06VIAwBVXXIEpU6aU5Xchq7hhD9A+O+dCHDtmagVGQzRw+WsvhDc4B6a+CRAaVO80KEot/J5vwhs6Aaa+Jd023nYfjGR3hqeU2S8oTcMe/JQyXtrBFyJLkNY0dkD17NrHg8kv89/KV3s+VG08jMQyxNvv79Ew+7+pNKw3HQNTzod/3EklHWc1MrEOSTxmW15/+L3djyILBZ4hM6CGxvTt4Iiof5P289Pudb0M0mZsL5QGBOq/A9UzEYo2ynETj38Wakbel64dm+j4R3qdaWyxtVcU+w0sIVSEht0AI/EhOrZ/q6ihM0hLRETUbdAGaRcsWIB7773Xcd2iRYuwaNEiyzKnIC0AXHvttdi6dSvuuusuLF26FGeccYatzXnnnYdf/OIXvR4zuRM37MGf6fXDKzASooFNCAHVM9E2gVZq+SSonknpZcnofyxB2lxZP9LY6bCwcpm02bKfpEMwuSpkZMh6fPtB9U5NTRLTI0ibM5M2I0jrGTYT/l1cZEj3c9HmPwId9uXeUbOheib0+XiIaCDJ/r0H5AjgupIRpBVBeAIH591KUYdCCRwEKaNAjyCtNJszWwJZJvgSQoPm2wOKNgGmvrbAcQMQvsK3ISIiGqBY7qCXFEXBnXfeiaeffhpz587F6NGj4fV6MXr0aMydOxf//Oc/sWDBAigK/6n7Sty0nwT7VYfJDoioD2XcE8yVSWvag7SyCssdmFVY7iCVoZzxb9uZpWTLVsqsN9izH90apBXq4KgZqMffdFyeORs5EVHBcmXS9rrcQUbforDJcvNlswqlzsW8GsXNuyEYpCUiIkobtJm099xzj62kQW+ccMIJOOGEE0rWH+X35rZ1uOT1R7GyZbtlebtuf4TXl1lPkIj6Vsas0PH2+7sfvc+cNMThMfxYy58Qa10AyFTwUNF2gb/2fHgCs8syXADQ4+8i2jwf0iFoDJQmk1ZKE7HWBUhGngOEB77waVDU4Yi13gHT2Na5nxiQjEPfsBX6uo3pbbWJY6CNagRUFULL/hm3/bEZkPEERE0I/pl79Nh3G5rXHeG4jWefGqiRmUgs+xCyrQ1C6z9BWtPYiWjTb6AnPkBhgQ9py0Lu0rH9/wDhheabgWDDdyEUTkTZX0kzimjzjdBjS7JmySvq8M62LdbyIbLr5oUKCK/DciDceCsAINr8e5j6Rmj+/RCo/y6EEsw5rmR0EWKtd0EoIQTqv217QoH6Pynbsq5r3/ZNZObOCKUWvvBp8IU/DykTiDb/DnrsDcjOG4eqZyIC9f8H1TMe0hYALiw5JF+g1KkerUOjgvbZvR2DtERERF0GbZCW+r8zX74fq1q3528IwKfwT52okgRy3CiR0ezr0pKWjFZT/wSRpmtR6/9HWbJwpDQRafolZGeg1IlpuPv8yUWPvYFE+4Pp17GW+bY2QgHg88Kz61gYO7bAbG6BMqQBngnuaqKaiVZA14GEPWCZK7ir1tbCt8d0xN5Y3K8yaWOtd0GPLy5xrwlAJqDHXkGsbTQCdReWuH/qK/H2h5CMvpizjamvy9OLkfVzq33bxZbHvpPRl6BoY+GvPTdrb9KMIdL0y/RNgmjz7xFuvCnPGKg/MY2W3A0cbk5KI4pYy3xo/llIRp5HMvKsZb2RWIZo8287/1YyP98LDJi6yKR10Ulh++zaikFaIiKiND6DT/1S3NBdB2gBwKMwk5aokoRahrrQMg5T35i/XTFdm805A7SpNk293o+RXJ2/UQ9KOJz6f03YVXuZ1AE9lWEl4wlIs7BHapWaMCAE1NAuBW1XSUZyZXn7T3xY1v6pvIzkR2XfR2ZdzmTsjZztk9GFlixuI/F+OYZFFWTqa4rfNrk6640FI9nVb8Zne4FZrYqW+zs62+RjljbK0IL2meKFUN0EgImIiAYHBmmpX0o41J3NJX8dLSIqJ2/oOCjq6NJ3nKO2ba+6Ndvzt8mXGeVmPzkm73KkpD7LhOauznby448BKVMvdB36uk8K2x8A/8RToTXsVfB2lSKN5vL2X4LgPFWQQ8Zi2XdptuZejwrW3KY+Ic2Iw1J3l2FG8lOYepbP7q567TJj4rBcT684jURthDfkPDmkUOrhC38hbx++mi/ZyxcB8AQ/m32b2q8yk5aIiKgHPgNO/VLSIRvs6r2PxrXvPm9bfun0Q/piSESUg6I2IjziHpjJNWjfdpG9gQgjNOxX1kUiCMgEJHTE2x6EHnvVtpns9YzYzqS0B2kDDVci2vTr9GvTNvt1MTsqLEjradwfdXs+hITxBAzTeZIrAPCon4cqpiOwZxjYM2OXsgVSOgeYJZJIGHdZltUeNL/f3OiSUkKa1t8tUH8FFI/7TGABLxTProCMw9DXwUh8iFjLzd37MJxrFFP/kDkJoTd8GjyBQyHNDkR2fD/LVgoyMxWFOhzBIT9Cx7ZvwzZZn22n5fmcov4j84acok1EuPF3MPRPbW2jzTfB7PGURdLhu69bElJK2CYOKyIPJ1B/GXzhMzImxVSheiZC9KzBnIXm2wu1Ix+Goa9F1/GiqI1Q1Ea0RP6V0dqDmpH3QVGHFDxOIiKigYxBWuqXkqb9gufwkZMcg7Q1Ht6hJ6oGQqhQvZMhRI1tAhVFqYPm3T3rtrpnvGOQtmed2lKSpnV8QhkK1TM1o1EHpExCCHdZrY77KTBIq/jq4R1+IPSdL8DIUcrXN/QkqJ4JRYzHQGLjXRlLC8z2rSTZgcyAmebbF4o2svC+RACad5oty0vKtl6/71RBGZm0qrYLNO/uObPnhVILmXFTRoggNO/uEErYts6+T2bKDnrSmkkrhB9CqXH83lOUBsstATO5Kk/nOqSt3EFxZb4UbQQUjChqWwAQih+ad1redppvXwZoiYiIHDBIS/1GwtBhdD6225a0P644PtzguF3Yk//uPxH1IaEBMmORkrvGavZJS/TOzDiZZX1GPw6PVaZmxbYG9jKzMYVS4zgGabZAqMMy+tORmdWU7XFOabqZNK0HBZAynvfx6WIJoaYmkOkRPJbS6THd6uSU3exuwpvshGIPJEizGUJt7FW/pSZlHIC34lnPfRXAdjpuUxMXeYAc5QNsN0bSx2b2oJZQ6u2BWKF19pf/RpGUbaljPVud0Cx9pDIkzdRxSf2aaftOCWZv7FAyIBdptjvcCKjyina8yUVEROSIQVqqeu3JOL768n146tPlMGT2SW9GBWugCQV6RpsajZm0RFXF4eJMKDW5N8kSaOvY/n/FDUFpgL/uEhiJD5Do+CdyBXVS7cMQSi1SQaDugLAeexPe0IkAUsHZaNMNnRO8WINHijoGgSFXQ/PuZlmux14uaNwysBatG09w0bL4C3QhgpZAlnMtxeqUjGQ8TSF8EEphAY9Mqb9N6+PubZvPQHjEn6FqY3rVdykYiZWINP0Gpv4xhDIMgYb/g8c/q8/HYRrbEdn5cxiJ96GoYxAc8kOo3qn5N3SQ6PgXYq23Q4ggAg3fg+bb27I+1vY3xNsesGUnFiP9GHeOiZacPn8EOj/HXNa4bd30uYLGlYwtRrTpRkgZhS88D/7acwvanqqDoa9HZOfPLeULAOQMxArFX9A+2jY71Yut7iCtm/IJREREg1F1f4MTAbhz5WI8/skHOQO0AOBTNIwK1tqWh1nugKiqpIMbPZflzaStL+kYpNmEaNO1SHQ8hnwB2tT+wxBC7QzUdos2z0//nIy+gmT0OTjVpzSNDYi13JKxbHsxQ3ep+GxKkRk8kB29HEvfkFIi3vZny7LeZtECgBAKhGJ/UiPemlkWojIizTfC1D8GAEhzO6LNv+3MwOxb8bb7YSTeB5D6e49m/L27Jc02RFtuhjRbYBqbEG2+2bLe0Dek/u1LleGdzqTNfkqsqPUO23XlOZRn8sJo068hze2A7EC87a/Q4++WZT9UXrGWO+0BWjh8zlrWZQ/SOn0WOfdR5Zd4DNISERE5qvJvcCLgvaZNeduMDtbCo6jYo95eR2ty7TCHLYioUhRtlMOysTm3UbVx5RqOK13jswf9jM7HzAEj/t+cfRjJjyzBMyP5cSmH2IMKRR1a9NaZgWjT2JGlZXVxKgGhOJQqKIZTfd/yvX/umfoWWwBIGlsLnpCuFFI3PLp1BWwLlYy+bMlONfU1kD1u0prJNUX1m42ije78SYNQnI8bzbcfMm98KGqqznGg/nslHU+XzPIKiY6ny7IfKq9s9WRzfecpOTL0PcFjIETuJ08AQKhF1OEuI81nze73hb9YoZEQERFVNwZpqertjOfOlglqHvx21skQQuCaGcdhRKD75PXMSfvhoMbx5R4iERXAV3uuJTNW8UyCNzQ35zaKNgK+8JfKPLLsfKFTAQD+um9krDFhdAaNjOTK3J3ImCX7Txo7czY3IxHE3nwLRmuu+rMCnuAJ8IZPR+orXYO/9vzc9Q7z6A5adY5Dz3+jrBpI056Z7K+7uCR9+xweNS9XXeBC6Ann7Mq+riNcysxdp7rCPYO2mZP6FU+BN3RqumSFECL195JRP1rzHwxP8Fj4as5C12mzUIfDV/NlAIAncCg038wSjSk7PfFB2fdBpSWldHxiQvFMSZfJceINHgfVYUIx1TMd/pozOz/XsmeiCnUUfDWnFzXmcvHVnpWu7+0NnQrVs2uFR0RERFSdWJOWqt7OhPVi8yf7HouzJndfEI0J1sGnpv6UZzXugg2n/QifdjSj1uvHEF/xgQoiKg/NOw01I/8OaWwDhAqhDHM12ZG/7nz4ar6E1k0nO6731ZwNb/AY23IjuQ6RnT/M27/q+wxUbTwSHf+w9hv+MhRtOADA458JRR0N09iYXm8mP4L07GrLrAw0XIlo068ty0xjJ1QlBCBVcsGyrq0N8f+9h8DELyOw28UQNQ0QIwWklBCaAcVrLwmRmtAsdWPKX/MVAEqva7BmZjqbRv8I0mZm/AqlDppvz5L0rXmnI9T4R3RsuyS9TJptqfemghN16Vmyt6UZAXqRTV2oUgasnYKwUsYgEHBcr3r3hObbD/G2e23bhYffmbX2pVBqbWVWvMEj4QnMhuwKrIlgutSBv/Ys+MJfgDTbINTh6fddKEEEh14HIAnIeHp8iY6nEW9/wNJ/cMjPHINTUibQvvU8x3Gm2xibYJqtUBR7WSeqTlK2AbBOChcadjNU7+45PzeEUoNw4/zUZ1rXDQrhSz8h4Q0dB0/wyO6/UwvV8vdZLTTv7qgZ+QAAg/VoiYiIcmCQlqrezrh19vMptY3YtSb7xaeqKJhQU5pHXImoPIRQIbTCH8cUSig14YqM2tepDbYsUMBhNvesYwpD0XZxWGH9qlS9U2FGu4O0RvIjKMlJyKxN6fHPRlSELDVdpbkDQKp0g2lkBmnbIaMxKL6J8NYVnpknOoO/vaWoGUHa/pJJmxGwEGpjSftXbHWRjdR7K3LXUy4nI/4/x+V9nUlr6uvtC0VxN0kdM2UtmbTWgLCiDoOiOpc1UrSxEKKwU10hvBAOnyNAKiDrlKWeCoh5AeFN3zRRvdPs41GHZ/mMyl8XGwCM+LtQAoe4akuV5xREVb1TXQdQc5WtyfV3Wq2EUAGolR4GERFRVWOQlqpWTE9iS6wN22LtluVDfL3LEiOi/s65Uo/IWsHHXWUfaSQgk4ZtuZlog96+rscC64WzHnsXUrd+nQplJIzIdghRA9kjSJtsfwdmPLUPI/6Rdf/xVKBG8eSvN1hO9nIHayGlXnCwqycpE5AZQelshDoEQtgnl8sn87FiJUt90WJl1uoFACO5Boo6vIi+gulgnlvSjFgCmKbZlDXL2dQ3wOwRVBZKKO/kfOn9SAOAtLzfUhpZsvZSjOSKLOPY0j0GtdHVZEZOWbmmsRWKNhJSmraMdaHUAln/XioXEHKc7FD0bjzJ2JtQPVMglDoIJfvkUr0lpeyctMx5wtZUFnL5z8WyjUOoQzP+PmXnDTBAKENzBkFz/W5CHQJp7IRQG0qS7Wkk11r7V+qL+mwjIiKiwYNBWqpKf1rxGi5f/ATihn3WZJYwIBrcBBQ4V8DMFgByFxiJr30UHev/AP8B1izWjvd/g5a1l3bvZdhQ+Gfsk35tGmtgGtbJjJIb/ott70+Ab78ZUId0z8adiP0NiP3Ncf8ykQrSiooHae0Tu7VuPA7BodfC4z+w4P4SkecQbf69+8mshB/Bhh/AU2DGYObEStmyK4sm/AA86Pn4csf2y4vuzhM4GoGG77sKXMZa7kC8/e8AnINmmaJN12YsUeEJHodA/XdyBrD0+AeI7PwZpLkD3vBpCNRdhGT0dUSbry+8pIGMoG3Ll9MvhTIEwaG/gObdLfsmUkKPvWZb3rH926nMaDPW+Qh5t1Sw2ynwpVT0kW+nIK2U9nOaQiQj/0Qy8k8AHvhrvwZfzWm96s+JoW9AZPv3LSVd7BT4wqfBX3dByfffxdQ3o2PHD2Dqn9hXigCCDd+HJ3AITH1LZ7vUjTRFG4/QsF9DccikN/WNnW0dMr8t/fsQqL8c3uCcosYupYlo0/VIRp+zdlvqzyQiIiIacDhxGFWdqJ7E/731lGOAFgCGeBmkJRrUsmajZflKM9w9SixNEzIRt6/ICKLJtvwTF5mdk33JuEN/2fafDtJWtuZkaoZ7e9Ar1nJbwX1JaSDW8kf3AVoAkDFEW24paDIqKQ3bxGGlDogIIQrOfs0lGX0eRpaasj2Z+ubO2qbuArTODCQj/4QeX5yzVaz1znRGYqL97zCSHxcXoHUgzZ2It96ds40eez379sY2W4AWAISoyZKdWNnHqp0yr3uWbchoXWDvScRaF0CaHfmbFijedn+eAC0AmIi3P2DJlC75ONofdA7QAoCMItpya2e7h9MBWgAw9XWItfzJuc+2B/MHaAFAxhFr/mNnVnnhjMT7tgAtUPrsfiIiIhp4GKSlqvNJRxM6dOegSo3Hh3Gh+r4dEBFVFUUbW9ByM56ANPJfbMuOCGQ8kQ6WprfPCMrKeAJmJHfNT2Nnc+e27TnbWfeTaqvVTXe9TTkIoUCoDbblpv4JZJbHn7ORZntRAT5pbIU0trpubySW25aVY/Zw1TOxpP3piQ/ytjGNzaXbX+ytnOuNhLXGbcf2K0s6KVi+30WPvVFwn4pnomMt6WyfB31FKLVQ1B6lQ0QAatYsYg2i4LIZBkxjW7HDy8rUP3XfNm8wt3hGcl3O9dLYDCkNx6BrMvoapGmvW27oa2zLsvYv2xxrn7uRWeagi+qdUlR/RERENHgwSEtVZ1vMOTNkmC+EWw86FX6N9byIBjN/3SXWya2ED97QqVC9zsFNAQWJ5R/agq9dpJTQt22DvnETICUSy1ZAJhKQpgl9/UaYO3batkks/xBmzJ4VJw0DyTVrIdtTAVd9wwYY23fkzAqVhoHkx2uAuER476uh1e+e69fvEyJbFqIsMHOvkAzaDEbyQ9dt9bg9+Kj5Dyp639n46y6Coo0rWX+Z9VWd5cso9kD17gVFyx9A1hPvuRpXes+m/W+/V/JkJuqJdwvqzhs6CZpvBhRtLHw1Z3WWpACEOhyB+m8VPcxSEELAX38ZhDocQqlDoP5yCOHL2jZQ/+3OLHYnWU7Xe1k+wbHLArJz3U54Vtw4XNwckLEsk+QlkHTIyjaNwv6ei82k7cpG70n17gtv6JSi+iMiIqLBgzVpqepsjVozzyaEG/De5/8PQc0DxUXtPiIa2DTvbqgZ+dfuTCnhyTmplZQGjE2bEd20GVBVwDQx4kvNkEgAUgJCgxjhAfbouY0EoEOM9ACfydavtAchhRdilAockNk2kT1A1bmNmO2HUKrjazlb8MU0W6EW8Mi/dAjS1o56HE6Ponfs/BGM+NL0ayOxEp7AYa72k5kh6g2f3jmTeGmpnkmoGXGPY5aeG4nIc4i13JR+bepugrRWQqlFzYj7eizQ0o/7SzOGnkFdPfEBIjuu7N5f8mNIs931JGKZ/PWXwxs4JsfgNAAK0Pn3o8cXI7LzmvRqiexBL9PYYcviFMpQx4AXAAQaroI3eHT32GrPhq/mq6l9C39F69F28fhnwjPyfpdt94c28sGMzxQBofjTnzWtm0+1lEyQKEOQVlrPwYJDfgrNl6rT3b71Qmv2rEyiXKTZbHkdqP8/RJtvsLaRcUjT+amGZPRleINH9WgrIQ3r31Jo2A1QPVPRuukLAJw+84oL0poZkyR6gp9FsOGKovoiIiKiwaU6rgaJetgWs14gjAjUIOxxzj4hosHL9eziZo9AhmEAEFC8par7WtlJvspFZqmdKc389Xit/WQGaT1ZA4SaZ5o1SJtc5WofptEMI7nSuhf/rILGWahiZ7ZXvVMtr019A6QZLbA/JWt7ofgtrzXf3rBOdmZCTyyDx79/Afvr4oE3cKS7sYrONiKjhnyOzEQ9bi21ABGC5tsHyegLzrtwqEMrhNq9735ICOE4/u7lGoAex2ZZMmmt52BCGdL9nmdkApcrk1ZKE9JssSxzzGCXMcgsJQn02JvWY0u2IzMQq6ijIJQQFG2Upa5tt2Izaa0Zu4o6oqh+iIiIaPBhkJaqhm4aWN68Ff9rstY4G+4vLuOHqC8YHethRDdVehiUg96S8dh8GTIsB5wsQdqu2q8CChTP+KyPb3f3Yw3SCuHP0tBer9FIfAgpZd6MSD3+NiwlAYQfqnfP3OOqEFWbgNSj6121fSWSsVdzllAwklkmT3JBCC9U724wEu+nlyWjrzpPapWHJ3BwwRm4trIZMg49saKzXuuo9Htrmq1ItD9kaap597QFBTN7H2yEUGGtnFLaIK2Uhq0Oa8/3XAivZZ2ReA+6NtraHgoUbVxBNx5Mowmm0WMSMhlF5kR5itpo205PrMhx4yhV8qArm9Y07BnZQh2S6lsb4xykzQiCp2rgfgpFG237t7C0MzKDtJwwjIiIiNxhkJaqwqZIK4545lasbLVPgtHIIC1VqZbXvo7IysJnvKcKq5KSAtXN+THmWMsful+IEELDroPmzV5D15ZJq+QI0nqskypJ2QZpbIHQRuYcaWapA803wzHLshoIxd8ZEOp+rD/adF1Z96l597IGaSNPIxl5uuB+PLnKHGSTcUNEyjZ0bPtGalz+gxEc8lMkI//pfIzdGpTTfPvANHLdABt8QdpUVnQ3WeJM2kTH47ZllsB8xnGV6HgCiY4n7B0JP0JDfwHNNyPvPmNt9yHeemfedkJtSNUc7vGZEm26Nuc20aZrofn2hRBBtG89z9qfqEkHWi01znvo2PkzhBtvhRACpr4F7du+BWluh1CGIjTsRqge55srpmktdyAU+0SMRERERE5Y4JOqwp0rFzsGaAGg0R/q49EQ5ae3r2OAtp8qR63SgSZb0MJCdiDelqfeZgGZtEIdASGs5SOM5Oq8w9AT1sfkNV95Sx30lurZtZc9FBacVH29zyoWSi20okpIZD/W9NhrMBLLEGu9E5kBWgBQffsgdy7BIAzSZn52lbgmbMwhWJorkzYrGUOs9S/5m8kE4i7aQQQghDfn50c2sda7kYy9Zu+yM4sWAFTPeMdtzeSq9ASGsdY7Ic3tqXGbO5DoeMRxm1TtW2smbc99EREREeXCIC1VhQ9bt2Zdt9/QsX04EiJ3zMjG/I2oKmn11fkofDXxBD/rqp2pb8i53jbBVq4grRBQPBOs/fd8BDrrPqyzwGeWTag2qnffXm2f+W+Uj+bdq6jyBj15gscVlZ2seHZBrlNNI7HCcWIwoY6E6pkC1TMxR98TCh5Pf5f5PmbWPu2N1ORkTmVOugOzhWSEmnr+Mh2purP569qqnlQtZ6WIGxx69BWYyY/sfXq7M/c1/wHI9ndqJFdBShPJ6POW5cnoy847lBFklqFQlPpChkxERESDGJ/5pKqwJWqdqEITCuq9AXxl0mcwbzwDKtRPqP13wprBwtOwJ+pmL6j0MKqeL3wqTH0NktGXuhcKHyBN9CyFkBkgzZRZ7iBfJpyiDrNM1WMa2/MPNmPyIgGX2X4V4g19FkbyQ+jRRZAuAlTdBFTPrgjUXVbQ/oQSQqDh+4i13mUps+AoM0gnQvD494e/9tyC9tlFUWoRaPge4q33wjR3dmZ+dmfNOk0Op3qmwl/3DQihwhOcAz3xIfToy+l/K6HUwRc+Hao2pqgx9WeKOhxmj+xy08h+g7tgMgZLbWcAgYYfWmpCK5rTTXMBCK/DZ0MTpEzmDu47lmvwAul9CqjaRATqv5UaT923EG2+HkbyY9tYFXU4/HVfh6lvQazl5u5dyDYkIv+x7cVfe16PbYchUP9tRJtvtLUzk5861qvNnNise7m9Rm5vb5IQERHR4MEgLVWFLVHrSe2dh5yGsybPrNBoiNywXiAKTy1GfsX5oo2ovxFKAMEhPwLwI8tyI7ES7dsuTr+WZmvuyb0yJyFymLnesj5jgh3pMNmPZb00YHtUvkrr0XYRwotgwxVAwxV9tk+P/wB4/Af02f568gaPhTd4LAAgsvMXSEZfTK/LDNIKtRHh4bd2vxYeBBu+AzR8p28GW+UUdYTltannzzR3S8oO2zLN9xnr/h2CtJpvP4SG/RrSbEPrps9b+zR25KwpLS23ZFJqRz+RNbCresYh3Dg/a39dkpFnYSRXdO/HtN7s8deeD0UdZlnmDZ0Ab+gExFrvQbytuwSDqX8KPf5fx/2YZisUW3Zz5o0rFcjzuUdERETUheUOqCpszgjSjgjUZGlJRESVIpS6jCUG4BDc6WKbOCxfJq1iDZzkzaR1qMlZrZOGkf3vJ/OR+MwgJFkp6nDL61Jm0kozYlsmlKDltao5TZTVWSdXhG3Ht2k4zzXQvVOnTNre1wz3BA7LuV5kBGh7UrRdLK8N/VPo8f85tnUq95KZSSuUmuw3sYiIiIgyMJOWKs4wTWyNWcsdjPCHs7QmsjM61iPZ9C4gZf7GJaK3LMtYwoswGvicHttNRl9JzbzuwEhaHxMWSu4gbWYmrWlsQjL2Rtb20ozZFzJIW7XsQX4rBmlzUzTrv4+R+B/02NtQvbtZJvgCAGl2pGr+wmlyMQWqZzIUdQikTMJIrICRXJnRxmu74eGUSSvNZgCdNaXVYTD19el1ydjrUL1TYSbXQajDIZRAakydGfamvtk2LiF6nz/iCRyGWOvtWdcramPWdZmBaGlshu5QwgBIffZllj0w4u9bXrPUARERERWCQVqquP/ttE/AxExaciu69mE0Lzy9sx4eEZWV8APwoGftyWjzDe43d1GTtidpbEVkx9WFjBCo8pq0g1m+gFVmpihZCYcgdseO70EotQgNuwmqJ5UFaujr0bHtsnQA1bkzH4INP0Ks7R5Lndv06ows2tQy+2P7Zo+SJEJtBHoEaRPtDyLR/mCuXylD77NoAUDRRkH1THUIPKeIHEFaeyBaArLdsa2b308oPJ8lIiIi91jugCruLx+9bXktINDoD1VoNNTfdLx/fXUEaEuQ/UNU7YQQebMhc3eQL5M2+2PIrnchGKStVvn+doTGTNpcsgWxpdmKROSZ9Otkx79yB2gBQMYR2flDxwAtkL9+dJeuwDBgL1dSMFG63BEtR8mDzJtBliEoAYgS3iwQgk+GERERkXuMKlDFZZY6kJDQlNJkU9DAZ7SvrfQQAACeoZ/J34hoAFC904veVvNOy7leUUdAKENztsm5vTbOMduPqoOW529H8+7VRyPpn4TSAMWxLiwgjab0z6bZ5NimENmOc3/thZbX3vBp6Z81X+/eP9UztVfb9+QNHOV4U0jxTIEQvpzbar59SzYO1bt7yfoiIiKigY/lDqji1rTttLy+dPohFRoJ9TdSSphx69+PEhgFofRtJp02ZG/UHpB/xmmigSBQ/y1EmwEjuQqAuzrQQvjgCRwJzZ9nQh+hIjj0Z4i13A7TKGzmekUbg0Dd1wvahvqWoo1EoOEHiLc/DGm2ppcLpQa+0FyongmVG1w/IIRAcMiPEG35E4z4OxlrezxRkjkhlwh11qw1IXNO5uWBUIdB806Fv+4bji28obkwjW0wEivgCcyG5tuve+vgZ2Ho65Fo/7uL38ZrqWWtahMQqP+Wi+3cUbQRCDZcjXj7g+kJzFRtHPx138y7rb/264BMQE98iK5/VwENmn8/CKUGyeir9kkRM3S199WclrMdERERUU8M0lLFfdxuDbLNGVO6TAoa2GSyFZCGZdnQE1+HFh5foRERDXyKOgShoT8tW/+adzrCjb8rW/9UWd7gMfAGj6n0MPot1TMJ4WG/Qaz1bsTb/tpjjZHlZ8AX/jz8tV+DlDpaN55gW5/u27s7wo2/zbl/ofgRqHcOdAqhIlB3EZKR5yDzZPNq/pkIDf15zja95QkcDE/g4IK3U9Q6BIf8KOt6f+3XejMsIiIioqxY7oAqqiMZx5aoddbcXWuGVGg01N9kZtECgOLj3w8REQ101rJQsscNS5mZSduZkyGEBkUbk6NPUZqhCU9p+iEiIiIaZJhJSxW1tt2eaTEhzCBbtTCiW5HY/BKk3lHpoTgyOj6xLhAahMZJOoiIaIAT1iCtaWxCouNf6Z+ztVW08TD1jO/OdLvS5G4IeFwWQiEiIiKinhikpYr6uG2H5fXIQA2CGmfmrgZ6+zrseGp/mLGtlR6Ka4pvKIQoUSYQERFRlRIZD8OZydWINv8mS9vuIK3qGQ899kqWdqUaHM/jiIiIiIrBcgdUUesyMmknMou2asTWPtyvArQASx0QEdEgUUhJgR5tFS1XzXY1x7oCducqSFuafRERERENJAzSUkXFDGvdtDqvv0IjoUwykXvSj2rkHXlEpYdARERUdqp3j6Laar59ke1BukL6zL2/PfO20by7l2RfRERERAMJyx1QRSWldYZhj8LMimolfEOg1Uyu9DCcCQWeYfuj5jO/rPRIiIiIyk7zTkeg4ftIRp6FNCPOjZQgvMHjoHmndS9ShyA49Fok2h+BNFtTC4UKzbs3fDVfKsnY/HXnAULASCyDkVgFIAkAUD3TAKFB882AN3xqSfZFRERENJAwSEsVpZum5bVWokkrqPR8o49Dw+H3VXoYREREBMAbPBbe4LEFb+fxz4THP7MMI0oRwodA3cVl65+IiIhooGJEjCoqaTKTloiIiIiIiIiIBjdm0lJFZdak1RTeNwAAKSXinz4JvWV5xcaQ2PpaxfZNRERERERERDSYMEhLFfWb91+yvGYmbUrbO1eh473rKj0MIiIiIiIiIiLqA0xbpIoxpWlbZjgsG2yklIisuLXSw7ARCu/pEBERERERERGVA4O0VDFJ0x6Q3b1+RAVGUl3MyHrIZEulh2HjHXV0pYdARERERERERDQgMTWOKsYpa/b0ifv2/UCqjN6cUYdW8cE3uvDZm0tFqF74xnwWgUlnVWwMREREREREREQDGYO0VDFOQVpViAqMpLrozcssrz1D9sWQY56s0GiIiIiIiIiIiKjcWO6AKsYwpW2ZKvgnmWyxBmm1+t0rNBIiIiIiIiIiIuoLzKQtoXXr1uHmm2/G008/jU8//RQ+nw+TJk3Caaedhm984xsIBoOVHmLVaI5H8dsPFtqWR5f9Dq1or8CIqkdiw7OW11r99AqNhIiIiIiIiIiI+gKDtCXy5JNP4qtf/SpaW1vTyyKRCJYsWYIlS5ZgwYIFePrppzF58uQKjrJ6nPifO/Ha1rW25bH3f4MOEe37AVUxrY6ZtEREREREREREAxmfLS+BpUuX4vTTT0drayvC4TCuvfZavPbaa3j++edxwQUXAABWrlyJE088EW1tbRUebeV90t7kGKAFAB+Mvh1MP8ByB0REREREREREAxszaUvgsssuQzQahaZpePbZZ3HQQQel1x111FGYMmUKvve972HlypW48cYb8dOf/rRyg60CW6LOgeqD8QlqRKKPR1PdPMP2hxqeUOlhEBERERERERFRGTFI20uLFy/GK6+8AgA477zzLAHaLt/97ndx9913Y/ny5bjppptw9dVXw+Px9PVQq8bOhL2cwY/HBHHGhifSr5XgWPjGzOnLYVUdNTgOoemXQghR6aEQEREREREREVEZMUjbS4899lj653PPPdexjaIoOOuss/CDH/wAzc3NePHFFzFnzuANQO6MRyyv96gfgf8bEUf7xnh6mWfYTNTPvrOvh0ZERERERERERNTnWJO2l1599VUAQCgUwn777Ze13eGHH57+edGiRWUfVzXbEeuwvB7iCwKmtcyBULx9OSQiIiIiIiIiIqKKYSZtLy1fvhwAMHnyZGha9n/OadOm2bZxY/369TnXb9q0yXVf1eLSNx+zvK5pW45Y4iVrI2XwloMgIiIiIiIiIqLBhUHaXojFYti+fTsAYOzYsTnbNjQ0IBQKoaOjA59++qnrfYwbN65XY+wPaiKroUc/sCxjJi0REREREREREQ0WLHfQC21tbemfw+Fw3vahUAgA0N7eXrYx9QcqTMvr4eiwtRGe2r4aDhERERERERERUUUxk7YXYrFY+mevN3/mp8/nAwBEo1HX+8iXdbtp0ybsv//+rvurBiEk0YrUv4UXOk7ESmsDoSIw4dQKjIyIiIiIiIiIiKjvMUjbC36/P/1zIpHI0TIlHo8DAAKBgOt95Cuj0B99Y2QNYoaOgAIcV+PHvsGvpdcJxQff2OPhbTyggiMkIiIiIiIiIiLqOwzS9kJNTU36ZzclDDo6Uo/1uymNMJD98vhfVnoIREREREREREREVYM1aXvB7/dj6NChAID169fnbNvU1JQO0g6GycCIiIiIiIiIiIjIHQZpe2n33XcHAKxevRq6rmdtt2LFivTP06dPL/u4iIiIiIiIiIiIqH9gkLaXDjnkEACpUgZvv/121nYLFy5M/zx79uyyj4uIiIiIiIiIiIj6BwZpe+nzn/98+ue7777bsY1pmvjzn/8MAKivr8eRRx7ZF0MjIiIiIiIiIiKifoBB2l7af//9ceihhwIA7rzzTrz++uu2NjfeeCOWL18OALjsssvg8Xj6dIxERERERERERERUvbRKD2AguOmmmzB79mxEo1HMmTMHV111FY488khEo1E88MADuP322wEAU6dOxXe/+90Kj5aIiIiIiIiIiIiqCYO0JTBjxgw8+OCD+OpXv4rW1lZcddVVtjZTp07F008/jZqamgqMkIiIiIiIiIiIiKoVyx2UyEknnYR3330X3/72tzF16lQEg0HU19dj5syZ+PWvf42lS5di8uTJlR4mERERERERERERVRkhpZSVHgQVb/369Rg3bhwA4NNPP8XYsWMrPCIiIiIiIiKigYfX30RUTsykJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogrdIDoN7RdT3986ZNmyo4EiIiIiIiIqKBq+c1d89rcSKiUmCQtp/btm1b+uf999+/giMhIiIiIiIiGhy2bduGCRMmVHoYRDSAsNwBERERERERERERUQUJKaWs9CCoeLFYDO+99x4AoLGxEZpW/cnRmzZtSmf9Ll68GKNGjarwiKhQfA/7P76H/Rvfv/6P72H/x/ew/+N72L/x/ev/+uN7qOt6+mnWvfbaC36/v8IjIqKBpPojepST3+/HrFmzKj2Moo0aNQpjx46t9DCoF/ge9n98D/s3vn/9H9/D/o/vYf/H97B/4/vX//Wn95AlDoioXFjugIiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKkhIKWWlB0FEREREREREREQ0WDGTloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpqU+tW7cO3/3udzFt2jSEQiEMGTIEs2bNwm9+8xtEIpFKD29QWrJkCa655hrMmTMHY8eOhc/nQzgcxtSpU3Huuefi1VdfzdvHPffcAyGEq//uueee8v9Sg4zbf/sjjjgib1/PPPMM5s2bl/5bGDt2LObNm4dnnnmm/L/IIHXEEUe4fg+7/nvppZcsffAYLJ+tW7fiqaeewo9//GMcf/zxGDZsWPrf8pxzzim4v1IcY7qu409/+hMOPfRQNDY2IhAIYNKkSbjooovwwQcfFDymga4U72EkEsGjjz6Kiy++GLNmzUJDQwM8Hg+GDh2Kgw46CD/96U+xefPmvP0UcrxTt1K8h6X+nIxEIrj++usxa9YsDBkyBKFQCNOmTcN3v/tdrFu3rne/8ADU2/dw7dq1BX9XTpgwwbEvHoeFK8X1Qk/8LiQiykIS9ZEnnnhC1tbWSgCO/02dOlWuWrWq0sMcVA499NCs70fP/8466ywZj8ez9nP33Xe76geAvPvuu/vuFxwk3P7bH3744Vn7MAxDnnfeeTm3P//886VhGH33iw0Shx9+uOv3EIBUFEWuX7/e0gePwfLJ9W959tlnu+6nVMfYtm3b5KxZs7L24fP55B133NHL33pg6e17+L///U+Gw+G8x1Ztba184IEHcvZVyPFO3UpxHJbyc3LVqlVyypQpOf8Wnnzyyd7/4gNIb9/DNWvWFPRdCUDOmTPHsS8eh4Up1fWClPwuJCLKRwNRH1i6dClOP/10RKNRhMNh/OAHP8CRRx6JaDSKBx54AHfccQdWrlyJE088EUuWLEFNTU2lhzwobNy4EQAwevRofPGLX8Shhx6KXXbZBYZh4PXXX8eNN96IDRs24M9//jOSySTuu+++vH3++9//xujRo7OuHzt2bMnGT1YXX3wxLrnkkqzrQ6FQ1nVXX3017rzzTgDAjBkz8L3vfQ+TJk3CRx99hOuvvx5Lly7FggUL0NjYiF/+8pclH/tgdvfdd6OjoyNnm2XLluH0008HABx99NEYM2ZM1rY8Bstnl112wbRp0/Dss88WvG0pjjHDMDBv3jy89dZbAIBTTjkFF1xwAYYMGYI333wTv/jFL7B161ZcdNFFGDNmDI4//vjif9kBqpj3sLW1Fe3t7QCA2bNn43Of+xxmzpyJoUOHYtu2bXj00Udxxx13oLW1FV/5yldQW1ub999+5syZuPvuu3v1uwxWvTkOu/Tmc7KtrQ0nnngiVq1aBQC44IILcMYZZyAQCODFF1/Er371K7S2tuL000/HokWLsO+++xY9zoGqmPdwzJgxeO+99/K2+9WvfpU+Xz377LNztuVx6E4prxf4XUhElEelo8Q0OHTdgdU0Tb722mu29ddff336zudPfvKTvh/gIHXiiSfKBx98UOq67rh+27ZtcurUqen3ZuHChY7temanrFmzpowjJie9PXY+/PBDqWmaBCBnzpwpI5GIZX1HR4ecOXNm+hhmxnvf+973vpd+n//yl7/Y1vMYLJ8f//jH8sknn5SbN2+WUlqzudxm8JXqGLvzzjvT+77kkkts61etWpV+YmXy5MkymUwW9ssOUL19DxctWiRPO+00+cEHH2Rt89hjj0khhAQgJ02aJE3TdGzXlcGX68kGsivFcViqz8kf/ehH6X6uv/562/pFixalj3e+z91K8R7mo+u6HD16tAQga2pqbJ+1XXgcFqZU1wv8LiQiyo9BWiq7N998M/1FetFFFzm2MQxDTp8+XQKQ9fX1MpFI9PEoKZsnn3wy/f5deumljm0YIKqs3gZpL7744nQfr7/+umOb119/PecJMZWPYRhyzJgxEoAMh8Oyo6PD1obHYN8pJrBQqmOs63tyyJAhjn8HUkr5q1/9Kt3P3//+d1fjG2zKERySUspTTz013e/bb7/t2IbBodKoVJA2kUjIuro6CUBOnz496yPZF110UXpfixcvLmpfA105jsN//etf6T7PPffcrO14HJaem+sFfhcSEeXHicOo7B577LH0z+eee65jG0VRcNZZZwEAmpub8eKLL/bF0MiFI488Mv3zRx99VMGRUDlIKfH4448DAKZNm4YDDzzQsd2BBx6I3XbbDQDw+OOPQ0rZZ2Mc7J5//nls2LABAPCFL3wBwWCwwiOiQpTqGFu5ciWWL18OADjttNOy/h30nIDnH//4R2+HTwXg9+XA9+KLL6KlpQVA6lF6RXG+lOJxWBl//vOf0z/nK3VApZXv84/fhURE7jBIS2XXNdtnKBTCfvvtl7Xd4Ycfnv550aJFZR8XuROPx9M/q6pawZFQOaxZsyZda6znMeika/2GDRuwdu3acg+NOvW86Oy6mUX9R6mOsZ4zZ+fqZ+TIkZg6dSoAfpf2NX5fDnxuj8OZM2emg0c8DvtGW1tbOjFkwoQJOOywwyo7oEEm3+cfvwuJiNxhkJbKrutu5+TJk6Fp2eeqmzZtmm0bqryFCxemf54+fXre9ueeey5Gjx4Nr9eLYcOG4cADD8QPf/jDdCYglc9DDz2E3XffHcFgEDU1NZgyZQrOPvvsnJnpy5YtS//c8xh0wmO077W3t6czQMaPH48jjjgi7zY8BqtLqY6xYvr59NNP805KR6VTyPflihUrcMABB6C+vh5+vx9jx47F3Llz0xPvUHkV+znp9jjUNA2TJ08GwO/LvvLwww8jEokAAM4880wIIfJuw+OwdPJ9/vG7kIjIHQZpqaxisRi2b98OIP+M4g0NDenZ5z/99NOyj43yM00T1113Xfr1aaedlnebl156CZs2bUIymcSOHTvw5ptv4tprr8XkyZNx2223lXO4g96yZcuwfPlyRKNRtLe3Y/Xq1fjzn/+Mo446CvPmzUs/otnT+vXr0z/nO0bHjRuX/pnHaN945JFH0hcWX/3qV11ddPIYrC6lOsaK6UdKadmOyud///sfnn76aQDAXnvtlTdIu2XLFixevBgtLS2Ix+PYsGEDnnjiCZx99tnYd999Gdgrs2I/J7uOp1AohPr6+pz76DoOt23bZskypPIo5qkTHoel4eZ6gd+FRETuZE9rJCqBtra29M/hcDhv+1AohI6ODrS3t5dzWOTS7373OyxevBgAcMopp+QsV7HrrrvilFNOwUEHHZQ+Kfr444/xyCOP4OGHH0YsFsPXv/51CCFw4YUX9sn4B4tgMIiTTz4ZRx99NKZNm4ZwOIxt27Zh4cKF+NOf/oQdO3bgsccew9y5c/Hcc8/B4/Gkty3kGO26iQKAx2gfKeSik8dgdSrVMcZjtXrF43Gcf/75MAwDAHDttddmbasoCo4++miccMIJ2GeffTB06FC0tbXhnXfewW233Ybly5dj2bJlOPLII7F48WLssssuffVrDAq9/ZzsOg7dntN2aW9vh8/nK9FvQZk++eSTdCbnwQcfnM5izobHYWm5uV7gdyERkTsM0lJZxWKx9M9erzdv+64T2Gg0WrYxkTsLFy7E97//fQDA8OHDceutt2ZtO2/ePJx99tm2LL9Zs2bh9NNPx1NPPYVTTjkFyWQS3/72t3HyySdj5MiRZR3/YLJhwwbHjJ5jjz0Wl156KY4//ngsXboUCxcuxK233opvfetb6TaFHKM9LzB5jJbf+vXr8dJLLwFITaTRVVvNCY/B6lWqY4zHavX65je/iSVLlgBITVZ00kknZW376KOPOn5eH3roobjkkktwwQUX4N5778WWLVtw+eWX49FHHy3XsAedUnxOdh2HhZzTAjwOy+2vf/1reoIpN1m0PA5Lx+31Ar8LiYjcYbkDKiu/35/+OZFI5G3f9ThYIBAo25govw8++ADz5s2Druvw+/146KGHMHz48Kzt6+rqcj6G/bnPfQ4//vGPAQCRSAR33nlnycc8mOV65HLEiBF4+OGH09mz8+fPt6wv5Bjt+bgmj9Hy++tf/wrTNAHkn6Wax2D1KtUxxmO1Ov3qV7/CggULAKSCfbfcckvO9rk+rz0eDxYsWJCe2fwf//gHa0mXUCk+J7uOw0LOaQEeh+X2l7/8BUAqKHf66afnbc/jsDQKuV7gdyERkTsM0lJZ1dTUpH9285hJV+1FN4+RUXmsWbMGc+bMQVNTE1RVxQMPPFCSGXIvvPDC9MVRz8kFqPx23XVXHHvssQCA1atXp2fXBQo7RntOusBjtPwKvejMh8dgZZTqGOOxWn1uu+02XHXVVQBSE9T885//tDxeWwxN03DeeeelX/NY7Vv5Pie7jsNCzmkBHofltHjxYqxYsQIAcPLJJ+etFewGj8P8Cr1e4HchEZE7DNJSWfn9fgwdOhQA8hZsb2pqSn+Z9iwYT31n48aNOOaYY7Bx40YIIXDXXXdh7ty5Jel7+PDh6b8FZiT0vd133z39c89//56TLuQ7RntO3sBjtLyWLFmSnsH4c5/7HBoaGnrdJ4/ByijVMVZMP0KIvBOrUHHuv/9+XHLJJQCA8ePH47nnnsOwYcNK0ne2z2sqv3yfk13HU0dHB5qbm3P21XUcNjY2sh5tGRUzYZgbPA6zK+Z6gd+FRETuMEhLZdd1krN69Wroup61XdddcAB5Z0Wm0tu+fTuOPfZYfPzxxwBSj8WX8mQXgKuZ6ak8sv3b97wI6XkMOuEx2nd6XnTmK3VQCB6Dfa9Ux1gx/YwbN67XmZ1k98QTT+Css86CaZoYNWoUnn/++ZIGAHicVlauf3+3x6Gu6/joo48A8PuynJLJJB544AEAqQD7Zz/72ZL1zePQWbHXC/wuJCJyh0FaKrtDDjkEQCrr4O23387aruejRLNnzy77uKhbS0sLjjvuuHTm3nXXXYdvfOMbJd3Htm3bsH37dgDA6NGjS9o35df13gLWf/+JEyemX+d7nO/ll18GAIwZMwYTJkwo/SAJgPWis7GxEccff3xJ+uUxWBmlOsa6vkvz9bN582asXLkSAL9Ly+H555/HaaedBl3XMXToUDz33HOYNGlSSfeR7fOayi/f56Tb43DJkiXpp8N4HJbP008/jR07dgAAvvzlL0PTSjcnNo9Du95cL/C7kIjIHQZpqew+//nPp3++++67HduYppnOHKuvr8eRRx7ZF0MjpCbHOPHEE/HOO+8AAK6++mpceeWVJd/P7bffnp559/DDDy95/5TdmjVr8NxzzwEAJk2ahDFjxqTXCSHSj6itWLECb7zxhmMfb7zxRjojYe7cucwwKaNnnnkG27ZtA1Dai04eg5VRqmNs6tSp6Yyiv//974hEIo793HPPPemf582b19vhUw+vvfYa5s6di3g8jrq6Ovz73//GHnvsUdJ96LqOu+66K/26FDXhyb18n5NHHHEE6urqAAD33ntvum0mHod9o1xPnfA4tOvt9QK/C4mIXJJEfeDQQw+VAKSmafK1116zrb/++uslAAlA/uQnP+n7AQ5S8XhczpkzJ/1vf9lllxXcx5o1a+Q777yTs82TTz4pvV6vBCADgYBcv359kSOmTE888YRMJpNZ12/evFnOmDEj/R7feOONtjYffvihVFVVApAzZ86UkUjEsj4SiciZM2emj+GVK1eW/Pegbqeeemr6/Xr77bfztucx2LfWrFmTfn/OPvtsV9uU6hi788470/v+xje+YVu/evVqWVtbKwHIyZMn5/xsGMyKeQ+XLl0q6+vrJQAZCoXkq6++WvB+X3jhBdnU1JR1fSKRkGeffXZ6bCeddFLB+xgsCn0PS/k5+aMf/Si97+uvv962/rXXXpOapkkA8vDDD3fz6wxKxRyHPe3YsSP9fu21116ut+NxWLhSXC9Iye9CIiI3SvdMCFEON910E2bPno1oNIo5c+bgqquuwpFHHoloNIoHHngAt99+O4DU3dHvfve7FR7t4PGlL30Jzz77LADgqKOOwnnnnYf3338/a3uv14upU6dalq1duxZHHnkkDjroIJx00knYZ599MHz4cADAxx9/jIcffhgPP/xwOtvkhhtusGRyUu9ceumlSCaTOPXUU3HQQQdhwoQJCAQC2L59O1566SXcdttt6Uc3DznkEMfH0qZOnYorrrgC1113HZYsWYLZs2fjyiuvxKRJk/DRRx/h17/+NZYuXQoAuOKKKzBlypQ+/R0Hk6amJjz11FMAgD333BOf+cxn8m7DY7C8Xn31VaxevTr9uut4AlK11ntm6wDAOeecY+ujVMfY2WefjbvuuguLFi3CLbfcgs2bN+OCCy5AQ0MDFi9ejJ///OdobW2Foii4+eabS/rob3/W2/fwo48+wnHHHZeeKOoXv/gF6urqcn5fDh8+PH0cdrn33ntx8skn4+STT8YRRxyB3XbbDbW1tWhvb8fbb7+N22+/Pf0Y8fDhw3HTTTcV8dsOTL19D0v5OXnFFVfgwQcfxMqVK/G9730Pq1evxhlnnIFAIIAXX3wRv/zlL6HrOgKBAH7/+9/3/pcfIErxWdrTAw88gEQiAaCwLFoeh4UrxfUCwO9CIiJXKhwkpkHkiSeeSN/VdPpv6tSpctWqVZUe5qCS7b3I9t/48eNtfbz44ouutg0Gg/K2227r+19ygBs/fryrf/9TTz01Z+aIYRjya1/7Ws4+zjvvPGkYRt/9coPQrbfemjNDywmPwfLqmVHl5r9sSnWMbdu2Tc6aNStrHz6fT95xxx2l/mfo13r7Ht59990Ff186PRXkdhx77bWX/OCDD/rgX6b/6O17WOrPyVWrVskpU6Zk7ae2tlY++eST5fin6LdK9Vna5YADDpAApKqqctOmTSUfB4/DboV+/jldL3ThdyERUW68rUR95qSTTsK7776Lm266CU8//TTWr18Pr9eLyZMn44tf/CK++c1vIhgMVnqYVKD99tsPf/3rX/H6669jyZIl2LRpE7Zv3w5d19HQ0IA99tgDRx99NM4//3xbVhH13r333ouFCxfi9ddfx8cff4zt27ejtbUV4XAY48aNw8EHH4yzzz4bBx10UM5+FEXBnXfeiVNPPRW333473nrrLWzfvh3Dhg3DrFmzcNFFF5VsAivK7i9/+QsAQFVVfOUrX3G1DY/B/qFUx9iwYcPw2muv4Y477sB9992H5cuXo6OjA6NHj8bRRx+Nyy67rOR1Uqk0rrzySuy77754/fXXsWzZMmzbtg07d+6Ez+fDiBEjMHPmTHzhC1/AvHnzoKpqpYc7oJT6c3Ly5MlYunQpbrnlFjz00ENYvXo1EokExo0bhxNOOAGXXXYZxo8f3we/2eC0atUqvPnmmwCAY489FiNHjnS9LY/DyuJ3IRFRbkLKLBXviYiIiIiIiIiIiKjslEoPgIiIiIiIiIiIiGgwY5CWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiKhI99xzD4QQEEJg7dq1lR4OERERERH1UwzSEhER0aCzdu3adHC1N/8RERERERGVAoO0RERERERERERERBUkpJSy0oMgIiIi6kvJZBIffvhh1vV77bUXAGDmzJm4++67s7bbc889Sz42IiIiIiIafLRKD4CIiIior3k8HlcB1lAoxEAsERERERGVHcsdEBEREREREREREVUQg7RERERERbrnnnvSk4itXbvWtv6II46AEAJHHHEEAGD16tX4+te/jl133RWBQAATJkzAeeedh3Xr1lm2e//993Huuedi1113hd/vx7hx43DxxRdj69atrsb12GOP4Ytf/CJ22WUX+P1+1NfXY+bMmfjZz36Gpqam3v7aRERERERUYix3QERERNQH/vOf/+CUU05BW1tbetm6detw11134amnnsLChQsxbdo03H///TjnnHOQSCTS7davX48//elPeOaZZ/Daa69h9OjRjvtoamrCF77wBbzwwguW5fF4HG+//Tbefvtt/PGPf8Tjjz+OAw88sDy/KBERERERFYyZtERERERltnHjRpx22mmor6/H/Pnz8eabb+KVV17B5ZdfDiEEtm7divPPPx9vvfUWzjrrLEyaNAkLFizA4sWL8eKLL+LMM88EkArqfuc733HcRzwexzHHHIMXXngBqqrizDPPxP3334833ngDr7zyCq699loMHToUW7duxQknnGDL3iUiIiIiosphJi0RERFRma1atQpTpkzBokWL0NjYmF5+yCGHQNM03HDDDVi0aBFOPPFE7L///njuuecQDAbT7Y444gjEYjE89NBDeOSRR7Bt2zZLPwBwzTXX4J133kF9fT3+85//YL/99rOsP+SQQ/CVr3wFBx10EDZt2oSrrroKf/vb38r7ixMRERERkSvMpCUiIiLqAzfffLMtsAoAl1xySfrn7du3Y8GCBZYAbZeLL74YAKDrOl5//XXLuvb2dtxyyy0AgJ///Oe2AG2X8ePH40c/+hEA4KGHHkJHR0dxvwwREREREZUUg7REREREZVZfX4/jjjvOcd3EiRNRU1MDANh7770xffp0x3b77LNP+uePP/7Ysm7hwoVoaWkBAHzhC1/IOZbDDjsMAJBMJvH222+7+wWIiIiIiKisWO6AiIiIqMymTJkCIUTW9fX19Whra8PUqVNztunSc/IxAFiyZEn651GjRrke1+bNm123JSIiIiKi8mEmLREREVGZOZUv6ElRlLztutoAgGEYlnVbt24talyRSKSo7YiIiIiIqLSYSUtERETUz/UM2r7zzjvweDyuths7dmy5hkRERERERAVgkJaIiIionxs6dGj658bGRgZfiYiIiIj6GZY7ICIiIurnZsyYkf550aJFFRwJEREREREVg0FaIiIion7umGOOSdezvfnmmyGlrPCIiIiIiIioEAzSEhEREfVz9fX1+OY3vwkAeO211/Dtb38bpmlmbb9lyxYsWLCgr4ZHRERERER5sCYtERER0QBwzTXXYOHChXjzzTdx00034aWXXsIFF1yAfffdF6FQCE1NTfjggw/wn//8B8888wz22msvnH/++ZUeNhERERERgUFaIiIiogHB5/PhueeewznnnINHH30U//vf/9LZtU5qa2v7cHRERERERJQLg7REREREA0RNTQ0eeeQRvPrqq7j33nvxyiuvYOPGjYhGo6itrcWkSZOw//7748QTT8ScOXMqPVwiIiIiIuokJGeWICIiIiIiIiIiIqoYThxGREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEFMUhLREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEF/T8CDHwDuccc8gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = my_model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'vector-borne_birth-death_example.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe containing model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/tutorials-jupyter/basic_usage.ipynb b/examples/tutorials-jupyter/basic_usage.ipynb new file mode 100644 index 0000000..3aa0be3 --- /dev/null +++ b/examples/tutorials-jupyter/basic_usage.ipynb @@ -0,0 +1,413 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basic usage" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make a new model object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. \n", + "\n", + "Here, we will use the default parameter set for a host-host transmission model" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup('my_setup', preset='host-host')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation('my_population', 'my_setup', num_hosts=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( 'my_population',{'AAAAAAAAAA':20} )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the simulation for 200 time units" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 71.89423840111455, event: CONTACT_HOST_HOST\n", + "Simulating time: 136.14665780191842, event: RECOVER_HOST\n", + "Simulating time: 200.15737579926133 END\n" + ] + } + ], + "source": [ + "my_model.run(0,200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Save the model results to a table" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19414451599121096s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01929759979248047s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.013352155685424805s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.01486515998840332s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 124 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02699422836303711s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.05492806434631348s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08415079116821289s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1292 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1495 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 1956 out of 1956 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2AAAAAAAAAANaNTrue
30.0my_populationHostmy_population_3AAAAAAAAAANaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
195595200.0my_populationHostmy_population_95AAAAAAAAAANaNTrue
195596200.0my_populationHostmy_population_96NaNNaNTrue
195597200.0my_populationHostmy_population_97AAAAAAAAAANaNTrue
195598200.0my_populationHostmy_population_98AAAAAAAAAANaNTrue
195599200.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

195600 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 AAAAAAAAAA \n", + "3 0.0 my_population Host my_population_3 AAAAAAAAAA \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "195595 200.0 my_population Host my_population_95 AAAAAAAAAA \n", + "195596 200.0 my_population Host my_population_96 NaN \n", + "195597 200.0 my_population Host my_population_97 AAAAAAAAAA \n", + "195598 200.0 my_population Host my_population_98 AAAAAAAAAA \n", + "195599 200.0 my_population Host my_population_99 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "195595 NaN True \n", + "195596 NaN True \n", + "195597 NaN True \n", + "195598 NaN True \n", + "195599 NaN True \n", + "\n", + "[195600 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame('Basic_example.csv')\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wU9fkH8M/M9tvrhXKANEFALCBgwYK9S0yMJppoLDExicYUTYzGmKi/aExijdFE1KiJGnsUUbEjSlNEqiCduwOu320vM78/lt3bnbYze3u3Vz7v18uX7Mzs7ve2zM4883yfR5BlWQYRERERERERERERFYRY6AEQERERERERERERDWYM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRAdkLPQDqnlAohNWrVwMAampqYLfzLSUiIiIiIiLKt1gshsbGRgDAQQcdBLfbXeAREdFAwoheP7d69WrMmjWr0MMgIiIiIiIiGjSWLVuGmTNnFnoYRDSAsNwBERERERERERERUQExk7afq6mpSf172bJlGD58eAFHQ0RERERERDQwNTQ0pGaypp+LExHlA4O0/Vx6Ddrhw4dj5MiRBRwNERERERER0cDHfjBElG8sd0BERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBMUhLREREREREREREVEAM0hIREREREREREREVEIO0RERERERERERERAXEIC0RERERERERERFRATFIS0RERERERERERFRADNISERERERERERERFRCDtEREREREREREREQFxCAtERERERERERERUQExSEtERERERERERERUQAzSEhERERERERERERUQg7REREREREREREREBcQgLREREREREREREVEBDfogbSQSwSOPPIJTTz0Vw4cPh8vlQnFxMQ444ABceuml+Pjjj009zoIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCgh/8CIiIiIiIiIiIi6s8EWZblQg+iULZv344zzzwTa9euNdzu6quvxr333gtBEFTrJEnClVdeiXnz5une/4orrsDDDz8MUcx/THzXrl0YNWoUAGDnzp0YOXJk3p+DiIiIiIiIaLDj+TcR9aRBm0kbjUYzArQHH3wwHn/8cXzyySd46623cPPNN8Pr9QIA7r//ftx5552aj3PjjTemArTTpk3D008/jWXLluHpp5/GtGnTAACPPPIIbrrppl74q4iIiIiIiIiIiKi/GbSZtM8//zy++c1vAgCOPPJILFq0CDabLWObTz/9FEceeSSi0SjKy8vR2NgIu92eWr9x40YceOCBiMVimDFjBj788EN4PJ7U+kAggOOOOw4rVqyA3W7H+vXrsf/+++f17+CVPCIiIiIiIqKex/NvIupJgzaTNr3W7A033KAK0ALAYYcdhrPOOgsA0NbWhvXr12esv+eeexCLxQAksm3TA7QAUFRUhPvvvx8AEIvFcPfdd+f1byAiIiIiIiIiIqL+b9AGaSORSOrf48aN091u/PjxmveRZRmvvPIKAGDSpEk44ogjNO9/xBFH4IADDgAAvPLKKxikictERERERERERESkY9AGaZOBUwDYsmWL7nabN28GAAiCgAkTJqSWb926FfX19QCA4447zvC5kuvr6uqwbdu2XIdMREREREREREREA5A9+yYD07e//W3cdNNN6OjowJ133okzzjhDVfJg5cqVmD9/PgDgwgsvRGlpaWrdunXrUv+eNGmS4XOlr1+/fj3Gjh1repy7du0yXN/Q0GD6sfoCKdKBwIa/IR7Yhbh/J+L+Xag+42MIdnehh0ZERERERERERFQQgzZIW11djSeffBLf/va3sXjxYsycORPXXnstJk6cCJ/Ph8WLF+Mvf/kLIpEIpk+fjr/85S8Z908PnmYrFp4sLA4kiotbkX7fgaLzs99k3I4H6mAvHa+zNRERERERERER0cA2aIO0AHDOOefg008/xV/+8hfMmzcPl1xyScb6oUOH4tZbb8X3v/99FBUVZazr7OxM/bu4uNjwebxeb+rfPp8vDyPvv0RnKQRHCeRo1+sX9+9kkJaIiIiIiIiIiAatQR2kjUQieOKJJ3Qbeu3ZswdPPfUUxo4di3POOSdjXSgUSv3b6XQaPo/L5Ur9OxgMWhpjtszbhoYGzJo1y9JjFpqtaCRi7etTt+MB45IOREREREREREREA9mgDdL6/X6cfvrpWLRoEWw2G66//npceumlGDduHEKhEJYuXYo//OEP+Oijj/C1r30Nf/7zn/Hzn/88dX+3u6uGaiQSMXyucDic+rfH47E0zmylFPoj0TsKSAvSSn4GaYmIiIiIiIiIaPASCz2AQrnllluwaNEiAMC8efNw5513YtKkSXA6nSgtLcXJJ5+M9957D8cffzxkWcZ1112HVatWpe5fUlKS+ne2EgZ+vz/172ylEQYDmzcz8BwPWKvTS0RERERERERENJAMyiCtLMt49NFHAQATJ05U1aJNstvtuPXWWwEAkiTh8ccfT61Lz3BNbyKmJb1kwUBsBGaVrUgRpGUmLRERERERERERDWKDMki7Z88etLS0AACmTZtmuO1hhx2W+veGDRtS/54yZYrmci3p6ydPnmxprAORzZsZqI77mUlLRERERERERESD16AM0trtXaV4Y7GY4bbRaFTzfmPHjkVtbS0A4IMPPjB8jA8//BAAMGLECIwZM8bqcAccUZFJK7FxGBERERERERERDWKDMkhbWVmJ0tJSAMAnn3xiGKhND8COHTs29W9BEDB37lwAiUzZJUuWaN5/yZIlqUzauXPnQhCEbo+/v1Nm0kqhRsRDjQUaDRERERERERERUWENyiCtKIo488wzAQD19fW4/fbbNbdrbW3Fr371q9Tts846K2P9tddeC5vNBgC4+uqrEQwGM9YHg0FcffXVABJZuNdee22+/oR+zV42EYK9KGNZdM/iAo2GiIiIiIiIiIiosAZlkBYAbr75ZhQVJQKFt9xyC8455xy88MILWLlyJT755BPcfffdOPTQQ7Fu3ToAwIknnohTTjkl4zEmTpyI6667DgCwYsUKzJ49G88++yxWrFiBZ599FrNnz8aKFSsAANdddx0mTJjQi39h3yWIDjhqjsxYFtm7qECjISIiIiIiIiIiKixBlmW50IMolLfffhvf/va30dTUZLjdCSecgOeffx4VFRWqdZIk4fvf/z4effRR3ftffvnl+Mc//gFRzH9MfNeuXRg1KlE+YOfOnRg5cmSWe/QNnStvgW/V71O3HdWzUH3W0gKOiIiIiIiIiEhffz3/JqL+YdBm0gLASSedhA0bNuDOO+/EnDlzUFNTA4fDAY/Hg7Fjx+L888/Hyy+/jLffflszQAskSifMmzcP8+fPx9y5c1FbWwun04na2lrMnTsXr7/+Oh555JEeCdD2Z86hx2TcjjZ/BinqL9BoiIiIiIiIiIiICmdQZ9IOBP31Sp4U9WHPf8oBOZ5aVnnqO3ANP6FwgyIiIiIiIiLS0V/Pv4mof2B6JxWE6CiGo2p6xrLIHtalJSIiIiIiIiKiwYdBWioYR81RGbdj7RsKNBIiIiIiIiIiIqLCYZCWCkZ0lmUuSCt9QERERERERERENFgwSEsFJGTelKXCDIOIiIiIiIiIiKiAGKSlwhEUQVqwhx0REREREREREQ0+DNJS4QiZHz9ZZpCWiIiIiIiIiIgGHwZpqYAUmbRSuDDDICIiIiIiIiIiKiAGaalg5Ghnxu3wrtcLNBIiIiIiIiIiIqLCYZCWCibc8Hahh0BERERERERERFRwDNJSwUi+Hapl8UBDAUZCRERERERERERUOAzSUsHYy6eolkWbPyvASIiIiIiIiIiIiAqHQVoqHJtLtSjawiAtERERERERERENLgzSUsEIokO1jJm0REREREREREQ02DBIS4UjqIO0seaVBRgIERERERERERFR4TBISwUj2JyqZXH/dkih5gKMhoiIiIiIiIiIqDAYpKWCcQ49VnN5rHNzL4+EiIiIiIiIiIiocBikpYIpmnAFxKJa9Qo53vuDISIiIiIiIiIiKhAGaalgBLsb1ed8rl4hS70+FiIiIiIiIiIiokJhkJYKyuaugeAsVyyVCzEUIiIiIiIiIiKigmCQlgpPyPwYysykJSIiIiIiIiKiQYRBWuoDBMVtZtISEREREREREdHgwSAtFZygyKRlTVoiIiIiIiIiIhpMGKSlwhNdGTfjvm2FGQcREREREREREVEBMEhLBeeonplxO7TjlQKNhIiIiIiIiIiIqPcxSEsF597vaxm3w/VvQY4FCjMYIiIiIiIiIiKiXsYgLRWce9RZgGDrWhAPIlz3VuEGRERERERERERE1IsYpKWCE12VcA47LmNZaMdLBRoNERERERERERFR72KQlvoEZcmD0M5XIUuxwgyGiIiIiIiIiIioFzFIS32Ce9TcjNtypBWRPYsKNBoiIiIiIiIiIqLewyAt9Qm24v1gr5yWsSza/FmBRkNERERERERERNR7GKSlPsNeMj7jthxtL9BIiIiIiIiIiIiIeg+DtNRnCM7SjNtSpKNAIyEiIiIiIiIiIuo9DNJSnyHYSzJuy7HOAo2EiIiIiIiIiIio9zBIS32G6FAEaaMM0hIRERERERER0cDHIC31GcpyBwzSEhERERERERHRYMAgLfUZynIHUpQ1aYmIiIiIiIiIaOBjkJb6DNFZnnFbCtQXZiBERERERERERES9iEFa6jPs5ZMzbsd92yCFmgs0GiIiIiIiIiIiot7BIC31GfbyKYDNnbEs2vJZgUZDRERERERERETUOxikpT5DEB1wVBySsSzatKJAoyEiIiIiIiIiIuodDNJSn+KonpFxO9r8aYFGQkRERERERERE1DsYpKU+xVF1WMbt0PYX0LHsZwhue6FAIyIiIiIiIiIiIupZDNJSn6LMpAUA/7p70Pb+eQhue64AIyIiIiIiIiIiIupZDNJSn2Ivm6xqHpYU+PKhXh4NERERERERERFRz2OQlvoUQbTDXjpRc12k4d1eHg0REREREREREVHPY5CW+hx76f6FHgIREREREREREVGvYZCW+hxbiXaQVvQM7+WREBERERERERER9TwGaanP0c2kFWy9OxAiIiIiIiIiIqJeMCiDtHPmzIEgCJb+e//993Ufb8GCBTj33HMxcuRIuFwujBw5Eueeey4WLFjQe3/UAKKXSStH23t5JERERERERERERD3PXugB9AeiKGLChAmq5ZIk4corr8S8efMyltfV1aGurg4vv/wyrrjiCjz88MMQxUEZD8+JXiatHO2ELMUhiMyoJSIiIiIiIiKigWNQBmkfe+wx+P1+w23WrVuHCy64AABw4oknYsSIEaptbrzxxlSAdtq0abj++usxfvx4bN68GX/605+wcuVKPPLII6ipqcH//d//5f8PGaDEohGAIAKypFonRVpgc9cUYFREREREREREREQ9Y1AGaceOHZt1myeffDL174svvli1fuPGjfjzn/8MAJgxYwY+/PBDeDweAMDMmTNxzjnn4LjjjsOKFStw11134bLLLsP+++vUWqUMgiCi6IAfIbDhAdW6eOdWBmmJiIiIiIiIiGhA4Rx8DZIk4d///jcAoLi4GF//+tdV29xzzz2IxWIAgPvvvz8VoE0qKirC/fffDwCIxWK4++67e3jUA0vp4fei/Nh/q5bHO7cUYDREREREREREREQ9h0FaDe+88w7q6uoAAOeddx6Kiooy1suyjFdeeQUAMGnSJBxxxBGaj3PEEUfggAMOAAC88sorkGW5B0c9sAiCCM+4C+GsPTljedzHIC0REREREREREQ0sDNJqeOKJJ1L/1ip1sHXrVtTX1wMAjjvuOMPHSq6vq6vDtm3b8jfIQcJenFmaIsZMWiIiIiIiIiIiGmAGZU1aIz6fDy+99BIAYPTo0ZgzZ45qm3Xr1qX+PWnSJMPHS1+/fv16U/Vw0+3atctwfUNDg6XH629sJeMybrPcARERERERERERDTQM0iq88MIL8Pv9AIDvfOc7EARBtU164HTkyJGGjzdq1KjUv3fu3Gl5POn3H4wYpCUiIiIiIiIiooGO5Q4UspU6AIDOzs7Uv4uLiw0fz+v1pv7t8/m6ObrBx16sCNIGdkKWogUaDRERERERERERUf4xkzbNrl278P777wNINP2aOHGi5nahUCj1b6fTafiYLpcr9e9gMGh5TNmybxsaGjBr1izLj9tfKDNpIUuI+3bAXjq+MAMiIiIiIiIiIiLKMwZp0zz11FOQJAkAcMkll+hu53a7U/+ORCKGjxkOh1P/9ng8lseUrZzCQCe6KiA4yyFH2lLL4r4tDNISEREREREREdGAwXIHaZ588kkAiezXCy64QHe7kpKS1L+zlTBI1rcFspdGIG3KbNoY69ISEREREREREdEAwiDtPitWrMC6desAAGeddRYqKip0t03Pbk1vIqYlvVzBYG8ClitVXVoGaYmIiIiIiIiIaABhkHaf9IZhRqUOAGDKlCmpf2/YsMFw2/T1kydPznF0g5syk5ZBWiIiIiIiIiIiGkgYpAUQjUbxzDPPAABqampw+umnG24/duxY1NbWAgA++OADw20//PBDAMCIESMwZsyY7g92EFKVO/AxSEtERERERERERAMHg7QAFixYgMbGRgDAhRdeCLvduJ+aIAiYO3cugESm7JIlSzS3W7JkSSqTdu7cuRAEIY+jHjzsxWMybkv+ndobEhERERERERER9UMM0iKz1MHFF19s6j7XXnstbDYbAODqq69GMBjMWB8MBnH11VcDAOx2O6699tr8DHYQEpyZ9YGlaGeBRkJERERERERERJR/gz5I29raitdeew0AMHXqVEyfPt3U/SZOnIjrrrsOQKLp2OzZs/Hss89ixYoVePbZZzF79mysWLECAHDddddhwoQJPfMHDAKCoyRzQTwEWYoWZjBERERERERERER5ZjyvfxB49tlnEQ6HAZjPok26/fbbsXfvXjz66KNYuXIlvvWtb6m2ufzyy3HbbbflZayDlagM0gKQo50QXJUFGA0REREREREREVF+DfpM2ieffBIAYLPZcNFFF1m6ryiKmDdvHubPn4+5c+eitrYWTqcTtbW1mDt3Ll5//XU88sgjEMVB/zJ3iyqTFix5QEREREREREREA8egz6RdvHhxtx/jjDPOwBlnnJGH0ZAWwV6sWtb4/BgAgGfC5bB5R8E7+acQXeW9OzAiIiIiIiIiIqI8GPRBWur7BNEGwV4EORZQrQtumgcACNe/heozuh9wJyIiIiIiIiIi6m2ch0/9guAoM1wf3fsxYp1be2k0RERERERERERE+cMgLfULtqIRWbeRQnt7YSRERERERERERET5xSAt9Qu24v2ybyRFe34gREREREREREREecYgLfULNm/2IK3MIC0REREREREREfVDDNJSvyCaCNIyk5aIiIiIiIiIiPojBmmpX2AmLRERERERERERDVQM0lK/wJq0REREREREREQ0UDFIS/2CvXhs1m1kmUFaIiIiIiIiIiLqfxikpX5BdFfDNeoc440EW+8MhoiIiIiIiIiIKI8YpKV+o2LOf1F21D/h2f97muvlmL93B0RERERERERERJQHDNJSvyHYXCiaeAXKj35Mc70c6ejlEREREREREREREXUfg7Q0YMhRBmmJiIiIiIiIiKj/sRd6AET5IjFIS0RE/Ywky3h0jQ8LdwThsQs4aT8PThjlRm0xD9GIekNnRMKCrQE4bAJOH1MEt10o9JDIQEsojje3BeF1JN4vh43vFxERDRw8A6ABg5m0RETU3zz8RSfe3xUCAARjMl7dEsA7O4J48MQqeOyc8ETUk2RZxq1L27C9IwYA2NQaxfUzyws7KNIlyTJ++3ErmoISAGCXL44fHVJa4FERERHlD4/+qV8SPcNVy1iTloiI+ptkgDZdICbj872RAoyGaHDZ3hFLBWgB4NO9EUTicgFHREa+aIykArQA8IHG/pOIiKg/Y5CW+qXSGXeplknRzgKMhIiIKP/q/PFCD4FowGsNS6plMYlB2r6qKcT3i4iIBjYGaalf8oy/CK5R52QsY7kDIiIaKMpdPEQj6mla1UwZ8uu7nBq7xVCM7xgREQ0cPAOgfsu937kZtxmkJSKigSLMKddEPU8jSsuvXt/l0mgSFmCQloiIBhAGaanfEpyZjQIkBmmJiGiACDPwQFQQEqfP91l2UStIqy6BQERE1F/ZCz0AolyJjswgbbxjEzqW/wKRPR/BOeQouMddCGf1zAKNjoiISN+uzphm07CkZzf6cWStCzUeG/60oh2rGiO48qASFNkFbGqLYtYwFyZVOg2foyUUx5vbgih2ijh9jEczwEE0mGl9I7p7feSrtigW14cwptSOY0e4IQj83uWLVvw8uO8N80Ul/HFZG75qi+GaaaU4ariLrz0REfU7DNJSvyUogrQA4F/7VwBAtGkZ/BseRM25G2AvGdvbQyMiItLli0r4zeLWrCUNbv64FTZBSDU3+sfqrgaZ87cG8adjKjG6VPtQLi7JuGlxK5r3Ndqp64zhh4eofzeJBjNBI0zbnUTa3f4Ybv64NVUyIRIHTh7tyf0BKUNMVr85wWhi2eVvNaWW3beyA8WOMhxS4+q1sREREeUDyx1QvyU4Sow3kCIIbn6idwZDRERk0uK6kKmasx0RWbP7fNIzX/p0161sjKQCtADwnkHWLtFgpZVoGepGUdon1/syatrO3xrI+bFILRmQTeeLSqj3xVTL//Jpe28MiYiIKK8YpKV+S1nuQEtkz6JeGAkREZF5X7ZG8/I4n+2N6K7bE4irlskaWWhEg5nWZPjWkPq7Y9aKPZnfyQZ/7o9FalqvZ2tYQkdEfTErzJeeiIj6IQZpqd9SNg7TYise0/MDISIisqDI3vOHXxpN0BFlfx2iDFqXLVpC/KL0VfV+dcZsa0jSLFsBAJFuZEUTEREVAoO01G8Jdm/WbURXdS+MhIiIyLxYL3SPt2nM4zZTYoFoMNFKLm8K5hakDfAqSI+r96nTY1tCkmbZCgDYpVEGgYiIqC9jkJb6LUHI/vGV46zBR0REfUu7xtTcXEk6JQy0MmkZpCXKpPX9acmx3MH2TnVAsMrNU618iUmyZhmX1rCkGWwHgG3tDNISEVH/ot0SmGigYJCWiIj6GK36iblqD0uocNsylsmyjA/q1L9/wZi1IK0sy1hcH8bW9igOH+7GxApHt8ZK1NdoJb8alTvY1hHFR3VhjCqxYXatGy9u8uOFrwI4pMaJVY36NaKp+/YG4tC6zrSxNYrF9drH+1qBcyIior6MQVoa0OR4sNBDICIiytAezl+QtimoDtK+tjWIDS3q5mT/Xu/Dr2eVm37s93aG8PDqTgDAgm1B/PnYStQW89CRBo5/b/CpljXrZNK2hOK4cXErYvu+vg+u6kyt0wvQRnuhtMlg8e5O/cSLN7drH+9v62CQloiI+hfOwaEBTQruKfQQiIiIMvii+QvctGkEfJ9arw48AcBKi5l+yQAtAMRl4I1tvPBJA0uDX6PGqU5N2v9u9KcCtGaxTG3+vLolYPk+ezTeXyIior6MQVrq18pmzzNcH2leAVmvUBUREVEB5DO5Tq8mbU9Y28zp3DRwRHVqNPtjMkIa0diNrers9Gx4CFpYvdGkkYiIKJ8YpKV+rWjCZYbr5XAz4r5tvTMYIiIiE/J58bA3QxClTh420sChV9YgsU4dpM0l3if36jeUlCyW4SYiIio4Hm1Tv+eonmW4Ptq8opdGQkRElF0+4wY9lamnlUlY6uJhIw0cjTplDQDtIG0uWZnMpC0sZtISEVF/w6Nt6v9E427T0ablvTQQIiKi3mW15KXZLF6tDvclDh420sDRFNTPpG3RWJdbJi0VktUawkRERIXGFr3U7wmC8cfYv+YuACKKJl0Fe/Ho3hkUERGRQlMwjre2B/PbTMhiFOjPn7ZjVLEdNhEIx4ETRrlRW6z+HdUK0i7cEcT5B3hZ9oAGhEaDIK1WJq3WsmwYpDWvKRjHK5sD+Lg+hBP38+CscUXd3tfISNTtFgUhP4MkIiLqYTzKpv4vSyYtAPjX3Inm12ZBjrPpCRER9b6YJOPGxa14ZbP1DuVGrIaNVuyJ4KXNATy/KYBXtwTwm8WtCGhEjVt1AlLfX9jEhpw0IDQZljvIDOBGdJqMZcOvijnJ/eNb24PwRWW8sjmA25e25emx8/IwREREvYJBWur3XLUnm9pOCu1FeNfrPTwaIiIitWW7w2gL5z9a0N2AaTAmY+GOoGp5S1g/y3Bze6xbz0nUF7QaNA5rU1yk+KgulNNzSHIik5OMfdKg3j9u64hht7/7+5pwjgF2IiKiQmCQlvq9okk/guiuSd0uPeJvEItqNbeN+3f01rCIiIhSdnUaBxtsOc7GVYYfcmmUs7lNPTa9TFrAeJo4UX8Riul/V4KKdTt9uQULZQABg+ehBL39YygtwFpkz20n2RlhKi0REfUfrElL/Z7oKEb1OV8gtP052Er2h3vk6QjXvYVw4BX1tp5hBRghERGRvuNHuXHG2CJUu0UsqguhxCliUqUDy3aHIcnAv9b5dO+rTNLTqiWbjVZg1+hxcp36TdSXGCTSqoK0ZpJhv75/Edx2Af/Z4M9Y7otIKGbTPUN6uxQBXYFZj13ICHifOtqDN7erZwEotYUl1BZ3e4hERES9gkFaGhBsRcPgnXx16rajeibCO9VBWsHBozQiIupbzhxbhFEliUOyU8cUpZaftu/fH+wKYVuHdqaZMrZh1LFej1ain9FU8AgTaWkAMJoGH8rhQsQpoz2ocNvw3EZ/RnPAzoiMYd5cRjh4xHWi4OnLfdHMbYZ5baYeu4OZtERE1I/wsi4NSM7qGdorZJ5ZEhFR7zOa8ZxtEq9RKQRlEmyzQTMkPXGtTFqD+rmRHEoqEPU1RkFaZSatGa59X1Rl1qxPozEfZYrrvETJpl/RuKx6v0pMZie390AtcCIiop7CIC0NSI4q7SBtaMfLvTsQIiIa1Da2RvHEuk4sNJiWG8syl9pMvdqYJGPh9iAeWNVhdYiqALIky4Y1aVnugPqzmCTj1S0Bw0Z+bWEJa5sjqdt6mezp3PtqppY4M7+wvgi/L9noXfdJZtJ2agS6la+zHmbSEhFRf8IgLQ1IortKc3lw06MI7Zzfy6MhIqLBaFdnDDd/3Ir5W4OGzYMCUeMgjijqByOSwY3/bQ7gkTWdOY1TWZO2MyLr1ogEgDAbIVE/9siaTjy1Xr/Oc9IflrRhS3sUzcE41rdEs24vCtqZtFoBRsqkW+5g30v31jb1RS6v6Uxa7q+IiKj/YJCWBixH9SzN5YEND/TySIiIaDD69wafqmaslgq38eGYUSwiJsmQZRnPbvTrb5SFchpxtswzxmipP3tvZ8j0tv9a58PTX1r7bimDh34GabPSy86P7ruA9NLmgGqd3eRZLMtNEBFRf8IgLQ1YJTPu0lwernujl0dCRESD0Wd7I1m3mVLpwHCvcR/XSrd+g5xATMZOX/fqrbcpShtk62Tv5NEjDTB6ueobWqL4bG/Y0mM5FV/XGGOEWSmbgiUZlVZxGMwwSMfqLERE1J/wMJsGLNewYzWXi+6aXh4JERGRthtmlWfdpsajf7jmi0pY1agfDD5upBs3H1GOWq8NQ4u0H6czKrPOLA1qEyoc8Ni1g37+LOVIlOyK4KGynAip6WW7RgyuP7nMFOtGosY2ERFRf8EgLQ1ogktdm9ZeNqUAIyEiIlJzmgg01Hj0M2l9ERlfNOpn+h1d68aBVU7cPacK9x1fjaNrXZrbtYTMZ+My5EEDzfgyO8rylCKunIbP2fbZdeo0VwsbBLjNB2lzGhIREVFBMEhLA5ocblYtE70jCjASIiKi3NQU6QdpW0LGTY28jsxAhl68ojlkPpLEmAf1V7JOVuW4MjvKXHkK0gqKTFpmcmbl06mDbdSk0MwFLoDlDoiIqH8xLoI2iOzYsQPz5s3D/PnzsX37dnR2dqKmpgZjxozB8ccfj/PPPx9Tp07Vvf+CBQvwj3/8A8uXL0djYyNqamowc+ZMXHnllTj99NN78S+hbMJ1bxZ6CDSAyPEI/OvvQ3jnqxA9w+Ee/XW4R50N/7p7Icd8KJp8DWyeIYUeJhH1spUW61gaMcqkXdNs3HW+WJEdqJdV9vdVHThxPw9m17rx3CbjRknKRmN9jSzL+GBXCH//ojO17PbZFdi/3FHAUVG+rdgTxr/WdqLYKeKSKcWYVOnU3VaSZbz4VQDP6TTYG1fmQKkzP99ZZaM/1qTVt7QhhPUtUfh1grFPrPchorPTUtb+1RNnKi0REfUjDNICuP/++3HDDTfA7888cNu1axd27dqFjz76CB0dHbjnnntU95UkCVdeeSXmzZuXsbyurg51dXV4+eWXccUVV+Dhhx+GKDJxuS+Qw80I7/5Qt2YtkRXtn/wQwa8eS90ObXs2Y31w2/OoOXc9BMFcxgcR9X+7/THcsbw963Zm9wpV7tyPH5SZtHrxisaghGe+9OMZE53sX98axCVTSnIeU09bsSeSEaAFgBsXt+Kp02rgMJl9R33bp3vCuGtF4ju2Nyjhd5+04c5jKjCmVDsQ/7JBgBYAaottpjMzs2FNWnOWNIRw92cdWbfT2yeJOsdVNiEze5YvPxER9SeDPmp422234ZprroHf78fEiRNx11134f3338fKlSvx9ttv46677sJRRx2lG2C98cYbUwHaadOm4emnn8ayZcvw9NNPY9q0aQCARx55BDfddFOv/U3UxV55qObyjuU/692B0ICVHqDVEu/4EtHGT3ppNETUF/xxWfYALQAcpVMfVslmsou5liJFM6TJlfnJJu3Lgac/f6r9+j+6tlNzOfU/89ao38sn1vl0t3/WIEALJAJ+zm58z9Ipa9Iyk1bboxrvYT4o93l9eFdFRESkMqgzad955x389re/BQBcfPHFeOSRR+BwZJ68nHjiifjlL3+JSETdOXnjxo3485//DACYMWMGPvzwQ3g8HgDAzJkzcc455+C4447DihUrcNddd+Gyyy7D/vvv38N/FaXzTrkW7R99T7U81vxZ7w+GBq14oL7QQyCiXrQ7YK4J17cOKDb9mN86wGsqyzXdCaPcqmyzE/bz4OXNAbSFuxc56quBD6NO7iv3qo/lqH/SqqG8NkvpDz0/OaQUAOCymw/S1nhENAa7xnDu/kVpa83VgR7s2nWahZlxaI1+aQu3XUBntOuxjfYJREREfc2gzaSVJAlXXXUVAOCQQw7BvHnzVAHadE6n+mDgnnvuQSwWA5AomZAM0CYVFRXh/vvvBwDEYjHcfffd+Ro+mVS0/yVwjTit0MOgQU4QBvX1MCLS8MejKzDEoCGY0tfGF+GXh5Xh5P08htvNHOrE7FoXfnxICb5/kLokgcsm4M5jKrvdJKmvBml3deoHyPt6LV0qjGNGugEkvhtm/e6ICnz7AC8mltvx02mluGCiN7VOOQufMcL8O22M/n5QWW6CX3siIupPBm2Q9q233sKmTZsAAL/61a9gt1sLosiyjFdeeQUAMGnSJBxxxBGa2x1xxBE44IADAACvvPKKbldZ6jmuUWcXegg02InmAzFENPBVukWMK7NWdkAQBMwc5sLXMjL21C6bWoJrppXh2JEe3ZqN5S4R38jyONnIfTQ/cEOrfrZswKBTPA1cRsfeU9LKfzgslDvw2AV8bX8vbp1diaNq3Rl159WPws9dvhUru7OlUZZiYZCWiIj6k0EbpH3uuecAJE56zjrrrNTylpYWbNq0CS0tLYb337p1K+rrE1OYjzvuOMNtk+vr6uqwbdu2boyaciGI5mr+ERER9YaRxblfuHEbTMm2CYkArBlegyCHGX31mvOGltymvNPAFTaoPpKeze6y8rW0UL62j35V+rUSp/4boAzK9tWsfyIiIi2Ddg7ukiVLAABjxoxBSUkJ/vOf/+CPf/wj1qxZk9pm4sSJ+P73v4+rr74aLldmoG/dunWpf0+aNMnwudLXr1+/HmPHjjU9zl27dhmub2hoMP1Yg5ZNO0jbvvRaeMZ+C84h2lnQ1LsaA3G8uT2IFXvCmDbEiZP386C2uO/uomRZRvsnPzC3bTzcw6Mh6l9CMQnztwYRics4dYwHle7+lW0eict4fWsAobiM08cUZZQOMNNQa0Q39m0egynZFW5RN3tWyevoXpMkSQbe2RFEnS+Go2rd+LIlitawhJNHezDUQhmHfMsWpJVlOSPrkQaWC+bvBQBcP6MMhw1NHP8FDDp3ZQZp8xN5zfYor2z24z8bEvWl/3ZCFao9/Wv/1xcYZdLGFfvgvlyTVpZldH76K/jX3JVaVjT5GpTOuAuCTb/uLhERDVx9NwLSgyRJwoYNGwAA1dXV+OlPf4r77rtPtd3GjRtx3XXX4aWXXsL8+fNRXl6eWpcePB05cqTh840aNSr17507d1oaa/p9KTeCza25PLD+XgS+fBA1X1sHeykbuhVSTJJx4+KWVBOJhq1BvLsjhL+fWIWibmZ79ZT2T36A4MZ/mtpWjod6eDRE/cu9Kzvw2b4mTiv2hPGnYyphy1Nn9d7wt1UdWNKQuPiytCGMvx5XmQr8PbI6e8fy7gRpjV6nKgvB7iJlC3qLXt4cwKtbAgCA+VuDqeXv7wziwROr4bQS8MqTxkBcs6FUund3hnBilrq+1LcFotmb3v1pRTt+PbMM04a4EIjqB+mGpAVIrXxmja7FGNWk/bg+lArQAsCP323G02fUmL64QokgeJHBRSZlVZO+XO7At+rWjAAtAATW3wc50oryY54o0KiIiKiQ+mb0o4e1t7dDkhIHeKtXr8Z9992H4cOH46mnnkJLSwsCgQA++OCDVJ3Zjz/+GJdddlnGY3R2dp2EFRcbd2f2eruaCfh8vnz9GWSSoJNJCwCQogjXLei9wZCmpbvDqi6/obiMhTuCOvcoPLMBWgCQo/zeEyWFYnIqQAsAu3xxrGnWryPaFyUDtABQ749jTVpX+fd2Zb8oM7KkZzLnzJY6ALqfSZsM0Cp1RmV80VSY93OXL5Z1m0fXZg+iU9/2xDpzv6n/3HfBpNMgqFvl6frOjCoxf/HEaeErnH50c+/KDtX6T/f0r/1fPnSnR0exQ0gFtWu96jcivc4w0LfLHfg+/53m8uDmJ3t5JERE1FcMyiCt3991BTsUCqGoqAjvvfceLrroIlRUVMDj8eDYY4/Fu+++i0MOOQQA8NJLL2Hp0qUZ90tyOo2no6SXSggGrQWddu7cafjfsmXLLD3eYKSXSZsUbVreSyMhPbv92gXjtndkP+HuD6TQ3kIPgajP2BNQf9+/aOzfQYp6E8HBdCN7qJSLleRYKwFdo07qWgq17w6ZSJkzmPlO/cSyPeZKCCWzqpuD+m96erOw/csdmFiRvaHfUbUuuLuZiZ6uwT8wjnWs6E52a7Gz67X/3oHqRJljRmQe9/flcgdERERKg7Lcgdud+eN9xRVX4IADDlBt5/F4cPvtt6caiz377LM4/PDDVY8RiRifXIbDXQeTHo+1E51spRTIhCyNwwRnRS8NhPS4daYY9qPZz4ak0J5CD4Goz9AK0n7Z2r+bPfkNplMreewCSpw9c43cyi7TSibt/uUOAOYvMitrQvaWSF+e10x5Y+X7BgDNIYPOYQo3HV6Oi99oVC1/+KRqfLonDLsIHF1rfPHf6qHLYPzY6l0smVTpwI2zynHrklZsbNMOXhen7bsOqXHh1qMq8N+NPtR67fjGBC+2dmT+nvTV11eW+vfvHhER9YxBmUlbUlKScfuUU07R3fbEE0+E3Z6IZS9f3pVxmf4Y2UoYpGfuZiuNQPlnWO4AgBxp652BkC6XTrdywfKpTt8kBRmkJUrarZE19lVbDH4TdSb7qoCyCKKB4RrTc/PFSllLK82zih2CpWZg2erC9pSQ4n2ocg/Kw1xSaDLIpFV+DVw2AQdXq7Npy10iTtzPg+NGerLWzzaqSavFTLPBgSau86IcXeuG0ybg1tmV0CsRrLzINbHCgZsOr8BlU0tQ5hJhU7wBffXljfu2F3oIRETUBw3Ko1eXy4WamprUbaPmXG63G9XV1QCAxsauK+vpGa7pTcS0pDcLYyOwAhCMP+YSg7QF59I54RkofTTiDNISpezWyKSVAaxr7r9ZRb59AWYz02q1aijmT8/sNIsdIkqc5h+7xULmYj5FFE/r1rkASINLU9Da59HKBQwzknsFvTqs8f57fSpnepm0pWn7Gb1GbsVZGsoqDyn1AsKFFu/cbLi+O3V7iYio/xqUQVoAOPDAA1P/jseND96S65MZtQAwZcqU1L83bNhgeP/09ZMnT7Y0TsoH44NtOdKal2eRZRmLdoXw1Hofvmrrv8GGXMU6t6Jjxa/hX3cv5Li1+pJ6UxH76tRVKdJuafvo3o/QufJmSOGWHhoRUf+xR6cG9eo8NJsKRCX8cVkbLpi/F29rNB7c2RnDU+t9WLg9iJgkQ5ZlvLcziB++3YTbl7blvO/27Wt8aCZjq7aH6tECPRWiBUqcAkotlGgoWCat4jfDMwCCtLIsIbDpMXQsvw7R5s8LPZx+Kb1RoZLWcUZ3T470PnVBnYz7cF9N9bRoY2sUT6zrxOL6kGGAUZb1G8OWptXK1ovFFme5YKSM7Urd2B1FW1ejfcnV2Pv8OHSsuB5xf13uD6YQyxKkhdz3o/fbOxK/qe/sCLL2LxFRngzKmrQAcOyxx+L9998HAGzZsgXTpk3T3K6jowNNTU0AgBEjRqSWjx07FrW1taivr8cHH3xg+Fwffvhh6v5jxozp/uDJkmxT5vOVSfv2jhAeWZPoJPz61gD+elwlhnkHx1dMjoXQ9NpMyOFmAECscwvKDr/X1H3jkoynv/RrrvukIYxr8zXIPGp9Z67l+/hW3YrwrgWoPpuN6mhw06pJCwBf5CFI+9P3m9GxL2D6z9WdcIjAcSMTteB9EQk3Lm5FeF9Qpi0swW0X8NT6RMmi1nAEXzRFcO8c6/vu5fsaGZm5rlRb3DfKHQCJYJKZ0+pEJq2FIG1QgizLec9IzCaseAPsA6CwuX/dvehc/vPEv9ffhyHf2AKbd0SWe1FSa5as7vaIOhDW3Y+N8rgz+ans0HguQF2moz+q88Vw88et+/7WIGJSSWrfq/TuzhCe26h93FeWtp9J7suVsmfSKsodGG6tLx7ci+b5R0COBQAA/jV3IbTjFdR8bS0EsfvH99kyaSHHAfTkzIvuaQ9LuGlxC5If646IhHP39xZ2UEREA8CgzaT9xje+kfr3Sy+9pLvdSy+9lLoafMwxx6SWC4KAuXMTgZoNGzZgyZIlmvdfsmRJKpN27ty5vX7CQoBYNNxwvWwxK1JPMkALJE7U394Rysvj9gehnf9LBWgBILD+PtP3/TxLV/doH8umjYcaEdljfGFGT7R5BaItq/I8IqL+Q5Zl3fqQDf54t2oztoUl1Un9g6u69stLd4czgnjPb/KnArTpXt9q3CDLKFvITMOs8WXZu8fnyuoRxkn7mWtmWuQQMpr1ZBOKywgXoOKBMiuyTCOwrFfnsq9KBmgBAFIE/i8fLNxg+qGXNwcM19d41EGwKVXObj2nMsib3GfoNTxT1lDtj57e4Mu44PPYWv1+Hf9Y3am7rsJEHels+yJVuYMcf1dC259PBWhTj9WxEeGdr+b0eEqxjizlDuJ9+zzi4/oQ0q87PKOTcEFERNYM2iDtwQcfjNNPPx0A8PTTT+Odd95RbbN7927cdNNNAACn04lLL700Y/21114Lmy1xcHf11VcjGMw8sQsGg7j66qsBJEolXHvttfn+M8gEW1EtnMNP1F0vxXrmoOLLlu5nhfUX8c6vVMvkeNjUfbPVitPLPCmU7jYByzq9jWgAC8eNMze7c00mW4B3a7t2p3Cltc3G++6AQWf5bLGAGUOdGGKhAZeeX88s01xudXr/2eOLsm5zwig3REGwHEhSlh7oDTFFAL3SLaLak3moG5eBzj72u2JFdM/iQg+h4Mx+EitcIr5s0S9hMqbUjvFl6ozIk/bzoCxt2v33plhr+qtshhrelymr942wD4CzseV7MvebeqUdjBw53AWPiRcj235OuTbXPVFM56J6ePd7OT5ipmyZtFJob16ep6ds71D/prLkARFR9w2Aw4Lc3XPPPSgvL4ckSTjrrLNwww03YNGiRVixYgUefPBBzJw5M9UU7NZbb80odwAAEydOxHXXXQcAWLFiBWbPno1nn30WK1aswLPPPovZs2djxYoVAIDrrrsOEyZM6N0/kFIqT3odxdNuhb3yUHinXpexTs5DkFbrKn2lRnbGQCW6h6iWxQPm6na5sqQ1aU1FLCQp1Jh9IwMyG9XRIBbS6xazT64ZTwCQLT5Z5TF3yOPNMpU22SRMi15c8oqpJfjBQSW4dpp2cNWqQ2u0M/2KLGS7AsDQIhvuPq4SZ471YFSJ+jdrxlAnvn9QCQDrU8Czvdc9QfmUdlHAX46tUm2nFVzoi7TqegrO0gKMpO+QZNl00M0uapcA+c6kYlwxtQS3HFmuOcPNbRdw1zGVuPTAYvx6ZhlOH5v9YkbG/RXHNdkuWBTigkZf9KNDzH22sx035isx2Vaqfd4Wa1vf7ceWZRlx3xbDbaTg7m4/T08aqtEEs1FnpgwREZk3OApm6pg4cSJeffVVnHfeedizZw/uuOMO3HHHHRnbCIKAG2+8Eddff73mY9x+++3Yu3cvHn30UaxcuRLf+ta3VNtcfvnluO2223rkbyBzBJsTJYfchJJDbkK0dS38a+7qWhkPQZYlCELu1yy0mqRUmZiyNVAINvWU2bh/F+wl47LeN9vBdke4bx3wdTezIV81kIn6o2CWYER3vu3ZwhxmY4bZptLqTVkG9LuIHz/Kndf6qIIg4KBqB1Y3ZWYJFuWQkldbbMfFU0rQEorjqneaM9bNHOpK1Xe0HKQtRCatIshvFxIBt3FldmxJy6Te2hHD1OruTWnvDbJGs0nRkZ9Af38Vt7CTiEnan9tjRrpR7jL+rpS5RJw2xlpwNsmtuGKUrDmrl2SorKU8kBllWprdxygzlbPJ9dXVOrYFgFh794O0UnC3qpSCUryPB2m1agPX+2IYmofZIkREg9ngiSLpOProo7F27Vr87ne/wyGHHILS0lK43W6MHTsWl156KT799FPceuutuvcXRRHz5s3D/PnzMXfuXNTW1sLpdKK2thZz587F66+/jkceeQSiOOhf6j5DsKuL2mc7UMpGa8p+tmysgUSW1NODJf9OU/d19LtM2u4FaeVwa55GQtT/ZGuQ050u3NlOxM0GQrLtu/06f0M0LuuWO+iJipNjStW1bb0WM2nTaU0hTn/NrGfSFiJIm3nbtm/QY0ozcxK2tetPge9L4sEG1TLBYW3q/UCjLGlhJCLJmt+9nq5LbDWTNjwAGoeZZXSRy+zbonx9sz1OzjPwJe39hBSog6yzzqysTcPQ9zNptdT7C1CMnIhogBnUmbRJVVVVuOWWW3DLLbfk/BhnnHEGzjjjjPwNinqMYFdnRsixAGDxxGdrexS//kg/4DaQ6jKF6xci+NUTiLatgXv0efBOuRaCzY3AxocR920HZHVkJR7YZeqxs71MT6734cjhbjj7SLeX7takjQfr8zSSnhMPNSKw7j4Idg+KJv8UooPdevNJkmU8usaHhTuCOHOsBxdNKk4Fkwa6bHUKc91vtoWlrE1LzAYNP6wL4YyxHozVafC1rkm7Zu3yPWGML9e+T0/0BRpdoj6EK7KYYZZOa1ZDenCpRWPGiJFCZAeqMmn3xdtVQVqL5Q4+3RPGI2s64XUIuHxqCSZX9k4WrqQRpJWl/lGqQUmSZby/M4R6fxzHjHBjdGlupyBWMmn9URmb2tSvV48HaRXfw46IjGc2+LCfzt88mDJp2/MwOypruQPF7bgMPLXehxNGuVFbbO5zJ4Wa0PHZDbrrY+1fwlEx1fAx5FgI/vX3QQq3wDv5x7B5R3Xd30SQtmPFdZBCjSia+H1E9ixCtPkzuMd8E+H6hfCtvAme8d9F2dH/KlhTaq3f6wYfg7RERN3FIC0NOtqZtNbq0vqikmGAFsjeQKa/iOxZhJa3Tknd9rV8jmjTctjLp8C/+o+694ubzKTVmx6c1BmR8dAXHbgmT7UcuyvezUza4KZHUT57Xp5Gk3+yLKPljRMQa1sDAIg0LkPliS8XdlADzONrEwFaAJi/NQhREPCdyYMjOy5bMCKXWIUsy/j9J626GTxftkRxQKUDIQvRnRsXt+L+46tQpagt3hyM4yWdbvH3ruzATw7tvXqhozUaHnXnd0fUONFPz/CzGtgsSCat4intqUzazOB5vT+OSFw2dfHvsz1h/GlFOwCgJQTc8kkb/nRMZc5BRiu0pjvL8e7N/CmU17YE8O8NiWOtN7YF8MDxVSh3W58Wna1BoBlan/V80sr01NtvAP2/Jq2Vi2v5mB2V9e3TWP/qlgDe2h7EgydWaU7TTyfLMprfPAGIh3S3ibZ8njVI2/7JDxDc/AQAILTtWdR8fSMEMbEvMpNJi3gIvlV/gG/VH1KL/Gv/nPp3cPOTkOMRVMx5Jvtj9QCtr2KDv39eRCIi6ksGz3xson0Eu7rGlNVyB68ZHGwnGU3p6k/al/xEtSy88xXDAC1gfpqWmbjJ4vqwqcfqDVJQP0hrK51o6jH6ciZUtGlZKkALJN7rvjze/ujN7cGM269u6Z9Bl1x0ZDlBzyX+sr0jZjjF8pE1HQCs7ZPjMvDvDT7V8g/r9E/aAeCBzzs0l/dESKhWo2nLMI1l3ZEeiJxd67Z030IEngKKpm7OfUe5o0szXxdJBvYEzGV8/W2V+j39x2rt9znftH5vujubo1CSAVoAiErAwh3G3yU9+Yj951C62RJlJm02nZH+fbyo1ztAK3jbajEjX0up0/gNdOjMTAnHZSzYmv33Nta2DrHW1cbbtK4xXA8gFaAFgLhvG0LbXui6bTKRIZvQtmfz8ji50PrU7jW5XyUiIn0M0tKgIwgiYMs82bSaSbuhNXstqp2dAyOwFWv9Iqf7yXFzgdWIyahMtI9kmhjVpK0+8xOI7iFZH0OOqoM/fUW8c6tqmRwPamxJ+dQaGhwnNg1Z6tXlcvqebRr+js64qe2UljSo92Gb26zXIZxa5eiR6ah2UcBpY7ouOu5XYldN67fqvAldM02GFomYMdSVuj1rmEuzbq0es43a8mm3IkBQvS8T2m0XVWP3Rc0N0KcR3P9KYwp9T5A1Gk3GWlZBHgDllL7K4bsEaGfS7qdR+sNIPpv4aclWM1VpbyCR2d1ftegGadXLjC6OKHeTF01Sz3w7uNqJyiwZ2EOLbLr1uc3MCJCj7Vm3iXd+ZfwYGhe3I3s+SP1b2UTWO/VXWZ+zr9F6fzsHSIIKEVEhsdwBDUqC3Qs5bRqT1UxaM9M4d3bGIMtywWpFFZosmQzSmjwxCcblrE3GeoNWkNZeeSgqT34DoqsS1eesQmjrM4iH9sC/+g7Nx5CjHYCrvIdHmhutJnCJms0lBRjN4LGhJYojawd+R+T6LPXq4jmk0poNtrVYDIRr7ZpqLHatnj7Eietm9FyplkumFGNiuQO+qIRjRri7/Xtz3oQi7FdiQ1tYwuxad0at5CFFNvzf7Ao8urYTq5vUAbbhXltGED4f09Kt8EclVUbi8LTM4mKHkFETubuzXXxRKeu06e6SouqMXSncBClQD5t3RI8+dz5pZVRaCfin0/pe3nJkOT6uDyMYkzIydrXcPrsip+e1wmomrYzEBQarwea+Qu8CmNUgrdI5472o9thw78rE9+DCSV6cMUbdV0LJLgqYPsSFRVlmPugRnOVZt4l1ZAnSalyMj/u2d61XBGltRbUomf5HdBrUwe1rtK4VBWMyYpLc4xdCiIgGMmbS0qCkbB5mNZPWzDTOzqiMtjw0SOi3TGfSmnu4QtQ31KIM0ladvgg156yEzTMUAGArGgbvgdfCM+5C/ccwkaVRMBrBdTnGTNqetr6lf3Sb766smbQ5fM3N7GcjcRkdeZhSXGWhhubMoS78amZ5j9a/FAUBs0e4ceqYIhTlIWAoCAIOH554vGKNKcW1xXbN+sljSu2o8WRubzJ2njfKz5aARGA5SRlQ9XWzNuaGXvjOyhHt34poy+c9/tz5pDUdvkgn0zEbZYa2AMDrEHHyaA9O2E9dzipdmVPAOI1azvlmFwXLzcnqfP139pXeBTCt4PyeLL8BSkfVuvHsmUPw7JlDMHe81/TF+lnDXNk30iEI2T8j8c6vDDPa5Vin+j7+riCtpPhuC84y2ErGWRhl4UmaBQ+0Zx8QEZF5DNLSoKRsHma1EYfZTrzbB0jJg1yYLXdgtoxBoBBzZxXkWBByNPPAW6+8gWDTr98oR3qnnmEutN43ljvoeWZKqPR3kixjd5amIrkEac10C2/N8YKZMhvUbOBFAHDBAeqpugNBtUcdqNbKnIr2cibtbkXwZ0iRmDEm5fTn7mbSrmtWzzrIN61MWqD/BWm1psNbLQmQpGw2ml5fVq8WadKhQ1w93jQsyWo2bV2WWQZ9WUvQfCatsiRJTzm42gmt61b5evflmN+wPrQU1QjS+ranArvKkgqiowyCo381ENXbxXf3AhgR0WDXP+fVEHWTKpM2qp9J2xaW8OtFLWgNS7jx8HJsbI2arm34x2XtmD7EieFeGw6qdmLakNyv7GcjhZrgX38fINjgnXItRGfPTbE1w3S5A5Mn8sE+kEkb1yh1oB+k1c/o0Tvx7guUQWgAQDeDtBtbo1jSEMK4Mgdm17oGbAmQaFzGG9uC6IxKOGW0RxXM2u2PYeF27ddyR0cM/qiENU0RbGqLYcZQJyZVOntj2D2qwR/DvZ91YEdnDBdNKs6aOf+/LX784KBSS6VNzGTSNgdzCwzsDcRRW9x1qGQ27nj0CBdG9dOpy9l4NYJP4bisCpA986Ufp43xwNPTXZr2UWbSDvNmvv7KzOAn1vtQ5BAwZ6R+mQijTLn5W4M4b4I3LxnMSeH6dxDc/CSiLZ/DPepsxDs2am7nW3kTXLUnw1kzK2/P3ZO0ypxEcvhK+iISnlY09LOlvXfZ3opDa3pvn+q2CZYuBDy30Y+3tgXw61nlGFfm6MGR5YcvKuH1fU24dupkAfujMl7e7MMrJprt5pvbLuCQGidW7FFeTMnf8UfLO2eieOqv4Bl7PmKdWxD48mHYvCNRdMBVCG1/SbW9HPNDCuyCzTtKVZNWcJYBQv8qeaS3ezRbgoiIiLQNzDMIoixEk5m0sizjB283pW7fvrTN8nN9tjdxgDh/axA3HV6Og6rzf5IgyzJa3jkb0cYlAIDI7vdRddp7eX8eS8yWOzBbk7YPTJ9S1aMVnYkDay02/YC83IeDtMoTB8B6zeZ09b4Ybv64dd+kuCCiUgmOH2U8JbW/emRNJ97flaiB91FdCPcdX5XK5AvFZPzmo1b4dS42yAD+tc6HD/bd/7UtAdxxdAXG9IOTdT3BmIRr329J3X5ifWZwxW0TEJfljGnxi+rCsIud+OHBpaafx0yQ1mrTsKQ9yiCtyfulN+AaaLQCmpG4DK1Y7F8+bcdNh/d8DVAAqiztYYr6wVqNhB76ohP+qIyzxmnXucx2UeH3S9pw5zGV1gaqI7J3CVreOil129e6ynD75tdno+brX8LeD6ZI3/+5+jfP7AXadLcva8OW9sz3Of1zly1L9uBeDNK6csgUbo/IuOGjVtx/fFVGqY6+6E/L2/Fllhkgf1rRjh0FnFE2a5hLFaTVKsGQq1jzZ2j74ALI0U50rLgOcqQVABDc8jSijZ9o3ifaugZi0UhVKRPRWQ7I/Su4qTdaZW1wIiKyhuUOaHBSZDnqBaHyXSfyfz2UTRBrW5MK0AKJIK0Uau6R5zJLqwGVFrO1ZvtCJq0cbsm4LbqqdDOwRLv+tDWt5mN9hVYAuTvlDl7eHMioWvbkenUzjYEiGaAFgOaQlNG05N2dQd0AbdIHafeX0f9fq/d3GjdtGea1aU5Pfi/L/ZTMBGnNlETQ0qSYxmum1M3sWpcqi3OgqXRnHj7OGeXRrNG6uima82tvlTIQP1QR5CrRSbM0+p5lm7a7rSOGzjxN7fWt+r21O8gxBDc/lZfn7kl677/ZslFJDf6YKkALwFKDop5u9Jau3mLt1XRvbuv9zFMrGgPxrAFaAJYDtPmeY3OYxuw1M7M0ZNnauNs/viIVoAWgG6AFgFj7+kSAVlbU0HaWQ3TXWHreQpN0LrT4mUlLRNQtDNLSoCQIyo++9oFGtiY3Vn3R1DM17GItX6iWaU3Nz4Wyfq955k7AlLUijx/l1uz6HOgLQVplloOoH4gR7B64x35bc122rsCFJEvqE6/uNA77uD4z4NbdOpD9yeq07/uODuvZRGua+3ed2mwn8W6boFsSwGytagBozxIkc9mEnOujKmvS7s1ST7HKLWo21hpovjel62902QScMtqjm62cryBmNsr3yqX4HSl3WT/kNdMAx2qwUfdx6t6wfp/6N/Py3D1JWUM2tdzid9Knk52njLmdMVZ7psZ5E7Szpfuivl6jfE8P1JU9fpR+2ZFcaTU/9JgJ0mrMKMqXeOdWxP07VMttRbWwFe8H59BjUsvc4y6EYHDBv9D0du194HCdiKhfG9ipHkR6lEFanSlG+Tr56mmx9vWqZVKoEcDkPDx6jq+ByWlbrYoT+wnlDswdX5QxTRown3HbszLHIGTJ+yg/5gkEa09Bx7JrMmq96tUZ7BMkdTCxO5m0vdw7qGC0aldmXOQZmGV4DWXr9WcTgf3LHZrB3M6ohEpb9um+MUlWTa0sc4kZ2XulTgG5JvYo/wZlc6oqt4gzxxYhLstw2wVMH+JCpbtvT1POh8OHu/G7I0Rs7YjhsCFOVHtscIjaJ+25TGvPhfLnWhmLqdJoeJaNmYwwsyV7eoKteEzBntssvV2f1V6gNp0YuzKT9ruTi7GuOYptigtjRw7Xb+bZ13h7MeM3F4051vjWMrXKgeNGunH0iJ55f86b4MXzm7r6Tmg1sVPSKvuUL3HfVsT92zOWiZ5hEPaVyKo4aQGCW56CILrgGfstNDYehHinwYV9sed6XWSjd45k5SIrERGpMUhLg5TitEEn06O/BGm1Oj0ngrTdI8tS7vVIzQZpFQfMlW4Rw712HDHchSUNXXVtg1bP6HqCxVpmgmhH0YTvQbC50PbhhanlsT4cpJVlrUza3Kdear1ikbgMZ46dvfsqrY9nekBvYP215uhl0CXZRQEHVGjX3O2MyKg0cc7eoREVvGRKMe5b2VW2IyJZz9pLUmbgKjuTXz61BIcNLdxJciFNqXJiSlVXjU+HKGgGZKO91LQ+W5BWWaLBDDOZtIUM0gr9oNGQ3quTbf+gpPc5Ur7PoiDg+FFuPLY2s4xFL/Wvywut+sl9yZ48zTI7f6IX3+jh+t1DizLfeDNNJOVwa9ZtchXv3IK4LzNIa/OOTv1bdHjhPeAHXbc9Q42DtLkmUuSB3jlSn8ipICLqx/rRIQtRPikPgLWPKHoiezPUA8HGHgvSdmOau2ziwDEuyap6dRX7pqQqSx70hXIHauZOpOylEzNux33bIJtsrNbreiGTVhmYHwi0ptMHYnKqSUkup9x9+zQ9u2z7T5sATNQN0pr7jCjr0YqCOhgXics5nzTG0gJJwZik2l8p654OZnadCy+9l0mb+Tw2RYalUZBWr5mQqUzaPOzOpHBbjvfruWBST7N6KKT3OdKqSevW+CxaqV1baN4+HlFWXqzKlbK5X09QZtA3m2giKUV0vleqUmnWxXxb1UHa4tE6WwOie4jxA0oRzZk8vUHvApWy9AwREVnDTFoanEzWpO2JTNp7PuvAkbUuHDsiP/W3pFATpECdannwq8fgnfRD3fuF6xcitPM1xNrWwVE9A95JP4LNOypjGznm17m3CSYyaVtCkuqVT04VLlIEaQvZOCzc8B7CO/+H4Jb/ZK4w+f7ZSidkLpAlxDq3wFFuvRyFFPUjsP5+SLFOeCddjWjTUkT2fAjXyDMBWUa4bgGcQ4+Fe79zTD+mLEsIbvkPYu3rEW1aplof+PIf6Fjy44xl1XNXw1Ex1fBxW0LaJ3ItobhhcEuOR+Bffz+kcDO8k34Mm3eEib+iZ+0NxPH8Jj+W7Q7jnHFFOGtcUSobWJZlvLVdO5Dd4I9jXXMU71hshgUk9kqf7Qljej/L1IxJMv63OYB1WRov2gQBJRo1AwHzQVplHdQyp6jqqh6MyYbZjk6dafoA8MKmACJx4LChTlUtQwHo8x3Ye5PeDO3emPoqyTJ2dmbub5RxOqOatIGYjGKN7EW9OqjpXtsSwLXTSyF24/c87tuW0/2UwaSYbzsCXz4E0VkOR9UMhOteh6PqMIR2vY7Qln+jeNptKD74N6ljj9CuBYg0vAMIdvjX3AkA8Ox/KVy1pyCy5wNEdn8A1+hz4T3gRwjteBFxfx2KDvgB7CVjc/5bU2PVeWnXNUfw2d4IJlY4MGtY175P7zusFc9U1iMGAI1FfdaW9u7VpG0JxXH1e82IScD9x1eh3CViwbYAgjEZp40pyqk+c7p81aQd6u2FIK3i4kwwJiMQlVBkUFJCN0hrcoaYoXgI/rV/zlhkFKS1eYZmf0wpCtic2bfLM91MWgZpiYi6hUFaGqQyj9ZVDaH26YkmRysbI1jZGEkdLHdXtGWV9vKmZYj7dsBWvJ9qXXj3h2h565TU7UjD2wh+9TiGfHMHBLErs02Odae7fPbX7r7PO1TLip2J90aZSVuoIG2kaQVa3jxBZ625sz7RWQrRMwxScHdqWbxjY05B2vbFlyK07TkAgP+L/0st96/9a9q//4KKE/8H96izTT1mYP0D6Fj2U931sVb1Z6zplYMw9CIfRIf+VMWr3mnWXK6sQ6zUvuRHCG6aBwAIbn4SQ87bBkEsXDAsEpfx60Ut8O/7DD670Y/tnTH8bHoZAOC1LUE8/aX2BY0/LW/vVtbRnSvaccPMMhyq0aW6r/rH6k58sCt7UDoZXCl1CuhQBMO0yhhoPtcXmfsQt12AUyNj7k2dIDoAeBwiIgbZ3a9uCeC1LQF8bXzm/rrKIw64sh3dofdS9EYm7bsaF0FsiqCpURA1EJVRrJHUbSaTdunuMF78KoDzujFtO+7bmtP90jvKy7EQWt48yXBqtG/lTRCdpfBOvhrh+oVoffsM1TbBrx5D8KvHUrdjX6zP+K0JbPwHhp5fB8Gu3aBLNUadt18rkLOlPYo/LGlLHT38fHopDt9XS1av+Z9W8FUrk1bsR5m0m9tj2NUZw0idxopGZFnO+O29+r1mHDnchU/2lY9a0hDGX4+r7NZFhbwFaXvhIpdWjfCWkHGQticbh2mxedXH6UlZM2kByFIYQgGCtHoXTnKtAU9ERAl9ez4NUQ9JD0QC+tO5rdZMs0JZLy1Xcd8W3XV7Xxivubzz01+rlknB3QhteyFjWbcyaTWmzStt1GgYlDxxcNvV2Q+F0L74Cv2VFk5ylCUPYh2bLI9FjodTAdps2hZdYvpxg9uetTwWAAhu/KfuOqPpd8op6qrH3RegBQApsAuhna9YH1wefbArlArQJi1pCKf+xvSmJEpGAdoZQ82dVD24Sn0xoy8zE6AFuoK0p4xWX6wye4GsXRHcbfDHLQdOZ9dmD4DLAF7anFmbmaUOMs3QyfjujZq0/1zdqVpmZca4XjBW+b3X89zGbvxWAogH6nO7n28b5HgEABDYNC9L7cqEjqXXAMjy22ZAjrQisOlR09vrxei1svCeWOfLuLx7T1ptab2sPYfG9324Roam1sWbvmzeGvVn2ozN7epjr0/S6vs3+ONY05R7pm4oJhvun6s95r94Wtnr+ea0CSh1Zj5PtiCzFNH+zXUMOSpv40pnFKR1Dj0m+wPs2wf0Nr3j8r7R6JeIqP9ikJYGJZt3ZMZtvamGuRxmlDh790TAsKmTrB0ojTZ+orlc2dBKjuZ+4tmtAC+0yh0U5tK8VhZpLpQlD3JpHhbvNJ9tJetN19MQ3fux5bEAQLT1C/11Bm+X1YC7lb+7J9T5dL5H+/7GUI7TuUcWm8uSUgYiB4pkpuPZ49QZed2ZIW+lMbrXIeAb++eWAZlLI6qB7Oxx2jNDejqTVq8pXIXG+/PDg0s0t1XWGk7qrWCDHM+tOaMcCyDatBRAIkhrRdy/I6fnBIBY+3rT2+oFVzs0XvP1ihIp6W9tQCcwqHWxZJjXjoOruy6CHTncBXcv1zv48SHan7V0RiPKVi5GT7aLoADQ4M9+EV1PIMux2IFV5i4+njOuKC8lv8yoVfzW7ujM9vdr/43u0ecBNhMdLS0S3dW665zDT4S9cprh/WWpMD0OfDoHenqlroiIyByeYdCgZCvOrKemFwTSOykw0tvZGnLceq1LXYpavd0JtMqxgG4ZCTP6QrmD7M0Ycs+kjbdbD9LGOjdbvk+hGNVzDlidC5eHZh09IdfgLJA4ge/jvWF6XPLvd9tFTKnMnN2g18jJzDYOE/vgMaV2fG9KMe46phLFOnVxsynL8X4DVYXGtGJAf0psvtTpdJqv1hjP8aM8uGFWmWp5u055DeV3fHyZ/oUVM59ZPUZNOsuPeQplRz+OoRf5UHbUI6r14fq3IcsSYi0rc35+yyzsk/WC9J1R2VLtSr3moXoXu66fUYYrDyrBVQeX4OpDS00/T74cO9KD62eUYWSxDSOLtb8bw3qgJquZo5LuHE9lm+Wwf7n+dyR5Ae2n00rx7Um5lwexar8Si0Favd+WykNRfeYSuEd/I19DAwAIzgr9dYKAqtM/RMlhd8JeeSjslYeqtpELlEmrLFOUZKY5GxER6WNNWhqUbCXjMm7HO7VLBhgFk44d4caHdeoAaW93EM4pSCvYNbNshTwGaQEZciwIwaBmqZG+EKRNryGrrTvlDnLJpM0+ldUqWYoj8Xfk9/U1CtJafS+Vn8vepveVDsVklOZYBm5ihcPSiUwwJsEzwKK66TURlVmpZuJ6WhfRbIK5ae6H1Dhx+tju1QQvd7HcgRk9nUm7VafJkldnKvWhNS4cVO3A6rQp32YzaY+sdWNzu3apIl9UVk2rNstoRoxn/EWpfxdNvByx9g0ZjYfCDW/DZbL+eP6Y/zuNspHbwxKqPOa+R3q/GyNKtO/vsAk4cT9zdXN7ymFDXThsqAuRuIzvvtGoWr9fiR0NOhcZgMSF4p7INu1Ohni25IWxpRrFnQFcOMmLueN7LzCbThWk7ciWSavzNwoiHJWHoHTWPQhtf0F7G8372QBZ/30WDYK0ACA6ilF80PUoPuh6yFIUu59QHHgUIJM2Gpd1v5PNQWbSmhWJRODz+eD3+xGJRCBJDHAT9QeiKMLpdMLr9aK4uBhOZ37rgjNIS4OSMpNWCu2BHAtAsGeetOtlbgD6J4BWptrmQy5BWsFRojMdPp9B2n331wnSZss6UgZpjd6LnhJrXW28gYWTJ1tZZpBWCjZAinZCdGSfEpkaT4e1IK0sxSCIxrt5OdqO3AO0+vczOgm0/F4WOEir9y4bBaKNFNkFDC2ywW7h87PHH8eYsoEVpE1vDmZTRMLNxPW0plpWe0RTF8qUr2QulynKXP2rxmWh9HQTma0aNTgBGAa3lFnQukFaxXdcqyFVUkdYQmmO2dV6dfG1uGpPygjSRhuXIrTlPzk9b66sXDgz2k+2KYK0Rt9DvYvmo0yWjSkkvTrZo0vtWLpbP8DWEZEt72fM7Du7MwskW7kDrTIjAHL+buTDKEUgv8EfR0yS9X8rdI9PE9uLnmGWnl90VUEK7TVYbxykzRyC+vMuS72fSdtpsGNvj8iIxGU21jQgyzKamprQ1NRU6KEQUY6SF1n27NmDmpoaVFVV5e3Cat8/siHqAfaSsaplsc6tcFQcmLq9oSWCXT79q8HKmqlJZqbaJikPYuL+Ovg3PADRVQXv5GtMdWvNFkiUIu0QnZnTO0VHKeIaQdpw3RsoPrirqVh3g7Txjo3wr7sboqsa3slXZ/w9yw1OTACgSKNxmOFBdQ+IZgvSWsmkLRkP5SlovOMriFXqWmNx/y74N/wNonsIvJN/AkF0INK0HIEND5h+PgCQQk0QPUPQvvhyBL96HMWH/h4lh96M0M75iOx+D64Rp6ouWORCkmW8syOE3f4Yjh/lwcgSu2EgNj37Ilz/NoKbn0K05XO4x3wT7hGnadyj67OwYk8Y65ojOHSIK6PmYD50hCXctqwN2ztiuH5GGQ7b1whJ7wf3kdWduGhyseXnGea1QRAES+UOdgfiGFOmnaHUl2QvEdIlPdtG+bU207TRp5HRVeoUYea8UPmWumyC5cAFM2nNeW6jH2eO9fRYJvgWnSCtkTKXIkirV+5AsR8zqmvaofMYZlgJ0jqGHA2ITiAZmJHj8K+729LzBQyaPpphVI883Wd7wnh0rX4DrJaQhPT2plrfwAvm74VdBMaVap+y9Jfa0NUeEU3BzM+IMsNTqcEfQ5nL2u+cmb3Ygm1BHDHchUmV1n9Ds2XSFutkKhQySKt8neMy8J8NPnx3crHO77v23yjHEln02S5+K4nuasMgrWDL3rwyta0gAKIrI3u26ZWDAQAVJ/4P7l7IqpdkGS9uMq6j3RKKY5iXYQY9DQ0NaG9vz1gmCAJsNh5XEPUH8Xg845ynsbERkUgEtbW1eXl87j1pUBLsRRDdQyGF9qSWxX1dQdqdnTH87pM2w8co0jkQtZJJe//nHfjFYYkAqizF0PT6kZD8OwEAsbZ1KD/auIOyFO1EeNd8w23inVshVh2asUzQyd6M7PkA4bo34RpxamJMloO0mUHI5gVdXWlj7etQPjvR2GR1UwR//cy4Y73WyfA/VnfiR4f0Xm25rJm0Fgg2F2zFozOa1MU6NsKhCNLKUhRNr82CFGwAkAh0ew/8OVreOMHyc0qhPehY/nOEtj4NAPB9/jtEm5alPjP+tX9ByYw/Gz2EKS9/FcCz+7qbv7U9iAdPrMZvP9ZvXJYM4Eb2foKWt05B8jPja10F38qb1HcQEgetK/eGcdeKxEHt/K1B/P7I8pxOMrXIsozvv92V0fCnFe249agKTKxw6DbH2NAaNfw79SQv8Fi54JCtG3VfYSXMmV7uQRlYjZuId2m9Lx67YOoqtnILlw2w2utEGegjfX/9tB03Hm4hW8wkSZaxLevUZTVVkFYnkzas+CAaZtJ2J0hr1ABUQXR44RxyFCK738/5+do/vjLn+wJApOFdxP07YfOO0t3m88Yw7lzRrrseAO7/vB1PnDYEgPHsmpgEbGyznjHdl+xXYkdTMDPjcbRO4Dlptz+OSZXWnsfshbJbPmnDncdUZh2DUraZMHrXrgpZrafIIaqC5PO3BlHjsemUvdH+G6WgfqDViOiqyul+VrW+cw4qT3sfrmHH9ejzvLApgIU7jC8sNQUlDCtMdYs+LxQKZQRoq6qqUFpaCpfL1W/2Z0SDnSzLCIfD6OjoQHNzMwCgvb0dVVVVcLnMX3jTwzMMGrRsxWMybsf9u1L/fvmr7MFJj13ApIrMzLYxpXZMH2r+i7lsdzh1QB3a8VIqQAsAwa8ey3r/oIkpjvFgvWqZXpAWyDx5M2pmokVw6GcVBjd1BZwf/kI7QDtjaFfATVnuAAA+2JXHJmkmZK0ba3Eavq10QsZtrYZ1oW3PpwK0ABD48iH4Vt2ayuCwIh6oSwVok5RB/c4Vv7T8uEnJOmrJAC0ARCTghU3G35/ktNXAl3+HqbCenKgd+dzGzMd9ar3110TPVo1Az99XJT6nlXkOxh09ItEd2spJa3Owf9Qps9Ik6ujari7ZyoC1mccJamR0HWQyu1pUPF/yPbGiLMf6o4PRF01RdHYjiKmnLSxpTqefPsT4c1Cu+E63hbU/b8psba3fJb1tLbFYtsg5/MTcnytPfKtuM1z/2Jrs++dw2oWRDS3atYWN1PZA462ecviwzGNDp5jIrjXSmENtT9FkkEdGbr+hfoNp7ieOcusGmYYWFfa90iqL8fg67b9f1qkfay/dP/Vv0V1j+rkFu/UZN4YMatB2Lv9Ffp9Lw/NZjvEAoNnqVc9BpK2tLfXvIUOGYMiQIXC79b87RNT3CIIAt9ud+g4ntbZaT97RwiAtDVrKGlDpQbC1zdlPFpw2ARdPKU4FWmwCcPnUEpw62oMSCyfvyfPLWOsa0/dJirWtz76RRlaF0cFl3L8j7Zb5k+rSmXdDLBphattGnYDTd9KmjveFUlbZGocJorUsTuXrLkXaVNvEOjaplgU3P2npeZLivu053c8svTponzca10dLljsIbnve1PMks1c2K6Y1b9LJrMqFVhZc/b6GLiOyTEm1osIl4qjaZJDWQmmUHm6+lC/K6bxJymCKyybghP26AqPKGqGtOpmN6aIar8mpYxJZUV6DYBoAVYOnueO9hgE4LY6+sJPqR4yCO7nSqn0tALhkinFQRFWTVuP7H4hKqk72VR4Rv55ZptoWAOLd+I7q7UvLjnxYc7ldccGvECJ7PzJcv9ti9n9LDh3he3NmTXcdPcKN4Wn7wTPGFkEUBJwzTr+BofLzZ4aViyFfNFmvZaqXSesUga9P0E+dLPTU92qTDeoA7QQFe/lUOIYclbpdfux/YKbkVdHka2Dz7qe7vnTWPabHZUa0+dO8Pp5Stn4SSXrHAgQEAl0zJ8rLyws3ECLKi/Tvcfr3uztY7oAGLcGeeTApR7uCtMVOAa1ZmqXaRWB8uQO3z67A+uYoDqh0YNy+mpF3HVOJJQ1htEckFDtEPGmQrRCTEo+VS6ak6DYzhUrjgMpkBqhy2pytZDy8k6+Bo+YI2IrHwL/+XkSbVsA7+Wq4R52FcN0biLdvMPXYWoanHcTrXVCWZNl0pkh3yLKMeFpGqxbLQVpFB1/t5m35E/epM3WzKZ72B0TqFyKyZ1HWbaMtn2suz9bZN3mSZy/d31RJiXhaWZKeYjSNOee+avt8c6IXo0vs2BuM4+haN1y2ZLkD848R7Uajl96klfn12CnVAIBFdSHsDsRR7bHh0BpnxvddWVfSXJA28/bQIjH12s47pRrfel3dTT2pQjEnt8wl4s/HVmLp7jBGl9gRisv43+YAvmzVv2BnY9aLJT2QSKuZcX33nMqsASFluYOOsKT6bdEKMlS7bRjuteO6GWWp0itJ3bqOImV+zsSikSg76p9wj9Sq0Q2I7qHdeDJjrpFnZi2j1BOsNhn69gFeTKjo+3W6k+yigNtnV2BRXQhlLhFH7Mus/fYkL8aW2XHvSvUMI71SO0aacsi+tUJZk3ZksQ0njPJgxjCXbiC0og+UhinXqV0sy7I6g1FRfsRWMg5VZyzOaJjnqj0JVWd+gmjjUthKxiLu24aOpdeoHr901t3wr9WuGe0YMhveKT+1+JcUVpuJ32aAmbRG4vHEa2O321mDlmgAsNlssNlsiMfjqe93dzFIS4OWcvpRepA00fjA+EuWbBA2ptSBMaWZJwoV7sw6V4vrQ7rNTRINcgTIUfX0Ic2DxzSi00yxMo0zRym3DER7+VR4p3QdhJZOvz1zPMX62QLZeB2Zf6deIDYSB9y9sOeSox3Zp6CaaOyWThmklTSDtPkLxqXXvzXLOWQ2bEWjTAVpYy2rIMvqA/ZswZhQTIYky7CVmAvSSgHjYHk+GAX+u/uOlDgEzBymLoNitxDk64EkxB6hDGyNK7On6ncns1y1KDuCt5g4wYspomKV7rQu8VleW616stUeG85M22+XOETc/In+hZRC1ljsj8JZalnm9JiKj4nHLmQE//Uo338ZgC8io9TV9blRXnCocImp7OkZQxONC9MzEbvz58mKIG3xgb/QDdACgOjpuSCtZ9x3zAVpDTLqrDQQTLJ6yWNynuqR9yavQ8Rpiv2gKAg4qtatGaTNJZN2bw9nMAZimY9/2FAXzjTIBgaMG+71FmWJkyR/VEaxYmaFHM8M0noP/AVEpzpr21lzOJw1h6duawVpBUHUzXwvURxD9wd7TWbI95cSTURE+ZDvciU8xaBBS1k/Nb1JVrEj+xfNygn6GIPGDMnjXUkrk1YyLrugzAY2TafelsaGiic0fl1s3tG5jQfqWn96z2S1A3uuzAQGBdFaYXBBUWJDCmsEgDSCnrnSqnlrSBDhqJ5lutaaHPMh3vGV5XHJAMJxGYLNXB3QeFqtZqVAnqKXyoBfuhziDRmKdbpaW8qk7SflDpSBrRqTU0zTA6wA0BmRs2YPK2IFlpo2msnsqspSL5LVDqwJ9sC+O6z4XrhMvilanebbFFeXlMGIGkVNTeVTmZ0GrEn5Wy8aZ4jaejBIKzjLTW0nG1y+yqU+r5V61gBQZOI4rb/z5ZB+nksdWyuUgeMiEwHYvrCv1AvStmhkhiob+Qk24yB0Nsp+BEmOykO79biFYDpIy0xaIqKcMUhLg5ZRuQOvibN9h4V6kkZB2mTwJf35k/a+MA7h+rdVy2O+7ej49Aa0L74063N3LL8OUUW2ol5ThNR9lv0M4YZ3YTWH0FacPUir1eQFUE8313t59e4vhVvRufJ36Fx5M+Ih/WnOZsWz1KMFkPVEWrW54uS3p8sdRJtXWNreXnEIREcxRJf5dtJ6JQ+yCURlw+YX6eL+HZq1JwHg3pUdmL8lkBFkXdccwY2LW3DB/L34ybtNWLg9qBtA+aIxgifXdWL5Hv2xSN3MpVVmiSdZqUlrFETuK75ojOCVzZknt9ka4yQpM2kB4O9fdOB3n7TiH6s78Ple9fujDFxbeT21MmlVY3KJuheLRKH/dJXvK4I9kA7+UV3mbAed6yEqdlFQXYxtVwRr1jRn1uusUXyWbYrniufw50WaVqB9yU8Q2fNhxnIhy2+L4CwHhJ6ZJqv8ndKlU0cXyF7yJt3bOxL7Z6t1t80EB/u7ZLBbkmW8tzOIp9b7sKXd+OJ9T5Q7kGMh+NbejY4Vv4Y/nFmv1UywvDdKVGWjF6Rt1QgmxhQXnwV794K09uKxmstFp3Z962xE9xDD9R0rfoVY55acHtvIV21R/G1Vp6ltzWTSylIcnStvQcPjAtoWXaIKjhMRDVYsd0CDljKTNj2TVS+oks5KkHZsmf4J1xPrfPj5YWUZmbypMQXq0PLWyag6/SM4h84GkJgW2fz6UZAC9aaeO97xJZrnH4Ga87bBlsyQlI3LHfjX3QP/untUy7M1JDBqjpD0t8/VU/oA9XQ4vZdXL1jX8s7ZiO5dDAAI1y9E1RkfdyuIImWpRwsAgmhtF9rb5Q6scu5riiE4SkzfJ9qyEi7bHNW042yCMRlFcXNBWjnSqtnYC0g0Kfu8MYIGfxxXHFSCre1R/H5JW2p9Y1DCI2s64YtKOHf/zAsz61si+L9lbT3+iuuVNbCWSZunwfSQtc0R3L6sTbXcbCat1y7AKWaWylhcn/h8bGiJ4p0dIdx4eDkOru6a4qzcFVgJ0pqpf2kTBVS4Rc2GRoMgPpR3+Z4F8UlDCB/sygzSWpnqXeYS4Yt27bjSg7ThuIwVezKDkEMUn2Vl4Mnqnxfr2Izm+Udq/x5nC9IKooUZMdYIGtO6tRjNcGi20ATsn6s70RGWLGfGDoZM2mSzvTe2BfGvdb59/w7gnjlVmvVfY5LcI9PMO1b8EoENfwMA+CrPBmxdmaFeEz9kfTmTVlljVZbikKOZ9aa7G6QV7OZmDZklFo2AFNqru96/5k8IbnoUQ765M2/Pvdsfw42LzScWBGIyAlEpVe5Ii2/VrfCt+j0AILj5CcSDu1F1ypvdHisRUX/HTFoatER7ZiBKCjV1rTMR3LMSYNmvRD9QsXR3IhAhhZt0t2n76OLUv6NNy00HaJPkWADh7S+lbhudXBmRstwvW5A2Foum/l4lZSat3juglUkb9+9KBWgBINq4BLGWVYZjySYe2JV9I4uZTIIqSNtm6f49zVlzJADAVjTC9H3inVtQ7rKe0RWMyao6jEaydYZfuCOR3fOfDdoN+J75Un0R5OWvAqYCtN0NkA4p0n59jC70eBVRQL0M8r5C7+KL2Y7agiBoZtOme/iLzOdQXrBRngtOH9L9mpXVOmOyEhCmBL0LbLm6X6OGpxXKkhcN/q5g6fs71d3dqzzG5Q6sZrt3fvYb/QumFmdp5JPNPQS2knHZtysaqbtO68KGkWc3+hG0+PkwbPY4QHRGE/XbkwFaIPF7tKhOu15+W7i78z7UZFlOBWgBIIDMi51mguXT8rAv7i6zQdrQjpdU25gN0torDs647Rx+Qte/hx6Tsc479TpTj6nFM+a8rNtI4SaEd7+f83Mo/Xej+hgqm2wXa5IB2qRI/VuQ4/oZ+kREgwWDtDRo2Uoypx/FOzal/m2mNpqVk3S3XcTxI42vZsf9O/TXpU1bkoL6V8+BRFdoLdHmzwAAsc4tGX9rPonuasP1HR362anKTFq9LFitaeux9g2qZeHd7xqOJZt4x2YTW1nbhYqKmrRypE3VeMsoi9VRPcvS81llr0ycYIiuCtgrDjF3Jzmum/VsJC7LpuvvCvYi01lqXzTpB36VzWw+bzR3MqCcBp3NUbVdtYoPrnboBmmNggzDizPvky1IXWh6J2Pjy81nmxdnKTOjbErWpkjfVp6Enz9Ru2b3xVOKNZdrGV+uHSwzUy5hMPr6/vrBjHxX7OjudQtlGaINLV37jrXN6v2IU/E1Vv5mWc0UjjTo/0YJQmEmurlGngnRXY3Swx9AtlZeymOodJ051FK1up8daOVGvnWAen8lyeogIgBsatX+nfPl8DuR7eKCclZRQMw8jtEqD/bDg0vS1gtZG4v1Brso4DiN43BlQ8NY6xrVNmZr0pbOurfr4r3oQumse1LriiZf3bWhzQPvZHWTMbO8U35mart4x5c5P4fS6qbsx0uligZsVsqeJMX92y3fh4hooGG5Axq0bKUTM25LoT2QIu0QnWWmaqNZaVIDAN8/qARTqhya9ZykcAvkcIupxxHsHt11nvEXQ46HENr2X9W6ZGZMeNcCkyO2TrB7ExlAOhmSLe0NALRP7JSNw/RovTWxdvWBaKThHeDAn5t6TC2xThMNsQSLQVpFJi1kCXK0E0JGXTLtx7R590PVae8juPlJxAP1iLWthhwLwl4xFYKtCIKjGI6Kg9Cx/OeIta2zNK4ke8n+qX9Xn70cu59QZ78IjlLI0fQMNtlUYy2vQ8hoOJJ4H9UnlDVf3wTfqj8guPnJrmeQpbwEeDqjcsZJRIlDQKdBg5vkZ9JK8OCACgd+ckgpDqkOIS4Dx4zQvzhjlIE0otiOr9q6sux8kb6dSatlaJGoaghmxEwt8HStisBwheK5xpY5cNcxlXhlsx8f7Sud8PPppTh8uPnpnwdVO7Fgmzqr0kzjscHo/IlejC61oy0s4Y1tQTT4u07S+1pZ5UmVTry2teu93dgaRUySYRcFU0FGZU1Uq5mghjMJ8plJK7o06387qg8HIKFk+u2I+3YAkOEZ/10AgHvk6ag64yNEm1bANeJUxAN16FxxfUbJo7jBjJ7OHIKFWsHIweRr44swotiOv3yaOdU+/XcgaahXe7+qbOplRiAmq4Jr6WJt61P/jsCNqJB5DFqicd/jR3lQ5bahzhfD4cNdWS/A9ZYfHFSCj+pCGRd4lA0N5Zj6GF1wmGvS6xo+B1VnfoJo4xI4h58IR/mU1DrPmG9CPPVdRJs/g3u/r8Hm1c9Ez0aweyA4K7L2NVAmAXSHmf13lduGjkjX59Uok1aKaM+EiHVshl2n0RrlVyQSwQsvvIAFCxZg2bJlaGxsREdHB8rKyjB69GjMmjUL3/jGN3DCCSdAFPvGd5hosGCQlgYte8n4RJAt7SAm1rERzuqZqkxat01QZclYqUkLJOobHjvSoxmkDTarr9wrSZEOiM5SyJJ+PVnXiNMQbVquszYx/nDdGxlLRc8wSGaaZJkgCAJEZ4Vuray2jkboBWnNNpbQDNJ2bFQti+z+AHI8AsGW2zQ7ZbZx+TFPoW3RdzKWCRaDtFpds6Vwa0bzCCncrHlfe/mBEOweFB1wpeFziGuGAzkEaQVXZcYFAEF0wFY8FnHf1oztvAf+Ar7Pf5e6LcsyZMH46H1okQ2BWObBuiQDyuhu6eH3wV66P7xTrs0I0kKWutc5fZ/GQDyjq3u5W0RnVD/TI/mc7RaywgQh8V2fM0r/YkqSUeObEcpM2lhi2mtfaMBi1qRKa989M7XA0ymnVFdqBE73K7Xj6mlluHqapYdOmVzpgCio9zvZSjMMVoIg4Ih9QfCVeyN9PEibGQiNSMCW9hgmVjg0g4wRxa5ClUlrtZyDrB+kzdY4TPtONs06tWVHPIDg5idVzcmqz1pi+HDOIUel6pTbyw4AZv4VLW8cl1ov+fVLAuWSSds6yIO0giBg1jAXhhbZsCfQ9T5qZTDqTd335fC6+6NSxu+iUqy9K0irzKIF9GdAHFzjxME1hS9zkM4mCjhltCfjwpvye5te+izJbCYtADirZ8JZPVNznWv48XANP970YxlxVByMyJ4PDLeR8tBEN8nMIVi1R8TWtNirURO7eKBOe3mnmVls1F0vvvgifvGLX2Dbtm2qdc3NzWhubsZnn32Ghx56CBMnTsRf//pXnHnmmb0/0EFuzJgx2L59Oy655BI8/vjjhR5On/P+++/j+OMT+9T33nsPc+bMKeyA8ohnGTRoCTYnbIqOq/H2RLBPWf9RK3iQz5qEvhb1dH2lVCDSIPvGVjIeok49UTkWhBwLIaIoA+AZ9x3N7XMluCp117X723XXmT3B1ToFiWtk0soxPyKNxieheuRYSFW3156WEZFiNUjrKFHVsVVmQujVJtZ8fg02z3BLYzK6n2DXyB5RBQmzZ9J6HYIquCgBGuUOktsoXtc8ZdLuVZwwZMuGTO4GlJm01R79+1nZK7hsgu72tV71NdRcsqQKaXKltUCT1WwrZVCnJwKnRQ4R+5ep3wtm0man/Gznv1pm95Q4RYxUXAzZ0JIIiGllrisv1HoUhemDMWsBMsPaizkEabUuAgKAs/ZkyHHtGqZWKGuVyzGfbjZcZw6Z/1bLHQxUVYr9mFaQVu83N5ffiGz3SS8nFRAyg7QCrF9cKzRlmSHl9zqukbTQ3cZhPUEsyn6sl88grZlvp7Jut2EmLYO0BXPrrbfiG9/4RipAe/LJJ+P+++/HO++8g08//RQLFy7EAw88gFNPPRWiKGLjxo248cYbCztookGGZxk0qNkVJQ9i++o3KTNptabhWmkcls1fd83ABsdxhtskD5Rjnfr1ZO2l+8NWVKu5To4HEdm7CHIskLZUgGfcty2P14hqSn+a9qB62nCS2cZImjVpdepuRRreBpA48b5iYSMumL8Xv/u4FYEsUzFjvq2AIqBgKxmvsaW1kxNBEFQn0pIySKtzUG0vP9DUc4ieYZbG1HU/rSCt1omJ4m+W5ayhl86IpGqyIyVSaRUPLWb+P/UcMcTi2U8RXvrKuLHFPZ914OkNvlR2R1mWhmeSnBj7+pbMCyPDdGrMAtY+EYIg6GbTKjNpgdzqDSaFYjJ+/0krLpi/N/XfuubEyX9o1wJ0LPs5QjqlUGJtG9Cx/Dr4NzwEWZYQ3PY82pdei3DDe4bPaT1Im/3VS06JDsYk1fTyyh7Kbj2oWp0NVm6hjMNgpbyOGZMSNdE7VvwK/vUPQJaM6xUmP2dtiy9Hx/LrEG3qmmqfryZkkxXZ3htaopBkGR0aGYnK4wJliR6r5Q50m4YBEETrE93EjLI5XezFoyHH9X97zdJqKKlXP9Jsve906VnXg5ky0KX1utTrvFY5lTvYd59w/UJ0LP8FQjtfy1ifnknrV2TSFmlcgO3rXBoZ8Cv2hPHUeh/WNEU0Z4L1xSCtmQvywU2PoGPFrxDzaX9PY51b0fbRZdj9VDE6P/+D4vwgIRST8eImc439lBcYPtgV0p0FpZdJG2OQtkc99thjuPnmmwEAQ4YMwfvvv4+33noLP/nJT3DCCSdg+vTpOOmkk/DjH/8Yb7zxBlatWoWTTjqpwKMmGnwYpKVBzV52QMbtWCqTNnM7reCB1XIHRrbFR+Kh8v9ik+Mo3W3i7V9CjoXQueJ63W1EVyVE9xDNdXI8qCp14KieparN212iQSZtR1g/C9jsSbfyeE+OhRDXOQAN1y/Ezs4YfvdJWyqzZ0NrFJe9pZ2tmhRX1KMV3UMgOks1trT+GVAGsaWwMkjbvUxaM9kVWmwa9zMVpEX2IG1jUFIFbCRZq17avo00MpQD257P8izAM19m7z788uYA/risDTFJzlpXWpKB336srvmmVw8wF3p1aas9NihnoHanLu2P3mnCOkWw+fdL2rBtyyK0vn0G/OvuRuvbZyBc/07GNlK4FU2vHQb/2j+jY8lVaHrlILS9/00E1t+LljdPRES3vEqizIUVZmrS/u7jVkiyrKpHC6hr0ubLVI0gbZb4PkGd6bxgqx9Nr86Af82f0LH0anR+doPufYNb/5v6nAU3PQr/2j+jaf4RiHVuAwDc/Zn+rAwrlCUPNrRE0RyUNJuSKS8kemzdDNIayNYgVItWJq29ajqAxEya7hLs6lrOTa8crFq2fLe6/m26PB46DUjVJi42fbArhJBG5nYuF/L8UQnh3R+i5a1T4F/7V7S+czZCu7qOFdNr0gaE8oz7lvSRWrNWKC+ufLY3grtWtOPVLQHcurQNW8I1qvv0xSCt2WM9/5o/ofn1oyDHM7+XciyEptdmIvjVY5Bjfvg+/x3aFl2suv/9n7fj2Y3Zj60A9QUGAHhtizrwCzCTthDq6urwk5/8BADg9XrxwQcf4LjjjBOEpk6dijfffBO//OUve2OIRLRP//t1JcojW1qjJACI+3cAUNdT0+rw3RPHpi8W/5/uurh/O0LbX8j6GNoZn4Ac9SHa/FnGMteIU/c1+3Jp3kfJzIGq6KrSXeeL6Z+dHTZUHQhRXpUH1HUN44FdUGVk7hNtWo6/f96mWi4DaAnpZ+2kn5QAgK10f83tnDnUFhMVJ9LpTbhkWdY9QDVf7iC3TFrXiDPUy0aepVqmyvCKh7OWOzh9jEd1UaMlLKnrJ6YyadUH+v6vHjN+Egt2+eJYXB8ylb2tlcU0XKMUQa60GuZ57AKcNgHFiihtrpm0kbgMv04A6ak1ezKfY82dGbf9a/+SkV2T2ZRORtsHFyKq8zpa7b5ebNC8Jml3II71LVFVk6EiuwCXMl07TyZWqPf/+5WwpH82W9ozM0U7o5nlXfxr7tK9b2Djw+qFcgz+NX9CTJJ1MzVrDEqRaDlA8d76YzK2dWhnuI5VlL1Q1aQ1ORsEyNI0DPq/40bcI8+C6B2VsaxoYqKGuXvU2ZYfL1fz1qjr7ifVeMQe+54OFFqBLi0Ld6hLWOTaOKxj6dUZy3yr/gAgUZJDCjaklgfFzGxto+aXfZWy3IHSs57fq5blVCO6h1mZNSUF6hHa8UrGstDO/0FW9EAIbX8howxLTJKxYo/5rPhqjQul/96gHeDVrUmrs5y67+6770YgkDie+8Mf/oBJkyaZup8oivjOd7RL43300Uf47ne/izFjxsDtdqO8vBzTpk3DTTfdhMZG/XIb77//fmJ2oSDg/fffhyzLmDdvHo4++mhUVVWhtLQUs2bNwpNPPplxv0gkgoceeghHHHEEKisrUVJSgtmzZ+O//1U3zE7atm1b6rmSdV2fe+45nHTSSRgyZAg8Hg8mTZqEG264AW1tbYavxZo1a3Dbbbfh1FNPxciRI+FyuVBcXIwJEybgkksuwZIlxmX2brnlltRYAKC9vR233norpk2bhvLy8tQY58yZA0EQsH17IgnpX//6V+p+yf/S669q/Y0vvvgiTjnlFAwZMgRerxeHHHII7r//fkSjXccfsizjP//5D+bMmYMhQ4agqKgI06dPx0MPPQTZRCHq9vZ2/PGPf8Ts2bNRU1MDp9OJ4cOH4+yzz8bzzz9v+BjJ8d5yyy0AgOXLl+Pb3/526nUdMWIEvvvd72L9+vWq+yb/3mQ9WgA4/vjjVa9Rf67jyyAtDWqCIjtSjocQjcvYHcgMzBw+zIVJaSdzc0a6c57idcFE/S6xDfbJuuvkeAjRNv0GY8nasvaSMXAOUwcPpXCTahqXvXQiBEEw3WW24vgXs25jKx6juy4c13/NjtdotHTVIers1agiSqs1PatrZRybO7QDW0YBumjLyozbjvKDAAAlM7qCCmJRLYrGX6L/3HoUjcxkqesAOO7blnFClOQedyFER4mph9erS5iNe8x5qmVFB/wgIzO79PD7VJna8eBuxAwKxtoE4MjhbowpzQxwrG6KQI75MpaJ9uLE/zWm7caR3wYk7+4MZTRnsWLKvmZSWqyWQSnSuEPtvkxdZY3WXDNpjcp7rLYdm3E7Ur8w43Z4t3FjknjnV4holKK4dppW5rkxs5m3TcG46kJaWQ/WiLWLAs4e13WBarjXphm4peziMPceRxre1V6+5wPDQNSVB1v73GkFmSIa+7Maj4iZQzMvZjoVwR4r11CM6tHayw+Eo2ZW1scoO7IrkC24quA98BfwjL0wtcxWNglF+18KINHwUXB0vTblc/RPaLvLqAHYdyYXGzapSmcUzP3a+L6X2ZgvJSYuVgHAzk71xQTlhbwZQ52qUkNKMUlGrPWLjGXRxk8AZF5EBoAYMvd7yu9Af6C8uKJUJ1i/QFIIgi17c9J0UUWPhliHduk0KdR14dbKhafvTSnWrdevVfIgrtd4MMsFLMqNLMv417/+BSCRRfv973+/W48nSRJ+8pOf4JhjjsFTTz2F7du3IxwOo729HZ9//jluv/12TJgwAQsXLsz6WNFoFHPnzsUVV1yBxYsXo6WlBZ2dnVi+fDkuvvhi/PSnPwUAtLa24uSTT8ZVV12FpUuXorW1FT6fDx9//DEuuOAC/N//6Sc6pbv88stx/vnn45133kFjYyNCoRC+/PJL3HHHHTjwwAOxYYN2n5j3338fBx10EH7729/irbfeQl1dHSKRCPx+P7766is88cQTOPLII3HDDfqzhNJt2rQJhx56KG6++WZ8/vnnaG/PzwwhAPjRj36Eb3zjG1i4cCEaGxsRCATwxRdf4JprrsG3vvUtxONxhMNhnH/++bjooovwwQcfoLGxEcFgECtXrsRVV12FH/zgB4bP8c4772D8+PH4zW9+g48//hhNTU2IRqPYvXs3XnvtNXzzm9/EWWedBZ/PZ/g4APDggw/iqKOOwjPPPJN6Xevr6/HUU09hxowZ+PDDD7M+xkDDVBAa1ASbYvpePIR6f1yVrTmyxIbfHF6OD3eF4LIBR49QT/sz69z9i0xPHUonx0MQdDJei6f9ASWH/DZ1u/Kk+WhacDRiaZmzUnCvaiq96E5M67J59zM1xcg14tSs29hKJ+iui8jaB3C/PbwcJRonblq1IJUnwka19owCAjaDIHu05fOM2/aqRGt474G/gL10IuL+7XCP/Zbm9M9sBEER3Ek7II3s/Ui1fdnsR+EZb765m+iwFqRwVM9E5clvadZAFB3FqJ77BUJbn4WtZDzco85EuO7NjG2kYAOiOi/DdyYVY0qVA+PLHaj3O/FJQ9d0uzVNEcSjmd8DYV8gWquucRz5DYptaInmnA1f7hIxtcqBL5rUJxNGnystWpm0o/ZlaSrLrOSaSauXRWuGHNXPiksKtn4JoDpj2YEa391saovNHZKIgoAORcDaTD3b7rhwkhfjyuzoiEg4ekTuF+kGu722/TE8rl1D3BTRBb/O9+DWoyryEjzXuuZ0x9GVqmahyv2HXka59pNoByJKZ94Nz4RLIZhoSll0wJUQvfsh3vEl3GPOh+gsRclhf4Sjajqk0B54xl0EYd9FQZt3BKrPWYnwrvmwVxwM1zDjKa75dvJ+HhxZ68KBVU7M3xrMeoGs1Cng90dW4PPGCMaU2tEckvDyV35E4jLOm+jFsd04BuvrzDZQ1LpQqPxuTKp04lsHFOPzvREcUOlArdeGyxdmHgca/axIiv1/XMjcr2eJd/ZJ2TJplUoOuzP7RgUg2MzNgEtSvpeiu1pzu3igHrZ9Gflhg2OHo2td2L/cgTe3B/GNCV4cM8KtW3+2JSShWpEhrlfuQJb0a3VT7tauXYumpsR3/5hjjkFJibnEDz2//vWv8be//Q0AMHbsWPzqV7/C9OnT4ff78b///Q8PPPAA2tvbcdZZZ2HZsmU45JBDdB/rt7/9LZYuXYqLLroIF154IYYNG4aNGzfilltuwZdffon77rsPZ599Nu6//358/PHHuOqqq3DuueeiqqoKn3/+OX7729+ivr4eN998M+bOnYsDD9Tv4fHggw9i+fLlmDVrFn72s59hwoQJ2Lt3Lx5//HH897//RX19PU499VSsWbNG9RrFYjF4vV6ceeaZOOGEEzBp0iSUlpZi7969WLt2Le677z5s374dd9xxByZOnIhLL73U8DU877zzUFdXh6uvvhrnnHMOKioqsGnTJowePRqPPfYY/H4/Tj31VNTX12Pu3Lm47bbbMu7v9WonfT300ENYunQpzjjjDFxxxRUYPXo0du7ciT/+8Y9YunQpXnzxRTz22GP44osv8Pzzz+PCCy/EhRdeiOHDh2PTpk245ZZbsGHDBvzzn//E17/+dZx22mmq51i8eDFOP/10RKNRDB06FFdffTUOOeQQ1NbWor6+Hs8++yyeeuopvP7667jkkkvwwgv6M4HffPNNLFu2DAcddBB++tOf4qCDDkIwGMRLL72Ee++9F4FAAN/97nexadMmOJ2J36ARI0Zg9erVWL58OS677DIAwKOPPoqZM2dmPPbIkeaS0PoiBmlpUFMGaeV4CLsU2QnVHjHVxfnk0dauXGs+pyDg2BFufFhnrduyHA+lTriU0gO0ACDYPSg5+Ca0vvf11DIpuBuSYmpT8iDN5t0v6/NrZedqsRsFaaGd/TLMoMbn+DI7NqdNm1VmbRp1rW6w6U/l0TuYlKJ+xNszgwiOykMBJN47937n6D6mKYppc+nTXqN7Fmesc42ai6IJxj/ySoLFIG3F8S9AdJXrrrd5hsI75ZrUbVHRmE4K7dXNpD07LdtJGXD3RWXsiI/EKGxJLUsGaQW7+nsWU5wc7ldiR4M/Zil7TSnX+9pFAUcMd2sHaa1m0moEF0cmg7R5KndgZQps8sJNkhzLHqT1N3wA4BsZy0wmy2UoM5lBJkJdkkbrIk8+iYKAo2oHbmCoJzhFQNl/q94+xVSQVnQPzcjoShJEB3w6n+d8ZTcrfxvKXKLquwio69IrZ3kYkWXtIG3RlGtMBWiT3CNPA9B1AiUIAjxjz9fc1l4yDvbJV2uu62nn7l+UmsZfYuKCissmoLbYnnHh5pgBHJhNZ/aCk1aQVvndKHYIGFViT134A4DpQ5z4bG/mlHY9yot0youlygsX/UG2TFolZYmqvkP773CNPAPhXa+rlisTMfQu6EuBrtlcRjPOzhnvxehSO04f23Wcp3fxssEfVwVpdcsaGDRUpNytWrUq9e/DDjusW4+1evVq/OUvfwGQqFm7aNEilJeXp9bPmTMHp5xyCs4880xEIhFceeWVWLp0qe7jLV26FPfcc08qYxYApk+fjjlz5mDixIno7OzEhRdeiKamJrz44ov42te+lrHdjBkzMG3aNMTjcfzjH//Avffeq/tcy5cvxxlnnIFXXnkFdnvXfvH000/H1KlTcfPNN2PHjh249dZb8ac//Snjvoceeih27dqV8bcmnXrqqfjJT36Cs846CwsXLsTvf/97XHzxxbDZ9M9v16xZgwULFuCUU05JLVO+Nw5HYp9bXl6OqVOn6j5WuqVLl+Laa6/F3XffnVo2ffp0nHzyyZgyZQq2b9+OX//612hpadF83Y877rjU6/73v/9dFaSNRqP4zne+g2g0itNOOw0vvPACioqKMh7jrLPOwrHHHosrr7wSL774IhYuXIiTTz5Zc7xLlizBGWecgZdeeikVhAUSFxOqqqpw0003YceOHZg/fz7OPffc1OsyderU1IUHIHGxwOxr1B+w3AENalpB2p2+zAOEkSazu6woNRmMyBAPQYqZz8BVTUv3b1fVAE1l0haPzvp4ZgK5gHGQNipoB7mNEhuynQgbNUTZ7piuu07v2DMx7S9tpSDCUXGQ/gAtUtU2y8ikzQzSOofOtv74FoO0VuqaAYDNU6taZiY4Ue2xpabxJ20QMg9GBIOSDsqTQ4cI09Nm880mAjOHuTRPkq1m0mqdMI4qSZY7UGbS5r/cgZJyvyFHOnS27OLf/bFqWS4n74IgmAruxmQZndHeDdKSdVrT1evt5mpr6xKdupm0+aLcnel9shwa5Q7M1HBLPIl2kNZKgLY/caXt58xkoee6rxsItC4IaBE1gnTK74ZWVq5y3xyJqI8rk/0HlEFa5cVSq+V9+gKrQVqrx1S9Rifj1FFzhObyWEfmxTFZJxgaD9an/m1U7kBrFpCeesV5lSxFIQXVF+ESK+Pm96NkWnNzV5LOkCHaDabN+vvf/w5JSuxrHnnkEc2g5WmnnZbKcFy2bBmWL9dvMnv44YdnBAqThg0blgrKNTY24vzzz88I0CYdfPDBOProowEAixYtMhy7y+XCP//5z4wAbdKNN96YCvLNmzcPkUhmWaLq6mrNvzXJ6XTirrsSZfG2b9+Ozz//3HAs3/ve9zICtPkyatQoVYAZAIqKinDJJYkyfc3NzaZed63X85lnnsG2bdvgdrvxxBNPZARo033/+9/HrFmJ0k1GtWHdbjcee+yxjABt0jXXXJNanu29HWj64c8rUf4og7RSsEGVSTuyOP9tvEst1k/0CxX4X/w8vNZ2MMI62ahKoif7j7DoMp9JayaQm3jMSt112x3TtB/b4KRNeRLQHlZ2DssM0iYCzwJicOK5kj/rPu78rQH8e70PewNxrG2O4Il1nVjaEEJwx6uZz182Kb+dfXUyaaVwK2KKmsPOIUfn8PDWpjBZbYghuCoB0QkZwArXN/Ci91bIOhkdSsps2o2OzL8vWZNWS0xQZ/AUKjBnFwSUOkUcWKV+7axm0gY0ghH7pcodZD5Ygy8G39q/ouFxAa3vn4/QrgXoWP5LBDY9DlmWEdz2AjqW/RzhhncR2bsEHct/ieCWpy0FtWJtayFLiYs5OzpjeMlxDZa4L9RpzZewpi3zfRVgfOHFiJmmOaGYjNVNmQfPhQrYkz6tepUNtkTd9RgceN/zAzy13oedWz9Ex7KfY+maD/Hkuk6sagxDimrXZovu/Qgtu3r2QD0aasm4rfed1vrIrW2O4ol1nfioLmQYaIi2rNJd198oGxJpSZ9ibmYfGexGiZb+zmy5g3RS1IfOVbehM5hZo9+rkZWrPKaKBNTNfQS7d9/jZl6kU14stXpRsi+wWu5A0KiR3xfoBVmdOkFaKVCPaNOn6FhxPfwb/q6auQUA7eJQPL97NF7Z7EeDP2bYBNBKkPaxtT7E065+ScHd0Gv4C0DdVJa6rbOz673UmyZv1ttvvw0AOPDAA3H44Yfrbpde9zZ5Hy3f+ta3dNell0kws92WLVt0twGAU045BbW16mQTINEgLRnEbGlpwWeffaa5XVI4HMaOHTuwbt06rFmzBmvWrMn43U/PXtZy0UUXGa7P1de//vVUBq5S+ut5wQUX6D5GcrvW1lZVM7X//e9/AIDjjjsONTU1yrtmOPbYRN+LTz75RHebk08+WffCQUlJCSZMSCR/ZXtvBxqWO6DBTVmTFsDOzswMl5E90MXbSkBBBvC38udRL0wFgsCm0n/gyo7sNUqVGXFKgt2bmlYuuqqyPp7ZTFo9nUINIoL2gYHRcb7yRP/5TX58M635mrImregeCrFoJP4TNW7q9c6+zsj/29J1UjN/axDfa1+NQ9O2s1ceinzSy6SNNCp+wEQXHFX6mcC6j68RpLWV7I9451eWH0vz8QUBNs9wfBg/1jAIruXgGife3N71fm1xzEQYRXAh8R4YZ9KqM3gK1SU8eZJ7xHA3VitKHmj00DLUHFSfjFTsu4hTrMi4X9UURcf6X0AAENr2HELbnkutC371GCJ7EoX1/evuzrhf24ELARysO4aNjqMxMdpVD7nz85shHXgrfvNRC6KeROOAgFCGE4J/V913l+1AvFDyx4xlThtSnWutqnKLaPAbn6DV++PY2Zm5jdlmO9R7tIK0yUzaV4p/j0Wey4EtAbwrVeNbnesxr+zXAIJ4bWsQPxGnYf+49kF988b/ACX6n+fu6lx7D+C4LnVbbzejnOUBALcubdv3ryCiUolmQ0wp1ITWt8/o/kD7iNZ3v4aKE16Be79zdMsIpWdv9sMZ8r3KZTIvID3Lse2DCxDc9QaC1VdkzILXCvgqP7e+rc+ptpGiiUYvqnIHqoul5sbal7hNDLpZHIUqaScA63X+e41eJm21ftPBptdm6D8cRNxX/iqa/aOBDX78Z4PxzD29IG2FS1Q1D5QB/HuDDxdPSRzjxf06pQ5Sg4kBGn0SKHfp9VX9fut9UZLC4TA2bUo0nTMK0ALAtGnT4HA4EI1GsWaNfuPriRMn6q5Lz1w1s116MFqLsmapUjLzE0iUdTjiiMyLHn6/H/fddx+eeeYZrF27FvG4/vFq+lR8LQcf3DPHMfl8PYHEa5p+e8WKFQAStWTNHuvv3r1bd92kSfqlCQGgsrIyNY7BpB/+vBLljzKTNg479gQyDy5G9UCQdmyZ/mMqm13tsU1Avb2rxso618kICfoZh0mCo1SVtZkuPYhrKzsg6+MlGwmYoRXY/KBIv5OoUbCtXaNTdFvaMkkxHVuwF8E59Ggsc3/bxEjV/ltyV8ZtR0Wef0TFzGCjLCUyAmPtmd1EHVXTLTeGAKBZt9g5xHrZBCNiUS3+573FcJsyjWzxKZWOjIBHXHBhu6Or5EF6kFZ0D824r/rkUDA9LTTfkn/DrKHq96dJI+hq5AhFnVNR6Apwan0vdtm1S28kA7RaWre8bDiGB8szC/r7v/g/PLfRl1Gz93/Ft2jed6H3Z6plzm5EYQ4fnv0z/8Y2dYmTXLLPqGcdNkS9L2qzjUAE7kSAdh+/WI15Zf/K2O6pkgd0HzckqC/mJEuEWKX1SY2GM7N49abnawVp0z30hfYJhW/1HabG1p+0L7kKAPBFYyTLlsAhJpoKDpb6s1rMnvQmy2bJ8QjCu15HSCiGrCiXoVXzXLl/1jyejAchS3FVXeiBUJPWTAbowqJrU/8WnH0zSKtVWsw95psQnWU5zf7a5DgazTZzM+YA/fder7Hy/K1dv9uJTFp9elnClLuqqq5knD17dEpNmNDa2pr6d7ayCQ6HI/W8LS0tutvpTZcHEtmtVrZLlmHQk23MQ4d2nXsox7xt2zYcdNBB+M1vfoMvvvjCMEALAMGgfjk+AKioUDdJzod8vp4AVH/n3r17LY/J6LUwGkf6WLK93gMNz2poUFMGadvEWtXU7aFF+S93MKZUP3gaFTLHpHVC2il0dWUtnXm3aj2QONA3qqWVfrXdUT4ZzqHH6G4LAIKF5gmls+6F8vR3h1271MExI1yaGVdJWo0LImnL4oGdGevEohGqAJ8VATGzXIPgyO9Ut+Q0wiQ5WWc4nnlya1Q2wvJzOkvhmXB59g1NshXVIiwaXyj4wUHqz22RQ8SY0swLFFscXVe104O0ZUf9I2O7mCKT1iZkn2ppE7SDxd1x4ih36iRaq2yJsk5lNkcNd2WcNP7okK7vrNZJULs43NLjA0BUsB7s/6Ipe7AFAFa5zlYt607w/PiRHlS5rd9fa1ovFdbX9teeOdFuy/4ZbrPpd+SNC+qLnN+ZlP3CpRatQGtQ8ZurG//P8SMX2f2B5nL32NwuLPamstnzNJdLgUQdy8ag+gRZ+fodVetGZZbv+Gljut+ktT/7xv7Zg2zJRkzJ5qnKY0dA+0JfheK1bxO1p/4CEqItX2QsUf4O98dMWjMzcLY4ujIEbUXmExR6k11jplXJoX9I/H+GtVlOALDbrp9Vp2QU6D7XxGdXivmybWB6LGRO+jT3bNP4zcp1xlQhdWfM3/3ud7F161YIgoDLLrsMb731Fnbu3IlQKARJkiDLckYgMVttZaOmYn1Z8m88/fTTsXr1atP/kTWcS0CDmjJI26I4MXTbBNOddq06d/8ivPRVQLU8Cg+GHH4nYm1rEfjy77BDHSzpFIegRtoG57A58B54re5ziI5SxMPNmutcI0/PuF158hsIfPUEBNGB9o+vUG1vNBVd9djDjkXVWcsQ3fMROlb8ApAlOOSQartjRrhx1cHGj6t1Ep1+YiD5M4O0Nu+oVBmHXMlIP//Ob2080ZEZTJD3HazKyhpcGoGI3AkoO/IhBDdpn2BbJRbVAuqPbsqvZ5Zh2hDtwOABlQ5sbu86AN+WHqRNO3hy73cOqk5fhGjzp/BveBDxmDqDJ9sBUKlTxG8OL8d1H+pfwU86f6IXTpuAp9YbnzxcoRF8Tme13l2F24Y7j6nEZ3vCGFVix9S0LDOth4rn8LMd0zh5z6ZTI4PdrO7UCnbYBNxxTCU+qgvhk4YwNrZqN1hSKuqP0YIBrsQp4m8nVOHH72b+BtXZDuzW40qK70CVW8ShOvubbOxiYl+fvicJCpkX5rJlzBoJRCUUKaKUsk4D0PJj/53z8/SWogmXoX2x/gU/p8Y5Z3p5osQ2Au7c9x3/1zr1/vZ7U4qxf7m1WukDzTcnejG61I7WsITpQ1xYuTeMR9dmvlapa9X7ZuNEoT7u0boAXu3J/Dy26l0QkWXEWjNrKqpmtPTDII0ZIhLHY4KjDKKrvLCD0SEIAoZ9x4/2JT9GrG09ymbPg708MW246IAfwlY8xlJZFWWWtJEyg994r0PEDw8u0Z1JAGjvA71TrwdEOwTBrjkjjLrnwAMPRHV1NZqamrBo0SJ0dHSgtNR6lnh69me2jNxYLJZqWJacsl5o2cacvj59zBs2bMBHHyXKgv3mN7/Bbbfdpnl/o4zhgaKqqgr19fWIRCKpRmuUfzyrocFNGaQVM6+YV3vEHrtSqHc1P+4eAe/kH8Mz/rsAgBjUJ58dYmK6hneKeqpxOqPAqqs2s6OkYC+Cd9IPUTTxcs1MVGVwMRtn9Qx4D7wWjspEBq0dYdU2J4xyw5blBFgriyn9xCDu25GxzubdD4Kte0Fav5B2MCGZyyg0S1A0x5L31X6DYnqXkNd6XAIE0W4p0G7E5tHLvEmYWqV/gH1AReaJwDb7DEg6P0XOoUfDO+WncI04TbMmbXvEOJBY6hJRbjKTtsot4vQs2VuXTCnO2pncaudoIJGtf/rYoowALaAdpJVyCN5HNfYh2Zit2iDK6iBqaTfrw5Y6RZwxtghH15oft9a0Xiq8ao9N9Xmos3fvoF75HZhUmXtATxAE1W9MUFQEabtR+1qrvrIcU1/hKpr0o36TleQapc6eBxLT7rVKnUQ0ZsMkv+Na9Vcnd+P9HCgEQcDhw904bUwRhhTZcOqYIkyryfx9SNb/TZVM0pgxoXX8VK1oztgqjtS+FC3HEG3NrCM5EDJpzRCROB4z2zC3UAR7EcqPfgzVZy2Bo6Lr4pcgCHArEjGy6RSzNxtOytb8ONsMRGWQ1ll7Mkpn3InS6bejZNrv89uslwAkPhPJplh+vx+PPPJITo/jcrlSjZyWLl1quO3KlSsRjSaOEftKMG/58uWm16ePee3atal/GzXcStZrzZe+eFwwbVrivH7FihWIRPJ7jmxVX3x98mWA/rwSmaPOpM0M0g7pgVIH2URtiRPE5NiUmQsA0CEmgqjZShDolTuwVxwCW5H+lFNRY51gzzHAt++E2i6rg7Rm6pll20ZZ7sDmHQXZ1r0DvPS6XHJcPe7uEFSZtP7kEyk27LvTYLQ+H+mMuncrg7QhsRS7bcZF4+0l41RTnO2CgNaQcZC2zGk+E97rELM2tFGWatBiNZPWiNYFDGUWoRlxoeeyUmxQT0vM1ytgpTFcUQ7BceodyszqbgdpFXXbu9thXpltGBDKM253p9xxvU8rSKvOIrOXmp9qXGj2cu1M6Lh/p+bvddjggo+kER3M5ULXYKD8XU02qZT3lUpSljtwiNr1lGsUQdqwWKz6zANArH0joGjMqrxA0h9r0pphk5NB2jGFHUgv0i97oWaUSQtkn32g3Acqy4BRz/jZz36Wqv958803Y8OGDVnukSBJEv79766ZHieddBKAROBy2bJluvdLDwQn71Nob731FhoaGjTXSZKEf/0rUR+/oqIC06d3lRSJxbqOdY0arz300EN5GmmC253Yr4fD+T0X7Y5zzjkHANDe3o7HHnusoGNJvj5A33qN8mHQBmkFQTD135w5c7I+1oIFC3Duuedi5MiRcLlcGDlyJM4991wsWLCg5/8Q6hZlkHaT4+iM28qD2d4Qte/L4tk3NmXmAgCscJ8HABCdxvVSRUcJ4rDjfc+VeNV7E1rExLQ214jTDO9n82gEaR05HkSJiddQq9xBTOsMTUEri2nPM0PQ/ulvsXCbHy/Kl6DB1tX4zObdr9tB2idLHoSEZFMO9bi7Q7AXwy9U4PWi67Gw6Kf4fI8ff3/u95i3uRQveX+PNc59Gc55zKTN95VGW5H+wbxN0G+0AySm9w9RTLdMr0ur+Zgl4zQzeJQdhJVKnGLWzNckr0PIGlw0FaTNY4BB66GU5Q4abAfglsrP8OuqTdhmPwyfuebif97fYpu9qyGbXzDfnKBTqMb8ohtMbx8V1NnHGolzOcmWZZ9OOaWc+o4SxXuzznWyqfuFob0fVwdpcxtXkjJIGxQyL27qBRziJn6/HljVgYdXteOxRe/i46dm4rG3nsKbtotUzZps/SpIO0Vzedy3DZva1Jn1WnXlk2Iau3D3QE3P7Cblb9kbX+3B60tfx3++ktFgOwBRqIO0Wirdouq37t8lD8AnJBr8SBCx2H0xHl9Vhxe9t+F/3t9ity3x+VT9Dg/MGG3qovBACdKudZ6EV7y/w5eOY3W3aTNRKzypzJVlBpzOqdMF8/figvl7ccWuH2Bj2vkWg7S9Y8SIEXjggURTTr/fj+OOOw4ffKBdIz1p3bp1OO2003DXXV1Nla+66qpUM6crr7wSHR0dqvu99dZbmDcvUWJt1qxZmDnT+Di/t4TDYfzgBz/QbEJ1xx13pGqnXnbZZXC5umYnJLOHAeDxxx/XfOy///3veOWVV/I63uHDE9/LzZs35/Vxu+OSSy7BqFGJpLZf/vKX+PBD/cbFAPDRRx9l/ZzlKvn6AH3rNcoH1qTtBkmScOWVV6Z2Qkl1dXWoq6vDyy+/jCuuuAIPP/xwRpc86kPSsgIi8GCL88iM1craXXl9ap3lykzaevtk1TY7HNOx2XE4arI0tRIcpXjZ+3ssKkrUmF3q/jZuaZ6WNUirmUkr5jYFUdiXEapV7iBqJkir8RZ0iEPx8WYfXt/tBzw/xEfuS/C75sNQLDfDVrwfpKB2HV6zmuzj8K7nxzgp+EDeyx3A5sXfyl9AvV07G+kD/BBXtl+Iw/Jckzbz/90jemrhlZrhF6tU68zUbzyg0oG9dV2fh62OWTg69C/d7W0l4xEX1mUuQwz+qPHnx0rTMLc9cWFOFLSzu4YWiaYCgZ48ZtJqZSmlZ9b7hErcWdl1cHRPxeupf7/v+SGub52DYfFNWOk+19TzyQD+Vv4CdtuNM5uTkifuqjHmKUjry1LOIh0zafuukhzLX6xwn4fZoSdUy5XZ5N1N5nMKmZ8zVbkDnSeImvx4vrsrDGAq3qiYD0QBeE/BLvtBuLSjq/a7Vqf2vsqhk0kb6tiBVzYfpFquVe4gSWtNPmcjDCTKl6VdKsa/mmYAAN6qeBPf6vx5xnqHoJ3CbBcFVLpFNKfNRFnnOhl/sz2P61uPx8Kin2KB99dAEEBRIrDykecy/K55umpml9Gsmf4sGYzu6+UOzFjvmIN/liWyIN8r+hGubpuL8dElqu3aLDQlzZZJa8aD5S/ghpajMDS+GaI9t8aPZN2ll16KXbt24eabb8bevXsxZ84cnHLKKZg7dy4mT56M8vJytLS0YOPGjZg/fz7eeOMNxOPxjMZjBx10EH7xi1/grrvuwqpVqzB9+nT86le/wrRp0+D3+/Hqq6/ivvvuQzweh9PpxMMPP1zAvzjTjBkz8Oqrr2L27Nn42c9+hgkTJmDv3r3417/+hWeeeQYAMHLkSPz2t7/NuN+0adMwdepUrFmzBg8//DBaW1vx3e9+F8OHD8euXbvw1FNP4fnnn8fs2bOxePHivI33qKOOwnvvvYfly5fjjjvuwOmnnw6vN3FRw+PxYMSIEXl7LrNcLhf++9//Ys6cOfD5fDjhhBPw/+yddZgcVdrFT1W1d49LMpLMTFwIcU8IkiBBQtBgS1hskUDwD3eWxXYhyC4aHIJLkGBx4kLcPZOZjEt7VX1/9HRPV9UtaxnJ1O95AtOld3q6q26de+55p02bhnPPPRclJSXgOA6lpaVYvXo1vvrqK2zYsAGzZs3ChAkTEt6Wrl27orCwEAcPHsRzzz2HwsJC9O7dO1KUrVOnTkhJSUzUX0vT4UXaG264ATfeeKPs+vAXgcT9998fEWgHDx6Mu+++G927d8euXbvwzDPPYO3atXjzzTeRk5ODp556KuFtN4ifaIfhcpu0snJWEp20JWnkr1+QDl1MKCY0gveN6zHidl+4/okxFuXQd8rsigi0ANBAZ+Mv+1RMzh2juJ+14HR4drytuI1WgrWh6TQML50WLc5GI9E304JVZUKh9AfnPdhobRaaA5Qdi+xX4QzPf0DbOoGn468M/b3rQUz0vAxz1lD1jXVwgO0kK9CG+db5EIbS8qKlXszZoQctW9dz4dnVLHrEmvvF2DvBwu9FI6QiLalwjJie6WYsihJpyxhlgYJxFklcQgzbiBMK0rDwkLzTObXpQUJcGGhyiR0/7BFO48xoEnTlxg2KUrUNUnRPYMEbUq5bA50d+flP+xWy+3KUCd85H8JVdfJFfsQcYXprFmgBYE7Ks8TlQ3ITE6/QJUV7F4VUIMegbeBEA0CYEaLGZynPEkXagCh7U4/jmoSJqwfQ3ImXFg4j76dU4VyN9daz4abS4OBrAbQvx54pjXyNeHtPOnF5rwz5a+KEQhsWHBRew7XcQzoiSh/zAGXHT447BcsslHzRxSw7IxBpAaDU1A+HmX74WXQcAPBTDix1XicpLkV7jwDood74NkavDLNiUcoUrgJAKD6rvfOdSyg2feF6EndXnyLZroHO0XzMXiq50akaRdxvnI/iurrLjQzaFubBBx9E//79cccdd2Dv3r2YN28e5s2bJ7t9//798cwzzwiWPf3002hsbMSrr76KXbt24brrrpPsl5aWhjlz5mDQoEGJ/hVi5qabbsKCBQswe/ZsTJs2TbI+Ly8PP//8M9LShP0AiqLw/vvv4+STT0Z1dTXmzJmDOXPmCLYZMGAAPvvsM+Tna48OUeOGG27Aa6+9hqqqKtx77724997mmW4TJkzA/PnzE3YuPYwaNQrz58/HRRddhAMHDuDDDz8URGKIiaVInVbuu+8+3HjjjdizZw+mTJkiWPfOO+9g+vTpSTt3MjlGx0C1k5ubi+OOO072X0lJCXG/7du347nnngMQGpVZsmQJpk2bhuHDh2PatGlYvHgxhg0LjXA/++yz2LlzZ4v9Tgaxsd56lmRZMs1ZA7ItKHRJn0YCdHhEWfnredjUX3WKEE/Ioiy3DVStnGrrOhVManOEgHPA/ylurwTnC7laxXlpAFDgUhdhTiiQ7hct0IbZZjkRjLMQFM1IpoQDoXzSWJArkhIrtZz6tK4jpj6gZfKEteAa9GjkZ8ZVAlvxhaHlgx+LKlxGIf2Ej2I7AW0BJ1MJON+p/jfNsAk/914qBaDli0RRJjv8lLATb6VZTC6xK+ZFhoXXawc0CzAuM4ULejoxOq/5fMdlmSVtEkP6rgLAOd2a21XgYjC0U+LyXwsJImV0jMFBlWzPnebRaKTTVc+TEwzdn6oZfSPyu82jJMusTEh4SQT9sszId6orNqcVxT8oY5A8rApikRYsnYRTdN2iz7TW3Gk5TGyD4LVEpKWkA4yANGtXL3vMIwAAtDU7wYUikwtlcsDe/UrJ8mXcWOL24wn38DB/7y91uGiNqDEQctTUXfDaQZM/twCQIzNLrIbJly1OecjUD0FRn5IO1utsZdvgwp7K/bAU7igAgKKTl+feEti6XYbDon6C+HUYUrQaiaJUEwZmK2+baWMk9QdIRKJvmMT0GQy0c95552Hbtm348MMPcfnll6N3797IyMiAyWRCZmYmhgwZghtvvBG///47NmzYgFNPFRabpmkar7zyChYuXIjLLrsMXbt2hdVqRWpqKgYNGoT77rsPO3bskOzXFnjnnXfw0Ucf4cQTT0RWVhasVit69eqFu+++G5s2bUK/fuRIn0GDBmHdunX4xz/+gaKiIpjNZmRmZmLEiBF47rnnsGLFCsH0+0RQUFCAFStW4Oqrr0aPHj0EGaytzahRo7Bjxw7897//xZlnnon8/HxYLBbYbDZ06dIFp556Kp588kls3boVf/vb35LWjhtuuAFffPEFTj31VOTm5sJkaj/9KSWOjd+iFfjPf/4TCZGeNWsW7HbhQ6LD4cCsWbMwevRoBINB/Pvf/8Yrr7zSGk01UCFlyJOoX3M/Sk29JetIeWmJgqYoPD4mA1fNqxCek2kS0SiaKDYKD6LcUWqkpEKflVKfi0zRJmSfuQye3R+AtuVGRL6Y4ENvopcSPoydUaxNWNHqkGNhirgeOEKxtSv7peClddLcJCVMuScm/OGZ1lgQjFKJslDCNfBBmDMGgHUfhr3bpZHfweQqQvY5a+E79CPMmYNg6TQ+thNQNLGgHRDqwKshzm310imwdJbPSqMomijSlqSZ8cTYDGyuDGD5ER+2VgnFoMwm4fWUrnZk2WkcbmAxKs8Kp5nGzYNSMSjHiyBPHggQkycjFl7ax4luaSbU+TmML7AlXGC4fkAK/reh+UF4t3kkONCgwcHKyxcvCNNISd3OVoYS5ESGq4LXU8pOmiDMMEFZcPvPiVmwJyhTkqYoPDE2A3ctrJK4vqKZ3t+YKtmWsTLx5F9QyJz0M2oW/w3evZ8BkH6mXXGKpRYTg+j6d15aeN808fKRNw+PSsejy2piOu9u80j09/+ClOHPxbR/a5I29k2Yc0aibpn8TDQgFBmldA+3mSjMOikL/1pZg6JUE24elDy3TXtH753Fxchfq+VmMVU31S0gYeXqUS/qx5naad6BWgRLkJIfNG5POHv/A9BQbJ4HwKv0Tc/u5kCOncaEQpumOgcPjEzHFT8d1dZQLr6BPIPYsFgsuPTSS3HppZfGfIzx48dj/Hj9zxInnngieF69bzB9+nRNTshHHnkEjzzyiObzX3LJJbjkEukMWjW6du2K1157TXEbpd9LbzsBoHv37oIibCSKi4s1vZ+Jft+tViuuv/56XH/99arbitHSDgCa3MLnnXcezjvvPN1taMu0z7trK8PzfCQYuk+fPhg1SuomAkIjDL17h4S/b775RvOH0aBlYVzF8MOGxqhpxGHcweT+zRxmGl1N5YJl/qaCIhRF45DKtHi1jlI9L33gkQv0F0Nb0+HsezPsJRclpPCUWKRN15gXqlXvYSkLaGdXANLMQiC26dD1NqlwHy+0RtGXUikKp7gvRcFWNBXOvjeBtgqLRplSe8DZd0bsAi1Cn025AQQtxbXEua0+yikp4ifGTwudLzaabTqfGZNLHCghnDfT1vzhGZRjxeQSR0S4NdEUTuxix8Sudk2fjXwZ1zdFURidb8NpxY6kFK8amCMciPHQ6ShlQtONrZwGkZaWFg2Lfl9C22SBMrlQx3RWPFYd3Un1fJkqjmS9OM00pvaQH9AZX2A1nHdtnHictKytAJTJBkefmyLLxJ/p1Di/d2bIOw4BctHLMPEUF91tHhn6gVM+f1uEok1w9rkBzuPuVtxOy30+18Hg+QlZuGVwmvFdTiBORn5wQa7ewj7zYNl9rFw9WEpcwLN9PkaqfczCkSqJLhzb0lBmbVmM4mKMYkroPbi8rwunFTs0F/azMBT6qMQiAICbSgXPelS3MzAwMOhItM+7ayuzZ88eHD58GABUQ5DD6w8dOoS9e/cmu2kGMcA4i3DAPJC4zptkkRYALJSwoFYwLEZRNPaoVL1XowHSDhpLt04VVY/IneTQOEVVq7bqhz3KSSsV1GJ5jq+mcvXvpALNaBRp43DSJh95J22xTNZyNOIsxwDlAEcrZ5L5KOHn1koLi6LUEYpMicXIeOisYdp9MsiyM+jkEP4eOy2hTGkb30DaJQoKjVSmZKm4oJqfcoDPHI1aWlmkVVufLJSm7WZYjQDLtk48Im21PXRvji5c6aaEIq0rxiibMGZCUctoTLy8gJARxzVmv2kQ/LCB55TP35Zx9r0ZoBg0UunE9cZDRuKoUphNQMJJy3/v5AYX9pmGyO5j5WolmbQmKonTzZKIWs3a8NR/zl+T/MYkEUpjbBbHKIu5NGL7O2dpuD6WmvqCD7pjOr6BgYHBsUqHjzv47LPPMGfOHOzduxcMw6Bz584YM2YMpk+fjpNOOom4z+bNzVXG+/RRLrISvX7Lli2yGbdyHDx4UHF9aWmpruMZSGFcRdhjGkFc50lm3kETZtFUykBkWjeNvab4RNo6TjoN2E+3fJXD9ZYzsSfsGmpC7KaUQ6uLt5bpDNoh76Q1x+CkraKk7up40Rp34GMy0TpyugYUnLSFGnKGSQV3fIyyKC2JOxDlRNYTRNp4CvuIcSXBJauVvpkWlLmbHT0L7Nejhi7AHw7lqcY+2oW1timS5aTKzL7MsajxKmdpHTQNwGbLJJjgxQTPGxpbHz92Wt4RptWRb9B6xCPSVlmbsuEoE+qpHCy0X41aRvg5jTcb1gz5zxegLNKa4ihaxlIWbLBOxols+xVpGWcX2IovxPaDh4jrEzELxyDE/np9jmuHopOW3A8pN/WS3cfKN+CIaD2j4kJvq0TH/ZDYZRmLCroIKb7qFmpRcqDNKQBBYP3c9U94KRdSuAoM985BpxTlQXIasRlWtBQQW2Odiv7supiOb2BgYHCs0uFF2mjBFQB27tyJnTt34r333sO5556L2bNnSyr8RQunhYXy+U0A0KVLc2XQAwcO6G5f9P4GyYG252GPZSRxXaNf+eEtEVggnE4VoJum9lI09piHxXXsBpBE2pbNb1xnORuz06RZOja2GkDiCv4EKAc8thK4QHbS+mIQ3Gt4aZ5nvGiNO2ikMyH1QLYRKFq2cJiW6ADSjHhxsR4xEietSKSt9XgB0ZS9Y0Ug6JtpxvyoCuhVTFdVgTbMeus5kmUuEweaZ8FFDRh4XMejTsXN/EXK05Gf90UVMEs2dsoDgByHwfMscblB28FKxX4frTKHiiHxrB+z0r9CuamnZJt4C4eZeRUnrYZYkVh5P/U1jAu+k7TjtwTOfrfhwJH3iOso3siaTBQNAX1CmVNhcEsu7kAJHnSUiSAE007/vj4Ns+ReyPgZz/jeI/Si2w+huINayfLF9r9H/Twd9wWvVTxOrGJ8qoZaZEvsV+HcwO2QBjMZGBgYdFw6rAXF4XBg2rRpeOONN7Bo0SKsXbsW8+bNw/3334+srJAw8/XXX2PKlCkIBISdkPr65iIuLpfy7dvpbBYWGhrUpqYatAYUzeCwaQBxXRffn0k/vzjvzt8kXPp5E2oY5UEANRp5qejip1rWn/ll6r+Iy60BsvMmHmpMISctS8jXSvdt0328Wj493iZJoFVcW2HqVUTL1oQDBZ6S3j7y2e2a9rcxUsF8nek0xX0CIkHfIhJ+BvJLNZ1bjUJ2i2RZMbcxIceOlV5m/QN8ShT7FsPJCx1CDaY81DIFmo8RqcrcAth5+amQhYF1LdYOg9hQc6oqUUWHBqoP8/lEgRYAXNBXEFKMGcq5kyY2eSItAPzFyBdNbA+Ys4djtYtcubl/cFELt+bYZSS9WNf2Dsg7wGMp7rjceZVkmSmO73Zrku5X7w+66QysYZT7JW0e2gJKZSAzQDmwNvse5cOoDGTJ0U2jQ3apfXpMxzcwMDA4VumwIu2hQ4fw8ccf45prrsG4ceMwaNAgTJo0CU888QQ2bdqEwYND4fkLFiyQVPHzeps79BaL8jCh1dpcIdTj0R+MfuDAAcV/K1as0H1MAyFBjkcNLc0eTWcPYjA7P+nnN4s60gEq5BjjaOVCSilcueJ6AOAY6SCCj1J2yyWaOkJ1eQDozFRoPsZJ7lc0bVeNUGYmJ4oUoHgOeVQpugbWaj4nALCmxFea1uo88VJt11fAy9w6Lqi7Q9sBAvWSRRXhac0yiN3RNCf83oxs+B9sXLNj5G9112lri4jJDY9Jlk2pVX6ASTZpNfNh52oSdryh/u+Rwh0RLKvhM1FHx+ccz2D3x7W/HBaOLMJ1Cm5D9+DqpJzTIHGYuNjzBuua7s1+K3nA0srVwxqsivn4gHJhMACwU8kVaats5EHi9sLGygAOo5i4bkzj6y3bmGOY4VXPgeK1zwiiWXljCOerwSnuWbrOX0HlS8/RTp20edQRdPOrmzAqbeR6Fe2FAAfwGiK21gaPU1xvVRnIkqObdwHygtKBbzEHzINiOr6BgRaKi4vB8zx4nsf06dNbuzkGBprosCJtenq67LpOnTrh888/h9kcms47a5awI2OzNYtnfpXp8D5f8+ij3a5/andhYaHiv7w85QxBA3WqvJxEdDq98RncWT0JFkvyXadmTizSNlWVVdlPi9jHM9L2+xIYMRArLu4oXFyl5u3PaZQKZyQqg00CtyjJhUYQtMmKm2rOw4X1d+HSuhm4pO5W1eMFmcSLtCyvbcqil267TloSf6u7Ht2CK8AFNMwYCEq3CcjEJ4QRVx+mRNWAM6007qyehKkN9+OmmvMwxPcNeI3vdTT9/L/j1uozMdz7CcZ63sEd1RNRElwV07EShb98ATqxOxJyrDGed0H5jyKVKxMsP+BLAa9S4VmNk92vxrW/HBa2hrh8Zs2ZoGDEHbR14okLqGuaBMvIZL9mcgfB+7QP+JEwK2TOAoAdyS1qY2bad1f8hz3S96drYC0eqRwIG5IrcHckejG7MbNmsubtKcJ9NgzbuA9nNT6BkZ6P4mpTe3XSUiYH/lE7TdVl6rS271RArcWPxf0rMQwfW9wB7yvHzOrJOL3xGaSz8rPnrGbl/p+BgYFBR6N99wyTSLdu3TBpUmg6586dO3H48OHIupSU5sJLahEGjY3NHVS1aASD1qHCI+ykWXg3TnM/Dxdf1ZTnlFzMoqm8ATSJtCp9q7DjVgmWKNKq75ds8oNbwPulOVkkeJ4HhZCwq0ZlU/VjcYeTRhA864UVboz1vocRvjkY6ftE9XisSsXbWAiqlRVuwsNrCPNqJUi/QtilHKzeoL4/wUkb4JUfhiR/U5E7j7blIJvbhwmeN9EzsAQAwPtjK/pRElyFy+pvxYUN/4cuwdDvw8UpBMUKz/PwH1mAzkFtURJqZLAHwXnLkMoKnfi7G4WfN5oP4MzGp3QdW23aeKyYg9K/4wDfD7Dz9eA8RvHMtg7DxuGk5UIzP+SumxnsQXA+7QN+JJQKgwGAA9LrVRg+GP9nvhVrEsbN4YYg1pQLhboL6u/B7TWnI507AhiZ0QnDlDEARcG1KA6s1LQ9xcp/btnG/aAADPJ9o/n8FKEAFcO1V5HWCQu8GOMlZymHac2CoYnArbEWwxG3cr801m8x5ymDFW6c7n4ej1QNwX+OdsKldTdLtrPEUYDRwMDA4Fikfd99kky/fs3Tbw8dah4BjC4WFl1EjER0sTCjCFjbRCzSZrAHEO4u0C0h0opcRn6ExBK1rpWfUnfE8jRBpG0D4l9ecAv4gDaRFlzIMWzi1R8GKr2hv6VE0ONZIIYK2iyT+GgIrfXL3BodEK0BqWVU09JA1Tr1/Ukircr7woqm7NFB4feGtmVL93EnLveYrU2MSKr7vPW7wbkPoZPGvF81aLDgPGVI5YUi7Z464XUwlSuDg9MncqsVYIoVJiCdzh6eScAaIm2bh47DSVsbCA3eyBVjT+cOxS3Siu/BYhy8fOYt6zksu07z+duxQPHjXqHA7eCqMdw7p3mBjun5Bsow9lCcUzqr8TNHuM+GYRv2AWi+b2vBRJTqYnNYtjpNmfpqv78jzqKErY1WJ63c9TUMz8f2PrCN0jx9ksFES8FZAwMDg46EIdIqIFcZPFq83bp1q+Ixotf37ds3MQ0zSCiljSKRlmsW3pPtpGUbD4Fx7xEs8zeJqOpOWofqFGyOkQq5Pk7b177czeKDLQ34brdbs/tTK3nsVgTrd2valm9yajBQj3eo8IQeCMWCHoMguID+4jJHvImfgqXWGQ7jUVMtlc7B8fhxjxsfbW1AuVv4+d5RHcAHWxqw9HDsDjDS5y7ssglqEWmDJJFW+Y0RR5JQTe483+FfULfyDngPfCfZh2081NReDu7tb6Ju5V0IVIedsdWoX/cY6tc8CM6rLvIE68giKc/60bDpBdStvhdso/KgXSx4938JAAkTaQOUFWz9LqSywrgD8eBBGlcGGy//kE/CzHsi72+iYBv2o375jZLl4euBd/dHCXEzGiQPJo7CW/UBHg1+DrM3kT+LGeyhuF3ujFomLSc/oBisVe4DakHrPaEt4QlyeH9zPebtE4q0o70fwBoVD6Hl/fGXLULpbArln5eACxjxCHLwTYKiOKpGlqDC4EIMIi1DEGmDbDt1SkcGD5R/f5PMc2B7IVGD/UF/LSq+HxXq57i1DRJwvioEjkpzfwOEuhiGSGtgYGAgpH2H7SSZzZs3R37Oz28OzC8pKUF+fj4OHz6MBQsWKB5j4cKFAICCggIUFxcnpZ0G8fHlTuFUzHQ2ypnFWJEseC6IirkjYcaZguWBpq+llgzMAAdYFKKkONoKiKYgezn13MkAy+OhpdWo9oU6sqWNQVw3ILZ8VgrSbnBecAs8O9YibcwbsoMhYfgmcZXR4qRtckXzPIPoCVo0WNQuuVpPswEAe+tYBFge5gR2ILUK3vF0rt/f0hBxOP2+34NXT8mGhaFwqCGIh/6sjsQVBDgeEwr1ZxSTfoWwSKvFSUuKO9hQIS/CczxPEGkb4C9bjKp5p0HuQYtrctI2bnwO9atDxb8at8xC7oX7ULPob/AfngcA8B76ATlnKxegkhNpa5ffDM/2NwAAnl3vIfeCfaDoxNxaeZ5H/aq7ASBhcQeBJge+2oN+GlcKO6/R7d6ECT5UfHM8Ok07SnQ264XnAqiYO5K4LnrQpmbp1cg44cO4z2eQHFg2PhH94T+rcbCBLAaZ4YvbSVvBZQEKl3il70H1r2cCORpFMxne3liPiV1bPyteDy+vq8OqMuE9meaDGOd5W7CMD9SB89eBtpD7D5yvGpU/ngAAYBv2ouxDF/Kmt0PVukUIvS9+SlutBEphYJpt3Kf77AzBNRvk2qdIy7oTP6DaFvlmV2LytHkwCFQsR6BiObx7PkXOeTtA0crPEhVzRxOXk2YBtuPJBAYGBgZJwXDSyrBnzx788ssvAIDu3bujoKAgso6iKEyZMgVAyCm7bNky4jGWLVsWcdJOmTJFVYwyaBuUmXo1vwgqZ9XFg/fAt+DchyRFS8LZnFp8lD4VCw5LOEgtl6K63+LD3ohACwC/7Y/9ITvTJr3MdA5uAwAEq9ar7u9uEsAG+aROSTFVXg4sxyMourTRfBAgFD7o5/tF9Zh/libWpcdaO2nazhOHSBs9BbU+wGPhodDv8MGWBoHA+up6fU7JMCSTL90kigfrd6ruzxGmwClB+rwyXCMaNjwNJSdMeCpyWKANndyHupW3RwRaAAhWrkGwQfmhNVizibg8LNACAOc+DO+eTxWPo4doV3I6l5johqLAGgBaRNoy2Dl97nNzkyOxcdv/YmucCN+heeA8R4jrukdV5vbu/qhVC7sZKONk1fPEw7i4CsmAnJxAC4SysHlfbNnTYXqw8gM0FM/CLJPtyXpC36E0rdPPZWB57YN3bQFPkJMItAAw1LYTGZz0vXDveEv2WDULLpEs442IBDJN17i+/l81bU4H5QcX2Ib9APQ5aYOU1LSQTddo3r8tUdc0+NktsEJxO387+l6SWHc0MZnBvQLNhiS2YQ+8B5SzjIP1e8DKDGwXBDdKlqnNpDIwMDDoaHRIkfa7775DMCifo1RWVobzzz8ffn/o5nbjjdKpljNnzgTDhEYRZ8yYAY9HKLR5PB7MmDEDAGAymTBz5swEtd4gkZAe7Bup9MjPpDylRBHOuLSIRFo/H/pcaZntrua29BDErQBPY0ulcsdtS5V6tIBWchzS0fbwdEjOp/7wHqgMPUBP8LwhWXduw4OC1zyAah+HAC88pxnkrMyzG5+IiOQ0H8Rg71eSbQ43JtYpErTmq2+ExE6BPdwQut4l6u9a45N+OF1ck5tNQ/avv3yJrvOVu6XnS0clfAfnKu7HecmfL+9uaUVr3ts0ZZoi3xa1OIQBIFAjfQCJlejrD63jYVqOLHYv+vtD4nQqV664bRpbCiuvz4UTnhYeKFsUWwNFsA3NUTBnNjwZ+TmdPYihvi9FGydvQM0gPtIDu9HTr+0zYeUbkKFxQKJzcCuKgyvBx1h5PEyv4J9Ikfk+0GBBceSBOr5pEPfS+ltlj93f97OmAnxl7vbjSDxYT27rsF5DicuDCtdE3+GfJcv4oBF5QKTpc97X/wdS2ebBq2HRGcBRZAflB0zDTlqTStRHND5eGv/UiWmdgprxwjbFcAz0fY8sVn6AttLTfr6XyYLiOYzyCPtMwco1ivvwQfmi2n39v0uW+dpwDQYDAwOD1qBDirQzZsxAUVERbrnlFnz88cf4888/sW7dOvz666944IEHcNxxx2Ht2lCl8nHjxuGmm26SHKNXr1646667AACrVq3C2LFj8emnn2LVqlX49NNPMXbsWKxatQoAcNddd6Fnz54t9wsaaIYkhFn55gcEtmFvEs8eOrlZ1En2N8URBAiNo0QOE7eKkitXNEBtdL3aKz1urE4fTrTfBfVRrkZaPU6CbxL9nHw1Hq4cjAw25AC5bUgqzh0zBWZK+IBe4WHhF+Xuit3KYfLYrbi9+jScV38fbq05C70D0viSRBd1If1NCsw1kmVcAp2Bie7+VnuFDy4u7mhkKiSvItLyPK9bpBULGGnsYZg4D2ir8pR6OZGWuG2gLjRoI+Pi4hoPaMqu5QPyDyd64bnEDZYM9n6F26tPi+QKqjlpU7kjsPD6xBJHeFo4nZgsZ9qSEfl5oucl/L12Os6rvw93VU+ESZRRzfn1RTMYtBycrwLX1l4euXYrYea9yNSwHQDcWnNWaPCCi0+ktbKVuKP6VPTyL5Ss40GDl4lroJhQAZzegYW4tfpMpLOHQPNBXFX7d1xSdyum1c/E3z2347wBvXBTpyXomcphaibZkS/Oxm/LHGwgv9+5TjNSR74sWU4pFuCU3l8TeQ09puBDnxELPLireiIu4F/HrSW7MbWHi7h5VmAH+TBBb2SGghnyIu0FGWsVm5MX3AKwiXFqthYMgrijehLOr78XV9Vehb4+oUv5qKdjurq7+5cCAE50v4ZHK48X5EwDzbMIZJHpR1EmB2hwGMcJZ8Z522Mwt4GBgUES6bCZtIcPH8asWbMwa9Ys2W3OP/98vPnmm7BayULSk08+ifLycrz99ttYu3Ytpk2bJtnm6quvxhNPPJGwdhskFtIUm2j3WCy5XXoRd5L9fEhgFE+zYngfrLwbbqpZuFBz0sqtX68i0tb4pA+M3iAPl0W/YCnuqpnQfG5Ki5gTJfplcIfxcNVw5E4rB2OzAZiM7F2VggfcSg8XeQ/DiIXwaPLYbchjQ/ELB03HSdabEjyUJe6MDsm14J7hvTBnWwO+iMpHbsuzv6pFTtq0KFcP+CB4ngMl40hlG/aBcx8GtMXqAZCKtNnsXoDzg3bkKRYN4rzlmoVO3l+jWok8ULUW1vyJysdRcJDoJoEi7VmNT8HJ10ReW+CFjauFl04jbp/OHdHtpHWEj5+oTF4u6loB4Hj/j/Lb+msBR15CzmuQWDhvBSzwYqT3Y/zkvEdxWzeVjhJ2pabj2sOF7eJ00vJBD9K5alxedyMeyha6PjnKJDvwFJ09XRJchUeqhki2SZ/wCewlF+MEAKHk1c747ZejqPMLL/DtSqStJ7/f2XYGjKNAspwyKYi0jBUQieAJvYYeQ/BRgxEp/FGc0ZWGq98olLuHAweFA4iZ7H7QLPl9jM5jFc/kimbUgFPw+cIq2fUW3p3QgcTWwsHXYrw3lKVcauqLLdbme/zRduRwTyQ31l5IzCAOw3mVZ+LIDWx1vjw08Ju/oxHY3jwIrBbBZmBgYNDR6JBO2nfffRePPvooTj/9dPTq1QuZmZkwmUxIT0/HgAEDcP3112Pp0qX4/PPPkZ6eLnscmqbx1ltvYe7cuZgyZQry8/NhsViQn5+PKVOm4IcffsCbb74Jmu6Qb3O7IEDof0U7aYOt4KQNNLlAxW0z8z5JtXV3QLlj4xWXbG/icCOLcoXOJ8lJG+tIt1hspPjm82rp4POcsjMzS5R5W+Fl4Ze8d9qmQnOQisaJdtKKO6M2U+j4tOg8ieyzJjquU/z5SONEuaEK7prA0aW6zyf+rGZx+8BzftB2ZVGO8x4FpzGvkvPXqIo9WiIPEuqk5RP3AExyziq5aWNx0ka2j9PZGEbPtGcuYDhp2yrhwl7i4n8k6ukcZHL6Yob4OD9vfFNURipPdt7LCQ5aMKX2liyzEgpRljYm5jvTEshlBGfaaOL9WlGkNZy02hHfn6jQIIGZ8LXKYXcDnB88obAXG5W/rjSA3cnBwG6S7/9Q4ACufTtpxWSywmvP0Q4Yd2DnahQFWiB2kTaMTXQNNERaAwMDAyEd0kk7YcIETJgwIWHHmzx5MiZPnpyw4xm0HKSiABZB3ME+8DyflKJv4elCYidDXYDCR1sbcEDkVjHBF8p8jIpbfXV9Hd7pnCN7DqXiU+uP+jGpqLnKap2Pww973aARKjal51gkVpX5sLnSj921wt8jXGAKABrWPQzzKd+DNsvbKnnSQ0CUuJtlZ4Coqc+VHk6Sg6s0pS8alkq+SCuOOwh3VsXPWYmMOwBCxV7iKUYWjdhJKxb7PLvfh73nNcTvjdaoA57n8WepD7tqAlh0SPj3y2L3AZwfjC1X8Ricp1yQa6pEsGYj6lYpu/zqV90FZ5+bQJnkK7HzAf3F2PwVK+Hd8ylMGQNg735Fsws5gS4lUi5zGleOcvQibA1kMB6Ydea8hnNzldzNWgjW7YB72+vw7PlE8z68vyaucxokh0DlWvA6RFqeYjTHHYTx7p0DTJDmTGuB53mBkzOL3YtKpli4UTwibZr0+0USaX/b78Xf+6fA1A7KnMvFJZloCn7Se0VJHzWCdTvQuOVlYpa0Z9/nMGcNjrud7RmeC8C95RWwnlJYC86A79BP8B38QbgRFernkD4zOezu0HFYLyha2L+KniGmJNLSFNAlxYTt1eT7EAWO3D9rx4gHiI56uKQ9AySCWh+Hx5ZV42ADi3tHpGFQTmjmJ8vx+ONgbNctJyfvng7DqcQdBCqUZ0NYReL/hooAXlpbC5qiwFDAVf1dsCV6GpuBgYFBO6JDirQGBmHIcQdR7i3WA857FIxdWQzSC8/zcG95CQDZ5fnNLuk0YzPvhY0XVlt3B3l8uKUBl/UlZ5IpiXLrjvoiIi3P83h8eTX2yxQEAeTzbUmsLvPh2VVkZxsdFYDgPzIfNQsuQuZEhQJQhKmm0aP02XZhR67SyyLNqj3uIJogwUmbaMSO5PADOyPqjyYy7oAH8Op6/eKhHOJMWrFIW7v0OoCxw9H9csm+/jJ5kZbjedBND0OLDnnxikybs9j94Fk/KJNyZgLnq0DlD2MVtwnTuOkFTdvVLLocGSd9IX9OnVN1g/V7Qm1sEmT5QD2cfW8O/ZzkvD+5YkkAYLfZwfljdM/ryAKW7BuoR8XcUeB96g+Kgv2MTNo2B9t4CBXfNUcA8JAWkSSRpVOkBc/Cs2cO7CUX6dsPkNxfigJrJCJtPE5akovUJuNOfHJ5DR4enUFc11b4coeyuz1cTC2ahrUPIGXg/ZHXXKAeFd8NBy/jfm/86ylY806BNe/k+BrbjqlbcRvcW18BADRufIa4DRURaaXrstmmwUnWA4gGwQVOWsgPxFEAipREWr59irSkgsFhxE5aH8ujPsAjNYaor2TD8zyu+7V5QPSfK2rxz3EZ6JZmxre73fhkW2wF+Jy8BpFWwUnLespQv+ouxf3FTloAWHK4+Vr8t37kZxoDAwODjoIxTGXQoSHFHXQPrhC8ZuvIxRfiOu/R5ZGftbo8TbyvOYMvim93k3MjOZ5XFGn3RDlc99YFFQVaAGhQKVIWzRsb5AVBWjSNynfwB3AB+c4kZU6VHsPcnKOZZRM++Fd7OVSJRESrxmnbBUFpFep6f2ILR0jiDpo6q2LHbo0vceet93NYcUQ5NkIPkkxacdwBgNpFV0iWcd5KBKv/kj1u9ECAnEALhDJpec6vWqQMPBsptpIovPu+jDzksY0HpRvodL96dr0n2Kdu+YzmlQmKO7BT5Adp0t8tsk/X82I+H6dTYI3GvfVV3QItYDhp2yL16x4SvOZkcqqj6e/7WZOTVlyErG6ZtMCrFsTT8wf6hAVtGN4vG7nDq2RYk+5dADAkl1znYHNV28/3/HQ7+V5anBryfJjS+6kew7PjHVmBNkzjxuf0N+4YIizQKhGsD/VNSbN9ugVCfUyOEBkTLhoGKA9gUxTQNVV+YIUC1y4LhynF6KRxpYJILgCS/mRbYRtBPP9gS2iQOFaBFgBcGpy0Su9h/Zr7ZdeFkRuoCkPQcA0MDAw6FIZIa9ChIcUdjLBtFrwO1m6WbBMvwZrmCs9aXZ5m+GDntbvF3AFeMde0zs9FxCYtFWwrCTm1cohFvGgcXI10oYJTibZKnUW0LSvys3hE3s/x2Cp62C0IkitqR2hypPQOLJCs2idTJCVWxDHBTNMDVpcU4cSGfXXBmHK6AoR9xO9HvEgzaVUq/TbhK/0N4SzmK+r+IVmvJY7BxtWiMLgB4PyRrMsWp0lU9e79XLKKcZXoOpTv8C+SZWHxR5zNeE7DI7LHmVBok113dSdylW6xayjM5X1dcA34P1AW7a6+Qd5vIj/H4zz0HfpJdRvncdJYilb7LBjI4i9bJHhNiju4q+ok0E1ZmzQfxMmeV+GAuhv97EZhQdaYIzZErroB/h/R1dKcYz3a+758xrJKXnrauHeIy88olo9LaY9QaHa+WTqNJ24T7V70l6vnkvsOyRcJPNZRcnoKtguGBuhNNIVx+c3Cfw//EnQJrg9tQxi8ir4+M2Bhp6SfYytDgaYopFrkHxNp8AnNTW8plDKPGbCS2g+JiolKNFWEPvmmygDq4jQWKGXVRyM3SO478B1xuWvw45Gf063K8gPdRuMlDAwSyfTp00FRFIqLi1u7KQZtECPuwKBDQ4w7SO8Db82G5m2qVQS+GIieKqRUXVfQLmc+0uwuoEbbOWpVOmoBDvCxgM0UyrVSo0JjlVu1BwxHVIX55n3kjy3uCKYME079s4hE2koPB7eoU90tsExyXNfgJ0Bb0mDvdilYzxH4D82DOWcUrmhw4f0tzZ34vbWJFWlZ0WcuPFWxZ7oJNNUcc8DywM6aAPpnWXQd30MQafUI7GpwPC9x+aYqODKjiRYkB/m+xfv4r2C9loeh430/wAR/yEmr4MBOJjznB8VY4Nn3mXSlzocLxtkVAQgjINiG/TClFEscqZM7VaBXnzR8u9uNQTkWjOxsxYYKPwpTTBiQbcGkrnZsrw5gQI4FFhpYW+5HUaoJJXUe4mUji9tLbNNZJXZQlAM5526EZX4Qfl69q3B5/c1Rv4A35hw/tlG9aBTjKoIl72T4S3+PLIs3B9cg8YinvnOEuIO+w/6Bp3Ot2FhrR3dmF7o0ToOl8/9gWQ7I3cLu6boGeau/Ia+MExo8/q9wCX5fvwh2vg6DfV8Bzi7EbUmDEdlTNsBf+htMmYNg7UyufeAw03hybAbuX6KtqGFb54mxGeiRHooKkv3Oc36ACQuJiZ2dcqzBa4zMiY7SuHFgKo7P8aJy2W0Y2vBupBwbaVaDOKLgtsyv8VTlxYJl4QlKSo5HHlQ7ddIqv782vh4epEdee1QK9LYWcm7TnTLxFADw8klZWFXmQ66Dwc6aAL7cKZ2Jl5M/FOmdPoC1cDJql8+Ad/eHxGPxgXpQjHRWACkKgUnpBtfxzQ7bTJuySGs4aQ0Szfz583HSSSdFXl900UX49NNPFfeZPn063n33XQDaB88MDBKFIdIadGjEcQcZVhqm9P4AmsWXaNdroojObNTqpLU6c5GaWQDUkOMNxGgZTa/zc7CZGFRqqGBboXHKV51KjiXRSSuuWhy9SvQgTJmEWVVm0XO/WKC18I3oEpROsbcXXwBTWqjyNm3NhLlpmmY/q7CDe8TNwhPkYE9QEQOxhhrujNpMNIpSTNhT1/xebKuKQaTV6foIsDzMOnrE9X6pQztNpip6NDzPwx8l0jJgYaaCCEQJgOK8XhJDfV+GfmD94HyxZ5/GBRcA23gQAZIjTGfcAWWWZq8FazaGRFq/8AGbtudjeGcrhndufjAqjHJg98wwo2dGc67yGSWhdT5vOvHc2exeybICFxMRWhhHPuzmo/CrfKcHZwZgEhQT4kPfaUIhPjW0iLSUyQlz5iChSOs1RNq2Bs8K71UkJ62z7ww4ARRlAcCApn+A01wBP2HwsE+GGf0zKcQeqKGO3QSM886OvOZl7k8kkdaU3h/mjONUz5ElI1K05SJFcoQFWiX4YGOzoKMhgkaPi/9Yg/NqnBUQFbfB0BQmFNpRTv0GNipCi/NLBwLEA9+5ZmmfMtyPsIvD8qOoYfLbZyatSnFPGy8Ucduqk1bObbqjhtwHybbTyHEwOKMkJO43ykSY5RaMhL2pXoWr/52yIi0XqANty9bUVtdx9wiua+lWWmBKENMO6icatHM+++wzPPDAAxgwYEBrN8XAgIgRd2DQoRE7ac00mkTaZpIt0po0ZtJaaHL2mBx1ogfcTg5GMjodzlvVIsBqiUQAgNJGZeepgyc8NCgJW6IHCooRTuu2qLwnJYGVYEBoE6HiNAAUukySDuK+usS5aYOizxwTdbI+mcKHXVLmmBoeHdnBgHI0BXF70WeFApBCqRclY+t3CqpKA9IHwPDDkNyIdQpXjh6BkOuU53ytJszxnB/efeTiYYqfZdL2/jrJsvA1R+yCoq2Zuo4dhrKkE5eT4g7E1w0tFZYHEpoVS+QBz/Mhx50KFG0GbRU+HBpO2rZHeDp25LWOLqf4OhlZzvPJF/DE9waZuAPJdF/GpllgZWTuW21TDoqf6AxLLQURaUua6jbHKrxf2xAEaQaSOB6K9xHc2qJrrIugsYfH+O0KTtoKpkTT9bqtocVJG4144L+tINf1lRNp853C65qcyBvtcqVEReeiIfVd5GCaDBHR55aLPKApBUe+gUGC4HkeDz/8cKu2Yfbs2eB5Hnv37m3Vdhi0TQyR1qBDI86kNTOURKTlPKXgfNVgvUdRv+YBNPz1T8nDpx54LgjP7g8ir2nwMGlw05ppCqyMePXsqhpwUevq/JykeFeahUKKKF8s7Lat0CDAas01PdIoL/jShLwvAAhUrJTdJ1C5SvBaPL1KHHcgpjsh6qDpQMTFFoZCoUu4LlxkjeN5/LzXjQ+2NKiK0XKIzaLRz0C9M4RPS+uO+vHZ9ka4dQiveh8oZvxRiXKFKIuD9UF8sKUBv+zzgON5adEwKw2GJr+XtctvhffA9wCk2au0vTNsZuFDQ7hwmJwJfJD3WzAItTVYvSHuB0TKHKMQwAXgIeTRhtfpgVRAJ1gdKmAnLqAVq0hLy4i0JkjbWi+a2qn0kB5mYLb0KT8WkZZzH9K0Hc+zEgdPsgV7PuhGw8bnULfqHgTr9yb1XMcMos+AlsJhYcSfwzBBjpxTDgDefV9pb5sClOjewHnLEazfI91QPMuDkc+FFiP3tfpgS4OmmS1A6CHzt/0efLClAQebstODHI/vdofuUUdE96hdNQF8sKUBiw55W3zqZu2fN8C96wPwPC8YpJaDC9TDX74UdSvvhHvHO6hf+zBKZ1MonU2hbvV9ugfD2hOaCy+SRFqL8B7B+avgO/wrapfPhHffVwjW74bv4FzBNhQjP1tHrcBTe3TScgqZtABgFfVR4814TRZy3+ANFeTvRq5DeP11iwskNBEtnlImeZG2ZsnfUb3g0tB3ctX/gec52e+lKbWXZJlc5IERdWCQbLKzQ/3Hr776CmvXkms2GBi0NkbcgUGHRlxkyUxTMKX2AGizQGwJ1mxC7Z//iDjc/BUrkHlybA+E9av/T7LMwnsQpJQf8MwMBTmtblWZH48tq8EjozPA8zyeXF4jechNtdLwsjxqosw/ESetxofCPw97MTpfuZ1KIq2T8oDU/6qZfyEsFx0C48gXLCc+dNMikVbFSds98Cd5hcLDRXGqGfvrm3+PsJN2zrZGfLUrJND/ut+D107J0h2DIM6kjXZU9c6Uil2f72jEzpoA7h2Rrun4sUzNm/FHJd4/PUcieDcEONy3pAq+prei1s8hQ+R+yLDSoGgr8YHBveUluLe8hMxJP0lEWmv+JNh4GtH5hJ6mh4YGmYeiIb7EiDAAYMmfBD7YSI4sUIFt2IdA+RLiOrmp0XJwAakbJVATEmmT7aTVghaRtnOKDeJSI959X8LZ+3pd5wrWbtO2Ic+2uJO2dvmt8Ox4EwDg2fkuci/cR8zjM5BHj5NWjiDHg5Zx0lb/cR7ST/wc9uLz4zsJLe0aV3w/DJ0uPAjK1Fz0SxLFQ2v/PMg5aefu8eDPUh9ePilLdpsw3+5246OtIYfqT3vdePWUbHyytQG/HQi1a+lhL16YkAmbicaRxiAeXFodGST0syk4pWvLFTDzHZwbEgdZDzivemEi3leJyh/HC6b0h2nc8E/wviqkjfkvYc/2j3aRVvreUKIBDN+BuahfdTcAwL3lReJhlK5jatd/La7otoaqk5YTrp+zvRHn95QXK1sLudkGclhF/bt6mRijDJs2kTZYtRbBqpDA1bjxX6BoM+y9riFuS9s7S89jZQDCLDejaJhBsrnlllvw5JNPwufz4aGHHsJ335GL3RkYtCaGk9agQ9MoEjKtDAWKNsOU2lOw3LP7I0HsgW//1+DlKj6rnXPT85JlFl7dmWtlKPRUyH7b0uR0LW1ksZcwPT/FQksq9R5sYMHzPLFKLIn/rFWf3nRUQfB1UPLuusYtL0uWVc+/SLJM7PqwKjxEmGigZ24n4jol4ao4VfiQfqAh9H6GBVogJIb+uk+/W1AstEc3P9PGINsuvSyvO+qXFS7FuGMscrHokPR3+WG3OyLQAsBn2xsjwn6YNCsNKDhxAMCz97OIOzSMpfPJEpdO+FxyQnNxcBVxeSw4e98Ik6tbTPv6yxdD1seSgLgDtm5H6FA+YTYhZUmskxYAShhhBMXYfOED+5Bc5b9t7wyzQLgKU/fnP7Q3sAm2geBWJGBK6yN10nqkxUoSBR90RwRaAOC8ZfDLiPQG8hQFVmvedkw+WTga3smqeO2uWXSFrjaRcq1JwgTvq4JnzyfCZaywMFoinLRAqGr7Fg0zV8ICLRC6r3y5oxGLDzePwlZ6Ofy8L9TGr3a6BbM4Xt+gHlETK6bMwbLrapfdrN31ThAhw7i3/09vs9oNWpzGAGDJHSNZJh7I85ctUD0ORVtxXJawbzmsU+i6ryTSdgssA1hthW/bEmqZtIdtw6X7tMGiQT4NGf7RHCeqb1CSSvZppVm0ibRiGv56AlzjfuI6UnyBnJPWbCgTBkmmS5cuuO666wAA33//PVasWKH7GBzH4ffff8edd96JsWPHIjs7G2azGenp6Rg0aBDuvPNO7N9P/j6EmT59OiiKQnFxsWD5Y489BoqiQFEUduzYodqW0047DRRFIS8vDyxLfgb/+uuvceGFF6Jr166w2WxIT0/HsGHD8Oijj6K6+tgoYnqsYVwKDTo0pSLXZ06TQCYWQ4I1QoEJQEKzuEgFfMTk2BlVwYTneVTKCK42gsi77qgfnqC0EFQ8NCiIhFlm+Q59oHyxdCHJlSjKC8yy0bLZXL3SzcgaLXWPMM4iMPZc2bbki+IO5NzBu+v0T7kUTzFziHqkOXZydMDBBm2DAtU+ba5oMZsrpZ/nzQShQGzeMNEApXIr8ex4S/J9oe25kr8b3yR8kgwif++yn+jCjgVz7hhYu5wNaBBVzLnjJMuCddvld9D5MMcR4g74YCO4QKPUSWvL0nXsMBRjgSmDXBzhquM7R95XhgImlzgE608tciDN0vzOD8m1RLY30cD1x6eAosmDR3ofbLU4yMxZw2DOHgHanic8V7ABnMrDd6z4y6TXpmDt1qSc61jCLBKRhls2CAahpvWWFwAmFNok33e7icLpxXZQtAm2bpeRd9QpGon/trQtF+asIcRtxd97sdhDmVM0n1fNJRvLFOstVQGJcLPwYGjwLZZ8cy1YCber1OHPye/A+SUF5QyEaCmeCAD2btIBCTmXuRKUJQ2X93VF7scMBZzdLXQfMNEUceAYAE50/5dYmKytw4vjDii6Of6KtiJgkQ7sJ7KPnCiqNZorACDfyWBgjvD5YWCOBZ1EEQgnd7EJrk0UbYK9x3TN52EbpKJU2pg3iNtmyXyusmT6wAYGieTee++F3R4yGDz44IO693/sscdwyimn4Pnnn8fSpUtRWVmJYDCI2tparF+/Hs8//zz69u2Lr77SPwPw0ksvjfz80UcfKW5bVlaG3377DQAwbdo0MIzw+1NdXY1TTjkFU6dOxeeff44DBw7A5/OhtrYWq1evxiOPPII+ffpg2TKZaECDVsOIOzDo0IhzRfNcoa8EZRIKFRyh+ALP+iTbxUoXF4WdKppvgYsBQ1O4bkCKrAumzs+jRqbjZmEoDMy1CNyg++qCOFAfm6gnR4NCfmq2Rf5BUesDrjgv0ERT6ORgJII7AByfY4HJVYSc83agfvW98O77HM5+M5Ey9F+K5+jsFJ6jIcATnayxmCvEIrbTLHxYF7udwxxsYNFHg5GyRmchMKX9SE4N4q+sMj2NSe0pKBwT2oWRiDDh95N0jgnZdVB7HEwb/z5qFZx0tK0TXIMehr3bpaBoRuKEk0AxyDr1Fxz5QOgUZet2Kuyk70MhV3yDbdgLcMLCROK8QT1kn70W9avvgXfvZ6Fj2Tsj/YQPkZfaBU87A9hUFUDfTDO6pQkFV5uJwjMnZOHPw150djIYnGvF1io/dlQHMTjXggKXfDciWLsF5vR+mtuo5YE/8/T5oChKEo0CAJz7MGhRgZJE4Cv9TbJM8qBvIIG2CgcVUnv+DU/3ycSSw15k2ZiIW4/EoBwrHh2dge01AViZUBbtsE5WpNtC1+b0ce/iiEzVcT34yxYJXls6jQ8NANBWyfdP7CoTDwroEWnVcMncB5QgZZeHZ8skwp3mJcxw+Oc46TXJmncyQiUlZa6FCg5ZA4B1q4u0jr63gjJJBxljKapHW9JRkmbG0+MysbHSjz4ZZnSPGtDPd5pQ4RF2UMe738Tx/h/B8e2vwJs47sBaeCZcxz+AwNFlsOSdgrSNVlT7hc8GPpaHSUfh3pZAa19vej8XTii0SQaGGJrCU2Mz8dsBDzZW+DG+wIZxBdLPVNqYN2DpfBJqF1+pei7SAINDJgIhkzTCg1CRYwODZJOXl4cbbrgBL7zwAubNm4fFixdj3DipKUOOYDCIvLw8TJ06FaNHj0a3bt1gs9lw4MABLF26FK+++ioaGhpw6aWXYs2aNejbt6/mY/fo0QMjR47E8uXL8dFHHykWOPv0008j7tnLLhMOXvt8PkycOBFr1qwBwzC49NJLMXnyZJSUlCAQCGDhwoV44YUXUF5ejsmTJ2Pt2rUoKirS3E6D5GKItAYdGrGwl98kzklEWoJ4IKnsHAfdu43HH1uVxdJw2+REPCDk+KyScVKaaQq90s1wmChBcanFh/VP2VdCHCERTY5dvpOreVoVofhMnpMs0g7IDokAptQeyDjpM23HR8jNSlNCR+cRQnEtnZFg4HheEkcgFmlTLOT3KFwYRo1YRVpS5IVfg32Eivqv7DbmFKkYSRJpw/8Xqd8MBVAyxcmicXS/XFGkTRv9GmxFUyOvOU+p8gEpBpTJBkvnE+E/Mj+yOFivJNJqh+c58IRMWoDs1Iw1kxYIvX+pw58jutyK08woTpOPUkm30jgjymHbJ9OCPpnKrn4A8B9ZqEukJVYiF0E3VZumTA5QlnTw/prIOtZ9GKakiLS/SpapfnYMpIWNKAYpFhqnF2sb3OydaSbmdAPargdakIq0J4CiKNC2bEkhO/E9Svzdpc2pus7NUPIOPXF2uRYaZWJiShtZ1QKbWqjySu+BWTJTlq2FkyUFqtRg0vqANRzqEjeiKeN4BKv/EixjCBmfQGz3iLD7tijVhCLCFPgCF4O/RAkVPQMhBzofqAXPBUERcpzbKuLCYZTJBUvOCFhyRgAA0q01kn18LA+n/C2yVRAXcSUxsatNcO8W47LQmNLdiSnd5fvfFG2Co8ffULd8hmx/JYx4gMHe8++y22bIXDsMkTYEz3OSyKtjHdqaBUpHgdF4ueeee/C///0PjY2NeOihh/D7779r3veaa67Bww8/DLNZeGEYMmQIpkyZghkzZmDUqFE4dOgQnnrqKbz//vu62nbZZZdh+fLl2L59O1atWoVhw4YRtws7bXv16iXZ5rHHHsOaNWuQnp6OX3/9FUOHDhWsHzduHC677DKMHj0apaWluO+++/Dhh/EPfhskhvZzVzUwSDB+lkeFR9jJyZMTaQnTcHkucSJt13QHAOWpumGXr9KzVpk7KDsFysKERs4HZFuw/Ehz20lZpPGg5KTNccj3crWLtNIOXJ5TusxhotAtLbZLnImmkGOnUeZu/l20iqRKeIK8xFvkElmcUmSdtBrjDnRMgYuGJO6SRFrpEooonAv28VUTBRuxATeszYpbQlFSB3UsMK5iwWvOrSy0hR88aZtw+iPnPqywl3ZxJeQulqliX7tF3BpQlvblWvKXLYSzj/ZsWr1TZxlHPoICkfaQ/MYxwnkrEayUVv9lFT8DBgAATvydb1sJW6z7CFjRgIul03gAoYdFsUhLS0Ta+Jy0JhqQiY+LaXq1XB75XxV+1QKbWhAP5DlMFGwyhTPFhf20wNg7GyItAE7kRrTmT5SItHLEFneQrrieNFuCRvMHl/NXg7Hl6D5vayH+3tKi722aVfqZ1jJg3dLIzZqLRsnUoRsN12+xk5ZxdpXdVi6T1hBpQ3C+SpR/Ih/LdiySO628Ra8lubm5uPnmm/Gvf/0Lf/zxB/744w+cdNJJmvYV58iKKSwsxF133YWZM2fi22+/Bc/zxGxmOS6++GLcdtttYFkWH374IVGk3bVrF5YvXw5A6qJtaGjAK6+8AgB4/PHHJQJtmKKiIjz44IO48cYb8dlnn+H111+H09n2CiV2RAyR1qDDcqSRlcgjEZGWEY08k6ZF63TScv46NG6ZRVzXJdUKNZE2XJmVUegnLTrkky30EBbABucKRVq5Ik2xwPO8opM2N8Ulv6/WjF+CWJdPeIjon2WJq0psZ6cJZe7mNr32l/Tvo9fsRHpvJE5amXmpB+tZ1Po4/LzXjX31QWytCsAT5NEvywwrQyHNQqNHullzETgx7iAPb5CLPHS7AxzKPdJjfbZdHFsAqDlp2YY9oMxCgZGiTZK9Zm9uQNdUEz7eKnK6AMS/u14YV4mwXRqctAC5MrEcPOsDF6hH4+b/AFwAzn4zZd1NvF+aRxtG7KSlrBkt6jBIBP6yhbo6ppqrmjdBOwqAms3N+xOEU9/hX1Cz+O/g3AcBAClDnoTzuHs0OzF9R/4ASUg3nLRkeC6Axi0vg/MckTqQE/AdTiT+cqGLljKnwpRxPABICtMBkGRYc6LZAXpFWoaSjwSIxUkrt8c7m8jRHBfPDRXbu6Kvq6kfwOOMEkdk4HBZqRc7qgMY2smKox5Wchw5kQWILT9bnDPd0eC5INxbXwHbKCzmaMmbiMZNLwiWyQ1IUbE4aa3Kwm6BS/l7y/uqAJGwwvM8PDvfQbBmC+w9/gazTCZ6S8MFGuHeKixSS5mF/VKSsOnVIdKuLvNhS1UAg3IsOC67ecYJz/NYdMiL3bVBjMm3oVdGfNbcrRpypltcpBW5wBlnF9ltM21G3IFB63PXXXfh1VdfRX19PR588EEsXkyoj6KBuro6VFZWwu12R2YDOhyOyLo9e/agWzftxYpzc3MxadIk/PTTT/j000/x/PPPg6aF38HovNroHFsAWLBgAWprQ88YF1xwgeK5TjjhBABAIBDA6tWrI68NWhdDpDXosIjzaDNtdESg0pI1q1lUbKJm8XT49pMDxB1mGqkWCnV+9Y4gKRcuzF8VfonoFyY8XV9cPCCReIK8onDZKS0dct1KrRmPJKGK5KQ9Lju+DnBnB4P1KttIfbHKNIpcxjQVKugWTVAm6Lbax+GBJVUS4XRDRfM7+tuB+FzRpY0sStJC7+8tf2ibZhUSUNVFOF5cIIvgpAWAx5bVSJbRFIAETKekrenCNkW5MEmEHTeMXVpIRI5AxQpU/3EB/IfnAQB8B39E9tkridtyClMHxY6yePJoWwvOfQhswx6YUrR1THm9Tlq7MJdW7G71ly1C1bxTBcvq19wPnvUiZfBjms7hPyyNOiCdyyBE3YqZcG99lbguEW74ROI/slDw2pI7NiLeE52goixVPih20uqMO1DQPBI4dqrK+1ua771/HfXj8bGZWHrYixfXhq5P3+8hZ3enExyHYWJ10nZk6lffi8ZN0jgac+ZgyTK2YTfxGGqCKwm1zy3JSVtDN197SVOyGze9gPpVd4Z+3jILuRfsBeNo/b9vzUJpwUHKJBRpbQSjg19j6YbVZT48syrU1/lutxuPj8mIiLG/H/BG6kn8tNeDFyZkEg0GWiDlT5NIZPozRTGqPV5x3IGSSEt6nwGgE6E/b2CQLLKysjBz5kw8/vjjWLJkCX7++Wecdtppmvbdt28fnnvuOXz33XfYt2+f4rYVFRW6RFog5I796aefUFpait9//x0TJ04UrA+LtCNHjkSPHj0E61atWhX5OS9P+wDokSNHdLXRIHm0L1uOgUECOSoSuzpHjd5SGqq+63HScr4aWYE2TLZCRdMe6c0duRyVUWY5J+uArJA4m2lj0CUlOZ0gtYrUGS55oUk8BU22MjxFykyTLhuQHZ8YrWU0X2/hMPHfxmmiJC5Dn8LTOcnZmkj21oUGLup8HOoVHNHR0BQALoYoCMoESsWBG8bHAhSlLLqHp2zaSqYR15PcsPbu8vm1gn11Tr8KC7QAEKhchUCNOLoghPgzH02wdpuwDTE8fLck5izyVKpA1TrNx1DLXzNnCad7if+mnLdc8Lpu5Z3E4zSsf1xzmwJVa4jLOe9RzcfoSMgJtAASMtASjdJUWi0EqzcIXls6NRcNsRaeKdleXPyQD4hmFZj1TREc1Vm+nxGLkzYRbK8JotrL4r9/KWdPAsChBnnliuhEVoHWMRgGhDIbjyVIAi1oM2i7dMqztWAy8RjiYn1aUMuTTSXk5Hdmm+9PpBkQYYG2aQM0/PWk7nYlGj7ohe/AN5LlYgd8d0JMFqmIKglxUd83ol5/G1W0lwfw7W43YuXLndr2LSFkDMeKrfhi1W140WeBcciLtHJkKzj0DQySwe2334709HQAUCzSFc2PP/6Ifv364eWXX1YVaAHA41EpVEzg3HPPjbhxxVmxa9aswdatITOHOOoAAMrLyyXLtOB2x35dMkgshpPWoMMinr7kjJ5mrsElqyeTNlAt78m097q26fzygtV1A5qdDsWpJhS4GMUHJDGpFgqDc5tFyzQLjQNQ3p+hAIeZQn2UuzdfZYRbnPErOSZjgqPXdXBvf12yTlxxV64CNOlBON1KY0iuBWvKQ3+3QTkW1baqoTSVM4z+uAPh7+RMRMntBLKjOoCTuth1FR/LdzExZYFS5hTIxBkSUZs+6+xzEwAgZdCj8O75RLLeNfAh6T79boNnzxxJFXfpyeNzZXOeUiBdWtlVqfig+PtAMfa42pBsUkf/F5VzRwO8ULBnG9Q7r0BoUEbRnUqbkTpKNE1VNOOBZ4VO8kDFCk3nVoJUrRrQP5PCQOpYi5e0MW+g6hex40V7xA3rETpGmJTukZ/tJdMk1czZRuFUXvDCeSEUrW9g8LyeDiw+7CVGDrVmBGZDgIdM/VEB4vtZNLSjQNc5U0e9KnvPl4MP1Le7nG69hAvppI2bjdrF0wEAlCUDtuILydvbOoUGsvn4M/TDUBSF83o4IsJgDn8QJYHma6tSbE8Y/9GlCWtPrIi/72HEgwODCLPNtGbSivtO+6NqGYiLz/5xwIt/HK/PfR/mrwr1+08nB43ecUYqROMa8H+hvruOex+t4KQFgOn9XJi9ubmvM77ACiYB+dnHArQ1C7nTYhPa2iuxDDIlgvT0dNx+++146KGHsHz5cnz//fc466yzZLevqKjApZdeCrfbDZfLhTvvvBOnnXYaunfvjrS0NFgsoWvI77//jlNOOQWAgvFIAZfLhSlTpuDjjz/Gl19+iddeew02W2hwN+yiZRgGF18sHUBhowLv16xZIylwJkdhYaHudhokB0OkNeiwiGMDoqfecBqqjCsJLGJIhWfCpAwMjdqJp70DwPBOVlzc24kuKc1fVZqi8NiYDCw55MXP+zyqYu2AbDNuOD4VjihBUC2r9Yq+LgzKCWXXzonKIFXLJqvwqD/ZpY56lSzSSuIOZERamQf924ekYWFTEbTxBTZdAe0k0jWItKzOm26D2ElLEuZbsX+6rSnjzB3U/rBcnGrW1WkPQ1vSYNbYGU+xUKCtZDero/c/YMk7GbaiUOaSKa0Xcs7dgsatsxCs3gDangd7jythK5Q6j8xZg5F91nL4j8wHz/lRv+pucgPizILlWZn3R8/7psXd34pYsoch++xVqPh2kGC5ZpHWVyl5P5zH3wcEPaCdhbB2PgnmLOG0X4qxCg+i4/3kg27VWBue9YPzlJFXcup5gAZCaJ1xAGpYC06Fc8C9aNzwz8gyxlWkeX/OK/zb0rZmxyLFWGDveTU8O96KLGMb9gq250UzCCidgzmZNgbPjM/EyjIf3tssvP+pXYI5ngdN6R8o1IJcATIxcpmSgPI0ZzEZE3+ArfAMuHe8o3kfoEkcPNZF2qZCYI4eV4JxFCBYsxnWLmeDIbhrAYCiGTDOLmAb9iS0HRf1cqIo1YRaH4c+m+4HIygcVqN+gFhm2yQYTkakFcfmUBSFLBuNyqh8f61OWjni3V9MpUpfe3o/F8YV2BIqeDLOAuRM3YqjX/bSNAhAWTNBq8wuOKPEgXQrjc92NOKkLnacWdK2B6NbEoqi21VBvvbOzJkz8eKLL6KyshIPP/ywokj7+eefo6amBgDw1VdfSWIIwlRV6auzQOKyyy7Dxx9/jLq6Onz//fe44IILwHEcPvkkZEaZNGkScnOl94OsrGbBOycnxxBf2yFty8ZlYNCCSETaKJGU86tfWPWItIpTfpnQiBspn2nmkFSBQBvGZaZxWrED53RTz849o9iBLFGUglq/7axuDhQSzqvWzazQULRKrmAPJ576La4MHt7fTBZpzQyFU7racUpXOywEwVsvSnl7YXRomQCkD78kJ20iNdqe6frG4Q42sGgMcBIxWYniGKfTUeZUzU7abBsDykQWKVOGPQt78YUCUd6U3gdpo15B1hkLkXHip0SBNow5cyCc/W6FOXukUmu1NVQGXuZ6oseNKREk2yDmzIFwHX+/YJm4CI4cUhcthZRBjyB1xAtw9b9dItACAETORT3XZDlXlbBNhyB71ePZmJwRHRm9hbW0YM07RfCaD2qbqsezPkkmtdhRZ84aIngtFmklQgUhikeNXAeDM0sc6JcpFHjVBgAb/Mr57/GgdZBOKVNXzzRnW+EZAPTPFuDEOefHINGFwKz5E+HsdwtMKSUKewCMqzjx7aAojMqz4bRiB1Kswj6cJG+eRBsY1JIr9kg78iXL0kT9v3hF1rJGcn9WLSJMDrU+2hklDqQksmhYE6aUEqSPf0/TtlqvAaPzbXhhQhbO7uaIq9ivgUE8pKSk4K677gIQcp5+9ZV8ROGmTZsAAJmZmbICLSDMhY2V0047DdnZofigsHt2wYIFOHQoNIORFHUAAIMHN/eZlyxZEnc7DFoeQ6Q16LCIO116nbR6XFuBKnknbThr00oQFtW0Rj0VZ/UcN4ze7lKFW3sEgxhJ3IGMk5ZO8JRZOTSJtHHHHZDe4cR1UtXyi0nsqA6gXuODg9NEIccew22EokGZnIpF8KLJUjgHLSPa62+SvAuOVKxOD7JZq3IOW1Ib2riTNozYyajVSSuOzKBtuarORKmTVkdOuJv8wC5ok0zUQfNBWl94aE8kQ6SVRF5oFGnF+cUAwNiEIq1Y7FJz0saTuSsWPFmVS3BNjOKOFuRy7fUQSwwBZdIn0mqZZt/eoa3yOf5yJEOkjSac/x6G0/B34BMYvxArcgNzjF1aVEfcH9cadyCHuFBxmL21rf++6IVxKQ8SRLbT4aY3MGgL3HzzzRFX6sMPPyw7EB8Mhr63Xq8XHEe+F7vdbrz//vtxt8lkMuGiiy4CAPzwww+oqamJiLUOhwPnnnsucb+JEydG8mxfeuklw1TQDjFEWoMOi1jgjO6UyTnfogln0voO/4K6VXfDe/DHyLpA9SbUrbwTlT+fgtplMxCs/kv2OFTYSUtQTtWm7EfnxepB6wwo8ek3VQbw/uZ6rDziw+GGIP61sgZX/nQUP+91g+N5HNUQdyAH768R3ER4XuZYLSRW2U00UTiPJqjTyiR2P7hITtoEGglyFYrRybG5KoDPtjeqbwigKNVE/IyqZU9S5lRQFCXJaJNDi2AeN3KfNwDx3io5Txkat8xC3co7EKzZ2nxKPU5auu07aQGAcQpF2mDVWrAN+8E2HkDd6ntRMXc0apffAn/ZIsF2nMhJSzvVMy3F70kgqhCUbMREE6QH9kDFatStvAPuHe+gccsrqFmgXCjFyKXVB2XSV1hL2zHFIm0D/GWLVfdjxTEWlAmUqDifWOzivOUREbjhr6cFBQIBgIrBSRs5l+g6+t6WBvy23yP7YFWrIzdcL+9vEQ+YklG6VcUSNyR7z5fBs+fjdvfgGazfg7pVd6Nh4/PgmwZ5+KAHDRsJRcPQHHegBz2RH7FAiwR499ZXUbfidvjLl8nuIxsb04LIxR2QBhTEfb93Nzegyiv8fPI8jxVHfHh/cz2+2dWID2S+N36Wl+3rvLCmFlw7+wwzKk7uyHaGSGvQznA6nbjnnnsAABs2bMAPP/xA3K5nz54AQkLsnDlzJOtZlsU111yDw4cV6izoIOyW9fl8+Oijj/DFF18AAKZMmQKXi/y8lZ6ejptvvhkAsHTpUtx2222ygjIAlJWV4c0330xIew0Sg5FJa9BhSUQmra90PqrmnQoAaNz4LDIn/Qxz1hBUfD8MaCpi4y/9XflATW4xUtyBGg0KhTvCkI4aqynAE+Tx/R4Pvt8jrFL59qYG1Po5QYZXLASr1sOcNSj0Qi7uoAWnQ6VbaZQpCIl6RdpG0TRSh0KxuEQQi5P2m13aK3sWE6ogAwDtLARbu5W4DmjOplR6b6NpCZFWXLk9kURXtnZvfwu5F+wBbc3QJ/K1UyctAJR/XgTamg3OVwEACBxdBvfWV5F99mqYMwcCkDppxTmB5JOJ4g78NeB8NaCt6TjyvrKoLX5gDzbsQ8XckSpivfgghpNWD8lwg5NyhSt/HI/sc9bDnHm87H5i0Yi250oc8+IBByD0OQlUrET9mnulB43DSUuKfnl9Qz3q/RzO7SEVt5Mp0uopHJlQgvqqX7u3vgpb13NhzZ+UpAYlFj7oQeWP4yIDUmzdDqSN+S9qV9wKz/Y3iPu0ByctH2xA4+Z/o3Hzf5AzdQtMab0l+/CBOvA836L9NzGsTNwBqU3iyCyWBx5YUo2XT86KTMlfccSHF9bUqZ739Q11MMk4IzxBHl/saMSFvVpmhlgiiM7uVoJxdk1ySwwMEs8NN9yA5557DqWlpaioqCBuc9FFF+G+++6Dz+fDVVddhXXr1mHSpElIS0vDpk2bMGvWLKxevRpjx45NSNTAmDFjUFJSgj179uD++++P5OHKRR2Eeeyxx7BgwQIsX74cL774IubPn49rr70WgwYNgtPpRHV1NTZt2oRff/0VP/74IwYMGIBrrrkm7vYaJAbDSWvQYRFPPbdHiaS24gvUD8B6UPvnPwSLapb8HQ0bn40ItJpoct/0SNdfhbWXhn1IfUOl6ezd0qKLlGlvyxc73KjSKNKas0cQl9cuv7n5RRuYHpehUjxMbyat+MHaRRBpSRmvsRZTiCmKQAdhjZoyC50o9uKLFPcLO1dOLdL2e6U2ZatZRdmy1i5na9pfCzThgcLSaTwAIFC1JmHn4QO18Ox8N/RCj5NW51Tg1kLOPRMWaCPwLBq3vtK83ntUsJq2d1Y9F0n0a9xEdqSptadh3SP6BFoAPKtPVOro0LbshB9TzrVf++f1ivtJi4Z1kmxDm52grcI2c+5DqF18JbktOguHRSN20ob5eBt58OhQQ+vfH4fkKg+EmHPH6Doek9ZLdxuq5yvfa9oS7u1vCGYMuLf/DzzHygq0gDCTViu0WXvUhK1kWgKPz6N+zf0y64BgzWbd50okpOgdcd8lDCnOtdLLYWNF88CcFoEWABYd8in2jT/foX1gXAsDcyzqG8WBVqHdcNIatEfsdjvuu+8+xW0KCwvx2muvgaZpeL1e/Otf/8LEiRMxfPhwTJ8+HatXr8bFF1+MRx99NGHtuvTSSwEgItBmZ2fjtNNOU9zHarXil19+wXnnnQcAWL9+PW6++WaMGzcOgwcPxsknn4wZM2bgm2++gd/vR2pqYou7GsSHIdIadFjKRVPzs6IEOWe/mar7c/5asHXbhMvchyTTeJWw97wm0uEZmGNBl5Rm5+NZGoS54Z3Vp0BnEqa8exSyQKf3a84NtOisDKtUXCH690kdOYu4TaC8ecRRUkgMgLP/7braEy/5TmUnql5D8hFR8YhOBKfrkFyL4LzndnfgrG4OpFn0O1AyrIzkc3R6sT2SScxQwHUDYs+JDH+OUoY2V1enrdlwHneX4n5Uk5P2xEI7CIkP0u2b2usa8H8A1fTeUCakDHpMf6NlMKf3lSxLHfkygMRnH3oPfBM6ro5MWpKrr02iwy3pP/Rz8wuRK1WL65IWOboAwH9UfsqtAJEg6zs4V9t+UXAeaa6pARlb8cWSadKJgLZ3JgotAZXPgfhvx9ilIi1AcA0G5KMAxIKuHiw6Jz1sqGj9qI2zVQqXpg57DlDJ846+rpmzhulug7j4W1vGe/B7yTK2fpfiPlrzP6PRHBvB2JEy+HHdx1fKG/bu+0I2goJzH9R9rkQSjIrDCZM68iXitnJCZI0vtkgvpT53LFgVrhfTeic+VkZM6ogXVbehDZHWoJ1y7bXXoksX5c/vVVddhUWLFuHcc89FTk4OzGYz8vLycPrpp+PTTz/FJ598AobRP5tRDrFr9qKLLoLJpD57JyUlBV988QUWLVqEa665Br1790ZKSgpMJhMyMzMxfPhw3HTTTfjhhx/wyy+/JKy9BvHTZuMOdu3ahYqKChQXF6NTJ3Ln2cAgVjxBTpLnGi2YmVK6IWfqNhz9SjptK4yccMPrcNGmjf5v5GeaovD4mAwsPOhFioXG6Dx1AdbCUBhfYMWiQ/IFc0i5pHIdxtF5VvSOqjKtlsmqxjPjM7Gt2g+XWfj7WHJGIGvyElT+MFZ2Xz4gdSmkDNPmkksUXVMSd4n0sbwkDiLPKT0+TVF4cmwGFh3yItVKY1RnKyiKwuNjM3HLHzIFqGRIt9K4ol8Ksu0Mft7nwSW9nRiZZ8OEQhu2VgVwXJYF1hhiNsQ4+9wAxlUMtm57SIwxu5B91qpQ7AeBsFhTlGrCk2Mzsbbch3IPi94ZZgzItuCG34S/Z/iZz9JpPLLOXIZA2WJY8k+BOWNA3G2PpvPljahdfiuCVeuQNvatyHTpsKgsxtbtUqQMfFjxOkEiUmhFh5PWlNJd1zlaD+2fp+iHOHFhGUrD1HHaInWZ8YF6bTmVvPC7qLXgVDSs5whi9052HGh7HtJP+CApx6YoCuasIfAf+UPXflInLXkKLyUqTMhJClxGHyNHVxuiEU+vVsId4LCzJj4n7ZNjM3D/Eg0FUmUY2dmKVJUYGkvuaGSftRJ1K26Dv2whcZvU0a9GfpYTxsy540DRJlAmF3wEoZPnubiLO7YEweqNkmUBhXoFAGBK7an7PFrfi5xz1sGU2kP38UmDY9HwhAF2QF/fONFw3kpworiD1JEvwdHjb8Tt5b6Nap95ORoSXOhP7IfolmaCiQKuPi4FxWnJvys5+s4Az3pQv/r/ZLcxnLQGbYkTTzxRc4a51WrF/v37VbcbM2YMvvrqq5jPOXv2bMyePVtTm/r27RtXBvu4ceMwbty4mPc3aHlaXKQtLy/H559/DiA0KpCWJhyR3blzJy6++GKsW7cOQKjTNmXKFLz55pvIyNAfoG9gQKLcLe0wZYvETFNaL5jSj0OwRtqxBgBOzsGho8I4RQvPaTfROK1Y2Z0iJsumPFJHyroV5/GGKRJNtY9XwMuw0ji1iPz7mHNGKe4rFmkpS3qL55l1SaBIK3bRAkBnGaeuwyz9HHRyMJhcYscPe7RPsXY1uW/PKHHgjJLm43VLM6NbU0deHPsRK7bCMwCcEXmtVCQoWvQsSjVJPndioqN/LdnDYMnW77jSAmVyIH0saeop+fviOv5+mGKYosvWbQfPsboyaZkYHqZbAz3fUcFDHCcSnTQUYRIXegKaskY1ZMXyor9pLJnEYqHPgIyjzw2aRPdYiUWkFRcOo+WctKLrmKKTNh6RVseslU2VAcGn10wD53R34Asd06ZjiVeKJlMlCiiMOWsInAPulRVpGXuecAFFSwZQsieHZifVLhXGS4VhG/bBpLGYUWsiFgkBKBaVBWITadXcywDg6HtLTPcuQD4iIAznIxfe5bzkfMeWICB20dJWOHrfILu93G0s/D3VW4+gXqWf5Wd5zQM1PM9LorZuOD4VXVX6UYmEoijYu1+pINJSYBzqxT8NDAwMDMi0+NDzl19+iZtvvhkvvviiRKD1+Xw444wzsG7dOvA8D57nwXEcvv76a0yZMqWlm2pwDFMuKliUaaOJHSSlaV1y0+xa2i1gjsHt6pGJJRAP0tnidNIqibxqbg/OLxRpaRk3YzJR6/TqGdQsbRSKUFkynzklOussBEZrEMzsJkqH91E73X6n4QAApIhJREFUlFlepNWTmQfoj5VIODz5AYuWycNUPVywEWzdDvCs9gEdU0q3mM7VlokuiiN20mopwkRy0rKN+8FrGSiT+ZvqQa5auIGQZBQMi8acNZS4XMl1oiWTFpB+x3lFJ622gjok9NwLxFEHvTPMGJ3XsoUF9VyTaaV7gTh7WuF7Kdcfa+2sUy1wMuJ+oEpZpI2lcJiW2Qy0OfaYIzUnLScqAhlZ7m29eJhgjVCkNaX3jWngKPy511p/IYx45p4YLUWAw5C676TCg8mGtmXJr7N3BsUkNxvXwMDA4FimxS/r8+bNA0VRmDp1qmTd7NmzsWtXKJ/pnHPOwYsvvoizzz4bPM9jyZIl+PTTT1u6uQbHKOKq8qRIAACKGXqe3eTpmy0u0sbwLZYzAYgXxxN3QIFcfEEr4ilzVBwPFbGSqvIL6HlQLRU5afNU8m5JdIphHzVoiopZBFX6dCg6aS36BPc4ZvgkBF5GOFD6HdXwHZ6ns3CYPod9uyDKPSt2lFFanLTEzxEPaMj69ex4C3Ur71IVSZQwRFptUExyi96Zs4YQl4uL0QGh73Lj1lfhL/1dsFzWSSuKO2jc8C/Zdojza/WgdK/9emcjvtjRiAoPi8+2N+DnfcLZFMdlW1DoSvy9QQk912T56ySly30s1x8L1mwiLud81ahf+zDq1z9OzLhPNjzPo2HTCyidTaHsQ3L/Rc1Jmyzi6U8pmRcAIFC5iri8fs19KJ1NoXQ2hfr1T+oapIwXsZNWLSpJ7tvI88BfR/3495rE5tQ3BpS/UFVeFq+ur8PFc8tx2Y/S65pJZ/2IREDRZtlrnhF1YGBgYBAfLR53sG1bqNDSqFHSqc4fffQRAODkk0/G119/DQCYMWMGTj31VPz666/45JNPcPHFF7dYWw2OXcRO2lwZh6LatC4SLdnxBPQX91JC3E0kRSVoxWai4oonkMQdtIKTVh3tT6pSkVb/5Vevk7Y10Rp3oIXEprnFQuJF2roVt8J53D0x738swDfFEnDeSmlRFw0uJzk3vhYnLec9isZNz6Fxy0vIvWCPemMJiKfMd3SC9eT3MdlOWkZmSjjnPgjGLnS3Nm7+D+pX3iE9hmzcgSiT1ic/ZTue+53SffzjbaEojjnbyZEcA7ItoCgKvTLM2F6tHvXR0lAMeYCJtuXocjPK9cfknLRVv5yGQMVKAIC/bBGyTp2n+VyJwL3lJeJnLRq2IbZrjzLq/ZJ4RFq1AoD+ihWqx2hY+wDYhr0y8UKJR3x/McUo0m6rDuCz7Y0Jn92jFDvF8TweWlqNox75bWIxayQC2poNljCr0BBpDQwMDOKjxS/rR4+GRgALCwsFyz0eD5YtWwaKonDdddcJ1v39738HAKxZs6ZlGmlwzFPtE2We2eW+Cvq7YrxPW3EnypKYjGUlB06uzO81NJc8DalEnEkbh5NW71R+MVyg9eMOAGBAdmKKMJQ2CKdz58XgfBLnJiuRr8N12y8ztt+xd4bCfrT8VDe9Vd67pLSuOG3OHkFewYSK4cmJRGoEqrTd00wZx8d0/LZOOJO3fr20wjhFx/690zVQxvlRv/q+mM7T2tXK2xoNhL8jkHwnrZxYzxKcznKimdbCYXLEk0cLANYYLRN2E4VuaaGdT+2q730O7xcL3dN1iKsyswBI75m1q3CWHe3Ibz6OzAwMtmGvZFmgemNEoAUA/+FfJBFKyaZuxcy49rcVnR/TfoyGIpPmjIExHRsAaJW+q/+wtgrhnh1vxlUIRw/B2m2C16b04xS3lxszWVXmS0r8Up1CHMLqMr+iQAu0jpMWAGgrOfKANvJoDQwMDOKixUXampqa0Ilp4amXLVuGQCAAiqIwceJEwbqSklBBgPLy1sszMji24EQdQ7kOTjIdQKkjX0rIceSKTwHAU+PIeWYX9HJKMqzynQwGi8TbeERaLRcXa5dzJMt4LuQ4lRYOax2R9qr+KZB7G3Rl0orc23pE1DAmmsLErsLPJKlpFIBrB2h3ypzYJbbP+fgC+f2UXGW0uFiMiLO7NT/UF7oYDMxu3Wwze8nFYFzFgmWOXtdHfkeXgiPW0mm87DpND7MUjbTR/9XUzraCs99t2jZsctJ6dr4jWUUR8mZJmNL7C14zqb3Bs9qL6wGA79CP6hsxdqQMfVqwKFi/S9d5jnX8ZQvIK5LspAWA9AmEOCwNsRdh5IQnNUEqjGvgg5rPRUKtAKgc2XY6kj0+Jt8qGWglMWNQ6F56Vf8UWTFKiRw7jbH5Ov6mMiI6SbxNHfIUEBb1KRrp42Y3by/jyCU559mGfdINNRQUbEukDH8+pv3MGVIB0tG7ueiaOXsEzLljYm4XZbIrDkqQYkbkt03+cx0XaATvrxYsU8t4d8hYU3fXBonL46XCIy0s23xO9c9tazlp5Qax4pllZGBgYGDQCnEHLpcLtbW1OHJE6HCYP38+AKBfv37IyBB2is3mkKPGZGrx5hoco4jFNbkHFbUCCbHg6HMjbF3PgzX/lIQcr1jmoWxcvhUpMpmq3dLMeHJsBjZXBlDr45BpozG+wCYpNBVP4TAtMz/TRv8X5Qe+FSzjvEfBODpLXC+tFXdQ4DLh2RMysbbcj78q/Fh/tPnBX6tG2+DnJIUjlMR1Ja4+LgV9MizwsBxOKLDhQD2L7dUBHJ9jAc8Dmyr96JVhRncd1bsnFNqRY2dwqIHFr/s92FsnfBAZmmvBztogan0cGCrkwLprWLpq0bpOl9UTs/iYKHcUicv6ONE9zYQ6P4fxBba4phEnAoo2I/vs1XBvfxO+0t9g734F7CWXRNY7el0NymRHzcLLJPumjXsPwZqNqP7t7JjOnX3WStnMzbZKyvDnYc4egZqFlyhuF447EA/IAABty9Z2rmHPofrXM5qP6a8BglKR1tH3Fri3kAfGxK59YUOsSB3+LKx5k8DzQUE1a859GFygUbEwUkeClxHBKFNynbQAYC+5CDULhHFY4mJ0cu0D5O8vlFVdpHX2vwPOvjM0tFKeHB2zJATnjlJnGJrCg6PSsfiQFw4zje5pJqw96kf3NBN2VAfx2wEPLu3jwojOoRkAvTLMeGpsBrZUBZBhpfH1LjcONQRxUS8njsu2YFNlAAfrg+iRbsb4Ahs2VPhR5WUxNt+m07kn18GS3qNM6X2QffZq+Et/hTlrOCy5zdFosoPmhL8rH5RGQyj9/dsa1sIzYXIVxbx/58sbUfXrmeA5PzIn/gjK7IIldxy4QD3s3a+I+57KpHTXJcbKwdbvko0aSRSkGQ+0o5CwZTMOmagvmpKv6RAPSiJtrU898Km1nLRyLnmqaZaRgYGBgUFstLjq2adPHyxfvhw//fQTJk+eHFn+xRdfgKIoTJgwQbJPWNDt1Cm5N3KDjoPWPlYyRoNThz2b0CJADjONXDuNctF0qH5Zyu7D4lQzilOVhTxrHJm0WvakbbkAxQB8cweV8xwG4+gsEW5aK+4ACAm1BS4T8p2MQKTVijiPlqFifyinKQrjC5sfVntm0OgZFTvQVYOTikS/LAv6ZYVEXrFIOyjXgruHp+tvq9mF0CdB+I1TmwpHURRG63FqtQC0NROuAXfDNeBu4nprF7IIy7iKYEophr3XtfBs15u/R7U7gRYI/f3s3abBvf11+I/8Ib8h5wfrJhffoq3aRFpGVB2e8x0FFxRWUqfMaaAU4jegUOzRNeCeiADHB93SXRt2g1bJN+wwyMRMJDuTNowp/TgEazY2LxCJckqF3uQyOmkNjm5b0QXaGqiAfOSSMi6z8E7rNNM4rbi5f5HvCt0P+mRacHZ3ab+jJM2MkrTQ/UN8ze2WJuwfDO8co/AiIwjKfSfN6X1hTu8r3V5G7OcJBRh50TUAgK5Cja0NoyIiqkGZHMg6XXjttXeXDiLGCpPSHYGjy+I+TrB+FyxxuHq1wDYeELymLBmqA2tOM/kzm4h0BitD4fRiO77Z1Xw/UYozqPWri7RxpovFjJy7XfF+a2BgYGCgSotPkDjzzDPB8zxef/11vPbaa9i4cSPuvPNObN4cCv4/77zzJPuEs2gLCoyMG4PkINe/SYZIm4wq7UUEYS5VxkWrBwutTWwloWVgn6IZ0CKRhXUfBkAqHBZ7oYtkobW/XtooFD1zHUyrOR/UIHX24ypOR5jqyqjEHbRHKFoqYFDWrGbHUkxPdy2T15cs1K6fPBeAv3wJcZ1WJ634+gGekz6Um+wxO3ui96NMDskAA1u3M6bjHovIZQEnO5M2gsiZKXbSso3yGcIUTR40ozU4aRNxT5ebXq26nzi3qE2i3UmreBSZzxHJIUt20rYfkZYTTc9va6jFBWilJa6f4u8941QXwF0y38dE3JE7OWjJIH08TloTHV/RwniQvfYZTloDAwODuGhxJ+3NN9+MV199FaWlpbj55psF60aPHo2TTjpJss93330HiqIwfPjwlmqmwTGOWC+R69+0l1ylolQzVpYJH0BSLPF32iiKgoWh4GOTJxYxjnxw7kOR16z7EPzly+Dd94WwLa3opI20Qedb6gly+GGPR1KVOy/GqIOWgCEIsvFkE4ud0qFFx6DLgjR1N7VX1Kv2LbjGhJoIwwUQKF9M3lWjk5a25YQGAvjmB9naRVcItqEYu2IhO+UTCPczpfSAP+p6Vf3HeXD0vQWc+zCY1J6wd7sE5g7grOV5Ht49HyNQuRq2ogtgyR1NzAYFWs5JS9GiLq1IvGOj/m5aoa3qTtqWiHOQI5CMudcthF63nexAi0h85Vkf6tc9ItlMV0HBVqati7RaipNpoWH9Y2jY+AxcA/4PruPuTsp3KVi7WfCacXZR3cch46RNBLkORuKcjxZpa3wcftrrhpmmcFqRXVWkbaHaa0Rk4w4MJ62BgYFBXLT4EHxaWhp+/fVXDBkyBDzPR/6NHz8ec+bMkWy/fv16rFwZqtA6adKklm6uwTGKuE/Tkk7aZEAqQpUIJy0gLbKmFa3mS9ouzCf1l/6Byp9OkG7XSoXDlFB7a/69pk4i0AJtXKQlOWnjEmnbg9MrfkhOFlNqz6hX7VdMiRVKRaTlOT/8ZXIirbbCYRTNqAq6bOOBmB8axcIQk9pDso17y0vw7vscjRv+icofT0CwA7hrPTvfQc3Cy9C46QVU/jguVD29jTlpwQmdtJyCk1YOSkPhsJYSoUkcVXDgtRl4mWJLOr+TcpmyvKhAXO3S68D7qiTbube/rut8rQnvr2ntJijCuEoSdzDWi4Z1j6CakOmeCBo3Pit4Le5zknAmsRJXSKQV9gHr/Dx8bOh5+PFl1fhqpxtztjdi1ro61KiItEn0UKhiiLQGBgYGyaFVnp779u2LVatWYdeuXViyZAl2796NBQsWID+ffON855138Pbbb+Pkk09u4ZYaHKuIhUe5qUKmzOMTel5bt0sTerww3dKlpvg0a2K+3gH1OCwilMagBHGmpHfvp8RCIG3BScuIPidBhc6xN8jL5td2crRlkVb6d1MrEKaEs/cNgtem9H4xH6u9Ye1yVuRnS+5Y3fvbii9MZHNaHGvBGYrreX8tgnXbiOv0uK0lkQeSEwVjdmiJBTg1cYL316B26XUxnas9Ubv02uYXPIeGTc8TBWwAoO25LdImceSIuCAc6ykl72ciVygHNDppE3RvGl+gf4rwuDaW3U1CbrBbbRBHjGxMjqi/4Nn1HnEzucKBbRG5jPO2gnAAMjH49n8Fno+xwykD65Z+53kNLmW5wmFy6Nk61y510gJAtZdFuYfDwYbmgZd1R/3QEEnbasgOwLXiwJWBgYHBsUCrWpxKSkowevRoFBcXy24zcOBAXHnllbjyyithNuvr0BkYyOEXmU+sMpqZJTuBERuUCc6+tybueFHkOU0YlNMsaozobE2qE0ALWqPyKLP8A7Jwu9YXaV2iCIkGPyfrNPYr2BsS5XJOBqRpfvE019lvJhDVkU8Z/ETsB2vjOPvfEfnZlN4Ptq7NGev2bpepVpR2HndXxHlMmRzt/r2yl0xTXB+s30Wcguzsf6eu86iKtBq3IcE4hRXWtbgm/Uf+QKBqfUznazeIxBTfge9gzhom2cxWfKFmV3S8MM6ugtds/S7Ba47grgSA1JHy4h2t4qS15p8G2pKmsYXKnNPdqasAkN1EYWRe289+lPv7683yZVxdYck/VbJcT9Ys6ynTdc54YFJ7x7yvo+e16hu1IowjD9bCs1S3s3Q+MfmNUcC7/xvJMi2fFz0x/BSAO4amCYTX0Qrfy4IUE2wMJfmuu4M86tuyIktCHDETXqwhy9vAwMDAQJ4Wz6R97LHHAAA33ngjsrO1Zc5VV1dj1qxZAICHHnooaW0z6Dh4RQKaUuZm58sbUb3wcnDug0if8An8RxagdsnfNZ8rdcSL4HkW1s4nwpw1OOY2q3HH0DQsOuQFTQHjC1p/FFtrYSytU2HpNlA4LE2kVrI84A7wEvEWAPwKWYH2JOadxQupqnE8mbSMqytypmyA98C3MGcNgbXzhHia16ZJGfYMzFnDwPkqYe9+uaAYEcVYkXPOWnj2fIy65bdId6ZMcA18GLauUxGoXAVr/qkwpfWSbteOoEw25E4rR/3q+8DW74Sz30xU/35u8wasR7KPc8C9SBnypK7ziN34xG1irJYudodSlDYXfP3aB5F5yrcxnbOtwxMGpiiTAxBl0jLOIqSf8GFLNQuMyN0XrNsheE1y0GWeOg/WfPkoLTUHdsbE73S0UJmuKSY8PT4Ta8p8KPew6J5mxu8HPNhZQ44LeHpcBjJtbXdWRjQZp3yL6t/OESyLJU4q85RvUbvsJnh2vNW8MMpJy3My0QpN+A79BEePK3WfNxb4YIPufaxdpiB1xL/BOGIbVGpJMk76HJ5d7wMA/EcWwLP7A8k26SfOgW//t/Dseh/B+l3g3PojR+LBu/8r6UKN13AtjOxsxeQSO/pkWtAn04wlh73IsjEY1smCAdlevL6hXrJPVxcDiqLgMFOo9zdfS90BXpc43DYgj+DT1qwWboeBgYHBsUWLi7SPPPIIKIrCBRdcoFmkraqqiuxniLQGiUDsclQSoSiTA5knfxl5bUrphvq1D2nqbGae9huseS0T02FhKJzStfUKmIjRbOTVOC2qLThpSQ7YWj8HF2G5kpO2LVfkthG+C3Fl0gIwpXaHq/9tcR2jPUBRNOzd5N2jtC0bzr4ziCKtOWsIaLMTltzRsOSOTmYzWxTGloP0sW8ACIl7lMmlKF7Yu12qu1I1be+kvo2Git4kxO5MrRnLvgPfwV++DJbcUTGdty3D+yolyyjGLnFFO3r/Q/eU9ngQT8FmRSKt2EmbOuI/igKtGs4B9yb89+uaYkLXlOau+bqjfgBS4fHSPk50drZ4Fz5mJN8jxJZbSTFWOHvfIBBpo52RasXBfAd/bDmRNqBPpE0Z8iRcx9+XpNYkHoqxwtHrGgAA27ifvA1thaPX1XD0ujqyrGxOF/n+M8/ryw5QgPPVwF/6e2IOJsM1A1Ii/cIUC43Ti5vd4b0zpNcGh4mKRJE5TDTqo6b1NQY4mNuZSkvJ3A8NkdbAwMAgPtquUmBgkER8OkRaElqn6Js6QJVvObR2NrVmRbYFkdbMUJKsMrnKu0pZvnadeWctCckBbWlnDw7tEUun8a3dhKRDURQYNXdwDC4nLVEGoTxL/Z9jSjSdU8/U6vq19+s+X3uAKMjQFul7w7TsVHyJSNt4AHzQG3nNiZy0WoqCKdESswLksjGLU9uPQAsAtENac4ILSF2GmhDnVXOBZnc3pyLSHv5Z1W2bCHie1+2kNaX1TVJrko/sTAXC9dwkk12daHwH58oXrUsADhOFFIVZUaR+XradiQxCimctuYO8ZJZfm0fmfk21UMSNgYGBwbFKuxBpA4HQVCYjk9YgUcQr0tIapunR9s5gbDm6jnsskfC4A0vri7SAtCDbo8tqcPHccuytC12nDtQH8d7menyxo1H2GG1bpJUui9dJa6BORxBpAcCkktMoFkW1oCXugGIsmhy3arAN+zRv6y/9HUc+SAEflMY6JAou0IiGDc+gbvW9YBsPxX08ngugcfOLqFv1fwjW75Gs95cvRfX8iyTLg1VrEaxcK1jW0hW+xXEHAI9gVC4tL3LSxpuVa46hGKBeSBnhAFCc2r76wyRnHR+ojelYFCX+3Xlw7kOoW3M/6tc+rLgv76+B/8gfMZ1XF6wP4Fn17aJozyIt7SggLifFwzAp3TUfl+dY1K95AKWzKZTOplA9fxo4n3rhLwDw7v9a5qDqQqgWrbSzk1Gc9UHq5+VE5daKB2DcQR67a5M/gJBQ5Jy0cQ6AGRgYGHR02sVQ/Lp16wAAOTkdV/AySCxikVavCKVUDTpMR3bRAtrjDrSKtFQbyKQFQpEHpY3Sh697FlXjlZOz8MCSalU3hN7KwS0JSVyXK6xnkDgsueNauwktgik18U5arS57xlEIznNE+3EJhY3Yhr2a9wdCuZQV3w1FztTNuvbTSt2f/4hkQXp3f4yc83cJspB1H2/lXXBveREA4N7xJjpdeBCUKRRJE6jZgsofJ8i60zhfheA11cJOWtrsAm3PA+dprujO1u2AOaN/U/tEIm2cQgKtcUZNPJCEngwrLRksbOuQpkVz/thEWomTFkDF3NGa806r5p2KvOnJdSzqzqOlTGBStYuXbQ1GRqQF4Vpk0iHS1q99AI0bno689u79FMG67cg5Z43ifnzQC9+hH+XWqp63UWkqVBOdHMrXWZuMkzaMQ9RJrvCw+GFP8gb0kgLhfk1Z0mMabDUwMDAwaCbpV9H33nuPuPybb77BqlWrFPf1+XzYtWsX3n77bVAUheHDhyejiQYdDI7nJVPRSTmcSli7nAl/2QLFbczp/fU2rU1yXJYZGysD6huKMGt8T7VUSwfQotmGSig9HM+cX6kYcxCG1HlvKxS6pLcFw0mbfGhbx8hwE09JlxCDSGtKUZ4+a+l8EoCmKdfSOFVZ7D2kBSKtBafDd/B7Xe0L1m4J5fHqzNpVg2d9gmI9bOM+BCqWw5I7JuZjhgVaIJQ969k7B44efwMAePd8rG/6cAuLtEDIpScQad0HAITyKcXCmdbcRFNaXwRrtwiWWQsnx9lSbTgJUxu6trOoAzlsBWfEtB+pL6C3IBXP+pI6iMDpzKNlUrq3mT5OLNBOGZFWt5NWKKBGC7RhglVrEazfC1NKsexRgg27wQfJs5ksnU9UOH+IdA2DIJ2dyvcqmnC9H5jTPMDgFPUD251AC/LgC23VVm/GwMDAwECepPf0pk+fLnkw4XkeDzzwgOZj8DwPmqZx6623Jrp5Bh0QsYsW0B934Oh9I+pX3a24jRa3bXvgsr4uPLCkWjD9a0KhDV1cJnywVf5BJEOr00fDg4mjz83ajtUCpBGKhIXRItAC5M57W6Eo1YQ+mWZsrQoJ8ycW2tp0e9sjrsGPo2Htg5HXKcOea8XWtCxqWXUUFUPcQVpvmHNGIXB0GXF96oh/AwBoS5rmY1LmFKQMkk6dtpVchLrl8tejjJO/RvXv5xLW8EhYRZwmgjVSdy7rLiVsGTts/c7Iz77S33TtS7fCPVDsbuXZUE5uoHq9eEMwKd00HTNtzP9Q+eMJgmWpI1+OvZE6SCXcR5VyMNsyaWPeQO3SawGErgP2WAt4JSBGg+eCSRVp9TppaWv7nh4uN+BBEvEYR17c51ONyuDIxgLa1gmOXtepHr+z04R+mWZsrpI3KEQX+JPjjGI7ftzriWw/OLf5s5ut4sTVytndpDM+WgzS31fjddXA4Fhl48aNePrpp7FgwQKUlZVFYjvXrl2LQYMGtW7j2jDTp0/Hu+++i6KiIuzdu7e1m9PqtMhwPE/I/yEtI2GxWDB8+HDce++9mDAh+UUaDI59fISYMN2ZtGYnci86jPI5oWIYtL2zdBptDI6wtki3NDP+OS4Ta8p9KHez6JNpxviCkHCX52Jw1M3CE+Tx6XahayHLpu33V5sWZc4ahtSRLypu05KkWuN7QD6tSFu8Q2ty/4h0LDjohZUBxhVoczobaCdl4AOgrdlo3PQcXMc/ELtY0Q6h1WJLYok7oChknvorGjc8jYa/npCsN2cODG2nQzTMOXcTaJvUEcTYcpAy/AXUr7xdsi7z9PnEKvYAElq1PEygah1hqcaRIgI8J705Rr9n5sxBCJQv1Xw8rQU2E4pYwGsqJCXOyzWl9wdFmDZPwtJpPLLOWonGDU+DMjnhGvgATCklCWmuGqTBTr39lbaCo9c1YJxdEKzdBlvReTELkwlxnCaxoBQA8AQnbeqo12BK7Y6qeadK1lEa6hy0ZUhirBy0LTf+E6rl/RKeMVNHvgRb8UWgzdre63tHpOPuRVXEeCtAW/G+v/VzoWe6GQ0BLtJvDqMWlwAA+U4GZ3dzYFSeFXvrgthXF8TgXAsO1LP4cGsDJhXZcWZJa4q0hDiLNOXceQOD1mD+/Pk46aTQrKqHH34YjzzySFLOs3r1aowfPx4eT/tzxhu0LZIu0u7Z01x4gud5dOvWDRRF4eeff0bPnvLTHimKgs1mQ1ZWFhjm2BC7DNoGRCdtDNPPGUdeJNfMX7YYlT+KCv/o6LS2dYpSTSgidEiHdQo5Uf44IL0ZZdq1/v7K772z30xdDwDJRslJqwWXpe0/YFsYCpPagZjcnnH2+Qecff7R2s1ocdSE0liz7GizE44+NxBF2sixNYqG9m6Xg3F2kV0fFn3FWHJGg/OWyeyV+AxMkkjLx5rzCbL7L1o8oq366gK0xmwScbGyiJO2SijSmjMH6zquJXsYLCd9Hl/jYoA07bo9z2ywFpwGa8Fp8R1Eh5OWsmbClNpL6rLnkizSiqM1bJ3g7PMP+I8uJ27f3kVaPSiLtNquk3JRBrLHoc1w9p2h6dhhLAyFU4vseHcz2RWtFncAhL6rY2UGurWItGeU2HFy11BfrF+WBf2yLE3nNmF455aPk5EivT6p5s4bGBzD3HvvvfB4PEhNTcXTTz+NYcOGwW4PfYd79FCO5mopHnnkETz66KMAtJsmDVqepIu0RUVFxOX5+fmy6wwMkglJpNVa5EoOxlUsWSYuUnIsQyo2lWXT9qbyrPJoI21PgOsigZCmn+qBlDFoYNBRUC0AGNcMBGXxSmvxQc6vXD2ctqSTj89YANm4hsR3hINV6yXLYi7GBIAP1EuWCYRtndXqW8VJK3LH8lxYpF0nWG7O0ifSthYZhPuoOxi7W/pYQI+TlqKtAC99v/gWdtKqfRc6kkhLyVw/9cAFdIq0MU5jkDOt59jpuAdLOmsQadPbeNVWkoHCcNIadFQCgQAWLAjVq7nuuutwww03tHKLDNozLa4WcBwHlmXRr1+/lj61Zu655x5QFBX5N3/+fNV9fvzxR0ydOhWFhYWwWq0oLCzE1KlT8eOPctVFDVqSxgCH/6ypxcVzy/HpNmHn2crE70yh7dKMLb2FLNozJOFba9yBmiMiIVPjEki8TlpnO80TNDBIBKrCXRJFWq1dHrUBNsqiME1bxglcv+4R1K99JGGDdzzPE4tXqmY1EvCXLUHlz6eg/DOpe7hxy0vgg+6mc+oUaVtBeBI7acH5wXrKEKz+S7DYnDmo5RoVBw7CLB9PsIM7X/SItIyNKNI2/PUU6tbcr5jhHKzdhrpVd6Nx2//AE46hBCdy0ja7ysnXqA4l0ir0t0kDRcTt1Jy0EndYbP0uue9aAaHAql5SLBTsKrP44u1vJhuWMHPElGqItAYdk4qKCvj9oYHhXr0MR7lBfBwbJWITyLp16/DCCy9o3p7jOFx33XV46623BMsPHTqEQ4cO4euvv8Y111yD//3vf6Dptn2zPZZ55M9q7K8PPWCuKvML1iWicj1FS4UFtrHjiLS1PukDDMkBRCIsAMjR1kTa1LhFWuM6YNBxUcukjTXuAADA+RVXsw17NR2G99corpdz0gLyhc8a/3oKAOA/8geyzpCKq3rx7P6QuJxTabuYQPVGVP44TnZ9sHINahZdgYyTvtDvpG0LcQecH+WfF0u2M2WQIyvaGiRBy93BRVqKokNxUhqEUz5QD57wfXVveQkA4N39EXLO3yVxBHK+GlR8NzQiBnKeI8RCgvLnlXHSygiUx4ZISyHeGQPVCy5B1qk/q26nVpiNF7cjRiOGXB5tgSt+hytFUejkYLC3Tt7Vna6xH91asHU7JctoZ2ErtMTAoPXx+XyRn83mBGSnG3RoWuXq73a74XbLCzOzZs3C+PHj0bdvX0yePBnfffddi7QrLLgGg0Hk5moThu6///6IQDt48GB8/PHHWLFiBT7++GMMHhyaTvfmm2/igQceSFq7DZQ56mYjAi0JW5KKcNi6npOU47ZFSgh5taQIBBKm9P6K60nFe1qTeDvNiejcGxi0Wxi7QiQAdLnkxKi5dK35EzUdx1Z8gfJ5LGnyK1VEZn/ZQgRqtmhqhxK1i64gLicVLFKiYf1jqtt4930JnguCZ32q20ajWiQuGTDCnEa2YS/AeoXbUAxoS2rLtSnBDMnVnsl6zKLR2cr5KmDrcpbserZhL/xliyXLGzf/R+DWbFj3iL7mscJnHMoUKu5EyT12qcQ+tQfsPa8SvGYUsknlIg/8h+eB89WonkvdcZsYJ+1xWeTv2sCcxHwH1XJpU9t4DQNL55Mky9pSDQkDAy3Mnz9fMnt6zpw5OOWUU5CTkwO73Y7evXvj7rvvRlWVdDbUI488AoqiUFLSXFD0qquuEszKJhUq83q9ePnll3HKKaegc+fOsFgsyM3NxcSJE/HWW28hGFSP5fH5fHj99ddx5plnoqCgAFarFU6nE/3798c111yDn3/+OZI7O3v2bFAUFcmjBSBoY/jf3r17JedhWRbvvvsuzjrrLOTn58NqtSIrKwvjxo3DCy+8oKlQ2pYtWzB9+nR06dIFNpsNXbp0waWXXoqVK1eq7tsRafEr6XfffYeUlBTk5eWhvl56k/373/+OmTNnYunSpdi2bRt+/vlnnHvuufjnP/+Z9La99NJLWLlyJfr06YOrr75adfvt27fjueeeAwAMGzYMS5YswbRp0zB8+HBMmzYNixcvxrBhwwAAzz77LHbulI44GiSf+oByZ96RIGdj+oRPIj9T5jTYu/8tIcdtDxyfY0EnR/P7eEFP7a4QS+cJiusTUsk5gbjMNIZ3iq1gw/HZZuQnYJqcgUF7haIoMC5yHr0p4/i4vu+0NRMm0TT2jJO/jvxsLZwscOanjngRaWPelBzH0es6xfMoPYTKOWmjCYqKWCUUndOyvXs/03ZYfw14v/aoBsqSDsrU8sUHKUZY6ZzzEfKFdTqCW5sbBzaL3U4ThZO6GEUd9eDsN1NxPeerkCwLVK2J76Si72FYnKWsmeTNk5BZ3dK4Bj4UGoRrInXov2S3JV13w7Ae+QiKMKqxMaLCcLHO0BjaySIRSrulmXB8dsuItGaNZofWwtb1XNC25oKSqaNebcXWGBjED8dxuOKKK3DxxRfj999/R0VFBbxeL7Zv345nn30WI0eOxJEjR+I+z/r169GnTx/MmDEDv//+O8rKyhAIBHD06FH89ttvuOaaazBmzBiUlckVow3N/u7bty+uv/56/PDDDzh8+DD8fj/cbjc2b96Mt956C6effjr27dsXV1v379+PoUOHYvr06Zg7dy5KS0vh9/tRVVWFJUuW4I477sDxxx+P7du3yx5jzpw5GDx4MN59910cPHgQPp8PBw8exMcff4wxY8ZIZqQbtELcQVjRP+ecc5CSInRZLF68OKLyOxwO9OrVC1u3boXH48FDDz2Es88+G8cdd1xS2rV//348+OCDAID//ve/+OOPP1T3+c9//hMZ5Zg1a1akel8Yh8OBWbNmYfTo0QgGg/j3v/+NV155JfGNN1BErXChUyUTSiv2kotB2zohWP0XrIVngulAU35MNIWnxmZi8WEvMqw0RuioOktRNFJHvYK6ZTdJ1tm7X5nIZiaMmUNScdmPR3Xtc92AFJwgU+XXwKAjYUrpAbZ+l2S5VqerEtlnLkf9+kfhOzAXqSP+DWtes9OHNqcg+5y18O79HExKd1gLJ4dEY2cXNG77L0ypPeHodV1M125b8YVNJ9Eg0tZu03187SRH7OF8VeC8UjFLDsbROve/sGMxgthF2w6ZUGhHho3Bofoghne2xh2509GgrZmgbbngvOXE9QwpUiluIZ883T5a0IqmVVznCcbkKkLOlA3wHfgOpqwhsHY+QXZbe/H5wAkfombhZZJ1ob9TXwAAbc0miuicr1K5MeK/n4bBMxIOM42nx2Vi+REfdtUE0CvDjBMKbYq5unro5FQWadu4Rgvamo7ss9fAu/9rMCk9YCs8vbWbZGAQFw8++CCWLl2Kc889F3/7299QVFSEsrIyvPLKK5g7dy527tyJ2267DR9//HFknxtvvBEXXHABDh8+jNNOOw0A8MQTT2DKlCmRbaJnaO/cuRMTJkxAbW0tUlNTcdNNN2HEiBHo0qULKisr8e233+J///sfVq5ciSlTpmDRokWS+IQtW7Zg/PjxaGgIzZ6aOnUqpk2bhm7duoFlWWzfvh3z5s3DV199Fdnn3HPPxbBhw/Dqq6/itddeAwBs2LBB8h4UFBREfq6srMS4ceNw4MABWK1WXHvttZgwYQKKi4vR0NCAefPm4cUXX8TOnTtxxhlnYM2aNUhLE842W7lyJS677DIEg0FYrVbcdtttmDx5MqxWK5YvX46nnnoKN9xwQ5uuV9UatLhIu2zZMlAUhZNOkk6ReP311wEA+fn5+PPPP1FYWIgDBw5g3LhxOHjwIP73v/9h1qxZSWnXTTfdhIaGBlx55ZWYMGGCqkjL8zy++eYbAECfPn0watQo4najRo1C7969sW3bNnzzzTd4+eWXE3ZzN9CG2iNrIgs5WfNOhDXvxIQdrz3hstA4vdihviEByiwz9bSNfle0RjmE6ZtpxildDfeTgQEAMKndgcPS5Za8+EVairEgdciTwJAnyed25MPZ7xbBMmvBqbAWnBrfecPTdzUUPmufIm0lUSyRo7UGKcXZnpzGQkRtneOzLQlz73VEzDmj4TvwDXmluNgcoNuRLt2fPN1eLnuWYo6N/oEptTtM/Wdq2taSP4m4nPM2D4DzMoMsvIqTlhc7aeMoSJllZzC5JLa+rRpqTtp4ixq3BIyzEM6+N7d2M445OJ5Hg7/9O+z14LJQrf6ZX7p0KZ544gncf//9guWnn346Tj/9dMybNw+ff/45XnrpJeTkhAbdcnNzkZubC5erOXKroKBA1lh45ZVXora2FoMHD8a8efOQnS2M9Tv11FNx1lln4cwzz8Ty5csxe/ZsXHvttYJtLr/8cjQ0NICmaXz44YeYNm2aYP3IkSNxxRVXoLKyEg5H6PqVnp6O9PR0gWCsZn685ZZbcODAARQVFeGPP/4QRDoAwIknnogLL7wQ48ePx+7du/HMM8/gySeF/e8bb7wRwWAQZrMZ8+bNwwknNA/gjRgxAueddx5GjRqF9evXK7alo9HiIm15eWgku3dvafXHn376CRRFYcaMGSgsDHXwu3TpghkzZuDuu+/GggXxF9sgMWfOHHz//ffIzMyMxBeosWfPHhw+HHrKnDBBebr2hAkTsG3bNhw6dAh79+6VfMANkgunco9LVNyBQezIVuqN90GpjZBmNT5jBgZhmJQe0oW0GZZO8s6rtg5tyQCgLY8vWLs1eQ1RmzoSI3qdtHQbcdLywWNDpDWID8bVVdf2fJKctLImDZJQfIxDUeRom2jHs5xIq+6kFWU5xlOQMomoibQGHZcGP49rf9V+zz0WeGNiNlKtrSvSDh06FPfdd59kOUVRuP322zFv3jwEg0H8+eefOOcc/bVnFi1ahKVLlwIA3n33XYlAG+b000/HBRdcgDlz5khE2nnz5mHNmlAkzy233CIRaKPJysrS3cYwe/fuxaeffgoAePnll2X1q8GDB+Omm27CM888g9mzZwtE2pUrV2LVqlUAgOuvv14g0IYpKCjA888/j4svvjjmth6LtLhycPRoaIRUHHWwadMmVFSELkbR9nAAkVzXeDM1SNTU1ODWW28FAPzrX/+S/bKI2bx5c+TnPn36KG4bvX7LFn0FQw4ePKj4r7RUPbupoxNUUWkT6aQ1iA3ZYjfHikhrTE81MIhgSpWKtJacMaDN7bfCOS1TCIdEsG5bpJBDotGTbcnruL5y/iqwDXs0b99mnLRugmXboP2jszgR41QSaYXfGdZ7FP7Dv0i2ClSuQf3ah1G//glwagX6ZJy0crS17P2WgGLIwnTjhmfANh5C6WxKKrY2IRZpPXs/Q+n7DlTMHY1g7faExR0km2y70Tc0MGhLXHrppbKDaUOHDo38vHv37piO/+233wIImRUHDBiguG1Y0Fy5cqWgiNj3338f+XnmzJkxtUMLc+fOBcuycDgcOOOMMxS3Dbf18OHD2L9/f2T5r7/+Gvn5qquukuwXZurUqUhPT4+vwccYLX7XYpjQqKG4Ot7ixaHqqjk5ORKXbUZGyKHi9SY+W+zuu+/GkSNHMHbsWE3FwsIcPHgw8nPY9StHly5dIj8fOHBAV/ui9zWIjYCKSNsY6FjTSdoick5aHseISGs4aQ0MIjAp3SXLzLmjW6EliYNqctJqgvWC85SBcXROQku0389U3WhR+Et/19mO1hn8lGTSGhyTUJYM8Do+v8oibTM8z6PqR/LsuIrvmh/QA2WLkXnqT0pHEr1W+T50QCctZIRptnEfyj9Tfq6KvnZ59n6GmvkXAQACR5fh6Fe9kX7Cx4Lt44k7SCatPbXbwMBAiJLxLjOzufBjfX1ss3TCrtJt27Zpjr8MBAKoqqqKxBSsXRsqPtu1a1cUFZEL8SaCcFvdbjdMJu2S4ZEjR9C1a+ieG868tVgsGDhwoOw+ZrMZgwcP1lQTqqPQ4spBOIx43bp1guVz584FRVEYP368ZJ/a2loA0Oxy1cqiRYvw5ptvwmQy4b///a+urNjoL2d0BgkJp7PZ2REOeDZoOQIqOl/P9I7nYGhrmLMGE5dbcse1cEuSgyHSGhg0Y3J1k2S32grPbKXWJAZzpnznk0SwdrP6RrGgo1AW5yEXUiLh2TlbulDBnWbJHav52ImElss3j4JxJu+hxqBlcPTUZqowZ4Vm4jFOecMDH/REfvaXLUSwVn3Gm+/wz+D8tQpbkOMOZNup8/pxTBCHu5WLyqStXXqdZL17xxvCBW007sDAwKBtEc5vJUHTzc9yLBtbJE449lMvbrc78nN45nleXl5Mx9JKItoaNmVmZmZGjJpydOrUKabzHau0+F1r/Pjx2LFjB15++WVcfvnlyM7OxsqVK/HTT6ER6XBVvGjCEQGdOyfOdeL3+3HdddeB53ncdtttqsHJYqJdvRaL8gi41dpc6d7j8ShsKUXNeVtaWooRI0boOmZHQ8lJazdRGJLbAR0MbQxrwRlgUnqArd8ZWUbb8+DoMb31GqXCBT0d+HyHW31DAFbGcEsYGIShTDbYu10Gz673AISK+phzx7Ryq/Th6HUd3NtDxU7NOaNgzmkuHursfwcaNz2vuH+wZjOseScnvF2sjun9vL86rnOlDH4c9WvulSxnXCWwKFR2TyamjONVt0kZrq32gEHbJWXQI2jc+Izqdqkj/gOgOTOaBNvYHKXG1u/S3Aae82veNprMU+ehap6wUKEl75SYjtWeiaeIMu+vAc+xoGgGvL9Gsj5QuVZ0srYr0l47IAVvbJC68s4sOTaKyRnEhstC4Y2JiTWntXVclmP/WSks7g4cOBAffPCB5v3CJseWJNzW7OxsXQ5XUnZtPNf7jkqL37VuvPFGzJ49G3v27EG3bt3Qq1cvbN68GcFgEJmZmcTQ4N9//x0URaFfv34Ja8dTTz2FrVu3omvXrnj44Yd172+z2SI/+/3KHTWfzxf52W7Xd9NVi1IwUCcoM9h1eV8XhnWyIMveNqdBdSQo2oTss1bAs/sjBCpWwpw9FLbii0GZ2m4n9cJeLqRZaby1Ud0db0TSGhgISRv7Fix5J4MPumHvfrmmglttidTRr8HS6QRwgXo4evxN0AFNGfasukirwa0nB8/K9znYRu2RShxB3NCDo/f1MGUOAlu7FbaSi+AvXwrOUwp7yaWtlrHJODpLBvzE2IsvaMEWGSQDtb4Bk9oTGSd8DHN2KKKAsqTJbsvWN2ct80FtA6+A8hR6aeZ08/XBmj8JGRN/QPWvk0E7CpAzdYvxAKsbHry/GpSNLGJRtFngZabottvPn9jVDitDYc62BrgsNAIcj9OKHJjY1aa+s8ExC01RrV5EyyDxhAt5NTQ06DYIhgnPLE92XaJwW+vr69G3b19VJyyJcGRpZWUlWJZVPEZZWVlsDT1GaXGRdsiQIXj22Wdx1113oaGhIVKdzmw244033pAUFKutrcXcuXMBACeeeGJC2rB161b885//BADMmjVLEEegleh2qkUYNDY2522qRSMYJB6/jJP27G5Gdl1bgrZmwNn3ptZuhi5OLXJoEmlNtNHRMjCIhqJNcPS4srWbETMURcPe/TKZderf92BN7HEHfEA+C43zlILngqA0TO+NV6QFRcNWeDpQeDqAtiN+WjqNg0dBpDU4tsmbLu3zKRX2iy6Ip0ekVc6ZVc6ktRWeQWyngXY4XyVoGZFWkvHbhp20ADC+wIbxBYYoa2BwrDN48GAsXboUu3fvxpEjR2KaJT5kyBAsXrwY+/fvx759+3Tn0modFBw8eDA++ugj+Hw+rFq1CiNHjtTd1gEDBuCTTz6B3+/H+vXrMWTIEOJ2wWBQEoXa0WkV68ptt92GtWvX4sEHH8S1116Lhx56CH/99RemTp0q2Xb+/PkYPnw4TjjhBJx11lkJOf+///1v+P1+dOvWDW63G5988onk38aNGyPb//7775HlYcE12uEaXUSMRHRkgVEIrOUJqhQOMzAwMDAwaEniEWm5oMLAEM+B82hzV8QbdyDOFW4rWDpJaxsYdHAYeQFMINKyeiLJlPqW+jJpDfQTnUsrRuLkNzJpDQwM2gDnnHMOgNBsixdffDGmY5x99tmRn//973/r3j96Nnj0bG/SecKC7n/+8x/d5wGAiRMnRn5+9913Zbf76quvUF0dZ5/0GKPV7loDBgzAgAEDVLebMmUKpkyZktBzhz+Qu3fvxiWXXKK6/eOPPx75ec+ePXA6nYLoha1btyruH72+b9++eptrEAc8z2PePn05wAYGiYY1xgkMDAyi4Lzl8B6YC1sX7QXTeC4A97b/wnfwR8XtKn86CeBZOHpdB2e/W0GZpLNGgrXbULf8Ft3tjqatRlQoFZykFLJJDY5dlJxD/rJF4HkOFEWDDzbKbieGdZeibsVMeHa9D9fgJ+AacHezOKgQd2CQGDhfpfxKkSirFE1hYGBg0FKceuqpGDFiBFasWIFnn30WgwcPxkUXXSS7/YYNG7B3716BMDtx4kQMHToUq1evxqxZszBq1ChMmzaNuH9lZSUcDocgbjO64NiuXbtk40R79+6NCy+8EHPmzMEnn3yC4cOH4/bbb5dt6549e7Bs2TKBtjZixAgMGTIEa9aswWuvvYYLL7wQ48YJ+2ilpaW48847ZY/bUWmbPex2QElJCfLz8wEACxYsUNx24cKFAEKhz8XFxclumkEUP+z14GBDbBUYDQwSBSt5YDMwMOjoVP92FgLVmzRvX7/mftQtvwW+Q8oiLVu/C2zDXtSvuQ81i/4mWc/5alDx3TDd7ZXSNoUnJrWn7DpKwVFp0HFxb5kFQF/cQeUPo+HZ9T4AoGHtA6hbfmvUWuE938icTTwN6x+TX8mK3GFtPO7AwMCg4/DRRx8hMzMTLMvi4osvxjnnnIMPP/wQK1aswOrVq/Hjjz/iqaeewujRo3H88ccTdab3338fLpcLHMfhkksuwfnnn4/PPvsMq1evxooVK/DRRx9h+vTpKCoqkmS9jhnTXKj3tttuw8KFC7Fjxw7s3LkTO3fuRDAYjKx/7bXX0K1bNwDAHXfcgQkTJuCtt97CsmXLsHbtWvz66694/vnnMWnSJPTo0QNffPGFpK2vvvoqTCYTAoEAJk2ahPvuuw+LFy/GypUr8fLLL2Po0KEoLS3FwIEDE/UWHxO0ibsWz/PYvXs3qqpCU1cyMzPRrVu3pHVqZs+ejdmzZytu88gjj+DRRx8FAPzxxx+SPFyKojBlyhS89tpr2Lp1K5YtW4ZRo0ZJjrNs2bKIk3bKlClGR62F+XYXucM9MMdCXG5gkAw6OwwXh4FBR8LS6QT4yxaqble/6k5kTlIWXcM0bnxWdzu8+76IVEGPHGfrK+CVIhO00kanEIf6WRRI09HtPaa3dHMMkoQpawiClWsEy2xFseUi162YCWe/W3WJtOJsaPe215A2+tWmlZxoa8MTQ8KUcTyC1X/FtG+gYqXsOnEkjJaMbgMDA4OWoHv37vjzzz9x/vnnY+PGjfjuu+/w3XffyW6fmpoqWda3b1/Mnz8fU6dOxYEDB/Dll1/iyy+/1HT+Hj164KKLLsKcOXMwb948zJs3T7B+z549EVNhZmYmlixZgosuugiLFi3CwoULI+ZDrW0dOXIk3nvvPUyfPh1erxf//Oc/I7WhAMBkMuHVV1/FkiVLsH79ek2/Q0egVXsNP//8M84++2ykpqaiV69eGDVqFEaNGoVevXohNTUV55xzjuSD05aYOXNmpErdjBkz4PEIp9V7PB7MmDEDQOgDOHPmzJZuYoenxifuKIeY1lt/sTgDAxJnlUirTGfami+tPdNNKElrnUrnBgYGrUP6hI81bec7rK2Pw7P+mNvCiwqEBavWxXysaCS5j22IzNP/IC5PGfw4cblB+yN1+AuSZSlDn5LffvR/FY/HcwHwnHw+nx54TvR9ZQxjAInU4c8B8camEPbn/bWibYyBcgMDg7ZDr169sG7dOnz00Uc4//zz0bVrV9jtdlgsFuTl5eHEE0/EAw88gNWrV+Ohhx4iHmPo0KHYtm0bXnrpJZx88snIzc2FyWSCy+XCgAEDcN111+G3334jzuL+4IMP8Mwzz2DEiBFIS0sDTctfhzt37oyFCxfi+++/x2WXXYZu3brB4XDAbDYjJycHY8aMwR133IEFCxbg7bffJh7jkksuwdq1a3HFFVcgPz8fFosFBQUFuOiii7B48WJce+21Mb2PxzKtMrTo9/sxffp0fPrppwBCTloxjY2NmDt3LubOnYuLL74Ys2fPhsXStjo5vXr1wl133YWnn34aq1atwtixY3HPPfege/fu2LVrF/71r39h7dq1AIC77roLPXvKT8EzaDkKXQy6GaKZQYK4vK8L3dPN2FkTgMtMo1+WGb0yzFhy2AdvkMcJhcb0WgODjgbjyEf2lI2o+OY45Q0ljjsybOMB9Y1k4PzVoG1ZzQtkRBFLpxNg73UNbF2non7N/XBveUn2mM7j7om5PS2BtfMEZE1egpolV4Ot3QomtTeyTv9d4Cg2aN9YO09A1lkr0LjpBdDmVDj73w6TQtSFs/f1oK3ZqF9zH9i67ZL1wZrN4AMJcJgDgEikpei29fzSVrDmT0LWGUvgP/on6leSsw4pkwOpo/+H2kVXSNbxHEu+hvKimDMj7sDAoENz4oknEvUmtXVilLYrLi7WfBwAYBgGl1xyiab6SHLY7XbMmDEjYgrUitlsxl133YW77rpL8z5nnnkmzjxTex0FMf369cN7770nu17LTPeORKvctS699FJ89dVX4HkeJpMJkyZNwsiRI9G5c2cAwJEjR7BixQr88ssvCAQC+PTTTxEMBjFnzpzWaK4iTz75JMrLy/H2229j7dq1xODmq6++Gk888UQrtM6ARFGq0VkzSBwURWFMvg1j8oVi7PgCQ5w1MOjImDP6J+xYbMNe2XXWgtPhL1ssG2EgqYIuI9KmDHkClk7jAQCOXtcoirTtYfqwJXcMcqduae1mGCQRS/ZwWDS61gHAXnw+bEXn4ci70u9AoGIVOG95Qtoldr5TtDUhxz0WseSOgiV3FBr+egK8+FoFIGXwk3B0v5ws0rLaCgO3h+uVgYGBgYFBmBa/a82dOxdffvklKIrCSSedhLfffhtFRUXEbffv34+///3v+P333/HFF1/ghx9+wOTJk1u4xcrQNI233noL559/Pl5//XWsXLkSFRUVyM7OxvDhw3H99dfjjDPOaO1mdljSrbQk8uCoR5tzycDAwMDAoC2gJNLS9s6w5J0M34Fviet5f7VwgYxISzsKdbTIyNc3aJ/I1YYIVCZQpBXHJhhxB6rQ1iywBJGWMsvHk2nOEDbiDgwMDAwM2hEtLtKGbcwDBw7ETz/9BLNZftp5165d8eOPP2LkyJFYv3493nnnnRYTaR955BE88sgjmrefPHlymxOQOzo8zxMzaQ/VBwlbGxgYGBgYtDyctwK0LVtxG0WR1poJc/ZwWZG2YcO/EGzYi7o//6F4DsaRr9rWCEYRVINjjEDlanCexIi0kDhpDZFWDdqaBRY7JMspxiG7j3aR1nDSGhgYGBi0H1q8cNiyZctAURTuuOMORYE2jNlsxp133gme57Fs2bIWaKHBscLqcnKhlcag9rwYAwMDAwODZFL588mqOWZKIi1lyYQ1/zTZ9f4jf6gKtLQtFxRjTMk26LgEKlbKRoZQ1izicjmkhcOM75YatMx7TJkURFpWm0hrZFEbGBgYGLQnWlykPXr0KIBQeLBW+vTpAwCoqKhISpsMjk1mb6onLjeyQg0MDAwMWgJ797+pbhOs3oBgzUbFbVjPYdl1tCUNptTuutsmOIa9s3CByvRgPqgtC9LAoL1jKzoP9m6X69pHnJVqZNKqQ1szySsYu/xOrFfbwSmjWLCBgYGBQfuhxUVapzOULVRZWal5n+rqUJ6awyE/mmpgIEYue/bkLoZIa2BgYGCQfFyDH1MWGZrg/TXKG3AB+XV0SIBIHfWKjpYJoURtZGydVLY3RCeD9ouz/53aNqQYpAx5CikDH9B1fHEBLNqaoWv/DomMkE015fmmDHtWsk5coE320CpxMgYGBgYGBm2JFhdpe/fuDQD49NNPNe8T3ja8r4GBGjVelrh8ag8H+mUZ2WAGBgYGBsnH5CpCzpQNSB3+b5jSj5PdjjKnKR6H5+Sz1KmmQmCO3jcgY+IPMbWTEhU2oqyZsqIJAFAm+WI+BgZtnZRhzyB9wieq2+VM2QhTWm/QtmzYis5T3T78PeV8QiOK3FR+g2YompwbSzUNQtm7XyFZx/mlhcZI0HblQScDAwMDA4O2RIuLtOeccw54nsc777wTKSKmxPvvv4+3334bFEXh3HPPTXr7DI4NdtWSH2h7phtTngwMDAwMWg5Tanc4+8+EtcvZ8hvJCBQReKWCl6EiXhRFwVZ4BtJP+Eh/I0WFjSiKUiwkJnbeGhi0JyiKgr3kYtD2PNltaHseTOl9ml87uqgel///9u47PKoqceP4O5NeCKFDSKQ3BQUJCCICotgoG0TsFAFZLIu7LrI/3bUX1LWt69KLWEAp0gIriBIloCGAihQpghIIHSnpk8zvDzbXDFPSZnKTzPfzPHmeO/eee+bMTM5M5s2559gyJBHSlonVzd/n/3tvsgY7j0YuyC7ZNHjW0PplbhYAABWtwkPaRx55RI0aNZLdbteoUaPUv39/LV68WIcOHVJeXp5sNpsOHTqkxYsXq3///hoxYoQKCgoUExOjhx9+uKKbiypq3xnXl4ZaWZAaAGACdyPFJEnFLBxm9zTdgcXxT7mAiEtK06z/VeEckFg9hLQKJKRF1edpRLglKKrU9dltGbLb7Sq4aLoDi7v5VmGwWDyPpLUEBMsSVMPh2MVhuDsBhLQAgCqkmKEb3hcREaEVK1bo+uuv1+nTp7Vq1SqtWrXKbXm73a5atWppxYoVzEkLt9LO2bQuLVsNIwJ0XVyo9v3metRRps3zF2EAACra2U1/UWSHiQqMaq2MXe/KGlJXIY36Kmv/PBVkpct26jsPZ18U0kaWPqR1NYotILyx3EXDnlZcB6oKS1Ck22PWiwLBkjiz8Y8KCGskFTjOlcpI2hJw90+sIu9N1uDays/7fVHgvBObSlY1IS0AoAqp8JBWkjp16qRt27Zp/PjxWrJkifLzXc8fGhAQoISEBL355ptq3LhxBbcSVcX53AI9kXxKOf/7NTqTU+B2JO2ZHNeLiQEAYJbcw6t16vBqh33n3JR1ctFIWk+XcLuvwnmu9oBw9393Md0BqgPPI2lLH9LmHFzucj8hbQm4GUmrgt+/I+ZnHXE4lL1/XomqtoYR0gIAqg5TQlpJiomJ0YIFC5Senq5169bpxx9/1KlTFy4Pql27ttq3b6/evXurUaPSf9mAf1nxc6YR0ErSJ7sz3JaNjTTtVx4A4MeC6l7lm4otjvP4eJxWwY3gRtc77fM03UFgTRZyRdVnDXQ/kvbi6Q6C63dX5s63y3AvljJNneBvgutdJVd/vVuLThVRkFOmuq0hdcvWKAAATGB6YtWoUSPdddddZjcDVdheN6NmL9YoIkDt67JwGACg4oU0vkkBUW2Uf/Ynr9ZrKefyAtawRgpvOdxpv6eRtEG1OpTrPoHKwBrh/nf84oXzQpvcVsY7CZTFwoIIxQmJ7e/0/hjcsE/Zpm+5CCP/AQBViekhLVBe+SWYweD+yyLVo3GorPyhDAAwgcUaoLr9v1XWvg909lsvLoRqKV1IG9npOQWENZQlOFoFWUcU2uxOWVwsBGZ1E9I2vDerTM0EKpuAiCYejsU53LZYAyVrsNN8s8Xj786SMN4f985RzuHPFRo3QGEt7vNO5S7m3AYAoLLyaUj766+/er3OSy4p/39UUb0UtxZYQstw3diURU4AAOayBtdURLuHdHbTY2W+dNdJaUPay/9eopF9F48klKTwNn+UJTC0VPcHVFYBke5DWmtErPO+0PoqyEwr5b0Q0paUNbimIi4dr4hLx3uvUotVFmuA9+oDAMDHfBrSNm3a1KuX+FgsFtlsNq/Vh+ohv8BzStuiJv9BBwBUIl69qqN0dZX07zJX0x0UZB8v1X0BlZnHkbThziGtpSwjMkv5TxR4mYtFEQEAqMx8Pt2B3V7MMEegHOx2u/ad8Rzct4hmVg8AQOVhsVjltb+OfBQCuZoCgZAW1YmnkbQBLkbSqgyL8jEfrbkshLQAgCrGp+nV8OHOC1EU9dtvv2np0qWyWCwaNmyYL5uCamrFfs9z49UKsap2KJc5AQAqEy8GNxU4Uo+QFtWJyyC28JiLkeQWS1m+NjGS1kyEtACAqsanIe3s2bM9Ht++fbuWLl1aorKAKx/sPO/xeLOajKIFAFQyZQp73FTlxbqcXLRQUmiTwb67L6CCuZu+wBJSR5ZA57UMQmJvle3MztLeSVmaBm8JYA5tAEDVwl8OqNZqBPMrDgCoXKyhdbxXl4sFvmpePcNl2bDm95aq7uhrPzK2LUE1FN76gdI1Dqjkgupe5bTP1Xy0khTZYaIswdHGbauL0bYXswSElLltcBTZ6YVSnxNYs7UPWgIAqG4sFossFoueeeYZs5tCSIvqLdjKXGAAgMrFGlrfa3UFRFzitC+89SiFNr/baX/k5U+Wqu6wprep9k1Jiur6tuoO2KKASOf7AqqyyI5POe1zNw2CNbSu6g36QVFd31btfmtU//aDiu75gQLrXKnIjs8oIKqN80mM5PSasOZ3uT1W48qXXO4Pqt3RR60BUFWsW7fOCOAu/gkPD1dcXJz69++vWbNmKScnx+zmAr5fOAwwUxDT0QIAKhlvhrTW0Hou94c07KPsnz9y2GcJiih1/SENr1VIw2vL1DagsrNYnP9QdDeSVpICIuIUcemfjNthLe5RWIt7JEkhjW/SycRujifYC7zTUCggoolkDZEKHEOU4AY9Fdywt8tzAglpAXiQlZWltLQ0paWlKTExUW+88YZWrFihpk2bmt00+DFG0qLKKrAXvzZ2ECNpAQCVjDdDWnerx9sLbM5lA0sf0gLVmos5Y60RcWWqKqhWB6d9BZmHylQXnFmsAQqMauW03xoWI3eLMQbVusLHrQJQlYwbN07btm0zftauXau3335bsbEX/jm3fft2DRw4UPn5+Sa3FP6MkBZVVrat+JD2txxGMAAAKhdXo/e8zk5ICxTP+auQu+kOiuNqsTF4V2BN5yklAsJjJLn+ez+wZlsftwhAVVK/fn21b9/e+Lnuuuv0pz/9STt27DBGz27btk2ffvqpuQ2FXyOkRZWVVYKQ9ngm/wUDAFQuBXlnfH4f9oI8553WYJ/fL1CluBhJ62m6A5grwEVIaw2PcTuthCWA9zwAxatRo4b+/ve/G7c///xzE1sDf0dIiyqrJCFtl4asqgsAqFxCYm/xSj1hLYa5PRZU63Knfe6mRgD8lotwzxreqMzVhbUc6XA7uAHzOXtTYA3n6Q4CwhrJ6iJYD6jRoiKaBKCa6NDh9ylrDh486Lbcl19+qeHDh6t58+YKDw9XVFSUOnTooAkTJujw4cMluq/k5GSNHj1abdq0UVRUlIKDgxUbG6v+/fvr3Xff1W+//eb23OXLl2vIkCGKjY1VSEiI6tSpo+7du2vSpEk6f/68y3NatGghi8WiHj16FNu2Q4cOKSAgQBaLRY8//rjLMmfOnNHLL7+sHj16qF69egoODlajRo00YMAALVy4UHYP01IWLtr2zDPPSJK++OIL3X777YqLi1NQUJDL+YCPHDmiJ598UvHx8apdu7ZCQkIUFxenoUOHljhQ/+ijj9S7d2/VqlVLkZGRat++vZ5++mmPz7VZWDgMVVZmMSFteKBF3RsR0gIAKpfQSwbrXOgEFWQf9VguIKKJAiIvUe7Rr50PWkMUeYXzyvSFghtdp8Do9rL99qMkKeKyx8rVZqBasjtfcWUJCCtzdTWufFHZBz6R3ZYhSQpvM67MdcGZq8UPLSG1FFijqSwhtWXPOWXsj+75QUU2DUAVFxz8+8j7oKAgp+PZ2dkaOXKk5s+f73Tsxx9/1I8//qjJkydr3rx5GjBggMv7yMrK0qhRozRv3jynY4cOHdKhQ4eUmJio48ePGyFm0fu/++67naZiOHXqlL755ht98803euedd5SYmKiOHTs6lLn77rv1wgsvaOPGjTpw4IDHhdHmzZungoIL/8C85557nI6vXbtWd9xxh06ePOmw/8iRI1qxYoVWrFihW265RR9//LEiIyPd3o8kPfnkk3rppZc8lvnwww81duxYZWRkOOxPS0vTggULtGDBAo0aNUpTpkxRYKBzvGmz2XT33XdrwYIFDvu3b9+u7du364MPPqh0I6d9GtI+99xzHo8fO3asxGULPfWU+y8k8C9ZNufRD8MvjdSxzHzVDw9Q5wYhqhVaAfP+AQBQCtagCNUd+J2yD3yisynjXZaxBEaq7oBUWULq6PzWfyjrwELV7D5FFmuQck+kKDT2VgVGuR8pZrFYVOeWZGX9/IGsIXUV2vR2Xz0coFqxWJ2/nJdUQHgj1R30o7J/Xayg2h0V0ug6L7YMFovza2MNipIkNRh6WGc3/UW5R9erZo8ZCq7bpaKbB6AK27lzp7F9cYhpt9s1ZMgQJSYmSpIGDBigoUOHqnnz5rJarUpJSdHrr7+uX3/9VUOGDFFycrLi4+Md6igoKNCgQYO0Zs0aSVKrVq304IMPKj4+XuHh4UpPT9eGDRv0ySefuGzf8OHDjYD2iiuu0GOPPaZ27drp1KlTmj9/vubMmaPDhw+rb9+++uGHH9S4cWPj3HvuuUcvvPCC7Ha7PvroIz3xxBNun4ePPvpIknTZZZfpiiscF19MTk7WzTffrLy8PDVo0ECPPPKIrrjiCsXExOjw4cP6+OOP9cEHH2jlypUaPny4Fi1a5PZ+Fi9erG3btqlDhw7685//rPbt2ysrK0vfffedUeaTTz7RfffdJ7vdrubNm+vhhx/WpZdeqnr16unAgQOaOXOmVq5cqZkzZyoqKkpvvPGG0/389a9/NQLaNm3a6PHHH9fll1+uM2fOaMGCBZo+fbruuOMOt+00g8XuaSxyOVmtVq9fWsdKe47S0tIUF3dhFdqDBw8aKxP6g2/Ss/XmlrPG7UYRAXqrdx0TWwQAQOmkz3H9d1KNK19U5OXu/4gGUH45h1br1JobHfbVH5qugPCGJrUInmQfXK7Tawc67Ks76AcF1erg5gzA+8rz/XvPnj2y2WwKDAxUq1bO03dIUoG9QCdzMr3S1qqiTki4rC7mCPeGdevWqU+fPpKkp59+2mmEqnQhY+rSpYu2bt0qSfr66691zTXXGMenT5+uBx54QEFBQVq2bJluuukmpzpOnz6tnj17avv27erRo4fWr1/vcPxf//qXxo+/8I/5hIQEzZs3TyEhzlf9FhQUKD093SFkTUxMVP/+/SVJffv21cqVKx1G/hZtoyQNHTpUH3/8scPxzp07a8uWLbrsssv0448/unyudu3apXbt2kmSXnrpJf3f//2fcSwvL0+tW7fWgQMHdNNNN2nRokUKD3deMLNoO1avXq0bbrjB4XjRfLBv375KTEx0+TycOHFCLVu21JkzZ3T//fdr6tSpLkfKFo7GtVqt2rFjh9q0+X3u8m3btqljx44qKCjQlVdeqaSkJKfRvXPnztXw4cON2+5+RzwpSb8uDZ9Pd+DNDJi51FDUxXPShgXy+wEAqB4sgc6X9QLwNufvKeUZSQvfsufnOO2z/G8kLVBdnMzJVP15z5jdjAp17K5nVC/U86XxvnD8+HFt27ZNTz31lBHQDhkyxCGgtdvteuWVVyRJf/rTn1wGtJJUq1Ytvfbaa7rllluUnJysPXv2GIFdQUGBXnvtNUlSbGys5s6d6zKYlC4MdCwa0ErSu+++K+nCNAyzZ892CmglacyYMfrkk0/0+eefa/HixUpPT1ejRr/PsX7PPfdoy5Yt2r59u77//nunUbLShakFpAu529133+1wbP78+Tpw4IBCQ0M1d+5clwFtYTtmzJihlJQUzZkzxymkLfo4Z8yY4fZ5mDx5ss6cOaPGjRvrP//5j8uAVpKeffZZvffeezp06JDmzp2rF1980Tg2ZcoUY+qGadOmuZx+YdiwYZo/f75WrVrlsn4z+DSk/fLLL31ZPfyY3W7XZweyHPaFE9ICAKqLgFCzWwBUey4Hk1hZsqOysudnOe2zBtU0oSUAqqJnn31Wzz77rMtj4eHh+uMf/6hJkyY57N+xY4f27dsn6UKA68m11/6+WOTGjRuNkPa7775TWlqapAshZnFztRZls9mUlJQkSerXr58xituVMWPG6PPPP5fNZtO6det01113GcfuvPNOTZgwQQUFBfroo49chrSFc+X26NFDTZo0cTi2bNkySVKvXr1Ur149j22+9tprlZKSoo0bN7ot06NHD49z4xbeX//+/d0GuZIUGBio7t27a+HChU73VzjXbIcOHdS5c2e3ddx///3+E9L26tXLl9XDj63+JUv7z9oc9jGSFgBQXRRkHjK7CYAfcBHS+uiSW5Sf3eZ8CbglqIYJLQFQ3XTs2FF/+tOfnBYNS01NNba7d+9e4vqOHDlibBeO0pWknj17lqpdP//8szIzL7z3XXXVVR7LFj1+8ZQGMTEx6tOnj9auXat58+Zp0qRJDleqf/vtt0YY7WrBsMLn4bPPPivxFe5Fn4OLXX755W6P5efnG3PTTp06VVOnTi31/eXk5GjPnj2SpC5dPM9R3rVr1xLVX1H4KwRV0qzt5532hQXy6wwAqB6C6nUzuwlAtRcY2cxpn8XqfBkpKofAmu2c9lmsLBIMoGTGjRunbdu2adu2bdq6dauWL1+u4cOHy2q1asOGDerdu7eOHz/ucE7Rxe5LozBYlS7Mr1qo6BQEJXHq1Clju379+h7LNmz4+3zqRc8rVBi+Hjx4UF999ZXDscKpDoKCgnT77c6LzZblecjKcr76oVCtWrXcHjt16pRsNpvb4+4Ufc5Pnz5tXC1T3PPWoEGDUt+XL3E9D6oNRtICAKqaiMufUMYPLznss4bHKqQhq8IDvhYY3VbBDXsr98g6SVJYi+GyBLi/rBLmCm7QU4G1Lpft9A+SpIhL/2xyiwDvqxMSrmN3PWN2MypUnRDX85t6W/369dW+fXvjdseOHdW/f3/16dNHI0aM0IEDBzR69GgtXbrUKFN04frly5d7vET/4vvytvKu0XTbbbfpwQcfVHZ2tj766CPjyvf8/Hx98sknkqSbbrpJdeo4L8Ze+DzcfPPNevXVV8vVDkkKCHD/D7aiz/no0aONBdeK42quXqnqrW1FSItqgzlpAQBVTdSVLyogPE4Z219XUJ0rFdzgGoU2vUOWQOakBSpC7etXKuvnDyRriMKaO1/iicrDYrGozi3rlbXvA1lDaiu06VCzmwR4ndViNWURLX82fPhwLV++XIsWLdKyZcv0xRdf6LrrLvyzvGhgGR0d7RDyllTdunWN7fT0dLVt27bE59auXdvYPnr0qMeyRS/3L3peoaioKPXv318LFy7UwoUL9e9//1tBQUFau3atUberqQ6kC8/D4cOHlZubW6bnoDSKtt1ut5fp/qKjo43t4p634o5XNK4PR7URFkRICwCoeiLa/lH1b9ujWr0/VkS7RxQQ5v3RFwBcswSGKbz1GIW3HMal81WANaiGItqOU1izO6rc6CgAlddLL71kjO584oknjP2dOnUytpOTk8tU95VXXmlsXzzNQHGaN2+u8PALI42//fZbj2VTUlKMbXfBZmEIe+rUKWOxrMKpDmrUqKGBAwe6PK/weUhNTVVubm4pHkHpBQcH67LLLpNU9uc8NDTUWLht06ZNHssWd7yiEdKi2ggN4A81AAAAAABQcq1bt9bQoRdG53/77bdas2aNpAsBa2xsrCRp2rRpys7OLnXdV1xxheLi4iRJM2bM0PnzzuvruBMYGGhMS7BmzRqlpaW5LTtjxgzjnN69e7ssc8sttxjzwX744YfKzs7Wp59+KklKSEhQWFiYy/MKw9szZ85o9uzZJW5/WRXe365du/TZZ5+VqY7rr79ekow5iN2ZNWtWmer3FUJaVBkZeQVasPu8/vTlCZfHw1k4DAAAAAAAlNITTzxhjNB/4YUXJElWq9UYWfvzzz9r2LBhysnJcVvH2bNn9e9//9thn9Vq1YQJEyRJaWlpGjZsmNvRqAUFBTp8+LDDvoceekiSlJubq1GjRikvL8/pvFmzZmn16tWSpMGDB7tdoCw4OFhDhgyRdGGO3Y8++kjnzp2T5H6qA+nClBCFQfNf//rXYkcEr1+/XklJSR7LeDJ+/HhFRl6Y9mPkyJHavn27x/KJiYn64YcfHPaNHTvWeD0feOABZWRkOJ334YcfauXKlWVupy+QaqHKeHXTGS3ck6mjmQUuj4cwJy0AAAAAACil9u3bGyM4v/rqK61fv16S9Mc//lEJCQmSpAULFuiyyy7Ta6+9pqSkJH333Xf66quvNG3aNN19992KiYnRM88841T3Qw89pBtuuEGS9Omnn6pDhw56++23lZycrK1bt2rVqlV6+umn1bZtW02bNs3h3FtvvVW33367JGn16tXq1q2bPvzwQ23evFmff/65Ro8erdGjR0u6MJ/rG2+84fFxFoaxWVlZeuyxxyRJDRo0UN++fd2eExISok8++UQhISE6f/68rrvuOt17771auHChNm/erE2bNmnZsmV6+umndfnll6tnz57atm2bx3Z40qBBA7333nuyWCxKT09XfHy8xo0bp2XLlmnLli369ttvtWjRIk2cOFEtWrRQ//799euvvzrUccUVVxgBd2pqquLj4zVnzhxt3rxZX3zxhcaNG6dhw4YpPj6+zO30BRYOQ5VwKjtfu047/8eoqHy7vYJaAwAAAAAAqpMnn3xSS5culSQ9//zz+uyzz2SxWPTxxx9r/PjxmjJlivbt26fHH3/cbR316zuvLWC1WrVkyRINHz5cCxcu1O7du/Xoo4+WuF1z586VzWbTp59+qi1btujee+91KhMTE6PExEQ1btzYY13XXnut4uLidPDgQf3222+SpDvvvNOYk9edbt26ad26dRo6dKgOHjyoDz/80JjP1pWoqKjiH5gHgwcP1tKlSzVixAidOnVKU6ZM0ZQpU1yWtVqtioiIcNr/xhtv6PDhw1q8eLF27dqlkSNHOhxv1qyZPv74Y7Vo0aJcbfUmRtKiSjiR5Xr0bFGBLB4AAAAAAADKoEuXLsaI19WrVxuLSgUFBek///mPvv/+ez3yyCPq0KGDatasqYCAANWsWVMdO3bUqFGjtHDhQu3cudNl3eHh4VqwYIG++OIL3XfffWrWrJnCwsIUHBysuLg4DRgwQFOnTjVGtxYVGhqqxYsXa9myZRo8eLBiYmIUHBysWrVq6aqrrtLLL7+sn376SR07diz2MVosFt11110O+zxNdVBUt27dtGfPHk2ZMkW33nqr0Y7Q0FDFxcWpX79+evHFF7Vr1y4NGzasRHV6MmDAAO3fv1///Oc/dd1116lBgwYKCgpSWFiYmjVrpv79++uNN97QgQMH1KdPH6fzg4KCtGjRIr3//vvq2bOnatasqfDwcLVr105PPPGENm/erObNm5e7nd5ksdsZfliVpaWlGXODHDx40JjUurrZeDhbb20967HM37rUVKf6IRXUIgAAAACAPynP9+89e/bIZrMpMDDQWHkeQNXm7X7NSFpUCSUZSWtlIC0AAAAAAACqIEJaVAknsvOLLRNISgsAAAAAAIAqiJAWVcKJrOJD2gAyWgAAAAAAAFRBhLSoEkq0cBgjaQEAAAAAAFAFEdKiSjidU3xIWzuUX2cAAAAAAABUPaRaqBKy8jyHtFfWD1bt0IAKag0AAAAAAADgPYFmNwAoTn6BXbkuMtp2tYPUpWGIwgIsujY2tOIbBgAAAAAAAHgBIS0qvex8u9O+d6+ro7phjJwFAAAAAABA1cd0B6j0smzOIW1YIIuEAQAAAAAAoHrwy5D27Nmzmj9/vh577DH16tVLLVu2VM2aNRUcHKz69eurd+/eevXVV3Xy5MkS1bdhwwbde++9atKkiUJDQ9WwYUPdeOONmjdvno8fiX/IdhHShgYQ0gIAAAAAAKB68MvpDlJSUnTXXXe5PHb8+HElJSUpKSlJr732mj744APdeOONbut65pln9Pzzz6ug4PdJU48eParVq1dr9erV+vDDD7Vw4UKFhjJnalldPJI22CoFWAlpAQAAAAAAUD345UhaSYqLi9OwYcP09ttva/Hixdq4caOSk5P18ccf6/bbb1dAQIBOnDihgQMH6vvvv3dZx9SpU/Xss8+qoKBALVq00MyZM5WSkqIlS5aoT58+kqTExETdf//9FfnQqp3zeY6rhoUF+e2vLQAAAAAAAKohvxxJ26dPH/36669ujw8dOlRLlixRQkKCcnNz9eyzz2rx4sUOZU6dOqWJEydKki655BJ98803qlu3rnG8f//+SkhI0PLlyzVv3jw98MAD6t27t08eT3V3LDPf4Xa9MEJaAAAAAAAAVB9+mXYFBAQUW+YPf/iD2rRpI0n6+uuvnY7PmDFDZ86ckSS98sorDgFt4X385z//Me7rtddeK2+z/dbRi0La+uHFv34AAAAAAABAVeGXIW1J1ahRQ5KUnZ3tdGzJkiWSpKioKA0ePNjl+bGxsbr++uslSWvXrtW5c+d809Bq7uKRtA3CCGkBAAAAAABQfRDSuvHTTz/pu+++kyS1bdvW4Vhubq5SUlIkSd27d1dwcLDbenr16iVJysnJUWpqqm8aW80dzXSck5aRtAAAAAAAAKhO/HJOWncyMzN16NAhLV++XK+++qpsNpsk6dFHH3Uot3v3buXnXxjdeXGAe7Gix3fu3GksKFZSaWlpHo+np6eXqr6qxm63O42kJaQFAAAAAABAdeL3Ie2cOXM0cuRIt8f/9re/6e6773bYVzQ4jY2N9Vh/XFycsX3w4MFSt6/o+f7oXK5d2fl2h32EtAAAAAAAAKhO/D6kdadjx46aNm2aunTp4nSs6NyykZGRHuuJiIgwts+fP++9BvqJixcNC7BIdUKZpQMAAAAAAADVh9+HtH/4wx8UHx8vScrKytK+ffv0ySef6NNPP9Vdd92lt956S/3793c4p+hCYp7mo5WkkJAQYzsrK6vU7Stu9G16erq6du1a6nqrimNZjiFt3bAABVgtJrUGAAAAAACgarBYLuQnTz/9tJ555hlzG4Ni+X1IGx0drejoaON2ly5ddOedd+r999/X8OHDNWjQIM2cOVMjRowwyoSGhhrbubm5HuvPyckxtsPCwkrdvuKmU6juLp6PtkE4o2gBAAAAAIBn69atc7kuUEBAgKKiolSzZk3FxcWpc+fOuuaaazRgwIBiB+IBvkTi5cZ9992n22+/XQUFBXr44Yd16tQp41iNGjWM7eKmMMjIyDC2i5saAc4unu6A+WgBAAAAAEBZ5efn6/Tp0zpw4IC+/vprvfXWWxoyZIhiY2P1wgsvGIvIAxWNkNaDQYMGSboQtP73v/819hcd3Vp0ETFXik5X4O+LgJXFxSNpCWkBAAAAAEBpjBs3Ttu2bTN+Nm7cqJUrV2rSpEm64YYbZLFYdPz4cf3jH/9Qjx49dPz4cbObDD/k99MdeFKvXj1j+5dffjG2W7durYCAAOXn52vXrl0e6yh6vF27dt5vZDWVm2/Xyv2Z2n4yz2F/A0JaAAAAAABQCvXr11f79u2d9t98882aOHGiduzYoXvvvVdbt25VSkqKEhIS9MUXXzD9ASoUI2k9OHTokLFddKqC4OBgY7GujRs3epyXNikpSdKFBcQKFyhD8ab8cFbzfspw2s9IWgAAAAAA4E2XXnqpkpOT1alTJ0lScnKy3n33XZNbBX9DSOvBggULjO0OHTo4HPvDH/4gSTp79qwWL17s8vy0tDR9/vnnkqS+ffs6zGUL9/IL7Eo+nOPyWP0wQloAAAAAAOBdYWFhev/992WxWCRJ//znP5WXl+ey7JEjR/Tkk08qPj5etWvXVkhIiOLi4jR06FAjB3Ln9OnTmj17tu69915deumlioyMVHBwsBo2bKgbb7xR06ZNK3aR+kIfffSRevfurVq1aikyMlLt27fX008/rd9++61Ujx2Vg1+GtHPmzFF2drbHMm+++aZWrlwpSWrWrJl69uzpcHz06NGqWbOmJOlvf/ubTp486XA8Pz9fDz74oPLzL8ypOmHCBG81v9o7mV3gcr9FUniQpWIbAwAAAAAA/MJll12mG264QZJ0+PBhbdq0yanMhx9+qJYtW+qll17S5s2bdfr0aeXm5iotLU0LFizQDTfcoNGjR7tdgKxTp066//779eGHH2rnzp3KyMhQXl6ejh49qtWrV2vs2LHq1q2bjhw54radNptNQ4cO1T333KOkpCT99ttvysjI0Pbt2/Xcc8+pc+fO2r9/v3eeFFQYvwxpn3nmGTVu3FgPPPCA5s6dq+TkZH3//fdav369Jk+erGuuuUZ/+ctfJF2Y2mDatGkKCHAcwVm7dm298sorki7MV3vVVVdp9uzZSk1N1bJly3TDDTdo+fLlkqS77rpLvXv3rtDHWJUdych3uT8s0CKrhZAWAAAAAAD4xvXXX29sf/311w7HPvnkE913333KyMhQ8+bN9cYbb+i///2vNm/erEWLFumWW26RJM2cOVOPP/64y/rz8/N11VVX6fnnn9eKFSu0adMmJScn64MPPtBNN90kSdq6davuvPNOt23861//alz93aZNG82cOVObNm3S559/rrFjx+rAgQO64447yvU8oOL57cJhp06d0vTp0zV9+nS3ZWJjYzVr1iyHDlrU2LFjdfjwYT3//PPat2+f7r//fqcyt9xyi2bNmuW1dvuDI5mu/9sUFkhACwAAAAConuz2AtkLzprdjAplsUbJYqlc4wevvPJKY3v37t3G9okTJ/TAAw/Ibrfr/vvv19SpUxUYGOhw3uDBg/Xkk0/qpZde0ttvv62xY8eqTZs2DvV/8cUXatWqldP9Xn311brnnns0e/Zs3X///UpKStLatWvVt29fh3Lbtm3TO++8Y9xnUlKSwzpKffv21dVXX63hw4eX74lAhfPLkPazzz5TYmKikpOTtXfvXh09elQnT55UWFiY6tevr44dO6p///4aOnSowsPDPdb17LPP6sYbb9S7776rr7/+WkePHlV0dLSuuOIKjRw5UnfddVcFParqw91I2rwCewW3BAAAAACAimEvOKtzR24zuxkVqkbDRbIERJvdDAd16tQxtk+fPm1sT548WWfOnFHjxo31n//8xyGgLerZZ5/Ve++9p0OHDmnu3Ll68cUXHY67CmiLGjlypP71r3/pu+++05IlS5xC2ilTpqig4MI0kdOmTXMIaAsNGzZM8+fP16pVqzw/WFQqfhnStmnTRm3atDGmNCivq6++WldffbVX6oJ0NNN1SHs2l5AWAAAAAAD4TtHQ89y5c8b2smXLJEn9+/dXSEiI2/MDAwPVvXt3LVy4UBs3bvR4X3a7XUePHtXZs2cdFgtr3LixvvvuO33//fdO5xQuTNahQwd17tzZbd33338/IW0V45chLSo3dyNpAQAAAAAAfKloMBsVFSXpwjyy3333nSRp6tSpmjp1aonqcrf4V2JioiZPnqyvvvrK4f4uduLECYfbOTk52rNnjySpS5cuHu+7a9euJWojKg9CWlQqefl2pbsJaa+Ocf+fKgAAAAAAgPIqGozWrl1b0oV1jWw21+vneJKZmelw2263a8yYMZo5c2aJzs/KynK4ffr0adntF64yrl+/vsdzGzRoUIqWojIgpEWlcvC8TfkuZjWwSOodG1rh7QEAAAAAoCJYrFGq0XCR2c2oUBZrlNlNcLJ161Zju3DRr/z83weTjR49WuPHjy9RXcHBwQ63Z82aZQS0HTt21KOPPqqrrrpKjRs3Vnh4uAICAiRdmFP2/fffNwJZVywWFlevbghpUans+835P1P3totU6+ggtakdZEKLAAAAAADwPYvFWukW0fJHa9asMbavueYaSb+PqJUujIZt3759meqePn26JKlly5basGGDwsLCXJY7deqUy/3R0dHG9tGjRz3eV3HHUflYzW4AUNT+M3kOt3vEhGhA83ACWgAAAAAA4FM//vij1q5dK0mKi4tTfHy8pAsjYi+77DJJUnJycpnr3759uyRp4MCBbgNau92uLVu2uDwWGhqqVq1aSZI2bdrk8b6KO47Kh5AWlcrPZxxH0jarSTgLAAAAAAB8KysrS8OGDTOmGPjrX/+qwMDfL0AfOHCgJGnXrl367LPPynQfhfPaZmRkuC2zdOlSpaenuz1+/fXXS5K2bdvmMDXDxWbNmlWmNsI8hLSoNPLy7fr1nGNI26ImM3IAAAAAAADf2bFjh6655hoj9OzVq5fGjRvnUGb8+PGKjIyUJI0cOdIYFetOYmKifvjhB4d9haNgly9f7nJKg3379umhhx7yWO/YsWON+WgfeOABl4Hvhx9+qJUrV3qsB5UPCRgqjV/POS8a1jSKX1EAAAAAAFB2x44d048//mjczsjI0OnTp/XDDz9o7dq1WrNmjTGCtlu3blq4cKGCghyv7G3QoIHee+89DRkyROnp6YqPj9eIESN08803KzY2Vnl5eUpLS1NKSooWLlyon3/+WcuXL9fll19u1DFs2DBNmDBBhw8fVvfu3TVx4kS1b99e2dnZ+uKLL/TWW28pJydHV155pdspD6644go99NBD+ve//63U1FTFx8dr4sSJ6tChg86cOaMFCxZo2rRpio+PV2pqqg+eTfgKCRgqjcMZ+Q63G4YHKDyIwd4AAAAAAKDsJk+erMmTJ3ssU69ePT366KN6/PHHHaY5KGrw4MFaunSpRowYoVOnTmnKlCmaMmWKy7JWq1UREREO+8aPH681a9Zo9erV2r17t0aNGuVwPCwsTHPnzlViYqLbkFaS3njjDR0+fFiLFy/Wrl27NHLkSIfjzZo108cff6wWLVp4fMyoXAhpUWlk2QocbkeHENACAAAAAADvsVqtqlGjhmrWrKkmTZqoc+fO6tmzp/r376/g4OBizx8wYID279+v6dOna+XKldq+fbtOnTqlwMBANWzYUJdddpmuu+46DRkyRHFxcQ7nBgUFKTExUZMnT9bcuXO1Y8cO2e12NW7cWNdff73Gjx+vtm3bKjEx0WMbgoKCtGjRIn3wwQeaNm2afvjhB+Xl5alJkyZKSEjQX//6V9WqVatczxMqnsVeOJ4bVVJaWprR6Q8ePKjY2FiTW1R2S/dl6KNdv8+l0rFesP6va7R5DQIAAAAA4H/K8/17z549stlsCgwMNOYlBVC1ebtfM1QRlUaWzfH/BWGBFpNaAgAAAAAAAFQcQlpUGtmEtAAAAAAAAPBDhLSoNDIJaQEAAAAAAOCHCGlRaVw8kjaUkBYAAAAAAAB+gJAWlUbaeZvD7YhAfj0BAAAAAABQ/ZGCoVI4fN6mQ+fzHfa1qhVkUmsAAAAAAACAikNIi0ph09Ech9vRIVa1jA40qTUAAAAAAABAxSGkRaWQesQxpI1vECyrhTlpAQAAAAAAUP0R0sJ0p7Pztfs3x/louzQMMak1AAAAAAAAQMUipIXpUo/mOtwOC7SofZ1gk1oDAAAAAAAAVCxCWpgu9aL5aDvVD1aglakOAAAAAAAAUDnZ7Xav1kdIC9P9ctZxqoPO9ZnqAAAAAABQfQQEBEiSbDab8vPzTW4NgPLKz883+nJh/y4vQlqYLv+i/zxEh/BrCQAAAACoPsLDw43t3377zbyGAPCKov24aP8uj0Cv1AKUw8Wjw5npAAAAAABQnURHR+v06dOSpGPHjik/P19RUVEKCQmRxcKXYKAqsNvtysnJ0dmzZ3Xy5Eljf61atbxSPyEtTFdgdgMAAAAAAPCh0NBQ1axZU2fOnJEknTx5UidPnpTFYvHapdIAfCs/P99pHtqaNWsqJMQ703YS0sJ8jKQFAAAAAFRzjRo1UnBwsI4fP27ss9vtstlsHs4CUFnVq1dPderU8Vp9hLQwVXqGTRk2766GBwAAAABAZWOxWFS3bl1FRUXp/PnzysjIUG5urgoKuL4UqAqsVquCg4MVERGhyMhIBQcHe7V+QlqYJstWoP9bf9ppv5X5eAAAAAAA1VRwcLBq166t2rVrm90UAJWI1ewGwH/990CWslyMog0gowUAAAAAAIAfIaSFafafcT3vTqMIJk0HAAAAAACA/yCkhWny7c6jaBuGByg8iF9LAAAAAAAA+A/SMJjG5mJu9GY1mSYZAAAAAAAA/oWQFqZxNZKWkBYAAAAAAAD+hpAWpsnNd97XLCqo4hsCAAAAAAAAmIiQFqb59ZzzwmFNGUkLAAAAAAAAP0NIC9M0iXIOZKOC+ZUEAAAAAACAfyERg2na1WZqAwAAAAAAAICQFqYJslocbsc3CDapJQAAAAAAAIB5CGlhGvtFty2yuCwHAAAAAAAAVGeEtDCN/aKU1kJGCwAAAAAAAD9ESAsTOaa0ZLQAAAAAAADwR4S0MI3TdAektAAAAAAAAPBDhLQwzblcx5g2gJAWAAAAAAAAfoiQFqbZdSrP4fYlNQJNagkAAAAAAABgHkJamCIjr0AHz9kc9rWtHWRSawAAAAAAAADzENLCFLtP5znMSRtklVrUJKQFAAAAAACA/yGkhSkunuqgRXSQgpiUFgAAAAAAAH7Ib0Pa1NRUPffcc+rXr59iY2MVEhKiyMhItW7dWiNHjtT69etLVd+qVauUkJBg1BUbG6uEhAStWrXKR4+gars4pG1bi1G0AAAAAAAA8E9+uVLTtddeq6+//tppf25urvbs2aM9e/Zozpw5GjZsmKZPn67g4GC3dRUUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIOcvPt2nvmopCW+WgBAAAAAADgp/wyNTx8+LAkKSYmRuPHj9fChQuVkpKijRs36o033lDjxo0lSXPnztWIESM81vXkk08aAW2nTp00b948paSkaN68eerUqZMkacaMGfr73//uuwdUxRzOsMlW4LivNSNpAQAAAAAA4KcsdrvdXnyx6qV///4aNmyYbrvtNgUEBDgdP3HihHr06KHdu3dLkpKSknTttdc6ldu9e7cuu+wy2Ww2xcfH66uvvlJYWJhxPDMzU7169VJqaqoCAwO1c+dOtWzZ0quPJS0tTXFxcZKkgwcPKjY21qv1+8KWozl6JfWMcTs6xKqp19c1sUUAAAAAAHhWFb9/A6g6/HIk7YoVKzR06FCXAa0k1a1bV6+//rpxe+HChS7LvfXWW7LZbJKkd955xyGglaTw8HC98847kiSbzaY333zTG82v8k5mOw6jrRPql7+GAAAAAAAAgCQ/DWlLok+fPsb2vn37nI7b7XYtXbpUktS2bVt169bNZT3dunVTmzZtJElLly6VHw5cdnIyO9/hdu1Q12E5AAAAAAAA4A8Iad3Iyckxtl2NuN2/f78xt22vXr081lV4/NChQzpw4ID3GllFnbp4JG0Yv4YAAAAAAADwX4FmN6CySkpKMrbbtWvndHzHjh3Gdtu2bT3WVfT4zp071axZsxK3Iy0tzePx9PT0EtdVWZzMchxJy3QHAAAAAAAA8GeEtC4UFBRo0qRJxu2hQ4c6lSkanhY3WXjhxOLShcnFS6PoudWF85y0THcAAAAAAAAA/8UQRhfefPNNpaSkSJIGDx6szp07O5U5d+6csR0ZGemxvoiICGP7/PnzXmpl1WS323Xqojlpme4AAAAAAAAA/oyRtBdJSkrS3/72N0lS/fr1NXnyZJflsrOzje3g4GCPdYaEhBjbWVlZpWpPcSNv09PT1bVr11LVaaYMm105jhktC4cBAAAAAADArxHSFrF9+3YlJCTIZrMpNDRUCxYsUP369V2WDQ0NNbZzc3M91lt0EbKwsLBStam4qRSqmkCLRQ93jNLJrHydyi7Qyex81WZOWgAAAAAAAPgxQtr/2b9/v/r166fTp08rICBA8+fP17XXXuu2fI0aNYzt4qYwyMjIMLaLmxqhugsNtKhn49DiCwIAAAAAAAB+giGMkg4fPqzrr79ehw8flsVi0axZszRo0CCP5xQd4Vp0ETFXik5ZUB0XAgMAAAAAAABQdn4f0p44cUI33HCDfv75Z0nSO++8o2HDhhV73qWXXmps79q1y2PZosfbtWtXxpYCAAAAAAAAqI78OqQ9c+aMbrzxRu3YsUOSNGnSJD300EMlOrdZs2aKiYmRdGGxMU+++uorSVLjxo3VtGnTsjcYAAAAAAAAQLXjtyFtZmambr31Vm3ZskWS9OSTT2rixIklPt9isRhTIuzatUvffPONy3LffPONMZJ20KBBslgs5Ww5AAAAAAAAgOrEL0Pa3NxcJSQkKDk5WZI0fvx4vfDCC6Wu59FHH1VAQIAk6ZFHHlFWVpbD8aysLD3yyCOSpMDAQD366KPlazgAAAAAAACAaifQ7AaY4a677tLq1aslSdddd51GjRqlH3/80W354OBgtW7d2ml/69atNWHCBE2aNEmpqanq0aOHJk6cqBYtWmjfvn165ZVXtHXrVknShAkT1KpVK988IAAAAAAAAABVlsVut9vNbkRFK+2UA02aNNGBAwdcHisoKNCYMWM0a9Yst+ePGjVK06ZNk9Xq/YHLaWlpiouLkyQdPHhQsbGxXr8PAAAAAAD8Hd+/AfiSX0534E1Wq1UzZ85UYmKiBg0apJiYGAUHBysmJkaDBg3SypUrNWPGDJ8EtAAAAAAAAACqPr+c7sAXg4dvueUW3XLLLV6vFwAAAAAAAED1xvBOAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMREgLAAAAAAAAACYipAUAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIr8NaY8dO6YVK1boqaee0s0336y6devKYrHIYrFoxIgRpa5v1apVSkhIUGxsrEJCQhQbG6uEhAStWrXK+40HAAAAAAAAUG0Emt0AszRo0MAr9RQUFOiBBx7QzJkzHfYfOnRIhw4d0pIlSzR69GhNnTpVVqvfZuIAAAAAAAAA3CA1lHTJJZeoX79+ZTr3ySefNALaTp06ad68eUpJSdG8efPUqVMnSdKMGTP097//3WvtBQAAAAAAAFB9+O1I2qeeekpdunRRly5d1KBBAx04cEDNmjUrVR27d+/WP//5T0lSfHy8vvrqK4WFhUmSunTpooEDB6pXr15KTU3Va6+9pvvvv18tW7b0+mMBAAAAAAAAUHX57UjaZ599Vv379y/XtAdvvfWWbDabJOmdd94xAtpC4eHheueddyRJNptNb775ZtkbDAAAAAAAAKBa8tuQtrzsdruWLl0qSWrbtq26devmsly3bt3Upk0bSdLSpUtlt9srrI0AAAAAAAAAKj9C2jLav3+/Dh8+LEnq1auXx7KFxw8dOqQDBw74umkAAAAAAAAAqhC/nZO2vHbs2GFst23b1mPZosd37txZqrlv09LSPB5PT08vcV0AAAAAAAAAKh9C2jIqGp7GxsZ6LBsXF2dsHzx4sFT3U/RcAAAAAAAAANUP0x2U0blz54ztyMhIj2UjIiKM7fPnz/usTQAAAAAAAACqHkbSllF2draxHRwc7LFsSEiIsZ2VlVWq+ylu5G16erq6du1aqjoBAAAAAAAAVB6EtGUUGhpqbOfm5nosm5OTY2yHhYWV6n6Km0oBAAAAAAAAQNXGdAdlVKNGDWO7uCkMMjIyjO3ipkYAAAAAAAAA4F8Iacuo6AjXoouIuVJ0ygIWAgMAAAAAAABQFCFtGV166aXG9q5duzyWLXq8Xbt2PmsTAAAAAAAAgKqHkLaMmjVrppiYGElSUlKSx7JfffWVJKlx48Zq2rSpr5sGAAAAAAAAoAohpC0ji8WiQYMGSbowUvabb75xWe6bb74xRtIOGjRIFoulwtoIAAAAAAAAoPIjpC2HRx99VAEBAZKkRx55RFlZWQ7Hs7Ky9Mgjj0iSAgMD9eijj1Z0EwEAAAAAAABUcoFmN8As69ev1969e43bJ06cMLb37t2rOXPmOJQfMWKEUx2tW7fWhAkTNGnSJKWmpqpHjx6aOHGiWrRooX379umVV17R1q1bJUkTJkxQq1atfPJYAAAAAAAAAFRdFrvdbje7EWYYMWKE3nvvvRKXd/c0FRQUaMyYMZo1a5bbc0eNGqVp06bJavX+wOW0tDTFxcVJkg4ePKjY2Fiv3wcAAAAAAP6O798AfInpDsrJarVq5syZSkxM1KBBgxQTE6Pg4GDFxMRo0KBBWrlypWbMmOGTgBYAAAAAAABA1ee3I2mrC/6TBwAAAACA7/H9G4AvMbwTAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJDWi3755Rc99thjatu2rSIiIlS7dm116dJFr732mjIzM81uHgAAAAAAAIBKKNDsBlQXy5cv17333quzZ88a+zIzM5WamqrU1FTNmDFDiYmJatmypYmtBAAAAAAAAFDZMJLWC7Zu3ao77rhDZ8+eVWRkpF588UVt2LBBa9eu1ZgxYyRJu3fv1q233qpz586Z3FoAAAAAAAAAlQkjab1g/PjxysrKUmBgoFavXq3u3bsbx6677jq1atVKjz/+uHbv3q3XX39dzzzzjHmNBQAAAAAAAFCpMJK2nFJSUvT1119LkkaNGuUQ0BZ67LHH1K5dO0nS22+/rby8vAptIwAAAAAAAIDKi5C2nJYsWWJsjxw50mUZq9WqYcOGSZJ+++03ffnllxXRNAAAAAAAAABVACFtOa1fv16SFBERoc6dO7st16tXL2M7OTnZ5+0CAAAAAAAAUDUwJ2057dy5U5LUsmVLBQa6fzrbtm3rdE5JpKWleTyenp5e4roqi892PSyrcs1uBgAAAACgkrimxZsKC4owuxkAYBpC2nLIzs7WiRMnJEmxsbEey9aqVUsRERHKyMjQwYMHS3wfcXFx5WpjZdQubLdqBuab3QwAAAAAQCVhK2DtFgD+jekOyuHcuXPGdmRkZLHlIyIu/Ffw/PnzPmsTAAAAAAAAgKqFkbTlkJ2dbWwHBwcXWz4kJESSlJWVVeL7KG7UbXp6urp27Vri+gAAAAAAAABULoS05RAaGmps5+YWP8dqTk6OJCksLKzE91HcNApV0Y7sbpK4lAUAAAAAcEHvBsUPfAKA6oyQthxq1KhhbJdkCoOMjAxJJZsaoTq7qc1zZjcBAAAAAAAAqDSYk7YcQkNDVadOHUlSWlqax7KnT582QtrquBgYAAAAAAAAgLIhpC2nSy+9VJK0d+9e2Ww2t+V27dplbLdr187n7QIAAAAAAABQNRDSltM111wj6cJUBps3b3ZbLikpydju0aOHz9sFAAAAAAAAoGogpC2nP/zhD8b27NmzXZYpKCjQ3LlzJUnR0dHq06dPRTQNAAAAAAAAQBVASFtOXbt2Vc+ePSVJM2fO1MaNG53KvP7669q5c6ckafz48QoKCqrQNgIAAAAAAACovALNbkB18Pbbb6tHjx7KyspSv3799MQTT6hPnz7KysrS/PnzNW3aNElS69at9dhjj5ncWgAAAAAAAACVCSGtF3Tq1Ekff/yx7r33Xp09e1ZPPPGEU5nWrVsrMTFRNWrUMKGFAAAAAAAAACorpjvwkgEDBuiHH37Qn//8Z7Vu3Vrh4eGKjo5WfHy8XnnlFW3dulUtW7Y0u5kAAAAAAAAAKhmL3W63m90IlF1aWpri4uIkSQcPHlRsbKzJLQIAAAAAoPrh+zcAX2IkLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkCzW4Aysdmsxnb6enpJrYEAAAAAIDqq+h37qLfxQHAGwhpq7jjx48b2127djWxJQAAAAAA+Ifjx4+radOmZjcDQDXCdAcAAAAAAAAAYCKL3W63m90IlF12dra2bdsmSapXr54CAyv/4Oj09HRj1G9KSooaNWpkcotQWryGVR+vYdXG61f18RpWfbyGVR+vYdXG61f1VcXX0GazGVezdujQQaGhoSa3CEB1UvkTPXgUGhqqLl26mN2MMmvUqJFiY2PNbgbKgdew6uM1rNp4/ao+XsOqj9ew6uM1rNp4/aq+qvQaMsUBAF9hugMAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARBa73W43uxEAAAAAAAAA4K8YSQsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdKiQv3yyy967LHH1LZtW0VERKh27drq0qWLXnvtNWVmZprdPL+Umpqq5557Tv369VNsbKxCQkIUGRmp1q1ba+TIkVq/fn2xdcyZM0cWi6VEP3PmzPH9g/IzJX3ue/fuXWxdq1atUkJCgvG7EBsbq4SEBK1atcr3D8RP9e7du8SvYeHPunXrHOqgD/rOsWPHtGLFCj311FO6+eabVbduXeO5HDFiRKnr80Yfs9lsmjJlinr27Kl69eopLCxMLVq00NixY7V9+/ZSt6m688ZrmJmZqcWLF2vcuHHq0qWLatWqpaCgINWpU0fdu3fXM888oyNHjhRbT2n6O37njdfQ2++TmZmZevXVV9WlSxfVrl1bERERatu2rR577DH98ssv5XvA1VB5X8MDBw6U+rOyadOmLuuiH5aeN74vFMVnIQC4YQcqyLJly+xRUVF2SS5/Wrdubd+zZ4/ZzfQrPXv2dPt6FP0ZNmyYPScnx209s2fPLlE9kuyzZ8+uuAfoJ0r63Pfq1cttHfn5+fZRo0Z5PH/06NH2/Pz8intgfqJXr14lfg0l2a1Wqz0tLc2hDvqg73h6LocPH17ierzVx44fP27v0qWL2zpCQkLs06dPL+ejrl7K+xp+//339sjIyGL7VlRUlH3+/Pke6ypNf8fvvNEPvfk+uWfPHnurVq08/i4sX768/A+8Ginva7h///5SfVZKsvfr189lXfTD0vHW9wW7nc9CAChOoIAKsHXrVt1xxx3KyspSZGSk/u///k99+vRRVlaW5s+fr+nTp2v37t269dZblZqaqho1apjdZL9w+PBhSVJMTIxuv/129ezZU5dccony8/O1ceNGvf766zp06JDmzp2rvLw8ffTRR8XW+dlnnykmJsbt8djYWK+1H47GjRunBx980O3xiIgIt8eefPJJzZw5U5LUqVMnPf7442rRooX27dunV199VVu3btWMGTNUr149vfTSS15vuz+bPXu2MjIyPJbZsWOH7rjjDklS37591bhxY7dl6YO+c8kll6ht27ZavXp1qc/1Rh/Lz89XQkKCNm3aJEkaPHiwxowZo9q1a+vbb7/VCy+8oGPHjmns2LFq3Lixbr755rI/2GqqLK/h2bNndf78eUlSjx491L9/f8XHx6tOnTo6fvy4Fi9erOnTp+vs2bO65557FBUVVexzHx8fr9mzZ5frsfir8vTDQuV5nzx37pxuvfVW7dmzR5I0ZswY3XnnnQoLC9OXX36pl19+WWfPntUdd9yh5ORkdezYscztrK7K8ho2btxY27ZtK7bcyy+/bPy9Onz4cI9l6Ycl483vC3wWAkAxzE6J4R8K/wMbGBho37Bhg9PxV1991fjP59NPP13xDfRTt956q/3jjz+222w2l8ePHz9ub926tfHaJCUluSxXdHTK/v37fdhiuFLevvPTTz/ZAwMD7ZLs8fHx9szMTIfjGRkZ9vj4eKMPM+K94j3++OPG6/z+++87HacP+s5TTz1lX758uf3IkSN2u91xNFdJR/B5q4/NnDnTuO8HH3zQ6fiePXuMK1Zatmxpz8vLK92DrabK+xomJyfbhw4dat++fbvbMkuWLLFbLBa7JHuLFi3sBQUFLssVjuDzdGUDnHmjH3rrffIf//iHUc+rr77qdDw5Odno77zOv/PGa1gcm81mj4mJsUuy16hRw+m9thD9sHS89X2Bz0IAKB4hLXzu22+/NT5Ix44d67JMfn6+vV27dnZJ9ujoaHtubm4FtxLuLF++3Hj9HnnkEZdlCIjMVd6Qdty4cUYdGzdudFlm48aNHv8ghu/k5+fbGzdubJdkj4yMtGdkZDiVoQ9WnLIEC97qY4Wfk7Vr13b5e2C32+0vv/yyUc8nn3xSovb5G1+EQ3a73X7bbbcZ9W7evNllGcIh7zArpM3NzbXXrFnTLsnerl07t5dkjx071rivlJSUMt1XdeeLfvjf//7XqHPkyJFuy9EPva8k3xf4LASA4rFwGHxuyZIlxvbIkSNdlrFarRo2bJgk6bffftOXX35ZEU1DCfTp08fY3rdvn4ktgS/Y7XYtXbpUktS2bVt169bNZblu3bqpTZs2kqSlS5fKbrdXWBv93dq1a3Xo0CFJ0pAhQxQeHm5yi1Aa3upju3fv1s6dOyVJQ4cOdft7UHQBnk8//bS8zUcp8HlZ/X355Zc6c+aMpAuX0lutrr9K0Q/NMXfuXGO7uKkO4F3Fvf/xWQgAJUNIC58rXO0zIiJCnTt3dluuV69exnZycrLP24WSycnJMbYDAgJMbAl8Yf/+/cZcY0X7oCuFxw8dOqQDBw74umn4n6JfOgv/mYWqw1t9rOjK2Z7qadiwoVq3bi2Jz9KKxudl9VfSfhgfH2+ER/TDinHu3DljYEjTpk117bXXmtsgP1Pc+x+fhQBQMoS08LnC/3a2bNlSgYHu16pr27at0zkwX1JSkrHdrl27YsuPHDlSMTExCg4OVt26ddWtWzf9/e9/N0YCwncWLFigSy+9VOHh4apRo4ZatWql4cOHexyZvmPHDmO7aB90hT5a8c6fP2+MAGnSpIl69+5d7Dn0wcrFW32sLPUcPHiw2EXp4D2l+bzctWuXrrrqKkVHRys0NFSxsbEaNGiQsfAOfKus75Ml7YeBgYFq2bKlJD4vK8rChQuVmZkpSbrvvvtksViKPYd+6D3Fvf/xWQgAJUNIC5/Kzs7WiRMnJBW/onitWrWM1ecPHjzo87aheAUFBZo0aZJxe+jQocWes27dOqWnpysvL08nT57Ut99+qxdffFEtW7bU1KlTfdlcv7djxw7t3LlTWVlZOn/+vPbu3au5c+fquuuuU0JCgnGJZlFpaWnGdnF9NC4uztimj1aMRYsWGV8s7r333hJ96aQPVi7e6mNlqcdutzucB9/5/vvvlZiYKEnq0KFDsSHt0aNHlZKSojNnzignJ0eHDh3SsmXLNHz4cHXs2JFgz8fK+j5Z2J8iIiIUHR3t8T4K++Hx48cdRhnCN8py1Qn90DtK8n2Bz0IAKBn3wxoBLzh37pyxHRkZWWz5iIgIZWRk6Pz5875sFkrozTffVEpKiiRp8ODBHqeraN68uQYPHqzu3bsbfxT9/PPPWrRokRYuXKjs7Gz98Y9/lMVi0QMPPFAh7fcX4eHhGjhwoPr27au2bdsqMjJSx48fV1JSkqZMmaKTJ09qyZIlGjRokNasWaOgoCDj3NL00cJ/okiij1aQ0nzppA9WTt7qY/TVyisnJ0ejR49Wfn6+JOnFF190W9Zqtapv37665ZZbdMUVV6hOnTo6d+6ctmzZoqlTp2rnzp3asWOH+vTpo5SUFF1yySUV9TD8QnnfJwv7YUn/pi10/vx5hYSEeOlR4GK//vqrMZLz6quvNkYxu0M/9K6SfF/gsxAASoaQFj6VnZ1tbAcHBxdbvvAP2KysLJ+1CSWTlJSkv/3tb5Kk+vXra/LkyW7LJiQkaPjw4U6j/Lp06aI77rhDK1as0ODBg5WXl6c///nPGjhwoBo2bOjT9vuTQ4cOuRzRc8MNN+iRRx7RzTffrK1btyopKUmTJ0/Wn/70J6NMafpo0S+Y9FHfS0tL07p16yRdWEijcG41V+iDlZe3+hh9tfJ6+OGHlZqaKunCYkUDBgxwW3bx4sUu36979uypBx98UGPGjNF7772no0eP6tFHH9XixYt91Wy/4433ycJ+WJq/aSX6oa998MEHxgJTJRlFSz/0npJ+X+CzEABKhukO4FOhoaHGdm5ubrHlCy8HCwsL81mbULzt27crISFBNptNoaGhWrBggerXr++2fM2aNT1eht2/f3899dRTkqTMzEzNnDnT6232Z54uuWzQoIEWLlxojJ595513HI6Xpo8WvVyTPup7H3zwgQoKCiQVv0o1fbDy8lYfo69WTi+//LJmzJgh6ULY9+6773os7+n9OigoSDNmzDBWNv/000+ZS9qLvPE+WdgPS/M3rUQ/9LX3339f0oVQ7o477ii2PP3QO0rzfYHPQgAoGUJa+FSNGjWM7ZJcZlI492JJLiODb+zfv1/9+vXT6dOnFRAQoPnz53tlhdwHHnjA+HJUdHEB+F7z5s11ww03SJL27t1rrK4rla6PFl10gT7qe6X90lkc+qA5vNXH6KuVz9SpU/XEE09IurBAzcqVKx0ury2LwMBAjRo1yrhNX61Yxb1PFvbD0vxNK9EPfSklJUW7du2SJA0cOLDYuYJLgn5YvNJ+X+CzEABKhpAWPhUaGqo6depIUrETtp8+fdr4MC06YTwqzuHDh3X99dfr8OHDslgsmjVrlgYNGuSVuuvXr2/8LjAioeJdeumlxnbR57/oogvF9dGiizfQR30rNTXVWMG4f//+qlWrVrnrpA+aw1t9rCz1WCyWYhdWQdnMmzdPDz74oCSpSZMmWrNmjerWreuVut29X8P3inufLOxPGRkZ+u233zzWVdgP69Wrx3y0PlSWBcNKgn7oXlm+L/BZCAAlQ0gLnyv8I2fv3r2y2WxuyxX+F1xSsasiw/tOnDihG264QT///LOkC5fFe/OPXUklWpkevuHuuS/6JaRoH3SFPlpxin7pLG6qg9KgD1Y8b/WxstQTFxdX7pGdcLZs2TINGzZMBQUFatSokdauXevVAIB+ai5Pz39J+6HNZtO+ffsk8XnpS3l5eZo/f76kCwH7TTfd5LW66YeulfX7Ap+FAFAyhLTwuWuuuUbShVEHmzdvdluu6KVEPXr08Hm78LszZ87oxhtvNEbuTZo0SQ899JBX7+P48eM6ceKEJCkmJsardaN4ha+t5Pj8N2vWzLhd3OV8X331lSSpcePGatq0qfcbCUmOXzrr1aunm2++2Sv10gfN4a0+VvhZWlw9R44c0e7duyXxWeoLa9eu1dChQ2Wz2VSnTh2tWbNGLVq08Op9uHu/hu8V9z5Z0n6YmppqXB1GP/SdxMREnTx5UpJ09913KzDQe2ti0w+dlef7Ap+FAFAyhLTwuT/84Q/G9uzZs12WKSgoMEaORUdHq0+fPhXRNOjC4hi33nqrtmzZIkl68sknNXHiRK/fz7Rp04yVd3v16uX1+uHe/v37tWbNGklSixYt1LhxY+OYxWIxLlHbtWuXvvnmG5d1fPPNN8aIhEGDBjHCxIdWrVql48ePS/Lul076oDm81cdat25tjCj65JNPlJmZ6bKeOXPmGNsJCQnlbT6K2LBhgwYNGqScnBzVrFlTn332mS677DKv3ofNZtOsWbOM296YEx4lV9z7ZO/evVWzZk1J0nvvvWeUvRj9sGL46qoT+qGz8n5f4LMQAErIDlSAnj172iXZAwMD7Rs2bHA6/uqrr9ol2SXZn3766YpvoJ/Kycmx9+vXz3jux48fX+o69u/fb9+yZYvHMsuXL7cHBwfbJdnDwsLsaWlpZWwxLrZs2TJ7Xl6e2+NHjhyxd+rUyXiNX3/9dacyP/30kz0gIMAuyR4fH2/PzMx0OJ6ZmWmPj483+vDu3bu9/jjwu9tuu814vTZv3lxsefpgxdq/f7/x+gwfPrxE53irj82cOdO474ceesjp+N69e+1RUVF2SfaWLVt6fG/wZ2V5Dbdu3WqPjo62S7JHRETY169fX+r7/eKLL+ynT592ezw3N9c+fPhwo20DBgwo9X34i9K+ht58n/zHP/5h3Perr77qdHzDhg32wMBAuyR7r169SvJw/FJZ+mFRJ0+eNF6vDh06lPg8+mHpeeP7gt3OZyEAlIT3rgkBPHj77bfVo0cPZWVlqV+/fnriiSfUp08fZWVlaf78+Zo2bZqkC/8dfeyxx0xurf+46667tHr1aknSddddp1GjRunHH390Wz44OFitW7d22HfgwAH16dNH3bt314ABA3TFFVeofv36kqSff/5ZCxcu1MKFC43RJv/85z8dRnKifB555BHl5eXptttuU/fu3dW0aVOFhYXpxIkTWrdunaZOnWpcunnNNde4vCytdevWmjBhgiZNmqTU1FT16NFDEydOVIsWLbRv3z698sor2rp1qyRpwoQJatWqVYU+Rn9y+vRprVixQpLUvn17XXnllcWeQx/0rfXr12vv3r3G7cL+JF2Ya73oaB1JGjFihFMd3upjw4cP16xZs5ScnKx3331XR44c0ZgxY1SrVi2lpKTo+eef19mzZ2W1WvWvf/3Lq5f+VmXlfQ337dunG2+80Vgo6oUXXlDNmjU9fl7Wr1/f6IeF3nvvPQ0cOFADBw5U79691aZNG0VFRen8+fPavHmzpk2bZlxGXL9+fb399ttleLTVU3lfQ2++T06YMEEff/yxdu/erccff1x79+7VnXfeqbCwMH355Zd66aWXZLPZFBYWprfeeqv8D76a8MZ7aVHz589Xbm6upNKNoqUflp43vi9IfBYCQImYHBLDjyxbtsz4r6arn9atW9v37NljdjP9irvXwt1PkyZNnOr48ssvS3RueHi4ferUqRX/IKu5Jk2alOj5v+222zyOHMnPz7fff//9HusYNWqUPT8/v+IenB+aPHmyxxFartAHfavoiKqS/LjjrT52/Phxe5cuXdzWERISYp8+fbq3n4Yqrbyv4ezZs0v9eenqqqCStqNDhw727du3V8AzU3WU9zX09vvknj177K1atXJbT1RUlH358uW+eCqqLG+9lxa66qqr7JLsAQEB9vT0dK+3g374u9K+/7n6vlCIz0IA8Ix/K6HCDBgwQD/88IPefvttJSYmKi0tTcHBwWrZsqVuv/12PfzwwwoPDze7mSilzp0764MPPtDGjRuVmpqq9PR0nThxQjabTbVq1dJll12mvn37avTo0U6jilB+7733npKSkrRx40b9/PPPOnHihM6ePavIyEjFxcXp6quv1vDhw9W9e3eP9VitVs2cOVO33Xabpk2bpk2bNunEiROqW7euunTporFjx3ptASu49/7770uSAgICdM8995ToHPpg1eCtPla3bl1t2LBB06dP10cffaSdO3cqIyNDMTEx6tu3r8aPH+/1eVLhHRMnTlTHjh21ceNG7dixQ8ePH9epU6cUEhKiBg0aKD4+XkOGDFFCQoICAgLMbm614u33yZYtW2rr1q169913tWDBAu3du1e5ubmKi4vTLbfcovHjx6tJkyYV8Mj80549e/Ttt99Kkm644QY1bNiwxOfSD83FZyEAeGax293MeA8AAAAAAAAA8Dmr2Q0AAAAAAAAAAH9GSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAFBGc+bMkcVikcVi0YEDB8xuDgAAAIAqipAWAAD4nQMHDhjhanl+AAAAAMAbCGkBAAAAAAAAwEQWu91uN7sRAAAAFSkvL08//fST2+MdOnSQJMXHx2v27Nluy7Vv397rbQMAAADgfwLNbgAAAEBFCwoKKlHAGhERQRALAAAAwOeY7gAAAAAAAAAATERICwAAUEZz5swxFhE7cOCA0/HevXvLYrGod+/ekqS9e/fqj3/8o5o3b66wsDA1bdpUo0aN0i+//OJw3o8//qiRI0eqefPmCg0NVVxcnMaNG6djx46VqF1LlizR7bffrksuuUShoaGKjo5WfHy8nn32WZ0+fbq8DxsAAACAlzHdAQAAQAX4/PPPNXjwYJ07d87Y98svv2jWrFlasWKFkpKS1LZtW82bN08jRoxQbm6uUS4tLU1TpkzRqlWrtGHDBsXExLi8j9OnT2vIkCH64osvHPbn5ORo8+bN2rx5s/7zn/9o6dKl6tatm28eKAAAAIBSYyQtAACAjx0+fFhDhw5VdHS03nnnHX377bf6+uuv9eijj8pisejYsWMaPXq0Nm3apGHDhqlFixaaMWOGUlJS9OWXX+q+++6TdCHU/ctf/uLyPnJycnT99dfriy++UEBAgO677z7NmzdP33zzjb7++mu9+OKLqlOnjo4dO6ZbbrnFafQuAAAAAPMwkhYAAMDH9uzZo1atWik5OVn16tUz9l9zzTUKDAzUP//5TyUnJ+vWW29V165dtWbNGoWHhxvlevfurezsbC1YsECLFi3S8ePHHeqRpOeee05btmxRdHS0Pv/8c3Xu3Nnh+DXXXKN77rlH3bt3V3p6up544gl9+OGHvn3gAAAAAEqEkbQAAAAV4F//+pdTsCpJDz74oLF94sQJzZgxwyGgLTRu3DhJks1m08aNGx2OnT9/Xu+++64k6fnnn3cKaAs1adJE//jHPyRJCxYsUEZGRtkeDAAAAACvIqQFAADwsejoaN14440ujzVr1kw1atSQJF1++eVq166dy3JXXHGFsf3zzz87HEtKStKZM2ckSUOGDPHYlmuvvVaSlJeXp82bN5fsAQAAAADwKaY7AAAA8LFWrVrJYrG4PR4dHa1z586pdevWHssUKrr4mCSlpqYa240aNSpxu44cOVLisgAAAAB8h5G0AAAAPuZq+oKirFZrseUKy0hSfn6+w7Fjx46VqV2ZmZllOg8AAACAdzGSFgAAoIorGtpu2bJFQUFBJTovNjbWV00CAAAAUAqEtAAAAFVcnTp1jO169eoRvgIAAABVDNMdAAAAVHGdOnUytpOTk01sCQAAAICyIKQFAACo4q6//npjPtt//etfstvtJrcIAAAAQGkQ0gIAAFRx0dHRevjhhyVJGzZs0J///GcVFBS4LX/06FHNmDGjopoHAAAAoBjMSQsAAFANPPfcc0pKStK3336rt99+W+vWrdOYMWPUsWNHRURE6PTp09q+fbs+//xzrVq1Sh06dNDo0aPNbjYAAAAAEdICAABUCyEhIVqzZo1GjBihxYsX6/vvvzdG17oSFRVVga0DAAAA4AkhLQAAQDVRo0YNLVq0SOvXr9d7772nr7/+WocPH1ZWVpaioqLUokULde3aVbfeeqv69etndnMBAAAA/I/FzsoSAAAAAAAAAGAaFg4DAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAm+n+hmsAdrAogIwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "graph = my_model.compartmentPlot('Basic_example_compartment.png', data)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/tutorials-jupyter/evolution/fitness_function.ipynb b/examples/tutorials-jupyter/evolution/fitness_function.ipynb new file mode 100644 index 0000000..1c9bfcb --- /dev/null +++ b/examples/tutorials-jupyter/evolution/fitness_function.ipynb @@ -0,0 +1,747 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single population scenario, illustrating pathogen evolution through _de novo_ mutations and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector), the pathogen with the most fit genome has a higher probability of being transmitted to another host (or vector). In this case, the transmission rate does NOT vary according to genome. Once an event occurs, however, the pathogen with higher fitness has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal genome and every other genome is less fit, but fitness functions can be defined in any arbitrary way (accounting for multiple peaks, for instance, or special cases for a specific genome sequence)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define an optimal genome" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # The genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # Minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='host-host',\n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function).\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " mutate_in_host=5e-2\n", + " # Modify de novo mutation rate of pathogens when in host to get some\n", + " # evolution!\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a suboptimal pathogen genome, _BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, _BEST_, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 84.9205322047209, event: CONTACT_HOST_HOST\n", + "Simulating time: 139.4831216243728, event: CONTACT_HOST_HOST\n", + "Simulating time: 199.83533163204655, event: RECOVER_HOST\n", + "Simulating time: 200.0243380253218 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19662265031018072s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019941329956054688s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020781755447387695s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016440391540527344s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.02756667137145996s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.051561594009399414s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 560 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Done 1024 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0886225700378418s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1822 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2156 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2270 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2384 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 2560 out of 2560 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1BADDNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
255995200.0my_populationHostmy_population_95NaNNaNTrue
255996200.0my_populationHostmy_population_96NaNNaNTrue
255997200.0my_populationHostmy_population_97NaNNaNTrue
255998200.0my_populationHostmy_population_98BESTNaNTrue
255999200.0my_populationHostmy_population_99BESTNaNTrue
\n", + "

256000 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 BADD NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + "... ... ... ... ... ... ... \n", + "255995 200.0 my_population Host my_population_95 NaN NaN \n", + "255996 200.0 my_population Host my_population_96 NaN NaN \n", + "255997 200.0 my_population Host my_population_97 NaN NaN \n", + "255998 200.0 my_population Host my_population_98 BEST NaN \n", + "255999 200.0 my_population Host my_population_99 BEST NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + "... ... \n", + "255995 True \n", + "255996 True \n", + "255997 True \n", + "255998 True \n", + "255999 True \n", + "\n", + "[256000 rows x 7 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame( \n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'fitness_function_mutation_example.csv' \n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 103 genotypes processed.\n", + "2 / 103 genotypes processed.\n", + "3 / 103 genotypes processed.\n", + "4 / 103 genotypes processed.\n", + "5 / 103 genotypes processed.\n", + "6 / 103 genotypes processed.\n", + "7 / 103 genotypes processed.\n", + "8 / 103 genotypes processed.\n", + "9 / 103 genotypes processed.\n", + "10 / 103 genotypes processed.\n", + "11 / 103 genotypes processed.\n", + "12 / 103 genotypes processed.\n", + "13 / 103 genotypes processed.\n", + "14 / 103 genotypes processed.\n", + "15 / 103 genotypes processed.\n", + "16 / 103 genotypes processed.\n", + "17 / 103 genotypes processed.\n", + "18 / 103 genotypes processed.\n", + "19 / 103 genotypes processed.\n", + "20 / 103 genotypes processed.\n", + "21 / 103 genotypes processed.\n", + "22 / 103 genotypes processed.\n", + "23 / 103 genotypes processed.\n", + "24 / 103 genotypes processed.\n", + "25 / 103 genotypes processed.\n", + "26 / 103 genotypes processed.\n", + "27 / 103 genotypes processed.\n", + "28 / 103 genotypes processed.\n", + "29 / 103 genotypes processed.\n", + "30 / 103 genotypes processed.\n", + "31 / 103 genotypes processed.\n", + "32 / 103 genotypes processed.\n", + "33 / 103 genotypes processed.\n", + "34 / 103 genotypes processed.\n", + "35 / 103 genotypes processed.\n", + "36 / 103 genotypes processed.\n", + "37 / 103 genotypes processed.\n", + "38 / 103 genotypes processed.\n", + "39 / 103 genotypes processed.\n", + "40 / 103 genotypes processed.\n", + "41 / 103 genotypes processed.\n", + "42 / 103 genotypes processed.\n", + "43 / 103 genotypes processed.\n", + "44 / 103 genotypes processed.\n", + "45 / 103 genotypes processed.\n", + "46 / 103 genotypes processed.\n", + "47 / 103 genotypes processed.\n", + "48 / 103 genotypes processed.\n", + "49 / 103 genotypes processed.\n", + "50 / 103 genotypes processed.\n", + "51 / 103 genotypes processed.\n", + "52 / 103 genotypes processed.\n", + "53 / 103 genotypes processed.\n", + "54 / 103 genotypes processed.\n", + "55 / 103 genotypes processed.\n", + "56 / 103 genotypes processed.\n", + "57 / 103 genotypes processed.\n", + "58 / 103 genotypes processed.\n", + "59 / 103 genotypes processed.\n", + "60 / 103 genotypes processed.\n", + "61 / 103 genotypes processed.\n", + "62 / 103 genotypes processed.\n", + "63 / 103 genotypes processed.\n", + "64 / 103 genotypes processed.\n", + "65 / 103 genotypes processed.\n", + "66 / 103 genotypes processed.\n", + "67 / 103 genotypes processed.\n", + "68 / 103 genotypes processed.\n", + "69 / 103 genotypes processed.\n", + "70 / 103 genotypes processed.\n", + "71 / 103 genotypes processed.\n", + "72 / 103 genotypes processed.\n", + "73 / 103 genotypes processed.\n", + "74 / 103 genotypes processed.\n", + "75 / 103 genotypes processed.\n", + "76 / 103 genotypes processed.\n", + "77 / 103 genotypes processed.\n", + "78 / 103 genotypes processed.\n", + "79 / 103 genotypes processed.\n", + "80 / 103 genotypes processed.\n", + "81 / 103 genotypes processed.\n", + "82 / 103 genotypes processed.\n", + "83 / 103 genotypes processed.\n", + "84 / 103 genotypes processed.\n", + "85 / 103 genotypes processed.\n", + "86 / 103 genotypes processed.\n", + "87 / 103 genotypes processed.\n", + "88 / 103 genotypes processed.\n", + "89 / 103 genotypes processed.\n", + "90 / 103 genotypes processed.\n", + "91 / 103 genotypes processed.\n", + "92 / 103 genotypes processed.\n", + "93 / 103 genotypes processed.\n", + "94 / 103 genotypes processed.\n", + "95 / 103 genotypes processed.\n", + "96 / 103 genotypes processed.\n", + "97 / 103 genotypes processed.\n", + "98 / 103 genotypes processed.\n", + "99 / 103 genotypes processed.\n", + "100 / 103 genotypes processed.\n", + "101 / 103 genotypes processed.\n", + "102 / 103 genotypes processed.\n", + "103 / 103 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABToAAALmCAYAAABijysXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5iU5bk/8O/swtKriIBgixKxxoIRG9iPiBpMRBOPCFGJxiTGYzDxZ2KM7Xg0iUYTSVARsSucxIg1OXZEEYOFAFJXYNll68xOe9vzPL8/3nnfnd52dtp+P9fF5ezMO+88s8yO7Hfu5749SikFIiIiIiIiIiIiogpWU+oFEBEREREREREREXUXg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKK16fUC6DyoGkavvjiCwDAnnvuiT59+NIgIiIiIiIiKjTLstDS0gIAOPzww9G/f/8Sr4ioejDNIgDAF198geOOO67UyyAiIiIiIiLqNVatWoXJkyeXehlEVYNb14mIiIiIiIiIiKjisaKTANjb1R2rVq3C2LFjS7gaIiIiIiIiourU2Njo7qiM/l2ciLqPQScBQExPzrFjx2L8+PElXA0RERERERFR9eN8DKLC4tZ1IiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIiIiIiIiIiCoeg04iIiIiIiIiIiKqeAw6iYiIiIiIiIiIqOIx6CQiIiIiIiIiIqKKx6CTiIiIiIiIiIiIKh6DTiIiIiIiIiIiIqp4DDqJiIiIiIiIiIio4jHoJCIiIiIiIiIioorHoJOIiIiIiIiIiIgqHoNOIiIiIiIiIiIiqngMOomIiIiIiIiIiKjiMegkIiIiIiIiIiKiisegk4iIKAvSEqVeAhEREREREaXBoJOIiCgLikEnERERERFRWWPQSURElAVpSkjTKvUyiIiIiIiIKAUGnURERFmQlgUrqJd6GURERERERJQCg04iIqIsSFPAChulXgYRERERERGl0KfUCyAiIqoEyhSQQpZ6GURERERERJQCKzqJiIiyIIWENNijk4iIiIiIqFwx6CQiIsqGVBA6g04iIiIiIqJyxaCTiIgoC0oqCI09OomIiIiIiMoVg04iIqIsSEtAaGapl0FEREREREQpMOgkIiLKgmLQSUREREREVNYYdBIREWVBGlZC0CktUaLVEBERERERUTwGnURERFmQloDQY4NOVngSERERERGVDwadREREWZCWRGhnW9fXhgVpcgo7ERERERFRuehT6gUQERFVBKkg9K5gU/cGAVXC9RAREREREVEMVnQSERFlQSkFJaT7teENJWxlJyIiIiIiotJh0ElERJQFJaT7BwCMjiCsgFbiVREREREREZGDW9eJiIiyoRSUVFBSwlNbA8MXKvWKiIiIiIiIKAqDTiIioiwoYYecSgHCsGCFdNT04cYIIiIiIiKictFrf0NbvXo1brvtNpx11lkYP348+vXrh8GDB2PixImYO3cu3n///YznWLx4MTweT1Z/Fi9enPF8oVAI99xzDyZPnoyRI0di0KBBOPjgg3HDDTfgq6++KsCzJiKifCmlAGlPHzI7QzA7w5CmKPGqiIiIiIiIyNErKzpPOeUUvPfeewnXG4aBTZs2YdOmTVi8eDFmz56Nhx9+GHV1dT2+ps2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjB5fCxERJVKWgJIKUAqdm5ogNBPSYtBJRERERERULnpl0Llr1y4AwLhx43DRRRfh5JNPxj777AMhBFauXInf/e53aGhowJIlS2CaJp5++umM53z99dcxbty4lLePHz8+5W1+vx/nnnuuG3JeddVVuOSSSzBgwAC89dZb+O///m90dnbi4osvxooVK/CNb3wjtydMRETdJp2gE4C07KFE0rBKvCoiIiIiIiJy9Mqg8+CDD8Zdd92Fb3/726itrY257fjjj8dll12GE088ERs3bsQzzzyDq6++Gqecckrac06cOBH77bdfXuu59957sXHjRgDAPffcg/nz57u3TZkyBdOmTcPUqVMRCoXw05/+FG+//XZej0NERPmTpgSUHXQqU0BG/hAREREREVF56JU9OpcvX45Zs2YlhJyOUaNG4Xe/+5379dKlS3tsLaZp4oEHHgAATJo0CTfccEPCMSeccAKuuOIKAMA777yDjz/+uMfWQ0REyUnTrt5UUkFaAtKwWNFJRERERERURnpl0JmNU0891b28ZcuWHnuct956Cz6fDwBw+eWXo6Ym+V/JnDlz3Mt//etfe2w9RESUnFO9qSwBZQkIw4Jg0ElERERERFQ2GHSmoOu6ezlV5WchRE93nzp1asrjjj32WAwcOBAAsGLFih5bDxERJacig4eskAFp2f05uXWdiIiIiIiofDDoTOGdd95xL0+aNCnj8XPnzsW4ceNQV1eHUaNG4fjjj8cvf/lLNDQ0pL3funXr3MsHH3xwyuP69OmDAw88EACwfv36jOshIqLCcgYRWUHd3rpuFn7ruhKyoOcjIiIiIiLqTXrlMKJMpJS4++673a9nzZqV8T7RA4La2trQ1taGjz76CL/73e9w//334wc/+EHS++3cuRMAMGjQIAwfPjztY0yYMAGff/45WlpaoOs6+vXrl/nJxD1OKo2NjVmfi4ioV1JO0KnZ1Z0KkEZhKzq1lk4MGDO8oOckIiIiIiLqLRh0JnHfffdh1apVAIALL7wQxxxzTMpjDzjgAFx44YWYMmUKJkyYAADYunUrli1bhqVLl0LTNFx99dXweDyYN29ewv39fj8AYPDgwRnXNWjQIPdyIBDIKeh01kZERPlRkaDTDOjulnVnQFGhhBq9DDqJiIiIiIjyxKAzzjvvvINf/OIXAIDRo0djwYIFKY+dOXMmLr/8cng8npjrJ0+ejIsvvhjLly/HhRdeCNM0cf311+P888/HmDFjYo7VNA0AUFdXl3Ft0cFmOBzO+jkREVH3WEHd3aZuBTUYvhAAFHzrunNeIiIiIiIiyh17dEb597//jZkzZ8KyLPTv3x8vvPACRo8enfL4YcOGJYSc0WbMmIFbbrkFABAKhfDoo48mHNO/f38AgGEYGdcXPSBpwIABGY+PtmPHjrR/nApWIiJKZPhCEJoJwA499bYAABR8GJEI6ZkPIiIiIiIioqQYdEZs27YNZ511Fjo6OlBbW4tnn30Wp5xySrfPO2/ePDcMjR5w5BgyZAgAeyt6JsFg0L2czVb3aOPHj0/7Z+zYsTmdj4io2inZNRjI8IUgdDvoNIM6RNj+cEoJWbCwU28PwIqEqURERERERJQ7Bp0Adu3ahTPOOAO7du2Cx+PBokWLcMEFFxTk3KNHj8Yee+wBAEknsI8fPx6AHWJ6vd6059qxYwcAYM8998ypPycREeVOWVFBpzeqojOgxRxnhTNX5GfDv63ZfQwiIiIiIiLKXa8POltbW3HmmWdi69atAIAHH3wQs2fPLuhjpNvefsghh7iXN2zYkPI4y7KwZcsWAMCkSZMKtzgiIkpKiq6g0wrpkLrTozN2e7koUNAZqG+B1M2YSlIiIiIiIiLKXq8OOn0+H84++2ysW7cOAHD33Xfj2muvLehjtLS0oLW1FQAwbty4hNtPOukk93Kyre2O1atXu1vXTzzxxIKukYiIEqmooBORietAYtBpFaivZuCrVgjNhNALO+CIiIiIiIiot+i1QWcoFMK5556Lf/3rXwCAm2++GT//+c8L/jgLFy6EivyCPHXq1ITbp02bhmHDhgEAHn/8cffYeIsXL3Yvz5w5s+DrJCKiWMrq6r0Z/d4cv1VdaCak1b0+nUI3obf57XMVeJI7ERERERFRb9Erg07DMDBz5kysWLECAHDdddfhjjvuyOkc9fX1WLNmTdpjli9fjttuuw2APSV97ty5CcfU1dXhJz/5CQBg/fr1+O1vf5twzMqVK92J7VOnTsXkyZNzWisREeXOCkf1y5RRH0LFfSAVbuxIqPLMlekPA8oOUQs9yZ2IiIiIiKi36FPqBZTCd7/7XbzxxhsAgNNOOw1XXHEF1q5dm/L4uro6TJw4Mea6+vp6nHrqqZgyZQrOO+88HHnkkRg9ejQAYOvWrVi6dCmWLl3qVgH99re/xd577530/PPnz8dzzz2HjRs34sYbb8TmzZtxySWXYMCAAXjrrbdw1113wbIsDBgwAPfff38BvgNERJSJCHeFlymK7QEA/q3NGHnU/t16LCcotUJ6TCUpERERERERZa9XBp3/+7//615+8803ccQRR6Q9ft9990V9fX3S21auXImVK1emvO/AgQNx3333Yd68eSmPGTJkCF5++WVMnz4dmzZtwsKFC7Fw4cKYY4YOHYqnnnoK3/jGN9KulYiICsMKRW1RT5N06u2Bbg8Qcqs4pYI0BaQlUNOntlvnJCIiIiIi6m16ZdBZCMcccwyefPJJrFy5EqtXr0ZjYyNaW1thWRZGjBiBQw89FKeffjquvPJKt9IznQMPPBBr1qzBn/70J7zwwgvYvHkzDMPAhAkTMH36dFx33XXYd999i/DMiIgIiOvFmSboNIM6INKUfGZBRW2NF4YFZUmAQScREREREVFOemXQmWrgTy6GDBmCSy+9FJdeemkBVmQbNGgQbrzxRtx4440FOycREeVHRFV0pvv/hjJFtys6o4NUaVqQlkAt+nbvnERERERERL1MrxxGRERElIkV1aMTGXLM6IrMfETfXxqCfTqJiIiIiIjywKCTiIgoCalb7mWttTPtsUp0s0en3jXhXWgGJINOIiIiIiKinDHoJCIiSsKpstRaOtG5uSmrY/Ole0PuZcMbgjS7uRWeiIiIiIioF2LQSURElITTd7NtTT2QIccUutmtsNPoCHZd9ga5dZ2IiIiIiCgPDDqJiIiSiQwI0tsDGQ8N7WyHNMyMx6WitXRtjQ/v9nHrOhERERERUR4YdBIRESWhpIKSCoYvlPHYYEM79KiqzFxpbf6uyy1+VnQSERERERHlgUEnERFREkoqGN4gzCyCTsMXgm/9rvweRymIsNH1tSWgRPd6fhIREREREfVGDDqJiIiSUFJBa/XD6AxnPNb0hhDc2Zbf41giYWq70x+UiIiIiIiIssegk4iIKAnTF7K3rWcxZMgK6bCCel6PE27uTBh25FSTEhERERERUfYYdBIRESVhBXVI3cr6eKHlN4woUN+ScJ2SCuEmX17nIyIiIiIi6q0YdBIREcWRloAUMqeqSmlmH4pGSx50SoR3+6AUe3USERERERFli0EnERFRPKUAKRHckX3fTWnl3ldTSYng9tYkJ1MwA2FYgfy2wxMREREREfVGDDqJiIjiKKEgTQGtpTP7+1gi58cxvCGYAS3xXFJCaKbdI5SIiIiIiIiywqCTiIgojhU2IC0JaWYfXkqRe0Wn3uZPGEQERIJWQ3AgERERERERUQ4YdBIRUa+Urv+l0AwoIaByCC9VHlvX9fbkQaaSCtK0YPhCUFlMfSciIiIiIiIGnURE1Eulm6guwmbSSsu0lII0chtIJPTkk9qVlJCGHXRaIfbpJCIiIiIiygaDTiIi6pVShYyAXdGZD8Mfzun4lFvjpYIwLJjeEKwgg04iIiIiIqJsMOgkIqJeRwmZsvrS7AzDCucXdAa2Nud0vEjxOEoqiLBhV3QGE4cVERERERERUaI+pV4AERFRsUnTStl/U+8IQGipqz3TMXOsvkw2cR0AlJKwgjqEZsIK57cWIiIiIiKi3oYVnURE1OtIQ6QMGfX2YMpKy4znTbMdPhkrVdApFKQpYAX1nAYiERERERER9WYMOomIqNeRpoXwbl/S28zOEKxQnkFnjpPXzUDyClBlCXcqPINOIiIiIiKi7DDoJCKiXkeaAnpbIOltQjOhtye/LRNlJR8upHcEk16faqK6EhJwgk7JoJOIiIiIiCgbDDqJiKjXEYaVcuu6MCzorf68ziuTVF+Gm7wIbEscUqSUShl0Ct0CVOQ4VnQSERERERFlhUEnERH1OtKwIELJ+19Kw4LuTV6BmUl8RadSCrs/2OhuQwfs4LLh9c9gdAQBqeJPAQAxU9+VSH4MERERERERxWLQSUREvY7QTBi+UNJt4dKwUgaQmai4Hp1acyfa19THnC+0qwNN76xPuXUeAPS2ropSZ42s7CQiIiIiIkqPQScREfU6QneCzsRAUxrJ+2xmI3rrupISTe+sgxIypqIz8FULAMAMJt86DwBaa3TQyV6dRERERERE2WDQSUREvY7QTChLJq2SFIaZ93mjt67HDDyKClQD9XbQaaWYuA4Ayuw6j7NGbmEnIiIiIiJKj0EnERH1OkKzw8zkFZ1W3ueVUVvXpSkgI8FnVEEnAl+1AgCsNBWd0dygkxWdREREREREaTHoJCKiXsXwBmH4QgCS973sztZ1JaIqMS0B6VRmRpJOaVqwgnYlpxXOrnLUCTiFnn8AS0RERERE1Bsw6CQiol5Fa/UjtLMNQPKKzu5tXY+q6LQEpGnFPE5MxWeWj+NsWReh1FvdiYiIiIiIiEEnERH1MlZQR7jJBwDQo4b+OITWva3rziAhaYio6tDIQKGo3pvO9vlMnKpTK8vjiYiIiIiIeisGnURE1KuYga7emK2rt8bcJi0BqecfKErLQuuqzQAAK6RHbV3vOr8j263ozoCj7qyLiIiIiIioN2DQSUREvYrTIxMAvOt3xgz5ybbKMhXDG4J/WwuUVJHJ7l3BphnQYnqCOtvaM3HCUScYVYrT14mIiIiIiJJh0ElERL2KFVXRqSwZG24m6dmZE6kgdBNKyITp7S0fbooJKZMNQkp6ykhVqHO+bO9HRERERETU2zDoJCKiXsWKG+pjhY2Cnl9ZAtISEFFBZ2hXBwLbW2OPyzKwdAYcMegkIiIiIiJKj0EnERH1Ks4Uc4cId1V0FmJTuDQFtN2+mIpOwxtMeIBkE9+Tns/p0WkKKKWyvh8REREREVFvw6CTiIh6NRFd0VmA/pfSFAg2tMcEndKSCSlqzlvXhYAS0q3wJCIiIiIiolgMOomIqFezCh10WgKhhnaYga4t8tIUgLL7d7oPJbPduh4ZRhQ2AamghMhwDyIiIiIiot6JQScREfVqQitsj05IhcD2VpidIfcqJ5yM7g+a69Z1M6BBScmt60RERERERCn0KfUCiIiISkkaXRWSqgAVnQBgtAdR27+u6zEi282tYFTQme3W9cgWeCugQUnFretEREREREQpsKKTiIh6t+hws4DFkqYvqqLTElAqPujM7sGskF1xagY0KCEhOXWdiIiIiIgoKQadRETUq6i4NLNQVZzxorep2xWdClZA63rcLHt0Cs2EUgoiZEBJVfit9kTUK/TUex0RERFROWHQSUREvUrC1u+oX/4LGgREF4oKASjAzGPrOpSC0ExIy566Hm70Fm6NRNRrZP2eQ0RERFTBGHQSEVGvEv/Lfsxwnx6qeHIeM3rrOnIYKiRCOqQloLcHYs9BRJSC88GN+18GnURERNQLMOgkIqJeRehmzNdWuGsrePRgooKKZJqmP5zX3c2gDsiuyk4iokykbg8ycwaaMegkIiKi3oBBJxER9SpCiws6oyok40PQQpKWcAcL5cr0a+45pJl70MnefES9j/N+5gSeDDqJiIioN2DQSUREvUp80BkdHMbfVkhSt6DyrMY02gMAAGWKvCo6DW8o80FEVFWcYFMYZszXRERERNWMQScREfUqzjZOR/Qv/yLccxPNhW5Gpq/nTmvzA7BDWZVHRafW7MvrcYmogkUquaVuQSnFoJOIiIh6BQadRETUayghE3/ZjxoK1KMVnYYFyPyCBr3VDjr19kBk+7qV4R6xjM78eoMSUeVy3tmkJQCpoIR9jeENlm5RRERERD2MQScREfUaKknQGH2d1YMVndIUyLdTphYJOv1bmyFNkfPkddmDvUeJqEw5FZ2GgJLKfa8LfNVaylURERER9SgGnURE1GsomRg1Rld4xm9rL+hjC4l8k05nWnt4txfStHIeatSTz4uIypSyP8iRloCSEmZAgxIS4d1drSy4nZ2IiIiqDYNOIiLqNZIGnVHXJbu9sAvI8/yq67/KkrBC2Vd0SlO4W1aJqBdRgNCtyHuAhH9bsxt2Onqyip2IiIioFBh0EhFRr5Gseikm3Mw3iMz28QtwfmmKnCo6pWkPIslnWjsRVS6lFKRu2u8BQiK4vQ1WQIt5nzPZv5eIiIiqDINOIiLqPZJWdMqoyz1d0dn9U9hBZw4VnYYFKAWtxd/9ByeiiiFNuzenU9EpNANmUHc/cAnt6uBgIiIiIqo6DDqJiKjXSDaMCJWwdT2KtHIbRiRNAaMzDBHObYAREVU2p5JTmgLSkhCaBRE23Pc534aGnn/PIyIiIioyBp1ERNRrZOrRqbeXf9WjsgREyMi6t540BbSWzp7elU9EZUSawq3kNDqCkIYFoRmRCm/7GL0jyKCTiIiIqg6DTiIi6jWS9ciMrvLUmjuLuZy8KCFhhfWsqzqlaUFv9fd4/1EiKg9KSCgh3K3reps/EnSa7nUAIDQTSFblTkRERFTBGHQSEVHVk4YFwJ5YHs/9pV83YfrLfzCHtCSskJH1EBEn4HCquALbW3twdURUak6YaXiDUFJC7whC6GZkG7sFKPt9UOgmP/8gIiKiqsOgk4iIqp6zzTvZ1HWnR6fhDRVkWFBPU0JAGha01uyqT6VpT1t3qllbP97SY2sjotKTpgAUEG7yQgkFK6BB6PaHPdIQbrgpI9cRERERVRMGnUREVPWEZgJIHnQqKd3qp4qgAGFYWU9Rj+7laQV1dG5u6qmVEVEZkJYFaVro3NwUmbZuQhr2e6DhD7sf7pgBDRXx6Q4RERFRDhh0EhFR1bNCdj9LaYmE25RUUELYFZ0VwvSFYAW0rI41OiIBrlLQOwIwO8OQhpV8Aj0RVTxpCrR8tBmmL+z+nDsVnaGd7VBKwQob9nsDc04iIiKqMgw6iYio6rkVnSl6dCph97GrFFZId8PbTNwAV0WGLSlAawsk38ZPRBVPmgLNH2wE0FXFLnX7PTDc7AOkgm99Q8nWR0RERNSTGHQSEVHVE5q9fTtZRSekgjQF9LbstoKXBZWi32gSZqTyUykFbyTc0Fv9WQ8zIqLKokzh9uZ1/mtFPuyBVJCWsANPdPXuJSIiIqoWDDqJiKjqORWdzi/90ZSUkIYFvT1Q7GV1izMt3r6cOvR0gk5pCnRusvtzam2dMBh0UgYMwSpT9Puciny4I6J69SpLuu+JRERERNWGQScREVU9oTtb15P36LQ0M+uel+UiuqIz3ORLeZzltwNN/9bdkEZUn75k1a1EUaxgdu0RqLxIs2uauoiEntHBprRE19dFyLKd918iIiKiYuhT6gUQERH1NLeiM0XQKcIGrJCRcFs5i67iDG5vxcBxIxKPUQpmJKzyfbnLvT7wVStGHXdgzy+SKprpD6Pv4P6lXgblSBhdQafz4UZ0RafQDMCt1u35pFNoJmr79e3xxyEi6m2UUggGg+js7ISmaRCCH2JTZaitrUX//v0xdOhQDBo0CB6Pp6DnZ9BJRERVT2j2L/tKJPmlXikIzay44TzRz0X3xg5S0lr96D9qiB1yRLa4m76ureqs1KNsiDAr8SpRsq3rZlTFeqiho+vgHs45hW7Cu24nRh37NXhqPPDUcjMZEVEhSCmxfft2hMNsRUSVx7Is6LoOn8+HAQMGYJ999kFNTeH+jcCgk4iIqp4zjAhJeg4qWZn96qKD2fhAKrijNRJ0pvlkn/0XKYPoLdBUOWR0Radlv0+kGj7W0+8C4SYf2j/9CiOP2BeevrWoZdBJRNRtSqmEkNPj8aC2traEqyLKnhDC7QUfDoexfft27LvvvgWr7GTQSUREVcsMaKjpWwsRNqCkihng41KAFaq8Ckdn67rQTVhBHcKwUFtn/2891OjFiMMEg6peKtzsw4DRw7p1DiWkG6Y77R36DOpXiOWVPaFX9lbr6KDT+TtM+WFOD1eyd25ugtAtGJ0h1A0bCNTxVw8iou4KBoNuyFlbW4sxY8Zg8ODBBa2II+pJUkoEAgE0NTVBCIFwOIxgMIjBgwcX5Pz8SSAioqrl+3IXlJAw/RpU1CeH8SpxK7cTYOitfhi+IERUWKssidCujpjAg3qPtk+2dfscwrDcDwYMXwiGL9Ttc1YKw1vZzzVZ0Jny2CIMJVNCINTQ4VaXEhFR93R2drqXx4wZg6FDhzLkpIpSU1ODoUOHYsyYMe51fr+/cOcv2JmIiIjKjH/Lbnuqeki3f8lOVtEJILizvcgr6z4nhNI7gtDbApBxgUa4yRszlCTh/ty6XrV8XzZ2+xzSsNxej4Y3CL0jmPy4IgRlxWZ4kz/XbEUPCisFoUdvXU//9xPdz7OnSEsivNvn9gslIqLu0TS777LH4ylYBRxRKQwePNjdrl7IfrMMOomIqGoZvrDdhE4pKEumrG4y/ZXXyN15LqZfg7QEVFy1VHRQlfz+DDqrlbS6X8krTQG9PQAAsAIa/Ft2Jz0uVe/HSmakCHWzVeqev9ET1jOFiz0edEoFZQmYnaGqDMWJiErBma5eW1vLSk6qaDU1NW5vWed1XZDzFuxMREREZcYKalBKQQppb11PEXRW2sR1ICroDITtforRVWRKQRhW2q3rlficKTtOiN2dYEkallvZaHSGEahvTnqc4QtVXXVwd7fpW1FBYylE9xzOFGT2dNCppIS0Iu1Dsty6nrSXMhEREVGWGHQSEVHVUpaEFdAgQgakJVMOHarELZVOGGAFNEAlVmhKU6QNOkUFDmCiLEVC7+D2tvxPYXZVBAe3t8IKJ69SNHwhqCJsfy6m7vbsFSm+V8USHbRmqrjtyaBTSQWhW5GKznDWH65U4nA4IiIiKh8MOomIqGoppRBq7ABg/0KfKsCoxCEZTgWn6bf7NMWHCNJMX9HJMKF6OaG3f2vy7ebZkIaAkgpKSAS2t6bsO2n6qm9LcncrMoVW4orOqPe5TNWpqgBtDlKfXEEaJpSQMPxhSFNkrNZUSrnvaURERET5YNBJRERVS0nl/tJvBbWU1UuVWtEpDAv+rfaW4uig0/Tbz1VrTT29sNTba6lnmH67XYNSCv5tybebZ0OaFiAltDY/hGamrMYzfOGS96QsJLsKsXvPp5QVnW3/2hbTY9QKpf85t4Jdt0uzsKGnOwQOgDIFlBAI7kxfZRxu8iK4vbWg6yAiIqLehUEnERFVL6XcqkYroKWsPIufWF4RpELHF9vd5xddcad7g5CG5VazJiMYdFYlwxcElILe5u9Wr0lpWFBSQWvutAfKpBheZfhCVRV0Ct3s9qCuUlV0Gp1h7Fj+r5jr0lV1A7GD2KKntReC6deAqApOaUn4N+9OGyTvfm8DrDCrzYmIiCh/DDqJiKhqKaXcKk4zqKfeYluhwy+iK5+iK+6MjmDM1OxkpFF5VayUmRXUoRSgtwchwiZEhqArFRHZZqy1dNpb2KVMun3d7Ax1e3hPOZG66fY4zVepqqU7NzYmhM6Z+mJGh45OZfvOVz/t9lpCDe12FX3U41tBDVbYgOFN/noRmomOL3ZAmd3/4Km7fVaJiIiocjHoJCKi6iWjKjpDetZTfytFdAWWE2gIzYAIG5CmBZFm22q1Tcommx1gK1ghHUI3YfnTD6NJfR4LSsquoFPIpD8/QrMybkeuJEIzu/2zUaoK13xacET3zHSet+ENpjo8a7vf/xJKKjs4jtDbAml7A3duaoISsiA9X8PNvm6fg4iIYlmWhWXLlmHevHk4/PDDMXr0aPTt2xfDhg3DgQceiJkzZ+Lee+/Ftm3bSr1U6uUYdBIRUVWJrmBSUrm/NIuwmXEbZ6WJfj7O8/Z92QjADlvSBi4MOquS1uaHNAT8m5sAqWBkmLqdijQFEKnohFL2hwZJAihpWvb29iohdCvjwJzM5yhR0JnPuiPvA8KwgMjd9Y7uBZ1KKXSs3QGlVMx7UOsn2+D7clfssVHv14EddoV6ISbBay3V85okIioHf//73zFp0iR85zvfwcMPP4y1a9eipaUFlmWhs7MTW7Zswd/+9jfceOONOOCAAzBjxgysXbu21MvuUbfeeis8Hg88Hk+pl0Jx+pR6AURERIUkdBN9Bvazv1DK3aItdLPqtjMmq+h0BhCZGQIuJRSUVPDU8B9n1UTqpt2js90Oq/IN95XlbF3vGmglDQtwfrac60yRcXt0JRG62e1WFoUI6vKRTyWqcx9licjE8zCsQPemnrvDqxRgRp0r2XmtsIG+g/vb94tUoBdiOFw1he9ERKV2xx134JZbbnH/nzFt2jTMmDEDRxxxBPbYYw+EQiE0Njbi3XffxfLly1FfX4+XX34Z48ePx5///OcSr556IwadRERUNZSQMAOaG3RGV3RKw6q6SePRIZZ3XQNGfmM/d7iImSGsUFJGqrkYdFYT55cQZ4twvkGntASMzlDM/ZMNq6m2oFN2s6JTSQVlCgjdRG2/vlBCwlNbpA1U+VRpR56rknbVrt4R7Hb/Xue157wfpyO0rqDT6fVaiK3rrOgkIiqMRYsW4Ve/+hUAYK+99sKzzz6LadOmJT32oosuwv33349nn30W/+///b8irpIoFreuExFR1Qhsb4URt+1SmnY4Iw2r6rZrR4dQHf/eAWlY9qRjIGNVmhKSfTqrkBPSOdXL+Q4jUkIlBF7xW7KVVG7lZ7VQonvPx/CFIAwLHWt3uF8XSz4/zu5zVQrCsCBNETNAKB9OZaYV0NK+DymlIMJdrymnCr0gW9db/ZkPIiKitHbs2IFrr70WADB06FC8//77KUNOR21tLS699FJ89tlnOPfcc4uwSqJEDDqJiKhq+LfsTpjoq8yurevVRhhRz0nZ/RnNLIfPOFtLqco4QWekerk71XnxW4jjq0OdDxGqqaLTmTCfL73ND73Vj+D2ViipEj546VF5JZ12dbeSCiJs2B+AdHPqvBm0P2zJ1B9WGlZM9abQIq/ZblZ0SkuknOxORETZ+/3vfw9Ns9/T77zzThx44IFZ33f48OE477zzUt7e1NSEm2++GcceeyxGjhyJfv36YcKECZg1axb++c9/prxffX292xdz8eLFAIB//OMfOO+88zBmzBj069cP+++/P6655hrs3Lkz4zoNw8BDDz2EU089FXvuuSfq6uowZswYTJ8+HU8++SRkkv8nLl68GB6PB7/5zW/c65w1Rf+pr6/H559/7n599913Z1zPgw8+6B6/atWqhMd0zqvrOn7729/i6KOPxrBhwzB06FB885vfxEMPPQQhMv9/VAiBxx9/HDNmzMC4cePQr18/7LHHHjjppJPw+9//HuFwfj3eywWDTiIiqhpWUI+toFKxW9erTXyIpbcGsu6vZwZ1MOmsPu7rPBJ4OmFk7lRCZZ+0REwI5bz+uhuMlZOulg75CTd6YQY0BBs67NCzzINOpRT8W5shNBNai98OOrsZXAe3twHI3CdYaLH9UJ3WCN19fGkKQKmqqjQmIio2pRSeeOIJAMCQIUMwd+7cgp37qaeewoEHHoi77roLn3zyCTo6OmAYBnbu3IkXXngBZ555Jq688kpYVuZ/w9x0000466yzsHz5cuzevRuGYaC+vh5//vOfcfTRR2P9+vUp71tfX48jjzwS1157Ld5++220trbCNE3s3r0br776Ki677DJMnToV7e3teT/XI444ApMnTwYAPP744xmPf+yxxwAAhx56KI477rikx3R0dODEE0/E/PnzsWbNGnR2dsLv92PVqlW49tprcdpppyEQCKR8jO3bt+OYY47BnDlz8PLLL6OxsRGGYaC9vR0rVqzADTfcgCOOOAIbN27M4xmXBwadRERUNZRUCVtFpVvRWY1BZ+xz0lo7u7auZ5AphKDKFP86707Ar6zYwEmEzZgwrauis3oCJWdIV76CDe2QhgVttw/BHW1FrejMqxWFUghsa4Fvwy5I07JDRqm61dbCv2U3AGSsLrf7ocrIMlTBhji5QSlbcxAR5W3t2rVoa7M/uDr55JMxaNCggpz3+eefx2WXXYZgMIgDDjgAv//97/Haa6/hk08+wbJlyzB9+nQAwKOPPoobb7wx7bkefvhh3H333Zg6dSqefvpprF69Gv/85z8xe/ZsAEBLSwu+//3vJ71vIBDA6aefjg0bNgAAvvWtb+Hvf/87Vq9ejRdeeAFTp04FALz//vs477zzYqokv/Wtb+GLL77ANddc4173xRdfJPzZe++9AQBXXnklAGDDhg1YuXJlyufz2WefYc2aNQCQct0A8IMf/ACffPIJLr74YrzyyitYvXo1nn76aTdQfffdd3HZZZclvW9bWxtOOukkfPbZZ+jXrx9+9KMf4YUXXsDHH3+Mt956CzfddBMGDhyIzZs345xzzoHP50u5jnLGYURERFQ1lFII7+76H7KSXb88yyoMOuMrn/T2QNbVUNVY4VotpClQ07c2/TGWQE2fxGPiKzhzCY+kYaGmLvJPQ4WEoEhohr3VOTJgx3kNVVNbCCUkrKAOpRQ8ntwHdYUaOtyfwVBDB0TeFbW5Czfl/suIkgpGZwiGL4QhB+zlrl0JCU+S11c29Ha7iiTl1vXI60oYphuSKyt5Ja0z1CkXQjMjD6M4ao2IKE+ff/65e/noo48uyDlbW1sxb948KKXw/e9/H3/5y1/Qp09XJHX00UfjwgsvxM0334y77roLf/jDH/CDH/wAX//615Oe74MPPsBVV12Fv/zlLzH/zz799NNRV1eHRx55BB9++CHWrFmDo446Kua+v/nNb7B161YAwC9/+Uvcfvvt7m3HHHMMvv3tb+Oyyy7DU089hQ8++AALFy50g83hw4dj+PDhGD16tHufww47LOXz/u53v4v/+q//QjAYxGOPPYYpU6YkPW7RokUAgL59+6YMKgHg448/xl133YWbbropZs0XXXQRZsyYgddffx1/+9vf8Morr7jBseMnP/kJduzYgX333RdvvfUW9t9//5jbp02bhosuuggnn3wytm7dinvuuQd33nlnyrWUK1Z0EhFR9ZAKelsAQjOhlLK3YUa22uY7lKWSZFvNSeXNCWrSSRVUx/c3zCXQdqZlp1xXOLaHohOiOoOPqoGS0h7qlUfFs9BM6O1dQ3CssA6rSD+TSip0bmrK/X5KQeoWtOZOAF39Sbs1eT4Slqb6Hjp5ptDMrsdL8QFNPu9pbiUpt64TEeWttbXVvbznnnumPE5KibVr16b8Y5pd/6ZZsGABfD4f9t57bzz00EMxIWe03/zmN9h7770hpcSSJUtSPvbYsWPdnpbxfvazn7mX33vvvZjbdF3HI488AsDeIn7rrbcm3N/j8eChhx7CHnvsAQD44x//mHIdmQwZMgSzZs0CADz33HNJ+18ahoGnnnoKADBjxoy03/MjjjgCv/jFLxKu79OnDx555BH07Wt/QPjQQw/F3F5fX4/nnnsOgP184kNOx1FHHeUOoXL6oFYaBp1ERFQ1lJSQugmzM+z+4uyEMfGDVapRtoOIqLxl01czVSuG+MAol4DfikzLTnl7OPIBguX8bEUqOjWj230VM4WsxeIEfHoeU7tDDe0xbW+tkAFLS/89LRS9I+AG0TlRCiLynmkPJopUWHbj79O5b8r1RJLO0K6OrorOlEFn7u9pTjjane33RES9nd/f9f/BdNvWOzs7cfjhh6f809DQ4B7797//HYAd5PXr1y/lOfv06eNWPabb6v2d73wn5Xm+/vWvY/DgwQDgVm46PvnkE3i9XgDAnDlzUFubfAfD0KFD3YBy3bp1aGxsTLmWTJzt652dnVi2bFnC7S+99JLbKiDdtnUAuPzyy1PuOhk/fjzOOussAMDbb78ds+X+5ZdfhhACAwcOxDnnnJP2MU455RQAwK5du7B9+/a0x5YjBp1ERFQ1nF/SDX+4K4zpBQGng303q0M21XSpKjXj+2XmVNEZHUwlWYK9dT16wJdwj+1uUBnc0dat+xeKE7hpeQSdwYbYYQVWUC/aRHoRzq99gJKqK+BWiNm6nq9Mr1+lFIRhoXnlRreiM37wlSOfik53IBuDTiKivA0ZMsS9HAx2v9+0EAKffvopALhbzdP9Wbp0KQB7OnsqBx98cNrHHDFiBIDY0Baw+486vvnNb6Y9R/Tt0ffL1QknnIBDDjkEQNfAoWjOdWPHjs0YQjq9OFNxhhgFg8GYkHf16tUAgFAohD59+qT9/s+YMcO9X7q/g3LVa4PO1atX47bbbsNZZ52F8ePHo1+/fhg8eDAmTpyIuXPn4v3338/pfK+++ipmzpzpnmv8+PGYOXMmXn311azPYVkW/vznP+Pkk0/GnnvuiQEDBuBrX/safvCDH+Df//53rk+RiKj3ifyCbXaG3TAmfqBKNSuXqjjqpiwCGifATAik4u6bS4/OTBWBVlCHksqtjo6uPO3u9vVQY0dZfCjhfD8Nb+wvddl8H+3t312skF60yd9mZyjzQckoFfP3nqnCMuPpspnarhQ6v2y0K+/drevJv79WQLPP6fT1zKIfrFMFypyTiCh/zpZtwB7qk8rw4cPt3R5Rfy6//PKE49rb27Oaoh4vFEr9/7eBAwemvW9NjR13ibj/x0RPUY/us5nMmDFjkt4vH1dccQUA4K233kJ9fb17fWNjI1577TUAwOzZs1NWmDoyrXmvvfZyL0evubm5OdclA0j/d1CueuUwolNOOSWhTwNg90XYtGkTNm3ahMWLF2P27Nl4+OGHUVdXl/JcUkrMmzcPjz76aMz1DQ0NaGhowN/+9jdceeWV+Mtf/uL+oCXT2tqK6dOn4+OPP465fuvWrVi4cCEef/xx/PGPf3RLnomIKJHzy3D01vVehb/YV4Vsttw6gY/hDaLfHl1VF05w5MilojP6WJXkxaS3BaCEgox8eBC9Ld4M6hiQ9SMl0lr8sAIa6oYXZqprvpxgUsZ9QBLe7cOg8SPtYyLDmOLFtxwQmonafsX5p3bH2h353VEhant9dI/O/N4/9WymzCvADGqRCtIMW9cDGqQlIA0LfYcMgH9rM4ZP2jvt6U2nopM9OomI8nbkkUe6l51J4N0RHTZeeeWVuO6667K6X7osphDyGTyYr9mzZ+Omm26CYRh4/PHH8etf/xoAsGTJEvf7k2nbOpD/mp3HGDVqFN56662s75eql2c565VB565duwAA48aNcydK7bPPPhBCYOXKlfjd736HhoYGLFmyBKZp4umnn055rptvvtkNOY866ijceOON+NrXvoYtW7bgnnvuwZo1a/DII49gzz33xF133ZX0HEIIzJw50w05L7zwQlx11VUYOXIkPvroI9xxxx1obm7GD37wA+y9994ZS5mJiHorJXt50EnVIcut68KwYAb1uKAzvqIzNnxTUsFTk/wfyDF9P5MsQe8I2MNrnGrpqCrH7lZ0Gu0BmP5yCDqTb90O7/Z2BZ0yRdAZF44K3YQS/XtopV2UkPCub8h8YApdU8q7v3XdmbiejlLKboOA6MdLfMEppdzQ0vCGEoJOaQl4amvcX/iUUoBSsAJ619dERJSXww47DHvssQfa2trw3nvvIRQKZaygTGfkyJHuZaVU2inlPS16Lbt378bEiRNTHhu9bTv6fvkYNWoULrjgArzwwgt4/PHHccstt8Dj8bgDf0488cS0a8l2zbt37066ZqdK1+/3Y9KkSRkrRytZr9y6fvDBB+O5557D9u3bcf/99+Pb3/42Jk+ejOOPPx7XX389Pv30U/eF88wzz+Ddd99Nep6NGzfit7/9LQDg2GOPxYoVK3DJJZdg8uTJuOSSS/D+++/j2GOPBQDce++92Lx5c9LzPP744+5W+R/+8IdYtmwZ/uM//gPHHXccfvzjH2PFihUYOnQopJT4yU9+klfJNxFRr6C6enSWwzZYonxkk88Iw4Le6k/Ybp7YozP25yB+S3a08G5f2uOUJQEpu7auW9FBZ/emi0tLlMUwrfgKQ+c5OmEgkLoHZUI4KFXelZG5MLxByBTDqbIS9XzcnplGfu+foV1ZbOtTyt3m7wTk8cPilFQQIcO93ak2toKaW83c/ml9zNr1Vj+skAHpVA2xopOIKG8ejwf/+Z//CcAeoPP4449363x1dXU49NBDAQArVqzo9vq6Izpk/eijj9Ieu2rVqqT3A/KrrHR26G7btg1vv/02PvjgA2zYsAFAdtWcABJ2Aae6feDAgTjggAPc64866igA9tR5p19nteqVQefy5csxa9aslAn2qFGj8Lvf/c792mmEG+/+++93Q8cHH3wQAwbEbtoaOHAgHnzwQQB2/8377rsv6XmcsHTkyJG49957E24/8MADcdNNNwEANm/ejL/+9a/pnh4RUa9ndoZ7VW9OqjLZ9OjULWit/oRKyvhgLX7qut6WeshOdEiVahiPkl1b12ODzu5VdCoVteW4hOK3brsVh9FhYIpqx/iwLv5+PUVv7/6QCIcT9GbTCzOZ0M6OzI8hlRuqa5HXY/wwImlasIJ61wAsZ5K7brmVx7vf+9LtBwfYU9xFyHCrkVnRSUTUPf/1X/+F/v3tnQk33XQTtm3b1q3znX/++QCADRs24PXXX+/2+vJ1zDHHYPjw4QDsojOZ4kNJv9+P559/HgBwyCGHYOzYsTG3O98bwA4Ps3HGGWdg3333BWAPIHKGEA0ePNid8J7JE088kfL/cQ0NDXjjjTcAANOmTYvJvM477zw3nL3//vuzeqxK1SuDzmyceuqp7uUtW7Yk3K6UwosvvgjArhA9/vjjk57n+OOPx9e//nUAwIsvvpjwgty4cSPWr18PAJg1a1bKcvA5c+a4lxl0EhHFcodPOP31DItb16lixW83dzjhozSFXfEWNhIDxvhhRHFBZ7pp4obPbjavpISRoteiEtKdah39YUK3K6iVyqmfaE+Jr+h0vydRvcWSbrMWEqFdiSFfMd6HChYQK9VVyZrDEKto4WZfxmO05k5oLXZFZ/ua+pgBVw7vugZ0btkNoZnwb2tx1xXa1QGhGZCmcM/h32oPVzADGqyw0fVaZNBJRNQt++yzDx544AEAgM/nw0knnZRxaLNSCl6vN+lt1113HQYPHgwAmDt3bsaByy+//DI+//zz3BeeQb9+/dzKyrVr1+L2229POEYphR/96EdobW0FAPzoRz9KOCY6+EyWGSVTU1PjVm4uW7YMzz33HADgoosucr83mXz66adJC+Qsy8JVV10Fw7B3+1xzzTUxt3/961/HRRddBAB49tln8fvf/z7t42zbtg3PPPNMVmsqN72yR2c2ohP5ZJWf27Ztc3t9Tp06Ne25pk6dii+//BINDQ2or6+PaeYa/UaR7jxjxozBxIkTsXHjxpKXehMRlRut1Y++Qwa4vywrKbl1nSqWCCevpgtub0X/UUMiQaiKDHWJr+hM36MzXdDpbIM3OoIpAzrDG0rY1m0/cMrTZkepok0oT0vG9ozUW/0YMHpYTLiZbDu6E8rFK8ZzSva4+XL+TvPZCq+kShmQR2tbUx9bca9UTH9TZUm0fLjJ7uUZNtD+aT1GHL4PtOZOmL4QrKCOPgP7AbArib3/3omhX9sLSipYYd0NzMvi9UREVOGuuuoqNDQ04De/+Q127dqFk08+GaeddhrOO+88HH744Rg5ciSEEGhqasK//vUvPP/8826AWVtbGzNMaK+99sLjjz+O73znO2hsbMSxxx6LOXPm4JxzzsH48eNhmiZ27tyJVatWYenSpdi6dSteeuklHHHEEQV/Xrfccgv+93//F1u3bsWtt96KL774AnPnzsXYsWOxbds2/PGPf8Tbb78NAJgyZQrmzZuXcI4TTjjBvXz99dfj5ptvxtixY92qyf322w99+iRGbt///vfxm9/8Jmaaebbb1gG7beLPf/5zfPrpp5g9ezZGjx6NTZs24fe//7271f68887DjBkzEu67YMECrF69Glu3bsUNN9yAF198EbNnz8ahhx6Kfv36oa2tDZ999hlee+01vPnmm5g5cya++93vZr22csGgM4V33nnHvTxp0qSE29etW+dePvjgg9OeK/r29evXxwSduZ5n48aN2LFjB4LBIAYNyr5h/86dO9Pe3tjYmPW5iIjKjem3K5qcyiYlFCs6s8AgoPxYId0d1BItsL0Vge1t2OPo/buCHKUSemPGh3DKku6UcKEZMFJsc1ZC2sdKCcOXulem3uZHTV2fyGMV7vWjRHH6WaYjdDNhy3pXRWdUEJfkeYcbvUnPWYz3oYJ9qKO6qnTzqRIVmpHV8w1ub419WBn7fm0GNOhRgXxNXR8MP0QivNtrP07YwM5XPwUABOpbII1I0CslRMjoqkZlRScRUUHceuutOPLII/Gzn/0MW7duxZtvvok333wz5fEejwdnn3027r33XowbNy7mtgsvvBAvvvgi5syZg/b2dvz5z3/Gn//856TnqampySnzyMWQIUPwf//3fzjnnHOwYcMGLFu2DMuWLUs47sQTT8Tf//73pMVvBx54IGbNmoXnn38eb7zxhrtl3LFt2zbst99+CfcbP348zj77bLz66qsAgIkTJ+Kkk07Keu0LFy7EFVdcgWeeeSZpxeWJJ56Ip556Kul9R44ciRUrVmDWrFl477338O6776acSQMAQ4cOzXpd5YRBZxJSStx9993u18l6JUQHh+PHj097vgkTJriXd+zY0e3zKKWwc+dOd0t8NqLXQERUbZQlIA0LWov9y7GSkiFeFqRhobZf31Ivg6KEGr2wklTo7frHF7BCul3lZlh2KKVUkh6dia97YVjoM6AO/q3NXYNa4jjhkLIkrFDqPlNaWwADxw6PPFjUY3UzVJKWSLolvJiMjqD7/VPSDoid6trYoDMxzFMqRd/OYrwPFegxFLq2kDvbwnO6f559kVXUgCsgsd+rGdCghIQ0VWRtfvgiU+YNX8itBlVC2cOInNcyg04iooKZOXMmzjvvPPz1r3/F66+/jpUrV6K5uRlerxcDBw7EHnvsgcMPPxxTpkzBxRdfHFPcFe+8887Dtm3b8PDDD+OVV17Bv//9b7S3t6NPnz4YM2YMDj30UJx22mn4zne+06M5xn777YfPPvsMDz/8MF544QWsXbsWnZ2dGDlyJI466ihceuml+N73voeamtQdH5988kkce+yxWLp0Kb788kv4/f6UPT+jXXbZZW7QOXfu3JzWPWLECHzwwQe4//778dxzz2HLli1QSmHSpEmYPXs2rrnmmrQT1ceMGYN3330XL7/8Mp555hmsXLkSTU1NME0Tw4cPx0EHHYQpU6bg/PPPxymnnJLT2soFg84k7rvvPrfk98ILL8QxxxyTcIzf3/VJc6ZeCtGfQgQCgR45DxFRbyZNgWBDuxu2KKlYzZOFfPvwUc/Rmn0QuuVWYZqdYSil4N+yG6jxwOwMdwVBqisUkpZATZ9aIElYKA0LGFCHwFetCbe5x0S2uEshEya5R9Nb/RgwZphdRZhlzuk8l3SUkCWv6DR8oZgenckqPIHEvqf2lSm+AVHPKZvvQz4KGeg5Ibve5oeSEp40v9zFix8olDUVW9EZX9Eswgak6ApDvet2dlXcRrVSUNIO6d3XL4v6iYgKqk+fPrjooovcPo/dMXToUNxwww244YYbcrrffvvtl/X/9+rr6zMeU1dXh2uvvRbXXnttTutw9O3bF/Pnz8f8+fNzut/atWsB2Nv7L7/88pwft3///vjFL36BX/ziFznf13Huuefi3HPPzfv+5YxBZ5x33nnHfbGMHj0aCxYsSHqcpnVt6YnuO5FMv3793MvhcOx2sEKdJ5P4StJ4jY2NOO6443I6JxFRuZCmQOfGqBYcrOjMSjkMf6FYemsAtf37wgrqqB1Yh7Y129B/9DD7RqmgtwcQ2tkO1Hjsis6wASUlTL+GfiMGJf3HvzNBW28LpAzknNBbGhasNEGnMyXb9GtxfTlT/7yZ/jDqhmex9azEP7NCiw02pSnc7110EGf4Qhg4dkTMfVO930RfbwY01A1LPnSyWwoVdCog3OQFAOjtAUhDoLZ/9kGnSlEtnPF+Mq4/a/zTUZG/j0jlphU23Kccamh3+3UqqRDc2RbT2oGIiKjcCCGwZMkSAMA555yTMM2duo9BZ5R///vfmDlzJizLQv/+/fHCCy9g9OjRSY/t37+/e9mZapVK9GCjAQMGpD1P9Ne5nCeTTNviiYgqmbQsd/IukOQXZ0qqWBWdbrUhZaS3B9B/r6EwgzoMfxiB7W0xOVbLR5uhtwcw8sh93Unl0hR2mDhsQNIeiU7wo3cEUNs/+YeqzjHSErBCqf9d4wybMTvDUEgTTjlXSwkzoKcNOq2QblexlkXQ2VXRKS3hXmcFdSip4KnxwPSFE17TqUK16CpVK6gXPOiUkTYGhaAsYYfhsCslpWGhtn/2rS3y37quMoaSSkg3SLVfq/bxocYODN5vz8h5ZEzVcqlfT0RERMk89dRTbgvDq6++usSrqU6F3z9TobZt24azzjoLHR0dqK2txbPPPpu2H8GQIUPcy5m2kQeDXY3/47enF+o8RES9mTRFTBWaErLk1WGVoFhBZzDNlmmKZfrDkT6DFqRuItzkjelf2PH5druiMzI4RuiRoLMzDK3Fn7RKV0QmaBsdwZTVf+4WeENAhFP36HSCVLMzHBuwpQo6hUrb8xMA9I4gZNQ28VKJ2aouFZQpIHQLzSs3Qmv1u1uilVQI7miLvXOq9xvVFXY61aGFoncEEdzRVrDKRaGZXe0/hLR7weZA5hl0QqmM79fOsCwg8nqOHK6sruuVsP/Ouu7D1hxERFQeNm/ejPXr1+OJJ57A9ddfDwA48sgjMX369BKvrDqxohPArl27cMYZZ2DXrl3weDxYtGgRLrjggrT3ia6QzDTRPHrbeHwz3fjzjBo1KuN5PB4PKzSJiKIoU8SEdtlUCFEBpzVn0LllN4Z8ba+iPFalMwMa+kRN+ja8QTeojKUghbADUVNAa+1MWcEmDQtmQIsMMUp+jBkJOlWGik77GAlLxh6jUiSdSsqE4TLJ1geUtmesUsoOOiNBroxsXdeafejc2Ii6YQPtv5tB/QAoBOpbMGT/0VBKwePxpK0etCtB8694TKXj868wYK/hBTtf/Oss19YWBdu6nuwYq6sdidNPtutxu3p0RmMPYiIiKhcHHXRQzNd9+/bFggUL4PF4SrSi6tbrKzpbW1tx5plnYuvWrQCABx98ELNnz854v0MOOcS9vGHDhrTHRt8+adKkbp9nwoQJMYOJiIh6O70jGFP1pqRKO1CFbMWqoAs3eovyOJXOmaJu+EKA6uqDGd7tTXJwV+WyMgWCO9qht/sTj4NdSSh0MzKpPfljWwG7Z7g0rYw/O4YvBAgZN3U9xXMS6ae4A12BWqaAtadYQR1mZxhSs6C32t9D5QadnZCG1fU9hF31qkd6lYYa2gHYlbipiMiAn0J+sCBNy66EtUTBfo6FEVtxGh8oZqI15z6pHYA9jCibik7neUoV83pzhiCpuGBTFemDHCIiomyNGDECp59+Ot5++21MmTKl1MupWr066PT5fDj77LOxbt06AMDdd9+d9bSt/fffH+PGjQNgDzBK59133wUA7L333thvv/1ibjvppJPcy+nO09TUhI0bNwIATjzxxKzWSETUG7i/8MdUdGauIiMUrLdfJoY/7IY9lJoIG3YVp88OzfR2u6VNuMmXcKxCV4WgtARCDe1uf8V4Ure6qglTVnQ6QadIO4wIAAxvMLFiOlWPyiy2rruVgyWqwg41dsAK6dDbAzC8XdW00cGkFTbcIE3oph1CA+jc2ATA/rAlFXfLewGDN6Fbkb6VhWvTIeMqOpNXEqeWsJ0/S0qmSeAjpJBQInmvBOf7Gr/VnhWdRERULpSyd5u1t7fjn//8J0444YSc7j9nzhz3HPGZEiXqtUFnKBTCueeei3/9618AgJtvvhk///nPs76/x+Nxt7dv2LABH374YdLjPvzwQ7cS84ILLkgoTZ44caJb5fn8888jFAolPc/ixYvdyzNnzsx6nURE1U6aAiJsxFZLSYVd//yidIuiGFIzYXQm//8bdTGdqkrdBKBgeO3wzKm2jKGUu2XXChswO8Mpg04R6fVp3y15oBTaaVcmSlNk/JDADGhQUmVVoaikhAgZaftTOhV5xQre49kTxi1oLV0VifaHJV3fd2V2bekXmulWcGqt9n2cgDQZJzi2Mnwfsl5vmx+B+hb376BQQ3fig0IjTXibdF05Hu/erz2QXUVn9KCtqMP1tgD0Nn9CoJ53z1AiIiKqaL0y6DQMAzNnzsSKFSsAANdddx3uuOOOnM/z05/+FLW19sTNH//4xwiHY7cthcNh/PjHPwYA9OnTBz/96U+TnudnP/sZAKC9vR033nhjwu1btmzBf//3fwMADjzwQAadRERRpGFx+FC+ilRBJzQzbRBEtphAUwF6e5rgSHVthXbu51SAxuvc3ORutU4WJlohHZ1bdgOwf54yBZ0iZABKxVTppnopKSFhdGao6HXvXJqfYWnYQ4eiQ0glZEJwrHfYXwvdhNmpufdVUqXfuh4JOvX2QMbq1kyUlNj2wkewQro7oKdQQaeMC2GDkW352co3xPVv2Z1x+33M1vUktzX84wsYcT8v3LpORETUO/XKYUTf/e538cYbbwAATjvtNFxxxRVYu3ZtyuPr6uowceLEhOsnTpyI+fPn4+6778bq1atx4okn4uc//zm+9rWvYcuWLfif//kfrFmzBgAwf/78hAa0jssvvxyLFi3CihUr8Kc//QlNTU246qqrMGLECKxatQq33347Ojs7UVNTgwceeAB9+vTKvzYioqSkIbhFMU/F2iksdNOtTqTUrGDXlnGhmdDakvfctHVVdBqddshmdiYP2/xbmjFgzHCkatLp39rsflBgdIZjK+eSrTNs2H1wY4KtVMOIFMzOcPoQzJmgXaLPKqSVWBWuhEoIjo2OIIRuQuomrLAO069BWsIOmtOEjc4W8PgWG/no3NiE4PZWjDxyHyhLQmgmAvUt3TqnI/7DiPCujpzun++wpXCTDwPGDk9/bpG+crXji+1A3K6pfCtMiYiIqLL1ysTsf//3f93Lb775Jo444oi0x++7776or69Petudd96J5uZmLFq0CGvWrMEll1yScMwVV1yRtmK0trYWf/vb3zB9+nR8/PHHWLZsGZYtWxZzTL9+/fDHP/4R55xzTtq1EhH1NsIwGXTmqwjJkjRFZHo4KzoziR4G412/E5Y/yZb1CKW6gqVUW9ajDzZ9YTvnTHJzdKCXzXZl4QSd0VWaka30ntq4zUJKwewMJfR/jD2ktEmnEtKu1lRx18VVCOodQWjNnfbzVoB33U5I03KD5tQPoNxzxg/MyZURqRxVQsIKG/Bv3Z22mjQX8QG33h6AtARq+tRmd/88K0uVlG5rhXRri+3RGX8AEl4/3nU7MfbUQ+Gp4URbIiKi3qRXbl0vpJqaGjz66KN4+eWXccEFF2DcuHGoq6vDuHHjcMEFF+CVV17BI488gpqa9N/qUaNG4YMPPsBDDz2Ek046CXvssQf69++PAw44AFdddRU++eQTXHnllUV6VkRElUNoJrcoljEnDMu1319v40xcd7R/tj3TPdzelqmmrUdze6RGhUFOMBUdQmdTeSt0E0gIOpP3/1RSwQzoWQ2jctZTqCniWZMKhjc2LLTD+bigsz2A8G6vW6HpXd8AZUmYWfafjR9wlM3x8VW6IrL1XVoSQjPg39acsQI3X0I3k/eHTSnPoFMpaC3pX8PSkjlPgQ/v9mX1s0FERETVpVdWdKZqxN8d06dPx/Tp07t1jj59+uCaa67BNddcU6BVERFVP2dACOWhCAV0Tk/CcEsnlFSsrkpBGlbMFmRpZAh1VFcFXjYhshuYRf0bSIQN9BnULybQy2q7byTUjO7pqICk27etkG7380yzdd2dHh85xgoZ6DOwDp4MHxIXipISiAtXlZQJ4aze5kdge5vbczO0sx19hw3IulpZCZlT9fn2v6/G8EPGY9jQAe51zoAdJWTkQx4J1aeHgmEFmAEddcMHZX18XqRyv6cpTy0kDF+OVeFSIdzoQ/9RQ/NcGBEREVUiVnQSEVFFi56MTLnpiQ/+4jlVinpLZ+maMFYAqVu59VpUyq1kziYAcoLO6O3FZuRnJzrozLqXarKt60n+fqMnlafiBLZOGKqEjOlX2h3OmtJtq3Zvi652FSoxlFSAb12DWx1rhXTo7YHMW9fdc2YfdLau3oLWj7cmHi+7tsE74WChhhElk0tFZ77vJ0qqmLYNSY8REkZH7u0vwru9ea2JiIiIKheDTiIiqmhWoHtTjHuzjFWDBeBUdEoz/TCR3s4KG1lt73ZIU7hb17MZAuOGiVGVc6GGdiilYnp8ZjtQxvSHE0K4ZH+/zlbrtBWdkWpK5/mLsNHt6eRd69QgdLNr6nwS0hR2i8eYRSUf3GSF9JjvkdQt9zlmYleJZhfgBnfag4Dit7o7YaLQTPf71ZNb/c1ctq7nG3RGpsenY4Xye02IIrzHERERUXlh0ElERBXNDDLozFe2oUt3RPedLEYFaaXK9e9C6FZevRnNoO7+Pfi3tcDsTAwssxFu9sVeoVTqretIX9HpBO7OMfmGWskY3iBE2ECo0Zvx8fOVbUCthIIIZx9mA0gYXuSEydHBbdohPd2US9CZ7893Nt8/raUzr3MXoz0HERERlRcGnUREVNFkhi2PlJoVqe5LV22XSab7xgRWrOhMSaSZSp6MNMz8htBIBRGyq0fDTd60lY7pBLe3xXytVGL1IdAVdMs0rxNn8JJTfWeF9IL03hWGBSukwwxoCO3qSHscgLxDsay3rkvp/sxlcTQAQIuqtgW6vo+dm5qiDu3Brev+XCo683uMbEL+TD08U+KHK0RERL0Og04iIqpo3A6dP6e6LKftqXEy3Tc6sGJFZ2q5VhXaFZ35fT/NgAbTH4bRHoTWWqCp1EolnYrt9uhME3S6fUGlPbTICuoFqegUIR3KlNDbgwg3eVMe1xXC5vf91NsD6Q9w+oQKlVN7AgAI7YwNlAtV6ZqtYmxdt3L8nuSEbzlERES9DoNOIiKqaAw68+dUUuXb51RaIuOwkuhqrbyrsnqB3INOM+/ejFZAg+ELwQobXdPYCyBZiOcEnKkCPitsxGydl6aA6Q9DFKCiU28LQFoCwe2taYNWaQpAqryD40w/A1JIBHe02T06w0bSytdUtLiK21yD0u6ywpnfG4RuwvAG8y6ejN+eX0iKSScREVGvw6CTiIgqWw8O4qh23a3otII6zAxbW2XUluy8++z1ArkGnVK38g46TefvTamct8ynoqRKGph3TVRP/jgJW6OlPRypEJWLnZuboCyB4M72tJV9Sil7An0PVRz71u9C6ydb7UnpmpFdiOsMgo8b0iOzHBZVKDKL14cIG2j9eGt5bhMvwyURERFRz2LQSUREFY0VnfkTumn3Mcwz6BRZVASKqO3MWjODzlRyHQgkdCvvnqd2Rae9XbxgA6lU8m3VbtCpJa/sNDpDsccrBa3Nn9O6UgW+ge2tsMIGtPjBSUnWmFMvyhz5vtyFzk1NdhicxUT56BYP8e9vSvRc9WMy2UwtF5qJjrU7yjToLMM1ERERUY9i0ElERBWNQWf+pGlv6823olOaAuEM4WV0RViYFZ0pyRwDLGmYeb/29Y4gAttaABRyK3Ty/pNdFZ1JhugAib0zlV3RmW0+JY3k0+eVkLBCBvzbmiMhcuoTCs3sVp/aTJSQbqsBs1PLGB4qq2u98SFuXgOouiOLvwhpRZ5fD05/JyIiKpW3334bHo8n5Z/Bgwdj4sSJuOyyy/Dmm2/mdO76+nrU1NS453r66aezvl+ytdTU1GD48OHYd999cfzxx+Paa6/FE088gUAgQz/xiGnTpiU978CBAzF27FgceuihuPjii3Hvvfdi48aNOT3XYupT6gUQERF1R77bd8kOKkMN7Qnbz5VS8Hg8XV8LCU9t4mejVthAuDH1NGsgtiKMFZ2pxW9RzkToFjw1nswHJmF0BBD4qjVynsIEnUolrw6VkWDOGfjj+3IXRhw+wb09fhq6GdDtXq4ZAjbnNSp0EzV1if+cFboJoyMIKJVxCJbQzB4f8qNMAQ889uClDAG1NLpC7/jwsNhb17OhhLT7jpbhh04s6CQiAhoX5/fvhUowdk7p3+iDwSA2bdqETZs24cknn8Ts2bOxaNEi1NbWZrzvkiVLYv6dsmTJEnzve9/Ley1KKfh8Pvh8Pmzfvh0fffQRHnroIQwZMgRXXnklbr/9dgwaNCjn84bDYYTDYTQ1NWHdunV4/vnn8fOf/xynnnoqfv/73+PII4/Me809gUEnERFVNFYR5U9ZAmZAS5iWLTQTfQbUuV8Hd7Zj8L6jEu5vBfWuidkp6G1dnyCzR2dquVbqCd1Ebb++eT2W3h5we4IWrKIzRb/P6K3rhjfovgaUVPDUeBDa5Y05PrijLf4USTmvUaFb8PRJ/EVCaKZd7WlJO4BL8TahlLJDzh4O6aQl4amVUEJm/HBG7wh09egsdUVnFpQl7HWV5VtxWS6KiIgq1DXXXIMf/vCH7tdKKbS3t2PlypW477770NzcjCVLlmDChAm44447Mp7viSeeAAAMHjwYgUAA//znP9HY2IixY8dmvaYLLrgg5rFCoRC8Xi/WrVuHd955B8uXL4ff78d9992Hl19+GcuXL8dBBx2U8bxffPGFe9myLHi9XjQ0NODDDz/E0qVL0dTUhDfffBPHHXccHnzwQcybNy/rNfc0bl0nIqLKxpKdvElLwAomVrLFV7f5t+xOen+7kit18GJ0ht1KPiDS07MHeyFWspwDLKlyHmDk0Nu7wunCBZ3JKzqd7fVCtxDc0d5VQaoUpCmgtcaG38EdrZkfSimIyGtU6GbSkNL53sSH+PFE2ChOJaJSbnVzppYDemvUpHUZW5GqcpjYXixSSDtQLsf34nJcExERVazRo0fjsMMOc/8cfvjhmDp1Kn7xi1/grbfeQv/+/QEADzzwAAwjfb/xDz74AJs3bwYA3HfffaitrYUQAk899VROaxo+fHjMmo477jicddZZ+OlPf4q//vWv2LJlC84880wAwMaNGzFjxgx0dKTfkQUg5pzf+MY3MG3aNFx66aV48MEHUV9fj//5n/9Bnz59YBgGrrnmGixfvjyndfckBp1ERFTRCrX1tjeSlkg6TCg+/PRvTR10pgvokg2BEXqBht9UGZlHpV6+1X3RAWmhgk6lunp0Rp/f3ZKvFPxbd7vHKKVgBsIJIaPhi7we0+RTLR9thhWZXC41M2mFpHCDzq5gUG/zJxyXLOjvMc5zzWIrffQRzt+zErL4HxRkkRM6VarlGCmy4p+IiIrlkEMOwbnnngsA8Pv92LBhQ9rjlyxZAgAYNWoULr/8cpx++ukAuqo8C2WfffbBq6++6q5t48aNuPXWW7t1zn79+uHGG2901yqlxJVXXglNK4+CBgadRERU0Xq6t141U5aEkSToFKGuMFIphWBDe9JA2e3NlwJ7cmavVFuSCzeMKPlk9egQsnPL7pjbol9njq4KzOQBldBMNLz+OfSOyNR4PflQJmcIlhN0KqUQ3NmecFxRg86ITEWG8Tc7zy/c3FmmW9ftbetlubYyXBMREVWv/fff372s66n/jaHrOp5//nkAwKxZs9C3b19cdtllAIDPP/8cn376aUHXVVtbi8WLF2PgwIEAgIcffhitrZl30WRyySWX4KKLLgIA7N69G4sWLer2OQuBQScREVU0maQvIGVHWsIOm5RyAyatzR8THhveIKRuuYFQTLWekGm3ULMnZ/ZKtSW5UI/bubERVtiA4QvFhOfRQZPe6oc0LSipYAU0mElCRmcQT6owMLC9FVI3EWqwQ0uhW0mDTieYj378pEFnKT4oyVTRGdJhRU2BtwIarKCetEK6GKxw+ipsaUV+/stwGFG6D2KIiIgK7auvvnIv77PPPimPe+mll9zt4//5n/8JAJg5c6Y7KMip9iykUaNGuY8VDofxxhtvFOS8119/vXv5b3/7W0HO2V0MOomIqKJFb02lHEk74FSWhAjbwVDrR5tjegKGm+xwxQk6TX9XiOVstzb8iVWhgF2BRtlJNsinkighIXULgfqWmEAuoaJO2SFksKEDZmco4TxuRWeKMNAdZqSc3p9m0mPjw3ehmQn9QIHSBJ2ZJqeHmnwxQ5mskA7fl7ugtSZuve9pVkiHFUy/DU1o5fvaZUUnEREVy4YNG9w+lccffzz22muvlMc6QebXvvY1TJkyBQAwaNAgfOtb3wIAPP300xCi8L/jnHHGGe7l9957ryDn/OY3v4khQ4YAAFauXAnLKv2/Cxh0EhFRxVJK8RfZbpKmgBXSoSLDYVo/2RZzuxOuOFVd0T0CnTApWZ9PaQmEGzM3OidbvoOFyonW5ocZ0KBF9cJMVlGnt/kR2tXe1Y8zSqbvg1slHAk3rYCW9DFE3Hn0tkDS9woryfb5npbpPSu4vTVmS70IG/DXtyQNhnuaFdIzhvCGL5j29lLi/x+IiKiQmpubsXbtWvfPF198gffeew/33HMPTj31VITDYQwbNgz33XdfynO0tLTgtddeAwBceumlMbc5FZe7d+/G66+/XvD1H3300e7ljRs3FuScNTU1OPLIIwEAgUAAjY2NBTlvd/Qp9QKIiIjyVY4TiCuRpdlVcR1fbLenUEcVyDkVnE5gYGkGhGaitn9f6O0B+5gkQadvw67k/R/Lb3drWaiKymRpDySyImG4ksqtFI7WunobtBYf+u8xJPEUTk/NFNug3b6vkfwqtKsDQyeOTTxPfGCqVNKt1SXp0SkklFTw1HiS3i7itopbYRPSsFDTt7YYy4ulAJlm4Js0LPi3JB9WVg4yVc8SERHlYsGCBViwYEHS22pqanD11Vfj+uuvx8SJE1Oe45lnnoFp2v9vdYJNx5lnnokxY8agqakJS5YswfTp0wu3eAB77LGHezmbyev5nnfChAkFO3c+WNFJREQVi7/EFobQDCil0Prxlsg1diCkpIoJrQBAmRJmUIOSEkZkIEyygUZtcZWhlUJlmhTTE48p0w91qiQibLi9N4VmJN1W3v7ZVwjuaE86QbxrGFFyTrju/D2Fd/sSgkEAMAOJ51ZSJXyfk923xymVcmt+qjWWsjIxXUWn0RlGeHdpeodmQ/XAtj8iIqJkpJR49tlnsWDBgrSDiJxt68cddxwOOuigmNtqa2txySWXAAD+/ve/o7OzsG2gBg8e7F72+wvXEqenzpsvBp1ERFSxqqIKrgwIzYQV0BHYHukLqCKDijSjKzCKTM8WmgFpCBi+kBs6xQ9JMf1h+DaVfttKPkox3MrsDFdNdbLZGXarKVNVS0rdhLJE8nDXyf9SBIFulXBUj874ymGhmUmDdiUVAvUtsWspwfddSZkyUI+vqAYiH0SUMOhM105AWcKeul6mynltRERUeX7961/brbOi/oRCIXz++eeYP38+AoEA7r//fpxxxhkIhRJbzvz73//GJ598AiCxmtMRPTDohRdeKOj6o0PIoUOHlv1588Wgk4iIKlam6i/KjtBM+L7c5YZHSimYfg3Skm7Q6VR0WmEDyhII7/a5QVZ8RVfbp1+V5QTmVKJDJ6EVv8LP8IYgzeoIZLRI+A1kHvSjZJrnnOLl4wSTzl+ZEjKhKrPlo01JKzWVlOjc3BTz961ECSp4RfKKTqVU0kpUq+QVnam3rpegADonkj06iYiohw0YMACHH3447rnnHjz00EMAgPfffx933XVXwrFONWefPn3cys14xxxzDCZNmhRzfKG0tra6l0eOHFn2580Xg04iIqpYihWdhSEVtJauT2INXwhWQIPe5nf787lb1y0JoZsw2rsGkIi4gS5pt62XYTCiRU2HT9pXtIcZ3iBkGUyoLAS7IjESimcY9JOqDycQGz47gagSsitAd0J5IWHFhdPuwKLEk0Jr7oQWFcynDVt7SGhXe9KA0L9ld9IJ51pzp92mo0SpYroqZxEufo/TXLCik4iIiumKK65wg75FixbF3CalxFNPPQUAsCwLo0ePhsfjSfpn/fr1AOzJ6PX19QVb35o1a9zLX//61wtyTiklPv/8cwB2NeeYMWMKct7uYNBJREQVi1vXC8cMdPXZ1Fr8MP1hhBu9kIYzHCYSNkWms0dXnsmoPnjBnW0JW9nLXWhXu1spmK56racYvhBUlVR0RlceZhz0k67qN+omp+oy5ufdDToTBx6lClCVVJCGBe/6hqTrLZbOzbuThpYtH21O2nc41NAOJUTJqifT/Uwk67NaTtijk4iIiqmmpsbtu9nY2Ii2tjb3tv/7v/9DQ0NDqrsmpZTCE088UbD1/eMf/3Avn3TSSQU558qVKxEI2Dt6pkyZgtraEgxPjMOp60REVLFKMTG5WlmBru+l1twJ068htKujqz2AEx5JO+jUWrsqQKOrpgLbYnsgVgK9NQDTr6HfiEElqei0gnrVDCOKCTozbF1PF6B1bmpEsKEdg/YeCbMzhH57DIk5XimFT29bBiiV0G4gZdAZCUxDDe0Zj+1JRkcwadAZ2NaCPY7eP+F606+h79ABGb+fPSU6fJWWQE2frl9gyj3olEJCaAZq+9eVeilERNRLWFG7dKIvO9vQ+/Xrh0WLFqGmJn3d4T333IM1a9bgiSeewK9+9atur6ulpQVPP/00AGDQoEE466yzun1OALj//vvdyzNnzizIObuLQScREVUsvSOQ+SDKiunvqujU2/wwOkMI7mzr6onobF1Xyu7RuavDPT46CDF8iY3Xy53eHoDhDZYs6BSG1SuDznQfVKioyeShRi/67TEk5nipW+7flRVX0ZmyUlQpKBU7RbwUW9cjS4n9WipYYSNllboSEnpbid7vohYrDSsu6Awnu0fZkIYF068x6CQioqIIhUJYt24dALt356hRowAAgUAAf/3rXwEAZ555Jr73ve9lPFdTUxPWrFmDTZs2YeXKlZgyZUre65JSYs6cOe6ApHnz5hWkl+azzz6LpUuXAgDGjh2LOXPmdPuchcCt60REVLH0dgadhRId8Ckh0bpqi93r0GmJGAmPOjc3QZoiJmSO3h6aKegsx2DE9Ift7eNKQe8IZr5DgYmQUVHDm9LJZet6ulBZSWX/ERLhJm/C+aJfZzKuMjTVRHMlJZSUbmWoUqp07yFxa7RCul2dmqLKVVoSZmdpfnac76cVNmLWp7f5y/LnOZrULVhJBlMRERH1hFtvvRXhsP3/xrPPPtvdxr1s2TIEg/a/Mb/zne9kda5vf/vb8Hg8ALo3lGj79u34j//4D7zyyisAgIMPPhi//vWv8z4fABiGgXvvvReXXXYZAKC2thaPPvoo+vXr163zFgorOomIqCIppRKmfVPhxIdUSkooIe3t7EdYcT0Uu8KtTGFMx793YsjX9iroWrtLSQXTF4LpCyG0sy3zHQrM6Ky8KthUlFRuhpdxGFG6ppMKgFIwvEH3NRU9qCc66Izvs5muR6cV1OGJbBXr3NgYM1SrmOLX6Py8md7krwUlZOkmr0fWGtzeirphAwHYwWzrv7YlnRJfbuKHpREREeWrubkZa9eujblO0zRs2rQJS5YswWuvvQYA6N+/P2677Tb3GCeo7Nu3L84///ysHmvChAmYPHkyVq1aheeeew5/+MMfUFeXuEPB6/XGrCkcDsPr9WLdunV455138NJLL7lb6L/+9a9j+fLlGDZsWMbHjz6nEAJerxcNDQ1YuXIlli5diqamJgD2Vvw//elPOOecc7J6XsXAoJOIiCpScHtrySqceiWpoHuDdo9OI257rerq3Wdk+DvxfbkLwDE9t848KKlgeEPo3LLb7eNYzMeuptdxdBgnutNTUin378UJ06KD0+jekDI+AEw3jEg3UNPP/udv25r6/NfXXXEhr4hUHaYKvZUlShZ0OqFs4KtWDDt4HACgY+0OWH4tprdvuWJFJxERFcqCBQuwYMGCtMfsueeeePLJJ3H44YcDAHbs2IG3334bAHDaaadhxIgRWT/ed77zHaxatQodHR146aWX8O1vfzvhmBdffBEvvvhi2vMMHToUV111FW677TYMHDgwq8d21p+Kx+PB6aefjt///vcZjy02Bp1ERFSRwk2+jBVjVDhKKmjNnQDQNaAo+nYhgT61bmCTSlkOkFJ2oNZ/z6Hpqwx7gNBNmOX4PSmAjAFTpu91pG+lE3SaURWd0fdNqOhMs3Xd0gz0sXeBlaQfq7uWJD06gdQ/H8JI/JkrGrdXagcG7m3389Ja/Gl7ipaTTO9JRERE3VFXV4eRI0fi0EMPxfTp0zF37tyYMPPJJ5+EjPQETxZUpvPtb38bN954IwC7KjTT/T0eD4YMGYKhQ4di7733xtFHH40TTjgBM2fOxKBBg3J8Zl369++PYcOGYeTIkTj88MMxefJkXHDBBe6E+XLDoJOIiCqSkqpkU4h7IyVlV9AZX9EJQJp2RafMEMgoIe1j+9amPa6YlLKrVaWQmcO3AjM7w1AVEBblxv4eZgwSM3yrlVKQhgXLqehMEQIqK37revLKR6cXqjSFO1SrZBKSzkjQmeI9LdnPXLHY/VIlRNhEcEcrRhw6HoY3CBE2SjbMKRdWSIdSyu1zRkTU24ydUx19wEtl2rRp3fog/KabbsJNN92U130POOCApI+933779ciH807laaXjMCIiIqpISsqqGeBSCZRUCDfbPVGTVXQa3mBWW0SVUknvX1JKQW/1w+gIFr2iU2/zF/XxisEJHrtbMamkgtBMt2pQa0n+vUrY0p1q63rkOGkKGN4QQrs6urW+bokfRhT52Un5PSvy6zL2oRVCjV4IzURoZzuUkBBhA5Zmlq5vaA5E2GRVJxERUS/CoJOIiCpSqoEj1EOksqewA0m3q2qt/uzCBKXKbrurUnYI5tu4q+jhudZWoqnfPUialt0Ps7vbrSNTyJ3wWUsxfEyK2NdTxvcGpdD+aX1pt66nGEaUaup6SUmFwLZmSMNEqMkLYViQpohUdJb/+7AZCDPoJCIi6kUYdBIRUUWqhEqiaiJ0E+FGL4DkA1NEyMguOFJdFaHFrp5MxdnCbLQXv6LT6CjN1O+eJDSz+yEnIhWdugkou+Ix1bbubHt0Ruvc1NTt9XVLXGWzf1szgOQfIpSaUgrh3T4I3YIIGTA6gu4HG5XwPqyX4OeaiIiISoc9OomIqDJVQG+4auLf2uyGGlpr4hZiKWTW041L2W8wmZhwqYh5iDRFeVbwdZMVMgrzvJSC0Cx3+nrKw+J6dGazzVsrccsApZyfAw+UEPCua7CvF+UXyCkhYfp1N5ht+7TerpD0ADV9y/9XCaMjWBGVp0RERFQYrOgkIqKKxF9ciyvc5HUvW34t4XY7DAlndS5pCjsULZMqKxk1lKaYlV9W2EgM6aqANKyCbAu3t7+bgFIwfKkrXxMqOrN4b0j2Gi6qSEWntAS8G3a5VcVlOdxHKlhB3X2t+tbvsq9XKEjlbk+zQjr7ORMREfUiDDqJiKgy8ffWsqJE11T2TKRh2f0Wy+TvMGbqeREDERHSK2Lrbz5SbTPPibKHESmlYHSkqeiM+x6W4/bveCrSq1aZAv4tu7uuL8PXg1IqpsdlQf5ui4xb14mIiHoPBp1ERFSRZBkGAr2ZEhJ6e3aDdaRpIRTp91kOooOxolZ0VnXQ2f3hL+5AI6mgd6R+bcW/F6gKCDoh7aBTGBYCX7XGXF9ulFQxf59Cq8DBPmX4fSUiIqKewaCTiIgqkplkIA6VjpLSnRydiTQFQg3tZVF5p6SMDRuLGnQaEEb19egE7GrV7nKrHpVCaEdb6gOlitmuHt2KoFwpISFNC+Emb9lPBDe8wdgt6hWYGbKik4iIqPdg0ElERBXF8IVgBrS0w0mo+JSQWW9plaaF0K7yCDrj11DMPESEjbIbzFQoZrAAPTClvXUdSiG4qyPtodFhdSUEnVJIN/Av96peraW0g5sKIb5vq1KK4ScREVGVKv9RiURERFFCDe2oHVAHw8egs5woobKu6LRCBsLNnWURNCSErUWu6KyEYS75CO1s7/Y5tDY/tBa772um7ehKSKBvrX25AgY8KSEBBQQb2su+DYeqgOA4o7ifa6GZUKZA36EDSrQgIiIi6ims6CQioooiTWFP+O7MbsI3FYcSkUnqWQjuaCubnnkJFZ1FXJcV1iGqNOiM6TuZp/ZPv8r62Eqr6HTWG2roqIhgttLF/1wLzeSHZURERFWKFZ1ERFRRpClghYyy3+7Z21hBI+vw0qnSy1Q9qaSCp8aT8XxCN1Hbr29Wjx0voQq1SBWdQjcjW9erM+jMtro3HaMjmPWxTlWkErJsQvR0nIrOcu/PWTWkguELQUn79aGUgtCrsz8uERFRb8eKTiIiqijStLLuBUnFY/qzr7DNthpXyezC7O6ERfHrLlZFpxXSq3rrerEpYVdxVkI1J+AMI6qMtVYDpRQ6NzXBCuoI7mwHJIrbkJeIiIiKhkEnERFVFGkKiBCroMpNttvWAXvbaFayDB2tbrwetv99dczXSsiiVAtbQQNWSGdlcoE438dKCQ+lJWGF+YFNsSipEKhvARTQtqYeQjeZcxIREVUpBp1ERFRRpCkYEJShvCoTM21dzyKJUEJ2a5t0/H1F2Mi6krQ7hGawR2ABOX0uK2U7shIChpd//0WjFKyQjvZPv4J/627o7QFWdBIREVUpBp1ERFRR7K3rrOgsN93dgp3s/tlsIxe66Q70ybU6UkmVMAhGaGbRtq8bHQy6CsV5Dchsq4VLTAkJK6CVehm9hpIKWqsfLas2Q1kS4WYfwJyTiIioKjHoJCKiimIPI2JFZ7mReUyOji6oCjf7kpw0cxJheEOAUnZwlGOvTpWin2PRJq+zoqxgnMFFQq+MnqfKkllVLFNh+Lfsht7qj512z+8/ERFRVWLQSUREFUWxR2dZcobB5Etr7kw8ZxZbyA1fCEpICN3MuT9jqsE17JtZefT2AIDK2bouhWTQXURt/9oW83W4ycvvPxERUZVi0ElERBVFClkxVVu9Sl6ZQdedkvXZzGaCtuENItzktbeh5xh0pqzcLFZFJxWMHqnolBUSdCohmbMVUfwANKFxGBEREVG16lPqBRAREeVEKkijMsIMyiAqaEg2iT2bCk3DG7Krs5BdMJrVsoowjIgKy3ArOivjQxDFis6Skqbg95+IiKhKsaKTiIgqhhU2ItuUKyPMoOwJw4Tpjx3O4vTdlKb99236wwn3s4IatDY/pGHlvHU9VRVqMXp05rxWSkv32hWdRuS/5U4J6fYVpRJQikEnERFl5e2334bH40n5Z/DgwZg4cSIuu+wyvPnmmynPU19fn/Y8yf5861vfSnm+nTt34tZbb8XJJ5+MPffcE3379sWAAQMwfvx4nHLKKbjuuuuwdOlS+HxdffCnTZuW8xri/yxevLiA392ewYpOIiKqGFZQg5Ky2xO+qfxIw4LhDaLvkP7udUoqWEEdtf36oqZvH+gdQfQdMiDmflbYhOXXYIX0PCo6kwcdRQk6+RouKMuvQRoWtLZAqZeSFSUkwkn60lLxMOckot7i4pebS72EHvPcuaNLvQQEg0Fs2rQJmzZtwpNPPonZs2dj0aJFqK2t7bHHfPjhh/HTn/4UoVAo5nrLstDQ0ICGhga89957eOCBB3DxxRfj2Wef7bG1lCMGnUREVDFMvwYlFIfFVItI0iAtAaFZEPHhn1QIN3kxYOxw9FH90PT2Ohw4+5SYQ0TYgDQFzIAGDzw5Pbzvy8bkyyrC64tBZ2FJU0DoFqyAlvngMqC3ByHCHKpWUkw6iYgoR9dccw1++MMful8rpdDe3o6VK1fivvvuQ3NzM5YsWYIJEybgjjvuSHmeCy64IO3tjqFDhyZc98wzz2DevHkAgP79+2Pu3Lk4++yzMX78eCilsGvXLqxevRrLly/HmjVrYu772GOPIRhMvqPkl7/8JV588UUAwOuvv45x48YlPW78+PEZ111qDDqJiKhimH6N/ROriIIdKkrDsv9e44IHJSQ6NzWi38jB8G3YhfBuX8I5rEhYZAU01Pary3EByYOOQvX6TCch1KVuE4ZZMQFyaFd7qZdADDqJiChHo0ePxmGHHZZw/dSpU3H++efjmGOOgaZpeOCBB3DLLbegri75v02HDx+e9DyZCCHwX//1XwCAIUOG4P3338cRRxyRcNz555+P2267DevXr8cXX3zhXr///vunPPfw4cPdyxMnTsR+++2X8/rKBXt0EhFRxTD94aRDa6hCqUgfzqAeGc4Sd7OU6NzUBKGZ6Ph8e9JKS+f1YAUNKJHj1PUUQYcqQtBZKdPBK4nUk1QFlym9vTK22Fcz5pxERFRIhxxyCM4991wAgN/vx4YNGwr+GB999BGampoAAD/4wQ+ShpzRJk2ahFmzZhV8HeWOQScREVUMszOMcHNiVR9VKKWgpES4yQslZELwGGr0wvCG7EFFAS1p0OlU8AndTDVbKM3jJ7+6GIOCrDCDzkITulk5Q54YspUek04iIiqw6IpJXdcLfv7t27e7lw888MCCn79aMOgkIqKKEdrVAcmJ61VDSQUlFMK7fXZAFRc8dG62P7EWYbOr6jOOE3RK3co9PEpV0VmEHp1CY3/GQpOGBWny/YGyk6qim4iIKF9fffWVe3mfffYp+Pmjt8KvX7++4OevFgw6iYioIlghHWZnuNTLoAISugklJIzOMPQ2f0JQ6QyWMf1hWMHEik4lpHudMEzkmnSmyjmKMoyIgX3BCd2CNCqkopNKjzknEREV0IYNG7B8+XIAwPHHH4+99tqr4I9x1FFHuZf/8pe/4M033yz4Y1QDDiMiIqKKYHhDkDn2YKTyprV0os+gftBb/fagqbjk0em/afrCsEKJFZDR/RiTVXQqpeDxpJnEnqqiU/Z8AiJYeVhwImwUpb8qVQlWdBIRUY6am5uxdu1a92ulFLxerzt1PRwOY9iwYbjvvvvSnsfr9cacJ5X9998fgwYNivl6xowZWL58OTRNw+mnn47JkyfjnHPOwfHHH4/Jkydj1KhR+T/BKsGgk4iIKoIV1KEsTlyvJsGvWhFq6IAZqdyMDx6cfovhFl/abetA8inmVkBH3yH9Uz6+M7E9XjGCTlZ0Fh7791IuuHWdiIhytWDBAixYsCDpbTU1Nbj66qtx/fXXY+LEiWnP8+KLL+LFF1/M+HhvvfUWpk2bFnPdY489hunTp+Pjjz8GAHz88cfuZcCemH7WWWdh7ty5OProozM+RjXi1nUiIqoIQjMhWa1VVcLNPrSs2py0r6ISsivo3OWNud4hYyo6zYTgwugMpX18kaRKFLCnvfc09pIsvPCujlIvgSoJc04iIiogKSWeffZZLFiwoEcGETlGjRqFFStWYOHChUmDzI0bN+KPf/wjjjnmGFx22WUIBoM9tpZyxaCTiIhKrvnDTRmDH6EbrOisMsHtbYBUbl/F6EpK7/oGiEjFpRXq+seijAo6rWDX9ckqOvW2QFe1aBJmMMVtxajoZC/JgtO9ve8f8pS/EINxIiLK0a9//WsopWL+hEIhfP7555g/fz4CgQDuv/9+nHHGGQiFUn/gfvnllyecJ9mf+GpOR9++fXHVVVfhk08+QUNDA5599ln87Gc/w8knn4y+ffu6xz355JM4//zzIXpZ+y8GnUREVFKhRi92vvIpRIatvCLMis5q5VZmRuWLQjeTHhtd0WlEDadKthVcb+2E1tKZ8nGjA9SYxyhCRac9PIkKSYT5PaXsef+9syg/60REVN0GDBiAww8/HPfccw8eeughAMD777+Pu+66qyiPP27cOFx88cW499578e6776KpqQk33XQTamrsuO/NN9/EM888U5S1lIuyDTp1Xcfu3bsh+Q8QIqKqtvvd9VCWiNmGHE/opj2YpgiVdlR8TngZvfU8VQ/L6KDTjNqaLnQzJiiVlkCwoQOmL/Wn6akfo+tE0VWjheQMWqLCSfceQhTPCukIN7GvKxERFc4VV1yBkSNHAgAWLVpUkjWMHDkSd911F2688Ub3uhdeeKEkaymVogedgUAAr7zyCl555RUEAoGE21tbW/Htb38bQ4cOxbhx4zBixAjccMMNPdrjgIiISsfZPpwupNBa/LC05P0UqYpEBZ2pKh6jp2rHVHQaFqKTzuCONoSbvG6fz6TnSvFhavT1gR2tGZedK2lYHEZEVAb0tsTfRYiIiPJVU1ODgw46CADQ2NiItra2kq3lqquuci9v3ry5ZOsohaJPXV+2bBnmzp2L8ePHo76+PuY2KSXOOecc/Otf/3KrOvx+P+6//37U19dj2bJlxV4uERH1IKWUW9kmdAvSFKjpWwslJDy1Ne4xemun26+RqlgWFZ3RPToNb1e1pjSFe3fTryHU0AHDG0oIOpVS8Hg89uUUFcLR14d2tmP4wXvn9jwySDXtnYiKS+9g0ElERIVlWVbSy8U2btw497Lzb9/eougVna+//joAYObMmW7PAMdzzz2HTz75BABw9NFH4/rrr8fRRx8NpRT+9re/4bXXXiv2comIqAcpS7rb0aVhuv0Urahp2MoUCLd0xoRaVJ2iY8dUPVujB1LF999UloThDaJj7Q6Y/jCgVEJf1+it71CZg04zoBV8S3SqgJWIiktvZ9BJRESFEwqFsG7dOgB2785Ro0YV9Pwqxb9dk1m9erV7+YADDijoOspd0YPOtWvXwuPx4IQTTki4bcmSJQCAY445Bh9++CF+97vfYeXKlTjuuOMAAI8//nhR10pERD1LWsINt7S2gDscRlqWO4xGWgJacye0Vn+JVklFEwkmlVKphxFFgkslJPS22NeENC20ramH2Rlyp607FZ3OdnQnKFVSpQ4co7auC82E4Q3Z0y8ZUBJVFQadRERUSLfeeivCYbu10tlnn43a2tqCnv/VV1/FrFmzsGbNmrTHtbe34yc/+Yn79QUXXFDQdZS7om9db25uBgDsv//+Mdebpol3330XHo8H1157Lfr0sZfWt29fXH311Vi1ahVWrVpV7OUSEVEPiu63qLcFUDdsoH29VBBhA7X9+kKaAlZQhxUJrqh6SVPAt74BQw7YK+UQIeeD7NCujpjqTgDQ2/z27VK6Q4Sc15jW4seAvYa5FZ1mZyj11nUVO4yo/bOvMPqEiZCmhbrhg7rzFImojBgdwVIvgYiIKkhzczPWrl0bc52madi0aROWLFni7kLu378/brvttpTn8Xq9CedJpra2FpMmTXK/llLihRdewAsvvIAjjzwS5557LiZPnoyxY8eirq4Ozc3NeP/997Fw4UI3ezvmmGNw+eWX5/N0K1bRg8729nYAQF1dXcz1H3/8McLhMDweD/7jP/4j5raJEycCAJqamoqzSCIiKgppSTe5MjqCMdV6lm6HStJMP5Gdqod3XQOGHjQGZkCD4QunOCrSw7u+JeEWrcWPumEDYQY1t6erU9Fp+sPoM7CfW9kpdAtmZ4rHiOSnSilYQR1tn9ZjxOETYIUMBp1EVcTw2h94eGp6V+8yIiLKz4IFC7BgwYK0x+y555548skncfjhh6c85sUXX8SLL76Y8fGGDRsGr9frfj1ixAgMGjQIwWAQn332GT777LO09z/zzDPxzDPPuIWEvUXRn+3AgQPh9/vddNnx7rvvAgAOPPBA7LXXXjG3DRgwoGjrIyKi4lGWcIfO6N6g209R6hZEJNyUpnAHFlF1Czd5MWT/PWEFNBidKXqyKkDoJsJN3oSbDF8IfQbWwfRr7mtGmgJmQIOyJLQWH/pGqobNznDKAN2p6BSaCSuk28dGKouJqHooIWH4Qug3gh9gEBFRfurq6jBy5EgceuihmD59OubOnYsRI0b0yGOdeOKJaGlpwT//+U+8/fbb+OSTT7Bp0ya0tbVBCIGhQ4div/32w+TJk3HJJZdg2rRpPbKOclf0oPNrX/saPv30U7z99ts466yz3Ov/+te/wuPx4JRTTkm4T0uLXbUxevTooq2TiIh6nrSk25fT6Ai61XdWSIc0ItWdluCU6l7CChuQpkC4uRMqblp6NK25063YjLl/ULeDzUgwCdg9Xo0OO0TXO4Ko7V8HJWX63nyRoNMK6u7jKKkgjEIF7uz1SVQujPYAg04iqmrPncscpTumTZuW0xCgVPbbb7+CnGfAgAE477zzcN5553X7XNEWL16MxYsXF/ScpVL0YURnnnkmlFJ46KGH8OqrryIQCODBBx/Exx9/DABJ/7I+//xzAMC4ceOKulYiIupZVlBzh86IsOH2XJSGBWna1XZCN1MOpqHqokwBaQp0bmpMfYxS0NsDSasx7deNiLyWhHtOrc0PaVowA2EI3bSruLxpevMpe9q6E5wCgOENpuwbSkSVy/SnapNBRERElajoFZ3XXXcd/vznP8Pv92PGjBkxt02aNClp0Pnyyy/D4/HgqKOOKtYyiYioCMKN3pjiNndCdtR1ZmcY4LTrXkNr7kTn1t1pj7FChtvaIJ4TkLtfWwJaSyf6DOgHSAWhmZCWvV01FaUUQg3t7uAiAPBv2Q0rxMpiomojdPaAJiIiqiZFr+gcO3YsXnrpJYwZMwZKKffPAQccgKVLl8LjiW0GvmXLFrz33nsAgDPOOKPYyyUioh4UiuuzKK3Y7cpWSE/dq5Gqkm9TY9pt61CA0Ay3t2s8p+VB19cW9BY/rJAOpSKVw0LC8KZ5XSmF8G5fTMuE8G4fQo0dOT0XIip/3DFARERUXUoyeunkk0/Gtm3bsGLFCjQ1NWHs2LE46aSTkk6CamxsxK9+9SsAiOnpSURElU9v9cd8LeMCLt+GXRxE1NtkrN5V7pCgpHePq+g0fCEoBdQOrENtv76wQkbGretK2SF7nwF1XdcJmTJcJaLKxaCTiIioupRsxnxdXR1OPfXUjMeddNJJOOmkk4qwIiIiKjYtLuiMDzW963aiz+D+xVwSlTvlTENPvo08Piw3vCE34Kzt1xdWUIOyBIzONH35lB2mqqjQVUmVUHFMRJWPH2AQERFVl6JvXSciInLEB5v+SG9GJSSkYaFz826IMKttqItSyq7ASjG1Mj7oVEJC6BZE2IDQTIR2dUAKmbZy1L5PfNApY4JOYVgxt+f0HKJ6fxJRacVXgRMREVFlY9BJREQlkSys0lv90NsDUEIg3NwJaVgIx/XxJEq31TRZ1aXQTYiwgcBXrZCmyBg0KqkiQWfXcUooQCr3OqmZiJmklQNlMegkKhfxH44QERFRZSvZ1nUA+Oyzz/Dee+9h69at8Pv9ECL9PzQ8Hg8effTRIq2OiIh6UqpJt74vG+HxAFqzDwCgtXQWc1lU7lRiJXCMJFWWUjdhabUQIQO1/frATLdtHfbAIqnFBvHCsB9TSQVPjf11H9Uvr6dgBZP3FyWi4mPQSUREVF1KEnR++eWX+P73v48PP/ww6/sopRh0EhFVEZmiKs+3cReGHjgG4d2+Iq+IKoJSKV87qUhTwAoaUJaAtAT0tkDa482gBqHHbk0XzgT2SPiZKqjPhulPH7QSUfGw9y4REVF1KXrQ2dDQgFNOOQWtra1QkV8WBg8ejBEjRqCmhjvpiYh6C2kkD4r8W5sxaPwerHqjpISeehBROk44qoREKEM7BCuoI9zkRcNrXcc5282dIs/wrg4M2GsYPDmuQ2gmTL+W472IqKcoVnQSERFVlaIHnXfeeSdaWlrg8Xhw5ZVX4mc/+xkmTpxY7GUQEVGJpaqiUaZA56amIq+GKoXhDXUrBFdCIvhVa9pj0p4/knR2rN2BkUftl/PjG74QKzqJygi3rhMREVWXogedr732GjweD2bPno2FCxcW++GJiKgM+Lc1Y/vfP0l5e3BHWxFXQ5Uk3OTt1tRyaQqY/vRb191t6slEgk7/1ua8ZhFZIR2GN5T7HYmoR3DrOhERUXUpetC5a9cuAMDs2bOL/dBERFQGzM4wtj77Aax023dVftOsqfoFd3V06/5CMzMGlDJNkKqUvX3eDltzf50qIdl/lqiMsKKTiIiouhS9KeaIESMAAMOHDy/2QxMRURnY/tIn6UNOojS0boaE0sxiiFCSye0upbp6hOaRxyshobX5c78jEfUIxYpOIiKiqlL0oPPYY48FAGzcuLHYD01ERGVAb0+/bZgone5sW7dP0M27S+Vubc/nVEqq9EEqERWV4g4CIiKiqlL0oPMnP/kJlFLsz0lE1EsJzSz1Eojyp6J6eOYRkHQ7qCWigmPYSUREVD2KHnSeeeaZ+PnPf4633noL11xzDUyTv/ASEfUmJretUyVTKm0Pz0w4+ISozChA6lm0tCAiIqKKUPRhREuWLMGkSZNwwgknYOHChXjppZfwne98BwcffDAGDhyY8f6FGmLU3NyMVatWYdWqVfj444/x8ccfo63NnvJ7+eWXY/HixRnPsXjxYsydOzerx3vssccwZ86ctMeEQiH88Y9/xAsvvIAtW7ZA13VMmDAB5557Ln7yk59g3333zeqxiIjKlRXS2Q+NKppSqlvDspTFik6icmKFDFZ0EhERVZGiB51z5syBx+Nxv25sbMSDDz6Y1X09Hk/Bgs699tqrIOcplM2bN2P69OnYtGlTzPVffvklvvzySzzyyCN46qmnMGPGjBKtkIio+wxfqNRLIOo25fTYzCMbkQYrx4jKCT98IyIiqi5FDzqB8uuDs88+++Dggw/GG2+8kfc5Xn/9dYwbNy7l7ePHj095m9/vx7nnnuuGnFdddRUuueQSDBgwAG+99Rb++7//G52dnbj44ouxYsUKfOMb38h7nUREpWT6wqVeAlH3xFR05v7vGcGgk6j8lNnvJkRERJS/oged27ZtK/ZDJnXLLbdg8uTJmDx5Mvbaay/U19dj//33z/t8EydOxH777ZfXfe+99153Cv0999yD+fPnu7dNmTIF06ZNw9SpUxEKhfDTn/4Ub7/9dt7rJCIqJaOTFZ1U2ZRSbkVnPtmIFWCPWiIiIqJK8fbbb+PUU09NefugQYMwbtw4fPOb38TcuXNx2mmnJT0un8zpggsuwN/+9reY62699Vb85je/STi2rq4Ow4YNw7Bhw3DQQQfh2GOPxRlnnIFTTjkl4+OkWpvH48HQoUMxbNgwjB07FscccwyOP/54zJw5E4MHD87puRRT0YPOcukzmeyFUQqmaeKBBx4AAEyaNAk33HBDwjEnnHACrrjiCvzlL3/BO++8g48//hiTJ08u9lKJiLqNFZ1U8VT01vXck85wk7ew6yEiIiJKw/PYz0q9hB6j5v621EtAMBjEpk2bsGnTJjz55JOYPXs2Fi1ahNra2qKuwzAMtLS0oKWlBZs3b8arr76K22+/HZMmTcJvfvMbXHTRRTmfUykFn88Hn8+H7du346OPPsJDDz2EIUOG4Morr8Ttt9+OQYMG9cCz6Z6SbF2nLm+99RZ8Ph8AewhSTU1N0uPmzJmDv/zlLwCAv/71rww6iagiGb5gqZdA1C3SFF0BZx4VneEmX2EXRERERERFcc011+CHP/yh+7VSCu3t7Vi5ciXuu+8+NDc3Y8mSJZgwYQLuuOOOlOe54IIL0t7uGDp0aNrbFy1a5GZDTijZ0tKC1atXY/ny5fj888+xfv16zJo1C1dccQUWLlyYMnNKtbZQKASv14t169bhnXfewfLly+H3+3Hffffh5ZdfxvLly3HQQQdlfC7FxKCzxN5//3338tSpU1Med+yxx2LgwIEIhUJYsWJFMZZGRFRwWqu/1Esg6hat1e/2Gs+157jZGYYV0ntiWURERETUw0aPHo3DDjss4fqpU6fi/PPPxzHHHANN0/DAAw/glltuQV1dXdLzDB8+POl5crX//vsnPc/MmTNx55134qWXXsL3v/99tLa24tFHH8XIkSNxzz33pD1nqrWdddZZ+OlPf4rt27fjyiuvxD/+8Q9s3LgRM2bMwIcffogRI0Z0+/kUSvoot4cJIbBs2TJcc801OPnkk3HooYfi0EMPxcknn4xrrrkGy5YtgxCVMQlx7ty5GDduHOrq6jBq1Cgcf/zx+OUvf4mGhoa091u3bp17+eCDD055XJ8+fXDggQcCANavX1+YRRMRFZGSCnoHKzqpsumtfiDPqevh3d6Cr4eIiIiISu+QQw7BueeeC8AeOL1hw4YSrwg477zz8MEHH2DIkCEA7Pkw//rXv7p1zn322Qevvvqq+1w3btyIW2+9tbtLLaiSBZ2vvfYa9t9/f8yaNQsLFy7EBx98gPXr12P9+vX44IMPsHDhQsyaNQsHHHAAXn/99VItM2tvv/02GhsbYZom2tra8NFHH+HOO+/EgQce6G45T2bnzp0A7Aa2w4cPT/sYEyZMAAC0tLRA13OrCNm5c2faP42NjTmdj4goV9K0oMzK+PCKKBXDF4qq5Mwt6dRaA4VfEBERERGVheiBPrlmNj3loIMOwt133+1+HX05X7W1tVi8eDEGDhwIAHj44YfR2tra7fMWSkm2rj/xxBOYO3euPbk08svCfvvthzFjxgAAmpqa8NVXX0EphR07duDcc8/F448/jksvvbQUy03rgAMOwIUXXogpU6a4QeTWrVuxbNkyLF26FJqm4eqrr4bH48G8efMS7u/329s4s5lYFd3kNRAIoF+/flmv01kbEVGpSFPkvNWXqNyY/jAghwPIfRaR3sGgk6gs8X9NRERUAF999ZV7eZ999inhSmLNmTMHN998M7xeL15++WWYpom+fft265yjRo3Cf/7nf2LhwoUIh8N444038L3vfa9AK+6eold0fvXVV5g3bx6klBg4cCDuuOMONDU1YevWrfjggw/wwQcfYOvWrWhqasKdd96JwYMHQ0qJq666Ctu3by/2ctOaOXMmNm/ejHvvvRcXXnghJk+ejMmTJ+Piiy/G888/j7///e/ui+f6669HU1NTwjk0TQOAlL0bokUHm+EwJxcTUeUQuglpWF1bfokqlBnQoLVFAssck06jnUEnERERUTXasGEDli9fDgA4/vjjsddee5V4RV0GDhyIE044AYA9XKi729cdZ5xxhnv5vffeK8g5C6HoFZ1/+MMfoOs6Bg8ejHfffRff+MY3kh6355574qabbsL06dNx8sknIxgM4g9/+AN+97vfFXfBaQwbNizt7TNmzMAtt9yCX/3qVwiFQnj00Udx8803xxzTv39/AIBhGBkfL7r0ecCAATmtdceOHWlvb2xsxHHHHZfTOYmIsmWFDFZ0UlUwvCGE6zryuq/OoJOIiIioYjU3N2Pt2rXu10opeL1ed+p6OBzGsGHDcN9996U9j9frjTlPKvvvv3/Mzt7uOProo/HKK68AsPtqfvOb3yzIOR0bN27s9vkKpehB5xtvvAGPx4P58+enDDmjHXnkkfjZz36GW2+9Fa+//npZBZ3ZmDdvHm655RYopfDOO+8kBJ1OU9hAIPMvP8Fg1xCPbLa6Rxs/fnxOxxMRFZII6Xa7ElZ0UoUzfSH0GRDZhZFDcG8FdYR3d/bQqoioO/ghHBERZWPBggVYsGBB0ttqampw9dVX4/rrr8fEiRPTnufFF1/Eiy++mPHx3nrrLUybNi2fpSbYY4893MsdHfl9aF+McxZC0beuO9vPo0tcMznzzDNj7ltJRo8e7f7lJ5vA7gSQwWAQXq837bmcqsw999wzp/6cRESlZoUMSEPk3tSQqAyZnXb7mFxezsIw+fonIiIiqlJSSjz77LNYsGBB2QwiihZdLOfMiinHcxZC0YNOIeyJu7W1tVnfp08fu/BUStkja+ppHo8n5W2HHHKIe3nDhg0pj7MsC1u2bAEATJo0qXCLIyIqAiukwwrpHPhAVcEKO/94zf4FLQ3RM4shIiIioqL49a9/7Q7Vdv6EQiF8/vnnmD9/PgKBAO6//36cccYZCIVCKc9z+eWXJ5wn2Z9CVXMCsUHk0KFDy/achVD0oHPvvfcGAHzwwQdZ38c5dty4cT2ypp7U0tKC1tZWAMnXf9JJJ7mX33nnnZTnWb16tbt1/cQTTyzwKomIeo6SEkIzEd7tK/VSiApDxf03C9KwemQpRERERFQ6AwYMwOGHH4577rkHDz30EADg/fffx1133VXilcVycikAGDlyZNmesxCKHnSeeuqpUErh7rvvxq5duzIev2vXLtx9993weDw47bTTirDCwlq4cKHb92fq1KkJt0+bNs0davT444+n7BG0ePFi9/LMmTMLv1Aioh4iLQlpWtAYdFK1yWErumDQSURERFTVrrjiCjfwW7RoUYlXE2vNmjXu5a9//etle85CKHrQ+eMf/xg1NTVoaWnBN7/5TSxdutTdzh5NSomlS5diypQp2L17N2pqavCjH/2o2MtNqb6+PuYvNZnly5fjtttuA2Cn/HPnzk04pq6uDj/5yU8AAOvXr8dvf/vbhGNWrlyJRx99FIAdlk6ePLm7yyciKhplCSihoHcEMx9MVEGklX1LHVZ0EhEREVW3mpoaHHTQQQCAxsZGtLW1lXhFtlAo5O6UHjx4cFaDwbPxj3/8w70cvVu51Io+df2www7D7bffjptvvhm7du3CxRdfjOHDh+Poo4/G6NGj4fF4sHv3bvzrX/+C1+t1Kxxvv/12HHbYYQVbx/vvv4/Nmze7X0eX3G7evDmmghIA5syZE/N1fX09Tj31VEyZMgXnnXcejjzySIwePRoAsHXrVixduhRLly511//b3/7W3bYfb/78+XjuueewceNG3Hjjjdi8eTMuueQSDBgwAG+99RbuuusuWJaFAQMG4P777+/+kyciKiJpCigpYfhS96khqkTSyr7vJoNOIiIioupnWVbSy6X02GOPweezd9fNmDHDnYPTHS0tLXj66acBAIMGDcJZZ53V7XMWStGDTgC46aabMGzYMNx4440IhULo6OjAm2++GXOMExAOHDgQ9957L6655pqCruGRRx7B448/nvS2FStWYMWKFTHXxQedjpUrV2LlypUpH2fgwIG47777MG/evJTHDBkyBC+//DKmT5+OTZs2YeHChVi4cGHMMUOHDsVTTz1VsOSdiKhYTL8GaQpYQa3USyEqKGUy6CSqChyUR0REBRAKhbBu3ToA9q7eUaNGlXhFwKZNm3DTTTe5X//iF7/o9jmllJgzZ447cGnevHll1aOzJEEnAPzwhz/ErFmz8Nhjj+Gf//wn1q5di/b2dgB2E9PDDjsMZ5xxBubOnVsWL454xxxzDJ588kmsXLkSq1evRmNjI1pbW2FZFkaMGIFDDz0Up59+Oq688kq30jOdAw88EGvWrMGf/vQnvPDCC9i8eTMMw8CECRMwffp0XHfdddh3332L8MyIiArL6AjA6AjyF0mqOtLMPrxkj04iIiKi6nbrrbciHA4DAM4++2zU1taWdD3Lly/H3Llz3enoN910E4488shunXP79u248sor3W3rBx98MH796193e62FVLKgEwBGjRqF+fPnY/78+UV/7MWLFydsT8/FkCFDcOmll+LSSy8t2JoGDRqEG2+8ETfeeGPBzklEVGqGLwy9I1DqZRAVnExT0amkRGhXBwaN3yNyLINOIiIiokrW3NyMtWvXxlynaRo2bdqEJUuW4LXXXgMA9O/f353XkozX6004TzK1tbWYNGlSytu3bdvmFgYqpdDZ2YmWlhasXr0aL730Ej7//HP32Hnz5uHOO+/M+JjxawuHw/B6vfj/7N15fFvllT/+z3Pv1erdcfaFJJAACSmQAKUshZmyFFqglBnaoZSllNJ2vp3CTJfh1w6kdBm6AQOdZtpSWiBtoawpaSn7koQkJCFkIZsdx/siL9qluz+/P64tWbYkS7ZW+7xfr7wiS/c+97FsS7rnnuecAwcO4K233sILL7wQW5J/4oknYuPGjbEG26WiqIFOQgghU58WkqEMUiMiMvWkC3QGjvRAj6qxQCfPonERIaTQaMkBIYSQ8a1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NDXw+X8rHv/CFL4w7xooVK/D9738fn/70p8fdNtO5VVdX49Zbb8U999wDt9ud0biFRIFOQggheaWHZOghqs9Jpp50WZr+w11wzY5f3aYanYQQQgghU4/dbkd9fT1WrlyJyy+/HDfffDPq6uoKPg+bzYbq6mrU1NTgxBNPxBlnnIFLLrlkUt3QGWOoqqpCdXU15s+fj9WrV+Occ87B1VdfjYqKihzOPrco0EkIISSvNApykikqXUanHlZidTlNzaAanYQQQggpCn7zz4o9hbJ24YUXxpplT8bixYtzMs7atWuxdu3aSY8zUq7mViryFuhcunQpACsCfPTo0TH3T8TosQghhJQ+LRgt9hQIyQsjqqV8TI+qMBTrcUPRaOk6ISXM1FNftCCEEEJIeclboLOlpQWAFZxMdv9EjB6LEEJIaeMmh9wfLPY0CMmLSLc35WN6VIWpWsETU9EokEJICYv2+OGoqyz2NAghhBCSA3kLdN54441Z3U8IIWTqUX1h8DTLewkpZ5HOQQBWNpggiQmPGREFpjqU0SlrUH2Rgs+PEJKZaLcXtSfPL/Y0CCGEEJIDeQt0/u53v8vqfkIIIVMPNWAhU5nqi0ALyejb1oh5FyV21hzO6OScI9oXQLitv0izJISMRwspxZ4CIYQQQnKEmhERQgghhExQ+192QQsnBkm4YcJUdBiqDm6YiPb4ijM5QkhG6KIcIYQQMnUIhT5gW1sb2traYBiZL2U0DCO2HyGEEEJIqfDubwcfVX9Tj1iBTzMW6PQXY2qEkAwZiga5L1DsaRBCCCEkBwoe6Fy8eDGWLl2Kw4cPZ7xPS0tLbD9CCCGEkFJiGokd1YeXwcYCnb0U6CSklGmBKMIdA8WeBiGEEEJyoOCBTgDgnBd0P0IIIcWhR9ViT4GQvBvdcMu731qBYqg6tKAMzU+NiAgpZVFPAHqE3q8IIYSQqaAogc5sDQc4BaEspksIIWRItNtX7CkQknfmqKXr4XYrM8xUdcoSI6QMcN2AIWvFngYhhBBCcqAsIofd3d0AgKqqqiLPhBBCSCZMzWrsQDXPyHTAh5auc5NDjyiIdAwCsAKd1IiIkNLHDROGTBmdhBBCyFRQtEAnY2zcbTRNw6FDh/DDH/4QAHDiiSfme1qEEEImiZs8VpPQoE62ZBowNQOcc5iqhpZn3o1lhhmqDn1UR3ZCSGkyopTRSQghhEwFUr4PIIrimPs45zjllFOyGocxhn/6p3/K1bQIIYTkGDc5mMCgBSLQAlEAVgCIkKmOGya4bqJvRzP8Bzvj92sGBToJKRO0dJ0QQgiZGvIe6EzVQCjbxkLXXnstbr/99hzMiBBCSD7oIRm2aheCzR5wc2gpLwU6yTRg6ga4YSDa5R3zmOqjRkSElIPRtXYJIYQQUp7yHui8++67E77+3ve+B8YYvvzlL2PWrFkp92OMwel0Yu7cuTjnnHNw/PHH53uqhBBCJkH1R2CrdsF/pBvuuXUA4rU6CZnSTA5DTd7MRPWFizAhQki2hmvtEkIIIaS8FSXQCQD/+q//ihUrVuT78IQQQgpE9UXgnl+PQFMP7DVuAJQhQ6YPPaxAT9LMhMo3EFIeKNBJCCGETA15D3SO9rvf/Q4AsGDBgkIfmhBCSB6p/jDCHQMwImqsLiEFech0oYdlamZCSBmjC3OEEELI1FDwQOeNN95Y6EMSQggpANUXgSF3AwD0iALOOdUnJNOG6o/AUMZmdBJCygNldBJCCCFTQ8EDnQDQ1tYGAJg9ezYcDkfabWVZhsfjAQAsWrQo73MjhBAyMaovAjVgBTb1iIJojw9GlAI/ZHqQ+4KU0UlIGaNAJyGEEDI1CIU+4Msvv4wlS5Zg1apViETGz/SJRCJYuXIlli5dijfffDP/EySEEDIhaiCCSKfVdVqPqAi3DxR5RoQUjtwXgKlS8y1CyhXXKdBJCCGETAUFD3Q+9dRT4JzjU5/6FOrq6sbdvr6+Htdccw1M08STTz5ZgBkSQgiZCEPWAM6t24oG1Uvdpsn0ofQHiz0FQsgkmJTRSQghhEwJBQ90bt26FYwxXHLJJRnvc+mll8b2JYQQUpr4iEYOpqxRfU4yrSiDoWJPgRAyCbR0nRBCSDJvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/61Jhx1q5dm3Rbh8OBWbNmYdmyZbj88stx11134e233077vWU7n2T/WlpaJvkM517Ba3QOPwnLly/PeJ8TTjgBAHDs2LF8TIkQQkgOcJPHbpuaQYEfMq1QkISQ8kZ/w4SQqcrf+bFiTyFvaua/VuwpIBwOo7GxEY2NjVi/fj1uuOEGPPLIIxBFsaDzUFUVfX196OvrQ1NTE1588UV8//vfx8knn4zvfe97+Od//ueCzqeYCh7o1HWrflU2P/ThbWVZzsucCCGE5F7U4y/2FAghhJCMjFyVQAghhCTzla98BV/96ldjX3POMTg4iK1bt+L++++Hx+PBY489hoULF+IHP/hBynGuuuqqtI8Pq66uTvv4I488gjPPPDM2F7/fj76+PuzcuRMbN27E3r17cfDgQVx77bW45ZZb8Otf/xqCEF/YvW/fvpRjX3rppejq6sK8efPw0ksvpdxu/vz5434fhVbwQGdDQwO6u7vR3NyM1atXZ7RPc3MzAKteJyGEkPJgKtSYhRBCSHngnI+/ESGEkGlt1qxZOOWUU8bcf8EFF+DKK6/EmjVrIMsyHnzwQdx1112w2+1Jx6mtrU06TraWLFmSdJyrr74aP/zhD/HCCy/gC1/4Avr7+/Hb3/4W9fX1+MlPfhLbLt0cbDZb7P9czLWQCl6j87TTTgOArBoLPfHEEwDS/xAIIYQQQgghZCJGll8hhBBCsrVixQp84hOfAAAEg0EcOnSoyDMCrrjiCrzzzjuoqqoCAPz0pz/Fe++9V+RZ5V/BA51XXXUVOOd49tln8dRTT427/Z///Gc8++yzKQuxEkIIKT6ZOk4TQggpZ5TRSQghZJKWLFkSu60oShFnErds2TLce++9sa9H3p6qCh7ovPHGG7F48WJwznHdddfhG9/4Btrb28ds197ejn//93/H5z73OTDGsHDhQnzxi18s9HQJIYSMg5smAk09xZ4GIYQQMnEU5ySEEDJJra2tsduLFi0q4kwS3XTTTaitrQUA/PWvf4WmacWdUJ4VPNBpt9vx7LPPorKyEoZh4P7778fixYuxZMkSnHPOOTjnnHOwZMkSLF68GP/zP/8DwzBQUVGB5557Dg6Ho9DTJYQQMg7VG4YeomZxhBBCyhs3qfM6IYSQiTl06BA2btwIADj77LMxe/bsIs8ozu1245xzzgEARCKRKb98veDNiACrTuf27dtx/fXXY/fu3QCsyHdbWxuAxGLga9asweOPP46TTjqpGFMlhBAyDm5ymBp1qyWEEFLeuMnBCp4GQgghpFx4PB7s378/9jXnHD6fL9Z1PRqNoqamBvfff3/acXw+X8I4qSxZsgQVFRWTnjcArF69Gn/7298AAEeOHMGHP/zhnIxbiooS6ASAk08+Gbt27cIrr7yCjRs3Yvfu3ejv7wdgdWZfvXo1rrjiCnzsYx8r1hQJIYRkgJscpm5QIwdCCCHljd7GCCGEpLFu3TqsW7cu6WOCIODLX/4y7rjjDixfvjztOBs2bMCGDRvGPd4bb7yBCy+8cCJTHWPGjBmx216vNydjlqqiBTqHXXzxxbj44ouLPQ1CCCETxTkMWYMepuXrhBBCyhenhkSEEEImyDRNPPHEE3A6nbj33ntLrvRiZWVl7HYwOLUbydLiDEIIIZPCOYfSH6RMGEIIIeWNViYQQghJ4+677wbnPOFfJBLB3r178c1vfhOhUAgPPPAALrroIkQikZTj3HjjjWPGSfYvV9mcQGJws7q6OmfjlqKSCHSapon+/n60tbXBMKjOGyGElBWTQw1Eiz0LQgghZFIoo5MQQki2XC4XVq1ahZ/85Cf45S9/CQDYvHkzfvSjHxV5ZomGS0UCQH19fRFnkn9FC3QahoHf/va3OP/88+F2uzF79mwsXboUhw8fTthu48aN+Na3voUf/vCHRZopIYSQdDgH9LBS7GkQQgghk0OBTkIIIZNwyy23xIKIjzzySJFnk2i4ETgAnHjiiUWcSf4VpUanx+PBpz71KWzfvn3cK6eLFy/GlVdeCcYYPvGJT+C0004rzCQJIYSMSxkIApyD65SNTwghpLxpQRmSu7RqqhFCCCkfgiBg2bJl2L59O7q7uzEwMJDQBKhYIpEI3nnnHQBWrc6pHlcreEanYRi44oorsG3bNjDGcO211+IXv/hFyu1POeWUWNv75557rlDTJIQQkoFQW//4GxFCCCFlQO6f2s0ZCCGE5J+u60lvF9Pvfvc7+P1+AMAnP/lJSFLR+5LnVcEDnY8++ih27NgBm82Gv/71r3jiiSfw1a9+Ne0+V155JTjn2Lx5c4FmSQghJBVTN6D6reLaelhFpNtb5BkRQgghk6cOhmK3uWFS4JMQQkhWIpEIDhw4AMCq3dnQ0FDkGQGNjY248847Y1//53/+ZxFnUxgFD3T+6U9/AmMMt912Gy699NKM9jn99NMBYEz9TkIIIYXnO9AJI6oOfcXh+6CjqPMhhBBCckENxDvkBhp7EO31F3E2hBBCys3atWsRjVpNWi+99FKIoljU+WzcuBHnnHNOrOP6nXfeiVNPPbWocyqEguer7t27F4CVpZmpWbNmAQAGBgbyMidCCCGZ833QAdesFTB1A5wDwWZPsadECCGETJrmj8Zu+w51wT2vtniTIYQQUnI8Hg/279+fcJ8sy2hsbMRjjz2Gv//97wAAp9OJe+65J+U4Pp9vzDjJiKKIk08+OeXjx44di2WNcs4RCATQ19eHnTt34oUXXojF3wDgS1/60rRp8l3wQKfP5wOArAqyGobV5KLY0XBCCCGAFoqCc0D1hq1GRIZZ7CkRQgghk6YG4oFOQ1ZhKqVRW40QQkhpWLduHdatW5d2m5kzZ2L9+vVYtWpVym02bNiADRs2jHu8mpqaWAwtmS984QvjjrFixQp8//vfx6c//elxt50qCh7orK+vh8fjQXt7e2xJ+ngaGxsBWL8whBBCikuPWMvW5YEguElBTkIIIVODNmLpuqkZMBStiLMhhJDcqJn/WrGnMKXZ7XbU19dj5cqVuPzyy3HzzTejrq6u4POw2Wyorq5GTU0NTjzxRJxxxhm45JJLcN555xV8LsVW8EDnypUr4fF4sGPHjoyXrz/55JNgjOHMM8/M8+wIIYSkww0TyoBV4yV4tBeqLzLOHoQQQkh50IIyOOdgjEH1R+CYUVnsKRFCCCmyCy+8EJzzSY+zePHinIyzdu1arF27dtLjjKelpSXvx8iXgjcj+tSnPgXOOX7xi1/A6x2/U+/TTz+NF154AQBwzTXX5Ht6hBBC0pD7AuC6lcXpP9SNUEtfkWdUWExkxZ4CIYSQPOGGCT2kALDKs9DSdUIIIaT8FDzQeeutt2LRokUIBAK45JJLcODAgaTbeTwefOc738F1110HxhhOOeUUXHvttQWeLSGEkJGCx6zGQ3KvD8pAEHpYKfKMCkdwSHDU2cHEgr91EkIIKRAtEIGhaDBklZauE0IIIWWo4EvXHQ4HNmzYgAsvvBC7du3CqlWrcOKJJ8Yev/766xEKhdDc3AzOOTjnmDFjBp555hkwRpk0hBBSTIEjPQCAwX3tRZ5J4UkuEaJNBxMYAAZuTH7pCSGEkNKiBqIQXXaAA6ZKGZ2EEEJIuSlKWsqpp56KHTt24CMf+Qg45zh06FDssT179qCpqQmmaYJzjrPOOgvbt2/HCSecUIypEkIIGSHS47P+7xq/9MhUI9gAQbDqkzJJhFRph+iyFXlWhBBCckn1RxBuHwAAGIqOSLevuBMihBBCSFYKntE57IQTTsCWLVuwefNm/OUvf8HOnTvh8XhgGAZmzJiB008/HVdeeSUuvvjiYk2REELIKObQMj5uTL9u64xxCFobwFZCkAQ4q1WoEQeMaLFnRgghJFc0fwT+g53W7WAUA7uPwT339CLPihBCCCGZylugc+/evQCAk046CXa7PeV255133rRsd08IIeVGj6owhhozcHP6BTpFmwyjeQNYzSlw1QYhRPbAXnEmVB+VVSGEkKlCGQwhcLTXuj0QQrhtAIaqQ7QXLT+EEEIIIVnI29L10047DatXr0ZTU1PC/ffccw/uuece9Pf35+vQhBBC8sB/qAvgVl3K6VifUoAMw98EwS5AUJtgRjsgIFDsaRFCCMmhaG8AMIfe4ziHoWiQPf7iTooQQgghGcvrpUnOx54Ir127Fowx/NM//RMaGhryeXhCCCE5FDjSHf9iGmZ0AhxcD0O0MRiet8CkCjAzBPecGZAHOEzNKPYECSGETJIyEBzz9fBqBkIIIYSUvrxldNpsVoOGaJSKlxFCyFSgheXYbW5Ov4xOQAfjHILNhNG1CWa4A1D7IJkfQHTRkkZCCJkKRteg5roZW81ACCGEkNKXt0Dn7NmzAQC7du3K1yEIIYQUkKnGMxanY41OcKsRkyAqAADTfxRc7gTjBgRqvk4IIYQQQgghRZe3FJSPfvSj+OMf/4hvf/vbOHr0KJYvXx7L8gSADRs2YOfOnVmPe8MNN+RymoQQQjJkaiOW7k3H5JbhQCf8MABAj8IMHoPoWgiH0wvNVkXL1wkhZCqaju95hBBCSJnKW6DzzjvvxHPPPQe/34+f/exnCY9xzvHd73436zEZYxToJISQIhmZ0TkdMa5aN5SO2H2m9zDEmeeCD/wdgv2zFOgkhBBCCCGEkCLK29L1lStX4u2338ZFF10Em80GznlCc6Lhr7P9RwghpDi4Mc2DeLIV4OShxthdXO4HNyLQjz6FCvfuYs2MEEJIXtE5CCGEEFIu8to9Yc2aNXj55Zeh6zr6+/shyzKWLl0KxhheeuklLFu2LJ+HJ4QQkkPT/VoTN62l6+bgnsQHNP/Q40qhp0QIIaQApvv7HyGEEFJOCtImVpIkzJkzJ+G+efPm4bjjjivE4QkhhOTE9D3TE102QPUCAEzvkYTHuNxn3dBDkzqGvcYBQzVhRLVJjUMIIUkxRhE7MiWZqg7Bbp3WmroBQRKLPCNCCCHFVJBA50h33303AGDWrFmFPjQhhJDJmMbnx85aE+axQ0kfMwNHrRvRrkkdw+XYC6PyRIQ6JzUMIYQkxSQBnOoITwwFiEua4g3DNbsGAKAFo3DUVRZ5RoQQQoqpaIFOQggh5WXa1UlmiAV3RdYL1XcILMlmhr8ZDIAZagfsEzuUvcYBdf/PYF/5dUBYBZjT7LkmhOQdk8RpE+hkogBumMWeBikAUzOgDgU6uWlC6Q9SoJMQQqa5vDUjIoQQMsVMs9ibYItfC2RcBjPUpNsxbgUOeNQz4WNJLgPQQjC970Ny2yY8DiGEpDSNlvPy2oocD5jb4UhumJqOaI8PUY9VK7t/RzMUb7jIsyKEEFJsBc/oHGlgYABbt25Fc3MzgsEgjAw6+t51110FmBkhhJDRuDnFsmMEljZz0lErINrH4Kizg4ebxh3OiPYDNRObiiT2QQOgd2+BeOIt0Cc2DCGEpMRtQ4HOaVCr01/hRM1AsNjTKAvcMK0MWJODCcnWLZQuQ9YQ6fEh2uODoeroenUf5l28qtjTIoQQUmRFCXR6PB7ccccdePrpp6Hr2Z3OUaCTEEIKTwtGYUSSZzSWK1eDHVFP6k7pdnYARs1KOLS/Qjv023HHY4Zs1cDTsw8IG4d+Yt1QfRDEqR2AIIQUR1+lG7PCMswqF9BvBQEFhw2mMvUaoLUzETXjXMzKBs9RSqep6QmrBUqBHlYQ6faiYuEMSG5HsaeTlUBjD5SBIAJHe+E/2Ak9rFDJAkIIIYVfuu71enHeeefhiSeegKZp4Jxn9Y8QQkjhhdoGij2F3BIYbLY+MCnJ2yAbymjRQ7BXyNA7Xsx4WMmV/QksExmMUEd8ahKdpBFCcowBb2oMcNjQU+GO3++cmqUyjmhWnc6cydEpiKGUXr4+5xxdr+2HIZdfwNu7vx2+A53QgzIG97YBwIQuNhJCSDpvvvkmGGMp/1VWVmL58uX4/Oc/j9dffz3lOC0tLWnHSfbvU5/6VMrxOjo6sHbtWpx//vmYOXMmbDYbXC4XFixYgI9+9KP4+te/jqeffhp+vz/p/osXL075/cyfPx+nnnoqbrjhBjz00EPo7CyvbqkFv6R47733oqnJWgJ4ySWX4N///d+xZs0a1NfXg7HyWi5BCCHTRbitv9hTyCnRLoLpfRDtM6CPOilyz5aghRmMvi0QZwJGKPNu6s7qALSgM6u5uGaK4G3xk1/GVDBRBDfo4h4hJEcYwzsBDde4bfBwhjkABKcNkUoXnP6ItckEM9JzTXDaYE4y6PZ+SMc/Fan5kqkbEFLUQ9UjCmyV2b1H5JseVhDpGIQeVuCoz20TH/+RbtQsn5vTMUeS+4JQhkoUyJ4AAMDMoBQaIdMN+48Xij2FvOE/v6LYU0A4HEZjYyMaGxuxfv163HDDDXjkkUcgivmrjf2b3/wGt99+OyKRSML9uq6js7MTnZ2d2LRpEx588EF85jOfwRNPPJHx2OFwGOFwGF1dXdi7dy8ef/xx3HHHHbjyyitx3333YfHixTn+bnKv4IHODRs2gDGGT3ziE/jLX/5S6MMTQgiZgKkW6BTsIqANQrCNzfiRhB6wytmAV4XR+0ZW47IJVNe0yW9hZFEAxqIQbDUwjNLL/CGElCcmMDSFdSi1NuhDeQXeWbUQOMdw2I3ZJXC9+CVKzAonMMlA51a/AlTlMqMz8wtPppYm0BmUgVkTLOacJ8pACACg+iOoWDgjZ+MGmnoQau3La6BzZO1wzq3bpRCsJ4RMXV/5ylfw1a9+NfY15xyDg4PYunUr7r//fng8Hjz22GNYuHAhfvCDH6Qc56qrrkr7+LDq6uox9/3pT3/Cl770JQCA0+nEzTffjEsvvRQLFiywsvS7urBz505s3LgRu3fvHvcY8+bNw0svvRT7WtM0eL1etLa24p133sFTTz0Fv9+P5557Dq+99hrWr1+PK64ofoA5nYIHOtvarGUF//qv/1roQxNCCJkAQ9UR7hws9jRyRnLbINgAHumEPXI/VPFfE+u4hfZDrBJhaGGYgx9kOXriyXnNzEMwul8CX3QHwl1jT76YJEI59DBGrmcwD94DYd79oJwUQkiuMFFEV9hAWHRC49Yrzgdcwgo24oKK3QZEVQg2CaZanAstgsuO/goX6geS1xANL2hAZfdg+jqMDVXwdpqAkN8KXXpESVrT0lR1wGVPuo8WjOZ1ThMR7fUBALSgnNNxA009MNX8vJOZmoEDD/4dqj+eyTQc4DQp0EkIyaNZs2bhlFNOGXP/BRdcgCuvvBJr1qyBLMt48MEHcdddd8FuT/5+UFtbm3Sc8RiGgX//938HAFRVVWHz5s340Ic+NGa7K6+8Evfccw8OHjyIffv2pR3TZrOlnMvNN9+M+++/H3fffTfuu+8+BAIBfOYzn8Hbb7+NM844I+v5F0rBa3RWVlpLImbPnl3oQxNCCJmAwJHuKZUh4agxIUochvcDGF2b4JyR+AGEBxsB3zvgkZ6sx2ZmOHEs//swerdBYJGk2zvrRTAj8eTSDLaBSVTKhRCSQ3YrwzDEGPShgpNek8MccZnFsEsQKpyAvXjNco7NqkPbiNMTvdad8HiLKIGNM7/migoAABdz9zqaLKEz0uVNum26ILEWym0wMRcCR3sBAHo4x3PjgCHnJ0PY1A1ryfqIi5TDNUY5LV0nhBTJihUr8IlPfAIAEAwGcejQoZwfY/v27ejpsc5RbrvttqRBzpFOPvlkXHvttZM6ZmVlJX7+85/j3nvvBQBEo1F88YtfnNSY+VbwQOeqVasAAK2trYU+NCGEkAkIDp0ETRWCEIQU+DOMwYMAALs9sdGS6W+EduxZcHkCDZj0YOwmkwSYipUJm2pJu83WnXyO+SvpQwiZZphdAh/q9N3HGfSh2JDX4NBG1MeP2iXoFQ68U19bhFkCYAzf6VIQHBFUHHQkZkzuUzngsCGyoAGCyw4IzPofVvMhJgl4R7EG4LlsRoTEZdIAoAWiUH3hMduZaeqCaoHSyug0VB2RDut9Sg8rabflnMPUMw8ictOEEbWCj5nsZ2SRRZwso9fUrP25biaMNRxc5ibVvSaE5N+SJUtitxUl/evqRAyvkAaAE044Iefjp/Otb30LH/7whwEAe/bswd/+9reCHj8bBQ903nbbbeCc4/HHHy/0oQkhhEyAkuRErpwJRh+0pifBuHXixfS+EQ8yGKF2QJvY98z1eFdDJgoww8MdClOcYAX3J72biXRCRgjJDW1GFfShLMgtYRPa0MuLXzcRHsroFCqd6BMlmIKAB7uKE4wzZ1bjUEiDfzgmxoBWxK/6MJuIR7sj0B02rIswHJpVDyYwNM+qBwDw+kowtxPyUEBLl3KYmcr5mK7k3DTh/aBj7PeRJqineEvr/TTc1h8LGmrjBDpVbzirzux6RIUetTI6lf7gOFtnVws8aemCod9rUzdiY5mqjsHdLUO3y6+rPCGk/IxM6Fu0aFHOxx+5FP7gwYM5Hz8dxhi+/vWvx75+/vnnC3r8bBQ80Hnttdfic5/7HJ577rlY6ishhJDSleu6XcXG5c7Er5V4VqXokMCyaDoxhuoFk6y3VkESYAbjV12H7x/J7H836TBMmDqlAgghxfW+zYHA0InRxv6oFehsqML+sA7vUL3OQF0VFDCYjKFNLk59ziaXC4C1pJ5JAgSXA206B7NZwc7IrFr0KSa2Opw4ENZwV2cUwbkzcGBougMuJ3SnDf6hlNWILbdL8Ee/F3KDw7u3bej2UCMck6ft9K76IzAUbUx2aKGMzmoMNntit8dbui73BdLXRh3FiKixpeuKN5w2Y1QZDEHuC2Q8Nk8TTJY9AfgPdQEABve1QQ1EYeoGDIUa/BFC8uvQoUPYuHEjAODss8/OS7nG008/PXb7V7/6FV5//fWcHyOdiy66KHZ706ZNBT12NgpehOftt9/GLbfcgmPHjuE73/kOnn32WVx33XU46aST4Ha7x93/ox/9aAFmSQghZFixmlLkjTnqZGvkcnNhcjXduNyPyjkygp12CDYGZsafu8rZUQQ748swmSRC79qDZEdkjAKdhJDceNij4N9mW689XtWEzIEPKiqwozOIf6ixYw2Ag0xEJQCDMcgGILgL35CoZ+hlTzU5Buc1IMgEtIQM9M+dgZkeLwaGMjQPyCaORXQEdI5nVAcczArehZkAl92GYyErCPZnheFLLjvM6OTrROphBd7edrhmxzumc9NEuH0A/iPdkFx2VCycAdnjh5kiGMgNE9EePwbfb0XFoga459ZOel7Z0oJR2Gus8y1ucgy+3xJ7bLyl66ZmZBXo1CMKjKHnXu4LwF7tglQxtnkTN0wce2obKhc1ZD52NHV2Zrh9AMJQcDzU0gfZE4DvQCcqF+WuozwhZPryeDzYvz++IotzDp/PF+u6Ho1GUVNTg/vvvz/tOD6fL2GcVJYsWYKKodrTw19/8pOfxMaNGyHLMj72sY/hzDPPxGWXXYazzz4bZ555JhoaMn89zdbMmTOxYMECdHR0oKmpKW/HmayCBzovvPBCsBH1gHbt2oVdu3ZltC9jDLo+xU64CSGkxGVzYlNsUoUdekRL3jlimDYqa0RP3ihoIkzfQQjC0wCug2iL38+0TiDcAuDjsfscdRJYa/KsFAp0EkJy5UhYQ5MeDzBFTY7AUCbnnoiOaxmwM2Li/AoB3uHl3k47UOBAZ//Qy6FX53g4BHQoKryaiRrRgS9UOqENXRbqVs1YndG/9Mm4tMEJAFAABAURgaFzhRf6ZHxyUR3mtE6+zrRn6xFUL58LwDqpZYyBG9YkOl/agxmnL0HFwhkIdwzAVp08cSPS7QPXDXi2NWKOTcx7oJObfMzFO9UXga3KBSYwBI50Q/XF3//GC3RaY6Z/bxp5TD2sQB9a6q6HZCi+CNzz68fs0/nSHoRb+2Gvco17/NhcI+PXEwWshlHRHj88Ww6jYuFHMh6fEEJSWbduHdatW5f0MUEQ8OUvfxl33HEHli9fnnacDRs2YMOGDeMe74033sCFF16YcN/vfvc7XH755dixYwcAYMeOHbHbALB8+XJccskluPnmm7F69epxj5GtGTNmoKOjA7quIxAIoLq6OufHmKyCL10HrDefif4jhBBSWOVUwL+iYj8kty3l40wUoDU9kXAf1+M109gkm/SagWMw+q2Ld6ItfiJmdLwAmIkZKHa7Bykx6hpLCMmNgM6xPxwPWkZNDt/QS0yPYsCcWYNO1UC/AVx5JAQAMBy5yYUY7pDOJCFp+Y6Rdoes18gW2cCT3RFsGVRwIKhhb1iDZrNhOC+zPapDHzonaI0aCAxFPVUAHRBwOGRt2Skb6OS5OdWRPQGYQ0ufh5v3KIPWcxXt9iHa67Me6/albEakeq3t5V4/DCX/9SL9hzqh+hMv5Kn+CDpf3gPOOfp2HE14bLyl3VogCq6nD3R697Yi1NaPUFs/lMEQuGZYHdIHw2MaN2khGVpQRu87R6zjJwmspyqdY4wT6AQfGj8QBThHuH0gZalsQgjJFdM08cQTT2DdunV5aUQ0rKGhAVu2bMGvf/3rpIHMI0eO4Be/+AXWrFmDz3/+8wiHc1sfurKyMnY7GBy/BnMxFDyj84033ij0IQkhhExGOV1k4ipEB4Oe4v086Ym2HhqxweSnYIa7ITSIEJgPw6e7ZrAVQs2yxA0N/5h949MwAFDrdUJIbuwKxJdvR0wO31A2YtTgaHa50OKV0V8RPy1Q7DY4c3Bc5rSBqzrYUL1MrqdeRu5RrSDa0UhiEPBIWIdaZ48FOltkYyjQab1g+4eCbzJn+LNXhcHjL+S5vGQ0vAzbu78dFQtnINrtjT2mDAwFMT0BVCTJWgQSMyYLcQFRCyto/+tuHH/dubH7lP4APO8cgeSyw3+4K2F7bqR/tqKeACqPS78c0rO9CZLbAXNEINeIapD7A7DXxZdecs6h+SMINPUCw8/FqM8anHMo3hBsVWN/E/VI+nIEnHOreRLV5SSE5Njdd9+NtWvXJtwXjUbR1NSExx9/HPfffz8eeOAB7Ny5Ey+99FLK8ow33ngjfv/73094HjabDbfeeituvfVWdHV1YdOmTdi5cye2b9+Obdu2QdOs1+H169ejq6sLL7/8MkQxN+cWI4ObpZjNCRQh0HnBBRcU+pCEEEKmONFlgxHVwE0VNqeKVNdQBWlsJJOrYYg1NitTZbIpnQAY53D2fR2s7kvxY8gD4NyErdoBLWDNjhnplszrqJpvItiZi1ADIWTaGnpJa43Gg1hPdMdfe6IGR4cJHApp6K6JZ8OHRDEngc7Guhp8UFWDK5UwBFUHUjR0Z5KA9wIKAIY+JTFr0KMYkAUB6lAA06uaGHlVaotXgVDrxF7FxGv9iRmARg7T+PShxjq+g52Yd/EqRLrigU4tJIMbJiKdg6hdMT/p/glBtwJcQDRVHb797dCCcixY6P2gA1w30fnS3rE7cMCQNYjO5KsiNH8EpmHCUDQYshar9QlYz0nNifMQbh3bOV3uD0DuD8I5sxrhjkFULKhH37ZGuGbVoG97Y/zwo56TcNsA/Ic6E2p3yv1BOBuqxu/+zjmiPb7EpkXldNGWEFJWXC4XVq1ahZ/85CdYtmwZvvSlL2Hz5s340Y9+hB/84Ad5P/68efPwmc98Bp/5zGcAAIODg/jZz36GH//4xzBNE6+//jr+9Kc/4frrr8/J8fr7rdd6SZJQVVWVkzFzrShL1wkhhJSPcigbYq8aOuk1VQhmW8rtmJgk0KmHIDoESG4pF3FOa8xwN0zP24nHNjU4q0bWB02dacKgg/nfSrsMnxBCxsOEsR/1FdP6BwAy5wgM3e4cEWD0sdycIigA2hUDA24XuJQ6k4RJIjhP/QIcYQxKireigM7xak0t9obGBr+MHL59GVEVeliB0h9E8Ghv4hJ1zhFs9sCQtZRZhOaIoFshMjpNbWip/VDmqeINI9rtS7uPFkgRiYZVn5MbJgJNvQnbhdr60f36/pQZoX3bGgGTQ/VF0P3GB/Dua0f7xt0YeL8loUYoRj0nvZsOonfLESje+KqL4S73hpo+0GkoOkLtA4nzT7sHIYTkxi233IL6eiuz/5FHHinKHOrr6/GjH/0I3/rWt2L3PfXUUzkZ2+PxoKvLWhFw4okn5mTMfKBAJyGEkPTK4OxAtA1l8Rgy+MCmMY8Pd2AVkgU6tQBEO4fo4HDqz+ZsTlpXYqBT63gVjPtGHDj1MkGm90HveAnOOjk2d0IIyYrArH9pRA0O31CNyx3+eC78I14Ngn3yC788ptVc6BgEGJIIwWVPnOLwsuQ0QVAACCN1oBMAvnMsiHd9Y3P5gzns66ZHVYTarSwW3wcdCY9xzuE/ZJ34maPqbxpDmaCTyS7UJ9A53lSt4ykD1hLDUEvfuPuogdQrDTjn4LqBUEsftHA8c7bzpT0wNRPKYPKaMd6h5yra44P/cBeOPbUV4ByD77eOGj9+O3C0F76DXeC6gfYX3rPm5gsjeMwDPaxA9aZvIqj6ItBG1SflKWqnEkJILgmCgGXLrHJV3d3dGBgYGGeP/Ln11ltjt3PVIf2VV16J3T7vvPNyMmY+5HXp+j333JPzMe+6666cj0kIISSNMsjoZJABuK1AZ7R3zLubvUaC3G+AJXnX40oAok0Fgw7tyPrczWl0IFMLgRnxk0OeJtBpDmwHD3dDjL4He815kPvpBI0Qkp1MApVRw0SvZkUD/Vr8tf7lPhnfOb4WFR1jlyJnI2AAA5qJTh04VRQRmFmD2jYr4Ca47DBcDrCgDIjpcy9C3Mo+TUVLEdDcEzFw2YRnn8iIarGMwvCIZesAAA4EmnoAxAOMwyJdXrjn10OPxgOg2WR0cpMj1NKH2pOTL4lPZTij0xyqYTrucm+Mk9FpmDBkDao3BD1UE7tf9YYBxuDZcjjFRHhsfyD+vQ9/HT/AUKf0bi+Ort8c+9p/qAt97zYh2uOHqRnwHeiA/1Bn2u+D68aY4LDiDcM1pzbtfoQQkgu6rie9XWjz5s2L3WY5WLbGOceDDz4Y+/rqq6+e9Jj5ktdA59q1a3PyhI5EgU5CCCkMQ9EgOmyxk6RSJqgtqJq/DOax/TBVL1CZ+LjkiAIQINnUsc0ptBAEBAGzAF0DzSiYJKJq9iAQGEy5md71ujW1pvWQVp2Z/3kRQqYeuw3Q018kMTjDDn/ybMFNkHCZTZxUJpzGOQY0E22qCdUpoJ2JqK9xw/RHoFe7YAoCJABcEpBu+YDfBMITWO79llfGnZP8HoYZsgbfASvAJvcmNpPTQnLsGIaWeFKrR1REe3yxzE4gu0Cn3BeAHk7efTzlXBUttrSe6wa4aWbU6V1NEeg0dQNcN6HLGlR/NDYfLSRb37vJMbgvddmYjHAOQ1bR9Pu3xmTFdvx1NwS7BFPV0flyMGVn+9hQpjkmsKt6c9t1mBBCkolEIjhw4AAAq3ZnQ0P6Jm7Z4pxnHGPbuXNn7PbSpUsnfewf//jHePfddwEAq1evxqWXXjrpMfMl70vXOec5+0cIIaRw+t49Crk/OOaEoxSZ3vfBj/4MRt8ucH8zpIpRyyO5lUHEWPITHWYMAvIkT9IywI0wqmaHoL37ZfDgsdQbatY8edQDhtJ//gkhJSiDpesA0BxJnm2yI6SD1yTvFpvp8YMGR59q4EhEx4Aowm8C5tAy9acFF/ShGqLmOJ1gfQZHk5z9Rbc+xQQqXdnPPRnOYarWczU6G3FkIHV4m2F6REGky5cYeMvivMbUjKwXVvTvaB4R6DRhagYinakvrg1LldEZbuuH4g0P1SmVoYUUGKqOpsfethr5mRzmJDucc9Na/q8FxwZ1Tc2AHlZi/48/mFVTdaSRgWZCCMmXtWvXIhq1XksvvfTSnHU6H/biiy/i2muvxe7du9NuNzg4iH/7t3+LfX3VVVdN+JihUAjf+MY3cOeddwIA3G43Hn744QmPVwh5zeh844038jk8IYSQPBrY2VzsKWROD8AMd8W+dFQb0MOAs8EBeVAFQgcAzAYbm88JAOCRZvBIR9LHcjvPIMzm/7GOqXjH2XiYCoCaEhFCsmPYJIiTSBTY7FUQXOhAFSaQ7c4YmCjAZ3D0qwZUk2NHjQ0DholzBQY+uxb/1xHCZYudcAIwkjRNGumwbOD9wMQu+iguO+yZvtzmQLJApzoYTgi8ZZPRaWr6mEY94wm3DyDU4rH2NwxwkyN4zDPufqMDndwwrZ/jwU7oIRl6RLX+hWUc+9M7iHSMHzzNlGmY8B/uztl4o5eup2oSRQgh2fB4PNi/f3/CfbIso7GxEY899hj+/ve/AwCcTmfaUo4+n2/MOMmIooiTTz459rVpmnjqqafw1FNP4dRTT8UnPvEJnHnmmZg7dy7sdjs8Hg82b96MX//61/B4rNf9NWvW4MYbb0x5DE3TEuaiaRp8Ph9aWlrwzjvv4Omnn4bP5wMA1NTU4A9/+ANOP/30cedeTHkNdF5wwQX5HJ4QQkgecNOEEdUg9wUQyuDEqNiYKMAM9oLL8VpyIusF0ACx426IdXfD6N0MVnURrKDhWEbH3wFbVd7nyuU+GP17rNtKZsXJGVQAFXmcFSFkKhpwO1AjCUj1ujfu/qqJHlHCRF4Zo/PqURGMYJtfBecMfo3jv1us7tlfXChh0GFHQNfgF0RUAdDHyTx9tid17cjxBCQJuV04mN7oQKfmjyLS40vMeMwiAC33+rPuCWioWiwzkusmot1eGJHxfw9GNiNSfWF4P+iAc0YVAo29AKyGQqaqQ/VFMmpulA1umFByubx8VHBY9dHSdULI5K1btw7r1q1Lu83MmTOxfv16rFq1KuU2GzZswIYNG8Y9Xk1NTSzICAB1dXWoqKhAOBzGnj17sGfPnrT7X3zxxfjTn/4ESUod+uvq6ko7VwCQJAlXXnkl7rvvPhx33HHjzrvY8hroJIQQUn64wRHpttJfMlnqVmySS4LZPSobM7QPwD8AihdMAMB1iA4BMJOf6JnRPkDx5Xuq4Er8xNCMZniSaGZXm40QQgArlhaVJEw00AkATTqwLNudBIY/6yI+XVOJpr6x3bE5Y4gO1Rfr5QIWigL0cZoRTUY/Ewob6BxVP1LxhRHt9UMc0Rwqm4xOPapCdE48q9/UTQSPZfZ+MzKjs297E4LNHnDDhDrUwXz4s4HsCUx4PqlwwxwTJM4lua8AdbgJKVH851cUewpTmt1uR319PVauXInLL78cN998M+rq6vJyrHPPPRd9fX149dVX8eabb2LXrl1obGzEwMAADMNAdXU1Fi9ejDPPPBOf/exnceGFF2Z9DLfbjZqaGjQ0NODUU0/FWWedhWuuuSahuVGpo0AnIYSQBHpEQbTbBwBJa2WVGsHOAC2UcB8PNAH4B5haBIIkwAy2Q5wvgCkpOrXqUQATzxjKmDri5FDP7HhsKNDJJMGqhUYIIRngDOhlk6sN1qpm/5ojVDjwUFsYs5cmzwUN2W3o4lZg87bGAN6rEqDnuHnpSDsVjhVDDZAKwRgRrOOGiXD7ALhmQB8RAE3Ve0D1hWGvTczg1yMqBHt2p2wJy+QNA4EjmS0J10JyrAamZ1vTmBrd+tBnAj2SQZ3MLFkNk/L3Hqdl2dCJEEKGXXjhhTnpGbN48eKcjONyuXDFFVfgiismF8BuaWmZ9FxKVd6bERFCCCkvqj8Sy9ooB0KS83huDAcROWwVGqBHYXNHwZXiLsXnfAIncUOBTtGe22LmhJCpjYPhg0n2MhucwMUV3eUAALziS55Jup+JeC8yIutRFKAjf4HOzT4VPIOmTLkyMisxeMyTfMl4koxOLRCF6hsbjDWiSrqG9Ekpg+ERt0MId2RWKgUmR6itH12v7y94I0JujO2UntPx6UIhIYRMG5TRSQghJIHqi0Duy/2ytHyxiY1j+5LrEcDGwPUwRDYIE4Cot8JUirwUP+MGRHHcsE58RYcAvTAJSYSQMsdEATKA90KTWwocMrKLsPUtmoXHQhyAjre9MpAkgPnjtghCI7qWmxUO5LNNzK6AAlQULrdjONCp+lPXsUy2dD3S5QWTxs5Tj6hZ1fT0HeiAHopnL4Za+rMKlIbb+tG/42jmO+QIN3hel65zgwKdhBAyXVCgkxBCSALVF4YaKMAy7lxRusbcxfUIbJV2MEMFDCtoy5UemIHCn7yNZGoTiFQaVmaO6KCTNELI+JhNBBMEtJkMjZHJZchlu8LuLY3h5YHo0L7Jsyi7lMQalq0VbuQzX51zBs4KGOgcWqLu3ddmBSmTT2rMXZEeL5wzxi731yNqxksdvfvacezPW8c9Vjqhlr6iZD+amp7XYCQFOgkhZPqYtkvXPR4PNm7ciLvuuguXXXYZGhoawBgDYww33XRT1uO9+OKLuPrqq7FgwQI4HA4sWLAAV199NV588cWMx9B1Hf/3f/+H888/HzNnzoTL5cLxxx+P2267DR988EHWcyKEkGyZugEtGIUeyn39rbwxxtbd4noYNpd1csc0K4uSR9ph+BoLOrXRuB4af6PRhvYRxShYHht2EEKmBuayAwLDppCO5skGOoGMX3cEu4SDUQODo5rxjOcdBdg88X5JGTEFBiYKSTMmc34sTQfnHAO7W1LWsgx3DMDU48+TqeqI9viT1sXWI0pGwcpAYzean3xn0gG9cEdxVj7kM5sTsGqAEkIImR6mbUbn7NmzczKOaZr40pe+hN/+9rcJ93d2dqKzsxPPP/88vvjFL+JXv/oVBCH1h6v+/n5cfvnl2LFjR8L9zc3N+PWvf41HH30Uv/jFL/DFL34xJ/MmhJBkor1+mJqZfRpPMRljs0+5GoEgGOAAuNpv3Rc4CsazOwHPNWZkfzbPhxotMUQgOlzQI3SyRghJzbRL8NVW4tnGCJItHc9GUOdAtQvwhsff2C6hOaqnzORMxW9w/KUvv41iuMDA6yqt97aBPHff5oB3b5vV1C9Fk6VIpxeDe1rRsGYpACDQ3AvVF4ExZ2xg2oiOn9HJTRPtG3cnrf2Z9fSLlfmY748d3Pre6IIhIYRMffRKD2DRokW45JJLJrTvd77znViQ8/TTT8ef/vQnvPvuu/jTn/6E008/HQDw8MMP47vf/W7KMQzDwNVXXx0Lcn7605/Giy++iO3bt+PBBx/ErFmzoCgKbrvttqwyRAkhJFvRbh8wkYY5RcSjY7vJcj0ECa0AANNnZcQb/uJmc06Y6gMAMDMKwSYABWyqQQgpP5pNwp19ucmO2xdUYdoyzIsQBTSGs88gDRkcHiW/F6FMJmCr2w2eJukglzpf3gsAaetde7Ycid2OtA9C9vjBR9VE5YYJPaom3M9NDlM3EjIU+3c0l1Vt7WIxafk6IYRMC9M20HnXXXfhhRdeQE9PD1pbW/GrX/0q6zGOHDmCn/3sZwCAM844A1u2bMFnP/tZnHnmmfjsZz+LzZs344wzzgAA/PSnP0VTU1PScR599FFs3rwZAPDVr34VzzzzDD7+8Y/jrLPOwte+9jVs2bIF1dXVME0T//Zv/wZdz+/SDkLI9KUFo0mbJJQyrWvTmPuYqUPd+U0AgNEzVK9ML6O6oyPovdvARAFcPgYmAa6ZtmJPiRBSwoI2G3ak6HierYjBoUmZVdA0JRHyBOKVx6L5z7T32iX8+9Eg8p82aFGHMmB5mmX8cn88s1SPqlbH8VHvv9797YDJE7qRR3v98O5vjzU6Un1hdL60J5fTn7KMFKUECCGETC3TNtD5ve99D5/85CcntYT9gQceiAUdH3roIbhcroTH3W43HnroIQBW/c37778/6TjDwdL6+nr89Kc/HfP4CSecgDvvvBMA0NTUhOeee27CcyaEkHSMqFpWgU7BJoIlqdE5pehROOptMAd2QLLrsEmeYs+IEFLCPDluvCOLGQY6J7gk+Mgk64hm4hdeE5ppZbsKjtK4WMR1I1an01Cs52B0HUnPVivrc2Stz2iPD33bGjHwfis452h55t2EQChJTQtToJMQQqaDaRvonCzOOTZs2AAAOOmkk3D22Wcn3e7ss8/GiSeeCADYsGHDmBo7R44cwcGDBwEA1157Ldxud9JxRjZIokAnISQf9KiKSI+vrDqTiq7pUWrabu+DMXgQghAGMybQ0IgQMm0053jhT3Sc5d6C0wY+sxpBp31C43vV/L/n/K3Pyug/55iCn1bU5v14mTIVHYasQhnK7hx5oVHxhhBuGwCQGOhUBq375b4AvPvaETzaW9hJl7HQMQ/CnYMpm0QByLjDPSGEkNJFgc4JOnbsGLq6ugAAF1xwQdpthx/v7OxES0tLwmPDS9bHG2fOnDlYvnw5AGDLli0TmTIhhKTl298OU9Fz0sygUERHsWdQIINvAIoXDDKAPLcnJoSUtX05XgoeGq+hkcOGt5xuHOSZZX4W2+FI6ZSAMhQNymAYkS4vgMQgm/9QV3y7SPx1P7atYaLrlb0FmunUMLC7Bb1vH0p/Qbd8PgIRQghJYXqkwuTBgQMHYrdPOumktNuOfPzgwYNYsmTJhMc5cuQI2tvbEQ6HUVFRkfF8Ozo60j7e3T22mQchZHoJHO0FN8yyKtZvt/dgOizYU48+BQbAOPBDSCfcWOzpEEJKFKurwIt9ua1HHB6ni7ppE/HHPgUfri6NJeHjORBSgdlVYIFI2hqahWDIGnwHO+OBNyN5oFP1R2DIGiLdXqheK6s/0jlIQbksRbt9iPb4seDy09JsxRHp8sE9r65Q0yKEEJJjFOicoJGBwwULFqTdduHChbHb7e3tkx6Hc46Ojo7YkvhMjJwDIYQko/kjMA0TplY62S5pMYD3/rXYsygIxq2TcTPUAajeIs+GEFKSGMPPmBshPZLTYY1xommmIMCnmfDp5RF1kw2gp9KNuaYJDDUNKhZD1jC4pzX29XCNTkPVETwWr8esBaLwvHMYodZ+mMPB2fJ4uksP52NqoY6kh1X0vH0QSz97TgEnRQghJJdo6foEBYPxTomVlZVptx2ZeRkKJdZWy9U4hBAyWao/YmV0quUR6HTPtkFrf6nY0yg4U+kDm2DTD0LI1OVf2IA/dec2yAkA6d4RhEononYbfLqJ3cHyya/fpTNoE6wpmkvhjoFYfU4gXosz2NQDricG43reOohAYw9Uf24zdqcjPaLGGkAN46YJxRuG/0gXoj2+4kyMEEJITlBG5wTJcrzLr92e/oOSwxEvIheNJn44ydU44xmdSTpad3c3zjrrrKzGJIRMHYaiQfVH4KivLJtApygGwc3ymGtORT2w1dqg+ql7LCEkLpjjbuvD0i3u5nYJYVGAVzNglFETl21BDRdVsqKfCEU6BxO+9h/phqnpCcvWhw1ncnK9uMvtp4LBPa2oWTYX1cvmxO7zH+5G8JgHktM+JshMCCGkvBT7/b1sOZ3O2G1VTd8YQlHiJ6MulyvtOCO/zmac8Yy3LJ4QMr1wk4MJ8bprcl8A4Nb9RpkEOlna0++py4x0QZprQPUXeyaEkGIyZ9dCCkVhRhSAA+Z4TYMmyOAABGY1qmNIWDLNBYZtugDOGQK6CeRpDrm2yavArCp+N7toT+ILuanoCDT1wn+Eaufn08B7xyC57LFAJzdMDOxqRrClDw1rllLn9SLgnIOx8nj9IISUPlr7NkFVVVWx2+MtIw+H4/V/Ri9Pz9U4hBCSDdWXWJcs2mudbHGTw1TLJYBYHgHZXDNDHRDF4taVI4QU32a7E0p1BQS3FbDLVw6aDsBsqAYACPbEhkNRpx33NFtLr/k4TYtKSUjnMEsgqKKF5TH3yR4/tAAtT88nI6Ii2ByvgRrp9iLqCcCIqIj2+MBNCnQWmhFNnzhECCHZoEDnBI3MkByvo/nIZeOjmwJNZBzGGGVoEkImRe4LJH7tGfqa85Jfui7YRDBJBHj51IPLKT0KQW0u9iwIIUWmcEAXGLRKF1hdBfrzFJvRONDmcgGMAc4RgU4G9Inl0Wk9GaMEAp2mMvb9NtLtK/xEpqFI5yD0qArFG4LvYGcsuBzuGAQoo7Pg9BCV4yGE5A4FOidoxYoVsduHDh1Ku+3Ix08++eRJj7Nw4cKExkSEEJIteVTzg/5dVuCMG2a8o2uJcs804ZohgEWPFnsqRaO3PgmpsviNNAghxdOrc2iCgG6nA2t6gC83BsffaQI0DhwxgPZFs2DY41WvIvMb0FLGpQxLIdDJjbFP4MjmRCR/DFlDuK0fh375CnreOBC7yGtEVcroLDAtGEXwmGf8DQkhJEMU6JygJUuWYN68eQCAt956K+22b7/9NgBg/vz5WLx4ccJj5513Xux2unF6enpw5MgRAMC55547kSkTQkiM3Bc/ker8+x4YEWvJkKHoJZ/JwJgCJnDoXdOv4/oww3cEjqoyjjAQQiatTzOhMYZ8v2KrHGhWTDziM/CW023dObMaO5iEA3L5vg6V6iU9xUulSQrFs7URejhJJiEFOgsq1NqPYHNvsadBCJlCKNA5QYwxXHXVVQCsTMtt27Yl3W7btm2xTMyrrrpqTJHl5cuXx7I8//znPyMSiSQd5/e//33s9tVXXz3Z6RNCprnhGp1aSEb/rmOx+8uhmytDBIIQhTl4sNhTKRrGOUTWU+xpEEKKqFc14WMCXozmNyijco4dARUb+yJY22LVkz/qdqNb52iRS/89I5W2PHWpnyyqVVg4gRRNnwxFo4ZEBRRuH4g15jLkaVqWiBCSU6X5Dl8mbr/9doiiCAD42te+hmg0sXB4NBrF1772NQCAJEm4/fbbk47zjW98AwAwODiIb33rW2MeP3r0KP77v/8bAHDCCSdQoJMQMmnDGQz+w10ln8E5hhEAM2mJE1O7ij0FQkgRdSsGNoZM+PT8voYrHAgbHJwzhHQOJgnoMIF22UTEKLP3jxH+r1cplybxpMC4YVLNyAKKdA5Cl60AvzKYvjkvIcXw5ptvgjGW8l9lZSWWL1+Oz3/+83j99dfH7J9u30z/tbS0pJ2LJEmor6/HkiVL8NGPfhR33HEHnnnmGahqZhfPFi9enPJ7mz9/Pk499VTccMMNeOihh9DZ2ZnLpzcvpPE3mZo2b96Mpqam2Nf9/f2x201NTQkZlABw0003jRlj+fLl+OY3v4l7770XO3fuxLnnnotvf/vbOP7443H06FH8+Mc/xu7duwEA3/zmN7Fs2bKkc7nxxhvxyCOPYMuWLfjf//1f9PT04NZbb0VdXR3effddfP/730cgEIAgCHjwwQchSdP2x0YIyQE9osAcytwMtfQVeTbZY0YQ0OmDMI+2A/hQ1vs5GxyQ+xUwSSyLDF5CSJw5uwZPMCc+AwXtnTqOhDV8cqYrr8fc2C+jQ443zWE2CW2alc2plduFshHe86vAgmpgVHM+QgAg1NaPupXjN3/lpgk9rEByO8BEyiHKluoLI9w+EMugjXR74Z5XV+RZTT0Hbpy6V3VWPFr896FwOIzGxkY0NjZi/fr1uOGGG/DII4/EkuIKwTAMeL1eeL1etLS0YNOmTXjggQcwc+ZM/Nu//Rv+8z//c0JxpHA4jHA4jK6uLuzduxePP/447rjjDlx55ZW47777xpRmLBXTNmL28MMP49FHH0362JYtW7Bly5aE+5IFOgHghz/8ITweDx555BHs3r0bn/3sZ8dsc8stt+AHP/hByrmIoojnn38el19+OXbs2IFnnnkGzzzzTMI2DocDv/jFL3DZZZeN850RQkh6I+tz6pHyWyLHTQU80lHsaRQdV/wT2s8eeAxs5g0wNED1UaCTkHIy6HDgvsYQPrS8CgHdei3X8nyO1xQe1RmcAX7dxJGIhrmOwp3E5cMxtwtLQIFOMlbnS3tQe9K8cYOXhqyhf9cxNKxeAlt1fi86TEV6WIk1wTQ1Hf5DXWhYs7TIsyIkta985Sv46le/Gvuac47BwUFs3boV999/PzweDx577DEsXLgwFgPat29fyvEuvfRSdHV1Yd68eXjppdT9B+bPnz/uXEKhELxeL/bu3YvXXnsNr776Kvr6+vBf//VfeOGFF7Bx40bMnDkz7fc3eh6apsHr9aK1tRXvvPMOnnrqKfj9fjz33HN47bXXsH79elxxxRVpxyyGaRvozBVBEPDb3/4W11xzDX79619jx44d6O/vR0NDA84880zcdtttGQUnGxoa8M477+A3v/kN/vjHP+LgwYMIh8OYN28ePvaxj+HrX/86Vq5cWYDviBAy1SmDwVih/bKsBWYoMPt3FXsWxaf5M1526Z5jgxZm0CM6tPaXIKkBsNlfRRn+9AmZ1oJDdSUfHYjXsZML3ThFFOFRObyqCaPMm7a8FuX4YrEnQUqS0h9E/85mzPzwCWMeM1Qdot06jdZCMgbfb0HN8rkU6JwAQ41fSNEjKsIdAzBkFaLTXsRZEZLarFmzcMopp4y5/4ILLsCVV16JNWvWQJZlPPjgg7jrrrtgt9uTbj/MZrPF/k+3XTZzueyyy/Dtb38bBw4cwPXXX4/du3fj3XffxdVXX43XX38ddnvqv69087j55ptx//334+6778Z9992HQCCAz3zmM3j77bdxxhlnZDX3fJu2+fW///3vwTnP+N94Lr/8cjz//PPo7OyEoijo7OzE888/n1UGpiRJ+MpXvoJNmzahv78f0WgUR48exa9//WsKchJCcobrJgzFOknWyzHQaSowA8fG326K44ovo+0EuwRx8I+wuQEmMECPQu98HUykbE5Cys1w1cA3BuTYfZ0FbgjUV1eFVwasuvSBPNcHzbc/dkfApGl7OkTG4d3XNuY+UzfgOxBfVeLd2wY9rCB4jGqHT4TcG1+dokcUcM2EFpDT7EFI6VqxYgU+8YlPAACCwWCsKXUx57NlyxacfvrpABArlTgZlZWV+PnPf457770XgNWX5otfLL1LhvTOTggh09BwJme5ZXQySQCPlH4B7ELgqi+j7ezVIozutwHGASGeAsqYnmYvQkgp8vOxadzHooXtUnzPgA7NLOgh8yagc2gza4o9DVKigi19Yy4Ia/4IAo094KYJzjkG3m+BoegINnvAzcwSZMoR5xw8DxnckW5v7LYeVsA5hxaMptmDkNK2ZMmS2G1FKX5TM5fLhccffxyMWZ8ffvazn0HTJv+54Vvf+hY+/OEPAwD27NmDv/3tb5MeM5co0EkIIdOQqRnghgmul9fZqqPWBr11Y7GnURLMETU6RZcNUkXyZSiCZIDL/QA4KhriH7gETKzGJyGkeHZHx2ZvFjihE1sGi3/ilkuDdluxp0BKlcnh29+ecJcWlKH6wvDua4d3XzvUwTC4bkALRBE65oHqCxdpsvkVbu1HpHMwp2OamoFob7xGbrhjEEZUhRaijE5SvlpbW2O3Fy1aVMSZxK1cuRIXX3wxAKCrqws7duyY9JiMMXz961+Pff38889PesxcokAnIYRMU3pULY3MA4aMa01Kjql1gj0ZXIufHNirGER78ieRCVYwmzEAPY/HH1CooRMh5SZY5kvFS1EfnQ6RNAZ2tyR8rYVk6CEFvZsPo+uVeIMRU9PRv6sZykCowDMsjME9rQgc7cnpmKamQ+6Lf5YZ3GMFiCijk5SrQ4cOYeNGKyHj7LPPxuzZs4s8o7iLLroodnvTpk0lO2auUDMiQgiZZgzZWq6gBaJACQQ6a2q3Q93/ANTjn4Ihp19OLZidoMqSFsY5mCRAkARg9zVgpz4be8w1045on7XcTgy9ChOAyPqhtY3o5qj0AmwVUPxfAUJIhoIG/cHmmre8FjaQAot0e9Hz1gHMuWAFAOsz1Mjg3DBT1RFo7EHtigWFnmJembqB3s2HEe4chNuozenYvg86EkooDdfr1IKU0UlKl8fjwf79+2Nfc87h8/liXdej0Shqampw//33F3GWY61evTp2+8iRIzkZc+bMmViwYAE6OjrQ1NSUkzFzhQKdhBAyzaiBCABAGQyVREYnV/oAALYKcdxAJx/YWogplQ0mCrBVikO34z9Lu3gEeuVyaCEVRu871p39LyXurIfBBAZOgRNCykbAoKhcrgXpKSVpcIOjb3sTDFnD/EtPBU/xN2goOgxFK88mj2l0vPg+Bve0QnI7cj724N6xzZ4AyugkpW3dunVYt25d0scEQcCXv/xl3HHHHVi+fHmBZ5bejBkzYre9Xm+aLbMft6OjA7quIxAIoLq6OmdjTwat1SCEkGnEUHXoIWv5txaUi57Nx0QBXLXebO3OATjqU3+QdjY4oLX9tVBTKwuCJEByWCcEgjDi5EvxwFkTgGATYQ5+AABQWzYk7Kt3vDK0np0QUi6ORaiJWK5RlixJhxsmuMnR89ZB+A52wlCSN/EwoipgchiRqRPoVH1h9G1thBFRoQyEEj4yTraOpqkbKTvVU41OUq5M08QTTzyBdevWlUQjopEqKytjt4PBYMmPO1kU6CSEkGlE6Q/C1IcWf/PidwcVnRLAh+bjewuiPXVqjWRXwAz68DsSExlEs8u6zeKL+rWOv4AhDNEVX7jBRv2suTxQmEkSQnJCqHKis9Cdh6YBfx46SZMphPNYFmf36/vHrcGZKhBajuT+EUELzhPKHYXb+mFqE7/wogyEgBR/e7TShJSyu+++G3zoHGr4XyQSwd69e/HNb34ToVAIDzzwAC666CJEIpFiTzdmZBAyl1mX+Rp3sijQSQgh00i01x/7wG5qetFrdDqqDXDNOmnQjj0HJqT+0Cyw0vmwUCrcjl0w2p8GAIjhtwEAFXMlcN9RwAhDzP1KM0JIkbTV1xR7CmXDIWV+iuPTKKhC0hv+3BTp9MK7L/ly62GmMjWyrrlhjq1FOuIzozIQguqb+OeytN3pS6CsEiHZcLlcWLVqFX7yk5/gl7/8JQBg8+bN+NGPflTkmcX19/fHbtfX1+d8XEmSUFVVlbNxJ4sCnYQQMo0Ej3liGZ2hln7wImeySOYR6D3brC+0MAQ2lAmRZEU1M0tnOUSpUN//IYze7dbtA7+Ec4YDkvYeAIAZAYjS1DjhIoQARwwqNZGplbNsGW/rpbqnZBymHv8dGW7omIqhTo2MTrkvgEBTb8J9xoggrtwfSFmvNBPp9p3MuIQU2y233BILJD7yyCNFnk3c7t27Y7dPPPHEnIzp8XjQ1dWV0zFzhQKdhBAyjUQ6BmMdLoMtnuLW6GSA3vRbMD5yKaY1NyaMOqEXGKAPFm5uZcru7IXR9bL1heqDxDrH2YMCJ4SMxsQS+HjcUIXIghkQ3PbYXXTZInMrZmkY/TaSilcz6aWQpMWNzEtGlGNGZ7KL3tFeP0Kjamia6ohAZ18wYb9sgpPDdU9TMSnQScqYIAhYtmwZAKC7uxsDA6VRKuqVV16J3T7vvPNKdsxcKYFPcoQQQgrFUDRoQ82ITKW4S9dFhwQzcCzhPsatxjpShT3hxNM5ww4ebS/k9MoSizbB6NsFAODqALR9P0y7vWinjwGEjDY4v6HYU8BmVwU+elRGpC6+DKyR6nNmbFmdHy6bmNG2UQMQ7NL4G5LpK4uPSoZaXoFOznnSZeSGrI3JXh3+mpsmIl1ecM5h6gaiPb7Eep7jiHT7EO5IffFaHUxfB5WQUqfretLbxbJ//3689tprAICFCxfijDPOmPSYnHM8+OCDsa+vvvrqSY+ZS3SGQwgh04weLoEugAywVY09CR0OdIo2QHLFlx7a7b0w/YcKNr1ypXfEu9Lrfe+Cy/1ptgYECnQSkmhmNbabOfy7mGCmIB/aURXic9kZnBpLYgvh+DoPXLbMnvy2qAYI9FpIcqPcmhFpgWjS5fjJMi4NRbcCm70BK7vT5OAmh+9AZ/qam6NEe33w7U998dqQtazGI6SURCIRHDhwAIBVu7OhobgXT6PRKG644YZYA9pvfOMbkKTJX9z78Y9/jHfffRcAsHr1alx66aWTHjOX6F2dEEKmEVM3wPXiZwVVz/OBvf/pMfebPX8HAEiOKCS39RbFRAEschhGz9aCzrEcmd54MJj7m8fdXqAkJkIS9LmcaFVyt2xSqKmY4J7WCYnCGIRKJ4RqF1ojxc8KKRdLq9vgtmV2mhPQqfEJyR0tEIUeURBq64fvQEexp5OWoWgINsdrt4c7B2PBkGTL9U1VQ9er+xBusy6i6mEFAzubEWrtgxaUE8eW1ZTH9R/shDJO1mY2GaKElJK1a9ciGrUSNy699FKIYmarC/LhwIEDOO+882L1OS+44AJ85StfmdSYoVAI3/jGN3DnnXcCANxuNx5++OFJzzXX6BSHEEKmkVKoHeWeY4O682tJE530jtfgWv0VMBaGaLPmKjpE8GhXYSc5TQgi1cEiZKR+JqAjhxlZstsB+wQyk4ZDb1HGwO0SuqsqEB2g5ZyZWlx9NOOMTgBUo5PkjOqPwH+kGx0bd2PepR8q9nTS0kIyfB90YNY5ywEAvv3tcM2uAZNEmNrYQKcha/Af6oKzwSqpEWzuRd+7RyE6bag6Xhk1tgLBbhtTc10LRuE7NP5nuvECoYQUi8fjwf79+xPuk2UZjY2NeOyxx/D3v1tJG06nE/fcc09B5xIOh+H1erF371689tpreOWVV2IXL84++2w8/fTTsNnSN+vTNC1hTE3T4PP50NLSgnfeeQdPP/00fD4fAKCmpgZ/+MMfcPrpp+f+m5skCnQSQsg0wU0Tplb8QKfoexLcTD0Pu/ImTOk0MEEEIEKwCzAHx2uqQyaCCRToJASMAZyD1Vfir0ED7/pVMJsArptgkvX/hIYVBQQlCTMmsO9woPM3Xh1r3RK2qIBGf64ZOW2uA24phPOOU3C4L7N9WmfW4bgBP8yQPP7GhKRjcrQ8vR0weUlcXE5H6Qsi3N4PLbgQ4fYBhFr6rKZCkpg00GioOoSoCt9B6zNZ75YjAOcwVR2qLwJT1WP1bg1ZhdwXADiHrcYN2ROA6JAQ9QSANI2IhsmeQG6/WUJyZN26dVi3bl3abWbOnIn169dj1apVJTGX22+/Hd/61rcyWrLe1dU17rwlScKVV16J++67D8cdd1xWcy4UCnQSQsg0YchacbusD5M9aR9WDqyD47TvwrBZHQsFCTCjPYWY2TRUCr8QhBQXkwRwzUDY7cTzLRHIBqDMr4W9axDMaQefYPCLSQJ8TJhUoHO7X4VaZccWX3nV/Sumi4+3AiTXnbQNBzwXYGvb+HWp9+kMlfXVqKNAJ8mFoUCeWeKNifyN3TAUHd797QDn0EIyuG6C20z4DybJujS51Wxp+AVqREPLcFs/tJAMR30lAECPqAi3diHcOYjqZXMQbhuAVOFAxcLMXhHTNSsi2VvxKH3eyye73Y76+nqsXLkSl19+OW6++WbU1dUVdA6CIKCqqgo1NTU47rjjsGbNGpx//vn45Cc/CbvdPuFx3W43ampq0NDQgFNPPRVnnXUWrrnmGsybNy+Hs889CnQSQsg0kazYfDGYwba0jzNuQN3/c0in/x9s1Q6Idg1GsJ1WFuYDPamEgNklgHP8b4RhuLH5YZsdqwCEaivgzjL4FV7QgCp/GBAY+jnD8RnuJzgkwCbBDMsID2VvDqomBiQJW320jDNTH55r1Sc+tWEnLjthJba2VY2zB/BMv4xlc5wo7GkpmepKvQN7sKkXpqbDf6gL3ORgAoNpmIi29EOPJL9AkCp4G+nxJQQ6jagKz9YjMGQNoZY+OGdWw3+kG476zOoWR7q94IYJJsZr7Q7PkZBCu/DCC2NLwHOtpaWlJOaS7TxKHTUjIoSQaWJ0ofhisFU7YAaOjb+hFgJDEG7bdggsCGakLmpPJo5RRichiNRWAlUuvDwQf43sNxjAgCNC+lpWyexhNrxUUwNPTSV6smh00zlnBgyXHUwU8aov/pr3lkzL1rPhEK2LepKgo8Ke2XtHl2Kgj55jkmOlnNFpKBrk/gDAYS1X5xzcMMF1w8rwTCXVS5rJoY+4KGTqRuwCu6nqMDUdpqIheDT9qp7YYTQDUY8/8RAl/HwSQkoLBToJIWSa0ILRYk8BjsrxlxAO04/8DObgLjCT6jTlDRvbbICQ6WYTs8GURChG/Ax+wDAhOO1oy/ZPhAGbwjp+2BrCqxpDRxYRynVeA6YogFU4sGkw/lq5vjeS5STKW7YJW05JiO0nCQwuW/y9ziVmtpJhUDXQTd3XSY6VQl30VKK9/qRBS1Mz4PsgTaAzDS0QjTUxGr2KaLjWcfBYZoFOAAi39id8beSwURwhZGqjQCchhEwTWgnUHhPN1oy35b6j0Pt2genePM5oehPM3mJPgZCie92vQbbbEBkR6OzTOAYaahAysgt+CRVO7AtqCOkcm3waepXMAp3MJuKl/ggMQUC40pXwWF+GY0wVC2uzqyX2Lx+ynp/lDQ4sqbdjpjPegWhRVWb1nQ3O4M/yZ03IeEq5GVGqpen+w10TXgEU7hyEd59Vnsi7LzFYOjK7M1OerY3gIxoXlUoJJkJI6aNAJyGETAOcc+glsHTdHHw3ux0UL8yBbfmZDAGCeyHYxWLPgpCi6lENDIzqRNqjmvirJqBXM8HqKiFUODIaS6t0oi1qncgfDKnoVTNLCeU1bhicQRMEeDLoijqVnVCf+rFqp/V6Ve+WwBhw6lwHLlp8FABw2lwdJ9RzOMX4e93yuiMZZ4gGKNBJcswo4YzOVEHY/nePTnjM4NFe9O86hmivH+G2yWdjyn0B+D7oiI8RpTJGhJDMUKCTEEKmgXDbACLdxc+MNAbfz3ofvf2V3E+EAADMwb1wNUyvbDFCRjsW0bHfSIyGdSo63g9q+ENXBGt6OJ6rqQObUQWhypl2rGaHM5YZGtA5uuXMAp1Rh5XFKAsCDhvTt9nGybMc+IfF8QDJqXMTA8zXfUhDlUPETy8+hkuX2XHHh4+g1hEEAMyviuLU2QHMcnXGtp/l6sJJMzMLUvtp6TrJsVLO6EyVtakMTrzxmeqLQPWF4TvYOeYxbkzss0bgqJWV3fbCLii+8ITnRgiZXijQSQgh08DgnlaE2weKOgfBIYHLvqLOgSQyvAchMMqQINOXYJcQ0jleGEj8O2iXjYQMv9f9KvoqXYhWudOO90wgMbDZq+pABnHLsGhlKnIGbAuVbnAk3/7fma04rsZ6rxIFhn9ckhh0WVrrx0eXCDi14SD+3+p3sXrWHlQ7rDrOdU4Znzz+XTCWGLBcMSuzYHNAp4s+JLdKuUanmqegITdMBI/mriyO3BdE6/M70be1ccLBUkLI9EOBTkIImQa8H7RDD2feCCjXbFV2SE4RMIs3B5KEHoUg74etKrEmnuic3ktnydTCpPjH3f5FsxIfdFm/+9t9ia9NA6qJ3YH4fVsGFWzXBfTYbMCMqqTHESqdeKY3MXhgcAbBHc8oFOzxvy1mEwGBoW/RLHymxWo4JINhb2B6XnyosIv4p+OfQ7UtjFVzHDh/sR0nz+jFytnx5++sOQfxD8f1Yn5FC86b9yYWVTZjWfVBLKyx45SGdpxS/96Ycc9b2I3FdePX/fRRoJPkmFFiGZ0j62Oqgfw0qDSTdEufjNAxD/rfbbLGpq7rhJAMUaCTEEKmOC0YLWp9TiYyOKpUCHaA68WvE0oSGd2vw1md2NXZXkV1O8nUIY6oQ9s16qOv4bCl3I/zxFTMvwwo+HuEw+9OvnzdU189Zh8A0IeaCzFRAEYEPZnDBsFpx5MRDr9mZSEOcIbBLDq1TyX/eLwAh6RAEnTceno7vnjaASyrbce/nGI1F5pXbcNpDe+ixhGBXYgHoZ1SFP/f+a1YWNmWdNyzZn8Al238tFqvOj2fd5I/pZbRqQXjwU09mJ9AJ9eNvNXSLIWmmoSQ8kApG4QQMsWFWvvH3yiPKuaYEBCCgx2CyjNbQkgKx+jbCfv8I2DiKeCGCccMB0R7FCOvhTpnOCAPUDYuKU+iU4QesRphdBjAaQ4bzKHGGIpNApBZMOK9gIK9QRWNtQ78XBLAdRO9x83G7NZevLpgDp72JP8b+W9FwncaqiA7bLCrOhhjAOfgNhH+Sjfe7Y036dgpmwhM01qRH5lvvVfNcA7i1BN2wSlagRgOBsbOxiUnWD+nuRUDEIXE95LPLHsKJk+ev3FS3V44pUvhtgkQBIaQkvx9yKebAF3jITlUajU6VX8UjqGMdC1Pq3xM3QDy9BKmU6CTEJIhyugkhJApbuC9Y0U9vqgeAKBDb32qqPMgqXEjCsklQXTZYOu6BwzxQAATBUi990KwUQSAlKkRvWg6NBPhhurY11Ex899rzhk0E3hzUAGGsjT3GwxMEvCd5gB2+pNnMT3XG8VudwW8kg2GJFpL6Rlg2iS8ZojoG9GZ/d1A9p2Jp4o6p5VZ3uD0oNIWhCTokAQd8ys6MLfKhjqn9fwurGwfs6/ATEhC8qCSwEw4JOD0eTYsm5E6xyNC9f9IjplaaV3cVQaC4NyKQuatg3ker9MUswQTIaS8UKCTEEKmMEPR4D/SXZiDCWOXBoouG4zOv4EZfpiDBwozjzLFnFVgjgpAKEJAUfHAUSPDbfwBRv/7ADSAMQh2EZVzFBi978JZb82LifGfs+iyJf25E1IqHHUOmHYDgkMCkwSoJsc2Fq/XGGYT+/0NDQU6IybAaypgJFmyPtIfBzV0gUEVRTBRABME6KKI/+sMo39EoHN/cGrW52TM+pfOvAqrCVGdoy/h/gZnNxbVCrCLViByfkVL1sd3SsCX1xyCmObMR+cZTJKQLHDDLJkGOqo/Au/+dhgRFdzk0PMV6Mwj1Z+f5faEkKmHAp2EEDKFmYoOmIVZBmmvHtvsQXIJMPreA/e/X5A5lLOjp1yG7pMvAqudV/Bjm4FGsIHnoR97DgDAgtvhnGGHs56BKYes+0Qr08xeE/852yoEOGrGb/JBSLE4HUcQYTZU1h2Dc4aEXtVE54imM/5MWqIn8bRmfYSOmBzBEXU3U2mL6jikcHhFEdxlBwQGXWAYUM2Eup5KacREcs5tE1EzTpOzeZXWRbnRy9JFwUCD20SV3crmSpW5mc6ps8O4YvGGcbcbeSGHkFwwSqSBTs9bBxFo7MHA7mPQI0rBPhvmUqTba82dEELGQYFOQgiZorjJY0uU8o4x2FzWh3nBJoJJQ1mJQ+eMeucbhZlHmWLuWvxX1UL8uP4EaFUzC358Y2AfjK63Yl9rTX+Ag+2BjTeCe60uxoxZwQfJqUGqtIKbgmTC7vaOO75UQcFQUni2Sjt0pQ0BbT+4fxdsYjfaZRMDWvx1cdCcWGDrl+0hCDVuBE2OdmH8kvcBw0TU5OjiDJrTDiYK0KdRNnSVQ8AMt5iQAC4KDE7JOhVhDKh3pK4n3eDWUeWYeIDjllUvAgBOnaNg1ZzUgWmWLuWTkAkohU7hekRB/65mAIBna2NCU6KyYnIEGnuKPQtCSBmgd3NCCJmiAk09QIECnc4GG0TBCnhVzArCUWcFOiW7lQXIo56CzKNcReetxPsceNkEIhX1YHZ3YSeghRJ/RloY6vvfg37sURiBRgAAg/WzFOGB5LSiFYIoA52PjTt8hY0C3eVIdKXuSF4ObBXAzsrVMMJNONRwHgLcg5aohv4RdfMGjYm9RhqcYVtNDdplE73G+AFLn2YiYgKHVI7DdgcgCAgUo0xFgVU5rO9xeYOAOhfw4YXxIOMX15hYOdv6Hat1Spjh7E05zgyXAqc48UDnosqjAICff/QBrL/i6ZTb6bWVEz4GIcmUQqAz0u0DH3rdU71hBI6Ub7CQOq8TQjJBgU5CCJmiBt47VpA4p2ATYbd7wJQWgAG89dcQbUNBMZb6xHXKyEFNN0OMB5S8rjrAXTvpMXPBjHhgBjsBDAU6GcCgQ5CMofsMcMWfdgwmMiiHHqaszjIkucr7YyKXOLbJtXgTK/FkcCbe0SsQ0jl6lMkHOgHgv9vDGNBNDGRQg08zgUHNxEsDCp726YDI0JOiS/hUMrNCBGPA6XPCmOHiuOA4P6ocIpY3OHD76mdR57Ke/3p3+qBvnVOGU8pNwOi4qqOYWZE8iN/uHL8MASHZKIVAp+aPJHw98H5LcSZCCCEFMvU/YRFCyDTEDRP+Q13QApHxN54kqUICM0Pg4RZUzJFg9G6HyMLWg3Jb3o9faExKPBF+49wvTrqu5i3z18RuX161CKazalLj5YziBTOGsid4GK7eW6HuuAOiKA+VJdDB1fRL1x11djBDhrOWsjDKjWizglDuORJsleUXqA7ZOLyajp/0LgfTvfiDfy4AoEsxIThtYDYRG/smvoSzXTawzavg3pZQRtu/4IniUEjDC54oIAjwlWCNPFFgqHONvxQ/U9et8uG5a/fj+NpBzKtSUe+K4vh6CWcvVDG3oh0LqjVr2bor/Tj1rjDqnYGczevUuckvUL0/ouk9s4lAQ3XOjjkdaXPriz2FojNLoBnR6CxIuTf9BUpCCCl3FOgkhJApKNTWD1PVEekcv37iZDEGwIiCR3shhl+27jR91v/R9rwfv+BEyeqOPkQXBPDJLDVnDEdHnQfpzhJcPtn/JqBZAR2GCARJBIMGMzqYdje7w3pcjL6X7xmSHGNDTV8EQYXoKL96kqrejH7V+uNq19zYHqwFAHhUHUa1G/1zZ6A1aqQZIX+4wFB6YU5gYY0NFfbcnR6IAkedw4/ZFT4sqQ2i1hGGXQKqHdbv1nE1IbgkATMr0j8bM5wBLKjoyNm8Tm5IfhFwcyCefeefU4+Qs/wC/KXCmF2L92yUIVsKDEUbfyNCCJlCKNBJCCFThDpiaVK02wcAiHTlP9AJBsCMwJQ9UA89Yt2lelA5j0Freyn/xy8Q5qoG5iwHJAfgrAKrqAerqIcGhmjtXECcWD1DfdFqjD7l1hylF+hUW16I3WZmAJWOv4Hpg4AWhK06TXMPxaqNpx7+DTCNmq+UO9EpQUQrAEBgEQi2/AYEK+cBTMrtx9JgtA19Q4HOTYHa2P2cM/iddvwmWLxQIxeFggc6bUMdxUdmbDpGPOdOScD8aob7LtmXs2POqQigxuHFbHc/PnfSRly88A3MrjQxy2296l1/0kYcV2dDnTP98t6PzNmKhZXNOZvXhQsbY42QRtrslcEkAYLThl1cQlCc+nVUh43biElgVpZrhj5wuNCuFT+bsegK1RQyDSOiFnsKucOBSGf8Aqvqj5REeQBCSGmhQCchhEwR4fYByP1BANbSdQCIdBcmo5PrEYCbYNwKhnC5EyLvAFRf3o9fKHrDYnTOWwk4q8AdlQgsOh16/UIYADbNPhlsAnU1masGPzn+o2PuV6XSy4IZ/tkCANQ+GN1vwey1Mnhd7saU+3F5qE6rGoCQ40AWyR9HLYPGhrKAzACESTSCyYSovA9bZe6aHzFRwNvGcejWnAAAjsQgexcT8UxvOGfHy5YuiQUPdNY4rSDVRxbFn4u5VfGg54IaGxwScMbMnTk7ptumoM7Rj9muLsxw9qLOOYAPzxvAihlWduZMVzc+fkIIVY70gYpquw+SkLtgxrK6JiysHfv7ppkAr61EdEYVQibHAKbPxRnmTP/3x2rcYPbMyxqY4DiqUKCzFFK3FW/xXutyTQtF0fHSntjXvVsOw9SKk5lPCClddMZBCCFThB5REDjSDUPRwIcyCGRP7mqaDauar8cay4hOCRAA07MZPBJvPGQGmwGlK+fHLqZQ1Ww8WLsEhrMSL5x0Md6YtRzNc06GxgTcL1WhbfnYgOV4mldeiqeNsW/FquSAuvTDAMbWBC0FRverMCM90DvfBADoh/8n+YYMML3x7DDJnbvafyS/JNELWbD+zhVRANMO5vV4QQRgr8xdTeHKOSqe8h+HXjV58Oa+HhmcFy+IpYoi5AIHQBZUi3DZBKyeE6/Pt7gu/hwsm8FhFzlq7IO56LEGxgCJGaix+zDL1R27/4qlb2PNrHgpi48uOIKPHXdk8gfMwnx3C+alKIXc53bib9yOt/wqegxY9Vyn8EUaZhPBRAGmO/17TdTtBMbL+hzBAMOhsHWxJJNandlki6Y1auWAMBTALdbPkJdARqfcn/vPgsUSPOpBsNkDLShDDyvof/co9OgUylglJInFixeDMYabbrqp2FMpG1P3XZsQQqYZPazAf6Qb/sPdsaVSPA9F8Nngi7F6fe4ZEYiSDqPvPXB5ILaN6T0MM3Qs58cupoCzCi+aDLqjEv8puLFbdGJj1RxEmIg2DqyvXpj1mO9UzoKSJKAgS3b8adFZkJedC33uSTmYfW4Zfe8BeryJCw91QbCPPUmtmCPC8OyIfe1yHCjI/EgOcAXKUDbbgDQDaiR11m4uvCWtgM6CORlLdNlg7PsPNMvOMZmcw94PFLdmnSKI2BUs3HJLgQFXnzSAsxfaUGm3ggKnzXVgYbV1e2aFDStnhiAJHKJgoMY5+YsSdlFAhc16nRCFeMbVcVVNqHP0xb6e4RrExxa8POnjZUMUDFTYkwegNukCnuuX8eagghbVRPPsGeC1pVdOJFeYw4beBQ0YcDnTbmcyBp5FoHPQ5DgU0gCB4Y+mNG7pEm1GbprwCSMCtkwS0DHbCrIaORo/a0WOc0Z7fFAHp05GpyGrgMnh/aAd3W8egKnqCDb1FHtaZJrx+/343//9X1x++eVYvHgx3G43ampqsHz5cnzuc5/Dk08+CcOgTONiotQKQgiZIvSwgmCzB9w0UbmoIS/HkNw2mL7DgAsAY2BQIfr+htHhVC4PwOjelJc5FIvJBBgAApXWc3sUAtpMhn9hHODALjY20GcsOg2RinpU9xwG93aOeXyz4MCYJw9AwObCLsGOXQvPxn/1H8bM9j1jNyox9moJcr8xVMuAg4kChL5HE749dd+9EBf9DoZM9bRKnwaPUIkFAIIQUSUmD4IwUbAylibRQdxW7cCW6Ayc7gwg23CSvdYB1a8m1MGrqOtCVFkMHi3dZcdBQcAbg7nLYE1HEhjsIsO/nPQ3BNVPwS5af3/XrOhHq78KksBw7nFAjVPBRxZYgckGtwhfNPu/0+UNDhzpV2AXGZySgGr7+B3pT6g5DIEVfomzQ0p+zEe7I+hXrRPUv3hkbHUI+L96CWNygwWW/e89Q9EDX2MIDN/t1XDLLCdmpNmMA+CCFehkojDuhdQ+nUMzrcDja14VN9W4wVMsoRYqneh3ODAny6kzm2jNY8TPQa9wQBjqMu6fOwO9nGGewNDhdGERitFtvLg/cO/+qdUU0tSt37u+7U1QBqyLY75DXZh59jJowShsVa5iTq9k7fr/nij2FPJmzY8+W9Dj/eY3v8Gdd96JgYGBhPuj0SgCgQAaGxvxoorWFQABAABJREFUxz/+EStWrMCvfvUrnHfeeUnHuemmm/Doo4/iuOOOQ0tLSwFmPr1QRichhEwRelgB1w0Em3qhBaLj7zAB7rp+GH27AACOWjsADq3pyaTbcrk/L3MoFk2wApnv1cwHAOwygT5wNMK6/4gJgCW+rf7y+Atw9uzT0bNo9ZjxmOTA1hTnidtd9XjNBF4zgeBkOroXkM1hnUDaq+0QHBKqnC9Ab/1r4kZaCKJz+jT3KGdhWxX26g1wzXQgHNqLqJi8+3TlHBk29+RqazqrgjgcZmjWsg+sOaWdEB2jfqfkFtwofH1Sc8q3XRoQMQoTADl1rh0nzrRhlqsLq+e0wj6UXXnarGasaOjHBUtsOG9hL46v7cW/fuh3AIDlDRMLPP6/M9tgFxluXM2xZr6IU2fsGHcftzR+MDQfXCkCnZ2ygeHSkl2KgT0BDcmqHKhz6rJeDi2UYBd33WXHe34VO6Pps48GRAlcFCDUVoDXVow7bvdQI7De+mocCGqIVKTIGGUMv62ogWcCpSS8c+vBRsxFnVePXmf8OO9DxNthE9F59XhXLU7Asdgr1wNNveNvVEaGGw/JvX7woaBnoLEb0V4/Bve0FnNqZBr4xje+gS996UsYGBiAJEm4/vrr8ec//xnbt2/Hpk2b8PDDD+Mf//EfAQAHDhzARRddhKeffrrIs56eKNBJCCFThB6JNwtR8xToxOBbAABB4rC5oyh2pkIhqYK1COIxW3XC/e8NLY01ALDq2fEHmIDuoSxPRRp7cmvMPgGpFs/+hcUDR0Fb+uWEpYLByqBxVnpRoayDdmR9kWdEJoqJDD1CDSK6BqnvIQyaNgwKyZd98vZfQRo/5pEWZ4AGhvZoKOvAEQ/sHVM24XDlyXg/XKRlqhl6rl8u2LHWzJNx/nFWJt2Zs96DXdRQ5RBRYw/gjNmHcN4iL/5x4XYsr413NT9zni/r40gCw4n1bTj3ODuuWb4L3/zw1oQl66XGmSLQmUyyd7qwKCE0Z/zakwnjuEsv0NnvtJZ6vzrO72STAZgCQ2tNJeQMAradivWzf9Bn/d8jJl9IeGTRbPxvWwgtE/hV+ZsqwFfhsl43BIa1IRYruQEAm0M6/twTxqOKiDf9RSpXUcRIp6npCR3Kp4KkHdY50PHi+1AGinPRhEwPv/zlL/Hzn/8cALBgwQLs2LEDjz/+OP75n/8ZZ511Fs477zzccssteO211/CHP/wBdrsdiqLg+uuvx/vvv1/cyU9DFOgkhJApQgvGT1K0QO6XRNprHTB6rOXoQut3IYbeAdP7xtlr6lCGMjp3j1qq2Dviy/bjz47dZnYXhqtGGUyAfMK5Cfsdm7sy5bGaRpx/+4Yy6ViVtWR+It3dC8KMQHBIMJsfgt75erFnQyahco6KiO816Eon9M43EIGE+0NnjNlOctsQcjkhsL2TOl6zNA+HIm68r9RDdEgQsujs/ErtP0CsTPyb3K7NmtR8CuFAsHBBl9s+9DLOmNMGwOpyXmFTcN+lrfjQjF2Y6+7E7IoAllYfxgk18Rq6//qhx/ChOdk1QptVKaHaHsTjn/glzp69CR+Z83ZOv49cWz0780w3ztiYZjmaALxiZlcFLOIsreZyQo0blx+xguDtsgGhKvWFtQ6NIypJ+J9+DX4p8fvuPs66yBde0AA0VAMNVdjktT6TvNhn/d9kMKjz4oFhwWWH4LLjS81WcMqrZ59FvCOooVcQ8eqcWVBn1+LlPhkjw7UfhHQoJvBwRxj7g0VqWFPE68FaUM5LrfZiSvX9BI50Fz17lkxdra2t+I//+A8AQEVFBV577TWcdtppKbe/7rrr8MgjjwAAFEXB5z//+ZJoTDadUKCTEEKmCC0Yz+JU/bnP6HRW9MMMdQwdLAy953WYnjdyfpxSpQjjn9DqbMQ2kgPHTCuzJCw58MyC0xO2HcxwSbpXtLI7tfrjAABmTbZVzAqDGWE4qkWYoalVD2w6YpFd0JgNYVhBdhMMPm3sB3R7Dcf/Oq6BIk5u6fpwItcbwRlgAoNgFyBk2IF5izwTED0J9w3qpZc1V0wznD04tSEexKx2hFFlty6G2QQFVfaxmXx2UcE1Jw+g3p15IG9mhYCZTg8qbblpKpVvly9+DdI4DXKGcQDMlfh7pYPFlmdnqlea3N9KrvXXJKZjR6tSvy8ZAAZFCa1RHZ4RWZORBTPwwKCVZfcHVcALdjfWS27wUUvRd4UN/EqN/z6ZFQ60z6pDSLdeW8wJLF1XTeDFkIlHemVslawgsjzipapXiWf/hXQ+bkOk/ChecINPIHhMCBnrgQcegCxb75V33XUXli9fPu4+n/vc5/Dxj38cALB//35s3LgRALB27VowxvDoo48CsIKojLEx/9I5fPgwbr31VixevBgOhwOzZ8/G1VdfjW3btmX0/TQ1NeGOO+7AqlWrUFNTA5fLhaVLl+Kmm27Czp07U+735ptvxub35ptvwjRNPPLII/iHf/gHzJ49G4IglExneAp0EkLIFMANM2HpuhHNQ+ZCcFf8eFoY5uBB6B2v5f44JapdGr/AfXTEEnXursFw+OVR92z0Mgmsbn7scZ+UWWbPwFDw1FO/EGACBhuWZj7pQjJCsCl/B5cHxt+WlCTRZQVhjM6XEIUDIVMCc1TgtehC+A0JbETHZcEmgkkRPNY3H6+wVZM6rmYcBQD4dBtMQYCz1gtblfV7z0QhaYbn8BL3XeFKRI14ZrnktiGkjG38NV0xBtQ6vDiuqil235kzt+Kj86xsS4coo8qWfAXAKQ3t+PCCzE8VFtWaaHCVT/fjeqcHV6/ILKDOGcPgUOd1odp6L/CC4eUBGWzU7ydL05m8y0Ta8gyCK79BesFlhzzfajnEJAH/F0wMwvXY4oFYJgoQauKBT4NzHDCANllHx4jVww+GBWzxylDn1eM3HSH8oCWAB1rHLiF+pjeMx7pCuL2iHv/mrochifh5v5YwfqaYJOD2inq8H1DweFcYh0MaXhi0PvfIsBogCW77mAs0gqPwgeZiJnHJA+Vx0YGQUsY5x2OPPQYAcLlcuO222zLe9/bbb4/d/t3vfpeT+Tz33HNYvXo1Hn74YbS2tkJVVXg8Hjz//PM477zz8OSTyXsnDPvZz36GFStW4IEHHsD+/fsRCAQgyzKOHTuGRx99FGeddRbuuuuucechyzIuvfRS3HLLLXjzzTfh8XhKKmuVAp2EEDIFaMFo/pMGtPgHZq4XpltwKYmw8d8yPbb4SaFcMy92+wAHVMbQtuTD8cczfAvuG8okDdrcYFUz8cqMJZlOuaC40gft6NTt6jkdOGo4mCTC8B2GDhEhQ8LW5V/F24FaDBq2hACNrVKCX6yCAQEebXINppgcrw0JgcE0uoZqAAO2Khsk19jxJZf1dxExTBwRGmL3i04BplmkJaolKFnGolOKxhoAOUQZdQ5f0n1PqD2KD8/PvL7fmXPLrxbgf569MaOszj2ChHcM6/ewrc6q07xb4WiXDbTMTexVzpypg2ltOgeQ/HiC0wa9Or/N5yL1VbipVwdmVuOVObPwbE/i6o9Denxu3nkzoI2oxalw4O2ABoMzHFXiBTWPRDTIBrARdnDOYKTIzOScgXOGzYMK3vEq2GF34u3B+AXabHIPmShi86ASaxoFAMO9hiImEKyvQrC+esx+PM3PJm+KeOI/uLulaMcmZKr44IMPMDhovb+df/75qKmpyXjfiy66CC6XdXFs8+bNAICvfvWr2LdvH6666ioAwLx587Bv374x/5LZt28frrvuOsyePRu/+MUvsG3bNmzduhVr166F0+mEYRj40pe+hL6+5KXFfvrTn+Kb3/wmNE3Dhz70Iaxbtw6vvvoqdu7ciT/84Q/4yEc+As45vv/97+PBBx9M+719+9vfxquvvoorr7wSzz77LHbt2oW//e1vuOyyyzJ+fvIpu8IyhBBCStLI+pz5YkZGLEnW89TsqEQxZxW8TBw3mNwp2sFq5oD7e9BbMzd2f6sJBAUBH3XVYVFFPf665locFR0ZBaePDgVEfTYnwnNOxDuCE/9id4GrpfUz0Fv/AqiBcbdzOT6AihMKMKPMiS4bjGiRGlUUmOiUYMjJu5uLYhiuGZUw1FV4MnoS9keqsNF3LjQuIGoCkluHqhmAySE6TfShCoCCkB6e8HycMxzYoccDRVxg6BbsmCUEANRCchkwjfjHVUedA3Z3BJrC4K5oRrjzJGyTa3Di8AZ2hm2+7BrETGW2cYJ4AjOxpLox6WMLK5vxoZlLAaxIuf+8ahtmVQg45jWwYkbHZKZaFMdXH8LlJ16BvxxM//f/nWMh3DTPWub9ZNDEfwD4+4AVpPuP9iieEYVY7UDusAFhJek4H4R18Fo3mD8CriV231HqqsDAk14CE+xS8iYsaQjVbpij6nVvE2xoCsu4ntlwKDQ2229bSMfHRQHcNPE/AY7ra504HgCzSwjoJt4YsD5rvNyv4MQFVhmVw8escR5oy64RzP93LHF7I8n7IRvxvCYQx/5eR4a2e3ZQRbjWjnkSA5D4Phl1O+EOK+Ccj3n+pxrOOXyHu4o9DULK3p49e2K3V69endW+oiji1FNPxbZt29DX14euri7MmzcPs2bNQm1tLQDAZrPhlFNOyWi89957D2vWrMHrr7+O6ur4xZyzzz4bJ5xwAq6//noEAgGsX78ed9xxR8K+Bw4cwHe+8x0AwN1334277747YYn8mjVr8NnPfhY33ngj1q9fj+985zv4/Oc/j7q6uqRz2bt3L7773e/i+9//fjZPScFQRichhEwBI+tz5gtXvHk/RqkKLzodH7Dxs9ZaRDveXHUFwAS8VB3P6OQMGODAoGjD/lMuwzeFCuxEZllwWw2Aueuw21YJv7sOe00Gbe7JE/5e8iXTJevawYfiCU1FqZc2lrt++izvc89I/VrBoMJm7sV7DRfhVd8M9Kh2aHxEFmdFCGzoZ6bZeKy7cVTth6N+Yk1W7M5+POdfFL9DYNilOtAv1gIATFsQxohMUrs7BN76EEwHg/LeXYgaAjpH1OHTJQFN0fxmxZUTewZd7KvtvqT3C8xEtSP930adS8DKWRr+5UMqquzl2fF4ae34KxQCOodHM8FsIp7ujUCdW49DISs42hI1Eup3mmLy13Zml/DqgIx33RXQZlSNebzHboOSbF8GRGZmnkE0rLe2EsGFMxO/j6GY4fDcR3tjUAZq3PAvnIkXPFH8PWLtIDdUY6dfhTa0f5di4M6jQdx5NBjLqowki1SmEdATtzeTXfmrTlEyJkl5AM/QRLZ5FRyRDWyLjg1kvgEbWufOACvgEvZiLeU0ZG3KB3MJKYT+/v7Y7Tlzsq+TP3v27NjtgYHJl3d65JFHEoKcw6677jrMm2ede2zatGnM4z//+c+haRrOOOOMMUHOYYIg4KGHHoLD4UAoFMLTTz+dch7Lly/H2rVrJ/6N5BkFOgkhpIyFOwfRv+NoQTI6YWaXTVL2hj4A6MetxlPzTsX7Gayre9kU8V+2arSvvhp/5GNrrXkEO77ttj4kHchwnR5nQGT+Srwl2PFa7SL0gWP3/FMBYXLLhYvFlPsguWxw1DnGLbZeKCy43apPWSKB13xivleT3i+6bEB4L7TG3+A5OXkgnYfeBsDgqHMgIooYXiDuMZxwuDLvYD2SxvtxaGRg0q3hoGxDs2lleYbNQWgj1h8Z+mEoNgOG0Arv8ishcxHdCovVRVRprVIMY4A9SeZbNiqkcNql3U4JuHjJMVx38hbMcU/sd6DY5lZmFqDtUQyYdZXQTOBBJfH1N1Q71NSHMRgpanTq9da+93VF0etIvDDARAEHDYZQkkCnOasGASn71/sIY/har55QMzQ8TjAypHN0VVXgP/us9/tX+2X0L5qFtwU7WpMEDnNJH7XkXbBLiLhTdIEXxj7HvSMyXncHNXQqY+d7X0cYd/UoSQOleTPqKedmYRoE6Smyigkh2QkG4xf8Kisrs95/5D6BwPgrn9JZtWoVPvShDyV9jDGG00+3Gp82NzePefyFF14AAFxzzTVpP3/X1tZi1Sqr9vrWrVtTbveZz3wGYooLe6WAAp2EEFLGPFsOo/W5HYX5QMunV/dO5rQybn699Dz8BHZkUpW0DxwDHPh41WL0JclO6WQCjg3drWQRf9g3cxmaOcd/D3XBftRZD8xYNM5epYlxDsktwKFuiAWTi43LvXDXRyFMIJhQThz1DmitLyQtEWivZlAH3gCP9ODNYPKl3wO6ldXgcHXBDwfUocDEi94GaIJV3zNbLQD4iAkx+V3siNQjZA7VQ2RVUEZkU3vUDtxbcQsUpRWXem+wtlGcEJ1WhDPKqD7nsGqHNOlAp1OUsawhdYOccxaG8amlz2FR5THMdHVP6ljFUufMrPRCt2pin9PKMHyiO/EdYRO3MgRZfQXMFK9r4aFGP01hHZFRf4TazBo0ygZCSf44m50uGCnqeqYTAsP+oApeNxSEFRie6B1/9ce7GsMOn/V31C4b+HhjGH/35v/vSh6V+dg+dwZ+ERWSvl4ZSRqUjawN2qsaaEsSmPWqJvYFtKT754s5ukSBd+KlPrIR7fEV5DiETHVVVfEM/FAo+5ULI/dJlomZjZNOOint4/X11ue3kcFZwOrsPly3884770za5X3kv+HO6z09qRsMpgq4lgoKdBJCSJninMc+yGqh/Gd0cj69MjqN+kVgdjeeRu6WuLVnsPw9md866xEacQ642QR8s5ZNbBLDTZWKGGS0OwagHXkUoqNEAotGFMz/GiS3CKkyv12Pi8nu8gKqD7aKsd+jKGoYrDkRrG4RfHry3/lXbGeD2QSYagv83ITCreAHB0OTtBCCLbuPlYJDQpOSeJFGjrZhf6QSOgwwScB7Wj0iLD6fQ8JCPDEwDx/wKkSGgqFdqgOiwzp2mBcmiFAOFtSIcNkm93c+292FeVXJswAZAy467hAAoMbuhY2VZ53bunGW5w9rj+r4hSf5RcV9Q0G1/gp3ql5DCI7IQhwdNjzmcOAdv4Zk77LNBpB1LiUDAkM/tn63C2AM+uxadMrjj/SEZ2wwdG+Kpe65FDE4hBo3WF0lWH0lvter4snuCPzDy+8ZYu9bEUf61+mAZqAtmvozi2Iv3NJ1U9WsmqAmhxaMwojmJmicbkk85xyR7ulbboiQXGpoiDc8TBf4S6W3N77aYcaMGWm2HJ/bnb40jzD0PmMYia/1Ho9nQseLRFKneaSq3VkqaIEPIYSUIVM3EGz2QO6zTtDyXaNTdEowu45NIKekMFj9QvDB9vE3HGnmEmCwHTCSnwy9dvy5OHn2MvTmsLxW2wTH2jwqmVYD0FgzH2dOYKy6T1wF30svQqyaAX2wc2ITmiyfVTuIjcg2s9c4oPpHBREEBpj5r29mBBrBe7bBuWoFoPUhEMqu2Hy5ENRj0OefAVsFhzYqKYGxCMJiJYJz/xFIsQL5np4V+OxSGQcNN5j/RQisCsC5AACP4cYSl55VUydXPcc7wbkJ9/2ZnQEA4GojKmbNQEdgELKjdugbYLin/1RwMGyMLIztw8EgVgaAQTt6DbqGP+zshQq80cl91HdLIcytSv4aee0pIuZXWs1OGOOwieWZTVvrzGwpYcTgeM+f/HvsGype2QQRqwQTycJw7Wb89U4Z9bI2yBkOhzToGLtUe1/EwIlV2f1eR+Y3QB463iATUD+rBr12O8aGWMdqDI/9eXvV/K/oiBgcX9QdI55j6/9bOhQ8W+lEsLYSYVHArFYPfjJObNrgLG3N0H2iDWfNqAQfyH9dWS2kwHegE9FuL6qWzoLcF4RU4YRjONN2gkLNHlQdP9u60M0BW5X1uxPp8kJwSNACpdWwkJByNTJzcffu3VntaxgG9u7dCwCYOXNmrIZmoY0MfN51113453/+54z2q6hI/TpVysvWAQp0EkJIWVIHw+jddCjWjTTfGZ2OuuIV1M9EcNYJqMwy0BmtnQ+3roJ7kwf7wkzEhtpFQA7P7zJZ/p6pD+wV2Qc6GYNjlY4a7RKo7Z6iBToNz7bh6cTYK2Wo/lE12kQBppnfunCCXQLvPAoA4D1/h1CbusN0ueOhRmyr+xgulEIARtUI5EFEBRf+oK5JO4aAPhzUqrGIBaCNaKhlAGCO7F4jBEHGS/7EZimvhqzAJ+ccgvd5hISPwRj6RREkET7F+ui6K5TYnMXwvQywK9CspWheMg0J4Dhlpn/S48yukIFRobvV8xy4ctkHkITyDG6OVOeY/HOkDV2Q2RM1sNzJkCznpnvES9noQGdgaH8tyZ/Qdr+KT1Vl93u9DRI2Ba2LDlEAx5xO9JZ49ZmIwdGTJOO0JWrg4YYaqApHyOD41HFz8Ncjk2sg99SghuPr3agvQKDT90EHXLNrMLi3DVFPANwwYa9xTyrQyTlH/3vHUHX8bITbB+CcWR0LdPbvOIq6UxbCkMszw5qQUnPKKaegvr4eg4ODePvtt+H3+1FTk1mDuFdffTWWFXn++efnc5ppjcwkzabLezmjy96EEFKG5IEggkfjaVd6ngOdEuvK6/iT9dwc6w1727lfgDl/ZUb7dNfMx6dP/xdATFzCFjz5Y8Cc5dgouvEsz+3ytoEcxooPCdl3uWY2J4RqwH1+GPZ5M4u2fN30HbHmM+JisGiODbqyDOsLiq6J/5xsVfFJ6J2vg+u5DEcXhzS0NN1Rl/g7YkRa8H+BU8DkD1A5H6iYawUNK+cxyD1P4Ka+S/HMYPqOogMixwvBWfiy5wJ8ozceatcBmPYkkRTGEjqyu2bZ4ahzwNngwKDdPWaZ/L6IdfL/Z/8ChLV2bA3VQYUViKqs3hlbrt6mJma+ec0obFV2tKmFW5Ja6mqdKpbW9o+/4TjqnDIW1NjxiZNsqBwqN3HR8QEcV90Jm1D+JU3cthBcWZZdGE3nVkOhjX0y5FGNclh9JYRKJ9qV+N/H2rYwhKEGRvrcOjTJ1mMjn01WV4GrWTWaIzqyzc3bFzXxwtAS9IgJ/C1s4lvHJhcczLewwdGXokv4L9tDeLgjjCe6I/hslkHO0+dZrz9zquKvDa8PyGhCYbKRIp2D8B/qAtcN+Pa3I9rjQ7Rv4g1JQq39iPb4EOn0InC0F9EeH8LtA4j2+KCFZAzsbkGk21eQkka5xGylnR1Gpi/GGG64waoJHo1G8Zvf/CbjfR966KHY7ZtuumnMuIWydOnSWHB2y5YtBTtuMVGgkxBCypAykPhBP+/NiPy78jv+JLUKVsCmW3Li/UVnjLs9c9fhmLMGh0wOfWFiMe0/zDkFO5aeCw8Heko4i3VCoWcmQMZsMIFDmuMseud20Tbi+VX7xjyeSaCTiQy2yol/WBTto06sjfKv8eiotr4npzPedZNJAvzuGdgdrobpfQ8MMthQNp7ABqHY3AgY4y/06dDCaFFcCBliLOgIAAYHIsLYvxfJJcHh7Ix1tLdF/wansxmSIwp/msqDYV3DX6suQ49qh2lYvxvGwPaU2/+e/SNsbgMBvcTT1gpoae0g5lZMrC7XSDbBwEcX67j9jC349Arr+V1U5cOiymOwTYGMTrc4+UCnxjnUWbXoUgxERxV5UR12vFxbi2Y5HsYcUE38vbIKYMAz3I7n+6yg5MgcvM2VVWgfynAcyPLX+r1g/OdyRDWxviuEDMpzFpVHNaDl+M/3uDo7rlg+CAA4c0HiY/sK+ISYevxYpqJDmUSgc2BX8//P3nnHx3HW+f89ZXvRrnqXbLn3HsfpvRBSCYRywNFCuQB3v+O4O7jCUe6O0HNHOwiEEJJACAnpjXQ7cZzYce+yepdW2r475ffHSFqtd1fNkiw58369/LJ25pmZZ3dnZ+b5PJ/v90vHK4dQYwnan99H8FgHXa8fpWv7Mdqe34eWUOg/2EK8e3YL2ycj2M/c/Ngmc58vfOEL2GzGpMnXvvY1jh49OuY29913H4899hhguEKvueaatPV2uzFhG49Pf0FZSZK4+uqrAXj66ac5cODAtB/zdGMKnSYmJiZzkKHcnENMZ4iStyJM8sRD07b/U0XwV3ACiWfOv5V7JAdftxchWHMn6xa8xWjeYhotxgNLfVF6UZ9Hkfm8NZ/jM5Ab8lRoHtk92YpgzR7aaKtaiu+yd2OtWITsL+PJbmO0Z5mfRBBPbwYbqedXeL3PIzstaKFjac4/AItTxFlqGa7mLWZxfHhKB5Ask3OViTYZqfMXacv0k5NXzkGkAePBWm15EHuh8ZnKTgsHHUsBSKjd6M13Ig46JYVkByFr9krrJ3M4ptKWyHQTK2gMoA5XPx9CtIgoHX/E7reCKJAMbCd57H9IyAl6R0lLENc0vt5hOLVbEjqCJLLXlzvU6q7uSjSLRkCZ5WrODCAK4LSIbCrZzfL83ae8P4ukclFNIyvyd/H3G/8MQJmrF681QL7t1IXU043P1ot4is6aw+Ek/xw09nGyvPQ7TeYrxwfYcVIO4q/VB1FLfPygKUTPYA7MlsHYddFh5d8bU5MuXUrqgi96Rw9jV8r87A+lhM6fN4fTKpLPVjrjU//bvXl5iGJniFKPhfOq0s/VV3LkWwWG3bZTxVCaIQAlGid5CpPTgf0t9O1uJBmKEazvJHiii3BTD91vHKN7u5GGJXiia/onwKcQQRKJu43zWpBNecJk9lFbW8vtt98OGFXUL7nkEt5+++2c7X//+9/zkY98BACr1crdd9+d4eAsKzNS9XR2dmZUSZ8O/umf/glJktA0jfe85z00NzfnbKuqKvfcc8+obWY75pXExMTEZA4yVG19RujfConJuw+mG8VdQFTX+ark5oAGh3WdjqWX5GzfuPA8FLuHHYLhHjjm8KVWSjInNBgAZvu4sFNjOPRc8JVhKajI2k7y+bEtl5E9Plxb1vGxN4NEhDoSjvEJW9OJ0vAoyQM/x+6PoXW9gXRS6LNkjSC2/RBbniGeWfOyCLOBlxCYnCgtSgJK41MndWruC51q1+uIVhmlfRs2wXgQF0Q4qJUAEHJVoba+DP3bAdAjjfRLvnHte1u8JOtyRdfpVpPY89O/Q00QafDUYLH3Y/dbebLoJhrKL6BX7aZdze3g6VVk4rrxmLo77sHitnBXbE3u94xISHQykCP09Z1Etc/Kx9Ynqcs7gNty6oMnq6gyz9uMQ45Q7mxAEMBpMRyI8hkQug45C6WPm/6kzvM9Rqhw94hTUPC7uaPREBpPNhDGNThms6e5GH/SEka0yhwpzk8rANQ5InnnPn/u3HDJsnyuaEmij7iBxd/BJuc1xU2cV/EGH1gZYXPZnrR1B0PJrOlbRKvMYy7PlPZDHzlxqjPpyuvJUAwlEjeEU00HncH/dXRVSwmqs3yi9mTUAg97rYMTaBPMR2tiMlPcdtttfOELXwCgsbGRDRs28OEPf5gHHniAN954g61bt3LnnXdy6aWX8r73vY9EIoHNZuOee+5hzZo1GfvbsmULAJqm8elPf5rXXnuNo0ePDv+balauXMl3vvMdAPbv38+KFSv4h3/4B5588kl27tzJtm3buPfee/n85z9PVVUVH/rQhwgEAlPej5nCLEZkYmJiMsfQNX1GhU4teGTGjjUZWooXckCD+Ijxyt35dfy/bI0FkZ/m1bDeXcLrg+OBfZKdK4dWO32zXuAcQhdAsLrQ/eW8uORiLm1MhfWKdjdazBDs1NIKev3l6LZ+PKsF9OfhM3vK+PqSCLIwO+Y7xeBLJIONiIKGaJXQEipWnw2avova9ipy5Wdwl4tIyZ3ESC8WpPXtR3LOB5ZO+LjZQt61/mPgn5lq79OCKKDHOnEWJdBaHCQP/QSh6A4kC+wMFQJw3L6ANSVLSQ68DeIVxIUYj2rnjGv3L/RnF8gTaied8VZEWyGMKMUi5CX5VfcW/oUurHaJH7cuRRKW8J/SNhqFSk4ucjNEQEk9ou6POpB8Oi/0FGRtO0S/YKMveeo5Vj02ieA0uMtmApss8sXNLVw3/+kp26dVSlLiNHJCy6JCiduCzxaYsv3PBjZUCLx0QiKcOPXvvW3QfSlYJBq8bmjPLTa/Ek2/zvQndQ7OK+Q/WtPzKzbEVRBAdNh4eEBlYZkfua0vrY1W4uOK5gQDyhy9dk0Dy/IPU+M5ymdWh/FZe3BaLiQyqCwnNRA9drp8HpKCQGlDB6LDykChl9+2x7hqKjtyUhqcbFE4SjSB7Bg9fHuuhaOPlxaHnacGFNYCIZcDV9/cTyFjcmbygx/8gCVLlvCVr3yF3t5e7r77bu6+++6sbZcuXcrPfvaznEWILr74YjZv3sxrr73G7373O373u9+lrZ+OIrBf/OIXcblcfPGLX6S/v5/bb7992Kl6MlardTi8fi5iCp0mJiYmc4x4TxBtBl1Leqxnxo41GV70lHFygFa9kD33pODI4yFN4CEh5RhoH9k2x3azFrubAzUb+Qwu9tvdw4s9Z51P/0tPgK4TXVDGd4/7+eL8ebydLAOiPNwa5gOVblbZ3OiJ0198R+t+CwBBTOIq0gm2SNhdPST3GQnTRbUJreE+EoGDUHJnakNRQOnZjdp3IH35OJEtIU72o2mhZqRSGTU6NyvWWlwWFK0We/+zdM67koJDD+IsFpCEVrYPVjR/LrmA8vx27GoIe0KiWXbxi/bqce1/ZF7OkeixBpp0B71uP5YRv0gx9AK/772CW90NFFutHIvNB+A1bxVhPQBkDxHVR3js+pM6mhVC6ui/z6QwQK9yao+2ogAfXZvgjtfm2LVgkK9e0M9Hl94zpfu0ywnsUkp4u3KhwqK8fVN6jNPN9YvrKXJV8pudp76vpkGRfKDUT9cY49S3w5nXmV/1Jg234Qhe6o0Rr8lnv2yluyfB721WPiiJKQefAN+Iywwoc/O6NV34rUYxriJHGwDFbpkTfSk3ZYfPw/vqI7glkT+V+Dhst2MBDoWiCG4JfZqetdRYuqMz2tlP8HgnxZsX5tjCIBE4MwXA3YrAq33GfeMvmsy1lun77N+prP/WLae7C2cMn/70p7nlllv47W9/y2OPPca+ffvo6upClmVKSkrYuHEj1113HTfffDOSlPtZQhRFnn76ab797W/zyCOPcOzYMcLh8LQInCP55Cc/ybXXXsvPfvYznn76aQ4dOkQgEMBms1FRUcHKlSu57LLLuOmmmygsLJzWvkwns8PKYWJiYmIybiJtgZk9oD67Hzbrxcwqy32DzwhKzXqj4M6gc1H1Z4Z3dwNIg+LIaapCPll6qtbwnLMIALUs9d6kYhfOZZtBEInm23m8PYp9iYt/2JuKYXysAzR77hDImUQNGEnRxYG/IBAEAYRkKi+Q1ng/avdOUKJp+busHiuCpoASRXZahgvejBeB7FVpJevcfTySHXAgfwtK85PcL52PYHMjtN6BqjTTN1jh/ImBUo7ItURkL9Y8mQ7h1M+DetXHs6FS2nR32vKIbgxeDyYFemINw8vvD1TTnCXXZzbCmk5M7B2znR4/TL96alXXt9TY2FDWdEr7mCkWFNjIG5ETdUOljc+u/PWUH6fc3YVNStX9/vy6x5HE2X1fmCgXVGzj/KrGKdnXiajx2TyelOgbI2x8z0BmCPP2/szcikkN/i0o8C+NEZrjKn/oiKLnp35r/VVF/LljorXZz3xOTt1QMujilwbvFd/qURhQdNoSCvcLNr7dHmNYSpzGEGrlpIm0njfribSMfY2Lzyahc4oelwSLxBN9CdriKqLDyrP9CdT8qU0dYGIy1fh8Pv7mb/6GJ554gsbGRqLRKMFgkKNHj3Lvvfdyyy23jCpyDuHxePj617/Orl27CAaDaJqGrusZYueJEyfQdZ1f//rXo+7v17/+Nbquc+LEiVHblZSU8K//+q+88sordHV1kUwmCYVCHDp0iAceeIBbb701q8h54YUXDvfvwgsvHPP9nU7m7pO8iYmJyTuUmZ7R12e50PmIlnkrGxouXDz/QgRHHkr1WgCaSxdntO3SgYIaBFf+aa9CPlHOK1zOT3Sjz55LCpF9pQA0+8qxVhRhKa7hrnYnnXGF/bqPNwOpAfRvGkJgn9qCC5MmaZzTatd20KLYfDa0nteGV6tdbw3/LY8Qdqyu1Pux+xRkx8RELiFyMOvyLNr5nEGUVL4fOgs90s4DfZU01t2I2voyWtMfhtu0J6zc2raFvVIdFtsA9fqpz9j/qquK3WE38RF1o+0FNv5PWQPAs7Eajo2o6t4Yt/PSgH9c+46qIonux8Zs1xo79VzCy4tiFDvGFhxmA5/f1MRZVSLFbuOE3VIZnhYBckPRNrzWwPDr+d5DU36M002ps5liZ9/YDcfB0UgSId/N9xqDHBijsne2MPP+ZHY3z7PdMdrjKkfDCk0xlRdsRooI0Wnjky2Ty/l4JpLvNK4zBU4Zi5T+uVw2v49LF1gpHGzzcq9xD9F1ge81hNg1kGR/3Pj8X3ClT9pMJVoimZa3M94byigyeTLJUIzOVw9PW58mijAFBZsEWUT3Onlt0M2pO6y0xVQ67eObBDMxMTHJhSl0mpiYmMwxkgMz69oQRqmMfLoRrA6yBV73AggiGoAks6tiJQBKltD0dh2ieWVo3hJ0ee4+XEdUG87lqxHtbva5fQw4/FjLq3i83XAt/qQ+y+DZNkuEzkG0YAOCGsLmDJBsfi5rG9E2aCMRQNJTrk9Rb0WyTsxioie6sh9DnrvVOwRxsCp64QI6klZ+khzMDZVFvf1DaCFisp6DyfEJjuMhqaeKOdnk/RyMewF4PFDMI7FFaW1j2vi+r7Aq0WXNXgRpJK8mqibQ0+xUeEIUOmZ3uo4hZEnFa9Oo9omIAtjk2XutngvkWacm/2F/Uuc3VheqLvBy3/QJkI2Dgui9Xh/HI2dGUaipoMxj3Ocr8zLv9zcv+gtf2LADhyX3tefxXuM7+4djA1A4Tc5CHdR4alJI13TiPaOffw0Pbp9VldTjDhui+9Ty9wkWGU1KyRGKVUbTdfarcyu6xsTEZPZhCp0mJiYmc4xkcJqFzsGQLkeJFdEqoYZmbxhnx5Ls1dVDOiy/4G+NEHbJwv/YCxCcPhocmSG6UaDZX8Wb885i+fIbprfD08j6FwSEwjz8N1zJgYjIYSEP57uqqB/MAfdMR6YkLFhGL3ww4yQGSOz8V5LbP2aEpGdBFHXcFTre8gCJHV9KrQjtR7Ski7nSCIen1WdDkFMDX2epBT2e3bknCLNf6LTm5RDlhT4a4naeLPkAAA/3lSDk19CVvzKj6atBH4ldX2dHeOqEzn5VHU4vkIwdYduAIXTGdZGH+tLFSnWcj6FxXeT69mvGbPebnlMTOteV27iy9nVq3Efx2Ga/u7vS3UVNXoRvXfgKvX/7A76y6Senu0tzGq+1f8r29cMGQ/CfTgGyV9GIVRRwe0No7ManiXctGb89vto38fvRxXVWKvJS283Pt3J2lSEGLizIFP5rPEc5r/wveGy5hbS9QUPoVHWBFxxjTwYKsghFXiiYmCg6lKdT13UirX0okTihxu60NsFjRhGwWPcA/QdbJ7T/qUKQRY7VlCL4XQj+1OcxYJHR7Lm/X9E6dr7kziIfm5oU/A6Z8+fZ6LVaaYopHInP/nuwiYnJ7MYUOk1MTEzmGMlg9ryCU4U4OLtujT+Po4CcgtNpR5S4s3D0xP0ASBbiCPTXbuC4lN19sMuRz0Hr3M4JFVV1mu2F2JYF+dWJCL1eJxHn6AKWNBdLEopGbk1BSXfdaV3bEaX0ga3FlXrMkWw6g+lMQRCQg39GDzWTjdkudAqyhM2dvYhUZPAcfyJWO7zs2Yq/4qilNmt7wVfBsdjU5aJrTFqRbMaJtcu1Ytxi5mxgUaHCgrz9WKU4l9TN/n5Xulu4ct6utEJBJpNnZHj+XCCpw9dncRHuc2ps3Lzk6LjaSqLA5qqJO5JvXNzE6tLUBNd/XHiAAofxe1hVnDsVgX+cl7xftMfGzEUpWGVesjvZ655YhMRQwbvg8U6S/RHQoePlVDqVgSNthJoM4TPcePpc5tvKivlyU4S9Xg9tntR7bNFFNHGU66TTNmbe8z8NXro2V4ksKYzxQMQQmLXprcViYmLyDmD2P8WZmJiYvEPRlOwP/dMdui47ZSSHhcShXyIrs6+ybrxuM1rlSgaWXMRv1bFvY7pkoU2DNwrm05Aj+eL/Cg72irPM3TgJmmsK2ZXYQGdcodtr52uHRs+9KEpz7zFAkpLQeg9aIL08stqzG0FMF+UlaxKLx/heRVFDphVBFhEtIokj96D07gEMsS8N4TSHAOcoqmT1GS5OR4EIZK+uHBk8j58L5A8v+3/tG/ivwPqs7YMFy0+ho5m0RPtxOrbjrtB5dMA3pfueLjw2Ca9d4h83/RlxUOQ+q6J7jK1ODxfMs/Hch17jioVWKpwn2FC0DZecXfQ2mRhueeocnTPBgx0RnuqaOZFbFgXcE3A6X7mgm4X+EwD8zebRr6nXL5Oo9k782WZz2dssLQxz60adZcU2rql9BI81QYFTZlVR7uJS68tCFLnGdpseDCXRin0Zy8U8J+Jgjsqk18lvOmM8E5rYfSPeazhx+w+2DC8L7G8Zzt3Zu6cJXdGItPYRasieZmWqELK4LwWLhF7k5W+OBjkRVfniiTCH9dQzwwkFeh250/1oFgnRkvt8EWSRO1uM/NybKvpY6A/w69YQTovILJ1eNzExmUPMvRGOiYmJyTsEJZI9t9d0h65bXVGc+UFQomg926b1WJOhMb+WqCufbmc++jjSOIV9FXSh87zs5qCe/bbXhc7hM8BB0KtIfORNY7C1Lwi/aRyjuEGWnKWzHTGxG6X5ObS+bCJ8+pcoCkkEaSinp4aOgsVtQbJJCLqKMFjV8kjl1WnbCZxeR+eQI/JkHNbdiFYJWe7i5Pc6RFI3hoj6CBtSUhc5GnVmbV/vGIcregKEFA018BZS6BVak3OjqtOmSom6fJliZyo01GebRdWNR1CXH2d98WtcUNOFTY4jCDr5tukVQd4pGJ/n6e7F+EnO8GVqQYEVv3389wxR0KjzHEQU4PqFO5iXn30ycUGBje9f+AsqvRMXmmUhwcqiNj61+iluXGo4OD3WGJfU6aws2J1zu4urD7BpnJkutlnTI0FEm8w+n5cXPEYUyF9kOwOKTiBLYanRGApFTytCpOvDk9xaXCEZjNLyzG6C9dP3GxcsEmTJtan53exwpO4bfQkNdcRb7FE0BkaREhIWGUYLX/c6h8/h1UUNVHm7UHWBefkWYuoZ8EBmYmJyWjGFThMTE5NZSnIg3aWT6I+gxhJoyelzmwmyiKg1o5/4sdGH1pem7ViTQpJpsHuJ2tz0WrMLNyfTOOjWe1IXOKjnfng+egY8V391X4TGiOH0+0NziLHGCr2uSihekrlCTh+QKlWboNioWC+MKNgkeErSXs8EyQPGuakGjmSsEwbFP9ltHXwdQbIaywRBRUBHtmvYvem/rWe15YarcziWP+UncRRbjVyfOVyW04FkTT2eDTlSLW4revgYHudL6C33kUvo7BvlHM/G/0WyOz0ny9uRPN4uvJBQ9CB7InMjHcR1i5opdetYxVShD7/dcFtZpFP73n2Oqc0PsaG0HYB3zXt5eFmebW5UiZ8LFDjTxXn/FH9/c5m6Ag2XVUAQIM8+9uciCxp2Ocq8fBsL8w5wTrUyXBEdDIcowC/f9Re81gDl7szzONfvTxYF/vOyAPn2bq6ofop5nsNcXvsmAGeX7eYza17BnzEBkDr2puJXWVuSW1gd+f5+0h4bdm8C6C47/9IU4bvNEd6qLuWHzRGaYgoDioZolYdzFI9F/6FWdE0n1pneDy2hoCkqse4Bet9uJHS8k3j39OUo0HyutIJAQ/TZbXy3NX1ifWQcQVNc409BlZ01ZSAKGa7QuCTS73cj2i0Zn4lolYk6bAgClLgtrCvaQbXbEH5XligE1NmdPsbExGT2YwqdJiYmJrOU0IlU6GRiIErz47tIDkxvmJo93wJaFLXzDQAEdXblfhM8xfRIVurdxbxk841rmyN2oxhKFBhNIj4T6hV3xlMCXXgcjohXbOsJ+BZnLNcL6lIvBIGv2G5lIM9YphalKmer7hKU4qWn0ONJkAgY3dIzvzEdHdllxeUwwtqFyAEkiyFeiXovuq4hSRGEwFNp2/WqNhoqLkWwGOK5MOJssOq7ceYHkR0z504czrAgCNhjv0Z2WXFYXkIPt5DY9z8oLS/mdJ32JCfm+H6uP3/sRhOgIW7nfwKLed59Hj3K3HB0Vnm6uKquGXlE6gOfzRAW5vknn9JCFGB58dS6ppcVHAeMoiqp45iiwFTxrkWpc2BVqY3NVeZQaQhZBJfVKNq1oWLszyXPbkwo3bIiQJ41wNkVrXxu08Dw+so8C5urbawuNJ43rGJmwHJNjgJFDovIZ1b+Gq81gEOOIAoaHovxm13k28si/76M34Umlg3/bZPjLC7oyLpviyTw3pWpvpyIJvk6DoTBYkMJm4UTUZWWmMqnjgRpj6skNehKaPSW+tH845vgUcJx+vY0kgikT7xp8ST1920l2hYwRM9pnNwGOOh0omfJtZkU4Gg4/TvpHnStChaJZ3qi3NsW4ZOHB1CL89C9zpO2F3lNl3mzpBDBle4YTea7aZUtOGSRcq+Iz9ZLlacegGsWHGZPRJnRyUUTE5MzD/PubWJiYjJL0BQVfdCNpasawfrO4RCmxofeQAnHSPRPby42i6UPQc+e+29aEATUqlUEl16C4MhDGKN4Tjy/mt2ilcftfh5kfALC89L4nJ/vRN4Wq4m40vN4ChZ7SvyUrQwsuJq39QokqzHgDHmqEfxGzJ/myGNPwQUz2ufREIni9HWiHL8bV7mA0vokAlHDbRJvhMhxxMhOkg2PpW0X0mR+p56FUrAArXwNw45OAfRoE/qx72NxztCgSxQQZWOAbi+wopx4BGfyNyQP/QI1cGBEQx1BEtMqy0t2GTV5+t19ETXJHb3LTnc3xo1djnPNvGfTlvmsAbx2icVFkxcRfQ6Zcs/UihT59tNXlOSdwLUL9gOGxvKeZd0Uu2bwfniaGHJWjhW2Lwk6Hhu8b3k7y4rSn0UclswhZYHdEB4/vNS43l5Y+RofW/4nrltm4YblMqUegY+urh+x//TfitMisqAg+4SdLYtrUhJT2zukkf0znIZBrSat/WLfsaz7vmCehU1lqUJ1MRX2hxU+GpIQ3XaicnY3a2tM4X8GdCK28U/wtDydGV5f/4fXCexvydJ66hGtMvcFFFRRRJBF1BLf8LpoFpmgLaEheh2o+R4SIy6Nb9vshO1WBElEGHSHxgWBh3oS/O3xIEd9XqNquywiuu28ZrXz55BKmdfCJfOM88Rj6afQZWFlwQHqiiSEPPPZzcTEZPKYQqeJiYnJLEEJxejd1QBA/+E2om199B9sJRmKEWnrQ9d0et9umNY+CFovaDM3sBPyyvhd3QVsLlnD8eWXEyvLEkY9gh1ly3hIE/i9JtA3zgjdp02zU0621HTSXbIgbdnDS77CXt8G9OIlJCo2sMO+lu9d9jZ+j/FBRvIqieXVgiih+Yq5Xzr3NPQ8B/1bIbANbaAB7Y1b0HoPIOhBnMUSevAwyQM/I7H3+xBPr8a7M5LHA71lvJp/JX/Mfy/ohpNZslvQBg6h9uzGIo2vevCp4iyWEUXjN2gZzBOZrH8YkmH0cNuIljpWnwVXfkr4svkhqp5+YaYvKVIfn7pK7tON39ZHvr0zbZnP1sd1S3TOKp+8sOixiSwpHBi74ThxWkQqXfVjNzSZNGeXvYpNFllZaqPcHaDEPbuiGqaDIpfMihIb+WOE6dfkRSn3JLmi5lWWFqTCwkUBvnVpZ0Z7vy0AQInTEA0rXCfw27q468rb+dUV36HKq3Lj/IdH7Cdd6PzAao3b1m/P2hdrlnlOt5z6raXcnAIBjHvU3oF1ae2r3Mez7rs6L8GG4nQBciCpsWcgydZ8H4kcivCAovNQR5ToBIr8JfoycwGHG2euEFp3aT57gwkarVYaK4r4RkwedlI+HMp8eGqKqzzjzaPZbmNZsW1YHH81rLJHlOkvLyBYZkQJvKjpvB6IE1J03ns4yOseL33lBQT8Hr5wJMhvWyPcsiLAV8/68fD+S90iHssAq0sjRJ2ZeUNNTExMxospdJqYmJjMEjRVo/WZ3WhJlZ636lHjCr27Ggge70RXNJKhGL27c1cRPVVEq4we75hRoTNcspAG0Rhc/cBbRdThzd1YkvmDbXTHp8nEOKvsOLulGgS7F8Hq5MiKT/FPbavZalvOvpJLOepdS9BfxmXVT6FbZARXARa3lZi7FMFXhWpzUlkytrNWsMzMgEVtexG1/cX0Yyv9WJI7UHqzF6YQXAU0xu1ENYm7Qkvp1RwIquEGku0iaq/h8FLr70LMUSRoKhgqmmTR9iMIRri9oI/uzrTY4tD1+PBrSQwR0E//4LA9Oflw79OB15aZq89n7eEDy95kcX4rRS7LhKpNOwfdbS6LwPLC5jFaZ8djkyhyWdJyFK4tt5hh6tOMUw6xpdrC+TURvLYIJa7Q6e7StCOJAjcv66HcO/o5vjC/m5q8CD5bNysKj1HkslDksvDl82JcWLEdSRQoHFHJ3G8PjLq/29a/gFVK5cWVRI18p0yRy0Kx28Jn1zzBOWUvcN2yTIekNUvuTo8l83ccFdbQHjciEJ5tXw4jIkEccoQ8u4zfIVMwIneo15rEbUnPiRkbjLb55/oQrWNEk4TmyPBakEQeTwh0JFR+0p3gW50JDkcUBFlCdNr4XVvmuV8fUXi4N8G9QY3KPJ1yr3Gtf6E3zq874/w8DL9PSIg+F4/3J9OuX7tjKr8OgzJCKL5+wStp+y90gSDorCpqoyeHc9bExMRkPMyNK7GJiYnJOwBd0UgEIvS+fYJoWwBd0wi39BI83oGuasS7g+jK1IRB2vIzC8h4nC+idb2KrkydA2ks3l+xgXs141b0rCYQtLmNFVkcEwOLLzTdmVOMxxphRUU7jy78fzy5+Etc334NXzhbYU11H38bfhcPOc6ntsoYiCoONxtcv+BPeRej5eVzo/u/CftL+JuNfyZRs2XU4/x04X8ieIqn/f1oA/VoA+muZz3WRnzPt9H7s7t31LzK4b9fC+bRo9pBT2DxWBEt+rD7U+vdh9v1+rT13VksYfHaUJseRCCBNc+GEG/N2T4iexC1RpLNzw0vE+OH2ZsomLI+jRz8T4SoNrV5KacTqyRQYs8ME7XLUc4ufZHLqp7kyK23c8dV9ZR5xheS+o/n9fOeFTIbKhLM905ucupbl7Ry5NbbuWpR6jv44IoTk9qXycS4vK6TT6x8gssqn6TEGeDiOiuVeZni/Tk1tjlVpT0XRS6BL6z9BZfMG13ULXH0saqoiTxrgFUFOzhy6+0cufV2vrzhp8zzHuZDq+HorbezttzGmjIb8z2HRt3fqoIdaa9tYoIXP/RHjtx6O4c/dTvzvcb2/3XefeQ75bRCRl5b5gdvkRIZy45G1lIfqiAhLqUl4kUX0idTN1SIvPaR+3j9I7+l3GuE1K8qbsNv60pLEdk3GKc9oOh87Mjoz0jTVzZoaomV+PhBQ4iYagiVbwQSHAolESSRjsI8ClxWFhbacNskvn5JkFWlNgp9Mj1JjT+0Raj0JigcTOnSEFXZ0Z/gvrYIO0NJTuS58ToEXCOst00xjd+2Rjg2KD/4HTIL8/al9WlJYRS/rYtydw9PRM+ACpHTiCQZn62qqmia+XBsMnfRNA1VNca3Q+f1VGAKnSYmJiazBH2wymTPWydIBqPoqo4aTRA81ommTO1DjM3enrFMCzWAmoT4zOSAE9wFHD3pbQUGi8EgZgosDd7SGejVOwsNkfXFuwjpNv4QquPyhVb+9ayfcHXtC1yxQKGqSKPAHwBgl2slEU0iqkuEPPnYLBI7rEvJs/byB891uQ8iiPy6p4a3aj+AYJ35cGatcyvCKJXIo46StNddihV0DasniSif5G6exkkAQVBxeDpRu3chxI4j2XS0UPYccoLNTbvoh8gxSIYQrRKCJKA0P8KxuCvrNpNhXv7cESwny6JCa1puv1ysKDhErX98j83z8jr50qanePeCA1S4T0yqX0MaS7knnrnQZFq5sPJN/LZuBEFnif8Yt67dy6LCzA9/eXGMs6szJw3nGvP8xvl//cI3Rm0niTorCvbnXP/+ZYZw+YVNh/jqubsQhIkJVQ45ktWVWeZq4kdXHqLWl7oe5Y8zfePBgRqea1/Cjv5LAdAEX9r6v159gBJnM3nWXj66ZoCPrXqT9cW7kUWFMu/knOkBbW78UJNZChABIEs8HIVVpQIbK5J89/IGPrz0j9yyopPzaiN0Jozzpc4fwJ5lLiyoaLwQg3yHhseaOkZ48Bn3TwHjvrqgIPP+ctMi4xwS0PhZcwjBP3X3szMNu92I3tB1nVDozHeem5y5hEKh4RoVDsfUjRNModPExMRkljBUeCjU0IWWVNEVFS2hEO+ZOifnMKFdaS8FWUTt2AZ6Ei3WlX2bKSSy+AL+atNHM5bf5SxGsHuILNgCYuohWPCWcMCeN+39eqextc+Dw+nm0pUDXLjWzl1X/Q+SqFLq6uM/zrmTG5dvo9zbwsH4Jp5JLGXrR1/g8kV7edq6nh9dt4MBhxunReBRbVXOShbbVv49/3xxiC/0XkS8bF3WNtOJ2pM9ZB1AcPr5cPJjzM9PDWhfHChAOf5rJL0FUUh3COnRtpN3MSWINhkEheSufwAgefhniLKC1p0uPOhlKwCIlq8nISTRB44AIDtkZKeFpN3CnvDUDAwLXRaKXWe+S6TWP773uDBvH/P8Y6f1sMsiKwoOsdi3h0srn8IlhyhyTaz6/MJCG4VOQ/D5yPIXKPVY8Dlk/DZzMDsTLPXvxmsNALAgbz+XVz2BRdSHw6WrByuBl7sjfHjVxHKm2rMU0TmdFLks3H7B3QCsKdxOxQjnqlUS0q6NkqBS5c79fjeXvAzAtfP+zKVVT024Lw45ituSfTLpmtpH+MJZh9g8KCx/fM3Bce3zSLCYgaSNu46dDUC/WosuFoFgRI+8q+ZRwHCD3rbmbs4tfYEaj5GP+YoFmQ7R8dCrzl4nojDi/IuMyCWaN0KxTLps/Ko1THVegm+dexfvW/gAedYAn1x+D0vyu4fdrZWePlaXZuawDSoaz/bF8do0blkZZEWJDZ9DJjA4Yf90V4yKPCu1vhHPtYIdRVzAxuKtgJHGQNcFXvGkV7AXJpD/9EzH6025k9vb2xkYGDCdnSZzCk3TGBgYoL09Zb7xnPSbPxXM5BcmJiYmswR9yLU5A8/IeiQ9JNZZJKA1dKM7i9GjmW7PKaWwlhvKN9KsZb7RJzRYePbHuCzYzrzSRQitRpXpnuq1HBIsM/LZvJO4v1lls89J0i3z7orXcMhGbsoIJXgsx1EdMhZJ5trX4bOlXSzL30Vf6Bxkp0aFu411ZQUE9XL+en0bQkM+ejjTDfy2Us7/W/RnjgU+zG+abuYTvDrTbzM3kpWDESf/tGGA/3rZjq5DXBfRSUD4MHh8ac3Vvv3gnvpuWD0SAklIDA7yZQk5/iaJk8Lwny68iSv7mznhWoYldgBt8LcqWg2duVevRY1PzUBwQ4WATT7zB00FDmXcbc+pbOV3b4/uLJ+fb8FvMyaLhhxt8/NFujJrjuTkfcv7WFe0C4Bqz3EWFYqUuRXmTTIM3uTUEAQdSTRSObQFk1y/NMKPtsmsKGzEJiWB8nHvq9Qjc6JvcgLadHBODRTYO4ZfX1ircM/bxt/vWSHQEBA4PpgqWB6H8xmYdB7ZPGsvspj793hJ5XPYpQT/I67kqurHxrXPQGLQ9TZoh365+xzq3LUsdz6CQCjNdTp0/xviHzf9nj/sfT/B+MQmmrunOAJnKhFcdvR+4312Dvqd3DaJap/Ennbjs39GthPXksiijs+WuqdbpETad5tnDZJnSwDpruagqtOXVNgkw6qiZs4uj/MvL66lNZD6bleX6qwpTe07xmJCSgmFoiEyWwRjUukr9SFeyrOjhQxBVbDK6NHZ8/s5nbhcLhwOB9FoFFVVaWlpQRCEKQ39NTGZTlRVHXZyguHmdLmmzsVtCp0mJiYmswQtOf4B96kg2mT0SA9Ixuy+178brW0rmtEJ9PA0Cp2ylb9ddVNWkXOIH+kyD3kquadggPxBoXOnv5rndBlT6Zxanu2McCjsxmXXWePbA4AilHIiVsQyWyNeW4T9sdXUh+OcVXaMh3rP50+tGjeXNvBcsI4a5wC/bCrlEwseoa10Ha5jzzCw8F28Yts4fIyieQX4bL38w4b7ua7hw3zSV4kemFyBllwIVid6IjJ2w5OIFC6DIGwpP0yNbwMtA0mSqo5u96I0PYJU0JTWXu8/hpAnoKs69kIbsZ74qZ+SooBsiyLEUiGhuj2PxIH/NV4ULYCuo1Awn0NKAYdr/oM9YR9f1Z9HT/aila1ClhVk7SjN1qpT7EyKpYVhfLY4f9rnZkWJjbagSk9keq9RFkkgOcNuqOVFoxd8GsmWsrfwO67F5xCp780+2N5cFSdv0A04xL+e+zp//9xZHOiMZ91mCK9dIs8m8d7Fj1DsMCajXHKIVSURVha1UznJMHiTU0cUdFaUCLQF4doFb/KjbWexqnAPCc2KJK5GHXFPG+08rvULnOjLfRynRSSSnD6hzGkRqfFbhs/FmxanOyPPr27iD3srSWo6n137An8+dhavNhh5Gh1ydNr6BZBnHeWDAdyWIOeXv8BZ73ptVEE0hUR/Il2Ee6JlKS55AbeveoaxIuuLHa18emOE218ZPT2BKBj5JjUd+qIKzfHZJ3SKXidPeb0MqDo3DQqdzSrMz7dS5BIYqc3+V4PhHK/2ZmYbtUgp0bfY0c31C/uo8y/k849XYLeIDMRU+pIqui5Q6opxUeULuC1BhAt0fr1nNdubLVTmifz9phcpcaaeNdsTiwirLgrtABY8VqMPIUXnUIGPhaHBtlYZTKETAEEQqK6uprGxkWjU+G3quo6izMxYwsRkKnE4HFRXVyNMYeJrU+g0MTExmSUkAhMXaiaD1SuhtR8HPzgKRRJvfnN4nZ4MQXIC1qMJ0r300nEVFGrUQRuRkO64ZKPLFDmnhT+2wj9Wtht5CgUHH357AbUukX+qq8Ml9PB6wAbEeWvAwhd3G47DG8pFvncoxka/jW09Uf62qp+97jpcspWvajfzXHv+8P4fOM8Qq4scbfzNphPoj01xVXBRQsufh9C+b+y2JxFwlEEQnHKEG5aGufMtB/2qgmL1InceRgllFgMSJAldVbCJbxMTlsIo+T/Hg2STEfUO1KaHh5eptjyk5DGQZP4u75/5vvLv/LL0czTG3TwRKARAc0LSV8Pzviu5SoySPHAHj1T+2yn1ZSQOWWG+vwtwc15NlAPdDl44Pr0DqAqvZcbdblWe7nG3nec9zMfXReiK2GgbEImd5NzKs8v806Z7MnITnlP2Arcsr+PfOkcPyfrgqiT7umTybR1pyy+oPEyRsw+XbIauny6WFoZYUdTGKw3zWVuwncsWnDcsRt+0XOT3e1ICULnXQkOO8/iCml5eOJ7dseKwiCwvsfBG8+iC+KmwttzCdy5+gpv+eAU3Lovx7nmPpK0/r+J1avzz2ViRZEX+WwQTHr7NWs6tkahxZ88ZPFWMJ6enQ45kOC9zoYv5w07OITREgooNBTfjycD5rvlvcvsroxfb89plPrg6RjBu4Vdvwev9s0+Ii3gc/NOxIIKgc9PgG29KaNy4LITXGufJY4XDbUOK8T1cM+/ljP34bYb46bZJLMzbhySqLPfv5IF5/0BvVOCtFkPkFAR43+K/DFevv6jyGdojfpYW5tPQ72Jd0Wtp+z0SnIcoaCy3gyYWM89zGIt0GUlV50ASFg62U62ymap4BKIoUlNTQzgcJhgMDrs7TUzmApIk4XA48Hg8uFyuKRU5wRQ6TUxMTGYN8d4ZGMSKArI1ihrpQCiSsOhHGPlIrkW7puchUrKAmuRnRYthvGYHQUCwe9DjYU6IlvFvZzIhHmoN841FVuJCDbfX1/J4+wAWQcBvKeXGMg8vdBkPzd85EhmxjUZnTOP+piFR3IrV46B50fsIyiV8bEEql+FC3zFiQi12vYGb6/7E/rLNFHYdheJF0Hk41RFJBnXiQlq8eguqZMPJxIXOXtEPgN0S5/oF23mj9WJEQSLZ4835gCRaRLQEJI/fDd5vTfiYJ2P3aeidT6H1DX4WspWk1YsEqGWreSpQyN8W/DsvdfnJk1MDGFWQ6PIs4Ns9K7m6YCvoMf4cKMl+kBFYJYHEOFyTdlnBPSgorCttpc7v5IXj+WNsNXmuW2YhnGBUt9tkkURh2HG3tNjG0Z7EsOOu0DGxA3529QNsbT+L9tBSnjqSYEuNja0NcW5ZJfGuBUcocmTP43rlvO281HgVWxsVYoqWVR//q2Uvccdbl+A8Scg5u2wrkqBOuLiLydRx68o/cTxYx4qSxUiiyj9ufml43T9seoIH9l6OphvuvgqvQEOO02pL+X5kcRPKSVENFklgbbmF6U7hec2iTpb6d/Praz2sK3w9Y325s5GL5sX4m7VG7sql/r18bP1aziqvx2+fmUKFU0WSwpzrIloJVo4Co99zVhe8Qbn3AloH0vPz2mURQYBoUqPYJfG+Ja/SHirmV28tpTOuQrkHeoKIDivaLHAg9svGHU3XBUS7BS2WJCLpfHzRS9jlKK803YTbJnF+rcTjhxKsLLVR6z2SsZ98e4AlRTZK3DAyXeZVde281lLMgU4RXYdNVRbmeQ+nbbvE38B5Fdv54VvXp+9UcLOtu44qVx/4IazV4JFaWFhgZX9nnKf6EmypLgbAqWmMsw7VOwZBEHC73bjd05BXx8RkDmNm9DUxMTGZBei6Tt/eprEbniJWjxUBQyyxuGT0UHrYmqBNj2NLqVyJ4PTzlD7+205csrJ93XsQvMW0mHP400ZU1Xm8u4gfNdTyncOGYzOp63zz4ABfPWDj4OAArzmaOjceag3Tl1RJ6jpJXac+uQpfvsZXI1fwjYu38r0LfjD8r8ZzlI/sqiAuVGGRknyNG0Gy8OPCzxri5iBa8dKMvgnWsYc097muQxEnVx13D9UAVLrqWZ6/k/cubeKTaw6QlHK7Tm1eFdlpQe8/fsqzzxa3FWngUZSGx4eXRavPJWYxigx0ewwfy1OBQqKaRHsi9T41RPZL82lN2EjGm9G85YTUsXNzXb5wfHPcdlnBZY1wcZ2Nq2qe4vKa6c2t+p/n30+df3qcbIsLU5/bx9e2cW6N8Xp+vpX1JzmLxiLf3sk1tY/w0VWGsP7Xq49R47fy00u/y7trH865XZmzkc9veIt5fgsuq5RRu8thEVni382G8o6MHIduS3DcLjaT6aHQ0U6Jo4NrFxv5V9cXp86bBXn7KXAaBaeWFdtwyNkFaYsksLrgLWQx87qxpdrKpfN68dqmd0avzBUAYFPxqznDv8+tbKB60L3ps/XwvQt+wIbiPdPar+lA0XPnetsfXEVCXJhz/RCCoHPz8vTfnkUSuHkFfHiN8fldv3SAYnsbRc6UOzzgstNYU0pzsX+SvZ9aRk6j9wz2yZ+nsMi3l2r3Mc6qCPC5TRG+cvbT2GWR6xZnV+rzbT18+ZwjbKwYQBFrGJISVhYd5fzqFm5eoXPTcrhsfmZRyzJXC5WuE2wuH/msa0URSmiOeDkaNITpnf2bUMQ65ucbv4XXA3GuPBLmyiNhOiXTo2ViYjI+TKHTxMTE5DSjazqh+i4SfdMXMj6ExZka2Mh2Da1v4i64iSL4K+nKryZcuZLABAxJP/DP5ym7j6SvgkbTyDStdCXgd02Z+dd2BhKciIxdafrrhx20usrIKy1kdf6OtHWaUMSznRHuaJyHLjhxOy2E5l3MbwcWITh8w+06/Cszd+zwIVgdox67VS6g31poiKbCBB5rBIE21UWRy0KeNYAsKlxa8wpea5iEmFvolGnF4h48zinq7zZvEqX1WWNXg6Luy67ziMhGiHObnNuhqSKxRzHWx9QB+r114zrme5YcHbON0yKSbw9RaO/mexc9iFMO47VMg9VyEJ9DxibGWV/aMuX79tgkVpYoCIJRsGlJfhPvWWoUebp1faaoOF4uq3qKijwr+bYg1ywaO3eh19pPibOTCq+O0yJiO6l68OJCC6KgsaVs96T6YzL9FDtauWHBX7Kuqyswvs+NFYkMEXuIVaVW7HIUhyXzOrWlqp/r6l6hyDl1k41Z9NRx5bbcUpop/pe5pjav8kyQ1HPfO/7Svpzu5IJRtk59eDcv3oY04sOs8Fr48IrX+MSq51habON9i17AZQnhkGPD3/0TCZGbjgzQPksmacMjJpl/M/ioGRJSEQLvWfgXPrb8EcqcrXhsEtfWbR1cM9R/Y/t8ew/rinZz08JXiesF6KIhTi727eey6pe5dc0LfHDZm5xXsTejD/mDRdrOL986vEwX3IS1CgC6Yi4Q3LzdV8ue0CXU+TOvq+PPqGxiYvJOxxQ6TUxMTE4jmqLS9doRQo3jzxN3Ksj6cQQMd4IkB9FjmbPuU82uxRcRsLr4aMUmJpI56HENtuoSDUV1dJhC57RyYECjPpwpaLbHFJLjyEH5YEuIJlsx3zjvSWxyuivv5y3LUHX4xoEB6hNLuf3SP/Cc4zz++7JGsKQGov2ezMrF0cKlbFv8Nwheo9K1kF+b0ebGTR38P+W96IUL4aT1gie3UNi38Fp6FCvVvtSjULmzEbclTELKPUDWI4cQpaHPavKDWNltRaQLfTAPaKRyMxTWcWf/EmKCA4oXUa8X5dx+P5UcjRuCaFSy8039uuF1dQXZi2dU5lm5vPqZrI4yMNxoAB9co/GeBX9kvvcQtd4jiIKG1xrIKeCcKjcvT1Jg72BFwdgi7ET53KYwhc4EH1krcONymTJnG1vK3qKuwMYNC56Z9H5lUeEzG7opdXWwqGB8w+8l/t1U5SU4r0bHdlKMcmWeIbgu9ZtC52zFIUeodJ3Iuu5DKxoBWFHUk/OqUOs37oA3LldYXJT+Gy10RKjLO0CxK5Z129VloxfEycYHVotU5aW73dcUje3MLHRkFiR0zsH8sN2JipzrGsN5NEcrc66PCmuG/67zHuR7V3ZilYxvtswjsLF4Kwvz9rHtQ/9NXd4BnHIIpxxmc5WNeflWvtsQQtcFTow9TzgjtA6m6vA5ZO5uDSPaLLgdqXt1jecoJc5m8u2dnFurs8i3F13IRxWrQPDwZvhTJMVFOGyFOOUwS/27CSrFqBj3oDxrgFJnM8v9O6nxnqDaXQ+Cj5FSg1UyjjcyvUdL8jy+tOszw69VIZ+uuJPjoTKunr8z4310mHV2TExMxokpdJqYmJicRuLdQbp3HCewb2bcEmrLwwhJ4yFTQEdXsw+qppJddh9/dBWzbxJFWxp0nZfdxdPQK5ORvNF36udBlbeXRb5MF0dDJPW9/+0eKy5LkHrXPG6c/zCClAq1dvszw88b8lZwW8cWYvlGiGF/wbK09YK3lEJvLwVeC13+lcS81Wnrk77a7J0VJX4gXM2BmIdyb7qjz2sLEhdyiwpaYC/CoCvqVIQ/ixOINaT6KjnYU3YVeyIu3hbmodh8HEzmzon5u/75NCcN52m9bT6P96VE0Y0V2UeDF81TcMohVpVmD/U/tyaGKMAlNYcz1omChts6dmj8ZHBbjf7WeQ/kFGEng8sqcW7lITaVN/HJ1S/wdxufo9p9nApXAx9a1TtcTGay3LLocRxydLhAx3iozQtyy9I92OT091nsmiWKiMmkqPMZbuRF+U05rwv5duM7fu/iNzinOn1CyGU13Gs2KfO363fIbKyYeFqHRfn9fOviVHqaNWW2nELtmciBgdFd7sdC2YVQTayiMbZi+LVDjnBZ9cv837X1CAKUuLO7wF1yPx9c0cjSotQ973B0dhSGOTJYCb7MY1zDdaeVSk/269anVhu5W6PMp09dxDM9n+HeE5vZE7qQ9uQK3HIAgM54KVqWkk5eawCvtQ9NcKMLeaP26y8dZ6W9VnQv6EYu0bNKXmVlafq9uC1pznqbmJiMD1PoNDExMTmNxHtDRNsDRFqmNyDHU5EAUUBt34YeNEQMQetBV6YoSX5hLYIv05FHyUK+j5V7tcnfbr7HxJ0sJhPjROTUbRJl+b2IgsYz/eex6pVNw/9+UZ9yAr3YHcVudbJiUQyrFEccDEsX3EVI+RaS1WejlRkh7IFF1/ITy5X81XqRvrw67lr+HT6i3Yogp86HWP5Cqt315Ds03rIsI2JNz4cWsRdCwXzjGPm1IBuDMsHm5oGeMrpFHz+77Cdp29R5D5CU7YPtXOxa+QX0shXDIfRK2ytI8UFX1CkoncLxL5HY9wPjb6ePhOTgI+2XAvC1juVE7IW8FMpdTONA1MWRqBHu/kRicdq6L643nIrnz0v/7awr6wTg3Yt7uXmFzBULU4PULTU2/uPsn7O8xMY5Zdnzca4qlTOciBsrbRS5LGO93VG5YaExsLbJcYpcMs4sob2TYWWpTKG9h+vmPcRy/06W+3dikRJYpTifX33nKe+/0NHOfO8hrq55fOzGg9Tk9XBhxfPYZQGfQ8ZllbjrhhN885yfn3J/TE4fxc5OLJLAqoKdWKV0MWZZsY2KPCvLi4zIjbNKXqXKm0pVc9F8G9Vu47dpkzOvxR9fH8EhT0ww21BpI98e4d3z/kxFnpVlxTY2Vk5fNfdZhWBcv3f1VY3abH+O4m0BdSHPd65OW+aUwlw37yE+ulYgz5b9fumz9fGBxfdT7Eqt3xM6/RMYgizSaVU48bnf8Nh7fgVAwO2kzJU9HcnZpUa19bBawNf3fpg/NK5lIGnj54cvoC1WhsNiiPJPta3JGv7vsfQjiwoqLo7GriIpLgLBm6VjDl7pmpe2KKSV0hV3oeiGIPu5jfVp67eHTn9hJxMTk7mBKXSamJiYnEYSgekvMCG7LAh9TyHZjCTuWv8h4//O56bG0SmI1Nduoq8yM8eiLkqc6mP+7PBDmIxFT9KCLnj56v4EjZHk8L9soe8bi43csJrDcHuES1bR4/BwzLuGxvwNADTYallUGOPLG++lJW8BP++ZR22xDbxlw/tp9y3FZ+tBFHSeilShnRQ0GpOcIBoDpoS7lFjV2cYKhyGISkJmSKYoaGiWwRydrkJ+GV7D84XXgdsYFAu6jhYyCnVMNnJdtEhGMaPB4l9Kfh1x0U58MI9aUhd53HY+jfHcuUJHsjOS7popsHdhkQS+cf5zacvne42Q1Asrd5PvSFA4Ih/gyuIodjnKZ9Y34LH0Zz3ORbV9GW/57zfvocJ7ao+TNZ5UyLpNFvA5pAxBdTLkO3RKnNmroEvi1F1ZxpP3cIjl+YexSAlsskB1nsRtZ4W5uPIvZrGhOY4kKFwwz8j367Gmn1vlXp1/Of8EKwuODS9zWVKCza3r9rC66E0A7FLmeXlF7U5sWZaPxvtXtFKT1wHAWZUaF9RGme8LTGgfcxVN8IPgoDE8upuwI+YGMidp4pqT3nh6ITxZNL6vL6x7FIcl93chCholrlRuycPhBMIUXMtOhUiJH5dLxWfrJd/eiSjAQwmBYmfPqNupukhUTX0+GiK6btwBdKGAI8FC4lrue1RS91AfruRPbR9CFQoy1itC5uT41p7NqLpIUjPu2++pe5DaEdEenTpQmEU0NTExMTkJU+g0MTGZEnRdR1fHV9RB13R6324Yu+E7gERg+gsQ2fMUkicexu4fFFV6jfDiZNMzCJMQOg+c9UEE/4jcVgXVNNrz2JdnLIssOh8KawFQLaMXkjE5c+iMS9zfuZZDwdEdF79tW8SSwTyEdxZ+jF8t+w77vRvwe/p50b0R0W5HsHtQCkr40obfkW/vZJtzGbedm+Rr5z6J4iwgWb2Z4MKreMBxEQCfWvM6e9UyrIPhwHqJUcG9Ty4g7jLyeyqykyPuVQh2L0fLDefkhhwp2nSr1eiDo4AXB/z8Q8eGtLB5tcUoSCJOcgAr2UeEgEsyfe5aXhbTJwq+3bFk3Ps7GE0Nym2yiN/WxRc2x1lVsIN15SlXZ43HuO6uLnyDT6x6jkqvMSC/dIGVz6x+AoCbFzyY8zgfXvZomonVJotcXPEsH1kz+SJCF9fZyLMGhl/bZYFrl8SpyjMG2JIo4LVPLmS+0hvHZ52Z/MfjZb7XCCV2W+H6Jb387dpf4bEMnOZenYEIM3vvKXG08l8XPAqAx5YuhH1u3U7eu+ABVhakcg5eXr2VYreF5SU2Lqt8CtfghEuZOxXdsbrMxh9uPsi6wu04LRObMlzka2FLyYsArCru54Lqo9xQ9+yk3ttsRhMrQBghSgp2gtpCEkLNuLZXxTJ2hD/NqwOfB2Q0sZLeRCE9sXSh0ykbz2q13iPctvbPo+6z1J2aPNN1AcE5vgmr6UAvyuMfAzpl7hH5OP1Wft4cptAxQugUMvvYlSjLWBZVbQTZQkg3ogj+3HIuT/b8I2AFwZPWNqG7eKxlBc+2LeS+lo8T4EJ0cdBFK3iJapmO2idbjPteIGF8/rKo8OHVKedpmUfgPouDnupUSiPRaUWwTE9aFRMTk7mLKXSamJhMCVpSRYmMHRalJRWO/+4V2l/cPwO9mv3Ee6df6BRDz0MyjBQxwlEF1RCiBH1yjqbHnUVodvfwa93ioFeysMfiQqtYztXlmxgoNsKZuvKrc+3G5AyjOSbyjYNju9K+fTiCOFjV/FWlhu90LqLFW8vCvMP4CyxUF0WJla6hv7AQn80YiK0s6eZjy//EUv9uZItIt2seB+zLsOcb+9lc8jLLS0XcNgUK67i/6KMAvK7X0e00BryqaCGBhWjZWu5PrgegzJ1dPLDKEC9eQdzuR0Ukqkk8artgeL0eM/olSJO0dI5QCwWHnyZLJff1pw/M4/r4H9H0ET7Lap8FWVS4Yt4uAP56jVEkRRIFKlyG0CkKGgvz9nFhleGsvXZhM7XeIwBYpNxC9ck5LVeWWrBICRb5Jp9j+Na16cVR7DK8f8k21pYZ16eqPAtLi+RJ7fvcynoEYXbldBuq8l7s0in3BDKKd5lMDSG9klMpFjZRHHKEBXnGc43HmrquLC22cVHlM4iCNlyMBQzB7EtbOllSpKa5iy+q+Asem0SN38rvr7uHy6qeRBJV/I7MCtSjUeVpHN5vpaeXC8pfoNQ59yqnj0V97DzizB9+fSx+Pa3xWppia8a1/Yn4Fn559DwebFpHP5vZFbqat/oWEVRsIKSec4Z+twAVY+Q5LXGmh4TrU5SKYzK8aHfwam8cjzV1Xb9lxQBxDXzWIVHdiipk5kJ/vHV9xrJjoVKe7LiChqghdO4LFPNg02rCwmqSJzk0Fd0y7Ah9saOOfQOrOBI1Jhmj1NEer83Yf3IwZP1gfyFDbtuF/lRxrFqfwvaBJDfXRxD8LgD2FuUjyKbQaWJiko4pdJqYmEwJyWB0XI7Oo3e9RGB/C0rEzLMDkOifXqFTtMokDhs5mZJHf3vqOyyaxxuCBAggWRDsHjTZwvOSgydEC3+16Eq60Gl1F6NVrOCe/Hlj7tLkzODXDTGao2OH8PYlVaKUEBNq+ciq4/z9uXH0Ijd+WxcXLDrACU8dv3LfjDMvta+ra5/Gb+sCQLZZOeZbQdxXzHsWvTHcZktVH3i97Cq7hj9EF3N4xaf4c2Qe7VIxStVZKKIdDZEj7lX8qa8Ur11iVVFn1j4etlTR7FlOxOIbXvbDrkWE6y5PaydOQn8TpPRHr77ys7k7uno43+apUjEY1bcq3wiFvW7+E1glgYUF1gwRc13h69hlkXPKM6vb5kIUBCRRwCoJrCoZqqI7OddkXYGNSyqfTlu2pTrKqoIdrCk1xOS6fFhcmPt+cU6NLWcBo7NL38i6fDZQ4k7iMkXOaaMjmWeEMJ8G8mzG9+q0iFy5IHe18vctepgLqtInDxxyhNvOCvHHGx+lZIQwWWBP7SfPPvqFpyrPmlZ06IqaZ8/Y1Agvda2hT6khKS4BIY//PXwlr3Uv47HWzePa/pdHL0XVRYJJG/c3Xc99Jzazo8ew+ieEyU3Ulru60l5r0ukT4b7fbHzvebZU9M4Hlz6JKECetRdd8KOIlegn5UJXxIUcC2YWwzvQX8yxYCH3NZyTtvxgaD1hrcxw1w66Q6OqO63NoYEK7ms4H0VcyMs9l/Fc57qc/U7qEqpofA/rS97m78+N8/fnxllW2M+AojGg6HxNd3C8ppSvNEaM2UkTExOTEZhCp4mJyZSQ7I+ga2M7ZyKtxky3EjWFTgAtMb0ZKEWrOOzgJJ498fxE2F13LnsG9WytZCFtSy4maffwnAZHNdg1eAocsudxoHI1v9LMWfZ3CmOFrA8RVXW6kn7+9Ug171v4IF/d9BNWlRlOwwpXEzvFeWyTF7OuKOX089lS4ZxdBcvZ7lmOr0JiXdFrw8vXlxxjj3MFb0iLuXVLLze0X0NtmZudaiV3ed9Lu7UMFYFuvEQ0ic+fFWRjaWaVeICtyjz2idXExVT4a0iVeHQwVH4IYRJPUfZ8C9JgyjEhv4a7pEt5KpC76NBEcVuNH+iQU9BrDXD5QplrFmdW2LXJcdZXWKjLOzDu/TstIhVeC2vKrRQ6jWMs8u2lxp+9knsurJLAVQsjGfktr1+4A0HQh3MYrisLkmfLHbb7ibVHyMsS2i4KUGhvz7LF7KDaG+b8ipdOdzfOWI5HHLwVXoImZIo1002FJwDAuxaLlLhyC51ea4AVhccyll+34NVhd+gQPlsqvcH7V+W+1tb6rTz63j+m/a5y5dw9EwgknHTEy3iw7QN0qmcTUmxs66phb45CQyfTHXcN/72jp4JAwjHsQny0/eZJ9anGfTzttX4KRetOBdEq0xIznjErPKl7aKXrBIUuw/nfrpxDU3w92km5So9GswvFA0kbYcVKZ8yVtnx/fzUHgitpVy6gUzWiH55tT99Hc8RHc8TLa4GreaBxLW/1ZK96P0REM0Lny52NfHXTT/jqpp8w399FV8K4x/25I8p7Dwdpiql05rlH25WJick7EFPoNDExmRISA9ExhU5d09EU46FLT6poyVOv9DzXGW9e0/FwchitxWM9laLQWQ4g8pDTEGT6CmpoK1lMyOLgtxWZ4U1vyXaabJ6M5SYmAHc1efj58SD6YGjgqoK3AMi3dbHA386HVjYzz3s467b3SBeyoCCI4Ek/uVcXvsVBuZK8Gi9X17zAubU2bl56lEfCNdzdW8NWfRGNegENWj4WSeBDSx+nyl1/0t6NfTotGn+JVHJUSnf09Ggp4VNw+iYVGStZEtgsjSAI9BWu4dH+zDxop0KBI/O6+m/nPM66ksas7W9dd2hC+y/1iGypVllbGsNrTTkSr12cO7RWGuG4lETDEZpnl7m4OvPYS/1GOL00GCq6tqSJPFtK2PHaJeblp65tKwsO4nNkCp0rS22zLmx9JO9d/FxablKTqWXPgMgTHRZ2RxbP+LGrPUYBrJuW7MdnHz3kfJEvM41P9UlCGUC+PQAYEwTXLXib+fmZEws1fiuPvvf31HgyxdO5wUQuqAJxYQVhxcpjret5rbOGrT2bprQ3T7YuISycNeHt/Pbu4QI6NlnktF2FHKlzpNqT7hwu84gguHm+azPPtJ+FqtsACVU0onCebN2Yc7e98cz8t2/3lfNk60r+0HQFz3WehyLWsa07PR1Lx2DUwjNty8fV/T6lNGNZob0P0SpS6kkJs4IAf0ka507SzNVpYmIyiCl0mpiYTAlKOA6jCJ1qLEG4qQddSQl7Zvg6aFModDqLRexFRviRaJVxxH+DkCOkczJoFct5cTB/0keLVvCIr5pjDh/fz1K1dKcucUSyZSw3MQH47hHDnaQPnjtDgo9FSnBl9eN8dOk9ObcVvQ7+eul9zM8/kbY8zxpgdUUTayqaKHE28+iN/82NdQ8iOtx0Ja08Jy7nx8HVPKavIM8uUepsxm05yeU4GHLnkFWe7i/ks23pjpQj8VS110Pz34cgTnwIKwhhEju+iJBXQZOtmtbE1P5O6vyZhW0W5u3j6ppHs7a/dt5DE9r/+1d08tm1L+K1JbBJKVG13BPCnqU4k00WuXmFOCxMfngNnF9r5a9Wh9lc+mpG+yH3mTQoUhY5eqnNSxXNuLRO4IeX76AqzxjEF9rbWVOW7oyXRYG73pW7qNJsoNo9V8WoucHrvQrfPTLA450TcxpPBdXuRpYW27i86klqBkXPXGRcgyBrmPl872FWldr49KYkhY5u/unc45x8e/+vi/emhazPNVSxNmOZnsuRK9i4bedXaAzncSLkI6xaaQhnVvY+Vbb1XjB2oyycW6Nw43KZz2yMo0/hc9hEiLqN+1mx28Jy/660dZfODxJhKS+017Gjp4LuZC0d2uXc1fhpIsIG9vcX5dzvUB7NkQwkbbRFPewJlFAfyqchnimUJnUjvLwtOr5J8Oc6MoXr1YVvce3SGPff8MJwypKrFln4dWcMMc/J8+LM/95NTExmJ6bQeYoIgjCufxdeeOGY+3riiSe44YYbqKysxGazUVlZyQ033MATTzwx/W/ExOQUUaMJdC23aDdwtIN4T/oDvSl0Tq2jUxKDWPp/C6KAo0AnceLPSLap8xLsq1xDu27sr03XeRwLf5Czhwsd03Vew8yZZDI6OhN3X7x38VbscjRrYY2VhXtZUZAejj40xvQ54JrFCpur4hS5sh9XxwoIuCwpAW+kK/qNcN7w379JbECQJv77FTBckHFfLQf08jFaTxyrNL3pMK6o3Ua1+zgeawLLiGNZRBWXNfOxstAlc1ZFB5urDEH3E6tf4DPrd3Pz4lewibGM9kMMFVKxyzG8tpTws6QgyJbSl9hSrSIK4LYMcF5Vupj0gdUMF1cyeSci8Uq34aR8pXvmnzOKHS38+/l7EAWNxb6JOaZz4ZRDfO38t/jUqkdxymG2lO2gwJmaZNxSY+Oqmsen5FinByt96oKTlgkkhUxXn0HmBKuiTf2w9snWZVmPNRaby9v48SX/y/KijrRicTNJs2yIftcvTaQVvAK4edErJPVUpfUn2s7h/sYraI16ebjt+lM6bk/MyZu9y05pHwDbumpIiumObKcc4tKag6wufIMvnRtFFOCLG7ciiAIPurzsCk/v/c/ExGTuYI5CZwGapvGpT32KX/7yl2nLW1paaGlp4aGHHuITn/gEP/vZzxBFU5s2mZ2o0STJUIzMgBaDgSNtWDzpa4PHO3CW+aa9b7OVZCiGlpjC8H21G6X+QVz5B5DEv0PTdSxyM7mz202M1+2pwg4RDDHz2Cg66q7ZGzVqMkvQx5xvtcBJZ/CqAqPITra8cydXBQdYVqxysAscss6igj5sksL3LkgvzNXPUiQUdg4UcyQs47IqlHudqBp8+dw27t1bwf5Ohb4ECFYHIPCn3hK+5Zt4MTEhZIRmXxT7WwKhiQ+gh6grsHGsJ7OYjVOeXmGnznsQgM+vSX9msUgqVXkSPZH0a5rLIvDXS39LUv0IvdFSlvl2sdw/9sXh8uoXuGLhX1PnPYxLDgPGgPezq+9BFhXOr2rhhxf+CVlUWFZwAkg5kC6qOXEqb9FkjnPjrrMIq4bQubUnRpe2Er/UhUQUHRFRP/V81aMhCDpXVBuiY749e8GzyXBR5TNpr//5/Db+9olCrJLAdy+e26aIY4kbQYDCEZfEmLCaQ6ENrHZmhvfrWcTHsDL1br6BpI0Q63HzWtpyXSxF0IZyAGfepz605F4AluUfRRfqprRPos+JFhi7uFSTCu9fJfLt876XsW6Jfzdt6jXDr3eMyJfZGPadUv+Cio1n2xae0j6GeLX3XVw4crJAsLO8wLiHfnnDT/nyBmPx0uJz+cbxIJ8unfmcvCYmJrMTUzWbIj7zmc+wZ8+enP9+9atf5dz2K1/5yrDIuXbtWu699162b9/Ovffey9q1awH4xS9+wVe/+tUZeS8mJpNBicaJduROeD9wtIN4X7oo0PNW/Tu6KFG0rW9qhc5YCwBq30HQjYdgvfPp0baYEEFzosVkihnL6aILpx7WXe01BA+LpCOiYxEzHR/b+wt5pqeM+ohMbwLc1jjrymFpscjFla/zqXXHKPUMzg1LNjR/rfG3MLHrl2SXSRy+E8HuIaBMXuR0WES2VGWfwnBbc7skpxOLoLKqNPPzGHLEvnveX/jUurZx5810SCE+smo/TjmEXTa+Q6sk4LYYxV3WFe8fLrhU6kx3dOZZcxeAMTnz6U+kO63vbMpHxUq7UksC3+np1DRQ5jIKzHz1ggGW+nef5t5Mnqiwjtv3v5uuWHro+dOd1/DzIxeiiVWZGwmZXp3AFKcBGeL1vvNOOraPiD4i/6SQXphnJAvzDkwql/NotOSNL/Q7oMF7l+zJub43OXVF8KaL+06sRxusvg6gCz7clsz0LFfUTd2EgomJyZmBOWqdIoqLi1mxYkXOf/Pmzcu63eHDh/nOd74DwIYNG3j11Ve55ZZb2LhxI7fccguvvPIKGzYY01W33347R48enbH3ZGIyEbSEQrwn++BSCcdJ9IVJ9qfPQEfbA8RGEUfnEpMRbMNNvWM3mgB60CjeIug6RIz8b8nGqQtlOziJMGMTk9F4I5i6NwbIDHWL6qV0aStBGHSDZxlQvh7eMlzUKBvVef18ZpOGz65ww4JnuLr2LxltXuwW+Ps9Yb5zJEpXQuc9C55iQ1mAWl+CGs9Rbpz/JzZWGJMSqr+WmMsIpxTU8Vf1tritOKI/AiUK9rxR28ojcrqdU2MM3jdV2VhZavx9VpUFhyV7iF65u2vcfZpKrFKS5YW9FLnSBdzPbjRSDJS5mvjI0t+Ne392OcqVg644hxTF75B55oOvDK9f7EsN4MsczcOCapnHwsaS7ZN9GyZzEEUYTAEh2NGEQk5E0icBvn14gKRu40v73XxydwVfOHQeijC1RcBOB35bP6tKbXxu1a9Pd1dykhCN63qjcpPx/YgjK20bBXC+e/iTaIh0x3081/cl7m77Jne3fotHW5aT1CUebPs4xpA1JWRq2DmZkDI9QuczbUuJCKmii4pQwIHQWjTROO/iVPFC4O/QxeKMba1SHItNR8hP3aNEa5aASkFAKBhf5fBvdCYRbRZEr3FfFGQRClPip2i3IBS4aU9qnFf+/EnHSX1u3fHZ737UEDkcvWj4dZJ8nHLmWOPd85/HIglcOv/MGFOYmJicOqbQeZr5wQ9+gKIYg6c77rgDhyM9tNfpdHLHHXcAoCgK3//+92e8jyYm40HXQYlkhlHCYKEiQImd5EDSIdadmYh/LhJpmbhoGWkPTGkf1M4dw39rvUZ4r6BPXfy4+fhoMtW0xFLi+fFopvjXkfTx0Z0eYhgDyKBekdHmkXaZOLmLUKwpOsJ7F7/OAv8AxY5WCuwdGW0GFJ2ehEZjJElnTKPI0cbi/BacFgVB0JFElfcsNnJ/vlZwBfHB3LT6sV8gjrPKq9Wjora+bLwQRn/88tqNfdplkTuvuof1FTa+ccEr/Ot5b+O2SWwoDyLmcEaWOsYvvk4lVinJAl87F89Pd9OtKz4w/LcsTszBLg5WXrdJUc6uFlhd+MbwupHOUIuUoHhQYF1WLGRNa2BypiJyX4cRJhvWK3kusJSekxydqg4vB8p4tC3CI21h7moIkcyZaGfuIAo6/3bezoz8i7MFTSzn1w0fA+DlrrW0KJezvf/6EeuLCbJpOFQ6ocm81LmQlzvm83JnahLs6bbFNCnXoY4QElXG52qcCgIJGz89/hEGOMfop+6nOVLMmwPXAfDmwIVs615AffyirNsftssc9Bj3DEES0fKcGW0SZX6OuscWOkWXjdcDcdpK8znoN+6Zar6Hh6ypScDmknxedro5mlQzrrnqiJynXTEvc4GmcGpSIqxmiskAla4T/NUanfMqD85Ut0xMTGY5ptB5GtF1nYcffhiAJUuWsHnz5qztNm/ezOLFRm6qhx9+GH0KhQsTk6lEzeJqjPeGUKLx3Ot7zhShc+I5v2JdmeE3k0V2WdFj3cOvlc43Rmk9cQTZRrt2ehLqm5y5/LlN4+n+80gKFRwJWVGFkuF1CaGaz+y28GpPlK5kAfXJDfzwRBknP7ps700S0nIPelfm72RVwQ6unrctZ5veEcLIm4EEILGx+C3eXff28PILyp/nfSslvtW7jgabMQjXlX7crpfxVGQPI5fsKeeOJAaAwRyfYm5x1G2TKHAa68+qslDibObea+9mY9FWtpS9ws+vOcTNi15GEnQ8NomlxSkX08pSW9YiTTPBqoIDnFW6lYX5qWu6LApUTUEVaIcU5vMbXhu1zcJC47xYVHB6QvdNTg/1yXX834k4IPFyoIzP7TK+f6dswW9NCUq37UqPKAmrucON5wqLffu5pGrq0tNMNfWx89nRU4EulrCnr5yfHb2Ge09sYm/0o+yJfgwFD893XzLcPqpaCCQynZoA3z5wIyfi56ALRq7wxtiqGXkPYLgKAwk7/7LnVhSxjpjmYWvXPB5s3MDe6Ed5qGktzWEvz7RvBMHJycWLft2n8dPuBH3VxeB18LbTOezGHOJl0cruLLcR0ZGed/R4ofH+/60jwYMDKqLLRofDzg+aQoSqCkEQ+GGvwjebwnTrqfuaLhayN/pRXuq9afgz7JgjQufW7jr2Rj/K3uhHaY/X5Gz3r5vvxmOdeN5sExOTMxNT6DyN1NfX09pqFE644IILRm07tL6lpYUTJ05Md9dMTCbFyeHbuqZz9DcvEe81wkzUkx2dnDmOznBzz4S30ZWpc2FYTjICCOrU5j7tWHYZXZiTLCZTyyNtYd77eoiX+ufRFod+LZUz7ECknNd6DNHi7aCbT+yU+c7hAXRh5ODMwpuBGKqe+3HGIhkVZxfkZRa0MBDY1pMSxxojSXTBSaGjnbNLX0rbz7sXHqY+7mC7OjjYku0k990BXQ9lHtdrw5E/4jeuBgBIlqxCsfty9veqhQJVecZvbXGh0a9iRyuCoOOSQ1xd8yiLfXuQRJ2lxTKfWGfk5s13yvzd5iPD+SxnmlrvEdyWIAv8qVxpVy2W8dlOPUWHIOhsLnl51DbvW9YIwAJ/4JSPZzJ3+GObi7cDcQ4n1vFgK3TGDQfbIk8p5xetosppiDrdifT77c6gb6a7OuV4rYHT3YVRiWvGJMzx2EX0Jhy0Rz1EVSs/OnQFdxy6jO5kHY82Lx9u3xHzElWz5y6OqzJ/aDiPt0LvBcHHr49fkrXddBFTZaKqhee634OqG4JsT8LJjw5dQSDhIKlLdEQ99GpnkRTT05VFdJ2Xe+N8oDFKn8fJr7sT9OWlP7QFVJ1doXT3peiy0VycKgKplfh4/1HjmXlHf4KmmMrWAj/7VYGQovOHuESgqpDnumN0xTWWl6TO+Yg+jx8duoJ7T2ygTTkXgO743BD7WyJefnToCn506Apao0U52/lsE38ONzExOXMxhc4p4g9/+APLli3D6XTi8XhYuHAhH/nIR3j++edzbrN/f2rQtWTJklH3P3L9gQMHRmlpYnL6GApRH2LgaDuxzgHanjMqJKrxTKFzZF5PXdPQVS2jzVwg0tqHruto4xAvh97jqb5XQRZxlcm4ykVkefpmsbWKFfxn4eJp2/9UUO4wHthXef1YRnHLmcxOvntEZXe/xpFIHppQBIgcCKWcircfSfBmwLi+JEiFuCtCEaoOh8JewApkyX02Bprgzwx1JfsAMM9m/M62RosocVvQLYYrR4+dFC4uCjisOxCEBIiC8S9o5JQMOUrYmn/lcFOfQ0YSBYrdFiRR4JqFR6nJSyKJAjV5uV3fkqCzvCjBjXVPIQpw3RKViypenPD7n2rWFO5jy2Be0VuWzlwY4bXzn8Bllaj1ZqYmMJlr5B6eaIKRpkIRSlGEch5oMSYDPvqWxNYRExYl9kJ84gLOKkg5/0RBQBxM5vrbJp0prxLzjmDouzm5wnlmfkxdNz7fexsuzLqnu+qvSnvdEPKNeuTjoXyeaF3DXc1fpjM2syJdXDXuLQ82rmZ3/+qsbXridh5quZKIVpK2fCi7SVdc46vdKkfCCgdPKqYU1mD7QBxBSp37+wv9hBAQZBFBEvl8UCSpgTSYw/l4NMk3GiP8pNVwK/+hM8o/dqbE0pXFqUijkJqaRHy45UJAoDueGUI/2+mM+9DFEjRxZI5dEVPSMDExORnzqjBF7N+/nwMHDhCNRgmFQhw9epTf/OY3XHzxxdxwww3092fmi2puToWXVVZWZqwfSVVVquJgU1PThPvX3Nw86r+2traxd2JiMgaJQJhkyBhohBq6qL9vK8CwoxMt0xEY7wkOp2PoePlQzjyfsxktoZAIhNESCj1v1o/ZPni8E13VSAxM3nll9dlwlSiob96C9sb7ENTp+w3fv/BCnp7l+vMVXmMk8Ul7E4vdcyMcyyTF1p4YD7aE+Od9GnsidSSEch5vT00avB1IXRcUPeX46VSMfF03vx4hLpSRFNIHmOMhhj9jmZKl0AVAmdMQNLcH8/jE+gE0izFQ1MMtae0sLgvJt7+FQAJHgQV3mUry8N0A9Fvy+XTb2QCUeixcWgdry62cW6OzvNjK+WUv47cnWF5spcqT26EiiTqrSzrx27oo91r54vpHZoWjpdZ7hH8828gXPM878eeVyZJnDbCgQKbYdXqKMZlMHQkhMxfvEPujCwD4fsNiftW6kINBI3ph/0Cc5mhK5MmT/UTj5biGChUB1a585rkNwefh1jC6MHpRMJOTEHzoYjGaWE6vfu6IFSJvRT6S0TykGtfHxnD2z7k+lH7tzeXmHElj2MerXbXj7vJUMdQ3HYH7G9blaGPlte5quhLpYzqLmHr2fa0vTntc5f86Us9/glXmnvYIXXGN7oqUIFmvQBI4WFGMWuDhtT7jPnhWlSEyd8U12uMqJ6LGvbIzrrKjPxXNU+RMRUxFR6Rq2NlbDoJ7WLydS7zWVU1L4mx+Wv8lhlIE9LMla6FCExOTdzam0HmKOJ1ObrnlFv7v//6Pl19+mZ07d/L000/zla98hYICY9b5oYce4rrrriOZTHezBYOpG5B7jATULlfqAh4KZa9sPRpVVVWj/tu0adOE92likoEOofpOBo62c+TOF7KGqp+MllRJDkSJdQdpfW4vWnJ2JtUfjVhPEHRQQjE6XjmEnkXQHUnf3iZD/B2j3WjYXT0I7b9B0Ac/r+C+Se9rLI6IYw8+Tidei40FQj/5Vgf5Wj+r7WaI/VzlaDjJ0bCN3eFqHmvP7lLWENEFDwgutvcbonZc06mPlTCgZYqWoyPQmfRlLI3r2YXOSlf9cHXva+u2DhvC1FBLmjlMdgy9iGGVmxDa7hpeFx1R9XZjJdT5w1wyb4AKT5xPrmvEb+9hS8VR3Dao8eSewJAEnQU+I/3NRfMUajxHx367M4SAjl0W8c+w8LqwQKXA3j12Q5NZTWN8qGCKwMku7WMRGxEW8HxXgrsbck+MOkSjorSm+IednGt9Syix+yiyu5EFkRizv+r0bCImVJPET2tiEy93n4Mu+NAFH8eS7+WljhWABIJvuH1P/J0pJB8OpoeuZ6tXt2sgiThYlKizNH84quB7AXW4KntY0/l9QOFn3QnqRxSrvWrB+K5xXmsqL21MS88JqgoTvVfODqKqhe29q9nVV8be6IfQBR9/bH43OrP7OdXExGTmmXtTObOMlpYWfD5fxvLLLruM2267jauuuoqdO3fy4osv8pOf/ITPf/7zw21isVSIjdV6cghIOjZbKiQkGj09+bdMTMZD8Hgn0c7+CQmWSihG/6E2dEWdk0JnMmj8lgeOdxLvCRJq6MJe6MHiyV7VNdzSy8CxUwyv7HoMpfGp4Zd66MSp7W8UDo6S/3A28H1fCyuDb/AuKU5xzzHy8y7lHrKHlg0hIFDtdNMQOTNyxJ4p9Cc1Pv7W6EW6OpNeNm7L4wNVDr53JPX9vdLr4IoihYIJPNnogpc1f8m0Kyc0S9apYLscxS6LSKLAYt8eGiXj3ixoCqIsDV+/rOwmARA5gq5GUJpSBUNe0RYBUOK2sLwwyEXVe8i3B4irVlbk7wTg0qqn+NPh5Sz05U5Vs8DfRanTuI5cOu/4+N/0DOC3B/i7LWHKXDPn6ATIsytmxfU5jiqU8Gy3k9LyhUQ0BwOKlQJLBL9gpHu684RCnlzK1p4x0rWohsgWV9xcVLKC3kQ/9uQmKgULlV7YF/8tES2Ow4xeHzdJzYWOyIPNF7I3UMJjLT9JW9+tX8Q/7/o4P173VQAeblp5Orp52tnfX8bVBanXxa4kVy2y8sRhw21Z5rHQFkzystfLueEYN9dH8NgkzqsVefxQjP8skIkXevlRY5iIakzcvtRriPqSKPCp5b/lN29/kQInvNYYJ98pc9F8+ONew9G8tNjGggKNshHu9r6EL62P3cpy5ip7AoZL+0eHLgcuB+CWqlqcnHo+aBMTkzOH2T16nQNkEzmHKCkp4YEHHsBiMWaZ7rjjjrT1dnvK1ZFIjF44JB5PzVo7HNnFk9Foamoa9d/27dsnvE8Tk2wEj3cSn2CBITWhEG0PAIwrx+VsQxssftD7lhG23reniVhnbrEm2R+hd1fDpI9n9dlI1j+UtkxPTN/gPi7M7pGgVxvAoYYoihpiT54ytousyOagymY6AOYidzU6aY8pHAunC5QPtyVRJ5xzL3v7hJ5bLbXLInX5xnrVmoq2EOTUI5UWMKq1qyf+iD6QcloKnmJ+3DUfgLoCkTp/N/O9x/Fa+lngTc9necuyXTjl3BEcW8p2kGc1crCtKdybs93pwGPp57KaXTN+XAFwyebkxVzm8d7FNER07m0r539O+HmgzcUP640CJIpQyovdUV7pHTsPc0JJpTCptK5ilWcT6oi0FxZRIqKObjIwyaRfKaYrR37M5zrPB+CV3ut4qvN96O/QHKjHgvmMrLx+0+JdXDrPSHvisUlU+Yx7xd8dG+BERREhRed9K1W2VBrPLp0FXq5uTgyLnCOZ57dik+N8dE0nf7XSeI7cVCly27qXsEjG5/2R1R18bOUuaj3HhrdriRSk7ee5znOm7g3PMIF4ZsTF4XD2dAImJibvXExH5zQzf/58LrvsMh5//HGOHj1Ka2sr5eXGTJTH4xluN1Y4ejicmrkeK8w9G2PlADUxmSpiXaO7sbKhxRUig0LnwKE27EVeJOvcuTypCSNEP9RghBMF9jXhKM3DVVVArCeIs2xE1UxFRYnEMwo3ZUOQRXQl021md3VzclIApXff1A0pBBF0DbVqNXLHYRpPIcR+Jlge2oYv0T6sWZVFDpJvfRe9iezu9/V5+fw8+RuI62zgWvRxVpP3W+1U2x0cDAVRdQ1Fn+WJS89Q7jhmCFlPtkfSlr/cHWVAsaU92ehCHoJuTAJoQiGiHgBSefzalPQQwyHimgQ5tJTFRRL+wfQII4VOq0fA4mtDa7yXZPvbCIAWakYLGfm4BX8V7/N8m3hEpNxr4c6r7sFn7clZJf3c0tzFDAEqXCeG/55NYesADjnK2qLXZ/y4xc4oomD+LucuNr74dpiEBglNJ64ZUplVFPj3+RLH49VAkv89NrqY/dHqDxCJpYSmaHQwT+eIm2SZo4ijkV6qzJTO4yauu2iIVOcsBPRc20IA7juxHu0d7KVRdZEBNuERDtKvr+Tc0hdYX+TCa7uSn75Zxz9veYtvbV3H9qY47z0SBATOrzqBxxIGlvOuIyHUwUJOq0pt7G43nhcFAf7r4l0AfHL57zg2sJjN1TWsLB5gTeF2/vn81fzwtTxuWfQIedZeBGHo2Ubmrd70ceAL7XUz82FMA+EsExR/bt7ImkW/4Xj0LJb7Zr5PJiYms4937l1oBlm2bNnw3y0tqYIFI8XHkYWJsjGyANHIwkQmJrMFXZv84DIZjg0XLOrb10Tbs3umqlszwsm5SJPBGAOH2+jZeYKBw20Z68apqyHbs4u9QjSzkrGgKVlaTg7BYoTjPjnvbFqWX05kjPanE1kQDZFzBDY9ygf9uW9vFzkilEUPURY9TKFt/A75OqeTcx0JZFGg1D73qpWeKQz9fOJZBPiDwfQB0ICeKkQS0f0MsCBtfThHMYaYltsx9v4VzXhshvNcsaTOH6v6OnrHE6idbyComVEa4fzF7IkYAoFFEih1NucUOYERg9S5h8sy8QmvqWBV8cyGyptMLb36AnoSGkFFG/596xi/dVXIJ6oav8toFqfbSFT1pNyQggAnRSYUyBX84Kgpik+EzngFewLVYzo138ki5xBh1c8vm77MA81XIwg6TjnEe+r+yFUL+pifd4w1pUbKoyFB0yImqfU2pC1bX2HjigWpa+lnN6lcWmWkLLJKcbzWfv7+rF1sKTcmui6u2sX/29KHz9aTdv+ICKvpjp/ZxXqaI15a1St5u2/h6e6KiYnJLMG8E80AQo6wz5EC6MGDmcLFSEauX7p06dR0zMTkFFETI8S1U3D9RVsDw9tHO/rp2HqYRP9sltfS0ZKZImP/IUPoDJ1ITxqfHBj/+5IdArLLEG68pU14KwwXi9r5yin0dhw4/QhWJ9+VXPydf8HY7U8T5+cXcHF+9oT618ZeAuAHJTFcspVSu/GQLwsi7w0+NNzuW3ktGdsu9/ootDn4cmlKNLuqsIB/kHfywfAj2EWZ/3Yd4sYis5DFbON/6xMcS25kgMUA3NlUTFyoAUDBws5gIQh2wIomFPJiT3bBOqLmFjpvmP8Yq0uMXGADzlSV98SB/yXZktuF2WGvBsBllZDO8IhO1ygh99PJ5pLXTstxTSbHyVXPdwVzF0iJ6n5a49nTjZQ6jAgpqyjhtzpRVFvWdmnHTtaytTfBz1ovIMLsvc/NJpojJezuKx27oQk/PHQj27ur2N5dhS4aldQFQeezq39HqaOF86vS8yoXOvqodJ2gxJ06xz+0qgWbpFLjt+J3yPzLWb9I26bY3sbFlc9wbtmLAKzIf4tPLL83rY0qzuO3je+fjrc46/jewRuJjOO3b2Ji8s7AFDpngP379w//PRS2DjBv3rzh1y+++OKo+3jpJWPQXlFRQW1t7dR30sRkEkSaU7kQdX3yQmdipPin6aDpBE+1WM8Mki28XFc1EoEwoYautM8m3jdGAYURWKxd2H0RrD4b6vE7IfAKok1G6XxjSvqdi4GypXQvvoAOHfbMYsPLSkuMW6Tsk0TFCcMZ8e6e35JnsXBlnuHc81ltVEZSFerf1XUni9zpg+3P2Zu43mfhsmhKUF4v93NuzwNUh9+m2mHnop772CzOnXP0ncLbgTjfO2bn923GYPyRtjhN8WIAFF0kpgkE9Ro0wc2jPct4tjO7Ezqk5H488loDrChoBOBX6rkgDbpCk+FRndXdoiHirCuXKXCe4UrnacJnM4tRzB1E3o4sS1vSFc89wdCnuOmIZf/dXFS0BYDF3lIuKlmPqo2dezOpOih1ePny3gGOxgon0O93LnHNijrLixPOFnoTKbe/RspN6ZRDWKU4F1S8hCQa53Ot38qGom1YpASf29TL4GJ8tjA+e4x/v+AoZ1WJGREAFimBKGhYJCOCQBJVHHL6ZPru0GXs6KmYjrc46xhImiKniYlJCvNuNc3U19fzzDPPAFBXV0dFRepmIwgC1113HWA4Nl97LbsT4bXXXht2dF533XU5HaImJjNNuDk1qNTHCCUbjWQwM3wzWN856f3NNLqaXQ1MhmKosSSxjlShoMQoQqcgiww94QqyCL1/QQxvx+bqBzUKuoLdLyCcgqg8JpKFw/4qflS0ZPqOMUX4hTjn9j2WdZ0v3spfl+QhaXGWO+28L/ESoiCwwZPp4LvGbQwSPBYrTsnCeQNP8ZngPVj1BB8o9vPXJXmsTR4CQERjmc34/JcnDlLpmHjOZJPp5dG2CD86FuVYcgOtMZWWuI24UE1Sk9nWI/K71lK2h5by1f0xXu2JZd3Hc10iupDbXbbIdxiAo/E8ti/7ItH5F2dtJ1hSRRNeGcwHWu5R+OTaY1nbm5ic2YgMFWkJsITft1oGXZ3GZEH9KAEPHQk7oSy1Cs8vXoJFNX5biz0LcShrxt2bOncZAK0xszCdQbZhYUo01nRz/DEZNDKL53gs/WyuMj7bf9jSOBxq/ldL/0zeYNqiMlc3N9Y9yfnlr/JXKw5M6tgPNW2YZK9NTExM5jam0HkKPPLIIyhKbvdGR0cHN91003BF9c9+9rMZbb74xS8iScYM9m233UY0mi74RKNRbrvtNgBkWeaLX/ziFPXexOTUSQ6kzlddnXy19GQwU2wIHp87QqeWQ+gcCscPnugaXjSa0Ck7LXjKjM/CVayjdO9AaXkCIbwTPREGTcGS2Dp1Hc+CUrmKbsnGA9rsvz2sSh7FnaPCukWP883Of8Wqx7habmF14FkWuLx8kMzq1KvUegBWu90U2uwUxBsoix7GpoX5z+6v883Of+Xs3oeG25+L4eZbG3ia8zxzp2jWO4X+pEZjJMn651XaYwpvBiR+1jSPtoSTHxwd4Mt7B7jy1QiNkSTBLG5sMAoedam582GXuYxckG4r/HXb+fyv7aaMNoK7iGDNBcOvH+gzRJViV5z3LnzgVN6iickcxIYqFBDAyKHXk3Tx42NBWpX5dOvGxNru/tzPEQ0RmcOhzN9rrX05saSXi0qW46KGpDr+vMs1tpUA7A/O/vvdTKCJ5WmvVbGGhJgK61f0savdm2Si6dkdxv9+3suUuC18YPF9w8v8ti7cVpH/vqyPzSUvk2/vpMDewbtqH5n4gQU7bVHP2O1MTExMzkDMO/spcNttt1FTU8PnP/957r33XrZt28auXbt49tln+epXv8qKFSvYuXMnAOeeey6f+9znMvaxaNEivvSlLwGwY8cOzjnnHO6//3527NjB/fffzznnnMOOHTsA+NKXvsTChWaSZZPZgxJJVQ7XcggG4yGb0JnoC5MIjD/M+3SSy9E5RHiwGruu6cRHeU+iBNrhbyJaZcTwiwhKHD3Ugtr4ELoSRhs4Snz/j6e07ydzrGQxQXF2i3du2YrPYmf1wOgpP4ZYGjcc8Ze5FGoSmU46vxpAFkTOtYVY4kgNSApjjVj0eEb7c4LPDP9dLc6dXLLvVO5pjPLz+ghbeyfm2upKONAFF5rgJylkD/3z2IzffkviJHFFEHl73vuJyIMlnQVh2A3ltk5d4TATk7mCLjgI6YXsD/nRBT8hxbjPvNrn5c6mApJCBY2R3L+NHQHY3pvAO+iS9ludFNhc6KqRmqLKci6KMrES6tFYJSt8FewLvtMFPBFVrKYzuZqRQ8O3gleT1FNRC8lRirSZ5EbFDlkKOG0s3sr/XDWy+Kbx2X/9oiPcuvKuUfY4PmetkuO+ZWJiYvJOYHaPZucAra2t3HHHHdxxxx0529x000384he/wGbLnjvkm9/8Jp2dndx5553s3LmTW265JaPNxz/+cb7xjW9MWb9NTKYCJZwSgXRl8o7OXNsGj3dSsG7epPc7U4wldCbDMcJNPSiR+Bih66AFjuBaFEKrfx1diYESRQsaDkK1661xPt5OnhM2D/WSBWZxbs7r851UiWE8Hd1jNwZW9T8HwEbtGAuCr2esz092sDZvC5/v+EracoeavXJ0YezE8N9L1GageHwdNzktHAsnAfjqvolVAj8asWETl/HnDif/cWCAwBV9oKcL297B6uuNyfSUCIKnmPe3XcoTJX9EL11BzFnEwIDxyHVOxaHJvhUTkzlLRC+iI+GhNylRn6jjaNgCxPjUW8bv8lsHi4HMiaUhfnLcKMb37opNPNKynWvKLkdHIz7oWIsl8nJumxuJZdYPUup4HoRtoGem0XknoAs+PvPWfwPw36vD+IUX0MQyfnN8C9dXurnEvx1VrKE1OjEh2cQgpBagimfjwYjI0cVCBM14frms6kmjkeBhQF+Fl1e5fv6fRt2fIs5H1sZOf7Kj/6pT67iJiYnJHMZ0dJ4Cd911F1/72te48sorWbRoEfn5+ciyjM/nY+XKldx6661s3bqVBx54AJ/Pl3M/oijyy1/+kscee4zrrruO8vJyrFYr5eXlXHfddTz++OP84he/QBTNr8tkdqFEEsN/a6cgdOZiruTpHEvo1JIq9X94DSUcJxHI7QAUxMH9dDyIGjiMrmbPHziddEsW3prlc2DzxQE2JveP3fAkVoazF3EqidWzwZbIum4sVoW3T2o7k9nP630Q00QebTPEFwVfRhuvzXCgNcTSJzJVl1HcJCI4OFJ4Dv9nuwGAijwrW0rH50Q2MTmTaIjncyJqozsusLXPxSvZs46MiVvys8hbgqCWICrlY28wDsKKC513cJ5OITW++NWJGwGZl3rfT1yVOdBvfMatibUcGTCLNk2GZzvP5XDYSJOA4EIh83NsVS6iMbpoXPtrjq8ZV7uQkpmT3MTExOSdwuwezc5yLrjgAi644IKxG46Tq6++mquvvnrK9mdiMp1oSTUtdP1UihHlYjrzdAaPd+CZXzIl+xpv6Hq8N5TZVhBwlYqIYhjlbSOPr9IwiVxME0QorEXvPpG27LHzP80Top1Dqj7eyKhT5r3Ffn7f2Tehbcq0AJt6H53wscqih7Mudys93BR/fsL7M/Z5CIt4HUlt6oV+k9PLz44HuadRpD9p/GbjujPjoWldSQtQRVSTEKxO9IQxkfFG4VUI7ZDIK+btgJufddUyP9/Kyx/6MaIwi+3SJiZTjhVIcDhs4zM7QwCoOqijFNUrsXvoiAWz702vYHVenFjMC1NUnDOh5jFjN71ZiEYqPP1gfxEDnMX9DesB2BMo4Z/2/5Klvg6z4vokeaG9jlc7ammvKODy4j/yQOuHuLHsPmx6Kmf4weAigkkHK8ZMMSvwsyNX863lz6MJHiStAQQHMRZh198GDMdoglK64qYD18TE5J2LeccyMTGZFMlgFDWacsHp2tQP3qcrT2cyFKPthYk7AnOhjzM/abb3YvVakfofQuh/BeITE/xOhRM1mZU498gOWnWd+AyN97wWG2cJHRPezq2FEKc4tr4sOvkq2G75HewEOoNRdYZFToBEloIS7659lALnoPw5osL6tmQVF8+3ss+9kENJo3r7smIdlxya3k6bmMwyNMEQ0RojAlFVJ6rqJDSd0eZGl+ZlLwRW6vASjRfiFIunTOQEEPU89HfwkCiqlaa93tpz3rCoqSPQk3BSH8w/HV07Y0jqEg83r+Rw5Gwaw356ldq09YomciQ4dhocXSyiJ+GkIXEJB8IXAxBjEU92XsfQsP54/FK29V7O4X7TgWtiYvLO5Z17VzcxMRkXWiJVHCARCJMMGeHUyWAMNa6QDMXQFHXcYt9ECTf1THlYfLixm+DxTpRo7nBlXRvboTrkzhxv/+JZ8nNanCqJY78ncWS0xPNTz8uesvQFosRWXaJj6o25WVmXl8/dnre5bOAR7i1s4t7CJnwjhKJcXFZQwLrgS1PeH1+8ddLb/tKzlyKbGSJ2pnMw7M9YZpPj/OnmF/iPi4No3nKal/0Vv1z+XZ6KVPOdix6iQ8zj8b4iABbmZ0tbIdKhrR71uHGhBoCEkLsKvInJbKU+UcdLwXM5Gh7fM4JbtlJuq6bU4aXOU8S6/BqqnMZvb63fqACejE9NyPoQmuZiW3AFDcr6k9YIaEIWgU+YTD7QIXJMjAkeQAZhmu8lgpOkOFTYVGBX5BPc0/SetCaPNK/I2MzMzzk1/PTIJTSG8tgZWJm2vC3q51gwH10sGl7Wol5LkC1p7XaGrgfg50ev4LWepWhiJV3JeTzVupg29WrAyv0NF/CHhrW0RE/lPDUxMTGZ25hCp4mJyahEu4xCAbqqcfzerSjDQmcUdJ3gsQ4irX2oseS0HD/eFyY5MLUFAuK9IdB0+g/mFrfGU1xpSCgdEn/HIlt+TlEMI2gKgjazlZhPnFRZPVG7kWOjhBJOJQVWBz9P/paNfY9RGDvBBT2/54Ke37PZO/YA7ybpGP5Ey5T3SRAm/9439z5MhT17sTmTM4ffNWd/ZFpVsIPr6l7g1cJruEs9h+91LMTmdDDPexiPJUl80BlV4sqc6EgIFRyLuDOWp7DwnjcrSAoVfOvY/Cl4FyYmM0t73Mp3j2js7x/fM8J5xSuwkM95hes4y7+Bpe4VnFu4CQC7aMT1Klqmu/pU0DSZ57ud/PfR9HtQiAX0apmiapd61qSPpYvZxad+fS2aWEJCqJ70vsdDjIXccew2dLGUo4lb+PHhS3izJ706d1LPrK6uv4ND+6eSuCqT1CWebVvMUAY5Tazk1a5aVF1kT+hahobnR4IL6E2mJqUHOIefHr4IgO64i764k1f7buJIaAGqLvJS9yaalKs5EfKR1M3sdCYmJu9sTKHTxMRkVGJdA+i6Ttvz+wg39aAOOjyTQUN8DDV0M3CkHaZJJEsEIsMCoRKOkwzG0EccS1e1tNe5GNkm3msIDv0HDcFMU9S0CvIAakJBS44udva8VW/0a7xCZ38WoVMLjGvbqUSwuWgZuvyLEkc23sLPaiY/cJsIoiDwC/fblEcPZKz7OG9R6TBEn/mulHtEEkQKrA5qnB7O739sRvo5UT5mb+Gi/ILT3Q2TaeT3zWE6tVVZ11W56/lG3wb+HDDy/m6qMEQdvyOG0yLitIhsKd970lYSLYkSmqIy7epIV6cNXXADFsLU8nJ3lOt31PC/x4L0s3REOzNlgsnspzcpsbUnxp6B8RV8KxI3oik+bOpy9MRiSNQhJJcAYBOnx+2YVOzURyvpSBShC67h5S8HyhhQ3CA4MEQp4765tce4Xw5wzoSP1Zw4L+vy9ngNByKXoTG1Iu7JHAxv5GB/Ef/X8Pfcvv/d03osk9yEFBtRwXB1vtT73uHlvz1xDghuQKQpUoiiWwy3r2Dn9oMfTdtHa8TDA43reWzQgbu1s5afH33XTL0FExMTk1mNKXSamJiMSrzHKKDTt7cJSIWyJ4OGuBdp7SPU0DVtx4929KPGEmhJlaN3v0TDn7ajxVPux3hfGCUUH2UPBiMdp4nBEPJQYw+6plF//zaiHYG09ko4TqixO2dYeqihm5anjMTvyfDYxwcgSzi8Hm8e37ZTiFpYyzYNBKuDZPVarndV8NMZmv2/qiCfs/qyF1s6p/ePnOsxxJs1TplyhzHgLLU7ucZn5WKPiC/RPiP9nCjv6fwJN8kNp7sbJtNIXNP510PZ3ViioNGPg5BqOKGumG/kfN1cdoD3rND5yFqFVQU70rZRhGKOR+080aHyvydS++3SFhGlhJhQQVvCB8CrPVGSus5HduYzVDRlgLopfocmJlNPe0wgqevEx5EOZom3lFgij7jiJqG4UDUrSc2OotrItzmxTFdYtyDgEZZQZT2bR3tT4esxzUtbvIJ90VXEhXIQXIDMs+2LSIqL+Jc9n5pgqLmFnxzJLkSFFCevdS9D0aY3dD2QMCYRd/RUmC7N08w9Te9HF4v43YmNw8sCCQe64GBb8HO83DmPhGZjZ/j9xIRFdMTS3f9h1UpUtRBUjIiSqGrJaGNiYmLyTsX0tZuYmIxKvDdEsj9CrNMIYR8WOgcMd2K0I4AwhUUBTibS2oeWVDnxx9cJN/YA0PnaEcouXIauafQfasVdW4TFk5nfUdc0BNGYz1HCcWSHdfg9AST7Ixy/dyuBfc0Ubqwb3EZHEAWSoRhqNEGooRtvXUnGPluf2wM6KJE4+hjOz9HQQ5MvgjNZBnwVJIFExQr2lC6b0WP/tf7GqOuXi0ZBJgFY57LTFY8xz27jBmUrPdLsdkwWaz2AOcg4k3mqPQpLRUBDF1wIeioc3WURKXBKVHgFVhfuA2Bt4Xbca0I45ZPd3BYORat5qlPk5e4wV5Q6SQhVWPVmnujKx2vxc2l+GzsHHECq+vQLXREOJzbil6P0K3a8OcxfuuBB0LNXrTYxmU40oRBR7x5+rYyib0qCiKqncncu9dZBDuNnhcOPMI0TcslkAToin98V5ZKL63Dqx1G0Wh7tiHFooINfrnEjSwIIInFV5rmuG4mqVjrV8ykWnxxj7xKgkhDr6I67MHwmI3OWWokodvYHiomW5+GeRhtKUjOHfrOF7d1VeC23ZSx/rPMT/HnQpfloywajMNTUpqU1MTExOeMxHZ0mJiajEuscINGfypGpRBPoqkb/YcNZp8WVacvPaew/iZZQhh2lAKEThoM03hum+bGdJLOEhPcfbkvLidk+WGU9GYoR6x4YXh7YZzgqh3Jyhuo7jeMmFOJ9YQYOt6Xtt3d3IwCR5l4A+vadoiMz3ntq20/mkLIx+9/hr+Qt28wlq3fJVlYPvDhqmw91/phz/AV4RJUCUeGbRTE2WiNs6nuUq7pntmDTRKmN7j/dXTCZZvqSKkMh42+FVzMyfPyKhQrfvGg/j97439R4jgIgiwpL/buHXw+hCT7OeSnBz48H6UlodMU1PryrmqRQzo+Px/jojiCtCT9ffDuzSvumF5IsfFZGG8WN1ZhcdOpv1sRkEtzfOXLyzEZwFKXznKLFaa+dOfJXAlQ7yxF1V871p0pSdaAoVs4v3sD2/jKSQgUv9xTSl8xHkOahkcfr/dfSGN8AwINNRrqJtwPZ01mMJCEuIi6uIKoNFZpJFxu7tAs5MFBJULHRr0xndXOB13vMXL+ziWfbFmYs+/OIYlBHgoUcD+Xzk8HcnCYmJiYm48MUOk1MTHKi6zqxrgG0ZCpUXAnH6T/cNu68lFNBrDuYFvY91J94j+FYSmQpVtTx0oHhIkEDR9vp2Wnk0wwebYcs4y5tsGp88HgnyYEouqoRbQ8Y+UdH0P7CAbRkStztfv1oxr4mgq5ObaGlcTHowNUFkV3izOX5W+JyY1cGRm1j06P8PPI/rKeVG5XXubnr/1ij1c9QD0+NivABXPL05lczOf3ogvEd//yEBEJKsPjYypdZV7RrfPs46XVjROHF7igvBuZzMGhY2r53zEZYzS0SqXpuobMjbhbHMjkdiDzcqjI0vNAEJ305HJrz3YVU2eelLZOE3OdtvlyBqk6zY14QcGlnsaM/j2OxcgQsWLUaqizreLbjSv7Svpwn2zanbdKT8Iy526Tu5r6mDxJRB4VcYeTwy8aDLZezs9ew7IWVaRRzxUU0hs1K3CYmJiYmZz6m0GliYpKTRCCCllDQEqnQbCUSp+fNmRWeoh39aa+HigQFjxvuy2R/xMi1+fttJAJhIq19BI93EjrRha5qND3yFugQbu4h1pPpkIKUozPaNUCkrQ81niTWOUCsKyXMBes7iXX2E25KuTAjrX2n9uaUmROMAShZSFg2wvyb7D6OzUyhdf6q2Mf/qr9HYuzq8v5EKzd1/pSNfY9h06Nc1n3PDPTw1BEEnX8uHGe+VpM5i44FsHF/cwiNVD69VQU7KHWO7fDWhMLBfaQ4FEwQVXXe83rq+nRfU/Zr1fB+cvx2dcHF3+/Vsq80MRmDEAvRBd+42yeFCjTBcCG2qqt4siOC7+nVtKpr+PS+FfzkeHoKhQUew9W40FNFMraCLUULWeQdTA+j5XYzxmOLiCvTnxpEUW0cCNXxnjdcRCPziCXyicRLea7dEAmHBMkhXu+qhhGfly74SYojXXoS/3XgU7za9f/bu+84ucq6//+vM322903vnQSCJJBAAglVidIFFWk3ooJ64y0/8VZvUVHQm1u/ipUqTaXX0BNKICEkJCQQ0nuy2WR73+nn/P6YZHY322Y3s2V238/HI4/MnHOd61wzs9fMnM9c1/UZw883XAlAtXUypi1aT9A2lrUVw6PTk4GNNWPabJdpG9mlxxEwprM18PXDiW0gbBtPRUjr+oqIyOCgQKeItMtfGg0wNh/R6S+tpWZrcZ+04wgrHMEyTSrX7wGiIzr3Pv8Rlev3UvTaJ5Su3AZAxcd7KFm+NRasLF/TfoDWjEQDA6FaH3W7ywjV+AhWN2BFzFhCokPLopnCGw8eY3Cz+WOJ9G6gc/uokzjkjl74POfKpLoXAp1um4MvmZ8wquGTnj9ZH5sW3N7XTZAeZuEkaOQfvm3v8vE1ZgF1ZtYxtyPSztT1ELnUHsO6wTK4RbB36e+6eUKbT+uaRje+WprJ1vrWy9pMz5yI02bHY4uO3ix0F/K5rBmHT957Mww6kmoMZVrm6Njsh440RFxs9l3QdJ/JmDSNTPUbM1oliPmgYh4loc8B0GgOabFvWck4LFthi20YHkpCJ3TpMXxWP49PqiexvuGrAJQEj6M0OKSTo0RERAYGBTpFpF3Bw2tfBputgVmz9SBWpHdHCzVfaxPADEao3X4olvm96tN9sVGmVRv2Ubk+mv3aX1pD8dINseOqNuxrdxjUkYRCodpGfAerCFTWEz6cTb1hbznBmsbYep2+BAU6HWkurFDvJAxpmLwADBu3pY/g0OERna+bBh1PJG/tibx9vJb1CeNSM1rty3F5W20bl5rBKxkrObXiuW60OvnMrF7KnwpbrxkrA0dpeCgNZvTvP2C17gedqQyn8NWPj336qGkZbA/OppYpLbZvbhzOfl+Y9b65LKmZf8znkcHEQcSy88d90zsvetjf9o/nxo3HYRrZ3LmlKbD5qy31fFbTNMLdbtg4LX8SHlsqp+SOx2OPTtFOMU/EFpzONSOvIdCD07a7IhgYQYExL+7y920/C4guaXEoMBbTagrYHghOaVV+cdFxPLR7EaZtJPXhrBb7LAzerfw6jx28I/bvvn2/pi7ctfeMPQ1DePvgeO7dvgDLyGF99XSe3ju3S3WIiIgkKwU6RaR9h4OCR7KUA2D10lznDpjhCGWrm7KVHx14bX6/+e2IL0j9/nLaYkZMLMsiVOcn7Au2GLV5aPkWKtbuit1vLK4+1ocAQEpmFWZjaULq6oiRks2TQ4/H8GbwqWnxmT062qSDJf7aZDdsnFbxPCfULMVrb/3xcWpGSqttXruNaTXvYWNwTKV1Wz4W1rza182QHvRaWSY+MxrUqIp0vj7f0erDTj6sOPaR3BHL4N2KFP5d3HL0V3nQQcSC+/c6+MsujeyU+FlGKhHLxr/3xb929LtlYZ4sqmdt/VSKfE2BzpqQSfMlZtMcLoZ6huHEwwjvKDzkARAKewmbLnyBwm6NkO4JpuUg2IWga0PEhXU4kdLehhEt9oXM1qNUI5aNPfVZrK65kC11rROHrakYw/sl42L/1lQMp66L0/Z31eVhYiNi2SgOzef1g1NbjSwVEREZqBToFJF2HYlpHj2isq+FGwPdnj5/JGP70axwJJaEKOIL4i9ttjbnzhIOvb8ldt931FR6AJurGxdoZS9jWD0fiGgcPp1/Gk78Q6MjS14zu/fW/5NCW2yNzatTypmS1jTCJMPpZrYjunbpzMxsxqSkMz8nl+969h1j65NPbmAvdxaajPCmkabkRAPOH3f42NkYDRjs8bUO7nemNOjovFAc6iM21tWY3LGlHnCyMzQLy8hmc320fz93oIH3ynxEjMKOKxI5bIt/Co8dyGFvYxjaWRqhOdPIpvFwIr9bNpgdJs/KcHlJtSZgmENxhScQDg2sv8uKyEwAPqkeiXlkDV4jpc1A5xFP7Z3F4qLjWm3fVd96rdLq5kmPjI5Hd5q2Eeyqz47d//O2CwlEEvO+IyIikgwU6BSRDkQvWoLVDX3cjpassNl+Jo54jm1ne+326NT0sC/YclRo2MQMNEui08a5U/I7T7JzNNNX0uVjuuPNYTMosWDJ8JkAXZ6ufsQlNc/Gbl9Q+TgzU5o+Qi7LcTMhvJ8R3jQeCT7IxelhvubYzYVl9x9Dy5PXtaV/4NR0J167Li4Hmn2NIVZURv/2f7XVpGtfpQz+sKPr7xVteaPUxp6GMHVhk7CRx1dW2wmQyfvl0fp9EQsLeKd6YscViRz2zEEPt2+uJWRZWEZnQXwn9x84Hv/hz8NPawMEOvhcHps6BF8wB38wC384g1DEk8CW97311Sdi2kawpSafxkgWAJXmKdSG2h9FWR9244u0/jHsSGKi5mpCTa/H/tDCduuM2Ebzqy0/a1FHZbD1sjIiIiIDmQKdItKKGYxeKFuHL1qar9E5UJmRCDVboqNEI/7WCRQ6Y2tYCQYYbUzpble4559Xw+XlLiN6kfM3+7FNW3ObTUsYpIUqmWMcxGWzU+BO4bLgcqY0rudR51Ly/bu5wPc2p9S9e0znS3ZfsLbx+UwXF+TnsCAnl1Ozc3DaWo/8nZqexQX5OVyQn8PolK5PhZbe91559D3iwwo/axrn0MiEo0rYKTWPxzKym21zstF/Mh8kYNo6wGN7G9hWF23HS+UT2d4QZEPDMDbUBFuUu21zmJZf9/rH9GDpf7bVNc0w2BOcCrQ/GvFgZBp3bq2nPNDxrATj8MjQQvfAGsF5tLWVo1lb9yUAasK5ACyvOI1tdcM6Oixu5YHD6wEbHpaXzyJiG9uqjGkbye2bf8qBxq6vHSwiIjKQaKiJiLRSsW4Pnvx0/CXRKdrtjYIcSCL+MLU7Do+w7MZo0ci+F3EMXYA3q466A+7OD7AZhKu2xDE58Bh5M6k+fHPvMayvek5uLlmVh2L37YS5qOxBVub9D9sCMLN6CQBD2QrA5LoPun2ugeK88kc57/DtAynT2O8ez0M5c1hcXtmi3F9sbzC1fDkADxd8n580KhDV3zUPVp693MfFw4bw0PQdsW2mkc2kpXY+PXMsoxzR9X79xghOey/Yqq7uqgubHEll9h9ro7fOWd56bcVNtQECxkjcVjRJW5U1mWxjU8LaIQOE4eX1Q00/vs16N8KnZ05nqGMvNquyVfGtDenUhBqoCXX8/SDD6aYm5MdjyyTQYcnktrMuh511pwPwWc0ExhRO4OU2pqV318bqAkKjJ1MUOJ4KfwrvV17Mgqw/QrP1r18quY6DPv1YJiIiohGdItJKw4FK9r20lvp9FX3dlF5Tu+NgbCRrV7my3Jh1+3BnRLD2/h2MzsOXrgwXRqRnL/sMVwrYjv33rDy3l2+zutV2l+XneFsl13kOHPM5Broc/z7ywqVcYNtBgTuFAncKWU4P5+flMrV2eazcGQ3vxUZASfJ4r9xHdEi3B8vIpM6KJlopDzVNzy0NZbdzdM/b0DAccIDhZXFpfp+1Q/qvOmskoWY/hkUsWFebzns10w5vsWEZmWBEk/TsjPMHmUJvBplODzar6+vZJqtlhybwaulXElqnL+LkuYNX8tjus6kOeVleNgnL1tSXfcbnePXA1ISeU0REJFlpRKeItBKqaWyRjCcuNqPb62b2B8HK7q9D6vBEsABzzeUAeE90EvZBqK7t0VupQ21AOOF5yGumnUNm2Q4o243hcHPTvBv5y+ZXulzPpLRMttU3JVx60/YEQyp3tFn2upL/1+32DiZes54JdavwRupYH3wIgPVZ5zCzYkmLcmMbPmZS2kVsrW+d8Er6r4qgiWWk8tDBk/jBp03vnauqnHzO66SesWxvSAXq26+kB5293MfucybxWFE+d2yp4+tDcrFZg+eHLOlYwBjNXl820PIz68PK6HqRp2aOIGh5GfFGGlePSuNPU96nOM7E7MdnTiM1azSWOXguORoiroSO5jzirYMt19v9uO4iTkq9FwwP9+66NuHnExERSVYa0SkirUS6MbLRsA3eUWg2W8s1ylzGZlzp7T+HDv+HOIJrEt6Oj3LH8thxiwDwj/4c75rwysQFXa5nXmrLgLXT6vqapdI2u9n0XBb697RZZopXU9eTUYhsXixu2Vfu2+3DNNL5274hHAz07VeuuoiHB/b4CJgWy2o08kuabGwczgeVrZMDLSsL8GFliP3BIWxqiI4efPWQD7BRHYrvh00bBuFQBuFwaiKbLECZPzpK/OOGq9lUo5HaIiIiRwyen1dFBrlgdQOurPguNMxA1wNb0SQ8Bla448QEA5FhtHy+wrsfxTbxx2TmfEbINZfGQy33Ww27CO556ZgmKBvuNMzs4fz3tEVUY3Dfint5wpnBStNiy5k/4Pra6HTy/za6fnF5HOV8mLYMvy2VLzScQXqwd7LDDwb5/t2x20N8O2jrj+DO2r+x1HE1DeHErecoPW9PYCjLylsOc9vdEOKsVZNZX11HrqtvA9gXfGhnX2P0vejqNT42nDmNLLRW52AXNoaws8HBzzfXtdq3oTb6HrSnMY1NdTbAR3kwwrbgLNZXx/f+5DYyCESU9bsnVIXSCNmmcO+2BX3dFBERkX5FIzpFBomqz4riLhtu7HqAxe604Ri0I9FaPl9m1TZs9WsIF7+JM7y2VelIzQ6MY0gMBFA3djbvTDyDl02D5SaUTF7AysNLB7xgGrydFs1wa3Ujmppi+RnV8CmT6lby1TwvLisxWaIlmsTpCMNo+28gO3iA0d7Bs57dQPH4gbaDOeuq/VhAebBvfwTa09j0t1cXNvFH2s+oLYNHZaSAmpCBL9L+Z1JdxGBLfdNiKy+XeFlbHd8a04YxWL8X9DwLeP7g17C0rrOIiEgLCnSKDBK12w8SiXOkZrix60ly3BmhQTt93Wgjl2xw2z+IVG4itPV+DEezCz3DIFKz/ZjP+UH+JH5qb8qu+kBey7W77qFlEGNOVg4Amc6OM8KfmZtLhtk0suc/ax891qZKN4xyKziQbO7Z1XpEXH929+5MAsbovm6G9CmDB/dnU9nJV4OH90ZYUtL0g9fvt7X/t76wsGltSpthgKX3sp7yUdlIlh61bqeIiIgo0CkyaJjBMLXbDnZaLhIIYYW7nibHbhW1OQ13UDDbGPEY9mFYESx/OakFTSO5HClOjMixTUk2XF7+15FO83RR+496O28+gTbV4eIG5zYAzs3qeKTgfGcVw4N7Y/cL/DuPqa3SPfm2wbcERLLraERcf/T3XXXsCRT2dTOkD/mMsfx9Vz0HfR3/7b5b1khpoGlEcEMHf+uj3NNjt9MdbgytktVjGiKuvm6CiIhIv6RAp8ggEar3U735QOfl6ro5Tdl/ANtgHbhhdpx+1u5bFbvtSGkdDTa8GdH/XV7ieRIrJp3BoaOmvu/qYI76ienpzKldysS0TL5irmFBTi4X5ue0Kve1gmymh3YxzLet0zZIzzrL2saX8lq/RiKJtKSso7UT7ZhGXq+1RXpT9HPm3aoR1IZMPqrq/o9vWS4vKY7oDIKRKdmEg4WcP2wWQ7zpzMmbghXJSEiLRUREROKlQKfIIBGoqKduV2mn5ao+3dtpmTaZARzurk95HxAiDR3utoKVsdtOV8uyhiedVSdeiuFJx8oewcHjv9jp6R7Nn9xqW1EHa35e5DpIdvAA30wtY07Fi3zHWMvNgVdblJmclsnvyv6H8Y2fkhau6LQN0rPOLX+Mv1f8jBMzs/u6KTKA/XJTHe3lpQwYw6mIDO3dBkmv8BujAFh5+K3+s9ruf3YXeDLIcEYD5idmTyJkekgLn8nc3OMptM3GH8o85vaKiIiIdIUCnSKDgHU4SU2o1oe/ov21tSzTonzNrm6fx0ZZ3GUNRxK8/RjxzcU3Io0dFwjV4s52Y3PasYX3tdgVzh/L3e4cDk1eQEXBRL6XMwHDlQLGUc9P/jiM7BGQP477rfimAua7U3DbHCyqegqAs2tfwzAsJjeuxdEsKc6U9CyuSqsBIDsQf9Iq6Vk2TG63LSfVoemJ0jNClkWVNYmQMZyQMbzFCM59gULqI0fW9E2C92uJj+Flp68A08hhr6/ry9QcLd+dyaiU6N9Nln1UbHuGMZFwREnVREREpPdp4RyRwaDZaL/63WV4ctPbLFa77SDB6k6Cdh0wQuVAfqflPHluXL7nqA0v6va5ekNKoYNQg0GoruNpfVawvMP9od0vYOMFvLOfwKr8pMW+uowhrLfgzOxJ0Q0mhAsnUFwwkVE7V2JVFwNw1YyLOcUKc1IwvoQnKXYnr9uf5HrP1WTWlgBQ6N8BQJ5/DymhamzGfManZvB2/c+gPnqc2+p4Gr70rpOqX+e8vPk8V1bZeWGRbhi7xA0UAHDZ8FQeOG45ADsbPexssPGtEUOpM7PJNjb1YSslUbYHprPf7+Kj6hm8WFzb+QGdGO9agD+URSTnSYKBEbHtvkDBMdctIiIi0h36iV5kELDMplEb9Xvan75etnrHsZ0nVNVpmdShdowt1xPa/UK/T15kGBFSXKs6LWc1xDcK0m40Ei5+t8W2Cm9Wq3Kvjj2V5zJG4M8bE9vWiMFBw85trvimMs/LymCobxv/5drS5v6USDUTUzM4NzXc5n7pP0bbFHyW3vFWqZ8jXw1NC7bWm9y2YyIB09m3DZOEWVebQk3I1mmm9XhZVvTvZVrazMRUKCIiInKMNKJTZBA4MnUdwF9R32aZUL2fmjiysjeXPjxI3YHotFoLCwIdrO1oM/Bku7A2fhsC0YBo6hAHDQebAm3eAjcOZz2NFV4i/r4PwBm2MMFNf4bCf8S2efLd+Mui65kZDhtW2MSsi29dUyO4C8vXMtBc7GmdqOG/bamcaVgUZ41gxJhZuGoOUW/BCx0kHAL4Yl4uv6v5Aw3OHP7p/DIA55T/s93y81ItZpl74mq79J3RVAEeclxeKoMKekrPqQpFCBtDqIjkc8PHDTRGLCzgyf0O5uXN45Hpy/u6idINESOfme+P4c/Hu/ne+jpsRjSQ3ZYTc0ZT1FhBmb/t7wrNzcufxJHAeMA3Ke7lXkRERER6kkZ0igwCzQOdtJO0pvqz/e1f+bTDFmkWGLVCWP72R4t685y4PMUtAn322pewuaO/txgOG/aSP0DZ86Rl9I8pkjbqIezDsDe9VboCb8ZuO7wOsBlE6va1dXgrZtn7rbZtdbS9htkmy8ba1DzWDZvBmzMWUd9BsqEjTrOXkhEuY6hvK/NDGzot78BiZHB35w2XPjU8HF2+YIzXi8eu3yelZxWFhrK0PIuGw0FOgIqgyeuHGtHXxuRUGRnC/sYw/y4yCJgWvohFoJ3Pe7fNiePoNaLbMCIli3Hu07GO/E0oyCkiIiL9hL6xigwCEV/TGpOWabHj0fc4+G5TMNGKmJR9tLPTepzpLhypTYlRrMY9TTvNCGb1lnano7sc+6Dqgxbbgjsex50VfRtKK/QTKX6f0N7FBNb/Ak+uu61qWrE57d1KbOTN76R+m4ERjgZlbS47EH38wS334kh1kZGzFm/4adxZLgwrEtc5Q8WtR0PtsLU9JfSQZfF3Wwq3u3P4kZFGzVHXpC6bnVEp6fyjoIzH8/bjsTuY62uaZj+78pVO25NtBBgSUKCzvzuh9j0ez9vPr2zLGJOShtumYKf0nJs/dXPHltZrNQdMi6AxjKMnA5lG5+syS996qCgHgGcPdD5K02HYOCf/bABGpea0W+6k7Cn4gzmEwvF9VouIiIj0FgU6RQaB+r1NyXLC9X5qthRT9WnTdOtD72/Bd7C6wzoMu4E38BjO1KZtZs3GpjtWGLO+CHd22xc9ZulbmFUtR2oaZhinI9o2I7Q7ts2wLNzhpfE8NJzpDlyZXVs/zua0Y9v1Xy2Ctm2VMavWHr4dfatMSdmCYVk40yD42e8J7XgCt3Nz3OdtKyDaQPsjNQ9ZFrstCBhw9Kz107KyuDajkc+XPcoZFU9xTnYGk+pWxvbb6Xzq/ynBz/CG40tuJH0nLVzBGRVPcWL1mxQ67QzzKpOx9Jxl5T6K21k6ZJtvOGBvsW1xxdReaJUci8XFfgAicUzasBl2Av5xOAwb0zLGMDt3bJvlUu3R9aKto/4eRERERPqaAp0ig0DzBETB2ugaf/6yOqyIib+0loNvf9busYYjehGTXlgazR7uOHwBbBhEytZhcx6+yDGjmQ1c3pYJiRypLmwuB6F9rxGuamNKekP03FZ1y2zkgU1/azWq05HijAYnD0+RMxx23LY1ON3RNTPdOe7Y9ozh1U1tO4on14ZZu5fUlI/bfdx2t53wgXcB8KYfwuZyEPzsfwFwOkoxDk8lD2++u9064tHYwbqbHU0fPNdZytcqH47d/2HwpS6fe2b1UtwRBTqTyZWOHcxLtZFiV3IY6X2/2+EEw0bT10cbP9zgo8Ka3pfNkk5sqYsv89AZhVMZ7Z2MhY1LRi7AY/cwNe1EvHYn2a4ULhk5n7OGzADAaaT3ZJNFREREuk2BTpFBoHZHSdOdw+tyWRETX2kte55bhRU22zkSUgosMMA68AwANiM6MsSZ7sIK1ePNM7B7HFjBaIDTVt8seGiAN/AQ7mwbhhXBiARb1R8pXgIGRA62XL/SgBajOg2HjZTwP0mxL8GREg3yuDIchD65ExtleHLd2HfeSNrw6DT40OobcaS2PcXXbo8G98L7X2z3cbtSwxCsBiC49vuk5IchWBvdWdf0GI9OLtRVHaWWmZDa9oWkw7DxxZrnyQg1nXtCXefZ4Y/mtnzYaP+1l/7ni2X/4NLQKi7KTevrpsgg9EJxAxHSMI1cAELGEEoDYZ49mNvHLZP22QjFscYzwFj3zGhSIQD/LDLs+djMTE7IHs3ncsbhCMxluP3U6H5TP7aIiIhI/6RAp8gAF6ioI1jV0Oa+/S+toWFfB5nSAUd4E64MN+Hi9wAwiNblTIlgAHb240yzYzVGg6mhfc/jLXThLXSRPixMeO/LOMrva7d+s2oL3nwXlr+81b7gpr/hznWDARkZqwntfoHQ5ntISd+Jze3A7T0cwC1/G9u+H2I1lmDt+DUceCjadnfTxd2RpEcARqQseu6Kz0gdasdb6Irtd2ZER4XajUPNygdh/59j98P7Xu7wOYubYcOHgdMWHXnafASn02ZnkteO6/C+2Vk5TM+IThU8Jzeb3EB8md5l4Dmh5i2+HlrGtPSsvm6KDEJ7gqPZ5h+LZWSyPzgMgM/q9INJ/xX/mr6W1XJZjEhwFIFgFsM8QxjiGgmAP5jByNRsQIFOERER6Z8U6BQZ4FqM5jxK87U722QYhHb/C4e32dqSh6c6O+yHRzfWrsflLiNSswMAq74YPr4UPr6U8OqrAAjve6PD0zid7QdbXZ5anOluApuaAo3WoddJyy0ntPpGAEK7X8CqjiZTMis3Ej7wTrRe2y4APPluUvx/aqrUvz9201xzOXx8KZ7s6BTyFNvbuLLcUPdpi3ZEDjYlUrIaDpIIgXGnUGuzc3OBE7fNwbjUdC7Iz8FmGPy8IMIMey0X5WVwek4uDwbu53bnRwB81Wh/qQEZ+NyWj5nVS/i1a01fN0UGoZPeiTBnWYgdgUlsqfcC8HRRA5ahUcb9khHfGppeuxN/IKvFtlDES8Ry4ral4ODwPsPg1JwTCYayE9tOERERkQRRoFNkgKvdcajzQkc7vGykt8CJVb0Dm71pyrkRqjyckTwa7AuXLMc6+AyEOs/m2u7pQgfa3Wczq/Ck17eY9m427Mfc80Cn9YZ23EPacBNj49VEit+Prdlp1W1r3QZbdO1Rs3433pS9RA4t6+rD6LJXR5xIfmo6FzW8zpysTAqcDv7b9wzXFGRwSdW/mBnazpns4VZrGamhKlymnxHeNBaUP93jbZP+b6R/e183QQaxsqCL4OE1hn0Ri32hyX3cImmLFefIy2mZw9pNLGQ33FhmUyDbbY0joqnrIiIi0k/FP59FRJJO48FqarYUd/m4jKwP8YVPx+GoJQzYw7s4MqYz+On/4gWChwdFWjW7CNfsOqZ2thV4jAnsx0ZRi01mdXwBHqt6J5HVV8bupxYEaCh1Ez6wvFVZmxECHJi1O8Dmivsc3eGfcCreA59xp+HlbLfBuPK1PM7a2P47GtYBcFrlcy2O+1z1G6ym49GxMngUNm7H4Hws4lt/TySRzv+gscX9LQ0pjM50AG1nbJfeV8tk6sPeTstNyihkuHcItJOzKOib2uK+P5iTiOaJiIiI9AgFOkUGKCtisueZD7EiXV87zfIVk+J9H4vjATBL3k5081qIVKxrf19p66Bkd9kaP8abdyrmntZrlhoEwOYkUrMTy4q0cXTivDZ8JpNzx9IIjLC1TtAkEg8HIfLdXkoDjZ0XFulhDWEDy3BjWAp09hchy8mKqgygrsNyx2VMIN2ehz++5OwiIiIi/ZqmrosMUMVvf4bvYHXsvifPHf/BgUqCn/2RyM7/B0Co+N3Oj7HZMVydjxxpi1m1pd194dKPCJd+1K16jxba82SLJEMt+XFnujDMMFb1ji7XHRkZDQpTMAEAI6OQ9XOvoWbaOa3KrrF7+LpnCAAjqO3yuUSOeNL9Fq9nref1rPWM8Eanln6nMJXXs9bz9YIssl0eXs9az1UFWX3bUBnw6sIGFZFxfd2MQWW9by6Nxvh29tr55bZsfrrR12k9KfYsgn69diIiIjIwKNApMgA1FFVwaNnmFttcoSWxjOKdMRuj093NimjSG8PqfGqs4c3EyijsYks7Z1hWXOePh1VfDDVtJ3AxzDDulLJu1/3ziWdjpGTx6pSzAagdPp03vDlcVng8Rs7IpvM4PbwWMQgcXgd1ZKQba6iKHDa57gOOr3mL42veYpzXRYbTzfeq7uH4mrdYYO3kuNRUjq95i9G27q+hKxKPxgi8U6kENb1pW4OLkmDbz/mO4Ik8uree0kDnI2ztuDAtrbkpIiIiA4MCnSID0P5X1oF5VHAwWE2KY0Vcx5t1+zsvdJS6kSdgetK7fFxvC+1+pu0dVggquzdFPzJqJs+bBk/NvpKf21IxckfT4E7jGdNGsQVPz7ggVjYw8oRYkDPd6WJYqKidWkW65ibbeu7N3EFGqBSAU+re5j/tHwNwhm8V41MzcNrs3FFockehycS0zL5srgwwrx8K8YcdQbYGT2ZHcHaLfRGjIM5a4ssQPpgFjRG8UTOfN2rm89LBMH/fm0I9k5oKGF6W1sznPz6Ob3Uqp82OYbl6qLUiIiIivU9rdIoMQOF6f6ttlhUmsvtJyJpFR7lLbE57tzKob88exWinh5yiDV0+tleFWq/PGd1eTnD380cSzndJTeZQAH5heAD44/EXcVHtAY6snFhqa7p4f3f4CbHbF2SnkNZY3Y0zirR2esXTLe7nBvYxL7APgONq32Vczrkc9Nu4rvQPALybcyfbNdBTEmRZeXSK9E82eTkh08FtYw/vMLysrp/AKM8whtvXd1hHxMjDbpX0bEOT3MFQIVesatlxT80ZwkU50aR+L1TM5to1Ha/J2dzwlCywurC0jYiIiEg/pxGdIgNQWwmIrMZizPoi3NkdX9A4Urr3+8duVyp70zoZteNoGjViZMQ7wqd3hHf9CyPSvcRAVZ6MFvfvsxz8MWsMs7NyyHensNdwUDv1LIzsEfyvI4PRKdGRr1eEV5IZ1EW99I7TnFVckJsWuz/SocwjknirKwNEmv2YVmGOZ2mpky9+6OJg5AT8xtjYvkrrOErN42P/9gVHtlGjNLemOq3VtmcPmJSax7M5cDLXdSHICTA9cxxmpHWdIiIiIslKgU6RAaitQGfkYHTaustb3eGxnrTurVPZYNgocXra3W+k5VI/cR4AtdPO5kezrurWeXqKWd/9KeTlrtRW2xoycvhPx0b+lraRV0wbcwtnsmLauRyyLO51vc+41AxmVb0am2Ys0tO+WfJ//L+y/4ndP9Xc3YetkYGqLmy2CHTetTOH32+vZXdDiKlv2fiPT4Yf3uPkzBUpTFpqj/17pbT1e6k05+ab61onsFt8sIFJS+3MXRbqaMJGm3Jt0wiEFegUERGRgUOBTpEByIocdaljNE3ItjV+2v6BBph7H+zmWQ3KbO0nM6gcM5vdmcPZe9JlzCs4gaUmYB8Yq2cccjQFePPdKRgYjHSazGhYxWmVz3HjkOjF+/3ubMamZnB8zVvc4d3YV80VASDbrO7rJsgA5W/2W9um2pbJcF491EDAGIVpZFESiLTYF2z9G10f6QeJeYwULCMTy0jnSHvqGcXRH+/HytL6nCIiIjLAKNApMsBE/EHCvkCLbYa9KdBpNrafaCil0EmkZHW3zmszDEqM9gOXK3PGUO708LX00UQAH1A57ZwWZeqnnomRO7pb5++q9XOvSVhdn9pcXFsYTezyUej/uKkwlXQjQoF/JwBnBj8BYLUJX0iLXsmfUfFUws4v0h1zK1/AM0B+bJD+5fkD0bWQI0Yhyw+v3dlc4Ru55LwxAt9RUbstdf0j0vl27Sl93AI3P985i+w3xjHjvSmsaZyNaeRx956hCT1LlstLIKikZCIiIjKwKNApMsA0FFW2SjZk2Jt1dav9C0lnYHm3z2u32zhotP+W8pgjjQqbk+pm2/6SPwUjLTfaxpQs/mPI5wim53e7DfEyckZypTsP38T5CajM4AObhx9W38vY1Axclp8flP+eqbS9BMCl/reO/ZwiIv1YRdDEMjJZUTuxS1Opl5T46OuvphEjn0f29WkTMI00niyKBoiLfGEeL3KwzT+O1ZXhTo7smpNzJ2HpUkBEREQGGH27ERlgGg9UttqWnr42dtug7UCn3eMguOXebp/3JFcjO5wpGBmFLbbXTT0LI3s4n5oWfzC8LfY9adqoGHsyAJ8e/yU2WhY/Gnc6hjv+ddoMbyZG1jAANp9yJUZKNkbeGL515i0Y7QRNS0bOBOCekSe1X29qDtawqRhHrTtqDZ3aVMblJTLiBCZnZZAdPMAL5sMAeM16rij5a6zciTVL+TBtCVcVZDG1tvvBZJFES3do2qr0jPNWT+OaNf4uHVMVimAaWUdtdXLbrjMS1q62LKmZT9gYQj0TORAayeuHGvmw4bQePWdHrtswlUP+pqDmg3vquGSVxfKK1qNjuyPv8GfsUOfkhNQnIiIi0p8o0CkywDTsbxnoNOwGoa33x+5bZtuBTm+uH8Ldv4gaZpaBw8mKGYuazu1JZ9GQmewbG50GWN3GcX/JnwLA3SnRAOkbpsGqky6P+7yR3FHsGz+XLad8jcu8Q1h+4iV8OPlMlptgthPo/CBrBAAvmg5oZxRqJGsoDRlD2Dbzohbbn510ZtOd9HyWjp3DMHv0gjTf35TcxTCaxjF5zXpGNXzKhZGP435cIr1hhMfd102QAWp1lZ+qUKTzgkeJkNLiftjI5cXixAT42rO7wUatmUttJJWSgIeAafFxdd8t6/BeWesAcbE/nLD1OY/LGhW9YbWfQFBEREQkWWlxLpEBxlda0+K+J9eJta8idt+s/ITMcdOx3GOpPZAOgCPVhVH8wDGdN9OsJMvj4BZnNj89/dsYQJHdTYUFV2aOBQsKPSmU+BtbHPekaeM/p5/HSrPpCu7bzhxWjp+De+eHLU9SMB4wMKqKiBSM57Xx89lt97DEsLPjcPz2e44ssmyABbVZw8ks3gRA/ZSFpG15B4B/21LBsijD4skzbiLNDLNo61tQsp2SmRdQuOFV/Gl5NLpT+W7aCN44fHojPZ9fGx6+nDWMpTO+SLHdzV8MFzfZ4hu1NLvq1S4+qyI9a4hTv3dK//KHveMZ5hnH6Tn1jHJ8TK2Zy77GEP8sPT1W5si+RPGbcMf2XEwLDvqjwdnt9RaWkc77tSewz2fjtOxGxjrXJOyc7bN1K0Acr+OzR1DoHsoXhqUQDmX12HlERERE+ooCnSIDjBlquYaX01FEqPn+un0EP/kNuLKwDbsPT44Ndt1KuHrnMZ3XZ3cwyWWyBviR7fDU88OxywoLJqdlMjvF4J9HBToBXsub0OJ+wICzRp3G2xa4dkWDnUZaLjdMv4gRmPx0+1u8PvZUbrWlRs9htTy25PD9lwqmcNWWt1k59xr+05nNR1vewRo2lY1W0wG34wabm1Pzx5Fdsp3bcybyu3FzCDrcvJ81iiLLwkjJxmqsYu308wkBmycv5D/t6bHHmG/Vx/UcOa1A54VEepHHSHAKZ5FjdOeWWgDu/1w6o/JgS0MWFo18d31drMyZBV6em5m4c9ZHotPDm9tYG6LOGsZPN4bYUBvkBxPTuW1s4s7ZHsvI6NH6J6dNwGl4yHdm4fdpRKeIiIgMPAp0igwwVrhparrNaccqfrHtgsFq0jxvEFz/CIbZfoID38R5eLcvJzjuFCozhjB06ztYvuiFKIUTMaqKsCIhqp1epthq2q3nrLQIw6njqwU5eAyT8oidxeXRafb3G55WCZSqLDhz9Gm8F6jHdmgr/3fyVawwAWz4J57NMtNodY6j/cFyUbvgu/zNjL7VWUMms2/o9DbLlnuzyckoYFkE3hh2PHNrinjA5gULiiYvYMTGN/ihJx8six+lDqH5UqcFZut1UUWSwZm2/WQVDmNHyMH7lRWdHyDSSwKH3+NXVLb+qvp2qY9qppLF5oScqybUOuC/oTbA8yVD2FYfDYC+XhLktnGpYDUQNoZhYeC0DlBuTSfP+KzNei0jnV3BlutgjnYVUREppND2SZvHNFqJT8i3oHAaKfYU9jYWk8JYDDOCZTkTfh4RERGR/kCBTpEBxopEI3DuXDfOst8TPrii3bKhLQ/SYbjQ4eKCEaewdO/H3DZmHotN2JC7C1vRBgCWTFrI/IOfEXCnUeFwMSZcDAxts6r54c2U2PP437Jf4iCEz57BEvuN+CPh2AjMo1VZsH7USQzNH89Dpj22/cU4gpwQHd15JMgJ8Jepn+fMxraDOXUON2+ccBGWAcsND56MYew73K6LMsfxzrhTOHR4JOiOo5Y5He/fEld7RPqbS0vv4VLgxfwbeJ+eHUkm0hWNh39/K/a1/QHxYXUen89KzLmKfK2nivsiFjd/Uhu7v6k2QL01jDS2szc4nMUlKXx/xAH+e1MWDxzXdr0B8jjpnZZ1P3PKBO7aFuHN2Xag9XnLQhnQTtLA7hrpOJ1AKIOTMnbi8yc+kCoiIiLSn2hxLpEBxoqYpA8PYtt8NZHmQc52ku60xciMBit9407B8KQRHDaNj12pTE3PIpiSHSv3gjeX7Xnj+XXhDAwjzNjgjjbrc9rszK5+k1HhIhyHJ9J7I7VckJveaVvu8ebx85wJnZaLxz2Wg8dTC9rc96o3hx/You1ZjcE/7GmxfY3Ar4d9DgDjqNCwx+5gVH3bI3NEkkWmWYu9C+8RIj1tn88CXNSE2w50bq+3ETKGEzKGQ8c/2XXM8LK7Ib41Mbf78ggZwzkYcPObLXU0MoGygEnAGB1rS8gYjmVkEzEKKQ9nt6rjn/uhyBcGo+1p43v93u4/lnaEwtEET2ao7R8iRURERAYSXdWIDCCWZWGGTazdf4ZQy3Uj937ukrjrueqkr2ENnUJlah4vGk+xauSJ/C1lLW/V/4xIRvTCzRo2jTNzQqz2ZPGqCamResbXrWZ2Vk6r+sanppMSqWZO5Usttv+s9v5WZY+2wuTwlPXEeL6d0aCPmzasw7sqLFqs4wmw+HAbLshvunDNdnk4PycjFrwVSVYLKp5kmDel84IiveQvO+soMafy2qGGNvf/bFMt+W8UkP9GARjdDw4eikxiU2186ycvfN9P/hsFfPGDBgKmxbA301lW7qPwjZxYW/LfKOCp0uM5eflopr/VOkj7QnEDxf4wJu5W+xqYwIUr23683WUzDEwrOrMhGFEfFxERkYFPgU6RAcQMRcCyMENVrfY9mTmS2qlndVqH4U5jrQn/b8rnybOHGebbzKqMQk6ofguAmvQsALaNOIH5jStYYnMBkBaOnvOH9taZcCe47a22AeQG9lLoSa4Lr++F3oiN6sx1urgm8kEft0gkMVJtbfdTkb5y9+5MfJHOE2aZdP9zpD7s6vax7VldZbGzoeMfwExan/eJQ8MT3haHRmqLiIjIIKNvPyL90MG3N7baFvYFAQhUNdBQ1Dr5TfWmIsxgGJvTjlm3v9X+quxcbh46E+wdL827eeYFLM7eyGJXOg+NOxGA4ekhXJYfgGfyx3Luwlv4cd4kJtV+yIbDIx3zA/sAmFf5LFudj7DF+Wjs391Vd7Z7vs9nRBMi/M8QB1ucjzLCm9Zu2bbkuLyMTc3AwOC3hZG4AqdXF2bx6yFdOg0AJ2XmMK3mPU7MzGaD5xleC97N7KpXul6RSD+0OPDHWJ+9LL/1yGyR3va3nXWdFwLqrdxun2NlVeJ/bPvHns7b7bMyW9yvYSq3bqhtp3T3OfUDhoiIiAwyCnSK9COWZbHvxTUUv/UZltlyvra/LHoBVLx0A/V7y1rsC/uC7H3uI8INAdzZdoxIsGXFhsF11ipC6dmUHff5ds/fOPkMvp46gpnVS/l5ZimBwyNB5vk/ipUZaavjgAXz020YhoXNMHDa7KSFm5L8pIfLyQiXxf55zfpW5zriOv9r2AyDS2qeIyNcxnB310bXjPV6+GJahDsKI1xd+kf+J7Os02POMHdwTcndfC6za8Gc77k2AfAN9x5yA3tJDSvbugwcqeHKpj5rJDYZikhP2lCf1+1jS4Kdl+mqzsegwl5/Vov7NWEvcQxe7TKXTXlHRUREZHDRtx+RfqRizS7KVkUT+oTq/ASrG0gbHc2QGiivw+5yULl+L+F6P4WnTQbADIXZ9/xHhBsD1O8tw+msar1ipM3O1PpV3JHq51+5x/H9Ns5tuFK4eNhszsvNxF4e5uLS+5iZHk3Ac1zNu7FyX6x5gfF5JzGpbj0A/8rdxy/906Gby4pNqlvJ1wvOZ0jpdgB+xVIq8vL5FzN5ubztDOkpdicz0tP5vuMTcsMfM7byk1jQ8ZKSeynIvQzTMHjImsmbFdE6rirI4rHSamyGwZzapdgJc6tzPV9hVLttm5WVw385NnBl+XCGeFI5p+zfYMCi8ke792BFksT1/lc5P29ki21/jpzAB1UK7kv/8/IhO6d1krOuzJzBTl8Gc1KjSfperDydrfXw5H5fL7SwtVs32liQf3rs/qc1EaKp7xIr25Vcy8OIiIiIHCsFOkX6EV9pTex2+eqdVH6yl2k3fx6b04G/rJaqz/aDZVG7/RD1e8pwZnrZ+a8V+Iqj62PWbCkG35ZW9RoONxmhUmZWL2Fj6gltnrt6wqmkpWZwV/X/ix5jWIyrXwuAjabRXQX+nRT4d8bun1HxFFcXDO92oBPgvMhnsdvTa94B4FTjRYy821hc3jqwMjUtnRuc2zmj/KlW+wzDYn7l0wDYcyIss03gj3mVnF/+F/7J9zgxI5vs2gMAHF/3PnBlu+0a4oCFFU+Q6/ofZqe5MQLR4TZOK77EFSLJalLdSiaxssW2ZYXT0Iq00h89VdTAbybYgPZGIrv5yppUJqbbmDM1uuWvO0OsrvL3VhNb+aDCzwcVPX/+XHd6j59DREREpD9RoFOkF5jhCLXbDpI5eRiGve0VI8INAer3lsful67cRsQfovitjYz4/AlUbzoQm74OsPeFNYTqfUQam+bd1e0sITW4ulXdqVNOBJYDcLJtM1tP/ipD68vI2LQUAMPl5dEhM3jAeLHFFPR4XVr5WJePaW5O9WuttjmtAH+pvJ3y7NtYV1vLN/NdOA9fxE6NbOfsiic6rffUyud5OeN0jit7F4DPZWZzqicAh5/GrOAhbhtipwEnT9c62ddYx7m5uSytrGSkN41h9ujY2FuyG5gUbr1uqshg8vngGlKHRH8o+Xe1nYP+BqalZzHda/BUaesEaCK9pSJo0miMJcVq+hGuwprOHl8GIzz1lAZTWFsdoCQQYW3jqQBsr++BOeu97NT8iexvLGd/Q9v9b0RKFlPSTiDQN4NWRURERPqEAp0ivWDvc6upXL8XZ4aX/JMnkHfyeJxpHgCsiEnpyu0cfPszIv6mSedHbpcs30LOCaPxV7RMbuBvNvrzCDMUwQy0vOBxFozBkd00MqvBHuSSlGGMTh3Oq1uXQc5Ibp1xEbVZuYyrWtutx5ceLu+8UAe8kbYTMDitAIvclZyUn8p/l9ze5XptmBxX+27s/h3G2ywzTm5R5tsldwGwO+8O9jXCj0MvU5+1iBNdAeZFoqNjry39Q5fPLTLQnFz1MifzMgAl+b/in36Ym2Jyte9VnmJeH7dOBrtHDozgxuHFYPnASGXh8hT2Nfq4bnQWC/MBAhT5wpy1PNzXTU2YsSmTSLF72w10jkzNI+Cb1MutEhEREelbCnSK9LBD722mcv1eAEK1PoqXbuDguxvJnj6S9PGFHFq2mUB5yyCm4bBhhQ9PwTMt9jy7CsymLAWG3cBqJ2uBFWk2dMMwSD2uAIM9sU0Z4UrmZedQHjZZNvdafunMoMSEvzj2JeYBJ9gXahcnrK7ja94iLdI6QAww3BYgzeFiQt1qbsibQE6ogsn1H7VZVmSwO8/czJ7s45hOMSMaN3Ni5pdYVxMNtgz1pDLe625RviZisaFWoz6l59yzy8dlQyaQb9vAmoYT2NcY/SxcWRmg0OPp49YlTrYrhfHpBQA4rHQKXSPIce+gMtB6fc98Vx6tF+0WERERGdgU6BTpYTWbD7TaZoVNKtfvjQVAm7N7naTyDLXhC2PbjqzBCZAyxIlhmDQcjLR9wnD0YseekU/6rJEYVsup7OPq1/IUaylKOY6THZ/Ha3Pyl9wqLim7tzsPr8cN9W1LaH3j6te0uT3L8PP9PLCXhDlPyYZEOnRWxb85q9n9h4MPcAKXAnBJJvy09KctyvvsmZzi/h7lmkMrPWRvY4iasId8F6ypdgLRv7UtdUF+uzX5p6kfMStnAtnm5wHwHV7ic0bWbpaVbG5RbkxaLt7QvLgywIuIiIgMJG0vFigiCROqjz9xjSPFSYrvb4R2PIHhaLt72ssfxm4carcOK+TDO+FzZMyyMKyP2y03onEjVxZk8Vrqsn4b5OxNM8K7uL70z33dDJGklO/fQ47LC0CW0Tqo5I3UcFN2ELuhrx3Sc8KWAdgoGcD54lLsqa22OQx7i/t2w8b8nPlY+povIiIig5BGdIr0sFB9/COYUrLKCG1/GwB3lhOXu5LaA9GLGne2G6c3SPijl7H7S8H1gxbT2QGwGVjBajyjysHqfN3M/yv7WfwPZICbV/FMXzdBJKldlWNw9yGYE1jf5v5vl9zFt4EFabezrb7tJSREjsWcZSHgBGIZ5wYYu2HDG57TKrf8MPcE4DMATsoZzXj75QT8Rq+3T0RERKQ/0E+9Ij3IDIUxA/EnPjDCTSM13eZyQuv/P1yZ0bXu3CmHYP/dAERKVpM+tPWQFUeKE8OyAP+xNVxEpIsmmyUM9aTyuao3Oiyn8ItI94xJy8W0nK2226wUAFIcTo7zfh4M9TIREREZvDSiU6SHVG8+QPFb0REWrkw3HucaQsYsfGVtz6lLHWYQ3v7v2P3AZ3djWBE8kZcIch6RTXdi1hfF9kc+u5X0glNi9w3vEIKuz2NPy8WyKhVMEJFedXbVs5zgHo1hdLwq4J8d73C+MYuwZWIzDExLqwiKdOSsIdNZXbGdOTknE2pjkkggUMg1I6/Bstz4g5m930ARERGRfkSBTpEeEqisx1dchc3twFX1e0IHVwCQPnoRVuFXaShxYoVNPLluXI1PE/ro8RbHG1Y02VBo68OknXwO4eIDLYKXVmMJ4T0vtTjGPWsinmnTMVjWo49NRORoaeEK0sIVnZabXvMOp+ecw9sVFXhsDhojSgst0pGhrjHMyrFwRIa0mUTdtJz4AoW93i4RERGR/kiBThlUwo0BaneUkHP8qNi2hgOVuLNScaS6E3ouMxidsp6etobgrhVNbdj7Cux9hZSMsThGfIHAhnsJWe1kUD9S16YfYnelYgbqsWcUgGEQqSlpVS702W9JPS2bVgt4iYj0I/+f+Q5nFU7HTQMBHPy63I1PAU+RmPOGnkiOMx8AIzKSUc4CAqGMPm6ViIiISP+nQKcMChF/iJLlWyhZsRUzEMYMhck7aRxVn+1n99MfkjVlGOO+elpCz3kk0Bkuernt/bW7CW76W1xTzK36YrxTTyFYeoD0mTaCpSNo2NA60Gn5K8DSpHUR6d9mVi9hJkti91/KvINV1ZV92CKR/qXQPgu/PxuA6E+h6X3ZHBEREZGkoUCnDGhWxKTkg20cencTEV8QiK6Xue/FNTQWVVK2egdYULVhP9UnHiBryvDEnNeyiDTWkDbcIrJ6Y5ePt3kzMH212NPziNRFs6e7hoZwDQuDeQhH1pgOjm7oXqNFRPrI5e5DDMkfwopaH+WBNhYhFBlE0p1u/IEsZe4SERER6QZlXZcBy1dSw5a/L+HAa+uJ+IKkDHGQ7vgX9u1X4c52UrYqGuQ8orEoMaOJGour2HrvW/iLdxFZ/bUuH+/IGkLmqXl4Rk8nY7aFd/yJ0R3WBgwzmpXd5liLPT2v1bGGKwUsBQlEJLl8tfTP/L38p5yYltJie5rD1UctEuk7ee50ZU4XERER6SaN6JQBxzItSpZvoXjpBqywibfAhbPuaUJrnyAMYLNj3/sT3MPvJBI0AYNwQ5BI4NjWh4v4gxx4c0N0lKhpkTE82LKAzQ5mx2txOgvGkDYjAuYuvBOmg1mBe1QVztwzjkow1EDazJOo/2Rz0+OOhLF70oDGY3ocIiJ9ZbgjTKGnKdg51O3mYKDpq0rYtKgI6sccGdgKPVl93QQRERGRpKVApyS9xu0PkTLxOgDq95azb/HaaLZzp52Mgm0E1/2cEGBPzyPt+GnYPLuoW1ON7bNLYkOaPbP/RcTXvUCnZVlUrttD0WvrCTcEmu3wx26mTJuDe8h2Iv7pNG7eQbjqQIs6HJlDSJs5HowVTYmEzM8AMDCxp7bOom5zvEfGSc1ORwaB/fnA/m49DhGRvnZn6W3c2XxDoOX+Es8ETuTC3mySSK8b51xEuOPfRUVERESkHQp0SlKzwn7q1tyKPefzFL+9l8r1e8ACb4ELe9GdBPesxZaSSdoJM7F7PwLrPTAh/aTjqH6vCiscvYq2Nv8ICv7V5fM3Hqxi30tradhb3nqnGQ10ukdMxT3kE7B82N3LSJtpA07BvzdAoGgr6SeejD31I7BWtK6jCwxqcY+0H1MdIiL9WaF/B9kuD1VBf+eFRZJUxNRnuYiIiEh3KdApSS1UuQ4zUE7F62fiNtIYehyABeEyjBwLGAlmJbCsxXqcWBvJOr0ADDdg0Lg9HbN6PWboVGzOzruFFTEpXrqBQ+9vAdNqtT91mI3IzkcBSJnkarFupoEJrMI7GjyjPdEp6a2r6B7rIyUvEJEBbbTXq0CnDFinF0zBsvT1XERERKS79E1KkpsVnedthLZ049jSWIAxZeI4GqoqKHl/K0PPPK7Dw3wlNex++kN8xVWt9rky3XjMVwh99GDTaazd7cYeDRJ7sa7cBSIy0Hn0RicDWLojneiC4iIiIiLSHQp0igCYu3BnHOTQ+1vInDqclKFZbRZrKKpk631vYR21eJbhsJNeUExo/U8JhRoA8IybiWekF4OVPd16EZFB4xb7WsoLcltsCxkObi5JxUrY8HgZTBYNm8Wayq2U+Ov6tB2ZTg959un4FOgUERER6TYFOkUOs0W2kJK7gO0PvsPE6xe2Geys3X6wVZAzdagNY8+dhD5a32K7My8Tw9Y6iZCIiHTfaZXPtbn9wYxf80lt65H2Ip3JdY5kTFpVnwc6zyg4AV8gv0/bICIiIpLsbJ0XERkcbM5a2PW/WGaE7Q++Q/2+1gmGanccit12prvIyHgLc80VRMrXtyjnyB2BI62hp5ssIiKH3ejZg8eu32+l6wzsTEqdzsjU7ITWm+NO4fxhs1r8G5eWx5lDprcqO9SbQZYxM6HnFxERERmMdEUgcoT1Cc60GRihB2l0Xs/We9+i4NSJDD/neGwuB+Uf7aR+dxkAacMjmBtuJOQrjR5r2PCMOg7X8Bzs3iIwd4JV1IcPRkRkcLmg7AH+nP4rNtZW93VTJNlYDgL+cUzJ2MP+hsSNCh6RkkNa+MwW207OWYczMoF053bqQoHY9ikZI/EHMxN2bhEREZHBSoFOkWa8E0yq3n6TlJHQ6PkGpSu2Ub3pAEMXTGP/yx/jynLj4V1Cq/8Edicp0+bgyrNjOLaAtSFaidm3j0FEZLA6zRvBsrJabNvna6Q+HOybBklyOJzlPNuRw6SMQgBqgo3HNJV9bFouQzy50HK1G9zmKIIRNzOyRlEeqI1tz3PlQwAREREROUYKdIo0Z24k6/TTqH7vTdyZ27FNvIP64gb2Pv8R3gIX1ieXEzLDuIZMIPU4G5gfRo9T/gsRkT73i9JftNp2e8HPuadEgU5pn2W5ozcCs5npmQ2AJ2snj+57ttt1npp2JaGIp9V2XzCaSGuEcTEjmu9WkFNEREQkIbRGp8hRDNsKsk6fi1Wzm8hHXyEj6wPcOW5s+36OYUVIn3U6KVP3gbmtr5sqIiKdOMXc1ddNkH7Oslytt0UKul3fEG8GIbN1kFNEREREep5GdIq0wbCtIHvhTOo/rSS08c/Y+DO2nOFknpkH5nt93TwREYnTOeX/Yqsz/iQzb2dfwo2lGT3YIulP5hdMJhBMA6Pl9kAona8O+X73KrUMIprpISIiItInFOgUaY+1nrTjvYRrz6B+/UrST8wG87O+bpWIiHSBDZP0cEXc5ceEdgMn9FyDpF9Jc6RB2GhzX8RsPdJTRERERPo3BTpFOmL5cKQvI+uMfAU5RUQGgUl1q5mTtZAPqysB+GZhOgsjm2L7r6saiz8S7qvmSYJcOfp8HFY6mBn4+roxIiIiIpIwCnSKxMMs6+sWiIhIL/BGapnsinA41Rznhdcxt/LF2P4s920cUqAz6dnCo/GF0vu6GSIiIiKSYAp09jN79+7lT3/6E6+88gr79+/H7XYzfvx4Lr/8cr7zne+QkpLS100UEREZ0M6PbCBvyCQAplatarFvgtfDIX9Dj537yoIshtj8nZZb0ujl09qqHmvHQHJK3jiGe4e32BYKKlmQiIiIyECkQGc/snjxYr7+9a9TW1sb29bY2MiaNWtYs2YNDzzwAK+88goTJkzow1aKiIgMbPMrn2Z+O/vOd5WxHFuPnNdls3N75e/wRmo6LVtV8Es+re20mADjUyYT9s9osc3so7aIiIiISM9SoLOfWLduHVdccQU+n4+0tDR+/OMfs3DhQnw+H0888QT3338/27ZtY9GiRaxZs4b0dE23EhER6W1nNrzNvOzLe6Tuya4w3tLOg5wALmPwpPWelTumxf1Sfy37Gio7PGZMWi557uh3JSeZaLEBERERkcFBgc5+4uabb8bn8+FwOHjzzTeZO3dubN+ZZ57JxIkTufXWW9m2bRu///3v+cUvftF3jRURERmkRjV8wlN80tfNwGENjjGJ2S4v4+wtA8vH5RbxSMO/2z3GYdg4PfPL+EMZAPg6XwlARERERAaInpl7JV2yevVq3n//fQCuv/76FkHOI2655RamTp0KwN13300oFOrVNoqIiEj/4TEi2A0bNsPo66b0qBEpOa22+f3DyHOnYjdsbf47Z+jMWJBTRERERAYXjejsB1544YXY7euuu67NMjabjauvvpof//jHVFdX884773Duuef2UgtFRESkP/lByR38ANifOoNT6gfu94GT0s+iMdBym4WNMzO/0/5BmqcuIiIiMmhpRGc/sHz5cgBSU1M56aST2i13xhlnxG6vWLGix9slIiIi/dvIhg2MTEnr62b0IHtfN0BEREREkohGdPYDmzdvBmDChAk4HO2/JFOmTGl1TLyKioo63L9///7Y7YMHD3ap7r4ULCulquN8BCIiIgPa3anP0WDrP1O1N3km85vSY/+KaTNs1DjqCJlarkdERDpW6fJQlJ08P/w1v+YOhzUVQSSRDMuyBk/azn7I7/fj9XoBWLRoES+//HKH5dPS0mhoaGDOnDmsXLky7vMYA3wNLxEREREREZFks3r1ambPnt3XzRAZMDR1vY/V1dXFbqeldf4LVGpqKgD19fU91iYREREREREREZFko6nrfczv98duu1yuTsu73W4AfD5fl87TfGp6e+3YsmULhYWF5OfndziFvr84ePAgJ598MhD9FWzo0KF93CLpCr1+yU+vYfLTa5j89BomN71+yU+vYfLTa5j8kvE1DIfDlJWVATBjxow+bo3IwNL/o1kDnMfjid0OBoOdlg8EoqlHj0x3j9eIESM6LTNhwoQu1dmfDB06NK7HKP2TXr/kp9cw+ek1TH56DZObXr/kp9cw+ek1TH7J9BqOGTOmr5sgMiBp6nofS09Pj92OZzp6Q0MDEN80dxERERERERERkcFCgc4+5vF4yM3NBTrPjF5VVRULdI4cObLH2yYiIiIiIiIiIpIsFOjsB6ZNmwbAjh07CIfD7ZbbsmVL7PbUqVN7vF0iIiIiIiIiIiLJQoHOfmDevHlAdFr62rVr2y23bNmy2O3TTjutx9slIiIiIiIiIiKSLBTo7Acuuuii2O2HHnqozTKmafLoo48CkJWVxcKFC3ujaSIiIiIiIiIiIklBgc5+4OSTT2b+/PkAPPjgg6xcubJVmd///vds3rwZgJtvvhmn09mrbRQREREREREREenPHH3dAIm6++67Oe200/D5fJx77rn85Cc/YeHChfh8Pp544gnuu+8+ACZNmsQtt9zSx60VERERERERERHpXwzLsqy+boRELV68mK9//evU1ta2uX/SpEm88sorTJgwoZdbJiIiIiIiIiIi0r8p0NnP7N27l7vvvptXXnmFoqIiXC4XEyZM4Mtf/jLf/e53SUlJ6esmioiIiIiIiIiI9DsKdIqIiIiIiIiIiEjSUzIiERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU5JSnv37uWWW25hypQppKamkpOTw+zZs/m///s/Ghsb+7p5g9KaNWu4/fbbOffccxkxYgRut5u0tDQmTZrEddddx/Llyzut4+GHH8YwjLj+Pfzwwz3/oAaZeJ/7BQsWdFrXa6+9xsUXXxz7WxgxYgQXX3wxr732Ws8/kEFqwYIFcb+GR/69++67LepQH+w5paWlvPzyy9x222184QtfIC8vL/ZcXnvttV2uLxF9LBwOc8899zB//nzy8/Pxer2MHz+eb33rW2zcuLHLbRroEvEaNjY28txzz3HjjTcye/ZssrOzcTqd5ObmMnfuXH7xi19w6NChTuvpSn+XJol4DRP9PtnY2Mhdd93F7NmzycnJITU1lSlTpnDLLbewd+/eY3vAA8yxvn579uzp8ufkmDFj2qxLfbB7EnG90Jw+C0WkTZZIknnppZesjIwMC2jz36RJk6zt27f3dTMHlfnz57f7ejT/d/XVV1uBQKDdeh566KG46gGshx56qPce4CAR73N/xhlntFtHJBKxrr/++g6P/8Y3vmFFIpHee2CDxBlnnBH3awhYNpvNKioqalGH+mDP6ei5vOaaa+KuJ1F9rKyszJo9e3a7dbjdbuv+++8/xkc9sBzra/jJJ59YaWlpnfatjIwM64knnuiwrq70d2mSiH6YyPfJ7du3WxMnTuzwb2Hx4sXH/sAHiGN9/Xbv3t2lz0nAOvfcc9usS32w6xJ1vWBZ+iwUkY45EEki69at44orrsDn85GWlsaPf/xjFi5ciM/n44knnuD+++9n27ZtLFq0iDVr1pCent7XTR4UiouLARg2bBhf/vKXmT9/PqNGjSISibBy5Up+//vfc+DAAR599FFCoRD//ve/O63zjTfeYNiwYe3uHzFiRMLaLy3deOON3HTTTe3uT01NbXffT3/6Ux588EEATjzxRG699VbGjx/Pzp07ueuuu1i3bh0PPPAA+fn53HnnnQlv+2D20EMP0dDQ0GGZTZs2ccUVVwBw1llnMXz48HbLqg/2nFGjRjFlyhTefPPNLh+biD4WiUS4+OKL+eijjwC45JJLuOGGG8jJyWHVqlX8+te/prS0lG9961sMHz6cL3zhC91/sANUd17D2tpa6uvrATjttNP44he/yKxZs8jNzaWsrIznnnuO+++/n9raWq688koyMjI6fe5nzZrFQw89dEyPZbA6ln54xLG8T9bV1bFo0SK2b98OwA033MBXvvIVvF4v77zzDr/5zW+ora3liiuuYMWKFcycObPb7RyIuvP6DR8+nA0bNnRa7je/+U3su+o111zTYVn1wfgl8npBn4Ui0qG+jrSKdMWRXwIdDof1wQcftNp/1113xX6B+/nPf977DRykFi1aZD355JNWOBxuc39ZWZk1adKk2GuzbNmyNss1HyWxe/fuHmyxtOVY+87WrVsth8NhAdasWbOsxsbGFvsbGhqsWbNmxfqwRl73vltvvTX2Oj/22GOt9qsP9pzbbrvNWrx4sXXo0CHLslqOLIp3JFmi+tiDDz4YO/dNN93Uav/27dtjMycmTJhghUKhrj3YAepYX8MVK1ZYl19+ubVx48Z2y7zwwguWYRgWYI0fP94yTbPNckdGk3U0wl5aS0Q/TNT75M9+9rNYPXfddVer/StWrIj1d73OUYl4/ToTDoetYcOGWYCVnp7e6n32CPXBrkvU9YI+C0WkMwp0StJYtWpV7MPoW9/6VptlIpGINXXqVAuwsrKyrGAw2MutlPYsXrw49vp973vfa7OMgix961gDnTfeeGOsjpUrV7ZZZuXKlR1+qZSeE4lErOHDh1uAlZaWZjU0NLQqoz7Ye7pzgZ6oPnbkczInJ6fNvwPLsqzf/OY3sXqeeuqpuNo32PREkMWyLOvSSy+N1bt27do2yyjIkhh9FegMBoNWZmamBVhTp05td3rtt771rdi5Vq9e3a1zDWQ90Qdff/31WJ3XXXddu+XUB3tGPNcL+iwUkc4oGZEkjRdeeCF2+7rrrmuzjM1m4+qrrwagurqad955pzeaJnFYuHBh7PbOnTv7sCXSEyzL4sUXXwRgypQpzJkzp81yc+bMYfLkyQC8+OKLWJbVa20c7N566y0OHDgAwGWXXUZKSkoft0i6IlF9bNu2bWzevBmAyy+/vN2/g+aJPZ5//vljbb50gT4vB7533nmHmpoaIDo12mZr+5JM/bD3Pfroo7HbnU1bl8Tr7P1Pn4UiEg8FOiVpHMnCl5qaykknndRuuTPOOCN2e8WKFT3eLolPIBCI3bbb7X3YEukJu3fvjq291LwPtuXI/gMHDrBnz56ebpoc1vzi7cgPQpI8EtXHmme07aieIUOGMGnSJECfpb1Nn5cDX7z9cNasWbEAjPphz6urq4sNrBgzZgynn3563zZoEOrs/U+fhSISDwU6JWkc+dVtwoQJOBzt59GaMmVKq2Ok7y1btix2e+rUqZ2Wv+666xg2bBgul4u8vDzmzJnD//zP/8RGpEnPefrpp5k2bRopKSmkp6czceJErrnmmg5HSG/atCl2u3kfbIv6aO+rr6+PjUQYPXo0CxYs6PQY9cH+JVF9rDv17N+/v9NEV5I4Xfm83LJlC6eccgpZWVl4PB5GjBjBhRdeGEvmIT2ru++T8fZDh8PBhAkTAH1e9oZnnnmGxsZGAK666ioMw+j0GPXBxOrs/U+fhSISDwU6JSn4/X7Ky8uBzjP9Zmdnx7JC79+/v8fbJp0zTZPf/va3sfuXX355p8e8++67HDx4kFAoREVFBatWreKOO+5gwoQJ3HvvvT3Z3EFv06ZNbN68GZ/PR319PTt27ODRRx/lzDPP5OKLL45Nt2uuqKgodruzPjpy5MjYbfXR3vHss8/Gvpx//etfj+viTX2wf0lUH+tOPZZltThOes4nn3zCK6+8AsCMGTM6DXSWlJSwevVqampqCAQCHDhwgJdeeolrrrmGmTNnKjjWw7r7PnmkP6WmppKVldXhOY70w7Kyshaj3STxujPzQX0wceK5XtBnoYjEo/1hcSL9SF1dXex2Wlpap+VTU1NpaGigvr6+J5slcfrDH/7A6tWrAbjkkks6XHpg3LhxXHLJJcydOzf2xWLXrl08++yzPPPMM/j9fr797W9jGAbf/OY3e6X9g0VKSgoXXHABZ511FlOmTCEtLY2ysjKWLVvGPffcQ0VFBS+88AIXXnghS5Yswel0xo7tSh898kMEoD7aS7py8aY+2D8lqo+pr/ZfgUCAb3zjG0QiEQDuuOOOdsvabDbOOusszj//fE444QRyc3Opq6vj448/5t5772Xz5s1s2rSJhQsXsnr1akaNGtVbD2NQONb3ySP9MN7vtEfU19fjdrsT9CikuX379sVGE5566qmxkbTtUR9MvHiuF/RZKCLxUKBTkoLf74/ddrlcnZY/8iXQ5/P1WJskPsuWLeO///u/ASgoKODvf/97u2UvvvhirrnmmlajzWbPns0VV1zByy+/zCWXXEIoFOK//uu/uOCCCxgyZEiPtn8wOXDgQJsjS8455xy+973v8YUvfIF169axbNky/v73v/Of//mfsTJd6aPNL9LUR3teUVER7777LhBdnP/IWlNtUR/svxLVx9RX+6/vfve7rFmzBogmQfnSl77Ubtnnnnuuzffr+fPnc9NNN3HDDTfwyCOPUFJSwve//32ee+65nmr2oJOI98kj/bAr32lB/bAn/fOf/4wlrIlnNKf6YGLFe72gz0IRiYemrktS8Hg8sdvBYLDT8kem9ni93h5rk3Ru48aNXHzxxYTDYTweD08//TQFBQXtls/MzOxwSu0Xv/hFbrvtNgAaGxt58MEHE97mwayj6XOFhYU888wzsVGcf/7zn1vs70ofbT71Tn205/3zn//ENE2g8wyy6oP9V6L6mPpq//Sb3/yGBx54AIgGzP761792WL6j92un08kDDzwQyzj8/PPPa23dBErE++SRftiV77SgftiTHnvsMSAa1Lriiis6La8+mDhduV7QZ6GIxEOBTkkK6enpsdvxTBk4shZdPFOCpGfs3r2bc889l6qqKux2O0888URCsld+85vfjF1gNF+wXHreuHHjOOeccwDYsWNHLOsldK2PNl/IXX2053X14q0z6oN9I1F9TH21/7n33nv5yU9+AkSTXrz66qstpkp2h8Ph4Prrr4/dV1/tXZ29Tx7ph135Tgvqhz1l9erVbNmyBYALLrig03VT46E+GJ+uXi/os1BE4qFApyQFj8dDbm4uQKeLQFdVVcU+kJovQi29p7i4mLPPPpvi4mIMw+Af//gHF154YULqLigoiP0t6Nfx3jdt2rTY7ebPf/OF3Dvro80XhFcf7Vlr1qyJZRb94he/SHZ29jHXqT7YNxLVx7pTj2EYnSZrkO55/PHHuemmmwAYPXo0S5YsIS8vLyF1t/d+LT2vs/fJI/2poaGB6urqDus60g/z8/O1PmcP6U4SonioD3asO9cL+iwUkXgo0ClJ48iXhR07dhAOh9std+QXWaDTbKWSeOXl5Zxzzjns2rULiE5xTuSXRiCujNHSM9p77pt/mW/eB9uiPtp7ml+8dTZtvSvUB3tfovpYd+oZOXLkMY8wlNZeeuklrr76akzTZOjQobz11lsJvYhWP+1bHT3/8fbDcDjMzp07AX1e9pRQKMQTTzwBRAPUn//85xNWt/pg+7p7vaDPQhGJhwKdkjTmzZsHRH/9Xrt2bbvlmk8NOe2003q8XdKkpqaG8847LzaC7Le//S3f+c53EnqOsrIyysvLARg2bFhC65bOHXltoeXzP3bs2Nj9zqZnvffeewAMHz6cMWPGJL6RArS8eMvPz+cLX/hCQupVH+wbiepjRz5LO6vn0KFDbNu2DdBnaU946623uPzyywmHw+Tm5rJkyRLGjx+f0HO0934tPa+z98l4++GaNWtis5TUD3vGK6+8QkVFBQBf+9rXcDgSl6tXfbBtx3K9oM9CEYmHAp2SNC666KLY7YceeqjNMqZpxkYwZWVlsXDhwt5omhBdcH/RokV8/PHHAPz0pz/lRz/6UcLPc99998WyYp5xxhkJr1/at3v3bpYsWQLA+PHjGT58eGyfYRix6UZbtmzhww8/bLOODz/8MPbL+IUXXqjRDj3otddeo6ysDEjsxZv6YN9IVB+bNGlSbGTLU089RWNjY5v1PPzww7HbF1988bE2X5r54IMPuPDCCwkEAmRmZvLGG29w3HHHJfQc4XCYf/zjH7H7iVgjW+LX2fvkggULyMzMBOCRRx6JlT2a+mHP66mZD+qDbTvW6wV9FopIXCyRJDJ//nwLsBwOh/XBBx+02n/XXXdZgAVYP//5z3u/gYNUIBCwzj333Nhzf/PNN3e5jt27d1sff/xxh2UWL15suVwuC7C8Xq9VVFTUzRbL0V566SUrFAq1u//QoUPWiSeeGHuNf//737cqs3XrVstut1uANWvWLKuxsbHF/sbGRmvWrFmxPrxt27aEPw5pcumll8Zer7Vr13ZaXn2wd+3evTv2+lxzzTVxHZOoPvbggw/Gzv2d73yn1f4dO3ZYGRkZFmBNmDChw/eGwaw7r+G6deusrKwsC7BSU1Ot5cuXd/m8b7/9tlVVVdXu/mAwaF1zzTWxtn3pS1/q8jkGi66+hol8n/zZz34WO/ddd93Vav8HH3xgORwOC7DOOOOMeB7OoNOdPthcRUVF7LWaMWNG3MepD3ZPIq4XLEufhSLSucSNzRfpBXfffTennXYaPp+Pc889l5/85CcsXLgQn8/HE088wX333QdEf6W75ZZb+ri1g8dXv/pV3nzzTQDOPPNMrr/+ej777LN2y7tcLiZNmtRi2549e1i4cCFz587lS1/6EieccAIFBQUA7Nq1i2eeeYZnnnkmNurhd7/7XYsRhXJsvve97xEKhbj00kuZO3cuY8aMwev1Ul5ezrvvvsu9994bm4Y3b968NqcYTZo0iR/+8If89re/Zc2aNZx22mn86Ec/Yvz48ezcuZP//d//Zd26dQD88Ic/ZOLEib36GAeTqqoqXn75ZQCmT5/O5z73uU6PUR/sWcuXL2fHjh2x+0f6E0TXnm4+agTg2muvbVVHovrYNddcwz/+8Q9WrFjBX//6Vw4dOsQNN9xAdnY2q1ev5le/+hW1tbXYbDb+9Kc/JXQqZzI71tdw586dnHfeebHkM7/+9a/JzMzs8POyoKAg1g+PeOSRR7jgggu44IILWLBgAZMnTyYjI4P6+nrWrl3LfffdF5sSWlBQwN13392NRzswHetrmMj3yR/+8Ic8+eSTbNu2jVtvvZUdO3bwla98Ba/XyzvvvMOdd95JOBzG6/Xyxz/+8dgf/ACQiPfR5p544gmCwSDQtdGc6oPdk4jrBdBnoYjEoY8DrSJd9tJLL8V+XWvr36RJk6zt27f3dTMHlfZei/b+jR49ulUd77zzTlzHpqSkWPfee2/vP8gBbvTo0XE9/5deemmHoxgikYj1H//xHx3Wcf3111uRSKT3Htwg9Pe//73DkUJtUR/sWc1H98Tzrz2J6mNlZWXW7Nmz263D7XZb999/f6KfhqR2rK/hQw891OXPy7Zmp8TbjhkzZlgbN27shWcmeRzra5jo98nt27dbEydObLeejIwMa/HixT3xVCSlRL2PHnHKKadYgGW3262DBw8mvB3qgy119f2vreuFI/RZKCId0c8SknS+9KUv8emnn3L33XfzyiuvUFRUhMvlYsKECXz5y1/mu9/9LikpKX3dTOmik046iX/+85+sXLmSNWvWcPDgQcrLywmHw2RnZ3Pcccdx1lln8Y1vfKPV6BY5do888gjLli1j5cqV7Nq1i/Lycmpra0lLS2PkyJGceuqpXHPNNcydO7fDemw2Gw8++CCXXnop9913Hx999BHl5eXk5eUxe/ZsvvWtbyUsKY6077HHHgPAbrdz5ZVXxnWM+mBySFQfy8vL44MPPuD+++/n3//+N5s3b6ahoYFhw4Zx1llncfPNNyd83UhJjB/96EfMnDmTlStXsmnTJsrKyqisrMTtdlNYWMisWZjyAVUAAAeQSURBVLO47LLLuPjii7Hb7X3d3AEl0e+TEyZMYN26dfz1r3/l6aefZseOHQSDQUaOHMn555/PzTffzOjRo3vhkQ0+27dvZ9WqVQCcc845DBkyJO5j1Qf7nj4LRaQjhmW1s/q1iIiIiIiIiIiISJJQ1nURERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvQU6BQREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIj0sYcffhjDMDAMgz179vR1c0REREREkpICnSIiIiLdtGfPnliA8lj+iYiIiIjIsVOgU0RERERERERERJKeYVmW1deNEBEREUlGoVCIrVu3trt/xowZAMyaNYuHHnqo3XLTp09PeNtERERERAYbR183QERERCRZOZ3OuIKUqampCmaKiIiIiPQwTV0XERERERERERGRpKdAp4iIiEgf6yzr+oIFCzAMgwULFgCwY8cOvv3tbzNu3Di8Xi9jxozh+uuvZ+/evS2O++yzz7juuusYN24cHo+HkSNHcuONN1JaWhpXu1544QW+/OUvM2rUKDweD1lZWcyaNYtf/vKXVFVVHevDFhERERFJKE1dFxEREUkiS5cu5ZJLLqGuri62be/evfzjH//g5ZdfZtmyZUyZMoXHH3+ca6+9lmAwGCtXVFTEPffcw2uvvcYHH3zAsGHD2jxHVVUVl112GW+//XaL7YFAgLVr17J27Vr+9re/8eKLLzJnzpyeeaAiIiIiIl2kEZ0iIiIiSaK4uJjLL7+crKws/vznP7Nq1Sref/99vv/972MYBqWlpXzjG9/go48+4uqrr2b8+PE88MADrF69mnfeeYerrroKiAZGf/CDH7R5jkAgwNlnn83bb7+N3W7nqquu4vHHH+fDDz/k/fff54477iA3N5fS0lLOP//8VqNIRURERET6ikZ0ioiIiCSJ7du3M3HiRFasWEF+fn5s+7x583A4HPzud79jxYoVLFq0iJNPPpklS5aQkpISK7dgwQL8fj9PP/00zz77LGVlZS3qAbj99tv5+OOPycrKYunSpZx00kkt9s+bN48rr7ySuXPncvDgQX7yk5/wr3/9q2cfuIiIiIhIHDSiU0RERCSJ/OlPf2oVnAS46aabYrfLy8t54IEHWgQ5j7jxxhsBCIfDrFy5ssW++vp6/vrXvwLwq1/9qlWQ84jRo0fzs5/9DICnn36ahoaG7j0YEREREZEEUqBTREREJElkZWVx3nnntblv7NixpKenA3D88cczderUNsudcMIJsdu7du1qsW/ZsmXU1NQAcNlll3XYltNPPx2AUCjE2rVr43sAIiIiIiI9SFPXRURERJLExIkTMQyj3f1ZWVnU1dUxadKkDssc0TyhEcCaNWtit4cOHRp3uw4dOhR3WRERERGRnqIRnSIiIiJJoq2p6M3ZbLZOyx0pAxCJRFrsKy0t7Va7Ghsbu3WciIiIiEgiaUSniIiIiAAtA58ff/wxTqczruNGjBjRU00SEREREYmbAp0iIiIiAkBubm7sdn5+vgKYIiIiIpJUNHVdRERERAA48cQTY7dXrFjRhy0REREREek6BTpFREREBICzzz47tr7nn/70JyzL6uMWiYiIiIjET4FOEREREQGiGdm/+93vAvDBBx/wX//1X5im2W75kpISHnjggd5qnoiIiIhIh7RGp4iIiIjE3H777SxbtoxVq1Zx99138+6773LDDTcwc+ZMUlNTqaqqYuPGjSxdupTXXnuNGTNm8I1vfKOvmy0iIiIiokCniIiIiDRxu90sWbKEa6+9lueee45PPvkkNsqzLRkZGb3YOhERERGR9inQKSIiIiItpKen8+yzz7J8+XIeeeQR3n//fYqLi/H5fGRkZDB+/HhOPvlkFi1axLnnntvXzRURERERAcCwtMq8iIiIiIiIiIiIJDklIxIREREREREREZGkp0CniIiIiIiIiIiIJD0FOkVERERERERERCTpKdApIiIiIiIiIiIiSU+BThEREREREREREUl6CnSKiIiIiIiIiIhI0lOgU0RERERERERERJKeAp0iIiIiIiIiIiKS9BToFBERERERERERkaSnQKeIiIiIiIiIiIgkPQU6RUREREREREREJOkp0CkiIiIiIiIiIiJJT4FOERERERERERERSXoKdIqIiIiIiIiIiEjSU6BTREREREREREREkp4CnSIiIiIiIiIiIpL0FOgUERERERERERGRpKdAp4iIiIiIiIiIiCQ9BTpFREREREREREQk6SnQKSIiIiIiIiIiIklPgU4RERERERERERFJegp0ioiIiIiIiIiISNJToFNERERERERERESSngKdIiIiIiIiIiIikvT+f+WvZVe2hlgcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'fitness_function_mutation_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_sequences=6,\n", + " # Track the 6 most represented genomes overall (remaining genotypes are\n", + " # lumped into the \"Other\" category).\n", + " track_specific_sequences=['BADD']\n", + " # Include the initial genome in the graph if it isn't in the top 6.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a heatmap and dendrogram for pathogen genomes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate a heatmap and dendrogram for the top 15 genomes, include the ancestral genome _BADD_ in the phylogeny. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPeCAYAAAARWnkoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6v0lEQVR4nOzdfZxXdZ03/tcMo0MyCAXiDKagSzqChmabN/tDYUUdSswyK6/chFo3UfcGNpUpVwajZvXaDbvWwEtuxL2sxWjZXZdcciOxLF1brbx32/byZmtG1CAZZMaU+f3hxTdH7hkO35nh+fRxHg+/57zP+b7P3DGv+XzOORWdnZ2dAQAAAPa4ynI3AAAAAH2V0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCq7uz85NP37Kk+yqp+5GnlbgEAAIA+qFuhe1Pnpj3VBwAAAPQ53QrdnZ2de6oPAAAA6HO6N9IdoRsAAAC2pZsj3aaXA5RbY2Nj2tvby90GAL1M//7909zcXO42oM/r5jXdRroByq29vT1z584tdxsA9DLTp08vdwuwT+jeSHeMdAMAAMC2GOkGAACAgnRzpFvoBgAAgG0x0g0AAAAF6Wbodk03AAAAbIvp5QAAAFAQ08sBAACgIEI3AAAAFMRzugEAAKAgRroBAACgIEI3AAAAFMTdywEAAKAgRroBAACgIN0L3Ua6AQAAYJu6N73cSDcAAABsk+nlAADs8xobG9Pe3l7uNvaqNWvWZPr06eVuY6/r379/mpuby90G+xDTywEA2Oe1t7dn7ty55W6DvWBf/EMD5WWkGwAAAArimm4AAAAoiOnlAAAAUBDTywEAAKAgppcDAABAQUwvBwAAgIJ0c3r5nmoDAAAA+h7XdAMAAEBBKruzc2cf+W93fPWrX83IkSPTv3//nHjiiXnggQe2W79u3bpcdtllqaurS3V1dY488sjceeedu/XeAAAA9A5GunfD7bffnhkzZuSmm27KiSeemBtuuCFnnXVWnnrqqQwbNmyL+ldffTVnnHFGhg0blm9+85s55JBD8swzz2Tw4MF7v3kAAAD2GqF7N3z5y1/OxRdfnKlTpyZJbrrppnzrW9/K4sWLM3PmzC3qFy9enF/96lf54Q9/mP322y9JMnLkyL3ZMgAAAGXQzenlfWPZFa+++moefPDBTJw4sbSusrIyEydOzH333bfVfe64446cfPLJueyyy3LwwQfnmGOOyZe+9KW8/vrru/juAAAA9CZGupN0dHSko6Ojy7rq6upUV1dvUfviiy/m9ddfz8EHH9xl/cEHH5wnn3xyq8f/r//6r3z3u9/NJz7xidx55535z//8z1x66aX5zW9+k1mzZu25EwEAAKBH6dZI96bOzj6xNDc3Z9CgQV2W5ubmPfUxzqZNmzJs2LDcfPPNOeGEE/Kxj30sn//853PTTTftsfcAAACg5+neSPee6qLMGhsbM2PGjC7rtjbKnSRDhw5Nv3798vzzz3dZ//zzz6e2tnar+9TV1WW//fZLv379SuuOPvrotLa25tVXX83+++/fzTMAAACgJ+reNd2dnX1iqa6uzoEHHthl2Vbo3n///XPCCSdk1apVpXWbNm3KqlWrcvLJJ291n9/7vd/Lf/7nf2bTpt/+meI//uM/UldXJ3ADAAD0Yd2cXt43ll01Y8aMLFiwILfeemueeOKJTJs2LRs2bCjdzfyTn/xkGhsbS/XTpk3Lr371q/zpn/5p/uM//iPf+ta38qUvfSmXXXZZdz78AAAA9HBupLYbPvaxj+WFF17INddck9bW1hx33HFZuXJl6eZqzz77bCorf/v3jEMPPTTf/va3M3369Lz73e/OIYcckj/90z/NVVddVa5TAAAAYC/oVuju3OUHbvUdl19+eS6//PKtblu9evUW604++eTcf//9BXcFAABAT9LNke491QYAAAD0PaaXA1tobGxMe3t7udtgJ61ZsybTp08vdxvsgv79++/RR1MCAD1X96aXy9zQJ7W3t2fu3LnlbgP6LH8kAYB9h+d0AwAAQEFMLwcAAICCmF4OAAAABTHSDQAAAAVxTTcAAAAUpJvTy410AwAAwLZ0c3r5nmoDgH3Jvv4seM9W96xyAPYdbqQGwF7nWfDs6390AGDf4UZqAAAAUBAj3QAAAFAQ13QDAABAQbo30r2nugAAAIA+yDXdAAAAUBDXdAMAAEBBXNMNAAAABTHSDQAAAAVxTTcAAAAUxEh3L9Te3p7+/fuXuw0AAAB2oLI7O2/q7BtLb7Bp06Z84QtfyCGHHJKampr813/9V5LkL/7iL7Jo0aIydwcAAMDWdCt0d3b2jaU3mDNnTpYsWZLrr78++++/f2n9Mccck4ULF5axMwAAALbF9PJe4m//9m9z88035/TTT88ll1xSWj927Ng8+eSTZewMgCI0Njamvb293G0UZs2aNZk+fXq52yhE//7909zcXO42AOghPDKsl/jFL36RUaNGbbF+06ZN+c1vflOGjgAoUnt7e+bOnVvuNtgNffWPCQDsHiPdvcTo0aPz/e9/PyNGjOiy/pvf/GaOP/74MnUFAADA9nQzdEvde8s111yTiy66KL/4xS+yadOmLF++PE899VT+9m//NitWrCh3ewAAAGyF6eW9xAc/+MH88z//c6699toMGDAg11xzTd7znvfkn//5n3PGGWeUuz0AAPYBfeF+E33hnhLuHdG7mF7ei4wbNy7/+q//Wu42AADYR7nfRM/Q2/9osK8RunuJH/3oR9m0aVNOPPHELuv/7d/+Lf369ct73/veMnUGAADAtnhOdy/5w8Fll12W5557bov1v/jFL3LZZZeVoSMAAAB2xEh3L/H444/nPe95zxbrjz/++Dz++ONl6AgAAIAdcSO1XqK6ujrPP/98jjjiiC7rW1paUlXVrU8jAAAABTG9vJf84eDMM89MY2Njfv3rX5fWrVu3Lp/73OfcvRwAAKCHMr28l/irv/qrnHrqqRkxYkSOP/74JMlPfvKTHHzwwfk//+f/lLk7AAAAtkbo7iUOOeSQPPzww/na176Wn/70p3nb296WqVOn5oILLsh+++1X7vYAAADYim6Gbql7bxowYED+6I/+qNxtAAAAsJO6F7o37ak2ep+vfvWr+Z//83+mtbU1Y8eOzd/8zd/kfe973w73W7p0aS644IJ88IMfzD/+4z/u0nv+7Gc/y9133501a9Zk06auH/xrrrlml44FAABA8Uwv3w233357ZsyYkZtuuiknnnhibrjhhpx11ll56qmnMmzYsG3u9/TTT+ezn/1sxo0bt8vvuWDBgkybNi1Dhw5NbW1tKioqStsqKiqEbgD2SY2NjWlvby93G12sWbMm06dPL3cbJf37909zc3O52wDYZwndu+HLX/5yLr744kydOjVJctNNN+Vb3/pWFi9enJkzZ251n9dffz2f+MQnMnv27Hz/+9/PunXrduk958yZky9+8Yu56qqruts+APQZ7e3tmTt3brnb6NF60h8AAPZFHhm2i384ePXVV/Pggw9m4sSJv/0gVlZm4sSJue+++7a537XXXpthw4bl05/+9G59rNeuXZvzzz9/t/YFAACgPIx0J+no6EhHR0eXddXV1amurt6i9sUXX8zrr7+egw8+uMv6gw8+OE8++eRWj3/vvfdm0aJF+clPfrLbPZ5//vm56667cskll+z2MQAAANi7hO4kzc3NmT17dpd1s2bNSlNTU7ePvX79+vzBH/xBFixYkKFDh+72cUaNGpW/+Iu/yP33359jjz12i8eE/cmf/El3W6VgPfG6w23padcjbovrFAEA6OncvTxvhKEZM2Z0Wbe1Ue4kGTp0aPr165fnn3++y/rnn38+tbW1W9T//Oc/z9NPP53JkyeX1m2+83hVVVWeeuqp/M7v/M4Oe7z55ptTU1OTe+65J/fcc0+XbRUVFUJ3L+C6wz2vN/xhAACAfZuR7mx7KvnW7L///jnhhBOyatWqnHvuuUneCNGrVq3K5ZdfvkV9fX19HnnkkS7rrr766qxfvz5f+cpXcuihh+7U+/7f//t/d6oOAACAnkPo3g0zZszIRRddlPe+97153/velxtuuCEbNmwo3c38k5/8ZA455JA0Nzenf//+OeaYY7rsP3jw4CTZYj0AAAB9i9C9Gz72sY/lhRdeyDXXXJPW1tYcd9xxWblyZenmas8++2wqK7t1Y/it+u///u/ccccdefbZZ/Pqq6922fblL395j78fAAAA3SN076bLL798q9PJk2T16tXb3XfJkiW7/H6rVq3KOeeckyOOOCJPPvlkjjnmmDz99NPp7OzMe97znl0+HgAAAMXr3nO6N3X2iaU3aGxszGc/+9k88sgj6d+/f/7+7/8+zz33XE477TTP7wYAAOihuhe6O/vG0hs88cQT+eQnP5nkjbueb9y4MTU1Nbn22mtz3XXXlbk7AAAAtqZ7Fx539pGlFxgwYEDpOu66urr8/Oc/L2178cUXy9UWAAAA2+E53b3ESSedlHvvvTdHH3103v/+9+fP//zP88gjj2T58uU56aSTyt0eAAAAW+FGar3El7/85bS1tSVJZs+enba2ttx+++1517ve5c7lAAAAPZTQ3UscccQRpf8fMGBAbrrppjJ2AwAAwM5wTXcv+cPBEUcckZdeemmL9evWresSyAEAAOg5XNPdSzz99NN5/fXXt1jf0dGRX/ziF2XoiH1RY2Nj2tvby91GyZo1azJ9+vRyt9FF//7909zcXO42AADoIbo5vbyXDBP3YnfccUfp/7/97W9n0KBBpdevv/56Vq1alZEjR5ahM/ZF7e3tmTt3brnb6NF62h8BAAAoL9d093DnnntukqSioiIXXXRRl2377bdfRo4cmb/+678uQ2cAAADsSLdCd0wvL9ymTW98kA8//PD86Ec/ytChQ8vcEQAAADvLSHcv8X//7//dYt26desyePDgvd8MAAAAO8Xdy3vJHw6uu+663H777aXX559/ft7xjnfkkEMOyU9/+tMydgYAAMC2dCt0d27q7BNLb3DTTTfl0EMPTZL867/+a77zne9k5cqVmTRpUq644ooydwcAAMDWmF7eS7S2tpZC94oVK/LRj340Z555ZkaOHJkTTzyxzN0B7HuKfoTe3ngknkfcQd+yNx7tWfTPpr7wc8nngbfq3o3UhO695u1vf3uee+65HHrooVm5cmXmzJmT5I3Htm3t+d0AFKsvPELPI+6gb/FzqWfweeCtujfS7e7le82HP/zh/I//8T/yrne9Ky+99FImTZqUJPnxj3+cUaNGlbk7AAAAtqabI92GuveWuXPnZuTIkXnuuedy/fXXp6amJknS0tKSSy+9tMzdAQAAsDVGunuJ/fbbL5/97Ge3WG/qBwAAQM/lmu4e7I477sikSZOy33775Y477thu7TnnnLOXugIAAGBndfPu5VJ3kc4999y0trZm2LBhOffcc7dZV1FR4WZqAAAAPVD3RrpNLy/Upk2btvr/AAAA9A6e090LbNq0KUuWLMny5cvz9NNPp6KiIkcccUTOO++8/MEf/EEqKirK3SL0Gp6tDPQ0fi4B9G3uXt7DdXZ25pxzzsmdd96ZsWPH5thjj01nZ2eeeOKJTJkyJcuXL88//uM/lrtN6DU8OxPoafxcAujbTC/v4ZYsWZLvfe97WbVqVSZMmNBl23e/+92ce+65+du//dt88pOfLFOHAAAAbEtld3bu7OzsE0tP9nd/93f53Oc+t0XgTpLf//3fz8yZM/O1r32tDJ0BAACwI90K3dnUR5Ye7OGHH05DQ8M2t0+aNCk//elP92JHAAAA7CyPDOvhfvWrX+Xggw/e5vaDDz44a9eu3YsdAQAAsLNc093Dvf7666mq2vanqV+/fnnttdf2YkcAAADsLHcv7+E6OzszZcqUVFdXb3V7R0fHXu4IAACAneU53T3cRRddtMMady4HAADombo5vVzqLtott9xS7hYAAADYTd2cXr6HugAAAIA+qHvTy410AwAAwDYZ6QYAAICCuKYbAAAACtLNu5cL3QAAALAtld3au7OPLLvhq1/9akaOHJn+/fvnxBNPzAMPPLDN2gULFmTcuHF5+9vfnre//e2ZOHHidusBAADoG7oXujd19o1lF91+++2ZMWNGZs2alYceeihjx47NWWedlTVr1my1fvXq1bngggty991357777suhhx6aM888M7/4xS+69eEHAACgZ+vmSHdn31h20Ze//OVcfPHFmTp1akaPHp2bbropBxxwQBYvXrzV+q997Wu59NJLc9xxx6W+vj4LFy7Mpk2bsmrVqm59+AEAAOjZPDJsF7366qt58MEH09jYWFpXWVmZiRMn5r777tupY7zyyiv5zW9+k3e84x1FtQkAAEAP4JFhSTo6OtLR0dFlXXV1daqrq7eoffHFF/P666/n4IMP7rL+4IMPzpNPPrlT73fVVVdl+PDhmThx4u43DQAAQI9nenlnZ5qbmzNo0KAuS3Nz8x76EHf1l3/5l1m6dGn+4R/+If379y/kPQAAAOgZPKc7SWNjY2bMmNFl3dZGuZNk6NCh6devX55//vku659//vnU1tZu933+6q/+Kn/5l3+Z73znO3n3u9/dvaYBAADo8bo10t3Z2dknlurq6hx44IFdlm2F7v333z8nnHBCl5ugbb4p2sknn7zNj9X111+fL3zhC1m5cmXe+973dufDDgAAQC9hpHs3zJgxIxdddFHe+9735n3ve19uuOGGbNiwIVOnTk2SfPKTn8whhxxSmqJ+3XXX5ZprrsnXv/71jBw5Mq2trUmSmpqa1NTUlO08AAAAKFY3b6S2b4buj33sY3nhhRdyzTXXpLW1Nccdd1xWrlxZurnas88+m8rK304imD9/fl599dV85CMf6XKcWbNmpampaW+2DgAAwF5kpHs3XX755bn88su3um316tVdXj/99NPFNwQAAECP073ndO+jI90AAACwM0wvBwAAgIKYXg4AAAAFMdINAAAABXFNNwAAABTE9HIAAAAoiOnlAAAAUBAj3QAAAFAQ13QDAABAQUwvBwAAgIKYXg4AAAAF6eZI96Y91AYAAAD0Pa7pBgAAgIKYXg4AAAAFcSM1AAAAKIhrugEAAKAgrukGAACAgrimGwAAAArimm4AAAAoSDenl7umGwAAALbF9HIAAAAoiLuXAwAAQEHcvRwAAAAKYqQbAAAACtK9kW7XdAMAAMA2eWQYAAAAFMT0cgAAACiIG6kBAABAQYx0AwAAQEG6OdItdAMAAMC2dG+k293LAQAAYJuMdAMAAEBBPDIMAAAACmKkGwAAAApipBsAAAAKYqQbAAAACiJ0AwAAQEEqu7V3Z2ffWHbDV7/61YwcOTL9+/fPiSeemAceeGC79cuWLUt9fX369++fY489NnfeeeduvS8AAAC9R7dCd2fnpj6x7Krbb789M2bMyKxZs/LQQw9l7NixOeuss7JmzZqt1v/whz/MBRdckE9/+tP58Y9/nHPPPTfnnntuHn300e58+AEAAOjhhO7dCN1f/vKXc/HFF2fq1KkZPXp0brrpphxwwAFZvHjxVuu/8pWvpKGhIVdccUWOPvrofOELX8h73vOe3Hjjjd358AMAANDDmV6+i9PLX3311Tz44IOZOHHibz+IlZWZOHFi7rvvvq3uc99993WpT5Kzzjprm/UAAAD0DRWdnbv/3K9jR5y2J3spm3//j7vS0dHRZV11dXWqq6u3qP3lL3+ZQw45JD/84Q9z8sknl9ZfeeWVueeee/Jv//ZvW+yz//7759Zbb80FF1xQWjdv3rzMnj07zz///B48E3ZXX/haHnbOmeVugT7ihIaacrfQbQ+ubCt3C6RvfC3RM3xqzHHlbmGPuOyv7y13C8TPpp7i+g/8ablb2Gu6dffyR565Z0/1UVZNTU2ZPXt2l3WzZs1KU1NTeRoCAACgT+hW6O4rGhsbM2PGjC7rtjbKnSRDhw5Nv379thihfv7551NbW7vVfWpra3epHgAAgL6he9d09xHV1dU58MADuyzbCt37779/TjjhhKxataq0btOmTVm1alWX6eZvdvLJJ3epT5J//dd/3WY9AAAAfYOR7t0wY8aMXHTRRXnve9+b973vfbnhhhuyYcOGTJ06NUnyyU9+Moccckiam5uTJH/6p3+a0047LX/913+dD3zgA1m6dGn+/d//PTfffHM5TwMAAICCCd274WMf+1heeOGFXHPNNWltbc1xxx2XlStX5uCDD06SPPvss6ms/O0kglNOOSVf//rXc/XVV+dzn/tc3vWud+Uf//Efc8wxx5TrFAAAANgLhO7ddPnll+fyyy/f6rbVq1dvse7888/P+eefX3BXAAAA9CSu6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAQI81ZcqUVFRUlJYhQ4akoaEhDz/8cKnmzdvfvCxdujRJsnr16tK6ysrKDBo0KMcff3yuvPLKtLS0dHm/pqamUm1VVVWGDh2aU089NTfccEM6Ojp2uX+hGwAAgB6toaEhLS0taWlpyapVq1JVVZWzzz67S80tt9xSqtm8nHvuuV1qnnrqqfzyl7/Mj370o1x11VX5zne+k2OOOSaPPPJIl7oxY8akpaUlzz77bO6+++6cf/75aW5uzimnnJL169fvUu9Vu3XGAAAAsJdUV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyq2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLdVVVVWVjjV8+PAce+yxOeOMMzJ27Nhcd911mTNnzk73bqQbAACAXqOtrS233XZbRo0alSFDhnTrWG9729tyySWX5Ac/+EHWrFmz3dr6+vpMmjQpy5cv36X3MNINAADAXtXR0bHF9dHV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7bbi/19fVJkqeffjrDhg3bYe1dd9213Zq3Erp7kMbGxrS3t5e7DQAAgEI1Nzdn9uzZXdbNmjUrTU1NW62fMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjkiRz587NxIkTu+w3fPjwHfbS2dmZ5I2bse1M7c7UvZnQ3YO0t7dn7ty55W5jn3Ts8tPK3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBaXrq2tra7vU7KwnnngiSTJy5Midqj388MN36fhCNwAAAHvV9qaS74zNj/7auHFjt/rYuHFjbr755px66qmlG7Jty5NPPpmVK1emsbFxl95D6AYAAKBH6+joSGtra5I3ppffeOONaWtry+TJk0s169atK9VsNnDgwAwYMKD0es2aNWlvb8/69evz4IMP5vrrr8+LL764xc3RXnvttbS2tmbTpk156aWXsnr16syZMyfHHXdcrrjiil3qXegGAACgR1u5cmXq6uqSvBGk6+vrs2zZsowfP75UM3Xq1C32a25uzsyZM0uvjzrqqFRUVKSmpiZHHHFEzjzzzMyYMWOLR4099thjqaurS79+/TJo0KCMHj06jY2NmTZt2i6P0AvdAAAA9FhLlizJkiVLtluz+WZo2zJ+/Pgd1mzW1NS0zRu67Q7P6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUJCqcjcAPcGwc84sdwvdtuaOu8rdQrf1hc8DPcMJDTXlboE+4sGVbeVugSTJT8rdwB7hZxPsm4x0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9hbGhsb097eXu42tmvNmjXlbgEAAIA9aJ8J3e3t7Zk7d26529iu6dOnl7sFAACAHmXKlCm59dZbS6/f8Y535Hd/93dz/fXX593vfneSpKKiYqv7/t3f/V0+/vGPZ/Xq1ZkwYUKpduDAgTniiCNyxhlnZPr06amrq0uSjBw5Ms8888w2e7nooouyZMmSXep/nwndAAAA9E4NDQ255ZZbkiStra25+uqrc/bZZ+fZZ58t1dxyyy1paGjost/gwYO7vH7qqady4IEH5uWXX85DDz2U66+/PosWLcrq1atz7LHH5kc/+lFef/31JMkPf/jDnHfeeaV9kuRtb3vbLvcudAMAANCjVVdXp7a2NklSW1ubmTNnZty4cXnhhRdy0EEHJXkjYG+u2ZZhw4aV6o488sh88IMfzPHHH59p06bl3nvvLR0reWNE/c377C43UgMAAKDXaGtry2233ZZRo0ZlyJAh3TrW2972tlxyySX5wQ9+UNg9tox0AwAAsFd1dHSko6Ojy7rq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYdtt5f6+vokydNPP51hw4bt8rnsiNDdy/WGu7L3DkPL3QAAAOwzmpubM3v27C7rZs2alaampq3WT5gwIfPnz0+SrF27NvPmzcukSZPywAMPZMSIEUmSuXPnZuLEiV32Gz58+A576ezsTLLtm7F1l9Ddy/WGu7L3Bqf/8RfL3QIAAOwzGhsbM2PGjC7rtjXKnSQDBgzIqFGjSq8XLlyYQYMGZcGCBZkzZ06SN671fnPNznriiSeSvHHn8iII3QAAAOxV25tKvjMqKipSWVmZjRs3dquPjRs35uabb86pp57a5SZqe5LQDQAAQI/W0dGR1tbWJG9ML7/xxhvT1taWyZMnl2rWrVtXqtls4MCBGTBgQOn1mjVr0t7envXr1+fBBx/M9ddfnxdffDHLly8vrHehGwAAgB5t5cqVqaurS/JGkK6vr8+yZcsyfvz4Us3UqVO32K+5uTkzZ84svT7qqKNSUVGRmpqaHHHEETnzzDMzY8aMHT5qrDuEbgAAAHqsJUuWZMmSJdut2XwztG0ZP378Dmv2xD5b4zndAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKUlXuBoA9Y9g5Z5a7hW5bc8dd5W6h2/rC5+HBlW3lbqHbTmioKXcL9BG+lnqGT405rtwt7BGLH/tJuVsg/p1j7zPSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwN8Fv9+/fP9OnTd2mfNWvWFNQNAAAA3SV09yDNzc27vM+uhnQAAAD2HtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAAHqsKVOmpKKiorQMGTIkDQ0Nefjhh0s1b97+5mXp0qVJktWrV5fWVVZWZtCgQTn++ONz5ZVXpqWlpcv7NTU1dTnGoEGDMm7cuNxzzz271b/QDQAAQI/W0NCQlpaWtLS0ZNWqVamqqsrZZ5/dpeaWW24p1Wxezj333C41Tz31VH75y1/mRz/6Ua666qp85zvfyTHHHJNHHnmkS92YMWNKx7jvvvvyrne9K2effXZ+/etf73LvQjcAAAA9WnV1dWpra1NbW5vjjjsuM2fOzHPPPZcXXnihVDN48OBSzealf//+XY4zbNiw1NbW5sgjj8zHP/7x/OAHP8hBBx2UadOmdamrqqoqHWP06NG59tpr09bWlv/4j//Y5d6FbgAAAHqNtra23HbbbRk1alSGDBnSrWO97W1vyyWXXJIf/OAHWbNmzVZrOjo6csstt2Tw4ME56qijdvk9qrrVIQAAAOyijo6OdHR0dFlXXV2d6urqrdavWLEiNTU1SZINGzakrq4uK1asSGXlb8eRL7jggvTr16/Lfo8//ngOO+yw7fZSX1+fJHn66aczbNiwJMkjjzxSer9XXnklAwcOzO23354DDzxwF87yDUL3PqyxsTHt7e3lbqOHGFruBgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDd9hLZ2dnkjduxrbZUUcdlTvuuCNJsn79+tx+++05//zzc/fdd+e9733vzp3k/yN078Pa29szd+7ccrfRI5z+x18sdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJktra2i41O+uJJ55IkowcObK0bv/99+9yrOOPPz7/+I//mBtuuCG33XbbLh1f6AYAAGCv2t5U8p2x+dFfGzdu7FYfGzduzM0335xTTz01Bx100HZr+/Xrt1vvJ3QDAADQo3V0dKS1tTXJG9PLb7zxxrS1tWXy5MmlmnXr1pVqNhs4cGAGDBhQer1mzZq0t7dn/fr1efDBB3P99dfnxRdfzPLly7vs99prr5WOtXl6+eOPP56rrrpql3sXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bM0uujjjoqFRUVqampyRFHHJEzzzwzM2bMSG1tbZf9HnvssdL7HXDAAfmd3/mdzJ8/P5/85Cd3uXehGwAAgB5ryZIlWbJkyXZrNt8MbVvGjx+/w5rNmpqatnlDt93hOd0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAApSVe4G6J7+/ftn+vTpu7XvmjVr9nA30D3Dzjmz3C1025o77ip3C902ad6Hy90CABTmhIaacrfAPkbo7uWam5t3e9/dDesAAADsHNPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACgx5oyZUoqKipKy5AhQ9LQ0JCHH364VPPm7W9eli5dmiRZvXp1aV1lZWUGDRqU448/PldeeWVaWlq6vN8rr7ySxsbG/M7v/E769++fgw46KKeddlr+6Z/+abf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vU3HLLLaWazcu5557bpeapp57KL3/5y/zoRz/KVVddle985zs55phj8sgjj5RqLrnkkixfvjx/8zd/kyeffDIrV67MRz7ykbz00ku71XvVbu0FAAAAe0l1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZPDgwaWabRk2bFip7sgjj8wHP/jBHH/88Zk2bVruvffeJMkdd9yRr3zlK3n/+9+fJBk5cmROOOGE3e7dSDcAAAC9RltbW2677baMGjUqQ4YM6dax3va2t+WSSy7JD37wg6xZsybJG6H+zjvvzPr16/dEu0a6AQAA2Ls6OjrS0dHRZV11dXWqq6u3Wr9ixYrU1NQkSTZs2JC6urqsWLEilZW/HUe+4IIL0q9fvy77Pf744znssMO220t9fX2S5Omnn86wYcNy88035xOf+ESGDBmSsWPH5v/7//6/fOQjH8nv/d7v7fJ5JkL3Pq1///6ZPn16udvoIYaWuwEAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48B320tnZmeSNm7Elyamnnpr/+q//yv33358f/vCHWbVqVb7yla9k9uzZ+Yu/+ItdOs9E6N6nNTc3l7uFHuP0P/5iuVsAAIB9RmNjY2bMmNFl3bZGuZNkwIABGTVqVOn1woULM2jQoCxYsCBz5sxJ8sa08DfX7KwnnngiyRvXbm+23377Zdy4cRk3blyuuuqqzJkzJ9dee22uuuqq7L///rt0fKEbAACAvWp7U8l3xuZHf23cuLFbfWzcuDE333xzTj311NIN2bZm9OjRee2119Le3i50AwAA0Ld0dHSktbU1yRvTy2+88ca0tbVl8uTJpZp169aVajYbOHBgBgwYUHq9Zs2atLe3Z/369XnwwQdz/fXX58UXX8zy5ctLNePHj88FF1yQ9773vRkyZEgef/zxfO5zn8uECRNy4IEH7nLvezR0NzY2pr29fU8eco/ZfCc6AAAAepeVK1emrq4uyRtBur6+PsuWLcv48eNLNVOnTt1iv+bm5sycObP0+qijjkpFRUVqampyxBFH5Mwzz8yMGTO6PGrsrLPOyq233prPfe5zeeWVVzJ8+PCcffbZueaaa3ar9z0autvb2zN37tw9ecg9xg3DAAAAep8lS5ZkyZIl263ZfDO0bRk/fvwOazZrbGxMY2Pjzra3Q57TDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIFXlbgB6ghMaasrdAkkeXNlW7ha6bdK8D5e7hW77l0uXl7uFbusLnweg7/nUmOPK3QJJFj/2k3K30G2+lnoXI90AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlWxyvvr4+1dXVaW1t3WLb+PHju+x/8MEH5/zzz88zzzyz2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1Sc++992bjxo35yEc+kltvvXWr73XxxRenpaUlv/zlL/NP//RPee6553LhhRfudu9CNwAAAD1adXV1amtrU1tbm+OOOy4zZ87Mc889lxdeeKFUM3jw4FLN5qV///5djrNo0aL8j//xP/IHf/AHWbx48Vbf64ADDkhtbW3q6upy0kkn5fLLL89DDz20271X7faeAAAAsJe1tbXltttuy6hRozJkyJCd3m/9+vVZtmxZ/u3f/i319fX59a9/ne9///sZN27cNvf51a9+lW984xs58cQTd7tfoRsAAIC9qqOjIx0dHV3WVVdXp7q6eqv1K1asSE1NTZJkw4YNqaury4oVK1JZ+dvJ2xdccEH69evXZb/HH388hx12WJJk6dKlede73pUxY8YkST7+8Y9n0aJFW4TuefPmZeHChens7Mwrr7ySI488Mt/+9rd3+1yF7v+nsbEx7e3t5W6DMtlv4shytwAAAPuM5ubmzJ49u8u6WbNmpampaav1EyZMyPz585Mka9euzbx58zJp0qQ88MADGTFiRJJk7ty5mThxYpf9hg8fXvr/xYsXd7k2+8ILL8xpp52Wv/mbv8nAgQNL6z/xiU/k85//fJLk+eefz5e+9KWceeaZefDBB7vU7Syh+/9pb2/P3Llzy90GZXLlt75S7hYAAGCf0djYmBkzZnRZt61R7iQZMGBARo0aVXq9cOHCDBo0KAsWLMicOXOSJLW1tV1q3uzxxx/P/fffnwceeCBXXXVVaf3rr7+epUuX5uKLLy6tGzRoUOk4o0aNyqJFi1JXV5fbb789f/iHf7jL5yp0AwAAsFdtbyr5zqioqEhlZWU2bty4U/WLFi3Kqaeemq9+9atd1t9yyy1ZtGhRl9D9VpunrO/se72V0A0AAECP1tHRUXqu9tq1a3PjjTemra0tkydPLtWsW7dui2dvDxw4MPvvv3/+z//5P7n22mtzzDHHdNn+h3/4h/nyl7+cxx57rHSt9yuvvFI6zvPPP58vfOEL6d+/f84888zd6l3oBgAAoEdbuXJl6urqkrwRpOvr67Ns2bKMHz++VDN16tQt9mtubs673vWuvPTSS/nQhz60xfajjz46Rx99dBYtWpQvf/nLSZIFCxZkwYIFSZK3v/3tefe7350777wzRx111G71LnQDAADQYy1ZsiRLlizZbk1nZ+d2t7/++uvb3Pb444+X/n/16tW70tpOqdxxCQAAALA7hG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRuAnuDBlW3lbqHbTmioKXcL3dYXzqEvmDTvw+Vuodv+5dLl5W6h24adc2a5W6CP8LO151j82E/K3QJJPjXmuHK3wD7GSDcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAIAea8qUKamoqCgtQ4YMSUNDQx5++OFSzZu3v3lZunRpqWbBggUZO3ZsampqMnjw4Bx//PFpbm4ubW9qairtV1VVlaFDh+bUU0/NDTfckI6Ojt3uX+gGAACgR2toaEhLS0taWlqyatWqVFVV5eyzz+5Sc8stt5RqNi/nnntukmTx4sX5sz/7s/zJn/xJfvKTn+QHP/hBrrzyyrS1tXU5xpgxY9LS0pJnn302d999d84///w0NzfnlFNOyfr163er96rd2gsAAAD2kurq6tTW1iZJamtrM3PmzIwbNy4vvPBCDjrooCTJ4MGDSzVvdccdd+SjH/1oPv3pT5fWjRkzZou6qqqq0jGGDx+eY489NmeccUbGjh2b6667LnPmzNnl3o10AwAA0Gu0tbXltttuy6hRozJkyJCd2qe2tjb3339/nnnmmV1+v/r6+kyaNCnLly/f5X0ToRsAAIC9rKOjIy+//HKXZXvXTa9YsSI1NTWpqanJwIEDc8cdd+T2229PZeVvI+0FF1xQqtm8PPvss0mSWbNmZfDgwRk5cmSOOuqoTJkyJd/4xjeyadOmneq3vr4+Tz/99G6dq+nlfVhjY2Pa29vL3UYvMbTcDQAAwD6jubk5s2fP7rJu1qxZaWpq2mr9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkSSZO3duJk6c2GW/4cOHJ0nq6upy33335dFHH833vve9/PCHP8xFF12UhQsXZuXKlV3C+9Z0dnamoqJid05V6O7L2tvbM3fu3HK30Suc/sdfLHcLAACwz2hsbMyMGTO6rKuurt5m/YABAzJq1KjS64ULF2bQoEFZsGBB6Trr2traLjVbc8wxx+SYY47JpZdemksuuSTjxo3LPffckwkTJmx3vyeeeCKHH374jk5rq4RuAAAA9qrq6urthuwdqaioSGVlZTZu3Ljbxxg9enSSZMOGDdute/LJJ7Ny5co0Njbu1vsI3QAAAPRoHR0daW1tTfLG9PIbb7wxbW1tmTx5cqlm3bp1pZrNBg4cmAEDBmTatGkZPnx4fv/3fz/vfOc709LSkjlz5uSggw7KySefXKp/7bXX0tramk2bNuWll17K6tWrM2fOnBx33HG54oordqt3oRsAAIAebeXKlamrq0vyRpCur6/PsmXLMn78+FLN1KlTt9ivubk5M2fOzMSJE7N48eLMnz8/L730UoYOHZqTTz45q1at6nIH9Mceeyx1dXXp169fBg0alNGjR6exsTHTpk3b7ZF5oRsAAIAea8mSJVmyZMl2azo7O7e7/bzzzst555233ZqmpqZt3sitOzwyDAAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gb2lv79+2f69Onb3L5mzZq92A0AAAD7gn0mdDc3N293+/YCOQAAAOwO08sBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKMg+85zuojQ2Nqa9vb3cbWzVmjVryt0CQFkMO+fMcrfQbWvuuKvcLXTbpHkfLncL9BGLH/tJuVsA2G1Cdze1t7dn7ty55W5jq6ZPn17uFgAAAPZpppcDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAECPNWXKlFRUVJSWIUOGpKGhIQ8//HCp5s3b37wsXbo0SbJ69ept1rS2tiZJmpqaSuuqqqoydOjQnHrqqbnhhhvS0dGx2/0L3QAAAPRoDQ0NaWlpSUtLS1atWpWqqqqcffbZXWpuueWWUs3m5dxzz+1S89RTT21RM2zYsNL2MWPGpKWlJc8++2zuvvvunH/++Wlubs4pp5yS9evX71bvVbu1FwAAAOwl1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSZLBgweXarZl2LBhGTx48Da3V1VVlY4xfPjwHHvssTnjjDMyduzYXHfddZkzZ84u926kGwAAgF6jra0tt912W0aNGpUhQ4YU/n719fWZNGlSli9fvlv7G+kGAABgr+ro6NjiOunq6upUV1dvtX7FihWpqalJkmzYsCF1dXVZsWJFKit/O458wQUXpF+/fl32e/zxx3PYYYeVXr/zne/ssn3EiBF57LHHdthvfX197rrrrh3WbY3Q3Yf1798/06dPL3cbvcTQcjcAAAD7jObm5syePbvLulmzZqWpqWmr9RMmTMj8+fOTJGvXrs28efMyadKkPPDAAxkxYkSSZO7cuZk4cWKX/YYPH97l9fe///0MHDiw9Hq//fbbqX47OztTUVGxU7VvJXT3Yc3NzeVuodc4/Y+/WO4WAABgn9HY2JgZM2Z0WbetUe4kGTBgQEaNGlV6vXDhwgwaNCgLFiwoXWddW1vbpWZrDj/88O1e070tTzzxRA4//PBd3i8RugEAANjLtjeVfGdUVFSksrIyGzdu3INdbd2TTz6ZlStXprGxcbf2F7oBAADo0To6OkrP0167dm1uvPHGtLW1ZfLkyaWadevWlWo2GzhwYAYMGFB6vWbNmrS3t3epGTJkSGma+WuvvZbW1tZs2rQpL730UlavXp05c+bkuOOOyxVXXLFbvQvdAAAA9GgrV65MXV1dkjeCdH19fZYtW5bx48eXaqZOnbrFfs3NzZk5c2bp9VFHHbVFzX333ZeTTjopSfLYY4+lrq4u/fr1y6BBgzJ69Og0NjZm2rRpuz0yL3QDAADQYy1ZsiRLlizZbk1nZ+d2t48fP36HNU1NTdu8kVt3eE43AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCVJW7AegJTmioKXcLAF1MmvfhcrfQbf9y6fJyt9Btw845s9wtdFtf+DfuU2OOK3cL0KMsfuwn5W6h264feVq5W9hrjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgnhk2P/Tv3//TJ8+fZf3W7NmTQHdAAAA0BcI3f9Pc3Pzbu23O0EdAACAfYPp5QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAB6rClTpqSioqK0DBkyJA0NDXn44YdLNW/e/uZl6dKlpZoFCxZk7NixqampyeDBg3P88cenubm5tL2pqWmrx6ivr+9W/1Xd2hsAAAAK1tDQkFtuuSVJ0tramquvvjpnn312nn322VLNLbfckoaGhi77DR48OEmyePHi/Nmf/Vn+1//6XznttNPS0dGRhx9+OI8++miX+jFjxuQ73/lOl3VVVd2LzUI3AAAAPVp1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSNwL25pq3uuOOO/LRj340n/70p0vrxowZs0VdVVXVNo+xu0wvBwAAoNdoa2vLbbfdllGjRmXIkCE7tU9tbW3uv//+PPPMMwV3tyWhGwAAgL2qo6MjL7/8cpelo6Njm/UrVqxITU1NampqMnDgwNxxxx25/fbbU1n520h7wQUXlGo2L5unn8+aNSuDBw/OyJEjc9RRR2XKlCn5xje+kU2bNnV5n0ceeWSLY1xyySXdOlfTy8uosbEx7e3t5W6DJPtNHFnuFgAAYJ/R3Nyc2bNnd1k3a9asNDU1bbV+woQJmT9/fpJk7dq1mTdvXiZNmpQHHnggI0aMSJLMnTs3EydO7LLf8OHDkyR1dXW577778uijj+Z73/tefvjDH+aiiy7KwoULs3LlylJ4P+qoo3LHHXd0OcaBBx7YrXMVusuovb09c+fOLXcbJLnyW18pdwsAALDPaGxszIwZM7qsq66u3mb9gAEDMmrUqNLrhQsXZtCgQVmwYEHmzJmT5I0p5G+u2ZpjjjkmxxxzTC699NJccsklGTduXO65555MmDAhSbL//vvv8Bi7SugGAABgr6qurt5uyN6RioqKVFZWZuPGjbt9jNGjRydJNmzYsNvH2BlCNwAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+eXKpZt25dqWazgQMHZsCAAZk2bVqGDx+e3//938873/nOtLS0ZM6cOTnooINy8sknl+pfe+21LY5RUVGRgw8+eLd7F7oBAADo0VauXJm6urokbwTp+vr6LFu2LOPHjy/VTJ06dYv9mpubM3PmzEycODGLFy/O/Pnz89JLL2Xo0KE5+eSTs2rVqi53QH/sscdK77NZdXV1t+7FJXQDAADQYy1ZsiRLlizZbk1nZ+d2t5933nk577zztlvT1NS0zRu5dYdHhgEAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKEhVuRsA9owHV7aVu4VuO6GhptwtAHvQsHPOLHcL3bbmjrvK3UK3PZje/3lIflLuBvaIT405rtwt0Ef4WupdjHQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBV5W6gt+vfv3+mT5++W/uuWbNmD3cDAABATyJ0d1Nzc/Nu77u7YR0AAIDewfRyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPl2revP3Ny9KlS0s1CxYsyNixY1NTU5PBgwfn+OOPLz2NauTIkds8RkVFRaZMmbLb/XtkGAAAAD1aQ0NDbrnlliRJa2trrr766px99tl59tlnSzW33HJLGhoauuw3ePDgJMnixYvzZ3/2Z/lf/+t/5bTTTktHR0cefvjhPProo0mSH/3oR3n99deTJD/84Q9z3nnn5amnnsqBBx6YJHnb2962270L3QAAAPRo1dXVqa2tTZLU1tZm5syZGTduXF544YUcdNBBSd4I2Jtr3uqOO+7IRz/60Xz6058urRszZkzp/zcfI0ne8Y53JEmGDRtWCu3dYXo5AAAAvUZbW1tuu+22jBo1KkOGDNmpfWpra3P//ffnmWeeKbi7LRnpBgAAYK/q6OhIR0dHl3XV1dWprq7eav2KFStSU1OTJNmwYUPq6uqyYsWKVFb+dhz5ggsuSL9+/brs9/jjj+ewww7LrFmz8uEPfzgjR47MkUcemZNPPjnvf//785GPfKTLMYogdO/DGhsb097eXu42eoT9Jo4sdwsAALDPaG5uzuzZs7usmzVrVpqamrZaP2HChMyfPz9Jsnbt2sybNy+TJk3KAw88kBEjRiRJ5s6dm4kTJ3bZb/jw4UmSurq63HfffXn00Ufzve99Lz/84Q9z0UUXZeHChVm5cmWhwVvo3oe1t7dn7ty55W6jR7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3phC/uaarTnmmGNyzDHH5NJLL80ll1yScePG5Z577smECRO6cTbbJ3QDAACwV21vKvnOqKioSGVlZTZu3Ljbxxg9enSSN6arF0noBgAAoEfr6OhIa2trkjeml994441pa2vL5MmTSzXr1q0r1Ww2cODADBgwINOmTcvw4cPz+7//+3nnO9+ZlpaWzJkzJwcddFBOPvnkQnsXugEAAOjRVq5cmbq6uiRvBOn6+vosW7Ys48ePL9VMnTp1i/2am5szc+bMTJw4MYsXL878+fPz0ksvZejQoTn55JOzatWqnb4D+u4SugEAAOixlixZkiVLlmy3prOzc7vbzzvvvJx33nk79X7jx4/f4fF2hed0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoSFW5G9iX9e/fP9OnTy/b+69Zs6Zs7w1QpBMaasrdAukbn4cHc2a5W+i2NXfcVe4Wuq/hw+XuAGC3Cd1l1NzcXNb3L2fgBwAA2BeYXg4AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAAD3WlClTUlFRUVqGDBmShoaGPPzww6WaN29/87J06dIt9n/rMnLkyO1ur6ioyNNPP73b/QvdAAAA9GgNDQ1paWlJS0tLVq1alaqqqpx99tldam655ZZSzebl3HPPzVe+8pUu695a+/3vf7/L9pNPPjkXX3xxl3WHHnrobvde1a0zBwAAgIJVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSQYPHlyqebP+/ftn0KBBXdZtqzZJ9t9//xxwwAHb3L6rjHQDAADQa7S1teW2227LqFGjMmTIkHK3s0NGugEAANirOjo60tHR0WVddXV1qqurt1q/YsWK1NTUJEk2bNiQurq6rFixIpWVvx1HvuCCC9KvX78u+z3++OM57LDD9nD3u0bo3of1798/06dPL3cbPcJ+E0eWuwUAANhnNDc3Z/bs2V3WzZo1K01NTVutnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI5Ikc+fOzcSJE7vsN3z48D3f/C4Suvdhzc3N5W6hx7jyW18pdwsAALDPaGxszIwZM7qs29Yod5IMGDAgo0aNKr1euHBhBg0alAULFmTOnDlJ3rjW+801PYXQDQAAwF61vankO6OioiKVlZXZuHHjHuyqGEI3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT55cqlm3bl2pZrOBAwdmwIABe7XXtxK6AQAA6NFWrlyZurq6JG8E6fr6+ixbtizjx48v1UydOnWL/ZqbmzNz5sy91eZWCd0AAAD0WEuWLMmSJUu2W9PZ2bnTx9tR7erVq3f6WDvDc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABSkqtwNQE/wqTHHlbuFPeAn5W6g2/rG5wH2jMWP/aTcLXRb3/ie/km5G+i+hg+Xu4Nu+5dLl5e7hT1jXrkb6L6+8H3dF36+9gXXjzyt3C3sNUa6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAgB5rypQpqaioKC1DhgxJQ0NDHn744S1qP/OZz6Rfv35ZtmzZFtuampq6HGfzUl9fn6effnqr2968LFmyZLf6F7oBAADo0RoaGtLS0pKWlpasWrUqVVVVOfvss7vUvPLKK1m6dGmuvPLKLF68eKvHGTNmTOk4m5d77703hx56aJd1f/7nf75F7cc+9rHd6r1qt/YCAACAvaS6ujq1tbVJktra2sycOTPjxo3LCy+8kIMOOihJsmzZsowePTozZ87M8OHD89xzz+XQQw/tcpyqqqrScd7qzetramq2W7srjHQDAACwV3V0dOTll1/usnR0dOzUvm1tbbntttsyatSoDBkypLR+0aJFufDCCzNo0KBMmjRpt6eD72k9bqS7sbEx7e3t5W6Dfcxn/vTccrcAAAD7jObm5syePbvLulmzZqWpqWmr9StWrEhNTU2SZMOGDamrq8uKFStSWfnGOPLPfvaz3H///Vm+fHmS5MILL8yMGTNy9dVXp6KionScRx55pHSczS688MLcdNNNe+rUttDjQnd7e3vmzp1b7jbYxzz59D3lbgEAAPYZjY2NmTFjRpd11dXV26yfMGFC5s+fnyRZu3Zt5s2bl0mTJuWBBx7IiBEjsnjx4px11lkZOnRokuT9739/Pv3pT+e73/1uTj/99NJxjjrqqNxxxx1djn3ggQfuqdPaqh4XugEAAOjbqqurtxuy32rAgAEZNWpU6fXChQszaNCgLFiwILNnz86tt96a1tbWVFX9NuK+/vrrWbx4cZfQvf/++3c5zt4gdAMAANCrVFRUpLKyMhs3bsydd96Z9evX58c//nH69etXqnn00UczderUrFu3LoMHDy5br0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnutdJzNKioqcvDBBxfWu9ANAABAj7Zy5crU1dUlSQYOHJj6+vosW7YsRx99dL71rW/l61//+hb7VFZW5kMf+lAWLVpUCt2PPfZY6TibVVdXF3ozb6EbAACAHmvJkiXbffzXb37zm21umzdvXun/m5qatnl39Lfaldod8ZxuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFqSp3A9ATXPbX95a7hW47oaGm3C102+LHflLuFkjyqTHHlbuFbvO1xJ7SF74f+oR55W5gz/iXS5eXu4Vue/CctnK3QF/xgXI3sPcY6QYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAANBjTZkyJRUVFaVlyJAhaWhoyMMPP7xF7Wc+85n069cvy5Yt22JbU1NT6RhVVVUZOnRoTj311Nxwww3p6OjoUjt+/PhSbXV1dQ455JBMnjw5y5cv3+X+hW4AAAB6tIaGhrS0tKSlpSWrVq1KVVVVzj777C41r7zySpYuXZorr7wyixcv3upxxowZk5aWljz77LO5++67c/7556e5uTmnnHJK1q9f36X24osvTktLS37+85/n7//+7zN69Oh8/OMfzx/90R/tUu9Vu3aqAAAAsHdVV1entrY2SVJbW5uZM2dm3LhxeeGFF3LQQQclSZYtW5bRo0dn5syZGT58eJ577rkceuihXY5TVVVVOs7w4cNz7LHH5owzzsjYsWNz3XXXZc6cOaXaAw44oFT7zne+MyeddFLq6+vzqU99Kh/96EczceLEnerdSDcAAAB7VUdHR15++eUuy1uneG9LW1tbbrvttowaNSpDhgwprV+0aFEuvPDCDBo0KJMmTcqSJUt26nj19fWZNGnSTk0dv+iii/L2t799l6aZG+nuwxobG9Pe3l7uNnqJoeVuAAAA9hnNzc2ZPXt2l3WzZs1KU1PTVutXrFiRmpqaJMmGDRtSV1eXFStWpLLyjXHkn/3sZ7n//vtLYfjCCy/MjBkzcvXVV6eiomKH/dTX1+euu+7aYV1lZWWOPPLIPP300zus3Uzo7sPa29szd+7ccrfRK5z+x18sdwsAALDPaGxszIwZM7qsq66u3mb9hAkTMn/+/CTJ2rVrM2/evEyaNCkPPPBARowYkcWLF+ess87K0KFvDKa9//3vz6c//el897vfzemnn77Dfjo7O3cqnO9qbSJ0AwAAsJdVV1dvN2S/1YABAzJq1KjS64ULF2bQoEFZsGBBZs+enVtvvTWtra2pqvptxH399dezePHinQrdTzzxRA4//PAd1r3++uv52c9+lt/93d/d6d6FbgAAAHqVioqKVFZWZuPGjbnzzjuzfv36/PjHP06/fv1KNY8++mimTp2adevWZfDgwds81pNPPpmVK1emsbFxh+976623Zu3atTnvvPN2ulehGwAAgB6to6Mjra2tSd6YXn7jjTemra0tkydPzg033JAPfOADGTt2bJd9Ro8enenTp+drX/taLrvssiTJa6+9ltbW1mzatCkvvfRSVq9enTlz5uS4447LFVdc0WX/V155Ja2trXnttdfy3//93/mHf/iHzJ07N9OmTcuECRN2unehGwAAgB5t5cqVqaurS5IMHDgw9fX1WbZsWY4++uh861vfyte//vUt9qmsrMyHPvShLFq0qBS6H3vssdTV1aVfv34ZNGhQRo8encbGxkybNm2L6e4LFizIggULsv/++2fIkCE54YQTcvvtt+dDH/rQLvUudAMAANBjLVmyZLuP//rNb36zzW3z5s0r/X9TU9M2747+VqtXr97J7nbMc7oBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKskfvXt6/f/9Mnz69W8dYs2bNHuoGAAAAymuPhu7m5uZuH6O7oR0AAAB6CtPLAQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIJUlbuBvqaxsTHt7e3lbiNJsmbNmnK3AADQbZ8ac1y5W9gjHjynrdwtdNuaO+4qdwvdNmneh8vdAvsYoXsPa29vz9y5c8vdRpJk+vTp5W4BAABgn2Z6OQAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAA9FhTpkxJRUVFaRkyZEgaGhry8MMPZ8mSJV22bW15+umn09TUVHpdVVWVoUOH5tRTT80NN9yQjo6OLu83fvz4Um11dXUOOeSQTJ48OcuXL9+t/oVuAAAAerSGhoa0tLSkpaUlq1atSlVVVc4+++x87GMfK61vaWnJySefnIsvvrjLukMPPTRJMmbMmLS0tOTZZ5/N3XffnfPPPz/Nzc055ZRTsn79+i7vt/kYP//5z/P3f//3GT16dD7+8Y/nj/7oj3a596o98hEAAACAglRXV6e2tjZJUltbm5kzZ2bcuHFpa2srrU+S/fffPwcccECXdZtVVVWV1g8fPjzHHntszjjjjIwdOzbXXXdd5syZU6p98zHe+c535qSTTkp9fX0+9alP5aMf/WgmTpy4070b6QYAAGCv6ujoyMsvv9xlees0721pa2vLbbfdllGjRmXIkCHd6qO+vj6TJk3aqanjF110Ud7+9rfv8jRzI919WP/+/TN9+vRyt9FLDC13AwAAsM9obm7O7Nmzu6ybNWtWmpqatlq/YsWK1NTUJEk2bNiQurq6rFixIpWV3R9Hrq+vz1133bXDusrKyhx55JF5+umnd+n4Qncf1tzcXO4Weo3T//iL5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7rVS2dnZyoqKvZ47WamlwMAALBXVVdX58ADD+yybC90DxgwIKNGjcqoUaPyu7/7u1m4cGE2bNiQBQsWdLuXJ554IocffvgO615//fX87Gc/26naNxO6AQAA6FUqKipSWVmZjRs3dus4Tz75ZFauXJnzzjtvh7W33npr1q5du1O1b2Z6OQAAAD1aR0dHWltbk7wxvfzGG29MW1tbJk+evNPHeO2119La2ppNmzblpZdeyurVqzNnzpwcd9xxueKKK7rUvvLKK2ltbc1rr72W//7v/84//MM/ZO7cuZk2bVomTJiwS70L3QAAAPRoK1euTF1dXZJk4MCBqa+vz7JlyzJ+/PidPsZjjz2Wurq69OvXL4MGDcro0aPT2NiYadOmbTG1fcGCBVmwYEH233//DBkyJCeccEJuv/32fOhDH9rl3oVuAAAAeqwlS5ZkyZIlO1W7evXqra5vamra5p3Rd/YYu8s13QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAAClJV7gbeqn///pk+fXq529hta9asKXcL7IYTGmrK3QJJHlzZVu4Wuq0vfC0tfuwn5W6h2z415rhytwDsQX3h51JfMWneh8vdQrf9y6XLy91Ctw0758xyt9B9Hyh3A3tPjwvdzc3N5W6hW3rzHwwAAADYs0wvBwAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAACAHmvKlCmpqKgoLUOGDElDQ0MefvjhLWo/85nPpF+/flm2bNkW25qamkrHqKqqytChQ3PqqafmhhtuSEdHR5fa8ePHd3nPgw8+OOeff36eeeaZXe5f6AYAAKBHa2hoSEtLS1paWrJq1apUVVXl7LPP7lLzyiuvZOnSpbnyyiuzePHirR5nzJgxaWlpybPPPpu77747559/fpqbm3PKKadk/fr1XWovvvjitLS05Je//GX+6Z/+Kc8991wuvPDCXe5d6AYAAKBHq66uTm1tbWpra3Pcccdl5syZee655/LCCy+UapYtW5bRo0dn5syZ+d73vpfnnntui+NUVVWltrY2w4cPz7HHHps//uM/zj333JNHH3001113XZfaAw44ILW1tamrq8tJJ52Uyy+/PA899NAu9y50AwAAsFd1dHTk5Zdf7rK8dYr3trS1teW2227LqFGjMmTIkNL6RYsW5cILL8ygQYMyadKkLFmyZKeOV19fn0mTJmX58uXbrPnVr36Vb3zjGznxxBN36phvVrXLe9BrNDY2pr29vdxt9Ar7TRxZ7hYAAGCf0dzcnNmzZ3dZN2vWrDQ1NW21fsWKFampqUmSbNiwIXV1dVmxYkUqK98YR/7Zz36W+++/vxScL7zwwsyYMSNXX311KioqdthPfX197rrrri7r5s2bl4ULF6azszOvvPJKjjzyyHz729/e1VMVuvuy9vb2zJ07t9xt9ApXfusr5W4BAAD2GY2NjZkxY0aXddXV1dusnzBhQubPn58kWbt2bebNm5dJkyblgQceyIgRI7J48eKcddZZGTp0aJLk/e9/fz796U/nu9/9bk4//fQd9tPZ2blFOP/EJz6Rz3/+80mS559/Pl/60pdy5pln5sEHH8zAgQN3+lyFbgAAAPaq6urq7YbstxowYEBGjRpVer1w4cIMGjQoCxYsyOzZs3PrrbemtbU1VVW/jbivv/56Fi9evFOh+4knnsjhhx/eZd2gQYNK7zlq1KgsWrQodXV1uf322/OHf/iHO9270A0AAECvUlFRkcrKymzcuDF33nln1q9fnx//+Mfp169fqebRRx/N1KlTs27dugwePHibx3ryySezcuXKNDY2bvc9Nx9748aNu9Sr0A0AAECP1tHRkdbW1iRvTC+/8cYb09bWlsmTJ+eGG27IBz7wgYwdO7bLPqNHj8706dPzta99LZdddlmS5LXXXktra2s2bdqUl156KatXr86cOXNy3HHH5Yorruiy/yuvvFJ6z+effz5f+MIX0r9//5x55pm71LvQDQAAQI+2cuXK1NXVJUkGDhyY+vr6LFu2LEcffXS+9a1v5etf//oW+1RWVuZDH/pQFi1aVArdjz32WOrq6tKvX78MGjQoo0ePTmNjY6ZNm7bFdPcFCxZkwYIFSZK3v/3tefe7350777wzRx111C71LnQDAADQYy1ZsmS7j//6zW9+s81t8+bNK/1/U1PTNu+O/larV6/eye52zHO6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUpKrcDfQ1/fv3z/Tp08vdRpJkzZo15W4BdskJDTXlboEknxpzXLlboI9Y/NhPyt1Ct/l+gL5n2DlnlruFbltzx13lbqH7/ubz5e5grxG697Dm5uZyt1DSU8I/AADAvsr0cgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAA6LGmTJmSioqK0jJkyJA0NDTk4Ycf3qL2M5/5TPr165dly5Ztsa2pqal0jKqqqgwdOjSnnnpqbrjhhnR0dHSpHT9+fJf33Lxccsklu9y/0A0AAECP1tDQkJaWlrS0tGTVqlWpqqrK2Wef3aXmlVdeydKlS3PllVdm8eLFWz3OmDFj0tLSkmeffTZ33313zj///DQ3N+eUU07J+vXru9RefPHFpffcvFx//fW73HvVLu8BAAAAe1F1dXVqa2uTJLW1tZk5c2bGjRuXF154IQcddFCSZNmyZRk9enRmzpyZ4cOH57nnnsuhhx7a5ThVVVWl4wwfPjzHHntszjjjjIwdOzbXXXdd5syZU6o94IADSrXdYaQbAACAvaqjoyMvv/xyl+WtU7y3pa2tLbfddltGjRqVIUOGlNYvWrQoF154YQYNGpRJkyZlyZIlO3W8+vr6TJo0KcuXL9+dU9khI919WP/+/TN9+vRyt9Er7DdxZLlbAACAfUZzc3Nmz57dZd2sWbPS1NS01foVK1akpqYmSbJhw4bU1dVlxYoVqax8Yxz5Zz/7We6///5ScL7wwgszY8aMXH311amoqNhhP/X19bnrrru6rJs3b14WLlzYZd3//t//O5/4xCd26hw3E7r7sObm5nK30Gtc+a2vlLsFAADYZzQ2NmbGjBld1lVXV2+zfsKECZk/f36SZO3atZk3b14mTZqUBx54ICNGjMjixYtz1llnZejQoUmS97///fn0pz+d7373uzn99NN32E9nZ+cW4fwTn/hEPv/5z3dZd/DBB+/U+b2Z0A0AAMBeVV1dvd2Q/VYDBgzIqFGjSq8XLlyYQYMGZcGCBZk9e3ZuvfXWtLa2pqrqtxH39ddfz+LFi3cqdD/xxBM5/PDDu6wbNGhQl/fcXUI3AAAAvUpFRUUqKyuzcePG3HnnnVm/fn1+/OMfp1+/fqWaRx99NFOnTs26desyePDgbR7rySefzMqVK9PY2FhIr0I3AAAAPVpHR0daW1uTvDG9/MYbb0xbW1smT56cG264IR/4wAcyduzYLvuMHj0606dPz9e+9rVcdtllSZLXXnstra2t2bRpU1566aWsXr06c+bMyXHHHZcrrriiy/6vvPJK6T03q66uztvf/vZd6t3dywEAAOjRVq5cmbq6utTV1eXEE0/Mj370oyxbtixHH310vvWtb+W8887bYp/Kysp86EMfyqJFi0rrHnvssdTV1eWwww7L+PHj841vfCONjY35/ve/X7pR22YLFiwovefm5YILLtjl3is6Ozs7d/2UoW9xIzX4rU+NOa7cLdBHLH7sJ+Vuodt8P/QMfeFrKUkeXNlW7ha67YSGmh0X9XB94fOw5o67dlzUwz3yzD3lbmGvMdINAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAonUDh2tvbO2fNmtXZ3t5e7lZ2m3PoGZxDz+Acegbn0DM4h57BOfQMzoGtqejs7Owsd/CHvu7ll1/OoEGD8utf/zoHHnhgudvZLc6hZ3AOPYNz6BmcQ8/gHHoG59AzOAe2xvRyAAAAKIjQDQAAAAURugEAAKAgQjfsBdXV1Zk1a1aqq6vL3cpucw49g3PoGZxDz+Acegbn0DM4h57BObA1bqQGAAAABTHSDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAADslGeffTbuwQuwa4RuYAuf+tSnsn79+nK3wTa89tpraWtrK3cbwC7qCz9bDz/88LzwwgvlbqNb/vZv/zYdHR3lbgPYhwjdUIANGzbkmmuuyTHHHJOampoMHDgw7373u3PttdfmlVdeKXd7O3Trrbdm48aN5W6j29avX58HH3ywFFAfeuihfPKTn8z555+fr33ta2Xubsf++Z//OUuWLOmy7otf/GJqamoyePDgnHnmmVm7dm15muuGDRs2ZPHixfnqV7+an/3sZ+VuZ6f09u/ppPefw+jRo/OrX/2q9PrSSy/Niy++WHq9Zs2aHHDAAeVobaf1hZ+tfWGUe+rUqfn1r39d7jb2iO9+97u5/PLLc/bZZ2fy5Mn5kz/5k3zve98rd1u7pC+cw5v1xn/jLr300i5/zP+7v/u7bNiwofR63bp1ef/731+O1vqOTmCP6ujo6DzhhBM6q6urO88999zOmTNndl511VWd55xzTuf+++/fedJJJ3W++uqr5W5zuyoqKjqff/75crfRLffcc0/nwIEDOysqKjrf8Y53dH7729/uHDhwYGd9fX3nmDFjOisrKztvvvnmcre5XePHj++88cYbS69/8IMfdFZWVnbOmTOn8+///u876+vrO6dPn17GDnfsmWee6Tz11FM7a2pqOidOnNj5zDPPdB555JGdFRUVnRUVFZ0HHHBA5z333FPuNrerL3xP94VzeOvPpYEDB3b+/Oc/L71ubW3trKioKEdrO60v/GytqKjoXLNmTbnb6Ja+8Hno7Ozs/MxnPlP6N+6kk07qPPHEEzvf8Y53dFZWVnZefvnl5W5vp/T2c+gL/8Z1dnZ2VlZW7vDna2VlZTla6zOqyh36oa+ZP39+/vu//zs//elPc9RRR3XZ9uSTT2b8+PG56aab8sd//Mdl6nDnrF+/Pv37999uzYEHHriXutl1V199dc4///xce+21Wbx4cT72sY/l8ssvz5e+9KUkyZw5c/LVr341F198cZk73bbHHnssX/7yl0uvv/nNb+aMM87I5z//+SRJ//7986d/+qddanqaz372s3n11Vdz00035Rvf+EbOOuusvOtd78r3vve9VFZWZtq0aWlqasp3v/vdcre6TX3he7ovnMNbdW5lxLWioqIMneya3v6zNUn+4i/+YoezCnryz6Wkd3ytbM8//MM/5JZbbsnixYtz0UUXlc5n06ZNWbJkSaZNm5Yzzjgj55xzTpk73ba+cA594d+4ZMufp1v7+Ur3VHT6qMIeddppp+WjH/1oLrvssq1u/5u/+Zt885vfzD333LOXO9t5lZWV2/2FpLOzMxUVFXn99df3Yle7ZvDgwbn//vtTX1+fV199NW9729vy0EMPZezYsUmS//zP/8zxxx/fo6+vfNvb3pannnoqhx12WJLkfe97X84///xcccUVSZJnnnkmo0eP7jIFrKepra3NHXfckfe973351a9+laFDh+YHP/hBTj755CTJT3/605x++uldpgn3NH3he7ovnENlZWVaW1szbNiwJMnAgQPz05/+NEcccUSS5Pnnn8/w4cN79M+lvvCztbKyMieffHL233//bdZUVFT06JBRWVmZY445JlVV2x97euihh/ZSR7vunHPOyZgxY9Lc3LzV7VdddVWefPLJ/NM//dNe7mzn9YVz6Av/xiV94+drT2ekG/awxx9/POPHj9/m9gkTJuTaa6/dew3tpm9+85t5xzveUe42dtvLL79c6n///ffPAQcckIEDB5a2Dxw4sMdfx3rIIYfkiSeeyGGHHZa2trb89Kc/zdy5c0vbX3rppR5/DeuaNWsyYsSIJMk73vGOHHDAATn44INL22tra3v8del94Xu6L5xDRUXFFoG1N45W9vafrckbI5Sbfznvrc4666zU1NSUu43d9tBDD+Xqq6/e5vYPf/jDOe+88/ZiR7uuL5xDX/g3jr1D6IY9bN26dRkyZMg2tw8ZMqRX3MDl937v93r1L1Vv/QV9a7+w93Tnn39+/uzP/iyf+9zncuedd6a2tjYnnXRSafu///u/bzFVuCd66+eht+kL39N94Rw6Oztz+umnl0YnN27cmMmTJ5dGXF977bVytrfTevvP1r7iiiuu6NWfhxdffDHvfOc7t7n9ne98Z1566aW92NGu6wvnkPT+f+M2u+aaa0p/yH/11VfzxS9+MYMGDUqSHj9I0RsI3bCHbdq0Kf369dvm9srKStNz9oK3/oL+yiuv9Lpf0K+55pr84he/yJ/8yZ+ktrY2t912W5evrb/7u7/L5MmTy9jhzunt/5D3he/pvnAOs2bN6vL6gx/84BY1PX1UjJ6hNwejzV599dXst99+29xeVVWVV199dS92tOv6wjkkvf/fuCQ59dRT89RTT5Ven3LKKfmv//qvLWrYfa7phj1sR9eKvfbaa3nsscd69C+4hx9+eP793/99uyNjPd3s2bN3qu6tv8izZ40fP36nfsG9++6790I3u6cvfE/3hXPoC/rCz9bDDz889957bw455JByt7Lb3nr9am9UWVmZP/qjP9rmJUavvPJKFixY0KO/p/vCOfSFf+PYO4Ru2MP6Wth78cUX8/TTT6eioiIjR47s1b8s9mY+D+XTF76n+8I5bMs999yTDRs25OSTT87b3/72crezW3rTOfTr1y8tLS29OrA+88wzOeyww3r1iHdfCHt94RxgZwndwFY99thjmTZtWn7wgx90WX/aaadl/vz5veJa4s16c2Dd3udh3rx5qa+vL1Nne8YTTzyRRYsW5a/+6q/K3Qo93HXXXZe2trZ84QtfSPLGJSSTJk3KXXfdlSQZNmxYVq1alTFjxpSzze3qC+fQF0aJR48enXvvvbd0Q7tLL7001157bYYOHZrkjZtjjRw5stdMDYY9YcOGDbnuuuuyfPny0u9Mhx9+eD7ykY/ks5/9bI+/cWtPJ3RDgXpr2Gttbc0xxxyTgw46KJdccknq6+vT2dmZxx9/PAsWLMhLL72URx99tMf/0tXb/3DQVz4Pb7Vhw4YsXbo0ixYtyv3335/Ro0fn0UcfLXdbu6w3jU6uWbNmu18nr732Wh566KG8733v24td7Zr3vOc9ueqqq/Kxj30sSbJs2bJcdNFF+dd//dccffTR+eQnP5kDDjgg3/jGN8rc6bb1hXOorKzMrbfeWrpmdVt68rOV3/qHgwMPPDA/+clPujweqa6uLps2bSpnm/QSfSGsvvrqqznllFPy6KOPZtKkSaXfN5544omsXLky73nPe/K9731vu9fgswOdwB736KOPdo4bN66zsrKyyzJhwoTOJ598stzt7dCVV17Z+Z73vKdz48aNW2x75ZVXOt/znvd0zpw5swyd7byWlpbOIUOGdNbX13fecMMNnStXruz8l3/5l86//uu/7qyvr+886KCDOp9//vlyt7ldfeHz8Gb33ntv59SpUzsHDBjQWVlZ2fnnf/7nnU888US529qhv/zLv+y8+uqrS683bdrUedZZZ3VWVFR0VlRUdB588MGdjz76aBk73LHKysouX+/HHHNM57PPPlt63dra2llZWVmO1nba4MGDOx9//PHS6ylTpnT+wR/8Qen1fffd9/+3d+8xVdZ/HMDf5xzkIrccOBDamN1gKDnAJtbC7nhEAkpjNIzINRrlllsKrbFmly3basxprgiwmBcIrUEXWQuS4cJBKzQvg2IpkuHUEA5yCfj+/nCc/Q5yOdLhPM/z8f3aWn57zh+fT99zjt/3c57n+arbb79di9KcJqGH8ff9dP/o/b1kMpkcPg9+fn7qjz/+sI+N8HlQSimbzaYKCwvVkiVLlK+vr/Lz81MxMTFq27Ztqr+/X+vynGL0HoaGhlR8fLzy8vJSaWlpqqCgQOXn56snn3xSeXp6qoSEBDU8PKx1mTMqKipSISEhk65RT58+rUJCQtSOHTs0qEwOhm4iF5MQ9mJjY1VFRcWUx/fv369iY2PdWNHNkxBYJcxDd3e32r59u4qMjFShoaFq8+bNqrm5WXl4eKiTJ09qXZ5TYmNj1YEDB+zjyspK5ePjoxobG9Xly5dVcnKyWr9+vYYVzsyZkGEymbQozWkTa46MjFS7d++2j8+ePau8vb21KM1pEnqY+F4yIgmhW0LYk9CDlLCamJiodu7cOeXxHTt2qMTERDdWJA9DN5GLSQh7gYGBqr29fcrj7e3tKjAw0H0FzYKEwCphHry9vVVWVpY6fPiwGh0dtf93I4VuKb9OGj1kLFu2TJWVlSmlrodTk8nk8B46evSoCg8P16g650joYeJVE0ZkNpvVxYsX7WM/Pz/V0dFhHxvh8yAh7EnoQUpYDQ4OnvaKrRMnTqjg4GA3ViSPWevL24mk+f7775Gfnw9vb+8bjvn4+GDLli2ora3VoDLn9fX1ISAgYMrj/v7+sNlsbqzo5nV0dCAuLm7K48uXL79hD0q9kTAPERERaGxsRENDA9ra2rQuZ1ZGRkbg5eVlH//000+4//777eOwsDBcunRJi9JuKS+//DJeeeUVbNy4EVarFStXrkR0dLT9eF1dHWJjYzWscGYSelACHgWklMKjjz6KuLg4xMXFYWBgACkpKfbx448/rnWJMzp06BAKCwsnfTZJVFQU3njjDVRVVWlQmfMk9HDq1Ck89NBDUx5/+OGHcerUKfcVNEs9PT3TPncoKCgIV69edWNF8ky+YScRzZqEsAdcD3yTnTgAgN7eXt0vvCQEVsD483DmzBkcPXoUJSUluO+++3DPPfcgKysLAAyzXc+dd96JhoYG3HHHHTh37hza2tqQmJhoP37+/HndPyTRZDLZ30tKKZhMJthsNvT29gKA/d969uKLL8JisaCmpgaJiYk3bG/2119/IScnR6PqnCOhh+zsbPj4+Ghdxn8y8f97amrqDa95+umn3VXOrDgT9t566y33FTQLEnqQElbHxsZgsVimPG42m3W9X7oR8OnlRC420x6m3d3dCA8Px8jIiJsrc57ZbJ42EI0v2vX8BWyxWNDW1oaFCxdOery7uxtRUVG67kHCPPw/m82G/fv3o6ysDE1NTVi1ahWeffZZpKWlTTlPelBcXIzNmzcjIyMDTU1NuO222xyeiP/OO+/g2LFjqKmp0bDK6U18L42/dyaOjfJeIu1UVlYiLS0Nnp6eAK6fdAoLC4PZfP3iyWvXrmHnzp3YunWrlmWKN2/ePHR2diI0NHTS4xcuXEBERASGh4fdXJnzJPRgsVjw999/T7vWCAsL0/13q9lsxtKlS+HhMfnvsSMjIzh58qTu+9Azhm4iF5MQ9o4cOeLU61atWjXHlcyehMAqYR6mMr4/d3l5Oa5cuYJ///1X65KmVVpaipqaGoSGhuLNN990WCTm5eXhsccew1NPPaVhhdOT8F6SEPYk9DDxxPJk220ZIWRMpbe3F3v37kVJSQlaWlq0LmdKEsKehB6khNVt27Y59bqJV4mQ8xi6iVxMQtiTQELIuBWMjIygurpa14GV9EFC2JPQw8Q9rv39/dHa2mqoHiZTX1+P0tJSHDp0CIGBgUhPT8euXbu0LmtKEsKehB4YVslZvKebyMXq6+u1LuE/k/BrjIQwLWEeZupheHgYv//+u5YlzuhWmAcj9DDxNwIj/mYgoQdJurq6sGfPHpSVlaGnpwf//PMP9u3bh2eeeUb3z5xwJsTp/b70W6UHozPK1R+659ZnpRORIUzcEsbf399w2wtVVFSooaEh+7izs9Nhy6r+/n61fft2LUpzmoR5YA/6IKEHCduesQd9qKqqUlarVfn6+qp169apr776Sg0NDRlqK0MJzp496/D3sjRXr15VH330kYqPj9e6lFmpq6tTWVlZav78+WrRokUqLy9P65IMjVuGEblYZWWlw0M/zp8/j7GxMfv42rVreP/997UozWlKwK8xmZmZ6OnpsY+jo6Px559/2sd9fX14/fXX3V/YTZAwD+xBHyT0QPpRW1uL6upqVFdXY2xsDD/88IN9rPctMQEgIyMDsbGxuHDhAr744gukpqbarwKRoLe3F7t378by5cu1LmVaixcvFrndYn19PTZs2IBFixbh7bffxooVK7QuyWldXV149913cdddd2H9+vXYt28fSktL0dXVpevbLYyAl5cTuVhmZqbDPXvR0dEO9+yNhz09X8YpAUMGkTy1tbUIDAwEAHvY++233wDA4SSbnknoITs722Gcm5vrMNb7pdkbN27Erl278OOPP2LDhg3IyMjAggULtC7rP5vsvnQ9k/T3spFvVQCAgwcPoqSkBA0NDbBarfjggw9gtVrh6+uLmJgYQ/SgdwzdRC7GsEdENDeMHvYA4/fw/1duGdXHH3+MoqIiVFZWorS0FK+++iqSkpKglDJcf0YPe0aocTpSwmpGRgby8/NRUVEBf39/rcsRiaGbiCYl4dcYCSTMA3vQB6P3YLQwNBkJPYy7fPkygoKCAACdnZ0oLi7G4OAgUlJS8OCDD2pc3cx8fHyQnZ2N7OxstLe3o7S0FC0tLXjggQeQnJyMdevW6XpXBSlhr7CwEPPnz5/2NR9++KGbqrl5UsKq1Ks/9IRbhhG5mITtVMafaDwdvW97Zjab8dlnn9lDRmZmJoqKihASEgLgesjIycnRfQ8zMcI8zIQ9zD0JPYwzetgDjN3DiRMnkJKSgs7OTtx99904cOAAVq9ejf7+fpjNZvT396OqqgppaWlal3rTxsbG8O233+LTTz/Fd999h6GhIa1LmpKHhwfy8/NRUFDgEPbmzZuH1tZWREdHa1idc8xmM1auXDnt/fQmkwl1dXVurOrm5ObmoqKiAkuWLHEIq0aah3EDAwP2qz+OHTuGpKQkfPPNN/j111+xdOlSrcszPIZuIheTEPYkkBQyiEhG2JPQg9VqhYeHBwoKClBeXo6vv/4aSUlJKC4uBgBs2rQJP//8M5qamjSudGaTnfwYGBhASkoKoqKi7CfP9UhC2Jv4I4VRSQyr41d/fP7557DZbIa4+kPvGLqJXExS2DPyrzGSSJgH9qAPRu5BQtiT0ENwcDDq6upw7733wmazISAgAM3NzYiPjwcAnDlzBgkJCbq+ZUHCyQ/A+GHPYrE4PHhWAmlh1UhXf+ieO/cnIyJjOH78uIqIiFBms1lFRkaqX375RYWEhCg/Pz8VEBCgLBaL+vLLL7Uu0ymXLl2y//ncuXOqsLBQbdmyRTU0NGhYlXMkzAN70AcJPQQFBanW1lallFJ9fX3KZDKplpYW+/HTp0+rwMBAjapzjoQeJOzTvXr1arV27VrV2NiocnNzVXh4uHrhhRfU6OioGh0dVXl5eWrFihVal3lT2traVEFBgQoLC1MBAQEqMzNTHTx4UOuypjXxvSTJ6OioqqmpUampqcrT01Prcpw22ZrptddeU0eOHBE7V+7C0E00R4wc9iQsSCSEDAnzwB70QUIPEsKelB4uXrxoH/v5+amOjg772Ag9SDj5MRUjhb09e/aowcHBKYOeEdZL44weViWsmfSOoZvIxSR8cUlYkEgIGRLmgT3og4QeJIQ9KT2sWbNGpaenq/T0dOXh4aGeeOIJ+3jNmjWG6MHoJz/GGTnsSVgvSehBKRlrJr3jPd1ELibhnj0JT2CXcN+hhHlgD/ogpQer1QovLy8AQE1NDR555BH4+voCAIaGhnD48GH2MMdycnKcel1ZWdkcVzJ7ZrMZ3d3dWLhwIYDrn4fjx49j8eLFAIzxeZBwX7qE9ZKEHgAZaya94z7dRC7W3Nxs/+JatmwZPvnkE+Tl5dkfsLZp0yYkJCRoXOXMJu7xaZQ9P8dduXIFoaGhAAA/Pz/4+vo67Dm5YMEC9PX1aVWe04w+DwB70Auj95Cdne0wzsrKuuE1zz33nLvKmRUJPeg5TN+M559/3n7yY3BwEC+99JLDyQ+927p1K2JiYrB3716Ul5dj7dq1SE5Odgh77733nq5Dt4T1koQeADlrJj1j6CZyMSlfXEZfkADGDxmAjHlgD/pg9B4khD0JPUgg4eSHhLAnYb0koYdxEtZMesbQTTQHjP7FJWFBAhg/ZEiYB/agDxJ6IHIVCSc/pIQ9o6+XABk9AMZfM+kd7+kmcjEJ9+xJIOG+QyIioslIuC9dwnpJQg8A10zuwNBN5GL84iIiIqK5JCHsSVgvSeiB3IOhm4iIiIjIQBj2iIyFoZuIiIiIiIhojpi1LoCIiIiIiIhIKoZuIiIiIiIiojnC0E1EREREREQ0Rxi6iYiIiIiIiOYIQzcRERERERHRHGHoJiIiIiIiIpojDN1EREREREREc4Shm4iIiIiIiGiO/A8/R108Dj/1CgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap( \n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'fitness_function_mutation_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='fitness_function_mutation_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=15,\n", + " # How many sequences to include in matrix.\n", + " track_specific_sequences=['BADD']\n", + " # Specific sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wTZf4H8M+kJ9sbvUoVAemioGIB64meHvZe7uedeHqn3tk9y6mnnu3OjmLF3gALoDRReu+9LbC9piczvz/CZjOZSTLJZjfZ3c/79eLF5plnZp5kk8nOd77zfQRJkiQQERERERERERERUUroUj0AIiIiIiIiIiIiovaMQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiFDqgdATeNyubBhwwYAQFFREQwG/kqJiIiIiIiIks3n86GsrAwAMGTIEFgslhSPiIjaEkb0WrkNGzZgzJgxqR4GERERERERUbuxfPlyjB49OtXDIKI2hOUOiIiIiIiIiIiIiFKImbStXFFRUfDn5cuXo3PnzikcDREREREREVHbdPjw4eCdrKHn4kREycAgbSsXWoO2c+fO6NatWwpHQ0RERERERNT2cT4YIko2ljsgIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFGKQloiIiIiIiIiIiCiFGKQlIiIiIiIiIiIiSiEGaYmIiIiIiIiIiIhSiEFaIiIiIiIiIiIiohRikJaIiIiIiIiIiIgohRikJSIiIiIiIiIiIkohBmmJiIiIiIiIiIiIUohBWiIiIiIiIiIiIqIUYpCWiIiIiIiIiIiIKIUYpCUiIiIiIiIiIiJKIQZpiYiIiIiIiIiIiFKIQVoiIiIiIiIiIiKiFDKkegBEzcVvPwDHttchGLNhG/B/0JmyUz0kIiIiIiIiIiIiBQZpqU0S3dWo+G48/Pb9AABv5VrknfpRikdFRERERERERESkxHIH1CbVrX0kGKAFANeejyG6KlI4IiIiIiIiIiIiInUM0lKb463eDMfW/4a1SnAfnpeS8RAREREREREREUXDIC21KZIkoXb5HYDkVyxzF//Y8gMiIiIiIiIiIiKKgUFaalPcB76F59Bc9WWHfoQkSS08IiIiIiIiIiIiougYpKU2Q/K5ULvirxGXi45DcO//pgVHREREREREREREFBuDtNRmOLa9Bn/dbnmjzih7WDX/IoheewuOioiIiIiIiIiIKDoGaalNkCQJ9u2vy9qMHcbB2vc6RV/75v+00KiIiIiIiIiIiIhiY5CW2gRv2TL4a7bK2rJGPIHMIfcq+to3/Bt+Z2lLDY2IiIiIiIiIiCgqBmmpTXDufEf2WJ/VF6aOp8CQ1Rv5E3+ULZN89ahf92hLDo+IiIiIiIiIiCgiBmmp1ZN8Djj3fCxrs/a9DoIgAADMXSfB2uda2XLHttfhq9neYmMkIiIiIiIiIiKKhEFaavVc+76C5K0NaRFg63uNrE/WiMcAnbmxQfKhdtU/IElSywySiIiIiIiIiIgoAgZpqdVz7HpP9tjUZSL0Gd1lbfqM7sgY9BdZm3v/V6hefDUkn6PZx0hERERERERERBQJg7TUqkmiD97SX2Rttr7XqfbNHHIvBHO+rM21+0OUfzcOvrq9zTRCIiIiIiIiIiKi6BikpVbNV71ZkQlr6nKmal+dORc5Y15SbqNyLcpnjYT70NxmGSMREREREREREVE0DNJSq+YtXy57rM/sDb2lKGJ/a58rkXfaVxCMWbJ2yV2Jyrlno37Dv1mnloiIiIiIiIiIWhSDtNSqecKCtMbCMTHXsfS8EIXnLYc+e4B8gSSibtXfUb3wUoje+mQOk4iIiIiIiIiIKCIGaalV85aFB2lHa1rPkDsQhecvh7nHhYplrr2foWL2WPidpckYIhERERERERERUVQM0lKrJfmc8FVvlLWZimJn0jbQmbKRd9oXyBz+OABBtsxXvQn1ax5MxjCJiIiIiIiIiIiiYpCWWi2/swSQ/LI2Q97QuLYhCDpkHX8/8s6cDcGUK1vmrd7U1CESERERERERERHFxCAttVqSL7xurKCYEEwrS7dzkD3qWfn2/c4ER0ZERERERERERKQdg7TUakneOtljwZABQUj8La0I8PoYpCUiIiIiIiIioubHIC21WuGZtIIxs0nbEwxW2WMxLAhMRERERERERETUHBikpVZL8oYFaQ1NDNLqw4K0joOoX/9Uk7ZJREREREREREQUC4O01GqJ3lrZ46Zn0toUbXWr74XfXtyk7RIREREREREREUXDIC21Wt7ylbLHemunJm1Pn3mMaruvZnOTtktERERERERERBQNg7TUanmOzJc9NnU8pUnb09s6IXP4Y4p20V3ZpO0SERERERERERFFwyAttUp+Zyl81ZtkbaZOE5q83azjH4Ahf7isTXRXNXm7REREREREREREkRhSPQBqfyRJgugohrdqI3xV62Du/jvVfoLODH3WMRAEQdbutx+AY8fb8r6GDBgLRyVlfHpbV/gq1zSO16PMpBVd5RBMuRB0yfkIie5KCHorBIM1dmciIiIiIiIiImpTGKSlFuU+/DOqfr4Qkrcu2Fa36h8R+xtyByN/0o/Q27pA8rlQOfcseEoWKfqZOoyHoDMmZYw6c77scWi5A9FTi+pFV8J9cBZ0Gd2Rf8YsGPOHNml/tSv+Bvum/0AwZiNvwqcwdz2rSdsjIiIiIiIiIqLWheUOqEXprJ1lAdpYfNUbUb3wCkiiH/YtL6kGaAHA1Pm0ZA0RgilP9tjvOAQAkPweVM2/GO6DswAAov0AqhZcAsnnSHhfvuqtsG/6T2D73lrUrX4g4W0REREREREREVHrxCAttShDdl9AiC+B21OyEPUbnoRr3xfqHQR9xJIJiTBk95Hv/9BcSKIX1UtugOfwPNkyf+0O1K15KOF92be8KHvsrViZ8LaIiIiIiIiIiKh1YpCWWpSgM8KQ0z/u9erXPgJv+XJFu87WBdljXoAxd1AyhgcAMHc7X/ZYdJejat7v4Nr9oWp/++bn4SldmtC+GrJ0iYiIiIiIiIio/WJNWmpxhpxB8FVvlrXlnvoxrL0vDT72lP6Kiu9PASR/oKHh/6MEYzY6XlYGQW9K/viyesOQdzx8VeuCbe5DP0ZeQRJRveR6FP1uDQSDJa59ic7DKpvzJq2+LhERERERERERpT9m0lKLM6hkveosRbLHpg4nIXPYIxG3Ye56TrMEaBtYel4UeaGgh6XnJbImf81W1Cy7DaK3Dt6KtcE6taKrAt7qLZAkKdjXV7Md7kNz4T40F76a7YrNSz5ncp4EERERERERERG1CsykpRZnyBmgaNOZCxVtmUPuhefQPHhKFiqWWXpc0Cxja9z+hahf+4jqspyT3oS1z9WomL1XVkPWuWManDumAQD0GT2RefwDqFn6Z0D0wNLzEuRO+BT16x6NuN0Gkt8JIDtJz4SIiIiIiIiIiNIdM2mpxekzj1G06cz5ijZBp0fuKR9ACF8m6GHuek5zDQ8AYMgbCn1mb0V75vBHYet3PQSdATnj3wEilCXw2/eh5tebAdEDAHDt+xze0l9Rv/5fMffdkIVLRERERERERETtA4O01OKMhSOhz+gRfKzP6gOdratqX31GN+SeNE3WZu7+O+jMec06RkEQYO1zjazN1v8WZA59IPjYmDdY9jgW1/4vg0HbaBikJSIiIiIiIiJqXxikpRYn6IzIPfVjmDqeDFPHU5B76scQBCFif0vPC5Fz8nswFoyEuceFyDnhvy0yzswhf4e1300w5A1B5tAHkD32f4pxZg69X/P2vOUr5Q06E3S2Lop+kp9BWiIiIiIiIiKi9oQ1aSklTB1ORME5izT3t/W5GrY+VzfjiJQEgxW5496M3kenR+4pM1C96PKY2/OULZM9tva5CrnjpuHIjAJI7spgOzNpiYiIiIiIiIjaF2bSEjWRpceFyrq5akS37KExfwQAQNDbZO2Sz5m0sRERERERERERUfpjkJaoiQSDBdZjrop7PWPByKPrhwVpWe6AiIiIiIiIiKhdYZCWKAls/W6MbwVBB2P+0MCP4UFaljsgIiIiIiIiImpXGKQlSgJj/lCYOp+hub/O1jUYnBV0JvlC0ZPMoRERERERERERUZpjkJYoSXJPfi9Y9kBnLozaV7ZcFzZ/n+hL9tCIiIiIiIiIiCiNMUhLlCR6WxfknvI+Ol8noePlZVH76iyNQVpBkAdpJdHbLOMjIiIiIiIiIqL0xCAtUQrIM2mN8oUSM2mJiIiIiIiIiNoTBmmJUkDy1gZ/ZiYtEREREREREVH7xiAtUTMRjFkRlxmLTmx8oJdPHCb57M01JCIiIiIiIiIiSkMM0hI1k+zRz0VcZu11SfBnfUZ32TJ/7c5mGxMREREREREREaUfQ+wuRJQIa7+bAAjwlq+Apfel8Nfvg7dsGSzHXAFDzoBgP0POsbL1fDVbWnikRERERERERESUSgzSEjUTQRBg638T0P+mxsZ+1yv6GXIGyh77arZCkiQIgtDcQyQiIiIiIiIiojTAcgdEKRYepJV8doiO4hSNhoiIiIiIiIiIWhqDtEQpprN1hWDIlLWx5AERERERERERUfvBIC1RigmCAH1Of1mbv35vagZDREREREREREQtjkFaojSgM2TJHkt+T4pGQkRERERERERELY1BWqJ0oAubw0/ypWYcRERERERERETU4hikJUoDgs4oeyyJ3hSNhIiIiIiIiIiIWhqDtETpQAjLpBUjZ9K6jyxE9ZKbYd/6GiRJauaBERERERERERFRczPE7kJEzS6s3IEkqtek9dXuQOWPpwOSCOeOtyB5qpE59B8tMUIiIiIiIiIiImomzKQlSgM6Y7bssWv/V5AkUdHPtfczIKS9bvW9EF0VzT4+IiIiIiIiIiJqPgzSEqUBc7dzZY99lWvh2velop+3Yo2izb75+WYbFxERERERERERNT8GaYnSgKXnJTDkDpK11a99GJLol7WJbmXWrH3LS8ymJSIiIiIiIiJqxRikJUoDgk6PzGGPyNp81Zvh2vOxrM1ft1uxruStYzYtEREREREREVErxiAtUZqw9LwYhrzjZW116/4JSfTBV7sLVfMvgd++T3Vd+5aXILorW2KYRERERERERESUZAzSEqUJQdAha/ijsjZ/7Q649n6OqgV/gGvfFxHXlbx1cGx7vbmHSEREREREREREzYBBWqI0Yu7+OxgLR8vaXAdnwVepnDAsnKd0SXMNi4iIiIiIiIiImhGDtERpRBAEWHtfIWvzli1V7WvIPU722F+/t7mGRUREREREREREzYhBWqI0E55J66/bpeiTe9oXyB77P3m/+j2QJKlZx0ZERERERERERMlnSPUAiEjOkD8MEHSAJEbsYyoco1gu+RwQXWXQWzs08wiJiIiIiIiIiCiZmElLlGZ0xgwYcgbF6CVAZ+sKCPLrLCx5QERERERERETU+jBIS5SGjIWjoncQBAg6PfSZPWTNaqURiIiIiIiIiIgovTFIS5SGTEUnRl0uGDIAAIasfrJ295H5zTYmIiIiIiIiIiJqHgzSEqUhyzGXR1yms3WFzpQDADB1mShb5j4wC1KUWrZERERERERERJR+GKQlSkM6YxZ01s6qy4z5xwd/tnT/nWyZ6DwMb8WqZh0bERERERERERElF4O0RGmqoaRBOEP+sMafc/pDnz1Atty9/1tIkqRYT5IkSJLITFsiIiIiIiIiojRjiN2FiFJC0Ks2G/OOlz229LgA9o3PBB/Xr38c9RueAiQfAECfdQyMRSfCc/gniM4jsnUzhz+KrOMfTPLAiYiIiIiIiIgoHsykJUpTgk79GkpouQMAsHS/QNnpaIAWAPx1u+Ha/aEiQAsA9WsegrdyXdMGSkRERERERERETcIgLVGa8lVvUrQJhgzos/rK2oxFJ0YsjaBF3ap/JLwuERERERERERE1HYO0RGkqtPZsA2PRiRB08jIIgk4PnaVDwvvxO0sSXpeIiIiIiIiIiJqu3QdpPR4P3nrrLZx11lno3LkzzGYzMjMzMWDAAFx//fX49ddfNW3n+++/x0UXXYRu3brBbDajW7duuOiii/D999838zOgtspUdKKyreN41b46c0HC+5E81QmvS0RERERERERETdeuJw7bt28fzjvvPGzaJL+t3OPxYPv27di+fTumT5+OqVOn4sUXX4QgCIptiKKIW265BdOmTZO1FxcXo7i4GF9//TVuuukmvP7669Dp2n1MnOIg+Z2KNlPHk1X7NiVIK7rKEl43Gkn0AaIP0BkV2b8Jbc/nBPQWxedQEn2AJELQmwI/QwIgBGv6Sn53YAwCP39ERERERERElJ7abdTC6/XKArRDhw7F9OnT8dtvv2HOnDl46KGHkJERqPP58ssv4+mnn1bdzv333x8M0A4fPhwzZszA8uXLMWPGDAwfPhwA8NZbb+GBBx5ogWdFbYm3fKWizVh4gmpfwdKETFpfPSrnnpPw+mpcB2biyHtGHPnAiiPvGeCtWNOk7dUsvQ1HPshA6ec9ZduqW/sojrxvRunnPVH58+8D+3zPhCPvGeEunoPqJTfhyPsWlH3RF96qDU19WkREREREREREzUKQJElK9SBS4fPPP8cf/vAHAMCJJ56IxYsXQ6+XZ/utWrUKJ554IrxeL3Jzc1FWVgaDoTH5ePv27TjuuOPg8/kwatQoLFq0CFarNbjc4XDg1FNPxcqVK2EwGLBlyxb07Suf9KmpDh48iO7duwMADhw4gG7duiV1+5Q65bPGwlu+TNbW+Tr1j2vNstvh2PJyk/ZXdPEeGLJ6NWkbACBJEo68K7/+Y+wwDoXn/pLQ9jwli1Hx/SnBx+buk5F/xtfwOw6h9NOumrdj6XkJ8k77LKExEBERERER8fybiJpTu82kDa01e++99yoCtAAwcuRInH/++QCA6upqbNmyRbb8hRdegM/nAxDItg0N0AKAzWbDyy8HAmc+nw/PP/98Up8DtW22/jfKHmce/3DEvsa8IU3en2Pba03eBhDIzA3nLV2S8PZqfv2j7LH7wDeBbZYtU+sekWvf5wmPgYiIiIiIiIioObXbIK3H4wn+fMwxx0Ts16dPH9V1JEnCN98EgkUDBw7E2LFjVdcfO3YsBgwYAAD45ptv0E4TlykBlt6Xw9zjIkBngrnLWcg47q8R+1qPuTLQtykkb9PWP0p0lqhvXvQntD1fzRbVdsGQkdD2iIiIiIiIiIjSTbsN0jYETgFg9+7dEfvt2rULACAIAvr16xds37NnDw4dOgQAOPXUU6Puq2F5cXEx9u7dm+iQqZ3RGTORf/qX6HS1C/mTfoDOlB2xr2CwBfpe5YRgyExof5JXmQGbiEhBWtGl3h5NtIsakhR/0FcSkxOIJiIiIiIiIiJKpnYbpL388suRnR0Iej399NPw+5UBnzVr1mD27NkAgCuuuCLYHwA2b94c/HngwIFR9xW6PLxkAlEsgiBo72uwQJ8VOTM8Gl/dbnjKlsFTuhSe0qXwO0vhtx+A6K6MuI7fXqxY7o8QjPU7DsFbsVbTBF6SzwV//X7463YqlgkGW+CHBAKu3sq1UZ8PEREREREREVEqGGJ3aZsKCwvx/vvv4/LLL8eSJUswevRo3HHHHejfvz/q6+uxZMkSPPfcc/B4PBgxYgSee+452foHDx4M/hyrWHhDYXEgUFw8HqH7UXP48OG4tkdtnz6zF3xV6+Nez3N4Hipmz1Mu0JmRe/J7sPaeImsOTlamtwaW97oEACA6S1W3XzFrdOMmLR3Q8TL1YK63ahMq554F0VGsulyX0QNAYlmxFbPGQDBkIvfUGbB0Pz/u9YmIiIiIiIiImkO7DdICwAUXXIBVq1bhueeew7Rp03DttdfKlnfs2BGPPfYYbr75ZthsNtmyurq64M+ZmdFvL8/IaKydWV8f3y3loQFeIi30mb2Su0HRjbo1D8qCtL7anYEALQD4nahf+3AwSOuv2xF7k65SeCtWw1gwQrGsfsOTEQO0AABJPLqRxEoXSL561K99hEFaIiIiIiIiIkob7bbcARCYCOy9996LOKFXSUkJPvjgA8ybp8wudLlcwZ9NJlPU/ZjN5uDPTqezCSMmis3U4aSkb9Nfu132GXHu+Vi23FcdKP8hiX7FskjsDUHeMK4Y60tHyxVIfoem/ajxVqziJH5ERERERERElDbabZDWbrfjzDPPxJNPPonKykrcc8892LJlC9xuN2pqajBnzhyMHz8eK1euxIUXXoj//Oc/svUtFkvwZ4/HE3Vfbrc7+LPVao1rnAcOHIj6b/ny5XFtj9o+S8+LYTv2L9BZioJtgiETOmtnWPvfDHO3cxPbsL/xAoPkUwZIJUmE+9AciI5DmjYnOo8otyH6gRgTgonuckh+DySfXdN+IpG8tU1an4iIiIiIiIgoWdptuYNHHnkEixcvBgBFqQOTyYSJEyfitNNOw6RJkzB//nzcfffdOOOMM3D88ccDALKysoL9Y5UwsNsbg0mxSiOEi1XvliicoDMg54QXkHPCC1H7Vcw5C55DczRvV/TUQt8waZdfJSPc74Jz5zuat+d3KOsp++37tY3FeQSSN77SIWrb0JlymrQNIiIiIiIiIqJkaJeZtJIk4e233wYA9O/fX1GLtoHBYMBjjz0GABBFEdOnTw8uCw2exprcK3SyMNaYpXQh6Ixx9Xcf+hGS6AMAiCpZrH5HMVz7v9G8PV/VOjh2fQBf7U5IkgS/vRjOHW9rWtdbsRrOPTM070tN7cq7IfndsTsSERERERERETWzdplJW1JSgsrKQF3L4cOHR+07cuTI4M9bt24N/jxo0CDVdjWhy4899ti4xkrUbHTRaymHq/nlOrgPzETeaZ+rljtw7HgbEENKf+hMyBn7P9T8enPkbS6+GgBg6jIRnpLFgN8VsW+oqvkXxTV2Ne4DM3HkfQs6Xe2CoDfHXoGIiIiIiIiIqJm0y0xag6ExNu3z+aL29XobZ5APXa93797o0qULAGDhwoVRt7Fo0SIAQNeuXdGrV694h0vULIQIQVp9Vt+I67j2fQFf3R7VerDOne/KHlt6XAjrMVdoGovn0FzNAdpkq1/3WEr2S0RERERERETUoF0GafPz85GdnQ0A+O2336IGakMDsL179w7+LAgCJk+eDCCQKbt06VLV9ZcuXRrMpJ08eTIEQWjy+ImSIVK5g6zh0YOWovMw/HW7VdtDWXtfDsFgg63/LYkPsgXUr38i1UMgIiIiIiIionauXQZpdTodzjvvPADAoUOH8MQT6kGaqqoq/P3vfw8+Pv/882XL77jjDuj1egDA1KlT4XTKJ1NyOp2YOnUqgEAW7h133JGsp0DUdHr1TFpTx/HIGT894mqipxa+mm0xN2/qeDIAIGv0c7ANuBUQ4j/cWPtcDUvvy2P201k7R80AJiIiIiIiIiJKZ+0ySAsADz30EGy2wEz1jzzyCC644AJ88cUXWLNmDX777Tc8//zzGDZsGDZv3gwAOOOMMzBp0iTZNvr374+7774bALBy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eCz5AoOkFQz6QVTDmw9b0W1j7qE+r5qjcCYvQJtwy5g6CzFAAAdMZM5Jz4Cjpf60fn6yR0usYbdd1Q+sxeyDv1I2SNfCpin/xJc9Dx0kPocPEOFP1+u+ZtExERERERERGli3Y5cRgADBw4EN988w0uv/xylJeXY+bMmZg5c6Zq39NPPx2fffaZ6rInnngCpaWlePvtt7FmzRpcdtllij433ngjHn/88aSOn6jJ1DJpBR0EQyYAQJfRVXU1d/GPMTdt7DAu4jJBp/2wI+itgbHYukTsozMXhT7SvO1QkiRCSCDTl4iIiIiIiIgoGdp1VOLMM8/E1q1b8fTTT2PChAkoKiqC0WiE1WpF7969MWXKFHz99deYN28e8vLyVLeh0+kwbdo0zJ49G5MnT0aXLl1gMpnQpUsXTJ48Gd999x3eeust6HTt+qWmNKQ2cZhgzAnWTdZb1QOjnsPzYm7b1GF80wbXMJ6jQdpIYwEAnaWwyfsRHcVN3gYRERERERERUaLabSZtg4KCAtxzzz245557mrSdc889F+eee26SRkXUAlQmDtOZcoI/623qmbRamDomKUhrCJQkiZ5JWxDyILFDmq92F/QZ3RNal4iIiIiIiIioqZjeSdReqdzeLxgbg7SRyh1ooc/sHXW5beBtsTci6GA8OvmYPkKQVp/RE4LBGvK4B/TZjbWfjUUnIufk9+TrZPVRbEd0V8QeDxERERERERFRM2n3mbRE1EiWSRulxEA0lp6/D5ZMiCR71L8hmLLhr98LS48L4S39FaKnBpLfCdFVDsGYBVv/m2DMPRYAIBizAb0V8Dtl2zEdDeI2EAQB+RPnoH79ExB0RmQOvRc6WzdI3jp4jiyCpcdkmLtfgJIPM2XrSZ6qhJ4rEREREREREVEyMEhLREFCSJBWZ+2Y0Db02QNi78dgRfaIJ4KPrb3+EL2/IEBv6wJ/3S5Zu1GlrIIhqxdyx70pa8sY+CdkDPxT8LGpyyR4Ds0JPhY91THHTERERERERETUXBikJaIgXUi5AyHB+q6C3pys4ciJPkVTeCatVjpTrnzTUTJpJZ8Djp3vQTBYYT3myoRfFyIiIiIiIiKiSBhtIKKg0EzaRPlqtydhJEp++z5FmyFnYELb0pnyZI8ld+QgbeXcs+EpWQwA8Byej9yTpye0TyIiIiIiIiKiSDhxGFE7JUBZN1YwZssfh2WcamHqoCxBkAy2Af8ne6yzdYOgMvmZFoJZHqSNVO7AW7UhGKAFAOeudyGJ3oT2SUREREREREQUCYO0RO2UYMhQtoWVKsg58TV5B71V9tBYMApZo/8TstwCS/fzkzbGUNY+V8vHNvZ/CW8r/LlLPodqP1/NVkWb5LUnvF8iIiIiIiIiIjUsd0DUTgnGLJVG+SHB0msKcgUDvOXLYOl+AQy5g2Df9B/YNz8PW/9bkHn8QxCM2dCZ8uCr2Qxr78ugz+jeLOM1dTgJ+ZPmwn3wO5g6nQpz998lvC3BYJM9lvxO1X6S361s89UD5tyE901EREREREREFI5BWqJ2Si1IGz4pliAIsPa6GNZeFwfbskY8jqwRj8v62fpd1yxjDGfucibMXc5s8naEsIzgSJm0UA3SMpOWiIiIiIiIiJKLQVqidkpLJm1bFZ5Ji6OZtL7qrXDseAv6jO6w9PoDapf/RbGu5K1viSESERERERERUTvSPiIyRKSg05BJ21YpMmn9TojualT8cApEVxkAoHb5Harrij4GaYmIiIiIiIgouThxGFE7JXrrlI06U8sPJAUEg7LcQf2Gp4IB2mhEd0VzDYuIiIiIiIiI2ikGaYnaK9GnaDJ3Pj0FA2l5gj5s4jCfE86db2ta11+3qzmGRERERERERETtWPu4t5mIlARB0aTP6JGCgbQ8RSat3wFJLbNYhb92Z3MMiYiIiIiIiIjaMWbSErVbKh9/oX0cEhSZtBoDtADgq2OQloiIiIiIiIiSq31EZIhISSWTFlBra3vCM2njwUxaIiIiIiIiIko2BmmJ2ilBNZO2vQRpbbE7ReC3H4DkcyVxNERERERERETU3jFIS9ROGfIGKxsFfcsPJAUEQ1YT1pbgdxxM2liIiIiIiIiIiBikJWqnDNl9Ye5xUfBxxuC7IbSTmrQ6cy50lqKE1xdd5UkcDRERERERERG1d4ZUD4CIUidvwmdwF/8AwWCDqdOEVA+nRRlyB8NzZH5C64puBmmJiIiIiIiIKHkYpCVqxwSdHpbu56V6GClhyBuSeJDWVZbk0RARERERERFRe9Y+7m0mIgpjVKvJq0ZnhLHDOFlTzZIbILqrkz8oIiIiIiIiImqXGKQlonZJnz1AUz9T0UnQZ/ZUtNevfyzZQyIiIiIiIiKidopBWiJql4z5wzT1M3edBJ25QNFu3/SfJI+IiIiIiIiIiNorBmmJqF3SmbKROfSBqH30WcfAduxUCMasFhoVEREREREREbVHnDiMiNqtrBGPwdJ7Cvz2A9AZc2AsOgHeitXwlCyEsWAkTB1PhqAzQmdQD9KKnlroTNktPGoiIiIiIiIiamsYpCWids2YNwTGvCHBx6aiMTAVjZH1EYyZquv67QegMx3XrOMjIiIiIiIioraP5Q6IiGKQRI9qe/26f7bwSIiIiIiIiIioLWKQlogoBslbp9ru2vsZ/I4jLTwaIiIiIiIiImprGKQlIorB0n1yxGWufZ+14EiIiIiIiIiIqC1ikJaIKAZD/vGwHHOl+kJJatnBEBEREREREVGbwyAtEVEMgiAg9+T3AUE516LO0iEFIyIiIiIiIiKitoRBWiIiDQRBAARBZQkzaYmIiIiIiIioaRikJSLSSvQqmiSVNiIiIiIiIiKieDBIS0TUFAzSEhEREREREVETMUhLRKRR1ognFW2S6EnBSIiIiIiIiIioLWGQlohII2v/G5WNzKQlIiIiIiIioiZikJaISCO9pQjmLmfJ2liTloiIiIiIiIiaikFaIqJ46Izyxyx3QERERERERERNxCAtEVE8woK0zKQlIiIiIiIioqZikJaIKA6CziRvYCYtERERERERETURg7RERHEQDFbZY8nnSNFIiIiIiIiIiKitYJCWiCgOgjFL9lj01qVoJERERERERETUVjBIS0QUh/AgrcQgLRERERERERE1kSHVAyAiak10hrAgrU8ZpBW9dfAcWQRBZ4TO1gWCzgS/fR/0mb1gyO7XUkMlIiIiIiIiolaCQVoiojjEyqT11e1G2Rd9Iq6fOewRZA17uFnGRkREREREREStE8sdEBHFIVZNWvvmF6KuX7/+CU42RkREREREREQyDNISEcVBFyOT1rHl5egbEL3w1e5M9rCIiIiIiIiIqBVjkJaIKA7JmDjMV7sjWcMhIiIiIiIiojaAQVoiojjEKneghZ9BWiIiIiIiIiIKwSAtEVEcwoO08DvhKVkC0VUB14HZmrbhq90OAJBEL9yH5sJbtSHZwyQiIiIiIiKiVsSQ6gEQEbUm4TVpAaDi+/FxbcNXuwOSJKHih9PgLV0CQEDOSW/C1v/GJI2SiIiIiIiIiFoTZtISEcVBMCiDtPHy1+6Au/j7owFaAJBQ8+tNTd4uEREREREREbVODNISEcVBMGY2eRuiqwSuPR8nYTRERERERERE1BYwSEtEFAdBF3+VGEPeUEWbt2pjMoZDRERERERERG0Aa9ISETWjTtf4IOj0KP38GPjr9wTbfdUM0hIRERERERFRADNpiYiakaDTAwD02f3kC0Svoq/oroRj+1twH1nUEkMjIiIiIiIiojTBTFoiohZgyO4Hz6E5UfuUfTMEouMQACBn3DTY+t3QEkMjIiIiIiIiohRjJi0RUQswhGfSqmgI0AJA3er7m3M4RERERERERJRGGKQlIopT1ujn4l5Hn9krrv6i80jc+yAiIiIiIiKi1olBWiKiOGUMugNZI/4V1zp6W7dmGg0RERERERERtXYM0hIRxUkQdMgcei86XaOc/CsSna1rM46IiIiIiIiIiFozBmmJiBIk6LTPvaizdoh7+/Ub/g3RXRX3ekRERERERETUujBIS0TUAgQh/sNt3aq/o+LH0yFJUjOMiIiIiIiIiIjSBYO0REQtRDBkxr2Or3It/PV7mmE0RERERERERJQuGKQlImoC27FTgz8L5nxAbwk+zh7zgqxv9ujnEtqH5KlNaD0iIiIiIiIiah20F1QkIiKF7NHPw5g3FKKrFNZ+N0LyOeHc/QEMOQNg6XmJrK+1/83QWYpQt+4x6K0d4S7+QdtO4qh9S0REREREREStD8/8iYiaQNDpYet/k6wt6/gH1PsKAiw9L4Kl50UAAOfez1G94A+xdyKJTR4nEREREREREaUvljsgIkoRvbWTto4hQVrJ70H9xmdQ89ut8FasbqaREREREREREVFLYiYtEVGK6LQGadEYpK1b90/Y1/8LAODY8Q46TjkInaWwGUZHRERERERERC2FQVoiohTRWTsDgh6Q/FH7SSGZtA0BWgCA6IZj5zvIHHx3cw2RiIiIiIiSSJIk2O121NbWwuVywe+Pfi5AROlDp9PBZDIhIyMDmZmZMJlMSd0+g7RERCmiM2bAesxVcO5692iDGZC8yhq0UWrS+mp3NOMIiYiIiIgoWURRxP79++F0OlM9FCJKkMfjQX19PUpKSlBUVISCggIIgpCUbTNIS0SUQjnjpsHc/XeA6IWl18XwVa5H+axR8k5Hg7Si165YX2/p0BLDJCIiIiKiJpAkSRGgFQQBer0+haMionj4/X5IkhR8XFZWBo/Hgy5duiRl+wzSEhGlkKDTw9rr4uBjY+FICMZsSN7akF5Hg7TOw4r1dZai5h4iERERERE1kd1uDwZo9Xo9OnXqhMzMTOh0nM+dqLWQJAlutxu1tbWoqKgAANTU1KCgoABms7nJ22eQlogo3QjyP9Qq556LrGGPwFAwXKUvr7xHs7nCg38urQYAdMnQ48Gxuci38DUjIiJKd4ftPnyyzQ5BAC7tn4FOGTx1pdattrYxCaNTp07Izs5O4WiIKBGCIMBiscBisUCv16O0tBQAUFVVhU6dtE4MHhkv2RARpZuwIK3krUHtijvh2PqKomt96ERiJOPwisEALQAcsvvxwurayCsQERFRWpAkCc+urMFvh9349ZAbz6ysSfWQiJrM5XIBCAR5MjMzUzwaImqq3Nzc4M8OhyMp22SQlogozQg69dskXHs/VbTpbcmpfdMW7avzKdq2VXllNYSIiIgo/Ry2+3GwvnHG+4P1fpQ7/VHWIEp/fn/gPazX61nigKgN0Ov1wZrSDZ/vpuKRgYgozeizemvuK7ormnEkrZtfVG/3RmgnIiKi9ODwKS+o+kReZCUiovQiCEJSt8cgLRFRmjFk9dXc1+8ohiQx6qgm0qviVDnxIyIiovTBgCwREbVHDNISEaUZfXY/7Z1FL0RnSfMNphUTI5Q1cPoY1CYiIkpnal/V/PomIqK2jlNkEhGlGUM8QVoApZ8G6tIaC0Yic+j9sPS8qDmGlVRev4R3NtdhfZkHZU4RGUYBOSYdJvW04pzeNnj8Eu5fUon9dYHaPv8+OR89s2N/Ze2t8eLdzfXwS8DgAqNqHxczaYmIiNLW/ANOvLa+TtHO7FoiImrrmElLRJRm4il3EMpbsQpVC6ZAdFcmeUTJ98NeJ37a70KZM5AWY/dKOGT3Y/rmeuyp8WLOPmcwQAsA9yyO/ZwkScJLa2uxudKLbVVefLFTfYZNp58neUREROmouN6H11UCtABryhMRUdvHIC0RUZqJZ+IwBckHx/Y3kzeYZvLTAWfEZTurfXh/S72i3R8jg6bGLaK4Pvasmm4GaYmIiNLSh1vqEelb2hehjBEREVFbwSAtEVGaEUy5TVpf9NQkZyDN6Ig9cjC1zqOeKhOrSoHWKgZ+ZuIQERGlpe3V3ojLmElLlBwejwczZszANddcg4EDB6KgoABGoxGFhYUYOXIkbr31VsybNw+iyA8dUUtjkJaIKM0IQtMOzU1dvyVEi6fWRTgLS1YtOta0IyIiSk91nsjf0bHuqCGi2L788ksMGDAAV1xxBd5//31s27YNlZWV8Pl8qKiowOrVq/Haa69h4sSJOPbYYzF79uxUD7ld6tWrFwRBwHXXXZfqoaSlBQsWQBAECIKABQsWpHo4ScWJw4iIWimduRCiu1xlidDiY0mmiJm0R5ulo7c7CoL8eWo9d/NLgW2Er09ERKkV6fhOBDT+HUBEiXnsscfw0EMPBR9PnDgRF1xwAQYNGoTc3FxUVlZi27ZtmDlzJubOnYvt27fj/vvvx3nnnZfCURO1LwzSEhG1UrqM7upB2laQSRvN4mK3artXlDD/gBMzttkhihIu7JuB84+xAQC+3WXHh1vtmrb/4ppavLgG6JGlx2Mn5cFiaN2vFxFRa+f2S3h1XS1WlLhh1Quy4zu1H44Y9Qy8zKQlStg777wTDNB26NABn376KU499VRFvzPPPBN//vOfsXHjRtx5550oKytr6aEStWs8MyUiSkd6S+wuGT3UF7TyIG0kmyo8eGNDHWrcIuq8Et7fUo9Shx+VLr/mAG2o/XV+/HTA1QwjJSKieMw/4MRvh93wiQge38scsSeCpLblUJR69QDLFRElqri4GLfddhsAICMjAwsXLlQN0IYaPHgwfvzxR9x1110tMUQiOqptnskTEbVyGQNujdnHmD9UfYHU+k9srQblra77an2KkgYH63zYWhl5kpFYVh5Rz9olIqKWs7/Op2g7WK9so7atyhUrk7aFBkLUxjz//PNwOBwAgEcffRQDBw7UtJ5Op8NVV12luuyXX37B1VdfjV69esFisSA3NxfDhw/HAw88EDX7NryWqCRJmDZtGsaPH4+CggJkZ2djzJgxeP/992XreTwevPbaaxg7dizy8/ORlZWFcePG4dNPP424r7179wb3NX36dADAZ599hjPPPBMdOnSA1WrFwIEDce+996K6ujrqa7Fx40Y8/vjjOOuss9CtWzeYzWZkZmaiX79+uPbaa7F06dKo6z/yyCPBsQBATU0NHnvsMQwfPhy5ubnBMU6YMAGCIGDfvn0AgHfffTe4XsO/CRMmRH2OX375JSZNmoQOHTogIyMDxx9/PF5++WV4vY3nTJIk4aOPPsKECRPQoUMH2Gw2jBgxAq+99lqw9FA0NTU1ePLJJzFu3DgUFRXBZDKhc+fO+N3vfofPP/886jYaxvvII48AAFasWIHLL788+Lp27doVV199NbZs2aJYt+H5nnbaacG20047TfEaNbwWrRHLHRARpSHbsbfDdeBb+Ot2Rexj6T4Z9eseU7RL/vQOPIoavvg72PTYVys/QXd4leu5RQkuX+KZNfUq2yQiopblVDmOu/w8Prc3kWrSN/DwPUEUN0mS8O677wIIZNHefPPNTdqeKIq4/fbb8b///U/W7na7sXbtWqxduxb//e9/8dlnn2HixIlRt+X1ejF58mTMnDlT1r5ixQpcc801WLlyJV588UVUVVXhwgsvxKJFi2T9fv31V/z666/YuXMn7rvvvphjv/HGG/H222/L2rZt24annnoK7733Hn766SfVAPaCBQtkQcEGHo8HO3fuxM6dO/Hee+/hH//4B5588smY49ixYwcmTZqEvXv3xuwbrz/96U949dVXZW3r16/H7bffjgULFuDTTz+Fz+fDVVddhc8//1zWb82aNbj11luxevVqvPHGGxH38dNPP+HSSy9FRUWFrP3IkSOYNWsWZs2ahXPPPReffPIJMjMzo473lVdewV/+8hf4fI3nfYcOHcIHH3yAL7/8Et9//z1OOeUUrU+/TWAmLRFRGjJk9ULR77dH7SMYMmDueraiPd2DtH4NmTBelRMxu8pJvMcvoa4JqTU84SMiSj21i21NuQBHrVOs73PWpCWK36ZNm1BeHpjD4uSTT0ZWVlaTtvePf/wjGKDt3bs3XnvtNSxfvhzz58/HnXfeCaPRiJqaGpx//vlYt25d1G09+OCDmDlzJq688krMnj0bq1atwowZMzBgwAAAwEsvvYR58+bhuuuuw6+//opbb70Vc+bMwapVqzBt2jR06dIFAPDQQw9h06ZNUff1yiuv4O2338aYMWMwY8YMrFy5Et999x2mTJkCIBAYPOuss1BXV6dY1+fzISMjA1OmTMFrr72GBQsWYPXq1fjhhx/w3HPPoWfPngCAp556Cu+8807M1/CSSy5BcXExpk6dirlz52LlypXB5/3OO+9gw4YNwec2efJkbNiwQfYv0j5ee+01vPrqqzj33HPx5ZdfYtWqVfj6669xwgknAAhk2L7zzju4++678fnnn+OKK67ArFmzsGrVKnz88cfBAPWbb76JH374QXUfS5YswTnnnIOKigp07NgRjz/+OGbOnIlVq1Zh5syZwczr7777Dtdee23U1+HHH3/E1KlTcdxxx+Htt9/GihUrsGjRItx5553Q6XRwOBy4+uqr4fF4gut07doVGzZskAXb3377bcVrdOGFF8b8PaQrZtISEaUpIVZtWUEA1LJSxTQP0mrIpC11Kks2qGXYuHxSzNsjo2GmFlHb4fVLMOgQvJWQWo5PlKAXEn/tHQzSEoB6T/TfOd8T6UWUJNi9EjKNAo+7aSw0UDpy5MgmbWvDhg147rnnAARq1i5evBi5ubnB5RMmTMCkSZNw3nnnwePx4JZbbsGyZcsibm/ZsmV44YUX8Je//CXYNmLECEyYMAH9+/dHXV0drrjiCpSXl+PLL7+UBd5GjBiBUaNGYfjw4fD7/XjjjTfw4osvRtzXihUrcO655+Kbb76BwdAYBjvnnHMwePBgPPTQQ9i/fz8ee+wx/Pvf/5atO2zYMBw8eFD2XBucddZZuO2223D++edj7ty5+Oc//4lrrrkGer0+4lg2btyI77//HpMmTQq2hf9ujEYjACA3NxeDBw+OuK1Qy5Ytwx133IHnn38+2DZixAhMnDgRgwYNwr59+/CPf/wDlZWVqq/7qaeeGnzdX331VZx9tjwZyOv14qqrroLX68XZZ5+NL774AjabTbaN888/H6eccgpuueUWfPnll5g7d27EjOqlS5fi3HPPxVdffQWTyRRsP/nkk1FQUIAHHngA+/fvx+zZs3HRRRcFX5fBgwcHLzwAgYsFWl+j1oCZtERErZUkQYIyQJnumbRaTrJ8KnHXLSq1Z9/eVI/v9zoTHku1W8Qh1j0katVEScILq2tw1Q9l+NuiShyx8zPdUvyihJfW1ODK78twV4KvvcMrqtYWn7c/8WM7tU71MTJpv9jpwH/X1sDPjNqU21XtxeXfleGmueW47Lsy7K1JfH4Aal6ht6R36NChSdt69dVXIYqBz+lbb72lGrQ8++yzccMNNwAAli9fjhUrVkTc3gknnCALFDbo1KlTMChXVlaGKVOmqGZGDh06FOPHjwcALF68OOrYzWYz3nzzTVmAtsH9998fDPJNmzZNlrkJAIWFharPtYHJZMIzzzwDANi3bx/Wrl0bdSzXXXedLECbLN27d1cEmAHAZrMFs1orKio0ve5qr+fHH3+MvXv3wmKx4L333pMFaEPdfPPNGDNmDABErQ1rsVjwzjvvyAK0DW6//fZge6zfbVvDIC0RUSsl+uog6JRfapLflYLRaLe8JL2CyN/ucqR6CETUBKtKPPjtcOC4Ulzvx8zd/Ey3lPXlHiw5FHjtD9b7MWt3/IHVBQfVv7MO1vtVS99Q21UXI5MWABYXu7G5CROGUnLct6RK9vjx5dWpGQjFFHr7fkZGRpO2NW/ePADAcccdF7yFXk1o3duGddRcdtllEZcdf/zxcfXbvXt3xD4AMGnSpGAJgXA6nS4YxKysrMTq1aujbsvtdmP//v3YvHkzNm7ciI0bN8omyopV5uHKK6+MujxRv//974MZuOFCX89LL7004jYa+lVVVSkmU/v2228BAKeeeiqKioqijqWhjuxvv/0Wsc/EiRMjXjjIyspCv379AMT+3bY1DNISEaWxzKH3q7YLhkwYc4fA3PUc5ULRo2xLI/Y0m6xrfoQAARG1DtM2yuvHzdvPz3RLeTvstZ+bQPZrmUp5mwb76pgV3Z64NQblF/J7O+1oCbBTaoTWoLXb7Qlvx+12Y8eOHQAQNUALAMOHDw8GCzdu3BixX//+/SMuC81c1dJPrZZsqNGjR0dd3pD5CQTKOoSz2+148skncfzxxyMjIwM9e/bEcccdhyFDhmDIkCEYPnx4sG/orfhqhg4dGnV5opL5egLK13TlypUAArVkBUGI+u/ZZ58FEJhMLBK1SdpC5efnq46jrWNNWiKiNGY7dio8pUvgKf0NOmMWIOggSX7kjHkRgsECa99rUbvsNtk6kpjeJ7U+3qZIRElU5U68LjU1jUqp8LhFK1PelJrj1Ppo/fvAFLnUIxGFKSgoCP5cUlKS8Haqqhqzp2OVTTAajSgoKMCRI0dQWVkZsV+k2+WBQHZrPP0ayjBEEmvMHTt2DP4cPua9e/fi9NNPx549e6Juo4HTGf2CZV5enqbtxCuZrycA+P3yi6ilpaVxjynaaxFtHKFjCR9HW8cg7VH79+/HtGnTMHv2bOzbtw91dXUoKipCr169cNppp2HKlClRixF///33eOONN7BixQqUlZWhqKgIo0ePxi233IJzzlHJdCMi0kBv7YiCs+dHXK4zZiJr5FOoW/WPxkYpvW8DDK83O66LGZlGHX7c1zz1B0/pasGfh2XD45dQ6vDjb4si/7FIRETaNfdFN7VJJKntCn8/je1sxtLDyhJJRVZGaVNJ1DABLKWP0NvcY93Gr1VrnCiuKWO++uqrsWfPHgiCgOuvvx6XXXYZjj32WBQVFcFkMkEQBIiiGJwsTIrxGYk2qVg6awiWnnPOOaq1byk5GKQF8PLLL+Pee+9VpP8fPHgQBw8exC+//ILa2lq88MILinVFUcQtt9yCadOmydqLi4tRXFyMr7/+GjfddBNef/112VUJIqKk0clrD7W2TFqDTkCXzOb7Y6XIGjj2mvQCOtiSv58at4jdNV4UWfXomqlvlX+4kjrJ54SvZisMOcdCMFhSPRyitKM2yaNW5U4/rAYBjiiTSZbYGaRtT8LnDevWjH8bUOIila2qcYvIMfN8N90cd9xxKCwsRHl5ORYvXoza2lpkZ2fHvZ3Q7M9YGbk+ny84YVnDLeupFmvMoctDx7x161b88ssvAID77rsPjz/+uOr60TKG24qCggIcOnQIHo8nagIjNU27P4o+/vjjuP3222G329G/f38888wzWLBgAdasWYN58+bhmWeewUknnRQxwHr//fcHA7TDhw/HjBkzsHz5csyYMSNYl+Stt97CAw880GLPiYjaF0EIu94mpXeQdluVPNPXoAO6ZDbfNcPskBMGk149gOqKEiSIZnGxC7fMK8dTK2rwt0WVuH1+BWedbiM85StQ8klnlM8cgZLPusJbsTbVQyIVnFgqdbx+CS6V1/+ghjqyr6yrxZ9/rsANc8qj1hctcTBI2554w74/O2Wo/23Aj31q1Uaoc/LHeeWYzYkb044gCMFJsex2O956662EtmM2m4MTOS1btixq3zVr1sDrDfy9ny7BvBUrVmheHjrmTZs2BX+ONuFWQ73WZEnHpI+G+NbKlSvh8aR2DpR0fH2SpV0HaX/66Sc8+OCDAIBrrrkGGzduxF133YVTTz0Vw4YNwxlnnIG77roLS5YswVNPPaVYf/v27cGCyKNGjcKSJUtw2WWXYfTo0bjsssvwyy+/YNSoUQCAZ555Bjt37my5J0dE7Ycu7CRGTO9yB3tr5SfwBkFAl4zmy5bRMhHJmlLl7ZRa/HdtrexxqVPEipLEtkXpxb7xGUjeGgCA5K5E/aZnUzwiUlPhUg/i8WJJ89tYoX6C9t3e6EGa3TVezRM/MUjbvoR/XZsjXFjl5zu16iIEaSUA722ph4dR9LRz5513But/PvTQQ9i6daum9URRxIcffhh8fOaZZwIIBC6XL18ecb3QQHDDOqk2Z84cHD58WHWZKIp49913AQQyhkeMGBFc5vM1nrdEm3jttddeS9JIAyyWwB1cbnf6nFdccMEFAICamhq88847KR1Lw+sDpNdrlAztNkgriiJuvfVWAIE6LdOmTQvOQKjGZDIp2l544YXgh/bll1+G1WqVLbfZbHj55ZcBBD7czz//fLKGT0QUJBgyZY9FT02KRqJNr2x5ULm43od8S/N9HTk1ZMmWJzA5TaTs2y92JD5zLqUP197P5I93fxihJ6VSpM93eEYeJV9FhONmWYzA6nd7tGfaMdjTvoR/bo064LTuylIzfFukVq0n+i+gjLWk007Xrl3x3//+F0Ag0Hjqqadi4cKFUdfZvHkzzj77bDzzzDPBtltvvTV4h/Ett9yC2tpaxXpz5swJ3mk8ZswYjB49OllPo0ncbjf++Mc/qk5C9dRTT2HDhg0AgBtuuAFmszm4rCF7GACmT5+uuu1XX30V33zzTVLH27lzZwDArl27krrdprj22mvRvXt3AMBdd92FRYsWRe3/yy+/xHyfJarh9QHS6zVKhnZbk3bOnDnYsWMHAODvf/87DIb4XgpJkoIfxIEDB2Ls2LGq/caOHYsBAwZg27Zt+Oabb/Df//63TadmE1HL05kLZI9Fd0WKRqKNcuIwC3SCAL3QTCdeGraZyC3TxfXqt/QmWjqBiOIXXsOygUcEWEW4eUXKZoxUr7JBtVv7RTHG2tuX8M+zXidgSv8MzD8gz7xu7gnrKLpI5Q4aREiAphS7/vrrcfDgQTz00EMoLS3FhAkTMGnSJEyePBnHHnsscnNzUVlZie3bt2P27Nn44Ycf4Pf7ZROPDRkyBH/729/wzDPPYN26dRgxYgT+/ve/Y/jw4bDb7Zg5cyZeeukl+P1+mEwmvP766yl8xnKjRo3CzJkzMW7cONx5553o168fSktL8e677+Ljjz8GAHTr1i14p3WD4cOHY/Dgwdi4cSNef/11VFVV4eqrr0bnzp1x8OBBfPDBB/j8888xbtw4LFmyJGnjPemkkzB//nysWLECTz31FM455xxkZGQAAKxWK7p27Zq0fWllNpvx6aefYsKECaivr8fpp5+Oyy67DBdeeCF69+4NURRx+PBhrFq1Cl999RU2bNiAl19+GaeeemrSx9KjRw9069YNBw8exLPPPotu3bphwIABwUnZOnbsiKysrKTvtyW02yDtZ58FMmQEQcD5558fbK+srERFRQUKCgqiFrnes2cPDh06BAAx33Snnnoqtm3bhuLiYuzduxe9e/dOwjMgIgpodUHasBlPzYbAX/NGnQB/M0RptYQDEsm6OxgpSMsUH6IWEynTkrVqm1+kScNiBWlr4gnSxjMgavXCg69GHZBv0eOMHhb8tN8V0q+lR0ahamN8hnVMSEpbDz74II477jj87W9/w969ezFnzhzMmTMnYv/jjjsO//73v2VtTz31FOx2O1555RXs2rULt9xyi2K9nJwcfPrppxg2bFiyn0LC/vznP2PhwoWYPn06LrvsMsXyzp0748cff0ROTo6sXRAEvP/++zj99NNRVVWFTz/9FJ9++qmsz5AhQ/DZZ5+hS5cuSRvvrbfeildffRWVlZW49957ce+99waXnXrqqViwYEHS9hWPsWPHYsGCBZgyZQoOHDiADz/8UFYSI1wik9Rpdd999+FPf/oT9uzZg8mTJ8uWvfPOO7juuuuabd/Nqd2WO1i6dCkAoFevXsjKysJHH32EIUOGoKCgAP3790dBQQEGDBiAZ599VrXGxebNm4M/Dxw4MOq+Qpdv2bIlSc+AiChAZ5EHaeF3QfKl78QNFU75H/dHY7QwaixLG++f/pKGWM2vh+KvZbSuTL0eY6zbACm9OLZPQ/WSGyG6ylM9FErAYbv6bbUbKzywR0qzbQXqPCJWlbjx2yEXZu52YFd1+tUaD7/g1uCIwx8x01GUJOyv034rtF+UsLrEjcUHXa369xnKW7UB3oo1qR5GWlIGaQPf+IawoB/LYCSuuN6HXdVeSFr+OIpgR4zjkb8J26bm9/vf/x7btm3Dhx9+iKuuugoDBgxAXl4eDAYD8vPzMWLECPzpT3/Czz//jA0bNmDSpEmy9XU6Hf73v/9h0aJFuPLKK9GjRw+YzWZkZ2dj2LBhuO+++7Bjxw7FeungnXfewUcffYQJEyagoKAAZrMZ/fv3xz333INNmzZh0KBBqusNGzYMa9euxf/93/+hZ8+eMBqNyM/Px5gxY/Dss89i+fLlstvvk6Fr165Yvnw5brzxRvTt21dWgzXVxo4dix07duC1117Deeedhy5dusBkMsFisaB79+6YNGkSnnjiCWzduhXXXHNNs43j1ltvxRdffIFJkyahQ4cOcd8dn64EqSlH6FZKFEUYjUaIoojRo0fjxBNPxEsvvRSx/0knnYTZs2cjNzc32Pbaa68Fa9p+9tlnuOSSSyKu//nnn+MPf/hDcL0//vGPmsd68ODBqMsPHz6MMWPGAAAOHDiAbt26ad42EbUNorsSJTPkgdr8sxfA3Cn5t5Y01c5qL+5fUiVru2dUDkZ2NOPmuWWaApxWg6CpzmyD3x1jw1XHNtbtvXR2qWq/IqsO/z29UNM2t1R68Mhv1RGXf3B2EYy83y/tHZ4u/x0VXrgJxtxBsG9+EbXL71D073xdu/uTKa2tLXPjyeWRa3AXWHT454l5KLI138SEzeFAnQ8P/1oFe9hxbnIfG64YmBlhrZb34pqaqBe4PjynCAZd42dMkiRc9l1Zk/b5v9MLUGhtXb/PUHWrH0T9+scBALZj/4KcE15I7YDSzBXflcrKHj09Pg+9cox4d3MdvtvjlPUNf39RbN/vceDdzfWQAJzc1YzbhuXEXCfcT/udeGNDXdQ+z52Sj25ZbSNYoubgwYPBupzxnn/v2LEDPp8PBoNBVuuUmkfoXcytObOS0luyP9ftMpO2pqYGohi4Gr9hwwa89NJL6Ny5Mz744ANUVlbC4XBg4cKFwTqzv/76K2644QbZNurqGr+cMjOj/8HcUDsEAOrr6+Maa/fu3aP+awjQElH7JZhyFW329U+2/EA0+HGvU9Fm0DX8r+1kq0tGfCfoWSZt2y1ziqjXmKn1+vroJyhbqtIv643kRK/yd1i94FIAUA3QUvoJD9qEq3CJmLMvep90NP+AUxGgBYBvdjkgplFuRawJwn47LA/grilVv/sgHvMPtL7fZwNJ9MK+uXESYceWF+Gr35fCEaUXUZIUdekNETJpAWDJIZeijaKbfjRACwCLi904FKFsUzSxArQAJ24kImqKdhmktdsbZ952uVyw2WyYP38+rrzySuTl5cFqteKUU07Bzz//HCyU/dVXX2HZsmWy9RqYTKao+wudHdDpbL1/XBJRehIE5aHcfejHFIwktkXFypMq69Eo7XEF0Y+lDW4fHrm2kUUvYFTHxu3oBWBiD6usz5T+GeGrBRVrvA030i3WDapcnNk43fmqN6u0bYQk8nfXWkQqORLq293pW/olkqoo9R49afT27BAjQ3lBWEBV7fgfzmqIflHt8x2t7/fZQPLaIfnssjb3wdkpGk36Uasz23BHSpVb+cZXu+hLkandPLuponkuKJc520ZpEiKiVGi79yFEEV7P46abbsKAAQMU/axWK5544ongxGKffPIJTjjhBMU2PJ7oJwmhNW2tVmuUnkoHDhyIujy03AERUWuUaQychF03KHBXws5qLw7b/cg0CqhXmYCmU4b6V9fgAiMu7peBrpkGWA31qHL5MblvBmxGeRD7/GNsWF/mwVaVbNdk1TxMp0AKqfPb96u2S/7IQSBJ9EHQtcs/nagFRau36fZLsMQIZLaUWIfL8GQ6LROG/WN0Dh6OUkrG3HorHajylq9M9RDShlod44a3+rguFiwulmdmu1mXNi5qL1dzZbwGMnTNMfsREZFSuzzTyMrKkj2OVtT6jDPOgMFggM/nw4oVK1S3EauEQWjmbqzSCOFYY5aIEiVJEoRWMMNupkkX/P+2YfIs2Uj1Y8P1yjbgwbF5wcfh2wll1gv487BsTJ1foVimtdxBLC6ePKY9f/1e1XbJa1dtDyyrhWDOb6YRUXMwtsJ7xqJd5EmnwFSsyZvCa4eXOaNfvZrYw4o+OcaofTJb4y80Cm/FqlQPIW2off02TByWZVK5YyiNPgutgVqmcnMFaWPdbURERJG1rb90NDKbzSgqKgo+bij8rcZisaCwMDCRTFlZ42QHocHTWJN7hWbDRtsXEVEyufbMSPUQNMlIQlZYvCcaGUb1fapl7oZy+UT8tD/2LZaceTr9+SPUgnRG+dyIbmVgn1JDa23WdMk61covSlhfHvkOrZY+tuys9mLhQScWHXRie9jdB7GOu3tqA/Uuy51+/LDXEfMWaItBgFEvwBJl0sUKl5hWdXnjoxy3r2q96m3o7ZHa+6mhZn22SpC2Oiwzu94rYskhF/bXxl9ntS3ZVe3Fb4dcqHaLmLvPiX/+VoWPt9WrXoRWuyC0rdKLZYdd8DbhWHOIQVoiooS1y0xaADjuuOOwYMECAIDfH/2LpGG5wdD4cg0aNCj489atW6OuH7r82GOPjXeoREQJqV50JfyOYmQOvjvVQwGgXg8NAPRJmJ1Z7TbJaCLVPfxpvxPn9rapLhMlCY/8Vh0MPETDDJ/0FylIW7firxHXqV54BQp/tyLicmo5N80t19SvztO6Pov/XlkTdXmZ099is6YvOODEq2GTJN5wXCbO6hU4RmoJ4qwqceO/a2vhUJkILVzl0VreWSYBLmfk/m9sqMP/DY18t0Rr47fvhyGzZ6qHkXJ1HmUQ0RDMpFV+Z4fGHO1eEX9bWIlqtwi9APxtZA5Gdmx/t9svLnbhf2trFZcDNld68dVOZSmf8L+dvtvjwLubA3eIHpNjwBPj8qBL4I6sw/b2HSin9NGrVy9eCKNWp11m0gLAKaecEvx59+7dEfvV1taivDxwItC1a9dge+/evdGlSxcAwMKFC6Pua9GiRcH1e/XqleiQiYjiZt/ycqqHEFRcH39mRfidrQUW9a+teGvARjrpiBZI2Ffr0xSgBQCXhoAEpZbo1hbkC+WtWAnJ13onLmorKl1+2GNkvbdG+2p9WBtjMrS9LZgl+OZG5Szub29qLPGlElNT+PfKGk0BWgDocTT4rHZre6hFB12t9EKY+pi9pb+18DjS0yyVSf4aMmmjZVcDwLe7HMHMWr8EzGyFEwYmw8fb6iO8y9SFZy83BGgBYHeNTzE5o0utZoKKOo8Ep8a+REQk126DtBdffHHw56+++ipiv6+++ip49eXkk08OtguCgMmTJwMIZMouXbpUdf2lS5cGM2knT57cKupDElHrY+4+WbVdtB9ImyvIarfandzVotKz0Z+Ol2dLRcqeijeTFgBO6qLMsukUZbbyeDLyWO4g/Qn66O+9SHx1e5I8EorXkThupTXHCO6kk721sWdajxWsSqZIMZaGcgPJPM4JAE7qEvhM5ke4GNfAL2mbhCzdSH6XarvnyPwWHkl6+uWQW9HWcEFVEASEv/MLrY3vk9l75EHZLZWxP0ttUXmMkiLhYh1NNoaVXilxaN8+Y7RERIlpt0HaoUOH4pxzzgEAzJgxAz/99JOiz5EjR/DAAw8AAEwmE66//nrZ8jvuuAN6feCEfurUqXA65XUKnU4npk6dCiBQKuGOO+5I9tMgIgIA5I6fHnGZ5KlquYFEofYH+81DspSNIU7sbMYtQ7Jwclczpg7LxtAik2o/TwJB2psHK/cdbSvR6i/2yZHffsyJw1oBKbGaef66XUkeCDWnGEmZaUXL9bR0SNKvPXrBqqmTDg0tNGFK/wyM72LG/SfkosPRi2Qdolwsa6B2a3y6i5SF7z78cwuPpHX628gc2ePQiemSNOdnuxOrlEH4nzKlDu3fm2lwqCIiapVa0Z+uyffCCy8gNzcXoiji/PPPx7333ovFixdj5cqVeOWVVzB69OjgpGCPPfaYrNwBAPTv3x933x2o9bhy5UqMGzcOn3zyCVauXIlPPvkE48aNw8qVKwEAd999N/r169eyT5CI2g2dORfZY19RXSY6S1t4NOp8YRGIPLMuZpabIAg4o4cVtw3LwfgoWbfxljsAAJtRh5vCArXRgiTRssaOCZuRnJm06U/SGKQVTHmyx/66yCWSqGXE8+kytqJMWi3SYdKshtqx4XHS+0/IxT2jclTWUDe2sxkX98vA1OE5GFLYeAGug7V9BWn9dTvhr9/fwqNpfTqGBe8dXiktPg/pIpE7imKt0aQgLX81REQJabcThwGBIOvMmTNxySWXoKSkBE899RSeeuopWR9BEHD//ffjnnvuUd3GE088gdLSUrz99ttYs2YNLrvsMkWfG2+8EY8//nizPAciogaG7L6q7X5XKQwY2MKjkXP6RHy/R363gSGJlwkTPRcITyIREbjleGWJB26fBL0OGFxgwuBCU9Rs3fDbc1eVevDNLjsG5Zuwvy5QQ/LUbpbgJCiUBkRtJ5umjifDfeDb4GMfM2lTLp6T/0qXiPt+qcRtw7LRJbP1/9m7ucKLyX2adx+1HhFLitVvzQeAj7bW4/TuVsXFKJMOyDHFDrDGoi2TtvVFgCSvssZvA/eR+bD1vbYFR5NetAT/MsMmD5MQCNSGtzc30V0J5673obN0gKX3pRAEHdxHFsJbtgzmbudBZymCa/dH8JQuhj67P0xFY2HufkGzl7xLpE53rCD3nH1OTO5jQ+HRCyelTmbSEhE1t9b/12oTjR8/Hps2bcLLL7+Mr7/+Gnv27IHH40Hnzp0xYcIETJ06FcOHD4+4vk6nw7Rp03DxxRfjjTfewIoVK1BeXo7CwkKMHj0af/zjH4NlFYiImpM+Sz1IK7pKWngkSs+urMHGCnmNuERmDE628Djx/lofHlhSJbt18qudDvx1RHbU2ylzzMqI80db7QDswcerS924e1Ruk8ZLSSRpmIBJb4WxYIQsSOuvZyZtqpXFESgAgF01Pty5sBL/O70gGGxordaWebC+zBOx9EtT+UQJ/1hciQpX5APehnIvNpQra36a9IKsTmiiijQEaWtbYSZtxffjIy7zHP653QZpq1x+3LO4Mma/zPCZRAHUeUUsjHBBQZKkpAdGJb8H5bNPhL92OwAgo3INTB1PQdVPFwCQULf6XkCSvzftALLHvIiMQbcndSzh1Or+x/LzAReuGRS4oyjS/AX/WFyJF04rQKZRF2cmLcO0RESJaPdBWgAoKCjAI488gkceeSThbZx77rk499xzkzcoIqI46TO6q7aLrvhnsU+mGreoCNACQEkcf+yHsxoEWT26/nnGKL0jC09sjVRL9rfDbgyIsg8tkxOtLPGg1i0iWyWgSy1PEmMHafW2ztBnHSNr423JqTdja33sTiq+3GnHLUPUJx9MB1pDGj8dcDZbkHbJIVfUAG00Rp0AmyEwwZOW5xIpoNtBQ6A3kYBUOvOULE71EFLm8x122fd5JCa9AKNOXn/W7pXw3mb140GZU9SUlR0P174vggFaAHDueAeiswTBd7yk/r50bH+j2YO0iWTSZocU7Y50s1CdV8LaUg/Gd7UoJibLMAoR98sQLRFRYnimSETURgg6A6zHXKVcIKZ2luPmyHi6fVhjoEUAcPWxmQltx6aSmaPG7ZcinsCc1dMKjZtpc4GF1kzyRb71uIFgzIbOEFa3OMIM7dRyahK81f03ldnj00mWxlnOVpU03/PYWa0hwzwCoy5QJqxTRuzAWEebTlaHNpTFoENRWKA2/Bjb2g6lUozyKv76PSm/oJoqK0o8qu02g/LipyXsgqg7Sv335pjA07nnY9lj0V0O5673Yq7nq96U9LGES6Q+b+hdQNFervXlgd+RM2wG2Jwoxywm0hIRJYZBWiKiNiTnpDcUbZKW27qbkZYMmXiN6GjG30flYHIfGx44ITfhTNpMo7ZbISUpUK823LWDMnHNoEzNtWb1rEmbNkRPjbxBUN5cJBhsgN4sa5PE9A70tVeT+9jw5sRCjO5ojtjH30aiBs15GGnKPGsNx8Hbh8fOVn70pPyoJW+ePaUAw45mC98yJAvju8gnjmx1v0sNxw1P+coWGEj6iTTR5jWDlBdfTWFv0GiTdPoTmEgrFr9KTXLBXKBp3ea+/V9t6yM7RM+4Dw3sRpt4rPPRCy+OsL/not1F1Mo+oUREaYNBWiKiNkQwWGHuFlZ6RcNt3c3JESHlKUtjgDSSER3NuGJgJgZHyMbSIlNj5poE5QnW8CITzu1tg0EnaJ4EjV+66UGSJEjeWlmbPks5G5Ogt0EIC9LCzyBtOrpiYCayTTpM6Z8RsY878QorLUJrDCdQUKB5JCNIm6ehpEtujD4Wg4B7x+Tik/M64IweVsWFMF9ry6T1q2eLhvJWrGiBkaSfSIFWtUza8KBg1CBtkqOEkuiFr3ancoHGv7GiTRyXDOHHjyyjgAv7Rj4eAoA/5HMU7fWSpMD3ZvhF92jZyq3tOgoRUbpgTVoiorYmLCPQU7IQGHJPigajzLxoUJAGE/hoDRSvLfNgbZn8JDs0CUxrwOD7vQ5cMVB75i1F5vFL+H6vAw6vhLN7WZFn0f5+chf/qCgDYsg6Bv7abbI2wWCDoJNfBBBdpfBWbYQxb3DcY5YkEc4d78BXsxXmrmfBc2QBPCWLYcgbDEv3C2Duelbc2wQAX90eOLa9Cr21C2zH/hmCTp5Z7tr3NWpX/T1YS9HU+XRkjXwaelsX2Lf8F6KrDKKjGO7i72EbcCuyRj4JnSknobGkmtYLJpFIkoTfDruxu8aHMZ3MCWfpx0uUJPx8wKmpr8sv4YMt9TiuwIjhHcyQJAmLil04UOfHSV3MOCYn8TE3Jdu/4bXP0Fr/JYFtN9hd0/QyPu7DC1D542mAYED26OcgGDPhq9oAfdYx8Nfvg7FwDKy9pzRtH4fmwn3wO3gr18bs6z2aSStJIurX/wv1ax6Etc/VyB77KnTG6MG21sQvSvj5gAslDj8mdLNEDA5aVIK04Zm0/1ldq+jTuJ8mDVPBW7FGNSNa8tao9FYSXaUQDDY4tvwXzt0fQJ/ZE9Y+18BvPwh/3S5Y+90IY95xmraldpxSvIwaPsp7an341/JqXDEgI+qFk0+22zEw36go+xTpIjzATFoiokQxSEtE1MYIOvmh3X3wO/hqtsGQMyAl44lU7iDfkvq8UrXZorU6VN+YlhctmyfU7D1OePzATUOyYnemqF5fX4tfjtYYXXLIhZdOK4h6+3QDb+U6VM07R9EePkEYAAh6q6LcAQCUfzMEna71QxDie//YNz2HupX3HP352WC7p2QRHFtfQf5ZP8Hc+fS4tin5nKiYNQaiO1DP0le/GzknvBRc7jowC1XzL5Kt4zn8MypmjYZgyoPkqZItc2x7Fd6qDSg8t3VOZBTrAkisGd8XF7vwv3WBjLdZux149pR8dMtq/j+XZ+52YHVp7GzL0P4zdwP3jcnBEbsfb28KTJ70/V4HXji1AEUJTph0sC7xOy8MR19Xk16ASQcksxx5eIbvzmofaj2ibOKjePhqtgcCtAAg+VC7/C+q/STRA1sflVrvGnhKfkHlnEmROwgGIKQckbd8OSRJQv36J1G/5kEAgHPX+/DbD6Dg7PkJjSEdfbnTgc932AEAc/Y5Ivaz6JW/2/AgbTTJLonhKV3SpPVFVynsW16CY8vLAABvxSq49n0ZXO7Y8RY6XLwHOkvs8gmhx6nZexx45uR8Reaq1k/GujIP1pV58PhJeVH7/XNptaLNHqWcFYO0RESJSf0ZMhERJZVgUAYAXfu/bvmBHBUpSDusmWYnj4exCff2HnE0Bmk7apgop8Hc/dqy5SgyUZKCAVogMIv31kptmXWqnwXBAEPOsYpmnTlPkUkb3M6+LzTtL1RDgDaS6sXXxr1N574vggFaAMEAQAP3we8irhseoG3gLf0FfvuBuMeSDmwxsuPDZycP1xD4AAJBho+32ZMxrJg+2prYft7cUBcM0AKBrP6ZuyMHvmJpSpZ/6DWvaNm0sepkqm9bOa5lhxMvPVK3+j5N/WqW3JDwPuo3PhN1eUbYHS6i8wi8ZUtRv+YBWbvnyAJIvrYzYWFDgBaIXoJEUgnzxXHDRNJLYviqNzZx/S2K43MoyVsH+5aXIi4PFXqcEqXAaxp+sVgnCHHVr/5hb/zHjTO6WyMua46awERE7QGDtEREbYxF5fbMlphZOJJIk1GcHuWP+9amd7YBfXN5c0pLqfUo31NVbm1n5L6arYo2S8+LYelxIQRTbmOjoIOl1x8g6NQnovLXKieQaSrRcTDudXyVaxRtUkgph0TrIIruyoTWawnhZUpyTI2PM406HB/lApA3zsDBhnLt2a2pUKYSdN5RnXgpgG5ZiZehCQ0IZZrUo0NGHTBlQPy37mepZMwesiee9es+/LO2jmLir6X7wLdRl2cNewT6rL6yNseOaap9/Y7WedEkXLTJqcKp9cwxx1HWJslFaUXnkSat7z78U8w+zr2fJrTtzRUelDnlEe8Cqw5WlZIRkWyqiP+9PrGnNeLkYc0xaSxRW3DddddBEAT06tUr1UOhNMUgLRFRG2Ppdi4sveSBWm8Kg7Rq50lvnFnYpCzWZLosgYBBOEEQ8OAJebhpcBbO6912gs/pqtKlTL9Sm2RGja9GXnfWWDASuSe/C31GVxSevxxZI/6FzOMfRsE5vwRKD6iUOwAA6OILZkliM81aJSjrj4qOw4379SeYgSel78xM5rDf9f8NzZY9/uuIbNw8pO18Fif1jO95WJpwbG1KHc/QMhKRSsn8a1w+emXHXzM3W6VeZpOCcCl+f+szekDQGWHrJ8/Ude35RLW/v35fSwyr2YUHEqNRq1ZQEEeZpGQHaf1NDNJ6NFwYEBO8g8GsF1DikL+2HWx6zd+LQHylJBp0ztDjyfF5uG5QpmJZpPkIiFrSggULIAhC8N+ll14ac52GIGq00khEzYlBWiKiNsg24I+yx77qzc0XJIohPHPmxM5m5GiY/bulZGicPCwWi0HAxJ5WnNmjbQSG0lmVSxlg0XJrqySJisnBskb9G8LRQKwhux8yh96LrOGPwNThRACIWO4gfIK+WER3RVz9NZOU2YR+x6HGxYkGadO4oqDdKx9beIkDi0GHM3tYceVAZeAg3meVDudogwriC2qqTbikVbLiWmrH1QyDgB7Zid1xkK2Smau1Frgqqfm/DwVj5Mn3dLauAABr32uBkNrWkq9etX9bCdIesccRpFVpi6eWfbpl0oqukph9JJ8dkj/+Mh5mg4DSsCBtR6setjjq7psSTKLvmmnAOb1t6BhWBzvapGJEqfLZZ59hw4YNqR4GUVTpc5ZMRERJY8gNmyHY74K/fg+8letweLqAw9MFOHd/3CJjWVQsDxI1dfb1ZLOqTE7SFFoCJGKSJzRpbypVgrTvbKqDM0akVrQfhOST190z5AyMuo4QIZM2fII+APDV7kD1L9ejZumf4XeWyvet8QRfipHh561YHfwMl88cBfum5xR9/I7i4M/ug7M07TfecTQnvyjhsaVVuHR2Ka75oVQWjPOLkuI22mj1T7VaVeLGpbNLY3dsBrGOB/FkwwHxZSuGjuH7PY4m1bMNpZZJa2hChq/aBGGuJmTqSSoXN5rCdfAHVC26EvXrnwqWGxGMUe7SOBqY1du6wNz13Jjbr/n1Johe9QBuqkiShIUHnXhxTQ3m7nNC0vC9djieIK3K5vLjKErblPdHKE/JL6icey7EkItfzenI+xa4D0UujXBYpcxHIJNWfszuYNMjnnn1DtTFf9wI/USHH6eYSUvpSJIkPPzwwykdw/Tp0yFJEvbu3ZvScVD6SrNTZSIiSgadpQMEs3yGYG/lGpR/Oyz4uHrR5Ypbv5PtiN2nmKhHnw6paSGaknWmRksNuN8OJT7hDQHzVCZfq3CJmLYxehDDF5ZFKxgyobN2jr4zjZm0kuhH5Y9nwrlzOhxbX0H1oitky0XnYWjhLVsWcZnotaN85sjGvhWr1Ps5A8EEX+0OTftUHUcTZzJvimmb6rDxaH1Etx+4aW7jxGhqdQ4jZcOrHWrUAj8un4R/r6xR34aG8TZVrGCSNc4rWwfq/HFP2rPwoAvTNycvCKj2O4knYBROrSZthcrFGs2aUGs2nK96K6rmnQPX7o9Qt/pe2Dc9DwCQPOrvKQAQQrJnbf1v0rSf2mW3N22gSbauzINX1tXh10NuvLWxDks1TOQWT5BW7bcbqdaxGlcSMmn9jiOomDMR7uLvm7yteFTOOVO1LrgoSXhyufJ9ZdYrM2k72PTNfrt26ObD72hgkJbSTWFhIQDgq6++wpo1ynr+ROmCQVoiojZIEARFhqBj6yuKfrWr/tGs4/hVJRjpSbMZf8PrW2o1OMItyGa9EDOw89La2oT2SQGdM9SzqRYXR7+13x9W70+f3TfmSaxgUC9foc/oLnvsLfsVfvv+4GPP4Z9kM7JrnYjLVxX5Njznrvc1bcNvD2TSug8mHlho7mNDND/tl/8eQ29bVgvSRrowIkAZZFWbuCjarOYtcbiKNcFOpIl5oimOIxgGAB9ubVqANvwzqZZJqzbJmVa5KiVycpoQ9RWMWQmvG65u3aPyx6v+Dkn0QfLZI64jhgRwzd1iZ9ICgHPnO4kNsJm8tl4+KeG0TbEnKazWOMEjAHS2KY/zXTK0l8uoSCCjPJx983+AhEvGNHXfLyjaSh1+Re1ZIFD6Izwo3UHl9Uum8I+4IpPWm15/6xHdfvvtMJsDd0c99NBDKR4NUWQM0hIRtVGCQX6rZWgAqYG35JdmHYNa1syQgsgzr6fCMTnx10g06wVcrlLvEgB0goDMJNW5JXWJ1hqUwm4X1plyY64j6IzIGHSHol1n6SB7HF7eAABEd2MGqNaJisLLMcj2Ub9H0zYaMmlFT7Wm/uo7S01gIhavStTUqIuUSSsoMu9qVQIHe2oj3/qe7LqWamIFaROpEmCPsx5knadpz/PsXvKLGfFkPGphUPkdq00mppWp8ISmDEfGV71Z0RarrmjoRVRBZ4Q+e0DSxtNSqsICrlreQ1pL/fTI0qNIJciYY9bhlK4WTdvYUd30khbuw5HLDsQmIGf8uwmv7aveomiLFOT2hDXrBaDQ2ryn+Wf2sEIXcpEzvP5trPJDRC2te/fuuOWWWwAAs2bNwvLly+PehiiK+Pnnn3HXXXdh3LhxKCwshNFoRG5uLoYNG4a77roL+/crz7dCNUxM1qtXL1n7o48+GpywbMeO2HdCnXXWWRAEAZ07d4bfr35R6uuvv8Yf/vAH9OjRAxaLBbm5uRg1ahT++c9/oqqqSvPzppbFIC0RURulmPBI5eRIFkRqBmrBhz658c/s3Zyi1Xs8s4fyZPCkLmb8++Q89I3yPNRuzaXkSbTWYHhmm2CwaVova/R/NGxc+Qey6CprXKxxoiIxwsRB8QjWpG2ByZFaWnjsUUD0IGZ4LdNalSBHXXiEI0RL5ILFCtImUsc7WVlsE3tYccVA9dqq2SYBk/vY8NhJeTi7l/yzpFYneESHpl2gu7CPfB9qWdGaCck7Rqtm24vRg7S2fjfIHmccOzVp42nNxnY246bBWXj65PyIfW49Pgv/GJ2De8fk4F/j8vB/Q7Nw2YAMRTb3gTofXE0MFIr24tidQuRO+Bw5499F9thXUPi71bD1vSbhfUt+ZVmfmghB2iqX/FhfZNXLAqih8pIwcev9Y3JxzSD5hWrWpKXW4N5774XVGjhmP/jgg3Gv/+ijj+KMM87Ac889h19//RUVFRXw+XyoqanBunXr8Nxzz+HYY4/FV199Ffe2r7iisUzWRx99FLVvSUkJfvopcBHpsssug14vP/5VVVXhjDPOwEUXXYTPP/8cBw4cgNvtRk1NDVatWoVHHnkEAwcOxNKlS+MeJzU/nkUSEbVVuvAgYsv/wayWzZVmJWmhE4SIt0tP7Kk8+T6pswWdYtxyqTbJTbj6KIEhii7RWoPKIG2UiX1C+wlCzICu6FFmJIQGabVn0ka+RVprhVT/0QluJG/s249bm/BMWoMOUUtWKIK0Kp+7aEHalhA7SBv/QTPeTNpILuyrnLUdAMZ1MePNiUW4YmAm+ucpL1ip3U2QwNOQCX8dmhJ/k5KYKa52bJD8nqjr6MyF8m2YcpI2nnQWK65+54gcTOxpjRhgBALf2cM7mDGsyIw+uUac1t2Ki/pm4OmT82UXbCQAu2ualk0rukri6m/MGwJb32uQMfBWGAuGBcYbq+55pH2rfKdEyqSt9WgvdaBWOkRNtPkYhxaZFL8jljug1qBz58649dZbAQBz5szBL7/Ed0ehz+dD586d8ac//Qnvv/8+lixZglWrVuHrr7/GPffcg8zMTDgcDlxxxRXYskWZDR9N3759ccIJgbs8YgVpP/nkk2D27JVXXilb5na7ceaZZ+Lnn3+GXq/H1VdfjRkzZmDp0qVYvHgxnnjiCRQUFKC0tBTnnnsu9u3bF9c4qfnFf48nERG1CuGZtP76var9PGXLYSoa0yxj2FypnJwlzWK0AAInF2qBEptKCpuWQEOWhlt9jzj86MuM24REy6Qtc/gVt8lKkgT75hdQv/4JWbvWIK0WavVfK+eeFfd2RGcgKOA6MBNVP10QbNdn9tZc7sBfsxXl341LaZBWdFeidtlf4K1cDWPBSGSPeRE6c17C27t0trKcBBC51EGD8CDtu5vrcUInMwqsje+R8ABHOEmSmnUCnli3BSdSNtuuMUBS7fIraouGyrfokKMS1FGrORtKLZM2drXu6MI3qVb6QitfjfaT55KPOyFr5L9g63cDXAdmoeqn3wEATF0mIveUDyHolUHa0s97Rd1m+MSeOoN6+ZxwkuiFoLgAmz5cPgkzttVjX60Pp3S14LTuluBnp9YjYnVp9OB1U5j1AnpkGWTlS3ZUezEogRJLzn1fonr+xXGvJxizlW2mHEDjxJGhRFeFom1dmbbXT+3CSgO/xpITnTL0OFCn/W6M8AkOWe4gcZIkQnQrf/9tlc5cIJtMsbn9/e9/x+uvvw673Y6HHnoIP//8s+Z1b7rpJjz88MMwGuXH4REjRmDy5MmYOnUqxo4di+LiYvzrX//C++9rm0ugwZVXXolly5Zh+/btWLlyJUaNGqXaryGI279/f0WfRx99FKtXr0Zubi7mzZuHkSNHypaPHz8eV155JU488UQcPnwY9913Hz788MO4xknNi0FaIqI2StBrOzGp+ukCdLj0UNL/QJIinAikY5A2UiatReU+ai31IbWUO5i33xm1ZAJFFi2T9pV1tXj4RHkw0HNoLupW/FXRN1lBWkn0wX3gm6Rsy7nzHWSNfFIWoAW016Nt4C39NSnjSVTt8jvg3P0BgKM1O3VG5I6bFnO9XdXKCzvRxIgVqma1v7q+Fg+c0PgeiZVJ6/JLEY8RyRArM1yfQAqq1luN39pYhzVRAj86QVCdoCvW666WSduk8gRIbiat6Dyiva+rBDVLboQ+o3swQAsEjiu1S6eqZ9nHKHegs8gzaSV/5FrUoeybX0Tm4Ls09U2Fmbvt+GFv4Db9LZVe9M4xoHdO4HvuHQ0TizVV31yjPEhbFX8mrd9+MKEALaA+IZ3OkIlECs+El6OSJAmrNAa5owVptX5uOtriC9Lawj7zLHeQONFdgdKPO8Tu2EZ0uKwUektRy+2vQwfcdtttePrppzF//nzMnz8fp512mqZ1w+vIhuvWrRvuvvtu3HHHHfj222/jvsh76aWX4s4774Tf78eHH36oGqTdtWsXli1bBkCZRVtfX4///e9/AIDHHntMEaBt0LNnTzz44IP405/+hM8++wxvvPEGMjKSl7hATcMUHiKitkpjto3oKoFoP5j03ddHyORq7sksEpFvUT+hUYuNaPlbS8us46am3vvbjkXLpN2hEuRzbH9Tta+gV6klGYkQ9h4RG/fjLUteTS9j0Ylw7novadtrikgXWrRw7vlY/njH25rWW10aPbgVLtYI1Y43G8rl75ECS/TPq9as1ETFui3YahAQb9K9Q2O5Ay2ZjfkWveLiVJfM6HkeuWblMbXQ2rTZ5i1hgfL6BEs6iN5oJUUiq5wzSdHm2vtJ/Bd7BINiHVOH8ZpW9ZavjG9fzaTSpQzemfXA5zvkweb3tzTW2N4VYyKvZFwI6ZMrf18etscfpHXsfCexnQt61YC96FK/CyAWY+5g2eNI9WjVdLA1HjB6ZMk/d2f3smJ8F3PMbZzTS73ET1GEv+HCL8xUOJlJS+nr7rvvRlZW4KJKIrVpG9TW1mLPnj3YtGkTNm7ciI0bN8Jms8mWxaNDhw6YOHEigEBJA1FUfo5CSyGE1rEFgIULF6KmpgYAcMkll0Td1ymnnAIA8Hq9WLVqVVzjpOaVfmfKRESUFIKg/WYJrZMaxUPtBPrMHhZYEpkFp5md21sZrLtuUKZqkFZLuCZfQyDa0wKzxrdFkiRFreHpFZUziEe8tTk88BpF+C3NoZlvyf38SBFLk4Qz5A+D7djbk7jvsJF4ahJfWYwvI7aBO86XslOUjDEAOKVb7JngY9V8TXSiOq0iZdLqBOD/hmbBoBNwTm9tk9w1sGscc7TD0CMn5gIIBEfP6dV4jOxk02NMp+hBHotBwHkhx1WrQcAZKhMxxqMwLJhe5kzsc+er3tikcYSLr76tgOxRzygyq/SZPWDu/jtZm1EtcCs1rcZqsqxRCe53UanVXupo/B2FH5fDJSNIG16LtcIVf6BQclfG7qRTvv8Dt2wrn0NDjfBo1H7XOpu8lm08pbNDM2lvHJwVfG17ZBlwSjcLLuqboVrGJNRxBUbFZH86AZjSX/2iROewCzdVbpElDyhtFRQU4I477gAALFmyBD/++KPmdfft24epU6eiV69eyMnJwTHHHIPBgwdjyJAhGDJkCG655ZZg3/Ly+CdobsiOPXz4sGophoYg7QknnIC+ffvKlq1c2Xghr3PnzoE5FSL8Gzy48ULQkSPa7y6h5sdyB0REbZUunkN88oMQ9Sp1Hm8eoqzXlg6GdzDjldMLsL7cgxKHH+O6WNA9y6B6gqElubAgQmZuKHcTb/1tr7xi7HeryyfJb72MNGlXHCU+BGMGEBKLkUKy8QSVE3Yt8ifNg3PPx3DueCtkw35N2xOMOSj83WoIggBbvxvg3PUe7Jv+E3UdS8/fw7XvS83jE91l0JlzNfePRfK5IBiiB+rizRi9fGD0Wp6RsuRDb0GMdVtuohPVaRV+0WFcFzPO621DhlEITlJ4+YAMjOtiwfd7HJh/MHZQsCmT9tgMAp45JV+W+XrVsZk4uasFtR4J/fMMmi62XX1sJk7pakGlS0TfPKOmCRWjCa81XeeR4PKJcV/481Wua9I4wvnrdsfsIxizUHDWfAjGTBhyBqj2yTv9G3hLl8BbtR7mbufBkNkT1YuvlWXWSxonIGxuakFatXdc6NdcrK+8JiTuB4VnxTt9EhxeEbZY9TlCaJnoq/D85Sj/9nhZm6CPcGxTCax3vLwCks8J18FZMBWOgbFgOGp+/SMc299o7CTKX+N4LuyGBqsH5pvw/Kn5KHeK6JltgEkvoFuWDs+dko/Ddj98ooR/Lq1WbEMQBNw9Kgd7anzIMAqo90rIMukillLoZNNDgPx9cKjejz656XdhnggA/vrXv+Lll19GdXU1Hn74YZx1Vux5BL7//ntccsklcDi0lahxOp1xj+vCCy+EzWaDw+HAhx9+iDPPPDO4bPXq1di6dSsAZakDACgtTSxzX+vzoZbBIC0RUVsVRyat1pnn4xE+u3iexhmFU6XAqsdp3eUZtYnm9ajdPt0tU4+D9Y1ZRcykTYyWrEaPX4ItpNpHpMBGPHWYw29PlnyNQVpJjH8yHFOn02Ducgb8jmJZkFaS/BA1TPhl7jopGGQ05h8Pb8WQmOvoLPHVuBNd5UB2v7jWib69Uugze0TtY9JS9DlE1xi33Ufilxon5Ao/VoWLlrmdDOHbtxl06BNWr1oQBPTMNmBCd4umIG2s5wRELmcxuY9NUZpAEAT0yomvhnbDOr1y4lotoiKVcgllThHds+L7bvFWRQ/S6qydIcYx0VN4vWhj4Qnwli+TtQk6M4yF6rUBg30EAaaO42Hq2JhVqc/uL++UBkFanyhhQ7nymKdWczi0JVaQNhnPTO0CablLRI84grRqk3+F0pkLYVA5LopaMnCD28gHzEDGgD8G2/SZvWR9JL/8NY5norzwoHSeRY+8sNcmy6SLWT9fJwiKY1EkJr2ADjY9SkKypwNBWtbej5fOXIAOlyUWbGuNdGETKbaU3Nxc/PWvf8VDDz2EZcuWYdasWTj//PMj9i8vL8cVV1wBh8OBzMxM3HXXXTjrrLPQp08f5OTkwGQKZJ7//PPPOOOMMwAkVjYqMzMTkydPxowZM/Dll1/i1VdfhcUSuAjUkEWr1+tx6aWXKtb1+xs/f6tXr1ZMcBZJt27d4h4nNR8GaYmI2ighzkxav7MUNb/eAl/Velj7XY/MoQ+o3ronShJmbLVjYbFLViOtyKqDQScgwyjgxsFZ+GyHvO5fhspEMulO/fnHXi9fJZjgDgvKhj9uKatK3PhgSz0kAJcNyMDYzsrsH58oYfqmeszd35gBcOvQLEzoriwLYd/2Omp/+z9ZW864t2Hrd33Sxw4Au2ti30Yfmvkoemrgr92m3jGecgdhQdrqxVehevFVAABT59M1byfoaIkEIWwMvorV8FWs1jKisIexgxCCOV/r6AAoJ64J5fFLeG19LZYcaqwhO21SITIbggN6CxB2G7i3erMsSCtJEurXPQrH9jehz+yJ3HHvYG9tR83jyzQKyDYldlzxiYBBB3j9EmLFMxsuDDh3fYi6dY9CZylCzomvw5h3XEL7BoBfil34Yocdh+zKW/bDa6+G0poRuLHCi80Vnqgz20e6fTpdLx+Z9AJyzDrZ906pw4/uWZG/63z1+1Dzy/XwlP2meD9GIvniyygKrzlq6nSKIkgLjRN5hgu/kOQ+8A0qvj8F2WNegLFgBIDAxIVV8y8JTl6YfcJ/Yet3PWqW3wHP4fkwd52E7FHPxcxiBwKfyc932LHwoAtlThE6ofE7r3NGIFNS7T0LQPVzFPp9Get91ZQa2A2MegE5JgE1IXfyVDj9yDHpcMu8xuPZvWNy8Nl2O1w+CVcdm4nhHULuXpCif8eI3loIBuV3oeSrV+kdB538PeI+OEv2OMESzC2qa6Y8SLu31ovtG71YV+bB4AIjrj0uC+Y4L8S1R4Kga9GJtNqzO+64Ay+++CIqKirw8MMPRw3Sfv7556iurgYAfPXVV7IM11CVldov2ERy5ZVXYsaMGaitrcWsWbNwySWXQBRFfPxxoN7/xIkT0aGD8sJ7QUFjwLuoqIjB11YqvdOaiIgocXFm0to3PAn3gW/gr9+D+jUPwVv2m2rXtaUefLvboZjEoswp4rDdj53VPjzyWxV2hk0SkhlHJku6SPRUIkt1ZnP5Y3cKZj72iRJeWlOLQ3Y/Dtv9eHltrWpm6i/FLlmAFgBeW1+H6rDJYnz1+xQBWgCoWXIDRE9tcgd/1KvrY2eZ7qppfO85tv4vcscmZNKG8hxW1gyLRfTWxj2GsBGFPYy9HZ0pziCtK3KQ9se9TlmAFgA+3x5yYUYlu7h+7UOyx56Sxahf+whERzG8pb+i+rc/47fD2icO65ppiGvW5FC+owEhtdqtuWFZ/y6fBNFVjuol18Nfux3e0iWoXTY1of0CQL1HxCvraiMGu6LV5syIo27nE8uro9YB/Xl//Ldhplr4pEWhNU/V1K34GzxH5msO0ALyetOJUJ0ELNEApMrn2lOyGFULLw/eIeAu/iEYoAWA2mW3oX7T83BufxP+up1wbH0Fzn2fadrd5kovPt/hQNnRSZ9Cg6yH7f6I71lAPZM29P0XKwibrG/EAquyLu2/V1bL2p5cXoOd1T4crPfjpTW1srGHZ7AqJHDnhEyEsgiCSiBf9DYGflvD3TddMuSv/aw9TszZ50SJw4+fDriwuDie+s1EzS8rKwt33303gEDm6VdffRWx76ZNmwAA+fn5EQO0gLwubKLOOussFBYWAmjMnl24cCGKi4sBqJc6AIDhw4cHf16yZEmTx0Gp0frOmImISJO4ZpyWJNg3vyBrql1xl2rXfXWxJy5Rm/zH1gozadVKHfbPi33rkCAIipOV8AmM4pioOWnKnX5ZlqlPBA7WK3+f26qUmUQSgNl75EEd155PIu7LFRI0SKZYk88E+jT+XLf6/sgdkxSkTYQxf1hgu8boNVUjCZ9FPDwjV40hp3/MPqEkb+RAu9px4Pu9gfeHJHrVb8vWyT877v1fyx7XlKyIa3ydM7RlQodPfgM01mw9EPY89IJKXUu/CNf+b2SToXmOzIckJjZx1cKDrqgTdnVQycRvkBHHxS6fiGCwTU1phIm3TuycWI3llhBeDzP89xfOU7Ys6nJVok9TXVI1gjk/+NmWbTKO8gmhpAgT8Plrt8NbHvi81K36h2J5/ZoHZI9rFl+jaX9fht0BEw+12/FrQzJaW6ImLQBFqY5Sh19x0TiUwydhY2j5hhiTHmaPDVz4yxgif92zRj6t2t/a7ybZ45wxL6r209uUGW/+msa7QLSWO7g0wsReLSFW+Zk3N8S+yErU0m677bZgVurDDz8c8YKSzxc4jrhcLoii+nerw+HA+++/3+QxGQwGTJkyBQDw3Xffobq6OhistdlsuPDCC1XXO/PMM2GzBf4+fOmll5JyhwK1PAZpiYjaKL21k+a+kko1OH/dLtW+atkyWkS7hTdd6QQB/zc0Cw13513SLyNmDbcG1wzKDGbEndzVgj458pOXVGTFqP3q1P5+i3QyqKjNGWWmcdFVFs/QNNPyqvk1v0dTE6QVzAXIGHQnAMDU4eSEtpEx6C9hG439XAxZkevLCsYc6MPqLEarteuP8od/pNvFRWdJWD95QMiH+G4JL7Bq+/39QSVoUXV01vftYRckemUbkGlSZtKqZVf6HQe1DlXGE+X92TfXgFGdIr8OZu0VOgBED2KqDeOsntbgZGXpqHe2PNC/uyZ6kFby1iSwFwlZIx5PYD1A0Nti1l2OaySeyON3H5gJQPm5aopdMV7PaGpVJgsFGi+sxboumaxYQnggvyRGtjUg/16JdtwzFoyEtVegDmTGwNuCNYMNeUNg7Xut6joZg26HztYFAGDqeErEfuauykmLJLHxzgIt5Q66ZOgxsaeyFEMs94ySF45+9MS8uLcBAD2y0/fYQRRJRkYG/v73vwMANmzYgO+++061X79+gb+RHA4HPv30U8Vyv9+Pm266CYcOHUrKuBqyZd1uNz766CN88cUXAIDJkycjM1P9An9ubi5uu+02AMCvv/6KO++8M2JAGQBKSkrw1ltvRVxOqcEjKRFRG6WzxZEJpHJ2FGnyokTrohkSvC051U7rbsWojmb4JeVt0NEM72DG/04vgNsvIc+sw7qwiVZSVZM2nNoo7BFmhhfDeuuiXAiIt66jZmFDu39MLl5bX4sKV+MbU2slCS3Zp8G+cQZpC3+3BoacAfA7DwOiN3CS7nfDb98PQ+5xEPSBbEXBFH2SGjX6zN4w5stnFo8VpLUecxUES+TJOTpcshvVv9wAf+2OYFu02379UY4DkYO0R2SPBZM8EOAX4ptgJk9jxPKYHCNyzTpUh6SvV7n9AIyKrPEB+UZUhGWfBkqCKI9f/rrdMGT2jGvMAKCLcih87KQ86KIcK9XKO3S06XD78Bzcv6RKsexAnQ+jOqpnxob/Dkd3NOGGwVmRB5cGjsmVn7rsr/PB65dgVKlzKfk9kDRMwqfG1u8G6KydUDXvvLjWa/hcJ4voqY64zHXgW2SNeByCMQuIUj86Hs3xvXSw3o8eWYaYQdhk3VwSHqQ9EqVEQwN96IcyLJPW1PEU5E/8EaK7DDprJwhH7wjQZ3RF0eT18DsOQ2/rolquAACMeUPQ4fc74HeVQZ/RI2KJFsFgg85cKKsFLoWU6fCG/W66Z+nxwAl58PgliJIEQRBQaNHJn4tGIzua8c6kQuyq8aFfrgEWtduINOiRZYCA9K1rTRTJrbfeimeffRaHDx9Gebn68XTKlCm477774Ha7cf3112Pt2rWYOHEicnJysGnTJrz88stYtWoVxo0bl5RSAyeddBJ69+6NPXv24P777w/Ww41U6qDBo48+ioULF2LZsmV48cUXsWDBAtx8880YNmwYMjIyUFVVhU2bNmHevHn4/vvvMWTIENx0001Rt0kti0FaIqI2Sm/tor2zWkakX71eYTwzDIeKlj2W7rRmz4bLMOqQcTTuFD5ZRiqCtFp/BY5IQdrws+goM42HZ0kmS/jIDLrASXlokFZzJm0zljswFgwDABiyjglpzILOUijfrqCDYMiI6/UyFo5SGWD0gKVgzoPOFCk7SoBgylMGGUQ3pKMn/w0k0Q/J74yaSSt6lMFCIPCeEL126IyB11JnDgvSIr4gbb5F+++vk00vD9K6RIiShK2V8kB0/zwj1nrlbU6/BNGrfE7+ut1A59PiGjMQOWMwz6yLGqCNRICAvrlGZJsERTZjpExaSZJkpU8A5W3i6ah3WKaeXwoEakNnkJd8LggGC0R30yZv0SdQ8kCIUG80UdEygX1VG+Cr2xMI0iZIlKTge84nSpq/I+Kxo8qLHlmGFit30DEj/kza0Bt9wjNp9Rk9IBgs0Bu6K9YT9GYYsnrF3L5gsGm7oBP2/pH8jZm04X9DGXVCXBeOY7EZdRhSmNgEdw1MegFdMvUork+sFAxRqlitVtx3332YOjVyvflu3brh1VdfxU033QSXy4Wnn34aTz8tL3Ny6aWX4uabb45aszYeV1xxBZ544olggLawsBBnnaXMug9lNpsxd+5cXHfddfjyyy+xbt26YHatmuzs+JMFqHkxSEtE1EbFk0lb/u0w1XZf/T7ZiYUoSfhuT2KTzbSGSS+aU3iQtimvh69mO8q+GhB8nH/WfJg7T4jYf/kRN55bpX6yv7LELauz6xMlbFWpSQs0ZjpJkoS6FX+DffPzEffp2vcFnDvfheRzwNTxZHjLl0GSROSc+Cqsvf4Q+cnFUK8SQNaHnadqnpMtriCtLXanBAmGzLiCtIa84xVtQozSDYIxC4LOAMGUCyksO08w2CAIAgSdPAvQX78PFd+dBG/5Slh6T4E+sxfs6/8FAFhbuA8QlAGpw9OjBxlFVwl0xkDgOjyg5Y9nskPEF6TNC+tb5Rbx3KoaRf3sAXlGbK2Uv/9dHp9i0jMA8Nfv0T5YBC4evLWxDj8fUJ88J/x9rFXDBZ9csw61HvkTOlCnDJasK3PjX8uVx4MEEvBanM2oQ+cMPQ6HZEfurvGhm/MXVP54enJ3lkhWbNIzaaOXayj74pjoy3W98G72mzhoHArMLoVeACZ0s+CmIVlYU+rBGxvq4PVLuPa4TPTNje8iiVZvbKjD/ANOxUWBcMn6C6FTWCatokyPin8urca9o3MwrINZWZNW1zyvixpFkN/vxuYKD/63rhblYRn+pjT9wPbMNjBIS63SzTffjH//+984cOBAxD7XX389BgwYgGeeeQZLlixBdXU1CgsLcfzxx+P666/HlClTsGDBgqSN6corr8QTTzwRfDxlyhQYDLH/VsrKysIXX3yBX375Be+++y4WL16MQ4cOwel0Ijs7G3369MGYMWNw3nnnYdKkSUkbLyVH2gZpd+3ahfLycvTq1QsdO3ZM9XCIiFodnaVDk7dRv+5x5I57M/h4c0X0CTWiCQ9StjfhJ1ReUZ7FFI/aFX+TPa788TR0vi5yPcC3Nka+5febXQ5cNiAjOI61ZZFvcW/IovaWLY0aoAUgu23efXBW8Oea326FpfvkiLeGRlOjMtuaIChLaWium5zCicNk2zZmAi7tdSUVpQ6AmM9FOFpKQGcugF8RpD363MJ+J85d7wV/du3+SLbMpxKg1UJ0HgEasovDUufEuDNptWd+hmecbarwKCYTKrLqkG/Rwxp2rKqv3ae6TV/dbs37B4CNFZ6IAVoA0CdYEqbh0JJr1mF/WFC2uN4HvyjJboGetrEeahLdf0s7JscgC9LuqfVi2K7bE9uYzgyE1P0MFX7RQotgkE1vAfxJmMk+St1vLeZm3BEI0B7ll4CfDrgwoqMZb6yvRc3RzOtpG+vxx6HNV+piR5SJuxoka4Kb8In/tHpyRQ0+PrdIkUkr6JqWXRqP8HIZkt+FdzfXKwK0AGBM08T3nlkG/Ar1zxRRS5swYYLmY4vZbMb+/ftj9jvppJPw1VdfJbzP6dOnY/r06ZrGdOyxxzbp2Dh+/HiMHz8+4fUpNVp84rDS0lK88soreOWVV1BTo7w6vHPnTowcORL9+/fHSSedhK5du+Liiy9GVZX6rXNERKRO0DX9OpyveqPs8SfbE7+FfWwazxjeEtSC1Ilm04YGPRtE+iOuwimqBjdDhWYaHaqPfDLd8AxqV/w19iAjkNwV8IUEcOOhdttqB6tekYEYrV5qqFjZp6F0ppzYnRIUbx1LfVYflbboGXXGorEAAkHacA11LyOXQ5BrSigltEZoeFkEhy6+1zjLpD2oWBB2K7/abO/HFwWCMYawz6rXo15jV/LWat4/ELs2Zgebtvfjeb3lEwNdPSgwgchlA5QTifglZWmVSLd/t5braOEzyNe4fIrvKs1ENzKHPSJryhn3DgAkVEagIUibO/5dWXvDRIHxyhz6QELrNVhuuVy1/ZmVNcEALRB4jxyobVpAOF5DC+UXZf40LDm33CZSk7WBR0RqM2nD63Q7D2FvhN+LMU0zaTtnpGn0mIiolWjxIO2XX36J2267DS+++CJycuR/jLvdbpxzzjlYu3YtJEmCJEkQRRFff/01Jk+e3NJDJSJq9RpONkOZu56jef3wmn5NuZo7skM7D9IalCdU4bdaN0mErC21CXXChQZpPVECnA0TijV5NvEImWuxqL39Cqx6RQagL6SjYIxy4q/TfjJp7hbfBEJxiVJPVi2DV63upSH3uIjbMHU+HeYuZwBQD9JmHBfIzNZn9Y05VAAQkfhJeGiNRb/joGxZjS7yRHTh7hieHVcWehcNgYMp/QNBzvCtRj7qxXc8jJbgnWfWqQZZ1Zzb2xaszTqmkzl4bO2Ta1S9GBb6kY52DNe1+FlBYqxhx1KnJ3L2fyw6WxfY+v8RxqITAQQ+55ZelwSWmQugNmFcNA3Zt5YeF8LSM7AdQ97xsA36S0LjM3U8GdY+18jHbClKaFvp5nfHZOCYHOX7OJX8oqTMpE3gro9EGbLlx2Bf9faIfdM1SJthbCUHEiKiNNXi5Q7mzJkDQRBw0UUXKZZNnz4du3btgiAIuOCCC3DGGWdg3rx5mDlzJpYsWYJPPvkEl156aUsPmYio1bL1uw7WPldBdFcAou/o7MF5ODxdBy0BBiksSGtKMNVqYL5RU7CwLVPLpE1k8jBJjDARkN8JwWBVXRaLKyRIGz6DdKh9RzN6RHdFQvtpEG3G8miksPdsxtFgTfhE1LJM2qhlAOIod5DkCYG0jsOQNxTest/CxqIMZqjOGC7o0fHyClkWsKCSEWztNSWwr+x+mkYbbYIvEQJ00cKaIQF6v11e961WJy9vNSjfiIfG5sIvNd7S7/JJMOuFuLPlumZGD9J2ydAjJ9IkPJECm3FetIrW+9UzCiLO+h6u0KrHv8YHMu7CA9XXD8rE0sPyiyChw4w2htZS7sASdix1+RLPALUNuBV6WycUnLsEgVdHCP4eBJ0egjkfUjzHu6OfTUFvQt5pn0ESfU26q0XQGZB78rvIGf8OIPoAQQ+/fX/MWrSJiHYDwrRJhXhxdS3Wl0cPiJ/azYIbjsvEy2trsbIket9OGXr8a1xj5qjW939z8omAFJ5JK7RcJq0hu7/ssTtKSRVTmiashl9EISKi+LT4pa5t27YBAMaOHatY9tFHgXpnp59+Or7++mtMnToV33zzDc4880xIkoSPP/64RcdKRNQWCDoD9NaO0Gd0Dc6mLhi1ZWyJ7nKI3sYSB2qBxtBJpyIJP6luj9SSS7ZUelDrESF6aoKvs+i1KyaL8YkS6r2B2eira8tRo1PWG5Z8jpCfXRDd1ZrH5vRJqPWI8ImSYgbpUFVuEQfrfKjzNe0ar99RDK9fQr1HhCRJ8NXtlpVAcPlEuHzi0edRGcz+C8/ybYjTGcICdg1xZkmSIHnV628CiKsmbbOKMg61wKnWGomCwaYs0yAqAyf6jG6BfeX0VyxTI0bJ/PUhejDbV7MVoqcWHr+EOnuVLGi4zzBC1jfPooMgCDDoBOiEwD+bUZfQ7cxFVr0imB8q+iYjfSYa20WvHaK3DhVOPw7W+VDi8Afft5IkodThx4G6KKVE4gxQNbweau3hGj7SoqcWYpTPQ5om5ilYwoJALm/iQVrD0TIhgiBAEHSK34Nq1mqUCe6EsGXJKDsU2K4Ogt4EQaeHTmMZBjHO07xomd6ZRh0cvth1ZAotOlgMOgwpjH2MMugaXnchLQK0AOB0lCvuSmnJTFp92PG+rrY4Yt90zaS1GeMbl+itizlBHhFRe9LimbRlZWUAgG7dusnanU4nli5dCkEQcMstt8iW3XDDDZg3bx5Wr17dYuMkImrLBEOmrDZkNCUf5SJ/0o8wdz4dtSr3wg/IM2J7VfQJxdr7pGFAIHgiQB7ueWVdHYA6DPT8jFtdt8Ha6w9w7nofks+BzOH/RNbxD+KI3YenVtSETJSjAwo2IEMsx+MVxwVvxhWdJdBndIOn5BdUzb8YoqsU1n43wT/i1Zhje+DXQG3QIqtOUbsz3N8WVQKFWzDeOQ2X1N8X78sAANj42zN4e9dpqPKaMMz1Da6p+2Mw+3LtqfV4f4sdOkj4g+ufGFP7Kiy9pqBy2Pt4Ylm1bDsN5/Xhby9fY1QqxsQ7cbwvw7OrkilKgCL8pB0AoHUiG0lZT0PyOZW7P1oCQWfrqmnCo2iZtB7BCpOk3EeD+jUPYfOGL/F24deoNs3GyKwvMKXuLryV8x52mE6W9c2LlNmaAL1OQCebHgcjzDoeGtwM/22s9fSHS8iERZIHON3FPwAAnLs+RNmvf8a0zNew1XR6cHn3LD3uGJ6D/66txZ4WqvepFrfxihLq1j6K+rWPQDRkA3nqt1BrnW8v1cIv+jkc5QlvS58ZPSNVb+kAf81WWZshpz981ZsT3mdTaa2V6xLiq6kbekeFmmgXGRo0BFu1BGnTMch41xIHHq74GbIiMy1YkzY0k3al+WJ8kPFKxL7p+PoBgDXa1bAwzj2fombJjZB8dmQOewRZwx5qxpEREbUOLZ5CUl1dHdhxWOGrpUuXwuv1QhAEnHnmmbJlvXv3BhCYdIyIiJpOn9lLe2fJh7qV9wBQn2xHJwAdbdEDe+Ezq7dXkU6Bt5pOh9tth2Pba5B8dgAS6tc+CtFVjtl7nLKZzBvYdYXYZxgZfOzY/gYAoG7NgxBdge9L5463sOfQTs3jK3OK2FqpLRj5i/VGlOt6at52qJ+sU1HlDZzEr7VMxg5jIDjngQUzttbCLwFeScCXxr/CDz1cez/FV5uUM+7WHp34JjyTtiHhK2oWLeKb+EnyRw48NpWvcn3EZYacAYo2zZm0KvV4dZZCZb+G27sFHQwa6tKKUYK0XiF2WYjvMu5BtT9QmmOV5WLMyrhfEaAFgFxLcu/n7ZIZOTchVrxjtVlZpgsIZMnWrrwbW/QnyQK0AHCgzo9Hlla1WIAWUI/3ry6uQP26RwFIR48v6iqcySyS3XzCM2k9grJus1b6rN5Rl6tl0hpyjo2yRvNHurVONOgQcuPa7roy9VrhDTG3bFPs7/GGz5GWGtDpWLrUI9iw0nKxrE1o0XIHgeOvBODbjOgBy0TLTzU3m8ZyB5Ikonb5HZB89QAk1K97FH4nz/WJiFr86zEzM3CL7ZEjR2TtCxYsAAAMGjQIeXnymS2NxsCXo8HQ4om/RERtUtbIp+Lq761YBUkSMbhAebLSNVOPPx8ffVbm8V2bs55n23DEMFDeIPngPjQPc/ZFDg4usP4x+HNDkNZzZIGsT93+WUkbY7hKffeE1ltrkU8G+n1G4CJAsWEw3GLjyb1Ll43ao5NJraiO/B4LP1f1N9xmHiP7VWs2ORAhozWCnHFva+4bGEiE2bsLRsHc9f/ZO+8wKaqsjb9V1TlMTsAMOeeco2AgKogJAxgx5/Ctri6ucXXX1cWVYEKMBHUVxwCiKCIISM45D2ly6Fz1/dF0T1dX6OqenpkeOL/n4aH73lu37nRXVVe999z3jAGjr7Ys4JLbB30vw7F1+5t4HAPflrSxdhAnMApPSqTPGhBxuD4VuwMtIu0uw0jR+5WW22TbBZJjxQs14SjUs1bOv7ZAJyfMMRC8VeAdBShhG8v2W+6OLNpd3TZ2kTEcObH5gz18MKq6kkmVNjiHMwaP7PogXKR1xSjSckltwZqk1jGhyIm0xtwxiu1DbWfqG5+KLYNse4Wv/6Ge/uvPhFYWUfk1MsdtIBqbYZiIImyirrD50vaC6D1rTKuzfTM6/2fshRFlnHoixUQUuQH/uHIiTNwDgK/iEHhHQXWB4IOncH0tjowgCKJhUOeX9/bt/Q+h33//vaj8888/B8MwGDZsmGSbgKCbnZ0tqSMIgiCix5AtjVoD4F/qrABfdQJyqyEHNTahXZo+mMRJjjYpNMkWCR4yDzURPFMZLcnf5PqNArXgKV+cXJO88IuOOkj9Ur2MFm9D+UjaSFFtQoRl/aEwDIvkgXNV27DmHJhbTYW5Rc2TnOpSOiOp/3/B6q1IHvQOOGszcMntkTLwbUX/RmuHe2HMGw/WnANL+3thbHKptN/0nrB1nwHWlA1D9hDYuj8rqreHCb1yqNodILbkdeGMa2FGR5lJoZrQWCV52JT21T7dvbOlIngRKzchIQDnEqEJMXpq5to4XNIsPp8ZIO9J6xWqT+ISTl5MBkLPm8Qm3O7Ay5iiuhYxOgu45PZIVjmXAsiJtIwhBfqsQbLteVfs1gv1TamMndHo5mb0zPJfg4c2MWNQYyPsBgaDGhtxWXPpcSuEZKn7xxBlcTPFKPX/TVQ4e6s63V9Sn39rmnhIVLsDhmEwvasdjWQmxUJPXW/RZunGPvloboIgiAuJOn9qHjt2LNasWYO5c+eiQ4cOGDJkCObNm4cdO3aAYRhMmjRJsk3Ai7ZJkyZ1PVyCIIjzEoZhoEvrDm/RJlF5zvUVODlf/qfBV3EQVZ6OorJ7uycFBbLLW1vwyS7pUlo9mxhZmxMd2SQvcUhsJUQZTRVO82Rlz2E+bBkoa8yISaTwMH5RjJWJKPWoiH6BZbhKkbSRiNbCwNzyBpT+LvbNNzS+BOmX/BBVP1rIvGJr9X6bT4a5+eSI27CmDKSN/Fq1DcMwsHf/G+zd5cVYzhr5XotXOaY8TPX31WiaAFfBChT9MCJY5lUReAMMbGzEjR2j89PUQmOr8rgzQryYOZbBnV3tmL2lOtJaKWq82uM3+mvc//VJRo8sbUvXtRJpFEoRvwDAazxv6pvwSFoAcDEWWASpfYkhZzjSL/s55n3JRdoyrAHmZpPhOb1KUse7CmPeV10xpb0Vl7eyYt72cnx3qPoaGC7Sd880YFqn6vPQpGNwf4/qqH5B5ngJ9TVWi1wf1TR+ExPRomOBj0f7v9dr8iMvr69rkdbU4hq4//xXxHb6BI1EBoCO6Qa8PjwdR8u9ePTXomC5T/AfNwzDwCMj0jaE84cgCKK2qfNI2nvvvReNGjWC2+3Gvffei27duuHf//43AGDAgAEYMWKEZJslS5aAYRj06dOnrodLEARx3sLoZCI1FMTUKiYZWwsKcaRc7FkY6j3mUEg64mkg0Vn1jRAiyAoAzrDNsfKsulDFhyw790KPg2fOooqptgU4w7XAyarYfSaTDIxq8qbw6DXGkKzQUp1TunbwgYNPJmq2QNcemwzj5Pd/7tgKz1NyrLgEPx04hS1n3dhgvBylrPyS5mgiaQGA0UmFBd55Jqo+zgfUImlDRVoAYA0poveVrPJy+wC6WprUUYukDSczLIFega6DbFy28+jXqGDScVAX/T1qbSz3VgquO6jrjUK2KXYYRsk3gPJy90QjPJIWAMpY+dV2vqrjNdqXbCQta1BMJsU7E19kMpw7SCJ5h0ZaTi83+Rp6DKlNzspZitQV0UaMc9bYbH1ihTVnw82lRGynwSK43pE7hgL3ikWnt6KAay+6j3AeWlxXQyMIgkhY6jySNjk5GT/++CNuvPHGYIQsAAwZMgSffvqppP3mzZuxbt06MAyDiy++uC6HShAEcV4T8D6LxGFdD8xKXgjncaknqFVf/RB2uA6T45yPOEKSvHxr+QuWWR8ETqlvE3i4cTB2zEz5CifW8rCnrcJdJddgo3ECllkfqlEem6Z2HU6piLy+sEhaLSLtEV032fI3Ur5BD9dXkvIPk2Yp9hX407gwMeCww4w5OwHADCT5LQqml1yLDh5xRF20Iq0ccRFpGS7oGdoQ4FVuH8M9acOPiUomPWL/USQHjwprFCaOWTKeih/bZ+KG8vtEZev+/Ayz07dCUPHpVaI2Ev8oibRvpOZH3LahiLRy4vbLab/h6cI+SOfFCQb5qhM12pecSAvWAEZBpBU8pTXaX10QWP1iiXA+hNvIaEFrNLaWxGKJAsPW7VgZhoXHEjl6N1HtDkKRu8bdtvQMpnfw4V33K3Cl2dHSswZ3lVwNPVxwnYj/qhSCIIiGRr3MwXXo0AHr16/H/v37sWrVKhw4cAC//PILGjeWX4L1/vvv47333sNFF10kW08QBEFED2dtpqndz+a74GTlkzZZQtQUpczPLZPJj1YLB/X+SDw3TFhuuVfTNgFP2lWmaTih6wQAKGez8LXtac19qNEsSYdDKuJ7eEQlX3k0Yp8rzbfKlh/R98RXtmdl65RIMvgfABlPccS2c1I+k5SxhshRnZHQJbeP3CgC0SQlSwTUEhJ5IBZppZG0kZPwhIvutU2KTLR4mklatt50tShSHQCWWh6MSaAFaieStiY92vSJL/oAfjsKOVaZp0rbJrWt0b5kRVqGVYykZS3KdhJ1j/znFNBmrRG+71gmESIJvwFyVKxHEgldapd62a/P3CJim0S2OwhgkDlXfWDw1k4dXKx/pdABfX/sNQyu66ERBEEkLPW6UKJFixYYMGAAmjdvrtimW7dumDp1KqZOnQq9Pr4JJAiCIC5kbF2fQuhDnLnNLWAYFrpUcaTjMZ38Q4pZx4gSQwzLlU86NrRJ5GzvFwo3hCQnCsfC+4VGB5uk6vkZSjOPf0XKN7a/isp3GS6S+MXGQpcM9aRd4XYHWqJKi9ncGo0plAfO+SMy5btj2t7a+dGot7F0uF/03tzy+pj2HUpy//+K3tt7vljjPmuCPkN56b6h0Uj1xGFhdgeMIQWcvXXwfSUTWaSV8xyNFy2SpOeWXOIupSjCSrY6ElgAsN8gn0AqEmYdoykDerTUxP97cpvIyYoSmZ9kJqZs3f4q01I7crZADMOA4eQ9VZP6/LtG+9OKMXeMpEyX1h1J/d8Kvncz8qtlzOfOr1bJNf+N6JdT7anMMsDFYefS3d2klj3tUvW1eo4DwMRWyiuFuob8rvXNkXpCN/VsDL62tJGfVKxtfMaMiG0agt2BRePEz0bj5QAAxhh5pQVBEMT5Tp1f3v/+97/j73//O86e1Z5YpLi4OLgdQRAEER909uZIHvIB9Om9YGp+VVAYShn6cbCNGyYUctKI29YpOjzcK1kUydEhTY8b2tuCyxhTjCwua26WPLRdyFzczIxLmpllo4sD2ZzVlpKHk8RH8ENQwazwkJxqZNHIyuHqtlZ0y1QXacOFYE4mqtTc9nbRey1Zq7XQv5ERHdP9++c4bWIXDwam5ldDn94byUPmQ2fTFk0eir37szC1nAIuqR2snR6FudWNUfcRjiFnOOy9/gFdek9Y2t4BS4f7Im9Ui6QMng9Do1HQpXRCUv+3kDpyCfQZfWFsMhrJA2aDh/LnHbA7MDS+BIBf0EodvgCG7CEAgAoNkbRKx2Y8eLp/iuj9kCZGjG+pzfoFALyoPicqmMhCihxy1894cmPL6Gw8WibrML2LHY1tDSO6UQu6lI6wdXsaprwJNexJLqGjDoxeeh3jktrB1EyaALk2SOr/Foy51V7dhkYjkTL4A1ja3AJrp4ehS+sOByNvPxOIdm2apMNtnZV9z8e0iPzbPbWjDX2yDWiVrMODPZIkK2oGNTbh8hDBtGOaHtO7xj8pYDgTWlkwLNeElsk63NTBhrEtzMi2cOieacAdXar3f3Mn6cRpYPLR2vEhWNreIamvC3g28u9kQ7A7YDVOGqX4CsCassGZc2p5RARBEIlPnd+NzZgxAwzDYPLkycjI0HZzW1RUFNzumWeeqeUREgRBXDhYWt0IS5jIpE/tFHx9hmspWcr7waUZMMmYRjIMg/GtLBivEsFyoWPSMbj13EPx7M1l+PlYtZjiYvwPi2oCWDjGvHFgT0gzjCuRZvBh1sWNAABbz7rx/B8lovqbOtowtoX27y88kpbV2xHurJoycC4srW5E4XdDAQBORjmaWCuDGhtFWcZ1Gj0DPY0mInX4ghrtmzWmIDVkIiMeMAwLW5fHYevyeFz7jRVdSnukX7pMVGbKqxaEmLTeil7HgcRhupBl5vr0nkgf/SsAwLkkctby2oyys+pZLBgrn0hOC6E+zKd10Wd9f7JvMrplSqP34kmu2Q1A2wqGMS3MmNqx9kWzuiLj8i3Qx3WJusyBzurA6KTXseT+b4Jh6+bRSmdrhrRRS2Trkvr4zzH+t7cBGYvcUJuDi5uZUeHh8dnuSlEbI+f3JI9EupnDo71TlMfJMpjS3oYpKqtIagOLnsXd3cTWJDd1lLZLM3F4vHcyXllf/UFVsmlIHblEdM2ra3hOg0jbAOwOtJLMFyD72pP1PQyCIIiEoAEslCAIgiDqg2K2CVZY7hSVpfqOygq0RPSEC1FFXB526kfgNBeF8MOZYGp6uebmGfpqUdguswwxKYrESgBQzmZgs2EMjnF+YZ/hTHDBgp364TjNtaxuyBrhgw579ENwRtdaobfY0WmMpC2PMfKREMPLCFQBthsuAQ8WDCcvElawKRH7Nyew+OCFAQVcO2wxjMYyywNRbx9N8rJYYSVTJcqUuKJMdZ/gyImnNULwQgBwQNcHB3R9IABgGA6Mzuq3u9D3w0Fdb/++w/yX6xuHIH8Ohh+DcmJssyS95ijIho49LPq3kk0Fo5f34a8rfGzkyVK94K6DkdQcK8ojthFIkiAIggjSINY1eTweACBPWoIgiDrikK4XZiUvhIsVP/Cm8AX1NKLzD4NQhVBP4K3GMdhqlPoMqsGwRphyLwcKtbVP56qjhcIfTAGAi/I56QfrY8HXV5U/ioH8cbyW+j1O6dqBE1y4pexWNALAcEZ8aH8Lm0zaBWU1wjOIc0phnWFsEnqjftLAnF8cg3Kis72GwZiT/CkeZbfK1lciJWL/Zk7b91kfrDDfWaPjuC6Sc3FQTvYXTomjYQg9WmH0cRZpeR++sL0YTHg4pOodTGd0AOPDQts/sdrsX4kyouot3FbPwl44VUoibdgEoZxIm6zudHNeEZ7DzMNY4OWSULvx7ur4uMgiLcdXAqjbCOVYSGJKUSmoR+vvNFBycIIgiAANYtpq06ZNAIDMTJkMqwRBEETc+db6fxKBFgCO6zrJtCZiQVe+vcZ9CKwRhpzhmtun4XTwtU0nFcKsvtg9bn+y3Iv1psk4pWsHAPAxRnxifx0AUOozx02gBYBs3wHRe62i1AFBWVwktLOfV4/23m0Yjv1sV9m6SiaykKWv2hfTuOqCmh7HVtYTp5Eow0Qh0mb4DtfiSOoeXkMEYjRUCsagQAsAKy23oYqxoYK3BgVaAPjZcncwW32i4FQQac1homSGWfo42JI9WBtDSkhsrEtSVoH6Fdx5NrIfsM5XVgcjqTnJcp4bYewwXlwHIyEIgmgY1Hok7fz582XLv/rqK6xfv151W5fLhf379+O9994DwzDo00c52zBBEAQRP/YYhsqWu+OU9IkAWjN7AHSuUR9e6HHSqX2+NcV7NPha7ytBS/dqHDAMAAAk+06glWcvAHEyrevKHsCnSW9E7LuQa471hjwgJGdRJeu3F6gyNIOsOWKMDCh/C8A7wfcctEUDGviquI3hQsaMyoht9povRg+Zcg9jVvSzDdCcPQJAXuStS4ZWvY1fLbdHbhgFFr4QQG5c+wyHE7SLtENKXwGwsPYGU8e4YEI8192V6/IAFInKSrmmcIIHUCIqr+CykEi/kDwjFWnbuVeA8Y0FQhJTCZ5y9HYuxHrT1QAAvVCFniWzALxdV0OtVyx8EcI9nF0abFlqE7cGT2kToksQWF/o+MrQRUMEQRBEBGpdpJ02bRqYME8jQRDw17/+VXMfgiCAZVk88ED03l8EQRAEkYi05qKLFmzvXo5dhpGiMhfPYf1J7cuVk9z7g69551ncVH4X8q3/BzdjwaWVr4GDNDlnH9dCVFak4UfLfahi01T7Z3UmANJIQW+cF+4kc2KRkNUqSiV1iOs4LlQ81jZAhCAur8ItJs9EXkRsQXEsw4o74ypfiEmkTfadQBf39/jNfIuofETVW+DdV4Kz1q5Iq/V8mFZ6K3KztScqTCT+frYznsnYJil3+eK7AJyVEZd8ggCdTIXLm1g2HQInPdemlN8PwT0I0FeLtN6SbZhY8QyMQiVK2CYY5piLJGPiL6OPG+5CGIQU0SS0s54npF1CZL8JC9MwJh19Pk8DMVgkiJqxbds2vPzyy/jll19w6tSpoGXnxo0b0b179/odXAIzbdo0fPDBB2jWrBkOHTpU38NJCOrE7kAQhOA/uTK1f3q9HoMGDcLXX3+NYcOG1cVwCYIgCBUEXntSGkIZwVOBHs4vI7YbWTUTr5/Jxp2lU9DNJc7m7RJ0WHdKulRTCZtzZ/A17ypECl+A68sfwM1lt6Oxbyd4jzTalQWPixxv4cXCDujqylft38fLixSeOB4ybd2/AIz49sXr0yaO8Ky2jPeEOi4h8hO3W+E74Vl1kbaF5w8I7sRYxmuAQ9M5Gs4A54cYU/mSpDyJPwXeVSSzRXzRYv8x2PEeuru/AWfOrvXx1AZJwhn860wTSblT47VAK3IiLS/IH98VngRLwhaWvK+3cyGS+VPg3eJJEE/xVliFYlxV8X+4vexGtPWshKdEKoCfr/CuQph4cXIrRz3f5jiFyPHgBsFRByOpOT66ZyTqkRUrVoBhGDAMgxkzZtTafv7880/07dsXH3/8MY4dOxYUaAkiFmp9XuvgwWpPI0EQ0LJlSzAMgx9++AFt2ih7wzEMA5PJhPT0dHAaszYTBEEQ0VHp4fFHgQtZFg6dM/yRG0pCW4DS32+HIWcYTM2uBBuWpMVbcRjuEz9C4N0A74YhZzj0ad1qbfwNEU/hRngKN8BTtBEpfGSBxMyXBF/7k41V81VhG8hFriphK12Nop8mwZA1CKwpQ1JftuZe8M6zYHVWGJtOgM7eUlTPQF2EkEsUX+T04ZPdFZrHGAkGApwHPoG3x/PQ2VsAADy8NnHEJRiwvdCN01U+9Mk2wiaTPE0LO4vcOFjqRdcMA3Jlku7EwlmHD5vPuNEiWYeWyfWbKJUXBKw76UKJi0efHCMsOhZrCpywG1j0zDKg0hd5fJ6Q64iXF/DHSRcOlXpx0JOjup2JL4fgiZwNvCY4Dn2OkhWTYcgZDnvvV2HI6K3YNhYhxCA4YBKkx7ybMaNy2yvwVRySvX7GC1aIfE1gBb9w4i3bg6q978GUN0H2mpDIcPBCJzjhDVnW/91BBzql61HlFdAxXY9G4VmhooRlpCqtTwCcMlGz+0u86JheNxm3BEHApjNuFDl5MACsegZ9coxgGQbHyr3YXezBCU+KaBvmnM+I4C4JlvmqTqBs9V2S/vnKo/A5z4AzRc4H4jq+FL6qEzA1vxKsXurL6y3dA9fx7+GrOgZD1iAY8yZIVlnWBu4zf8BbsgPGJpeBdxXCdfwH6JLbwZg7Nrh/QRDgOPAxTMJtKEP1tSn/oAOZZg6NbfUTAqolkpbhG4bdgaAxJuzzvZUwcgzGtYyvrzRB1AV/+ctf4HA4kJSUhJdffhm9e/eG2ez3lm7dunU9j87PjBkz8OyzzwKAKHiSSDxq/ZenWbNmsuWNGzdWrCMIgiBqH7dPwOMri3DW4Re4butsx8XNzHhvu7JAYhCq4Nj3/rl/85B+2c/BOl/lMZxd0guCq7B6A1aP9Et/hiF7UK39HQ0J14kfUbTsMuCcQJJijuy7aRGqo1t1Qs0ysdv4s3Ad+RKuIwrRgYIXFRv9dkTMpr8h4/It4Q1U+z9cJo3gu2t5oUzLmuAfw5nPWyLrqiPgrHkiQVCN3SU+/H1NCQBgsbkS/x6WDgMXnViw6rgT/9nkj/TUs8DfB6bWWFQtdPjw2K9FqPIKYBngid7J6J5Vf7nFP9hRge8P+cXJL/dVQccCZ85dJya1tuBQVeSI5B+POHF7F3/yndlbyrDyuLaIb5NQAd5beyJt5c6ZKPvjfgCA++QKFH7TB6mjvoMp9zLZ9uETI1owCA6wMhMabsYC17Fv4Tr2reT6GU+qNv8NMC5SbcOei7Z1n1wB98kVKLc0RubEXbIiWyLjDfNdXXbEgWVH/MeukWPw4qDUuE2kBOAFAS6ZSNqPdlWgW6YBTZNqX9hbvLcKi/eKbV9G5plwUVMznv69GP5LYoqoPjDJxp8TaXlXMc5+0wdK1/WqXW/B3v1vquOo2PYqytc/7n+99WVkXrENDFv993uKNvv3wfsnDirxKqydHkVSn1e1/aEx4jj8BUp+ngy5v83W7RnYe/iFisrt/4Rj3zyYUq4Vtdl8xo2HfynC3wemom1q3U+aaVmtAF/ii7SCIIDXaEi7cE8l7HoSaYmGh8fjwS+//AIAuOOOO3DXXdKJL4KIhjqxOwiF53n4fD507NixrndNEARBhLDimCMo0ALAO9vKIQgCVh5XvvFv414ZfO0+uQLeiurM4M6jS8QCLQDwHjj2fxi/QTdwytY+GBRoASDFdyLiNla+enn0Pv2AGu2fg/Zlh4KnDM4Dn4rKPIiccbq20YVECZZv9HvoJrPRR+qedfCqx7oSXx+oFu08vF+0rSlf7qtC1bnIPF7wi6T1ybLD1dGjxS4+KNACwBf7ohMt3T4Bv2kUaAHAKFTUaiRtQKANpWrXfyVlgSgTA6KPpNUL8sdEuu9I8LX75Ar4Ko7ItqspbMWuyG3CLBH4qhOo2vOOQuuGicsn4KejNVsS7pWZAOIFZVuF0OtDbRIu0ALA8qNOvL6hFEpzVsy5Yzog0roKfgRfpfwbpFYXICDQAoCvbDecR74S1ZetfTAo0Aao2j0LglC71hAlv1wLJfE59J6kcsfrAAAe0lWbAoDvD9WP72uVL3IkrdAQRFpvBRr7pNcjCy9v++JOMMcQgtDC2bNn4Xb7gyjatm1bz6MhzgfqXKQlCIIgEoM/T0mjMgX4E68ocWXFk6L3vONU8LVj/3zZbar2zIlpfOcj3pLtovd6RBavWnlWB1+f0cW+ZGqw472ot/EUbUJoWuYk/rRq+2Z1EEHW1vNr8LVj3zwAQCfDYSRrELzD2VYYfWTyobBo4ViE3nDChaQTlfXr4RdPW88KDx8h/lqMHi7AV7OI8WhxHftGUhaYcLLxZ6PujztnQTLY8W6wzMSXobdzsagdHz6pFQcEQUASfxqNvDtV29lkRBLX8e/iPp7aIJplmvkHaybSVnjk9+VVEJPicT2oCaETKuEE7WrOiXuhv99y8N7oJ4s8Z34XvXefXCFpI3gra22CIgivbPnhq6i24gsI0SVcI9m2q05on2CKJ4Ue8UqKyypfAReykubSylcbiEhbhVFVr4vGPqbyZdwq/EO2vVyEOkEkOi5X9XVCr69fuyri/KBeRNqqqipUVSnPTM6cORNDhgxBhw4dMGbMGCxZskSxLUEQBBEbSol9lOjA7kQaf0xUJoQkmtKn9YjLuIhq+js+gk3Qnmhosvl72fKxlS/i8ooZUe/fU7wZpmaTgu/7Oj9TbR/Jz1gr4yv+Llt+Zfn/YajjbUk5I7jxQMl49HEuAAC0c6/AmMqXcVX5o6r70ctlBYqSWH1tQ2noz6WPFF+sWFelIHIpwQluCHztCCOCinATjrfiEIDIExONrNLvPyCGXVExA2MrXsBgx7t4qGS0JCpX8NZClJ7gAwPgjtIpGFo1F72di9DX8amkmV3m72LYBvJw6dMuvKaZanZ+lsmE9nkFwKcgFOsTOPwlcFwKPv/5xbuliSJF+GI4DxlteUR8Zbuj77sWGV6VWJPJZ93ic7GZZwMeLBmLgY55uKLiGVxS9e+GIdL6nEjmT+OBknEY5HgfEyv+iiu7tsegsYn1eRMXJqFJxVasWAEAWLhwIUaOHInMzEyYzWa0a9cOjz/+OIqKpPfiM2bMAMMwaNGiRbDs5ptvDvaplKzM6XTizTffxMiRI5GTkwODwYCsrCyMGjUK7777LrzeyMk/XS4X5s6di7Fjx6JJkyYwGo2wWq3o1KkTbrvtNvzwww/BCc158+aBYZigHy0A0RgD/w4dOiTZj8/nwwcffIBx48ahcePGMBqNSE9Px+DBg/Haa6/B4Yj8e7xz505MmzYNeXl5MJlMyMvLw5QpU7Bu3bqI216o1Lkb+pIlS3DFFVfAZrPh2LFjsNvF3le33HILPvjgAwD+mfI9e/bghx9+wPPPP4+//OUvdT1cgiCI85ZoIxYm9OwPblU70cMVH5KAhLMp+Iwz9ZN4o2Gg/h30HXg3sPSR4HsTXwonm6zY/qqLbsLifLH4Mjz1OC4+80ZMo/OV7YHO1iKkRH28lVEKckr0cn2OJbZnRGWDHO9jiPN9ccPAscV7kMYfw/Xl9+P68vthan4NUod/hmKnD4tUPHENUYq0vIwwkxQHkbYh09G1DHnecO/iaqpkEiypwcHjTzxYC/jKD0ZuFGgbFGnVow2f6puKe38WH2Oc4H/A0sGNix3/UdxW8NWOSAsAqfwJTKp8GgCwzXAJ1pqvEzWTFZ+ZhiHS8h7tEZ6pxhqKtDLZEH28AJ9CwKotgVXaapHWL+6FJhCTIyYRUKNI6y3dDWOTS6Pvv5ZQS4pZ4ebjMhmnFaeXR7lX/Dmm8UeR7duHvIqQa20DEGnh9Qs4Tb2b0bRiMwDA2vYtMKwOlzYz44fDYoHn5k61k0yRICLB8zxuvPFGfPTRR6LyPXv24NVXX8WXX36JlStXIidHPflpJDZv3ozLL78chw8fFpWfOXMGy5cvx/LlyzFnzhwsWbIE2dnyyYU3bdqESZMm4eBB8T2N2+3Gjh07sGPHDrz77rs4ePAgmjdvHvNYjxw5ggkTJmDz5s2i8qKiIqxatQqrVq3CrFmzkJ+fr2jzsHDhQtx0002iaONjx47h008/xaJFizB79uyYx3c+U+dPzgFVf8KECRKB9rfffgsq/RaLBW3btsWuXbvgcDjwzDPPYPz48ejcuXNdD5kgCOK8JHzZNgB8tFP54TfLwoE1JItcTV3HvoW5+VUAAG/ZPvkNhcgzwhcu6iJheE4rPVyI9rGMF2rwcCnwEosGNYplBA01THwZnGySpNzOn5GUORnlhEbhop7WiEC9Nj0hSKHMUuKdRR7M216OPLsOJS4eXTIMcUk0s/RwFS7KM0PHMqjy8Fh2xAEDy2BUUzP0KsnONp12YX+pF72yDGiukNDsZKUXv51woZGVw8BGRlGm9Wgz/mb6DgCQn0CY8u1pdEqP7rPQCW44D3wCT5f/gz61S1TbRsJbquzVKgiC6HNwHvJbEyTxJ1X7NMp8F+F+r0oULb1ENWlZTMh4fXKCNIJY7hwLTfiUyAhRLMPfX+rFX34rQvs0PSw6Fo2tHM46fZrOJQAolYuk5f02HnLYDTWPzq8tAsnsytc/Cl/5flTtnqXa3nUsH57ibdCnVj97uU7+AnfBTzA2vhj6TKlHOhMyKSt4lSOsPIV/Rjv8uFL8yxR4zq4NvhdUFpeeqvLVqUgrZ3eT6jsmKUvkSFrBW4Wq3XPhOLRQXMFwweuMnD2S/QKf9CTqj6effhq///47rrjiCtx0001o1qwZTp06hf/+97/Iz8/Hvn378NBDD+HTT6tXptx9992YPHkyTpw4gUsv9U86Pf/887j88suDbbKysoKv9+3bh2HDhqG0tBRJSUm455570LdvX+Tl5aGwsBBff/015syZg3Xr1uHyyy/HypUrJfYJO3fuxJAhQ1BR4f8dnDhxIq699lq0bNkSPp8Pe/bswdKlS/Hll9UJgq+44gr07t0bb731FmbN8l/3t27dKvkMmjRpEnxdWFiIwYMH4+jRozAajbj99tsxbNgwNG/eHBUVFVi6dCneeOMN7Nu3D6NHj8aGDRuQnCy+B1y3bh2uv/56eL1eGI1GPPTQQxgzZgyMRiP++OMPvPjii7jrrrsoV5UMdX43tmbNGjAMgxEjRkjq5s6dCwBo3LgxVq9ejdzcXBw9ehSDBw/GsWPHMGfOHMycObOuh0wQBHHeUeL0yS6xVvPvy7RwqDCIf4Ad++bB0v5ucLbmcOxVTjrjqzoJzlKz2efzkSI2T7U+PFpLLrlJJNQePrXgq6z2DmSicheNjFGogBNikVYvVMkmOJMVaQMTAOHL2M+JtJHkkmjtDp7+vVi2/LtD1efNoj2VcckI/u62Chwo8WJ6Vzue+6MEB0r9f+uuYg8e6ikfTf1HgROvbSgDAHyxrxKvDElDE5v4Vq/czeOJlcXBxEclThvGhmTTXnYkOg/PDJ8/ksPGF0pEWp8AbDmr3WIAqPZzLcwfgMyJu8BZc6PaXg2vyhLryu3/hK3zYwAAT/F2OA/5rTOSI0TSygn9rEpUXjjFP45G6ogvYGo2UfM2agiC9NxxsdLoNPlI2gYi0kYRSQsAB0q9wfMnlN3FHjyocC4FKJcRaT28gMV75aOgEzmSNnQlhJxAyxozwLvEHsxnv+6BzEl7oLO3gOvkLyj64SJA4FGx+e9Iu2SpdBchkbSlq5UznDv2z0fKkA9i+Bvig/Og2AKkQNdBse2pKh9apdRdlPnLa0tE75N8p2CQmZ5NZJG2ZOVUOA8vllaEXJ/kRNpoV7ecr/CCgAp3A/dBigKbgQHL1O93//vvv+P555/HU089JSq/7LLLcNlll2Hp0qVYvHgx/vOf/yAzMxOAX4DNysqCzVb9G9ukSRPFoMKpU6eitLQUPXr0wNKlS5GRkSGqv+SSSzBu3DiMHTsWf/zxB+bNm4fbb79d1OaGG25ARUUFWJbFxx9/jGuvvVZU369fP9x4440oLCyExeK/t0tJSUFKSopIMI4U+Hj//ffj6NGjaNasGX7++WeRpQMADB8+HFdddRWGDBmCAwcO4JVXXsELL7wganP33XfD6/VCr9dj6dKlGDp0aLCub9++mDRpEvr37y+J1CXqQaQ9fdp/U9iuXTtJ3ffffw+GYXDfffchN9d/U56Xl4f77rsPjz/+OH755Zc6HStBEMT5yv/2R7/M1sgxKCnZISl3Hc0H71QXMpyHFsDa8YGo93m+ExC4lMiycABnCi5r7OBejvWmq2XbWnXyN7gtzOU1G2QIeqFmSXjC6er6Fistt4nKurvkfehb+5S9q8K9Rhn2XGbsCDf9hghRdKGUOH2aIoUFAG9vLcOrQ9M1963Ez8ecGNnULBKY1hS44OMFcDIPszM3lQVfe3lgwe5KPNxLLEL9fNQhykw/f2eFSKSNNlFOGn8UANDYtxNndS2j2lYO3bkEM4K3Eq5j38LS7o4a9xlALZLWeeR/QZHWdeKHYLlRUBcE5YT+NN/RqMZV/Mt1aHRTnAQXGZE2O7M1wnMUWmS8rhuKJ200kbRqrC5w4U6vAJPCtROQ96TdV6I88WBNYJGWlYmyFsGZpGWCF2Vr7kbaxd/BsecdUaR28U9XSNsz1X+/Y7+6CCv4XGA4o2qbuqK5Zx3+NF0pW1fojG6FSE3gBQFlYeJcMi+fFDNRRVqB98F55H8R2+XZpTJEpjlxz5+6pMIt4PYfo09a2VB5e1QGkoz1K9L26tULTz75pKScYRg8/PDDWLp0KbxeL1avXo0JEyZE3f/KlSvx++/+xIoffPCBRKANcNlll2Hy5MlYuHChRKRdunQpNmzYAMAvooYLtKGkp8d+D3ro0CEsWOCfqH7zzTclAm2AHj164J577sErr7yCefPmiUTadevWYf369QCA6dOniwTaAE2aNMG//vUvXHPNNTGP9Xylzq+EZ874l1eFWx1s374dZ8/6L0ahIeIA0Lt3bwCQeHcQBEEQsbHuVHRCzBWt/CIO75I+2Au8C1W71T2F3Gf+iGp/FwqtPauR7CuQrWtq16F1ig4pg6sfdC+t/JdiX7d38f+uXtXWGixLMjAY0Vz+RlARFU/BRr5dSPcdiq4/BQY73sPYqhcl5deY/Rnmr6h4Olhm1jEY2V4a6cQaz/1t4R6m58QmU4TAY7te+0OBMwoP5yPlUqFMjcZW5YHKCUIKK60l5ZvOSM/zrWfV/V4LZJbaqtHC4xfPezk/j2q7HO8usDJWKIFIWgDwVUmX+NYEb6lyJG1oEq/QZdqRjhAdy2BAo2qhqZnnTzT2BSazGNh7vhjZpzOeidJkhLjO3W9Anr16DH2dn4KViYpn4xi1XJuERtJOKbu3Rn2ddagf7+GCGQDsLVYWaesiEFDOG1sLRqFStV6fLp/803Xcn5DScUDs1aiW+C5iUjKo2yHUNe09K6AX5P8eb5wSYmqh0MFLzsz27hWybRNWpPWUabK5MnIMhjSpnhjIs3Oy0bUEURdMmTJFZHkUSq9evYKvDxw4EFP/X3/9NQB/oGKXLupWTgFBc926daIkYt98803w9YMPPhjTOLSQn58Pn88Hi8WC0aNHq7YNjPXEiRM4cqR65d2PP/4YfH3zzTcrbj9x4kSkpKTUbMDnIXV+JeQ4/01ieIa83377DQCQmZkpibJNTU0F4M+ERxAEQdQcZxTJfO7oYseIPP+NtLHJpXCFRUj4KiNHjcUr8qkhIwiCX6wJiXTTwY1HvfdgW7uvkGaxYGBjE3455oTDy2NkUzMYhoG5xdVg9HZ4CjcgLXswpq99BnO4v0v6DyzHvLK1Bdlmv+/isFwTjJGipwAk9fsPeFcx9Gnd4DrxI6p2vSnbjoMPj9rfx1+qnpWt10qndD1uyW4Nvuz/8M+cKjy63j8J8K+haWhsWoSqPXMwHjo0SzajwMFicBMTssx3oqx8M6r2VGeFFs49zkojaf2fRaRI2WiW10UTdRstcr6mAU5WSUUkv2gQeTyMTBu5v8PtE2Dg/N63pVH6ClsEvxijj8IteVgTI25MOoXH9uSi2Cdeis8J1SKyr0p+AiNW1CJpwYeKCuLr41D3p/jVIE68BSDot3tv9yR0SHPAUXECAx1rYMy5GwxngjF3HIyNRsCQPQTOI/9D5XblSZa4IRNJy1mbYMaAVCw/4oCZAzqueFR2U1avvvQ/UeBDfk/6uhbhoO8yrObGxdTXqSofcmUi+gLInQ8FMudkXRLN73cokaLCdUnt4IL8SgYA4JLawFe2V30n544/d8HPEccjxHNyooZk+g7igZLx2Nv2XXxb2Fw04VWXIq3csTWm6mX5xgkq0vKessiNzjG9ix1tUnRw+oTgPQ9B1Aft27dXrEtLSwu+Li+PbXVaIKp09+7dmo9zj8eDoqKioE3Bxo0bAQBNmzZFs2YKyZrjQGCsVVVV0Om0y4UnT55E06ZNAVR73hoMBnTr1k1xG71ejx49euDnnyP/ZlxI1LlI26RJE+zbtw+bNm3C8OHDg+X5+flgGAZDhgyRbFNa6n8AUAoLJwiCIKJDa1SgiWMwsqk5+F7wSiNxnIe/iNhPtB6C5yW8RyKgZE7ag0ZJbRCaE/XiZmaEY8odDVOufzZ74JihmPODNOlPQOhjGAZDcqujU3wagpUM2UOhT/PfRLlPr1JuyJnRYtib0P9QqBjNqYXxLS2wZk0GANgBLBgbWquDrdPDAICBYduZW10vEmmDUYMST1q/3QHLMDByDFwKx3s0EWm1+eioNoqTMpGtWkUDuag+ueX5RU4fcqw6WUFYK4yMOCjH/T2SMKixCcBVyCwoQnGJOOJKh2qRlnfIL/ONBd55FoKrULmByvgNlnTI5QILfJY6lsGlzS0AWgOQTmAYsgfDkD0YnDUPZWsfjG7gUSLnScswHGx6Fpe3skIQeJxUSGwmNJAkj+G/JwOYn7AasYm0pyMc83KetOUqXpF1IedFE9UfSsSEdozyAkuB90Gf2kWDSOv/vFwFP6q3AwBf4oi0AJDr3YaeXZrh7C6jyPYl3Bu+NimoEH9HLZJYMNKfewAJHEmrIYo6gJ4LXDsJon4J+LfKwbLV10afL7b7pIDlZ7RUVVVH+AdWnTdq1CimvrQSj7EGAjLT0tKCQZpKZGdnx7S/85k6F2mHDBmCvXv34s0338QNN9yAjIwMrFu3Dt9/719KE8iMF8rOnTsBADk5lHSGIAgiGhxeHvf9XIhyt4Bcm38p2YBGJng1PnSEZ6qWXd6oQQV0n6QZUrnPjtFZZVqqo+SfaFC8B9IQcamvtiBiOKlIHECf2hkM6xd8tPizKhG7b6N4O8HtT+QlhNkdhHprmnVqIm2Mw4gzauMoqJQKK1oD6aq8Aq7JP42n+6Wgc4ZfuJY79wsq/SJttFYHoWhNlhUqEqebOSBcpA2JpHUd/x6lf9yPqp0zYcwdC95xEp7CP6HPGoS0i/4H1qR98l7N6sBfvxOCIJyLcBF/wHLWAEAMwr2KCFa++TnYOj+uyaNTEAQ49r4Lz9l1MDWfDGPji4N1nsI/o9qvCL6BiLRhKzOSOE/M6uihMi8EQcDK407sKvagd5YRPbP934EgCLKetGqETqBsPevG6hNOtEzRY2SeKeYowd1FHry9rQxHy324ob0N5ihsWkLxIYLnsIotx8n52h4ZK7Y8D1/VcTj2vR+xreBzompP4Di+UnQc1xcMawAX9j3FGLgcE+ETZY2syp97woq0UUTSEvLYDAzeHnXhBKfZDOd/BHVA3O3WrRs++uijCK2radKkSW0NSZHAWDMyMqKKcJXzrqXo+Nioc5H27rvvxrx583Dw4EG0bNkSbdu2xY4dO+D1epGWliZrHPzTTz+BYRh07NixrodLEATRoJn2Q3XigWMVPhyr8EWVGChcTBO0hGUq4CnaHIzWvBARfDIiLRe/CBLFrMjhfq0yiEVameQx5+CS/DG/dgOD4hoEQSkLyhGQEZsEr1NidwDOEHxZoiImR/Psfais9gQstYjeU1XS8ctF0laoiEnP/VGC14enoZFVhwqZEOj/bCzD+5dm1kikZTSLtNWv00zS7zPUkxYCj6qdMwEArmP5wWLP6VU4++1AZE3ao3l8qlYH53DsmwdLG6l3mtLfFv2zh7JYWrHxGfCO00juPzNiL46976L0d38ykao9c5ExfiP06d3BOwtR/ONY6QYi8U1l0A00ktau9wGRL3OyrDjmRNdMA/672b+EdfkRJ/4+IBXt0vRw+oSoVwwEzs0j5V48/0eJv8+jTgiC/CqJSJyp8uGZ1cXB9x/tin1Vio+pm8c+LQItAFTtmYPK7a8FXweO43qFNUDHiq+DdWp3UNHwRdpo7A4IeViGqfdEWkR8CSTyqqioQOfOnWPqI7CqvKAgvlZQ4QTGWl5ejg4dOkSMhJUjYFdaWFgIn8+n2sepU+rJpy9E6jxxWM+ePfHqq6+CYRhUVFRgw4YNcDqd0Ov1ePvttyUJxUpLS5Gf778xD7VHIAiCINQRYkwuEkqKUfwzYWo6Mea+HAcX1HQ4DRr5SNr4ibScgkgbKsAqEepFyRpVMsKeE3wHNFIWcrWQaoxNpZX7WzzFmyV2BwyjLUt9NKfIwdLaFGmjay+XzEgt4zwAbDjl/+7klm8HrDKKnNGJtBa+WjzK0JhQLjSSNlUms1toJK0avrK94D3qiZBC8VaIk30whlRJm6o9c/0vePHnYGHkxZBok0RFOhc1LREHggJtgPLNfouFiq0vye+XrZ60UItqERpIJK2v6rjovUWv7XyXw8gxmLlRLCp9sMMv2Fao2BooETi9Ptgu9i0M9Bkt+QeVk3NFSwvP+uBrS3tpwjXWlBm3fWkhINAGKFv3cJ3uXw6GM0ojaevQ7qAobFIxy6LyW5moIm3Y+UkQBNCjhz8x44EDB3Dy5MmY+ujZsycA4MiRIzh8+HDU22uNag2M1eVyBf1poyWQHM3tdmPz5s2K7bxeLzZt2hTTPs5n6lykBYCHHnoIGzduxNNPP43bb78dzzzzDLZs2YKJE6UP/ytWrECfPn0wdOhQjBsXm98UQRDEhYgjDmv0hueJxThruztj7stbuKGmw2nQSPx8GQ5gYxMX7u4mFnsubqococUakmFqIU16FIBLagMmJPLUmDtGsW0gynZMCzNSjbHdQvRvZERyjNvqUmRW1PBuid2B1s81mmdvbxwmPZRQsmNQ4rBMVG+kiL/ycw0qPNJ9uc/tP1yMyLVVCwRmGZuNG8rvCb5O448hz7NRfRAAkkK+e7l8aRahJGIfAaIRA/gqsb+tuflVkjaewj8heB2S5fTdDftk+8wwRzfZYGx8CVhTlnKDGEUXz+nfAQDuUysldawlF4xOfH2wtL9bvqMGEkkbbumgT+2E8S1jm/By+wRJRP3+cxMynhgiKANRl9sKxZMmsXp4y53rsdLG4z8+GGMa7N1nwNzmlmCdscloGDL7xW1fEjRYbnjO/hGXXfGuosiNZDC1nAKG1UEXNlRfLV77w/GE/RaYdQysnR+XbZuokbSeImVBhiAuVCZMmADAH0DzxhtvxNTH+PHjg6///e9/R729yVT9TOdyKS+HGz9+fFDQff3116PeDwCMGjUq+PqDDz5QbPfll1+iuLhYsf5CpV5EWsCvrj/77LOYM2cOZsyYgXbt2sm2u/zyy/Hzzz/j559/JlNhgiCIKChyan8q7JNtkC0Pj5hkTRkwyYgbmohj1GhDJDySltFZYvZqGpZrxtP9UtAlQ4+7u9lxa2ebavuUIR8iZfgiGHKGS+qSB74jes9Zc5WFpHPLZU06Fv8cmobWKcpLMce2MOPRXsm4v3sSPrwsEw/2TMKDPZLwQI8k9T9OBYZhJQ/7giBII2k5+eM5nGiizV21aEwYbbZ2OeEmUhI0L+//e+UiaQOJiMJFqT45Rrw0OBV3dLHj1SFpmH9ZJi5uakaujcP9+n+io3u5qP2DJWNxfXurrI1BgBRDdZ3ckC18ierfEUp4RKUafJV4eSBna4HMKw+ENfL4hVqPOOqxkcmBAY2kXrFZUYq0nCUHGePXg0tqI1svse3QSCAin3dIlwzqUzpJypL6/gcpwxfJ7D/xRVqB98FbJJ4M0Kf3wvXtrXi8dzIuyjPh2nZWzaKt2lkTi7Dqjt0xRBZLBP/ZS6OwUEgf+TWSB76DzCt2gDWlI3nAXKSM+BwpQz9F6kVfQpfcoabDlYWzt0L62DUaPNjjs7zbWyY/qaKGselEpAz5EIA/EaCovzqMpA2/ButYBvZeLyN15BLJ7zeJtATRcLjkkkvQt29fAMCrr76KhQsXqrbfunUrlixZIiobNWoUevXqBQCYOXMmPvvsM8XtCwsL4XCILepCE47t379fcdt27drhqqv8z3qfffYZXnvtNcW2AHDw4EF8+umnorK+ffsGI39nzZqF3377TbJdQUEBHn30UdW+L1TqTaQlCIIgahc1L85wrm4nFfnkotwAgLM2i2k88Vza3xCRiLQ19KPtnGHAX/ulYliuOaLYy7AczM0nI7n/LJk6adSpTsk7OMTb0mZgMUolgtekY9Anx4hBTUwwcAwGNDJhQGMT2BomEWAMKWElglTc0mh3EE2gnCvO4ksAQRCiztZ+uEwq5kXqocLDw+kTILcrn+CPAAwXI3Qsg5bJeoxsakamhYORY3BbFzv+NSwdHfXSG3wOPkxoZcVzA6VWAoDfHiA0QUiljPphEbRHwYVHx6rhc4jbspbG0NlbQJcqPtbdp1eBDxNpGb0drVKkx5TqUmQFOGseLG3vkK+MUSQNiF8+h3QJpS5V6n0XuB5Y2k4XVzSASFpv6S7JtVSf3gsMw6BXthHTuyZhYmsrbuhgw7xLa5Z4J5ZI2li2UcMSHtYZglXH4KaONjS2ajsOTXnjYGl7KzizP+iFYTmYm02CueW1YDgjWKP8eVtTkgfMhiGjj2pisnMDisv+fOXiaxNnbxVxG2uHe/2TgADCFw3UaSRt2CVRzzJgGAamvHEwt7lVVJeIIq0gCPAWb6nvYRBEQvLJJ58gLS0NPp8P11xzDSZMmICPP/4Ya9euxZ9//onvvvsOL774IgYMGICuXbvil19+kfTx4Ycfwmazged5XHfddbjyyiuxaNEi/Pnnn1i7di0++eQTTJs2Dc2aNZN4vQ4cODD4+qGHHsKvv/6KvXv3Yt++fdi3bx+83up7gFmzZqFly5YAgEceeQTDhg3Du+++izVr1mDjxo348ccf8a9//QsXX3wxWrdujc8//1wy1rfeegs6nQ4ejwcXX3wxnnzySfz2229Yt24d3nzzTfTq1QsFBQXo1u3CzVeiRJ0nDpNDEAQcOHAARUX+G/O0tDS0bNmSssERBEHUgOIoRFq5q61JQaXVkn1cfh8N85ruqzyO8g1/geB1wNbjWejlltzLwDsLUb7xr/BVHYe10yOSxGH1IlrLPgRLvxdWxq8TAJiwh2y1CFCjkspfY8T9lm94Cp7Tq8QtNNodRPPoHa2Q+tdVRShx8Tjj8J+HPTINEOAXSzulG3B1Wyt0LAMvD1nhVI09JV74eEHkQxxJR9h+1o1yFY/NBbsrg7YHAWQcDqpRSUKk9N0nG1iRSF8pY71grYVIWsHrhLd4q6iMs/gjSgxZA+Etro78cp/+HeFHBqOzQc5GOTsGkRaAJPI7WOw8haq982BpMy2q7rwl23F2SR+Aly5f1KWoJChhxd9h1a7/wtzqxtpd9l5Dwq0OWEsuOLN85L+JY8Ax0Z9fAFDo8OH1DaVRbxfvJFNqkbTdswzQsUxcrI2CcGagBglC5dBn9PG/iCTCRhJxNeKVEWnDhVsJIeckFzbMVSdcsOnLccbhQ69sI0bmmcAwDHy8gPyDVdhe6EH3TAMubW6WnYT08gIW763EwVIvhuaaMKixsqd7+OS6PuQjCU/q6S3ejKJlo+E6/n2wLKnfm7C0vysoOGuFd5fh9OLmENzFYK15yJq0N6Z7PV/FIQiUOIwgZGnVqhVWr16NK6+8Etu2bcOSJUsk0bKhJCVJV5516NABK1aswMSJE3H06FF88cUX+OKLLzTtv3Xr1rj66quxcOFCLF26FEuXLhXVHzx4EM2bNwfg1+NWrVqFq6++GitXrsSvv/6KX3/9Naqx9uvXD/Pnz8e0adPgdDrx0ksv4aWXqr3zdTod3nrrLaxatUrVt/ZCpF5F2h9++AFvvvkmVqxYgaoq8cOrxWLBiBEjcO+99+KSSy6ppxESBEE0XIqjSAIkK9IqKTRcbEmj+HBP1gZCya/XBb0e3WdWI+uqI5oegMrWPQzH/vkAANfxH5DU7z+i+voRaWW+U5kyxYezMFHnrEP5GKstkZYBI5LQwgVaAIBGu4PoImmjE0L2loijEjeeqfbN3VfihYFjMLmNFUcrYoteXLinEte1r46AjzQlc9rBo1Rl4ubrA9IERXq1zFgqQriiSBvmRSwn0uqgLXEYoF2kLd/ynKSMNTcGABiyBqFqd3WEufv0KuhTu4jb6u2yQliWJbbIP0ElYrV01c3QJbeFIWugbL2SJYKnUD65h1wkbRAZob3oh1HIvvZUwq58CP879Rm9FdsyDAOrnpFNtKcGA+CNjWXBCZZocPOQTHbUBKvKTEnvbP91Op4iLaOzQIhRpGV0FtkEmazhXGLKiL+b8fnNCBdkdfZWEa8qob7m4YnDAOCHw/7PZMNpNzLNLLplGrHqhBMf7/Lf12w640aGmUOfHOlv55IDVfhyX1WwXRMrh+bJ0uvnoVLpuR16DQ4XaQGIBFoAKPvjXnC2ZjDlRZfHpfD7YRDcfl9IvvIoildcjbSRX0XVBwB4yeqAIFRp27YtNm3ahIULF+Lzzz/HunXrcObMGfh8PqSnp6Ndu3YYPHgwJk6cGLQLCKdXr17YvXs33nnnHfzvf//Dtm3bUFRUBJPJhBYtWmDAgAG45pprgoJrKB999BF69+6NxYsXY/fu3SgvLwfPy//W5eTk4Ndff0V+fj4+/fRTrF69GidPnoTH40FKSgratGmDAQMGYMKECRg6dKhsH9dddx26deuGl19+GcuXL8fZs2eRmZmJQYMG4eGHH0a/fv2wapXMffwFTr2ItG63G9OmTcOCBf5M33KecJWVlcjPz0d+fj6uueYazJs3DwaDtocugiAIQj5BkBIsA7RP02NXUfVDwtgW8g/pnFriGxUaYnSF4HOLkvHwVcfhPrUSxpxhEbcNCLT+Dd1w7H1PVF8fIohchCxrkvq9K3lmGnPHit73zjHim4PyD/Qd02vnN1uSJEyOECGrfaoeu4rlha1opI14Ci8AsOWMG5PbWFFQGZuPwpkwgVyL4HxARgRQQ68S2MbJZYLn/PYXegUtJlzz7ZZpwMrj1Ut2003RiTS+8gORGwGo3PKidCznoi/1mX1F5YKrEL7Ko6IyRm9HtwwDPoF4osmkshRdDWOjUajY+IxivfvUSkWRlneXRLUvNZ9RRi/1CBW8FXAc+BSWtrfKbFH/eEt3id7r03qots8wcyhzRz8RslvhmhGJSg8ve54prUyJhFFBpOUYoHum/xp7RWsLPtstPjbtBkYUOT88V9vkqr3H8yhbc1dMY2UMKVJbH311dBXDcOrX3LjZHRwUvefsLSNuo0upnpiJdFp/uLMC3TKNeGuz2Bbli32VsiJt+Hczd2s5XhycJmm3p0R63CSFeHjLibRylKy8CTlTokue5i3aJHrvOvp1VNsH8JRsV603NpUmCSeI2mT48OGK+QfU6sJRa9e8efOochxwHIfrrrsO112nnNQ3EmazGffddx/uu+++qLbT6/V47LHH8Nhjj2neZuzYsRg7dmzkhgp07NgR8+fPV6yfN28e5s2bF3P/5yP14kk7ZcoULFiwAIIggOM4jB49GjNmzMDs2bMxe/ZszJgxA2PGjIFOp4MgCFiwYAFuuOGG+hgqQRBEgyXaVZdXtrYGxZVsC4uRTeUfCIx5E8Ba81T7snV7WjoedwPM3ikT8SZ4KmQahm8mFS7Do/5q6kkbC6wpA6YW1TeFxrzx0NmbS9qZW0wBaxT7OeqzBsPY5DJRWbtUvWzyMLueQVN77cwDm1vdFLGNPq178PUNHZSTqkVzUx2t3UEkAom+YrU7DD+/tfwt5VFM3ACA3aB8m2huNVVSln7JMgD+CEY5oaNHpkHyPifEMuCK1laA1b7E1lu6U3PbcAKCB2vOkdT5Ko+J2+ptaJakQ5eM6ui3WzqpJ+tTQ5/ZH4ZGoxTreZUJLSEKkdbS4QGwMkJsAHOLa+X375QmIEsUfBWHRO91ChNKAcY0j/46a6jBqnsvD+wvkf5uWCMkAFNC6bSe3MYKy7kf7HAB1sgxmNE/FbZz+0w2MJjYWtvnYG51PThb85jGysicuwwX6luu/tgZ7RJ9JXxV4kkWztYMKcMXi8p06dURaqaW14t+Bzm1FQQAjpX7J8jCv5oDpdomA/YrtPPIzNeF+l5rFWmFerzX8oVNohgaXxJMRMoY02Hv+UJ9DIsgCKJBUeeRtPn5+fjiiy/AMAxGjBiB9957D82aySehOXLkCG655Rb89NNP+Pzzz/Htt99izJgxdTxigiCIhkk0yS5YBuiaacA/h6bhZJUP7VMNinYHnCUHmRM2w3XyZwiecvjKD4CztYAxdzS8pbvB6qzQZ/SCLrkjSn6tFgQFV8MTaWWFLw1+6XLLsBm9Xfy+npYTpwyZD3fb2wHBB0O2/PIkXVIrZFyxHe5Tv0BwFYOzt4IhZ6jEK55l/GLA1rNuFFT5UOjwIc+uwzCNUVuxYOv6F1TtelO1DRsS5dkmVQ8D61+GHE5UdgdhS4qHNjGha4YBKSYWAoAX/ijR3hkAw7nIOl7mGOucrse2QvVIvvCttPwplVGmq7crhcQC0Kd3R9ZVx+A89g18ZftgaTcduqTW1eORGdCgJuLjwmZg8dLgVGwv9CDTwqJ5kh4VPZ9D+frHNY3PV3EQgtcJRhf98cacSy7H6Gz+CD4h5LMJ83ZldHYwDIO/9EnBjiIP7AYGzZO0+R7L75tB2sXfwX3qVzD6JJT8PBm+ysPBeiEscVko0UTSJvX9t2q9LqWT0gg176MuEQQevorDorJIguKQXBOaJ+twsNQD3Tnx7fO9lThWoRzBbuCYqOxN9Kw44dPOImm0f6yOBOGb2fUMnhmQijxbtXiXauLw7sUZ+PmYE0kGBoMbm8CxDP41NA1Hyn1olqSTWI0owertyLh8G9ynfgVnzoav4og/4prRg+FM4GzN4Cr4EaUrZSbLWJnVEywn/1p+75rGqIYg8JJJFs6SB0NWf+gmbIZj/4cwt74J+tQucJ9dB/ic0GcNFrVX9eKG3wpK7rpdU4cfb1ifoZNC/h3U3u9qvAiPdDfljYNpyIfwFm+GLqULOIt0UowgCIIQU+cibSCUuVu3bvj++++h1yvf5DZt2hTfffcd+vXrh82bN+P9998nkZYgCEIjvujt9JBj1SHHGvmngTWmwtxskqQ8kDUa8GdPD4V3Rbf8LjGQe7LWINKGLZf2dyUWBQIZ2esahtXB2GhExHacOQvm5ldFbKfnGPTMji2ZXCwwusgRjOGfbYaZwwkZW4FooljDRZue2QYMaOR/aN5dFP3S6MC+w4Xilsk65Nl1kUXasO20CM4VUXpzJqlE0gIAZ20Ca7vpsnVyGpecUGTRs6IlwnJR6IoIPLxle6BP66p9mwDnPHUZhvEv01a5PrHnJlg4lkGXjPjYePjPw4sAAKbmV6Jy+2vBOjWRVmskrTF3XMQEvMqRi4kp0vJVBUCY3QlnaxFxuzy7/5wKcKrKJ1mCHoqJY1AehRlKloXD8RDRd6fM9cAbYyR++HndPk0vu0rBZmAxvqV44i/FxCHFFH1YMKu3wpQ7GgCgD4k4DWBpdSMqd7wOb+EGUTkj5wUuSgYWKXFYzUVa3nlGeoycW/mjT+sKfdqrwXJDIKFZeB8RviqLjkGRU3qDpbbyQAvesC7DLTK0RtICgMB7wbB1+5gvCIJEpNUltwdnzgJnvrhOx0IQBNGQqXORds2aNWAYBo888oiqQBtAr9fj0UcfxQ033IA1a9bUwQgJgiDOD6KJEpTLSFxTWKPY/1TwlMJ95o+EzBzOOwtRsupmuI5WZ1nNnLRH1q9Vy5JMX9UxaVnZXnE/CZqYJ9HRIm6Ht1FavRrNPEa4SBv6AB3L6bOjyINr8k9LyllGW1TsHyddWHfSBbuBwce7KrFHg4fmryH+r1qwG+J7XVBLghQg2qRFrhM/qIq0Ai8fMcmERPWx+mT4VERaRh+7tYEWGJ04yt5x4GN4i7eBNWUiqf9/obO3gPvsOpStfUg+UZ4MrCEl5vGUb/gLyjf8BdlTSsEa/J6i7tOrUbbuYfDOszC3ngZb1ycjisD+bR6Br+oYjI0vRXK/mTFFPQcItzoAZwJrll6jI9EsghVLtAnDssNEWjk/+EqvgKdWFcHEMbi5kx25MmPYfMaFF9eWAgCyzCxu7WzHwj1iMTnSZ15XmJqMQUW4SCtndxAizEb87YzD3yaZIGU4WUsTNdQSLAJAoZPHbzLX0mgsqv+zsRRbz7qDSe2e6pci+a7DbReiEWl9lUehs/snMHhXCcrWPghP8RZYWk+FpcP9gM+Fsj//D1U731Dtx3n4S1RseRGewvVgTZnQZ/T1X5Ns0lWwfNUJCF6xHZQuub3mMRMEQRB+6tyT9syZMwD8BsJaad/ef4E/e/ZsrYyJIAjifCQau4PagDVIE2MU5vePyge0rij78/9EAi0AFC0bLYl+9RP5QZKXi6QN74VE2phgWC6YoEq+ASdZdqtTUGmjORTDPWmNISJtVZQ2Amqw0D6uf/5ZipfWlmoSaGOhppFh4WgRmOSyw6tR/udfVOudhxZG7CPciiTa+prCGJLEBbwHnsL1cB3/DmV/3AtBEFCy4mrNAq2/z5Qaj6t01c0A/EvIi1dcDc+ZNfCV70PFxr/CfWKZ6rb+ba6C58xq8JVH4dj7Dip3qNsvRCJcpOWszWISLZslxTdGJVWjlcC+Ei+2FXowZ4vUc9jlE4ICLQCcdvB4aV2ppF0Eu9Q6IzyJJAD45LyMQy0OmNq3Owj/7WUtjUUTMloo03A9/1QmErtcYaWC3GTXqhOuoEALyNvlhP8ORCXSlu8Pvq7Y/ioc+z+At2ijX6w9uw5V+96PKNDyzkL/eV+4/tz7M3Ady0fZH/fLtg+PomV0VrCWJprHTBAEQfipc5HWavVHtxQWFmreprjY72NosdADLUEQhFa0rq5kmfhHzAFiX9BQQh8eEoXAQ0govvL9Yp/KcwgyZZJtHScjthH42hHWLgRYFdGMs+RKhJtRTeVF3XAPQDW8YaHp+hC1pFVK7P6k4Ryr8GFIE+0P4/FOaBaKkrithQ5petX3Shiyh0S1n0iRlJ6z6yRljFE8gRQpARmrT1Ktrylqx7Pr2LcQ3KXSKNJIfWoUaXWpylHIzsNfAAD4quPgw1YHuE/9qtovX3UCfJg3t/v075rGpNinSxyswYVZ6mglzRTb48+YFtLrSOsUHRxRnoN7SryS68n2s1IfWzmS4zxxEit6GasAvvIoDI0vEZXZujwZfB0pojX8GIsFT/EW0XtdDEnQhkZx/Q3F5RMk3ysApMVgOQEAu8Im31hjuuZtfeUHgq8rt7woqitf/xjK1twdsY/yzX+XTZ7qOvq1/D7DznfO3jJuyeAIgiAuJOr8ytmuXTsAwIIFCzRvE2gb2JYgCIKIjNzDghyjm5thjmadnkZk/ekACLy2h9G6RFDIpi6EJRDyFyonnAnAOyOv/DCEJSshtKO2/NzW7WlJWf9GRuTapA/K4cnAohpDiH4Zz4jTNBOL1ik6dEqPn/BbH0xoaQkm0tGzwBUas8sbm1wW1X4En7qFA+88IylL6iOO6IxkoRGPqFTV/nXqkbqxXDO1jtnW7a8R2/gc0gjJSBHPvFyG+Rp6ZAq+8IRuKhH1KsQSfds6RYfr2tnQJ1v8u3ZFKys8MUyUVIRlMtR6Kbq4WWx/c7xRik6193wezDkxUZ/RD+aW1clDbV2eqPVxec78IXovJyZHom2qHl3Dk3ZpxCHzRca6eCg8b2M0x7s3RKQNJ3yyQwm5yWs1BI848ps1pCq0JAiCINSoc0/aCRMmYM2aNXj//fcxaNAgTJs2TbX9hx9+iPfeew8Mw+CKK66okzESBEGcD4QnobDrGZTLeOXd2KH2/Bb1GX3hObtWXKghErWuEdzyIi3vli431SbSSoWhcAw5wyO2IeRRSx5maXurpMxuYPGPIWl4aW2JKCFXPKNQp3a04YMdYj++a9tZ0SfbCDcvYOlhB34+GtkTtnumAQzD4Ol+KThc7sWZKh5eQUCnNAP+t78S+Qe1eba+MTwN3x504IfD0Xm8xoue2UbMHpWBo+Ve5Nl1EZOQBWAVBPj00b9B8FVB8Fah+Kcrqit8MhMpIYSfi5YO98HSWpyZnjVmwKeSkKu2E/BI7A7CiUGk1RpJa25+FQzXnMTpBfJRjry7FLxT6p3MR0hgJpsosoZWNxKxmo09iVv7ND12aUz49+rQNDS2ctCxDB7plYzjFT6UuHjk2nVIMbJYKnOO3d3Njrc2KyeAK/cISAkJ2NRqT5QXwU+3vjFk9EHWpD3wVRVAl9wWDFstdpqaXg59Rj94zv6h0kPsCIIA99lwkTZ6D3yWYfCXvik4XuHDo79Gl/DU4RVgN4SXxXbPYwtXaQHYe7+K8vWPRdxWdcWSxvPGVxbdqqfw+yXGkBzV9gRBEISfOo+kve+++9CoUSMIgoBbb70V48aNwxdffIHjx4/D4/HA6/Xi+PHj+OKLLzBu3DhMmzYNPM+jcePGuPfee+t6uARBEA2W8Ic+k0LSntpMRCK7PC8BRVpeKZJWRojQYlOgJVKFs+ZGbEPIE0siJx3LoGO6+OE0PBlYTbDLPFB3Sjcg165Dy2S95uX+xnPnKcMwaJ6kR58cIwY0MiHJyILTeK62TtEhx6qDWUOirtokycCiU7pBs0CrhiF7EIyNLwZnbSoqD4+uDMfnEou0+rTukjZK1ix1hZrdARCbNUo00b+cimWEt2wveJlIWt5VCEEQFO1fBFmRNvIElyrhkbQ1EGmjOSSb2nVB6w+GYZBr16FzhgEp57xo3TKrVnpkSZNohVIeFklbJTOB2lBhjWnQp3YSCbTBOnOW6rZa7ISk2/g/O1/5Pslxp48xUSnLMMiz60QJIrXg8AoQBAF8yP1XrN9tkowNlaK9S9i54K1QjqSV+17k4OU8hlUQwkRaVk8iLUEQRCzU+XSs1WrFN998g1GjRqG4uBjfffcdvvvuO8X2giAgNTUV33zzDXnSEgRBREF48Ibco4YxNqs0zcgJBYJHObqoPhB8LsVItcJvB0rKSlZMhrPZJCQPfBesMUV2Oy12B7UdnXc+oxZJq4Yx7IFbq0i7o9ANVwR9ySBzLoU+ZLMaEs4BUBUFtD7qBzwQa+Ipm7BwYeKX4IUg8Ireh+GRtHKCLGvKiNvwYoGJ5HkbUyRtfASSwm/6yI7PdfRrnPzA/5nrUjohZfgi6FM6BOvl7A4ief9GwhWWrIwJPxaiIJ7nhlvmOhJpfuRouVc0aXS4TOr9eX6iro6f/MB/7UoZ+onIKiEU59FvUPbHffBVHIbaVZE1ZUsmdaIlzcTiRKX2yYXHVxbByDFw+wS0TdXjgR5JqIzRVsfIST8rTsHXl7O3hC8kcZdPxe5Azqc7WgrmMUi7bAWMOcOCZbyHImkJgiDiQb24effo0QNbt27FlVdeCZZlz83ES/+xLIvJkydjy5Yt6NatW30MlSAIosES7kkrFzErt5wunsgJBVW7Z9fqPqPFW7Ij6m2ch79A1d53ZesEQdBkd0DEjtKS+EhIRFoND8+CIGDOFunEQnjwnNz5FepVqzVgXSniHdCe2T2Qbf581GgZVkaYU/ClFQQBvEO8VJ81yoi0RhWRNoqM6rHC1HMkbSSUPLsDeEu2o3ztQ6IyObuDmiSNFAQhrsvkT0YhvEVCTqTVRzj5lhwQe/rWly1JnaPxQljy6xTZ417wuVG66tZzifTUr9/6zP41XimUYY5+JtvlEyAA2F3swXN/lMS8b7mJP9YkH0nL6MSBTIK7RN5yJI6UrhJbC4VH0pJISxAEERv1lnKxcePGWLRoEY4cOYKPP/4Yf/nLXzB9+nRMnz4df/nLX/Dxxx/jyJEjWLhwIZo0aVJfwyQIgmiwFDrFobQj8qRiwy2d1cWBmmJqNklaWIPop9rA5yiIabvy9Y8qdOgC5BKOhWDtpLAtoQmf46RsuS6lo+p29rDlo+HniBwun4CTVVJBJzzyrWOaHqEacLqJhSVEcDVoXDZrVZk4kTuH5Qhkr2+dEnu09sVN6y9BEWtupFgnl+SL91YqtBYk56Kc/6u1s7LHY02W1GslkkgbSyStztYiqvbWzjVL6uQqEEe5ykXSclGOSdSfjIWMp3hrzP0VxFGkvb69eNJoYGMjdCygdsqHin8nKrRF0bZPTaxkgvY+/xK9t/V4PuI2bBSrINynfpOUeYu3ynoky6FP7aJ5X0pMbqOeVDASNTnOxrWUriDl7C1kPWVZfTIQtprAV34w5n1rwVe+HwJf/feR3QFBEER8qPe1lo0aNcJ118kvZyEIgiBiw+0TJJFCXTIMOFDqxdqTftGCAdAjs3YFCNnkWDFEhdUm8bZfELwVEdtYOz0c131eaOjT+8Bz+ndJeVLf11W3a2QV3/YUOnk4vYJq9KpSzpdwz2ebgcU17az4dFclDBxwQwebKIor4F8ZiV5ZyudkI6sO/RsZsaZAfRIg9ZxI2yk99vN7QOP6m0xJu+QHnP2qa/B9yvBFwddyCbEEdwkg5ysrm4xJ+l3rUzqAMabJ+6jWAWwEuwNeIbGhap8mGT9wFawd7oFj37yofSiDhHmJyn2WQoTJKzXkLGRYk7q/qRosA8TLkrpLhgF9sg1Yd8qNbAuHK1tbwTAMbHoGpW75nYQemj9pSCgIAFe3q5lgGG8srafBeWgxPGdWQ5feE5Y2t0TchktqrX0HMv60vFv7ORoxIZ8G2qbqMCLXhJ+PafuO4kWOhUOLJOljOqu3w97zBUnyMIF3g7M2PRdh7MdbcQD6jF61PNLqA5nsDgiCIOJDvYu0BEEQRPw5UeGVLATMtXF4pFcyKtw83LyAVCNbq0nDAH+CCmvXJ1G55cVgWSxLd2uTeIu0vIb+OItypCARGUNmf1TtfENUljL0YxgbX6y6XSMrBwbiRbIFlV60SFaOUAu3DQkgJ/Bc3sqKS5qZwYCRCL9aRVqTTr3dQz2TUeXhUejkwQB4f3s5thWKz6lQT9rumQZsOhN9JGZ9Jh3Tp3ZBzk1eeEu2Q5fUFoyuOoKY0ZkA1iiKkA3PKl6N9EtiFLyBc64rhK+qAKcXNo7YR7yJ5K0qeJT+PnmMTa+IegycNQ9ZVx9D6apb4Nj/YdTbhyO31DpSkjc1BJlIWtaYFnN/OhbwxSmYVs8xeKRXMhxeAQaO0eR3G5AfvbyAX49Ftjq4vr21RpMutQFrTEP66JUQPOVg9HYwbGRrAF1SG+07kPGZ9lWd0L65TNR9tDAMgzu7JeGGjjbctvRsHVwNgH8OTUOeXfkR3db5UalI6630+9KGiLS+8gNR3W8xxnQIrsIoR1v9iYTbolAkLUEQRGzUqkh75MiRuPfZtGnNDOAJgiAuBI5WiJ8+M81sUPyxxSHTejQwjFgAi+RvWNcInsiRr5r74n3+qD6iVuGsUhskLR6cBo5BhpnFGUd1hNaRcrFIW+nh4eWB5HOiqkchkpZXKDcriKxaRVotWPQsLOdsEVql6CUibWrIvmK1na5vO1uG5aBP6ypbxxpSRBGfcuec4HPBV3VcpmPlvyxRJ0/4KK+ZgqL9gzoMqwNrDhepY0PO7kDwVEAQhJgmB30yPt/hPpzRwDLh0zU1g2EYWPTiv0stYRR/LpR242m3YrRtKDnWxIyrYVgOjEICTTm4pLbRdC4p8lUe0755HETaADY9i0ZWLqokYuFwGqO31QRaJQRvJbj03gB+Cpb5yg9AiCIKnzVmwBe1SHtu/7wHvEt8zlMkLUEQRGzU6i9+8+bN4xqlxTAMvN4LJfspQRBEbBQ5fXhzk/jGPJab/njBcOLoH9exfJz5X2dkXrGtnkYkxnF4UeRGGqjc/jrK1j8GCPQ7VduwFhmveo0RQ01sOpxxVEeWvrW5HHqWQd8cI97cVIbV56wEWibr8ESfFHhll8wDfJQCj1ZP2miRC/QNeNLWZL+1HGRfI8LFOdeJH2FsPCr4vmrP2yj94wHAJxehGOUfpvD91yWlK2+Kqn1NJp7Cr9exImsdwbtQtOxSpA5fJJtUUo3wBHAAwHCx+ybXxeGtZJUCAPtK/L8TPx0VH6NtU/XYUyy9lmWY6y2NSFyJJpKWkRFpebmJF6Xt4yjSAv6JtpqItG1T9dhZpP47FXrtjgbBWwWdvaWozFt+QGJBoNqHrypyo/BtPJUo/u0muI4ukdRFe44TBEEQfmr9F18QhLj+IwiCINT59qBUmMi11WMUDitdSu4t2Q5P0ZZ6GIwUOW/TaOFdJSj783ESaOsITibaT+tS6kZW6ZLceTsqsOmMOyjQAsCBUi+WHa5SjKRNlFsSOT/dUKuCSFnmlVCyBUgEfBXihDiV2/4RfC343Chb+5CCQIuo1WdGrz3RUcIgI25pRfBGL9QEtw3xEJWLpAUA94llcBz8LOq+5ZJFyfkTa0XNhzpe2PTq+9hf4pFYkVykkBwwyxzZSqAhEI1wJ8h40vqq6ieSFgBSYhRQA3TOiDwB0lzGh1YLDKsHFybS+ioOSJJ5qRGLPYHz6FeyAi0AMGR3QBAEERO1+tQ+depU1fqSkhJ89dVXYBgGN90UXZQAQRAEIc9pmUz0besxKzTDyS9Jrdj8HFJHxCeKNVb8D4E1X/bqKlimOZJTNpkaERWMzgRdald4i88J/axeFEmpRptUPb47JBbwSl089spEr52s9Cl60o5qGn0U35AmJqw8rpyAZlrH6AXBoU1MWLSnenl7xzS9aBVTY1v04o6OBfLsDVMU4p2nVJf7c5Zc1e2tXf4PlVtfDr5P7v9W3MamhrnVTXDsnx/1dkl934C3dCeqds8Oltl7PB/zONwnf4l5W/jcwDn/YDlP2gBlq++Etd30qLqW+05NzSZFN74QbutsxyvrIwtYE1vFbqlwbTsb3tmm7FH+7w2lokh4PQsMaGTE+lMurD8lFm+tEQTfhoSx6US4jnwZsZ1cpHQ0oiPDyQvesZJZQ6G8TYoOndOl9jShXNlGm7Bs7fyEaHIqqe/rYPR2URvBUwGB1+5Hbu3yBEpX3qi5PQCUb3hKsS7enz9BEMSFQq2KtO+//75q/fbt2/HVV19paksQBEFoIzzrPAD0VMkYX9soZViOOYt4HPF7WcYm0BqbXBZ8zTAaf05ZI+y9X4lpf4SYpH4zUbryJvDuEth7vaw5iVC/HCN6Zhmw4bT44fWUzOSGm5dfstwlQx+Tt/PkNhYcK/fiRKUPOgao8grBo693tgHDcqN/qM2ycJjS3oov9lYh1cTixjCh9+KmZmw545YIA5c1N6N5kg4f7qxApUd8DtzfPemcZ2fDI1JENaNTF9etHe6H5/Tv8BSuh6n51TDmjo3n8BSxdftrVCIto7PC0OgimFvdBN5TCk/RJniLt8LceioM2UNiHochZxg8hetj2lbg3WBgOufNHV2ys4jIiE26tB4xd9ct04DGYR6jRo6B65xpqIEFWqfocVnz2C0VhjQxYvMZN9adkj8mQ72xAX8UpUnH4vr2Nqw/VS1yP9UvpdaTfNYl9p4vwFe+D77y/bC0v08kNoYiJ8xHE+nNyKziqQk1nexONXK4voMNr64vRZHT/91nmFn4eKDCw2NsCwtap2jbh7XjA/CcWQ1P4Z/+61ST0XCfXhXWStC85MPS/l4Yc0aoN+JMgE88yajqf12DiH6CIIgLmcR0oScIgiBiJjzwb0p7K7gYlzzHA6UldL7Ko3U8Eilq0V6hGBtfCkOji1D+5xPVhUxIVI1Gb8SsK/eCs+ZFM0RCAWPOUGRddSjq7XQsg8d6J+O6b8WJiGRFWp8AT9gJZdMz+Gu/1Kj3C/iT/7w8JPaM9Epc3sqKy1vJR2BZ9Cye7p8Kt0+ATxDAMQxYBsEM9MNyTeAFaMpI3xCIJnJMDs7SCOmjaxBNGiO6pDZIHfElin+eGLEto7cj5/pq33HWmIKMsavjM5CaWCXwfjFS8JQinkm5/H2LJxks7e6skXCpYxn8e3g6BEGAyycEE2vGE5OOxaO9/b9/5W4ety07q9q+5bkEho1tOiwYmxX38SQK+pQOyLy82u5IUaT1SKOQhTAbk+SBc1H6+x3yO4q3SKsgoLKMvDd4OElGFilGFrNGZtR4LLLXqbBz179SSH1gupTOyLxiKwD55HwBbN1nwNb1rzg5XywdsPpk+JSSpZJISxBEAyFwP/G3v/0NM2bMqN/BoA48aQmCIIi6pcQljs6p74g4pQy/vorDNepX8DrhrTgMwRe7KMNrzWTMsJIHDm/prhCRV5sgIfCxJx0h4gfLMCLfVkDeJsTlEyR2B7F6vNY3Bo6BWcfCwDEiQZZlmPNCoPVVFQAABLVzOs6iTdzReq2W8eqMGxptW2Q5dy3WOvkVsbvK43Cf/h2C1yEV3+P0XTIMUysCbTh6DbtolXKBxs4oTHIKXmkCvPBIWtaco9it5hUuGkkyskiX8aVNMWo7fuy1blkh7l9wFUZeWRBiScAwyucUw5nBsJzE55dR8YVOZF9z4sJhxYoVYBhG9p/FYkFeXh7GjRuH9957Dy6XttwGBFHbkEhLEARxHvHbcScOlIqTV9VSUnnNsHp5u4OaRFp5Kw7jzNfdcGZxc5zN7wefTOZvLWgWE2REWl/5fpz6NB3OI18DGpNWUWKxxMESJtJWeKTHo1+kFZdpEVuIuuf0wsYoWn4FCr8bqthGzuMyodAYeSaXUClehEesRretX0it2j0nYtuydY+q1lds+ydOL8pF4beDcPIjC7wlO0X1DFt/Fj6xoGUipFVygk8i1BKMTt7313nkK0lZuEirek7XwqRMtkXqSxuwLohEba9oYmSuH0U/RLAwYEOEbJXPK2BPxSjez8kNiH4sicTG4XDg2LFjyM/Px6233opevXrh0KFD9T0sgiCRliAI4nxBEAR8sksaeVLfQXJKkbQ1oXLry/CV7QEAeIs2wbFvXkz9CFGItAwjnzSk9Pc7gst8iYZDeCStHC6fAHdYJO35EHV6vuI6KhV1QuGs6knD6hu55d1y6GzNa20M4ZFyUXFusqpy+z8jNq3c/i9FyxuB96F8/WOiMs/p38SNEj0qOoxIk6VmHRNTkr/zAc7cSLbceWihpCzc7kBdpI1/ZHIbGV/athoioOtkci8WUTRkGzUP30AC2PD7Od6tdg9Fv5VEYnHXXXdh69atwX/Lly/HG2+8gdxc/73B9u3bMWHCBPh8tOqNqF9IpCUIgjhPqPAIKJSJ6NAiRtUmnLUpGJmkTqylccx9hmYyByD2io0CreKqLrWLoijgzybvkK0LhbM2A2dvFdX4iNpDi21BmZuXREnZY0gYRsQXa5f/i2m7pL7/ifNI4kukpckBzK2n1doYrB0fiHlbwefU/DcAgOv497LlvqpjEbdVXqGRmETyz22VrKt3a6L6InnALE3tBN4HwVMmKmMMyTA2lfdx1tla1nhs4VzSzIxQd4zO6Xp0zzJG3K5/o8htakpASI0Gz+nfq9+oiLSm5lcBADiT2CuZV8stQJG0RIKRlZWFzp07B/9ddNFFuP/++7Fjxw40b94cALB161Z8+eWX9TtQ4oKHrp4EQRDnCXKJjwAguZ5FJYbVIXXopzLltf/QEhFB/JnpM/rC2vEhsKZsMDobGEMqTM0mw9bl/1QjdgSFxBm6lM7QJXeALq0HUoZ+eF5l6G7oaAmILXcLOF4htqiQW+5K1C3GRqOi3sbU4joYGkVY+lvvaLs+WDvcW2sj4CyNkTzoPXBJ7VTbGbKHScoEnxO+quNR7E3+7/VVHIq4JWuqefKluuaatspRyp3SG5Z9QzzRZw2CrcdzEdvJ/c6yxjQk9/+vbHtGZ5ItrwkZZg53dklCYyuH9ml63NzJjjEtzBjU2IhMM4vxLS2Y3sUuOrK7Zhgwpb0t7mMJh5WZDI+EudWNwddK9yf23q/6J6oBcLYWUfRO9ztEw8But+Ovf/1r8P2PP/5Yj6MhCBJpJTzxxBMiQ+kVK1ZE3Oa7777DxIkTkZubC6PRiNzcXEycOBHfffdd7Q+YIAjiHCcrFURajUktahNjk0uQOupbUVlNvA/jhcTbkdUjqe9ryL72JHJuKEfOlCKkjlgEVm8XJdgIJ1yYMDa5DI2mCci8YisyJ+5A5oQNMGQPqY0/gYgRra4Fu4vEx2kWibT1j4L1iByctSkaTROQOuwTWc/Ghoa954uKHp7xwtLmZmRN2qVYnz76V6SPXgHGmC4qF3xORQsDeRRE2vKDEbdkjQ1PpO2epSzEds64cEVahmFg7/bXiO3kEn2yhlRwFnm7hNpiSK4J/x6ejmcHpCLXroNZx+L+Hsl486IM3NDBhouamvHZ2CwsOPfvqX4pSDPV/u+G3IqlSLCmbNV6S7s7Yev8aFDA5exRRCfTpDTRgOjSpUvw9dGjyr9jP//8M6ZOnYqWLVvCYrEgKSkJXbp0wWOPPYYTJ05o2teqVatw2223oV27dkhKSoLBYEBubi7GjRuH//73vygpKVHcdsmSJZg8eXJQd0pPT8eAAQPw8ssvo6JCankHAK1atQLDMBg0aFDEsR0/fhwcx4FhGDz++OOybUpLS/HSSy9h0KBByMzMhMFgQKNGjTB+/HgsXrwYgqCccySgsc2YMQMA8NNPP+Gqq65CXl4e9Hp9MKI5lJMnT+Kpp55C7969kZaWBqPRiLy8PFx99dWaBfVPPvkEw4cPR2pqKmw2Gzp37oy//e1vqp91fXKBphGVZ9OmTXjttdc0t+d5HnfccQfeffddUfnx48dx/Phx/O9//8Ntt92GOXPmgGUb/oMBQRCJzcbT8stME0GkBaR+Z7yGJa0AwDvPwlu2B7qUTmCV/G1jjMr1lYqFCDURJxqRtka+jkSdwGl8gDxWIZ78yCGRtv6J4uFf8DlrcSBxRsvflQBerKylCQC/H2joo5jr2Deo3P4vzf0IvAe+ymPwVRyGPr1XMPLRV6FBpDVlRjXmRMCoYExr4hi0TKZHskhIEn1yZjC6BE8GWIfEdN8RaeKKER+XnD2KSNrzYFKMuHAwGKonyvR66e+s0+nEzTffjM8++0xSt23bNmzbtg2zZs3Cp59+ivHjx8vuw+Fw4NZbb8Wnn0pXFwb0o/z8fJw5cyYoYobuf8qUKRIrhqKiIqxZswZr1qzBzJkzkZ+fj+7du4vaTJkyBc8//zxWr16NQ4cOyQqhAT799FPwvD+A5frrr5fUL1++HNdccw0KC8WTZidPnsQ333yDb775BmPGjMGCBQtgs6mvIHjqqafw4osvqrb5+OOPMX36dFRWVorKjx07hkWLFmHRokW49dZbMXv2bOh00t9Rr9eLKVOmYNGiRaLy7du3Y/v27fjoo48SMnK6Vu8I/v73v6vWnz5dnY07UtsAzzzzTI3GpERAcPV6vcjKyhKNTYmnnnoqKND26NEDjz/+OFq1aoX9+/fjlVdewcaNG/HOO+8gMzMz4gFIEARRE74/VIXfTsiLtEmJ4qEpIy44Di6EucXVipt4S3ah8Pvh4J2nwFmbIn3Mb+CseZJ2agKqElV73kHljtfDO1LeQGUfzoPiGy4SaROfWPN/USRtw6JBibQq0ScBGKb+xTzO7PcTD7/uRiPQAkDZmrtQtuZuAAJ0ad2RMWY1GJ1Jm0jbACNplUTaDml6SkiogYqt4mcpNiyS+0InNjsl9WtO+OS6Lgq7A4bsDogGxM6dO4Ovw0VMQRAwefJk5OfnAwDGjx+Pq6++Gi1btgTLsli7di3+9a9/4ciRI5g8eTJWrVqF3r17i/rgeR6XX345li1bBgBo06YN7r77bvTu3RsWiwUFBQX4/fffsXChNGEiAEydOjUo0Hbr1g2PPPIIOnTogKKiInz22WeYN28eTpw4gZEjR2LLli1o0qRJcNvrr78ezz//vD/B9Cef4Mknn1T8HD755BMAQKdOndCtWzdR3apVqzB69Gh4PB5kZ2fjvvvuQ7du3dC4cWOcOHECCxYswEcffYRvv/0WU6dOxeeff664ny+++AJbt25Fly5d8NBDD6Fz585wOBzYtGlTsM3ChQtx4403QhAEtGzZEvfeey86qIf7TAAAceRJREFUduyIzMxMHDp0CO+++y6+/fZbvPvuu0hKSpINtnz00UeDAm27du3w+OOPo2vXrigtLcWiRYvw9ttv45prrlEcZ31Rq3d6M2bMiPiDEah/9tlnNfVZWyLtf/7zH6xbtw7t27fHxIkT8dJLL6m237NnD/75T3/22t69e+PXX3+F2eyfze3Tpw8mTJiAYcOGYf369Xj11Vdxyy23oHXr1rUydoIgiPe3yy9xARInG72cB23JL9eoirTlW54D7zwFAPBVHkHF1pdl/ecYLvpI2rJ1j0jKBN6t2D6aJca1vRyZqDnSFHvayLaSSFvfsDrt/o6Cp7wWRxJfFFcKhJIA0WmBiNf4RDH6RSJv0Sa4jn8PU7MrNHnSMqaGJ9AZFH6LO13AVgehsJZcyQobQRCCz4quo0tEdbzrbPC1PnMAPGdW1/4gzzcE9Sz2rDlH9D46u4P6v1Y1VHiBR6Grqr6HUWekGy1g6/F48fl8ePXVV4PvJ0+eLKp/5513kJ+fD71ej6+//hqXXXaZqL5///648cYbMWTIEGzfvh0PPvggfvvtN1GbN998MyjQTpw4EZ9++imMRvGzy9ixY/Hcc8+hoKBAVJ6fnx8Ub0eOHIlvv/1WFPl7ySWXYMCAAbjjjjtQVFSEhx9+GAsWLAjWt2/fHj179sSGDRtURdpdu3Zh48aNAKRRtB6PBzfccAM8Hg8uu+wyfP7557BYqp91evbsiXHjxmHo0KG444478MUXX2DZsmW4+OKLZfe1detWjBw5Evn5+aLPYejQoQCAs2fP4o477oAgCLjlllswZ84cUaRsz549MWnSpGA07htvvIHp06ejXbt2on3MnDkz2P6XX34RRfeOHDkSAwcOxNSpU2XHWJ/U+nS8midFtNRWwpUjR47g6aefBgDMnj0bP//8c8RtXn/9dXi9/mQiM2fODAq0ASwWC2bOnIkBAwbA6/Xi3//+N/77X3lje4IgiNqil4oHXl2jS+0c9TbOA5+I3lftektBpI0+kjY8SzQQluk4DH1qN8U6yXgokjbhifVxINmQGJMeFzK69B5RtI7ffWhtY8wbB8aYBiF8WXc9YWl7B6r2zBWVmVpOCb7Wct01tbhOstJACcehBX6R1nlGtR2X1LZBRtIqOZ91SKt/C4tEILnff1D88yRxoeAFGL28h31IlHxyv5k4+0115Jqt29O1NcyExtL+HlTtiuJ5Mywy39T8KjgPnVsWzBphaTddVM+aNfr/sgYweg2TToQsha4qZH06o76HUWecvm4GMk21n1wvnDNnzmDr1q145plnguLk5MmTMXjw4GAbQRDwj3/8AwBw//33SwTaAKmpqXj11VcxZswYrFq1Cnv37kWbNm0A+KNoAyJwbm4u5s+fLxFoA7AsK4qCBRDUkPR6Pd5//32RQBvg9ttvx8KFC/Hjjz/iiy++QEFBARo1qj5fr7/+emzYsAHbt2/H5s2bJVGygN9aAPBrblOmTBHVffbZZzh06BBMJhPmz58vEmjDx/HOO+9g7dq1mDdvnqJIy7Is3nnnHcXPYdasWSgtLUWTJk3w1ltvyVoZAP5Azw8++ADHjx/H/Pnz8cILLwTrZs+eHbRumDt3rqz9wk033YTPPvss4XJJ1apIq0XsTATuueceVFRUYOrUqRg2bFjEcQuCgK+++gqAf2aif//+su369++Pdu3aYffu3fjqq6/w5ptvUmZvgiDqjKZ2Drd3sdf3MIKwevkbsNBImZiJUqQVvA7Zcls35dUarDEFqaO+Q/GPoyP2T5G0iU+GmQMgffBPMbIoccnH2T7cM4l+xxMAhmGRPmY1Cr8dELltAxIKGFaPtFHfojBf/r4SAAw5w+psPPZe/4Ag+ODY67f2Mre6EfZerwTrtYi0KUM/QmV6L5SvfzRi24DPrOA8q9oudcQX59V52Mxe/xYWiYAuvaekTPC5wLB68E5p0rBQ9Bm9kDzoXTj2fQBdWjfYuvxfbQ0zobH3eA6CzwVf2V6wlsaiCRJ7r3+g/M8nRO3Dz+Gkfm+CYY3wOQpg6/J/kuh+reedLqk1GJZWnRCJxbPPPqu4ettiseDOO+/Eyy+/LCrfsWMH9u/fD0AaYRtOIAoUAFavXh0UaTdt2oRjx/yrBG6//faIXq2heL1e/PLLLwD8EbN5eVLLtwC33347fvzxR3i9XqxYsQLXXXddsO7aa6/FY489Bp7n8cknn8iKtAGv3EGDBqFZs2aiuq+//hoAMGzYMGRmqnvCDx06FGvXrsXq1cqrGwYNGqTqjRvY37hx4xSFXADQ6XQYMGAAFi9eLNlfwGu2S5cu6NWrl2Ift9xyy4Ul0g4bVnc3krGycOFCfPPNN0hLSwvaF0Ti4MGDwex9kf7GYcOGYffu3Th+/DgOHTqEFi2iMFwnCIKoAS8MSoNBwQMvkRC8FWD0NROTo42k5d3FsuVyfrehmHIvQ6NpAgrmRbDyoUjahCfTLB/W9uKgVNz9k7wg0DaVIt4SBUOWspApIsJy3kTDkNkPhkYXwV3wk2x9XV5bWGMKUga9g5RB78g34NTtDnTJHcAwLGydH4Gt8yM4+UkqBHeJYnuG4SAIPHi3ciQxZ28FfWonLcNPOOR+NVKMLPQN4He6LmBYmZU/5yyIeJc0upo1ZYveW9rcAkubW2plbA0F1piKlEFvVxcMq16NxLvLZERasfjBmbOQMvTDGo+DS2oXuRFBJBDdu3fH/fffL0katn79+uDrAQMiTwwHOHnyZPB1IEoXAIYMGRLVuA4cOICqKr/1Rb9+/VTbhtZv27ZNVNe4cWOMGDECy5cvx6effoqXX35ZNOnyxx9/BMVouYRhgc/hhx9+0DxZE/oZhNO1a1fFOp/PF/SmnTNnDubMmRP1/lwuF/bu3QvAb0WqRt++fTX1X5dc0GYxJSUleOCBBwAA//jHP5CRoW3p1I4dO4Kv27dvr9o2tD7UkJogCKK2aQgCLSDO2Ow+vRqVO2eicscbcBzQtkQWALzFW+A49DkEb1WwH+fhLyF45ZMGuU+tlC1nDKlRjFwZiqRNfDIVEoApJfcBAKv+gr5tapAIXmW/7kSFURE/E+naEmlyjAlL7KRLaqPa3nFoMQRXMSAoO0YrTbA1VFomUxRtADlvecHnT4jKy0RXM1o8nIkgsiJ4DFZRWtAlta2VfgmiJtx1113YunUrtm7dio0bN2LJkiWYOnUqWJbF77//juHDh+PMGfGEkJZk8nIEhFXA768aINSCQAtFRdXPSFlZWaptc3KqPaRDtwsQEF+PHj2KX3/9VVQXsDrQ6/W46qqrJNvG8jk4HPKrFgG/PYQSRUVFQVvRaAj9zIuLi4O2q5E+t+zsbNX6+uCCvjN4/PHHcfLkSQwaNAi33nqr5u0C4eqA31dEjdCQ9KNHj0Y9xtB9yRFuLE0QBNHQEFxFgK0ZKnfPQdnqOyO3P/fQFk7Jiskw5IyAqekVKFvrn4DTp/dC+ri1YEISEjiPfY+SX66V7YM1psXwF0ihSNrEJ90cvUhLGi1RF6iLtIlzbVEbJyDNDB8e+RgOX3UMpavvUG2TKH69sSB3ZSGRNgQZETHwe+8+vUpSl0jnQoOAla4EkUvoGg90yRRJWxPSjRacvm5GfQ+jzkg31s3kY1ZWFjp3rs6P0b17d4wbNw4jRozAtGnTcOjQIdx2221BW0vAH9UZYMmSJapL9MP3FW9qavNz5ZVX4u6774bT6cQnn3wSXBHu8/mCickuu+wypKdLE3MGPofRo0fjlVdekdRHC8cp26GEfua33XZbMKgyEnJevUDt5bWqTS7YO4OVK1finXfegU6nw+zZs6P68srLqzMFR/IUsVqrbyAqKqKP5lDzHSEIglDCrEvMHyQuqR18ZbtFZYHIqKrdszX1Ub5phmKd++TPcJ+s9hX3FP4J17HvYMobGywrW3OX8vgsjTWNIRI1tW8gap8chUhanYoQ2xBv9M5nGH2SbALAUHQpDW9pPKPg3w0kViRtJHQpHUTv9em94Dr2jeo2zsNfqNbrMxJvWaJWWJnrR4e0xEnuWd/IRdIG7Q4qpUEr+ozekjJCGTmP2EgWT7FCkbQ1g2XYekmkdaEydepULFmyBJ9//jm+/vpr/PTTT7jooosAQCRYpqSkiERerYSu1i4oKIi4EjuUtLTq4JFTp06ptg1d7h+6XYCkpCSMGzcOixcvxuLFi/Hmm29Cr9dj+fLlwb7lrA4A/+dw4sQJuN3umD6DaAgduyAIMe0vJSUl+DrS5xapvj64IGNC3G437rjjDgiCgIceeijqL97prF4+q6TYBwg1OlYL+SYIgogVl0+avfzK1okZYWJtf7ekLBAp46vUttogPNt4JNynfhG991UcUmzLaXywsPf6h2q9IXOgpn6I+iNLRqS9t5s/MVh7yrbeILB0uDdim6Q+/6qDkcQXQ84I2XLWmCGJTq1PvCVbVettXf8qem/t9FCN92nv+WKN+6gvTDoGrVOq42NybRw6pifO91nvMDqExxsLvP/+gNFL72nsKok+CXmMueOCr1lzIxhzx0Tdh6mF/EqkUBhDStT9EkR98uKLLwajO5988slgeY8ePYKvV62SRvRroWfP6qSI4TYDkWjZsiUsFv/k7B9//KHadu3atcHXSvpWQIQtKioKJssKWB3Y7XZMmDBBdrvA57B+/Xq43e4o/oLoMRgM6NTJP8Ee62duMpmCidvWrVun2jZSfX1wQYq0L774Inbt2oWmTZvib3/7W9Tbm0zV/j2RDlKXq3pZrtmsvixMjqNHj6r+Cz0ZCYK4MCl3S/37RuTVjs9YTZEVVc5FyjCMtkzAgifaVQnaoh8zJ+3RHClp7fSwaj1nbaKpH6J+eXVI9Wz9oMZGDG7in1h9rDd5HTYE7N1nQJfWQ7ZOn94bKUM+grHJpXU8qppjbnUjkvrNhKHxJcEyztYCmRMTK7eBuaV8xA0ApF2yDJxF7L3HGpKRPlreD1wLyYPehbHxyJi3TwQe65WMi5uacVGeCY/1TpaNrr1QYRhGYnkQmMQVeI+onLO3BGdVt5wjpKQMmQ9Lhwdgbn0z0i9bAYaNflFt8sDIE+WJNJlEEFpo27Ytrr76agB+MXTZsmUA/AJrwN5y7ty5omA9rXTr1i24Ovqdd96JanW1TqcL2hIsW7ZM1QrznXfeCW4zfPhw2TZjxowJ+sF+/PHHcDqd+PLLLwEAEydOVNSrAuJtaWkp3n//fc3jj5XA/nbt2oUffvghpj5GjRoFAEEPYiXee++9mPqvTS44kXbXrl146aWXAAAzZ84U2RFoxW6vXsYa6SSrrKwMvo5kjSBHbm6u6r9ozacJgjj/qAgTaRkAFn1iPvgxDAtdsngJrHBOpA38HxGt7ar3GrGFtcv/RUxqI+qR1cHe5zX5OrI6aDA0TdJhwdgsLBibhft7JAdFehuZzzYIGFaPpF4vy9aljFgMcytlETGRYRgG1g73Iv2SH9BomoBG0wRkTT4A1qQtwW2doeBnyVmbwth4lGydIXswOHsr7bswZQU/A0ubW2IaZiKRYuJwWxc7pndNQo71gnWdU0RieRD4vQ8TaY1NLqujEZ1fsMZUJPd7HSmD34MuOTZLAlZvl0TJSxvRsU00PJ588sngfeDzzz8PAGBZNhhZe+DAAdx0002iILxwysrK8Oabb4rKWJbFY489BsCfb+imm25SDPTjeR4nTpwQld1zzz0A/MGBt956Kzwej2S79957D0uXLgUATJo0SVEjMhgMmDx5MgC/x+4nn3wStPJUsjoA/JYQAaH50UcfjRgR/Ntvv+GXX35RbaPGAw88ENTObr75Zmzfvl21fX5+PrZs2SIqmz59evD7vOOOO0S6XICPP/4Y3377bczjrC0uuCvov//9b7jdbrRs2RJVVVX47LPPJG22bdsWfP3TTz8F/T3Gjx8Pq9UqShYWKbFXaLIw8pclCKI2KPeI7Q5seiaxo3PCH8J850RaX/Sz05pgIgtukRLgyKFX8Lpk9BSFSRB1BaOTP3eZWspaTlSjFC0Xaakza86Br3y/1p1EOSqiIcNwRggh+kMgktZ55KuwhhSpWZ8k3IQRQcSBzp07Y8KECfjqq6/w66+/4rfffsPgwYNx5513YtmyZfjyyy+xaNEibNiwAdOnT0ffvn2RnJyMsrIy7Nq1CytWrMDXX38Nk8mEe+8Vrxy85557sGTJkmA/Xbp0wd13343evXvDYrHg5MmTWLNmDT799FNMmTIFM2bMCG47duxYXHXVVVi0aBGWLl2K/v374+GHH0b79u1RXFyMzz77LBgNmpaWhtdekw8iCXD99dfj7bffhsPhwCOPPAIAyM7OxsiRyitVjEYjFi5ciOHDh6OiogIXXXQRrr32WlxxxRVo0aIFeJ5HQUEB/vzzT3z55ZfYunUrZs6cGYwCjpbs7Gx88MEHmDx5MgoKCtC7d29MmzYNo0ePRm5uLjweD44dO4a1a9di8eLFOHDgAJYsWYKuXbsG++jWrRvuuecevPnmm1i/fj169+6NJ554Al26dEFpaSkWLVqEuXPnonfv3li/fn1M46wtLjiRNjDzceDAAVx33XUR2z/33HPB1wcPHoTVakXHjh2DZbt27VLdPrS+Q4cOKi0JgiBiIzyS1mZI7IdaJmw5o/vUSphaTgFqTaSNLFjHIugoJSRSS/pDEEScUZhgIZG2DmDl8zKwEURazpwNaRyQAhptcIjzhPBjinejcvcc8I4CUTEtp69fWFOmegPBp15PEAnKU089ha++8k8KPffcc/jhhx/AMAwWLFiABx54ALNnz8b+/fvx+OOPK/aRlZUlKWNZFv/73/8wdepULF68GHv27MGDDz6oeVzz58+H1+vFl19+iQ0bNuCGG26QtGncuDHy8/PRpIm65drQoUORl5eHo0ePoqSkBABw7bXXBj15lejfvz9WrFiBq6++GkePHsXHH38c9LOVIykpKfIfpsKkSZPw1VdfYdq0aSgqKsLs2bMxe7Z8kmmWZWVXyL/22ms4ceIEvvjiC+zatQs333yzqL5FixZYsGABWrXSvsKnLkjsJ/kEpUWLFmjc2J8BPFIYdyAUvEmTJmjevHltD40giAuQSq80kjaREbxVove8pzRihvaawGj4qYtFWGUtjWXLjY0uirovIvFoZOVU3xOJgVIUPKOwFJ+IH3LJnACAMabLlgcw5Gi/Rmr1KifOD8LtDgSfC5XbXpE25NQTNxO1SySRltHRZDXRMOnTpw8uvvhiAMDSpUuDSaX0ej3eeustbN68Gffddx+6dOmC5ORkcByH5ORkdO/eHbfeeisWL16MnTvl/eMtFgsWLVqEn376CTfeeCNatGgBs9kMg8GAvLw8jB8/HnPmzAlGt4ZiMpnwxRdf4Ouvv8akSZPQuHFjGAwGpKamol+/fnjppZewe/dudO/ePeLfyDCMJFhRzeoglP79+2Pv3r2YPXs2xo4dGxyHyWRCXl4eLrnkErzwwgvYtWsXbrrpJk19qjF+/HgcPHgQ//znP3HRRRchOzsber0eZrMZLVq0wLhx4/Daa6/h0KFDGDFCmnRVr9fj888/x4cffoghQ4YgOTkZFosFHTp0wJNPPok///wTLVu2rPE44w0jCII0LfgFzowZM/Dss88CAH7++WdZ4+W7774bs2bNAgCsXr0a/fv3l7RZs2YNBgwYEGz/3//+N+5jPXbsWNBG4ejRoyIrBoIgLgy+P1SF97dX+2N3TNPjbwNS63FE6hTME4vIlnZ3wtzmVhR+06dW9pfUfxas7e9U3D/gTxoWjSdtgMLvR8B9coWoLOvqAnCWnKj7IhKLbw5U4cOd1efVLZ1suLS5pR5HRMjBu4px6tM0SXnOVF5zIkAiNnyVR3F6UVNJefKg92FpM01xO8HrwOnFzcE7T0fchz5rIDLGxJbdmWh4nPmyI7yl1QJHyvCFKFlxtaSdrdvfYO8xow5HRoTiKdyEs0vkkzYasochffSKuh1QHVOT5++9e/fC6/VCp9MFs88TBNGwifd5TZG0MfLggw8GQ8Lvu+8+OBwOUb3D4cB9990HwJ9hL5pwdoIgiGjwid0OwCX4ld3a8UHRe4F3w1e6u9b2J7iLQ/YlvwQvFoEWANIu/h6m5lf53zAsMi7fSgLtecLYFmbc2dWOi/JMuLubHZc0i963mKh9lPxPSaCtfTirfK4FNYEW8PsIp4/9A9bOTyCp7+uAytJ1XRRJxojzgDC7A77qhEI7sjuoT5QiaW09/o7UkV/X8WgIgiDOLy44T9p40bZtWzz22GN4+eWXsX79egwaNAhPPPEEWrVqhf379+Mf//gHNm7cCAB47LHHaKaMIIhawxe2IIJLdHEifBmyzw1vqbq/d00IjdYS3CVx7ZvhjEgdvjCufRKJAcMwGJFnxog8EmcTGRJj6xfGkBLTdVVnb46k3i8DALzlB1C18z+y7TgSaS8owu0OvCXyy4bJk7Z+UUocZu/2dB2PhCAI4vyDRNoa8MILL+D06dN47733sHHjRlx77bWSNrfeeiuef/75ehgdQRDnC6tPOLG3xINumQbsL/HCywu4rIUFSecShP15yi1qzyW4ZsGEeck5DnwEfdbAWttf5Y7X4as6DlfBcgiuolrbD0EQxIUGwxpQc9805R8tEmkvLMJF2qo9c2Tb8a7CuhgOoUD490QQBEHEDxJpawDLsnj33Xdx5ZVXYu7cuVi3bh3Onj2LjIwM9OnTB9OnT8fo0aPre5gEQTRgfjvuxMxN/qRa+QerbVXWn3bjlSFp2HbWjV3F4jzZbKJHlslkBPec/r1Wd+k8tKhW+ycIoh7hzIDPEbkdEX9krufRohYNzVko18IFhcbjyVuLFkkEQRAEUZ+QSCvDjBkzMGPGDM3tx4wZgzFjxtTegAiCuGBZvLdStvxwmRcFlV6sOuGU1OkS3JOWYeinhyCI+GFpexuqds4MvueS2tXjaC4szM0no3LH68H3jN4edR+MzqpYp0um7/JCguFMmtoZcykIhiAIgjg/SfBHeYIgiAubgkr5RFcA4PEBZx3Sej2b2JG0hkYX1fcQRCQPmV/fQyAIogbYujwpEvrs3WfU32AuMKxd/k8kzCYPmBt1H8amlyvWcZZGMY2LaJiwhtSIbRhjGkxNJ9bBaAg1rJ0fF723dX+2nkZCEARxfkHhTARBEA0Uf8SsVJDVJ/j0my65fdz6MuQMh/vkihr1YWl1Y3wGQxBEvcBZcpBxxXa4Dn8JXVpXGBNsIuh8hjNnI+PyrXAd+Qq61C4wNhoRdR+GjD7+Ze682F/d3uvleA2TaCAwxnT1ekMqMsb9Cc6cVUcjIpRI6v0PcOZGqNj+Kmxd/wpLuzvre0gEQRDnBQn+KE8QBEGoIWflp0vwSFotWZnlksUYc8dKyswtb4CtBlFznK15zNsSBJE46GzNYO30IAm09YDO1gzWjvfHJNAGMOQMk5Rpiaokzi9YY5pqva3z49DZm9fNYIiIWDs9iOyrj8Pa/i5Vb2mCIAhCOxRJSxAEkYDwgiBKFCaHAGDzGbekPNE9aaFBpGU4s7TMkCIt01nAmjJjHgqjs8S8LUEQBBEfWH2SpIzR2+phJER9wkaKpNXoWUsQBEEQDRUSaQmCIBKQ5Uec+GhnhWqb/SUe2fJE96QFw0VsIgheSRmrINIyPlfsQ1FJWEMQBEHUDXIJx+j6fOERSaQFibQEQRDEeQ6JtARBEAnIL8fUo2gBYMtZaRQtAHAJHkmrZUmcr3SXpIw1ZkjLTJlgTdkxj0Wf0SfmbQmCIIj4wJpzpGUm8h290Ii0MobhjHU0EoIgCIKoHxL8UZ4gCOLCZG+JNJI0nDMOvg5GkjiYWlwNQ06156EurTv0GX2hz+wrK+BqwdLm9ngNjyAIgogRc8spYHTV9ga6tB40iXYBoktqo1pPIi1BEARxvkORtARBEA2UQodPvkKo23HEG2PTK+A68j9JOWtIRdqofLiOfw+B98CYOxoM6/8Zy5x8EBUbn0bljtcj74A1wtJ6GqxdHofO3jK+gycIgiCiRp/aBRmXb4W7YDkYvQ3G3DHB6ztx4cBacyM0IJGWIAiCOL+hux+CIIgGSqFTPpK2ocfXcjLLXgGAYQ1gdGaYmk2U1LF6G6wdH9Ik0qYM/Qjm5pNrOkyCIAgijujszaGz31rfwyDqEYZRX+TJcIY6GglBEARB1A9kd0AQBNFA4ZUiZhtCJK3Kg5iidUGkZY4avG79u9ZrakcQBEEQRB3DKMcQMRRJSxAEQZznkEhLEASRYLh9NVNZG4JGC4ZTrGJN8iItw0aKoNEm0iJiPwRBEARB1Ae65HbKlfT7TRAEQZznkEhLEASRYBQ5FbxmNdIzK/EjTSxtblOs46zNYGg0UloRIQJWa/KwyGIvQRAEQRD1gbXz44p1lDiMIAiCON8hkZYgCCLBOFkZu0jbM8uAtqmJbzduaX8XGH2ypFyX1h3GJpcgqe/ronJrp0fBRLAzYHQm2Lo/G3zPJbeXb6e3Rz9ggiAIgiBqHXPL66HP7C9bR5OsBEEQxPlO4j/JEwRBXGAURCnS3trZhvapBrh5AS2TdRHFzERAn9oFWVfuh/vsWujsLeGrOg6AgSGzPxidGfrUzsi+9gwchxbDkNEH+oxemvq1d38GpmZXAoIPvqoTKP5xtKQNibQEQRAEkZgwLIf00b+hYssLqNj0N3ElRdISBEEQ5zkUSUsQBJFgnKqKTqQdnmtG0yQdWqfowTYAgTYAa0qHKXc0dMntYGx0EYyNRoDRmUPqM2Btf6dmgTaAPrUT9GldwbDyvrcsibQEQRAEkbAwLAdjoxEy5RRJSxAEEQ0Mw4BhGMyYMaO+h0JohCJpCYIgEoxoImntBgYGruEIs3WL/DwkRdISBEEQRIIjJ8iy9OhKEIR2VqxYgREjpBM+HMchKSkJycnJyMvLQ69evTB48GCMHz8eBgNNBhH1C0XSEgRBJBjRRNKmm+SjRQkAjPxnw+hsdTwQgiAIgiCiQTZqlvfW/UAIgjjv8Pl8KC4uxqFDh7By5Uq8/vrrmDx5MnJzc/H888/D66VrDVF/0HQkQRBEglHh5mXLkwwMytyCqKzYJd+WADhrE2kha1C0QSAIgiAIIjHQJbcTF7B6cLZm9TMYgiAaPHfddRfuvvvu4PuKigoUFxdjy5YtWL58OX788UecOXMGTz/9NJYsWYJvvvkGmZmZ9Thi4kKFImkJgiASDDnZNdfG4fr20gjQvtmUREMJzt4a5lY3isqSB75dT6MhCIIgCEIrjM4Ce5/X/KtiGBZJvV4BQ4nDCIKIkaysLHTu3Dn4r3///hg9ejSeeOIJLF26FNu2bUOPHj0AAGvXrsXEiRPhdrvredTEhQhF0hIEQSQYgjhYFvf3SEK/HCOOVUiX3jRLosu4EgzDIGXIfNh6PAdfxWHoU7uANabW97AIgiAIgtCArdNDMLe6AQDAmSiijSCI2qNjx45YtWoVBg0ahI0bN2LVqlX473//i4ceeqi+h0ZcYFAkLUEQRAIghCizTp9Ypc00c9CxDNKM0mX65QrWCEQ1OlszGHOGkkBLEARBEA0MzpRJAi1BEHWC2WzGhx9+CIbxJ2X+5z//CY/HI9v25MmTeOqpp9C7d2+kpaXBaDQiLy8PV199NX788UfV/RQXF+P999/HDTfcgI4dO8Jms8FgMCAnJweXXnop5s6dqzmK95NPPsHw4cORmpoKm82Gzp07429/+xtKSkqi+tuJxIFCsAiCIOqR9adcmLOlDD4emNjGirUnXeDDImmZc//bDIxk+zISaQmCIAiCIAiCIGpMp06dcPHFF2Pp0qU4ceIE1q1bh4EDB4rafPzxx5g+fToqKytF5ceOHcOiRYuwaNEi3HrrrZg9ezZ0Oqnk1qNHDxw+fFhSfurUKSxduhRLly7F7Nmz8e233yInJ0d2nF6vF1OmTMGiRYtE5du3b8f27dvx0UcfRRSLicSEImkJgiDqCV4Q8M7WcpS5BVR6BXy0swJ7iqWztecmc8EyUpHWE67oEgRBEARBEARBEDExatSo4OuVK1eK6hYuXIgbb7wRlZWVaNmyJV577TV8//33+PPPP/H5559jzJgxAIB3330Xjz/+uGz/Pp8P/fr1w3PPPYdvvvkG69atw6pVq/DRRx/hsssuAwBs3LgR1157reIYH3300aBA265dO7z77rtYt24dfvzxR0yfPh2HDh3CNddcU6PPgagfKJKWIAiinihx8Sh2RY6EZUO02d7ZBqw/Vb38ZWRTc20MjSAIgiAIgiCIOkYQeAh8WX0Po85g2CQwTGLFDvbs2TP4es+ePcHXZ8+exR133AFBEHDLLbdgzpw5okjZnj17YtKkSXjqqafw4osv4o033sD06dPRrl07Uf8//fQT2rRpI9nvwIEDcf311+P999/HLbfcgl9++QXLly/HyJEjRe22bt2KmTNnBvf5yy+/wGarTjA9cuRIDBw4EFOnTq3ZB0HUCyTSEgRB1BMlGgRaoNruAACuamvF0XIfTlX5cGkzM1pQ4jCCIAiCIAiCOC8Q+DKUn7yyvodRZ9hzPgfDpdT3MESkp6cHXxcXFwdfz5o1C6WlpWjSpAneeustWSsDAHj22WfxwQcf4Pjx45g/fz5eeOEFUb2cQBvKzTffjP/85z/YtGkT/ve//0lE2tmzZ4Pn/c+Rc+fOFQm0AW666SZ89tln+O6779T/WCLhoKd7giCIeqJUq0gbotI2T9Lj9eFpAOTtDwiCIAiCIAiCIIjYCBU9y8vLg6+//vprAMC4ceNgNBoVt9fpdBgwYAAWL16M1atXq+5LEAScOnUKZWVlomRhTZo0waZNm7B582bJNgGv2S5duqBXr16Kfd9yyy0k0jZASKQlCIKoIW6fALdPgM3gX6pT4eZh5BjoORkPWZ/ff7bKw2N7oXy20HBYiPshcZYgCIIgCIIgCCL+hAqzSUlJAPw+sps2bQIAzJkzB3PmzNHU18mTJ2XL8/PzMWvWLPz666+i/YVz9uxZ0XuXy4W9e/cCAPr06aO67759+2oaI5FYkEhLEARRAzaeduH1DWVw+QSMbWFGoZPH6gIXUo0sHu+TjJbJ+mDbI2VePLayKPqdkCZLEARBEARBEARR64QKo2lp/hWMRUVF8Hq9UfdVVVUlei8IAm6//Xa8++67mrZ3OByi98XFxRAEf+LorKws1W2zs7OjGCmRKJBISxAEUQM+210Jp8//Q/nNweof0WIXj6/2V+GhnsnBsv/tr4xpH15eqNkgCYIgCIIgCIJIeBg2Cfacz+t7GHUGwybV9xAkbNy4Mfg6kPTL5/MFy2677TY88MADmvoyGAyi9++9915QoO3evTsefPBB9OvXD02aNIHFYgHHcQD8nrIffvhhUJCVg6HVleclJNISBEHUgENlyjOqawpcoverTrgUWipj5Bjk2uhSTRAEQRAEQRDnOwzDJlwirQuNZcuWBV8PHjwYQHVELeCPhu3cuXNMfb/99tsAgNatW+P333+H2WyWbVdUJL/6MiUlJfj61KlTqvuKVE8kJmx9D4AgCIKQJ9PM4q5udhhkvG0JgiAIgiAIgiCI+LFt2zYsX74cAJCXl4fevXsD8EfEdurUCQCwatWqmPvfvn07AGDChAmKAq0gCNiwYYNsnclkQps2bQAA69atU91XpHoiMSGRliAIIkZ4leUn4Ti8fNT9v3lRBgY0MkW9HUEQBEEQBEEQBKEdh8OBm266KWgx8Oijj0Knq17ROGHCBADArl278MMPP8S0j4CvbWWlsg3eV199hYKCAsX6UaNGAQC2bt0qsmYI57333otpjET9QiItQRBEDJS7efxxUrt9QZEzepGWIAiCIAiCIAiCqF127NiBwYMHB0XPYcOG4a677hK1eeCBB2Cz2QAAN998czAqVon8/Hxs2bJFVBaIgl2yZImspcH+/ftxzz33qPY7ffr0oB/tHXfcISv4fvzxx/j2229V+yESEzI6JAiCiJI9xR48/XtxVNsUkkhLEARBEARBEARR55w+fRrbtm0Lvq+srERxcTG2bNmC5cuXY9myZcEI2v79+2Px4sXQ6/WiPrKzs/HBBx9g8uTJKCgoQO/evTFt2jSMHj0aubm58Hg8OHbsGNauXYvFixfjwIEDWLJkCbp27Rrs46abbsJjjz2GEydOYMCAAXjiiSfQuXNnOJ1O/PTTT3j99dfhcrnQs2dPRcuDbt264Z577sGbb76J9evXo3fv3njiiSfQpUsXlJaWYtGiRZg7dy569+6N9evX18KnSdQmJNISBEFEyYLdFVFvU+TwRW5EEARBEARBEARBxJVZs2Zh1qxZqm0yMzPx4IMP4vHHHxfZHIQyadIkfPXVV5g2bRqKioowe/ZszJ49W7Yty7KwWq2isgceeADLli3D0qVLsWfPHtx6662ierPZjPnz5yM/P19RpAWA1157DSdOnMAXX3yBXbt24eabbxbVt2jRAgsWLECrVq1U/2Yi8SCRliAIIkq2FXqi3uZkVXQi7aim5EVLEARBEARBEAQRT1iWhd1uR3JyMpo1a4ZevXphyJAhGDduHAwGQ8Ttx48fj4MHD+Ltt9/Gt99+i+3bt6OoqAg6nQ45OTno1KkTLrroIkyePBl5eXmibfV6PfLz8zFr1izMnz8fO3bsgCAIaNKkCUaNGoUHHngA7du3R35+vuoY9Ho9Pv/8c3z00UeYO3cutmzZAo/Hg2bNmmHixIl49NFHkZqaWqPPiagfGEGIIvMNkXAcO3YseOIfPXoUubm59Twigjj/uSb/tOa2C8ZmAQD+vaEUawrUPWzv7GrHD4ccaGTjcHMnO5IMZBtOEARBEARBEIlCTZ6/9+7dC6/XC51OF/QmJQiiYRPv85oiaQmCIGoRQRDAMAxOVkaOpB2RZ8aIPHMdjIogCIIgCIIgCIIgiESCRFqCIIha5McjTuhY4FCZV1SeaWZxxkHJxAiCIAiCIAiCIAiCIJGWIAgiKqJ1iHlnW7lsea5NhzMOdzyGRBAEQRAEQRAEQRBEA4cMDwmCIKLAFV3+L1n0LNA2VV/zjgiCIAiCIAiCIAiCOC8gkZYgCCIKnN6aWxQ0snK4rLkZ+pAr8JAmphr3SxAEQRAEQRAEQRBEw4TsDgiCIKLA4ZPaHfTJNqJNqg6bTruxo8gTsY8cqw4WPYu/9kvBNweqkGricF07a20MlyAIgiAIgiAIgiCIBgCJtARBEFHg8IpFWo4BHumVBIZhcHkrK67JPx2xj0ZWDgDQPs2A9mmGWhknQRAEQRAEQRAEQRANB7I7IAiCiAJnmEhr0jFgGCaqPgIiLUEQBEEQBEEQBEEQBEAiLUEQRFSER9KaddEJtACQQyItQRAEQRAEQRAEQRAhkEhLEAQRBZJIWk4s0iYbI19WG1lIpCUIgiAIgiAIgiAIohoSaQmCIKIgPHFYeCTt7Z3tqtu3TtEhxUQiLUEQBEEQBEEQBEE0ZARBmli8JlDiMIIgiCiIZHfQO9uAO7rYMXdrOQC/KGtgGVj0DLIsHC5vZa2zsRIEQRAEQRAEkRhwHAev1wufzwee58GyFDNHEA0Zn88Hn88HwH9+xwMSaQmCIKLA6eVF70068c0VwzAY2dSMkU3NdTksgiAIgiAIgiASGJPJBJfLBUEQUFFRgaSkpPoeEkEQNaCkpCT42mKxxKVPmrohCIKIgngkDiMIgiAIgiAI4sIiVJQ9efIkysrKwPO8yhYEQSQagiDA6XTi9OnTOH36dLA8NTU1Lv1TJC1BEEQUREocRhAEQRAEQRAEEY7VaoXZbIbD4YDP58Px48fBMEzclkkTBFH7+Hw+iQ9tcnIyjEZjXPonkZYgCCIKnGGJw0wUSUsQBEEQBEEQRAQYhkHTpk1x5MgROBwOAP6oPK/XW88jIwgiVjIzM5Ge/v/t3Xl8lOW9///3LJksk40tQgiLBCKgqJSgILK5YBWVIop2EeSgtdrF9vhVe/R0OVarpfXXqg+PG4hLW7GidedUq4gKCAapVhbZkbAmELJNktnu3x8xQyYzk5kkM7mTzOv5ePhwZu7rvuaaTK4Z5p1rPlefuPVHSAsAbdCiJK1SKBoDAAAAIAZWq1VDhgxRbW2tqqurA6tqAXQPVqtVDodDTqdTmZmZcjgcce2fkBYA2sDX4qsNNgsraQEAAADExmKxKDMzU5mZmWYPBUAXwxowAGiDlitp7byKAgAAAACADiJeAIA2+FeZO+i6zcpKWgAAAAAA0DGEtAAQo/WHGkJuY98wAAAAAADQUYS0ABCj5dtrQ25jJS0AAAAAAOgoQloAiNHeKm/IbaykBQAAAAAAHUVICwAdwEpaAAAAAADQUYS0ABCjbEdoIMtKWgAAAAAA0FGEtAAQg01H3apyGyG3u7yhtwEAAAAAALQFIS0ARFHj9uvedcfDHqto8HfuYAAAAAAAQI9DSAsAUXx8qEG+CAtmz+jr6NzBAAAAAACAHoeQFgCiqGxltWxhrr0TRwIAAAAAAHoiQloAiCIzJfzuYL+emCurhZ3DAAAAAABAxxDSAkAU7ggLaftn2Dp3IAAAAAAAoEfie7oAktaO4x49+lmVSmt8kqTzB6Xp3X31gePfPsWpbw13qt4bPqXNSeXvXAAAAAAAoOMIaQEkJb9h6KGNVTrs8gVuax7QStLzX9ZqcJZd9d7wu4ZR6gAAAAAAAMQDIS2ApLS/xhcU0Eay+kC9UmyhYew38hyJGBYAAAAAAEhCfFcXQFI6UOONqd2/j3pU1RBa7mBWYUa8hwQAAAAAAJIUIS2ApPRVdfRVtJJU2eDX5mOeoNvmFjk1sjcraQEAAAAAQHwQ0gJISvuqY1tJK0l1LWrS5mfa4j0cAAAAAACQxKhJCySxjw/W67ktNXJYLbrx9KykWh3alpC2pWwHf98CAAAAAADxQ9IAJCm3z9Bjn1ervM6vA7U+Lf6i2uwhdRqPz9DB2tjKHYSTRUgLAAAAAADiiKQBSFL/LncHfY1/X7VPXr/Ryhk9R43Hr4480txUXjoBAAAAAED8kDQAScqXHHlsWA0dePAZdouyUixxHA0AAAAAAEh2hLRAkjKM5E1p3f72n9vfaZPFQkgLAAAAAADih5AWSFLhItokqXYgd4uVtNY2ZK4nZdjiPBoAAAAAAJDsCGmBJBUuj/UkSUrbMqR12mNPafs7CWkBAAAAAEB8EdICSSpctYPPytydPxATtKxJ67BZNKp3Skzn9mclLQAAAAAAiDNCWiBJOcNsflXZ0IFird1Iy5W0DptF143OjOnc3mmEtAAAAAAAIL4IaYEk5Q2Tx/qSo9qB3L7g6w6bRUNzUjS3yKlUm5TvtGlWYUbYc9PaUBoBAAAAAAAgFnazBwDAHHXe0ETWF64GQg/kblF7N/XrP1fNGeHUFcMzZLE0BrF9061a8kVNUFtCWgAAAAAAEG+spAWSVLiQNty+YQ0+Q0dcPnm/Pujy+PVVtVfH608sR633+nXE5ZM/wSGv12/oUK1Xng4u+Q1X7qBJU0ArSam20EA2LcxtAAAAAAAAHcFKWiBJ1ccQ0h6s9eredcdVVufXsBy7vpHn0PLtrsDxq4ucOqOfQ/d9clzVbkOn9UnRz8fnKiUBQWZVg1+/WVehr6p9yku36lcTe6lvevvqw4bbOCwcu5WQFgAAAAAAJB4raYEkVecLLUrra5HSrthdp7K6xna7Kr1BAa0kvbCtVk9tqla1u/G8L4569Hm5OyHjXbW/Xl9VN67ePVLn12s7XVHOiKxluYOUMGGsJDnDlDZIpdwBAAAAAACIM0JaIEn5w2wcVt9ihek/9tZF7WfHcW/Q9Q2HGzo0rkje2h0cysYytkhcnuDHmREheB3dx6HMlBPHBmfZwpZAAAAAAAAA6AhCWgABLcPL9nCmJOZlpWWJAkmqdodJmmNQ0+JxOlPCB68Om0U/OjNbg7NsKsyx6wenZ7fr/gAAAAAAAFpDTVoAAa5mdWqNdm4ClqCMVjkOq2o9vqDbvqzwqPik1Db35fIEh7utBctj81I1Nq/t9wEAAAAAABArVtICCHB5/c0uty+kDbfiNZwjLp+2HnPLbxg6UOPVV1VeHXH5tP5Qgz4vd8vdop9qT+iq2a3HPCG3GYah3ZUefVV1ogxDZYNfm4+6Ve89UV+3uUgraQEAAAAAADoDK2kBBDQvd1BR375SAm/srtO1o7NabbPuYL0e3Fil1vLcQVk23T2xlzJSrPL4jMDmZM1tPRa6SdnSTTWBerVXjsjQ2QPSdPfHFap2G+qdZtXMkzNU0RD7SloAAAAAAIBEI5kAklS4fLT56tlj7QxpJanO2/q5b+xytRrQStK+ap8+K28MYY83hO9vV6VX/mZlGVwev9756sSGYsu3u/TmLlcg4D1W79dzW2pC+mElLQAAAAAAMBMhLZCkwoWkwSGtL7RBjLZXeFs9vu1468ebHP86KG658rWJzwjeBKzS7Ze/xeN6v7Q+6v30SbPFNB4AAAAAAIBEIKQFkpS3ZZqp4A21IgWjsdhaEVqGoD08X4+xopXAuNp9YpxWS/tWxPZ3EtICAAAAAADzJG1IW1JSorvvvlszZsxQQUGBUlNTlZmZqaKiIi1YsEAfffRRm/pbsWKFZs+eHeiroKBAs2fP1ooVKxL0CICOCbeS1uM/Ed5GKndw2bCMqH1/GWZDryaGEfuGZE35a2uBcfOQti19N+ewUe4AAAAAAACYJyk3DpsyZYo+/PDDkNvdbre2b9+u7du36+mnn9a8efP05JNPyuFwROzL7/fr+9//vpYsWRJ0+/79+7V//3698soruv766/X444/Lak3aTBxdULiVtFLj5mFWq6G399aFPV6YE/1lY/txr7x+Q3ZrY/j5VbVXe6sa68furoyt1IEkuX2Gthxz650IY5GkV3a4dMUIi/bXeFVyuCHmvgEAAAAAALqKpAxpDxw4IEnKz8/XVVddpcmTJ2vw4MHy+Xxau3atHnjgAe3fv1/PPvusPB6P/vrXv0bs66677goEtGPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W875fEBsYi0cVd5vU9/KKmMeF5OqlV90qw62srGYg0+Q3urvCrMTdG6g/X6/z6tatcYX93p0qs7Xa222Vjm1say+JRXAAAAAAAAMIPFaO/3g7uxSy+9VPPmzdOcOXNks4XWoiwvL9ekSZO0bds2SdKqVas0ZcqUkHbbtm3TqaeeKq/Xq+LiYn3wwQdKT08PHHe5XJo6dapKSkpkt9u1ZcsWDR8+PK6PpbS0VIMGDZIk7du3TwUFBXHtHz3XQxsrtfpA6MrT8wen6d2vIm+2dd+5vfT81hp9Xh65pIEkzRmRoatGOHXL+8d02NX+TcgSrSDTpgem9jF7GAAAAAC6OD5/A0ikpPz+/RtvvKG5c+eGDWglqW/fvnrggQcC15cvXx623Z/+9Cd5vY1f3X744YeDAlpJysjI0MMPPyxJ8nq9+uMf/xiP4QNx4Y2wELa1gDYrxaLBWXZlOkJfOsblBZcF+aC0XrurvF06oJWk24pzzB4CAAAAAABIckkZ0sZi+vTpgcs7d+4MOW4Yhl599VVJ0siRIzVhwoSw/UyYMEGnnHKKJOnVV19t98ZGQLz52vi7ODTbrv+ekCu71aJUa+hGWxcOCf4jRVmdX0u/qI7a76T8VD08vY/mFjkVptuwzugXuU50W1w3OlP9nUlZ9QUAAAAAAHQhhLQRNDSc+Bp4uBW3u3fvDtS2nTp1aqt9NR3fv3+/9uzZE79BAh0QaSVtJLcV52hodookyWELTVNP6ZWiwVnBc2Xb8cibhA1w2vTCzDz9ZGyO8jJsmjPCqfsm9YppLPNGZWpukbMNow9137m9dPHJGR3qAwAAAAAAIB5YQhbBqlWrApdHjRoVcnzz5s2ByyNHjmy1r+bHt2zZopNPPjkOIwQi21Pl0SeH3DpW75PdalGazaI0u0Vn909VWZ1P2yo8+lcbN9tKt58IZsOFtA6bRdMK0vXslpqY+stJDf0bUX9n+BIkLfVOsyo1zBjaoleY+wcAAAAAADADIW0Yfr9f999/f+D63LlzQ9qUlpYGLkcrFt5UWFxqLC7eFs3vJ5yDBw+2qT/0fF9Ve/XfqyvkCbNS9m/batvdb/OQNjVMlmq3WjR5YJr+srVGvhgqKeSGCUnT7NGD01Rb41g6GtJmh6mrCwAAAAAAYAZC2jD++Mc/av369ZKkK664QuPGjQtpU119otZmZmZmq/05nSe+ll1TE9sqwybNA14gFh8frA8b0HaU1XIiFB2cFf6lIzvVqm/kOfTJ4eirdE/rE76u7KjeKdpyzBPxvByHVRZL4+rgjrDFWgAXAAAAAAAgwVhK1sKqVav085//XJKUl5enRx99NGy7+vr6wGWHo/VNjFJTUwOX6+rq4jBKILIjLl/c+5xakBZ0vfikVPVNP/HyMb3Z8ZG9Y9vUq2Wf0W5vYv86XLXHVhkhrIuHpkdvBAAAAAAA0ElYSdvMpk2bNHv2bHm9XqWlpenFF19UXl5e2LZpaSeCJLe79VWDzTchS09vWzgUrTzCwYMHddZZZ7WpT/RsZa72L6OdWpAm/9elClKsUorVon7pNn2zRahps1r0m3N66e09dcp0WIOOh6s1K0kLT8vUs5trZJH0+ym9w9a1bRpDut2iXZVeZTuseq5FjduGr2sp2C1tXwl7Tn6qinJTdOEQQloAAAAAANB1ENJ+bffu3ZoxY4YqKipks9m0bNkyTZkyJWL7rKyswOVoJQxqa0/UAY1WGqGlaPVugZbK6tq3knbKwDTdfEZ2zO17p9l0zcjQ3+dIIe2Yvg79+eLwf/RozmqxaMKANE0YILl9RkhIe7S+MYRuT7WDG8dkK81OmQMAAAAAANC1ENJKOnDggC644AIdOHBAFotFTz31lGbNmtXqOc3D02ibezVfDUuNWbTFZ2UN+leZW6f2cWhcnkOWVlaP/qusQWsONARCzLbKdMQnvMyNsCFXr3C7jUURabWtJNnaUaylHUMAAAAAAABIuKQPacvLy3XhhRdq165dkqSHH35Y8+bNi3re6NGjA5e3bt3aatvmx0eNGtXOkSLZbDnm1n3rK2VIemt3nW4vztG4k1LDtt16zK37v27bXrZ2lA8IJzvCStr2rmDNSrGo2hP6yOq8bX+0rYXcAAAAAAAAZknqjcMqKyt10UUXafPmzZKk+++/Xz/84Q9jOvfkk09Wfn6+pMbNxlrzwQcfSJIGDhyooUOHtn/ASCprDzQEha6LSiojtv30iLtDAa0kFebG52822XFakdukZf3YwVmNy2FPymjbslhnCgEtAAAAAADompI2pHW5XJo5c6Y+/fRTSdJdd92lO+64I+bzLRZLoCTC1q1b9fHHH4dt9/HHHwdW0s6aNYuVfIjZmoP1Ibf5jfBRbFVD+zcLa3J2//CrdNvKarHo3PzgvuaPblst5uZmFWYot9nq3GkFjaHtkGy7BmZGDmqnFaQps1kw++1T2j8GAAAAAACARLIYRoTUpwdzu9267LLL9Pbbb0uSbrnlFv3pT39qcz/btm3T6NGj5fP5VFxcrA8++EDp6SdW/dXV1WnKlCkqKSmR3W7X5s2bNWLEiHg9DEmN9XCb6tzu27ePjcZ6kN+XHFfJYXfQbQ9M6a2CrNAVr+HatsVTM/rKmRK/v9n4DUNv7q7T+/vqdOUIpybmp3Wov+MNfq0+UK/+Gbagkg81Hr9W769XlsOqb+Q59M5X9frkUINmDEnXOfmpqmzwa+3BBg1w2jQ2Lz4hNAAAAIDkxOdvAImUlDVpv/3tbwcC2vPOO08LFy7UF198EbG9w+FQUVFRyO1FRUW67bbbdP/996ukpESTJk3SHXfcocLCQu3cuVO/+93vtHHjRknSbbfdFveAFj1b77TQVaJbKzxhQ9oad/v/1tI7zRrXgFZqXE172bAMXTYsIy795aZaNfPk0L4yU6y6aOiJ21veZ680my4Jcx4AAAAAAEBXkpQh7csvvxy4/N577+n0009vtf2QIUO0Z8+esMfuvfdeHTlyRE899ZQ2btyoa665JqTNwoULdc8993RozEg+Db7Q4HXrMY8uGJwecnu1p/3lDjLauaEXAAAAAAAA4iNpa9LGi9Vq1ZIlS/Tmm29q1qxZys/Pl8PhUH5+vmbNmqW33npLixcvltXKjxpts6o0tCbt1mPhSxrUuDsQ0sZ5FS0AAAAAAADaJilX0iaiDO8ll1yiSy65JO79InmdlGHTYZcv6LayOr+q3H5lO04Eq+V1PlV2oNzBOQOo1QoAAAAAAGAmltABXZQ9wuzcW+UNur7hcEO776N/hk3nhymfAAAAAAAAgM6TlCtpge7AH2Fx7N4qr8b0dQSubzgSXAKhqFeKphakaWCmTQ1eQ7JIo3s79FmZW0frfbJZLEqzW+SwSmf0S5XDRk1aAAAAAAAAMxHSAl2UL0JK23wlbZ3Xr01Hg0PaS4ama2J+Wsh54/tT1gAAAAAAAKArotwB0AUZhqEjdeE3A9tbfSKk/bzMLW+zZjaLdEY/R5izAAAAAAAA0FUR0gJd0OZjnojHSqu98n69yrZlqYNT+6QoI4VpDQAAAAAA0J2Q5gBd0L9ahK/N+Qyp2t24fLblJmJj8yhpAAAAAAAA0N0Q0gJd0K7KyCtpJampWu0Rly/o9oIsykwDAAAAAAB0N4S0QBfjNwztrPS22sYwpFqPXy5v8OZieelMaQAAAAAAgO6GRAfoYg7V+lTXInxtyVDoKlqLpL7ptsQNDAAAAAAAAAlBSAt0MbtarKJNt1tC2tz50TGVHG4Iuq13mlV2a2hbAAAAAAAAdG2EtEAXs+lo8KZhhTmhdWYr3YaWb3cF3ZaXwSpaAAAAAACA7oiQFuhCyut8+mB/fdBto/s45EyJvkI2P5OQFgAAAAAAoDsipAW6kJe318rrP3HdbpWmFqRpbpEz6rnTCtITODIAAAAAAAAkCiEt0EUcqvVqZWnwKtoLB6erb7pN3xyaocUX9o147ul9HSrqlZLoIQIAAAAAACABCGmBLuKl7S75jRPXHVbpW4UZgetZDquGhalPK0lXjoi+0hYAAAAAAABdEyEt0AXsr/Hqwxa1aC8amqHctOA6s7mpoVP29L4pOqU3q2gBAAAAAAC6K0JaoAtYua9ezRbRKs1m0eXNVtE26e8M3RxsDqtoAQAAAAAAujVCWqALOOzyBV2fPihN2Y7Q6TmqtyPo+pi+KRrZ4jYAAAAAAAB0L4S0QBfgN4yg6zlhyhpIUvFJDk3KT5VF0uAsm24+I7sTRgcAAAAAAIBECr8LEYBO5fUHX7dZwrezWiz6ydgc3XS6oZRIjQAAAAAAANCtsJIW6AJarqS1WVoPYAloAQAAAAAAeg5CWqAL8AVntLKSwQIAAAAAACQNQlqgCwgpd8DMBAAAAAAASBpEQUAXUF7nC7qe5WBqAgAAAAAAJAuSIMBk9V6/jtYHL6Ud6GRPPwAAAAAAgGRBSAuY7EBt8Cpai6T+Tps5gwEAAAAAAECnI6QFEqjG49eeKo+8fkMNPkN7q7zyG8G7hO2vCQ5p8zJsctjYOQwAAAAAACBZ8J1qIEH2VHl077rjqnIbslslw5B8hjQ4y657JvVS6tdB7P4ab9B5AzNZRQsAAAAAAJBMWEkLJMjbe+tU5W5cNev1Nwa0kvRVtVdrDtQH2h1sUe4gn1IHAAAAAAAASYWQFkiQd7+qj3jsi3J34HK9N7j8QU4q0xIAAAAAACCZkAYBJmgey7asUWuzUI8WAAAAAAAgmRDSAiZo8J0IZr3+4GM2ZiUAAAAAAEBSYeMwII52VXq0r9qrzJTWk9aqhhPJrD94IS0raQEAAAAAAJIMIS0QJ6/trNVfttbG1Lba02wlbUi5g7gOCwAAAAAAAF0cX6wG4sDl8ccc0EpSRb0/UIvWR7kDAAAAAACApEYcBMTB6gMNbWpf7zN0xOWTJHla1DtwWFlKCwAAAAAAkEwIaYE4eG9fXZvP2V3plRS8iZgkOah3AAAAAAAAkFQIaYEO2lPp0a6vA9e22F3VeI6bkBYAAAAAACCpsXEYTOHzG/r4YIMsFuns/qmyRfmKf7Xbr08ONahvuk1j+qbIYumcIHN3pUfbj3t0el+H+jvDT5e/bK2Jqa98p00Han2B6yWHG5Rms6jSHRzSphLSAgAAAAAAJBVCWpjiwY1VWneosY7rpPxU/WRsTsS2x+t9+u81FSqra9xh69pRmbp0WEbCx/h5uVv3rjsuSXJYpTvG5+q0vo6gNtsqPPq83BNTf8Ny7EEh7f4an17YFrrZmMPW/jEDAAAAAACg+6HcATpdeZ0vENBKjZtuuTz+sG39hqFHPqsKBLSS9OrOWvkNI2z7eHp1x4kA1e2X/rChUnurTpQ1cPsMPfpZVcz9je7jiN5IrKQFAAAAAABINoS06HR7qkLrtx5vCB/SvrHLFbJStcptaHtF22vAtkWN26/Nx4Lvt85r6L71x1Ve17gadvn22qCVsS31STsxvTLsFk0emKZhOdEXrxPSAgAAAAAAJBfKHaDTHXGFBpvV7tCVsTuOe7Tsy9ByAJK04UiDTumdEvexNe/fH2axbkWDX/etP655ozP12k5XyPEbxmRpV6VHZ/R1aNxJqXpzt0tH6/z65tB0OWwW3VGco1d2ulT2ddBbctgd0ocjSn1eAAAAAAAA9CyEtOh0pTWhq2CrW5Q7cHn8emhjlXwRqhqUHG7Qd0ZmJmJ4kqRPDoWGp01Ka3z67frKoNtsFun+yb01OMsuKT1w+6xCZ1C73DSbrjs1K3D91lVHVVoTHFo7WEkLAAAAAACQVAhp0en2V4eupF2x26V/HTkRjO6r9upwmBW3gT5qfHrs8yrlpds0eWCa+mXEb7etBp+hz8oagm5LtUkNkYejK0c4vw5o2yY31RoS0qZQhAQAAAAAACCpENKiUxmGoX1hVtJ+cdSjL456wpzRqCjXrsN1flU2q127cl/91/+v0++n9FaaPT7p5udlbrmbLey1SPqfib30u08qVRGmdu7QbLsuL8xo1331SrNJCn7cFgsraQEAAAAAAJIJa/bQqSrdhmo9EWoYRJBht+jHY3M0Ls8R9viROn+r5Qnaasfx4NB0VO8UnZyTov86K1fp9uAA1WaRbjojS/Z21pEd0zdxdXUBAAAAAADQPRDSolOVVoeuom2NRdL3T89SXoZNF5+cEbEUwKaj8Qtpq93Bq2UHfV3GYEi2Xf9vXI6aL9i9+hSnhma3P2idlJ+mfuknOrzk5PRWWgMAAAAAAKAnotwBOlVBll0/OjNb+6u9emuPSw0+acaQ8MFkilUad1KqTu3TuIJ2cJZdd5/TSx8fbNCrO11BbTcfi19IW9NipW9myolVsqf1degPU3przYEGDc6ya3z/1A7dl91q0T2TemvlvjrlOKyaNiitQ/0BAAAAAACg+yGkRafKTbVq8sDGIPKakZltPn9YToqG5aTonPxU3fFhReD2wy6/yut86pve8Q3EajzBK2mdjuDluwOcds0ZEb+pk5tq1ezhzrj1BwAAAAAAgO6FcgfolgZn2YNWuErxKXlQWu3VphYbmLW8HwAAAAAAACCeCGnRLVktFo3qHbyRWMtwta28fkN3rzsecntmpEK4AAAAAAAAQByQPqHbGt0neMOutm5K1tJX1V5VNvhDbs9NZZoAAAAAAAAgcUif0G31ahGe1vuMCC1jU+cNPX9Itl0n51C6GQAAAAAAAIlDSItuK80eXCu2PkzI2hbuMCHvrybkymqhJi0AAAAAAAASh5AW3VaqrUVI28GVtC1D2gFOm5zUowUAAAAAAECCkUCh20qP90raFuVoU6ysoAUAAAAAAEDiEdKi22pZ7sBnSF5/+4Laeq+hjw/WB93msLV7aAAAAAAAAEDM2BEJ3ZbTHvo3hiMun/Iz2/ZrfajWqwc2VOqral/Q7dkO/oYBAAAAAACAxCOFQreV5bCoV2rwr/DO49429fGvIw2686OKkIDWIumCwekdHSIAAAAAAAAQFSEtui2LxaLC3OBVszsqPTGdaxiG/r6jVvd/UqnaFrVsM+wW3V6co3EnpcZtrAAAAAAAAEAklDtAtzY8N0Ulh92B6zuORw9pXR6//vezan1yuCHkWEGmTf+vOEcDnEwNAAAAAAAAdA6SKHRrhbkpQdf3VHnl9RuyWy1h25fX+XTvuuM6UOsLOXZ2/1TdfEaW0sLUugUAAAAAAAAShZAW3VphTvCvsNcv7ar0qqhXSkhbwzD08L+qQgJai6Rvj3Tq8mEZsljCh7sAAAAAAABAorBkEN2aM8WqfKct6LY1B+rDti057NbWY8HlEDJTLLrzrFzNKnQS0AIAAAAAAMAUhLTo9s4eELzB10f76+X1B28G5vMb+uvWmqDb+qRZdd+5vXV6P0fCxwgAAAAAAABEQkiLbm9aQVrQ9WqPoQ0tNgVbWVofUubgOyMzlZcRvAoXAAAAAAAA6GyEtOj2+jvtGtU7uAbt+6UnSh7Ue/3627baoOMnZ9t1Tn7wClwAAAAAAADADIS06BFarqbdeMStinqffH5DC94uV2WDP+j490ZlykoNWgAAAAAAAHQBhLToESYMSFWq7UToakh6a3ed/rG3Ti3K0+rMfg6d1pc6tAAAAAAAAOgaCGnRI6TZrZrYYgOxt/a49PbeupC23xmZ2VnDAgAAAAAAAKIipEWPMaswQ80W08rrlw622Czs9L4pGpJt7+SRAQAAAAAAAJER0qLHyM+065tD01ttc+u43M4ZDAAAAAAAABAjQlr0KFeOcCrHEX5DsNP6pCjNzmZhAAAAAAAA6FoIadGjZKRYdc0p4WvOntGPzcIAAAAAAADQ9RDSoseZNihNw3JC686e0S81TGsAAAAAAADAXIS06HGsFouuG50VdNtJGTYNzrKZNCIAAAAAAAAgMkJa9Ein9E7RwtMy5UyxKC/dqh+cniWLhXq0AAAAAAAA6HpCvxMO9BAzhmTowsHpMtS4uhYAAAAAAADoighp0aNZLBYRzwIAAAAAAKAro9wBAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESFtHO3du1e33nqrRo4cKafTqd69e2v8+PH6/e9/L5fLZfbwAAAAAAAAAHRBdrMH0FO8/vrr+t73vqeqqqrAbS6XSyUlJSopKdHixYv15ptvavjw4SaOEgAAAAAAAEBXw0raONi4caOuvvpqVVVVKTMzU/fee6/WrFmjd999VzfccIMkadu2bZo5c6aqq6tNHi0AAAAAAACAroSVtHFwyy23qK6uTna7XW+//bYmTpwYOHbeeedpxIgRuv3227Vt2zY98MAD+vWvf23eYAEAAAAAAAB0Kayk7aD169frww8/lCQtXLgwKKBtcuutt2rUqFGSpAcffFAej6dTxwgAAAAAAACg6yKk7aBXXnklcHnBggVh21itVs2bN0+SdPz4ca1cubIzhgYAAAAAAACgGyCk7aCPPvpIkuR0OjVu3LiI7aZOnRq4vHr16oSPCwAAAAAAAED3QE3aDtqyZYskafjw4bLbI/84R44cGXJOLEpLS1s9fvDgwZj76gpq3JVau+s2s4cBAAAAAOgi/ErVRSMfNnsYAGAqQtoOqK+vV3l5uSSpoKCg1ba9evWS0+lUbW2t9u3bF/N9DBo0qENj7Gq8PrfOytpp9jAAAAAAAF3EMQ/RBABQ7qADqqurA5czMzOjtnc6nZKkmpqahI0JAAAAAAAAQPfCn6s6oL6+PnDZ4XBEbZ+amipJqquri/k+oq26PXjwoM4666yY+wMAAAAAAADQtRDSdkBaWlrgstvtjtq+oaFBkpSenh7zfUQro9DdOOzp+qCGUBkAAAAA8DVLqk42ewwAYDJC2g7IysoKXI6lhEFtba2k2Eoj9FQZKZn65in3mT0MAAAAAAAAoMugJm0HpKWlqU+fPpKk0tLSVttWVFQEQtqethkYAAAAAAAAgPYjpO2g0aNHS5J27Nghr9cbsd3WrVsDl0eNGpXwcQEAAAAAAADoHghpO+jcc8+V1FjKYMOGDRHbrVq1KnB50qRJCR8XAAAAAAAAgO6BkLaDvvWtbwUuL126NGwbv9+vZ599VpKUm5ur6dOnd8bQAAAAAAAAAHQDhLQddNZZZ2ny5MmSpCVLlmjt2rUhbR544AFt2bJFknTLLbcoJSWlU8cIAAAAAAAAoOuymz2AnuDBBx/UpEmTVFdXpxkzZujOO+/U9OnTVVdXp2XLlumJJ56QJBUVFenWW281ebQAAAAAAAAAuhJC2jgYO3asXnjhBX3ve99TVVWV7rzzzpA2RUVFevPNN5WVlWXCCAEAAAAAAAB0VZQ7iJPLLrtMn3/+uX72s5+pqKhIGRkZys3NVXFxsX73u99p48aNGj58uNnDBAAAAAAAANDFWAzDMMweBNqvtLRUgwYNkiTt27dPBQUFJo8IAAAAAICeh8/fABKJlbQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmsps9AHSM1+sNXD548KCJIwEAAAAAoOdq/pm7+WdxAIgHQtpurqysLHD5rLPOMnEkAAAAAAAkh7KyMg0dOtTsYQDoQSh3AAAAAAAAAAAmshiGYZg9CLRffX29/v3vf0uS+vXrJ7u96y+OPnjwYGDV7/r16zVgwACTR4S24jns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz6HXq838G3WMWPGKC0tzeQRAehJun6ih1alpaVp/PjxZg+j3QYMGKCCggKzh4EO4Dns3nj+uj+ew+6P57D74zns3nj+uj+ew+6vOz2HlDgAkCiUOwAAAAAAAAAAExHSAgAAAAAAAICJCGkBAAAAAAAAwESEtAAAAAAAAABgIkJaAAAAAAAAADARIS0AAAAAAAAAmIiQFgAAAAAAAABMZDEMwzB7EAAAAAAAAACQrFhJCwAAAAAAAAAmIqQFAAAAAAAAABMR0gIAAAAAAACAiQhpAQAAAAAAAMBEhLQAAAAAAAAAYCJCWgAAAAAAAAAwESEtAAAAAAAAAJiIkBYAAAAAAAAATERICwAAAAAAAAAmIqQFAAAAAAAAABMR0qJT7d27V7feeqtGjhwpp9Op3r17a/z48fr9738vl8tl9vCSUklJie6++27NmDFDBQUFSk1NVWZmpoqKirRgwQJ99NFHUft4+umnZbFYYvrv6aefTvyDSjKx/uynTZsWta8VK1Zo9uzZgd+FgoICzZ49WytWrEj8A0lS06ZNi/k5bPrv/fffD+qDOZg4R44c0RtvvKFf/vKXuvjii9W3b9/Az/K6665rc3/xmGNer1ePPfaYJk+erH79+ik9PV2FhYW68cYbtWnTpjaPqaeLx3Pocrn08ssv66abbtL48ePVq1cvpaSkqE+fPpo4caJ+/etf69ChQ1H7act8xwnxeA7j/Trpcrm0aNEijR8/Xr1795bT6dTIkSN16623au/evR17wD1QR5/DPXv2tPm9cujQoWH7Yh62XTw+LzTHeyEARGAAneS1114zsrOzDUlh/ysqKjK2b99u9jCTyuTJkyM+H83/mzdvntHQ0BCxn6VLl8bUjyRj6dKlnfcAk0SsP/upU6dG7MPn8xkLFy5s9fzrr7/e8Pl8nffAksTUqVNjfg4lGVar1SgtLQ3qgzmYOK39LOfPnx9zP/GaY2VlZcb48eMj9pGammo8+eSTHXzUPUtHn8PPPvvMyMzMjDq3srOzjWXLlrXaV1vmO06IxzyM5+vk9u3bjREjRrT6u/D66693/IH3IB19Dnfv3t2m90pJxowZM8L2xTxsm3h9XjAM3gsBIBq7gE6wceNGXX311aqrq1NmZqb+67/+S9OnT1ddXZ2WLVumJ598Utu2bdPMmTNVUlKirKwss4ecFA4cOCBJys/P11VXXaXJkydr8ODB8vl8Wrt2rR544AHt379fzz77rDwej/76179G7fMf//iH8vPzIx4vKCiI2/gR7KabbtLNN98c8bjT6Yx47K677tKSJUskSWPHjtXtt9+uwsJC7dy5U4sWLdLGjRu1ePFi9evXT7/97W/jPvZktnTpUtXW1rbaZvPmzbr66qslSeeff74GDhwYsS1zMHEGDx6skSNH6u23327zufGYYz6fT7Nnz9Ynn3wiSbriiit0ww03qHfv3lq3bp3uueceHTlyRDfeeKMGDhyoiy++uP0Ptodqz3NYVVWlmpoaSdKkSZN06aWXqri4WH369FFZWZlefvllPfnkk6qqqtJ3v/tdZWdnR/3ZFxcXa+nSpR16LMmqI/OwSUdeJ6urqzVz5kxt375dknTDDTfommuuUXp6ulauXKn77rtPVVVVuvrqq7V69WqdeeaZ7R5nT9We53DgwIH697//HbXdfffdF/j36vz581ttyzyMTTw/L/BeCABRmJ0SIzk0/QXWbrcba9asCTm+aNGiwF8+f/WrX3X+AJPUzJkzjRdeeMHwer1hj5eVlRlFRUWB52bVqlVh2zVfnbJ79+4EjhjhdHTufPnll4bdbjckGcXFxYbL5Qo6XltbaxQXFwfmMCveO9/tt98eeJ6fe+65kOPMwcT55S9/abz++uvGoUOHDMMIXs0V6wq+eM2xJUuWBO775ptvDjm+ffv2wDdWhg8fbng8nrY92B6qo8/h6tWrjblz5xqbNm2K2OaVV14xLBaLIckoLCw0/H5/2HZNK/ha+2YDQsVjHsbrdfIXv/hFoJ9FixaFHF+9enVgvvM8nxCP5zAar9dr5OfnG5KMrKyskNfaJszDtonX5wXeCwEgOkJaJNy6desCb6Q33nhj2DY+n88YNWqUIcnIzc013G53J48Skbz++uuB5+/HP/5x2DYERObqaEh70003BfpYu3Zt2DZr165t9R/ESByfz2cMHDjQkGRkZmYatbW1IW2Yg52nPcFCvOZY0/tk7969w/4eGIZh3HfffYF+/va3v8U0vmSTiHDIMAxjzpw5gX43bNgQtg3hUHyYFdK63W4jJyfHkGSMGjUq4leyb7zxxsB9rV+/vl331dMlYh7+3//9X6DPBQsWRGzHPIy/WD4v8F4IANGxcRgS7pVXXglcXrBgQdg2VqtV8+bNkyQdP35cK1eu7IyhIQbTp08PXN65c6eJI0EiGIahV199VZI0cuRITZgwIWy7CRMm6JRTTpEkvfrqqzIMo9PGmOzeffdd7d+/X5J05ZVXKiMjw+QRoS3iNce2bdumLVu2SJLmzp0b8feg+QY8f//73zs6fLQB75c938qVK1VZWSmp8av0Vmv4j1LMQ3M8++yzgcvRSh0gvqK9/vFeCACxIaRFwjXt9ul0OjVu3LiI7aZOnRq4vHr16oSPC7FpaGgIXLbZbCaOBImwe/fuQK2x5nMwnKbj+/fv1549exI9NHyt+YfOpj9mofuI1xxrvnN2a/30799fRUVFkngv7Wy8X/Z8sc7D4uLiQHjEPOwc1dXVgYUhQ4cO1ZQpU8wdUJKJ9vrHeyEAxIaQFgnX9NfO4cOHy26PvFfdyJEjQ86B+VatWhW4PGrUqKjtFyxYoPz8fDkcDvXt21cTJkzQf//3fwdWAiJxXnzxRY0ePVoZGRnKysrSiBEjNH/+/FZXpm/evDlwufkcDIc52vlqamoCK0CGDBmiadOmRT2HOdi1xGuOtaefffv2Rd2UDvHTlvfLrVu36uyzz1Zubq7S0tJUUFCgWbNmBTbeQWK193Uy1nlot9s1fPhwSbxfdpbly5fL5XJJkq699lpZLJao5zAP4yfa6x/vhQAQG0JaJFR9fb3Ky8slRd9RvFevXoHd5/ft25fwsSE6v9+v+++/P3B97ty5Uc95//33dfDgQXk8Hh09elTr1q3Tvffeq+HDh+vxxx9P5HCT3ubNm7VlyxbV1dWppqZGO3bs0LPPPqvzzjtPs2fPDnxFs7nS0tLA5WhzdNCgQYHLzNHO8dJLLwU+WHzve9+L6UMnc7Bridcca08/hmEEnYfE+eyzz/Tmm29KksaMGRM1pD18+LDWr1+vyspKNTQ0aP/+/Xrttdc0f/58nXnmmQR7Cdbe18mm+eR0OpWbm9vqfTTNw7KysqBVhkiM9nzrhHkYH7F8XuC9EABiE3lZIxAH1dXVgcuZmZlR2zudTtXW1qqmpiaRw0KM/vjHP2r9+vWSpCuuuKLVchXDhg3TFVdcoYkTJwb+UbRr1y699NJLWr58uerr6/WDH/xAFotF3//+9ztl/MkiIyNDl19+uc4//3yNHDlSmZmZKisr06pVq/TYY4/p6NGjeuWVVzRr1iy98847SklJCZzbljna9EcUSczRTtKWD53Mwa4pXnOMudp1NTQ06Prrr5fP55Mk3XvvvRHbWq1WnX/++brkkkt0xhlnqE+fPqqurtann36qxx9/XFu2bNHmzZs1ffp0rV+/XoMHD+6sh5EUOvo62TQPY/03bZOamhqlpqbG6VGgpa+++iqwkvOcc84JrGKOhHkYX7F8XuC9EABiQ0iLhKqvrw9cdjgcUds3/QO2rq4uYWNCbFatWqWf//znkqS8vDw9+uijEdvOnj1b8+fPD1nlN378eF199dV64403dMUVV8jj8ehnP/uZLr/8cvXv3z+h408m+/fvD7ui58ILL9SPf/xjXXzxxdq4caNWrVqlRx99VD/5yU8CbdoyR5t/wGSOJl5paanef/99SY0baTTVVguHOdh1xWuOMVe7rh/96EcqKSmR1LhZ0WWXXRax7csvvxz29Xry5Mm6+eabdcMNN+iZZ57R4cOH9dOf/lQvv/xyooaddOLxOtk0D9vyb1qJeZhof/7znwMbTMWyipZ5GD+xfl7gvRAAYkO5AyRUWlpa4LLb7Y7avunrYOnp6QkbE6LbtGmTZs+eLa/Xq7S0NL344ovKy8uL2D4nJ6fVr2Ffeuml+uUvfylJcrlcWrJkSdzHnMxa+8rlSSedpOXLlwdWzz788MNBx9syR5t/XZM5mnh//vOf5ff7JUXfpZo52HXFa44xV7um++67T4sXL5bUGPY98sgjrbZv7fU6JSVFixcvDuxs/ve//51a0nEUj9fJpnnYln/TSszDRHvuueckNYZyV199ddT2zMP4aMvnBd4LASA2hLRIqKysrMDlWL5m0lR7MZavkSExdu/erRkzZqiiokI2m03Lli2Lyw653//+9wMfjppvLoDEGzZsmC688EJJ0o4dOwK760ptm6PNN11gjiZeWz90RsMcNEe85hhztet5/PHHdeedd0pq3KDmrbfeCvp6bXvY7XYtXLgwcJ252rmivU42zcO2/JtWYh4m0vr167V161ZJ0uWXXx61VnAsmIfRtfXzAu+FABAbQlokVFpamvr06SNJUQu2V1RUBN5MmxeMR+c5cOCALrjgAh04cEAWi0VPPfWUZs2aFZe+8/LyAr8LrEjofKNHjw5cbv7zb77pQrQ52nzzBuZoYpWUlAR2ML700kvVq1evDvfJHDRHvOZYe/qxWCxRN1ZB+zz//PO6+eabJUlDhgzRO++8o759+8al70iv10i8aK+TTfOptrZWx48fb7WvpnnYr18/6tEmUHs2DIsF8zCy9nxe4L0QAGJDSIuEa/pHzo4dO+T1eiO2a/oruKSouyIj/srLy3XhhRdq165dkhq/Fh/Pf+xKimlneiRGpJ998w8hzedgOMzRztP8Q2e0UgdtwRzsfPGaY+3pZ9CgQR1e2YlQr732mubNmye/368BAwbo3XffjWsAwDw1V2s//1jnodfr1c6dOyXxfplIHo9Hy5Ytk9QYsH/zm9+MW9/Mw/Da+3mB90IAiA0hLRLu3HPPldS46mDDhg0R2zX/KtGkSZMSPi6cUFlZqYsuuiiwcu/+++/XD3/4w7jeR1lZmcrLyyVJ+fn5ce0b0TU9t1Lwz//kk08OXI/2db4PPvhAkjRw4EANHTo0/oOEpOAPnf369dPFF18cl36Zg+aI1xxrei+N1s+hQ4e0bds2SbyXJsK7776ruXPnyuv1qk+fPnrnnXdUWFgY1/uI9HqNxIv2OhnrPCwpKQl8O4x5mDhvvvmmjh49Kkn6zne+I7s9fntiMw9DdeTzAu+FABAbQlok3Le+9a3A5aVLl4Zt4/f7AyvHcnNzNX369M4YGtS4OcbMmTP16aefSpLuuusu3XHHHXG/nyeeeCKw8+7UqVPj3j8i2717t9555x1JUmFhoQYOHBg4ZrFYAl9R27p1qz7++OOwfXz88ceBFQmzZs1ihUkCrVixQmVlZZLi+6GTOWiOeM2xoqKiwIqiv/3tb3K5XGH7efrppwOXZ8+e3dHho5k1a9Zo1qxZamhoUE5Ojv7xj3/o1FNPjet9eL1ePfXUU4Hr8agJj9hFe52cNm2acnJyJEnPPPNMoG1LzMPOkahvnTAPQ3X08wLvhQAQIwPoBJMnTzYkGXa73VizZk3I8UWLFhmSDEnGr371q84fYJJqaGgwZsyYEfjZ33LLLW3uY/fu3cann37aapvXX3/dcDgchiQjPT3dKC0tbeeI0dJrr71meDyeiMcPHTpkjB07NvAcP/DAAyFtvvzyS8NmsxmSjOLiYsPlcgUdd7lcRnFxcWAOb9u2Le6PAyfMmTMn8Hxt2LAhanvmYOfavXt34PmZP39+TOfEa44tWbIkcN8//OEPQ47v2LHDyM7ONiQZw4cPb/W1IZm15zncuHGjkZuba0gynE6n8dFHH7X5ft977z2joqIi4nG3223Mnz8/MLbLLruszfeRLNr6HMbzdfIXv/hF4L4XLVoUcnzNmjWG3W43JBlTp06N5eEkpfbMw+aOHj0aeL7GjBkT83nMw7aLx+cFw+C9EABiEb/vhACtePDBBzVp0iTV1dVpxowZuvPOOzV9+nTV1dVp2bJleuKJJyQ1/nX01ltvNXm0yePb3/623n77bUnSeeedp4ULF+qLL76I2N7hcKioqCjotj179mj69OmaOHGiLrvsMp1xxhnKy8uTJO3atUvLly/X8uXLA6tN/vCHPwSt5ETH/PjHP5bH49GcOXM0ceJEDR06VOnp6SovL9f777+vxx9/PPDVzXPPPTfs19KKiop022236f7771dJSYkmTZqkO+64Q4WFhdq5c6d+97vfaePGjZKk2267TSNGjOjUx5hMKioq9MYbb0iSTjvtNH3jG9+Ieg5zMLE++ugj7dixI3C9aT5JjbXWm6/WkaTrrrsupI94zbH58+frqaee0urVq/XII4/o0KFDuuGGG9SrVy+tX79ev/nNb1RVVSWr1aqHHnoorl/97c46+hzu3LlTF110UWCjqHvuuUc5OTmtvl/m5eUF5mGTZ555Rpdffrkuv/xyTZs2Taeccoqys7NVU1OjDRs26Iknngh8jTgvL08PPvhgOx5tz9TR5zCer5O33XabXnjhBW3btk233367duzYoWuuuUbp6elauXKlfvvb38rr9So9PV1/+tOfOv7ge4h4vJY2t2zZMrndbkltW0XLPGy7eHxekHgvBICYmBwSI4m89tprgb9qhvuvqKjI2L59u9nDTCqRnotI/w0ZMiSkj5UrV8Z0bkZGhvH44493/oPs4YYMGRLTz3/OnDmtrhzx+XzGf/zHf7Tax8KFCw2fz9d5Dy4JPfroo62u0AqHOZhYzVdUxfJfJPGaY2VlZcb48eMj9pGammo8+eST8f4xdGsdfQ6XLl3a5vfLcN8KinUcY8aMMTZt2tQJP5nuo6PPYbxfJ7dv326MGDEiYj/Z2dnG66+/nogfRbcVr9fSJmeffbYhybDZbMbBgwfjPg7m4Qltff0L93mhCe+FANA6/qyETnPZZZfp888/14MPPqg333xTpaWlcjgcGj58uK666ir96Ec/UkZGhtnDRBuNGzdOf/7zn7V27VqVlJTo4MGDKi8vl9frVa9evXTqqafq/PPP1/XXXx+yqggd98wzz2jVqlVau3atdu3apfLyclVVVSkzM1ODBg3SOeeco/nz52vixImt9mO1WrVkyRLNmTNHTzzxhD755BOVl5erb9++Gj9+vG688ca4bWCFyJ577jlJks1m03e/+92YzmEOdg/xmmN9+/bVmjVr9OSTT+qvf/2rtmzZotraWuXn5+v888/XLbfcEvc6qYiPO+64Q2eeeabWrl2rzZs3q6ysTMeOHVNqaqpOOukkFRcX68orr9Ts2bNls9nMHm6PEu/XyeHDh2vjxo165JFH9OKLL2rHjh1yu90aNGiQLrnkEt1yyy0aMmRIJzyy5LR9+3atW7dOknThhReqf//+MZ/LPDQX74UA0DqLYUSoeA8AAAAAAAAASDir2QMAAAAAAAAAgGRGSAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAANBOTz/9tCwWiywWi/bs2WP2cAAAAAB0U4S0AAAg6ezZsycQrnbkPwAAAACIB0JaAAAAAAAAADCRxTAMw+xBAAAAdCaPx6Mvv/wy4vExY8ZIkoqLi7V06dKI7U477bS4jw0AAABA8rGbPQAAAIDOlpKSElPA6nQ6CWIBAAAAJBzlDgAAAAAAAADARIS0AAAA7fT0008HNhHbs2dPyPFp06bJYrFo2rRpkqQdO3boBz/4gYYNG6b09HQNHTpUCxcu1N69e4PO++KLL7RgwQINGzZMaWlpGjRokG666SYdOXIkpnG98soruuqqqzR48GClpaUpNzdXxcXF+p//+R9VVFR09GEDAAAAiDPKHQAAAHSCf/7zn7riiitUXV0duG3v3r166qmn9MYbb2jVqlUaOXKknn/+eV133XVyu92BdqWlpXrssce0YsUKrVmzRvn5+WHvo6KiQldeeaXee++9oNsbGhq0YcMGbdiwQf/7v/+rV199VRMmTEjMAwUAAADQZqykBQAASLADBw5o7ty5ys3N1cMPP6x169bpww8/1E9/+lNZLBYdOXJE119/vT755BPNmzdPhYWFWrx4sdavX6+VK1fq2muvldQY6v7nf/5n2PtoaGjQBRdcoPfee082m03XXnutnn/+eX388cf68MMPde+996pPnz46cuSILrnkkpDVuwAAAADMw0paAACABNu+fbtGjBih1atXq1+/foHbzz33XNntdv3hD3/Q6tWrNXPmTJ111ll65513lJGREWg3bdo01dfX68UXX9RLL72ksrKyoH4k6e6779ann36q3Nxc/fOf/9S4ceOCjp977rn67ne/q4kTJ+rgwYO688479Ze//CWxDxwAAABATFhJCwAA0AkeeuihkGBVkm6++ebA5fLyci1evDgooG1y0003SZK8Xq/Wrl0bdKympkaPPPKIJOk3v/lNSEDbZMiQIfrFL34hSXrxxRdVW1vbvgcDAAAAIK4IaQEAABIsNzdXF110UdhjJ598srKysiRJp59+ukaNGhW23RlnnBG4vGvXrqBjq1atUmVlpSTpyiuvbHUsU6ZMkSR5PB5t2LAhtgcAAAAAIKEodwAAAJBgI0aMkMViiXg8NzdX1dXVKioqarVNk+abj0lSSUlJ4PKAAQNiHtehQ4dibgsAAAAgcVhJCwAAkGDhyhc0Z7Vao7ZraiNJPp8v6NiRI0faNS6Xy9Wu8wAAAADEFytpAQAAurnmoe2nn36qlJSUmM4rKChI1JAAAAAAtAEhLQAAQDfXp0+fwOV+/foRvgIAAADdDOUOAAAAurmxY8cGLq9evdrEkQAAAABoD0JaAACAbu6CCy4I1LN96KGHZBiGySMCAAAA0BaEtAAAAN1cbm6ufvSjH0mS1qxZo5/97Gfy+/0R2x8+fFiLFy/urOEBAAAAiIKatAAAAD3A3XffrVWrVmndunV68MEH9f777+uGG27QmWeeKafTqYqKCm3atEn//Oc/tWLFCo0ZM0bXX3+92cMGAAAAIEJaAACAHiE1NVXvvPOOrrvuOr388sv67LPPAqtrw8nOzu7E0QEAAABoDSEtAABAD5GVlaWXXnpJH330kZ555hl9+OGHOnDggOrq6pSdna3CwkKdddZZmjlzpmbMmGH2cAEAAAB8zWKwswQAAAAAAAAAmIaNwwAAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIkIaQEAAAAAAADARIS0AAAAAAAAAGAiQloAAAAAAAAAMBEhLQAAAAAAAACYiJAWAAAAAAAAAExESAsAAAAAAAAAJiKkBQAAAAAAAAATEdICAAAAAAAAgIn+f55wLxEAZEGGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'fitness_function_example_reassortment_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/tutorials-jupyter/evolution/transmissibility_function.ipynb b/examples/tutorials-jupyter/evolution/transmissibility_function.ipynb new file mode 100644 index 0000000..b6ac3c6 --- /dev/null +++ b/examples/tutorials-jupyter/evolution/transmissibility_function.ipynb @@ -0,0 +1,676 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Host-host transmission model with susceptible and infected hosts in a single\n", + "population scenario, illustrating pathogen evolution through independent\n", + "reassortment/segregation of chromosomes, increased transmissibility,\n", + "and intra-host competition.\n", + "\n", + "When two pathogens with different genomes meet in the same host (or vector),\n", + "the pathogen with the most fit genome has a higher probability of being\n", + "transmitted to another host (or vector). In this case, the transmission rate\n", + "**DOES** vary according to genome, with more fit genomes having a higher\n", + "transmission rate. Once an event occurs, the pathogen with higher fitness also\n", + "has a higher likelihood of being transmitted.\n", + "\n", + "Here, we define a landscape of stabilizing selection where there is an optimal\n", + "genome and every other genome is less fit, but fitness functions can be defined\n", + "in any arbitrary way (accounting for multiple peaks, for instance, or special\n", + "cases for a specific genome sequence)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define an optimal genome\n", + "`/` denotes separators between different chromosomes, which are segregated and recombined independently of each other (this model has no recombination)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_optimal_genome = 'BEST/BEST/BEST/BEST'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a custom fitness function for the host\n", + "Fitness functions must take in **one** argument and return a positive number as a fitness value. Here, we take advantage of one of the preset functions, but you can define it any way you want!\n", + "\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence results in an exponential decay in fitness to the `min_fitness` value at the maximum possible distance. Here we use strong selection, with a very low minimum fitness" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostFitness(genome):\n", + " return Model.peakLandscape(\n", + " genome, \n", + " # Genome to be evaluated (String), the entry for our function.\n", + " peak_genome=my_optimal_genome, \n", + " # the genome sequence to measure distance against, has value of 1.\n", + " min_value=1e-10\n", + " # minimum value at maximum distance from optimal genome.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a custom transmission function for the host\n", + "**Stabilizing selection:** any deviation from the \"optimal genome\" sequence gets 1/20 of the fitness of the optimal genome. There is no middle ground between the optimal and the rest, in this case." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def myHostContact(genome):\n", + " return 1 if genome == my_optimal_genome else 0.05" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _host-host_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='host-host', \n", + " # Use default 'host-host' parameters.\n", + " possible_alleles='ABDEST',\n", + " # Define \"letters\" in the \"genome\", or possible alleles for each locus.\n", + " # Each locus can have different possible alleles if you define this\n", + " # argument as a list of strings, but here, we take the simplest\n", + " # approach.\n", + " num_loci=len(my_optimal_genome),\n", + " # Define length of \"genome\", or total number of alleles.\n", + " contact_rate_host_host = 2e0,\n", + " # Rate of host-host contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " contactHost=myHostContact,\n", + " # Assign the contact function we created (could be a lambda function)\n", + " # In general, a function that returns coefficient modifying probability of a \n", + " # given host being chosen to be the infector in a contact event, based on genome \n", + " # sequence of pathogen. It should be a functions that recieves a String as \n", + " # an argument and returns a number.\n", + " fitnessHost=myHostFitness,\n", + " # Assign the fitness function we created (could be a lambda function)\n", + " # In general, a function that evaluates relative fitness in head-to-head \n", + " # competition for different genomes within the same host. It should be a \n", + " # functions that recieves a String as an argument and returns a number.\n", + " recombine_in_host=1e-3,\n", + " # Modify \"recombination\" rate of pathogens when in host to get some\n", + " # evolution! This can either be independent segregation of chromosomes\n", + " # (equivalent to reassortment), recombination of homologous chromosomes,\n", + " # or a combination of both.\n", + " num_crossover_host=0\n", + " # By specifying the average number of crossover events that happen\n", + " # during recombination to be zero, we ensure that \"recombination\" is\n", + " # restricted to independent segregation of chromosomes (separated by\n", + " # \"/\").\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 0 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100\n", + " # Number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Manipulate hosts and vectors in the population\n", + "We will start off the simulation with a suboptimal pathogen genome, _BEST/BADD/BEST/BADD_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add pathogens to hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BEST/BADD/BEST/BADD':10}\n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will start off the simulation with a second suboptimal pathogen genome. _BADD/BEST/BADD/BEST_. Throughout the course of the simulation, we should see this genome be outcompeted by more optimal pathogen genotypes, culminating in the optimal genome, which outcompetes all others." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts(\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'BADD/BEST/BADD/BEST':10} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 500 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 500, # Final time point.\n", + " time_sampling=100 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 out of 8 | elapsed: 0.3s remaining: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 3 out of 8 | elapsed: 0.3s remaining: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 4 out of 8 | elapsed: 0.3s remaining: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 5 out of 8 | elapsed: 0.3s remaining: 0.2s\n", + "[Parallel(n_jobs=8)]: Done 6 out of 8 | elapsed: 0.3s remaining: 0.1s\n", + "[Parallel(n_jobs=8)]: Done 8 out of 8 | elapsed: 0.3s finished\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
795500.0my_populationHostmy_population_95NaNNaNTrue
796500.0my_populationHostmy_population_96NaNNaNTrue
797500.0my_populationHostmy_population_97NaNNaNTrue
798500.0my_populationHostmy_population_98NaNNaNTrue
799500.0my_populationHostmy_population_99NaNNaNTrue
\n", + "

800 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens Protection \\\n", + "0 0.0 my_population Host my_population_0 NaN NaN \n", + "1 0.0 my_population Host my_population_1 NaN NaN \n", + "2 0.0 my_population Host my_population_2 NaN NaN \n", + "3 0.0 my_population Host my_population_3 NaN NaN \n", + "4 0.0 my_population Host my_population_4 NaN NaN \n", + ".. ... ... ... ... ... ... \n", + "795 500.0 my_population Host my_population_95 NaN NaN \n", + "796 500.0 my_population Host my_population_96 NaN NaN \n", + "797 500.0 my_population Host my_population_97 NaN NaN \n", + "798 500.0 my_population Host my_population_98 NaN NaN \n", + "799 500.0 my_population Host my_population_99 NaN NaN \n", + "\n", + " Alive \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 True \n", + ".. ... \n", + "795 True \n", + "796 True \n", + "797 True \n", + "798 True \n", + "799 True \n", + "\n", + "[800 rows x 7 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'transmissibility_function_reassortment_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 2 genotypes processed.\n", + "2 / 2 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiQAAALmCAYAAADCCvxNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADO8UlEQVR4nOzdd3hUddrG8XtCD6E3gaDAIorY6EUFXERFKSLYFUUR69rWuroqtte2gmV1bUgREUFUOohIC4TQBCFSJISS3uv0Oe8fbGYJ6cnMnCTz/VwX105mzvzOnclElvPM73kshmEYAgAAAAAAAAAA8KMQswMAAAAAAAAAAIDaj4IEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6trdgBUjc1m0++//y5JatOmjerW5UcKAAAAAICvuVwupaSkSJIuuOACNWzY0OREAADUPFy9ruF+//139e/f3+wYAAAAAAAEjaioKPXr18/sGAAA1Di0bAIAAAAAAAAAAH7HDokark2bNt7bUVFRat++vYlpAAAAAAConRISErwdCk79tzgAACg/ChI13KkzI9q3b6/w8HAT0wAAAAAAUPsxvxEAgMqhZRMAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAAAAAAAAAAC/oyABAAAAAAAAAAD8joIEAAAAAAAAAADwOwoSAAAAAAAAAADA7yhIAAAAAAAAAAAAv6MgAQAAAAAAAAAA/I6CBAAAAAAAAAAA8DsKEgAAAAAAAAAAwO8oSAAAAAAAAAAAAL+jIAEAAAAAAAAAAPyOggQAAAAAAAAAAPA7ChIAAAAAAAAAAMDvKEgAAOADhtthdgQAAAAAAIBqjYIEAABV5Ezfrdw9r5kdAwAAAAAAoFqjIAEAQBUYhqGsyAdlPTxHhmGYHQcAAAAAAKDaoiABAEAVWP+cKWfyZrlzY+VM3mx2HAAAAAAAgGqLggQAAJXksWcqZ8cz3q+tMXNNTAMAAAAAAFC9UZAAAKCScnY9L48txfu1LXaBDI/LxEQAAAAAAADVFwUJAAAqwZm2U/kH/lPoPo89Vfa4VSYlAgAAAAAAqN4oSAAAUEGGYShry4OS4SnyGG2bAAAAAAAAikdBAgCACrIe+kLO1K3FPmY//pM8ztwAJwIAAAAAAKj+KEgAAFABHnu6snc8V+LjhitftmM/Bi4QAAAAAABADUFBAgCACsjZ8ZwMe1qpx9ho2wQAAAAAAFAEBQkAAMrJkRKl/ENflHmcPf5nua3JAUgEAAAAAABQc1CQAACgHAzDo+zI4gdZFz3YLVvsfP+HAgAAAAAAqEEoSAAAUA75Bz6VM21HuY+3HqZtEwAAAAAAwKkoSAAAUAaPLVU5O5+v0HOcqVvlyv7TT4kAAAAAAABqHgoSAACUIXvHMzIcGRV+njXmGz+kAQAAAAAAqJkoSAAAUApH8hZZD31VqedSkAAAAAAAAPgfChIAAJTA8LiVFfmQJKNSz3dnH5AztfxzJwAAAAAAAGozChIAAJQg/8AncqXvqtIa1hiGWwMAAAAAAEgUJAAAKJbbmqycnS9UeR3rkW9lGB4fJAIAAAAAAKjZKEgAAFCMnO1PyXBmVXkdjzVBjoS1PkgEAAAAAABQs1GQAADgNI6kjbIenu2z9WjbBAAAAAAAQEECAIBCDI/rv4Osfcd2dJEMl82nawIAAAAAANQ0FCQAADhF/h8fyZXxu0/XNJzZsp1Y4tM1AQAAAAAAahoKEgAA/Jc7P0E5v73kl7Wth2nbBAAAAAAAghsFCQAA/it7+5MynNl+Wdset0Iee4Zf1gYAAAAAAKgJKEgAACDJnrBOtphv/HcCj0O22AX+Wx8AAAAAAKCaoyABAAh6hsel7K2+HWRdHGsMbZsAAAAAAEDwoiABAAh6edHT5cqM9vt5HEkb5c495vfzAAAAAAAAVEcUJAAAQc2dF6fc36YG6GyGrEfmBehcAAAAAAAA1QsFCQBAUMve9oQMV27Azmf155wKAAAAAACAaoyCBAAgaNnj18gW+11Az+nK2CNnxt6AnhMAAAAAAKA6oCABAAhKhtuhrMiHTTk3w60BAAAAAEAwoiABAAhKefvekzv7gCnntsV8I8MwTDk3AAAAAACAWShIAACCjjv3mHL3vGre+fOOyZm8ybTzAwAAAAAAmIGCBAAg6GRve1yGK9/UDNbDtG0CAAAAAADBhYIEACCo2ONWyXZ0kdkxZD26QIbHaXYMAAAAAACAgKEgAQAIGobbbtog69MZ9nTZT6wwOwYAAAAAAEDAUJAAAASN3L3vyJ3zp9kxvKwxtG0CAAAAAADBg4IEACAouHJilbvnDbNjFGI7vkQeZ47ZMQAAAAAAAAKCggQAIChkRz0qua1mxyjMba0W8ywAAAAAAAACgYIEAKDWsx1fJvvxxWbHKBZtmwAAAAAAQLCgIAEAqNUMl03ZUY+YHaNEjoS1cluTzI4BAAAAAADgdxQkAAC1Wu7vb8qdE2N2jJIZbtmOfGt2CgAAAAAAAL+jIAEAqLVc2YeVu/cts2OUibZNAAAAAAAgGARtQWL79u165ZVXdOWVVyo8PFwNGjRQWFiYunfvrkmTJmnTpk0VWm/FihUaN26cd63w8HCNGzdOK1as8NN3AAAoS3bUI5LbZnaMMjlTt8mVfcjsGAAAAAAAAH5lMQzDMDtEoA0ZMkQbN24s87iJEyfq888/V/369Us8xuPxaMqUKfryyy9LPGby5Mn69NNPFRLi+/rPiRMn1KlTJ0nS8ePHFR4e7vNzAEBNZDv2kzLWXmd2jHILu+glNen1stkxAAAAUAL+/Q0AQNUF5Q6J+Ph4SVKHDh306KOPauHChYqKitKWLVv03nvvqWPHjpKk2bNn66677ip1reeff95bjOjVq5fmzZunqKgozZs3T7169ZIkffHFF3rhhRf89w0BAAoxXFZlb33U7BgVQtsmAAAAAABQ2wXlDolRo0Zp4sSJGj9+vOrUqVPk8dTUVF1yySU6ePCgJGn9+vUaMmRIkeMOHjyonj17yuVyqW/fvtqwYYMaNWrkfTw/P19Dhw7V9u3bVbduXf3xxx/q1q2bT78XPqEBAEXl7HxBuXteNztGhbW6dqvqt+lvdgwAAAAUg39/AwBQdUG5Q2Lp0qW68cYbiy1GSFLr1q31r3/9y/v1woULiz1u+vTpcrlckqQPP/ywUDFCkkJDQ/Xhhx9Kklwul6ZNm+aL+ACAUriyDyl377tmx6gUdkkAAAAAAIDaLCgLEuVx+eWXe28fPny4yOOGYeinn36SJJ177rkaOHBgsesMHDhQ55xzjiTpp59+UhBuSAGAgMqO/JvksZsdo1JsR+bL8LjNjgEAAAAAAOAXFCRKYLf/72JWcTspjhw54p1FMXTo0FLXKng8Li5OsbGxvgsJACjEGvu97PGrzI5RaR5bkhwJa8yOAQAAAAAA4Bd1zQ5QXa1fv957u0ePHkUej46O9t4+99xzS13r1Mf/+OMPdenSpdw5Tpw4UerjCQkJ5V4LAGozjzNP2dseNztGlVlj5qpBx6vMjgEAAAAAAOBzFCSK4fF49Oabb3q/vvHGG4scc2qhoKxBVgVDr6STg68q4tTnAgBKlrv7VXnyKvbf2OrIdvQHGYPyZakbanYUAAAAAAAAn6JlUzGmTZumqKgoSdL111+vPn36FDkmJyfHezssLKzU9Ro3buy9nZub66OUNV9insvsCEC15c5PVMa6G+VIjjQ7So3gytyvvOj3zI7hE4YrV7Zji82OAQAAAAAA4HPskDjN+vXr9eyzz0qS2rZtq08++aTY42w2m/d2/fr1S12zQYMG3ttWq7VCecraUZGQkKD+/ftXaM3qIiLervFn8xYEiuNMiZQtdoFssQtUr81ANe75hBqeeb0sIUVn2kDK2vqw5HGaHcNnrEe+UaOuN5sdAwAAAAAAwKe4GnyKffv2ady4cXK5XGrYsKEWLFigtm3bFntsw4YNvbcdDkep6546ILtRo0YVylRWO6iabHO8TePPblz2gUAQcqT8b2eEMyVSmetuVJ2wzgrt8YhCu09WSL0mJqarXqxH5suR8IvZMXzKHrdSHluaQhq2MjsKAAAAAACAz9Cy6b+OHDmiK6+8UhkZGapTp46+/fZbDRkypMTjmzT538XAstow5eXleW+X1d4pmCTkufVnZu35RDPgS87UrUXuc+fGKmfbE0r+LlzZUU/IlXvUhGTVi8eZq+xtT5gdw/c8TlljF5idAgAAAAAAwKcoSEiKj4/XFVdcofj4eFksFs2YMUNjx44t9Tmn7lw4dcB1cU5tu8SQ6sIi4m1lHwQEGcPjljN1e8mPO7OVFz1NKd//RRm/3hDUcyZyf3tZnvx4s2P4hTVmrtkRAAAAAAAAfCroCxKpqakaMWKEYmJiJEkffvihJk6cWObzzjvvPO/t/fv3l3rsqY/36NGjkklrpy3xdnkMw+wYQLXiytwnw1X6zitJkuGW7ehCpS0fpNRlg2SNXSDD4/Z/wGrCmbFPedHvmx3Db5zJEeyCAQAAAAAAtUpQFySysrJ01VVXKTo6WpL05ptv6qGHHirXc7t06aIOHTpIOjkIuzQbNmyQJHXs2FGdO3eufOBaKMPuUXQabZuAUxXXrqnM5/x3zkTKom7K3feePI5sPySrXrIjH5IMl9kx/MiQLeYbs0MAAAAAAAD4TNAWJPLz83Xttddq586dkqTnn39ezzzzTLmfb7FYvG2d9u/fr8jI4lumREZGendIjB07VhaLpYrJa59NtG0CCjl1oHVFnZwz8XclL+h0cs5ETqzvglUj1sNz5UgqvRhcG9C2CQAAAAAA1CZBWZBwOBwaN26cIiIiJEmPPvqoXnvttQqv89hjj6lOnTqSpL/97W+yWq2FHrdarfrb3/4mSapbt64ee+yxqgWvpaIS7HJ5aNsEFHCmVHyHxOm8cyYWdfvvnIktPkhWPXgc2cre/qTZMQLClblPzvTdZscAAAAAAADwibpmBzDDLbfcotWrV0uS/vrXv+qee+7R3r17Szy+fv366t69e5H7u3fvrqeeekpvvvmmtm/frksuuUTPPPOM/vKXv+jw4cN66623tGvXLknSU089pbPPPts/31ANl+cytCvZoX5nNDA7CmA6jyNbrqw/fLfgf+dM2I4uVL02A9X4vMfV8KzxsoTU8d05Aixn14vyWBPNjhEw1pi5qtfyIrNjAAAAAAAAVJnFMIJvonBF2yadddZZio2NLfYxj8eje++9VzNmzCjx+ffcc48+++wzhYT4fkPKiRMn1KlTJ0nS8ePHFR4e7vNz+Muty5Pl/u+7b1D7BnqsdzNzAwHVgD3+F6WvvsKv56jT+CyFnveIQs+erJD6Tf16Ll9zpu9R6pLekhE8w7tDQsPV9oajsliCclMjAABAtVGT//0NAEB1wdWNKgoJCdGXX36pZcuWaezYserQoYPq16+vDh06aOzYsVq+fLm++OILvxQjapMdSXbZXB6zYwCmq8xA64py5x3975yJcGVHPV5j5kwYhqGsyIeCqhghSZ78E3IkbjA7BgAAAAAAQJUFZcsmf2wKueaaa3TNNdf4fN1g4fBIUYl2DQlvZHYUwFRVGWhdUYYzR3nR05X3x4dqeOY4Ne75uOq3HRyw81eU9fBsOZM3mR3DFNaYuWrQfpjZMQAAAAAAAKqEj+2j2oiIt5sdATCdLwZaV9h/50ykLb9EqcsGyXrkOxme6rULwWPPVM72p82OYRrb0YUy3A6zYwAAAAAAAFQJBQlUG7+nOpRtp20Tgpcr54g8tmRTMzhTIpW5/ialfP8X5e79lzyObFPzFMjZ9YLpr42ZDEem7CeWmx0DAAAAAACgSihIoNpwG9KWBJvZMQDTmLI7ogTuvKPK2f5ktZgz4UzbpfwD/zHt/NWFNWau2REAAAAAAACqhIIEqhXaNiGYBWKgdUUVzJlIWdRNGb9OkCN5c2DPbxjKinww6AZZF8d2Ymm12bECAAAAAABQGRQkUK0czHAqJZ8LjwhOgRxoXWGGW7aj35+cM7F0oKxH5gdkzoT10Aw5q/PrEkhum2xHvzc7BQAAAAAAQKVRkEC1YkiKiKdtE4KP4XbImbbL7Bjl4kzdqsz1N58yZyLLL+fx2NOVs+NZv6xdU9G2CQAAAAAA1GQUJFDtUJBAMHKm/yZ5albLsv/NmeikrK2PyZVzxKfr5+z4hzz2VJ+uWdM5En+VOz/e7BgAAAAAAACVQkEC1c6xHLeO57jMjgEEVHWcH1FehjNH+X+8r5RFZ5+cM5EUUeU1HanblH/ocx+kq2UMj6xHvjU7BQAAAAAAQKVQkEC1FBHHLgkEl2o9P6K8CuZMrLi0SnMmDMOj7C0PSobHDyFrPto2AQAAAACAmoqCBKol2jYh2DhTau4OieL8b85EV+XufbdCcybyD34uZ9p2P6ar2VxpO+XK3G92DAAAAAAAgAqjIIFqKdnq0cEMp9kxgIDw2FLlzjlsdgy/cOcdU872p8o9Z8JjS1XOzn8EKF3NxS4JAAAAAABQE1GQQLW1ibZNCBKOWrY7ojiF50yML3HORPaOZ2XY0wOcruaxHvnG7AgAAAAAAAAVRkEC1VZkgk0ewzA7BuB3NXmgdYUZbtmOLvrvnIkBssZ8K8Nzcoi9I2WrrIdmmBywZnDnxMiRvMXsGAAAAAAAABVCQQLVVpbD0O+pDrNjAH5XKwZaV4IzNUqZG25Ryvd/Ue7ed5UV+aAkipDlZY1hlwQAAAAAAKhZKEigWouIt5sdAfArwzDkTIkyO4apCuZMuNJ2mh2lRrHFzvfuLgEAAAAAAKgJKEigWotKtMvh5hPTqL3cWQdkOLPMjoEayGNLkT3+Z7NjAAAAAAAAlBsFCVRrVpehncnskkDtFaztmuAb1pi5ZkcAAAAAAAAoNwoSqPY2xVGQQO0VVAOt4XP2Yz/K48wzOwYAAAAAAEC5UJBAtfdbil35To/ZMQC/YIcEqsJw5cl+/CezYwAAAAAAAJQLBQlUe06PtDWRXRKofQxXvlwZv5sdAzUcbZsAAAAAAEBNQUECNUJEvM3sCIDPOVK3S4bb7Bio4exxq+W2pZgdAwAAAAAAoEwUJFAj7EtzKtPGhVvULsyPgE8YLtmOfGd2CgAAAAAAgDJRkECN4DGkzQm0bULt4kyhIAHfoG0TAAAAAACoCShIoMagbRNqGwZaw1ecKVvkyokxOwYAAAAAAECpKEigxvgz06WkfNo2oXZw58XJkx9ndgzUItaYb8yOAAAAAAAAUCoKEqhRNsWxSwK1A7sj4Gu0bQIAAAAAANUdBQnUKLRtQm3BQGv4mjtrv5xpu8yOAQAAAAAAUCIKEqhR4nLdis1ymh0DqDIGWsMf2CUBAAAAAACqMwoSqHEi4u1mRwCqxPC45UzbbnYM1ELWI/NkGB6zYwAAAAAAABSLggRqnM0JNhmGYXYMoNJcGb/LcOWbHQO1kCc/Xo7EdWbHAAAAAAAAKBYFCdQ4qVaP9mfQtgk1FwOt4U+0bQIAAAAAANUVBQnUSBFxtG1CzcVAa/iTLfZ7GW7+GwkAAAAAAKofChKokSITbHJ5aNuEmomB1vAnw5kl2/GlZscAAAAAAAAogoIEaqQcp6HfUx1mxwAqzOPIkitrv9kxUMvRtgkAAAAAAFRHFCRQY22Ks5kdAagwZ2qUJHb3wL/sJ5bLY880OwYAAAAAAEAhFCRQY21Pcsju5sIuahYGWiMgPHbZji40OwUAAAAAAEAhFCRQY9nchrYnMbgVNQvzIxAotG0CAAAAAADVDQUJ1GgRtG1CDUNBAoHiSFwvd94Js2MAAAAAAAB4UZBAjbY71aFcp8fsGEC5uLIPy2NPNTsGgoYh65F5ZocAAAAAAADwoiCBGs3lkbYm0LYJNYMzld0RCCxrzDdmRwAAAAAAAPCiIIEabxNtm1BDMNAageZK/03OzGizYwAAAAAAAEiiIIFa4I90p9JtbrNjAGVifgTMwHBrAAAAAABQXVCQQI1nSIqIp20TqjfDbZcz/TezYyAI2WK+kWEYZscAAAAAAACgIIHaYXM8bZtQvTnTdkkeh9kxEITcubFyJm82OwYAAAAAAAAFCdQOMVkuxee6zI4BlIiB1jATbZsAAAAAAEB1QEECtUYEuyRQjTHQGmayxn4nw+M0OwYAAAAAAAhyFCRQazBHAtUZA61hJsOeJnvcKrNjAAAAAACAIEdBArVGQp5bhzP5BDCqH7c1We7cI2bHQJCjbRMAAAAAADAbBQnUKrRtQnXE/AhUB/bji+Vx5podAwAAAAAABDEKEqhVtiTY5TEMs2MAhTA/AtWB4cqX7dgPZscAAAAAAABBjIIEapV0m0fRabRtQvXC/AhUF7bDtG0CAAAAAADmoSCBWoe2TahODMMjZ+o2s2MAkiR7whq5rclmxwAAAAAAAEGKggRqna2Jdrk8tG1C9eDK/EOGM9vsGMBJhlu22PlmpwAAAAAAAEGKggRqnTynod9SHGbHACQx0BrVj5W2TQAAAAAAwCQUJFArbYqjbROqBwZao7pxpm6VK/tPs2MAAAAAAIAgREECtdLOZLtsLo/ZMQAGWqNassZ8Y3YEAAAAAAAQhChIoFayu6VtibRtgrk8zjy5MveZHQMowhpD2yYAAAAAABB4FCRQa22Kp20TzOVM3SYZbrNjAEW4sw/Kkbrd7BgAAAAAACDIUJBArfV7qkPZDto2wTwMtEZ1ZmOXBAAAAAAACDAKEqi13IYUmcAuCZiHgdaozqxHvpXhYQcPAAAAAAAIHAoSqNUi4uxmR0AQY6A1qjOPNVGOxLVmxwAAAAAAAEGEggRqtQMZTqVa+QQwAs+dd1wea4LZMYBSWQ/TtgkAAAAAAAQOBQnUaoakCIZbwwS0a0JNYDu2SIbLanYMAAAAAAAQJChIoNaLiKdtEwKPdk2oCQxnjmzHl5gdAwAAAAAABAkKEqj1jma7dCLHZXYMBBl2SKCmsMZ8Y3YEAAAAAAAQJChIIChsom0TAsjwuORM22l2DKBc7HEr5LFnmB0DAAAAAAAEAQoSCAqbKUgggFzpuyU3fflRQ3gcssUuMDsFAAAAAAAIAhQkEBSS8j06mOE0OwaChCOV+RGoWawxc82OAAAAAAAAggAFCQQNdkkgUBhojZrGkbRR7txjZscAAAAAAAC1HAUJBI0tCXZ5DMPsGAgCDLRGzWPIemSe2SEAAAAAAEAtR0ECQSPT7tHeVNo2wb889gy5sw+ZHQOoMNo2AQAAAAAAf6MggaCyibZN8DNHylZJ7MRBzePK+F3OjN/NjgEAAAAAAGoxChIIKlGJdjncXCyG/zgZaI0azHqYXRIAAAAAAMB/KEggqFhdhnYl282OgVqMgdaoyWxH5slg1g4AAAAAAPATChIIOhHxFCTgPw52SKAGc+cdkyNpo9kxAAAAAABALUVBAkFnZ7Jd+U6P2TFQC7myD8mwp5sdA6gSG8OtAQAAAACAn1CQQNBxek7OkgB8zZESaXYEoMqsRxfK8DjNjgEAAAAAAGohChIIShHxNrMjoBZifgRqA8OeLvuJFWbHAAAAAAAAtRAFCQSlvWlOZdpp2wTfcrJDArWElbZNAAAAAADADyhIICh5DGkLuyTgQ4bLJmfGHrNjAD5hO75EHmeO2TEAAAAAAEAtQ0ECQYu2TfAlZ/pOib77qC3cVtmOLjI7BQAAAAAAqGUoSCBoHcp0KTnfbXYM1BIMtEZtQ9smAAAAAADgaxQkENQ2xbFLAr7BQGvUNo6EtXLnJ5odAwAAAAAA1CIUJBDUaNsEX2GgNWodwy3bkW/NTgEAAAAAAGoRChIIaidy3Tqa7TI7Bmo4d36i3HnHzI4B+BxtmwAAAAAAgC9RkEDQY5cEqsqZSrsm1E7OtO1yZR00OwYAAAAAAKglKEgg6G2Ot8kwDLNjoAZjoDVqM3ZJAAAAAAAAX6EggaCXYvXoQIbT7BiowRhojdqMggQAAAAAAPAVChKApIh4u9kRUEMZhkfO1G1mxwD8xp1zWA6KbgAAAAAAwAcoSACSIhNscnto24SKc2Xuk+HKNTsG4FfWmG/MjgAAAAAAAGoBChKApGyHoT2pDrNjoAaiXROCge3IfBket9kxAAAAAABADUdBAviviHib2RFQAzHQGsHAY0uSI2GN2TEAAAAAAEANR0EC+K9tiQ453LRtQsWwQwLBguHWAAAAAACgqihIAP9lcxvakcRwa5Sfx5kjV1a02TGAgLAd/UGGK9/sGAAAAAAAoAajIAGcYhNtm1ABztRtkuExOwYQEIYrV7Zji82OAQAAAAAAajAKEsApfktxKM/JBWaUj5P5EQgytG0CAAAAAABVQUECOIXLI0Um0LYJ5eNgfgSCjD1+lTy2NLNjAAAAAACAGoqCBHCaCNo2oZwYaI2g43HKGvud2SkAAAAAAEANRUECOE10mlPpNrfZMVDNuXJi5bElmR0DCDjaNgEAAAAAgMqiIAGcxpC0JZ62TSidM5XdEQhOzuTNcuXEmh0DAAAAAADUQBQkgGJsom0TysBAawQvQ7Yj35gdAgAAAAAA1EAUJIBixGS5lJDnMjsGqjEGWiOY0bYJAAAAAABUBgUJoASb4mjbhOIZHqec6bvMjgGYxpUZLWf6brNjAAAAAACAGoaCBFCCzbRtQgmc6b9Jbt4fCG7skgAAAAAAABVFQQIoQXyeWzFZTrNjoBpy0q4JkDVmngzDY3YMAAAAAABQg1CQAEoREcen4FGUg4HWgDz5J+RI3GB2DAAAAAAAUINQkABKsTnBLo9hmB0D1Qw7JICTaNsEAAAAAAAqgoIEUIp0m0d/pNO2Cf/jsaXJnfOn2TGAasF2dKEMt93sGAAAAAAAoIagIAGUIYLh1jiFI5XdEUABw5Ep+4nlZscAAAAAAAA1BAUJoAxbE+xyeWjbhJNo1wQURtsmAAAAAABQXhQkgDLkOg3tTnGYHQPVBAOtgcJsx5fK48gyOwYAAAAAAKgBgrYgkZycrKVLl+rFF1/UyJEj1bp1a1ksFlksFt11113lWmPmzJne55T1Z+bMmX79fuBfm2jbBEmGYciZGmV2DKB68dhlO/q92SkAAAAAAEANUNfsAGZp166d2RFQg+xIssvmMtSwrsXsKDCRO+uADEem2TGAascaM1ehZ99tdgwAAAAAAFDNBW1B4lRnnnmmzj33XK1evbrSa6xatUodOnQo8fHw8PBKrw3z2d3S9iS7Lu3Y0OwoMBEDrYHiORLXyZ0frzqhJf89CAAAAAAAELQFiRdffFH9+vVTv3791K5dO8XGxqpLly6VXq979+7q3Lmz7wKi2omIt1GQCHIMtAZKYHhkPfKtwno+YXYSAAAAAABQjQVtQWLq1KlmR0ANszvFoRyHR03qB+3olaDHQGugZNaYuRQkAAAAAABAqbiyCpST25AiE+xmx4BJDJdVrozfzY4BVFuutJ1yZe43OwYAAAAAAKjGKEgAFbAp3mZ2BJjEmbZdMlxmxwCqNWvMXLMjAAAAAACAaixoWzb52qRJk3TgwAGlpqaqadOm6tatm6644go98MAD6tixY6XXPXHiRKmPJyQkVHptVNyBdKdSrW61blTH7CgIMAfzI4AyWY98oya9XzU7BgAAAAAAqKYoSPjIunXrvLfT0tKUlpamrVu36l//+pemT5+u++67r1LrdurUyUcJ4QuGpM3xNo35S2OzoyDAGGgNlM2dEyNH8hbVbzvI7CgAAAAAAKAaoiBRRV27dtX111+vQYMGeYsHMTEx+v7777Vw4ULZbDbdf//9slgsmjJlislp4QsR8XYKEkGIgdZA+eT+/n9qMfQ7Weo2NDsKAAAAAACoZihIVMG4ceN05513ymKxFLq/X79+uummm7R06VJdf/31cjqdevzxxzVmzBidccYZFTrH8ePHS308ISFB/fv3r3B2VF5stksnclwKb8KvT7Bw58fLk196+zQAJ9mPL1Hq8sFqMWyB6jb9i9lxAAAAAABANcJQ6ypo1qxZkWLEqUaNGqUXX3xRkpSfn68vv/yywucIDw8v9U/79u0rnR+VF8Fw66DC7gigYlzpu5S6pLesRxeZHQUAAAAAAFQjFCT8bMqUKd6ixfr1601OA1+JiLebHQEBxPwIoOIMZ7Yyfx2vrK2PyfA4zY4DAAAAAACqAQoSfta2bVu1atVKkhQXF2dyGvhKUr5bf2ZygS1YONkhAVRa/h/vK23FELnzSm9BCAAAAAAAaj8KEgFQWlsn1Fyb4mjbFAwMj1vOtB1mxwBqNGdKpFIW95LtxAqzowAAAAAAABNRkPCzlJQUpaamSpI6dOhgchr40pYEuzyGYXYM+Jkrc68MV57ZMYAaz7CnKWPNtcre+bwMj9vsOAAAAAAAwAQUJPzss88+k/Hfi9ZDhw41OQ18KdPu0d402jbVdgy0BnzJUN6eN5S++gq58xPNDgMAAAAAAAKMgkQlxcbGateuXaUes3TpUr3yyiuSpEaNGmnSpEmBiIYA2kzbplqPgdaA7zkS1yl1SS/ZE9aZHQUAAAAAAARQXbMDmGXTpk36888/vV8XtFWSpD///FMzZ84sdPxdd91V6OvY2FhdfvnlGjRokEaPHq2LLrpIbdu2lSTFxMRo4cKFWrhwoXd3xLvvvquOHTv655uBaaIS7brnfEP16jAnpLZioDXgHx5rotJXX6Gwi6cq7MJ/MG8JAAAAAIAgELQFiS+++EKzZs0q9rGIiAhFREQUuu/0gkSBLVu2aMuWLSWeJzQ0VNOmTdOUKVMqnRXVV57L0K4Uh/qf0cDsKPADjyNLrqz9ZscAai/DrdxdL8iZvEnNL/taIQ1bmZ0IAAAAAAD4UdAWJKqqT58++vrrr7VlyxZt375dCQkJSk1NlcvlUosWLdSzZ08NHz5ckydP9u6cQO20Kc5GQaKWcqZuk8TgcsDf7HErlbKkl1oM/U712w40Ow4AAAAAAPATi1HQUwg10okTJ9SpUydJ0vHjxxUeHm5yovK7dXmy3LXg3VcvRPp8RGs1qstIltomZ/dryt31T7NjAMEjpJ6a9HlLYT0fNzsJAABAETX5398AAFQXXEEFqsjpOTlLArUPA62BAPM4lbPtCWX8Ol4eR5bZaQAAAAAAgI9RkAB8ICKegkRt5EylIAGYwXZ0kVKX9JEzbZfZUQAAAAAAgA9RkAB8YG+qQ1l2j9kx4EOunBh5bClmxwCCljvnsFKXD1begU/NjgIAAAAAAHyEggTgA25D2pJgMzsGfMiZEml2BABum7K33K+MDbfL48wzOw0AAAAAAKgiChKAj0TEUZCoTRzMjwCqDVvMXKUt6y9nZrTZUQAAAAAAQBVQkAB85GCmS8n5brNjwEcYaA1UL67MaKUt7a/8w1+bHQUAAAAAAFQSBQnAhyLi2SVRGxhuu5zpDNMFqhvDlaesjXcoc/MUGS7+ewsAAAAAQE1DQQLwIQoStYMz/TfJ4zA7BoASWA9+rtTlg+XKPmx2FAAAAAAAUAEUJAAfOp7j1rFsl9kxUEUMtAaqP1f6LqUu6S3r0UVmRwEAAAAAAOVEQQLwsU3skqjxGGgN1AyGM1uZv45XdtTjMjxOs+MAAAAAAIAyUJAAfGwzBYkaz5lKQQKoSfKipyttxRC5846bHQUAAAAAAJSirtkBgNomxerRgXSnzmlZz+woqAS3LUXunBizYwCoIGdKpFIW91Lzy+aoYfhIs+MAAACUyGazKTMzU/n5+XK73WbHAQCgkDp16ig0NFTNmzdXw4YNfb4+BQnADyLibRQkaign7ZqAGsuwpyljzbVqfOFzanLxK7KE1DE7EgAAgJdhGEpISFBWVpbZUQAAKJHL5ZLdbldGRoaaNWum9u3by2Kx+Gx9ChKAH0Qm2HTneWGqE+K7X1YEBgOtgZrOUN6eN+RM3qzmQ+apTugZZgcCAACQJKWlpRUpRtSty2UZAED14nK5vLezsrJUv359tW7d2mfr8zcf4AdZDkO/pzp0cdsGZkdBBTHQGqgdHInrlLqkl5oPmacG7YeZHQcAAAQ5h8OhlJQU79dt27ZV8+bNVacOOzoBANWL2+1WZmamkpOTJUkpKSlq2rSp6tev75P1GWoN+ElEvN3sCKggwzDkTN1mdgwAPuKxJip99RXK2f26DMMwOw4AAAhiubm53tutWrVSq1atKEYAAKqlOnXqeP+uKnDq32NVRUEC8JNtSXY53FwAq0lcWX/IcNLPFahVDLdyd72gjDXXymNLMzsNAAAIUnl5ed7bTZs2NTEJAADlc+rfV6f+PVZV1bYgYbfblZSUJI/HY3YUoFKsLkM7ktklUZMw0BqovexxK5SypJccycyJAQAAgedwOCRJFotFDRrQ2hcAUP01aNDAO8y64O8xXwh4QSI3N1fLly/X8uXLi93qkZqaqvHjx6tp06bq0KGDWrRoob///e+y27mwi5onIs5mdgRUAAOtgdrNk3dcaSuHKHffNLOjAACAIFPwYcs6dep4L+4AAFCdWSwWb3tBX24aCPhQ6++//16TJk1SeHi4YmNjCz3m8Xg0cuRI7dy509vrOScnR9OnT1dsbKy+//77QMcFquS3FIfynB41rldtNyPhFAy0BoKAx6mcbU/ImbxJzS6ZoZD6zcxOBAAAAABA0Aj4VdJVq1ZJksaNG6eQkMKnnz9/vnbs2CFJ6t27tx5//HH17t1bhmHoxx9/1MqVKwMdF6gSp0eKSmR3T03gcebJlbnX7BgAAsR2dJFSl/SRM+03s6MAAAAAABA0Al6Q2Lt3rywWiwYPHlzksdmzZ0uS+vTpo8jISP3rX//Sli1b1L9/f0nSrFmzApoV8IVNtG2qEZxp2yXDbXYMAAHkzjms1OWDlH/gM7OjAAAAAAAQFAJekEhOTpYkdenSpdD9TqdTGzZskMVi0UMPPaS6dU92k6pXr57uv/9+GYahqKioQMcFqmxfmlOZNi50V3cMtAaClNumrC33KXPDHfI488xOAwAAAABArRbwgkR6erokqX79+oXu37Ztm6xWqyTp6quvLvRY9+7dJUmJiYkBSAj4liEpIoG2TdWdg4HWQFCzxnyttGX95cyMNjsKAAAAAAC1VsALEqGhoZL+t1OiwIYNGyRJ3bp1U7t27Qo91qhRo8CEA/wkgrZN1Z4zlR0SQLBzZUYrbWl/5R/+2uwoAAAAAADUSgEvSPzlL3+RJK1bt67Q/T/88IMsFouGDBlS5DkpKSmSpLZt2/o9H+APh7NcSsxzmR0DJXDnHZcnP97sGACqAcOVp6yNdyhr830y3OxuAwAAQM3jcrn0/fffa8qUKbrgggvUtm1b1atXT82aNVO3bt00btw4vfPOOzpy5IjZUQEEoYAXJEaMGCHDMPTxxx9rxYoVys3N1Ycffqht27ZJkkaPHl3kOXv27JEkdejQIaBZAV+KiOfCVnXlYH4EgNPkH/xMqcsGyZV92OwoAAAAQLktXrxYPXr00IQJE/T5559r7969SklJkcvlUnZ2tg4fPqwff/xRTz/9tLp27apRo0Zp7969Zsf2q5dfflkWi0UWi8XsKAAk1Q30CR999FH95z//UU5OjkaNGlXosR49ehRbkFi2bJksFot69eoVqJiAz22Ks2n82Y3NjoFiMNAaQHFc6buUuqSPml06Q43Out7sOAAAAECpXnvtNb344osyDEOSNGzYMI0aNUoXXnihWrVqpfz8fCUkJGjDhg1aunSpYmNjtWzZMoWHh+s///mPyekBBIuAFyTat2+vJUuW6Oabb1ZCQoL3/q5du2rhwoVFqpWHDx/Wxo0bJUlXXHFFQLMCvhSf59aRLKe6NKtndhSchoHWAEpiOLOU+et4Oc97TE36vi1LCP8NBwAAQPUzY8YM/fOf/5QktWvXTt9++62GDRtW7LE33HCDpk+frm+//Vb/+Mc/ApgSAEwoSEjSZZddpiNHjigiIkKJiYlq3769Lr30UtWtWzROQkKC9z+oV155ZaCjAj4VEW+nIFHNGB6XnGk7zI4BoJrLi54uR0qkWgz7TnUadzI7DgAAAOB1/PhxPfTQQ5Kkpk2batOmTerWrVupz6lTp45uu+02XXvttd4PAgNAIAR8hkSB+vXr6/LLL9ctt9yiYcOGFVuMkKRLL71UL730kl566SWFhoYGOCXgW5vjbd6tk6geXBl7JLfV7BgAagBnSqRSFveS7cRKs6MAAAAAXu+9955sNpsk6fXXXy+zGHGq5s2bF9s+vUBiYqKef/559e3bVy1btlSDBg3UqVMn3XjjjVqzZk2Jz4uNjfXObZg5c6Yk6eeff9bo0aN1xhlnqEGDBurSpYseeOABnThxosycDodDH3/8sS6//HK1adNG9evX1xlnnKFrrrlGX3/9tTweT5HnzJw5UxaLRVOnTvXeV5Dp1D+xsbHas2eP9+s333yzzDwffvih9/ioqKgi5yxY1263691331Xv3r3VrFkzNW3aVAMGDNDHH38st9td5nncbrdmzZqlUaNGqUOHDmrQoIFatWqlSy+9VO+9956sVq5noOaxGFwdrdFOnDihTp1OflLz+PHjCg8PNzlR+d26PFnuIHz3vTSwuc5rVd/sGPivvP2fKDvyQbNjAKhRLAq78B8Ku3iqLCF1zA4DAAACpCr//j506JBcLpfq1q2rs88+218REYQMw1CbNm2UlpamJk2aKCEhQY0b+2Z+5dy5c3XfffcpLy+vxGPuuece/ec//ynyQePY2Fh16dJFkvTVV1/pwIEDJV7ob9OmjdavX68ePXoU+3hsbKxGjhyp/fv3l5jj0ksv1U8//aSWLVt675s5c6YmTZpU4nMKHDlyRJ07d1b//v21bds2nXvuufrjjz9KfU7v3r21a9cu9ezZs9BQ8FPPuXPnTt17773asaP4rgxDhgzRsmXLFBYWVuzjx44d05gxY7R79+4Sc3Tr1k3Lli1T9+7dy/o2gUrxx99fpu2QAIJVRLzN7Ag4hZP5EQAqzFDunteVvnqE3PmJZocBAABAENu7d6/S0tIknWyR7qtixHfffac77rhDeXl56tq1q9577z2tXLlSO3bs0Pfff69rrrlGkvTll1/q6aefLnWtzz//XG+++aaGDh2qb775Rtu3b9eaNWs0ceJESVJKSoruvvvuYp+bm5ur4cOHe4sR1113nRYvXqzt27drwYIFGjp0qCRp06ZNGj16dKFdB9ddd51+//13PfDAA977fv/99yJ/OnbsKEmaPHmyJGn//v3asmVLid/P7t27tWvXLkkqMbck3XfffdqxY4duuukmLV++XNu3b9c333yjfv36SZI2bNigO+64o9jnpqWl6dJLL9Xu3bvVoEEDPfzww1qwYIG2bdumX3/9Vc8995xCQ0P1559/auTIkcrKyioxB1DdmDJDosDu3bu1ceNGxcTEKCcnp8ytShaLRV9++WWA0gH+sTXBrkk9DdUNsZR9MPzOkbLV7AgAaihH4q9KXdJLzYfMU4P2w8yOAwAAgCC0Z88e7+3evXv7ZM3U1FRNmTJFhmHo7rvv1qefflpoB0Tv3r11/fXX6/nnn9cbb7yh999/X/fdd5/OOeecYtfbvHmz7r33Xn366aeyWP53LWT48OGqX7++vvjiC0VGRmrXrl3q1atXoedOnTpVMTExkqQXXnhBr776qvexPn36aPz48brjjjs0d+5cbd68WZ999pm3ANG8eXM1b95cbdu29T7n/PPPL/H7vuWWW/TEE08oLy9PX331lQYNGlTscTNmzJAk1atXr8SCgiRt27ZNb7zxhp577rlCmW+44QaNGjVKq1at0o8//qjly5d7CzwFHnnkER0/flxnnXWWfv31V+9ukwLDhg3TDTfcoMsuu0wxMTF6++239frrr5eYBahOTClIHDhwQHfffbciI8v/yWTDMChIoFbIcRraneJQn3YNzI4S9Dz2TLmzD5odA0AN5rEmKn31FQq7eKrCLvxHoX9gAQAAAP6Wmprqvd2mTZsSj/N4PIqOji7x8XPOOUf16tWTJH3yySfKyspSx44d9fHHH5c493Xq1KmaNWuW4uLiNHv27BIviLdv3947c+F0Tz75pL744gtJ0saNGwsVJOx2u/exnj176uWXXy7yfIvFoo8//lgrV65UWlqaPvroo0I7IiqiSZMmuvHGG/XVV19p/vz5ev/999WoUaNCxzgcDs2dO1eSNGrUqFJf8wsvvFDPPvtskfvr1q2rL774Ql27dpXT6dTHH39cqCARGxur+fPnS5I++uijIsWIAr169dJDDz2kt99+WzNnzqQggRoj4C2b4uLiNGTIEEVGRsowDBmGocaNGys8PFxnnnlmiX/OOussnXnmmYGOC/gFbZuqB2fqVklBOMgEgG8ZbuXuekEZa66Vx5ZmdhoAAAAEkZycHO/t0to1ZWdn64ILLijxT1xcnPfYxYsXSzp5wb1Bg5I/TFm3bl3vLoLSWhxNmDChxHXOOecc7wyFgp0QBXbs2KHMzExJ0l133aU6dYqf39a0aVPdeOONkqTo6GglJCSUmKUsBW2bsrOz9f333xd5fMmSJd4WWaW1a5KkO++8s8QPLIWHh+vKK6+UJK1bt65Q15hly5bJ7XYrNDRUI0eOLPUcQ4YMkSTFx8fr2LFjpR4LVBcBL0i8/vrrSklJkXTyl3z//v3Kzs7W0aNHdeTIkTL/ALXB9iSH7ME40buaoV0TAF+yx61QypJeciQzmwYAAACB0aRJE+/t0oZPl5fb7dZvv/0mSd4WS6X9WbhwoSQpMbHk2Wrnnntuqeds0aKFpMLFFUmFhkUPGDCg1DVOffzU51XU4MGDdd5550k6OYz7dAX3tW/fvsxiQcGsiJL0799f0smf26nFmO3bt0uS8vPzVbdu3VJf/1GjRnmfV9rPAKhOAl6QWLlypSwWiyZOnKjPPvuMKfAISna3oe2JdrNjBD0GWgPwNU/ecaWtHKK8fdPNjgIAAIAg0KpVK+/tgg8AF6d58+beTiUFf+68884ix6Wnp8vlclU4R35+fomPhYaGlvrckJCTlydPny2bnp7uvX3qHIjinHHGGcU+rzLuueceSdKvv/6q2NhY7/0JCQlauXKlJGnixIkl7tgoUFbmdu3aeW+fmjk5ObmikSWV/jMAqpOAz5CIj4+XdPIXFwhmm+JtuqRjQ7NjBDVHapTZEQDURh6nsrc9LkfyJjW7ZIZC6jc1OxEAAABqqYsuush7e9euXVVe79SiwOTJk/Xoo4+W63n169ev8rlLE8hZbRMnTtRzzz0nh8OhWbNm6aWXXpIkzZ492/v6lNWuSap85oJztG7dWr/++mu5n1fSrAmgugl4QaJFixZKTk5W8+bNA31qoFrZneJQrsOjsPoB36gESa7sP2XY6fUOwH9sR7+XM/03tRi2UPVaXWx2HAAAANRC559/vlq1aqW0tDRt3LhR+fn5Ze5IKE3Lli29tw3D0Pnnn++LmFXOkpSUVGqXlVPbFZ36vMpo3bq1xo4dqwULFmjWrFl68cUXZbFYNHPmTEnSJZdcUq6OL2VlTkpKKjZzwa6XnJwc9ejRo8ydGEBNE/AroX379pUkHTx4MNCnBqoVtyFF0rbJNI7kCLMjAAgC7pzDSl0+SPkHPjM7CgAAAGohi8Wi22+/XdLJQcyzZs2q0nr169dXz549JUkREeb+u/nUYsjWraXPgIyK+l8HhNOLKJXZqVAw3PrIkSNat26dNm/erP3790sq3+4ISdq2bVu5Hg8NDVXXrl299/fq1UuSZLfbvfMkgNok4AWJRx55RIZh6LPP+Ic5EBFnMztCUHLnHlPO9mfMjgEgWLhtytpynzI33CGPs+qDBgEAAIBTPfHEE2rY8GRL6Oeee05Hjhyp0npjxoyRJO3fv1+rVq2qcr7K6tOnj7fDyqxZs+TxeIo9LicnR999950k6bzzzlP79u0LPV7w2kgnL/KXxxVXXKGzzjpL0slB1gXDrMPCwnTjjTeWa405c+bIMIxiH4uLi9Pq1aslScOGDSu0C2L06NHeIsr06dPLdS6gJgl4QWLEiBF65pln9Ouvv+qBBx6Q0+kMdASg2vgj3ak0q7vsA+EzHmeu0n8ZLY8tqeyDAcCHrDFfK21Zfzkz/zA7CgAAAGqRM888Ux988IEkKSsrS5deeqk2bdpU6nMMw1BmZmaxjz366KMKCwuTJE2aNEn79u0rda1ly5Zpz549FQ9ehgYNGnh3Kuzdu1evvvpqkWMMw9DDDz+s1NRUSdLDDz9c5JhTCxSHDx8u17lDQkK8OyG+//57zZ8/X5J0ww03eF+bsvz222965513itzvcrl07733yuFwSJIeeOCBQo+fc845uuGGGyRJ3377rd57771Sz3PkyBHNmzevXJmA6iDgMyRmz56tHj16aPDgwfrss8+0ZMkSTZgwQeeee265etwxDBu1iSFpc7xdo/9S+f6OKD/D8Chzw21yZfj+/ygBQHm4MqOVtrSfmg36VI3+cpvZcQAAAFBL3HvvvYqLi9PUqVMVHx+vyy67TH/96181evRoXXDBBWrZsqXcbrcSExO1c+dOfffdd95CQ506dQoNpW7Xrp1mzZqlCRMmKCEhQX379tVdd92lkSNHKjw8XE6nUydOnFBUVJQWLlyomJgYLVmyRBdeeKHPv68XX3xRixYtUkxMjF5++WX9/vvvmjRpktq3b68jR47oo48+0rp16yRJgwYN0pQpU4qsMXjwYO/txx9/XM8//7zat2/v3YXQuXNn1a1b9BLp3XffralTpyo/P7/QfeXVt29fPfPMM/rtt980ceJEtW3bVocOHdJ7773nbTE1evRojRo1qshzP/nkE23fvl0xMTH6+9//rp9++kkTJ05Uz5491aBBA6WlpWn37t1auXKl1q5dq3HjxumWW24pdzbATBajpL1DfhISElLpKfMWi0Uul8vHiWq2EydOqFOnTpKk48ePKzw83ORE5Xfr8mS5A/ruq546N62rty6r2sAllE/29qeVt7fopxMAwAyh3aeo6YAPZKnTwOwoAACgHKry7+9Dhw7J5XKpbt26Ovvss/0VEdAPP/ygJ598UjExMWUea7FYdNVVV+mdd94pdnj1kiVLdNdddyk9Pb3UdUJCQrRmzRpdfvnl3vtiY2PVpUsXSSdbHt11110lPr9z5846evSo7rzzTu/g6FPFxsZq5MiR3hkOxbnkkku0ePHiEgda33TTTd62Tqc7cuSIOnfuXOxj11xzjVasWCFJ6t69uw4cOFBiBkmaOXOmJk2aJEnauXOn7rnnHu3atavEzCtWrFCTJk2KfTwxMVE33nijNm7cWOo5pZM7WWbMmFHmcUBF+ePvr4DvkJBUYv80IBjFZrsUn+tShzBTfh2DRv6hmRQjAFQr+Qc/kyN1m1oMW6C6Tf9idhwAAADUAuPGjdPo0aP1ww8/aNWqVdqyZYuSk5OVmZmp0NBQtWrVShdccIEGDRqkm266yVs0KM7o0aN15MgRff7551q+fLn27dun9PR01a1bV2eccYZ69uypv/71r5owYYK3WOcPnTt31u7du/X5559rwYIF2rt3r7Kzs9WyZUv16tVLt912m2699VaFhJTcmf7rr79W3759tXDhQh04cEA5OTklzqQ41R133OEtSBQUGsqrRYsW2rx5s6ZPn6758+fr8OHDMgxDPXr00MSJE/XAAw8Umh1xujPOOEMbNmzQsmXLNG/ePG3ZskWJiYlyOp1q3ry5zj77bA0aNEhjxozRkCFDKpQNMFPAd0gcPXq0Ss8vGCiDk9ghUTuMPztUN3YvXw9CVJwjaaPSVl0heRxmRwGAIiz1mqnZpTPU6KzrzY4CAABKwQ4JIPg8//zzeuONN1SnTh0dP368yMDs0526Q6K0nRdATVErdkhQUACK2hxvpyDhJ66cI8pYez3FCADVluHMUuav4+U873E16fuWLCH1zI4EAAAABD23263Zs2dLkkaOHFlmMQJA+ZS8lwlAwCTkufVnptPsGLWOx5GtjF9GyWNPNTsKAJQpL3qa0lYMlTvvuNlRAAAAgKA3d+5cnThxQpJ0//33m5wGqD1oWg9UExHxNnVrzqdifcXwuJW5/ia5MqPNjgIA5eZM2aKUxb3U/LKv1TD8arPjAAAAAEHlzz//lNPp1Pbt2/X4449Lki666CJdc801JicDag9TCxJut1s//vij1qxZo7179yo9PV2S1LJlS51//vm64oordN1115U64AWoLbbE23VHjzCFWCxmR6kVsrf9Xfa4lWbHAIAKM+xpylhzjcIu/IfCLp4qSwj/PwgAAAAIhNN75NerV0+ffPKJLFyrAXzGtILEypUrNWXKFMXFxXnvK5ivbbFYtHnzZn322WcKDw/XZ599pquuusqsqEBAZNg9ik5z6vzW9c2OUuPlHfhU+X+8b3YMAKgCQ7l7XpcjebOaD/lGdULPMDsQAAAAEDRatGih3r1765VXXtGgQYPMjgPUKqbMkJgzZ45GjRqluLg4GYYhwzB01llnaeDAgRo4cKB38LVhGDp+/LiuvfZazZ0714yoQEBtireZHaHGsyesVXbkw2bHAACfcCT+qtQlvWRPXG92FAAAAKDWK7hOmZ6erjVr1mjw4MEVev5dd93lXaNz587+CQnUcAEvSBw9elRTpkyRx+NRaGioXnvtNSUmJiomJkabN2/W5s2bFRMTo8TERL3++usKCwuTx+PRvffeq2PHjgU6LhBQUQl2uTyG2TFqLFf2IWX8OkEyXGZHAQCf8VgTlb5quHL3vOHdTQoAAAAAQE0U8ILE+++/L7vdrrCwMG3cuFH/+Mc/1LZt2yLHtWnTRs8995w2btyosLAw2e12vf8+LVhQu+W5DO1Kdpgdo0by2DOUvmaUDEeG2VEAwPcMt3J2Pq+MX0bJY083Ow0AAAAAAJUS8ILE6tWrZbFY9NRTT+niiy8u8/iLLrpITz75pAzD0KpVq/wfEDBZBG2bKszwuJSx7ga5sw+aHQUA/Mp+YrlSF/eSIznS7CgAAAAAAFRYwAsSBW2XrrjiinI/Z8SIEYWeC9RmO5Lssrk8ZseoUbK3/k2OhF/MjgEAAeHOO6a0lUOUt2+62VEAAAAAAKiQgBck3G63JKlOnTrlfk7dunUlSR4PF2lR+zk8UlSi3ewYNUZe9AfKP/Afs2MAQGB5nMre9rgyfp0gjyPb7DQAAAAAAJRLwAsSHTt2lCRt3ry53M8pOLZDhw5+yQRUNxHxFCTKw3ZipbK3PWF2DAAwje3o90pd0lvOtN/MjgIAAAAAQJkCXpC4/PLLZRiG3nzzTcXHx5d5fHx8vN58801ZLBb99a9/DUBCwHy/pzqUbWdHUGmcmdHKXH+TZLjNjgIApnLnHFbq8kHKP/i52VEAAAAAAChVwAsSf/vb3xQSEqKUlBQNGDBACxcu9LZxOpXH49HChQs1aNAgJSUlKSQkRA8//HCg4wKmcBvSlgSGW5fEY0tVxi+jZThpUwIAkiS3TVmbpyhz40R5nHlmpwEAAAAAoFh1A33C888/X6+++qqef/55xcfH66abblLz5s3Vu3dvtW3bVhaLRUlJSdq5c6cyMzNlGIYk6dVXX9X5558f6LiAaSLi7bqqc6jZMaodw+1Qxq/Xy50TY3YUAKh2rIfnyJm2Q82HLVS95j3MjgMAAAAAQCEBL0hI0nPPPadmzZrp6aefVn5+vjIyMrR27dpCxxQUIkJDQ/XOO+/ogQceMCMqYJqDGU6l5LvVJrT8A+CDQVbkA3IkbTQ7BgBUW67MaKUt7admgz5Vo7/cZnYcAAAAAAC8At6yqcCDDz6o2NhYvfXWWxoxYoTOOOMM1a9fX/Xr19cZZ5yhESNG6K233lJsbCzFCAQlQ1JEPG2bTpW7911ZD80wOwYAVHuGK0+ZG29X1ub7ZbjtZscBAAAAAECSSTskCrRu3VpPPfWUnnrqKTNjANVWRLxN13VrbHaMasF2fIlydjxjdgwAqFHyD34qR2qUWly+UHWbdDU7DgAAAAAgyJm2QwJA2Y7luHU8x2V2DNM50/coc/2tkuExOwoA1Diu9F1KXdxbtqM/mB0FAAAAABDkKEgA1VxEXHC3bXJbk5Txy2gZrlyzowBAjWU4s5Tx6/XKjnpChsdpdhwAAAAAQJCiIAFUc8E8R8Jw25WxdpzcecfMjgIAtUJe9DSlrRgqd95xs6MAAAAAAIKQ32ZIdO16sk+xxWLR4cOHi9xfGaevBQSDZKtHBzOc6t6intlRAi4z4h45U7aYHQMAahVnyhalLO6l5pd9rYbhV5sdBwAAFCNhpsXsCH7T/i7D7+dYt26dLr/88hIfb9y4sTp06KABAwZo0qRJ+utf/1rutWNjY9W1a1cZxsnvY+7cubr11lvL9bwuXboUud9isahp06Zq1qyZ2rdvrz59+mjgwIEaN26cwsLCylx32LBhWr9+fZH7GzVqpGbNmqlly5Y6//zz1bdvX40dO1bdu3cvx3dZ2ObNm3XJJZcoJCRESUlJat26tTd7SRo2bKjWrVvr4osv1g033KBbb71VdeuWfBmyc+fOOnr0aLkzNWvWTJmZmcU+lpeXpzlz5mjx4sXavXu30tLSZBiGmjZtqs6dO+uCCy7QoEGDdPXVV6tTp06SpJdffllTp04t9/mLc+edd2rmzJnFPjZlyhR9/vnnGjNmjH766SdJ0syZMzVp0qRij7dYLAoLC9OZZ56pSy65RFOmTFGfPn0qlGf9+vUaNmyY9+uIiAgNHjy4zOeV9PtTp04d73u1U6dO6tOnjy699FKNHj1a9evXL3Pdkn7GjRs3VrNmzdS6dWtddNFF6tevn66//np17NixzDVP98033+i2225Ty5YtlZycrDp16pT4u1cgNDRUbdu2Vd++fXXbbbfpuuuuK/Ucpb3vi3PRRRfpt99+K/axtLQ0ffXVV1q5cqX27t2rjIwMWSwWtWjRQp07d9bFF1+swYMH66qrrlLbtm0lSXfddZdmzZpVoQyne+mll/Tyyy9XaY2q8FtBIjY2VlLRH1LB/ZVR0R84UFtsirMFXUEiZ/frssXMNTsGANRKhj1NGWuuUdiF/1DYxVNlCaljdiQAAICAycvL06FDh3To0CF9/fXXmjhxombMmKE6dcr+/0SzZ8/2FiMKvi5PQaIkhmEoKytLWVlZOnbsmLZu3aqPP/5YTZo00eTJk/Xqq6+qcePGFV7XarXKarUqMTFR0dHR+u677/TMM8/o8ssv13vvvaeLLrqo3GstWbJEkjRo0CBvMaIsNptNJ06c0IkTJ7R06VK9//77Wr58udq1a1fh76UitmzZoptvvlnHjhXttJCamqrU1FRt375dX331ldq1a6fExES/5pFO/oyXLl0qSRo9enS5n5OTk6N9+/Zp3759+vzzz/Xss8/qjTfeKPd5T79oPXv27HIVJEridruVkZGhjIwMxcbGauPGjZo+fbratGmjRx55RM8++2ypRaeS5OXlKS8vT/Hx8dqzZ4/mzJmjxx9/XGPGjNF7772nzp07l3utgvfqyJEjy/X7LEn5+fmKjY1VbGysFi5cqCuvvFKLFi2q1O9dRSxevFh333230tLSijyWmJioxMRERUZG6j//+Y8GDBigyMhIv+YJJL8VJO68884K3Q+gZJEJNt3VM0whQVKUs8Z+r9xd/zQ7BgDUcoZy97wuR/JmNR86T3Ua+fcfhwAAAGZ44IEH9OCDD3q/NgxD6enp2rJli6ZNm6bk5GTNnj1bnTp10muvvVbmenPmzJEkhYWFKTc3V2vWrFFCQoLat29f7kxjx44tdK78/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wy1/3999+9t10ulzIzMxUXF6fIyEgtXLhQiYmJWrt2rfr3768PP/xQU6ZMKVfegou8JV1M79u3r7766qtC9+Xm5mrv3r366KOPtHv3bu3cuVMTJkzQxo0bSz1Xhw4dtGrVqjIzFXex+eDBg7rqqquUk5MjSRozZowmTJig7t27q379+kpNTdXu3bv1888/69dffy303AcffFATJkwo9lw//fSTXnjhBUnSa6+9prFjxxZ7XIsWLYq9f8eOHUpISJDFYtG1115b7DGnr+vxeJSSkqJ169Zp+vTpys3N1f/93/+pa9eumjx5crFrnMpqtWrhwoWS/vde/e677/T++++rQYMGZT6/wOm/P7m5ucrIyNCePXv0yy+/aM2aNUpJSdE///lPLVmyREuXLlWbNm1KXfP0n7HT6VRGRoaOHj2qzZs3a8GCBcrKytIPP/ygX375RV9//XW5Cjkul0srV66UVPJ79fTfPUnKysrSjh07NH36dB05ckSrV6/Wfffdp6+//rrU8xX3vi9Oo0aNity3ceNGTZgwQU6nU3Xq1NEtt9yi0aNHq0uXLqpTp46SkpK0c+dOrVy5Ups3by703Ndff11PPvlksef6+OOP9cknn0iSZsyYoX79+hV7XMFuC7P4rSBR0g+kPD8oAIVlOQz9nurQRW3K/5dGTeVM3aGsTRMl+X8bLwBAciT+qtTFF6v50G/V4IyhZscBAADwqbZt2+r8888vcv/QoUM1ZswY9enTRzabTR988IFefPHFUlvPbN68WX/++ackadq0abr//vvldrs1d+7cEi8QFqd58+bFZrryyiv12GOP6dixY5o8ebJ+/vlnHTx4UKNGjVJkZGSJF7wLFLemJN12221699139f777+v555+Xw+HQAw88oA4dOmjUqFGlrnnkyBHt27dPUskXeRs3blzsuQcOHKjbbrtNvXv31v79+7Vp0yZt2bJFgwYNKvF89erVK/H7KMvzzz/vLUZ89dVXuuuuu4ocM2LECD355JNKSUnRd999572/bdu2JV6k3b59u/d2x44dK5yvoKDTt2/fEgtXJa07fPhwDRs2TCNGjJBhGHrnnXfKVZD44YcfvK/FBx98oLvvvlsZGRlasmRJiYWX4pT0+zNy5Eg988wzio6O1u23365du3YpKipK48aN09q1a0v9PSrtZzxp0iRNmzZNL730kt577z1lZ2frpptu0oYNG9S3b99Ss27cuFGZmZmqV6+err66+Na0Jf3uXXLJJbrpppt0wQUXKCUlRd98843efvttdejQocTzlfS+L48nnnjCW4xYuXKlrrjiiiLHjBw5Us8//7yOHj2qX375xXt/x44dS2xndep7uEuXLpXO528MtQZqiIh4u9kR/M6dH6/0tWNluPLNjgIAQcVjTVT6quHK3fNGoRYEAAAAtdl5553n/cR6Tk6O9u/fX+rxs2fPliS1bt1ad955p4YPHy7pf7smfOXMM8/UihUrvNkOHjxY5X7vDRo00NNPP+3N6vF4NHnyZNlstlKfV3AxvWvXrjrvvPMqfN5GjRrpoYce8n69bdu2Cq9RHm63W8uWLZN08sJ/ccWIU7Vp06ZQLn8qeA3LKv6UZPjw4erdu7ekk++F7OzsMp9T8F698MILNWnSJJ1zzjmF7veV8847TxEREerVq5ekk3Mq/v3vf1dpzbCwMP3rX//Sm2++Kenkbo/yFGEKXudLL71UzZo1q/B527Vrp4kTJ0o6uZPq1EKUL8XHx3vXHjduXLHFiFOdddZZuvvuu/2SxSwBL0gcO3ZMx44dk9vtLvdz3G6393lAsIpKtMvhrr0XiQyXVRm/jJUnP87sKAAQnAy3cnY+r4xfRsljTzc7DQAAQECcOuzWbi/5g4B2u937ifobb7xR9erV0x133CFJ2rNnT4lDayurTp06mjlzpkJDQyVJn3/+uVJTU6u87s0336wbbrhBkpSUlKQZM2aUenzB7IPKXkyXyv8aV0VKSoqsVqskqVu3bn45R2XExcVp165dkso/P6I4FXkNExIStGbNGknS7bffXuh/V65cqZSUlErnKE6jRo00Z84c7+zfd999V06ns8rrPv300xowYIAkaffu3Vq+fHmpx1d0TkdxAvFePfX6dnV6rwZSwAsSnTt3VteuXXXgwIFyPyc2Ntb7PCBYWV2GdibXzl0ShmEoc9Odcqb5p/oMACg/+4nlSl3cS46UrWZHAQAA8LujR496b5955pklHrdkyRJlZGRI+t/F3XHjxnkH3/r6k+fSyZ0YBeeyWq1avXq1T9Z9/PHHvbd//PHHEo/LycnR+vXrJVXtIm95X+OqOLVF0B9//OGXc1RGwUXy8PBw7y6Cyih4DRs1alTmjIa5c+fK7XYrJCTEO3D9tttuk8VikdPp1Lx58yqdoyQ9e/bUiBEjJJ3cAeCLnTAWi0WPPvqo9+vS3qsHDhzQoUOHJPFerQlMadlU2VYAtBBAsKutbZtyf3tJttgFZscAAPyXO++Y0lZcprzo982OAgAA4Df79+/3XjAeOHCg2rVrV+KxBQWHv/zlL94ZCI0bN9Z1110nSfrmm28q1A2kvE5t51LWQOjyGjBggJo0aSJJ2rJli1wuV7HHrVq1Sg6HQ02bNtXQoZWbNWa1Wr0tfBo3blxme5rKatmypc466yxJJz9N/9Zbb8nj8fjlXBVR1XZNkrRu3Trt2LFD0slB3WUpaMs1bNgw76yBLl26aPDgwZL8UzyT/PNeLe+aBa/zueeeW+ldBwUD7iWpU6dO3jZZvtajRw81bNhQkrR48WLNnTvXL+epzvw21NqXCgoRISGMvEBw25VsV77To9B6ted3wRozT7m7XzU7BgDgdB6nsqMekyNpo5pdMkMh9ZuanQgAAKDCkpOTtXfvXu/XhmEoMzNTW7Zs0bRp02S1WtWsWTNNmzatxDVSUlK0cuVKSSc/aX6q22+/XXPnzlVSUpJWrVqla665xqf5T70oevDgQZ+sGRISoosuukibNm1Sbm6uEhIS1KlTpyLHFVzkvfLKK1WvXr0S18vLyyv0GktSfn6+fv/9d/373/9WdHS0LBaL3n77bbVq1arUbE6ns8haxSluCPXf/vY373DxZ599Vv/5z380ZswYDR48WP379y/UjicQrFar1q5dK6nsgkRcXFyh79vj8Sg1NVXr16/X9OnT5fF41LFjR7322mulrvPbb79pz549kv63k6fA7bffroiICO3YsUPR0dGVmglSGn+8V9u0aaPw8HCdOHHCO1C+OOUt/GRmZhZ5f2VnZ2vnzp16//33lZSUpPr16+vDDz8s9T0vFf++L054eLiaN2/u/bpRo0aaPHmyPvroIxmGodtvv11vvPGGRo0apUGDBql///6lDtOuDWpEQSIhIUGSvNVbIFg5PdLWRLsu79TI7Cg+4UjZqsyI2jWYBwBqG9vR7+VM360WwxaoXquLzY4DAABQIZ988ok++eSTYh8LCQnR/fffr8cff1zdu3cvcY158+Z5e+KffpF3xIgROuOMM5SYmKjZs2f7vCBx6gX8gpZR/lj39IKEx+PRihUrJJXdAmf79u264IILSnz8yiuv1LPPPqvLL7+8zFzx8fGlrlXgpZdeKjLo+/HHH1d0dLR3LkZsbKw++OADffDBB5JODi0eNmyYbrvtNo0aNco788Bf1qxZI6vVqtDQUO8A9JK88MILeuGFF4p9rEGDBnrmmWf0yCOPlHmhuuAT/o0aNdL48eMLPXbjjTfq0UcflcPh0OzZs71Do33Fn+/VEydOyOVyKTs7W02bFv6gVEZGhjZv3iyp7PfqTz/9pJ9++qnEx2+66SY99dRT6tOnT5m5ynrfF/jqq6+KDFl/++23dfjwYe/vWHR0tKKjo72Pn3nmmRo+fLgmTpyoYcOGlXmOmsa0j1mX55fe6XRq//79ev311yXJOxEeCGYR8TazI/iEO++4MtZeJ7lrx/cDALWZO+dPpS4fpPyDn5sdBQAAwGc8Ho++/fZbffLJJ6UOsC24yNu/f3+dffbZhR6rU6eObr75Zkkn269kZ2f7NGNYWJj3dk5OTsDWjYyMVEpKikJCQqpcZPn111/14Ycf6vjx41VapywhISH68ssvtXr1al199dWqW7fw57CTkpI0f/58jRkzRv3799fhw4f9mqfgU/tXXHGFt0VPZdjtds2aNUszZswotQ2Vy+XSN998I+nkhfnTL9y3bNnS+7OcO3euz1tamfVeXbFihVwul1q2bKlLLrmkSudasmSJPvroI2VmZlZpnbI0atRIy5Yt0/z583XZZZcVuU5+7NgxffXVV7r88st19dVX+3wQudn8XpCoU6dOoT/Sye1x559/fpHHTv/TsGFD9ezZUz///LMsFosmTJjg77hAtbcvzalMm+/7UgaSx5mn9DWj5bEmmh0FAFBebpuyNk9R5saJ8jjzzE4DAABQLi+99JIMwyj0Jz8/X3v27NFTTz2l3NxcTZ8+XVdccYXy8/OLPH/fvn3e/v2n744ocOrg6QULfDsf8dQLsKdfYPbnugUX0wcNGqTWrVuXutbQoUOLvMYOh0NHjhzRv//9bzVr1kw//PCDBg4cqP3795e61llnnVVkreL+nL474lQjRozQihUrlJaWpuXLl2vq1KkaPXq0mjVr5j1m+/btuuyyy7xdWXzNMAzvfJLyDFn+6quvinyPOTk5ioqK0uTJk5WYmKh//vOfuummm0osJKxatUpJSUmSyn6vnjhxQr/++mtlvrUSmf1eHTlypPfac0nuvPPOIq+zzWbTgQMH9MYbb8hisWjmzJm65JJLvK9lSYp73xf35/TdEQUsFotuvPFGbdiwQcnJyfrxxx/1/PPPa8SIEWrU6H+dUVatWqXLL79cubm5peapSfxekDj9h1DS/WX9ueGGG/TYY4/5Oy5Q7XkMaUtCzR1ubRgeZW64Ta6M3WZHAQBUgvXwHKUt6y9n5h9mRwEAAKiURo0a6YILLtDbb7+tjz/+WJK0adMmvfHGG0WOLdgdUbduXe9OiNP16dNHPXr0KHS8r6Smpnpvt2zZMmDrVnUYc7169dS5c2c9+OCDWrdunerVq6f4+HhNnjy5coEroWnTpho5cqRefPFFLV68WElJSZoxY4ZatGgh6WSL+H/+859+OfeOHTuUkJAgi8Wia6+9tlJrhIWFqV+/fvr888/1j3/8Q5K0cOFCb0uq0xW891q1aqWrr7662GNGjRrlnWdQ096rdevWLdLO3+Vyeee7VPa92qBBA3Xv3l3PPfecFi1aJOlkC6W///3vVUhdMa1bt9bYsWP12muvafXq1UpOTta7777r3Vmzb98+TZ8+PWB5/M3vMyReeumlQl9PnTpVFotF999/f5HhM6eyWCxq2LCh2rdvr8GDB+svf/mLv6MCNcameJtGdgk1O0al5Ox4TvbjJffrAwBUf67MaKUt7admgz9To663mh0HAACg0u655x49++yzSk9P14wZMwoNDfZ4PJo7d66kkxc+S7uOVWDjxo2KjY1V586dfZJv165d3tu+amXu8Xi8g4+bNm2qM844o9DjsbGx2rdvn6Tyfbq/LD179tQ111yjn376SRERETp48GCpMzv8pUGDBpo0aZI6dOjgvWC/aNEiffbZZwoJ8e1ntgt2R/Tp00ft27ev8np///vf9eabb8rj8WjGjBlFCjtZWVlavHixJCktLU3169cvc81Fixbp448/VuPGjaucT/LPezU5OVnx8fElrrlp0yZlZmaqbt26JRZhKuLKK6/URRddpN27d+u7777Tp59+6rPXpyLCwsL097//XWFhYbr//vslSQsWLChxzkhNY0pBQpIeeughn09zB4LFn5kuJeW71S609K1o1U3+n7OUt/dts2MAAHzAcOUpc8NtciRuUNMB78tSp4HZkQAAACosJCREZ599trZu3aqEhASlpaV5h/P+8ssviouLq9B6hmFozpw5Pvvk/c8//+y9femll/pkzS1btnjbvwwaNKhIm5uC3RFdunRRz549fXLOc8891ztM+PfffzelIFHgqquuUqdOnXT8+HFlZGQoLS1Nbdq08ek5Cl5DXxR0pJM7Dtq0aaOkpCT9/vvvRR7/7rvvZLNVbEZnbm6uFi1apDvuuMMnGf3xXi1rzYLX+bLLLvPu/Kiqc889V7t37/bONi7PgGt/mTRpkh5++GG5XC79+eefpuXwNb8XJE731VdfSZLCw8MDfWqgVtkUZ9P4swNfpa0sR9ImZW2eYnYMAICP5R/8VI7UKLW4fKHqNulqdhwAAIAKc7lcxd4uaGnToEEDzZgxo8xP0b/99tvatWuXzwoSKSkp3iHFjRs31pVXXlnlNSUVav0ybty4Io/7+mK6VPJrbJYOHTp4h2yfPlC4quLi4rRz505J/nkNi3v9Ct6r7du313vvvVfmWk899ZROnDih2bNn+6QgsXfvXv3yyy+SpE6dOqlv375VXtMwDH3wwQfer4PxvVq/fn21atVKSUlJPn+fmingBYk777wz0KcEaqWI+JpTkHDlHFHG2nGSx2F2FACAH7jSdyl1cW81v/QrNTyr6D8UAAAAqqv8/HxFR0dLOjlbomCAc25urn744QdJJ4ck33pr2W0qExMTtWvXLh06dEhbtmzRoEGDKp3L4/Horrvu8g7anjJlik/68n/77bdauHChpJMXr08fuJuTk6P169dL8u1F3u3bt3tvd+rUyWfrVsapP/OmTZt6d8T4SkG7pvDwcPXq1csna8bGxiotLU1S0dfvyJEjioiIkCSNHz++xFknp4qMjNT777+vtWvXKi4uTh07dqx0NqvVqokTJ3pnBz/55JOqW7fql5zfeustRUVFSZJ69+6tq666qtDjBw4c0KFDhyT57r1qGIZ3iL3kn/eqYRjlLi4cP35cycnJkqSuXWvPh7/8PtS6OMeOHdOxY8dkt5c9mNdms3mPB/A/cbluxWY7zY5RJo8jWxm/jJbHnlr2wQCAGstwZinj1+uVHfWEDE/1//sJAABAkl5++WVZrVZJJ1v5FLQv+v7775WXlydJmjBhQrnWGj9+vPdCY1UGBh87dkxXX321li9fLulkC5nTW6JXlMPh0DvvvOP9NHydOnX05ZdfqkGDwm03V61aJYfDoSZNmmjo0KFVOmeBZcuWeYscrVu3Vv/+/X2y7qlyc3M1YMAALV26VB6Pp8TjPB6P/va3vyknJ0eSNGbMGJ9/8rzgU/uVHWZ9Oo/Ho2effdb79enrzp4921sMKO97teA4j8ejr7/+utLZoqOjdemll3rnRwwdOlQPPPBApdeTTv4sn3zyST333HOSpNDQUH3xxRdFjit4nc855xx169atSucs8PHHHys2NlaSdPHFF6tDhw4+WfdU0dHRuvLKK7Vhw4ZSj7PZbJoyZYr3Zzt27FifZzFLwHdIrF69WiNHjlRYWJhiY2OL/IfvdPn5+erZs6esVqvWrFmjYcOGBSYoUANExNnVuWk9s2OUyPC4lbn+Zrky95kdBQAQIHnR0+RI3aoWQ+erTmNadAIAAHMlJydr7969he6z2Ww6dOiQZs+erZUrV0qSGjZsqFdeecV7TEFBoV69ehozZky5ztWpUyf169dPUVFRmj9/vt5///1ihwtnZmYWymS1WpWZmano6GitX79eS5Ys8baKOeecc7R06VI1a9aszPOfuqbb7VZmZqbi4uK0ZcsWLVy4UImJiZJOtqD697//rZEjRxZZo+DT/VdddZXq1Svf9Ya8vLwir7HT6VRcXJyWLVtW6GLy//3f/5X66Xmn01lkrZJ069ZNDRs29H4dFRWl0aNHq2PHjrruuus0aNAgnXXWWWrSpIkyMzO1a9cuzZgxwzuDoVmzZnr11VfLda7yslqtWrt2raSKfWo/Li6uyPedl5en6Ohoff7559qyZYskqVWrVnrmmWcKHTdnzhxJUtu2bXXZZZeV63yDBw9W+/btlZCQoDlz5hRZs8Dpvz95eXnKyMjQnj179Msvv+jnn3/2XjAfOHCgFi5cWOb75vSfsdPpVGZmpmJjY7V582YtXLhQmZmZkk7+jObOnVvsTpOC92pFXufTf/ekk8W62NhYLVy4UPPmzZN0crbMW2+9Vepaxb3vS3Leeed5W74ZhqGff/5ZP//8s7p166axY8dqwIABCg8PV2hoqFJTUxUVFaXPP/9cR44ckSSdeeaZevLJJ8v9fVZ3AS9ILFiwQIZh6LrrrlOLFi3KPL5ly5YaP368Zs+erfnz51OQAE6xOcGmW89tXG37yGVv+7vscSvMjgEACDBn8malLu6lZpfNUcPwq82OAwBAjdP+LsPsCLXGJ598ok8++aTUY9q0aaOvv/5aF1xwgaSTbVLWrVsnSfrrX/9arutXBSZMmKCoqChlZGRoyZIlGj9+fJFjfvrpJ++A55I0bdpU9957r1555RWFhoaW69wF+UtisVg0fPhwvffee8Ue6/F4vLsyKnKRd/v27WWeu169enrttdc0efLkUo+Lj48vc60Cu3bt0sUXXyxJqlu3rs444wwlJiYqLi5O//73v/Xvf/+7xOeeffbZmjdvnjp37lyuc5XXmjVrZLVaFRoaquHDh5f7eS+88IJeeOGFUo/p0qWLFi5cqDPOOMN7X0REhA4fPizp5IyFsuacFAgJCdG4ceP08ccfa9++fdqxY0exw5vL+/vz2GOP6emnny5Xq6by/Izr1q2rMWPG6L333tNZZ51V5PGMjAxvm6qKvFfL87sXFhamTz75pMyZLeV53xfIyMjwDt1u3LixWrRooYyMDP3555/617/+Vepz+/btq/nz55erKFlTBLwgsWXLFlkslgoN4rnqqqs0e/ZsbzUQwEmpVo/2ZzjVo2XRT1yYLf/AZ8r/432zYwAATOKxpypjzTUKu/AfCrt4qiwhdcyOBAAAIOnkoNiWLVuqZ8+euuaaazRp0qRCRYevv/7a2/anuIJCacaPH6+nn35a0sldFmU932KxqEmTJmratKk6duyo3r17a/DgwRo3bpwaN6783MiGDRuqWbNmatmypS644AL169dPY8eO1dlnn13icyIjI5WSkqKQkBBdc801lT63dLIlVLNmzdStWzddfvnlmjx5ss/a6hSnYcOGiouLU2RkpNasWaPIyEgdOHBASUlJstlsaty4sTp06KCLLrpIY8eO1fjx44vdvVJVBW2ErrjiikK7NyqjYcOGat26tS666CKNGTNGt99+e5Hi1KmtwSrzXv3444+96xRXkDhVSEiImjRpombNmumss85Snz59dNlll2nUqFFVei1DQ0PVrFkz7/fav39/jR8/vtR2SStWrJDL5VLLli11ySWXVPrc0sliWbNmzdSjRw+NGDFC99xzj19aNRXo0qWLkpKStGHDBq1du1ZRUVE6ePCgUlJS5HQ6FRYWpk6dOql3794aP368rr322nIXmmoKi1GwryZAwsLCZLVaFRkZqX79+pXrOdu2bdOAAQPUpEkTZWVl+TlhzXLixAnvgJXjx48rPLzmtEa4dXmy3Hzoo8pGnNlIky9oYnaMQuwJvyr956skeogDACTVP+NyNR86T3UatTM7CgAAlVaVf38fOnRILpdLdevWLfWCMGCm5557Tm+++aYGDx7s/fQ5ys8wDIWHhys+Pl6fffaZ7r33XrMj1Vq33HKLvv32W916662aO3eu2XFqNX/8/RXw8kpBD7yCIUHlUXCszWbzSyagJotMtMntqT6VHVf2IWWsm0AxAgDg5Uj8VamLL5Y9cb3ZUQAAAFCCyvTkx//s3LlT8fHxslgsGjVqlNlxai2Xy+Wd/cJ7tWYKeMum1q1bKyEhQTExMerdu3e5nhMTEyPp5DwJAIXlOAztSXWoV9vSB8QHgseeqfQ1o2XY082OAgCoZjzWRKWvGq4mvV5V4wuerbbzjwAAAIKRw+HQhAkTNH78eN1yyy1mx6mR3G63XnrpJbVo0ULt27c3O06tlZ6erkcffVSSih3Mjuov4AWJiy++WAkJCZo/f74mTJhQrud8++23kqTzzz/fn9GAGmtTnM30goThcSlj3Q1yZx8wNQcAoBoz3MrZ+Q85kjep+WVzFNKAD5sAAABUB/Xr19dLL71kdowarX///urfv7/ZMWq9tm3b6uWXXzY7Bqog4C2bxo4dK8MwtGjRIi1YsKDM47/77jstWrRIFotF1113nf8DAjXQ9iSH7CYP5Mje+ogcCWtMzQAAqBnsJ5YrdXEvOVK2mh0FAAAAABBAAS9I3HnnnercubMMw9Ctt96qJ598UsePHy9y3PHjx/XEE0/otttuk8ViUadOnTR58uRAxwVqBJvb0PYku2nnz/vjQ+Uf+MS08wMAah533jGlrbhMedHvmx0FAAAAABAgAW/ZVL9+fS1atEhDhgxRbm6upk2bpmnTpunMM8/09ldLSEjQsWPHJJ2cUB8WFqYffvhBDRqY3yMfqK42x9t0SYeGAT+vPW6VsqMeD/h5AQC1gMep7KjH5EjaqGaXzFBI/aZmJwIAAAAA+FHAd0hIJ+dIbN26Vb169ZJhGDIMQ0ePHtXWrVu1detWHT161Ht/nz59FBUVpV69epkRFagxfktxKNfpCeg5nZl/KGPdTZLhDuh5AQC1i+3o90pd0kfO9N1mRwEAAAAA+FHAd0gU6NGjh3bs2KGff/5ZS5cu1a5du5SamipJat26tXr37q3Ro0dr+PDhZkUEahSXR9qaYNfwMxsF5HweW5oyfhktw5kVkPMBAGo3d86fSl02UM0GfKDQ7veaHQcAAAAA4AemFSQKjBgxQiNGjDA7BlArbIqzBaQgYXicyvj1erlzDvv9XACAIOK2KWvzFDmSNqnZoE9kqRtqdiIAAAAAgA+Z0rIJgH/8ke5Uus3/7ZOyttwvR9IGv58HABCcrIdnK3Vpfzkz/zA7CgAAAADAh6pFQcLj8Sg1NVXHjh2T200veqCyDEmb4+1+PUfu3ndlPTTDr+cAAMCVuU9pS/vJGvON2VEAAAAAAD5iWkHC7Xbryy+/1GWXXabQ0FC1a9dOXbt21YEDBwodt3TpUj399NN6/fXXTUoK1CwR8Ta/rW07vlQ5O57x2/oAAJzKcOUpc8Ntytp8vwy3fwvuAAAAAAD/M2WGRHJysq677jpt3bpVhmGUemznzp01ZswYWSwWXXvttbr44osDExKooWKyXIrPdalDmG9/vZ0Zvytzw62S4fHpugAAlCX/4KdypG1Ti2ELVLdJV7PjAAAAAAAqKeA7JNxut0aPHq3IyEhZLBbdeOON+uijj0o8/vzzz9eAAQMkST/88EOgYgI1mq93SbitycpYM1qGM8en6wIAUF6utJ1KXdJHtqM/mh0FAAAAAFBJAS9IzJo1S9u2bVO9evW0bNkyffvtt3rwwQdLfc6YMWNkGIY2bdoUoJRAzRbhwzkShtuujF/HyZ131GdrAgBQGYYjUxm/jlN21BMyPE6z4wAAAAAAKijgBYl58+bJYrHovvvu01VXXVWu5/Tq1UuSisyXAFC8hDy3YrJ8c6EmK2KynMmbfbIWAAC+kBc9TWkrh8mdd8LsKAAAAACACgh4QWLPnj2STu56KK+2bdtKktLS0vySCaiNNsVVvW1T7p43ZI352gdpAADwLWfyZqUu7iXbiZVmRwEAAAAAlFPACxKZmZmSpFatWpX7OW63W5JUp04df0QCaqUtCXZ5yhgaXxrr0UXK2fmCDxMBAOBbHnuqMtZco5yd/5RheMyOAwAAAAAoQ8ALEi1btpQkHT9+vNzPOXTokCSpTZs2fskE1EbpNo+i0yrXtsmZtlNZG++QVPmCBgAAgWEod89rSl89Qm5rktlhAAAAAAClCHhBomfPnpKkbdu2lfs58+fPl8ViUb9+/fwVC6iVIuIr3rbJnZ+g9F/GyHDl+yERAAD+4UhYq9TFvWRPXG92FAAAYLJ169bJYrGU+CcsLEzdu3fXHXfcobVr15a4TmxsbKnrFPfnuuuuK3G9EydO6OWXX9Zll12mNm3aqF69emrUqJHCw8M1ZMgQPfroo1q4cKGysrK8zxk2bFiFM5z+Z+bMmSVm6t69uywWi6ZNm+a976677ipxrbp166ply5YaOHCg/vnPf+rEiYrP9Jo6dap3vWbNmslmK9+1i5dffrnYTA0aNFDbtm119tln65prrtGLL76oDRs2lGvNkn7GISEhat68uc466ywNHDhQDz30kObMmaPc3NwKf7+SNGXKFFksFo0dO9Z738yZM0t8nUNCQtS0aVOdf/75uu+++7Rjx45S1y/rPV/cn8cee6zE9Q4ePKinnnpK/fv3V8uWLVWvXj01btxYnTt31vDhw/X0009r2bJlys//37Wjzp07V/m9um7dumLz2O12NWnSRBaLRT/88IP3/tJ+P+rVq6c2bdpoyJAhevPNN5Wenl6+H9YpJk2a5F3vnHPOKffzSvodatiwodq1a6dzzjlH48aN0+uvv66dO3eWa82SfsYFv5NdunTRkCFD9Pjjj+v777+Xw+Go8PcbKHUDfcLrrrtOa9eu1UcffaQnnnhCLVq0KPX4hQsXasmSJbJYLBo/fnyAUgK1w9ZEu+4531DdEEu5jjdcVmX8Mkae/Dg/JwMAwPc81gSlrxquJr1eVeMLnpXFUr6//wAAqG5uWpZsdgS/mX9tW7MjKC8vT4cOHdKhQ4f09ddfa+LEiZoxY4ZfW4V//vnneuyxxwpdwJUkl8uluLg4xcXFaePGjfrggw9000036dtvv/VblgIHDhzwdiUZPXp0uZ7jdruVkZGhrVu3auvWrZo+fbpmzZql66+/vtznnT17tvd2dna2fvzxR918880VC38Kh8OhlJQUpaSk6M8//9SKFSv06quvqkePHpo6dapuuOGGCq9pGIaysrKUlZWlY8eOaevWrfr444/VpEkTTZ48Wa+++qoaN25c7rWWLl0qqfyvs2EYysnJ0b59+7Rv3z59/vnnevbZZ/XGG29U+HupqKlTp+q1116Ty+UqdL/L5dLRo0d19OhRrV27Vu+8846eeeYZvfnmm37PtG7dOuXm5qpBgwYaMWJEuZ7jcrmUmpqqjRs3auPGjZo2bZoWLVqkSy65pFzPz8/P18KFC71fHzx4UJGRkRo4cGClvgfpZGElOTlZycnJOnjwoH788Ue98MIL6tevn9566y1dfvnlFV6z4HcyIyNDsbGx2rhxo6ZPn642bdrokUce0bPPPqu6dQNeAihVwNPce++9evfdd3X8+HFdeeWVmjVrls4777wixyUnJ+v999/XO++8I4vFovPPP1833nijz3IkJycrKipKUVFR2rZtm7Zt2+Ydmn3nnXeWWj0uzooVK/TZZ59p27ZtSklJUZs2bdSvXz9NmTJFI0eO9FluoCLynIZ+S3Gob7sGZR5rGIYyN90pZ9r2ACQDAMBPDLdydv5DjuRNan7ZHIU0aGl2IgAAYKIHHnhADz74oPdrwzCUnp6uLVu2aNq0aUpOTtbs2bPVqVMnvfbaayWuM3bs2FIfL9C0adMi982bN09TpkyRJDVs2FCTJk3SVVddpfDwcBmGofj4eG3fvl1Lly7Vrl27Cj33q6++Ul5eXrHneuGFF/TTTz9JklatWqUOHToUe1x4eHix9y9ZskSSdO6556pbt27FHnP6uk6nUydOnNDChQu9OwZuvvlm7d69Wz169Ch2jVNt2rRJMTExkqSwsDDl5uZq9uzZFS5IzJgxw9tJpaB4kJKS4n0d9+zZoz/++EM33nij7rnnHn322WcKCSm9UczpP+P8/HxlZmYqOjpa69ev19KlS5WTk6Np06Zp2bJlWrp0qc4+++wys+7YsUMJCQmyWCy69tpriz3mtddeK7R7wuPxKCUlRevWrdP06dOVm5ur//u//1PXrl01efLkUs93+nu+JK1bty5y35tvvqmXX35ZktSsWTPdd999Gjp0qNq3by+Hw6ETJ05o69atWrJkifbv31/ouatXry7xU/mTJk3S9u0nrzf9/vvvJWbq0qVLsfcXvFcvv/xyhYWFFXvM6es6HA7FxMRozpw5Wrx4sZKTkzV69GgdOHCgXGMBFi1a5N0R07hxY+Xl5Wn27NkVLkic+jvk8XiUmZmppKQkRUZG6scff1RMTIy2bdumK664Qi+88IKmTp1a5pqn/4xzc3OVkZGhPXv26JdfftGaNWuUkpKif/7zn1qyZImWLl1arUYhBLwg0aBBA/30008aNmyYduzYoQsuuKDQlpfbb79dubm5iomJkWEYMgxDrVq10vfff+/TT7m1a9fOJ+t4PB5NmTJFX375ZaH7C6rbP/74oyZPnqxPP/20zP/wAf6wKc5WroJE7m8vyxa7IACJAADwP/uJ5Upd3EvNh32n+m0GmB0HAACYpG3btjr//POL3D906FCNGTNGffr0kc1m0wcffKAXX3xR9evXL3ad5s2bF7tOWdxut5544glJUpMmTbRp0yZdeOGFRY4bM2aMXnnlFf3xxx+FLqyWdIG2IFOB7t27q3PnzhXKVnCRt7RP7Re3bq9evTR69Gh17txZr7zyipxOp6ZPn65PP/20zHMW7I5o166dHnvsMT333HNavXq1kpKSKnStrkuXLsX+PAra4CxZskR33323UlNT9eWXX6ply5Z6++23S12zpJ/xlVdeqccee0zHjh3T5MmT9fPPP+vgwYMaNWqUIiMjy+z+UvA69+3bV+3bty/2mI4dOxZ77uHDh2vYsGEaMWKEDMPQO++8U2ZBoqT3fFlSU1O9F8PDw8O1efNmderUqdAxAwYM0Pjx4/X2228rKirK++Fu6eR7pSSn7iapTLbyvFeLW7d3796aMGGC7rzzTs2ePVsZGRn64osv9Nxzz5V5zoL3ap8+fTRgwAB9/PHHmj9/vqZPn17ifyeKU9Lv5g033KB33nlHs2bN0sMPP6z8/Hy98sorateuXZkFpZJ+xiNHjtQzzzyj6Oho3X777dq1a5eioqI0btw4rV27tkK5/cmUK+QXXXSRtm3bpkGDBskwjEIVtd27d+vPP/+Ux+ORYRjq37+/tm7dWmKl1hfOPPNMXXnllZV67vPPP+8tRvTq1Uvz5s1TVFSU5s2bp169ekmSvvjiC73wwgs+ywtUxM5ku2wuT6nHWGPmKXf3KwFKBABAYLjzjiltxWXKi/7A7CgAAKAaOu+887yfWM/JySnyiW9f2Lp1qxITEyVJ9913X7HFiFP16NHDpx1CSpKRkaGIiAhJ0qhRoyq1xpNPPum9XZ5ZsTabTQsWnPwg5E033aQ77rhDISEhcrvdmjt3bqUylGT06NHavHmzmjRpIkl65513yt2rvyRnnnmmVqxY4X3PHDx40LuboDQFF9Mr+zoPHz5cvXv39p4zOzu7UuuUZfXq1d55Hs8++2yRYsTp+vfvH5CuMHv27NGxY8ckVf41fOqpp7y3y/NejY+P1y+//CJJuu2223T77bdLktLT073tt3whJCREkyZN0qpVq7xtlZ544gklJCRUad3zzjtPERER3mvTERER+ve//13lvL5i2kf2u3XrpoiICG3YsEFPPvmkhg0bph49eqh79+4aPHiwHnroIa1atUqRkZHq2rWrz8//4osvasmSJUpMTNTRo0fLVcU93cGDB/Xuu+9KOlnljIiI0M0336x+/frp5ptv1qZNm9S3b19JJ//D9+eff/r0ewDKw+6WtiWWPMjGkRKlzIi7A5gIAIAA8jiVHfWoMn69QR6Hf/7xBgAAaq5TdyDY7Xafr19wIVWSXz9sW1ErVqyQ2+1Wy5Yty91T/3RNmjTxtv0pz2u3ePFiZWZmSjrZIaVjx47envmnzpXwlbPPPrvQfANfzDqoU6eOZs6cqdDQUEknZ4OkpqaWeHxcXJy3DVd550cUx9/vU6n6vlcLCgAXXnihzjzzzEqtUdHX7+uvv5bH41GdOnV0yy23aNCgQd7XxB/v1UsvvVSPP/64N9+pQ+Yrq1GjRpozZ46349C7774rp9NZ5XV9wW8FiT179mjPnj1lTvS+9NJL9fbbb2vt2rXau3ev/vjjD23atEkffvhhuYeUVMbUqVM1atSoKrVumj59unfAy4cffqhGjRoVejw0NFQffvihpJODVHzxZgIqIyLeVuz97rzjylg7VnIX/zgAALWF7ehCpS7tK2f6brOjAACAauTo0aPe25W92FmaU1uk/PHHHz5fv7IKPrU/cuTISg/zzsvL87bsKc9rV3Ah95xzzvHOfyj45Pnu3btLnS1QWXfddZe3tdWyZct8ckG2devW3txWq1WrV68u8diCi+nh4eHeT6tXRsH7tFGjRn6bBVDd36tVKehU9Pd8zpw5kk7uTjnjjDMkndwpIUnLly8v1KrKVx555BFvu/8ff/zRJ2v27NnTe309Pj6+XLtDAsFvBYmLL75YvXv3LrIr4JVXXtErr7xSavWwJjAMwzs46Nxzzy1xoMnAgQO9MzJ++uknGYYRsIxAgT2pDmU7Crdt8jjzlP7LGHmsiSalAgAgsNzZh5S6bKDyD35udhQAAFAN7N+/33vBeODAgT6bN3qqUy9Cf/rpp1q7dq3Pz1FRLpdLK1eulFS1i7zvvvuu9zrXqQOZi5OcnKxVq1ZJ+t+FXUkaP3689wO+s2bNqnSWkoSGhmrw4MGSTg6prmrbpgJXXHGF9/bGjRtLPK6q7Zokad26ddqxY4ekk7NG/KWgLZQkvfHGG9q92/wP8iQnJysqKkpS1d6r77zzjvd2We/VnTt3au/evZL+VzA79bbT6dS8efMqnaUk4eHhOvfccyVJhw4d8rZ6q6ryvlcDya9DrYu7+P7yyy/LYrFowoQJxU5zrymOHDmi+Ph4SScHIZVm6NChOnDggOLi4hQbG1vqQCLAH9yGFJlg05VnndxSaBiGMjfeLlf6b+YGAwAg0Nw2ZW2eIkfSJjUb9IksdUPNTgQAAPwoOTnZe3FR+u+/hzMztWXLFk2bNk1Wq1XNmjUrs6tFZmZmoXVK0qVLl0IDfLt06aJRo0Zp6dKlstlsGj58uPr166eRI0dq4MCB6tevX8Cvj23cuFGZmZmqW7eurr766lKPPXjwoHJzc71fu1wunThxQj/88INmzpwpSRoyZIgmTZpU6jrffPONt8vIqRd5mzRpojFjxmj+/Pn65ptv9NZbb1V6x0ZJevfureXLl3u/nwEDBvhkzQIHDx4s9hir1eotQJVVkIiLiyv0/vJ4PEpNTdX69es1ffp0eTwedezYUa+99lqZ2U5/z5fknHPOUb169bxfDxkyRBdeeKH27NmjlJQU9erVS0OHDtWIESM0cOBA9enTR82aNStzXV9atmyZPB6P2rZtq/79+5d67Onfs8PhUGxsrL7++mv98MMPkk7OLinrPV+wkyc0NFTjxo3z3t+tWzcNGDBAW7du1ezZs/Xwww9X5lsqVe/evRUdHS3pZFGiYHdGVdcsUNJ7NdD8VpCoV6+eXC6XrFarv05hqoI3hyRv9er/27vz8Cirg/3j94Q1JEBERUUQlUWkUkUILoCAIgi0IlJxK5uIvu62VNHXVix9axWtVq3VsqO+gkIVSFgkbIGwL4oga2QRCEImC1lmksnMnN8fvJlfQvZkJs/M5Pu5rlzXkOeZM3fiyZjMPc85ZSl6fN++fRQSsMSGk/m+QiJ7x8vK/2mhtYEAALCQ88dPVJC2Qxf0XaD6MeX/LgcAAELXRx99pI8++qjUYxEREfqv//ov/e53v1PHjh3LHWfRokW+lTLKs2bNGvXt27fY52bNmqXBgwf7lkvZtm1bsaVTOnbsqAEDBmjs2LHFXjwMlMKrQnr37l3hC8wDBw4s81irVq00ceJEPf7442rUqFG54xS+yHvrrbeWeF1s5MiR+uKLL3Tq1CklJCRU+IJxVV144YW+2xkZGbU25sqVK+V0OtWkSRPdcccd5Y73xz/+UX/84x9LPdaoUSNNnDhRzz77rFq1alVhtvLmfFFHjhzRlVde6ft3RESE/vOf/2jQoEFKTk6WMUZr167V2rVrJUk2m03XXXedBg0apHHjxlX4M+MPhXN1yJAhvr0QytKlS5cyj11zzTV66aWXNHr06HLHcLvdvqsf7rnnHkVHRxc7PnLkSG3ZskXbtm3T/v37K3xNuKqsmqu1LWBLNhVe5lZ4SVG4OXHihO9269atyz236K70x48fr/LjlPdR013XUXccyCiQ3emRI3mOcve8aXUcAAAs5878Qfb4WDkP+/+SawAAEPy8Xq/mzZunjz76KGAbBUvn9hzYsGGDpk6dWmrhcPDgQf3zn/9Ut27dNHLkSOXm5gYsi+SfNfmlc2vST5s2zfeicVn27Nnj29i56NURhQYOHOjbF6Fw7X5/KvqicnZ2dq2NWfh97t+/vxo3blztx8rPz9ecOXM0c+ZMeb3eiu9QA+3bt9euXbs0ZcqUEoWDMUa7d+/WlClT1LlzZ02YMMF31Usg5Ofn+/bnqOlcPXDggP79739r3bp15Z63fPlynTlzRlLpc/X+++/3XVUSTnO1tgXsConbbrtNn3/+uSZOnKgff/xRHTt2LHYZ0KJFi7R9+/Yqjztq1Ch/xqy2ov8Bz2/Lzlf0Ur2il7lVRtEyI9y0i8qTly01atXeg+vUYddjVscAACBoGHeOMtc9JNfpdWrW4x+y1Sv/3X0AACC0TJo0Sa+99lqxzzmdTiUnJ+vTTz/Vu+++q3/84x/avn27vvnmGzVpUvpyjqNHj/YtUVQdDRo00Pjx4zV+/HilpKRo/fr12r59u7Zs2aLNmzf7Nlv+7LPPlJKSohUrVvh96SLp3Auzhw4dklS5F3nPfxe9MUYZGRnaunWr3njjDSUmJuq+++7Tu+++q+eee67UMQr3hmjQoIFGjBhR4nj9+vV1//3365///KcWLlyo7OxsNW3atBpfXemKvobXrFmzWhnTGOMrairzfZ41a5bGjBlT7HM5OTnat2+fpk6dqunTp+tPf/qTdu3apS+++MK3+XFpSpvzVdGkSRO98MILeuGFF/Tjjz9q48aN2rFjhzZt2qTt27fL6/XK4/HonXfekd1uD8jeH9K5vTNycnLUqFEj38bM5Tl/64DCZa+SkpI0efJkbd68WQMGDND//u//6je/+U2pYxR+LS1btiz1MS+66CINHDhQ8fHx+uyzz/Q///M/FV65URVWzFUrBKyQePnll/X111/r7Nmzevvtt4sdM8aUeRlSeWw2W9AUEnl5eb7bRXehL03Ry9bCdQmr6njyaDvJBK5JRSmOWh0AAIDg5DjwsVz2rbqg73zVb3q11XEAAEAARUZGqkuXLpoyZYo6dOigxx57TElJSXr99dcrtUZ/TbVq1Ur333+/7r//fklSenq63n77bb355pvyer1avXq15s6dW+o7tGuq8F3711xzjdq3b1/l+9tsNrVo0UJ33XWX7rzzTvXr10/r16/XhAkTNHDgwBJL2Hg8Hn3++eeSpEGDBhVbPqaokSNH6p///KccDocWLFhQ4Z4UVWG32323W7RoUStj7tixQ6dOnZLNZtOQIUOq9RjR0dGKjY1VbGysWrZsqddff10LFizQzJkz9eijj1Y7e1W0a9dO7dq108iRIyWd2+vitdde0/Tp0yWdW4pr/Pjx6tWrl98fu3Cu9u3bt8I3g5cmIiJCLVu21L333qsBAwaoW7duOnjwoB555BHdfvvtJf67ZWZm+h7zgQceUP36pb9sPnLkSMXHx+unn37S2rVr1a9fvypnK4sVc9UKAVuy6Re/+IXWrVun/v37q0GDBjLGFGuqCv9d1Y9gUfRSK5fLVe65RS/7i4yMrNLjHD9+vNyPwp3mAQAAUDPutJ2yx3VT3rGFVkcBAAC1ZNy4cb4X6WbOnGlJhhYtWuj111/Xiy++6Pvc/PnzA/JYVXnXfkXq1aun3//+95LOFQ+F+0QUtXLlSqWkpEiSFi9eLJvNVupH0Y2mSxunJgqXi5LOFTG1MWbh97lbt2667LLLavx4EyZM8F0VYdU8laTLL79c06ZN0wMPPOD7XCjM1ejoaD3xxBOSzl0xsGDBghLnfPHFF77XcN9///0y52phkSgFdq76a4+OQMz/mgrYFRLSuR+6FStWyO12y263Ky8vT1dffbVsNpu++eYbdejQIZAPH1BFLx2raBmmomv/VbXRq2h/CgAAAPiPcWUqY80wRXX+nZp2f1O2iAYV3wkAAISsiIgIdejQQVu2bNGpU6eUlpZW5rv4A238+PF64403JEnJycl+Hz8jI0MbNmyQ5J8XeSUVuyJi9+7dJY5X5wXbxMRE/fTTT7riiitqlE2SHA6HNm7cKOnca3I33HBDjceUpISEBN/t0q4O8Nc+HYVatGihiy++WKdPny71+1zbxo8fr3nz5kkKzFzdvXu3jh07Jim45+p//vMfffjhh2Uu9VYVx48f14EDBySdKw4K91WpqYrmqhUCWkj4HqR+fV166aXFPteqVSu1bdu2Nh4+IIoWBUU3uC5N0Y2sw3lPCAAAgHCRu/dduexbdEGfL1QvijeIAAAQzopuzBvITXor0qpVK99tf65LX2jZsmVyu91q0aKFevbs6Zcxy/veZWdna+HChZKkO+64o8JlhrKysvT444/LGKNPP/1Ur7zySo3zzZo1S2fPnpUk/epXvypzGZ6qSE1N9S1DFRUVpQEDBhQ7fvLkSe3cuVOS/15Ml/7/99fKOVoo0HO1sND55S9/6ZdiSip/rhbulSGdW65p6NCh5Y51+PBhvfLKK8rOztbXX3+thx9+uMb53n//fd+m5cOGDavxeNK5DeVXrVol6dxr0t27d/fLuDVVK4VEUZMmTZJ0bnOQUNa5c2ff7f3795d7btHj1157bcAyAQAAwH8KzmyUfXFXxdz2mRpdPtDqOAAAIAAcDof27t0r6dwy2xdddJFfxzfGVPoF2+3bt/tuX321//e0KnyRd9CgQX7bMLto5vPfhLtgwQI5HA5J0hNPPKHhw4dXON6//vUv7dq1yy+FxKFDh/Tyyy/7/v3SSy/VaDzp3EbJY8aM8X1djz32WIl1+QuXGmrdurW6du1a48eUpKNHjyotLU1S4N7sHIxz1Z+FTnlztejVEX/4wx/UrVu3csdyu9165513lJaWpk8++aTGhURSUpL+8Y9/SDq3TcDzzz9fo/Gkc/sYjxo1yrcFwh/+8Ae/FHL+ELA9JMoyadIkTZo0ye9P8LXtqquu8rWBiYmJ5Z67bt06SefWWbvyyisDHQ0AAAB+4s23K33lYGXv/JOM8VodBwAA+Nlrr70mp9MpSRo4cKDfXqgvtGzZMo0YMaLYOu6lSU9P17PPPuv7d0Xv0K4qt9ut5cuXSzp3pYA/ZGRk6G9/+5vv3+dv3lz4Im+TJk00aNCgSo35m9/8RpJ04MABbdmypdrZ4uPjdeuttyo7O1uS9PLLL+v666+v9niS9NNPP+muu+7S0qVLJZ1bAqjwjddFFb6YXt3NrM/n9XqLlSn+Gvd806ZN02OPPVbhEkzHjh0rVhb5e66eOXPGt2euv+bqsWPH9OGHH/r+PXjwYN9tY4w+++wzSdKVV15ZYRkhnVsN6J577pEkrVq1SqdOnapWLq/Xq9mzZ2vgwIG+qzbee+89XXLJJdUar9DevXvVq1cv3/NOnz59fHtoBIPgqEVCkM1m09ChQ/XRRx9p//792rx5s26++eYS523evNl3hcTQoUMDchkTAAAAAsh4lfP9/8iVulExt32uepE1+wMBAADUnjNnzmjPnj3FPpeXl6dDhw7pk08+8b1I37hxY02ePLnMcTIzM0uMU5p69eoVWx3D6/Vq/vz5mj9/vq6//noNGTJEsbGxuuyyy9SwYUOdOXNGSUlJmjp1qs6cOSPp3J6so0ePrs6XW6akpCRlZmaqfv36uuuuuyp9v4MHDxbbO9UYo8zMTG3ZskUffPCBfvrpJ0lS7969dffdd/vO++mnn3xv4B00aFCl19gfPny4/vSnP0k6V2gU3ey6qCNHjvje7GyMUVZWllJTU7V9+3bFxcXp+++/95372GOP6a9//WuFj33+f2On06nMzEzt3btXiYmJiouL871ofM011yg+Pl7NmzcvNobT6dTq1aslVe3d/SdPniwxv3Jzc7V3715NmzZNmzZtkiRdeOGFmjhxYrljlTbnSxMZGal27dr5/u1yuTRt2jRNmzZNPXv21IABA9StWzddcsklioiI0MmTJ7VmzRpNnz7dV/QMHTpUd9xxR6W/zspYunSpvF6vWrZsqR49elT6fud/zV6vV2lpaVq/fr3ef/993xUmDz/8cLG9RJKSknT48GFJqtRVPIWGDx+uGTNmyOPx6LPPPtMLL7xQ6nlFf4a8Xq/Onj2rn3/+WVu2bNHXX3/te+yIiAhNmjRJjz32WIWPff5/49zcXGVkZOj777/XqlWrlJCQ4Lsy4uabb9aCBQvUoEHw7I1naSGRlpamTZs26fDhw8rOzpbH46nwPq+++motJKuc559/XlOnTpXH49EzzzyjdevWKTIy0nfc6XTqmWeekXSuOfPH5TYAAACwhuvU6nNLOPWZq0aX9rE6DgAAqISPPvpIH330UbnnXHzxxfrss8/UpUuXMs9ZtGiRFi1aVOHjNW/eXJmZmb5/X3DBBYqKilJubq527dqlXbt2lXv/O++8U3PnzvX70iqF79rv3bu3YmJiKn2/gQMrXrayX79+WrBgQbE34X766ae+F0QLr3qojGuvvVadO3fW3r179cUXX+jdd99Vw4YNS5z3yCOPVDhW586d9Ze//EX33ntvpR67Mv+NmzVrpvHjx2vy5MmlliwrV66U0+lUkyZNqvRC/R//+Ef98Y9/LPecq666SgsWLCixT+/5KjPnJen666/Xd9995/t3y5Yt1bBhQ7lcLm3YsMG3AXpZHnroIU2fPr3Cx6mqoleYRERUfnGf8n5+C91///2aMWNGsc8VXa6pKnO1f//+iomJUWZmpj799NMyC4nK/Az16NFDU6ZMUZ8+lfsbo7LPa88//7xefPHFoFmqqZAlac6cOaPf/e53WrBgQZU3YvFXIZGUlFTsEiS73e67nZycrNmzZxc7f8yYMSXG6Nixo1544QW98cYb2r59u3r27KmJEyeqXbt2+vHHH/Xmm2/6Lo154YUX1KFDB79kBwAAgDW8zlNK/+YONe36P4rqMpGrXwEAAfHFkNDedzPYNWzYUC1atNAvfvELDR48WGPHjtUFF1wQkMfq2bOnUlNTtXLlSq1du1Y7duzQoUOHlJaWJo/Ho2bNmunKK69UbGysHnjgAfXt2zcgOfy5Jn90dLQuu+wyxcbG6sEHH9SQIUNK/E706aefSpIaNWpU5SWGhg8frr179yotLU1LliypcIPfBg0aqFmzZmrevLmuueYade/eXQMGDFCvXr2q9oUVYbPZ1LRpUzVr1kyXX365brzxRt16660aNmyYoqKiyrxf4fe5f//+aty4cbUfXzp31c5FF12k66+/Xnfffbd++9vfVvpKk+oYMWKEBg4cqBUrVigxMVE7d+7U4cOHlZGRIelcGdO+fXvdcsstevjhhyu1tFFV5efna8WKFZJqPldtNpuio6PVpk0b3XLLLRo1apRuu+22Yufk5eVp/vz5ks4ttV/WFTmladCggX7961/r008/1e7du/Xtt99WuGdIw4YN1bx5c8XExKhz586KjY3VkCFDil2xUVURERFq2rSpmjdvrrZt26pbt27q3bu3fvWrX5Va5gUDmymsK2tJRkaGbrrpJv3444+qzkMX7jZeU2PGjNGcOXMqfX5ZWb1er8aPH6+ZM2eWed9x48Zp6tSpVWr1KuvEiRO+jViOHz+u1q1b+/0xAuXUnAaSqVohBQAAECwatR6imN6fKKJRi4pPBgCEvJr8/X3o0CG53W7Vr1+fNyui1h04cECdOnWSdG75GOZgYBhj1Lp1a6WkpGjq1KkaP3681ZFCzjfffKO77rpLjRo1kt1uV3R0tNWR6rxA/P+r1je1fuONN5ScnCxjjAYMGKDly5crNTVVHo9HXq+3wo9gExERoRkzZmjJkiUaOnSoWrVqpYYNG6pVq1YaOnSoli5dqunTpwekjAAAAIB18k8skX3xjXKlbrU6CgAAQJni4+Mlndv3gDIicHbu3KmUlBTZbDa/bcZc1xTO1b59+1JGhLFaX7Jp0aJFstlsGjJkiBYvXlzbD+8ze/bsEssy1cTgwYOL7dAOAACA8OfJPaa0Zb3UrPvbiur8rNVxAAAASmjTpo0mTZpU4XIyqBmPx6NJkybpggsu0GWXXWZ1nJDUpUsXTZo0Sf369bM6CgKo1guJn376SZL01FNP1fZDAwAAAP7nLVDW1ufkOr1ezXvOUETDZlYnAgAA8BkxYoTVEeqEHj16qEePHlbHCGmPPfaY1RFQC2p9HaHCy20uueSS2n5oAAAAIGDyji2QPb67CtJ3WR0FAAAAAIJSrRcSXbp0kSQdO3asth8aAAAACChP1iHZl9wsx8HpVkcBAAAAgKBT64XE448/LmOMPv3009p+aAAAACDwPHk6u3G8MtePlnE7rE4DAAAAAEGj1guJESNG6OGHH9bXX3+tN954o7YfHgAAAKgVzh8/kT2+h9yZ+62OAgAAAABBodY3tV63bp3GjRunI0eO6JVXXtFXX32lhx56SJ06dVKTJk0qvP9tt91WCykBAACAmnNn/iB7fKya3zpVkVc/aHUcAAAAALBUrRcSffv2lc1m8/17x44d2rFjR6Xua7PZ5Ha7AxUNAAAA8DvjzlHmuofkOr1OzXr8Q7Z6jayOBAAAAACWqPUlmyTJGFPtDwAAACAUOQ58LPvSW+XOPmx1FAAAAACwRK1fIbFmzZrafkgAAAAgKLjTdsoe100xPWepcdt7rI4DAAAAALWq1guJPn361PZDAgAAAEHDuDKVsWaYon7xezXt9qZsEbX+KzkAoJbVq1dPbrdbHo9HXq9XERGWLFgBAECleb1eeTweSef+P+Yv/B8QAAAAsEDuD+8obXkfeXJPWB0FABBgjRs3lnRuCeucnByL0wAAULGcnBzfFgqRkZF+G5dCAgAAALBIwZmNsi/uqvyT31gdBQAQQM2aNfPd/vnnn5WVlSWv12thIgAASuf1epWVlaWff/7Z97mmTZv6bfyAXh8+efJkv4/56quv+n1MAAAAwCrefLvSVw5W9C9fUfQNr8lm4z1DABBuoqKiFBkZKafTKY/Ho5MnT8pms/l1CQwAAPzB4/H4royQzl0dERUV5bfxbabo6H4WEREhm83m1zEL163COSdOnFCbNm0kScePH1fr1q0tTlR5p+Y0kIzb6hgAAABBo+Fltyvmts9VL/ISq6MAAM5T07+/vV6vfvrpJzmdzkDEAwDA7yIjI3XFFVf4de+jgO+g58++w9/lBgAAABBMXKdWy764q2L6zFOjS2+zOg4AwI8iIiLUtm1b5ebmKjs723e1BAAAwaRevXqKjIxU06ZNFRUV5ffX5ANaSKxZsyaQwwMAAABhx+s8pfRvblfTrv+jqC4TeVMOAIQRm82m6OhoRUdHWx0FAABLBLSQ6NOnTyCHBwAAAMKT8Sh758tynUlSTO9PFNGohdWJAAAAAKDG2DEPAAAACFL5J5bIvvhGuVK3Wh0FAAAAAGqMQgIAAAAIYp7cY0pb1ku5e9+3OgoAAAAA1AiFBAAAABDsvAXK2vqcMtaOkNeVZXUaAAAAAKgWCgkAAAAgROQdnS97fHcVpO+yOgoAAAAAVBmFBAAAABBCPFmHZF9ysxwHp1sdBQAAAACqhEICAAAACDWePJ3dOF6Z60fLuB1WpwEAAACASqGQAAAAAEKU88dPZI+/Se7M/VZHAQAAAIAKUUgAAAAAIcyduUf2+Fg5D8+1OgoAAAAAlItCAgAAAAhxxp2jzHUP6eymJ2Q8+VbHAQAAAIBSUUgAAAAAYcJx4GOlLe0pd/YRq6MAAAAAQAkUEgAAAEAYKUjbIXvcjco7ttDqKAAAAABQDIUEAAAAEGaMK1MZa4Ypa9sEGa/b6jgAAAAAIIlCAgAAAAhbuT+8o7TlfeTJPWF1FAAAAACgkAAAAADCWcGZjbIv7qr8kyusjgIAAACgjqOQAAAAAMKcN9+u9JWDlP3tqzLGa3UcAAAAAHUUhQQAAABQFxivcnb9Rekr7pTHedrqNAAAAADqIAoJAAAAoA5xnVp9bgmnn9dZHQUAAABAHUMhAQAAANQxXucppX9zu3K+f0PGGKvjAAAAAKgjKCQAAACAush4lL3zZWWsulve/HSr0wAAAACoAygkAAAAgDos/0S87ItvlCt1q9VRAAAAAIQ5CgkAAACgjvPkHlPast7K3fu+1VEAAAAAhDEKCQAAAACS16Wsrc8pY+0IeV1ZVqcBAAAAEIYoJAAAAAD45B2dL3t8dxWk77I6CgAAAIAwQyEBAAAAoBhP1iHZl9wsx8EZVkcBAAAAEEYoJAAAAACU5MnT2Y2PKnP9GBm3w+o0AAAAAMIAhQQAAACAMjl/nCN7/E1yZ+63OgoAAACAEEchAQAAAKBc7sw9ssfHynl4rtVRAAAAAIQwCgkAAAAAFTLuHGWue0hnNz0h48m3Og4AAACAEEQhAQAAAKDSHAc+VtrSnnJnH7E6CgAAAIAQQyEBAAAAoEoK0nbIHnej8n5aZHUUAAAAACGEQgIAAABAlRlXpjJW36OsbX+Q8bqtjgMAAAAgBFBIAAAAAKi23B/+rrTlfeTJPWF1FAAAAABBjkICAAAAQI0UnNko++Kuyj+5wuooAAAAAIIYhQQAAACAGvPm25W+cpCyv31VxnitjgMAAAAgCFFIAAAAAPAP41XOrr8ofcUAeZxnrE4DAAAAIMhQSAAAAADwK9epVbLHdZXr9HqrowAAAAAIIhQSAAAAAPzO60hR2vJ+yvn+DRljrI4DAAAAIAhQSAAAAAAIDONR9s6XlbHqbnnz061OAwAAAMBiFBIAAAAAAir/RLzsi2+UK3Wr1VEAAAAAWIhCAgAAAEDAeXKPKW1Zb+Xu+8DqKAAAAAAsQiEBAAAAoHZ4Xcra8qwy1t4vb0G21WkAAAAA1DIKCQAAAAC1Ku/ol7LHdVNB+vdWRwEAAABQiygkAAAAANQ6T9Yh2ZfcLMfBGVZHAQAAAFBLKCQAAAAAWMPj1NmNjypz/RgZt8PqNAAAAAACjEICAAAAgKWcP86RPf4muTP3Wx0FAAAAQABRSAAAAACwnDtzj+zxsXIenmd1FAAAAAABQiEBAAAAICgYd44y1z2os5uelPHkWx0HAAAAgJ9RSAAAAAAIKo4DHyltaU+5s49YHQUAAACAH1FIAAAAAAg6BWk7ZI+7UXk/LbI6CgAAAAA/oZAAAAAAEJSMK1MZq+9R1rY/yHjdVscBAAAAUEMUEgAAAACCWu4Pf1fa8r7y5J60OgoAAACAGqCQAAAAABD0Cs5skD2uq/JTEqyOAgAAAKCaKCQAAAAAhARvXqrSE+5S9reTZIzX6jgAAAAAqohCAgAAAEDoMF7l7Jqs9BUD5HGesToNAAAAgCqgkAAAAAAQclynVske11Wu0+utjgIAAACgkigkAAAAAIQkryNFacv7Kef7N2SMsToOAAAAgApQSAAAAAAIXcaj7J0vK2PV3fLmZ1idBgAAAEA5KCQAAAAAhLz8E/GyL+4ql32b1VEAAAAAlIFCAgAAAEBY8OQeU9rSXsrd94HVUQAAAACUgkICAAAAQPjwupS15VllrL1f3oJsq9MAAAAAKIJCAgAAAEDYyTv6pexx3VSQ/r3VUQAAAAD8HwoJAAAAAGHJk3VI9iU3y3FoptVRAAAAAIhCAgAAAEA48zh1dsM4ZSaNlXE7rE4DAAAA1GkUEgAAAADCnjN5tuzxN8l99oDVUQAAAIA6i0ICAAAAQJ3gztwje1x3OQ/PszoKAAAAUCdRSAAAAACoM4w7R5nrHtTZTU/KePKtjgMAAADUKRQSAAAAAOocx4GPlLa0p9zZR6yOAgAAANQZFBIAAAAA6qSCtB2yx92ovJ8WWR0FAAAAqBMoJAAAAADUWcaVqYzV9yhr2wsyXrfVcQAAAICwRiEBAAAAoM7L/eFtpS3vK0/uSaujAAAAAGGLQgIAAAAAJBWc2SB7XFflpyRYHQUAAAAISxQSAAAAAPB/vHmpSk+4S9nfTpIxXqvjAAAAAGGFQgIAAAAAijJe5eyarPQVA+VxnrE6DQAAABA2KCQAAAAAoBSuUytlj+sq1+n1VkcBAAAAwgKFBAAAAACUwetIUdry25Wz+00ZY6yOAwAAAIQ0CgkAAAAAKI9xK3vHS8pYPVTe/Ayr0wAAAAAhi0ICAAAAACoh/3ic7Iu7ymXfZnUUAAAAICRRSAAAAABAJXlyjyltaS/l7vvA6igAAABAyKGQAAAAAICq8LqUteVZZay9X96CbKvTAAAAACGDQgIAAAAAqiHv6Jeyx3VXQfr3VkcBAAAAQgKFBAAAAABUkyfroOxLbpbj0EyrowAAAABBj0ICAAAAAGrC49TZDeOUmTRWxu2wOg0AAAAQtCgkAAAAAMAPnMmzZY+/Se6zB6yOAgAAAAQlCgkAAAAA8BN35h7Z47rLeXie1VEAAACAoEMhAQAAAAB+ZNw5ylz3oM5ufkrG47I6DgAAABA0KCQAAAAAIAAc+/+ltKU95c4+YnUUAAAAIChQSAAAAABAgBSkbZc97kbl/bTY6igAAACA5SgkAAAAACCAjCtTGauHKmvbCzJet9VxAAAAAMtQSAAAAABALcj94W2lLe8rT+5Jq6MAAAAAlqCQAAAAAIBaUnBmg+xxXZWfkmB1FAAAAKDWUUgAAAAAQC3y5qUqPeEuZX87ScZ4rY4DAAAA1BoKCQAAAACobcarnF2Tlb5ioDzOM1anAQAAAGoFhQQAAAAAWMR1aqXscV3lOr3e6igAAABAwFFIAAAAAICFvI4UpS2/XTm735Qxxuo4AAAAQMBQSAAAAACA1Yxb2TteUsbqofLmZ1idBgAAAAgICokastlslfro27ev1VEBAAAABLn843Gyx90ol32b1VEAAAAAv6OQAAAAAIAg4sk5qrSlvZS7759WRwEAAAD8qr7VAcLFE088oSeffLLM41FRUbWYBgAAAEBI87qUteUZuU6vV/Oe0xXRoKnViQAAAIAao5Dwk5YtW+q6666zOgYAAACAMJJ39EsVpH+nC/rOV4MWv7Q6DgAAAFAjLNkEAAAAAEHMk3VQ9iU3y3FoptVRAAAAgBqhkAAAAACAYOdx6uyGccpMGivjdlqdBgAAAKgWCgkAAAAACBHO5NmyL7lJ7rMHrI4CAAAAVBl7SPjJ/Pnz9eWXX+ro0aOqV6+eLr30Ut16660aM2aM+vXrV+1xT5w4Ue7xU6dOVXtsAAAAAKHHnbFb9vhYNb91miKvut/qOAAAAECl2YwxxuoQocxms1V4zj333KPZs2erefPmARm/0PHjx9W6desqP4ZVTs1pIBm31TEAAACAkNWk05NqFvuubPUaWh0FCHsnTpxQmzZtJIXe398AAAQLrpCooSZNmujuu+/WHXfcoU6dOik6OlqpqalKTEzUxx9/rLS0NC1cuFBDhw5VQkKCGjRoYHVkAAAAAGHCsf9fKkjdqpi+X6p+06usjgMAAACUiyskaigzM1MxMTGlHjt9+rQGDRqkb7/9VpL03nvv6dlnn63S+JVZsqlHjx6SQu8dGlwhAQAAAPiHrWGMYnrNUeMr7rY6ChC2uEICAICao5AIsMOHD6tTp04qKChQ+/btdejQIb+OH8q/EFFIAAAAAP5kU9QvJqhpt7/JFsHF8IC/hfLf3wAABIsIqwOEu6uvvlp33nmnJCk5OVkpKSkWJwIAAAAQnoxyf3hbacv7yZN70uowAAAAQAkUErWgc+fOvtsnT/KHAQAAAIDAKTiTJHtcV+WnJFgdBQAAACiGQqIW2Gw2qyMAAAAAqEO8ealKT7hL2d9OkjFeq+MAAAAAkigkasXevXt9t1u1amVhEgAAAAB1hvEqZ9dkpa8YKE9eqtVpAAAAAAqJQDty5IgSEs5dKt2uXTtdfvnlFicCAAAAUJe4Tq2UffENcp1OsjoKAAAA6jgKiRqIi4uT2+0u8/jp06c1fPhwuVwuSdKTTz5ZW9EAAAAAwMfrSFHa8n7K2T1Fxhir4wAAAKCOqm91gFD2zDPPqKCgQMOHD9ctt9yiK6+8UpGRkbLb7Vq7dq3+/e9/y263S5J69eqlp556yuLEAAAAAOos41b2jolynUlSTK85imh0gdWJAAAAUMdQSNRQSkqKPvjgA33wwQdlnjN8+HBNnz5djRo1qsVkAAAAAFBS/vE42eNuVEzfL9Xwolir4wAAAKAOoZCogTlz5igxMVGbNm3S4cOHZbfblZWVpejoaLVp00a33nqrRo8erVtuucXqqAAAAADg48k5qrSlvdQs9u+KuvZpq+MAAACgjqCQqIE+ffqoT58+VscAAAAAgKrzupS15Rm5Tq9X857TFdGgqdWJAAAAEObY1BoAAAAA6rC8o1/KHtddBRm7rY4CAACAMEchAQAAAAB1nCfroOzxN8lxaJbVUQAAABDGKCQAAAAAAJLHqbMbHlFm0lgZt9PqNAAAAAhDFBIAAAAAAB9n8mzZl9wk99kDVkcBAABAmKGQAAAAAAAU487YLXt8rJxHvrA6CgAAAMIIhQQAAAAAoARTkK3MxAd0dvPTMh6X1XEAAAAQBigkAAAAAABlcuz/UGlLe8qdfdTqKAAAAAhxFBIAAAAAgHIVpG2XPe5G5R2PszoKAAAAQhiFBAAAAACgQsaVoYxVQ5W17QUZr9vqOAAAAAhBFBIAAAAAgEoyyv3hbaUt7ydP7kmrwwAAACDEUEgAAAAAAKqk4EyS7HFdlZ+y0uooAAAACCEUEgAAAACAKvPmpSo9YaCyv31NxnitjgMAAIAQQCEBAAAAAKge41XOrj8rPeEuefJSrU4DAACAIEchAQAAAACoEVdKguyLb5DrdJLVUQAAABDEKCQAAAAAADXmdaQobXk/5eyeImOM1XEAAAAQhCgkAAAAAAD+YdzK3jFRGauHypufYXUaAAAABBkKCQAAAACAX+Ufj5M97ka57NutjgIAAIAgQiEBAAAAAPA7T85RpS3tqdx9H1odBQAAAEGCQgIAAAAAEBhel7K2PK2MtQ/IW5BtdRoAAABYjEICAAAAABBQeUe/kD2uuwoydlsdBQAAABaikAAAAAAABJwn66Ds8TfJcWiW1VEAAABgEQoJAAAAAEDt8Dh1dsMjykx6RMbttDoNAAAAahmFBAAAAACgVjmTZ8m+5Ca5zx60OgoAAABqEYUEAAAAAKDWuTN2yx7fXc4jX1odBQAAALWEQgIAAAAAYAlTkK3MxPt1dvPTMh6X1XEAAAAQYBQSAAAAAABLOfZ/qLSlPeXOPmp1FAAAAAQQhQQAAAAAwHIFadtlj7tRecfjrI4CAACAAKGQAAAAAAAEBePKUMaqocra/qKM1211HAAAAPgZhQQAAAAAIIgY5e55S+nf3C6PI8XqMAAAAPAjCgkAAAAAQNBxnV4v++IblJ+y0uooAAAA8BMKCQAAAABAUPLmpSo9YaCyv31NxnitjgMAAIAaopAAAAAAAAQv41XOrj8rPeEuefJSrU4DAACAGqCQAAAAAAAEPVdKguyLb5DrdJLVUQAAAFBNFBIAAAAAgJDgdaQobXk/5ex5S8YYq+MAAACgiigkAAAAAAChw7iVvf1FZay+R978DKvTAAAAoAooJAAAAAAAISf/+GLZ426Uy77d6igAAACoJAoJAAAAAEBI8uQcVdrSnsrd96HVUQAAAFAJFBIAAAAAgNDldSlry9PKWPuAvAU5VqcBAABAOSgkAAAAAAAhL+/oF7LHdVdBxm6rowAAAKAMFBIAAAAAgLDgyToge/xNchyabXUUAAAAlIJCAgAAAAAQPjxOnd0wVplJj8i4nVanAQAAQBEUEgAAAACAsONMniX7kpvkPnvQ6igAAAD4PxQSAAAAAICw5M7YLXt8dzmPfGl1FAAAAIhCAgAAAAAQxkxBtjIT79fZzU/LeFxWxwEAAKjTKCQAAAAAAGHPsf9DpS3rJXf2UaujAAAA1FkUEgAAAACAOqHAvk32uBuVdzzO6igAAAB1EoUEAAAAAKDOMK4MZawaqqztL8p43VbHAQAAqFMoJAAAAAAAdYxR7p63lP7N7fI4UqwOAwAAUGdQSAAAAAAA6iTX6fWyL75B+SkrrY4CAABQJ1BIAAAAAADqLG9eqtITBir7uz/LGK/VcQAAAMIahQQAAAAAoG4zXuV895rSE+6SJy/V6jQAAABhi0ICAAAAAABJrpQE2Rd3let0ktVRAAAAwhKFBAAAAAAA/8frOKm05f2Us+ctGWOsjgMAABBWKCQAAAAAACjKuJW9/UVlrL5H3vwMq9MAAACEDQoJAAAAAABKkX98sexxN8pl3251FAAAgLBAIQEAAAAAQBk8OUeVtrSXcvd9aHUUAACAkEchAQAAAABAebz5ytrytDISH5S3IMfqNAAAACGLQgIAAAAAgErIOzJP9rjuKsjYbXUUAACAkEQhAQAAAABAJXmyDsgef5Mch2ZbHQUAACDkUEgAAAAAAFAVHqfObhirzKRHZNxOq9MAAACEDAoJAAAAAACqwZk8S/YlN8t99qDVUQAAAEIChQQAAAAAANXkzvhe9vjuch750uooAAAAQY9CAgAAAACAGjAF2cpMvF9nNz8t43FZHQcAACBoUUgAAAAAAOAHjv0fKm1ZL7mzj1odBQAAIChRSAAAAAAA4CcF9m2yx92ovONxVkcBAAAIOhQSAAAAAAD4kXFlKGPVUGVtnyjjdVsdBwAAIGhQSAAAAAAA4HdGuXumKP2b2+VxpFgdBgAAIChQSAAAAAAAECCu0+tlX9xV+SkrrY4CAABgOQoJAAAAAAACyJt3RukJA5X93Z9ljNfqOAAAAJahkAAAAAAAINCMVznfvab0hLvkyUu1Og0AAIAlKCQAAAAAAKglrpQE2Rd3lev0BqujAAAA1DoKCQAAAAAAapHXcVJpy/sqZ8/bVkcBAACoVRQSAAAAAADUNuNW9vYXlL5qqLz5mVanAQAAqBUUEgAAAAAAWCT/+GLZ426Uy77d6igAAAABRyEBAAAAAICFPDlHlLa0l3L3fWh1FAAAgICikAAAAAAAwGrefGVteVoZiQ/KW5BjdRoAAICAoJAAAAAAACBI5B2ZJ3tcdxVk7LE6CgAAgN9RSAAAAAAAEEQ8WQeUtuQmOZLnWB0FAADArygkAAAAAAAIMsbt0NmkMcpMekTG7bQ6DgAAgF9QSAAAAAAAEKScybNkX3Kz3GcPWh0FAACgxigkAAAAAAAIYu6M72WP7y7nkS+tjgIAAFAjFBIAAAAAAAQ5U5CtzMT7dXbzMzIel9VxAAAAqoVCAgAAAACAEOHY/0+lLestd84xq6MAAABUGYUEAAAAAAAhpMC+VfbFXZV3PN7qKAAAAFVCIQEAAAAAQIgxrgxlrLpbWdsnynjdVscBAACoFAoJAAAAAABCklHunilK/+Z2eRwpVocBAACoEIUEAAAAAAAhzHV6veyLuyo/ZaXVUQAAAMpFIQEAAAAAQIjz5p1ResJAZX83WcZ4rY4DAABQKgoJAAAAAADCgfEq57tJSk8YJE9eqtVpAAAASqCQAAAAAAAgjLhSVsi+uKtcpzdYHQUAAKAYCgkAAAAAAMKM13FSacv7KmfP21ZHAQAA8KGQAAAAAAAgHBm3sre/oPRVQ+XNz7Q6DQAAAIUEAAAAAADhLP/4YtnjblSBfYfVUQAAQB1HIQEAAAAAQJjz5ByRfWlP5e7/l9VRAABAHUYhAQAAAABAXeDNV9bmp5SR+JC8BTlWpwEAAHUQhQQAAAAAAHVI3pG5ssd1V0HGHqujAACAOoZCAgAAAACAOsaTdUBpS26SI3mO1VEAAEAdQiEBAAAAAEAdZNwOnU0ao8ykR2TcTqvjAACAOoBCAgAAAACAOsyZPEv2JTfLnXXI6igAACDMUUgAAAAAAFDHuTO+lz2um5xH51sdBQAAhDEKCQAAAAAAIFOQrcy1I3R28zMyHpfVcQAAQBiikAAAAAAAAD6O/f9U2rLecuccszoKAAAIMxQSAAAAAACgmAL7VtkXd1Xe8XirowAAgDBCIQEAAAAAAEowrgxlrLpbWdtfkvF6rI4DAADCAIUEAAAAAAAog1HunjeV/s3t8jhSrA4DAABCHIUEAAAAAAAol+v0OtkXd1V+yiqrowAAgBBGIQEAAAAAACrkzTuj9IQByv5usozxWh0HAACEIAoJAAAAAABQOcarnO8mKT1hkDx5qVanAQAAIYZCAgAAAAAAVIkrZYXsi7vKdXqD1VEAAEAIoZAAAAAAAABV5nWcVNryvsrZ87bVUQAAQIigkAAAAAAAANVj3Mre/oLSV90jb36m1WkAAECQo5Dwo2PHjmnChAnq1KmToqKi1KJFC8XGxuqtt96Sw+GwOh4AAAAAAAGRf3yR7HE3qsC+w+ooAAAgiFFI+ElcXJx++ctf6p133tGBAwfkcDiUkZGh7du368UXX1TXrl2VnJxsdUwAAAAAAALCk3NE9qU9lbv/X1ZHAQAAQYpCwg++/fZb3X///crKylJ0dLT++te/auPGjVq1apXGjx8vSTp48KCGDBmi7Oxsi9MCAAAAABAg3nxlbX5KGYkPyVuQY3UaAAAQZOpbHSAcPPfcc3I6napfv75WrFihW265xXfs9ttvV4cOHfTiiy/q4MGD+vvf/67XXnvNurAAAAAAAARY3pG5KkjbqQv6LVCDC66zOg4AAAgSXCFRQ1u3btX69eslSePGjStWRhSaMGGCrr32WknSe++9p4KCglrNCAAAAABAbfNkHVDakpvkSJ5jdRQAABAkKCRqaOHChb7bY8eOLfWciIgIjRo1SpKUmZmpNWvW1EY0AAAAAAAsZdwOnU0ao8wN42TcTqvjAAAAi1FI1FBSUpIkKSoqSt26dSvzvD59+vhub9iwIeC5AAAAAAAIFs5DM2VfcrPcWYesjgIAACzEHhI1tG/fPklS+/btVb9+2d/OTp06lbhPZZw4caLc48ePH/fdPnXqVKXHDQan041krE4BAAAAAKgV6d/r+LGuahr7tiLb/MrqNFVW9G9ut9ttYRIAAEIXhUQN5OXlyW63S5Jat25d7rkXXHCBoqKilJubW6xEqEibNm0qfW6PHj0qfS4AAAAAALUvV9IT//cRulJTU3XllVdaHQMAgJDDkk01kJ2d7bsdHR1d4flRUVGSpJycnIBlAgAAAAAAAAAgGHGFRA3k5eX5bjds2LDC8xs1aiRJcjorv5FXRVdT5OXlaf/+/brkkkt08cUXl7tsVLA4deqU72qOrVu36rLLLrM4EVB9zGeEG+Y0wgnzGeGE+YxwE4pz2u12KzU1VZLUpUsXi9MAABCagv/V6yDWuHFj322Xy1Xh+fn5+ZKkyMjISj9GRUtBSef2rwhVl112WaW+RiAUMJ8RbpjTCCfMZ4QT5jPCTSjNaZZpAgCgZliyqQaaNm3qu12ZZZhyc3MlVW55JwAAAAAAAAAAwgmFRA00btxYF154oSTpxIkT5Z6bkZHhKySqslE1AAAAAAAAAADhgEKihjp37ixJSk5OltvtLvO8/fv3+25fe+21Ac8FAAAAAAAAAEAwoZCooV69ekk6txzTjh07yjwvMTHRd7tnz54BzwUAAAAAAAAAQDChkKihe+65x3d71qxZpZ7j9Xr1ySefSJJiYmLUr1+/2ogGAAAAAAAAAEDQoJCooR49eqh3796SpBkzZmjTpk0lzvn73/+uffv2SZKee+45NWjQoFYzAgAAAAAAAABgtfpWBwgH7733nnr27Cmn06kBAwbov//7v9WvXz85nU7NmzdPU6dOlSR17NhREyZMsDgtAAAAAAAAAAC1z2aMMVaHCAdxcXH67W9/q6ysrFKPd+zYUUuWLFH79u1rORkAAAAAAAAAANajkPCjY8eO6b333tOSJUt04sQJNWzYUO3bt9d9992np59+Wk2aNLE6IgAAAAAAAAAAlqCQAAAAAAAAAAAAAcem1gAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBKoVceOHdOECRPUqVMnRUVFqUWLFoqNjdVbb70lh8NhdTyEuTNnzig+Pl6vvvqqBg0apIsuukg2m002m01jxoyp8njLli3TsGHD1Lp1azVq1EitW7fWsGHDtGzZskqP4Xa79fHHH6t37966+OKLFRkZqXbt2unxxx/XDz/8UOVMqDu2b9+uyZMna8CAAb45GB0drY4dO2rs2LFKSkqq0njMZ1gpKytL8+bN04QJE9SnTx+1b99ezZs3V8OGDdWyZUv17dtXU6ZMUVpaWqXG27hxo37729+qbdu2aty4sS699FINHDhQc+fOrVKuuXPnasCAAbr00kvVuHFjtW3bVr/97W+1adOm6nyZgCZOnOj73cNms2nt2rUV3ofnZ1it6Jwt76Nv374VjsV8BgAAMkAtWbx4sWnWrJmRVOpHx44dzaFDh6yOiTBW1tyTZEaPHl3pcTwejxk3bly54z366KPG4/GUO05qaqqJjY0tc4xGjRqZadOm1fCrRjjq3bt3ufOv8GPUqFEmPz+/3LGYzwgGCQkJlZrTF110kVm+fHm5Y02aNMlERESUOcaQIUOM0+ksdwyHw2EGDx5c5hgRERHmtdde8+e3AHXAt99+a+rXr19sLq1Zs6bM83l+RrCozPOzJNOnT58yx2A+AwCAQhQSqBU7d+40kZGRRpKJjo42f/3rX83GjRvNqlWrzPjx44uVEllZWVbHRZgq+sfKFVdcYQYMGFCtQuKll17y3a9r165m7ty5ZuvWrWbu3Lmma9euvmMvv/xymWO43W7Tq1cv37n33nuvWbZsmdmyZYt5//33TcuWLX0vei1dutQPXz3CSbt27Ywk06pVK/Pcc8+ZBQsWmK1bt5pNmzaZd955x1x++eW+ufXggw+WOxbzGcEgISHBtGnTxowaNcq899575quvvjKbNm0yGzZsMF988YW57777TL169Ywk07BhQ/Pdd9+VOs7HH3/sm4ft2rUzM2bMMFu3bjULFy40/fr1q/TPxQMPPOA7t1+/fmbhwoVm69atZsaMGb6fP0nm3//+dyC+HQhDHo/H9yJq4XNiRYUEz88IFoXz54knnjC7d+8u8+Pw4cNljsF8BgAAhSgkUCsK381bv359s3HjxhLHp0yZ4vvFctKkSbUfEHXCq6++auLi4szPP/9sjDHmyJEjVS4kDhw44Ht3Y/fu3Y3D4Sh2PDc313Tv3t0338u66mfGjBm+x37yySdLHD906JDviqL27dubgoKCqn2xCGtDhgwxX3zxhXG73aUeT01NNR07dvTNscTExFLPYz4jWJQ1l4v6+uuvffNs2LBhJY6npaWZ5s2b+0rn1NTUEo/x61//usIXgletWuU759e//nWJbKmpqeaKK64wkkxMTIxJT0+v/BeKOuvdd981kkynTp3Myy+/XOE85PkZwaSmf6cxnwEAQFEUEgi4LVu2+H5xfPzxx0s9x+PxmGuvvdb3x73L5arllKiLqlNIPPHEE777bNq0qdRzNm3aVO4fS8YY33xv0aKFyc3NLfWcv/3tb75xvvzyy0rlAwrFxcX55s8zzzxT6jnMZ4Saa665xkjnlm4635tvvumbY3Pnzi31/sePH/ddaTF48OBSzxk0aJDvRbHjx4+Xes7cuXN9jzVlypTqf0GoE44dO2aio6ONJLN27VozadKkCgsJnp8RTGpaSDCfAQBAUWxqjYBbuHCh7/bYsWNLPSciIkKjRo2SJGVmZmrNmjW1EQ2oEmOMFi1aJEnq1KmTbr755lLPu/nmm3XNNddIkhYtWiRjTLHjBw8e1L59+yRJI0aMUJMmTUodp+hG219//XVN46OO6devn+/2jz/+WOI48xmhqGnTppKkvLy8EscKf99o1qyZ7r333lLv37p1a/Xv31+StGrVKmVnZxc7np2drVWrVkmS+vfvr9atW5c6zr333qtmzZpJYj6jYk899ZRycnI0evRo9enTp8LzeX5GOGE+AwCA81FIIOCSkpIkSVFRUerWrVuZ5xX9A23Dhg0BzwVU1ZEjR5SSkiJJFb6gUHj85MmTOnr0aLFjhT8TFY1z6aWXqmPHjpL4mUDV5efn+27Xq1evxHHmM0LNgQMH9N1330k696JWUS6XS1u3bpUk3XLLLWrYsGGZ4xTO0/z8fG3fvr3YsW3btsnlchU7rzQNGzb0vai2bds2FRQUVO2LQZ3x5ZdfKj4+Xi1atNDbb79dqfvw/IxwwnwGAADno5BAwBW+k6V9+/aqX79+mecVfXGh8D5AMNm7d6/v9vkvhp2vvPlcnXGOHz+u3NzcSmcFEhMTfbevvfbaEseZzwgFDodDhw4d0jvvvKM+ffrI7XZLkp5//vli5x08eFAej0dS7c9nt9utQ4cOlf+FoE7KzMzUc889J0l68803ddFFF1Xqfjw/I1jNnz9fnTt3VpMmTdS0aVN16NBBo0ePLvfqduYzAAA4H4UEAiovL092u12Sylz2oNAFF1ygqKgoSed+eQSCzYkTJ3y3K5rPbdq08d0+fz5XZxxjTLH7AeXxer164403fP8eMWJEiXOYzwhWs2fPls1mk81mU1RUlDp27KgJEybo9OnTkqSXXnpJDz30ULH7WDmfSxsHkKQXX3xRP//8s3r27Klx48ZV+n48PyNY7d27V/v27ZPT6VROTo6Sk5P1ySef6Pbbb9ewYcN09uzZEvdhPgMAgPOV/XZ1wA+Krs0cHR1d4flRUVHKzc1VTk5OIGMB1VKV+VxYrkkqMZ/9NQ5Qlnfffde3fM29995b6nJ5zGeEmhtuuEFTp05VbGxsiWPMZwSb9evXa/r06apfv74+/vhj2Wy2St+X+Yxg06RJE919992644471KlTJ0VHRys1NVWJiYn6+OOPlZaWpoULF2ro0KFKSEhQgwYNfPdlPgMAgPNRSCCgim46Wd56zoUaNWokSXI6nQHLBFRXVeZz4VyWSs5nf40DlCYxMVEvvfSSJKlly5b66KOPSj2P+Yxgdc8996h79+6Szs2TH3/8UV9++aW+/vprPfjgg/rHP/6hX/3qV8Xuw3xGMHG5XHrsscdkjNHvfvc7XXfddVW6P/MZwebkyZOKiYkp8fk777xTzzzzjAYNGqRvv/1WiYmJ+uijj/Tss8/6zmE+AwCA87FkEwKqcePGvtuFm0SWp3AT1sjIyIBlAqqrKvO56IbC589nf40DnO+HH37QsGHD5Ha71bhxY82fP18tW7Ys9VzmM4JVTEyMrrvuOl133XWKjY3VAw88oK+++kqffPKJDh8+rKFDh2r27NnF7sN8RjB5/fXXtX//fl1xxRWaNGlSle/PfEawKa2MKHTJJZdowYIFvqsiPvjgg2LHmc8AAOB8FBIIqKZNm/puV+Zy2cJNxyqzvBNQ26oyn4tuoHf+fPbXOEBRR44c0YABA5SRkaF69epp3rx5uu2228o8n/mMUDNy5Ejdd9998nq9evrpp5Wenu47xnxGsNi/f7/+9re/STr3wmzRpWMqi/mMUHP11VfrzjvvlCQlJycrJSXFd4z5DAAAzkchgYBq3LixLrzwQkmqcEOxjIwM3y+PRTc0A4JF0Q30KprPRTfiO38+V2ccm81W4QZ+qLtSUlLUv39/paSkyGazaebMmRo6dGi592E+IxQVzuvc3FwtX77c93kr53Np46Duevfdd+VyuXT11VfL4XBo3rx5JT727NnjO3/16tW+zxf+HszzM0JR586dfbdPnjzpu818BgAA52MPCQRc586dtX79eiUnJ8vtdqt+/dKn3f79+323r7322tqKB1Ra0T+0is7X0pQ3n88f54YbbqhwnDZt2lTrXZYIf3a7XXfeeacOHz4s6dw7ckeNGlXh/ZjPCEUXX3yx7/axY8d8tzt27Kh69erJ4/H4dT5XZpz69eurQ4cOFYdHnVC4VMzhw4f14IMPVnj+X/7yF9/tI0eOKCoqiudnhKSyNm5nPgMAgPNxhQQCrlevXpLOvZtxx44dZZ6XmJjou92zZ8+A5wKq6qqrrlKrVq0kFZ+vpVm3bp0k6fLLL9eVV15Z7Fjhz0RF4/z88886ePCgJH4mULqzZ89q4MCB2rt3ryTpjTfe0FNPPVWp+zKfEYqKvuu26DIcDRs2VI8ePSRJmzZtKnd98cJ52qhRI9/m2YViY2N9m6WWN59dLpc2b97su0/h2umAP/D8jFBU+LuIJN/8lZjPAACgJAoJBNw999zjuz1r1qxSz/F6vfrkk08knds0rV+/frURDagSm83mWy5k//79vhejzrd582bfO7OGDh1a4h1jHTt29L3r68svv5TD4Sh1nKKbtg4bNqym8RFmHA6HhgwZop07d0qSXnnlFU2cOLHS92c+IxTNnz/fd7tLly7FjhX+vpGVlaWvvvqq1PufOHFCK1eulCTdcccdxdYkl86tUX7HHXdIklauXFnmsiBfffWVsrKyJDGfUdzs2bNljCn3o+hG12vWrPF9vvAFWJ6fEWqOHDmihIQESVK7du10+eWX+44xnwEAQAkGqAW9e/c2kkz9+vXNxo0bSxyfMmWKkWQkmUmTJtV+QNRJR44c8c270aNHV+o+Bw4cMPXq1TOSTPfu3Y3D4Sh23OFwmO7du/vm+8GDB0sdZ8aMGb7Hfuqpp0ocT05ONs2aNTOSTPv27U1BQUGVvz6Er/z8fDNgwADfHHruueeqNQ7zGcFi1qxZxul0lnvOO++845tnV111lXG73cWOp6WlmebNmxtJpm3btsZutxc77na7za9//WvfGGvWrCn1cVatWuU75+677y7xOKmpqeaKK64wkkxMTIxJT0+v+heMOm3SpEkVzkOenxEsFi9eXO68+Pnnn03Xrl198+zvf/97iXOYzwAAoCgKCdSKnTt3msjISCPJREdHm9dff91s2rTJrF692jz22GO+Xyw7duxosrKyrI6LMLV+/Xoza9Ys38dbb73lm3s9e/YsdmzWrFlljvPSSy/57te1a1czb948s23bNjNv3rxif5C9/PLLZY7hdrtNz549fecOHz7cLF++3GzZssV88MEHpmXLlkaSiYiIMEuXLg3AdwOh7N577/XNndtvv918//33Zvfu3WV+HDhwoMyxmM8IBm3btjUtWrQw48ePN3PmzDFJSUnmu+++M+vXrzf/+te/is2vhg0bmoSEhFLH+fjjj33ntWvXzsycOdNs27bNLFq0yPTr18937MEHHyw3zwMPPOA7t1+/fmbRokVm27ZtZubMmaZdu3a+Y//+978D8e1AmKtMIWEMz88IDm3btjWtWrUyzzzzjPn888/Nxo0bzbfffmsSEhLMK6+8Yi666CLf/OrVq5fJy8srdRzmMwAAKEQhgVqzePFi3ztWSvvo2LGjOXTokNUxEcZGjx5d5vwr7aMsHo/HPPLII+Xed9y4ccbj8ZSbJzU11cTGxpY5RqNGjcy0adP8/W1AGKjKPC58t3hZmM8IBm3btq3UXG7durVZsWJFuWO9+uqrxmazlTnG4MGDK7waw+FwmMGDB5c5RkREBFd0otoqW0jw/IxgUNnn5+HDh5uMjIwyx2E+AwCAQjZjjBFQS44dO6b33ntPS5Ys0YkTJ9SwYUO1b99e9913n55++mk1adLE6ogIY2PGjNGcOXMqfX5FT49Lly7V1KlTtW3bNtntdl100UWKjY3V448/rkGDBlXqMdxut6ZNm6bPP/9c+/btU25urlq1aqU77rhDzz33nH7xi19UOi/qjvPXVa5I27ZtdfTo0XLPYT7DSgcOHNCSJUu0YcMGJScn6/Tp00pLS1NkZKRatmypG264Qb/61a80YsSISv2usHHjRn344Ydav369Tp8+rZiYGF1//fUaO3asHnzwwUrn+vzzzzV79mzt2rVLmZmZuuSSS9S7d289/fTTuuWWW2ryJaMOe+211/TnP/9Z0rk9JPr27Vvu+Tw/w0qJiYlKTEzUpk2bdPjwYdntdmVlZSk6Olpt2rTRrbfeqtGjR1f6OZH5DAAAKCQAAAAAAAAAAEDARVgdAAAAAAAAAAAAhD8KCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAACAapo9e7ZsNptsNpuOHj1qdRwAAAAAAIIahQQAAKhzjh496isSavIBAAAAAAAqj0ICAAAAAAAAAAAEnM0YY6wOAQAAUJsKCgp04MCBMo936dJFktS9e3fNmjWrzPOuu+46v2cDAAAAACBc1bc6AAAAQG1r0KBBpcqEqKgoSgcAAAAAAPyEJZsAAAAAAAAAAEDAUUgAAABU0+zZs30bXB89erTE8b59+8pms6lv376SpOTkZP3Xf/2Xrr76akVGRurKK6/UuHHjdOzYsWL327Nnj8aOHaurr75ajRs3Vps2bfTEE0/ozJkzlcq1cOFC3XfffbriiivUuHFjxcTEqHv37vrzn/+sjIyMmn7ZAAAAAABUC0s2AQAA1IKVK1fq3nvvVXZ2tu9zx44d08yZMxUfH6/ExER16tRJc+fO1ZgxY+RyuXznnThxQh9//LGWLVumjRs3qlWrVqU+RkZGhn7zm99o9erVxT6fn5+vHTt2aMeOHfrXv/6lRYsW6eabbw7MFwoAAAAAQBm4QgIAACDAUlJSNGLECMXExOiDDz7Qli1btH79ej3//POy2Ww6c+aMHn30UW3btk2jRo1Su3btNH36dG3dulVr1qzRyJEjJZ0rMH7/+9+X+hj5+fnq37+/Vq9erXr16mnkyJGaO3euNm/erPXr1+uvf/2rLrzwQp05c0aDBw8ucVUGAAAAAACBxhUSAAAAAXbo0CF16NBBGzZs0MUXX+z7fK9evVS/fn29/fbb2rBhg4YMGaIePXooISFBTZo08Z3Xt29f5eXlaf78+frPf/6j1NTUYuNI0uTJk7Vz507FxMRo5cqV6tatW7HjvXr10sMPP6xbbrlFp06d0n//93/rf//3fwP7hQMAAAAAUARXSAAAANSC999/v0SJIElPPvmk77bdbtf06dOLlRGFnnjiCUmS2+3Wpk2bih3LycnRhx9+KEn6y1/+UqKMKNS2bVv96U9/kiTNnz9fubm51ftiAAAAAACoBgoJAACAAIuJidHAgQNLPXbVVVepadOmkqRf/vKXuvbaa0s97/rrr/fdPnz4cLFjiYmJOnv2rCTpN7/5TblZbrvtNklSQUGBduzYUbkvAAAAAAAAP2DJJgAAgADr0KGDbDZbmcdjYmKUnZ2tjh07lntOoaIbY0vS9u3bfbcvu+yySuf6+eefK30uAAAAAAA1xRUSAAAAAVbaEkxFRUREVHhe4TmS5PF4ih07c+ZMtXI5HI5q3Q8AAAAAgOrgCgkAAIAQV7Sg2Llzpxo0aFCp+7Vu3TpQkQAAAAAAKIFCAgAAIMRdeOGFvtsXX3wxRQMAAAAAICixZBMAAECI69q1q+/2hg0bLEwCAAAAAEDZKCQAAABCXP/+/X37T7z//vsyxlicCAAAAACAkigkAAAAQlxMTIyefvppSdLGjRv1u9/9Tl6vt8zzT58+renTp9dWPAAAAAAAJLGHBAAAQFiYPHmyEhMTtWXLFr333ntau3atxo8frxtuuEFRUVHKyMjQDz/8oJUrV2rZsmXq0qWLHn30UatjAwAAAADqEAoJAACAMNCoUSMlJCRozJgx+uqrr7Rr1y7fVROladasWS2mAwAAAACAQgIAACBsNG3aVP/5z3+UlJSkOXPmaP369UpJSZHT6VSzZs3Url079ejRQ0OGDNGAAQOsjgsAAAAAqGNshl0PAQAAAAAAAABAgLGpNQAAAAAAAAAACDgKCQAAAAAAAAAAEHAUEgAAAAAAAAAAIOAoJAAAAAAAAAAAQMBRSAAAAAAAAAAAgICjkAAAAAAAAAAAAAFHIQEAAAAAAAAAAAKOQgIAAAAAAAAAAAQchQQAAAAAAAAAAAg4CgkAAAAAAAAAABBwFBIAAAAAAAAAACDgKCQAAAAAAAAAAEDAUUgAAAAAAAAAAICAo5AAAAAAAAAAAAABRyEBAAAAAAAAAAACjkICAAAAAAAAAAAEHIUEAAAAAAAAAAAIOAoJAAAAAAAAAAAQcBQSAAAAAAAAAAAg4CgkAAAAAAAAAABAwFFIAAAAAAAAAACAgKOQAAAAAAAAAAAAAUchAQAAAAAAAAAAAo5CAgAAAAAAAAAABNz/AzuTh3g5cPjbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot(\n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'transmissibility_function_reassortment_example_composition.png', \n", + " # Name of the file to save the plot to.\n", + " data\n", + " # Dataframe with model history\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a heatmap and dendrogram for pathogen genomes \n", + "Generate a heatmap and dendrogram for the top 24 genomes. Besides creating the plot, outputs the pairwise distance matrix to a csv file as well." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/seaborn/matrix.py:624: ClusterWarning: scipy.cluster: The symmetric non-negative hollow observation matrix looks suspiciously like an uncondensed distance matrix\n", + " linkage = hierarchy.linkage(self.array, method=self.method,\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcsUlEQVR4nO3deZzVdb0/8NcwCKggIsgi+BN3VNwXEhVcMJfCLLdME7Vr4lriQqSCS4p6b6LXTHMBUskdSy01wy0VU3EjEbKruAUKKLKDMOf3hzjXkRmcw/AN5T6f93Eel+/2Pp851ffMaz7Lt6JUKpUCAAAALHeNVnQDAAAAYGUldAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgII0bcvH4iY8vr3asUF0691zRTQAAAGAl1KDQXVWqWl7tAAAAgJVOg0J3qVRaXu0AAACAlU7DerojdAMAAEBdGtjTbXg5wMpkwIABmTdv3opuBgAFadasWQYPHryimwH/pzRwTvf/3Z7uq6++Ov/5n/+ZyZMnZ+utt85VV12VnXbaqc7zp0+fnrPPPjsjR47Mhx9+mPXWWy9XXHFF9t9//39jqwGWbt68eRkyZMiKbgYABTnttNNWdBPg/5yG9XTn/2ZP9+23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzl+wYEH23nvvtG3bNnfddVc6duyYt956K2uuuea/v/EAAAD82+jpXgaXX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vyhQ4fmww8/zNNPP51VVlklSdK5c+d/Z5MBAABYARo15OLSSvJ/8+fPz4wZM2q85s+fX+vPvGDBgowZMya9evX63w+xUaP06tUro0ePrvWae++9NzvvvHNOOumktGvXLl27ds3FF1+cRYsWNeTjBwAA4CuuQaG7qlRaKV6DBw9Oy5Yta7zqWmBi6tSpWbRoUdq1a1djf7t27TJ58uRar3njjTdy1113ZdGiRfnTn/6Uc889N7/85S/zi1/8oiEfPwAAAF9xDRxevnLM6R4wYED69etXY1/Tpk2XW/2qqqq0bds21113XSorK7P99tvnvffey3/+539m0KBBy+19AAAA+Gpp4EJqK8ec7qZNm9Y7ZLdp0yaVlZV5//33a+x///330759+1qv6dChQ1ZZZZVUVlZW79tss80yefLkLFiwIE2aNFn2xgMAAPCVZXh5mYvBNWnSJNtvv31GjRr1v59DVVVGjRqVnXfeudZrdtlll/zzn/9MVdX/jgz4xz/+kQ4dOgjcAAAAKzGhu8zQnST9+vXL9ddfn9/+9rd57bXXcsIJJ2T27NnVq5kfddRRGTBgQPX5J5xwQj788MP85Cc/yT/+8Y/88Y9/zMUXX5yTTjqpIR8/AAAAX3Ge070MDjvssEyZMiUDBw7M5MmTs8022+TBBx+sXlzt7bffTqNG//v3jHXXXTcPPfRQTjvttGy11Vbp2LFjfvKTn6R///4r6kcAAADg38BzupfRySefnJNPPrnWY4899tgS+3beeec888wzBbcKAACArxKhGwAAAApi9XIAAAAoiJ5uAAAAKEjDQreebgAAAKhTw4aX6+kGAACAOhleDgAAAAUxvBwAAAAKoqcbAAAACmJONwAAABTE8HIAAAAoiOHlAAAAUBDDywEAAKAghpcDAABAQRo4vHx5NQMAAABWPuZ0AwAAQEEaNqfb8HIAAACok55uAAAAKIjQDQAAAAVp4PByAAAAoC56ugEAAKAgQjcAAAAUpGGhe3m1AgAAAFZCDZvTracbAAAA6tTA4eXLqxkAAACw8jGnGwAAAArSwEeGCd0AAABQF8PLAQAAoCCGlwMAAEBBGrh6+fJqBgAAAKx8PKcbAAAACmJ4OQAAABTE8HIAAAAoiJ5uAAAAKIg53QAAAFCQBg4v19MNAAAAdWng8PLl1QwAAABY+VhIDQAAAApiITUAAAAoiJ5uAAAAKIg53QAAAFCQhvV0L69WAAAAwErInG4AAAAoiDndAAAAUBBzugEAAKAgeroBAACgIOZ0AwAAQEEaNeTiUmnleC2Lq6++Op07d06zZs3SrVu3PPvss/W67rbbbktFRUUOPPDAZXtjAAAAvjYaFLqrSivHq1y33357+vXrl0GDBuWFF17I1ltvnX322ScffPDBUq+bOHFizjjjjOy2227L+Il/at68eQ26HgAAgH8PPd3LELovv/zyHHfccTnmmGOy+eab59prr81qq62WoUOH1nnNokWLcsQRR+T888/PBhtsUPZ7VlVV5cILL0zHjh3TvHnzvPHGG0mSc889NzfeeGP5PwQAAACFE7pLyfz58zNjxowar/nz59f6My9YsCBjxoxJr169/vdDbNQovXr1yujRo+v8rC644IK0bds2P/rRj5bps/7FL36R4cOH57LLLkuTJk2q93ft2jU33HDDMtUEAACgWIaXl5LBgwenZcuWNV6DBw+u9WeeOnVqFi1alHbt2tXY365du0yePLnWa5588snceOONuf7665f5s77pppty3XXX5YgjjkhlZWX1/q233jrjx49f5roAAAAUxyPDkgwYMCD9+vWrsa9p06bLpfbMmTPzwx/+MNdff33atGmzzHXee++9bLTRRkvsr6qqyieffNKQJgIAAFCQBobulSN1N23atN4hu02bNqmsrMz7779fY//777+f9u3bL3H+//zP/2TixInp3bt39b6qqqokSePGjTNhwoRsuOGGX/q+m2++ef76179mvfXWq7H/rrvuyrbbbluvtgMAAPDv1cDndC+vZnx9NGnSJNtvv31GjRpV/divqqqqjBo1KieffPIS53fp0iVjx46tse+cc87JzJkzc+WVV2bdddet1/sOHDgwffr0yXvvvZeqqqqMHDkyEyZMyE033ZT777+/wT8XAAAAy5/h5cugX79+6dOnT3bYYYfstNNOueKKKzJ79uwcc8wxSZKjjjoqHTt2zODBg9OsWbN07dq1xvVrrrlmkiyxf2m+853v5L777ssFF1yQ1VdfPQMHDsx2222X++67L3vvvfdy+9kAAABYfoTuZXDYYYdlypQpGThwYCZPnpxtttkmDz74YPXiam+//XYaNWrQGnW12m233fLwww8v97oAAAAUQ+heRieffHKtw8mT5LHHHlvqtcOHDy/7/Z577rlUVVWlW7duNfb/7W9/S2VlZXbYYYeyawIAAFAsz+n+mvzh4KSTTso777yzxP733nsvJ5100gpoEQAAAF/GQmpfE+PGjct22223xP5tt90248aNWwEtAgAA4Mvo6f6a/OGgadOmSzymLEkmTZqUxo0b9LcTAAAACiJ0f01C9ze/+c0MGDAgH3/8cfW+6dOn5+c//7nVywEAAL6iLKT2NfFf//Vf6dGjR9Zbb71su+22SZKXXnop7dq1y80337yCWwcAAEBtGhi6pe5/l44dO+aVV17JiBEj8vLLL2fVVVfNMccck8MPPzyrrLLKim4eAAAAtWhY6K5aXs2gPlZfffX8+Mc/XtHNAAAAoJ4ML/8aef311/Poo4/mgw8+SFVVzb94DBw4cAW1CgAAgLoI3V8T119/fU444YS0adMm7du3T0VFRfWxiooKoRsAAOArSOj+mvjFL36Riy66KP3791/RTQEAAKCehO6viY8++iiHHHLIim4GAAAAZfCc7q/JHw4OOeSQ/PnPf17RzQAAAKAMVi//mthoo41y7rnn5plnnsmWW265xGPCTj311BXUMgAAAOpiePnXxHXXXZfmzZvn8ccfz+OPP17jWEVFhdANAADwFSR0f028+eabK7oJAAAAlEnoBgAAgIII3V8j7777bu699968/fbbWbBgQY1jl19++QpqFQAAAHVp4EJqUve/y6hRo3LAAQdkgw02yPjx49O1a9dMnDgxpVIp22233YpuHgAAALXwyLCvyd8NBgwYkDPOOCNjx45Ns2bNcvfdd+edd95Jz549Pb8bAADgK6pBoTulleT1NfDaa6/lqKOOSpI0btw4c+fOTfPmzXPBBRfk0ksvXcGtAwAAoDae0/01sfrqq1fP4+7QoUP+53/+J1tssUWSZOrUqSuyaQAAANTBQmpfE9/4xjfy5JNPZrPNNsv++++f008/PWPHjs3IkSPzjW98Y0U3DwAAgFoI3V8Tl19+eWbNmpUkOf/88zNr1qzcfvvt2Xjjja1cDgAA8BXVoND9dZkPvTLYYIMNqv+9+uqr59prr12BrQEAAKA+GrZ6edXK8fo62GCDDTJt2rQl9k+fPr1GIAcAAOCro4HDy3V1/7tMnDgxixYtWmL//Pnz8957762AFgEAAPBlzOn+irv33nur//3QQw+lZcuW1duLFi3KqFGj0rlz5xXQMgAAAL5Mw+Z0f02GZn+dHXjggUmSioqK9OnTp8axVVZZJZ07d84vf/nLFdAyAAAAvoye7q+4qqpP/7Kx/vrr57nnnkubNm1WcIsAAACoL6uXf028+eabS+ybPn161lxzzX9/YwAAAKiXBq5eXlopXl8Hl156aW6//fbq7UMOOSRrrbVWOnbsmJdffnkFtgwAAIC6NCx0l1aO19fBtddem3XXXTdJ8vDDD+cvf/lLHnzwwey3334588wzV3DrAAAAqI3h5V8TkydPrg7d999/fw499NB885vfTOfOndOtW7cV3DoAAABq08Dh5SvH6+ugVatWeeedd5IkDz74YHr16pXk02el1/b8bgAAAFa8BvZ06+r+d/ne976XH/zgB9l4440zbdq07LfffkmSF198MRtttNEKbh0AAAC1adgjw74mvcQrgyFDhqRz58555513ctlll6V58+ZJkkmTJuXEE09cwa0DAACgNuZ0f02sssoqOeOMM5bYf9ppp62A1gAAAFAfDevpNry8UPfee2/222+/rLLKKrn33nuXeu4BBxzwb2oVAAAA9dWwnm7Dywt14IEHZvLkyWnbtm0OPPDAOs+rqKiwmBoAAMBXUAN7updXM6hNVVVVrf8GAADg68Hq5V8DVVVVGT58eEaOHJmJEyemoqIiG2ywQQ466KD88Ic/TEVFxYpuIgAAALVo0HO6U7WSvL7CSqVSDjjggPzHf/xH3nvvvWy55ZbZYostMnHixBx99NH57ne/u6KbCAAAQB0spPYVN3z48DzxxBMZNWpU9thjjxrHHnnkkRx44IG56aabctRRR62gFgIAAFAXPd1f8Z7uW2+9NT//+c+XCNxJsueee+ZnP/tZRowYsQJaBgAAwJdpUOgulUorxeur7JVXXsm+++5b5/H99tsvL7/88r+xRQAAANSXR4Z9xX344Ydp165dncfbtWuXjz766N/YIgAAAOqrYcPLS6WV47UMrr766nTu3DnNmjVLt27d8uyzz9Z57vXXX5/ddtstrVq1SqtWrdKrV6+lnv95ixYtSuPGdf9tpLKyMgsXLiy7/QAAABTPc7qXwe23355+/frl2muvTbdu3XLFFVdkn332yYQJE9K2bdslzn/sscdy+OGHp3v37mnWrFkuvfTSfPOb38yrr76ajh07LvW9SqVSjj766DRt2rTW4/Pnz18uPxMAAADLXwOHl//fTN2XX355jjvuuBxzzDFJkmuvvTZ//OMfM3To0PzsZz9b4vwvLnR2ww035O67786oUaO+dNXxPn36fGl7rFwOAADw1dSw0L2SZO758+cv0WPctGnTWnuXFyxYkDFjxmTAgAHV+xo1apRevXpl9OjR9Xq/OXPm5JNPPslaa631pecOGzasXjUBAAD46mnY6uVVpZXiNXjw4LRs2bLGa/DgwbX+zFOnTs2iRYuWWNysXbt2mTx5cr0+t/79+2edddZJr169GvLxAwAA8BWnpzvJgAED0q9fvxr76ppD3VCXXHJJbrvttjz22GNp1qxZIe8BAADAV4M53al7KHlt2rRpk8rKyrz//vs19r///vtp3779Uq/9r//6r1xyySX5y1/+kq222mqZ2wsAAMDXQ8OGl5dKK8WrHE2aNMn222+fUaNGVe+rqqrKqFGjsvPOO9d53WWXXZYLL7wwDz74YHbYYYdl/swBAAD4+jC8fBn069cvffr0yQ477JCddtopV1xxRWbPnl29mvlRRx2Vjh07Vs8Lv/TSSzNw4MD87ne/S+fOnavnfjdv3jzNmzdfYT8HAAAAxTK8fBkcdthhmTJlSgYOHJjJkydnm222yYMPPli9uNrbb7+dRo3+dxDBNddckwULFuTggw+uUWfQoEE577zz/p1NBwAA4N+ogT3d/zdDd5KcfPLJOfnkk2s99thjj9XYnjhxYvENAgAA4CunQaG79H+0pxsAAADqw5xuAAAAKIjh5QAAAFAQC6kBAABAQRo2p1tPNwAAANRJTzcAAAAUxJxuAAAAKIiebgAAACiIOd0AAABQEMPLAQAAoCCGlwMAAEBB9HQDAABAQczpBgAAgIIYXg4AAAAFMbwcAAAACqKnGwAAAApiTjcAAAAUxPByAAAAKIjh5QAAAFCQBvZ0Vy2nZgAAAMDKx5xuAAAAKIjh5QAAAFAQC6kBAABAQczpBgAAgIKY0w0AAAAFMacbAAAACmJONwAAABSkgcPLzekGAACAuhheDgAAAAWxejkAAAAUxOrlAAAAUBA93QAAAFCQhvV0m9MNAAAAdfLIMAAAACiI4eUAAABQEAupAQAAQEH0dAMAAEBBGtjTLXQDAABAXRrW0231cgAAAKiTnm4AAAAoiEeGAQAAQEH0dAMAAEBB9HQDAABAQfR0AwAAQEGEbgAAACiI4eUAAABQkEYNubhUqlopXsvi6quvTufOndOsWbN069Ytzz777FLPv/POO9OlS5c0a9YsW265Zf70pz8t0/sCAADw9SF0L0Povv3229OvX78MGjQoL7zwQrbeeuvss88++eCDD2o9/+mnn87hhx+eH/3oR3nxxRdz4IEH5sADD8zf//73hnz8AAAAfMU1KHSnVFo5XmW6/PLLc9xxx+WYY47J5ptvnmuvvTarrbZahg4dWuv5V155Zfbdd9+ceeaZ2WyzzXLhhRdmu+22y69+9asGffwAAAB8tTVsIbWqlWMhtfnz52f+/Pk19jVt2jRNmzZd4twFCxZkzJgxGTBgQPW+Ro0apVevXhk9enSt9UePHp1+/frV2LfPPvvk97//fcMbDwAAwFdWg0L32LceX17tWKHOO++8nH/++TX2DRo0KOedd94S506dOjWLFi1Ku3btauxv165dxo8fX2v9yZMn13r+5MmTG9ZwAAAAvtIatnr5SmLAgAFL9ETX1ssNAAAA5RC6U/dQ8tq0adMmlZWVef/992vsf//999O+fftar2nfvn1Z5wMAALByaNhCav8HNWnSJNtvv31GjRpVva+qqiqjRo3KzjvvXOs1O++8c43zk+Thhx+u83wAAABWDhWl0jIs3/1/3O23354+ffrkN7/5TXbaaadcccUVueOOOzJ+/Pi0a9cuRx11VDp27JjBgwcn+fSRYT179swll1ySb33rW7ntttty8cUX54UXXkjXrl1X8E9DXbZcr+eKbgIABbvz8QtWdBMAKFCXziv+d3rDy5fBYYcdlilTpmTgwIGZPHlyttlmmzz44IPVi6W9/fbbadTofwcRdO/ePb/73e9yzjnn5Oc//3k23njj/P73vxe4AQAAVnJ6uqEOeroBVn56ugFWbl+Fnm5zugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAJLnpppsyf/785VpT6AYAAGClNH/+/MyYMaPGa2mh+phjjsnHH3+8XNvQeHkWGzBgQObNm7c8SwIAAMAyGTx4cM4///wa+wYNGpTzzjuv1vNLpdJyb8NyDd3z5s3LkCFDlmdJWGG2HNlzRTcBAABogAEDBqRfv3419jVt2nSp11RUVCzXNizX0A0AAABfFU2bNv3SkP1Fe+21Vxo3XnpUfuGFF+pdT+gGAACAxfbZZ580b958udUTugEAAGCxM888M23btl1u9axeDgAAAFn+87kToRsAAACSFLN6udANAAAASd58882svfbaS+xfuHBhZs2atUw1hW4AAABI8sorr+S3v/1tjX0XXXRRmjdvnjXXXDPf/OY389FHH5VVU+gGAACAJL/85S8ze/bs6u2nn346AwcOzLnnnps77rgj77zzTi688MKyalq9HAAAAJKMGzcu3bt3r96+6667svfee+fss89OkjRr1iw/+clPcvnll9e7pp5uAAAASDJz5sy0bt26evvJJ5/MXnvtVb29xRZb5F//+ldZNYVuAAAASNKxY8e89tprSZJZs2bl5ZdfrtHzPW3atKy22mpl1RS6AQAAIMkhhxySn/70p7n55ptz3HHHpX379vnGN75Rffz555/PpptuWlZNc7oBAAAgycCBA/Pee+/l1FNPTfv27XPLLbeksrKy+vitt96a3r17l1VT6AYAAIAkq666am666aY6jz/66KNl1zS8HAAAAJJ88MEHSz2+aNGiPPvss2XVFLoBAAAgSYcOHWoE7y233DLvvPNO9fbUqVOz8847l1VT6AYAAIAkpVKpxvbEiRPzySefLPWcLyN0AwAAQD1VVFSUdb7QDQAAAAWxejkAAADk017smTNnplmzZimVSqmoqMisWbMyY8aMJKn+/+UQugEAACCfztfeZJNNamxvu+22NbbLHV4udAMAAECW7TncX0boBgAAgCQ9e/Zc7jWFbgAAAKhDqVTKo48+mrlz56Z79+5p1apVWddbvRwAAACSTJ8+PX369MmWW26Z4447LjNmzMhuu+2WXr16pXfv3tlss83yyiuvlFVT6AYAAIAkZ5xxRkaPHp3vf//7GTt2bPbdd98sWrQoo0ePzt/+9rdsttlmOfvss8uqaXg5AAAAJHnggQfyu9/9Lj179szRRx+dddddN4888ki6deuWJLn00ktzwAEHlFVTTzcAAAAkef/996sfGdaxY8c0a9Ys6667bvXx//f//l+mTJlSVk2hGwAAAJJUVVWlsrKyeruysrLGc7nLfUZ3Yng5AAAAVLvhhhvSvHnzJMnChQszfPjwtGnTJkkyc+bMsusJ3QAAAJBPh49ff/311dvt27fPzTffvMQ55RC6AQAAIMnEiROXe01zugEAACDJUUcdlbvvvjuzZ89ebjWFbgAAAEiy0UYb5eKLL06bNm2y33775Zprrsl7773XoJpCNwAAACQZOHBgxowZk9dffz29e/fO73//+2y44YbZfvvtc8EFF+Sll14qu6bQDQAAAJ/TqVOnnHjiiXnooYcyZcqU9O/fPxMmTMiee+6Z9dZbLyeffHJeffXVetUSugEAAKAOLVq0yKGHHpoRI0ZkypQpGTp0aCorKzN69Oh6XW/1cgAAAPiCqVOnZuLEiamoqEjnzp3TunXrVFZWZq+99spee+1V7zp6ugEAAGCxV199NT169Ei7du3SrVu37LTTTmnbtm323HPPjB8/vux6eroBAAAgyeTJk9OzZ8+svfbaufzyy9OlS5eUSqWMGzcu119/fXr06JG///3vadu2bb1rCt0AAACQZMiQIVlvvfXy1FNPpVmzZtX7991335xwwgnZddddM2TIkAwePLjeNQ0vBwAAgCQPP/xw+vfvXyNwf2bVVVfNmWeemYceeqismkI3AAAAJHnjjTey3Xbb1Xl8hx12yBtvvFFWTaEbAAAAksycOTNrrLFGncdbtGiRWbNmlVXTnG4AAABYbObMmbUOL0+SGTNmpFQqlVVP6AYAAIAkpVIpm2yyyVKPV1RUlFVT6AYAAIAkjz766HKvKXQDAABAkp49ey73mkI3AAAAfM7HH3+chx9+OBMnTkxFRUXWX3/99OrVa6mLrNVF6AYAAIDFbrnllpx88smZMWNGjf0tW7bMtddem8MOO6yseh4ZBgAAAEleeOGFHHPMMTnwwAPz4osvZu7cuZkzZ06ef/759O7dOz/84Q/z8ssvl1VTTzcAAAAkueqqq3LggQdm+PDhNfZvt912uemmmzJnzpxceeWVGTp0aL1r6ukGAACAJE899VSOP/74Oo/37ds3Tz75ZFk1hW4AAABI8q9//Wupz+neZJNN8t5775VVU+gGAACAJHPmzEmzZs3qPN60adPMmzevrJrmdAMAAMBiDz30UFq2bFnrsenTp5ddT+gGAACAxfr06bNc6wndAAAAkKSqqmq51zSnGwAAAOqhqqoq999/f1nX6OkGAACApfjnP/+ZoUOHZvjw4ZkyZUo++eSTel+rpxsAAAC+YO7cubnpppvSo0ePbLrppnn66aczcODAvPvuu2XV0dMNAAAAiz333HO54YYbctttt2XDDTfMEUcckaeffjq//vWvs/nmm5ddT+gGAACAJFtttVVmzJiRH/zgB3n66aezxRZbJEl+9rOfLXNNw8sBAAAgyYQJE9KjR4/ssccey9SrXRuhGwAAAJK88cYb2XTTTXPCCSekU6dOOeOMM/Liiy+moqJimWsK3QAAAJCkY8eOOfvss/PPf/4zN998cyZPnpxddtklCxcuzPDhw/OPf/yj7JpCNwAAAHzBnnvumVtuuSWTJk3Kr371qzzyyCPp0qVLttpqq7LqCN0AAABQh5YtW+bEE0/M888/nxdeeCG77757WddbvRwAAACWYsGCBVmwYEG22Wab/Pd//3dZ1+rpBgAAgMWGDRuWU045JSNGjEiSDBgwIC1atEjLli2z9957Z9q0aWXVE7oBAAAgyUUXXZSTTjop48ePz6mnnpoTTjghw4cPzwUXXJBLLrkk48ePzznnnFNWTcPLAQAAIMnw4cNz44035vDDD8/zzz+fbt265Y477shBBx2UJOnatWv69u1bVk093QAAAJDk7bffzq677pok2WGHHdK4ceN07dq1+vhWW22VSZMmlVVT6AYAAIAkn3zySZo2bVq93aRJk6yyyirV240bN86iRYvKqml4OQAAACw2bty4TJ48OUlSKpUyfvz4zJo1K0kyderUsusJ3QAAALDYXnvtlVKpVL397W9/O0lSUVGRUqmUioqKsuoJ3QAAAJDkzTffXO41hW4AAABIMmrUqBxwwAFp06bNcqtpITUAAABIcsstt6RTp07p3r17Lr300rz22msNril0AwAAQJJHHnkkkyZNyoknnpgxY8akW7du2XjjjXP66afniSeeSFVVVdk1hW4AAABYrFWrVjnyyCNzxx13ZOrUqbnqqqsyd+7cHHHEEWnbtm2OOuqo3HXXXZk9e3a96gndAAAAUIsmTZpk3333za9//eu88847efDBB9O5c+dceOGFufzyy+tVw0JqAAAAkGSDDTbIc889l9atW9d6fIcddsgOO+yQCy64IJ988km9aurpBgAAgCQTJ07MokWL6nXuKqusUq/zhG4AAAAoiOHlAAAAsNhDDz2Uli1bLvWcAw44oN71hG4AAABYrE+fPks9XlFRUe8h6Inh5QAAAFBt8uTJqaqqqvNVTuBOhG4AAABI8mkv9vImdAMAAECSUqm03GsK3QAAAJBP53Ovuuqqy7WmhdQAAAAgyXXXXZeqqqoa+95///1ce+21mT17dg444IDsuuuuZdUUugEAACDJj3/84zRp0iS/+c1vkiQzZ87MjjvumHnz5qVDhw4ZMmRI/vCHP2T//fevd03DywEAACDJU089lYMOOqh6+6abbsqiRYvy+uuv5+WXX06/fv3yn//5n2XVFLoBAAAgyXvvvZeNN964envUqFE56KCD0rJlyySfzvl+9dVXy6opdAMAAECSZs2aZe7cudXbzzzzTLp161bj+KxZs8qqKXQDAABAkm222SY333xzkuSvf/1r3n///ey5557Vx//nf/4n66yzTlk1LaQGAAAASQYOHJj99tsvd9xxRyZNmpSjjz46HTp0qD5+zz33ZJdddimrptANAAAASXr27JkxY8bkz3/+c9q3b59DDjmkxvFtttkmO+20U1k1hW4AAABYbLPNNstmm21W67Ef//jHZdczpxsAAACSnHjiiTUWSrv11lsze/bs6u3p06eX9YzuROgGAACAJMlvfvObzJkzp3r7+OOPz/vvv1+9PX/+/Dz00ENl1RS6AQAAIEmpVFrq9rIQugEAAKAgQjcAAAAUxOrlAAAAsNjAgQOz2mqrJUkWLFiQiy66KC1btkySGvO960voBgAAgCQ9evTIhAkTqre7d++eN954Y4lzyiF0AwAAQJLHHntsudc0pxsAAAAKInQDAADAYq+//nruvvvuvPnmm0mSP/7xj+nRo0d23HHHXHTRRWU/RszwcgAAAEhyzz335NBDD02jRo1SUVGR6667Lscff3x23333rLHGGjnvvPPSuHHj9O/fv9419XQDAABAkosuuihnnXVW5s2bl2uuuSZ9+/bN4MGD88ADD+T+++/P1VdfneHDh5dVU+gGAACAJBMmTMixxx6bioqK9OnTJwsWLEivXr2qj3/zm9/MW2+9VVZNoRsAAACSzJ49Oy1atEiSNGrUKKuuumr1M7uTZNVVV838+fPLqil0AwAAQJKKiopUVFTUub0sLKQGAAAASUqlUjbZZJPqoD1r1qxsu+22adSoUfXxcgndAAAAkGTYsGHLvabQDQAAAEl22223bLDBBsu1pjndAAAAkGSrrbZK165d8/Of/zzPPvvscqkpdAMAAECSqVOnZvDgwfnggw9ywAEHpEOHDjnuuONy3333Zd68ectUU+gGAACAJM2aNUvv3r1zww03ZNKkSbn77rvTunXr9O/fP23atMmBBx6YoUOHZsqUKfWuKXQDAADAF1RUVKR79+655JJLMm7cuLz44ovZbbfdMnz48HTq1ClXX311vepYSA0AAAC+xMYbb5zTTz89p59+eqZNm5YPP/ywXtcJ3QAAAPA5jzzySEaOHJmJEyemoqIi66+/fg4++OD06NEjSdK6deu0bt26XrUMLwcAAIDF+vbtm169euXWW2/NtGnTMmXKlIwYMSJ77LFHTjnllLLrCd0AAACQ5J577smwYcMydOjQTJ06NaNHj84zzzyTKVOm5Prrr891112Xe++9t6yaQjcAAAAkGTZsWPr165ejjz46FRUV1fsbNWqUY489Nj/96U9z4403llVT6AYAAIAkL7zwQr773e/Wefx73/texowZU1ZNoRsAAACSTJ06NZ06darzeKdOnTJt2rSyagrdAAAAkGTBggVZZZVV6jzeuHHjLFiwoKyaHhkGAAAAi5177rlZbbXVaj02Z86csusJ3QAAAJCkR48emTBhwpeeUw6hGwAAAJI89thjy72mOd0AAABQEKEbAAAAFps9e3YGDhyYrl27pnnz5mnRokW22mqrXHDBBeZ0AwAAwLJasGBBevbsmb///e/Zb7/90rt375RKpbz22mu56KKL8sADD+SJJ55Y6grnXyR0AwAAQJJrrrkm7777bl5++eVsuummNY6NHz8+u+++e6699tqccsop9a5peDkAAAAkGTlyZM4999wlAneSdOnSJWeffXbuuuuusmoK3QAAAJBk3Lhx2X333es8vscee2TcuHFl1RS6AQAAIMn06dPTunXrOo+3bt06H3/8cVk1hW4AAABIUlVVlcrKyjqPN2rUKIsWLSqrpoXUAAAAIEmpVMpee+2Vxo1rj8oLFy4su6bQDQAAAEkGDRr0peccdNBBZdUUugEAACD1C93lMqcbAAAAvsSMGTNyzTXXZIcddijrOj3dAAAAUIdHH300Q4cOzciRI9OyZct897vfLet6oRsAAAA+57333svw4cMzbNiwTJ8+PR999FF+97vf5dBDD01FRUVZtQwvBwAAgCR333139t9//2y66aZ56aWX8stf/jL/+te/0qhRo2y55ZZlB+5ETzcAAAAkSQ477LD0798/t99+e1q0aLFcaurpBgAAgCQ/+tGPcvXVV2fffffNtddem48++qjBNYVuAAAASPKb3/wmkyZNyo9//OPceuut6dChQ77zne+kVCqlqqpqmWoK3QAAALDYqquumj59+uTxxx/P2LFjs/nmm6ddu3bZZZdd8oMf/CAjR44sq57QDQAAALXYeOONM3jw4LzzzjsZMWJE5syZk8MPP7ysGkI3AAAAfM60adOq//3OO+/kvPPOy+OPP55+/frlnXfeKauW0A0AAABJxo4dm86dO6dt27bp0qVLXnrppey4444ZMmRIrrvuuuy55555+umny6opdAMAAECSs846K1tuuWWeeOKJ7L777vn2t7+db33rW/n444/z0Ucf5fjjj88ll1xSVk3P6QYAAIAkzz33XB555JFstdVW2XrrrXPdddflxBNPTKNGn/ZXn3LKKfnGN75RVk093QAAAJDkww8/TPv27ZMkzZs3z+qrr55WrVpVH2/VqlVmzpxZVk2hGwAAABarqKhY6na5DC8HAACAxY4++ug0bdo0STJv3rz07ds3q6++epJk/vz5ZdcTugEAACBJnz59amwfeeSRS5xz1FFHlVVT6AYAAIAkw4YNW+41zekGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAgjRe0Q2Ar6o7H79gRTcBgIId0nPgim4CAAUa+9bjK7oJeroBAACgKEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCNF7RDQAAAIAizJ8/P/Pnz6+xr2nTpmnatOlSr/v444/z8MMPZ+LEiamoqMj666+fXr16ZY011ii7Dcs1dDdr1iynnXba8iwJK8zxPzlwRTcBAABogMGDB+f888+vsW/QoEE577zz6rzmlltuycknn5wZM2bU2N+yZctce+21Oeyww8pqQ0WpVCqVdQX8HzF+4uMrugkAFOyQngNXdBMAKNDz//hzWT3dL7zwQrp165Yjjjgip512Wrp06ZJSqZRx48bliiuuyG233ZbnnnsuW2+9db3bIHRDHYRugJWf0A2wchv7Vnm/0x9zzDGZNWtW7rzzzlqPH3zwwVljjTUydOjQete0kBoAAAAkeeqpp3L88cfXebxv37558skny6opdAMAAECSf/3rX9lkk03qPL7JJpvkvffeK6um0A0AAABJ5syZk2bNmtV5vGnTppk3b15ZNT0yDAAAABZ76KGH0rJly1qPTZ8+vex6QjcAAAAs1qdPn6Uer6ioKKue0A0AAABJqqqqlntNc7oBAACgIHq6AQAA4HMeeeSRjBw5MhMnTkxFRUXWX3/9HHzwwenRo0fZtfR0AwAAwGJ9+/ZNr169cuutt2batGmZMmVKRowYkT322COnnHJK2fWEbgAAAEhyzz33ZNiwYRk6dGimTp2a0aNH55lnnsmUKVNy/fXX57rrrsu9995bVk2hGwAAAJIMGzYs/fr1y9FHH11jlfJGjRrl2GOPzU9/+tPceOONZdUUugEAACDJCy+8kO9+97t1Hv/e976XMWPGlFVT6AYAAIAkU6dOTadOneo83qlTp0ybNq2smkI3AAAAJFmwYEFWWWWVOo83btw4CxYsKKumR4YBAADAYueee25WW221Wo/NmTOn7HpCNwAAACTp0aNHJkyY8KXnlEPoBgAAgCSPPfbYcq9pTjcAAADUw2uvvZYzzjijrGuEbgAAAKjD7Nmzc+ONN6Z79+7ZYost8uCDD5Z1vdANAAAAX/DUU0/l2GOPTbt27fLjH/843bt3z7hx4/L3v/+9rDpCNwAAACT54IMPctlll6VLly45+OCDs+aaa+axxx5Lo0aNcuyxx6ZLly5l17SQGgAAACRZb731cvDBB+fKK6/M3nvvnUaNGt5PracbAAAA8mnofvLJJ/PEE0/kH//4x3KpKXQDAABAkvHjx+eWW27JpEmTsuOOO2b77bfPkCFDkiQVFRXLVFPoBgAAgMV22WWXDB06NJMmTUrfvn1z5513ZtGiRTnxxBNz/fXXZ8qUKWXVE7oBAADgC5o3b57jjjsuTz/9dF599dVst912Oeecc7LOOuuUVUfoBgAAgKXYbLPN8stf/jLvvfdebr/99rKutXo5AAAA1KFUKuXRRx/N3Llz071793zve98r63o93QAAAJBk+vTp6dOnT7bccsscd9xxmTFjRnbbbbf06tUrvXv3zmabbZZXXnmlrJpCNwAAACQ544wzMnr06Hz/+9/P2LFjs++++2bRokUZPXp0/va3v2WzzTbL2WefXVZNw8sBAAAgyQMPPJDf/e536dmzZ44++uisu+66eeSRR9KtW7ckyaWXXpoDDjigrJp6ugEAACDJ+++/n0022SRJ0rFjxzRr1izrrrtu9fH/9//+n0eGAQAAwLKoqqpKZWVl9XZlZWUqKiqqtz//7/oyvBwAAAAWu+GGG9K8efMkycKFCzN8+PC0adMmSTJz5syy61WUSqXScm0hrCTGT3x8RTcBgIId0nPgim4CAAUa+1Z5v9N37ty5Xr3Zb775Zr1r6ukGAACAJBMnTlzuNc3pBgAAgCRHHXVU7r777syePXu51RS6AQAAIMlGG22Uiy++OG3atMl+++2Xa665Ju+9916DagrdAAAAkGTgwIEZM2ZMXn/99fTu3Tu///3vs+GGG2b77bfPBRdckJdeeqnsmkI3AAAAfE6nTp1y4okn5qGHHsqUKVPSv3//TJgwIXvuuWfWW2+9nHzyyXn11VfrVUvoBgAAgCRvv/12vviArxYtWuTQQw/NiBEjMmXKlAwdOjSVlZUZPXp0vWpavRwAAACSrL/++pk0aVLatm1b6/HKysrstdde2WuvvepdU083AAAAJEv0ci8PQjcAAAAsVlFRsVzrGV4OAAAAi5177rlZbbXVlnrO5ZdfXu96QjcAAAAsNnbs2DRp0qTO4+X2hAvdAAAAsNg999xT50Jqy8KcbgAAAMjyn8+dCN0AAACQxOrlAAAAUJhhw4alZcuWy7Wm0A0AAABJdt5557z88ss19o0aNSp77LFHdtppp1x88cVl1xS6AQAAIEn//v1z//33V2+/+eab6d27d5o0aZKdd945gwcPzhVXXFFWTauXAwAAQJLnn38+Z511VvX2iBEjsskmm+Shhx5Kkmy11Va56qqr8tOf/rTeNfV0AwAAQJKpU6emU6dO1duPPvpoevfuXb29++67Z+LEiWXVFLoBAAAgyVprrZVJkyYlSaqqqvL888/nG9/4RvXxBQsWlL3CudANAAAA+bQn+8ILL8w777yTK664IlVVVdl9992rj48bNy6dO3cuq6Y53QAAAJDkoosuyt5775311lsvlZWV+e///u+svvrq1cdvvvnm7LnnnmXVFLoBAAAgSefOnfPaa6/l1Vdfzdprr5111lmnxvHzzz+/xpzv+hC6AQAAYLHGjRtn6623rvVYXfuXxpxuAAAASLL55pvnww8/rN4+8cQTM3Xq1OrtDz74IKuttlpZNYVuAAAASDJ+/PgsXLiwevuWW27JjBkzqrdLpVLmzZtXVk2hGwAAAGpR2+PBKioqyqohdAMAAEBBhG4AAADIp73YX+zJLrdn+4usXg4AAAD5dDj5XnvtlcaNP43Kc+fOTe/evdOkSZMkqTHfu76EbgAAAEgyaNCgGtvf+c53ljjnoIMOKqum0A0AAABZMnQvD+Z0AwAAwFIsWLAgs2bNWqZrhW4AAABYbNiwYTnllFMyYsSIJMmAAQPSokWLtGzZMnvvvXemTZtWVj2hGwAAAJJcdNFFOemkkzJ+/PiceuqpOeGEEzJ8+PBccMEFueSSSzJ+/Picc845ZdU0pxsAAACSDB8+PDfeeGMOP/zwPP/88+nWrVvuuOOO6sXTunbtmr59+5ZVU083AAAAJHn77bez6667Jkl22GGHNG7cOF27dq0+vtVWW2XSpEll1RS6AQAAIMknn3ySpk2bVm83adIkq6yySvV248aNs2jRorJqGl4OAAAAi40bNy6TJ09OkpRKpYwfP7565fKpU6eWXU/oBgAAgMX22muvlEql6u1vf/vbSZKKioqUSqVUVFSUVU/oBgAAgCRvvvnmcq8pdAMAAECSUaNG5YADDkibNm2WW00LqQEAAECSW265JZ06dUr37t1z6aWX5rXXXmtwTaEbAAAAkjzyyCOZNGlSTjzxxIwZMybdunXLxhtvnNNPPz1PPPFEqqqqyq4pdAMAAMBirVq1ypFHHpk77rgjU6dOzVVXXZW5c+fmiCOOSNu2bXPUUUflrrvuyuzZs+tVT+gGAACAWjRp0iT77rtvfv3rX+edd97Jgw8+mM6dO+fCCy/M5ZdfXq8aFaXPr4UOVBs/8fEV3QQACnZIz4ErugkAFGjsW8X9Tv/JJ59klVVW+dLz9HQDAADAYrNnz87AgQPTtWvXNG/ePC1atMhWW22VCy64IHPmzKk+rz6BO/HIMAAAAEiSLFiwID179szf//737Lfffundu3dKpVJee+21XHTRRXnggQfyxBNP1DtwJ0I3AAAAJEmuueaavPvuu3n55Zez6aab1jg2fvz47L777rn22mtzyimn1Lum4eUAAACQZOTIkTn33HOXCNxJ0qVLl5x99tm56667yqopdAMAAECScePGZffdd6/z+B577JFx48aVVVPoBgAAgCTTp09P69at6zzeunXrfPzxx2XVFLoBAAAgSVVVVSorK+s83qhRoyxatKismhZSAwAAgCSlUil77bVXGjeuPSovXLiw7JpCNwAAACQZNGjQl55z0EEHlVVT6AYAAIDUL3SXS+gGAACAL5g6dWomTpyYioqKdO7ceakLrC2NhdQAAABgsVdffTU9evRIu3bt0q1bt+y0005p27Zt9txzz0yYMKHsenq6AQAAIMnkyZPTs2fPrL322rn88svTpUuXlEqljBs3Ltdff3122223/P3vf0/btm3rXVPoBgAAgCRDhgzJeuutl6eeeirNmjWr3r/vvvvmhBNOyK677pohQ4Zk8ODB9a5peDkAAAAkefjhh9O/f/8agfszq666as4888w89NBDZdUUugEAACDJG2+8ke22267O4zvssEPeeOONsmoK3QAAAJBk5syZWWONNeo83qJFi8yaNausmuZ0AwAAwGIzZ86sdXh5ksyYMSOlUqmsekI3AAAAJCmVStlkk02WeryioqKsmkI3AAAAJHn00UeXe02hGwAAAJL07NnzS8/58MMPy6ppITUAAAD4En/+859z6KGHpmPHjmVdJ3QDAABALd56660MGjQonTt3ziGHHJJGjRrlpptuKquG4eUAAACw2IIFCzJy5MjccMMNeeqpp9KrV6+8++67efHFF7PllluWXU9PNwAAACQ55ZRTss466+TKK6/Md7/73bz77ru57777UlFRkcrKymWqqacbAAAAklxzzTXp379/fvazn6VFixbLpaaebgAAAEhy880359lnn02HDh1y2GGH5f7778+iRYsaVFPoBgAAgCSHH354Hn744YwdOzZdunTJSSedlPbt26eqqirjxo1bpppCNwAAAHzO+uuvn/PPPz8TJ07MLbfckoMOOihHHnlkOnXqlFNPPbWsWuZ0AwAAQC0qKiqyzz77ZJ999sm0adNy8803Z9iwYWXV0NMNAAAAX6J169b56U9/mpdffrms64RuAAAAWOz111/P3XffnTfffDNJ8sc//jE9evTIjjvumIsuuiilUqmseoaXAwAAQJJ77rknhx56aBo1apSKiopcd911Of7447P77rtnjTXWyHnnnZfGjRunf//+9a6ppxsAAACSXHTRRTnrrLMyb968XHPNNenbt28GDx6cBx54IPfff3+uvvrqDB8+vKyaQjcAAAAkmTBhQo499thUVFSkT58+WbBgQXr16lV9/Jvf/GbeeuutsmoK3QAAAJBk9uzZadGiRZKkUaNGWXXVVbPaaqtVH1911VUzf/78smoK3QAAAJBPHxFWUVFR5/aysJAaAAAAJCmVStlkk02qg/asWbOy7bbbplGjRtXHyyV0AwAAQJJhw4Yt95pCNwAAACTZbbfdssEGGyzXmuZ0AwAAQJKtttoqXbt2zc9//vM8++yzy6Wm0A0AAABJpk6dmsGDB+eDDz7IAQcckA4dOuS4447Lfffdl3nz5i1TTaEbAAAAkjRr1iy9e/fODTfckEmTJuXuu+9O69at079//7Rp0yYHHnhghg4dmilTptS7ptANAAAAX1BRUZHu3bvnkksuybhx4/Liiy9mt912y/Dhw9OpU6dcffXV9aojdAMAAECSY489NjNnzqz12MYbb5zTTz89TzzxRP71r3/lm9/8Zr1qCt0AAACQ5Le//W3mzp37pee1bt06G2+8cb1qCt0AAACQpFQqLfeantMNAAAAi82cOTPNmjVb6jlrrLFGvesJ3QAAALDYJptsUuexUqmUioqKLFq0qN71hG4AAABY7K677spaa6213OoJ3QAAALDYLrvskrZt2y63ehZSAwAAgIII3QAAAJBkvfXWS2Vl5XKtaXg5AAAAJHnzzTdr3f/4449n9uzZ2XnnndOqVauyagrdAAAAkOTSSy/NrFmzcuGFFyb5dLXy/fbbL3/+85+TJG3bts2oUaOyxRZb1Lum4eUAAACQ5Pbbb0/Xrl2rt++666488cQT+etf/5qpU6dmhx12yPnnn19WTaEbAAAA8unw8q222qp6+09/+lMOPvjg7LLLLllrrbVyzjnnZPTo0WXVFLoBAAAgycKFC9O0adPq7dGjR6d79+7V2+uss06mTp1aVk2hGwAAAJJsuOGGeeKJJ5Ikb7/9dv7xj3+kR48e1cfffffdtG7duqyaFlIDAACAJCeddFJOPvnk/PWvf80zzzyTnXfeOZtvvnn18UceeSTbbrttWTWFbgAAAEhy3HHHpbKyMvfdd1969OiRQYMG1Tj+r3/9K8ccc0xZNStKpVJpeTYSVhbjJz6+opsAQMEO6TlwRTcBgAKNfWvF/05vTjcAAAAkueOOO7JgwYLq7XfffTdVVVXV23PmzMlll11WVk2hGwAAAJIcfvjhmT59evX25ptvnokTJ1Zvz5w5MwMGDCirptANAAAASb44+3p5zMYWugEAAKAgQjcAAAAUxCPDAAAAYLGHHnooLVu2TJJUVVVl1KhR+fvf/54kNeZ715dHhkEdPDIMYOXnkWEAK7dyHxnWqNGXDwavqKjIokWL6l1TTzcAAAAkNR4PtrwI3QAAAPA506ZNS+vWrZMk77zzTq6//vrMmzcvvXv3zm677VZWLQupAQAAQJKxY8emc+fOadu2bbp06ZKXXnopO+64Y4YMGZLf/OY32WOPPfL73/++rJpCNwAAACQ566yzsuWWW+aJJ57I7rvvnm9/+9v51re+lY8//jgfffRRjj/++FxyySVl1bSQGtTBQmoAKz8LqQGs3MpdSK1NmzZ55JFHstVWW2XWrFlZY4018txzz2X77bdPkowfPz7f+MY3ylrFXE83AAAAJPnwww/Tvn37JEnz5s2z+uqrp1WrVtXHW7VqlZkzZ5ZVU+gGAACAxSoqKpa6XS6rlwMAAMBiRx99dJo2bZokmTdvXvr27ZvVV189STJ//vyy6wndAAAAkKRPnz41to888sglzjnqqKPKqil0AwAAQJJhw4Yt95rmdAMAAEBBhG4AAAAoiNANAAAABRG6AQAAoCBCNwAAABRE6AYAAICCCN0AAABQEKEbAAAACiJ0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBgAAgIII3QAAAFAQoRsAAAAKInQDAABAQYRuAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBKkqlUmlFNwKAFW/+/PkZPHhwBgwYkKZNm67o5gCwnLnPw4ohdAOQJJkxY0ZatmyZjz/+OGusscaKbg4Ay5n7PKwYhpcDAABAQYRuAAAAKIjQDQAAAAURugFIkjRt2jSDBg2yuA7ASsp9HlYMC6kBAABAQfR0AwAAQEGEbgAAACiI0A0AAAAFEboBAACgIEI3AAAAFEToBlYKRx99dCoqKqpfrVu3zr777ptXXnlliXOPP/74VFZW5s4771zi2HnnnVddo3HjxmnTpk169OiRK664IvPnz69x7u677159btOmTdOxY8f07t07I0eOrLWNc+fOzeqrr55//vOfGT58eI32Nm/ePNtvv/0S137+PT7/6tu3b/U5jz/+ePbcc8+stdZaWW211bLxxhunT58+WbBgwRKfyxdfnTt3rvF+e+yxR2644YZMnDixxnlNmjTJRhttlF/84hep7aEX7777bpo0aZKuXbvW+rN/vtbqq6+ejTfeOEcffXTGjBlT47zHHnus+rxGjRqlZcuW2XbbbXPWWWdl0qRJtdY+//zzc+SRRyZJOnfuXH19ZWVl1llnnfzoRz/KRx99VOt7fPE1efLkJMmcOXMyYMCAbLjhhmnWrFnWXnvt9OzZM3/4wx+W+Gxqew0fPrzWtgLLrj73+br+N3nbbbdVn3P99ddn6623TvPmzbPmmmtm2223zeDBg5PUvIfU9jr66KOr6yzLPf0zt956ayorK3PSSSctcayc+2A531mfKfc+//n3+PyrS5cu1ee8+eab+cEPfpB11lknzZo1S6dOnfKd73wn48ePX+Kzqe01ceLE6lrl3tM/r0uXLmnatGn1vfzzyvnOru93FtSX0A2sNPbdd99MmjQpkyZNyqhRo9K4ceN8+9vfrnHOnDlzctttt+Wss87K0KFDa62zxRZbZNKkSXn77bfz6KOP5pBDDsngwYPTvXv3zJw5s8a5xx13XCZNmpT/+Z//yd13353NN9883//+9/PjH/94iboPP/xw1ltvvWy00UZJkjXWWKO6vS+++GL22WefHHrooZkwYUKt7/H512WXXZYkGTduXPbdd9/ssMMOeeKJJzJ27NhcddVVadKkSRYtWpQrr7yyxnVJMmzYsOrt5557rvp9Pvzwwzz11FPp3bt39b6//OUvmTRpUl5//fWcf/75ueiii2r93IYPH55DDz00M2bMyN/+9rdaP9fP3vfVV1/N1VdfnVmzZqVbt2656aabljh3woQJ+de//pXnnnsu/fv3z1/+8pd07do1Y8eOXeLcP/zhDznggAOqty+44ILq//xGjBiRJ554Iqeeemqt7/HFz7Vt27ZJkr59+2bkyJG56qqrMn78+Dz44IM5+OCDM23atKy77ro1rjn99NOr/zvz2euwww6r9TMAGqY+9/nP3+M+ex144IFJkqFDh+anP/1pTj311Lz00kt56qmnctZZZ2XWrFlJkueee676mrvvvjtJzXvFlVdeWf0+y3pPT5Ibb7wxZ511Vm699dbMmzev1p+1vvfBcr6zlvU+/8V73KRJk/Lkk08mST755JPsvffe+fjjjzNy5MhMmDAht99+e7bccstMnz49hx12WI3rdt555yW+19Zdd93q91rWe/qTTz6ZuXPn5uCDD85vf/vbWj/Tcr6zy/nOgi9VAlgJ9OnTp/Sd73ynxr6//vWvpSSlDz74oHrf8OHDS9/4xjdK06dPL6222mqlt99+u8Y1gwYNKm299dZL1H/ttddKTZo0KZ199tnV+3r27Fn6yU9+ssS5Q4cOLSUpPfzwwzX2H3vssaX+/fuXSqVSadiwYaWWLVvWOL5o0aLSKqusUrrjjju+9D0+M2TIkFLnzp3rPP5FSUr33HNPrcduuummUrdu3UqlUqn05ptvlpKUXnzxxRrn7LXXXqUTTzyxxr6qqqrSBhtsUHrwwQdL/fv3Lx133HH1ft+jjjqq1KJFi9KHH35YKpVKpUcffbSUpPTRRx/VOG/OnDmlTTfdtLTLLrvU2P/222+XmjRpUvr4449LpVKptN5665WGDBlS45wLL7ywtPnmm1dv1/Uen9eyZcvS8OHD6zz+eXX9dwZYvupzn1/aPa5UKpW+853vlI4++uh6vd+X3SuW5Z5eKpVKb7zxRmnVVVctTZ8+vdStW7fSiBEj6vW+td0Hy/nOKpWW7T7/Zfe4F198sZSkNHHixDrP+bylfa8tyz39M0cffXTpZz/7WemBBx4obbLJJvV+39q+s+v7nQX1pacbWCnNmjUrt9xySzbaaKO0bt26ev+NN96YI488Mi1btsx+++1X72HAXbp0yX777VfnUMHP69OnT1q1alXj3Kqqqtx///35zne+U+s1ixYtqv7L/HbbbVevNiVJ+/btM2nSpDzxxBP1vqYu9957b53tS5Lnn38+Y8aMSbdu3Wrsf/TRRzNnzpz06tUrRx55ZG677bbMnj27Xu952mmnZebMmXn44YeXet6qq66avn375qmnnsoHH3xQo82777571lhjjVqve++993Lfffct0eYv0759+/zpT39aopcI+Oqo6z6/NO3bt88zzzyTt956q0Hv3ZB7+rBhw/Ktb30rLVu2zJFHHpkbb7yxXu9Z132wNnV9Zy3rfX5p1l577TRq1Ch33XVXFi1aVO/rarOs9/SZM2fmzjvvzJFHHlnd6/7Xv/61Xu9Z23d2Xer7nQVfJHQDK437778/zZs3T/PmzdOiRYvce++9uf3229Oo0ae3utdffz3PPPNM9dDfI488MsOGDat1jnJtunTpUmPeWV0aNWqUTTbZpMa5zzzzTJLU+EXh448/rm5vkyZNcsIJJ+S6667LhhtuWKPer3/96+rzPnuNGDEiSXLIIYfk8MMPT8+ePdOhQ4d897vfza9+9avMmDGjXj/TZ+bPn58HH3ywxpC+JOnevXt1+3bccccceuihOeqoo2qcc+ONN+b73/9+Kisr07Vr12ywwQa1zpevzWdzAuvzudZ27heHISZJ//7907x586y66qrp1KlTKioqcvnlly9Rr1OnTjU+0y222KL62HXXXZenn346rVu3zo477pjTTjstTz31VL1+JqA4X3afT5LDDz98iXvm22+/nSQZNGhQ1lxzzXTu3Dmbbrppjj766Nxxxx2pqqoqqx3Lek+vqqrK8OHDq+csf//738+TTz6ZN998s17vW+498/PnNeQ+P3bs2CU+08/WFunYsWP++7//OwMHDkyrVq2y55575sILL8wbb7xRr5/p85b1nn7bbbdl4403zhZbbJHKysp8//vfr/cfM2r7zq5LOZ8/fJ7QDaw09thjj7z00kt56aWX8uyzz2afffbJfvvtV92jMXTo0Oyzzz5p06ZNkmT//ffPxx9/nEceeaRe9UulUioqKpbp3D/84Q/59re/XeMXwxYtWlS398UXX8zFF1+cvn375r777qtR64gjjqg+77PXZ7+UVFZWZtiwYXn33Xdz2WWXpWPHjrn44our59/V1yOPPJK2bdvWCJ5Jcvvtt+ell17Kyy+/nDvuuCN/+MMf8rOf/az6+PTp0zNy5MjqXyCTlNVz89kfPOrzuX7x3BkzZuTxxx9f4he0M888My+99FJeeeWVjBo1KknyrW99a4kemL/+9a81PtM//elP1cd69OiRN954I6NGjcrBBx+cV199NbvttlsuvPDCev1cQDG+7D6fJEOGDFninrnOOuskSTp06JDRo0dn7Nix+clPfpKFCxemT58+2XfffcsK3st6T3/44Ycze/bs7L///kmSNm3aZO+9965zjZEvKvee+fnzlvU+nySbbrrpEp/pBRdcUH38pJNOyuTJkzNixIjsvPPOufPOO7PFFluU1SPckHv60KFDl/geuvPOO+s9Wqm+3+/lfP5Qwwob2A6wHNU212/hwoWl1VdfvXT22WeXFi5cWOrQoUOpoqKiVFlZWf1KUvrBD35Qfc3S5q717t27tMUWW1Rv1zU/bOHChaVWrVqVTjrppOp9Xbp0Kf3+97+v3q5t/l+pVCrts88+Nebrfdmc7tp8+OGHpTZt2pQGDhy4xLHUMU+tb9++pZ/+9KfV23XN9Rs8eHCpcePGpblz55ZKpVLp6quvLiWp8Zk2atSolKQ0YcKEL33fMWPGlJKU7rzzzlKptPQ5lL/85S9rzN287bbbSttss02Nc2qb/zd69Oga8/XqM6e7NhdeeGFplVVWKc2fP7/GfnO64d/jy+7zpdKXz+muzWfzwh955JEa+5d2r1jWe/ohhxyyxD2zoqKitO6665YWLVr0pe/7xftgOd9Zy3qfX5Z7XFVVVWnvvfcu9ejRY4ljdX2vLes9/dVXXy0lKTVq1GiJ7/frrrvuS9+3tu/s+n5nQX3p6QZWWp89bmXu3LnV83NffPHFGn+pv/XWWzNy5MhMnz59qbU+W8H6oIMO+tL3/e1vf5uPPvqo+tzXX389b731Vvbee+8vvbaysjJz586t189Xl1atWqVDhw71nlddKpVy3333LXWe3+fbt3DhwixYsCDJp0PLTz/99Bqf6csvv5zddtutXj03V1xxRdZYY4306tVrqefNnTs31113XXr06JG11147yac9TfVt82c1GmLzzTfPwoUL61xpGPj3+/x9flltvvnmSVLve+ay3tOnTZuWP/zhD7nttttq3DNffPHFfPTRR/nzn/+81Fq13Qfr8sXvrIbc55fFZ48Uq+9nmiz7Pf3GG29Mjx498vLLL9f4XPv161evUVdf/M5emvp+Z8EXNV7RDQBYXubPn1/9bM6PPvoov/rVrzJr1qz07t07V1xxRb71rW9l6623rnHN5ptvntNOOy0jRoyofl7qwoULM3ny5FRVVWXatGl57LHH8otf/CLbbLNNzjzzzBrXz5kzJ5MnT87ChQvz7rvv5p577smQIUNywgknZI899kjy6S8SvXr1ymqrrVbj2lKpVN3euXPn5uGHH85DDz2UgQMH1voen9e0adO0atUqv/nNb/LSSy/lu9/9bjbccMPMmzcvN910U1599dVcddVV9frcxowZkzlz5mTXXXdd4ti0adOqf76xY8fmyiuvzB577JE11lgjL730Ul544YWMGDGixvNak0/nVF5wwQX5xS9+kcaNP/2qmT59eiZPnpz58+fnH//4R37zm9/k97//fW666aasueaaNa7/4IMPMm/evMycOTNjxozJZZddlqlTp1YvdLNw4cI88MADOeOMM5Zo88yZMzN58uSUSqW88847Oeuss7L22mune/futb7H57Vu3TqrrLJKdt999xx++OHZYYcd0rp164wbNy4///nPq392YMVY2n3+M5/daz6vRYsWWX311XPCCSdknXXWyZ577plOnTpl0qRJ+cUvfpG11147O++8c73asKz39JtvvjmtW7fOoYceusTw5P333z833nhj9t133+p9X3Yf/Ex9vrOW9T7/xff4vIqKirRr1y4vvfRSBg0alB/+8IfZfPPN06RJkzz++OMZOnRo+vfvX6/PdFnv6Z988kluvvnmXHDBBenatWuN6/7jP/4jl19+eV599dXqIfX1+c7+TDnfWfClVmQ3O8Dy0qdPn1KS6leLFi1KO+64Y+muu+4qTZ48udS4ceMlHtvymRNOOKG07bbblkqlT4fRfVajsrKytNZaa5V23XXX0pAhQ0rz5s2rcV3Pnj2rz23SpEmpQ4cOpW9/+9ulkSNH1jhv1113LV1//fU19g0bNqxGe5s2bVraZJNNShdddFFp4cKFtb7H51/77LNPqVQqlV544YXSkUceWVp//fVLTZs2LbVu3brUo0eP0r333lvrz5pahsydc845pSOOOKLGvs+GHX7+s+jUqVPpuOOOqx7WePLJJ9f62JZSqVSaNGlSqVGjRqU//OEP1e/72atZs2alDTfcsNSnT5/SmDFjalz32bDKJKWKiopSixYtSltvvXXpzDPPLE2aNKn6vL/85S+lTp06LfG+6623Xo33WnvttUv7779/jeGTn3+PL75Gjx5dKpVKpYsvvri08847l9Zaa61Ss2bNShtssEHp1FNPLU2dOnWJ9zS8HP49lnaf/0xd/9sePHhwqVQqle66667S/vvvX+rQoUOpSZMmpXXWWad00EEHlV555ZUl3q+uYd7Lek/fcsstl3jk4mduv/32UpMmTUpTpkyp932wVKr/d9ay3ue/+B5f/BlLpVJpypQppVNPPbXUtWvXUvPmzUstWrQobbnllqX/+q//qh4y/3m1DfNe1nv6XXfdVWrUqFFp8uTJtX6um222Wem0006rft/6fGeXSvX/zoL6qiiV6rlsLwBlmzp1ajp06JB333037dq1W9HNqdVWW22Vc845J4ceeuiKbkq9nXrqqVm4cGF+/etfr+imAP+HfB3u6bX5qt/n3dNZ2RleDlCgDz/8MJdffvlX9pezBQsW5KCDDsp+++23optSlq5du9Z7KCjA8vJVv6fX5utwn3dPZ2WnpxsAAAAKYvVyAAAAKIjQDQAAAAURugEAAKAgQjcAAAAUROgGAACAggjdAAAAUBChGwAAAAoidAMAAEBBhG4AAAAoyP8HDFrZf5rgVMQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_clustermap = model.clustermap(\n", + " # Create a heatmap and dendrogram for pathogen genomes in data passed.\n", + " 'transmissibility_function_reassortment_example_clustermap.png', \n", + " # File path, name, and extension to save plot under.\n", + " data,\n", + " # Dataframe with model history.\n", + " save_data_to_file='transmissibility_function_reassortment_example_pairwise_distances.csv',\n", + " # File path, name, and extension to save data under.\n", + " num_top_sequences=24\n", + " # How many sequences to include in matrix.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXsAAALmCAYAAAAT90eJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AADa5ElEQVR4nOzdd3hUZfrG8fvMTHohJHRC74LSi4sISFEQQRQRcRVU0B8qq66iiwWwo667KqjIUi00EUREBFG60kFpoSOEDoH0NjPn90fMkCGTAGGSkOH7ua5cnJzznvd9ZhAwd948xzBN0xQAAAAAAAAAoESzFHcBAAAAAAAAAIArR9gLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA+wFXcBuDqkpaVp69atkqSyZcvKZuM/DQAAAAAAvM1ut+vUqVOSpOuvv16BgYHFXBEAX0KiB0nS1q1b1apVq+IuAwAAAACAa8a6devUsmXL4i4DgA+hjQMAAAAAAAAA+AB29kJSVuuGbOvWrVPFihWLsRoAAAAAAHzTsWPHXD9Zm/NrcQDwBsJeSJJbj96KFSsqOjq6GKsBAAAAAMD38bwcAN5GGwcAAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4gGs27D158qS+//57jRgxQt26dVOZMmVkGIYMw9DAgQMve76FCxeqd+/eio6OVkBAgKKjo9W7d28tXLjwkuew2+0aN26c2rVrp7JlyyooKEi1atXSY489pu3bt192TQAAAAAAAACuHbbiLqC4lC9f3ivzOJ1OPfroo5o4caLb+SNHjujIkSP69ttvNWjQIH322WeyWPLO1k+fPq3u3btr/fr1buf379+v8ePHa+rUqRo7dqwGDRrklboBAAAAAAAA+JZrdmdvTlWrVlXXrl0LdO9LL73kCnqbNm2q6dOna926dZo+fbqaNm0qSZowYYJefvnlPOdwOBzq3bu3K+i96667tHDhQq1du1YfffSRypUrp/T0dD322GOXtVMYAAAAAAAAwLXDME3TLO4iisPIkSPVsmVLtWzZUuXLl9fBgwdVo0YNSdKAAQM0ZcqUi86xe/duNWzYUHa7XS1atNCKFSsUFBTkup6SkqL27dtrw4YNstls2rlzp2rXrp1rnkmTJumRRx6RJD3++OP6+OOP3a7v3btXzZs3V0JCgmrXrq2dO3fKZvPupuzY2FhVqVJFknT48GFFR0d7dX4AAAAAAMDX3wAK1zW7s/fVV19Vjx49rqidwwcffCC73S5JGjNmjFvQK0nBwcEaM2aMpKx+vP/97389zvPvf/9bkhQZGan33nsv1/XatWtr+PDhkrKC37lz5xa4ZgAAAAAAAAC+6ZoNe6+UaZqaN2+eJKl+/fpq06aNx3Ft2rRRvXr1JEnz5s3ThRupd+/erZ07d0qS+vbtq+DgYI/z5HxoHGEvAAAAAAAAgAsR9hbQgQMHdPToUUlS+/bt8x2bff3IkSM6ePCg27VVq1blGudJhQoVVLduXUnS6tWrC1IyAAAAAAAAAB/m3cav15AdO3a4juvXr5/v2JzXd+7c6eoNXJB5du/ercOHDys5OVkhISGXXG9sbGy+148dO3bJcwEAAAAAUFxMR7rsCbtlP7dT9vidf/0ao5BGzyq41gPFXR4AFCvC3gLKGZ5erJl6duN1Kav5+pXOY5qmYmNjXe0hLkXOGgAAAAAAuNo5M+LPB7rxWYGu/dxOOZL2S6Yz13h73BaJsBfANY6wt4ASExNdx6GhofmOzbkDNykpqVDmAQAAAACgpDFNU87UYzlC3RjXbl1n6uX9BKr93M5CqhIASg7C3gJKS0tzHfv7++c7NiAgwHWcmppaKPNczIU7ii907NgxtWrV6rLmBAAAAADgUphOhxxJ+10tF3K2XzAz472yhj0+xivzAEBJRthbQIGBga7jjIyMfMemp6e7joOCgvKdJ+fnlzPPxVysRQQAAAAAAFfKtKfKHr/rfKCbHeom7Jac+X/tfLkswdGyRTSQrdRfHxHXeXV+ACiJCHsLKCwszHV8sZYKycnJruMLWzVcOE9+YW9+8wAAAAAAUFSc6XGuHro5Q11H0kFJpvcWMqyyhtU+H+q6wt16sviFXfx+ALjGEPYWUM6dsjkfsuZJzhYKFz4o7cJ5ypQpc9F5DMNgpy4AAAAAoFCZpilnypEcLRfO/+pMO+nVtQxbsKyl6ufYpdtAtlL1ZQurLcOaf8tDAMB5hL0FdN115388JCYm/75AOa83aNAg33maNGly0XmqVKni9rA2AAAAAAAKynTa5Ujcl2uXrj0+Rqbduw8HtwSUce3OdYW7EQ1kDakiw7B4dS0AuBYR9hZQjRo1VKlSJR09elTLly/Pd+yKFSskSZUrV1b16tXdrt10002u4+XLl6tfv34e5zh+/Lh2794tSWrbtu0VVA4AAAAAuBY5M5PlSNiVO9RN3Cs5M726ljWk2vnduTnaL1gC8/5pVgDAlSPsLSDDMNSrVy99+umniomJ0Zo1a9SmTZtc49asWePakdurVy8ZhuF2vW7dumrQoIF27typWbNm6f3331dwcHCueaZMmeI67t27t3dfDAAAAADAZzjTTntovRAjR/Kf3l3I4idbeJ3zgW72Lt3werL48dOoAFAcCHuvwNNPP63x48fL4XBo6NChWrFihYKCglzXU1NTNXToUEmSzWbT008/7XGe5557To888oji4uL0/PPPa+zYsW7X9+3bp7fffluSVLt2bcJeAAAAALjGmaZTjuTDrkDXER/jCnad6ae9upZhC80KdF0PR/sr1A2rKcPi59W1AABX5poNe1etWqW9e/e6Pj99+vw/hnv37nXbSStJAwcOzDVH3bp1NWzYMI0ePVobNmxQ27Zt9cILL6hWrVrat2+f3nnnHW3evFmSNGzYMNWpU8djLQMGDNCkSZO0evVqffzxxzp+/LgGDx6s0qVLa926dXr99deVkJAgi8Wijz76SDbbNfvbBgAAAADXFNORIXviXtnjY9zaLzjiY2TaU7y6liWwnFvLBVfrheDKuX5KFQBwdTJM0zSLu4jiMHDgQE2dOvWSx+f1NjmdTg0ePFiTJk3K895HHnlE48ePl8WSd7P506dPq3v37lq/fr3H6wEBARo7dqwGDRp0yTVfjtjYWFWpUkWSdPjwYUVHRxfKOgAAAACA3JyZibLH78rVfsGRuE8y7V5cyZA1tHquXbq2UvVlCYj04jrIC19/AyhMbBG9QhaLRRMnTtTdd9+t8ePHa/369Tp9+rTKlCmjli1b6rHHHlO3bt0uOk+ZMmX066+/6n//+5+mTZumnTt3Kjk5WZUqVVKnTp301FNPqWHDhkXwigAAAAAAhcE0TTnTTrkHutmtF1JivbuYxV+28Lq5Q93wujJsQRe/HwBQIl2zO3vhju8sAgAAAIB3mKZTjqQ/PYa6ZsZZr65l+IV7aL1QX9bQGjIs7O+6GvH1N4DCxN/8AAAAAAAUgOlIlz1hT67WC/aEXZIjzatrWYIq5tilW98V7FqCKtJPFwDgQtgLAAAAAEA+nBnxuR6QZo+P+aufrtN7CxkWWUNrunbnutovlKovS0CE99YBAPgswl4AAAAAwDXPNE05U49f0HohRvb4nXKmHPXuYpYA2UrVy91+IayODFugd9cCAFxTCHsBAAAAANcM0+mQI+lAjlA35nw/3cx4r65l+Ee4B7p/HVtDqsmwWL26FgAAEmEvAAAAAMAHmfZU2RN2uwe68Ttlj98tOdO9upYluLLHUNcSWI5+ugCAIkXYCwAAAAAosZzpZ91252aHuo7EA5JM7y1kWGUNq5W79UJ4PVn8w723DgAAV4CwFwAAAABwVTNNU86Uo+d35547/6sz7YR3F7MGZT0cLecu3VL1ZQuvI8Pq7921AADwMsJeAAAAAMBVwXTa5Ujcn2uXrj0+RmZmolfXMgKiLmi9UF+2Ug1kDa0qw7B4dS0AAIoKYS8AAAAAoEiZ9hTZ43flDnUT9kjOTK+uZQ2pev7BaH8FuraIBrIGlvXqOgAAXA0IewEAAAAAhcKZdiZ364X4GDmS/pR3++naZAuv4xbo+pVqIGuperL4hXpvHQAArnKEvQAAAACAAjNNU87kw7kCXXv8TjnTTnl1LcMWcr7lQo6eutbwWjIsfl5dCwCAkoiwFwAAAABwUaYzU/aEva5Q1/FXoGuPj5FpT/bqWpbAcq4euq5QN6KBLMHRMgzDq2sBAOBLCHsBAAAAAC7OzCTXzlx7fIxrt64jYa9k2r24kiFraLULHpKWtWvXEhjlxXUAALh2EPYCAAAAwDXGNE05007lCnTt8TvlTD7s3cUsfrKF1/UQ6taVYQv27loAAFzjCHsBAAAAwEeZplOOpD/P79TNEeqa6XFeXcvwCzsf5Eac36VrDaspw8KXngAAFAX+xQUAAACAEs50ZMiesMcV5J4PdXdJjlSvrmUJqpAr0LWVaiBLcCX66QIAUMwIewEAAACghHBmJHjcpetI3C+ZDu8tZFhkDa2RI9Stf76fbkBp760DAAC8irAXAAAAAK4ipmnKmXrCwy7dGDlTjnh3MUuAbKXqnd+hm71bN7yuDFugd9cCAACFjrAXAAAAAIqB6XTIkXTwfKib40FpZsY5r65l+EfkDnRLNZA1tLoMi9WrawEAgOJD2AsAAAAAhci0p8mesDtXoGtP2C050ry6liW48vmWCzlCXUtQefrpAgBwDSDsBQAAAAAvcKafOx/o5mi/4Eg6IJlO7y1kWGQNq+UKcnM+KM3iH+69dQAAQIlD2AsAAAAAl8g0TTlTjp4PdHOEus7U495dzBp0vp9ujl26tvDaMqwB3l0LAAD4BMJeAAAAALiA6bTLkXTgfMuFHA9JMzMTvLqWERDpYZduA1lDq8owLF5dCwAA+DbCXgAAAADXLNOeKnv8rly7dO0JeyRnhlfXsoRUuSDUzeqtawksSz9dAADgFYS9AAAAAHyeMz0ux+7cnP10/5Rkem8hwyZreG1XD123frp+od5bBwAAwAPCXgAAAAA+IaufbqzH1gvOtJNeXcuwhchWqr6sf+3OdYW6YbVkWP29uhYAAMClIuwFAAAAUKKYzkw5Evad36UbH/NXsBsj057k1bUsgWVd7RZyhrqWkGj66QIAgKsOYS8AAACAq5IzM1mO+Bhlxu+UIz7m/G7dxL2SM9Ora1lDqp3fnZvjIWmWwCivrgMAAFCYCHsBAAAAFCtH2inZz10Q6MbvlCP5kHcXsvjJFl4n1y5dW6l6MmzB3l0LAACgGBD2AgAAACh0pumUI+lQVsuFCx6SZqaf8epahl+Yx9YL1rCaMix8CQQAAHwX/6cDAAAAwGtMR4bsiXtzPBwtK9R1JOySaU/x6lqWwPIeWi/UlyW4sgzD8OpaAAAAJQFhLwAAAIDL5sxMzPFgtBytFxL3SabDiysZsobVuGCXbtauXUtAaS+uAwAAUPIR9gIAAADwyDRNOdNO5tqla4/fKWfKEe8uZgmQrVTd86FuqfpZwW54XRm2IO+uBQAA4KMIewEAAIBrnOl0yJH8p4dQN0ZmxlmvrmX4lXJrueDqpxtaQ4bF6tW1AAAArjWEvQAAAMA1wnSky56w+4LWCzGyJ+ySHGleXcsSXMnjQ9IsQRXopwsAAFBICHsBAAAAH+PMiM+xSzfm/EPSkvZLptN7CxkWWUNr5tipe76nrsW/lPfWAQAAwCUh7AUAAABKINM05Uw9dn53bo72C87UY95dzBooW3i986Fu9q/hdWRYA7y7FgAAAAqMsBcAAAC4iplOhxxJ+7MC3QvaL5iZ8V5dy/Av7WGXbgNZQ6rSTxcAAKAEIOwFAAAArgKmPdW9n252qJuwW3JmeHUtS3C059YLgeXopwsAAFCCEfYCAAAARciZfjbH7tydOfrpHpRkem8hwyprWO0LWi/Uzwp1/cK8tw4AAACuGoS9AAAAgJeZpilnyhH3UPevX51pJ726lmELlrVU/fO7dEvVzwp2w2rLsPp7dS0AAABc3Qh7AVwyZ2aSUndPkD0+RrbIxvKv0EG2UvX5cU8AwDXLdNrlSNyXu/VCfIxMe5JX17IElDnfQzc73I1oIGtIFRmGxatrAQAAoGQi7AVwUaYzUym7Jyhpy6typp1wu2YJLC//Ch3kX6GDAip0kLVUPcJfAIDPcWYmy5GwK0eoG5P1a8IeyZnp1bWsIdVytFw4/5A0S2AZr64DAAAA30PYCyBPpmkq7c/ZStz4ohyJez2OcaadUNrBmUo7OFNSjvC3Yses8De8LuEvAKDEcKaddtud6+qnm/yndxey+MkWXud8oJu9Sze8nix+Id5dCwAAANcMwl4AHqUfW6rEjS8o8/T6y7ovV/gbVCHHzt+OsobXIfwFABQr03TKkXw4K8TNDnT/CnWd6ae9upZhCz3fQzdnqBtWU4bFz6trAQAAAIS9ANxkntmixI3/UvrRRXmO8SvbRo7kw3KmHLnofM7U40o7MENpB2ZIkixBFV0tH/wrdCD8BQAUGtORIXvi3qwdujl66jriY2TaU7y6liWwnFvLBVfrheDK/DsHAACAIkPYC0CSZE88oMTNryht/1d5jvEr00phzd9RQMUOMk1TjsT9yji+TOnHlyrj+LJLDH+PKe3AdKUdmC5JsgRXcg9/w2rzRTEA4LI4M5PcWi64Wi8k7pNMuxdXMmQNre6+S/evXbuWgEgvrgMAAAAUDGEvcI1zpJ1S0u9vKmXXJ3k+YMYaXldhzd5SYLW7XEGsYRiyhdeSLbyWgus+8lf4u++v8HeZMo4vlTPl6EXXd6YcVdr+aUrbP03SheFvR1nDahH+AgBkmqacaafcA93s1gspsd5dzOIvW3jdHKFudl/dujJswd5dCwAAAPAiwl7gGuXMTFbyjv8qedu7MjMTPY6xBFVQWJNXFVTnoYv2FcwKf2vLFl5bwXUH/RX+7j0f/h5bKmfqsYvXlSv8rXzBzl/CXwDwZabplCPpz9yhbnyMzPQ4r65l+IXnaLlQ/3w/3dAaMiz8bzIAAABKHv4vFrjGmM5MpeyeqKTfX5Uz9bjHMYZfuEKvf0HBDZ4q8BPBs8LfOrKF11Fw3cHnw99jS//a+bvsEsPfI0rb/5WrvYQlONoV/GaFvzUJfwGgBDId6bIn7Lkg1I2RPX6X5Ej16lqWoIruge5foa4lqCL/hgAAAMCnEPYC1wjTNJX25zdK3PSiHAl7PA+y+Cuk/hMKveFFWQLLeHV9t/C33qNZ4W/CHveev3mEzzk5U2KVuv9Lpe7/Mqvk7PC3Yses8De0Bl+4A8BVxJmR4CHQ3SlH4n7JdHhvIcMia2hNVw/dnD11LQER3lsHAAAAuIoR9gLXgPRjy5S48QVlnl6XxwhDQbX+rtAmr8kWVr1IajIMQ7ZSdWUrVTdH+Lvbtes349hSOdNOXHSeXOFvSJUcO387yhpanfAXAAqZaZpyph7PEerGuNovXEr/9stiCZCtVL0c7Rf++jWsjgxboHfXAgAAAEoYwl7Ah2XG/a7EjcOVfmRhnmMCKndTWPO35RfZuAgryy0r/K0nW6l6Cqn3WFb4G7/rfPh7fNmlhb/Jh5W67wul7vtCkmQNqepq+eBfoYNsYTUK+6UAgM8ynQ45kg6c36F77vxD0szMeK+uZfhHuAe62f10Q6rJsFi9uhYAAADgKwh7AR9kTzyopC0jlLrvS0mmxzF+ZVoqrPk7CqjYsWiLu0SGYcgWUV+2iPoKqf9/F4S/f7V9SDt50XkcyYeUuu9zpe77XJJkDal2QfhbvZBfCQCUPKY9VfaE3e6BbvxO2eN3S850r65lCa7sMdS1BJbjJzMAAACAy0TYC/gQZ9ppJf3xlpJjPpacGR7HWMPrKKzZWwqsdneJ+iLaU/hrj49x7fq99PD3T6Xum6rUfVMlXRD+VuwoW2i1wn4pAHDVcKafPd9yIUeo60g8oLy+WVgghlXWsFq5Wy+E15PFP9x76wAAAADXOMJewAc4M5OVvOMDJW97V2ZmgscxlsDyCm0ySsF1H5Fh8SviCr3PMAz5RTSQX0QDhdQf8lf4u/OC8PfURefJFf6GVnff+Uv4C6CEM01TzpSj53fn5mi9cCntcS6LNcjjA9Js4XVkWP29uxYAAACAXAh7gRLMdGYqZc8kJW0ZJWfqcY9jDL8whTR6QSHXPS2LX0gRV1h0ssLf6+QXcZ1C6j9+Pvw9tvR8+Jt++qLzOJIOKnXvFKXunSJJsobWcAW/ARU6yBpatZBfCQAUjOm0y5G4P9cuXXt8jMzMRK+uZQRE5dilW98V7FpDq8owLF5dCwAAAMClI+wFSiDTNJX25xwlbnpRjoTdngdZ/BRS/wmF3PCirIFli7bAq4Bb+Nvgiazw99yOv4Lfpco4vvwSw98DSt17QKl7J0vKEf5W7JgV/oZUKeyXAgBuTHuK7PG7Lgh1Y2RP2JNnC5+CsoZUzQpxc+7WjWhwTf67AgAAAJQEhL1ACZN+fLkSNzyvzNPr8hhhKKjm/Qpt+ppsYTWKtLarmWEY8ivdUH6lG/4V/jpzhL/LlH58mcz0MxedJ1f4G1ZLoY2eV1DdwSWqBzKAq58z7cwFrReyeus6kv6Ud/vp2mQLr+MW6PqVaiBrqXqy+IV6bx0AAAAAhY6wFyghMuP+UOKm4UqP/SHPMQGVb1NYs7flF9Wk6AoroQzDIr/SjeRXupFCGjz5V/i7PUf4u/zSwt/EfYr/7THZE3YprMW/CXwBXBbTNOVMPpwr0LXH77ykvuOXw7CFnG+5kKOnrjW8lk/0cgcAAABA2Atc9exJfypp8wil7vtCee3k8otqobAW7yig4i1FW5wPyQp/r5df6esV0mCoW/ibfmypMk4sl5kel+f9ydv/I9ORpvDWY+hXCSAX05kpe8LerJ258TFu7RdMe7JX17IElj3/cLQcrRcswdF8QwoAAADwcYS9wFXKmXZGSVvfUvLOsXn2YLSG1VZY87cUWK0PX8B7mcfw9+w2V8sHT+FvSswnMh0ZKnXjOBkWazFVDqA4OTOT/tqdG+PWU9eRsFcy7V5cyZA1tFquXbq2UvVlCYzy4joAAAAAShLCXuAqY9pTlLzjQyVtHS0zM8HjGEtgeYU2GanguoP40dsiYhgW+UXeIL/IGxRy3T9kmk6l7vtC8asflkyna1zqngmSM12l2k6SYeGvWMAXmaYpZ9qpXIGuPX6nnMmHvbuYxU+28LoeQt26MmzB3l0LAAAAQIlHEgFcJUynXal7Jytx80g5U495HGPYQhVy/fMKue4ZHppTzAzDouDaA2TYgnVueX+3HXup+76Q6UhXxM1fEsYDJZhpOuVIOnTBQ9KyPvJr61IQhl9Y7tYLperLGlaTbxwBAAAAuGR89QAUM9M0lXZorhI3vihHwi7Pgyx+Cq73uEIbvyRrYNmiLRD5Cqp+jwxLgM4uu8et3UbawVk660hX6Q4zZVgDirFCABdjOjJkT9jjIdTdJTlSvbqWJahCrkDXVqqBLMGVaMcDAAAA4IoR9gLFKP34CiVueF6Zp9fmOSaw5v0Ka/qabGE1i7AyXI7Aqj1V+pZ5Oru0t+RIc51PPzxPZ3/prdIdv5FhCyrGCgFIkjMjwWPrBUfifsl0eHElQ9awmufD3BzBriWgtBfXAQAAAAB3hL1AMcg8u1WJG4crPXZBnmMCKt2qsOZvyy+qaRFWhoIKjL5NkZ2+19lfesq0p7jOpx9ZqLife6r0Ld/K4hdSjBUC1wbTNOVMPXHBLt2sgNeZcsS7i1kCZCtVz7U71xXqhteVYQv07loAAAAAcAkIe4Ei5Eg6pMTNI5S673NJpscxflHNFdb8HQVU6lS0xeGKBVTqpMguPyrup+4y7Umu8xnHlujsku4q3fl7WfzCirFCwHeYToccSQf/CnXdd+uaGee8upbhV+p8kJvjIWnW0OoyLFavrgUAAAAAV4KwFygCzrQzStr6tpJ3jpWc6R7HWMNqKazZWwqs3keGYSniCuEt/uXbKbLrT4r76TaZmfGu8xknVihu8a2K7LJQFv9SxVghULKY9jTZE3bnbr+QsNutbYo3WIIreXhIWgNZgsrTTxcAAABAiUDYCxQi056i5B0fKWnraLfgLydLYDmFNhmp4DqDZFj9i7hCFAb/cm0UdevPOvNTV5npca7zmad+U9yizorsukiWgMhirBC4epn2VKXsHq/0o0uy+ukmHZBMp/cWMCyyhtXyEOrWl8U/3HvrAAAAAEAxIOwFCoHptCt17xQlbhkpZ8pRj2MMW6hCGg1TSMN/yuIXWsQVorD5lWmuqFuXKm5xZznTTrnOZ57ZoDM/3qLIW3+SNbBsMVYIXF1M01T6oW+VsP6fciQdvPIJrUF/9dN1D3Rt4XVkWAOufH4AAAAAuAoR9gJelBVWzFPCpuFyxMd4HmTxU3C9/1PoDS/LGlSuaAtEkfKLvEGRty1T3KJOcqYed523n/1dcT92UGTXn2UNrlCMFQJXB/u5GMWve0oZRxdf9r1GQOQFu3Tr/9VPtxotcQAAAABccwh7AS/JOLFSCRteUOap3/IcE1jjPoU1fV228FpFWBmKk1/EdYrqtkJnfrxFzpRY13n7uR0682N7Rd36s6wh0cVYIVB8nJmJStrympJ3fCCZ9nzHWkKqnA91S9V37da1BJalny4AAAAA/IWwF7hCmWe3KXHTi0o/PD/PMf6Vuiq8+dvyi2pWhJXhamELr6OobisUt+gWtx9PdyTs1pmFNyvy1l9kC6tebPUBRc00TaXu/0qJG56XM/WYxzH+5dsrqO4j5/vp0u4GAAAAAC6KsBcoIEfSISVuGanUfZ/n+fAgW1QzhTd/RwGVOhdxdbja2MJqKOq25TqzqJMciXtd5x1JBxT3Y3tF3vqzbOG1i7FCoGhkntmi+LVPKvPkao/XLcGVFd7yfQVW78uOXQAAAAC4TIS9wGVypscp6Y+3lbxzjORM9zjGGlZTYc3eUmD1e+gZCRdraFVFdfsr8M3R09mRfCirpUPXn2WLqF+MFQKFx5kep8RNLytl92eev0Fm8VdIw2cVesOL7OIFAAAAgAIi7AUukWlPVfLOj5T0x9syM+M9jrEEllVo45EKrjtYhtW/iCtESWANrqSo25YrbnFn2c9udZ13phzVmb92+PqVblSMFQLeZTodStkzQYmbXpKZfsbjmIDo7gpv9YFs4XWKuDoAAAAA8C2EvcBFmE67UvdOVeKWkXKmHPE4xrCFKKTRMIU0/KcsfmFFXCFKGmtQOUXdulRnfuoq+5lNrvPOtJM682MHRXX9SX5RTYuxQsA7Mk7+qvi1Q93+O8/JGlZL4a0+UGCVHkVcGQAAAAD4JsJeIA+maSr98HdK3Dhc9vidngcZNgXX+z+FNn5Z1qDyRVsgSjRLYJSiuv6suJ9uU+bpta7zZvoZnVl0iyK7LpZ/mZbFWCFQcI6U40rc+EJWT3NPrEEKveElhTZ8VoYtsGiLAwAAAAAfRtgLeJBxYpUSNr6gzJO/5jkmsEY/hTV9nYdqocAsARGK7LpYcUtuV+bJVa7zZsY5xS3qpMjOC+Vfvm0xVghcHtOZqeSdY5S0ZZTMzESPYwKr36PwFv+WNbRqEVcHAAAAAL6PsBfIIfPsdiVuelHph7/Lc4x/xc4Kbz5afmWaF2Fl8FUW/3BFdlmosz/3VMbxpa7zZmai4n66VaU7fa+Aih2Kr0DgEqUfXaKEtf/I8ychbBHXKbz1GAVUvKWIKwMAAACAawdhLyDJkXxYiVtGKXXvFM9PiZdki2yq8BbvKKBSl6ItDj7P4heqyM4LdPaX3ko/ush13rQnK25JN0XeMk8BlbsWY4VA3uxJfypx/bNK+/Mbj9cNv3CFNXlVwQ2ekGHxK+LqAAAAAODaQtiLa5oz/aySto5W8s6PJEeaxzHWsJoKa/qmAmv0lWFYirhCXCsMW5BK3/Ktzi7vq/TD889fcKQp7uc7VLrjNzzEClcV056qpG3vKWnraMmR6nFMUO2BCms+mp7mAAAAAFBECHtxTTLtqVl9Jbe+LTPjnMcxlsCyCm08QsF1H5Vh9S/aAnFNMmyBKt1hts6t6O++S9KZobNL71JE+xkKqnZX8RUI6PzDKxPWPSNH0gGPY/yimiu89Vj5l2tTxNUBAAAAwLWNsBfXFNNpV+q+z5W4eYScKUc8jjFsIQpp+JxCGj0ri19YEVeIa51h9VdE+xk6t2qA0vZPO3/Bmalzy/pK7b5UUM1+xVcgrmn2+F1KWPuUW7uRnIyAKIU3f1tBtR+WYbEWcXUAAAAAAMJeXBOydqLNV+Km4bKf2+F5kGFTcL3HFNr4FX7kGMXKsNgUcdPnirf4Z/WRzmY6dG7l/TKd6QquPaDY6sO1x5mZqKTf31Dyjv9KzszcAwyLgusNUVjT12QJiCz6AgEAAAAAkgh7cQ3IOLFaCRtfUObJ1XmOCax+r8KavSFbeO0irAzIm2GxqlTbiTIsAUrZ/dn5C6ZT8asekpwZCq47uPgKxDXBNE2lHZiuhA3D5Ew56nGMf/l2Cm89Rn6RjYu4OgAAAADAhQh74bMyz+1Q4sYXlX54Xp5j/CveorDm78i/TIsirAy4NIZhUfiNn0rWAKXs/CjHFVPxvz4q05GukAZPFlt98G2ZcX8oYe2Tyjix0uN1S3Alhbd4T4E17pNhGEVcHQAAAADAE8Je+BxHcqwSt4xS6t7Jkun0OMYW2UThzd+Rf6UuhBS4qhmGofBWH8iwBih523tu1xLWDpXpSFdoo2eLqTr4Imf6WSVuHqGUXZ94/jvU4qeQ6/6p0MYv0dccAAAAAK4yhL3wGc70s0ra+o6Sd34oOdI8jrGG1lBYszcUWKOfDMNSxBUCBWMYhsKavyPDGqik3193u5a44TmZjjSFNX6pmKqDrzCdDqXunaTEjS/KmX7a45iAyrcpvNUHspWqV8TVAQAAAAAuBWmXl2RkZGjChAm69dZbVbFiRQUEBCg0NFT16tXTQw89pF9//fWS5lm4cKF69+6t6OhoBQQEKDo6Wr1799bChQsL+RWUXKY9TUnb/q2T39RS8rZ3PAa9loAyCm/9kcr2jlFQzf4EvShxDMNQWNPXFNr0jVzXkja/rMRNr8g0zWKoDL4g49RanVnQRvG/Puox6LWG1lDpW+apdOcfCHoBAAAA4CpmmKQDV+zPP//U7bffru3bt+c7bujQofrwww89tg1wOp169NFHNXHixDzvHzRokD777DNZLN4PKmNjY1WlShVJ0uHDhxUdHe31NbzNdDqUuu8LJW4ZIWfyYY9jDFuIQho+q5CGz8riH17EFQKFI2nb+0rc8Fyu8yGNhmXtAL4GW5OY9hQ5Uo/LmX5G1pCqsgaVL+6SSgRH6gklbvyXUvdO8TzAGqjQG15UaMPnZNiCirQ2AAAAX1USv/4GUHLQxuEKZWZmugW9N9xwg/75z3+qXr16SkxM1KpVq/T+++8rOTlZY8aMUaVKlfSvf/0r1zwvvfSSK+ht2rSpnn/+edWqVUv79u3Tu+++q82bN2vChAkqW7as3nrrrSJ9jVcb0zSVHvu9EjcOl/1cHgG7YVNwvUcVesMrsgZXKNoCgUIW2uhZGdZAJax1fzhb8rb3ZDrSFN7K8zeVShrTmSln6kk5U49nBbk5fnWmHpcz7YTrczMz0e1ev3I3KahmfwVW7yNrYNliegVXL9OZqZSdHytxy0iZmQkexwRWu1thLd+XLbRaEVcHAAAAACgodvZeodmzZ+uee+6RJN14441auXKlrFar25iNGzfqxhtvVGZmpiIiInTq1CnZbOdz9t27d6thw4ay2+1q0aKFVqxYoaCg8zuoUlJS1L59e23YsEE2m007d+5U7dq1vfo6StJ3Fk3T1JkFNyrz9FqP1wOr91VYszdkC69TxJUBRStl9/8U/+tjktz/Gg+u+6jCb/z0qmxXYppOmelxHsNbtyA39USefWMvi2FVQKUuCqxxnwKr3skOf0npx35Rwtp/5PnNMmup+irVeowCKnUu4soAAACuDSXp628AJQ87e69Qzl68w4cPzxX0SlLz5s3Vo0cPzZ07V+fOndPOnTt1/fXXu65/8MEHstvtkqQxY8a4Bb2SFBwcrDFjxujGG2+U3W7Xf//7X3388ceF9IqufoZhKKzFO4r7sYPbef8KHRXW4h35l2lZPIUBRSy47mDJEqD41Q9JptN1PmX3eJmOdJVqO1GGJfffSd5mmqbMzMRcu209B7knJdNe6DWdL86h9CM/Kv3Ij4q3Biow+nYF1uyvwMrdZdgCi66Oq4Aj6ZASNjyntINfe7xu+IUptPFIhTQYKsPqX8TVAQAAAAC8gbD3CmVkZLiOa9asmee4WrVqebzHNE3NmzdPklS/fn21adPG4/1t2rRRvXr1tGvXLs2bN09jx471iR/TLqiACu0VEN1d6bE/yFa6scJbvCP/Sl2v6fcE16bg2g/KsAbo3Ir7JdPhOp+6b6pMZ4Yi2n0uw1Kwv+pNe5ocaScuCGxPeAxy5Uj11ku6QoYu3Ons4khT2p/fKO3Pb2T4hSuwam8F1bxP/hU7Ffg9KglMe5qStr+vpD/ezPP3KajWgwprPlrW4IpFXB0AAAAAwJt896vbIlKv3vmnku/fv18NGzb0OG7fvn2Ssnal1qlzvr3AgQMHdPToUUlS+/bt812rffv22rVrl44cOaKDBw+qRo0aV1p+iRbW/B0F1eivwJr3XZU/rg4UlaAa98qw+Ovs8nslZ6brfNqB6TrnzFDEzdNcOzVNp0POtFOed96muQe5Zsa5YnpFFzBssgSVkyWogqxBFWT568Oa89fA8rIEVZBhDVD6kUVKPTBdaYfm5RlumpkJSt03Van7psoSWFaB1e9RUI375Ffubz7190na4e+VsO4pORL3e7xui2yqUm3Gyr/c34q4MgAAAABAYSDsvUL33XefXn75ZSUkJOidd95R9+7dc7Vy2Lx5sxYsWCBJ6t+/v8LDz/eM3LFjh+u4fv36+a6V8/rOnTsvK+yNjY3N9/qxY8cuea6rhV/pRvIr3ai4ywCuCoHVeqt0x7k6u/RuyZnuOp/25zc6Pb+pZPhlBbvpp9xaPhQnS0AZWYLK5wpvLwxyjYDIywpgA6v2VGDVnnJmJin98HdK3T9d6UcXuQXhOTnTTikl5hOlxHwia0hVBdbop6Aa98kW2bjE/rSAPWGPEtY9rfTYHzxeNwIiFdbsLQXXGVQkrT4AAAAAAEWDsPcKlSlTRl988YXuu+8+rV69Wi1bttTTTz+tunXrKikpSatXr9b777+vjIwMNWvWTO+//77b/TlD2Is1Zc9u4C5lNXG/HDnvBeCbAqvcrshO3ynulzvddrTaz+3I+yYvM/zC3IPbv3bcWnMFuuVkWPwKtRaLX6iCavZXUM3+cqbHKe3Pb5S6f7oyji9TXq0eHMmHlLztXSVve1fWUvUVVOM+BdW8r8Q88NGZmaSkP95S8vb3JWdG7gGGRcF1H1NY09dlCYwq+gIBAAAAAIWKsNcLevbsqY0bN+r999/XxIkTNWDAALfr5cuX1+uvv67BgwcrODjY7VpiYqLrODQ0NN91QkJCXMdJSUleqByArwmo3FWRnX/Q2Z97yLQne2dSi7/HXbfZu3Ldgl2/kIvPVwwsAZEKrjtYwXUHy5FyVGkHZin1wDRlnl6f5z2O+BglbRmppC0j5RfVXIE17lNQjXtlDbn6npZsmqbSDsxUwobn5Ew54nGMX7m2KtV6jPyimhZxdQAAAACAokLY6wUZGRn6/PPPNW/ePJlm7t1iJ06c0JdffqkaNWqoZ8+ebtfS0tJcx/7++T/9PCAgwHWcmnp5D0O62E7gY8eOqVWrVpc1J4CrU0DFDorsulhxP3WTmZngeZBhkSWgbJ7tE7LDXGtQBRn+ESW2nYEn1uBKCmn4tEIaPi17wl6lHpihtAPT890BnXlmozLPbFTihmHyL3+zAmvep6Bqfa6K3bGZZ7cqYc1QZZxY7vG6JaiCwlq8p6Ca9/vU7yMAAAAAIDfC3iuUnJysbt26aeXKlbJarXr++ef10EMPqWbNmkpLS9PatWv12muvadWqVbrzzjv173//W//85z9d9wcGBrqOMzI8/MhtDunp5/twBgUFXVadF2sRAcC3+Jf7m8r22qrU/dMkw8gd5AaUoVerJFt4bYU1flmhN7wk+9mtWQ922z9djuQ/87jDVMaJ5co4sVwJa55UQOWuCqxxnwKr9pLFL6xIa3emn1PilhFKiflEMh25Bxg2hVz3tEIbvyKLf3ju6wAAAAAAn0PYe4VGjRqllStXSlKuFg7+/v7q0qWLOnbsqK5du2rp0qUaNmyYOnXqpMaNG0uSwsLOhwMXa82QnHz+R7Iv1vIBAKyhVRV6w7+Ku4wSwTAM+UXeIL/IGxTW7C1lnvpNqfunK+3gLDnTTnq+ybQrPfYHpcf+oHhrkAKr9FBQjfsUULmbDFug53u8wDSdSt0zWYmbhsuZdsrjGP9KXVSq1UeyReT/4E8AAAAAgG+59MebIxfTNDVp0iRJUt26dXP16s1ms9n0+uuvS5KcTqemTJniupZzx23Oh7V5krMVAw9cA4DCYRiG/Mv9TaXajFG5vkcU2XWxgmo/JMMvn92xjlSlHfxaZ5fepRMzK+jcqoeVfvQnmU67V2vLOLVOZxa0UfyvgzwGvdaQairdcY4iuywi6AUAAACAaxA7e6/AiRMnFBcXJ0lq2jT/B940b97cdRwTE+M6vu666zye9yTn9QYNGlxWrQCAy2dYbAqo1EUBlbrIbPOJ0o8szGr1cHi+5EjzeI+ZGa/UvZOVuneyLIHlFFi9r4Jq3ie/sjcWuGeuI/WkEjcNV+qeSZ4HWAMV2ugFhV7/ggzb5bX5AQAAAAD4DsLeK2CznX/77Pb8d29lZmZ6vK9GjRqqVKmSjh49quXLPT9cJ9uKFSskSZUrV1b16tULUDEAoKAMW6ACq/VWYLXecmYmKu3QPKUdmK70I4sl0/O/Ac60k0qJGauUmLGyhlRTYI1+Cqp5n2ylb7ik4Nd02pUS84kSN4+QmRnvcUxA1d4Kb/kf2cKqX8nLAwAAAAD4ANo4XIHIyEiFh2f9WO9vv/2Wb+CbM8itUaOG69gwDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr14onqAFCMLH5hCq71d0V2XqDy9x5T+I3j5F/+Zkl5/93sSP5Tydve0envmuj0vEZK/P0N2RP25Tk+/dgynf6uqRLWPeUx6LWG11Nkl0WKvGUOQS8AAAAAQBJh7xWxWCy6/fbbJUlHjx7Vm2++6XHc2bNn9cILL7g+79Gjh9v1p59+WlarVZI0dOhQpaamul1PTU3V0KFDJWXtCn766ae99RIAAFfIElhGIfUeU1S35Sp3zyGFtfi3/KKa53uP/dwOJW1+Rafm1Nbp71spaft/5Ug5KklyJMfq7LJ+ilvUUfZz23Lda9hCFdbiXZXt9YcCKnctlNcEAAAAACiZDNM0zeIuoiSLiYlR8+bNlZKSIkm64447NGDAANWsWVNpaWlas2aNPvjgAx06dEiS1KlTJy1ZsiTXPMOHD9fo0aMlZfX/feGFF1SrVi3t27dP77zzjjZv3uwa99Zbb3n9dcTGxroe+nb48GG3B8cBAC6fPX63Ug/MUOr+aXIk7LqEOwz5lfub7HGbZdpTPI4IrHm/wlu8K2twJe8WCwAAgCLD198AChNhrxcsWbJE9913n06fPp3vuFtuuUWzZ89W6dKlc11zOp0aPHiwJk3K4+E7kh555BGNHz9eFov3N2Tzjw0AFA7TNGWP26LUA9OVemCGnMmHL3sOW+nGKtVmrPzL31QIFQIAAKAo8fU3gMJE2OslZ86c0cSJE7Vw4UJt375d586dk81mU4UKFdSyZUv1799fPXv2vGiv3R9++EHjx4/X+vXrdfr0aZUpU0YtW7bUY489pm7duhVa/fxjAwCFzzSdyjz5q1IPTFfagVlypuf/TULDv7TCmr2h4LqPybBYi6hKAAAAFCa+/gZQmAh7IYl/bACgqJnOTKUf/VlpB6Yr7dBcmZmJOa4aCq77qMKavSFLYJliqxEAAADex9ffAAqTrbgLAADgWmRY/BQYfZsCo2+TaR+ntNgflB77vSRDIfWfkF+Z/B/yBgAAAADAhQh7AQAoZoYtSEHV71ZQ9buLuxQAAAAAQAnm/Sd9AQAAAAAAAACKHGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADABxD2AgAAAAAAAIAPIOwFAAAAAAAAAB9A2AsAAAAAAAAAPoCwFwAAAAAAAAB8AGEvAAAAAAAAAPgAwl4AAAAAAAAA8AGEvQAAAAAAAADgAwh7AQAAAAAAAMAHEPYCAAAAAAAAgA8g7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDsBQAAAAAAAAAfQNgLAAAAAAAAAD6AsBcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4ANsxV0AAAAAAAAALp1pmkpOTlZCQoLS0tLkcDiKuyQAl8hiscjf318hISEKDQ2Vv7+/V+cn7AUAAAAAACghnE6nDh06pNTU1OIuBUABZWRkKCkpSSdOnFDZsmUVFRUlwzC8MjdhLwAAAAAAQAlgmmauoNcwDFmt1mKsCsDlcDgcMk3T9fmpU6eUkZGhSpUqeWV+wl4AAAAAAIASIDk52RX0Wq1WVahQQaGhobJYeCQTUFKYpqn09HQlJCTozJkzkqT4+HhFRUUpICDgiufnbwMAAAAAAIASICEhwXVcoUIFhYeHE/QCJYxhGAoMDFS5cuVUrlw51/mzZ896ZX7+RgAAAAAAACgB0tLSJGWFRaGhocVcDYArFRER4TpOSUnxypyEvQAAAAAAACWAw+GQlNXCgR29QMlntVpdPbez/3xfKf5mAAAAAAAAAIBiYBiGV+cj7AUAAAAAAAAAH0DYCwAAAAAAAAA+gLAXAAAAAAAAAHwAYS8AAAAAAAAA+ADCXgAAAAAAAADwAYS9AAAAAAAAuGQZGRmaPn26HnzwQdWvX19RUVHy8/NTmTJl1Lx5cw0ZMkRLliyR0+ks7lKBaw5hLwAAAAAAAC7JnDlzVK9ePfXv319ffPGFdu3apbi4ONntdp05c0abNm3SuHHj1KVLFzVo0EALFiwo7pKvSdWrV5dhGBo4cGBxl3JVWrZsmQzDkGEYWrZsWXGX41W24i4AAAAAAAAAV7/XX39dI0aMcH3epUsX9ezZU9ddd50iIiIUFxenXbt2af78+frpp5+0e/duvfTSS7r99tuLsWrg2kLYCwAAAAAAgHxNnjzZFfSWK1dOs2bNUvv27XON69y5s5544glt27ZNzzzzjE6dOlXUpQLXNMJeAAAAAAAA5OnIkSN68sknJUkhISFavny56tevn+89jRo10qJFizRt2rSiKBHAX+jZCwAAAAAAgDz997//VUpKiiTptddeu2jQm81isejvf/+7x2urVq3SAw88oOrVqyswMFARERFq2rSpXn755Xx3A1/Ya9U0TU2cOFE33XSToqKiFB4erlatWumLL75wuy8jI0Pjxo1TmzZtFBkZqbCwMLVt21azZs3Kc62DBw+61poyZYok6euvv1bnzp1Vrlw5BQUFqX79+ho+fLjOnTuX73uxbds2vfHGG7r11lsVHR2tgIAAhYaGqk6dOhowYIDWrFmT7/2jRo1y1SJJ8fHxev3119W0aVNFRES4auzQoYMMw9Cff/4pSZo6darrvuyPDh065Psa58yZo65du6pcuXIKCQlR48aNNWbMGGVmZrruM01T06ZNU4cOHVSuXDkFBwerWbNmGjdunEzTzPe1ZNf/9ttvq23btipbtqz8/f1VsWJF3XHHHZo9e3a+c2TXO2rUKEnS+vXrdd9997ne18qVK+uBBx7Qzp07c92b/Xo7duzoOtexY8dc71H2e1EimYBpmocPHzYlmZLMw4cPF3c5AAAAAAD4pCv5+nv37t3mjh07zN27dxdSdbk5nU6zTJkypiQzJCTETEhIuKL5HA6H+cQTT7jeA08fpUqVMhcvXuzx/qVLl7rGLV682LzjjjvynOcf//iHaZqmGRcXZ9588815jnvzzTc9rnXgwAHXmMmTJ5sPP/xwnnNUqlTJ3Llz50Vrzu/jX//6V57v28iRI13jdu/ebVavXj3X/ZMnTzbbt29/0XXat2+f52scMmRInvfdddddpt1uN9PS0sw+ffrkOW7w4MH5/jewZMkSMyoqKt8au3fvbiYmJnq8P3vMyJEjzY8//ti02Wwe5wgODjaXL1+e5+9pfh+TJ0/O9zV4k7f/XLOzFwAAAAAAAB5t375dp0+fliS1a9dOYWFhVzTfv/71L3388ceSpBo1amjcuHFat26dli5dqmeeeUZ+fn6Kj49Xjx499Pvvv+c71yuvvKL58+fr/vvv14IFC7Rx40ZNnz5d9erVkyR99NFHWrJkiQYOHKhff/1VQ4YM0eLFi7Vx40ZNnDhRlSpVkiSNGDFC27dvz3etTz75RJMmTVKrVq00ffp0bdiwQT/88IP69u0rSTp69KhuvfVWJSYm5rrXbrcrJCREffv21bhx47Rs2TJt2rRJP/74o95//31Vq1ZNkjR69GhNnjz5ou9hnz59dOTIEQ0dOlQ//fSTNmzY4HrdkydP1tatW12vrVevXtq6davbR15rjBs3Tp9++qm6d++uOXPmaOPGjfr222/VunVrSVk7fidPnqxhw4Zp9uzZ6t+/v77//ntt3LhRM2bMcO34/t///qcff/zR4xqrV69Wt27ddObMGZUvX15vvPGG5s+fr40bN2r+/PmuneA//PCDBgwYkO/7sGjRIg0dOlQNGzbUpEmTtH79eq1YsULPPPOMLBaLUlJS9MADDygjI8N1T+XKlbV161ZNmjTJdW7SpEm53qM777zzor8PVy2vRMYo8djZCwAAAABA4StpO3u//PJLV70vvfTSFc31xx9/mBaLxZRkNmrUyDx79myuMQsXLnSNadWqVa7rF+6S/eCDD3KNOXbsmBkWFmZKMsuWLWsahmHOnTs317jff//dtVb2LuCcLtwF2r17dzMzMzPXuNdee801ZtiwYbmunzp1yuNrzZaenm526dLFlGRWq1bNtNvtucbk3NlrsVjMRYsW5TmfaZpmtWrVTEnmgAED8h134Wt8+umnc41JTk52zRcVFWUahnHR971nz565rmdkZLh2JN92221mcnKyx5rGjx/vtnv7Qhf+nqSnp+ca88Ybb7jGzJkzJ9f1nP8dLV261GMdRYWdvQAAAAAAACgSZ86ccR2XK1fuiub69NNP5XQ6JUkTJkxQRERErjG33XabHn74YUnSunXrtH79+jzna926tZ566qlc5ytUqKDevXtLkk6dOqW+fft63Kl5ww036KabbpIkrVy5Mt/aAwIC9L///U82my3XtZdeekmNGjWSJE2cONFtJ6kklSlTxuNrzebv76/33ntPkvTnn39qy5Yt+dYycOBAde3aNd8xBVGlShW9++67uc4HBwe7dtmeOXPmkt53T+/njBkzdPDgQQUGBurzzz9XcHCwxzoGDx6sVq1aSVK+vXMDAwM1efJk+fv757r2j3/8w3X+Yr+3voawFwAAAAAAAB7lbEsQEhJyRXMtWbJEktSwYUNXawBPBg8enOseT/r165fntcaNG1/WuP379+c5RpK6du3qao1wIYvF4gpD4+LitGnTpnznSk9P16FDh7Rjxw5t27ZN27Ztc3sg2cXaV9x///35Xi+ou+66S35+fh6v5Xw/77333jznyB539uzZXA+t++677yRJ7du3V9myZfOt5eabb5Yk/fbbb3mO6dKlS57fgAgLC1OdOnUkXfz31tfk/nYEAAAAAAAAILn16E1OTi7wPOnp6dqzZ48k5Rv0SlLTpk3l5+enzMxMbdu2Lc9xdevWzfNazp20lzLOU6/dnFq2bJnv9eydqJK0detWtWnTxu16cnKyPvroI82YMUPbt2+Xw+HIc67sHsl5ueGGG/K9XlDefD+lrPc05+cbNmyQlNVr1zCMS6rp+PHjeV7L7hGcl8jISFcd1xLCXgAAAAAAAHgUFRXlOj5x4kSB5zl79qzr+GLtIPz8/BQVFaXjx48rLi4uz3F5tQGQsnbbXs647PYSeblYzeXLl3cdX1jzwYMHdcstt+jAgQP5zpEtNTU13+ulS5e+pHkulzffT0m5Au2TJ09edk35vRf51ZGzlvyCdV9E2AsAAAAAAACPcv74/sXaE1yqS93VeTW5kpofeOABHThwQIZh6KGHHlK/fv3UoEEDlS1bVv7+/jIMQ06nU1arVZLcWjp4kj2upMkOXbt16+axNzC8g7AXAAAAAAAAHjVs2FBlypTR6dOntXLlSiUkJCg8PPyy58m5G/ViO4TtdrvrwXDZP4pf3C5Wc87rOWuOiYnRqlWrJEkvvvii3njjDY/357eD2VdERUXp6NGjysjIcD3QDt7HA9oAAAAAAADgkWEYroePJScna8KECQWaJyAgwPXArLVr1+Y7dvPmzcrMzJSkqyYUXL9+/SVfz1nz9u3bXcf5Pdgsu5+tt1yNu6ebNm0qKeu1ZmRkFGstV+P74y2EvQAAAAAAAMjTM8884+qPOmLECMXExFzSfU6nU1999ZXr886dO0vKCkDXrVuX5305A+Xse4rb4sWLdezYMY/XnE6npk6dKilrB3OzZs1c1+x2u+s4vwfcjRs3zkuVZgkMDJSU9WC8q0XPnj0lSfHx8Zo8eXKx1pL9/khX13vkDYS9AAAAAAAAyFPlypU1duxYSVmBZfv27bV8+fJ879mxY4duu+02vffee65zQ4YMcT0069FHH1VCQkKu+xYvXqyJEydKklq1aqWWLVt662VckfT0dD322GMeH/Y1evRobd26VZL08MMPKyAgwHUtezezJE2ZMsXj3J9++qnmzZvn1XorVqwoSdq3b59X570SAwYMUJUqVSRJzz33nFasWJHv+FWrVl30v7OCyn5/pKvrPfIGevYCAAAAAAAgXw899JBiY2M1YsQInTx5Uh06dFDXrl3Vq1cvNWjQQBEREYqLi9Pu3bu1YMEC/fjjj3I4HG4PeLv++uv17LPP6r333tPvv/+uZs2a6YUXXlDTpk2VnJys+fPn66OPPpLD4ZC/v78+++yzYnzF7lq0aKH58+erbdu2euaZZ1SnTh2dPHlSU6dO1YwZMyRJ0dHReuWVV9zua9q0qRo1aqRt27bps88+09mzZ/XAAw+oYsWKio2N1ZdffqnZs2erbdu2Wr16tdfq/dvf/qalS5dq/fr1Gj16tLp166aQkBBJUlBQkCpXruy1tS5VQECAZs2apQ4dOigpKUm33HKL+vXrpzvvvFM1atSQ0+nUsWPHtHHjRs2dO1dbt27VmDFj1L59e6/XUrVqVUVHRys2Nlb//ve/FR0drXr16rkefle+fHmFhYV5fd2iQNgLAAAAAACAi3rllVfUsGFDPfvsszp48KAWL16sxYsX5zm+YcOGevfdd93OjR49WsnJyfrkk0+0b98+Pfroo7nuK1WqlGbNmqUmTZp4+yUU2BNPPKHly5drypQp6tevX67rFStW1KJFi1SqVCm384Zh6IsvvtAtt9yis2fPatasWZo1a5bbmOuvv15ff/21KlWq5LV6hwwZok8//VRxcXEaPny4hg8f7rrWvn17LVu2zGtrXY42bdpo2bJl6tu3rw4fPqyvvvrKrdXHhQryMMBL9eKLL+rxxx/XgQMH1KtXL7drkydP1sCBAwtt7cJEGwcAAAAAAABckrvuuku7du3SV199pb///e+qV6+eSpcuLZvNpsjISDVr1kyPP/64fvnlF23dulVdu3Z1u99isejjjz/WihUrdP/996tq1aoKCAhQeHi4mjRpohdffFF79uzJdd/VYPLkyZo2bZo6dOigqKgoBQQEqG7dunr++ee1fft2XXfddR7va9KkibZs2aL/+7//U7Vq1eTn56fIyEi1atVK//73v7Vu3Tq3tgLeULlyZa1bt06PPPKIateu7dajtri1adNGe/bs0bhx43T77berUqVK8vf3V2BgoKpUqaKuXbvqzTffVExMjB588MFCq2PIkCH65ptv1LVrV5UrV042m2/siTVM0zSLuwgUv9jYWFfflMOHDys6OrqYKwIAAAAAwPdcydffe/bskd1ul81mc+sFi8Jx8OBB1ahRQ1LJ3umJq5u3/1yzsxcAAAAAAAAAfABhLwAAAAAAAAD4AMJeAAAAAAAAAPABhL0AAAAAAAAA4AMIewEAAAAAAADAB9iKuwAAAAAAAADgalO9enWZplncZQCXhZ29AAAAAAAAAOADCHsBAAAAAAAAwAcQ9gIAAAAAAACADyDs9bJDhw5p5MiRatGihcqWLavAwEBVqVJF7dq104gRI7Rt27Z871+4cKF69+6t6OhoBQQEKDo6Wr1799bChQuL6BUAAAAAAAAAKIl4QJsXjRkzRsOHD1dycrLb+djYWMXGxmrVqlVKSEjQBx98kOtep9OpRx99VBMnTnQ7f+TIER05ckTffvutBg0apM8++0wWCxk9AAAAAAAAAHeEvV7yxhtv6JVXXpEk1a1bV4MHD1bLli1VqlQpnTlzRps3b9bcuXPzDGpfeuklV9DbtGlTPf/886pVq5b27dund999V5s3b9aECRNUtmxZvfXWW0X2ugAAAAAAAACUDIZpmmZxF1HS/fzzz+rcubMk6cEHH9SECRPk5+fncWxGRob8/f3dzu3evVsNGzaU3W5XixYttGLFCgUFBbmup6SkqH379tqwYYNsNpt27typ2rVre/U1xMbGqkqVKpKkw4cPKzo62qvzAwAAAACAK/v6e8+ePbLb7bLZbKpTp05hlQigCHn7zzX9AK6Q0+nUkCFDJEmNGzfWxIkT8wx6JeUKeiXpgw8+kN1ul5TVCiJn0CtJwcHBGjNmjCTJbrfrv//9r7fKBwAAAAAAAOAjCHuv0OLFi7Vnzx5J0gsvvCCb7fI6Y5imqXnz5kmS6tevrzZt2ngc16ZNG9WrV0+SNG/ePLEhGwAAAAAAAEBOhL1X6Ouvv5YkGYahHj16uM7HxcVpz549iouLy/f+AwcO6OjRo5Kk9u3b5zs2+/qRI0d08ODBK6gaAAAAAAAAgK/hAW1XaM2aNZKk6tWrKywsTNOmTdPbb7+tbdu2ucZkP7Bt6NChCggIcLt/x44druP69evnu1bO6zt37lSNGjUuuc7Y2Nh8rx87duyS5wIAAAAAAABw9SHsvQJOp1MxMTGSpDJlyuipp57SRx99lGvc7t27NWzYMM2dO1cLFixQRESE61rOEPZiTdmzG7hLWU3cL0fOewEAAAAAAAD4Hto4XIH4+Hg5nU5J0tatW/XRRx+pYsWK+vLLLxUXF6eUlBQtX77c1Yf3119/1cMPP+w2R2Jious4NDQ03/VCQkJcx0lJSd56GQAAAAAAAAB8ADt7r0BycrLrOC0tTcHBwVq6dKnrQWqSdPPNN+uXX37RjTfeqN9//11z587V2rVr1bp1a9d92fz9/fNdL2cLiNTU1Muq9WI7gY8dO6ZWrVpd1pwAAAAAAAAoOgMHDtTUqVNVrVo1nucEj9jZewUCAwPdPh80aJBb0JstKChIb775puvzmTNnepwjIyMj3/XS09Pd5rwc0dHR+X5UrFjxsuYDAAAAAADwZcuWLZNhGK6Pe++996L3DBw40DUeKA6EvVcgLCzM7fOuXbvmObZTp06y2bI2Uq9fv97jHBdrzZBzJ/HFWj4AAAAAAADAe77++mtt3bq1uMsA8kXYewUCAgJUtmxZ1+f5PQQtMDBQZcqUkSSdOnXKdT7nQ9lyPqzNk5ytGHjgGgAAAAAAQNExTVMjR44s1hqmTJki0zRp4YA8EfZeoYYNG7qOHQ5HvmOzr2fv8JWk6667znUcExOT7/05rzdo0OCy6gQAAAAAAEDBZG/gmzt3rjZv3lzM1QB5I+y9QjfffLPreP/+/XmOS0hI0OnTpyVJlStXdp2vUaOGKlWqJElavnx5vmutWLHCdX/16tULWjIAAAAAAAAuwz/+8Q8FBARIkkaMGFHM1QB5I+y9QnfffbfreO7cuXmOmzt3rkzTlCS1a9fOdd4wDPXq1UtS1s7dNWvWeLx/zZo1rp29vXr1otE3AAAAAABAEalSpYoeffRRSdL333+vdevWXfYcTqdTv/zyi5577jm1bdtWZcqUkZ+fnyIiItSkSRM999xzOnToUL5zZD8A7sJNgK+99prrwXB79uy5aC233nqrDMNQxYoV8/xJ9W+//Vb33HOPqlatqsDAQEVERKhFixZ69dVXdfbs2Ut+3ShahL1X6IYbblC3bt0kSdOnT9fPP/+ca8zx48f18ssvS5L8/f310EMPuV1/+umnZbVaJUlDhw5Vamqq2/XU1FQNHTpUUlYLiKefftrbLwMAAAAAAAD5GD58uIKCgiRJr7zyymXf/9prr6lTp056//339euvv+rMmTOy2+2Kj4/X77//rvfff18NGjTIdzNhXvr37+86njZtWr5jT5w44cqv+vXr58qksp09e1adOnVS7969NXv2bB0+fFjp6emKj4/Xxo0bNWrUKNWvXz/PDYsoXoS9XvDBBx8oIiJCTqdTPXr00PDhw7Vy5Upt2LBBn3zyiVq2bOl6+Nrrr7/u1sZBkurWrathw4ZJkjZs2KC2bdtq5syZ2rBhg2bOnKm2bdtqw4YNkqRhw4apTp06RfsCAQAAAAAArnEVK1bUkCFDJEmLFy/WqlWrLut+u92uihUr6vHHH9cXX3yh1atXa+PGjfr222/1/PPPKzQ0VCkpKerfv7927tx5WXPXrl1brVu3lnTxsHfmzJmu3bz333+/27X09HR17txZv/zyi6xWqx544AFNnz5da9as0cqVK/Xmm28qKipKJ0+eVPfu3fXnn39eVp0ofLaLD8HF1K1bV/Pnz1efPn104sQJjR49WqNHj3YbYxiGXnrpJT3//PMe53jzzTd18uRJTZo0SZs3b1a/fv1yjXnkkUf0xhtvFMprAAAAAAAAJZ9pOuVMP1PcZRQZS0CUDKPo9jK+8MIL+uyzz5ScnKwRI0bol19+ueR7Bw0apJEjR8rPz8/tfLNmzdSrVy8NHTpUbdq00ZEjR/TWW2/piy++uKza7r//fq1du1a7d+/Whg0b1KJFC4/jssPgunXr5hrz2muvadOmTYqIiNCSJUvUvHlzt+s33XST7r//ft144406duyYXnzxRX311VeXVScKF2Gvl9x0003avn27xowZo2+//VYHDhxQRkaGKlasqA4dOmjo0KFq2rRpnvdbLBZNnDhRd999t8aPH6/169fr9OnTKlOmjFq2bKnHHnvM1S4CAAAAAADAE2f6GZ2cUa64yygy5fqdlDWwbNGtV66cnnzySb3zzjtaunSpli5dqo4dO17SvRf22b1QdHS0hg0bpqefflrfffedTNO8rGc23XvvvXrmmWfkcDj01VdfeQx79+3bp7Vr10rKvas3KSlJH3/8saSsn0y/MOjNVq1aNb3yyit6/PHH9fXXX2v8+PEKCQm55DpRuAh7vSgqKkqjRo3SqFGjCjxH9+7d1b17d+8VBQAAAAAAAK8ZNmyYPvnkEyUmJuqVV1657HYO2RISEnTmzBmlpKTINE1JUnBwsOvagQMHVLNmzUuer1y5curSpYt+/PFHzZw5U++//74sFvddzzlbPOTs8ytJy5cvV3x8vCSpT58++a518803S5IyMzO1ceNG1+cofvTsBQAAAAAAAC5RVFSUnn76aUnS6tWrtWjRoku+988//9TQoUNVvXp1lSpVSjVr1lSjRo10/fXX6/rrr9ejjz7qGnv69OnLri17t+6xY8c8tpjIDntbt26t2rVru13Lfl6UlNWf2DCMPD8aNWrkGnv8+PHLrhOFh7AXAAAAAAAAuAz//Oc/FRERIUkaOXLkJd2zcOFCXXfddRo7duwlPdgsNTX1suu68847XbuDL+ylu2nTJsXExEjK3cJBkk6ePHnZ60lSSkpKge5D4aCNAwAAAAAAgI+wBESpXL+ChXYlkSUgqljWjYiI0D//+U+NGDFCa9eu1ffff68ePXrkOf706dPq37+/UlJSFBoaqueee0633nqratWqpVKlSsnf31+S9Msvv6hTp06S5GrtcDlCQ0PVq1cvTZ8+XXPmzNGnn36qwMBASed39VqtVt1777257nU4HK7jTZs25XqQXF6io6Mvu04UHsJeAAAAAAAAH2EYliJ9YNm17Omnn9aHH36oM2fOaOTIkfmGvbNnz9a5c+ckSXPnzlXnzp09jouLi7viuu6//35Nnz5dCQkJ+v7779WnTx85nU7NmDFDktSlSxeVK5f7IX5RUeeD87JlyxLillC0cQAAAAAAAAAuU1hYmIYNGyYpayfs3Llz8xy7fft2SVJkZGSeQa/k3je3oG699VaVKVNG0vndvMuXL9eRI0ckeW7hIElNmzZ1Ha9evfqK60DxIOwFAAAAAAAACuDJJ5907ZIdOXJknq0X7Ha7JCktLU1Op9PjmJSUFH3xxRdXXJPNZlPfvn0lST/88IPOnTvnCn2Dg4N15513eryvc+fOrn6/H330UYHaSKD4EfYCAAAAAAAABRASEqIXXnhBkrR161b98MMPHsfVqVNHUlagO2vWrFzXHQ6HBg0apKNHj3qlruzdu+np6Zo2bZq++eYbSVKvXr0UGhrq8Z6IiAg9+eSTkqRff/1VzzzzTJ7BtCSdOHFCEyZM8Eq98B7CXgAAAAAAAKCAhgwZoooVK0rKehCbJ3379lVAQIAk6aGHHtK//vUv/fzzz9qwYYOmTp2q1q1ba/r06Wrbtq1Xavrb3/6mGjVqSJJeeuklnT17VlLeLRyyvfbaa2rdurUk6cMPP1SzZs308ccfa/Xq1dqyZYuWLl2qsWPH6s4771TVqlU1btw4r9QL7+EBbQAAAAAAAEABBQUF6cUXX9TQoUPzHBMdHa1PP/1UgwYNUlpamt555x298847bmPuvfdeDR48ON+evpejf//+evPNN10PhitTpoxuvfXWfO8JCAjQTz/9pIEDB2rOnDn6/fffXbt9PQkPD/dKrfAedvYCAAAAAAAAV2Dw4MGqUqVKvmMeeughrVy5UnfeeafKli0rPz8/VaxYUbfddptmzpypGTNmyGq1eq2mC3fx9u3bVzbbxfd9hoWF6ZtvvtHKlSs1aNAg1atXT2FhYbLZbIqMjFTLli31xBNP6IcfftBPP/3ktXrhHYZ5lXZb3rdvn06fPq3q1aurfPnyxV2Oz4uNjXX9pXT48GFFR0cXc0UAAAAAAPieK/n6e8+ePbLb7bLZbK4esABKNm//uS7ynb0nT57UJ598ok8++UTx8fG5ru/du1fNmzdX3bp19be//U2VK1fW3Xff7eotAgAAAAAAAADIrcjD3jlz5ujJJ5/Uhx9+qFKlSrldS09PV7du3bRlyxaZpinTNOV0OvXtt9+qV69eRV0qAAAAAAAAAJQYRR72Ll68WIZhqHfv3rmuTZkyRfv27ZMk9ezZUx9++KHuuOMOmaap1atXa+bMmUVdLgAAAAAAAACUCEUe9u7atUuS1KZNm1zXpk2bJkm65ZZb9O2332ro0KGaN2+eOnfuLNM0NWPGjCKtFQAAAAAAAABKiiIPe0+dOiVJuRqQp6amas2aNTIMQ48++qjbtYcffliStGnTpqIpEgAAAAAAAABKmCIPe8+dO5e1sMV96TVr1igzM1OGYahz585u12rUqCEp6+FuAAAAAAAAAIDcijzsDQ0NlSQdP37c7fyyZcskSdddd51Kly7tds3Pz0+SZLPZCr9AAAAAAAAAACiBijzsrV+/viTpxx9/dDv/zTffyDAMtW/fPtc92cFw+fLlC79AAAAAAAAAACiBinyr7O233641a9Zo/PjxatCggdq1a6cpU6Zox44dMgxDd911V657snv1Vq5cuajLBQAAAAAAAIASocjD3ieffFKffPKJjh07pieffNLt2o033qiOHTvmumf+/PkyDEMtW7YsqjIBAAAAAAAAoEQp8jYOpUqV0pIlS9SsWTOZpun6aNeunWbNmpVr/O+//67169dLkrp06VLU5QIAAAAAAABAiVAsTzxr0KCBNmzYoAMHDuj48eOqWLGiqlevnuf4yZMnS5JuueWWIqoQAAAAAAAAAEqWYgl7s9WoUUM1atTId0zjxo3VuHHjIqoIAAAAAAAAAEqmIg97X3vtNUnS448/rjJlylzSPWfPntWYMWMkSSNGjCi02gAAAAAAAACgpCrysHfUqFEyDEN9+vS55LA3Li7OdR9hLwAAAAAAAADkVuQPaAMAAAAAAAAAeF+JCHszMzMlSX5+fsVcCQAAAAAAAABcnUpE2LtlyxZJUtmyZYu3EAAAAAAAAAC4ShV6z97PP//c4/l58+Zpw4YN+d6bnp6uffv2adKkSTIMQy1btiyMEgEAAAAAAACgxCv0sHfgwIEyDMPtnGmaevnlly95DtM0ZbFY9NRTT3m7PAAAAAAAAKBYbdu2TaNHj9by5ct14sQJV0vTzZs3q0mTJsVb3FVs4MCBmjp1qqpVq6aDBw8WdzlXhSJp42CapuvD07n8Pvz8/NS2bVt99913at++fVGUCwAAAAAAgGvcsmXLZBiGDMPQqFGjCm2djRs3qlWrVvrqq68UGxvrCnqBgij0nb0HDhxwHZumqZo1a8owDC1atEh16tTJ8z7DMBQYGKioqChZrdbCLhMAAAAAAAAocsOHD1dqaqrCw8M1evRotWjRQkFBQZKk2rVrF3N1WUaNGqVXX31Vktw2c+LqU+hhb7Vq1Tyer1SpUp7XAAAAAAAAAF+XmZmp5cuXS5IeffRRDRkypJgrQklX6GHvhZxOZ1EvCQAAAAAAAFx1Tp8+rYyMDElS3bp1i7ka+IIi6dkLAAAAAAAAwF16errr2M/Prxgrga8olrA3JSVFKSkpeV4fM2aM2rVrpwYNGqh79+6aP39+EVYHAAAAAAAA5C3nw9uWLVsmSZo1a5Y6deqksmXLKigoSPXq1dPzzz+vuLi4XPePGjVKhmGoRo0arnMPPfSQa868HgqXlpamsWPHqlOnTqpQoYL8/f1Vrlw5de7cWRMnTpTdbr9o7enp6Ro/frxuv/12Va5cWQEBAQoJCVHDhg01aNAgLVq0yNWXd8qUKTIMw9WvV5JbjdkfBw8ezLWOw+HQ1KlT1aNHD1WqVEkBAQGKiorSTTfdpP/85z9KTU29aK07d+7UwIEDVaVKFQUGBqpKlSrq37+/1q9ff9F7r1VF3sZh/vz5uvPOOxUaGqrY2FiFhYW5XX/44Yc1depUSVkNn3fv3q1FixbpjTfe0PDhw4u6XAAAAAAAACBPTqdTDzzwgL788ku387t379Z7772nuXPnauXKlapQocIVrfP777+rV69e+vPPP93Onzp1Sj///LN+/vlnffbZZ5o/f77Kly/vcY4tW7borrvu0oEDB9zOZ2RkaMeOHdqxY4cmTpyoAwcOqHr16gWu9dChQ+rZs6d+//13t/NxcXFavXq1Vq9erU8//VQLFizIs33FrFmz9OCDD7rtfo6NjdX06dP19ddfa9y4cQWuz5cVedib/d2Bnj175gp6V61a5fqOQXBwsOrWrauYmBilpqZqxIgRuuOOO9SoUaOiLhkAAAAAAADw6JVXXtGvv/6qO++8Uw8++KCqVaumEydO6OOPP9aCBQu0d+9ePfPMM5o+fbrrnscff1x9+vTR0aNHdeutt0qS3njjDfXq1cs1ply5cq7jvXv3qn379oqPj1d4eLieeOIJtWrVSlWqVNGZM2f03Xff6bPPPtP69evVq1cvrVy5MldbiJ07d6pdu3ZKSkqSJPXu3Vv9+vVTzZo15XA4tHv3bi1evFhz58513XPnnXeqRYsW+uSTT/Tpp59KkrZu3ZrrPahcubLr+MyZM7rpppt0+PBhBQQEaPDgwWrfvr2qV6+upKQkLV68WB9++KH27t2rbt26adOmTSpVqpTbfOvXr9f9998vu92ugIAAPfPMM+revbsCAgK0du1avfXWWxoyZIiuu+66y/798nVFHvauWbNGhmGoY8eOua6NHz9eklSpUiX99ttvio6O1uHDh3XTTTcpNjZWn332mcaMGVPUJQMAAAAAAJQITtNUUoZZ3GUUmVB/QxbDKNYafv31V73xxht66aWX3M7fdtttuu2227R48WLNnj1bH330kcqWLSspK8gtV66cQkNDXeMrV66c5ybHAQMGKD4+Xk2bNtXixYtVpkwZt+tdu3ZVjx49dPvtt2vt2rWaMmWKBg8e7Dbm73//u5KSkmSxWPTVV1+pX79+btdbt26tBx54QGfOnFFwcLAkKSIiQhEREW7B88U2Yv7jH//Q4cOHVa1aNS1dutStVYUkdejQQffcc4/atWun/fv3691339Wbb77pNubxxx+X3W6Xn5+fFi9erJtvvtl1rVWrVrrrrrvUpk2bXDuHUQxh78mTJyVJ9erVy3Xtxx9/lGEYGjp0qKKjoyVJVapU0dChQ/X8889r+fLlRVorAAAAAABASZKUYWrwktPFXUaR+V/nMgoPKN6wt3nz5nrxxRdznTcMQ//85z+1ePFi2e12/fbbb+rZs+dlz79y5Ur9+uuvkqSpU6fmCnqz3XbbberTp49mzZqVK+xdvHixNm3aJCkrjL0w6M0pKirqsmvMdvDgQc2cOVOSNHbs2FxBb7amTZvqiSee0LvvvqspU6a4hb3r16/Xhg0bJEmPPfaYW9CbrXLlynr//fd17733FrhWX1XkD2g7deqUJOVq4bB9+3adPp31l1HOLeuS1KJFC0nK1ZMEAAAAAAAAKE79+/eXkcfu4ubNm7uO9+/fX6D5v/vuO0lZGyevv/76fMdmB6Pr1693e1jb999/7zp++umnC1THpViwYIEcDoeCg4PVrVu3fMdm13r06FEdOnTIdX7JkiWu44ceeijP+3v37q2IiIgrK9gHFfnOXqvVKkm5nkS4atUqSVLZsmVz7fotXbq0pKwnDgIAAAAAAABXi/r16+d5LTIy0nWcmJhYoPmzd7nu2rUrz1D5QpmZmYqLi3O1X9i8ebMkqWrVqqpWrVqB6rgU2bWmpKTIZrv02PH48eOqWrWqpPM9gf39/dW4ceM87/Hz81PTpk21dOnSK6jY9xT5zt7shs1btmxxO79gwQIZhqF27drluic+Pl6S8tymDgAAAAAAABSH7P62nlgs56M3h8NRoPmzW6JerpSUFNdx9k/TV6xYsUBzXSpv1Jq9QTQyMtK1aTQv5cuXL9B6vqzId/a2a9dOe/bs0dixY/X3v/9dZcqU0fr16/Xjjz9KkusJhDnt3LlTklShQoUirRUAAAAAAKAkCfU39L/O185muVD/4u3XWxSyQ+LGjRvryy+/vOT7sjdcFqXsWsuUKXNZO2499fa91F3McFfkYe/jjz+uKVOm6MCBA6pZs6bq1q2rHTt2yG63KzIy0mNj5V9++UWGYei6664r6nIBAAAAAABKDIthFPsDy+Bd2Q9MS0pKUqNGjQo0R/ZPyx87dsxrdXmSXWtiYqIaNGhw0Z25nmS3cz1z5owcDke+c5w4caJghfqwIm/j0KxZM7333nsyDENJSUnatGmT0tLS5Ofnp//973+5HtwWHx+vBQsWSJI6dOhQ1OUCAAAAAAAAxaZp06aSsh7wdvz48QLN0axZM0nSoUOH9Oeff172/Ze6yza71vT0dFf/3suV/RC6jIwM/f7773mOs9vtudrEohjCXkl65plntHnzZr3yyisaPHiwRowYoT/++EO9e/fONXbZsmVq2bKlbr75ZvXo0aMYqgUAAAAAAACKR8+ePSVJpmnqww8/LNAcd9xxh+v4v//972XfHxgY6DpOT0/Pd53sYPiDDz647HUkqXPnzq7jqVOn5jlu7ty5Onv2bIHW8GXFEvZKWSn9q6++qs8++0yjRo1SvXr1PI7r1auXli5dqqVLl9J0GQAAAAAAANeUrl27qlWrVpKk9957T7Nmzcp3/NatWzV//ny3c507d1bz5s0lSWPGjNGMGTPyvP/MmTNKTU11O5fzwW779u3L89569erpnnvukSTNmDFD//nPf/Kt9cCBA5o+fbrbuVatWrl2In/66adatWpVrvuOHTum5557Lt+5r1XFFvYCAAAAAAAAuLhp06YpMjJSDodD9957r3r27KmvvvpK69at08aNG7Vw4UK99dZbuvHGG3XDDTdo+fLlueb44osvFBoaKqfTqfvuu0933323vv76a23cuFHr1q3TtGnTNHDgQFWrVi1XL9y//e1vruNnnnlGK1as0J49e7R3717t3btXdrvddf3TTz9VzZo1JUnPPvus2rdvr4kTJ2rNmjXavHmzlixZovfff19dunRR7dq19c033+Sq9ZNPPpHNZlNmZqa6dOmiF198UatWrdL69es1duxYNW/eXMeOHVPjxo299Rb7jCJ/QJsnpmlq//79iouLkyRFRkaqZs2aPHUPAAAAAAAA17xatWrpt99+0913361t27Zp/vz5uXbv5hQeHp7rXIMGDbRs2TL17t1bhw8f1pw5czRnzpxLWr927drq27evZs2apcWLF2vx4sVu1w8cOKDq1atLysr1Vq9erb59+2rlypVasWKFVqxYcVm1tm7dWp9//rkGDhyotLQ0vf3223r77bdd1202mz755BOtXr06376+16JiDXsXLVqksWPHatmyZUpJSXG7FhwcrI4dO+rJJ59U165di6lCAAAAAAAAoPjVrVtXW7Zs0axZs/TNN99o/fr1OnXqlBwOh6KiolSvXj3ddNNN6t27t6sNwoWaN2+uXbt2acKECfr222+1bds2xcXFKTAwUDVq1NCNN96oe++91xXc5vTll1+qRYsWmj17tnbt2qXExEQ5nU6P61SoUEErVqzQggULNH36dP322286fvy4MjMzFRERoTp16ujGG29Uz549dfPNN3uc47777lPjxo01evRo/fzzzzp9+rTKli2rtm3b6p///Kdat26t1atXF/j99FWGaZpmUS+akZGhgQMHaubMmZKydvZ6kr2z995779WUKVPk7+9fZDVea2JjY1WlShVJ0uHDhxUdHV3MFQEAAAAA4Huu5OvvPXv2yG63y2azqU6dOoVVIoAi5O0/18Wys7d///6aO3euTNOUzWZTly5d1Lp1a1WoUEGSdPz4ca1bt04//fSTMjMzNXPmTNnt9os2oAYAAAAAAACAa1WRh70LFizQnDlzZBiGOnbsqEmTJqlatWoexx46dEgPP/ywfvnlF33zzTf64Ycf1L179yKuGAAAAAAAAACufpaiXnDKlCmSpMaNG+vHH3/MM+iVpKpVq2rhwoVq0qSJJGny5MlFUCEAAAAAAAAAlDxFHvauWbNGhmHo2WeflZ+f30XH+/n56bnnnpNpmlqzZk0RVAgAAAAAAAAAJU+Rh72nTp2SJF133XWXfE/9+vUlSadPny6UmgAAAAAAAACgpCvysDckJESSdObMmUu+5+zZs5Kk4ODgQqkJAAAAAAAAAEq6Ig9769WrJ0maOXPmJd+TPTb7XgAAAAAAAACAuyIPe3v27CnTNDV58mTXw9ry88UXX2jSpEkyDEN33nlnodcHAAAAAAAAACVRkYe9Q4cOVcWKFWWaph555BH16NFDc+bM0ZEjR5SZmSm73a4jR45ozpw56tGjhwYOHCin06lKlSrpySefLOpyAQAAAAAAAKBEsBX1giEhIfr+++/VuXNnnT17VgsXLtTChQvzHG+apkqXLq3vv/+enr0AAAAAAAAAkIci39krSU2bNtXWrVt19913y2KxyDRNjx8Wi0V9+vTRH3/8ocaNGxdHqQAAAAAAAABQIhT5zt5slSpV0tdff61jx45p2bJl2rZtm+Li4iRJkZGRatSokTp06KCKFSsWV4kAAAAAAAAAUGIUW9ibrWLFirrvvvuKuwwAAAAAAAAAKNGKpY0DAAAAAAAAAMC7CnVn76FDh7w+Z9WqVb0+JwAAAAAAAACUdIUa9lavXl2GYXhtPsMwZLfbvTYfAAAAAAAAAPiKQu/Za5pmYS8BAAAAAAAAANe8Qg17BwwYkO/1c+fOad68eTIMQw8++GBhlgIAAAAAAAAAPq1Qw97Jkyfne3379u2aN2/eJY0FAAAAAAAAAOTNUtwFAAAAAAAAAEBJZBiGDMPQqFGjirsUSYS9AAAAAAAAQC7Lli1zBXkXfgQHB6tKlSrq0aOHJk2apPT09OIuF5BE2AsAAAAAAABcltTUVMXGxmrBggV65JFH1Lx5cx08eLC4ywIIewEAAAAAAID8DBkyRFu3bnV9/Pzzz/rwww8VHR0tKeu5VD179pTD4SjmSnGtK9QHtAEAAAAAAAAlXbly5dSoUSO3c7fccoseeugh3XDDDTp48KC2bt2quXPnqk+fPsVUJcDOXgAAAAAAAKBAwsLC9PLLL7s+X7JkSTFWAxD2AgAAAAAAAAV2/fXXu44PHz6c57ilS5dqwIABqlmzpoKDgxUeHq7rr79ew4YN09GjRy9prdWrV2vQoEGqV6+ewsPD5e/vr+joaPXo0UMff/yxzp07l+e98+fPV58+fRQdHa2AgABFRUXpxhtv1OjRo5WUlOTxnlq1askwDLVt2/aitR05ckRWq1WGYej555/3OCY+Pl5vv/222rZtq7Jly8rf318VK1bUHXfcodmzZ8s0zTznz3443qhRoyRJv/zyi+655x5VqVJFfn5+ql69eq57jh8/rpdeekktWrRQZGSkAgICVKVKFfXt2/eSg/lp06apQ4cOKl26tEJDQ9WoUSONHDky3/e6ONHGAQAAAAAAACggf39/17Gfn1+u62lpaXrooYc0Y8aMXNe2bdumbdu26dNPP9X06dN1xx13eFwjNTVVjzzyiKZPn57r2pEjR3TkyBEtWLBAp06dcoWhOdfv37+/5s6d63Y+Li5Oa9as0Zo1azRmzBgtWLBATZo0cRvTv39/vfHGG/rtt9908OBBj4FqtunTp8vpdEqS7r///lzXf/75Z9177706c+aM2/njx4/r+++/1/fff6/u3btr5syZCg0NzXMdSXrppZf01ltv5Tvmq6++0mOPPabk5GS387Gxsfr666/19ddf65FHHtG4ceNks+WOSO12u/r376+vv/7a7fz27du1fft2ffnll1flTu5CDXtfe+21fK+fPHnyksdmGzFixBXVBAAAAAAAAHjLzp07XccXhqGmaapPnz5asGCBJOmOO+5Q3759VbNmTVksFq1bt07vv/++Dh06pD59+mj16tVq0aKF2xxOp1O9evXSTz/9JEmqU6eOHn/8cbVo0ULBwcE6duyYfv31V82aNctjfQMGDHAFvY0bN9azzz6rBg0aKC4uTjNmzNCUKVN09OhRderUSX/88YcqV67suvf+++/XG2+8IdM0NW3aNL344ot5vg/Tpk2TJDVs2FCNGzd2u7Z69Wp169ZNmZmZKl++vIYOHarGjRurUqVKOnr0qGbOnKkvv/xSP/zwgwYMGKBvvvkmz3XmzJmjrVu36vrrr9czzzyjRo0aKTU1VVu2bHGNmTVrlh544AGZpqmaNWvqySef1HXXXaeyZcvq4MGDmjhxon744QdNnDhR4eHh+s9//pNrneeee84V9NarV0/PP/+8brjhBsXHx+vrr7/W//73P91777151llcDDO//dFXyGKxyDAMr87JUw0LR2xsrKpUqSIp60cOsp8mCQAAAAAAvOdKvv7es2eP7Ha7bDab6tSp43GM03TqTHqKV2otCaICgmUxCqdL6bJly9SxY0dJ0siRI3PtmJWycqqWLVtq8+bNkqSVK1fqpptucl3/3//+p0cffVR+fn767rvvdNttt+Wa4+zZs2rXrp22b9+utm3batWqVW7XP/roIz311FOSpN69e2v69OkKCAjINY/T6dSxY8fcwtoFCxaoR48ekqROnTrphx9+cNuJnLNGSerbt69mzpzpdr158+batGmTGjZsqG3btnl8r2JiYtSgQQNJ0ltvvaXhw4e7rmVmZqpu3bo6ePCgbrvtNn3zzTcKDg7ONUfOOhYvXqwuXbq4Xc+ZMXbq1EkLFizw+D6cPn1atWvXVnx8vB5++GF99tlnHnfuZu8Otlgs2rFjh+rVq+e6tnXrVjVp0kROp1PNmjXT8uXLc+02/vzzzzVgwADX53n9N3Ixl/Ln+nIUehsHb2bJ3g6OAQAAAAAAfMmZ9BSVmz6quMsoMifvG6Wygfn/yH9hOHXqlLZu3aoRI0a4gt4+ffq4Bb2maeqdd96RJP3jH//wGPRKUunSpfXee++pe/fuWr16tfbs2eMK/ZxOp9577z1JUnR0tD7//HOPAaeUtekyZ9ArSR9//LGkrPYSkydPzhX0StLgwYM1a9YsLVmyRHPmzNGxY8dUsWJF1/X7779fmzZt0vbt2/X777/n2rUrZbVMkLKyu/79+7tdmzFjhg4ePKjAwEB9/vnnHoPe7DomTJigdevWacqUKbnC3pyvc8KECXm+D59++qni4+NVuXJlffLJJx6DXkl69dVXNXXqVB05ckSff/653nzzTde1cePGuVpSjB8/3mNbiQcffFAzZszQwoULPc5fXAo17F26dGlhTg8AAAAAAAAUuldffVWvvvqqx2vBwcH6v//7P40ePdrt/I4dO7Rv3z5JWUFwfm6++WbX8W+//eYKe7ds2aLY2FhJWWHoxXrZ5mS327V8+XJJUteuXV07yj0ZPHiwlixZIrvdrmXLlum+++5zXevXr5+GDRsmp9OpadOmeQx7s3sJt23bVtWqVXO79t1330mS2rdvr7Jly+Zb880336x169bpt99+y3NM27Zt8+0dnL1ejx498gyEJclms+nGG2/U7Nmzc62X3Yv3+uuvV/PmzfOc4+GHH762wt727dsX5vQAAAAAAABAsWrSpIn+8Y9/5Ho424YNG1zHN9544yXPd/z4cddx9q5hSWrXrt1l1bV//36lpGS19GjdunW+Y3Nev7BVQ6VKldSxY0f9/PPPmj59ukaPHu320/dr1651hdqeHsyW/T4sWrTokn9qP+d7cKEbbrghz2sOh8PVu/ezzz7TZ599dtnrpaena8+ePZKkli1b5ntfq1atLmn+olQ4TU0AAAAAAAAAHzFkyBBt3bpVW7du1ebNmzV//nwNGDBAFotFv/76qzp06KBTp0653XPy5MkCrZUd0EpZ/Wez5WytcCni4uJcx+XKlct3bIUKFTzely07xD18+LBWrFjhdi27hYOfn5/uueeeXPcW5H1ITU3N81rp0qXzvBYXFye73X7Z6+V8z8+ePetqS3ux9618+fKXvVZhK/SevQAAAAAAACgaUQHBOnnfqOIuo8hEBXju/+pt5cqVU6NGjVyfN2nSRD169FDHjh01cOBAHTx4UIMGDdK8efNcYxwOh+t4/vz5+bYeuHAtb7vS52Ddfffdevzxx5WWlqZp06a5fprf4XBo1qxZkqTbbrtNUVFRue7Nfh+6deumd99994rqkCSr1ZrntZzv+aBBg1wPtrsYT72MpZL5/DDCXgAAAAAAAB9hMSzF8sCya9WAAQM0f/58ffPNN/ruu+/0yy+/6JZbbpEkt+AzIiLCLSy+VGXKlHEdHzt2TPXr17/keyMjI13HJ06cyHdszjYGOe/LFh4erh49emj27NmaPXu2xo4dKz8/P/3888+uuT21cJCy3oejR48qIyOjQO/B5chZu2maBVovIiLCdXyx9+1i14sDbRwAAAAAAACAAnrrrbdcu01ffPFF1/mmTZu6jlevXl2guZs1a+Y6vrB9wsXUrFlTwcFZO5/Xrl2b79h169a5jvMKSLPD3Li4ONdDybJbOISFhalnz54e78t+HzZs2KCMjIzLeAWXz9/fXw0bNpRU8Pc8MDDQ9YC89evX5zv2YteLA2EvAAAAAAAAUEB169ZV3759JWWFqj/99JOkrKA2OjpakjR+/HilpaVd9tyNGzdWlSpVJEkTJkxQUlLSJd9rs9lc7RZ++uknxcbG5jl2woQJrns6dOjgcUz37t1d/XK/+uorpaWlae7cuZKk3r17KygoyON92SFwfHy8Jk+efMn1F1T2ejExMVq0aFGB5ujcubMkuXo052XSpEkFmr8wEfYWkhdeeEGGYbg+li1bdtF7Fi5cqN69eys6OloBAQGKjo5W7969Xd8tAQAAAAAAwNXnxRdfdPV3feONNyRJFovFtdN3//79evDBB5Wenp7nHAkJCRo7dqzbOYvFomHDhkmSYmNj9eCDD+a5O9bpdOro0aNu55544glJUkZGhh555BFlZmbmum/SpElavHixJOmuu+7K80Fw/v7+6tOnj6SsHsTTpk1TYmKipLxbOEhZrS6yA+vnnnvuojuUV61apeXLl+c7Jj9PPfWUQkOzWpk89NBD2r59e77jFyxYoD/++MPt3GOPPeb6/Xz00UeVnJyc676vvvpKP/zwQ4HrLCyEvYVgy5Yt+s9//nPJ451OpwYNGqTu3bvr22+/1ZEjR5SRkaEjR47o22+/Vffu3TV48GA5nc5CrBoAAAAAAAAF0ahRI9eO0hUrVmjVqlWSpP/7v/9T7969JUlff/21GjZsqPfee0/Lly/Xli1btGLFCo0fP179+/dXpUqVNGrUqFxzP/HEE+rSpYskae7cubr++uv14YcfavXq1dq8ebMWLlyokSNHqn79+ho/frzbvbfffrvuueceSdLixYvVpk0bffXVV9q4caOWLFmiQYMGadCgQZKy+t1eLM/KDnVTU1P17LPPSpLKly+vTp065XlPQECAZs2apYCAACUlJemWW27R3//+d82ePVsbN27U+vXr9d1332nkyJG64YYb1K5dO23dujXfOvJTvnx5TZ06VYZh6NixY2rRooWGDBmi7777Tps2bdLatWv1zTff6IUXXlCtWrXUo0cPHTp0yG2Oxo0bu4LyDRs2qEWLFpoyZYo2btyoX375RUOGDNGDDz6oFi1aFLjOwsID2rzM6XTq0Ucfld1uV7ly5XTy5MmL3vPSSy9p4sSJkrL6mDz//POqVauW9u3bp3fffVebN2/WhAkTVLZsWb311luF/RIAAAAAAABwmV566SXNmzdPkvT6669r0aJFMgxDM2fO1FNPPaVx48Zp3759ev755/Oco1y5crnOWSwWffvttxowYIBmz56t3bt36+mnn77kuj7//HPZ7XbNnTtXmzZt0t///vdcYypVqqQFCxaocuXK+c518803q0qVKjp8+LDOnTsnSerXr5+rZ3Fe2rRpo2XLlqlv3746fPiwvvrqK1e/X0/Cw8Mv/sLycdddd2nevHkaOHCg4uLiNG7cOI0bN87jWIvFopCQkFzn//Of/+jo0aOaM2eOYmJi9NBDD7ldr1GjhmbOnKlatWpdUa3exs5eL/voo4+0fv161a9fX4888shFx+/evVv//ve/JUktWrTQ6tWr1a9fP7Vs2VL9+vXTqlWrXN8leO+997R3795CrR8AAAAAAACXr2XLlq4duIsXL3Y9vMvPz0+ffPKJfv/9dw0dOlTXX3+9SpUqJavVqlKlSqlJkyZ65JFHNHv2bO3cudPj3MHBwfr666/1yy+/6IEHHlCNGjUUFBQkf39/ValSRXfccYc+++wz127bnAIDAzVnzhx99913uuuuu1SpUiX5+/urdOnSat26td5++23t2rVLTZo0uehrNAxD9913n9u5/Fo45NSmTRvt2bNH48aN0+233+6qIzAwUFWqVFHXrl315ptvKiYmRg8++OAlzZmfO+64QwcOHNC///1v3XLLLSpfvrz8/PwUFBSkGjVqqEePHvrPf/6jgwcPqmPHjrnu///27jw+qvLu+/j3zEwmk5nJQoAASQDZQkCsooALKOKCtyvFqlVrUWrV21pv7NPWpT6tbW2tdnF9rLgvbRXXuqHeIlpEFgHFhX1fQhJIIOvMZNbz/BEyZJLJSkKSyef9euWVwznXOXMlXJnJ+eaa35WUlKTXX39d//jHP3TqqacqPT1dTqdTY8aM0a9+9St98cUXGj58+GH3s6MZpmmaXd2JRLFr1y4dffTRqq6u1n/+8x998skn+t3vfidJ+uSTT+IWuP7JT36ixx57TJK0bNkynXTSSY3aLF++XCeffHK0/aOPPtrhfS8oKIjWT9m9e3e0gDgAAAAAAOg4h3P/vXnzZoVCIdlsNo0aNaqzugjgCOron2tm9nagm266SdXV1br66qujqx02xzTN6PT+/Pz8uEGvVPuXj9GjR0uS3nrrLZHPAwAAAAAAAGiIsLeDvPLKK3r33XeVmZkZLcvQku3bt0dXSWwpHK47vmfPHu3YseOw+goAAAAAAAAg8bBAWwcoLy/XnDlzJEn33Xef+vXr16rz1q1bF93Oz89vtm394+vXr9ewYcPa1MeCgoJmjxcVFbXpegAAAAAAAAC6F8LeDnDrrbequLhYkydPbtWibHXqB7At1eipq+cj1db0aav65wMAAAAAAABIPJRxOEyLFy/WU089JZvNprlz58owjFafW1VVFd12u93NtnW5XNHt6urqtncUAAAAAAAAQEJjZu9hCAQCuv7662Wapn72s59p3LhxbTq/pqYmum2325ttm5ycHN32+Xxt66hang1cVFSkSZMmtfm6AAAAAAAAALoHwt7DcM8992jDhg0aMmSI7rrrrjaf73A4otuBQKDZtn6/P7qdkpLS5sdqqUwEAAAAAAAAgJ6NMg7ttGHDBv3pT3+SJD3yyCMxZRZaKzU1NbrdUmkGj8cT3W6p5AMAAAAAAACA3oeZve30wAMPKBAIaPjw4fJ6vZo3b16jNmvWrIluf/zxxyouLpYkXXjhhXK5XDGzbesv1hZP/TIMLLYGAAAAAAAAoCHC3naqK6uwbds2XXHFFS22v/vuu6Pb27dvl8vl0tixY6P7NmzY0Oz59Y+PGTOmrd0FAAAAAAAAkOAo49CFhg0bpuzsbEnSokWLmm376aefSpJycnJ01FFHdXbXAAAAAAAAAPQwhL3t9Nxzz8k0zWY/6i/a9sknn0T314W1hmFoxowZkmpn7i5fvjzuYy1fvjw6s3fGjBkyDKNzvzgAAAAAAAAAPQ5hbxe75ZZbZLVaJUk333yzfD5fzHGfz6ebb75ZkmSz2XTLLbcc6S4CAAAAAAAA6AEIe7tYXl6efvnLX0qSVq1apcmTJ+vll1/WqlWr9PLLL2vy5MlatWqVJOmXv/ylRo0a1ZXdBQAAAAAAANBNsUBbN/DHP/5R+/bt0zPPPKPVq1fr8ssvb9Tm2muv1R/+8Icu6B0AAAAAAACAnoCZvd2AxWLR008/rfnz52vGjBnKzs6W3W5Xdna2ZsyYoffee09PPfWULBb+uwAAAAAAAADEZ5imaXZ1J9D1CgoKNHjwYEnS7t27lZub28U9AgAAAAAg8RzO/ffmzZsVCoVks9ko8wgkiI7+uWaqKAAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAGjEMQ4Zh6Le//W1XdwWtZOvqDgAAAAAAAADdzX/+8x9Nmzat0X6r1aq0tDSlp6dr8ODBOuGEEzRlyhRdeOGFstvtXdBT4BBm9gIAAAAAAACtFA6HVVZWph07dmjx4sV68MEHdckllyg3N1d/+MMfFAqFurqL6MWY2QsAAAAAAAA048Ybb9RPfvKT6L+rq6tVVlamb775RgsXLtRHH32kkpIS/frXv9Y777yjd999V/379+/CHqO3IuwFAAAAAAAAmpGVlaVx48Y12n/uuefqtttu07p163TVVVdp9erVWrFihWbOnKmPP/6Ysg444ijjAAAAAAAAAByGsWPHasmSJRo/frwkacmSJXr00Ue7uFfojQh7AQAAAAAAgMOUkpKif/zjHzIMQ5L017/+VcFgMG7b4uJi3XnnnZowYYIyMzOVnJyswYMH67LLLtNHH33U7OOUlZXp2Wef1VVXXaWxY8fK7XbLbrdr4MCBOuecc/TEE08oEAi0qs8vvviiTj/9dPXp00dut1vjxo3TXXfdpfLy8jZ97eg+KOMAAAAAAAAAdICjjz5aZ599tj788EMVFhZq5cqVOuWUU2La/Otf/9INN9wgj8cTs7+goECvvvqqXn31VV177bWaO3eubLbG0d348eO1c+fORvv37t2rDz/8UB9++KHmzp2r9957TwMHDozbz1AopCuvvFKvvvpqzP61a9dq7dq1+uc//9li6IzuiZm9AAAAAAAAQAc566yzotuLFy+OOfbKK6/ohz/8oTwej4YPH677779fH3zwgb744gu9/vrrOu+88yRJTz/9tG699da41w+HwzrxxBN19913691339XKlSu1ZMkS/fOf/9R//dd/SZJWr16tyy+/vMk+/uIXv4gGvaNHj9bTTz+tlStX6qOPPtINN9ygHTt26Pvf//5hfR/QNZjZCwAAAAAAkCBMMyIzUtnV3ThiDEuaDKN7zWU8/vjjo9ubNm2KbpeWlur666+XaZr60Y9+pMcffzxm5u7xxx+viy++WHfeeafuuecePfTQQ7rhhhs0evTomOt//PHHGjVqVKPHPeWUU/SDH/xAzz77rH70ox9p0aJFWrhwoc4888yYdt9++60eeeSR6GMuWrRIbrc7evzMM8/UKaecoquvvvrwvhHoEoS9AAAAAAAACcKMVKqq+Htd3Y0jJnXg6zKsGV3djRh9+/aNbpeVlUW3H3vsMVVUVCgnJ0d///vf45ZokKTf/e53ev7557Vnzx698MIL+uMf/xhzPF7QW9/s2bP18MMP66uvvtKbb77ZKOydO3euIpGIJOmJJ56ICXrrzJo1S/PmzdP777/f/BeLbqd7/ekDAAAAAAAA6MHqh6dVVVXR7bfffluSdMEFFyg5ObnJ8202m04++WRJ0rJly5p9LNM0VVxcrE2bNmnNmjXRj5ycHEnS119/3eiculq8xxxzjE444YQmr/2jH/2o2cdG98TMXgAAAAAAAKCD1A9409LSJNXW2f3qq68kSY8//rgef/zxVl2ruLg47v758+frscce06effhrzeA2VlpbG/Nvv92vz5s2SpIkTJzb72JMmTWpVH9G9EPYCAAAAAAAAHaR+wJqZmSlJOnDggEKhUJuv5fV6Y/5tmqauu+46Pf3006063+fzxfy7rKxMpmlKkrKyspo9d8CAAW3oKboLwl4AAAAAAIAEYVjSlDrw9a7uxhFjWNK6uguNrF69Orpdt7haOByO7vvxj3+sOXPmtOpadrs95t/PPPNMNOg97rjjdMstt+jEE09UTk6OnE6nrFarpNqau//4xz+iwW48hmG07gtCj0LYCwAAAAAAkCAMw9LtFizrbRYsWBDdnjJliqRDM3yl2tm548aNa9e1n3zySUnSyJEjtXTpUqWkpMRtd+DAgbj7MzIyott79+5t9rFaOo7uiQXaAAAAAAAAgA6wZs0aLVy4UJI0ePBgTZgwQVLtDN2jjz5akrRkyZJ2X3/t2rWSpIsuuqjJoNc0TX355ZdxjzkcDo0aNUqStHLlymYfq6Xj6J4IewEAAAAAAIDD5PP5NGvWrGjphF/84hey2Q69qf6iiy6SJG3YsEH/+7//267HqKv76/F4mmzz1ltvqaioqMnjZ511liTp22+/jSk50dAzzzzTrj6iaxH2AgAAAAAAAIdh3bp1mjJlSjQ8nTp1qm688caYNnPmzJHb7ZYkzZ49OzpLtynz58/XN998E7OvblbuO++8E7dUw9atW3XTTTc1e90bbrghWq/3+uuvjxsc/+tf/9J7773X7HXQPVGzFwAAAAAAAGjGvn37tGbNmui/PR6PysrK9M0332jhwoVasGBBdEbvSSedpNdee01JSUkx1xgwYICef/55XXLJJSoqKtKECRN0zTXX6Nxzz1Vubq6CwaAKCgq0YsUKvfbaa9q2bZveeecdfec734leY9asWfrlL3+pwsJCnXzyybrttts0btw41dTU6OOPP9aDDz4ov9+v448/vslSDscee6xuuukm/b//9/+0atUqTZgwQbfddpuOOeYYVVRU6NVXX9UTTzyhCRMmaNWqVZ3w3URnIuwFAAAAAAAAmvHYY4/psccea7ZN//79dcstt+jWW2+NKd9Q38UXX6y33npL11xzjQ4cOKC5c+dq7ty5cdtaLBa5XK6YfXPmzNGCBQv04YcfatOmTbr22mtjjqekpOiFF17Q/Pnzmwx7Jen+++9XYWGh3njjDW3YsEGzZ8+OOT5s2DC9/PLLGjFiRLNfM7ofwl4AAAAAAACglSwWi1JTU5Wenq6hQ4fqhBNO0KmnnqoLLrhAdru9xfMvvPBCbd++XU8++aTee+89rV27VgcOHJDNZtPAgQN19NFH64wzztAll1yiwYMHx5yblJSk+fPn67HHHtMLL7ygdevWyTRN5eTk6KyzztKcOXOUn5+v+fPnN9uHpKQkvf766/rnP/+pJ554Qt98842CwaCGDh2qmTNn6he/+IX69OlzWN8ndA3DrJtjjl6toKAg+gSye/du5ebmdnGPAAAAAABIPIdz/71582aFQiHZbLZo7VYAPVtH/1yzQBsAAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAA0AVM0+zQ6xH2AgAAAAAA9ABWq1WSFA6HFYlEurg3AA5XOBxWOByWdOjn+3AR9gIAAAAAAPQADodDUu1MwOrq6i7uDYDDVV5eHt12Op0dck3CXgAAAAAAgB4gLS0tul1cXKzKykpm+AI9jGmaqqmp0b59+7Rv377o/j59+nTI9W0dchUAAAAAAAB0KpfLpZSUFPl8PoXDYe3Zs0eGYXTY278BdL5wONyoTm96erqSk5M75PqEvQAAAAAAAD2AYRgaMmSIdu3aJZ/PJ6l2lmAoFOringFor/79+6tv374ddj3CXgAAAAAAgB7CYrFo6NCh8ng8qqqqis7yBdAzWCwW2e12uVwuud1u2e32Dr0+YS8AAAAAAEAPYhiG3G633G53V3cFQDfDAm0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAArB1dQcAAOjtymrCWlrk15d7/TIM6b+OcuqELLsMw+jqrgEAAAAAehDCXgAAukB1IKLPi/1aUlijdfuDMusd+7a0Qsf1t+vqsW5lu3mpBgAAAAC0DneQAAAcITUhU1/srQ14vyoJKGw23farkoC+/fSALhju1MUjnXLYqLwEAAAAAGgeYS8AAJ0oFDH1VUlASwpr9MVev/zh1p8bNqW3tnq1eE+Nrsp365TsZEo7AAAAAACaxDShw7Rq1Sr9/ve/1/Tp05Wbm6vk5GS53W7l5eVp9uzZ+uyzz9p0vffff18zZ86MXis3N1czZ87U+++/30lfAQCgo0VMU2tKA3r8m0pd/1Gp/rKqQksLmw96HVZDp2QnKyO58UvzgZqIHv6qUr9bXq6dlaFO7DkAAAAAoCczTNNs5k2kaM5pp52mxYsXt9hu1qxZevLJJ2W325tsE4lEdP311+vpp59uss2Pf/xjPf7447JYOj6jLygo0ODBgyVJu3fvVm5uboc/BgAkMtM0taU8pCWFNVpe5FeZP9LiOUkWaXxWsiZnJ+v4rGTZrYa8wYje2OLVe9u9ccs8GJKmD03RZaNdcifxN1sAAICehvtvAJ2JMg6HobCwUJKUnZ2tSy+9VKeeeqqGDBmicDisZcuW6W9/+5v27NmjF154QcFgUC+++GKT17rzzjujQe/48eN16623asSIEdq6dav+/Oc/a/Xq1XrqqafUv39/3XPPPUfk6wMAtGx3VUhL9tRoaVGN9npbDngthnRMP7smZydr4oBkORsEts4ki64a49bpuQ49v65K35QGY46bkv53p09Li2p0xWi3pg12yEJpBwAAAACAmNl7WC644ALNmjVL3/ve92S1WhsdLy0t1eTJk7Vp0yZJ0qJFi3Taaac1ardp0yYdffTRCoVCmjBhgj799FOlpKREj3u9Xk2dOlWrVq2SzWbT+vXrNXLkyA79WvjLIgC03j5vWEsKa7S0sEa7qlpXhHd0nyRNzk7WSYMcSo9TqiEe0zS1cm9AL6yrUokvfpA8It2mH41L1ciMpFb3HwAAAF2H+28AnYmZvYfh3XffbfZ4v3799Le//U0XXnihJOm1116LG/Y++OCDCoVqazA+8sgjMUGvJDmdTj3yyCM6+eSTFQqF9MADD+jRRx/toK8CANAa5TVhLSvya0lhjTaXt65u7lFpNp2SnaxTBjnU39n4j4ItMQxDkwYm69j+dr291aO3tnoVbJD5bq0I6c4lZZqW69AV+e5WB8kAAAAAgMTDzN5O5vF45Ha7JUnnnXee5s+fH3PcNE3l5uaqsLBQ+fn5Wr9+fZPXys/P18aNG5WTk6Pdu3d36Irs/GURABrzBCNaUVwb8K4pDao1L5iDXNZowJub2rF/U93nDeuFdVVauTcQ97jTZujSPJfOGZoiq4XSDgAAAN0R998AOhMzezuZ3++Pbscr9bB9+/Zo7d+pU6c2e62pU6dq48aN2rNnj3bs2KFhw4Z1bGcBAPKHTX2xtzbg/aokoFDLZXiV6bDo5EHJmpLj0LA0W4f+Ma6+LKdVv5iQoa9K/HpubbWKPLElJLwhU8+vq9bHu32afXSqju7b9MKgAAAAAIDEQ9jbyRYtWhTdHjNmTKPj69ati27n5+c3e636x9evX9+msLegoKDZ40VFRa2+FoCeYVtFUP/ZXSNJSk+2KKPeR92/bcz+lCSFIqa+KQloSWGNVu4NyB9ueQ6vO8nQSYOSNTnbofzMpCO6SNpx/ZP119Psem+7V69v9qqmQX93V4X1++XlOnlQsq4a41a/lLaXkAAAAAAA9DyEvZ0oEono3nvvjf77sssua9Smfgjb0ls36t7mIdW+1aMt6p8LIPGtLPbrgS8r1FJm6U4yGgXAsf+2KiPZolS7cUTDzCMhYppafyCoJYU1+rzIr+pgywFvstXQpIF2Tc526Jh+9i4Ny20WQxeNcGlKjkP/Wl+tzwr9jdosK/Lry31+zRzp0gXDnEqyJtb/IQAAAAAgFmFvJ3rggQe0YsUKSdLFF1+sE044oVGbqqqq6HZdbd+muFyu6HZ1dXUH9RJAollWWKNHvqpsMeiVpOqgqepgWAXV4WbbWQwp3R4bCDcMh+s+UmxGp5UxOFymaWpbRUhLCmu0tNCvMn/LNRpsFml8/9qA9/gByUruZoFppsOqm8en6+yhAT2ztlo7K2MXj/OHpXkbPfpkd42uGevW8QOSu6inAAAAAIDORtjbSRYtWqTbb79dkpSVlaXHHnssbruamprott3efG3F5ORDN+g+n69N/WlpJnBRUZEmTZrUpmsC6H4WF9To0a8rW7WQWFtETKnMH2lVOJpkUROBsLXRPvsRCk4LqkJaWlijJYV+FXubD7YlyZB0TL8knZLt0KSByXIlWTq/k4cpP9Oue6f00YKdPr28ySNPg5nKe71h3beqQsdn2XX1WLcGuvgVAAAAAAASDXd6nWDt2rWaOXOmQqGQHA6HXn31VWVlZcVt63A4otuBQPzV1evUX+wtJSWlTX1idU8g8X28y6cnvq1qFPSO65sku9VQuT+iCn9E5f5Iq2b9tlcwIpX4IirxtRwMp9iMRjOD45WTSLdbZG1jyYQSb1hLi2oD3oazXZuSl2HTKdkOnZztUEZy9w94G7IYhs45yqmTsx16eWO1Fu6qaTQevtwX0DelB3ThMKe+O9Ilh617zVQGAAAAALQfYW8H2759u6ZPn66ysjJZrVbNmzdPp512WpPtU1NTo9stlWbweDzR7ZZKPvQGm8qCWrc/oHOHObvd26qBI+1/d3j1zNrGzyHnDE3RNUe7Y+rtRkxTnqCp8oPBb/0QuHY7HN2uCpgdPku4Pl/IlC8UVpGn+dm2hqRUe/36wta4AXGy1dDqfX4tKfRrY1mwVX0YkmrT5OxknZLtUJYzMRYyS7NbdN0xaTpzSIqeXVOlTeWxYXcoIv17q1ef7qnRVWPcOnlQcrctvQEAAAAAaD3C3g5UWFios846S4WFhTIMQ88884xmzJjR7Dn1Z9zWX6wtnvqlGHr7gmumaeqf66u1sSyoD3b4dGmeS6fnOto88w9IBPO3efXC+sZB7/nDUvTDMe5GIZ7FMJRqN5Rqt2hwaqPTYoQjpioDkZhguHE4XPvZG+q8WNiUVBkwVRkIa1dVWFLrgtymDHBaNTk7WZOzHcpNTdyXwuHpSfrdKX20eE+N/rXBo4oGZTj210T00OpKLdiZpNnjUjUkgb8XAAAAANAbcFfXQUpLS3X22Wdr27ZtkqRHHnlEs2bNavG8sWPHRrc3bNjQbNv6x8eMGdPOniaGL/YForP2yvwRPfFtld7d5tWV+W5NGGBnhhp6jTe3ePTSRk+j/TNHOPX90a7D/lmwWgz1cVjVx9HyjNdA2IwTBodV4TdVXm+2cLk/omDLFR46XJ9ki04+GPCOSLf1mucJi2Foam6KJg5I1mubPfpgh69RGY91B4K6bfEBnTM0RZfmuXpEjWIAAAAAQGOEvR2goqJC55xzjtatWydJuvfee3XTTTe16txhw4YpOztbhYWFWrRoUbNtP/30U0lSTk6OjjrqqMPqc09mmqZe2tB4FmOhJ6y/flGhvAybrhzj1pjM5he8A3oy0zT12maPXtvsbXTssjyXvjfKdcT7ZLcaynJaWyyFYJqmfKF4wXDj2cMVgYgihzFh2JVk6KSBtSUaxvZNiiln0ds4kyyaNTZVZwxO0bNrq7Rmf+zs6Igpvb/DpyWFNboy362puY5e/f0CAAAAgJ6IsPcweb1enX/++fryyy8lSXfeeaduu+22Vp9vGIZmzJihxx57TBs2bNDy5ct10kknNWq3fPny6MzeGTNm9JoZafEYhqGbjkvTSxuq9U1p47dybyoP6bfLynVCll2X57t5WzISjmmaemmjR29tbRz0Xpnv0owRRz7obQvDMORMMuRMsii7hfLjEdNUdaB+feFwk6UkqoK1qXCyVZowoHYG77H97bJR3iVGbqpN//fEDK0o9uuF9dUqbbCQXmXA1NxvqvTRLp9mH52qkRlJXdRTAAAAAEBbGaZpdubaOwktEAjowgsv1IcffihJmjNnjh588ME2X2fTpk0aO3aswuGwJkyYoE8//VQpKSnR4z6fT6eddppWrVolm82mdevWadSoUR31ZUiqrRdcVwd49+7dMbWEu7NvSgN6cX21tleG4h43JJ2W69BleS71S0mMhZfQu5mmqRfWV+u97b5Gx64Z69a5w5xd0KvuIRQxVR005U4yCHhbyR829dYWj97e5o1bWsOQNG2wQ1eMdistmdIOAAAAHaGn3n8D6BkIew/D9773Pb3xxhuSpDPOOEMPPvhgszNu7Xa78vLy4h674447dO+990qSxo8fr9tuu00jRozQ1q1bdd9992n16tXRdvfcc08HfyU9+8UmYppaXuTXvI3V2uuNXwg0ySL911FOfXeEU247gQV6pohp6pk11Vqwq3HQ++NxqTp7aEqcs4CW7fWG9cK6Kq3aG4h73GUzdNlol84eksJCmAAAAIepJ99/A+j+CHsPQ1tLKQwdOlQ7duyIeywSiei6667TM8880+T51157rZ544glZLB0fVibCi00oYmrhLp9e2+xRZSD+sHbaDH13pFPnHuWU3UpggZ4jYpp64psqfVJQE7PfkPTf30nV6YMJenH4vtrn13PrqlXkCcc9PiTVqtlHp2psX2qiAwAAtFci3H8D6L4Iew9DR4a9dd577z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999zD6G3zEunFxheK6N1tPr2zzSt/wyXnD8p0WHTpKJem5jqYpYZuLxwx9fevK/VZoT9mv8WQbjo2TVNyHF3UMySiYNjUezu8en1z08+hk7OTddUYtzIdlMcBAABoq0S6/wbQ/RD2QlJivtiU+yN6Y7NHH+3yqYm8Qjluq64Y7daEAfZevegduq9QxNTDqyv1eXFs0Gs1pDnj03TiIIJedI4DNWH9c321ljT4I0OdZKuhi0c6df4wp5J4pwQAAECrJeL9N4Dug7AXkhL7xabYE9LLmzxa2kRgIUl5fZL0g3yX8jN5azK6j2DY1IOrKxrVUbVZpP9zfLpOGJDcRT1Db7Juf0DPrq3Wrqr4C2EOcll19Vi3xmcxHgEAAFojke+/AXQ9wl5I6h0vNtsqgnpxQ7W+LQ022WbCALsuH+3W4FTbEewZ0FggbOpvX1Toq5LYoDfJIv3ihHQdR7CGIygcMfXRLp9e3uiRJxT/14YTsuyaNdatgS6ePwEAAJrTG+6/AXQdwl5I6l0vNt+UBPSvDdXaURl/lpohaWquQ5fmudQvhXqUOPJqQqb+sqpca/bH/mEi2SrdOiFD4/oxAx1do9If0byN1fp4d43i/fKQZJEuHO7Ud0e6lExpBwAAgLh60/03gCOPsBeSet+LTcQ0tazIr5c3VmuvNxK3TZJF+q+jnPruCKfcdssR7iF6K18oontXVmjDgdigN8Vm6PaJ6ZQaQbewtTyoZ9ZWaUt5/D+a9XVYNGusWycOTKYeOgAAQAO97f4bwJFF2AtJvffFJnTwrcmvb/aoMhD/R8FlMzRjpFPnHuWUnZlq6ESeYER/WlGuzQ0CNKfN0K8mZWhUn6Qu6hnQWMQ09WlBjV7cUK2KJp4/x/VN0uyjU5VLaRwAAICo3nr/DeDIIOyFJF5sfKGI3t3m1TvbfPKH4/9IZDosuizPpdNyHLJaCH3RsaoCEf3x83Jtb1BexJ1k6M4TMzQ8naAX3ZM3GNGrmz36YIdPkThPn1ZD+q+jUnTJKJecSbxLAgAAoLfffwPoXIS9kMSLTZ1yf0RvbPboo10+NZH5Ktdt1RX5bp2QZeftyegQFf6I/vB5uXZVxQa9aXZDvz6xj4akMSsS3d/uqpCeXVultfvjL4KZnmzRD/JdOjXHIQvPnQAAoBfj/htAZyLshSRebBoq9oQ0b6NHy4r8TbYZ3SdJV+a7qKGKw1JWE9bdn5drT3U4Zn+fZIv+74kZvP0dPYppmlpe7Nc/1lVrf038euh5GTbNHpfKbHUAANBrcf8NoDMR9kISLzZN2Voe1IsbqrWmiZlqkjRhgF1XjHYTyqHNSn1h3b28XMXe2KC3r8OiX5+UoUEuxhR6ppqQqTe3evTONq9CcTJfQ9IZQxy6fLRbaSyACQAAehnuvwF0JsJeSOLFpjmmaeqb0oBe3ODRjsr4K88bkk7PdejSPJf6pliPbAfRI+3zhvX75WUq8cUmYf1TLPrNSX2U5WQcoecr9oT0wrpqfbEvEPe4K8nQ9/NcOntoCqUdAABAr8H9N4DORNgLSbzYtEbENLW00K+XN1Zrny/+25OTLNK5Rzk1Y6RTbhYiQhOKPCHdvby80dvcBzqt+vVJGerHHwyQYFbv8+u5tdWNZrHXGZpm04+OdlMWBwAA9ArcfwPoTIS9kMSLTVuEIqYW7PTp9S0eVQXi//i4bIa+O9Kp/zrKKbuV2Wo4pKAqpD98Xq4yf2zQm+O26tcnZqiPg6AXiSkYNvXudq/+vcUjf/zMV1Oyk/WDMW5l8nMAAAASGPffADoTYS8k8WLTHt5gRO9u9+rdbT75w/F/jPo6LLo0z6Wpuaw+D2lXZUh3f16mygZ/JBiSatX/PbGP0pOZDY7EV+oL65/rq5tcANNhNfS9UU6dN8wpm4XnTQAAkHi4/wbQmQh7IYkXm8NRXhPW61u8WrjLpyYyX+W6rboy363js+wyCH17pW0VQf3x83JVB2MHybA0m+48MUOpLFKFXmbt/oCeXVul3VXxp/lmu6w6NcehHLdVOW6bBrqshL8AACAhcP8NoDMR9kISLzYdocgT0ssbPU3OVpOk/D5JujLfrdGZSUewZ+hqm8uC+tOKcnlCsU+3IzNs+tWkDLmo74xeKhwx9eFOn17Z5JE31PyvI1ZDGuCsDX5rA+BD2w4bP0MAAKDn4P4bQGci7IUkXmw60pbyoF7cUK21+4NNtpk4wK7LR7uVm2o7gj1DV9hwIKB7V1bI1yDIys9M0u0T05VCSAWowh/RSxur9cnumnad39dhqRcCH/qcZjd4NwUAAOh2uP8G0JkIeyGJF5uOZpqmvi4N6MUNHu2sDMVtY0iaNtihS/NcLEaUoNaUBvTnVeWNFqMa1zdJv5yQIYeNEAqob0t5UM+sqdLWivjPm23lTjLihsD9UizUUQcAAF2G+28AnYmwF5J4seksEdPUkkK/Xt5YrRJfJG6bJIt03jCnLhrhlJu38yeMr0r8+uuqCgUb/Lcf19+un5+QLruVoAmIJ2KaWlns15r9Qe2pDmlPdVjl/vjPn+1lt0jZDULgbLdNg5xWJfGzCQAAOhn33wA6E2EvJPFi09mCYVMLdvn0xmaPqoLxf+RcSYZmjnDpnKNSCAJ7uC/2+nX/lxUKNcinTsiy62fHpxMmAW3kCUa0pzocDX/rPu/zhtWRv8RYonWBY2cCZ7uscvLHOAAA0EG4/wbQmQh7IYkXmyPFG4zo3W1evbvd2+it/XX6Oiy6LM+l03IdvM24B/q8qEYPra5UuMEz64kDk/U/49Nks/B/CnSUQNhUkadxCFzkCTWaVX+4+iRbGoXAuW6r0pMt1AUGAABtwv03gM5E2AtJvNgcaWU1Yb2+2auFu32KNPETmOu26sp8t47PshMk9BCf7anRo19XNvo/nZydrJuOTZOVoBc4IiKmqX3ecDQALqwXBHtCHftrj8tmKLtBCJzjtirLaeUPdgAAIC7uvwF0JsJeSOLFpqsUVof08iaPlhf5m2yTn5mkH+S7ldcn6Qj2DG31yW6fHv+mqtFbyk/PdeiG76QS+gDdgGmaqvBHVFAv/C301H4+UNOxU4GTLNIgV10AXBcC2zTIZaVUDwAAvRz33wA6E2EvJPFi09W2lAf1r/XVWncg2GSbiQOSdUW+Szlu2xHsGVpjwU6fnlpT1Wj/2UNS9KNxboJeoAfwBiMqjFMSYq833OQ7MNrDkJQVpy5wjtsqF3WBAQDoFbj/BtCZCHshiReb7sA0TX1dEtC/Nni0qyoUt40h6YzBDl2S51Kmw3pkO4i43tvu1fPrqhvtP/eoFF091k0JDqCHC4ZNFXsbh8CF1SEFOrgucEaDusDZB+sC96EuMAAACYX7bwCdiSmCQDdhGIaOy0rWd/rbtWSPXy9vqlaJLzZJMCUt3F2jxXtqdO4wp2aMcDITrIt4ghF9sMOnVzZ5Gh2bMcKpK0a7CGeABJBkNTQ41abBqbG/MkVMU6W+SKMQeE91SNXB9v0dvdwfUbk/orX7Y9/lkWIzGs0EznZZNcBppRY4AAAAgBiEvUA3YzEMnZrr0EmDkvXhLp/+vdmjqgbBQSAivbXVq492+TRzpEvnDE2hBmQn8wYjWn8gqHX7A1p3IKjtFaFG9Xkl6ZJRTl0yiqAXSHQWw1CWs3YhtvFZh/abpqnKgBk3BN7fzrrAvpCpLeUhbSmPfdeHzSINdNaGv7n1wuBBbpuSeU0AAAAAeiXKOEASbyPpzrzBiN7e5tX8bd4m3zLc12HR90e7dGqOg/qwHcQbjGjDgaDWthDu1nf5aJdmjnQdkf4B6HlqQpGDJSBqw9+6heL2esMKd3Bd4H4plkY1gXPdNrntvBsEAICuxv03gM5E2AtJvNj0BGU1Yb2+2auFu31NLhY0ONWqK0e7NT7LzszSNqoLd9cdDHhbE+7WN2uMW+cPd3Za/wAkrlDEVHG9xeEKPXWzgcPyd2QKLCnNbjQKgXPcNvV1UBcYAIAjhftvAJ2JsBeSeLHpSQqrQ5q30aPPi/1NthmTmaQr893K65N0BHvWs3iDEW0sC2rt/trSDNvaGO5KUpJFGpWRpItGODU+K7lT+gmg94qYpg7URFRQrxRE3azgykDH/vqWbK2rC1wXAtcGwQOcVtmoCwwAQIfi/htAZyLshSRebHqizWVBvbihWusOBJtsM2lgsq4Y7VK2m/LcvtDBmbv7g1p3oDbcbWqGdFNsFikvI0lj+9p1dN8kjcxIolYygC5RFYi/OFzDhT0Pl9WQBroOBsB1n1OtynbZ5LDx/AcAQHtw/w2gM5EAAT3UqD5J+s1JGfqqJKAXN1RrV1W4UZsVxX6t2uvXtMEOXTLKpUyHtQt62jU6NtytDXhHEe4C6CZS7RblZ9qVnxm73x82VRgnBC7ytK8ucNhUtKREQ/XrAme7DtUFTkumLjAAAADQVQh7gR7MMAyNz0rWsf3t+mxPjV7e5FFpg1ldEVNauKtGiwtqdP4wpy4a4ZQzKfFuxH2hiDbWq7nb3nB3VF24m2lXXh/CXQA9S7LV0LD0JA1Ljy3jE46Y2usNNwqBCz1h+ULte5NXqS+iUl9AX5fE7k9Niq0LnH3wc78UC4uIAgAAAJ2MMg6QxNtIEkUgbGrBTp/e2OJRdTD+j7Y7ydDMkS5NH5rSo4PMmlBEG8oOztzdH9DWdoS7VqN2hvTRmbUzdwl3AfQ25sG6wHs8Ye2pqjcj2BNWhb9jS0IkW6VBrkMhcK7bqmy3TYNc1AUGAPQu3H8D6EyEvZDEi02i8QYjenurV/O3exVo4l69X4pFl+W5dGqOo0fMtKoJ1S6otm7/oZm7bX1LstWonbl7dF1Zhj5JSibcBYC4qoMR7akKq9BTvyxESPu8kTYvaNkciyENcNZfHO7Q5xRb4r0TBQAA7r8BdCbCXkjixSZRHagJ67XNHn2yu6bJWa9DUq26Mt+t4/rbZXSj0LcmZGpjWSBm5m57w926mrt5hLsAcNgCYTMmAC6sVxc42LGTgZXpsMQJgW1Ktxvd6jULAIC24P4bQGci7IUkXmwS3Z7qkOZt9GhFsb/JNmMzk3Rlvluj+iQ12aYz1YRMbSqrDXbXHghqa3mwXeHuyPrhbkYSq8UDwBESMU3tO1gXuOBgXeC6xeK87awL3BRXkqEc16HwN8dtVU6qTf2pCwwA6AG4/wbQmQh7IYkXm95iU1lQL26o1voDwSbbnDgwWZePdinb3bnrN/rD5sGyDLWzd7e0M9wdUa8sA+EuAHQ/pmmq3B9ptDjcnuqwyjq4LnCSpXFd4JyDdYGTeGcHAKCb4P4bQGfq3DQHQLeS1ydJd52Uoa9KAnpxQ7V2VYUbtfm82K+Ve/06Y7BDl4xyqY/D2iGP3aHhbr0F1Qh3AaB7MwxDfRxW9XFYNa6fPeaYNxg/BN7rDberLnAwIu2qCmlXVUjSoXezGKqtC5zdoCRErtsqZxJ1gQEAAJA4CHuBXsYwDI3PStax/e1avKdGr2zyqNQXO7MqYkof7arR4j01Om+YUxcNd7b5ZtgfPlSWYd3+oDa3N9xNt2lsX7vG9k3S6D5JcrBYDwAkDGeSRaP6WBqVEAqGTRV5G4fAhdWhdtUFNiUVe8Mq9ob15b5AzLE+ybV1gbMbLA7XJ9lCXWAAAAD0OIS9QC9lMQxNzU3RyYMc+nCnT//e4lF1MDaN9Yelf2/x6qOdPs0c6dL0oSlNvg02EI6tubulPKhQG2/ILQ3C3XzCXQDolZKshoak2jQkNfZX1YhpqtQX0Z7qkAoazAj2BNtXmazMH1GZP6I1+2NLHKXYjDiLw1k1wGmlLjAAAAC6LWr2QhI1gyB5ghG9vdWr97Z7FWgipO2fYtFleS5NyXEoFKmtAbzuQEBr97c/3B2ebtPR9WbuphDuAgDayDRNVQRM7akOqTAaAtcGwftrOrYusM0iDXI1CIFdtTOD7dQFBgC0AvffADoTYS8k8WKDQw7UhPXaJo8+3l3TZL3Evg6LKgKRwwt3M5M0OpNwFwDQuXyhQ3WBC+vNBi72hhXpwN+CDdX+UTR2JnDtttvOax0A4BDuvwF0Jso4AIiR6bDq+u+k6fzhTr20waOVe/2N2rR2llRduDs289DMXRbCAQAcSSk2i0ZmWDQyI7YucChiqtgTjpaEKKyrC+wJyd94/dIWmZL2+SLa5wtodUnssXS7ERP+1n3OdFAXGAAAAB2LsBdAXDlum34xIV2byoL614ZqbTgQbPEcQ43LMhDuAgC6I5vFUG6qTbmpNp1Yb3/ENLX/YF3g6OJwB0PhqkD7pgJXBExVHAhqXYPXUofVUHa98De3Xl1gq4UQGAAAAG1H2AugWXl9kvTbkzK0el9AL26s1u6qQ9Od6sLdsX3tOppwFwCQACyGof5Oq/o7rTouK/ZYZaBBCHxwRnCJr311gWvCprZVhLStIhSz32pIAxvWBXZble2yyWEjBAYAAEDTCHsBtMgwDB0/IFnHZdm1stivguqwhqXZlJ9JuAsA6D3S7BalZdo1JjN2f03IVKEnNgTeUx1SsSescDsmA4dNHbxG43oS/VMsym4QAue4bUqjLjAAAABE2AugDSyGoRMHOWLe7goAQG/nsBkanp6k4emN6wLv89aGtgX1QuDC6rBq2pMCSyrxRVTiC+jrBnWBU+vqAjeYEdw3xSILdYEBAAB6DcJeAAAAoBPYLIay3TZlu22aqOToftM0tb8mEg1+D80IDqminXWBqwKmNhwINqqxn2yVsl0Hy0C4bco9GAIPdFlloy4wAABAwiHsBQAAAI4gwzDUL8WqfilWHds/9lh1IBKdBVxYbzZwiS+i9sTA/rC0vTKk7ZUhSf7ofqshDXBaY2sCH/ycYqMkBAAAQE9F2AsAAAB0E267RfmZduU3qAvsD5sqqr84nKf2c5EnrFA71ocLm1KhJ6xCT1gr9wZijvV1WOqFwIeC4HS7IYOSEAAAAN0aYS8AAADQzSVbDR2VnqSjGtQFDkdM7fOFGy0Ot6c6LF+ofSUh9tdEtL8mom9KY0tCuJKMmHrAdSUh+lEXGAAAoNsg7AUAAAB6KKvF0CCXTYNcNk0YEFsXuMwfaRQCF1aHVeZvx1RgSZ6gqU1lQW0qiw2BkyyKloCoHwYPclqVZCUEBgAAOJIIewEAAIAEYxiGMh1WZTqsOqafPeaYJ9g4BN5THdY+b7hddYGDEWlnZUg7G9QFNiQNdFmV7YoNgXPcVjmTqAsMAADQGQh7AQAAgF7ElWRRXh+L8vrEloQIhE0VH6wFXFAvBC7yhBRsx2RgU1KRJ6wiT1hf7IutC9wn2dJoJnCO26qMZAt1gQEAAA4DYS8AAAAA2a2GhqTZNCQt9hYhYpra5w2rsLp+beDaINjTzrrAZf6IyvwRrdkfWxLCaTOi4W+226rcgyFwltNKXWAAAIBWIOwFAAAA0CSLYWigy6aBLpuOH3Bov2maqvBHVFAdVqEntiTEgZr21QX2hkxtLg9pc3koZn+SRRpUrxxEXY3gbJdNduoCAwAARBH2AgAAAGgzwzCU4bAqw2HVuAZ1gb3BiAo9jesC7/WGFWnHZOBgRNpVFdauqnBsHyRlOS0HQ+BDAXBOqlVu6gIDAIBeiLAXAAAAQIdyJlk0MsOikRmxdYGDYVPF3sYhcGF1SIF21gXe641orzegLxvUBU5Ptiin/uJwqTbluKzKdFAXGAAAJC7CXgAAAABHRJLV0OBUmwanNq4LXOqLNAqB91SHVB1sX13gCn9EFf6I1h2IrQucYjOU7Wq8ONwAp1VWCyEwAADo2Qh7AQAAAHQpi2Eoy1m7ENv4rNhjlf6ICuKEwPvbWRfYFzK1tSKkrRWxdYGtRmxd4Pr1gZOpCwwAAHoIwl4AAAAA3VZaskVjk+0a2zd2f03oYF3gqtrwt+BgCLzXG1a4HZOBw6ZUUB1WQXXjusD9UiyNQuAct02pduoCAwCA7oWwFwAAAECP47BZNDzdouHpsXWBQxFTe73hejOB62YDh+VvRwpsSirxRVTiC+irkthjaXZDOW6bsuuFwLlum/pSFxgAAHQRwl4AAAAACcNmMQ4GrzZJydH9EdPUgZr4dYErA+2rC1wZMFV5IKj1DeoCJ1uNg7N/rcp2HZoJPNBllY26wAAAoBMR9gIAAABIeBbDUL8Uq/qlWHVs/9hjVYH4IXCJr311gf1hU9sqQtpWEZLkj+63GtIAZ23wm+u2xswIdtgoCQEAAA4fYS8AAACAXi3VblF+pl35mbH7/WFThXFC4CJP++sCF3rCKvSEtXJv7LG+jvh1gdPsBiUhAABAqxH2AgAAAEAcyVZDw9KTNKxBXeBwo7rAtZ8LPWH5Qu0rCbG/JqL9NQF9Uxq7351kxA2B+6VYZCEEBgAADRD2AgAAAEAbWC2Gst02ZbttmlivLrBpmirzR1RQHdaeqnozgj1hVfjbVxKiOmhqY1lQG8ti6wLbLVJ2nBB4oNOqJCshMAAAvRVhLwAAAAB0AMMwlOmwKtNh1Xf62WOOVQcjKmwwE3hPdUj7vBG1Zy5wICLtqAxpR2VsXWBLtC5wbAic7bLKmURdYAAAEh1hLwAAAAB0MneSRXl9LMrrE1sSIhA2VeQ5FP7WrwscbMdk4IgpFXnCKvKEtWpvIOZYn2RLoxA4121VerKFusAAACQIwl4AAAAA6CJ2q6GhaTYNTYu9NYuYpvbFqQu8pzosbzvrApf5IyrzR7Rmf2xJCJfNUHaDEDjHbVWW00pdYAAAehjCXgAAAADoZiyGoYEumwa6bDphQGxd4HJ/JG4IXNbOusCekKnN5SFtLg/F7E+ySINcdQFwXQhs0yCXVXbqAgMA0C0R9gIAAABAD2EYhvo4rOrjsGpcg7rA3mBsCFzoqf1c7Am3qy5wMCLtqgppV1VsCGxIyopTFzjHbZWLusAAAHQpwl4AAAAASADOJItG9bFoVIO6wMGwqSJv7EzgusXi2lMX2JS01xvWXm9YX+6LrQucEacucI7bqj7UBQYA4Igg7AUAAACABJZkNTQk1aYhqY3rApf6ItpTHVJBg7IQnmD76gKX+yMq90e0tkFd4BSbETcEzkqxymohBAYAoKMQ9gIAAABAL2QxDGU5axdiG591aL9pmqoMmA1qAtdu769pX11gX8jUlvKQtjSoC2yzSAOdteFvbr0QONttoy4wAADtQNgLAAAAAIgyDEPpyYbSk+0a2zf2mC8UiZaAqF8fuNgbVqQdk4FDEamgOqyC6rA+r98HSf1SLI1mAue6bXLbqQsMAEBTCHsBAAAAAK2SYrNoRIZFIzJi6wKHIqaKPY1D4EJPSP5w2x/HlFTii6jEF9BXJbHH0u2GshuEwDlum/o6qAsMAABhLwAAAADgsNgshnJTbcqNUxd4/8G6wHsahMFVgfbVBa4ImKo4ENT6A7F1gR1WQ9lua70QuDYIHuC0ykZdYABAL0HYCwAAAADoFBbDUH+nVf2dVh3X4FhlIHJoBnC9ELjE1766wDVhU9sqQtpWEZLkj+63GtJA18EAuO5zqlXZLpscNkJgAEBiIewFAAAAABxxaXaL0jLtGpMZu78mZKrQcyj8rasRXOQJK9yOycBhUwev1bieRP26wNmuQ3WB05KpCwwA6JkIewEAAAAA3YbDZmh4epKGpzeuC7zPWxvaFjSYEVzTnhRYUqkvolJfQF83qAucmmQ0Whwu221TvxSLLNQFBgB0Y4S9AAAAAIBuz2apXZgt223TRCVH95umqQM1kZiF4Wo/h1TRzrrAVUFTG8qC2lAWWxc42SoNch0KgXMPfh7ooi4wAKB7IOwFAAAAAPRYhmGob4pVfVOs+k5/e8yx6kAkJvytXxe4PTGwPyztqAxpR2VsXWCLIQ1wWmNmAtd9TrFREgIAcOQQ9gIAAAAAEpLbbtHoTItGZ8aWhAiEY+sC76lXFzjUjvXhIqZU5AmryBPWqr2BmGOZDkucENimdLshg5IQAIAORtgLAAAAAOhV7FZDR6Ul6ai02BA4HDG1zxdWYb26wHVhsC/UvpIQB2oiOlAT0belsSUhXEmGclyHwt8ct1U5qTb1py4wAOAwEPYCAAAAACDJajE0yGXTIJdNJwyIrQtc5j9UEqKwXghc5m/HVGBJnqCpTeUhbSoPxexPsqi2NrErti7wIJdVSVZCYABA8wh7AQAAAABohmEYynRYlemw6ph+sXWBPcHYxeEKD37e6w23qy5wMCLtrAxpZ4O6wIYO1QXOdscuEudMoi4wAKAWYS8AAAAAAO3kSrIor49FeX0a1wUu9tSGwAX1wuAiT0jBdkwGNiUVe8Mq9ob1xb7YusB9kg/VBc6uVx+4T7KFusAA0MsQ9gIAAAAA0MHsVkND0mwakhZ72x0xTZX4ItpTVb8mcO22p511gcv8EZX5I1qzP7YusNNmxIS/dZ8HOK3UBQaABEXYCwAAAADAEWIxDA1w1gauxw84tN80TVUEzJjwt+7zgZr21QX2hkxtKQ9pS4O6wDaLNMjVIAR21ZaHsFMXGAB6NMLebmbnzp16+OGHNX/+fO3evVvJyckaMWKELrvsMt10001yOp1d3UUAAAAAQAczDEMZyYYyku06um9sXWBvMKJCT7hRCLzXG1akHZOBQxFpd1VYu6vCsX2Q1D/F0mAmcO22205dYADoCQzTNNv3PhF0uHfeeUdXXXWVKisr4x7Py8vT/PnzNXLkyA5/7IKCAg0ePFiStHv3buXm5nb4YwAAAAAAOk4oYqrIU7soXEGDReIC7ZsM3KR0uxET/tZ9znRQF7ituP8G0JmY2dtNrF69Wt///vfl8/nkdrt1xx13aNq0afL5fJo3b56efPJJbdq0Seeff75WrVql1NTUru4yAAAAAKAL2SyGBqfaNDjVphPr7Y+Ypkp9Ee2pDqmwOnZGcFWwffO9KgKmKg4Ete5AbF1ghzW2LnBuvbrAVgshMAAcaYS93cScOXPk8/lks9n04Ycf6uSTT44eO+OMMzRq1Cjdeuut2rRpk/72t7/pt7/9bdd1FgAAAADQbVkMQ1lOq7KcVo3Pij1W6Y+ooF74W1ceotTXvqnANWFT2ypC2lYRWxfYahyqC1w/DM522eSwEQIDQGehjEM3sGLFCp14Yu3fYW+44QbNnTu3UZtIJKJx48Zp/fr1ysjI0L59+5SUlNRhfeBtJAAAAADQe9WEDtYFrqoNfwuqwyr0hFTsCSvcwalB/brA2fXKQqT1krrA3H8D6EzM7O0G3nzzzej27Nmz47axWCyaNWuW7rjjDpWXl+uTTz7R9OnTj1APAQAAAACJzGGzaHi6RcPTYycVhSKm9nrD9RaGq5sVHJa/nSlwiS+iEl9AX5XE7k+N1gU+OBP44MzgvikWWagLDACtQtjbDXz22WeSJJfLpRNOOKHJdlOnTo1uL1mypFeHveFISAdq9nZ1NwAAAAAg4dkt0rC02o86pmmq3B/RXm9Y+zwR7fWGtNcb1l5vWNWhpq/VnJqQtLW89iPm8Q0py2VRltOqAU6bBjitGuC0qF+KVbYGdYEzHQNktRB1AOi9eAbsBtavXy9JGjlypGy2pv9L8vPzG53TWgUFBc0eLyoqatP1utqBmr2yl83q6m4AAAAAQK81QNIAQ5L74MeRFDj40cCBPi+ovzPnCHcGALoPwt4uVlNTo9LSUklqsU5Pnz595HK55PF4tHv37jY9Tl09IAAAAAAAAACJqXdUP+/Gqqqqottud8t/CnW5XJKk6urqTusTAAAAAAAAgJ6Hmb1drKamJrptt9tbbJ+cnCxJ8vl8bXqclmYCFxUVadKkSW26JgAAAAAAAIDug7C3izkcjuh2IBCn4FADfr9fkpSSktKmx2mpRERPk+kYoAN9XujqbgAAAAAAuoAnGFGJN6y93sjBheFCOmmgQ1MdA7q6awDQpQh7u1hqamp0uzWlGTwej6TWlXxIZFaLjaL7AAAAANBL9Zd0VHpX9wIAuh9q9nYxh8Ohvn37SpIKCgqabVtWVhYNe1lwDQAAAAAAAEB9hL3dwNixYyVJW7ZsUSgUarLdhg0bottjxozp9H4BAAAAAAAA6DkIe7uBKVOmSKot0fDFF1802W7RokXR7cmTJ3d6vwAAAAAAAAD0HIS93cB3v/vd6Pazzz4bt00kEtELL9QuSJaRkaFp06Ydia4BAAAAAAAA6CEIe7uBSZMm6dRTT5UkPf3001q2bFmjNn/729+0fv16SdKcOXOUlJR0RPsIAAAAAAAAoHuzdXUHUOuhhx7S5MmT5fP5NH36dP3qV7/StGnT5PP5NG/ePD3xxBOSpLy8PP385z/v4t4CAAAAAAAA6G4Ie7uJ8ePH6+WXX9ZVV12lyspK/epXv2rUJi8vT/Pnz1dqamoX9BAAAAAAAABAd0YZh27kwgsv1DfffKOf/exnysvLk9PpVEZGhiZMmKD77rtPq1ev1siRI7u6mwAAAAAAAAC6IcM0TbOrO4GuV1BQoMGDB0uSdu/erdzc3C7uEQAAAAAAiYf7bwCdiZm9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACcDW1R1A9xAKhaLbRUVFXdgTAAAAAAASV/177vr34gDQEQh7IUkqKSmJbk+aNKkLewIAAAAAQO9QUlKio446qqu7ASCBUMYBAAAAAAAAABKAYZqm2dWdQNerqanRt99+K0nq37+/bLbuP+m7qKgoOgt5xYoVGjRoUBf3CGg/xjMSCeMZiYYxjUTCeEai6YljOhQKRd9de8wxx8jhcHRxjwAkku6f6OGIcDgcmjhxYld3o90GDRqk3Nzcru4G0CEYz0gkjGckGsY0EgnjGYmmJ41pSjcA6CyUcQAAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEYpmmaXd0JAAAAAAAAAMDhYWYvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS96JF27typn//858rPz5fL5VJmZqYmTpyov/zlL/J6vV3dPSS4ffv26d1339VvfvMbnXvuuerXr58Mw5BhGLrmmmvafL33339fM2fOVG5urpKTk5Wbm6uZM2fq/fffb/U1QqGQ5s6dq1NPPVX9+/dXSkqKRowYoRtuuEFr165tc5/Qe6xatUq///3vNX369OgYdLvdysvL0+zZs/XZZ5+16XqMZ3SVyspKzZs3Tz//+c81depUjRw5Uunp6bLb7crKytLpp5+uP//5z9q/f3+rrrd06VJdddVVGjp0qBwOhwYOHKhzzjlHL730Upv69dJLL2n69OkaOHCgHA6Hhg4dqquuukrLli1rz5cJSJJuu+226O8ehmHoP//5T4vn8PyMrlZ/zDb3cfrpp7d4LcYzADTDBHqYt99+20xLSzMlxf3Iy8szN2/e3NXdRAJrauxJMq+++upWXyccDpvXXntts9f78Y9/bIbD4WavU1JSYk6cOLHJayQnJ5tPPvnkYX7VSESnnnpqs+Ov7mPWrFmm3+9v9lqMZ3S1BQsWtGo89+vXz/zggw+avdZdd91lWiyWJq9x/vnnmz6fr9lreL1e87zzzmvyGhaLxfztb3/bkd8C9BKrV682bTZbzHj65JNPmmzP8zO6i9Y8R0syp06d2uQ1GM8A0DLCXvQoX375pZmSkmJKMt1ut/nHP/7RXLp0qblw4ULzuuuuiwl8Kysru7q7SFD1fxEcMmSIOX369HaFvbfffnv0vPHjx5svvfSSuWLFCvOll14yx48fHz12xx13NHmNUChkTpkyJdr24osvNt9//33z888/Nx9++GEzKysrGiq89957HfDVI5GMGDHClGRmZ2ebc+bMMV977TVzxYoV5rJly8z777/fzMnJiY6tK664otlrMZ7R1RYsWGAOHjzYnDVrlvnQQw+Zb7zxhrls2TJzyZIl5ssvv2xeeumlptVqNSWZdrvd/Oqrr+JeZ+7cudExOGLECPPpp582V6xYYb755pvmtGnTWv0zcfnll0fbTps2zXzzzTfNFStWmE8//XT0Z0+S+fjjj3fGtwMJKhwORwOquufElsJenp/RXdSNnxtvvNH89ttvm/zYtm1bk9dgPANAywh70aPUzUKz2Wzm0qVLGx3/85//HH3Rvuuuu458B9Er/OY3vzHfeecds7i42DRN09y+fXubw96NGzdGZ+VMmDDB9Hq9Mcc9Ho85YcKE6Hhvarb6008/HX3sn/zkJ42Ob968OToTfuTIkWYwGGzbF4uEdv7555svv/yyGQqF4h4vKSkx8/LyomNs0aJFcdsxntEdNDWO6/v3v/8dHWMzZ85sdHz//v1menp69I95JSUljR7jwgsvbDFgW7hwYbTNhRde2KhvJSUl5pAhQ0xJZkZGhnngwIHWf6Ho1R544AFTkpmfn2/ecccdLY5Fnp/RnRzufRrjGQBah7AXPcbnn38efVG+4YYb4rYJh8PmmDFjojdPgUDgCPcSvVF7wt4bb7wxes6yZcvitlm2bFmzv4iaphkd75mZmabH44nb5k9/+lP0Oq+88kqr+gfUeeedd6Lj5+abb47bhvGMnmT06NGmVFvOoaH77rsvOr5eeumluOfv3r07OkP4vPPOi9vm3HPPjYYNu3fvjtvmpZdeij7Wn//85/Z/Qeg1du7cabrdblOS+Z///Me86667Wgx7eX5Gd3K4YS/jGQBahwXa0GO8+eab0e3Zs2fHbWOxWDRr1ixJUnl5uT755JMj0TWgTUzT1FtvvSVJys/P10knnRS33UknnaTRo0dLkt566y2ZphlzfNOmTVq/fr0k6bLLLpPT6Yx7nfqLxv373/8+3O6jl5k2bVp0e+vWrY2OM57R06SmpkqSampqGh2r+10jLS1NF198cdzzc3NzddZZZ0mSFi5cqKqqqpjjVVVVWrhwoSTprLPOUm5ubtzrXHzxxUpLS5PEWEbr3HTTTaqurtbVV1+tqVOnttie52ckEsYzALQeYS96jLoV4V0ul0444YQm29X/5XfJkiWd3i+grbZv367CwkJJavFmre74nj17tGPHjphjdT8TLV1n4MCBysvLk8TPBNrO7/dHt61Wa6PjjGf0JBs3btRXX30lqTYsqC8QCGjFihWSpJNPPll2u73J69SNUb/fr1WrVsUcW7lypQKBQEy7eOx2ezSsWLlypYLBYNu+GPQqr7zyit59911lZmbqr3/9a6vO4fkZiYTxDACtR9iLHqPuL7AjR46UzWZrsl39m7e6c4DuZN26ddHthmFDQ82N5/ZcZ/fu3fJ4PK3uK7Bo0aLo9pgxYxodZzyju/N6vdq8ebPuv/9+TZ06VaFQSJJ0yy23xLTbtGmTwuGwpCM/lkOhkDZv3tz8F4Jeq7y8XHPmzJEk3XffferXr1+rzuP5Gd3Vq6++qrFjx8rpdCo1NVWjRo3S1Vdf3ey7MhnPANB6hL3oEWpqalRaWipJTb4dsk6fPn3kcrkk1b4wA91NQUFBdLul8Tx48ODodsPx3J7rmKYZcx7QnEgkonvvvTf678suu6xRG8YzuqPnnntOhmHIMAy5XC7l5eXp5z//ufbu3StJuv3223XllVfGnNOVYznedYA6t956q4qLizV58mRde+21rT6P52d0V+vWrdP69evl8/lUXV2tLVu26IUXXtAZZ5yhmTNnqqKiotE5jGcAaL2mp0cC3Uj9enhut7vF9i6XSx6PR9XV1Z3ZLaBd2jKe6/5wIanReO6o6wBNeeCBB6Jva7/44ovjltBhPKMnOe644/TEE09o4sSJjY4xltEdLV68WE899ZRsNpvmzp0rwzBafS5jGt2N0+nURRddpDPPPFP5+flyu90qKSnRokWLNHfuXO3fv19vvvmmZsyYoQULFigpKSl6LuMZAFqPsBc9Qv1FVJqroVcnOTlZkuTz+TqtT0B7tWU8141lqfF47qjrAPEsWrRIt99+uyQpKytLjz32WNx2jGd0R9/97nc1YcIESbVjZOvWrXrllVf073//W1dccYUefPBBXXDBBTHnMJbR3QQCAV1//fUyTVM/+9nPNG7cuDadz5hGd7Nnzx5lZGQ02n/22Wfr5ptv1rnnnqvVq1dr0aJFeuyxx/Q///M/0TaMZwBoPco4oEdwOBzR7bpFT5pTt6BQSkpKp/UJaK+2jOf6i2M1HM8ddR2gobVr12rmzJkKhUJyOBx69dVXlZWVFbct4xndUUZGhsaNG6dx48Zp4sSJuvzyy/XGG2/ohRde0LZt2zRjxgw999xzMecwltHd3HPPPdqwYYOGDBmiu+66q83nM6bR3cQLeusMGDBAr732WnQ27yOPPBJznPEMAK1H2IseITU1NbrdmrfQ1BXQb03JB+BIa8t4rr8YRMPx3FHXAerbvn27pk+frrKyMlmtVs2bN0+nnXZak+0Zz+hJfvjDH+rSSy9VJBLRT3/6Ux04cCB6jLGM7mTDhg3605/+JKk29Kr/dvLWYkyjpxk+fLjOPvtsSdKWLVtUWFgYPcZ4BoDWI+xFj+BwONS3b19JarE4fllZWfSFuX5xfqC7qL8YREvjuf6iEg3Hc3uuYxhGi4tRoPcqLCzUWWedpcLCQhmGoWeeeUYzZsxo9hzGM3qaujHt8Xj0wQcfRPd35ViOdx30bg888IACgYCGDx8ur9erefPmNfpYs2ZNtP3HH38c3V/3ezDPz+iJxo4dG93es2dPdJvxDACtR81e9Bhjx47V4sWLtWXLFoVCIdls8Yfvhg0bottjxow5Ut0DWq3+L7H1x2s8zY3nhtc57rjjWrzO4MGD2zU7CImvtLRUZ599trZt2yapdibZrFmzWjyP8Yyepn///tHtnTt3Rrfz8vJktVoVDoc7dCy35jo2m02jRo1qufPoNerePr5t2zZdccUVLba/++67o9vbt2+Xy+Xi+Rk9UlOLEDKeAaD1mNmLHmPKlCmSamfifPHFF022W7RoUXR78uTJnd4voK2GDRum7OxsSbHjNZ5PP/1UkpSTk6Ojjjoq5ljdz0RL1ykuLtamTZsk8TOB+CoqKnTOOedo3bp1kqR7771XN910U6vOZTyjp6k/U6z+23LtdrsmTZokSVq2bFmztRzrxmhycnJ0Ibg6EydOjC7609xYDgQCWr58efSc+qvOAx2B52f0RHW/i0iKjl+J8QwAbUHYix7ju9/9bnT72WefjdsmEonohRdekFS7AMC0adOORNeANjEMI/o24g0bNkRv9htavnx5dEbBjBkzGs10yMvLi85WeOWVV+T1euNep/4iRDNnzjzc7iPBeL1enX/++fryyy8lSXfeeaduu+22Vp/PeEZP8+qrr0a3jznmmJhjdb9rVFZW6o033oh7fkFBgT766CNJ0plnnhlT/1GqrQd55plnSpI++uijJt8m/MYbb6iyslISYxmNPffcczJNs9mP+ou2ffLJJ9H9deEWz8/oabZv364FCxZIkkaMGKGcnJzoMcYzALSBCfQgp556qinJtNls5tKlSxsd//Of/2xKMiWZd91115HvIHql7du3R8fd1Vdf3apzNm7caFqtVlOSOWHCBNPr9cYc93q95oQJE6LjfdOmTXGv8/TTT0cf+6abbmp0fMuWLWZaWpopyRw5cqQZDAbb/PUhcfn9fnP69OnRMTRnzpx2XYfxjO7g2WefNX0+X7Nt7r///ugYGzZsmBkKhWKO79+/30xPTzclmUOHDjVLS0tjjodCIfPCCy+MXuOTTz6J+zgLFy6MtrnooosaPU5JSYk5ZMgQU5KZkZFhHjhwoO1fMHq9u+66q8WxyPMzuou333672XFRXFxsjh8/PjrO/va3vzVqw3gGgNYh7EWP8uWXX5opKSmmJNPtdpv33HOPuWzZMvPjjz82r7/++uiLdl5enllZWdnV3UWCWrx4sfnss89GP/7yl79Ex97kyZNjjj377LNNXuf222+Pnjd+/Hhz3rx55sqVK8158+bF/LJ7xx13NHmNUChkTp48Odr2e9/7nvnBBx+Yn3/+ufnII4+YWVlZpiTTYrGY7733Xid8N9CTXXzxxdGxc8YZZ5jffPON+e233zb5sXHjxiavxXhGVxs6dKiZmZlpXnfddebzzz9vfvbZZ+ZXX31lLl682Pz73/8eM7bsdru5YMGCuNeZO3dutN2IESPMZ555xly5cqX51ltvmdOmTYseu+KKK5rtz+WXXx5tO23aNPOtt94yV65caT7zzDPmiBEjoscef/zxzvh2oBdoTdhrmjw/o3sYOnSomZ2dbd58883miy++aC5dutRcvXq1uWDBAvPOO+80+/XrFx1fU6ZMMWtqauJeh/EMAC0j7EWP8/bbb0f/0hrvIy8vz9y8eXNXdxMJ7Oqrr25y/MX7aEo4HDZ/9KMfNXvutddea4bD4Wb7U1JSYk6cOLHJayQnJ5tPPvlkR38bkADaMo7rZjo2hfGMrjZ06NBWjePc3Fzzww8/bPZav/nNb0zDMJq8xnnnndfiLGKv12ued955TV7DYrHwLiQcltaGvTw/ozto7XP09773PbOsrKzJ6zCeAaBlhmmapoAeZufOnXrooYc0f/58FRQUyG63a+TIkbr00kv105/+VE6ns6u7iAR2zTXX6Pnnn291+5aeZt977z098cQTWrlypUpLS9WvXz9NnDhRN9xwg84999xWPUYoFNKTTz6pF198UevXr5fH41F2drbOPPNMzZkzR0cffXSr+4veo6kVr5sydOhQ7dixo9k2jGd0lY0bN2r+/PlasmSJtmzZor1792r//v1KSUlRVlaWjjvuOF1wwQW67LLLWvV7wtKlS/Xoo49q8eLF2rt3rzIyMnTsscdq9uzZuuKKK1rdrxdffFHPPfecvv76a5WXl2vAgAE69dRT9dOf/lQnn3zy4XzJ6OV++9vf6ne/+52k2pq9p59+erPteX5GV1q0aJEWLVqkZcuWadu2bSotLVVlZaXcbrcGDx6sU045RVdffXWrnxcZzwDQNMJeAAAAAAAAAEgAlq7uAAAAAAAAAADg8BH2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJgLAXAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAHSx5557ToZhyDAM7dixo6u7AwAAAKCHIuwFAABopx07dkRD2sP5AAAAAICOQNgLAAAAAAAAAAnAME3T7OpOAAAA9ETBYFAbN25s8vgxxxwjSZowYYKeffbZJtuNGzeuw/sGAAAAoPexdXUHAAAAeqqkpKRWBbUul4tAFwAAAECno4wDAAAAAAAAACQAwl4AAIAu9txzz0UXa9uxY0ej46effroMw9Dpp58uSdqyZYv++7//W8OHD1dKSoqOOuooXXvttdq5c2fMeWvWrNHs2bM1fPhwORwODR48WDfeeKP27dvXqn69+eabuvTSSzVkyBA5HA5lZGRowoQJ+t3vfqeysrLD/bIBAAAAdDDKOAAAAPQgH330kS6++GJVVVVF9+3cuVPPPPOM3n33XS1atEj5+fl66aWXdM011ygQCETbFRQUaO7cuXr//fe1dOlSZWdnx32MsrIyXXLJJfr4449j9vv9fn3xxRf64osv9Pe//11vvfWWTjrppM75QgEAAAC0GTN7AQAAeojCwkJddtllysjI0COPPKLPP/9cixcv1i233CLDMLRv3z79+Mc/1sqVKzVr1iyNGDFCTz31lFasWKFPPvlEP/zhDyXVhsP/5//8n7iP4ff7ddZZZ+njjz+W1WrVD3/4Q7300ktavny5Fi9erD/+8Y/q27ev9u3bp/POO6/RbGIAAAAAXYeZvQAAAD3E5s2bNWrUKC1ZskT9+/eP7p8yZYpsNpv++te/asmSJTr//PM1adIkLViwQE6nM9ru9NNPV01NjV599VW9/vrrKikpibmOJP3+97/Xl19+qYyMDH300Uc64YQTYo5PmTJFP/jBD3TyySerqKhIv/rVr/Svf/2rc79wAAAAAK3CzF4AAIAe5OGHH24U0ErST37yk+h2aWmpnnrqqZigt86NN94oSQqFQlq2bFnMserqaj366KOSpLvvvrtR0Ftn6NCh+vWvfy1JevXVV+XxeNr3xQAAAADoUIS9AAAAPURGRobOOeecuMeGDRum1NRUSdJ3vvMdjRkzJm67Y489Nrq9bdu2mGOLFi1SRUWFJOmSSy5pti+nnXaaJCkYDOqLL75o3RcAAAAAoFNRxgEAAKCHGDVqlAzDaPJ4RkaGqqqqlJeX12ybOvUXeZOkVatWRbcHDRrU6n4VFxe3ui0AAACAzsPMXgAAgB4iXlmG+iwWS4vt6tpIUjgcjjm2b9++dvXL6/W26zwAAAAAHYuZvQAAAJAUG/5++eWXSkpKatV5ubm5ndUlAAAAAG1A2AsAAABJUt++faPb/fv3J8QFAAAAehjKOAAAAECSNH78+Oj2kiVLurAnAAAAANqDsBcAAACSpLPOOita7/fhhx+WaZpd3CMAAAAAbUHYCwAAAElSRkaGfvrTn0qSli5dqp/97GeKRCJNtt+7d6+eeuqpI9U9AAAAAC2gZi8AAACifv/732vRokX6/PPP9dBDD+k///mPrrvuOh133HFyuVwqKyvT2rVr9dFHH+n999/XMcccox//+Mdd3W0AAAAAIuwFAABAPcnJyVqwYIGuueYavfHGG/r666+js33jSUtLO4K9AwAAANAcwl4AAADESE1N1euvv67PPvtMzz//vBYvXqzCwkL5fD6lpaVpxIgRmjRpks4//3xNnz69q7sLAAAA4CDDZOUNAAAAAAAAAOjxWKANAAAAAAAAABIAYS8AAAAAAAAAJADCXgAAAAAAAABIAIS9AAAAAAAAAJAACHsBAAAAAAAAIAEQ9gIAAAAAAABAAiDsBQAAAAAAAIAEQNgLAAAAAAAAAAmAsBcAAAAAAAAAEgBhLwAAAAAAAAAkAMJeAAAAAAAAAEgAhL0AAAAAAAAAkAAIewEAAAAAAAAgARD2AgAAAAAAAEACIOwFAAAAAAAAgARA2AsAAAAAAAAACYCwFwAAAAAAAAASAGEvAAAAAAAAACQAwl4AAAAAAAAASACEvQAAAAAAAACQAAh7AQAAAAAAACABEPYCAAAAAAAAQAIg7AUAAAAAAACABEDYCwAAAAAAAAAJ4P8D+twzsjcgztgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'transmissibility_function_reassortment_example_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/tutorials-jupyter/interventions/intervention.ipynb b/examples/tutorials-jupyter/interventions/intervention.ipynb new file mode 100644 index 0000000..5990839 --- /dev/null +++ b/examples/tutorials-jupyter/interventions/intervention.ipynb @@ -0,0 +1,847 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors in a single population scenario, showing the effect of various interventions done at different time points.\n", + "\n", + "For more information on how each intervention function works, check out the documentation for each function fed into `newIntervention()`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup',\n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `my_setup_2` with the same parameters, but duplicate the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'my_setup_2', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " contact_rate_host_vector=4e-1, \n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'my_population',\n", + " # Unique identifier for this population in the model.\n", + " 'my_setup',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100,\n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`my_population` starts with _AAAAAAAAAA_ genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define the interventions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. At time 20, adds pathogens of genomes _TTTTTTTTTT_ and _CCCCCCCCCC_ to 5 random hosts each." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 20, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'TTTTTTTTTT':5, 'CCCCCCCCCC':5, } ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. At time 50, adds 10 healthy vectors to population." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addVectors', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 10 ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. At time 50, selects 10 healthy vectors from population `my_population` and stores them under the group ID `10_new_vectors`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', '10_new_vectors', 10, 'healthy' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. At time 50, adds pathogens of genomes _GGGGGGGGGG_ to 10 random hosts in the `10_new_vectors` group (so, all 10 of them). The last `10_new_vectors` argument specifies which group to sample from (if not specified, sampling occurs from whole population)." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 50, \n", + " # time at which intervention will take place.\n", + " 'addPathogensToVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', {'GGGGGGGGGG':10}, '10_new_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "5. At time 100, changes the parameters of my_population to those in `my_setup_2`, with twice the contact rate." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 100, \n", + " # time at which intervention will take place.\n", + " 'setSetup', \n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'my_setup_2' ] \n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "6. At time 150, selects 100% of infected hosts and stores them under the group ID `treated_hosts`. The third argument selects all hosts available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_hosts', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "7. At time 150, selects 100% of infected vectors and stores them under the group ID `treated_vectors`. The third argument selects all vectors available when set to -1, as above." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'newVectorGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'treated_vectors', -1, 'infected' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "8. At time 150, treat 100% of the `treated_hosts` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_hosts' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "9. At time 150, treat 100% of the `treated_vectors` population with a treatment that kills pathogens unless they contain a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 150, \n", + " # time at which intervention will take place.\n", + " 'treatVectors',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'treated_vectors' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "10. At time 250, selects 85% of random hosts and stores them under the group ID `vaccinated`. They may be healthy or infected." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'newHostGroup',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 'vaccinated', 0.85, 'any' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "11. At time 250, protects 100% of the vaccinated group from pathogens with a _GGGGGGGGGG_ sequence in their genome." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "model.newIntervention( # Create a new Intervention.\n", + " 250, \n", + " # time at which intervention will take place.\n", + " 'protectHosts',\n", + " # intervention to be carried out, must correspond to the name of a method of \n", + " # the Model object.\n", + " [ 'my_population', 1, 'GGGGGGGGGG', 'vaccinated' ]\n", + " # arguments to be passed to the intervention method.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 47.82778878187784, event: RECOVER_VECTOR\n", + "Simulating time: 78.3366736929209, event: RECOVER_VECTOR\n", + "Simulating time: 105.91879303271841, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 118.47279407649962, event: RECOVER_HOST\n", + "Simulating time: 131.35992383183006, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 142.51592961651278, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 155.0493103157924, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 166.15922138729405, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 178.45033758585132, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 191.46530199493813, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 202.95353967543554, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 215.14396460201561, event: RECOVER_VECTOR\n", + "Simulating time: 227.37567502659184, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 239.10997595769174, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 251.43868107426454, event: RECOVER_VECTOR\n", + "Simulating time: 270.88105008645147, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 307.90286561294283, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 357.4327138889326, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 400.04897821206066 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 400 # Final time point.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18432052612304692s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.016484975814819336s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030623912811279297s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.043166160583496094s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04822254180908203s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08920669555664062s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.16597485542297363s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1528 tasks | elapsed: 1.4s\n", + "[Parallel(n_jobs=8)]: Done 3192 tasks | elapsed: 2.2s\n", + "[Parallel(n_jobs=8)]: Done 5368 tasks | elapsed: 3.2s\n", + "[Parallel(n_jobs=8)]: Done 7449 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8243 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8591 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 8822 tasks | elapsed: 3.6s\n", + "[Parallel(n_jobs=8)]: Done 9064 out of 9079 | elapsed: 3.6s remaining: 0.0s\n", + "[Parallel(n_jobs=8)]: Done 9079 out of 9079 | elapsed: 3.6s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/acs98/miniconda3/envs/opqua/lib/python3.9/site-packages/opqua/model.py:1008: DtypeWarning: Columns (5) have mixed types.Specify dtype option on import or set low_memory=False.\n", + " data = saveToDf(\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0AAAAAAAAAANaNTrue
10.0my_populationHostmy_population_1NaNNaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
1898145400.0my_populationVectormy_population_105GGGGGGGGGGNaNTrue
1898146400.0my_populationVectormy_population_106NaNNaNTrue
1898147400.0my_populationVectormy_population_107NaNNaNTrue
1898148400.0my_populationVectormy_population_108NaNNaNTrue
1898149400.0my_populationVectormy_population_109NaNNaNTrue
\n", + "

1898150 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 AAAAAAAAAA \n", + "1 0.0 my_population Host my_population_1 NaN \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "1898145 400.0 my_population Vector my_population_105 GGGGGGGGGG \n", + "1898146 400.0 my_population Vector my_population_106 NaN \n", + "1898147 400.0 my_population Vector my_population_107 NaN \n", + "1898148 400.0 my_population Vector my_population_108 NaN \n", + "1898149 400.0 my_population Vector my_population_109 NaN \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "1898145 NaN True \n", + "1898146 NaN True \n", + "1898147 NaN True \n", + "1898148 NaN True \n", + "1898149 NaN True \n", + "\n", + "[1898150 rows x 7 columns]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'intervention_examples.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a plot to track pathogen genotypes across time" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 / 4 genotypes processed.\n", + "2 / 4 genotypes processed.\n", + "3 / 4 genotypes processed.\n", + "4 / 4 genotypes processed.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb8AAALmCAYAAABio+lSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xUVf7G8eemE3qviqiLothFBUQUUVaKigKWXQt217p21/1Z1rKuuq676+ouFhRUVFBRQUFRlKqIBUXpRVoIpNcp997z+2OSIZMpmUB6Pu/XKzJz77lnzgwjSZ588z2WMcYIAAAAAAAAAIAmJKG+FwAAAAAAAAAAQE0j/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE0O4TcAAAAAAAAAoMkh/AYAAAAAAAAANDmE3wAAAAAAAACAJofwGwAAAAAAAADQ5BB+AwAAAAAAAACaHMJvAAAAAAAAAECTQ/gNAAAAAAAAAGhyCL8BAAAAAAAAAE1OUn0vAA2Dx+PRTz/9JEnq3LmzkpJ4awAAAAAAUNNs29bu3bslSUcccYTS0tLqeUUA0HSRcEKS9NNPP+mEE06o72UAAAAAANBsLFu2TAMGDKjvZQBAk0XbEwAAAAAAAABAk0PlNyQFWp2UW7Zsmbp3716PqwEAAAAAoGnKyMgI/uZ1xe/FAQA1j/AbkhTS47t79+7q1atXPa4GAAAAAICmj/22AKB20fYEAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgAAAAAAAAA0OYTfAAAAAAAAAIAmh/AbAAAAAAAAANDkEH4DAAAAAAAAAJocwm8AAAAAAAAAQJND+A0AAAAAAAAAaHIIvwEAAAAAAAAATQ7hNwAAAAAAAACgySH8BgCgkTHGre8lAAAAAADQ4BF+AwDQ6PjrewEAAAAAADR4hN8AADQ2xi9jTH2vAgAAAACABo3wGwCARsYYRzLF9b0MAAAAAAAaNMJvAAAaHVeO/9f6XgQAAAAAAA0a4TcAAI2OK8e3sr4XAQAAAABAg0b4DQBAo+PK9q6o70UAAAAAANCgEX4DANDIOL41ktjwEgAAAACAWAi/AQBoZFwnS4TfAAAAAADERvgNAEAjZExJfS8BAAAAAIAGjfAbAIDGyLj1vQIAAAAAABo0wm8AABol2p4AAAAAABAL4TcAAI0S4TcAAAAAALEQfgMA0IgYQ+gNAAAAAEA8CL8BAGhkXHuHqPwGAAAAACA2wm8AABoVI+NmyRB+AwAAAAAQE+E3AACNjDF+UfkNAAAAAEBshN8AADQSgX7fjmT89b0UAAAAAAAavKT6XgAAAIiTKZHr7JSRXd8rAQAAAACgwaPyGwCAxsYtqe8VAAAAAADQ4BF+AwDQaAT6fBu3QPT8BgAAAAAgNsJvAAAaE0PoDQAAAABAPAi/AQBoVNz6XgAAAAAAAI0C4TcAAA2MMb7o52QCDU+oAAcAAAAAICbCbwAAGhoTrbrbaE+vb8JvAAAAAABiIfwGAKCOuU6ejLFjjIgcbLvObsk4ZecdmaghOQAAAAAAIPwGAKCuGZ9kPHKd/CgDHBnjRL7UzZaMt0IIDgAAAAAAIiH8BgCgjhlTKGN8sj1LI4bcxngk44l4re39TsbNlZEjKXJADgAAAAAACL8BAKhzxi2Ra2+R6+yKMsCR3/O1bN+ayif2tEsxflH5DQAAAABAdITfAADUMWOK5fg3B9qfRDrvFspf8omcsPBbKq/2NsYbY2NMAAAAAABA+A0AQB0zbokc/3pF39hyl1wnS1KEcNuUX+OPfB4AAAAAAEgi/AYAoO6ZUhk3TyZK+G2MN9D3O2JPb7d8kGh7AgAAAABAdITfAADUMdfJlnHyFD28diRTEt4WJSTwNmXV4wAAAAAAIBLCbwAA6phxcxWo4DZlG1dWPl8s4xbJdQsrn9Ge8NsRld8AAAAAAERH+A0AQB1zfOsCN4wr18kMO+/amyU5MhHOGVPeCsWw4SUAAAAAADEQfgMAUIdcJ0flFdzGlEjGGzamPOB2nezQ43Ik2cF70XqGAwAAAAAAwm8AAOqUa/+q8k0rjZsrY0rDB5Udc53dlY47gY8gWwAAAAAAILKk+l4AAADNiXELZIxHrpOtRCtdxs0LH2M8ZTc8lc8o0Ou77F6lynAAAAAAALAHld8AANQhY/yBcNsUS8YjY3wRBgVCb+OWVD4hU6FNiutk1eJKAQAAAABo3Ai/AQCoI6a8bYnxl90vjjKuvOK7cjBu5Ph+Dt5z7YxaWCUAAAAAAE0D4TcAAHXFlEpy91R7h/TvrjDM3dMH3Bi3wu3A9Xv4a36NAAAAAAA0EYTfAADUkUDLEifQ8kSSkZGMG2FgxYrvPQG5499QaT4nJBwHAAAAAAB7EH4DAFBHAhtd5u054BYpsIll5XF72qG4zu6KZyqNdCJeDwAAAAAACL8BAKg7xiPX2dOn25hCRQ6/PcHbrr2l4olKAwm/AQAAAACIhvAbAIA6YlxPpZYmUmgP7wqbYu65qOyPorCxjn+9CL8BAAAAAIisWYbfBQUFevPNN3X77bdr6NChOvjgg9W2bVulpKSoS5cuOvXUU/XEE08oOzs7rvmWLFmi3//+9+rdu7fS0tLUrVs3jRgxQtOmTavWuqZNm6YzzzxT3bp1U1pamnr37q3f//73Wrp06d48TQBAQ2O8eza73HOw0l2fKvb5Lg+8jSkNC86Nmx1+PQAAAAAAkCRZxlT+Heqmb968eTrjjDOqHNepUye99tprGjFiRNQxDz74oB5++GG5buQNx0aNGqUZM2YoLS0t6hylpaUaN26cPvroo4jnExISdP/99+uBBx6ocs17a9u2bdpvv/0kSVu3blWvXr1q7bEAoLnyFn0g27NQtve74LG0drcqteWY4H3jFqkgY6zKQ+/0DvcrucVQ+YrnyPFvkK/43ZA523T/UFZCep2sHwAAAPuO778BoO40y8pvSdpvv/106aWX6p///KfeffddLV26VIsXL9Zbb72l8ePHKzExUVlZWTr77LO1YsWKiHP873//00MPPSTXdXXQQQfppZde0rJlyzRz5kyddtppkqTZs2friiuuiLmWK664Ihh8n3baaZo5c6aWLVuml156SQcddJBc19WDDz6oSZMm1eyLAACoW8YjY/yVjlVue+JXxfYmpqwFiuvmSsYbYdLIP3wFAAAAAKC5a5aV347jKDExMeaYmTNnauzYsZKksWPH6t13QyvtcnJydOCBByo/P1/777+/vv32W3Xq1CnkMcaOHasPP/xQkjR//nydeuqpYY/z+eef6/TTT5ckjRkzRu+9917I2rKysnTcccdpy5YtateunTZu3Kj27dvv1fOOhZ88A0Dt8xROk126WI5/VfBYWts/KLXV+cH7jn+zinZdGbzfot1tSmk5Sp78F+U6WfKXfhoyZ+tu7yohsW3tLx4AAAA1gu+/AaDuNMvK76qCb0k699xzdcghh0iSFi5cGHb+xRdfVH5+viTpb3/7W0jwXf4Yzz33XPCxnnzyyYiP89RTT0mSkpKSQsaX69Spk/72t79JkvLy8vTiiy9WuXYAQANl/IEK7pBj9p6bbmnYJa4TGG9MsYwpijApld8AAAAAAETSLMPveLVu3VqS5PF4ws7NnDlTktSmTRudd955Ea/v1auXhg8fLkn67LPPVFhYGHK+sLBQn332mSRp+PDhUX/ae95556lNmzaSpPfee6/6TwQA0EDYMs7OkCMV26AYN1eVN7B0ne0yxsi4xXLt0GvLRtTCOgEAAAAAaPwIv6NYs2aNfvjhB0nSoYceGnLO5/Np2bJlkqSBAwcqJSUl6jxDhw6VJHm9Xi1fvjzk3DfffCOfzxcyLpKUlBSddNJJwWv8fn/UsQCAhstUqPLeo0L4bUpVOfyWCXyecJ0suc6OsKsd/8YaXCEAAAAAAE0H4XcFJSUlWrdunZ5++mkNHTpUth0IKW699daQcWvXrpXjBDYgqxyMV1bx/KpVq0LO/fLLLxHHxZrHtm2tW7cu9hMBADRMEcLv0MpvjyqH38Z4ys7lR9zw0ji7anaNAAAAAAA0EUn1vYD69sorr2jixIlRz99zzz26+OKLQ45t27YteLuqjSnKN7GQAhtZ1NQ8hx12WMzxlVV8rEgyMjKqNR8AYG84YUeMsztwxr9ZkpFM6BhTFniXh+Bh19P2BAAAAACAiJp9+B3N0UcfrUmTJmnAgAFh5yr27m7VqlXMeVq2bBm8XVQUulFZTc0Tj4rhOQCgvkQIv4OV3bmSkmRUqTrcLZbkBtufhE9A+A0AAAAAQCTNvu3Jueeeq59++kk//fSTli1bpmnTpmns2LH64YcfdNFFF2nWrFlh11TcADNWv29JSk1NDd4uLS2tlXkAAA2DMaaK8xHCbzev7M8iSUbGDd0c2fGvl+NfJxMt/K7cIxwAAAAAAEii8lvt2rVTu3btgvcHDBigCy+8UFOnTtVll12mc845Ry+99JIuv/zy4Ji0tLTg7fINK6Pxevf0Z23RokXIuZqaJx6VW65UlpGRoRNOOKHa8wIAKnJljGRZiRHPGmdnhIOB8Nq4RbIS2kbsC+74fonY77vs7N4uFgAAAACAJq3Zh9/RXHLJJZo1a5befvtt3XjjjTr77LPVoUMHSVLr1q2D46pqQVJcXBy8Xbm1SU3NE4+qeooDAGqCE2hPYkX+d9r2/hD1ymDltykJP+dkS/KHHS87W+1VAgAAAADQHDT7tiexnHPOOZICwfOcOXOCxysGyVVtJFmx4rpy3+2amgcA0DC4doTK7jKBjSsj9ecOHHPdHMk4Mm5B2AjH3hJ9XievmqsEAAAAAKB5IPyOoXPnzsHbv/76a/B23759lZgY+JX21atXx5yj4vl+/fqFnDvssMMijos1T1JSkn7zm99UsXIAQH0wbn6Mc56o5wLni2SMN0KYbeT6N8e4rjDqOQAAAAAAmjPC7xi2b98evF2x1UhKSkqwP/bSpUtj9uv+8ssvJQU2rDz++ONDzg0YMCC40WX5uEh8Pp+++uqr4DXJycnVfCYAgLpi3PC2JQGRP1cYuXLtTMl45bpZMqZySG7kRqgGr3geAAAAAACEI/yOYfr06cHbRxxxRMi5c889V5JUUFCgd999N+L127Zt07x58yRJp59+ekiPbynQ8/v000+XJM2bNy9q65N3331XBQWB4GPs2LHVfyIAgBpnTKQWJpLrZEYYa4IbW4aftMsCbyPjFsqY0ghjom12GXstkccSlgMAAAAAmodmGX6/8sor8nhi//r5P/7xD3300UeSpD59+mjIkCEh56+66iq1bdtWknTPPfcoOzs75LzjOPrDH/4gx3EkSXfeeWfEx7njjjskSbZt64YbbgiOL5eVlaW7775bktSuXTtdddVV8TxFAEAts73fhR0zpkSuE9732/GvUtQKbeMt2+TSke35VsbNjfRoUddhKvw3Hq4de48JAAAAAACaimYZfj/44IPq2bOnrrnmGk2ZMkWLFy/WihUrtGjRIj3//PM6+eSTddttt0kKtDiZNGlSsMd3uQ4dOuhvf/ubpEA/8BNPPFGTJ0/W8uXL9cEHH+iMM87Qhx9+KEm66KKLdOqpp0Zcy7Bhw3ThhRdKUvC6Dz74QMuXL9fkyZN10kknacuWwEZnf/vb39S+ffvaeEkAANUWHkgbt1gy/vChxi8jJ/y4JGM8Mk52YENMUyrXyYo0KsY6jCJvpBlteITKcgAAAAAAmqCk+l5AfcnJydELL7ygF154IeqYXr166eWXX9bw4cMjnr/22mu1Y8cOPfzww9qwYYOuuOKKsDEjR47Uyy+/HHMtL7/8sgoKCvTRRx9p/vz5mj9/fsj5hIQE/d///Z+uueaaOJ4ZAKBOmPDw27U3y0poFz7U+GVFCZ2N8cq4eTJuiYzxSVFC8ioWE98o45RVmQMAAAAA0PQ1y/B77ty5mj17thYvXqz169crMzNT2dnZatGihbp06aKjjz5ao0eP1oQJE5Senh5zroceekgjRozQf/7zHy1cuFCZmZlq166djjrqKE2cOFEXXXRRletp0aKFZs+erTfeeEOvvPKKVqxYoby8PHXt2lVDhgzRjTfeqIEDB9bU0wcA1AATIfw2rkeWFaFFifFFHB84VyrjFsu4RWUtUIqqtQ7X3iYZV7LiWnWgwhwAAAAAgGagWYbfhxxyiA455JBga5N9NWjQIA0aNGif57n44ot18cUX18CKAAC1L7y9iTGlgTYmxsiyrNCx0cJvuXKdLBlTKBlHxi2o1ipce6vi7/ntRm7LAgAAAABAE9Qse34DALCvXDsj/KDxyPauUOUe3Mb4Jfmiz+XsllyPjCnei5U4ij/8pvIbAAAAANB8EH4DALAXIvXONsYv19mhsM0wjT/QmiTaXG6+jHx7VZVtjKu4N7w0RjLRQ3gAAAAAAJoSwm8AAPaC698S4ahfMh65TnbwiDGu/J5lct38qHMZUywZr+IOsUNUp/LbLdtUU3Kd3L14LAAAAAAAGg/CbwAA9oKJ0MbEuAWBSmy3wqaV5aF2rKpuN7yKPP6FOGXV33EMdfPK1iPJeIJBOAAAAAAATRHhNwAAe8P4QkJnY/xyfL9IMmV9v8uOuwUKVHRH2/AysFHm3ou/8tv2rQ72FTemRKZChToAAAAAAE0N4TcAAHvBODkKCZ2Np/yGHP86uW5B2T07UJ1ddj/iXPsUfrt7qrmrYNxcGbdYjr1Njm+9TNztUgAAAAAAaHwIvwEA2AuVe3ib8vDb+OXaW2WcrLL7tiRXrrM7+mR7sdFlhYv3PHYVXDtTxi2U698sx/5Ve9djHAAAAACAxoHwGwCAveKE3vOtKbvll6mwsWSgPYqnLASPZl9D6HgruP0ypijweMYjGSq/AQAAAABNF+E3AAB7o1KY7TqZFc45Uln4bYxPxpQG2p/U2lri27jSGFvGeBWoFrcVf2gOAAAAAEDjQ/gNAMBeCfT23nPXH3LO9v1Udtsn17+xisrvfVO5pYrj37qn8rwi45fr/1XGLVEg+KbtCQAAAACg6SL8BgCgmowpC40r9NoO6bttvDL2rrLjfgVC5tqrsg7v+R3YZDN0jBNoeWL8ct0cyfjLNu0EAAAAAKBpIvwGAKC6TIlUsa+3JMf3S/C262TImCIZ42hPdXUtVlkbb6UDEcJ2UyLHt1ZGrlz/r3LtbfKVflZ7awIAAAAAoJ4RfgMAUA3GLZVjbyu745frZAVuhlVfG0lOcFNJU6kSu0bXVKnFSaCft1vpmLdsPT4ZU1x2n7YnAAAAAICmi/AbAIBqMKYoWOVtjF9uMAivHDa7Za1HykPv2tzwslLlt/HIRAq/jSPJL+MWyJiSsDUDAAAAANCUEH4DAFAN/tIlcvybJUmus13l7UVcZ0elka4CgXdZ+F2LG16asPDbCQu2XTtDRv6y8X4ZN1+B1i21V5EOAAAAAEB9IvwGAKAaXHtTMOg2Tt6etiZuYaWRJhAyl4XQRrUZMptK9yr2Gi875mRK5e1RjC0FN+Ik/AYAAAAANE2E3wAAVIMxboWg26+wjSXL2N4VZePKK799EcfVjMrtSxy5TmboEf+6CuMCPcEDwXzk9QMAAAAA0NgRfgMAUC1Gxi0K3DK2TDA8rhRAm9LAsbK2IoE2I7W1JCf8vvGHHqpw35RXfRtvsHIdAAAAAICmhvAbAIBqMZJbXHbTp0B7k0gBsivJlVGg4tu1t9biivyVjjiKVdFtnJ1la9oScxwAAAAAAI0Z4TcAAHEyxlYg7C4uu+8rq7CO0tLEODJObh0srHKVtytjPMF+41EvkxE9vwEAAAAATRXhNwAAcTKmpMJGkZKMT8YUy5RXglceL1fGya6DdXkrHbHLWrNUFWzvaeECAAAAAEBTQ/gNAEAVgm1NjB3SO9uxt5Rtahm5wtr1bwrbeLJ2FugLab1i3Lz4Ntg0jhz719pbFwAAAAAA9YjwGwCAKpUF3sarij2yjZMl45ZIxo54letkyHVrv+2JKes9HrzvFpUdqziocnW4JPlknN1VtkcBAAAAAKAxIvwGAKAqZeF2oOq74gaRjiRfoB1KpMuMXzJ10VPbDl2XsWV7loSvpRJjnLKWKfT9BgAAAAA0PYTfAABEsaeVSFk4XKnCOrD5pV+ukxNlAlvBqvHaZByVt14xxpGRX8YtqDQoUnW6W9bzm8pvAAAAAEDTQ/gNAEA0JrAZpAlWfnsqD5CMIxOltYlxCyNWXNc0x79Rxs2TMX45/jVlvckrhd0RW5uYQM9y2p4AAAAAAJogwm8AAKIwxitjnODmkcaUSmEBuCPjZEW+3i2I2g+8JlUM5QM9yP0ypjCeKyNUiAMAAAAA0DQQfgMAEIVxciQ5csvDbeOX61Su8nbl2DsiX288weC8VpnisuptI5nSQNsTZ3cc17mBQJ+2JwAAAACAJojwGwCAKIzxyLW3ybh5ZUdsVQ6KjbEjVIOXc8rC5boTqE6PtIGliXzM2FHOAQAAAADQuCXV9wIAAGiojPHI2AUybn7gvluisCpp44/QC7ycq8gbTdYGo0AbkxJVDrNNxDBcCvb8BgAAAACgCaLyGwCAaIxXxviCbU8CleAZlQa5Mm5xlOvrsqLalYyR69+05+HdksCfTrakSAG4I8feWDfLAwAAAACgjhF+AwAQRWDzSM+e6mjjkeSvNMqJ0dc7WsV1zQtUd7tynd0qr04v3/TSmCIZE6Wvt/HWzQIBAAAAAKhjhN8AAFRi3KLAn6Y08OEWyRif/N7lYWP9pV/IhAXiAY5/ba2usyJjCuX3LJbrZKq87YnjWyNj/DLGS8gNAAAAAGh26PkNAEAlxvhkSTJugWQly7g5UrTKaSnKBpN1zHjLeo+7MsF2K4F1Gbc48FwAAAAAAGhGqPwGAKCysjYmgdDbHwiPjTdGAB658rsuGdcjGTuwOWdZlbcp/9PNletsr8/lAQAAAABQ5wi/AQDNjqliI0pTHn4bvwLV027gw3iijK//ym/j5gb+NB65zo6yg77QPwEAAAAAaEYIvwEAzVAVldrl/bHLq77lSjIypjTK+Pqv/HbdXElGMm5wg85AGxRTFuIDAAAAANC8EH4DAJqfKsJgE6yUdgKbXxqnbOPLksjj3fwaXmD1Ob5VCmx0aQd7kPuLP5ZxC2V7V9Tr2gAAAAAAqA+E3wCAZscYu4oR5eG3kTHFCrQ88ZVVUkdS/5XVxskpvyVTttGl6+wMrNvNiX4hAAAAAABNFOE3AKBZMcbd0xM72hi3eM9Ye5skI9vzjRpCyB1NIKQvv1O+TiPH3tIg2rIAAAAAAFDXkup7AQAA1AXjFklWsgI/94294aVUvoGlCVZ7G/kl49biCvdNeXuWgIobcNLzGwAAAADQPBF+AwCaBdu3WgmJHZWQ2F0yscNvUxZyG7dQxslSoO2JX6GhcsNijCcQ0EuSKoT0xpVUVZsXAAAAAACaHtqeAACaD+NX1VXfknEyy/4sC76D1zbcym8ZrxTcqLMil7YnAAAAAIBmifAbANBMuDKyFQi/Ywfgjr1VxvhlTEnwWMNvHWJkIoTfxpSWPW8AAAAAAJoXwm8AQPNgbLn2zmAP79hjvXL8G1Wx0rtiEN5QufbOsGPGLZFx8up+MQAAAAAA1DPCbwBAM2HLuEVl4XdVPb+9cu1tMqZCj++ILUUaFuPmRDhYIqmhV60DAAAAAFDzCL8BAE1acPNK45b1xfaqqo0rjVssf8lnCu3x3XA3uywXqarduA2/Yh0AAAAAgNpA+A0AaOLKq55dSY6MWyxjvFVc45YFyXsC75Aq8IbKhG/I6bq59bAQAAAAAADqH+E3AKBpK9+o0vhk5Mh1MqQq+34bSXalMLkRhN8R2rk4vjX1sA4AAAAAAOof4TcAoEkzprTsT5+MWxS8XcVVMk6OQiq/3fxaWmFNCq/8luw6XwUAAAAAAA0B4TcAoEkzbomM8Uvyy7iFkoxUZQsTI9fJVMUw2fVvqcVV1pQIG3kaNrsEAAAAADRPhN8AgCbNmBLJ+OQrmSsZWzJGjn9tVRepchW1MUW1t8ga4jpZYccM4TcAAAAAoJki/AYANGnG2SVjPHL9G4IbXbpOzt7MVLMLqw2mJPxQIwjtAQAAAACoDYTfAIAmzbV3Bft+u84OxRNiO3ZjaHESpyo39wQAAAAAoGki/AYANFnGOHLdHBm3OHDALVagnUkVAXhZhTgAAAAAAGi8CL8BAE2WcXMkt0SunRG4L1vGjacNiF27CwMAAAAAALUuqb4XAABAbTHGK9fZLcvZXnbAJ8e/RjK+GNcQfAMAAAAA0BQQfgMAmi7XI8ferPI2J8Ytkb/0CyWmHB71kvgqwwEAAAAAQENH2xMAQJNl5CsLs8uruf2B426JjPFHvMb2LKmbxQEAAAAAgFpF+A0AaLqMLRmvjFtS6bg3ausTx7+uDhYGAAAAAABqG+E3AKDJ8nuWSLJlTHHYuWi9vW3vj7W8KgAAAAAAUBcIvwEATZZxcgJ/uqHht5EjyYl8jfHU9rIAAAAAAEAdIPwGADRZxpSW3Qjt722c3YoWfpdvjgkAAAAAABo3wm8AQNMVtYrbDfQDj3xRba0GAAAAAADUIcJvAECT5Tp5kiQTIdCO1vOb8BsAAAAAgKaB8BsA0GRF2uhyz0lvlONu7SwGAAAAAADUKcJvAECTVXmjy5BzovIbAAAAAICmrNmG38uXL9df/vIXnXnmmerVq5dSU1PVqlUr9e3bVxMnTtSiRYuqnOOVV16RZVlxfbzyyitVzldSUqInnnhCAwYMUIcOHdSyZUsdeuihuv322/Xrr7/WwLMGgObDdXKkWJXf0a+s8bUAAAAAAIC6l1TfC6gPp5xyihYuXBh23Ofzad26dVq3bp1eeeUVXXrppXrhhReUkpJS62tav369Ro4cqXXr1oUcX7NmjdasWaMXX3xRr7/+ukaPHl3rawGAJsH4FLuKO1rITeU3AAAAAABNQbMMv3fs2CFJ6tGjh8aPH68hQ4Zo//33l+M4Wrp0qf7+979r+/btmjJlivx+v954440q55w7d6569OgR9XyvXr2inissLNSoUaOCwffVV1+tCy+8UC1atND8+fP117/+VQUFBbrgggu0ePFiHX300dV7wgDQDJmK4bYpijDAyBgjy7IqHafyGwAAAACApqBZht+HHnqoHnvsMZ1//vlKTEwMOXfSSSfpkksu0eDBg7V27VpNmzZN1113nU455ZSYc/bt21cHHHDAXq3nySef1Nq1ayVJTzzxhO68887guYEDB+rUU0/V0KFDVVJSoltvvVVffPHFXj0OADQrxol92hRKclT5U6FR7OsAAAAAAEDj0Cx7fs+aNUsTJkwIC77LderUSX//+9+D92fMmFFra/H7/frXv/4lSerXr59uv/32sDGDBg3SlVdeKUn68ssv9c0339TaegCg6YgdYjv+TZKJtOkl4TcAAAAAAE1Bswy/43HaaacFb2/YsKHWHmf+/PnKz8+XJF122WVKSIj8V3L55ZcHb7/33nu1th4AaDKMv6oBklyZyhXiVVSMAwAAAACAxoHwOwqv1xu8Ha1CvCYsWrQoeHvo0KFRxx1//PFKT0+XJC1evLjW1gMATUXV7UuMJKdsY8yKCL8BAAAAAGgKmmXP73h8+eWXwdv9+vWrcvzEiRO1Zs0aZWVlqU2bNjr44IM1fPhwXX/99erZs2fU63755Zfg7UMPPTTquKSkJB188MH68ccftWrVqjifxR7btm2LeT4jI6PacwJAw1bFxpUmUPVtWXs+FQaqwE3tLgsAAAAAANQJwu8IXNfV448/Hrw/YcKEKq+puAlldna2srOz9fXXX+vvf/+7nnnmGV177bURrysPpVu2bKl27drFfIz99ttPP/74o3bv3i2v16vU1NSqn0yFawGgWamyfYlfgSrvCiG5Ka3FBQEAAAAAgLpE+B3BP/7xDy1btkySdN555+m4446LOvbAAw/Ueeedp4EDBwYD5o0bN+qdd97RjBkz5PF4dN1118myLF1zzTVh1xcWFkqSWrVqVeW6WrZsGbxdVFRUrfAbAJqf2JXfxvjkOruVmNRrzzG3uLYXBQAAAAAA6gjhdyVffvml7rnnHklSly5d9Pzzz0cdO3bsWF122WWyLCvk+IABA3TBBRdo1qxZOu+88+T3+/XHP/5RZ599trp16xYy1uPxSJJSUlKqXFvFsLu0tHrViVu3bo15PiMjQyeccEK15gSAhsp1C6oOso23rNI70ObEuCUyVH4DAAAAANBksOFlBT///LPGjh0r27aVlpam6dOnq0uXLlHHt23bNiz4rmj06NG6//77JUklJSV66aWXwsakpaVJkny+yhuuhau4CWeLFi2qHF9Rr169Yn507969WvMBQEPmeFfIsX+NOcYYv4xbKmMCFeKOf1OEzS8bqqp/YAoAAAAAQHNH+F1m06ZNOvPMM5Wbm6vExES9+eabOuWUU/Z53muuuSYYkFfcRLNc69atJQXamFSluHhPFWM8bVIAoLkyxpaMv4pRjozxSLLLr5Kp8pqGwVhp9b0EAAAAAAAaPMJvSTt27NDw4cO1Y8cOWZall19+Weecc06NzN2lSxd17NhRkrR9+/aw8716BXrNFhcXKy8vL+Zc5a1LOnfuTL9vAIgpjvDbOAoE4OW/VeMqsAlmw2eUKDqXAQAAAAAQW7MPv7OysnTGGWdo48aNkqR///vfuvTSS2v0MWK1RjnssMOCt1evXh11nG3b2rBhgySpX79+Nbc4AGhijDGScWWCFd1Rxrllv3Fj9owzjaTtSbHpItuK3pYLAAAAAAA08/A7Pz9fI0aM0C+//CJJevzxx3XDDTfU6GPs3r1bWVlZkqQePXqEnT/55JODtyO1RSm3fPnyYNuTwYMH1+gaAaBp8Sueyu9AyxNJcsr+dGXcktpcWI3xuCkqNm3rexkAAAAAADRozTb8Likp0ahRo/Tdd99Jku677z7dfffdNf44kyZNClQhSho6dGjY+VNPPVVt2wYCjFdffTU4trJXXnkleHvs2LE1vk4AaDKMX0auVEXlt4wnEICbQPjtOrsl0zjC71y7hV7dRuU3AAAAAACxNMvw2+fzaezYsVq8eLEk6ZZbbtEjjzxSrTk2b96s77//PuaYWbNm6S9/+YskqUWLFpo4cWLYmJSUFN18882SpFWrVumpp54KG7N06VK99NJLkgIB+oABA6q1VgBoToyxZdyCwKaXMbhuvuSWSnJljFt2TWMIvy25RspvHO3JAQAAAACoN81yt6yLLrpIn3zyiSRp2LBhuvLKK7Vy5cqo41NSUtS3b9+QY5s3b9Zpp52mgQMHasyYMTrqqKPUpUugCm/jxo2aMWOGZsyYEazkfuqpp9SzZ8+I899555166623tHbtWt11111av369LrzwQrVo0ULz58/XY489Jtu21aJFCz3zzDM18AoAQNMUCLwdOb7VsqyWscc62XLsLUpMPUoyXhknR7Iaz2bC2b7IvykEAAAAAAACmmX4/e677wZvf/755zryyCNjju/du7c2b94c8dzSpUu1dOnSqNemp6frH//4h6655pqoY1q3bq3Zs2dr5MiRWrdunSZNmqRJkyaFjGnTpo1ef/11HX300THXCgDNmyspsJmllZhWxVi/jJsrKRAiG7mSKa3d5cUtUXt6kVdmKcufIjdKmywAAAAAABDQLMPvmnDcccfptdde09KlS7V8+XJlZGQoKytLtm2rffv2Ovzww3X66afrqquuClaEx3LwwQfr+++/13/+8x9Nnz5d69evl8/n03777aeRI0fqlltuUe/evevgmQFAI2YcSW5ZP+8qen5Lcu1dgfEygT/dhhJ+Jyl6+C2tKkyUUxb0AwAAAACAyJpl+B1tU8nqaN26tX73u9/pd7/7XQ2sKKBly5a66667dNddd9XYnADQvBgZ45UxPllVbXgpSbIlY2RMsWRc2b6fan2F8TBWiiwjSd5KZ1LkWm1V6kguhd8AAAAAAMTULDe8BAA0HcZUrIA2kvFLcsqqwKu62FZgw0ufJFeuk1U7i6wmo2TJSgw/YSXJVgvCbwAAAAAA4kD4DQBo5PakwMaUKND2xJXiaAsSCLuNZFwZN68B9fxO0L3rjtdW+9hKxy0ZifAbAAAAAIA4EH4DABo5J1j9bVxPWcW3UcVQPDp/2ThbxpTfrn9Gllbk+1XsJFU6HjiX7zcyDWStAAAAAAA0VITfAIBGz7iFZTe8MnJljEfxVH4HQ3Ljj3N83XCUph2lthxjRTiboA3F8fQzBwAAAACgeSP8BgA0bsZVoHLbyHW2K1AJHn/7EuOWyBi/jFtSa0usrmK3tbaXOvKb0E/TRqkyZa1PqPsGAAAAACA2wm8AQIMXaEkSjStjvJLxyPauDGxiabwy8Wx4Kcm4uYHxbl6NrLUmFLup8hujEif007StdBmTIEPyDQAAAABAlQi/AQANnnFyo59zCyW3SMb4ZNx82d5vFQjE46vkNnJle79TfdRSe63eksJbm2wtTZckrSpKqnTGkltW+e0QgAMAAAAAEBPhNwCgwTOmOMrxQIuTwOaPfhlTLMe/ueykN87JHdn+1TWyzura5OmqSOH3Dk8g9N4aIb83SpCRkUv4DQAAAABATITfAIBGINpmlGbPeeOX62QFx7r2jrjndv1byja9rBuu1UlSkrL9yRHPe8uS7dIICffivC76Ntcrn2sUKTgHAAAAAAABhN8AgIYvav9uN/BhPDLGloynwlg7zsldyfhkFF+P8JrgUysZq7UcEzm89riB44V2aPhtZGmXN0Fe18jjSnwaBwAAAAAgusrNRAEAaHCM8UQ54cq4JTLGK0v+sk0uo1WJR+bau2Tkyopzg8yaUOqma5fTQf4orUuKynL7b3N9lc5Y8rnlY1wFwu+6WzcAAAAaBmOMiouLVVBQII/HI8fha0IAjVNiYqLS0tLUpk0btWzZUpZVs7/hTPgNAGjwjFssY/yyrMptQmxJTiAAT/BLsuU62dWb2xQHWp5YKTW13NisFip2UrXV00KusSQrTaq0OWdWWea90xNavR7o9x2Q63MkK7FO27UAAACg/rmuqy1btqi0tLS+lwIA+8y2bXm9XuXn56tFixbaf//9lZBQc7/lTPgNAGjwjCmVcXJkJXUN3Hc9shLSykJxr2RKAyGwseU6G6s5uU+ST1Jaja87Ep86q9BO1nd5Serb2pVHXZSmzSFjtpQEKncK/aFV7K5JDG50me1zJCXWwYoBAADQUBhjwoJvy7KUmMjXhQAaJ8dxZEzZvlelpdqyZYt69+5dYxXghN8AgIbPlMp1c5WgrjJuqYxbKCshTa6bI+PmSTKBCm5F6SMSg+NbE3gIU712KXuryG2tJbktlOE1OriVpQKnjdIq/VA7r6wfSmBFlsqfl5HklD1Fv2vkU3ulqLhO1g0AAID6V1xcHAy+ExMT1a1bN7Vq1apGqyQBoC65rquioiLt3LlTjuOotLRUxcXFatWqVY3Mz7+OAIAGz7glMm5B2e28QLW3JOMWybgFMsYr4xaruv2+Jcl1tpffqqHVxlbkpGpFnqt8v1GJbclnwn8Oneev2LOx4nlLZUXhso3kMS1rda0AAABoWAoKCoK3u3XrpjZt2hB8A2jUEhIS1KZNG3Xr1i14rLCwsObmr7GZAACoJUY+GbcocNt4tWeTRyPjlsjxb5Rr79jHB4myqWaNSpRjLNkKVHGvKVKwjUlFOb49QXyRDgjeNpJe3BzoD+5zjYxqdiMQAAAANGweT+BrVsuyaqwqEgAaglatWgVbndTkngaE3wCARqLi5o9libFx5DpZgarwsmrwvVf7ld/GSpffJMrvSD7HaKfXjRhg5/r2VH57Teqe65UQ3AQz0AKF3o4AAADNieMEvk5MTEyk4htAk5KQkBDcv6D837oambfGZgIAoLYYI+OW/9qTkUzgE6Hj3yDX3i7X3iYjRzLV7/ldl1yl6fv8FsrwOJqxvVg7St0Ild+pKrT3BPHG7AnH15Z0DBm53du6FlcLAAAAAEDjRvgNAGgUjPHKGEeBCu2ycNh4ZNx8GeOTZGT2YsPLuuQoTUWOtL2setsxRm6lym/XSg+9X3beWC3Dnt12T3KtrRUAAAAAgMaO8BsA0Ag4krFlTLFcJ1emLPw2xiPX2R2oCjeO1MDDb79JU6EtbSr2S5IcI7kmNPx2FLqJZfn5ArN/WGH71lI+jQMAAAAAEA3fNQMAGgFXkiO5xWUbUwbCb9fZJckvmZJA3+866Nu9L/KcVsrx7bm/sdgfUvkdqbrbKftUnelrHfbsvI4kNr0EAAAAACCipPpeAAAAVTKuZFkycmWMT5YJtA1x7R2S8UsyMqZIMnbseepZtj9Vef49Efa2UlteZ8+Glq5aqXKY7ZRVfm8sSVVypZzbY1Q2vmFXvAMAAAAAUB+o/AYANAJGtnelZGz5ij+UMZ7AUTdfe/p/O5Jqbkfo2uBxEjRnpyfkWKkb+FRsWz3kV3rYNX4T2O06y5egfDs0/Z76a6n4VA4AAAAAQGRUfgMAGgXj5kvGJ9feURZ6BzbBDJ43XjX0ticeN0G7vHbYMUkqdNspxfJJVuhzyLeTpGRpt1dqW6n0+9cSv2h7AgAAANQd27b1/vvva+7cuVq6dKkyMzOVm5ur9PR0de7cWUcccYQGDRqkcePGqU+fPvW9XKDZo1wMANBIGHkKXpRkl/X6lqQKQbLxRbqojsUOor1u+PnVhYHK7gKnhSRLXtMi5PwXWSmSpOV5tn7IjxDuW/wcGwAAAKgLH3zwgfr166dx48bphRde0MqVK7V7927Ztq2CggJt2LBBM2fO1F133aUDDzxQo0eP1sqVK+t72bXqwQcflGVZsiyKctAw8R0zAKARMDJucdnmkK6Mk1N22K4wwl8/SwuRoED/7cgV6J4I4XdB2VPI9aeofVKCPG5KyPn1xYG5sryuNhWHt3UxSqD2GwAAAKhljzzyiO6//34ZE9hv59RTT9Xo0aN15JFHqmPHjiopKVFGRoYWLFigWbNmafPmzZo9e7Z69eql//73v/W8eqD5IvwGADR4Rq6MmyVZCTLGrdDupEIY3CAqvxMlK1kyxRHPeiO0JN9RGvji2eNaKnJaaLevhaQ9fcG/zfVKspTldbShOFLAzy9xAQAAALXp5Zdf1v/93/9Jkrp27ao333xTp556asSx48eP1zPPPKM333xTf/rTn+pwlQAiIfwGADQCpuwPb9ltR8aEBsHGya3zVVVmWx2UIJ8SFCn8TtK83SbsqFP23IrtRNkmQfl2Ysj5XJ+Ra3XUDo8ddm0A4TcAAABQW7Zu3aobbrhBktSmTRstWrRIBx98cMxrEhMT9bvf/U6jRo3SwoUL62KZAKLgO2YAQMNnAq0/ghXfxoS0PAkcKqzrVYXxmtYqNp0injNWut7cWhR23C3Lw3f7ElTiJCnfH9rEJNtna7PvAJU64cG5FGh7AgAAAKB2PP300/J4Ar+Z+eijj1YZfFfUrl07jRkzJur5nTt36r777tPxxx+vDh06KDU1Vfvtt58mTJigefPmRb1u8+bNwT7br7zyiiTp008/1ZgxY9StWzelpqaqT58+uv7667Vt27Yq1+nz+fTcc8/ptNNOU+fOnZWSkqJu3bpp5MiReu211+S64W0dX3nlFVmWpYceeih4rHxNFT82b96sH3/8MXj/8ccfr3I9//73v4Pjly1bFvaY5fN6vV499dRTOvbYY9W2bVu1adNGJ554op577jk5ToRfu63EcRy9+uqrGj16tHr06KHU1FR17NhRJ598sp5++mmVlpZWOQcaPr5jBgA0eI5/TeCG8UrGI8lUaH3ScNhKUp7dKvy41UNGKRGukPyu5FidleuXvstvoUxv6Kdm10iritKjPmaO02vfFg0AAAAgImOMpk6dKklq3bq1Jk6cWGNzv/766zr44IP12GOP6dtvv1Vubq58Pp+2bdum6dOn64wzztBVV10l2472G6B73HvvvTrzzDM1a9YsZWZmyufzafPmzfrvf/+rY489VqtWrYp67ebNm3XUUUfphhtu0BdffKGsrCz5/X5lZmbq448/1iWXXKKhQ4cqJydnr5/rkUceqQEDBkiSXn311SrHT548WZJ0+OGH64QTTog4Jjc3V4MHD9add96p77//XgUFBSosLNSyZct0ww03aNiwYSoqCi8+KrdlyxYdd9xxuvzyyzV79mxlZGTI5/MpJydHixcv1u23364jjzxSa9eu3YtnjIaE8BsA0OC5TnbZrUDLE8lIpqQeVxSZbRLkdRPDjntMS5ko21IWOa6KTQdl+aSNJdLPBaEV3kYmrBq8onwnbd8WDQAAACCilStXKjs78L3IkCFD1LJlyxqZ9+2339Yll1yi4uJiHXjggXr66ac1Z84cffvtt3rnnXc0cuRISdJLL72ku+66K+ZcL7zwgh5//HENHTpUb7zxhpYvX6558+bp0ksvlSTt3r1bV1xxRcRri4qKdPrpp2v16tWSpHPPPVcffPCBli9frunTp2vo0KGSpEWLFmnMmDEh1dTnnnuufvrpJ11//fXBYz/99FPYR8+ePSVJV111lSRp9erVWrp0adTns2LFCn3//feSFHXdknTttdfq22+/1QUXXKCPPvpIy5cv1xtvvBEM2RcsWKBLLrkk4rXZ2dk6+eSTtWLFCqWmpurGG2/U9OnT9c0332j+/Pm69957lZ6ervXr1+uss85Sfn5+1HWg4aPnNwCgQXOdfEmh1Q6umyPjRv8pfn35Kq+j2iU7OrhSkbejREX7eXOmx1WO3Uqbil2tLfTr54LKFe2WHlwVPeh3TPRgPOJ4q6sSTWa1rgEAAACaox9//DF4+9hjj62RObOysnTNNdfIGKMrrrhC//vf/5SUtCeeO/bYY3Xeeefpvvvu02OPPaZ//vOfuvbaa3XIIYdEnG/JkiW6+uqr9b///U+Wted7g9NPP10pKSl68cUX9dVXX+n777/XMcccE3LtQw89pI0bN0qS/vznP+vhhx8OnjvuuON0/vnn65JLLtHrr7+uJUuWaNKkScGwu127dmrXrp26dOkSvKZ///5Rn/dFF12k2267TcXFxZo8ebIGDhwYcdzLL78sSUpOTo4aXkvSN998o8cee0z33ntvyJrHjx+v0aNHa+7cuZo5c6Y++uij4A8Tyt18883aunWrevfurfnz56tPnz4h50899VSNHz9eQ4YM0caNG/XEE0/o0UcfjboWNGxUfgMAGjZTIlXe3NItkuvW8waXVouwQ4W2pe/ykqRKLU4ckyg3ys+bNxT5VeIkaUuJrQLbVaTO3vn+6P3q3MitwKPyK1ILlWpOAgAAADQDWVlZwdudO3eOOs51Xa1cuTLqh9+/5/uZ559/Xvn5+erZs6eee+65kOC7ooceekg9e/aU67qaMmVK1Mfu3r17sEd2ZXfccUfwduWNN71er1588UVJgfYiDz74YNj1lmXpueeeU8eOHSVJzz77bNR1VKV169aaMGGCJOmtt96K2E/b5/Pp9ddflySNHj065mt+5JFH6p577gk7npSUpBdffFHJycmSpOeeey7k/ObNm/XWW29JCjyfysF3uWOOOSa40Wl5X3U0ToTfAIAGzZgSmUrht+tfJ9eueuOW2pTrhn+RlOuXXthcKsdqH3LcNokqcttGnsfvKMefpN1eR6VO+EYykuSLkXA7UdqpRJYgr6FNCgAAABCPwsLC4O1YLU8KCgp0xBFHRP3Yvn17cOwHH3wgKRDupqamRp0zKSkpWB0dq03IuHHjos5zyCGHqFWrwJ5E5RXe5b799lvl5eVJki6//HIlJoa3b5SkNm3aBEPrX375RRkZGVHXUpXy1icFBQV65513ws5/+OGHwTYzsVqeSNJll10WMfCXpF69eunMM8+UJH3xxRch7Vpmz54tx3GUnp6us846K+ZjnHLKKZKkHTt2aMuWLTHHouEi/AYANGiBkDt8kxfb+0OdryXk8U3lLw4tfZXjyHGNcp0uMtaeL463eVup1I284aUkbShO0k6PHTXkjlWXneevTgezBHnd5LLb0dcDAAAAIFCtXK64uHif53McRz/88IMkBduUxPqYMWOGJGnnzp1R5zz00ENjPmb79oHCnIpBvhToZ17uxBNPjDlHxfMVr6uuQYMG6bDDDpO0Z1PLisqPde/evcpgury3dzTlG2UWFxeHBP/Lly+XJJWUlCgpKSnm6z969OjgdbH+DtCwEX4DABo0x78xrO1J4PimeljNHn4TGjobq5Xe31Esv5G+yGkvv8qrvy19lZMsf1hYvseaIiOva+R1qt9+JNObKMVd/Z0gX9m6XatVtR8LAAAAaE7K231IgY0jo2nXrp2MMSEfl112Wdi4nJwc2XZ4YU9VSkqi7wGUnh6preEeCQmB6K9i9XP5WspV7NsdSbdu3SJetzeuvPJKSdL8+fO1efPm4PGMjAzNmTNHknTppZdGrUQvV9Wau3btGrxdcc27du2q7pIlxf47QMPGhpcAgAbNuMWSIrQDMeE94urSdm8L9ajwdeYO+2BJUq7P0bI8aXTnwKdYY7WRx429MWWePxB6e6rbwFuSMZYCP8uO3hc8yEqQx0mUEiVXabKstrIMO5cDAAAAkRx11FHB299///0+z1cxgL7qqqt0yy23xHVdSkrt/tZmtPYhteHSSy/VvffeK5/Pp1dffVUPPPCAJGnKlCnB16eqlifS3q+5/DE6deqk+fPnx31dtN7gaPgIvwEADZpxiyIfN946XkmoPH9oJcIuX5okj/zGaJfHlW0C7UVcpcpfRfid6YkjuI4isEVmfOG3UaJ8JlD54VeqLDlKFOE3AAAAEEn//v3VsWNHZWdna+HChSopKamy0jqWDh06BG8bY9S/f/+aWOY+ryUzM1N9+/aNOrZiy4+K1+2NTp066ZxzztH06dP16quv6v7775dlWcFNJQcPHhxzLfGuOTMzM+Kay6v5CwsL1a9fvyorzNH40fYEANCgRd3Ysp4rv7/PT1DFdiNfZO2pxrCNUbHbQlIgcPa40o8F0b9IzvBE3ugyHkblld9V2+0cpLXFqco1h+m7wh5l1wIAAACIxLIs/f73v5cU2KTx1Vdf3af5UlJSdPjhh0uSFi9evM/r2xcVg/evv/465thly5ZFvE7auwrs8o0vN23apC+++EJLlizR6tWrJcVX9S1J33zzTVzn09PTdeCBBwaPH3PMMZIkr9cb7P+Npo3wGwDQYBljy9RzyB3NukJXFTeNXFe8J8Au9Bvt9AY2vHSVqPVFjopjFGb/Wuzb63UU2pKs+D6de9wk5fgs+UyySp0E8WUAAAAAENttt92mtLQ0SdK9996rTZv2be+hs88+W5K0evVqzZ07d5/Xt7eOO+44tWvXTpL06quvynUjF+QUFhbq7bffliQddthh6t69e8j58tdGCgTK8Rg+fLh69+4tKbDJZflGl61atdKECRPimmPq1KkyJnLbyO3bt+uTTz6RJJ166qkh1d1jxowJBvbPPPNMXI+Fxo3vegEADZZrZ8gYT30vI6IvszwqsXoG78/YVlzhXKmW5aVISpCjFH2YUSw7Rjvv4r3Y6LLc5M1exbvh5c9FLbXTIxU5ycr1WzJ8GQAAAADEtP/+++tf//qXJCk/P18nn3yyFi1aFPMaY4zy8vIinrvlllvUqlVg8/mJEyfq559/jjnX7Nmz9eOPP1Z/4VVITU0NVmCvXLlSDz/8cNgYY4xuvPFGZWVlSZJuvPHGsDEVw/ANGzbE9dgJCQnBCu933nlHb731liRp/PjxwdemKj/88IOefPLJsOO2bevqq6+WzxcoMLr++utDzh9yyCEaP368JOnNN9/U008/HfNxNm3apGnTpsW1JjRM9PwGADRgtuLayLEe5PsdOWV9vSWpctGB35WkRDkmscL9mlfquDKy4oq/S+wEbSx2tN2Tpmyfpd12Z/VIjNJWBgAAAIAk6eqrr9b27dv10EMPaceOHRoyZIiGDRumMWPG6IgjjlCHDh3kOI527typ7777Tm+//XYw1E5MTAzZsLJr16569dVXNW7cOGVkZOj444/X5ZdfrrPOOku9evWS3+/Xtm3btGzZMs2YMUMbN27Uhx9+qCOPPLLGn9f999+vd999Vxs3btSDDz6on376SRMnTlT37t21adMmPfvss/riiy8kSQMHDtQ111wTNsegQYOCt//4xz/qvvvuU/fu3YPV1QcccICSksLjxyuuuEIPPfSQSkpKQo7F6/jjj9fdd9+tH374QZdeeqm6dOmidevW6emnnw62aRkzZoxGjx4ddu3zzz+v5cuXa+PGjbr99tv1/vvv69JLL9Xhhx+u1NRUZWdna8WKFZozZ44+//xzjR07VhdddFHca0PDQvgNAGi4jC2Zhhl+O8bIZ5KDRddGoem3bSRZFcLvvS/ujqnUMYqv8jtBRY7RslyfTuzQQr8UumqV1Ea/71I76wIAAACakgcffFBHHXWU7rjjDm3cuFGff/65Pv/886jjLcvSiBEj9OSTT6pHjx4h58477zy9//77uvzyy5WTk6P//ve/+u9//xtxnoSEBLVs2bJGn0u51q1b67PPPtNZZ52l1atX65133tE777wTNm7w4MH64IMPIm4OefDBB2vChAl6++239cknnwTbjZTbtGmTDjjggLDrevXqpREjRujjjz+WJPXt21cnn3xy3GufNGmSrrzySk2bNi1iZfbgwYP1+uuvR7y2Q4cOWrx4sSZMmKCFCxdqwYIFWrBgQdTHatOmTdzrQsND+A0AaLCMKZFUSyXT+yRVjpG2e1upbYseSjI7VDnbdkxgs0vXBFqL+Gqt8ju+8NtYLbQoy2i319bWUinH58p2EySxuzkAAAAQj7Fjx2rMmDF67733NHfuXC1dulS7du1SXl6e0tPT1bFjRx1xxBEaOHCgLrjgAvXp0yfqXGPGjNGmTZv0wgsv6KOPPtLPP/+snJwcJSUlqVu3bjr88MM1bNgwjRs3Tvvtt1+tPacDDjhAK1as0AsvvKDp06dr5cqVKigoUIcOHXTMMcfod7/7nS6++GIlJERvmfjaa6/p+OOP14wZM7RmzRoVFhZG7SFe0SWXXBIMvydOnFitdbdv315LlizRM888o7feeksbNmyQMUb9+vXTpZdequuvvz5iWF+uW7duWrBggWbPnq1p06Zp6dKl2rlzp/x+v9q1a6ff/OY3GjhwoM4++2ydcsop1VobGhbCbwBAgxXo911LJdP7wFhJMpJ2epPVJ62VWisQdlcUuJ8ktyyYLt2Hvt6xlDiu4tnCw6iFfirwqdQx2lHqaGupI9skifAbAAAAiF9SUpLGjx8f7Bu9L9q0aaPbb79dt99+e7WuO+CAA6Ju9ljZ5s2bqxyTkpKiG264QTfccEO11lEuOTlZd955p+68885qXbdy5UpJgdYwl112WbUfNy0tTffcc4/uueeeal9bbtSoURo1atReX4+Gj52uAAANl/HLuIX1vYoQxmqnrf5DJEle15KJUnX9/MYiOWoRPF9g1856vK6RrdZVjst1u2m3N7CIQttofaGvbBPO+DbLBAAAAICa4jiOpkyZIkk666yzQjbOBGoS4TcAoAEzamhtTxyla6c3TZLkc8rD7/Dq6WyfK6NEOWVtT34trr3e5X6TVulIhPX401VQ1ni8yDYqcYxKHEkW4TcAAACAuvX6669r27ZtkqTrrruunleDpoy2JwCABssYf30vIcxH2QdrRb4lqVQljmRkyVitIo41SgiG33MySyKOqQl5TiulV8i7/VZ3JZvdkrzBY9/nt5DfFEiSFmeXSpI+3+XXbfsTfgMAAACofevXr5ff79fy5cv1xz/+UZJ01FFHaeTIkfW8MjRlhN8AgIbLeKseU8f8rqVNJYFq9Fy/5HOTZaJspGJkyTYJqu2+5aVuUkixt6MkJVsJVT6szzXyq4NofQIAAACgtv3mN78JuZ+cnKznn39eFr+NilpE2xMAQINlVEuNsveBI2lVgU+SlOOTcvxpivbp1ChRXrf2N5QsdUIfw29SZOL4FF9gu9rm6y43zs1yAAAAAGBftW/fXqeffrq++OILDRw4sL6XgyaOym8AQMPVAENZY6S1RYHw+5tcv0Z3S5Ib5dNppr+D1pe0kFS7m3YWVwq/XSUqUt/vykocI6+bIMdYcYwGAAAAgL1n9vH7u8svv1yXX355zSwGzQaV3wCABqxhbXYpBTqJOGVfs/1U4FWpkyCvaR1x7ObSFtpUXPu/wlf5VQr0Ga/6U7zfdZVvJ8nf8H7GAAAAAADAPiP8BgAgGqtF2P2KObHXMfK6llaVdI54eZ4/QSvyaz/Ad41V6X6CvGofcsyJEHD7XSnblyjX8OUAAAAAAKDp4btdAEADVr+V30ZJqtg+xCglpBOLzw2E31tLI7c92VJiaXupU8urlLxuaPjtKEF+kxxyrDjCMvzGaJc3QS6V3wAAAACAJojwGwDQgNVvKutRZwW2xwh8unSVojz/nvNGkm2k3d7IrU12e41y/bUf4Of7K346T5ZtLBU5LVRxa4+SSOG3a7Sx2DTE1uoAAAAAAOwzwm8AQMNl/FWPqRWBT4+lbgu5VmvJSpEUCL8rs11L2VGWWeJKmR671lYZfBzHkhT4cKx28rjJ8prQanRfhAze6xqtyK/99QEAAAAAUB8IvwEADZZxi+rnca2WkiSPm6xct5uMAi1EHKWENWIpcoyyvJFLp/2uUZav9tueFNlSIPxOUrbTXbt8yfK6iSFjIrU2cYz0ZVZpra8PAAAAAID60GDDb6/Xq8zMTLlu/fZ7BQA0RZHblJQzSpUkedwk+dxEuUqTJHlNaliLkLmZrorsyOH397l1U7m+osCVKducs9hJke0m6Ovc0M066WwCAAAAAGhu6jz8Lioq0kcffaSPPvpIRUXhFX1ZWVk6//zz1aZNG/Xo0UPt27fX7bffLq/XW9dLBQA0WZE3qCznlIXfJU6SXCXIY9pKkmyTGBYif7SzWEVO5B/U/lhQN5+7fszzy6iFJEsFdrJKXEvzdlWuOCf+BgAAAAA0L7G/+68F77zzjiZOnKhevXpp8+bNIedc19VZZ52l7777TqastK6wsFDPPPOMNm/erHfeeaeulwsAaCI8Vh8lq0iJZrdkJcfsJ+4oRcmStnmS1TLRVqFaqmWiZJskrS8OD7oL/fUbLK8r8smU9fyenZmifq2NFlZoZ2KsNmXnAQAAAABoPuq88nvu3LmSpLFjxyohIfTh33rrLX377beSpGOPPVZ//OMfdeyxx8oYo5kzZ2rOnDl1vVwAQBPhNalyFGgFUt7DOxq/CZzf5U2Q3yQoxw60PSl1k7TLEyH8jtL2pK54XSOjQI/vtUWOih1LuX5H5e1dHKWHtWsBAAAAAKCpq/PK75UrV8qyLA0aNCjs3JQpUyRJxx13nJYsWaKkpCT5/X4NGTJE33zzjV599VX99re/reslAwDqia/kkxqYJVGSI6MEOUqUlKBSdVK68qNeUeqmqXWCVOJIpU6iNpcm67DUFHmcRM3JLAkb/32epwbWuW98StdOp4d8ruQry+eN1UqWyVWpaav8eg7oAQAAAACoa3Ve+b1r1y5JUp8+fUKO+/1+LViwQJZl6YYbblBSUiCXT05O1nXXXSdjjJYtW1bXywUA1CNjwveGqDYrRZLkGks+kyYpUTKxW4C4ZRXTflfKtxO1qjBwP9OXsu/rqSU+k6pSJ1GuMcHu3j61kZSsPLulNhdX7gEOAAAAAEDTVufhd05OjiQpJSU0QPjmm29UWhroT1q5urtv376SpJ07d9bBCgEADYExRjL7vmGkKdu80jaJ2u1rJSlBporNH92ycHyHx2hLaYK2lQZKqT/fXeefNuNW6qTINgmyjeSWPb0Mfye5Vmv9XNRScyNUrAMAAAAA0JTV+Xfx6enpkvZUgJdbsGCBJOnggw9W165dQ861aNGibhYHAGhAaqJNR4L8al02myWfSZAsS1V9+sv0tZCUoF8KbK0pLGsjYiU26E0jfyhsKyMp1+cEw2+PE+gDvqqw4Yb2AAAAAADUljrv+X3QQQfphx9+0BdffKEzzzwzePy9996TZVk65ZRTwq7ZvXu3JKlLly51tk4AQH2rifA7UTl2B3VL3CrHWLJdS5Ilu4pPf9/lp+iYFsna5XW0tTShbDUpyveHb3bZUHy00+j6PtKP+T6d2yNQ7V7qBnqc/1xAyxMAAABgX9m2rffff19z587V0qVLlZmZqdzcXKWnp6tz58464ogjNGjQII0bNy6s3W80K1as0Lvvvqv58+dr8+bNwQysXbt2+s1vfqPjjz9eZ599tk455RQlJMRX1JKXl6c333xTn332mX744QdlZWWpqKhIbdq0UY8ePXT00Udr2LBhGjt2rNq1axfXnMYYzZ07Vx999JEWLVqkHTt2KCcnR6mpqerYsaMOP/xwnXjiiRo3bpwOO+ywuOaUpA0bNujtt9/WZ599pvXr1ysrK0u2batt27bq06ePjj32WI0aNUpnnnmmkpOT45qztLRU06dP16effqrly5dr165dKigoUKtWrdS1a1cdddRRGjJkiMaNG6du3brFvdbFixfr/fff15dffqlt27YpOztbiYmJat++vfr166fjjz9e5513ngYMGBD3nBkZGXrrrbc0b948rVq1Srt375bH41Hbtm2133776ZhjjtGIESM0evToYEFxVWrjfSrVznu1LljGmDrdAeuee+7RE088oTZt2mjatGkaMmSIJk+erFtuuUWWZem9997T2WefHXLNU089pbvuuksDBw7U4sWLa2Qdy5cvD/4P+8svv2j37t1KTk5Wjx49NHjwYF155ZU6+eST457v448/1qRJk/TNN99o9+7d6ty5swYMGKBrrrlGZ511Vlxz2LatF198Ua+//rpWr16toqIi9ejRQ8OHD9fNN9+sww8/fG+fbpW2bdum/fbbT5K0detW9erVq9YeCwDiYYxfBTv2cZNjq4VWlByto1os1XrfABU4STomfZWynP3UOeGnqJc9uHGo7jhwh4Ysbq/D2yTLMdLzR+bqqh/aa96uhtk+5NTO6Xq0n63BC3wa3iVd83aV6Ldd0/X60et04Q+/0acx2p7kXvQXtUuL7wspAAAA7Jt9+f573bp1sm1bSUlJ+s1vflPl+IxXGu5vLu6r7pfX7YbuH3zwgW6//XatX78+rvGjRo3S448/rv79+0c8v23bNt18882aOXOm4onmDjjgAD3wwAO6/PLLo45xXVdPPvmkHn/8ceXl5VU5Z2pqqq6++mo98MAD6tSpU9Rxixcv1k033aTvv/++yjkl6eSTT9bjjz+uwYMHRx2Tl5en22+/XVOmTJFt21XO2aVLF91999265ZZblJiYGHXcSy+9pP/7v/9TRkZGlXMmJibqoosu0iOPPKLevXtHHffLL7/ohhtu0BdffFHlnJJ0xBFH6NFHH9WYMWOijvF6vfrzn/+s//znP8E20LG0bt1at956q+65556YIXhNv0+l2nmvRlPdf+PiUefhd0ZGhvr166fCwsKQ48YYHXbYYfrpp59kWaH/OJ922mlasGCBrr/+ej377LP7vIZTTjlFCxcurHLcpZdeqhdeeCGsP3lFruvqmmuu0UsvvRR1zFVXXaX//e9/MX/qkZWVpZEjR+qbb76JeD41NVXPPvusrrrqqirXvTcIvwE0NMb4VLAjvh8eRp3Daqn5+cdoWJtFWuk5SaVOgo5ttUGZdg/1SIz+hdvd60/RHw4o1oglCTqqbYocIz3dv1TjliVrbZFvn9ZUWzqlJGrGick6daFHh7VJ1S8FXiVaUuaZGTprWR99k+uJei3hNwAAQN0h/K4ZdRl+P/LII7r//vuDwd+pp56q0aNH68gjj1THjh1VUlKijIwMLViwQLNmzdLmzZslSddee63++9//hs337bffasyYMcGAtlevXrrgggs0ePBgdevWTcnJydq1a5d+/PFHzZkzRwsWLJAxRqmpqfJ4In9dX1paqosuukjvv/++JCk5OVnnnXeezjjjDB144IFq166dcnNz9euvv+qzzz7TrFmzlJ+fL0maNm2aLrzwwojzvvLKK7rmmmvk9/slSccdd5zOPfdcHXfccercubP8fr927typpUuXavbs2frll18kSSNGjNCcOXMizrlx40aNHDlSa9askSR16NBBF110kU455RT16NFD6enp2r17t1avXq25c+fq008/DQbkGRkZEau1XdfVH/7wB/3vf/+TJFmWpVGjRum3v/2tDj30ULVv316FhYXavn275s+frw8//FCZmZmSpL/+9a+65557Iq51zpw5mjBhQjDHPOSQQzRu3DiddNJJ6ty5syzLUmZmZrDIdvny5cFxq1evjjhnVlaWzj77bC1dulSS1LJlS02YMEHDhg3T/vvvr9atWys7O1vr16/Xp59+qo8//jgYkC9dulQnnXRSxHlr+n0q1c57NZbaCL/rvO1J9+7d9eGHH+rCCy8M+SnMgQceqBkzZoQF3xs2bAgG1cOHD6+RNezYsUOS1KNHD40fP15DhgzR/vvvL8dxtHTpUv3973/X9u3bNWXKFPn9fr3xxhtR57rvvvuCwfcxxxyju+66SwcddJA2bNigJ554Qt9//71efPFFde7cWY899ljEORzH0dixY4PB93nnnaerr75aHTp00Ndff61HHnlEu3bt0rXXXquePXvGXUkOAI3bvn8x66itCuwEGautRiz26ZmjWunoVsnym9i/gmUkTdnaSqVOkRZllarEMcqzU7XbW3VFQn3J8jkqdQM/rPU6gfYsjpHy3U5aHiP4BgAAABDdyy+/rP/7v/+TJHXt2lVvvvmmTj311Ihjx48fr2eeeUZvvvmm/vSnP0Uck5GRoVGjRgWD1/vvv19/+tOflJqaGjZ25MiRuueee/Tjjz/qz3/+sz755JOo67z22muDwfdJJ52kN954I2pLi4kTJ6qgoEDPPvusHnnkkahzzps3T1deeaVc11WrVq00efJkjRs3LuLYsWPH6oknntDs2bOjBsmSVFxcrNGjRweD76uvvlpPPfWU2rRpEzZ2xIgRuuWWW7Rp0yY9/PDDmjx5ctR5H3zwwWDw3bdvX7399ts66qijIo69+OKL5fF4Qv5uI1m5cqXOP/98lZSUKDk5Wc8884yuu+66iMWtY8aM0UMPPaRFixbp3nvvDbYEqcxxHI0fPz4YfJ999tl64YUXIrZ6Hj58uK677jplZmbqySef1DPPPBN1rTX9PpVq771a1+q88rucz+fT4sWLtXPnTnXv3l0nn3yykpLCs/hFixbps88+kyTdeeedcfe3iWX06NG69NJLdf7550f8VYmsrCwNHjxYa9eulSR9+eWXEXuRr127Vocffrhs29bxxx+vBQsWhGzOWVJSoqFDh2r58uVKSkrSqlWrdPDBB4fN8/LLL+vKK6+UJP3hD3/Qf/7zn5Dz69ev13HHHaeCggIdfPDBWrVqVcTXal9Q+Q2goTGuRwUZo/ZpjiL9RpO39dClvTLV+5MWmnRMa43qvEObPJ3UP+2rqNfdse4U5flcvb+jRLYxMpI+HdxC533tVaHdcPt+TzuhtS5aVqiuqUnKLAvq1w531Hde9F8LlKj8BgAAqEtUfteMuqj83rp1q/r27SuPx6M2bdro22+/jZjrRJKXl6eFCxeGtb4YPXq0Zs+eLUn629/+prvuuivu9UydOlWXXHJJ2PEZM2Zo/PjxkgKV2QsXLgzJp2Ipb7t7/PHHhxwvLi7WgQceqF27dikpKUlffvmlBg0aFNecHo9HH374YXBNFd14443B3CtSBhbLhx9+qCFDhoT1KV+2bJlOOukkGWO033776fvvv1fHjh3jmnP79u1as2aNhg0bFnLcGKOjjjpKP/0UaJf51ltvacKECXHN6bqupk2bpt/97ndh55566indeeedkgLvhffffz/u/thLly5Vly5ddNBBB4Ucr433afn6avq9WpUmUfldLiUlRaeddlqV404++eRq9d6Ox6xZs2Ke79Spk/7+978H/+JnzJgRMfx+5plngr928e9//zvsH5b09HT9+9//1sCBA2Xbtv7xj39E/J/6qaeekhT4NY8nn3wy7PzBBx+se++9V/fee6/Wr1+v9957L+I/IADQtOx7lfU2b3v9dU2hvKarpAIZWcqx2+jL7FT17xn9OmOkj3aWyF/h58OlboK8br38vDhu3+QG/iy292xwmeNPk+SvnwUBAAAAjdjTTz8dbN3w6KOPxh0oSoFNACsHiitWrAiGiQMGDAiGoPGKFiaWdxqwLEuTJ0+OO/iWpEMPPTTi8RdffFG7du2SJN1yyy1xB9+SlJaWFjG3yszMDHZP2G+//YJ5WLyi9dD+61//Gmz18dxzz8UdfEtSz5491bNn+DeHH3zwQTD4Pv/88+MOviUpISEhYvDt9Xr197//XVIgM3zppZeqtTHkwIEDIx6v6fepVHvv1frQcLbebGAqBvMbNmwIO2+MCf46yaGHHhq1385JJ52kQw45RJL0/vvvhzWGX7t2rVatWiVJmjBhQtTK9opN4t977734nwgANFLGOFUPqkKWP0V+Vyoty9H9Jr5mKq6RSp3QkR7Xkq+Bh987PIH1FVdY++Lc+L/wBQAAABBgjNHUqVMlBTYbnDhx4j7P+eqrrwZv33TTTWGtf/fGjz/+GNyI8rTTTtMRRxyxz3NKe9ZqWZZuuummGpnzrbfeCoa0V199dbVC+mjy8vL0wQcfSJIOOuggjRq1b789XK7i39Utt9xSI3POnTtXO3fulCRdeOGFEVudVFdtvE+l2nmv1hfC7yi8Xm/wdqTWKJs2bQr2Dh86dGjMucrPb9++PdhMvtyiRYvCxkXSrVs39e3bV1Jgl10AaPr2PfxeV5QovzFaUxRIvwvLQvCqImwTYYzHafif7D1loXfFtS/ObrhtWgAAAICGauXKlcrOzpYkDRkyRC1bttznOb/88svg7d/+9rf7PF9tzZmfn68VK1ZIkvr166fevXvXyLy1sdaFCxfKdQPf84wYMaJGQlpjjBYsWCApECgPHjx4n+eUauf518b7VKqdtdaXemt7IgVK6BcuXKiNGzeqsLBQjhM76LAsK/jrEbWt4l9yv379ws6X714rRf8VkUjnV61aFbLhQHXnWbt2rbZu3ari4uJqvaG3bdsW83zFzUcBoEEw+972ZENxIAZeUxCY69tcRyO7qMr0+7tcX9ixPH/DD7/9EbbxKGnAPcoBAACAhurHH38M3j722GNrdM5evXqpc+fONTqnVHPrXLlyZTBQrqk5pT1rTUhIiLoZ5d7OKdXcWnfs2BEMlI866qhqtSaJpTbfUzU5Z8V5a/K9Wl/qJfxes2aNrrjiCn31VfTNxiozxtRZ+O26rh5//PHg/Uh9fSqGyVVtTlG+kYUUaEK/r/MYY7Rt27ZgO5V4VFwDADQGxpTs8xybSgI/VPWbwBdum0scSVWH2BuKw8Pvon3P4mudEyHnLnEadqsWAAAAoCHKysoK3o4V/rmuG1LYWNkhhxyi5ORk5efnB/eNqypM3LJliwoKCiKe69KlS0i7jHjXWVhYqF9//TXiuZSUlGC3gerMKQWKPKMVs/bp0yekcLN83rZt2yolJSXqnDt37gxZQ0Xt27cP6dEd71o9Ho/Wr18f9Xz//v2rPacUaJVcWloa8VyvXr1CNueMd97s7OyoRaotW7YMKaqt6feppFp7r9aXOg+/t2/frlNOOUVZWVnB/tetWrVS+/bta+wnKfvqH//4h5YtWyZJOu+883TccceFjSksLAzebtWqVcz5Kv6PXlRUVCvzAECTYyoG0AmSql/BvL008EWYKQu8t5XaOmtJgsb0iB0IRwqMfY2ggPqzXeFfdOU0hoUDAAAADUzFvCbWb94XFBTE7LO9adMmHXDAAXHPJ0k333xzcJ+5yh544AE9+OCD1V7nZ599prFjx0Y817t375A2vdVZ68CBA5Wfnx/x3Pz583XqqaeGzVvVnI8//rj++c9/Rjx32WWX6ZVXXqn2WlevXq1jjjkm6vmKe/RV5/mff/75wRYxlU2ePDlkD7945506dar++Mc/Rjw3dOhQffHFF9WeM973aXXmlKr3Xq0vdR5+P/roo9q9e7csy9JVV12lO+64I+SnS/Xtyy+/1D333CMp8BOK559/PuK48gb9kmL+tEqSUlNTg7cr/zSopuapSuWK88oyMjJ0wgknVGtOAKgzVppU7UrwRG0t8Uva0+Vkt9eWE9zM0lLk/icJEY/u8jX8CupIbU82RahiBwAAABBb69atg7eLi4sb3Hy1OW9trjUvL69ZP/+K87Zp06bG56wJtfX860udl1rPmTNHlmXp0ksv1aRJkxpU8P3zzz9r7Nixsm1baWlpmj59etTy/LS0tOBtny92sFBx88zKO9nW1DxV6dWrV8yP7t27V2s+AKhLPnWs9jWu1UHZlaqeywu6fy12AoF6BMaK/O/rcxsKIx5v6IppewIAAABUW8eOe74H2b17d9Rx7dq1kzEm5OOyyy4LG9e2bVslJSVVOZ8kzZw5M2S++fPn7/M6zz333LB1RtvIMt45JSkvLy9kzgceeKDKtebn58fMwJ555pmQOTdt2lTlnFWt9eijjw57/kOHDt2nOSXphx9+CJlz8uTJ+7zWW2+9NWyt+zpnvO9Tqfbeq/WlzsPvHTt2SJIuvfTSun7omDZt2qQzzzxTubm5SkxM1JtvvqlTTjkl6viKPwWpqgVJxZ+SVG5tUlPzAEBTYkxoaG324tNVxWuK7dAedJleRybKLz+t9x5W7ccCAAAA0LRU3JDx+++/r5E5jzzySEmB/d+i9bSurtpYZ//+/YOtiWtqTmnPWl3XDdmosSbmlGpurT179gyGyitWrAhu/rmvamOttTGnVDvv1fpS5+F3+/btJSmk4Xt927Fjh4YPH64dO3bIsiy9/PLLOuecc2JeU3FzyoqbVkZSseVI5Y0n92Yey7Kq3BwTABo1E9rayWsiV2nHnEKJwduVK8DXFvqiht83/1Qve0EDAAAAaED69+8fDEAXLlyokpLqtmEMV7HSeM6cOfs8X23N2a5du2CoumrVKm3ZsqVG5q2NtQ4ZMiQY1M+dOzdmlXS8LMsKFsQWFhZqyZIl+zynVDvPvzbep1LtrLW+1Hn4ffzxx0uS1q5dW9cPHVFWVpbOOOMMbdy4UZL073//O66q9MMO21MZuHr16phjK57v16/fPs+z3377VdlwHgAaM9v3s4z2VGuXuqmSlR739V6rt9wY21q4UtTw22F/SAAAAKDZsyxLv//97yUFNgt89dVX93nOinnTs88+WyNB7ZFHHqmjjz5akvT555/rl19+2ec5pT1rdV1X//nPf2pkzgsuuCC4n90LL7wQsg/e3mrXrp3GjBkjSVq/fn2NBbUV/67+/e9/18icI0aMUNeuXSVJb775ZpUtReJRG+9TqXbeq/WlzsPvm2++WcYYTZo0qa4fOkx+fr5GjBgR/Ifh8ccf1w033BDXtX369FGPHj0kBTbJjGXBggWSAr82Ub5zarmTTz45eDvWPDt37gz+wGDw4MFxrREAGivX3iGZPeG3z02SrXZxX59jt5dbxae4aOG3rxF/UgcAAABQc2677bbgXm333ntvzN7T8Tj66KN11llnSZK+/vpr/eMf/9jnNUqBtUmSMUaXX355jYTKV199tTp37ixJ+sc//qGvv/56n+fs2rWrrrjiCknSli1bdNddd+3znFLg+VuWJUm6/vrrlZOTs89znnPOOTr88MMlSW+//bbefffdfZ4zNTVVt912m6RAa+Orr766Rlqq1PT7VKq992p9qPPw+4wzztDdd9+t+fPn6/rrr5ff76/rJUiSSkpKNGrUKH333XeSpPvuu09333133NdblhVsjbJ69Wp99dVXEcd99dVXwYrtc845J/g/Y7m+ffsGq8HffvvtqL+e8MorrwRvjx07Nu51AkDj5ChQnx3gcRNVbOLfCds2CVX2CbeVGvG4j8pvAAAAAJL2339//etf/5IUKKA8+eSTtWjRopjXGGOUl5cX9fwLL7wQDJXvuOMOPfzwwzE3f5Sk3NzcmOcnTJigiy++WJL0zTff6IwzztCvv/4a85qSkhJ5vd6o51u2bKmpU6cqISFBfr9fZ555pmbOnBlzznjW+re//U2HHHKIpEBF9R/+8Icq98Cras4TTzwx+AOAX3/9VSeffLJWrlwZ8xrbtmM+rmVZev3119WiRQtJ0oUXXqhJkyZVGVZXtdbbbrst2FLl/fff17hx46rsqV3VnLXxPpVq571aH+q8semUKVPUr18/DRo0SJMmTdKHH36ocePG6dBDD1V6etW/0l4TG2X6fD6NHTtWixcvliTdcssteuSRR6o9z6233qpJkybJcRzddNNNWrBgQfB/CkkqLS3VTTfdJElKSkrSrbfeGnGeO+64Q1deeaVycnJ011136dlnnw05v2HDBv31r3+VJB188MGE3wCaPhO6QWWJkyS/SZKsKOMrcWXJNbEHmyiT+R0qvwEAAAAEXH311dq+fbseeugh7dixQ0OGDNGwYcM0ZswYHXHEEerQoYMcx9HOnTv13Xff6e2339bPP/8sSUpMTFRKSkrIfD179tSsWbN09tlnKzMzU/fff79efPFFXXjhhRo8eLC6du2q1NRU5eXlac2aNfr44481a9as4PXRsrMXXnhB+fn5mj17thYtWqS+fftq3LhxOuOMM3TggQeqbdu2Ki0t1ZYtW7RkyRJNmzZNu3btijnniBEj9L///U9/+MMfVFBQoLFjx2rAgAEaO3asjjvuuGCv6aysLK1YsULvvvtuSIV4xYysXOvWrTVr1iyNHDlS69at0/PPP6/p06froosu0imnnKIePXqoZcuWKigo0Pr16zVv3ryQqutoa/3LX/6izMxMvfTSS1q1apWOOuoojR49WmeddZYOOeQQtW/fXj6fT9u3b9eyZcv05ptvavPmzVHXKQU2k5w+fbouvPBCFRUV6dprr9Uzzzyj8ePH68QTT1Tnzp2VlJSknJwc/fzzz/rggw/02WefxVxrUlKSpk+frjFjxmjZsmV677339Omnn+rCCy/Uaaedpv3331+tW7dWcXGxNm7cqAULFuitt96q8vnX9PtUqr33al2zTB03bUlISAirfo6XZVmybXuf13D++ecH/8cZNmyYnnnmmZhrSklJUd++fSOeu/fee/X4449Lko455hjdfffdOuigg7Rhwwb97W9/C+60eu+99+qxxx6LOIfjOBo6dGgwjD///PN19dVXq3379lq2bJkefvhh7dq1SwkJCZo1a1bw1w5q0rZt24KbcW7dupUNNQHUC2McWVaiPIXTlJTST8VZt0uSlpcMUqcUrw5I+jaOWRK10X+MuiTnq9cnraKOyhiRrxZmY9jxIxedoC0l9fNbSfUl96K/qF1aw/jCBAAAoKnbl++/161bJ9u2lZSUpN/85jdVjs94Ze/yl8ag++V1W7Ty3nvv6Y477gjuGReLZVkaMWKEnnzySfXv3z/imC1btuimm27SBx98ENfj9+7dWw888IAuv/zyqBmW67r661//qieffFL5+flVzpmWlqaJEyfqL3/5izp16hR13IIFC3TzzTdrxYoVca114MCBeuKJJ0Ja/VaWm5urP/7xj3rttdfkOE7UceW6dOmiu+66SzfffLOSk5Ojjps0aZLuv/9+ZWZmVjlnUlKSxo0bp8cff1y9e/eOOu6nn37SjTfeGGxrXJXDDz9cjz32mM4+++yoYzwej/70pz/p+eefj6tNTZs2bXTjjTfqT3/6U8x9AGv6fSrVzns1mur+GxePegm/95ZlWXH9DxHPPNXRu3fv4E+DKnNdV1dffbVefvnlqNdfeeWVmjRpUsznnpWVpZEjR+qbb76JeD41NVXPPvusrrrqqmqtPV6E3wAaAmP8sqxkefJfVEJSN5XmBfqKfVMySO2S/PpNSuR/I0NYafqp9Gh1SSnRIfMSow7bMaJA6WZD2PFDFwzQTs++/6C1MSH8BgAAqDuE3zWjrsNvKdAq47333tPcuXO1dOlS7dq1S3l5eUpPT1fHjh11xBFHaODAgbrgggvUp0+fuOb84Ycf9M4772j+/PnavHmzsrOzJUnt27dXnz59NGDAAI0ePVrDhg2LO1PLy8vTtGnTNG/ePK1YsUJZWVkqLi5W27Zt1bVrVx1zzDE65ZRTNGHCBLVr1y6uOY0xmjNnTrCyPCMjQ7m5uUpNTVWHDh102GGH6YQTTtD48eNjBqmVrV+/Xm+99ZY+//xzrVu3TtnZ2XIcR+3atdP++++v448/XmeeeaZGjRoVM/SuqLS0VG+//bY++eQTLV++XLt371ZhYaFatWqlzp076+ijj9bgwYN1wQUXqFu3bnGvdeHChXr//fe1YMECbdu2TdnZ2UpKSlL79u3Vt29fnXDCCTrnnHM0cODAuOfMyMjQtGnT9Nlnn+mXX35RVlaWvF6v2rVrpx49eui4447TsGHDNHbs2LgrqWvjfSrVznu1siYRflfVc6gqsX4SE6+aDL/LffTRR5o0aZK++eYbZWVlqVOnThowYICuvfbauCu1bdvWCy+8oDfeeEOrVq1ScXGxevToodNPP1233HJLsNF+bSD8BtAQGOOVZaWqOOsuSUmyvYFfmfumeJBaJ9k6NHVZhKsSVLE/uLFaa07uMeqUYuuMRaVRHyta+H3g/OOU429ejb8JvwEAAOpOXYbfANCY1Ma/cXXe87smwut9VRt5/8iRIzVy5Mh9miMpKUnXX3+9rr/++hpaFQA0MsaVLMnxrZWV1HXPYUlet2IVd8XAu/LtRG0psdQyMfZPmrP9bZUe4bOgx6XnNwAAAAAATcHe9yABAKDGuTLGL2MKZZy84FHbWCp1K3zKslIrXFPxt3kSZGRpl08qcWL/ls9uf6oifRr0sOElAAAAAABNAuE3AKDBcJ3dkvEG7pT/KckxlmwTCLMdq6sctalwVcVPZYlylab1RY5Kqwi/bdeSVLlnXKKaV8MTAAAAAACarjpve1KR4ziaOXOm5s2bp5UrVyonJ0eS1KFDB/Xv31/Dhw/Xueeeq8TE6BuWAQCaDmM8MmWht9GeTSeNJLsslXaVLKtiRG0lBgZIkpUgV4kqto08buzw22cSQq+VZKwWNfAsAAAAAABAQ1Bv4fecOXN0zTXXaPv27cFj5b24LcvSkiVLNGnSJPXq1UuTJk3SiBEj6mupAIA6YpxMmYSyqm6zZ7NKI+mlX41OPbKlfCZNKVb5uQT51U7JKpEkuWohowS5MvI4sR/L41gySpSlVEnlgXtazT4hAAAAAABQb+ql7cnUqVM1evRobd++XcYYGWPUu3dvnXTSSTrppJOCm2IaY7R161aNGjVKr7/+en0sFQBQh4wxIe1O9hwPBOCO2shRkkzw01eCAj2/y3+WmyijBBX4jTxV9C8pcSy5SpOswFzGaimH8BsAAAAAgCajzsPvX3/9Vddcc41c11V6eroeeeQR7dy5Uxs3btSSJUu0ZMkSbdy4UTt37tSjjz6qVq1ayXVdXX311dqyZUtdLxcAUKdsyfgjnjHGUr7bUR43RSa4yWUg/Hat1pKVJkfJck2S1hb5VFpl5bfkVRuVb5hZYrrJr9TYFwEAAAAAgEajzsPvf/7zn/J6vWrVqpUWLlyoP/3pT+rSpUvYuM6dO+vee+/VwoUL1apVK3m9Xv3zn/+s6+UCAOqS8cl1c8MPS/ox36ttntb6aFd7GQX2gvBbncsqwtNllCxbqVpV0kXFtltl25N825LfJFcI0i35TEqNPh0AAAAAAFB/6jz8/uSTT2RZlu68804dffTRVY4/6qijdMcdd8gYo7lz59b+AgEA9ca4xTJOTthxx1jaVmrrp8IUTdrslW0CbU6K3UDltqtEGSXJNilamJMsx0hVZN/K9hn53GSVfyo0slTiUPkNAAAAAEBTUefhd3nrkuHDh8d9zRlnnBFyLQCgaTKmWMbNCz1otVSxE6jO/mino2LbDVZo7/C1kc8ENrk0Stb0nd3kc03ZZLEfq8CWvCZJpqzVSZGTriInuSafDgAAAAAAqEd1Hn47TqAWLzExMe5rkpICFX6uW8XuZQCARs0Yr4zxhRxzla6SsvB7ZYFProwKnMDGlFm+ZPlMsgLV30lamu3K51pl18WW7zcyJnCdJBU4qcr3E34DAAAAANBU1Hn43bNnT0nSkiVL4r6mfGyPHj1qZU0AgIbBtbfI8a0JOWYrTc9u8EqSMj22XFfa4QmE3wW2pQxvK7lKkKtk5fgdPbW2QJK0pjB245MPM0q0LK9VoH+4laatnhTl2PH/YBYAAAAAADRsdR5+n3baaTLG6PHHH9eOHTuqHL9jxw49/vjjsixLw4YNq4MVAgDqS6DqO7RfSaHbVkV2oI7b5xp5XFcZnkC19k5PgnwmQbZJkt+kqNC/59ocf+zwu9DvarfPklGCJEuOsfRLQZ1/WgQAAAAAALWkzr/Lv+mmm5SQkKDdu3frxBNP1IwZM4KtUCpyXVczZszQwIEDlZmZqYSEBN144411vVwAQB0xxi/j5Kly+P1dQXsVlgXZRlK2z1VJ2aeNL7JslTgJ8ptkFbnp8jh7rv0q2xP78SR9leOUhd+S15EmbSquoWcDAAAAAADqW1JdP2D//v318MMP67777tOOHTt0wQUXqF27djr22GPVpUsXWZalzMxMfffdd8rLy5MxgSDj4YcfVv/+/et6uQCAumL8kvwyblHI4Ty/pXw7tIN3ecS9qsCvXd409W6RrAI7RV5TxS6XlRQ7RkaWjFK125egAj97SwAAAAAA0FTUefgtSffee6/atm2ru+66SyUlJcrNzdXnn38eMqY89E5PT9eTTz6p66+/vj6WCgCoI8b4JWPLNTkhx3N8lpxKmbZbdn+X11Gu31KJk6zdvmQ5buhmmVUptl0ZJchRmnJ8gTAcAAAAAAA0DfUSfkvSH/7wB02YMEGTJ0/WvHnztHLlSuXkBAKPDh06qH///ho+fLgmTpyoTp061dcyAQB1xXgCVd+WFXL458LwauzyIyWOq62l0pfZLXRgevWrtn/K98nIkpSgjSVUfQMAAAAA0JTUW/gtSZ06ddKdd96pO++8sz6XAQBoAIzxyci3p6y7zObi8H0hAiMS5Bhpt9dVvl/av0X1H7PQdmWMJddKVJ6Pqm8AAAAAAJqSOt/wEgCAyBzJeCXtaV1iW91UaIeH0vf8VChjpUuSlmZ7tTjbpzVFCdqb+NrIkt+kya1mv3AAAAAAANCw1WvlNwAAQcYOO+QoVV43PJT2GyMpWZKU73dVaLvyumkq3Yue3baSVOKkKby+HAAAAAAANGZUfgMAGgSj8PDbY1rIHyXQdsvC7yLbldc1KvQb5fmrH2Hn+Fvqje1tVGjT8xsAAABAbF9++aUsywp+LFmyZK/neuihh4LztG3bVh6PZ5/WdtpppwXnO/PMM/dpruLiYrVu3To432OPPbZP89Xk6ybx2u2Lmn7tGrpaq/w+8MADJUmWZWnDhg1hx/dG5bkAAE2ICQ+uS5w05UYJtB2lSpI8ZZXhuX6jCB1SqmSbBK0scOTZi6pxAAAAoCG7YPau+l5CrXlrVJd6edxXX3015P6UKVM0aNCgvZprypQpwdsFBQWaOXOmLrzwwr2a69dff9WXX34ZvP/ZZ59px44d6tGjx17N984776ioqCh4f+rUqfrTn/60V3NJNfu6lV9fjteuemrytWsMaq3ye/PmzcGPaMf35gMA0FSFh9zFTrKyfJHD72y7Y+h9n5EdoUVKVVwjrSr0E34DAAAAiKm0tFQzZsyQJLVq1UqS9Pbbb8vr9VZ7rkWLFmnjxo0hc1UMJatr6tSpMsYoNTVVSUlJcl1Xr7322l7PV76W8rWtXr1ay5Yt26u5avJ1k3jtGtJr1xjUWuX3ZZddVq3jAIDmy7F3ROz57cqKes3G0paSSoL3l+V4tDeNS3L9yfI4fll7tV0mAAAAgObivffeU2FhoSTpX//6l6644grl5ubqww8/1Lhx46o1V3ng2LVrV916662699579cknnygzM1Ndu3at9tqmTp0qSRo9erRKS0v10UcfaerUqbrrrruqPde2bds0f/58SdKDDz6oRx99VLm5uZoyZYpOOOGEas9Xk6+bxGvXkF67xqDWKr8nT54c/Ih2fG8+AABNj3HzZSJUfseKo7eXJobcj1YhXpWd3kT5XDfixpoAAAAAUK48ODzyyCM1ceJEHXLIISHH4+XxeDR9+nRJ0gUXXKBLLrlECQkJchxHr7/+erXX9dVXX2nt2rWSpN/97nf6/e9/L0lauXKlvvvuu2rP99prr8l1XSUlJenSSy/V+PHjJUlvvvmm/H5/teerqddN4rVrSK9dY8GGlwCA+mdcyYT/2paJkUdP3RpeKb43Cm1LOz2Odnr2LjwHAAAA0PRlZGRo3rx5khQMSMv/nDNnjnbv3h33XB988IHy8vKCc/Ts2VOnnXaapL0LNcuvad++vUaNGqVzzz1XrVu33uv5yiuhzzzzTHXu3FmXXHKJJCk7O1uzZ8+u1lw1+bpJvHYN6bVrLOo8/N6yZYu2bNkix4k/ZHAcJ3gdAKBpMm5+2LFYbU9WFfhq5HF3egMV5tR9AwAAAIjm9ddfl+M4SkhI0MUXXywpUClsWZb8fr+mTZsW91zlQeMhhxyiAQMGSNoTaq5YsUI//fRT3HP5fD699dZbkqTx48crJSVFLVq00HnnnSdJmjZtmmw7/sKh5cuX65dffglZ0+DBg9WnT5+QtcerJl+3io/Pa1e/r11jUufh9wEHHKADDzxQa9asifuazZs3B68DADRFrowpDTsaK5De2zYnlT22uqBG5gEAAADQdJVX9J566qnq2bOnJKlPnz4aNGiQpPiDzV27dmnu3LmSAkFmufPPP18tWrSQJL366qtxr2vWrFnKycmRtCfIrHh7165dmjNnTtzzlT+P1q1b65xzzpEkWZYVDF9nz54dfLx41NTrJvHaSQ3ntWtM6qXtiYn1e+y1cB0AoGEzxhtofVKJ102MMBoAAAAA6s4PP/ygH3/8UVJoSFrx/rfffhus+o3ljTfeCFYTV5yrdevWOvvss4Nj4u2YUB6AHnDAATr55JODx4cNG6YePXqEjKmK3+/Xm2++KUkaO3as0tPTg+fK1+rz+YJjqlKTr5vEa1d5vvp87RqTRtHzuzz0TkhoFMsFAFSXKY644WWhzb/7AAAAAOpXeQDaokULnX/++SHnJkyYoJSUlJBx8cw1aNCgYDuMcuX9oTMyMvTpp59WOVd2drY++ugjSdLFF18sy9rTNrJiq4wPP/ww2Os5lo8//jjYR7py4HrooYfq+OOPD3kOVanJ163iOF67+n3tGptGkSpkZGRIUrDhPACgaTHGyDhZ9b2M5suK3lsdAAAAaM5s29Ybb7whSRozZozatGkTcr5Dhw4aOXKkpECPZtcN/43WcitXrtT3338vKTwglaQRI0aoc+fOkva0vIhl2rRp8vv9UecrP+bxeDR9+vQq5ysPSLt3767TTz896nxff/211q1bF3OumnzdJF67iur7tWts6i38tuL4Rtvv92v16tV69NFHJQUasgMAmiIj195e34totgzbfQIAAAARzZ07V5mZmZIiB4cVj2/btk3z58+POld5T+Xk5GRNmDAh7HxSUpIuuOACSdLMmTNVWFgYc23l8x177LHq169f2PmjjjpK/fv3l1R1hXBubq4+/PBDSdJFF10UsfvCRRddpMTExLjmq8nXTeK1q6w+X7vGptbD78TExJAPKVDh179//7BzlT/S0tJ0+OGH69NPP5VlWRo3blxtLxcAUMeMcWTcHBk3/BPscxsJZQEAAADUn/KgsmPHjvrtb38bcczo0aPVrl27kPGVOY4TrOY966yz1LFjx4jjyltQlJSUaMaMGVHXtWrVKi1fvlxS9IC04nyLFy/Wpk2boo5788035fP5Ys7XpUsXnXnmmZKk1157LebefDX1ukm8dpHU12vXGNV6+G2MCfmIdryqj/Hjx+vWW2+t7eUCAOqa8QU+IlQff5/nq/v1AAAAAICk/Px8ffDBB5ICPaJTUlJkWVbYR1paWrAv9Lvvvqvi4uKwuebNm6cdO3ZIkj744IOI81iWpRNPPDF4TaxQs+K52267Lep8d999t6RADhfvfMcee2zU+T7++GNJ0ubNm7VgwYJaf9147RrWa9cYJdX2AzzwwAMh9x966CFZlqXrrrtOXbp0iXpd+V9k9+7dNWjQIB100EG1vVQAQD0w8ssoco+yXV67jlcDAAAAAAFvv/22PB5Pta4pKirSu+++G6ykLbc3geKXX36pLVu2aP/99w857rquXn/99WrPN3Xq1LCcTpLWrVunr776qtrzTZkyRUOHDg07XpOvW/njVBev3Z7Hqa5or11jVS/htyTdcMMNOuyww2r74QEADZgxRjJ+ybgyciqdbRR7MgMAAABooipuYvj0009XOf7OO+/Utm3bNGXKlJAgsrCwUDNnzpQknX766brqqqtizlNQUKBrr71WxhhNnTpV9913X8j5+fPna+vWrZKkm266SYMGDYo539dff61nnnlGGzZs0OLFizV48OCIz1OSnn/++WA7jWgmT56sTz75RDNmzNCzzz6rFi1aRJxvX183ideuKnX52jVWtR5+VzZ58mRJUq9ever6oQEADY5d1vLEL+PkVjpH+A0AAACgfmzatEmLFy+WJJ1//vm68MILq7zmq6++0j//+U99/vnn2r59u3r27ClJmjFjhkpKSiRJ119/vc4///wq53ruuee0YsWKiCFkeUCamJioP//5zzE7K0jS8OHD9eyzz8q2bU2ZMiUkwDXG6LXXXpMk9e/fX9ddd12Va0tLS9Mnn3yigoICzZw5UxdddFHwXE2+bhKvXVXq8rVrrOo8Wbjssst02WWXqU2bNnX90ACAhsY4MjIybomMm1/ppFUvSwIAAACAKVOmBPeuGzduXFzXlI9zXTcYipbPJUnp6ek666yzqjXXmjVr9PXXXwePFxcX691335UkDRkypMrwVpI6deoUbLHx9ttvy+v1Bs8tWLBAmzdvDnnMqvz2t79Vq1atJIW31ajJ163i/Lx2kdXVa9eY1UtZ3ZYtW7Rly5aQN0w0Ho8nOB4A0LQY45HkypgSSZX7e1P5XWdi7DQOAAAANEdTp06VJHXp0kVDhgyJ65pBgwape/fuIddv2bJFX375pSTprLPOUnp6elxzVazSrRiSvvvuuyoqKgobE+98eXl5wQ0VK88d73xpaWkaOXKkJOnTTz/Vzp07g+dq6nWTeO3iUVevXWNW58nCJ598oj59+uiII44Ilt7HUlJSosMPP1wHHnigvvjii9pfIACgDvklY2Sc3eGnLMJvAAAAAHVv8eLF2rBhgyRp7NixSkiI73uT/2fvvuPlLOv8/7/uaaef9ARCAqGDgIIUG4rdFRDEdUFld5UV11XXtquu/nSxl11cZRUbX1RQEUR6WZpIMRFCCDUQ0vtJcnqbdt/3dV2/P+45c86cM6fXJO/n4xEyc5frvmYyOUPe85nPFYvFuOCCCwB44YUXWL16Nb/97W9HXc0LcPzxxxfXyvvDH/6A7/tAbyDpeR7vec97Rjzee97znuLj6Bkjm81y0003AXDsscdy4oknjni8nsdijCkuIDmRzxug524Epuq525dNec/vP/7xjzjnePe7382cOXOGPX7u3Ln87d/+Lb/5zW/4wx/+wBvf+MbJn6SIiEwNZwCLs9mBu6b+LUpEREREZL/yh3OGb+sgA42lorfv8T/96U+L49x3330AVFRUcM4554x6rBdffJGWlhbuvvtuzjjjDP785z8D8JrXvIbFixePeKxFixbxute9jr/85S/ce++9NDU18ac//YnOzs7itUbj7LPPpqqqimw2y29+8xv+/d//fUKft1NPPbVYyaznbmiT/dz1hOv7Ks+5qf2u84knnsjatWv5zW9+w8UXXzyic66//nouvvhiXv7yl/PMM89M7gQPUDt37mTp0qUA7NixQwuSisiUCP2XcKaZXNdvscHGkn3Om8Wc+46YppkdWFrf/3XmVNZM9zREREREDgjj+ff3hg0bCMOQRCLB0UcfPVlTFBGZFpPxM27Kv1Pe0wj+mGOOGfE5Rx11FBCteioiIvsHazpwNuq3huvf7xsc8SmekYiIiIiIiIjsT6Y8/A7DKOCIx0ceavQcm8vlJmVOIiIy9UywHhvu6rk3YL8lNbUTEhEREREREZH9ypSH3/Pnzwdg8+bNIz6n59i5c+dOypxERGQauBDnunHOx5n2AbuNwm8RERERERERGYcpD79PPvlkIFoxdKRuuOEGgFGtnCoiIjOdwYYN4PI41zVgr8ObhjmJiIiIiIiIyP5iysPv888/H+cct9xyC3/84x+HPf7GG2/klltuwfM83v3ud0/+BEVEZEqYYAM2bMC5/IB9oXfwNMxIRERERERERPYnUx5+f/CDH2TZsmU45/jABz7A5z73OXbs2DHguB07dvBv//ZvXHzxxXiex9KlS7n00kuneroiIjJJnO3CuTTOtg3Yl3O1oMpvERERERERERmHxFRfMJVKccstt/CGN7yB7u5ufvjDH/LDH/6QQw89lIMPjir9du/ezfbt2wFwzlFbW8utt95KRUXFVE9XREQmjcUGm3Cpkwbs2ZGfw6EVLdMwJxERERERERHZX0x55TdEfb9XrlzJKaecgnMO5xzbtm1j5cqVrFy5km3bthW3n3rqqTzxxBOccsop0zFVERGZJM4Fhd/9AfvSJoEqv0VERERERERkPKa88rvH8ccfz+rVq3nggQe46667ePrpp2lubgZg/vz5vPKVr+Rd73oXb3nLW6ZriiIiMomc7Sj83t5nawywrGpPcly1wu/B1Ccr6Qxy0z0NERERERERkRlt2sLvHm9729t429veNt3TEBGRKeZsNvrd9O35HQcs9+0NefWc+cCBGfAmvBihs4PuP6xmHntyHTTluqdwViIiIiIiIiL7lmlpeyIiIoKLgu2eCnAAvARQwTPtOR5oSk7PvGaAVDw+5P65FfUsrZ43RbMRERERERER2TfNiPDbWktzczPbt2/HGDPd0xERkSnQ0+vbud7q5ZA5OK+K9sDyXMeB+35Qn6ykOjF4+F8dr+b4uhOncEYiIiIiIiIi+55pC7+NMfzyl7/k9a9/PdXV1SxatIgjjjiCdevWlRx311138YUvfIFvf/vb0zRTERGZHC76b2HhS4CQJIYqAHZmD9zwOxlLkPTKV397eCS8OAlXN8WzEhEREREREdm3TEvP78bGRt797nezcuVKnHNDHrts2TLOO+88PM/jnHPO4eSTT56aSYqIyNRwYfFmh5nNzlwNkKXVH7zn9f6uOp7ijQvfR7N7gnsaVpfs8zyYHV+M5yqmaXYiIiIiIiIi+4Ypr/w2xvCud72Lxx9/HM/zuPDCC7nyyisHPf7EE0/kVa96FQC33nrrVE1TREQmXc+Hn73ht3Ex2oOo4jkdHriV3wdXzcMPqkl5pa1PYp5HVTxJzEvi8KZpdiIiIiIiIiL7hikPv6+99lpWrVpFMpnk7rvv5oYbbuDjH//4kOecd955OOdYvnz5FM1SREQmX0+43fsNoJyNs7ojemtqOYArvw+pWIYjTiKWKtlem6jg0Jp54BKg8FtERERERERkSFMefl9//fV4nsdHP/pR3vGOd4zonFNOOQVgQD9wERHZ91jTDICz6QH7uk0CO0w7rANBrFDxXe3NKtnuATE8sFUo/BYREREREREZ2pSH38899xwQVXOP1MKFCwFoaWmZlDmJiMjUMX70QaZzA8PvzjCOdQp1PRe1folTX7rd84h5Hs6lyp0mIiIiIiIiIn1Mefjd3t4OwLx580Z8jjHRV+Pj8fhkTElERKaIc5Yg+xecK9/PuykfxxxAhd+vmLOUmDcw7PeoBMDampLts1PVxL1YoVOMPiQQERERERERGcqUh99z584FYMeOHSM+Z8OGDQAsWLBgUuYkIiJTxWDNbvouctlXs++RtQdO+n1Y9SHld7io7UkYVpdsrowlicfiOPp2ShcRERERERGRchJTfcETTjiBxsZGVq1aNeLWJ3/4wx/wPI/TTz99kmcnIiKTygWAxQRbYED1d4xHmw07s+Wrwvcny2rnsahyFlXxmvIH9ITfNoWHhytE3Z7ncWzNceSzdVTG2kr2iYiIiIjI5PJ9n5tvvpl77rmHJ554gqamJjo7O5k1axaHHXYYZ5xxBn/7t3/Lm9/8ZmKxoetNn3zySW6++WYeeughduzYQXNzMxUVFSxYsIBTTjmFt73tbVx00UXMnj172Hk1Nzdz/fXXc//99/PCCy/Q3NxMPp9nzpw5HHfccbzuda/j/e9/PyeeeOKwY1lrueuuu7j77rv561//yt69e2lra6Ouro5DDjmE008/nfPOO49zzjmHZDI57Hhr167lxhtv5MEHH2TLli00NzcTj8eZN28eL3/5y3nTm97EBz7wAQ466KBhx0qn09xwww3cd999PP300zQ1NZHJZJg9ezZHHnkkr3nNa7jwwgt59atfPexYAA899BC33347jz76KA0NDbS2tlJdXc1BBx3Eqaeeyjvf+U7e8573UF1dPexY27dv54YbbuCBBx5gw4YNNDU1Ya1l7ty5nHjiibz+9a/n4osv5vDDDx92rIl8ncHEvtb2RZ5zU7uy2JVXXsmnPvUpZs2axebNm5kzZw4AsVgMz/N4/vnnednLXlY8/qabbuLCCy/E8zx+//vfc9FFF03ldA8YO3fuZOnSpUBUlb9kyZJpnpGI7I+saSXTchkVde8j0/rV0p1eJe95+pWsbsvTEdjpmeAUOW3eMg6pOpiqWA237XqYnCmthP+HxR8nH9YC8ED7j2nzswCcMHsxp846nVz2WCqTHdyw+2p8O/4PC1rf/3XmVA4SxIuIiIjIhBrPv783bNhAGIYkEgmOPvroYY/3fv25Mc9zpnOXfH9Kr3fLLbfw7//+72zdunXYY4855hh+8IMfcM455wzYt23bNv71X/+Vu+66a9hxqqqq+OxnP8tXvvIVqqqqBuy31vKd73yH//7v/6arq2vY8d72trdxxRVXlORufT3yyCN88pOf5Pnnnx92rMWLF/Ptb3+bD33oQ2X3t7a28pnPfIbrrrsOa4f+910ikeDSSy/l29/+drFjRH+/+MUvuOyyy2hsbBx2bqeffjpXXHEFr33ta8vuf+655/jEJz7B8uXLhx1rzpw5fPnLX+azn/1s2aA5l8vxpS99iZ/97Gfk8/khx/I8j7/7u7/j+9//fvFnQH8T9TqDiX2tTZXR/owbiSkPv/P5PMceeyw7duzgla98Jddeey0ve9nLBoTfjY2N/O///i+XX345xhhOPPFEnnnmGbwyvVFl/BR+i8hUMGED2dZvk6o5j2z7f5fsc14d568+iUebs9M0u6nzjoNPZlHySAI6ebZjDS927C7Z/4GDPk1oKwBocLezvClaJPSUuYdxYu0ryeeOJpXo5tbGq0mH/rjno/BbREREZOoo/J4YUxl+f/Ob3+Syyy4r3n/b297Geeedx8te9jJmz55Na2sr69at48477+SBBx7AWssrXvEKnnnmmZJxnnzySc4991z27t0LwLJly3j/+9/Pa1/7WhYtWoTv++zcuZM//elP3HrrrbS0tADw9NNPc/LJJ5eMlc1mueiii7jzzjsBSKVSXHTRRbztbW9j2bJlVFdXs3fvXp588kluvfXW4lw+/elPc8UVVwx4jL/+9a/56Ec/ShAEALz61a/mPe95DyeffDLz5s2jo6ODTZs28X//93/cfffd+L7PrFmzimv79bV582be+c53sn79egAWLlzIBz7wAd7whjdw8MEH43keDQ0NPPzww9x8883s2rULgFtvvZV3v/vdJWNZa/nYxz7GVVddBUTFs+effz5nn302Rx11FPX19TQ1NfH8889z++23FwPt888/n9tuu23A3O655x4uvPBCuru7gahDxUUXXcTpp5/OggULSKfTbNu2jXvvvZc77rijeFxbW9uAyujm5mbe9a538fjjjwNQV1fHBz7wAd785jezZMkSkskke/bsYcWKFdxyyy3Fts4//OEP+cxnPjNgbhP1OoOJfa1NpckIv6e87UlFRQW33347b3zjG1m9ejUnnXQSxx57bHH/3//939Pd3c3mzZtxzuGcY968edx8880KvkVE9nUuB1hgYLWyI0m7v39XfAMsrZnD/ORiYlQSJ8/8illAb/gd8zyMTfa531td4AFe4b61KRZU1pHubpmqqYuIiIiIHHB+/etfFwPJhQsXcuONN3LWWWcNOO6tb30rn/jEJ1izZg2f/exnaWpqKtm/Z8+ekjDyK1/5Cv/5n/9JKpUaMNZFF13ED37wA/7nf/6H73znO2Xn9bGPfawYfL/qVa/ihhtuYNmyZQOOO/vss7nsssu46667ygauAA8++CCXXnop1lpqamq45ppreO973zvguDe96U1ceumlbN26lS9+8Yvce++9A47JZDK8613vKgbfH/7wh/nhD39IXV3dgGMvuOACLr/8cn7+85/z5S9/uezcvv71rxeD76OPPpqbbrqJl7/85QOOe8c73sHnPvc5VqxYwac+9amyY73wwgu8973vJZPJkEgkuOKKK/jYxz5WtqL7H/7hH2hqauLrX/86P/nJTwbst9Zy4YUXFoPvc889l1/+8pcsXLhwwLHvete7+M53vsN1113H5z5X/gOpiXqdwcS/1vZ1Ux5+A7ziFa9g1apVfPCDH+Sxxx7jpZdeKu579tln6VuMfsYZZ/D73/+eI444YjqmKiIiE8rhsDjbOWCPJcWuXDANc5pax9QtIeEW4vCIe/VUxUu/UlaTSOH6rEcdLwm/PTwXByC0CRZWzmKrwm8RERERkUmxa9cu/vVf/xWAmpoaHnnkEY477rghzznxxBO57777+P3vf1+y/aMf/WgxjPzmN7/JV77ylSHHqaur42tf+xpvectbmDVrVsm+W2+9lWuvvRaAl7/85Tz44IPU1Az9Tc5zzz2XM888k0cffbRkeyaT4e///u+x1hKLxbj77rvLhq59LVu2jBtuuIHf/OY3A/Z96Utf4sUXXwTg0ksv5f/9v/835FipVIpPfepTvOUtbyGXy5XsW716Nd/61reAqM3K8uXLy4bLfb3uda/jr3/9K7fffnvJduccF198MZlMBojC5r//+78fcqwFCxZw5ZVX8qY3vWlAf/P//d//5aGHHgKi4P3WW28lkRg8Zo3FYvzDP/wDb3rTm4ofDPSYyNcZTOxrbX8wLeE3wFFHHcWKFStYvnw5d9xxB08++SSNjY0YY5g3bx6nnHIK5513Hm9729sm5fqNjY088cQTPPHEE6xatYpVq1YVS/w/+MEPcs011ww7xjXXXMMll1wyouv9+te/HrQPUo9MJsOVV17JH//4RzZt2kQ+n2fp0qWcc845fOpTn+Kwww4b0bVERGYsZwBH6L9Qstl4C3HEad/Pe30nvBgJLw4uSWiqiMfjJZXdAHNTpf/TmohFb9VH1S1gYeU8TLigsCfG7OTA6gkREREREZkYP/zhD4th6Te+8Y1hA8kesVisJFhds2YNd9xxBwAnn3wyX/rSl0Y8h9e//vUDtvWt0P31r389bPDdY/bs2Zx33nkl2371q1+xZ88eAD7xiU8MG3z39Y//+I8l95uamoph98EHH1y2vcpgTjjhhAHbvvvd7xb7hf/4xz8eNvjuUVFRwYUXXliy7e677+bZZ58Fokrs4YLvvv72b/+25L7v+3z/+1HbncrKSn71q18NGXz3tWTJkgGtjibqdQYT/1rbH0xa+P3cc88BcNxxx5Utq+9x5plncuaZZ07WNAa1aNGiKb/mUDZu3MjZZ59d7P/TY926daxbt46rr76a6667jnPPPXeaZigiMn6OEJzDmr0l231qiRNipnQViqk3t6KauJfA2iSBqSQe84lRGn5XxksrCuKF/UuqF1Adr8HP9/6P7azEnMmftIiIiIjIAcg5V6yurqmp4SMf+ciYx/r1r39dvP3JT36SeDw+5rGef/55nnzySSAKK1/5yleOeay+c/M8j09/+tPjGuuGG24gm43WcLr00ktHHMqX097eXuzZvWzZsgG9wEer75/BYO1fRuq+++6joaEBgL/7u79j8eLFYx5rIl9nMLGvtf3FpIXfJ598MrFYjOeee65kFdlvfOMbAHz84x9n/vz5k3X5UTn00EM57rjjuP/++8c8xn333Tfki32oBSy6uro455xzisH3Rz7yEd73vvdRVVXFQw89xHe/+106Ozu56KKLWLFixbQ2nhcRGRfngBBcrN/mGNYb2GdtfzMnVcOc5ELy2WoA8kEtiVT0VvyKOUtpznfiUbq+RU+P74MrlmBdSN/PB6q88iuhi4iIiIjI+Lzwwgs0NzcDUchcrmf1SD3yyCPF2+ecc8645jWRY3V2dhYXSzz22GM58sgjxzXeRM5t+fLlGBOtFfU3f/M3Zftyj8Zf/vIXIAqYR1PdXs5EPs6JfJ1N9Nz2F5Pa9qRv7+4eX/va1/A8j/e+973TGn5fdtllnH766Zx++uksWrSIrVu3cvjhh495vGOOOabswgIjcfnllxf7/fz3f/83n//854v7XvOa1/DGN76Rs846i0wmw2c+8xkefvjhMc9TRGR6OZxN48VK+1xbPGD//0R6TqqOBNUEhWpuR4wKrxKApdUHkTN+SY9vgJSXLPw+G+vlyffZ51FJzPOwZd5vRURERERk7HpaZACceuqp4xqrpzvCIYccMu5OBBM5r+eff77YVmS8Y0Hv3GKx2LgLNyfyce7atau4MOTJJ5887mroiZzbRI4FE/ta219MWpldTyP4nq87zDRf//rXOffcc6f9hRAEAT/60Y8AOP744/n3f//3Ace89rWv5cMf/jAQfYKzatWqKZ2jiMjEsTiXx5qBizRat/9Xfh9UuRBcZcm2ithsACpj1RxStYDaZOkHA7Pj0YLPLpxLzJa2OcnmlgwIy0VEREREZPx61oUDRtxrupzOzk6CIBj3OBM9r4keq+94s2bNoqKiYkLGgpn7OCdivIkca6Jfa/uLSfsXc0+ovHr16sm6xH7hoYceoqOjA4gW2hzsaxx9F8u89dZbp2JqIiITzjkfXB6cX7I9JIGZvjWYp0xFrApnaku2xVz0P4UJL0k8Fqc2UV16ko2quwNTRRjUDxgzofBbRERERGTCdXV1FW+Pp3f1RI0zGeNN1twOlMc5EePN1LH2J5OWNLzhDW/g97//Pf/xH//Bpk2bOOaYY4rV4AC33357sUH/aPRfSXZft3z58uLtoXoOnXbaaVRXV5PJZFixYsVUTE1EZMI52wUEA7bnTKrQ+mT/liBFrl+A7RXD72pixKhPzqJvb5MwrCEVi2NsEkPpYpgAqVicrBn4nIqIiIiIyNj17b2cTqenfZzJGG8y5tbW1nZAPM6+49XXDyxSGutYEzkviUxa+P2lL32JW2+9lY6ODr7//e+X7HPO8ZWvfGXUY3qeN2PD70suuYR169bR3NxMfX09Rx11FG9961v52Mc+xiGHHDLoeS+++GLx9nHHHTfocYlEgqOOOornnnuOtWvXjnp+O3fuHHL/7t27Rz2miMjo2bJbu0wK4zzKBeP7i1QsTtwuGfAIHR5xL0bcVTA/tRicKznGuCSHVM9hMPFxLvwiIiIiIiIDzZs3r3h77969Yx6nvr6eZDJJEATjGmei5zXRY/WM19bWRkdHB/l8flytT2b64+w73njC74mc20S/1vYXk/Yv5hNOOIFHH32Ut771rSSTSZxzJQtg9twf7a+Z6uGHH2b37t0EQUBLSwsrV67k29/+NkcddRS/+MUvBj2vJ5Suqalh9uzZQ15j6dKlADQ1NZHP54c8tty5Q/0644wzRjWeiMhYOJcpu73bJMjb/XvBy7pkJTl/YIjt4TG/ogaPFEm7gASzS/Zbl+CwmsHXp0h6+/fzJiIiIiIyHV7xilcUbz/11FPjGuvlL385AA0NDeMOJSdyXieddFKx/e54x4LeuVlreeaZZyZkLBj/3A455BDmz58PRAtMGmNmzNwmciyY2Nfa/mJSy8VOPfVU7r//frq7u2loaGDz5s1AVMF9//33s2XLllH96jl/JjniiCP43Oc+x80338wTTzzBE088wQ033MDf/d3f4XkeuVyOf/mXf+Gqq64qe35PP57a2tqy+/vq26+nu7t7Yh6AiMgUMcFmsOUWQY7jgGc6U1M9pSlVESv/ZStrk5ww+zCsqcHYKvL5gwYcc3DFoYOOe+LsZRM1RRERERERKTjhhBOKgelf/vIXOjs7xzxW3za3d99997jmNZFj1dfXc/LJJwOwbt06Nm7cOK7xJnJuZ555JvF4VOhzzz33YG35bxGP1Bve8AYgagfyyCOPjGusiXycE/k6m+i57S+m5LvSiUSCgw46iGXLlhW3LV68mMMOO2zUv2aSCy64gI0bN3L55Zfznve8h9NPP53TTz+diy66iBtvvJE77rij2Of8s5/9LHv27BkwRi6XAyCVGj706ft1kWy2XIA0uB07dgz564knnhjVeCIio+VcDkeZT9i9CozzeKlr5n67ZyIkYuUrtANTzZzkXEJTjbEprBsYkieoLnNmpCpeOWFzFBERERGRiOd5fPCDHwSiwPTqq68e81gf+tCHird//OMfjyvIPemkkzjttNOAKCwdb7XwJZdcAkQdGn70ox+Na6z3ve99VFVVAXD11VePq+/07Nmzefe73w3Atm3buO2228Y1t57HCXDFFVeMa6x3vOMdLF68GIA//vGP7Nq1a8xjTeTrDCb2tba/mPJGoV/96le57LLLWLhw4VRfesLNmjULzxt8gbZzzz2Xyy67DIBMJsMvf/nLAcdUVkahhe/7w16vb6uTnh8mI7VkyZIhfx188MGjGk9EZLScacXZjoHbifp9P9W+//b7BqhLlA+pjU2R8qoJbQpry78tZzOHDzpubOrfykVEREREDgif/exnqa6OClEuu+wyXnrppRGdZ63luuuuK94/6aSTOO+88wB45pln+M53vjPiOSxfvpwtW7aUbPv//r//r3j7kksuGXHI3N7ezp133lmy7Z/+6Z846KDo26c/+clPRlUV/dvf/rbk/oIFC/jIRz4CRGvLfeYznxnxWC+++CKrV68u2falL32p2Jblk5/8JI2NjSMaK5/Pc+ONN5ZsO+ecc4otRu68805+97vfjXhut9xyS8lznEql+NznPgdERa0f/vCHR9xKZdeuXfz5z38u2TZRrzOY+Nfa/mBawu+vfvWrxZL+/d0///M/FwPycj9AelZiHUkbk75/0UbSJkVEZCZxzgcXDtxOnHQYY2P38B8C7qtmp6qoTQ7+oWXSi9paWTvIOtRDfNCaio2u8rsqnhzV8SIiIiIiB6pDDjmEK6+8EogymbPOOmvYcPjFF1/kb/7mb7j88stLtv/iF79g0aJoLZ///M//5LLLLhuyEDKdTvP1r3+dN7/5zXR0lBYRXXDBBfzjP/4jAM899xxvectb2LZt25Dzuueeezj99NN58MEHS7ZXV1fzu9/9jlgshrWWc845h5tvvnnIsbZv38773/9+PvnJTw7Y953vfIfjjz8eiKq/P/KRjwyZeQVBwJVXXsmrXvUqduzYUbLv1FNP5Stf+QoQ9bA+88wzef7554ec22OPPcbrXvc6fv/735ds9zyP6667rhgyX3LJJfz0pz8dsjK6ubmZT33qU7z3ve8lCEqLtT796U/zpje9CYD77ruPCy64gKampkHHcs7x+9//nlNPPZXnnnuuZN9Evs5gYl9r+4NB/pUtE2XhwoXMmzeP5ubmsl+DWLJkCStXriSdTtPe3j7kopc9PwQWLFgwrhVzRUSmh8G5gYv1OuK0BzFa/H3/61gxz8OWWZz5iNqF1CVqYLCHaAoLYQ4Rcg+mIlY76HX7S3gxDquZx0udA9twiYiIiIjIQJdccgk7d+7ksssuo7GxkTe+8Y28/e1v5/zzz+f4449n9uzZtLa2sn79eu6++27uvfdejDElCxkCHHTQQdx1112ce+657N27l29+85v89re/5QMf+ACve93rWLhwIb7vFyuDb7755iHD1J/97Ge0tbVx5513snLlSo499lguvPBC3vGOd7Bs2TKqqqrYu3cvTz31FLfeeuuAquq+3vKWt3D11Vfz0Y9+lHQ6zXvf+15e/epX8973vpeTTz6ZuXPn0tHRwebNm7n33nu54447yOfzzJo1a8BYNTU13HXXXbzzne9k/fr1XH311dxxxx1cfPHFnHXWWRx88ME459i9ezePPvooN998M9u3bx90bl/96lfZs2cPV111FRs2bODkk0/m3e9+N+eccw5HHXUUdXV1NDU1sWbNGu64445iaLxkyZIBY51wwgncdNNNXHjhhXR3d/OJT3yCn/3sZ1x00UWcfvrpLFiwgHQ6zfbt27n//vu57bbbBu3BHYvFuPHGGzn33HNZuXIld955J0ceeSQXX3wxb37zm1myZAnJZJI9e/bw+OOPc/PNNw9Z0T1RrzOY+Nfavs5zbgT/Wp4kLS0tPPbYY2zevJmurq4RfUWgp43IRNu6dSuHHx59rfyDH/wg11xzzYSNvXDhQpqamnjZy17GCy+8ULLvsssu45vf/CYQfTr16le/uuwYYRgye/Zs0uk0b3jDG8bdnL+/nTt3snTpUiAK2cv9kBARGQ8/8wBhbhVBtrTSIPQO4sfbj+Xra8e3sMdMkPBiJGNxsqa0KuC1C46mPlFHvXlr2fOS8SyBGV07q+K5lS/wx5334tvh30MrYglOnnsoK5tLF5Buff/XmVNZM8hZIiIiIjKRxvPv7w0bNhCGIYlEgqOPPnrY471ff27M85zp3CXfn9Lr3XLLLfz7v/87W7duHfbYE044gR/84Ae8/e1vH7Bv27ZtfOITnxjRYoQ1NTV8/vOf54tf/GLZIkhrLd/+9re5/PLL6erqGna8c845hx/84Accc8wxZfc/8sgj/Ou//itr1qwZdqxDDz2U733ve7z//e8vu7+1tZXPfOYzXHfddcP2nU4mk3zsYx/jG9/4RtlAHeDnP/85l1122YhC2te+9rVcccUVnH766WX3P/fcc3z84x9nxYoVw441b948vvrVr/KJT3yi2IKlr1wuxxe/+EV+9rOfDdvS2PM8Lr74Yv7rv/6r2DO8v4l6ncHEvtamymh/xo3EtITfjY2NfPazn+Wmm24iDAd+BX4oI+2hM1qTFX43NTWxaNEinHO89a1v5YEHHijZf//99/OOd7wDgO9973v8x3/8R9lxHn/8cV7zmtcAUc+j0fTsGQmF3yIy2fzMAwTZFYS5v5RsD72D+cK6o/jV1uHbP810qVicZbXz2NjVVFKJ/cZFL6M6Xk1t+Oay58W8sOxClyO6ZtWL3LzzvgGBezk1iRSvnn8MD+4p/Z9Zhd8iIiIiU2cqw2+ZWL7vc9NNN3HPPfewatUqGhsb6erqor6+nmXLlhWrpd/4xjcOuUYcwKpVq7j55pt56KGH2LFjBy0tLaRSKRYuXMgrX/lK3v72t3PRRRdRX18/7Lyam5u5/vrruf/++1mzZg3Nzc34vs+cOXM47rjjOPPMM7n44ouL7UiGYq3lrrvu4q677uKvf/0re/fupb29ndraWpYsWcIZZ5zB+eefz9lnn00iMfy/YdauXcsf/vAHHnzwQbZs2UJzczPxeJz58+fzile8gje/+c184AMfGNHagN3d3dxwww3cd999PP300zQ1NZHNZpk9ezZHHnkkr33ta3nf+943aOjd35///Gduv/12Hn30URoaGmhtbaW6upqDDz6Y0047jXPOOYcLLriguF7fULZv387111/Pn/70J9avX09TUxPOOebOncuJJ57IWWedxcUXX8xhhx027FgT+TqDiX2tTbb9Ivxua2vjVa96FZs2bWIsl56sVUonK/z+9re/XexP9M1vfrN4u4fv+yxcuJCOjg6OP/54XnjhhbIv3H/5l3/hF7/4BQBPPPHEiP8ij5TCbxGZbH7mAXIdV+Fsa5+tKdo5kv94cT5/2Lnvh9+nzD2M+RWzeaF9K3Evxo5MGwAXH/pOAvKQO23Cr1mZauPWvb+hKxjYUqa/1y44mjnJWdzd8CTzKmpIxmLsyXYp/BYRERGZQgq/RUTKm4yfcVO+4OX3vvc9Nm7ciHOOt7/97dx77700NTVhjMFaO+yvmWLr1q08/fTTQx5z11138Y1vfAOAqqoqLrnkkgHHpFIpPvWpTwHRp2Hf//7Ar+089thj/PKXvwTgrLPOmvDgW0RkajicbS/d4lUR2AQZM20duCZUbaKK2Yk51CYrqE1G1QFxL0bCqyM+SctshKaKuDeyt/OaeBXJWAqAeRW1VMVTkzInERERERERkZlgyhe8vP322/E8j3POOYc77rhjqi9ftHz5cjZu3Fi839zcXLy9cePGAZXfH/rQh0rub926lTe96U285jWv4V3veheveMUril/R2Lx5MzfddBM33XRTsbr9+9//PoccckjZuXz+85/nD3/4A+vXr+cLX/gCGzdu5H3vex9VVVU89NBDfOc73yEMQ6qqqrjiiivG/+BFRKaBszn6r/joCm9Debvvhd9nLjiW5U3rSrYdXnU8LlzIa2YdxjPdfwZgcfUsPBcn4VUzGY27nIsTG8FX3eZWVLMwtQSv8Ll3baKSziAzCTMSERERERERmRmmPPzuWcH1E5/4xFRfusTVV1/NtddeW3bfihUrBjS97x9+93jsscd47LHHBr1OdXU1P/zhD/nnf/7nQY+pq6vj7rvv5uyzz2bDhg1cddVVXHXVVSXH1NfXc91113HyyScPOo6IyIzmcqV3vRoCarDEaMlPznoOk6k+WTdgm+dqCW0lsVhAfbIagKp4Cmvr8OK5AcdPhNDEqUlU0JofOsheXDWHBPU4fOZV1LCgYi6V8RSbupqHPE9ERERERERkXzXl4XdtbS35fJ5FixZN9aUn1Kmnnsrvfvc7HnvsMZ588kl2795Nc3MzYRgyZ84cTjjhBN7ylrdw6aWXjqhp/1FHHcXTTz/NT37yE/74xz+yceNGfN9n6dKlnH322Xz6058eUVN8EZGZqzTg7nCH0RpUE/Mcq9uH71c909Qn5pTeT1aSzR0MQCKeZnHlEpKxjdQmKsn5s6msbJuUeXhejMOqF7IjPfT4S6sPws8fRKqikZNmH8ZBiZNYmGzjqfiWSZmXiIiIiIiIyHSb8vD7pJNO4uGHH2bbtm3TWsV8zTXXjGtRy7q6Oi6++GIuvvjiCZtTTU0NX/jCF/jCF74wYWOKiMwU/RubGBfDOA9vwJ59Q9KrLrn/+gUnQRjdNqaKing9qVicykJf7dgkvuVWJYZffbw+PgsTJHFhPUkvAa4C58WIMXzLFBEREREREZF90ZQvePnRj34U5xy//e1vp/rSIiIynVxQcte4GBYPt4+GrzFXX7LQ5PzEMcXbgakClyQVS/Qe4yombS5Vsaphj0l6NeB55MJ6quLVhLaCmBcjHpvy/xUQERERERERmRJT/i/eCy+8kIsvvphbb72V733ve1N9eRERmSbOpUvub8rU0ewnsW7fCr/PPeQMzlxwLIE/jyNq53PcrIMACIN5JceZYBGzU1XECuF3zp8zYKyJUhErrfxeUj2bili/SvM+i2LOji8lCCvBzOMVs5ftox8/iIiIiIiIiAxtytuePProo3z4wx9my5YtfPnLX+aWW27hAx/4AMcddxzV1dXDnv+GN7xhCmYpIiITzdmukvvNQZyOwGNOMpymGY3NrPgCUhUVhH6KWamaYtuQwKRKjgtMFalYgoSXAAfWJSdtTgmv9Nq1iUq64jnytve59Vy8z+1aIIYxlcxJzWYaPgsXERERERERmXRTHn6/8Y1vxOtTfbZ69WpWr149onM9zyMM962QREREIs6WVn6HFp5scxxenQD86ZnUGHh41MWWkQWOqF7G9uyOaIfz6F9CHfdiJL3JC717r9Nb+V0ZT1CbrCSRj5ccE6NP2xUXvf074lTEKol5pceKiIiIiIiI7A+mpdTLOTfmXyIism9ytrPkft56bM+G7MhO+eew4+N5mLAegIRXQcKLk4zFS9qK9KhP1lCdqJn0KSVcDZXxBB4eB1fNIhlLUJ+sxBukoYntCb9tjMpY3aDHiYiIiIiIiOzLpjxxeOihh6b6kiIiMgM401Jyf3cO/tyY5dVzZ374nYrF8a2J7jjwwyjQ9khQl6xlfkX5gPuI6qNJUE1ukucXhnOZm6qhOd/NsXWHkTEZjqhdzM5MO0Fh3n0D7nxQV3goHnFXheep7YmIiIiIiIjsf6Y8cTjrrLOm+pIiIjKNnM3ixapwlLatag+ib/M0ZKdjVqMzK1VFU66bVCyOR2+LkLiXpDpezbyKurLnJanHI1V230QyJkXcixHzPOalDiYe7C3ZHwXfA6u7rY2DnY1D36wSERERERGR/Y9KvUREZFI524FzBpwp2d7mR4HrjuzMX8thXqoWgLpkJZ7X+7lxjBRJr5KFlXMGOTNFWGiRMpmMS5KIxfDwSJiFVMVrScZ6e3xXJRI4V+bzbs8j6w82dxEREREREZF9m8JvERGZVA4DGHD5ku2dYRR+787ZaZjVyFQnosUqZxfC7+p4KlrYssAE84iRYGHq4LLnB8FcgrBq8icK1CWrOHH2EhwJEl6CendCcd+ymvkEgUJuERERERERObBMatuTb3zjGxM+5mWXXTbhY4qIyCRyAc604FxXyWZb6LTRGZgyJ80MFbEEYcyysGI+sJHqRKqkeUg+rCaZ9EhRV7avd2gqymydHPWJGuqSteA8ElSSC2YX57qwcg6hnbq5iIiIiIiIiMwEkxp+f+1rX8PzBvYYHQ+F3yIi+xgXYkzzwM2F37vDmVf5PSdVRZufZXHVHGanapmVWAhAfbIaXN/+3jFiLkmM6umZaB9HVL2cdrOd0FSTKFSsnzHvKF7s3MHBFUsxk73qpoiIiIiIiMgMM+kLXjo3cYtoTXSQLiIik8/hgxuYvPYsstg1ReF3dSJJaC2+Hb7SvD4Zhd+zUjXUJmqIU4WHR0UshbOlC1jGqASXnKxpj5jnavDwCG2KpKsEoCKeIuHFSHo1zNz6ehEREREREZHJManh90MPPTSZw4uIyD7AmWacG7ioZVDIvM3EfUY6QCoWL4bdL599GK1+F+s791IZT5Azgy+0WZeM+nTXJWpJxZI4W0VFPE5NoppcULqAZTZ3GJWp9kl7DCNlTC2xWDy6Hc4FoCpeSUU8CWbBdE5NREREREREZFpMavh91llnTebwIiKyDzDhDmLxRYV7HhnvCKrdJvbkJ78WORGLkYjFyIQBAEkvCocXVtazPd066Hn1yaiNSX1iFhaDc9F5c5MLMGWmHU7RopZD8cNKKitrMYBz0XrWc+NLSXpbCMPK6Z2ciIiIiIiIyDSITfcERERk/2bDBihWfse5ec8SAHakg0m/dsKLc3TdQQDEPI9ELE7CizE3VTPkeRWxqLVJpVdHdWwOPW+XKeaXPX5mLCYZI8U8AIyNPtvO5w6nJlExQ+YnIiIiIiIiMrUUfouIyORyBkch6PaSbEjDVL39HD9rMYdVLwaiIHx+xSwSsRieN/T1F6SiBS49khAuJgxrOGHWIXgz/W3TRRXottCD3BHn5bNOnsYJiYiIiIjsW7Zu3Yrnefo1zb+WLVs27XOYCb+uueaa6f4rsc+b9AUvRUTkQBeAi8JvQx3p0DFVbz9zU3Oojkc9upOxBFXxKmKex3DLJ1fG5hD3opA8F9QCMeZXzMWaoSvGp1tPu5O+EuYgJr/GXkRERERmoo5db5nuKUyaWYc8ON1TEJF9gMJvERGZNM5mcC7A2XYADBWEzpH3DiZvJ3Gly4KklyRpjgIeoCpeTcJL4OGRLCwMORjPVvPKuYdhwwX0VKlXx6vxg+pJn/N45P36AdscQz9WERERERHpdcghh/D8888Puv+kk04C4LTTTuPXv/71gP3OOTyvfLnNV77yFW6//XYA7rvvPhYvXjzgmPb2dgBmz549YN+qVav4p3/6JwA+9rGP8fGPf7zsdYaawzve8Q4aGhpYvHgx9913X9ljWlpamDt3btkxfvrTn/Kzn/0MgF/96lecfvrpA44xxtDR0cHcuXMH7GtoaOAd73gHAOeffz7f+ta3ys4hlUrh+37ZfZdccglPPvkkwKB/Vq2trcyaNYt4fOC/h26//Xa+8pWvAPCtb32L888/f8AxzjlaW1uZN29e2fGHex30jDGe1wLAkiVLym6XkVP4LSIik8bZdnA5nO0ubPEIHXSaetJm8sPvilglJkxRFU9SFavG4Yh7MarjwyxQ6XksqlyAsanipmSsAoatGZ9e5YJua5PTMBMRERERkX1TMpnkxBNPHPa4mpqaER3XV99A+5hjjmHZsmWjOr+5ubl4e+HChaO+PkSPr+f3sZy/cOHC4u3DDz981GPU1tYWb8+ePXtMc6ip6f1G7ljO7wnOIfqwYyxj9J3LWM4f72tBRm6GNy8VEZF9mbPdmLABa1oBMMTJG0emT6g8mao5FGs9XrvgOLz8GVTE6piTqiYVG/r6nvOYFz+2pI1InGTZtiIznR/O7FYtIiIiIiIiIpNl3/tXvIiI7DOcS4PzcTYKvx0xLB7twdSE385W4lycOcno63YeHgsrZ1GXGNgepOQ8z8OFNRjbW0mdIIXT26aIiIiIiIjIPkP/ihcRkUnjbBow2GB7YQNY53iyY2rCb2tTOOJUu6OK15+Tqqc6tmDoE50jF9bT923So2LyJioiIiIiIiIiE049v0VEZBJZnAvBZQBweDhgY/fk9/uek6omMJXRLEzU4ztBPR7esJ27rakdsM2ZYQJzEREREREREZlRVPktIiKTyIHzAVu452EdNObtpF95Tqq62Kak53dravHwcMNk7/lgYJ/sfFA34XMUERERERERkcmj8FtERCaNsznAB8D3lpK2VezOGfJ2ciu/Xz3/KCrjyd55FGq9ja1gvvdaYlQNem5NIgXecLXhIiIiIiIiIjLTKfwWEZFJY01j8XZIitDF6Qotk134XZesIRHrXawSF4XZoUnihzVDLlx5cNWsyZ2ciIiIiIiIiEwJhd8iIjIpnHOYYFPxfrepIW/jZI3j2XZ/0q6b8GLEiZPwesPv0EYLbDqibd4QfU9eU/+3kzY3EREREREREZk6Cr9FRPYTbrhG1lPOFvp9R0IXpy1I0REYOgIzaVetS1ZQGa+kLlk9+MxsJXFvsLdAtTwRERERERER2R8o/BYR2V+49HTPoB+Hc5niPYvH3nycjsBOas/v2alqamJzWJg6aNBjcsFs6pIVZfc5Fy+7XURERERERET2LQq/RUT2E9Y097vfOq7xxl1J7gKgt8LbOUibya2qnpWsJBVLkGQOKa9yyGP7LojZl7N6axQRERERERHZH+hf+CIi+wHnQly/sNuGu8YxngPG15fbuTy40pUt2/zJDb9rkxXEvBjWVuN55cPtHoOG33prFBEREREREdkv6F/4IiL7ARvuwLnukm0m3DqO8bYPCK5Hy9lWoHcM38X4zfb8uMYsx+vTo7siliQZixOGVcRIDHleTaJ82xPr9NYoIiIiIiIisj/Qv/BFRPYDznbhbHe/bZ1jHs+aPfQNrsc0J9OG6zNG1iRY2zXx4Xci1vtWNitVQ1U8hbEJPDd05XfCK9/b21r1/BYRERERERHZHyj8FhHZDziXx0/fVbxvTRvY7NjHM23A+Hp+W9NUMofAeZgxDpnwBn+76rtvcdVCjq0+DUccb5i3uGRsYMhdl6wAb3Jbs4iIiIiIiIjI1FD4LSKyP3B5XJ/FJcHgXG7Mw1lbWrU9tjFacC49rjF6zEpVUZ8sv4BldSJVvF0Xn4Xnqgv3hm57MjtZP2DbwsqB20RERERERERk3zR0MiAiIvsE53xwfcNvN67g2Zk2cOOs/A4242x78b5vx15RfVTdIkJnWd2yFYCqeJKsCYh5HvMqaugMctQkUqTsMrL+3Oj6tnxY3mNB6mBSsRfwbe/zVpcY+hwRERERkX3JrEMenO4piIhMK4XfIiL7AxfgbBvOZvBi1dhwN86OI/zuE1qPeYx+ledd4dh7aVfHq4q351XUUBlPsCvTUWh5EgXgCS+G69Pn25ihg+y4l2ROqppWP0NgDYurZlE1yCKY+7u+i4aKiIiIiMjg3DiKhK655hquueaaMZ//xje+cVzXB9i6deu4zv/a177G1772tTGfv2zZsnE/hocffnhc53/oQx/iQx/60LjGGO9jGO9rQUZObU9ERPYLFmfbsaYRgNBfM77w203AwpQllejQmB/7W04ilqAyHoXZ8ypqqS6E1HEvRgyPWckqqhMVONcbsAemquxYPeKuhtmpaioKvb8Prp7DrETdmOe4Lxvf/7aJiIiIiIiIzEwKv0VEZjhnu4c9Jsw/A0CQ/TMm2EKYW4kNt47jogHjiURNuAv69Qxv9sc+nZSXpDIWhd81iUqq4lGf7zMXvowl1QupTlQwN1WHc6OoYHa1HFpzEPHCgpn1iRpqDtDwW0RERERERGR/pLYnIiIznDWNxGO1wxzTFP0e7iTIPY41zeOq/IYAMMMeNRgX7sH1C8/35McepidjKeJeksp4gtnJWnwbADAvuZCs6SafyJOKpUaV1zsbZ3ZiDrFC+F0Tr6bSqyUY8yxFREREREREZCZR5beIyAxnTcsIjoqC6iD7KMZ/EVye/pXXI2WCTVEluRt7+G1tO7jS6z/bHo55vBhxYngsqqxnaeJM5qRmAVDpDiYRS1KbqGF+csGoxgxNNdXuKGalqqhJpKhNzMYFR495jiIiIiIiIiIysyj8FhGZ4ZxpHsFBPT1FHM5lcc5nrG1LnM0RBefjqPy27QOub8bRRsXzPJJeJbNS1Riboi4+NxrT1FLp1QAecS8Fo1i40boYxlZSEUuQisWJk8K5A/NtcbyLtYiIiIiIiIjMRGp7IiIywzk3dPsSZ9OYYHOf+93gMn3uZ/FiQy/+WDpgLvptHGG1czlcnzlAjNCML2BN2CWcWOewfow4Uf9v31RSGV9Awmsl6dUReKMJvxP4YYKEF2d2qpoE1WRtclxzFBEREREREZGZ48AscRMR2Yc4N3gXaucMof880NtSxIYNRFXXDmezBLnHRn4tm8a5bM+9sc/XZnC2q8/WOJmxdWEpCk0VSTcf5+J4gIeHcwlwKeYkFoNLjKlyOx6LkYzFoRCoi4iIiIiIiMj+QeG3iMhMV2xp0m+z87FmNzbc029Hb6W4DXcQZP408kvZzt4q8jEumGnN3qhPeZ/znVfL2s78mMYD8IgRmEqCYC7WJcDzqIjHAQhMFUHuMLBVhCY+6rFjxKhNVOGswm8RERERERGR/YnCbxGRGcw5gwm2lN9nO8h1/L/C4pblhcE6nO0c8hr5rutJt1xG6L+Ew2HDrYXxeyu3remI2qmMZM6mFWfbcT3tU7w6ut2CcTRRgZgXvV2FpiLaECxmVrKquM24FPlgFp43+re1RCzGsbXHght9cC4iIiIiIiIiM5fCbxGRGc0UFo8cyNksJliHY/B+IjbYwXALV4b55wlzKwoV5C6q2gZs37YlLl9YRHMEXFA4NpqXpZK8S43s3EF4Pcl5oad3PqylOtEzZvRWZt3Y+nXHiJFiPtYq/BYRERERERHZnyj8FhGZ8cqH285lcKYF468b9Mww//Qg5xpCfy3OhVjbUtga4GwXrhB+B9kHAPDTd9PTQ3wkHKbQqsUU7icJ7PjWV3ZlFrKsSUxMm5J5FXMw4Zwx9QsXERERERERkZlL/9IXEZnJXAAuHGRfDrAlPb4HHGJbcX1Ca+cs1naC83GmMaoq71lQ0/nYcDvWthXOjdqWWNsRBdpDVJj3n3PfavWASiwDw+vRiJU5f15F/bjG7JHyUuA8jBtfQC8iIiIiMtnihXVvjDFYO84V5UVEZhBrLcZERXQ9P+smgsJvEZEZLPTXMljFtSuE4tY0D3p+FEL3Od9l8NN345wfLZgZ7qQn1HbOxwSbCqE6gI+zmajlSd8WKMNwLlMM0AE6TS2hG1/4TZnw++CKJeMcM1Idr8e6+JjbpoiIiIiITJXKyujbj845urtHtiaPiMi+oLu7G+ei/KKqqmrCxlX4LSIyg5hga8l9G+7A9VRm9+MKobcrhtWj4UeV3qaxt5e3yxfHBHC2G2c7ouu7ENzIKktsuLfQ9iSyLVtLOI7FJCtiCbwyb1cVzBvzmCXjuEVYLXYpIiIiIvuA+vrebz/u2bOHzs5OVYCLyD7NWktnZyd79uwpbqurq5uw8fUdbxGRGcTP3E/VrH8u3g/zz+JcpuyxJtwe3Rgu/HZ9F7x0xW3OhWDTOBtVjFjbWVLh7Ww31rYX2q6EWNtKjEXDPgYbbqFvi5QN6ST1iUFat4zAQVX1JLyKAct2mmD+mMfsK5M/aELGERERERGZbDU1NVRVVZHNZjHGsGvXLjzPm9AWASIiU8kYU6z4hqjqu6amZsLGV/gtIjKDONP7Safx1xPmn8bzBvlRXQjFe3pzD643NnbOgjOE+WcIMvcRTx7VZ5zuYiuV6H4XfvftmGADicozwA7eW7xkWv0qxAMLzUEKKF/BPpxj65cSMwsGbPfNxCx4KSIiIiKyr/A8j0MPPZTt27eTzWaBqAVKGI692EREZKaoqqri0EMPxfPG2zq1l8JvEZEZxPWp0rZmL7huHNVlj7WmqXBrmP/R7Vv57fJAgAnWYYJ1eLFaenuC2z63iY7z12DNbpztwPNSI5x/afidMbApPfYuWzXxOvJBucUt1blLRERERA48sViMww47jHQ6TVdXV7EKXERkXxSPx6mqqqKuro6ampoJDb5B4beIyIxh/A30DY6d7SzcyJc9vqddSf+wecBxxQUtA8L8U+AszkZVIjbcU3qsy/a7H/Xu9rtvoaLuwpE8Cvov0Plku+Xw6rEH1fXeMrJajFJEREREpMjzPGpra6mtrZ3uqYiIzGgKv0VEZghrdpfc7w2io/7cA9ufjHRhm6gKxNlubLgTh6GnBUkxYC+M50xj6amF8NuE20p6cA0mCtVLj2vxDePqQOjU3kRERERERERERk/ht4jIDBHknihpUWKCbcXbNtxFPHlY6QkDwug4DFgWksLilhZcgLVt0e+mpTBEnwUuTSvOdpSeil+4kWUkYXs0Xt/j4rQHlkeasoOdMiyrqm8RERERERERGQM1TBURmWIm2DRgUUgAZ9t7b/cLtsP802VGKh3DeYN95TEEHNY2Y8NdUbsUN7BPeE+Lk9KNfbeNoNLcZkvGcV4Vu7Nj7z9Yl6zAOn1OKyIiIiIiIiKjp/BbRGSK+ZkHy/fxdlFIDUQV2H2OMcGmgYf3q/LOMa/s9ZztxJlmjL8O4z+PDXfQvzVJdGD/8DtVetwgvcdLhnDdONtbTZ52B9MRjD38XlI9t+xURURERERERESGo/BbRGQMXJnK6ZGy4Taiauyye6P/mr0Y/8U+F0z3uXZhAUvT3ue8GFk7WG9sR7bjxxh/XWHsPTiXG3jlPj3HrTcfvNK3iHLnDLiSK13w8umuReTt2NPrOalajFXbExEREREREREZPYXfIiJj0Le6ebRsuAvngkHG7S4e0zeMNv763lYoLo9zBmdb+pwZJzNo+A1h7jFC/5meGeD6hOm9124v3u5y8wCv3/6R9O22UGzpEmNzZlxLXZKKJdX2RERERERERETGROG3iMhYuDxB7kkAguwjIz/NBdhwL860DLI/g3MGk3+mZHsUhAc453AEhfN7K6rz3sFcs6Nu6Gubpj63y1+/R5epxvV/ixhB5Xe0YGch/PaqGEe7bwCq49XjG0BEREREREREDlgKv0VExsC5PM40Y00HJmwY8Xk2bAB8nBukitoFONuBNc1l9oWAARdiben+nKthe2YEC1L2zmTIva1BBf3fIhzlq9UHjmsKx6fIjWZKZcS98VWOi4iIiIiIiMiBS+G3iMgoOWfIdfwMZ7vobvwnwvxTIz/XdhTG6L+4ZNTyxDmfIHN/8bjS6waF6mtDmFtVsi9vk/jj6K3dX2O+TKuREfU5NzjbCUCWuWxLj29OXr/WKyIiIiIiIiIiI6XwW0RklJxtx5rdONuBs12j7P9d6APi8gP2WNuMczlMuAPbp0VJ74XTxYrw/oH79lwtDVkDTMzikA25MhXXg/QpLznE2eJioO1hPcaNL/xW5beIiIiIiIiIjJXCbxGRUbLBNqxpx9o2wIDNDHuOcz2hty3cHxh+O9sVBdzB5n6LWUZMsA1r9uBsDuOvKdl3c0OCJ9pyOK9vj+zUiB9Tf80DC9NxjKSBdwBE4fdL6RqCcRajJ72K8Q0gIiIiIiIiIgesAzb8bmxs5K677uKyyy7jne98J/Pnz8fzPDzP40Mf+tCox7vnnnu44IILWLJkCRUVFSxZsoQLLriAe+65Z8RjhGHIz3/+c17/+tezYMECqqqqOPLII/noRz/KCy+8MOo5icjkcATg0sWKb+fSQx/vfJxtLdwuLBrpMljT0ecYV1xQ0oa7y45jwq3gTGHxSwAPSAAx1nVHgfOO4MjCrkrSHDrqxwZgvTnc3+gz4C1iJG1PnA8uwHpz2JOLkzET14pFRERERERERGQ0yjR1PTAsWrRoQsax1vLP//zP/PKXvyzZvmvXLnbt2sVtt93GpZdeyi9+8QtiscE/a2hububss89m1arSPr6bN2/mqquu4tprr+XKK6/k0ksvnZB5i8g4uBBwONsd3S38PvjxATbcSSy+oHisNS040wjxWYWDequqHWXKrgFnO6OFNgtBOl4lIXMAx58bowU0H26p4x8XgaOKBn8OR4+h+DvPHB5vyTHw89Hhw++owt2SdgtozENLfpwrXoqIiIiIiIiIjNEBW/nd16GHHsrb3/72MZ375S9/uRh8n3LKKVx//fU88cQTXH/99ZxyyikAXH311XzlK18ZdAxjDBdccEEx+H7Pe97DPffcw8qVK/nRj37EwoULyefzfPSjHx1VJbmITJYoBLamoXjf2eygR5tgPTZsBHorv51tLy4MGW3v0zql32KYre4EAILMg1F4XgjQfebz9Y1HsT7XW+Hd7EPeO5RGcygZM7bPN0MXnef6vUUUW7cMKTqm21TRFcLT7bkxzaFHyhw/rvNFRERERERE5MB1wFZ+X3bZZZx++umcfvrpLFq0iK1bt3L44YePaoz169fz/e9/H4DTTjuNRx99lKqqKgBOP/10zjvvPM466yyefPJJLr/8cv7pn/6Jo446asA41157LcuXLwfg4x//OD/5yU+K+8444wze+c53cuqpp9LZ2cmnPvUp1q5dSyJxwP7RiUy7ngUdnWnv3Wa78GJVZY+3pgUTbiscWAi/ncHaTpxzeJ7Xr6VIaauQ5qCauSmiPuAuh3NR0O67Kpa3BLz74N5FIdsDeD69hLz1CJ03psfXG373W2zS+Thn8IZchDKq9O40FQQO0uNoexL3YvhhzZjPl5HzvLG9VkRERERERERmsgO28vvrX/8655577rjan1xxxRWEYRRY/fjHPy4G3z2qq6v58Y9/DET9vH/4wx+WHacnQJ87dy6XX375gP1HHXUUX/rSlwDYuHEjt95665jnLCITwAWFG0Fxk+1pRUJvOG7CnRh/IzZswIYNOJvDFarGw/wqwvwqgsz/YcIGch29H3r1l7O9YXOQexxnowDdEOPp9hyPtCSL+3+0sZNHW5L8cCO0+KP/EW+8hTQHPYFzaSAa5lfS3fhPg55rbScUqsNb/CTPtAeDHjsSCe+AfYuaemrNLiIiIiIiIvshJQtj5Jzj9ttvB+C4447j1a9+ddnjXv3qV3PssccCcPvtt0eL2vWxfv161q5dC8CFF15IdXV12XH6LsKp8FtkejmGCXVdPlrk0jQBltB/DmcasaYJXFQZ7UwbzrTjXAAuGKKlSJzOsPebHibYiHNR25O0qQSiau++2n1He2DZmx9LNa/HM53lK9ih0Hd8sBYvLiw+N3vzcbrC8SWq8ZiqkUVERERERERk7BR+j9GWLVtoaIj6/Z511llDHtuzf9euXWzdurVkX0+7k+HGOeiggzjmmGMAWLFixVimLCITxZVbkLI36LXhLmy4Fz99D87lscEWTLAO8PscF+BcHlweCHGmueylrDeLHdk+bUZcGhtsAeCldC0A67tKF6JsDRwdvqUpP/rw2eHxYFN0ns/AD+Oc7cSEWwY52+AKvc03pj3a/OEXyBxKcsj2KiIiIiIiIiIiQ1Pj6DF68cUXi7ePO+64IY/tu3/t2rUlvcVHO8769evZsWMH6XSampqR98LduXPnkPt379494rFEDnRh/vkh95tgM/HU0dhwV9Sfu1DVHfov4ly6z5EBzuVwLsS5LgCy3hFUuc3FIzJuHnv6rRlpCwtlpk30+WWzb0v2P9nmsycfsrI1DodD1L5k8CB8t3kF23M1nFq7FUOSu3dHi292mjqqej4i9aoBG/Uct2mczeDFSsNxa1ox4Q4gSbPv2JsfyQKZg0vEFH6LiIiIiIiIyNgp/B6jvmHykiVLhjx26dKlxds7duwY9zjOOXbu3FlspzISfecgIuMT5p8us7VP5bdpJGYXY4LN4LK4wiKQYW410BsIO5vGmZaoXUihlcij7Yfwjlm94fea9EL29qvgdjYKyjeno7YgrX5pyPxSV1SZ/kx7YXFNrwav0CqlnOt2zeZbL3Xy4lsWkrMJusJovK4wxaJU4TFRhYfBIwcug7OdA8LvMP8kzjQSevPpDBzZcSx2Cer5LSIiIiIiIiLjo2RhjLq6uoq3a2trhzy2b4V2d3dpADVR44jIFHL5Mtt6q69NsIFcx1WAjwm20RN4O9tOmH+u9xSXxdpWnOvG2Q4ANqd7fyynOYovPG8Y0Dq7UD3ekIt2NA1SYR0VhKdY3nly70avkt3m5JLjtmSiuedsgkdben/O/Km577dLPFxhAUxnu7Fmb+Ex9LaAMfnncBhyrpbMOINvgFmp8msgiIiIiIiIiIiMhCq/xyiX6+1DkEqlhjy2oqKieDubLV0obqLGGU7/ivP+du/ezRlnnDGqMUUORNHClAMXvHSu9++yDXf3hsO2rdj2xJq9UFKBbQuV3zkg6o8d9ulgkrbVPNeZ55Q5ybJz6Sn4zhhbdn/gLKE3l0dbYry+rjBP4uz2qzi4z5qWHUFP+B1nZ58WK5vSveM6PLxi+J0pPl5nu/Hicwu30+AMhjg7MuPr9w2QVNsTERERERERERkHhd9jVFlZWbzt++UWv+uVz/dWiVZVVZXs6z9O3/ujGWc4w7VUEZERcrmym/PdfyBZeVp0iEvTU+3tZ/5MT1juTFvpUKYJY5rJtH4HgIx3JH1j7M6wAggJBimi9l20Y/Aia48Xs8vYlXMl2yIx0hxJtbeXQvZNZ5gg12ewHRkLVLDefwWHVewlRkgMsOEOwEHlq8h1XEXV7E/jxapwhOB88jbFuq6hfy6ORCpWPvQXERERERERERkJtT0Zo7q6uuLt4VqQpNO9C9z1b20yUeOIyNRwxZYnXr8dfmG/jW73tEFxmT4HRdXQ1pvb53xX3N4a1mP75NRdJvp80h8k3W7zh28t8kJXBaWF4R7OeeCl6DTVZN3CYouSxny8JGjvDh3Wq6MzTGBIkHazADDhdqzZiw0bsKYJcDgXFH7Pkjapcbc9qYoniXve8AeKiIiIiIiIiAxC4fcY9a2k7rtoZTl9W470X3hyLON4nqdKbpHp0hNye6X9qJ0tfHjlMjjbTu/Cln2T5ygQfqTjZcDANkd/aa0vCZ83pqPK5525/j29oxZIDzVlGM4fdoYlgTok8B04koQuToepYWc2Ct9zBrame6/VZSwBNXSHMayL4dsojDf+8zjbhZ99GOOvARzOdtIT5L/YXc14O34fU38QMb1FiYiIiIiIiMg4KFkYo5e97GXF2y+99NKQx/bdf/zxx497nKVLl5YsfikiUyeqcIZd4TEYbxEAvrc06t0NWNNaOLJ8H26A9d1xnDew69SuXGnPb+uiyufGfuG38xI4r47sCKqrX+z06Xt22s0ntB6OJIGL0Wkq2J6JHlNn6PFEa297pV2ZkJWdS/GdhyVenA+ADXcVHnMIuKiveaENS1c4/ortpdUHcXjN4eMeR0REREREREQOXAq/x+jwww9n8eLFADzyyCNDHvvoo48CcMghh7Bs2bKSfWeeeWbx9lDj7Nmzh/Xr1wPwute9bixTFpEJEQIJfripjqbwICDG2swSXGEhS2t2DzvCQ03RGP0FFpryPYF2jJ4i7L25/otHJgiYNaLZNuZDfNubqK/LLCB0Ho44oYvRGiSKPcN356At6I3Km33D/2y0OAfGxbCUht9RyxOIKr4NPYF/58D1QEdtfvxokuEx4x9IRERERERERA5YCr/HyPM8zj//fCCqyH788cfLHvf4448XK7bPP/98vH49bI855phiNfiNN95IJlO+jcE111xTvH3BBReMd/oiMlYuwPcWs7E7xHdxft/4ev7cnCLqd21xNjvMAHGe6fAJqB84NLA3HwXIzqvl2u1RFXbaOJxX0+e4OLv8g0Y85d7C8Tjbswma/Rhb8sv4zvoUL3b1LirZXaaSvCOw/GyLZUX7fIzrfctwLgMuW5iPw9k0PeF3/yYto5HwYsS9GLn8IpzTmswiIiIiIiIiMnYKv8fhM5/5DPF4HIBPfvKTZLOloVc2m+WTn/wkAIlEgs985jNlx/nc5z4HQGtrK1/4whcG7N+0aRPf/e53ATjqqKMUfotMI+dyZF0NDmgOKvjPF7tZ3tJT6txTAT240FvAnlxI4CrL7k8X+p50u4N4tr23BUmbXVZy3OPtI299lCuE2s6rIWM8GvMez3dVcVtDmk3p3sC7OxwYfncGloebMly5OSBn4332mN6g3zmcy+MKYbgZvOPLsCriCQ6qqsO6JNbFhz9BRERERERERGQQB2xZ3fLly9m4cWPxfnNzc/H2xo0bSyqtAT70oQ8NGOOYY47h85//PN/73vd48skned3rXsd//Md/cOSRR7Jp0yb+67/+i6effhqAz3/+8xx99NFl5/LBD36QX/3qV6xYsYKf/OQn7Nmzh4985CPMmTOHJ554gm9+85t0dnYSi8X40Y9+RCJxwP6xyX7Cho3EEgunexpj4mw3xnk0+5bt2RQtfo4N3VFbEhvuJNv+oyHPz7qo4jtkYLDbHji6Qgsk2evPImqxEvnljvl8/lAAD/D4t+e6RjznnHWAx/bgaL64ppt3L66mNhF99vlCR+81btyRHnBuR6ENyuMtOTKmNLA3wbrohsuCy4PNAUN1Ox/e0uq5HF9/JPhg7MBFQUVERERERERERuqATVGvvvpqrr322rL7VqxYwYoVK0q2lQu/Ab797W/T2NjIr371K55++mne9773DTjmwx/+MN/61rcGnUs8Hue2227j7LPPZtWqVdx8883cfPPNJcdUVFRw5ZVX8s53vnOYRyYy8zlXvr3PTOecwZpGjIuzJe3TlK8AYEcmAGLYcBcUen8PxhR+7IYuAf3WhVzTEdDiW/LeYpqDFH3D79/vyPL5Q3t+ZHsjWuyyR8ZE4XejX0FXmOW+vTkOr6kGYEum9xqBGzhme9AbZWdM/y8LRfusacQR4FwOiI8r/K5KVFARqxrXGCIiIiIiIiIioLYn4xaLxfjlL3/J3Xffzfnnn8/ixYtJpVIsXryY888/n//7v//j6quvJhYb+qmeP38+f/3rX/npT3/KmWeeybx586isrOSII47gIx/5CKtXr+bSSy+dokclMrmcHTognqmc2Uuu48eELkbWOBoLi1M6opYiNtw+7BjdJgrMfTvws8fN6ZBtmYDbGpdxf2NpZfiWdABeCudVEVK+ZcpgNnT5OK+On26Ofg415kMeaopatWzPDL06Zd+MPWu9ssfYcDfOtALRHO3Ic/kB5qVmUcH8sQ8gIiIiIiIiIlJwwFZ+X3PNNQNam4zH2Wefzdlnnz2uMRKJBB/72Mf42Mc+NkGzEpmZbLgVKk6c7mmMmnNRD25DHHC81NVbnxxSjwm2DjtG3iaAkJxN0L/zyd5cVIX9TIfjL83+gHMNdRgq6DCzRjXvwDkebH85f2rsrbjf0D106F2OP0j4DVHlO4Clms7RD11Unxy4EKiIiIiIiIiIyFio8ltEppzxNwy6z7mZ2/CiJ/z2bfSj84nW3gUpQ1I421m4V65XdXRO1kSJd6Pf/5g4PQXTz3eErOnM01+bXUCXrWd7rm7Uc3/vyu5CP/HInlw4xNHlDRZ+O+dDYfYBNezNj/3PsDa2EM8bLGQXERERERERERk5hd8iMqWcCwmDlwqBad/tAc524ezIF3KcKsW5Fn4PXG/7kF4ejqjk2XnJkvPz3mEYbx4AuUJwvjdf+sUb5/W2Mlndnis7j82ZenI2SWc4PT+6c4NVfrsAE+4AIO+qCMeYfce9GDFbB07ht4iIiIiIiIiMn8JvEZlSznZiwx3g+vXGcCHOZrFm1/RMbCiF0Lt/5Xdpa2uHsx2F26XBdms4h7SLwu+eftjBgCC595zBFrPsDONkTIKsmZ5w2B8k1HbOx+SfAyBwSXJjbPpdl6zAugqcO2A7comIiIiIiIjIBFL4LSJTypo9WGoJ808Xtznnk23/PuCwwXZMMPzCkVPJuUKFdyEE/+pL5X50ejgThd8+s7HefKy3AN9bSt7GaQlqoyEKR4cOQm9x8ew7Wl4x7Dw+9WyO+5qqWd46s8LvMLcSE0StbKzz2JYefUsVgPpkFTm/npy/YKxTFBEREREREREpUvgtIlPK2S4MlSWLQzrTTph/FmvbsKYJG26ZMb2/nbPF0BuiUPeFjoErOjq8YuX3mvQhGCoJqCbvqmgJKtiQqYpGKLT0aA2gxcwHKoAYu3PDB9oNuZDfbc+xsduM+3GNxWDht7VtQLTTuBgdY+h7kozFqU6kgBjOxYc9XkRERERERERkOAq/RWTKONtNkPkzljg27K3uDv01ONtGtu37WNOECXfibMs0zrSXs+2YYH3hdhaAVn9g+GxdHAo9v6/flcCQ5Oa9y8i7FB9/NmR9dwzn1bOuO2rp8aU1nTzcMof1/isw3gI2pkfWKuSlLp9tmbFVVo/XoG1PzJ7i7ZAY3eHow/njZx3MrGT1WKcmIiIiIiIiIjKAwm8RmTI23IM1e+gwszHB5ijkdgFh7q89RxBaH5zBmbZpnWuRCzDhNkJ/LdbsBpIEbmBQvTU3t3h7Y7ehw9TzTKejNagmYxyr2gx7wsN5qKk3GN6Rg/YggSXJjszIA+PN3QMrz6fC8x2WVnfCEEckCGyczmD0Pb9jeNQmasY+ORERERERERGRfhR+i8iUsbYd469hdedsbLiFfNeNOJvBhDt6jqAzCHAuiwm3TetcezgCbLAFv/s2TLAN51WUPe66nani7c7AsD5dx227smzKVJIOLLc3pLl1z2zu3J0uHtfuO3bnExgSNOVHHn6XC9+nwh93dfOPT80adL/zagidN6b5xbwYtYm68UxPRERERERERKSEwm8RmTJh7nEgwep2r3B/BWAKvbITGCpp9ONkwoAguxw/fe90ThcAZ1qw4S6sacC5NI7y4XfaRIFv6B3EtkzAL7dBYz7ktgZX7IG9M1caCneGjm0ZD99Vsik9PdXco/VCp4/15pfdl2U+oRvb20p1vJK43pJEREREREREZAIpaRCRKWP8tTivhoebogUknW3H2Q6c7QQviXEpGnIpduYSGH8tYf6paZ4x2HAXzqaxwQ6cacQOEn5vTUeV2x12Pi2+5aGmqD/43bvTFHJxHmspDbh35ywb05acTdERzIwFPofTFhgybk7Zfc92Lyou6DlaqXgSz9NClyIiIiIiIiIycRR+i8ikc65ngUZLjnk8256HQohs/HXg8vxu7xl4roWmXI7mzF4scWD6A2Fr27C2Hee6sWEDIamyxz3dngcgb6MFLfOFxLvb9FZ7P9OeKznn0aYst+7K8P4n962FHvOu/HNwz94kG9Ll9w3HA+q8JeOYlYiMVOeqz0/3FERERERERKaEwm8RmQJRVbTDkncVUU/oQpVvkFsOwM835zEuQTq0GBcWwu/p6W1dwgWFWTjAkbHlF2XsCi3gke0Jv+3AufffkreOrtCyuhCc7ytyNkUUV5fqDBwvdY2t8tsjhnPJcc5MREYi7HgRZ/eNVkszmZum9RdERERERGTkFH6LyORzUZsT6xy3710QbSr8+Alzj2G8hazpzPPh55bxQpcjb2OkbT3OTX/ld1R9HgXaxlvIEQ8MXtkceIfwqod7gv79V8YksN68wr3ewDodOh5sHH2QXxlPUJ+chbVVEzRDERlK0Pocue13FO+b9K5pnM2+y3Ssm+4piIiIiIjIMBR+i8ikC/2tOOezNbeYDd3RNp95xf3N5iAAAuvYlDbszcfYmptDY7hwOqZbwtgQQxTKhlQOeWybmUt4AFQCtgZJwsJzkvWWFrc7HPkxfF5Rk6ggTpzQDP38yuTxvLFV7Mu+xdkAZ3wwOVzQWdzu73lYVcxDGOy5CdqexVkTPaciIiIiIjIjKfwWkUmX674V46/jq+sSXLmpC4A/tR5W3P9c1ywgagOSDR0NOY/PPe/xnfXTH4bmwm7aTVSt7rvyi1322J6rpVw7kP3NS90Jum0dANc19ITfHhaPFj8c/MRB1CYqSHqVGKu2J9NlX4g9XZiZ7ins81zQhc23YIOOkuczt+NObK5xGmc2s9l8c9nt/u6HcH47Nt86xTMSEREREZGRUvgtIpPOml2E+dVkQlPc9tPNId0cDVTwux1R9LahO2BrJuDO3T5784aKmI8Jtk7PpAFnu3DhNhqDaEFKf5CFHns803FghLc37gzpCKPn5E+NIZAErxLrHI15M/TJZcyvqCNJ/QTPcv8W96DuwHi5FeV23DndU5jRXJgjaHue7NabBz3GpHfgN64AG+CCDgCClqfwG/9C2PoMuR13D3sdm2/FhdkJm/dM5Uwev3kVAKZzw4D9YdcWwq4NWL8drCq/RURERERmKoXfIjLpnAswwVba/N4F1la0ZLl+92Kcl2J5cxSk7MyG7MyGPNmWY28uZE6iCxtun65pY00rnm3h+c6oAj10Q//IbA32hfrZ8VvRkmV5aw0Q58HGLHgJLFWEzmHG8BTUJKrxXPmFRKW82qTjoIr9P4DsK/PSz6Z7CjOazTfjN/6V/M7BA+yg9Vn8PY8AELavBSC75QZspoHcjjvIbv7dsNcJO17CdG+bmEnPYC7oImx7HojawvSX33UPNt+KzTXh9onvToiIiIiIHJgUfovIhHEuKLv94fYjyYWttPmlVcHfeSmNI0GLP7BRdM46amMZch1XE+afnpT5Dsv5dNk5LG+xrEy/Ft8mhjy8O9z/W570uHFXwKrMqwicAzxCasbU77sqHpUv5/zZEzq//d3xlXt4s3/tdE9jzPIND47u+F33E7Q9V3afelWDzbdj/Q6C5ieHbA+T3fhrcltuACC/5yFs0E124zXRvk2/I2gZ/mdt11NfJrfrngmZ90zmTBab3QOAv3c5uR13FffZfBu5bTdjOteTWfczTPfWaZqliIiIiIgMR+G3iEwYZzvKbMtxz96Q3fka0v3KgtsCQ0DdoONZF7VMseHeCZ/rSDgsLUENu3KGNV1J2sOh255sz4y+5ce+alsm5LnOKLh2eISkaB1lyxMPj1mpKjwPrDvAeniMUw1dzM69ON3TGDOT2Tm649PbcGF3+aDbjb7P/P7GpLdh0tuw2d0lC1n2F3a8VOxfbbO7Md1bsLnovgs6cWH3gHOcK/1UK+zcQND41wmc/cxk/U5cmME5h+neWqwCBwjaniPsWI8LM+R3/xl/71+mcaYiIiIiIjIUhd8iMmHKhd/WNrOy1Wd5axUtZcLR9dnFg46XK2QuzuUmbI4j0VvB7mgOkvy5Mcv1O3yu2jp0QLu5+8AJ4bZnAvbkeoLIGIFL0FSmgn8or1lwFKfPPY6qWNXET3A/5gFH5h7GG+SbFjOdM3nC1meHPMb6HdhcM0HbC9igG2dyYIPoV59xbL4d07lpsqc86YJhno/+THpHyX0Xpsnv/D9MeicmvQNny38Q5YI+4baztD/yAfoud+rCDCazu+SczpWfJmheXZynzewit/NubDAwKN9XOTvw75Lp3oyzPt3PfYewcx2ZjdfgTB6A7ObrsIUPcGxmJ2FrVDFv/cE/eBARERERkemh8FtEJowz7b23CxWazqbJG8czHa7QIqPUL7cNXk3dHoDz6oAprqh2+eLv6TAOwJa0z+MtQy9qtiF9YC169nxHz59LjNAlacqPLvyvT9SR8JJ43oHTLma8Yh5UxqHO3wz7ULsPF2aLAaPp3oozQ/crd2GGsGMtNt+CSW8n7Hgp2h504pzFOYfNNRJ2rsftB5XfYduaUR1vsnvxm58Eosps67fjgk5M1was30rY/gI2SPc7p3FAyGv91pL7LugiaFpZOreOl7B+O2HHumhxx2gwspt+O6o5j4WzYb/7k/Ne4IKuAdtsrgkXZvAb7gdnwfrYQlV9T7/04rF+OybXRNi+734bQ0RERERkf6XwW0QmTDofVcI5240NC1VxYQNb0gEPN5Wv3r5m28DQocdTbQHNZhnODn7MZOipNLemmY3p6Mdki2+HDbezY1ntcR92796ot7Chhs6wctSPf15yEZWxWjwUfo9URRwWVvjU5tYTt/vOgpdhx1pMpgGA/K77sPm2IY+3fjvdL/wQf8/DhG1ryLz0UwBMejs2vROb3UvQ8hSZ9VcNG6TvC4L20YXffsOf6Fh+Cc4GBC1PYTO7cWEaF2awmQa6nvoyQeOKknMy638BNl+yzRb+TIpcSNCyumST6dqI6d5C5+ovEjQ9Xtye234rLpzc5950lVb1B61PTcp1ws6NA7bZXDM214TJ7ALAOYMrhP99W6AAOJMjv/028jvv6j+MiIiIiIhMM4XfIjJhuv3dOBcQZB/G+NHidB25neStY2P36Fs0rGrLcfOeuTTmp/ZHlTNRMJc1cR5o3PerSidbh507pvNiVFDhFhFT5fcA8UGekpq4Y1migcr8dirD3TP2YwObaykJRk12b7G6NuzaSNj23JBVvC7fQtDyJCa9A5trLG73m1YStD1LfvcD+I0rMOkdA1qA7ItsIWAdqbBjLSbbQH7HXaTXXE7QvIqwz6KLQctq0i/9pKTS29/90IjGNtneQDzs3oZJ7yC75QaCppXktt/W50CfsHP9oONkt940oHJ7tMKuzSX3/b1/GfC6GWrB07B727DHAATNq6LjCouFhh3rMZkGTNfmYqsT53dgcy09Vy0dwPjkG/6EKSyQKSIiIiIiM4fCbxGZME25PM60EfovYYINAOSDaLHKsRRF563ji2s6WdNVOZHTHJYt9C5v9hP8qTEzpdfeF3WElf2joBGJU0smt4iqWM2Ez2lflxgk1a6KhxwWrKLK30FFvoHkDH0XN+ltmGxv72ib3dMbLLavjVqa5AZfyDbs3IBN78BmdxcXZIQopDSdm/B33Y/fuAIXdmP6BaT7IlMIaUfCOYfJ7sblW8ntuJPc1hvxG5djOnqDaJvdTX7HHaUfQHSNrDe669O3OmxbA87g734Qm91dUvntTHbI5z794hXjrso36e291wtz2PSOYvV1cXuZliU9gp7WMP7A9SiK51tDvuGB6HrZxuj+7j9jurcWWp+kC9fp7H3N9mu140wmCuaHmIuIiIiIiEyPGfrPZhHZF+3MBjjbgSOGb6KKw85w/K1AMmZk1YPDVfeNVE+bldzo1m88YOVtjBe6Rr9opbOV4HlUewsmYVYz35KqkNfXbytbvX1EdZqK+MDtHpAqvD7jtpslVfmBB80AJttI2L4Wf+9fovtdm4utIlwQBZH5hj8Nen5YaANi/faSNhymayPpdT+L2p/kmqMKczO1C+JOtKD9xeIHA33ltt9RrDruy3RvK4a6+Z3/B0R9uV04cAHKvuGzHSIALjnH9VZW23zLoMfZfCv+3kejULpM6Gs61mFzTSO65mD83X+O5hRmcSaL3/gYYdcmwj5BvyksPFmO6d4SnR904sIsQftanOltX2Uyewia/krQ/AQuzBb6m7eS2fD/om8eZPcUX68AQUvUdqV/9XnYtQWbayr5loKIiIiIiMwMCr9FZMKs7fJwGDpNLc1BNQCto1wEsZyESw9/EAATlVZHc3ZO6fdIZG2cO3YPf9yg7OyJmso+pS6e5yBbvnJ2Tqy9bPW3hyNlesLvLHWxmdfv2llD2L4mWoAxE70wbK6JsHNdtL9QjTxU1bALugu/d2HzvZXfYddmTNfGqL910Bm1C7Gjb6k0k9hcc9nwOGh7tmz4bbO7cX5b4dyeSuRBWsj03e5G+Dz1+TDBDhEsY32CtudwLizb+9sGneOuhPZ3/xlnA8KuzTgbRN8EyO7G+r094+0QrUZcYYFKZ6JgO2heVfKNBBd0RMG134bJ7MJm90Sv1fYXsdm9UY/0Pu8Dxddi/0VWTRZcqPBbRERERGQGUvgtIhPi4d0beaixk+7Ms3xr/Sx+vzOqBL6vcfxdiYMRL+xnsGbwSsWRsi6ac8IO3pZBel21NcEfdw2sOh2OK9Q8B6Z6oqc0481JOV4d3sqC3HO8qn5geHd0sIKv7z2Cf018v2R7KmY4evd3i/dPCe6bMX2/ewLcoOlxulZ/MVqMsfUZgtZno0ra5lXkdz9UDBD7VhXndz/cO47fQdi5oXBMc2n4mNkFzkaLPGb34MLukr7W+5Kwa2t0w4XYTG/f8p7AO7f1j8WWG31l1v18xNfw9zxM2L0NF+bKVpeX42xvZXR+z8ODH2eyUW/sjnUDWthkNl4bheP9Fs/sYYM03WsuJ7fzXgCCthfKH5dvIfPSz8g33Edm3c8x6e2kX/xfup78Qslj7Hj8X8vPMeii88kv0PnkfxC0PY9J7yBo/Ct+42MA5HbcGQX8Jkf38/+FSW+Lqs1NbmDADWTW/SJ6nQ/yYYMLM7iw98OD/j3LRURERERk6in8FpEJsb6zmWfb83T7u/Gtw3NRELYnN/iidiPVnh9hWwMX4Oz4e3TnbRQn5iemi8p+b0PXyMPHqniSo+qiNifOJQAITXJS5jWT1SdC5ubWMDezmhjR35G+bU7qgu0kbJqD22+ntvD01Ceh2svj9emwPje/hsQMeSd3YRabb41abTiD6d6CzTVGFbTOEna8RHbjNcXQ26QLixFaU1xI0VlD0LKaoO1ZIKrqtf16PBeu1nuzT1g7onkOsdDmVMpt+yPO+FGIb01xMUXrd0Tb861le1X37YM9HNO9HUyuJNAeVp9jbXbwDwCt347N7CS75XqCQphc3FeogO6p4Ico1Ld+B84GmPQ2XJgptiUJO14qOc6F2UKI7Aja12A61hM0/jU6tmsjJru32As+7NxIvuF+THpglbpJ78Tf82gUau99BJvbS9D6DPndD2Iye6IWMu1R8O433B+10xmi1QvOFFvOlN3tTPSaLzxu07Vl8LFERERERGRKzJB/MovIvu6h3RtpyIWE1sc4i+c6saaJhuzogqlyciMMq2y4Cxh/FWiQfwHnDA3ZMk2XZYDV7SPvO31Y7TxeN+cdAARhz0KmB95b0ex4mqVNv2Z+x33UuijgfFl1a3H/3HS0sGBNdj1HV0bb31yxguPt4yXjHNp4Vdne4NPB5puLCwUCZF76CUHTSsJCwGnzrWQ3/67YpsTf8ygQtZ7Ibbm+cLuT3JY/4PKF58JZTOd6huLs6ForzYRFCZ1zxUrm3LZbwObJbbs52hdmCDvXYzO7iv3M+7Zg8oeoxu7P5psJOzcWe1WPaG59ns9ylee9g0d/jpkNvyS75XpMpvcbDD2hec9rAaIgOLftFsK2NbigOwrDM7uiMdb+GGcNzjn8PQ/jN60sBvZh63P4ex8l33BfNHZ6B6ZzHel1P8eZPEHLakznBtIv/M+AKfrNKwmaVxK2PkN2w6/wdz9E5qWfkN14TRTaN6/C3/NINL/0dvy9K4Z9fWTW/WLQfS7oIrfzbsLWZ7H5NrVBERERERGZARLTPQER2T9kCwtcdvg+i5LtZI0jyK5gU3r8YXQ4TPjdEwyZYCPx5FHjvp4J1uJsBzOjPnT/Evdi4HrC7pnSsGPqHez1VqkuCtcCL+NI9zwvxs8isFDf3RtWVng+HnB8+zU4BibdiyuyrA9Gv+DoWDiTx4tXlN+Xb8N0bsRLRHOxfjteak5vJXG/6mMXdOJMHpPZFVX72iCqrG19ZlRzCtvLt8wYjM23EKuYPapzIKow9lKziCVn4cVToz6/hMlhurdHCywWwlYbdOLvXU6scgG2EP7bIKqUdiaHl6wr2wN8KH7T4+AlcOEoAn8X4owfPcYRtJRxQSdB2/MELauJV5+Dc5awbU1x/jZIE0vW4EyW7KbfYv02knNPiSq/Cz3FnckStj1LvPYI0mt/RMUhf4PNR4tlmszOsoF00PxkSfV4/28IOBsOqJx3Ybpw3QZM5/po7D7nme7NmO5tQz5ev+mvgz8XYRp/94M4v61QBT6+BT9FRERERGT8FH6LyITIm6hacHWbZUlFE0+2gfFfpDMYf4S8N29xzsfzygdOznYAHibYRCxx2Liu5WyWvI3jbJpQC15OuKQXpyf0tjZ+wObfy7IPF2/XB1Ebi9nBZuoSbyBtPBK2t+I2iU8qDoua7ig71pLYLtYz/g99huOMj0lvJ1F/dNn9Jr2doGU1iVnHRRtsACaPzbeVPR4cNtdEbvttuLArCky9GEHzE6Oa12iPN91bSNQfOapzAPy9y4nXHkpy3mnjDr/Drk3gwmjuPQGz9Umv+zm1J/wbrqc1TPdWgngVNt9K5ZK/wQyxuGM5QWNUyezCkffkd84QdqwlOfcVxcrzoU+wuHwLQdNjVC49B+d34rdErUHC9rXYXFMx/Pb3PIQXryRedRCm46UofHYWm2siaHseYhXkd/4fzvj0tLbpqQ7vz3RvjSrTC8/fgIDc+sUFL4ub8s3RuCaL3/jXgWPbAL955ZAPd8hA2wb4TSsJmp+kItOAlzjw1jMQEREREZlpFH6LyIRozEXhyuoOx/G1Hn9qzGCsodUff4C8udviTDteYiEQhTOe11sB62yhSjJsAHq/sm/CXcQTh4zqWs5lyJgKcHmMVfg90TzPA+Kcs/h0CA+85DsVg2XVWWa3ryluq/U3cUx9hrrujbyhdjkrvNeWnPPK7mug9oODjjnP7sDjKCazRb0NujHpHbh8KyGUDcDDjnX4e/9SUrntnCFoenzAsT0y668ms/FX4Cy5nXeRnHfaqOfmTI6wc8OgoXx/Pa04bNBNLFk74uuY7i3gxUjOO3XUc+wvaF4FQH73Q3he9E2I/J5HCFpWk1rwGrx41BLI3/0guc3Xk1r8NvyKOSVVyiMV9nmtjYTLNRM0rQQbYv3BPrgYKGh/kfyeR8Fki21rgtanCQuvh57FH/2mx7FBV9T3O+ima/X/hymE0D39toOmvzJcOySbbyLf8EDxftixtt/+gXPvG5AP9rzYMr3DSwzzgUBPoJ7b8gdSi98afWMgWU+8auHQ44qIiIiIyKQ48BqtisikyIZR9Z0pJHA7syHNQQ15O/5IbnM6wPXt5e2yJfutacWGDTiXB9dbaW6DLTg3yspzFxC6GM7l8Sagf7iUinkxwGNOctF0T2VaHFzpszDWTGWwo7htVveTHOOtZX73Xzim4/dUx0t7WC/suJ9lweCL7FXYjklf9NIF3Ti/HZPeQdhWvs2I9Vuxub2Yro19zxyyWjlsX4NNR8+FSe8YVYVy7yVCgpanR3y4LVQDm65No7pM0LIa07UZJuAbIbbwnNjs7mJ1ddD8BC7fQti+prgt7FiP3/QYNreXsP1FTKZh9BdzdlRzNrkmwq7N0YcYI2h70sNmGggaV5Df+yjFBUlNjrDjRUzXJkzHumg6fhtB8ypsrhkXdOI3Lo9a4jhXbGHiwsywrwWbaSgJv/u/zmy/qu8BBn1Oxvue5QAXVZnbENO9bUwfWoiIiIiIyMRQ5beIjNuHl9/I+s5mAK7Z2k2iUND756bR9acdzK6coW8gYU0T8VhUsemcw/gv4nlVONuGK1R+h/mnybR9l7pFv8OLzxl0bOcCcCFerIquPX9PRf2HaAtT5DqvIgzmTcj8JXLC7MXMTtaBA8/NkFUaJ1jc6/0AqJyjE1s4PL+cWd2ri9uq81s4tutGarLrSIQdHD+7tIK1OreRkxouG3TMY5t/SrL+3QST+EUFm2vEdG+JWlNYH5tvJrX4bSRqe9sMlQv4XNCFHaK3Td/K4tyWP5CoP3b0k3N2VAsLms6NNN58JLUnf43k3FeM/LzMLoLWZ6k+9l9GP8d+evpTm+4tOBN9mNfz/IXta6Ne6UDQ8mTUB73piWihyLF8ODBaJkt2029wQcfwx/bhwu5C1X/pn3fYHr2eczvv7t1oe98beh530Pp0yQKZI5HbemPvOPk2nA3xYtH/2o52rMnSU+WfmHVMtJioFy98A6aXswFeLDkd0xMRERER2e+p8ltExq0h04EpVNHlrSNdSP8aR9AudiSyxoKLFstzLsT4Lxb3ObMb47+ItS0452MLleYm2AEuh7NDf23fhruwJgrurWnE2U5e6q4gDPcSTkDV+lRKeDP7R3plLEnci+GIEaP8oon7kvoyWdXcCkvVELl+rW1lbuYpvH7VpfO6lgOQCNtK+oEDeDiSYcugY1ZlN1IZH/lrNT6GbjMu6CJofQa/4U8Ebc9HVbb9FrAs1wvZBZ04v3XQcftWMhergMfChsMe4lyhh3S+BdO9vVhxPhLOGnAm6iE92m+TlFFcVNFZnF9aoRy0r8F0ri/sj65l/Tb8pseLQfJks/lmXJgZ5TktuKALkyl9Xk22gaD1GcK2Z8ue1xNS+3seGXaxyQFK/iwcLuj9cKCn0nw6OZMjaFmFKy76GkKfRUudc9h8KzbXPE0zFBERERHZ/83spERE9gmdQfkK78aJKfymI7D4+SgMsuFuTFD4arwzWNtJEOzCmTbyrp6mIEoeo0UwKQbbg8l2XIkNt+CcDxicy7KixWJcnHDfyr45vHb+dE9hSPMqZpOKVWBMBfn86Hqxz0RvTz08YNt57je8smbwnsGVroODW28asL06F7UKibs8x+z+7oD9/cPyvhI2zZEVQyzC1/dYDw6tHv1fTBt0Ena8RNixFn/vXzCd63FBuvSYfPmAfqgQ1XS8VHK/p0p2tJwd/jG5MI0z+ahVhguj0LHfYxiMzTZErTiCzmiRxXHK96mC7l/N7fItA0LgsOMlnN9WWLBxCoyi3UnxlOwegvY1BI1/LdkeNK8maHpi0DYjPc9n2PbsoAH5SJns7mhMZ0mv+/m4xpoIYdtz5LbdErXLIfrw1oXdUQU40Z99ZsOvyO9+cDqnKSIiIiKyX1P4LSLj1j1I+P1Em192+1ik/Z5AMSwE1eBsJzbcRejimHAnDf4sugMfa9qL4bfxh17szYZ7CLLLCTJR71hnmrmjIYslSd7uOwsyenjMStVM9zSGFCNGbbweY1O4/aDtyaxwK/VJmJ2KgulX1reyILOSY/xHqez38OqTUBGHxelHJ2UuC9zIekEvqgyZF+8a/sD+nC305E5HfZy7NpdU+LowU1y0cDxsdu+YzutZyDAo9CN3tkx1tslHiyAWqnBNdjfOb8WNoB+2zTVjC4s42tzY5licq/GHbV9isv3+PMcQRk8Hm9k9YJsLuwY+nkmSXX8V2a03EbavnboPCoZgCt+G8Pc8jLNB1DLIb+9deNMGOJMn7FiLzQ3+7Q4RERERERk7hd8iMm45U77lwF9bJqjvCWCC7dENF+BsFBzYsIEwt4qcq8YPu1jbXQXhdkzwEjaMwpYwH1USDrbwpbPtBNlHyHb8AoAgaKQtMBgSdA/fSWHGSMZi1CdmdvidiqVIMQvrErj94O1nQfpxDq5IszgVBZlv7vguB7XewjF7f8CsZGmgelhlB/UJy6FNv5yUudSbgaFjOUuTzcxmDCGbDUoWiHR+W0l1ctjxEnYsizH258b2l8760Ydd+R13RPfL9AC3QUdUQV3osR22vYDNt+L84Xtbh53rcYX+5GYU7VLKcXb4DwUHPpf7yNdQyv35OTtl4X36xSvoXPmp4uKh067wWgvansXfuxzTvZWgeRVh5wYAXJgFmydoXhX1dxcRERERkQm376cPIjJtbBhVQPoj6Lc7XnG7B4gWqLQmqqZztpkwv5oGfzatZj7Pd3qk7FpsuAsTFNopuKAw19KqVOfyWNtZCGtCcIWv3tsosL+3eSk37Ji4yvXJdljNPJZUHj3d0xhS3Etgw4Omexrj9tr6XbypfiOz0k+yLLaV2liG6gTM7Y76VaeCRt4Yf4C5qd7A8hj3LIdVTF4YVxcOX3V9eE2eV2Zu4FD/CQ6pGtnfWVvooexcWNpPuXt7yWKDue23jW7CE62nN3bQiTM+Jr0dF5Z++JbfeQ+5bTcV22+Yro2YzC7yDfcPO3zQtLJ4uye4HPtUs+M6X4Zms3sImp+Y7mmUsJlddK76N7qe/Rb5XfcStj4DRB+E5HfdS9C0kvzuP0/vJEVERERE9lMKv0VkzPxMFBqFdvi2AePluZ4gy8e6oBheW2d4uLmKRr+K9sCRcG2EudV9en5HgaOz7SXjmWBLVEHupUq228J1/nt9nifaJq5yfbItrp6HZ+dM9zSG5Hkefjizq9NH4vDwKU5v/zFV/g4WhBuZx17qEpbqXNTXN+7yHNH+R+Ymo3ZAHnBo+k8c5Ea5mN8oJO3wfagPje9mcftt1PlbmJ0YWQAbND0e3XCWvtXHLuwmaFldvB92rB/VfCdasa+4yeNMFpPeQdi1seSYsHMD+V339jknTX7n/5HdeO2w45s+leTjXpzQ7Ds/V/ZNbsYFyS7MELY+g7/3EWy+pc/8HEHrs7igk6D16Wmdo4iIiIjI/krht4iMWWM6WnjSuMn/Sn5zOB/nDCbcSWB9bLgbnE+eOdy4M09DPsWmboPDEeajr49nvSOwhcDO2Q5MELVtcM4SZv8CzufaPacBFQB8aM2ZNPlVAKztmvlV38lYnFnJSg6tmcuyipNghvbRPqiqDoAYM3N+oxVzIQe13gzA8Y3fZ0GwnpNSpdXA8zvu57X2TuIezKlwLGn+Da/f8ZFJm9Oyxp9SMczTe2jwNNW59Sxt+g2nhfdwdt2zzK8Y+u9u+oX/AcovWunCDKZ7O865Cen3PR4234zf9ATO5km/8ANy228tzr3PQZjuLSWbMuuvxh+mSjhsf6lkIU5nBl/Ac0RzDcbQc11GxYyzOn+yuDCLv/cvBK1Pkd1yI65PD3p/zyO0/+WD0zxDEREREZH9j8JvERkTE+7knsZKAMJB+mlPpC3ZWpzZiwmbaPAXgPOxJoPvKljfHdAVxGjMW4yLAQZIsjM/j9BV4ZzF2TQm2IZzITbchTV7cC7Pn5sMOW8xAPftzdARpoacx3SoSZSf05xUFS+fs4yFlfXganAuTsyLFumMeR7J2MwIm1OxJABJb+Y9tyPVd+nTGAGxQjudqtwWqkwjh+eXlxwfd3lm5zdQnYDKmCFus1QEk7foX8q0kxhmfdZK20rMGRK2i/nZp6izjdQnhv6QJ+zciLMhJl2+at1vXBEtgNn+wlinPiHCjnUEzStxQZqg7TlM50ZM1yaciarvnQ2i0Ln/4pY2j8u3RosRDsKZXGmrEjP2D8acs5hprpI/MMzQHunWx4VpTHoHNre3tNrb+pjsnumbm4iIiIjIfkrht4iMSZBdyc83ZwmtoSU/vkrIkbhjT5zupk/TldvEmq4arGmhPbueB1sW0RVaukJo8Q3WRQlgizuW0x8OSbs6nGnGuSy5jp9gwx1kWr+OsxlwPk+25vnXNYcASbLGkTEzIzDu6w0LTyq7/YjagziY8zix+k1k8wvIBfXMq4jaiiyoqOWouoVTOc1BVcZ7wu/6aZ7J2NUkem9Xmrbi7ZgLOH7X15mXHlg9fMTe/2VWMqA6NjWL/VXEhw78Uqa9eHtp0685pu1XvN7eTqrM/wmYbCM214zp3krYuWHQPtedT36esGNtcTHI6WK6NpJ+8X+xfjumYx1B8xP4e/9CfvdDAOQb/gSFIHwghxuiFUnQvqbYUxwYMigfTtixju7nvzPm82Uf50z0y+QIO17C3/uXkt02s3OaJiYiIiIisv9S+C0iQ3LO4AptTZwLC7/neaG7lhc706zvbMJOQduTx1sDnPPxbBM542FNEx2mmrv3RJWcq9otTfmQnI2C1r1+FAK/lJ5LkH0EG+7GuSzO5XC2A2vbyGWfoj0w7MwZdpkTAWjIJ8pPYBqlBqmYnpWsBcDa3v09xb8vn304c1K1kz21EVlaHYXwnpk1rfOYnXJUJSDmQW1ydOcuqojC0WQMUmZg0Fuffa78NeM5qqYo/E7FLB5QV+axeVCsVu9Rn36GOfm1LKwM6V8pGzSuIOx4CZzB+R24QVp1uKCL7JY/TMwDGCcXdGOzu7F9gnibb4paTTTcDwy+NoHNt0ZjlAm2c1tvwgV9eqq7AGfD4s/F0QhbnyZsf3HU58n+xwXdhF2bS7aFHeuxfuc0zUhEREREZP+k8FtEhmSDLeCi4CfMRwvcWdPC460W31oe2DU1vVVf6sqDy4MLafTBBptoC5LctCua23Xbu8kax/NdUejdEUYV3Dc1xPEzdxEGG8HlcaYJZ1vJmxx+5j7SxvFse553PhYlhs+0D9M7YhokYuWT2jnJ+QBY27u/p+3JwcnTWZCaP/mTG4GDKw6jOpEkm583rfNYUtHFwpRPMgaLUqNbdPDIWBRSLagIqcsNbFvRs9hlf/O9JhKEo5/sGByU6CQRgxOqBrZXqUkODO2TYSuL2u7ktNgqUq70+cjveYig+UnAYbN7Sha37MsFnWQ3XjNRD2FcbG4vJr0d26d1hM3uxeaayDf8qTTA7qfn8eUbHigdM0jjNy7HBR292/xO/L3LcX4Ho+HCLPld9+HC4Rcnx7R19wAAa+xJREFUlf2fSW8naCxtl4QLS16/IiIiIiIyfgq/RWRQJtiECdYT+i+R776dTOYx/MwDdPoBmTDqe/vHrc9OyVyyxgEGQ4K1XRYTbMJz3QOOu3a7xXgLachGgXDGOKxpIxf6WG8+JtgKwPrMYizJ4tg7MlHF55bM4NWhfU1WP+1XzT+y5H7Ci1HjlQ+x40QV32Gfyu/XzHs5r5p/JM4kScUqJmWOo+W5OIfXLgBvej9YSGA4LrGBw6oyxLyhq3YrC3+8cyscHrA4eJ64B4sSndRlyld5l1Pvmkl4UxN+n+bfyrLqLCdnb+GgSkOyzzv80oo087qWDzgnFTTy8pYfYhpL2y8ELU8Tdm+Nbrc9ix1iQcvxtAGZaDbXWHI/bFtDbtc9mPQOgrbB/9zC1mewQZrM2h+XbHdhGleoCu8d8zky636OzbcMO5/u576Ds6YwVoawa+NIH4rs5wZ7PfZ8w0pERERERCaGwm8RGZQJNmPN3igAz/2VpzqqCHOraM/tJh1G/XOfaN4xodeMDRmQxjEuzs6swYQNxBjYw/evLTlazSJeLOTi6zsDcGny1pB287BmL3jVPNVRiaG3xUlPFLotPbIgb3aqaoSPaHSOrD665H7M8/CoKXtsgqitibG9P8pnxQ7l+JrTsC5J0pucOY6WR5I5ybrpngZJL2Bh8BILYq14wyyIt7Aieh0sSqapTPz/7d15fBvVuT/+z4x2yfsex87qmCQQIJBwE5YGylbCDoXCLWUp26WF0pYfLS23QNsLpdAFSrnsELjfEnYSAoQSIAkhCdkJkH1xnHjfLVvbbOf3h2LFimVZtmXLUj5vXnkhz5w580jHI9vPHD0HyFR2QZaAbKkFDiX273mb0QEnhmem74Sm5zBJ2olczxoUWdyhBD4AFMl1cPp7Jl5NIoAc93IY7d+EbTf8jTC8wecZqPkk6nlH1Ezmwxa01Nw7odQtg1DbYfhqez1MbdkMvXMf1Jbwm3mGvxGHl4Qx/A1QGlbC8Nf3GY53x7PQ2rcdDE2BCCS2NjqNHIffVAlt7+cnCoiIiIiIKDomv4kojDB8ULzBReLWtVrh0xQono/w130TsLS+GR/VA7bA68iQgokk1dCjdddvBfZgkjTP1jPh+5vds1EdyMKaZj9UpEEzeibKOzQD31/vwosVwYTcroPJbLfuwi+3FMCtCvx9/0zUBQBd9Cwn8nW7ElOc5xTOifk59YdFCq/TfVLuREBEviEgCXvw/9Kht3J/YBT8/tFQNTvMknNQsZilwf2IkCUJJ+dPgmRkwWVOXCI+1yYwLd2NC+t+hLHt7+B7dT9Ghhw9YXuO/n8AgHTZg6OdTbDpzZiVth9TPW/369zT6/4bM9zPDDj2/nD692Jyx+vI7liJc9x/QJm9BaaD9c2nd8yLeqzoVmdYc++C3lkBteUrAIDatCb6iY3YrplE0Fq/QaDqgz7bKXXL4K98O6y2uaG0hxLXhzN8NdC9PcvLdPHvXwih+aB7q0KlVJSGVZz5TX1qW/EjCM2X6DCIiIiIiFIGk99EFEaITqh6cOZZva8DOz3p0AWwvlVFrV/Frk4N+7wOdGr9q5ncXbTZ3aXOXMiSBJe5Z8mOj+r9qPLb4NEFDJjhNSKXHtncFkCrGkzKt6sGABlNih2rW/zQDBXLmzR0aIDX6JmQVWNYxE6CBLNe1Ge7geh+eotswlhnGXp7tQR6Ls5pCDMMYQYkCbIRecZ4LCyyCXbT4Bb/tMlmFNuLoRt22GT7oPoajNFWN1ySBxmer5DZuQ7pns1w9TEbO0OpgEUGclGPLDTDqjagyNiNovbF/Tq3078XuR0r+m4YJ06lEmbDg6yO1RiNCphlwCwJZHo3Rj3O6FbTWm3eCBjKoeTuCCpr0l9C8/S6WGdYO7UDavP6YHthQAgBoXkQOPB+LwcYEGrPsktdAjVLIAwFEHpoxrneuS+pX0saHnrHHvirPkx0GEREREREKYPJbyIK0+bbh4W1BgytFopWh12dPmzzjYNf8+L5ig7c860bp3yu4PUDAy91MCm9oNd9BbY8HJM1GkWOrB772hUdbx/Mx3UaaXi6Ira3MEPKxqvVFlT5NATUBixr9OKFig5M+mRgyd10iw2a7kS6Jf41taVuNwZOyT8Kqu8YiMPeql1mK2yyGb5ATtS+vIH8AcdxXHYpTIOc+T0poxBOOReGYUKWedSg+hooiwxcUXcZXAgmKi0Hb+xM9v876nGSUHFsWhNOq74Vk72LkNf+CTLVfXD0srBlNJHKjQyVvPZgiRJnoAJn7Z2Lma79SDPpyOxcH/U4oR+6mdW2/OrgA33gN7hGjr5vZnW109q2oWuBT72zEoa/CWrbN70eoTb3/pqqTeuhNn4JAPB8+yh0bw10T2U/4qYjmXvtzxIdAhERERFRymDym4gAAMLwQxid8Pp3IqB5oOpu7OkMoMbTjlUtVuRYwj+G3a4OrNSBBAnjXMW97k8zpWOCawxKHKNxdFZ4u3bNwKcNwYRcm+aEFmNea4PnKFR6gjPBG9XgbGivHmtSrKdMiwOqbkN5enxnf5el50Pq9rZslg4m50V4kt5ltuKYrNHo+y3cBJtshtTr3PHe5VlzIA8y+Z1vy4YkrNCFGZKeO6i+Bh6DDpvSgDHK2rDtZsMb9Ti7Woep6grYlFrkuz8FAOT4NkMWI7fERySTlM9RZtkfc/tA7TLEnjBOLbonWONc79gLvXMfhO6LWqNb74yczBbCgO6tgr/y3dA2//4FLGVBMTNYG56IiIiIKG4G95l2IkoZhtECobegoqMJOzscqOpswVZ3B9JNAbxV5cFoe3h97FZlYLW+s6x2FJmmA9gUcb9FdsEqMqEGxuGEjFxsaVsQ2qcLoCGgAQA2ux3QRGwxnP3FoaTT1247AGVQ6b3RzlwAMsrTJmNT634YMZRKMUky9MMW4zvcf2SfBBiHZpPbZRtgALoRXjLEJMkoSyuDiGFi7lGZRajxtqIp0L+Z+pnmLERdezQG+dYiQNgghAk+Jfos9aEyxbIHVq0BZY1Phm23a3VRj8tp/wz5bcESJ5meYMmQ4ubXhibIIXTcgbswOvPcvhsaGgzFDfe6Xwx9UCOVEVxA11A7oNR+CkvuCdA7K3ptLlR3xO1a+w4Y3mr4qxaFtvn2zoc5oyy+8VLqMnou5kxERERERAPDmd9EBE3ZinbFi6bOLfimvQMdShvcSgOa/T58VOeHWxX42h3+x3h/Zk53L59R6MiEqqfDKofX655bPAOZFjtMwg7oRTAMc9gs6MOtbAa2uvtfP7c+DjkFqxy8b2hDDi4vmYOzio6N2v6ojEIUOdJDX5+SXw6L3LNeuUVKgyGsoa9d5gwAgKrbkG0N1ic3STKsshk2PbZE2tT0KTgt//iY2nYpcmTAJiZAHsCM8S6jnZmwwAVdS++78RCRAIxR1gEArGpT2L4szwZYevn2MkuASaRO8ind23vpji66twqerY9xdjIAw1cLf9UH8PexUKYRaA49FgdvbAk9gMCBRQf7OXSDRWvbEppZTtQnYUDoyfUpEyIiIiKikYrJbyKCruyAx7cD7sABvF0dgFf1YX9nO3Z0BFDpVWNaBDIaW7dEb5rZDk23wWW2hrXJk05EusUOGOkIqOkITjvuPfn6QZ0PFZ7+J7/rAoMv6WCRg7PgDT0TFvV4jLZMj9p+vGs0Sp2H6m+XOsZGrBcuhAyI4GtlkmSY4Ti43YQzCmbAJpuRZXWg0J4Fv5oZU6xWYywy5HExte0yypEFv5ITSvIPxFHppTBJDii6c8B9DJZZBsa1zgdwqNZ3l3TvN0i3RP5ecPWyPVnZ1Jo+22gtX8O355WwhO2RKlD7KfT27dBaNkdtJ7RDpXOE0gYA0D1VwYUtAaDbJz2E0tpnf0TdCYPJbyIiIiKieGDym4iwshmo97diYa2CpQ0+vFfrQYXHjX1eLS79z8wrQ6krG98vnYNJrnIAwMl5R4f259pc8CsZ+G7e2RDdZj5LUSoz1fkHFttbVYOf2WqRgsnvgJoGzbBCVbPD9h++UGSheTrGOccBAGyyGWatHEX2nslrCSaIg8lvq2wKq7lt107EhPR8jE/LR4lzdMyxBpQsQFj7bNelyJGO0Y5CAIg4Oz1WWdZsGFrGgI8frFkZdTjXtQHpB0uWRJJpjnzz5Brjb0MV1ohl+Ouhe/ZDqO19N05xgf0LAQC6tzpqO2GoMNQO6J5q+CvfhjBUqE1rwpLe3RmBpojbiSJRapYkOgQiIiIiopTA5DcRoS3QgFXNAt+2B2thNysGKjo649Z/msmFYzPL4JLGwCwFZwLnWcZBPlhUempmSXCmt54TttaeJGwDWqwxmq6a4YNhNwVrcIuDb6GaYUWezRXa7zAdStpLkKCoGbAimAguSy+AorngMPec+W3oLhgHk98usxWSOFRnXTOsGOscBZfZAbvk6nFsb4IxRn+rt8gmWGQTJEhwmmzIlaYFY+9W9Lu/42CTnNB0R7+OiaciYy9GB9ZBjlIX3ixF3lfQsXyowhrZjP5/kiIVCS1YH1+oHdHbqe3QWr6C5t6BQM2nEKoHvoo3IARfRxq83hZUJSIiIiKi/uGCl0RHOEOrxZ6ONhzwA69UHkp4b3V7oxzVPznmEshwQVVzoOmjAAA+3wR8v+R0vHFgKcbZpyDgR49SHt5AEU4rmIzPG7bFLZZ4cGkzcHh6q9iZHVpUssgRfB67OxoxPWcMdMMC3V8Gm2xGibMQ0AGL1PPtV9Md0AwrMix2TMkshd8/MWx/hn4WCux7IBlZ6FcKX/SeuB7jysHpWVfAr2aiWV6MfGsRfP48AEC6+dBCm0dnFaPB344Gf983RewmM6zIg8+IfcZ5vB3T8k+0OY6L2maStAO7cHyP7fYAk04EoI8FdYXaAe+e/4PasBqGvxGB6o8QqPkYtqI5wxQgpTKleR1iv81JRERERES94cxvoiOc4t+AtS1+WNAStn1dqz9u55BFLgAzDCP8LcchJsIsycDBhHgkRbaisFnVI4HWR1J3rKsIRfYcOEwWlDiKQtuLHBlwmoIz3w+vp22RTdD04EzvsvRCjHMcFbFvXRmNgNq/ciICh0qpdJdjc2KMMw+KFowpzZwGm3ToBsQEVykkSCh1ZcMsyT3KufQm35YOiMTdW5WlYI1vsxH9Bo5V+BCpsrxFaxyy2Ci16O07oftqIYwAfBXzAd0HI9DS94FEfdDduxMdAhERERFRSmDym+gI1+jZgc8bfaj1BcK2t6uR69YOhK7bIQw7jG5lPADAp+Qg2+YMLnDZm8BMHJ89sff9w8xltobKnXTXvSxIhjkTo+yjMMqRiSwcmn3sMFshS8EEdNeimV0yLfaDi3wC09JORsAXOfmtRngd+2IYMmRJQm63mwhW2YRpWWORZ8sL9WeTHIA4NNs7W56C0c5MnJx7AqyyBbm2KOPUzShnNgx9+G5YmLtlr11mIMsikOb5Gq7AvqjHZWr7YTcD9m73BNIsiFoqhag7pWktRKAZQmlD4MB7AAC1eUOCo6JUoDat5Y0UIiIiIqI4YPKb6AgmhIL36rPRGNCwqMYzJOcY7cyEplsRUCInTvNiSKja5J71sYdTlvVQ7epCe+RZ12OdxQCA8oxCZEgT4JJGY2b2sQhoh5LA0sH/AMAqh88ePzFnUuixohTGLXYA0HQ7Li+ZA7Nsgk0244ScsXCYLLBIFmTIxaF2FtkB4FAmWNEycFreTMiQUeocjRxrbDPO8605UIa43nf32doZlkOF4uc4NmOSvQEmocAViD5zMt+3HiU2H2ymQ8dnWeKzyCsdIYxAz228eUJxYvgaEh0CEREREVHSY/Kb6AimK7uwuM4PAaBTF322H4jJGWNgCEvE2dIAcHRGeZ99yFJ8F73srxJnTuhxljXyjOYsUykAYKyzEL5AEXz+UZDVYyG6zdKWu6VsLVL47O1Cy4TQYz3OtbINYYEUOAkWyQSH2YKxzlI4zBZYZSuEVhBqJ0GG0S1prek2mPUyABJcUhHMh5VN6U2GOQdCxNZ2oJwHq6pYZMBp1kOv7IymP2Kc/nWwjT968jvLsw65plY4TIc+5eCUuVgh9YOI3ydkiA4nDCXRIRARERERJT0mv4mOEELoEIbv0NdGJzo7FmCUtX1Iz1tgLY6636Yd22cfZql/ZT7iqciRjlJnsG53sSMT01xnRmwniTSUurJRbJ4JABCQeySxZ2bNgU0KJs+dpjQAwNziGShyZEAS2UP1FEK+k30+Lin6PkySCafkTUeefAICB+t9A4AJDgTUtLBjdN0Cs1YGXS2CWYotoW2RhnbW9yiHjkJbcMbtea61GGeuxWinhlybgE2txzGNj8bUj8O/F8f5F8Aq6RjvUjAzowEZ8tB8AoKIqN8EP4lCRERERDRYTH4THSGE8MDQqkJfa4FvUBcwIEtDO7PMjOizmNUYymPYZWefbYaKy2xHvjk4K7vYmQ1fIC9iO1134ZjMCfApub32pSgFMCNYOsQkBV+XHEsxsixO6ENcJgQAvIFCeP2jIEsmOKRs+JUsdP8xIBl2HP5jQRdmBLQ0qLoDFjm2GekShvZmRabJjxJTLQBgSvsryDWqkWfqQJ7FBwgd6Z7NMfVjEgEUdiyDRTKQIXuRL6oxxtg2hJETEcVOaNEX7SUiIiIior6ZEx0AEQ0PReuE17Ma6XoNJFM+3O3z8bstOXi7ujPu53KYLMiw2FHv74AJaX0f0AczEpf8HuMsgN8/Hj8acyFqlH1AL1UOFM2FXMdoKFEm6hmGDJ+vNFiwWsiYnV8Gk3Ahx5YORRu+52iTMmAyMnD4bQ+vvzC8mDYAIQ79mDi8VEsksiQBIv5laia4ApAhsNtjx/dbbkNVxlx8jnEoaH0fjc7/QIu1GOPEdsj9LBOQ416OY3PX4/j6P8JvKUFe++K4x05ENBBC9yc6BCIiIiKipMeZ30RHiDZFQZXXjU5Vg19TsdWThf1eDfGs9N1Vm/vY7FJMSg+WOzGM2BZJjMaUwOR3tjVY71uW7Mi25ERtaxLR4zQMM3DwNTIjDeMcEyCMdBTZi+ITbIxkkQ5xeJYbCMXWG4vU98xvl9mK7otmxkum7EGG7IHTDDiUCqSplbCbAJPhg11rhhUB2I02mHV3v/suCHwFe6AGsvBD5mKFRDRCCN3XdyMiIiIiIoqKyW+iI4RPqcTmlmZ80uTArvYa3L5Zx9rW+M4q+07BFJglGZOcR2OsYyIAQNUGX85DGIOfPT5QaVI+AEBXC+HCxKhthZ4evbNuyWWffwzM+kT4lSyYA7MHHWd/+HxFGMgHf+QYjilx5gDCPoCoorNJARShCulmAy7fTpTV/Q3pluA0/EL3xyjStiNH2QmL3v8a9pNr/gir1gCbWhfvsImIBszwNyc6BCIiIiKipMfk9yBJkhTTv9NPP73PvhYvXoxLL70UJSUlsNlsKCkpwaWXXorFi/kxfBq8pkAAb9cY6NR0SNoObHPHt9Z3sSMTY+yTMSN3AiBJkCUrJEgQYvBvM9ph9bAtcvjMYrmPGcsDlWGxQzKCNbxV3QZVjT6LPdDH/sPpum3AsQ2KJEFR+0jURyBLfY9lhsUBKdKs8kGyQMEoZRNk6dBnFcZYWwEANqUOpe4PkOtdPahzOPyVgzqeiCieNPfORIdARERERJT0mPweAQzDwE033YS5c+diwYIFqK6uhqIoqK6uxoIFCzB37lzcfPPNMIxeig0TxWBbewALazxQ9QA2t/mgingWPAEmZ5ZCaAWY4JwESUiQjUxMTM+DIQa/tIBuhCe7yzMKw77Otw3NzPB8ezp8SjYAQAgTNCN62Q/Rz3IfffU3lPQBnFuW+h5Lh8kelxseh7PDh6LO5ZC6FeqZrK0M7lOrUdT6LnLblw7qHGajY1DHExHFk9qwKtEhEBERERElPS54GSe33XYbfvKTn/S63+Vy9brv3nvvxQsvvAAAmD59On71q19h4sSJ2LNnDx555BFs2rQJzz//PPLz8/HQQw/FPXY6Mni0NgBAqfkrPLkv/otojbaOh+JPg9koAyQdAd2GE7OPhYjDqQxhCs4iP5j4LHUUYUtbTWj/KEcW6v0dkCUJ2VYnmgOeQZ3PLMnQhAG73PcCj0cSKYbkvkkyQTfiX/bEKvzI8GzE99Lnh7ZNbvxH3M9DRDRSqC2bYATaINuyEh0KEREREVHSYvI7TgoKCnDMMcf0+7idO3fiL3/5CwBgxowZ+Pzzz+FwBEs8zJw5ExdddBHmzJmD9evX49FHH8WPf/xjlJWVxTV2Sn3C8EDXmgAAkuHGly3xT37LSIOADLVbiRInCuGNU+9OswUeLViqxWUOn+ld6hyFr1oPwG4yo8iROejkd6bVgeaAByaZH47pTo7hw0IWyQxNj/9NAwEBm1qHSfWPhbale7+J+3mIiEYKoboPLnqZlehQiIiIiIiSFjM7CfbYY49B0zQAwBNPPBFKfHdxOp144oknAACapuHvf//7sMdII5cwfGFfa4FNEdt5Wu7Hzo5gSYer1vnRrMS3hM6Pxl4Ev390j+1ef3HczpF3sLTJ+LRcpEnBc01KL8BVY85CjnQsyjMKMD4tH2nmwc86HuvKAwDk27IH3VdK6aOEzfi0XFhlGwwR/3IuVhH8XncoVXHvm4hopFLqlic6BCIiIiKipMbkdwIJIbBw4UIAwOTJkzFr1qyI7WbNmoWjjjoKALBw4UKIONdqpuQkhA5d3Ru2TfF+HLFtq5qB5Q0BAEC7Gv/a8SaRDhHx7SR+bzF59uBikmlmOyCcAIBRjhzYRBEULR0TXCUYZc+DpVtdarvJPKDFMF0HE+jmGGpcH0kk4cCkjALY5Mivy5SM8bCbnENybhO0IemXiGgk0zr2JDoEIiIiIqKkxuR3AlVUVKCmJli3eM6cOVHbdu2vrq7Gvn37hjo0SgLCaIfifR9CGDD0dgCArlb0bCcCuHpDGr52B4YsFk3LHLK+uxzjPA0AYJUt8PlzIEsSMizp8AWKoRsWZJgzkWvNh0k+VJf6+OxxKLCn9/tchbYiyJIEWeJbZHe+QDGm26/H0Vk9Z/kDQL65HHZ90pCc26XXD0m/REQjmVDbEx0CEREREVFS47TGOHnzzTfxxhtvYN++fTCZTCgqKsLJJ5+M66+/HmeccUbEY7Zu3Rp6PHny5Kj9d9+/bds2jB8/vl/xVVVFLxVQW1vbr/4o8QytFkJvhhCdEEYTlMBG6IYPwvBDkg+V/jB0NyzS0CS+p2SOwrb2WhhG/MtcHE7Xgwn2LGsaYEgosmdA7rYAo1mywYIc2OUWAECRIx1lrino1Hyo87n7dS6HlI18WxpcpjRwwnFP6ZaeC/hKkCAJK/Q+SqMMxFFpXhS3fRr3fomIRjqhD92NayIiIiKiIwGT33HSPZENALt378bu3bvxyiuv4JJLLsG8efOQmRk+O7Z7QrqkpCRq/6WlpaHHBw4c6Hd83Y+n1KCr22HozdD86yGbsuF3v4AtnrGYbbRAkg/V2vZqPjjl+C9wCQD/kXEOaryvQxuG5LeiOmCTzci3FsHwAxlWR9jMbJNkh6bkINdSBAA4OnMcFN8UZFt39ftckpGHHFsaHHI2mHboKc3UM/ltlmUImKAb8V/scra2EEWt78a9XyKikc7wNyQ6BCIiIiKipMbP9A+S0+nEVVddheeeew4rVqzApk2b8PHHH+Pee+9Fbm4uAGDBggW4+OKLoapq2LEdBxcgBIC0tLSo53G5DiWbOjs74/gMKFkZeiOE0Q5d+RaqbzWE0YJ/VVnRrmjBfUIBALT5KvFV2+BSuKaDSeZs66EFWc8oPBreQD4uKv7eoPqOmSThytILYNXLAADpZgcyTd3Kb6jFUHU7zMYYAECGOVgjfJw9+qcqTJIM68FSKdeMvQAT0vLgV7JwQuYJgBq/BTtTSZ7pWBybHbxhZz74vTElcxRUNQ26Hv/kt83o38x9IqJUobv7fwOXiIiIiIgO4czvQaqurkZWVlaP7WeffTbuuOMOnHfeedi0aROWL1+Op556Cj/72c9Cbfz+Q7NxrdboM2dtNlvosc/n63ecfc0Wr62txUknndTvfilxDK0GgAFDb4QW2AyIAPZ4dDQrAg5tMSyOU2CyTERArUeNf3C1OzKtdrQEvPiP3Cn4qHYjACDbmgMEZKj+/pXgGQzFPxFCBBPVTrMdQj/0aYqAFryBFFCD/zdLB68pLXoCO9NqR6bFgRpvOxTfVIx27gIgQ1LHI6APzeKNyc4XyEWRPRdfowpW2QRNN5BjzYBm2ID+ry/aJ/ngjRwioiON7q1JdAhEREREREmNye9BipT47lJYWIi33noLkydPhqqqeOKJJ8KS33b7obrMihI9uRMIHJq563A4orSMrK+yKpQ8hDAgSTIUXYcqsmHzr4EqjcL9e07E0oZOCHUzGrQDyJCakCG5sKd9cLPGSpxZOCZzAvKsJTDBjqvG5OKLpnWwSy5oAAwR/5m+velKfAPAWPsUBHxZEdv8qPgngFyDAABFCyawT80/Ck1KO7a314W1v7DwImhaPqQMA4oGpJldgAYoTHxHVST/B64eUwCzNgnvNDwPk2QCRPzPc1x6G7Jav4l/x0REScDw1cFQPdDdOyGEBmvezESHRERERESUVFj2ZIhNmDABZ599NoBgHfCamkMzeNLT00OP+ypl4vF4Qo/7KpFCKU4Eb4QowoomLRuADp9IwxeNClQhINTdeL/ehl0eCX7386j3D3zWrMNkwYnZk5FjKYRJZEIyHLAhC8dkjocFWfF5PgOl50D08hYW0NJgMoKzwgVkTEjLQ74tDyWOAlgOljixyCaYJBmGlgNVc0DRgqWFrJItYp8UTtWdsIni4GstyaHSOPGWIzXDorcNSd9ERCOfgO6phKG0Qmv9FkLnJ2GIiIiIiPqDye9hMHXq1NDj6urq0OPus7G7L34ZSfeyJVy88simBTbB0FuxqSMXb9ZmAJCxzp2Hr93BpPj6lg4sqe9AILAD7f79+MmmgdeIP61gKjJNJdD80+D1FcIbKITPPx4Z+tkIBEbF6RkNjF/JibrfGygMPT416xJkyBNQKH0HE9LyAACn5U9BiTMrVC6li0Ue+sU7U4FuWEOvsUmSIA/Rj5NMow457uVD0jcRUTLo2PAb+PbOR/vKH0NpXJ3ocIiIiIiIkgqT38NAkiIXwe2eFN++fXvUPrrvnzJlSnwCo6SkqzthaNWoC8hYUq9CSA60q4cu5Vf269jUpqAl0I67txXDow+sFoVZkpFrKYIkgslh6bCZvYaRPFWTDMMOYTigGxbIkoxT88sx2jYeTnPPWd4OKTsBESa3QkcmhqTYN4CiwKYh6ZeIKFlo7p1QW4LrbajNGxMcDRERERFRcmHyexhs3bo19Li4+NDie+PHjw99vXx59JmNn3/+OQBg9OjRGDduXPyDpKQghIDi+xyashnbO1Q0KzrqtDI8v08Ntfl3vReVXhXb21vwr/0Dn/U9Li0XFqMUutZLmZ1ebuqMRIrmhF/JgiEskCFhom0OZLjgMEWY5a0ndkZ7MproKu31Jt9gmCRgcs0f494vEVEy0du3QzuY9PZXvpXgaIiIiIiIkguT30OsoqICS5YsAQBMnDgRo0ePDu2TJAkXX3wxgODM7i+//DJiH19++WVo5vfFF188JEkmGvmEMKAr30LRdSjez9Do74QA8Jc9mVjV7O/R/t3avuuCOs2WHrWa7SYzTi+cigJ7FvxKFlQ9tWpgT80oh6K5YOhZODZ9Vo/9qmaPcBRFk2spRqF5at8N+8nMn1BERGFEoDXRIRARERERJRWmFgZh0aJF0DSt1/319fW4/PLLoSjBJORPfvKTHm1+/vOfw2QKLsB3xx13wOfzhe33+Xy44447AABmsxk///nP4xQ9JRthdMDQG1CrFkDV/dB0FUIA2zrUiO2/jJAQP1xZeiEyLOHJ3iyrAyX2MjhMdgAyBEzxCH/EcEmjoRtWBNQ0eH1je+w3hCUBUSU5PR9ef/xnzJt5n4+IKIzub0h0CERERERESSV5ivaOQHfccQdUVcXll1+O2bNnY9y4cXA4HGhqasKyZcvwzDPPoKmpCQBw6qmn4qc//WmPPsrLy3H33Xfj4Ycfxvr163HKKafg17/+NSZOnIg9e/bgz3/+MzZtCta8vfvuuzFp0qRhfY40MgihQPG8A9k0Cgvr0nHZqFFwawIVHhWV3oH1mWdzYVrGcSh11MNmsuOdA18AAMrTS2AWaciyZAGB+D2HkcIfKDj4iPf+4iWgZA5JvznWyDd2iIiOVCLQAkP1QLa4Eh0KEREREVFSYPJ7kGpqavDEE0/giSee6LXN5Zdfjueffx42W+TyEQ8++CAaGhrw4osvYtOmTbjqqqt6tLnxxhvxP//zP3GLm5KLoTdC8S6B4bgST+71otCegRqfAlUIYADrWZolGdOzJ8Is0pBhViHDAlmS4DRZMMF+AoSwIR0TMcC8+ojGmd3xN1SfDjBLA1uslYgodQlorZthLTg50YEQERERESUFJr8H4eWXX8by5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3bUfmRZxgsvvIDLL78czz77LNatW4empibk5eVh5syZuPXWW3HeeecN07OikUjojRBGJ/a2bUGdX8MtG92D6m9adgmK5FPh86cBGAubvQalzmycnncWvL7RfR5PNBwsUu9lpYiIjlSd3z6KnO++m+gwiIiIiIiSApPfgzBnzhzMmTMnbv3NnTsXc+fOjVt/lBo0/0boejO8GAUzOqK2TbfY0KH2XqukwJ4GWZLhMNmgaI7Qdl1Pg8NkhdCy4hU20YCVufxwygEUY3+iQyEiGnEMfwN0Xz1MjsJEh0JERERENOKx6C3RCOdpuR9e/1b8tWI0FCN62zkFx/a6L9Nix6l5x2Na5jiMc5SFlaoIqGmYmjkJfjUrTlETDdy5gSfxwwNz8J3qmxIdChHRiGN4qqE2rE50GERERERESYHJb6IRTBg+QHjRogAv7/NgWbMzYrsiRwYAINc0CRkWe8Q2kzNHIw1TYZWtkLSyw/bKcOq9J86JhovNBMhChVWtg1VtTHQ4REQjju6vhzBScEVqIiIiIqIhwOQ30YimAwAkowFtqo5n9voitiq0ZwIAhOFCrs0VsU2poxR+JQs2kwNqt5InXRQt8nFEwynHqsOqt0KCgNnwJDocIqKRR/cDQk90FERERERESYE1v4lGMGF48LcDczAtw4AmAtjtUXu0kSBhYtpYHJ92JvxKBmwmS8S+0uRCeAE49eOgDHHcRAN1vGULimreS3QYREQjmjB6/j5AREREREQ9ceY30QimGioe3O7GHk/vl6rNZIJdSocvUAAhTDBFuKzz7WnQtRwAgKJFLp1CNBJk6A2waC2JDoOIaEQTavQFsImIiIiIKIjJb6IRzK8L6AL4xh15pctMix0XFX8Hmn9aaNuEtBJMSi8IfZ1mtmJu3hUIqOlDHi/RYJW3PJfoEIiIRjx/5duJDoGIiIiIKCkw+U00gql6KwDg33U9a31bZBOmZpXAidKw7TmmKRjjKoAECQAwMb0Qhoi8CCbRSGKRAbtal+gwiIhGPM78JiIiIiKKDZPfRCNYwLcWANCk9FzYKsfqRLljJnQ9fPFKn78QJbbJGO0MLoJ5VFoZZ31TUsix6nD5tic6DCKiEU/3NyQ6BCIiIiKipMDkN9EIJhm9z4Id48qDqhRAN3rO6lYDJRjjyofdZIZTKh7KEInixmXSEh0CEVFSMPyNMJR2AIDm3gPd35jgiIiIiIiIRiYmv4lGMuHtdVexvQiaYYNmWHvs0wwrbLIVZxedAK9/9FBGSBQ3LjmQ6BCIiJKD7oc4mPxWGlfBYPKbiIiIiCgic6IDIKLebXJnAgj/g1aCBIfZjCxTKXxq78cW2UoAZQp6FkwhGnmKHTryJCZviIhi1br8KkgmO3RvFWR7ASzZ0yDZcpBxwoOJDo2IiIiIaMRg8ptoBFvd0nNbusWGAns6IJxRj7VI6fBHmBVONBKlmRQ4RXuiwyAiShpq4+rQY929C4a/CZLJBjD5TUREREQUwuQ30Qj2ZbPSY9u5RbPQqXcAIvrl6/eOB6ShiowovrJkN6a0v5roMIiIkpbu3gHZVZroMIiIiIiIRhTW/CYaYYRQoCk7YGh1UIyeCwC65FHIN0+IuNBlGImZb0oeDvhg05oSHQYRUXLTA1AavoQRaA1tEpo/gQERERERESUWk99EI4we+Baepl/C734eNb6eM79VJQ9+/3goWvSyJ0TJwmkGivQdyG9bnOhQiIiSmuFvQPOHsxGo/QwAIISA0vBFgqMiIiIiIkocJr+JRhhdqwBEALqyHZoI33d0ZjFU3ZGYwIiGSKFNwZjOfyc6DCKilGH4gwsI+3a9AN/ul6G2bUtwREREREREicHkN9EIIww3AAFDr0W7qoftG+XIS0xQREMoW+7AqObXEh0GEVHK0N07AAC+Pa/At/f/wb+XayoQERER0ZGJyW+iBBBGR8Ttht6OFsWE52vnYIdyEtpUI2y/WTINR3hEw8oh+SALve+GREQUk1DZE80b/LpuWQKjISIiIiJKHCa/iRJA9a+PuF1XtmBXpw/3be3Au7U9F7S0ytahDo1o2KWL1r4bERFRzHRvFQBA69wX/H/blgRGQ0RERESUOEx+Ew0zIXQYWlXEfYGOV6GqVfDqAn/d2Rm2rzyjANnS0cMRItGwytP3JjoEIqKUIgIt0D0HIALNwa+VVnh3vZjgqIiIiIiIhh+T30TDTkAY7RH3GEYrOrXgZamK4GqX49NyAQA51gyoevrwhEg0RKwykG87VM7HaQYKvasSGBERUWpSGteGfa17DkBr3wnNvTtBERERERERDT8mv4mGnQHFuyRsi67uBwB0iCLUBcLrep+c/kMAgMvsgKbbhidEoiEyxuHHNYHfhb6e6axAaeO8xAVERJSi2pZ9P+zrQM0naPn4HDR/eGqCIiIiIiIiGn5MfhMlggiEfan6V0BTduDLthw8W6GEtrvMVqi6Hcdnl6LAWjTcURLFnUNWYDGCJX2mpbsx2b84wRERER0Z1KZ1MFQ3DH8DhKEmOhwiIiIiomFhTnQAREccYQBQIQwvJNkJANCV7RBaPZ6rCGBTmz/U1CQF708dlzELuloAPRHxEsWRQ/LBZPgAGfiu5zGMr38y0SERER0ZjACEcvDmu6ECsiWx8RARERERDQPO/CYadsFa3pqyFYZWA2F0QhidUP1r0BAwwlqmmYNlTgL+Uiiaa9gjJYqHSWk+AECh3UCxsReZnetxbsYW5HcsS2hcRERHKs+2fyY6BCIiIiKiYcHkN9GwCya/hd4EXa2EpnwbnPltNMGvH5b8ttgBAIbghzQoeeXKbQAAl0lBvvIt7Go1yrwfwxqoSWxgRERHqI6vHoARaE10GEREREREQ47Jb6JhJ/Do/jkQIgDN/yW8LQ9CSE4IKRM7O5WwlidkTUtQjJSMih1aokOIqExbAwCYYKpEed2jAIBxDU/BorclMCoioiOY7kPju0eh89u/JjoSIiIiIqIhxeQ30bATePWAD4ZeD12vAYQX1dp4NBul0AVglmSMdmYi2+qEDQWJDpaSSJmlOtEh9CAByPV/C7MEpBnNsOjtAACL3g7p4KcgiIho+Bn+Rhjekfdzg4iIiIgonpj8JoqzzY0BGKL3pJ5qABUeFUrnO9ADGwEA79ZmoGxJcOGp43PG4LT0H+OCorPh85cMS8yU/MwSMLv10USH0YPNBBS2f4CJLi9Oqr070eEQEVE3vn1vJDoEIiIiIqIhxeQ3UZx926TiswP+XvfrBxPjAakYQkoDYEanfmh/sb0QhmGGZHDWNwUV2o0+20xNa4czsAeWg+/q09LdcI2AUvF5Vg0WtRkn6f+GTeEMQyKikUQordDcexIdBhERERHRkGHymyjOfJrAi992wKdFTlh2Jb8b1Fy4RQl80hi8U3UoWW6VHYAkwa9kD0u8NPIda93RZ5vvdv4NmZ6NcJqD31+XNt2EQltgqEPr0yhLCyx6O07c/18wGb5Eh0NERN0IzQtfxauJDoOIiIiIaMgw+U0UR9WdGra1KNAFsKyX2d+6kAAAijBhS2cufr19NHZ5Di10aZFswxIrJQeTBIwJrOl1f7ZVYG76V8jrWA4AuEx+FT90LkRG53qMN1UOV5gRSQCO0lYnNAYiIorOt/dVtK+6FbqnGkrTehiKu999KPUrhyAyIiIiIqLBY/KbKI72d2ioOljD5JP9PuhGz9rfhgjOCO/UTNjYZsYrlZ1h+y1wDX2glDQkAJmBnb3uH2Nrx8zGPyDNtw0AcNyBX2Jm5S0wGx5M9C8bniB7YZKA4s6lCY2BiIii09u3w7vzWejeamhtW6B7DvS7D6XxyyGIjIiIiIho8Jj8Jopgc2MAd3/eDC1C8jrqcQ2HZnBXdepoV4KJbkMIuAPBx10zv2/5SuCx3Z6w4/8jbwKUwNjBhE4pJt+uI9O3GQCQbgHGuwLIsABZVoEylx/fr78SLt+uiMeW1f0VszJqB3xuU/BbFWdm7MJoh4Z8W9+1x7vLshrIb/twwOcnIqLh07b8B/DvXwihtIRtNwKtUY8TQsCz7XF0fv0ndH7z56EMkYiIiIio35j8JjqMZgisqglgf4eO/R1an+19mgEhBBRdYFebGrbPHTCg6MF9W1qCiXFdGMiw2LGjQ0GTEpwlLkvBLGOGJR2GsMT5GVGyMktAgbkDGZ0bkGMVSDPryDe1wyYbmGRvRJapA+mezTDrkRMTVr0Npcb2AZ3bJAUT7C4zUKjvRLbZh2Jr/z4Kn2lWYNHbB3R+IiIaXnrnPqhNa2H4myH04JoRQleg1C2HMPRej9Nav4HhOQDNvRNq6zfB47XeF/4mIiIiIhpOTH4TddOhGPigwos1dcE/+r5tUvo4AnhsoxtbW1Qs2usNlTzpUtmh4Z3dHiyv8uOTyuBif7oALi36YVi747JLAQDFphnxeBqUIo5La8INe4+CBIH7qotwvvEy/nPPNEy1VeKHe6bhmj3HAABkofbaxykVV4VmcPfH9PQm/Nh/F37VcT5O2vdj3LS3DNlSS98HdjNN3tj/ExMRUcIY3mq0Lr0Und8+AgDwVbyG1qWXQmv9ukdbzb0HANCx4Z5g293z4N/7L9S/lofOb/40fEETEREREUVhTnQARCPJgQ4NSyp98GnBciebGhScXupAhjXyfaLqTg1eTWBTg4ImX89ZUStrAlB1gXqvDr8WnAHu02SoanpYu4muCUg3u6Drjvg/KUpaGVJb2Nelbe8AACb7/92vfia5PNjeGXsteacZmOmbD4dyAGneLaHt6aIZwISY+3Hpzf0Jk4iIRohA9cdwjL8Khrcq+HXNEuidlbAWnwm1eRNEoAVKw0pYC06B7qvrcbzasgm6vxEme/5wh05EREREFIbJb6JuPKpAo+9QXeOtLSq2NSv4j1H2iO1f2dqJWo8GCcCO1p6zbzc3hs8cdysGmrxWaIYVLrMVHi2436ZPQxFOgtL7p4rpCDRa/Sbs68zOdQCAKdX396ufs31PYDvuibn9OHsnjqr4H/isY2AyfKHtDqOfZU+UPf1qT0REI4Pa8AU82/4JI9AEAOjY8GsAQM73lqN91S3Q3TsAAJ4tf4l4fODAIqiNa2AqvWB4AiYiIiIi6gWT30TdfF7ds0blN00qsu0mlGeH1+LuUAxsaVagGcA+ve/a4ADwxk4POg8ugjklsxg13laUOHOhapzxTUGnZFRhpbsEACChfwtM9sapVgEy4DADvj6+Vaemd2Kq2AAAsGqNYfts/Uh+H5XmhcnHmq9ERMkqUL0Yh1dI9Hz7KHTP/piO9+58Fqa0sbBkTwMAdH79MCRrJlyTb4t3qEREREREvWLNb6KDmnw61h6s9d3dxoZAxNrfH1f6oBqAABDQRUznWF7lx4aGYF+51iyMTytEiXP0oOKm1HKM7z0AwcUurYYnLn3alSpIANLMfSfTy8U3mNLyFACEzfoGALsRe83v8dIemETP64mIiJKD7t4VmuHdJVD1PqD7ejkiXODAIqhN60Nfe7Y/wVrgRERERDTsmPympKbGmHTuy5paPx5a2xZxX7PfQIs/PGnY4NXx3h7voM5pkS0Y4xgPp37coPqh5HNGxm6UOnuWyfmBawlyfJsAABlWgbKGf8blfBmer3C3+AVu6rwVd4tfYk5GRWgRzCKHjrvFL3G3+CVOy6hEsX8NctqXRexnQsNTuFv8EmOdkReCnZbuhs0UfDzJ+wGKm9+KS/xERJScArWfAAA6v3kEhq8ehucAmt4/CZ6t/0hwZERERER0pGDym5Jap2pANwafAF9R7Ud1Z+8FtxsPW8yyUzXgH2Ti3SY7YJOyoGjOQfVDySdfr0SWKXjzRJa6bfdvhCuwB2YJyDIrcCiVcTmfyfChuOlVFLa+h9FN/0KhvhfpFgEJwBRLBUY3/Qujm/6FYn07bHoLJET+3nYoBzC66V+YYD4AkxScnW7uFv847ECWxYAEwBXYB6vWEJf4iYgoOemd+2CoHij1ywER/F1KbVoHtWVTgiMjIiIioiMFa35TUhMI1t7Ospv6fezXjQqOzbfCr4lQKZLefNWowKMacFmC94se29i/hf8iMQVmYXBzxykZmSRgVuWPsH/CegCZ+E/7u1iGC+HWzCir+RsA4C/ewiGNYVbldTgwYS38Njsu3nNKaLvV6IRdre3z+Iv3nIwxY57A9P13wGsvw2/TVwIAprS/Al9mOmrMJbA3Hhiy+ImIKDmoDatQ/6+0HtuNQGsCoiEiIiKiIxGT35T02gaQ/FZ1gdd3dgJIQ3Wnhlgmj1d36ih2AZCAtkB8FiKkI0+ezYAsdGSjCU5zMca6F2JqbjlaLAXDFoMsVEzU1qJTDk+yZyl7kdm5IaY+sv1bAABmzQ1ZAlxmwNFZg1zjADymTFjV5rjHTUREqUHovP1PRERERMODyW9Kes0+A+My+nfMnnYVu9s0PNhLne9Illf5kGWToRqxL3BJdLhMsx8AkKNVotQ+Efm1izG3bfGwxzGj8tYe2ybW/SXm48c1PA0AsGoNsJuASfZmZNd8gam6D1Lez+AMVMQtViIiSi1Ci23RTCIiIiKiwWLym5LethYVJxbasGivF6eNtiPL1rOUfZtfR4Vbg9Msw6cZfZY5ieSL6gBMMmA3SX03JupFmhxMfpe6P4CS5UpwNPFRYvfBKgWvKWegAmM7FiU4IiIiGsn0zr3w7Z0Px4Srw7YH6pbDVjQnQVERERERUSpi8puS3if7ffhBuQuv7ehErl3GycX2Hm2e+roDDrMEQwBOs4Svm/qf/PbrAtABj8pZ3zRwmQjWOS1qfRe2FFkQcqK0C53IAgBYtBaMankrsQEREdGIZnhr4N3xTI/kt2/PK0x+ExEREVFcMflNSc+nCdy3uhWaAVR3aqHtjV4dT33thhDA1hYVFhmQADjMEjqYwKYEcYqO0ON0z1eJCySOZjX8FqopM9FhEBFRElFbNkLrqIA5fTwAIFC7FP79C9DcUQHrqDPhLL8JQmmHObM8wZESERERUTJj8ptSwt72YNJb77YO5f4ODVua1dDX6sF9isLENyWOjEM3aMyGJ4GRxE9m57pEh0BERElGqB3Q3TtDyW+9Yy9EoAVK3VLonftgH3MxdPcuJr+JiIiIaFCY/KaU4tEEPtrnxbq6ALa2qH0fQDRAdhPg12Nv/0jLUXhuzFc4o+KioQuKiIgoiXRs/gNso8+F2vot2lffEtqud1ag6b3pAASyvvMqhOaBc9INiQuUiIiIiJIWk9+UUvZ3aBAiOBPc4ARvGiISgMnOVmzxZIc+UdBXe7PRgVK5GrLoR8aciIgohRmBFigNX0Jr+xYQh/1AFcFPSnm3PwlD7YA5cwoAwJJzPCRzz/VdDic0L3TPAZgzj4KhemD462FOnwAj0ArZlh3350JEREREI5Oc6ACI4ml7i4ol+33wasx809Cxm4Hr905Gvk3ru/HB9rLQcdGeU4Y4MiIiouSht29H84ez0b7q5l7bKPWfQ2vZhOYPZ6P5w9nQ2rfG1Ld39zw0f3w2ACBQ/RHca+4EAPj2/r/BB05ERERESYPJbyKifsqyBGdvO2QN+XYDZ2dsQ5a15w0Xlxk4N+NbnOnYMNwhEhERpSTdUxV67Kt4I2IbpWEVvDueheE5APeG38C36wWoLZsQqF2KQNVi6N664Qo3qkDtZ70+ByIiIiKKDya/iYj6aZSlHQCQb2rDWGsLvrf3HORYAj3aZVo0nLfnTJy1d+5wh0hERJSSfHteDj12r/kZDH9TjzaB2qXQWjcDADzfPIxA9WIY3mp4tz8Jpf5zqC2bhi3eaPz73oJn2xOJDoOIiIgopTH5TUTUh1GO8DrdczoeAwB8t/lenNl6P0xCwQW+v4X2T0nrxI22ebgy8OBwhklERJTy/PsXQmg+GIE2GP56tHx2KbS27aH9bStvgm/PKxGPDdR+CqF5oNR/DqXhS6ht26C2bO53DEJXoHVUhG3z7XsLLZ9eBP+BRRGPUepXwF+1GACgd+5Hy6cXIVD1AYTSBiPQ1u8YKHa+va/yNSYiIjqCMflNRNSHiZaa0GObCRjb8AwAoKDtfYxqeQsAMK7hf0Nt8uQWTKn5PcbV/y+IiIgojoQO3VcLIxCc8a02fBF6DACB6n9Dd++MfKjSBgDQO/dBa98OEWiG1kvb6CH4odR+ErYtUP0RAgcWwVfxWsRjAtX/ht4ZTJjrvjoEDiyC7tkPzb0Lgdol/Y6BYqe1bYPa2v+bHERERJQazIkOgIhoJLvGuQDH7fsVxpU8iqzAdpQ0vx6xnSxUXONcgKn1f4altQ1mwzvMkRIRER0Zmt47HoAU+rpt5Y0ouGwHvDufg+Gt7vN4f+Xb8O9fCEk2I+24+xCo/QytSy9H9pzXYRt9zsE278I+9tKIx6tN69C+5mdwr/9VaJvQPMHjKl5HXdWHPY4RmheQTOjYeC8gun2izAggsP89OMZdEcMzHznc6++BtfAU2Esv7LGv4a0JMJTWiMeZnMXIv2TLkMbW+fXDcB39C7R8eiFyz/kYwghA9xyA1rYd7WtuR+65n/TdCREREaUMJr+JiHrhNAO5/q9h0duR6/8Gaf4dsKu9/1Gd498Cp3/vMEZIRER05BFqR9jXunsnlMa10Ny7APRcgLoHQwWgQuiA1vo1hO6DUNrg3T0PsrMYhrcGnm1PwJQxCQAgyVaYM8uD5/I1oPObhwHdD6H7IwSnh2aYR4xd9/XYprZtgdr6LcwZ5ZBM1r7jHyCtbTuE0CCZXTCnjx9cX+6dkEx2mNJ69qN7KgFhRD5OaYPaugWW7KMHdf7DGf4m6L7gQqbe3S/BWngqlNpPobl3Qyjt0Dv3QTFU6J2VMFQPZIur17409y4I/dBaLrItFybnKAhDByAgyan/J7QQApIk9d2QiIgoCUhCiBh+Q6RUV1VVhdLSUgDAgQMHUFJSkuCIYtPi13Hbp82JDoNS1MkZ1bhyzwmJDoOIiIgSSHaWoPDKAwAA94bfwvPNn4bkPHkXboIl9/gh6RsA6v5fOoTWCUvuici7cP2g+mr6YDbUxi8HdKzr6LuQMfMvgzr/4VqXXQn/vjcjnktt2QSl9rPQtqzT34Jj3OW99lX/ejEMX23oa+fk25E56wko9SshWdJgyTkurrGPRP6qxbCXnJfoMFJasv79TUSUjFL/tjURUT+5zIDDZGCy8lnfjYmIiCilCdUNzb0b5oyyYPmSIaK5dwxJ8ttX8QaMQHNo1rnuqYLua4DJUTCg/tTmjTC8NX037PX4DfBsfwoAYEobD3vJ9wbcl+6thX//uwhUfdDLuTZCbfkqbJu/8i1Ishn2MRf3aK80rg2rIQ8EPx3g2f4UlLplkO35sI3+HuylFwTb138Ba+GpA44/ngJ1y6G1bQUAOMZfBdmWPaB+NPcedH4dXLSdCXAiIkoFTH4TER2m2O7DaLkOx+75/xIdChERESWYUN0I1HwMc0YZtJaNQ3Ye746n4Rj/g7j2KQwVbV9cD3Qrt2L466G1fgOT48wB9enb+y/onv0DjkmpWwalbhkAwFZ60aCS356tj8Hz7SNRzrW0xzZ/xWvQPVU9kt+6tw6tn5x/sCxOtz7qP4dS/3noa++OZ5B38dcwZ05Gx6bfIfd7Pc8x3AylHa1LL4MItAAAJJMdzkk3DKgv/4H3oDashHfbP5j8JiKilMDkNxGlpOnpLZiuvB+27V/atQjoPduWOlWcrc8PfZ3h2QOnUjXUIRIREVGS0Np3QvccgNK4dsjOodQth//AIthLL0T76ttgKO0AAGv+LLim/iy0Lf2E/4E5fULvsXZWwpw2FkIPoHXZlWGJ7y6dm/8A764XAAC20efCWXZdzHEavoZ+PrPeqc0b0Lr8P2Et/A5ck/8rpmOEocP95U+QefIz8O15ZUDn1du3Q+/cD1PamNC29lU39Zj1HTkADW1LL4c5awp0T7AcTtvKm0OLnqZP/wPMGWUDiitWvr2vwpI7A+bMcnRsuh+B2k9CiW8A6PzmTwjULEHatF/D8DeFxrrre0lpWAXPtn/CNfVOeLY+HtxXcApkRxG8O54BAKgtX/V4jYiIiJIRk99ElJLGiJ04turusG1vFUdOfheZW3Fs5d09dxAREREB8Fe+DRiB4L8hI+Df/x7spRfCt3c+hBpMfsNQ4Jr6M/j2vQkRaIZrys+AKMlv/95XYS0+GzA0BA68F7FN95nMhq+uf8nvWBLEsfblrYa/Yj6E7o85+a137oNv3xtwHXM3jIOLXPb7vIEmBGr+DWf5zcE+ffUIVC+O+XitfRu09m0wucZCbf4Kvl3Ph/Y5Jl475Mlvz7Z/Iv2E/4HJNQad3z4CHLb4qu7eBd29C/aS8+GreA2BquCEEKH74Jr6M6gtXwdfd6UVgeqPAACGrxaaexcMb/XBr+ug++uZ/CYioqTHBS8JQPIuuMEFLwkALkjfAANmKJIdp9X9AgBgV6phU8P/IOpwHYenchejxmfCVc7F+NQ4F7e3XACL1gJnoCIRoRMREVHSkAAM8Z9OJjtkW97BBGTwXNZR34VszYZ//7uAMCDbCwDZ2msXQmkDZDMgmSACMfyeLJkhO4pgchRB99Uh/cSH0LHht3BOugHp0/8Qata28iYEqv8Nw98Y/5sAB5+3tfA0ZM95NWrTzq8fQsfG/4ZszwvGMkCSJR2SJRMZM/8KSBLall05gE5MkKyZYbOuJVsuJJMj9HXGjEfgmHD1gOPsrnXZD6A0rILhq4FsywUkU9QbAJI1O3gTRRjBDQdfZ6F1Br9P+pDxH/+Ea8pP4xI7hUvWv7+JiJIRZ34T0YhkkQHViLwv0ypgkQ798XlM2/NodRwX3OfZ0Guf6Z7NKCh0Q7FlIj+wGWNdM6K2JyIiIjpkGOYM6X4Y3vDSa2rLZkDooQSm4Y9f2REAgNBgeKtCSW2lfgUMbxU8256AY+KPINtyYSjt8Fe+HVPCdEAOPm+1YRW0jn0Rm0gmO0zOImgdewGIQSW+AUCoHRBqB9TmjQB6+aWzz070sMQ3AIhAc9h3StsX10OypMOcdUxom2zNgmzLOnSMEJAkKfS1oXZAtqSH9WuoHdBavwl9f8Ty/IXSGr4hwvdXNIEDi+CcdCMksz3mY2Jx+PPtixFoA2BAtuXENQ4iIjoycOY3AUjeO8+c+Z2abCZggsODbZ2uiPv/P3EXSpr+3zBHRURERHTksZXMRaDqw0SHAdlZgoIrKtHw1jgYB2ttJytz9nHIu3ADdG8VzGlj4d3xLJxH3RLa37Hxv5E2/Q+QJDlsW+fXDw57rKa0cciY9dSgFiY9XKD63zBnHQ2TK7a/OdvX/Bxay1fIPW9Z3GJItGT9+5uIKBlx5vcIU1lZiX/84x/44IMPcODAAdhsNkycOBFXXnklfvrTn8LpdCY6RKIhd4yrCWONbdDTZmBnpyNs3+yMGmTXrE9QZERERERHFqV+RaJDAAAY3ip0rP9V0ie+AUBr3YyO9XcDZgfMaRPgXv8rwGQDDia7A3VLYdo9D5AtoWMCdcsSEqveuQ+tn5wH+/irYSs5r1/H2ksvhmzN6LFdaVwD757/Q9Zp/wdJkqB76xCoXQIAcIy/GpIcnqYwvAegNKyA4W+CbM8b+JMhIqIjEpPfI8iiRYtwzTXXwO12h7Z5vV6sX78e69evx/PPP48PPvgAZWVDu4AKUaKd7n4EpY0vI7vkz9iJ60PbbSbgB3umJy4wIiIioiOMUDsSHUKIZ8tfEx1C3Hi2/j3s6/Yvrg//umHVMEbTN3/FfPgr5vfvoFNfhrPs2h6bNfcO+Pe+Cm3aPbBkHwNfxavoWHcXAMBeciGkbiVhAEBt2gAIA5p7J6xMfhMRUT8x+T1CbNq0CT/4wQ/g8/mQlpaG3/zmNzjjjDPg8/nw2muv4bnnnsPOnTtx/vnnY/369UhPT++7U6IkNN4VQGHVYgBASftC/DAnK7TPYvh7OYqIiIiIiEYSzzcPQ2n4osd25eAs9o71dyPzlBfg3fF0aJ977c8AU7ca40KH7qkMtv/q9zCljQ3tsuafDOek64ckdiIiSh1Mfo8Qd955J3w+H8xmMz7++GPMnj07tO+73/0uJk2ahF/96lfYuXMn/vrXv+KBBx5IXLBEQ6jQ1AqrFlzIKbtjFWZ2jKxZL0RERERE1DetfRu09m297g9Uf4SOTfdBd+8KbfPt+b9e2ys1H4cfX/kuHBP+E5LJOvhgiYgoZcl9N6GhtnbtWqxYEayld+ONN4YlvrvcddddmDJlCgDg8ccfh6qqwxoj0VC7w/Qo7lWuxfl1PT8aSUREREREqce3+6UBH2sEmtD47mQ0vDsF7atujWNURESUSpj8HgEWLFgQenzDDTdEbCPLMq69NpgUbGtrw9KlS4cjNKJhYTcBpU3zkN/+b6R7Nic6HCIiIiIiGg7CGNThemcF9Pbt0D374xQQERGlGia/R4AvvgjWQXO5XDjxxBN7bTdnzpzQ45UrVw55XETD5SY8DKvWlOgwiIiIiIiIiIgohbDm9wiwbVuwDlpZWRnM5t6HZPLkyT2OiVVVVVXU/QcOHAg9rq2t7VffidTq1+Ftak10GDQIFhlAxyLUcC1LIiIiIiIaAKvVD28ff/OOJN3/5tY0LYGREBGlPia/E8zv96OpKTjjtaSkJGrb7OxsuFwueDyesGR1LEpLS2Nue9JJJ/Wrb6LBejfRARARERERURJbBiD2v3lHksbGRowbNy7RYRARpSyWPUmwjo6O0OO0tLQ+27tcLgBAZ2fnkMVERERERERERERElOw48zvB/P5DtR6sVmuf7W02GwDA5/P16zx9zRT3+/3Yvn07CgsLkZ+fH7X8ykhRW1sbmqW+du1ajBo1KsERUX9xDJMbxy/5cQyTH8cw+XEMkxvHL/lxDJNfMo6hpmlobGwEAEybNi3B0RARpbaRn+FMcXa7PfRYUZQ+2wcCAQCAw+Ho13n6KqkCBGuOJ6tRo0bF9Bxp5OIYJjeOX/LjGCY/jmHy4xgmN45f8uMYJr9kGkOWOiEiGh4se5Jg6enpocexlDLxeDwAYiuRQkRERERERERERHSkYvI7wex2O3JzcwEAVX2sTt3a2hpKfvdnAUsiIiIiIiIiIiKiIw2T3yPA1KlTAQC7d++Gpmm9ttu+fXvo8ZQpU4Y8LiIiIiIiIiIiIqJkxeT3CHDqqacCCJY02bBhQ6/tli9fHnp8yimnDHlcRERERERERERERMmKye8R4JJLLgk9fumllyK2MQwDr7zyCgAgKysLZ5xxxnCERkRERERERERERJSUmPweAU466SScdtppAIAXXngBq1ev7tHmr3/9K7Zt2wYAuPPOO2GxWIY1RiIiIiIiIiIiIqJkYk50ABT0+OOP45RTToHP58M555yD3/72tzjjjDPg8/nw2muv4dlnnwUAlJeX46677kpwtEREREREREREREQjmySEEIkOgoIWLVqEa665Bm63O+L+8vJyfPDBBygrKxvmyIiIiIiIiIiIiIiSC5PfI0xlZSUef/xxfPDBB6iqqoLVakVZWRmuuOIK3H777XA6nYkOkYiIiIiIiIiIiGjEY/KbiIiIiIiIiIiIiFIOF7wkIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8pqRUWVmJu+66C5MnT4bL5UJOTg5mzpyJRx99FF6vN9HhHZEkSYrp3+mnn95nX4sXL8all16KkpIS2Gw2lJSU4NJLL8XixYuH/omkqIaGBrz//vu47777cN555yEvLy80Jtdff32/+4vHGGmahqeffhqnnXYa8vPz4XA4MHHiRNx6663YsmVLv2NKdfEYw3nz5sV8rc6bN6/P/rxeLx555BHMnDkTOTk5cLlcmDx5Mu666y5UVlYO7gmnmPXr1+MPf/gDzjnnnNB1k5aWhvLyctxwww344osv+tUfr8HhF48x5DWYOG63G6+99hruuusuzJkzB2VlZcjMzITVakVBQQFOP/10PPLII2hubo6pv1WrVuGaa67B2LFjYbfbUVRUhHPPPRfz58/vV1zz58/HOeecg6KiItjtdowdOxbXXHMNVq9ePZCnmdLiMYbLli2L+Rp84IEH+oyJ76Px8+tf/zrs9V+2bFmfx/BnIRERxUQQJZn33ntPZGRkCAAR/5WXl4tdu3YlOswjTm/jcfi/OXPm9NqHruvixhtvjHr8TTfdJHRdH74nliKivabXXXddzP3Ea4waGxvFzJkze+3DZrOJ5557bpDPOrXEYwxfeumlmK/Vl156KWpfu3btEpMmTer1+IyMDLFo0aLBP/EUcNppp8X0ml977bUiEAhE7YvXYGLEawx5DSbOkiVLYnrd8/LyxEcffRS1r/vvv1/IstxrH+eff77w+XxR+/B6vWLu3Lm99iHLsnjggQfi+RIkvXiM4dKlS2O+Bu+///6o8fB9NH42bdokzGZz2Ou3dOnSXtvzZyEREfUHk9+UVDZu3CgcDocAINLS0sSDDz4oVq1aJT799FNx8803h35RKS8vF263O9HhHlG6XvvbbrtNfPPNN73+27t3b6993HPPPaF+pk+fLubPny/Wrl0r5s+fL6ZPnx7a95vf/GYYn1lq6P6L/JgxY8Q555wT+ro/ye94jJGmaeLUU08Ntb3sssvE4sWLxZo1a8Q//vEPUVBQEPrD/8MPP4zDs08N8RjD7om3f//731Gv1dbW1l77cbvdory8PNTXzTffLD799FOxatUq8eCDD4q0tDQBQDidTrFp06a4PP9kNnHiRAFAFBcXizvvvFO89dZbYu3atWL16tXib3/7mxg9enTotbz66quj9sVrMDHiNYa8BhNnyZIlorS0VFx77bXi8ccfF++8845YvXq1WLlypXj99dfFFVdcIUwmkwAgrFar+OqrryL28/TTT4de94kTJ4oXXnhBrF27VixYsECcccYZMV/LV111VajtGWecIRYsWCDWrl0rXnjhhdD3GwDxzDPPDMXLkZTiMYbdk98vvvhi1Guwvr6+11j4Pho/uq6HEtBdr1tfyW/+LCQiov5g8puSStfMK7PZLFatWtVj/yOPPBLzbA2Kr8G+7jt27AjN+JgxY4bwer1h+z0ej5gxY0Zo/Dm7v3/uu+8+sWjRIlFXVyeEEKKioqLfidN4jdELL7wQOvdPfvKTHvt37doV+nRHWVmZUFW1f082RcVjDLsn3ioqKgYcy+9+97tQP4888kiP/StXrgx9r0T7tMeR4vzzzxevv/660DQt4v7GxsawROby5csjtuM1mDjxGkNeg4nT29h19+6774Ze10svvbTH/ubmZpGZmRm6CdnY2NjjHBdeeGGfybtPP/001ObCCy/sEVtjY6MYM2aMACCysrJES0tL7E80hcVjDLsnv6MlV/vC99H4+fvf/y4AiMmTJ4vf/OY3fY4PfxYSEVF/MflNSWPNmjWhX1BuvfXWiG10XRdTpkwJ/bGgKMowR3nkGmzy+7bbbgv1sXr16ohtVq9eHfWXVIrdQBKn8Rqjrms0JydHeDyeiG3+9Kc/hfp54403YorvSJOo5LeiKKHkz5QpU3r9SPGtt94aOtfatWsHdK4jyaJFi0Kv1x133BGxDa/BkS2WMeQ1OPIdddRRAgiWzjjcn//859BrOn/+/IjHHzhwIDT7eO7cuRHbnHfeeaHE3IEDByK2mT9/ftQbHNS7aGMYr+Q330fjo7KyMvRJlWXLlon777+/z/Hhz0IiIuovLnhJSWPBggWhxzfccEPENrIs49prrwUAtLW1YenSpcMRGg2SEAILFy4EAEyePBmzZs2K2G7WrFk46qijAAALFy6EEGLYYjzSxWuMdu7ciW3btgEArrzySjidzoj9dF/A8d133x1s+BRHS5cuRXt7OwDguuuugyxH/lWCY9g/Z5xxRujxnj17euznNTjy9TWG8cJrcGilp6cDAPx+f499Xb+LZmRk4LLLLot4fElJCc466ywAwKeffoqOjo6w/R0dHfj0008BAGeddRZKSkoi9nPZZZchIyMDAMevv6KNYTzwfTR+fvrTn6KzsxPXXXcd5syZ02d7/iwkIqKBYPKbksYXX3wBAHC5XDjxxBN7bdf9F6eVK1cOeVw0eBUVFaipqQGAPn/x7dpfXV2Nffv2DXVodFC8xqjrOu6rn6KiIpSXlwPgdTzSxDqGM2bMCP0xyTHsWyAQCD02mUw99vMaHPn6GsN44TU4dHbs2IGvvvoKQDCx1p2iKFi7di0AYPbs2bBarb320zUugUAA69evD9u3bt06KIoS1i4Sq9UaSuytW7cOqqr278kcoaKNYbzwfTQ+3njjDbz//vvIycnBX/7yl5iO4c9CIiIaCCa/KWl03Z0vKyuD2WzutV33X3S7jqHh8+abb2Lq1KlwOp1IT0/HpEmTcN1110Wdhb9169bQ477+UOH4Jka8xmgg/Rw4cAAejyfmWCk2N9xwA4qLi2G1WpGXl4dZs2bhv//7v1FdXR31uFjH0Gw2o6ysDACv1VgsX7489HjKlCk99vMaHPn6GsPD8RocGbxeL3bt2oW//e1vmDNnDjRNAwD8/Oc/D2u3c+dO6LoOYPivQU3TsGvXruhP5AgW6xge7t5778XYsWNhs9mQnZ2N6dOn4xe/+AV27twZ9Ti+jw5eW1sb7rzzTgDAn//8Z+Tl5cV0HH8WEhHRQDD5TUnB7/ejqakJAHr9eGiX7OxsuFwuAMFfUmh4bd26Fdu2bYPP50NnZyd2796NV155Bd/97ndx6aWXhj6q3V1VVVXocV/jW1paGnrM8R0+8RqjgfQjhAg7juJj2bJlqK2thaqqaG5uxpo1a/Dggw+irKwMzzzzTK/HdY2Fy+VCVlZW1HN0jWFjY2PYrFgKZxgGHn744dDXV155ZY82vAZHtljG8HC8BhNn3rx5kCQJkiTB5XKhvLwcd911F+rr6wEA99xzD/7zP/8z7JhEXoOR+jnSDWQMD7dq1Srs378fiqKgra0NX331FR577DFMmTIFDzzwQK/l9fg+Oni/+tWvUFdXh1NOOQU33nhjzMfxZyEREQ1E79NniUaQ7vUS09LS+mzvcrng8XjQ2dk5lGFRN06nExdddBHOPPNMTJ48GWlpaWhsbMTy5cvx9NNPo7m5GQsWLMDFF1+MJUuWwGKxhI7tz/h23dgAwPEdRvEaI4514k2YMAGXXXYZZs+eHfqDbu/evXj77bfx1ltvwe/347/+678gSRJuueWWHsd3jWGs78VdOjs7YbPZ4vQsUsvf//73UDmFyy67LGJpL16DI1ssY9iF1+DIdfzxx+PZZ5/FzJkze+zjNZgcoo1hl1GjRuGyyy7DqaeeigkTJsBsNmP//v14//338corr0BVVfz+97+Hoih46KGHehzPMRycFStW4Pnnn4fZbMbTTz8NSZJiPpbXIRERDQST35QUui9YE63GYpeuP+58Pt+QxUThqqurI85AO/vss3HHHXfgvPPOw6ZNm7B8+XI89dRT+NnPfhZq05/x7f6HO8d3+MRrjDjWiXXppZfiuuuu6/GH5syZM/GDH/wA77//Pi677DKoqopf/OIXuOiii1BUVBTWtmsM+/NeDHAMe7N8+XLcc889AICCggI89dRTEdvxGhy5Yh1DgNfgSHHJJZdgxowZAIKvy549e/DGG2/g3XffxdVXX43HHnsMF1xwQdgxvAZHloGMIRC81iorK8MmYQDACSecgEsuuQS33HILzjnnHLS3t+Phhx/GD37wAxx33HFhbTmGA6coCm655RYIIfCLX/wCxxxzTL+O53VIREQDwbInlBTsdnvocdciQdF0fbTX4XAMWUwULtpHrwsLC/HWW2+F/tB44oknwvb3Z3y7f2yb4zt84jVGHOvEyszMjDrD6oILLsB9990HIFhD9YUXXujRpmsM+/NeDHAMI9myZQsuvfRSaJoGu92ON998EwUFBRHb8hocmfozhgCvwZEiKysLxxxzDI455hjMnDkTV111Fd555x288sor2Lt3Ly6++GLMmzcv7BhegyPLQMYQCM7iPTzx3d1JJ52Ef/7znwCCZS66HnfHMRy4hx56CNu3b8eYMWNw//339/t4XodERDQQTH5TUkhPTw89juXjZl2LkcTykWAaHhMmTMDZZ58NANi9e3dopXagf+PbfaEZju/widcYcaxHvltuuSWUnOu+gF+XrjHsz3sxwDE8XEVFBc455xy0trbCZDLhtddew3e+851e2/MaHHn6O4ax4jWYOD/60Y9wxRVXwDAM3H777WhpaQnt4zWYHKKNYayuuuoqZGRkAIh+DQIcw/7Yvn07/vSnPwEIToTpXk4kVrwOiYhoIJj8pqRgt9uRm5sLAH0uNNLa2hr6JaX7QieUeFOnTg09rq6uDj3uvtBMX+PbfcEaju/widcYDaQfSZL6XIyI4qegoCD0ftv9Ou3SNRYejwdtbW1R++oaw/z8fNYa7qampgZnnXUWampqIEkSXnzxRVx88cVRj+E1OLIMZAxjxWswsbrG0ePx4KOPPgptT+Q1GKkf6l1vYxgrs9mM8vJyANGvQYDvo/3x97//HYqiYMKECfB6vXjttdd6/Pv2229D7T/77LPQ9q6/7fizkIiIBoI1vylpTJ06FStWrMDu3buhaRrM5sjfvtu3bw89njJlynCFRzHo7aPe3ZPi3ccvEo5vYsRrjA7v5/jjj++zn9LS0gHNDqKBi1aWYerUqXj77bcBBMdo1qxZEdtpmoY9e/YA4LXaXVNTE84++2zs3bsXQHD227XXXtvncbwGR46BjmF/8BpMnPz8/NDjysrK0OPy8nKYTCbouh7XazCWfsxmMyZNmtR38ASg9zHsj76uwS58H41dV/mQvXv34uqrr+6z/R//+MfQ44qKCrhcLv4sJCKiAeHMb0oap556KoDgLI4NGzb02q77xxNPOeWUIY+LYrd169bQ4+Li4tDj8ePHh76O9PHS7j7//HMAwOjRozFu3Lj4B0kRxWuMuq7jvvqpq6vDzp07AfA6Hm6NjY1oamoCEH6ddol1DNevXx+aqcUxDGpvb8e5554bei98+OGH8dOf/jSmY3kNjgyDGcNY8RpMrO4zfbuXOLBarTjppJMAAKtXr45aJ7hrXGw2W2hRxi4zZ84MLbAXbfwURcGXX34ZOiZanWoK19sYxkrTtND732CuQb6Pxh9/FhIR0UAw+U1J45JLLgk9fumllyK2MQwDr7zyCoDgQjhnnHHGcIRGMaioqMCSJUsAABMnTsTo0aND+yRJCn1Edfv27aE/9g735ZdfhmZfXHzxxVFn5VB8xWuMysvLQ7Nv3njjDXi93oj9dF+k6tJLLx1s+NQPzz77LIQQAIA5c+b02H/66acjMzMTAPDyyy+H2h6OYxjO6/Xi/PPPx8aNGwEA9957L37961/HfDyvwcQb7BjGitdgYr355puhx9OmTQvb1/W7qNvtxjvvvBPx+KqqKnzyyScAgDPPPDOstjAQrDV85plnAgA++eSTXksuvPPOO3C73QA4fv0VbQxj8frrr6O9vR1A5GuQ76MDM2/ePAghov7rvgjm0qVLQ9u7ktf8WUhERAMiiJLIaaedJgAIs9ksVq1a1WP/I488IgAIAOL+++8f/gCPUO+9955QVbXX/XV1dWL69OmhsfnrX//ao82OHTuEyWQSAMSMGTOE1+sN2+/1esWMGTNC479z5864P48jSUVFRWg8rrvuupiOidcYvfDCC6Fz//SnP+2xf/fu3SIjI0MAEGVlZVG/t45k/R3DiooKsXHjxqhtFi1aJKxWqwAgHA6HqKqqitjud7/7XejcjzzySI/9q1atEmazWQAQc+bMieXppLRAICDOOeec0Gt25513DqgfXoOJE48x5DWYWC+99JLw+XxR2/ztb38Lva7jx48XmqaF7W9ubhaZmZkCgBg7dqxoamoK269pmrjwwgtDfSxdujTieT799NNQm4suuqjHeRobG8WYMWMEAJGVlSVaWlr6/4RT0GDHsKWlpdcx6bJmzRqRlZUlAAhJksT69esjtuP76NC4//77+7x++LOQiIj6i8lvSiobN24UDodDABBpaWnioYceEqtXrxafffaZuOWWW0K/wJSXlwu3253ocI8YY8eOFcXFxeKOO+4Qr776qli1apXYtGmTWLJkibj33ntFXl5eaGxOPfVU4ff7I/Zzzz33hNpNnz5dvPbaa2LdunXitddeC0ue/+Y3vxnmZ5j8VqxYIV566aXQv0cffTT0ep5yyilh+1566aVe+4nHGGmaJk455ZRQ28svv1x89NFHYs2aNeKJJ54QBQUFAoCQZVl8+OGHQ/BqJKfBjuHSpUsFADF79mzx0EMPiQ8++ECsW7dOrFu3Trz++uviiiuuEJIkhfp88skne43F7XaL8vLyUNtbbrlFfPbZZ2L16tXioYceEmlpaaHk3aZNm4buRUkSl112Wei1+u53vyu+/vpr8c033/T6b8eOHb32xWswMeIxhrwGE2vs2LEiJydH3HzzzeLll18WX3zxhfjqq6/EihUrxP/+7/+GXRNWq1UsWbIkYj9PP/10qN3EiRPFiy++KNatWycWLlwozjjjjNC+q6++Omo8V111VajtGWecIRYuXCjWrVsnXnzxRTFx4sTQvmeeeWYoXo6kNNgx7LppfOyxx4r77rtPLFy4UKxdu1Zs2LBBvPvuu+LGG28M3XwCIO6+++5eY+H76NCIJfktBH8WEhFR/zD5TUnnvffeC92Fj/SvvLxc7Nq1K9FhHlHGjh3b63h0/3f55ZeL1tbWXvvRdV38+Mc/jtrHjTfeKHRdH74nlyKuu+66mMao619v4jVGjY2NYubMmb32YbPZxHPPPRfvlyGpDXYMuxJvff1zOp0xJVt27dolJk2a1Gs/GRkZYtGiRUPxUiSd/owbEJxR2hteg4kRjzHkNZhYsf6uUlJSIj7++OOofd13331hNyoO/zd37tw+Zyh7vV4xd+7cXvuQZZmfYjzMYMew+yemov0zmUzigQceEIZhRI2H76PxF2vymz8LiYioPyQheikUSDSCVVZW4vHHH8cHH3yAqqoqWK1WlJWV4YorrsDtt98Op9OZ6BCPKMuXL8fy5cuxevVq7N27F01NTXC73UhLS0NpaSlOPvlkXHfddZg9e3ZM/X344Yd49tlnsW7dOjQ1NSEvLw8zZ87ErbfeivPOO2+In01quv766/Hyyy/H3L6vHw3xGCNN0/Dcc8/h1VdfxbZt2+DxeFBcXIwzzzwTd955J44++uiY4z0SDHYMOzo68N5772H16tVYv349amtr0dTUBE3TkJ2djaOPPhpnnnkmbrrpJhQUFMR0Do/HgyeffBJvvvkmdu/eDUVRUFpairlz5+LOO+/E2LFj+/UcU1V/1ycYO3Ys9u3bF7UNr8HhFY8x5DWYWDt27MAHH3yAlStXYvfu3aivr0dzczMcDgcKCgpw/PHH44ILLsCVV14Z0++Rq1atwpNPPokVK1agvr4eWVlZOO6443DDDTfg6quvjjmuV199FfPmzcPmzZvR1taGwsJCnHbaabj99ttj/r3pSDHYMVQUJXQNrl27FtXV1WhqaoLf70dmZiaOOuoonH766bjppptiXlSd76Px9cADD+D3v/89gGDN79NPPz1qe/4sJCKiWDD5TUREREREREREREQpR050AERERERERERERERE8cbkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3ERERUYLNmzcPkiRBkiTs27cv0eEQERERERGlBCa/iYiIiAZo3759oaT1YP4RERERERFR/DH5TUREREREREREREQpRxJCiEQHQURERJSMVFXFjh07et0/bdo0AMCMGTPw0ksv9drumGOOiXtsRERERERERzpzogMgIiIiSlYWiyWmxLXL5WKCm4iIiIiIaJix7AkRERERERERERERpRwmv4mIiIgSbN68eaHFL/ft29dj/+mnnw5JknD66acDAHbv3o3/+q//woQJE+BwODBu3DjceOONqKysDDvu22+/xQ033IAJEybAbrejtLQUt912GxoaGmKKa8GCBbjiiiswZswY2O12ZGVlYcaMGfj973+P1tbWwT5tIiIiIiKiIcWyJ0RERERJ5JNPPsFll12Gjo6O0LbKykq8+OKLeP/997F8+XJMnjwZ8+fPx/XXXw9FUULtqqqq8PTTT2Px4sVYtWoViouLI56jtbUV3//+9/HZZ5+FbQ8EAtiwYQM2bNiA//3f/8XChQsxa9asoXmiREREREREg8SZ30RERERJoqamBldeeSWysrLwxBNPYM2aNVixYgV+/vOfQ5IkNDQ04KabbsK6detw7bXXYuLEiXj++eexdu1aLF26FD/60Y8ABJPlv/zlLyOeIxAI4KyzzsJnn30Gk8mEH/3oR5g/fz6+/PJLrFixAg8++CByc3PR0NCAuXPn9phtTkRERERENFJw5jcRERFRkti1axcmTZqElStXIj8/P7T91FNPhdlsxl/+8hesXLkS559/Pk466SQsWbIETqcz1O7000+H3+/Hm2++ibfffhuNjY1h/QDAH/7wB2zcuBFZWVn45JNPcOKJJ4btP/XUU/HDH/4Qs2fPRm1tLX7729/iX//619A+cSIiIiIiogHgzG8iIiKiJPKPf/yjR8IaAH7yk5+EHjc1NeH5558PS3x3ue222wAAmqZh9erVYfs6Ozvx5JNPAgD++Mc/9kh8dxk7dix+97vfAQDefPNNeDyegT0ZIiIiIiKiIcTkNxEREVGSyMrKwrnnnhtx3/jx45Geng4AOPbYYzFlypSI7Y477rjQ471794btW758Odrb2wEA3//+96PG8p3vfAcAoKoqNmzYENsTICIiIiIiGkYse0JERESUJCZNmgRJknrdn5WVhY6ODpSXl0dt06X7opkAsH79+tDjUaNGxRxXXV1dzG2JiIiIiIiGC2d+ExERESWJSGVMupNluc92XW0AQNf1sH0NDQ0Disvr9Q7oOCIiIiIioqHEmd9EREREBCA8Gb5x40ZYLJaYjispKRmqkIiIiIiIiAaMyW8iIiIiAgDk5uaGHufn5zOpTURERERESY1lT4iIiIgIADB9+vTQ45UrVyYwEiIiIiIiosFj8puIiIiIAABnnXVWqF74P/7xDwghEhwRERERERHRwDH5TUREREQAgKysLNx+++0AgFWrVuEXv/gFDMPotX19fT2ef/754QqPiIiIiIioX1jzm4iIiIhC/vCHP2D58uVYs2YNHn/8cSxbtgw333wzjj/+eLhcLrS2tmLLli345JNPsHjxYkybNg033XRTosMmIiIiIiLqgclvIiIiIgqx2WxYsmQJrr/+erzzzjvYvHlzaDZ4JBkZGcMYHRERERERUeyY/CYiIiKiMOnp6Xj77bfxxRdf4OWXX8aKFStQU1MDn8+HjIwMTJw4ESeddBLOP/98nHPOOYkOl4iIiIiIKCJJcCUjIiIiIiIiIiIiIkoxXPCSiIiIiIiIiIiIiFIOk99ERERERERERERElHKY/CYiIiIiIiIiIiKilMPkNxERERERERERERGlHCa/iYiIiIiIiIiIiCjlMPlNRERERERERERERCmHyW8iIiIiIiIiIiIiSjlMfhMRERERERERERFRymHym4iIiIiIiIiIiIhSDpPfRERERERERERERJRymPwmIiIiIiIiIiIiopTD5DcRERERERERERERpRwmv4mIiIiIiIiIiIgo5TD5TUREREREREREREQph8lvIiIiIiIiIiIiIko5TH4TERERERERERERUcph8puIiIiIiIiIiIiIUg6T30RERERERERERESUcpj8JiIiIiIiIiIiIqKUw+Q3EREREREREREREaUcJr+JiIiIiIiIiIiIKOUw+U1EREREREREREREKYfJbyIiIiIiIiIiIiJKOUx+ExEREREREREREVHK+f8BeuVVcZN/SbQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_composition = model.compositionPlot( \n", + " # Create a plot to track pathogen genotypes across time.\n", + " 'intervention_examples_composition.png',\n", + " # Name of the file to save the plot to.\n", + " data \n", + " # Dataframe with model history.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a compartment plot\n", + "\n", + "Plot the number of susceptible and infected hosts in the model over time.\n", + "\n", + "Notice the total number of infections in the composition plot can exceed the number of infected hosts in the compartment plot. This happens because a single host infected by multiple genotypes is counted twice in the former, but not the latter." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5gb1dUG8HfUt1d3G9sYN9wrpto0A8ZgWsB0UxMgEEgChFBCQgmhfBBMaMH0aoohpprmAgZ3g3vvfXtXm/n+WK+8oymakUbSSnp/z0Mi3blz566s1WrOnDlXkCRJAhERERERERERERElhS3ZEyAiIiIiIiIiIiLKZAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESOZI9AYpNU1MTVqxYAQBo164dHA7+kxIRERERERFZLRAI4MCBAwCAQYMGwePxJHlGRJROGNFLcStWrMDo0aOTPQ0iIiIiIiKijLFw4UKMGjUq2dMgojTCcgdEREREREREREREScRM2hTXrl270OOFCxeiU6dOSZwNERERERERUXras2dP6E7W1ufiRERWYJA2xbWuQdupUyd07do1ibMhIiIiIiIiSn9cD4aIrMZyB0RERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERERERERERERJRGDtERERERERERERERJxCAtERERERERERERURIxSEtERERERERERESURAzSEhERERERERERESURg7REREREREREREREScQgLREREREREREREVESMUhLRERERERERERElEQM0hIRERERERERERElEYO0REREREREREREREnEIC0RERERERERERFREjFIS0RERERERERERJREDNISERFFIIl+1K96CjVL7kKwbrtqH9++edjzugv7P+yl2se3bx72vCpgz6sCapbeDUmS4j1tIiIiIiIiShEM0hIREUVQs/BW1Cy6DfUrHkHZp6MhBX2y7f7KVSj/4gRA9CNYuxn7P+gu6xOs39G8/aD6Xx9G/eqnEjV9IiIiIiIiauMYpCUiIoqgYe2zocdi0z40bnlXtr1m0R8V+zRufjv0uGn7J4rttSr7EBERERERUWZikJaIiMikYM0G2XPf3u8VfQLVa0KPxcZ9cZ8TERERERERpS4GaYmIiGIlBpRtknjosWBP3FyIiIiIiIgo5TBIS0REFDO1RcBaBWltjoTNhIiIiIiIiFIPg7REREQmid6yyH18NaHHkq8yntOhDCB6K+Dd/S0CtZuTPRUiIiIiIooDBmmJiIh0SK3LFhzUsO55+PbN092vccNLCNRshHfvXNSv+r94TY8ygHfvXOyb3gUVs07BgQ97oe7Xh5M9JSIiIiIishiDtERERDr85UtU26t+uDrivg0bXkbNzzdZPSXKMPUrHwOCTaHndb8+BEkMJnFGRERERERkNQZpiYiIdPjLl6q2B2s3RtxXbNyLQNVKq6dEGcZfvlj2XAo0QGoVtCUiIiIiotTHIC0REZEOQYjhT6UU0N5mc0U/LpHETFoiIiIionTCIC0REZEuIeo9JVE7SCs486IelwgqtZKJiIiIiCh1MUhLRESkJ16ZtAyyUUz4/iEiIiIiSieOZE+AaPl+L95dV48tNc3BjCOLnbhpaD5Ks+xJnhkRZQLv7q9Ru/RuCM485B/1DJyF/SH661Dz0w3wHZiPYO3mqMfWy6RlkJZise+dktDj9hfugj27cxJnkxokMYi6Ff9E09b34SwdjfzRT8LmzE32tIiIiIiIADCTlpLMF5Tw5NKaUIAWAFZX+PH66rokzoqIMoUU9KLy+wvgL1sE357vUD3/OgBA3Yp/onHzmxEDtKKvOsIB9IK0rClK1qiad0Wyp5ASfHu+Qd2yexGo/BWNG15Cw9pnkz0lIiIiIqIQBmkpqfbWB9EUlBTtC/Z6kzAbIso0TTv+B8lfE3ru3/8jAKD+14cN7R+oWq27XQrqfZYxk5aMERz62Z6+Pd8maCaprerHa2XPa5fcmaSZEBEREREpMUhLSaUWoCUiShQp0BjrAM3/b3Oqbxd92ruy3AEZJGi9v8gUsWFnsqdARERERKSJQVpKKi+DtESUTIIQ0+4tNWe1gmiSTpCWNWnJKAb0iYiIiIjSH4O0lFR6QVpJYgCXiOJLiPXP4MFMWknUqC8b1AvSsiYtGcW/h0RERERE6c6R7AlQZvMGtE88gxLgiC3JjYhIn0omrZkLRMH6XQd3Ul8gTPSWa++cAdmR/soV8O7+Gq52Y+Bqf0yyp5OSJElCsGZ9sqeRcnz7f4Zv/w9wdzoZzpJhmv2CTQdg97RL4MwonvY01OCtTUuxt7E22VMhIpOyHU78Y/jpyZ4GEVFSMUhLSaVXk3b6+npc0k9/sRQiotioXAkKGq9TW/3jVcjqdblmVmywbovO3hIkSYIQY8mFtspfuQJlM0cBohcQbCg+9Su4O5+S7GmlnNqlfzXUT/TXw+bMifNsUoN37xxUfHUSIImotTlReubPcJYMV+1bNnME2p+3EYLdleBZktX8YhDHf/4fbKrVuThGRG1WiTubQVoiyngsd0BJ5dMJ0i7aq7cqOhFR7AS7R9HmK1tkaoxA1coYZpC+t7HXLPpzc4AWACQRVT9cldwJpaj6FY8Y7PfPOM8kddT8fNOhTHXRj5qFt2r2Fet3oHHr9MRMjOJqefkuBmiJiIgopTFIS0mld7OvT0zf4AURtQ323O6KNilQb2oMyV8X/QTSuC6tb/cs2XOxYWeSZpIZvLu/TvYU2oxA1SrZc9++efr9y5fGczqUIHUBnRrgRERERCmA5Q6ozdJbVIyIKG5E9fqyWqRYAq0ZUJeWEiU9y2ZYSXDmQfKr1Cq1ORM/GbKcGFZP3GN34OLDtesRE1HbkutwJ3sKRERJxyAtJZdOHFZvUTEioniRRL/JHRikpTZA4M1RkWkEsm38OpwOgmGfp8XubLx83EVJmg0RERGRefxWSkkTECXsqNXOWPOJQHljEHYBqPFL8AYktMuyodBjT+AsiSidSIFGBGo2wJ7TDTZ3kXqnBAZpJUlk/mOGE/21CNZtByDCkd836gWspAgL3vkrVwGiD86S9M4sFNUyZUPUf9sEgZm0qaQh4MOGmjJF+8awNjsvXBAREVGKYZCWkmJrjR8PLahCjU8/W/bG75QLQJxymAfXDcqP19SIKE15d81C5ffnQgo0AIINeSMfg6vdGEW/+lVPmBo3WB9DrdU0rklLkTVsfA3VP0wJPRccuSge/zVc7Zvfl5KJTOtAxXI0bHgZ2b2vVmzb86o8ONlpSnreqdKw8TVU/3it5nbJX62+gZm0KeOTbStx0Zw34Q1GLktjF3gJjIiIiFILLzFTUnyyqSFigFbLN9ubsLfeXM1IIqLaZfc1B2gBQBJRt+xeePd8r+jnL19saly9leMjyrByB1LQm+wptBmSJKF28R3ytkAd6n59KPTcX2buvVj94zWKtkDdNkWbb98PpsZNBZIkoXbJXYCk/v3AX7VGc19BYJA2Vdyz9EtDAVqAmbRERESUevjthZJid11s2WMHGjMrsEFEsfNXLJc9lwINgBh70FAzO8+QzPosE72VyZ5C2yEFITbtVzT79v8Yety09f2YD9O44RVFW/X862Met+2RIDbu0dzauPFV7V25cFjK2NFQZbjvkYUd4jcRIiIiojhgkJaSotqrHpgoctvQKSdyzdmAmJ63ahJRPCk/N6Rgk6kRCk94y6rJNB8/48odZFZQWpeokQ3Y6hZtKdgQ82EkSVljWdJbtTNVSfo/k17NXoHlDlJGMOz7n00Q4BBssv+cNjvGtOuOJ0efnaRZEhEREUWH30op4URJQo1P/UR9TCc3pgzIw73zK7G+UnvxHl8wDU8wiSjO1IK05jJpHQX9rZrMwQlkWNAy44LS2iSN2/JbL25l9iKCKlHlNY8Q0ExNEYK0AZ2F1ZhJmzICYZ8hP595M0a1OyxJsyEiIiKyFjNpKeEa/BK0YqzZzuaTU3eEZFp/hsU1iMgCagFRszVSbS5r5tIiw4K0klrAMFNpZNIKrYO0eoFFo1QD42kYpI3wu6SXlcyatKkjGHaBwWGLfPcVERERUargt1JKuCqNUgcAkO1ovm4QqZpBrUYmbmsBUcJ76+rxv82HTsz6Fztxx8gCZDt5fYIo8yg/WBrWv2BqBMFubZA2ULkC9uxOhvoGG/Zi//TOACRAsKPjpXUQHB5L56NFEoOoW/43eHfPgqNoMPJHPQGbqyCKgYIINuxF7ZI7IHrLkTv4Xrjaj7F+wikgULVCfUOrxY4kb4XpcSVJgtCqZILoUxlD1L5TJXXpf3Fo2vy29p4W1Kam+Pty51r4wy702Fu914mIiIhSHSNVlHCfbdHOZsk5mEkbKUj71tq6iMf5YkujLEALAGsq/HhtdeR9iSgNWXGLt8WZtBVfnw7J4LzKPh2FUCBKCqL8i+MtnYuehrX/Qd2vD8FftgiNG6ahZuGtuv0Ddds0toionn8dGje9Ae/Oz1Hx9XjTJSfSgSRJqPj6DI2th4JO3t1fRTG4PIjVuOFlRZdg3Rbz47ZxsZSGqFlwi4UzoXgoa6rHWd8o38t2gacyRERElD74zYbalCJP81vyjB5Zuv06ZEe+ve1NjUDu7J0W1PgjooxkcxdbPKIEf/liQz3Fhp2y50b3s0LD+v/KnjdufFW3v798ifoGMQjvzk9DTyV/LRq3To91eiknWL0OUqBefWOroJM9J4pam2FlFARHjqKLPb+P+XHbuKYt7yV7ChRHy8p3IaBS0qLUo3x/ExEREaUqBmkp4bTqyfbMd+DI4uYstREd3KGsWvUx0rCeHhHFWeyfGzZnHlydTpa1OUtHxzSmFNC+u6CtCFSvNbeDRr1VSaU+quSrimJGqU170TAArW7ftnnaRzF22O3guT0UfdTaUl2waX+yp0Bx5FP5TJnccyg6ZOUlYTZERERE8cGatJRwgbAAa6ccO6YMyMWRxS647M0npw6bgBdOLsXS/V6UNYl4b10dvK3OOxsDDNISUXI4CgfCt+fb0HNblrGaspqsKMPQ5mj8TKqLWGVeTUnB7tbbGnokiT7zg4cHgFWyD9MyMB7Na0UpIyAq38dvnnBJEmZCREREFD8M0lLCBcK+Zx/fxYOh7ZQnrE67gKM6NS+K07fIibt/rAxtY5CWiMyQIqz8boYQvlCNlI6LMMVI6/VWbc+8IK1uYL71axTNAl9hGYeSSsBcTMMgrZSWi6FRi/BSB30L2sFu4w2BRERElF4YpKWEC4adnDoMfMf22OUn8X4R+HhjPXoUODCk1KUMmgBw2QCfdXEZIjJJEoNo2vEJBMEBd7eJEBK0wIskBtC07UM0rHseNncpXB2Os7juqfzzRvLXxjhc5CClv3KFarskSaqff5bTuz2/1VwaN72BmoV/0MzUDFSvVjam6MI//spVqF18OzyHnYPsvtdH7B+o3Qrf/h/gKhmpGjhtITbuCT2OJpNWkgIINuxGzeLbIdbvQFClVEU6ZNIG6rbBt28enCUj4Czsr1liw/B4tVvhyOthzeTIcuGZtI4U/dwgIiIi0sMgLSVceD1Zh4EAQ5ZD2eeddc2LrlzYJwfn91YuHFHksWNfg9qttYAoSbAlIrBBlMGq5kxG07YPAABZva9F4bH/jbCHNWp+vgkN618MPW+Zg2XCggO+ffOsHT+Md+9cVHw5TnVb3bL7kDf8gbgeXzJYjqF6/nVo3DBNt0/V3EuV4/troppXMvmrVqPsk4EAAO+uL+DdNxdFJ7yp2T9QvQ5ln45qDujbPSg4aqr++BW/wFk8JKpMWt++H1A1+wLdPqKvKnEB/jgIVK8/+HrWADY3Sk7/PuZM2rL/DUHpxIVwFPS1aJZkpQVl22XPHbbIC8gSERERpRpehqaECy93YCSTNltnEbHvdjSqthe5tQfeVhNbxg0R6QvW75IFRxs3vATRXxf340piQBagtZKzdNTBR9YGtgRB/3ppw7rnoVXjte7XBy2dixr//h8N9YsUoNUSrNsW1X7JVPbxANnzps1v6favWfKXQxnXwSZUL7hFt3/l9+cDiC6TNlKAFgAg+iAF6k2P3VbULrvnUHBf9KJm4R9iLjsi+WtQu/RuC2ZH8bCpplz23C+qX4QnIiIiSmUM0lLChS8c5rAZyaTVfqtWNomGM71a1PtZ05YonoJ1WxVtkq867seNZ+Apu9/vmx8I1mZw2dwlutubtrxj6fHM8pUtiuv4kX7+dODd/rG8Iah+cTG0uXZT8wMLaymHExt2x23seGva+r7sub9sEWBB0K5p24cxj0HxUeqR3zG1umpfkmZCREREFD8M0lLCRZNJCwBdctUDI0FJfSExn6gdiA0vuUBEFlO9jTr+v3dSoCEu4xYc/QKyel3e/CTK22zzRz2p2q5Xn7RNiGOgEIChmrxkvWDDrmRPwVKSgbrJlLqagvJM6T8PHJukmRARERHFD4O0lHCKmrQGMmkBoMCl/XatU8mM9Qa1Ax/hgWIiSg/xCtJm970+VL8zUnkCNZ2mSMgZcKvG1jYepEXkD0wppkAug7Ta4vfeSLcgbawLh1Hb1hSU//vmOtxJmgkRERFR/GT8wmE+nw+vv/463n//ffz666+oqKiA0+lEly5dcMwxx+C6667DMcccE3GcL774Ai+++CIWLVqEAwcOoF27dhg1ahSuv/56nHHGGQn4SVJHeOxUZU0wVXqnqrU+Ee2z5dltPt0gbVsPihBRNKRgfIK0MhaXO4DJci2JJIl+SH4DJSRiXLSJNMTxvSHW74zb2OGkQCNg98R3oTKJNUoTyRcMoMKbgM/bg2r8TbLnHnvGn8IQERFRGsrobzjbtm3DmWeeiVWrVsnafT4f1q9fj/Xr1+PVV1/FzTffjH//+9+qJxeiKOL666/HtGnyBVN27dqFXbt24eOPP8a1116LF154ATYbE5cBZYDUaTCTVu9UdVW5D70KnbK2A43amV3z93hxdGePoeMSkXlqK61LcV44rGHTm6ied3lcjwHA+iBtG82kbdj4Gmp+/j2kQOR/NymmLEZm0qppWP8SRG9Z3MavXXoXsvv+FjZ3kWVjir4a7Hu7IPS8+NSv0LRjJhrWPQ9bVgcUnTQDrtACfNZiuYPEmbr6B/xlyWdoCCTv4oybQVoiIiJKQxkbNfT7/bIA7eDBg/Hqq6/ip59+wqxZs3DfffchJ6d5kYKpU6fiX//6l+o4d999dyhAO2zYMLzzzjtYuHAh3nnnHQwbNgwA8NJLL+Gee+5JwE+VGpQ1aY2doGfrpNy+tVae6VXj1b/1duFer+nFxojIOO/uWYq2ho0vx+14UtCHmgW3xG381gSLg7SSr1JzWzCB2Y6tSaIfNQtuNhSgBRBbJm2a1KSNreSDUvX86ywdT03jptctHa9u+d9kzyu+Pg0Na58BpADEhl2oXXKXpceTYSZtQtT5vfjjwv8lNUALMJOWiIiI0lPGBmk/+eSTUID26KOPxtKlS3HllVdizJgxOPXUU/H3v/8dc+bMgdPZnJ35r3/9C4GAPEtj/fr1ePzxxwEAI0eOxI8//ojJkydj1KhRmDx5Mn744QeMHDkSAPDYY49h48aNCfwJ267wTFqjC4dN6pVt+Bh7GyKfrOlUQyCiGNlcyuy8+pWPxe14/orlusFOKwUb95jqnzPgT/odbNq1FevXPWfqWFYRmw5A8tca7i+JvqiPpfZeSUWSrybux8jqfa3see6Qe2Mar2bhrTHtH65+9VO62317vrX0eK05CgfGbWw6ZEd9FQLxXkzQgD757ZI9BSIiIiLLZWyQdv78+aHHd911F+x2ZWbUiBEjMHHiRABAVVUV1qxZI9v+1FNPhQK3U6dORVZWlmx7dnY2pk6dCgAIBAJ48kn1lb0zjT/KTNq+RU6c3iMLdgPdwxcnU8NEWqJ4SnB2ZAKDBu7Op0Tsk3XEFMDmgrP0KOQc+YdQe8kZc5WddTIAhSSVApCCXnM7xBCkhZB6X0Wc7Y5WaY3/H5Wcvr+Dp+dkwOaCq8PxyO57I1wduMp9s9hff/V/V2pNSnJ5Fodgw7V9jsLYjr2SOg8iIiKieMjYe4V8vkMnlIcffrhmv169Dn0JbL2PJEn45JNPAAD9+vXDmDFjVPcfM2YM+vbti3Xr1uGTTz7BM888E9+FM1JAQIouk1YQBFw1IA9XDcjDRZ/t1+1rKEhr7LBEFJVEZ1rF/htdetZSlM0crmi35/eRPRfskbP6C497BYXHvaJod3U4HoKzAJK/+lCj7m3akf9eSJIIwepAp8mgq+mgrmzn5GflmSXYnCqt8f+rIrgKUDT2HVmbq/Op8O2bE/djW0USgxBsVtd1hqmSGzmD/oL6FY8o2gVHjpUzSktqF7jLLv57wo6f7XAhy6H2+0dERESU+jI2SNu3b9/Q482bN2PAgAGq/TZt2gSgOUDYu3fvUPuWLVuwe/duAMDYsfpZLGPHjsW6deuwa9cubN26FT179ox1+ilLkqSoa9Ka4TdQmo5BWqI4SniqugXHUw28QZnpGWtN2rAAlaQXpDVyUU8SLc9GNRt0lcTMCtKq1p9NxHte5T0q2FLrq5zkr4XgLrR+XBNBWvUgu/X1ptORGPY+FyCgxMPgNhEREZEVUuubvYUuvvhi3HPPPaipqcG//vUvTJgwQVHyYNmyZfjss88AAJdccgny8/ND21avXh163K9fP91jtd6+Zs0aU0HanTv1F43Zs8dcbcRkU6sDq7MemCl1fhG5zuZAxfID8oCBywb4ws6pWe6AKI5iCLyJ/nrsn94Zkr8GuUP/jryh9xk4ngW/0BoBmvAs1VizAAXBLg8pHwzSBpsOoG75PyD5qpBz5K1wlo5A/dpnIw8oBWHFn/NA7RbU/fowpGADXO2PNbdzMPpyB7pB6rZKdc4JyKQVVP6dtS4umCQFfSj/chz8B34CAJROXAxn6QhLxpYdx1+Dpn1z0LTtQzhLRyO7342y37HGzW+jcev7CFavg6NoIFwdxyG77w0R70KqX/mo8UkYvSBDCuHlDjL85jAiIiIiS2VskLa0tBRvvPEGLr74Yvz4448YNWoUbr31VvTp0wd1dXX48ccf8cQTT8Dn82H48OF44oknZPu3Dp527dpV91jdunULPd6xY4epebbeNx2ELxoGWJdJ+9wvNbh9ZCH2NwTxzfYm2TaXXYAv7Ng76wI4opC3zBHFR/QBq31v5YX2r1v+N7g6HAd3p5Mi7BV7NqZmFl14AFgtUGbqQGHHORjwq5pzCXx7vgEANO34H0pOnw3JWx5xuGD9Djjyj4hpSpIkofKbMxGobq693rT57Yj7+KvWwFnYv/lxxdKoj924+S3kDoywuFpbo3IRIiG1OlWyZrWyQs2qnDM5FKAFgLJPR6LjZfUQHMYX7TTCu+cbVP94DQCgcdMbEOweZPdpXhDNu/tbVM29NNQ3UL0GTVvfh2DPQnbvqyybgyBovGYpmNWdaF/sXCt7nqy62URERETpKKNTBs4++2wsWbIE1157LZYvX44rr7wSRx99NE499VTcf//9yM7OxlNPPYV58+ahQ4cOsn1raw+tep2bm6t7nJycQ7eB1dXVWftDpJjwUgeA8Zq0kawoa87k+mBDvWJbvkt5kDUVxm+NJCKzYglYyfet+OrkyHuIgRiOd5DGbeNZvS6TN8R6S3TY/pIYhCRJoQAt0JxtqFYfV03t0r/GNh8AYtP+UIDWqKrvzw89rllwc9THjjXAnBzJKXdgc+YrG7UCjiZ5t89QtPkrfrFk7Naq51+n+bxh/Qvq+/x4tbWT0PhdlyQLPkfS3Lb6StnzIAPbRERERJbJ2ExaoHkhsNdffx2ffPIJJJWTq3379uHNN99Ez549cfbZZ8u2NTUdytR0uVy6x3G73aHHjY2NpuYYKfN2z549GD16tKkxk8mqTNpbh+fjqaU1sjZvsHn8HbXKk6xCtw276+W3p1Y0peAttkQpQrVmZ1wPaMHvs0bw1XP4pfJuEYK0uYPv1j9MeCauFDC16FG4QJW54KqqKBb+ah3UlQINUR9asGdFvW/SqL6/E1DuwKF8razKpFUT04JwmoNqfzb4yxZbfzwVgk3je5sVF3vSXHhNWiIiIiKyTsYGaevr63HGGWdg3rx5sNvtuOOOO3DVVVfh8MMPR1NTExYsWIB//OMf+OGHH3DOOefg8ccfxx//+MfQ/h6PJ/TY59Ovxef1HjrJycoydzIaqZRCqvE4bLhuUB78QQkBqTmo6rGbD9Ie3ckDaRjw72XyQG1DQIJazNdlF3DW4dmYuflQIOFAA4O0RPGT4BN5C4LCqvU+AThyu8sbIizUlDf8Qf0Dhde0lYKQxOhrulrxWic1gzAFM/HUFw5L0s8RIUgruIthc5cg+4irzGddJ7hecGy/ByZovGbMpI2sPiD/N/rzQP3Fc4mIiIjIuIwN0t5///2YN28eAGDatGm48sorQ9tcLhdOPfVUnHjiiRg/fjy+//573H777Tj55JMxZMgQAEBeXl6of6QSBvX1h26/j1QaId15HAJOOcyarKnh7d2Ktga/CJvKKhYOG9ApRx4YOdCYeoEBopSR4ICVJYtPGS1jYHW5AykIxBKcsuK1TmIGoWRBPeGEi1MmrS2nG8R6c7Xr9TJpBWc+Ol7cXNc4ULU2iiBtgt8XMWSUm6H5mjGTNqI6v/yzKs+p/C5GRERERNHJyJq0kiTh5ZdfBgD06dNHFqBtzeFw4IEHHgAAiKKIV199NbStdYZr60XE1LQuWZBuC4Elk9sORdZso0YmrdMmoF22PDCytSaA5fu92Fuvf1K2tz6AebuaMHdnI7bX8ASOyIhg/XbLx/RXrUbTjpkQfdXKjVZk0kbIkD3U0dogLaQgpGD0QVorSkskN5M29W6floIqpYskCcG67ahZ9Cc0bHojqlIBWtncuvQyaQWb+uNW9Oo5W3LxwwS9TNqmbTMQqN0M0VsV+4G0XjNm0uryi0HM3LFa1pbrYJCWiIiIyCoZmUm7b98+VFRUAACGDRum23fEiBGhx2vXHlrR9sgjj1RtV9N6e//+/U3NlbQJgoBsh4A6/6ET/C+2NqpeeXDZBbTPUm7556JqOG3An0YUYJhKZu6y/V48urgarUvpXj8oDydblA1MlI58BxagccPLUe3btPNz1fbGzW+HVn235x2B0okLYHMXtzrm/KiOJ2Mw+Go4mKu1f9hxAhW/wlV6VNTjBWvWxTQfAKhf9X8xjxG1FCt3IEkSgjXrFe2B6tWomDU+9Lx28Z1of+EuSN4K44NHcQFAL5NW8lVFHLviq1NQfPr36gMkOrNUJ0hb+f15lh1G6zWzZAHCNHbJnLcUC4XlOPTXZSAiIiIi4zIyk9bhOHSCHQjofyH3+w/detd6v549e6Jz584AgDlz5uiOMXfuXABAly5d0KNHD7PTJR3hi44t2eeFQ+Vd7bQBJR71E1S/CLy6Sr1kxaxtjQhf6+zLreYWfyPKNA1rn4t638pvzlRtr1vxaOhxsHYjmnbMlG337Z0d9TFDbE7YsrtE7hdrJm1YkMNfvgSSGIcFmkxo3DAtiUdPrSBtsHazanvF12fInouNexCoWoX6dc8bGldw5kX33jK6cJjG2L59c+Dbqx6kTXSGdSwZ5abYNLI/mUmraXdDNT7Y+quiPZflDoiIiIgsk5FB2uLiYuTn5wMAfvrpJ91AbesAbM+ePUOPBUHApEmTADRnyv7888+q+//888+hTNpJkyZBUKmXStELhEVQsxzKsgYA0LfICafOAmV7NRYRq/Epgwd1/tQKKBAlWuOm11Tbne2PjWo8m6c9ApW/yI+x+W3Zc3tWx6jGlh3HmYvCY+UZwAXHvKTsGGOQNlC9Rn7c7C6JC07FiafHb6LfOcUyaUWfRmasSmkA0VuBhjVTDY1bePybulnaOYP+otoenpmtRdAodwAA3l1fqW9IcLmDRAXs7VkdYM/rpWhnJq22sqZ6RZtNEHB0++4qvYmIiIgoGhkZpLXZbDjzzOZsrd27d+Ohhx5S7VdZWYk777wz9HzixImy7bfeeivs9uaTo5tvvhmNjfIMy8bGRtx8880AmrNwb731Vqt+BDro6gF5sudS6H/kju/iiWr8oMr5YjD1yicStQmCPbrfQ0fRYOVYYdmDkmgsmGTL7qy73dX5VBQc/QLc3c5C3ohHkHXEFOWxo6kb2kp23xvkDVIgpoXDBFdRTPOxgj3viKj3taKmbkKZqaErBQED5THyj5oKd7ezdC8AuDuO09hi8OKvXjDX5oAtq5Oy3WTQMtLvV0QW1yd2dTpFfYPgQNHJM4Hw32Vm0mryqXzGfnTilTg8ryQJsyEiIiJKTxkZpAWA++67D9nZ2QCA+++/H2effTY+/PBDLFu2DD/99BOefPJJDB06FKtXNy+QcPLJJ2P8+PGyMfr06YPbb78dALB48WIce+yxeO+997B48WK89957OPbYY7F48WIAwO23347evXsn8CfMDDlO+cmpJDWXL2jtrMOzo85gDqicMIrh9Q+IyJhog3Eqv7+CPewWW4MZf4IzP8KhBGT3vR7FJ/8PuYPuhGBTCWzFmEkruApkzyXRr7tgUmvZ/W5UNop+ZVuixZJxmWpBWrUrgZpdRdX6p6VnLUOnKVLov5z+v2/+O6X33tLappMha7SfINhV/w3NLhwm2LNN9Y+ngmNeRNYRV6hvtNnhLOyPopNmyNuZSavJF5S/F/KcbkzqPjBJsyEiIiJKTxm5cBgA9OvXD5988gkuvvhilJWVYebMmZg5c6Zq35NOOgnvv/++6raHHnoI+/fvx8svv4xly5Zh8uTJij7XXHMNHnzwQUvnT81sYcEbUVIGVtVq1EYiHRyDmbREFoo6GKdykUUIC3wl8rZstcCtCYpMXNFEJm34z43E1w1VFVOgNcWCtKayPUVltiageuEBiLAoXcxBWv0AsGpAViVo2fL3URAE2eODW43NJUEEm/qiVqESEWH/Nm3id6mN8oW9F1wxfg4SERERkVLGBmkB4JRTTsHatWsxbdo0fPHFF1i1ahWqqqrgcDjQsWNHjBo1CpdccgnOPvtszUxMm82GadOm4fzzz8eLL76IRYsWoaysDKWlpRg1ahR++9vf4owzzlDdl2IX/s9S6RUxf7d8AZ7wxcW01PpE5Lls+HRzA95Yo76QGAA0BNrWSShRqvDta67xHajdgqp5VyBYuwk5/W9G7uC79PfbPUvZGBZQCmgs5hQPRmuAagrLrGza+h6ye19t7NhqgZFgU9RT8e6Zjer510W9/55XLaizniKZtIG6baiedzl8++YZ3kcStcodaLxuuoFUrWCssX8D3fet4IDkLVc0S4Ha0GN/+VKUzRwRtls2bJ72yD/qGXi6nRl1JmrDpjeR3esyWBrklSTtRdUOvhbhQXGxYRf2Te8CSCJcHU5AwTH/hc2ln32fKcLLHbgMlPEgIiIiInMy/htWSUkJ7rjjDtxxxx0xjTNhwgRMmDDBolmRUUbirw6DMYRPNjVgfPcs3QBtC1GSFFm8RASI3ird7ZIkoW753+Df/wMAoHbpX+E+bBKchUeaqk3atPMz2fNgzTrTc42W2VvAw6llS9avedrgzuqBNtFbBZu70NQ8JElC9Y9XI1i3xdR+1kuNC191y+83FaBtJqrXMNb6+6FbkkBjmwXlDvwH1Bc/bdz8DnL6N9fWr/7pd4rtUqABwbqtqP5hCtyT90WdiVo973J4Djs3qn21SJBgixCkVctyFht2AwCatk6Hq/2xyDnyFkvnlar84UFaOzNpiYiIiKyWsTVpKT04DARKSzyHTiR65Gtfl1i234ttNcZOMGu8qZH5RZRo/spfdLdLgXo0bnpD1la37G/N23xVxg8UlC/U6CgapOiSdfhlirb84Q/D3eV048dRYXMVa25ztj8u4v6Bmo2KNm9Y0FlLdp/rVdsbN75qaH8Z0d8GArRImUzaqF5jSYQ9p5ui2Z6lvsCW5Ne5SKgRoNcM3hrcHwC8Oz9VbXcUHao56i9bpLm/6C2D2FQWU9kRq9+Lnm6TYM/tob5RI5M2XM3CP1g6p1SmzKRlkJaIiIjIagzSUkrzGEiTHdXx0AJDl/TL0ewXlIC68FXHiMikCL+TKotcSaK35UHUR5WCXkVb/phnYM857NDMHLlwdz0TuUP+FvVxAI2SAwAEZwHyRzwScX9X+6OjPrYj/wjVQLAkRbF4WCLr+Oowk0GdcqQg7Hk9Fc02T0kUg5kvd+DqdHKrblF85TOzKJ0UjHHhLesyqrP73wx7dkc4CtUXttKqSUvawhcOczJIS0RERGQ5fjullJZlIEjbOpA7pJ0bIzu4sHifcpEem9Bcl9aI1Lg5lyjxItVrVb8dWji4LYZgXViQtujk/8HmKkD732xDoHbrwdqZ7SAIAlztx8BR0B+B6jXRH8+epcjm7TB5HwS7W2OHQwRHXlSHzDnyVgBA9hFXovpguYiQKF67RAVH3V3OQMFxrwAQINjdqFv+d9SvfrLVRNI5SCsqApfZB8sHqNP5mxZFuQNXx3GHukVRS1k6uKCdZGSxNNEf28JbonUXDfKG/gMANNcTCNUJZl1Vw5hJS0RERBR//HZKKc1IJm24LIf6Ca1dAOr8DL8SxSZCwE01M+/g73EMmZ2hbNyWEe2e0GNHXg/lDo6sqI8FHFzZPrzNQIC2uWO0N7EcfJ3UVqyPKtCZmOCoJPpgz+oQeq7MLE3fIK0kiYrApWqN2tBGvZq0WkExg/tEs+Bdy++rgd9NSQrEmJ1t4fsgUgCxpdwBM2kN84VdbGCQloiIiMh6/HZKKc1jNx+kdWqcz+6qC6J3ETNpicwK1G5Gw7oXYc/pCkdBf92+VXMmKxsPBqa8Oz+P6viSJEJs3CtvtOkHTAVBY0Ehw2JYODCaYBkQep0ElSBtVFmxicpgFcPvXAj7EDYwj0DVWjSsfxE2T3vkHHkLBEe2dfOLo9pFf4Lgypc36mVv6tVZ18yk1dundZDW/MWBYP1O1Cz+C+pX/iti3wMf9jI9fmtqJUuiFSlrOLSdmbSaJEnCS+sX4Id9WxCUJGyoOSDb7rLztSMiIiKyGr9hUUrTCrjq76N+QhuUgH31baNGI1GqkAINKJs5EpKvEgDgLBmp29+3b56iTRBs8O6di+r515o8dhMEhwf1K5R1YCNmtWqt+m5Y9EFawws9KXY8uJ9dJZM2mizEBAVppWBYkDb8548wD9Ffj/IvjofoLQMA+KtWouiEN62cYtwE67cB9WGNOtmbgsXlDmRByCguDvgP/AT/gZ9M7xeNmkV/sm6wSD8rM2kjemLlHNy+WH1BOYCZtERERETxwIXDKKUJggCNmKumHKf2DivLo1h8hyiDNax7MRSgBQB/+WLTY4j+WjSsf9H0ft493wIAmlQycG3OAt193V1OM3281jw9LpA9F1yFxneOOkAsHNw9X7nFHkX5hgQFaT09LwxrkX8GR8oC9u6YGQrQAkDT5resmlpSSP5qna3af5+0Mk0Fg+UONOuzthH+Az9ZcPHkoAhBWrHpYFYoM2k1fbZTv2Z3vtOju52IiIiIzGOQllLeGT3MBSdGdXRDoywtEZnkr1oV8xj27M7w7Ztrer9gw04Azdm8ijEL+urum9P/FtjcpaHnBUe/YOrYuUP+BsGRe/CZgMLjXjW8r7PdUaaOFXIwY9LZ7mjFJkfhANPDSQmoBSu4ipDV46KwxvBgoX4BmUDNOmsnlWT27G7aG/WyYlXrOcN4uQMA2X1+qzOz5LPndLdmoEgLGLZ8ZkRbeiQD1AeUC6y2dlHPIQmaCREREVHmYAoBpbzL+ufipz1eVDQpAw6/G6xcRf3wAicePKYIP+/x4uNNyuCOEUYWuibKCBZk5wmOnOh2bKl1GrZYUf5RUyNmDdpc+Sid9Cuatn0AR34f05m1jrweKD17Gby7voCzeChcHY43vK/NVWzqWCEHA3g2p/L1ilSDU1UcM2kLjnsVYtMBeA47B/acLrJtylv6I3ygptkHrrNkmM7WKMod6F1vD3tf5B/9LBrWm7sgkVBhi6xFK2LWcEsGbdSL+KU/nyj/XD2r25EYUNgRDpsNYzsejlM690nSzIiIiIjSF4O0lPJsgoAJPbLx5to6xbZsh/qJWs8CJ3oWOLGtJoBlB/SzRYhIm24NTTOiCMSFap2GBXZsnnaG9rdnd0JO/5tNH7eFI/8IOPLN7y9EWcux9W3ttuzOEBt2t9oaRSBTil8Nbk/XM2HzlKpvDA+gRfy3T9ACZ4misvBbiG7QUON3TWcfIex2fkGwQXDkQAqEF8qNr/wxz6Hm5xsi9pPCsoUdhUciULXa8vkIB8sqRF0fOgP4w4K0l/Uajgt7Dk3OZIiIiIgyBIO0lBby3eonr1kR6hp4NIK4RJQ4geq1EBt3R+4Y7mAmrRQWTNBbmCmlyYKbxj67xKYyBBv3QGzYA0CSZwzHsyatmWBjpHnEME9JEhGoXIFg/XbYc3vAUTgw6bVZBb26q7pz0whmmyh3oNkWZ4aDoWL4InMW1agNF/qMYJBWjSRJWF21T9bmYv1eIiIiorjjNy5KCwVu9ROtrAhB2GiDtOl18y1R9MIz36LhO7gAmOljtyykFJZJG9Wt/ynBXEDJt38+Kr6ZKFvYDQA6TTn4CRbXhcOMB2n9ZQt0R5Ki/MSVJAmV350H745PQm3uw85F8UkfRTWeZfQyaXWD71qvg/FyB81tSQhMGgyMh3+e6Aa0Y9HyGrTxxdSS5XfzP1S0uaK8A4CIiIiIjGMKAaWFAleUQVo7T9CIYhGo1l8BPJ6klqw7MayOZZpmfAV0FmmTVEoG1Cz4gyJACwCBmk0AgGDDLusmF85kIFD01WhvjLImbaBqlSxACwDe7TPgL1tieqxg3fao5qBGL/BocxVq76gV3NV7rVWCtPbsrtr948VucIHP8Is+cQrStpSBEHQD5pnpQFMdXlz/s6LdZWeQloiIiCjeGKSltNAl16GoP5vjFNAxR/+kQm2xMSIyTnAqF+dLlJaap1J4bdU0zaRt2vZBq2eRLzD5yxerj7N9RvMDkzVpzSzwpve+cBT2V7SJ3nLtwaLM+BUb96q2N23/2PRY3n1zo5qDKrtbc5PnsEma25wlw1Xb9epCCyqlPwqOfk5ncvEgwN3xRGT3uyliTyms3EG8gqj2vCMAQLtucgbb11iraLMJAgYXdUrCbIiIiIgyC4O0lBZcdgG3jSjAEYUOFHts6F3owB+HF8Bh0w9kHNtZ+2SZiCKzZ3VO3sFbMmjDyx2kaSatZcHnUC1f44smOtsdjaKTZgB2T8S+ucMe0K376iwepmzUDcQqM2nVMoeVQwbUN0SRnWnZAnkABJv2352sI67S3k8rY1Yvk1blFnVn+2ORO+Rv2vtYyJ7THYUnvAV7Thd4elwYeYfwTFq7fpBWcBZENa9k1yVuy/yi8nfx3bGXoX1W8i7IEREREWWKND2TpUw0uNSFwaXFpvZxRSh38MhxReiYY8eUr8pk7VHefUuUfpJYp1ASW2rSZsjCYSYDmdrDNAfCQjV9I3AUDUbpmfMBNGdmRjqSq3SUfgfVoKLOqKo/t4SI2cSSepA2bnVODRJ0MmmjusBgstyBIAjIHXQn6n75u/ljmVR6zgrYDmZVC45s0/tH+rdqN+lXHPhkECS/TrkMMsUfthBjtsOJ3/QckqTZEBEREWUWZtJSRouUaeu0WZk/RZSOkvgbcjDIqMiYTNNyB7JAZiyZgC3ZigYzaWWBMiOvbaQguVpQUTcArbLNSAkEzUzaaAKhFr7PdYK00dErd6Dx75WgQHXr4+sFp7UHiDBPuxtJ/QxKQ+FBWkfafp4SERERtT0M0lJGc0T4DdDazkRaomb+cvOLMFlF9FU1PwjLpE3bcgcWaSlzYDSTVhbQM5I5HXHRMGVQTbf0gtqiaAv/EHH+YkBZW7P58Ml9fwgGSkaYG1Avk1bjZ01U4K3V8aOpLxspk1awua0NoKtoWP/fuI7flgRFEbct/J+szWnjqQIRERFRovCbF2U0R4STO6dNALN0iLQFKpYn7diNG19pfhB+W3tGZn4Zv3TUsO7F5j1EY0Ha1oEyzcxMM3NRCSo2rH9JezSVrNmGtc+icdObuodpWKu+QFY0QXy1OURLryZtlAPqbFP/90pYTdbWr3U0P3ekIK3dhXj/ja6efz0CNRvieoy2YvrWX7CobIeszZnEkjZEREREmYZBWspoRR79X4E8F39FiNoqV6dTASjLHaitaJ8O8kY+GnocqRCLFNTOTJX81c0PdPq0FqheH3osNh2I2N9ZPDRCD+XcG9apB1SbqQd9q+dfq3sU/4GfVNuDtZt191NjaR3bCGPlDX/Y1HB67wV7didTY1mt9WJn0dSkzT7iSv0Odg/yhv1D1uTudpbseVYv+Ri5Q+6T9z/snIjz8B34OWKfdLC0fKeirVNWfhJmQkRERJSZGIGijFaapZ0hUui2wWUX4n0nJVHKktrKCnqKhcPSM/Mru8/1xjtrLJol62Iwk9bV8YTQY0fR4Ij9bW79BRxVszh1yx1Yl8XaPFzk10Yhmn00RMpize5zPex5h8vacgb/VWdA7a9yjqJBmtvCj2G18GCzzVVgegxn+2Ph6XFR8xN7FuwF/ZofC3bkj/kPBMGGrF5XwFkysvkYWR2RN+wB2Ri5Q+6BPac7AMBROBDZ/W6Sz3Po3yMHkNvKZ12ceYNBRdvdQ05OwkyIiIiIMlN6phsRmXBmzyx8tqVR0X71gNwkzIYohVgcPDNPbA4Uhwdp07QmrW6QKyyIJIW/JmpUMmnbnb8JBz7sJWtzFA4IPfZ0Px91lb9qDim4iiIf1zSLA2QRa+aqzMDgImtWsHlK0O6c1QjUrEegchWcJcPhKOijNzvNLYLOz5o37EFUzb0khplqjDv8IXh6ToYjLAgczcJhgs2JwrHvIDjsHxBcBbBndUCgdgsEmxP2nK4AAJsrHyVnzkewdjNsWR0VvyeO/CNQes5KiA27YM/pDsEhrwnsLB6M9hfuRrB+O+p+fRhNW95VmUhmXK31hV2MmNxzKM7vEfnCDBERERFZIz3PZIlM0Dr10it1kBk5NUQRGAkExvX4omqgOF3LHchFCBoZyPwMz6R1d50Am1qQtXWgL0Jg3tKyAIcOavF4UQTcRL/Fc9An2N1wFg2CUycTtoUkRvl7GEWwOhJ7Tnfk6mX9mmVzQhAEWZDakddT0U2wOeEo6KszTC5settdBbC5BiGr1xXqQdqkX5BKDG9Q/rnROZulDoiIiIgSKRPOZIl0ad162hKkVdt6y/flAICjO7nx+6H5cNgyI8uGqDXf3tlJPb5352fqt8lzoRtIEcod+MuXQwqGlTvQXNipdTAvQrAqHlnMFgfIolk0S0pwkNacKF+fOARp4ciybizBrpsJHA9ax2vc8DIkXzWyel8FmzMPQPN7onHja5BEH7KPuAqClT97HK2vPoDpW35BlU95B9GCA9tlz11pelcCERERUVvFb19EGvKckU/kf9rjxcK9B/D2hPYJmBFR2+Hd/Q0qvj4t2dNA9YKblY0ZkUkbLizbNEJ2ZdnMYYdqfR7UfDu68nOvdeAqUhkFReDXClbXA23j5Q5MizqIbf3FRSlQb91gccnKjkT9NfHtmwvfvrlo2PgKSs9aCkEQUDX3cjRtfQ8A0LTtQ5Sc9m0iJxqVvQ01OPqzqajwNhjq77bzghcRERFRInHhMMp4WqepuTrlDloLSkCdLzNuhSRqUb/mmWRPAQDQuGGaok1IgYXDXJ1OMtVfschTpGxQAwuHtQSYQkPaXBrjtmqLEBCUvOURj6tGcOrU27W7ohpTiy2ro/md2nAmreCM9pZ064O0Yv0Oy8YSbNb+uxs8qO7mQMVy+PbNgxRokP3++PZ8h0DNhnjPLmbf7dloOEALADmOJPwbEBEREWUwBmkp43kc6ieqZkoYVHkZpKXM4t3xiaF+eSMfRf5RCQ7opsAtukXj3jfVP3/kE6b6SwZq0irY3aqBMVnphDjV5nR30c7KtukFcHXY83urtjsK+pkeqy1n0tqzoryTIwmLYXl6TjbeuQ1l0rYWrFkHKaAMdAbrd8ZjQpaqCxh/HzttdpzWRbuOLxERERFZr+2fyRLFWY5KWYMpR+aGHhs5jfUGuZQYkZqswy+DLasjvLu+aK4ha4LNXYrsvr8F7FmoW36f8QBhCpQ7sLmLNbc5igYjUPmrrM1ZOiLCiGGfQVEs6ibYXIBdpS5t6yxSi4K0OYPuQv2KfxrqG6nEghZ7TjcE1bIboymf0IaDtFoKjn9Dd7tgMpPW2f44OIuHomFt9Bddisa+gwp/Hbw7P4XgLmkujxBsUp9fUjJpDbwmkgT1bwZt/3tAMOz3t0NWHiZ0VV60yHW4cVHPIRhc3DlRUyMiIiIiMEhLhGyVTNr22eZul673t/2TM6KksDkgCAKyDr/MdJDW2f4Y5A1/EACQN+Ru1K/5D2oW/D7ifqlQ7kCL4MyHu/MpiiCtMigUe7kDxbHtbtWFk+RZpNYEaYXwYLBeIDbKIG2kurxmtO2Fw4Dm94P875DiNVbsYu5mqqzDL0VOv9/FFKQFgOJTZoYe7327CJJmkDYZmbSRXxNJEtVfuzhlmVspIMrn2L+gPV4+7iKN3kRERESUaAzSUsbLdipPtvJa1aM1klhT3mRdMICorTOzOJTQktVqsyBwajSolALlDrRIog8QYg9ORVXuQCtzUYxDuYOwf0tJZ1zJVxXlQbTGTMNMWsGmEsyO9PtiLpPW5io01d8IQXBo/2skI0hr5A9+sEl9gbQ2FqSVJAnb6ipR7T8UBN9RXyXrY49iET0iIiIiip/UPZMlsohaSdp8l7mT1+d/rUWWQ8CYTh6LZkXUNgVqNqLimwnGdwhltVoQDDAaUEjhTFoEvRBUF8qKlDkbXu4giiCt1tCtskj1gqlmKLKdNbJlG7e+j4b1L2qOE6jbBkdud0W7JPrh2zdPfacoyh349s83vU9CqQVpIwUcTdakFeIQpBW9ZZrbgg27LT9eZJFfk5pFt6Fm0W0qW9rOHTVNAT/O/vYVfL17vW4/exLqEhMRERGRNl5Cp4xnV1kgLN9l/lfj3XUqmTVEaaZuxT/V63xqEA5mtUZTgkBw5MieG82oFFKgJq02CYLdwMWeSMGVKEoE+PZ8q36oVkHj8H+T6IV9xmoEf6tmX6g7Sv2qJ1XbfXvn6uxlPpjmP/Cz6X0SSW1xtUg1XQVbhHII4cdwF0XuZOS9a1Sw0bqxjIohY9qqCxhW+GrXuogBWoCZtERERERtDb+dUcbrW+SU1aXtkmtHllp6bQR76lnygNJf44aXze1wMDjrKDzS9LE8PS6QPdfMjAxnRWmFJHK2GyN7LrgKYcvqaGqMaBbb8pctAgC4DztH1p7T/5bQY0/3c02Pqyr83yjKurMNa/6t2t646XXNfaQosowdxcM0txWfPsf4OAX9TR/bCLVFwtydT9Xdx9n+GFPHcJY0L16XN/xhzT75o58yNWZbI3rLo97X5mln4Uxis62+0lC/AUUd4jwTIiIiIjKDQVrKeC67gBuH5KNjth2H5dlx/aA8CFHeAihGs2o4UTo7mNXqKOhjarfs/jfD021SlMdMjSCtPV/9NXF1PBE5A++E4C6BPe8IFB7/JoSIgefwcgfRfxblj/gXnO2PhT2nO/LHPAt7TtfQNmfJSOQO/TtsnvZwFA2J+hhGMmmlGH4G3UBs0Hy2pKSS1WnPOQx5wx+Cq8PxhscpOuVT08c2wt35FNk8Co59OeLCYTZnLmxZnQwfoyUrPrvvDfD0+A1s2V0VfbKPmGJ4vDapDWXDxqIpqHz/OwRb6D+P3YEJXfvhrsEnJ2F2RERERKQlle8JJbLMqI5ujOqofkJrJlzrFwF3asSHiBIjittpO1xSBZtLefu20d9GIUVu4XUU9EewRnlLsiAIyB/5CPJHPqKzd6TXIvoAp6OgD0on/KB+VEFA3tD7kDf0PgDAnleju6AVXv5CNfM3yuzaSCTR+MJ3IcEm2dOik/8HT7ezTA3RYfIB2Dyl5o9tgGBzoOQMvRIP6rJ6XYH6lf8ytY/NXYiicdNNHysVRJOBHhLNYn1x4g0L0p572EB8dPKU5EyGiIiIiAxLjTNZohThCzKTlqi1qLLSUyTIGrN4LtrT1jMCFf/GKvONU9BLiiaTNiDPpBXsWVEcue0t0qS+SF0GiyVIG6eLCtEIz6T1OJxJmgkRERERmcFMWqIIzMRRvEEJefGbClFGiGaRsYynKA3Qxi8YhQVpfXu+w55XBQjuEmT3uR55Q/9mOKsxWL8D9pxuxo8dRSZteLmDqIK08QzKR8vG4J1MDBc3osrQtohfDOLuJV/g2z0b4BdF7GmokW13p3idbiIiIqJMkSHpSkSJcaCx7WTSEFlNEhP1/uafpsgiBPzaen1sjUC85C1H/Yp/on7NVMDgAl9Vcy9XGUg72CYFLQjSOqLJpG17BIFBWpkYsmHrfnnAwomY88TKOXhs5WwsLd+FFZV7UOatl2332PnvTERERJQKeCZMZKEGfxsPjBDFIFi32VR/W1bH6A6kcQu2p/u50Y3XRmX1vDiOo5vPCHRHu1BbK4YXE4tQ0qJ28e2GA2a+fXMUi4z59v+o2V8SzZU7kCQJEP3yRpu8hrmn+3lhzy9QjCM4ck0dNxHcnU9VtOUceWviJ6LCUTgg4cd0tj826n19e2dbNxGTFhzYrru9Q1bbe+8RERERkRKDtEREZIiRDER7Qb/Q49yBd8q25Qz4k+y5VhBXa+Evd+fxEY+fSsIDe7GRBynDg5ZG5Bz5B/P7DLxD9rz41C8N7WekpIVkqiZt2M/vq9LuajqTVuW1DHuPZvf/QyhwK7gKkTv0fmT3+W1oe+6Qv7XJ+q/O0hGtgvMC8sf8BzkDb4c9p7usX/6YZ+Ny/PyjntbcljdCb+G8+HAW9oenx4UJP26sgjqZ46XuHFzWa0QCZ0NERERE0WJNWqIIzFQRFJlIS+nMQAZi6cRF8O2bB3tOVziLBsm25Y96HO5uZ8O3bx5y+t2Aiq9Ph9i41/DhBUeOkV6Gx0s2wRbDn+CI9U3NfxjZsjqY3id/5L/g7nomfPvmIqffjbC5i43taGRxODO3nktB+Zh65Q5MZtKqjRV+IcHd8QS0P38j/BXL4Cw9Cvas9sg/+jlk9b4ags0FZ8lQc8dMoKKTPoJ//08Q3EVwFh4JACg9ezn8FcshesvhKOwfardaTv+bUbPgFtVtnm4T43LMSArHvou9W6cn5djREsMuykzuORRnHzYAWXYnjuvQE6UeI5+dRERERJRsDNISWSj8RIkonUjByMEtmzMXnq5naG53dzwB7o4nHHxmMqBqIPtScHLpPgBR1aQV7J6oDiX/NzV8sMh9DNakBQCIQdkiWJKVNWnVxlIJMttzusKe0/VQF0GAq91oc8dKAkGwwdVBfpu/zV0Id6dxyZlQkgmCAFt2Z4gNu5M9FcOksIsyw0q64OLDhyVpNkREREQULZY7IIpAMLEiNzNpKZ2ZzkCMyGyQNvKfLMGZmbUXWwdp/OVLUfndOabHiDZIGxUD/5ZmFqqTFFm3Oh/Gpt/HamPx61N6S52MfADYUFMme55asyciIiKiFjzLILKQ+aV6iFJHoHKFtQMaueW9dXcjmbSOTMmkVQ/DeHd9hbKZIyD5q82PGLYYVjwJBr5+NGz4r4kRwz59dTJpG7e8Y2JcjbFMXLwjiqeVlXsUQVob359EREREKYlBWiILMZOW0lmgaqWl4znM1rk0UMPVWZT4FeFj4eowVvbclt05pvEqvj496n0FR1ZMxzZ3sMgB9/pfHzY+XljWrT3vcM2uNnep8XGhVTqBX5/SmbNkZLKnYNgHW39VtDltBsqJEBEREVGbw7MMIguxJi2lM8FVZOl42UdcpWjL6nWl9vFb1RzVkqUyZluW3f9m2fOcI/8Y3UAWfPYIjuyYxzB+MIu/foSVO8jqcaFm19Z1Y42JvHAYRS932APJnoJC3oh/mt/JSJ3lOKj0NiraTuigfZGCiIiIiNounmUQRen83sqABjNpKa3p3EIOAKWTlBldelwdjkXh8W+Gnru7nYWCo5+PamotkrUifLSyepyPgmNfgafHb5A36gnkDLjN4J7mb2fO6nOd5jZ3t7NNjxcTiwNa4TVpJb1FxxT1ayMNbmzhMIpO7qC/JHsKCs7C/ig6+VNT+9hzu8dpNvr8Ye/n7rlFGFrSJSlzISIiIqLYRL53lIggQLl0zFEdPfjlgA8bqw4FA5hIS+lNP0grOMwv2pXV61Jk9bo02gmlhezeU5Dde0pcj2HL7orCY15E4/qXoLYQlvns0thYnokaHkgV/dpdTQdp1T7YWfPTKoKBMibJ4Ol2pqn+UrApTjPR5xfl7/1zDhuYlHkQERERUeyYCkJkgNopul1Q/gJx4TBKV1LQh2D9Dt0+Rhb2oniJcIWoZSEhrX8jIcGBMqvfK+GZtEGfdl/RZJBW7ZOdmbQURgo0JOW4vqA8a9xp43uTiIiIKFXxmxxRlOw25QrK/11RC1+Q6bSUXupXP429b7jRtOVd/Y4M0iaOydXbhZbMT40yAAkPsMe5Jm3Dmn8b7ht5bAZpKTLJVwXv3jkJPWZZUz1e37RE1uZqo5nJRERERBQZzzKIomQXBNhU4iRL9nsTPxmiOJECDahZ+AdjnRmkbcP0g7qiryox02hhcZCzdQkDf+VK/b4m73mQVGsxs9wBKdUsinLhvyg9u/ZHRRszaYmIiIhSF7/JEUWp0G1DRZPy5P2dtfVJmA1RfAQbdhvvnIDswvxRT8b9GKkpQgZ/hOy6pm0fWjgXA0Sdhb2i0SqQWvfLgxGObTKTVqW+bVuto5ouHIWpWVc1WLslocfbUFOmaOud3y6hcyAiIiIi6zBISxQll13AxMOzFe0iVw+jDJWIW+azjrgy7sdIBYLJTE7BnqW/3ZkXy3SSr3UJA0l70TBFXyNDi8q7IwS7x9QYpK/gmJdkz4vHf52kmaQWX1D5Xj6/+6AkzISIiIiIrMBUEKIo5DmbAyTtspTXObIcvPZBGSoBQVqbuwiCuxiStyLux0ongt2tv92Rm6CZtIj+YlbHKwLY+7r860vrcgeSSuarvLPJIG2wSdlo0389yZzsPtcgu881yZ5GyvGGZaQ/OPx0eBzOJM2GiIiIiGLFaBJRFFrW7BFV4gzZTtYqpAxlS1BNWmarK0V6TSJkftqcCQ7SqtZ5NUitrEbrwGuEIK16jVkdwbBMWsEBIVHvdSId3qA8SOvi+5KIiIgopTFISxSFljBsrV95sp/jYJCWMlMiyh3QQUL454yE+rXPanePEKQVHDkWTMo4KYZMWkEQlIHaVoFXSfRFOLi5TNpg4x758VnqgNqAn/dvw5e71sna3HbeIEdERESUyvhtjigKwsEASbVXGaR1M0hLaSRQvdZ454QFaZlJG65p+ydo2vKO5vaI5Q4Snkkb47+hYJdn47YKvPr2fBfh2OaCtJXfnCnfPVBnan8iq1V6G3DyV88r2t1c0I6IiIgopTGTligKLWHY3kXK2m+BGO7iJWprgnUmVisXkhsgcHUcl9TjJ5NegBZAxBqqrk4nWzibyBx5PaPbr3DAwUfyry+SmcCrySAtZS7BXWxuh0hZ3BZZcGA7GgLKsh7FbuVipkRERESUOhikJYpCy9pgfVWCtP4gs/wojRgMvGb3uzGpdToFRw7yRz2RtOMnnrmMfcGmv5iQp9tZsUzGNEfxsKj2Kzi6OXtQ8V4zEXg1E9CVwhZmosxSeNzrpi4+SYH6hLxnqnyNirbuuUU4pXPvuB+biIiIiOKHQVqiKNgPljuwCQIu7iuv5ehXW02MKFUZDGjlj346zhNpReVW+dKzf4GzZHji5pBqIgRphQiZtlYTBAHtL9hmah9Xp5Ph6nDcwQHCg7QmbmEw0VcK1Bsfl9KOp9uZKD17KQrHTYer44mK7e4uZyjaJF9V3OdV6/cq2had9QcUMZOWiIiIKKWxeBVRFGytkthynPJrHSpriRGlLgMBLVt216Svdu/I75XU47d1kTJpEaFmbTwIrkJT/R0F/Vo9C184LD7lDiR/rfFxKS05iwbBWTQIUqARvr3fy7bZPKWK/qKvUrXdSuFB2lM790E7T4LrShMRERGR5ZhJSxQFR6vfnLAYLdZV+rGyzIcAM2opDUgGaiwKjqwEzKQ1/m6ZLXcQ6ZbtRGfSNh/T5HViodWHbdhFgZpFf4borTA0jNi0H1LQWO1Qo2NSBhCUX5kFezZg98jaRG9l3KdS42+SPc9zJv73l4iIiIisxyAtURRayh0AgNOuDJY8sKAK/15Wk8gpEcVF7eLbI/YR7IkO0pJZkTJphSRk0kYqwaDQqsyFEFbuwF+2APveKTEcVN37hhuSqJ9RK4lBlP1viLk5UtoSVIK0EGywhWWES774B2n/vvxr2XMGaYmIiIjSA4O0RFHoknsoQOCyqWe0LdzrRUUTVxGn1BVs2GOoX6KDtI6igQk9XlpQCzC1ZjZgagUTCzIBgHfnpxH7lH95kuHxmnZ8on+8Hf9TbRfcxYaPQelE/XfI5iqSPRfjXJNWUqnJ7TablU5EREREbRKDtEQGTOolX4zjN30OLRbm0PktqvPxtmxKXWLTAWMdExwgyO5zve5zUgrUbAAA5Bx5q+p206UHLCAI5ko2BOu2hh5rvTcDlb8YHs+7/WPd7U3b1YO4hce9ZvgYlEZULnRIok9Rz1kS/XGdRkClTni3nMK4HpOIiIiIEoOX3okMuKB3DkQJ2FUXwEndstAx59CvjkMjkxYARJWMF6JUYaQebTJk9boCYuNeNO34FM7iwcgb8a9kTynxTAY4s3peDADIHfYg6lc/FYcJJZar44mKRZxa2HK6QazfEXpuz++LYM06RT8p0gJiGovhubueaXyilD5UgrTZva9GdcUyeaOBxRZjERCV408+fGhcj0lEREREicEgLZEBLruAy/qrr5ysFyqJ76kaUZwZDtKaXMQqRoIgIHfQncgddGdCj5vKBGdz9r/NmaMb4EwV9pxu2hvDFgXL7n01apeovFci1KTVel+bzQCmdKH8dxccuYr6yIgU/I9RQGV8p403xhERERGlA36rI4qRTiItRCbSUgqTgl5D/Ri0avsER07kTilE7+eRRPn7VnBka3TUDqY11/3k+5paUblo1fw+DPsqnYRMWkd4oJiIiIiIUhIzaYniKMhUWkplbbTcAQFmA4jpF6TVCLxCeXFBq69auYNg/S5UzpkM//4fYpsgpR0p2KhoExw5KmUx4vuH36+SAe5gJi0RERFRWuC3OqIY6SURimAqLaUu4zVpmXHY1smCtOmQ+ax3S3lYME2wG8+krV1+HwO0pErtzgLBmYvwr9JSxDIasfl0xxpFm0OlXi4RERERpR5+qyOK0eEFTs1tLHdAKU0MGOqWO/juOE+EwgUqfzW3g2zF+bYTpHW2O1r2XHDma/bN7v+H0OOmnZ8bPoY9r6f6Btlr0ixQudLwuJRZXGHvVZunHQRHtrImbZwzaSt9DYq2ApcnrsckIiIiosRgkJYoRm67gKM7uVW3BRmkpRQmGait6OlxEVydTk7AbKg1V6dTkj0FS+SN+Cds7lIAQHa/G5HV63LtvkPvDz0W7OqfuWpsng5wlAxXtEuBOmWbpH9hIrvfjYaPS+nFUTwYWUdc1fzE5kTeyMcgCDYgPIs1zguHqc5NUXKBiIiIiFIRa9ISWeDW4QW41i/imlllsnZRYpSWUpkySOvucjoKx02HYHNBCjRCcBVw4bAkcLUbA9+eb4zvIAu4t51/L3fHsWj/mx2QRC9srgLULLxNtV+HiytgcxeGngv2LMPHEOxuFJ/yOfa/11HWLvprlZ1VsmtbcxQOMHxcSi+CYEPhcS8jb8QjEBw5sDkPlhAJz6SN88Jh4U7r0jehxyMiIiKi+GGQlsgiuU4bSrNsKGs8dILGGC2lNJVggz3vcNiceQDMZTOSxUzWoFRbJKutEBweCGi+XVsze9smLytj5r0n2N2K/QFA8tco2yIEaQWVcSiz2LPayxvCfhfb8u8aEREREbVtDNISWSg8bMJyB5TS1AJmvPLQNphdKKj1bfxtOfNZI8ClqPtpN16DU7B7AJsyqCv55EHaupVPIFi9Vn8wm8vwcSkzCGG/i2LDnrgdS5IkvL15WdzGJyIiIqLkYk1aIgvtb5QHtVaW+ZI0EyILqGY1MkjbJpgO0rYOfqZekBY2+TVlM+UOYHNDUKnZKbbKpG3c+iFqF/854lDMpCWFsAsI9asehxSni1lvbFqCpeW74jI2ERERESUfg7REcfTF1sZkT4EoapJKQNZZelQSZkJK5v5823MOCz12dxxn8VysI2hlyIYFwpwqC4FpjqmxqJKjoF/ocdXsCwyNJQWbDB+XMoPaBQOxfkdcjjVj20pFW7adFw6IiIiI0gWDtEREpE4lkzbr8EuSMBEKF36LdSSOgkOLC2X3/z1snnah5/ljnrVsXrESnPmKNlenkxU/r7vzaTEfy93pJNP72HO6x3xcSi+enpMVbcGmfXE51ra6SkXbhT2HxOVYRERERJR4rElLRETqwoK09tyeEOysydkmGAzSenpciMLjXpO12Zx5KD37VzRtex/2vCPg6XpGPGZomeJTv1I2RlFXN6v3NWjcMC30XHORMh2amb6UsbJ6nI+qsDaxqSwux9peLw/S3jFwHCYfPiwuxyIiIiKixGOQloiINMiDWK2zLynJDAZpi8a9p9puz+6InP43WzmjuFEvV2A+SCuEL/rVejE1gySRdcZJyVE0GIHKX0PPxaYDlh+jIeBDubdB1jal9yjLj0NEREREycNyB0RkiCT64StbhGDD3mRPhRJFkWnYhhecyjjp+uc7ju+xsMXHJNFveggp6LVqNpRGwi9gxSNIu6O+StHWLafQ8uMQERERUfKk61keEVlI9Neh/LOjUf7paOx/vwsat36Q7ClRIoQHaU3WQaU44r9FFOQB4Mb1/zU/hMggLSmFB2lrF//Z8mM8/Mu3sufF7mzkOt2WH4eIiIiIkodneURxJkpSsqcQM++uL+AvX9L8RBJR9+vDyZ0QJYSEsPcuA4NthtmFw1KF4Cow1i+K2rC+3V+b3kfB5ox9DEo7Nnexok0KWlsa472tv8ied8k29rtCRERERKkjPc/yiJLEqfIbFTC/Nk2b07j5bdnzQMWyJM2EEioskzZdA4MpycC/hbvzaQmYiLWye18DtKod6+52lmo/R9Eg02MHqtdEPa8W7s6nxjwGpR9HXm9Fm+SvtfQYHru8XIeDn8dEREREaYff8Igs9MAxRYq21M+jBViLNEMpatLyT0bbof9v4e56JvKPfi5Bc7GOzZWPopNmwNluDNzdzkbBUc+o9hMEaz+T7HlHRJ5bdlcIzKQlFZ7DL1G0SVEsTKenMSCvofzoqDMtHZ+IiIiIks8RuQsRGZWrkkrbXO4gtYOcgqC2ujqlP9akbbN0/i1KJvwEV/sxCZyMtTxdJ8DTdUJiD2og6OvudGICJkKpSGiV/R0iWhekDYoifGJQ1tYpK9+y8YmIiIiobeAZN5GFbCrn+WlQklaxKjplCMXCYal9sSGt6AXM+e9knhSM3IcXq0iL2t9II+8pg5qCfkVbloNZ3URERETphkFaIgupxUaumlWGy77Yj7311t76mEiBypW625u2f4IDM0egYtbpCNRuTtCsKN5EX5XsueSvT85ESEG/PjCDtGYFjXxuMZOcNKjdbWJVuYM9DTU49asXFe1ZdgZpiYiIiNINzziILGTTyGDzi8C0ldYuIpJIgSplkFY6mGUp+qpROfsiBMqXwrv7K9QsuDnR06M4qVt+v+y5v2xBciZCSnpZncykVafxmgUb9xkcgF+ZSEMcM2n/uPB/+OnANkU7g7RERERE6YdnHEQW0vuF+rVMebtiKhObDgAAGjZMA0RvqN278/NkTYkog2h/2tg9HRI4j+TxdD8/Yh9X5/GhxzlH3qrap/qnGwwdTz97mTKaWiatRTVpF5btULQVuDzIc7otGZ+IiIiI2g6ecRBZSK0mbaqTtIrqHjwBlbyVCZwNEQHQvfXenntYAieSPLlD7oUtq6N+n0F/CT3WCupK3gpjB2RNWtLQHMAP+wJgUbmD/Y11irZ7Bp8Cu41f4YmIiIjSDb/hEVkoHYO0Wieakug/+P++RM6GiADNIG1W72sTPJHkcRYPQbtz18Ke30ezj7vTiaHHgt0j32g7eLu43WBGIjNpSU94yQMx9nIHTQE/6gJeWdvXp12PPw8aF/PYRERERNT28IyDyEJpWQpS1CjT0BK81dpORHHDW++b2VwFcBQOMNg5rIan6IckSRDC27XwNSc9YZnWViwcdqBJuVjjsOIuMY9LRERERG2TykoHRBQtrYXDUlGw6QAaN70JmzNfvUNLuQMGaYmSQCtgqFGeJI0JBssQCILyK0/9ysfg3fmZsQMdXCyRSI0gOOS/fRYsHLa6Wr6onV2wocidFfO4RERERNQ2MUhLZKFIIdqmgAiPo+1nY0lBH8r+Nxxiw07tPqFMWpY7IEo4razOTAwkht9mbqJf7ZI7DR8m2LDLcF/KQOEXC2JcOEyURJw+67+ytlJPDmzM6CYiIiJKW/ymR2ShSDVpv9/RlJiJxKhx85u6AVoAoTIHzKRNT4GajcmeAunRCMYKNleCJ5JCjJY10ODfP9+iiVBaCrsIEGu5g18r9ijaOnhyYxqTiIiIiNo2BmmJLGSPEKRdV5kaAU1/2eKIfUInoGlU4oEOCdZHCNJTUknBRtV2wV2U4Jkkn+DIMdZPpdyBGVbUGKX0JYTfSyPFVnpkX1Odou3c7gNjGpOIiIiI2jYGaYksJAgC9KoZuCJFcdsKI4HXg7dyqgU+JAtWtaYkU3kP5A3/ZxImQmqkoEZWfoyBoVRkcxkMTJvIpM0/+nllYyaWkqCkqfA2KNruG3pqEmZCRERERInCIC2RxZw6NQ+cKfMbZ2CioUxa5aI9mgEkSiEq72ObsQWaKP60MmmBzAsk2tzFhvoJBmvXerqfj5y+v1VuYJCW9CgubMV2waS8qV72/PgOPVmPloiIiCjN8dsekcX0kmX1ArhtioFM2lAtWpUgrb9sAaQAA7WpTFANBvBPRpvBTNoQwepMWs1F2XiHAOmxJkjrCwawsnIP1lTvl7UXu7OjnBcRERERpYrYCrQRkYJeHHZXXaqc5EcOxgVrtwCd1LPTKr46GRAcKD7tG7g7jo3HBCnuVN7IzOJqM6SAViZt5gVpbQbr8BquSaty4QkAJGbSkglig3Lhr0gWl+3AabP+q1rqgEFaIiIiovTHM24ii9l0slB/LfMlcCbRU8+ilGvc+t7Bzhq3wEsB1P3yDwtnRYnkr/xV0SaYqOlJcabxbyHYPQmeSPLZ3CUGOxp8/2pkI9uc+QZnRJlJ/re/aftHpkd4+JdvVQO0AFDsYpCWiIiIKN0xSEtkscMLtLO1+hWlRpDLnn9ExD42V0sdSO3MvWD9DotmRInm3f21os3V6aQkzITUZPe5Tr293+8TPJPkc5aOAmyuyB21LiiFkfw1AIDcYfKLTAXHTjM9N8ocYtM+2XObp73pMXY0VGluG1bSxfR4RERERJRaGKQlstiVR+aid6FDtTZtqtwsa3MWROzTEsgI1aZV7ZQq5R0onKAS9HLk903CTEiNPbsTCo55UdaWO/ge2LM7JmlGyWNzFaDw2Jcj9hMM1Npu7tgczM3pdxM83c+HLacbcgb8Ee4u42OZJqU5d+fTZM91/zZqCIryi542QUC+04Pr+4zBb3oMjml+RERERNT2sSYtkcU65jjw4LHNWabfbm/EiytqQ9ukFFnUR5ICEfuIB4O0COqUcBAjj0NtlEqtYWpbsvtcp5lRm2myel2K6p9+BylQZ8FozZ/TNncxik78wILxKBM4igbBu/urQw1R/P0LhNU9fuP4i3FJr+GxTo2IiIiIUgQzaQ/avn07/va3v2HkyJFo164dPB4PunXrhuOPPx733XcfVq5cqbv/F198gXPPPRddu3aF2+1G165dce655+KLL75I0E9AbVH4ImJiasRoDZ1cHsqk1Q7SSsykTVmCwVvDidIOFwijaITVPJakKDJpw957Dhu/phMRERFlEqZKAZg6dSruuusu1NfXy9p37tyJnTt34ocffkBNTQ2eeuopxb6iKOL666/HtGnyWnW7du3Crl278PHHH+Paa6/FCy+8ABu/bGec8JtrUyVGKwXqI/YJVK7AgY8HIVClcwGDmbSpi0FaylQM0lIUwhdWlLwVhvddXbUXdy/5Equr5HVt7QYW8SQiIiKi9JHxQdoHH3wQ9957LwCgT58+uO666zBq1CgUFBSgvLwcy5Ytw4wZMzQDrHfffXcoQDts2DDccccd6NWrFzZt2oRHH30Uy5Ytw0svvYR27drh4YcfTtjPRW1DqmbS1v36oKF+ugFagDVpU5lqkDZF3sBEMZBSpno4tSlhJWK8u740vOt5372GddUHFO0M0hIRpSdJklBfX4+amho0NTUhGOQ5E1GqsNlscLlcyMnJQW5uLlwuAwsYm5DRQdpvv/02FKC94oor8NJLL8HplGdCnHzyyfjzn/8Mn095S/f69evx+OOPAwBGjhyJuXPnIisrCwAwatQonH322Rg7diwWL16Mxx57DFdffTWOOOKIOP9U1JaEL1STKkFasUl5shgNI7VtqW1yloxA44aX5I0MGFAbljPgNtT98kDoubN0dHQDMZOWoiA2hmXBGlxoscrbqBqgBYB2npyY50VERG2LKIrYvn07Ghsbkz0VIoqSz+dDXV0d9u3bh3bt2qGkpMT4IsURZGyQVhRF3HDDDQCAIUOGYNq0aXA4tF8Otej4U089hUCgOQg1derUUIC2RXZ2NqZOnYqjjz4agUAATz75JP7zn/9Y+FNQWxeeSStlWiYiM2lTlj2nq6JNYJCW2rCc/regcfPbCNZuguDMR/5RT0c5kjVfsCizOAqPjGo/UeN7wdHtumN0u8NimRIREbUxkiQpArSCIMBuZ5kxolQRDAZlC8IfOHAAPp8PnTt3tmT8jA3Szpo1Cxs2bAAA3HnnnboBWjWSJOGTTz4BAPTr1w9jxoxR7TdmzBj07dsX69atwyeffIJnnnnGsgg7tX3hIa1UyaS1isSatKkrLJvQnnd4kiZCZIzNU4rSs5fBX74UjrwjYM/pkuwpUQax53STN+gsqhnJ68dfjN/0GAynjSftRETppL6+PhSgtdvt6NixI3Jzc7l2DVEKkSQJXq8XNTU1KC8vBwBUV1ejpKQEbrc75vEz9tPg/fffB9B85WrixImh9oqKCmzYsAEVFfoLPmzZsgW7d+8GAIwdO1a3b8v2Xbt2YevWrTHMmlKNIpM2w4K0zKRNYYp/u4z9c0EpxObMg7vjWAZoKeEEm/yOK8lgkFZS+WJwSufe8DicKr2JiCiV1dTUhB537NgR+fn5DNASpRhBEODxeNC+fXu0b98+1F5ZWWnJ+Bn7ifDzzz8DAHr06IG8vDy8/fbbGDRoEEpKStCnTx+UlJSgb9++ePzxx+H1ehX7r169OvS4X79+usdqvX3NmjUW/QSUCsKzpn2ZlkobQyZRJhD9tahddh+q5/8OgbptyZ6OTLBhp7xBdSExIiICAIQFaUVvedRD8X4rIqL01NTUBKD5HDE3NzfJsyGiWBUWFoYeNzQ0WDJmRpY7EEURa9euBQCUlpbiD3/4A55+Wlm7bv369bj99tsxY8YMfPbZZ7J/gJ07DwUwunZV1m5srVu3Q7fA7dixw9RcWx9HzZ49e0yNR4kVfqJV1ph5C9IEajbAkd872dNocyTRj31v5YeeN6x/Ae3OW98mXqtg/U7ULLhF1sZ6tERE2sIzaRFsgiRJLHFFREQhwWDznWp2u50ZtERpwG63w263IxgMhn6/Y5WRnwzV1dUQxeZg2YoVK/D000+jU6dOePPNN1FRUYGGhgbMmTMnVGd2/vz5uPrqq2Vj1NbWhh5HugqWk3Nodd66ujpTc+3WrZvuf6NHR7l6NSVEeLkDAGjwZ1agtmnbjGRPoU1q3Py2oq122X1JmIlS7fK/KxuZSUsZQvLXRu5EFEZwZCvaAtWR757KsPtriIiIiNKK1RfkMzJIW19fH3rc1NSE7OxsfP/997j00ktRVFSErKwsnHDCCfjuu+8wZMgQAMCMGTOwYMEC2X4tXK6w7IkwrYsHt17JkdJf93xlsnqdP3VPydxdJ0buFEb0V8dhJqnPt/sbRVvTlneTMBOlxo0vKxuZSUsZQgowSEvmOQoHKNokr/76BgDQFPQr2jx21qMlIiIiykQZedbt8Xhkz6+99lr07dtX0S8rKwsPPfRQ6Pl7772nOobPp193s3VN26ysLFNz3bFjh+5/CxcuNDUeJVaJR/kr1hBo+5m0jqLBqu15Q+83P5gYiG0y6aot3wIrqbxHmUlLacBuoJyIs92YBMyE0o1gV16wl4LKNQ3CNQaUQdosLhpGRERElJEysiZtXl6e7Pn48eM1+5588slwOBwIBAJYtGiR6hiRShi0ztw1WyA8Ur1batsEQUCOQ0B94FD2bGMgBTJpJfV6KoIzF4KrEJKvyvhYovIElFIPa9JSWpAMfP6qXaQgMsCW0w1i/aG1ByQxcpC2ISyTVoAAl40XxYiIiIgyUUaedbvdbrRr1y70vPXCXuE8Hg9KS0sBAAcOHAi1tw6eRlrcq/ViYXrHovSU5ZRnTFZ5234AQNII0sLmNn3buyRFn0kbFCU0pkDmcUZgJi1lCgZpKUqCzS1vMJBJu7O+SvY8y+HgYmNEREREGSojg7QAMGDAodphkVZha9nucBxKPD7yyCNDj9euXau7f+vt/fv3NzVPSn0eu/xk66mlNXhtdS0kIxldSRKsVn9PC3a3oRp7rTWsmQrRXx+5Y5j5u5twzddluOqrMjy1tBoBse2+XmY0bfsYe98qROOmN5I9FVWBum3qG5hJS2kh8ueI5kUqoggEuzxIq1fuYFd9NYZ98n+Y+I28Bni2StkEIiIiIsoMGXvWfcIJJ4Qeb968WbNfTU0NysrKAABdunQJtffs2ROdO3cGAMyZM0f3WHPnzg3t36NHj2inTCnKZVdmxHy+pRHba9tmICBQu1VzW/gJqFFNW94x1V+UJLy8qhaNAQkSgJ/2eLFsv37t51QgSSKqF/weUhteTK1+1ZOq7YGqVQmeCVEc8GIDxVN4kFan3MHjK2djecVuRTvr0RIRUbz5fD688847uOKKK9CvXz+UlJTA6XSitLQUI0aMwA033IBvvvkGosi7i4gSLWPPVs4///zQ4xkzZmj2mzFjRijj8fjjjw+1C4KASZMmAWjOlP35559V9//5559DmbSTJk3iLWwZaE+9ejB2b33bXFCrbsXDqu323J4QXEUR98/qdaWiLVC7ydQcmgISan3yjLc1FakfpBUb90Fs2JXsaehqWPNv1XbJzxXvKfUVjHlW9jy73+/hPuxcWVvu4L8mckqURgQhLMCqs3Dmptpy1fY++e1U24mIiKzw0UcfoW/fvrjkkkvwxhtvYN26daioqEAgEEB5eTmWLl2K559/Hqeeeir69++Pzz77LNlTzkg9evSAIAiYMmVKsqfSJs2ePRuCIEAQBMyePTvZ07FUxgZpBw8ejDPOOAMA8M477+Dbb79V9Nm7dy/uueceAIDL5cJVV10l237rrbfCbm+u03jzzTejsbFRtr2xsRE333wzgOZSCbfeeqvVPwalALdKJi0ABNvo3fuSX20hPAH5R03Vv8hgcyHnyFuRf9TTym06J6pq1F6btKh2wNuoiZLK1XEcsvpcB9hccJaMRM6APyFv2N9hz+8L2NzIGXQXnIVHRh6ISI0iU1v7D5dfVP496JFbhEdHnmnxpIiIiJo98MADOP/887F161YAwKmnnoqpU6fi22+/xZIlS/D111/jmWeewWmnnQabzYb169fj7rvvTu6kiTKMI3KX9PXUU0/hp59+QlVVFSZOnIhbb70VEyZMQFZWFhYuXIh//vOfoUXBHnjgAVm5AwDo06cPbr/9djzyyCNYvHgxjj32WNx5553o1asXNm3ahH/9619YtmwZAOD2229H7969E/4zUvK5NC6FBNvo3SNSQFk/tsMlVbC58nX363hJNQSHBwCQ1fsaNG6Y1npQU3NoqwHsWLHWJVFyCTYHCo95EYXHvChrb3+efm15IkPCL2TqLEIXCNt275BT8Pdhp/GOKyIiiotXXnkF9913HwCgffv2mD59OsaOHavod8opp+Cmm27CypUrcdttt8kWTyei+MvoIG2fPn0wc+ZMXHDBBdi3bx8eeeQRPPLII7I+giDg7rvvxh133KE6xkMPPYT9+/fj5ZdfxrJlyzB58mRFn2uuuQYPPvhgXH4GavvUatICQKCNLhwmBZSZtEZq0bYEaAFAEOQfLZLJTFpR5bVpm6+WSQzSEhGlMflVWUkvSBtW56+9J5cBWiIiiotdu3bh97//PQAgJycHc+bMQb9+/XT3GThwIL766iu8/fbbiZgiER2UseUOWhx33HFYtWoV/va3v2HIkCHIz8+Hx+NBz549cdVVV2HJkiV44IEHNPe32WyYNm0aPvvsM0yaNAmdO3eGy+VC586dMWnSJHz++ed46aWXYLNl/EudsTSDtGHnbpIk4dvtjXh0URXeXluHpkBywpKq5Q5sJlebtoVd/xH9pnZv8Ct/9i+3NmLGxnoEVeoeLN3nxX+W1+DzLQ2qAd42g0FaIqK0JUQodxAURTzy63c4Y9Z/saxCXp/cwe+JREQUJ08++SQaGhoAAP/4xz8iBmhb2Gw2XHbZZarbfvjhB1x++eXo0aMHPB4PCgsLMWzYMNxzzz262bfhtUQlScK0adNw3HHHoaSkBPn5+Rg9ejTeeOMN2X4+nw/PP/88xowZg+LiYuTl5eHYY4/F9OnTNY+1devW0LFeffVVAMD777+PU045Be3bt0dWVhb69euHu+66C1VVVbqvxcqVK/Hggw/itNNOQ9euXeF2u5Gbm4vevXvjyiuv1FyjqMX9998fmgsAVFdX44EHHsCwYcNQWFgYmuO4ceMgCAK2bdsGAHjttddC+7X8N27cON2f8aOPPsL48ePRvn175OTkYMiQIZg6dSr8/kPn5JIk4e2338a4cePQvn17ZGdnY/jw4Xj++edDazLpqa6uxj//+U8ce+yxaNeuHVwuFzp16oSzzjoLH3zwge4YLfO9//77AQCLFi3CxRdfHHpdu3Tpgssvvxxr1qxR7Nvy85544omhthNPPFHxGrW8FqkoozNpW5SUlOD+++8PvUmiMWHCBEyYMMG6SVHaCGgUUw1v/3mvFy+uaF6cacl+H2q8In43RL/EQDyolTswnd0TnklrstzBtJXqi1S9u64eogSc3zsn1Lal2o9/La4GAMzdBdgF4LQe2ebmmygqNQiJiChd6Jc7eHzlbNy15HPVPR02e7wmRUREGUySJLz22msAmrNor7vuupjGE0URt9xyC/7zn//I2r1eL5YvX47ly5fjmWeewfvvv49TTz1Vdyy/349JkyZh5syZsvZFixbhiiuuwOLFi/Hvf/8blZWVOOecczB37lxZv/nz52P+/PnYuHEj/vrXyAu/XnPNNXj55ZdlbevWrcMjjzyC119/Hd9++61qAHv27NmyoGALn8+HjRs3YuPGjXj99dfxl7/8Bf/85z8jzmPDhg0YP358qDawlW688UY899xzsrZff/0Vt9xyC2bPno3p06cjEAjgsssuwwcffCDrt2zZMtxwww1YunQpXnxRXhqstW+//RYXXXQRysvli6Du3bsXn376KT799FNMmDAB7733HnJzc3Xn++yzz+IPf/gDAoFD8YLdu3fjzTffxEcffYQvvvgCJ5xwgtEfPy3wsj1RnFV51W93DK+7+t32Jtnz73fKnyeKo3hozGMINuMrXKvZU68dzPx8S4Ps+eur5Zm/L69SW/isjVBkWSlJQW8CJmKe4CpM9hSIiNo2xWe8/O//93s3ae5a5MqKw4SIiCjTrVq1CmVlZQCA448/Hnl5eTGN95e//CUUoO3Zsyeef/55LFy4EN9//z1uu+02OJ1OVFdXY+LEifjll190x7r33nsxc+ZMXHrppfjss8+wZMkSvPPOO+jbty8A4Omnn8Y333yDKVOmYP78+bjhhhswa9YsLFmyBNOmTUPnzp0BAPfddx9WrVqle6xnn30WL7/8MkaPHo133nkHixcvxueff44LL7wQQHNg8LTTTkNtrTJZKBAIICcnBxdeeCGef/55zJ49G0uXLsWXX36JJ554At27dwcAPPLII3jllVcivoYXXHABdu3ahZtvvhlff/01Fi9eHPq5X3nlFaxYsSL0s02aNAkrVqyQ/ad1jOeffx7PPfccJkyYgI8++ghLlizBxx9/jKOOOgpAc4btK6+8gttvvx0ffPABLrnkEnz66adYsmQJ3n333VCA+r///S++/PJL1WP8+OOPOOOMM1BeXo4OHTrgwQcfxMyZM7FkyRLMnDkzlHn9+eef48orr9R9Hb766ivcfPPNGDBgAF5++WUsWrQIc+fOxW233QabzYaGhgZcfvnl8Pl8oX26dOmCFStWyILtL7/8suI1OueccyL+O7RVzKQlirPOuQ7UVChv9w+G3QKwq85cIDNenCXD0bT5Lc3tuYPvQd2v8hrLRSd+JO9kiy2TVi9xty6sFMKWmrbxullFEgOGagAnWnbva5I9BSKitk2xcJj871VTUL30T4/cIpzciYvLEhGR9VoHSkeMGBHTWCtWrMATTzwBoLlm7bx581BYWBjaPm7cOIwfPx5nnnkmfD4frr/+eixYsEBzvAULFuCpp57CH/7wh1Db8OHDMW7cOPTp0we1tbW45JJLUFZWho8++kgWeBs+fDhGjhyJYcOGIRgM4sUXX8S///1vzWMtWrQIEyZMwCeffAKH49C56hlnnIGBAwfivvvuw/bt2/HAAw/g0Ucfle07dOhQ7Ny5U/aztjjttNPw+9//HhMnTsTXX3+Nv//977jiiitgt2vfIbNy5Up88cUXGD9+fKgt/N/G6WxOeiosLMTAgQM1x2ptwYIFuPXWW/Hkk0+G2oYPH45TTz0VRx55JLZt24a//OUvqKioUH3dx44dG3rdn3vuOZx++umy8f1+Py677DL4/X6cfvrp+PDDD5GdnS0bY+LEiTjhhBNw/fXX46OPPsLXX3+tmVH9888/Y8KECZgxYwZcrkPlFY8//niUlJTgnnvuwfbt2/HZZ5/h3HPPDb0uAwcODF14AJovFhh9jVIBM2mJ4qzEo/5rFl6Tts0Iy3p1dzlD9jxv+AMoPP5NAIDgLkHJmT/D0/1cWZ/whcPMZtKq1Z3V0pZL0IaTjNTmbaN1ax3FQ5I9BSKiNi7s731YuQN/2GJhv+kxGK8edxEWnvUHFLqZSUtERNZrfUt6+/btYxrrueeeg3jwb9lLL72kGrQ8/fTTcfXVVwMAFi5ciEWLFmmOd9RRR8kChS06duwYCsodOHAAF154oWpm5ODBg3HccccBAObNm6c7d7fbjf/+97+yAG2Lu+++OxTkmzZtmixzEwBKS0tVf9YWLpcLjz32GABg27ZtWL58ue5cpkyZIgvQWqVbt26KADMAZGdnh7Jay8vLDb3uaq/nu+++i61bt8Lj8eD111+XBWhbu+666zB69GgA0K0N6/F48Morr8gCtC1uueWWUHukf9t0wyAtUZxpxRvDA5FtZlHn8KzX8EXAAGT1uhSdpkjoeHEZXO2OUo4Rvo/JTNrwUhB6UihGa2wBtTYapFXUWiQiIrmwcgdSWLmDQFhd8tO79MOVvUehnUe/XhsREVG0Wt++n5OTo9Mzsm+++QYAMGDAgNAt9Gpa171t2UfN5MmTNbcNGTLEVL/Nmzdr9gGA8ePHh0oIhLPZbKEgZkVFBZYuXao7ltfrxfbt27F69WqsXLkSK1eulC2UFanMw6WXXqq7PVrnnXdeKAM3XOvX86KLLtIco6VfZWWlYjG1//3vfwCAsWPHol27drpzaakj+9NPP2n2OfXUUzUvHOTl5aF37+a7jCL926YbljsgijOtIGIgbINaCKyiKYhiT2IWE5EkEY0bX0Xdikfk8wqvL2tA+D6GMkgB7K0PYFtNQFHSINz6Sj96FzoOLmhmJutWgm/v9/DtnQtXh+Ph6nhCVD9ftCQp8uvg2zsbgjMPznZHweaMrWaUnga/iDUVfpRm2dE93wEp0ATf/h80+ytXLSciotYExcJh4eUO5BcsnVwsjIiI4qx1Ddr6euUC0UZ5vV5s2LABAHQDtAAwbNgwOJ1O+P1+rFy5UrNfnz59NLe1zlw10k+tlmxro0aN0t3ekvkJNJd1GDNmjGx7fX09nn76abz77rtYtWoVgkHtxJrWt+KrGTx4sO72aFn5egLNr2nr54sXLwbQXEvW6MLie/fu1dymtkhba8XFxaF5ZBIGaYniTOt2/ICBW/pv/LYcDx9XhMML4h9I3PtGNiAqF60SfTXmBwsvd2Agk3b5AS8eXVRtKIv23vmVOL1HFq4akGeq3EHNzzeiYd3zoefurhNRfMpMnT2sFazbHrFP5ffnAQDseb1QOnERbO4iy+fR4Bdx94+V2H1wgbZrj8zC0F+PR6BS76ovM2mJiHRFWDjs18o9sucOGy9+ERFRfJWUlIQe79u3L+pxKisrQ48jlU1wOp0oKSnB3r17UVFRodlP63Z5oDm71Uw/UdSvJRhpzh06dAg9Dp/z1q1bcdJJJ2HLli26Y7RobGzU3V5UZP35HWDt6wlAEYjev3+/6TnpvRZ682g9F72AeDpikJYozkqy1E/CwoORdpWrURKAOTub4h6k9Vf8qhqgBQDfHu1bVDSFLxxmoCbt51saTZU5+HJrI37Tx/gtO2JTuSxACwDenZ8iULcNjtzuxg8cA/8B7ds9wgVrN6F+7X+QN+Qey+exeJ83FKAFgE83HMBA3QAtILji82WCiChthAdpW9WkrfQ2KLo7eIcCERHFWevb3CPdxm+U0SzKtiSWOV9++eXYsmULBEHAVVddhcmTJ6N///5o164dXC4XBEGAKIqhxcKkCFlEeouKtWUtwdIzzjhDtfYtWYNBWqI4m3R4Nj7foryCFAy72Nc934G9DcqrRLW++K8w5tv/o6XjKRYOM5BJ+8sBX8Q+4cobjb82gdpNqu2StxxIUJBWcBWY6t+w7vm4BGkX7JUH5Pf69eshCs4CuDurr8pJREQttMsdVKgEaYcUq9fGIyIissqAAQNQWlqKsrIyzJs3DzU1NcjPzzc9Tuvsz0gZuYFAILRgWcst68kWac6tt7ee89q1a/HDD80l4f7617/iwQcfVN1fL2M4XZSUlGD37t3w+XyhhdbIeryETxRnhR47bhmm/EMYXu7A41C/umcmuzRagmDx1bzwhcMMZNJGy/DLo1EXV2qzC3XFj4FKGzIlE+ZBYO1EIiJ9OuUO/Cq3YR6e1zZOXImIKH0JghBaFKu+vh4vvfRSVOO43e7QQk4LFizQ7bts2TL4/c3nXm0lmLdo0SLD21vPedWqVaHHegtutdRrtUpbzFYeNmwYgOaf1eczn2Blpbb4+liFQVqiBDi2swdnHy6vuRK+cJjWXRFBsxG1aFgcpI124TCzJFOLhmkEisUEBmnNFNAFEK86sAGTydnOokFxmQcRUXqRf2ZLrcodBFQuCNpZ7oCIiBLgtttuC9X/vO+++7B27VpD+4miiLfeeiv0/JRTTgHQHLhcuHCh5n6tA8Et+yTbrFmzsGfPHtVtoijitddeA9CcMTx8+PDQtkDg0Dmk3sJrzz//vOa2aHg8HgDNC7a1FWeffTYAoLq6Gq+88kpS59Ly+gBt6zWyAr8dEiWIPey3LTyTVit8l4hMWmX2T6zjmS93EC3jmbQac0hoJq3Zf0zr//ElSULQdLCYiIgiUvwtPfRZG55J6xBsaZ0FQkREbUeXLl3wzDPPAGgONI4dOxZz5szR3Wf16tU4/fTT8dhjj4XabrjhhtBiTtdffz1qapQLTM+aNQvTpk0DAIwePRqjRo2y6seIidfrxW9/+1vVRageeeQRrFixAgBw9dVXw+12h7a1ZA8DwKuvvqo69nPPPYdPPvnE0vl26tQJALBpk3rJvmS48sor0a1bNwDAn//8Z8ydO1e3/w8//BDxfRatltcHaFuvkRVYk5YoQcIXBvtpjxeHbajHuUc0X9Wct6tJdb+l+32QJCkuJ3P+8qUomznC8nHDyx34y/RvL9lcHV2m7Z3zKiN3Oqhp2weq7YG6zXB1ODaq45slNplbEVPyK7/46PFX/IKqH66C2LQfeUPvR3afa0Pb9tQH8PSyGmyujl/AnIgokwlhQVrJfyjjpiEgvy3QyRIyRESUQFdddRV27tyJ++67D/v378e4ceMwfvx4TJo0Cf3790dhYSEqKiqwfv16fPbZZ/jyyy8RDAZlC48NGjQIf/rTn/DYY4/hl19+wfDhw3HnnXdi2LBhqK+vx8yZM/H0008jGAzC5XLhhRdeSOJPLDdy5EjMnDkTxx57LG677Tb07t0b+/fvx2uvvYZ3330XANC1a1fce++9sv2GDRuGgQMHYuXKlXjhhRdQWVmJyy+/HJ06dcLOnTvx5ptv4oMPPsCxxx6LH3+0bp2XY445Bt9//z0WLVqERx55BGeccQZycpoXzc7KykKXLl0sO5ZRbrcb06dPx7hx41BXV4eTTjoJkydPxjnnnIOePXtCFEXs2bMHS5YswYwZM7BixQpMnToVY8eOtXwuhx12GLp27YqdO3fi8ccfR9euXdG3b9/QomwdOnRAXl6e5cdNBAZpiRLEoZKs+t76eozs6IYvQrrs5uoAehU6dftEIy4BWgCCSpK+JImKE9gW01bWxmUerTWsU78FpXbJX5Hd6/K4Hx8AGtabqwEl+c29LjWL/ohAxTIAQPVPv4PnsHNh85QAAF5fXacboN1nPwIdghtNHY+IiFqTX0z17vwMGPkIAGD6ll9k2xw23sxGRESJde+992LAgAH405/+hK1bt2LWrFmYNWuWZv8BAwbg0UcflbU98sgjqK+vx7PPPotNmzbh+uuvV+xXUFCA6dOnY+jQoVb/CFG76aabMGfOHLz66quYPHmyYnunTp3w1VdfoaBAvtCzIAh44403cNJJJ6GyshLTp0/H9OnTZX0GDRqE999/H507W7cg6A033IDnnnsOFRUVuOuuu3DXXXeFto0dOxazZ8+27FhmjBkzBrNnz8aFF16IHTt24K233pKVxAgXzSJ1Rv31r3/FjTfeiC1btmDSpEmyba+88gqmTJkSt2PHE78hEiWIw6aeCbuyzIf31mnXtwGAxfuSV2fF1elk0/sEapW3HASq12n231UX35IDkk7dWZu7SHOb1Vwdx8V1fN+e7w49kYJo2Phy6OnS/frF3Xc7jozXtIiIMoJvn/yWPlfHQ5kjOU6XbFutP73qpxERUWo477zzsG7dOrz11lu47LLL0LdvXxQVFcHhcKC4uBjDhw/HjTfeiO+++w4rVqzA+PHjZfvbbDb85z//wdy5c3HppZfisMMOg9vtRn5+PoYOHYq//vWv2LBhg2K/tuCVV17B22+/jXHjxqGkpARutxt9+vTBHXfcgVWrVuHII9XPh4YOHYrly5fjd7/7Hbp37w6n04ni4mKMHj0ajz/+OBYuXCi7/d4KXbp0wcKFC3HNNdfgiCOOkNVgTbYxY8Zgw4YNeP7553HmmWeic+fOcLlc8Hg86NatG8aPH4+HHnoIa9euxRVXXBG3edxwww348MMPMX78eLRv3x4OR3rkoKbHT0GUAlwal0QCooSmCJm0jeGrjCVQ1hFXmt5HsKl8tOjUfk3I4mga4rWomcbBEncsADDxszUIBZE7ERGRJmfJSHh3fdGq5dDftvBS4AWutnOyRUREmcXlcuGSSy7BJZdcEvUYxx9/PI4//njT+40bNw6SgfUxpkyZYigT8v7778f9999v+PgXX3wxLr74YsP9Wxx22GF47rnndPvo/Vxm5wkAvXr1ki3CpqZHjx6GXk+rX3e3243f/va3+O1vfxuxbzgj8wBgKFv4vPPOw3nnnWd6Dm0ZM2mJEsRlV8+klQDl2VuYQIJje63ZXMXR7KRs0wlQxn9xNJ0DiPoZptZK4j9kBI0M0hIRxcSe20Pe0Opvuxj2N3BStwEJmBERERERpRIGaYkSRCtICwCREmX9Scw0Va5WbWQX40FaSZKSGqRN60xaGF9srtFWGL9pEBFlAsUCn4f+9gTDLsba4rAYKBERERGlNgZpiRLEpVGTtjEg6S7oBADzdjXFY0qGCEIUK1Db1BY5Uw9QxiP+rLiFQidTWazfYWpsb1DCxxvr8fLKWmyuNh7glQJN8O2dbepYsTMeBKgXElebl4goPcm/VkvBQ3VnRYQHafkVnIiIiIjk+A2RKEFcGrHOGRsbIu4blIDV5dbelu87sMBYxyiCtOqZtOqB0nhkCStHjFBOomaD4bFf/LUG76yrx1fbGnH/T1WobDK26FnZpyMMH8MyBzO1jNT8/TnrsnjPhogorfkrlsmeN258JfRYZCYtEREREUXAIC1Rgjg1MmmNev7XGotm0qx+1f8Z6xhNJq3drWiSNBYO21lnLMhpRnhMUmzcp9vfu+c7w2P/sPtQZpQ3KGH+bmMrdAeqVmtuc5aOMnx8LcH6XcrGg8HybbX6mdoA0D6wXrXdUTQopnkREWUK//4fNbcpgrQm7nQgIiIiosygsgQ7EcVD59zYft32NVhbz7Rp24eG+tlc+abHNlOTtiFSQd4ohAdppaB+uQgpEDmbWYuRAKjuCpY2NwqOfhG1S++Cd9eXsk2uDsZXTBWblIFoR34fAECDP/JrbId6sDyn/82G50BEROrCFw5jJi0REVF89ejRQ/88jKgNYiYtUYI4TPy29SlMxPUTY3+wBGeB6ZEFEzVpG/36wedxXT2Y3DcHF/bJQZHb2IsYvkCLJEYoFRHD4mE+I6ueaWQRZ/W6EqVnLYKzZCiKTp4Je25P+W4mgsdiU5nmtiYDc5Q0srqy+1xneA5ERKROWZOWQVoiIiIikmOQlihBzPyydYkx69ZKNpf5IC1sKvPXuIoZKZP2yBInzj0iB+f3zsHzp5Sif7FaAFhOEZOMEKSVDAZpw29XBWIL0uYMuhPOg+UEBJsDeSMflR/PX2doXgAgNh1QOzAAwGsgW1krSEtERLFjTVoiIiIiioRBWqIEMXM+5tVY6GlnbUB2y0a1V8R32xuxv8H6uq4tBKf5cgfqdWxFiJKEBXuasLHqUFA00q34jrBavm575Bey1ici2LgP/soVkMQgpKA1mbRq/yybqwORb6PRCNIKjuyw57ny3QK1huYFAKJXLZO2eV5GMmmDiBz8JiIic1r+PrAmLRERERFFwiAtUYIIJk7ItLIz/zS3Aq+ubs6uXLbfi+u/KcMLK2px8/flmLXNZF1Vg/V5BLtKfdlI+6gEaYNBPy7+/AD+b2kN7v6xEv9cWAUAaAjolztwhL1sLgNB2ltnV+CXGRNQ9slgVMw6FVJQ/7Vp2v5RxDEBQG2qlV4RL6/Sz3j17p2r2h4epLU55UFasWG3oXkBGpm0B2sgGgnSljkOh8g/CURE1jpYE52ZtEREREQUCc/IiRLEQGwxpMCl/av55dZG1PlFPLGkWtY+baXxW+MBAKp1Y60hOHIUbT+W58meLz/ggyhJEcsd2MMyaZ0GP7U+ybodAODb+z2ats3Q7RuoXGFozE3V6hm3s7Y1os6nHWyuXfwn1XbBniV/HpZJCwDBRuWCYGpUa9IeDAo0GVycbZPzaEP9iIjIGF/ZQgCsSUtEREREkTFIS5QgThNR2omHZ+tur/GKiLDeVkSuDsfFNoAOZztlsO/VHd0UbUFRPTu1tfBM2kKDi4etdZ0Uetyw9j+6fe053Q2NuWCPV3NbtU6QNlC1WrU9PHPWUdBX0Uc0GKSVDmZrydoOLtbmNVI3F8A611hD/YiISKlw3PuKNslfA4CZtEREREQUGYO0RAk0uDRy9mqh24bOuQ6celiWZp9IgU0j7NldYx9Eg2BTq0mrJAIIRii7EJ5Je1oP/QC2Ov1jSIF6Q6P4NWoFAyqLlUVQdMoXijbBofJvLgWMDahW99ZkJm344mG5wx40dmwiIoLnsHOUjaxJS0REREQGMUhLlEDd8hwR+5xymAcA0C5b+9dTL1holBQW1MsZ9BfA5o553BaCuzhin6AoqS7G1Vp4ArLRcgdmiAFjpSL0XnfR5L+Jq3SU+oawEgjh/05aJNVgbvOcjGbShgdp7TnxC+QTEaUbweaAPe9w1W3KTFp+BSciIiIiOX5DJEogI3E8+8FbID065RGsyKSFKA/qCYIDsPCkUQj7eFH70UUp8mviCMukNbjemb7wYHSwCZIYORjq0+liNpMWKourASqLrokGM2nV+plYOAwApPA/CZa82ERExJq0RERERBRJ5LQ+IrKMoSDtwTiZWydIu79RPVr44YZ6LNjrRddcO64akIc8jQXIpKAPTVvfkzcKdgiCLUJhABPCgo2SGAAEl6wtYChIK39uZn4iBKj9RDZ3McTGPfJxA/UQXPnaY0kSFuzVrkk7dd4i7LEdAQDoW+TApVkfo3j7v+EoGqS+g2ZJCHkEvm7Fv1B88seh5wFRwu++KUOtv/nnsglAx2wb3NVX4HzHWnQNrGz9UwEAtlYbDPQqbr9lkJaIKCYH74ZYVr5L1swgLRERERGFYyYtUQIZCdI6WjJpw1fMauWZ5TWq7dPX12NbTQA/7vZixkbtOqsN6/+rbLQ5IDiiqfeqwUBW7pZqv+IW0HC2GM5jl7rPUx/TXaRokyKUPPh6W6Pu9pYALQCsqwzgxW3dEKj8FU2b31Ltr8iYDc2jQfbcu+MT+MuXhZ5/u70xFKAFmt9Tu+tFbHEehdfzngsbrLnf3gaDJRPCg7SSFSnbRESZRP452rT9YwDA2ur9snYGaYmIiIgoHIO0RAl0fBdPxD4tmaPOWKKTAD7boh1U9FcsU7TZszohZ8CfZG3ubpOiPn54pupA35eKPlVeMWLgusgtD2YWqGQHa71Sux391efmq1a0RVo87OVVxurWttjpHBKhh/GP38ZNbxiax35HH/jRupRDc5DVbWwdN5QEt8meuzqdbHiOREQEBGs3yZ7bsjogoFJOJyjyIhgRERERyTFIS5RAfYocOKqj/uJc9oPBWSOLjEVNpX6pp/u5yOp1RWjRE8GRjdyBf7bskCXB7arteuVSx3fPQoFb/jHltAu4rF9uKDD7mz45KPaof5QF4VRt93Q/X1mOwW8uCGuEqPcRq1nuQCnYuNdwX7/Q6v11MJPWbzAW4JIOZfFm97kejrweho9LRESAzdNB3iD64VMJ0k46bECCZkREREREqYJBWqIEEgQBtw3Ph1PnN6+lFG08b4SUJHmQNmfAH2FzF8Oe3QntzlmDkomL0P7CPXB1OC7qYzhLR8ueB6AenA4vd3BRnxz8e1wxnhpXjKsH5Kruc1avbDxzUgmeObEEF/TOQZZGaQhRUA/SujudDMEhHztSuYNoiHplvzXKHagyUXbALxzK1pYgIihKhspsHJxU8/86slFwzAvG50dERAAAT48LZM+lQCN8QWWQtnN2QaKmRERERHG2cuVKXHbZZejWrRtcLhcEQYAgCFi+fHmyp9amTZkyBYIgoEePHsmeSpvBIC1RggmCgHZZ2gG6lpq0cV2ySZKfMAr2rFaPXXCVjoRNZxEtQ2zyAGUgbNEwoDnRMzyAaLcBHXMc6JTjgKBTs680y4522c2vo1aQNqCRSSs48yA4c2Rtol+/3EE0gjpBWsFAzd5DjAdpA2hVUkOS4DceoQ1xFKiXiSAiIn2t/54CgBRshE/l7hWX3cSFOiIiIjJt9uzZoWDp/fffH7fjLFmyBKNHj8Zbb72FnTt3wu/3x+1YlP7ieD81EWkJ6iyWZT8Yu7MiSPvp5gZIAI7q6Eb7bDvWV/qxdt8BdN7+K7q07ihY/1EgHBwzCAcWei7C/KwrFX0O7JiDpVXDZW3RLKaS5dAod6CRSSs4cyE4ciEB+MFzFb7LvgkTd1dgbNWTCHo64V97x2NzdQCX9c/FhB5ZeOYX9YXaIgkKzpj/IVe6xqPCOxZHlvnw4IKqiP39ghtVto5Y5j4H3n1HoHrLlwBGGjqW1PLax+H9QESUCQSHWpBWmUnrMlHyhoiIiNquu+66C42NjcjPz8cjjzyCkSNHIiur+fvAEUccEWHvxLj//vvx97//HQAgRVi4m5KLZ+JESRDQSYx0HKxJa8WH5xtrmm/h/3BDPa4dmIdnltdAggP2oi/xp8rT0Tm4urljPE4WD2bSvpn3HyzznKPa5aOwAC0ARLNemkcjk3ah52JcUnurytTyIDhz8WnOPfg2+2YAwBsHumF3wxx8m30pgOaspzfX1OHNNdGXQdjmGIb+/tlR7/+DZwo+yPsXEAA+MhCgBYBqWydMzf8E9bYSwNgurRx8HW3qwW0iItKnyKQNNMIbVMmktfErOBERUarz+/2YM2cOAOD666/HDTfckOQZUapjuQOiJDiyRHnrf4uWmrTZGtmh0WgMSJi6vCaU1BkU3JiR+4/Qdslfa9mxQmMGGuFDlmaAVsuGSvO3h6zT2KcwuFO1XXAVwubICQVoW3ybfYvpY+tZ4Lkkpv0/yPuX6X2+yLmjOUAbBanlT4KkDCgQEZEBdo/sqRRsYiYtERFRmiorK4PP5wMA9OnTJ8mzoXTAIC1RElzQOzsUjA3X0p7vju+v5wbX8XEd33/gJ/iErMgdw+ytV57MRlLtVU9NzhErFW2CuwT27I4JuaV/j6OfarujeJjmPva82G6J2eocpbt9aDsXhrdXv0ggHsyktWV1imkORESZSlAsCikqgrR2wQa7jV/BiYiIUp3X6w09djp5NyLFjt8QiZKgY44DDx5bpLrN3up+/9dOK4VHK5prIWexsuxArLL7/BZCFAVZoyl3oEWtJm3J6d83PzC1cJdSl9zIWVBaP3/BMS9q7pM79L6o52TEH4bl49bhBbikX45im4Tmn8mR2yOucyAiSlvhf1skEb6wcgfMoiUiIkqu1ouKzZ49GwAwffp0nHzyyWjXrh2ysrLQt29f3HHHHaioqFDsf//990MQBPTs2TPUdtVVV4XG1FqsrKmpCc888wxOPvlkdOzYES6XC+3bt8cpp5yCadOmIRCIfEej1+vFiy++iDPPPBNdunSB2+1GTk4OBgwYgGuvvRZfffVVqHTiq6++CkEQQvVoAcjm2PLf1q1bFccJBoN47bXXMHHiRHTu3BlutxslJSU47rjj8H//939obGyMONc1a9ZgypQp6NatGzweD7p164ZLLrkEixYtirhvpmJBLKIkObxA/Upb65isx2HDa6e3Q3ljEDd+Vx6/ycShBmnz4inmg7TRxKTtAhBUOZQI5YmwPeew5geKbCdzTuyahY/Xl6FO9Gj20QrSCna3zsjxC8oXBbcj29keADCpVw6W7/dhdcWhUhGh1yvGADYRUeYK+wyXJEUmrcvOIC0REVFbIYoiLr/8crz55puy9vXr1+Oxxx7DjBkzMG/ePHTs2DGm4/zyyy+YNGkStm3bJms/cOAAvv32W3z77bd44YUXMHPmTHTo0EF1jOXLl+O8887Dli1bZO0+nw+rV6/G6tWrMW3aNGzZsgU9evSIeq7bt2/H2WefjV9++UXWXlFRgR9//BE//vgjnnvuOXz22WeaZR6mT5+OK664QpZtvHPnTrzzzjt4//338fzzz0c9v3TGIC1RG6OWSeqwMr20FRE22CBCiMdCUY7sKDNpzf+sLruAxoDyWEHBCQlAua07CsU9cMAHwdGcQaq8JdUchw2wC/o/nwCtFeLinx2txg55oCD8bSWGXpPkzI+IKOUpLnIpyx0wk5aIiKjtuPfeezF//nycc845uOKKK9C9e3fs27cP//nPf/DZZ59h48aNuO222/DOO++E9rnxxhtxwQUXYPfu3TjttNMAAA8++CAmTZoU6tO+ffvQ440bN2Ls2LGorq5Gfn4+brrpJowePRrdunVDeXk5/ve//+GFF17AokWLMGnSJMybN09RPmHNmjU4/vjjUVfXvLD1ueeei8mTJ+Pwww9HMBjE+vXrMWvWLMyYMSO0zznnnIORI0fi2WefxXPPPQcAWLFiheI16NKlS+hxeXk5jjvuOOzYsQNutxvXXXcdxo4dix49eqCurg6zZs3Cv//9b2zcuBFnnHEGli5dioKCAtl4ixYtwqWXXopAIAC3243bbrsNEyZMgNvtxoIFC/Dwww/jhhtuwJFHHmn63yvdMUhL1MaoBRstXENMZmrhx7iu+jIUxSOT1p6FDc7jotjR/C5aQdpyew88VvQtdjsGwi3W4vraKeh0cEXteuSZP1Ardhtgk/wAtOvuClI0Qdrmn2OfPbbatGpsYQuC+cLSjz/OfQAnNP6XmbRERNEK+/yUJBGvbVwsa3PZ+PWbiIjUSZII0RvHOyjbGJu7BEKSzz3mz5+PBx98EHfffbes/fTTT8fpp5+OWbNm4YMPPsDTTz+Ndu3aAWgOwLZv3x65ubmh/l26dMHAgQNVj3HllVeiuroaw4YNw6xZs1BaWirbPn78eEycOBFnnnkmFixYgFdffRXXXXedrM9ll12Guro62Gw2vPXWW5g8ebJs+1FHHYXLL78c5eXlyM7OBgAUFhaisLBQFjDWmmOLW265BTt27ED37t3x/fffy0o6AMC4cePwm9/8Bscffzw2b96MRx99FA899JCsz4033ohAIACn04lZs2bhhBNOCG0bPXo0zjvvPIwZM0aRqUsM0hK1OWq37ccrk3aL8ygs9FyM8+IQpJUC9fgq54+m93NF8bO6dP6u73Y0/xHy2vLwVdYtaAkb/9zQO6ZPQIcgwBasB4R8zT52aNQU0skWFmzNpRBmZ/0u+slpsIVl0q6vUs5voedinGLXLuFARETaFCeaKkFaJxcNIyIiDaK3HPvfbR+5Y5poP3k/7J52SZ3DiBEj8Ne//lXRLggC/vjHP2LWrFkIBAL46aefcPbZZ5sef968eZg/fz4A4LXXXlMEaFucfvrpuOCCCzB9+nRFkHbWrFlYunQpgOYganiAtrWSkhLTc2yxdetWvPfeewCAZ555RhGgbTFs2DDcdNNNePTRR/Hqq6/KgrSLFi3C4sXN331++9vfygK0Lbp06YInnngCF110UdRzTVf8lkiURNcNUmZzDixxKdr0gpCx+jj3H3GpSSs27kWTTgBTyzUDcyN3CmM0iL3eNTb0+APHLaaPIz8mYItwy2q3wHLVdntOd8193F3PBACU2XtEOzVNdgOlJN7NexLZ/W6y/NhERBkhfMFK0R9VGR8iIiJKjEsuuQSCxt/qESNGhB5v3rw5qvH/97//AQD69u2LQYMG6fZtCWguWrRItojYp59+Gnp86623RjUPIz777DMEg0FkZ2fjjDPO0O3bMtfdu3dj+/btofZvvvkm9Piqq67S3P/cc89FYWFhbBNOQwzSEiXRcZ096JZ3KNB345A8eBzKPxCCIODYznqLTcUmHjVpBXsWgjA37uBSFzrmmE9vlcyXvo2ZwyYoaryG06pJa3PmaO5jc+Yg/6ipaBLMB6sjsdmN/XvYszLn6j0RkZXCF4YMBL0Qw/5ITR1zbiKnRERERDr69eunua24uDj0uLa2NqrxW7JK161bB0EQdP/7/e9/DwDw+/2oqKgIjbFs2TIAwGGHHYbu3bUTfmLVMteGhgY4HA7duU6cODG03969e0OPW2reulwuDBkyRPNYTqcTw4YNi9NPkrpY7oAoiTwOAY+fYOx2hBO6evDjbm/kjtGIR5DWkYVAeEZRBHcfVRjVsaQoFiiLVXOQVqOcQUh02VOeHheiaf3GqPbVY9dcyIyIiKwghJWL8QV9ij79C3ghjIiIqK1oqd+qxtaqRFEwqJ+go2X//v1R7dfQ0BB6XFZWBgDo1KlTVGMZZcVcW4LLxcXFsNv17zzt0KFDVMdLZwzSEqUIZ5zq0gKAYDKYamhMexaCUJZuiAcxGZm0grLGazgxypsVBMEGrxDbwmZqIs2XiIhipMik9Su6OCOUyiEiosxlc5eg/eToAmWpyOaOvn5qqmgJ7g4ZMgRvvvmm4f26dOkSrylpaplraWkpvv/+e8P7qdWu1SohQfoYpCVKEfEM0sYjkxZ2D5ps5mvSRiMJMVo4bAJskn7Qc37WFMzPmhJ63i6wEXdWnhh5cMGOJhuDtEREqcZIJi2DtEREpEUQbElfSIus1bKQV11dHQYOHBjVGC2Lje3Zs8eyealpmWttbS369+8fMRNWTVFREQCgvLwcwWBQd4x9+/ZFN9E0xpq0RCnCIcQvFCnFIZM2YNOuu2q1YEB5EhxvNrEBtojlDuQOOI7Ax7n3R+wXlAT4BO3bbqIlJCWcTUSUOZRBWmbSEhERZbKWuqubN2+W1W41Y/jw4QCA7du3Y9u2bab3N5rV2jJXr9cbqk9rVsviaD6fD7/88otmv0AggOXLl0d1jHTGIC1RiigJan8YZ4uVMY1dLhVH7mTScteZpvoXBXdEfayxgfei3jdaOY0bDNSkVfoh65qIffwmF1yLllNqTMhxiIgyhWCTlzvwBZV/J1wM0hIREWWMs88+GwAgSRL+/e9/RzXGWWedFXr85JNPmt7f4zl0Ednr1V7n5qyzzgoFdJ966inTxwGAU045JfT4tdde0+w3Y8YMVFbGFsdIRwzSEqWILKlKtf2cuvtwaoP5D+rWRGdhTPurqXGYq6FzffWlUR9rTN1/0S5gbqEtIUKpAj19fd+jk6sWNsl8kNYI0eaJ3CkK4Zm0N1WdH5fjEBFlrLBM2oCo/DvBTFoiIqLMMX78eIwePRoA8Nhjj2H69Om6/VesWIGZM2fK2k455RSMGDECADB16lS8++67mvuXl5ejsVGejNN6wbFNmzZp7tu3b1/85je/AQC8++67+L//+z/duW7ZsgXvvPOOrG306NGhzN/nnnsOP/zwg2K/PXv24M9//rPu2JmKQVqiVBH04tjGVxTN4xpfwImNL+COCgO1TrWGFmOZmDqfiRhorngAnYLroj5WjtCAP1eeistrbjC8TzT1Wc+ofwQ3VZ2L66ovB0RfVJm0xsSr/rA8SNsjsCROxyEiykxC2MJhfpWv2k4bv34TERFlkrfffhvFxcUIBoO46KKLcPbZZ+Ott97CwoULsWTJEnzxxRd4+OGHcfTRR2Pw4MGYM2eOYow33ngDubm5EEURF198Mc4//3y8//77WLJkCRYuXIi3334bU6ZMQffu3RW1Xo855pjQ49tuuw1z587Fhg0bsHHjRmzcuBGBwKHz2uf+n737Do+qTNsAfp/p6SGFEjpIFUQQBERERGVFELEAYu9rYcW17drbWr513XV1FTtWQARERRQVRUWRrhQpUgRCDenJZOr5/ggZZk6bcyZTk/t3XV5mTpt3JpNh5j7Ped6XXkKXLl0AAHfccQdGjBiB119/HcuXL8fatWvx1Vdf4V//+hfOOussHHfccZg7d65srC+++CIsFgs8Hg/OOuss3Hvvvfjhhx+wcuVKvPDCCzjppJOwf/9+9OvXL1pPcZPBicOIUoToc8Em1qquL/JtivjYXjH6vUrdPv3HzPftbtydCSbYUYvjPPKzdKq7wHgyPTq4YtnvhkkUYpKn+g38OgY738fPaVN0bs2etEREsSTtSeuBvGrWLDCkJSIiak66du2Kn376CRdeeCE2bNiATz75RFYtGyw7Wz4Bd69evfDtt99iwoQJ2LNnD+bNm4d58+bpuv/jjjsOEydOxAcffIDFixdj8eLFIet37tyJTp06AQDy8vKwbNkyTJw4Ed9//z2+++47fPfdd4bGOnjwYLz99tu46qqrUFdXhyeffBJPPvlkYL3FYsGLL76IZcuWafatbY4Y0hIlmLdyG6rWPQJr7vHIOP4OCGab4nait0YzpG2MmFTSGkgazaifWMXvroDJlmP8zo5+4TUZCJsbO4mW6HfDpPDlOxqMPHfpKm0wFMUgjCciomOkIe1GhM7QbTOZdU/eQURERE1H9+7dsW7dOnzwwQeYO3cuVq5cicOHD8Pn8yE/Px89evTAqaeeigkTJgTaBUiddNJJ2LJlC1577TV89NFH2LBhA0pLS+FwONC5c2cMHToUkyZNCgSuwd59910MHDgQH374IbZs2YKqqir4/cpBQOvWrfHdd99h4cKFmDlzJn766SccOHAAHo8Hubm56NatG4YOHYrzzjsPp512muIxLrnkEvTr1w9PPfUUvv76a5SUlKCwsBDDhg3DX//6VwwePBjLli2L+PlsqpI2pN2+fTtKSkrQqVMntGrVKtHDIYoJz5F1KPmkfgbFOgA1G59Fq0sOK25btmQ87Gk3x2Qcsaik9RiopPUdfSs6+H4uWl/uUg2qVQn1YWkk1bER87thFmPzFvrEinLd2zrESt3benW+5ftFESaGCERExgW1O/hZbIu/YEzIavajJSIiio/TTz8dosr3XK11UlrbderUSfdxAMBsNuOSSy7BJZdconsfqbS0NEydOhVTp041tJ/VasVdd92Fu+66S/c+5557Ls4919iE4MF69+6Nt99+W3X9jBkzMGPGjIiP3xTF/XqrQ4cO4cUXX8SLL76IiooK2frff/8dJ510Erp3745TTjkFbdu2xYUXXshZ36hJqlx1R8htv6sEnrKNsu3EoxOP5Pt2xWQcsaikNRL77rb0D/xcu+WlCO6s/gGY4da9i6WR/WRFnxseWCPat8Sp3g93V6UHxdX6++X6DZxr2yEcr2u7tYf0P49ERHRMcCXtfPSUrU8zR/bvBhERERE1fXEPaefNm4dbb70Vzz33HHJyQi9rdrlcOOecc7Bu3TqIoghRFOH3+/HRRx9h/Pjx8R4qUcy59y+RLfNWyifQEn31szP2cX+BHN++wPITXJ+GbDfUqX6WSkssKmkL0/RXC4nCsW2dO2cbvi/RVwcASBOrNLezB4W4nbONVTNNqL5fcqceVAj5ho7RoM6r/nz/Uak/PG7t3QyxEU1xTY5C2WsIADaXeiI+JhFRcyaYjoWwFXDI1o8q6hbP4RARERFRCol7SLt48WIIgoAJEybI1s2YMQPbt28HAJx33nl47rnnMG7cOIiiiGXLlmH2bOPhDVGqMdly5Qt99eGiGT5MLT8fpzhnYFTt85hS9ZeQzSZW34Xeri8BAOn+UvSvmw8A6ONahL+XDlO9z1hU0kYa/AZ/wdWrIcQOxw1b4HIUR1qu5raTqo5VOQ+vfQ3Dna9J7tONwZ6PjQ20YV+NdWqRa3AA7/BXYpjzTdxQcWmgn28kLC36YUjde4bGR0RE+ngVPma/OuyiBIyEiIiIiFJB3HvSbtlSXyU4ZMgQ2br3338fAHDGGWfgo48+AgBMnToVZ599Nr766ivMmjULkyZNittYiRJBKaQU/ccqQAv8f2Bi9T3K+wK4ofKykGVXVv057H0aaB+rm1v/FfshRNF4Yix69U2oJgLw+AGbGQg3N9fQuncxtO5d9WP53fCJkVWxauXXgkpMe0H1/ZhULe8fZGpMH17RB5PC822krxIRESnzSELaB4vSkWWVV9cSEREREQEJqKQ9fLh+UqR27dqFLHc6nVi+fDkEQcANN9wQsu6aa64BAKxZsyY+gyRKoIb+syHLPPonh9JiE5XDTF+4xDIC7kiTXzGCXrE6K2kBoO7ouPyNDSJ9LngR2QQwmveskvuaoJx6myJ5vgID8SuGvIxoiYgazynpW26J5+SWRERERJRy4h7SlpeX19+xKfSuly9fDo/HA0EQcOaZZ4as69y5M4D6SceImgLR50bZd5eqrDwWulWtexT7Zwg4PF8++Ugk0v2lisudGj1SI7WvJsLwUCGkjqbPd9UH1Y3NpavW/B1eX2StBjaUqE/MtadK+fELKl/uBYORqnPXh6j7Yz4OvJcL98GliseNRWU1EVFz8rrYH9+jY8gy377PIfo4MSMRERERKYt7SJuZmQkAOHDgQMjyb7/9FgDQu3dvtGjRImSd1VpfiWCxxL07A1FMuPYtRt2O9xXXiX7P0f/7UL3uoajeb55/r+LyzWXRnygq0smnxBhXGs3dVgu3T2x0SAsYD0gbvP1bteq6BduVq53VQ1pjfSUql9+Kip+nQvRUAAC8kLfX+L2cE4cREUWqWrTiUYyQLbfAD1fx5wkYERERERGlgriHtD171lcEfv556IfUuXPnQhAEjBgh/1DbEOi2atUq9gMkioPK5beqrzwa0vqqd0X1Pm1FZ2Ns9T8U17VOj+yyfS098/RPAHZB1b2Bnx3txxu+L1ubUYGfz655Nuz25S4/PBop7XHuZbrut4f7O13bRYNa99te7m90H2N0zTPw1x2Ev7Y4sOygpbtsO4spsl67REQEFCMbHoV2OF1QBl/VjgSMiIiIiIhSQdxD2nPPPReiKOKVV17BSy+9hA0bNuDOO+/Epk2bAAAXXHCBbJ+GXrRt27aN61iJEqGhkhZCtIIyAendb0Tu8LfRoyALw51vyLaIRe2qL8xBe7u+hFl0oZfrKwx0zQksF6xZhu9LsKQHfu7jDl+l5PSKgd60DYq8G2AV/CgwV2FszeOB5Rl9lCdpA4AO3vj0ybaL6pW3rXxbVdd19vwccntU7fOybcwKPW39MehRTETUXLgUAtqJ2IDh+AOiyCsViIiIiEhZ3PsH3HrrrXjxxRexf/9+3HpraDXh0KFDMXLkSNk+n3zyCQRBwKBBg+I1TKLYMmlUmTaEtKq1k/q1uSo0bCv401e4FYBnTQWW73cdu8sYhHLhDnlD5WXIOeVVOHfOgrsyaGK0CCbCEj1VgZ8dYpXGlvWcXj9ckj68lw4ZhoGt7EdvrQ5Zlz3wKeyfIf99mFTaHWT7DqDS3DrsOPTqX5SPNmPr70s6Dq1XyTkDz8SpBXXYN6sVLFAOBswKyzm1DRFR5OokH69t8OI/whf1N2Lcd52IiIiIUlfcK2lzcnLw1VdfYcCAARBFMfDf8OHD8cEHH8i2/+WXX7By5UoAwFlnnRXv4RLFhGC2qa4ToxjSqjFLDh2LiaJ8oo6DCqaQKlgAgN9Yj1UA8HuOhbxW0aWxZb06n7yS1i59UhrBpKNPrKjn+Tkq0pEJAEyWNNWAFgDMonwSm3BV0EREpM4lCWlzcOzfpWP/xhMRERERhUrITFy9evXCqlWrsHPnThw4cABt2rRBp06dVLd/8803AQBnnHFGnEZIFDueI2vhLd+kvoH/aGgWtXYHcibJsX/aX4dLetZP6rd0rxMrD7jROceC8V3TI+5PWuPRE0IKgBB6WainfAPKf7gaAJDR525Yc3vJ9vI5D6L6l0cBvw+Z/R6A6D4W0lp0hLS1HhF1kkpaRxRDWj2TeYnQH75G+lIQIABmu+Y2ZsirunZWerG/xos2GZyskYjIqHI4Qm7bg95n/a6SeA+HiIiIiFJEQr+Bd+7cGZ07d9bcpl+/fujXr1+cRkQUW35PFUo+1W7b0VBlI7qOxGwc0jzyYK0fW8s8qPH48eIv9e0CVh50wecXMbFHZkT3sa9GT0WsAEEIfRuq2/Fe4GfXvi/R8qI/IJhCg9yyJefDc3g5AMB9aBnEoEpaC8KHtB9srYFbUi3qsESzkjZ8KapfBPTm3xGPTAAEQQBMtmPhv2wT5TB92relmDmmUBboExGRtr9jVMhte9CJu9rfnkfO4P/Ge0hERERElALi3u7g0UcfxaOPPoqSEv2VBGVlZYH9iFJZ7ZaXATFMeHk0pPVWbW/UfcnaCATJsMqDt99K3Vj8hzNk2aJdTtl2emUq3IecCJjUzxX5a4vhrQydGMtXdzgQ0AKAt3wD/HWHArdtYvgxWxXS0XDtDsxZXRSXt/WsD7nd1b0MA+vmKG4bzEgb4H6Fx9pj2IrOlq3v4f5Gcb/AG7xKQAsARd6NquvWHlLfj4iIlNklV1OUBVfWmtTbHRERERFR8xb3kPbhhx/GI488gkOHDoXf+KjS0tLAfkSpzFe9K+w2gX51Gn3rHB0v0D6IYELO8HdUVw8rcsiWefzAxiOh91nrjbxZrVabhCmV9ZMGWguHyNodyPgklbG+Os3NlS7fl3IpNF0NV0mbd+ZnistPc74W+FkQ/RjhfBUjnK8i11Rfkaz2NPgN9KQ9NqEZkH3SU7L151WrnMDSkZO38W1RXVcpLTcmIqKw7Pa8kNsnozjws6A1cSgRERERNWtsOEgUT4KO8yIN7Q68NaqbpPe6DXV/zJMtb3VJKVz7voQluxus+f1V9++aa0WnbAt2VQb1yfOLgMql75GQTow1uvbfOGA+DsOcM9Dd8wMAwOQogBAmpBVlVaCNv/y+2i1/nOF60lpyesCc3R0+SWXvYNcstCrbiiM9nkFXewk6WEbDknMbninoiPVHvCjKNOOe78tkx1OrpE2zCHAGheN3npSDDOux1401vz8KJ2zGkc9PhzmzM3JHzETOwe/Qblct9taFVk837GVvfx5cez5WfWw93V9js22UbDkbHRARRcCaCbiOve9fgg2BnzlxGBERERGpSYmQ1uOp/0BrtbL6gFJd+JBWFI+GtB71kFZQmQzKZG+BtM4TdY2kbaY5NKQVjV2CH470WMd5fsQ5NaFVoIJgDV9JK/tC2/josEZSISwAsOrIz615/WUhLQB08q7BwC45sOaPDCyzAzilSKOVg8pzLV2ea5cPzJLTA60m7T92O/NytK+owN79kqrjo0+VYM1SHQcAWETl0IDtaImIjJNeKRHS+9vvhiiK9f3CiYiIiIiCpERIu27dOgBAYWFhYgdC1EiCjkpa0V0/CZbfW61+HJNySGuEdEKo+dtrG33MYNKw0aRUpWuyaPakBZSqjqKYJB/lsAi6vjALljStlYbu06fyMNySFXonF1ParmGRyZKhua+gY6IzIiLSRxrSyv79E32G/80gIiIioqYv5p8Q3377bcXlCxYswKpVqzT3dblc2L59O9544w0IgoBBgwbFYohEcVOz6d/ht9n4DLL6PwbnjvfUNzI3fuIRIz1RIyGvVpUHgYJgDtvuQDrplefImkaPTSpcq4MGglneyzcgTNgs9cSKcjw9PE+2XPpb0Tk0WegOHAtpBWum5r5qIe3Xu+swop1GME1ERDLS93FZSOv3GP43g4iIiIiavph/QrzqqqtkFWqiKOL+++/XfQxRFGEymXDbbbdFe3hEcSP6feE3Oqpu90fwVWxWXa8ZFuq0tSx2ffFK6+SP1ZTdDShZJlloCVtNJK2kde76wPB4WqWbcLBWvVrUrHMKRXNGe9V1gsEZu3dVeuHzizAHlcCWOOXPm1lnKa1SmNvw3iuEqaQ1icqvzS0xfI0QETVV4U6Cin43BPAEGBERUXNz1VVX4a233kLHjh2xa9euRA+HkpDOaKJxRFEM/Ke0TOs/q9WKYcOG4eOPP8aIESPiMVyi2JBNgKXOuf0t1XWmtDYwZ3aCo/MlkuWtDQ2nxBm7S9z3VslDP8eJT8qWCSZr2ABR1pNWJVAMNqL25ZDbF3bTvg+9z0Vat2sVl5scrWDO7Ky63586KX8Zr5O0Nih3ycfRJiNMpfFR6VaNSlpLuEra2FZVExE1JyLCtDvg5GFEREQx9+2330IQhMB/kyZNCrtPQ5Ehe8dTosS8knbnzp2Bn0VRRJcuXSAIAr744gt069ZNdT9BEOBwOJCfnw+zWV9IQZTMRB3hYgPBkq643N7hfGT1ewiCYELOKa/AW74J3rJfAACF52+KyjilIpngRKmKyJaWh+xB/0blytsBAIXn/wYAMNlytO9fEm6L3vC9cy9qdwQZWXYcdIo4u2MaHBbt8Z+jEqJKmazKY8076zMIJvX3qQu7ZeDzXU7ZcpdPREbQfIh1XvnzZtFZSZttk59za/i1hQvC2ZOWiCh6wvWklfdaJyIiolibM2cO7r//fvTt2zfRQyFSFfOQtmPHjorLi4qKVNcRNUmi/iBMMCuHtHlnzA/8bLJmonD8usaOKqw6n4i0MCGnlNKkWGYByDh+GjKOnxayXAgT0korjvSEtAX9H8CVjmPH/b1c+wtxpkLAqUihh6C9aDSs+QM0d1PreSudJExaWdsyTf/FDllKIW3D/yPsSUtERMZJQ1rZvwAMaYmIiOJOFEU89NBDmDdvXsLGMGPGDMyYMSNh90/JLy7tDoL5/X74fD707t073ndNlFgGQlpYkqdXXa3H+KXwfoVdBPnXVADq1akNRL8n0CpFFEWI3prwA5CEqZYw73R6J+eC0iRnKlXPIcNROb5LUlwtraQNVwEcTLGStuH/4XrSQn+VNxERaQvX7kB6hQgRERHFVkFBAQBg/vz5WLt2bYJHQ6Qu7iEtUfOlP6R1bn01huOop7eDgVPhEvxwfArtDtTuL1wlbcWyq3HgLRP2zxBw4C0TPId/Cj8AyWRkljAPNtz6wGEVtlNrTRFMLaS9+/tSvPhLJVw+ERtK3Hh+XWXIerUKXCVZNoWxBdodRF5JqzQJHBERqTviCr3ig+0OiIiIEusvf/kL7HY7AODBBx9M8GiI1CUkpK2trUVtrfoly88//zyGDx+OXr16YcyYMfjkk0/iODqi2PDV7kv0EEJk6KzSrI0kpFXI/NTuLVxP2kgIRitpG/FOaLJmhx+Pxrqle+uwfH8dHvu5XLZOYR4xVUqVtNVHq6BNVu1KWpegHuLO3qKjcpmIiAAATq9CACs9wceQloiIKK7at2+PG264AQDw6aefYsWKFYaP4ff7sWTJEtx5550YNmwYCgoKYLVakZubixNPPBF33nkndu/erXmMhonJOnXqFLL80UcfDUxYtm3btrBjGT16NARBQJs2beDzKRfVfPTRR7j44ovRoUMHOBwO5ObmYuDAgXjkkUdQVlam+3FTfMU9pP3kk0+QlZWFNm3aoKqqSrb+mmuuwbRp0/Djjz9iy5Yt+OKLL3D++efjySflM8MTpRJ/3eFG7Z818P+iNJJ6F3fXDu4aSPum6uE1UElrSm9r+PhhSdoShOs5W5imf3JCc07PkNuOTheFH06YSt0Xf5G/FwLAH5Ve3eMqUHgMDVWw5swumvv+Yh+nuu7bvXW6x0BE1NztrD4iW1ZkkkyA6ZNPJElERESx9fe//x1pafVtBR944AHD+z/66KMYNWoU/vWvf+HHH3/EkSNH4PV6UVFRgV9++QX/+te/0KtXL8yfPz/8wSSmTJkS+Pn999/X3PbgwYP4+uuvAQCTJ0+G2Rz6PbCsrAyjRo3ChAkT8OGHH2LPnj1wuVyoqKjA6tWr8fDDD6Nnz55Yvny54XFS7MU9pP3iiy8giiLOO+88ZGVlhaz74YcfAk2U09PT0b9/fzgcDoiiiAcffBAbNmyI93CJokbtS5k5s7Ou/dOPuzqaw8Hwtg5d2yn1lw3Hq1ABqnbJvzm9nfE7CEcS0trV7vyofoU23YfOPukpwFz/j7uj44WwtTpN134398sKv1Ej2BVaIzRk5eYM7SC8lXdLLIZERNTs1CpU0na0Sdod6OmtTkRERFHVpk0b3HTTTQCAxYsX44cffjC0v9frRZs2bXDzzTfjnXfewbJly7B69Wp89NFHuPvuu5GZmYna2lpMmTIFv/32m6FjH3fccRg8eDCA8CHt7NmzA9Wzl156acg6l8uFM888E0uWLIHZbMbll1+OmTNnYvny5fj+++/xj3/8A/n5+Th06BDGjBmDP/74w9A4KfbkU5XH2PLlyyEIAkaOHClb98orrwAAioqK8NNPP6Fdu3bYs2cPTj31VOzduxcvv/wynn/++XgPmSgqRK9ySJve40Y4d86Gt1S9gbmjyxSYHAVRHU+6Vd85Gj8iqKRVSHZVY1JT9N+GpJWrWoWsLewm2Az0fnV0GI/Wl5TC7y6DOb2N7v1GtEvD57uc2FGhvzo2XnL8B3EQPRI9DCKilFfrDa2abWFLOzp547GraRjSEhGRGr8ootodQZVMisq0CTDpnSwlCu655x68/PLLqKmpwYMPPoglS5bo3ve6667DQw89BKvVGrJ8wIABGD9+PKZOnYohQ4aguLgYTzzxBN555x1DY7v00kvx888/Y+vWrVi1ahUGDhyouF1DiNu9e3fZNo8++ijWrFmD3NxcfPXVVzjppJNC1p966qm49NJLMXToUOzfvx/33nsv3nvvPUPjpNiKe0h76NAhAECPHvJA4PPPP4cgCJg6dSratauvrmvfvj2mTp2Ku+++G0uXLo3rWImiSf3yRgGCSbuSUzCHn5wqVhQ6F4TlUepJqzZxmGACBBMgGmjAGkXh+tUqESwOmC36A9oGaTr7AEdL8/l4R0SUHKSVtOkW29GQ9hjRw5CWiIiUVbtFXP9VSaKHETevnlmAbHv8viO1bNkSt956K55++ml88803+OabbxQLCJVI+8hKtWvXDnfddRemTZuGjz/+GKIohm17F2zSpEm4/fbb4fP58N577ymGtNu3b8fPP/8MQF5FW11djf/9738AgMcee0wW0Dbo2LEjHnjgAdx8882YM2cOXnnlFWRk6GuFSLEX93YHhw/XVxJIWx1s3LgRJSX1b0bjx48PWdfw4mQpNqU0tZBWEMJWkwpmewwGpE9k7Q7kO5m0ps8SYnu+SOufRkuYVgjxGgcREaU+eUhrhWAJnZzR7y6P44iIiIgo2F133RXIoyLpTdugsrISO3fuxMaNG7FhwwZs2LAB6enpIeuMaNmyJc466ywA9S0N/H55EVNwK4TgPrYAsHTpUlRUVAAALrpIe96U006rb9nn8XiwevVqQ+Ok2Ip7SNvQ1Li0tDRkeUM/kMLCQlmVbYsWLQAAdXWcwIZSl1q7A0AAROUZGQNbhKm0jaVt5cZnoVaaa0zrJKJgsqqvjAKt+zbQ6aDR4pgHG8SaWyKiaKj1hbY7SLfYIFhDq1MqV/wlnkMiIiKiIPn5+Zg2bRoAYNmyZfjiiy907/vHH39g6tSp6NSpE3JyctClSxf06dMHffv2Rd++fXHDDTcEtm0oQjSioTp2//79iq0YGkLawYMH47jjjgtZt2rVqsDPbdq0gSAIqv/16dMnsO2BAwcMj5NiJ+4hbdu29RPYrFu3LmT5woULIQgChg8fLtun4WxAQUF0e3ISxZPoUz7JYM7sCHvbczT3teQeH4sh6TL/91rD+6QrXNafbVN/uxGssZ1US4tLKVGOkdK6+LZ06JB1rELZlKbenkFgSEtEFBVOSSVtmtkqO0lrsufHc0hEREQk8de//hW5ubkAgIceekjXPosWLULv3r3xwgsv6LrK2+lUK9JSd/755weqcaW9YtesWYPNmzcDkLc6AI61FjWqttb4932Knbj3pB0+fDi2bduGF154AZdddhkKCgqwcuVKfP755wCA0aNHy/ZpmBmvdevWcR0rUTSJfrdsmSm9LexFo2FvMwrV69T/cXB0OD8mYxrQ0oY1h+TjaqxMhUA2x64e0qZ1noyaTf+J+jgaaDWj75wT2yreYJG0jjDi/K7p+Gh7/T+yRRlm9G95rAI7o9etqFpzX2wHQETUzPkljdzNggBLbm94Dv90bGGMrx4hIqLUlWkT8OqZzac4LdOWmEsNc3Nz8de//hUPPvggfv75Z3z66acYO3as6vYlJSWYMmUKamtrkZmZiTvvvBOjR49G165dkZOTA5ut/nvXkiVLMGrUKACAGMHkLpmZmRg/fjxmzpyJefPm4aWXXoLD4QBwrIrWbDZj0qRJsn19vmNX565Zs0Y2wZmahvmgKDnEPaS9+eabMWPGDOzcuRNdunRB9+7dsWnTJni9XuTl5Sm+2JYsWQJBENC7d+94D5coevzytgEF5/4Eky0bAGBrfTrcB76VbWPO6gqTIzZVN/cMysV7v1Xj4x3RPXsm/ZIaXNGpJGvgMxGFtBnH34majc/o2vbvg3Lw5MoK2fJzO6cZvt9InVLkwIfb9E8Yk+cwdrHD5B4Z6JRjQaXLj+FtHSHhdEbfv8Oc0xPuA0tR+9t/DR2XiIj0ESVXJgiCgLTOk+Hc9vqxhb7onxwlIqKmwSQIcZ1IqzmbNm0annvuORw5cgQPPfSQZkj74Ycfory8HAAwf/58nHnmmYrbSdt6RuLSSy/FzJkzUVlZiU8//RQXXXQR/H4/Zs2aBQA466yz0LJlS9l++fnHMoPCwkKGrykq7u0OBgwYgH/+858QBAHV1dVYs2YN6urqYLVa8eqrr8omFKuoqMDChQsBAKeffnq8h0sUNaIkpHV0mQJzRvvA7eCfg1lyY3ty4tJemfjzCdFtN+CTXNVvM2tvL5jCbKAirculgM5+vWoThGlV2UZbrO9KEAQMbePA6E7pSLeaZOvSOl6AnMHPwdZG+qGC7Q6IiKJBepLSBEH275TSlTVEREQUX1lZWbjrrrsA1Feezp8/X3XbjRs3AgDy8vJUA1ogtC9spEaPHh1o9dlQPbt06VIUFxcDUG51AAD9+/cP/Lxs2bJGj4MSI+4hLQDcfvvtWLt2LR544AFcf/31ePDBB/Hrr79iwoQJsm2//fZbDBo0CKeddprmmQ2iZCaKfrj2fBKyTD4ZmHKCF+tJtYDoX4YvbfNqjlU6KQhQe96kzCrvds3xPLVgCq1sZk9aIqLokIW0giD79170VMVzSERERKTi1ltvDVSlPvTQQ6otCrxeL4D6yez9fuV5Rmpra/HOO+80ekwWiwUTJ04EAHz22WcoLy8PhLXp6ek4//zzFfc788wzA/1s//vf/0bUboESLyEhLQD07dsXjzzyCF5++WU8/PDD6NGjh+J248ePxzfffINvvvkGrVq1ivMoiRpP9Ptw4C0zvOUbQlfIwleVuFBIxZBW2pMvusc/RtBdnqoWFKsU2MZE0gTCBoP/NzcyUCAi0uOj3RtDbgsABLPkpKzohc8Z2eQeREREFD0ZGRm45557AADr16/HZ599prhdt27dANQHsR988IFsvc/nw3XXXYd9+/ZFZVwN1bIulwvvv/8+5s6dC6A+H8vMzFTcJzc3F7feeisA4Mcff8Ttt9+uGigDwMGDB/Haa69FZbwUPQkLaYmaC1fx54rLpRWy3soturaLBXtk3QZUySppY/ROU1+dpC/6VGu5ELsAWc5oFp6rMdlaY5gzOoTczvSXaG7/+S4nSpw+zW2IiAj4ev+2kNt+iIonxup2zozXkIiIiEjDTTfdhDZt2gConyBMycSJE2G32wEAV199Nf72t7/h66+/xqpVq/DWW29h8ODBmDlzJoYNGxaVMZ1yyino3LkzAOC+++5DWVkZAPVWBw0effRRDB48GADw3HPPYcCAAfjf//6HZcuWYd26dfjmm2/wwgsv4Pzzz0eHDh0wffr0qIyXoicpQlpRFLF9+3asXLkSK1euxPbt21maTU2G8/c3FZdLL3/0Ow8qbmfJHxD1MUkNaeNQXVeQZvxtQnrCTk+7g4zetxu6D3NmZ5hzekDQWUnbMcsCSZtW2ExAm8z4zZ/olabXYVx9fHR7BTdIO+6qkNvnZa8Nu8+WMvnEd0REFKprVuhEnwecVRAUrohxHVgaryERERGRhrS0NNx7772a27Rr1w4vvfQSTCYT6urq8PTTT+PMM8/EoEGDcNVVV2H16tWYNGkSHnnkkaiNa8qUKQAQmLCsoKAAo0eP1tzHbrfjyy+/xAUXXAAA+OWXX3Drrbfi1FNPRf/+/XHGGWdg6tSpWLBgAdxuN7Kzs6M2XoqOhIa0X3zxBcaNG4fs7Gx0794dQ4YMwZAhQ9C9e3dkZ2fjvPPOw+LFixM5RKLGE1T+zGSVNfIAL73nLcjoeUv0xyRhMwuY1l/5DbprjvFKXmm7Az0tBTJPfBhpXS+HObt72G1trU9Hi9Pn6A5ogfqJsx4e2iJw22IC7jgpB/Y4ltKe1Mqua7sOWWZc1TsT3XJjEyDbCgYie/DzsOT2gb3dWBx3yqO4uV8WuuSo3x/PmxERhSd9q3yg31nKLWZ8dXEZDxEREYV3/fXXo3175Ym8G1x99dX4/vvvcf7556OwsBBWqxVt2rTBn/70J8yePRuzZs2C2Ry9S1SlVbMTJ06ExRL++2FWVhbmzp2L77//Htdddx169OiBrKwsWCwW5OXlYdCgQbjlllvw2Wef4csvv4zaeCk64ldCFsTtduOqq67C7NmzAUCxarampgYLFy7EwoULMWnSJMyYMQM2m75Z3ImSi0oIKP3SpvB3kDPkhRiMR9nQIgeGFjkwd1sNPthaE1gunQRFD/nEYeH3MdmykTv8bQDAgfdbQHSXq26b/6dvDI8JAI7LtWL2uS0j2jca9LR9eO2sAmTZYn/+LKPXrcjodWvg9ogMYES7NExaqNwnkRktEZFxWVa7Ytsi0e9KwGiIiIiaj9NPP133Fdp2ux27d+8Ou90pp5yC+fPnR3yfM2bMwIwZM3SNqVevXo26wvzUU0/FqaeeGvH+lBgJCWmnTJmC+fPnQxRFWCwWnHXWWRg8eDBat24NADhw4ABWrFiBL7/8Eh6PB7Nnz4bX61Vs0EyU/JQTSmm7g2SJwaSBqsEr9I/uI5/d2ghBsBh4NpJmOq6w9LR9iOdEZoYkx8uTiCj1KIW0Poa0RERERBQq7iHtwoULMW/ePAiCgJEjR+KNN95Ax44dFbfdvXs3rrnmGixZsgRz587FZ599hjFjxsR5xESNpBLMSStrxCRJwcySlLC42htyu6zOhz9/fSRwWwDwqqT6U9qT1mK0MNTQZGnJmmrK6aooTtKH42W/AyKisHZUHZEtU5wAlO0OiIiIiEgi7j1pG0q7+/Xrh88//1w1oAWADh06YNGiRTjxxBMBAG++qTwBE1Eyc+//WnmFoSAyfrz+0DDuYG1o4jr1m9AvoCKAudtqQpZJq2+NVtLCZOD8kdFjJ5CesNrwcxUn3+5hoEBEpMUnPUOJo6cRZVfOsJKWiIiIiOTiHtIuX74cgiDgjjvugNUaPqSyWq248847IYoili9fHocREkWXYFWekEva7iCt6+Uht635J8VsTFpWHND+4uiRfwfFol3OkNvSdgfRnJvL0fGikNtZJz4actveflz07izK9LSOsCZ0Okd1m8s8iR4CEVFS211TJluWa0uDYMmQLbfmD4jHkIiIiIgohcQ9Djh8+DAAoHfv3rr36dmzJwCgpKQkJmMiiiWTvUBlRehJivRu18OU3rb+hmBG5gn3x3hkyvxRuKo9konDgmX2/qvicsGSiYzj7whZltbtaljzBwIATGltkDXgH8buLI70PA3JWklLRETa3H6fbNmggvYQTPKZnk32vHgMiYiIiIhSSNx70mZkZKC8vBxHjsh7dqkpK6uvTEhPT4/VsIhiRlTpOyftUWfJ6oSWF/wOT+k6WLK7weTIj8fwZBwWeUjoF0VD4aFPUm1rNHh0dLoQlStvD1lmLTgZeWd/CZMttDLZZMtB/phl8FXvhCmtNUy2HEP3FU/J2m+WiIgaz+2Th7R2c/1H7bTu18O59dXAclFUuCyFiIiIiJq1uFfS9ujRAwAwe/Zs3fs0bNuwbyzdc889EAQh8N+3334bdp9FixZhwoQJaNeuHex2O9q1a4cJEyZg0aJFMR8vJT/R51ReodCjTrA4YGs5JGEBLQA4FMpelVocaPFL2h0YnjhMkJ8/shYOkQW0gc3NNlhyeiR1QAuwSpaIqCmTVtLaTGYIR9/3BelHboa0RERERCQR95D2vPPOgyiKePPNNwOTiGl555138MYbb0AQBJx//vkxHdu6devw7LPP6t7e7/fjuuuuw5gxY/DRRx+huLgYbrcbxcXF+OijjzBmzBhcf/318CtMJEHNh+itVVyuONtzErArhLSLdzllE4pJzf+9Bodq67+gbpH0LzVcQao4cVjqB5yspCVKvAM1Xnyyoxa/HK7vvy2KIlYccOHTHbUor5NXQhLp5fZ7Q27bgv8tE6QfufnZkIiIiIhCxT2knTp1Ktq0aQNRFHHttddi7NixmDdvHoqLi+HxeOD1elFcXIx58+Zh7NixuOqqq+D3+1FUVIRbb701ZuPy+/244YYb4PV60bJlS1373HfffXj99dcBAP3798fMmTOxYsUKzJw5E/379wcAvPbaa7j//sT0FqXkoF5Jmzoh7bubq/HiL5Wa+83aUoP7fyzDukMu7K0ODTrMBitIBYVKWqEJVKEypCVKrNI6H/72Qxne/a0aT6yowPfFdfhkRy3+tboC7/xWjbt/KINLzwx/RArWle4LuW0zB/WilYa0rKQlIiIiIom4h7QZGRn49NNPkZubC1EUsWjRIlx88cXo0KEDHA4H7HY7OnTogIsvvhiLFi2CKIpo0aIFPv3005j2pP3vf/+LlStXomfPnrj22mvDbr9161Y888wzAICBAwdi2bJlmDx5MgYNGoTJkyfjhx9+wMCB9ZMZ/fOf/8Tvv/8es7FTcjMpzOoMQHG252RwXK5yq+pl+1xwhwkvKlx+vLahSrbcZnDmMMHskC0zpbU2dIxkpNRKgojiZ/7vtXB6j72PvbCuEu9trgncrnD5sWS3yok1ojB+rwyd4LbK4zp2gyEtEREREYUR95AWqK86Xb9+PS688EKYTCaIoqj4n8lkwkUXXYRff/0V/fr1i9l4du/ejQceeAAAMH36dNhs8l6hUv/5z3/g9dZf1vb8888jLS0tZH16ejqef/55AIDX68W///3vKI+aUoXJUShbJtjzYCs8JQGjCW9UhzTVdXXe8BVmh53yL579W4b/mwomWNJga3PmsQUmOxwdzjd0jGSUbjVhgMHnIt5uOiFLcXn7LPns5ESppqHFgZZt5Z6w2xApybCEvr97QnrUhn7k5sRhRERERCSlXDIXB0VFRZgzZw7279+Pb7/9Fhs2bEBpaSkAIC8vD3369MHpp5+ONm3axHwst9xyC6qrq3HllVdixIgR+OabbzS3F0URCxYsAAD07NkTQ4YMUdxuyJAh6NGjB7Zs2YIFCxbghRdeaBKXbJMxfk9omwBTWmvkjV4Ckz03MQMKw6JxTb7HLyLLJqDKrf9y4HaZZhyXa7y1Q4vT56B2y4vwOQ8hrcslsOTEfuLAeJg2IAef76rF+0HVe8nk9PZpeOlXeTW0UhsMotQT/nXMtiQUKa8keL240wmBnwX2pCUiIiKiMBIW0jZo06YNLrnkkoTd/wcffIBPP/0UeXl5gfYF4ezcuRP79tX3HRsxYoTmtiNGjMCWLVtQXFyMXbt2oXPnzo0eM6UW0R0a0uYOfxvW3F4JGo0+bTPNKK6WT6Dj8YsIM3+YTN+CyCpHTfZcZJ5wb0T7JjO7WcD4rhnYU+XD98V1iR6ObiLbdFIToCd/FZrAJIWUGF7JRLFp5qATlILkagRW0hIRERGRRELaHSSL8vJy3HbbbQCAp59+GgUFBbr227RpU+Dnnj17am4bvP63336LYJSU6qSVtII1O0Ej0U+tkszjh+FJdbQqcyl1GA3niZKRnotZ+JZFkZJW0lpNnDiMiIiIiPSLaSXt7t27o37MDh06RO1Yd999Nw4cOIBhw4bpmiyswd69ewM/t2vXTnPb9u3bB37es2eP4TEG35eS/fv3Gz4mxY/ocwO+0EloUiGkVes9u7XMA6/B75UMPNSkVuqZWqMlUlZaF/4NrM7giSiiBlsrDofctpiCgllJSFv3x1xg+FvxGBYRERERpYiYhrSdOnWKag9WQRACk3U11vfff4/XXnsNFosF06dPNzTOqqpj/RozMzM1t83IyAj8XF1dbXicwSEvpR5PyQrZMlMKhLRKk38BwOsb5L1Kw2ErU2U2hfQ6WZ6qLKuAKk9oUOVnvwNqAvRcCbCtjBOHUWTWle4LuW0K+WwZ+g4vepOzLzkRERERJU7M2x2IohjV/6LB7XbjhhtugCiKuP3229GnTx9D+9fVHesjabNp99u02+2Bn51Op8aW1BT53WWyZaa01gkYSXREUmDWNjPhra+T0vnHZciW/aV/cgT4N/eTj4PtDqi5KMo0h9+ISMHQlh1Dbi89sCPws+itDVknWLPiMiYiIiIiSh0xTU+uvPJKzfXl5eVYsGABBEHAFVdcEcuhhHjiiSewefNmdOjQAQ899JDh/R0OR+Bnt9utua3L5Qr8nJaWZvi+wrVI2L9/P04++WTDx6U48csn3xJMzSsAGNrGHn6jZqhluhmTe2Rg1pb6aqp+hTYMapUcz1W/QhsK0kwoCaqoZkhLRKRNWkxwXvvjAz+ndZ6E2t+eO7atPzpXhhERERFR0xHTkPbNN9/UXL9x40YsWLBA17bRsnnzZjz55JMAgOeffz6kHYFeWVnHqh/CtTCoqTl2OVu41ghKwvW8peQmIrRtgDm7e4JGkhhmATCzKa2qCcdlYIJCRW2imU0CruiViWfXHJv0jhktEZE2aVuYdIs18LNglpyo97OtBhERERGFanbXIf/73/+G2+1Gly5dUFtbi1mzZsm22bBhQ+DnJUuW4MCBAwCAcePGISMjIyQ4DTexV3AlLPvLNkOipJJWOrtzE8d8NnWZJH26WUlLRKTNLzmdJQT3oTVZQzcWvRBFMapzNxARERGRMQ2fxR566CE8/PDDiR0MmmFI29B+YMeOHbjkkkvCbv/YY48Fft65cycyMjLQu3fvwLLNmzdr7h+8vlevXkaHS6lODK2kFZpdSMsvn6lKGrAfdspbdxAlE1EU8e3eOvy034Uu2RZc1D0DFp4pojiSTp0Q/G+gYFL4yC36AKHZfRQnIiKKi2+//RYjR45UXJeWlob8/Hz069cPF1xwAS699NKQ+YSIEqV5JUZR0rlzZxQVFQEAli5dqrntd999BwBo27YtOnXqFOuhUbKRhLQQmlc/WuYjTQcraSnZbS3zYvqvVfjlsBvzt9di0a7IJuuM0hyl1Az5JS2OQk5USitpAbY8ICIiShCn04m9e/di4cKFuPbaa3HSSSdh165diR4WUfMLaWfMmAFRFDX/C55M7JtvvgksbwhZBUHA+PHjAdRXyi5fvlzxvpYvXx6opB0/fjwvaWuGRGm7g2b2J2fmSz5lbTwinxTRx6SWktgbG6tCbr/7m3bPeKJokwb8wf8ECgohrciQloiIKC5uuukmrF+/PvDf119/jeeeey7QynLjxo0477zz4PPx6kFKrOaVGEXRtGnTYDbXV0VOnToVTmdoxY7T6cTUqVMBABaLBdOmTYv3ECkZSCtpTalRSXtKUXQu9WAlbeqq9cgDWZ5nomR2oCY6H6rZpoUiJZ04LOS1pNTWQPTGeEREREQEAC1btkSfPn0C/51xxhn4y1/+gk2bNgWK8davX4/58+cndqDU7DGkjVD37t1x1113AQBWrVqFYcOGYfbs2Vi1ahVmz56NYcOGYdWqVQCAu+66C926dUvkcClRJJW0Qor8yfXJt+na7r8j8zXXmxl2pCx/+E2ImiSeXKJISScOC+1Jy0paIiKiZJOVlYX7778/cPurr75K4GiIGNI2yj/+8Q9cc801AIC1a9di8uTJGDRoECZPnoy1a9cCAK699lo8/vjjiRwmJVKK9qTVE1J0ybGgVboZZ7R3NOo4lJykFWFEzQXftihSouR9U0C4nrSspCUiIkq0vn37Bn7es2eP6nbffPMNrrzySnTp0gXp6enIzs5G3759cdddd2Hfvn267mvZsmW47rrr0KNHD2RnZ8Nms6Fdu3YYO3Ys/ve//6G8vFx1308++QQXXXQR2rVrB7vdjvz8fAwdOhRPPfUUqquV23x17doVgiBg2LBhYcdWXFwMs9kMQRBw9913K25TUVGBJ598EsOGDUNhYSFsNhvatGmDcePG4cMPP5R9FgomCAIEQcDDDz8MAFiyZAkuvvhitG/fHlarVXEOpwMHDuC+++7DwIEDkZeXB7vdjvbt22PixIm6A/X3338fp59+Olq0aIHMzEz06dMHDz30kOZznUicUrYRTCYTXn/9dVx44YV45ZVXsHLlSpSUlKCgoACDBg3CjTfeiHPOOSfRw6QEcO1fAs+RNXD+PiN0hZAa50X09JJNt9RvpDV7OkPa1MX2s8mvzivi++I6LNxZi36FNkzpmQl7M20EXecVUeeLzos2+AKA3ZVe/FHpxfEFVuQ5UuMkGyWOViWtUrsD5473YLLnwd5+HMxprWI9PCIiIlJgsx27itRqlZ9Uraurw9VXX41Zs2bJ1m3YsAEbNmzASy+9hJkzZ2LcuHGK9+F0OnHttddi5syZsnXFxcUoLi7GwoULcfjw4UCIGXz/U6ZMkbViKC0txfLly7F8+XI8//zzWLhwIU488cSQbaZMmYLHH38cP/30E3bt2qU5mf3MmTPh99cXmV166aWy9V9//TUmTZqEI0eOhCw/cOAAPv30U3z66acYM2YMZs+ejczMTNX7AYD77rsPTzzxhOY27733Hm688UbU1NSELN+7dy/mzJmDOXPm4Nprr8X06dNhscg/Z3m9XkyZMgVz5swJWb5x40Zs3LgR7777blJWTsc0pH300Uc11x86dEj3tg0efPDBRo1Jj4cfflj2h6FlzJgxGDNmTOwGRCmleuO/UbXyr8orUySk1TPJXVogpFXfhr0dU5dS3uXyiYHfOyWWXxTxtx9Ksf9oH9b9NU58vsuJmWMKm93fnSiKeHJFedSPu6HEjSdWlMMnAplWAU8Pz0NBGoNaUqfVk1ap3UHV6nvqt8toj8LzfoHJ3iK2AyQiIiKZ3377LfCzNMQURREXXXQRFi5cCAAYN24cJk6ciC5dusBkMmHFihX417/+hd27d+Oiiy7CsmXLMHDgwJBj+P1+jB8/Hl9++SUAoFu3brj55psxcOBApKenY//+/fjxxx/xwQcfKI7vyiuvDAS0/fr1wx133IFevXqhtLQUs2bNwowZM7Bv3z6MGjUKv/76K9q2bRvY99JLL8Xjjz8OURTx/vvv495771V9Ht5//30AwPHHH49+/fqFrFu2bBnOOecceDwetGrVClOnTkW/fv1QVFSEffv2Yfbs2Xj33Xfx2Wef4corr8TcuXNV72fevHlYv349+vbti9tvvx19+vSB0+nEunXrAtt88MEHuPzyyyGKIrp06YJbb70VvXv3RmFhIXbt2oXXX38dn332GV5//XVkZ2fj2Wefld3PnXfeGQhoe/TogbvvvhsnnHACKioqMGfOHLz66quYNGmS6jgTJaYh7cMPPxw27GlY/8gjj+g6ZjxCWqLGcG57XXWd6C6P30AaYX+1nksw6/92tfrOWlMjkyYFDoWKzPUlHpzcOjqTylHjrD3kDgS0wVYfdGNQM/sd7a32YXNZ+N6eelt4NLzyX/61MnCyotojYv7vNbi+b3aEo6TmQLvdgfpHbn/NHrj2LUZa5+T7okBERPHlF/044qpN9DDiJt+eDlMCC5l8Ph/++c9/Bm5fdNFFIetfe+01LFy4EFarFR9//DH+9Kc/hawfMmQILr/8cgwfPhwbN27EtGnT8MMPP4Rs88ILLwQC2gkTJmDmzJmw20M/r5977rl47LHHsH///pDlCxcuDIS3o0aNwmeffRZS+Xv22Wdj6NChuOGGG1BaWoq//vWvmD17dmB9z549MWDAAKxZs0YzpN28eXOgZae0itbj8eCyyy6Dx+PBn/70J8ydOxfp6emB9QMGDMDYsWNx2mmn4YYbbsC8efPw5Zdf4qyzzlK8r/Xr12PUqFFYuHBhyPNw2mmnAQBKSkpwww03QBRFXHPNNXj55ZdDKmUHDBiACy64IFCN+9xzz+HGG29Ejx49Qu7j+eefD2y/dOnSkOreUaNG4ZRTTsGVV16pOMZEinm7A62eFEbpqe4jSjR/3SHVdd7yjXEcSeRqveH/bhsqKrWCjz4F+iYgo+RzalsHvt1bF7LssFMeClJibFEJJTeXNr+Q9mCtvtel3hYejqPvbYecoT3Fl+6tY0hLmjQnDgvzBdTvKo3JmIiIKLUccdWi5cyHEz2MuDl0ycModGhfGh8Lhw8fxvr16/Hggw8GwsmLLroIp556amAbURTx9NNPAwD+8pe/yALaBi1atMA///lPjBkzBsuWLcO2bdsCE8f7/f5ACNyuXTu8/fbbsoC2gclkCqmCBYD//e9/AOrbMLz55pshAW2D66+/Hh988AG++uorzJs3D/v370ebNm0C6y+99FKsWbMGGzduxC+//CKrkgXqWwsA9ZnblClTQtbNmjULu3btgsPhwNtvvx0S0ErH8dprr2HFihWYMWOGakhrMpnw2muvqT4PL730EioqKtC2bVu8+OKLiq0MgPpCz7feegvFxcV4++238Y9//COwbvr06YHWDa+88opi+4UrrrgCs2bNwqJFixSPnygxDWm/+eabWB6eKDlphJbpvW6L40Bia3jb+gnD1NpAXtQtA+d3VX4Dp+SnVAXNucSSh1Wl4XNzPJlZ4/GH3wiAV99mqmEue2xTONL3SGnrEVN6O/hr96rszRcYERFRrDzyyCOqV2+np6fjz3/+M5566qmQ5Zs2bcL27dsByCtspRqqQAHgp59+CoS069atw9699f/2X3/99WF7tQbzer1YunQpgPqK2fbt26tue/311+Orr76C1+vFt99+i0suuSSwbvLkybjrrrvg9/vx/vvvK4a0Db1yhw0bho4dO4as+/jjjwEAI0aMQGFhoeaYTzvtNKxYsQI//fST6jbDhg3T7I3bcH9jx45VDXIBwGKxYOjQofjwww9l99fQa7Zv37446aSTVI9xzTXXNK+QdsSIEbE8PFFSEkWNVgFa65KInizOfDTEUwo03ji7ABnsdZDSlF4DDGmTh42tUQOq3fpemHrbHaiHtAzRSJu0klb6ijGntVYPacXwLTuIiIgo+k488UT85S9/kU0atmrVqsDPQ4cO1X28AwcOBH5uqNIFgOHDhxsa144dO1BbW9/6YvDgwZrbBq/fsGFDyLqioiKMHDkSX3/9NWbOnImnnnoqpLDj559/DoTRShOGNTwPX3zxhe6CkODnQOqEE05QXefz+QK9aV9++WW8/PLLhu/P5XJh27ZtAIBBgwZp7nfyySfrOn48MUUhija/W3WV6KtTXZdM9GQZDS1LlYIPG0vOUp7Sa0AaQFDiqP2NNce/PN2VtDpfvmqbNcfnloyRTxwm+ZitMHlYA19NcVRbhBEREdExN910E9avX4/169dj7dq1+OSTT3DllVfCZDLhxx9/xOmnn47Dhw+H7BM80b0RDcEqUN9ftUFwCwI9SkuPtUJq2bKl5ratW7dW3K9BQ/i6Z88efPfddyHrGlodWK1WXHzxxbJ9I3kenE6n6roWLdQnSi0tLYXXa7ywLfg5LysrC3ymCve8tWrVyvB9xVrMe9ISNTeiz6WxLkVCWh3bNEwYplR1ZuHpn5Sn9BrYXZkaleDNgU1hYjcAaI7FntUenRWyOpvSrjjgwi1LSmTLee6JwpGGrNLqa0Fj8rCaDU/DueMdtBg5H7bC5KvqICKi+Mi3p+PQJQ8nehhxk2+PT3u8li1bok+fPoHbJ554IsaOHYuRI0fiqquuwq5du3DddddhwYIFgW18vmPzHnzyySeal+hL7yvaGtvS7MILL8TNN9+Muro6vP/++4Gr3n0+X2Bisj/96U/Iz8+X7dvwPJxzzjn4v//7v0aNAwDMZvVLAoOf8+uuuw633aavXaRSr14gNVvBMaQliiJR9ANi6k+upOetTKvdQSq+GVJ4P+xzYWr/RI+CAOWewQDg0zs7VhMS7UpaAChxyo/JtzUKJ1y7A61KWgDw1+5D1eq/If9PS6I7MCIiShkmwZSQibSaqyuvvBKffPIJ5s6di48//hhLlizBGWecAQAhgWVubm5IyKtXQUFB4Of9+/ejZ8+euvfNy8sL/Hzw4EHNbYMv9w/er0F2djbGjh2LDz/8EB9++CFeeOEFWK1WfP3114FjK7U6AOqfh3379sHtdkf0HBgRPHZRFCO6v9zc3MDP4Z63cOsTgfVuRNHk1640zOxzV5wG0jjndgl/RrOhqozBRdPUPVc7TKDEUps4rEpnVWlTovcRNza/zmKfbQrD4w89SWuRtDuwZHULewxv1e9RHRMRERFpe+KJJwLVnffee29gef/+x6pTli1bFtGxBwwYEPhZ2mYgnC5duiA9vf57+c8//6y57YoVKwI/qwWbDSFsaWlpYLKshlYHWVlZOO+88xT3a3geVq1aBbdbvbVjNNhsNhx//PEAIn/OHQ5HYOK2lStXam4bbn0i8BsHUTSFqaK1tFBvkp1MWqWbcXH3DFhNQJZVOQyyHE1nLUxpmySryuX0lBzU8sbm+I+63vDV28iUtlc+T1yQNpcv9ESt3Rx6wVrmCffCknei5jFEb63meiIiIoqu7t27Y+LEiQDqw9Avv/wSQH3A2q5dOwDAK6+8gro6460L+/Xrh/bt2wMAXnvtNVRXV+ve12KxBNoSfPnll9i7V2Xy0aPHbtjn9NNPV9xmzJgxgX6w7733Hurq6jB//nwAwIQJE5CWlqa4X0N4W1FRgTfffFP3+CPVcH+bN2/GF198EdExzjzzTAAI9CBW88Ybb0R0/Fhqjt/niGJGFLUvu02lNgAXdcvAu+e0xPNnyPvSAMcqadl/lij+VOcXSp23mKjRm70qbTdzTCEGtlLuYSWlVr1M1MDlCz1RKw1pzZkdUHjeWrSaUo5Wk+V9jwEAPvWJNoiIiCg27r333sB39ccffxwAYDKZApW1O3bswBVXXAGXS33+mcrKSrzwwgshy0wmE+66q/5q2r179+KKK65QrUb1+/3Yt29fyLJbbrkFAOB2u3HttdfC4/HI9nvjjTewePFiAMAFF1ygOkGZzWbDRRddBKC+x+7777+PqqoqAOqtDoD6lhANQfOdd94ZtiL4hx9+wNKlSzW30XLbbbchM7O+5cfVV1+NjRs3am6/cOFC/PrrryHLbrzxxsDv84YbbkBNTY1sv/feew+fffZZxOOMFcYrRNHUBPrRSplVgmXz0cCCBZdE8ad2Oqg5/jn6VRPrUF5R3i/UJAjw6mtpqx6MEx1V5wv94uQwK0/9YLLlwORQPgEqep2yCciIiIgotvr06ROo4Pzuu+/www8/AAD+/Oc/Y8KECQCAOXPm4Pjjj8c///lPLF26FOvWrcN3332HV155BVOmTEFRUREefvhh2bFvueUWnHXWWQCA+fPno2/fvnjuueewbNkyrF27FosWLcJDDz2Enj174pVXXgnZ99xzz8XFF18MAFi8eDGGDBmC9957D6tXr8ZXX32F6667Dtdddx2A+n6uzz77rObjbAhjnU4n7rjjDgBAq1atMGrUKNV97HY7PvjgA9jtdlRXV+OMM87AZZddhg8//BCrV6/GypUr8fHHH+Ohhx7CCSecgOHDh2P9+vWa49DSqlUrvPXWWxAEAfv378fAgQNx00034eOPP8aaNWvw888/Y+7cubjnnnvQtWtXjB07Frt37w45Rr9+/QIB96pVqzBw4EDMmDEDq1evxpIlS3DTTTfhiiuuwMCBAyMeZ6xw4jCiaGqCIa1apaw5UEnbHGMhosRSC3H2VGn3xW5K/KKIRbucWHlQvTeW1y8G3qPUKm71tkFgbEbh7K2tCLltN0XyMVsE/G7AbI/OoIiIiEiX++67DwsWLAAAPPbYY/jiiy8gCAJmz56N2267DdOnT8f27dtx9913qx6jZcuWsmUmkwkfffQRrrzySnz44YfYunUrpk2bpntcb7/9NrxeL+bPn481a9bgsssuk21TVFSEhQsXom3btprHOu2009C+fXvs2bMH5eXlAIDJkycHevKqGTJkCL799ltMnDgRe/bswXvvvRfoZ6skOzs7/APTcMEFF2DBggW46qqrUFpaiunTp2P69OmK25pMJmRkZMiWP/vss9i3bx/mzZuHzZs34+qrrw5Z37lzZ8yePRtdu3Zt1FijjZW0RNEUpt1BKjKpVdKy3QFRwqgFhtvKvY3uvZoqFv/hxNubtPt6zd5y7NKmEmfo+3PDs8RKWooGt09+gkTa7kAv0cuWB0RERPE2aNCgQMXr4sWLA5NKWa1WvPjii/jll18wdepU9O3bFzk5OTCbzcjJycGJJ56Ia6+9Fh9++CF+++03xWOnp6djzpw5WLJkCS6//HJ07twZaWlpsNlsaN++PcaNG4eXX345UN0azOFwYN68efj4449xwQUXoKioCDabDS1atMDgwYPx5JNPYsuWLTjxxBPDPkZBEHDJJZeELNNqdRBsyJAh2LZtG6ZPn45zzz03MA6Hw4H27dvj7LPPxj/+8Q9s3rwZV1xxha5jahk3bhx27tyJZ555BmeccQZatWoFq9WKtLQ0dO7cGWPHjsWzzz6LXbt2YeTIkbL9rVYr5s6di3feeQfDhw9HTk4O0tPT0atXL9x7771YvXo1unTp0uhxRhsraYmiSGyClbRqHJb6lLZHng0AJzohiietHHZPlRedc5r+JFdvbgw/8cLHO2pxaa/6nlYfbFXe/rR2Dmwuk/f3ktLbVoGapw1lB2TL8uzp2juZbPVVsxKiz/jEJERERBTq9NNPN9xCqKG3q5K+ffviv//9b6PGNHLkSMVAUY9x48Zh3Lhxjbp/AHj66afx9NNPR7Sv3W7HjTfeiBtvvNHwvpG0c8rOzsYdd9yhGF7rddlllylWHzdmXLHEGjiiaNKopM0a8GQcBxJ7aUdLaPvmW9Et99j5nik95ZcaUGrqlM3zeMlK67OEL7k+ZySNPVXKJ9FGtnfo2r/pXSdB0eT0yYP+njnySx6DtRgxO1bDISIiIqIUxG/gRNGkUElrLRiMrJOehL1NZGfMksEpRXb8uE95JktBEPDQkBZYc8iFLJsJvfP1zZROye+0dg7sCrqcvE9+06/OTBVaOWySnQxOeiZBQI7dhAqXdgzL55W0uP2h//6nW6yBWYXVODqej7yzv0Lp4jNjOTQiIiIiShEMaYmiSSGkzTt7MUy2xjXOTrRw4YTVLGBwG33VaJQ6eKlF8mombWfjJs0soCLMNnzKSYs0pG1hC9Pq4Chr3okKS/lqIyIiImqO+B2cKIpEpXYHgvZMiamAgVDzJC0C4+sgeYgaIc6GI27sqgzfYzVZ+UURG0rc+KNSPhFTrJi0Cx4BAD7+AZAG6cRhNpPOf/sVqm39rhJ4K39H3R/z4as7HI3hEREREVEKYCUtURQ5f39DtkwQUv9ciI/X+TZL0uiAr4LkofUnOWtLDWZtqcFVvTNxTmd91XzJQhRFPLmiHL+WeCAAuKZPJs7uGPvHcNgZftLHH/a5MLV/zIdCKeqP6rKQ2zZz5CdoSxacEPjZ5ChE/rnLYclKvtmHiYiIiCi6Uj89Ikoi1b88Jl/YBCppW6en/mMg40ySCi9m9clDT1HnjKB+wqliS5kHv5bUVwGLAF7foPwYKt3RncbLo/NwB2vDh7nUPG2uOBRyW/f7ZZjPCP66w3DueD/CURERERFRKmFISxRjgjn1J9Ia3i603+ywInuCRkKJxNntk0dT/V2sL9HXpuFQBGFpNN63dlWkbhsJiq1WaVkht7dW6mtTYLLlwJLTS3Ob2i3TIx4XEREREaUOhrREFFanbCv+0j8bffKtGNXegWv7ZIXfiVKetE+nyFLapNF0fxWxe2DZttCPPCe3Nh7aWvU0r6VmySvpST+mXU/d+7Y4Y77mekFgdzIiIiKi5oCf+ohIl2FFDgwrcoTfkJoM9qRNXk03pI0daYuIbJvxwNXCkJZUePyh1d25tjTd+1pyeiCt6+Vwbn9Hcb1gzWjU2IiIiIgoNbCSloiIFEknHWcwmDz8TTQyj+Wjkk6AaJa+wHWw8FMTqZCGtFaT0V7u6i8uwcKQloiIiKg54NcNIiJSJC0a3F7hTcxASEZvYD5p4SEs2lkr2VfEvG01uPGrEjz0U1lE/V3j6bdSt2xZJCcMdkhev+YIPgGxkpbUrDlSHHLbcEgrqL8gPSUrIfpckQyLiIiIiFIIQ1oiIlKkFEeVOJM70GsujGSUMzZVwxt0rf+eKh9mb61BucuPzaUefLitJvoDjJC0JQEAPPxTuWxZtcf41GnSkLbWYzzpPVDDExWkbMn+30NuWzRCV0VhKruduz4wOiQiIiIiSjEMaYliyFowONFDIIqYoBDTfrqjVmFLijelMFPLb6WewM+zt1aHrFu6ty4aQ4qKarfyA/NJHrCRMatNeLds37FjnNTSputYkbRIoOYh354ecrvc7TS0v7d8k/b60l8Nj4mIiIiIUgtDWqIoEqxZIbfTu1+XoJEQNZ5SHuU1XsBIMdCY3q1uX/L2s1XLQKWhtNOr/zF4/cpBbXDgesMJ2bqOJe1rS9TA5Qu9ymBy5xMN7W9rNVxzvd9TYXRIRERERJRiGNISRZHJnh96O611gkZC1HgsGkxeatWhalKllaraMKW5ssdAKbHHLyqeXEi3Hru3XLsJ759TGPZYSZxvU4LV+TwhtztktjC0vyXrOM31opshLREREVFTx5CWKIpEv6RfoWB0dmei5KH0DwSD2+RgtKAzOKRN5pxRLUz2Sx6wkZa0Xj/gUkhX0yyhd2Y2CWiXqf2ezUpyUuL1++AVQ18cDrPF2EEs6ZqrRU+l0WERERERUYox+AmSiJT46g7j8LzuEN3lIcsFE//EKHUpBbKL/3DiQI0PvfOtqPGIGNHOgfZZfJ3Hm4Gr/QEApqAa1WS6Yt/nF7H4DyfKXH6M6pCmehJg0S4nLuyWEbjtMVDS6vGLOFInT1elIS0AWMKUHHuNNgOmJmVPlRdf73Yiw2rCuZ3TkG6tP5Xl8sknlDMa0gphQlo/K2mJiIiImjx+syaKgkOzWiqvYCUtpTC1uOrXEjd+LXEDAD7fVYv/nVGAHDsvzIinBduNTeCWrBXQM7fU4JOjk9F9tduJrjnKH0s+2FqDHi2s6FNQP8FXnYGQ1u0X8cCPZbLlSiGtOczz9NVuJ87prB2mUdNU6/HjoZ/KUOOpf+39Xu7B30/OBQB8uW+bbHuH2Wro+CZLhuZ6kT1piYiIiJo8fqsmaiRvxRb1lQxpKYWZdCR7Hj+wYHtNHEZDwfIdxv75TtaetA0BLQDUeET8WuJR3fb5dccu9y5M0//491X7FJdbFZ4UpeA22F6VY1HTt77EHQhoAWDdYXegsnrJ/t9l22dZ7cbuwJymuZqVtERERERNH0Naokby1x1SXScILFan1GXR+S/E9gr5pb4UWxlWY/98N4Wr9Mtdx1oWdM5Rr1KUVsPWqDSwVQquTylyRDQ2avoq3fI/orqjfUfK3U7ZukyDIa0193jN9Zw4jIiIiIwSBAGCIODhhx9O9FBIJyZIRI0kihozybCSllKYWW/5ZRMIAJs6I+0BUoFb4/FYTQJ8QetdKsWvZoVK8VEd0pDvMOHXEjcW7pQHb9R82RT+Oa/zicgEcLiuOmT5A/3ONH4HZpvmatFbDdHvg2Di5woiIiI9vv32W4wcOVK23Gw2Izs7Gzk5OWjfvj1OOukknHrqqRg3bhxsNu1/j4lijZW0RI2lNQsPv0xRCgtz5TcllLHQ1RU001hTiGtdmiFt6G21QFftHMSJLe24oncWRrVnVS0dY1NoWNzwOjxcF9rypUNmiwjuIfxHctFTGXYbIiIi0ubz+VBWVoZdu3bh+++/x3/+8x9cdNFFaNeuHR5//HF4vbxKkBKHlbREOvnqDsNfux+W3OMllSzqYYHASlpKYUo9O5UkIvSr84rYWelB2wwLsjlpWVjBoWaFS6P6P0VohrRmAQjqHapWRRyu5XJTaBFB0aP0LtPQ7mB71ZGQ5YV27UnAlAhC+Pcxv6cSJnskATAREVHzdtNNN+Hmm28O3K6urkZZWRl+/fVXfP311/jqq69w+PBhPPDAA/jkk0/w6aeforCwMIEjpuaKIS2RDq4D36Hs63EQPZWwtjwF+aO/gdBwaaKocaaNPWkphentSRtvB2q8eOincpS7/DALwF0Dc9C/pcFJepqZ4ur696lfS9xNYvKrZftcquvK6kJD6A+2Kk9sp1AYGUItyi6t8yHPwRNwzY3S62FvtReVvkOynrSFjkzjd6AjpPWWroMls6PxYxMRETVzLVu2RJ8+fWTLzznnHNxzzz3YtGkTLrvsMqxduxYrVqzAhAkTsGTJErY/oLhL0q/gRMmleu0DgcsMPYd+RN0fcwPrRJ96WAATQ1pKXXoraeNtyZ66wCRSPhH4aHttgkcUf0aLPP+orA9pX/1V+XJpUattS4zE6j71HjXLpv0RKNOq/Pr/jL1qmyWll+svh914btP3suWFDuOVtHp62Nft+tD4cYmIiCis3r17Y9myZejfvz8AYNmyZfjf//6X4FFRc8SQlkgH98HvQm7XbHw28LPoq1PcR7BkwpLVNabjIoql1hn6qgU9cb4u/OvdoSHZ5lJPXO8/FRWk1f8uDzmV60MTMa+Y0bsc2uZYtXSOTTlA/euAbN3HG9clXXP9WJX1n+xoficFSDmkzbSacMQlr9TunJVn+PiCnpO6YSYXIyIiosilpaXhnXfegXC0J9YzzzwDj0f5e8aBAwdw3333YeDAgcjLy4Pdbkf79u0xceJEfPXVV5r3U1ZWhjfffBOXXXYZevfujczMTNhsNrRu3RqjR4/GK6+8ArfbrWvM77//Pk4//XS0aNECmZmZ6NOnDx566CGUl5cbeuyUPFjmRxQBMajFgVJIay0YjKwBj0Mw8xJsSl0Wk4D+hTasPaz9IUFtYqZYYa9Q43xhqlY9fhGWOFdO+wy2xs0N6j2s9BrolmvBya31vedO6ZkRtmVBnsOM8V3TsaAZVmqTnNLL1S8CPsmL8bz2x8MSo0lDRS+ruImIiGLp+OOPx1lnnYXFixdj3759WLlyJU455ZSQbd577z3ceOONqKkJPVG7d+9ezJkzB3PmzMG1116L6dOnw2KRR279+/fHH3/8IVt+8OBBLF68GIsXL8b06dPx2WefoXXr1orj9Hq9mDJlCubMmROyfOPGjdi4cSPefffdsGExJSdW0hJFwh90Rk3S7sBaMBgFY5fDXnRmnAdFFH0nFIav3Ip3SEvKVX1awgWi3gTMJRYuOJYKzsKkw31oSC4eH5YXqHzQkmUTML6rvsvRR3VIMzBCasqU2nP4IcIvqQkf0bpLxPdhye2tPQYfQ1oiIqJYO/PMY9/jv/8+tK3RBx98gMsvvxw1NTXo0qULnn32WXz++edYvXo15s6dizFjxgAAXn/9ddx9992Kx/f5fBg8eDAee+wxfPrpp1i5ciWWLVuGd999F3/6058AAGvXrsXkyZNVx3jnnXcGAtoePXrg9ddfx8qVK/HVV1/hxhtvxK5duzBp0qRGPQ+UGKykJYqAGBTSSitpBbMj3sMhihk9tZWuBAR8ZEy4HD3eLSsA4y0WgjeXDtdIEbBJR5DbwBFudjFqNpRern4R8Imhb4BGXl8y4frSspKWiKjJE0U/RL/yHAJNkWDKhqBj8sx4GjBgQODnrVu3Bn4uKSnBDTfcAFEUcc011+Dll18OqZQdMGAALrjgAtx333144okn8Nxzz+HGG29Ejx49Qo6/ZMkSdOvWTXa/p5xyCi699FK8+eabuOaaa7B06VJ8/fXXGDVqVMh269evx/PPPx+4z6VLlyIz89ikpaNGjcIpp5yCK6+8snFPBCUEQ1qiSASFtM6d74euY4sDakL0hF8VLj92VnjQOcca+wGpmLGxClN6ZsLGUE1RuKrVRFTSfvS7sTYCi/9w4tKemXBYBIWQVv/v3cjXAIeFr6fmrMbjx5sbq/Hz/jq4Ff5GDtb44Jf8bZkb80VT0P5Y7tr3BUo+G4ack/8La8FJkd8PERElLdFfiaoDFyZ6GHGT1XouBHNuoocRIj8/P/BzWVlZ4OeXXnoJFRUVaNu2LV588UXFVgYA8Mgjj+Ctt95CcXEx3n77bfzjH/8IWa8U0Aa7+uqr8d///hfr1q3DRx99JAtpp0+fDr+//oPJK6+8EhLQNrjiiiswa9YsLFq0SPvBUtJJrlMWRCmioZLW7yqF59CPIetYSUtNid7w6/l18TvjrzSiRbuc+L5YeRI/Ch/Clse5HLrW48fHEUzA9dXRSeOkl54bq6TVv62Nn5KatU+21+L7YuWAFgA2lXqiWkkrhKukBeA59CPKlk5WbL9AREREjRccelZVVQV+/vjjjwEAY8eOhd2uXphlsVgwdOhQAMBPP/2keV+iKOLAgQPYunUrNmzYEPivbdu2AIBffvlFtk9Dr9m+ffvipJPUT9pec801mvdNyYmVtESRODpxmHPXHNkqhrTUlEirxNQUV/vgTcDkU8FeWV/VbHuItrCbUKYRtIarpF38Ry26t8iJ9rBU/VaqPFNuOO/8Vo2xXdJlPWljFdLq6XFLTdd8HZPGSd8jGxPSmtLbAEfCb+er+h2itwaCVV45Q0RERI0THMxmZ2cDqO8ju27dOgDAyy+/jJdfflnXsQ4cOKC4fOHChXjppZfw3XffhdyfVElJSchtl8uFbdu2AQAGDRqked8nn3yyrjFScmGNCFEkGr6U+b0K69igk5qOnnnhJw5rELe2pszNZMZ01g6nPWHeliriXEnrbeSLRdbuIOjnPIf2Rxuj5xGGtgmtlODLj4JJT4A0pt1BxvF3AuZjf8vmnJ6q23ISMSIiotgIDkbz8vIAAKWlpfB6Fb77h1FbG3rCVxRFXHfddRg7diwWLlyoGdACgNMZ+u99WVlZ4Gqali1bau7bqlUrw+OlxGMlLVFE6gMNU5r8jdHvqYj3YIhixh7+6tuA+ooyRljxII04C9PMeGt0Ia784rDi9p4ws3TVeeN76XRjK1SlhcHB1YvtMi0orXOr7mu00nFsl3T8tN8VuG3h6W0KEs1KWnvr09Bq0n54Sn+BOb0NRF8dShacoLyxj+1diIiaIsGUjazWcxM9jLgRTNmJHoLM2rVrAz83TPrl8/kCy6677jrcdtttuo5ls4UWvLzxxht4/fXXAQAnnngipk2bhsGDB6Nt27ZIT0+H2Vz/5euKK67AO++8o9neiFd8NU0MaYkicfTN0mSV/6MiuhnSUvMUt0pakhO0J7lyh/nl1IUJcaOtMR8pRVGUhdTB1bHhQlSj922VlN56/fVj4AdjAgC/5OoZcyNfFyZbDuytTwMA+GqVL5EEAJEhLRFRkyQIpqSbSKu5+fLLLwM/n3rqqQCOVdQC9Z8D+/TpE9GxX331VQDAcccdhx9//BFpacpXw5WWliouz83NDfx88OBBzfsKt56SE+tBiCLgd9fP8qh0ZsvPkJaaqXhdMF/jYRpsVLiJw+JfSRv5vnO21WgeL1w7A6PtDqyST0oigDhn2k2eKIq45/tSTFp4CF/sMj6hXCJ5pZW0UbyawOTIV10netnugIiIKNo2bNiAr7/+GgDQvn17DBw4EEB9Rezxxx8PAFi2bFnEx9+4cSMA4LzzzlMNaEVRxJo1axTXORwOdOvWDQCwcuVKzfsKt56SE0NaokiI9Zc7OLe9Ll/lLo/zYIiSQzwqaTeXql/G3pwYndjdHa7dQQqljnO3yUO84OA1XCWj8ZBWvoOHZeNRNfmzw9hVWd/n7Y2N1fi+OHWqREvrQvvTmU3R+2gtmKyq61hJS0REFF1OpxNXXHFFoBDrzjvvhMVy7OLz8847DwCwefNmfPHFFxHdR0Nf25oaedFBgwULFmD//v2q688880wAwPr160NaM0i98cYbEY2REoshLVGEfM6D8FZukS23tzsnAaMhig2LgUQrHrnVq+u1m+s3V+F+S+Em6sq1x/fjQLQbBQT3Ae2aq93JyWjPUGklLQB4fPJlFD0vrKtM9BB0K5OGtI2YOMwIhrRERETRs2nTJpx66qmB0HPEiBG46aabQra57bbbkJmZCQC4+uqrA1WxahYuXIhff/01ZFlDFewnn3yi2NJg+/btuOWWWzSPe+ONNwbabt1www2Kge97772Hzz77TPM4lJwY0hJFSPRUw2TLlS3P6HNX/AdDFCP5DhMcZn2hlnQCnVjYW810LBLhfjN9C2xhtoiuqIe0QT+P7qh86VhgW4N3rhTqso6WGnhEV8jtbKs9qsfP7Pegyhq+ComIiPQ6dOgQNmzYEPjv559/xueff47/+7//w+jRo9GnT59Ai4EhQ4bgww8/hNUaekVLq1at8NZbb0EQBOzfvx8DBw7ETTfdhI8//hhr1qzBzz//jLlz5+Kee+5B165dMXbsWOzevTvkGFdccQUAYN++fRg6dCjeeOMNrFixAt999x0efvhhnHTSSSgtLcWAAQNUH0u/fv0CQe6qVaswcOBAzJgxA6tXr8aSJUtw00034Yorrgi0aqDUwonDiCLl90CUTBiS1vVyWHN7J2hARNEnCAKeOz0PL6+vwppD2q0GeAV48mr41ZgF5X6q8f7VRfv+gnNUh8WEEwttWHdY+fVqNKRVKrzVmmmXmhe3GFrR2sKWHtXjZ574EMwZ7VHx4/WhK/gaJCIi0u2ll17CSy+9pLlNYWEhpk2bhrvvvjukzUGwCy64AAsWLMBVV12F0tJSTJ8+HdOnT1fc1mQyISMjI2TZbbfdhi+//BKLFy/G1q1bce2114asT0tLw9tvv42FCxeq9qUFgGeffRb79u3DvHnzsHnzZlx99dUh6zt37ozZs2eja9eumo+Zkg8raYkiJIreQG/aBrZWwxM0GqLYyXWYcc+gXIzroh0+MDNInHC5Y8PvRi1I98Vr1jdojyNS0uC1baZZfVuDx1YKaeP8dFGS8os+eEVPyLIWdu1KbqMEwYT07tfBZC+I6nGJiIiaK5PJhJycHHTo0AHDhw/HtGnTMHfuXOzduxf33nuvakDbYNy4cdi5cyeeeeYZnHHGGWjVqhWsVivS0tLQuXNnjB07Fs8++yx27dqFkSNHhuxrtVqxcOFC/Pe//8XAgQORnp6OtLQ0HHfccfjzn/+MNWvW4OKLLw77GKxWK+bOnYt33nkHw4cPR05ODtLT09GrVy/ce++9WL16Nbp06dKo54kSg5W0RLoIkNV++Vzw10oaegvqwQBRqgsXBEYSXImiiD+qvIAItM6wwGGJ9oXwyc8vijhU60Nhmhlmo2WeOtV4RLh9omoFa7yroKPdGkPakkCrl7JgsCet0tY8IdH06XmNuiWtDgCg2KT/wwAAn45JREFUhS26IW2A7HXLFyEREZGW008/PWZXP2VnZ+OOO+7AHXfcYXhfi8WCqVOnYurUqarbzJgxAzNmzAh7rMsuuwyXXXaZ6npe/ZV6GNIS6SJ/cyv57BTAL7mcliEtNWHhsq1FO2tx1fFZuo9X6/Hj6sUlIcvuOzkXJxRG3h+13OWP+yRYjVFa58Njy8uxr8aHXLsJ9w/ORfus8P80G/24VecTcfnnh1XXf7nbiev66v/dNVa0Py5KM1mtrN9wuwOFZfy4Gz07KjzhN4ozt0/EFRp/Lw08fvnkXbmxCmml931kNextRobfkIiIiIhSRup8kyVKNtKAFgDiNKszUSKEy7YW7XIaOt5P++VVaP+3qlx1ez1ngr/ZY2wMibZkTx321dS3TSl3+fHJjtqEjSUeE78du6/oHk/6zlvpVr8D4xOHyZexKCF63t9cneghyKw84NIVxEsraR1mCxwWq8rWjRX6Qqzd/L8Y3Q8RERERJQoTJaIoElhJS01YhTu6nTi/L5ZXoXk07kJrXYPlCsFvMpu3rSbk9tK98ufEiPFdI5+0qM4bv+RRT8hpN+tPU6VB6hKNsH7jEWOVm0rtEZjRRs/6kuSrpH1XZ3Dsl/SlTzPHKqAF/O6y0AWmyK84ICIiIqLkxJCWKJoY0lITNrSNParH8xksp9Szda2eJDeJ+KKc9o3rkg5rhP+yx/Op0/Orf3BIru7jSUNarWrZQa2MhVtsd0DJIGfwCyG3fTV72GeOiIiIqIlhSEsUhqEvQQxpqQkzUtmoh9FMUM/l+HXRTj1TREO1Z5bNhHfPaYkHBucaPoYnjrOH+XXEnDk2/R9RpBOHaclzGHufVm530DxfZ81FMv567W3/FLrA54ToOpKYwRARERFRTDCkJYom9qSlJsxitJlnlOnJEJ1xvGQ/mRnILAPccQy49fwuzQbeTqUPV+ulaonC23Qc82xKavF7IZjSi2SfMXw1e+J2/0REREQUe+GnkCZq9vR/CWNPWmrK9IRb3+114us9dch3mHBZr8yQqsVylx83flUCADi5td1w0KWnui3Fuh1ELNxzEUmcHslzV+ny4/qjv9PBre24fUC2Yg9XKT2/SyNZqjSUFSBA7b3bavBkg2IlreS21y/i/c3V2FbmQb+WdlxwXDr2Vvswe0s1rCYBU3pmomV6cv77sLXMg3nbapBpq/+bzbEJ+HK3E+9vroHTK2JYkR1X9M5Crj36JyG1+iDXeUU4LPE/MfR7uQdlLn1/DEe8+2M8mmMEkwWmtCL4a/cGlpV9ezEKz98IwRzdVjRERERElBgMaYmiiSEtNWEWHeHb/36pCvxc5fbjvsEtArcbAloAWHHA+ARf+2t84TdKIaV10Xs80t9MJJW028o96Jht7GPB9UG/058PuLDigAuD2zjC7qcnnzcZCFNlIW0UK2kVe9JKHsBH22uxcGf9ZGVby71oYTdh7rYaHKmrD/sO1frwxKl5xu44Dtw+EU+sKA9UoNd4/DinUzpe33Bs4qxl+1xw+UTcNTA36vc/7Vv1y/Xf31yNa/pkRf0+tXj9Ip74uVzXtn7Rh1+rv43peKTMmR1CQlpf1XZUr38KWSc+FNdxEBEREVFs8NpsonCMNKfze2M3DqIEyzbQIxQAfo1w1navSont98V1ER0vWX30e23Mjh1J/eHrG6rCbxTGs2sqdW0Xroq6S44FRlogS6t3O2uEzUbbdgiCIHs+pZ0hPtke+rt8ZX1VIKAFgO0V3qSc1O6H4rqQFiFrDrkx/Vf573DVQXdM7l+rYvWLP5wxuU8tqw+6UKOzZUq1r1y2LM+eHuURhbJkd5ct8xz+Oab3SURERETxw5CWKIosLY5P9BCIYiY7Bpc7K1EL8A47WUnbIBadMOPZZ1VrErg0i4Crj8/S7CsbbErPDNmyFg7116rRdgcAYJNcJCGdZE3PhHXJOKddhVsekgaHy81NjUf/L8kryk9CTes9PJrDkUnvcZN8odh8f19ERERETQ3bHRBFkWCJ76WZRE1Rc5mUKZYP0xRJv4M4Uvod33tyDsyCgKJMM/IcZt0TmY3vKg9ptUQycZjVJMAVNJ54TrIWS17meyGM5Pc+UX7lzK29T43iaORshScjo/ftqNn075jeDxERERHpIxq58loHhrREYRmYOMySFsNxEDUP9VWWyR0yUuNI31X75FvRrzB08qMICl51iaySVgA8jQtpkzHW9UX5Q2WqM/LS8CM0pE0zGTtZEClTetu43A8REUWf2WyG1+uFz+eD3++HycQLm4lSmc/ng89Xf3Wk2Ryd+Yn4rkAEQPR74Nw1B3V7Pm3UmRDBzJCWKJjWZe1qvvjDicO1jWgFkCLBk1YeVFrnw5d/OPHT/jqVQFD7MTY239x0xI0fiutQp1BqWe7yY8luJ9YeMj75WwNpJa1S5W+sQtpIKmltksFsKvXg+711qFZoF6Bm9cHIny89Sut8+O/aCnywpRo+neXoRi7vD7anyovv99ZhW5kHV39xGJMXHsK+6tTvyS7tbaxFWklrERJT9yD6Y9MvmIiIos/hqJ9cVRRFVFdXh9maiJJdeXl54Of09OjMTcBKWiIAZUvOh2vvZwCA9J63ImfI80FrDXyJNVmjOzCiFOcX68M2I5WHs7bU4JMdtXjq1Dy0TDd+RjJV6nBXqkzGVO7y428/lKHi6KRKg1rZcOfAXM1jSbOlxnQ7WLSzFjM21X9xaJtpxj+H58F8NKSs9vhx37JSlDgbd528NEdXCmRj1bLB6MRhgLwn7YKjE4XlO0z414g8XceY/msVajwixnaJ/uRSR5w+3LzkSOD2R9tr8f6Ylpr7iKKIxRFMzrXpiBv/WFEua5Vw+9JS/N/wPHTUmLQt2TWm3YE5QSGt+8A3CblfIiIyLjs7GxUVFQCAAwcOAAAyMzNZUUuUQkRRhMvlQmVlJY4cOfb5u0WLFlE5fup+kiaKEm/l9kBACwC1m19A9qB/QTDbDB/LSBUOUXPQUNC3tUw+yY6WGo+I74vrcGG3Y5cQZ9n0fYBtCIZT1eqDrkBAC9SHuTUePzKs+j/AN+bhNwS0AFBc7cPKgy4MaeMIjK2xAS0A+CUnv6L9+2qXaQGgXLlqieC+1ApTj9T58cyqCt3Heee36piEtHN/rwm57ROB4mov2maqf8wrrjZWrV5a50Oew4zXN1Sp9rJdsL0Gf+mfY+i4ycRIKwyfGPr8mRCdS9zCEuW/N9FbC8ES/dcVERFFV0ZGBtLS0uB0OuHz+VBcXAxBEKJ2mTQRxZ7P55NduZmTkwO73a6yhzEMaanZ81Zsli3zu47AnN6m/obOS6cdHS+I5rCIktKNfbPw8voq3ds39Jet9Rq/rHpHRWiw2y3XiqV768Lu5xNT+x+30jp5AubyicgIKtQP97ZkjiCIPK2tQ3H5piOeQEi7oyI6l7RLQ0+14Q5sZcMqlYpjALj1xGzF5cPbOjB7a43iukgqdPdqBJobjhg7ARELSn8XxdU+zZD2oMGWIvuq60Naredi2T4X/tLf0GGTSpbNyGtD+kcYnzND1rx+8pEwpCUiSgmCIKBDhw7YvXs3nM76q1lEUYTXm/otg4iaq8LCQuTn50fteKn8PZYoOgT5mUu/q+RYSKuDyVGInGFvRHNURElpZHsH/ABe1RnUNnQ5iKQ3baStZVN54jGzAMV+ouGeC+mjjSSILEhTrtQN7uEarWdV+njUhntLv2xcvbhE9TinFimfsS6MoE2GlrM7pkXUGiBelF4f4XozG/3zckZwoiWcbJuASrfycdtkxL+qSM97Tp7DhH4FNry5LfbjUWLNHyhbJvr55Z6IKFWYTCZ07NgRNTU1qKqqClTVElFqMJlMsNlsyMjIQGZmJmw241dga2FIS82e6JU3bffXHQ7eIuwxck55FSZb6l7iSaSXIAg4s0Oa7pDWL4b+vzH0Br0G2t8mHYtJQDSysEjaB3hULmE3ByWo0WpLIL0rtVA53WrCuC7p+GRHreJ6rRYzvfKs+K00OlWu9khKk+NI6e8r3MvI6EmQWrUeB42g9b6gd/KzaNJzjxOOS8ewIoc8pI3XS8Sk8NFdZEhLRJRKBEFAZmYmMjMzEz0UIkoy7FBNzZ7oLpctCw1pwzPZ9U0cQ9TcNASmkVbFNnD5RN3hqz/6WVLcWEyAV6mSNsxtKXME/7p7/aJi9aU5JpW0ofejddxIg2G13SJpHR5JH9t4Uno9NPZvTqrGE50DiqII19E/Zq0cNgaFu2Hpec4ECCrbxelFojBBGStpiYiIiJoGVtJSs+dXCGlrt76GtM6T6m/o+NYmWJX7IhI1dyVOH5xeP/67rtLwvqsPuTFp4SHD+0XSWiFZ1HhELNolv6y+zmBiFUm7A69fuQrZEpSSRmtyxPUloRWuWkFstM8mR/IIzCk4E92GI24MLVLuMwwYb3fw1qZqvLVJfuWJEbsqPLjnhzJd2yaiklYPQVB+7uL1ChEUWjSJriNAVqc4jYCIiIiIYoWVtNTsiW75zNzu/V+F7ecXTLBkhN+IqAlJ01laOP/3Gny8XflS9VhJhXYHvxx2Gdr+5wPGto/k6nyvX1Ss4g0+VrSyyi1loSFtjVqvBchbI+i1SaXVgSeC8M+SxJ+W1E5KfLVbe5I9I//GRYvegBZITCWtnteagPqQVjQcc0eJQruD2u1vJWAgRERERBRtSfy1gyg+RL9y+CF69M9gb87sFKXREKWGcV30zSS+6qAbS/Zoh0WN0TZTYeK/FAhpn1ghPzmk5YOtNYa21xOmSidm8vjDt5SIVbXgryXqvWO1AtxIbC0z3qfWksSVtAdqIptsJNn/TGLQAje8ME+KxQQMbWNHllX+enDEq2+xQiUt2O6AiIiIqElgSEukUk3kdx1p2EBz9+yh0yEoTeRB1ISN7piGrjmJf91f2Vs+4YIvhdsdREoaD4Vrd5BuEXBya3vIMo8/fHAXLqvMd0T/Y4UQtwvJ1SVzT9pI8+NY/JW0UzhpEqlE/B1rVcc6zAKu7J2JdKsJgiCgteQkR5Q6gYQlCAIsuX1Clhk5qUxEREREySvx37CJkpTfdQTI6qy4rmDcWpizusBkYy9aap4ybSY8PLQFLv/c2CR70dS/0Ibj822y5alQSRtr4Yr63hxdiPm/h1bnqoViwc9nuCAqFq0moh1+RTLESCZii5dI+g8DiElKG83qV5+/viVDtPog66GWC//5hCyMbJ8WsqxjtgU4EIdBKXB0noTqtRsCt/0e4z2/iYiIiCj5JPHXDqJ4Uf5WJmpU0gq2bAa01Owl+gpwQVAeQ3MIacM9RD1XXlsk4ZfHr3zg4EXhqlpjUf0Y7ZdZJEOUPlfJJNKRxeLPxB3FPz4R8f9bVru7RL/XSZkkk5WykpaIiIioaWAlLTV7nrL1isvdJatgbztaZa8k+8ZGlACJDi5MQn0VYcNEPg1SYeKwaJNmiHp+N9LJsH457MZDP8kndgqemMoV5smtcif/k58KlbQ/76/Ds2vqqyPNAvDaWQVItyoPItK/w+oo9/oFgNI6PyYtPAQAeP2sAmTajo1ZbYIzLT4R2FPpwWc7ncizm3BqWwc+21kLm1nABd0ykH30+GsPufDjPhc65VhwTqe0kOpiURTx9Z46bCn1YEArG4a2cYTch18U8fkuJ97aVK06DqWnOJFdVQRrVsht94FvcHBWK9jajEJG79tgKxys6zjOHbPg3DkL5vQiZPZ7AOb0NrEYLhERERHpxJCWmjXR54Z732LFddVr70dWv/sSMgM2USqI+DLrKGm4d5MQGsxGEgalgh0VHnTJseraVs/vRmkyrL3V8kmoluyuw8Tu9b1/P9lRG/a40b5EPRmKWONZSbu51B0IaIH61/bVi0sw+9yWittrvdprPX7VcPf1DeqhZDRc92UJZgWNuc5r/O+yxuPHgz+WB04OzN9+7PW3p8qLB4a0wB+VXjy1sn4ivu+K60PtP3U6NrHhsn0uvLq+6uj6OmQPMYW0SfnyD+2AFtBb0Ru/14g0pAUAf90h1O2cCdeej9FyYjFMthzNY7j2f4vy7y4J3PaU/YqCMT9EfaxEREREpB/bHVCz5i3fqLneV6fWbzMJUgOiZq7EWV8JKM0am2olbUPQBISv4pNWySpRye5kWgRNBmbXMS/UzkrtmeaVTnz1yVcPn9XebU8slPcj1iPbZvyjTzRfUuFOIry50Vh4qnW47RXav4tYEhH6u3ZGENIu/sOpWr294YgHXr+ItzeFXuovff6eXxfarzX47wgA3tDxfOfYk+vjsjmtleo60VsDT8mqsMeo+2NuyG3PoWUQ/Z5Gj42IiIiIIpdcnzqJ4kz0ObXXe2sRm859RNRYDdmNWVLl2FR70u4wELhpVdIObFUfbipV0iqxBm1n09Hsttaj/QtQWnuGZFKmYEoPxSwAk3tkaN7PuZ2Vj5luMX6SLZovqXBdBnaFCbmltMbmTfAfQ/DdeyIYy/4aeWV3MK9fxE6DQXS4Y0q1yTCjV15kJwRixVo4BJbcPqrrRV/4ind/3UGFhcaeGyIiIiKKLoa01KyJPrf2Bj6X8vJkuP6WKAmMbOcIv1GM9G9ZH5xIs8am2u4gWtpm1nc60ltJGzwZWDQyP6VfT+cc9e5LSu+2z5yWh85hWj/0aKG8PpJK62i+40cSVmrROpraXcWrjU/wc+2NoAVuuN+V2x/706iPn9ICjgiC/VgSTFbka7QmEH11YY8h+pXCbb53EhERESUSQ1pq3vzaIa3oVwlpiaheArOLhkv6pcWdTbXdQbSe6oa8SW8lbXC4pidfDLeN0mqt815Kq1pnhO+7YFZ5fL4Eh/jeKL9AtQJXtd9FvP5GGltJG64SOB6Vwpkq7TESHduabDmwtxujuE5UO8EcslHiWmEQERERkTJOHEZNhuj3wn1gKXy1xTBntIet1XAIJu2XuBgmpHX+PiOxUzgTJblE/nk0XIYvr6RNwGASzEhg1BBe6ulbC9Rffr/xiBu98qy6qpTDhaBKvx+t8Uc6CZlaZ4ZIKjrj2e7AKO1KWuW11e4oD0LF6kMuDGplh80sxKSS9kCND7UR9LqNBjEZqk5NduXlPhd8tQfgLV8PS96JMDsK5dso9J/1Vm2HtYV6GwUiIiIiii2GtNRklC+9BHV/fBi47eh8CVqMeF9zH2/Fb5rrazY+q7hcSHgNDVFySGTPS0sgpBUQHFUlulIy2TWEs1adlbQA8OjycgxsZdMVgM/YWI3+LVXCI0AxVNMKYpXW6Bm52sNLdDsMrYrSvVXGqxu1Ho5SyFnl9uPGr48Yvp9I/HdtJY7LteDRoS2wryb8YzMJoSG+L8wL7pHl5Y0cYfQk4lOBYFb+O/OUrkXl6rshukphcrRE/pgfYcnuGrKNq/hz2X4lC/oi76wvYG97dkzGS0RERETa2O6AmgRfzd6QgBYA6nbOhM+pMDFGEM+RNbEcFlGTd7A2cRPNeI4mUGbJv2RNNaPNtkUnBmpxdKZ6owWqqw66dVWBHqj1aYb3m47Ir2DQmo9MaZx6qmvV2jlkqVy+riXTGr0ITus5XLJHfTLLCpfyjlo5ptK6RTvDTyoVTb+Xe7GlzIMPt9aE3Vb6OohVkWzt0V+CO8V7owhm5Z7gtZv/B9FVCgDw1x1C9a+P6z5mzeYXojI2IiIiIjKOIS01Cb7qPxSX+50HNPcz2fMiu0NOHEYEAEjXO/tUDDRUJEpHkOK5i6qR7dMCP+t5iBd1S1dcfmrb+mAnK4a/O63wq04hectzqI8l0nfbTtkWxcnRTo9gsrsTCmwRjkJOq9L793L1atP9OipRpZSqhr/4Qz0IjpX9NT4ccoZP+KXBerhK2kiV1tWPpSbavSfizNZymK7tnL/PkC0zpbdT3NZX+XtjhkREREREjcCQlpoEX51yxazfXaG5n+ipisVwiJqNwrTE/TPSEOhIJ4hqqj1ppRXDIRSSzPFdMzC+azrSgmamv3tgztH2EIjpjPVa0Zf012MzITAmJZGeE8uwmvC3Qbnollvf2ckkAI8ObQGH3ma8QdQmIYuEVm9WrZeuWpsdreda6W8hmSvNpS/JSPrYGpHET4Uuad2uiXhftc8/IicUIyIiIkoY9qSlJsHvPKS4XPRUau8XcUjLSloiIDohx+iOaVh10IUjdcYSmYasTfrX2GR70hp8WDazgCk9MzGlZ6bi+ijmjjJGfgUds7U/ijRmmH0KbHi8IMIrJmJEs4+zxhOnFlYb7UmbiNpRvSdO6sPw2PeXbhhPYw6fDBfUCEJkJ8lE0a/++cjPkJaIiIgoUVhJS02CX6WSViukFUWRlbREjZXAPPRYJW3ocn+SX8EsRpgMBT+saGRXscyYRFH9cUqXhhtHMoRh0aTVZzWSX6uosZdSOJqIidO0xhhM2pM2Vt0IGsLfxjwT8td36rxQRW8N1B696PfEdzBEREREFMBKWkp5niNrUL3uYcV17kM/Iq3LlJBlorcOFT9eD+eOdxtxr6nzZYyoqWq4NNosSfGW7HFiWFvtvqOiKGLu77VY/IcTbTLMuLVfNgrTzbrv2+sX8e5v1fhpvwtdciy46YRsZNv1nfeMtGducCZUJplEKpJ3JK0WA4314E9lqHT5cUaHNEzpmaF9X2HG0dTebbX69Wq9NNSyVa3MVRrIbi3zwJWAuf5e31CtaztpT9r9NZENVhRFzcnlfFGopE01oijCX3cIh2a31tzOX7sXpV+eg9zT3ou8bz8RERERRYSVtJTyKpbforqudvP/ZMucO95tZEBLRA2ikXEcrPXBLi2h08F6NNCRXra/4YgnMHu7mj8qvZiztQYVLj82l3owd1v4meeDrS9xY9EuJ8pdfqw55Mbnu2p177u7KrLLiRue633V8v2r3MZ/E7GsUN1f40ONV8QnO2qx6UhoZZ40GAs3jFiGyYmw4oBLdZ1WaKhWjar1m5dW0r6+IbmvHvFEqaF0uKP4jr49JHnRfVR5Di1D2dfjdW3rKv4c1RueifGIiIiIiEiKIS2lPM/h5Ya295ZvVF1ncrTUd5AmFhoQRWp0x7RGH8NmFnBWBMfpnW8FABSkyStgD9RqV+DN2hIayn6zt87Qfb+yPjTsmvu7/pD2iI5Z7pU0BHjF1fLHFu7xKonXB4Avdzs114d7Nx3c2h5yuyhDf8VzMspzqD/zWuGi2kRv2pW0wduJ2FWZvP1GzQJQarAvtZpwWW/B0QkPfU1glsHswc/r2s5b8Rs8JT/rPq63fFOkQyIiIiKiCDGkpZQmisa/0Ik+9TDGVnRWY4ZD1Ox0yrHirA71AWu2TcDF3TMiOs5pbR3Ishk7+dE6o75jz4Tj0mXrPGEyyxqtxqA61Hoi3z/SnqANe3kV9o/ktFG8zjVJgzfp4w83gVnbTDNGdahvX2EzQXUitFQRcS6o1u5A530lexw5qUdk7x1Kwj3HDa/9JpDRIq3LFJjStFsYADDe20Fkb1oiIiKieGNISylN9Ojrcxeyj0/5UlNLi34w2QsaOySiZue6vll48+wC/O+MAvTOs2pu+49hLWTLRBHItJnwf8Mj63/YJceKDGto0hfusunGVtA1asKhCPdrCDe9CuemwgWdSuJ1PYC0AFQ23VKYgQiCgBv6ZuPVMwvw+tmFGCSprE1mN/TNwoh2of2RtV57mlWxass19xF1bafm5NZ2vHl2ga6/zb8PyjF+B0H6FtgatX+wcI+1YX2k/aGTicmeh5YX70XmCfdrbqd1Ujut65VI7zU1dHtOIEZEREQUd5w4jFKa6I0kpFWppBW9BibJYLsDomDp1vpzfuHCwgLFS73rk5LGnDW0mwXUBFW3esOFtI0MZ+Qzu+sXaT4cqKRVOEBkE4dFNg6jLJJfrNGetA30TsyWTDKtAqTtlrVee5FMHKYl+KUSyevOLNT/bbdXabUQrCjTgnSLgNoIq9Sj+XKsP6GhfsRjIW0TSGkBCCYzzFmdw2ylHtKaMzvK2z353I0fGBEREREZwpCWUproMTYJiuhzoW7nTOV1fiMhLRFFwqyQDDbEJFqzsYdjleR3W8s8OLGlHVvLPHhiRTnqvCIeO6UFurWwwh+F3pxuhbzji121OKtjWtiJriLNhUqO9rJVarUQyVPXmOfbiHKXH5ctOgSPHxjYyoZVB0PDn3iFxYlgEgSYJc/zIY3+wUYmATu2XH0vT1AiHMnLzhKYnC/8L8ksNO53Gc2XY2mdP3DiSEnDc9YU2h00EGy5musrNSZZBQQIptCrINwHlzZ+UERERERkSOqVpRAF8esIaT1lGwI/V66Ypr4hK2mJGi1chaq0qhA4FpQ0JuCxSHae+3stfjnswgM/lsHpFSECuP/HMhyu9WHO1hrlgzTSGxur8cGW8MeONCBeccAFr1/E27/JryAwRfCeFK93sd1VPniOhtrSgBaIX1icCIIg7yG8+pBbNVjVqtBWW6P1Jxc8oV0kvZClVdBazILy37deeoJgve7/sQx+UUStR7l6NFBJG515ypKCydqIdhOCAJjk7SY8R9ZFfkwiIiIiMowhLaU00Rt+RnXXvsWBn2u3TFfdzpLdTd/kGwAES+NntCdqiqS9YaVsCilO77z6cMDaiJS2SqG09YkVFbJlc7bVYNEuZ8T3AwBOpaawR83fHv49SYlG0V+I74uV27W0zzYbvk8jAVwspUpEG0kAaQLwh0Iof6BGuZpWerIhmHqwq28skVRwK/1dqbFbhEYFrY7GJLwSTq+IXw+78Xu58gkRve0O2mcZ/7tKFJOjMOJ9BUsGBFu2bHnw5yciIiIiir0k+YpGFCFRR0WaWg9aibRu18LWchjMGR3DbmuyNW6CFKKmqkOWdhcdi0nANcdnBm7n2ASc1bF+YiWHjr6XDbrkhN5PpVtfArWtzANnhD0zG2hktLooPc7JPTIVtpQrrlYO9/pFMOmSSRBwalHiJ+FKlZD26uOzDO8jCIBbobxcpcAzTEirvFzvq1nr0v7xXdMVl2cEnT04p5P6yckBLW1Is5girobPd5hQmBbdj6QldX64VEr7G54LrefEJADX9jH+O08US4s+Ee0nWNLhaDcW9tany9aJ3thcdUBEREREytiTllKbxmzFgU18Ll2HSut0EQAg/9yf4Nw5E67iL+BWrCJJlUiBKP60KumOy63/J2d0p3S0TDfjQI0PQ9vY4YigpLMoI7TCrV+hDb8cTo2JbqQVkb3yrOico++fY7VqykhbBvz5hGz0KajD9F+N9fduUJRhxgmFNmw64sHuqsjaOKRKt4OzOqahIM2E74vrsGyfvn9XBEG5BYioEq1qtSRQbXegM6XVCiTtKlWsvfKO9Sm9oncmuuZa8cK6SgDA5b0yYRLq9x1WVH+iJdJi2P87LS8mbS+krSYaNDzPSpW0T57aAltKPejewoquuVbZ+mNC9xUS/NlAEEzI7Pcgqn95VNf2lhYnwNFpIhwdxsOS2xMAYG05DJ5DywLbiP7UeE8lIiIiaioY0lJqE0OrykzpRbC1Hom6He8d28TglwxzehtkHv9XZB7/Vxz+6Hh4yzeFrA83OQcRKbMFldn1b6m/gvOEAht+LQn9O5ZWIsbzspDGTjYk7YOZ5zDBojOgUqritTXiwVvNAka2T4s4pP336fkAgHd/q444pE2licP6t7Qj02rSHdKaBMFQL1it15baYXRX0mrer4gsm4AqSUV68O/GJAgY3taB4W0dqseJtN1B5tGKXQGRTXCmRIB6z1mfSiVtvsOELjlWdMnRCmeTlzmjg67tcoa9ifRuV8mWW7K7h4S0YEhLREREFFfNtt3BqlWr8Oijj+Lss89Gu3btYLfbkZmZie7du+Pqq6/GDz/8YOh4ixYtwoQJEwLHateuHSZMmIBFixbF6BEQAIjSSlrBDEEy+YXoKov8DgT5FzXBxHMbRJGIPIyTxzbSCrhoBn0un4jdlV7VSYfC9bEMR1pZaRIE3f1hS5zydgfmJEg5GzOExI/eGCM5pAnKlbTbyrzYXu7BllIPdlR4UHe0BYdWSKva7kB3Ja36hj5ROWA1GwxdG/u3EU1rD7lUx+MX6ydp2ytpHxLFtrgJIVgy9G1nVg7apZ+f/O5K+OuOwLXvK7iKF8NXU9zoMRIRERGRumaZNp122mn4/vvvZcvdbje2bduGbdu2YcaMGbjiiivw6quvwmZT7/Xn9/txww034PXXXw9ZXlxcjOLiYnz00Ue47rrr8PLLL8NkaraZeMzU/TEv5LYAk+xLRu3Wl5HR925YsroYPr5gUqimEZrlnw1Ro0V6NXOdQg9ZaUWp3pBwn8qETQ3KXX488lMZ9tX4kOcw4YHBuSjKDP2bb2wl7drDoVWYFkG7F2mw1YfklW3JkIt5G/GkxOIy92QhCMrVnK9tCK1czneY8PiwFpohZ4XKJF5+nbWnWq8TvwhUuOTHNxq+H3Y2smFzFK086MbKg8qVoH4RmLWlBh9JJvpLhhMejSFYlHsLy7ZTCWlhDr3CwbntNTi3vRa8J3KGv4X0rpdHOEIiIiIi0tIsU8N9+/YBAIqKinDbbbfhww8/xIoVK/DTTz/h2WefRdu2bQEAb7/9Nq666irNY913332BgLZ///6YOXMmVqxYgZkzZ6J///4AgNdeew33339/7B5QM+bc/k7oAsEEv1teOevc9ibESJIMs0JAz0paIk2ZVuWgY2dFZJfDb1WYoT0/ypMMAfVB4+c7awNBbmmdHx9uk0+c09iQdk+VJCgWoLuSVkmdyuRI8bTygL7L/5WkWixmZLwmob6dRThH6vz4dEet5mtr8R9O5RVR6EmbpjJpX7wrS+OV19f5/PhkR61subGMNvleuXoraaFWSWsO14ZGRM2vTxobFBERERHp1ixD2p49e2L27NnYvXs3/vOf/+DCCy/EoEGDMGTIENx+++1Yt24dunfvDgCYOXMmvvvuO8XjbN26Fc888wwAYODAgVi2bBkmT56MQYMGYfLkyfjhhx8wcOBAAMA///lP/P777/F5gM2IyZ4XctvvqYTfVSLbzufcD9FVqnqcjOPvUFxuzRugaxkRHTO2i3I1V7UnfJo0qJVySDCsKHT56e1CZ5pXqgI0yu0TMV9SWafUe9RIj1ElHbJCJz07XOvTXUkbK9ZGfho41IgKylQrXmybaVZcPrpjmmxZ+ywLLu+dqeu4C3c6NYPUrWUexeV6M3q135BZAM7qIB87EHmP2UjF67VQ7REVn7dUb3dgzTsREEJfn/b24yRbCfXbKe4f/vONr2ZPZIMjIiIiorCaZUj76aefYuLEiTCblb9oFRQU4F//+lfg9ocffqi43X/+8x94vfUVXs8//zzS0kK/5KSnp+P5558HAHi9Xvz73/+OxvApiOipDLmde8qrgF9edSf66uCr3qV4jLSulyPzhPsU12UNeByOLlNgzugAU3o72NuPQ87QFxs9bqKm7NzO+i65VXLriVmKy6/snYWTW9vRPsuMK3pnonuL0FYk56oEw0boDrsaWbgq3f/09mlQKWTUpVW68r9lRtw+IKfRx4hUqnU7cKiUPY/tko7CoArvaf2zkWk1oWcL/ZNQRXICQOt1Gxy+q11NcvuAHGSqzD4X7wA93AR6I9o5MKFrFP7WVf6IjYTSia9flzM58pE7YjYs+QNgzjoOGX3/hhYj5yHzhPthzu4GS15/5I6YBXN6a8X9HZ0nhr0P0Vsjnw+AiIiIiKKC122rGDlyZODn7du3y9aLoogFCxYAqK/MHTJkiOJxhgwZgh49emDLli1YsGABXnjhhSbdfy+eRL8Xojf0UmRzTg+IokLPSV8dvJKQ1pzRES0v3iXfNojJloMWp73XyJESNS82s4CLuqXjw23yy4nDUQvAcuwm3HGSepBoj0IJnN7wNdohrdUEWBuRhkWj+q91RuOD3kil4r+IHbLM2C1pW2ExAS+cUSDb1si/+ZG8ttQCRyD0daW22aDW6pe4xzuktZqAOpW20bPPbRn4WVrxbpRasJ3qlbQAkNbpQqR1ujBkWdaAx5A14LGw+wqCCWndrpP0oZUSIXqdEKw6WysQERERkW7NspJWD5fr2CWuShW3O3fuDPS2HTFihOaxGtYXFxdj165d0RtkMyd6qmTLTNZsQCGkFX0uWSWtOatzrIZG1OzF+2RUNO5N78z0jW0BK93fLAiN6kkbjac6keFUKuZiSq/vaDyOSEJahXn1AoJXRXJsc5z/juM1cZd04sHA/afiizHKFCdMlVD6/EVEREREjcdKWhVLly4N/NyrVy/Z+k2bNgV+7tmzp+axgtf/9ttv6NxZfzi4d+9ezfX79+/Xfaxk4HMexJFPB0P0uyD63YDPjZYX74HJnmvoOH5XKQ7OzJctF2w5KiFtHZzb3wpZZs7sZOg+iUi/eGcd0eidqRZiiaIYEsqFuyS9tM6HPId6Zap0f5OARvWkjcZzHe/eo8FS8eoSpUw9Go/iSJ3xy8i1KmmdXhGTFh6KeDxxb3cQp9IBtb9hU6o1SI4FHSFt2ZLxyBv9FUxW5fY0RERERBQZhrQK/H4/nnrqqcDtiRPlPbqCw9N27dppHq99+/aBn/fsMTbhQvC+TYJggq/mj5BFot/4rOCVK6YpHRyCJROiYk/aWnjL1ocsY0hLFDvxjjqikfOpZV1rD7kxIGhCs3AViXcsLcWbowt13099SKt3lHLRyJUSWUGYirmY4ustQWFzYyu7tcT7d2OLVyVtE2530Fh6Kmk9JStQ/cvjyB74dBxGRERERNR8sN2Bgn//+99YsWIFAOCCCy7ASSedJNumqurYpV6ZmdozN2dkHOvbVV1dHaVRpibBZJMv9LsNH8e5/R3ZMnNmRwiCgMy+98jW+ap2yLfP6Gj4folIn2jmVYNaqffMbBCNcEWtuu7L3c6Q2+FCsVqt688hD2kFob6SNcsW+iCGtgn/uAFgTCMmamuQaTMZfg4n9zj2b9vwtvrGqmR3pfzEWrJTyhLjke9VueWVtt7GNknWkGuP/sfEYUWhr5Xgv+8zOqRJNweg/29BL7XnzNjfQOgxUrAgXJHfdUTXdp7SdbEdCBEREVEzxJBWYunSpfjb3/4GAGjZsiVeeuklxe3q6uoCP9tsCsFjELv92JcLp9OpsaXcnj17NP9rCJNThVJIK/qMh7RKMvs9CABwdDhffh9e+SQj9vbnRuV+iUiuMXlFcPgHAH8+IfwltdEowFPLug7V+iTbNS4Uk8ZsDa0GLu527HEPaWPHzf2ydR1vSBQCLLtZwHldj4W9LXSEc+cGhcMj2yuHa3oclxu+ci/ZxKrdQThKrQ2iVUn7t0GhE/P1zLOiTQwmlBvTOR2ds+sv5MpzmCRhv0N2n/kOEy7qFt1JqtT+1hPZ9iNZ2IvO1reh3xPbgRARERE1Q2x3EGTjxo2YMGECvF4vHA4H5syZg5YtWypu63A4Aj+73dohY/AkZGlpxr7IhmulkHKUQtoIKmmVpHe7GgAgmO3IHTEb5UsnHbsPnzwcF8yNrz4jImWNyTomHJeBoW3sKK724YQCG6w6ytuEKERkesOuxhYuynrSHv3/6E7pGNTajlqPiLaZZgiCgAld08POZG+N0iXik3tk4oz2aXD5RHj8Iv7+Q5nm9rag30uWNfJzvrEIAmNNsY9uHPI9pSJtn/E2tor6t7Tj9bMK8PMBF7rmWtAxyxKTfsEFaWY8dkoLHHb6kGs3IT3otZNrN+GZ0/Kwq9KLfIcJTq+IFg4T0nT0A+nRwootZfqCQ7WJwwgwZ+j73CkypCUiIiKKOoa0R+3cuRNnn302ysrKYDabMWvWLJx22mmq22dlHavsCtfCoKamJvBzuNYITZ1gMgOCOXRyryiFtCH3Y5FU3Sh8mRAEFpITxUpjo53WGRa0ztD/T1Qse9JKlzc+pA29HZyx5jnMyHMor1MTzTaeLdPrA9M9VcZaEDSmp24qFi8qjTke/6IonUjwNrKyO1imzYRRKi0HoiXdIsBqFlCUqfz3bTEJgerqFgaO2zNPf0irNtlaY6vkmwRBZ2W7mHptSoiIiIiSHUNaAPv27cOZZ56Jffv2QRAEvPHGGxg/frzmPsEVrsGTiCkJniysyU0EFgmTDQiqbBV9+icO89XsgXPn7LDbCWY9l/+mYDJAlCKiUdkab0v2KLejkQZjekLa/TVerDroRqdsC/oWHLuCQBRF1HhCD2DWSCn1REaxeKaNFsZaGpEUp94rRSWQjcMD8flF7K3yYu1hN7rmWNA73wZPLGcOi4FGFF1rshh4/t0qf8Qp9lTGhJ6JwwCw3QERERFRDDT7kLakpARnnXUWduyon1jq+eefxxVXXBF2v969ewd+3rx5s+a2wet79eoV4UibDsFkC20/oLOS1u8qw+EFJ0B0l4e/D7Mj7DZgJS1RzMS7OjIad/f5LuWQ9qCkJ21xdfgKsnu+L4PraOIzbUA2hrapf096ZnWFbFutfFNXSBuDJ9to6NqY4C2alcDxslfhNRCPh7GzwouXfq2Ex19/f3cPzMHc37XbYSSbWLxeAcBs4IW0cKfy33pxtU9xuR5NpghXZ0gr+llJS0RERBRtzTqlqqiowOjRo7Fp0yYAwFNPPYVbbrlF176dO3dGUVERgPrJxrR89913AIC2bduiU6dOkQ+4iZBWuertSVu75WVdAS0ACNbwEw1BSL0+iESposYjb/qYZqTUzaCcGMxCr6bMFb6hpSuoJO/5tZWBn1cdlL/feTRKc9saaPkQTQ5j09w3qi+uU6nRapKrdMvH3JhqYr0aAlqgPsCfvr6qUcdrlR7ffwdj+RSV6/i7jOUxUvHqASWydlFqRFbSEhEREUVbsw1pa2trce6552LNmjUAgPvuuw/33HOP7v0FQQi0RNi8eTOWL1+uuN3y5csDlbTjx4+PWQVJSpFMHib69IW0dXsXqq6z5PUPvZ3bJ+zxBBNDWqJYUQp/bjpBx8mTCLVMN6NHC52X6TaS0bA53CXU6RrHG1qkp3VL9GXaTIaez8aEbwp5fkqyGwy2IyF9rioaGUzeGOW/yfsH54bcbpVuRkbQ6/vczrGbsLPK3UReSAlmzuoCS478qq/0XreF3GYlLREREVH0NcuQ1u12Y8KECVi2bBkA4LbbbsPjjz9u+DjTpk2D2VwfREydOhVOZ+jlc06nE1OnTgUAWCwWTJs2rXEDbyIEc2hIq7fdgVbAnX3yv0O3DRPA5gx9Wdd9ElFk2ihUgDZMBhQrfxuUg8GtYx9qNnbiMCmTRsIZj+pMNXcNzMHE7vqq6ho3ztSrpI2H984pjOnxO2VbcHy+LfyGBvQtsOHmfvXB7+DWdvzn9Dw8ckoLnNclHdccn4lLeuis0oxAKrbNSEaCICBv9FfI7PdAoC1UzqkzYC8aFbohe9ISERERRV2z7El7ySWXYPHixQCAM844A9deey02bNigur3NZkP37t1ly7t374677roLTz31FFatWoVhw4bhnnvuQdeuXbF9+3Y8/fTTWLt2LQDgrrvuQrdu3WLzgFKNtJLWr3fiMPVzCiZ7gWyZOes4+Kp+V9xesOfrvE8iioSYgOAt3WrCpB4Z+PmA/skIIxHtGeCTNVvKsplwYbcMWE3Ae5trNLdtTBEpI1plFpOALJuAKoXWCtFwRnsdvdsjMKJdGka0Swvcbp9lwaW9MmNyX8FMvFIpaszpRcjq/yiy+j8aWFa3d1HINqLISloiIiKiaGuWIe28efMCPy9ZsgQnnHCC5vYdO3bErl27FNf94x//wKFDh/DGG29g7dq1mDx5smyba6+9NqJK3aZKkIS00NnuQGuiL5NC6CpY1C+rlPbFJaKmIVaXnPtFMRACRVJJu6XUg24tlP/JTfZoSU+bHlYxxkYsn9Y8R9Nq+ROHbhPNmiCdUIyVtERERERR1yzbHUSTyWTC66+/joULF2L8+PEoKiqCzWZDUVERxo8fj88++wyvvfYaTCY+1Q0inTjMfeAb1XUme57C/aQpbKk8BiJqGmwxSmpu++YIDtfWz/weSUj74E9luOSzw4rrkr0AUM/wGtVvnaW0qmIb0jatzyU8URBjkpBWZEhLREREFHXNspJWjPKlqgAwZswYjBkzJurHbZJk7Q7Ch7RaE1QI1ix5n1sAgkU9pJWOgYiiy6wQ2sUjjIxVJe0hpx+L/3Di0l6ZYScCM8obZr4jqymxk2vZYlxwyemeNAgCYpViN7WQVuk9J7Ykv5cmHhILguQrA0NaIiIioqhrWp/QKSXI2h3oCGn97jLVdda8E1X2qVDdR2nmYiKKnq65FuTYjqUWrdLNaGGP/T85NhOQZY1NWvLxjloA0T/RVxMmgZ1wnPpkS/lxCNpOLYpN79IG1THquRpLl/Y0NgHWX07MDrk9Mkw/2Ov61E++Fck5h4Gt9J2EzLal7kfAv/QPfT6v6JUJcxQejvS4FMQkCWlFnl4hIiIiirbU/YROKUsa0oo6etKKnirF5Zb8Acge8qLiOn9tserxzGktw94nEUXOJAi4uV82ijLMaJdpxp9PyGrcJfE6CYKAOwbmxPQ+4h0pjumchkGtlFu0/P3k3Jjff7pV30eFJ09tEXabogx5WW7H7NS7qOecTukhhZPhHvvJre04q0MaCtJMGFZkxxntNa70AHBau/oQN5KQ9sreWTilSLulT5pFgDmF+wOc3MqOszseez5Htnc0uiftWR3ScLLK3xlBNi+AKPoSNBAiIiKipiv1vhlR6pP2g/WHn4ldFtIKJrS+wqsZ+vjrDkUyOiKKkhNb2nFiy/iHHr3ybJh9buiJGJ9fxJRFyj1hG6tfoQ2/HNY5AWIE0iwm3DkwB5MWyt/T2mfF559xs4CwbR665FgDz/sPxXV4fl2lbJup/bPx9x9Cr4wQU7AprdUsYNa5+k/2Wc0CruubBaC+QnZftXoLn1y7KdC2wxJBkOowC7itfw5u619/+/Zvj2BfTWiglm5J3YAWqH8+r+2ThWuPPp9AZM9VsPrfD6kRpHUdrKQlIiIiijpW0lLcRaOSVrBkxqUqj4iahmgWDUonDkvxvCsm1N6elX4PMWgTn/S0Xo/BqyKpDpXOU6r0u8iIUUuQRIpRO2pqIEiq4FlJS0RERBR1rKSl+JNM8lX9yyNwH/gW6b2mIq3ThYHlzl1zUf7tRYqHEKyseCEi/aJ5UkdaUWriCSMZtWdE6bmSht7NgVZVcvBTFEl1qDSsVDqC3hYWqSTef4fSX6HQ5GcOk1bSeuGvKwHMaahadRfcJT/Dmtcf2YP+BZMtti1niIiIiJoqhrQUd7KJwwC4Dy6F++B3sF64HZaszvBWblcNaAGGtESUGKIo4vviupBlv5bErtVBqlKtpI3vMJKWRyOlDa4sjqiSVvLkK92TowmWnVr44ootaUgLoOKnP8OU3ha1W14CAHiPrAFEP3JPfSPeoyMiIiJqEviRluJO9KsFGiI8h38CANT89l/NY/idB8Lej6PzJYrLLS1OCLsvETU90Yilylx+OL2hsZcrXLPWMIoyk/986WltHSG3O4eZ7CtLpVJTqTC0V7414nGlqsJ0+QRqDYJfTdsr1HvXqpHmr8XV8svS18Wwh3KiHJ8vPwFM0WOyF8iWuQ8vh3NbaCDr/P3NeA2JiIiIqMlhSEtxZy8arbrO7y4HAHjLftU8hq3lKWHvJ6P3bYrLM0+4N+y+RERKvFGeK2dASxty7fr+KZ7cIyPk9i394ndFwdmd0gLVlwKAcV3TNbfv3kI5eDUJwDXHZwYC80Gt7OiU3fxC2gyrCacUKU+qJwaV0kZWSRt6u4XO11eq6xTmxIGWvgXN7zVolDm9NUwOyWR5fjdEb3ViBkRERETUBCV/+Q41OfbWp6uuE90V9T8oXFYXzNFpUtj7sRUORsuL98J9aBk8h3+CKIrI6HULLNndjAyXiJoIQZBPUtWjhRVbyjy6j+GJcgPV6w3MKD/huAz0LbDhx311GNEuDR0bEUoZ1SXHiudOz8PWci/aZ5nRJkP7vm0q6aJJEDC6UzqOz7ehxiOiW4vm+zHkmuOz8OM+l2x58CtsUGs7lu+Xb6NF2u7glCI7Fu50hixrk6FeyZuqwrXvHdTKhpUHlSuIh7ZxKC6nULkjZqP0i5GB26Jf/3snEREREYXXfL8dUcLIKjGC+BtC2jAXJgtmfV+ozBltkdZ5ItI6T9Q7PCJqopTeVTpmWwyFtNGupDVa43hcrhXH5Sam6i/XYcbJrRsX7jX8Dtpl8eOHWpVs8IkEWwQTh0kpTajV9DrShpem0bTWJz17E4HmMP+d7LMXQ1oiIiKiqGoe18BRUhEsDgjWbMV1ftdhOHfNhXv/19rH0BnSEhFpMTrJvTfKlbRCnGekT7QoZI5NhlnlyQh+hVmjUPDaBOcIUxTuYdo1nghfRCdfQt8LmsPTLJhCTxCJ3hrF7SrX3Ifara/B5zwYj2ERERERNRksZaGEMKW1gs9TKVvu3PaGbBIKJYJZuZcfEZEaQYCs3M1qMDV8bUNV9AaE5hdaNrfHq0W1kjbo5+hU0sqXNcVzA+Eek00j8I7yuZemy6Tva0PNr08AAMwZHVAw/leYbDmxHBURERFRk8FKWkoIk6NVo/YXLBnhNyIiCpJuUbjs22BYtaPCG6XRRHb/qc5oKN6UqT0VWUHl3dHoHdta4Rhdc5reRFnhXllafZSj0e6gORDMaYa299XsRt2eT2I0GiIiIqKmhyEtJYSj3TkR7yvYcmHNHxDF0RBRc3BSy9AK/I7ZFrTPbPwFJUPbRF7Z39z+Ec60NbdHrM4kCOiTLw9LBwe9noYWGWvtk22TR5WnKhzj2j6Zho6bCgRBQN8C9fB5RDv159LHjFYXc/Zxhvfxlq6NwUiIiIiImiZ+W6KEyOhzD7IG/p/h/az5A5E/+hsIlvQYjIqImrKr+2RhwnHp6F9ow+iOabh7YA7aZMqrDG/om2XouCPbR94ju7lV0lKo2wbkYFhRfSibYREwqXsGJnY/dqVItsFQ+7nT82XLzCYBjwzNDdz+64BsODQm0Uplf+mfg3M7K1d72rR60jKk1UUQTDCltzO0j+j3xWg0RERERE0Pe9JSQggmMzL73AUIZlStvENlIwvaXMmZg4koOuxmAZN7hFYQVrrlMwalW40lp6ZGJK2N2ff/27vv+Laq+//j76tty9txFhlkmSQkQCBhNKEQZlmFpC2lfCmjFOimlG5aoPQHBbpLB+XLKv22QGkZBQolQKAhCRkklJlBJtlO4njJ1jy/PxwrlnQlS7Zsxcnr+XjkEenOIx1dj7fP/Rz0f2Ueh742pVxfm9LzYx1W6VZxmpnwxld59Og5A3t+kv1cmcehSyeW6tl1rbbri12WApHURDaWl6K0B8e17K46SsHApux3MIS0AAAA2Towh1KgH0n/Sw2jZQEUgjPH4LQnZVYPjlgHfcFQV7VL6d4hm9y2+wc7wFnu3EplmHCDjEn9YxgAAABSEdKioKyMIS2TgwHoXXZfgTLcFW2rJyEt82ghX4jBuhZLE2TnZSDtQSLXn81a1/xZ2x8ZqODWub3UIgAAgAMHIS0KK8OINUbSAuhtbTbFKJ05fmd09GA8LBkt8oXSGV0Lcud9j1mu3CedM8FdakxX2goAAABxhLQoLEf6mZgdRYP6sCEADka7W1PHHw4qTp1MLJNB/ty27+xAHkn7pSMTJ2C76DDujuiOiVXpv092dvnE3MOzA9Ul4xPfi64mAzxjpP1kY7DRzRqzkd3L89wQAACAAw8hLQoq021zZVN/3octAXAwsrvLOZeQdnyVWxXe7o+ltQ7g0Y/HDfbpuMFeuRzS4dVunTqcIKw7Lh6fXfg6upy5YDucPNynIwa45XJIUwd59JGh3rTbXljr18Ac/zBzMCsadVHadaVTfyY501/n1E0GAADIjJ/oUVCZQlp3zbF92BIAByO7yCCX2HTW2PayLA5LsqmcoEPLXFrfGLHd98CNZ9v5XJa+cUx5oZvR742rdGuI36mtLZlHMB7IgX+uSj0O3XBcZVbbfmJc90Z4m6SvHgfLu295ytKu80/8mvyHf0MN8z+n1g8eTN0gFpacnt5rHAAAQD/HSFoUVKaQ1rL4eALoZTbBai5hl3PvtukmG3Nl+DJ2IJc6QH7xUcH+I8On0XLKsiy5K4+0XW0igV5qEwAAwIGBkbQoqFxnCQaAfEoeDZerjnC2fdKm1GO5MgS+hLQA+p20f0C34n9cd/iH2W5R//LHVXLUzfIOOcV2vTFGgfd+rcYl10mSvMPPl+X0Khbao0j9W3JVHiF31RSVHPlDOdz8/AgAAA48hLQoKAchLYAC6mmFxI6gtc2u1oEyj6Qlo0W2qGSA/UeaD6Nj368UzuJDbDcJbZ+n3XPO0sDZq+UsGZG6fuvL8YBWkoIfPpW4vnWbQlteUCxYp4rp93Wj7QAAAPs37idHQTl8NYVuAoCD2Mgy+79VHlWTXd1Evzvzt1FXhuGy1BBFttoiTLiUD6ePSJzUalSa6z8rB+nl6/DY15l2eCrij50lo9IfIBZSaMcC21UN8z+XVRtaV9+f1XYAAAD9DSEtCspZMkLeoWemLC877jcFaA2Ag82hZW4d2SmQnTWmfSKws0YVZVWOYFhJ5lnhqUmLfEgzUDvu85NK+6Yh/dysscUq9bRfeG6HdOnEkjwe/eC4oJ3FQ+U95GMpy4vGXdlpm8HyjpiV9hgm2ma7PNqysecNBAAA6Mcod4CCqzzlCbVtelbR5nUy4SZ5h54pz6DphW4WgIPEd6aWa9mOkHwuS5MHtAe2R9V4dceMKq3eE9bWlqieXms/4U1Xo2EdmWrSdr/JgL4+pUyLtgV12ogiTRqQ3cjvg111kVM/O7FK7+8Oa3ipS8NK+TG4OypnPq62Tf9SrOVDSZKrYqI8Q09P3OakR9T24T8V/PCfal3z58QDmHBfNRUAAKBf4adTFJzlKlLRoZ8sdDMAHKScDkvTBntTlo8oc2lEmUsvb2zt/rEzTYR+cAy8Qy+ZXOPRCUN9hW5Gv1Phc+qEoZlHwCOz9p/bPpF5G6dHRYd+UkWHflLR5g0Kbf9PfJ2Jhnq7iQAAAP0SIS0AABn0pBpoppIGhLTIlt1HhZHY6Dcc7oSnkcaVal3zFzlLRsg9cLosq399mmNtOxXc9opMJCB35SS5q48udJMAAMABgpAWAIAMehLSOjMksU0hJoNC9xHyo7+wHInlOALv36WA7pIkFR/2BZWf8AfFgvU5HTMWakg7iVlvijSt165nj1OsbUd8WenUn6pk0jf7vC0AAODA07/+dA0AQB8rcnU/Dcs0cRiQLbvPYKY/AAD7laSRtJ0FVt6tWLhZwU3/yumQwS1zetqqbmnb8FhCQCtJgfd/W5C2AACAAw+/PgIAkMHkNJMyzRpT3OW+tZVunZ/FdkAmxwxKrJl8aJlLnkwFj4H9iMNXk3F9rK1OsdCenI6ZHJT2lVhwd+qyUOoyAACA7qDcAQAAGZR57P+eOXucv8t9Tx7mUzgmPbUmkO9m4SByYa1fMWO0YndYA4uduuiwrj976GWGciXZcvpHZFxvQnskE7XZ0SdF2+z3SbO815mYzTKbtgMAAHQDIS0AADmaPba4y5GMZ48qkmVZ8jiliw7z65GVLX3UOhxoPE5Ll04sLXQzgG7pKqSNhRpSwk/PkNNUfeYctW14QvVzZ6fuVKiQ1qZKubELbgEAALqBkBYAgF7QOcKNMugOwEHKWdL1SFqjpKDTar+DwXLZjxo30TYZY2R1ozZz8n6m06hou+N1rLcsy37ULCFtr0l473HAMTZ3JNDXAA52hLQAAPSQw5JiJnnZvl80YtwaDeAg1dVI2vq5s1KWWZaz/X+XfU3v5v/+WM3//bGKx39FZcf+SpbD2WU7QjsWaM9rVyjWVqeSSd+Uf/L31LTsBgVW/E4m3Cg5vPKNnKWK6ffFzxtY839qWvptxYI7pVjY/sCxkKItm+X0H9JlG5AdE4uqcfHX1PrBn2S5ilVy5I3yT/hKoZuFvRqCMf3+v41a2xDWCUN8uvzwkoSfebqyqzWq3yxv1Mr6cMLY9FK3pXvPyFzDGgAOdEwcBgBADzlsfjfpvCzGQCvggGaJ0V/pOIuH5b5TFyNpOwRW/FbBzc9ndciG+Z9XtHGVTKheTctuUOvq+9Xy9k/aA1pJigXVtu4RBT74U/vTcJMa5n9esdat6QPavZrf/klWbUB2gpueUWDF72UiLYq11alx0VcVDWwtdLOw17/WBfRmXUiNIaN/b2jVsh2hnPZ/bFWLViQFtACAdoS0AAB0Yag/cZTWR4f5Ep5feXhqvdCTO20zsdqTsr62gptZgP7KEC9kzXL5ZHkqc9rH6R/e/n/JyHhgm064bmFWx4w0vJ/wvOnNm+y32/1fSVK0YZUUC2Z17MCK32W1HbIT2fO+zbJ3C9AS2HkyaTLU+99pymn/NQ2RfDYHAA4ohLQAAHThisNL5Xe3j5Q7d1SRhvgTA9aPDPUljKObNsijoSX7tplY7U455pWTmQgKwMGhqxGxyfyHf0OS5PBWqeSIH2bc1nQxyjWdWGCz/fJQfcL/KITU209MOLcgEH1nV1tutwvVt9nUdgYASKImLQAAXTqixqO7Tx2gSMyo2J36902fy9Jfz65RYzAmp8NSqSdxG5fD0qPnDNS2loiiRhpY5JTbye3RAA4OuYS05R+5V66ycfHnpVNulqN4iBoXfsF+B7vJvJI3yaEueCy4u/1/QtqCMTaTscUIaQ8IoahRUzjxevzG0WU6pMRlWzoKAA42hLQAAGTB47TkyRCsOixLFb7Mk9cM9vNtFzggECbkJN0EYLacqeVhHL70kwmZWBa3TtuEfunEQu0hrQkS0haMTfDOSNoDw26bUbRH1HhU5OIGXwCQCGkBAAAA9KJcQlrLSv31xG5Zh8D7v5ZMVMXjrpDlKlFg1f/KWTJSxYd9UZaj4w9n2Y+kjTauVv1/LkmpYXsgCG6dq7Z1j0oy8o36tLxDTpHUXjIi8P7vFN71RsZ6y66yWvkPv04Od/7L9YR3vqGWFb9V69q/SrHUiagaF31FsdAe+SdeK4e7JO/nxz4bmyJ6eWOrmkKpf9xIF6Y+szag9Y1hJQ9ary5yqqbIqTUNYYVtRtEWuSwCWgDohJAWAAAAQK/JqSatw+bXE7tlnQRW/FaBFb9NWBZt2aSyqbe3P8lhJK0JN6lt7V+y3r6/CO9apt0vnB4fpRpYfZ+qz3ldngFT1fTGd9Xy7i+yPM4bqjr1qby2LdqyWTufO1GKtmbcrnn5DxTZ/aYqZz6W1/Njn5ZwTDctqFcgktvkiH9+v7lb56v2EdACQGd8VQQAAABykVt+cdBzeCqz3tZypY7SdLjLcj5nyzt3xB+baFvO+x9ogptfSCwjYKIKbXlBktS26V/ZH2fTs9mVmMhB28Ynugxo9237eF7PjUTv7QrnHND2xICizGWiAOBgQ0gLAAAAoNcUjboo6209g6anLHMPmCZnyahunz/asqHb+2bDWTqmV4+fDyaSOtIxFmnZu64lhwNF8z6pWrRpTQ7nz35UNHK3J9i37++Jh/j69HwAsL+j3AEAAACAXuMbeYGqzpyr0LaXZWJhOYsGq3Hx11O2cxQPta13ajm9qj57vlrX/lVNS7+Z8/mjzetTlvknf7f92C6/PIM+qkj9W4oGNqdsF9nzvqSYXBWHS5JcFRPlcJWofu7sfRv1g+DQRIOpC6N7a7/GwgmLfaMukrPk0L07moRRyZIUa9spZ4bJ3HJuWySQ2/bGyLKYva83NCTVoR3id+rYwV69sT2oTc2pk37ZOWGIV8t2hBSMpo7IHV/l1mGVbjktaUK1R0cMSJ0oEAAOZoS0AAAAQE4IiHLlHXKyvENOliSZWNQ2pHX6R6bd31k8RCWTrpdk1LT0WzmdOzmkddecoLJjfpLYvsEfzfp4wS0vJTzPNWQsBLuSD2bvBF0mKaQtrr0m3leSFFj5B5lw4779gjvz2rZYLiN5pfayDRkmk0P3NSaNpJ1Q5dbF40vUGIxlHdLOHO7T+saItrakbn/MQI8+PiaHGtUAcJDhuxsAAADQI4S2ubAcTlmu4tRwM4vRkZYz+9ujg5tfkLPkUEUaViYsj48S7SbLVZTwPNa2XSYWkdXFBGfdEQ1sU2TP25JpH5XoKh8vZ8mILvcLRY22tkQ1oMghv9shE0sdSRttWtNeqzapHqzlcCc8d/gGKNoppI215RbSNgZj2tAU0bASpyp9+2qQRtvqFNz4VO4TtZmokn+NjbXtVHj3m4mjmi2n3NVTFAvtkQnWy1V1lCxHz2qghqJGaxvC2h6IyhipyueU6VSkOhA2cjstuTsVFfQ4LY0pd8vj7N2vE9HAFsWCu+WqODxhpHFDMKYNjZGEdqbzYVNiveFyb/sLyaXtliwVu+y37+33AAD6O0JaAAAAAH3KcpXajEDteroMy+nN+hy755xpu7zHIa2zOGXZrudPUvUZL8ly5a/GZuu6v2nPfz6TUk6h7PjfyT/+S2n3awrF9KPX6/VhU1TlXod+cFyFymxG0gY3PavgpmdTD5Ac0noHKNq0Nv68bdMz8o2cldVreHNHUD99o0GRmOS0pGunlOm4IT6F6hZp17PHZ3WMZLG2nXL6D9n3OrbM0e4Xz5X2jgxOxzPkVFWd/ny3w/TmUEw/XFCvLTYjRLtSU+TQLR+pVJWvdybKal3/d+35z/9IsZB8I2er4uS/y7Iszd/SpruWN3Z7rsNyT/s16c0lXLWkYrf99jkdBwAOQkwcBgAAAOQgmxFpyMxyl6Qus7L41SSHkbTpuHo8kjY1pA3vWKDQ9ld7dNxkze/cYVvvtvmtWzPut3Brmz5sag8SG4Ix/eX9ZvuatGlYjsQ6oZanIuF5eMfCrI/1z7UBRfa+hKiRnvigPZjvbkArSW0bn0x43vLOz7sMaCUptPUlhesWdfu8r21p61ZAK0l1rTHN35x9H+Sq+e2fxN+Dtg2PK7zjNbVFYrrvnaYefbUqi4+kzX4fh6Ril/217HEQ0gJAJoS0AAAAAPqUe8CxKctcVVO63q/q6J6fe9CMHu3vLB0ly1OZsjzauq1Hx00WS3O8WGCLjEkfvT28IrHG65t1IclE0mydyHIVy1V+WMKyyJ73Ep47iodkdSxJendXYr3bdY2RjG3PRiy0J+F5tHVr1vuGdy7p9nnXN2T3Hqazq617AW82IruWJTwPrL5fcz9sU0u4Z+/1uIr2UdW+NKFrMkvSiFKXfGnKHfjTjLAFALSj3AEAAACAPlV27K9kom0K71oqS5Y8gz6q0im3dLmfu/JwlX/kHrW8f5dMqEHR1m1y+ofJRIOKBTZndW53xcQetd1yuFV5yhPa/fzJiStiPQvxUtiMot13rrDk9NiuKvVYCkQSwzlj0zZH8SEJz53Fh6h0yi0pNXf9E7+mpqXf7nTunoWNrZEejkRPKt1gkkfROrySTQ1eST0aib25Obf+dVrto4c7tPX0decgHKjTs+sSy4kUuSwVpQlPk5W4HTp3dJEGFrcPoU1XY3ZshUu729o/p+Uehy4YW6wyryOhJm9nHTVuAQD2CGkBAAAA9Cln0UBVnfJ4t/Ytrr1KxbVXpV1vYmFte8g+wPSOuKBb50w5zuCT5B44Q+Edr+07b5ajVbNm0oehJhaUlSakLXE7tF1JAW9S20qPuV0lk7+TVTMsV3JpigzhcedTphkxu6stZvtL6JDLjVpW/EGNr6evtytJJrm+blJI6x12loJJJRF6yhijzc25hdMTqtx6p9NI4tZo34W0y4JjVBdO7KfvTCvXhCr7z0xX7ELaC2v9+sQ4v+327jRlDSoIaQEgI75KAgAAAD3ADbz7GSv9OJSs6t5me5rkCajyPJLWZBpJm6HGbKkn9TXGoklty/AepUh6zzK2q5O2NKHkrtYMYWcW/ZMc0ppoYkhrOdJPLmeirV0e305DMKaWHEfCJo9a7auRtEbSi+b8hGVjK1waX+m23yELdiNwBxSl7yu7kNaSVGbz2QQA7MNIWgAAAAB9qr4tqnvebtKahogcksZXuXXV5FL5090nnQPLsiSHu70kQIo8hkRJQacJN8Ufv7MzpB8v2iNJOmGIV18/ujzrw8bCzWpc+EWZ4K6025hoUJGY0d9WtWjJtqC2tERV7rFU4nHYjvhcssurozo3PTlgziA52A7XLdL2RwbLVXWkyk/4o7ZomO57p0lbk8oBpItyNy69XYOyPJckWd7qhPeiZcVv9YL/es3bWapwzGis85v6pL4nj9oD2HQjjCWpack3FNz4hCJNa+QqH6/yE+6Wq2yc7bbPrw/ohQ2tag7F1J18tTjps/xmXWKYbExMzW/eotY1D8lEWva+1iqVHH69ims/n/sJ9/pX8fe00TkpYdm5o4vbr4tuKrKpSTugKP1sYm6bVSUeS04mDgOAjPhTFgAAAIA+9af3mrVsR0gNwZjqgzEt3BrUY6taut4xS5YjTVDXg6Aq9RyJQWfggwfijzsCWklauDWoD5uyH2Xb8vbtal37fxm3CW6bqyXbgnpqTUBbWtpD2YZQ+lvyHyy/VyF1qsea00japMTNRBRr267QlhfUuPAL+t2bjVqxO6yGkEn41xSyTzZ3NjdnOlnKEoevJuH5KvdH9feNxdoeiGp3W0yLfZ/R3OIvdNoh/UhaSQptn6dYYItCW19Ww3z7MHRVfVgPvNuszc1RNYRMtybgsisRsL5x3x8Ogpv/reb//kjR5nWKte1QrG2Hog0r1LDgKkUa12R9nmjrjvjjkHya4/96wvqBRQ4dOyjze9IVu8umMkPpAruRtOWMogWALvGVEgAAAECfWtuQGlqub8xfuYCOkYkpHN2/5TtZrK0u4bm7sn30YiSWGujdtKA+6+OGdi7pchsTqtfv/tuY9TElaYdrbPyxo3hI1vs5iganXResfzvnfgs4qlKWFY25LO25PAM/kvB8k2tyyjabXEfEH7urj8m6LaHt/7Fd/vrWNtvl6Qzxpw4dHVOR+llb3+lzH9r2atrjhXcuzvrckfr/xh937uMOZ48q7vEI1mElTjk7HcJpSTUZRtJW+VJjBrv3CACQiJAWAAAAQJ+yq1eaZp6pbrFcxbbLHZ7KvJ3DVXVUwvNo63ZJUtDmteVSz9SEsgh0Y1GFsysNu68N1r5w1Dv0zKz38w4+Re6BM2zXJYzOzVJEqaOcS4/5Sfu5hpwq98Dp+849/HyVHn1bwrZhK3VUaMja19/FYy+XZ9BHc25XZ+/vtiuVYW9AkUPfPKZctZ1qvp48zKePDLFpZ6cAP9q0Ou0xk/8AkIkJ7xuZ3LmPO5w2oijrY6VT7Hbo42Pa32NL0v9MKJHbmT74nTbIq5Fl+0Zre52WzhttP8kYAGAfatICAAAA6FNtkdSEMcfMMaOicVcq8P5dKcsdnoq8ncM77Gy1rr4v/jwW2CLJPqTNRSy4O+F56dG3KrR9noKbn48vMyb7ELFDi6M9oPYOO1cOd/aBmeXyqfpjryhS/5aCW19S09JvxdcFrdQw/FtTy+XrFOD9ZUVzwsjpiJUY0g66uEEOT9necxWp+mOvKlL/luTwyFUxUZZlqfrshdr1rxMkSVHZhbTtQWTZcXfJcvlU9bG5iux+S7FQvUwkoPqXzs369bZGYlqXNNL7isNLNKzEJZdDGlnmUnPIKGKMorH2kNbncuhHJ1RoQ2NEXqelIX6nLMvSpGq33tm1r69CnapRRBpWpW1DrG1H2nUp20Y6hbRJo5SH+p0Zw9RcXHRYiU4ZXiSHlbkerdQe6v5keqXWN0YUjBqNLHPlpd40ABzoCGkBAACAnmAunJzEjFHQrnRqHofSWmnqklp5DGmdRUMTnkcDW2SMUVt3ZpnqJJY0ktZd8xGF6l5P2ij30hAdoywtV+4jKy2HU+7qKYolTWYWVGpIe1SNR65Ot9cfWeNJDGmTQlbLlRgYd5wrYVmnycCSQ15JCu1tR0epA8tyyF19VHy9q3yCIg3v2762ZCvrw+rcg05LOmV4kTydws4im9+iHZalUeWJJQ68SQFpeO9IWmNiijSmH0kbzSGkNeF9pT1arMSR4qV5rgM7sDj7kgVOh2Vb8gEAkB4hLQAAAJCTPN6Xf5B4qy6kd3aFFI0ZlaeZcGhHa/7G0lpOr4yk/3rO1W7nCB0T/LvKYzvyWu7AWdwe0jZaNVrq+5SaHDWqfPnPOsTbLOmTKds/8J9/y1E6Xg5v6i3pJtqmjXWbFFKRhrq+omF6W0cHn5AlyeGtTJnoa8+HL0q6Mqf2Pl5yq8aGF2pUuknVctRo1eg55+UJy5yWEgJaKXUSqeW+CzQ+NFdTg4/JqahkZR8k7nYM09ziL6Usbx9Ja8lVeUTqTpJcFftC2qCKtcR3oXY5R2h45L+asfibWhUervei46XS8VrXVpaw79gKd0JAm4vk/R5Z2aING5epVI0q83xGx7Y9Ko9aE7bZ4JqidzdVqXjOAzqhdKMcMlrUNlGNzho5TFS72oyGtbysGVX1cvuqNHd9nXzeT2tq8O/x0dIdSj38BQkA+hNCWgAAAAC9ZtHWNv1iWdeTXO0JxhQIx1Scj9uinV69WPQ1PVtygyTp5eIv6Ye7js3rSFpH0WBF5dJvKp/WTueo9oVte//ZeL5pitQkKSmU2+cQSdLK4i9LkupaRutjgZ/L4a2SlTTh2T2ha2RT2jUjYzn1y8p/6UbzO/U0qo7Kpd9U/FM7XaMTlvtcqaGgXXc+XPZrbQpM1idabpBlZRMkWmqz/Ppl5XO2a8NWkVzl49OWcXCVT5T0uCTpT2X36D3v6fF18zcv0Fr38TKWY2//JJaSmFDV/dGgduHuwtbD2h+UTtMKz0x9vvGy+LoNrin6TcU/FbU8UkiaU7dTDsXU5BiYcIwlniP1asNGefe0aGvJBEnS+tZpcpvED5/fEex22wEAfY/CMAAAAAB6zcKt2QdFK+tzr7Vqx3L69Jz/2/HnzY4aLfF9Kq81aS2nRx96jt4X0ObZMu8F7efxVCWUBGixKrTSc3K3jhmy/Ho3OqHbbbKc7aUKNrsOTwloJclvE9Kms7DokuxP7PTqA/f0lLCyQ5tVKldSiYTOXBUTJbWPou0c0ErSGs9H2gPaNHoS0hZ18X686zkjoWTE296z2gPavVocA9K+5t3OEdrq2teXC4s+q2ZHdeL5gxu702wAQIEQ0gIAAADoNS3h7MsYtPVw0q0ODm+NYlZiuPa29yw5Sw7Ny/E7tKis6426qdkxQJanQg63X77h5+07pyO1XIKdT4wrti2X3GZlP2lYMnf1MXIUDVbQKrFdf8yg1FrAw0vtb96MWD45/COzOq+r7DA1OAalXd/mKFPUf1ja9d5DPibLXaaQzURnmQwrcWrSgO6Xhzh6YOZ9jeVQs6Na/iO+L8tdrrY072u26pyJwbnbpBu1DQDYH1HuAAAAAOgJQ93HTGwnCUsjlqeytCHP0JRlQatUzpLsQsFsWaOukHbnts9o7y6NqDkk/nzjzm1a21aRsl2rVa7K0+dIknwjZ6ly5hMKbn5ekYaIlPQ+WWqvlDy2wqVRZW4dPdCjowd5NbHKox8v2pOwbdTq/shQy1Ws6rPmybz0o5R1l08s0ekjUyclG+5Pf30UnfhYdud1OBXwT864TYNnjAakWefwVqr67AVqW/6z9NUm9hru3q0xg4ZqYLFTJw3zpdTYzcWRNV59d1q5bl/SkHab8IBTVTrl/6lo9P8o+qJ9OYdsbXPVJjx3KT8j0wEAfYOQFgAAAECvCeYwOjZq8jOStsllE9I6K2U58vvrT9BRkfM+x5ds0PlH7rtN/dnFi21DWmM5FSoaoY6xqb6RF8g38gLp/XnS2n3blZpduvdc+xIGkwZ4NNW1TEsjR8eXRXItZpvEVTZWvtqrpfX7llXGtuqsUUfabu+x0pe7aHPVZD0WucU3TgqlX9/oGpZxf3fl4So+8kfS65nPM614rT595PgsW9W1KQO9mub+r5aE7d+fyMjLZVmW3BUTpbJ1ySVxcxJOGinsNBneMADAfoeQFgAAAMhBfmLEVIFwTDtao6ryOlXm7V5Vsvq2qFojRkP8ziwnZOp9uYS0dpURGoMxGUnlObwnjY6a1GVW6rKeSnfbfyYmVK/w7v/GnzuDmyUdYbttm1Wu0r2PY8ZoS3NUm0KJ5Q680QaFdy2XHC7JxGQ5vHKWjZPlcMoYI0doV0KRu6i6P5K2w65w4ohZp2mTibTKcqWOpPWagGRbeCG39y+53mqyPVb6cgiSZIxRXVvXv/5a4fb+cRYPk8OX+ZzZMCam4taVkss+pG3sNI1bXSzdWODuYSQtAPQvhLQAAABAgc39sFX3vN2k2N48c9aYYl00PrcA8J63G/XSxvbZ3UeUOvXD4yq7HfbmUyiHkPaet5s0ocqtoSXtv6Y8sqJZT6wJSJLOH1Osi7N8TxpMmaSmhGUtVpmaQjGVevL3nixuPqTrjZKEtszRzrUXx583+S6XSs+y3faptSF9frJXdYGobnm9XjtaY5ISw+Yi06idT5+ZsMxZVqvKmX/XnnmXyhH6rNQpO+1JuQNjjP74dpPmbh6RsNxhItr+yABVznxc3kMS22IFd6a0ucMr2936bJY56NK29DVnJWlPp7DTrt2/XNaoRdu6/vU3uuM/2vnPSyTLKf/k76js6Fuza6DdsQJbtev5mSqJfCztb973rB+skYeE9fTagD6I5ncSOqfJftI+AEDhFf6nNgAAAOAgZozRwytb4gGtJD2xJqCmUPYFWre2ROIBrSRtbIrq1c1tGfboO7lOBvbsuvZQtikU05N7A1pJ+ueagBqD2b0nDUH7c25ryaFAbhbWtpZ2vVESK2kstkPp2zRnY6uiMaMXNrTuDWhT+UxTyrJo4yrt+tcMRXa/KVdSjYBID0bSbmmJau6HqZ8rh6IykYCalt+Usi609QW5TSBluSQ9sy67EHGPTb8nB5C7I6mjeDusqA9r0bbszuU0e0efmqha3vqJIntWZLWfncDqexVtXKmS2M6M2925ZI9e35r/QJVyBwDQvxDSAgAAAAUUNVKDTQhVn2UgKUk7AqlB3+62/AaS3RGKGrWEcwtpd7e1v+6drdGEONNI2pnla0oXDDfmEHx3xRgjl5V78YtB0VUJzycHn5PDRNJu3xw2GV/30Mh79u0LN0rqFDruFfN0/xb+XW3279/gyEpJUrR5nV1LNCzydrfPKbWX8Uh2VPCZhOcfNqV/j9buSf/+JhscXdnpmVFw60tZ75ss2rxekjQ88t+M2zWEeqeIylBt6JXjAgB6ByEtAAAA0BM9LP2abq6sXObQCtrkU3mag6tHdnUjKO4YUWxXyzac5eHCMfsXH8gxMM6kOWwUMamd71BUjqRg1GHC8sd267TAXRobWSxZrvi/Uu3Rhc3fVGV0o+3t6S3hmKJJ2aglI7dp1fjQSzo98KuM7XQmjaQ1RZkn2MrV6PDrOr/lR+3HjjSnbhAN6lNN39Gw8Ft5Pe+U4JMJz9c3RhRL86Hf1Jw+pHXIyKHovv4JL0xYH9r+n2630UTbRx0fEnlHZ7fcrpLYzoyBfDJLRk7FUoL2Dk5l/qPDyC7CYQDA/oWatAAAAEBO8pt+pjuaySFlDUZSt90PMlrtTHOLfodvHlOu7YGo/vz+vnCvI1+1Gw2bLnxNFklz2ma7mcm6qd5mVOlfzqqRaXhPO5+alLJuyOVG0o/3/ks0a+8/Sbr0+R0JoXtz2Cia9Fm4sLZEJ8wfnFU7XUkBX7r3pjvK3TF9re78+HMTCcjEorIczn3LokENjb6vb+45XV+v2Z5yDGNMl5PcJfe604Q0LJIY+rZGjHYEohrsT/0Vd3Nz+nT/4XM6JhwbIunHCqwepYb5V8bXh7b/J6s22rY70iqp/e84ZwR+qdm1FSo96ka1RYwu+3dd2v1OPMSrrxxVntU5nlsX0IPvpYbjxbHdMqFdObcZAFA4jKQFAAAACijd6L9cQtagTXi5P4yk3dmaeehrsdtScvZl9r7ykM2u2Ya0aUfS2oTZ3bU7afhymceSy2HJcvl7dNwSd+KvaHYjaZ05/BaXPJI2nyGtXXBpooGk55lrI2fZpclnUXlsm0piiUHnusbUUarGmIwjaZN5Bn00sX2t2xRt+qA7jZSirQlPLVd73Vyfy1KVL30nluUwuZ3PZR8eW4opFiSkBYD+hJG0AAAAQJ7sCcb05/eatCcY01mjijV1kLfLfdKFVAu3BvWn95rVFIppV1tMNUVO2UW3LoeltQ2pIVRrxOiZtQEt3Nomn9PSeaOLddTArtuTT12NpPW7rJRRI2/vDOvTz+6w3f72JQ0q81gaUORUzLSXRCh1W3tH3VoaWebUZyeUqi5gf96WPI6kTT5Hpa999Kjl7llI63db2tUp17x9SUPKNs4cRnUm3yq/ZHvuE1TN39KmFza0aldK6J7ajl3PHCc59v2aGanPXI/2l8sa9I1jyuXY+5pe29ymORtb5bKk80YX68gaj/61rjVlP0vSsMjbWuE5Jb7s2bUBnTDEpwV729sUimlThlG0dpylY+QoGqJY69b4st3/Pl2Wp0yyXHIWDZZMTMEt/5azZJSKxn1OJZO/o7b1jymw8m5ZzmKVHHmDPINOVHDz84ltdvrij4f4nfH6y8lyCmmd6UJaKbL7zayP05Xw7rfUtPyHshwelR59q1zltRm3D6z6XwU+eFAmEpBn4AyVTb1Dlqs4b+0BgAMRIS0AAACQJ/e81ag3drSPXHxvd4N+O7Na1UXOjPukG9351JrEEYkbm7IfDShJ/9ncJm3e9/z93Q26+7QBOQVAPZUa6iUqdjvkyPEu8saQUWNo33uxtdO6jU0RtUXSB5H5rEn79NrE/qn0tr+vDldJj47rdzskZX7f0uRytlxKrWe6tiGs0eXurPbf1BTRb5Y32q+0CYsjDe9n3zhJS7aHtGRbUMcN8WljU0R3vbnvXO/vbtA1R5Rq3ubE0bjW3j9WJIe0q/dEtLYhrN8sb+x2uQ/LsuQZ9FG1rX80vizaskFqaX/c+SqMNq9T8/IfyoT2qOXdn8eXh3bM14DzlqYe21kUfzzE79S7u+xrzZZ78zOSVpJCdYvkqTku6+PZMSam+pfOU7RloyQp0rxWA85dmrYERGj7PDUsuDr+PLL7TVlOn8qm/bRH7QCAAx3lDgAAAIAesDqNJuwIaKX2EbKvb+t61OLWltwn1+qOqGkP5/pSUxcjV8s8DhW78/sryTu7QkqXQ7fa1LntrkNKEsP3xtDe19pptGSHkimpdWjTGVCU3ftRPP5LWW1XEtuZsmzNnuwD/zUZPjMlbocsb3XWx5rRep/t8l8sa9zbrsRzRY30nM0o2uLYHknSiPDylHWvfNiWdUBbnabkgHfIKbbL0+kc0ErtE6gFVj+Qsp2jaFD88fDS9OOlarr4w05nlWkCXX9stySp+a2fZH2sdCL1b8cDWkmK7FqWMNI4Waju9dRl21/tcTsA4EBHSAsAAAD0ErvJpZJFuleUs1vCfZMHx2Wqf/qxQ4vkc1k6eqAnr+dsjRiF0pw3n3V6k19bR+hmWZbcA6cnrCuZ9O2sj3v6iOK0IXOHidUe+Q//lhzFQ7s83oTQSynLcvnMZerDs0YVq+Twb2R9rNMDv8q43q5ZjTadOTP2d0nSxNCLKeuCOQTx5462v/2+aMylclVMzPo4dmKh3SnLPIP3hb8fGeJTjU0gP6bcpfFV2Y1ylqQRZfZh70db75UkBT/8pyINq7I+nh27usLRwJb020dSg/VYa+qkcQCARJQ7AAAAAHJg0k30ZbPclcWQiLYcR3fOGlus4SUuLdke1MKtudUXDfVhICylhoHnjCrSuAq3BhQ5Nbai/VcRf55H0vaV5AnfRnUKywac/ZraNjypSONK+Sd+XZYz+yD6sCq3fnVytb70cvpJn8q9Drm8h6rm/LcVrn9bDm+1oo2r5Swbpz2vflqRPe/Ft/WbPRpX7tTqhn0JfS4fg+RNh/id+lStXyNLXRpW6pJGfF/eQ85OKXNgIs0Jt7xLUnlsh343foG+vOIjWZ1LSg1pD6t066Kp31Ro+7Ey0TYVrzQKRPaNZs80udypw32aNdavDxrCOsTvShtwWi6fBnz8TYW2vaJY207FWrerccl1aY9r+1pCiSUi3DUnyNGpXnGZ16E7TqzSit1hte0teVLisTShyiNXDjVAHGlKDnyk7c8dLVHLe79U+Ql/yKn9nZlIS8qyWMuH0oCp9tvHUr8uRVu3yxiTtkQCAICQFgAAAMgLuzv7s5ngKZRjSDt5gEeHV3u0OxjLOaQN5/F2/2wkn25QsVMnDE0tB9BX8plRJ5cSdiZlzb6RF3T72NVFTpV6LDWF7BvckWs7vFXyDj6pfVnlpL3LUssP+D1Oda5zG81hSHHypuUeh6Yn9aG7+ii5q49K3C8WTglpJamsdHDW55JSr6uxFS45PKXyDT9XkuRfu1OBTsN9M438HVHmUk2xUzXFXZcTsBxueYee3t6uaEiNS78pmeyHoptw4oRvnUsddPC7HTomi8kFczXImTiKN/DBgyqZcoucvppuHS85cJaUUP4gdWXqyFvFgjLhRlme8m61AQAOBoS0AAAAQA7S5a6bmlPrfO4JRrWuIax3doW1riGsIX6XvM720W8uR3tIU9fadUkEO92Z/+sPbzVpWKlLYyvsb6fe1hLRf+tCCkaNqn1OTR3slXfvLFXBqNHS7cGEycCGlbh01EBPwmi+UNRo8bagFm0L6v3diTVGcxkh2Bsa0tVByFEoarQi6bVlE8jnov09TRfSpj9XLJh6m33y5k8mTUonSVU+p6YO8qZMRJU8Yjjbl2k57D9jTv8w2+W/Wd6gN+tCtus6S37tyZ8pu+sw3bbZspweOUvHKtq4Mut9Ig0rEp73dEK5XFSWVEgOtxTb+xmNtqlx4RflznICMYe3Wr7h58vhaw/8Y+HUkDa86w21rvmLoq3tZQ8cvkHyDf+4HN4K2/IIkhRr3SYHIS0ApEVICwAAAPTQluaIvvdafcryFze26cWNnQOL3Ea+2umImTIFdZncML9et06vTAlqNzVF9IMF9WrtNET08Gq3bjy+UpL006V79PbO1EmkzhtdrEsm7AugfrWsIWECtc6cBb7TeVV9WG2RmHzZ1KHI4OdvNKQsy3f+nKmFmZofC6aWSUh+31vCRn9ZkXoL+/gqt24+viLhlvTk4LSnr9NRNERSahvnb8nu2kgOWpNf2+bm9KNdezKS3FUxIaeQNtq8PuG55S7t9rlzVVlcpKJRF6t1zZ/iy9o2/ENtG/6R9TGaS3+imvPfluXypYwKlqTWNX9W65o/JyxrqZysAectSxvSRlu3y1V+WNZtAICDTf8sAAUAAADsRx5ZmRp49ZaOjMrdg8TzB/NTA+VF24IJAa0kvbsrrJ2tUe1sjdoGtJL0yqZ9kwTVt0XTBrSS5EnT5kHFffdrSTajNTOpb4vaHsOT55Q2XRDrdqSvQypJ7gHHpizLtH1nK3aHtT2QGHLuymLyu3QcxYekLLMcXZcayCT5ffHmcB2UdGf4ecd5yyd0e19JstxlPdo/F2PK3fJPur5Hx4g2faDgtlckSTGbcgd2IvVvK7x7efqRtG07etQmADjQEdICAAAAPbRoW89HyGbD77I0qrx9BKyrB5mg3XjCFruiupKawzEFwulHIHZel6l0g9sh1Vba3wJ/zRF9F2Bta8m+rqidJpv3wmm1T/iVT5Oq7Scbmzwg8yRkJUf+IOF5+UfuzWoCuw4tSa/Pn/RB25lDeY6iURclPC+uba9Re8GY4uwblOSwpM/QpC7ejw4eh3Rkltva8Q3/eLf3lRSvb9sbZg7fVyO42GXp9JE+uSsnyzfykz06biywSZJkoqnlMdIxoUaZUOrIW0kykeyPAwAHI8odAAAAADno26m32g0ocmhStUdnHVoUHzmY79vr090JHo1JMSv9q+48GdeuNvsAdFK1W58Y59eAIvtRlIdXe/T5SaW6950mSdJHhnrltCy1hGPa3BzRsBKXNjZFbEPg6UO9Om1EkVwOS/9eH1Bzp5BxYLFTL2xoTdi+rrVnIa3dRG8/OK4i7WvrrismlarC59D6hkj8M3dIiVOzx/kz7ucZME2Vpz6jto1PyD1gmorGXSHPW80p21X7HBpe6tJbO0MJfZj88hqT6vh+qjbz+TsrPfo2We4yhXcukbvqSJUccYMk6aLD/NoeiOY88Z2klDIdF9b65XNaWr0nnPA6HJY0xO9UJCYFIkZnjCxSmbf7Y5Q8A49X5cwnFFh9r4Kbno0vd5aOlatsnEykWaHt8yRJ3kPOiq+3XMXyHXqhvENP7fa5u/K5w0tV5XOovi2ms0YVx8t5lM94QK7ywxTevdx+VrYk4V3LFGvbHn8ebd37OKdw1ShGSAsA3UJICwAAAOznbj6+MmVGemeWKe3nDi/R/e+mhnTJomkGSEZimQNho/bJpRyWpd1pRllef0y5it2ZA7LTRxbp9JFFaddvaY7oulcTJ8U669AiXX74vlqftZWpkxJVeh16dNW+chTdnaitQ3JIW+q2NDHNqNee8DotXXRY9yab8g0/R77h58Sf202YNXWQV5+bVKrPvVCXMHo2Ekt8fckjh8tzKBlgOT0qPerG1OWWpa8fXa6vS/rFGw05jURPfikuh9VlcJ0vvpEXyDfygj45Vy48TksX1qZ+VhzuEpUe/f+yPs6e1z6n1g8eiD/vKE+QU7hqYjKhPfaroq22ywEA7QhpAQAAgP2c16a2QbalOLOtR9oSsQ8vo8Z0OXq4PdczWttgX7c2XS3aXNgFxdnk1Mnh9ur6sPbsHfHrcVoqdjsUjhrbcg8upyVL+yacKvM6FEwKafPx2nqb22aQb0cJhOSPVkMoFn9/jKSmpJG0pZ78vl5fjnU78j2CHPs4fAMTnkdbNioa2KZYcHeaPVLFgrsUC6XWvJakWOt2RQPbZDlcsrzVCRPUAQAIaQEAAIAeyVSvNV98NkGg0ybg8DikpExN6XKQny7do2unlMvlkO57p0kLttiPZmwKxTRvs/1EQB2eXhvQ31a1KJbmrchHjmkXNtu9B8lqihJHfgYiRte8tKtbbShxWxqYFPr2i5DWJtnsGF3bPiJ7X8f9alnmSaJKezD5lh27z3Ym2f7RAblzFA1KeB7c+KR2bHwyp2Ps+c/Fade1vHOHWt65Q5LkqpioylOflqt0dM7tBIADFROHAQAAAPsxh9U+6Zbd8mR2JQXSRVpLt4f0+tY2ra6P6MWN6UPYuR+2acn2UMY2PrIyfUArKS8j5uyyvGzyveRQtSeaw0ZrGyIJy3o6EVlfsPv8dAxgzTVjzndI63cTuu4vnEkjaXtTZM97an7rJ312PgDoDwhpAQAAgFxkMQFPPg31O21DziH+1PBxysDU2qiDip0aV2F/A932QEzbAhHbdR3CmdLXLIwuz8/Ne+Veh4qSbo0fkzSJlJ2yPIeKyQoxkVyuhvhT+2Dw3s+P3econYFFjvjEdfkyeUD29XyH5tBW5M5VOblPzxepf6tPzwcA+ztCWgAAAKCPlLgtTR2U2yRTnSfG6qy6yKlP1/rlcbSPlPzE2GJdMqFEk6rbg0unJZ06wqeJ1W5dd3TqhFrtTNoJwzq0RVNjyJIsRz9WeB26dGL3Jr9K5nJY+tzhJSp2WXJY0vShXttQGqmOHezVcYO9stQ+svrYwV4dP8QnSbp4fElKSQg7pR5Ln5tk/1nsifFVbp0+Iv2EcR3KvQ5dkeZaQH64KifLf/g3JUdu15XlqejW+aKBTd3aDwAOVNSkBQAAAPLoosP8emRlS8ryM0cW6fLDS+SwLEVjRoFI+4RcHXGn22Hpsn/XJewzptyVcaTh7HF+fXxMsYyR3HtHOP7w+Eq1RmJyWla8Xmp1kVOPnjNQdyzZo2U79pUuMJIiXYwMTp4oy2FJV00u1S+7qF168jCfvnBEaV4nB/rosCLNOMSncExZj+jMZaKpoX6nbvlIpV7a2KqHbfqwv/I4LX3jmHK1Rdr7svNkXaPK3bprZrVawpkniPO7rV6pB+uwLH1+cqkunVgil0N66L1mPbe+NWGbWWOL9elaPxNN9TLLslQ27acqPfr/yYSbU9e7irTt//wpywd9ZrdMqD7lLgPLUy7L4VIs3CRFQwrveUe7nz85vj4W2CoTC8tydD0iHgAOBoS0AAAAQB6lmwipwuuIh1xOh6VST9eBU3JAasdlk0IWuexHRqYEm0ZdjqQNRlJD2mwm7PI6rV4J1RyWJW8v3fVe5nGo1ONQte/AvK3e57LvD8uyVJLF57E3dfxBwa7mbU2RfckP9A7L6ZXl9Ga/vWXJ8lalXe9wl0puyV1xeNIao1jrNjn9w7vZUgA4sBDSAgAAAD2SGB6lG7np7EahsWxC2p74xweBLrfZ0ZqY4jqU3ejUXEaw9qZcmtERVDKZVeHYvfPJtYjRP1neasnhlWLB+LK6JybIXXOCHJ4yVc78RwFbBwCFR0gLAAAA5FG6AX/ZjD5NFu5ilGuu8jEY0bKsrALn/SaktXnRHocUsnlv/W5Hwv/oe3afUULaA4NlWXL6D1G0aW18mYm0KLT1xfYAFwAOcvz0AQAAAOSgq7Gt6QK+bEZn1lYm1mY8Zbgv22ZlpavSBlL7hGOZ+N2WSrIIMUeX7z91JpPvoJ862P5W7kpv+4aVvux/TRqYxaRbyJ7ddVLu5T3eX3gGz0x47j/8mznt7ywZnc/mAMABhe92AAAAQB7VFDk1qToxoKz0OjSlpusZ088ZVRS/3bvIZWnGIfkNaY8ZlLkNTkv66lFlGbeZOdynUWWZb8gbWOTQ0QNzmyG+N50+sij+eIjfqcsmlKgmKVz1OS1NH9r+fg8sduqIAdmFzJ+dWJq/hkJHD/SqrFN93NHlLh3axecNfafkiO9Leyf6srzV8k/KLaQtPuwa5VaEBAAOHny3AwAAAHLQVckAhyV9e1qFlu8IaldbTMUuS0fVeFSRxWRUxw/x6bYZTm1ojOjwao8GFud3AqujB3olNaVdf8eJVRpe6tLdbzWpzaYe7heOKNXJw3xpJ3G66DC/qnwOTRnoVfF+VDLgkgklOqLGo8ZgTEcP8qrE7dBt06u0bEdQLREjj8PSETUeDer0fn9raoWW7QiqMRTT+EqPfrp0T0p9Xkk6Ns2oXHTPgCKn7jixSm/uCMnrtHT0IE98wj0UnnfoaRpw3nJF6t+SZ+hpcvpqctq/6NBPynXuEoXqFkix6L4Vzvz+QQoA+iNCWgAAACCPLElep6Xjh3QvdBhd7u61UgGZanvWFDk0vLT914Mqn0NbWqIp20wb5E0b0ErSrLH+njeyFzgsS0fVJIapZV6HTh5elGYPyZPUh8cN8enptYkTre1HOfQBpcrn1Ckj0vcNCstdebjclYd3f/8Bx8g94Jg8tggADgz8WAEAAADk0f486M/lsNIGi50nNks36ZfvIJ7Aye6VH7zvBgAAyDdCWgAAACCP9vfgLl0Zgs7BrNMmpXU52kPeg5Vd+M5t+AAAIF8IaQEAAIBcpJZqTeDcz4O7kE2tWSlxlKzdgNkiZ+LCTKUTDkR2+bTz4HoLAABALyKkBQAAAHJQVZT+R2i/y9LQkvxO9pVvrRH7kPaoGk/8cW1lak3cw6oSl80c7sv4/EBTW5H6noyzeZ8AAAC6g4nDAAAAgByUeRJDWr/boVFlLlX5HJo11r/flwSorXBp1Z5IwrLTRxRpdqdJvz4zvkRG0qr6sCRpeKlLl4wvSdjnosNKZIy0ek9Yo8rc+p8J++ekYfly9CCvPnd4iRZsCSoYNRpR5tLFSe8JAABAdxHSAgAAAD1weLVHt59YVehmZK3EkzoS+LMTS+TudO++12npisNLMx7H67R0eRfbHGjOPLRYZx5aXOhmAACAAxDlDvJow4YNuv766zV+/Hj5/X5VVVVp2rRp+ulPf6pAIFDo5gEAAAC2tVX377G/AAAABz5G0ubJ008/rUsuuUSNjY3xZYFAQEuXLtXSpUt177336tlnn9XYsWML2EoAAAD0lOli4rD93f4+sRkAAMDBiJG0ebB8+XJ9+tOfVmNjo0pKSnTrrbdqwYIFeumll3TVVVdJklatWqVzzjlHTU1NBW4tAAAADmZOm98AiG0BAAAKi5G0eXDttdeqtbVVLpdLL7zwgk444YT4ulNOOUXjxo3Tt7/9ba1atUo///nPdfPNNxeusQAAADioHV7t0YItwfjzco8lF0M3AAAACoofx3po8eLFmjdvniTpyiuvTAhoO1x//fWaMGGCJOnXv/61wuFwn7YRAAAAvae/jUL9yBCvaivax2o4Leni8SWyKIEAAABQUIS0PfTkk0/GH19xxRW22zgcDl166aWSpD179mju3Ll90TQAAAAgRbHboVs+UqnfzqzW/WfU6OThRYVuEgAAwEGPkLaHXnvtNUmS3+/XMccck3a7k046Kf54/vz5vd4uAAAAIB3LslRT7JTPxQhaAACA/QE1aXvo/ffflySNHTtWLlf6t3P8+PEp+2Rj06ZNGddv3bo162PtD5pDDVq49luFbgYAAEC3HeZo1R8ntcafj/DvUWD3lgK2CAD6N8sqUlHldYVuBgAUFCFtD7S1tWnnzp2SpGHDhmXctrKyUn6/Xy0tLfrwww+zPsfw4cN71Mb9TSQa0rGlawrdDAAAgDyqV7h1XaEbAQD9luUoU5EIaQEc3Ch30ANNTU3xxyUlJV1u7/f7JUnNzc291iYAAAAAAAAA/QsjaXugra0t/tjj8XS5vdfrlSS1trZ2seU+XY263bp1q4499tisjwcAAAAAAABg/0JI2wM+ny/+OBQKdbl9MBiUJBUVZT+DbldlFPobj6tI/2kmVAYAAP2fw7J0aEmlRvgrC90UAOjfLG+hWwAABUdI2wOlpaXxx9mUMGhpaZGUXWmEA1Wxu0QfO+wnhW4GAAAAAAAAsN+gJm0P+Hw+VVdXS5I2bdqUcdv6+vp4SHugTQYGAAAAAAAAoPsIaXto4sSJkqQPPvhAkUgk7XYrVqyIP54wYUKvtwsAAAAAAABA/0BI20MzZsyQ1F7K4I033ki73auvvhp/PH369F5vFwAAAAAAAID+gZC2hy644IL44wceeMB2m1gspoceekiSVFFRoZkzZ/ZF0wAAAAAAAAD0A4S0PXTsscfqxBNPlCTdd999WrhwYco2P//5z/X+++9Lkq699lq53e4+bSMAAAAAAACA/Zer0A04EPz617/W9OnT1draqjPOOEPf//73NXPmTLW2tuqRRx7RPffcI0mqra3V9ddfX+DWAgAAAAAAANifENLmwZQpU/Too4/qkksuUWNjo77//e+nbFNbW6tnn31WpaWlBWghAAAAAAAAgP0V5Q7y5LzzztNbb72l6667TrW1tSouLlZFRYWmTp2qO+64Q8uXL9fYsWML3UwAAAAAAAAA+xnLGGMK3Qh036ZNmzR8+HBJ0ocffqhhw4YVuEUAAAAAABx4+P0bQG9iJC0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFBAhLQAAAAAAAAAUECEtAAAAAAAAABQQIS0AAAAAAAAAFJCr0A1Az0QikfjjrVu3FrAlAAAAAAAcuDr/zt35d3EAyAdC2n6urq4u/vjYY48tYEsAAAAAADg41NXV6dBDDy10MwAcQCh3AAAAAAAAAAAFZBljTKEbge5ra2vT22+/LUmqqamRy7X/D47eunVrfNTv4sWLNWTIkAK3CLmiD/s3+q//ow/7P/qw/6MP+zf6r/+jD/u//tiHkUgkfjfr5MmT5fP5CtwiAAeS/T/RQ0Y+n0/Tpk0rdDO6bciQIRo2bFihm4EeoA/7N/qv/6MP+z/6sP+jD/s3+q//ow/7v/7Uh5Q4ANBbKHcAAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVESAsAAAAAAAAABURICwAAAAAAAAAFREgLAAAAAAAAAAVkGWNMoRsBAAAAAAAAAAcrRtICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0qJPbdiwQddff73Gjx8vv9+vqqoqTZs2TT/96U8VCAQK3byDkmVZWf07+eSTuzzWc889p1mzZmnYsGHyer0aNmyYZs2apeeee673X8gBaseOHXrmmWd044036qyzztKAAQPifXL55ZfnfLx89FEkEtHdd9+tE088UTU1NSoqKtKYMWN0zTXX6N133825TQe6fPThgw8+mPW1+uCDD3Z5vEAgoDvvvFPTpk1TVVWV/H6/xo8fr+uvv14bNmzo2Qs+wCxdulS33HKLzjjjjPh1U1JSotraWl1xxRV67bXXcjoe12Dfy0cfcg0WTmNjox555BFdf/31OumkkzR27FiVl5fL4/Fo4MCBOvnkk3XnnXdq165dWR1vwYIFuuSSSzRy5Ej5fD4NHjxYZ555ph5++OGc2vXwww/rjDPO0ODBg+Xz+TRy5EhdcsklWrhwYXde5gEtH334yiuvZH0N3nzzzV22ia+j+fOd73wn4f1/5ZVXutyH74UAkIYB+sg///lPU1ZWZiTZ/qutrTWrV68udDMPOun6I/nfSSedlPYY0WjUXHnllRn3//znP2+i0WjfvbADRKb39LLLLsv6OPnqo7q6OjNt2rS0x/B6veZ///d/e/iqDyz56MMHHngg62v1gQceyHis1atXm3HjxqXdv6yszDz99NM9f+EHgBNPPDGr9/zSSy81wWAw47G4BgsjX33INVg4c+bMyep9HzBggHn++eczHuumm24yDocj7THOOecc09ramvEYgUDAnH322WmP4XA4zM0335zPt6Dfy0cfzp07N+tr8KabbsrYHr6O5s/y5cuNy+VKeP/mzp2bdnu+FwJAZoS06BPLli0zRUVFRpIpKSkxt956q1mwYIF56aWXzFVXXRX/hlpbW2saGxsL3dyDSsd7/8UvftG8/fbbaf+tXbs27TG++93vxo8zZcoU8/DDD5vFixebhx9+2EyZMiW+7nvf+14fvrIDQ+cfOEeMGGHOOOOM+PNcQtp89FEkEjEzZsyIbzt79mzz3HPPmUWLFpnf/OY3ZuDAgfFfUP/1r3/l4dUfGPLRh50Don//+98Zr9X6+vq0x2lsbDS1tbXxY1111VXmpZdeMgsWLDC33nqrKSkpMZJMcXGxWb58eV5ef382ZswYI8kMHTrUXHvttebvf/+7Wbx4sVm4cKH5xS9+YQ455JD4e/mZz3wm47G4BgsjX33INVg4c+bMMcOHDzeXXnqp+fWvf20ef/xxs3DhQjN//nzz6KOPmk996lPG6XQaScbj8Zg333zT9jh33313/H0fM2aMue+++8zixYvNk08+aWbOnJn1tXzRRRfFt505c6Z58sknzeLFi819990X/7xJMn/84x974+3ol/LRh51D2vvvvz/jNbh9+/a0beHraP5Eo9F4UNrxvnUV0vK9EAAyI6RFn+gYyeJyucyCBQtS1t95551Z//Ub+dXT933lypXxv6BPnTrVBAKBhPUtLS1m6tSp8f5ntHRubrzxRvP000+bbdu2GWOMWbduXc4BX7766L777ouf+0tf+lLK+tWrV8dHy48dO9aEw+HcXuwBKh992DkgWrduXbfb8sMf/jB+nDvvvDNl/fz58+OflUyj5w8W55xzjnn00UdNJBKxXV9XV5cQuL366qu223ENFk6++pBrsHDS9V1nTzzxRPx9nTVrVsr6Xbt2mfLy8vgfy+rq6lLOcd5553UZMr300kvxbc4777yUttXV1ZkRI0YYSaaiosLs3r07+xd6AMtHH3YOaTOFgF3h62j+/PKXvzSSzPjx4833vve9LvuH74UA0DVCWvS6RYsWxb+RXnPNNbbbRKNRM2HChPgPtaFQqI9befDqaUj7xS9+MX6MhQsX2m6zcOHCjD9MIXvdCfjy1Ucd12hVVZVpaWmx3eYnP/lJ/Dh/+9vfsmrfwaZQIW0oFIqHFBMmTEh7K+E111wTP9fixYu7da6DydNPPx1/v7761a/absM1uH/Lpg+5Bvd/hx12mJHab5lPdscdd8Tf04cffth2/w8//DA+mvPss8+23eass86KB0gffvih7TYPP/xwxiAe6WXqw3yFtHwdzY8NGzbER/6/8sor5qabbuqyf/heCABdY+Iw9Lonn3wy/viKK66w3cbhcOjSSy+VJO3Zs0dz587ti6ahh4wxeuqppyRJ48eP1/HHH2+73fHHH6/DDjtMkvTUU0/JGNNnbTzY5auPVq1apffff1+SdOGFF6q4uNj2OJ0nwnriiSd62nzk0dy5c9XQ0CBJuuyyy+Rw2P8IQB/mZubMmfHHa9asSVnPNbj/66oP84VrsHeVlpZKktra2lLWdfwsWlZWptmzZ9vuP2zYMJ122mmSpJdeeklNTU0J65uamvTSSy9Jkk477TQNGzbM9jizZ89WWVmZJPovV5n6MB/4Opo/X/7yl9Xc3KzLLrtMJ510Upfb870QALJDSIte1zFrst/v1zHHHJN2u87f4OfPn9/r7ULPrVu3Tlu2bJGkLn9A61i/efNmrV+/vrebhr3y1UedZz/PdJzBgwertrZWEtfx/ibbPpw6dWr8lx76sGvBYDD+2Ol0pqznGtz/ddWH+cI12HtWrlypN998U1J7ANRZKBTS4sWLJUknnHCCPB5P2uN09EswGNTSpUsT1i1ZskShUChhOzsejyceQC1ZskThcDi3F3OQytSH+cLX0fz429/+pmeeeUZVVVX62c9+ltU+fC8EgOwQ0qLXdfy1c+zYsXK5XGm36/wDWcc+6DuPPfaYJk6cqOLiYpWWlmrcuHG67LLLMo5qfu+99+KPu/qBmv4tjHz1UXeO8+GHH6qlpSXrtiI7V1xxhYYOHSqPx6MBAwbo+OOP1w9+8ANt3rw5437Z9qHL5dLYsWMlca1m49VXX40/njBhQsp6rsH9X1d9mIxrcP8QCAS0evVq/eIXv9BJJ52kSCQiSfr617+esN2qVasUjUYl9f01GIlEtHr16swv5CCWbR8mu+GGGzRy5Eh5vV5VVlZqypQpuu6667Rq1aqM+/F1tOf27Nmja6+9VpJ0xx13aMCAAVntx/dCAMgOIS16VVtbm3bu3ClJaW8L61BZWSm/3y+p/Zsp+tZ7772n999/X62trWpubtYHH3yghx56SKeccopmzZoVv0Wzs02bNsUfd9W/w4cPjz+mf/tOvvqoO8cxxiTsh/x45ZVXtHXrVoXDYe3atUuLFi3SrbfeqrFjx+qPf/xj2v06+sLv96uioiLjOTr6sK6uLmGUIRLFYjHdfvvt8ecXXnhhyjZcg/u3bPowGddg4Tz44IOyLEuWZcnv96u2tlbXX3+9tm/fLkn67ne/q4svvjhhn0Jeg3bHOdh1pw+TLViwQBs3blQoFNKePXv05ptv6le/+pUmTJigm2++OW1ZLb6O9ty3v/1tbdu2TdOnT9eVV16Z9X58LwSA7KQf1gjkQed6XiUlJV1u7/f71dLSoubm5t5sFjopLi7Wxz/+cZ166qkaP368SkpKVFdXp1dffVV33323du3apSeffFLnn3++5syZI7fbHd83l/7tCOAl0b99KF99RF8X3ujRozV79mydcMIJ8V881q5dq3/84x/6+9//rra2Nn3hC1+QZVm6+uqrU/bv6MNsvxZ3aG5ultfrzdOrOLD88pe/jN9GPXv2bNuSPlyD+7ds+rAD1+D+66ijjtI999yjadOmpazjGuwfMvVhhyFDhmj27NmaMWOGRo8eLZfLpY0bN+qZZ57RQw89pHA4rB/96EcKhUK67bbbUvanD3tm3rx5uvfee+VyuXT33XfLsqys9+U6BIDsENKiV3Uu/J+pBliHjl9CWltbe61NSLR582bbET2nn366vvrVr+qss87S8uXL9eqrr+oPf/iDvva1r8W3yaV/O/+CSf/2nXz1EX1dWLNmzdJll12W8gvRtGnT9OlPf1rPPPOMZs+erXA4rOuuu04f//jHNXjw4IRtO/owl6/FEn2Yzquvvqrvfve7kqSBAwfqD3/4g+12XIP7r2z7UOIa3F9ccMEFmjp1qqT292XNmjX629/+pieeeEKf+cxn9Ktf/Urnnntuwj5cg/uX7vSh1H6tbdiwIWGwgCQdffTRuuCCC3T11VfrjDPOUENDg26//XZ9+tOf1pFHHpmwLX3YfaFQSFdffbWMMbruuus0adKknPbnOgSA7FDuAL3K5/PFH3dMtpBJxy19RUVFvdYmJMp0y+WgQYP097//Pf4D8V133ZWwPpf+7Xy7Jv3bd/LVR/R1YZWXl2ccsXLuuefqxhtvlNRe4+++++5L2aajD3P5WizRh3beffddzZo1S5FIRD6fT4899pgGDhxouy3X4P4plz6UuAb3FxUVFZo0aZImTZqkadOm6aKLLtLjjz+uhx56SGvXrtX555+vBx98MGEfrsH9S3f6UGofFZkc0HZ27LHH6re//a2k9tvbOx53Rh9232233aYVK1ZoxIgRuummm3Len+sQALJDSIteVVpaGn+czW0mHUXds7kVEH1j9OjROv300yVJH3zwQXxmVim3/u1csJ/+7Tv56iP6ev939dVXx0OkzhMhdejow1y+Fkv0YbJ169bpjDPOUH19vZxOpx555BF99KMfTbs91+D+J9c+zBbXYOF89rOf1ac+9SnFYjF95Stf0e7du+PruAb7h0x9mK2LLrpIZWVlkjJfgxJ9mIsVK1boJz/5iaT2ARudywhki+sQALJDSIte5fP5VF1dLUldFmyvr6+PfzPtXDAehTdx4sT4486zV3cu2N9V/3Yu/E//9p189VF3jmNZVpeTOiB/Bg4cGP96azfLfEdftLS0aM+ePRmP1dGHNTU11MLsZMuWLTrttNO0ZcsWWZal+++/X+eff37GfbgG9y/d6cNscQ0WVkc/trS06Pnnn48vL+Q1aHccpJeuD7PlcrlUW1srKfM1KPF1NBe//OUvFQqFNHr0aAUCAT3yyCMp/95555349i+//HJ8ecfvdnwvBIDsUJMWvW7ixImaN2+ePvjgA0UiEblc9h+7FStWxB9PmDChr5qHLKS7xbNzeNu5/+zQv4WRrz5KPs5RRx3V5XGGDx/erdEW6L5Mt2NPnDhR//jHPyS199Hxxx9vu10kEtGaNWskca12tnPnTp1++ulau3atpPbRRJdeemmX+3EN7j+624e54BosnJqamvjjDRs2xB/X1tbK6XQqGo3m9RrM5jgul0vjxo3ruvGQlL4Pc9HVNdiBr6PZ6ygbsHbtWn3mM5/pcvsf//jH8cfr1q2T3+/neyEAZImRtOh1M2bMkNT+V/E33ngj7Xadb0uaPn16r7cL2Xvvvffij4cOHRp/PGrUqPhzu9vKOvvPf/4jSTrkkEN06KGH5r+RsJWvPuq4jrs6zrZt27Rq1SpJXMd9ra6uTjt37pSUeJ12yLYPly5dGh/5Qh+2a2ho0Jlnnhn/Wnj77bfry1/+clb7cg3uH3rSh9niGiysziMnO9/a7PF4dOyxx0qSFi5cmLGOZUe/eL3e+ORWHaZNmxafqChT/4VCIb3++uvxfTLVUUWidH2YrUgkEv/615NrkK+j+cf3QgDIDiEtet0FF1wQf/zAAw/YbhOLxfTQQw9Jap9QYObMmX3RNGRh3bp1mjNnjiRpzJgxOuSQQ+LrLMuK35q2YsWK+C8lyV5//fX4X7PPP//8jKMckF/56qPa2tr4aIa//e1vCgQCtsfpPNnHrFmzetp85OCee+6RMUaSdNJJJ6WsP/nkk1VeXi5J+tOf/hTfNhl9mCgQCOicc87RsmXLJEk33HCDvvOd72S9P9dg4fW0D7PFNVhYjz32WPzx5MmTE9Z1/Cza2Nioxx9/3Hb/TZs26cUXX5QknXrqqQm1L6X2WpinnnqqJOnFF19Me6v1448/rsbGRkn0X64y9WE2Hn30UTU0NEiyvwb5Oto9Dz74oIwxGf91nkxs7ty58eUdISvfCwEgSwboAyeeeKKRZFwul1mwYEHK+jvvvNNIMpLMTTfd1PcNPEj985//NOFwOO36bdu2mSlTpsT75uc//3nKNitXrjROp9NIMlOnTjWBQCBhfSAQMFOnTo33/6pVq/L+Og4m69ati/fHZZddltU++eqj++67L37uL3/5yynrP/jgA1NWVmYkmbFjx2b8bB3Mcu3DdevWmWXLlmXc5umnnzYej8dIMkVFRWbTpk222/3whz+Mn/vOO+9MWb9gwQLjcrmMJHPSSSdl83IOaMFg0Jxxxhnx9+zaa6/t1nG4BgsnH33INVhYDzzwgGltbc24zS9+8Yv4+zpq1CgTiUQS1u/atcuUl5cbSWbkyJFm586dCesjkYg577zz4seYO3eu7Xleeuml+DYf//jHU85TV1dnRowYYSSZiooKs3v37txf8AGop324e/futH3SYdGiRaaiosJIMpZlmaVLl9pux9fR3nHTTTd1ef3wvRAAukZIiz6xbNkyU1RUZCSZkpISc9ttt5mFCxeal19+2Vx99dXxb7S1tbWmsbGx0M09aIwcOdIMHTrUfPWrXzV//etfzYIFC8zy5cvNnDlzzA033GAGDBgQ75sZM2aYtrY22+N897vfjW83ZcoU88gjj5glS5aYRx55JCHk/d73vtfHr7D/mzdvnnnggQfi/37605/G38/p06cnrHvggQfSHicffRSJRMz06dPj237iE58wzz//vFm0aJG56667zMCBA40k43A4zL/+9a9eeDf6p5724dy5c40kc8IJJ5jbbrvNPPvss2bJkiVmyZIl5tFHHzWf+tSnjGVZ8WP+7ne/S9uWxsZGU1tbG9/26quvNi+//LJZuHChue2220xJSUk8ZFq+fHnvvSn9xOzZs+Pv1SmnnGLeeust8/bbb6f9t3LlyrTH4hosjHz0IddgYY0cOdJUVVWZq666yvzpT38yr732mnnzzTfNvHnzzO9///uEa8Lj8Zg5c+bYHufuu++ObzdmzBhz//33myVLlpinnnrKzJw5M77uM5/5TMb2XHTRRfFtZ86caZ566imzZMkSc//995sxY8bE1/3xj3/sjbejX+ppH3b8cfOII44wN954o3nqqafM4sWLzRtvvGGeeOIJc+WVV8b/SCLJfOtb30rbFr6O9o5sQlpj+F4IAF0hpEWf+ec//xn/q6bdv9raWrN69epCN/OgMnLkyLT90fnfJz7xCVNfX5/2ONFo1Hzuc5/LeIwrr7zSRKPRvntxB4jLLrssqz7q+JdOvvqorq7OTJs2Le0xvF6v+d///d98vw39Wk/7sCMg6upfcXFxVqHA6tWrzbhx49Iep6yszDz99NO98Vb0O7n0m9Q+Qi8drsHCyEcfcg0WVrY/qwwbNsy88MILGY914403JgTqyf/OPvvsLkd8BgIBc/bZZ6c9hsPh4K6wJD3tw853oGT653Q6zc0332xisVjG9vB1NP+yDWn5XggAmRHSok+tX7/eXHfddaa2ttYUFxebiooKM3XqVHPHHXeYlpaWQjfvoPPKK6+YH/3oR+ZjH/uYqa2tNVVVVcblcpmKigozefJkc80119iWp0jn2WefNeeff74ZOnSo8Xg8ZujQoeb888/nr9g9kK+QtkM++igcDpvf//73ZsaMGaa6utr4fD4zevRoc9VVV5l33nmnJy/3gNTTPmxsbDT/93//Z7785S+b4447zowYMcIUFxcbj8djBg0aZE455RRz6623mu3bt2fdpubmZnPHHXeYqVOnmoqKClNcXGwOO+wwc91115n169fn8+X3a/kI+JJxDfatfPQh12BhrVixwvz85z83s2fPNkcccYQZNGiQcblcprS01IwZM8Z84hOfMA888EDWP0fOnz/fXHzxxWb48OHG4/GYgQMHmtNPP9389a9/zaldf/nLX8zpp59uBg4caDwejxk+fLi5+OKLc/q56WDR0z4MBoPmscceM9/4xjfMjBkzzKhRo0xpaalxu91mwIABZvr06eaGG24w69aty7pNfB3Nr2xD2g58LwQAe5YxaWYtAAAAAAAAAAD0OkehGwAAAAAAAAAABzNCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAAAAAAAAACggQloAAAAAAAAAKCBCWgAAAAAAAAAoIEJaAACAbnrwwQdlWZYsy9L69esL3RwAAAAA/RQhLQAAOOisX78+Hq725B8AAAAA5AMhLQAAAAAAAAAUkGWMMYVuBAAAQF8Kh8NauXJl2vWTJ0+WJE2dOlUPPPBA2u0mTZqU97YBAAAAOPi4Ct0AAACAvuZ2u7MKWP1+P0EsAAAAgF5HuQMAAAAAAAAAKCBCWgAAgG568MEH45OIrV+/PmX9ySefLMuydPLJJ0uSPvjgA33hC1/Q6NGjVVRUpEMPPVRXXnmlNmzYkLDfO++8oyuuuEKjR4+Wz+fT8OHD9cUvflE7duzIql1PPvmkPvWpT2nEiBHy+XyqqKjQ1KlT9aMf/Uj19fU9fdkAAAAA8oxyBwAAAH3gxRdf1OzZs9XU1BRftmHDBt1///165pln9Oqrr2r8+PF6+OGHdfnllysUCsW327Rpk+6++24999xzWrBggYYOHWp7jvr6en3yk5/Uyy+/nLA8GAzqjTfe0BtvvKHf//73euqpp3T88cf3zgsFAAAAkDNG0gIAAPSyLVu26MILL1RFRYXuuusuLVq0SPPmzdPXv/51WZalHTt26POf/7yWLFmiSy+9VGPGjNG9996rxYsXa+7cufrsZz8rqT3U/cY3vmF7jmAwqNNOO00vv/yynE6nPvvZz+rhhx/W66+/rnnz5unWW29VdXW1duzYobPPPjtl9C4AAACAwmEkLQAAQC9bvXq1xo0bp/nz56umpia+fMaMGXK5XPrZz36m+fPn65xzztGxxx6rOXPmqLi4OL7dySefrLa2Nj322GP6xz/+obq6uoTjSNItt9yiZcuWqaKiQi+++KKOOeaYhPUzZszQ//zP/+iEE07Q1q1b9f3vf19/+ctfeveFAwAAAMgKI2kBAAD6wG9+85uUYFWSvvSlL8Uf79y5U/fee29CQNvhi1/8oiQpEolo4cKFCeuam5v1u9/9TpL04x//OCWg7TBy5Ej98Ic/lCQ99thjamlp6d6LAQAAAJBXhLQAAAC9rKKiQmeeeabtulGjRqm0tFSSdMQRR2jChAm22x155JHxx2vXrk1Y9+qrr6qhoUGS9MlPfjJjWz760Y9KksLhsN54443sXgAAAACAXkW5AwAAgF42btw4WZaVdn1FRYWamppUW1ubcZsOnScfk6SlS5fGHw8ZMiTrdm3bti3rbQEAAAD0HkbSAgAA9DK78gWdORyOLrfr2EaSotFowrodO3Z0q12BQKBb+wEAAADIL0bSAgAA9HOdQ9tly5bJ7XZntd+wYcN6q0kAAAAAckBICwAA0M9VV1fHH9fU1BC+AgAAAP0M5Q4AAAD6uSlTpsQfz58/v4AtAQAAANAdhLQAAAD93GmnnRavZ/ub3/xGxpgCtwgAAABALghpAQAA+rmKigp95StfkSQtWLBA1113nWKxWNrtt2/frnvvvbevmgcAAACgC9SkBQAAOADccsstevXVV7Vo0SL9+te/1iuvvKKrrrpKRx11lPx+v+rr6/Xuu+/qxRdf1HPPPafJkyfr85//fKGbDQAAAECEtAAAAAcEr9erOXPm6PLLL9fjjz+u//73v/HRtXbKysr6sHUAAAAAMiGkBQAAOECUlpbqH//4h1577TX96U9/0rx587Rlyxa1traqrKxMY8aM0bHHHqtzzjlHZ5xxRqGbCwAAAGAvyzCzBAAAAAAAAAAUDBOHAQAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAARHSAgAAAAAAAEABEdICAAAAAAAAQAER0gIAAAAAAABAAf1/JwrsUWtU3I8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_compartments = model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'intervention_examples_compartments.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe with model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/tutorials-jupyter/metapopulations/migration.ipynb b/examples/tutorials-jupyter/metapopulations/migration.ipynb new file mode 100644 index 0000000..63388c9 --- /dev/null +++ b/examples/tutorials-jupyter/metapopulations/migration.ipynb @@ -0,0 +1,673 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by migrating hosts.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population 4** (both are one-way connections). **Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a migration rate of 2e-3 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=2e-3, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " host_host_contact_rate=0, \n", + " # host-host inter-population contact rate between populations\n", + " vector_host_contact_rate=0,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostMigration( \n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-3\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `population_A`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 83.06461341318253, event: CONTACT_VECTOR_HOST\n", + "Simulating time: 100.06274296487011 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19491923660278324s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.027785778045654297s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.024601459503173828s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.040442705154418945s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.06669497489929199s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0938570499420166s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 606 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 714 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 793 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 810 tasks | elapsed: 0.8s\n", + "[Parallel(n_jobs=8)]: Done 829 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 848 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 869 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 890 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Done 918 out of 918 | elapsed: 0.9s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2NaNNaNTrue
30.0population_AHostpopulation_A_3NaNNaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
293755100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
293756100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
293757100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
293758100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
293759100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

293760 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "293755 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "293756 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "293757 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "293758 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "293759 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 NaN NaN True \n", + "3 NaN NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "293755 NaN NaN True \n", + "293756 NaN NaN True \n", + "293757 NaN NaN True \n", + "293758 NaN NaN True \n", + "293759 NaN NaN True \n", + "\n", + "[293760 rows x 7 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_migration_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAALmCAYAAADlpH2lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUZdYG8HtKOmmkQKgBRKnSAlJUQBGWjkhRUAEbUuy4u6KLILqwn1hWERVYCFgQbEgTaQJSQzf0llATSO9tyvdHnCHztimZFub+XVeuK/PWZ94kk5nnvOccldFoNIKIiIiIiIiIiIiIiMiLqT09ACIiIiIiIiIiIiIiImsY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvB4DGkRERERERERERERE5PUY0CAiIiIiIiIiIiIiIq/HgAYREREREREREREREXk9BjSIiIiIiIiIiIiIiMjrMaBBRERERERERERERERejwENIiIiIiIiIiIiIiLyegxoEBERERERERERERGR12NAg4iIiIiIiIiIiIiIvJ7W0wOgmqO0tBTJyckAgJiYGGi1/PUhIiIiIiIicjadToeMjAwAQNu2bREYGOjhEREREXkHzkiTzZKTk9GlSxdPD4OIiIiIiIjIZyQlJaFz586eHgYREZFXYMkpIiIiIiIiIiIiIiLyeszQIJvFxMSYv09KSkJcXJwHR0NERERERER0e0pLSzNXSKj6WZyIiMjXMaBBNqvaMyMuLg4NGjTw4GiIiIiIiIiIbn/sX0lERHQLS04REREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiIiIiIvJ6DGgQEREREREREREREZHXY0CDiIiIiIiIiIiIiIi8HgMaRERERERERERERETk9RjQICIiIiIiIiIiIiIir8eABhEREREREREREREReT0GNIiIiIiIiIiIiIiIyOsxoEFERERERERERERERF6PAQ0iIiIiIiIiNzuSdQ1/P7AOy88fhNFo9PRwiIiIiGoEracHQERERERERORLLhfmoOu6T1Bu0AMA8stLMbXVvR4eFREREZH3Y4YGERERERERkRu9f3y7OZgBAC/sX+25wRARERHVIAxoEBEREREREbnR3puXPD0EIiIiohqJAQ0iIiIiIiIiNwrS+nl6CEREREQ1EgMaRERERERERG4UrGFAg4iIiMgRDGgQERERERERuREzNIiIiIgcw4AGERERERERkRsFSWRo6Ko0CSciIiIiaQxoEBEREREREbmRVIZGQUWZB0ZCREREVLP4bEDj5s2bWLduHWbMmIH+/fsjOjoaKpUKKpUK48ePt7p/amqqeXtbv+Lj4x0eb3x8vMvPQURERERERK4nlaHBgAYRERGRdVpPD8BT6tSp4/Zz3nXXXW4/JxEREREREXmXQI34ozgDGkRERETW+WxAo6pGjRqhRYsW2LRpk8371K9fH8nJyVa3mzNnDr799lsAwLhx4xweo8nQoUPx7rvvyq739/ev9jmIiIiIiIjIdYwSyxjQICIiIrLOZwMaM2bMQOfOndG5c2fUqVMHqampaNKkic37+/n5oU2bNorb6PV6bN++HQAQGhqKhx9+uDpDBgBERERYPS8RERERERF5L53BIFqWX1HqgZEQERER1Sw+G9CYNWuWy8+xZcsWXL9+HQAwYsQIBAUFufycRERERERE5N10Rr1oGTM0iIiIiKzz2abg7rB8+XLz984oN0VEREREREQ1n1SGBgMaRERERNYxoOEiBQUFWL16NQAgPj4e999/v2cHRERERERERF5BbxR30WBAg4iIiMg6ny055Wo//PADiouLAQBPPPEEVCqVU467c+dOtG/fHhcuXIBer0edOnXQpUsXPPbYYxg6dGi1znP16lXF9WlpaQ4fm4iIiIiIiCrpDCw5RUREROQIBjRcpGq5qSeffNJpx01JSbF4nJqaitTUVKxatQo9evTAypUrUb9+fYeO3bBhQ2cMkYiIiIiIiBTojCw5RUREROQIBjRc4PLly9ixYwcAoHv37rjjjjuqfUx/f38MGTIEffv2RZs2bRAeHo7c3Fzs3bsXn3/+Oa5cuYLdu3fjoYcewt69exEeHl7tcxIREREREZHzSffQKPXASIiIiIhqFgY0XODrr7+G8a+aqM7KzkhKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGHdp/jypUriuvT0tLQpUsXu49LREREREREt0hlaOQzQ4OIiIjIKgY0XOCrr74CAAQEBGD06NFOOaZUMMMkNDQUq1atQtOmTZGdnY2FCxdi7ty58Pf3t+scDRo0qOYoiYiIiIiIyBrpDA0GNIiIiIisUXt6ALebpKQknD59GgAwZMgQxUCEM4WHh+PRRx8FABQVFeHgwYNuOS8RERERERHZR2dkU3AiIiIiRzCg4WSuagZui1atWpm/v3btmlvPTURERERERLZhDw0iIiIixzCg4UQVFRX47rvvAACxsbH429/+5tbzq1Qqt56PiIiIiIiI7CfVQ4MZGkRERETWMaDhROvXr0dWVhYAYMyYMdBq3dui5OTJk+bv69Wr59ZzExERERERkW30DGgQEREROYQBDSeqWm5q3Lhxbj13Xl6eOTskODgYCQkJbj0/ERERERER2Uay5JSOAQ0iIiIiaxjQcJLs7GysX78eANC2bVu0b9/e5n179eoFlUoFlUqF1NRU0fqNGzeipKREdv/CwkKMGjXKnB3y9NNPIyAgwK7xExERERERkXvIlZwyGo0eGA0RERFRzeHemkheZNeuXTh//rz5cWZmpvn78+fPIzEx0WL78ePHKx7vu+++Q3l5OQDnZ2fMnTsXY8eOxfDhw3HvvfeiWbNmqFWrFvLy8rBnzx588cUXuHz5MgDgrrvuwsyZM516fiIiIiIiInIeqQwNg9GIYl05Qvx4cxoRERGRHJ8NaCxevBjLli2TXLd7927s3r3bYpm1gIap3JRGo8HYsWOdMsaqsrOzsXjxYixevFh2m549e+Kbb75B7dq1nX5+IiIiIiIicg6pDA2gMkuDAQ0iIiIieT4b0HCmc+fOYf/+/QCAhx56CHXr1nXq8efNm4etW7di7969OHPmDDIzM5Gbm4vg4GDUq1cP99xzDx577DH07dsXKpXKqecmIiIiIiIi59IZ9JLLCyrK4NxPk0RERES3F58NaCQmJorKSjmqefPm1ap1un37dsX1CQkJbPJNRERERER0m1DK0CAiIiIieT4b0CAiIiIiIiLvdDI3HT9fOo7Ciso+hSoV0KF2fYyIv9ulWelGoxE/XUrGoayrULpn7WpxLi7kZ6FrbGOcy89A64i6UMH6uDQqFZqFReFMXobk+l+vnUbH6AaODp+IiIjotseABhEREREREXmNc3kZ6LL2ExTpykXrZrbvi7c79HXZuef8uQ1vHv7V5u33ZlwCAKy7csop53/r8EZ0jKqP/g1aOuV4RERERLcbtacHQERERERERGSy5soJyWAGAHx78YhLz73Cxce3xY+pyZ4eAhEREZHXYkCDiIiIiIiIvMb14nzZdTnlxS49d055iUuPb4tifYWnh0BERETktVhyioiIiIiIiLxGRmmR7LpinWsn+0sFwYSH6t2J2MBa5sdXi3OxI/2i7P6PNG6LQI2faHlKYTb23Ex12jiJiIiIfBUDGkREREREROQ1MkoLZdcV6ypgNBpd1hi8RBDQmN2xH+6JaWx+vO7KScWAxqIeIxEZECxavvLiUcmARreYxngg7g689+dW8zKjUjdyIiIiIh/HklNERERERETkNZQyNIwwokyvc8l5jUYjSgXHFmZbaKwEUvzUGruWh/oFuCw4Q0RERHQ7YkCDiIiIiIiIvIZShgYA2Ybh1VVh0MMgyI4IEgU0lD9Cywc0pPcL9QuwY4RERERExIAGEREREREReQ2lDA3AdX00hOWmACBQY1ml2XpAQ3q9UoaGEAtOEREREcljQIOIiIiIiIi8QlFFmWRgoapivWsyNITlpgAgSGuZoaFWKA+lVqmglgl4aGUzNALBglNEREREtmNAg4iIiIiIiLxCZplydgbgwgwNieOKS07Jhx+0Ctkbchkatfz8bRwdEREREQEMaBAREREREZGXEJab8lNrRGWZil3UQ0MqQ8OeklNKpaL8VHaUnDKy6BQRERGRHAY0iIiIiIiIyCsIG4JHB4QgRGuZxeCuHhpalRpaQWaFtR4acmSbgmsDoFLI+iAiIiIiSwxoEBERERERkVcQZmjEBIoDGkUuytAQlpwKFJSbApR7aChlVtjTFJyIiIiI5DGgQURERERERF5BmKERE1gLwaIMDVeVnLIMaARptaJtHC45JRvQCJQ4DktOEREREclhQIOIiIiIiIi8glSGRrDWMlOiWO+eklPChuCAclNwJVqZklNsCk5ERERkHwY0iIiIiIiIyCuIAxq1ECwILLirKbjdJacUMiuUSk6xgwYRERGR7RjQICIiIiIiIq8gLjkVIlFyyk0ZGlqpDA2FklMKlaL8VLb30GDBKSIiIiJ5DGgQERERERGRV7Cp5JTbmoLb10NDiZ9MySk2BSciIiKyDwMaRERERERE5BWkmoKHuClDQ1hyyt4eGo6VnAqESlB0yqiU6kFERETk4xjQICIiIiIiIq+QWWaZoREtUXKqyFUZGjY0BVfqoaFEtim4lk3BiYiIiOzBgAYRERERERF5XLleh7zyUotl7iw5Vap3Zckp6QwNf4lzEBEREZE8BjSIiIiIiIjI44TZGUBlySlRU3C9i5qC6wQlp+xsCq5ELqABAMKkDxacIiIiIpLHgAYRERERERF5nLAhuAoq1PYPRrDGTU3BRRkaTiw55WAghIiIiIgs8V0VEREREREReZywIXhUQDA0arU4Q8NlTcGFPTSkSk45FtBQObgfEREREVliQIOIiIiIiIg8TpihERMYAgAIEQU0XJShIQiUSJackmnu7QhT1oYKlsEOo5FFp4iIiIjkMKBBREREREREHifM0IgJrAUAoqbgRR4sOeVoDw0pUgETIiIiIlLGgAYRERERERF5nFyGhvtKTgmagkv10IDzSkcFSpS0IiIiIiJlDGgQERERERGRx9maoVGsd01AQ5yhIdFDQ+28gEaAuvL4opJTTjsDERER0e2HAQ0iIiIiIiLyuExBhka0KUND454eGqIMDakeGk4sOSVV0oqIiIiIlDGgQURERERERB4nX3JKkKGhq3BJ42xRU3CWnCIiIiLyOgxoEBEREREROdn+jEv45dJxlP1117/RaMS26+fw69VTMBgNHh6ddynVVeCXS8ex88ZFi+WmklMhgh4aeqMBFQa908dhW8kpJ2ZoaP8qOSWIkVwoyMJnp3bj+5RjKKgoxb6blr9LRERERL6Mt4QQERERERE50acnd+HF/asBAF2iG2LfoBfx2oG1+OjETgDA6Cbt8V2vxz04Qu8yfNsy/HrttGi5XFNwoDJLw9/JGQ62NAXXCKMP1SBXcio5Jw1T9/0sWt4luiH2DnoBaieWvSIiIiKqafhOiIiIiIiIyIlMwQwASMq8grVXTpqDGQCwMuUoUguyPTAy73O1KFcymAEAsTJNwQGgyAV9NEqFGRoS51UKJrSOqGPX+dpG1gUAaG0MUCRlXsGma2ftOgcRERHR7YYBDSIiIiIiIhfacPWUaNnJ3BseGIn3yS0vkVxeNygUrf4KEEhlMgiDD86gM1iWApMLNPSrf5fk8s+6DVc8/j/a9jZ/r1ap8Fa7PgCAe+s0sXmMO9IvWt+IiIiI6DbGklNEREREREQupJdoYF1mYD8EAJDq7T2maQe8cfcD0Ko1AIAAjUa0jSuun17Q20SuvNQ394/B20d+Q0FFGSL8g5BRVoQhDVuhZ91misef1aEfAjRanMvPxMS7uqJecDgAoEedJljRcyy+vnAYhboy7Ll5SbZHiNqJJa+IiIiIaiIGNIiIiIiIiFxIanKaDZ4rGWAZ0dCo1Pim51iLZWqVGn5qjcV1LNU5//oZjOKxSIkKDMF8K9kYUgI0Wszq0E9y3aNNO+DRph0AAPW+ewdpJfmS2zGcQURERL6OJaeIiIiIiIhcSCqgUS5zB76vMQqCCHIT9oGCBuCuydCwHIs3ZkOovHBMRERERO7EgAYREREREZELCXszAAxomAizIuSCCAFqy4BGqQsyXMQlp7zv47I3BlmIiIiI3Mn73qERERERERHdRlhySp6whYZcBoIoQ8MF109ccsr7ggdqFp0iIiIiH8eABhERERERkQtVGBnQkGMQZEXITdgHaNyfoaFmhgYRERGR1/G+d2hEREREREQ1lLAnBABUSJScckUPiJpInKEhvZ07MjSEPTS8MUNDxQwNIiIi8nEMaBARERERETmJsGwRIF1yqlhX4Y7heD1RDw2Zj6iBGj+Lx6V6518/cckp7/u47IUxFiIiIiK38r53aERERERERDWUsGwRIN0UvEhX7o7heD2jIEdDbsJeWHKqzMlN1Y1Go2gs3ljeyRvHRERERORODGgQERERERE5iU4ioCGdocGABiCRoWFjU3BnZ2hIZdZ4ZYYGS04RERGRj/O+d2hEREREREQ1lFSGhlRTcGZoVBL10JBrCq52bVNwqZ+bN/bQYIYGERER+ToGNIiIiIiIiJxEb7CtKXhRBQMaAGAQBBJszdBwdlNwYUNwpbG4mtJp1czQICIiIh/HgAYREREREZGTSGZoSJScYoZGJXGGhjRhDw1nZ2gIAyuAl5acYjyDiIiIfJz3vUMjIiIiIiKqoRjQsI+jPTTckaHhjQENtReOiYiIiMid+G6IiIiIiIjISaSaguukSk4xoAEAMAoCCbI9NFzcFFwqEOWN/SqE14uIiIjI1zCgQURERERE5CTSPTSYoSHHAFszNPwsHpdJXNNqjUMyQ8P7AhpS4yQiIiLyJQxoEBEREREROYlkySmJZcU652YY1FTC+Xm5DA1hySl3ZGho1N73cVlqnERERES+xPveoREREREREdVQUhPOOmZoyLI1Q0NYcsodPTTUsi3KPUdqnERERES+hAENIiIiIiIiJ5GacK5gDw1Z4h4a0sQZGs4NaEiXnPK+j8vM0CAiIiJfp7W+CREREREREdlCZxRnY0j10Kgw6FFh0MNPrXHHsLyWMJAgm6GhdnWGhlTJKW/M0GBAg2xXXl6OwsJCFBUVoby8HAaJ4CoREZGzaTQaBAYGIiwsDCEhIVA5uS+ZzwY0bt68iaSkJCQlJeHAgQM4cOAAsrKyAADjxo1DYmKi1WMkJiZiwoQJNp1v6dKlGD9+fDVGXCkzMxOffPIJVq9ejdTUVABAfHw8hg0bhpdeeglRUVHVPgcRERERETlGqil4uUwD66KKckQEBLl6SF7NKCg5JfeB1xMZGiw5RTWV0WhEZmYmMjMzPT0UIiLyQTqdDmVlZcjLy0NQUBAaNWoEtRN7k/lsQKNOnTqeHoLd9u/fj2HDhiE9Pd1ieXJyMpKTk7F48WKsXr0aXbp08dAIiYiIiIh8m9Qd9HJ31RfpGNAQZWjIBBGEPTTc0hTcQyWn5BqjA9KBFyKhtLQ05OXlWSxTqVTQaHw7I4yIiNxDr9eby4qWlJTg8uXLaNy4sdMyNXw2oFFVo0aN0KJFC2zatMnhY/z222+oV6+e7PoGDRo4fGwAuHLlCgYPHoyMjAxotVq8+uqrGDRoEABg3bp1+PDDD5GWlobBgwfj0KFD1T4fERERERHZz5476NlHAxBeLfkMDT+Lx2UyWS+Okvq5aZx4J6GzsOQUWVNaWmoRzIiKikJYWBgCAgKcXvKDiIhIisFgQGFhIdLT06HX61FSUoKioiLUqlXLKcf32YDGjBkz0LlzZ3Tu3Bl16tRBamoqmjRp4vDx7rzzTsTHxztvgAJvvvkmMjIyAADffvstRo4caV533333oVOnThg9ejRu3ryJt956y6aSWURERERE5Fz2TDgXM6Bhc4aGuOSUczM0ak7JKQY0SFlubq75+9jYWJalJiIit1Or1QgLCwMAXLt2DQBQUFDgtICG991y4iazZs3CoEGDakTpqfT0dHzzzTcAgH79+lkEM0xGjRqFfv36AQC++uorUVkqIiIiIiJyPZ0dTXeZoSHVQ0N6O2HJKXc0BZdrUO5J7KFB1hQXF5u/j4iI8NxAiIjI59WqVcucHVhSUuK04/psQKMmWbNmDQx/fTBSakJuajpuMBiwZs0adwyNiIiIiIiqsOcOegY0JDI0PNQUXPhzU6tUXlmeR29HwIx8k15fWY5Nq9WyZwYREXmUWq02/y8y/X9yynGddiRymV27dpm/79mzp+x2Vdft3r3bpWMiIiIiIiIxBjTsI8rQkGsKrnZthoatpa88jSWniIiIyNf5bA8NZ5swYQLOnDmDzMxMhIWF4Y477kCfPn0wadIk1K9fv1rHPnnyJAAgPDwcdevWld0uLi4OYWFhyM/Px6lTp6p1TiIiIiIikne9OA9Hs66jXe16qB8SjvzyUuzLuISkjCs2H2PXjRRoVMr3mGlVauiMBoT7B6JrTGNR6SVHXCnMxdHsaxahhHD/QNwT3QiBWj/Z/ZzFaDTidN5NnMvPxAHB9XIkQ8NoNCI5Jw2phTm4MywGLSJiZc9dVFGGfRmXRcGkQ1lXLR57Y0NwALhQkIU1l09YLNOoVOgU1QB1g8OQUVqIAxlXoJMIfNQJqoWEqIZe+9yIiIiIbMGAhpNs377d/H1WVhaysrKwf/9+fPDBB/j4448xceJEh4999Wrlm+sGDRpY3bZhw4Y4ceIErlyx/YOU8Dxy0tLS7D4mEREREdHt5terpzB0ayIqDHpoVGp82GUw5v75O9JK8u06zocnduLDEztt3r5jVH3sGjAVQdUIOvyQegyjt38t2QS7bWQcdg2YgjD/QIePb4vZxzbj7SObJNfJ5UWIemgYdDAajVCpVPjHwfV4//h287r3OvbH9HYPio6RXpyPbus/RWphjtUxSl0fb7Dx2hlsvHZGtNxfrcGM9g9hzp/bFDN/BjZoibV9nvLKclpEREREtmBAo5qaNm2K4cOHo1u3bmjYsCEA4OLFi/jxxx/xww8/oLS0FM8//zxUKhWee+45h85RUFAAADZ1gg8JCQEAFBYW2n0e0/iJiIiIiEjef5J/R4Whsg6w3mjAS/t/cct5D2ddw2/XzmBY4zYOH+OD4ztlJ+uTc9Lw27UzGNmkncPHt0ZvMGDe8R2y6+UyVgI1lkEcg9EIndGAcp1OdLz3j2/HP+/uDbXgWD+k/mlTMAOA+efrCY6UlSo36PHW4Y1Wt1t/9RRO5t5A60j5zH8iIiIib8aARjU8/PDDGDdunOjuls6dO2P06NFYt24dhg8fjoqKCrzyyisYMmSIYskoOaWlpQAAf39/q9sGBAQAcG7neCIiIiIiumVH+kWPnftCQWa19reWRZJZVlSt41tTbtCjoKJMdn2naOmsdK1EmSS9wYDrxfmiPhy55SXQG41QC5IQbpTaf9OXJ+SUu/aznKt/xkRERESuxOKZ1RAeHq6Yqjto0CDMmDEDAFBcXIz//e9/Dp0nMLAy5bu83HrTwLKyyg8HQUFBdp/nypUril9JSUl2H5OIiIiIyNdE+t96L15LG4BmoVFoFhqFJrVqAwDuCI02L5P6qhccJnvs68X2lbUSKnVyM217CYMPANAoJALNw6IxtmlHfNB5sOR+Uk26DTDKTs4bJbJQdAbLzIeqPxtv8mW3R2TXVf09iQkMUTxOdEAImoVGifqSSF0bIiKqNHPmTKhUKq8pzRcfHw+VSoXx48d7eihEXoMZGi723HPPYcaMGTAajdixYwfefPNNu48RGhqK4uJim8pIFRVVvqG3pTyVkC09OoiIiIiISNk/2vbGP+5+wOH9d91IwX0bPpNcl1ZS4PBxAaBMENBQQSUZZHCnHf0nIz60tuI2Us3C9UYDMkqlAxpSZbWEpZwebtwGy+9/DACgWjrNYl1ckHxQydXqBYdLLp/XeRBea9PL/Pir84fw5B8rZI/zfudBGN+8M2JXvC17nYiIgMq+sL1795ZcFxQUhJiYGHTo0AGjRo3CqFGjoNVyOpGIPIcZGi4WGxuLqKjKO36uXbvm0DFMgQZrTbsBmJuBsx8GEREREZFnhLuwqfb14rxq7V+qr7B4HChotu3qu/cdPb5UQMNgNCJDpoyUQSJIIwxoaBTuvvXkjblSzxUA/NWWPyupMlxVCX+2JszPICJ7lJSU4PLly/jll18wduxYdO/eHenp6Z4eVo3Wq1cvqFQq9OrVy9NDIaqRGNBwg+qmqbVq1QoAkJeXp/hPIy0tDfn5lSnoLVu2rNY5iYiIiIhIzJYJ+TC/6gU0lD49pBU7nqFhNBpFJafkJr1dRerq2fJxSapZeGVAw/aSU3rBMq1aY/3EHiAX0AgQ/KyUAjLArUbqKrDkFBHZbtKkSUhOTjZ/7d27F59++ini4+MBAAcOHMDQoUP5WuImqampMBqNSExM9PRQiLwGAxoulpGRgczMysZ99erVc+gY9957r/n7HTt2yG5XdV2PHj0cOhcREREREcmrMOitbhNWzQwN4QR0Vdaaeisplxi7adLb2zkjQ0MneP7WAgKeIjcuf0EARqtSDsi4O1hFRLeH2NhYtGnTxvzVtWtXTJ06FYcPH8Ydd9wBAEhKSsK6des8PFIi8lUMaLjYwoULzVHrnj17OnSMIUOGQP1XOvHSpUtltzNFa9VqNYYMGeLQuYiIiIiISF6xrsLqNmF+AS47f0FFGQoryhzaV1huCvBEhoY40KAUwDGRDGhAKUNDvEyYoSGV9WHPmFxFLTMuYUDDeoZG5c9WWDGA91QTkSMiIyPxxhtvmB9v3LjRg6MhIl/GgIaDUlNTceTIEcVt1q1bh3feeQdAZROlCRMmSG5nqp2nUqmQmpoqWl+3bl2MHTsWAPDbb7/hhx9+EG3z/fff47fffgMAPPHEE6hbt649T4eIiIiIiGxQrC+3uk21S05ZmUtPK3YsS0PYEBwAgrQ1JENDIsCgmKFhQ1NwrUJAw5OknisA+GsEGRpWe2jUjJ8tEdUcXbp0MX9/6dIli3UZGRl466230KFDB0RERCAwMBDx8fF44oknsGvXLsXjxsfHQ6VSYfz48QAqy1o99thjaNiwIQIDA9GwYUNMmDABp0+flj1GYmKi4tyaSWpqqnk7R8o4lZeXY+3atZg6dSo6d+6MyMhI+Pn5ISoqCvfccw9mzpxprtQiNH78eKhUKnOFlR07dpjHYvoylfYyEV4bOWvXrsWIESPQoEEDBAQEICoqCt26dcPcuXNRWCj9vxIQXzeDwYCFCxeie/fuiIyMREhICO6++2689957KC4ututaEbmKz+ag7tq1C+fPnzc/rvpic/78edGLmvCFIzU1Fb1790a3bt0wePBgtGvXDrGxsQCAixcv4ocffsAPP/xgzs6YN28e6tev7/B433vvPWzcuBEZGRl47LHHcPDgQQwaNAhAZeDkgw8+AADExMTg3Xffdfg8REREREQkz6YMDReWnAKA6yX5aB4eY/dxhf0zACBA0Gja1XfvS2VOOJqhoTca5DM0pEpOCZuCWwkIeIqtTcGVMkyAKhkaguVS14aIyBZ+frcCpXr9rTJ+mzZtwsiRI819XU0uXbqES5cu4euvv8aUKVPwySefmCuQyFmyZAkmTpwIne7W/6yrV68iMTERK1aswFdffYWRI0c66RnZ77nnnsOyZctEy7Ozs5GUlISkpCTMnz8fv/zyi1vKwZeWlmLMmDH4+eefRePZt28f9u3bh08//RTr169H+/btFY9VXFyMvn37YuvWrRbLTf1U1qxZg23btiEkJMTZT4PILj4b0Fi8eLHkCxAA7N69G7t377ZYJhcJ3bt3L/bu3St7nuDgYHz00Ud47rnnHB4rADRs2BBr167FsGHDkJ6ejv/85z/4z3/+Y7FN3bp1sXr1ajRo0KBa5yIiIiIiImnFOtdnaFjjaIaGVECjpvRZsLuHhlSGhkEQ0KhhPTSETcGZoUFE7pacnGz+3tQn9ujRoxg8eDDKy8vh5+eHqVOnYsiQIQgJCcGRI0cwd+5cpKSk4LPPPkNISIhoLquqo0eP4ttvv0VsbCzeeOMNdOnSBaWlpdiwYQM+/vhjlJWVYezYsWjSpAkSEhJc/nyl6HQ6NG3aFA8//DC6dOmCRo0aQavV4tKlS9iyZQuWLFmCrKwsPPzwwzh+/Lj55meg8mbladOmYcKECTh48CASEhJEpeX9/f3tGs+4cePMwYx27drhtddeQ8uWLZGdnY3vvvsOiYmJuH79Oh588EH8+eefijdbP/vss9i3bx/GjRuHUaNGoW7durh8+TL+7//+D3v37kVSUhLeffddzJkzx64xEjlbzXj36oU6deqEr7/+Gnv37sXBgweRlpaGzMxM6HQ6REZGonXr1njwwQfxzDPPWLx4Vcc999yD5ORk/Pe//8Xq1avNKXRNmjTB0KFD8fLLLyMqKsop5yIiIiIiIjFbMjRCq9lDw9o8+3WHAxqWY1dBJSpj5GqSPTRsiCvIBTQyy6QzNKSagtvTQ8OTbO+hYWuGhqCHBhM0iMgBOp3OXB0EqCyfDlRmLJSXl0Oj0WDdunXo27eveZvOnTtj5MiRuPfee3Hy5EnMmzcPTz75JFq3bi15jmPHjqFx48bYt2+fRSn1+++/H/369UPfvn1RUVGByZMnIykpyTVP1IpZs2ahadOmov5ECQkJeOSRRzB58mR0794dGRkZ+PTTTzF79mzzNvXr10f9+vXNGQ4hISFo06aNw2NZv349Vq1aBQB48MEHsWHDBouASN++fdGtWzc899xzyM7OxquvvoqVK1fKHm/Pnj346quv8Pjjj5uXdezYEf3790dCQgKOHz+ORYsWYfbs2dBqOaVMnuOd7+DcIDExEUaj0eYvodDQUIwdOxbz58/Hvn37cOnSJRQVFaGsrAzp6enYunUrpk+fblMwY/v27ebzCGvlCUVHR2P27NlITk5GQUEBCgoK8Oeff2L27NkMZhARERERuZi1DI0AjVZ0J729rJVgSitxToZGoEbr9ubXjpackpq8L9SVyQaYpD7D1ZgeGrIlpxxtCm65nCWniMgeRUVF2LFjBx566CHs27cPANC4cWOMGjUKSUlJOHDgAIDKu/urBjNMIiMjsXDhQgCAwWDAggULFM/3wQcfSPaF7d27N5599lkAlT02Dh48WK3n5ahmzZqJghlVtW3bFs888wwAYPXq1S4dy2effQagshTY0qVLJbM7nn32WfTp0wcA8NNPPyEtLU32eMOHD7cIZpgEBARg6tSpAICsrCycPHnSGcMncph3voMjIiIiIiLyQsV65QyNsGpmZ9girbjAof2ETcGlyk1JBQK8gVSj7Bsl8k1OpUpO2dNDw5PFqOQCFcKAhlalnF3DklNE5IhZs2ZZNKmuVasWevXqhe3btwMAYmNjsXr1agQEBGDLli3m/Z5++mnZY/bo0QMtW7YEAIt9hCIjIzF06FDZ9U899ZT5e6XjuFNOTg4uXLiAEydO4Pjx4zh+/DgiIiIAACdPnkRFhfXMTkfodDpzc/G+ffuiYcOGstuaAkE6nc78c5QyduxY2XWdOnUyf3/x4kU7R0vkXMwPIiIiIiIispG1DA1n9M+wNpl+vTjPoeOKMzTcP+HtzJJTN0rkAztSYZma0kNDLkNDmPmjUduYoSEsOVWNsRGR72rSpAlGjBiBadOmmauRHD9+HEBl3wdrDafvuecenDp1CufOnUN5eblkNkGHDh0USxm1b98e/v7+KC8vt+jn4W7Jycn46KOP8OuvvyI9PV12O4PBgJycHKeVoq/q4sWLKC4uBlB5bZVUXW/6mUlp0aKF7LratWubvy8ocOzGCiJnYUCDiIiIiIjIRtZ6aDgloGFloj1NYSJfibCHRoCb+2dUh3RAw74MjZrTQ0MuQ0PQFNxKhkZ1S58RkW+aNGkSJk+eDKDy/1FgYCCio6MRHh4u2jY7OxtA5WS3tZ4KpjJSRqMROTk5qFOnjmgbaxP/Wq0WtWvXRnp6uvnc7va///0Pzz//PHQ6nfWNAZSUlLhkHFWfv7XrVrWEl9J1Cw4Oll2nrpLVqNfrbRkikcvwHQ4REREREZGNrGZo+Fe/5JS1nhKONwUXZ2i4O0dBKjvAlh4aUpP86YoZGtXroWEtqORKcoEWYQN3pQyTAI3W/ByEW3lrWTEi8g6xsbF2N6p21mumJ197bXH69GlzMCM2Nhavv/46HnjgAcTHxyM0NBR+fpWZj0uWLDGX4HLHa663XzciZ2NAg4iIiIiIyEYlVntoVD9Dw5r8ilIU68oRrBWX61Ai1RRcyNXTLo5O7EgFPW6Uygc0bOqh4a0ZGjIBHlEPDYUeIFI/WyIiZzOVIcrKyoJOp1PM0jCVZlKpVIiMjJTc5saNG4rn0+l0FlkhVVXNIDAISgxWVVRUpHgOJYmJidDpdNBoNNixY4dsiSZ3ZI9Uff7WrlvVsljC60ZUE3nnOzgiIiIiIiIv5JaSUzZsk+ZAlkaZwfM9NKTY8nxVKpUoS0Oph4Z0ySnbm4J7ks09NBQCMlV/tsI7d6WyV4iIHGHK5CgvL8fRo0cVt01KSgIANG/eXLJ/BgAcPXpUsZTTsWPHUF5ebnFuk9DQUPP3OTk5ssc4e/as4jiVnDhxAgDQrl07xX4TBw8eVDyOMzIqmjZtai4RtX//fsVtTdceEF83oprIO9/BEREREREReSFrAY1wf9f30AAcKztVKhi7J+7ir85UujBzQamHhmTJKYPtJac8SbbklFpYcsqxDA1WnCIiZ+nTp4/5+yVLlshut3fvXpw8eVK0j1B2djbWrl0ru77qOYTHadKkifl7pYDCihUrZNdZYwq2KGV5pKWlYc2aNYrHCQysfK9QVlbm8Fi0Wi169uwJANi8eTOuXr0qu+3ixYvN+/Tq1cvhcxJ5C+98B0dEREREROSFrPbQcEPJKQBIK3EgoCFRcsob6m7bOobqZmiIS055/rlLsbkpuI0lp7zzWRLR7aBLly5ISEgAACxatAhbt24VbZOXl4eJEycCqCwLNWnSJMVjvvrqq5IllHbs2IGFCxcCADp16oTOnTtbrG/Tpo25nNL8+fMlgwWrVq3C999/b8Mzk9a8eXMAwLlz57Bnzx7R+uLiYowZM8ZqI/C4uDgAwMWLF6vVY2PKlCkAKjNknn76aVRUiG+6WLJkCTZt2gQAGD58uPncRDUZAxpEREREREQ2KrbWQ8MpTcGtcyhDQxDQEJYwAlxfjqg6xxcFNEqVMjTE9IJJI6/toSEb0LC9KbhSOTGWnCIiZ1q0aBH8/f2h0+kwYMAATJs2DTt27MDBgwexaNEidOzYEcnJyQCAadOmKZY8ateuHa5du4ZOnTrhs88+w4EDB7Br1y5Mnz4df/vb38x9Oj777DPRvlqt1hw4OX78OB544AH88ssvOHLkCDZu3Iinn34ajz32GLp37+7wc33iiScAVPboGDhwIP79739j586dSEpKwueff4727dtj+/bt6NGjh+JxTGO4efMmXn31VRw6dAjnz5/H+fPncenSJZvHM3DgQIwcORIAsGnTJnTt2hXffPMNDh06hC1btuCZZ57BM888A6Cyd8aHH37oyNMm8jrsFEZERERERGQjd2Ro2JKx4EgPjVK9sOSUHwoqHC934QipO1FtzSAQTvRXGPSy29bkHhpygRbheLUqjeR2gCBDw0szUYjo9tC+fXusXbsWI0eORH5+Pj744AN88MEHou2mTJmCOXPmWD3W1KlTMWnSJEydOlW03t/fH8uWLcM999wjuf9bb72F33//Hfv27cOePXswbNgwi/W9evXC/PnzHe4j0blzZ8yaNQtvv/02cnNz8eabb4q2ee2119CmTRvs3r1b9jiPPvoo5syZg4sXL+Ljjz/Gxx9/bF7XuHFjpKam2jym5cuXQ6fT4eeff8bhw4fx+OOPi7apV68e1q9fj/r169t8XCJv5p3v4IiIiIiIiLyQO5qCS2lSq7bF4+sOlJwSNwX3jvvbbC45ZcfHV1sCGko9NDwZApDL0BBSztCQLznF/Awicra+ffvi/PnzmD59Otq3b4+wsDAEBASgUaNGGDt2LP744w/Mnz8fahsCyc888wz++OMPjBo1CvXq1YO/vz/q16+PJ598EkeOHMGjjz4qu29wcDC2bduG9957D23btkVQUBDCwsLQuXNnzJ8/H1u2bEFISEi1nuuMGTOwfv169O3bF5GRkfD390eDBg0wfPhwbNq0CfPmzbN6jFq1amHPnj146aWX0LJlS3Nzb0cEBgbip59+wpo1azB8+HDzNYuMjMQ999yDOXPm4MyZM2jfvr3D5yDyNt7xDpaIiIiIiKgGsJ6h4ZqSU01Do5BSmG1+nFYs3z9CjmQPDTdP3VerKbgdmQZSZZV0BmEPDe+8v8/W56lVy2doBCmVnGJXcCIS6NWrV7VfG2JiYvDee+/hvffeq/Z4unbtipUrVzq0b1BQEKZPn47p06dLro+Pj1d8rjNnzsTMmTMVzzFgwAAMGDBAdv348eMxfvx4xWPUqVPHIjNDjq3ZGoMHD8bgwYNt2rYqW8YKWL9uRO7kne/giIiIiIiIvJD1HhpOKDklEWRoFhpl8dg5TcHFk96emKuwNahiTxNv6QwNYQ8N7yzFZGugxdYeGu4OWhERERG5EgMaRERERERENnJHDw0pzcIsAxqONQUX9tBwf8J+de7urG6GhqiHhlLJKQ8GO9Q2BiC0CqVblH62vL+WiIiIajIGNIiIiIiIiGxkvYdG9UtOSWkaatlDI7e8BCVWxiIkVXLKGzjaFFyJVIaGsOSUUkDAk6Sep1S/D6WADJuCExER0e3KO9/BEREREREReSGrGRpOKDklbN4NAM1Co0XL7C07VSYIaARotHD3XHf1emjY/vFV6jz2ZGh4kmRAQyL4ohzQYA8NIiIiuj15xy05RERERF5AbzDgRmkBogJCEOAldy4TkefoDQaczrtpEQiwVurJGSWnpDIv6gaFIkjjh5IqZaN2pl9EblmJzcfNKC2yeCw16X2lKBeHM6/aMVr7ZJQViZbZmkFgaykmADiSdQ0twmMtXsuFGSpKPSg8mdMgFajQqsQNwKWyNkwsMjQE687lZ8JoNIque6muAjnlJYgNrAWNl2avEBEREfGTOhERERGAgopS9N+0GLtvpuKO0Gj82vcZ3BEmviOaiHzD1aJc9Pr1c1woyLJ5H61K7ZQyTiUSjceDNH6oFxxmMZ4Ju1ZW6zxSY/3gxA58cGJHtY7rKvaUnJqwayVeO7AWm/s+h47RDfBn9nVcK86z2Eap5JQncxhszdBQuh5KGRqvH1yHX66cwKa+zyFIW7nd2bwMDNi8GBcKsnB/naZY99BTCHVRPxgiIqHU1FRPD4GIahDedkFEREQEYNm5g9h9MxUAcL4gE/NP7fbsgIjIoxad3W9XMAOoLDflqn4FgRot4oLDnHrMALV33N9m6xVTyqiQkl1WjLnJ2wAA7x/fLnE8+Y/DrmrubgupQEUtrb9omUqlkn0OAZpbGR0qiSu860YKVl8+bn783rEt5t/3nTcuYmXKMbvHTUREROQODGgQERERAXhh/2qLx/89+YdnBkJEXuFqUZ71jQTaRcY55dw96zazmFBvV7seArV+6Bzd0CnHN2kbWRetI+o69Zj2igsKQ4R/kE3btoqoY/fxz+VnApD+eVY93t/b9LJY91nXh+0+l7P4qTVoLsgQHNiwpeS2rWWuSdsqv4utI6W3+TM7zfz98guHLNa9vP8Xm8ZKRERE5G4MaBAREREREQkY7Sg6FKDRokt0Qyzo9ohTzh2g0eLr+x/DXeEx6FC7PhZ2HwEAmH73gxjQoAWCtX7wV2sc/qoTFIrZHf6GhOiG+Fe7Pk45piNfrSLq4Kv7H7M5q+XTrg+jW0xjBGi05mOE+wdiQvPO2DfoBXSoXV+0T1ZZMQDxz7NNRF00CIkwP57WtheGNmqN+FqRmNH+IfSoE+/YD89Jlt33KNpGxiFI44eH6t2Jdzr0k9xuyb2j0b52PfP1qB0QjBdb3othjdqYt/moyxD0iI0X7XuhIFP2/N7aMJ2IiIjIO3KMiYiIiIiIvIjRaFtAI3fsbITbmGFgj8GNWmNwo9YWy6IDQ7D+oWecep4oFxzTVe4Ii8aeQS/Irj889BXsz7iErus+NS/L/KsRukHw85zcsrvF45jAWlj94AQnjrZ6usXG489hr1ndrlN0AxwZ+qriNk1Co7Br4FR8fnoPJu/9ybz8YkG27D729CshIiIicifedkFERERERCRga35GsERvA/KcqIAQi8cl+goU68pFAQ1fnK5vGhpl8fiiQo8Ye/uVEBEREbkLAxpEREREREQCwglwKRqVGn5qjdXtyH2iBQENAMgqLRYFqNQ+WFKpaa3aFo9zykuQ81dJLiGWnCIiIiJvxXcpREREREREArb00AjW+rlhJGSPcP9A0WR8ZlkRMzQANK4VKSolJVd2igENIiIi8lZ8l0JERERERCRgSwsNlpvyPiqVClEBwRbLMkuLRAEqX+wR4a/RomGVRuiAfNkplpwiIiIib8WABhERERERkYBNGRoaZmh4o+hAy7JTWRIZGr4Y0ADEZacuyAU01JwqICIiIu/EdylEREREREQCtvTQYMkp7yTso5FZKlVyyjcDGs3Coi0ey2VoqH30+hAREZH3Y0CDiIiISIKW9cOJfJoNFadYcspLiUpOlbHklEnTUMsMDfbQICIiopqG71KIiIjI5xkl7sTmRCWRb5N6XRBihoZ3EpecKmbJqb80C42yeHyhIFNyO1+9PkREROT9GNAgIiIin1eq14mWcaKSyLfZ1kODgU9vJAxosOTULU0FAY3LRbmoMOhF22nZQ4OIiIi8FN+lEBERkc8r1JWJljFDg8i3sYdGzSVdcsqSr2YgCAMaBqMRlwpzRNux5BSR66WmpkKlUkGlUiExMdHTwyEZM2fONP+cyLW2b99uvtbbt2/39HAwfvx4qFQqxMfHe3ooJMB3KUREROTzCiskAhoaTlQS+TL20Ki5hE3Bs0qLYTAaLJb5atPr2gHBiPAPslgm1RjcVwM+REREBIwePdocXFKpVEhNTfX0kCwwoEFEREQ+r7CiXLQsQKP1wEiIyFuwh0bNJSo5JZGh4cvz9eLG4OKAhsaXLxARAfC+u+WJnIEZN9atW7cOq1at8vQwFDGgQURERD5PquSULfXziej2xQyNmisqwHoPDV/OQBA2Bj+fLxXQ4FQBERH5tsTERBiNRq/LTnClwsJCTJkyBQAQGxvr4dHI47sUIiIi8nlFOnGGhi3184no9mVTDw2WpvNKwgyNEn2F6HVe7cMfhYV9NM7k3xRt48sBHyIiIl/11ltv4fLly3jwwQfRv39/Tw9Hlu++iyMiIiL6i1TJKQY0iHybLVlazNDwTsIeGgCQUVpo8diX5+tFAY28DNE2zNAgIiLyLQcPHsSnn36KgIAALFiwwNPDUcR3KUREROTzpEpOMaBB5NtsC2gwQ8MbhfsHiibkS/U6i8e+2hQcEJecOpefKdqGPTSIHLN7924888wzuOuuuxAWFgZ/f380aNAAgwYNwmeffYbc3FybjzV+/HioVCrEx8crbpeYmGi1ce+2bdvw2GOPoUmTJggKCkJwcDAaN26Mrl27Ytq0adi2bZt529TUVKhUKvTu3du8rHfv3hYNglUqFRITEyXP9fvvv2PcuHFo2rQpgoODERYWhrZt2+L111/H9evXZZ+HsLdBXl4eZs+ejQ4dOiAiIkL2nKtXr8bIkSPRqFEjBAYGIiIiAgkJCZg1axZycnIUrx0AXL16FVOmTEHTpk0RGBiIevXqYciQIdiyZYvVfR1lusZVn9P333+PPn36IDY2FkFBQWjRogXeeOMNm35nysvLsWDBAvTu3RsxMTHw9/dH3bp1MWDAAHz99dcwGAyy+wp/z65du4ZXX30Vd955J4KDgxETE4OBAwdi48aNdj0fOfHx8VCpVBg/frzV5yVl3759eOutt9CrVy/UrVsX/v7+CAsLQ6tWrTBp0iScPHlScj/T38msWbPMy4S/08K/IVv/BpOTk/Hcc8+hefPmCA4ORmhoKFq3bo1XXnlFsVyV1HXbvHkzBg8ejLp16yIgIABNmjTBpEmTcPXqVVsvkUN0Oh2effZZGAwG/POf/8Sdd97p0vNVF7tdEhERkc8rrJAIaLCHBpFPsyWmGcSSU15JpVIhKiAYNwVZGcJtfJWwKbgUZmgQ2aekpARPP/00VqxYIVp37do1XLt2DevXr0dGRgZmzpzp1rG98sor+Pjjj0XLL1++jMuXL2P//v1ITExEZqY4uGmP0tJSTJgwAd99951o3fHjx3H8+HF8/vnnWLFiBQYPHqx4rHPnzqFv376Kk8E5OTkYMWKERTAGAMrKynDo0CEcOnQICxYswC+//IKuXbtKHuOPP/7AoEGDkJ+fb16WlpaGtWvXYu3atW77WT399NNYsmSJxbIzZ85g7ty5WL58ObZu3YoWLVpI7puamor+/fvj9OnTFstv3LiBX3/9Fb/++iu+/PJL/PLLL6hdW/n1/+DBgxg4cCBu3rxVirCkpAQbNmzAhg0b8Oqrr+KDDz5w8FlWX2JiIiZMmCBaXlFRgVOnTuHUqVNYtGgRPvnkE0yePNktY5ozZw7eeustUdDo5MmTOHnyJD7//HMsXLgQTz75pNVjvfHGG5g7d67FstTUVHzxxRf48ccfsWPHDrRs2dKp4zf58MMPcfToUTRv3hxvvPGGS87hTAxoEBERkc9jySkiEpJqIi1cxpJT3is6MEQxoOHLPSIahkRAq1JDZ5S/Y5cBDSLbGQwGDB06FJs3bwYANG/eHJMnT0ZCQgKCg4ORlpaGPXv2YNWqVW4f27p168zBjLvvvhuTJk1Cy5YtER4ejtzcXJw4cQJbtmxBUlKSeZ/69esjOTkZBw4cwFNPPQUAWLJkCTp37mxx7AYNGpi/NxqNGDFiBNavXw8AGDx4MEaNGoWmTZtCrVYjKSkJH3zwAS5fvowRI0Zg9+7dSEhIkB33iBEjcO3aNbzwwgsYMmQIIiMjce7cOTRu3BhAZdCiT58+OHz4MDQaDcaMGYMBAwagSZMmqKiowM6dO/Hhhx/i5s2bGDBgAI4cOWLe1+Ty5cvmYIZarcZzzz2HESNGIDw8HH/++Sfmzp2LmTNnKo7TGRYsWIADBw6gS5cueOWVV9C8eXPcvHkTiYmJWLVqFa5fv45+/frh+PHjCA0Ntdi3sLAQDz74IC5evAgAGDZsGJ566inUq1cPKSkpmD9/Pnbs2IFdu3Zh8ODB2LlzJzQajeQ4iouLMXLkSOTl5eGf//wnBgwYgICAAOzfvx9z5sxBWloaPvzwQzRq1AgvvfSSS6+JHJ1Oh8jISAwdOhT3338/mjdvjpCQEFy/fh2HDx/GJ598gszMTEydOhUtWrTAAw88YN532LBhSEhIwIIFC/D5558DqMysEKpfv77N41mwYAGmT58OAIiJicE//vEP9OjRA3q9Hlu2bMH777+PoqIijB8/HtHR0RgwYIDssRYtWoQ9e/agZ8+emDhxIu68807k5uZi+fLlWL58OTIyMvDUU09h7969No/PVikpKebMlQULFiAgIMDp53A2BjSIiIjI57HkFBEJCUtOBWn8RI2lWXLKe0UFBCuu9+WSU1q1Bo1rReJCQZbsNr4c8PEVRqMBhjL534HbjTogCioXBermz59vDmY8/PDDWLFihWhCcODAgZg9ezbS0tJcMgY5piBK48aNsXv3btSqVctifa9evTBlyhRkZ2ebl/n5+aFNmzYWGRtNmjRBmzZtZM+zePFirF+/Hn5+flizZg3+9re/Wazv2rUrnnjiCdx33304ceIEXn75ZezatUv2eMePH8evv/6Kvn37mpd16tTJ/P0777yDw4cPIyIiAlu2bLFYBwD33nsvxo4di27duiEtLQ3Tp0/HN998Y7HNa6+9Zs7M+Prrr/HYY4+Z1yUkJGDkyJG47777cPDgQdlxOsOBAwcwYMAA/PLLL9Bqb03T9u/fH23atMGMGTNw+fJlzJ49G//3f/9nse+sWbPMwYy33noLs2fPNq/r1KkTHnnkETzxxBP45ptvsGfPHixcuBCTJk2SHEdGRgZyc3OxZcsW3H///eblXbp0wSOPPIJ77rkHV69exZtvvokxY8YgJibGmZfBJv3798eYMWMQHGz5P75Dhw4YOHAgXnzxRdx///34888/8fbbb1sENCIiIhAREYHY2FjzMqXfaWsyMjLw+uuvAwDq1auHffv2oWHDhub1PXr0wJAhQ3DfffehqKgIzz33HFJSUuDnJ/3ecc+ePXj22Wfx5ZdfWmSRPvjgg/D398fixYuxb98+HDlyBB06dHB43FKef/55FBcX47HHHkOfPn2cemxXYUCDiIiIfJ5UhoZe4c5VIrr9CUOagRotAxo1iFRj8Kp8fb6+aWiUYkCDPTRuf4ayLNz8Ltb6hreJ2EdvQhPo/AlYg8GA999/H0BlxsLy5ctl725Wq9V23f3tDOnp6QCAjh07ioIZVVkrRaTEaDTiP//5DwDgxRdfFAUzTCIjI/H+++9jwIAB2L17N86dO4fmzZtLbjt+/HiLYEZVhYWF+OyzzwAAs2fPFgUzTBo3box//etfmDx5Mr7//nssXLgQISGV/xvS09Px888/AwAGDRpkEcwwCQ0NxcKFC3HPPfcoPPvqCwgIwKJFiyyCGSZvvvkmVq1ahePHj+N///sf3n33Xfj7V2aHlpWVYfHixQCA1q1bS5bHUqlUWLBgATZu3IisrCzMnz9fNqABABMnTrQIZpjUq1cPH3zwAUaPHo2ioiIsW7YM06ZNc/AZO87a3094eDjeeecdDBs2DLt27UJWVhaioqIU93HU0qVLUVxcDKCyXFPVYIZJhw4d8MYbb+Ctt97CtWvXzP1epMTFxeHTTz+VLIk5bdo088/6jz/+cGpA4+uvv8amTZsQHh6Ojz76yGnHdTXmkRIREZHPE05SAszQIPJ1RhvKS7HklPeKDlQOaKh9vKSSsDG4EDM0iGxz9OhRc7PeZ599VjFo4AlxcXEAgJ07d+LChQsuOcfJkyfNxx4xYoTitlUny5VK54wdO1Z23Y4dO5CXl2fX+SoqKnDo0CHz8t9//x16vR4AJHsymHTp0gWtW7dWPEd19e3bF/Xq1ZNcp1arMW7cOABAdnY2Dh8+bF536NAhc8Pw8ePHy5aSCgsLw6hRowBU/qyUsoSUrsXDDz+MiIgIAHBpw3R7FBUVITU1FSdOnDD3aamaAXHs2DGXndt0DSIiIjB8+HDZ7Z555hnRPlJGjBghGwy96667zK8tpowcZ8jKysKrr74KAPj3v/+NOnXqOO3Yrubb7+KIiIiIIFNyik3BiXya8DVAqgF4MJuCe60oKxkavlxyCrCtMTgRWXfkyBHz9/fdd58HRyLN1Ig4KysLbdq0waOPPoqlS5fi/PnzTjtH1ZJM3bp1g0qlkv2qGvAxZY9Iufvuu206X1xcnOL5qpYUqnq+qr0ThL1BhLp06aK4vrrsOX/VcR8/ftz8vbUskqrrq+5Xlb+/P9q1ayd7DD8/P3NmgFTvCXfJzMzE9OnTcddddyE0NNRcDq1t27Zo27YtBg4caLGtq5iuY8eOHWXLSAFAnTp1EB8fb7GPFLmm7yaRkZEAgIKCAjtHKu+1115DRkYGunTpgueff95px3UHBjSIiIjI57EpOBEJCV8CAjTiUhDM0PBe0YHKPTR8PQGhWWi04no9/wcS2aTqhKkpG8KbPPjgg5g/fz6CgoJQWlqKlStX4qmnnkLz5s3RoEEDPP/889W+i/3mzZsO7Wcq1yPFNHnrqvNV7RlStaeCFFfftW7P+auO257nULduXcn9qqpdu7ZslodwLHLHcLVDhw6hRYsWmDNnDs6ePSvKphUqKSlx2VhM18DatQduXX+l6ybsCyKkVldO4Zsyi6pr27ZtWLZsGTQaDb744gvz8WsK9tAgIiIin8em4EQkJGwKLvWhmT00vJe1HhrM0FDO0OD/wNufOiAKsY86NjFcE6kDXFNHvyaYMmUKRo4ciW+//RabN2/G7t27kZeXh2vXruHLL7/EwoULMX36dLz77rsOHb/qBOvatWvNd6NbozQRrDSxXvV8hw8fVrw7vqoGDRpILpfqWeBOzji/txzDlcrLyzFq1ChkZWXBz88PL7zwAoYOHYo777wTkZGR5nJNFy9eRLNmzQBIv3dzNm+/bnJMfW8SEhJw5swZnDlzRrRNSkqK+fu1a9eaG8E/+uij7hmkAgY0iIiIyOcxQ4OIhGx5DWCGhveKstpDo2ZOQDhLUys9NPg/8PanUqld0iTb10RH38p2SktLs1o2xh6mO6YNBoPidkVFRVaPFRsbi5dffhkvv/wyDAYDjh49ip9//hnz589Hbm4u3nvvPXTu3BlDhw61e5xVmy5HRERYlHlyharni4mJkQ1UKKmaAXLjxg3Jhs5V17uSteNXXV+1eXvV72/cuIE777xT9hhVy23JNYDPysqCXq9XDCaZxiI8RtW7+53x+ypl27Zt5v4RCxYssOhNUZW7skdq166NtLQ0m34/TNdf7tp7QllZ5Q19+/fvx2OPPWZ1+xdffNH8vTcENGpWPgkREVENVqIzIL/MAJ2BkwSelFdegozSQouvvHJxOvKN0gLoDM5J6SWimkeYoSGFGRrey1qGRk29o9JZwvwDFa9Rekk+9FYmpYiosn6+yc6dO5167NDQUAAwN36Wc/bsWbuOq1ar0bFjR8yePRtbt241L1+1apXFdra+Tpr6KgDA7t277RqLI5xxvrZt25q/P3DggOK21tZXlz3nrxosqvr9/v37FY+RlJQkuV9V5eXliuXHdDodjh49KnkM0+8qAOTk5MgeIzs7G1lZWYpjlXPixAnz96NHj5bdrmqPFSnO+v9vugaHDx+GTqeT3e7mzZu4dOmSxT5UfQxoEBERuVipzoA5SbkY/1smnt2Siac2ZWLzJdfV8yRpmaVF6LF+PiK++RdiV8y0+DqVJy65YDAaEfXt21hx8YjE0YjodnYuLwM70i9aLJMKcEg1CifvEG0tQ8PHS04BymWnTuTeQPSKt/FDavVq6xPd7tq1a2e+u3/x4sUoLCx02rGbNGkCoLIJsFQ5GKByEvrHH390+BwdO3Y0ZysIGygHBgaavzfdzS13DFOWxMKFC1FaWurweGzRp08fc7+BTz75xKGyQr179zZnIixbtkx2uwMHDig2cnaGTZs2IS0tTXKdwWAwjy8yMtIigNapUydEREQAqHwOcpkRBQUF5mBVq1atFHu9KF2Ln3/+2Rys6NOnj8W6yMhI81iUAgrfffedw2WgqgYN5LI8DAYDFi1apHgcW3+vrTFdg9zcXPz000+y2/3vf/8zP2fhdfOk7du3w2g0Kn6NGzfOvH1KSop5uTdgQIOIiMjF/rhWhqMZt0oalemNWHayAKU63vnoTp+d2o09N1Pt2ie/ohRT9/2MCmZqEPmUWUc3i5ZpVOKPTlq1cvNM8pyoAGtNwRnQaBam3Bg8t7wEU/b+DIOR71eI5KjVarz++usAgKtXr+LJJ59Eebm4lClQOdl6/fp1m4/ds2dP8/cffPCB5Davvvoqrl27JnuMlStXKjZGPnjwoHmS2hRAMak68X3hwgXZY6jVakyfPh1AZf+CJ598UnGiOD8/H/Pnz5ddb01ERASmTp0KANizZw9eeeUVxTJHN27cwOLFiy2WxcXFmctrrVmzRpSdAgCFhYWYOHGiw+O0VVlZGSZOnCjZ7Hnu3LlITk4GADz11FPmPhEAEBAQYC67dPz4ccyePVu0v9FoxNSpU83BKtN1k/P5559j165douXp6emYNm0agMrm1VUnuk3uv/9+AMAvv/wi+fty5swZ/Otf/1I8v5LmzZubv09MTJTc5o033sDhw4cVj2Pr77U1EyZMMAfWXnvtNcm/w2PHjuHf//43AKB+/foYNmyYw+cjS+yhQURE5GI3isVvTisMwI1iAxqH8d4Cd7lQ4Fh6c3ZZMa4X56FxLe+peUpErvVnjvhOyX+07Y0n//gO+r8mdztG1Xf3sMgOEf5BqBcchuvF+ZLrrTXF9gWdoupbzUK8WVqIYl0FavkFKG5H5MumTJmCtWvXYvPmzfj555/Rtm1bTJ48GQkJCQgODkZ6ejr27duHFStWYMyYMZg5c6ZNx+3QoQO6deuGvXv3YtGiRSgvL8e4ceMQHh6Oc+fOYeHChdi2bRu6d++OPXv2SB7jH//4B55//nkMHToU999/P+68806EhIQgKysLu3btwqeffgqgsgm3sCdBo0aN0KBBA1y9ehXz5s1DgwYNcNddd5kzG+rUqWMuNfT888+bn//333+Pw4cPY+LEiejSpQvCw8ORn5+P06dPY/v27VizZg0CAwOtTq4reeedd7Bjxw7s378f//3vf7F9+3Y8++yzaN++PUJCQpCTk4MTJ05gy5Yt+PXXX9G2bVvR8/vggw+wefNmFBQUYMyYMdixYwdGjBiBsLAw/Pnnn5g7dy7Onj2LhIQEq2WMqiMhIQFr165Fjx498Morr6B58+a4efMmli1bhu+++w5AZUNzqWDAjBkz8NNPP+HixYuYOXMmkpOTMWHCBMTFxSElJQXz58/H9u3bAQDdunXDc889JzuOmJgYBAcH46GHHsIrr7yCAQMGICAgAElJSfj3v/9tDsbNnj1bsqH75MmTsWbNGpSUlKBXr16YOXMmOnTogMLCQmzduhX//e9/ERMTA41Gg4yMDLuvU79+/RAbG4ubN2/irbfeQmpqKh5++GFER0fj/PnzWLRoEbZu3YoePXooliLr3r27+ftXXnkFb775JuLi4sw3OsTHx0OrtT5dHhMTg/fffx9TpkzB1atX0alTJ/zzn/9E9+7dodPpsGXLFrz//vsoLCyESqXCwoULbW5gT9YxoEFERORicmmZBeW849GdbKmHLyetuIABDSIfkiaYBG8QHI5RTdrhRmkh3ji0AbX9g/FB58EeGh3ZQqVS4bOuwzFh10rkVumTFKTxw/S7H0S94HAPjs47PN38Hvx69Qy2pp3z9FCIajS1Wo3Vq1dj3Lhx+OGHH3D27Fm8/PLLTjn2kiVL0LNnT/MEt7Ak0LRp09C6dWvZgAZQWRJHal+TgIAAfPHFF0hISBCtmz59OiZPnoyUlBRRw/ClS5di/PjxACpfc1euXImXXnoJX3zxBS5cuIC///3vsmOSmhC3R0BAADZv3ozx48fjp59+wrFjxxQDJGFhYaJl8fHxWLNmDYYMGYKCggIsWLAACxYssNhmxowZUKlULg1oTJkyBTt27EBiYqJks+W4uDj89ttvCA8X/98KDQ3F1q1b0b9/f5w+fRo//vijZAmyHj16YM2aNYoNv4ODg/HDDz+gf//+mDNnDubMmSPa5sUXX8Srr74quX+/fv3w4osv4pNPPsHVq1clA2Rr1qxB//79ZcegJCQkBMuXL8ewYcNQWlqKL7/8El9++aXFNr169cL8+fMVe1XccccdGDVqFFatWoVNmzZh06ZNFutTUlIQHx9v05gmT56M3Nxc/Otf/8KNGzfwyiuviLYJCAjAwoULMWDAAJuOSbZhQIOIiMjF5KbRGdBwL2Fc6YWW9+Jf7S3rmIb5VdZUjfp2Bop0t8oFyN3hS0S3nzK9DplllrWZN/Z9Flq1Bq+0vh+vtL7fQyMjew1r3AaDG7ZCdnmxeVmYXyACNPwYDAARAUHY8reJyC8vRZlBBxVUyCgtRKuf3/f00IhqnODgYHz//ff4/fffsXTpUuzatQvp6enQ6/WoU6cO2rdvj0GDBuGxxx6z67gtWrTA4cOH8d5772HDhg1IS0tDeHg4OnXqhBdeeAEDBgyQLb8DAL///jvWrl2LnTt34uzZs0hPT0dOTg6Cg4PRrFkzPPjgg5g0aRKaNm0quf+kSZNQp04dfPnllzh69Ciys7NlGyD7+flhwYIFmDRpEhYtWoTt27fj8uXLKCwsRK1atdCkSRN06tQJ/fv3x6BBg+y6DlJCQ0Px448/YteuXVi2bBn++OMPXL9+HSUlJQgLC0OzZs3QpUsXDBw4EH379pU8Rq9evXDixAnMmTPHfH0jIyORkJCAF154Af369bM5o6Y6li5dir59+2LhwoVITk5GYWEhGjdujGHDhuGf//ynuc+JlPj4eBw7dgyLFi3C999/j+PHjyM/Px+1a9dGhw4dMHbsWIwZMwZqtfXKAAkJCTh8+DDmzZuH9evX49q1awgJCUHnzp3x4osvWg1G/Pe//0XXrl3xxRdf4OjRo6ioqECjRo3w8MMPY9q0aYiKirL72lTVr18/HDx4EHPnzsW2bduQkZGBiIgItGrVCmPHjsXTTz+Ny5cvWz3O119/jYSEBPzwww84c+YMCgoKFMuWKZk+fToGDRqE+fPnY9u2bbh+/TrUajUaNWqEvn374uWXX7Y5QEK2Uxm9pZsHeb2rV6+am11duXLF3PSJiIiULT9ZgPUp4tq1T7WuhX7xyjW+yXke3/Etvrl4q6bqP9s+gDkJ0nfK9Fg/36LfxvyuD2NKyx6uHiIReYFLhdmI//7fFsuyx7yDSCs9GYhuB5cLc9D4+/csluU//i5C/QJl9iBXcfTz97lz56DT6aDVai1qzhOR90hNTTX3LKma6eIJ48ePx7Jly9C4cWOkpqZ6bBx0+3LF/yUW7iYiInIx2QyNCt5T4E7CklNK/WDjgkItHgvLzxDR7SutuMDicYBGiwj/IA+Nhsi9VGCzdCIiIvJuDGgQERG5mFwuZH4ZS065kz3ho7hgyzq710sY0CDyFcISc/WCwsyNIomIiIiIyLN8NqBx8+ZNrFu3DjNmzED//v0RHR0NlUoFlUplc6pXcXExfvrpJ0yaNAmdO3dGZGQk/Pz8EBUVhW7dumHmzJlIT093ynjj4+PN41P6Yl02IqKao6CCAQ1PUroLtZ4goMEMDSLfkSYIYAoDnES+hkWqiYiIyJv4bDe0OnXqVGv/P//8Ez169EBhYaFoXXZ2Nvbt24d9+/bho48+wsKFCzF69OhqnY+IiGouNgX3DsK2YUr3W8cFCQIaJQUyWxLR7UaUocGABhEREVWRkpKCoqIiu/eLjIxE/fr1XTAi8jVFRUVISUlxaN+77roLfn5+Th6Re/lsQKOqRo0aoUWLFti0aZPN++Tn55uDGT169MCgQYOQkJCAqKgoZGRk4KeffsKiRYuQn5+PsWPHIiwsDP3796/2WIcOHYp3331Xdr2/v3+1z0FERM4ld2djQTlveXQne662cALzenGecwdDRF5LlKERxIAG+Q5WVyMism7ChAnYsWOH3fuNGzcOiYmJzh8Q+ZwDBw6gd+/eDu2bkpJS4yv8+GxAY8aMGejcuTM6d+6MOnXqIDU1FU2aNLF5f7VajVGjRuHtt99Gq1atROv79u2L/v374+GHH4Zer8cLL7yAc+fOVbv+bkREBNq0aVOtYxARkXsxQ8M7Kf1PFk5gZpQWocKgh59a4+phEZGHMUODiIiIXCk+Pl6UPe4piYmJDLJQjeOzAY1Zs2ZVa//u3buje/fuitsMHToUw4cPx48//ogLFy7gyJEj6NixY7XOS0RENY9sU/ByA4xGI5vNuoldJackJjDTiwvQsFaEcwdFRF6HAQ0iS0a7chyJiG5/27dv9/QQyMf16tXLa4JinuCzTcHdpWr6z4ULFzw4EiIi8jYVBqBM7+lR+A57JmSiAoJF2RjCMjREdHtKK2bJKSIiIiIib8WAhouVlZWZv9doWKaCiMgXKU2ks+yU5yhlxqhUKsQFhVosE05yEtHtp1yvQ2aZZZNPZmiQL1Ep5i8SEREReR4DGi5WtUlQy5Ytq328nTt3on379ggNDUVwcDCaNGmC0aNHY/Xq1T6dakRE5M2UXp0LKhjQcBfhz8HalI2w7NR1ZmgQ3fbSSwpEy6RK0BH5En7MJCIiIm/isz003OHYsWNYv349AKBt27ZOCWikpKRYPE5NTUVqaipWrVqFHj16YOXKlahfv75Dx7569ari+rS0NIeOS0Tk8xQmAvLLGNBwF3sD//UEZWaYoUF0+xP2zwjQaBHpH+Sh0RARERERkRADGi5SVlaGZ555Bnp9ZXH09957r1rH8/f3x5AhQ9C3b1+0adMG4eHhyM3Nxd69e/H555/jypUr2L17Nx566CHs3bsX4eHhdp+jYcOG1RojERFJUwpZFJTztkdPsVZWQ5ShwYAG0W1P1BA8KEyxPB0REREREbkXAxouMnXqVBw8eBAAMG7cOAwePLhax0tKSkJERIRoea9evTB16lSMGDECmzZtwqlTpzBr1ix8+OGH1TofERE5kVKGBktOuY2o5JSVOUphI2A2BSe6/Qn/zlluinwN43dERETk7RjQcIE5c+Zg8eLFAIDOnTvjs88+q/YxpYIZJqGhoVi1ahWaNm2K7OxsLFy4EHPnzoW/v79d57hy5Yri+rS0NHTp0sWuYxIRkZUeGmwK7jZ2l5wKFpacEtfWJ6LbiyhDgwENIhgV38kQERERuRcDGk725ZdfYvr06QCAFi1aYMOGDQgJCXH5ecPDw/Hoo49iwYIFKCoqwsGDB9G9e3e7jtGgQQMXjY6IyLcxoOGdrJecCrV4zKbgRLc/UYZGEAMaRERERETeRO3pAdxOVqxYgcmTJwMAGjdujM2bNyM6Otpt52/VqpX5+2vXrrntvERE5Dj20HAfUckpawENwUTmzZJC6Ax6J4+KiLwJMzSIiIiIiLwbAxpOsmbNGjz55JMwGAyIi4vD1q1b3Z7xwIaFRETeSanSETM03MfekhnCiUwjjLhRUujMIRGRl2FAg3ydVLCft14QERGRN2FAwwm2bt2KUaNGQafTISoqCps3b0azZs3cPo6TJ0+av69Xr57bz09ERNKUJgLyGdDwGGv3AUQHhkCrsnyrxMbgRLe3tGKWnCIiIiIi8mYMaFTTnj17MHToUJSVlSE8PBy//fYbWrdu7fZx5OXl4bvvvgMABAcHIyEhwe1jICIiaUrNqJmh4T7CH4O1klNqlRp1gyz7aAgnO4no9lGu1yGzrMhiGTM0iIiIiIi8CwMa1XD06FEMHDgQRUVFCAkJwfr169GpUye7j9OrVy+oVCqoVCqkpqaK1m/cuBElJSWy+xcWFmLUqFHIysoCADz99NMICAiwexxEROQaik3BK4wwKNWkIqext+QUAMQJJjOF5WiI6PaRXlIgWiZ8DSAiIiIiIs/SenoAnrJr1y6cP3/e/DgzM9P8/fnz55GYmGix/fjx4y0eX7hwAf369UNubi4A4N1330V4eDiOHz8ue87Y2FjExsbaPda5c+di7NixGD58OO699140a9YMtWrVQl5eHvbs2YMvvvgCly9fBgDcddddmDlzpt3nICIizzAYgWKdEbX82AfJ3WxpPSUsN8OSU0S3L2HAMkCjRaR/kIdGQ+QZUv8alTJNiYikjB8/HsuWLUPjxo0lb9x1N1PP2bfffptzZkS3AZ8NaCxevBjLli2TXLd7927s3r3bYpkwoPHHH3/g5s2b5sevvPKK1XNW54UzOzsbixcvxuLFi2W36dmzJ7755hvUrl3boXMQEZFrWJsGKCg3oJYfkyZdzZEMDWG5GWZoEN2+hAHLuKBQ8wQIERERUU3Su3dvbN++HQDw0EMPYdOmTZ4dEJETcfakBpg3bx7mzp2LoUOHokWLFoiOjoZWq0VYWBhatGiBcePGYePGjfj9999Rv359Tw+XiIgErN3YWFDOOx/dwd4eGgAQFyzoocEMDaLbljBgWS843EMjISIiImvi4+OhUqlENyATcOnSJezYscP8eOvWrbh+/boHR0TkXD6boZGYmCgqK2WP8ePHO+1F0xQxlZOQkMAm30REtzE2BvcMW+67FpWcKhbX2Cei24M4oMH+GUSA9UxTIiJv52ul87766isYjUYEBARAr9dDp9Ph66+/xt///ndPD43IKbwqQ+PChQvYv38/bty44emhEBEROY21t8/5DGi4BUtOEZEScckpBjTI97DMGhFRzffVV18BAAYNGoS+fftaLCO6HbglQ+PmzZv44YcfAABjx45FeLhl+vb58+cxevRoHD16FEDlm6ihQ4di8eLFiIyMdMcQiYiIrNIZjPjmdCGS0svgr1ZBZzAiu0w+GJFbkYF9eRuQq8uU3Uaj0mDfH3dg4h1D8GKH2uZeGsUVBiw4lo8/Myugl7mjKNRPjSHNgjGgSbDiuM/nVuDLPwtwvUhn9TmqADQO02JKuzDUq+X6twnXivIwYddKnMm7iQfi7sDJ3Bs4lpNmcRdVveAw9Kl3J3bfSMGFgiwAQKDGD0MbtcbC7iMQqPWD0WjEe8e2YvG5/WgVXgeL7x0pKhdzLt/y52DLpI1UU/CM0kLEBNYCAGSXFePJnSvwe/p56AzWA1NRASGY1qYnXm3T0+q2Um6WFOCJnSvwx40U6I2OB8LUKhW6RDfC8vsfReNa7L1FYgvP7MO//9yK+sHhWHLvKNwVHuvpITmsTK/DpL0/4sfUZJTqK2S3qxD8Dd8uGRrFFQYsTC7A+dwKJNQJwOMta0Gr5qQ1ERHR7Wjfvn04e/YsgMo52NLSUmzYsAHHjx/H4cOH0bFjRw+PkKj63JKh8dNPP2Hq1Kn473//KwpmlJWVoX///jh69CiMRiOMRiMMBgNWr16NoUOHumN4RERENjlysxwbUkqQWWLA9SI9bpYYoDNA9ispfzOydTdggF72q8JYjstlJ/H9pSSsvVBsPteai8U4cKMcZXqj7PFzygxYdrIQ6VYCFV/+mY/LBTrFsZq+KgzA+VwdlpxwT2mld45uxubrZ3G5KBeJ5w8iKfMKyvQ6lBv05q/UwhwsPrsfp/JumpflV5TiqwuHsPjsfgDAwcwr+NeRjbhUmINfr53Ge8e2is4lCmjYML44iQnN15LWmr9/99gWrL96CsW6Cosxy32lleTjtQNrcSbvpn0X6i+zjm7GputnUaK37XxyX6V6HXbeuIh/Htzg0Djo9pZakI3Je3/CpcIc7LmZileT1nh6SNWy7PxBLD13APkVpYp/F8IsrrigUJkj1iybL5dgb1oZMkoM+DW1BEdulnt6SEREt5WZM2dCpVKZb5bJzc3F22+/jdatW6NWrVqoXbs2evfujRUrVlg9VmpqKl555RW0bt0aoaGhCA4ORvPmzTFx4kQkJycr7msaw8yZMwEAW7ZswZAhQxAXF4fAwEA0bdoUU6dOxbVr12x+LnK2b99u3s5aGXUpRUVFWLlyJZ555hm0b98e4eHh8PPzQ0xMDHr27Il58+ahsLBQct9evXpBpVLh0qVLAIBly5aZx2L66tWrl8U+wmsjxWAw4Ouvv8aAAQNQt25d+Pv7IyYmBr1798aCBQtQXi7//1N43UpLS/H++++jY8eOCA0NRWhoKLp06YL58+dDp7N+k1l1LF++HAAQGRmJgQMHYtiwYQgNDbVYR1TTuSWgsWnTJqhUKjz88MOidYmJibhw4QIAYMiQIfjvf/+LwYMHw2g0Yvfu3Vi5cqU7hkhERGTVspP2TfLn6TLs2DYT53Nv3Tl8pcD2N7pXCvSy6wxGIy4rrJdz1YF9HLHw7L5q7Z+ckw4AeO9PywDGgtN7RNvWF2Rs2FI+KvavTIyqqpalOZnrWJnMY9mONeU7/tfzdZaDmVedejy6PQgzgGr674mjf28tI+o4eSSe8e3pIovHn//J0nkkTy0xiVmdjEAiX5OSkoKEhAS88847OHnyJIqKipCTk4Pt27djzJgxGD16tOyE9vLly9GiRQt8/PHHOHnyJAoLC1FSUoLz589j4cKF6NChA+bMmWPTOGbNmoWHHnoIa9euRXp6OsrKypCSkoLPPvsMrVu3xh9//OHMp223gQMH4tFHH8X//vc/HDt2DPn5+dDpdMjMzMTOnTvx+uuv4+6778bp06fdMp7s7Gzcf//9eOKJJ/Drr7/ixo0bqKioQGZmJrZv344pU6agffv25iCKkhs3bqBbt274+9//jiNHjqCwsBCFhYU4cOAAXnjhBQwfPhwGGzK7HVFeXm6eRx05ciT8/f0RFBSE4cOHAwBWrFjh8oAKkTu4JaBx5swZAEDXrl1F67799lsAwAMPPIDVq1fjhRdewC+//II+ffrAaDTiu+++c8cQiYiIrMpVKC8lRW+0/c2iEUZkld46vs6OU8mVpAKAUt3t3QCv5K/yMfnlpXbve2+dJla30ajVuDsyzmKZLaWlrCmoKHNovzKDcz+ACHsGEAHAaUEGUbFOvkxTTZBfYf/rw8j4u9E5uqELRuN5RRW39/8Fqh6tSjxFwIAGke1Gjx6NlJQUPP/889iyZQsOHDiA//3vf7jzzjsBAKtWrcLrr78u2m/9+vUYP348ysrKUKtWLbz99tv4448/sHfvXnzwwQeIjo6GXq/H9OnT8fnnnyuOYf369Zg5cybuuusu/O9//8OBAwewZcsWTJw4EWq1Gnl5eRg0aBCuXLnikmtgC51Oh7Zt2+LNN9/Ezz//jP3792Pfvn1YuXIlHn30UajVaqSkpGDYsGEoLbX8P7506VIkJyejXr16AIChQ4ciOTnZ4mvp0qU2j0Wv12PQoEHYvXs3AKBnz574/vvvcfDgQaxZswbDhg0DAJw6dQoPPvigbOaIyfDhw3Hy5Em8+OKL2Lx5Mw4dOoRvv/0WLVu2BACsXbsWixYtsnl89li3bh2ys7MBAI8//rh5uen7mzdvYuPGjS45N5E7uaWHRkZG5R2qDRo0sFheUlKCffv2QaVS4bnnnrNY99RTT2HLli04fPiwO4ZIRERklb9GhQqD9ETQSx3CUDdEY36sNxqw6mfLLIeF3caiY3Q0VFDho5M78fWFW//jjDAgq0QPo9EIlUolClIMbBKEe+sHAgA+PpyPG8W3jq1XmJsqlghovN01AoFayzswz+VUYMkJ5Tfn3sgU0Ajx87e6rUFwTUP9Amw6x+QW3fH83h/NjysM8tkrL7e6D0806yRaPmnvj0jKvPWh0dGARrne8tzvdOiHgQ1a2rz/teI8DNl66wNeka4cBRWlCPULdGg8dHsSBTT05ebXppoov9zy721yi+54unkX2e2jAoPZW4Z8llYtDmg4I5BP3sdgNKKw3HcCnLX8VZIZSM524MABfPvtt3jsscfMyxISEjBy5Ejcd999OHbsGD755BM8/fTTaNOmDQCgoqICzz33HIxGI2rVqoU//vgD7du3N+/ftWtXPPLII+jWrRvS0tIwbdo0jBw5EtHR0ZJjOHjwIDp27IgdO3agVq1b2cYPPvggevTogSeffBL5+fl47bXXsGrVKtdcCCuWLl2K5s2bi5bfc889GDVqFJ5++mn069cPZ86cwTfffIOnn37avE2TJpU3Jfn5+QEAIiIizNfSEV988QX27t0LAHjyySeRmJhofs/TqVMnDB48GG+++Sb+/e9/48KFC5g9ezb+85//yB7vwIED2LRpk0XZq44dO6Jfv35o1aoVbty4gQULFmDixIkOj1mOqaRUfHw87r33XvPyBx54APXq1cP169exfPlyDBo0yOnnJnIntwQ0cnNzAQBqwZujffv2oaKiAmq1Gn369LFYZ3qBunnTsRrTREREzuavVqEI0h/8GoVq0SD01r/VIokJ6z71G6FJaBQAoEFwhMU6o9GIcgNQUGFEmL8KesHcQWywBk3DK9+0BwmCEXqZIAsAlEgENFrU9hN9oKupH2hL/rpzPFgjDmgIJ2CF9fFt/VDrp9ZYPFYKaDQICUfH6Aai5ZUNym8FNBy5YxwAygUZGneFx0ieT85dFTGiZWnFBQgNZ0CDbhEGNAxGI8r0OgRq/Tw0ouoR/r3Z+3dD5Es0EhkaOmZo3JYKy414dkum9Q1vE4v6RCMswPUBjUGDBlkEM0xCQ0OxcOFC3HPPPTAYDPjiiy8wf/58AMDPP/+M69cryyO+9dZbFsEMk8aNG+P999/H448/juLiYixdulQy08Nk4cKFFsEMkyeeeAIrVqzAr7/+ip9//hnp6emoW7eug8/WcVLBjKr69OmDIUOGYPXq1Vi9erVFQMPZPvvsMwBATEwM5s+fL3kDx6xZs/DTTz/h9OnTWLRoEd555x0EBEjfHPXCCy+IengAQO3atTFhwgTMnTsXycnJyMvLE/UZro6srCxs2FDZH2/MmDEWz0OtVmPMmDGYN28e1q5di9zcXERERDjt3ETu5paSU6YX0fR0y7rPpsZBrVq1QmRkpMU6U6RVq3VLzIWIiMgqf438Oo3gP2qJXlwaKEhzazJQI3ijbETlZEFWSeVkuU4QpNCqq7whFbzHVsrQEAY0AjTuuTvNXYp1lc35giUmWgt1lkElYYaGyqa24OK7VR2Z2BFmgzicoSEIpvir7XufFOIXIBpLOstOURU6gx7n8sUTXMX6mlt2ShjQCGNGEpEsyZJTzNAgstmECRNk13Xp0gWtW7cGUNmw28T0vUqlwlNPPSW7/8iRI80T4FX3F2rbti06dRJnDJuYzqHT6Rxq6O0KGRkZOHfuHI4fP27+iompvBHn2LFjLjvv9evXcerUKQDAqFGjzM2zhbRarflnm5OTo1hNZuzYsbLrTD8Xo9GIlJQUR4ctacWKFaioqHy/VrXclIlpWWlpKb7//nunnpvI3dwS0GjRogUAiOq0/fjjj1CpVOjZs6doH1Pwo06d26MZHxER1Xx+wkhCFcIARYlEzfmgKpPuGsEkuSl7wNRHQ5hYoalyeEGCBhQSNFAsaMYRLNzZi9XSWi8JZQochWjFGRq5ZZaTmM7L0PBcQKNMECjzVytE2WTEBYVZPE4rtq/ZPd3eUgqyJbOQTMHDmkj498aABpE8yZJTzNAgslnnzp0V13fpUlny8OzZsygvr/zfevz4cQCVlUpMk/hS/P390aFDB4t9qjMGAEhOTlbc1pV2796N0aNHIyoqCrGxsbjzzjvRtm1b85epz0Rmpusyiapex3vuuUdx26rrla6/aQ5USu3at0paFhQ49z34smXLAFSWtzL166iqXbt25tJcptJURDWVWwIaAwcOhNFoxMKFC/H555/j+PHjmDZtGk6ePAmgsmGOkCnaWb9+fXcMkYiIyCp/jfwEuDDWUSJxN3PVDA3hHZDCDA1h1oXWImXY8mTCbA6LcQgiI8JyVd7Mlh4XpuscqBFnaOSWl1g8FmZo2B7QsPxZKZWckiOcQM13VoaGxv6ARt0gyzvP2BicqhKWmzIpqsEBDeHfW5i/bf1ziHyRWqUWZTCyhwaR7WJjYxXXm27aNRqNyMnJAQBzE2dr+wIwl4cy7VOdMVg7jivNnDkT9957L1atWmV1DCUlJYrrq6Pqua1dt6qluZTGHBwcLLuuail+vd7+zxRyTp06hYMHDwKQzs4weeKJJwBUBpOcnSFC5E5uqec0depULFiwAGlpaZg6darFum7duqF3796ifdauXQuVSmU1skxEROQu/ooZGpaPhQENtUplcae/sEa10SjI0BCVnJI/l1KGRmkNDWgEafxEgQQppkwYvcTdo9YCGrZeCa3KMmjgyMSOOEPD0R4awpJTDmRoBFtmaKSXMEODbpELaBRLZJ3VFPnlLDlFZA+tWm0RvGeGxu2plr8Ki/pIN5W+HdXyd897YKn+C+7Y1xXHcZWtW7di1qxZAICmTZti2rRpuPfee9GoUSOEhISYS8/PmDEDs2fPdtu4vP26KamacfHqq6/i1VdfVdzeaDRi+fLlePvtt109NCKXcEtAIzw8HFu2bMETTzxhUWfuvvvuw4oVK0TbHzt2DAcOHIBKpcJDDz3kjiESERFZpfRx3lrJqSCNn8WbZLkeGpmmDA3ByTRq+X2VemgU19CARojWH1obJutNgSPhRD8gDmgIL5Naok64FFGGhtH+u6mc1kNDcCdXgMb+t3JxwgyNYmZo0C2nZAMaNTNDo8KgFwWYbcn+IvJlWpUaFagS0HAgM5G8n1qlckuTbF9z48YNNGzYUHE9UDl5buolaypDZFqnxFSevWrpIrlz2LJeeJyqGQQGg8HicVVFRUVWxyrHVEoqMjIS+/btky2z5Y7skarP39p1q9oXWOn6u5vBYMA333xj935fffUVAxpUY7mt43bLli1x8OBBpKSkID09HXFxcYiPj5fdfunSpQCABx54wE0jJCIiUlahEDkQNwUXBzSqEtaoNvfQKKmMZOgF2QRVszKEGRrCbS3GIQpoyEziC46pECNxi2CtnyhwI8UUOJIOaFjele1whoaoh4YjJacsJ1Dzyx0tOSXsoeFAQEOQoZHGDA2q4nTu7VVySip4yAwNImVatRpV4hnM0CCyw4EDBxQDGgcOHAAANG/eHP7+lT3g2rRpg7179yIlJQUZGRmyE/wVFRU4cuSIeR9r57BlvfA4VZti5+TkICoqSvIYZ8+eVTyHkhMnTgAAevfurdgzxFRCSY4zMiqqPv/9+/ebSzJJSUpKktzP037//XdcuXIFAPDCCy+ge/fuitvv378fH3/8MS5cuIDdu3ejR48e7hgmkVO5LaBh0qRJEzRp0kRxm3bt2qFdu3ZuGhEREZFtKhRqO4lKTgkzNLSWAQ1xyam/emiUVs4gCHp5W5acEsQkhNkcFuOoEDQF96sZd+JJNfmWYgocSQUZnNZDQ/CzcqzklOUEqiMZGkaj0Sklp4Q9NFhyikyMRuNtV3JKqrybL/XQMCoEvInkCN+jKN04QUSWli1bJtknFqgMJJiaSffp08e8vE+fPli0aBGMRiOWLl2Kv//975L7//DDD8jLyxPtL5ScnIwjR46YG4gLLVmyBACg0WjQq1cvi3VV5+sOHjyIfv36SR7ju+++kz2/NTpd5Q06SlkeR44cwf79+xWPExhY+f66rMyxG4UAoF69emjZsiVOnTqFVatWYe7cuahVq5ZoO71ej8TERACVmSUdO3Z0+JzOZio3pdFo8NZbb1ntBdKnTx/Mnz8fOp0Oy5cvZ0CDaiS3NAV/55138M477yAzM9PmfXJycsz7EREReYNyhQwN4eR4sd7ybmZhhoZwssDwV8mp7FIDDEYjdKIMDcdKTgkzNAIVGpt7kxA/f9E1klKir5Cc6AeAnPJii8dGONoUvPoZGsISN/kO9NCQOq9DPTSCBBkaLDlFf8koLUROuXTjzZpackqYDaWCyuaA6e1A6v9DzfgvQJ6kFQXyWXKKyFZr1qzBqlWrRMsLCwsxceJEAJVlnUzfA8CwYcNQr149AMB7772H5ORk0f5XrlzBtGnTAFQ2nZ4wYYLiOJ577jnJgMG3336LDRs2mM8bFxdnsb579+7mHhYfffSRZGD8/ffft8hWsFfz5s0BALt27cL58+dF6zMyMhQzJUxMY79w4YLDYwGAKVOmmM/74osvSm4za9YsnDx5EgDw7LPPIiDAO26OKCoqwk8//QSgsqy/LY3lo6Oj0bNnTwDAqlWrqhUQIvIUtwQ0Zs6ciVmzZuHmTek7vqRkZ2eb9yMiIvIGFQo35oszNCxLAwkzNORKTumNQG6ZQTFDQ9ibXOnOSWEPjeAa1ENDY0NTcIPRiAqDXiZDw1rJKduuhfBnVeFAhobwjnBHMjSkgjYO9dAItszQyCwrQrleJ7M1+RK57Ayg5pacEgYPQ/0CbO6fcztQCsQTyRH+32PJKSLbJSQkYMyYMZgyZQp+//13HDp0CEuXLkVCQoK5XNSUKVNw9913m/fx9/fHwoULoVKpkJ+fjx49emD27NnYs2cP9u/fj48++ggJCQm4fv06AGDevHmIjpZv6J6QkICDBw8iISEBiYmJOHToELZt24bJkyebAwWhoaGYN2+eaN/Y2FiMHDkSAPDbb79hyJAh2LhxI44cOYJffvkFI0aMwN///nerZY2UPPnkkwAqJ+N79uyJTz/9FHv27MGePXswb948tGvXDidPnkS3bt0Uj2Maw4EDBzB37lwcO3YM58+fx/nz53Ht2jWbx/P888+bz7V06VI8+OCD+PHHH3H48GGsX78ejzzyiLk5ebNmzfCvf/3LkaftEj/99BMKCwsBAI888ojN+5m2zc3NxZo1a1wyNiJXcnvJKSIiopqqXKHklDDIYK2HhqjkVJXsgawSA/SCc2ktmoJbnkthWOIeGjWk5FSwxh+FKtsmUIt1FaJm2YBUU3DnZGjonNAUvERfAZ1Bb1PjcxOpgIZjJafCRMtulBSiYa0Iu49Ft5fTeRmy62pqySmpgIYvUQrEE8kRZ2jwF4nIVqtWrcKDDz6IBQsWYMGCBaL1jzzyCD788EPR8oEDB2Lp0qWYOHEiCgoKMGPGDMyYMcNiG41Gg9mzZ2PSpEmKYxg4cCAGDhyIWbNmSWZyhIWFYc2aNbJ9bT/66CMcPHgQ586dw7p167Bu3TqL9Y8++iieeeYZxbJXSkaMGIEJEyZg6dKluH79uigrQqPR4KOPPkJOTg727t0re5xJkybh888/R3Z2Nt544w288cYb5nU9e/bE9u3bbRqPRqPBunXrMGTIEOzevRvbtm3Dtm3bRNu1bNkSv/76q2RJKk8xlZtSqVSypc6kDB8+HFOnToXBYMDy5cvNQSyimsJrb0+qqKj80OTn52dlSyIiIveQawquVomb0ol6aAjupBeWjTJWufsxq1QvKhNi0RRcED0RBj+qKhU1BZeexBcuddc9vXKlXypLTtkWcCjRV4iaZQNAbplyDw1bMzTEJacc6KGhFTchtjdLo0wii8LfgQyNqIBg0XNKL2HZKVLO0BCW0asphCWnwnwuoCF+NXdCD1W6zTFDg8hxTZo0waFDhzB9+nS0bNkSwcHBCA8Px/3334+vv/4aP/zwg7mkk9C4ceNw+vRpvPTSS2jZsiVCQkIQFBSEZs2a4dlnn8WRI0csJu2VzJw5Exs3bsTAgQNRp04d+Pv7Iz4+HpMnT8aJEyfMJYek1KlTB/v378c//vEPNG/eHAEBAahdu7b5OaxYsQIajf031VS1ZMkSfPXVV7jvvvsQGhqKgIAANG7cGE888QT27NmDl156yeox6tevj6SkJDz99NO44447zD01HFG7dm3s3LkTy5cvx9/+9jfUqVMHfn5+iIqKQq9evTB//nwcPXoUjRs3dvgcznbt2jVz4KVbt27msmW2qFOnjrl3xsaNG5GRIX9TC5E38toMjaNHjwIAYmJiPDsQIiIiVDZWlbvTVaothShDQ1hySpShcevgmSUGUUBDKUNDqaKIsORUkNa77mUI1vpJlrIJ0frbnL1Qoq+QDDI4qym48GelNxpgNBpFQSwlUk2ICyrKEBkQbPMxpII2jmRoqFQq1A0KxZWiXPOyNDYGJwCncxVKTlXUzIBGgU4Q0PB3fLKjJpIqOcV4BlmjVVn+b9EzQ4PILpGRkXjvvffw3nvv2b1vfHw8Pv74Y6eMo1+/frJNva2JjIzE3LlzMXfuXMn1vXr1kuyvYZKYmGhuoi3n8ccfx+OPPy67fubMmZg5c6biMZo1a4bFixcrbgNAcawmarUaTzzxhE39O4RsGStg/brZo379+tBLZKnbaufOnU4ZB5EnuCSgYUp5Evrll19w8OBBxX3Lyspw4cIFLFmyBCqVCp07d3bFEImIiOyiN8pnLUhlElgtOSXTQwMAbhaL35haZGjY1RTcchLC23poyNWyD9b62Z6hoZPJ0BD00BBeJkdLTgGVd6v6qWwPJtTSSgc07CFVVsuRgAYAxAkDGmwMTrCWoVFDS04JXgfC/HwroCEViDcYYXdQlnwLMzSIiIjIm7kkoDF+/HjRG2Sj0Yi33nrL5mMYjUao1Wqb0syIiIhcTamxqmSGhrDklNZKD40qd+rckAhoWGRoCGIASk3BRT00vCygYZCZJAnR+ouukRy5DI2c8mLBuYQlp2wjnNgBgAqDXjLQIUejViNE62+RjSKs7W+NVA8Ne8ZQlbCPRjozNHxeia4CqYU5sutraoaG8O+MJacqg7t6I+Bl/w7IiwhvKGAPDSIiIvImLqs7YTQazV9Sy5S+/Pz80KNHD6xZs0axrh8REZG7KDVWlZjvtpqhoVRySjqgcet7UckpmbEZjUZRQCPQy2awhEEGk8qSUzYGNGzO0HCwKbhEJoYjkzvCZsTV7aHhr9Y4fId1XHCoxeM09tDweefyM0R/I1XV2B4agr8zX2sKLheMlwp0EJkISz4yQ4OIiIi8iUsyNFJSUszfG41GNG3aFCqVCr/99huaN28uu59KpUJgYCCioqKq3WCIiIjImZQzNCRKTomaglvJ0KgS0JAuOXXrHMKJeLmhVRjE62wuOeWk2q5WTyOz3N4MDalyTHnlpTAYDVCr1JK1am1vCi6doWGvUL8Ai0yI6mZo+KsdfxsXJ8jQSCtmhoavUyo3BQDFOpacqonkAhcVeiDIa7spkqcJb7rQOfA/j4iIbHPt2jXk5MhnycoJCQlBkyZNXDAiIu/nkrexjRs3llxer1492XVERETezN67Wa01BRcGQareGS0VoKhaZkoYk5DLchA2BK8ch3SQwFN5G3JjD9b6iyZU5JToKlBhFE+2GGFEQUUZwv2DJM9jc1NwibJOjgQ0hBOpdvfQEGSh+Ffj5o+6QZYZGunM0PB51gIaVcul1STCvzNfawoul13IDA1Swh4aRETu8+abb2LZsmV279ezZ09s377d+QMiqgHccl+OgTU3iYiohitXmPwplQgcWMvQEE4WyPWSMG9fNUNDMM+vk9m1VGKF9/XQkC85Vd0MDQDILS9BuH+QZCkd25uCi8fhyOROdUtOCTM0AqqToREsyNBgDw2fdzovw+JxgEZrUeasuIYGNHy9hwZLTpEjhDcUKPXqIiJg5syZmDlzpqeHIZmRTER0O3JZDw0iIqLbSYXCDfmlEhNGwgyNYCtNweWLL1Wy7KFhORFva4aGRgX4edl/fuWAhm0Bh8qm4HIBjVLZ89hecso5GRrCgEZ+eTV7aFQjQyNOlKFRwA/BPu50rmWGRrvIOIvHNbbklDBDgyWn/lru5oFQjSLK0GDJKSIil0lMTLS553DVL2ZnkC9z27RGcXExiouLZdd/+umnuO+++9CyZUsMGDAAa9euddfQiIiIrKp2ySkrPTRUKuXjV20ELmoKLrOrsCF4sFblcBNpV5FrQhys9bO5KXixrkKUvWCSW14CQDqgYXPJKYlMkQoHsk/FJaeq20OjOiWnLDM0Kgx6ZJXJv0+j25vBaBCVnOoU3cDicU0tOSXsoeF7TcGllzNDg5RoVWwKTkRERN7LLQGNtWvXIjQ0FHFxcSgoEJc0eOqpp/Dyyy9jz549OHPmDH777TcMGzYMc+bMccfwiIiIrFIqOSVFVHJKq1xyCpCfLNCoYBGIEGYu2BrQsKfclLumupxSckohoJFTVhnQkDqLrVdDKkNDJ9GzwxpRySmdnSWn9M4LaNQJqiVaxj4avutKUa4oCNsxyjKgUVNLTgn/znyvh4Z8U3AiOcL3GTqWkCYiIiIv4paAxm+//Qaj0YghQ4YgNNSyxMGuXbuQmJgIAAgODkaHDh0QGBgIo9GIGTNm4Pjx4+4YIhERkSJ7J39KBOWBxBkawul0+RCCMCNDGAvRy0xYlVQIAhreVm8KgEHmeYdo/W3O0FAuOWXK0BBPxtiaoaFSqUTBFUcyNKpbckqcoeF4Dw1/jRbRASEWy9KK2UfDVwn7Z4T5BaJZaJTFshpbcqrct3toyJecYoYGyWNTcCIiIvJmbpnZ2LdvH1QqFXr37i1at3DhQgBAvXr1cOrUKRw6dAinT59Gw4YNYTAY8OWXX7pjiERERIrsLjllJUNDOEFuVMjQ0KotJ96FiRZyQysWNAUPEkZGvIBshoafnU3BrQQ0pM5ia0ADEE/uONJDQ1xyyt6AhmWQLEDjeEADkGoMzgwNXyXsn9EiPAYhWn+LZTWx5JTRaPT5HhosOUWOEJac0jOgQURERF7ELQGNmzcrPyTdddddonUbN26ESqXCCy+8gAYNKlPbGzZsiBdeeAFGoxE7duxwxxCJiIgUlcvVdZJhrYeGcIJcrpcEAGgE/62FE/E6F5Scche5RtTBGvmAhrCnRYnOlgwNx5uCA4CfsJ64EzI07O2hIWoKXo2SUwBQV6IxOPkmYf+MFuGxCBYEYUv0FZKZTt6sRF8hmoj1tR4abApOjhA3BecvDBEREXkPtwQ0MjIq09iF5aZOnDiBzMxMAMDQoUMt1iUkJAAALl265IYREhERKbN38kcU0LCSoaE0UagVBDCEiRZyWQ6lwoCGn/cFNGRLTvn5SzbjBoDIgCCLx8I7sKvK/avcTHWaggPOydAQlZyyO0NDUHJKU72ARpwgoJFWzAwNXyUKaETEIliQoQEApYKgmrcTlpsC2EPDvNzOID35FuH/X5acIiIiIm9SvVoFNtL89YE7OzvbYvmuXbsAADExMaLsjcjISABAaal9dy8SEdHtr8KgxxsHN2DD1VOypYaqCtH64/FmHTGtTS+L5tr2sLUpeLleh78fXI/ssmKL5eIeGpaTBWUGHTZkLZQ8ploFbPlBg8iAIExp0QNNgtpYrD+fq8OMPTkYcWcI7o72R2GFAUuPF2DXdcsJ86oZGjqDHm8c2oANV0+jTK+D3qCCUV8H/qpA3Ci/BAN0+P4r6ecYqg1H98jeqBMQhwa1NBjfOhSxwY5Nris2BVdL/6wi/IOQUVpkfrwy5ajs8ZecS8KqlBMo0Yl/T+wJaPgJAhqP7vgaQRo/XLcjCBDmbxnQOJR1FXP/3IZ/tO0t+Xt5qTAbr+xfg9zyEvSKa4a3j2yyWF/dDA1hyanFZ5Ow9spJZJUVIyYwBG0j4/BRlyEo1evw8v5fkFFWiCktemB8887VOq+t8spL8OK+1dibcQkqqNCjTjw+uWcYatXwO+zPZFfguzOFyCo1IDZYjcdb1EJ8uJ/s9qU6I1acKcTFPB161AtAv8ZBot+XH1P/xMcn/0DjkEjM6zwIRbpyvJz0C04JSknJuVSYY/G4RXisqOQUUPm3NqF5FwCVQdj/S96OtVdO4r46TTCzfV8EauWfh60uFWbjxX2/4ERuuk3bh/oFYPwdnfFS6/tE65acOyBa5i0lp4orDPjqVCGuFujwQKMg9G4YhEv5Onx9qhA3iq3/XwvUqtCzfiAGNLn1+7AhpRg7rpZaZOfll0tPRH9yNB8bUosxID4YPepbvyYGoxGrzhTh0M1yNAnXYnyrWgh2Yl+mHVdLsDG1BEUV0v8T/NRAQp0AjL4rxK7XbnKMMIj/ycld+ObCYacdX61SoUt0I3zadRgiA4Lt2regohQv7f8F+25eQufohvik6zCE+wdZ35GIiIhuG24JaNSvXx/nz5/H0aNH0atXL/Py9evXQ6VS4b77xB9A8vLyAADR0dHuGCIREdUgn5/egw9O2FeS8O8H16NtZBz+1qCFQ+e09W7W/578A/89+YdouajklET2QaE+V/a4+QUACoAJu1ZiefdYAJYf3s/kVOCDg3n4sk8Uvj5ZKApmAECw9tY5Pz+9F/OOC69hpuz5q8rT5WLtjR8xKOp53CjWo0iXj1ndIm3atyq5clMAEKjRimp4m0QIJi6UavsXVJTJ9qqwq+SUIHhgTyDDJFRiIvWNQxtwd2QcBjRsKVr39K7vsTXtHADg9/QLovUB1WgKDohLThXqylBYUHmtcstLcC4/E8W6cmSUFuFQ1lUAlb9/XWIaolVE3Wqd2xZvHNqA5RcOmR+fzc9AmF8gPr5nqMJe3k1nMOKDQ7nIK6/83b9RrMe8Q3n4tHeUbLB1Q0oxNqZWlk47m1OB+DAtWtS+FWy4VpSHkb9/BSOM2IUUaNVqnMnLwL4Mx7OcW4bXEZWcAoCndq3C0EZtUDsgGOuunMIbhzYAAPbcTEWjkAhMbtnD4XNWPce2tPN27fNy0i9oVzsOveLuMC+7WpSLNw//arGdv1pT7d4zzvLT+WJsu1J549bZ3AI0i/DDh4fykG5DMMNkeX4hGodp0SbaH8czy7HsZKFdYzifq8MnR/PRPNLPalB6x9VS/HyhMlB/uUAHf7UKz7QNVdzHVtcKdVhwzHrJu6uFxagTrMEDjTh57WrC9yi55SXmEo7Oci4/E/4aDZbcO9qu/d46tBFL/wpWnsq7iRA/fyzo9ohTx0ZERETezS0lp+677z4YjUbMnz/fXGLqwIED2LhxIwCgX79+on1OnToFAKhb1/UfmImIqGZJyrji0H4HM686fE65PhUAkFDn1uTi4axrktvUDbac+IkJDHF4LGfzpc9RqjciNV+H83kVkutrB976t38w07FraFJiKECxoXJS/2Ku9PmsUcquUavUiA2sJbmuQ+36Dp2vKj+1BuF2lJ6pE2jbxF10gPzPtWFIuORyU9DC1uXmMQVVbzLxjjDrN41svHbGHMwwj+u6fZPNjjog8TsqHEtNc7VAZw5mmGSUGFAoc1c6AKw8W2Tx+KtTlpPW+zIuWfTg2XTtbLX+voO1fmgaWhshWn/Jv5FDf72Ovndsi8XyKft+dvicJkajEXtupjq0b5LgOUv9/jQIiXDo2K6w9qJlFt+i5AK7ghkm5/56/U3Jd7wc2HkbXsM3X7KczN582XmT22eybf8fcjGvZpU9q6lig6T//zpbUsZlu/dZfG6/xePPT+911nCIiIiohnBLQGPy5MlQq9VISUlB06ZNkZCQgJ49e0Kn0yEyMhKjR4vvyti2bRtUKhVatWrljiESEVENUqxwR76SCqP9k0XWhGhVePiOW5PYUiWUnmreBTGCyfm6wWF4slknh86p9Dwyig0ok4i+xASp0T3uVqmeCifUwy41VE7IOVqKPV+mKfbn3YYDAB5v1hFxQZZlkfrWuxOzO/ZDs9Aox076lxda9pDsESDn9ba9rGZ0tAiPxeBGrWXXtwyvg8ENxe9rTubesHkcJmF+gZh4V1e796uqT1xzdI5uaPd+Sg3snalcL/4919fwxrRpRdJ/uzobS9oBwJUCy2MIm8WnleRXq979G20fhL9GC7VKjb+36S1an1Ne+Xd/oSDL4XPIKdKVO9yno1TQtyhPon/GP9qKn4+3SJUJRFtjer1XynizRq7MU1WXC1wXSMgps/331Z6/FXLcU827IMrOUlCOcOTvvVjn2N8KERER3T7cknPdsWNHvP/++3j99ddRWFiIw4cr62/6+flh0aJFombheXl5WL9+PQBYlKgiIiICgGLBxNX4OxLwcOO2ou3mHd+OP26kmB9XZzJUOFfUMdYfjzQPQUyQBuEBt+4PEE72Dm7YCot6jJA85tL7RuOlVvfhanGeeVl2qR5ZpZXjVAGIDdZgbvJGnKgy6a1XmKy8WaKHcG5oWLNgPHxHCAIFPTSs6RFzJx5u1MX8+N/Jq5Fdfuvu8FJD5feOzi9JNew9NvRV3F27HgAgPrQ2zjzyd+y7eRkl+grEBtZCQnQDaNUa/DnsNey7eQmFguBWk1q10SwsCvszLqOgogxf/pmPPEEN+c97NUWbSPsyQB9r2gE9YuNxLPu65HR+qF8AusY0FjV/r0qlUuHnB8Zj2oG1+LhKWbJTebb1OagqZeR01K7mZFOg1g9/DJiCpIzL2JtxCf84uN6m/YTl01xFKoNHrol8TSEf0LD9GMIJXVv6CH3ebTjqBUtnCFXVLDQKrav8bUxv9yDmHd+OnCqlZnLKKr9vFBKJLEGvoOrKKBWXTFrZ63EESvzOfXhiB3akXzQ/Fk6MCgMajUIi8Fw1g4CuJNXq4vm7QxHqb3n/2aZLJTiWcet1r+SviLLwL6NpuBaPNL8VbPfXqFAnWIPrhTqsOltkkelQbMMvoCv/8nIF/7Taxfijb+PKslI7rpYiKf1W2UClbElynpYRdXD+kTewP/OyKGhaHYezrmLW0c3mx848NhEREfkOtxWRfeWVV9CnTx/88MMPSE9PR1xcHB577DFRM3AA2L59Ozp3rmw4OWjQIHcNkYiIaogSwd15naIaYIjEnfHfpx6zCGhU565l4XSOn1qFOyKsT+x2jKoPtUS/DKCyrFLH6AboiAaKx0g8v8cyoKEwgZlRohdlaHSqE2ARzACAChuCOx2jY/Ha3e3Nj1dd2oGkzKoBjcpSOEZU3h1sb8N14YSjRqVG28g4i2WhfoF4qP6don2Dtf54oF5z2WP3/quW/u8Xs3BdMInctnasXeM0aVQrEo1q2d8rpCqNWo1xdyRYBDQuFeagqKIMITY2u25cK7LawQyTAI0W99VtCn+N7Q3GlQJqziQZ0KjGXejeQDagYcfzEmZE2RLQ6Ff/LjRxMKupW2xjbLh62vw4+68Mjca1InEk27L8XUFFqWSvGFtllFqW1/JXazAyvp3ka8svl09YBDSE/xeEGWAdoqpfqs7d2sX4o3ag5d/myaxyHMu49bhEZoY/IkCNhDri15Q6wRrsvFZqGdCwIUPDlX96OaWWrynNwrXmsZ/Psfy56mv4a0BNEhEQhH71xZ/VqyPULwBAlYCGgQENIiIisp9bu+K1bdsWbduK76AVGjp0KIYOrbkNH4mIyLWK9ZZ35cuVDhI2tdS5oVyNK6Za/NSC56EwoZxRrEeZYMYzQCOeDNTZUH5LLZhEFPZsMJWcAiqzNCROo0g44RjuH2h3UMQardq5x3OGu8JjoYLKIpvndF4GOkUrB7ZMXJEhoZEJuklx14RiucSdu+4qd+Uq6UXSk3f6arw0SV0nIWFTe3sIg2emDI0GEj1hLhXmoI0gKGkPYYZGTGAt2deEIEFzb2sZGuHVCLR4E2FwutSBlIUQreXfuy0lp1wpt8zy/1FElaxHjeClqTp/K+R5AWrLv9syidKCRERERNa4pYcGERGRMwnvxJUr8yOcpK3OneWenO4RTkbqFYIR14v0orEGSMxl2hLcEQY06ooCGrfupnakj0Z+RZnF4zAbMxTs4e/4PK7LBGn90CS0tsWyU3m299EIVihr5Shh8E+Ju7IkbssMDZmmz9XpC2BLhoY9P1+hSH/LgEb2X2WmAjXi+6IuFeY4fB5AnKERExgisyVEZahEPTREAdOgao3NWwQJZvhLHXjxDfazfG23peSUK1tXCEtORVbJStEI/g8xQ6NmCxC8bjgrQ6Om91ciuh2NHz8eKpUK8fHxnh4KgMrSryqVCjNnzvT0UIjICTwW0DAajbhw4QIOHDiAAwcO4MKFC9VqZkdERL6jRHAnbrDMHetaOzIb7GVrIoG1RtK28BcENJSyK7JLxc9ROkPDhoAGrGVo3Jp8dGSyS3QHtQsmHL0xQwMAWkVYlr2ypzG45zM0WHLKEYUVBhSUS49f7iZ7W56vLROC1cvQsPy7NPXTkBpadQMamaKARi3ZbYUBFeH/BWGPHlcETD1BmKFRYm4KbvsxggXHsKXklKsYjUZRU3ClDA17+s2Q9wkQlDcs0+vsmgOQ27ZI0E+LiMjX9OrVyxy0EX75+fkhJiYG999/P+bOnYvs7GxPD5eo2twe0Pjtt98wePBghIWF4c4770TXrl3RtWtX3HnnnQgLC8OQIUOwadMmdw+LiIhqkGLBB1e5DA2nlpyy8fO2K4LzwslIWxp6VyUZ0LDhWgiDNsIMjTKLgIb9z1tYcsolGRoS73S84QaKluF1LB6fyrW9MbhS43FHaewI/LgroFFxmwU00mX6ZwDyGRrlMnffV/0dLrehZEt1AhpyGRpS5b+qn6FhWXIqWiFDQ/h3YD1Dw7tKTjkaahWXnJL+e1Q6foifoOSUBzttF1UYRUGKyCoBDS0zNG4rwswqwLYsMxO5JuIMaBD5pvj4eKhUKowfP97TQ/FqOp0OmZmZ+OOPP/DGG2+gZcuW2L17t6eHRVQtbuuhUV5ejvHjx2PlypUApCcTioqKsH79eqxfvx6jR49GYmIi/P2l66ITEZHvKhFMXMndsa4VZTY4MUPD1u2ckCAgCmjY+Tz8JQIaUpPFQsIMDaWSU45kaIgDGs6fcJTK0KgweL4UVasIy4CGpzM0tCp7moJ7ruRUTZ7KlGsIDsjfdS7XH6FMbzRPbNsyGejUHhqmDA2JbS8V5Tp8HgDIKBNkaAQolZyys4eGl5WcCvZTOdS7Ikimh4Y9RxJnaFj/n+Kqvz1huSmAPTRuZ8IeGkBlkEJYikqO8P2fifBGFyIiIW+4ocldkpOTLR6Xl5fj4sWL+Oqrr7BmzRrcvHkTgwcPxpkzZxATE+OhURJVj9sCGmPGjMHPP/8Mo9EIrVaLhx56CPfccw/q1q0LAEhPT0dSUhI2b96MiooKrFy5EjqdDqtWrXLXEImIqIYQ9tCQawourr3t+h4arnirLCw5pdRDQ0ijkp7Ut6nklCDDxfUlp5wf0PCTeO5leqNkkMedWgpKTl0oyLJ5Usc1Jae8K0PDaDTKZGjU3NnMNJmG4ACgk/mQLdcfobDCiMC/flXKbSo5VY0eGoKSU6YMDSnOztBQLjll+Xcg/L/gjgyw6nB0XiVQ8NpV4pQeGp6b5BGWm6rlp4JflecofG3y4FDJCYQlpwD7+mjIBTSYoUFEdEubNm1Eyzp27IgRI0Zg3LhxWL58OXJycrB48WK88cYbHhghUfW5JaCxfv16/PTTT1CpVOjduzeWLFmCxo0bS257+fJlPPXUU9i2bRt+/PFHbNiwAQMGDHDHMImIqAbQGwyiO5KDtNL/zpxacspBzuihIby72pbsChPh5JeJM5qC64wV+H/2zjs8iqr/4me2pjcgQGihd+kdJL4gXUBFfMUCCKKADcXeQH4qiu1VBAWlWQEpIkUp0mtCb1JDS4BAet06vz+W3ezcuTM7W7NJ7ud5fAw77e7s1Hvu9xyT1QitSufRqP1AVGhoKf24BguPSPHHAYW0nLLwVpzLu4VWsTVdLusXyyl3MjT8mQ58B6ljvKJaTkmNOpcSNPKNVlQNtV0XlFhOufP7ksQRllPZBnuGhj8sp5SHgpPCnshyKgCCqTd4Wukktpyir0dOowzTCI+HsszQyCmRzs8AAI2oQqP8XgMY4lBwACgxKxc0isxM0GAwGAxveOWVV7BkyRIAQHJychm3hsHwnIBkaCxatAgA0KZNG/z111+SYgYA1K1bFxs2bEDbtm0BAAsXLgxACxkMBoNRXqCNzguE5RTZheILKymlkIKGOyPkpSoRlFVokKHg4tHS9hwNX1Ro+GMEtVSFRlkTpQtBrbBowWfOORpyZfF+sZxyYwR/ICo0pGyUrOXYdEreckqiQkOis7rAqQPaleWUhlOB8+KCRVZoFJgNMFkt1F/ienGepMe9EsSChvJQcNJyKhCCqTd4Gm5NWk6ZrNLHjxThRIVGiYUvM6Eg2yA8fmNDCEFDVGnp9yYx/AgtQ8OtCg0maDCClGnTpjkCmAEgJycH7733Hlq2bImIiAjExcXhnnvuwa+//upyXZcuXcKUKVPQsmVLREZGIiwsDI0bN8bTTz8tshIisbdh2rRpAIDNmzdj6NChqFmzJkJCQtCgQQM8++yzSEtLU/xdpNi2bZtjvm3btrn8XiSFhYVYunQpxo8fj7Zt2yI6OtoRXt27d298+umnKCgooC5rD8C+fPkyAGDx4sWiIOykpCTBMuS+oWG1WvHTTz9h0KBBqFGjBnQ6HapVq4Z77rkHc+bMgdEofa0h91tJSQlmzZqF9u3bIzIyEpGRkejcuTNmz54NsxtCrq+pX7++42+DwVBm7WAwvCUgFRr79u0Dx3F4+eWXodW6fgnXarWYOnUqHnvsMezbty8ALWQwGAxGeYEmaEhZTpGdtO6GaQsow1Bw0nLKzFug1BGfHM3rWIeSDA3iRSZCo0eYRisYIVnCFyECsT7J0PCLxz3l6weDoAHYcjTSinId/3bO0aAFLtsp8wqNshQ0ymmFBs/z8oKGxNeStpwq/Q1cdQZ6k58BiDM0ACBbxnbqamEOGkVV9WhbYsspuQwNwnLK6d5gsVqRbxK+pAdbhYaSaybt6k2ruiux8G5ZWJGWU4DNdipS557wxfO8V2IZIM7QiNELj1cyQ8Nd8YYRXJDPM4B00DcNScspExM0GMFDamoq7r33Xly4cMHxWWFhIbZt24Zt27Zh9erV+Pnnn6GhVJgvWbIEEyZMEHU0nz9/HufPn8cPP/yAGTNmKLIJmj59uqjzPjU1Fd988w1++ukn/Pnnn+jVq5dnX9IHDB48GNu3bxd9fvv2bezYsQM7duzAnDlzsH79ejRr1szv7cnKysLQoUNFYdm3b992/HazZ8/Ghg0bZAdpA8DNmzcxYMAAHDlyRPB5cnIykpOTsXHjRqxevRoqLyxBPcUuAgG2AeUMRnklIGfPrVu3AAAtWrRQvIz9gnX79m2/tInBYDAY5RNa8KPUiHVxhobvOkIUh4L7wXLKHessqQoNkxLLKaLtHMehRmiU4LMSi21EtUeWU0bhy5o/KjRofV/GIBE0mkcLczRO52ZIzCkkrMwzNMrOcqqc6hnIM/IoljH/l+qkNUhVaBidKjRcWE55K2jEUoTGLEOxpHjrqe2UwWIWiRByFRqk1aBzhQa5HgCI1gZPKLiVl5Ms5SErNADpSh4pSMspwLMcDV+cjmSGRixhOUXewoLk8s3wEI7jRKKGTwQNVqHBCCIefvhhpKam4plnnsHmzZuRnJyMH374AU2aNAEALFu2DK+88opouXXr1mHMmDEwGAyIiIjAe++9h507d2Lv3r347LPPULVqVVgsFrz55puYO3eubBvWrVuHadOmoWnTpvjhhx+QnJyMzZs34+mnn4ZKpUJubi6GDBmCq1ev+mUfKMFsNqN169Z46623sGrVKuzfvx/79u3D0qVL8d///hcqlQqpqakYPnw4SkqEg6AWLlyI48ePIyEhAQAwbNgwHD9+XPCfO24vFosFQ4YMcYgZvXv3xvLly5GSkoI1a9Zg+PDhAIDTp0+jT58+kpUjdh544AGcOnUKzz//PDZt2oSDBw/il19+QfPmzQEAf/75J+bPn6+4fb5k1qxZjr+HDRtWJm1gMHxBQCo0wsPDkZOTg8zMTMXLZGfbXobCwsSjwhgMBoNReSmmlOhKjVjXcJ4LASRlGQpOBvqaeeUv/3ofWk4BQPWQCFzML72fl3hjORWACg1au6RGvQeaFjHCHA1BhYZMEytFhYZEJ315tZySCwQHpO2HlFRouAoF9yYQHAB0ag3CNTpBh2G2sUjyl/BU0LhN2E0BQFU3KjScMzTI6i8AiNIFTyi4VGaKEmhVdyVmsUAiJ1Hq1TahwPnwKjRZAcW1fzYsVsBLvUycoUFaThG2gSxDo/yjV2sEVXjuWE7RBrUAQJGE0MGQx8pbkSlTcVfRqKIPg8qLTCmlJCcn45dffsEjjzzi+Kxjx4546KGH0KtXLxw9ehRfffUVxo0b5whvNplMmDBhAnieR0REBHbu3OmwYQeArl274sEHH0S3bt1w/fp1TJ06FQ899BCqVqVXRKakpKB9+/bYvn07IiJKBwf06dMHPXr0wBNPPIG8vDy8/PLLWLZsmX92hAsWLlyIxo0biz7v0qULRo4ciXHjxqF///44c+YMfv75Z4wbN84xj902ye4AExMTQw3CVsq3336LvXv3AgCeeOIJLFq0yFGB2KFDB9x3331466238OGHH+LChQuYMWMGPv74Y8n12aswnG2v2rdvj/79+6NFixa4efMm5syZg6efftrjNstx4sQJwb+NRiMuXbqEn376CatWrQJgE94GDBjgl+0zGIEgIIJG06ZNsX//fixduhR9+/ZVtMzSpUsdyzIYDAaDYYccnafhVJIjkEWWU7wXllMe4ousDZ1KeLt2R5jRS3Q2eWI5BYiDwb0RNPICkKFBsygyBv4woNI8RlihcTbvFsxWCzQqtbzlVKXI0KB3cFkDsG1/IGc3BUhXvUiNvC90I0PD2woNwFal4SxoZMl0gF0p9EzQIO2mVByHOL20yEmeB85iN5nPw4FDpB+uL57iTZWTiuOgUwFGp1NBrvqHBsdxCNNyyHeq9PEkGNzC89B6WYXIKjQqH3qVBvkoraIi82/koA1qAZjllKdkGooQ/+u0sm5GwMh4ZJps5Z+vGDJkiEDMsBMZGYl58+ahS5cusFqt+PbbbzF79mwAwKpVq5Ceng4AePvttwVihp169eph1qxZeOyxx1BUVISFCxdSKz3szJs3TyBm2Hn88cfx66+/YsOGDVi1ahVu3LiBGjVqePhtPYcmZjjTt29fDB06FKtXr8bq1asFgoav+eabbwAA1apVw+zZs6l2itOnT8fKlSvx77//Yv78+Xj//feh19OfLZ577jlRhgcAxMXFYezYsZg5cyaOHz+O3NxcREdHi1fgJa1bt5ac1rRpU7z++usYPXq0z7fLYASSgFhODR06FDzPY+HChY6AcDl+/PFHLFiwABzHOUq7GAwGg8EAxKPz5Eara4hRWN50Iikd/eq5kYg04goN5T3yvq7QqBHmQ0GDDO31g8c9rV3Bk6EhfHk0WMxIzc8CIF/pU/YVGv7ffxUtQ+OGC0HD7QoNp95sV5ZT5HXQE8gcjWxjseS1ztMKDTIQ3NVIWnEouHSFRqRWH5BRuUrx9hJE2k4VU1coLzSQtlOeWE754lIqztAgBA2iQsODZjKCDPLcZZZTjIrG2LFjJad17twZLVu2BGAL7LZj/5vjODz55JOSyz/00EOODnDn5Ulat26NDh06SE63b8NsNnsU6O0Pbt26hXPnzuHEiROO/6pVqwYAOHr0qN+2m56ejtOnTwMARo4cicjISOp8Go3G8dtmZ2fj0KFDkut89NFHJafZfxee55Gamuppsz3mzJkz+O6777Bjx46Ab5vB8CUBebJ/7rnnULNmTfA8j3HjxmHIkCFYuXIl0tLSYDKZYDabkZaWhpUrV2LIkCEYM2YMrFYrEhIS8OyzzwaiiQwGg8EoJ5Avs1KB4IC4k9Yby6myhBxhLZUvQENK0FCyDjJDAwCqh0gJGu71MvE8LxpFHa2tXIJG1ZBwVNULLXXsORpy4fL+qNBwS9AIwHlU0QQNVxUa7mZo5AsspwJQoUFUSmQZinyeoSEOBJcfRUtaTpl5q6PyjLy2+KP6yxuUWk5JSRIhhBjhboYGAIQTweCFJvfPa28vpSVmcbaMSNAgdgILBS//6JmgwajgdOrUSXZ6586dAQBnz56F0Wg7du0WQfXr13d04tPQ6XRo166dYBlv2gAAx48fl53Xn+zevRsPP/wwqlSpgvj4eDRp0gStW7d2/GfPmfBntq7zfuzSpYvsvM7T5fa/XIh5XFyc4+/8/HwlTXQbnucF/1ksFty8eRMrVqxAmzZtsG/fPvTr1w+///67X7bPYASCgAga4eHhWLt2LWJiYsDzPDZs2ICHHnoIdevWRUhICPR6PerWrYuHHnoIGzZsAM/ziI2Nxdq1a1mGBoPBYDAEFJuFL7Ohamn3RH9aTim1kvJFKDgZoKmkusKxrFSFhpJQcDcsp9zt2CqxmEXfo7JVaADyORpSVArLKYkOruD55dzDteUU/XPpDI3Sz135z/tC0IjTERUahmLJeS8X5ni0DbJCo5pMfgYgDgUHSq1rxPk8vr+2eIPZS2GOzNEoMYvTZVzdo8KIdXhiOWX1UlzIMYjPi1iXGRpebZIRBIgEDR9kaDBBgxFMxMfHy06vXt327MfzvCM7NisrS9GyABz2UPZlvGmDq/X4k2nTpqFnz55YtmyZyzYUF0s/d3iL87Zd7Tdnay65Nsv1Y6qcnrktLqpsfYVKpUJ8fDweeOAB7Nq1C02aNIHRaMSTTz5ZZr8/g+EtAcnQAIB27drh+PHjeOGFF7B69WrJE1etVuP+++/HF198gVq1agWqeQwGg8EoJxSJBA3lllOBqNDwxwByskPSbLUoHpIQ4utQcB9laNBCe/3R6UizxTEGkaDRPCYeO25edPz79B1BI/CWU8qFt0AEc1ekCg0rz+NmkbDDLlInzC+QGnUuNfJeaDnl31BwAIglLKeyDNKh4FcLc2DlrW5bPHlboQHYBI0IrZ6SzxNcgoa3RQahxHXd3QwNAAjTkpZT7t8fvbV/IvMz9GoOoRpXGRrl7xrAEKJXkRUayjv0yEEtdqSEDoY8VfRhyHhkWlk3I2BU0QdmsCwtfyEQy/pjPf5iy5YtmD59OgCgQYMGmDp1Knr27Im6desiPDwcmjuDFt59913MmDEjYO0K9v3mCyIiIjBx4kRMmTIF+fn5+P333zFhwoSybhaD4TYBEzQAICEhAcuXL8f169exbds2nDhxwqEGxsXFoVWrVkhKSkLNmjUD2SwGg8FglCPcsZwiR517laEhWlTZA68vnou9sZzyrkJD3CFJVmgYrDbrGXc76EhLGMA/nY7lrkIj946gIXOshvlB0HCn89kSAMsXqWM8EGKKr8kusYIciF4nQoNTWaXXMnczNAIdCk6Gc2cbixGhpV97TVYLrhflo1a4eyGXtw3uVWiQPvxAaWdn0FdoeHkOiSo0LLzbYnq4hrSckl6BlJDo7aUgp0Q+EBwA1MRHHugujCCDrNAokbCRosEsp3yLilMFJCS7snHz5k3UqVNHdjpg6zyPjY0FUGpDZJ8mx40bNwTLyG1DyXRyPc4VBFarVfBvZwoLC6mfK8FuJRUbG4t9+/ZJ2mwFonrA+fu72m/2fU8uV95wtsQqS8sxBsMbAipo2KlZsyYeeeSRstg0g8FgMMo55Mus3Gh1UYaGF5ZTZRkKrlOTllOBCQWnLUkKGhaYYeKNbotFZIWGTqUWdXL4gmAXNJpHCwWN0zkZNr9bmWX8YTnlDgGxnJKs0Ch/vZmk3ZReDVQLUwMCQUMiQ0PScsoKnufBcVyABA1xhUa4jJh8uSDbbUGDtJwi82VIaOeBvWNUlM+jCxXNW5Z4KwSILad4UUWdKy09jMjQkAsFlxIRvK2WICs0YkLEnWYa4nvxsAkstApCRvnAq1BwiQoNJmgwgonk5GRZQSM5ORkA0LhxY+h0tntpq1atsHfvXqSmpuLWrVuSHfwmkwmHDx92LONqG0qmk+txDsXOzs5GlSpVqOs4e/as7DbkOHnyJADgnnvukc0MSUlJkV2PLyoqnL///v378fjjj0vOe+DAAepy5Q2z2Uz9m8EoTwQkQyMYycjIwNq1a/Huu+9i4MCBqFq1KjiOA8dxGDNmjNvr27BhA+6//37Url0ber0etWvXxv33348NGzb4tN1FRUX45JNP0KlTJ8TFxSE8PBzNmjXDyy+/jMuXL/t0WwwGgxGMkLYCYXKWU2SGRhmEgvsiQ0PLkZZTyr8HTdDgeV5ZKLgCyykAKLEWeF2h4a8R1MEuaJAVGoVmI64W5sgKY5Vb0Aie304ppKBRI1wDwlVHOkNDopPZZAXsrlNGF3YtpPWeJ8TqxBUaclwudD8Y3F3LKa1KLbq+2jM0SME02ELBFVs1SXTU+MVySiYUXEq48DbPIsfgfoWGL7bLKFu8ydAolhA/mKDBCCYWL14sOS05OdkRJt23b1/H5/a/eZ7HwoULJZf//fffkZubK1qe5Pjx4w7hg8aCBQsA2Czfk5KSBNPq16/v+FtOUPjtt98kp7nC3okuV+Vx+PBh7N+/X3Y9ISG29weDweBxWxISEtC8eXMAwLJly1BQUECdz2KxYNGiRQBslSXt27f3eJtljfPvKie+MRjBTKUVNKpXr4777rsPM2bMwF9//YXMzEyP1mO1WjF+/HgMGjQIq1evRlpaGoxGI9LS0rB69WoMGjQITz31FKw+6EQ7f/482rZti9deew0pKSnIzs5GUVERzpw5g88//xx33XUX1q5d6/V2GAwGI5gpJkaRyFVo+DNDI5CDQ0WWU7z4hT5aR28QTdBQ2imsoogxoRqtyBrKYC2Cu3tW3OHoL0EjuDM0EsKiEEl0tp7OzZBdxh8ZGu4QCA97qU764PnllHOjUHi+1ghTi0adu2s5BZTmaAQkFJyaoSHdtssFngga7llOcRwnGuldLFmhEVyWU96GadMqNNw9O9yxnJKu0HBrkyKyCcupGJqgQbnZshyN8o03GRqSoeAmJmgwgoc1a9Zg2bJlos8LCgrw9NNPA7DZOtn/BoDhw4cjISEBAPDBBx9QbYCuXr2KqVOnArCFTo8dO1a2HRMmTKAKBr/88gvWr1/v2C5p+d69e3dHhsUXX3xBtUGdNWuWoFrBXRo3bgwA2LVrF86fPy+afuvWLdlKCTv2tl+4cMHjtgDA5MmTHdt9/vnnqfNMnz4dp06dAgA89dRT0OuDa7CEUi5fvoxvvvnG8e9BgwaVYWsYDM8JuOVUZmYm9u7di4sXLyI/P18yHNyZd999169tqlu3Lpo1a4aNGze6vexbb72FH374AYAt+PzVV19Fw4YNceHCBXzyySc4fPgwvv/+e1SrVg0ffvihx23Mz8/H4MGDce7cOQC2C+h///tfhIaGYuvWrfjoo4+Ql5eHhx9+GLt370bbtm093haDwWAEMyLLKTcqNAIxsjwgllMUYSZar0KJxSLy6tdT+jKV2E0B9AoNAKgeGiEQJEqshW530AUqtJfWrJIgqqzmOA4tYqpj/60rjs9O5dxEz/hEyWUqR4UG/UcqjxUaN4qEJ2VCuBpG4sB0NxQcAApMPKqEBiZDI1ZHETRkfgrPBA33KjQAm7jnfE+wW06Rgmm0Nrgsp7wN0yYFjWIPlAV3LKekcnO8FRZyiBtWLM1yijL8ztv9xyhb9MQzDcvQYFQ0OnbsiFGjRmH79u0YMWIEoqKicOzYMXz88cc4c+YMAFsH+l133eVYRqfTYd68ebjvvvuQl5eHHj164JVXXkGfPn2gVquxZ88ezJw5ExkZtkEvn376KapWrSrbhpSUFHTs2BGvvfYaWrdujdzcXPz+++/47rvvANispT799FPRsvHx8XjooYfw66+/4u+//8bQoUMxefJkVK9eHVeuXMGPP/6IFStWoHv37tizZ49H++iJJ57An3/+icLCQvTu3Ruvv/46OnToAADYs2cPPv/8c9y4cQPdunXD3r17JdfTvXt3bN26FcnJyZg5cyYGDhyI8HDbgIjQ0FDUqlVLUXueeeYZ/Pzzz9i7dy8WLlyIy5cvY9KkSahfvz6uX7+OBQsWYOXKlQCAhg0b4p133vHoewcKexWQHavViszMTOzcuRNfffWVY0D3o48+yvoOGeWWgAkaGRkZmDJlCn7//Xe3Pdr8IWi8++676NSpEzp16oTq1avj0qVLgtI6JZw9e9ZxA+jYsSN27NiB0FDbC1OnTp0wdOhQ9O7dGykpKZg1axaefPJJNGrUyKP2zpo1y+FR+Mknn+CVV15xTOvWrRuSkpLQu3dvFBUV4cUXX8S2bds82g6DwWAEOyLLKRkfd3GGhucdsXIhzXL4opCD7JCkZWioOA7VQtW4VkD69YtbYFYYKi4laNQIjcS5vNuOf5dYC923nApQaC/tFyc7k8ua5tHxAkHjdM5N+QyNylChUYEsp9ILSMspNdIJGyqzxPeSq9DIv1OhYXThP6+VCPN0B7JCI9tY7NMKDYvViiyD0MbKVYUGIPbit1tOkRUaUbrgGkXprWVSKKVCQ5Tz5OLmE6ZRbjklJSD42nJKcYUGs5wq14QQorwvMjSKJD5nMMqCZcuWoU+fPpgzZw7mzJkjmv7ggw/i888/F30+ePBgLFy4EE8//TTy8/Px7rvvivrC1Go1ZsyYgYkTJ8q2YfDgwRg8eDCmT59OreSIiorCmjVrkJiYSF3+iy++QEpKCs6dO4e1a9eKnED++9//Yvz48bK2V3KMGDECY8eOxcKFC5Geni6qilCr1fjiiy+QnZ0tK2hMnDgRc+fORVZWFt544w288cYbjmm9e/dW3C+mVquxdu1aDB06FLt378Y///yDf/75RzRf8+bNsWHDBkREuB50UZa0bt3a5TwPP/ywY3A2g1EeCYjlVHZ2Nnr27InffvsNJpPJFnbpxn/+YPr06RgyZAiqV6/uemYJvvzyS4c48/XXXzvEDDthYWH4+uuvAdg8Ar/44guPtmMymfDVV18BsF1AX375ZdE83bt3x7hx4wAA27dvdxkCxWAwGOUVcYWGtDbvT8spKfxx29Iq+B4cgGqh4pHYVEFDcYUG/TGBDAYvsRa6bT2SZxR63QayQiOYMjQAcY7GqZyblT5DQyrjpbwJGlaeR0axWNAgT0tJyymZoeiFdzqgA1KhoRc+45qsFtkR0e5maGQaCkXHvJIKDbJj1N7ZKbKc8tP1xVO8FQVD1DTLKfcIJyo0CmVDwf1ToUGGgsdSSgqpGRrl7DrAECLO0FBuOcUqNBjlgfr16+PgwYN488030bx5c4SFhSE6Ohp33303fvrpJ/z+++8OSyeS0aNH499//8ULL7yA5s2bIzw8HKGhoWjYsCGeeuopHD58WNBpL8e0adPw119/YfDgwahevTp0Oh0SExMxadIknDx5Er1795Zctnr16ti/fz9ee+01NG7cGHq9HnFxcY7v8Ouvv0Kt9u75YsGCBfjxxx/Rq1cvREZGQq/Xo169enj88cexZ88evPDCCy7XUatWLRw4cADjxo1Do0aNHJkanhAXF4cdO3ZgyZIlGDBgAKpXrw6tVosqVaogKSkJs2fPxpEjR1CvXj2Pt1FWcByHyMhItGjRAuPGjcP27dvx22+/lVvbLAYDCFCFxsyZMx2+eP369cNLL72EDh06IC4uDlwgTch9CM/z+OOPPwAAzZo1Q9euXanzde3aFU2bNsWZM2fwxx9/YPbs2W5/561btzqCn0aPHg2VxEi7MWPGOMoHV61ahU6dOrm1HQaDwSgPkKPz5Co0fGk5JRr9qnA5X9zndMTLP82OR8UB1cLELxY6iqBhUijsSFtOiQUNdzuaRZYwfgsFF7fLEGR+Jc1pgoZME8u8QiMAwqBUJ70/LN38ye1iq0isSAjX4GSm8DomJWjIiW8FdzIPXAkavggFjyMspwAg01AkOf/lgmzwPK/4+nfbIPb4rqqgQoMUtCVDwYMsQ0Oppiq196iWU8Q6Xe35MGIdRSZe8jeTaq83xW5mK498o3AFMTTLKcoXkTpfGOUDPSGyulOhIVWJwQQNRrARGxuLDz74AB988IHbyyYmJuLLL7/0STv69++P/v37e7RsbGwsZs6ciZkzZ1KnJyUlyQ5AXrRokSNEW4rHHnsMjz32mOT0adOmYdq0abLraNiwIb7//nvZeQBl1fYqlQqPP/64ovwOEiVtBVzvN09hLi2MykZAKjT++OMPcByHIUOG4K+//kK/fv1QpUqVcitmAEBqairS09MBQFbZdp6elpaGS5cuub2tXbt2idZFo2PHjggLs71w7t692+3tMBgMRnmgiKzQkA0FJ62afBgKLvG5PzpcScsYaoUGB1QLFd/WyY4v2/IKLackviWtQsPdPSuyhNH6Z4RQeazQyDYW42ZxPnVeDafyyYh7byjLUPDyVqGRTgSCh2k4ROo4US4AbZ+arTxkXIBQYLKC53nJahY7vjheonR6cMT1IEtG0Cg0G2Wnk5CB4NG6EEXtJis0SqRCwStYhUYocQB5UqERphWug4e0xZk/QsFJuykAiGWh4JUCcYWGG5ZTMhUa/nJ2YDAYDAaDEXwEpELjyhWbL/TkyZMDsbmAcOrUKcffzZo1k53Xefrp06fdzupQui2NRoNGjRrh2LFjOH36tFvbAIBr167JTr9+/brb62QwGJWXM7kZ+ODoFhSajXi2eQ/cU1NZhtC6q6fw04VDuCuuJqa2SkKR2Yh3D/2NY9nXwYPHiewbgvnl7HfIjpD0ojz0/es71NLXR4OQjgA4hGo49Kkbig7VxR3qh24asOVqMYpMvCjYN5BoCWGmyFI6ErHEWogTBbuwLz8bG26pRBkaj+7QQE+IGtcKcxVtVy5Dw5nrxot47eBS9KxZDW/e1QcRTuKExcpj9YUinMo0CsSFjdeE95Sjt4Dpe0ttasK0HPrWDUW7eOHvwvM8Nl8pQfJNA6w8j1ZVdBjaMAy3i634/VwhbhG/E5lfAAC3ii2CbQE2QahJjBYPNg6HllLV4k/qhcciRK1xjC4HgIe2/Uidt6yrMwBgV0YqkjaIPaHdQc2pcHf1BnirTR9o7nRc5xlL8N7hv3EkKx1XCnOoy5VYzNRtN42Kx7R2/VAzLEo07UZRHqYd2Yh/czNctis+JAImqxW5xmJYwcPK89h5MxUA0CW2E/rF94WaU+Hf/DM4kXcKNUNqoltcZ0l7NrLTtka4GhzHQUOcW7uuZ2LLhvWoE6nBtLb9UCciBusv5eJYwXYUWfLQOKwjqmhrCpbZeLkYKTfEooFepYfBWmrpdjrLdrzHhagwrGE46ka5//iv4lSI1YcKRAryWkwycNP3CFN4vGaWCL9HNb0yb2oyQ+ODY1uw8HwysozC9S09Y8LOy/I2WPWiNBjaMAxrLxYhNdd1B2vtSA1GNglHpE6FM1kmrL9UhDxKJz2NfDmlSgGkUJ1ZYsH2tBKJuemQllMA8OH+HGhU4s+LJQSTJafyEaH1bHwcKZ5oVEAEpU00y6mvD+cJ7BTD79wv2sYHh3VGRpGFej8CgGi9CkMahKFRTNlfy+1suVKMAzcMMDr9JmoV0LKKDsMahlGfBS7lmbDmQhGyS+jHctVQNe5vFIaEiNJzlOd57Eoz4Ngt4X5Zd/W04nvKqZyb1M8tvBVGq0UkljAYDAaDwaiYBOSOHxERAYPB4FVeRbDh3Plfu3Zt2Xnr1Knj+Pvq1asebys8PBwxMTEut3Xs2DHcunULBoPBLU8853YyGAyGN1h5KwZu/B6pBVkAgLVXT+HSQ29ROxudOZVzA0M2LwAA/JZ6BGpOhUOZaViaekRyGbkOM9JyCgC2XD8H4BzaR/BoFNYOAHAow4jPesehltOLd1qBGbMO5kpbaijs8/ZF17iO4lFrtwbZl7sWGabLAIArxaLZcOu2+DOlKLWcAoCdt45j5y2bJdgXXYY5Pl9zsQjLzortZC4VXRb8O7dEi1NZwpGXhzKM+KJ3HGqEl/4u+24Y8P2J0uqF47dN0Ko4/HO1WCTmSGGyQrQtADiZaYKZBx5rHtigP7VKhWbR8TiSle747KjT386UdX4GYBuZv/3GRa/X88/181BxHN5pey8AYNLelfj54iHZZXjw1G1vv3ERZ/IysG3gJNG0R7b/jG03Lnjd3v3ZySgyhqKGLhGbsn8HAJzIP4VbxUCTsA6K1lEz3HYuk520u3NXItt8E7gBpNy+it/ufg4vHViLC8VHAADXDGcxtOqz0KlKn+tuF1txvVCYRQMAYaoYGKylnX75xtLj/XimCXP/UwVqSqe1K2J1QkFDaqS0neTb7j/z2lESCA6IBb5zebdxLk980buap0JOkXx7T2WZsOES5SIqM//tYguebRuFDw5kwxBAzZvM0DBbbceDO5DB4gBwNkf5SHkAuJJvAeCbLx6jV1Gr91UcBxUnrLa7QBGcDmUY8TlxvygrPk7Okb0fHbllxLd9qlIrKANN8g0D5h2nVwQev22CTsVhcAOh5ZzZyuOD/TnIM8pVRJhwJtuI/yWVujIczzRh9tE8XCceCTJKCpBxo8CbrwEAKDIbmaDBYDAYDEYlISB3/NatW2Pbtm24fPky2rZtG4hN+p38/NIHv4gI+Y6P8PDSl7KCAvcf1uzbcrUd2rZYyA+DwSgLUvOzHGIGYPN435txGQ8ktpZd7p1Dfwv+/VrKOmrnuTNV9dIdX7EU33c7t0xX0Qg2QYMHcOimUSBonM02yfqDk/7jdsh8CrUP/OtpgdmF1lxEqGNwy+R5p6ErYnSh1M/rhcdKLvPlqZ0CQeNfinBAt4UQf2blgTPZJkEH1elM8fr23TAoFjNccTqrbHy4W8fWFAgaUijt6PUENacKSOC3MztulooTO296J5LsvJkKK28VVEvwPC/YhrecLUrBTaNQjDtSsEWxoGG/xkQ6jWovsuTZxIw7HMu+jm1pNx1iBgBYYcH54kNoEd5NsD4rxewtSlNVsD69qvQ8zjVYcb3QgtqR7r8C1AqLxoX8TLeX84Q64TGK5pO7/jujV/nnvDmdZcKFXLNfxAwVB0EVgjMxFGsmkjBKtYNw/Rxi9Cqq9VNZUC1U2mIsQsu56Dy32V+dyzaXuaCRb7S6vB8Vm3mk5pnQPE46AyxQuLrnncoyigSN9AKLy98DAG4WWZFtsCIuxPbbfn3YVh2q56Sfzbyh2GKC9NMJg8FgBC9paWnIzpavJKURHh7utgMMg1FRCEiGxtNPPw2e5/Hjj3T7hPJISUlpWbdOJ/8w6iwqFBcrH/lFbsvVdrzd1tWrV2X/O3DggHsNZzAYlRaad7qZd93jczgzTfRZnlHaRqNeRCwG1Ja24msZWx3d4xOp0yy8cIRnap6JmC7dTr0a6FmL7smeaxRee30Rdk3r3EuMNsDKW8G7nV6hjEaRVZFUoyF1WqvYGrLLOnv6mxWmxlbV1qJ+TuZdGCnry/Vhb2JZhc0+3bQrdAoyA55u2s3lPJ7yXfcHRZ+FqDVY9Z8xqBkqX13lKc5ZGd5m3Fh5XhSmbuGtPs3dMPBFyDHTLU9cEaHl0OvOdeOuajpH5o2ZF4t0BZSA21BdvsiSh3b+NwxpAw1ne2bUcDrU1bcQTPc09+Dppl0lp0VpQ/B+u/6inA1P0HAqjG/SRdG8Tzbu7DL0vK6+haCyxZdYeQhsejyleZy48qpnQojkCP74MDXaVJN+L9CqgLsl7lHO9K0bPNki99ajC+gA0Leu9DRnzEGQoaD0eCg2lX1bAdfB7rTpJjfS4C1Olyi7CJKgb4QQP4iMQfDzMxgMhke89dZbaN26tdv/jR07tqybzmCUGQEZwjJy5Ej8+eef+OWXXzBz5ky8/vrrgdisXwkJKX0BMBrlR7YYDKV2AKGhyh7IadtytR1vt+XKOovBYDCUkm0UC6pKQjxpdhOkrck7bfqiemgkYnSh6F+rKeL00iP9VJwKG/s9hb/TzuLl5DW4VFA68sVK2GSQnulkc6uHqTC4fhg0Kg6tqupQPYze+ZxDCDBSVQ7uwHEc6oTH4KpTrkDP2hYkhkbid2FRC95tcy+MFtt9o9Ydv347t0sKMe3IRtH6VRyHVf8Z41h/rC4UA2o3Q5SEGMNxHNrG1cKRLLEABQDXCnNQP7IKAHHdRZcaejSLU2P5NuHno5pURZ3wCPx1qRjphaW/jYnQKiyUPm9ypKiaA0a3EFY16u6MdCY7my7kmrH9WulvVlb9IT2q18ex4S9j+42LAkHoTO4tXC3MQVKNhuhcrQ66SQh0vmBcky5oE5eAq4U5aBOXgCOZ6WhbJQENIqugW3w9bEw7izyTez79JLtupuI3Jws5uYqQyc26o01cAjpXq4vU/CykFQmzXzJKCvD+kU2Cz6zg4Xxmmq3i9b/X9l5UCyk9Pniex3P7Vyv+DqEaFYyEBvFkS/kqWp2aw11VdahyZxR6pE6FD3vGYca+bJzMFl/3eMp+aV1Vh1kd43DslhEGC4+V54twvUg838RWdTHO+gJO5V5B48gEbLioFRzXngbnjmrYHs2i47H/9hWBSBSq1qJvQmPUjYjFfXVaYN+tyx6HNms4FXrVqI8WMfKiqZ17azXBseEvY8eNiw5BrNBkxW9nbJ424epo1NDVx6PNwqnVDumFFvwlYzN1b91Q1IksPaIyiixYmyqc30RcU2L0KjzQSNkIdI4DGkRr0ShGi4u5JpzPMYHnbYLFXVXlBzJN7RCNo7eMyCoRXiQ1Kg4tqmhRU0GlwojG4WhRRYdr+cqtpowWQOd9zrwDjgMaxWjRIFraTm9kk3C0rKJDWoGwnX9eLMItN622/A1Nz3iieQT+vFiEbKdqmGIfCGFlBdl0jcr2Hc1WYMlpoRsB7VuGqSNxb+xo3DRewhMtPRMb9WoNntq9nNhW+d2njPLPtGnTMG3atLJuhsf3eAaDwShv+FTQ2LFjh+S0J598EqmpqXjrrbewcuVKjBo1Cs2aNUNYmOsH/rvvvtuXzfQJkZGlFiiubKQKC0uNQpXYRkltS4ldlbfbYjAYDF+QbaAJGq47HZSM7R3fpAvqRig3FQjX6vFAYmukFeXieadOS7JC43qhBSVmK0I09NG+sXo1+ie6vmdlE2G0vhA0AKB+RJxA0LhZkof76opv42Mbd0JiZBx1Han5mVRBI0YXiqF1W7rVnkiKDVbpdrJKBQ3ivapFFS361BV3YPSqHYqm0WE4essoEDTIigxaRykZWBuh5RT9VgCwO61EKGiU4Ytg0+h4NI2OL7PtA0DHqnXQsaotU6vBnd8QsOWmPN5Ima2SHDqVmhA0Svc3ueuH1W2Fe2s1AQC0iUsQretC3m2xoEGsxESpDBvbuBPqRZSeI+4KGiEaNXIJQUPp8eZMlE6Fu2uH4iTFYUDqKIwLUSOpju2asulKMdKLxHP2qxdxR4y0ZddtvJQhqDzypvu3fdXaaF9VegBM2yq10LYKvdrKXzSPqY7mMaU5fbeLLTh4VWiN1bduKMIo4dUnbhtlBY0O1XVo5xQ0fS7bJBI0yGtUjF7l0fHQIFq+U59Ep+bQqYZ3lSccx6FlFR1aVil76yM5OM42kKAVIfLsSCsRCBpuFA74DVpV4oDEUOy5XiIQNEokgtbLA+R1Vq+y3XMNFl4kaEgRqo5AYmgrTG7u2T0vz1giFjTK7y5lMBiVnEWLFmHRokVl3QwGo1zhU0EjKSmJOrqW5ODBgzh48KCidXIcB7PZvYC6QOBczeAcEE7DOQjck+Dt2rVrY//+/SgsLEROTo5sMLh9W9WqVWP5GQwGo8wgO/UBwEIZKU2ixK4kUuv5aD5nSO95HsClPDOa3fG0Fo30U6C28DzvlwoNAKgVHi34d3pRnmAkvx2tjG2RVMi3J0HTcjYvzvkpZP8CB7pooLqzg3XEKGpy9LMSS6hQCVGKBrlLgqFDrCJDZsp4k9lBO57JjjZahYaGE54jSp5dnVG7Ob8cUtnctOOQvCZx4KgZGmT7yE1U9E4/2r7zIANdMeQ1SRcQQ18GoGwQRKCh3aNUnDiEvTwLGmSFhurOMU/7PeS+ZaSLnBc5aJdhVqHBYDAYDEblweeP3DzP+/y/YKRFi1I/4n///Vd2XufpzZs399u2zGYzLly44PF2GAwGw1d4bjnlet3hGs9GkpL5BFZeLJY7206RzVXy2l1sMYlEhhgfZGgAQAKRYSAtaEjf2lUSt/0QtfvjG+QEDWdrL3I/qjiOmmlg71TWEj2PRqJzSMlx5CoMV7hd4b+D86mj4kB2tvta0CDXR8vl0FDOEXeyH0hRxhtUd7ZOQnv+JT/jOLo1lYa41pGd+RX9GKddX6TEXFcoWYq0sdP4Uz1hCCDFyGAQpMkcD43K1s4QQqwPFsspT1ohEjRkzi/7dYt2XkZ6of7RrtlM0GAwGAwGo/Lg0wqNrVu3+nJ1QU39+vWRkJCA9PR0bN++XXZeuxVXrVq1kJiY6Pa2evbs6fh7+/bt6NqVHsqYkpLisJzq0aOH29thMBgMX+G55ZR8R5BOpYbOg853gFKhQbGiSc2TrghU0kWVQxFyfFWhkRAmFDTSinJhoow+96RCwyNBQ0Y4Sc0vrdAgW8hx9A4Ue9u0RPPJ8FFlFRpuCBrEv4N0HEWFQU0cN94EdtMEOmUVGuLlVBynOPfBl93VKo6+PquCjjkO9A488vtxd+Z0rLuCH+PuVGj4otiGvEaRVWYM/xGMe5q8R2nuHGSknWV5rtCwEse8/ZCX+z2KKCHoUV4JGmLY/ZvBYDAYjMqDTwWN3r17+3J1QQ3HcRg2bBjmzp2Lf//9F/v27aMKDfv27XNUVQwbNsxtWwPAZuUVHR2N3NxcLF68GK+++ip1Pc6ee/fff7/b22EwGAxfQavQoI2UJnF1iYzw0G4KAPQq4S3PAoqg4Vyh4cE2aIJGtI8qNGqFiS2nzBRRRk7QkNq/oRr3LafUnPR2BJZT5KhyAFbKsWBvmo6s0CCGgiqq0PBG0FC8JMMTVMQeF2RokJZKLn5Gjy2nqBUayjFQKqM8RcVxVFGC5sNPtW+jWE6R+0Vsq1axj3K3BA1XK1NwYJiIn4AS1cHwE8F4bJPnrl3HqMiWUw5Bg2oDZSOPLLcEEKnzrSTFKjQYDAaDwag8sEduL3jxxRehVts6dJ577jkUFws7soqLi/Hcc88BADQaDV588UXqesaMGQOO48BxHLZt2yaartPp8PzzzwMATp8+jU8//VQ0z969e/HDDz8AsAlLnTp18vRrMRgMhtdkGzzL0HBFhId2UwCgV5OWU+JOyWsFZkcHuif9IjkGYX5GhEYvsn/xFKUVGnJWUGRnsp0QTzI0ZCo0LslkaKhcVGiIMjTIUHAfZ2iQnb8VffR6WeP3DA3i6KKJflIVGkopsZhcz6QQ2/lAETQo7SbhOLE4qOZUokEv5Let6Ic4XdDwn+UUeY3SsgqNgBGMe5rUKewWZCLLKSXlhkEKeY7JW07Z/p9LETS8sWejDe6r6Nc2BoPBYDAYpfi0QqM8sWvXLpw/f97x79u3bzv+Pn/+vKDaAbCJDiRNmjTBK6+8gpkzZyIlJQU9evTAa6+9hoYNG+LChQv4+OOPcfjwYQDAK6+8gsaNG3vc3ldeeQVLly7F2bNn8eqrr+L8+fP473//i9DQUGzduhUffvghzGYzQkND8eWXX3q8HQaDwfAFHmdouOie8KZCQ6ciQ8HFHYZWHriSb0ajGHEHv5L+MLJCw1f5GYBY0Cg0G5FpKBTNFyjLKbmsjvSiPJSYTQjRaKlZJNQMDdgzNISfG4mfScmgVq8yNIJghG9FRk10YHkjaNDCuZVVaIjPEXcqaIvNvhU0aJgpVSC0aidSDKHle4iPcbeaWO4gjwFvIi2UZKuYiOHqZA4Qw3+QezoYBGmLhB1TCFmhESQZGp5AnmNKLKfyDL4VcKgZGhX94sZgMBgMBsNBpRU0vv/+eyxevJg6bffu3di9e7fgM5qgAQAffPABMjIysGDBAhw+fBj//e9/RfOMGzcO//d//+dVeyMjI7Fu3ToMGjQI586dw7x58zBv3jzBPFFRUfj555/Rtm1br7bFYDAY3uJ5hoY8/q7QAGy2U1RBQ8E2xIKGb/IzACCBsJwCgMtO4duA7QWfzChwRiVRvRHqSYWGjOUUAFwuzEbT6HixTY7EiHRHhgbRGSiu0HDdYeFVhobiJRmeIKrQ8KIHknY8kxULNKs7mhjnThe0UUJs8MRWVKpCw2gV5/nQzyXh96OJlmJbHrebWa4gf3E5fcHlT8Ysp4KaYNSORBkadxoZrJZTnmgA4lBw2//lLad8+32D8KdnMBgMBoMRQNgjt5eoVCr88MMPWLduHYYNG4aEhATodDokJCRg2LBhWL9+Pb7//nuoZDqYlNKoUSMcPnwYH3/8MTp27IiYmBiEhYWhadOmmDJlCo4dO4YhQ4b44FsxGAyGd2QbKZZTCgQNV6+7XmVoEFUIljuCRsNo4eepeSZFbaFBChqxet8JGqEaLWIJgYQUNOSqJgDpDgBfh4IDwKU7bSM7T11VaJCWU+IMDddtc0fQIDvEgqOLqeIiZzklzoiQ/x09ydDgwFGFEE8tieyYPMzVkMrQMFEFDUqFBnFdpdppidZTsRHZ4XixLo8sp4Kxl72SEAwmTmbiGmR3QBRbTpXfM1GUoSFzzNt3By1Dw5s9wCynGAwGg8Go3FTaCo1FixaJbKW8YdCgQRg0aJDf2xIeHo5XX30Vr776qkfbYjAYjEDgqeWUK2/6CI3vQsHtllNNYrW44BQGbg8Gp42GdkWOUZih4csKDcBmO+W8b8WChnzVhLTllCcVGvLdhKn5mQBo+5HegStdoSGcjxaWTBLmRoaGqEKD9Yj4FdImisy8cAdaJgx5nSErNKSEOCXWQnKUWMzQeSAMqjixKAFIVGiQ4iDlXJLOB3EKX6/gx7g7/v6+kB5IQYMUZRn+Q9SPHgTHttIKjfIsaHhkOUUTNLzYBbRtMcspBoPBYDAqD6xCg8FgMBg+xWK1Ipfo2AeUVWgUufCmj9B6bjmlIyyneFjB8zwaxwo786/km22d5pTKAlf403IKAGoRtlOXC4WChquqCV9maLjaVmq+LRic7GBQgV6hURoKLvxcZDmlJEPDHcupSmbHU9aQx6CFknHh6boAWoWGsHJCSojzVtAwUAQIJdj6OpVaTonnsxJj0mmWc6JjPBh6ff2IbzM0XEPm/LihpzK8hhRIyx5SdJfK0DCU4wwNC7GjSy2npKsmcn2docEqNBgMBoPBqNSwR24Gg8Fg+JRck1jMAOjhvCTFAazQAAALzGhM5GWYrcC1AjPlxdh115a/BQ0yGPxyQY7g31oXuRZSgoZnGRrKLKeUZmjYW0ZWaJCWU4oqNNwKBRfOyzpE/IvYcsq5csC9vU8VNCCfoSElxHlrOWWweChowPMMDYuVV1ShUdmqkMQVGv7dHrOcKjuCsUKD1CnsFRqkoFGeKzTEGRoyllN3/p/va8sp6rbK7z5lMBgMBoPhHkzQYDAYDIZPyTaI8zMAZRUaxX6s0CAzNABbgHCMXoX4UOHtMDVXLGgos5wiBY0Qd5spCxkMfqkgS/BvV5ZTUqPQPanQcLWt1AJ7hQbRBk6qQsP2G5B2LZ5UaLiVoUH8m1lW+Be5DA0SV7+iJxkakhUaXvZBl3gqaHActQvOaBVfC8nvZrLy4gwNimAjyomp4Ic4KWjIOUC5qsxRclyQIquOCRplRjBUH5HHg/12FErJ0Civ9xspyymAct2+M2uuzy2nKBUa5XN3MhgMBoPB8AAmaDAYDAbDp9DyMwDXGRpmq0U0mprEm1BwHaUD3gozNCqgfrSwQuFSntlDyyn/ZmjUIio08k0Gwb9dhYJLWk5pPKjQUGg5RQvopXXilFZoCD8n7Vwsvs7QENnxMPwJmaGhROiUgpahIRI0lFZoeGs55bGgYbO/I6FVaJDB4yareFlFFRruN7Nc4VaGhoufXZHlFPHzaeW1XoYPCUbtSCpDg6zQ4CE+dsoLolBwmd/BPmuekXbl8fxqRDt3WYUGg8FgMBiVByZoMBgMBsOnZBukBA35N3dXdlMAEKHxbYUGYIGK41A/WjjNVqHh/otxtlFYneJ7y6lo2ekuQ8Eluuf8YTl121CIApOBuhdpo2ilQ8HJDmrXbXOnQqOy2fGUNWSFBq1aR/G6KOKE6woN+jlC82N3B88rNEA96EwUQYMUOYwWseUU7RpAfreKnhPjywwNJZgs5G8QhL3slYRgOLZFFRp3LlMhFKG9pJzaTsmJhuSllAcPK8/73HKKBhM0GGXJokWLwHEcOI7DpUuXyro5DrZt2+Zo17Zt28q6OQFlzJgx4DgOiYmJZd2UCk+wHf9JSUngOA5JSUll3RSGH2GCBoPBYDB8Ctmpb8eVoOEqEBzwrkKDlqHBcbY21Y8STruUZ/aoYyTHENgKDRKXgoYvQ8FdCBqAzRKL7KtVcRxVNLDbR5CWU2SGBhlGSsOdDI3KZsdT1ohCwZ0zNNzsjKJWaIAUwIhQcIkKDW+7oL2r0FAoaFiE38Vs5WH1wHLKGxGpPCD29/fv9liGRtkRjLtaXL1gayRNaC8myznKCWTFrSvLqUIT73OxiVlOMRgMBoNRuWGCBoPBYDB8inSFhvybpqv8DMC7UHCdWtzZr+JsHYSJhOWUwcIjvVDYeajMciqwGRokrkQGqVHoHgkaLsQTwGY7RXbWSmdo3BE0RBUaQosqV8cR4G6FBjF6XfGSDE9wJ0PDFTSBjlyf0gwNr0PBKQKEEmwZGhRBg6dVaFiIf4stp0hLL4BZTsl1erv61ZUcFibScoq9XZUZwVyhoVOJj7dgqNBw1QLaLVeUUyNzzPMA8iS8tbzK0KCcnKxCg8EoG6ZNm+YYnc9g+AtWccMgcb8HQ4YGDRr4cnUAbA8rFy5c8Pl6GQwGg+EfpDI0yI5FEkWWU16Egqs4FTScSuCpbxc0YvQqxIWokFVSOi01V9geV8/oPM9TBA3fVmhUD42AiuMkR1gH0nLKVV4HAFwqyAbPVxd8xoHe6WDfv6T/PA/biFe7RuFqQKtezbnVOS2yx2D9IX7FnQwNVy/GtOni4Gzh+qXOEVfh0K4oUXD9omHrbBcfdLQMDVLQMFl5cYYG1XJK+O+KfoyLLaf8m6FBVmiQVWYM/+HteesPpDI0OI5DiIZDsZOIUUKWc5QTxFVQhOWU03QeQK5BQtDwcbsq+rWNEdyMGTMGY8aMKetmMBgMoNLZq1VWfCpoKPVKs7+AkqGgtM+ZystgMBjli2yDZ5ZT/q7QAACtSgOzxVj6AVfaQZgYpUFWSem0K/lEGrULisxGUQBxjN63goZGpUb1kEhcL86jTvc4FNyTDA0FgkZqQZaow0IlVaEBeoYGYLOd0qhsQo6r/oowN6oz7O1xho3w9C/iCg3v9jcp8IlDwRVaTnlboWFx73phR9pySnw9JEUOs1X8LK0kFLyiVyGR38/fbxIsQ6PsIE/boKjQIM9Jp1MylBA0ioOgQsMTrMSOlrWcAqj5Gb6Ag7DCjd2/GQwGg8GoPPhU0Bg9erTs9CNHjuDo0aPgeR4xMTFo164dqle3jdy8efMmjhw5guzsbHAchzZt2qBNmza+bB6DwWAwAoBUhYZPQsG9qNAAbKOzi536HTmnrq/60RocyjBSlrLPK0+OsUT0ma8rNAAgISxKRtCQr9DwqeWURLiyM6n5WahJtgFSFRr0DA3AZq0TBtfVGYB7dlP29jgTDB1iFRkyyNv5uuCJtqECJ8jNcB0KLmE55WW3t8cZGuBEogQgUaFBEU2sCiynSCGzoo9idsdyyhVKKgDIvlpK9jPDT9BMh8oaMudJ43T+hRD3t2CwnPIEd3JqeB7I9YPlFGATtJzXUT73JoPBYDAYDE/w6SP3woULJf/r1asXTp06hdq1a2Pp0qXIyMjAli1b8Msvv+CXX37Bli1bkJGRgaVLl6JOnTo4deoUevbsiYULF/qyiQwGg8HwM9KChvyrpqJQcC8rNESd8JyToBElX6XgagA3aTcFAFFehJhLkSATDO5K0ADoHXShGv9UaFyiVGhIZmjYQ8Epq7WPgFYymt+dQHB7e5xhHSL+hexw9zagmuysF1douA7NBpRlJcjhjeWU4lBwq1jQUGI5VdmC78WChozllIt1KTkuyMwEZjkVOILRTk0qQwMAQgjBvUJaThHz2jI06N/T229PPs/QxGEGI1AsWrTIkSNBcy45ePAgxo0bhyZNmiA8PBwhISGoU6cOOnTogMmTJ2PNmjWyx/Cff/6JESNGoHbt2tDr9ahSpQq6deuGmTNnoqCgwKu279u3D2+//TaSkpJQo0YN6HQ6REVFoUWLFpg4cSJOnTol+52nT5/u+My+D5z/o+0Pi8WCxYsXY8iQIUhISHB8p549e+Lzzz9HcTH9fdKZ06dPY8yYMahTp45jf44aNQrJycke7wtXbNu2zfG9tm3bBqvVivnz56N79+6Ii4tDeHg42rRpg48++gglJeLBbiQFBQWYOXMmunXrhri4OOj1etSuXRsjRozA2rVrZZdNSkoCx3FISkoCAJw5cwYTJkxA/fr1ERISgpo1a2LkyJHYt2+f4u8jh32+adOmufxeJFarFf/88w+mTp2KHj16oGrVqtBqtYiJiUHbtm0xdepUXLlyhbqsPaNl8eLFAIDLly9TjzNnyH0jxa5du/D4448jMTERISEhjoH3b7/9Nm7duiW5HG2/LVu2DH369EG1atUQGhqKpk2b4tVXX0VWVpbyHcVwC59WaEiRkpKCZ555BtWqVcO+ffuQkJBAnU+tVuOhhx5Cz5490aFDB0yaNAlt2rRBx44dA9FMBoPBYPgA6VDwYKjQEN72OK6007B+tHe3RFLQiNTqFQVnu0stmWBwJSKDiuNEwoBnFRrKLKe6hAs/s1lE0NsF0O1a7B715MhXGm5bThH/Zv0h/oXWuWzlrVApsEqiYbOwKu3otxJHV8AqNChigxKkMjTMCkLBAU8tpyr2QS7O0PDn1nhKKDgTNAJFMAbek0UXGqfjgawgDAbLKU/ueeQ5JrCcohz+eRIZGt4SjL8/g0Hjiy++wNSpU2ElnkmuXbuGa9eu4dChQ5gzZw7y8/MREREhmKekpASjRo3CqlWrBJ9nZWVh37592LdvH77++musW7cObdu2dbttixYtwtixY0Wfm0wmnD59GqdPn8b8+fPx1VdfYdKkSW6vn8aVK1cwdOhQHD16VPB5VlYWdu/ejd27d2Pu3LlYt24dmjRpQl3HsmXL8MQTT8BgMDg+u3btGn799VcsX74c3377rU/aKofRaMTgwYPx119/CT4/duwYjh07hp9++glbtmxBjRo1qMsfPnwYQ4YMQXp6uuDztLQ0rFixAitWrMADDzyAn3/+GSEhIbJt2bBhAx566CEUFhY6Prtx4waWL1+OFStW4LPPPsOLL77o2Rf1Ae+//75A+LKTm5uLo0eP4ujRo5g7dy5++ukn3H///X5vj9VqxfPPP49vvvlG8LnBYMCRI0dw5MgRzJ49G8uXL8e9997rcl2PP/44fvrpJ8HnZ8+exaxZs7Bq1Srs3LlT8jhgeE5AiqK/+OILWCwWvPnmm5JihjM1a9bEm2++CZPJhM8//zwALWQwGAyGr8g2SmRouAoFV1Kh4WXFg9gmqbRNVUJUiNR5PpLX34HgdmQrNBTYQNE6lD3L0HC9rVxjCYqtwtFJUhUa9pE1ahUHcoCz8c5wUCV9P6Fu+r2QI3qY5ZR/ITM0gNLKG0/8z92v0JAIBfc6Q8NDyyl3KjQo21BiORWMo9j9CXkOyxVMeFuZQ4oZAKBlllMBIxiPbVGFhlMbg1HQ8ASyQkN4jokt7vL8laHBsjYZ5YBjx445xIz69evjs88+w5YtW3D48GHs2LED8+fPx6hRoxAeHk5dfvTo0Q4xo02bNliyZAmSk5Px999/Y+zYseA4Dunp6ejTpw/S0tLcbp/ZbEZsbCzGjBmDBQsWYOfOnTh06BDWrl2L999/H1WrVoXFYsGzzz6Lf/75R7Ds8OHDcfz4cUycONHx2fHjx0X/1apVyzE9MzMTPXv2xNGjR6HX6/Hss89i+fLlSE5OxtatW/HGG28gLCwM58+fx8CBA5Gbmytqc3JyMh599FEYDAbo9Xq8/vrr2LFjB/bv34+vvvoKVatWxcSJE3HkyBG394c7vP322/jrr7/Qr18/rFq1CikpKVi1apWjA/zUqVO47777YKFYhqalpaFPnz5IT08Hx3EYO3Ys/v77b6SkpGDJkiUO+/2VK1e6DJtPT0/HqFGjoNFo8OGHH2LPnj3Ys2cPPvjgA0RFRcFqtWLKlClYvXq1r3eBYsxmM2rWrIlJkybhxx9/xO7du3Hw4EGsXr0ar776KiIiIlBUVIRRo0bh9OnTgmUnTZqE48ePY9iwYQCAhIQE6nHmDq+//rpDzKhfvz6+/fZbHDhwAFu3bsWUKVOg1WqRm5uLIUOGiIQ3knfeeQc//fQThg8fjpUrV+LgwYNYv349Bg8eDAA4f/48pkyZ4lb7GMoISIXGzp07AQBdunRRvEzXrl0B2EqAGAwGg1F+kK7QkH9xV1Sh4YNQcGd4pwoNjuNQP0qLY7elcjTkX5zJDI0yETQUWU6JCfVA0HAVQG4n35QDLeIF26d14DqPkNeqOFicekzsfSEWBWqDuxUazHIqsFAFDatV0bFLw6WgQVQ1SFVoeNst5rnlFEcXNJRWaHhiOeVmG8sbvs3QcG9bAKvQCCTBOEKfzHpSOx0P+gqSoSFn60a3nJLI0PCyHaJtBYOiVc7geSt4Kz2XrSLCqaLAKagw9iW///47rFYrwsPDsXfvXkeGrJ1evXph/PjxyM3NRVhYmGDaunXrsGzZMgBAnz59sH79euh0pdXq/fr1Q7du3TBhwgRkZWXhpZdewtKlS91q38CBAzFq1CjRttu1a4fBgwfj+eefx913341jx47hvffew3/+8x/HPDExMYiJiUF8fOlzfqtWrWS39/zzz+Pq1auoV68etm7divr16wumJyUl4aGHHkKvXr1w8eJFfPLJJ/jggw8E80yaNAlmsxlarRYbN27E3Xff7ZjWuXNnPPDAA+jatavLjmhvSU5OxoQJE/Ddd985PuvQoQOGDx+O8ePH44cffkBKSgq+++47UXXLiy++iOzsbADA/PnzMW7cOME6Ro4ciYEDB2Lr1q1YunQpRo8ejYEDB1Lbce7cOURHR2Pv3r1o3ry54/Nu3bph2LBh6N69O/Ly8vDss89i8ODB0Grdf+/zlvHjx+O9994Tbbt9+/YYNmwYnnvuOXTt2hVpaWn48MMP8eOPPzrmiY+PR3x8PGJiYgAAWq3W5XEmx/Hjx/HZZ58BsB2vO3fudKwbsB2D/fr1w+DBg2E0GjFhwgTs379fcn179uzB//3f/+Gtt94SfD5gwAAMGDAAGzduxO+//46vvvoK1apV87jdDDEBETTs3mPO5WCusM8r51vGYDAYjOBDKkODHClN4krQUHGcR9ZIzqhlKjQAm+2UlKDhboZGjE6+NNhT5CynlIgMtN/Bk/2qpBoEAPIsOaiiLn3RUUlWaDitWw2UOPXdOiynFPRVuJuhQdtjPM+zkZ9+glZB4MqOTg5S0CDXpTRDQy5nQQkGyug7JbhToWGiWk65ttSqbMH37mRouMKTRbUsQyNgBKOgQQ7ecC4aJCs0ym+GBmE55fQdaedMroTllK/1h/K5N8sW3pqH/BsPlnUzAkZkjRXg1DEB3eaNGzcAAE2aNBGJGc5ER4uf7+0jyLVaLRYuXCgQM+w89dRTWLZsGTZv3oyVK1fi+vXrqFmzpuL2OVdPSLXr/fffx/Dhw7Fr1y5kZmaiSpUqitfvzKVLlxyCy+zZs0Vihp127dph8uTJ+OSTT7Bo0SKBoJGcnIyUlBQAwNNPPy0QM5y/02effYaHH37Yo3YqpXr16vjiiy+o07788kusWbMGt27dwpw5cwSCRnp6uqPqZsCAAQIxw45er8eCBQvQuHFjmM1mzJ49W1LQAGxVAs5ihp2WLVvirbfewmuvvYa0tDT88ccfGDFihLtf1WsSExNlp9euXRuvvPIKXnzxRUeejL/exebOneuwf/v+++8FYoadAQMG4Mknn8T333+PAwcOIDk5GZ06daKur0OHDnjzzTdFn3Mch5deegkbN26E2WzG3r17MXToUJ9+l8pOQORpuwq1YcMGxcusX78eAFC1alW/tInBYDAYvsfKW5FrpAegueq0LDJLVUbYiNDovX6wIS2neAg7CL3J0QgKyykFo9xpYoJnllPKHiHyTMJScU6iA9c53FNHjHB2WE4p6IklO4xcQTukWKeI/6BVaEhlOig538nsC3GFhrIMDTJc1l0MFAFCCSoO1F49s+JQcLJjkWY5Vbls1dzJ0PDHq7KOWU4FDPLYDoYB+mSFhsapjaQlYnm1nCIdROU0PJ4H8iUtp7z7/qLfn929GUGIXVw4deoUDhw4oHg5s9mM7du3A7BVYtSpU0dy3qeeesqxjKtgZ1cUFhbi0qVLOHnyJE6cOIETJ04IRtV7U/Wwbt06WCwWhIWFyXbOA3AIFenp6YKw6M2bNzv+pmV/2Ln//vupHdW+ZOTIkaLKFjsREREYOXIkAODkyZMOYQuwBUrbbahoYoadxMREh32V8zIkHMdh9OjRkuuxW5MBwv1XluTl5SE1NVVwnNn3pX2av7Dvg5YtW8q6CNnPK+dlaIwaNUrynaVDhw6Ovy9evOhuUxkuCEiFxn/+8x8sWbIEn3/+OQYOHIgePXrIzr9nzx588cUX4DgOffr0CUQTGQxGkHIl34wd10pQM1yNe+qEKB5peavIgo2Xi5FVYkFChAaD64cixE1v/fKKxWrFvLP7kJqfhQitDqn5WTC5yK8g0ahUSKrREKMbdXTZqXgmNwPzzuzDzeICmHmr5AulVIZGtqEI/zu1E9OPbJLdjtJA8PQCMzZfKaaOCCwyCY+BA1mH8dj20gfMYrMVKblCYYXjOFTV1kInvrPsdtdeFfp9+k/QkKvQ8My2J1TjgaChsGT/TOEx3DTcdPz7tYM6WCGu2HQ+znRE78gfF4qwK60ERQo6f9zO0KB8ZrECUruS53nsTCvBlXwLuifo0SA68GXb5RmaoDFu1zLoVBrkm5RX8toh7wnvH92E6mciHf8+lXNTMF1KiPNWLF1x6RhS87Oo00LUGgyt2xJD67YUTZOq0Mgy5Yg+KzKb8Nj2Xxz/3pdbglyLsJJZnBNECb4Hj3+zjNiVZkAx2fsqQZVQNQYkhiIupHT9zvdZKWpHajC4fpjonPYFWSUW/HWpGJFaFQbWD4VGxaHAZMXys4WC+QItaDDLqcBB7umDGQbcLLJg/w3btaRHgl40j1bFoV28Dl1quq6ivJZvxparxcg3WlEvUou6UWocuGFAqEaFfvVCER8mPt9S84RipPMtibScOpVpxNeHS0V/FcehRRUtkmqH+GVk6u60Ehy9bRTYN17IlRdjL+WZBW0EgLPZwopaOcup388VIM9Iv3fL3dH3Xy/B4Qyjo0KTBvlYySynGMHII488go8++ggGgwE9evTAgAEDMHjwYPTs2RMtW7aUPNcvXryIoiJbLqEr63bn6SdOnHC7jbdv38bnn3+OFStW4Ny5c7Ln0u3bt91evx17ZUVRURE0GuVdkTdu3EDdunUBwJGVoNPpHDkTNLRaLdq1a4etW7d63F5XSI3Yt9O5c2dHlc3x48cdodDOv5GS33bDhg0oKirCxYsX0bhxY9E89evXlx0IXq1aNSQmJiI1NdXtrAlfcvnyZXz66af4888/cfnyZdl5b9++jQYNGvi8DQaDAefOnQPget+3a9cOWq0WJpNJ9rxq1qyZ5LS4uDjH3/n5+W62luGKgAgar7/+OpYuXQqDwYA+ffrgmWeewZgxY9CmTRvHBZzneRw9ehSLFy/G3LlzYTQaHQE/DAajcpJrsOLNXVmO0M0CkxXDGtID05yx8jze35eNjGL7m44Bl/PMeKmDdEdwRWLakY34v6Pej75YfD4FJRYTnmnWXXKeYrMJd6+fg4ySApfrk8rQGLntR2xOP+dyeSX5GUYLj2l7s5Er8fJssgq79q4WX8fPF6+7XO/lkpOoccuMqRhEnX4q5wb23RI+mPlL0KiiD4NOpaaO1lZaNUHiieWU4goNSybyLJmOf1+5Jp6H7JQmQ3VPZynPJ3A3Q4PW97jsbCEebR5BnX/TlWL8cMJ2vK9PLcL/kqqgGqVTi0GHJkovv3TMZ+tzdS2hdfgD8Los53RuBk7nZkhO/+HcAazrOw6D6gjtAKQyNGjw4PHzxUOy89DOS3KXX8u3YPGpAtFIclck3zDg895x4DgOVp7HjP3ZuFnkaiUGpBdYMLmtdGWZJ1isPN7enY3MEtv20wrNeOauKHxxMBf5JuUVGq4UDXe7lFUcvUqG4R/IYzutwIK0gtJ74+50uki69VoJXu7AoXMN6eeKErMV0/ZmO46nnYQQv+96Cb66p4rgGlRosooGU2icjgeygjCzxIpdRBt3pJWgxMxjYH36qF9P2ZlWgtlH3M9KyDaI20jirNOQR/+x29L3b6k+0/3XS/D5IddtJbUOJmcwgpFmzZrh119/xVNPPYXs7GysXbsWa9euBWBzIxkwYAAmTJiAXr16CZbLyiodJOGcUUHD3lFOLqeEgwcPon///sjMzHQ9M4DiYrq1sBIyMqSfk+SwCztA6feLi4uDWi3//C1n8eULXP0uztt3/l18/du6Woe9LampqW4fH75iw4YNGDFihOC3lMOb40wOe24J4Hq/abVaVKlSBTdu3JDdb1JVOgCgcnoul6qwYXhOQASNZs2aYfHixXjsscdgNBrx9ddf4+uvv4ZOp0NcnO3FKDMzE0ajbVQsz/PQaDRYuHChrNrFYDAqNutTixxiBgD88m+hIkEjvcDiJGbYOJhhqDS++L4QM+ysv/avrKBxKPOaIjEDoFtOlZhN2JJ+XtHycXrXL/dns02SYgYAaDnPQ8XPFEi3k/Yd4kPoHeLewnEcIrV6ZBrED4RRWtcjTqN1ISJbME8EDSk5g4PyDlo74Rph9U2YVgXAs4e+SDf9XmjXhDUXiyQFDbuYAdgyPZafK8SkNr7trK3IkL+1HGEKrNAitSG4VVLocr7S+enXABXn/0qbDWn/igSNUDUnCvb2hgjK/iWLI47cMrotZgBAeqHt3lo9TI30AosCMcNGyk33K2+UrNMuZgDA1qsleLJlJE5mijtPQ2SqQ8gR866mu5rfXUGV4R1yv60rDmcYZAWN8zlmkTjmzK1iK64VWFA3svT++S9FfHcWMSJ1ytp7KMPoc0HjSIay81CvBgxu3n5DnL6jXsOhUKGVllTxxZFb8hakdjibh6XT+pik4S6cKgqRNVaUdTMCBqcqm+e1Bx98EH379sXSpUvx999/Y+fOnbh16xZu376Nn376CT/99BNGjx6NBQsWCDpA7fjr/dVoNGLkyJHIzMyEVqvFc889h2HDhqFJkyaIjY2FXm+7Rl68eBENGzYE4F0llL1Dt2rVqm5VTtCyNoLhnd4XbQiWdfiT27dvY9SoUSgqKkJERASmTp2K/v37o2HDhoiOjnZkw/zzzz8Oh55AVNwF+35juCYgggZg85erX78+Jk2ahIMHDwKwlftcvy4eGdu+fXvMmTMHnTvL23swGIyKzfkc5aOynaGVp5uttvBFd/31KzslFnkrAlfTnaF1chdbTIo7v0c1aOdynhyJ4Ek7dUKa4arhX0XbI9Gppd/wafkfw+uJ7WV8xZA6LbD4fIro8wfrtXa57JONO+OLkzsc/360QXtoPLCqknoG7BQ5CEcK/oGRVz6yZmSisGS8R4Ke2jHkihi9Ci2ruNcx7e0VgbTeYMgTpQvBoNrNsP6a/HnYOKoq2laRD6oEgIfrt8FHx/5RvP2R9en2BEnxrXA+/4bgs+raeghTRyO1xPMKEmeKzeJjJUqvQs1wDnB/4LQIDhweShR/v3Ci5EnOIsoVhjsdle6EGReZeRgtvE9tp9ILxd/BbKXfTbolSAu9NcLUSIzS4FKe+F5WN1KDhAjhtbF2pBq1I9S4VkDfh91ltsXwPV1q6rHpSrFHuTAGF8ewkmPcRMyTR8mKaFW1VGRsU1WHCC2HAhmhROm23cWkQH9Uc8BTraLww8l8xfkeOhXQoXqpMNStph7rUpXd/6XspJS01YZ8hhLDNRynCnhIdmUlOjoaEyZMwIQJEwAAp0+fxh9//IGvv/4a6enpWLx4Mdq1a4cXXngBgNCq5ubNm9R12nHOZ3BezhX//POPw9d/zpw5GD9+PHU+X43qt4eJ5+fno3nz5i4rLGjExsYCADIzM2GxWGTX4Wq/eYur9TtPd/5dyN9WLh9FyW+r5Hva5yHX4SygWWUsqgsLlQ8eIvn999+Rk5MDAFi1ahX69u1LnS8Q1SP24wdwvd/MZrOjcsmd84oROAImaAA2j7nk5GSkpKRg8+bNOH78uOOgjY2NRevWrdG3b1+XXnQMBqNy4KkPtdTrTIGRR2hAr3qBxyoTvN2zen30jBePcHEmJfOqwLLFVZA3+fIYrtHhueY9AQB/Xj2Jk07+9bT3TJpt0rPNe6B/raa4mJ+J60X5UHEculariyF1Wsi2BYDI6qFaqIroYGqLe3Kj8W/eJVQNA2L19IfgjCIzjmbdwMHss47PtGrpF2XSTisxIhatYmu6bK+nvNf2XpGgoeI49Krh2mt0Vsch6FS1Do5lXUeT6KoY1aC9R22gjWqZ0HAYese3Q0ZJI+zPPIlCc2klSIiGQ+0IjWiEc/OYeDxCiFX96oWhSoga57JNkmPX60RooFUDl3LNsAKI0HLonhByp7rDje/h1twMX7As6XH8cvEwLkpkTtQIjcR/G7RVlAnzf+0HoE1sAo5mp8sGAmtVKvRJaIzeNRpSpz9c726cuh2BLNMNADyq6WMwunF76FVa7LndECWWYtSP1qLIUvpCd9tQiBhdiKSN1T/Xz+HA7auOf0tdT/9TV4fVMs53dfTN0LNGNdSLEot1WSUWZBusqBWhwwP1mlKvAeSocLKzsHqYGl1r0keq/3mxSNBZbL6zk8mOSK0KGHRnRLnFymMt0aGZY7BS8wY8xUzpCKX9/JPaRKKHjMjAcRze6RKDXeklyHKq+IjVq9Czlji3S8VxeK9bLHanlSCbuN/UidCge4LnVYAM92lZRYfp3WJx9JYBJitwIceEE0SVTq9aIYgLUeHfLBPOOAnQrjQDuewGO+QspFBRPUyFGH3pPSkmRI0PesRi33WDIBPqar4ZhzJKB0aQQokvINvaLE6LprGl1xR7tkijGC3qR2uQfNPgUtTQqzl0rK4XVKk81jwCDaO1uJwvFgnPZZtwymmwgmRWOHE2N4rRoGWVUmFod3oJbhdbwRF3cFfPrAxGMNG8eXM0b94cjz76KJo3b47CwkIsW7bMIWg0aNAAYWFhKCoqwv79+2XX5Rw23qpVK8VtOHnypOPvhx9+WHI+e/aFFEpHurdr1w6//PILDAYDUlJSXGYY0GjdujV+++03GI1GHD16FO3b099jzGYzjhw54vb63SE5ORmPP/647HQ7zr+L89/79++XFTTsv21YWJhkpkRqaioyMzMdghHJrVu3cOnSJdG2ASAysjR3ztmOieTs2bOS01xhP87i4uIkxQzAd8eZHHq9Ho0bN8a5c+dcnleHDx+GyWS7Z7lzXjECR5l07XXs2BEdO3Ysi00zGIxyhMbHPtSFJiuqoWJ73cuF6t6b0Bjvtu0nu/w3p3cLBA1Xo93I8bAxulB81NGWMxGnD8WrKesk5wUAI8VL8sMOAxGpwDqJRi7xdtwoRotRzUjroNZ3/pNn6cUj+O/20oc3M0V8cUzjhdPaxbkeWe4NtI7ezlXrKlpWrVLhkQbtRCKCL3i1bXM0jIoAEAFA+uFcCR2q6wWjPqXo6qVuxKqNA0+4Vo+nmnb1ybpUnAoPN2iLh9HWq/VYAdTWN0FtfRMAts6+cS1to7geQw+P1vla8lqBoGGW7GyT7oRrHX43mod3xaSmUehZy7ProisbtrqRasp10sbGy8WCTk3TnUsdKYqEa1WOdfA8j78uFwtsrXJ9LGhYKLuMdrtqU9W1xVmEToUBicrtfaJ0Kp/bATE8p0msFk3udMyvvVgkEjQGJIaiUYwWK84VCgUNF4KFWUEhE7mGQuIZpEG0WISsEa7B8EbCV/A96SVCQcOTkhOXCNfZpqoODzSm27jWjtSgdqRn3QQqjkOPWiHUq+a+6yVCQUOhcNOyik5wjbqYa7ojaAivbUzQYJRH6tSpgyZNmuDw4cOCwG2NRoPevXtjw4YN2LRpE65du4batWtT1/H99987lklKSlK8bbO5VHgsLCwUdG7bsVqtmD9/vux6QkJKn08MBoPDqorkvvvuw6uvvgqe5/Hll1/i119/VdxWO3379sVbb70FAFi8eLGkoLFq1SrZDnpfsHz5cnz88ccIDRXnJtoFKgBo0aIFatYsfWFJSkqCWq2GxWLBggULMGLECOr6r1y5gk2bNgmWocHzPJYsWYIpU6ZQpy9atMhh4UQKComJiY6/U1JS8OCDD1LX4clvZcd+nJWUlMBqtVJt1YqKivDjjz/Krsd+nBkM3lmZ9u3bF+fOncPJkydx4MABSWcg+3llX4YRfHiWHspgMBgBQEu5Z3vjp+iqxL8ikEXJVXAHcjSquxUanOBv1z3FRqt4BJ9O5bnWTlZoOI+MdBcyXNckU4ZLVmh4Gs6tFDVX9rdvWrhzefQiZfm9DEDcQe4LdyS1iuxso9+DDDLWfao757o3dk2RLqqWaOeyHQ2xqL1Cw2whr3mlf3Mch2hCRCHFZm+hDRyn9Y2Wx2sSw7fYTx3yWPZNhYZwHvI5M0JhxSBZkewPQYNcY1mcGjqF39PVo779miWu0Kj4z/mM8sfq1asddjs0rl69in//tdlwklkRkydPBmDLuhg3bpxjtLgzCxYswMaNGwEADzzwgKDj3BWNGzd2/L1o0SLqPG+88QYOHTokux7nbV64cEFyvqZNm+Khhx4CAPz222/4/PPPZdebmpoq6kjv3LmzQ8SYO3cudu3aJVru+vXrmDp1quy6fcGNGzfw8ssvU6e99NJLjhD0iRMnCqYlJCTg/vvvB2ALy168eLFoeaPRiCeffNLxmz/77LOybZkxYwbOnDkj+vz06dP44IMPANh+p2HDhgmmx8bG4q677gIALFy4kGr7tGvXLvzvf/+T3b4c9uOsqKjIIfI4Y7FYMH78eKSnp8uux36cZWRkID8/3+P2TJw40SGqTJgwAXl5Yt/XjRs34ocffgBgO+aYi1BwUmY9IteuXUNKSgp27NjhtwR7BoNRvqFZTikJKpR6nylUbspbbsk2eHc9JTvKXVVokNOdO8bIl2XammiWU1ovxABS0IhyMyBa2A6hoiY9uhowE2KHvwUHdRB00pV9C3xDRfkeDO8g+9V8IWhoiOuAVJUX7TpoR3WnqtCLS5nLIGK1zLo1HL0DUmw5JZwvmhCTyWuzt9A6Lmk2VEFwqWSUMfb7JXnfNLs4JD2znBKuNEKr7AAkB/AYPY+5kYRsa1mcGqQwq7RCg8R+dSEFS1ahwQhGvvzyS9SqVQsjR47Et99+i+3bt+PIkSPYunUrZs2ahR49ejj6w5555hnBsoMHD3YIABs3bkTXrl3x888/4+DBg9i8eTPGjx/vyL2Ii4tzKRCQ9O/fH/Hx8QCAt99+G8888wz+/vtvHDx4EEuXLkXfvn3xySefoEcP+UrV7t27O/6eMmUKduzYgXPnzuH8+fM4f/68oBJk7ty5Duukl19+Gb1798YPP/yAffv24fDhw9i8eTM+++wz3HvvvWjUqBFWrBCH1s+ZMwcajQYmkwn33nsv3nzzTezatQvJycmYPXs2OnTogOvXr6NNG3pumq/o2LEj5s6di4EDB+KPP/7AoUOH8Mcff2DAgAGYN28eAJvNFvm7AsAXX3zhyHN48skn8dRTT2Hz5s04ePAgfv75Z3Tp0gVbtmwBYMsjHjhwoGQ7GjVqBKvViq5du2LmzJnYt28f9u3bh5kzZ6Jbt27Izc0FAHz99deOAG5n7MLZzZs30atXL/z22284fPgwtmzZgpdeegl9+/b1ymFn5MiRjqqdsWPH4vXXX8eWLVuQkpKCxYsXo0uXLvj1118VH2dWqxXPPPMM9u3b5zjGzp8/r7g9rVu3dghRdtuy+fPnIyUlBdu3b8fUqVMxZMgQWCwW6HQ6fPfddx5+c4a/CajlVH5+Pj755BMsWrRIoL4dP34cLVqUeqP/9ttvWLlyJaKjo12WtzEYjIoLOZoOAErMVoRoPLOtKKwMFRpGX1douGc5JTcallZdQ3bkaTiVY0SyJ5CjgMlONXcghRWTTKcj+RJdGSo0aBU45bHvkI3gZgDia51c1YJSyOuA1PWUVqlW2o47goY3FRou1BC5VZMDzO2VLGSFBHm/JqvjfC5oUFZHq9oo+yslI5DQzjC71kYe566eb5SMgRFZThELhSus0CArF2jinK8pkwoNkaBBn8/Vt7eLsMxyilFeKCoqwvLly7F8+XLqdJVKhenTp2P48OGiaUuWLIHZbMaqVatw6NAhPPbYY6J5EhISsG7dOtSq5Z7lbXh4OJYsWYLhw4ejpKQE3333najzNikpCbNnz5bNEGjUqBFGjhyJZcuWYePGjY6KETupqakOa6O4uDjs3r0bI0eOxM6dO7Fjxw7s2LFDct1RUVGiz7p06YIlS5ZgzJgxKCkpwUcffYSPPvrIMV2j0WDOnDnYvXs3jh49qmRXeMQHH3yAzz77DH/99Rf++usv0fRmzZph7dq10GjE3a61a9fGli1bMGTIEKSnp+P7778XWBzZeeCBB6gVHM7UqlULX375JUaOHIk33nhDNF2lUuGTTz6RtJMaP348NmzYgNWrV+PUqVN45JFHBNNbt26NFStWuFX940zt2rUxd+5cjB8/HiUlJfj444/x8ccfC+Z5+OGH8dRTT8laO/3nP/9B165dsW/fPvzyyy/45ZdfBNPdcfKYOXMmCgsLMWfOHFy4cAETJkwQzRMdHY1ly5ahbdu2itfLCCwBe84/d+4c2rdvjw8//BBpaWngeV7ygOvatStWrlyJBQsWUEvIGAxG5YBWoVGsYDSXZCh4JajQkLOcUmIBpSLmkQsZt00nOgGdlie3R63QIKxWdBLeoErxqeUUEfQrJ2gEvkKj7LvpaJ0hSo6xYKPs9yQjGCBvLTRB3V3I85S8TtgxULKE7DgqNPwoaMhbTtE7WskOV/J+TVbH+d5yilVoMMTQqkrtnd/ksUwTxZxRUqFBbk5kOeWiOsoO2TYfny4AgqRCg7gUGRUKN2Rb7c8azHKKUR749ddfMW/ePIwaNQpt27ZFjRo1oNFoEBERgZYtW2LixIk4fPgw3n77beryISEhWLlyJdasWYMHHngACQkJ0Ol0iI2NRZcuXfDRRx/hzJkzHne69u/fHykpKXjssceQkJAArVaLatWqoXfv3pg3bx62bNmC8HB63o4zP/30Ez755BN07twZ0dHR1JwEOzVq1MCOHTuwdu1aPProo44AdPu2u3fvjpdffhnbt2/HggULqOt45JFHcPjwYTz++OOOfWKvhNm1axeeeuopj/aHO+h0Oqxfvx5z5sxB165dERMTg7CwMLRu3Rr/93//h0OHDiEhIUFy+Xbt2uHMmTP46KOP0KVLF8TExECn0yEhIQEPPPAA1qxZgxUrVggySqQYPHgwUlJSMHbsWNSrVw86nQ7x8fF48MEHsWvXLklrLMAmePz+++/45ptv0KlTJ4SHhyM8PBx33XUXPvjgA+zfvx81atTwaB/ZGTt2LHbu3Inhw4ejWrVq0Gq1qFmzJgYMGIClS5fit99+k8wIcW7nxo0b8fbbb6NNmzaIiIjweGCaSqXCN998gx07duDRRx9F3bp1odfrERUVhbZt2+LNN9/EuXPn0K+ffP4oo2wJSIVGSUkJBg8ejAsXLiA8PByTJ0/G3XffjSFDhlDnT0xMxD333IN//vkHa9asQc+ePQPRTAaDEWTQbk/FtCGYCqkMFRreW065W6EhRGg5RQoaris0vMnP4Hle1GnmneWUss5IQGxHRVrN+Bo1Reyj6rTNmQAA/HZJREFU7V9/Uh7FCxredniy/pOKAdmv5pMKDVLQ4KUspxRkaHgR9uJNhQbZ0WofF0CODyDn87flFM0uiNYBXTGuUgyl0ESKUssp4ec0UUww3QPLKbJCQ2mGBnmK+icUXEhZ3MNJYdbK2/Yzef1whX12UYWGzHMag+FvxowZgzFjxog+r1mzJp566imvO9jvu+8+3HfffW4vl5SU5HLkesuWLWUDmRMTE12uQ6vV4pVXXsErr7yiuG2DBw/G4MGDFc9P0qJFCyxZskRy+qJFiySzQXyFWq3GxIkTRTkZSomIiMDrr7+O119/3eu2NG/eXFIAcoVarcakSZMwadIkyXnkjgGp49+Z7t27Y9WqVZLTlRyrkZGRmDFjBmbMmCE737Zt22Sn2+nVqxd69eqlaF5nlLTVjjcZsAx5AiJozJ07F+fPn0d4eDh27typSD0eOHAgtmzZgr179/q/gQwGIyihdViUMEFDFu8tp7zL0OAEFRpCaKsiw3B1Ks8rNIrNvOiY8c5yiqjQkOiMBMQ2B5WjQoMWCl4GDfGS8thmhu8hxVufhIJzpB2KlOWU6woN0mPfHSJd+PjLZfKIQsHtGRpkKDixCn8LGrR7E+2ZwQsdiFEOoR1lDsspCfs0KZQU9VqJgQQFRuG/wxVnaIg7+i1Wnjp4wVNEFRpBYDkF2HI0XAka5FSHoOHmIBwGg8FgMBgVh4D0iKxcuRIcx+GFF15QXApnD/A5d+6cH1vGYDCCGdqLiZIKDan3mcpgOeX7Cg35fUZWBQgqNESWU0oqNDzvtcuhdJh5I2iQ/vfuWE5VjgyNikHZ70lGMEAO7PVFPyJ5HZC2nFKQoeFFg0I1nKxAI7dqqQoN8lZMdsjGEEPOaddnb6CJF3TLqYpypWIowUo5BuyHJhlw76rzW0mFhvMqrDyPIuLEUFqhQbNY9X2VBjkAJfDQvifNXsvVNy+t0GCh4AwGg8FgVFYC8h5/+vRpAHDLf6xKlSoAgJycHH80icFglANYhYb7eJ2hwZGjBN2s0ODofwPKQsF1as8LB0m7qRA1B70Xw6y1RIaGnOWUKBTc7xUaZd9JRw8FL/t2uYvXllO+aQajjCEzNHxxjokrNOjXECUVGt5kaHAcJ2s7RY5cd4bsj5XO0BDOJ6rQ8HWGBlXQEH9W/q5IDG+gPSI6LKdEx7L8uhRVaDhtr8gkHrahNEODdnr6egxOcFRoiD8zKsjGI09k+7MqCwVnMBgMBqPyEhDLqYKCAgA2fzilGAwGADYvPgaDUTmh+RuXsFBwWeQEDSUo7YCzI6rQkAkFp0F6x3tToZFHjAD2pjoDoFVoKM/QUFeGCo0KEgrufZuZpFER8IfllKhCwxNBw56h4WWDIrQccgz0afKWU2QouO3/5Ohxcr4o4vpbaOI98sqXgja6nvbMwCynKhe0oga7kCGuQJVfl6JQcKe/ac+Y4UorNCjnt79zNMomFJxuOUXiyjnKvruY5RSDwXCXs2fPwmg0ur1cfHw84uPj/dAiBoPhKQERNKpUqYIbN27g0qVLaN++vaJlTp48CQCoUaOGP5vGYDCCGNroORYKLk+20TvLKVGFhovOWnGFhkyGBmV5o8V/llPRCkdGSkFmaPDgYbFaqWKFyHLKz4JDMNiolEfxgoZUhyfP80GxnxmBQRQK7oNTWBQK7onllD1Dw8v2ROlUAOjCiazllESQMnl/JucjLacAIM9oRVyIF2EgTtA6o1mFBoNWVeqwnCIzNHxsOVVAPGNqVfTKCxpUKyYllQtuEAwVGmqVzf7O+asZFexnyQwNZjnFYDDcpF+/frh8+bLby7333nuYNm2a7xvEYDA8JiBDPO0ixo4dOxQvs2TJEnAch27duvmrWQwGI8ixUF5yvBM0Kv6LjrcVGqSgQfsNnCH7AwQVGsS6FGVoqD3v7CItTbyt0CAFDUB6hHWgQ8GDAVpfSHns/5dqsp8HxzKCjLK1nJLP0NCqxNdmd4mQs5xyI0PDEQouspwSzheh40RCiS9zNGidzfQMDZ9tklEOoGkA9nNHVKHh4nA0ShdOOXAWUMgKjXCtSrEoTootgO8tp8hdU1anBllt5olwUypoMMspBoMRWJKSksDzPHieR1JSUpm2Zdu2beB5Htu2bSvTdjAYZUVAelxGjBgBnucxb948XLlyxeX8X375pUP8eOSRR/zdPAaDEaTQtIsSV6bHkC5VLzTxLjMhyjtyFRpK3qvJDjiXFRpkyKRchQZlVeJQcM8LB/MMwg14bTlFESWkgsEDHQpOg5ZRwnCN1HnBBI3KRUAspyQqNMhKNWdUUHkVCG4nUqZiTU4sITtaHaHgZIUG0UYVx92pCikl14eCBq0TlFVoMGgihf1cFmVo+KBCw3lzZBVwhFb50afiOMq55tubkEjQKKOTg9RWlQg34goNe4YGs5xiMBjucenSJYcg4c5/rDqDwQg+AtLj8vjjj+Ouu+5CSUkJkpKSsGHDBkHHC8dx4HkeycnJePTRR/Hyyy+D4zj06tULAwcODEQTGQxGEEJ7mSz2ogSfh3eh4uUBn1douBjtRgpEch1j1AoNi+8yNMSWU76v0JASNMQVGhW/G432W5dHGyqpvmKlXa+s/6RiQGoNvsheUFqhYXBRoeFtfgYARMl4Vsmtnqy8kKzQoFy6RcHgvhQ0qKHghMCO4LDnYwQO2iAM+yFMHueuKjSUdLQLLKeIgzLCTZ848lzzteUUea8qq/u1Tys0yGusTNYZg8FgMBiMikVAMjRUKhXWrFmDnj174tKlSxgyZAjCwsIcLxlJSUnIz893BIHzPI+GDRti2bJlgWgeg8EIUmijLZUIErSOczsFJh5hWm9aFbwYLWYUmt0POXOG7Ih3VdFC7mvnpcWWU2LEFRpehIL73HKKkpUh0SFJfq7hfOMTH8zQOgrLY9+hVJMtVt43w/QZ5QJ/WE6JMjSkLKdkKzTU0PngciJrOSVzqSRHjZsdFRryllOAOMeItAX0BmqFRhBkBDDKFlp/tv1eRVYR+SJDw3kWMkMj3I0KDcBWueBcY6ugINktgqVCQyTcUPazqz3PMjQYDAaDwWAEzBOjbt26OHLkCB555BGoVCoUFhY6yrdu3bqFkpISR9XGyJEjceDAAcTHxweqeQwGIwihvWx6k6EBiD2OKxLeBoIDgErhiGI7chUaYsspP2dokBUa3lpOeVGhURaWU4GmovQVSo3grrhXCgYNf1hOqUUdqFIZGjKCBqemigXu4rnllFSFBjEfZRV+rdCgCBomi7TAzqgcyA32J89pV4KBEssn58sGmdMmJyLS0BIN9LnlFB8c54dHFRpEY9USllMV3VaWwWAwGAxGKQGp0LATFxeHn3/+GR9++CHWrVuHlJQUZGRkwGKxoEqVKmjXrh3uu+8+NGnSJJDNYjAYQYqnFRpykB7HFQlv7aYADyo0ZAUN16/LZBiuNxka5Ohf0r/dXWgVGkozNCqD5RTt9y2PllNSsAyNygX5e/tCkyQrtaQyNAwWGcspqHxjOeVhKDgpppgkKjRI4QMQ2/75PUOD/A0rzuWIoRC5qguxwGh7hpEStZWMf3G2uPK2QsPvllPEv4NH0BDP40qXkA4FZzduBoPBYDAqCwEVNOzUq1cPkyZNKotNMxiMcgSt3L9EwQue3BzkCLqKhCtBQ0lns8rN8n1RKLjT8oospyy+sZwyWnhR9U6Mt5ZTFNsoqQ5JkeWUF9ZZ5YWK7k1vVahosO6TioFfLKfIUHAPKzR8IWjI+fnLrZ6svLAHKZMDDqiWU2SFhi8tpyjnJy1Dg1G5kLts06qI5JwF3bWcElVouJ2hIfy3rx9XRRkaQRIKTjuXSUSh4PbP3cx9YzAYDAaDUXEIiKBx5coVAECtWrWgVmgnYrVace3aNQA2uyoGg1H5oGkX3lpOVeQKDV9YTqmJDjjXFRrCf3ttOeWhEEAb+eu95RStQoP+skwGUZZFhUagj2zaN5TLrylvsG6RyoXYPs/7dZLXAanAWrJSTdAOqKErS8sporfXLmSQdjhk1gbgP8spnudhoGhApMhS0UVXhhhZyynKeWThAamnDnctp8gKjQgvKzR8bjlF/Dt4KjS8CAUXVWiwOzeDwWAwGJWFgAgaiYmJUKlUOHbsGFq0aKFomdTUVDRu3BgqlQpms/SLHoPBqLhQKzSUhILLzFKRMzR8YTklrtCQ399eV2iIMjQ8uy2RI381KiCMNhzTDdScuIfOzEtYTolCwSt+hgaNiuT2wCynKhcW4tbgiwwNkeWURGebQS4UnPNNKHikh5ZTogoNqQyNAFpOSd3GLVbfi1KM8oXcIAzacW628pIVUEoeF523VkA8h4S7W6Hh9wwN4b/LrEKD/J6KBA3hMpxEhgaznGIwGAwGo/IQsB4X2shcfy7HYDDKP7QMDVahIU22wReh4L7M0CDmpUga5MhkvY8qNKJ1Kq9H53IcBy3RHskKDVGgcMUXNGijuitUhUbF+SoMBfjDckpUoSFpOSU9cIeDyieh4GEaTrKDXy1zuZIKBScHHND6bskKjTwj75PQXimLGrIDmOkZlQ93Lafk+tKVCApCyynvKjRIzdEkrXN6RLBUaIiyQiiXRVd7vrRCg1lOMRgMBoNRWQnaHhd7J5nKF6mMDAajXCKVoeFNh0iFrtAwusjQUPD2SnbEu9rX5HRO8DdRoUGznCIzNDyt0CAEDW8Dwe2QlRbSoeDCz2l2VRUNWiZLRRqDwEZ6Vi78YTklytCQtJySq9DwTSg4x3GSVRpyllNSvv5iQcN1hgYPIN/oA0FDoheaHO/AHKcqH25bTsmIFrRBNSTO1w3y+TLCzecQcUe/ny2nyugEISvOlFhOkU21XxI5jllOMRgMBoNRWQnaHpfr168DACIjI8u4JQwGo6yQKsYweOC3a6ciV2j4xHLKzYBFckS+oEKDI+cV47MMDWKIn7f5GXbICg2pDkmy87syWE7R+kJYhQajvELeb+SqFpRCWk5JiWQGi7y1qi8yNAAgUmLEuKzllESFhthySrwsTVj2he2UpKBBWk55vSVGeUNOoKBaTnlZoWGfw2jhRedEuJsVGuS55nvLqeCoYCKvZ7Tz2dV4AukKDXbjZjAYDAajshDQZ30lI0FMJhP+/fdffPDBBwCApk2b+rtZDAYjSKFVaACubafkphZW4AoNX1hOiSo0XHRQiys0pK/zdMsp/4SC+07QICo0FGZokOHqgSDQYoLcb10RYIJG5cJK/OA+sZwixQDK9YPnedkKDUA8otlTpCo05AUN4b/dqdDQqDiRiJJD85dxE6PE7hKHgnu9KUY5Q9ZySiIUnAbP8worNGz/p1X/RriZoUGe5363nAqSDA0llShkU1VSGRoSg04YDAaDwWBUPPwSCq5Wi9+8eJ5Hq1at3FoPx3EYMWKEr5rFYDDKGVIvk66CwWVDwX1gdxGs+KVCw8XLodimxTlDw/XbspEYmaxT+SYUnAyj9RSNKENDoeVUZajQoHzGKjQY5RWyY9MnllNkKDjleioVFO6MLyynAGlBQ85ySnmFBn0dUXoV8p16Zn1SoaE0Q4MpGpUOWcspWoaGxLGkRMwASp83CyjVv+5WaJCioN9DwX26duWIBA3qY5X8dy+t0CAtp9iNm8FgMBiMyoJfBA2pIG93A75HjhyJF1980QctYjAY5Q0rL901WuKV5VTFHb3lMkNDwesrOSrZVYWGXMikKBScsipRhQZFEFeC3yo0OGUe+JUxFJzWWeiLwN9ggXWMVC7EoeDer1McCi4+plzZTQFlbDlFTLPvJ7KzlWY5BdjE5TT4VtCQsp0kO6Er/lWYQSJ33aadRlLjY5SKCfZDroAYVBGm4WSFQhp+FzSIf5dZhYao6sv97+kQNNy0SWUwGAwGg1Fx8Iug8d577wn+PX36dHAch2eeeQbx8fGSy3Ech5CQENSsWRPdu3dHw4YN/dE8BsMnWKw8dqeX4FqBfE14qIZDp+p61I70y+lWYZEbHbfuYhGqhEp3fN8ulv5NMoptK84qsWB3ugH5RitO3DYiPkyN+LDSdVYJUaFnrRCcuG1EtsGKnrVC3LYP8DUnsjLwxYlDyDcZUCdCgzyjFbeKLbDyts6ks7m3ZZc/csuAX/4tcPw7TMOhS009aoaXHpsmCyFo8Dx+Pp0PjuMQo1ehR0KIQCwQV2iUTiNfNA9mXsNvFw9jZP02sPA8fr5wCOuunRbM447lVM6d3zDXaMW1fGGnoK8EDTLU94dzB7D9xkXRfDeL82WXY5Q//rpUjBi9weV8t4qtgvPKjoYDWlXVoUUVnWia2cpjx7USAMDdtUMkR7crxcrz2HfdgMt5Zqg4oHmcDndVE2+3MlFstmLHtRJklijr4MoqEd43fGE5RV4HLLwVb6SsF3xWYjG5XI/fKzRkLldkJ2tWiQUlZl6UR0WznALE1+L9NwzIc+r8DVFz6FxD/hnJ+X4NABlF9Hv85TzhfYAVaFQ+5PrGOY6DmhOKl+suFjmOUY0KuKuqDs3idKIKJCkO3bQdlzeJYzLCzeoMQHye70wzYHwr3u1Ko5OZRpy8bRSJNaSYGCwVGkduGQX/LjFbkXxT+BmJVIXG1usXRNdYKXpVr49BdZormpfB8CeXLl1C/fr1AQALFy7EmDFjyrZBDCrTpk3D9OnTAbg/UJvhHtu2bcM999wDANi6dSuSkpLKtD1jxozB4sWLUa9ePVy6dKlM28IQEjBBAwAmT56MFi1a+GOTDEbAWXyqAH9fVpZZ8MeFInzcKw7Vw3xkhF0JkMrPAIBd6a47GeU4eNOAH07kCzq6LuSKR8kuOFnaSbk+tRhf9I4TeaIHirTCXHT68yuUWEs8XsepTBP4EmEVx5qLRfj07jjEhdiOzZ9Oiztm/7hQ5Hih3nS5GJ/1jnOMPJQNBae8Lj+y/WecyL6B68X5WHDugGi6UkHDZOHx7t5s3Cyi9zr4ynKKDAX//dIxRctVhgoNFeX3rUiP99uvKT/X/rhAr45acb4Ir3SMRsfqesHnXx7KdXTYHMww4JWOMR63EwCWnS3EqvPObSjCs22j0KtWiFfrLc98kpyLU1muxQIpfKFJ0q4DM4//4/Z6fJWhESGZoaHccspgAT47mCOaT0rvjyEEjbPZJpzNFv4uf1wowid305+RjBYe7+zJxu1i1z3MN4hOZaZnVD5cDfbXqACL02GyjbjOrzxXhDc6R6NWhLJX5FNZJup1JtyDATDkIgYLj5Xni/Bg43DF60i+YcCnB3MVzRssoeAAsDe9BN0SbPerzw/liaaTS6glMjRSMq8iJfOqonaYrL2ZoMFgMBgMhhMnTpzA119/jc2bNyM9PR0RERFo1qwZHn30UYwfPx4aTXAN0g5Ij8vChQuxYMEC1K5dOxCbYzACwu505Z1dxWYeRzK864SvbJCjP33JopP5ikft2rlZZMH+G2X3G66+fMorMQMQVk/YKTTxOHZndFyRyYoz2eKRr1Ynu5D0QotgFCxpweQsaISo6Te8ny4ewi8XD1GnhWuUjSq/mGuWFDMAICbEN7c3pe0hCVVrfbJ9d+hctW5At1clJEz0WYSH+6sis++68LzNNQhHn6bcNCLHSxueHRTxZXead9eL8kxmscUrMQPwjc1TmMY314FQtW+uZzESgobcdw0hPacAHLst3rd6ynyAWNCgUWLhcUDi/vpvlkmRmEHDV5UtjPJDoxj5F21XxwQPYN91g+ygGiVIVUPJQTvX9rjxrgG4924iVVXlb0Ip1Sv/XLW1u9BkxdFb4uoM0tLOfs1Sc8HVscJgVES2bdsGjuPAcRy2bdtW1s1hMHzCtGnTHMc1w8b8+fPRoUMHzJs3DxcvXkRJSQlu376NXbt2YeLEiejRowdu35Z3BAk0ARE0Ro8ejdGjRyMqKioQm2Mw/A7Pi+0WXCHl+cygk5rn2lfcU267KWbYuUip4ggUN4rFlRPuUl2bSP3cfmwWmnhoVXrRdCMhpBQ7+RhkG4VVStHa0hHhPavXR4RGvL4rBTkoofjGh6q1SKqpzGqw2CL9G9YIU6N2hG+GNA+q7f7ovTh9GLpU87+48EXnoY6/9WoN3m7T1+/bdKZeRBx6xCc6/v2fmo0QHxoZ0Db4invrhvpt3QZCI6RlCJD+6+5gtPBUgTbPi3WWd7I8vMbbCdNwaBrrvRhRNzwWLWKqe7x8y/Ae0KuBFlV8I4y0qqqFnrg0RutVqB8t3SlYP8p1h2G1UBVqSFSgto/XK8ojyZSwiswskbf1lKNtJbddq4zc3yhc0Pk9pkWEYHr7ePEzCUmxmVccCi5Fx+ruH3ttqoqXcffdoUgqFIQgXMOhiQ+ucZ7QPE78Pa/csQ01Snzfu4h907yK7VpWU9fA9w1kMBgMBsOJRYsWgef5Cm03tX79ejzzzDMwGo2oXr06vvrqK+zfvx8bNmzAAw88AAA4cOAA7r//flgsnj+b+5qADWu4cuUKAKB69erQ6+UfJktKSpCRkQEAqFs3sCNOGQwlWHixtUrH6jqEOL21n8w0Idup44rJGe5xIUc8ArRXrRC3PCs5DqgXqcWtYovAHszTgXdl6ZeZaxSKCuGqaFTR1hLNVyNMjd61qmDWiW2iaTHaeLSI0yKtwIxcIy2cloeOE3fsWlEMoLRTwPlFP9NQKJjXedR+zbAo7Bg0CW8eXI+/0s44PqfFvT/RsAOebd4D9SLiRNNokD+FXg10qq5HXIga/RND3Q7jlOL9dv1RMzQSB25fVRR4XS0kHE817YIonf+tfl5o0QsxulCcyrmJxxq2R82wwA8aWHfvOHx5cidUHIcXW/YK+PZ9xZiWEYgLUWHpWdvx3CNBL2vHcTrLhMwSK5rFalE1VDg25Eq+xdE5A4iPVdpx5M1AWak8gWKFHVsVkVxCzAlRc4o7GCN1KvynTqikPZM7cByHTf0nYPbp3bhSkONy/voRVRClTsTfaSdQVReLvjU64j91Q2Uzo9whNkSNad1ise1qCQpNVsToVehbL1R21LpWgRoxvVus5Ai3ulEavN0lBrvTS1DidExeyTfjSn7psZstUaVECoBxISq0iLN1xHIch+uFZtQM1wjuzxwH1I/Son+i/4RKRnBSNVSND3rEYneaAbUj1bibsN0b3yoStSLUuOI0aIY8Fq08YKZcp++tG4oisxUpN40I03BoSREa1SoOLeK06F3b/WeAxGgthjUME1gYuvu8aiIEgYbRGtQMF14/fHmN84QYvQovtIvC/w6XWkvlGKzIM1ip70pTO0QjMVq4r6uGqvFe11isOt8M1iv3I91wHhbe9ht2q6lXlEvVvor4GZrBYDAYjMqGyWTCc889B6vViqioKOzevVuQZz1gwABMnjwZc+bMwa5du/Djjz8GTdZPQASNjRs3YuDAgYiIiMClS5dcChpFRUVo2bIliouLsXnz5jIPgWEwSGgjiMa2jERVp06HmQdykE0pm2Yo40KuUNAY1jAMo5pFSMwtz9+X6P727lKW3YO5JmElRE19A7SPvFc0X+caerzcIZoqaADA/Y3DsepcIXKd7Fjs38tg4aHiVNByepj4UvsPjaZE8OWdrRiyDMJ9W0Uv9HpuV6UWfrx7FKr9KsxWckbNqbCo13/dKvkkX/KjdSo81y5a8fJKUatUeLZFT5+v1xdwHIcxjTuVaRuidaF4r12/Mm2DL9CoODzQOBwPuOFVLsWKc4UCQYO8ctC6bb0RNG5JjGxXOlK3IkJ2gidEqP1yfVBCQlg0PuwwyK1lXmnb1E+tARpEa9Eg2r2R2SFqDiUSI6ejdJxLwaVFFR1aVBEKShtSi7DoVGnlYbZEVQ0pTrWqosPktqzimyFNYpQWiVH0Y1yn5jCsofA6v/JcIa7klw7OsPDiCg2dChjf2v8ViK2q6LwSNIzEAn3qhqKPHysQPaVrTT3mHIUgfP1KvhkJlOpaqQq1hjFaPH1XFJJvNkYtfWPH53O7VUFsCMssZDAYDAZDCatWrcLFixcBAG+88YZAzLAza9Ys/Prrr8jOzsasWbOCRtAIyNCM5cuXg+d5DB8+HLGxsS7nj4uLw4MPPgir1YqlS5cGoIUMhnuYKO/dvvDbZtjgeR4Xc4SWRA1lLDFcESrh7V2eyCEqNLQcXRguoh2czsupbKNXnbEPRLRbG+hVwpdf0nLKuZ80kxA04vTiXIUYF9UKcfpQt/0ryZd8X1VkMBj+xktrdhFSFRqurgUVGTKTREmOA8MzQklze4XEETlH2RLWUuRvGc1+S4aPISNqLFaIMjSUjPj3BeRmlFSGOkNe9oP13UTFcagTKXyuv5zvvq0rrbqMWfwygoHdu3dj/PjxaNq0KaKioqDT6VC7dm0MGTIE33zzDXJychSva8yYMeA4DomJibLzLVq0yJEJIGWN888//+CRRx5B/fr1ERoairCwMNSrVw9du3bF1KlT8c8//zjmvXTpEjiOwz333OP47J577nFsw/7fokWLqNvaunUrRo8ejQYNGiAsLAxRUVFo3bo1XnnlFaSnp0t+DzLbIDc3FzNmzEC7du0QExMjuc3Vq1fjoYceQt26dRESEoKYmBh07NgR06dPR3Z2tuy+A4Br165h8uTJaNCgAUJCQpCQkIChQ4di8+bNLpf1FPs+dv5Oy5cvR9++fREfH4/Q0FA0a9YMb7zxhqJjxmg0Ys6cObjnnntQrVo16HQ61KhRA4MGDcJPP/0Eq1X63YA8ztLS0vDSSy+hSZMmCAsLQ7Vq1TB48GD89ddfbn0fKRITE22D8zzsGN+3bx/efvttJCUloUaNGtDpdIiKikKLFi0wceJEnDp1irqc/TyZPn264zPymCbPIaXn4PHjxzFhwgQ0btwYYWFhiIyMRMuWLTFlyhRZuyraftu0aRPuu+8+1KhRA3q9HvXr18fEiRNx7do1pbtIMatXr3b8LfV7hIWFYeTIkQCAU6dO4ezZsz5vhycEpEJj79694DgO/fopH8XZv39/LFmyBHv37vVjyxgMzzBReqS0xGAgqU5jhmtuFFlQSIwubhjjudevOx0uHKQrMXzdEekOuURWhZSg4SrbRS4E0l55pOfCUICc0s/5Ijj771icdgQpaFShCBoalRrRuhCRbZadWJ14GVeQL/lB+s7OqISQhyJ5RtKuI95cW6QEDeOdTrlAdcQFE2SFRnQZWatUBjwdMECOoM42WMHzvEjcFv2WTNBg+Bg1cczRKjQ81O3cRixouLc8aTlFvpsEE3UjNYJsuit5ZnSr6TrjxBkt5XepxPFRjCCguLgY48aNw6+//iqalpaWhrS0NKxbtw63bt3CtGnTAtq2KVOm4MsvvxR9fuXKFVy5cgX79+/HokWLvA79LSkpwdixY/Hbb7+Jpp04cQInTpzA3Llz8euvv+K+++6TXde5c+fQr18/2c7g7OxsjBgxQiDGAIDBYMDBgwdx8OBBzJkzB3/88Qe6du1KXcfOnTsxZMgQ5OWVWuFdv34df/75J/7888+A/Vbjxo3DggULBJ+dOXMGM2fOxJIlS7BlyxY0a9aMuuylS5cwcOBA/Pvvv4LPb968iQ0bNmDDhg347rvv8McffyAuTt7iOSUlBYMHD3bEAAC2Y3v9+vVYv349XnrpJXz22WcefkvvWbRoEcaOHSv63GQy4fTp0zh9+jTmz5+Pr776CpMmTQpImz766CO8/fbbItHo1KlTOHXqFObOnYt58+bhiSeecLmuN954AzNnzhR8dunSJXz77bdYsWIFtm/fjubN3c/5lGLXrl0AgKZNm6JGjRqS8/Xu3RvfffcdAJto26RJE5+1wVMCImjYL0DufOFGjRoBAFJTU/3RJAbDK2iWU3IdxQDL0HAHsjojWq9ClRDP3yb1bnS4ROo45FHyJcqaPBNRoUEJ7waAIhdJlhqVuMPVjn1Um04lrKgwWksE9XzOmxBbTtHFiVhdqKSgQavqcIW4QsPtVTAYfsFVsRBtxK03gsbNIulzvtjMI1JX+U4O0qaIdYJ7h9wxHeapoEH8JiarTZCP0MkLGqzahuFryEH+FkqGRtlVaLi3PDngKlgrNABbvo4zVyQqNOS+gYrjoFUJK1OkgsUZDH9jtVoxbNgwbNq0CQDQuHFjTJo0CR07dkRYWBiuX7+OPXv2YNmyZQFv29q1ax1ixl133YWJEyeiefPmiI6ORk5ODk6ePInNmzfjwIEDjmVq1aqF48ePIzk5GU8++SQAYMGCBejUSWh3W7t2bcffPM9jxIgRWLduHQDgvvvuw8iRI9GgQQOoVCocOHAAn332Ga5cuYIRI0Zg9+7d6Nixo2S7R4wYgbS0NDz33HMYOnQoYmNjce7cOdSrVw+ATbTo27cvDh06BLVajVGjRmHQoEGoX78+TCYTduzYgc8//xwZGRkYNGgQDh8+7FjWzpUrVxxihkqlwoQJEzBixAhER0fj2LFjmDlzJqZNmybbTl8wZ84cJCcno3PnzpgyZQoaN26MjIwMLFq0CMuWLUN6ejr69++PEydOIDJSaIFYUFCAPn36OGyDhg8fjieffBIJCQlITU3F7NmzsX37duzatQv33XcfduzYAbWarngXFRXhoYceQm5uLl5//XUMGjQIer0e+/fvx0cffYTr16/j888/R926dfHCCy/4dZ9IYTabERsbi2HDhuHuu+9G48aNER4ejvT0dBw6dAhfffUVbt++jWeffRbNmjXDf/7zH8eyw4cPR8eOHTFnzhzMnTsXgK2ygqRWLeU5S3PmzMGbb74JAKhWrRpee+019OjRAxaLBZs3b8asWbNQWFiIMWPGoGrVqhg0SNqKdv78+dizZw969+6Np59+Gk2aNEFOTg6WLFmCJUuW4NatW3jyySd9NvC/oKAAV69eBQBJscyO8/TTp0/7ZPveEhBBw2y2PaBInTQ07POWlNA7wIKBpKQkbN++3a1ltm7d6nYmyLRp0wQlUb5eP8N9SI9aFRe4l53KAJmf0TBa47YlkTOhCkJN7YRrVcgz0kc8l+UrEilo6Di6jZMnFRrOGRoAoFcJBYYSq1C0cH7RJ0PBpcSJOH0YLhXQy31jde77OzNBg1FeofW1eCNoSGVoALYcjUhlWdgVCjaqP3B4WqFBEyayDFZRUDH7LRn+RmQ5xdtsp5wJlHMpaZ/pbrEBWZ2gdeP5N9DUIyynruabRftdCTo1JxBymKDhHlYrj8yiypP5WCVMB5WfXhpmz57tEDPuv/9+/Prrr6Ls2MGDB2PGjBm4fv26X9oghV1EqVevHnbv3o2ICGEuZVJSEiZPnoysrCzHZ1qtFq1atRJUbNSvXx+tWrWS3M7333+PdevWQavVYs2aNRgwYIBgeteuXfH444+jV69eOHnyJF588UXH6HAaJ06cwIYNGwROLx06dHD8/f777+PQoUOIiYnB5s2bBdMAoGfPnnj00UfRrVs3XL9+HW+++SZ+/vlnwTwvv/yyozLjp59+wiOPPOKY1rFjRzz00EPo1asXUlJSJNvpC5KTkzFo0CD88ccf0GhKr48DBw5Eq1at8O677+LKlSuYMWMGPvnkE8Gy06dPd4gZb7/9NmbMmOGY1qFDBzz44IN4/PHH8fPPP2PPnj2YN28eJk6cSG3HrVu3kJOTg82bN+Puu+92fN65c2c8+OCD6NKlC65du4a33noLo0aNQrVq1Xy5GxQxcOBAjBo1CmFhwn6Hdu3aYfDgwXj++edx991349ixY3jvvfcEgkZMTAxiYmIQHx/v+EzumHbFrVu38MorrwAAEhISsG/fPtSpU8cxvUePHhg6dCh69eqFwsJCTJgwAampqdBq6e4je/bswVNPPYXvvvtO0P/Vp08f6HQ6fP/999i3bx8OHz6Mdu3aedxuO84WVs7iJA3n72UXQcqagAgaVatWxfXr13Hx4kW0b99e0TL2E9JVOVR5QqVSoXHjxq5nZAQ9JqL/iNZJHLyvEMHPBaJCw90AUxJ3OlwitNLzlqVtmKhCQ8ZyipdpqFbFie3Q7vzfcOe41nFCgaHEKrS7sldolJhNKDILxScyFNyOXBWGbyo02BnHCE7I05H0Zgfc90l3RspyCrDnaASx54ifYJ3ggcNTQUOr5hCp45DvVBGZXWJBXadOTrOVRz4h0scw+zCGjxFZTln58puhQVpOBfHpUpcQNExW4LrM/UwKnYpDodOQI3LQGUOezCIj4t/bWNbNCBgZ0/uhWoR71mZKsFqtmDVrFgBbp+CSJUtEYoYdlUrl1uhvX3Djxg0AQPv27UVihjPe9L3xPI+PP/4YAPD888+LxAw7sbGxmDVrFgYNGoTdu3fj3Llzkn1kY8aMkbStLygowDfffAMAmDFjhkjMsFOvXj288847mDRpEpYvX4558+YhPNz2vnrjxg2sWrUKADBkyBCBmGEnMjIS8+bNQ5cuXWS+vffo9XrMnz9fIGbYeeutt7Bs2TKcOHECP/zwA/7v//4POp1txJLBYMD3338PAGjZsiXVHovjOMyZMwd//fUXMjMzMXv2bElBAwCefvppgZhhJyEhAZ999hkefvhhFBYWYvHixZg6daqH39hzXJ0/0dHReP/99zF8+HDs2rULmZmZqFKlil/asnDhQhQV2QZ/fv7554JOfzvt2rXDG2+8gbfffhtpaWmOvBcaNWvWxNdff00dzDt16lTHb71z506fCBr5+fmOv+WuDQAc5w1gO/+CgYA85rRt2xYA3Ar4tnvueaOW+ZuFCxfi+PHjsv85f+c+ffp4ffNytT2yBJDhH8iHZdr7NcvQ8AyLlUdqnrCTvFGMd9priFuCRnC+/eWRGRoSllM8gBKZ0WlUH+g7sxslQsFLLKSgYZsvyyis3ACkLafiZHIyYvUeVGgQ9TKsQoMRrJBnI80VztMBpQUmK4rM0gvLTavIsAyNwOFpKDgAxOqJHI0S4e+WRzHDZ+IUw9fQLaeIecpLhgb5fhLEFRpRepXIeu5KnvfB4OSgMwYjEBw5csQx0vmpp55y2TEYaGrWrAkA2LFjBy5cuOCXbZw6dcqx7hEjRsjO69xZLmed8+ijj0pO2759O3Jzc93anslkwsGDBx2fb926FRaL7aJBy2Sw07lzZ7Rs2VJ2G97Sr18/JCQkUKepVCqMHj0aAJCVlYVDhw45ph08eNARGD5mzBhJV5yoqChBqLNclZDcvrj//vsRExMDAH4NTHeHwsJCXLp0CSdPnnTktDhXQBw9etRv27bvg5iYGDzwwAOS840fP160DI0RI0ZIiqFNmzZ1XFvsBQDe4uyIZBfJpHBuV3FxscycgSMgFRrDhg3D+vXrsXLlSixfvlxSjbKzbNkyrFy5EhzHYfjw4YFookfUr1/f5Tw//vij428lATCuCGaBpzJBjoAK5heG8kZagcVRKWCnoZcVGm4JGjJ+82U16MtgMcNgFb7kSVVoAPK2U1oVpyBDQygwFJEVGndWn1kiFDQ4cIiRsI/yf4WG26tgMPyCq0ORXqHh2bbkqjMAW4ZGZcNk4VFIfG+Wu+A/wmSqGl0RF6LCldKBYcgmhChSmOKASpkJw/Av4lBw8XVaE6AqUPJK5Y7YzfO8IEsCcJ3vV9bUidQg21Bqd0TL0XC163VE3x2znGKUBYcPH3b83atXrzJsCZ0nnngCS5YsQWZmJlq1aoVhw4ahf//+6NWrlyO71lucLZm6deumeDl79QiNu+66S9H27IKNu9tzzk5wNTC4c+fOOHnypOLtuIuS7ds5fvy4I+D8xIkTjs9dVZF06dLFkRtx4sQJ6n7T6XRo06aN5Dq0Wi3atWuHrVu3UrMnAsXt27fx+eefY8WKFTh37pysQ4W3Qfdy2Pd/+/btJW2kAKB69epITEzEpUuXBL8Ziasci9jYWBQUFAgqK7whJKTUxtxolLcfNBgMjr9DQ90fkOoPAvKGN3r0aCQmJoLneYwaNQpTp06lem5dvXoVL730Eh599FFwHIc6deoIlKzyhtVqdXj0RUREyCp2jPKFJy8M7PFaGWR+RrVQFaK87IwKcTNDI9jINYoVcDlBo8jMQ8PRv4ft6wn3hzhDQ3iDKjYTGRp3XvTJ/IwYXQjUKvp25aowfJKh4fYaGAz/4KrzhVah4S9Bo4i8WVUCyEBwgI3q9yeeWk4B4mBwskIjhxA0ovQqZi/I8DnkY4vNckr4mReFSO61hczQcOPeQLvcB+EjrYB6RDD4ZU8qNIh3MGY5xSgLnDtM3elcDxR9+vTB7NmzERoaipKSEixduhRPPvkkGjdujNq1a+OZZ57xehR7RkaGR8vZ7XpoxMbG+nV7zpkhzpkKNKpXr+7R9pTizvad2+3Od6hRowZ1OWfi4uJcZh/b2yK1Dn9z8OBBNGvWDB999BHOnj0rK2YA/q0msO8DV/seKN3/cvuNzAUhUd15aLFXFnmLc8C8KxupwsLSvp9gqUILSIWGTqfDypUrcffdd6OgoABffPEFvvjiC9StW9dxwb9+/TquXLkCwDbCJCIiAqtWrZIstykPbNmyBWlpaQBspUOuDk5G+YEc/aOlXPPZK7dn+Do/A7B5H2tV9Jc9Ejnxgy8jWSrXWCL6TKeih4IDtk5MjUoFMyVdUSOboXFH0CAyNIpEllO2/2cZhJ9L5WcA8pZTLEODUZERZWhQHrpJCzWluBQ0KmGFBjmqX80B4V5UETDk8UrQCBH2tmaVyFdosEobhj8gD2ErrUKjjDI0bO3hFT3jkHZTQPBXkNeNFL5A0QQNV9+A/I4GVqHhFlXCdMiYTs8oqIhUCZO3VKnITJ48GQ899BB++eUXbNq0Cbt370Zubi7S0tLw3XffYd68eXjzzTfxf//3fx6t37mD9c8//0RiYqKi5eQ6guU61p23d+jQIdnR8c5IBR/TMgsCiS+2Hyzr8CdGoxEjR45EZmYmtFotnnvuOQwbNgxNmjRBbGyso//44sWLaNiwIQC4FDx8QbDvNymcIxGcA8JpOBcl0LJCyoKACBqALUdj//79eOyxxxwleZcvXxaIGHY6dOiAH3/80WW5TbCzZMkSx9++sJtiBA/k6J9gL+kuT5AVGg29zM+wE6LhYDK6vpnJvfyV1StSDlGhoYIaak56vxSaeGg4NQDhiyEHsVc0AFGGBmk5VWI1wMJboOZsD5UWnl6hESdTheF7yymWocEon9CEVc8rNORV2iIZ+7mKCtkJHqVjo/r9iS8FjWzCb5KstmFZKAx/QF4fLDwvytAIXIWG+DMrr+wZh7TDBYL//aQuUaHhyR1LTzzYMssp91CpOL+EZFc2qlat6vj7+vXrPu3Hso/Itlrln/mcR09LER8fjxdffBEvvvgirFYrjhw5glWrVmH27NnIycnBBx98gE6dOmHYsGFut9M5dDkmJsbvVunO26tWrZqkUCGHcwXIzZs3ZTtpb9686fb63cHV+p2nO4e3O/998+ZNNGnSRHIdznZbUgHwmZmZsFgssmKSvS3kOlROJY++OF5p/PPPP478iDlz5kg6+gSqeiQuLg7Xr19XdHzY97/Uvi8LIiMjUadOHVy9ehX//vuv7LzO05s3b+7vpikioG8GzZs3x8GDB/H333/jueeeQ8+ePdG0aVM0bdoUPXv2xPPPP49NmzYhOTm53IsZBQUFWLVqFQCgXr16SEpK8sl6+/Xrh/j4eOh0OsTHxyMpKQkzZ85Edna21+u+du2a7H9ywUGVDWWhe3RbH4Y0JgsvGp3lbX6GnVCFo9Rk7anK6EfMISo05OymAFsnppryEqtR2UYPuMrQIC2nAMDolKNRWqEhLBGWrdCQES18YjkV3O/sjEoEeSiKQ8HFFxJP+18yilmGBomoE5yN6vcauctrmBc9vXEh8qHgonB39lsy/AB5CJdphoaEoKEEitte0AsatcI19IE2AuRnIL8jbT8wGP6mffv2jr937Njh03XbLWHswc9SnD171q31qlQqtG/fHjNmzMCWLVscny9btkwwn9KR5+3atXP8vXv3brfa4gm+2F7r1q0dfycnJ8vO62q6t7izfWexyPnv/fv3y67jwIED1OWcMRqNsvZjZrMZR44coa7D2b5Irn8yKysLmZmZsm2VwjnH5OGHH5aczzljhYavKirs++DQoUMwm6VtEzMyMnD58mXBMsFCz549AQBnzpyRzbTZvn274+8ePXr4vV1KKJM3g3vvvRf/+9//sGPHDpw6dQqnTp3Cjh078OWXX6JPnz5l0SSfs2LFCofq+Nhjj/nshNm0aRNu3boFk8mEW7duYfv27XjjjTfQoEED/PHHH16tu06dOrL/OQcRVXZMRB8SbdAgGxDqPpfzzaKOvQbRvqrQUHa5k6vQKKt3pFyTsEJDp5IXNArNVmqGhtSLrd1Kyz44VsdRBA3eWdCwV2gQgkaIjGjhYfWGFEzQYJRX6BkavrGcCiNGyxfRNlbBIXMXmE2Rf/FlhkaOwSo4F9hvyQgE5PODxSq+TpdVhgagXNCgWU4Fe4aGVs0hIULeq90VLBScEQy0adPGMbr/+++/d+lF7w7169cHAOTn5+PMmTPUeYxGI1asWOHxNtq3b++oViADlJ1Dg51DgWnrsFdJzJs3DyUlYstkX9K3b1+HpftXX33lka3QPffc46hEWLx4seR8ycnJskHOvmDjxo2SA4itVqujfbGxsQIBrUOHDoiJiQFg+w5SlRH5+fkOsapFixayWS9y+2LVqlUOsaJv376CabGxsY62yAkKv/32m8c2UM6igVSVh9Vqxfz582XXo/S4doV9H+Tk5GDlypWS8/3www+O70zut7Jm+PDhjr8XLVpEnaeoqEhw/MhVAgWSIH/MKb/42m6qdevWeOedd/Dnn3/i4MGD2LdvHxYvXox+/Wyelzk5OXjwwQexYcMGr7fFcI0nllMBsO4r91zIEdpNJYSrEeajt7EQhZ0uFaFCo9DEQ6MSvyDad6XUCHJ7hYaKU4m2YXCq0LC/K5KChmxOhsw031RoMEWDERxI10DZoFVoeHJ/sPI8bhEVGomEfQfL0GCj+v2NLy2nLDyQ52QNKfotmeUUww+oKZZTFuI6Tat69QdSGRpKIC2n1Fzg2u0NdSO9G7hEDkRiggajLFCpVHjllVcA2FwvnnjiCRiNRuq8VqsV6enpitfdu3dvx9+fffYZdZ6XXnrJkd1KY+nSpbLByCkpKY5OaruAYse54/vChQuS61CpVHjzzTcB2PILnnjiCdmO4ry8PMyePVtyuitiYmLw7LPPAgD27NmDKVOmyNoc3bx5E99//73gs5o1azrstdasWSOqTgFszitPP/20x+1UisFgwNNPP00Ne545cyaOHz8OAHjyyScFOcN6vd5hu3TixAnMmDFDtDzP83j22WcdYpV9v0kxd+5c7Nq1S/T5jRs3MHXqVAC28OrRo0eL5rn77rsBAH/88Qf1eDlz5gzeeecd2e3L0bhxY8ffUp3vb7zxBg4dOiS7HqXHtSvGjh3rENZefvll6nl49OhRfPjhhwBsmRXOAkIwcP/996NBgwYAgI8++oi6P1555RXHNcJ+rQsGApahQWK1WpGVlYWioiLUqlVL1qOtvHHt2jVs27YNANC1a1ev1asXX3wR06ZNE33epUsXPPHEE/juu+/wzDPPwGKxYPz48bhw4YJAcVSKc8gLjevXr7MqjTuQLw20Uf3iT9gDtisu5BJ2Uz7KzwCUd7qQI72cKatfMJfI0NBy8ud3kYleoeEq1NL5JVCvCoXJUvoQKrScss0nspySqdCQtZzypEKD+DXKwTs7o5IispyiXEg8ydDILrGKRhHXi9LgVFapMFwpMzRY7kJA8UbQiNapwEF4jmSXWByVGGL7MHahZ/geNc1yiszQCNChRxU0FC5LWi0Fu92UnbqRGuyGdKenq/EqOpHlVOW77zGCg8mTJ+PPP//Epk2bsGrVKrRu3RqTJk1Cx44dERYWhhs3bmDfvn349ddfMWrUKGr/Do127dqhW7du2Lt3L+bPnw+j0YjRo0cjOjoa586dw7x58/DPP/+ge/fu2LNnD3Udr732Gp555hkMGzYMd999N5o0aYLw8HBkZmZi165d+PrrrwHYQrjJTIK6deuidu3auHbtGj799FPUrl0bTZs2dfTfVa9e3WE19Mwzzzi+//Lly3Ho0CE8/fTT6Ny5M6Kjo5GXl4d///0X27Ztw5o1axASEuKyc12O999/H9u3b8f+/fvxv//9D9u2bcNTTz2Ftm3bIjw8HNnZ2Th58iQ2b96MDRs2oHXr1qLv99lnn2HTpk3Iz8/HqFGjsH37dowYMQJRUVE4duwYZs6cibNnz6Jjx44ubYy8oWPHjvjzzz/Ro0cPTJkyBY0bN0ZGRgYWL16M3377DYAt0JwmBrz77rtYuXIlLl68iGnTpuH48eMYO3YsatasidTUVMyePdvRP9mtWzdMmDBBsh3VqlVDWFgY7r33XkyZMgWDBg2CXq/HgQMH8OGHHzrEuBkzZlAD3SdNmoQ1a9aguLgYSUlJmDZtGtq1a4eCggJs2bIF//vf/1CtWjWo1WrcunXL7f3Uv39/xMfHIyMjA2+//TYuXbqE+++/H1WrVsX58+cxf/58bNmyBT169JC1Iuvevbvj7ylTpuCtt95CzZo1Hc46iYmJ0Ghc90VVq1YNs2bNwuTJk3Ht2jV06NABr7/+Orp37w6z2YzNmzdj1qxZKCgoAMdxmDdvnuIA+0Ch1Wrx9ddf47777kNeXh569OiBt99+G507d0Z2djbmz5/vqADr2bMnHn/88TJucSkBFTQsFgsWLVqERYsWITk5GSaTCRzH4dixY2jRooVjvrVr12LHjh2Ijo7GW2+9Fcgm+oSffvrJoQ7TVEt3sZdtSfH0008jOTkZP/zwA9LT07FixQo8+uijbm/HkyClykp5fWkIdi6SgeA+ys8AXFReOKGXeWstu1BwokLDpeUULxpxaFvO9pnUy6HBSdCw2U7llE7jxRkaZCi4JxkaYRot9Gr3b0Xk+yo7AxlBg4uD0UwZPepJ/wuZn6FVATXDhYpspczQYBUaAYW0OXMHtYpDjF6FbKffLLvEivrRtr/FllMVZ/ATI3gQVWhYKRkaAavQ8J3llLacnC71onxdoeHV6hgMj1GpVFi9ejVGjx6N33//HWfPnsWLL77ok3UvWLAAvXv3dnRwk5ZAU6dORcuWLSUFDcDm6EFb1o5er8e3336Ljh07iqa9+eabmDRpElJTU0WB4QsXLsSYMWMA2HIJli5dihdeeAHffvstLly4gFdffVWyTbQOcXfQ6/XYtGkTxowZg5UrV+Lo0aOyAklUVJTos8TERKxZswZDhw5Ffn4+5syZgzlz5gjmeffdd8FxnF8FjcmTJ2P79u1YtGgR/vvf/4qm16xZE3///Teio6NF0yIjI7FlyxYMHDgQ//77L1asWEG1IOvRowfWrFkjO5g8LCwMv//+OwYOHIiPPvoIH330kWie559/Hi+99BJ1+f79++P555/HV199hWvXrlEFsjVr1mDgwIGSbZAjPDwcS5YswfDhw1FSUoLvvvsO3333nWCepKQkzJ49WzarolGjRhg5ciSWLVuGjRs3YuPGjYLpqampSExMVNSmSZMmIScnB++88w5u3ryJKVOmiObR6/WYN28eBg0apGidgWbQoEH49ttv8eyzz+LmzZt47rnnRPN07twZq1atCqpihIC95WVkZKBXr16YMGECdu/eDaPRCJ7nqd5piYmJ+PTTT/Huu+86AmfKEz/++CMA20ErF1TjS5zL4JzDWhj+gSxnVvLSUPm6ldyjxMzjWr7wLaSBLwUNX1hOlRG5HoSC0yynpDyg7ZdhA1Gh4Yyz5ZSZp2doyFVhhGq0CKEIF3JWVHKwDA1GsCKydCOOVZrGYPHAc4rMz6gWqkY4YdFXGTM0mKDhe+Qur6Fe2kKStlN2ccNi5VFgFJ4X7Ldk+APysc/C82WYoSH+TLGgQVaPl5MHI1eWU66+BcvQYAQTYWFhWL58Of755x88/vjjqF+/PkJDQ6HT6VCnTh3cd999+O677/Dyyy+7td5mzZrh0KFDmDhxIurVqwedTodq1aphwIABWLduHWbNmiW7/NatW/G///0PDz74IFq3bo1q1apBo9EgKioK7dq1w9SpU3Hq1CmHMEEyceJErFixAv369UN8fLzsyHWtVos5c+bg6NGjeO6559C6dWtER0dDrVYjOjoabdu2xbhx4/D777/j9OnTbu0HGpGRkVixYgV27tyJ8ePHo2nTpoiMjIRGo0FcXBw6deqEyZMnY/369di0aRN1HUlJSTh58qRg/1avXh2DBw/GX3/9henTp3vdTiUsXLgQv/zyC5KSklClShXo9Xo0adIEr776/+zdeViU5foH8O/MMAwMOwgKLqDmrhVKprnh0dzXRM/JStFSU8rS7JRmRdkpy+x3LMNES/RkpmamHrWjuGBuiWIumEsKKYqCCArIPvP7gxhn3nlnn2FYvp/r8hLe9Zlh1ud+7/v+J1JTU3UuAhcKCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4GL7Qssq3336LTz75RJNBJJVa/2Y/b948nDx5ElOmTEHLli3h7u4ODw8PtGvXDq+88grOnz9vl1YEjjRlyhScOHECU6ZMQYsWLTR/9549e2LZsmU4dOgQGjRo4Oxh6qiWDI2KigoMHz4cycnJkEqlGDt2LHr37m0wetqxY0c8/vjjOHbsGDZv3oxHH320OoZpF8ePH8e5c+cAAMOGDdM0V3I07Rc3Y/UTyT6EV0GJfWnQu8iKn6+NSrtXpnMXSSVAmJ0aggOWlJwy0hTcaT00LGsKft9EU3BTPTQAQCHVDTRol5yq+OuLvl7JKROlo/xclcgsuqe7zIpyU4B+TWn20KCaS/exKtZDw6oMjfu6M24NlTL9puD1seQUAxrVRioBbK3oJWwMfqe48u93r1RYWJB/S3IM/YDGgws3qlRfhob+MrN7aNTS7HF/Nyk85BIUWvl+pWAPDaqB+vbti759+5q1bVhYmFkNkhs3bqyXOaAtOjraYECiefPmmDlzJmbOnGnWmMQ89dRTeOqpp8zevlOnTvj8888tPk9sbKzZ5bi09ezZEz179rR4vypNmzY1ev9aOy5LPf3003j66aet2tfV1RUxMTGIiYmxeRxNmzbFkiVLTAYvDDF1O9LT0w2ui4yMNPmc6NChg+ZCcjHmPK/kcjlef/11kz0hqqoMmfLwww8jPj7e5HZC5r4GAMbvN3vo2LGjVbfBWarlm8Hq1auRnJwMuVyO7du34/vvv8eMGTOM7jNixAio1WrRZjQ1mXYzcHuUmzKXhJN51UovoGFWDw0y5nKebv+Mpl4uel9SbOFu5rGMZ2g450uSpRkahWWGSk4ZP0+pTskp3T4duiWnKrPrhBkaxkpOAYC/Qr/5t9gycwi/r9aS7+1UD5h6KIolTVgX0NDN0AhSyuAuFwQ06lnJqXKVGvmCSTFfToI7jLuLxObPn/oZGpWPa2FgSgLA25Uv9GR/UsEHCJVa/3W62npoiCwz9/3BmuzxmkAikSDUhsbg7KFBRERUP1XLt7x169ZBIpFg2rRpGDhwoFn7hIeHAwAuXLjgyKHZVVlZmaZhT2BgoNV14axRlRUCACEhIdV23vpKWJ/VnIoL/Hht3GW9/hn2TSAz1htDm7EMDSuqwtiFMEND2BRcGPgxXHJKvIeGeMkp3cwJ3ZJTQEF5CcpUuk8EU8EJsZJUfiw5RXWN8PklWC0MiAPmX4GrTdhDI1Apg1JQF6W4XG3VsWure8IGVwB82RTcYWzpn1HFz033vSr3rwyNPMHf0ttVwkw8cgixh3FJhbMyNKzvoSGcyK8tGRpA5UVM1tLvoVF/3vOIiIjqs2r5lnf69GkAlVkX5qpqEJSTk+OQMTnCzp07kZ2dDQAYP3680dqC9qbdCKdPnz7Vdt76Sq/xnhlfGvjx2jhhhkZLX/v1zwDMLzllLEPDWX/Du2XGMzT8BVe4FhoqOWW0nJZap9m9q6CHhnbJqXKVWq/cFGBOhoZ+8MJY3w1jGNCg2kKvh4adSk5lCzI0xEpOqVEZ1KgvhFf1SyWAJ6/qt52Bu9Dc91VjhCWnqgIaLB1G1UXs84NwUlzm1B4a5pacqp09NADjjcFN9tDQy9Cww4CIiIioxquWGfe8vDwAQEBAgNn7VFRUflGvSR3UTdEuN2Vuw5eEhARMmjQJAPDuu+/q1eU7c+YM3N3d8dBDDxk8Rnx8PFauXAkAaNSoEUaPHm3hyMlSwi86xq7qJ9MKylS4dV/YENy+L0/26KHhLKZ6aPgppMgsfHD/VWZoiPXQqPxfrIeGMOtIITHcFLxCBeQU6wY0XCRSeMmNl8Lyc9XP4BBbZg720KCaymTJKdGm4Jado6xCrek1UCXIXQqlXP/s98vVUNo3PlxjCSfBvV2lfG1wIHc7dEoWBuSrmoIL/5YsHUaOIpZ9oZehUU2vI7Y1Bdf9vbaUnAJMNwY3hk3BichZ0tLSUFhYaPF+fn5+aNy4sQNGRPVNYWEh0tLSrNq3TZs2kMtr95fEaglo+Pv7IysrC9euXdOUkjLl0qVLACpLN9UGubm5+O9//wugspFK586d7XLcEydO4IUXXkDfvn0xePBgdOrUCQEBASgvL8f58+exdu1a7Nq1C0Bl8Cc+Ph4eHsavkibbCa/+EcvQYFNw810RZGfIpbZ9uRFjvDeG7rklEP9z1ZSm4MIMDWEN8go1IBGZVjVWMkH4BVAhzNDQ7qEh0j/DX6E0WUvdoRkaVh2FqPrZI0Mju6hC7zUqSCmDm0jgtj710bhbyqv6q5MjMjTulqhQoVIzQ4OqjdhHI/2SU84bS/0oOSUz+NnbFJacIiJnmTRpEpKSkizeb+LEiWY1mSYyJTk5GX379rVq37S0NISFhdl3QNWsWgIaHTp0QFZWFpKTk80uO7V+/XpIJBI89thjDh6dfaxfvx4lJSUAzM/OMFdFRQUSExORmJhocJuAgAB8/fXXGD58uF3PTeLK9DI09LdhPMN8wv4Zod4udq9XLDbRJySXVjYndHORoKiGTAKq1CrcKy3RWSYXZGiIXbkqFSs5pVmkX5ZG+OVdWHKqTF0ClboCUokM5SrolZwKMCMwIdpDw8qm4Cw5RTWVqdd+8abglr3eCPtneMglUP71BHeTSVCs9XwuKqsZr2XVIU84Cc7+GQ5ll4CGoIeGGpWBKf4tqbrIRC7GEE6K14YeGtaUw60p3FykaKiU4aYgWxsQuUBMQHg72RSciGqLsLAwqGtIr7uEhAQGWajWqZaAxqhRo7B3714sXboUs2fPhp+fn9Htf/jhB2zbtg0SiQRjxoypjiHa7D//+Q+AyiyJZ555xm7HHTJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7W2385JxtblObU10OU/YENz+qW/mlMao+lLkKhMPaDjj40Z+WQnUgjMLm4L7KfQjahKRnAVDTcEB/YCGMEMDqCw75S7zRLlKjZwS3fTaADfTmWGiGRp2awrO5yDVDnbJ0LivO9nbUPngNUAp1w1o3BeLoNRRvKq/etmjKbiXqwQyiW7ZtTvFKmbbULUR64/hrAwNoPICDe33BLN7aAhiAWIXW9VkzbxdRAMapuhnaNhrRERExu3fv9/ZQ6B6LjIyssYExZyhWgIaU6ZMwaeffopr165hwIABWL16Ndq3b6+3XVZWFpYsWYJFixZBIpGgY8eOGDduXHUM0WaHDh2yar/o6GhER0cbXB8UFITJkydj8uTJVo6MHEF45ZaxZstV6u/LjGmX7wobgtv/pcncDA0AcJMBd0XWO+O94m5psd4yYckppVyid1W2WECjKmCjdwW5Wv/Lu1LmBqFSdTHc4YkKNfRLTpkRmBDbxuoMDcEzijFFqqn0m4Lrb2NpyCFLMOkT6K4V0HCR4I7WunpVcop9FxzC0MurUm77/SuVSOCrkCJHqydMbrGKwSmqNmIf4UsEk+LV1UMDEAlomLlfbc7QAIBmXjIcu2n5fgqRklNqtdpkGVQiIiKq3aoloKFQKLBlyxZERkbixIkT6NSpE9q0aaNZ/+yzz6KgoABXrlyBWl35ISQgIACbNm3ihxGqkcr0emjob2PvR+7togqcuV1qU23Ylr5yPORre/bD3RIVTmWX2KUsU6kKes1tHZGhYU4PjarAlPBqrztlmbhTdhP3s2R48k4HdPRrhNScMlwvqAzEBLrL8HCgqyYDQq1WY//NyziXdwsdfBuiT6OWAIA9mZdQpqrAwMZtdEpCqdQq/JxxAa5SGQJdQ3FTq8H3lYJc/XFKXHV+d5VJ4CG4Kvtuif7fxtAVhn/klaFIMMvqLnOBr6u7Tv+OtKLT8JD54mqJBPk5f+hsH+BmOqAhFry4lCuDuuy+yNbGXcvXnW2oZd/bqQ4Tfmw5d6cM/0t/8BjPKda/fPT3nDK4SAw/DxQyCR4OdIX/X+V5bgkCGkFaGRrCMkAnbpWgQNj4SWTMD/nK0cKG1161Wq3zumiOnOLK0kKjH1Ii2MOyj6T3y1Q4mV2quW3eCqne1b0sU+RY9ig5BVT2gdIOaBzJLMbtIganqHqIlZwqFHzQF8vicBThqQ7fKMGl3DLRbbWlCS4OEn6Wrems7Z0nzERRo/LCgdrUFJ2IiIgsVy0BDQB45JFHkJycjIkTJ+LIkSM4f/68Zt2pU6d00mS6du2K7777Di1atKiu4RFZpLob72Xkl2P+4Vy7BBCmdvJCv2bWXRUPAPdKVJh78I7O5IM9uckkCPG0/7cQcyZeqv6O2ld7pRWdQXL+TgBASgGwY+v/MLvNP3D1TlOdfZ8IUeCVcB8AwPyUn/Hh6T2ade88+iRyigvx5fnDAICnW4Tjuz4PStONT/oO69N+AwC0cu+CcK9+mnXZpboBDblEoRfoVcgkUMolyNFK5rhTrP9YMfQ4/S27FL9l6y5TuEgQoFDqBDQuFh0X3R8APF1MP6bESk7tuFwBT5cCk/uawoAG1WTfpBp/jCffKkHyrRKj23i5SvBhD38EKWXILhIGNB5MgQmvmj90owSHbhg/dpWYR7zQu4l17w/fXyjET5ctD04CQFJGMT7u6YcwMwMqJRVqvH04FxkFxmuL+Cj4wuBI9gpoVAbqHkzGij1emaFBjiI27y+8cKm6emgAVSU0H3yG23bFutfV2pahEeotPi1h6laIlf0tVanNyp4nIiKi2qtavx089NBDOHToEA4cOIA5c+YgMjIS7dq1Q+vWrfHEE08gJiYG//vf/3D06FEGM6jGUqvV+g2URT40Cy/4sqVH3ZFM+2RDAMDea0WmNzLiZHaJw4IZANDCx8Uh/RDMmXhp+tfVYdrbXik6pbONSq3GhnT9if0jN0pw/69vwP+XekBn3Uen92LFxV81v6+7chKZ9+8BAP64d1sTzACAS0UnoFI/mKQrUwsaggvKTQGAQgZ4CCYxvWT+ettVPU7NqQWtkEkQ6OZpesO/lJTpj0tIrHG4sPm4tapzsoHIGEc9EvNL1Th2s/L1IEcY0NAqOeUht34Ee67pl7gzV+JV295bvjx1z+xtL+SWmQxmAPqvi2QdQ/OC9uihAQB+ZgQrfJltQw4ilZi+KKI6e+XZ62VLpL1ajaadaajN1FcCse9gtmSzExERUe1g1wyN06dPAwDatm0LV1dXg9v17NkTPXv2tOepiapNYZlarwa6t8gXbWEKu7lN/cTPab8AQmGZbR/yC2zc35SIRqYnxq3hIpWgrZ8c542k7T/TtrKxdYcAV5y5XbmdMKAAAEUV+pN+agDFFWoo5UBRhe45ylT6E28X72UjWOmN5NvX9NapUAEpKr/YlatLddYJy00pZJWlYjoGyHH+zoPztvV4HJeKTmgaird2j0A7/8qrn9v6y01esd0hQA5Pr4dwNPtPo9tVae/T3OQ2YZ7+aOMTiAt3K9NB/F2C4SrV79VhjarbRuRsjqyUee+v8krCtwTtHkEdA1xx2MyMDCFTpakMUavVNr83XM03v5NrkZnviQ0NTJCRZdr6u+LXm7qPKamk8r3EHh4JdMX//jQcEGvqJWOGBjmMRCJBO385UnPEPx/KpUArB/R2M6RdgKsmeG3TcfwNfxeviaQSCboHK3Ak88Ftb+snN3mRk1gASKxXFREREdUtdv109uijj0IqleL06dM6Tb/ff/99AMCMGTPQoEEDe56SqNoJ+z0AgL+b4QbMVWyJSQgvNPJTSBHsYd5Ezb1Slc6VrLY2tlYJboeHXIJQK+veapNJKyfiBofZ54p9Ma929sbGi4XI/KtHRUOlDK4yCfLLVIhs4oZGf9VwH9FCCZUaOJdTip05YneY7UGdtPw76NOoJW4XF+ofXa0GJEAbPzmK7qoArQuXFbLKL6it/eTwd5NiSJgSHnIpRj9UGYw5f6fsr2wgXwQon0Ny3gkEuvrhrUf7o0NA5b79m7mjpBw4fbtE9EtfS185xrb2gARPQiaV4uCtNBSUViCnWIVylVqnybCLRI4wt45o493E5G2WSCTY+eQLWHAqEedyyhEk6aZZF+gu1WlsbC5XmQTdghUID3JMIIzIUhKRHA3ha7YKlc9VCYwH4zILK5Cr1Ry5+K/nnvAVSHvC529N3VBUrsapbPHntzbh+4O1k0BiF8M+5Oti8KrmqttvLXNfgT1tyFahB6Y97AU/Nymu3qssC+Uhl6BfM3fNe6atujRUYGonLxy7WaJ3ZXWgUoaoVh7sqUcONTPcBxsvFuCGIPPLy1WKAaHu8HWrvuDotIe94KeQ4lq++f2ItClkEvQIcUPHBrUroAEAUzp5wVchxZ/3yhHsIUNUaw+T+4hl6Jbb+mWHiIiIajy7X26iFvkAERsbC4lEgqioKAY0qNYTNnT1cZWIfpgWlvUpt6HmVIVg327BCkR38DJr3+O3SrDo+F3N77Z+xK8QPMfb+MnxxmO+Nh61evi5yTD1YW+T28mkEoxp5YExrTzw+WVAeOGwsftQ7DVQzJX8HADA7RKRgMZfZ3inmy+++N0F224+WPdwAw+sHxikt4+LVIKxrYUlovwAPKy3rVQiwfCWSgxvaaqRtwveCx+ot/Tv27NM7GdYc68AfNPz7/j0eB6Sbz3IPvlbU3c81cr0F1eimk5s3tWS12xta87lY3vagyvXi/+a7BW+nWi/BUkkEgxrocSwFqae38DJrBIsTH7w/mDtJJBYIOSVcB+DJUTKVWo8szNbdJ09sRSdfXjIpZhkxePXEv2audvU34vIFr4KKaZ0Mv35sDp4yqWY3NGxz7eaykMutfi9UqwkXgUzNIiIiOo8u+Zvy+WVVxkWFdlWR5moJhNmaPgbuGpLOJFizwwNS+ZohJuaO+Fu7ljqes898Ztn+D40t7RYWsEdABDP0IAKClnlY6igTLfsgKdLzcxE4MVwRJXEXjOsnVd3E7zAVmVoCF9nrH0ZlgkGZm2GhlggxFivHlvjDOa+3MhYpYiIqE6TSCR630VsuYiMiIiIage7ftVr2LAhAODEiRP2PCxRjXJHkKER4C7+NLJrhoZgssiSq071AhpWj6KScCLNEQ28axSJ/j1mKCikVgMqM+/hK/mVAY3s4gL940AN978eQHoBDXntKyFAVJ+IBzSse51UCJoul1SIl5yy9mVY2NPZ2vcpsUBITciOcKnr709ERKT/nYvxDCIiojrPriWnevfuje+++w5vvPEGLl++jNatW2uyNgBgy5YtOH78uMXHnTBhgj2HSWSTHEGGhp9CPEND2EPDtoCG7u8WZWgItrW95JTu7/XxCli1PTI08o1kaKhVUP4101hYrtsUvKZmaFiK3zWprhKbQ7dXhoYmoGHDe4I2e2USir2/CYMl2mwOM5j5AlIf35+IiOobF4kEJVpvDMzQICIiqvvsGtCYO3cuNm/ejLt37+LTTz/VWadWqzF//nyLjymRSBjQoBolVxDQMD9Dw/pzCmvBWlLmSb/klPXjsHUstZNld1iF2rw/dGbRPRSVlyFbtOSUGu5/zQYWCAMazNAgqtFEMzSsPJbCYMkp4fGteyG2VyahaEDDSJSlOho8SyX1IIOQiIjs+p2LiIiIage7XrvWoUMHHDhwAP3794dcLodardYpzVL1u6X/iGoSYVNwfzdDAQ1BhoYNj2VhySmZBZM09s/QqGclp0TYI0MDANIL7hhsCq6U/xXQqCU9NIiokl0zNERKTqnV+q9A1r4MCzMJK9TW9VkSLzll3ZjMYc4I636wnYiIAJHvXMzQICIiqvPsmqEBAF26dMGuXbtQXl6O27dvo7i4GC1atIBEIsH//vc/tGrVyt6nJKpWZjcFF0ym2NIUXPi53JIyGhLBlbu2xgj1xlLnJ43E7jD7BDSu5OcYLDml6aEhyNDwcGGGBlFNJvaSaG1Ggl6GRoV4ONX6klP6yyrUxstFiREG7CVwfrC7JvTwICIixxN+FxGWxyUiIqK6x2HXz7m4uKBRo0YICwvTLAsJCUFoaKjF/4hqiuJyNQrLdD8lB5iboWHD1ULCq19tydCwNQtbr4dGnc/QEGkKbiCgoYb5JacA4EzuTZSLbK+GWtNDg03BiWoXseCF3TI0ytV6QWXA+p4UYk2zrXmvEpYidGR2BmBehoalQRkiIqqdmKFBtVl6ejokEgkkEgkSEhKcPRwyIDY2VvN3Isfav3+/5r7ev3+/s4eD6OhoSCQSnbltqhnsnqEh5t133wUABAUFVcfpiBzmjqDcFGC45JTcjvVchVf929JDw9YUDf2SUzYdrs6xJEPjaPafost1Sk7p9dComSWnbP3qyM+GVFeIPZStzWQTzdAQebLZM0PDmvcq4T7WZkeo1Gq7ZXYwQ4OIqH5gDw0iIiLrXbt2DceOHUNycjKOHTuGEydO4N69ewAq5/NjY2OdO0ADqjWgQVTbCctNKV0kcDNwKapdMzRsKTll5wwNlTBbxMFX4jqbWDaGsRrzKgum9o9kGQpoqB40BWcPDaJaxa49NAQBjQo1UCbyXmLt1WJik/7WvFcJS05Zm6FRpgIU4lUcdZkxxLr+3kRERJXs2beQiHTt378fffv2BQDs27cPkZGRzh0QkR3ExsbivffeA2Bd/8C65M8//6y12Sf8ukdkAWGGhqHsDEC/2apNPTRUwgwNC0pOCRfY+Hpd/0pO6TPWFLxCGPExIqu4QPz4ajWUBnposOQUUc0m9opobdaBsOQUANwXRrhh/Yc50QwNK94jhEEQsVJW5ii1Y+Fza8dARES1i/CtkhkaRERkLwkJCVCr1UhPT3f2UBxCO6AjkUjw0EMPoXfv3k4ckfmqJUNDW05ODo4cOYIrV64gPz8fFRX6JXyE3nnnnWoYGZFp5jYEB8TSn+2YoWFJySm799CwvvxV7WRhU3Cbiy8xQ4OoNrNnhoaw5BQAFIlEHKydu7dXDw39klPWjcfcgIY5WzFDg4iofmAPDSIiIut4eXnhgw8+QNeuXREREQE/Pz+dzKyarNoCGllZWZg1axZ++OEHlJeXW7QvAxpUUwgDGoYaggNi6c/Wn1f4udyWDA1bM+r0x2Lb8Wo60ZJTRjM07BHQqOyhoVKrUFhLMjT41ZGokti7gqMDGtYeX2zS35psQr0MDSsHVGrHSSj20CAiqh+E72W2fOciIiKqTwICAvDWW285exhWqZbr13Jzc9GzZ098//33KCsrg1qttugfUU2RY0HJKb0MDRtKaQgniyy58lRY6sTWZ5TwZkjr5aSRsQwN2/Pc1VDD3UWC++VleuuYoUFU+1jftFui915SJFJLw9oPc1KJRC8obc2VrfqlCK0bT6nppF0A5r2PiVTrIiKiOkiYbcgMDXK2Q4cO4YUXXkCbNm3g7e0NV1dXNGnSBMOGDcOXX36JvLw8s48VHR0NiURissZ9QkICJBIJJBKJwdI4e/fuxdNPP43mzZvD3d0dSqUSoaGh6NatG+bMmYO9e/dqtk1PT4dEItG5Srtv376ac1T9S0hIED3Xvn37MHHiRLRo0QJKpRLe3t7o1KkTXn/9ddy4ccPg7YiNjdUcGwDu3r2LBQsWIDw8HL6+vgbP+dNPP2Hs2LFo1qwZ3Nzc4Ovri4iICLz33nvIzc01et8BQEZGBmJiYtCiRQu4ubkhJCQEI0aMQGJiosl9rVV1H2vfpo0bN6J///4ICgqCu7s72rZti7lz55r1mCktLUVcXBz69u2LwMBAuLq6olGjRhgyZAi+/fZbqIyUxhY+zq5fv47Zs2ejdevWUCqVCAwMxNChQ/Hzzz9bdHsMCQsLg0QiQXR0tMnbJebo0aOYP38+IiMj0ahRI7i6usLb2xvt27fH9OnTce7cOdH9qp4nVf0zAOg9poXPIXOfg2fOnMHUqVPRqlUrKJVKeHl5oUOHDpg1a5bRclVi99vu3bsxfPhwNGrUCAqFAs2bN8f06dORkZFh7l1UL1RLhsbChQvxxx9/AAAGDBiA2bNno0uXLvD397e6kSWRM+iVnHI3XHJK2EPDlgZ19syKsD1Do36VnBLeXsD4ZJrY9pZSq1VQukhRUFakt85TzoAGUU0m1i/D2h4aQGWWhvbkjHjJKeuP7yKVoEIrImFN7XG7ZWjYsYeGrF4G24mI6h/9Mr/OGQdRUVERnn/+eaxbt05v3fXr13H9+nVs374d2dnZiI2NrdaxzZo1C//+97/1ll+9ehVXr17Fr7/+ioSEBNy+fdum8xQXF2PSpEn4/vvv9dadPXsWZ8+exbJly7Bu3ToMHz7c6LEuXbqEAQMGGJ0Mzs3NRVRUlE4wBgBKSkpw4sQJnDhxAnFxcdiyZQu6desmeoxffvkFw4YNw7179zTLMjMzsW3bNmzbtq3a/lbPP/88vvnmG51lFy5cwMKFC7FmzRrs2bMHbdu2Fd03PT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2HX9tVS0BjS1btkAikWDo0KHYunVrdZySyCEsKjklmEuxpSm4Xt8KCyZqhJsaK5dk1lgEt6PuzxlZ1kND+LeyhgoqKF0keg3BAcDTpWaWnGLNKSLDbEmHdZNJUFhmKqBh/fFdpECJVmaENcF3e/XQKDE3oGHGZszQICKqH4RBdHuUfyWylEqlwsiRI7F7924AQKtWrTBjxgxERERAqVQiMzMThw8fxoYNG6p9bP/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc+wmTZpoflar1YiKisL27dsBAMOHD8e4cePQokULSKVSHDt2DIsXL8bVq1cRFRWFQ4cOISIiwuC4o6KicP36dbz88ssYMWIE/Pz8cOnSJYSGhgKoDFr0798fKSkpkMlkGD9+PIYMGYLmzZujrKwMBw4cwGeffYasrCwMGTIEJ0+e1Oxb5erVq5pghlQqxdSpUxEVFQUfHx+cPn0aCxcuRGxsrNFx2kNcXBySk5PRtWtXzJo1C61atUJWVhYSEhKwYcMG3LhxAwMHDsTZs2fh5eWls29BQQH69euHK1euAABGjRqFyZMnIyQkBGlpaVi6dCmSkpJw8OBBDB8+HAcOHIBMJn5h7v379zF27FjcvXsXb775JoYMGQKFQoFff/0VH330ETIzM/HZZ5+hWbNmeOWVVxx6nxhSXl4OPz8/jBw5Er1790arVq3g4eGBGzduICUlBZ9//jlu376Nl156CW3btsXf/vY3zb6jRo1CREQE4uLisGzZMgCVmRVCjRs3Nns8cXFxmDdvHgAgMDAQb7zxBnr06IGKigokJiZi0aJFKCwsRHR0NBo0aIAhQ4YYPNaKFStw+PBh9OnTB9OmTUPr1q2Rl5eHNWvWYM2aNcjOzsbkyZNx5MgRs8dXl1VLQOPq1asAgJiYmOo4HZFDlKvUuFuiO2vjZ0EPDZW68up9a67UtVc5D8D2DA39puB1e9ZINJxh5E60S4bGXz00cu7rBjRkEikUsmprfeRQrCZIdZVYkNeWwK+wj4Y9e2gAVe9VNmZoqO2ToVFm1x4adjsUERHVYHoZGvyMaTa1SoWKghxnD6PayDwDIJE65gPC0qVLNcGM0aNHY926dVAodDPrhw4digULFiAzM9MhYzCkKogSGhqKQ4cOwdPTU2d9ZGQkYmJicOfOHc0yuVyOjh076mRsNG/eHB07djR4npUrV2L79u2Qy+XYunUrBg0apLO+W7dueO6559CrVy+kpqbi1VdfxcGDBw0e7+zZs9i5cycGDBigWdalSxfNz++//z5SUlLg6+uLxMREnXUA0LNnTzzzzDPo3r07MjMzMW/ePKxdu1Znm9dee02TmfHtt9/i6aef1qyLiIjA2LFj0atXLxw/ftzgOO0hOTkZQ4YMwZYtW+Di8uD7/uDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOhn4/fr1g6urK1auXImjR4/i5MmTCA8Pt3rcdUW1zIx5enqipKQEDRs2rI7TETlEXolKb3I7wM1wySmxyZRyFeBqeBeDbMmK0M/QsI09gyu1gSUBCrXa9PZ+ru7ILdUvJaVznL96aBSUlegs95S7skwfUQ0n9gy1JeDg5mJGQMP6w+tlMlhTe1wvQ8PqHhrmnducTEM2BSciqh+EF1exh4b5KgpycPHlINMb1hGtv8iCi7f9J2BVKhUWLVoEoDJjYc2aNXrBjCpSqdSiq7/t4ebNmwCAzp076wUztJkqRWSMWq3Gxx9/DACYOXOmXjCjip+fHxYtWoQhQ4bg0KFDuHTpElq1aiW6bXR0tE4wQ1tBQQG+/PJLAMCCBQv0ghlVQkND8fbbb2PGjBnYuHEj4uPj4eHhAaDyftm8eTMAYNiwYTrBjCpeXl6Ij4/H448/buTW206hUGDFihU6wYwqb731FjZs2ICzZ8/i66+/xgcffABX18qqDSUlJVi5ciUAoEOHDqLlsSQSCeLi4vDzzz8jJycHS5cuNRjQAIBp06bpBDOqhISEYPHixfj73/+OwsJCrF69GnPmzLHyFlvP1PPHx8cH77//PkaNGoWDBw8iJycHAQEBDhnLqlWrcP/+fQDAZ599phPMqBIeHo65c+di/vz5uH79uqbfi5jg4GB88cUXonM+c+bM0fytf/nlFwY0UE1NwTt16gQA+PPPP6vjdEQOkVOkO2MjlwKecsMTJmKTKdZ+wLYlK0K4pd2bgtfxOSOxiTNjk2kVauOXNz8e2MyMk6rgJtMvOcWG4EQ1n9jLsy09NNzMyNCwreSUcCLI8mPYr4eGeduZ8z5W14PtRERUiT00yNl+++03TbPeKVOmGA0aOENwcDAA4MCBA7h8+bJDznHu3DnNsaOiooxuqz1Zbqx0zjPPPGNwXVJSEu7evWvR+crKynDixAnN8n379qGiovLDp1hPhipdu3ZFhw4djJ7DVgMGDEBISIjoOqlUiokTJwIA7ty5g5SUFM26EydOaBqGR0dHGywl5e3tjXHjxgGo/FsZyxIydl+MHj0avr6+AODQhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqoyc+q5aAhrTpk2DWq3Gf/7zn+o4HZFD3CnRnWnxd5MZvVpe2BQcsL6PhjBDQ2bBM1cvoGFrU3DBxFVdb7wq3hTc+pJT5gQ0XGWVV1KIZWjUVLwWjqiSvTM09EtO6b+R2BIw0S/V4bweGqV2LTlVt9+biIiokl5gnnVNqZqdPHlS83OvXr2cOBJxVY2Ic3Jy0LFjR/zjH//AqlWr8Mcff9jtHNolmbp37w6JRGLwn3bApyp7RMzDDz9s1vmCg4ONnk+7pJD2+bR7Jwh7gwh17drV6HpbWXJ+7XGfPXtW87OpLBLt9dr7aXN1dcUjjzxi8BhyuVyTGSDWe6K63L59G/PmzUObNm3g5eWlKYfWqVMndOrUCUOHDtXZ1lGq7sfOnTsbLCMFAA0bNkRYWJjOPmIMNX2v4ufnBwDIz8+3cKR1U7UENMaNG4dnnnkGmzdv1uvWTlRb3CkyvyE4YKjklLUZGrq/W5ShIdjW1vmi+lZySjx4YSSgYWJqv2sD0wENuazyGMKAhkdNbQhORA/YuYeGOSWnbHkZtkeGhr16K5lbcsocdf29iYiIKumXTnTOOKj+0p4wrcqGqEn69euHpUuXwt3dHcXFxVi/fj0mT56MVq1aoUmTJnjxxRdtvoo9KyvLqv2qyvWIqZq8ddT5tHuGaPdUEOPo8vmWnF973JbchkaNGonup83f399glodwLIaO4WgnTpxA27Zt8dFHH+HixYtG+5sCQFGR8XLftqi6D0zd98CD+9/Y/SbsCyIk/asHUFVmUX1XLT00Dhw4gOeffx5paWl466238OOPP2L8+PFo27atyT8YANH6bUTV7U6x7ouGsYbggHiGhrVN6vQni8zf194tF+pbQMOSDA01gAqV8W9R7X0bwtNFgYLyEoPbuEr/Cmiw5BRRrSMVCS/YkkHh8KbgjuihwQwNIiKqJvqBeWZomEvmGYDWX1g3MVwbyTwdU0e/NoiJicHYsWPx3XffYffu3Th06BDu3r2L69evY/ny5YiPj8e8efPwwQcfWHV87QnWbdu2aa5GN8XYRLCxiXXt86WkpBi9Ol5bkyZNRJc7u0+lPc5fU47hSKWlpRg3bhxycnIgl8vx8ssvY+TIkWjdujX8/Pw05ZquXLmCli1bAoDJgIc91PT7ra6qloBGZGSkzh/4xIkTOrXrjJFIJCgvL3fU0IjMllMszNAwHrkWm9Aps/LqU70ggi0lp1D5om7ti65wgt/aK3FrC0v/YqYyNILcPdHcyx9ncg3XrXT566FVm0pOWUp4L9XtRxHVKw7O0Lhv54CGMPjuzB4aJeY2BTdjM0veJ4mIqPYSfueyY7JfnSeRSh3SJLu+adCggebnzMxMk2VjLFF1RbbKxEVzhYWFJo8VFBSEV199Fa+++ipUKhV+++03bN68GUuXLkVeXh7+9a9/4bHHHsPIkSMtHqd202VfX1+dMk+OoH2+wMBAg4EKY7QzQG7duiXa0Fl7vSOZOr72eu3m7do/37p1C61btzZ4DO1yW4YawOfk5KCiosJoMKlqLMJjVD1WAfs8XsXs3btX0z8iLi5OpzeFturKHvH390dmZqZZj4+q+9/QfU+Wq7ave2q12up/RDXBHUFAw99EhoZUItGbZLKmpqtardYrE2VLU3DAtn4Hek3B6/ikkdhrkLHXJWM9NDxcXKF0cUULL+NvYrUxQ4Ov1ESVxF4SbXmZFGZoFNu95JTu71ZlaAh2sTpDw47Z0y51PNhORESVhN+LmKFB1a1z586anw8cOGDXY3t5eQGApvGzIRcvXrTouFKpFJ07d8aCBQuwZ88ezfINGzbobGfuRZBVfRUA4NChQxaNxRr2OF+nTp00PycnJxvd1tR6W1lyfu1gkfbPv/76q9FjHDt2THQ/baWlpUbLj5WXl+O3334TPUbVYxUAcnNzDR7jzp07yMnJMTpWQ1JTUzU///3vfze4nXaPFTH2yqioug9SUlKMXoiflZWFP//8U2cfsl21ZGjs27evOk5D5FDCklOmAhpAZSmPUq3P1NbVJtdf5sySU7YEV2oj8QCF4S9KFWrDf+RANw8AQHNP4wENFwM9NDzlNTegQUSVxF4SHd0U3JYP5fbooaGXoeHgHhrmbGVtUIWIiGoX/cC8c8ZB9dcjjzyCpk2b4tq1a1i5ciVee+01ncbXtmjevDmAyibAFy5cQJs2bfS2KS0txaZNm6w+R+fOneHn54fc3Fy9Bspubm6an0tKDJdM7ty5M5o0aYKMjAzEx8fjlVde0dnX3vr37w+lUon79+/j888/x7hx4yz+PNy3b1/IZDJUVFRg9erVeOqpp0S3S05ONtrI2R527dqFzMxM0R4sKpUKq1evBlCZVaIdQOvSpQt8fX2Rl5eH1atXY/bs2TqZElXy8/M1war27dsb7fWyevVqnXNo27x5syZY0b9/f511fn5+mrEYCyh8//33Vl+4rh00KCws1AmiVFGpVFixYoXR4wgf11WlqizVv39/7N69G3l5efjxxx8xbtw40e2+/vprzW0W3m9kvWr5utenTx+b/hE5m0qt1svQCHA3XnIKsE9NV9GAhgWzY2Jb2nLhUoVg57reQ0M8nGFdhkaQW+UH2xZexuu3Vn0x08/QqDslp4jqKrGXRFt6aJgqOWVrqwi9iSArvmCwhwYRETkLe2iQs0mlUrz++usAgIyMDEyYMAGlpaWi26pUKty4ccPsY2vPhy1evFh0m9mzZ+P69esGj7F+/XqjjZGPHz+umaSuCqBU0Z74vnz5ssFjSKVSzJs3D0Bl/4IJEyYYDYDcu3cPS5cuNbjeFF9fX7z00ksAgMOHD2PWrFlGyxzdunULK1eu1FkWHBysKa+1detWvewUACgoKMC0adOsHqe5SkpKMG3aNNFmzwsXLsSZM2cAAJMnT9aZfFcoFJqyS2fPnsWCBQv09ler1XjppZc0waqq+82QZcuW4eDBg3rLb968iTlz5gCobF49ceJEvW2q+h9v2bJF9PFy4cIFvP3220bPb0yrVq00PyckJIhuM3fuXKSkpBg9jrmPa1MmTZqk6Qv92muviT4PT506hQ8//BAA0LhxY4waNcrq85GuasnQIKqt7pepcDGvDPmlar3AgjkZGnLBJmXWZGiIfCi3JIggNqdz4laJTlAk2EOGxp7mvRxkFN7HnbJMqKCCn0tDSCU+5g+mFlGr1UjNuymacWEooHHmdimuFIp/eAUAV4kSx2+VoLxc/0oCbRn3b0ClVtWqDI1r+eU4fkv8Q6sEQHMfF/ib6DtDVBfYO0PDTfCCf79M9/XH1ml7e5TquF2k++XL2mDCrcIKg68j2tLvme6tVteD7UREVEkYRD+bU4Yzt0vRyleud1EAkaPExMRg27Zt2L17NzZv3oxOnTphxowZiIiIgFKpxM2bN3H06FGsW7cO48ePR2xsrFnHDQ8PR/fu3XHkyBGsWLECpaWlmDhxInx8fHDp0iXEx8dj7969eOKJJ3D48GHRY7zxxht48cUXMXLkSPTu3RutW7eGh4cHcnJycPDgQXzxxRcAKptwC3sSNGvWTJN58emnn6JJkyZo06aNpsdCw4YNNVfJv/jii5rbv3HjRqSkpGDatGno2rUrfHx8cO/ePZw/fx779+/H1q1b4ebmZnJy3Zj3338fSUlJ+PXXX7FkyRLs378fU6ZMwaOPPgoPDw/k5uYiNTUViYmJ2LlzJzp16qR3+xYvXozdu3cjPz8f48ePR1JSEqKiouDt7Y3Tp09j4cKFuHjxIiIiIkyWMbJFREQEtm3bhh49emDWrFlo1aoVsrKysHr1anz//fcAKhuaiwUD3nnnHfz444+4cuUKYmNjcebMGUyaNAnBwcFIS0vD0qVLsX//fgBA9+7dMXXqVIPjCAwMhFKpxJNPPolZs2ZhyJAhUCgUOHbsGD788ENNMG7BggWiDd1nzJiBrVu3oqioCJGRkYiNjUV4eDgKCgqwZ88eLFmyBIGBgZDJZMjOzrb4fho4cCCCgoKQlZWF+fPnIz09HaNHj0aDBg3wxx9/YMWKFdizZw969OhhtBTZE088ofl51qxZeOuttxAcHKzJ8gkLC4OLi+n5scDAQCxatAgxMTHIyMhAly5d8Oabb+KJJ55AeXk5EhMTsWjRIhQUFEAikSA+Pt7sBvbV6eeff9bpsXL+/HnNz7/99ptO8MjT0xNRUVHVOTyDGNAgMuBGQTneOZKL/FL9yR2pBPBVmFFySiqB9jX+dsvQsPGz+Wcp9/SWPdvWE8NbKo3ut/bCVezIiUepurhyHHDByJxohAfZr/FZTfHm8e345Ox+A2vF/47xZ/Jx8b7hCH9GvisWHb+Lu+XG38R23zqGib+Uo6C89jQFT8ooRlJGscH1Mgkwp4sPOjesuUEZInsQz9Cw/njCgIZeHyN7Z2hYGHg/e7sUZ3PKjB7TXOfulOHcnbvW7SzADA0iovpBrMzhB7/mIdBdig+e8IMvL6ihaiCVSvHTTz9h4sSJ+OGHH3Dx4kW8+uqrdjn2N998gz59+mgmuKvKD1WZM2cOOnToYDCgAUBTkki4bxWFQoGvvvoKEREReuvmzZuHGTNmIC0tTa9h+KpVqxAdHQ2gsgTq+vXr8corr+Crr77C5cuX8c9//tPgmMQmxC2hUCiwe/duREdH48cff8SpU6eMBki8vb31loWFhWHr1q0YMWIE8vPzERcXh7i4OJ1t3nnnHUgkEocGNGJiYpCUlISEhAT84x//0FsfHByM//3vf/Dx0b+Y1MvLC3v27MHgwYNx/vx5bNq0SbQEWY8ePbB161ajDb+VSiV++OEHDB48GB999BE++ugjvW1mzpyJ2bNni+4/cOBAzJw5E59//jkyMjJEA2Rbt27F4MGDDY7BGA8PD6xZswajRo1CcXExli9fjuXLl+tsExkZiaVLlxrtVfHQQw9h3Lhx2LBhA3bt2oVdu3bprE9LS0NYWJhZY5oxYwby8vLw9ttv49atW5g1a5beNgqFAvHx8RgyZIhZx6xuCxcuRFJSkui6LVu2YMuWLZrfQ0NDa0xAgxWGiQxIyigWDWYAlcEMc0qICCdU7JehYf5EjbmlTjZfLjRZy/Dzc79qghkAUIFyfJumn45Y2xWXl2HJ74Zvl7GSU9dLLhlcp5C6AwA8ZKazWr69nIKLd3VrmHrU4pJTFWpge9p9Zw+DyOHEXnNtCmiYuLrUlnJWgO2lOnam6z+va0JDbvbQICKqH+QG3mSzi1Q4kmk664/IXpRKJTZu3Ii9e/fiueeeQ/PmzeHu7g5XV1c0bdoUw4cPx/Lly/Haa69ZdNy2bdsiJSUF06dPR2hoKFxdXREYGIhBgwZh+/btWLRokdH99+3bhyVLlmDMmDHo1KkTAgMD4eLiAm9vb4SHh2POnDk4d+6cJjAhNH36dGzatAkDBgxAUFCQ0SvX5XI54uLicOrUKbz88svo1KkTfHx8IJPJ4OPjg0cffRTPP/88fvjhB/z+++8W3Q9ivLy8sGnTJvzyyy944YUX0KZNG3h5ecHFxQX+/v547LHHEBMTgx07dmD37t2ix4iMjERqaqrO/duwYUMMHToUP//8M9577z2bx2mOVatW4bvvvkNkZCQCAgKgUCjQunVr/POf/0Rqairat29vcN+wsDCcOnUKS5cuRZ8+fRAQEAC5XI6GDRti0KBB+M9//oMDBw7A3994L0+gMlskJSUFM2fORMuWLeHm5oaAgAAMGjQIO3bswJIlS4zuv2TJEnz33Xfo3bs3vL294e7ujjZt2uDNN99ESkoK2rVrZ/F9o23gwIE4fvw4nn32WYSEhEAulyMwMBB9+vRBfHw89uzZAw8PD5PH+fbbb/HJJ59oMojEeo+Ya968eTh58iSmTJmCli1bwt3dHR4eHmjXrh1eeeUVnD9/HhMmTLD6+CROora2G4sB77//vj0PB6AyIkrOl5GRgaZNmwIArl27hiZNmjh5RI711al72GfgivPuwQq82tn0pPQbv9zRKY0x/WEvRDZ1t2gcV/PL8fqBOzrL1g4ONPvqU5VajWmJt3HPQHBG2/J+AUavYmqzPgEX7+s2xGrpFYA/ouaaNZba4lZRPhp9b/iDixRSzGz+BiQS4HqBbqmVQ3d/wvWSi6L79fAZjcaKyrqPe3O/w+2yDKPjkECiEzxZ1fPviG71mLk3w2GSMooQdyrf4v2aecmwqHdl/5CFx/JwMvtBea7xbT0wsqXpDx5ENV1RuQpTdt/WBLBdpMCK/g2gFNYgNFNucQWm78kxGEZt5y9HbHc/6wYLIP7MPey5+uC9blCYOyZ1MF4WT9tbh+7gjzzdElBzu/rg0UDj2VjLTt3DfiNZXbZ6+3FfdGxQe4PARERknusF5ZiddEd03eiHlPhHG/s0Z3YGa79/X7p0CeXl5XBxcdGpOU9ENUd6erqmZ4l2poszREdHY/Xq1QgNDUV6errTxkF1lyPel+xecio2NlZTd8xeGNAgZxCW9VC6SODtKkVzHxezJ3s85brPhYIyy+OHeYJm5F5yiUWlNKQSCV6P8MX6CwXILtI9Vtb9Cp1JsqwildGARoVI/PNqYR4qVCrIbIho1zRlKv1mXNpUUGFmZy+4SKT49vcCZBY+2N41X/8+CpAHorVHe4T7tNG8Pg6WD8XBO3tRqi5BuPfjuHL/As4VnNbZT5gJ4uPqZu1NsqseIW64ll+BbVcqr8wOdBfPWCquUONuyYPHnHYpG2GyktTmTgBENYO7ixRzuvhg8x/3oUblZIq1wQwA8HOTYVZnb2y7cl8vMN3US4aJ7c0PPogRZlOUWZihISxRFertgkfMCCQ8084TFWrgl+uVQY2GSstLgkglQGs/ORp7ynD4RgmKytVwd5GgdxM3dAioefVpiYjI/hp7umDGI174Ob0IV+7qBtgtLaNIREREtYNDemjYM+nD3sERInMJJ+8HhLrj6baWXeHj6ao7iVVgRc2pvBLdyXVfM5qRC7X2k+PtbvpX8L6yLwc37z84fnZRBVr7GZ4EEgtolKkqcP3+XTTztP4K4Zqm1ERAAwAC3dXwlLtgbldfneVXdrsgTSvx4uOIofhnp74iRwgAoB2Zfhx+a99GXmmRwXP6yGtGQMNFKsGz7TzxbDvjz4fkmyX49MSDevjaQULh+wTL3VNd8miQAo8G2a9fzOPBbng82DHPf2GsxdLJH+H7wsiWSrM+u3m7SvHSo9546VH9esbWYIYXEVH91aeJO/o0ccfy0/ew99qD7D9r+hcSERFRzWf3gMa+ffvsfUgipxBmaFjTiFsvQ8OMsk9CeSW6s0vmNCM3V6BSqhPQyLpveCJfrVZDZSBYeSU/p04FNExlaABAUUUZPOX6E5blat2/l4vE/L+Xq9T4Fco+rpaVK3M24XNGe+JT+P2SsWsi57C1h4YwAGKi5QcREZHD6L+nOWkgRERE5FB2D2j06dPH3ockcooKwQdgmRWXkHvK7ZGhIQxoWF6Ww5AgdxmAMs3v2UWGJ/LLVIBar1BQpSv5dxAZbLdhOV1phRkBjfIy0eXlKkFAw4JSXKYDGjUjQ8NcMsFN135OCedMmaFB5BzC5tkWZ2gInsyWlEQkIiKyJ+F7mlh2ORGRPaSlpaGwsNDi/fz8/NC4cWMHjIjqm8LCQqSlpVm1b5s2bSCX1+4SvQ4pOUVUFwizEayZo7FPySlHZmjoTqBnG8nQKFUJOzo8cCU/x25jqgmEGRrC5txAZYaGmHK17r4WZWjIjL8k17qAhiDtQvtLpfCxxClQIucQBiAsnfwpF2Yz1p12SkREVMsIP3syQ4OIHGXSpElISkqyeL+JEyciISHB/gOieic5ORl9+4qVNzctLS0NYWFh9h1QNWNAg8iAmlJyKrfYcQGNygyNB4RNw7WVVqj1JvWrpBXcsduYaoIyQVDC3cUFJRUVqNAqJ2V+hob5GTUmMzRqSA8Nc1mWocGQBpEzCJuC25yhwecyERE5iV7WITM0iKiGCgsLs2v/YVskJCQwyEK1DgMaRAYIr1IVXvFjDkeUnPJzZIZGUQVUarXo5HKZCoDBHhp1K6AhLDnlKnWBFFIUlJdolhnO0HBMDw03mYvJDI6aRu8qOTYFJ6px9EtO2dhDgxkaRETkJOyhQUTVZf/+/c4eAtVzkZGRNSYo5gz82klkgH4PDcuP4ekqyNAos/zF5q4goOFjz4CGu+6xylX6AZQqxjI06nrJKblUCncX3WCCQ3poyAwHNLxrWXYGoD+xqV3GTfgoYzyDyDlsnfwRXv3KHhpEROQsLoK3IEuD9ERERFQ7MKBBZIDw8689MjSKytUWfbAurVCjUFCg3M/Nfk9bX4UUgiEiy0AfjTKV4YBGVnEBCstKRNfVRqUq/QwNd5luwyRzMzRkFmVoGM7AqG39MwD9rItyIyWnWKWGyDmEgccyGzM0rCnPSEREZA/M0CAiIqofGNAgMkB41ak1F516yfV3KrQgS0MsW8KePTQkEgkChX007hvO0NBv5fxAXeqjIZ6hYWZAQ2VDU3AjJadqY0BDWEtfjQdZGsLMSF7UTeQcej00LIhnqNVqvX5TzNAgIiJnsbWMIhEREdUODGgQGaCfoWH5MTyE6Q+wrI+GMKAhlwJKYS61jYIEfTSyisQzNEpVMJihAdStPhplgrJRohka5eWi++r10LCk5JSxgIbc3ezj1BRiZdqqSrkJnwVSFp0icgoXwcuOJZM/wmAGwAwNIiJyHmFGvdj7FBEREdV+DGgQGSD8ACyz4qpTuUwChWB2p6DU+gwNX4UUEjvX5tHL0DAQ0Cgz0kMDANLqUECjVKUbrJBLpeaXnBL20LAkQ8NID43amKEhVqat6nnFpuBENYNehoYF5TnEtmWGBhEROQszNIiIiOoHBjSIDKgQfAC29qpTT7mwMbglGRq6wQV7lpuqEqjUPWa2gR4apSq1fp0gLXWpMbhohoaw5JShpuA2ZWjUrR4aYs+Zir8eQ+yhQVQz2DL5UyHyniA8HhERUXXR66HBeAYREVGdxK+dRAboZWhYG9Bw1X2aWRTQKBZmaBi+gt9aQWZmaJSayNC4UlB3Ahp2zdAwUkZKyHjJqVoY0BC5UltTcooBDaIawZbJH9EMDT6ZiYjISZihQUREVD8woEFkgEpw5ak1JacA/cbgtpacsrdAQQ+N20UqvdsOAGUmemjUpZJT+k3BZeY3BRdmaNTrpuD6y8qrmoILlvPNiMg5bJn8EdtWrHcOERFRdbCljCIRERHVHvzaSWSAvTI0hI3BLcnQyBUGNNzs/5QVZmhUqIE7xfpjNJmhkX9Hry9CbaVfckom0hTcUIaGbjDEopJTMmMlp+pGU3CVpoeG7nIpr+omcgpbJn/Emq2yhwYRETkLMzSIiIjqBwY0iAyoEEzqWDtH4+kq7KFhfYaGnwMyNLxcJRBWssoS6aNRplJD/7r6B4oqynCrKN/Oo3MO/ZJT+gGN4grdbao4LEOjNpacEglSVH2xFGYBMZ5B5Bz2ztAQy8wiIiKqDsKMerHAOxEREdV+DGgQGSBsdio2OWsOTxsyNO5WQ8kpiUSCQDP6aJRWqE1mYKQV1I2yU3oZGjILSk7p9dCovyWnxJuCV/7PklNENYMwo6JCrR9wNESs3wYTNIiIyFmEQXVmaBAREdVNnEMiMkCv5JSVzxZPK3toqNTqaumhAQBBgj4aWff1gy6memgAlWWn6gK9DA2JBSWn9DI0zG8KLjcS0PCuhRkaYhObbApOVLPIRd5WhBmKhggnilyklUFyIiIiZxAG6dlDg4iIqG5iQIPIAOGEq7UZGl6u1mVoFJSp9YIqjgpomJuhYazkFABcyc+x57CcRj9DwwXuLrr9LZihYZpEItHL0qjKfBI+v3hVN5FziPW8KDczQ0MY+LD2fZKIiMge9Moo1pH+fkRERKSLAQ0bSSQSs/5FRkba5Xzr1q3DgAED0KhRI7i5uSE0NBTPPvssjhw5Ypfj0wMVghlXq3toCEtOlZoX0BBmZwCAj6MCGoIMjWyRHhpiTcE9XFx1fq87AQ3d2y+XSs3K0FCr1aiwpYeGrG4FNAD9slOGSk7xqm4i5xDreWHuFa3CiSLhRBIREVF1EsvQMFUyl8iZ0tPTNXNGCQkJzh4OGRAbG6v5O5Fj7d+/X3Nf79+/39nDQXR0NCQSCcLCwpw9FBLgV89aoqioCEOHDsX48eOxe/du3Lp1CyUlJbh69SrWrl2Lnj174r333nP2MOsUvZJTVr53eQhLTpnZFDyvWHdGyctVInolrT0Eueu+FIhmaIiUnHrIu4HO73Wlh0apXkBDpOSUSIaGMJgBADKLmoK7GFxXG5uCA/rNGQ01BeebEZFziGZomFlzXBj4YENwIiJyJrH3ITYGJyIiEqdSqXDgwAHMmzcPkZGRaNSoEVxdXeHt7Y2OHTtixowZOH36tLOHKcrw7BlZZPr06ZgxY4bB9R4eHjYdf/LkydixYwcAoG/fvnjllVcQEhKCM2fO4MMPP8Tly5cRGxuL4OBgTJ061aZzUdWV9rrLhBOz5vIUlJy6X65GhUpt8nh5JbqT6o4qNwXoZ2jcLlKhXKXWmegqFfk28JBXAE7duaH5va700BBmaLhKzWsKLiw3Bdiz5JS72cepSYRfLDUZGiw5RVQjiGVVmJuhIcxkdFTQnYiIyBziQXpmEBJZa//+/ejbty8AYN++fXarPELkTLGxsZoLwut7Fl9YWBiuXbumt7ysrAypqalITU3F8uXLMWfOHCxcuLBGZSkxoGEnQUFB6Nixo0OOvXfvXnz//fcAgOHDh2Pz5s2Q/VWa5rHHHsOIESPQpUsXXL16FW+88QbGjh0LPz8/h4ylvhB7SbM2Q0PYFBwACsvV8HY1fsBcQckpPwcGNIIEPTTUAO4Uq3SahZep1FALMhBaegXo/J5ReBclFeVQyGr3S0tphRkZGiIlp8QyNCwqOWUgoCGXyuBWS+/TysDdg2dUVUBDeE/VoPdFonrFlh4a5YLNOGFERETOJPY+VNm/jR80iYjIcgkJCXW6HNyNG5UXKD/00EMYM2YMevTogZCQEBQVFWHfvn34v//7P+Tm5uKTTz6BTCbDhx9+6OQRP8CvnrXAp59+CgBwcXFBXFycJphRpUGDBvj4448BAHl5eVi5cmW1j7GuEbs61fqAhv7TzJw+GncFAQ0fheGr923lIZfAXXApfZagj4ZYDw1hySk11LhakOuYQVajMrWVGRpiAQ1LMjQMBC185G41KhJuCb0eGirxpuC189YR1X5i723WZmiwKTgRETmTi8j7kLnvaURERPVN165d8fPPP+PixYtYuHAhhg8fji5duqBnz554++23kZycjMDAQADAokWLcOXKFSeP+AEGNGq4/Px87NmzBwDQv39/NGnSRHS7p556Ct7e3gCAzZs3V9v46iphfX8AkFo5UeMqk0AYizCnj4awKbgjS05JJBIECrI0hH00ykR6aPgp3OEnKIV0pQ700dBvCm5ehoZoySk7ZGjU1obggJGm4HolpzgRSuQMEolE73lqdQ8NfqokIiInEi+jWL/LiRARERly+PBhDBw40OAFtC1btsQ777wDACgvL8dPP/1UjaMzjl89a7jk5GSUlpYCAPr06WNwO1dXV3Tr1k2zT1mZ/mQrmU+seZwtEzXCLA1zMjRyi6uv5BQABCkFjcFFMjSExbikkKKFoOzUlfwch4yvOglLTtmWoWF+Zk2dDGgIytlUGGoKzngGkdMIy06VmXk1q7A0FTM0iIjImcR6FArLIxI52qFDh/DCCy+gTZs28Pb2hqurK5o0aYJhw4bhyy+/RF5entnHio6OhkQiQVhYmNHtEhISIJFIIJFIkJ6eLrrN3r178fTTT6N58+Zwd3eHUqlEaGgounXrhjlz5mDv3r2abdPT0yGRSDT9M4DKXq5V56j6Z6gUz759+zBx4kS0aNECSqUS3t7e6NSpE15//XVNiRsxsbGxmmMDwN27d7FgwQKEh4fD19fX4Dl/+uknjB07Fs2aNYObmxt8fX0RERGB9957D7m5pitIZGRkICYmBi1atICbmxtCQkIwYsQIJCYmmtzXWlX3sfZt2rhxI/r374+goCC4u7ujbdu2mDt3rlmPmdLSUsTFxaFv374IDAyEq6srGjVqhCFDhuDbb7+FSuTiyyrCx9n169cxe/ZstG7dGkqlEoGBgRg6dCh+/vlni26PIWFhYZBIJIiOjjZ5u8QcPXoU8+fP12ti3b59e0yfPh3nzp0T3a/qeVLVPwOA3mNa+Bwy9zl45swZTJ06Fa1atYJSqYSXlxc6dOiAWbNmGXxOAuL32+7duzF8+HA0atQICoUCzZs3x/Tp05GRkWHuXWRX2q8Dly9fdsoYxNTOouw10MaNG7Fhwwakp6dDJpOhUaNGeOKJJxAdHa3zx7eU9hOxbdu2Rrdt27Ytdu3ahfLycly6dAnt27e3+rx1wR937+Fcrm62QKCbFxq6e5vc9/5fGRTFqkKUqIrgLQsweAX57eJCXC3IRVNPXwS6eYpu4yGXIkcrQJF2rxy+blLcKroHT7kCHi4KvX1yiquvKTgAnQyNYtV9HLyVAzfFg+yL9MICVKjLdfaRSiRo4eWPEzkPXliPZV/F4w2a6R2/tU8gPOUPbmduyX2o1GoEuHlYNE61Wo0r+Tlwd5Ejv6wEhWWlFu1vjuziAp3fxTI0CstLkXJb9w0lS7AfYGGGhsxAQENeiwMagqfNjcIKXLlbphc0ZECDyHnkUqBE6y3nWn65WUH8W4W671PM0CAiImdyEfk8mX63DIWCSL2PqxQB7o4r50v1U1FREZ5//nmsW7dOb93169dx/fp1bN++HdnZ2YiNja3Wsc2aNQv//ve/9ZZfvXoVV69exa+//oqEhATcvn3bpvMUFxdj0qRJmh6w2s6ePYuzZ89i2bJlWLduHYYPH270WJcuXcKAAQOMTgbn5uYiKipKJxgDACUlJThx4gROnDiBuLg4bNmyRXMBsNAvv/yCYcOG4d69e5plmZmZ2LZtG7Zt21Ztf6vnn38e33zzjc6yCxcuYOHChVizZg327NljcE4wPT0dgwcPxvnz53WW37p1Czt37sTOnTuxfPlybNmyBf7+/kbHcfz4cQwdOhRZWVmaZUVFRdixYwd27NiB2bNnY/HixVbeStslJCRg0qRJesvLysrw+++/4/fff8eKFSvw+eefY8aMGdUypo8++gjz58/XCxqdO3cO586dw7JlyxAfH48JEyaYPNbcuXOxcOFCnWXp6en46quvsGnTJiQlJaFdu3Z2Hb8pJSUlmp+FLRCciQENOxFGAP/44w/88ccfWLNmDUaNGoWEhAT4+PhYfFztCJyhclNVmjZtqvn52rVrFgc0TEX7MjMzLTqes31y6hhWXNaPID/kHo7OXk+a3D+18DBSCw8CALxk/rhdHANfhe7f8MNTe/BWyk7N7x9HDMU/O+kHsISNwddfKMCs5K24VnIBrhJ39PAZhUDXpnr7afN1c3BA468G4KmFh5BaeAi4DXxhIvgqk0jQ3FP3DTHhj+NI+OO43rYKmQs2RD6HEc06IOFSMl48sgmlFRVY0Hkg3nqkv1ljLCovw/DEb7An85J5N8pOxAIaxRXl6LLt3yb3taiHhtRADw1BWa/aRHil3PcXCvH9hUK97RjPIHKeygyNB1HG+DP5Vh1H7MpYIiKi6iKVVH6m1L5u5rOUe3rbDWvujufae1XbuGoqtUqN8vslpjesI1yUCkgc9FlFpVJh5MiR2L17NwCgVatWmDFjBiIiIqBUKpGZmYnDhw9jw4YNDjm/Mf/97381wYyHH34Y06dPR7t27eDj44O8vDykpqYiMTERx44d0+zTuHFjnDlzBsnJyZg8eTIA4JtvvsFjjz2mc2ztOSq1Wo2oqChs374dADB8+HCMGzcOLVq0gFQqxbFjx7B48WJcvXoVUVFROHToECIiIgyOOyoqCtevX8fLL7+MESNGwM/PD5cuXUJoaCiAyknW/v37IyUlBTKZDOPHj8eQIUPQvHlzlJWV4cCBA/jss8+QlZWFIUOG4OTJk5p9q1y9elUTzJBKpZg6dSqioqLg4+OD06dPY+HChYiNjTU6TnuIi4tDcnIyunbtilmzZqFVq1bIyspCQkICNmzYgBs3bmDgwIE4e/YsvLx0X7sKCgrQr18/TW+DUaNGYfLkyQgJCUFaWhqWLl2KpKQkHDx4EMOHD8eBAwcMTkrfv38fY8eOxd27d/Hmm29iyJAhUCgU+PXXX/HRRx8hMzMTn332GZo1a4ZXXnnFofeJIeXl5fDz88PIkSPRu3dvtGrVCh4eHrhx4wZSUlLw+eef4/bt23jppZfQtm1b/O1vf9PsO2rUKERERCAuLg7Lli0DUJlZIdS4cWOzxxMXF4d58+YBAAIDA/HGG2+gR48eqKioQGJiIhYtWoTCwkJER0ejQYMGGDJkiMFjrVixAocPH0afPn0wbdo0tG7dGnl5eVizZg3WrFmD7OxsTJ48GUeOHDF7fPaQlJSk+bm6gynGMKBhI6VSiREjRqBfv35o27YtPD09kZ2djaSkJHz11VfIycnBTz/9pHlzk8vlpg+qJT//waSCp6f41f9VPDweXOleUKB/pbgp2gGRuuyPopNoq3wcSpnhTI1SVTF+Lzys+T2/4g7WXknGu+EPJt7vl5fi/VO7dfZ75+T/MKPtEzqZCADg5ao7qX27LAPXSi5UnktdhHP3j6CPqYCGo0tOuctQpirBuULzXxwlEoleySlDSirK8XbKzxjWtB2mHNqoKc8Ue3IXXm7XE95mlFXadf1CtQczAEAuleqVnDKXzA49NLzl+hk8tYVYw2ExrFRD5Dz2yqwQuzKWiIioukgkErhIzS+dWN+V3y/B6Q9/cvYwqs3D80ZB7umYzPelS5dqghmjR4/GunXroFDofocbOnQoFixYUO0XilYFUUJDQ3Ho0CG9eaXIyEjExMTgzp0H1S3kcjk6duyok7HRvHlzdOzY0eB5Vq5cie3bt0Mul2Pr1q0YNGiQzvpu3brhueeeQ69evZCamopXX30VBw8eNHi8s2fPYufOnRgwYIBmWZcuXTQ/v//++0hJSYGvry8SExN11gFAz5498cwzz6B79+7IzMzEvHnzsHbtWp1tXnvtNU1mxrfffounn35asy4iIgJjx45Fr169cPy4/gWb9pScnIwhQ4Zgy5YtcHF5ME07ePBgdOzYEe+88w6uXr2KBQsW4JNPPtHZ97333tMEM+bPn48FCxZo1nXp0gVjxozBc889h7Vr1+Lw4cOIj4/H9OnTRceRnZ2NvLw8JCYmonfv3prlXbt2xZgxY/D4448jIyMDb731FsaPH69pFl2dBg8ejPHjx0OpVOosDw8Px9ChQzFz5kz07t0bp0+fxrvvvqsT0PD19YWvry+CgoI0y4w9pk3Jzs7G66+/DgAICQnB0aNHdeZVe/TogREjRqBXr14oLCzE1KlTkZaWZnBe+PDhw5gyZQqWL1+u09OiX79+cHV1xcqVK3H06FGcPHkS4eHhVo/bEvfv39cERBUKBUaOHFkt5zUHiwPY6Pr161i3bh1eeOEF9OzZE48++iiefPJJfPDBB0hNTdU8yJKSkjQRQEsUFxdrfnZ1dTW6rfYbZlFRkcXnqk/uq4xffZpfkQsVdD8JZ9zXrb14qygfJRW6JZhKKspx4W623vHCvHVjh3nlutvklxtvpO0hl6Ch0rGpXS19XVCsKoAa5n8D6ODbEN2DQk1v+JdL927jTkmRTq+JcrUKv2ZfNWv/a4V5Zp/Lnjr6BaOZhy+8LSz91MIrAG4y8+PGHXwbiS5/NMD8KwRqmqZepm+/ixRopGR8nchZmnra5/lnzvOdiIjIkfheRNVNpVJh0aJFACozFtasWaMXzKgilUotuvrbHm7evAkA6Ny5s9GLZE2VIjJGrVbj448/BgDMnDlTL5hRxc/PT3NfHTp0CJcuGb5YMTo6WieYoa2goABffvklAGDBggV6wYwqoaGhePvttwFUlokvLHxQKeDmzZvYvHkzAGDYsGE6wYwqXl5eiI+PNzhGe1EoFFixYoVOMKPKW2+9pZl0//rrrzU9doHKLJWVK1cCADp06CBaHksikSAuLg4BAZUXoi5dutToWKZNm6YTzKgSEhKiKTVVWFiI1atXm3fj7Kxx48Z6wQxtPj4+eP/99wEABw8eRE6O43q8rlq1Cvfv3wcAfPbZZ6IXiYeHh2Pu3LkAKuePjTXVDg4OxhdffCHaoHvOnDman3/55RcbR26+N954A1evVs7XxcTEICQkpNrObQoDGjby9fU1uK5hw4b44YcfNNG3L774wuLju7k9mEDVfuESo13XzN3d8hI1165dM/pPOwWxNpBJpJBCBin0AwEySeUkqqF/Jeq7evsUles2gS4RNI6ucvGefkBjcHN3dAtWwE0m+ev4ugGVUnWRwbE0UsoQ84i3XtNWe/N3k2HEQ/pBs6r7UPtfA4U3Pn98FJp7BeBh/xB81GUIGrl7wVUq0/knF2QcFFWUIatYP5jkZWYGQoVavKufBBK9c9vjXwOFB/7ZMRJPhrSCq8wF/+n9NB7yamDWvh18G2JNr3+IvhkZ0tTTF8u6P4UmSh+4SmXwkiswvkU4prURr/dZGzzdxgMdA+RwNfD4DnKXIuYRb7jx0m4ip4nu4InWvi6QG3lfNPZPIQPCA10xppVlPZGIiIjsbVonL4R5uxh93zLUG5HIGr/99pumfPeUKVNMVtaobsHBwQCAAwcOOKyh77lz5zTHjoqKMrqt9mS5sdI5zzzzjMF1SUlJuHv3rkXnKysrw4kTJzTL9+3bh4q/5nTEejJU6dq1Kzp06GD0HLYaMGCAwYliqVSKiRMnAgDu3LmDlJQUzboTJ05oGoZHR0cbLCXl7e2NcePGAaj8WxnLEjJ2X4wePVozB+rIhumWKCwsRHp6OlJTUzV9WrQzIE6dOuWwc1fdB76+vnjqqacMbvfCCy/o7SMmKirKYDC0TZs2mteWqowcR1u7dq0mANauXTt88MEH1XJec/HyBQdr0aIFnnzySezYsQN//PEHbty4YVFES7s+nqkyUtrRZmveRE316KhtlvX6G5b1qkwv8/l2Pu6VPch2ie3mhycaBhnaFZ+eOYeDgqzCgnLd+qIlKt3sjCoXRTI03F2kmNX5Qf+NZ5JKcU7rNahcXYZVA/zhasHV/I7QqYFujNNLrsC9Z/9lcr83H/4b3nz4b3rL80qK4Pfd2zrL0vL1s1GUZpZzUkE8oDGu+SP4PvJZs45hixHNOmBEM8d+mHmx7RN4se0TDj1HdfJzk+Htbn7OHgYRGdHIwwULelh/VR4REVFNEeYjx8e9+J5G1efkyZOan3v16uXEkYibMGEC1qxZg5ycHHTs2BEjR47EwIED0atXLzz00EN2OYd2Sabu3bubvV9V9oiYhx9+2KzzVQVsLD2fdu8EYW8Qoa5duyI1NdXs81jKnPNXOXPmjKbB+dmzZzXLH3/8caPHePzxxzVVY86ePSt6v7m6uuKRRx4xeAy5XI7w8HDs27dPtPdEdbl9+zY+++wzbNq0CZcuXYLawIWvVds6StX937lzZ6PtBRo2bIiwsDCkp6fr/M2EDDV9r+Ln54eCggKd1gSOsn//fjz//PMAKrO3Nm3aZNWF847EgEY1aN++PXbs2AGgMsXIkoCGdpAhIyPDaDOia9euaX6uL/0wzCW8CEdtYGK8SnqB/qR7Ybluhoyw3FSVS/dMv2CKlU7KLS1CQ3fnNqcrqtDNQhE2wraUj6sbZBIpKrRKTF3O10/5M/7XeKBCxYK4REREREREtnJRKvDwvFHOHka1cVE6pi+h9oSpJZPr1aVfv35YunQpXn/9dRQVFWH9+vVYv349gMryPcOGDcP06dONTmSbkpWVZdV+VeV6xPj5Gb4ozh7n0+4Zot1TQUzDhg2tOp+5LDm/9rgtuQ2NGj0ob629nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUlCPL8VfdB6bue6Dy/k9PTzd6vxkrpQVUZusA0GQWOcrx48cxYsQIlJSUwNPTEzt27KhRzcCrMKBRDSwpOSPUvn17zc/nz583um3VehcXF7Rq1crqc9ZFEuj+DUxNoP9ZmKu3rKDMvICGWMkpIbGARk5JofMDGoKyWtY2wq4ikUgQoFAiq/hBdtHle/pvPOYGKrQDIzrnsW54RERERERE9ZJEKnFYk2yqWWJiYjB27Fh899132L17Nw4dOoS7d+/i+vXrWL58OeLj4zFv3jyrS8poT7Bu27YNYWFhZu1nbCLY2MS69vlSUlKMXh2vzVBVElvm7OzBHuevKcdwpNLSUowbNw45OTmQy+V4+eWXMXLkSLRu3Rp+fn6ack1XrlxBy5YtAcBo9oa91PT7zRKpqakYNGgQ8vPzoVAo8NNPP5nM/nEWBjSqwblz5zQ/W9pA5bHHHoOrqytKS0uRlJSEN998U3S70tJSHD16VLOPuS/o9YXw5cXUi9qfBXl6y/QyNAyVnLqXDbVabfBFTaVW4fr9e3rL75Q4v5G7vTM0AKCBm4duQEMkQ8NQKSkhgz006tAbCBEREREREdUODRo00PycmZlpsmyMJaquyFaZuABQu/y4IUFBQXj11Vfx6quvQqVS4bfffsPmzZuxdOlS5OXl4V//+hcee+wxjBw50uJxVjWcBir7CVQ1sXYU7fMFBgZaVT5dOwPk1q1bRquc3Lp1y+LjW8LU8bXXazdv1/751q1baN26tcFjaJfbMtQAPicnBxUVFUaDSVVjER6j6rEK2OfxKmbv3r2a/hFxcXE6vSm0VVf2iL+/PzIzM816fFTd/4bu+5rg8uXLePLJJ5GTkwMXFxesX78e/fr1c/awDGJTcAdLS0vD7t27AQAtW7ZE48aNLdrfy8tL8wBKTEzUNJsS+vHHH3HvXuUk+ejRo20Ycd0knPA2VnJKrVbjzwKxDA1BDw0DGRp3S4uRXWy438mtogKUqfRTxO6UGE63rC7CDA1ze1sY00Ch2yRWLKBhKPPC3O0YziAiIiIiIqLq1rlzZ83PBw4csOuxq3qqVjV+NuTixYsWHVcqlaJz585YsGAB9uzZo1m+YcMGne3MvXAwPDxc8/OhQ4csGos17HG+Tp06aX5OTk42uq2p9bay5PzawSLtn3/99Vejxzh27JjoftpKS0uNNtEuLy/Hb7/9JnoM7f6/ubn682lV7ty5Y3a5KCHtPiZ///vfDW6n3WNFjL0uiK26D1JSUlBeLj4/CFSWSPvzzz919qlpMjIy0L9/f2RmZkIqlWL16tVWBTerEwMaNti2bZvRB+2tW7cwZswYlJZWXtk/Y8YMvW0SEhIgkUggkUgQGxsrepw5c+YAqHzxiImJ0auXdvv2bbzxxhsAKqPhhqKU9ZlehoaRbfNKi3QaiFfR76FhuG7dRSN9NMTKTQGVJaeczVEZGtquiGVomJkGaO52RERERERERI72yCOPaK7uX7lyJQoKDF/caKnmzZsDAPLz83HhwgXRbUpLS7Fp0yarz9G5c2dNtoKwgbKb24OSZCUluhd4Co9RlSURHx+P4mL9+RR76t+/v6bfwOeff25VWaG+fftqMhFWr15tcLvk5GSjjZztYdeuXcjMzBRdp1KpNOPz8/PTCaB16dIFvr6+ACpvg6HMiPz8fE2wqn379kZ7vRi7LzZv3qwJVvTv319nnZ+fn2YsxgIK33//vdVloLTnXw1leahUKqxYscLoccx9XJtSdR/k5eXhxx9/NLjd119/rbnNwvutJsjKykL//v2Rnp4OAPjqq68wfvx45w7KDAxo2ODll19GaGgoZs6ciXXr1uHIkSP47bffkJiYiPnz56Njx444efIkAKBnz56IiYmx6jx/+9vf8I9//AMAsHXrVjz55JPYunUrjh8/jlWrVqFbt264evUqAODjjz822jypvtLroWHkBVQsOwMACsp1X+hKDZScAoBLRvpoGApo1IQMjft27qEB6GdolIpkpxgqJaW/naEMDeZoEBERERERUfWSSqV4/fXXAVRe5TxhwgTNRa1CKpUKN27cMPvYffr00fy8ePFi0W1mz56N69evGzzG+vXrjTZGPn78uGaSuiqAUkV74vvy5csGjyGVSjFv3jwAlf0LJkyYYHSi+N69e1i6dKnB9ab4+vripZdeAgAcPnwYs2bNMlrm6NatW1i5cqXOsuDgYM0V6Fu3btXLTgGAgoICTJs2zepxmqukpATTpk0Tbfa8cOFCnDlzBgAwefJkTZ8IAFAoFJoLms+ePYsFCxbo7a9Wq/HSSy9pglVV95shy5Ytw8GDB/WW37x5U3OxtVKpxMSJE/W26d27NwBgy5Ytoo+XCxcu4O233zZ6fmO0ewUnJCSIbjN37lykpKQYPY65j2tTJk2apAmsvfbaa6LPw1OnTuHDDz8EADRu3BijRo2y+nyOkJeXh4EDB2oCpv/3f/+HKVOmOHlU5mEPDRvduHEDX3zxBb744guD24wZMwYrV67UeeGx1DfffIN79+5hx44d2LdvH/bt26ezXiqV4u2338bUqVOtPkd9Ymz63FBA4355GVRqFaSSyjigoZJTAHDxruUZGnW1h0aAm9LkNiqzS04Z6qFh0ZCIiIiIiIiI7CImJgbbtm3D7t27sXnzZnTq1AkzZsxAREQElEolbt68iaNHj2LdunUYP368weocQuHh4ejevTuOHDmCFStWoLS0FBMnToSPjw8uXbqE+Ph47N27F0888QQOHz4seow33ngDL774IkaOHInevXujdevW8PDwQE5ODg4ePKiZy5LJZHrVPpo1a4YmTZogIyMDn376KZo0aYI2bdpoMhsaNmyoKTX04osvam7/xo0bkZKSgmnTpqFr167w8fHBvXv3cP78eezfvx9bt26Fm5ubycl1Y95//30kJSXh119/xZIlS7B//35MmTIFjz76KDw8PJCbm4vU1FQkJiZi586d6NSpk97tW7x4MXbv3o38/HyMHz8eSUlJiIqKgre3N06fPo2FCxfi4sWLiIiIMFnGyBYRERHYtm0bevTogVmzZqFVq1bIysrC6tWr8f333wOobGguFgx455138OOPP+LKlSuIjY3FmTNnMGnSJAQHByMtLQ1Lly7F/v37AQDdu3c3OmcYGBgIpVKJJ598ErNmzcKQIUOgUChw7NgxfPjhh5pg3IIFC0Qbus+YMQNbt25FUVERIiMjERsbi/DwcBQUFGDPnj1YsmQJAgMDIZPJkJ1t+CJgQwYOHIigoCBkZWVh/vz5SE9Px+jRo9GgQQP88ccfWLFiBfbs2YMePXoYLUX2xBNPaH6eNWsW3nrrLQQHB2tKUYWFhcHFxfR0eWBgIBYtWoSYmBhkZGSgS5cuePPNN/HEE0+gvLwciYmJWLRoEQoKCiCRSBAfH1+j+h2XlJRg6NChmjJizzzzDPr37280I8nDw0Mv8OksDGjYYPXq1UhKSsKRI0dw5coV3L59G/fu3YOnpyeaNm2KJ554AhMnTkT37t1tPpe7uzu2b9+O7777DgkJCTh16hTy8vLQsGFD9OrVCy+99JJdzlNXWTLh/Weh4Xp/98vL4CmvDEyViGQaVLloRYZGjSg5JczQsEfJKUGGhhhmaBAREREREVFtJJVK8dNPP2HixIn44YcfcPHiRbz66qt2OfY333yDPn36aCa4hSWB5syZgw4dOhgMaACVV2GL7VtFoVDgq6++QkREhN66efPmYcaMGUhLS9Orqb9q1SpER0cDqOxLsH79erzyyiv46quvcPnyZfzzn/80OCaxCXFLKBQK7N69G9HR0fjxxx9x6tQpowESb29vvWVhYWHYunUrRowYgfz8fMTFxSEuLk5nm3feeQcSicShAY2YmBgkJSUhISFBU51FW3BwMP73v//Bx8dHb52Xlxf27NmDwYMH4/z589i0aZNoCbIePXpg69atRht+K5VK/PDDDxg8eDA++ugjfPTRR3rbzJw5E7Nnzxbdf+DAgZg5cyY+//xzZGRkiAbItm7disGDBxscgzEeHh5Ys2YNRo0aheLiYixfvhzLly/X2SYyMhJLly412qvioYcewrhx47Bhwwbs2rULu3bt0lmflpaGsLAws8Y0Y8YM5OXl4e2338atW7cwa9YsvW0UCgXi4+MxZMgQs45ZXTIzM3VeN9auXYu1a9ca3adPnz6aAJmzMaBhgz59+uikAFojOjpa8wZgjvHjx9eKWmY1jSUlp9INZGgAlX00NAENoxkatbPklF6Ghj1KTrmZDmiY2xvD3ObhRERERERERNVFqVRi48aN2LdvH1atWoWDBw/i5s2bqKioQMOGDfHoo49i2LBhePrppy06btu2bZGSkoJ//etf2LFjBzIzM+Hj44MuXbrg5ZdfxpAhQwyW3wGAffv2Ydu2bThw4AAuXryImzdvIjc3F0qlEi1btkS/fv0wffp0tGjRQnT/6dOno2HDhli+fDl+++033Llzx2AvWblcjri4OEyfPh0rVqzA/v37cfXqVRQUFMDT0xPNmzdHly5dMHjwYAwbNsyi+0GMl5cXNm3ahIMHD2L16tX45ZdfcOPGDRQVFcHb2xstW7ZE165dMXToUAwYMED0GJGRkUhNTcVHH32kuX/9/PwQERGBl19+GQMHDjQ7o8YWq1atwoABAxAfH48zZ86goKAAoaGhGDVqFN58802jpeXDwsJw6tQprFixAhs3bsTZs2dx7949+Pv7Izw8HM888wzGjx8PqdR014GIiAikpKTg008/xfbt23H9+nV4eHjgsccew8yZM00GI5YsWYJu3brhq6++wm+//YaysjI0a9YMo0ePxpw5cxAQEGDxfaNt4MCBOH78OBYuXIi9e/ciOzsbvr6+aN++PZ555hk8//zzmpL8xnz77beIiIjADz/8gAsXLiA/P99o2TJj5s2bh2HDhmHp0qXYu3cvbty4AalUimbNmmHAgAF49dVXzQ6QkPkkamu7sVC9k5GRoWl2de3aNU3Tp9qg0ffv4VZRvub3xIHT0C+klei2Y/auxo9/nhFddzlqLlp4Vb4Af3pmP14//l/R7dxkLih87kNNeSpt3f/7BY5m/6m3vF9wKyQOcnx9RmNmHNmEZeePaH6f3rY74rqPsemYO679jqGJXxvd5n8DpmBA4zYmjzX72Fb8X+oBveUTWnbB6t6WfTAkIiIiIiKqqaz9/n3p0iWUl5fDxcVFp+Y8EdUc6enpmtI92pkuzhAdHY3Vq1cjNDRU0xiayJ4c8b7EpuBULwgLEqmNdNEw1EMDAArKHjS2KjHSFLy4ohwZhXdF19XoDA0HlJwyp4eGuZkXhjI5JGyiQUREREREREREVOcxoEH1gn7JKcPbGgtoFJaXan42VnIKEO+jUa6qQGbRPdHta0IPjftO6qFha8kphjOIiIiIiIiIiIjqPgY0qF4QXsBvKEOjsKwEt40EFgrKLAhoiPTRuHH/nsHJ+zslRUaPVx2c1UPD1qbgREREREREREREVPexKTjVS4amz/8sNJydAQgyNFQVRre9eO+23jJD5aYAoKC8BKUV5XCVOe9pqRfQsEOGhrfcDS4SKcqNBCPMztBQseQUERERERERETlPWloaCgstr7Lh5+eHxo0bO2BEVN8UFhYiLS3Nqn3btGkDudz2+T5nYkCD6gX9klPiE+PGyk0BlUGHKqYyNC6JlJwyFtAAKvtoNFJ6G93GkYQ9NJR2yNCQSCRo4OaBm1pN2YXMzbwwXHKKAQ0iIiIiIiIicrxJkyYhKSnJ4v0mTpyIhIQE+w+I6p3k5GT07dvXqn3T0tIQFhZm3wFVM5aconrB3KbgpgIahdolpwRNwYPcPHV+v3jXsgwNALhT6tzG4I7I0ACAAIXxxuDsoUFERERERERE9UFYWBjUajXUajWio6OdOpaEhASo1Wqkp6c7dRxElmCGBtULwpJEhubP023I0OjkF4w9mZc0v6cV3NErIXWt8K7R4zu7j4ZeU3A7ZGgApvtomJuhYW7gg4iIiIiIiIjIEfbv3+/sIVA9FxkZabD6TH3ADA2qF8y9gt9khka54abgHf0a6fxeoVYhreCOzjJTGRo5xZbXYLQnR2VoNFAYD2iYn6HBHhpERERERERERET1FQMaVC/oZWhYWXKqwEjJqYbunggUZCJcEjQGr/Elp5yWocGSU0RERERERERERGQcAxpUL+j30BD3Z6FuQCNE0KBbN0OjQmedQuqC1t6BOssu3tVtDC4MaMgkuk/BOyV1s4eG6QwNNgUnIiIiIiIiIiIi4xjQoHpBOOEtVmeupKIcN+7f01nWwVe3jFRBmeEeGgqZC1r7CAIa97J1ts8qLtBZ31awvbN7aAgzNJQurnY5boDdMjTqb31AIiIiIiIiIiKi+o4BDaqXxKbFxcpBtfdtqPO7ToaGSj+g0cq7gc4y7QyNDJHjP+IfovN7TonzemiUqSpQLsiAqK4MDVubgrOFBhERERERERERUd3HgAbVC3o9NEQmxoX9M7zlbmgsKDlVYKQpuGjJKa0eGsKAiZdcgeae/jrLnFlySpidAQDuLi52OXYDN6XR9eY3BWfJKSIiIiIiIiIiovqKAQ2qF8zpoSEMaIR5+sFTrtBZVmgsoCGT6QU0rt+/i8K/ylRdK7yrs66phy/8FboT/c4sOSXsnwHUvAwNgwENxjOIiIiIiIiIiIjqPAY0qF7Q66EhEtJIL7ij83uopx88BD0kdHpoqPSbgj8kKDkFAH/k5wDQz9Bo6uGLAEFAw5klp8QzNOwU0DDRQ8P8DA320CAiIiIiIiIiIqqv7FNPhqiGE17Bf7e0GNmCBt2XtMpDAeIBjXtlJZr9hAEAhcwF7i5yNPXw1QlenLidgRClN/7I1z2+WIZGdnGh3riM3i5IEKBQ6pXUskRpRTnulhXrNUQH7JehEWAiQ+Numf7fQ0yxSBYJwJJTRERERERERERE9QEDGlQvCCe8Jx1cb3KfUA/9klNX8nMQtC5WdHuFrPLp1No7UCeg8fyhDcAh/e2bevjoBTSu379r8PiGhCi98UPfCegeFGbRfgDwf6kHMD9lJ+6LZGfIpTK4SGUWH1OMl+B+FJqf8jPmp/xs9fEZziAiIiIiIiIiIqr7WHKK6gVrEhjCvPQzNIxRSP8KaPjol50SU1lyynjmgjlu3L+H15P/a/F+d0ruY07yNtFgBmC/7AxAvym7vTn6+EREREREREREROR8DGhQvdDCM8DifR71b4xW3g3MLmfU0rvyHF0bNDP7+KGeflDaoU/FxXvZFu+Tln/HaO8KcwMzNUELL8v/vkRERERERERERFS7MKBB9cJHEUMQ5uln1rYKmQvefqQ/HvJugIbuXvioy2Cj2QruMjk+6jIEDd29AAB/b/4oRjbrYDAQIpfK8Gr7XnjUPwTuLnJ8/vgoeLoYL8lkiqEsC2NKKsoNrmvk7oXPHhthy5CqTb/gVpjc6jFnD4OIiIiIiIiIiIgcjD00qF54xD8EV6Lm4U7JfahgOCsBALxcFHDTypp44+G/YVaH3rhbViy6vY/cDa6yB08ldxc5fuo3CfllxSgWCRp4uijgrnX851s/jgkPRSCvtMjs2/N73i302blM8/v98jKo1WqLSi+VqHTH5q9Q4vxT/wQANFB4OLyM0+DGbbG2z3iUq1UW76uUyVGiqoCLRApvVzcHjI6IiIiIiIjIcdLT09G8eXMAwKpVqxAdHe3cAZGo2NhYvPfeewAAtZEqF2S7/fv3o2/fvgCAffv2ITIy0qnjiY6OxurVqxEaGor09HSnjoV0MaBB9YZEIkGAm3U9K1xlLgiUeVq0j5fcDV5mVpOSS2UIdDP/+HeVusEVNdQoqSjXCcSYIszQcJfJLRqDPfgJmqJbwvbuI0RERERERERERPVPVlYWdu7cieTkZKSkpCAzMxO3b99GaWkp/P398fDDD2PUqFGYMGECPDxq1iwcS04R1UJifTfuV1hWdkoY0FDIqje+qTaRKUNEREREREREzrF//35IJBJIJBLs37/f2cMhsovY2FjN47q+27p1K6Kjo/Hll1/iyJEjSE9PR0FBAUpLS3Hz5k3s2rULM2bMQIcOHXDixAlnD1cHMzSIaiGlzFVvWVF5GWBBKw5hOSyFVGbrsIiIiIiIiIiIiGq9hIQEJCQkOHsYDiORSNCqVStERkYiPDwcjRs3RnBwMIqLi/Hnn3/i22+/xf/+9z/8+eefePLJJ3H27FmEhIQ4e9gAGNAgqpVEMzTKSy06hrCHhpuRxudERERERERERERUN0ycOBHPP/+86LpevXrh2Wefxb///W/MmjULubm5+PTTT/HZZ59V8yjFseQUUS0kl8ogk+g+fWtbySkiIiIiIiIiIiKqfi4upucBX3rpJXh6Vvbb/eWXXxw9JLMxoEFUC0kkErgLMiosztDQC2hUb8kpdtAgIiIiIiKiuuTQoUN44YUX0KZNG3h7e8PV1RVNmjTBsGHD8OWXXyIvL8/sY0VHR0MikSAsLMzodgkJCZqeAOnp6aLb7N27F08//TSaN28Od3d3KJVKhIaGolu3bpgzZw727t2r2TY9PR0SiQR9+/bVLOvbt6/mHFX/DJXi2bdvHyZOnIgWLVpAqVTC29sbnTp1wuuvv44bN24YvB3C3gZ3797FggULEB4eDl9fX4Pn/OmnnzB27Fg0a9YMbm5u8PX1RUREBN577z3k5uYave8AICMjAzExMWjRogXc3NwQEhKCESNGIDEx0eS+1qq6j7Vv08aNG9G/f38EBQXB3d0dbdu2xdy5c816zJSWliIuLg59+/ZFYGAgXF1d0ahRIwwZMgTffvstVCqVwX2Fj7Pr169j9uzZaN26NZRKJQIDAzF06FD8/PPPFt0eQ8LCwiCRSBAdHW3ydok5evQo5s+fj8jISDRq1Aiurq7w9vZG+/btMX36dJw7d050v6rnyXvvvadZJnxMC59D5j4Hz5w5g6lTp6JVq1ZQKpXw8vJChw4dMGvWLIPPSUD8ftu9ezeGDx+ORo0aQaFQoHnz5pg+fToyMjLMvYvsysXFBW5ubgCA4uJip4xBDC/JJqqllC5yFJSXaH6/X25hhoZK2EODLwdERERERERElioqKsLzzz+PdevW6a27fv06rl+/ju3btyM7OxuxsbHVOrZZs2bh3//+t97yq1ev4urVq/j111+RkJCA27dv23Se4uJiTJo0Cd9//73eurNnz+Ls2bNYtmwZ1q1bh+HDhxs91qVLlzBgwACjk8G5ubmIiorSCcYAQElJCU6cOIETJ04gLi4OW7ZsQbdu3USP8csvv2DYsGG4d++eZllmZia2bduGbdu2Vdvf6vnnn8c333yjs+zChQtYuHAh1qxZgz179qBt27ai+6anp2Pw4ME4f/68zvJbt25h586d2LlzJ5YvX44tW7bA39/f6DiOHz+OoUOHIisrS7OsqKgIO3bswI4dOzB79mwsXrzYyltpu4SEBEyaNElveVlZGX7//Xf8/vvvWLFiBT7//HPMmDGjWsb00UcfYf78+XpBo3PnzuHcuXNYtmwZ4uPjMWHCBJPHmjt3LhYuXKizLD09HV999RU2bdqEpKQktGvXzq7jN2XPnj2a1wZDj0Fn4AwmUS0l7KNheYZGhc7vLDlFRERERERUP6jV6hp1ta2jubm5aa78tzeVSoWRI0di9+7dAIBWrVphxowZiIiIgFKpRGZmJg4fPowNGzY45PzG/Pe//9UEMx5++GFMnz4d7dq1g4+PD/Ly8pCamorExEQcO3ZMs0/jxo1x5swZJCcnY/LkyQCAb775Bo899pjOsZs0aaL5Wa1WIyoqCtu3bwcADB8+HOPGjUOLFi0glUpx7NgxLF68GFevXkVUVBQOHTqEiIgIg+OOiorC9evX8fLLL2PEiBHw8/PDpUuXEBoaCqAyaNG/f3+kpKRAJpNh/PjxGDJkCJo3b46ysjIcOHAAn332GbKysjBkyBCcPHlSs2+Vq1evaoIZUqkUU6dORVRUFHx8fHD69GksXLgQsbGxRsdpD3FxcUhOTkbXrl0xa9YstGrVCllZWUhISMCGDRtw48YNDBw4EGfPnoWXl5fOvgUFBejXrx+uXLkCABg1ahQmT56MkJAQpKWlYenSpUhKSsLBgwcxfPhwHDhwADID1Tnu37+PsWPH4u7du3jzzTcxZMgQKBQK/Prrr/joo4+QmZmJzz77DM2aNcMrr7zi0PvEkPLycvj5+WHkyJHo3bs3WrVqBQ8PD9y4cQMpKSn4/PPPcfv2bbz00kto27Yt/va3v2n2HTVqFCIiIhAXF4dly5YBqMysEGrcuLHZ44mLi8O8efMAAIGBgXjjjTfQo0cPVFRUIDExEYsWLUJhYSGio6PRoEEDDBkyxOCxVqxYgcOHD6NPnz6YNm0aWrdujby8PKxZswZr1qxBdnY2Jk+ejCNHjpg9Pmvl5+fj2rVr2LBhg07PDGf93cVwBpOollK6uOr8XmRpDw1hhgYDGkRERERERPVCcXEx/vOf/zh7GNXmueeeg7u7u0OOvXTpUk0wY/To0Vi3bh0UCoXONkOHDsWCBQuQmZnpkDEYUhVECQ0NxaFDhzS18KtERkYiJiYGd+7c0SyTy+Xo2LGjTsZG8+bN0bFjR4PnWblyJbZv3w65XI6tW7di0KBBOuu7deuG5557Dr169UJqaipeffVVHDx40ODxzp49i507d2LAgAGaZV26dNH8/P777yMlJQW+vr5ITEzUWQcAPXv2xDPPPIPu3bsjMzMT8+bNw9q1a3W2ee211zSZGd9++y2efvppzbqIiAiMHTsWvXr1wvHjxw2O0x6Sk5MxZMgQbNmyRaenweDBg9GxY0e88847uHr1KhYsWIBPPvlEZ9/33ntPE8yYP38+FixYoFnXpUsXjBkzBs899xzWrl2Lw4cPIz4+HtOnTxcdR3Z2NvLy8pCYmIjevXtrlnft2hVjxozB448/joyMDLz11lsYP348AgMD7Xk3mGXw4MEYP348lEqlzvLw8HAMHToUM2fORO/evXH69Gm8++67OgENX19f+Pr6IigoSLPM2GPalOzsbLz++usAgJCQEBw9ehRNmzbVrO/RowdGjBiBXr16obCwEFOnTkVaWhrkcrno8Q4fPowpU6Zg+fLlOsHXfv36wdXVFStXrsTRo0dx8uRJhIeHWz1uQ2JjY3XKcWmTyWRYsmQJevbsaffzWos9NIhqKf0MDRubgrPkFBEREREREZHZVCoVFi1aBKAyY2HNmjV6wYwqUqnUoqu/7eHmzZsAgM6dO+sFM7SZKkVkjFqtxscffwwAmDlzpl4wo4qfn5/mvjp06BAuXbpk8JjR0dE6wQxtBQUF+PLLLwEACxYs0AtmVAkNDcXbb78NoLI/RWFhoWbdzZs3sXnzZgDAsGHDdIIZVby8vBAfH29wjPaiUCiwYsUK0QbNb731lmbS/euvv0Zp6YPKHCUlJVi5ciUAoEOHDqLlsSQSCeLi4hAQEACgMvhmzLRp03SCGVVCQkI0paYKCwuxevVq826cnTVu3FgvmKHNx8cH77//PgDg4MGDyMnJcdhYVq1ahfv37wMAPvvsM51gRpXw8HDMnTsXQGXpuZ9++sng8YKDg/HFF1+IZpLNmTNH83N1N+bu168fzp49i5iYmGo9rykMaBDVUkqZboaG7U3BqzegoVazLTgRERERERHVXr/99pumWe+UKVOMBg2cITg4GABw4MABXL582SHnOHfunObYUVFRRrfVniw3VjrnmWeeMbguKSkJd+/eteh8ZWVlOHHihGb5vn37UPFXGW6xngxVunbtig4dOhg9h60GDBiAkJAQ0XVSqRQTJ04EANy5cwcpKSmadSdOnNA0DI+OjjZYSsrb2xvjxo0DUPm3MpYlZOy+GD16NHx9fQHAoQ3TLVFYWIj09HSkpqZq+rRoZ0CcOnXKYeeuug98fX3x1FNPGdzuhRde0NtHTFRUlMFgaJs2bTSvLVUZOfY2Y8YMnDlzBmfOnMHRo0exatUq9O3bF3v27MHf//53/Prrrw45r7UY0CCqpdxtzNAo1gtoiL/5EREREREREZG+kydPan7u1auXE0cirqoRcU5ODjp27Ih//OMfWLVqFf744w+7nUO7JFP37t0hkUgM/tMO+FRlj4h5+OGHzTpfcHCw0fNplxTSPp927wRhbxChrl27Gl1vK0vOrz3us2fPan5+/PHHjR5De732ftpcXV3xyCOPGDyGXC7XlDoS6z1RXW7fvo158+ahTZs28PLy0pRD69SpEzp16oShQ4fqbOsoVfdj586dDZaRAoCGDRsiLCxMZx8xphpu+/n5Aajsb+EIQUFB6NixIzp27IjHH38c0dHR2Lt3Lz744AOcPn0akZGR2LVrl0PObQ3WmCGqpZQyQUCjwsIMDUEPDTeZ4RdgIiIiIiIiqjvc3Nzw3HPPOXsY1cbNzc0hx9WeMK3KhqhJ+vXrh6VLl+L1119HUVER1q9fj/Xr1wOoLN8zbNgwTJ8+3ehEtilZWVlW7VdVrkdM1eSto86n3TNEu6eCmIYNG1p1PnNZcn7tcVtyGxo1aiS6nzZ/f3+DWR7CsRg6hqOdOHECAwcONLuUVFFRkcPGUnUfmLrvgcr7Pz093ej9ZqyUFlCZrQNAk1lUXd566y1s3boVx44dw5QpU3D58mXR8mjVzfkjICKr6DUFLy83sKU49tAgIiIiIiKqnyQSicOaZFPNEhMTg7Fjx+K7777D7t27cejQIdy9exfXr1/H8uXLER8fj3nz5uGDDz6w6vjaE6zbtm3TXI1uirGJYGMT69rnS0lJMXp1vLYmTZqILhfrWVCd7HH+mnIMRyotLcW4ceOQk5MDuVyOl19+GSNHjkTr1q3h5+enKdd05coVtGzZEkD1lDqv6febPYwcORLHjh3D1atXcezYMTzxxBPOHhIDGkS1lX5TcFt7aFRvySl20CAiIiIiIqLarEGDBpqfMzMzTZaNsUTVFdkqlcrodtrNrg0JCgrCq6++ildffRUqlQq//fYbNm/ejKVLlyIvLw//+te/8Nhjj2HkyJEWj7Oq4TRQ2U9Au8yTI2ifLzAw0GCgwhjtDJBbt26JNnTWXu9Ipo6vvV67ebv2z7du3ULr1q0NHkO73JahBvA5OTmoqKgwGkyqGovwGFWPVcA+j1cxe/fu1fSPiIuL0+lNoa26skf8/f2RmZlp1uOj6v43dN/XdIGBgZqf//zzzxoR0GAPDaJaSpihcb/Csh4awpJT1d0UnIiIiIiIiKg269y5s+bnAwcO2PXYXl5eAKBp/GzIxYsXLTquVCpF586dsWDBAuzZs0ezfMOGDTrbmXvleVVfBQA4dOiQRWOxhj3O16lTJ83PycnJRrc1td5WlpxfO1ik/bOphs3Hjh0T3U9baWmp0Sba5eXl+O2330SPUfVYBYDc3FyDx7hz547Z5aKEUlNTNT///e9/N7iddo8VMfbKqKi6D1JSUlBupGJKVlYW/vzzT519apvr169rftbug+NMDGgQ1VK2Z2jo1t2r7pJTauZoEBERERERUS32yCOPaK7uX7lyJQoKCux27ObNmwOobAJ84cIF0W1KS0uxadMmq8/RuXNnTbaCsIGydt+RkpISo8eoypKIj49HcXGx1eMxR//+/TX9Bj7//HOrygr17dtXk4mwevVqg9slJycbbeRsD7t27UJmZqboOpVKpRmfn5+fTgCtS5cu8PX1BVB5GwxlRuTn52uCVe3btzfa68XYfbF582ZNsKJ///466/z8/DRjMRZQ+P77760uA6UdNDCU5aFSqbBixQqjxzH3cW1K1X2Ql5eHH3/80eB2X3/9teY2C++32kClUum8xmgHA52JAQ2iWspd2BS83MIMDb2SU8zQICIiIiIiIjKXVCrF66+/DgDIyMjAhAkTUFoqfrGhSqXCjRs3zD52nz59ND8vXrxYdJvZs2frXD0ttH79eqONkY8fP66ZpK4KoFTRnvi+fPmywWNIpVLMmzcPQGX/ggkTJhidKL537x6WLl1qcL0pvr6+eOmllwAAhw8fxqxZs4yWObp16xZWrlypsyw4OFhTXmvr1q162SkAUFBQgGnTplk9TnOVlJRg2rRpos2eFy5ciDNnzgAAJk+erOkTAQAKhUJTduns2bNYsGCB3v5qtRovvfSSJlhVdb8ZsmzZMhw8eFBv+c2bNzFnzhwAlc2rJ06cqLdN7969AQBbtmwRfbxcuHABb7/9ttHzG9OqVSvNzwkJCaLbzJ07FykpKUaPY+7j2pRJkyZpAmuvvfaa6PPw1KlT+PDDDwEAjRs3xqhRo6w+nyOsWLHCaJNxlUqF1157TRPU69Wrl9k9chyNM5hEtZTNGRpOLjklQd1vnERERERERER1W0xMDLZt24bdu3dj8+bN6NSpE2bMmIGIiAgolUrcvHkTR48exbp16zB+/HjExsaaddzw8HB0794dR44cwYoVK1BaWoqJEyfCx8cHly5dQnx8PPbu3YsnnngChw8fFj3GG2+8gRdffBEjR45E79690bp1a3h4eCAnJwcHDx7EF198AaCyCbewJ0GzZs3QpEkTZGRk4NNPP0WTJk3Qpk0bTWZDw4YNNaWGXnzxRc3t37hxI1JSUjBt2jR07doVPj4+uHfvHs6fP4/9+/dj69atcHNzMzm5bsz777+PpKQk/Prrr1iyZAn279+PKVOm4NFHH4WHhwdyc3ORmpqKxMRE7Ny5E506ddK7fYsXL8bu3buRn5+P8ePHIykpCVFRUfD29sbp06excOFCXLx4ERERESbLGNkiIiIC27ZtQ48ePTBr1iy0atUKWVlZWL16Nb7//nsAlQ3NxYIB77zzDn788UdcuXIFsbGxOHPmDCZNmoTg4GCkpaVh6dKl2L9/PwCge/fumDp1qsFxBAYGQqlU4sknn8SsWbMwZMgQKBQKHDt2DB9++KEmGLdgwQLRhu4zZszA1q1bUVRUhMjISMTGxiI8PBwFBQXYs2cPlixZgsDAQMhkMmRnZ1t8Pw0cOBBBQUHIysrC/PnzkZ6ejtGjR6NBgwb4448/sGLFCuzZswc9evQwWopMu//DrFmz8NZbbyE4OFhTiiosLAwuLqbnxwIDA7Fo0SLExMQgIyMDXbp0wZtvvoknnngC5eXlSExMxKJFi1BQUACJRIL4+HizG9hXl6lTp+K9995DVFQUunXrhtDQUCiVSuTm5uLkyZNISEjA6dOnAQDe3t748ssvnTxiLWoiM127dk2Nyl7O6mvXrjl7OPVe3O+H1PjmNc2/XtuXWrT/oz8t1tl/zaXjDhppJe1z4ZvX1P1//sqh5yMiIiIiIqqtrP3+ffHiRfW5c+fUFy9edODoSKiwsFAdFRWl+ZsZ+vfuu+9q9klLS9MsX7Vqlehxf//9d3VQUJDB482ZM0e9atUqze9paWk6+4eGhpock0KhMHj+uLg4g/sJ9yktLVVPnz5dLZFITJ6zefPmeud69913NevNce/ePfVTTz1l8lwA1H379hU9xr59+9ReXl4G93vnnXcsHpc5hH/76Ohog2MIDg5Wp6amGj1W27Ztjd7+Hj16qHNyckT3nzhxohqAOjQ0VJ2cnKxu0KCBwePMnDnT6O2aOXOmwX2bNWumPnfunOYxOXHiRL399+3bp9l+3759eut//vlntZubm8FzREZGqs+ePWvyeTVu3DiDx9B+DmnfN4b861//UkulUqPPr9WrV4vua85rQBVj95u1zHnuAFC3a9dOfeLECavP44j3JZacIqqllDaWnCrWKzkls3lMRERERERERPWNUqnExo0bsXfvXjz33HNo3rw53N3d4erqiqZNm2L48OFYvnw5XnvtNYuO27ZtW6SkpGD69OkIDQ2Fq6srAgMDMWjQIGzfvh2LFi0yuv++ffuwZMkSjBkzBp06dUJgYCBcXFzg7e2N8PBwzJkzB+fOnUN0dLTo/tOnT8emTZswYMAABAUFGb1yXS6XIy4uDqdOncLLL7+MTp06wcfHBzKZDD4+Pnj00Ufx/PPP44cffsDvv/9u0f0gxsvLC5s2bcIvv/yCF154AW3atIGXlxdcXFzg7++Pxx57DDExMdixYwd2794teozIyEikpqbq3L8NGzbE0KFD8fPPP+O9996zeZzmWLVqFb777jtERkYiICAACoUCrVu3xj//+U+kpqaiffv2BvcNCwvDqVOnsHTpUvTp0wcBAQGQy+Vo2LAhBg0ahP/85z84cOAA/P39TY4jIiICKSkpmDlzJlq2bAk3NzcEBARg0KBB2LFjB5YsWWJ0/yVLluC7775D79694e3tDXd3d7Rp0wZvvvkmUlJS0K5dO4vvG20DBw7E8ePH8eyzzyIkJARyuRyBgYHo06cP4uPjsWfPHnh4eJg8zrfffotPPvlEk0EklVo/PT5v3jycPHkSU6ZMQcuWLeHu7g4PDw+0a9cOr7zyCs6fP48JEyZYfXxHOnHiBD744AMMGzYMHTp0QIMGDTSvD23btsX48eOxceNGnDp1Sqd/S00g+SsiQ2RSRkaGptnVtWvXNE2fyDk2pp3CuP3/0fzezicI5576p9n7t9j4IdIK7mh+39JvEkY062DXMWqTrJqj83u/4FZIHOT4epRERERERES1jbXfvy9duoTy8nK4uLjo1JwnopojPT1d07Nk1apVBgNK1SE6OhqrV69GaGgo0tPTnTYOqrsc8b7EDA2iWspd2EOjwsKm4E7uoUFERERERERERERkCQY0iGop/ZJTFjYFF5ackrLkFBEREREREREREdVcDGgQ1VJKF1ed3y3toVFSUaHzOzM0iIiIiIiIiIiIqCbjDCZRLaUUlJwqqiiDWq2GRCIxa3+9klPS6n05UIPte4iIiIiIiIiodklLS0NhYaHF+/n5+aFx48YOGBHVN4WFhUhLS7Nq3zZt2kAul5vesAZjQIOolhJmaKjUaijWvAnzwhlAmYoZGkRERERERERElpg0aRKSkpIs3m/ixIlISEiw/4Co3klOTkbfvn2t2jctLQ1hYWH2HVA14wwmUS0lzNAA9IMUlmBAg4iIiIiIiIjIscLCwqBW14yqFQkJCQyyUK3DGUyiWipA4QEPF1cUWtgMXIxcKkMjdy87jMqw3g1b4MCtK5rf53Ts49DzERERERERERHZ2/79+509BKrnIiMja0xQzBnYFJyollLIXPB++EBIzC4yZdjbj/SHp1xhh1EZtuixYZqgyehmHTEgpI1Dz0dERERERERERER1CzM0iGqx2R37YOJDEfizINfqYzT19EWgm6cdRyWua2Az/DHmTeSXlaChu5fZzcuJiIiIiIiIiIiIAAY0iGq9ADcPBLh5OHsYZvGQK+Dh4EwQIiIiIiIiIiIiqptYcoqIiIiIiIiIiIiIiGo8BjSIiIiIiIiIiIiIiKjGY0DDRsePH8f777+PAQMGoEmTJlAoFPD09ETr1q0xadIkHDx40C7niY2NhUQiMevf/v377XJOIiIiIiIiIqo9ZDIZAKC8vBwVFRVOHg0REdVnKpVK815U9f5kD+yhYYPevXvjl19+0VteWlqKS5cu4dKlS0hISMCECROwYsUKuLq6OmGURERERERERFQfKJVKlJSUAADy8vIQEBDg5BEREVF9VVBQALVaDQBwd3e323EZ0LDBjRs3AAAhISEYO3YsevXqhWbNmqGiogJHjhzB4sWLcf36daxZswZlZWX47rvv7HLeM2fOGF3fvHlzu5yHiIiIiIiIiGoPX19f5ObmAgCysrJQUVEBb29vKBQKSCQSJ4+OiIjqA5VKhYKCAty8eVOzzMvLy27HZ0DDBm3btsWHH36IMWPG6KXNdOvWDc899xx69OiBixcvYt26dXjxxRfRu3dvm8/bsWNHm49BRERERERERHWLm5sbfHx8cPfuXQBATk4OcnJyIJFI7Frug4iIyJCKigpNZgZQmZ3h4eFht+MzoGGD//73v0bXN2jQAIsXL8bw4cMBAD/88INdAhpERERERERERGKCg4Ph6uqK7OxszTK1Wo3y8nInjoqIiOojd3d3NGvWzK5ZggxoOFjfvn01P1++fNmJIyEiIiIiIiKiuk4ikaBBgwbw9vZGQUEBCgsLUVpaCpVK5eyhERFRPSCTyeDu7g4vLy94eHjYveQhAxoOVtWMC7BvN3ciIiIiIiIiIkNcXV3h7+8Pf39/Zw+FiIjIbqTOHkBdl5SUpPm5Xbt2djnmgAEDEBQUBFdXVwQFBSEyMhILFy7UNP4iIiIiIiIiIiIiIqprmKHhQCqVCgsXLtT8Pm7cOLscd/fu3Zqfs7OzkZSUhKSkJHz88cdISEjAyJEjrTpuRkaG0fWZmZlWHZeIiIiIiIiIiIiIyFYMaDjQ//3f/+HYsWMAgKeeegpdunSx6XidOnXCqFGj0LVrV4SEhKCsrAwXLlzA2rVrsWvXLuTl5WHMmDHYtm0bBg8ebPHxmzZtatP4iIiIiIiIiIiIiIgcRaJWq9XOHkRdlJSUhP79+6O8vBxBQUE4c+YMgoKCrD5eXl4efH19Da5fvnw5XnzxRQBASEgILl++DDc3N4vOYUmDlmvXrqFJkyYWHZ+IiIiIiIiITMvIyNBcdMjv30RERA8wQ8MBUlNTMXr0aJSXl8PNzQ0bN260KZgBwGgwAwCmTZuG5ORkfP3117hx4wY2bdqEZ555xqJzXLt2zej6zMxMdO3a1aJjEhERERERERERERHZAwMadpaWloYBAwYgNzcXMpkM33//PXr37l0t5542bRq+/vprAJUZIpYGNHjFBxERERERERERERHVVFJnD6AuuXHjBvr3748bN25AIpHgm2++sbpBtzXat2+v+fn69evVdl4iIiIiIiIiIiIiIkdjQMNObt++jSeffBJXrlwBAHzxxReYMGFCtY7Bkh4YRERERERERERERES1CQMadnD37l0MHDgQ586dAwAsXLgQMTEx1T6OqvMDlY3BiYiIiIiIiIiIiIjqCgY0bHT//n0MHToUKSkpAIC33noLb7zxhlPGsnz5cs3Pffr0ccoYiIiIiIiIiIiIiIgcgQENG5SWlmL06NE4dOgQAOCVV17BBx98YPFxEhISIJFIIJFIEBsbq7f+zJkz+OOPP4weIz4+HitXrgQANGrUCKNHj7Z4HERERERERERERERENZWLswdQmz399NPYtWsXAOBvf/sbnn/+eZw9e9bg9q6urmjdurXF5zlx4gReeOEF9O3bF4MHD0anTp0QEBCA8vJynD9/HmvXrtWMQyaTIT4+Hh4eHtbdKCIiIiIiIiIiIiKiGogBDRv8+OOPmp/37t2Lhx9+2Oj2oaGhSE9Pt+pcFRUVSExMRGJiosFtAgIC8PXXX2P48OFWnYOIiIiIiIiIiIiIqKZiQKMWGDJkCL7++mscOXIEJ0+exK1bt5CTkwO1Wg1/f3888sgjGDRoEKKjo+Ht7e3s4RIRERERERERERER2Z1ErVarnT0Iqh0yMjLQtGlTAMC1a9fQpEkTJ4+IiIiIiIiIqO7h928iIiJxbApOREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERERERERU4zGgQURERERERERERERENR4DGkREREREREREREREVOMxoEFERERERERERERERDUeAxpERERERERERERERFTjMaBBREREREREREREREQ1HgMaRERERERERET/3969R3ld1/kDfw4MMDDAQUELAvOCI2pmrMDq4l2jU1hEF9tuXgJ1rVhsXXUt827mWnnh7K5bYOa2kdlFS+P8CkVEEBFl21QQL2AqEiCgyG0Y+P7+4PBdxhmYGZhhvjM8HufMOZ/5ft6f9/v91Zee73yfn/f7AwCUvPLWngAAAABAU9W880re+Z9rsnnNy42+puKgz6Vy0IUtOCsAoCUJNAAAAIA2Z9VDo1Kz6k9NuqZTnyEtNBsAYE+w5RQAAADQpmzZuKrJYQYA0PYJNAAAAIA2pVCztrWnAAC0AltOAQAAAG1KYfP6Oq/1HHZbUtZxp9d12vdDLTQjAGBPEGgAAAAAbUqhZt27XilLt8PHpaysrFXmAwDsGbacAgAAANqUQk3tFRpl5V2FGQCwFxBoAAAAAG1KnS2nOnZtnYkAAHuUQAMAAABoU94daJQJNABgryDQAAAAANqUultOdWulmQAAe5JAAwAAAGhTrNAAgL2TQAMAAABoW94daJQLNABgbyDQAAAAANqUQs26Wr9boQEAeweBBgAAANCm1H2GhkADAPYGAg0AAACgTfEMDQDYOwk0AAAAgDZFoAEAeyeBBgAAANCm1N1yqlsrzQQA2JMEGgAAAECb8u4VGrFCAwD2CgINAAAAoE2ps+WUh4IDwF5BoAEAAAC0KYWadbV+9wwNANg7CDQAAACAtqXOMzQEGgCwNxBoAAAAAG1KnS2nrNAAgL2CQAMAAABoUwQaALB3EmgAAAAAbUrBllMAsFcSaDSjV155JRdffHEGDRqUysrK7Lvvvhk6dGhuvvnmrFu3ruEOGmnKlCkZPXp0+vfvny5duqR///4ZPXp0pkyZ0mxjAAAAQKmqu0KjWyvNBADYk8pbewLtxe9+97t86Utfyttvv118bd26dZk7d27mzp2biRMn5sEHH8zAgQN3eYwtW7bk/PPPz6RJk2q9/vrrr+f111/Pfffdl7Fjx+Y///M/06GDrAoAAID2qU6gYYUGAOwVfOvdDObNm5fPfe5zefvtt9O9e/fccMMNmTVrVh566KGcd955SZKFCxdm5MiRWbNmzS6P861vfasYZgwePDiTJ0/OnDlzMnny5AwePDhJMnHixFxxxRW7/6YAAACgRBVq3rULgmdoAMBeoaxQKBRaexJt3YknnpgZM2akvLw8jz76aI477rha52+++eZceumlSZKrrroqV199dZPHWLhwYY488sjU1NRkyJAhefTRR9O16/99YFu3bl1OOumkzJ07N+Xl5Zk/f/5urQapz2uvvZYBAwYkSV599dX079+/WfsHAACAxnjj7opky8bi773PmJPOfYa24oyal7+/AaB+Vmjspjlz5mTGjBlJkjFjxtQJM5Lk4osvzuGHH54kue2227Jp06Ymj3PrrbempqYmSTJhwoRaYUaSdOvWLRMmTEiS1NTU5JZbbmnyGAAAAFDqCoUttcKMJCmzQgMA9goCjd103333FY/PPffcett06NAhZ511VpJk9erVmTZtWpPGKBQKuf/++5MkgwYNyrHHHltvu2OPPTaHHXZYkuT++++PxTcAAAC0O5s31HlJoAEAewcPBd9Njz32WJKksrIyxxxzzA7bnXTSScXjmTNnZsSIEY0eY9GiRVmyZEmdfnY0zvPPP5/XX389ixcvzkEHHdTocdqb6g0b8+pLz7T2NAAAAGhGhZq1eXv9YbVeW/vSyynrvLrBawcc8oF0rujSQjMDAFqaQGM3zZ8/P0kycODAlJfv+B/noEGD6lzTWM8991y9/TRmnKYEGq+99tpOz7/xxhuN7qsULJr735n+XE1rTwMAAIDm1vGfav/+5KIkixq87LQkhxy545sRAYDSJtDYDRs2bMiKFSuSpMEHdO2zzz6prKzM2rVr8+qrrzZpnO2DhobG2fbQsCRNHmf7a9uDzWuXJNm/tacBAAAAAEAz8AyN3bBmzZricffu3RtsX1lZmSR55513WmycbWPsyjgAAAAAAFCqrNDYDRs2/N+DyDp37txg+y5dtu7TuX79+hYbZ9sYuzJOQys63njjjQwbNqxJfQIAAAAAQHMQaOyGioqK4nF1dXWD7Tdu3Jgk6dq1a4uNs22MXRmnoe2s2poDjjguf7fp/7X2NAAAAGghHbv2Taf3DE9ZWcdGtR9wyAdaeEYAQEsSaOyGHj16FI8bs73T2rVrkzRue6pdHWfbGLsyTnvTfcBp+cCA01p7GgAAAAAANAPP0NgNFRUV6d27d5LaD+6uz6pVq4phQ1Mfvr39yomGxtl+26j29pBvAAAAAAD2XgKN3XTEEUckSV588cXU1NTssN2CBQuKx4cffvgujfHufpp7HAAAAAAAKFUCjd10/PHHJ9m61dNTTz21w3bTp08vHg8fPrxJYxx00EHp169fnX7q8+ijjyZJ3ve+9+XAAw9s0jgAAAAAAFCqBBq76ZOf/GTx+Mc//nG9bbZs2ZK77747SdKrV6+ccsopTRqjrKwso0aNSrJ1Bcbs2bPrbTd79uziCo1Ro0alrKysSeMAAAAAAECpEmjspmHDhuWEE05IkkyaNCmPP/54nTbf//73M3/+/CTJ+PHj06lTp1rnH3nkkZSVlaWsrCznnHNOveNcdNFF6dixY5Jk3LhxWb9+fa3z69evz7hx45Ik5eXlueiii3bnbQEAAAAAQEkRaDSD2267LV27dk1NTU1GjBiRG2+8MbNnz860adNywQUX5NJLL02SVFVV5eKLL96lMaqqqnLJJZckSebOnZvhw4fnnnvuydy5c3PPPfdk+PDhmTt3bpLkkksuyaGHHto8bw4AAAAAAEpAeWtPoD0YPHhw7rnnnnzpS1/K22+/nW9+85t12lRVVeXBBx9Mjx49dnmcG264IcuWLcudd96ZefPm5e///u/rtBkzZkyuv/76XR4DAAAAAABKkRUazeTjH/94/vd//zff+MY3UlVVlW7duqVXr14ZMmRIbrrppsybNy8DBw7crTE6dOiQSZMm5cEHH8yoUaPSr1+/dO7cOf369cuoUaPy+9//PhMnTkyHDv61AgAAAADQvpQVCoVCa0+CtuG1117LgAEDkiSvvvpq+vfv38ozAgAAgPbH398AUD+38gMAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACWvvLUnQNtRU1NTPH7jjTdacSYAAADQfm3/N/f2f4sDwN5OoEGjLV++vHg8bNiwVpwJAAAA7B2WL1+eAw88sLWnAQAlwZZTAAAAAABAySsrFAqF1p4EbcOGDRvy5z//OUmy3377pby89Bf4vPHGG8XVJHPmzEnfvn1beUaw69Qz7Yl6pr1R07Qn6pn2pK3Wc01NTXGXhKOOOioVFRWtPCMAKA2l/400JaOioiJDhw5t7Wnssr59+6Z///6tPQ1oFuqZ9kQ9096oadoT9Ux70tbq2TZTAFCXLacAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5AAwAAAAAAKHllhUKh0NqTAAAAAAAA2BkrNAAAAAAAgJIn0AAAAAAAAEqeQAMAAAAAACh5Ag0AAAAAAKDkCTQAAAAAAICSJ9AAAAAAAABKnkADAAAAAAAoeQINAAAAAACg5Ak0AAAAAACAkifQAAAAAAAASp5Ag3brlVdeycUXX5xBgwalsrIy++67b4YOHZqbb74569ata+3psZebO3durr322owYMSL9+/dPly5d0r1791RVVeXcc8/NY4891qT+pkyZktGjRxf76t+/f0aPHp0pU6a00DuAxrnssstSVlZW/HnkkUcavEY9U2r+8pe/5KqrrsqQIUOy3377paKiIgMGDMgJJ5yQK6+8Ms8888xOr1fTlILq6upMnDgxH/nIR9K3b9/iZ4/DDjss5557bmbNmtWoftQzLWnZsmV54IEHcuWVV+ajH/1o+vTpU/wMcc455zS5v+ao15qamtxxxx054YQTst9++6Vr16455JBDcsEFF+TZZ59t8pwAgN1UgHbot7/9baFnz56FJPX+VFVVFV544YXWniZ7qRNOOGGHtbn9z1lnnVXYuHHjTvvavHlzYcyYMTvtZ+zYsYXNmzfvoXcH/2fevHmF8vLyWvU4bdq0HbZXz5Si22+/vVBZWbnTuhw/fny916ppSsXixYsLRx55ZIOfPcaNG1fYsmVLvX2oZ/aEndXX2Wef3eh+mqtely9fXhg6dOgO++jSpUvhRz/60W6+awCgKazQoN2ZN29ePve5z+Xtt99O9+7dc8MNN2TWrFl56KGHct555yVJFi5cmJEjR2bNmjWtPFv2RkuWLEmS9OvXL+PHj88vf/nLzJkzJ48//nh+8IMf5H3ve1+S5O67727wTrRvfetbmTRpUpJk8ODBmTx5cubMmZPJkydn8ODBSZKJEyfmiiuuaLk3BPXYsmVLzj///NTU1GT//fdv1DXqmVJz/fXX5x//8R+zdu3aVFVV5eabb84jjzySefPmZerUqbn55pvzd3/3d+nQof6P1GqaUrBp06aMHDmyeCf5Bz/4wdx11115/PHH84c//CFXXnllKisrkyQTJkzITTfdVG8/6pk97YADDsiIESN26drmqNfNmzdn9OjRefLJJ5Mkn/rUpzJlypQ88cQTuf3227P//vtn48aNueCCC6xQAoA9qbUTFWhu2+5+Ly8vL8yaNavO+X/9138t3lFz1VVX7fkJstcbOXJk4Z577inU1NTUe3758uWFqqqqYp1Onz693nbPP/988e73IUOGFNatW1fr/Nq1awtDhgwp/vdgVRJ70i233FJIUhg0aFDh8ssvb3CFhnqm1EydOrXWirnq6uodtq1vNZ2aplTce++9xVo+7rjj6v38MXfu3EKnTp0KSQq9evUqbNq0qdZ59cyecuWVVxZ+97vfFZYuXVooFAqFRYsWNXmFRnPV66RJk4pjf/WrX61z/oUXXijuCjBw4MA6/90AAC3DCg3alTlz5mTGjBlJkjFjxuS4446r0+biiy/O4YcfniS57bbbsmnTpj06R3jggQdy5plnpmPHjvWe79OnT77//e8Xf//lL39Zb7tbb701NTU1SbbeUdm1a9da57t165YJEyYk2br37y233NIc04cG/eUvf8m3v/3tJMkdd9yRzp07N3iNeqaUbNmyJRdeeGGS5Oijj86kSZPSqVOnHbavr8bVNKVi+2djXH755fV+/jjmmGNyxhlnJElWr16d+fPn1zqvntlTrrnmmpxxxhl5z3ves8t9NFe9fu9730uS7Lvvvrn55pvrnB84cGAuv/zyJMmLL76Y3/zmN7s8ZwCg8QQatCv33Xdf8fjcc8+tt02HDh1y1llnJdn6B9u0adP2xNSgSU455ZTi8UsvvVTnfKFQyP33358kGTRoUI499th6+zn22GNz2GGHJUnuv//+FAqFFpgt1Pa1r30t77zzTs4+++ycdNJJDbZXz5SaP/zhD3nhhReSbH2wfXl5eZOuV9OUkurq6uLxwQcfvMN2hxxySL3XqGfakuaq14ULFxaDvTPPPDPdunWrt5/tt4cVaADAniHQoF157LHHkiSVlZU55phjdthu+y/YZs6c2eLzgqbauHFj8bi+OykXLVpUfBZHQ18Ybzv/+uuvZ/Hixc03SajHL37xizzwwAPZd999i3c2NkQ9U2ruvffeJElZWVnxrvUkWblyZV544YWsXLlyp9eraUrJti9tk+Tll1/eYbttN1CUlZXl0EMPLb6unmlLmqtet/1d2VA/733ve1NVVZXE35UAsKcINGhXtt1FM3DgwJ3eTTlo0KA610ApmT59evF42xZp23vuueeKx9vXc33UO3vK6tWrM378+CTJTTfdlD59+jTqOvVMqZk9e3aS5MADD0yPHj3ys5/9LEcddVR69+6dqqqq9O7dO4cddli+973v1Qqgt1HTlJLPf/7z6dmzZ5Kt/2/evHlznTbz5s3Lgw8+mCT5whe+UGyfqGfaluaq113p59VXX83atWsbPVcAYNcINGg3NmzYkBUrViRJ+vfvv9O2++yzTyorK5Ns/eAJpWTLli357ne/W/z9zDPPrNPmtddeKx43VO8DBgwoHqt3WtKll16apUuXZvjw4RkzZkyjr1PPlJItW7ZkwYIFSbY+02j8+PH54he/mGeeeaZWu4ULF+aSSy7JqaeemtWrV9c6p6YpJX369Ml//dd/pVu3bpk5c2aGDh2au+++O7Nnz87UqVNzzTXX5KSTTkp1dXX+5m/+ptZzvBL1TNvSXPW6K/0UCoVa1wEALUOgQbuxZs2a4nH37t0bbL8t0HjnnXdabE6wK2655ZbMmTMnSfKpT32q3u3TmlLv22o9Ue+0nBkzZmTixIkpLy/PHXfckbKyskZfq54pJW+99Va2bNmSJPnzn/+c22+/PX379s1Pf/rTrFy5MuvWrcv06dOL+7LPmjUrX/nKV2r1oaYpNZ/4xCfy1FNPZezYsfmf//mfnH322TnuuOPy4Q9/OFdffXW6deuWW2+9NTNmzKjzMGb1TFvSXPWq7gGgdAk0aDc2bNhQPO7cuXOD7bt06ZIkWb9+fYvNCZpq+vTp+Zd/+Zckyf7775//+I//qLddU+p9W60n6p2WUV1dnfPPPz+FQiHf+MY38oEPfKBJ16tnSsn224Vs2LAh3bp1y7Rp0/LFL34x++yzT7p27ZoTTzwxDz/8cI4++ugkWx8E+8QTT9S6bhs1TSmorq7O3XffvcOHdf/1r3/NT3/600ydOrXOOfVMW9Jc9aruAaB0CTRoNyoqKorH1dXVDbbftud1165dW2xO0BTPPvtsRo8enZqamlRUVOTee+/N/vvvX2/bptT79vu7q3dawne+850sWLAgBxxwQK666qomX6+eKSXb12OSjB07ttZDlbfp2rVrbrjhhuLv99xzT719qGla29q1a3P66afnxhtvzMqVK3PppZdm/vz52bhxY95666384Q9/yPHHH5+5c+fmk5/8ZH7wgx/Uul4905Y0V72qewAoXQIN2o0ePXoUjxuz1HfbHZiN2Z4KWtqiRYsyYsSIrFq1Kh07dszPf/7znHjiiTts35R63/5uY/VOc1uwYEFuvPHGJMmECRNqbbvQWOqZUrJ9PSbJiBEjdtj2tNNOS3l5eZLkySefrLcPNU1ru/rqqzNjxowkyaRJk3LTTTdl0KBB6dy5c3r27JkPf/jDmTZtWk455ZQUCoVccskl+dOf/lS8Xj3TljRXvap7AChd5a09AWguFRUV6d27d958880GH8a2atWq4gfP7R8GB61hyZIlOf3007NkyZKUlZXlzjvvzKhRo3Z6zfYPJ2yo3rd/yKF6p7ndcsstqa6uzsEHH5x169bl5z//eZ022z9M+eGHH87SpUuTJB//+MdTWVmpnikpXbp0yX777Zfly5cn2XmdVVRUpE+fPlm6dGmxfeL/0ZSOQqGQO++8M0lSVVWVs88+u9525eXlue6663L88cdny5Ytueuuu3LLLbckUc+0Lc1Vr+/up0+fPg32U1ZW1uADxAGA3SfQoF054ogjMmPGjLz44oupqakp3jX5bgsWLCgeH3744XtqelDHihUr8uEPfzgvv/xykq13uJ911lkNXnfEEUcUj7ev5/qod1rStm0WXn755Xz+859vsP11111XPF60aFEqKyvVMyXnyCOPzCOPPJIk2bx5807bbju//WcONU2p+Otf/5qVK1cmSQYPHrzTtsccc0zxePu6VM+0Jc1Vr+/u50Mf+lCD/QwYMGCXVqoCAE1jyynaleOPPz7J1mW/Tz311A7bTZ8+vXg8fPjwFp8X1Oett97KRz7ykTz33HNJku9+97v52te+1qhrDzrooPTr1y9J7Xquz6OPPpoked/73pcDDzxw1ycMLUQ9U2q23/JvW+Bcn7fffjsrVqxIsrUmt1HTlIrtg7aampqdtt20aVO916ln2pLmqtdtf1c21M/SpUuzcOHCJP6uBIA9RaBBu/LJT36yePzjH/+43jZbtmzJ3XffnSTp1atXTjnllD0xNahl3bp1GTlyZJ5++ukkybe+9a1cdtlljb6+rKysuC3VggULMnv27HrbzZ49u3jX2KhRo1JWVrabM4fa7rrrrhQKhZ3+bP+g8GnTphVf3/blgXqm1Hz6058uHv/mN7/ZYbvf/OY3KRQKSZITTjih+LqaplTsu+++6dmzZ5Lk8ccf32mosf2XtgcddFDxWD3TljRXvVZVVRVXbfziF7/IunXr6u3nrrvuKh6PHj16d6cPADSCQIN2ZdiwYcUvFCZNmpTHH3+8Tpvvf//7mT9/fpJk/Pjx6dSp0x6dI1RXV2f06NGZOXNmkq11eP311ze5n4suuigdO3ZMkowbNy7r16+vdX79+vUZN25ckq13Wl500UW7N3FoQeqZUvLBD34wH/3oR5MkkydPzkMPPVSnzdKlS3PFFVckSTp37pxzzz231nk1TSno0KFDRo4cmWTrM7tuuOGGetutWrWq1o0VZ5xxRq3z6pm2pLnq9Z//+Z+TJCtXrsyll15a5/xLL72UG2+8MUkycOBAgQYA7CFlhW23lUE7MW/evAwfPjzr169P9+7d881vfjOnnHJK1q9fn5///Of54Q9/mGTrXTdz585Njx49WnnG7G0+/elP59e//nWS5NRTT82tt96607sYO3funKqqqnrPXX755fnud7+bZOve2JdddlkOOeSQvPTSS7npppsyb968YrvvfOc7zfxOoHGuvvrqXHPNNUm2rtA4+eST622nniklCxcuzN/+7d9m9erVqaioyEUXXZSPfexj6dq1a+bMmZMbb7yx+MDZm266qd4vu9Q0pWDBggU55phjineYf/zjH8/ZZ5+dgw8+OBs2bMjs2bNz66235i9/+UuS5LTTTsvUqVPr9KOe2RMee+yxvPjii8XfV6xYkUsuuSTJ1i2dxo4dW6v9OeecU28/zVGvmzdvzkknnVS8CenTn/50zjvvvOyzzz6ZM2dOrrvuuixbtiwdOnTIAw88UAzCAYAWVoB26Le//W2hZ8+ehST1/lRVVRVeeOGF1p4me6kd1eWOft7//vfvsK/NmzcXvvKVr+z0+jFjxhQ2b968594gvMtVV11VrMdp06btsJ16ptTMmDGj8J73vGeH9VhWVla44oordni9mqZU/PGPfyz06dOnwc8cp556amHlypX19qGe2RPOPvvsJn1O3pHmqtfly5cXhg4dusM+unTpUvjRj37U3P8YAICdsEKDduuVV17JbbfdlgcffDCvvfZaOnfunIEDB+azn/1svv71r6dbt26tPUX2Uk3dU/r9739/Fi9evNM2v//97/PDH/4wTz75ZFasWJE+ffpk6NChueCCC9wtRqtr7AqNbdQzpeTNN9/MhAkTct9992XRokWprq5O3759c/LJJ2fcuHEZPHhwg32oaUrBm2++mUmTJmXKlCl59tlns3r16pSXl+e9731vhg4dmi984Qv5xCc+0eDnFPVMSzrnnHPyk5/8pNHtG/o6oznqtaamJj/60Y/ys5/9LPPnz8/atWvTr1+/nHbaaRk/fnyOPPLIRs8XANh9Ag0AAAAAAKDkeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAJe6uu+5KWVlZysrKsnjx4taeDgAAALQKgQYAQAtZvHhxMYjYnR8AAABAoAEAAAAAALQBZYVCodDakwAAaI82bdqU559/fofnjzrqqCTJkCFD8uMf/3iH7T7wgQ80+9wAAACgrSlv7QkAALRXnTp1alQYUVlZKbQAAACABthyCgAAAAAAKHkCDQCAEnfXXXcVHxC+ePHiOudPPvnklJWV5eSTT06SvPjii/mHf/iHHHzwwenatWsOPPDAjBkzJq+88kqt65555pmce+65Ofjgg1NRUZEBAwbkwgsvzLJlyxo1r/vuuy+f/exnc8ABB6SioiK9evXKkCFDcs0112TVqlW7+7YBAACgFltOAQC0I1OnTs2nPvWprFmzpvjaK6+8kjvvvDMPPPBApk+fnkGDBmXy5Mk555xzUl1dXWz32muv5Y477siUKVMya9as9OvXr94xVq1alc985jN5+OGHa72+cePGPPXUU3nqqafy7//+77n//vtz7LHHtswbBQAAYK9jhQYAQDuxZMmSnHnmmenVq1cmTJiQJ554IjNmzMhFF12UsrKyLFu2LGPHjs2TTz6Zs846K4ccckgmTpyYOXPmZNq0afnyl7+cZGsA8k//9E/1jrFx48acfvrpefjhh9OxY8d8+ctfzuTJkzN79uzMmDEjN9xwQ3r37p1ly5blYx/7WJ1VIQAAALCrrNAAAGgnXnjhhRx66KGZOXNm9ttvv+Lrxx9/fMrLy/O9730vM2fOzMiRIzNs2LD88Y9/TLdu3YrtTj755GzYsCH33ntvfvWrX2X58uW1+kmSa6+9Nk8//XR69eqVqVOn5phjjql1/vjjj88Xv/jFHHfccXnjjTfyzW9+M//93//dsm8cAACAvYIVGgAA7cjtt99eJ4RIkq9+9avF4xUrVmTixIm1woxtLrzwwiRJTU1NHn/88Vrn3nnnnfzbv/1bkuS6666rE2Zs8/73vz/f/va3kyT33ntv1q5du2tvBgAAALYj0AAAaCd69eqVj3zkI/WeO+igg9KjR48kyQc/+MEcfvjh9bY7+uiji8cvv/xyrXPTp0/PW2+9lST5zGc+s9O5nHjiiUmSTZs25amnnmrcGwAAAICdsOUUAEA7ceihh6asrGyH53v16pU1a9akqqpqp2222f7B4kkyd+7c4nHfvn0bPa+lS5c2ui0AAADsiBUaAADtRH1bSG2vQ4cODbbb1iZJNm/eXOvcsmXLdmle69at26XrAAAAYHtWaAAA0CjbBxxPP/10OnXq1Kjr+vfv31JTAgAAYC8i0AAAoFF69+5dPN5vv/0EFQAAAOxRtpwCAKBRBg8eXDyeOXNmK84EAACAvZFAAwCARjn99NOLz9+4/fbbUygUWnlGAAAA7E0EGgAANEqvXr3y9a9/PUkya9asfOMb38iWLVt22P6vf/1rJk6cuKemBwAAQDvnGRoAADTatddem+nTp+eJJ57IbbfdlkceeSTnnXdePvShD6WysjKrVq3Ks88+m6lTp2bKlCk56qijMnbs2NaeNgAAAO2AQAMAgEbr0qVL/vjHP+acc87Jr3/96/zpT38qrtqoT8+ePffg7AAAAGjPBBoAADRJjx498qtf/SqPPfZYfvKTn2TGjBlZsmRJ1q9fn549e+aQQw7JsGHDMnLkyIwYMaK1pwsAAEA7UVbwNEcAAAAAAKDEeSg4AAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUPIEGAAAAAABQ8gQaAAAAAABAyRNoAAAAAAAAJU+gAQAAAAAAlDyBBgAAAAAAUPIEGgAAAAAAQMkTaAAAAAAAACVPoAEAAAAAAJQ8gQYAAAAAAFDyBBoAAAAAAEDJE2gAAAAAAAAlT6ABAAAAAACUvP8PEIIbP2eDbHwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Create plot with aggregated totals per population across time.\n", + " 'metapopulations_migration_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8,\n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot the isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/tutorials-jupyter/metapopulations/population_contact.ipynb b/examples/tutorials-jupyter/metapopulations/population_contact.ipynb new file mode 100644 index 0000000..f0da4cc --- /dev/null +++ b/examples/tutorials-jupyter/metapopulations/population_contact.ipynb @@ -0,0 +1,723 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vector-borne model with susceptible and infected hosts and vectors, showing a metapopulation model setup with multiple populations connected to each other by \"population contact\" events between vectors and hosts, in which a vector and a\n", + "host from different populations contact each other without migrating from one population to another.\n", + "\n", + "**Population A** is connected to **Population B** and to **Clustered Population** 4 (both are one-way connections).\n", + "\n", + "**Clustered Populations 0-4** are all connected to each other in two-way connections.\n", + "\n", + "Isolated population is not connected to any others.\n", + "\n", + "Two different pathogen genotypes are initially seeded into **Populations A** and **B**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `setup_normal` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup( # Create a new Setup.\n", + " 'setup_normal', \n", + " # Name of the setup.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a second setup called `setup_cluster` with the same parameters, but doubles contact rate of the first setup." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model.newSetup(\n", + " 'setup_cluster',\n", + " # Name of the setup.\n", + " contact_rate_host_vector = ( 2 * model.setups['setup_normal'].contact_rate_host_vector ),\n", + " # rate of host-vector contact events, not necessarily transmission, assumes \n", + " # constant population density.\n", + " preset='vector-borne'\n", + " # Use default 'vector-borne' parameters.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a population of 20 hosts and 20 vectors called `population_A`. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_A', \n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a second population of 20 hosts and 20 vectors called `population_B`. The population uses parameters stored in `setup_normal`. The two populations that will be connected." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'population_B',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a thrid population of 20 hosts and 20 vectors called `isolated_population` that will remain isolated. The population uses parameters stored in `setup_normal`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.newPopulation( # Create a new Population.\n", + " 'isolated_population',\n", + " # Unique identifier for this population in the model.\n", + " 'setup_normal',\n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=20, \n", + " # Number of hosts in the population with.\n", + " num_vectors=20\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a cluster of 5 populations connected to each other with a population contact rate of 1e-2 between each of them in both directions. Each population has an numbered ID with the prefix *clustered_population_*, has the parameters defined in the *setup_cluster* setup, and has 20 hosts and vectors." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.createInterconnectedPopulations( # Create new populations, link all of them to each other.\n", + " 5,\n", + " # number of populations to be created.\n", + " 'clustered_population_',\n", + " # prefix for IDs to be used for this population in the model.\n", + " 'setup_cluster',\n", + " # Predefined Setup object with parameters for this population.\n", + " host_migration_rate=0, \n", + " # host migration rate between populations\n", + " vector_migration_rate=0,\n", + " # vector migration rate between populations\n", + " vector_host_contact_rate=2e-2,\n", + " # host-host inter-population contact rate between populations\n", + " host_vector_contact_rate=2e-2,\n", + " # host-vector inter-population contact rate between populations\n", + " num_hosts=20, \n", + " # number of hosts to initialize population with.\n", + " num_vectors=20\n", + " # number of hosts to initialize population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we link `population_A` to one of the clustered populations with a one-way migration rate of 2e-3." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'clustered_population_4',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to one of the clustered populations with a one-way population contact rate of 1e-2 for `population_A` hosts and `clustered_population_4` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'clustered_population_4',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way migration rate of 2e-2." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsHostVectorContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_A',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_B',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We link `population_A` to `population_B` with a one-way population contact rate of 2e-2 for `population_A` hosts and `population_B` vectors. Note that for population contacts, both populations need to have contact rates towards each other (migration does not require this)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.linkPopulationsVectorHostContact(\n", + " # Set host-vector contact rate from one population towards another.\n", + " 'population_B',\n", + " # Origin population ID for which migration rate will \n", + " # be specified.\n", + " 'population_A',\n", + " # destination population ID for which migration rate \n", + " # will be specified.\n", + " 2e-2\n", + " # migration rate from one population to the neighbor.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_A` starts with `AAAAAAAAAA` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_A',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`population_B` starts with `GGGGGGGGGG` genotype pathogens." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'population_B',\n", + " # ID of population to be modified.\n", + " {'GGGGGGGGGG':5} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 100.1491768759948 END\n" + ] + } + ], + "source": [ + "model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 100, # Final time point.\n", + " time_sampling=0 # how many events to skip before saving a snapshot of the system state.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.19925533388085942s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 25 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.017675399780273438s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 36 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 58 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.030938148498535156s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 96 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.039101600646972656s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 168 tasks | elapsed: 0.6s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.07192206382751465s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 288 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 453 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 528 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 545 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 562 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 581 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Done 611 out of 611 | elapsed: 0.7s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0population_AHostpopulation_A_0NaNNaNTrue
10.0population_AHostpopulation_A_1NaNNaNTrue
20.0population_AHostpopulation_A_2AAAAAAAAAANaNTrue
30.0population_AHostpopulation_A_3AAAAAAAAAANaNTrue
40.0population_AHostpopulation_A_4NaNNaNTrue
........................
195515100.0clustered_population_4Vectorclustered_population_4_15NaNNaNTrue
195516100.0clustered_population_4Vectorclustered_population_4_16NaNNaNTrue
195517100.0clustered_population_4Vectorclustered_population_4_17NaNNaNTrue
195518100.0clustered_population_4Vectorclustered_population_4_18NaNNaNTrue
195519100.0clustered_population_4Vectorclustered_population_4_19NaNNaNTrue
\n", + "

195520 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID \\\n", + "0 0.0 population_A Host population_A_0 \n", + "1 0.0 population_A Host population_A_1 \n", + "2 0.0 population_A Host population_A_2 \n", + "3 0.0 population_A Host population_A_3 \n", + "4 0.0 population_A Host population_A_4 \n", + "... ... ... ... ... \n", + "195515 100.0 clustered_population_4 Vector clustered_population_4_15 \n", + "195516 100.0 clustered_population_4 Vector clustered_population_4_16 \n", + "195517 100.0 clustered_population_4 Vector clustered_population_4_17 \n", + "195518 100.0 clustered_population_4 Vector clustered_population_4_18 \n", + "195519 100.0 clustered_population_4 Vector clustered_population_4_19 \n", + "\n", + " Pathogens Protection Alive \n", + "0 NaN NaN True \n", + "1 NaN NaN True \n", + "2 AAAAAAAAAA NaN True \n", + "3 AAAAAAAAAA NaN True \n", + "4 NaN NaN True \n", + "... ... ... ... \n", + "195515 NaN NaN True \n", + "195516 NaN NaN True \n", + "195517 NaN NaN True \n", + "195518 NaN NaN True \n", + "195519 NaN NaN True \n", + "\n", + "[195520 rows x 7 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'metapopulations_population_contact_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creates a line or stacked line plot with dynamics of a compartment across populations in the model, with one line for each population." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhkAAALmCAYAAABfB/XFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd7gU5dk/8O9sO53DoRepBhUVC00BDajEBpaoqLFiw56qyavmRYghkp8afSOSiAXskRgbYouFIggcEBBEUBCQXg+nn20zvz+W3bPzzDOzvX8/1+UlZ2d29tnZ/tzPfd+KpmkaiIiIiIiIiIiIiIiIYmTL9ACIiIiIiIiIiIiIiCg3MchARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXBhkICIiIiIiIiIiIiKiuDDIQEREREREREREREREcWGQgYiIiIiIiIiIiIiI4sIgAxERERERERERERERxYVBBiIiIiIiIiIiIiIiiguDDEREREREREREREREFBcGGYiIiIiIiIiIiIiIKC4MMhARERERERERERERUVwcmR4AJaalpQVr1qwBAHTs2BEOBx9SIiIiIiIiomTz+XzYt28fAGDAgAEoLi7O8IiIiIiyA2ekc9yaNWswdOjQTA+DiIiIiIiIqGAsW7YMQ4YMyfQwiIiIsgLLJRERERERERERERERUVyYyZDjOnbsGPr3smXL0LVr1wyOhoiIiIiIiCg/7dq1K1RJIPy3OBERUaFjkCHHhfdg6Nq1K4444ogMjoaIiIiIiIgo/7EfIhERUSuWSyIiIiIiIiIiIiIiorgwyEBERERERERERERERHFhkIGIiIiIiIiIiIiIiOLCIAMREREREREREREREcWFQQYiIiIiIiIiIiIiIooLgwxERERERERERERERBQXBhmIiIiIiIiIiIiIiCguDDIQEREREREREREREVFcGGQgIiIiIiIiIiIiIqK4MMhARERERERERERERERxYZCBiIiIiIiIiIiIiIjiwiADERERERERERERERHFhUEGIiIiIiIiIiIiIiKKC4MMREREREREREREREQUFwYZiIiIiIiIiIiIiIgoLgwyEBERERERERERERFRXAo2yLB371689957mDhxIs477zx06NABiqJAURSMHz8+oWM3NTWhb9++oeP17t07KWMmIiIiIiIiIiIiIsomjkwPIFM6d+6csmNPnDgRmzdvTtnxiYiIiIiIiIiIiIiyQcFmMoTr2bMnzj777KQca+XKlXjiiSdQXFyMioqKpByTiIiIiIiIiIiIiCgbFWyQYeLEiZgzZw52796NrVu34umnn074mH6/H7fccgv8fj/uv/9+tGvXLgkjJSIiIiIiIiIiIiLKTgUbZJg8eTLGjh2b1LJJ//d//4cVK1bg6KOPxh/+8IekHZeIiIiIiIiIiIiIKBsVbJAh2bZu3YqJEycCAP75z3/C5XJleERERERERERERERERKnFIEOS3HHHHWhsbMS1116LUaNGZXo4REREREREREREREQp58j0APLBv/71L7z//vuoqqrCY489ltRjb9++3XL7rl27knp7RERERPlG9dSh8dv/g692Q8R9FcUOZ6fhKD3qFigK1+NEq8mr4oMtzdjZ4Atd1q3cgTF9SlDs4HkkIuCrPW5U73HD49cM24odCm4Z0CYDoyIiIqJkYJAhQTU1Nfj1r38NAJg6dSo6duyY1OP36NEjqccjIiIiKjSHFl4D97Y5Ue/fvOlFaO4alJ/wPykcVX55clUdvtrrES51Y2udD78dVJmRMRFR9li734O/Lq813V7hVHDLgDQOiIiIiJKKy4oSdO+992LPnj0YNmwYbrnllkwPh4iIiIjCaJoK9/YPYr5ey/a5KRhNflI1Dav3iQGGgBV73dA046plIiosq0zeI4iIiCg/MJMhAQsWLMDzzz8Ph8OBf/7zn1AUJem3sW3bNsvtu3btwtChQ5N+u0RERER5we8BNF/k/QSarzEFg8lPqgZIqp8AAHwq0OLXUOJI/vdkIsodshJJRERElD8YZIiT2+3GhAkToGkafvWrX+GEE05Iye0cccQRKTkuERERUSHQNK/hstJj7oDi1Nf+9h1aB/e2d1svUI3Xo/g0ejWU8FcHUUFThRhDnzYOnNDRFfq7yM5AJBERUS7j1/04TZkyBRs2bECPHj0wefLkTA+HiIiIiGT8xhId5Sf8EfbSrrrLmre8oQsyaCpLe0RLnDwUNXk1oCQ9YyGi7KQKZdOObufEVceUZ2g0RERElGwMMsTpr3/9KwBg9OjRmDNH3kiwsbEx9P9//etfAIBOnTrhzDPPTM8giYiIiAqcJslIUGyuyJcxkyFqkYqgNHjVtIyDiLKXGIy0MXGBiIgorzDIECePJ7C6bebMmZg5c6blvvv378cvfvELAMDIkSMZZCAiIiJKF0m5JNicES+TBSdILlJj5yYfa7ETFTox1GjLyCiIiIgoVfjZTkRERER5S5OUS4ouk4HlkqIVqVxSIzMZiAqeWC7JpjCVgYiIKJ8wkyFOkVZsAUDv3r2xdetW9OrVC1u2bEn9oIiIiIhIT5aRwEyGtGr0MpOBqNCxXBIREVF+YyYDEREREeUtYwNnBYrNbtiPmQzxi5SnwCADETHIQERElN8KNpPhiy++wMaNG0N/79+/P/TvjRs3YtasWbr9x48fn6aREREREVHSiBkJklJJAKAwkyFukRJ8m3wsl0RU6IxBBkYZiIiI8knBBhmeffZZvPDCC9JtixYtwqJFi3SXMchARERElHvEYIEYTAgRL1c90DQNCifCIooUZGAmAxEZezJkaCBERESUEiyXRERERER5y1AuySTIIGsGDc2fghHln8jlkpjJQFToWC6JiIgovxVskGHWrFnQNC3q/+KxZcsWaJrGps9EREREmWLIZJCXS5IGH1gyKToRvis3MZOBqOD5GWQgIiLKawUbZCAiIiKi/Bd1JoPdGHwwNo0mmYiZDD4GGYgKHXsyEBER5TcGGYiIiIgof4mZDJJgQmADMxniFbHxM8slERU89mQgIiLKbwwyEBEREVHeEhs/S4MJYCZDIiLlKTSwXBJRwTNkMmRmGERERJQi/GwnIiIiovwlBAoUk3JJsjJKhgAFSYmTh6Jmn2ZYxUxEhUXMZ2ImAxERUX5hkIGIiIiI8pYhUGBSLkmRlktiJkOyNLEvA1FBY08GIiKi/MYgAxERERHlLzGTwaRcEjMZ4hdNlkIjSyYRFTT2ZCAiIspvDDIQERERUd4yBApMyiUpNjugCF+NGWSISjThg0Y2fyYqaMZMhsyMg4iIiFKDQQYiIiIiyl9CoEDW4DnEpt/Gxs/RkSUylDn0M4hNzGQgKmgMMhAREeU3BhmIiIiIKG+JgQLTckmQNIVmJkNUZI2fy136GURmMhAVNrFckp09GYiIiPIKgwxERERElL+ibPwMwJjJ4GcmQ7zKnPqfGezJQFTYmMlARESU3xhkICIiIqK8ZchkMOnJIN2mMZMhGmKOggKg3ClkMvgYZCAqZAwyEBER5TcGGYiIiIgof4mZDBblksSm0MxkiI7Yk0FRgFIhk6GJ5ZKICpoxyMAoAxERUT5hkIGIiIiI8pYWQ+NnRSiXxJ4M0dGEKIMCY+NnlksiKmxiTwZmMhAREeUXBhmIiIiIKH8J5ZLEbAWrbRrLJUXFUC5JkfVkYCYDUSET3wE4EUFERJRf+NlORERERHnLkMlgUS7JkMnAcklxUQCUCj0ZmtiTgaigsScDERFRfmOQgYiIiIjyltj4GZblkoRMBpZLiops8rBMbPzMcklEBY09GYiIiPIbgwxERERElL/ETAbLckliTwZmMkTD0PgZCsocLJdERK3Yk4GIiCi/MchARERERHnLkI0gBhLCMJMhPmKOgsJMBiIS+FkuiYiIKK8xyEBERERE+UvIRrDOZBCDDMxkiIa4QjnQk0H/M6PJx0wGokLGngxERET5jUEGIiIiIspbxkyGGBo/M5MhLrJMBrcf8ImzjERUMNiTgYiIKL8xyEBERERE+cuQyWBeLsmYycAgQzQMk4cAyhzGCUSWTCIqXOzJQERElN8YZCAiIiKivJVYJgPLJUVD1pNBLJcEsPkzUSFjuSQiIqL8xiADEREREeUvIcgQW08GZjJEQ1igDAWAy65AjDM0+ZjJQFSoGGQgIiLKbwwyEBEREVHeMjRvtiiXxEyG+Ij5CcrhWutlQpSBmQxEhUnTNEPGE3syEBER5RcGGYiIiIgofzGTIfUkmQwAUCr0ZWBPBqLCJHvlcyKCiIgovzgyPQAiIiIiomRQ3YfQuO4J+GrXwVuzBs72g+Cr26jfyTKTQQgy+JtTMcyc46vbiKbvnoG9vBdKj7oVis0OILA6ed72Fry2oVG3f7AMSrlTH2SYu7kJK/a4LW+r2KFgeLdiHNde/zhpvmY0rvs/aL4GlPb/JewlnRK8V0SUSvub/fhoSzMOtvjlQQYmMhAREeUVBhmIiIiIKC/UzL8cnp3/Df3tr11v2Mc6k0E/sd383TNoO3xG0saXi1RvPfbPGQTNWwcA8DftQJuBUwAAH2xpxgvrGgzXCVZBEZs/bzzkw8ZDvoi3+fm2FvxlRBV6V7Y+VocWXoeWrW8AAJq3vIGOP/82VJaJiLKLqmn405JD2NPkN92HQQYiIqL8wixFIiIiIsp5mq9FF2AwozjbWBxDWJFfzNXyTRtmhAIMAND49V9C/161T96zosgemD2sLIrvp4ZfA77e33psTVNDAQYA8NdtgHffl3Edm4hSb2eD3zLAAADFDk5FEBER5RN+shMRERFRzlN99RH3sZV2h6vTCNPt9vLewgVFCY4q9/lqvjbd5vXLeywM6xo4b8O7FiHexcrhPaI1rzFbwt+0M84jE1GqReq/cmw7J9rGGYQkIiKi7MRySURERESU8zRvo+m2kn43w1F5NEr6XAGbyzyTQQxAaL6mpI0vZynRTwSWOBTcdkIFTukSCDKc1KkIk4a1xdf7PfCp1tddttuNXY2tK5/DpyjDMylah2VR9oqIMqrZr3/BlzgUnN2rBADQscSOEd0YwCUiIso3DDIQERERUc7T/OYBgfLj74Wj8qiIx1AcJfoL2PgZUOymm8S1yr84ugyndi3WXXZMOxeOaWfebDtod6NfH2TQWo+ueiVZKgwyEGUtt0//7tC2yIarjinP0GiIiIgoHZijSEREREQ5T+ynoGOLbl2NYtcHGTRfs26yuyDFkMmQCLEJbPhp12RBBs263jsRZU6zEGQocbDLMxERUb5jkIGIiIiIcp5VuaRoS+sojlLxqIDfncCocp8i+bkQDLwkM/yiCHOQ4cVWZOWSNB+zTIiyVYvQr6XYziADERFRvmOQgYiIiIhynlW5JChRBhmETIbAcQt8MtsmKZekeqW7ioGCWIhXjZTJoPlb4r8xIkopMZOhmJkMREREeY9BBiIiIiLKeVblkpRoyyWJPRnAIIPs54KmHs7uSGIqg6FcUti/VUkmAxhkIMpaYk8GBhmIiIjyH4MMRERERJTzrMolRdskWLGL5ZIAzWeRIVEIZD0ZTEpIKYZ8hBhuRriuykwGopzVLJRLKmG5JCIiorzHIAMRERER5TzrTIboggywF0Es3FPomQyKYiyXFJzgT2VPhvCG2wwyEOWWFmYyEBERFRwGGYiIiIgo51n3ZIiyXJKiAPZi/XELvcGwJJNBO5zJkMwgg3grkcolFXrwhyibsScDERFR4WGQgYiIiIhynnW5pOiCDACgOPQlkwq+XJKkBFKoJ4O4ZyLziBY9GZjJQJRb3EK5pGKWSyIiIsp7DDIQERERUc4zLZek2KDI+gqYUOz65s8Fv2Je8xsvC07wa8nLZTBkMkToycDGz0TZS8xkKHFw2oGIiCjf8dOeiIiIiHKeabkkJcp+DMHdHQwyhNM0n/Ey08bP8ROzIMIbP8vLJTHIQJStDOWSmMlARESU9xhkICIiIqKcZ1YuKeqmz8H97SyXpKN6DReloieDIjbcDv83yyUR5RS3X9X9zZ4MRERE+Y9BBiIiIiLKeablkmLoxwAYMxlQ6JkMkiADTHoyJMIm9mSIUC6p4BtyE2UxNn4mIiIqPAwyEBEREVHOMy+XFNvXXUNPhkKfzJZmMgSyCJKaySCWSwo7OsslEeWWFkNPBgYZiIiI8h2DDERERESU88zKJcXanFhxsFxSOFkmQ0p6Moi3wcbPRDnJr2rw6KslsScDERFRAWCQgYiIiIhynmm5pBgZMhkKvFySNJPBpFySmI0QC0O5pPB/M5OBKGe4/cbALsslERER5T8GGYiIiIgo55mWS4qR2JOh0IMM0p4MwXJJSayXZJbJoGkaNG+DcVwMMhBlJbEfA8AgAxERUSFgkIGIiIiIcp5puaQYOwcYezIUdrkkaNGXS0qEIqRBBB+1QIaK8TEs9OAPUbZqkWUysFwSERFR3mOQgYiIiIhyXtLKJYk9GQp8MtuqJ0NSGz8Lf6vBTAZJqaTAGJjJQJSNxEwGpw1wiPXQiIiIKO8wyEBEREREOc+0XFKsNX0MmQyFHWSQ9mQwmeBPqPGz2JPh8OMmbfoMsPEzUZZqEYIMLJVERERUGBhkICIiIqKcpmlq0soaGXoyFHi5JGlPBpPGz4kQf5QEpylVkyADMxmIspNYLomlkoiIiAoDgwxERERElNOSmW2g2FkuSceqXJKQJCJmI8RCvC7LJRHlJjGToYSZDERERAWBQQYiIiIiymmmpZICW2M6lpjJgAIPMsh7MiR/gt9QLin4f9NMhsJ+XIiyldiTgZkMREREhYFBBiIiIiLKaZo3OU2fAUAx9GQo7HJJ0HzGy1LS+Fk/ERnMkjArlwTVC031J3EERJQMhnJJDk45EBERFQJ+4hMRERFRTtN8SQwyOFguKZw0k8GkJ0Mi65VtppkM8nJJAFLSG4KIEtPiU3V/s/EzERFRYWCQgYiIiIhymnWQIcZySYZMhsIOMsh7MqSgXJJ4G4dTGczKJaVqHESUGPZkICIiKkwMMhARERFRTktmSSOxJ0PBl0uyavwsXC6WPIqFWU8G1SKTgUEGouzTLJZLYk8GIiKigsAgAxERERHltKSWS7KzXFI4WbmkVJQpEqch1cPzlJaZDIWeZUKUhcRMBpZLIiIiKgwFG2TYu3cv3nvvPUycOBHnnXceOnToAEVRoCgKxo8fH9Uxmpqa8Oabb+L222/HkCFDUFVVBafTifbt22PYsGGYNGkSdu/endo7QkRERFTgLIMMWozlksRMhgIPMliVSzKc2gTmEg2ZDNEEGZjJQJR1DEEGZjIQEREVBEemB5ApnTt3Tuj6X3/9NUaMGIGGhgbDtoMHD2LJkiVYsmQJHn/8ccyYMQNXXHFFQrdHRERERHJJLWkk9GSA6oWm+qDYCvNrs7Txsz8FjZ+Fa0fV+JlBBqKs08yeDERERAWpMH8tCXr27IljjjkGH3/8cdTXqaurCwUYRowYgbFjx2Lw4MFo37499u3bhzfffBPPPPMM6urqcPXVV6NNmzY477zzUnUXiIiIiApWUhs/O0oNl2n+Zii2ihhHlSc0SbmkUJAhtnNrRcxkCJZLUpnJQJRTWsSeDAwyEBERFYSCDTJMnDgRQ4YMwZAhQ9C5c2ds2bIFffr0ifr6NpsNl19+OR588EEce+yxhu1nn302zjvvPPz85z+H3+/H3Xffje+//x6K+AuKiIiIiBKS3J4MJYbLNF8z4CzMIIM8k0E+uZ/It1xj4+fARCXLJRHlFvZkICIiKkwFG2SYPHlyQtcfPnw4hg8fbrnPRRddhEsuuQT/+c9/sGnTJqxcuRIDBw5M6HaJiIiISC+Z5ZLEngxA4fZl0DRN3pPhcOPn5OUxGBvFtfZkMC+XVKiPC1E2M2QysCcDERFRQSjYxs/pcsYZZ4T+vWnTpgyOhIiIiCg/JbVckjSTIYk9H3KJ5pdffrhcUkobPx/+P8slEeUW9mQgIiIqTAwypJjb3doYz263Z3AkRERERPkpqeWSbA7A5tRfWKgr5iVZDECKyiWJtxHKZGCQgShXaJpmLJfETAYiIqKCULDlktJl/vz5oX/3798/5utv377dcvuuXbtiPiYRERWu1fvcWLrLDY+qwaYoKHcq6NXGgZ92LzbtG6RpGhbuaMGP9X6M6FaEPpVO6X6Uu5btduO7Gi8GdXahfztXpodjybPnCzT/8Ipuhbt335dJvQ3FXqLrRaD5CjPIIOvHAACqpwY1C66Bv+n3ALqELm/8dhpqNq4CADgqj0HZsb+CLcpeFjbh/UcF0ODx4wPHzdhXJO+b5tx+NBx1tZbHPKadE2f2MH9/I6Lk8ajG3DH2ZCAiIioMDDKk0OrVqzF37lwAwIABA+IKMvTo0SPZwyIiogK1/qAHDy+rlRaPafZpOLd3qfR6H29txvPfNAAA3t/chL+f0R4dSpidly+W7GrB418F6t6/90MT/nJaFfpmaSDJe+hbHPjoLED1pPR2FEeprheA98ByuDqPSOltZiPTfgiqFy0/vAKtagLgaA0yePcuRIv73da/D3yFdme+GdVtGcolacD/fXUIX5fda36lBgANbvPtABbsaEGLX8OYPvL3NyJKnrX7je/NxQ4WTyAiIioE/MRPEbfbjZtvvhl+f6CW7ZQpUzI8IiIiKnRf7/eYVqefeTiIIPN82Da/Bvzn++SVpqHMm7aqdSJZA/DSOvPnQqZ5dn0ac4ChuNdlMd+O2rJf/7fHfLV8PvPVfmu5XYtQIMm9/f2ob0v8UeL2a1hzwKQnRIy+2mMdiCCi5Piuxpj9VMpMBiIiooLATIYUueuuu7B8+XIAwPXXX48LLrggruNs27bNcvuuXbswdOjQuI5NRESFxZuc+TpskEwiUO7yqvq/1x3M3sdXi7E3guIoQ/lJD8ZxQz7hOMZm0AXB0NlZT4U+o8kmNopW3dBUPxRb5MynImEistatxtiy25zYiJaIUkP2SnOxJwMREVFBYJAhBR5++GE8++yzAIAhQ4bgqaeeivtYRxxxRLKGRUREBY7TbJTzNH1ExF5xJIp7jwv9bXNWoKjnz6G5D8B74CsUHXEeHBV9Y76ZoiPO16/CV5MUocsxmhg0AFA24H9a/9jXAQjbpbj7z4DNc/VXUL1AFEEGsTlsrUc17DOq6R+wQx8EKz/ud4ZG3TsafFi+pzXjxe3nux9ROvhU/WtteLeiDI2EiIiI0o1BhiR7+umncf/99wMAjjnmGLz//vsoKyvL8KiIiIiSJ8LiZqLUESa9HW2PQ5tBD0t3dXU+Lf7bUcSvyMYJ74IgBnXKe+vP92f7gebWfUp7XwZs/rVwCA8UFEe8KbE5rCp5n7mg8c+wQ59l0qn3XbCXVukuW77HrQsyeBhkIEoL8XUrBg8pQNM0NDY2oq6uDi0tLaESy0RERKlkt9tRXFyMNm3aoKysDIrYFC1BDDIk0WuvvYY77rgDANCrVy/897//RYcOHTI8KiIiogCN0QHKcYaV9UqK2osJx5Wt6C8MQnBFOC/ihKJNlrGgRld+K9JkpE3zGgIMAKD56gF00V0mlmdxF2iMiCjdfMJrzZ7kyYt8oKoqfvzxRzQ3x1b+j4iIKFE+nw9utxu1tbUoKSlBz549YbMl7/cUgwxJ8u677+K6666Dqqro2rUrPv30U5Y6IiKirMIQA+U8YWW9okQuwxMPw3G1Ap2lNpSJsg4y2O3GnxZalI26xUwGkVNrAewlgX4ZYYELzVNn2LfIpj8WMxmI0kMVFjM4UhQHzlWaphkCDIqiwG5PzWcZERFROL/fH1p42NzcjB9//BG9evVKWkYDgwxJ8Omnn+Lyyy+Hz+dD+/bt8d///hdHHnlkpodFRERElF8MmQwpmpgRMyQKNJNBM2Qy6M+3GHqx2SQ/LZKUyeBCMxSbC7CVQnMfCDt8vWHfImEYbr8GTdOSnhJORHpij3UbX3I6jY2NoQCD3W5Hly5dUF5entRVpERERGZUVUVDQwN2794Nv9+P5uZmNDY2ory8PCnH56dZghYvXoyLLroIbrcblZWV+Oijj3DcccdlelhEREQGkdbyspwSZT0xoyBl5ZKYyQDAEFxRDOWS9O8ZdqEBM5C8TAaX1gzF7oLNWaE/vleSyWA39ndgMgNR6vlVMZOBUYZwdXWt71ddunRBmzZtGGAgIqK0sdlsaNOmDbp0aS01Wl9vXLAT9/GTdqQCtGrVKowZMwaNjY0oKyvD3LlzMWjQoEwPi4iISCpSDIGTcJTtjD0Z0pPJULA9GQxBHSGTQVy1LC2XFF0mgxgYEDm1ZsDmguJsox9DFEEGAGjhGxxRyokvM8YY9FpaWgAESiQla9UoERFRrMrLy0MZvsnsEVSw5ZK++OILbNy4MfT3/v37Q//euHEjZs2apdt//Pjxur83bdqEc845B4cOHQIA/PnPf0ZlZSXWrl1repudOnVCp06dEh47ERFRKnj8GlcdUnaLsLI+WdiT4bAImSOGngyKLRCICH+cosxkcNgUOG2A1+RUu7RAuSQxyKBJyiWJjZ+Bw30ZjIkWRJREYpCBjZ/1/P7Ae6PdbmcGAxERZYzNZoPdbofP5wt9NiVDwQYZnn32WbzwwgvSbYsWLcKiRYt0l4lBhoULF2Lv3r2hv3/zm99EvM0HH3wQkyZNinmsREREyRBpHa9HBUrTMhKiOEVYWZ887MkAyDJHrMsl2RQANicQ9mMl2nJJQKAvg1eMXBwWzGSIqlySJFjqZiYDUcoZyyVlaCBERESUdvzYJyIiKhCRyiV5JJNw7NNAWSVd5ZJszGQAYLjfYoaHoVySgkBzZt1O0ZVLAqz7MjgR6MkQTSaDwwaIR2KQgSj1WC6JiIiocBVskGHWrFnQNC3q/0Tjx4+P6fqapjGLgYiIsppsBTHn5SibRFpZnzzsyQBAEtSxLpcUymTQHSL6TAarvgyt5ZL0mQyyngyKohiO5SnQh5AonfzC72YHyyUREREVjIINMhARERWaiOWSJBEFn2QBN+MOlDERVtYnC3syHBZr42dFMWYyaMnJZHAFyyW5ImcyAECR8BAyk4Eo9fzCW4adsw1EREQFgx/7REREBSJS5SNZw1VxVSJRRqUrk0E8bqFmMsC88bOmaYaAY6BcUvyZDMUWmQzOYCaDI3JPBsDY/FkWRCWi5GLjZyIiosLFIAMREREBiD6TgShj0tX42RBkKMwXgqaKwZXW8yLrzxwol5SingxaC2B3QREyGVSPPMgglktiJgNR6okLEyzihkREMZs0aRIURYGSJQHM3r17Q1EUjB8/PtNDIcoKDDIQEREVCOO6Yz15kIETc5Q9xN4IqSqXJAYvCrYnA8zLU5kFGRS7PsigqcnJZHAhkMlgc4qZDGblkhhkIEo3lksiSr558+aFJtbF/0pLS9GrVy9cfPHFePXVV+Hz+TI9XCIqYPzYJyIiKhCRptjY+JmyXprKJSmG4xZmJoPV+ZadEZuiAIq+XFIsmQwlDvPHM9iTQXGKPRmiy2RguSSi1DNmMmTHamOifNXc3Iwff/wR77zzDq6++moMHz4cu3fvzvSwctqoUaOgKApGjRqV6aEQ5RxHpgdAREREaRJhjs0jWazNTIb8puZaz420lUti42cAludb9tyxIcFMBstySU2BngxCkEE1yWQQezIwk4Eo9cQSi8xkIEqu22+/HXfccUfo74aGBixfvhyPPfYYtmzZgurqalx00UVYsmRJ1pQUymdbtmzJ9BCIsgqDDERERAUi0hSbRxJQkPVkYNwhf+Razw1j2SI2fk4lzRBkiNyTQbPFn8kgZh+Ec2nNUOyycknR9mSIehhEFCfxfcHBSU6ipOrUqROOP/543WWnnnoqrr76agwdOhQbN27EsmXL8N577+GCCy7I0CiJqFBxbQEREVGBiBhkkPVkkKxWFsshUO7KucdSnOy3pasnQ45FY5LF0AMjcpBBsaUqk6HFpFxSPTTJ85iZDETpJ36m2BhjIEqLqqoq3HfffaG/P/zwwwyOhogKFYMMREREhSJSuaQoMxlybfU7mRObdGY9zbwRcVIxkyHAslyScXebogBCJoMWQyaDZeNnrflwuaQKYYsGzddo2L9IeGqwJwNR6rFcElHmDB06NPTvrVu36rbt27cPf/zjH3HyySejbdu2KC4uRu/evXHttdfiiy++sDxu7969oSgKxo8fDwCorq7GL37xC/To0QPFxcXo0aMHbrjhBqxfv970GLNmzQo1q7YqMbRly5bQfrNmzYp4n0Uejwdz5szBXXfdhSFDhqCqqgpOpxPt27fHKaecgkmTJmH//v3S644fPx6KomD+/PkAgPnz5xsabffu3Vt3HfHcmJkzZw4uu+wyHHHEESgqKkL79u0xbNgwTJ06FQ0NDabXE8+bqqqYMWMGhg8fjqqqKpSVleGEE07AlClT0NTUFNO5IkoFlksiIiIqEJEbPxsvk/VkYJ+G/OHLtYcyTeWSDMELZjIE6DIZJD0ZJJkMSFYmA5qh2ItgEzIZgMMlk5zlusuM5ZJy7clOlHvE9wWWSyJKH6ezNcjv97d+fn/88ccYN24c6ur05QW3bt2KrVu34uWXX8add96Jv//977DZrL9XPf/887j11lvh8/lCl23fvh2zZs3Ca6+9hpdeegnjxo1L0j2K3YQJE/DCCy8YLj948CCWLVuGZcuWYdq0aXjnnXcwYsSIlI+npaUFV111Fd566y3DeJYsWYIlS5bgySefxNy5c3HSSSdZHqupqQlnn302Pv30U93la9aswZo1a/Duu+/is88+Q1lZWbLvBlHUuLaAiIiIAJiVSzLux0yG/OGXBIyyeUrIULYoVeWSxK/IBZrJYOzJECmTASnNZIA0kyFQMsmwP4MMRGknfmdguSSi9FmzZk3o3926dQMArFq1ChdccAHq6urgdDrxm9/8Bp9//jmWLVuGp59+Gn369AEAPPXUU7pySzKrVq3Cbbfdhk6dOuHJJ5/E0qVLMX/+fPzhD39AUVER3G43rr76aixfvjx1dzICn8+Hvn374ne/+x1ef/11fPnll6iursYbb7yB2267DS6XCwcOHMDPf/5z7N27V3fdKVOmYM2aNRg8eDAAYPDgwaEJ/OB/H3/8cUzjuf7660MBhhNPPBEvvvgiqqur8dFHH+GGG26AoijYuXMnzjrrLOzYscPyWLfccgs+//xzXH/99Zg7dy5WrFiBt956C8OGDQMALFu2DH/+859jGh9RsjGTgYiIqEBEzmSQ9F+QZTLkWh1/MpVz866GHgEpCjLY2JMhQCxPFXtPhqRlMgTLJdldgK0IUN2tNyFp/ixmMrBcElHqiSX4HIwyEKWFz+fDY489Fvp71KhRAAIr+z0eD+x2O9577z2cffbZoX2GDBmCcePG4bTTTsO6devw6KOP4rrrrsNxxx0nvY3Vq1ejV69eWLJkCbp06RK6/Kc//SnOOeccnH322fB6vbjjjjuwbNmy1NzRCCZPnoy+fftCEbKoBg8ejEsvvRR33HEHhg8fjn379uHJJ5/EQw89FNqne/fu6N69eygToKyszNBkOxZz587F7NmzAQBnnXUW3n//fbhcrd+Rzj77bAwbNgwTJkzAwYMH8dvf/havv/666fEWL16Ml156Cddcc03osoEDB+K8887D4MGDsXbtWjzzzDN46KGH4HBwqpcyg5kMREREBMAkk8GkJ4Os0SrlnpwrfZWmcknMZDhMNT/fsrBLansytAD2wI9zm5DNIMtkYLkkovQTGz9bvKSJKAkaGxsxf/58/OxnP8OSJUsAAL169cLll1+OZcuWobq6GkBgFXx4gCGoqqoKM2bMAACoqorp06db3t5jjz2mCzAEnXHGGbjlllsABHo2ZCqb4cgjjzQEGMINGDAAN998MwDg7bffTulYnnrqKQCBMlYzZ87UBRiCbrnlFowePRoA8Oabb2LXrl2mx7vkkkt0AYagoqIi3HXXXQCAAwcOYN26dckYPlFcGGQgIiIqEJHiAh7JPKpZ1gLn6/JDzj2OaSqXxJ4MQVblkiQ9GZDKTIam0LEVl74vg+ZhJgNRNhBfZgwyECXX5MmTdY2Iy8vLMWrUKMybNw8A0KlTJ7z99tsoKirCJ598ErreTTfdZHrMESNGoH///gCgu46oqqoKF110ken2G2+8MfRvq+OkU01NDTZt2oRvvvkGa9euxdq1a9G2bVsAwLp16+D1Rr8QIhY+ny/UQPrss89Gjx49TPcNBmd8Pl/ocZS5+uqrTbcNGjQo9O8ffvghxtESJQ9zaIiIiApEPOWSzPov+DV+icgHsnJYGgITyLYsbNippSuTQWEmAyA531GVS0pRJgMCPRkAQHHoMxlUXxQ9GQo1TkSUJpqmGd4X7CyXRJQWffr0wWWXXYZ77rkHnTp1AgCsXbsWAOByuSI2FT7llFPw7bff4vvvv4fH45Guuj/55JMty/CcdNJJcLlc8Hg8uv4Q6bZmzRo8/vjj+OCDD7B7927T/VRVRU1NTeh8JdMPP/yApqYmAIFzayV8e/AxkznmmGNMt7Vr1y707/p643cionTh/AAREVHBsA4zyFb6yiahgUCZHXGlMOUeWWNvIBBccqWqp3Ii0tWTgZkMAZrYkyGaxs/CxIQ/uT0ZAMDGTAairCN7ifFrAlFy3X777bjjjjsAAIqioLi4GB06dEBlZaVh34MHDwIITEBHqtEfLIGkaRpqamrQuXNnwz6RJuMdDgfatWuH3bt3h2473Z577jncdttt8Pl8Ue3f3NycknGE3/9I5y28/JTVeSstLTXdZrO1LgLx+wtzYQxlBwYZiIiICkTEcknSJs/yfc0yHCi3iE06gwKlcLJwdihN5ZLETAZjBkWBEM+3RSaDgsCEhzGTIYYgQ4SeDMrhngyKUwgySBo/i0Ey9mQgSi1pkIGZDERJ1alTp5ibEVv1KMjEcVJl/fr1oQBDp06dcO+99+LMM89E7969UVFRAacz8P3k+eefD5WPSkePuWw/b0TJxCADERFRgYhYLknWk8Eik4Fyn9ikM8gsuJRxaSqXZMyQKNCommW5JP2TJDSXaOjJEH25JIctsPJZnKxUND/s8LSWSxIaP6ts/EyUcbLMR2YyEGVOsITOgQMH4PP5LLMZgmWFFEVBVVWVdJ89e/ZY3p7P59NlT4QLX2mvqubfqRobGy1vw8qsWbPg8/lgt9sxf/580/JC6ciyCL//kc5beEkn8bwR5Ro2fiYiIiIA8kwGs5XuWTsJTTExexzNHvdM0wwr69OTyQCVmQwAhMbP+k3BIEMw26D1ENFnMiiKIs1mcGnNgUyJYLmkKDIZWC6JKL1YLokouwQzHjweD1atWmW577JlywAA/fr1k/ZjAIBVq1ZZliFavXo1PB6P7raDKipaFwfU1NSYHuO7776zHKeVb775BgBw4oknWvYvWL58ueVxkpF50Ldv31B5o6VLl1ruGzz3gPG8EeUaBhmIiIgKRKQpNtkknM9spTszGfKCWc8NswyHjDP0ZEhV42dmMgCxNX4ONQpPoPEzIO/L4MThmskmmQyaJJPBJZRp8arG7AsiSh5pJgPLJRFlzOjRo0P/fv755033+/LLL7Fu3TrDdUQHDx7EnDlzTLeH34Z4nD59+oT+bTXJ/9prr5luiyQYALHKhti1axfeffddy+MUFxcDANxud9xjcTgcGDlyJADgv//9L7Zv326677PPPhu6zqhRo+K+TaJswCADERFRgYg0v+aV9WQwy2QozDnXvGP2OGZrJoOxfA97MqRUDI2fQ5kMhnJJ0WcyAPIgg0sLBBnMejKoUWQyACyZRJRKspeXRS93IkqxoUOHYvDgwQCAZ555Bp9++qlhn9raWtx6660AAiWNbr/9dstj/va3v5WW/5k/fz5mzJgBABg0aBCGDBmi23788ceHSgFNmzZNOoE/e/Zs/Pvf/47insn169cPAPD9999j8eLFhu1NTU246qqrIjZ77tq1KwDghx9+SKhnw5133gkgkEly0003wes1Lrp4/vnn8fHHHwMALrnkktBtE+UqBhmIiIgIAOBhT4aCY5axkL2ZDOkpl2TIkBBvt2BYNH6GWU+GBDMZJMEBZzDIEEMmQ5FkdtNdoLEionSQBRlsbHhKlFHPPPMMXC4XfD4fzj//fNxzzz2YP38+li9fjmeeeQYDBw7EmjVrAAD33HOPZbmeE088ETt27MCgQYPw1FNPobq6Gl988QXuv/9+nHvuuaG+D0899ZThug6HIxTMWLt2Lc4880y88847WLlyJT788EPcdNNN+MUvfoHhw4fHfV+vvfZaAIGeD2PGjMFf/vIXLFiwAMuWLcM//vEPnHTSSZg3bx5GjBhheZzgGPbu3Yvf/va3WLFiBTZu3IiNGzdi69atUY9nzJgxGDduHADg448/xqmnnopXXnkFK1aswCeffIKbb74ZN998M4BAL4a//e1v8dxtoqzCxs9EREQFImK5JFlPBpMrMZMhP5j23MjSx9eqfE9SicGLQs1kMPSisCqXFPh/KjMZkEBPBoB9GYhSSbb4wMEljUQZddJJJ2HOnDkYN24c6urq8Nhjj+Gxxx4z7HfnnXfi4Ycfjnisu+66C7fffjvuuusuw3aXy4UXXngBp5xyivT6f/zjH/H5559jyZIlWLx4MS6++GLd9lGjRmHatGlx9yUYMmQIJk+ejAcffBCHDh3CAw88YNjnd7/7HY4//ngsWrTI9DhXXnklHn74Yfzwww944okn8MQTT4S29erVC1u2bIl6TC+++CJ8Ph/eeustfPXVV7jmmmsM+3Tr1g1z585F9+7doz4uUbbixz4REVGBiLQ4XdqTwSyTIVtXulNMzB7HrE1UMfRkSFG5JPErcoFmMmiGTAarcklJ6skQRyaD6jEGGZySXzksl0SUOrLPDbZkIMq8s88+Gxs3bsT999+Pk046CW3atEFRURF69uyJq6++GgsXLsS0adNgs0WeHrz55puxcOFCXH755ejWrRtcLhe6d++O6667DitXrsSVV15pet3S0lJ89tlnmDJlCgYMGICSkhK0adMGQ4YMwbRp0/DJJ5+grKwsofs6ceJEzJ07F2effTaqqqrgcrlwxBFH4JJLLsHHH3+MRx99NOIxysvLsXjxYvzqV79C//79Qw2c41FcXIw333wT7777Li655JLQOauqqsIpp5yChx9+GBs2bMBJJ50U920QZRNmMhARERGAQGNUTdOghJU3yLma/RQT00yGbA0iGcolpWi9jE0fvNAKNMhg1WhbbKIc3JKSTIZg42eTngyaz1guyaYocNkAT9hDxyADUeqInxsKWC6JKBlGjRqVUG8AAOjYsSOmTJmCKVOmJDyeU089Fa+//npc1y0pKcH999+P+++/X7q9d+/elvd10qRJmDRpkuVtnH/++Tj//PNNt48fPx7jx4+3PEbnzp11GQxmos1quOCCC3DBBRdEtW+4aMYKRD5vROnCIAMREaWNX9Xw8dZmHGhRMbpnMbqUJf9jyOvX8MGWJjR5NZzbuwRti1O10jlx+5v9+GhLMw62tE7kKYqCIysdOKd3SUI/ztfu92Dxrha4fa1fODceiryi+MlVdQi/1Y2HfNL9cqEnQ7NPxfubm7GzIXAfFAXoU+nEub1KYI9ieeWinS1Yvc+DUoeCM3uUoGeb9HxtWnfAg6/2enB0lRNDuhQl7bibDnkxf3sLGr2ts667m+RlgNIdRGr0qnh/cxN2N/rRpcyO8/qUoly2FD1NjZ8VIZPBd3AlGtf/A6VH3wpFsUFT/Wj6bgb8DZtR2u9mOCqPSsk4YqVpGlp+eBXemtUo7n05XB0GR3U9X90mNG2YDn+zvpmjd9+XaFDaY0HJTThg7wVH3bFwrqwFANS49U8Ss54M3v3VOLR4Akp6XYai7mdHHIssk8ElZDLYXEKQQZLJAARKJoWXgXt9QwPauGzoXGbHeb1LUeFiUjdRPFRNw3+3NuP7Q77QxFaDV/+9gKWSiIiICguDDERElDavrG/A3M2ByaLPtjVj+pkdpKtWE/H0mjos3OEGEJgk/r8z2mflSjpV0/CnJTXY02SczV24AzjkVvGLY8rjOvYPtV5MWXYorpI3i3a6o9rPl/0xBjy1qh7Ve/T3Z+EON2paVFzT3/rcLtzRgmmrWicuF2xvwd/PaI/yFE9KbjrkxZ+WHIIGYA6AewZVJiXQsL/Zj0lf1uhWdVtJd+PnJ76qxdf7W4NgG2q8+OMpVYb9DBkFqSqXJDlu3ZI7oLoPouLEB9Cw+k9oWP0nAEDT+n+g0+XbYXNVpmYsMWj+/lnULp4AAGj85nF0/Pl6ONocaXkdzdeCAx+cBrV5t3T7M23nYqvzcLDCDcDkPcK0JwOA5u+eQfP3z6H9eV/A1WmY5XhknwlOreXwjZg0fvY1QNNUQ8Nul10BwiY+w59j3x7w4sFhxucYEUX2xneN+M/GJst97Fn43YuIiIhSh+sLiIgobap3t05ONXo1rD0QWxmNaAQDDACwt1nF6n3Jv41k2NXolwYYgpbviW6yX2b1Pk/Ka+rnQibDqn3yc7hyb+Rzu3SXfp9Gn4bvamKrLR+PWd/U6xp0hwc6ErF2vyfqAAOQ3sbPHr+mm/wFgDX7vfDKSttYlO9JJsUpD0K5d7wPAKEAAxCY4G7a8HRKxhGrYIABAKD5UL/qwYjX8ez70jTA0KRUtgYYIig5HBwQSxm1jkeFe8dHEY8jy2Ap0Q4BQCiQY3MaAzqau8ZwWZksG+awdQe9aMnWDudEWW7F3sjfrUqSvIiEiIiIshuDDERElDb1Qip9eJmgVNljUg4m0yLVBhdLkcRCOjmbZNkeY1A1DV6TUxhNXXbZ8yYd2RvfCeWpWpL0WDbGOPh09mQwezykF4v1/e3JKycVztXpNNhKuhou1/wt0v29NatTMo5EefcsjLiPv36T6TYfjFkJZoZ1LQYAuDqPgK20u3QfTY0c4BvcpQhOtAadbJoPJ7nnwNnpNNhLuwUuK+kCQD+B6W/abjjWiG7Wz49YAm9E1KrJ7AM2zPAIrz8iIiLKLyyXREREaeFXNTQLE52HWpI7wyM2Ig1cltSbSJpINe8bvRp8qgZHFL0DROJ9PqLcjkGdW3/sF9sVnNTJha11Puxp8sPt1+CMcDvvbNKXRUh3OZ1YWZ3fSPP2mqZhb5YGp+LVIrz2upbZMTSsDJPh8U1zJoOMBg3iRLImBBlkpXmSwVbUFh3GLMHBTy+ELzyAYNIAWlGc0stzga/+B93fjsr+KOp5EQDA6y8D9un3P693SaAM0WEKgL6VjtDzyeasQIcxS9C8+XXUL79Hf+UoGmj3rHDgvrazsHzHAfhhR3/P5+jtW4F2ow+13qbdBVtJZ10Ghr9xG5ztTtQd66IjS9Gt3IEfDnnR4tfwwZZm3XZ/tn5AEGU5MTg8olsROpS0lpnrWeFgkIGIiKjAMMhARERp0SRZSZ3Ian0Z2XxRGhb1xyWaSfo6j4p2cTSuFs9qn0oHrpL0d+hbGf3E6Jr9HvxQ27rKPtvn5qzOb6SJxXqPlrQMgmwhTggdKTwnqne7sbOxNbCSznJYHpPbkj2Eml9YCZ+iIAMA2Mt7onzA73FowdVhAzB5z7LlbpDBLwQZio44H20GPQwA8LX4gU8P6LZfdlSZvCl3GHvZESg//nfw1axG86aXwrZE97w6wrEX7Zr+Hvq79KgJhp4X9rIehiCDSFEUDO1ShKFditDkVY1Bhvx6mROljfgZeW7vUhxVlbvvg0RkbsuWLZkeAhHlCJZLIiKitGiUpNbXJDmTQVZeW5bdkA3EedVypwIxl6A2ziCMOImejMbXYqJDtgcZrKoDRaoclK0lthIhZhGVOPRfAcWMmfT2ZJBfLn2Y0pTJ0Er4qqyp0FSfYS8la4MMkV/7/gZ9kMFe0Tf0b9nbZ2zvJuL5i/aNI/J+9rIeur9lQYZwsqywXOgtQ5RtVE2DW3jfljVsJyIiosLCIAMREaVFOjIZZKvXs3UOSTwdDpuCNkX6j+XaOAuGi9dKxoe9GKjI1vMapFqcukhjNyuVpGVpwCoaYrkkcUJIiDnAm85MBtNySZLLxCCDPcVBBkNjaRWar9G4ny13k4PFckn28rAgg2T/mKYSDQHOeN/zjbdqL+upP3KEIIOsIly2v48RZSNZYLjYziADERFRoWOQgYiI0qLBa5zNOZT0IIPxsmydRFKFgdkVoNIlBBniPD/ifY6jrYOBMZMhS0/sYVaNiyOtXs7HTAaxtEWRXQwyCJkMaXx4oy2XpGkaoHr1F9pSXPNbCDJomjzIkL2ZDNZUTy00t74ckiMsk0EmtsQoYeckvm/YDJkMP1ruL5sDTefznChfyMoJip8pREREVHgYZCAiorRokpRLqnWrSW28KTtWtjYoFn+j2xWgskj/I73OHd/YjUGGxH/8i/MH2Rq8CUqk8XO+NX0GImcyiCX209qTIdpMBjHAgAxkMpgEGZCjjZ/99ZuFSxTYy3uF/kq4XJIhEyTK51UU79uxlktSFMXwPsbGz0SxE3v8ACyXRERERAwyEBFRmjRKMhk0xF8SSCaXMhkMQQabgjZiJkO85ZKECbrUZDIkfsxUsgouqZp16aO8zGQQmiyIpS3ETAZJTDBlzIIM4ny0WCoJQEobPwOAogiN1zU/NK8syJCbE2w+oR+DrewIKPbW7BD5IxPLfdXvq5k1zo54GEm5pFIhyNC0PeLxDUGGLH8fI8pGbiForQBwcVaBiIio4PHrABERpYWs8TOQ3JJJuRVkMAYC2oo9GbKqXFJu9WSI1LjYanJxb3MeBhmEO1wi9mQQniPpzGQwC2gYLva7DfukvPFztJkMkiyLXOCv36T721FuXSoJiDGeYtg5dY2foXqhNu+1vo6hwXmWv5ERZSFZ+T0lRwOtRERElDwMMhARUVo0STIZAKCmJYlBBsmEUbbOIYmNie1KMjMZ9H8nJcgg3kbUk4WZEWmFslkQwqdqONCcxmX8aRK58bM4+ZryIYWYZzLoL5dlMqQ8yCA+802CDNIsixzgF5s+C/0YEm38rBjOX7zvG8ZbtZV0ARR9w21/k3XJpFwr+0aUjQxBBpZKIiIiIjDIQEREadJo0mGzJomZDLKbyNaeDGJj4kBPhlRlMiQ+AZBP5ZIA88bV+5r9WR4+iY84KWQsl6TfP609GUxuS3z2Syfy09yTQYNJJoM/N4MMvkhBhkTfPw3vPdG+p0W+XcVmh720u+6ySH0ZDJkM+fhiJ0oxsVxSsd1kRyIiIiooDDIQEVFamJVLSmYmgyqZrPRmaeUbcah2G1ApZDLUZVVPBv1Bsr2WuVXjZ8B8cjEf+zEAQHPMmQyZb/xsIM1kKJLsmDyKpFySmkuZDBECjGImgyPJmQyGveMNWpjcD5tQMklt+NHyMOKCazZ+JoqdsVwSpxSIiIiIQQYiIkoTWeNnADjkTt6krmzi2GyVdKYZGj8rijSTIZ6VxOL8emoaP2fneQ2KlMlgNrm4Nw+DDH5VM/Q9iJjJkMaH1yyWJj5EmixbwOZM/oDCyXoyeBsMu2VtkMGCpvrhb9iiu8xeLmYyGK8XW08G8adGlE+sKN9fxL4MsZZLyvZgKVE2chsy4zI0ECIiIsoqDDIQEVFaNKUhk0G2et2brUEGYVyyckl+zbzMlJXUNH62vo1sE2/j5z2N+RdkECeEAGMmgzMXMxlszjQ0G42y8bOkKXW6aVps76X+pu2A5tNdJpZLkkkskyHe93v5rRqCDDGWS2ImA1HsxB4/7MlAREREAIMMRESUJg1mjZ+T2JNBtnrdm6VLVcVh2RQYGj8D8fVlYE+GyJkMZpPoe5rysOlzFEEGcY7IJCaYEmZBBkMmgxBkSH3TZ0hW4mdx42fVG9PuYqkkxVEGW3FH3WXSckkxZTLod9aS3PEk5iADMxmIEmbMZGCQgYiIiBhkICKiNGkyWZF/KKlBBuNl6ZwsjYU4VodNgcuuoESY7Y0vyCD0ZIj5CEZioCLrgwxxZjLsbTbPZMjyu2xK7McAyMolZTCTIcrb0sRsgbQEGfR1QDSzTIYsCDJoCQYZ7BV9DZkhiVdFEzNBoj1gtOWSeur+jj2TIcrhEFGIGGQoYpCBiIiIwCADERGliVnj50NuNWn1/WWlL6IuxZJm4liDc19txb4McTR/TkW5JHEOIft7MsS+XdO0vOzJIJa2cNqMQQVjkCHlwwrxmJxyw3MsA5kMxsbP/izOZIhtDL4GMchwZFTXiy2RQdw7teWS1OZdlsEW8X3Ml+XvY0TZSPxMETPjiCh7jR8/HoqioHfv3pkeCoDA9wRFUTBp0qRMD4WIkoBBBiIiSjmP39h4NkjVgDpPkoIM0kyG7JxEMjZ+DvxfLJlUl5RySTEfwiDfyiXJAlL1Xk266j/XieWSZKUtDI2fs7Ang6Fckr0oFcPRkzV+lgUZZE2p0yzRTAaHpB+DvFxSDG8ohvOX2sbP0FT4m3aa7i/OhWZpDJooq4mfKcxkICKK3hlnnBEKrpx99tmZHg5RUjHIQEREKWfW9DnoUEtyVo/LJoziSARIC3GVdrCMh9j8OSnlkgqxJ0Mc5ZLyMYsBiG7VqSGTIY2Pr1kg0HCpOJGfjnJJ0TZ+zopMhgTLJZVHF2SIjfhci/OIJu9hSlF7wF6su0y1KJlkY+NnooSxJwMRWenduzcURcH48eMzPZSss3XrVsyfPz/096effoqdO80XRxDlGgYZiIgo5RojzFgmq/mzbMIoVxo/B3+jV7qys1xSrvVkiFQGRbZSf0+BBBlkq07FuEM2ZDKID6Exk4GNn/VjkAUZzF/8sp4MhmMKj0HsbyXCNbRo38+ie/4pihJT82dmMhAlzvCZwnJJRBQnTdOgaVrBlEt66aWXoGkaioqK4HA4oKoqXn755UwPiyhpGGQgIqKUa/RGCDK0JCnIkEvlkoS7HJzEryxKRuNn8dgxH8LAmMmQnec1iJkMrQzlkiQTQk4h8JDOhummQQbxb3EiPy2Nn/VflTVNhebN/UwG1VMH1b1fd5m8XJL+UYg5KcoQpIn3fcP8hmMJMrDxM1HimMlARBSfl156CQAwduzYUKmk4GVE+YBBBiIiSjmzps9BSctkkEx8Z2u5JHGswXlfsSdDbRz9KtLR+DnbVwDH0/g5UiZDlt9lU+Kq0xJZuaRMZjKYvEYNL+esaPycaz0Z5I+jmMUAKLCX9Yp49UQzGbQoMxnE4IYVe1lP3d+WQQY2fiZKWDTZcUREpLdkyRJ89913AICrr74a11xzDQBg7dq1+OqrrzI5NKKkYZCBiIhSrilCJsOhJAUZfJLDZGu5JEMg4PAnstiTIb7Gz6noyZBb5ZLiafycrZkMWoITodE1fhZ6MmRjJoPfrfs7LY2fc7wng1kzaF+DPshgK+0OxVFs2C/hl7nhvSfDmQzCeLL044EoqxkyGVguibLUpEmTQg12AeDQoUN48MEHcdxxx6G8vBzt2rXDGWecgddeey3isbZs2YLf/OY3OO6441BRUYHS0lL069cPt956K9asWWN53eAYgiWBPvnkE1x44YXo2rUriouL0bdvX9x1113YsWNH1PfFzLx580L7zZs3L+L9EjU2NuL111/HzTffjJNOOgmVlZVwOp3o2LEjRo4ciUcffRQNDQ3S644aNQqKomDr1q0AgBdeeCE0luB/o0aN0l1HPDcywZJC559/Prp06QKXy4WOHTvijDPOwPTp0+HxmH8HE89bS0sLHnnkEQwcOBAVFRWoqKjA0KFDMW3aNPh8vthOVoxefPFFAEBVVRXGjBmDiy++GBUVFbptRLnOkekBEBFR/muMMGOZrHJJsonvbC2XJJ4Se6hcUhJ6Mgh/J2NFAcslpZ7ZOdUQzwryVs1RNH52Ck+SdGYymDZ+jpDJkJZySTa7OAiTTAa34bJ00zRJQMEkyCBmMshKJQHGkEDC5ZKifd+I4f3FGGT40XxfYThqln4+EGUzMcjATAbKBZs3b8bPfvYzbNq0KXRZY2Mj5s2bh3nz5uHtt9/GK6+8AofDOEX24osvYsKECXC79Z/1GzduxMaNG/Hcc8/hoYcewn333RdxHJMnTzZMqG/evBlPPfUUXn75ZcyZMwenn356fHcyCcaMGaNrTBy0f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7wQixYtMown+NhNmzYNH3zwAXr1kmRkhtmzZw/OPfdcrFq1Snd5dXU1qqur8fHHH+Ptt9+GzZb8tdgejwevv/46AGDcuHFwuQLfYS+55BK88MILeO211/Doo49Kn39EuYSZDERElHIRezK4kzO5K5sY9arZOSEujsms8XOzTzNd6W1+bP3fSenJIN5G4odMqUhlUMRMBp+qYX9zZu+VWWAk0brxYmmLYnGmFbJMhixo/Cz+nYFySbJMBtVnXMGXDY2fISnZZJbJEE3TZ5mYYwxxN34WjmMR3bCV6oMMakzlkuIaDlFBM3ymMJOBcsAVV1yBzZs347bbbsMnn3yC6upqPPfcczjqqKMAALNnz8a9995ruN7cuXMxfvx4uN1ulJeX48EHH8TChQvx5Zdf4rHHHkOHDh3g9/tx//334x//+IflGObOnYtJkybh6KOPxnPPPYfq6mp88sknuPXWW2Gz2VBbW4uxY8di2zbzz7FU8/l8GDBgAB544AG89dZbWLp0KZYsWYLXX38dV155JWw2GzZv3oyLL74YLS0tuuvOnDkTa9asQbdu3QAAF110EdasWaP7b+bMmVGPxe/3Y+zYsaEAw8iRI/Hvf/8by5cvx7vvvouLL74YAPDtt9/irLPOMs2wCLrkkkuwbt06/PKXv8R///tfrFixAq+++ir69+8PAJgzZw6eeeaZqMcXi/feew8HDx4EgFCZpPB/7927Fx9++GFKbpsonRgmIyKilBODDCUORbe6Olnlkszm4n0q4BIXJGeYONZQkKHIOAFc61bRsTT6O5Cexs+JHzOVIk3Mi5OL+5v9hkntqiJb0vqFRMOsxJNfA5wJHDeaxs9i3CGdk6/mPRn0gzD0PchA42cA0LySH7FZEGSQBhQSDDIkHp9NVrkkc2Img+reD83XDMVRYthXDKbJyqYRkTXxM4WZDMmlaSpU94FMDyNtbEXtjf2PUqC6uhqvvvoqfvGLX4QuGzx4MMaNG4fTTz8dq1evxt///nfcdNNNOP744wEAXq8XEyZMgKZpKC8vx8KFC3HSSSeFrn/qqafi0ksvxbBhw7Br1y7cc889GDduHDp06CAdw/LlyzFw4EDMnz8f5eXlocvPOussjBgxAtdddx3q6urwu9/9DrNnz07NiYhg5syZ6Nevn+HyU045BZdffjluuukmnHPOOdiwYQNeeeUV3HTTTaF9+vTpAwBwOgPfWtu2bRs6l/H45z//iS+//BIAcN1112HWrFmhRQeDBg3CBRdcgAceeAB/+ctfsGnTJjz00EP461//anq8YLZCeMmmgQMH4pxzzsGxxx6LPXv2YPr06bj11lvjHrOZYDmk3r1747TTTgtdfuaZZ6Jbt27YuXMnXnzxRYwdOzbpt02UTgwyEBFRyjUJjZ+7l9ux8VBr3cuaFhWapkWsMxqJ2SStR9XgyrIfweJY7Ycnv0odChw2fTmlWk+sQYYU9GQwTM4lfMiUirUng9j0ucypoMypoCY8Mz7F85FmE/uBxzP+x7BFqM0lCzI4lOzPZDA0frZnoPGzZBxAlmQySMolRduTwVEeZbmkWMdkOH/RPq/iL5cEAP6m7XC0MU6S5FoDe6Js41M1w+tG1ueH4qe6D2Dvvzplehhp0+nKvbAXd0z57YwdO1YXYAiqqKjAjBkzcMopp0BVVfzzn//EtGnTAABvvfUWdu7cCQD44x//qAswBPXq1QuPPPIIrrnmGjQ1NWHmzJnSjIigGTNm6AIMQddeey1ee+01fPDBB3jrrbewe/dudOnSJc57Gz9ZgCHc6NGjceGFF+Ltt9/G22+/rQsyJNtTTz0FAOjYsSOmTZsm/Z04efJkvPnmm1i/fj2eeeYZ/OlPf0JRkbxn1913323oCQEA7dq1ww033ICpU6dizZo1qK2tRWVlZdLux4EDB/D+++8DAK666ird/bDZbLjqqqvw6KOPYs6cOTh06BDatm2btNsmSjeWSyIiopRrEDIZupfrY9x+DaiPUFIpGmYT39nY/Nksk0FRFEPJpNoYV9Ono1ySluoZ9wRFesjF7Xub9Oe4cwxBnWQxLZeU4KmOpvGzU3iSeNMURPJLJqyCIpVLylQmg5TqTbhBd6KkAQVp4MEPf8MW3WXRZjLEHghOTrkkq/CGzdUGilM/GWDW/Fls/JzOBudE+UD8PAFYLolyww033GC6bejQoTjuuOMABJoyBwX/rSgKbrzxRtPrjxs3LjQpHX590YABAzBo0CDT7cHb8Pl8cTVtToV9+/bh+++/x9q1a0P/dewYCAqtXr06Zbe7c+dOfPvttwCAyy+/PNQgWeRwOEKPbU1NDb766ivTY1599dWm24KPi6Zp2Lx5c7zDlnrttdfg9Qa+j4WXSgoKXtbS0oJ///vfSb1tonRjkIGIiFKuyWfMZBAdSkLzZ7PV6+maMI2FOKEcnm3QRggy1MXY/JnlkmJv/CxmMnTKRJDBolxSIqKpn+3IUONnj8XtGE6H0FxZsctXqiVXDF+VTbIG0kYaZFChCRP7atMOw76mQQbh79gzGeItlxTb88/Q/LlB3vzZ0Pg5C/v1EGUztyTljuWSKBcMGTLEcvvQoUMBAN999x08nsCihrVr1wIIlAEKTqzLuFwunHzyybrrJDIGAFizZo3lvqm0aNEiXHHFFWjfvj06deqEo446CgMGDAj9F+xbsH///pSNIfw8nnLKKZb7hm+3Ov9WjarbtWsX+nd9fX00Q4zaCy+8ACBQminY/yHciSeeGCorFSyrRJSrGGQgIqKUE3sytHHZUOHS/yhNRvNns4nlWBsnp4OhXFLY6RD7MsTas0KctxVX78Yj54IMMZZL2isEGTKRyWC2qjrRiVBx5WmJZELI2Pg5oZuMmsfiZZ8VjZ9jqBOd6ZJJZqWRxICCT+jHoDhKYSuOrjRH7IkM+vMXd7ZHhBs2BBmazDIZ9H+z8TNRbNyS71MMMlAu6NTJ+nOuc+fOAAKfUzU1NQAQatQb6boAQqWNgtdJZAyRjpNKkyZNwmmnnYbZs2dHHENzc3PKxhF+25HOW3hZKasxl5aWmm6z2Vq/r/j9if8mDfr222+xfPlyAPIshqBrr70WQCDAk+xMCqJ0KtieDHv37sWyZcuwbNkyVFdXo7q6GgcOBBosXX/99Zg1a1ZMx/vggw8wY8YMVFdXY9++fejYsSOGDBmCCRMm4LzzzkvBPSAiyh1ikKHMaUNVkQ31YTOMyWj+bBZLsFotnSmGQEDYXJwYZIg1k0GcYE9OJoP+INm+AjjSJLk4uZgNmQxm2QOJ9r+IJpPBKcylawgEYuzJePJYsAoAik+xrC6XBGS++bNJkEFTvbqsD7/Qj8Fe3te0DFLSGz9HWy4pxhs2BBlMyiWx8TNRYsSgtcNmfF1RYmxF7dHpyr2ZHkba2Irap+V2Eun7lmjPuGQfJ1U+/fRTTJ48GQDQt29f3HPPPTjttNPQs2dPlJWVweEITB9OnDgRDz30UNrGle3nzUp4ZsJvf/tb/Pa3v7XcX9M0vPjii3jwwQdTPTSilCjYIEN4lDgRqqpiwoQJeO6553SX79ixAzt27MDbb7+Nm2++GU8//bQuOkpEVEjExs9lTgVVxXb8WN86sXswleWSkrcgJWmMPRlav0BnY0+GXGuYGksmg6ZpUQUZUn2Xzc5poq8MMcggW3UqmyTyaUCqQy2W5ZLEC/zpz2RQlOjPgObPjUwGv5DJYFYqCTD2Xon9rSTeckmRjqNnE4IMqmlPBv3f2f4+RpRtovk8ocQoii0tjZALzZ49e9CjRw/L7UBgQruqqgpAawmd4DYru3fv1l3H6jai2S4eJ3wuSVVV07mlxsbGiGM1EyyDVFVVhSVLlpiWiEpHlkX4/Y903oLnXrxepqmqildeeSXm67300ksMMlDOKtggQ7iePXvimGOOwccffxzzdR944IFQgOHkk0/G73//exx55JHYtGkT/t//+39YuXIlnn32WXTs2BF/+ctfkj10IqKsp2kaGoUfpWUOBW0TLAkkY7Z63ZuFq1XFFbThv9PbFCU3yJCMBUC5Vy4p+u2NXg3NwnM0M42fzTIZklsuKZqeDEAgsyLVE0gJZTLYmckQze2LwQexXJKj4siobyLmakmG85eqngw9dX+bNn7OUFkwonwhlksqZpCBckR1dbVlkKG6uhoA0K9fP7hcge8Xxx9/PL788kts3rw5VK1Cxuv1YuXKlaHrRLqNaLaLxwlvfFxTU4P27eUZIN99953lbVj55ptvAABnnHGGZQ+KYPkfM8nIPAi//0uXLg2VE5JZtmyZ9HqZ9vnnn2PbtsD3kbvvvhvDhw+33H/p0qV44oknsGnTJixatAgjRoxIxzCJkqpggwwTJ07EkCFDMGTIEHTu3BlbtmxBnz59YjrGd999h0cffRQAMHjwYCxYsAAlJSUAAk19LrzwQowcORLLly/HI488ghtvvBE/+clPkn5fiIiyWYtfM0xIlx4ulxSuJgmZDGZzsVkZZLDINmibaONn4W+x1FE8jOWSEj5kSsXS+Hm3kMVgU4D2xenPPjSrD5/IufapmqHxuWxSSJbJkI6G6dY9GYQ7nomeDDG0L9NUd+SdUig1mQyC2Ds/CweM90kVY0+GKDMZsr3sG1G2EYPWzGSgXPHCCy/gkksukW6rrq4ONQwePXp06PLRo0fjmWeegaZpmDlzJn7/+99Lr//GG2+gtrbWcH3RmjVrsHLlylCTaNHzzz8PALDb7Rg1apRuW/hc1fLly3HOOedIj/Gvf/3L9PYj8fl8AKyzIVauXImlS5daHqe4uBgA4HbH/72oW7du6N+/P7799lvMnj0bU6dORXl5uWE/v98fKnVeVVWFgQMHxn2byRYslWS32/HHP/4xYm+J0aNHY9q0afD5fHjxxRcZZKCcVLD1eyZPnoyxY8cmVDbpiSeeCL0RP/nkk6EAQ1BpaSmefPJJAIE37Mcffzz+ARMR5SixHwMAlDsVVAmTuDXJyGQwmTDKzsbP+r/DJ3nbFOl/tMeeySD0ZIhtaFLGTIbsO6fhYimXJDZ97lBsy0iNabPASCJPX3FCCABKZJkMkrtr1iMimawCgJEbPxch5WJp/JzhcklWPRnCGXoyWAUZxKyoWMdkCHCm5jklBhk0bx1UT61xP5ZLIkqIO4oeP0TZ6N1338Xs2bMNlzc0NODWW28FEChJFPw3AFx88cXo1q0bAGDKlClYs2aN4frbtm3DPffcAyAw/3PDDTdYjmPChAnSSfxXX30V77//fuh2u3btqts+fPjwUE+Exx9/HJrke+4jjzyiW9Ufq379+gEAvvjiC2zcuNGwfd++fZYZBUHBsW/atCnusQDAnXfeGbrdX/7yl9J9Jk+ejHXr1gEAbrnlFhQVpeG7YRQaGxvx5ptvAgBOP/30qJqHd+jQASNHjgQAzJ49O6EgDVGmFGyQIVGapuGdd94BABxzzDE49dRTpfudeuqpOProowEA77zzjvTDgIgonzUJQQYFgR+lYibDoZbEGyeYTdKmY0V2rMQSOOFz2sbGz1pMk/qp6MmQa+WSIpVBCZ9cNOvHkO4+c2aBkUgBEyti/WzArFySpCdDGh7kmMol+YUfW2kol2Qs92Mhw+WSTDMZtNbLVW891JZ9us2O8ugzGWJ+TYjnL9rncqyNn0uPMFwmy2YwlkvK8jcyoixjKL/HTAbKEYMHD8ZVV12FO++8E59//jlWrFiBmTNnYvDgwaFSR3feeSdOOOGE0HVcLhdmzJgBRVFQV1eHESNG4KGHHsLixYuxdOlSPP744xg8eDB27twJAHj00UfRoUMHyzEsX74cgwcPxqxZs7BixQp89tlnuOOOO0KT9xUVFaFqGeE6deqEcePGAQA++ugjXHjhhfjwww+xcuVKvPPOO7jsssvw+9//PmJJHivXXXcdgMAE+ciRI/Hkk09i8eLFWLx4MR599FGceOKJWLduHYYNG2Z5nOAYqqurMXXqVKxevRobN27Exo0bsWPHjqjHc9ttt4Vua+bMmTjrrLPwn//8B1999RXmzp2LSy+9NNSA+sgjj8T//u//xnO3U+LNN99EQ0MDAODSSy+N+nrBfQ8dOoR33303JWMjSqWCLZeUqM2bN4c+TILRRjMjR47Ehg0bsGPHjrjKMhER5bIGYYa/1KHApihoW6SveV/jVqFpWkJ1PM0mY3MhkyH8d7rY+FkDUO/RUFkU3blJR5AhC0+pTqSJeZ9FJkMm+jEAqSmXJAsyyBs/S8aTjnJJsTR+zkS5pFgyGTLekyFyJoNYKgkA7OW9TQ+ZcCZDssolRfhcUBzFsBV31AVQ/I3b4KzS12YW42vZ/j5GlG3Engwsl0S5Yvbs2TjrrLMwffp0TJ8+3bD90ksvxd/+9jfD5WPGjMHMmTNx6623or6+HhMnTsTEiRN1+9jtdjz00EO4/fbbLccwZswYjBkzBpMnT5ZmPLRp0wbvvvsuevfuLb3+448/juXLl+P777/He++9h/fee0+3/corr8TNN99sWbLJymWXXYYbbrgBM2fOxM6dOw3ZA3a7HY8//jhqamrw5Zdfmh7n9ttvxz/+8Q8cPHgQ9913H+67777QtpEjR2LevHlRjcdut+O9997DhRdeiEWLFuGzzz7DZ599Ztivf//++OCDD6TllDIlWCpJURTTMl0yl1xyCe666y6oqooXX3wxFFgiyhUMMsQpmJIFBDIZrIRv//bbb2MKMmzfvt1y+65du6I+FlEh8Po1fLClCQ1eDef2LkG74sxMFhYyTdPw+bYWfHvQC1XTcFDotVDqDPwgFcsleVXg76vqok6xqyyy4We9StC1rPWjzGxS9JMfm/HNAesJwDZFNvysZwm6lTvgOfw8+rHOF+VoYrdPmNgOX2HbxmU8C9NX1+Gm4ytCq+zNNHhUQxPjVPRk2FLnw/ubm3BCBxc+29Ycc0mnoHqvhtX7PChzKDi5kwsOm4KTOrkwrGtxzMdq8qr4YEszdjb4sOmQ9WO3cq8Hte5afH/Iiz1N+rGbneMPtzRjxR556vL2Bj86l9rhNHkCdy6147w+pahw2dDkVfH+lmbsamgdY4XLhvYm71fRBslUTcPHW5ux8ZAvlDnZIGQSOW3yrAWbosCu6Cddn1hZi9O6FeP8PqVwRTmRpGkaPtvWgl2Nfow8ohg9KoxfNX+o9WLethY0elXsbTZ/3rz5fSM++7E59Hdz81VQKi7DEb6vcXrzc1nXk6Hh6ymoGjkbiiP2526imn94DfVf3SffGBZk8NXpyx/YSrvHNN7YyyUJ7/M1q1Gz4JrQ347y3ijt/0vYSzpB0zS0/PAq3Ls+gWfPglhvCbayHrogQ8Pqh9D8wyuBbUXtUdrvJtht/XTX2d7gw5MrW8sqdS6z49zepdL3YKJ8tXKvG2v3ezCgowsndbQuNSKWSyqSZMb5m3ahcf00+Bu2xjQOm6MclcP/GdN1iKLVp08frFixAo8++ijeeustbN26FU6nEyeeeCImTJiAq6++2vS6119/PUaOHIknnngCH3/8MX788Ueoqopu3brhzDPPxN13340BAwZENY5JkyZh2LBhePLJJ7F8+XLU1NSgW7duOP/883HffffhiCOMmXlBnTt3xtKlS/HXv/4Vb775Jn788UeUlZXh+OOPD92HaCfwzTz//PM488wzMWPGDKxatQoejwddunTBT3/6U9x1110YOnQoJk2aZHmM7t27Y9myZXj44Ycxf/58bN++HS0tLXGNp127dliwYAFeeeUVvPrqq1i5ciUOHjyINm3aYMCAAbjssstwyy23hJp1Z4MdO3aEgiHDhg0LldyKRufOnTFixAgsXLgQH374oWXDcaJsxCBDnMIn/60+CACgR4/WOrHB7vLRCr8uEUX2zNp6zN8e+BKzaGcL/j6qvaE8AqXWB1ua8cK6BtPtZYdnYdsWGSdxFu+MrfbkFzvdeOqM9nAengBdult+/U21PmyqjRwwWLijBU+d2QHPr63HvO3xfRmOV/gcrt2moMKpoD5sgnjVPg8mfVmDJ8+wfk4/ssJYhzwVmQwALB/nWDX6NHxx+PGft70FGIiYAw3TVtVhxd7oVpPvbPRjZ6O8RJdZJsOGGi821Jgfc0uEoNQ3B72YPKwKf19Zh5X7ol/1/vK3DfjLae0i7jd7QyPe2tRkuY9V/WyHDfCHnZJt9X68tqER2xt8uOukyqjG+u4PTXh1faDW8IdbmjD9zA5oE/ZaP9Tix4OLaxBNL/O1B4SV+a6LAADLMQ61tq64LssyGdzb5qB26d1oO+KZFA7IqGnTy6hdaF4jOTyToX6Fvmmlw6IfAwAs2SW8p8ZeL0n3l9q8Gy2HJ/6D3Ds/Roexy9C8cRZqF90Y1XFk7GU94TvwVehv774v4d3XutKyeeMLUIZ9r7tOvaf1fSfom/1eTB5eFfH2iPLB1/s9mFod+N7w3uZm/O8pbXF8B/P31kjlkjRNw8H/ngtfzdcxj0Upas8gA6VUVVUVpkyZgilTpsR83d69e+OJJ55IyjjOOecc08bNkVRVVWHq1KmYOnWqdPuoUaMsS3TPmjUr1CjZzDXXXINrrrnGdPukSZMiBhqOPPJIPPvss5b7AIiqnLjNZsO1114bVT8IUTRjBSKft1h0794dfn/8ZYAXLIh9oQVRtuAynTjV19eH/h0pLausrCz072BdNiJKjeVhq4z3N6v4IYqJZUquapOJ/qDgClGXXUGlK7HZ71q3io21rRNoHUoS+1ir92jYUOPFir3pb7QlTv5WSVa1H2hRsa3B/Dnd4FGx/qCxZIqs0W+sStJcEmFVlMGCIFXTLCfuK5zRj79zWeDcJ7sMxPqDXtR5VKzeH9t9E3tGmPkqisBFuVmqBYBSWc0kxPZYBAMMQCA76Z1N+uaGq/Z5ogowRLLOdRYUV5vEDxSBYi8ClOgz4tw73k/haExu88e3rXcICzLYioXGg4r1eqODQq+cWDOWbI6yiPt491dDbdkP93bzc6c4SiMex1FunSmseWvhatwQ8Tjra7xoysZGPkQp8PK3+t+mM9bUWe7vET6OxM9JtWlnXAEGIiIiyn0MMsQpPN0rUmpWeIf75uZmiz2Ntm3bZvnfsmXLYhs4UZ4T64/XJmM2i2Kyv9l6QvS07kVh/068rEi9p/UxT0YDwlq3sdxQqrUvtuHoKqfustO7y0sWuC3iZockE4Ddy+3oVpZ42bBj2jkNzbpTyRtjIwK3XzPtXVDqUHDzgApE8/ToWeFA7zaBidfhcZRsiuRQixpzj4Vo68aLZSxkRnQzv0/Du8mfc4nMt35Xow967Y3w/hAtn1KMoi6jknIsK4q9CMU9fx71/obm1Gngb7QurRk+JnF89rKelteVlUKJhav7OVCckbNgNH8LNL9J9pitCMU9Lox4jOI+VwI2p+U+xxTvjSq4neaPAKKM2Spk4InlA0VivyMxy9H0dUxERER5j+WS4lRc3Poj3eOxXuHndrf+oCspKYnpdiKVYiKiVqqmGSbj6uKsE0/xUTUNB4VzPuqIYlQW2WBTgP7tnDgxrN7vNf3L0bfSiR/ro884WbC9BTVht1FvEUjqWmbH0C7W9YW/3Nmiqwt/yK0aejuc1aMY5Smq0V3hsmF41yKUCKvIL+hbii5lDjwmlD/yWaTy1knOxeRhVQk10w4qddrw5xFVmLGmHqtNVsxXuBSc2SP6z7mFO1oMPTviJa6uBIDzepegssiGU7oUoVu5A51K7fhqrwcev4bPtzWjzqM/lwqAB09tG+o/cX6fEnQqtWPTIS9ko2z2BXogiI6qcqJ/u8Bk55wfmnRBBdljFEmzT4PHr0XsiyAGZk7tWhQq/aQA6F3pwKkWr4fg6/Hzbc26UkWasQVz1MQAxT5hAusnbR04rr0LNgU4psqJJp+GrXU+wy3u3Pcjqus6hP72wwFbUeQSUsnQ9vQX0XzEefDVtZbaUWxFKOp+Lpp/eAVN66eF7Z3+2Wl/807rHdSwwILQHLqou3W5BjEgdslPImcUhHOU90KHsUvRsvVNqN7DK6RVDxq/0TfX1DQ/ILzKXJ1HwtXtLBQfcQGc7U+KeFuujkPR4fwv0bL9vdBEZ/P3z+n6NJTbW/DnEe2wZFdLqF+J26/hwy2xLQIiKlTie4KhlKJm/DAuO/73UZWeiyZjiYiIiLIXgwxxqqioCP07UgmkxsbWUgHZ1PGeKN/IVtvWs+RBWtV5NMME/RVHl5k24LYpSszZDFvqfKgJm+RuCHuMxem9K44qwzCLldsAsLfJj73N4WW2jD+QL/5JWcSGy8mmKAqGdilCu2KbbiLeZ7EMXpzA7lJqR0USgyMdSuy4+MhS0yBDxxI7rjom+s+5PU1+Y833OLkly/2vPLoMxWHBm76VTvStDEz+r97nQZ1HH9wa27dUF0xSFAVDuhRhiMnE/MEWvzTIcEIHF8YdFSgTIwYz4gkyBK/XocT6OSiuvj6rZwlOsKitLQq+HruU2fHAotbmE4mUqBUDH/uE19fwrsUY01c/sTRc0h+v2rdHF2TQ0tL0OUBxlKC0n0mvAM2rDzIkqZ5vtDRNhdq0y3qfsJXFmiq8diOcR/HuxNNE3lF5NMpPaG1KrfmaDEEGaH5A0782inqMQfnx98Z0W84Og+DsMCj0t3vHh7ogg6b50anUjguPbC3jdMitGoMMzGQgkjIGGcRUBuNnXMWgh6HE0N+GiCgb7NixAzU1Fs3YTJSVlaFPH+sSjkT5ikGGOIVnGIQ3gZYJb/bMRs5EqSMrr8JMhvQS63fbFHmD50SUC7X1G8OaIxvm96KYD2sjTMLLggyRVpCnklitRAzihBMnsNsk2PNCOh6LLtLJPE+xzvF5JEEGq/HINsXaINtuMuEanpRS5rShLizNIqVBBuE90KL9giVD+Yv4DgPA+HwVgwwdowze2RT9KNSsqfhpWMab1ltXW/YDmj5YprjaQvMcah2R3zyTQYlQXkiNUBolLrIeF5ofmmFyMvHHWBFvSzW+v8vuEmMMRHJiZpvh80KSyRDVlzEioizzwAMP4IUXXoj5eiNHjsS8efOSPyCiHJAtv9ByzrHHHhv69/r16y33Dd/ev3//lI2JqNB5JZOM9V5OFaTTgWb9JFFVkS2ula9WxMa1DRaTttHcchshCLKv2Xi8ovQmMeiIk/pWmQy1bv028b4lg9XEdayNkpP5zBAzGRw261XXdslsaawxErvJuXCE3a7YdDveIEM0DXfFCX1Hkl57sfaQCBde3sunaob3iI5RNmtXhIktDRl8UeoYZtjSeutq0w79BYrN0GdBCyuXpAlBhkg9DCKWRomHNMigGldAJ2Pls3hb0glQyXASv2WinBDrS9rwnmDcw3ALySjZSBSPSZMmQdM0aGn+bBYFxzBp0qSMjoOIKNUYZIhTnz590K1bIJ9//vz5lvsuWLAAANC9e3f07t071UMjKljSckls/JxWB4RMhvbFyf+YKRdW5zeEZzII+0YVZBCOt79JksmQlJm1+AitGiwzGcTnu5ilkZzxWGQyJPE8xfp70CPMfBRFGIs8kyG28ZsFJey6TAb9TvWe+H7oRhOcEANQ4nMnWsl81oS/Lx9sUQ2v0ZzPZDA8Z9I7keFv0vdjsJV0MdY1D2/EKpRLUiKUS0pNkMH42Ml6MiSlvIpNSNqWBBmkdynDE1JE6RLr4oCI7wlitpAsqEhElANmzZoVChDF8h+zGKiQZckvtNyjKAouuugiAIFMhSVLlkj3W7JkSSiT4aKLLuJKDqIUkpZLYpAhrcQmvu0ilHeJh5jJkGggqVKYiG/0GSdqZave08WQyRBD4+dUBBmsMxliO1YyPxLFTIZIpZvSVS6pVJjpT1UmgyZpfG8VELIkXC2hTIawQe0VAnglDgVlYj0wE1kbZMh0uSSh6bO9pBsUu74PTXi5pFgzGcR7Y0tC/pE0eKD5jRP7SQgyiOWSpKVc+NWcCphL8rltlTEpbjL+tk1BRhIRERHlBH7qJ+DXv/417PbAN7O7774bzc36pnHNzc24++67AQAOhwO//vWv0z1EooIiCzIwkyG9xH4GKclkcJpnMsQjUmPkTGYxALH1ZBAnolNRLslq4rooygnjoGSeWY8wdxhpdWYyyiWZZQqEBx/ETIZ4+8TURciAkD0v4s9kSN4jEx4UM/RjKLFHvfjCpolBhmxZHZvZckmGTIbSblBs+kbl+p4MsWYypKAnA2Bc3awaGz8n5WeKoVySz7iL5GrMY6BCIfusbPJFH2SI2JOBmQxEREQFo2AbP3/xxRfYuHFj6O/9+/eH/r1x40bMmjVLt//48eMNxzjqqKNw7733YurUqVi+fDlGjBiBP/zhDzjyyCOxadMm/PWvf8XKlSsBAPfeey/69euXkvtCRAGySbZIE3OUXGImQ/vi1GcyNIbVYzEshI1iArMywkR8rKUEki2WngzpyGSwDDIksSdDoo2fZaszw8mGapaZYMZsb7Hxc7hEGj9bkWW4xNuTQbxaIu+i4eWS9gmZDJ1Ko39+Zm0mQ4bLJalCkMFe2s0QeNDCyiWJmQyRGz/r/05qkCF8MlJSLiklPRnY+JlIR5b11+RVTb8/RGr8LAYLk1L2jIiIiHJCwQYZnn32WdNO8YsWLcKiRYt0l8mCDAAwZcoU7N27F88//zxWrlyJK6+80rDPTTfdhD//+c8Jj5mIrImTjADQ7NPg9WtwZniiuFAcFHoytIuyqWssyoUfvg3hQQZh3+h6MkTIZMh4kEH/d2w9GZI/dstySTHOQFrNgce6IDwT5ZIURYFdgbFMUdgdKxWyO+LNropULkn2vLB6rKxIJ101LWLQTtZYMXySeq+h6XP0QUgbciSTIe09GfSNn22l3aC6D+p3Otz4WdM0QCyXZI+tJ0PSSpxJyhhpaWj8LC2XRFTAZJ97jRYZohEDj4bXcba8VxMREVGqcWlBgmw2G5577jnMnTsXF110Ebp16waXy4Vu3brhoosuwvvvv49nn30WNhtPNVGqmU2+1ss6QlPSqZqGA2nJZND/onX7wwNMsU/wlTkVy8nlSCviUy3angyqphkyd8R+E6kYT7jYAzLJC4KIQcZIWRWyJs/xrNKWZkSE92QQyyWlqPGzLMMl3p4MsonkaEYtifPqGMolRdn0GQBsiv7+a9nyFTbDvbbErAV7aXcodpNySZof4iOpKBEyGYS/k5XJIPZKgKamZAW08XbYk4EonF/y0SL2pgpnCDIYSsaJ5ZKy5L2aiIiIUq5gMxlmzZplKImUiPPPPx/nn39+0o5HRLGT9WQAgHqPhnbF0k2URPUezRDoSUlPBsnEeaNXhctul5RLinw8m6KgwmUzXSme6XJJYgkfs2Bag1csYpCangzWjZ8zd64MmQwRZkNl/QrscZwuu00xzLroejIINxTvOvfIQQbjZfH2ZJBnMphsCBMxyCCWS4opk0EYj2KLKrsi3WTZHKkklkuylXQDDD0ZDpdLErMYgIiNn42rlpMVZZBM/qeiJ4NN+KkjCTKYPt+JCoAsQN1ssTgnUnZTSjKSiIiIKCfwU5+I8oZZkCHeGugUmwNCqSSbAlSlIMhQJmkuXH84tT+eckkAUGlRVijjjZ8N5ZJMnueSIEkqejLYFMX0vMaayWB1amPuySCcl0hjkU2WxtqTATA25gb0j5mYyRCvWrdqOYEt7cmQ7kwGk+empmnwqZqhZ0vHGMqpiZkMgHGyKzMyVy5JU71QW/bqLrOXdoNiF6LqhzMZNKHpMwAoEcslCfXX4xinlE1Wxigz5ZLYk4EKmSxpwbpcUqSeDPrXmCGbiIiIiPIWgwxElDe8JqWW462BTrE5INRbryqyJW/Vaxi7TTHUuW9I8DG2mozPdE8Gp6Hxs3w/MZhW6lDinmSOPCb55UUZnEvwCK//SFkVsuBAPKfLJrmSPeyysiQFGbwq0GKRKiBbeBrvU1d2tWgm9M0qbPhU4ECLapi4jalckmTaN1LmRDoYQm5pXAKvNu+BOB0eCDIImQyHezJIMxkilUtKUU8GRfwJIstkSEW5JNWX8DGJ8ols4UJM5ZIi9WTgdAMREVHB4Kc+EeUN83JJDDKkg6HpcwqyGILEvgyNCWYyVFgEGTJdLsmQyWAyiSkGGVKRxRBkFryI9VxZ7Z1o4+eIPRkkpyeeIIM0kyHsstJ4uy9LWPVzECeK7AriLiUU7/XMMhla/Br2CqWSSh0KymI4N7LHJisyGQznKn2DEps+w+aCUtQeMPRkCJRL0iRBhkiZDOLrMGlxS0m5pHQ0fpb2ZJBguSQqFLKFC01W5ZKEvyNlMohZS0RERJS/GGQgorzBckmZZWj6HEO99ViJfRkaDv8gjqcnAwBUWvQuyHQmg6Hxs8nTWewpkYp+DEFmc8OxnivrvWOb5TP0ZIjw9HMkqVySbNI1/DETs24SYdY3BDA+L8QMmFjEm8lgllnQ4tMM/RhiyWIAAJthastYtiMzMhdkEPsx2Eu7QVEUQ7kkzaJcUsSeDOLuyUplECceJZkMhmyHeERTLim72noQpZUsk6EppkwG/QvIECzkdAMREVHB4Kc+EeUNs4VX9Rarfyl5DjTrJ29S0fQ5qFyY5W5I8DG2LpeU0KETFnVPBuEctLHoM5GoZGUyWEUZYu7JYAgyROrJEN1lkcjORfhNJ6tcEmAdMBWfF/E2fQbMHpbIj4jZc7PFr2Gf8P4QSz8GQF4uKTvCx5krl+QXmz6XdgMAKELjZ1g0flZsMfZkSFEmQ6p6MhjKJbEnA5FOrD0ZxN5AhtcPezIQEREVLAYZiChvMJMhs8Smru2KU5nJoP9ZWx/MZBD2i3Y+zCrIkPFyScIqQfNgmn5DZQbKJcXc+DkZgzlMDDJE7MkQITgQLdmpsIfdsWK7eaNsILZMB1lz7yBxoiiRfhyyld0JZzIYggwxZjIokiBDNswEZ7JcUrOQyVByOMhg0pMhrkwGcdVyjGM0Y5z8V1PSkwE2h3A7snJJTGWgwqRqmvR91LJcUsQSail4HRMREVFO4Kc+EeUN9mTILGO5pDRmMpiUS4p27shq1X9RiponRyvaTIbatPZkkF+ezEyGWBnLJcWTyZCkcklhx1EUxTKbwWpbsXAfxMc4nNgPIfmZDJH5TYbn9mvY16Tf2CnmcklZGmTIonJJwUwGmJRLMmQyKDYoESYA09mTwRhkSEKgOppMBsl9yoqnFlGKmZVfjK1ckrBDKoKFRERElBP4qU9EecPsx5JVs1RKDk3TDI2f26cyk0GYmDUrlxTtfJhVTwZnpjMZouzJIK5yr0hpT4YklUuyEGvVGXH+3RVhNlSWQJCsCVRxgt8qkFBiEQ2oEkqOWWVliQtPZT0noiXNZIjiemZNyeXlkpKRyZAF7+3iyUpruSR942d7hHJJhsbPEUolAZHrr8dNUi4pFY2fxYwJTfUlfEyifGG2aMGqXFKkPi2Gvicsl0SUVcaPHw9FUdC7d+9MDwVAYDGOoiiYNGlSpodCREnAIAMR5Q2xXEoQMxlSr96jGSY526WxJ0OjSWq/daGaVlldLkkYmt9kElOcgE5tuST55clt/BwbY7kk6/1tSSqXJHs4xAbSpRaBhFKLAESVECiybvyc4kyGKObOzQJgDR7VUE6tY2mMPRkMzUSZyWDMZOgOAKaNnyGUS1IilEoCjIGcpMUYpBkGqW/8HHVPhmwIYBGlmFnCQpPZmzmMrw3Dq5SZDEREIaNGjQoFUsT/nE4nOnbsiJ/+9KeYOnUqDh48mOnhEiWMn/pElDfMMxlUThik2H4hi0GBcYI0mcSeDA2HV93F+yi3sRhrxoMMipjJEF2QIbXlkswyGWI7jlUQKNbHUiyXFOlxk22WBR7iYRdOvVUgodiumAY3xEwGq4CpMciQSCaD8brRhGrNAmA7GvyGxzNvejJksJ6/2Pg5lMlg2pMhjkwG4e+kvauIE4+qrFxSeoIMRIUqrkyGiOWS2PiZqND17t0biqJg/PjxmR5KVvP5fNi/fz8WLlyI++67D/3798eiRYsyPSyihDgi70JElBvMejL4NaDZp1lO9FFixFXKVcU22FPYy8C0J4O4Y5RDKHMEJnplyTCuDP8+NvZkMO6jahrqhZJRVn0mEh6TyaEjlShKJTGTIVJWhWxzsuJJ4gS/VSaDXQkERGQ1sA2ZDBal38TnRSKZDLKrRhOnNevJ8GO9vkRNmUNBmTPGTAZpT4YsiDJIAjKapkkDNcmk+ZqheWp0lwUbP0MMMhwulxRPJkNmezIkP8hgKOUCk0yGxG+ZKOuZvWe3+DSomiYtj8aeDESUTIW0EHDNmjW6vz0eD3744Qe89NJLePfdd7F3715ccMEF2LBhAzp27JihURIlJqs+9Tdt2oSlS5diz549mR4KEeUgsyADYF3LnBJ3oFnsx5DajxcxyBCaYBdLe0R5PEVRTFf+x1oCKNmMPRmMz/MGj2aYFLPKzkiUrCeDw4aYA0vJjEnEHGSQ3HjSejIIx7HqyWC3KaZZF1VCXxOx70Y4sR9CIpkMshdOND8BzXoybBOCDB1jbPoM5FomQ+oH5m/eZbjMFspkKBZ2NstkiKZcknCVVPVkgJqSyUnFJqynijKToYDmPKiAmb1nawgszpGJ9J7AngxERHLHH3+87r+BAwfisssuwzvvvIPrrrsOAFBTU4Nnn302wyMlil9aggx79+7F9OnTMX36dNTW1hq2b9y4EYMGDcJRRx2F4cOHo3v37rj00ktRU1MjORoRkZxJWX4AMKzypuQ6IGQytEth02fAWC7J7dfg9Rsn2mOZDqswCTIUZXB1PiDJZJA8lWVBtNSWSzJeluzzFOskXzLKJYm9FKIhG6YYwLAMMijmYxX7mliVfjNkMiTwcMgzGSI/IGarYsX3h44lsT83ZZkMJm140kpa8isNM9Sq0PRZcZRBcVYE/m0TMxmCPRn0QQYlqsbPaerJoPoDgQadFJRLkjR+TnHSCVHWsmi9YFoySXxPYCYDEVHi7r333tC/q6urMzgSosSk5VP/zTffxF133YX/+7//Q2VlpW6b2+3Geeedh1WrVkHTNGiaBlVV8fbbb+Oiiy5Kx/CIKE94LWac2Pw5tQ4KPRnaxzGJGAsxkwEINH9OZGrPrLxQxjMZoujJIAYZyhxKYivZI41Jcux4zpPV5F4sj6WqaRBf4pHLJSUnk0E2nyxO8JdalAZy2MzHKvZk8GtAo8nq0mT2ZIg3kyHaSf94MhkUBVCEFbJZkckgfRKnIZNB0vQ5VKLJpFySJpRLii+TIbZxmoqiXJKSpnJJRIXKrCcDADSZrNyJuJhD7MmQXYUTqMBMmjQp1GQXAA4dOoQHH3wQxx13HMrLy9GuXTucccYZeO211yIea8uWLfjNb36D4447DhUVFSgtLUW/fv1w6623GsrgiIJjmDRpEgDgk08+wYUXXoiuXbuiuLgYffv2xV133YUdO3aYHkO8L2bmzZsX2m/evHkR75eosbERr7/+Om6++WacdNJJqKysDDUoHjlyJB599FE0NDRIrxtscrx161YAwAsvvGBodjxq1CjddcRzI6OqKl5++WWcf/756NKlC1wuFzp27IgzzjgD06dPh8fjMb2ueN5aWlrwyCOPYODAgaioqEBFRQWGDh2KadOmweczLkRIlz59+oT+7Xa7MzYOokSlpSfDxx9/DEVR8POf/9ywbdasWdi0aRMURcGFF16Is846C5988gnmzJmDRYsW4fXXX8cVV1yRjmESUY5juaTMOdCsP7/tU5zJIFsZ3uDVDL9+Y1mhWmlSXijjQYYoejLUik2fU1gqCZBPYBfHsXQ+WWdWNhcSV+PnJA1IPE6ZxbmxK4ppw2xZ8/Q6tyoNsonnIDM9GaKbXI+16fPhEcAGP/xovW5W9GTIVLkkk6bPgKRckuoOZKLEk8kg/J20IIMtPT0ZDBkT7MlAFGKVySDrEwTE05OB5ZIoO2zevBk/+9nPsGnTptBljY2NmDdvHubNm4e3334br7zyChwO4xTZiy++iAkTJhgmfzdu3IiNGzfiueeew0MPPYT77rsv4jgmT55smFDfvHkznnrqKbz88suYM2cOTj/99PjuZBKMGTMG8+fPN1y+f/9+LFiwAAsWLMD06dPx/vvv45hjjkn5eA4ePIgLL7zQ0BB5//79ocdu2rRp+OCDD9CrVy/LY+3ZswfnnnsuVq1apbu8uroa1dXV+Pjjj/H222/DZkt/cDQYmAGAnj17pv32iZIlLa+eDRs2AABOPfVUw7ZXX30VAHDmmWfi7bffxt1334133nkHo0ePhqZp+Ne//pWOIRJRHmC5pMwRy6GkuieDw6agRJi4bZBkMsQyH2ZWXijSZHWqRdOTQazVb1b6KVlkC/MzGYwR+zEAQKRTYJdsT1a5JHGVmVXTebvN/DlWbDc+z8WAUpA4wZ/sTJboejJEd6xOcWQyAIANOZLJkJZySWImQ3iQoUjcHVC90PyxN342TCgmKTQoTv5raWr8LA0yZOYhJMo4s54MgFW5JP3fhj4thp4MzGSg7HDFFVdg8+bNuO222/DJJ5+guroazz33HI466igAwOzZs3Ula4Lmzp2L8ePHw+12o7y8HA8++CAWLlyIL7/8Eo899hg6dOgAv9+P+++/H//4xz8sxzB37lxMmjQJRx99NJ577jlUV1fjk08+wa233gqbzYba2lqMHTsW27ZtS8k5iIbP58OAAQPwwAMP4K233sLSpUuxZMkSvP7667jyyiths9mwefNmXHzxxWhpadFdd+bMmVizZg26dQt8J7nooouwZs0a3X8zZ86Meix+vx9jx44NBRhGjhyJf//731i+fDneffddXHzxxQCAb7/9FmeddZZphkXQJZdcgnXr1uGXv/wl/vvf/2LFihV49dVX0b9/fwDAnDlz8Mwzz0Q9vmR65JFHQv9mRRfKZWnJZNi3bx8A4IgjjtBd3tzcjCVLlkBRFEyYMEG37cYbb8Qnn3yCr776Kh1DJKI8YJXJUG8VgaCEaJpmKJeU6p4MAFDuVHSNCeslzY9jYR5kSOCgSRBdTwb9hZUmpZ+SRTaBHU/yRLLKJYn9GIDIwSFZA9tUxUlKLdIKHIp542e7LdCQvNnX+voya/4sPi8sKjRFJItPZDyTQdOgCOvqsyLIkLHGz0ImQ0lYkMFmDDJo/hZAExs/R9OTQf930voXSCf/U9CTwcZySURmrDMZ5Bsj9WTQmMmQMFXT0FBAi6PKXYr0O1myVVdX49VXX8UvfvGL0GWDBw/GuHHjcPrpp2P16tX4+9//jptuugnHH388AMDr9WLChAnQNA3l5eVYuHAhTjrppND1Tz31VFx66aUYNmwYdu3ahXvuuQfjxo1Dhw4dpGNYvnw5Bg4ciPnz56O8vDx0+VlnnYURI0bguuuuQ11dHX73u99h9uzZqTkREcycORP9+vUzXH7KKafg8ssvx0033YRzzjkHGzZswCuvvIKbbroptE+w5I/TGVjE0LZt29C5jMc///lPfPnllwCA6667DrNmzQot5Bk0aBAuuOACPPDAA/jLX/6CTZs24aGHHsJf//pX0+MFsxXCSzYNHDgQ55xzDo499ljs2bMH06dPx6233hr3mK2sXbtW97fH48GWLVvw8ssv46233gIQCIade+65Kbl9onRIS5Dh0KFDAGBIO1qyZAm8Xi9sNhtGjx6t2xZ8g9q7d286hkhEecCqtqzZxBwlrt6rGbJIUt2TAQj0ZdgXVqapwasmVC7JrMRQ5sslxd6TIZVNn4HkZTIk68xKMxkiBRlkl6XoobZs/GzRk8GuBHqF7GlqvUwMKAUZejIk8INdVu83qT0Z4nx/sGl+3ZMma4MM6chkaNTXbQ7PZIBYLgmAprqhGcolRZPJEKHJa7zE1c2aXzI5mYxyScJPHQYZiEKsvjebZjIIfxs/LlLQW6XANHg03PLJ/kwPI22eGd0BbYpS/1177NixugBDUEVFBWbMmIFTTjkFqqrin//8J6ZNmwYAeOutt7BzZyCo/8c//lEXYAjq1asXHnnkEVxzzTVoamrCzJkzpRkRQTNmzNAFGIKuvfZavPbaa/jggw/w1ltvYffu3ejSpUuc9zZ+sgBDuNGjR+PCCy/E22+/jbffflsXZEi2p556CgDQsWNHTJs2Tfr9dPLkyXjzzTexfv16PPPMM/jTn/6EoiJJRieAu+++29ATAgDatWuHG264AVOnTsWaNWtQW1tr6CWbDAMGDDDddvTRR+N//ud/cP311yf9donSKS2f+sE30d27d+suDzaiOfbYY1FVVaXbFox+ymriERHJWJZLYiZDyhxoFpv8AW1T3BMACKx8CtfgNWYyxPKTpdJkYj7jQQbhC7XsqWwIMmSgJ0Oyy0rFMk8rBhnsSnzlgpLV+FlkWS5JUVBscu5simLoFWJWLklcdJpIuaR41+ZbTVgFlTkVy0bYVsRySf5sqGmThtWXMoZMhtLuoX9LyyX53YA/9sbP4hlOVeNnTVPT0vgZqrGpI3syUKFKTU8GsVwSMxkoO9xwww2m24YOHYrjjjsOQKApc1Dw34qi4MYbbzS9/rhx40KT0uHXFw0YMACDBg0y3R68DZ/PF1fT5lTYt28fvv/+e6xduzb0X8eOHQEAq1evTtnt7ty5E99++y0A4PLLL0dFRYV0P4fDEXpsa2pqLCuhXH311abbgo+LpmnYvHlzvMOO24YNG/D0009jwYIFab9tomRKS5Ah2BDmww8/1F3+n//8B4qiYOTIkYbrBAMSnTt3Tv0AiSgvWDd+5pRBqhwU+jG0LbIlvR68jNj8ttFj7MkQiwqTEkNFabgvVoyNnyP3ZEh1JoOs+k/yMxmifzTdwpxGVGOR7JKsngyiMstySZEyGfTXNS2XZOjJEMXATEgnXaOY0I+mJ0N8TZ8B7XDj53DZkckgk9qBaZpm6Mmga/xsUi5J0+Jo/GzoyZAc0obMaejJICuXFG/mDlGus+rJ0GSyOCdin5ZUvI6JkmDIkCGW24cOHQoA+O677+DxBILywfI2ffr0CU2sy7hcLpx88sm66yQyBgBYs2aN5b6ptGjRIlxxxRVo3749OnXqhKOOOgoDBgwI/RfsW7B/f+oybsLP4ymnnGK5b/h2q/Nv1ai6Xbt2oX/X19dHM8SYaZqm+8/v92PPnj34z3/+gxNPPBFLlizB2WefjTfeeCMlt0+UDmn51B8zZgw0TcOMGTPwj3/8A2vXrsU999yDdevWAQg0YBEFI5Ddu3c3bCMikvFa1OqoN1n9S4k7IPRjSEepJMAYZGiQpPYrMeQyiCvGgxKZrE0GY7kk4z7pL5eUnEwG2eReUEw9GYRZj2iCDLI9ZM2gkyHexs92mzHDRnysg8T5oIQyGWQVgKK4XjQ9GeINMgCHyyWFyY539fSvg9e89dB8jbrL9OWSZEEGt6HxczSZDBGbvMYrTT0ZpMGMaDDKQAXAKpMh+sbP+r8NgTwGGShLdOrUyXJ7cHGrpmmoqakBABw8eDCq6wIIlTYKXieRMUQ6TipNmjQJp512GmbPnh1xDM3NzSkbR/htRzpv4WWlrMZcWlpqui28tLvfn57SijabDZ06dcIll1yCL774AkcddRQ8Hg9uvPHGjD3+RIlKSy2iu+66C9OnT8euXbtw11136bYNGzYMZ5xxhuE6c+bMgaIoEaO9RERBVhWRzCbmKHEHmvXntn0amj4DsnJJxsc4pp4MJhPzVhPh6SAGOTQE6qSHT/alvVyS5JzEFWRIxmBgLJcU792P72qRZyNLHIFwl2xPu6KgSPJtTEFgQrdCLJdk2vhZ7MkQcVim5JkMka8XTU+GTqXxPzcVQyZDNswES1bBa1rSntsyYhYDANhLuraOSFECTZ3VsKCC6gYMPRmsMxlk5zdV5ZJSlslgizPIQFQA4unJIGa1GcsliWXPWC4pVuUuBc+MljcOzkfi9/lUSeT7fLJ+C2T6N0Ukn376KSZPngwA6Nu3L+655x6cdtpp6NmzJ8rKykKlzCdOnIiHHnoobePK9vOWDOXl5bj99tvxm9/8BvX19XjjjTcwYcKETA+LKGZpCTJUVlbik08+wbXXXqurkXb66afjtddeM+y/evVqVFdXQ1EU/OxnP0vHEIkoD1iVS2r0avCrGuwZLn2Tjw4I5ZIylclQ71ET6rdamsisbArJVqT7VMB1+He7qmmoF8qBtUnxD7aklUuyuEoiPRnizWSwxfH+EM04bYqCEocirXFttwFOyWiCQ4k2k8HQkyGBHhnxZjJYrYoNij+TwVguKTtiDOnPZPA36Zs+K64qKI4S/WX2ImhhQQZZuaRImQyy85u6ngypafwsz5iQ7Ab9o5YNTy2iVLN6z2422Rix8TMzGRJmU5S0NEIuNHv27EGPHj0stwOBCe1gv9BgCZ3gNivBct/hZXfMbiOa7eJxwlfaq6qq+ztcY2Oj9PJoBMsgVVVVYcmSJaYlotKxyj78/kc6b+G9X63Of7YLL+eUyXJZRIlI26d+//79sXz5cmzatAmLFi3CDz/8gPnz56Nbt27S/WfOnInnn38eZ555ZrqGSEQ5TNM0y0wGAKg3WZVFiTkolEtql65MBqEEjazxcyyydZWMLPYRvvqwwWO836nvySDLZEjpTVpyxxFkkPdkSNKAJMpMSiY5TDIZgmMRs1LMgwzZkMkQRbmk0gTKJQnTW9nQk0Feki3FQQaLps9Bir1YPyJJ4+fImQzGy5JWLcnQkNmYyZCMxs+Kon9xyXoyyCT2aUKUG+LJZIjc+FkMFjKTgbJDdXV1VNv79esHlyvw+Xj88ccDADZv3ox9+/aZXtfr9WLlypW66yQyBtlxwhsfB8s5yXz33XeWt2Hlm2++AQCcccYZlj0oli9fbnmcZPymCr//S5cutdx32bJl0uvlGp/PJ/03US5J+9KCPn36YNiwYejdu7fpPieeeCKuv/56XH/99XA6I9eLJSKKpkwH+zKkhrFcUpoyGYSJ9EavCnFyLzvDBrExy2QIkk06p74ng/GyeDIZksVQLineTIY47kK0U5GlspMG854MwawrMZOh3qNJy9gYMhkS6skQXyNcfxRvsZ3izWTQNNg0/Q+uaN73U06a9pHagYnlknT9GEIX6vsyaP4WaGpsmQyyhzNlPRmgSm4xBZkMqvxHu3E1duI3TZTtrN5Dm8wyGSL0aTEG8pjJQNnhhRdeMN1WXV0dahg8evTo0OXBf2uahpkzZ5pe/4033kBtba3h+qI1a9aEghEyzz//PADAbrdj1KhRum19+vQJ/dtqkv9f//qX6bZIghPbVtkQK1eujDjpX1wcWOjgdrvjHku3bt3Qv39/AMDs2bPR0NAg3c/v92PWrFkAAhkYAwcOjPs2My38cbXKuiHKZmkpl/SnP/0JAHDHHXegQ4fo6gvW1NTgySefBBCo+UZE+emHWi/mbWs5PEEcv2gmm15c14AeFXaM7lmCbuXRvf35VQ0fb23GwRYVP+tVgk4RVuHubPDhvz82o86kbno4RQH6VjpxTq+SnC3jpGmasfFzhjIZatyqYZIzS5MTYiIrTbS7yR9a4V4rBBnKHEpCE8zRjSn1PRm21fvw5MpaOG0KBnUuwpAuxma2AHDIreLFb/U/POINMthT+IQpM0ktsCuKNEATymQQSl9pAP5vZZ0hU2FrvX7yNNGG5WL5mFfXN0QsKfbFzsg/JjuElVPTVC+avn0K3gMrQivH7WU9Udb/LtglE+diT4Zpq2pxbf8KnNWzWDfRte6AB4t3uk3LfXQsteO83qWmzd5jYzwntYtvDvREENgc5SjucwWKuhp7kUXSvOUNuLe/D031wHfgK9026bkSmj83rvkr/M07sco1Futco+FCE36q+tFWcluapmHBjhYs3+MxbEvadKGQpdCy9U1Dz4hUlEvy7l+GmnlXoPyEB+Bsd0LrbsLVnlpdj/P7lGDUEcVZm+WWTr66TWj6bgbspd1ResztUKJoGk7p4969AC2bX4PqrTfd5wd/LyzxDkaLFpj8sxW1x27bkab7N0kyGaQB7t3zcejrf0HzBxrA+mr0JT4UsS8KUYa8++67mD17Ni6//HLd5Q0NDbj11lsBBEoSBf8NABdffDG6deuGnTt3YsqUKTjvvPMwYMAA3fW3bduGe+65B0CgsfANN9xgOY4JEyZg3rx5KCsr013+6quv4v333w/dbteuXXXbhw8fDofDAZ/Ph8cffxxnn3224fPpkUce0a3qj1W/fv2wfv16fPHFF9i4cSN+8pOf6Lbv27cP1157bcTjdO3aFevXr8emTZviHgsA3Hnnnbjrrruwb98+/PKXvwwFYcJNnjwZ69atAwDccsstKCqS/17Idlu3bsVTTz0V+vv888/P4GiI4peWIMOkSZOgKAouu+yyqIMMBw8eDF2PQQai/FTT4seDi2uQqgSDUqEG+tf7Pfh6P7BwRwueOrNDVCuvX1nfgLmbAz+cPtvWjH+cZX49t1/DxC9rDPXxrSzc4cbBFhXX9C+P+jrZpN5rLFOVqZ4M0dSDz0WyCf2Ji2vw6vkdYVOUtDd9BuSZDMkOMtR6tNCk9efbW/A/QypxcifjD4epyw4ZHntnnEGW1GYymJRLsgHFFkGGCklWypJdkSfzEw00KYp+Qf5Xe40TzrEqdyq6jI76Ff+Dxm/+ZtjPvW0OOlz0teHHs1guye0Hnl1bjwavip//JPBj/cc6H/689FDEwPOa/R5MGZGMur3G89yy5d+mezd9/yw6jF0GZ/voV9o1b30Th+aNM90uy2QQyyV59szHatcYzKp8LnTZ0jovHm/yG0pYffJjC55dK5+sTFb8UiyX5Dv0jWSnFDR+BtCyZTZafnwLnS77EfbSLtKr/Vjvwz+/rkezT8P5fUoTH0cO03xN2D93KDR3oAa3v3Er2gx5LMOjoiBvzRoc/Hi0MUgXZp+9D/5W9Rf4lLD3BR8AmJcPa/RpgSb2Ye/DsiStuiW3osRvNZHITAbKDoMHD8ZVV12F+fPn47LLLkObNm3w9ddf469//Ss2bNgAIDCpfcIJrQFol8uFGTNm4IILLkBdXR1GjBiBe++9F2eddRbsdjsWL16MqVOnYu/evQCARx991HK+a/DgwVi+fDkGDx6MP/zhDxgwYABqa2vxxhtv4OmnnwYQKIv06KOPGq7bqVMnjBs3Dq+99ho++ugjXHjhhbjzzjvRuXNn/Pjjj3jppZfwn//8B8OHD8fixYvjOkfXXXcd5syZg8bGRowcORL/8z//g0GDBgEAFi9ejL/97W/YvXs3hg0bhi+//NL0OMOHD8fnn3+O6upqTJ06Feedd14oqFJSUoLu3Y1lHmVuu+02vPLKK/jyyy8xc+ZMbN26FXfccQf69OmDXbt24fnnn8ebb74JADjyyCPxv//7v3Hd73QJZssEqaqKAwcOYOHChfj73/+OAwcOAACuvvpqnHTSSRkYIVHi0hJkICKSWbXPk7IAgwKgS5kdP9QaSyPUeTRsPOTFse2t61EDCAUYgEDN/8+3NeOc3vIJh/UHPTEFGIKW73HnbJDhkCRjo20aJrkBRLUKWTZ5a+WMHsX4fFtL6O/j22d+tabTFpiIDp9I1wBsb/CjZ4UDDcJzrsJkMjuZSiRRhjKTckBW+lRG/zVkxR6PIchwsMWPzXXG17iY5SLTpcx42/FMoA7uXIQPt7S+T5g95cxKWJU4FOm5Kz6ciuCwKah0KaiN8b2lJMFG5kV2Bc2SRtWJEDPBWrbNke7nO7QWatMO2MuOaL1Q86FIk6fKV+92h4IMa/Z7osps23jIh3qPKg3ixEJxxDgBrfnh3vnfmIIM7u1zLbfbS40p9YqrreGyr4vG6P72wol1Bz0YWapvGr1ij3kQK55goozirIi8j6Ms4j6R2Bwmt6N60bBmKipPeQJA4LOiUfJ8X7nXU/BBhuatb4YCDADQ+M3fGGTIIp6dn1oGGADge+dp+gBDFFQtsHimOOyzRNbCwRahz4nizM3vt5R/Zs+ejbPOOgvTp0/H9OnTDdsvvfRS/O1vxoUPY8aMwcyZM3Hrrbeivr4eEydONCyCtdvteOihh3D77bdbjmHMmDEYM2YMJk+eLM14aNOmDd59913T0uKPP/44li9fju+//x7vvfce3nvvPd32K6+8EjfffLNlySYrl112GW644QbMnDkTO3fuxC9/+Uvddrvdjscffxw1NTWWQYbbb78d//jHP3Dw4EHcd999uO+++0LbRo4ciXnz5kU1Hrvdjvfeew8XXnghFi1ahM8++wyfffaZYb/+/fvjgw8+QHl5dr/fiFkwMldccQWee+65iPsRZausXVrg9Qa+LLEnA1H+2t0YXQPGeAzuXITRPUtMt8fbn2FbvfmY9zfHd8xoSitlqxafsRZ+qkv1BFW4bDipo3mgqGeFHd3KY0vTH92zRDdJfEYP8+dQutgUBadKSgUFnzdi48Z09EY4qq1T13ujbZENx8URkBnSpQhdy6J7jGT1oc0aU57aLXKqdK82DhxT1TrmM3oUx1Vv/qIjS3UT+nef3Ea637BuxYY175UuBce2d6FvpQNdhAn44V1b78Np3WObHGrjUjAgiiCqlfDbT5aRR+jvhxo2cSkKlt4I/e2tx8nud6T71oS9h4pNwK2I71/xsBVVwdXt7Jiuo/ljq1GseeXBFQBQnJUo7nGB4fKSPlcaLjtg72m4TJYB1mBSvvCEDk5DL5x4Ffe61DJTwdl+MOzlvRO+HVeXkbCVyLMVvAdaG2wOM3nP8GRDd/EM89dtNFymic19KWPE90oZb4wBhiDxM1b2alAs8/kUFPc2z8IiSqc+ffpgxYoVuP/++9G/f3+UlpaisrISP/3pT/Hyyy/jjTfegMMhX/xy/fXXY/369fjVr36F/v37o6ysDCUlJTjyyCNxyy23YOXKlbqJdCuTJk3Chx9+iDFjxqBz585wuVzo3bs37rjjDnzzzTcYOXKk6XU7d+6MpUuX4g9/+AP69euHoqIitGvXLnQfXnvtNdjtiZUoe/755/HSSy/h9NNPR0VFBYqKitCrVy9ce+21WLx4MX71q19FPEb37t2xbNky3HTTTfjJT34S6tEQj3bt2mHBggV48cUXce6556Jz585wOp1o3749Ro0ahWnTpmHVqlXo1atX3LeRKYqioKKiAsceeyxuuukmzJ8/H//6179ytuQTEZDFmQyrVq0CAMuu9kSU2/Y06Sfsj6pyon+7xAOLnUvtOL17MVx2Be2KbdhQ48VbG5t0+zSYTE5GIk7ohtvfrL8/3cvtGNzZ+CWhwaPi07DV8o2+QCPXpDXUTKMWYUKvOMHV07H6zcBKLNzRgn3Cua8qsuG07rFPGv+krRN/HlGF1fs8OLLSiRMsghjpdNsJbfDFzn26y4ITgV7hOZmOIE+xQ8GfR1Rh0U43NE3DsK7FcWUy2BQFU0ZU4YsdLagssqFXGweW7nKjyRfINvrmQOvqTNmqetllk4e1xTHtonvcHjilLRbsaEGRTcGI7vF9oW9XbMf/O70dVuxxo2cbB44zmdw/oYMLk4dV4ev9bnhVoMypYFjX4lCGw+ThVVi0swV1bhW92zhwStgk/zX9y9G30okf6+VNa8OFjptgRtGNx1fgmHZObG+ILhi8o8FnqOFf7lRwVs8S2AD0q3JikPB+qFnUD4cwial6ajGyeQY6+Lfii5LxWO86M7St1q2G3kPFqc+uZXYMPRyke2eT/nNAfO3Eq+qM/6Dlh1fha9gs3d6y9S346zaEXRLb7YpBCVfnn8LZaThszjYo7n0Z7GXGsgOlx9wJe3lvePZ9GTqXNXuPNfRWlp0C8XXVscSGi44sw+lxvkZkirqdhfbnfQH3jo+gqfr7Zy89AiV9r0pKLwRbURXaj1mCfW/0lmxtPf4Nx1Xg6ConXljXoPt+oDLIAFtJZ8NlmvsglOLoSuBSaomNlu1t+gWCeGEcjQOBsLfb9v6tOOlw0LbsuN/C6XDhuPYu/GnJId31mnwa2scwFkf7gSg6HHRVbC4UdRsNV+fTYzgCUWpVVVVhypQpmDJlSszX7d27N5544omkjOOcc87BOeecE9d1q6qqMHXqVEydOlW6fdSoUdBktc0OmzVrVqhRsplrrrkG11xzjen2SZMmYdKkSZbHOPLII/Hss89a7gPAcqxBNpsN1157bVT9IETRjBWIfN7iFW3WBlG+SEmQ4cUXX5Re/s477+g6psu43W5s2rQJzz//PBRFwZAhQ1IxRCLKAmKQ4fTuRTi7V3LLEpzcqQgndyrCD7U+rN7XOgEWb6Npq4WvYibDCR1cuOoYY9rmwRa/LsgABIIeYoPXXOAWTkiaej633p5Dwc96JTfboG+lE30rsyuLzmlX8JO2Dmw81DrJHCzNJa5ETrThb7TaFdtxQd/EX69lTpuuBNnFPwl8NfloS1MUQQb9na8qskUdYAACWR9WGU/R6lRqx3lRlFQ5up0TR5sEUtsW2TDG5Bg2RYk5myFRDpuCnx4R/bn5cpexUfDp3Yul74HA4Ylz1bzPgzhxpnnroAA43vMRjvCtxqT2q0Pb/BrQ4NHQpkgxTAr3buMIjWHOD026SfVkrVK3OctRevQE0+3+uo36IEOsP2KFSfiiHmNRfvy9lldRFAXFPcaiuMdYAIDHr6H2w32W1wkSX2s3HFdhCBAlg6vTMLg6DUv6cUWO8l6ArchwHpWwTIrg892vAf/8unU2luv1Aw2CRf7mXbAxyJAdVH3w2Vl1AtoMelh/2aZGYH1j6O9Ovu9xQWNgkrXjEdfD0aYfgECZvfDXv/hdOVImg6vTaYbbJiIiosKRkiDD+PHjDauPNE3DH//4x6iPoWkabDZbVOlYRJSb9gjlkjqXpm6Gukyo0W5WZiUSv8Xk0IEW/f1pXyK/PxWSFd8NHtW0Zns2EzMZiuy5dx9yhfi8CWYyiNk18TY9zjZiT4FoMhnSnUlDrRwxrjpXvXXWOwhBBtVTG/p3hbrfsPsht4o2RTZDP4bwl4PTFmgWHZS2ZvGGc5NYJoNii33CX8y0C1Iln2liGalE+3tkBWlpJuNl4tunn1EGQDF+l1GbdwNVkWtLUxqIPRFkj5f4vhgWPlObdwOHgwylQpChSSyXJH3rar1QsWVtkQQiIiJKg5TNBmmaFvpPdpnVf06nEyNGjMC7775rWZOOiHJXg0c1NFlMaZBBWN4dd5DBYsJBzGToUCJ/i3XaFUPzzHgaRmcDcTKKk7ypI9ZCbzjcV0Sce09XJkOqlQh3JJogQ15MhuYoWWzLKu6geSIEGVQxk6E1yGCHD+U2fR3yYBN6w2Ra2CDEAJwnhv4NiUkwyCCswIc99iDD3qboyl5pmoYm4XVVmgevK0UWZJBcZheetGl7imQ14xcff/PuDIyDZMSsr+iCDK3ZD/6mXaF/l4oLcgyfu8YXhK4ng+S2iYiIqHCkZLnB5s2tNWk1TUPfvn2hKAo++ugj9OvXz/R6iqKguLgY7du3T7hhDRFlt93ChIdNATqYrPxPBjGTwayxZSRmmQyqphkzGSxqB1W4FLibW48V73gyzdCTgW/dKVNueA4Hzn0mejKkgxiwapEsO2eQIXvI+o1bPRqW/RgAiBObYlCirb0FDWprOaeawykK4nu0XZfJoCB8kixZPRkiE85ErOWSkpDJsK9Z/hkjjsTtN16WH8Hj6KJg4vNYlulRcCRNntWwiWnKMCHIoEQVZGi9jhoWMAosyGnd1hRjuSQGGYgon+zYsQM1NTUxX6+srAx9+vRJwYiIsl9Kggxmnd27deuWk13fiSj5xH4MHUtsKZ0cTVa5JLPyGnUezbDNLJMBAMqdNl3mQ64GGdwsl5Q2FWImQ6hckn6/WMvWZCsxYCCurgYYZMgmthjfvyOVSxJX56phmQwAUOn0Yntryw6LTIbWf4uV6nK2XFIcmQz7TMoliXPosmBeaT6kR8VbLokxBnmQgZkM2UPMZJCULBKDZUrYYxqelSJmMoifuxHLJTHIQER55IEHHsALL7wQ8/VGjhzJhs9UsNJSOFFVc3PyjIhSJ539GIBAc9lwcTd+Nln5Kta7tiuBRq5mxFXpLJdEkZg9Z8TV2M48+Y0vBgy8auD1Fx6MZJAhe8SeyRBjuSSPGGTQv4fXmgQZwsvfOIVBJqvxc2RCn7IsKpckjkQWzMuL9/VoyyUJUQZmMkAaZGC5pCwSV7mk8EyG1qyUeBbk6DMZ2JOBssukSZMwadKkTA9DV0KciCif5cHSJCLKRWImQ+fS1P4wESdo485kMLnaASHI0K7YpqsFLjKsSvfkZjDWEGSQzTRSUhh6MhRYJgNgfL4ZG9Tya02mSIMMFs/FiEEGoVySmPnQ1qXfu+ZwkEEsl6TPZBACV+lapi6eB8mkraWklEuKMpNBOCd2xZgBkpuMz0VZnwbxEmYyAJqkJ0P4xDRllpj1FV25pNaeDOFZKWLWklguSfbOpYRfasuTVQ5ERABmzZoVdV/Z8P+YxUCFLG0/G5qamtDU1GS6/cknn8Tpp5+O/v374/zzz8ecOXPSNTQiygBjkCE3Mhn8ZpkMLWLTZ+v7Uy6Mpz5HyyUZejLkw4rXLFXhlAemxOya/JgQlAcZxMyFJiHCwkyGzLEKqsqokXoyaNaZDG2FBjCHWmIvl5S+t93EejIkpVxStJkMQgC+1KFYBotyhjSwY7xfNuE5krZkl2zGTIbsFlUmgxB8DctksGr8bMhsYrkkIiIispCWqYg5c+agoqICXbt2RX298UfljTfeiF//+tdYvHgxNmzYgI8++ggXX3wxHn744XQMj4gywBBkKEt1kEHIZPBpcaWumq1qFDMZrPoxAIHGz+Ea4sysyDRjT4Y8mIzKUuWS54ymaYZySWK5j1xVZFcMU4BikIGZNNkj2eWStLBySZrqh+Zr0G1vW6yfaD8UymQwH5chkyFNM8jGZ3Ji5ZJiDTK0+DTUmpTkEz8GxddY3gSONZ/xMlm5JCGgwkwGGCexwZ4MWUWNIsgg/G0LCxwZGz+3ErN+pY2fw99EGGQgIiIqaGkJMnz00UfQNA0XXnghKioqdNu++OILzJo1CwBQWlqKk08+GcXFxdA0DRMnTsTatWvTMUQiSiOPX8NBYeV/ujMZVM04mRIN854M+vvTvji2TIa8KZeULxNSWUh8zvgPP4fFckn5kslgUxTD80l8zbInQ/aQl0sy31/zRF8uSZNkPbQrLdH93dqTwTzo5hIG6ZUv7k8+w2R2YpkMiLFcktgzSD+SwihBpqle44XSIIP+b5WpDNJMBs1zCJqvOQODIZFYLkk20e8XHkIlvCeDe18oqGvMZNBfURpk0P3BngxERESFLC2/HJYsWQJFUXDGGWcYts2YMQMA0K1bN3z77bdYsWIF1q9fjx49ekBVVTz99NPpGCIRpZGsAWXn0tS+HYk9GYD4+jKIE7pBB1rETIYIQQZhVXp9jmYyGMolcSV5yojZL0Agm0EMfDnyJJMBMD6fmoWZEgYZsoctxued2GPBIGziTPXWGja3LSvT/d3o0+Dxa5La463E+fJ0ZTIkWi4JCWYymPVjAGSNn/O0BJksk0HyM0h8GjOTAaY9RPzNe9I8EJISntuKpC+CVeNnaCrUlr0AJEEG8bspyyURERGRhbQEGfbuDXxxOfroow3bPvzwQyiKgrvvvhtHHHEEAKBHjx64++67oWka5s+fn44hElEaiaWSKotsKE7xaslih7FgRTx9GcwmHMRMhojlkvIkk0Esl8QgQ+oU2xXDKtsGryrJZMifx0Cc4DSUS/IzyJAtZC99qzl8WXaCbnt4uSSPGGRQUFVWbrjOIbdqeI8Or7GfqXJJxpSO6G9XU32GSd5YGz/LAvuh40do/Jw3rynZRDnLJUVFMwkysGRSloimJ4PwnmMTCigFH0tDuSThM1eeyRB2KRs/ExERFbS0BBn27dsHAIZSSd988w32798PALjooot02wYPHgwA2Lp1axpGSETptDvNTZ+BQOkVsS9DPH0Q/JIVqF6/FqoHHhSxXJJLaPyco0EGlktKH0VRpM8bcaI0T6qbADBOcIrPN7EpZb6UdslF8iCD+XtspJ4M4RNn4r6Ksw3KnHZDabBDbtVQFiS8IbWhXFKmGj/HEmQQSyUBQMyZDOZ3VBxJszdPgwwSiizIYGj8zCiDsaL/4Uubd0kvp/SKplySGE+1C+8hwUbexkyGyOWSdJeyXBIREVFBS8uvcbs98GXn4MGDusu/+OILAEDHjh0NWQ5VVVUAgJaWljSMkIjSaU9j+oMMgLEvQ1yZDJKriKWSgMiZDGL5Jo8a6FWRa8RVr0V5PCGVDcTnTYNHg9haJJ/KJYkTnGJQoSVfS7vkIHEFOGCdyRCxXFLYxKYqZDIorjZQFAVti/Tvs4fcqqHHQHhcIWPlksRzE8vEtWoMMsRaLimWTAZj4C6fX1PG+ya+fbIlAyzKJTGTISsIjZ8VyUS/oVySU9/TJhgwEhfjeMXvppL3LoXlkoiIiOiwtAQZunfvDgBYtWqV7vK5c+dCURScfvrphuvU1gZ+UHbo0CHl4yOi9BLLJaUvyKD/8RRfTwbjdQ60GCc6SyN0361wGbc3pG9ZbdIYMhlYLimlDGW2vCq8/sLMZPCrGtx+6/0pfcQV4ECEckmRGj+Hl0sSejLYnJUAIAky+CWZDK3/donlktIW2E1uJkOs5ZJi6cmQt+WSpIyfuTZJuSSt0LMZWC4pu0WVySB8T3CIQYbDmQySLxDhgcfImQwMMhARERWytExFnH766dA0DdOmTQuVR6qursaHH34IADjnnHMM1/n2228BAF26dEnHEIkojcQgQ5c0BRnEVeBxBRkkV9kvTOC0L4781lrmNPaIqPfk1kSGqmmG7AsGGVJL1jBcLOGVTz0ZxF4t4T0ZxMlQIN8nRLObODkLRAgy+CL0ZAhv/CwEJBRXGwCyIIOkJ0PYuMTXRvqq1OlvN5ZJ66SUS7LKZBD+Fhu95vNrSlONzaBlH2G59cmcAqaZDCyXlA0M5ZKiafwsBBn8TYHHslTyeg8vmRSxJwODDERERAUtLUGGO+64AzabDZs3b0bfvn0xePBgjBw5Ej6fD1VVVbjiiisM1/nss8+gKAqOPfbYdAyRiNJE1TRD6YbOZblTLkmWyWBs+hz5/sh6RORaXwaP3/iDkz0ZUqtc0jBcfBrn00MgTng0h5VHEptAA/k9IZrtpD0ZLKZnxcCB7NpB5pkM+vfaQy2qYcVu+LjEBDPZ+3lKJND4OdFySc0+FfUWAXVj42cxMy+PUqNEWnRBBlmZxEKimfZkYCZDVtDEckmRgwwOZ6l+++HH0mlXICbaRl6QE974mT0ZiIiICllafjkMHDgQjzzyCBRFQUNDA7766iu0tLTA6XTimWeeMTSErq2txdy5cwEAo0aNSscQiShNDjQbV5pmqlxSfI2fjZeJPRki9WMIEieM4wl6ZJJsJTkzGVJLLLPV4FUNE6X51JNBDFqFBxZkQQYGuTJH3vjZfP+IjZ/DyiWJ/RsU1+EgQ7Exk8HQ4DQ8yGBo/JyeIIMxby2RTAYlpuaq+5oifa7oxyK+rvI5cCfLZJBl5ORgu6TkYrmk7BZP42dnme7v8P4aYrnPxrDgviwJiz0ZiIiIKChtyw1+85vfYPTo0XjjjTewe/dudO3aFb/4xS8MDZ8BYN68eRgyZAgAYOzYsekaIhGlgVgqqdiuoI0rPZMYhkwGX+yT+rI5qQNCJkP74uh+ZJW7FKCp9W+r1abZSGy6C7Dxc6qJJb/qPZoxkyGPFh6LE5xWQYYiuyKdIKT0iKVckqap0LzW5ZLCJ840j5jJYF4uSQyyWZZLMq8ilGTxN37WxEwGexGUGJ7nVv0YZEMppCADVK/hov/P3pmHx3T2b/w+M5mZLLInSFBB7ZTYahel9rVFf3QRraUoRemi2lerLW+9uuCNWlqhXoqiKFr7XsS+q5ZQa4gEWSfJnN8fYyZznrPMmclkkky+n+tymZz1mTNnzpzzfJ/7vqWLZTykQqJLDXJ2SRlkl1QscCKTQasrI5xvY33l68Uh1eayk2lzb0p2SQRBEARBKOFWTWP9+vVRv359u8v17t0bvXv3dkOLCIJwN6LQZz+tQx0mBcEVwc9SsJkMapUMbIhvSbNLYkN3OUAksydcSxkVSgZPymRQCn7OzBUHrhNFhyNKBj43HWx3FacPBm9MyV/G1i6JKTJYlAzBEkWGEEbdYPt1KJF2SYySwdHQZ9aekIVtSakqMqi1SypZ9X/XI6dkyLoLnjeB4+iHvygRZTJIdPSz57C4yJCvZBDdK0uFkQlboLhvgiAIgiBKD3RXSBCEWxEVGdxklQQUjj0Rz/NOZTIAEh3GJazIkMU8eHp7cW4rGJVW/FnLLyMPVlDiSXZJjigZPLoztASglbijZEfPWpBSMWj0QczKCnZJTzIZAlUEPwszGdjgZ3f1HhfELilLuCVHQ59JySCLpF2SxPXTbadJsUXm3sSUAz47RXoe4T6Y81hVJoNeWGTgc9NhykkDoJxfJmmXZDORo0wGopgRHx8PjjM/nyQmJhZ1c6zs3r3b2q7du3cXdXPcSmxsLDiOQ1RUVFE3xeMpbud/TEwMOI4jS3wPp8juBHiex5UrV/DgwQMAQEhICKpWrUodVATh4dxJL7oiQ2EoGTJyeVE2QajKIoM/YxNV4uySmDRMA+UxFDrsw/9Dozhalx2tXZJhQ2epyFB8kTr6skoGidBnji0yKNkl6aXtkvJ44GG28LokUDKIMhmk2+dy2HtbR+ySWCWD1tuhXSfZyWSwbYmJ50XFYwp+BvIc+Lw8EV5GyQAAeZm3ofEOdWNrCBFOZTIEiJfJvA2NrrrotzTDjl2SvX0TBEEQBFF6cPuTw++//46ePXsiICAANWrUQPPmzdG8eXPUqFEDAQEB6NWrF7Zu3eruZhEE4SaKUsnAdtCmuaCHiVUxcABCDOourSU9+Jm1S6LQ58KHDX6WCj/2JCWDKPg5j4oMxRWpQSJyRQZWmQCtt7jznLdVMjB2SU+UDGyRAQAeZAmvo1pBJoNw2Ry3+eAUQMkgkcngCHaVDDavs/N4Ucs8+XvFS2QySF0+S72Sge3EtoHCn4sekV2ShJpAlMngpQen8xcu8+SzZAfkZNixS6JMBoIonkydOtU6ip0gCgtSphAsbisyGI1GDBo0CN26dcPmzZuRnp4OnucF/9LT07Fp0yZ07doVgwYNgtFodFfzCIJwAzzPS2YyuAspJQNfwBGKbB5DkEEjGi0rh1SIb0mCDX5mO4QJ18OqX6TwpIHHvmyRwaYQR0WG4o+8XZKwyKDRBQCMr7vt6GnJ5WEuqLEWYuweNTabZe2ScorKLsmR350CZjLcY35z2RwL26ZIFS09+nslYZekleiMoUwGJSUDFRmKHKbIoMYuScMBGp/ygmmWIG9FuyTpBijumyCKktjYWGtfE3WCEkTRsnv3bvA8X+oswkobbrNLGjRoENatWwee5+Hl5YXnn38ezz77LMqXN9/g3LlzB0eOHMG2bduQk5ODlStXIjc3F6tWrXJXEwmCKGQeG3lRJ0b5IsxkMPFAVh5foE6U5Czhw12oytBnQDwqvaQFP7M2UaRkKHzYc1gKj1IyMOeU0QTkmXhoNRwVGUoAsnZJTCYDpwsQd07ZKhlkgp8Bcy7D4xz5kda235jiYpfEy3ncSyC2S1JfZEjPMYlCW8v6apGSLd1pWNqKDLyEXZLU5TOvtEsZFIoMpszbbmwIIYkTdkkaDtD6lEfeo8v5yzwpGLHFfYFdkkSBVKBkoEwGgiAIgijVuOVOYNOmTVi7di04jkP79u3xww8/oHLlypLLXr9+Ha+//jp27tyJNWvWYPPmzejWrZs7mkkQRCFzhxlRqeWAUG/3DbtmlQyAWc3gI3MlVKNyYO2SQr3VF01Ewc8lzC6J9e42eHBnVHFBr+Wg15g72+XwpI/BV+I7m5nHo4yGEwePSyUPE0WKWrskTucv7hh70nHG87xEJkN+kSHIoMGNNPkig9am11hkl1QClAwFsUtiVQwcgDAfDS7ZZPXa/s6xRQadxrOKliLILkkVSkUxsksqekR2SZJFBsYuieOg8YkQTLOoUtjfXVu7JKmvAtklEQRBEARhwS1P5PHx8QCABg0a4LfffpMtMADAU089hS1btqBhw4YAgMWLF7uhhQRBuAPWKincRyvoACpsfLw4kTO2Use+XL+C7cMaa5cU5oCSgbVLSnOBfZM7ySYlQ5HAKmBYWEuYkozUOWUpLmQydl1SBQmiaJG7ukrbJbFFhidr52WJAno5m9DSYDuFaoGSgbVLKgGZDAWxS7rHFMFDvDWiY6CkZPBkFQMASbskDSe+TyjtRQaySyrmmFTYJTF/S9klWVQpfl4KdkkS3wXOZutkl0QUN+Lj4625BImJiaL5x44dwxtvvIEaNWrAz88P3t7eqFSpEho3bozRo0djw4YNis9mGzduRL9+/VCxYkUYDAaEhoaiRYsWmDFjBtLS0grU9kOHDmHKlCmIiYlB+fLlodfrERAQgDp16mDkyJE4f/684nv+5JNPrNMsx8D2n9TxyMvLw5IlS9CjRw9ERkZa31Pr1q3x1VdfITMz0267L1y4gNjYWFSqVMl6PAcNGoSEhASnj4U9du/ebX1fu3fvhslkwsKFC9GyZUuEhITAz88PDRo0wPTp05GVlWV3e2lpaZgxYwZatGiBkJAQGAwGVKxYEf369cOvv/6quG5MTAw4jkNMTAwA4NKlSxg+fDiqVKkCb29vREREYMCAATh06JDq96OEZbmpU6fafV8sJpMJO3fuxMSJE9GqVSuEhYVBp9MhKCgIDRs2xMSJE3H9+nXJdS2ZH0uWLAEAXLt2TfI8s4U9NnLs378fr776KqKiouDt7Y2goCBER0djypQpuHfvnux6Usdt1apV6NChA8LDw+Hj44OaNWvi3XffxYMHD9QfKMIh3KJkOHToEDiOwzvvvAOdTmd3eZ1Oh4kTJ+KVV15R/PIRBFGyKMo8BsDceeCr45BuI/22fa2WXBOgf9L0ZCZkNNRH/Xvyl7BvyszlS0xnqWgkuad3SBUT/HQa0XlniycN6Jc6pzKtRQYqchV35DIZTEZGyaAPENkCWUbnslZJ5uVtlQzK11zbTAa9KJPBPJK/sEMROY79UjqvZHDELikpU1zYZ9+qcpHBgy4mEkjZJQHma6htDTOvBBX/CwUlu6QMsksqcgpglyRYRoWSQaYBNvsmuySi5PD1119j4sSJMJmE17gbN27gxo0bOH78OOLi4vD48WOUKVNGsExWVpbVDtyWBw8e4NChQzh06BDmzJmDTZs2WQfPOkJ8fDyGDBkimp6Tk4MLFy7gwoULWLhwIWbPno1Ro0Y5vH0prl+/jl69euHUqVOC6Q8ePMCBAwdw4MABzJs3D5s2bUKNGjUkt7Fq1Sq89tpryM7Ov3e5ceMGVqxYgdWrV+O7775zSVuVMBqN6N69O3777TfB9NOnT+P06dNYtmwZduzYYbVtZzlx4gR69OiBW7duCabfvHkTa9aswZo1a/DCCy/gf//7H7y9vRXbsmXLFvTv3x/p6enWaXfu3MHq1auxZs0azJo1C+PGjXPujbqATz/9VFCMsvDw4UOcOnUKp06dwrx587Bs2TL07du30NtjMpkwduxY/Pe//xVMz87OxsmTJ3Hy5EnMnTsXq1evxvPPP293W6+++iqWLVsmmP7nn39i5syZWLduHfbt2yd7HhDO45anB0u1qU6dOqrXqVWrFgDg/v37hdImV2M0GrFo0SJ07twZERERMBgMKFOmDGrWrIkhQ4bg4MGDRd1Egihy7qYzRQY35jFYYNUDSkUGudGLthYbyaySwQH7J6kQ38dOFD2KCjaTwUCdvG5BKfxZy5mLaZ6ChuNExQO5IoPHj7ougbgik4HPERcZNDZKhkCD8jXXNsiX7TPn4aZQX1HPvgNFBqb4AkeUDKx60Fcr1lQIgp+FHS0e/52SUDIA5uuoLRT8THZJxRq2yKBRUWSAvF2SOPjZAbskiX0TRHHk9OnT1gJDlSpVMGvWLOzYsQMnTpzA3r17sXDhQgwaNAh+fn6S6w8ePNhaYGjQoAGWLl2KhIQE/P777xgyZAg4jsOtW7fQoUMH3Lx50+H25ebmIjg4GLGxsfjhhx+wb98+HD9+HL/++is+/fRThIWFIS8vD2+99RZ27twpWLdPnz44c+YMRo4caZ125swZ0b8KFSpY5ycnJ6N169Y4deoUDAYD3nrrLaxevRoJCQnYtWsXPvjgA/j6+uKvv/5C165d8fCh+N4sISEBL7/8MrKzs2EwGPD+++9j7969OHz4MGbPno2wsDCMHDkSJ0+edPh4OMKUKVPw22+/oVOnTli3bh2OHj2KdevWWTulz58/j549eyIvT2y1efPmTXTo0AG3bt0Cx3EYMmQIfv/9dxw9ehRLly5FgwYNAABr165FbGysYjtu3bqFQYMGwcvLC1988QUOHjyIgwcP4vPPP0dAQABMJhPGjx+PX375xdWHQDW5ubmIiIjAqFGj8OOPP+LAgQM4duwYfvnlF7z77rsoU6YMMjIyMGjQIFy4cEGw7qhRo3DmzBn07t0bABAZGSl5njnC+++/by0wVKlSBd999x2OHDmCXbt2Yfz48dDpdHj48CF69OghKoaxfPTRR1i2bBn69OmDtWvX4tixY9i8eTO6d+8OAPjrr78wfvx4h9pHqMMtww38/PyQmpqK5ORk1eukpJgNY319fQurWS7j2rVr6N69O86dOyeYbjQa8eeff+LPP/9EfHw8xowZg2+//bbQR8wRRHFFpGQogiKD+eEp/4E53YkcBEs/jInnRSPKwxxQMhi0HLyYEZOPjaYiOS7OIPbEp2ubO1AKf/ZE/3QfL05Q0LJ0hFKRofgjX2Rg7ZL8kccqFp50bLL5DdAYBKP5g+0UGWy/EnqJa1SOiXfD98aFdkmOZDIwRfCyPhqkKgS6lLbvFM+LMxkAS6E2/1iUerskhUwGsksqetRkMrBqHEm7pCeqFDb4OTuPR56Jh1bDydRH8yeSXZJrMPEmJGdnFHUz3EaowRcakeKvcPn5559hMpng5+eHP/74A+XKlRPMb9OmDYYOHYqHDx+K+qM2bdqEVatWAQA6dOiAzZs3Q6/XW+d36tQJLVq0wPDhw/HgwQNMmDABK1eudKh9Xbt2xaBBg0T7jo6ORvfu3TF27Fi0bdsWp0+fxr/+9S8899xz1mWCgoIQFBSEsmXLWqfVq1dPcX9jx47FP//8g8qVK2PXrl2oUqWKYH5MTAz69++PNm3a4MqVK/jyyy/x+eefC5YZNWoUcnNzodPpsHXrVrRt29Y6r1mzZnjhhRfQvHlzu53DBSUhIQHDhw/H/PnzrdMaN26MPn36YOjQofj+++9x9OhRzJ8/X6QCGTdunLUfcuHChXjjjTcE2xgwYAC6du2KXbt2YeXKlRg8eDC6du0q2Y7Lly8jMDAQf/zxB2rXrm2d3qJFC/Tu3RstW7bEo0eP8NZbb6F79+6qHF9czdChQ/Gvf/1LtO9GjRqhd+/eGDNmDJo3b46bN2/iiy++wI8//mhdpmzZsihbtiyCgoIAmN1o7J1nSpw5cwazZs0CYD5f9+3bZ902YD4HO3XqhO7du8NoNGL48OE4fPiw7PYOHjyIzz77DB9++KFgepcuXdClSxds3boVP//8M2bPno3w8HCn202IcUuRoWbNmjh8+DBWrlyJjh07qlrHciGuWbNmYTatwOTk5AgKDM888wwmTJiAmjVr4vHjx9i/fz9mzZqF9PR0zJkzB5GRkXj//feLuNUEUTQUjyKDeiWD3GBTi5IhNdsk6nxwxC6J4zj46zRIyc5/gE9TSvQtZogyGTy8Q6q4UEZByaBQfyix+HhxSLHpZ7V0hLJKGk/vEC2JqA9+DgCYDgZLx5lS6DNgDn5WwrauIJVXkpMH+BT63bDrgp8dskvKEP6ehPtq8ZD5jTEJlAyl7Dslo2RgTxOyS1LIrjKmgM/Ldui8JFwMm1mjxi5JA2j1TJEh+x54U56kZWdGLi+roqTgZ9eTnJ2BsiumFnUz3EbSwKkI9y5jf0EXcueOuUBao0YNUYHBlsDAQNE0y0hrnU6HxYsXCwoMFoYNG4ZVq1Zh+/btWLt2LW7fvo2IiAjRcnLYqgzk2vXpp5+iT58+2L9/P5KTkxEaGqp6+7YkJiZa+97mzp0rKjBYiI6OxujRo/Hll18iPj5eUGRISEjA0aNHAQAjRowQFBhs39OsWbPw0ksvOdVOtZQrVw5ff/215LxvvvkGGzZswL179xAXFycoMty6dcuqTunSpYugwGDBYDDghx9+QPXq1ZGbm4u5c+fKFhkA82h62wKDhbp16+LDDz/Ee++9h5s3b2L9+vXo16+fo2+1wERFRSnOr1ixIiZNmoRx48ZZ80kKa8D0vHnzrNZlixYtEhQYLHTp0gWvv/46Fi1ahCNHjiAhIQFNmzaV3F7jxo0xefJk0XSO4zBhwgRs3boVubm5+OOPP9CrVy+XvpfSjlu6I3r16gWe57F48WJrCLQSP/74I3744QdwHIc+ffoUevsKwvr1660FhhYtWuD48eMYPHgwmjdvjueffx6ffPIJ9uzZY60O/vvf/0ZurvRDDUF4Mlm5PFKzhQ+q7s5kAKRk4I4HP+c+eVq7z4Rq6jRAgEIHsHR7xOHPJQW2k5eUDO6BzfKwxROVDGzxytIRyvpEe7p/fElErnOWVTJwksHP0pkMtqHPgP0ig619mNRXx+iOYeqiB7LCt0vieV6kZAj30UIca5xPqSsyyGUysEWGklP7LxR4hSIDQGqGIsfkRCYDAI0v0+HJm2DKShLdJwP598rSdkm2f1AmA1EysHT4nz9/HkeOHFG9Xm5uLvbs2QPArFioVKmS7LLDhg2zrmMvvNce6enpSExMxLlz53D27FmcPXtWMPq8IOqATZs2IS8vD76+vood5gCsxYNbt24JAoG3b99ufS2VJWGhb9++kp3HrmTAgAGybihlypTBgAEDAADnzp2zFpsAc2iwxUJJqsBgISoqymq9ZLsOC8dxGDx4sOx2LLZagPD4FSWPHj3C1atXBeeZ5Vha5hUWlmNQt25dPPvss7LLWb5XtutIMWjQINmCSOPGja2vr1y54mhTCTu45Yl8zJgxiIiIAM/zeOONN9CjRw+sXbsWN2/eRE5ODnJzc3Hz5k2sXbsWPXr0QGxsLEwmEyIjI/HWW2+5o4lOY5u18MEHH0CrFd/YNW7cGD169AAApKamivzMCKI0kJQh/gEu7koGOSz2RveZDpxQb63Dfvj+euFl+HEJUjKwdkkGT++QKiYo2SV5qpLBFst5l8X4x5OSpvihNpNBo1fKZGCslRxUMmjsKBly3eKF4367pPQcXlQ0KOsrDn4uzUoGXjaTQfi+S71dkp0iA+UyFC1iuyRxR784+JmDxhAmUpCZMu9ArxEX2ixFfXtfBbJLIkoKAwcOhE6nQ3Z2Nlq1aoWePXviu+++w9mzZ8ErqNeuXLmCjAyzlZVSRyg7/+zZsw638f79+5g8eTJq1qwJf39/VKlSBfXq1UP9+vVRv359q7e8ZVlnsSgQMjIy4OXlBY7jZP9Z+rQACDroLd77er3emlsghU6nQ3R0tNNtVYPcyHYLzZo1s762zQyw/YzUfrYZGRmyndRVqlRBWFiY7DbCw8OtSgJHswtcybVr1zBmzBhERUUhMDAQVatWFZxnw4cPty5bWHm52dnZuHz5MgD7xz46OtpaYFP6XlkyfqUICQmxvn78+LHscoRzuC2T4ddff0XHjh2RkpKCLVu2YMuWLbLL8zyP4OBg/Prrr8U+k8FoNFpfV61aVXa5atWqSa5DEKUF1iop2KApkqBgtoM2rQBKhmRGyRDq43gPryPtKW6I7JJIyeAWlOySPFHJwHZ0ZuSa/aGzmX4V1keaKHoKYpdk6dhk7ZI4psjgpxNn29hie1mSEru4p67rfrukJKYIzgEI8dYo6BikigweWLW0xSSXycAsVtrtkhQyGQAqMhQ5TJGBkwx+FmcycBotNN7lYMq8bZ2el3kHOo6Dr47DY2P+OhmWATnMV4FjC1AU/EyUEGrVqoUVK1Zg2LBhSElJwa+//opff/0VABAWFoYuXbpg+PDhaNOmjWC9Bw8eWF/bZh5IUb58viWZ7XpqOHbsGDp37qw60zQzM9Oh7duSlJTk1HqWYguQ//5CQkIkB93aomRP5QrsfS62+7f9XFz92drbhqUtV69edfj8cBVbtmxBv379BJ+lEgU5z5Sw5GAA9o+bTqdDaGgo7ty5o3jclPqRNZr8+1s5JQrhPG7TNEZHR+PMmTN4++238csvv8h+mFqtFn379sXXX39t14uuOGCbGXHlyhXUrVtXcrm///4bgFk2Vb16dbe0jSCKE3eKQR4D4JpMBks/zP0s4XtyJPTZAutxa/tQV9wRBT9TJ69bYNUvtnhin6CUkoG16gLo/CuOyCoZjGyRwV9k8WEZnStZkLD9m+MQZNCI7Oss2I5K5zgOOg1gW8vNkTiXXA4zMp53g13SvQz290kDLw0nVjLYtCWTqdR4upIB4MHzJnBMgUtkl1RyfpYLB3t2SRm3FecThYyK4Gf2Wmw5xzU+5QVFBstrPy8NHhvztytvl8RWHajI4ApCDb5IGji1qJvhNkINRTOo9MUXX0THjh2xcuVK/P7779i3bx/u3buH+/fvY9myZVi2bBkGDx6MH374QdApaaGwvOmNRiMGDBiA5ORk6HQ6jBkzBr1790aNGjUQHBwMg8F8H3DlyhXrQFYl9YU9LP1yYWFh2LVrl+r1pLIbCuuYOIIr2lBctlGY3L9/H4MGDUJGRgbKlCmDiRMnonPnzqhWrRoCAwOtWSM7d+5Ehw4dABTsPFNLcT9uhH3capwYGRmJ1atX4/bt29i9ezfOnj0rqHrWq1cPMTExDoXiFDUDBw7ElClT8OjRI/z73/9Gt27dRNXbEydOYNOmTQDM3mABAQFSm5Lkxo0bivNv36Ybe8I1/JmSg703skSdDEpwHFA1UIfOlX2gVRhBfSstF8supAmmFUUeAyDOZLjyMAdzTjyUXFauY2HlpTQE6DW4lCIcBRnmXXAlw9lkI344+1gyK4LjOFQJ9IKJB649ygHPm49jjyq+8H2ynZNJ2Zh3+jE4AHVDdaJtOEJkGS90q+IjGs2aZjRhc2IGkphOvaJQppRGykiEMlrw8sAbM/b8S7ibLSpaAqRkKI6YeB7G+0eR+Vc8TMZU6/S8jJuC5TQ6sV1SxqV50OgDkXbyX8yy4hBGpSID+9Ok03DIselxyykCu6Scu/uRsvcVVWsak/YLt6RaycCEPj8pgrPfkrP3838D/0oV2geVhsJd6u7+yLq2FgBQpuFUlKn3nuh+ZuOVDBy8lWX9W6/l0Ky8AdFlPT/smOd5ZFz+QXGZjEvfic5TC1rfSPjWHAUv/6gCtSMv/SbSL86FxhAG/unR2HI9F3fThb8DfjoN2lfyRpVAHc7eN+LkPSNqh+jQuFzJ+pxMOenIuPAtclLPAwA0hjD41hgGXbD0QDZTFjMKWU0mw5N7Ba1Pedh+69MvzEX27Z0wZI0D8JR1+i8nT2H/6QfI4H0A1MnfFVNk4CiTwSVoOI3bg5BLK4GBgRg+fLjVEubChQtYv3495syZg1u3bmHJkiWIjo7G22+/DUBos3L37l3FbdvaCdmuZ4+dO3daLXji4uIwdOhQyeVcNfrdEhj9+PFj1K5d264SQYrg4GAAQHJyMvLy8hS3Ye+4FRR727edb/u5sJ+tUt6Gms9Wzfu0LMNuw7aoZQlDliI9Pd3uPuT4+eefkZqaCgBYt24dOnbsKLmcO1QWlvMHsH/ccnNzrQofR75XhPsokjuBiIgIDBw4sCh27XLCwsLw448/YuDAgThw4ACaNm2KcePGoUaNGkhLS8OBAwcwa9YsGI1GNGrUCLNmzXJo+0oXN4JwFbfTc/HpoRQ449Sz72Y2HmSZ8Ept6ZthYx6Pj/9IEU0vLkqGR0Ye+29lyywtzen70hYLoU4oGVjrm5tpebiZJi9F3HdTPO1ySi4+fDYIp+8bMT0hv2Di6PsSk40rD3MwqUmQYOqsYw9x/oH4GJBdknso7ZkMt9PzcDtdXGQoDR2iJQ2TKRcPfmsHPldZhi1ll8QbU/H42PviZfXSRQY5REUGLZcvRwNw7VEuaoXoFdtXYJjiX176NeRduebcppxUMoQ/+c1l65B3M/JEdoYWSkPhzlJgAIC0k1ORl34dGu5LwTIXJH7vdv6ThSnPBqF+WCGfO0VMxsU4wKRs85qbcgq5KfKho1lXVyH8xb8lbXzUwJtycX/TszA9KU7Ou9kSl3KrSS6750YWRjcMwFfHHoIHsPEK8G6TwBJVaHh44HVkJa4STMv8eynK9rsqyqSRQioXQcouCRCHP+c+OIHcBydgCOwD6POLDFdMVXDFJB61TEoGwtOoXbs2ateujZdffhm1a9dGeno6Vq1aZS0yVK1aFb6+vsjIyMDhw4cVt2UbKF2vXj3VbTh37pz19UsvvSS7nCVLQQ61I8Kjo6OxfPlyZGdn4+jRo3Y98aWoX78+fvrpJxiNRpw6dQqNGjWSXC43NxcnT550ePuOkJCQgFdffVVxvgXbz8X29eHDhxX74Syfra+vr6xl+tWrV5GcnGwt4rDcu3cPiYmJon0DgL+/v/W1rZUQy59//ik7zx6W8ywkJES2wAC47jxTwmAwoHr16rh8+bLd79WJEyeQk2O+L3Pke0W4Dw/sjnA/vXr1wrFjxzB06FCcPHkSgwcPRosWLfD8889j6tSp8PX1xTfffIN9+/YVugcdQTjD2fs5ThUYLBxPku/MvpSSI2kBVL6IlAyBClYzBSXcicKJUoexWk7fNyIr14S4k4/sL+wgJ5KMAmlkVi4vWWAAlLMCCNeh1KHq44FVBn8V78lPxzkcuk4UPvUN1+wWGABA4x2GPJW+7hpvcYheqLf8tZctPrFnU0p24YcyaLz8XLYtqSKLFOz7sijtHFGcKVmzlThUFmcyL/+g2ibq1D3Pz1jLvimVoefYtTYv/RpyU8/ZX1CuDf9stBYYsuErW2AAgKw8HrOeFBgszCmEe6PCJPvGZtE03piCnHvijpe8TAkvdY248CVWMpj/1/pWlGxDGZO6cE89L7y+cy681hFEUVKpUiXUqFEDgDDs1svLC+3atQMAbNu2TdF1YtGiRdZ1YmJiVO87NzdfXyQ3Ut1kMmHhwoWK2/H29ra+zs6Wf1bv2bOntaP4m2++Ud1OW2w7qZcsWSK73Lp16xQ7zV3B6tWrZbMDLEUjAKhTp47AQSUmJsaqwPjhB3kF3/Xr17Ft2zbROiw8z2Pp0qWy24mPj7c+Y7Od/JZAaEC5k3/FihWy8+xhOc+ysrJk1RIZGRn48ccfFbdjOc+UzjE1WI7BuXPnBAU6Fsv3ynYdonjhQU8PRYfRaMTSpUuxfv16SZ+yu3fvYtmyZdi+fbvD2/7nn38U/yl9AQlCLQW1i2ADgG1JyRKPkAzUc4gOL5rRfzWCdSjrRECzPcJ9NKgd7Lg9katGX9/PNBVKZ1keL7SNMsp81lUDvVC+iNQppY0yeg0aynx/WkWWnNGaamlcTm+3Y7RVpLfifMI9jG2Ybwfp58Whi/9pu+vowppBW6YKkJdld1loveH9VB/R5JaRBpFiAQBqBesQwhQg2OtkhkIuj6swVOoJaAt+jnK6ABgqdFW1LDty2WIB1LScQVV2S7BBgzohBbPcK04EtZF/0GdpEaHus5L7PfQkeInvZWCbpYDWx7Ht5Dx2ug25aVetr7M0jlvIsIHmxR027F1pOm9jQ2dBFywe2cmeqpasGu+ofpLXpkbZ61S0FIjO3mB9bajQBRpDkKr1CKKo+eWXX6xWMVL8888/uHjxIgBx9sDo0aMBmPuA3njjDeuoalt++OEHbN26FQDwwgsvOGQHbpvfGR8fL7nMBx98gOPHjytux3aflnxQKWrWrIn+/fsDAH766Sd89dVXitu9evWqqHO7WbNmVvXCvHnzsH+/2ELv9u3bmDhxouK2XcGdO3fwzjvvSM6bMGGCNeh65MiRgnmRkZHo27cvAHMgslSxxGg04vXXX7d+5m+99ZZiW6ZNm4ZLly6Jpl+4cAGff/45APPn1Lt3b8H84OBgPPPMMwCAxYsXS1oW7d+/H99++63i/pWwnGcZGRnWwosteXl5GDp0KG7duqW4Hct5lpSUhMePnf+tHzlypNUmavjw4Xj0SDxAYOvWrfj+++8BmM+5pk2bOr0/ovBwu11ScnIy/vjjD1y5cgWPHz9Wleb98ccfu6FlzpGeno6uXbti37590Gq1ePfddzFkyBBUrVoVWVlZOHz4MD799FPs378fffr0wX/+8x9MmDBB9fYrVpQeYUIQroStjZX10aCFQqfdvcw8HLSx4lGKcXiYLX64+6J1iDVDwN14aThMaxmMA7ey8dCovlP+79QcVCjjJVkU8Ndr0DrSYLbhcBClztNwHw1aRnqLjrcUyRLFHAB4JkyHKoHqO4oycnhsuy4c/ZFryg8UzpUopA6o4YfOUT4U1ORGxjcKxL6bWbiXaf7cNRxQK0SHhuGeV2SILOOFz1sFI+FOtmTgc6UyXmjpgcWVkkirCt4INGjwz+NcNClngM+VFNg+bmj9q8I7akD+374V4VP1ZXAcB95OuKyhUk/4R38GXXB90bxaIXpMaxmME0nZVlVemI8GrSV+x1542hdr/8offSt37XQluuD6COt+GFn/bACf65x/rkYXAO/KLzjtbW+5OlcL0mFay2AcTzLKdpKX0XFoGeldZL/ThYFPlQHQeJdFzr2DMOWkAeBhyriFzL/FxYfuVXxQzleLv1NzYHtWnr5nxNVH+SNM89wQgFj0CN+jT7XB8K32CnQhDZB1fb3s+ZxxYY5gnlSxQi22Pv/ZnLjIEOKtwYOswlckFTkS10jJ4y9RAGLPVe2Tr7b52nToybUp/7r4LIBg4ypcyH4KeTJjEiO8HqBpuQfw4t6HV5kq8K46SP17IYgi5ptvvsHLL7+M7t2747nnnkPt2rURGBiIlJQUHD16FHPmzLGOhn/zzTcF63bv3h39+/fH6tWrsXXrVjRv3hwTJkxArVq1kJKSgp9++sk6Ej4kJMRupz1L586dUbZsWSQlJWHKlClITExE3759ERYWhr/++gsLFy7Ejh070KpVKxw4cEB2Oy1btrS+Hj9+PD788ENERERYn9eioqLg5WW+vs6bNw9Hjx7FlStX8M4772D9+vV47bXXULduXRgMBiQnJ+PUqVP47bffsHPnTvTt21dkfx4XF4fWrVsjJycHzz//PMaPH49u3brBYDDg8OHD+OKLL3D//n00aNAAp07JW+wVlCZNmmDevHm4evUq3nzzTVSqVAn//PMP5s2bh99//x2A2SKK/VwB4Ouvv8aOHTuQkpKC119/Hfv378dLL72E4OBgXLx4Ef/5z3+sdk8DBgxA167yAz+efvpp3Lt3D82bN8d7771nVbPs3r0bM2bMwMOHZovjOXPmWEOWbRk9ejRGjBiBu3fvok2bNvjoo49Qs2ZNPHjwAJs2bUJcXByaNGmCgwcPOnWcBgwYgMmTJyM7OxtDhgzByZMn8fzzzyMwMBDnzp3DnDlzcOzYMdXnmclkwptvvokxY8YgLCxfdfz000+rak/9+vXxzjvvYObMmVbLrffeew/R0dFIT0/Hxo0bMXv2bOTl5UGv12P+/PlOvW+i8HFbkSEpKQnjx4/Hzz//LJCAqaE4FxmmTp2Kffv2AQC+//57DB482DpPr9fj+eefR/v27dGpUyfs2rULkyZNQocOHdCgQYOiajJBiGCFDJFlvDColvxosfPJRqbIIP+gzXbkt4o0IMyJ7AJXEuStRfeqvkXaBgt6hcDsSv7mz+HiA6P9IoNM6Gmz8t54vrL6EYcPsvJERQbzw6m5nVIFpe5VfMkP3814e3EOfa4lnUr+XqjkT4GSJYF6YXrUe+JT/5ixStKFNERA4+kyayp3Evo3+Bd0Ic/Izn86SIeng+wXVMOZ3597MtdOV6MLeUax/e6kaqAOVR0oPnsKhogYGCJirH8b7x2RLDJwHIem5Q1oWl5YvDTmPWaKDIXW1GKLLtQ8UlUXXF+y4Gch6+pPyEuzLTLIZ03Zxcb+J5sT2vFoOaBCGa1nFRnkileSRYY0wd+cLlBywAd7rtreeupCGkAXIn4ubfLkH0F4KhkZGVi9ejVWr14tOV+j0eCTTz5Bnz59RPOWLl2K3NxcrFu3DsePH8crr7wiWiYyMhKbNm1ChQoVHGqXn58fli5dij59+iArKwvz588XdajGxMRg7ty5ip70Tz/9NAYMGIBVq1Zh69atVmWFhatXr1pteUJCQnDgwAEMGDAA+/btw969e7F3717ZbQcEBIimPfvss1i6dCliY2ORlZWF6dOnY/r0/Hs+Ly8vxMXF4cCBA4VaZPj8888xa9Ys/Pbbb/jtt99E82vVqoVff/3VWmCxpWLFitixYwd69OiBW7duYdGiRQJ7HgsvvPCCoi0UAFSoUAHffPMNBgwYgA8++EA0X6PR4Msvv8SLL74ouf7QoUOxZcsW/PLLLzh//ryoqFO/fn2sWbPGIZWMLRUrVsS8efMwdOhQZGVl4d///jf+/e9/C5Z56aWXMGzYMEVboueeew7NmzfHoUOHsHz5cixfvlwwX8rpRY4ZM2YgPT0dcXFx+Pvvv62B7LYEBgZi1apVaNiwoertEu7FLUOUUlJS0Lp1a/z000/IyckBz/MO/Suu8DxvrVLXqFFDUGCwxcvLC9OmTQNgrvDJyd4IoqgwMSPVFPq9AZjVALYoKRlSGWsKJT/50oheod6if6JyUBOofF9mNK4aWwzB8hIPp7afr1RBydF9EARROmDzGDitQnHXjpLBVYGiYYyt2/3MwlcyFAXs7TMJzQoO+1NcQKfJkoGzz2GMBU9BigycJr8gZmSKDN5aDjp7N60egpTay5QjVDJwOukBQnnMqlL3egRRmlixYgUWLFiAQYMGoWHDhihfvjy8vLxQpkwZ1K1bFyNHjsSJEycwZcoUyfW9vb2xdu1abNiwAS+88AIiIyOh1+sRHByMZ599FtOnT8elS5ec7gjt3Lkzjh49ildeeQWRkZHQ6XQIDw9Hu3btsGDBAuzYsQN+fvYzUJYtW4Yvv/wSzZo1Q2BgoNWORory5ctj7969+PXXX/Hyyy9bQ64t+27ZsiXeeecd7NmzRzazYODAgThx4gReffVV6zGpUKECBgwYgP3792PYsGFOHQ9H0Ov12Lx5M+Li4tC8eXMEBQXB19cX9evXx2effYbjx48jMjJSdv3o6GhcunQJ06dPx7PPPougoCDo9XpERkbihRdewIYNG7BmzRpB5oUc3bt3x9GjRzFkyBBUrlwZer0eZcuWxYsvvoj9+/fL2joB5iLEzz//jP/+979o2rQp/Pz84Ofnh2eeeQaff/45Dh8+jPLlyzt1jCwMGTIE+/btQ58+fRAeHg6dToeIiAh06dIFK1euxE8//SSbOWHbzq1bt2LKlClo0KABypQp47S7gUajwX//+1/s3bsXL7/8Mp566ikYDAYEBASgYcOGmDx5Mi5fvoxOnTo5tX3CPbhlWOCMGTPw119/AQA6deqECRMmoHHjxggJCSnR9hp37961+qNFR0crLtu4cWPra4u/H0EUF0SdEXaWZzuVpSx0LDxkigyBVGQQoGSXZFE5GFSoBOSUDI46OGklPh7bwoLUyE0nXKIIgigFiIoMXgUoMmhcVGTwFl7k0nN4ZOaa4ONh1dLS0P9dYBx8BtEyndl5paPKIPxT5THjGMuegtglQWNrl8QUGbw8scggd16Jp4uUDBLByyaeF63pcYeMIGSIjY1FbGysaHpERASGDRtW4E7vnj17omfPng6vFxMTY3cwbd26dRVDd6OiouxuQ6fTYdKkSZg0aZLqtnXv3h3du3dXvTxLnTp17AYeF/agW61Wi5EjR4pyF9RSpkwZvP/++3j//fcL3JbatWsrBkkrodVqMWrUKIwaNUp2GaVzQO78t6Vly5ZYt04+h0fNuerv749p06ZZB1bLsXv3bsX5Ftq0aYM2bdqoWtYWNW21UJwHs5d03FJkWL9+PTiOQ/fu3bFhwwb7K5QQbCVW9iygbAOBpKRZBFGUsM/JdpUMHPugbb5QSxUNWbukQL1ndeQUFKUig2WevdBbQN5XnFWd2ENqedvCAqtk0HIo0cVigiAKDz7PgSKDvW5xVykZJOz67meaUMnfs3+b6CqtHp43gePE5wP78+hBBj3yiB7C1RYZmBGeuQVRMsjbJZmLDPa3IXePWqJQkckgpWSQqoV5WE2VIAiCIIhigltuMa5fvw7AHF7iSYSEhFj96P744w/FQsOePXusr6tUqVLobSMIRxA9Qtp5EGMfTnjI2waQkkEZvZKS4UlfmCq7JBcpGaREE0pKBnpQJQhCDlbJgAIoGTgXFRn0Wg6BeuGFzlMtkwh7yPxAmqTv59nfU9aCxjNxssjg5SYlg5aDTsWNTrYnfMWligw5QiWDRkLJIGVpqinpBReCIAiCIIolbukeKlPGPKqiXLly7tid29BoNFYp2a1bt/D5559LLpeSkoL33nvP+nePHj3c0j6CUAtbILBvlyTh2y9RZDDxPB6xSgYqMghQtEtyRMkg00nmqJJBanGlTAby9SUIQg5HMhmk/MaZlV3RJABiNYNckbYkQ5kMBYCXLjKwHbOm0ii1d9ouqQDBzzbXBiklg17FfU6GUnhYsUPuvFKhZPCSUjKIt0c2lwRBEARBFAZu8e2pX78+du/ejWvXrnlcCvjHH3+M9evXIyMjA1OnTsWxY8cwePBgVK1aFVlZWTh06BC++eYbq5qjQ4cOFFRCFDtYTzp7z2tSDye5Jl7UGZ5m5EUFDAp+FqImk0Gr4eClUQ7YNsrMk8pYUILjxPuyzdxg20BKBoIg5HBpJoOLiwx/P8zvSL7ngUqGUtj97TCczJAKns+TnCNSMpSKg+zcm2TtkvgC2CWBz/9+SgU/q7kPycjhEWI/o7N4I1EsUJPJIJmlRaEMBEEUI/78808YjUaH1ytbtizKli1bCC0iCMJZ3FJkGDFiBHbt2oUff/wRvXv3dscu3UatWrWwfv16DBw4EPfv38fGjRuxceNGyWWfe+45rF692s0tJAj7sF07djMZpJQMEv1DqRI93wGUySBAyUvYtgBh0HIiFYEanFEaeHEcciFdWGBDvulBlSAIOVyZyeAquyQACPMRXnhLg10SXakdQNYuiVUyuKMxRYs4GNH9wc+8TZHBeSVDyf+weDVKBolMBqmAclIyEARRnOjUqROuXbvm8Hr/+te/MHXqVNc3iCAIp3FLkWHAgAHYuHEjli9fjhkzZrgkpb040bFjR1y8eBHff/89tmzZgnPnziE1NRVeXl4oX748mjZtikGDBqFXr14lP3SM8EhEtgp2lpcaNSbVAc7mMfjrOIftezwdjuNg0Er7BdvmNXhrOaTnOP6Q7KiSwbqOTXsEmQyskoE+ToIgZCjOSgZbPNEuiUVu1H6pRu6enJcuOmmY39O8UmGX5FyRAaJMhgIoGUw2RQZIKBlU9Jhn5JSg77jceaUik0G1koEuBwRBeBAxMTESRfGiYffu3UXdBIIoUlxaZNi7d6/svNdffx1Xr17Fhx9+iLVr12LQoEGoVasWfH2VRrWZadu2rSubWSiEhobi3XffxbvvvlvUTSEIhxFlMtgNflaXyUChz+rQazhkSzwF6m36wdTkMkjhlJJBw8G2Y8H2s2WLSaRkIAhCDkcyGaT8xpmVC96gJ4SLigyep2QoHo/aJROegp9tcC7cQ2SXVKBMhvzPQ0rJoKQIteAJSgapIoNJlMlAdkkEQZQ8EhMTi7oJBEG4CJcWGWJiYlSN1D927BiOHTumapscxyE3V/pmnyAI18A+f9i1S5LJZGChIoM69FoOkFApsHZJzuCMkoH9fG2l9uxzOmUyEAQhhyNKBrvBz5rCs0t6kGVCron3KKWdky43BCCrZCiNdkksahUxrF0SXGSXZOSE1xBvLQedx9klybVVIpOBVTJI2SVR8DNBEARBEG7C5XZJxUWmRBCEekxs8LOd5TWcub/Cdi2pEX2pVGRQhVwBwdZn2OCkL5EznWZs4UCQycAqGcgCjiAIGRzKZLBTZHBtJoNwWzzMhYayvq7bR9EjvFbTlVoKueBn6cFN7M9pqbBLcvI9ijIZXBT8zCoZDF4qiwwlyS5JDim7JDVKBom37kH1VIIgCIIgihEuLTLs2rXLlZsjCMJNiO2SlJfnOA5eGiBHIRAYAB4ywc+BFPosiV6uyMBkMjiDM7UJtnBg+9mKMhnoIyUIQgaHMhnsGfy4sMhQRsfBoBXa1N3PzPOwIoMQ6lN0ALV2SaWgxlAs7JJsPo9sjXCkvreWE1hLylGylAwySBYZhEoGjZdYySC6xwegoQEiBEEQBEEUAi4tMrRr186VmyMIwk04apcEmEfI59ja6EiMlCK7JHXIKhlcYpfkbCZDPnkKxSRPshchCMJ18LxJZJGimMngxuBnjuMQ5qPBzbT8EdKelsvgAV2qbkAuYJfskqw46bvFiYKfXWOXxAY/+3hxqu5zMiQsKUsaUpZyapQM7H2bMzaaBEEQBEEQaqDbDIIgRM+Qajx32T5vqUwG1i4piIoMkhhk+s5ckcngjJJBbJekoGSgGgNBEBJI2aMUF7skQCr82QPsVGygTAYVyFgBydolMb+NpcIuSVSIUXkiuTT4Wd4uydtLI7CWlMMjlAxOZjKwt+eUx0AQBEEQRGFBPX4EQYgeQNQqGWxRpWQguyRJ5O2S8l+7VcnAFpBszg/2cyYlA0EQUrB5DEDBigyuVDIAQCgT/uxpSgYWulKL4R1WMgj/lvK693hU2yW5MJPBxi7JyBYZtJwq28ZMqZvUkoaLMhkoS4sgCIIgiMKCevwIgoCJedBWV2QQ/s0qGUw8j0dsJgMpGSSRKyDYTveWkAz4eXHQ2TmkzikZWLskG1ssVnZPz6oEQUjA5jEAxSeTARArGe55mJKBhS7VUsicc7KZDKXQLslJ4y3WLom1TnOoBYpKBnXBz+klxC6JV1THqCkyiJUMrOKG7tsIgiAIgigsqMePIAixXZKaIoMoHFg4Pz2HF4UiUpFBGlklg82Ds5SlkpcGCPFW7nhzJphZXECSfm1elp5WCYIQI1lkYEY3C5a3q2Rw7e9HmDdrl+RZSoaS0aVaxMjaJUmfC+zPXamwS3I2k6EQ7JJM4GDkhIVKc/BzKbFLYq6RPG8SFxl0EkoGVq1M920EQRAEQRQS1ONHEIRoNJ6axw97SgbWKgkguyQ55PyE7QU/azXm8FIlnJHFs+vYqhfymM+ZAgQJgpCELTJo9OA0XgorKBQZOA04F1t8hPmK7ZKURxGXLDzorRQijikZ2J/q0qlkKAK7pCcZGTnwAc8UG7291NklZeR4gFKJ+VJL597YVzJQlhZBEARBEIUFdQ8RBCF6hNSo6MwRW+oI57Ohz35eHHSk0ZZEqoDAAQIrJMkiAweE2lEyOFMEUFQyMCcLq2ghCIIAxJkMylZJUM5kcLFVEiBWMhhNwOMSYqniDHSplkCuEiMT/Fwa7ZJEuRXOZjK4wC6JzWMAnigZPCr4Wb6dPFOI5XPTRMuoyWQgIQNBEARBEIUFFRkIgnAy+Fn4N+vV/5DyGFQjJfXXayEYuSuVyaDlOFF4KYuaghGLYiYDc7I4Y8dEEITnw9olFbciQ4i3RvRb50mWSc6NPy9tkF2S4xSBXZLJ/Hlkc+JriFolQ2YuX/KVSqxdEmOVBAAanVjJwN7jU/AzQRAEQRCFBXUPEQQBE/PgpcouibXUYfqHWLskKjLII5W3wI7Mk7ZLAsJ8XN/5xu7KdgAg+znTwypBEFKIigxa54sMXCEUGbQaDiHerGWSB1iqEA7gYPAzcxvDet17JM52zLPBzyYjeJOTRTzeUmQQjtK3KD7VZDKYeCC7JHxgSsebLTLksEoGDpDIvREFP9PtOEEQBEEQhQTdZhAEIWGXZH8d9iHFXiYDFRnkkSogsA/N0nZJHEK9XX9cWSWD7Wcr8valj5UgCAkcVTKwViDClQvnQsNaJt3zYCUDIYGsXZL0eVAa7ZJEZ5KTdkkAAFO2k00wF33YIoO3FweO40T3LHKUHMskOdhMBib02ctPMruGtUsi51KCIAiCIAoL6h4iCEL0nK3mGVLcES2cLyoyUOizLNJ2SfaLDF6FpGRQzGQwscvS0ypBEGIcz2RQ8CIvgJ+7EmGM3VyyBxUZnOwbLmXI2SWpC37OKw1VBtH30jm7JMD58GdeRsng88RGUu3tZUZJz1wR2SUJlQxSeQyAeHCIMzaaBFHaSExMBMeZC5nx8fFF3RxChqlTp1o/J6Jw2b17t/VY7969u6ibg9jYWHAch6ioqKJuCsFAvX4EQYhG43EqHiLZiADKZHAeqQICO006kwGFomRgR2vafrYiJQPd0xEEIYFLMxlMOS5okRi2SHvPg+ySxF3DdLFWjZxdkiiTwQ1tKXJYO03nlQxOFwtlgp+9n3wgOo9SMigUW0V2SYySQSKPARCfp6RAJQiCIIiSw9mzZzFixAhUq1YNPj4+CA8PR5s2bfDdd98hN1f6nrUoodsMgiCcDH6Wt9QBgFRGyRBERQZZJO2SNPaX4QD46jTW0XyuwhElA3n7EgQhhcOZDEp2SYUEW2TwpOBnQg1kl+Qwqu2SJJQMzoY/m+TtkgBzvoqaVmXklPQiovCEM6lWMgj/JiUDQZR8ituocoJwBaRMEbNw4UI0btwYCxYswJUrV5CVlYX79+9j//79GDlyJFq1aoX79+8XdTMFeLlyY1WrVnXl5gAAHMfh77//dvl2CYLIhwcrpba/jlJHNECZDI6gc9IuyTIoL8xHg38eu65zjC0g2VpCsMUksksiCEIKlyoZCgnWLsmTigwiJQNdqkXwMhZdau2SeAAmnvfwTlsnKylaA8xDIfLXd7bIkG+XJByp721zX6TXAtl2vr7pJULJoIDILkmlkoG9b/Pk05UgCIIoFcTHx3u8ldnmzZvx5ptvwmQyoVy5cvjwww/x7LPP4sGDB1i4cCHWrl2LI0eOoG/fvti9eze0WtfbaDuDS4sMiYmJqpazVKbYm3up6VTFIojCR2yXZB9RR7TNNnieF9slUSaDLAaJjnq2yOAtVWR4cohDvbWuLTKIrLDyX4tk93SNJghCAoczGYogqjicUTI8MvLIzuMli7olDoWMC8KCzDEyySgZJG5jTLy6gRklFmczGTgO0HoDNoWFgtolySkZAPM9abYd/6qSkcmg0EaRXZKzSganGkYQBEEQhJvIycnBmDFjYDKZEBAQgAMHDqBatWrW+V26dMHo0aMRFxeH/fv348cff0RsbGzRNdgGlxYZBg8erDj/5MmTOHXqFHieR1BQEKKjo1GuXDkAwN27d3Hy5EmkpKSA4zg0aNAADRo0cGXzCIKQwangZ7Yj2qZSkZ7Li5QNZJckj0Gi6KxKyfDkmIf6uPbYahWssFglA9klEQQhhaNKBtZv3B2wSgbAHP4cWcalt8dFgnNdw6UMmXNOTsnA2iUB5g7ckn+2KOH8mcRpvQXqBWeDn+Xskmzvi/QaDul2CpUZ7I1picOOksFLXSYDe49HEARBEETxYt26dbhy5QoA4IMPPhAUGCzMnDkTK1asQEpKCmbOnFlsigwu7R5avHix7L82bdrg/PnzqFixIlauXImkpCTs2LEDy5cvx/Lly7Fjxw4kJSVh5cqVqFSpEs6fP4/WrVtj8eLFrmwiQRASsI9laqT/4o7o/NesVRJAdklKsAUFQBwwKRXUZwlhDvN2rTSO3VeebSYDBQgSBKEChzMZiqDI4O2lQRmd8GJ7z4Mskwh7OJbJINU3y1rReB5OjEKxLOrFhD8X2C5JXsmgU3EvklkSlAxKCiRmHs9kMmhklAwmZj1PEGoRhDMcOHAAQ4cORc2aNREQEAC9Xo+KFSuiR48e+O9//4vU1FTV24qNjQXHcYiKilJcLj4+3uoxL+f6sXPnTgwcOBBVqlSBj48PfH19UblyZTRv3hwTJ07Ezp07rcsmJiaC4zi0b9/eOq19+/bWfVj+ydnI7Nq1C4MHD0bVqlXh6+uLgIAA1K9fH5MmTcKtW7dk3wfrlf/w4UNMmzYN0dHRCAoKkt3nL7/8gv79++Opp56Ct7c3goKC0KRJE3zyySdISUlRPHYAcOPGDYwePRpVq1aFt7c3IiMj0atXL2zfvt3uus5iOca272n16tXo2LEjypYtCx8fH9SqVQsffPCBqnPGaDQiLi4O7du3R3h4OPR6PcqXL49u3bph2bJlMJnk73/Z8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOKc7qw8dOoQpU6YgJiYG5cuXh16vR0BAAOrUqYORI0fi/PnzkutZvieffPKJdRp7TrPfIbXfwTNnzmD48OGoXr06fH194e/vj7p162L8+PGKTjxSx23btm3o2bMnypcvD4PBgCpVqmDkyJG4ceOG2kOkml9++cX6Wu7z8PX1xYABAwAA58+fx59//unydjiDWwbfHD16FG+++SbCw8Nx6NAhREZGSi6n1WrRv39/tG7dGo0bN8aoUaPQoEEDNGnSxB3NJIhSC/sAoqbfWJzJkL8Ntsjg48VJdqQTZtRYc0hZx1ntklysZBCFevMKSgaySyIIQoKSkMkAmMOf03LyR67fzyzpo53NkJJBBXIduiY5JYPEoiWg39q1OKJkEBYZCmqXZGSLDDa3PmryoTJKeCYDb1fJIF1kYAUcdDtOlDYyMzPxxhtvYMWKFaJ5N2/exM2bN7Fp0ybcu3cPU6dOdWvbxo8fj2+++UY0/fr167h+/ToOHz6M+Pj4Age7ZmVlYciQIfjpp59E886ePYuzZ89i3rx5WLFiBXr27Km4rcuXL6NTp06KHbQpKSno16+foEACANnZ2Th27BiOHTuGuLg4rF+/Hs2bN5fcxr59+9CjRw88evTIOu327dvYuHEjNm7c6LbP6o033sAPP/wgmHbp0iXMmDEDS5cuxY4dO1CrVi3JdRMTE9G1a1dcvHhRMP3u3bvYsmULtmzZgvnz52P9+vUICQlRbMfRo0fRvXt3JCUlWadlZmZi8+bN2Lx5MyZMmIBZs2Y5+S4LTnx8PIYMGSKanpOTgwsXLuDChQtYuHAhZs+ejVGjRrmlTdOnT8eUKVNEhZzz58/j/PnzmDdvHhYsWIDXXnvN7rY++OADzJgxQzAtMTER3333HdasWYM9e/agdu3aLmv7/v37AQA1a9ZE+fLlZZdr164d5s+fD8BcSK1Ro4bL2uAsbikyfP3118jLy8PkyZNlCwy2REREYPLkyRg7diy++uorLF++3A2tJIjSiyiTQZVdknxHNFtkIKskZZz1/8558sGF+bhYySCywpJ+DZCSgSAIaRzPZCiqIoMGifnPrx4V/kzYw7HgZzm7JI+mANkenNZbuCln7ZJ4GbskTf53Vc1AlhJvl2Qvk0Em+Fk0kIgGhxClCJPJhN69e2Pbtm0AgOrVq2PUqFFo0qQJfH19cfv2bRw8eBCrVq1ye9t+/fVXa4HhmWeewciRI1G7dm0EBgYiNTUV586dw/bt23HkyBHrOhUqVMCZM2eQkJCA119/HQDwww8/oGnTpoJtV6xY0fqa53n069cPmzZtAgD07NkTAwYMQNWqVaHRaHDkyBHMmjUL169fR79+/XDgwAHFQb79+vXDzZs3MWbMGPTq1QvBwcG4fPkyKleuDMBcSOjYsSOOHz8OrVaLQYMGoVu3bqhSpQpycnKwd+9efPXVV0hKSkK3bt1w4sQJ67oWrl+/bi0waDQaDB8+HP369UNgYCBOnz6NGTNmYOrUqYU+GDkuLg4JCQlo1qwZxo8fj+rVqyMpKQnx8fFYtWoVbt26hc6dO+Ps2bPw9/cXrJuWloYOHTpYLW/69OmD119/HZGRkbh69Srmzp2LPXv2YP/+/ejZsyf27t0rG9ybkZGB/v374+HDh3j//ffRrVs3GAwGHD58GNOnT8ft27fx1Vdf4amnnsLbb79dqMdEjtzcXAQHB6N3795o27YtqlevDj8/P9y6dQvHjx/H7Nmzcf/+fbz11luoVasWnnvuOeu6ffr0QZMmTRAXF4d58+YBMCsQWCpUqKC6PXFxcZg8eTIAIDw8HO+99x5atWqFvLw8bN++HTNnzkR6ejpiY2MRFhaGbt26yW5r4cKFOHjwINq1a4cRI0agRo0aSE1NxdKlS7F06VLcu3cPr7/+Ov744w/V7VMiLS0N//zzDwDIFrAs2M6/cOGCS/ZfUNxSZNi3bx8A4Nlnn1W9jqWiaangEARReIjtkuyvI1Yy5L9OZYoMFPqsjLMqj/zg58JVMtjaQeQxD6tqRg8SBFH6cFzJUDS9tWz4s8coGZx3uSlFOGiXpGBb6KnwBbFLEikZnLRLMsnYJWnyi0FqBjx4XPCzSiUDWwijwSHFH543gTc9sr+gh8BpAsBxhXNizp0711pg6Nu3L1asWAGDwSBYpnv37pg2bRpu375dKG2Qw1LYqFy5Mg4cOIAyZYSFwpiYGIwePRoPHjywTtPpdKhXr55A2VClShXUq1dPdj+LFi3Cpk2boNPpsGHDBnTp0kUwv3nz5nj11VfRpk0bnDt3DuPGjVPsgzt79iy2bNmCTp06Wac1btzY+vrTTz/F8ePHERQUhO3btwvmAUDr1q3x8ssvo0WLFrh9+zYmT56M//3vf4Jl3nnnHauCYdmyZRg4cKB1XpMmTdC/f3+0adMGR48elW2nK0hISEC3bt2wfv16eHnld5127doV9erVw8cff4zr169j2rRp+PLLLwXrfvLJJ9YCw5QpUzBt2jTrvMaNG+PFF1/Eq6++iv/97384ePAgFixYgJEjR0q24969e0hNTcX27dvRtm1b6/RmzZrhxRdfxLPPPosbN27gww8/xKBBgxAeHu7Kw6CKrl27YtCgQfD1Fd7vR0dHo3v37hg7dizatm2L06dP41//+pegyBAUFISgoCCULVvWOk3pnLbHvXv3MGnSJABAZGQkDh06hEqVKlnnt2rVCr169UKbNm2Qnp6O4cOH4+rVq9DpdJLbO3jwIIYNG4b58+cL3CU6dOgAvV6PRYsW4dChQzhx4gSio6OdbrcFW/sl24KhFLbvy1KYKGrcUmS4d+8eAHNVUy2WZS3rEgRReIiUDCrWEVnq2NolGZkiAykZFJHyElbzKGxRMoQWciaDrcOASMlAHVcEQUjgcCaDqque6wkVFRlIyVBqILsk+4iOkfOZDAW1S8rmhNcQ2yKDvhTYJbHXSLVKhjzmvo2UDMUf3vQIj++8WNTNcBv+5deA0wa5fLsmkwkzZ84EYO6oW7p0qajAYEGj0Tg0StoV3LlzBwDQqFEjUYHBFns2OkrwPI9///vfAICxY8eKCgwWgoODMXPmTHTr1g0HDhzA5cuXUb16dcllY2NjBQUGW9LS0vDf//4XADBt2jRRgcFC5cqV8dFHH2HUqFFYvXo1FixYAD8/c6H0zp07WLduHQCgR48eggKDBX9/fyxYsMChQczOYDAYsHDhQkGBwcKHH36IVatW4ezZs/j+++/x2WefQa/XAzD3ZS5atAgAULduXUlrJ47jEBcXh99++w3JycmYO3eubJEBAEaMGCEoMFiIjIzErFmz8NJLLyE9PR1LlizBxIkTnXzHzmPv+xMYGIhPP/0Uffr0wf79+5GcnIzQ0NBCacvixYuRkWF+Dvnqq68EHfEWoqOj8cEHH2DKlCm4efOmNT9EioiICMyZM0fSvnrixInWz3rfvn0uKTI8fvzY+lrp2gDA+r0BzN+/4oBbev4slbQtW7aoXmfz5s0AgLCwsEJpE0EQ+bDPkGoeQJSUDKxdEhUZlJH6wVKD5ZjrtJxLjzFrCWFbQGJDLknJQBCEFA4rGYqIcCbTxlOCnymTQQ1ydknS54CUXZLHFxkKciaxdklOKhnkMhkMnNH6ujRkMrBKBpNqJQMFPxOlk5MnT1pHBA8bNsxuZ527iYiIAADs3bsXf//9d6Hs4/z589Zt9+vXT3FZ2w5sJduXl19+WXbenj178PDhQ4f2l5OTg2PHjlmn79q1C3l55uu+lMe/hWbNmqFu3bqK+ygonTp1krV712g0GDx4MADgwYMHOH78uHXesWPHrKHQsbGxsjZIAQEBguBeJTWN0rHo27cvgoKCAKBQQ7EdIT09HYmJiTh37pw198NWKXDq1KlC27flGAQFBeGFF16QXW7o0KGidaTo16+fbIGyZs2a1muLRblSULKy8gdlWApXcti2KzPTyfssF+MWJcNzzz2HpUuX4quvvkLXrl3RqlUrxeUPHjyIr7/+GhzHoUOHDu5oIkEUOYkPc7DrRhbSjI5bNZT11aJLlK/THc3sHlXZJTEP21cf5WLOCfNNxYUHOYJ5VGRwHDUODLaLhHprRMUdZ2ELSPcyTZhz4iG0Gg5JjJUIPawSROkm+/ZOZF1dKerwyktLFPxdXIsMbKZNcpbJ+ltWEPx0GsRU8kbVQGnpNQAcuZON43ezrao0V5KUIewop8HLDiCTySB1b+TpdkkinLBLuqCLwWV9G1Q/uREt/CrBJyp/pOD9zDxsvZaJZIXiXnbOMJj8e+CetqpguunKYqTc/su8r8xhAJQDF689ysX3J26iWdZPqBqghW/t0eA04u+nKfsB0s9/gxupadib0wJpvLnzQGMIgldALcAJWxdT5h3kpV8HL6OSyYdHnv9/BVPK5v2FdpkLob2xCUnp2dhtbImUzCzwuQMB//wRvhVSG6Kn0YQAvQY3Hudixz+ZyDMBVx4K78m1dEtOlBJOnDhhfd2mTZsibIk0r732GpYuXYrk5GTUq1cPvXv3RufOndGmTRs8/fTTLtmHrZ1QixYtVK9nUVlI8cwzz6jan6WI4uj+bL342awJlmbNmuHcuXOq9+MoavZv4cyZM1bL97Nnz1qn21NbPPvss9YcgrNnz0oeN71ejwYNGshuQ6fTITo6Grt27ZLMMnAX9+/fx1dffYU1a9bg8uXL4BXukQoaZq6E5fg3atRI1gIJAMqVK4eoqCgkJiYKPjMWe7kIwcHBSEtLEygQCoK3d/4gDaPRqLCk0C3Ix8dHYUn34ZYiw/vvv4+VK1ciOzsbHTp0wJtvvonY2Fg0aNDAOoKX53mcOnUKS5Yswbx582A0GmEwGPD++++7o4kEUaSkZpsw9VAqMgswyur0fSM+b+WcnJINhVNnlyT8OzXbhP23pC3RKJOh8An11uLKQ3sPr+pgRwRm5vKyny0pGQii9JJz/xgebH1eNMJWipJSZDDxkL3eOcruG5n4JiYUIRKWdsfuZmPWsYIXMwjnkX34NclkMkgVGTwjwkOBggU//6lrjflBKwEAO33fgvbAi2gGDj5R/WDieXx2OBW30+2ph1oB3uKpmvt7kJWz27wv/3aAt3KRAQC23tJhN/8CJl9uici0qwh89lvRMik7++Lx3aOYGXoU6RobK4dcAOk5ouXVEfzknwq8xUGm170a4Y2Hg/GVdimStZXNT/DMU/yxZODPYw/xQdNATP0jBY9lMiikFDkE4YnYdmI60uHtLjp06IC5c+di0qRJyMzMxMqVK7Fypfl6WaFCBfTo0QMjR45U7Fy2R1JSklPrWaxmpAgOlr+WuWJ/thkUth79UpQrV86p/anFkf3bttuR91C+fHnJ9WwJCQmRVUOwbZHbRmFz7NgxdO7cGcnJyaqWL8xR95ZjYO/YA+bjn5iYqHjc2JwJFs2T0C6LAqeg2IaI27NASk/PH+RVXNRabiky1KpVC0uWLMErr7wCo9GIOXPmYM6cOdDr9QgJCQHHcUhOTrZWaXieh5eXFxYvXmy3akQQnsClB8YCFRgA4K/UXDx6MoLJUViffTWjnHwcMOMPcXEwcWmgTqi46l7OV4u7NqNTny1vsJknPsblfJ3LanDks6URcQRResm68auqAgMAcHrlDjbDU32Qff0XmZUL73Y1UM/BoAWyC8ElKTsPOJecgzYVxNfiE0nKI5NcjYFkZyK8ykRJTudllQwctJwwSDebTdX1NJjvN+eA065GH4zVZcYJpq0u8288kzgbPlH9kJSRp6LAII8fn2p97cOrL9gZOT9c0TVHyLWfRUUGU3YKjHf34pqujbDAUMRc0LfHHW0tc4FBgYsPcnA2OUe2wACQArUkwGkC4F9+TVE3w21wmoCibkKRMXr0aPTv3x/Lly/Htm3bcODAATx8+BA3b97E/PnzsWDBAkyePBmfffaZU9u37fTcuHEjoqKiVK2n1Dmr1Nltu7/jx48rjiK3RS7c1llLYVfhiv0Xl20UJkajEQMGDEBycjJ0Oh3GjBmD3r17o0aNGggODrZa+ly5cgXVqlUDoDDQw4UU9+Mmh22+hW0ItBS2Yc9S2RNFgVuKDAAwYMAAVKlSBaNGjbJ6rmVnZ0v6jjVq1AhxcXEC+RFBeDJsJ7+zGJ182E3LETagjFQSMcMzYXqU0XFIU3iQAYBggwZ1Q5W95AjgtdplsPSCuVIdZNAgpqJY7ja8vj8+O5wKHuaw6P418v1321T0xq9XhSMC3nzGH85QPUiHcB8N7mXaPzFpRBxBlF5MWepGrGkDakIX0lBxmYBG03Hv5u+AhG97YKtFzjRPFRzHoW0FH2y7XjgjqjJypK+jWW7snA7Uc6hDv8MivIJqQV++PYx3djFz5D+bYG8N7tv8NiZnmVCtkNpXHOBNTDFMq/488o7qj3spwqNzz+tp5D68CABwwh3USnjuX6iQm28J0TB7Iw55vwyeUze4Ihd6mDLvgud5QSeEKfMuACCTK16dniZOh0yNunu6dJlrjgVSoBZ/OE5TKEHIpQ3bbM/bt2+7dPCqZeSyyaT8fbMdZSxH2bJlMW7cOIwbNw4mkwknT57EunXrMHfuXKSmpuLzzz9H06ZN0bt3b4fbaRusGxQUhHr16jm8DWf3Fx4eLls8UMJWKXH37l3FjtO7d+86vH1HsLd92/m2Ad22r+/evYsaNWrIbsPWKkou5Ds5ORl5eXmKBR5LW9htWM5VwDXnqxQ7d+605hHExcUJsg5scZfKIiQkBLdv31Z1fliOf0EC1l2Nv78/KlWqhH/++QcXL15UXNZ2fu3a9hWd7sBtRQbA7GmWkJCAo0ePYvv27Thz5oz1RAsODkb9+vXRsWNHu95nBOHp+Os5PFdJ2VMtz8SLOpWdtXV+xHj5+6tQQwR5a/F5q2AcvpONdJlCg79Og5aRV/DhvwABAABJREFUBng7MDK+tNK9qi/K+2mRlJGHlpHe0EsMNasXpsdnrYJxOSUH9cP0qOiffwmPCtBhZtsQbL6agVwT0CXKB08HqRs9wqLXcvi0ZTAO3srGI6MJN9NycfSu9KhbelYliNKLKUvop6or2wr6ckLfY61PeXhXHQROo3zL6RVUC2E9j8F4ezt0oU2h9auErGtr4BVUG4bI513edluG1C2D6sFeuJlWcDnD4dvZuGOjOJMrJrBe/jWCdagd4tw1Wwk/HYcWEd5OqRxLAyEdN+POMuZ+S2F0XZi3VlBkuO8hQeGy5Al/+zmN+iKDIbIDcEJciMx99Cd43iR5mHtXYywJeB5p52YJcjKC/fzRIiIbARUnwXhrO3KSj6Jmzl6MTe2Fv8tPgLZiTwDmPLAGYXqcuW9E/Hmh3QAPDuDzwBsfgjMEWaebss3XtGxO2I6AvLtomr0SHKeDX713VB8DADDe3gXj/cPWvzWGMHgFKPutp5u8sTdT6HuuqfgCYPM2dHwGmmcuxz5fYWeOvYFLdCkgSguNGjWyvt67dy/at2/vsm1b7Ews4b5y/Pnnnw5tV6PRoFGjRmjUqBH69u2Lxo0bAwBWrVolKDKoHaEdHR1tfX3gwAG0bt3aofY4Cru/l156yeFt1K9f3/o6ISFBsciQkJDg8PYdwd72befbFnBsXx8+fFgxE+TIkSOS69liNBpx6tQpwTltS25uLk6ePCm5DVvrnZSUFNl2PHjwQLXVEYttLobSZ26b2SGFq5QH9erVw+3bt3H8+HHk5ubCy0v6GSQpKQnXrl2zrlOcaN26NVasWIFLly7hzp07AlstW/bs2WN9bS/72F24tchgoUmTJmjSROw3SRCEmWCDFoNqKXuq5UoUGXKdqDJk5/Gi0WQBenUX+PJ+XuhdrUguIx5J43IGu8s8HaSTLR485e+FN59xzei7EG8telQ1P2Qn3MmmIgNBECIsHXIWvCu/iDJ1xzu9PV1QbeiC8kfh+NUZ6/S2HEGr4dBOQj3mDEkZeYIig5wVItsR2CBcj37V/SSXJQoPzssb3pVfRNY1W2sShSKDjwaweUb39CIDbxLmk3Ba+/cpdsnLRF76P+ARKZis4SC69zUZH+Lu4U8E08K7XIGXfxUAwCNTDnKSzZ0WVXKPoo7hdwTVGihYvqK/F/bdzMLfNrlV/JPwZlP2fWhsiwxZ9wCYLZVsCTNdRc/0zwGtNyJq/cuht/vo0S6kX/va+rdP5OsIajVOcZ076bnYu1s44lNTqT9wIf9vP1MKOmV8LVFkUH4WICUDUVpo0KCBdTTwokWL8M4777jMs7xKFfM16PHjx7h06RJq1qwpWsZoNGLNGudtrxo1aoTg4GCkpKSIQnJtg2Ftg1+ltlGxYkXcuHEDCxYswNtvvy1Y19V07NgRvr6+yMjIwOzZszFgwACHO47bt28PrVaLvLw8LFmyBC+88ILkcgkJCYphva5g69atuH37tmSmh8lkwpIlSwCYB0zbFgAaN26MoKAgpKamYsmSJZgwYYJAUWDh8ePHWLVqFQCgTp06itkhS5YskS0yrFu3zlpA6Nixo2BecHCwtS1Knfw//fST0xZGubn5v6/p6emCwoYFk8mEhQsXKm6HPa8tNkuO0rFjR2zbtg2pqalYu3YtBgwYILnc999/b33P7HEravr06YMVK1YAAOLj4yWzijMyMgTnj5Jixp3QWAaCKKFIPSM4o2RgVQyAOiUDUXpQymigZ1WCKL2wSgaNd5jMkqUHVrmXJVtkEE4nn/SihDn4SkoGJij8vgpbwRINa5ekcUGRAUDew0uiWo7UV8CUIbbV1frYdMJohIMueF46mFncx2WewF7D8osMQiWDnn9iIWGSzutQgs344FRkzGgkOuWyeeG558Vng5MoiNmLeNPRjRtRStBoNJg0aRIAs6/5a6+9Zs0AZTGZTLh165bqbbdr1876etasWZLLTJgwATdv3pTdxsqVKxXDb48ePWrtOLYUNSzYdkb//fffstvQaDSYPHkyALMf/muvvaZYlHj06BHmzp0rO98eQUFBeOuttwAABw8exPjx4xUteu7evYtFi4SWmBEREVbVxoYNG6ydqLakpaVhxIgRTrdTLdnZ2RgxYoRkoO+MGTNw5ozZtu/1118XdIgbDAarZdDZs2cxbdo00fo8z+Ott96yFpAsx02OefPmYf/+/aLpd+7cwcSJEwGYA4oHDx4sWqZt27YAgPXr10ueL5cuXcJHH32kuH8lqlevbn0dHx8vucwHH3yA48ePK25H7XltjyFDhljDmt955x3J7+GpU6fwxRdfADBnIPTp08fp/RUGffv2RdWqVQEA06dPlzwekyZNsl4jLNe64kCRDUG+ceMG7ty5g4yMDDRt2hQ+Pq4ZQUYQJRFnasYajgPHrOuMxfNjxrtVywG+ZG9E2KBkd0WZDARRemGVDBoDFRm8teqKDOzvNY0uLhmIiwwermTIY5QMDtglKZH78CJMZexbl+RlCosMnD4InFf+SEeOKTLAJF1kYOEtRQbmGpZvlyRUMhj4jCcr5opyHOzCtoltswRSW88xCc89HbIh9QRhX8lgd/cE4TGMHj0aGzduxLZt27Bu3TrUr18fo0aNQpMmTeDr64s7d+7g0KFDWLFiBQYNGoSpU6eq2m50dDRatGiBP/74AwsXLoTRaMTgwYMRGBiIy5cvY8GCBdi5cydatmyJgwcPSm7jvffew5tvvonevXujbdu2qFGjBvz8/JCcnIz9+/djzpw5AMxBy6zH/VNPPWVVKPznP/9BxYoVUbNmTatnf7ly5ayjyd98803r+1+9ejWOHz+OESNGoFmzZggMDMSjR49w8eJF7N69Gxs2bIC3t7fdDm8lPv30U+zZsweHDx/Gt99+i927d2PYsGFo2LAh/Pz8kJKSgnPnzmH79u3YsmUL6tevL3p/s2bNwrZt2/D48WMMGjQIe/bsQb9+/RAQEIDTp09jxowZ+PPPP9GkSRO7FjwFoUmTJti4cSNatWqF8ePHo3r16khKSsKSJUvw008/ATCHVkt10H/88cdYu3Ytrly5gqlTp+LMmTMYMmQIIiIicPXqVcydOxe7d+8GALRo0QLDhw+XbUd4eDh8fX3x/PPPY/z48ejWrRsMBgOOHDmCL774wlogmzZtmmRo96hRo7BhwwZkZmYiJiYGU6dORXR0NNLS0rBjxw58++23CA8Ph1arxb179xw+Tp07d0bZsmWRlJSEKVOmIDExEX379kVYWBj++usvLFy4EDt27ECrVq1w4MAB2e20bNnS+nr8+PH48MMPERERYf3NjYqKkrU+siU8PBwzZ87E6NGjcePGDTRu3Bjvv/8+WrZsidzcXGzfvh0zZ85EWloaOI7DggULVIeUuwudToc5c+agZ8+eePToEVq1aoUpU6agWbNmSElJwcKFC61KqdatW+PVV18t4hbn49Yiw+PHj/Hll18iPj5eUCk+c+YM6tSpY/37p59+wtq1axEYGGhXUkMQpRmtRmi5wHo8q0Eqj8FVfniEZ0BKBoIgWHieJyWDBOz1Ui6Tge0IpNp+ESK657Fjl2TD/SzPVTLwpjyAZ4oorrBLApD76BJQQThNUqHLFBkEKgZArGSQKTKIN21RMgg7U+wqGcw7AVQGTJsXZ9QPKpQMUrfh2SbhuefFZ0krGeyckjqSTRGlCI1Gg19++QWDBw/Gzz//jD///BPjxo1zybZ/+OEHtGvXztrpbLHOsTBx4kTUrVtXtsgAwGqnw65rwWAw4LvvvpO0Gp88eTJGjRqFq1evikKhFy9ejNjYWABmn/uVK1fi7bffxnfffYe///4b7777rmybpDqpHcFgMGDbtm2IjY3F2rVrcerUKcWiRUCA2Oo3KioKGzZsQK9evfD48WPExcUhLi5OsMzHH38MjuMKtcgwevRo7NmzB/Hx8fi///s/0fyIiAj8/vvvCAwMFM3z9/fHjh070LVrV1y8eBFr1qyRtM9q1aoVNmzYoBjq7Ovri59//hldu3bF9OnTMX36dNEyY8eOxYQJEyTX79y5M8aOHYvZs2fjxo0bkkWrDRs2oGvXrrJtUMLPzw9Lly5Fnz59kJWVhfnz52P+/PmCZWJiYjB37lzF7IOnn34aAwYMwKpVq7B161Zs3bpVMP/q1auIiopS1aZRo0YhNTUVH330Ee7evYvx48V2rgaDAQsWLEC3bt1UbdPddOvWDd999x3eeust3L17F2PGjBEt06xZM6xbt07x/HE3bhvLcPnyZTRq1AhffPEFbt68CZ7nZT2/mjdvjrVr1+KHH36QlAQRBGGGfU7Ic+JZ97FR+D1Um8dAlB7Ykbm20LMqQZRO+Nw0kZUKKRnU2yWxv9ekZChKHCkyCB/iHmabYHRGRloSYK2S4GIlg4rDlsfYJWl8hMGHHKdOycAOnpFVMmTZUTIAghBqVTBtEqkvJJC6GhiZIoOckiHPzoHVkZKBKGX4+vpi9erV2LlzJ1599VVUqVIFPj4+0Ov1qFSpEnr27In58+fjnXccC3WvVasWjh8/jpEjR6Jy5crQ6/UIDw9Hly5dsGnTJsycOVNx/V27duHbb7/Fiy++iPr16yM8PBxeXl4ICAhAdHQ0Jk6ciPPnz1uLBSwjR47EmjVr0KlTJ5QtW1ZxhLdOp0NcXBxOnTqFMWPGoH79+ggMDIRWq0VgYCAaNmyIN954Az///DMuXLggux21+Pv7Y82aNdi3bx+GDh2KmjVrwt/fH15eXggJCUHTpk0xevRobN68Gdu2bZPcRkxMDM6dOyc4vuXKlUP37t3x22+/4ZNPPpFcz9UsXrwYy5cvR0xMDEJDQ2EwGFCjRg28++67OHfunGCwNEtUVBROnTqFuXPnol27dggNDYVOp0O5cuXQpUsX/Pjjj9i7dy9CQkLstqNJkyY4fvw4xo4di2rVqsHb2xuhoaHo0qULNm/ejG+//VZx/W+//RbLly9H27ZtERAQAB8fH9SsWRPvv/8+jh8/jtq1ayuub4/OnTvj6NGjeOWVVxAZGQmdTofw8HC0a9cOCxYswI4dO+DnZz97bNmyZfjyyy+tShupLAu1TJ48GSdOnMCwYcNQrVo1+Pj4wM/PD7Vr18bbb7+Nixcv4rXXXnN6++5g2LBhOHbsGIYNG4aqVataP/fWrVtj3rx5OHDgAMLCitfzl1uUDFlZWejevTv+/vtv+Pn5YfTo0Wjbti169OghuXxUVBTat2+PnTt3YsOGDWjdurU7mkkQxQa1QgKzVU3+w4RTSgajWMlAELYoKxmoY4wgSiOsigEgJQMgLspmyikZmN9rKtgWJeozGUK9xfdIyVl5iPArMgfaQoO1SgJcFPwMIPfhJfG2JZZjlQwaX9coGSyfsMOZDDArExw5DmwmAzTOKRmMJuFEymQgCMdo37492re3b9MGmPuj1ITgVqhQQTTC3pbY2FjZIkGVKlUwduxYjB07VlWbpHjhhRdkg5GlqF+/PmbPnu3wfqZOnaraSsqW1q1bF6gvr1KlSorH19l2OcrAgQMxcOBAp9bV6/UYPXo0Ro8eXeB2VKpUCd9++63dgoIc9t5HYmKi7LyYmBi734m6devixx9/lJ2v5nul0+kwadIkuxkD8fHxsvkPtjzzzDNYsGCB3eVY1F4DAOXj5grq1avn1HsoKtxyRzxv3jz89ddf8PPzw759+9CwYUO763Tt2hU7duzAH3/8UfgNJIgSCtsp4Uzw82OmyBBARQaCQSmTgZ5VCaJ0wo4AhkYPzqtM0TSmGKE++Fn4N/mkFyEO2CX56jTw8+KQbvO53s80IcL+4LwSBy+hZICLlAymjJsw5WQIpklZdbKZDKxdktpMBvEnbP7CyWUyiIsM7lUySF0OzHZJ+RcOHe9cJgMVGQiCIAiCKCzc8kizdu1acByHt99+W1WBAQAaNGgAwGyzRBCejrNCew3zoOCMYp+UDIQ9NBwHudOCnlUJonRiykoW/K3xDqM8H6gPfhZlMtDFtAhhrXSUb6ZCS0v4s6nwlAwAkJt2XbhtqSaI7JKcUzKIN27JZJBWMijaJbEZC/ZgixKqMhnERyObVTLAuUwGKmgSBEEQBFFYuOU2w+Lr1qlTJ9XrhIaGAjCH4RAEIY0ok8EpuyTKZCDsI2eZpKVORYIolbAjgCmPwYxIySBT/Wcnk11SEcL+jtm5lwpnw589tMjA5xVeJgMA5KYzRQaJ74BIyeDrKiWDdCZDnhq7JAeVDGzhQ1Umgwq7JJ2sXRIpGQiCIAiCKBrcYpeUlpYGAChTRr2MPjvbPHpGp7N/I0YQpRXXBD+TkoGwj7eXBg+N4o4UelYliNIJz4wApjwGMz7MMGFSMpQEHDv2bPjz/Uwnbr5KALyEksFVdkkAkJt2DUBT698uUTLw6ooMUkoGPjcDyMsE4GIlA7u8ikwGqTtxqUwGabsk5W1TkYEgCE/m6tWrSE9Pt78gQ3BwMCpUqFAILSJKG+np6bh69apT69asWbPE94G7pcgQGhqKO3fuIDExEY0aNVK1zrlz5wAA5cuXL8ymEUSJhh1F7kwmA2uXRJkMhBRyuQz0rEoQpRNSMkgjskvK42HieWiY32u2I1BLP73FCHt2SaVDyQBWycBpwWm00ss6QW76DeHmmfl8bib4nIeCaU5nMrBiFQklg0XFAChnMhRYycCp6DyQUjIwp5kO2eAkVAt2Mxlc9xESBEEUO4YMGYI9e/Y4vN7gwYNVBQkThD0SEhJUh8yzXL16FVFRUa5tkJtxyyONpbCwd+9e1essXboUHMehRYsWhdUsgii2qO23ZTt4nbFLIiUDoQYfGS8PsvggiNIJ62VOSgYzUgVZo4RlEvt77UXWc0UGx9512bVLEvbSJmeVDiWDK/MYACCPzWRg72kZqyQA0Pg6l8kgKmBw5ntdPjsF/BOlga06S6xksBkVW9BMBieVDNlsWDyfJbmu/UwGutYQBEHIERUVBZ7nwfM8YmNji7Qt8fHx4HkeiYmJRdoOgnAEt/Qm9uvXDzzPY8GCBbh+/brd5b/55htrQWLgwIGF3TyCKHqcTH5mRz46Gvxs4nmk5bCZDFRkIMTIKxnoYZUgSiOkZJBG6lopZZnEdgRSGGsRIvodU76ZEtsl5cHkxCCPYo+JUTK40CoJAHIzlJUMrFUStD7gdAHCdVhVgFzwMwNv3RsPkzEFAKNkgLySQVQ0sLcvtk3OZjIwN/lymQz2Bhzp6FpDEIQHs3v3bmuRwJF/pGIgXEVMTIxT5yDP8yVexQC4qcjw6quv4plnnkFWVhZiYmKwZcsW8DY3QBzHged5JCQk4OWXX8Y777wDjuPQpk0bdO3a1R1NJIgSCWuXlOegX1KakRc9nvhT8DMhAdklEQRhCykZpGHtkgAgU42SgS6mRYijRQbh41OOCXhk9LwiA5/HKBk0jikZ5Aovlqk8qwiwo2TQ+kaAY3vfnbRLst2Z6UlxwVI45SG2S7LNZBC12x7M8hxnX8kgUtcAyGbskrxAmQwEQRAEQRQv3JLJoNFosGHDBrRu3RqJiYno0aMHfH19rTeKMTExePz4sTXsmed5VKtWDatWrXJH8wiixCIKfnbwGZfNYwBIyUBII2eXRM+qBFE6ISWDNDqN+bfZ9vdYlZKBrqVFiGN2SUEGjegzvp+ZhyCDZ90/8aySQeuYkkGuszsPenjBaKMmMMMePVOmndBniDMZ5O2ShPuy/YQtBVNLsSEHPlY7JQt6W7skR5UMbBi1CiWD1L2VWMmQJalksJvJQDduBEEQBEEUEm67G37qqadw8uRJDBw4EBqNBunp6VZJyL1795CVlWVVNwwYMABHjhxB2bJl3dU8giiRsP2+jgY/s0UGHy+ORlMSkkgpGTiQXRJBlFZIySANx3EiNUMmU2TgeV40KEBLv71Fh4N2SRqOQ6h3KQh/LqCSQa6zO5czFyt49jGUVecydkls6DMA1ygZsoVFBlbFAAiVDOAd/KxZJYOKTAYpjMzx9JKxS7KvZHBq9wRBEARBEHZxi5LBQkhICP73v//hiy++wKZNm3D06FEkJSUhLy8PoaGhiI6ORs+ePVGjRg13NosgSiwaplPC0eBnNvSZVAyEHFJFBuoTI4jSCc/zEkqG0CJqTfHD24tDuk1hIZupKEipDimToShxrMgAmHMZkjLz76HuZ3pe+DOrZOBcpGTIhfR2RJkMrJKBDX2GI0oGIbYFDkvgs+WaxoY+A0Ilg+N2Sa5RMrDXEZ2cXZKdZwEaTEQQBEEQRGHh1iKDhcqVK2PUqFFFsWuCKJaIkxHUIbJLcvAZl/UQpjwGQg4fKjIQBPEE3vhQNJqX7JLyYYuyrF2SVOcrm7FEuBEnjn2ojxZAfuexJyoZ2EwGOKhkyFFSMvAQ2SXZC35WpWRgrYlk4B1UMuiQabOyo3ZJzmQyiGHtkpxVMlBBkyAIgiCIwsItRYbr168DACpUqACtVqtqHZPJhBs3bgAwWy0RBCGmoJkMpGQg1CIVZkpWSQRROmFVDADZJdlizy5JaqQxdfwVI1SoQsN9WLskz1MygFUyaBxUMsgcxjxI2yWxtxRs8LOqTIY8o2gZQErJYBv8fF/wP6tk0PMZ0Nh05rtDySB1e5XDnGI6PgvSwc/y56+Wo3s3giAIgiAKD7cUGaKioqDRaHD69GnUqVNH1TpXr15F9erVodFokJvr4M0cQZQS2JGPjtolsZkM/lRkIGSQskuSyYImCMLDYfMYoPUB5yUe/VtaYZVfWXn2lQxe1PFXhDhnl2RLaVAycFoHlQwyI1+smQycHSUDU2TQStglgS188LngeR6caNtsW9QrGQx8puBvh5UMbFHCSSUDixeyJacrDTjS040bQRAEQRCFiNt6FHkHOz8Luh5BlAa0zDfY0eBnUjIQavGRGGZLdkkEUToR5TGQikEAW5RllQx5Ej/WpGQoSoSfl5pnj1BWyZDlgUUGRskg6tC3g2zwMyzFCqYQYPMnb8qxdvpbd69CyWBeWaoIIPx8JJUMMpkMejBFhgIqGSTbzMBxnN1Cg07WLkn+/KXrDEEQBEEQhUmxvdWw3OBrNMW2iQRR5LCSZ0ftkiiTgVALKRkIgrDAKhkoj0EIa5fEBrZK2choqWpbdIhUJCqUDN5CJcNjIy/6nEs8BVQyyNkl8X5R5v9ZuySb16bMu6L1pIKfJa2HJMKfOZ6RD3FCJQNvygOf/QCAhJKBKTKwGQv2EC2vcY2RgJesXZL8Ojq6zhAEQRAEUYgU2x7827fNEll/f/8ibglBFD7yIm5lxMHPjj3gkpKBUAtlMhAEYYGUDMrYC36WVDLQ5bTIEI8Zd9wuCfA8yyTexAY/O6ZkkAt+5v2qmf9XCH5m8xjAeUFjCBVtS0oVwEsUGdigetsChynrPkzZybB87mIlA3Mc3KBkAOyrRXWQUTIoKHF0dJtPEARBEEQh4tZbDdYfU4qcnBxcvHgRn3/+OQCgZs2ahd0sgiixsA8gjisZqMhAqIP1GCcIovRCSgZl7AY/s4OqQfZzRQtz8FXYJXl7cfDXCdfzvCIDE/zsaCaDzIh63q+q+X+F4GdTBhv6XB4cJ3GPyqlVMrBFBpvFs+4JCqeuVjKI7JtUZDIA0uHPtnjx2ZKDkpSUDF50oSEIgiAIohAplOBnrVY8uofnedSrV8+h7XAch379+rmqWQThcbAPCwXNZKDgZ0IOqSKDku8vQRCeCykZlPFmjM9Fwc9MJ7ZWo24gDlFIOGGXBAChPlo8zsnvQL6fqdC7WxJh7ZIcVDLIqWtNvpUBiJUMtsUeVskgGfoM9UoGTiGTgc9Ngyn9hvVvcZGhYEoGtj1qlQz2MxmyJKcr3ZuRXRJBEARBEIVJofQo8jwv+Cc33d6//v37Y9y4cYXRRILwCMRKBvWdvlm5PJgaAwIok4GQQcouyeP8pwmCUAUpGZQR2yUJf2zZkcZeVGAoYpw7/uFM+HOyhysZ4Colg28lyekaRSWDdJFBbSYDa5fEfua5Dy9aX4vtkpjj4KiSgS1KqMxksFcP8HpS/GAXU85kULVrgiAIgiAIpygUJcO//vUvwd+ffPIJOI7Dm2++ibJly8qux3EcvL29ERERgZYtW6JatWqF0TyC8BjEmQzq12VVDADZJRHySAU/S5xCBEGUAkjJoAxblBVlMkgoGYjihLoCOpvLcM/jlQyOFhlklAyGCgDEdkmCZVglg0yRwflMBrbIcMH6WqRk4ISKAd4BJQNvygN7PnFSFk+ScKJ1bdHx2ZLTlc5eUjIQhDoSExNRpUoVAMDixYsRGxtbtA0iJJk6dSo++eQTABAMbiZcz+7du9G+fXsAwK5duxATE1Ok7YmNjcWSJUtQuXJlJCYmFmlbCCFuKzIAwOjRo1GnTp3C2CVBeBRqBzVqmQUdUTKweQxajnz3CXnIx5cgCAukZFCG/S0V2SWxSga6vhYt7E2XynupUKbI4PmZDI7ZJcnZ9uTpAsHpAhwKftbI2CU5q2RgCxxCJQNrl1QAJYPUsq5SMjwpMnCc6lOWrjUEQRAEUUL4559/cOTIESQkJODIkSM4duwYHj16BMDc5z516tSibaAMhVJkYFm8eDEAoGLFiu7YXZFy/fp1fP/999i0aROuXbuGx48fIzw8HFFRUWjfvj0GDBjgcDYFQcjBjn50xL2GVTIE6DXkCU0QBEHYhZQMyrDKL3Hws/Bvqu8XNc5lMoSxdklZHlZkYJQMcFDJIGfbk2sCvAJrAY+YIoOCXZKckgGcVA6g/eBnkV1Sqo2SAaySgSkyOKRkkCh4uCiTQc4uSQmySyIIz6C4jSonCFdAypR8rl27hqioqKJuhlO4pcgwePBgd+ymyJkzZw4++OADpKenC6bfuHEDN27cwP79+/Ho0SN88803RdNAwuNglQyO5PCySgZ/ymMgCIIg7MCb8sBnPxBMIyWDEJFdUh5rlyRc3os6/ooY55QM4SIlgwkmnofGUwZssEoGB4Of5eySck08vAJrwvT4kXD7Nq/VKhk4jjN32tt25jsY/AwApqy71tdsJoOBE26Pd0TJIFGQ4Dh1j99Kp5GGz4EWjhe1dBL5WgRBEARR0oiPj0d8fHxRN6PQsC2ycByHatWqITIyEnv37i3CVqnDLUUGwDzCHwDKlSsHg0F5JExWVhaSkpIAAE899VSht80VfPbZZ/joo48AADVq1MCwYcPQtGlTBAYGIjk5GSdOnMC6deug0dCTJOE6RMHPDlQZHhuFy1IeA0EQBGEP3pgCdqQ3KRmEiIOflZUM7IABws2Ijr9KJYO38L4pjwdSs00I8RaPri+JsEoGzsHgZ7tKhhsJwu0/+Rh43gRT5l3BPNngZ5hzGWwVA5LqAVFnv/x3TpzJUAAlg4SqQq2SQemu3DaPgVOObhCuR7f6BEEQBFHs8ff3x2effYZmzZqhSZMmCA4OFiiYijNuKTJs3boVXbt2RZkyZZCYmGi3yJCRkYG6desiMzMT27dvL/byrx07dlgLDK+99hoWLVoEnU54A9mhQwdMnDgRRqNRahME4RSi4OcCKRnoyYMgCIJQhs1jAACNIbQIWlJ8YZUMOSbzIADtk5EBeaJMBne1jJBG+HnxKntsAwwaeGmEnen3Mz2oyMAoGeAiJUOOiYc2oCZ4HBNMt3wKpqz7oiwDWbskAGCDlNUoGRQKe4WuZFCZyaBUe/RCfhi1IyVKymQgCIIgiOJPaGgoPvzww6JuhlO45bFm9erV4Hkeffr0QXBwsN3lQ0JC8OKLL8JkMmHlypVuaKHzmEwmjBw5EgDQoEEDfP/996ICgy16vWM36ETpwFnLOVaSX9BMBoIgCIJQgs1j4HT+Do9w9nTY4GdAaJmUy/zoU8dfUeOcXZKG4xDKFBSSPSn8ucBKBrkig1nJwFoWgTffl5oYqySAg8annOx+OEYZIKlksBP8bItYycBszwElg2QItQsyGWyVDI6go2sNUYo5cOAAhg4dipo1ayIgIAB6vR4VK1ZEjx498N///hepqamqtxUbGwuO4+x6psfHx4PjOHAch8TERMlldu7ciYEDB6JKlSrw8fGBr68vKleujObNm2PixInYuXOnddnExERwHCcYzdy+fXvrPiz/5Gxkdu3ahcGDB6Nq1arw9fVFQEAA6tevj0mTJuHWrVuy72Pq1KnWbQPAw4cPMW3aNERHRyMoKEh2n7/88gv69++Pp556Ct7e3ggKCkKTJk3wySefICUlRfHYAWbb8dGjR6Nq1arw9vZGZGQkevXqhe3bt9td11ksx9j2Pa1evRodO3ZE2bJl4ePjg1q1auGDDz5Qdc4YjUbExcWhffv2CA8Ph16vR/ny5dGtWzcsW7YMJpOM7A/i8+zmzZuYMGECatSoAV9fX4SHh6N79+747bffHHo/ckRFRYHjOMTGxtp9X1IcOnQIU6ZMQUxMDMqXLw+9Xo+AgADUqVMHI0eOxPnz5yXXs3xPLHkMAETnNPsdUvsdPHPmDIYPH47q1avD19cX/v7+qFu3LsaPHy/7nQSkj9u2bdvQs2dPlC9fHgaDAVWqVMHIkSNx48YNtYeoVOAWJcMff/wBjuPQqVMn1et07twZS5cuxR9//FGILSs4W7duxeXLlwEA7733Hry83OZARRCi0Y8mB6oVlMlAEARBOIopO1nwN+UxiGHtkgBz+LPfk75F1kaGbNKLFk5pyLgdwn00uJuR34F9z4OKDKySwdFMBjm7pDwTD6+ApwFOeBPLmcwd53lM6LPGO1x59D/baS9ZZBAWBpTultkig55jPlMHlAxSqgf1mQzyPkhetnZJqltDdklE6SQzMxNvvPEGVqxYIZp38+ZN3Lx5E5s2bcK9e/cwdepUt7Zt/Pjxknmd169fx/Xr13H48GHEx8fj/n2xitQRsrKyMGTIEPz000+ieWfPnsXZs2cxb948rFixAj179lTc1uXLl9GpUyfFDtqUlBT069dPUCABgOzsbBw7dgzHjh1DXFwc1q9fj+bNm0tuY9++fejRowcePcrP77l9+zY2btyIjRs3uu2zeuONN/DDDz8Ipl26dAkzZszA0qVLsWPHDtSqVUty3cTERHTt2hUXL14UTL979y62bNmCLVu2YP78+Vi/fj1CQkIU23H06FF0797daisPmM/tzZs3Y/PmzZgwYQJmzZrl5LssOPHx8RgyZIhoek5ODi5cuIALFy5g4cKFmD17NkaNGuWWNk2fPh1TpkwRFXLOnz+P8+fPY968eViwYAFee+01u9v64IMPMGPGDMG0xMREfPfdd1izZg327NmD2rVru7T9JRW39IhbLkA1atRQvc7TTz8NALh69WphNMllrF69GoD5RrBHjx7W6Q8ePEBycjJCQ0PtXjAIwlnEmQzq16VMBoIgCMJRWLskymMQw9olAcJcBnaENykZihvqB2yE+mgB5Hdq38904EasmMObmNHyDioZlOySOK0BMJQV7i/PbAHEKhmU8hgAdUoGTtTZr94uyVvDFCiKg5IBTCaDSkjJQJQ2TCYTevfujW3btgEAqlevjlGjRqFJkybw9fXF7du3cfDgQaxatcrtbfv111+tBYZnnnkGI0eORO3atREYGIjU1FScO3cO27dvx5EjR6zrVKhQAWfOnEFCQgJef/11AMAPP/yApk2bCrZdsWJF62ue59GvXz9s2rQJANCzZ08MGDAAVatWhUajwZEjRzBr1ixcv34d/fr1w4EDB9CkSRPZdvfr1w83b97EmDFj0KtXLwQHB+Py5cuoXLkyAHMhoWPHjjh+/Di0Wi0GDRqEbt26oUqVKsjJycHevXvx1VdfISkpCd26dcOJEyes61q4fv26tcCg0WgwfPhw9OvXD4GBgTh9+jRmzJiBqVOnKrbTFcTFxSEhIQHNmjXD+PHjUb16dSQlJSE+Ph6rVq3CrVu30LlzZ5w9exb+/v6CddPS0tChQwdcuXIFANCnTx+8/vrriIyMxNWrVzF37lzs2bMH+/fvR8+ePbF3715otdJ2ixkZGejfvz8ePnyI999/H926dYPBYMDhw4cxffp03L59G1999RWeeuopvP3224V6TOTIzc1FcHAwevfujbZt26J69erw8/PDrVu3cPz4ccyePRv379/HW2+9hVq1auG5556zrtunTx80adIEcXFxmDdvHgCzAoGlQoUKqtsTFxeHyZMnAwDCw8Px3nvvoVWrVsjLy8P27dsxc+ZMpKenIzY2FmFhYejWrZvsthYuXIiDBw+iXbt2GDFiBGrUqIHU1FQsXboUS5cuxb179/D6668X+wHy7sItRYbcXPPNmNyXRgrLsllZWXaWLFoOHToEwCwt8vf3x/LlyzF9+nScPXvWuowlCHrMmDF28yhY7Elvbt9mJcVEaYINizxxz4iz942oF5Y/2uxuRh5+T8zAw2zhg+8/j4UPSZTJQBDqMeWkIf38t8h9eEFyPsd5QV++HXyeji3QKNnSQNb19cj6ZwMADt5P9YZ3JekRVNl39iLrynKYctMk5+uC6sKvztvgvHwl5xOugbVLIiWDGK2Gg05jtoWx8OOFNJTRma8Ft9KFI6NJyVDUMBkaycdVrxnmI7x3Ss7yDCWDKecxcpnjoEbJ8CArD78lZiI5Mw9/P5TujD+eZERq9kPcMgwS1HP4rDtI2TtV9Luq9VUuMrCd9mmnpiE35RRyUvNtGUxpnQBtHevf5wxd8VBTXnJzWZywo8jACd9HVuJq5D76U7lNT+CND8UTOXXPw0r1AC/e9vlYffIzFTRLBiYTj+SM0pPjGOqrh6aQzs25c+daCwx9+/bFihUrRP0x3bt3x7Rp09zer2IpbFSuXBkHDhxAmTJlBPNjYmIwevRoPHjwwDpNp9OhXr16AmVDlSpVUK9ePdn9LFq0CJs2bYJOp8OGDRvQpUsXwfzmzZvj1VdfRZs2bXDu3DmMGzcO+/fvl93e2bNnsWXLFoFLSePGja2vP/30Uxw/fhxBQUHYvn27YB4AtG7dGi+//DJatGiB27dvY/Lkyfjf//4nWOadd96xKhiWLVuGgQMHWuc1adIE/fv3R5s2bXD06FHZdrqChIQEdOvWDevXrxc4lnTt2hX16tXDxx9/jOvXr2PatGn48ssvBet+8skn1gLDlClTMG3aNOu8xo0b48UXX8Srr76K//3vfzh48CAWLFhgtWFnuXfvHlJTU7F9+3a0bdvWOr1Zs2Z48cUX8eyzz+LGjRv48MMPMWjQIISHh7vyMKiia9euGDRoEHx9hc9h0dHR6N69O8aOHYu2bdvi9OnT+Ne//iUoMgQFBSEoKAhly+YPPlA6p+1x7949TJo0CQAQGRmJQ4cOoVKlStb5rVq1Qq9evdCmTRukp6dj+PDhuHr1qqzt/cGDBzFs2DDMnz9f8FzfoUMH6PV6LFq0CIcOHcKJEycQHR3tdLs9BbcUGcLCwnD79m1cuXIFjRo1UrWO5QtZnFUAJpPJKn0KCwvD22+/jdmzZ4uW+/PPPzFp0iSsW7cOmzZtQlBQkOp92H4ZCIJFqmPi8yOp+LxVMKoG6pBr4jH1jxQ8yLI/so6UDIQ9NBwgMzCx1PFwfyyyrq1RXCbz7yXgc9PgV3uMm1pV8si6sRkpO/tY/868/D1Cnv8NhgqdBcvlPDiNB793ULSpyAKQk3oWwW3/J7sMUXBIyaAOby8OOTaKwZP35DuMqOOviGEKwbkPTiAv4w60vtKd0LaE+wg7jD1FyZC69xXxRDtKBhPP4/PDqbiRplxouZWe96TQ9rRwRm46sq6Ir9/2lAxskSHn/mHk3D8smMb7NwVsPqq72mq4q62mvN0n6LXC95Obeha5qWdllrYD56V64IHSYgIlgwO7J7ukkkFyhhFl/7W1qJvhNpI+6YTwMq7PdjKZTJg5cyYA88j+pUuXyg741Gg0Do2SdgV37twBADRq1EhUYLClIP1hPM/j3//+NwBg7NixogKDheDgYMycORPdunXDgQMHcPnyZVSvXl1y2djYWFkb9LS0NPz3v/8FAEybNk1UYLBQuXJlfPTRRxg1ahRWr16NBQsWwM/PrCK7c+cO1q1bBwDo0aOHoMBgwd/fHwsWLMCzzz6r8O4LjsFgwMKFCyUt0T/88EOsWrUKZ8+exffff4/PPvvMmr+anZ2NRYsWAQDq1q0rae3EcRzi4uLw22+/ITk5GXPnzpUtMgDAiBEjBAUGC5GRkZg1axZeeuklpKenY8mSJZg4caKT79h57H1/AgMD8emnn6JPnz7Yv3+/1fWlMFi8eDEyMjIAAF999ZVkn2p0dDQ++OADTJkyBTdv3rTmh0gRERGBOXPmSP5+T5w40fpZ79u3j4oMcFPwc8OGDQHAoRBni19cQSpYhc3Dhw+t/l5nzpzB7NmzERERgWXLluHBgwfIyMjAnj17rD5zBw8etMraCMIWtuNW7QODlO+ziQdOP+nM+Cs1R1WBAQCCDPTkQSjTKtJb8Heod+k9Z7JvblG33I3NhdySkk32jU2iaVkSxyz71jZVPtjZN9R9LoTzmIzCoD5OH1xELSne+DvQmycVFE24D85L3LljvLNTYkkxwczvYEp2yS8y8Dwv+Run0QUornczLc9ugUEJPZ8hOV3rpzzgyl67lLatBke+y/bgdP72F3qClO2aBR+TeYSvoWJ3GBy4flBBkyhNnDx50uoKMWzYMMWO/KIgIsJcQN27dy/+/vvvQtnH+fPnrdvu16+f4rK2HdhKti8vv/yy7Lw9e/bg4cOHDu0vJycHx44ds07ftWsX8vLMvyVSHv8WmjVrhrp16yruo6B06tQJkZGRkvM0Gg0GDx4MwGyVfvx4vvrv2LFj1lDo2NhYWUeXgIAADBgwAID5s1JS0ygdi759+1oHMhdmKLYjpKenIzExEefOnbPmftgqBU6dOlVo+7Ycg6CgILzwwguyyw0dOlS0jhT9+vWTLVDWrFnTem2xDJQv7bilh6h3797geR5r1661ZhgosWrVKqxduxYcx6FPnz6F30AnSU9Pt77OysqCr68vdu3ahZdffhnBwcHw8fFB27ZtsXPnTjRo0AAAsG7dOhw+fFhukyL++ecfxX+2Hn1EySU7T1hlMKj0TmgQroefTsL7+cn27qSre9irEuCFCmXU25kRpZOXavjB8OQ04QAMqav+YdnTsHhH218u2/5CpRg+R2x9JGUvwctYJIlgPcQJ18MLO1EVA1lLMa0qeNtf6AktIlw/gpNQj/dTvUXTTNkPJJYUo2c6bU2eIPfjcyWzBPRlWyqudjPNgawCCaKz14snar3hHaXcUeVd5f/sbrtB9iZwvOMFkPphOoRX6SYKqXYWHxVttdAiUv4aEp39C6D1hn+TL9HSgesHuTcSpYkTJ05YX7dp06YIWyKNJWw2OTkZ9erVw//93/9h8eLF+Ouvv1y2D1s7oRYtWoDjONl/tkUYi8pCimeeeUbV/iIiIhT3ZzuY2HZ/tl78bNYES7NmzRTnFxRH9m/bblvrdHtqC9v5tuvZotfrrf2JUuh0OusIeqksA3dx//59TJ48GTVr1oS/v7/Vyqt+/fqoX78+unfvLli2sLAcx0aNGslaIAFAuXLlEBUVJVhHCrlgbwvBweYBV48fP3awpZ6JW54MBw8ejOnTpyMxMRGDBg3C4cOH8fbbb4tkK//88w++/vprqxSlUqVKgupSccPbW3jzN3ToUNSsWVO0nI+PDz7//HNrMPTKlStVS7tsQ3sIzyWLKTJIKRSkCPHW4vNWwRi3W/gwnPukDygpQ/hAFemnRdPywoeRYIMGbSp6k288YZdwXy2+bBOC40lGVAn0Qu0Q+/7MHgvT0epT/Q1ovMORc/8ojLdtR0J4QIdTISJVrOHzxCNOeZPQasYrqA4MlXrBlHELmX8vLbT2EYSzvPi0LyqW0eLqw1zZq4AXB9QJ1QtylAj3owttBI1vRZgy8nPQTFJe+hKwA8PzPOGSbxJ3xod02WM37+Ymo2Io76vFsxEG6LUcQr01SM4ywcgcIJMxFaaH51FVk4hnykcAeN86j/PyhXelXtAF11fcr1+dcTBl3EL6uf9IzveuOggN/Z7Ce8ZVOJdTHfCvAY1PeeQkHzOr5Bg0+mD41hyBcB8t2lQwwODVAaFd9yP75u/iMGwH8AqqA58qYtsPOaSuIVoOqK79GzVz2kEf8Sl0QXXwWiCPakE6QdbahWQj/kwVF33oTp8oTdh2YlpUA8WJDh06YO7cuZg0aRIyMzOxcuVKq/NHhQoV0KNHD4wcOVKxc9keSUlJTq1nsZqRwtKhWlj7s82gsPXol6JcuXJO7U8tjuzftt2OvIfy5fOtGW3XsyUkJMRuvq2lLXLbKGyOHTuGzp07Izk5WdXymZmZhdYWyzGwd+wB8/FPTExUPG5szgSLRmMeiGBR4JR23FJk0Ov1WLt2Ldq2bYu0tDR8/fXX+Prrr/HUU09ZL/i3b9/G9evXAZhlumXKlMG6descDkp2J2yCvJw3HWD+EfHy8kJubi4SEhIKu2lECcNZJQMARPh5oUMlb+z4J7+zLufJSLo7TJGhQbgeg2oVL6koUbIo7+eFblVK98hlnhf3IvnVnQBdUB2kX5jLFBkIJSSLDLnp4gUZRYgurBkCGk+H8X6CoMgg9dkQroY9xtRtJQXHcWge4Y3mxa9fg5DAUD4GmVeWWf/mc9QWGRglgwdcgngJazptmcp212OVDOruOcsAKNiAKo7j4B3VX7bI4FdzJPTlWiMagK1TcubVu0i9/LloeS+v2giv9Y5gmr5sC+jLtihQOx1F/hrS4Mk/MxqOQxtGOfVXag4+PJACFrpalwxCffVI+kS+X8HTCPUtvYX20aNHo3///li+fDm2bduGAwcO4OHDh7h58ybmz5+PBQsWYPLkyfjss8+c2r5tp+fGjRuto7btodQ5q9TZbbu/48ePK44it0VuYG1RD4J0xf6LyzYKE6PRiAEDBiA5ORk6nQ5jxoxB7969UaNGDQQHB1v7dK9cuYJq1cx5SO54Zivux81TcVtPUcOGDXH48GG88sorVunatWvXBIUFC40bN8aPP/5oV5ZS1BgMBoSHh+PevXsAlEOavb29ERYWhjt37liXJwgLWbnOKRkssB6rliIDq2Qo50uWSARRYHix5zZndR9kvrvU6a2IdJHBvpKB08g9kNLxdj90A0+UfDh9oOBvkzFV1XrsmJA8T7jmmyRGwHP2HxlZJYM7bTg5rYI9mYzVEeflI728Rl2nWHFG78BgJaL4odFwhRKEXNoICwuzvr59+7ZL+5YsI5ct+Zxy2Npry1G2bFmMGzcO48aNg8lkwsmTJ7Fu3TrMnTsXqamp+Pzzz9G0aVP07i229rOHbbBuUFBQoeed2u4vPDzcKVcOW6XE3bt3FfvY7t696/D2HcHe9m3n2wZ0276+e/cuatSoIbsNW6souZDv5ORk5OXlKRZ4LG1ht2E5VwHXnK9S7Ny505pHEBcXJ+tG4y6VRUhICG7fvq3q/LAc/4IErBNC3JraWbt2bRw7dgy///47xowZg9atW6NmzZqoWbMmWrdujbFjx2Lbtm1ISEgo9gUGC7ZhM/bkMZb5Uun0ROmGVTIohb1JwWbSydklUZGBIFyBRCeSZaSEaMSEB3Q4FSZOKhlgLTJQR4rb8YROVIJgYIsMUtkwUrB2SZ6gZICEkgGc8v2jiedxi1EyVCjjvucdxSKDzOMup5UuMnCeUGSQecKnQZ1EaaJRo0bW13v37nXpti2OFpZwXzn+/PNPh7ar0WjQqFEjTJs2DTt27LBOX7VqlWA5tSO0LT79AHDgwAGH2uIMrthf/fr5Fnn2HEAK2yHEkf3bFnBsX9vLY7XNWJUrAhmNRsWg5NzcXJw8eVJyG7buKykpYoWbhQcPHqi2OmI5d+6c9fVLL70ku5xtZocUrlIeWI7B8ePHkZsrnxeVlJSEa9euCdYhCo5biwwWnn/+eXz77bfYu3cvzp8/j/Pnz2Pv3r345ptv0KFDh6JoktO0bdvW+lopTfzRo0dWX8AKFSoUeruIkoUok8HhIoNYyZCZa8JDo3C7ZanIQBAFR0LJIB8K6Qk9ToWH00oGrXmEH0fKkSKAOcbUa0V4ABp9kOBv9UUGT7RLEg+ashfwfj/TBCPz0+hOJQO0CqO+5ZQMMkUGT1Yy0NWaKE00aNDAOgp+0aJFSEtLc9m2q1SpAsAc9Hrp0iXJZYxGI9asWeP0Pho1amQd1c+G5Npmg2Zny2fFNGrUyKomWLBgAbKyxPfdrqRjx45W//rZs2c7ZYnTvn1764j9JUuWyC6XkJCgGNbrCrZu3Yrbt29LzjOZTNb2BQcHC4pajRs3RlBQEADze5BTEDx+/NhaQKpTp45idojSsVi3bp21gNCxY0fBvODgYGtblDr5f/rpJ6ctjGw78uXUECaTCQsXLlTcjtrz2h6WY5Camoq1a9fKLvf9999b3zN73AjnKZIigyfx4osvWl+vW7dOdrl169ZZT+A2bdoUeruIkgVrl2Rw1C6JeZjIyQOSMsQ/ZlRkIAgXIFVkkLFLoowAZdRmMvCySgbRki5oFeEY1G1FlHw0OtfYJfHwgOu+hF0S7NglsSoGHy8OQQb3PWYq2yXJdLjL2CV5hJKB7JIIAhqNBpMmTQIA3LhxA6+99hqMRqPksiaTCbdu3VK97Xbt2llfz5o1S3KZCRMm4ObNm7LbWLlypWL47dGjR60dx5aihgXbzui///5bdhsajQaTJ08GYB4Q+9prryl23j569Ahz586VnW+PoKAgvPXWWwCAgwcPYvz48YoWPXfv3sWiRYsE0yIiIqzWUBs2bBCpOAAgLS0NI0aMcLqdasnOzsaIESMkHUtmzJiBM2fOAABef/11QZaswWCwWgadPXsW06ZNE63P8zzeeustawHJctzkmDdvHvbv3y+afufOHUycOBGAOaB48ODBomUsA6PXr18veb5cunQJH330keL+lahevbr1dXx8vOQyH3zwAY4fP664HbXntT2GDBliLXa98847kt/DU6dO4YsvvgBgHgTep08fp/dHCCky3x6TyYQHDx4gIyMDFSpUsJuWXlx55pln0LVrV2zZsgUrVqzAkCFDRGqMO3fuYMqUKQDMIdhDhgwpiqYSxRjX2yXxuMtYJYV4a+ihgyBcgpRdkkwmA6GIWiUDZJQMNIq+KCjhHagEIYEok0F18LN4mokXFx9KElLBz7CjZJDKY3Bn4KJSkYGTG1PnwUoGg9SJCfrJJEofo0ePxsaNG7Ft2zasW7cO9evXx6hRo9CkSRP4+vrizp07OHToEFasWIFBgwZh6tSpqrYbHR2NFi1a4I8//sDChQthNBoxePBgBAYG4vLly1iwYAF27tyJli1b4uDBg5LbeO+99/Dmm2+id+/eaNu2LWrUqAE/Pz8kJydj//79mDNnDgBz0DLrcf/UU0+hYsWKuHHjBv7zn/+gYsWKqFmzprVPrVy5clabnDfffNP6/levXo3jx49jxIgRaNasGQIDA/Ho0SNcvHgRu3fvxoYNG+Dt7W23w1uJTz/9FHv27MHhw4fx7bffYvfu3Rg2bBgaNmwIPz8/pKSk4Ny5c9i+fTu2bNmC+vXri97frFmzsG3bNjx+/BiDBg3Cnj170K9fPwQEBOD06dOYMWMG/vzzTzRp0sSuBU9BaNKkCTZu3IhWrVph/PjxqF69OpKSkrBkyRL89NNPAMyh1VId9B9//DHWrl2LK1euYOrUqThz5gyGDBmCiIgIXL16FXPnzsXu3bsBAC1atMDw4cNl2xEeHg5fX188//zzGD9+PLp16waDwYAjR47giy++sBbIpk2bJhnaPWrUKGzYsAGZmZmIiYnB1KlTER0djbS0NOzYsQPffvstwsPDodVqncqP7dy5M8qWLYukpCRMmTIFiYmJ6Nu3L8LCwvDXX39h4cKF2LFjB1q1aqVoo9WyZUvr6/Hjx+PDDz9ERESE9X4iKipKlfV8eHg4Zs6cidGjR+PGjRto3Lgx3n//fbRs2RK5ubnYvn07Zs6cibS0NHAchwULFqgOKXcnv/32myCz4+LFi9bXJ0+eFBR0ypQpg379+rmzebK4tciQl5eH+Ph4xMfHIyEhATk5OeA4DqdPn0adOnWsy/3666/Yu3cvAgMD8eGHH7qziU7xzTff4I8//kBqaip69OiBcePGoVu3bvDx8cGRI0cwffp03LhxA4D5i092SQSLSMng4NOpVPAzW2QgFQNBuAZeUslAmQxO4aSSgZPNZKDjXeiIRmlTrxVR8nHeLkk8LY8HSvQdl2Tws/I7ulmEeQyAk8HPcpkMXPHraHAUL435yiy+WtP1mihdaDQa/PLLLxg8eDB+/vln/Pnnnxg3bpxLtv3DDz+gXbt21k5n1s5m4sSJqFu3rmyRATDbuUita8FgMOC7775DkyZNRPMmT56MUaNG4erVq6JQ6MWLFyM2NhaA2ed+5cqVePvtt/Hdd9/h77//xrvvvivbJqlOakcwGAzYtm0bYmNjsXbtWpw6dUqxaBEQECCaFhUVhQ0bNqBXr154/Pgx4uLiEBcXJ1jm448/BsdxhVpkGD16NPbs2YP4+Hj83//9n2h+REQEfv/9dwQGBorm+fv7Y8eOHejatSsuXryINWvWSNpntWrVChs2bFAcdO3r64uff/4ZXbt2xfTp0zF9+nTRMmPHjsWECRMk1+/cuTPGjh2L2bNn48aNG5JFqw0bNqBr166ybVDCz88PS5cuRZ8+fZCVlYX58+dj/vz5gmViYmIwd+5cxeyDp59+GgMGDMCqVauwdetWbN26VTD/6tWriIqKUtWmUaNGITU1FR999BHu3r2L8ePHi5YxGAxYsGABunXrpmqb7mbGjBnYs2eP5Lz169dj/fr11r8rV65cbIoMbtOxJiUloU2bNhg+fDgOHDgAo9EInuclJcVRUVH4z3/+g48//tgaYFKcqVGjBjZu3Ihy5cohKysLM2bMQNu2bdG0aVNr9YzjOEyZMkXxgk6UXkRKBgftkqSCn++mU+gzQRQO4iID96QTQ/wAT53eSsgpGdh7AzaTQdZ/u6TblBAEUSRwjF0Sr1rJIL5fK/G5DBKZDHaVDOliJYNbkbXQg3yRQcYuyd57LQlwHAc93fYTBABzB+3q1auxc+dOvPrqq6hSpQp8fHyg1+tRqVIl9OzZE/Pnz8c777zj0HZr1aqF48ePY+TIkahcuTL0ej3Cw8PRpUsXbNq0CTNnzlRcf9euXfj222/x4osvon79+ggPD4eXlxcCAgIQHR2NiRMn4vz589ZiAcvIkSOxZs0adOrUCWXLllUc4a3T6RAXF4dTp05hzJgxqF+/PgIDA6HVahEYGIiGDRvijTfewM8//4wLFy44dByk8Pf3x5o1a7Bv3z4MHToUNWvWhL+/P7y8vBASEmLtJ9u8eTO2bdsmuY2YmBicO3dOcHzLlSuH7t2747fffsMnn3xS4HaqYfHixVi+fDliYmIQGhoKg8GAGjVq4N1338W5c+cEg6VZoqKicOrUKcydOxft2rVDaGgodDodypUrhy5duuDHH3/E3r17ERISYrcdTZo0wfHjxzF27FhUq1YN3t7eCA0NRZcuXbB582Z8++23iut/++23WL58Odq2bYuAgAD4+PigZs2aeP/993H8+HHUrl3b4WNjS+fOnXH06FG88soriIyMhE6nQ3h4ONq1a4cFCxZgx44d8PPzs7udZcuW4csvv7QqbTQa57usJ0+ejBMnTmDYsGGoVq0afHx84Ofnh9q1a+Ptt9/GxYsX8dprrzm9fUIajneDcWheXh5atmyJhIQEaDQa9OvXD23btsVbb70FjuNw5swZ0ZezRYsWOHLkCKZMmeK2C0hBSU5Oxpw5c/DLL7/g6tWrMBqNiIiIQExMDMaMGYPo6GiX7/PGjRvWQKN//vnHGuxDlCxG77yP+5n5HZfvNglE43IKIXYMu/7JxHenH1v/rhbohTJ6DU7dy++YG1DDDy9Wt39hJwhCGZPxIe4uDxJMK9v/H2j9KiLj0gI8/CPfI1QX3gJh3eVHMJV27vwvSLIzr/wrGYIOoOQtMTDezR/JEfDsHPjVfgs5ySdxf6PNbyvnhYjBOYXa5tJOyt5XkHXlf9a//eq/j4DG4hFVBFGSyEm9gPu/CJ9Fyr9mtOvPfz8zD6N3JgumLe4UBl929EcJIif1PO7/UlcwrfzgPGsxXYqh2+7hsTH/kXJSk0A0ceA+1hXcXuoNmMRe42G9T0MXXF803WR8hLvLxaNPDU/1Qchz8jl7JYWhW+/hcY7wMX9YfX90fEqmuEKopiDP35cvX0Zubi68vLwEPuYEQRQPEhMTrRkYtoqQoiA2NhZLlixB5cqVkZiYWGTtIDyXwvhNcstQjSVLliAhIQE6nQ4bNmxA586dASiHm/Tq1QuHDx+WDDcproSGhmLq1KmqvfwIwkJ2bsGUDGK7JFIyEEShIVmbJ7skZ5BSMgBmyyTbIgOrZJDPZKDj7X7IfoMo+Wj04s5m3vgQnHeY4npS7pYlXsnA2iVxGsUCwyOjSVBgAIpAyQCzZRIvUWSQE+57cvAz8CT8mSky0NWaIAiCIIjCxC3DbFasWAGO4zBixAhrgcEellH/ly5dKsymEUSxICuvYJkM7IA5Yx6Pe5mUyUAQhYNEJoNc8DPZ98jC87zkqFNAHP4s6jiStcag41340DEmPA82kwEwq9bsrueRdklskUF5TNotJo/BSwOU9SmKIoOMckIm7ZjT6ACprAlPKjIQBEEQBEG4EbcUGU6fPg3ArE5QiyVwJjk52c6SBFGyyTPxyGH6LL0dLjIIl7+XmQembkFKBoJwFVLBz3JFBkKePOkCAwCY2PDnPEbJoLF0JtHxdjts4UymA48gShRaH1FnuppcBqnbtbwSXlzm2UwGu6HPwuXL+2qhlUrELmTkwp85hcddqfBnTwh+BqSLDHS1JgiCIAiiMHGLXVJqaioAs52QWvLyzDesSinrBOEJsKHPgDN2ScK/2U16azkE6OnRgiBcAS81kttSZCD7HtXIWSUBAOwpGbRPlAzs8S7hnXslEXHYOUGUPDiOA6cPBJ+dP7jJZEy1u55UX3qJVzIwdkmcvdBnRslQoUwRBSfLFBnkgp8Bs2USn5smnOgpSgaJt001YYIgPJ2rV68iPT3d/oIMwcHBqFChQiG0iChtpKen4+rVq06tW7NmTeh0Jfs+xC13gSEhIUhKSsI///yjOvz48uXLAIDw8PDCbBpBFDmsVRJQcCUDS1lfLTh6siAI1yChZMjvaKUig1qUigz2lQxkl1R00DEmPBONPhB5NkUGXpVdknhaiS8yOGiXxCoZKhZBHgOgZJfkoJLBU4oMZJdEEEQpZMiQIdizZ4/D6w0ePBjx8fGubxBR6khISED79u2dWvfq1auIiopybYPcjFvskurWrQvAfLDVsnLlSnAch6ZNmxZWswiiWJCVK34adTSTgQ1+ZiGrJIJwIYp2SeyyJb23qfBQKjLYy2TI70yiThS3Izqn6TMgPAOOyWVwNpOhxNslFVDJEFlESgY5uySlIgMkigyw835LCnqJZwO6WhMEQSgTFRUFnufB8zxiY2OLtC3x8fHgeR6JiYlF2g6CcAS3FBn69OkDnucxd+5cpKSk2F3+559/xsaNGwEAL774YmE3jyCKFNYuScuJ7Y/swQY/s5TzdctXnSBKB1JFBshlMpTszqZCRbHIIFQy8CahkiE/+Jm6TAiCcA0aXaDgb7602iU5kMmQncfjfqbwN7FCkSkZZIoMCr8TnFfpUjKQqJkgCE9n9+7d1iKBI/9IxUC4ipiYGKfOQZ7nS7yKAXBTkWHYsGF46qmn8OjRI3Tq1Annz5+XXC4pKQkffvghBg0aBI7jUK9ePQwYMMAdTSSIIoO1S/LWcg5bG9mzSyrnR0oGgnAdUpkMnPB/wi6KSoY8oZKBDYnOD36WWLeEjyIu/lDwM+GZcHphkcGkIvjZE4sMrJJByS7pdlqu6BexqJQMTmUySCkZPCb4uahbQBAEQRBEacMtd4EGgwHr169HTEwMjh07hvr166NmzZrW+a+88grS0tJw5coVawUnNDQUa9asIR95wuPJZuySDA6GPgP2lQ9lyS6JIFyHol2S8PsrGRJNALBTZMhRVjJwcsHP5qVBCgd3Qsea8Aw0jF2SukwGcyKP7ZW+pBcZ2EwGJbskNo8h3EfjsOWnq5ArPnN2gp/F2/GUIgPZJREEQRAE4V7c5qHSoEEDJCQkoEWLFuB5HhcvXrTOO3XqFP766y+YTCbwPI9mzZrh8OHDePrpp93VPIIoMqSUDI5CmQwE4T54JbskttObRtXLwuYsCObZKBl43gSYcoQLaCiToeigc5rwTDid40oGQKxmMJX0674DSgY2j6FCUakYoGSX5KCSwVOKDJKZDPSbSRAEQRBE4eHWO8Gnn34aBw4cwP79+7FhwwYcPXoUSUlJyMvLQ2hoKKKjo9GrVy88//zz7mwWQRQpbCaDMyPAlOySOADhPlRkIAjXIe5Akh8pWcI7mwoTtZkMbIEBNkoGyZV5qj0UJhT8THgoGr3jmQyAuchgeyuXV8Iv+zybyaCgZLjBKBmKKo8BcC74WarI4MlKBrpcEwRBEARRmLi0yHD69GkAQK1ataDXy3cAtG7dGq1bt3blrgmixJLF2CV5O2GXpBT8HOajsat0IAjCASSVDBzzv2XZEt7bVIgo2iXl2igZ2NBn5NtiSI/KpGPuVsjWkvAQRJkMKuySALNlku11x+PskhSCn2+lC5ctsjwGANDKZPU4aJfkMUoGsksiCIIgCMLNuPROsGHDhtBoNDh9+jTq1Kljnf7pp58CAEaNGoWwsDBX7pIgSjysXZIzSgalIgJZJRGEq5HPZBB3epf03qbCQ7nIYKNkyJOwVdIoZTIQhQud04Rn4kwmA/6fvTOPb6Ja3/gzk637BgXK2oJsQlWgoohAuSKrCCqi4hWKCggoiuKG6EXxJ1y5eC+IRQpXCq6giICKlx0EZC2yCiK0YKFshZbubZL5/RETMmdmsk7SJLzfzwdNZjlzOk2mM+c9z/MAYG/bTMFeXHbRLslkFlBQFgRKBgdD67JKBgf2UMGEXqa2Qn8xCYIgCILwJarfRQkyN9ZTp04Fx3EYMmQIFRkIgoENfvZEyeAo+JlCnwlCZRwFP9Ogt8t4pWRQmrFq2cObbhFuQ595IjRQL5NBrR7VDoKLwc8XK0wwMn8OAzGTwVHwM0I5k4HskgiCIAiC8DOqBj/rdJabsoqKCjWbJYiQRg0lA89xkpl0VkjJQBAqIztLVcEuiQa8FXFVySA4UjLIjZgE+yzigIfOLxGaeJrJwN5/BXuRAWwmg8LM/nNMHkO0nkOM3PR5f6GSXVKoZDLIPU9QjYEgCIIgCF+i6p1g/fr1AQD79u1Ts1mCCGnYIkOYB0UGQDn8mYoMBKEuggO7JMpkcAMXlQyQVTKQXVJtIVGs0u+ACBG8y2Sw2y/YL/usXRIvfx+ZXyrerlFk7doMKdsluRf8HDJKBpnnArpaEwRBEAThS1S9G+zevTu++OILvPrqqzh58iRatWplUzcAwMqVK7F371632x0+fLia3SSIgEINuyTAEv5caZIuJ7skglAZGbskTnGgNdhHm3yH50oGTnFm7V97eNcxwk1o2IoIDdhMBpirIRgrwWmVBq//2k+iZAjua5DELknhenu2NHDyGAAHRQYKfr4OXa4JgiAIgvAhqhYZXn/9daxYsQLFxcX417/+JVonCAKmTJnidpscx1GRgQhp1LBLAqzhz9IH2/qRVGQgCHVhZ3LbDWBIig3BPdjkS1wuMrBKBl5vV9QhuyT/Q+eXCE3YTAYAMFcXQaNt4HA/tshgCvavCGuXpJDJcI5VMtRiHgPgqMjgZvBziBQZdDK3/1RjIAiCIAjCl6hql9SuXTts3boVvXr1gk6ngyAIIlm99b27/wgilKlSzS5JuixSyyFKbgVBEJ4jUTJwCq8JR7ga/AxGySAOfabz7Xck92X0OyBCAzaTAQAEF8KfQ80uSWDtkmSUDIIgSJQMDWtbycArZDKQXZINuloTBEEQBOFLVJ9y0qlTJ6xduxZGoxGXL19GZWUlmjdvDo7j8L///Q8tW7ZU+5AEEdRUqmSXpJV5mCAVA0H4ALbI4EjJQIVyZeQCnf/CkZKBs4U+K+7tTa8IN1G2CiOI4ILTGABNmCgvxpVcBmnwc5Bfg1i7JBklQ1GVGeXM/WttKxmgoGTg3A1+dmjHFzzI2iURBEEQBEH4EJ9NcdZqtWjQoAGSk5Ntyxo2bIhmzZq5/Y8gQhnVlAwy+1EeA0H4AImSwf5Pqfh7KNCAtyKuKhkkmQz2SgbZAW46576Fzi8RuvCMZZJrSgbx+2BXMkiCnznpvSSrYtDzQN3w2lXOepTJEMJKBk/tVwmCAPLy8sBxHDiOQ3Z2dm13h1Bg6tSptt8T4Vs2b95sO9ebN2+u7e4gIyMDHMeJxpuJwMAvUzX+8Y9/AADq1avnj8MRRFDBKhkMXgQ/s9SnIgNBqI6kcODoxjbYZ7T6EFczGeBQySA994IgkCWEX6GzTYQOnD4WqLxge2+uLnK6T6gVGQQ2k0FmZv9ZJo+hYZRWYhvlb8RWevYrHBQ/QjiTQU7JYGTnSBAEQRAEEXCYzWZs27YNP/30E3bs2IFjx47hypUrCAsLQ9OmTdG9e3c888wzuOWWW2q7qxL8WmQgCEKKWkoGWbskKjIQhPowSgaxFQMFP7uKy0oGswMlA1EL0GeaCF14fSzsh9gFF+yS2MF1U7AXl83O7ZJYJUOjWs5jABwoGRxlMsjYJYWKkkEv82NXB3sFjCAIAJZZ5T179gQAbNq0Cenp6bXbIYJQgalTp+Ltt98GgBs+mzc5ORl//vmnZHlNTQ2OHDmCI0eOYP78+Zg0aRJmzJgRUGqe0DCdJIggppIpMngqb5ZTMpBdEkH4AEd2SZI/8Df2DZIjHBUZIBghmKrBafSAyT0lA51zH0PBz0QIw+njRO9dyWQINSUDm8ngipKh1vMYAMVMBkdqQzm7pFBWMtQE/YeTIAiCIIDs7OyQtjI7d+4cAOCmm27CQw89hK5du6Jhw4aoqKjApk2b8O9//xtXr17F+++/D41Gg/fee6+We3wdv98RFhYW4pdffsGpU6dQUlICk8nkdJ+33nrLDz0jCP9jFgRUMV8BT4OfdaRkIAg/wdolXS8ycDTg6jqOigywqBk4jV6iZBAVGSiTofYJoJkzBOEtkkwGF+ySpMHPKnaoFhBYJYNMJsO5MvHNa8NAUDLwSio3B0UGOSVDqAQ/yzwXVDt/7CYIgiAIopbp3Lkz/vGPf6B3794SlcLdd9+NYcOGoUuXLrh06RJmzpyJp59+Gs2bN6+l3orx213UxYsXMXHiRHzzzTcwGo3Od7CDigxEqFJtkj6JeqpkYO2SNBxQJ6x2Q/gIIiSRKBk4hdegTAYHOFQy4K9cBkMcBEbJQHZJtQ19ponQhdOLiwxml4KfWbskVbvkf9hMBsYuqbzGjCuV4r+DgaBkkLdLchwIKhv8LPkbH5xoZR4BSMlAEARBEIHPjh07HK5v0aIF3nrrLTz33HMwGo347rvv8OKLL/qpd47xyx3h1atXcffdd+PkyZM3vLfWjU55RSnmbf3Z7f00MKGN9gQ6a/epMmlSE9EYEa2egjampVv7mSsvo+zobBhLcwFYxg/3GDviT1MjdNIfQZumbRHe/DGn7RRWmPC/0xXILZYW3DxXMojfJ4ZroJGZxUSIqchbjppLOxDWdDD09btJ1purrqDsyL9tv3NX0cXfgsibn1cOInSTmsIclJ9YBHP1VQAAb6iLiFajoItvp0r7oUrl6RWozP8egqnK+cYuYq68KF7gIFTSXHEeV7f+3eW2OU0YwpoOQliTgZ52LygQzCZUn9/kcJvinePA6aJhKj4uWm6vZJBTjhRvf9olT21NRCNEthkPTVRTF3vtOubKQpQd/Q+MpbngOB66up0R0XosON712b41Vw+h/Pf/wlx1WbSc10UjvPkw2euV2phrSlB29D+A2YjIm58Hb0hAVf4PzFb0d4YIHXjGLqn8tw8R0WIEdHU7Ke4jVTL451mnqmATKnO/Ah9WDxFtn0Vl3teoubwbgpeD5DWF+8QLOC12FVRi/8Vq1JgFlBvFPx8HICkAlLPyRQbHvwv5IoN7k+ECFbniSk3QV8AIwnO2b9+ORYsW4eeff0ZBQQEqKytRr1493HbbbejXrx8ef/xxxMXFudRWRkYGFi9ejGbNmiEvL09xu+zsbIwcORIAkJubi+TkZMk2GzduxIIFC7Bz506cP38eHMchMTERSUlJuPvuu9G/f3/87W9/AwDk5eUhJSVFtL81m8GeRYsWISMjQ7J806ZNyM7Oxs8//4zz589Dq9WiWbNm6Nu3LyZOnIiGDRvK/hysV35xcTHmzJmDb7/9Frm5uSguLpY95nfffYfPP/8cu3btwsWLFxEWFoabbroJAwcOxIQJExAfH6947gAgPz8f06dPx5o1a3Du3DkkJCQgLS0NEyZMQK9evRzu6yn259j6M3399deYP38+Dh48iJKSEjRr1gwPPPAAXn31VaefmerqaixcuBBff/01Dh8+jOLiYiQkJKBjx44YNmwYhg0bBp6Xf5ZkP2dnz57FrFmz8P333yM/Px+RkZHo3LkznnvuOfTt29fln0eJ5ORknD59GiNGjPDIimjnzp34/vvvsW3bNlFQcePGjdGjRw8899xzuPnmmyX72X9PrMj9DbP/Drn6HTx06BA+/PBDbNq0CWfPnoVGo0HTpk3Ru3dvPP/887LfSUD+vK1btw5z5szBnj17cPXqVTRs2BB9+/bFG2+8gcaNG7t2klTE/rt/8uRJvx9fCb8UGWbMmIE//vgDANC7d2+8+OKL6NSpExISEgIqoILwPSZTDXYblR/UHPGLsTMqSvbgzsovVelLZe5XqDvoIHh9jMv7XNk4GDUXt9ve7wx7DF9FWwYQN1Tfjde2d0dLwYSIFsqDioIg4N1dRRKpuRW1gp8pj8E5FbnLULTlEQBA2ZEPUPf+X6FLuFW0zdWND6D6wla3267E5zBeO4G4rgu87qep/BwK13QTheECQMXJJag3JBc8M/OSsFB5ZhWubnrQ9wfilDMZBGMpKk997lZzFSf+i4Tea2FoeK8avQtISn/9h9Ntqv5cJbtcVLiTuYeozFvmcj8qT3+DxAdPMOHd3nN10wOovnC9oF5x8lOYK84juuO7Lu1vrixE4Y/dICjMoi4/8V/UHbgPuvhUVfqrxNWND6K6YD0AoOrsGkS0fU66Ed3HESEEq2QAgMKfeiDxgePQRDaS3ac2MhlqCnNwZe29NtVB6UHXri2ecMDYDpk51xTXN4jUQOfhvauqKAY/O0CmIM3aRYUS1aEh0iAIt6ioqMBTTz2FL7+UjiGcPXsWZ8+exQ8//IBLly5h6tSpfu3bxIkT8Z///Eey/MyZMzhz5gx27dqF7OxsXL58WbqzG1RWVmLkyJH46quvJOsOHz6Mw4cPY968efjyyy8xcKDjiU4nTpxA7969HQ7sXr16FUOGDMHGjRtFy6uqqrBv3z7s27cPmZmZWLlyJe68807ZNn7++Wfcd999uHbt+t+fgoICrF69GqtXr/bb7+qpp57CJ598Ilp2/PhxzJgxA0uWLMGGDRvQpk0b2X3z8vLQr18/HDt2TLT8woULWLNmDdasWYP58+dj5cqVSEhIcNiPvXv3YsCAAbh48fpkt4qKCvz444/48ccf8eKLL2LWrFke/pTeI1coACxBxb/99ht+++03LFiwAHPmzMG4ceP80qfp06djypQpMJvFf/yOHj2Ko0ePYt68ecjKysLw4cOdtvX6669jxowZomV5eXn4+OOPsXz5cmzZsgVt27ZVtf/OqKq6PolSowmcsT+/FBlWrlwJjuMwYMAArFolP2hAEK5wWN9HtSKDqew0KvOWIaLV0y5tb666IiowAMBX0f+5vp7TYV3E82h6ZqXDIsOFcpNigQGQD3B2hSid+AEvKTJwLjSBSuWZ78TvTy8XFRnMlYUeFRisVP25EoD3RYbq85slBQYAEKqvoubSLhga9fb6GKGIdMa1b+C1kbbXnDZKlTar8n8M6SJD5Z+rPd6X010vDHOaCK/6YSo5BWPxceji1LspNFddERUYrFTm/+BykaH60i+KBQbLQWpQfW6DT4sM5poyVBdssL2vubwH5cc/lmzn7e+AIAIJ3pAoWSYYy1B9YauiUrU2igyVp1dIbY18xCGjY8VkowDIYwAgO2mI0zq+PvG6aMkyTaT/ZyP6i+axtW9rRRD+xGw2Y9CgQVi3bh0AoGXLlhg3bhzS0tIQERGBgoIC7NixA8uWuT5BRS2+//57W4HhlltuwdixY9G2bVvExsaiqKgIR44cwfr167F7927bPo0aNcKhQ4ewZ88ePPnkkwCATz75BLfffruobftZ1YIgYMiQIfjhB8tz0cCBAzF06FA0b94cPM9j9+7dmDVrFs6cOYMhQ4Zg+/btSEtLU+z3kCFDcPbsWTz33HO4//77ER8fjxMnTqBZs2YALAOfvXr1Qk5ODjQaDYYNG4b+/fsjJSUFNTU12Lp1Kz744ANcvHgR/fv3x/79+237Wjlz5oytwMDzPEaPHo0hQ4YgNjYWBw8exIwZMzB16lSH/VSDzMxM7NmzB507d8bEiRPRsmVLXLx4EdnZ2Vi2bBnOnTuHPn364PDhw4iOFv89KS0txT333INTp04BAAYPHownn3wSDRs2RG5uLubOnYstW7Zg27ZtGDhwILZu3ao4UFxeXo6HH34YxcXFeO2119C/f38YDAbs2rUL06dPR0FBAT744AM0bdoUzz//vE/PiRJGoxHx8fEYNGgQunfvjpYtWyIyMhLnzp1DTk4O5syZg8uXL+PZZ59FmzZtbOocwHJu0tLSkJmZiXnz5gGwKBBYGjWSn+whR2ZmJiZPngwASExMxKuvvoquXbvCZDJh/fr1mDlzJsrKypCRkYG6deuif//+im0tWLAAO3bsQI8ePTBmzBi0atUKRUVFWLJkCZYsWYJLly7hySefxC+//OJy/9Rgy5Ytttf+LnA4wi93GmfOnAEAjB8/3h+HI0KYMt5xhdddKnKXulFkuOp0mz90XWGu/MbhNjVOZhF5qu65MykMP+VVwCRYHnjTm3gwo+sGQ6gW/05N5QWi9+5aJLGYKy9BMNeAc8G6xWE7Dj57gqnCq7ZDGXNNiV+OE5byiO21LvFOaCKbwlR2xqs2zTWl3nYroDFXXZEsC28xHBUnlzjd1/5882F1oE/qZZtt7xFOsiHcbo65jlgR3PidyhUVJduY1bMAk8VUAdZqxHRNKsU1NJKXZxNEMBLWZABK9sVKinyOv5P+n8VvqrzgnwNxWhgjmgMOLpM9GstYDtUCvCEB+oa9UX1urW1ZePMnHO7DacMR3vzvqDj1GQBAn/Q3aGNu8mk//cnQVpFY9nsZACAxnEfnBpRpFAwIZjNMpYW13Q2/oYmqA07BLsZb5s6dayswPPDAA/jyyy9hMIi/BwMGDMC0adNQUCB//+YrrIWNZs2aYfv27YiKEk9USk9Px/jx43HlyvV7Zp1Oh/bt24uUDSkpKWjfvr3icRYuXIgffvgBOp0Oq1atktjq3HnnnXjiiSfQrVs3HDlyBC+88AK2bdum2N7hw4exZs0a9O59fZJbp07XnSreeecd5OTkIC4uDuvXrxetAyyhtY8//ji6dOmCgoICTJ48GZ9/LlZ9v/TSSzYFw2effYbHHrte5E9LS8PDDz+Mbt26Ye/evYr9VIM9e/agf//+WLlyJbTa60On/fr1Q/v27fHWW2/hzJkzmDZtGt5//33Rvm+//batwDBlyhRMmzbNtq5Tp0546KGH8MQTT+Dzzz/Hjh07kJWVhbFjx8r249KlSygqKsL69evRvXt32/LOnTvjoYcewh133IH8/Hy88cYbGDZsGBITpRMmfE2/fv0wbNgwRESIi/sdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmaPPtDMuXbqEl19+GQDQsGFD7Ny5E02aNLGt79q1K+6//35069YNZWVlGD16NHJzc6HTyY/Z7NixA6NGjcL8+fNFY3X33HMP9Ho9Fi5ciJ07d2L//v3o0KGDx/12h/LycluR0mAwYNCgQX45riv4pcgQFRWFqqoq1K9f3x+HIwIYvc6AfpHbnW/4FwXGBPxadf1mvzL8JkQ2ec3j45vKzqDy1Be299XnN8JUcQGacOefTaGGkYrL2GtohSqYKi85bsfBDLdb6no+GN0qXod3u8bjt8IapNbVo2kMzVZyhmAsE703Mw/tJqbIwBkSENFqtHKDpkqLf7mozUvQRMj7W7rcT/azJ1pJ2ndFzOLAYF29u6Gvf7eqh9DF34qwlKG297wuEnX670BF3lKYnVwL7Kk+vxk1l3ZeX6DywHegITAFoLjunyMs+REYGvZGTdFh2X04Xgd9g7/BkJQuWh7/t29RceoLmErzXDp22eF/iTy3BZX9t9nriO047vxOmRnKfFgiOF0MTCV2g/w+9n0XmO8PIP3ZwlsMhzamhU/7QRD+RBPZBHXv241LK1qLlgvmmlrqkQJOcobCkh+BJjrF4TbO4DRhMDTuD9PpugCuH69NvA6tE3TQckC7unq0q6NXbsTPxPdcjspTX8BYmgtt3M0IT3GekxZ79yLoG94LmKucFiWCjQdvikDTaC2uVJrQtWGYxFqVCExMpYX4/bl6zjcMEVp9eBHaGPUHRc1mM2bOnAnAMrN/yZIlkgKDFZ7n3ZolrQbnz58HAHTs2FFSYLDHmY2OIwRBwD//+U8AwIQJExR9++Pj4zFz5kz0798f27dvx4kTJ9CypXx2ZUZGhqjAYE9paSk++ugjAMC0adMkBQYrzZo1w5tvvolx48bh66+/RlZWFiIjLcrw8+fPY8WKFQCA++67T1RgsBIdHY2srCzccccdDn567zEYDFiwYIGowGDljTfewLJly3D48GH897//xbvvvgu93vL3sKqqCgsXLgQAtGvXTtbaieM4ZGZm4qeffkJhYSHmzp2rWGQAgDFjxogKDFYaNmyIWbNm4ZFHHkFZWRkWL16MSZMmefgTe46z709sbCzeeecdDB48GNu2bUNhYSHq1Knjk74sWrQI5eWWySEffPCBqMBgpUOHDnj99dcxZcoUnD17Ft999x0efvhh2faSkpLw4Ycfyk4GnjRpku13/fPPP/utyPDqq6+KJvMr5anUBn4ZhUxNTcXmzZtx+vRp3Hbbbf44JBGgGAwRyEi/z+Xtf71UhV93X59NVqFJREyn6R4fXzCW48KZldcHlwUzKk8vR2Qb575w7KxoTif17dULFRAqHXsmmh2E0Gm89LZuHqtD81jvZs3fSLCzxc0V4kBfdtBSF3+rw8+fYDah7Lc5ooF/c8UFr4sMjmbkC36ySwhG2LDnsMb9EXXL6z4/riayEaLavejWPiX7p4qKDG4NSAcZgiBICmfauPbgeA3CWzwOd+fE8rpoRLYe4/L25cc+Ehc5zOp+h9jriA03fqds4YOPaAxNRCNxkcFJoKm3CCZpkYFFG+/5LCOCCFS0sa2gb5CO6vObry8UAqvIYK4ucrg+os04GBpIByM8wZgrPlaHenoMvilSfuNahtdFIaK1g8kgMnC8FhE3OfdjDkY4jsPtpF4gblB+/fVX5OfnAwBGjRrlcCC/NkhKSgIAbN26FSdPnkSLFupP2jh69KgtEHbIkCEOt7UfwP7ll18UiwyPP/64YhtbtmxBcXGxW8erqanBvn37bO83bdoEk8lyby7n8W+lc+fOaNeuHY4cOeLwON7Qu3dvxcFbnucxYsQIvPzyy7hy5QpycnJs+RL79u1DUVERAEtRRskGKSYmBkOHDsW8efNw9OhRFBQU2D4XLI7OxQMPPIC4uDib2qE2igwsZWVluHTpEsrKyiD8NTHKXilw4MABkZpBTdavtyjc4+Li8OCDyvmMTz/9NKZMmWLbR6nIMGTIEMUCZevWrREVFYXS0lKbcsXXfP7555g7dy4Ai03Su+/6LpfLE3yjS2MYM2YMBEHAp59+6o/DESFEFBNQUFZjtl2kPIHTRsDQ5H7RsspcaQCSHOygmL0vuBUdKmGuKoTgYNDKUfcpP9O/OFUylIiVDJqoZIftcbwGvKEu06bCgKMbsLO+xStJyaCExE5GE7gP2hwTWBnSRQZjGdgBck7GF9tncMyNfiAqGZjgUY7XyvyB8LHxu4ySQQJ7LgkiVODE87ACLQyYtXtkYf+meEMNEzKho9nwBEEEAfv377e97tatWy32RB5r2GxhYSHat2+PRx99FIsWLcIff/yh2jHs7YS6dOkCjuMU/9kXYawqCzluueUWl46XlJTk8Hj2djj2x7P34mezJlg6d+7scL23uHN8+34fPnxdle1MbWG/3n4/e/R6PW699VbZdYBl8N46g14uy8BfXL58GZMnT0br1q0RHR1ts/JKTU1FamoqBgwYINrWV1jPY8eOHRUtkACgfv36SE5OFu0jh1Kwt5X4+HgAQEmJ762aN2/ejKeeegqAReW0fPlyhIcHhm2lFb8UGYYOHYrHH38cK1askCRyE4Qj2DDjGjNQ7eWYaridnzcAVF/YBlNZvtP92CJDjV4qY9UJVQAEhw9/fsgDJFxEMIqVDKaKC6IiFqtkcMV6gGest0wV3vsmO7ZLIiWDIoySgeOpyBAIyBXNeJmirc9gBsbVVgMpfefds0tiBjQ5LVjfd28K7i51wYUiA0dFBiJEkWQpBZhdkrOcME6r3gMnmyWm9cvTI0EQhHfYD2IqzQ6vTe655x7MnTsX4eHhqKysxNKlS/Hkk0+iZcuWaNy4MZ555hkcOHDAq2NcvOjZZDer1Ywc1gFVXx3PPoPC3qNfDl/bsbtzfPt+u/MzNGjQQHY/exISEhTVEGxflNrwNfv27UObNm0wffp0/P77706fUyoqfJcraT0Hzs49cP38OzpvbM4EC/9XpoxVgeMr9u7di/vvvx9VVVWIiorCjz/+GFCBz1b8Ype0detWPPXUU8jNzcUbb7yBb7/9FsOGDUObNm2c/sIAyHqPETcGrJIBsKgZDE4uso4wNOoLTmcf6iegIu9rRLWb6HA/c7V4oLdCK71Z0QmWi6Wp8hL4sLqS9QBgpipDwCDUiJUMMFVAMJaB01lmcrDBz86UDADAh9UHcH0GgdKsZncguyTPYO2SOE3g+EZLuKGKDNKimT+VDBynFRd7Vf4OKaqXBCMEs9GiSnCCZNY0p4E0XDYQlAyU/UOEKEyRwZ1MBn/c5pn9qGQwkpKBIPyKJqoOWn3ovRI6WNBE+caXPRgYP348Hn74YXzxxRdYt24dtm/fjuLiYpw9exbz589HVlYWJk+e7LEdiv2g5+rVq22ztp3haHDW0WC3/fFycnIcziK3p3HjxrLL5Tzw/Ykaxw+UNnxJdXU1hg4disLCQuh0Ojz33HMYNGgQWrVqhfj4eJvV0KlTp2y2YL6eLAUE/nlzhyNHjqBv374oKSmBwWDAd9995/NMEk/xy9Nhenq66Be8b98+7Nu3z6V9OY6D0RhYEmXCf0TopBeG0moBCV48O3EaA8KaDkbFycW2ZZW5S50WGdiBsUptPYD5aGphGZSxBL7KVxX9cD0lXEAQBIldEmDJUOB1URAEQaJk0Ea5omQQ35SZfa5kILskJSR2SUGkZIDJd7M7ahsz+3nmDf4tAPHMw5HKNiiOvvOCqcqlIgNb+KgNuyRXMhnILokIVQJdySA4yWTgNL5TMlCRgSB8C8fzPglCvtGoW/f6hL+CggKnlifuYJ25bDY7fg4rK5M+a7LUq1cPL7zwAl544QWYzWb8+uuvWLFiBebOnYuioiL83//9H26//XYMGjTI7X7aB+vGxcWJLIp8gf3xEhMTFYsHjrBXSly4cEE2tNd+vS9x1r79evuAbvvXFy5cQKtWrRTbsLeKUgr5LiwshMlkcljgsfaFbcP6WQXU+bzKsXHjRlseQWZmJp5++mnZ7fylskhISEBBQYFLnw/r+fcmYN3XnDx5Evfeey8KCwuh1WqxdOlS3HPPPbXdLUX8JngVBMHjf8SNC89xiNSKH2ZK2acdDwhLeVT0vubyLhgZ/30WdqC3Qiu9+TPB8lBqrlL2mCMlQ4Bgrpb1YrcqD8yVFyVBra4oGTRhYtmm7zMZSMmgiETJEDxFhtBWMog/z7zej1ZJgM/tkhyql1z9vUqUDFK7JF9XrF2yS2ILNgQRKrAqHQfZLf6eKCeYa2QnSdijaiaDiVEy0NeeIIggoGPHjrbXW7duVbXt6GiLAtca7qvE77//7la7PM+jY8eOmDZtGjZs2GBbvmzZMtF2rs7Qtvr0A8D27dvd6osnqHG81NRU2+s9e/Y43NbZem9x5/j2BRz717t27XLYxu7du2X3s6e6utqhdZbRaMSvv/4q24b1swoAV68qqyCvXLmCwsJCh31Vwj58+5FHHlHczj6zQw61lAfWc5CTk+NwwvrFixdx+vRp0T6BRn5+Pnr16oWCggLwPI/Fixd7VHD0J34pMmzatMnjfxs3bvRHF4kAJpJRM5TVeD+wYmh4DziDWJpZmbdMYWsL7OzbCo1U2lnDWQYxLUoGeQQHs09pbpj/UHpAt85CZkOfwevAhzv38/RNJgMFP3sCq2SgTIbAQGCs5/wa+gyLXZIItYOfK5QLi67+XgVBGvwsvfEOBLskGm0kQhNWyeCOXZKvcZbHAABQVclAdkkEQQQft956q20W/MKFC1FaWupkD9dJSbGo20tKSnD8+HHZbaqrq7F8+XKPj9GxY0fbrH42JDcs7PpzQ1UVo9xm2rCqCbKyslBZ6dvni169etns0OfMmePRhOGePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccTvO0H8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rwFAhcvXkSvXr2Ql5cHAPj4448xbNiw2u2UC/ilyNCjRw+v/hE3NlF68cdUDSUDx+sQ3uwh0bKK3K8c7sMOjFXwUkmV0YUiAykZAgOhRv5G0/SX8kAS+hzZzKVZuzyrZFChyCCxl7GHlAyKSOxeAljJcCNlMrCfZ86foc+AdGDcrN53SBAEmBwoGVz+vQaEksGFQVUqMhChSgDbJQlO8hgAtTMZxO8p+JkgiGCA53m8/PLLACyzgYcPH47qavkJFGazGefOnXO5bfsxqlmzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSbaZ2qtWrZKoOACgtLQUY8aM8bifrlJVVYUxY8bIBvrOmDEDhw5ZchiffPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCikeMGCHZxppxu3LlStnPy/Hjx/Hmm286PL4jWrZsaXudnZ0tu83rr7+OnJwch+24+rl2xsiRI23Frpdeekn2e3jgwAG89957AIBGjRph8ODBHh/PFxQVFaFPnz62Iua///1vjBo1qpZ75RqU2EcEPKySoVQFJQMAhKU8gvLfs2zvjVd+hbH4OLSxrWW3F4zi2eQVfKxkGyOsRQZluySqMQQGZmdKBg9CnwGpkkGN4GdHSgYKfnYAq2QI4CLDDaVkYO2S/F1kYDIRWNWANwg1JQ4tkVxXMjDf6wANfpaoQggiRAhqJQOvU9XKjJQMBEEEK+PHj8fq1auxbt06rFixAqmpqRg3bhzS0tIQERGB8+fPY+fOnfjyyy8xbNgwTJ061aV2O3TogC5duuCXX37BggULUF1djREjRiA2NhYnTpxAVlYWNm7ciLvuugs7duyQbePVV1/FM888g0GDBqF79+5o1aoVIiMjUVhYiG3btuHDDz8EYAlaZj3umzZtisaNGyM/Px//+te/0LhxY7Ru3dqmAKhfv77NJueZZ56x/fxff/01cnJyMGbMGHTu3BmxsbG4du0ajh07hs2bN2PVqlUICwtzOuDtiHfeeQdbtmzBrl27MHv2bGzevBmjRo3CbbfdhsjISFy9ehVHjhzB+vXrsWbNGqSmpkp+vlmzZmHdunUoKSnBsGHDsGXLFgwZMgQxMTE4ePAgZsyYgd9//x1paWlOLXi8IS0tDatXr0bXrl0xceJEtGzZEhcvXsTixYvx1VeWCaqNGzeWHaB/66238O233+LUqVOYOnUqDh06hJEjRyIpKQm5ubmYO3cuNm/eDADo0qULRo8erdiPxMRERERE4N5778XEiRPRv39/GAwG7N69G++9956tQDZt2jTZ0O5x48Zh1apVqKioQHp6OqZOnYoOHTqgtLQUGzZswOzZs5GYmAiNRoNLl5QnyyrRp08f1KtXDxcvXsSUKVOQl5eHBx54AHXr1sUff/yBBQsWYMOGDejatatDG6277rrL9nrixIl44403kJSUZFNzJycnQ6t1/uyRmJiImTNnYvz48cjPz0enTp3w2muv4a677oLRaMT69esxc+ZMlJaWguM4ZGVluRxS7g+qqqowYMAAmwXW448/jl69ejlU7kRGRkqKkbUFPR0SAU+UTjxlqqxaHXsYff0e4MPqiwaBK3KXIvq2t2S3NzNKhnJIB8ZsdklVDuySHIwL+dvX90ZGMMorGayfB4mSIdq1i7YmjAl+rrwEQTCD4zyb+icIAtkleYjAZjIEkV2Sy979QQibb+N/uyRm8E3FQp3TDBZXf68ydkl+D34muyTiRoYNaA+kIoMTJYOaoc+ANPhZS0UGgiCCBJ7n8d1332HEiBH45ptv8Pvvv+OFF15Qpe1PPvkEPXr0sA06s3Y2kyZNQrt27RSLDIBltrLcvlYMBgM+/vhjpKWlSdZNnjwZ48aNQ25ursSjfdGiRcjIyABg8blfunQpnn/+eXz88cc4efIkXnnlFcU+yQ1Su4PBYMC6deuQkZGBb7/9FgcOHHBYtIiJkY6pJCcnY9WqVbj//vtRUlKCzMxMZGZmirZ56623wHGcT4sM48ePx5YtW5CdnY1HH31Usj4pKQn/+9//EBsrnXwaHR2NDRs2oF+/fjh27BiWL18ua5/VtWtXrFq1ymGoc0REBL755hv069cP06dPx/Tp0yXbTJgwAS+++KLs/n369MGECRMwZ84c5OfnyxatVq1ahX79+in2wRGRkZFYsmQJBg8ejMrKSsyfPx/z588XbZOeno65c+c6zD646aabMHToUCxbtgxr167F2rVrRetzc3ORnJzsUp/GjRuHoqIivPnmm7hw4QImTpwo2cZgMCArKwv9+/d3qU1/UVBQILpufP755/j8888d7tOjRw9b0aq2IcErEfD4SsnA8RqEJT8sWlaZq+xFxw6MlXNRkm1cUTLQkHBgINQoKRksg4RGRsmg9VDJAMEEoeqK2/2z7W4sg8PBRFIyKMIWGQLZLulGUjIEnF2SmkUGJ/ZowWSXBNZuTA4KfiZCFY5RMrihePK1YtWZXZKaVkkAYJQoGVRtniAIwqdERETg66+/xsaNG/HEE08gJSUF4eHh0Ov1aNKkCQYOHIj58+fjpZdecqvdNm3aICcnB2PHjkWzZs2g1+uRmJiIvn374ocffsDMmTMd7r9p0ybMnj0bDz30EFJTU5GYmAitVouYmBh06NABkyZNwtGjR23FApaxY8di+fLl6N27N+rVq+dwhrdOp0NmZiYOHDiA5557DqmpqYiNjYVGo0FsbCxuu+02PPXUU/jmm2/w22+/uXUe5IiOjsby5cvx888/4+mnn0br1q0RHR0NrVaLhIQE3H777Rg/fjx+/PFHrFu3TraN9PR0HDlyRHR+69evjwEDBuCnn37C22+/7XU/XWHRokX44osvkJ6ejjp16sBgMKBVq1Z45ZVXcOTIEdx8882K+yYnJ+PAgQOYO3cuevTogTp16kCn06F+/fro27cvPv30U2zduhUJCVIbbpa0tDTk5ORgwoQJaNGiBcLCwlCnTh307dsXP/74I2bPnu1w/9mzZ+OLL75A9+7dERMTg/DwcLRu3RqvvfYacnJy0LZtW7fPjT19+vTB3r178fe//x0NGzaETqdDYmIievTogaysLGzYsAGRkZFO2/nss8/w/vvv25Q2PO/5TcfkyZOxf/9+jBo1Ci1atEB4eDgiIyPRtm1bPP/88zh27BiGDx/ucfuEPKorGd555x21m8Rbb8nPLCduDFglgxqZDFbCUx5F+bHrvoPG4t9gLDoMXXyqZFtJ8LMQIdnGpeBnXw8MES6hGPyspGSIck3JwIdJZ3+YKi6AD6vrXgf/wqGKAWSXpIQgCEFtlwTBBMFstMxgDzECzi6JHdD3Akd5DIDnwc/gtdLCAykZCMJnsHZJjpQM/p7X78wuSU0lg1kQYGIuNWSXRBBEMNKzZ0/07NnTpW2Tk5NdemZv1KiRZIa9PRkZGYpFgpSUFEyYMAETJkxwqU9yPPjgg3jwwQdd3j41NRVz5sxx+zhTp0512UrKnrvvvht333232/tZadKkicPz62m/3OWxxx7DY4895tG+er0e48ePx/jx473uR5MmTTB79mynBQUlnP0c1oBhOdLT051+J9q1a4dPP/1Ucb0r3yudToeXX37ZlqeiRHZ2tmL+gz233HILsrKynG7H4uo1AHB83jzBnWMHIqqPXkydOtXmmaUWVGS4sWGVDGUqKRkAQFevC/iIxjCX59uWVeYulS0ySJQMgvQhzpXg5yC+XoQUSnZJpooLEAQzTKWnRctdzWTgNHpw+njRTENL4aKdZ/10UmQguyQFZAaEAtkuiQ1+BiwD0hwvVUwFOyFtl1Th2C7JUyUDx2khcOJ+CgFQZKBMBiJkCeRMBmfBzz4MfQYo+JkgCIIgCIKQxye3iYIgqPaPIHypZOA4HuEpj4iWVShYJglMJkOZWS/ZxmaXVHVZ2XbJ084SqqKsZLgIc3mBJPTU1SIDIFUzOBt4dASroJFASgZZBEbFAADgpd/ZQEHW3iJELZPYfBtO72+7JGZgXMXgZ2dB7y4XGdjvNS8T/OzreyRSMhA3MO4oGfyNU7skrXpKBjb0GSAlA0EQBEEQBCGP6lPQNm3apHaTxA2OL5UMABCW8ijKjsyyvTeVnISxMAe6up1sywTBLJn5Xm6WJtBb7ZJgqoRgLAOnk85Clnles0GPbf5DqJFXMgjVRTBeOy5eqAkDH97A5bY14fVhsmvD2cCjI0jJ4CFsHgOCzC4JoZvLIBhr2S6JGRgXzP7LZHC1cMTaJVmUDH4OfnYlk4GKDESowtqqqViM9BZzdZHD9WpmMsjN69Fp6G6VIAiCIAiCkKJ6kaFHjx5qN0nc4ETpfadkAABdnU7QRDeHqeSUbVlF7lfiIoPMgHS5UTq4YuIMEGApFpgrL4N3s8hA+A8lJQMA1FzaLXqviWzmlg0cG/5scjbw6ADKZPAMOasXKjIEBqwqLKTskip9Y5dkGfAMPCUDR8HPRIjCcYGrZPBnJkMNG8gACn4mCIIgApfc3FyUlSk/5ysRHx+PRo0a+aBHxI1GWVkZcnNzPdq3devW0Omkk5mDCTLTJQIeVslQXiPALAjgVcr+4DjOomY4+J5tWWXeMkSn/RMcZ3mSYj3EAaDMKH98IwzQoQrmqktAdLJkPdUYAgNHRYbqSztF77XRroU+W+HDxEUGb5QMZJfkGYKMkgEBnckg7VuoFhnYzzRXy8HPatolOSsoehz8zGnBSbRutZ/JQEoGImTxJpPBxzd6Tu2SVFUykF0SQRAEETyMHDkSW7ZscXu/ESNGuBQkTBDO2LNnj8sh8yy5ublITk5Wt0N+huaiEAEPm8kgACg3qvsEF54szmUwlZ1Bjd1AMzsoZoQOVQqCihon4c+Os0bowc1fmBXskgCg5vIu0Xt38hgAqZLBm0wGskvykGCzS+I4SREkVIsM7Ge61u2SVFUy+CaTgeO1gL/tklwqMtBcFSI0CeRMBqdKBhUzGeSCn8ktiSAIgghVkpOTbfmwGRkZtdqX7OxsCIKAvLy8Wu0HQbgDPR0SAU+UTvo0U1YjIEpFFZE2PhXa2LYwFv9mW1aRuxT6encBkNp7VOqSFNuyhT9XXpZdT0PCgYEjJYO54rzovbtFBg0b/OxVJgMpGTxBEvzM8ZaB2gCG04SJ+x2yRYZatktiPwesNZEXsAVFThcLoabYbgMZhY1sQ6ySoRaCn13IZJBYTxFEqOBDxZO3OFMyQE27JEbJoOPhln0kQRAEQfiTzZs313YXiBuc9PR0JxOLQxtSMhABj0HDSWZNlVarO1RvsUwSqxkq85bZAkHZQbEKXUPFtoxOlQyO+uFKbwk1YIO8HaGJctMuSaJk8GEmA5WtZJHYJQWyVdJfsBYXoahkEMwmSYHP73ZJPspkEIyV4oICAE1UM+ZQntslSZVugaBkoCIDEZqwSga37JJ8jLkW7ZK0ZJVEEARBEARBKEBFBiLg4ThOomYoq1F/cIW1TDJXnEf1hZ8tryVFBmUlg3O7JG96SaiFIyUDi9t2SWHS4GdPq9lmZ3ZJZlIyyMLMGA9kqyQrN0SRQaa4x+tDwy5JLvTZ0yIDq2SoDbskl+xhKPiZCFUCNPhZMBudTj5QM/iZtUui0GeCIAiCIAhCCbpVJIKCSOapprRG/dnb2rg20MbfKlpWmfsVAKmSoVIrtsOxx2aXVEV2SYGM4CCTgUXjbvAzo2SAucp5toICZJfkGaySgQsCJQNuhCKDzOeZ0/rZLonNEVDJLsnE2qLxOvDhDUSLXM9kcEHJ4OOKtStKBsm5JIgQIVCVDEJ1kdNtfKlkoNBngiAIgiAIQgkqMhBBgT+UDAAQnvKo6H3l6eUQzDWSAeIKbaJiG87tkpT7To9u/sNVJQOnjQBvqOtW23yYtAjlaS6D8+IEla3kkBQZSMkQEJirZYoMfs5k8JVdEpvHwIfVk8wodtkuyVz7wc8guyTiRsaL4GfBh99NZ1ZJgG+Dn8kuiSAIgiAIglCCigxEUBCl972SAQDCUoaK3purLqO6YKPULklTR7ENW5FBScng4NnTTF5KfsPVIoMmKsXtkENeFwlOGyla5mkugzO7JHYwkvgLdoCU19dOP9xAMvs0BIsMbNGM00aA87flDhPoKsk/8BC2kMiH1/f8dypRMkiDn30dKCa4EPxMRQYiZPHRdcJbzFUuFBl8qmRQrWmCIAiCIAgixKBbRSIoiPSTkkEb3Ry6up1Fyypyl0JgZt9W8PGKbdTAiZLBwfGrTFRk8Beu2iW5m8dghbVMMnlYZJDay7AFD1IyyEFKhsCE/Tz7PfQZAOczJYP4O64Jq+f575S1cArQ4GfJuSSIEIG1SwqYTAYX7JKgYiYD2SURBEEQBEEQrkJFBiIoiGIzGap9N7AaliIOgK48/a2kYFDBxSrub+Qsg0pKRQZHSoZKmpTuN1xXMiR71D4b/qyWXRKnj2M2oA+NHAIT/AwqMgQErCqsNooMPrNLqmTtkqRKBpftkoRACH52QcnAUyYDEaJwrmcy+HPY3SW7JFWVDOL3pGQgCIIgCIIglKBbRSIoYJUMpT5SMgBAeLLYMkmoKUZl/mrRsnJOeWDMCIsti1BdJPtQ6qjnlUZSMvgLs9FVJYN7oc9WWCUD69fuKmyRgWeLDGSXJA8FPwckrJKB93ceAyC1QVEr+LlCapfk8e+ULXxwWnABGPxMdklEqBKoSgbX7JJUVDIwClvKZCAIgiAIgiCUoCIDERSwSoYyH2UyAIAmsjF09e4WLROqrojeVyBKcf8a7vpgprmyULLe0bgQ2SX5B8Fsctkb3VMlg4YJf/ZUySCZ+c0UGQSyS5KFVTIEo13SDZHJEEp2SWwmg4xdkqu/U0nhg/e/XRJcyGQguyQiZAnQTAahloOfdRoqMhAEQRAEQRDyUJHBR7z66qvgOM72b/PmzbXdpaBGqmTw7cBqeMqjDteXI0JxndUuCZAPf3YU7kxFBv8gmMpd3lYbrY6SwZNMBkEQZJQMjFUX2SXJIslkCAIlA9kl+QmOsfhRScnAqpXkgp9dVzIwdkmcxu92SaRkIG5kAlbJ4He7JAp+JgiCIAiCIFyDbhV9wK+//ooPPvigtrsRUkiVDL4dXAlLHgJwyl+PcrPyA5zVLgmQz2Ugu6TaRy70mc1QsFKrmQymCkkRQZLJQHZJsrBFBspkCAyE6gCwS2IGxgUfKRk03hQZXAl+9rFdkkuZDFRkIEIV3vVMBhZffjP9bZdkNJNdEkEQBEEQBOEaVGRQGbPZjNGjR8NoNKJevXrOdyBcIpINfvaxkkETXh/6Bj0V15eb9YrrxHZJMkUGskuqdeRCnzXRzSXLOF0MOH28R8dQI5PBzKgYAICX9IfskmQJQrukGyOTgQ0yrwW7JF59uyTBbIS5UqxcUzP4GbUQ/OyKkoGj4GciROG4wFQyuGKXxP4t8QYKfiYIgiAIgiBchW4VVWbOnDnYs2cP2rRpg6eeeqq2uxMyROnFgytVJmkYndqEpzyiuK7MrFNc59QuycExqcTgHyRKBo6HJrKpZDtNVDI4ycCea/AqZDKwA7KA1C5JrVnYoYbA+MmTXVJgEJB2SSp4rZurCsFewfmweqoFP3O1oGRgv0OykJKBCFVYuyTBBEHhO+fhbYJHsHZJfERDyTZqZjKwdkmkZCAIgiAIgiCUoCKDipw5cwZvvvkmAODjjz+GXq88251wD1bJAPg2/BkAwpo+KB2MAmAGhwqT8lenBo6VDGaqJNQ6rJKB00ZJlAeA51ZJgEUNIzpmTQkEY4VbbQjMgCw4LThtJLMRKRlkMQe/XVJoBj+Hpl2SWZK5woEPq+v57zQQgp/JLom4gZFV6QRA+DNrl6SJaCzZRs1MBknwMxUZCIK4AcjLy7Nla2ZnZ9d2dwgFpk6davs9Eb5l8+bNAZU3m5GRAY7jkJycXNtdIRioyKAi48ePR2lpKUaMGIEePXrUdndCiiid9A9HqY9zGfiwOjA0vFeyvJKLhiAZ7LmOkbPPZJAqGZRmwhH+QzCKlQycNlJSFAAATZRnoc+AfMaDu+HPrF0Sp4uWDuqRkkEWafBz4Bd9bwQlg8QuqRaUDJLBQxWCn1mlEh9WFxyvVc0uSS74WQgAuyQqMhAhC6tkAALCMom1S5KbIKFmJgMFPxMEQRAEQfiXixcvYvHixXj22Wdx1113ISUlBdHR0TAYDEhKSkKfPn0wb948lJVJbcBrG7pVVIlly5bh+++/R0JCAv71r3/VdndCDi3PwaARD7D4OpcBAMJSHpUsq+DiHO4jsktyM/iZ8A9miZIhUmJvBABaL5QMnD4WYAa2zZXu5TKwA7K8LloaSE5FBlmEIMxkuBGKDIFhl6R+oY7NXLFeT1QLfpZTMvg8+Nn5gCplMhChCidTZHAn/NlXmKuLRO/5sETJNmoqGaRFBpotShAEUdsE2qxyglADUqZcZ9WqVcjIyMBHH32EX375BXl5eSgtLUV1dTXOnz+PtWvXYty4cWjXrh327dtX290VQU+HKlBUVITnn38eAPDPf/4TdevWVa3t/Px8h+sLCgpUO1agE6XjRMHIZT5WMgBAWNNBKOb1ItuIcj7WwR7Ab7qe+DT6I8uboggc+OEsorgytNKcBACcMzcA0MhXXb6hMJacQvmxeTBVuPc9MJXmid5zOgW7pGjPlQwcx4EPrw9z2Z+2ZSU5r4MPT3Kjn6eZfsZIBkirL+3G1a1/97ifLJqIRohsMx6aqOsZFYK5BmW/zYWxMMfns6cBy+COoeG9CG8+zO19qy/vQcUf2ag48Yl4RRBkMrD+/carByW/W01kE0S2eRaayNq7hhivnUD58fkwVZx3e19TyUnR+4CwSzJXo+y3j1BzeRcED+3HTMXHRe9t1xO2uGWuwdWtj8NaMJD7fdZcOQhTaS7TZ8d2SYKxEmW/zUbN1UOy/eN1MQhv8QT09bpI1gnGcpQdnY2aoiPirjIzpjltpMRqjpQMRMjCBj8DKN7+tKz1Xk35UwDa2d7vOFeFM9eMEMxVMBYfR4LpDP6m24po3vvZZkJ1se11BReNDTUDURMRh/SKLIQJFpWmWkoGo1nA9nPigj1lMhAEQRAEUdtkZ2eHtJUZx3Fo2bIl0tPT0aFDBzRq1AhJSUmorKzE6dOn8dlnn+F///sfTp8+jXvvvReHDx9Gw4bSnK7agIoMKvDKK6/g/Pnz6Nq1q+phz02aNFG1vWAmUsejsPL6ANDOgip0qu/bgUNeHwtD4/6oOvOdbVkFn+Bwn8va5risbS5aViTEYbexky+6eMMimGtQuKYHzOWOC3GuYFEyqJvJAACasHqiIkN1wUav2uN00RbbFDvM5fmoPPW5V+2yVJ7+BokP/A6Otxzr2p6XUf7bbFWP4YyKP7IhCGZEtHC9gGIq+xOFa7rL+t4Ho5LBXHlJ9ndbeeY7JA4+WiuzPARjJQrXdIfZgwKDHLVil8Rk7VT9uRpVf65W9RjW64ncjOLKU1+Ij39mJeoOPgKO42CuvGz5DDNwvFbm9329yFC8cxwq/ljksE/lJz5B4uBD0Ma0FC0v2jHapWsIH9EIpmu/Mx2jIgMRmsipdCpPfyO7rSmmH2C4XmTIu2ZE3jWrGqk1gNY4WpaAiUX9Ve3jgtjPcKrsTiDyLvyhuxvPFj9o6btKwc+f/VYqWUZ2SQRBEARBEL5lxIgRimPL3bp1w9///nf85z//wcSJE3H16lX861//wgcffODnXspDt4pe8vPPP2PhwoXQarX4+OOPSdrjQ+IM4nN7pdI/NjHhyY+I3lfrfTeDuHEUDdi4ivHqEVUKDADAGxKgiWB/r5xXmQwAwMsEMnrVXlhdcLooVduUw1RyCsbio7b3Vfnf+/yYclT9ucq97c+tUwzW5fSOFUiBAK+Pc2k7U/ExmEpO+bYzCtRc2a9agQGwfKb9jh8sfjQRlpkkvM75585Y/JtNtVR96RcINcWSbThtFBzZJVW68l0xV6Hq3HrJ4qo/Xft+SzKKOJ7ueYiQhdNGSu0JFdAL5U63Oa3rhFLO8SQVd7jKN8Ip3Z2293/ou+Ia95d1kkrKvf0XpbksETIZaQRBEARBEIR6aLXOn1efffZZREVZxoZ+/vlnX3fJZajI4AXV1dUYPXo0BEHAxIkT0b59e9WP8eeffzr8t3v3btWPGaiEa8Uf19PXjH4JUQ5rOhjauJtt77UN0iXb6FX4JnEARtxcC9YhQYqafvXhKY9BE9kI+qRetmVhyUPB672bZR3e4nFvuyZuL+UxGBr1+2vA0beYq67YXguMj76/MFcVurW9qfyc7HJOG4mwxvep0SWfom+QDj68gUvbSmxr/IRgqlCtLW1cO2jjU1Vrz1U4bYRvD8DrEJY81PIyrA70DXs73+ev65ncdU0T3QK6Op0kwc9WJYNgNkFw8bvC5rwIglm2qMGiTbgNUbe+Cc5wfZA0/KYMl45JEMEIpw2Hockgl7a9rcq1gnglp949XhkfL1lWxUchvOWTNhWit1SYpPfYtyUGviqQIAhCju3bt+Ppp59G69atERMTA71ej8aNG+O+++7DRx99hKKiIpfbysjIAMdxSE5Odrhddna2zWM+Ly9PdpuNGzfiscceQ0pKCsLDwxEREYFmzZrhzjvvxKRJk7Bx43UlfF5eHjiOQ8+ePW3LevbsaTuG9Z+SjcymTZswYsQING/eHBEREYiJiUFqaipefvllnDsn/xwFSL3yi4uLMW3aNHTo0AFxcXGKx/zuu+/w8MMPo2nTpggLC0NcXBzS0tLw9ttv4+rVq5LtWfLz8zF+/Hg0b94cYWFhaNiwIe6//36sXy+dNKMW1nNs/zN9/fXX6NWrF+rVq4fw8HC0adMGr7/+ukufmerqamRmZqJnz55ITEyEXq9HgwYN0L9/f3z22Wcwm5WtWtnP2dmzZ/Hiiy+iVatWiIiIQGJiIgYMGICffvrJrZ9HieTkZHAch4yMDKc/lxw7d+7ElClTkJ6ejgYNGkCv1yMmJgY333wzxo4di6NHj8ruZ/2evP3227Zl7Gea/Q65+h08dOgQRo8ejZYtWyIiIgLR0dFo164dJk6cqPidBOTP27p16zBw4EA0aNAABoMBKSkpGDt2rFOLe1+h1WoRFmZRzVdWBk6WI9klecF7772HY8eOoWnTpvjHP/7hk2M0bqzuTOhg5u9to7Dr/HVv2JIaAefKTGgU5duPMacNQ52+W1CR+yV4QyLCwgYB+68P1DSK0uCFDrHYc6EKVSYBQk0pjEVHcaC8Ps4axYF8bfRnkMyfQc2VHGiEGrSq+RnR5ks412U3bqoThVbxUg9gQgnmDzKvQ2S7l9xqgeO00DfoAUNDS3Eh4Z7VqDj1KcBpEe6GTY8S4ckPg++zAdUFmyAIRuc7uNjPOvftQtWZ72BmBgy9ofz4xxDsAiXtfZ8Fo3hgObzFE+Alyg/vMV49LFJNsAGXzpCbYR/V4V1LoTC2lbfd8zm8IQ51B+xCRd4ySYGl7PC/ALvPEBts7TeYzAJOG4GIthPcbkYTnoTw5sPAuThTWE04jeMiQ1izB6GJ8ezzwmnCENb4PujqXrfHi++5HBWnPhdlwZQdmiHaT7Bez2QK53X6bQOn0UNJySBXJIho+xw4bSQqz3wHU/Gx67sYxTOu5YpVEW3GiWysNBGNEN58GHhDAuoO2I3K09+AD2+A8JTHJPsSRCgR3/1zVJz6AsaSPxxul/bnKkQWPYgTuq4wcTroE7tAV/d2rM4zQ7C7xvEtnkZkmDoF4ghdR+BP8bKYtJmIbT1YlfYBwMgUGUanRqNeBCluCYIILioqKvDUU0/hyy+/lKw7e/Yszp49ix9++AGXLl3C1KlT/dq3iRMn4j//+Y9k+ZkzZ3DmzBns2rUL2dnZuHz5slfHqaysxMiRI/HVV19J1h0+fBiHDx/GvHnz8OWXX2LgwIEO2zpx4gR69+7tcID26tWrGDJkiKhAAgBVVVXYt28f9u3bh8zMTKxcuRJ33nmnbBs///wz7rvvPly7dn2yW0FBAVavXo3Vq1f77Xf11FNP4ZNPxFl/x48fx4wZM7BkyRJs2LABbdq0kd03Ly8P/fr1w7Fjx0TLL1y4gDVr1mDNmjWYP38+Vq5ciYQEx2rHvXv3YsCAAbh48aJtWUVFBX788Uf8+OOPePHFFzFr1iwPf0rvyc7OxsiRIyXLa2pq8Ntvv+G3337DggULMGfOHIwbN84vfZo+fTqmTJkiKeQcPXoUR48exbx585CVlYXhw4c7bev111/HjBni57e8vDx8/PHHWL58ObZs2YK2bduq2n9nbNiwwXZtUPoM1gZUZPCQY8eOYfr06QCADz/8EJGRkbXco9AnMZxHQhiPK3a5DMeu1Pi8yABYLD0i2z5neXNOXCXkADSN0aJpjLUfUQAaYP7Bazj7p3jbO266GX3qN8TFZQ+Jlt/SRABvoAKDWzCDcZwmHDGdpnvVJKcNQ0SrUV61wWJI+hsMSX9TtU1d3M3Q2alr1KAq/0cY7Qb1zXbqBXZ2deTNE6Gr00HV4wNA5envREUGocr5DBd72CJD1C1vIPrWN1Tpm7/QRDVFVPtJkuXlx+aJB5NNUhsLvyCIbeo4fZzX3zt/40zJEH7TkwhrMkC14/G6KES2HiNaVnb4fXHBxnpemSKONj4VmgirukVeyWCW+Z7EdJoBThsBc1k+KuyLDIwSRaiReq5H3/YO+LA6sj+LNqYFolJflV1HEKEGpw1HRCvnWWtFFefRsigbLWu2AwAik19EZIvb8VNeBapx/flAe9MYxNRPVGrGLQxFNcCf4u9+RLPBqqkYAKDGLL7PahZDj40E4Q8EswBjeS1NJqkFtBEGcD4KlTebzRg0aBDWrVsHAGjZsiXGjRuHtLQ0REREoKCgADt27MCyZct8cnxHfP/997YCwy233IKxY8eibdu2iI2NRVFREY4cOYL169eLnCsaNWqEQ4cOYc+ePXjyyScBAJ988gluv/12Udv2E1UFQcCQIUPwww8/AAAGDhyIoUOHonnz5uB5Hrt378asWbNw5swZDBkyBNu3b0daWppiv4cMGYKzZ8/iueeew/3334/4+HicOHECzZo1A2ApJPTq1Qs5OTnQaDQYNmwY+vfvj5SUFNTU1GDr1q344IMPcPHiRfTv3x/79++37WvlzJkztgIDz/MYPXo0hgwZgtjYWBw8eBAzZszA1KlTHfZTDTIzM7Fnzx507twZEydORMuWLXHx4kVkZ2dj2bJlOHfuHPr06YPDhw8jOlqsViwtLcU999yDU6csFreDBw/Gk08+iYYNGyI3Nxdz587Fli1bsG3bNgwcOBBbt26FRiP/N7y8vBwPP/wwiouL8dprr6F///4wGAzYtWsXpk+fjoKCAnzwwQdo2rQpnn/+eZ+eEyWMRiPi4+MxaNAgdO/eHS1btkRkZCTOnTuHnJwczJkzB5cvX8azzz6LNm3a4G9/uz4+MnjwYKSlpSEzMxPz5s0DYFEgsDRq5Pokx8zMTEyePBkAkJiYiFdffRVdu3aFyWTC+vXrMXPmTJSVlSEjIwN169ZF//7KuVkLFizAjh070KNHD4wZMwatWrVCUVERlixZgiVLluDSpUt48skn8csvv7jcP08pKSnBn3/+iWXLlokyGGrr9y4H3S16yL///W9UV1ejefPmKC8vV6wKW9m4cSPOn7cMgA0cOJCKEh7AcRxax+vwS8H1m67jV2twT1N1Au5chRW0KVlSa2RWcADAS4sJgrnG637deDAzfmthRnQowTOZBVYlg2A2imbQAwBkwmzVgDOI7R/cVTKYKi6I3rtqPRQMcBo9BLvLRG0pGQSBvQIG3/fOWZGBk7lGqw8P0V8T23l1cH4V7JLM1VfEi3kDoPnr7yITACspMhilRQZ/5L4QRCjBMRkIgslyfdYLFajmrt/vV6kYJWaWcQtVc4xOEATUMJcjbfBd7gkiKDGWV+Hge9/Vdjf8xi2TB0MX5Ztni7lz59oKDA888AC+/PJLGAzia/aAAQMwbdo0FBQU+KQPSlgLG82aNcP27dtt3upW0tPTMX78eFy5cv0+T6fToX379iJlQ0pKikPb7oULF+KHH36ATqfDqlWr0LdvX9H6O++8E0888QS6deuGI0eO4IUXXsC2bdsU2zt8+DDWrFmD3r2v24F26nRdwfvOO+8gJycHcXFxWL9+vWgdANx99914/PHH0aVLFxQUFGDy5Mn4/PPPRdu89NJLNgXDZ599hsceu66eTUtLw8MPP4xu3bph7969iv1Ugz179qB///5YuXKlyCO/X79+aN++Pd566y2cOXMG06ZNw/vvvy/a9+2337YVGKZMmYJp06bZ1nXq1AkPPfQQnnjiCXz++efYsWMHsrKyMHbsWNl+XLp0CUVFRVi/fj26d+9uW965c2c89NBDuOOOO5Cfn4833ngDw4YNQ2KiOhMa3KFfv34YNmwYIiLEz1kdOnTAgAEDMGHCBHTv3h0HDx7EP/7xD1GRIS4uDnFxcahXr55tmTdW9JcuXcLLL78MAGjYsCF27tyJJk2a2NZ37doV999/P7p164aysjKMHj0aubm50OnknwF37NiBUaNGYf78+aI8unvuuQd6vR4LFy7Ezp07sX//fnTooP5EzKlTp4qspOzRaDSYPXs27r77btWP6yl0u+ghVVWWB4hTp07hsccek/23fPly2/bTpk2zLb906VJtdTvoaZMg/uIfu+L/2bysmwUnmV1qQe5hj+cAjpO5eFGRwQPYJ2wKI/QGe3sU4LoFi5wHP6fxTWGPDT4WaoplBrWVYZUMoVRkYIM8hUBRMnDBZ53BaZ0U+f1RZGCLon99ziWfd1FhQcEuiVEy8IZ42w0waw3FWp9JlAycFuD1TjpPEIQIDXt9rgQgSAKh1S0ySKsMahYZTIL0Lkvno5nGBEEQvsBsNmPmzJkALDP7lyxZIikwWOF53q1Z0mpgnYDasWNHSYHBHmc2Oo4QBAH//Oc/AQATJkyQFBisxMfH287V9u3bceLECcU2MzIyRAUGe0pLS/HRRx8BsIx/sQUGK82aNcObb74JwJJ3UFZ23Urw/PnzWLFiBQDgvvvuExUYrERHRyMrK0uxj2phMBiwYMEC2RDeN954wzYQ/t///hfV1defzaqqqrBw4UIAQLt27WStnTiOQ2ZmJurUsaiH586d67AvY8aMERUYrDRs2NBmk1RWVobFixe79sOpTKNGjSQFBntiY2PxzjvvAAC2bduGwkL3shfdYdGiRSgvt9yDffDBB6ICg5UOHTrg9ddfB2CxTfvuu+8U20tKSsKHH34oKjBYmTTpugOBv8OX77nnHhw+fBjjx4/363GdQUUGIqhow2QWXCg340qlik9tLsA+1yk9c2lkvl0cB1IyqITjwTjCXThGyWC2KhmMMkUGrW+KDBxTZIBglgTVOoItMmhCqMhg8eS3o9YyGZjrrYrWHP4iIJQMTJFBULBLEm8nvsYJNrsksZKB119XBLHfVcHEZjKIiwycLlr2BpogCGU4Vt1nUzL4ssgg0w/1modR5gBUZCAIIpj49ddfbYGso0aNcjiQXxskJSUBALZu3YqTJ0/65BhHjx61tT1kyBCH29oPYDuyfXn88ccV123ZsgXFxcVuHa+mpgb79u2zLd+0aRNMJssfTDmPfyudO3dGu3btHB7DW3r37o2GDRvKruN5HiNGjAAAXLlyBTk5ObZ1+/bts4VCZ2RkKNogxcTEYOjQoQAsvytHahpH5+KBBx5AXFwcAPg0FNsdysrKkJeXhyNHjthyP+yVAgcOHPDZsa3nIC4uDg8++KDidk8//bRkHzmGDBmiWKBs3bq17dpiVa6ozbhx43Do0CEcOnQIO3fuxKJFi9CzZ09s2LABjzzyCHbt2uWT43oKFRk8JDs7G4IgOPxnHwa9adMm23JnCeiEMk1jtAjXih9yjl/17wC9wMztUnrkkrdL4uQHsKjI4D5sJgNdzryC1ynYJdWikgFw3TLJXFMmGTDlw+ur0KvAQGLHYa4tJUPo2yWB872TpEQBYjuvDq5rinZJYiUDZ7g+4439rrJFQ3MNW2QIrAdwgggGOFbJYFYoMrguzHOKTI0BvIoFQtYqCQB0wXe5JwjiBmb//v221926davFnshjDZstLCxE+/bt8eijj2LRokX4448/VDuGvZ1Qly5dwHGc4j/7IoxVZSHHLbfc4tLxkpKSHB7P3g7H/nj2Xvxs1gRL586dHa73FneOb99ve9v0O+64w2Eb9uvt97NHr9fj1ltvVWxDp9PZbHrksgz8xeXLlzF58mS0bt0a0dHRNiuv1NRUpKamYsCAAaJtfYX1PHbs2FHRAgkA6tevbxubVTr3gPNQ5fh4ywSvkhLXJ0e6Q7169dC+fXu0b98ed9xxBzIyMrBx40a8++67OHjwINLT07F27VqfHNsTKJOBCCr4v3IZfr10fYDt+JUadEnyjY+jHBKTHsVMBukyUjKoCetbRTPsvEGiZLCGDDOhz4APlQy6aMvMbbuBbKG6CEAzxX2smCsvSJaFll2SWMlg9fz2NwKrZAhGuyRN4CkZbJ95N5QM1kKrO0oGOMlk4LVUZCAIt5HLZBAEGPytZFDxNogNfQZIyUAQ/kIbYcAtkwfXdjf8hjZCfoawt9gPYlpVA4HEPffcg7lz5+Lll19GRUUFli5diqVLlwKwWM/cd999GDt2rMPBZWdcvHjRo/2sVjNyWAdUfXU8+wwKe49+OerX9+2EMneOb99vd36GBg2uP6/a72dPQkKCohqC7YtSG75m37596NOnj8s2SBUV0omMamE9B87OPWA5/3l5eQ7PmyMbKMCiagFgU+D4izfeeAOrVq3C7t27MWrUKJw8eVLW2svf1H4PCMJN2CLDsSv+HaBnn7uUlQzSZRws/nvgNGLbESoyuI9kRjU9/HqDopKBtUviND4bhOU4HpwuFoLdzGwz4zevBGuVxGkjwIXQgCk7UxYBomTggtIuKQAyGVgFiCt2SQpKBoFRMvAiJYOzTAbxjBtSMhCE+0iuz38VgXWC+PtWaVLvPkUmkkFV5JQMWioyEIRf4HjOZ0HIRGAxfvx4PPzww/jiiy+wbt06bN++HcXFxTh79izmz5+PrKwsTJ48Ge+++65H7dsPeq5evdplRw1Hg7OOBrvtj5eTk+NwFrk9jRs3ll1e2xaeahw/UNrwJdXV1Rg6dCgKCwuh0+nw3HPPYdCgQWjVqhXi4+NtVkOnTp1CixYtAFjyQnxNoJ83NRg0aBB2796NM2fOYPfu3bjrrrtqu0tUZCCCDzb8Oe+aEeU1ZkT4ScctCX5WuHbxMg9jtkW8DrD7IywIVGRwHwp+VhMlJQNrlyTxnlYZXh8Hk92gqeCiXZJJJvQ5pG4sAkTJIMlkCEW7JH8UGSTFGTPzfyuc3SsFJQNrl+ROJgNrlxRChTmC8Bcu2yWZ1Huglgt+VpMamb6SXRJBEMFE3bp1ba8LCgqcWp64g3Xmstns2AfPPtBYiXr16uGFF17ACy+8ALPZjF9//RUrVqzA3LlzUVRUhP/7v//D7bffjkGDBrndT2uoMGDxp7e3KPIF9sdLTExULB44wl4pceHCBdnQXvv1vsRZ+/br7QO67V9fuHABrVq1UmzD3ipKKeS7sLAQJpPJYYHH2he2DetnFVDn8yrHxo0bbXkEmZmZoqwDe/ylskhISEBBQYFLnw/r+fcmYL02SUxMtL0+ffp0QBQZ6HaRCDpaxOlEKgEBwIki/w3Ss49dSl8iOSWDFclMcFIyeABb7aHLmTfwegUlg6TI4BurJFv7BrEE1+VMBrbIEBY6eQxA4CgZQsIuyYndlz/sktgMGWuQvTTQ3oFdklLwsxuZDNLgZyoyEIS7sMV3wVQJQJAUGap9nMmgJmzwM88BGlIyEAQRRHTs2NH2euvWraq2HR0dDQC2cF8lfv/9d7fa5XkeHTt2xLRp07Bhwwbb8mXLlom2c3UildWnHwC2b9/uVl88QY3jpaam2l7v2bPH4bbO1nuLO8e3L+DYv3YWyrt7927Z/eyprq52GJRsNBrx66+/yrZh/awCwNWryg4BV65ccdnqiOXIkSO214888ojidvaZHXKoNUHQeg5ycnJgNBoVt7t48SJOnz4t2ifYOHv2rO11oITb06icD5k6daot7Dk9Pb22uxMyGDQcmseKRTjH/WiZJM1kkL8YyhUZREoG+zapyOA+ksE4evj1Bo6xSzIr2SX5KI/BChv+zM7SVsJcIZ6pEFJ5DAC4gFEyOBoEDw44XudYrRBAmQycK3ZJVaxdkr2SgbFLMjkJfiYlA0G4j1wmAwADWCWDevcpcpkMasLaJZGKgSCIYOPWW2+1zYJfuHAhSktLnezhOikpKQAsQa/Hjx+X3aa6uhrLly/3+BgdO3a0zepnQ3LDwq4Xt6uqlJ8JOnbsaFMTZGVlobJSmrWnJr169bL518+ZM8cjS5yePXvaZuwvXrxYcbs9e/Y4DOtVg7Vr16KgoEB2ndlstvUvPj5eVNTq1KkT4uLiAFh+BiUFQUlJia2AdPPNNzvMDnF0LlasWGErIPTq1Uu0Lj4+3tYXR4P8X331lccWRvYD+UpqCLPZjAULFjhsx9XPtTOs56CoqAjffvut4nb//e9/bT8ze96CAbPZLLrG2BfoahO6ZSSCkjYJ4gG3Y1f9WGRwOZNBusa6hB0wJCWD+0j/CFKRwRskSgabXZL4ZtTXSga2yOCqXRKrZNCEWJEBEjuO2spkECsZuCBUMgCOcxlqJ/jZel4daeWU7JLESgaRXZJEycDYJZGSgSC8Rqo0q4KckqFSVbsk1ZqShQ1+pjwGgiCCDZ7n8fLLLwMA8vPzMXz4cFRXy98/m81mnDt3zuW2e/ToYXs9a9Ys2W1efPFF0SxjlqVLlzoMv927d69t4Nha1LBiPxh98uRJxTZ4nsfkyZMBWPzwhw8f7nDw9tq1a5g7d67iemfExcXh2WefBQDs2LEDEydOdGjRc+HCBSxcuFC0LCkpyWYNtWrVKomKAwBKS0sxZswYj/vpKlVVVRgzZoxsoO+MGTNw6NAhAMCTTz5pyx0AAIPBYLMMOnz4MKZNmybZXxAEPPvss7YCkvW8KTFv3jxs27ZNsvz8+fOYNGkSAEtA8YgRIyTbdO/eHQCwcuVK2c/L8ePH8eabbzo8viNatmxpe52dnS27zeuvv46cnByH7bj6uXbGyJEjbcWul156SfZ7eODAAbz33nsALEHrgwcP9vh4vmDBggUOg6TNZjNeeuklW6GtW7duLmeu+BrKZCCCkjYJOqw+df39ias1MJoFvzwEsT64ipkMcsHP1o1JyaACZJekJmwmg1BTAsFs8r9dkt0AKeC6XZJcJkMoISlMBkomQ9AWGSKUC1h+KTIw501ByeCaXZKD4GdJJgMb/CwuMvCkZCAIt+EUlAw6SSaDesf0eSYDU2TQU5GBIIggZPz48Vi9ejXWrVuHFStWIDU1FePGjUNaWhoiIiJw/vx57Ny5E19++SWGDRuGqVOnutRuhw4d0KVLF/zyyy9YsGABqqurMWLECMTGxuLEiRPIysrCxo0bcdddd2HHjh2ybbz66qt45plnMGjQIHTv3h2tWrVCZGQkCgsLsW3bNnz44YcALEHLrMd906ZN0bhxY+Tn5+Nf//oXGjdujNatW9sUAPXr17fZ5DzzzDO2n//rr79GTk4OxowZg86dOyM2NhbXrl3DsWPHsHnzZqxatQphYWFOB7wd8c4772DLli3YtWsXZs+ejc2bN2PUqFG47bbbEBkZiatXr+LIkSNYv3491qxZg9TUVMnPN2vWLKxbtw4lJSUYNmwYtmzZgiFDhiAmJgYHDx7EjBkz8PvvvyMtLc2pBY83pKWlYfXq1ejatSsmTpyIli1b4uLFi1i8eDG++uorAJbQarkB+rfeegvffvstTp06halTp+LQoUMYOXIkkpKSkJubi7lz52Lz5s0AgC5dumD06NGK/UhMTERERATuvfdeTJw4Ef3794fBYMDu3bvx3nvv2Qpk06ZNkw3tHjduHFatWoWKigqkp6dj6tSp6NChA0pLS7FhwwbMnj0biYmJ0Gg0uHTpktvnqU+fPqhXrx4uXryIKVOmIC8vDw888ADq1q2LP/74AwsWLMCGDRvQtWtXhzZa9nkCEydOxBtvvIGkpCTbGFpycjK0WudD2ImJiZg5cybGjx+P/Px8dOrUCa+99hruuusuGI1GrF+/HjNnzkRpaSk4jkNWVpbLIeX+YvTo0Xj77bcxZMgQ3HnnnWjWrBkiIiJw9epV7N+/H9nZ2Th48CAAICYmBh999FEt9/g6VGQggpJW8eKLQLUZyC02omW87y8Ors6f18iMeVsXUSaDGjDFHlIyeAXP2CUBlkIDaiH4WdQHl+2S2CJDaGcy1J6SIfjtkgCA0yiHP3Oc/5UMgmKRgZN/bdnY8l9GycDbF+ook4EgfA97fbbaJfmyyKBeU7IYmQNog/NSTxDEDQ7P8/juu+8wYsQIfPPNN/j999/xwgsvqNL2J598gh49etgGnVk7m0mTJqFdu3aKRQbAYucit68Vg8GAjz/+GGlpaZJ1kydPxrhx45CbmysJhV60aBEyMjIAWCY5Ll26FM8//zw+/vhjnDx5Eq+88opin+QGqd3BYDBg3bp1yMjIwLfffosDBw44LFrExMRIliUnJ2PVqlW4//77UVJSgszMTGRmZoq2eeutt8BxnE+LDOPHj8eWLVuQnZ2NRx99VLI+KSkJ//vf/xAbK32Ojo6OxoYNG9CvXz8cO3YMy5cvl7XP6tq1K1atWuUw1DkiIgLffPMN+vXrh+nTp2P69OmSbSZMmIAXX3xRdv8+ffpgwoQJmDNnDvLz82WLVqtWrUK/fv0U++CIyMhILFmyBIMHD0ZlZSXmz5+P+fPni7ZJT0/H3LlzHWYf3HTTTRg6dCiWLVuGtWvXYu3ataL1ubm5Ls/WHzduHIqKivDmm2/iwoULmDhxomQbg8GArKws9O/f36U2/c3Zs2cxe/ZszJ49W3Gbtm3b4rPPPgsYqySA7JKIICVGz6NRlPhC7C/LJHbymNLkLjm7pOt+SaRk8Bp2MI6KDF7BKhkAwFxTLBmUdBaa630/4sR9cNkuSZzJEHJ2SQGSyRAKwc+ANKtARC0EP9sUIpLrmrKSQRAECKZqiQWSWMnA/JzmKlG4NKtk4HTRIAjCPSTFd3MVIMgEP6tYZPCxkEGiZNCRkoEgiCAlIiICX3/9NTZu3IgnnngCKSkpCA8Ph16vR5MmTTBw4EDMnz8fL730klvttmnTBjk5ORg7diyaNWsGvV6PxMRE9O3bFz/88ANmzpzpcP9NmzZh9uzZeOihh5CamorExERotVrExMSgQ4cOmDRpEo4ePWorFrCMHTsWy5cvR+/evVGvXj2HM7x1Oh0yMzNx4MABPPfcc0hNTUVsbCw0Gg1iY2Nx22234amnnsI333yD3377za3zIEd0dDSWL1+On3/+GU8//TRat26N6OhoaLVaJCQk4Pbbb8f48ePx448/Yt26dbJtpKen48iRI6LzW79+fQwYMAA//fQT3n77ba/76QqLFi3CF198gfT0dNSpUwcGgwGtWrXCK6+8giNHjuDmm29W3Dc5ORkHDhzA3Llz0aNHD9SpUwc6nQ7169dH37598emnn2Lr1q1ISEhQbMNKWloacnJyMGHCBLRo0QJhYWGoU6cO+vbtix9//NHhQDQAzJ49G1988QW6d++OmJgYhIeHo3Xr1njttdeQk5ODtm3bun1u7OnTpw/27t2Lv//972jYsCF0Oh0SExPRo0cPZGVlYcOGDYiMVLartfLZZ5/h/ffftylteN7zIevJkydj//79GDVqFFq0aIHw8HBERkaibdu2eP7553Hs2DEMHz7c4/Z9yb59+/Duu+/ivvvuQ7t27VC3bl3b9aFNmzYYNmwYvv76axw4cECUBxIIkJKBCFraxOtwtvT6E9vxK9UY2NzBwJFKSIOf5beTDX627kNKBhVg7ZLoAdgbLIOLHOzPq1BdXAuZDGK7JFcyGQRBCH27JFnP71pAEkwcrEUGR5kMfrg14tnzZjmvAjs/2Unws1wwuqNMBsCiZuB0lp/fXFMi3pfskgjCbSRKs7/+bkozGdQ7ps8zGZi+UiYDQRDBTs+ePdGzZ0+Xtk1OTnYpBLdRo0aSGfb2ZGRkKBYJUlJSMGHCBEyYMMGlPsnx4IMP4sEHH3R5+9TUVMyZM8ft40ydOtVlKyl77r77btx9991u72elSZMmDs+vp/1yl8ceewyPPfaYR/vq9XqMHz8e48eP97ofTZo0cTqz3RHOfo68vDzFdenp6U6/E+3atcOnn36quN6V75VOp8PLL79sy1NRIjs7WzH/wZ5bbrkFWVlZTrdjcfUaADg+b57SsWPHgCseuAopGYigpU2CeKD+2NUaly8E3uBV8LN1kSSToZasT4IZyS+CLmfewHG8ZBazUFMszWTwsZKBtUti/eblEKqLJYPuIVdkYD2/AyT4OVi/d7WtZJDcfinYJXGOMhkEAeYqsVUSAPAGx0UGews0sksiCO9RymRgiwxVKnoc+VvJoA/OejJBEARBEAThR4JzdIAgALRJENuHlFQLKChTcZqYAhKTHoUZ9HLKLptbEikZvIfsklSHtUwyV0vtkliPd/X7EMf0ocjpPmweAwBowkIrk4HsktRFscjA8czAvq86wGYyWM+ro+KpVMnAZpZw2ijR3xe5oqB94ZCCnwlCBSRKs2oAZmmRwaReZcAs0dWqC1tkICUDQRAEQRAE4QwqMhBBS2I4j3iD+CP82xXfD9azagmlxy6tnF2StSAhUTJQkcF9XI3gJlyFDX+22CWxwc8+VjIY3LdLMlWK8xg4XSw4rW8Dqv2N1C4pMIKfg9YuSSn42R+hz5A5b0rBz3bXNWlBW6pk4Jjvj1wxxb5wSEoGgvAeyfUZgGCqhh7iv5+qBj/7WMnABj/r6ImRIAiCIAiCcAJlMhBBC8dxaJOgwy8F12f0Hr9ag3ua+nYQlH2uU5rcxTvICJAoGQQqMriL4HDGL+EJEiWDnF0SG3Cpeh/iRO8FYykEs9GhTz6rZAg1qyQAAaNkCHW7JMm12WcdcM0uyaGSQZBmMvB6cXAcx+ssahO735t9ULQk+JmUDAThNqxdEgAI5ioZJYN6x/R5JgMFPxMEQRBBSG5uLsrKytzeLz4+Ho0aNfJBj4gbjbKyMuTm5nq0b+vWraHT+el51EdQkYEIalrHi4sMx/yiZHBtO9ngZ8VMBioyuA3ZJakOr5cqGcAGP/s5k8HSjyJwYXUV92GLDJoQLDIEqpIheO2SFIKfa63IYBl9FCTXNSd2SUxmCasEAizqI3vFgrVwKAhmCEbxQxgpGQjCA+SK7yZpkcEkAEazoIr1kK8TyKjIQBAEQQQjI0eOxJYtW9zeb8SIES4FCROEM/bs2eNyyDxLbm4ukpOT1e2Qn6EiAxHUtGXCny+Um3C10oT4MN8NfLmsZKBMBh/DKhnoAdhbOJ3zTAaf2yXppYOk5uoi8A6KDCaJkiHE8hgAcAGiZJBmMpCSwTMUlAxs6o/9+XXBLok3JICF0yoUGYwVYK+jpGQgCPeRt0uqhIEpMgCWXAY1igxmHyc/1zCXIm1wXuoJgiAIwi2Sk5Ml9ti1RXZ2NhU+iKCDigxEUNM0RotwLYcK4/U/BMev1uDOJN8VGViJunImg3SNbRFHSgavYbMxgnSwM5CQKBlk7ZJ8W2SAJsxiDWQ3U99Z+LO5QpzJEJJ2ScwgllBrSoYQD372V5GBF583AfJ2SZybdkmcTJGOzZ+wFg7ZPAaAlAwE4QmydkmmSomSAbAUGSJVuMz4evzDSEoGgiAIIgjZvHlzbXeBuMFJT08PmEJVbUCjckRQw3McWsWLn9Z8bZkkiRtWmEEv9zxm3ZSUDGpAwc9qI6tkYIsMPrZL4jhOYpkkMAOpLDeEXRKjZECtZTKESPBzLSsZOCUlg+SG1O66JqNkEFglg0yRAcx3VjBZBj6FmhLJpjwpGQjCfTR6ySJLkaFCsrzSqM5Dp+8zGcTvqchAEARBEARBOIOKDETQ09rfRQYXlQwaOSWD9QVlMngPZTKojqySgbFLkvWeVhl2NrYzJYPULikEiwwBq2QIztuIQM1kcGiX5Erws5xdEqM+sikZmNBncBq/fL8JItTgOF567TBVQYNq8IJRtLjapFKRQZVWlKlh+qkLznoyQRAEQRAE4UeCc3SAIOxow+Qy5F0zosLou8cvgfWwVhjb1shlMvy1MSkZ1IAyGdSG08spGZjgZ1/bJUEa/iw4tUsK/UwGBEomg2QQPDhHnlgLIdtyzk8ukux5E+TtkhwVGQSZTAZZuyRGtXE9k6GU2S5KUZlHEIRjOKZAJ5irwAESy6RKtYoMPlcykF0SQRAEQRAE4R5UZCCCnpvidNDYPfsIAE5cNSpu7y2uKxmky2xfOFIyeI/EVoQuZ97C61glwzW/2yUB0iKDuUrZLkkQzDBXXhQtC0m7JDZYtLaUDGaxkiHU7JJqT8lgKS4IjooMcsHPHikZLIOeZkbJQHkMBOE5bC6DtUDPFhmqVCoy+Nrrl4KfCYIgCIIgCHehW0Yi6DFoODSPFc8+PXbVdwNw7HOd0uQuWbskpUwGgYoM7iKdUU2z7LyF08eI3gvVxYDRz8HPADiD63ZJ5qpCiYVPSNolsUoGc21lMoSKXVItZzIw502wnlc28wKO7ZKEKrbIIKdkYL6zDpQMBEF4CFsI/kttJi0yqHM4XysZKPiZIAiCIAiCcJfgHB0gCIY2CeIBuOM+zGVwNQlA7nnMVqCQDBhSkcFtHAWkEh7hUvBzgNklsVZJAAc+LFH1PtU6PDuAVUtKhlCxS6rtTAal4GcHNnCc5BonwFzNBj97nsnAk5KBIDxGkptjVTJA/De0SqXgZx/XGCj4mSAIgiAIgnAbKjIQIQEb/nyiqEYyC8tXuJPJYH1mo0wGNWCzMehy5i3S4OdrNmsVK/6wS+JYu6RqZbskSR6DoY7fZqP7E04TGEoGwcwqGYK1yFC7Sgbw7HlTyGSAsl2SUFMq+dvBqoAA9zIZCILwDJftklS6N/V/JoNvj0cQBEEQBEEEP3TLSIQErZnw5yqTJQDaF7APdtLZpRbk7JJsHrqUyeA9ksE4mmXnLaySARCkA5FMuKUv4JnwWkdKBlPFBfG+IWiVBMgNYNWSkkFgMxmC8zai1jMZ2NsvW/HG9eBnVsUASL87gHImg1BTIt6OlAwE4Tkywc+ATJFBJSWDv4sMWlIyEARBEARBEE4IztEBgmCI0fNoFCWeGXrMR5ZJbNieopLBgV0SKRnUQNlWhPAMVskgSy3YJTnMZGCVDCFaZJD4fZurfB78KU+I2CVpFJQMXO0EPwtKSgYHwc/mqkK2UXAy32FWfWRVMphJyUAQqqFol8QUGSqDJPjZKLFL8unhCIIgCIIgiBCAbhmJkKENY5nksyID817pSyRXZLBNDCMlg/dQJoPqcLoY59v4I/iZLTJUuW6XpAnRIgMb/AygdoqTEruk4LyNqO1MBo4tzvxVXBAcFRmYa5xQJVYycPo4WWWJq5kMpGQgCM9h1WbW4GeDJPhZJSWDKq0oI7FLkrupJQiCIAiCIAg7gnN0gCBkYC2Tjl+t9slML8nQtsJzFy8jLbfuK5kta66tENdghlUy0OXMWzhe43Q2sz8yGdwJfjZJlAz1fdCjAIBVMgAQauG6IYSKkqG27ZLY65Ugr2QQ2/E5HuTjDdLQZ4AyGQjCLygoGXQCE/ysVpHB13ZJJjaTgYoMBEEQBEEQhGNoVI4IGdokiGf6XqsWUFBmUtjac9i6hdJjFykZfAxlMvgEObsV0Xp/KBmY8FrHdkk3SiaDjJLBVAvhz5JMhmAtMsh/jv0W/CwpMljPq4PiqRNLOLk8BgASi7PrmQziIgOvi3bYPkEQyrhql6RWkcHXbnk1zC2Wlp4YCYIgCIIgCCfQLSMRMtQL5xFvEH+kfWGZJAl+VsxkkK4w//VUSJkM3iNQJoNPcJbL4J/g5zjxAnOVzeKF5UbJZGAHsIDaUTKEjF0Sr5NXLfBaP/WAyWRQUDI4sktiYYtztuVskUFJyUB2SQThMZK/jb62S/J5JgMpGQiCIAiCIAj38NfTNEH4HI7j0CZBh18Krs/uXX2qHEcK1R2IO1lsFB9XYeBHVslgfcEMbhmLDuPq1r+r0Dv34Hg9DI36IDzlEb8f21vMZfnMkuAc7Aw0OJ2DIgPH+8VOhs1kAICin58AZAocxpKTovehmskAGSVD8c5xytkCCnAcD11iF0S0HiPr369ERd7XqMpfg+oLW5kGg1PJAFhyGVgrLn8FP3M8e94sfx2MRUeZ5a4XGXi9kl2SuMhgLP4NV7f+HTWX9zHbUZGBIDyFzWSwXiv1YIoMRs+LA7sKKrH/YjVqzAKOFEonpyw8VII4A4+/NQlDcqx317KSGioyEARx45KXl4eUlBQAwKJFi5CRkVG7HSJkmTp1Kt5++20A8IlNNnGdzZs3o2fPngCATZs2IT09vVb7k5GRgcWLF6NZs2bIy8ur1b4QYqjIQIQUrePFRYZzZSac84Flkj1Kz10amfE7698+VslgrryEylOfq9wz16j4YxEgCAhv/mitHN8TBEFA6cF3Rcs4UjKogiMlA6cJ98t5ligZAFSeXu7aviGaySCnZKg6851HbVWc/BTmqiuIvvUN17bPXYaiLQqFyKAuMkRI8z78ZZfEFkXNJphrylB9YYt4uTt2SUpKBjaToeqK7N8bUjIQhBcw12hT2RkA6tkl7T5fhQ9yrjncZtd5y/3vlvxKzO5ZB3EGzyZf/HpRasWno3kcBEEQBEEQtc4jjzyCZcuW2d7n5uYiOTm59jrEQLeMREjRJsFfA0TXMchJFiA/57RBpGVAjtPF+LBH7lN19sfa7oJbmEpzJcs4jUKQK+EWfFg9xXVyCgNfwPE6cEr+8k7QRDRSuTcBAqeVeOt7Q1X+925s+4PiOneVFIGEXIYBr/fTtZmxZRLM1ai5vFuymf35dXau+TD5AptiVgO7nUJwNEEQzpErjgPSIkOlh0WG/TID/0pUmgT85oWKd/8l6b4RVGUgCIIIGDZv3gyO48BxHDZv3lzb3SEIVZg6dartc03I8/3334sKDIEI3TESIUVyjBa31PVfoUHDAbc3kM4wBiwz63s1vW7v0jJOi+Z/ydcNSX8DH5bolz66gjWgMFgQakoky8KC0PIpELGcR/k/7OEp/lO7hDd/3O19DI37h+xAKcdxqp5/NvTXEYrB25owhDW9X50O1QJhKY+JF3BahDV90C/HZgckheoiSUYCAIQ1HWx7bUi6B5zS51sThrBm8n3X17sLfGQTx/0JT4K+fg+H2xAEoUxYswctxWCGcHOx6H15jWdFBncVEOVe2DJVyuxbL5weGQmCIAiCCAyys7MhCMINZZVUWlqK8ePHAwDq1VOeGFrbkF0SEVJwHIeJHWOx+3yVz22SdDyHjvX0aBGnXNR4qn002iboUWEU0L3x9YIDH1YXdQbsQmXe1zBXX/VpP+Woubgd1Rd+tr0XzEYHWwceckWRiJYja6EnoUdY4/6o028Lqs6tFwUL6+JTEZbsv0JOTOf/QJd4B4xFR1zaXhOVjIgWT/i4V7VLbJePoW/QA8biY27va7p2QmQ5ZQ3/dQV28Fuf1Av6Bj0Q1uR+6OJT3e5LoBB1y2RoY9ugpnAfOI0Bhsb9oa97u1+OzRYLzFVXIJiks4f1iZ1trzURSag7YDcqT38jKvxw2gjL7yLhFvljaSNQt/8vqMj9Cuaqy5L1vKEOwlMe8Z+KgyBCEH29u1BnwA5U5f8oukeJr2oK2N3mlXk4+M/kMKNVvA4pMVrsOl+FxHAeRVVmXKq4Hhxf7UXANBv63KtpGM0qJAiCIAiCqEWmTJmCM2fO4J577kHjxo2xePHi2u6SLFRkIEKOCB2P9Cbq2Yp4A89xuLuRNKwWALTRKYhKfcXPPbJQevA9UZEBgm8LMmojGMUDpJyhTi31JDTR1+8Gff1utdoHjtcgooX/w9ADGU6jR8RNIzzat+rs/5gig+vqJVb1EJ7yKCJaPeVRPwIJjuMQnvwQwpMf8vuxWQsjc/UVwCwuMmhlCjjamBaISn3V7eNpIhshqv1Lbu9HEITr6OveLilUJhbVANuvVxnKa8zsbi7BFhluqavHw60i8WT7aADAjN1FuFRx/RpSze7gBmwdJNbDbAeCIAiCIAjCe/bu3YsPP/wQBoMBmZmZeO+992q7S4rQXSNB3Iiwkv5gKzIwA6Scil71BBGSaMTFTm+UDBQQ7D2srZdQdVWkHAIAjtf7s0sEQfiASJ1YAVBj9kxlYBLE+7BxYHpmgZpKBh1PKgaCIIKf7du34+mnn0br1q0RExMDvV6Pxo0b47777sNHH32EoqIil9vKyMgAx3FOw1azs7NtHvNKti4bN27EY489hpSUFISHhyMiIgLNmjXDnXfeiUmTJmHjxo22bfPy8sBxHHr27Glb1rNnT9sxrP+ys7Nlj7Vp0yaMGDECzZs3R0REBGJiYpCamoqXX34Z586dU/w5WK/84uJiTJs2DR06dEBcXJziMb/77js8/PDDaNq0KcLCwhAXF4e0tDS8/fbbuHrVuZtDfn4+xo8fj+bNmyMsLAwNGzbE/fffj/Xr1zvd11Os59j+Z/r666/Rq1cv1KtXD+Hh4WjTpg1ef/11lz4z1dXVyMzMRM+ePZGYmAi9Xo8GDRqgf//++Oyzz2A2K08+YD9nZ8+exYsvvohWrVohIiICiYmJGDBgAH766Se3fh4lkpOTwXEcMjIynP5ccuzcuRNTpkxBeno6GjRoAL1ej5iYGNx8880YO3Ysjh49Kruf9Xvy9ttv25axn2n2O+Tqd/DQoUMYPXo0WrZsiYiICERHR6Ndu3aYOHGiQ6slufO2bt06DBw4EA0aNIDBYEBKSgrGjh2L/Px8V0+RRxiNRowaNQpmsxmvvfYaWrVq5dPjeQspGQjiRoTTiN8HmV0SJEUGebUIQRAWJIU4L5QMnJaKDN7C6xm7pOorgIkJdtXI5/0QBBE8yAUml9eYoddoZLZWhhUmsOP+bJGhyou5I0ZmvENLVkkEQQQxFRUVeOqpp/Dll19K1p09exZnz57FDz/8gEuXLmHq1Kl+7dvEiRPxn//8R7L8zJkzOHPmDHbt2oXs7Gxcviy1u3SHyspKjBw5El999ZVk3eHDh3H48GHMmzcPX375JQYOHOiwrRMnTqB3794OB2ivXr2KIUOGiAokAFBVVYV9+/Zh3759yMzMxMqVK3HnnXfKtvHzzz/jvvvuw7Vr12zLCgoKsHr1aqxevdpvv6unnnoKn3zyiWjZ8ePHMWPGDCxZsgQbNmxAmzZtZPfNy8tDv379cOyY2Or2woULWLNmDdasWYP58+dj5cqVSEhwnCu4d+9eDBgwABcvXrQtq6iowI8//ogff/wRL774ImbNmuXhT+k92dnZGDlSal9dU1OD3377Db/99hsWLFiAOXPmYNy4cX7p0/Tp0zFlyhRJIefo0aM4evQo5s2bh6ysLAwfPtxpW6+//jpmzJghWpaXl4ePP/4Yy5cvx5YtW9C2bVtV+2/lgw8+wK+//oqWLVvi9ddf98kx1ISKDARxA8IxRQYh6JQMjF0SFRkIwiHsd0QwVkAQBJd8ts3GMnFb2khV+3YjIpvJQEoGggg5IrTSa2yZUUCcm+2wRQYNc+02MDULNZUMWtK9E4RfEQQBlZWuTwYJdsLCfJf7YjabMWjQIKxbtw4A0LJlS4wbNw5paWmIiIhAQUEBduzYgWXLlvnk+I74/vvvbQWGW265BWPHjkXbtm0RGxuLoqIiHDlyBOvXr8fu3btt+zRq1AiHDh3Cnj178OSTTwIAPvnkE9x+u9iqr3HjxrbXgiBgyJAh+OGHHwAAAwcOxNChQ9G8eXPwPI/du3dj1qxZOHPmDIYMGYLt27cjLS1Nsd9DhgzB2bNn8dxzz+H+++9HfHw8Tpw4gWbNmgGwFBJ69eqFnJwcaDQaDBs2DP3790dKSgpqamqwdetWfPDBB7h48SL69++P/fv32/a1cubMGVuBged5jB49GkOGDEFsbCwOHjyIGTNmYOrUqQ77qQaZmZnYs2cPOnfujIkTJ6Jly5a4ePEisrOzsWzZMpw7dw59+vTB4cOHER0dLdq3tLQU99xzD06dOgUAGDx4MJ588kk0bNgQubm5mDt3LrZs2YJt27Zh4MCB2Lp1KzQKExDKy8vx8MMPo7i4GK+99hr69+8Pg8GAXbt2Yfr06SgoKMAHH3yApk2b4vnnn/fpOVHCaDQiPj4egwYNQvfu3dGyZUtERkbi3LlzyMnJwZw5c3D58mU8++yzaNOmDf72t7/Z9h08eDDS0tKQmZmJefPmAbAoEFgaNWrkcn8yMzMxefJkAEBiYiJeffVVdO3aFSaTCevXr8fMmTNRVlaGjIwM1K1bF/3791dsa8GCBdixYwd69OiBMWPGoFWrVigqKsKSJUuwZMkSXLp0CU8++SR++eUXl/vnKrm5uTaFR2ZmJgyGwJ+ERkUGgrgR4Vm7pOBSMkjskrRkl0QQjpB+RwTAXANonA9kS5QMZJfkNRK7pOoiqYUVFRkIIujR8hwMGg5VdoP+ZTXe2yXxzMC/mnZJbGyEluySCMKvVFZW4tNPP63tbviNJ554AuHhvnmWmzt3rq3A8MADD+DLL7+UDNINGDAA06ZNQ0FBgU/6oIS1sNGsWTNs374dUVHi++v09HSMHz8eV65csS3T6XRo3769SNmQkpKC9u3bKx5n4cKF+OGHH6DT6bBq1Sr07dtXtP7OO+/EE088gW7duuHIkSN44YUXsG3bNsX2Dh8+jDVr1qB37962ZZ06dbK9fuedd5CTk4O4uDisX79etA4A7r77bjz++OPo0qULCgoKMHnyZHz++eeibV566SWbguGzzz7DY489ZluXlpaGhx9+GN26dcPevXsV+6kGe/bsQf/+/bFy5UpotdfHT/r164f27dvjrbfewpkzZzBt2jS8//77on3ffvttW4FhypQpmDZtmm1dp06d8NBDD+GJJ57A559/jh07diArKwtjx46V7celS5dQVFSE9evXo3v37rblnTt3xkMPPYQ77rgD+fn5eOONNzBs2DAkJiaqeRpcol+/fhg2bBgiIiJEyzt06IABAwZgwoQJ6N69Ow4ePIh//OMfoiJDXFwc4uLiUK9ePdsyR59pZ1y6dAkvv/wyAKBhw4bYuXMnmjRpYlvftWtX3H///ejWrRvKysowevRo5ObmQqfTyba3Y8cOjBo1CvPnzxcVRO+55x7o9XosXLgQO3fuxP79+9GhQweP+y3HM888g/Lycjz22GPo1auXqm37CpqbQhA3IqxdUtApGcguiSDcQe474koug2CuAcxiGx+e7JK8hi0yAIC54qLoPSkZCCI0YHMZPAl/NjG7sJkMBqYQUOVN8DMpGQiCCAHMZjNmzpwJwDKzf8mSJYqzgHmed2uWtBqcP38eANCxY0dJgcEeZzY6jhAEAf/85z8BABMmTJAUGKzEx8fbztX27dtx4sQJxTYzMjJEBQZ7SktL8dFHHwEApk2bJikwWGnWrBnefPNNAJa8g7Ky66rp8+fPY8WKFQCA++67T1RgsBIdHY2srCzFPqqFwWDAggULRAUGK2+88YZtIPy///0vqquvK5KrqqqwcOFCAEC7du1krZ04jkNmZibq1KkDwFIQc8SYMWNEBQYrDRs2tNkklZWVYfHixa79cCrTqFEjSYHBntjYWLzzzjsAgG3btqGwsNBnfVm0aBHKy8sBWKyG7AsMVjp06GCzHjp79iy+++47xfaSkpLw4YcfyiquJk2aZHv9888/e9lzMZ999hnWrl2L2NhY/Pvf/1a1bV9Ct40EcQPCMUqGYLdLYkNtCYIQIxeOzhbr5BBqyiTLSMngPbw+XrLMVCGeQcdRJgNBhASsZVKZ0f0CgLuZDF7ZJTG7kpKBIIhg5Ndff7UFso4aNcrhQH5tkJSUBADYunUrTp486ZNjHD161Nb2kCFDHG5rP4DtyPbl8ccfV1y3ZcsWFBcXu3W8mpoa7Nu3z7Z806ZNMJksYxNyHv9WOnfujHbt2jk8hrf07t0bDRs2lF3H8zxGjBgBALhy5QpycnJs6/bt22cLhc7IyFC0QYqJicHQoUMBWH5XjtQ0js7FAw88gLi4OADwaSi2O5SVlSEvLw9Hjhyx5X7YKwUOHDjgs2Nbz0FcXBwefPBBxe2efvppyT5yDBkyRLFA2bp1a9u1xapcUYPCwkK8+OKLAID33nsP9evXV61tX0NFBoK4EaHgZ4K4sZBTMhhdUDIYSyXLKPjZezhtuOR3Yq44L96IlAwEERJEMuHP5R7YJZkZuyQ2k0FVuyRmX5nsaoIgiIBn//79ttfdunWrxZ7IYw2bLSwsRPv27fHoo49i0aJF+OOPP1Q7hr2dUJcuXcBxnOI/+yKMVWUhxy233OLS8ZKSkhwez94Ox/549l78bNYES+fOnR2u9xZ3jm/f78OHD9te33HHHQ7bsF9vv589er0et956q2IbOp3OZtMjl2XgLy5fvozJkyejdevWiI6Otll5paamIjU1FQMGDBBt6yus57Fjx46KFkgAUL9+fSQnJ4v2kUMp2NtKfLxl8lhJSYmbPVXmpZdewqVLl9C5c2c888wzqrXrDyiTgSBuRELOLokyGQjCEbKFOJeUDDJFBh0FP6sBb0iAufyc7b254oJoPdklEURowNollXlil+REyWBgigxVXtzWsfkPpGQgCP8SFhaGJ554ora74TfCwnwzWcx+ENOqGggk7rnnHsydOxcvv/wyKioqsHTpUixduhSAxXrmvvvuw9ixYx0OLjvj4sWLzjeSwWo1I4d1QNVXx7PPoLD36JfD17O73Tm+fb/d+RkaNGggu589CQkJimoIti9Kbfiaffv2oU+fPi7bIFVUOJ/s5inWc+Ds3AOW85+Xl+fwvDmygQIsqhYANgWOt2zcuBGLFy+GRqPBxx9/bGs/WKAiA0HcgHBckNslMTOwSclAEI7heC3AaUUh7y5lMhgZuyReD45XnhFCuA6vFxcZWLskV0K5CYIIfFi7pHIP7JLYIgObyaBnxh6qvLFLYoOfqcZAEH6F4zifBSETgcX48ePx8MMP44svvsC6deuwfft2FBcX4+zZs5g/fz6ysrIwefJkvPvuux61bz/ouXr1atusbWc4Gpx1NNhtf7ycnByHs8jtady4sexyOQ98f6LG8QOlDV9SXV2NoUOHorCwEDqdDs899xwGDRqEVq1aIT4+3mY1dOrUKbRo0QKAJS/E1wT6eVPCmqOSlpaG48eP4/jx45JtcnNzba9Xr15tC/t+9NFH/dNJB1CRgSBuRILcLomCnwnCfThtOISa6zJOVzIZzIxdEuUxqAcb/ixUiWf+cDxlMhBEKMDaJXmiZGDtknhf2iVJgp+D8yGdIIgbm7p169peFxQUOLU8cQfrzGKz2fH13D7QWIl69erhhRdewAsvvACz2Yxff/0VK1aswNy5c1FUVIT/+7//w+23345Bgwa53U9rqDBg8ae3tyjyBfbHS0xMVCweOMJeKXHhwgXZ0F779b7EWfv26+0Duu1fX7hwAa1atVJsw94qSinku7CwECaTyWGBx9oXtg37WfBqfF7l2Lhxoy2PIDMzU5R1YI+/VBYJCQkoKChw6fNhPf/eBKyrTVVVFQBg165dssHnLBMmTLC9DoQiQ3DpLgiCUAc+tOySQHZJBOEUthjnkpKBsUviKY9BNTiD45tZjpQMBBESREjskrwPfmaVDAamEFDN7uAGEiUDPS0SBBGEdOzY0fZ669atqrYdHR0NALZwXyV+//13t9rleR4dO3bEtGnTsGHDBtvyZcuWibZzdYa21acfALZv3+5WXzxBjeOlpqbaXu/Zs8fhts7We4s7x7cv4Ni/3rVrl8M2du/eLbufPdXV1Q6Dko1GI3799VfZNqyfVQC4evWqYhtXrlxx2eqI5ciRI7bXjzzyiOJ29pkdcqilPLCeg5ycHBiNypNpL168iNOnT4v2IbyHbhsJ4gYk2O2SKPiZINyHzS5xRcnABj+TkkE9WCWDdAMqMhBEKBDJjNKrYZfEigvUVDIYSclAEEQIcOutt9pmwS9cuBClpdKcMU9JSUkBYAl6lbMyASwDw8uXL/f4GB07drTN6mdDcu1zLKyznpXasKoJsrKyUFnp/N7fG3r16mXzr58zZ45Hljg9e/a0zdhfvHix4nZ79uxxGNarBmvXrkVBQYHsOrPZbOtffHy8qKjVqVMnxMXFAbD8DEoKgpKSElsB6eabb3aYHeLoXKxYscJWQOjVq5doXXx8vK0vjgb5v/rqK48tjOwH8pXUEGazGQsWLHDYjqufa2dYz0FRURG+/fZbxe3++9//2n5m9rzVJps3b4YgCA7/jRgxwrZ9bm6ubXkgQEUGgrgRkQQ/B5tdEmUyEITbsEoGo/tKBk5Loc9qweuVg/MACn4miFBBqmTw3i5Jwzu2S/Im+JntHikZCIIIRniex8svvwwAyM/Px/Dhw1FdXS27rdlsxrlz52TXydGjRw/b61mzZslu8+KLL+Ls2bOKbSxdutRh+O3evXttA8fWooYV+8HokydPKrbB8zwmT54MwOKHP3z4cIeDt9euXcPcuXMV1zsjLi4Ozz77LABgx44dmDhxokOLngsXLmDhwoWiZUlJSTZrqFWrVklUHABQWlqKMWPGeNxPV6mqqsKYMWNkA31nzJiBQ4cOAQCefPJJW+4AABgMBptl0OHDhzFt2jTJ/oIg4Nlnn7UVkKznTYl58+Zh27ZtkuXnz5/HpEmTAFgCiu0Hn610794dALBy5UrZz8vx48fx5ptvOjy+I1q2bGl7nZ2dLbvN66+/jpycHIftuPq5dsbIkSNtxa6XXnpJ9nt44MABvPfeewAsQeuDBw/2+HiEGMpkIIgbEUkmQ3ApGSSZDFqySyIIZ7BKBlYRJIdEyUB2SarhTMnAaSiTgSBCgUimyFCugl0SO+5vkFEyCILgtvWAWRDA9k5HSgaCIIKU8ePHY/Xq1Vi3bh1WrFiB1NRUjBs3DmlpaYiIiMD58+exc+dOfPnllxg2bBimTp3qUrsdOnRAly5d8Msvv2DBggWorq7GiBEjEBsbixMnTiArKwsbN27EXXfdhR07dsi28eqrr+KZZ57BoEGD0L17d7Rq1QqRkZEoLCzEtm3b8OGHHwKwBC2zHvdNmzZF48aNkZ+fj3/9619o3LgxWrdubVMA1K9f32aT88wzz9h+/q+//ho5OTkYM2YMOnfujNjYWFy7dg3Hjh3D5s2bsWrVKoSFhTkd8HbEO++8gy1btmDXrl2YPXs2Nm/ejFGjRuG2225DZGQkrl69iiNHjmD9+vVYs2YNUlNTJT/frFmzsG7dOpSUlGDYsGHYsmULhgwZgpiYGBw8eBAzZszA77//jrS0NKcWPN6QlpaG1atXo2vXrpg4cSJatmyJixcvYvHixfjqq68AWEKr5Qbo33rrLXz77bc4deoUpk6dikOHDmHkyJFISkpCbm4u5s6di82bNwMAunTpgtGjRyv2IzExEREREbj33nsxceJE9O/fHwaDAbt378Z7771nK5BNmzZNNrR73LhxWLVqFSoqKpCeno6pU6eiQ4cOKC0txYYNGzB79mwkJiZCo9Hg0qVLbp+nPn36oF69erh48SKmTJmCvLw8PPDAA6hbty7++OMPLFiwABs2bEDXrl0d2mjdddddttcTJ07EG2+8gaSkJNu9THJyMrRa50PYiYmJmDlzJsaPH4/8/Hx06tQJr732Gu666y4YjUasX78eM2fORGlpKTiOQ1ZWlssh5YRzqMhAEDcgHB/cdkkU/EwQ7uNRJoNRLHkluyT14PRkl0QQNwIRbPCzGnZJTJXBwApUYclW0ClnRMrC5jEAZJdEEETwwvM8vvvuO4wYMQLffPMNfv/9d7zwwguqtP3JJ5+gR48etkFn1s5m0qRJaNeunWKRAbDYucjta8VgMODjjz9GWlqaZN3kyZMxbtw45ObmSkKhFy1ahIyMDAAWn/ulS5fi+eefx8cff4yTJ0/ilVdeUeyT3CC1OxgMBqxbtw4ZGRn49ttvceDAAYdFi5iYGMmy5ORkrFq1Cvfffz9KSkqQmZmJzMxM0TZvvfUWOI7zaZFh/Pjx2LJlC7Kzs2UDdZOSkvC///0PsbGxknXR0dHYsGED+vXrh2PHjmH58uWy9lldu3bFqlWrHIY6R0RE4JtvvkG/fv0wffp0TJ8+XbLNhAkT8OKLL8ru36dPH0yYMAFz5sxBfn6+bNFq1apV6Nevn2IfHBEZGYklS5Zg8ODBqKysxPz58zF//nzRNunp6Zg7d67D7IObbroJQ4cOxbJly7B27VqsXbtWtD43NxfJycku9WncuHEoKirCm2++iQsXLmDixImSbQwGA7KystC/f3+X2iRcgwSwBHEjEmJ2SawNDEEQUljFjyuZDGaJXRIVGdTCqZKBigwEERJEalklg/t2SWyRQcM5tksCgCoPwp9rZPbRUo2BIIggJiIiAl9//TU2btyIJ554AikpKQgPD4der0eTJk0wcOBAzJ8/Hy+99JJb7bZp0wY5OTkYO3YsmjVrBr1ej8TERPTt2xc//PADZs6c6XD/TZs2Yfbs2XjooYeQmpqKxMREaLVaxMTEoEOHDpg0aRKOHj1qKxawjB07FsuXL0fv3r1Rr149hzO8dTodMjMzceDAATz33HNITU1FbGwsNBoNYmNjcdttt+Gpp57CN998g99++82t8yBHdHQ0li9fjp9//hlPP/00WrdujejoaGi1WiQkJOD222/H+PHj8eOPP2LdunWybaSnp+PIkSOi81u/fn0MGDAAP/30E95++22v++kKixYtwhdffIH09HTUqVMHBoMBrVq1wiuvvIIjR47g5ptvVtw3OTkZBw4cwNy5c9GjRw/UqVMHOp0O9evXR9++ffHpp59i69atSEhwMvEIFlVFTk4OJkyYgBYtWiAsLAx16tRB37598eOPP2L27NkO9589eza++OILdO/eHTExMQgPD0fr1q3x2muvIScnB23btnX73NjTp08f7N27F3//+9/RsGFD6HQ6JCYmokePHsjKysKGDRsQGencdvezzz7D+++/b1Pa8OysCjeYPHky9u/fj1GjRqFFixYIDw9HZGQk2rZti+effx7Hjh3D8OHDPW6fkIcTAiUdgvCI/Px8W6DRn3/+aQv2IQhHVBVswpX//c32ng9LRP1HL9Zij9zj0upOMBZe9/SLvXsxIm6iPxAE4Ygr6/qh6uxPtvfRae8jqv3LDvcp3jUB5b99aHsf3moU4u7K8lkfbySqzq3HlbX3Kq6PuXMeIts848ceEQThC86XGfH85iuiZZ/2TZQtDCjx9NpLKLGzWfrHnXG4uc71QmRpjRlPrRUHg867pw4SwtyTMhRXmTF6vbidBb3qIsZA89IIwoo3z98nTpyA0WiEVqsV+ZgTBBEY5OXl2TIw7BUhtUFGRgYWL16MZs2aIS8vr9b6QYQuvvibRHeMBHEDEux2SayXPNklEYQLaNxXMrDBzzwpGVSDMhkI4saAtUsC3FczSDIZmPqEQcbSqJqVP7iAUU7JQE+LBEEQBEEQhAvQbSNB3IhIgp+DzC7JKLZLoiIDQThHkslgdCWTgbVLci5zJVzDWSYD2SURRGgQIeM35G4ugySTgbFL0vIAe5QqD+aPyNolUSYDQRAEQRAE4QJUZCCIGxFJJkNwKRkkwc+M1zxBEFIk3xMPlAwU/KwevCHe8QYaKjIQRCig5TkYGGukshp3iwzi7VmnJY7jJPZLVR4pGaTLSMlAEARBEARBuIJyOgxBECELxwW3XZKkyEBKBoJwikTJwAaoyyBVMlCRQS04XYyl4Ktw/SUlA0GEDpE6TjToX+alXZJcnINBI1YveGSXxBQzeE6qmiAIgiCIQCU3NxdlZWVu7xcfH49GjRr5oEfEjUZZWRlyc3M92rd169bQ6XQq98i/UJGBIG5Egt0uiR0cpSIDQTiF8yCTwWwU36STkkE9OI4Dr4+Hueqy/AY8ZTIQRKgQoeVgH/1c7qaSQZrJIB34tygZrm/oWSaD+L2M0xNBEARBBCwjR47Eli1b3N5vxIgRyM7OVr9DxA3Hnj170LNnT4/2zc3NRXJysrod8jNUZCCIGxE+eO2SBEGQCX4muySCcIZHmQysXRIpGVSFMyQACkUGjuySCCJkiNTxAK7fa5XJ+RIpYBYEsOUCuZgEPbOwWiZfwRls8LOO8hgIgiCIG4jk5GTLeEMAkJ2dTYUPIuigIgNB3Ihw7FdfgCCYwXFBYLxrrpYsIrskgnABD5QMFPzsW3hDApRKvGSXRBChQ6TO80wGuVqBRuZ2jc19UCOTgfIYCIIgiGBi8+bNtd0F4gYnPT09YApVtQHdOhLEDQjH2iUBQaNmkJt9TUUGgnCOR5kMjJKBJ7skVeENCQ5WUpGBIEKFCMZ3yB27JLlagUbRLuk61R7c1tUwFQ0tKRkIgiAIgiAIF6EiA0HciMgVGcxBUmSQmX1NdkkE4RxOy3xPnCgZBEGg4Gcfw+uViwychjIZCCJUsNglXcdduyQWubF/A3Nrp0omAxUZCIIgCIIgCBehIgNB3IjwUqc0QQiO8GdZixdSMhCEU9xWMpgqAUE84kTBz+rCGeKVV5KSgSBChgidukoG2UwGNeySBFbJ4HYTBEEQBEEQxA0K3Tp6yd69e/HOO++gd+/eaNy4MQwGA6KiotCqVSuMHDkS27Ztq+0uEoSEoLZLkhkYJbskgnAOq/hxlskgGMukbZCSQVUcKhmoyEAQIUMkM1rvViaDjOjBNbskD4oMzK0gKRkIgiAIgiAIV6HgZy/o3r07fv75Z8ny6upqnDhxAidOnEB2djaGDx+OBQsWQK+nAQMiQAjiIoPE4oXXgeNlfh6CIERIlAwy+Sb2mJk8BgDgdBT8rCaOMhk4Dd0zEESoIFEyeGmXpJGzS2IKAtVyidFOYJUMOpqORhAEQRAEQbgIFRm84Ny5cwCAhg0b4uGHH0a3bt3QtGlTmEwm/PLLL5g1axbOnj2LJUuWoKamBl988UUt95gg/kLOLskcnHZJpGIgCBdxW8kgU2TQRKjapRsdzmHwM2UyEESoEMkUGdxRMvjVLonNZJBRTBAE4TkajQZGoxEmkwlmsxk8T5U8giAIwv+YzWaYTJaJxhqNepN2qcjgBW3atMF7772Hhx56SPJLufPOO/HEE0+ga9eu+P333/Hll1/imWeeQffu3WuptwRxnVCyS6IiA0G4hruZDEING/ocQaohlXGoZCC7JIIIGSIYSUB5jetKBvkig3O7pCoPbutqzJTJQBC+JCwsDFVVVRAEAaWlpYiJiantLhEEQRA3IKWlpRD+UrCGh4c72dp16NbRC77//nsMHTpUsepTt25dzJo1y/b+m2++8VfXCMIxnEx9MWiKDKySQb0LIkGEMpyW+a64qWSgPAb1cZjJQHZJBBEyRGoZJYNRsD3YOcNluyTmccSjTAZJkYGUDAShJvZFhfPnz+PatWswywWvEARBEIQPMJvNuHbtGs6fP29bFh0drVr7pGTwMT179rS9PnnyZC32hCDskFEyBKtdEkjJQBAuIadkEAQBnIIdhkTJoKMig9rwhngHK6nIQBChAmuXZDQDNWZA74I4TC5awRW7JM+KDOL3pGQgCHWJjIxEeHg4KioqYDKZcPbsWXAcp6pVBUEQBEEoYTKZRBNdwsPDERmpXu4iFRl8TFVVle013TwQgUIw2yXBSHZJBOEJEtWPYAYEI8DpZLcXjGXi/UnJoDqKmQwcD04mO4cgiOCEtUsCgLIaM/QuPBu4nMmgRvAzKRkIwqdwHIemTZvizJkzqKiwPNMIggCjMTgmexEEQRChQ3h4OJo2bao46dAT6AnWx2zZssX2um3btm7vn5+f73B9QUGB220ShFzw87U9E8HpnPuC8vpYhLcYAX1iZ9n15srLKDv6HxhL87ztpSymErEiiOySCMI15ApyRVufkL0eAIDp2h/i/bXqzXAgLPB6BSUDqRgIIqSI0Eof3hYeLkHYX+qD4mozDl2uAQDc3zwCfZLDUTfcUoAwMXZJPAfZh0EDo2Q4U2LEh/uLxdtoOdyVFIb2deWvMUamLiFTGyEIwkt4nkezZs1QVlaGkpISm6qBIAiCIHyNRqNBeHg4oqOjERkZqWqBAaAig08xm82YMWOG7f3QoUPdbqNJkyZqdokgLMgoGar+XO3y7uUnPkHi4N+gjU6WrLuycRBqLu7wpnduQUoGgnARNpMBQGXeUpd3J7sk9eF4LThdDISaa8xyKjIQRCih5TkYNByq7GQJey9Uy2676lQ59lyowgc9EsBznMQuSS6PAZDaJZVUC9h2rkqy3aY/K/F/XePRPFaqYpMoGVR+8CQIwgLHcYiKikJUFN1bEQRBEKEDzU/xIf/+97+xe/duAMCDDz6ITp061XKPCMICx3HezUo2VaL6/Ebp4ooLfi0wAACnj/Pr8QgiWOG1UbIFRpf3dxBSTHgOH15fsswVVRlBEMFFrN71AfuCMhMKyiwzm6sYvySNwsB/lM619s0CcPCSfIGjmplMTXZJBEEQBEEQhKtQkcFHbNmyBa+99hoAoF69epg3b55H7fz5558O/1mLGAThLmEpj3i1v1BTIllmKj3tVZueEJ7yqN+PSRDBCKcNR1jTQR7vT9813xDe/HGZZY/VQk8IgvAldzdyT3lZVmMpLlyuEKcxx4fJP761SdAhQWEdC1u4sFLJLA+TsXkiCIIgCIIgCDnILskHHDlyBA888ACMRiPCwsLw9ddfo169eh611bhxY5V7RxAWYrt8DH397jAWH3Np+8q8b2Aque7RLjABzABgKvtT9J7TxyOi9RjvOqoAx2mhb9ADhoa9fNI+QYQicd0+Q0Wjz2Fksk0cwfE66Bv8DYakdN917AYm6ta3oI1rh5rCHAACdPG3IizFfXtFgiACm4dbRaJJtBanrxlhP5S/70IV8kulfuzWAf9L5eJ1ieHyirQwLY9374rHjoIqlFSLCxPsMRRqDKg0ivejIgNBEARBEAThKlRkUJnc3Fz07t0bV69ehUajwVdffYXu3bvXdrcIQgLH6xBx0wiXtzdd+0NcZDBJiwxmpsigjWuHmE7TPe8kQRCqwmnDEdHq6druBmEHx3EITx6C8OQhtd0VgiB8CM9xuKthGO5qyCwHkF9aLtm+ymhVMrBFBmW1Qp1wDQY2j5AsL6oyi4oMbPaClQom+TlcKQCCIAiCIAiCIBjILklFzp07h169euHcuXPgOA6ffPIJBg3y3JqCIAIJjgmNlSsymMrFRQZNVFOf9okgCIIgCCKYMSssr/xrwP8SY5dUV0HJ4AhWkKCoZCC7JIIgCIIgCMJDqMigEpcvX8a9996LU6dOAQA+/PBDDB8+vJZ7RRDqwWmYIoMLdkmaiCY+7RNBEARBEEQoUmGyFBekSgb3iwwaJsDZpFDZqDRSkYEgCIIgCILwDCoyqEBxcTH69OmDo0ePAgBmzJiB8ePH13KvCEJlNOLAQsFUKdlEUmSIpCIDQRAEQRCEEgrORag0ChAEAZfYIkOE+49vWmYXo0B2SQRBEARBEIS6UJHBS8rLyzFgwADk5OQAAN544w28+uqrtdwrglAfiZJBzi6p7IzoPRUZCIIgCIIg3KfSJKC4WkANozrwxC5Jw4mLBUZSMhAEQRAEQRAqQ0UGL6iursYDDzyA7du3AwCef/55vPvuu7XcK4LwDWwmA5gig2Cugbm8QLSMigwEQRAEQRDKCAqqgkqjILFK0nBAQpgHSgZJJoP0mIIgUCYDQRAEQRAE4THa2u5AMPPYY49h7dq1AIC//e1veOqpp3D48GHF7fV6PVq1auWv7hGEqjjLZDCVnwMgfjilIgNBEARBEIQyCm5JqDRKrZLqhPHgOfcH/jVMXUIuk6HGLA2EDqciA0EQBEEQBOEiVGTwgm+//db2euPGjbjlllscbt+sWTPk5eX5uFcE4RtYJQNrl2Rm8higCQdnqOPrbhEEQRAEQQQtikUGk4DL5eJqgCdWSYDULklOycBaJQGUyUAQBEEQBEG4DtklEQThEk6VDDKhz5wHs+0IgiAIgiBuFBTckmSVDIkRHhYZ2OBnGSUDa5UEkF0SQRAEQRAE4TqkZPACJQ9VgghFnAU/U+gzQRAEQRCEezhSMrBFhrrhns0P0/LOlQwVjJKBA2AgJQNBEARBEAThIlRkIAjCNZzYJckpGQiCIAiCIAhlHCkZSqrFkoNED+2SWEGCnJKhglkYpuVIkUoQBEEQBEG4DBUZCIJwCU/skgiCIAiCIAhlzApFhgqjgKtV6hQZNKySQeagbCZDGKkYCIIgCIIgCDegTAaCIFyC04SJ3jtXMjT1eZ8IgiAIgiBCkatVZomFkad2SWy9QCbjWZLJQHkMBEEQBEEQhDtQkYEgCJdglQwwVYremknJQBAEQRAE4RaCQiqDXEZCXY/tkthMBufHC6ciA0EQBEEQBOEGVGQgCMIlOJlMBmv4uWCsgLnqsmg9T0UGgiAIgiAIhyhlMrDEh/GSAGdX0TBPfGSXRBAEQRAEQagNFRkIgnAJiZJBMAPmGgBSqySAlAwEQRAEQRDOcLHG4LGKAYCkOCGnZCC7JIIgCIIgCMIbqMhAEIRLsEoG4HouA1tk4HSx4HXRfukXQRAEQRBEsOKqkiHRwzwGQCaTQUbJQHZJBEEQBEEQhDdQkYEgCJeQKBlgsUkC5EKfScVAEARBEAThDFeVDIleKBlYuySjWbqNxC6JigwEQRAEQRCEG1CRgSAI15ArMliVDOVMkSGqqV+6RBAEQRAEEcz4xS5JEvzsXMlAmQwEQRAEQRCEO1CRgSAIl3DHLkkTQUoGgiAIgiAIZ/jFLkkS/Czdhs1kILskgiAIgiAIwh2oyEAQhEtwHA/wevHCv+ySzEyRgSe7JIIgCIIgCKcILmoZvFEyaBglg1Eu+JnxUArT0mMiQRAEQRAE4Tp090gQhMuwuQzXlQxnRMspk4EgCIIgCMI5LisZIrywS2KVDGSXRBAEQRAEQagMFRkIgnAZThMmeq9ol0RFBoIgCIIgCKe4UmOI0XMweDHoz2YyGM2AwBQayC6JIAiCIAiC8AYqMhAE4TJsLoNgqoS5uhhCTYloORUZCIIgCIIgnONKkcEbqyRAmskAAGbmwJVGKjIQBEEQBEEQnkNFBoIgXEZil2SskKgYAEAT0dhfXSIIgiAIgghaXLFLSvS2yCBTL2CEC1K7JCoyEARBEARBEG5ARQaCIFxHomSQFhn4sHrgtGJbJYIgCIIgCMIzEsO9e2TT8tKCgZGRMlAmA0EQBEEQBOENVGQgCMJl5JQMZspjIAiCIAiC8AjWtkgOr+2SnCgZjGZBomwguySCIP6/vTsPsqq888f/bmigoYEvCphgwBVb1KghiKPjigtWgiaiianERCRoHJM46DjqaIxrjDJq3GpmLAUlTiZqTKImOlQpigyyiCiTiQYCLqiMIiCgyNY03N8f/LhDQwPNpTfw9arqqtP3POf0p62P1L39Ps/zAMC2KG/uAoAdxyYhw5oVWbvqo1qvtRIyAADUS332ZOjeYftChrpmMqzZIN3YeBZDYrkkAAC2jZkMQL1tvPFz6lguyUwGAID6aa49GTbMFeoMGSyXBADANhAyAPVWn42fhQwAAPVTqMdchsbek2HlxmslxUwGAAC2jZABqLe6lkvaNGTYoylLAgDYaXUoL0uHNtv3kW1rezKs3GgmQ7vWZWlVJmQAAKD+hAxAvW28XFKhZnnWLJ9b6zUzGQAA6mdrGz9v76bPSVLHRIasWft/xytq1tY6ZxYDAADbSsgA1FtZ64pa369Z9l6yZmWt14QMAAANY7cO2/9xraysbJPZDDUbbAax8UyG9vZjAABgGwkZgPrbaLmkmk9m1T5f1iqt2vdowoIAAHZcTTGTIUnKN/rUt+FMho33ZDCTAQCAbSVkAOpt4+WS1nwyu9b3rdrvnrJW5U1ZEgDATqvBQoaN9lhYs8FMhhU1QgYAALaPvwYC9bbxxs9J7Q+llkoCAKi/rUxkSPf2DfNMWOuNbvPb2cvy/9quSJLM/XRNrXOWSwIAYFsJGYB62zRkqK115R5NVAkAwI6vUNhyzNC9gWYytC4ry4aRxp8Xrt7sWDMZAADYVpZLAuqtVbtdtni+dce9mqYQAICdwIFd227x/G4dGiZkaL8NwUGntj4iAgCwbbyDBOqtbY8TU9aua90nW7VN+73PatqCAAB2YKfs2T6d29YdAPT/XNsG+4P/3+5eUa9xrcqSI3q0a5CfCQDAZ4flkoB6a93+c+l26tSsnPNY1lYvKb5e1rp9KnqdljZd+zZfcQAAO5gObVrln4/ZNVM+WJUela1zUNe2+a//XZlWZckxX6hfMFAf39ivQ3p1ap23P67Z7D4QbVolh3Zvl6pd2jTYzwUA4LNByABsk/JO+6TjwVc0dxkAADuFXSpa5yt7dyh+f+IeW94DqxRlZWU5okdFjujR4LcGAADLJQEAAAAAAKURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMgAAAAAAACURMjSgd955J5deemn69OmTysrK7Lrrrunfv39uvfXWLF++vLnLAwAAAACABlXe3AXsLP74xz/mu9/9bj755JPia8uXL8+0adMybdq0jBw5Mk8//XR69+7djFUCAAAAAEDDMZOhAUyfPj3f+ta38sknn6Rjx4656aabMmnSpDz33HM5//zzkySzZs3KoEGDsnTp0mauFgAAAAAAGoaZDA1g+PDhWbFiRcrLy/PMM8/kyCOPLJ474YQTst9+++Xyyy/PrFmzcvvtt+e6665rvmIBAAAAAKCBmMmwnaZOnZoJEyYkSYYNG1YrYFjv0ksvzQEHHJAkueuuu7J69eomrREAAAAAABqDkGE7PfHEE8XjoUOH1jmmVatWOeecc5IkS5Ysybhx45qiNAAAAAAAaFSWS9pOL774YpKksrIy/fr12+y44447rng8ceLEDBw4sNFra4lWrliRmbNebe4yAAAAaEH6VH05Fe3bN3cZAEAJhAzbacaMGUmS3r17p7x88/85+/Tps8k19TF37twtnv/ggw/qfa+WYOasVzP1pdebuwwAAABamC8delRzlwAAlEDIsB1WrlyZhQsXJkl69uy5xbG77LJLKisrs2zZsrz33nv1/hm9evXarhoBAAAAAKCx2JNhOyxdurR43LFjx62Or6ysTJJ8+umnjVYTAAAAAAA0FTMZtsPKlSuLx23btt3q+Hbt2iVJVqxYUe+fsbVZDx988EEOP/zwet8PAAAAAAAaipBhO1RUVBSPq6urtzp+1apVSZL227CZ1daWYdrR9Kn6cnOXAAAAQAvjsyIA7LiEDNuhU6dOxeP6LIG0bNmyJPVbWmlnVdG+vc28AAAAAAB2EvZk2A4VFRXp2rVrkmTu3LlbHLt48eJiyGAzZwAAAAAAdgZChu104IEHJkneeOON1NTUbHbczJkzi8cHHHBAo9cFAAAAAACNTciwnY4++ugk65ZCeuWVVzY7bvz48cXjo46yXBAAAAAAADs+IcN2Ov3004vHDz74YJ1j1q5dm4ceeihJ0qVLlwwYMKApSgMAAAAAgEYlZNhOhx9+eI455pgkyahRozJ58uRNxtx+++2ZMWNGkmT48OFp06ZNk9YIAAAAAACNoby5C9gZ3HXXXTnqqKOyYsWKDBw4MFdddVUGDBiQFStW5JFHHsl9992XJKmqqsqll17azNUCAAAAAEDDEDI0gL59++bRRx/Nd7/73XzyySe56qqrNhlTVVWVp59+Op06dWqGCgEAAAAAoOFZLqmBnHbaafmf//mfXHLJJamqqkqHDh3SpUuXHHbYYRkxYkSmT5+e3r17N3eZAAAAAADQYMoKhUKhuYugdHPnzk2vXr2SJO+991569uzZzBUBAADAzsfnbwCom5kMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABASYQMAAAAAABAScqbuwC2T01NTfH4gw8+aMZKAAAAYOe14WfuDT+LA8BnnZBhB7dgwYLi8eGHH96MlQAAAMBnw4IFC7LXXns1dxkA0CJYLgkAAAAAAChJWaFQKDR3EZRu5cqV+fOf/5wk6d69e8rLW/7klA8++KA462Lq1Knp0aNHM1cEpdPP7Gz0NDsT/czORD+zs9kRe7qmpqa4msDBBx+cioqKZq4IAFqGlv8XabaooqIi/fv3b+4yStajR4/07NmzucuABqGf2dnoaXYm+pmdiX5mZ7Mj9bQlkgBgU5ZLAgAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASiJkAAAAAAAASlJWKBQKzV0EAAAAAACw4zGTAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQAQAAAAAAKImQgSb1zjvv5NJLL02fPn1SWVmZXXfdNf3798+tt96a5cuXN3d5kGnTpuWGG27IwIED07Nnz7Rr1y4dO3ZMVVVVhg4dmhdffHGb7jdmzJgMHjy4eK+ePXtm8ODBGTNmTCP9BrB1V1xxRcrKyopfL7zwwlav0cu0NO+++26uvfbaHHbYYenevXsqKirSq1evHHPMMbnmmmvy2muvbfF6PU1LUV1dnZEjR+aUU05Jjx49iu899t9//wwdOjSTJk2q1330NI1l/vz5eeqpp3LNNdfkK1/5Srp161Z8D3Huuedu8/0aoldrampy77335phjjkn37t3Tvn377Lvvvrngggvy+uuvb3NNAMB2KkAT+cMf/lDo3LlzIUmdX1VVVYXZs2c3d5l8hh1zzDGb7c8Nv84555zCqlWrtnivNWvWFIYNG7bF+5x33nmFNWvWNNFvB+tMnz69UF5eXqsXx40bt9nxepmW6O677y5UVlZusS+HDx9e57V6mpZkzpw5hYMOOmir7z0uuuiiwtq1a+u8h56msW2pt4YMGVLv+zRUry5YsKDQv3//zd6jXbt2hfvvv387f2sAYFuYyUCTmD59er71rW/lk08+SceOHXPTTTdl0qRJee6553L++ecnSWbNmpVBgwZl6dKlzVwtn1Xvv/9+kmT33XfP8OHD89vf/jZTp07N5MmT84tf/CJf+MIXkiQPPfTQVp/a+slPfpJRo0YlSfr27ZuHH344U6dOzcMPP5y+ffsmSUaOHJmrr7668X4h2MjatWvzgx/8IDU1Ndltt93qdY1epqX52c9+lr//+7/PsmXLUlVVlVtvvTUvvPBCpk+fnrFjx+bWW2/N3/7t36ZVq7rf5uppWorVq1dn0KBBxaeuDznkkIwePTqTJ0/OM888k2uuuSaVlZVJknvuuScjRoyo8z56mqa0xx57ZODAgSVd2xC9umbNmgwePDgvv/xykuSMM87ImDFj8tJLL+Xuu+/ObrvtllWrVuWCCy4wiwcAmlJzpxx8Nqx/Qry8vLwwadKkTc7/8z//c/HJk2uvvbbpC4RCoTBo0KDCo48+Wqipqanz/IIFCwpVVVXFXh0/fnyd4/76178WnxQ/7LDDCsuXL691ftmyZYXDDjus+P+EGTw0lTvuuKOQpNCnT5/ClVdeudWZDHqZlmbs2LG1ZpVVV1dvdmxdM870NC3JY489VuznIwXwsRQAABQ+SURBVI88ss73H9OmTSu0adOmkKTQpUuXwurVq2ud19M0hWuuuabwxz/+sTBv3rxCoVAovP3229s8k6GhenXUqFHFn/3DH/5wk/OzZ88uzp7v3bv3Jv/PAACNw0wGGt3UqVMzYcKEJMmwYcNy5JFHbjLm0ksvzQEHHJAkueuuu7J69eomrRGS5KmnnspZZ52V1q1b13m+W7duuf3224vf//a3v61z3J133pmampok6548bN++fa3zHTp0yD333JNk3Xqyd9xxR0OUD1v07rvv5qc//WmS5N57703btm23eo1epiVZu3ZtLrzwwiTJoYcemlGjRqVNmzabHV9Xj+tpWpIN91q48sor63z/0a9fv5x66qlJkiVLlmTGjBm1zutpmsL111+fU089NZ/73OdKvkdD9eptt92WJNl1111z6623bnK+d+/eufLKK5Mkb7zxRh5//PGSawYA6k/IQKN74oknisdDhw6tc0yrVq1yzjnnJFn3AWrcuHFNURpsswEDBhSP33zzzU3OFwqFPPnkk0mSPn365IgjjqjzPkcccUT233//JMmTTz6ZQqHQCNXC//nRj36UTz/9NEOGDMlxxx231fF6mZbmmWeeyezZs5Os27y8vLx8m67X07Q01dXVxeN99tlns+P23XffOq/R0+woGqpXZ82aVQzazjrrrHTo0KHO+2y4rKmQAQCahpCBRvfiiy8mSSorK9OvX7/Njtvwj14TJ05s9LqgFKtWrSoe1/XE4dtvv13c22Frf8hdf/5///d/M2fOnIYrEjbym9/8Jk899VR23XXX4hOAW6OXaWkee+yxJElZWVnxye4kWbRoUWbPnp1FixZt8Xo9TUuz/o+pSfLWW29tdtz6hxrKysqy3377FV/X0+woGqpX13+u3Np9Pv/5z6eqqiqJz5UA0FSEDDS69U+b9O7de4tPHfbp02eTa6ClGT9+fPF4/RJfG/rLX/5SPN6wp+ui52kKS5YsyfDhw5MkI0aMSLdu3ep1nV6mpZkyZUqSZK+99kqnTp3y61//OgcffHC6du2aqqqqdO3aNfvvv39uu+22WoHwenqalubb3/52OnfunGTdv89r1qzZZMz06dPz9NNPJ0m+853vFMcnepodR0P1ain3ee+997Js2bJ61woAlEbIQKNauXJlFi5cmCTp2bPnFsfusssuqaysTLLuzSC0NGvXrs0tt9xS/P6ss87aZMzcuXOLx1vr+V69ehWP9TyN5fLLL8+8efNy1FFHZdiwYfW+Ti/TkqxduzYzZ85Msm5/nOHDh+fss8/Oa6+9VmvcrFmzctlll+WEE07IkiVLap3T07Q03bp1y7//+7+nQ4cOmThxYvr375+HHnooU6ZMydixY3P99dfnuOOOS3V1db785S/X2hcq0dPsOBqqV0u5T6FQqHUdANA4hAw0qqVLlxaPO3bsuNXx60OGTz/9tNFqglLdcccdmTp1apLkjDPOqHP5r23p+fX9nuh5GseECRMycuTIlJeX5957701ZWVm9r9XLtCQff/xx1q5dmyT585//nLvvvjs9evTIr371qyxatCjLly/P+PHji+t8T5o0Kd///vdr3UNP0xJ97WtfyyuvvJLzzjsv//3f/50hQ4bkyCOPzMknn5zrrrsuHTp0yJ133pkJEyZssumunmZH0VC9qucBoOUSMtCoVq5cWTxu27btVse3a9cuSbJixYpGqwlKMX78+PzTP/1TkmS33XbLv/3bv9U5blt6fn2/J3qehlddXZ0f/OAHKRQKueSSS/LFL35xm67Xy7QkGy51sXLlynTo0CHjxo3L2WefnV122SXt27fPsccem+effz6HHnpoknWbfb700ku1rltPT9NSVFdX56GHHtrshswffvhhfvWrX2Xs2LGbnNPT7Cgaqlf1PAC0XEIGGlVFRUXxuLq6eqvj16+h3L59+0arCbbV66+/nsGDB6empiYVFRV57LHHsttuu9U5dlt6fsM1w/U8De3nP/95Zs6cmT322CPXXnvtNl+vl2lJNuzHJDnvvPNqbZq7Xvv27XPTTTcVv3/00UfrvIeepiVYtmxZTjrppNx8881ZtGhRLr/88syYMSOrVq3Kxx9/nGeeeSZHH310pk2bltNPPz2/+MUval2vp9lRNFSv6nkAaLmEDDSqTp06FY/rM011/ZOK9VlaCZrC22+/nYEDB2bx4sVp3bp1HnnkkRx77LGbHb8tPb/hk7l6noY0c+bM3HzzzUmSe+65p9aSAfWll2lJNuzHJBk4cOBmx5544okpLy9Pkrz88st13kNP0xJcd911mTBhQpJk1KhRGTFiRPr06ZO2bdumc+fOOfnkkzNu3LgMGDAghUIhl112Wf70pz8Vr9fT7Cgaqlf1PAC0XOXNXQA7t4qKinTt2jUfffTRVjfcWrx4cfHN4IYbfkFzef/993PSSSfl/fffT1lZWR544IF8/etf3+I1G25Ct7We33AzOz1PQ7rjjjtSXV2dffbZJ8uXL88jjzyyyZgNN8x9/vnnM2/evCTJaaedlsrKSr1Mi9KuXbt07949CxYsSLLlPquoqEi3bt0yb9684vjEv8+0LIVCIQ888ECSpKqqKkOGDKlzXHl5eW688cYcffTRWbt2bUaPHp077rgjiZ5mx9FQvbrxfbp167bV+5SVlW11k2gAYPsJGWh0Bx54YCZMmJA33ngjNTU1xacLNzZz5szi8QEHHNBU5UGdFi5cmJNPPjlvvfVWknVPg59zzjlbve7AAw8sHm/Y03XR8zSW9UsEvPXWW/n2t7+91fE33nhj8fjtt99OZWWlXqbFOeigg/LCCy8kSdasWbPFsevPb/ieQ0/Tknz44YdZtGhRkqRv375bHNuvX7/i8Ya9qafZUTRUr258ny996UtbvU+vXr1KmtEJAGwbyyXR6I4++ugk66asvvLKK5sdN378+OLxUUcd1eh1weZ8/PHHOeWUU/KXv/wlSXLLLbfkRz/6Ub2u3XvvvbP77rsnqd3Tdfmv//qvJMkXvvCF7LXXXqUXDI1AL9PSbLhU3foAuC6ffPJJFi5cmGRdT66np2lJNgzAampqtjh29erVdV6np9lRNFSvrv9cubX7zJs3L7NmzUricyUANBUhA43u9NNPLx4/+OCDdY5Zu3ZtHnrooSRJly5dMmDAgKYoDTaxfPnyDBo0KK+++mqS5Cc/+UmuuOKKel9fVlZWXFJp5syZmTJlSp3jpkyZUnzC6utf/3rKysq2s3L4P6NHj06hUNji14abQY8bN674+voP9HqZlubMM88sHj/++OObHff444+nUCgkSY455pji63qalmTXXXdN586dkySTJ0/eYtCw4R9T99577+KxnmZH0VC9WlVVVZzd8Jvf/CbLly+v8z6jR48uHg8ePHh7ywcA6kHIQKM7/PDDix/yR40alcmTJ28y5vbbb8+MGTOSJMOHD0+bNm2atEZIkurq6gwePDgTJ05Msq4Xf/azn23zfS6++OK0bt06SXLRRRdlxYoVtc6vWLEiF110UZJ1TyRefPHF21c4NBK9TEtyyCGH5Ctf+UqS5OGHH85zzz23yZh58+bl6quvTpK0bds2Q4cOrXVeT9NStGrVKoMGDUqybg+om266qc5xixcvrvWww6mnnlrrvJ5mR9FQvfqP//iPSZJFixbl8ssv3+T8m2++mZtvvjlJ0rt3byEDADSRssL6R72gEU2fPj1HHXVUVqxYkY4dO+aqq67KgAEDsmLFijzyyCO57777kqx7OmXatGnp1KlTM1fMZ9GZZ56Z3//+90mSE044IXfeeecWn/Zr27Ztqqqq6jx35ZVX5pZbbkmybq3lK664Ivvuu2/efPPNjBgxItOnTy+O+/nPf97Avwls3XXXXZfrr78+ybqZDMcff3yd4/QyLcmsWbPyN3/zN1myZEkqKipy8cUX56tf/Wrat2+fqVOn5uabby5uKjpixIg6/wClp2kpZs6cmX79+hWfxj7ttNMyZMiQ7LPPPlm5cmWmTJmSO++8M++++26S5MQTT8zYsWM3uY+eprG9+OKLeeONN4rfL1y4MJdddlmSdcsRnXfeebXGn3vuuXXepyF6dc2aNTnuuOOKDwWdeeaZOf/887PLLrtk6tSpufHGGzN//vy0atUqTz31VDGcBgAaWQGayB/+8IdC586dC0nq/KqqqirMnj27ucvkM2xzvbm5rz333HOz91qzZk3h+9///havHzZsWGHNmjVN9wvCBq699tpiL44bN26z4/QyLc2ECRMKn/vc5zbbj2VlZYWrr756s9fraVqSZ599ttCtW7etvuc44YQTCosWLarzHnqaxjZkyJBteo+8OQ3VqwsWLCj0799/s/do165d4f7772/o/wwAwBaYyUCTeuedd3LXXXfl6aefzty5c9O2bdv07t073/zmN/PjH/84HTp0aO4S+Qzb1jWK99xzz8yZM2eLY/7zP/8z9913X15++eUsXLgw3bp1S//+/XPBBRd4sopmVd+ZDOvpZVqSjz76KPfcc0+eeOKJvP3226murk6PHj1y/PHH56KLLkrfvn23eg89TUvx0UcfZdSoURkzZkxef/31LFmyJOXl5fn85z+f/v375zvf+U6+9rWvbfV9ip6msZx77rn55S9/We/xW/sTQ0P0ak1NTe6///78+te/zowZM7Js2bLsvvvuOfHEEzN8+PAcdNBB9a4XANh+QgYAAAAAAKAkNn4GAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAAAAAAABKImQAACjR6NGjU1ZWlrKyssyZM6e5ywEAAIAmJ2QAAD5z5syZUwwHtucLAAAAPuuEDAAAAAAAQEnKCoVCobmLAABoSqtXr85f//rXzZ4/+OCDkySHHXZYHnzwwc2O++IXv9jgtQEAAMCOpLy5CwAAaGpt2rSpV0BQWVkpSAAAAIAtsFwSAAAAAABQEiEDAECJRo8eXdwEes6cOZucP/7441NWVpbjjz8+SfLGG2/k7/7u77LPPvukffv22WuvvTJs2LC88847ta577bXXMnTo0Oyzzz6pqKhIr169cuGFF2b+/Pn1quuJJ57IN7/5zeyxxx6pqKhIly5dcthhh+X666/P4sWLt/fXBgAAgCLLJQEANIGxY8fmjDPOyNKlS4uvvfPOO3nggQfy1FNPZfz48enTp08efvjhnHvuuamuri6Omzt3bu69996MGTMmkyZNyu67717nz1i8eHG+8Y1v5Pnnn6/1+qpVq/LKK6/klVdeyb/+67/mySefzBFHHNE4vygAAACfKWYyAAA0svfffz9nnXVWunTpknvuuScvvfRSJkyYkIsvvjhlZWWZP39+zjvvvLz88ss555xzsu+++2bkyJGZOnVqxo0bl+9973tJ1oUS//AP/1Dnz1i1alVOOumkPP/882ndunW+973v5eGHH86UKVMyYcKE3HTTTenatWvmz5+fr371q5vMngAAAIBSmMkAANDIZs+enf322y8TJ05M9+7di68fffTRKS8vz2233ZaJEydm0KBBOfzww/Pss8+mQ4cOxXHHH398Vq5cmcceeyy/+93vsmDBglr3SZIbbrghr776arp06ZKxY8emX79+tc4fffTROfvss3PkkUfmgw8+yFVXXZX/+I//aNxfHAAAgJ2emQwAAE3g7rvv3iQYSJIf/vCHxeOFCxdm5MiRtQKG9S688MIkSU1NTSZPnlzr3Keffpp/+Zd/SZLceOONmwQM6+2555756U9/miR57LHHsmzZstJ+GQAAAPj/CRkAABpZly5dcsopp9R5bu+9906nTp2SJIccckgOOOCAOscdeuihxeO33nqr1rnx48fn448/TpJ84xvf2GItxx57bJJk9erVeeWVV+r3CwAAAMBmWC4JAKCR7bfffikrK9vs+S5dumTp0qWpqqra4pj1Ntw8OkmmTZtWPO7Ro0e965o3b169xwIAAEBdzGQAAGhkdS1/tKFWrVptddz6MUmyZs2aWufmz59fUl3Lly8v6ToAAABYz0wGAIAd3Iahw6uvvpo2bdrU67qePXs2VkkAAAB8RggZAAB2cF27di0ed+/eXXgAAABAk7FcEgDADq5v377F44kTJzZjJQAAAHzWCBkAAHZwJ510UnE/h7vvvjuFQqGZKwIAAOCzQsgAALCD69KlS3784x8nSSZNmpRLLrkka9eu3ez4Dz/8MCNHjmyq8gAAANiJ2ZMBAGAncMMNN2T8+PF56aWXctddd+WFF17I+eefny996UuprKzM4sWL8/rrr2fs2LEZM2ZMDj744Jx33nnNXTYAAAA7OCEDAMBOoF27dnn22Wdz7rnn5ve//33+9Kc/FWc31KVz585NWB0AAAA7KyEDAMBOolOnTvnd736XF198Mb/85S8zYcKEvP/++1mxYkU6d+6cfffdN4cffngGDRqUgQMHNne5AAAA7ATKCnYGBAAAAAAASmDjZwAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCRCBgAAAAAAoCT/H28R1YIirC5pAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = model.populationsPlot( # Plot infected hosts per population over time.\n", + " 'metapopulations_population_contact_example.png', \n", + " # Name of the file to save the plot to.\n", + " data,\n", + " # Dataframe with model history.\n", + " num_top_populations=8, \n", + " # how many populations to count separately and include as columns, remainder will be \n", + " # counted under column “Other”\n", + " track_specific_populations=['isolated_population'],\n", + " # Make sure to plot th isolated population totals if not in the top\n", + " # infected populations.\n", + " y_label='Infected hosts' \n", + " # change y label\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/tutorials-jupyter/vital-dynamics/vectorBorne_birthDeath.ipynb b/examples/tutorials-jupyter/vital-dynamics/vectorBorne_birthDeath.ipynb new file mode 100644 index 0000000..e22a637 --- /dev/null +++ b/examples/tutorials-jupyter/vital-dynamics/vectorBorne_birthDeath.ipynb @@ -0,0 +1,497 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from opqua.model import Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simple model of a vector-borne disease with 10% host mortality spreading among hosts and vectors that have natural birth and death rates in a single population. There is no evolution and pathogen genomes don't affect spread." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model initialization and setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a new `Model` object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "my_model = Model() # Make a new model object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define a Setup for our system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new set of parameters called `my_setup` to be used to simulate a population in the model. Use the default parameter set for a _vector-borne_ model." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newSetup( # Create a new Setup.\n", + " 'my_setup', \n", + " # Name of the setup.\n", + " preset='vector-borne',\n", + " # Use default 'vector-borne' parameters.\n", + " mortality_rate_host=1e-2,\n", + " # change the default host mortality rate to 10% of recovery rate\n", + " protection_upon_recovery_host=[0,10],\n", + " # make hosts immune to the genome that infected them if they recover\n", + " # [0,10] means that pathogen genome positions 0 through 9 will be saved\n", + " # as immune memory\n", + " birth_rate_host=1.5e-2,\n", + " # change the default host birth rate to 0.015 births/time unit\n", + " death_rate_host=1e-2,\n", + " # change the default natural host death rate to 0.01 births/time unit\n", + " birth_rate_vector=1e-2,\n", + " # change the default vector birth rate to 0.01 births/time unit\n", + " death_rate_vector=1e-2\n", + " # change the default natural vector death rate to 0.01 deaths/time unit\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a population in our model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a new population of 100 hosts and 100 vectors called `my_population`. The population uses parameters stored in `my_setup`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.newPopulation( # Create a new Population.\n", + " 'my_population', \n", + " # Unique identifier for this population in the model.\n", + " 'my_setup', \n", + " # Predefined Setup object with parameters for this population.\n", + " num_hosts=100, \n", + " # Number of hosts in the population with.\n", + " num_vectors=100\n", + " # Number of vectors in the population with.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Manipulate hosts and vectors in the population" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add pathogens with a genome of _AAAAAAAAAA_ to 20 random hosts in population `my_population`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "my_model.addPathogensToHosts( # Add specified pathogens to random hosts.\n", + " 'my_population',\n", + " # ID of population to be modified.\n", + " {'AAAAAAAAAA':20} \n", + " # Dictionary containing pathogen genomes to add as keys and \n", + " # number of hosts each one will be added to as values.\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating time: 66.7483164411631, event: BIRTH_HOST\n", + "Simulating time: 175.53517979111868, event: CONTACT_HOST_VECTOR\n", + "Simulating time: 200.00318125185066 END\n" + ] + } + ], + "source": [ + "my_model.run( # Simulate model for a specified time between two time points.\n", + " 0, # Initial time point.\n", + " 200 # Final time point.\n", + " ) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Output data manipulation and visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a table with the results of the given model history" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saving file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=8)]: Done 2 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.1995853034973145s.) Setting batch_size=2.\n", + "[Parallel(n_jobs=8)]: Done 9 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 16 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Done 26 tasks | elapsed: 0.3s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.019458293914794922s.) Setting batch_size=4.\n", + "[Parallel(n_jobs=8)]: Done 44 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.020659446716308594s.) Setting batch_size=8.\n", + "[Parallel(n_jobs=8)]: Done 76 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Done 120 tasks | elapsed: 0.4s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.0252227783203125s.) Setting batch_size=16.\n", + "[Parallel(n_jobs=8)]: Done 224 tasks | elapsed: 0.5s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.04323148727416992s.) Setting batch_size=32.\n", + "[Parallel(n_jobs=8)]: Done 408 tasks | elapsed: 0.7s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.08730292320251465s.) Setting batch_size=64.\n", + "[Parallel(n_jobs=8)]: Done 792 tasks | elapsed: 0.9s\n", + "[Parallel(n_jobs=8)]: Batch computation too fast (0.18108701705932617s.) Setting batch_size=128.\n", + "[Parallel(n_jobs=8)]: Done 1233 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1613 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1698 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1793 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1888 tasks | elapsed: 1.1s\n", + "[Parallel(n_jobs=8)]: Done 1977 out of 1977 | elapsed: 1.1s finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "...file saved.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TimePopulationOrganismIDPathogensProtectionAlive
00.0my_populationHostmy_population_0NaNNaNTrue
10.0my_populationHostmy_population_1AAAAAAAAAANaNTrue
20.0my_populationHostmy_population_2NaNNaNTrue
30.0my_populationHostmy_population_3NaNNaNTrue
40.0my_populationHostmy_population_4NaNNaNTrue
........................
443810200.0my_populationHostmy_population_120AAAAAAAAAANaNFalse
443811200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443812200.0my_populationHostmy_population_117AAAAAAAAAANaNFalse
443813200.0my_populationHostmy_population_136AAAAAAAAAANaNFalse
443814200.0my_populationHostmy_population_112AAAAAAAAAANaNFalse
\n", + "

443815 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Time Population Organism ID Pathogens \\\n", + "0 0.0 my_population Host my_population_0 NaN \n", + "1 0.0 my_population Host my_population_1 AAAAAAAAAA \n", + "2 0.0 my_population Host my_population_2 NaN \n", + "3 0.0 my_population Host my_population_3 NaN \n", + "4 0.0 my_population Host my_population_4 NaN \n", + "... ... ... ... ... ... \n", + "443810 200.0 my_population Host my_population_120 AAAAAAAAAA \n", + "443811 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443812 200.0 my_population Host my_population_117 AAAAAAAAAA \n", + "443813 200.0 my_population Host my_population_136 AAAAAAAAAA \n", + "443814 200.0 my_population Host my_population_112 AAAAAAAAAA \n", + "\n", + " Protection Alive \n", + "0 NaN True \n", + "1 NaN True \n", + "2 NaN True \n", + "3 NaN True \n", + "4 NaN True \n", + "... ... ... \n", + "443810 NaN False \n", + "443811 NaN False \n", + "443812 NaN False \n", + "443813 NaN False \n", + "443814 NaN False \n", + "\n", + "[443815 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = my_model.saveToDataFrame(\n", + " # Creates a pandas Dataframe in long format with the given model history, \n", + " # with one host or vector per simulation time in each row.\n", + " 'vector-borne_birth-death_example.csv'\n", + " # Name of the file to save the data to.\n", + " )\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create a compartment plot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot the number of susceptible and infected hosts in the model over time." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAALmCAYAAAAwrBZcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hb5fk+8PtoD+8ZO3FiZzjOJpOEBBI2CYFAoexZRr+0DaO/QqFQSgstUEqhDVBKCbtAy0wh7BGyyHbI3tOO4z1lbZ3fH45lnaFly5Zt3Z/r4sI6S68dWzq6z3OeVxBFUQQRERERERERERERxYUm3gMgIiIiIiIiIiIiSmQMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKI4a0RERERERERERERHHEkJaIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojjSxXsA1DUOhwNbt24FAGRnZ0On4z8pERERERERUax5PB5UV1cDAMaNGweTyRTnERFRf8JEr4/bunUrpk2bFu9hEBERERERESWMdevWYerUqfEeBhH1I2x3QERERERERERERBRHrKTt47Kzs/1fr1u3Dnl5eXEcDREREREREVH/VFFR4b+TNfCzOBFRLDCk7eMCe9Dm5eVh0KBBcRwNERERERERUf/H+WCIKNbY7oCIiIiIiIiIiIgojhjSEhEREREREREREcURQ1oiIiIiIiIiIiKiOGJIS0RERERERERERBRHDGmJiIiIiIiIiIiI4oghLREREREREREREVEcMaQlIiIiIiIiIiIiiiOGtERERERERERERERxxJCWiIiIiIiIiIiIKI4Y0hIRERERERERERHFEUNaIiIiIiIiIiIiojhiSEtEREREREREREQURwxpiYiIiIiIiIiIiOKIIS0RERERERERERFRHDGkJSIiIiIiIiIiIoojhrREREREREREREREccSQloiIiIiIiIiIiCiOGNISERERERERERERxRFDWiIiIiIiIiIiIqI4YkhLREREREREREREFEcMaYmIiIiIiIiIiIjiiCEtERERERERERERURwxpCUiIiIiIiIiIiKKo4QPaV0uF1588UWce+65yMvLg9FoRFJSEkaOHIkbb7wRq1evjug4n376KS6++GIMGjQIRqMRgwYNwsUXX4xPP/20m7+DxCGKIr45YscbO1twtNkT7+EQERERERERERHFhCCKohjvQcTL4cOHcf7552P79u0ht1u4cCH+9re/QRAExTqfz4dbb70VixcvDrr/zTffjH/+85/QaGKfiZeVlaGgoAAAcPToUQwaNCjmz9FbLNlvw5u7bAAAvQZ49owspBoT/joDERERERER9YBE+vxNRD0vYRMut9stCWjHjx+PV155Bd9//z2++OILPPjgg7BarQCARYsW4fHHH1c9zv333+8PaCdOnIi33noL69atw1tvvYWJEycCAF588UU88MADPfBd9W/tAS0AuH3ARwda4zgaIiIiIiIiIiKi2EjYStp3330XP/7xjwEAM2bMwIoVK6DVaiXbbNy4ETNmzIDb7UZaWhqqq6uh0+n86/fs2YMxY8bA4/FgypQpWL58Ocxms399a2srZs+ejQ0bNkCn02Hnzp0YPnx4TL+PRLqSd/nSKsnjsZl6/HZ6epxGQ0RERERERIkkkT5/E1HPS9hK2sBes/fdd58ioAWAyZMnY/78+QCAhoYG7Ny5U7L+6aefhsfT1ht10aJFkoAWACwWCxYtWgQA8Hg8eOqpp2L6PSQ6rUbZfoKIiIiIiIiIiKivSdiQ1uVy+b8eOnRo0O2GDRumuo8oiliyZAkAoKSkBNOnT1fdf/r06Rg5ciQAYMmSJUjQwuVuoWVGS0RERERERERE/UDChrTtwSkAHDhwIOh2+/fvBwAIgoARI0b4lx88eBDHjh0DAMyePTvkc7WvLy8vx6FDhzo7ZJJhIS0REREREREREfUHuvCb9E9XXnklHnjgATQ1NeHxxx/HvHnzFC0PSktLsXTpUgDAVVddhZSUFP+6HTt2+L8uKSkJ+VyB63fu3ImioqKIx1lWVhZyfUVFRcTH6i2e3NiIdced/sePnJKOEel6yTYtbh/e32uD3SNiwTALBliVv6qVrV4890MTvD4RWo0Aj0/EnAIzxmcZuv17ICIiIiIiIiIiipWEDWmzsrLw+uuv48orr8SqVaswdepU3HnnnSguLkZLSwtWrVqFJ598Ei6XC5MmTcKTTz4p2T8wPA3XLLy9sTjQ1lw8GoH79heBAS0A/GVjI/55VpZk2TOlTSitbmsvsaXGhUWnZyqOc7TZi6PNXsmyNRVOPDk7A3kqoS4REREREREREVFvlNBJ1oUXXoiNGzfiySefxOLFi3H99ddL1ufm5uLhhx/GLbfcAovFIlnX3Nzs/zopKSnk81itVv/XLS0tMRh5/9Lg9CmWtQe0AFBj96G0yqXYRo1XBP6904ZfTUmN2fiIiIiIiIiIiIi6U0KHtC6XC6+99lrQCb0qKyvxxhtvoKioCBdeeKFkncPh8H9tMIS+vd5oNPq/ttvtUY0xXOVtRUUFpk2bFtUxezu1f4vjrV6VLdWtr3SG34iIiIiIiIiIiKiXSNiQ1mazYe7cuVixYgW0Wi3uuece3HjjjRg6dCgcDgfWrl2LP/zhD1i5ciUuuugi/OUvf8Evf/lL//4mk8n/tcsVusrT6ewIDc1mc1TjDNdKoT9SRrSAzaWstiUiIiIiIiIiIuoPNPEeQLw89NBDWLFiBQBg8eLFePzxx1FSUgKDwYCUlBScffbZ+Pbbb3H66adDFEXcfffd+OGHH/z7Jycn+78O18LAZrP5vw7XGoEAn0pK2+xWi26Da1RpoUBERERERERERNQbJWRIK4oiXnrpJQBAcXGxohdtO51Oh4cffhgA4PP58Morr/jXBVa4Bk4ipiawZUF/nAgsFnwBLQ5Uuh1EHboeaHR3dUhEREREREREREQ9IiFD2srKStTV1QEAJk6cGHLbyZMn+7/etWuX/+vRo0erLlcTuH7UqFFRjTVR/GZlPT7YZ4MoiqrtDtYej67P7GPrG7G2whF+QyIiIiIiIiIiojhLyJBWp+toxevxeEJu63Z3VGQG7ldUVIT8/HwAwHfffRfyGMuXLwcADBw4EIWFhdEONyEcbPLg7d02LC93qLY76IynNjXhuC30vy8REREREREREVG8JWRIm5GRgZSUFADA999/HzKoDQxgi4qK/F8LgoAFCxYAaKuUXbNmjer+a9as8VfSLliwAIIgdHn8fZ1RG3zd3noP1GtpoycC2FXHtgdERERERERERNS7JWRIq9FocP755wMAjh07hj/+8Y+q29XX1+PXv/61//H8+fMl6++8805otW2J48KFC2G32yXr7XY7Fi5cCKCtCvfOO++M1bfQp905MTXoOh/EmFXSAkCzK4YHIyIiIiIiIiIi6ga68Jv0Tw8++CCWLFmC1tZWPPTQQ9i4cSOuv/56DB06FA6HA2vWrMHTTz+NI0eOAADOPPNMnHPOOZJjFBcX4+6778Zjjz2GDRs2YObMmfj1r3+NYcOGYf/+/Xj88cdRWloKALj77rsxYsSIHv8+e6NJuUY8PScDq485sWS/DU5vwEpRfeKwa0qSkGbSoMXlQ53Dh4JkLQRBgFknwKAR0OjyIdWowZMbGuHwdhyg2R3dhGNEREREREREREQ9LWFD2pKSEixZsgRXXnklampq8NFHH+Gjjz5S3faMM87AO++8o7ruj3/8I6qqqvDSSy+htLQUV1xxhWKbm266CY888khMx9/X5Vl1uGSEDs0uHz49JK1AVotVTx1kQpoxfOH3nAITPgs4XpOLIS0REREREREREfVuCdnuoN1ZZ52FXbt24fHHH8ecOXOQnZ0NvV4Ps9mMoqIiXHbZZfjwww/x1VdfIT09XfUYGo0GixcvxtKlS7FgwQLk5+fDYDAgPz8fCxYswCeffIIXX3wRGk1C/6ijolZJq4mwlW+KQfpzbmZIS0REREREREREvVzCVtK2y8zMxD333IN77rmnS8eZN28e5s2bF6NRJa4V5Q5sqHQqlkcacScbpGluE3vSEhERERER9Si3z4tfrvsfPj66A4VJGXhm+sUYkz4g3sMiIurVWN5JvYrLBzSqBKtChJW0yaykJSIiIiIiiqt/7voez+xchUMt9Vh2fD+uXv5mvIdERNTrMaSluEqNoM+sUSvAqI0spbXqpcdr5cRhREREREREPeqTsl2Sxz/UHYPH5w2yNRERAQxpKc5OHWhCljn0r+GCYRboImxKKyukBQtpiYiIiIiIepbd61Ysc3o9cRgJEVHfkfA9aSm+ssxaPDU7Ewca3XCpXFgdYNUix6KN+HgGWcWt28eetERERERERD3JoFF+hnN4PbDqjXEYDRFR38CQluLOoBVQkmGIzbFkFbceH+ATRWgibWpLREREREREXWLUKqMGBytpiYhCYrsD6lf0Kr1r2ZaWiIiIiIio55hUQ1plCwQiIurASlrqV/Qqlx1u+qIaSXoNLh5uwbmFlp4fFBERERERUQL4+OgO3Ll2CfY31yrWDX/vMRg0Wtw6cjr+e/AHVDlaAABaoe1DXMPVDyOJ7RCIKIGxkpb6FXlPWqCtkrbe6cNL21tQ5+CMokRERERERLHm8Xlx7fK3VAPadi6fF8/sXOUPaAHAK/rgFXn7IxERQ1rqV+Q9aeWONLMPEhERERERUawda21Cg8se72EQEfVZDGmpX9GF+Y12sZCWiIiIiIgo5pycGIyIqEsY0lK/ohGEkEGt0yv23GCIiIiIiIgShNOnDGk/PfvmiPc3a/WxHA4RUZ/DkJb6nVAtDxjSEhERERERxZ7LK71t0aDR4pScwoj2PTl7MLQaxhNElNj4Kkj9jl5l8rB2DGmJiIiIiIhiT15Ja9TqYNFFVh1rYRUtERFDWup/DCF+q10MaYmIiIiIiGJKFEX8v3UfSZYZNFroNNqI9jdHGOYSEfVnDGmp39GHanfgYUhLREREREQUS7saq/B99WHJMqNWF/H+Fp0h1kMiIupzGNJSvzPAGvxqLTNaIiIiIiKi2NrXVKNYNjw5CwBgiiCsbd+WiCiRMaSlfufykVZkm/mrTURERERE1BN8orIa5s9TzwcAfHXuT0PuOyVrEO4YPatbxkVE1JdEfv8BUR9RmKLHotMz0eQS8czmJmypccV7SERERERERP2WPKIdlpyJk7OHAABm5hZBvPEvsLmdaHY7AbS1QnB6PTBodcgwWnp4tEREvRNDWuqXBEFAqlFAmpEVtURERERERN1JXkmrEZTzhFj1Rlj1xp4aEhFRn8MEixKKy8umtERERERE1Dd5fT40uuzw+LzxHoqEiPAhLRERhcaQlhLK54ftWH3MEe9hEBERERERRaXO2YrZnz6HtH//FtM++juOtTbGe0gAAFEUcf2KtyXLBDCkJSKKFkNaSjhv7mqJ9xCIiIiIiIii8sb+jVhVdQgAUFpXjhd2r4nvgE744tge2DzSeUAY0RIRRY8hLfVr+UlaxbJquy8OIyEiIiIiIuq8O9YukTz+/eYv4zQSqS/L9yiWlaTmxGEkRER9G0Na6tfOKzQjz6oMauWN7YmIiIiIiCh6q09U9wZ6Yur8nh8IEVEfx5CW+jWzToN7pqQqlvuY0RIREREREXWJw+PGxtoyybLPz7kFw1Ky4jQiIqK+iyEt9XtajbIjEkNaIiIiIiKirtlUWw6Xz+t/LEDAydmD4zgiIqK+iyEt9Xtqv+RetjsgIiIiIqI+zhMQkMbDvw9skjwemz4AqQZznEZDRNS3MaSlfk+lkJaVtERERERE1OdNXPIU6pytcXnuX637CM/tWi1ZdkrOkLiMhYioP2BIS/2eViWk9TKkJSIiIiKiPiJYxey2huN499CWHh4NUOdsxVM7liuWn5JT2ONjISLqLxjSUr+nEdiTloiIiIiI+i6bxxV0XXlrYw+OpM1RWwN8shZyFp0eZ+cX9/hYiIj6C4a01O9pVH7L5ScUREREREREvZXb5wu6zuFx9+BI2jS67Iplr596FfIsKT0+FiKi/oIhLfV7ar/krKQlIiIiIqK+wh1igjCH19ODI2nT4HJIHhcmpeNHheN6fBxERP0JQ1rq97QqM4exJy0REREREfUVnlCVtHEJaaWVtGkGc4+PgYiov9HFewBE3U29kpYpLRERERH1Tm6viN31bjS7fTBoBIzJ1MOkY31NImn1uLCy8iAaT1SsVjlagm5b6WiO6Jj1zlasqT6M0Wm5qHW0Yn9zLTyiDy1uJ9IMZlh1BszKLYIIESsrD6L1RBuFYcmZGJ2Wi1VVh1DnbAUALD9+QHLsVIOpM98mEREFYEhL/Z5W5Xy2utWHPGvPj4WIiIiIKBSPT8Tv19Rjb0NHdaRFJ+DPp2Yg26KN48iop7S4nZj+8d+xvaEyou2XHNmOMlsDBlnTgm5zoLkWpyx9BpX20IGuVtBAhBh1UQsraYmIuo6XY6nfUzY7ADZXO3t8HERERERE4eypd0sCWgBo9Yh4b68tTiOinvZp2a6IA9p27xzaEnL9q/s2hA1oAcAr+jp112GqnpW0RERdxZCW+j1BUMa0OpU+tURERERE8dbsUu89urnaBZEtuxLCUVtD1PvUOkKH+It2rOzkaCJzSk5htx6fiCgRsN0BJYSSDD121bn9j308vyUiIiKiXijY9FD1Th/KWrwoSOZHuP5OPilXit6EgZYU/+OS1Bx8cGRbVMd0+bwxGZt8PEatDvMLRuPm4pNjdnwiokTFd3hKCHlWrSSk9bIKgYiIiIh6oxCnqVuqXQxpE0DDicnC2l1WNAH/mvljybIrl72Btw9ujviYYqhfrChdN3wyFk2/OGbHIyKiNmx3QAlBK+tu4A1WokBEREREFEehTlO31Lh6bBwUP/JK2jRD1/u9dqbPbDB55pTwGxERUdR4GZYSglbWl/bzw3ZMzjVAKwgob/Eg3aTFhGwDjPI0l4iIiIj6NVEUsaXGBQECxmXpVeczCKe61YutNS64fSKseg1OyjEgSd/JepgQWdqOWhdcXhEGnrP2S6IoorS2HK/v3yhZnmYwd+p4x1ob8UX5HtQ6bXB4PeF3iFCeJTlmxyIiog4MaSkhqM0T9qd1jZLHozL0+N30tE6dmBMRERFR3/T8lmYsK2u7vfyswSbcMi66KsGyZg8eWF0Pu6cjXc2zavHYrHSYdNEHtaEqaV0+YHe9G+OyDFEfl3q/p3eswC/X/U+xPD2CkPbVfRvwyOS5/seHmusw9aO/ocYZekKxzmAlLRFR92C7A0oI3gju7tlZ50aFLXYN9YmIiIiod2ty+fwBLQB8dcSBVnd0fbFWlDskAS0AVNi82FbrDrJHaJ4wM9zuqe/ccal38/p8+MPmL1XXqVXSamSFJWWt0gKUD45s65aAFgDyLAxpiYi6A0NaSgimCG8Ja/VwQjEiIiKiRFFjV16gb3JFF9JWtqpf5G90dm4ShPKW0EUD8kCY+odtDccVvWgBQCdocGruUMVyeY/ZLKNV8rjK3tLlMd1aPB3DkjMly/LMKRiTltvlYxMRkRLbHVBCmJxrwP8OtIbdLob99ImIiIiol1O7jB/t6WB9kDDWEcmtXCqONofuHepgSNsvraw8qFh28eCx+NmoU1CQlKZY95vxZ+Ltg5v9j2ucNji9Hhi1bR/x7d7QFdezBwzFYGs6Ug0mPLNzlWL9RYPH4qmTL0S5rRF/+OFLHLU1YKAlFfeNPwM6jTa6b46IiCLCkJYSgnziMCIiIiKiWKh3qFe+djZMlYe06UaNJAh2hWmHQH3TqqpDksfXDZuMV0+7Muj2BdY0xbJjrY0oOlH52upxqe53yZBxePeM6yXLBlpScd/GTyTL/jHjR7DoDBiRmo3XT7sqgu+AiIi6iu0OKCFoI/xN5ykvERERUWKLJgMVRRF1jiCVtJ0IaVvdPtTKjjc8Td/l41LvJ6+knZlbFHL7VIMJFp30d6PM1tGXttWjXkmbYjAplrl8yurtZL0x5PMTEVHsJWQl7Zw5c/Ddd99Ftc+3336LOXPmqK779NNP8cILL2D9+vWorq5GdnY2pk6diltvvRVz585V3Yd6libCQtrPDrUi25yEdBNv4SHqrURRxIdHtuGHumOKCyupehMuKRyHIUkZcRkbERH1LfJAFAA+OdiKVKMGKQYNStL12F3vhsfX0b6gJEOPOocPFTYPPD4g2Dxj35U7YNELGJtpwIh0veo2Hp+INRVOHLO1hWStbuk7m1YAilJ1WF/p9C870uzBf/d09BsVACQbNNAIwOBkHUoyDNH8CKgXONJSj6O2BsmyWbmFIfcRBAEDLanY21TjX7Zo50qsqT6MFL0J/z6wSXW/FL1KSOtVVoNbdPw9IiLqaQkZ0kZLo9FgxIgRiuU+nw+33norFi9eLFleXl6O8vJyfPjhh7j55pvxz3/+ExoNi5bjKdJ2B6uOObG73o0nT8uESccWCUS90YOln+ORH74Kuv73m7/Ezh/djXxLag+OioiI+hqb24cnNjQqln91xBGT4zc6fXh7tw0CbPjNtDSMz1aGXi9ua8a3R4M/X55VC6teek5aYfPivb3qcy0IAO6alIKT85RBHPVe8lYH6QYzSlJzwu43SBbSvnNoC945tCXkPmoVsk6VSlqB7eKIiHpcQoa0L7/8Mmw2W8htduzYgcsvvxwAcOaZZ2LgwIGKbe6//35/QDtx4kTcc889GDZsGPbv348///nPKC0txYsvvojs7Gz86U9/iv03QhEzaCM/yaix+7Cr3oWTsnmLD1Fv9OaB0pDrm9wOPLdzNR6ZzDsZiIgouJ11oSdWihURwJdH7IqQVhRFrCoPHQgPTNLBHEXhgAjguR+aGdL2MVvrKySPZ+QMgUYIX+QzSKUvbThpKu0OilOyoz4OERHFXkKGtEVFofv7AMDrr7/u//q6665TrN+zZw/+8pe/AACmTJmC5cuXw2w2AwCmTp2KCy+8ELNnz8aGDRvwxBNP4Cc/+QmGDx8eo++AopVj1iDPqkWFTX1iBzmbi72+iHqrJlf4CqeVVcoZkomIiALZ3T13vvdDtXISJ68IuIK0SmiXY9FiTKYBek3wtgpy7W0ZqO9weKWVrAPMKRHtt2DwGLy+f2PEz6MVNDgnf6Ri+TXDJuOeDUvR4LIDAG4fNSviYxIRUewkZEgbjs/nw7///W8AQFJSEn70ox8ptnn66afh8bS9mS5atMgf0LazWCxYtGgRZsyYAY/Hg6eeegrPPvts9w+eVAmCgAdOTsMnB1vR6hHh8orwiYDTK2JrjUtx0uvkyS1Rr+UVpX+wpw8YBkEQ8E3FPv+ytdVH4PJ6YNDybY6IiNT5VKaMnZRjwJFmD2rsESaiJ/YxagUcafagvEW9IEDt3NITwQxl5xeZkW7S4sHp6VhWZoctIFj2+iDpVUt9l8cn/X2LtFXbJYXj8ebsq/FJ2U4sP34AR2R9bduNTM3GzJwiXDNsEsZl5CnWm3V6rL/gDjy3azXyzSm4fTRDWiKieOCnVxVff/01ysvLAQCXXnopLBaLZL0oiliyZAkAoKSkBNOnT1c9zvTp0zFy5Ejs3r0bS5YswTPPPMPePnGUZdbiutHJquv+sKYe22s7bnljSEvUe3lkIe0fJ8/FyNQcZL75oH+Zw+tBaV05Ts4e0tPDIyKiPkKekQ5L1eHXU9Pwxs4WfHRAveermp+OS0aaSYvSKiceW6/scdtOFEXJZwFPmNNNrQCkGttueS9O16NYNvmYKIq47rPqsNW41PvJL0DropjP5MqhE3Hl0In4ycr/4OW96xXr35x9Na4cOjHscYanZOGv0y6M+HmJiCj2OJuVitdee83/tVqrg4MHD+LYsWMAgNmzZ4c8Vvv68vJyHDp0KHaDpJgyynrWuiKobCCi+JB/kNEKGmQYLRiTlitZvrKSLQ+IiCg4+eme5sTpYK5FG9VxtCd2tOpDf7SyyVJZT5hwNcusgSZEgYcgCMgyRzdW6p3Uzm2iZdSo118FW05ERL0PX7FlWlpa8MEHHwAAhgwZgjlz5ii22bFjh//rkpKSkMcLXL9z586I+uEGKisrC7m+oqIi5HqKjHxisZ7sUUZEkfP6fGj1SCd6af8gMzOnCNsbKv3Ln9+1Bv9v7JxuGYfD48Y/dn+Pemcrrh42CSNDzMD81bE9+PjoTjhl/ebSDGZcM2wSxqQP6JYxEhH1Vz5RxLdHHahz+HB6ganTQaUypG07H8yxRBeQtZ9GJulD3zF30xc1GJupx12TUpFk0OBosyfk9pF8XzkWLY5FOOdCT/P4RLy2owWfH7ajJEOPuye3fd8EbKopw9sHN6PZ7USawYzS2nLJel0nQlqDRv33xcTWT0REfQZfsWXee+892Gw2AMA111yj2p4gMDgdNGhQyOMVFBT4vz569GjU4wncn7qPvJL2g/2tuKIkKU6jIaJgflv6mWJZ+y2Bs3KL8MKeNf7l+5prcKy1EfmW1JiP44aV/8F/Dm4GADy/+3tsvehXyDUr26l8dWwPzv78haDHeXbXKuz50a8xwBLZBCFERAS8ucvmb0fwzVE7npqdAZMu+lDLJ0pT2q5W0kYSQG6rdeOmL2uw+JwsPLK2IeS2kYS02b24kvbpTY1YX9k2Ydquurbv+z/nB7+omSj2NdVg1ifPwu51B90mmnYH7YxBwthgy4mIqPfhpUyZcK0OAKC5udn/dVJS6CDParX6v25paeni6Ki7GDTSkJadg4l6pw8Pb1Mss+oMAICZuYWKdZ+V7Y75GOweN949tMX/uNphw+I961S3DdxOTbPbia8q9sZ0fERE/d3qYw7/13UOHz4/bO/UceTtBtqv2UdTmasVAN2J/ay6yM8g/70z/OeCbHP4j2rRVv32pPaANlCjkw10vzy2J2RAC7Sda0QrRW9SXZ6sN0Z9LCIiio/e+64eB2VlZVi2bBmAtkm/iouLVbdzODpODA0GQ8hjGo0db4p2e/QnkEePHg3537p16sEARacgWXoyLgKwh2sURkQ9rsWj/MA3LDkTADD0xP8DHWttivkYtjccV/SOe+tAqeq2ZbbgE8i0q3bYYjIuIqJEUeuQvgZ/c8QRZMvQGmSBYcqJSbp0GgGnDVQPvOSm5Br9lbRaTeQh7YZKZ8j1WgGYNiD8GKbk9q0AjpPzAja38lxGbqA1+ruAzi8YBb2s5UFhUjomZg6M+lhERBQfvPchwBtvvAGfr+1k7frrrw+6ncnUccLkcoV+k3U6O07AzGZz1GMK106BYuP0AjNe2i6taKhq9WFICq9jEPUmLp+0796/T7tK0pbmx4Xj8U5A9epxe+xD2s11xxTLtjUcR0VrE/JkbQsqZM9/Zt4IHLHVY29TjX9ZnTPyGcSJiBKdKCpDvuOtXoiiqNqmLJR6p/Q9Jd3Ycd730/HJGJGug90j4vQCM3bUulBh82JYqh67611odonIs2pxxuDoz+8BoMkl/T50GuD2k1Kwq94NnSDg5DwjhqSE/6iWn6TDgmEWLNnf8V4yKKn3tkDwcHJeeMTwhSCnDxge9XEnZg7E8rk/wweHt8LmcWGAOQU3jJiiCG6JiKj3Ykgb4PXXXwfQVv16+eWXB90uObmj72C4Fgbt/W2B8K0RKH4MWgEZJg3qAiozKlu9EZ0cE1HPcctC2kGyShP5BF7H7c2ItR9UQloA+OjoDtw6crpkWUWr9PnvGnMqPjq6QxLS1jpZSUtEFCl3kHzrmM2LgUnRnbfVyypy040dYZZOI+CcIRb/4+l5HUUa47ND30nXGTeNScbJeSacnBdZBW+gYanS77s35KDyfr8dy3t4IL2Q/G4cNUn6zv2OTc8Zguk5Qzq1LxERxR/LBE/YsGEDduzYAQCYP38+0tPTg24bWN0aOImYmsDJwjgJWO+WI5skorK1d86US5TIXF7p36W8OmSAbPKuim4IadUqaQFlv1yvz4cqh/RCXp45BRlGi2RZnbNzvRSJiBKRw6Oe8m2tCX8LuZy83UGaKX4fjQYld74wQCOrIO4NQWiwrmGeIOFtIokopNX1rTYWREQUGywTPCFwwrBQrQ4AYPTo0f6vd+3aFXLbwPWjRo3q5OioJ+RatNhV19Gk/42dLfD4RFww1AJdFD3GiEjdh4e34atje3DagKE42FyHDbVl/kobrSDgtNyh+NmoU6ARNBBFEa/sW48vyvfA7fNiQkY+5heMRotH2sMvXEi7pa4Cl3zzKgBgXPoA3DPudOg1Wvx123dYX3MU4onnPiWnEAtHzYI2zGzKDo8bKysPqq77qmKv/7mAtqpf+QexPEsKMgzSkLa0tjzkcxIRUQdHkJ6mL29vQVGKHt9XOBQ9awEgz6rFgmEWrDvuxMFGD6bnGVUqabse0uo1wat9QxnYhRYF8tPUYFWsPckVJCn+9Yp6zMgzIsOkwQVDLUg3Jc6t+G6fF4/88BX+sPnLsNsmcbIvIqKExJAWgNvtxttvvw0AyM7Oxty5c0NuX1RUhPz8fBw7dgzfffddyG2XL18OABg4cCAKCwtjMl7qHrkW5Uni27ttaHT6cMOYZJU9iChSX5TvxsXfvAIAeHbXatVt3jm0BXavG3ePOx2v79+In6z8r3/de4e34sHSzxX7hAtpWzxOvH94KwDg/cNbcaC5DjmmJDy5Xfra/c6hLbB5XLh/wlkhv4/Llr0edJ3b5/U/lxqNICDHlKSopN3TVN2pXopERIkoWCUtADz4fX3IfQP7tn5+WHkXQ3oMKmmTDdL2WZFIM2pg1Xf+uRUhbaePFDueEBOEfV/RdsF1R60bj52a0VNDirsHNn6KP29bFtG2SbrYt9QgIqLej+0OAHz66aeorq4GAFx11VXQ6UJn14IgYMGCBQDaKmXXrFmjut2aNWv8lbQLFizgB/BeLtus/udQWhX97XNEJHXLqnci2u6LY3sAAJ+X745o+1S9tHffYGvwVjUA8GnZLrx3eIvquo+P7gz7fFvqKyIal5p8cwq0Gg1yzMr+5IdbQgcLRETUpjXYffQxkBqDStpTB0bfU7arE31pZZ8x3CEC0p7S4g4/hoNNHjS5ekOk3DP+uUf9M6OcVWeAUctaKiKiRMSQFtJWB9ddd11E+9x5553QattOqBYuXAi7XXo13m63Y+HChQAAnU6HO++8MzaDpW6j16qH6I0JdPJI1F2O2Boi2s7h9QAAmt3OMFsCs3KLMCRJGsoWJKXhzLwRQfepcdpwKEggWmFvCvl8oiiiUtbj1qTVKXoBBnPjiKkAgNMHDFOss3l4MYiIKBKNzu47LzPGoL3VgmEWJOujO86Zg81des4kg/T5WtwixDi3PChr8US0XajK6P6m0eWIaLvrhk9mcQ8RUYJK+Et09fX1+PjjjwEAY8eOxaRJkyLar7i4GHfffTcee+wxbNiwATNnzsSvf/1rDBs2DPv378fjjz+O0tJSAMDdd9+NESOChwbUOwQ7FbJ7RHh8IvvSEvUAj6/tw3d7WBvKJ2ffpPohZsmZN+C/h37AUVsDGlwOPLV9eUTPfdzeHLLtgM3jUoxry4L/B7vXjc/Kd8PhdavuJ0DAuPQ8LBg8BgBgVekz5/JxokIiokg0uSIP9X5cbMWH+2wR94jVxaB8xarX4C+zM7Gh0okvDttxuCn0+9nvpqdhdGbXbm1PMUgH7hWBVo8Ia5RhcSwdbY7sfc3ZC6p+4+m+8Wcg3WCG/cQ5RElqDi4ZMj7OoyIionhJ+JD2P//5D5zOtoqtSKto2/3xj39EVVUVXnrpJZSWluKKK65QbHPTTTfhkUceiclYKX5aXD6kJdDEBkTx0j7Rlj1I4Nlu3qASJOvVbym16o24ccQ0AEC1oyXikNbp9aDR5UCaUb2iqdrRoliWa05GisGE8Rn5ET2Hf4w6g6R61hlBKE1ERJHf4SQAuHSEFSvKHDjeGj4w1GkQs+rFNKMGZw02Y3+DO2xI29WAFmjrgyvX7PJ1qc9tV0VaSetKkJA2WGXzLcUnoyg5s4dHQ0REvVXCtzt4/fW2SWC0Wi2uvvrqqPbVaDRYvHgxli5digULFiA/Px8GgwH5+flYsGABPvnkE7z44ovQhJktnHqHUKflTRH01SKiruuopA0d0mablH1d1aQECXKDOS5rZxCo2mGTPDZotEju5OzL8l5zTh9DWiKiSDRF2O6g/QaojAgnA9N3wx1T3dg+V8KoFSDPaaOpOO4OZc2Rva8lSiVta5C2RmatvodHQkREvVnCV9KuWrWqy8eYN28e5s2bF4PRUG919/I6AECuRYsRaTr8uNiKAdaE//OhBLf06A68tHc9xqYPwP3jz4ThRPC4u7EKj/zwVdDer6HsbqrCqZ88ix0NlSG3yzZZIzqeUauDUauLuFJ1R0MljFotflf6BQ621EnWra85KhtDUqerrowaWUjLSloiorA2Vzvx+WF7+A0BCFGHtJ0dVXBuX88FkMkGDWodHanwsRYPitOVAWCj04f/7G5BeUtbdfGu+hO32Qdsm2rUYF6RGSUZnavy3VjpRFlLZO0O+nslbbPbgd9u+hxLg0xOamJIS0REAZgyEUWhstWLylYvDjZ58ORpGWzqTwlrb2M1LvjqZYgQ8f7hrQCA3088F6IoYu4XLyoCzki1etxYWXkw7HaRVtICQKrehCqvslWBmh8vew2jU3OxreF4BGOILChWY9BK26ewJy0RUWg1di8eX98Y8fbtZ2iZ5sjaVXVPJW3PBZApspD2H1uaMadA2b7nmc1N2FKjrOpsD2vbba524vkzs2CJMr2uavXizxsi/3fq75W0t6/5EK/s2xB0vUnLj+NERNSB9+ETnTAkJfKTpPIWr+REmCjR3L3hY4jo+GD1h81fAgCOtTZ1OqCNRoE1LeJt8ywpwdeZpet8ohhRQAtEFxTLWXXS6qQ6Z2unj0VElAh21rkRTeaZdCJczLFEFtKq9XXtqpPzQrfcGZwcu4Au1agcv1oAurNO/bZ75b7AwTD9dNXsrg/drkj5PP07pF0e4sJz+90+RERE7RjSEp0wwKrDyQMi7y953MbKN0pc31bsV10ebW/Vc/KLMS49L6p9ipIyMG9QScTb3zZyhurySwvH4+5xc6J67kD5IcLfcIqSMiSP9zfXdvpYRESJINJetO3OHNxWRTotN7Jzu7MGq08a2RXTBxgxMKktJBYA/GRMEjJPtF/Qa4BrR3f+Yp/cnAJlIHywURqYiqIIdxQ/xs5UAgdrX2DUqlcqt3r6d0gbqsf+wlEzeVceERFJ8NIdUYA7J6VgS40LRq0Ai06Db47a8dkh9d5nla1ejO3h8RH1Fk1uh+pyt8pt+89MvxhaQUCNoxVraw7j5KwhyDJZUGBNw9n5xXB4Pfji2G7UyCbmAoBkvQlCwPOlGcw4Z+BIpBoi/zD905IZmJQ5EJtqy/3Vv4OsaThv4Eh4RRG/XPe/oPumGcy4ZtgkPLNT2b+8KyHt8JQsyeO9TTWdPhYRUSJocinTxZfOyUKTy4d1x51odPqQd2K+gEHJWn+P1RSjBg+cnIZH1jYo9j8p24ApuUYUpeowPC32vUH1WgF/mpmBbbUuZJu1GJKiw8yBJuysdWNgkhb5SbH7KDYjz4RFQhMCM9K9DR5JX9loi1Y7061BrQ9vrkWDB6enY1edG4s2N0nW2fr55Lzy86LzBo7E0ORMXFo4HnMGDIvTqIiIqLdiSEsUQCMIOCm7o+LizAJzyJCWiKQ8PuWH6J+VnBKyUsSg1eHSwgndOSxMzR6MqdmDFct1AAaYk3Hc3qy6X2FSOu4ff6Z6SGvuQkibnCl5vI8hLRFRSPKQ9twhZlj1Glj1GiwYFvojTbC2AhcOs2BMZucmx4qUSSdgSkA1b5Jeg6lR3LkVjTkFJnx9pOMi6r4GaRVntJWxnelE4FY5PXZ5gSyzFrMGarG52okV5U7/Ons/r6SV95z/7YSzcUpuYXwGQ0REvR7bHRCFEuIOpCqGtEQK8ooRnaDp9bfyDQ7R3zbPnIIBlhSMkFW+AqF73YYjr6RlSEtEFFqzLKSNpodsskGA2t32Fl3vfn+K1ghZNfBeWX/YaFodAJ2rpHWp7BQYDlt00n+31mgH1ce4vNLzIr2GH7+JiCg4VtISdRIraak/E0URf9m2DG8d2AyTVodfjj0NlxZOwJGWely34i3VfUa+97ii95quD3wYGZyUjnU1R1XXtQexp+YOVbQk6Eq7A3noW++yo/i9xyCcuDKUrDfixhFT8fNRMzv9HERE/cn6SumEVymGyANWjSDApBMUt9Zb9L3/PSoa8pC21uHDO3ts+HGxFUD0lbRPbmzEuUPMuGZUEgxBesrKVduV58eB+bpFLz3O10cdmJJrxKQIewf3NfJKWgMnCiMiohD4LkEUgi3E1f1KThxG/djSsp24Z8NS/+PLvn0Dh388BDevegffHT+gus+epmrFMr0mslm146kgZCVtMgBgbPoAxbquhLRDktKhEzTwiB2vMfIQeGNtGcan5+HUAUM7/TxERP2B2mRUKVFU0gJtE1cpQtp+Vkmbn6SFWSdIWgi8u9eGc4eYkWLU4GhL9Oeunx+2I9mg8Qe94Xx7VNmz3i2ppFX+zP+ysREvnJWFpCj/TXs7n+iDV5R+ljD0gfMiIiKKn/71TkgUY+0TUKixeUQ4+nkfLUpc31cdljwWIWJN9WF8eWxPVMfJMcVu5uruMjIlO+i6YSltvWMvHiydJtCqMyCvCz1pdRotSlJzwm63PkiFLxFRIilr8SiWZVuiC7tKMqRVpiat0O9CWo0gIFmv/J4+O9QKAGhwdK7AYE+9K/xGJ5hUKm4vCwh4M83KfzevCBxsUv4b93XyVgdA37h4TURE8cOQliiENKMGpw8yBV3f0s/7aFHiqne1KpZVO1qiPs6vxs6OxXC61aWF4zE8WdlzdmRqNi46Ec4WJmfgtpIZ/nX3jJvT5VsW7x1/hr+9QTDyHr9ERIlIXgELAENTo3sNnltogTEgQJw/1AKtpn+FtAAwp8CsWFZ1ogVBqG4HBclaLDwpBWo/kmZXZEUJLW4fHCpVz2cEjGlitgGDkpRBpVq1dF/n9CmDZ6OGN7ISEVFwfJcgCuOn45NxbqEZeo2Au1fUSU5wm1w+ZKlUBBD1dfVOu2JZeWuT6ran5hbhrjGnKZaPS89TTJDVG2WarChdcBe+rzqMFk/bjNPJeiNmZA+BVd/RI++5GZfg5hEnw6jVYYxK+4NoXT1sEmbkDMGWugqIaHtheXzrt1hbfcS/jdvHC0FERPLJpbLNGmiinJSyOF2Pv5+eif0NbmSbtShI7p/nb+OyDPjvHptkmevE9T55DlqYosM1o5IgoO3nY9AKGJWhxzt7bZK2Bc0RFiWoTaq7+GxpGwOLXoNHZ2Xg2s+kLZLUJhzr65xelZBW2z9/74iIKDYY0hKFIQgCilLbbpFLNmjQ6Ow4UZXPNEzUX9S7lCFtma1BddvLi07CxUPGdfOIuleS3oizBxaH3W5S1qCYPu/Q5EwMTc70P37zQKkkpPWIrKQlIpJX0kbbj7ZdmlGDyf10gqp2atF1e09Y+cRhFp2AcVkGybJMsxanDzJLQ9oIK2nlIW2WWaPaZ9agFVCYosOhgBYH7v5YSavS7sDIicOIiCgEtjsgioJ8JuFIT1qJ+pp6p7LdQbBKWvZXix35z9LDSloiIthkcwBYVfquUhuPqDw3bW8lIJ9KQRvkk2Cy7HzX6RUjakcgD2lzQtxtJs9u+2Pdg8PrVixjuwMiIgqF7xJEUUjWawB0nICykpb6E5fXg/+3/iO8d2grKuzKQPbb4/tU9+NMxbGjE6SfWv+y/Ts8u2s1AMCk1eGCgtF4dsaPFGHum/s34Q8/fIlKe/C+wWatHpcWjseT0y5gsE5EfYJPFPHmLhs+OiC9cGjRs84kGLXOBPsb2ypW5ZW0uiAtI9Qqla/9rBpWnQARQGtA2nvPlFR/dXJVq/TJc0JM7maQTTDWl3rS2txO3LF2CVZUHsT5BaPw+JTzFe+rr+3bgOtXvK3Y18B2B0REFAJDWqIoJMtOWhnSUn/y5oFSPLNzVdD1PpXqHICVtLGk00hfY5xej6Sn3b/2rEWBNQ2/Pels/7JqRwuuX/E2PGLo16MG2LFo50pMzhyI60dMje3AiYi6wfrjTkVACwBWHStpg/GohJ32E6GqV/Y2EayS1qJvm9ZSfiR5RTMA/HlDI/49Nxs6jeCfoKxdqJBWr1FW6/YVL+5Zh8V71wEA9myvxrSsAlwxdKJ//fb64/jJyv8q9tNrtNAIvMBARETB8V2CKAoW2e119j50QkkUzvLKA53ab5A1NcYjSVwDLeF/li/uWQtfQCC7qbY8bEAbaH3N0U6NjYiopx1pVk68BADZIcK/RDciXa9Y1l606pVdbNUGqaTVCILinDeU9jYHgfM2AG09aYORFz7sb1D/t+6N7ly3RPL4p6vfkzxevHcdvCrvywXWtO4cFhER9QMMaYmiILvoj344ES0lsN2N1eE3kjl34EicklMY+8EkqJuLp2FwmA9xR2wNWFV5yP842IRuwVQ7bOE3IiLqpQZYtJg9yBTvYfRayQYNTsqWTgbWfr7qkeWGuhCfBOWVrqG0F9jaZU9gCfEEY7OkYfLWGlefnTysyd0xyZrH58W/929SbKMRBDx00jk9OSwiIuqD2O6AKAoa2Zy5DGmpP9ndWCV5fO+4M3BT8TQ4vR40uOz+5T5RhNvnRb4lFSNTsyEEqcSh6A1JysDeS+7FlvoKSZuDW1a9g50B/z5v7N+EUwcMBQCU2Rolxzg1twiPTp7nf/zOoS34244V/sfVjuB9a4mIerNciwZPzs6ALooAMRFdMyoJm6vr/I9FAKIoQp6Bhvo5qrX9nTbAiHXHnYrlvhMnxK2ydgjmEG0pTso2QkCzv6WCwytiZ70b47MMQffpC74o34Mq2fvs4pmXYcHgMcg0WeM0KiIi6isY0hJFQVlJy5SW+odahw21Tmnfv5+MmIrhKVlxGlHiMmh1mJJVIFl27fDJ+M3GT/2P3zn0AxZNvwgGrQ5lrdKQdmz6AMzMLfI/PthSJ1lf41T2dyQi6gsKU/QMaCOgVfkR+US1icOCH0Pt51ySrlcNab3+Slrp8UO1TEg1ajAsTYd9AW0OSqucfT6kfW3/Rsnjk7MH4yfF0+I0GiIi6mvY7oAoCmx3QL2ZKIpweT3+/9w+b/idTpC3OtBrtChKzoj1EKmTrgqYkAQA6l12fHR0B1xeD4601EvWDbKkSR5nGaWVO1WOFsnvSeB/ouzCk8vrgdfng9vnVWzri6IPLhFROKIowuNr+48XwbtGLcd2+US4ZSeu2igrafOT1HsBe0XA7RUV7RRCVdICwMQco+RxaZUr5Pa9WYvbiRqHDR8e2SZZft2wyXEaERER9UWspCWKgvxctrwl8hCMqDu9tGcdfr1hKWqcHf1GBQiYlVuIt+dcg/wwE1J9UrZT8nhYciZ0Gk7M0lsMScrAqblFWFF50L/s0m9fU91WPpFbtilJ8rjS3gzja/eq7ptrTsZfp16AUWm5uOq7f2OXrAVGoCyjFfeOPx3/b+ycCL8LIiJ1myqdeGFrM+qdvPgTCxqVNkQ3fF6jWBaqJ628KhYA8pPUPzrurHNhgMpkbuZQTwBgUo4B7+zpOG+psHmxt96NarsXr+1ogUEr4KfjkzEms/dU1zo8btXlyW/cr1im12hxedFJ3TwiIiLqT1hJSxQF+Unv7nr1EzWintTgtONna96XBLQAIELEisqD+NMPX4c9xot710kej0zNjukYqeuuHjopou0GWuQhbeQ98Crtzbh51Tv4v9XvhgxoAaDGacPd65eitLY84uMTEcl5fSKe39LEgDaGIu0IoQ3RU15tDq9ss/pHxzd32dAqL6MFYAlTSVuYokOaUXrMTw+1+gP7ylYvXtzarLjLI55WVx2KeNsLCkazDy0REUWFIS1RFFrd0hPQnCAnq0Q9aXvDcckkU3Jra46EPUaGwSx57OWt7L3Oj4smwKQNfQOMAAGj03Ily3LNydAJkb9W2b1urKs5GtG2IkR8cHhrxMcmIpI70uxBoyuyEC6L510RSTFoYIjgRxUsdAWgqF4dnqaDRhBwdYkydNRrlJW3WkG9ZUIgjSAo+ueuO+6UHOuYzQt3LzolqXNF3tf9huFTunEkRETUH/FMhygKk3OlvbOa3b3nyj4lrqO2hpDr9zbVhK1CaXJLJwK5rPCkLo6KYi3DaME/ZlwCq079tk+NIOCBCWciz5IiWW7U6jA5a1C3jeuz8t3ddmwi6v/2NkR+V9K8Iks3jqT/MGgFXFWSpDqBWLvidD1mDTQFXX/RMAsyTW0fFS26tuMBwJxBZtXt5SGtWSdACFGp2+6UfOkY1AJZeS/deIqkqFcjCLil+GTMLxjd/QMiIqJ+hT1piaKQK+u3Zfe0TXDBmYYpnuQh7ZCkdBwOmEyq0eVArbMVWSFuuWtyOySPhyVnxnSMFBs3jJiKy4tOQplKMJ9jTkKqQf3D86m5RVhbLa2oTtYbsfGCOwEAxe8/HtHzvzTrMpi0elz13b/9yzbUlKHGYQv5+0VEFMze+uB3ggT651lZilvjKbi5RRacXmBGvVM5f4JRKyDDFLrv/KBkHZ45IxM1dh8yTBr/uW6KUYM/zUzHb1ZJJ61UC2kjEUl1tMsrwqqP6HA9Tq/RYvtFv5IsyzRZkWHkBQUiIooeQ1qiKKSofDhodvmQHuZEl6g7HbU1Sh7PyinCsdYmuH0dH8z2NlUHDdF8og/NskraFINRdVuKP7NOjxFR9gw+NXco/rLtO8kyo0bnP45W0ETU4mJs2gCMz8iHRadH64nJU0SI+PLYHlw5dGJUYyIiAiKvpE0x8IJ4tEw6AXm6zn/c0wgCclQmBJMXyIoAWhUhbWSBuiGCQofe1O5AhPT7HJ6cGfV7MhERUTC8HE0UhSS9APmp5NEWL+od3l41qQH1Lz7Rhyp7M8psDaiyN0vWiaIoqZoFgMKkdBQlZUiWrak+gjJbA8psDah3SvuptbhdiudM0Qe/BZL6npk5hYplgRPNhZo8JlCG0QKjVocz8oZLli85sh1ltgbJhQEiSlyiKOJYa6Pi/Uau2eVDhS2y1w355K0UP/J/CVEE7LKJw8JNGtbOGKonwwkurwhRFFHv8KLW3vaf68TMZh6f2KPn4HWy3+lIWjoQERFFipW0RFHQCAKS9IKkF+0f1zYAaJt84d6paRiUzD8rip1dDVUY9cGfJcsmZQ7E0rNuQpWjBWd9/k9UO2yS9QXWNIxIycKepmr/sl+u+x9+ue5//sfzC0bhnTnXodXrxsQlf1U8L0Pa/iXc7NJaQQMgfFCSaWw7zrn5I/Hx0Z3+5f85uBn/ObgZyXojFs+8DD8umtCl8RJR37W9/jjO/2qx/wLigsFj8J8518KoMvHhkxsbFcuo7/GKwOpj0jtyIm13YIggpH17tw1Hmj2obO14n9JrgIFJOhy3eeEVRdw6LhmnBemXGwsNTjsWfP0yllce6LbnICIiYiUtUZSSg0yXW2334d29NtV1RJ017eO/KZZtqi3Hop2r8PAPXykCWqAtpB2ekhXyuB8f3Yn3Dm/Fv3avwRGV/qbJerY76G/SgvSrBdpD2vDa22CcN6hEdX2z24k71i7hnQVECez3m7+Q3OGx5Mh2fHh4m2K7RqcPO+ukrQ6Gp6lf6I4gx6MepPbPIf+3NOsjDWnDb7O+0ikJaIG2FgiHmjxweEW4fcCrO1rg6cYJxl7et141oOWvJhERxRJDWqIoDU4JXilb3sJbfSm25L1i2+1vrsW7h7aorhufkYdpWQVhj722+gj2Ndcqlo9MzYZWw7eH/ua1U6+QPL6l+GT/18WpoUN9oK0freZEmDs8JQvj0vNUt6uwN8HFtgdECWtfk/J9ZX3NUcWylcccimXDUvUYmqo8zzqvsPsqJCl62Sp9auUineQtknYHkWhxi2hwdl/z2hd2r1Fdvr2hstuek4iIEg8/hRNF6fJiKwYlqZ+c2nrTzAbUrzm8wSdaGWRNwyWF48MeY2djJVo9yn60z07/UZfGRr3T/ILR+OnI6TBotJicOQi/GX+mf93fT74o5L75lhQsmi7d5qVZl6EkNacbRkpEfZnT51Es29VYpVimFs2lGDW4fnQSAuecKk7T4YKhlhiOkLrKqtdgco4h5DbnF0X2b5YZw8l3u7OqtdrRorp8TFpuNz4rERElGjbPJIpSfpIOT87OhN3jw556N/60rqOfms3NW3ypZzi8yg/BAHDD8CkAAKNWh1m5RVhZeTDoMXY2VCEpS9rW4PcTz8GZ+SNiN1DqNQRBwPOnXIp/zLhEMdHJzNwibF7wS5yk0p/463N/itPzhiv2mZJVgB0X343S2nJM/ujp7hw6EfUhTpX3p92N1YplaoFasl5ASYYB/57bdgHI7RWhZ6+DXumqkiRsrKpTXTch24Asc+zC10h5u/E03COqF2KMDXJXCRERUWewkpaok8w6jeLqv8Mrdms/LEosofp6Bquk1QT0Fs03p4Q8fnlrIyrtzZJlFm3oyhjq+4LNRJ1rSlJfbk4Ouo8gCEg1cJI5IuqgFtIeaKlVLFd7WUmS9f1nQNt7ZZmDf4ycmB35uUSQt5dO8XVjP3RvkPN7TSy/ASIiSnispCXqAqvKpAg2t4hUI0/YSEkURexrqkGz24lUgwlDkzMl4ZfT60GNw4ZccxJ0Gi0aXPagx6p1tKouD/ywkGcJHdICwOa6Y5LHFp0+7D7UP2UHCWk7M4lcaW05SlJzkGZkH0mi/sTjE1He4oUIEaIItMdWWkFAQbIWoiiirLVRsZ9PFLH06E4UJqXD7RPR6PJhf6NVsZ1FF9vzp+OtTfCIPgyypsXkeD7Rh2OtTcg2JcGoTeyPUSadBkl6AS0qd5FNDNMKobsE5qg+UcRxmxdpRg0s+rZAuf331yuKyDJrkaIyGfCRlno0uhwoScuBVhCwu7Eado8bLR71OQI0nDqMiIhiKLHPLoi6yKpXntwt2tyIB05Oj8NoqDezuZ0494t/YVXVIf+ys/OL8dFZP4FRq8Oh5jqc88UL2NtUg2lZBXj/jBsw6X9PBT3etobjqssDPyzkRxDS2mUVuWaGtAkr2GRx4UJatSrbGUsXQSMIeH7GJbhl5PSYjI+I4utoswcPr21AY5DJmfQ6G76ueyvo/pd8+6rksQANpqXMwxDTaP8ycwxD2p9//z6e27UaQNtEiS/M/HGXjmdzO3HW5y9gTfVhDE3OxOfn3ILhKeEnXezPssxatLilFdJ5Vi0GWOPzEXNluQOXjUxCi9uHR9Y04GCTB1oB+L/xyRiaqscjaxtQH/D7e8VIKy4e3naxQBRFXL38Tbx1oBQAoBM0EAQB7jATYbKSloiIYontDoi6wKAVIM9pt9a4Ud3Kmc1J6n9Hd0gCWgD48tgefHVsDwBg0c6V2NtUAwBYV3MUV373BqqCTFIRSuBnhUhCWjmzliFtIss0Kid66UwlLdBWxXT/pk9Dtu0gor5j6YHWoAEtAJQ2lOK4Q71HqRoRPmxrWSFZlqRy8bszVlYe9Ae0APCvPWuxI8jFzUg9t2s11lQfBgAcaK7F87u+79Lx+gO1lgcnRdHqINbe29d2l9HqYw4cbGoLj70i8PZuGz451CoJaAHg3b02OE80si2tLfcHtEBbD9pwAS3QvZOVERFR4mFIS9RFRSnKaoFqO0NaktrbpJw0BQAONLd9oP3r9uWS5StCTPgVypi0Af6vp2YVKNaPSs0Juf/4DE6AkcguHDxG8nh0Wi50mtCTvxRY05CkUw9yqx22oJPcEVHfUusIfW7T5K2N+pitPmlf9Pyk2Ew29Z+DmxXLNtSUdemY92xYKnn85PbvunS8/mBYqvLC7oy86PqUpxs1sMaogrq9hXFplUuyvNbhQ6VN+fvr8QHNrrbgdl9zTaeec0z6gPAbERERRYghLVEX3TJOWa3o8LByjKTqnOr9ZZvd6j3OgknRm2DQaGFQCc6uHTYZtxSf7H88MjUHT069AHnmFKQaTLhpxDSsOv8XuHLoRCTrjf7jGDRa5JlT8MSU+Ridxg8bieyRSefhzLwRMGv1GJ+eh5dnXR52H71GizdOuxLDk7OgV/m9dPkY0hL1B+HmRbV7m1WX6wQ9NNBCJ2ghyD56iOiobJyUY4jJreM+0Yf3Dm1VLN9W37VKWlKaW2TG9DwjTFoBmSYNrilJwsiM6O7I0WoELJyYgjxr5AH98DSd4k42oK1q1ieKcHmVv6yNLvUq8PZN65zqvf7bCbKa2WS9EVcUnYRfjJoZ2aCJiIgiwJ60RF00OEWHQUlalLV0XKG3q5wcUmKrddpUlze5HRHdDv7AhLPw8KTzon7eX46djV+OnS1Z9ubsq6M+DiWGfEsqvjrvp1Hvt2DIWCwYMhZV9mbkvv17yTpXBLeLElHvFyyk1WsAtw+wy6piZ6ZejIHGEf7HZw82490DR/F53UuS7URRhCAIuGSEciKxzlhddRgV9ibF8liHtDqBtS5mnQZ3TUrt8nEm5hgxMUd6R8Z9K+twoFF5kW9ekRnXj04GAFS1erHwW2kFt8srQq1WIlirDu+JX+z6EJO1Am19jf8589KQ2xAREXUVzy6IYsAku02LlbQkF6xCo9ntRE2QADdQjikp1kMiijmDRnnt1+VlSEvUHwQLaU/JN8En+mD3SfuomzXJkscun6ioRgQ6qmmzzLFpdfDuoS2qy4NNuBmJZrdDsWxEgk8a1t1SDOofUzNMHb8napu4fB3Ba6Aml/ovsC/CSloiIqKewEpaohiQz0bsYCUtBWhyOfBJ2S7Vdbsbq/HOwR/CHoMhLfUFBq0yZKl3tWKgteuVVkQk5fR6sKHmqKJtTrrRjEmZg1TbjwCAx+dFaW05aqMIpRqdPiyrbEG6LhcCBNR7KuET2y7A+LRWlDnrIEJ67mPRSkPa6lavot0BAFS4DkADLVZX1SraHSTpjZiSOQgmXdst9OW2RmxrOK64A8WqM2BKVgGMWi3+tkM6GVm7o7YGLDm8DZkmq+SYaipam7C1vgK+E89zuKVesY1By49R3SnVGCyk7Vhu0CpD/2aXL6rz8PLWRmxvqmE7DCIi6hV4dkEUAyYtK2lJ3Y6G4zj1k+eCrv+6Yi++rtgb9jg5Zoa01PsZVSppx334JKqufAjZvNBAFDMNTjtmffIMtjdUqq6flVuEb8/7P8XEfz7Rh3lfLsaXx/bEbCwr1iuXaaCBUbBIlu2oc0Oj0iJgVeMHbcf5Sv34I1OzsXLeL/B5+W5cu/wtRRjcbnhyFnSa0DcJXvTNKwCAktQcrDr/F8gwWhTbfFq2Exd9/UrYVi0/1B3Dm/s34aphk0JuR52TGqSSNjNMSPvL7+oifo4jjp2Y8cnHQX+niIiIehrbHRDFANsdUDD/2r02JrfQZZti06uPqDtpNRpoVUKYV/duiMNoiPqvj47uCBrQAsDKyoP4umKfYvmqykMxDWiDMWuSIahMAqZWSRvO7sZqvH94Kx7f+m3IMG1fcw12NVZFdMxdjVX44LBycjEA+NOWbyLupf2HH76MaDuKXkrQStqOCw9aAdB0Ya65na1rIg5oYzCnHRERUVgMaYliQCs7c/NGMBEUJYbjdvXZrqORbjCjOCU7BqMh6n6TMgcqlm2oLYvDSIj6r+MqE2PJba4tVywrrVMu6w6Z+nzV5WZNEkya6C86VrQ2oczW0MVRSZW3NiqWiaKIH+qORXyM3Y3VsMnaTVBsjEhT3pmRadIgy9zx8VUQBAxN7fyNoa3e8H9H7SZmKN/biIiIYo3tDoiIupFXVM4mfEbecFTam9Hokk5EUnbiA2OqwYRkXdssxwXWNPxp8lz2vqM+443TrsLI9x+XLIsm9CCi8Dyy9xaTVgedoEWLpyMw3KlSVbqzQbrMqjMg3WAO+jxeEah1OOESlRNnAUC2MQnGE72o7R4RLi+QZRiAi/PPxS1j07Cn3o1lZQ7UOXywe0QIgoBTUi/ClpbvYPM2nhi7AIteOqVYrbMVdq/b/9jh9aA14DHQ1qvd5nHB5nEFHX/Nlb/HHWuXYGXVQVQ7WtDq6TiGza3cr8LepOjxm29JgQYCRKgHu7sbqzEpa1DQMVDnjEzX47rRSfjmiB12j4gssxbXjkpS9C3++YQU3BVFi4N2oijCLUr/rXPNybB73GhyO1BgTYMoijBp9bhw8GjcVDytS98PERFRJPipnygGeAcUBSOvqv79xHPw4EnnxGk0RN2vODUba+YvxPSPF/mX7Wmqht3jhjnERD1EFDmPTxrSzh1YgtMGDMVd6/7nX7ZTpR3CDtmyByachXvHnxH0ebbUuPCL5ZuwovFd1fUbL7wTBUlpQfcvyTDgwmFWfLDPhrd32wAAWfqBOCP9KkzPM+KuSeqTCt608r94ae86/2ObxwWn1yPZZtnc27B4zzo8uf071WOsmPdzZJqseGP2VQCA/1v9Lv65e43kmHK7VELso5c9IOmlO+zdR3Ggudb/eEdjJUPabiAIAs4vsuD8ImXf4ED5STrcMDoJr+xoier48oAWANbNvx2Dk9KjOg4REVEssd0BUSzIUlo2O6B28kpatX6dRP3N2LQBCKyL84kittVXxHFERP2L4r1Fo8GotFzJsp2NVRBlFwrlIe2o1JyQz1Nr90IvGFTXWXR6DLSmRDpkhRFpwS/atFfntqt3KXu7W3R6JOnVx5ZvScEpOUNk20u3VQtpdzdVSx4Xp2QrJjuT/8zkP1PqeclBJhkLRS2kTQtRVU5ERNQTWEl7wpEjR7B48WIsXboUhw8fRnNzM7Kzs1FYWIjTTz8dl112GcaOHRt0/08//RQvvPAC1q9fj+rqamRnZ2Pq1Km49dZbMXfu3B78Tige5JW0bElLoihiTfVhLDmyXbKcIS0lAqveiBEpWdgTEHg8tWMFXj/1SmjDzL5ORMGJoojVVYfw0t71kuU6QaMID5vdTjy3azWS9W3tcxxeD2qcNsk2o2XBriiK2Fnnhs0twuUT8fZuG3Qao+pYRqgEmMHYVSZUDRXSmrTSddvqjyu2segM/u9N7pIh4xVjs8pC2p2NVXht3wbkmJJwet5wGDRavLpPOslhSZoyxB6dloulZTv9jz8v340/TZ4X9Hvp71o9LnxbsQ+1sklSs01WzBkwvEfuoEgyRH9Pm8snbeGhEYSgoT8REVFPYUgLYNGiRbjvvvtgs0lPXMvKylBWVoaVK1eiqakJTz/9tGJfn8+HW2+9FYsXL5YsLy8vR3l5OT788EPcfPPN+Oc//wkNP5gSJYx7NyzFn7ctUyyXTzJH1F9NyMiThLRvHSiFBoL/1mMiit7d6z9Wvb1fp9FgkDUVFp1e0nf1F2s+CHoso1aHouQMybJFm5uw6pi0wjBYJe3IKCa03N/gViwrCjHhk0nWh32zSl9rq86AZL1Jdf/Liiaobh9obfURrK0+AgCYPWAoZuYU+R+3U/se5cH2ptpyrK8+gqnZg1XH0p+5vB6c+smz2KQySR0AnJw9GCvm/Rx6jVZ1fawk67teSZtmMEd80YGIiKi7JPw70SOPPILbb78dNpsNxcXFeOKJJ7Bs2TKUlpbiq6++whNPPIFTTjklaMB6//33+wPaiRMn4q233sK6devw1ltvYeLEiQCAF198EQ888ECPfU/U8+Sxm4+VtAnN4/PimV2rVNd19wcVot5ifLpydvd/H9iEoy0NPT8Yon7A4XGHfG/RCBqUhGlfEKg4JRu6gPek4zaPIqAFAL2gXq1anBp5SJufpAxkDdrgFy3N2tDVlwIEmLQ61UpatVYHAJCkC14l+d3xA/jTlq8Vy9V+nqNUqmuf2an+79Lfrao6FDSgBdqC8PXVR7t9HLFod5AaJPAnIiLqSQldSfv111/jt7/9LQDguuuuw4svvgi9XnpSeOaZZ+JXv/oVXC5l36o9e/bgL3/5CwBgypQpWL58Oczmtl5GU6dOxYUXXojZs2djw4YNeOKJJ/CTn/wEw4cP7+bviuJBL/ug4WFKm9AaXA5JJVOgGSofHIn6o3mDSvDb0s8UyzfWloWcaIiI1B2xNSgmz2p3Sk4hAOC8gSUhQ7NA5w4sljzeWaf+vqUXjNBCBy+kz51tskb0PAAwM9+ILw7b/Y+vKUkKuX379xP0eLmF0AgazMgeAo0gwBfQZ+qnI6erVkTOzC2KeLzt5uQNUyw7KWOgYtnG2rKoj90fHLc3h91G3mKjO2SZNcg2a1Bt94Xf+ASvKP195sSWRETUGyRsSOvz+XDbbbcBACZMmIDFixdDpwv+4zAYlFffn376aXg8bW/wixYt8ge07SwWCxYtWoQZM2bA4/HgqaeewrPPPhvD74J6C6MspHUxpE1oDS67Ytm0rAL8fNRMnJzNkJYSw6SsQXj9tCtx7fK3JMtL68px0ZDgPd6JSN3hlnrFshnZQzC/YDR+MmIqAOC3E86C0+vB8soDisnF2mkFDWbmFOL3E8+VLHeo9I0FAEEQYNWmoclbI1ku7xsbSkmGAbeNT8b3FU4MS9PhvMLQEzSdmT8C/zzlUvx7/ya0eKQVjyWpOXhs8vkAgMLkDHxwxg1YtHMlmt1OnJ1fjPvGn6l6zImZA/Hv067Ci3vWotHtwJ7GGsWxAz0340fINScrlhu1Ovz95Itw+9oP/ct2NVbD4XHDlGBBX4tb+vOz6gzwiD7JxQS3z9vt49AIAu6Zkob/7rGhxu6FUStgTKYe7+1TTjgHALeOS8Zv1kn/Pgy804mIiHqBhA1pv/jiC+zduxcA8Otf/zpkQKtGFEUsWbIEAFBSUoLp06erbjd9+nSMHDkSu3fvxpIlS/DMM89AYE/Kfkevkf6bOrv/fJR6MXlIa9BosWb+7fzbp4RzzbDJKK0tx1+3L/cvK42wyo+IpI7YpCHthIx8rJ6/ULLMpNPjL9Mu6NTxW9zBqxCTVEPa6M6d5xSYMacgdDgb6NaR03HrSPXz60AXDh6DCwePieiYVw2bhKuGTQIAXPT1y4rJPQOdP2hU0HU3jJiCO9YugYi2YNsr+rC9oRKTswZFNI7+osUjvdPwlJxCHGttxPaGSv+ynghpAWBwig6/mpLaMTa3L2hIOzRVBx+k42JIS0REvUHC9qR95513ALRVB8yfP9+/vK6uDnv37kVdXV3I/Q8ePIhjx9omMZg9e3bIbdvXl5eX49ChQ10YNfVWRtl5ncvLStpEVu+UhrRpBjMDWkpYEzOltwYzpCXqHHkl7RBrekyPX+sIHtJatamKZdGGtL1NrklZJRtIF2LC32S9CcNTMiXLNtcl3mubWiWtvPe+2xd5C4JYCvUh16rXKEJaHUNaIiLqBfr22VUXrFmzBgBQWFiI5ORkvPnmm3j00Uexbds2/zbFxcW45ZZbsHDhQhiN0okJduzY4f+6pKQk5HMFrt+5cyeKiqLviUW9m6LdAUPaPmVN1WG8daAU6UYzknRtf+tajQan5AyJqj3BgeZafFa2SzE7dJoh8sohov5moqx/Y1lrI/70w9dIN5oxb1AJhiRJZ5f3iT7878gOCAAuGDyas21TQvD6fFhathN7Gqv9y3SatrYEDS4Hfqg7hod/+Eqyz5Ck2Ia0Zc3q/W4BIEmrfK5o2h30Rrnm0H1xdWFeeyZk5GNvU0d18Rv7N0ku0moEAVOyBuG0Acq+tl0hiiI+ProDHtGHCwvGQBsiTA7n+6pD+L7qsKSnbyhaTVsf4Okn+uvvDvh9BYAkvTKk3VRbhmuHT+70GDtLqwl+cdyiF2D3tki3FxjSEhFR/CVkSOvz+bBr1y4AQFZWFu644w78/e9/V2y3Z88e3H333fjggw+wdOlSpKWl+deVlXVMEDBoUOhbmwoKCvxfHz0a3Qyngc+jpqKiIqrjUfeQz1DsZEjbZ7yydz1uXPmfoOvfmn01rhg6MexxdjdWYepHf0OzW9nfLt3IkJYS18jUbJi0OjgCehTev+lTAEC6wYxNF96FwuSOoPaa5W/hrQOlAIDrh0/BK6de0bMDJoqDn695H//cvSaqfYbEcAI+j0/E3oZQIa3yufp8Ja1Kv9lA4SorT8rIx7uHtvgfLzu+H8uO71ds9/yMS/DTkhmdG6SK/1v9Hl7Y0/a7cmnheLxz+nWdOs6re9fjhhDnP6H8+7SrMCdvGP59YJNkeZLOqAhpn96xAgsGj8GcvJ6dPDlUdO3xObGz9XvJMlFkSEtERPGXkOUpjY2N8J249Wbr1q34+9//jry8PLzxxhuoq6tDa2srvvvuO3+f2dWrV+MnP/mJ5BjNzR2zmSYlhb4Sb7V2zH7b0tISYkulgoKCkP9NmzYtquNR92BI23eFCmgB4KW96yM6zjsHt6gGtEBbEEWUqHQaLcan56muq3fZ8f7hrf7H5bZGf0ALAK/u24Bmt6Pbx0gUT16fD6/t2xj1foNj2O7gu7LQf2dq7Q7MfbySdkCYkDZcj9KTMvIjep7nd38ffqMI2dxOf0ALAO8e2oIyW0OnjvXqvg2dHsfivevwadkuxfIUvVH19+L1/ZsUy7qbNsin3GyzBl9X7FUs9/kY0hIRUfwlZEhrs9n8XzscDlgsFnz77be4+uqrkZ6eDrPZjNNOOw3ffPMNJkyYAAD44IMPsHbtWsl+7QwGQ8jnC2yVYLcrZ32nvk+W0cLHjLbfqHJEdmHlmL0x6LpzBo6M1XCI+qQfDRkXdF1Za8ffzraG44r1LW6XYhlRf+IVfbB73VHvl6w3ht8oQivLQ4e0ydoMDDR39GBNM5j7/CRZswcMCxo0T8sqQFKYn+/sAcMiugi7q7EK3hj1Za13KT9HHGlp6NSxGrtwAayitUnRfx8Azsovxpn5yorZWqdNsay7aQQB47OUn9FuHJOM8lblOduE9KE9MSwiIqKQ+vZ9Sp1kMpkkj2+++WaMHKkMUcxmM/74xz/6Jxb7z3/+g5NPPllxDJcr9AdIp7Ojus5sjq6iLlx7hIqKClbT9gIa2aRQzGj7jyZXZB9iah3SGYSHJWdiVFoOTh8wHHeMntUdQyPqM341dg60ggbfVe7HjoYqHGiu9a+rsreoft0u0l6JRH1VZ3/D5beVd0WTK3SIeMOYZDyaeSse3/oN3D4v7hh9Kiy60EUKvV2WyYqvz/spnt25WhIiDk/Jwn3jzwi7f5LeiG/O+z88tX255IKuVxTx5bE9/scOrwdHbPUoSs5UO0xUPCphb6gJzkLxyl5bx6fnId+SorptrbMV62s6PpM0uBxwi17FdmcPLMYZecPxtx0rUWnvuOvQ7on+IkQs3DEpBR/steGbow4Upuhw5mAzJucasaRcGRqfnTs1DiMkIiKSSsiQNjlZenvTOeecE3TbM888EzqdDh6PB+vXd9z2HHiMcC0MAit3w7VGkAvX75Z6B/ncBAwV+o+mCCtN6lzSkPa2khn4f2PndMOIiPoerUaDX42bg1+Nm4Mntn6LezYs9a8LDDeqHM2Kfd0+ZRBAROFvx49Go1MZ/j1xWgYGJwd+VLDghZk/jtlz9gYzcgoxI6ew0/uflDkQr552pWSZKIpIf/O3aAy4yLu7sTo2Ia2oEtJ2cnJF+bnqvePPwJVBevCvrT6M6R8v8j+ud7UqXpsvHjwWQNvr/YMTzsLP13zgX9eZSvFYSNJrcO3oZFw7WvrZr0ZW2TvUNAFhrlMQERH1iIRsd2A0GpGdne1/HDixl5zJZEJWVhYAoLq6YwbTwPA03ORegdWwoZ6L+i75HxLbHfQNkdx+2OR2QowgdJdX0mYYLZ0eF1F/lmOSXqyUhLQqlbRqoQRRfxLJe4yaWFbSNruVY0jIDwkxIAgCRqZkS5btbqwOsnV01C5adb6SVvraqpXdFRYo3SA9p3F4PYpWNIG/j2adtI1EvELaYGoc0pDWqLHAwfkkiIioF0jISloAGDNmDJYtWwYA8HpDV+m0r9fpOn5co0eP9n+9a5eycX6gwPWjRo2KdqjUB8jPa6vtDBV6i31NNfjo6A6clJGP0/OGY09jNd459AMaXY6IKvTcPi8e+eErNLudKExKx7XDJyNZ39HupMzWgLcOlKK0rlyyX6bRKj8UEQHIMUtD2gPNtbhn/ccAgCe2LVNsz0pa6qu8Ph/ePFCKrfUVIbdzeD2dOn6sQtpgITEzq84bmZqDdQHtAd44sFG1D6qcRhAwI3sI8i0p+Lhsp6JNQLVKn/ynti9HtikJOo0Gp+UOxXmDSiIaozyklbfuCpRuVLZr+7x8t+Rx4O+jSdbrd0NNGZ7duQpHWur97T1GpGThmmGTFYFuT6h1Si+sGzVmVLTwvYaIiOIvYUPa0047zR/SHjhwABMnqt/e09TUhJqaGgDAwIED/cuLioqQn5+PY8eO4bvvvgv5XMuXL/fvX1hY2PXBU68jb3cAAM0uH5INrEOJpyMt9ThpyV9h87RVe/zt5AX4XekXaFCZeCOUB0s/93/94ZHt+OLcWwEArR4XTln6DI6qzKycyUpaIlU5Jultp81up2o42+7f+zfhkclzu3lURLF394aP8dT25d12fH0nKyjlmlzqaaybtwV1WklqjuTxhpoybKgJfeddZ72yb4P/60fxDd447SpcPWxS2P3k7Q60IdompKlMkLZFdvEhsKJXbUK2XwS0P2j3xbE9eOf068KONdbklbQGwYzSahdcXhEG+WzAREREPShhE6RLLrnE//UHHyhPGgLXtVcYnHrqqf7lgiBgwYIFANoqZdesWaO6/5o1a/yVtAsWLIAQ4io19V1qJ3Q763rXrV2J6E9bvvYHtABwx9olUQe0cl8e24P6ExUYa6oOqwa0AJBtiq7/NFGiGGBODr9RgFVVh7pnIETd7I39G7v1+NYYTdxVYVOv5E3S85y1s+QhbU96PcLfO/kkZBoE//fWa7RINZiCrgcAS0BFbIreGNEYPjy8Da5OVpJ3hbKStu1728VzdyIiirOEDWnHjx+PuXPbKnPeeustfP3114ptjh8/jgceeAAAYDAYcOONN0rW33nnndBq227tWbhwIex2afhjt9uxcOFCAG2tEu68885YfxvUSwxLVVYMOD2sQIm39w9vjXqfJF34DxatJ24/bHY7VdePTsvFiJSsqJ+bKBEMtKZiSlbkk2KatAl70w/1YQ6PG9UO5QzykQqsREw3mHGPbCLKUak5GBqDiagA4GCjMiQbnqbDACv/9jrrrPwRSFepPu0J+5tqI9quVdYn1qoPHfpfWDAm5Pr5gzpawZ2cPRhZEbR98oi+uLS0CbyADwA6oe17r3Ww5QEREcVXQp99Pf300/j+++/R0NCA+fPn484778S8efNgNpuxbt06PProo/5JwR5++GFJuwMAKC4uxt13343HHnsMGzZswMyZM/HrX/8aw4YNw/79+/H444+jtLQUAHD33XdjxIgRPf49Us8waAWYtAInHehjBpiTcXZ+sb/q5Nbi6bitZAYm/u+pkPu193FTm9Do/vFn4uejZrJqniiET86+Gc/sXIXDLfUAgA8Ob0OT26G6rbeTkyoRxVOFvUmx7JphkyS3lNc4bFhatlN1/+/m3oY39m+CUavDtcMmY2z6AJSk5WBl5SHkW1JwW8mMmL3PHGpShrS/mZYWk2MnqhSDCavO/wVe3LNWUbWp5lBLHb47fkB13bj0PEzK7PgM0upx4Z1DWwAAlxedBLvHjf8d3e5ff9hWD6/PB22YdhgtsgvN4Sqz/3nKpRiXPgDbGyoly40aHeYXjMK8go55N6x6I1ad/wuMfP/xkMcEAB96/jVeGdK2XRRpcHJOCSIiiq+EDmmLi4vx0Ucf4dJLL0VlZSUee+wxPPbYY5JtBEHA/fffj3vuuUf1GH/84x9RVVWFl156CaWlpbjiiisU29x000145JFHuuV7oN5jgFUr+aAjxuGkk6SEELfuAW0ffF477Uq8dtqV/mWR3HbX3sdNfqvgmLRc9s4kikC2KQm/n3iu//GhlueCBhTyyW2I+oKK1mbJY5NWh9dOvVISrJbWlquGtBpBwNTswZiaPViy/MYR03DjiGkxH+tBWUh7w+gkWPUJe7NdzIxKy8WT0y6MaNslh7cFfQ28rHACHjjprKD7Vtqb8b+3O0Jat8+LY61NKEhKC7qPT/T57wpqF+5OIrNOj7vHnR5ym0DFqdlI0hnR4lG/66hjLD17vuz2eRXVu9oTIW0jQ1oiIoqzhD8DmzVrFrZv347f/e53mDBhAlJSUmAymVBUVIQbb7wRGzduxMMPPxx0f41Gg8WLF2Pp0qVYsGAB8vPzYTAYkJ+fjwULFuCTTz7Biy++CE2MJneg3kseBzKi7f1CzWQcSrBKWl2MZtomSjShbtuWXwwh6guO2Rslj/MtqYrKV0OQ94xwFxhjyeUVUdYsDWmLUhO6hiMuDNrg5w/h2hDkmJIk/WAB4GBL6JYHdo9bUUwQ7nk6I5LzrJ4OaVtlVbRARyVtPUNaIiKKM56FAcjMzMRDDz2Ehx56qNPHmDdvHubNmxe7QVGfIz8PPdocuq9Vi8uHzw7bUe/wYnKOEZNyI5tkgcJ779AWfF6+G1WOlpDbaTsZ0g5/r63iXt5XUxdiZmQiCm5YiJB2eaV6dRlRb7ansUbyOE9lwrxgIW1nLyB2xof7bAjs1CQAGJLCjwc9zaAJ/jMP14ZAEAQUJmVgR0AbggdLP0dhUkbQfZwqdw0lxWgiOunYwm9j97qRHmabOmcrntm5EtUOG64dNhnTZFXmoTg8bjy7axW21h9vez6PcnKw9kraNRVONDp9SDUGtCWxe/HVYTvSTRqcNdgMrYbtrIiIqPvwLIyom3x0oBUXDrMgxaAe3D25sRE7Tswi+9URB+6bloqTshnUdtU7B3/AZctej2hbbRdD1Q01ZZLHOlbME3VKjikp5Pp11Uei+lBOFG/3b/pU8jjfkqLYJlj1ZE9FQKVVTry3T9ovdYBVC7OO72U9LVhgD4QPaQGgSBbSfnf8AL5DdBe4InmeaGki+G3+xfcf4P0zbwi5zY++ecXfDuJfe9Zix8V3Rzxx3s/WvI+X964PuU17JS0APLquAY+d2hZwu70i7ltZhyZX25WMylYvrhutvOBCREQUKzwLI4oRo1Z5IrqnXnm1HgBa3T5/QNtubUXonl0UmQ+PbIt4W7UPJFpBE/LDUijJeobsRJ0xMXNgyPXvnZgkh6gv8KjMVp9usCiWJetNqvt3R1im5uMDygmtCllFGxcpBvXfBQDIMJrD7j88JatLz2/U6mCWtUyIhUh+l789vj/k+iaXQ9Kv1+n14L8Hf4h4DB8f3RFyvRY6aNBx3newyYM6R9vf8JrjTn9ACwBLD9ojfl4iIqLOYEhLFCMz8pQBndOr3mfLpbLc5mYX21gI1+Ig0KWF4xXLtBoNLlFZHokfF07o1H5EiW5y5iBMyMgPun5XY3UPjoaoa+pdyiBn3qASxbIMowVn5Y9QLO+p95JttcoLyTkW9laPh7FpA1CSmqNYnmdOwam5Q8Puf0XRSV1quXR54QRouqFl02VF4X+X5ZN4yTW5HYpluxurIh5Dszt0EURx0ihFv+j2c/IKW/jJZImIiGKJl8uJYuScIWa8tF0aEPqC5K4eleVscRUbtQ5pZdDUrALsbarBydmDMT49DwCg12hxRt5wnKny4RgAXpp5Gc7IG449J4KhTKMF9278RHXbcweOxMSMgZiVW4jzC0bH8DshShyCIGD53J/h1X0bkKI3YndTNR7d8o1//c7GyhB7E/Uu8vchADhPJaQFgPfPuB6v79uIQy31AIAxabm4atikbh1fKOlG1m/Eg1ajwXdzb8O/D5SiorUJAJBlsuKKopOQFMFdOtNzhmDV+b/Ax0d3wKHSbzaUkanZuHbY5E6NO5w/T5mPSZmD8EPdMQBArjkJQ5Mz8aNvXvVv0+pxQxRFRVAauF7uuL05oucXRRFOrzQEvmH4FGSfaLFTkpqD+YNOwsJvGyTb2E+cqJtU7pLziWKP9o0mIqLEwpCWKEYEQUBRig4HmzpOjoPNWOtRSW9VzgOpE2qdNsnjByachQsHj4nqGCadHjcXnyxZFiyk/XHheNwk25aIopdiMGHh6FkA2nrQBoa0B5rr4PR6YNTytIV6vzqnNKS16gxBf3eT9Sb8bNTMnhhWRDJMDGnjJcecjLvGnNbp/adlD+51vbu1Gg2uHjYJVwdceDjQXCvZRoQIh9cTtN1Cq8elWFZma4zo+T2iDyKk59z3jj8DI2VVy6lGDRqdPv9jR3tIq1OenLd6RCTpedJORETdg2diRDGklf1FBaukVeuCwNliY6NW9uE406jsAxhL4W7TI6LojUzNljz2ij7sa6qJ02iIolPnkr4PZXTz+1BniEEuIqeb2O6AupdFqwxjbSpBbDu1StqDLXVBf4cDOVWqio0a5QUTecWs3dMW2JrlJ/YA7GxPRkRE3YglKUQxJD+Ve35LM2YPMvlvi7J7fHh/bytWHlP216Kua/W4FCf6mUZrtz6niyEtUcylGszIt6Tg2InbfgHghpVvI6sLf89DkzPxm/FnYqA1Nep9HR43Ht36DTbUHA16h0Qow5Iz8ZsJZyLf0vbcr+3bgA8Ob4PDqz65pF6jxTn5xfj5qJlBbwGm3mVzbTme2r4cVY4WVMhuxe7ui4XR2FrjwrKjdslkSIHY7oC6m0VlMrFapw1ZJitEUcSbB0rx1bE9OCu/GPMLRuFna95XbG/zuHDuF/9CgTUNvxo7G1pBg4VrPsAXx/bglJxCpJxoEeH2+RT7qlW1m2UVs44T1RQGlWsWrSeqbF1eER/ut6HO4cO8IgsGJ6t/rD7S5MHHB1uhATB/qAWDgmxHREQEMKQliimNSjXso+sacP/J6QCAF7c2Y+Ux9QkMOvG5n2TuWf+xYlmmiZW0RH3RqNRcSUi7oaasy8dcU30YGy+8K+r97tmwFIt2ruzSc6+rOYp1F9yB/x3ZjutXvB12+4+O7oBeo8VPS2Z06Xmp+9ncTpz+2fNoUJkwDOg9lbTlLR48vr4BbmVu5ZfGkJa6mUWlrcHNq97Bink/x9Kynbhm+ZsAgFf2bYBRq1OthgWAL4/tAQB8dHQ7PD6ff8K+1VWHQj6/Wkgrb2vgUJs84oT2KttXdjTj6yNtRRdrKpx4/swsxXFcXhF/WFOP5hPVt5uqXXjujEzoePccEREFwTMxohhSaV2FLTXugK+D384l75lF0VtTfUSxLN1g7tbnnJpV0K3HJ0pUY9JyY37MTbXlqHHYwm8o81n5ri4/9/qao2hxO/HB4a1RPO/uLj8vdb9VVYeCBrQAkGdO6cHRBLfsqCNkQGvQAHo2yKduptMoy1PbJ2r9xZoPJMuDBbSBqh02f0Abjl6jhVWlktesaHfQdk6ultW2r2sPaNuXfXlYOYZ9DW5/QAsAjU4fjrXw4j4REQXHkJYohowhPtyIooiWEH2sgvWvpcgdtTVIHhdY01Q/DHTGvePOUCybllWAU3OHxuT4RCR1w4ipMKv0Luwq+eSCkahojWwm8XC8og9b6isif157U/iNKO72huiXrBU0uGHElB4cTXCbq9Xv5Gl3wbDeUfFL/d802QXu9tZRh1vqu/V5rx46MbJK2hPtDpwqKa3avBIAUG5TBspVrcpA1sNb54iIKAS2OyCKIbVZYNs5vSKD2G5kcztR5WiRLFt61k0xO/6fJs/FnLxhaHTZkaI3odHlwILBY9gvkqibTMwciNIFd+HL8j1wRFBNFcxvSz+T7F8nm1wwHJvbiRaPNNy6b/wZyDCEDrQa3Q488sNXkmUenw/bGyoly34xaiaGWNta4uxqrMLivev86ypaGdL2BfKQdkrWIFxeeBL0Gi3m5A3DhIz8OI2sQ53DiyPN0sBoflHbnSaVrT6cNdiECdnKCkOi7vD8KZdi0v+e8j9ucjsimghs4ahZGJKUhl+ptLeS++OkuTAEXKgfnpKF8wtGqW4brN2BXSWR9QY5mXepbFttV4a0/CxAREShMKQliqFQIa0tzGywPGnrmkMq1RdDkzNidnxBEHDuwJExOx4RhTcyNQcjU3O6dIy/71wpqbKPNqStlF38Adoq61MMppD7ldsaFSHt3qYaxe27vzvpHGSZ2iZEW1d9RBLSHrc3QxRFXgzq5fY2VUsezxs0Cr8aNyc+gwlic5W03ZJVJ+CqkiRo2RuT4iBN9vrpE0XFxK9q/jrtAug0Wry0dz12yC54yf1yzGkwqfS/VSOfOKy9pYFab9pg7WrVQtqqVmV/ERbSEhFRKGx3QBRDphDtDmwhJiEAwI60XXSwpU7yOMeUBOuJ2X2JKHHJJ22qjTaktUtbHZi0OiR38rVF3uog35LiD2gBZe9Sl88bca9Fip89jdJK2hEpWXEaSXCbq6UB2LhsAwNaipsUvfIiV5PbobJlh2S90d/CKpLXYE0UF7fkPWn97Q6iqKR1qrSaVauk5fk+ERGFwkpaohgKVkn7zh4bvGEunfPKeuR+qDuGh0q/wBFbW/XsUVsDqmWTARXFsIqWiPquTFlIe/2Kt/Gfg5tx//izcEpuoeo+NrcT9278BGuqD6PeKQ1JB5iTO13Z+rvSzyWPx6fnSR7nmpMU+xxrbVQEzWrjvW/jp/i++hB8J95MzFo9flw4AbePnoUf6o7hz9uWYXdjFQAg3WDBz0edgouHjJMcp9ntwK83LMX6mqPwiSLMWj1+NGQc7hpzWkJV87a4fHhjVwuqWr04vcCMUwcGr5p2+7zY19y7QlqXV8R7e234cH/bBYmiFB3KWqQV3CextQHFkdqdCOd8/kLIfQJfB2Md0hpl5+9rKpx4dF0DalRC1h+qXRicrPwIvaXGhcuXtr3GDkzSwqARFH93APyv0UQulwstLS2w2WxwuVzw+ULM7EhEvYZGo4HBYIDVakVSUhIMhtieUzGkJYqhYJW07+4NP1ENT9ki4xN9mPflizgWpldjURJDWiJSVtICwCdlu7Cy8hAqrngQFpWZvu/b+Cme2blK9Xi55uROj+W4rCpX3qvUoNUh02iRVPv+Zdt3eOXUK0Ie9zcbP8WinSsVy1dVHcIAczLu3/Qp9jfXStZ9U7EPey75NYYHBIq/XPcRXtyzVnGMAmsaflw0IfQ314+8sLUZa4+39SHeXuvGwCQthqaq3zb90p51imUjUrK7dXzhLD3Y6g9oAeBgkzIoYkhL8aTXaGHW6mH3uv3L5P265dINZv/XybrwIa1WiPyGUXm7A0BZfd5u5TEnvq8IPQlfeYtKWe0JPN8nURRRU1ODmprgk04SUe/WfpGlsrIS2dnZyMzMjFlBA0NaohhKN2rDbxSEO9h0sSRxuKU+bEALACVd7GNJRP3DIEuq6vImtwMba8pw6oChinXLKw8EPV6kF4BSDEZoBCFk1dTEjIGKZS2yvoyRVF2tqDwYdN2DpZ8rAloAECHi+6rDkpD2+6pDqsdYXXUooULa9oC23bKjjqAhbXlro2JZuMrn7vb27tAXhgtTdEg3df58hSgW8i0pqq9NwQyydryW51tSQmwJpBpMUX1YDtWuTE1XTtlZSEsVFRVobJS+dwiCAK2Wr8tEfYHX65VMdlldXQ2Xy4X8/NhMFMuQliiGJuZEXpkyOkOPHXUdFQQtbt7iEgmnN3h1QrssoxXXDZ/cA6Mhot7uxhFTsXjvOjS7lZVPagEbADQG6QNr1OpwW8mMiJ43WW/CDcOn4qW9ykpLoO1C0oWDxyiWD7GmY0/ARFRq45YL1ctxj2xSq0DNsv08ovr7kMsX/nW3P6uwBf/+g/3MerOrSqzhNyLqZneMPhW3r/0wom11ggY/L5npf/yTEdPw6r6NaPGovz7ePmpWVGPpyf7MnCg4sTkcDklAm5mZiZSUFBiNxoRqK0TUl4miCKfTiaamJtTWtl1sbGxsRGZmJozGrs+Jw5CWKIaSDBq8fE4Wvj7qwBs7lTOCtxubqcdZQ8yykJZnbZFwRxAWbL/4V8jpwi3JRNR/jM/Ix64f3YMVxw/iiu/ekKw7amtQ3afRJQ0v7x9/Jkan5eKUnEIURtHv+oVTLsX1wyfjUEu9ZHmq3oQz8ofDrDLz+M9KTsGd65b4H4ebTAeILMhVI6/aDVbh5UnwPnmeEKmKvNL5mmGTuns4ITW71P+tpuYacXKeEaMz9Mg0s1qL4m/h6Fk4NbcIW+uPQwxoAuDx+XDU1oAhSenQCAK0ggYnZw+WVP1PyhqEXT+6BysrD8Lpa2vncdzeDLvHjbmDSjA1qyCqsQSZUqLLzi8yY+lB6UU/nu0ntoaGBv/XOTk5yMzMjN9giKhTBEGAyWSCyWSCVqtFVVVbP/L6+noMGDCgy8dnSEsUYxa9BhcMtSDDpMHfS9Vvy586wIhkvbRXFitpIxMupE3RmxjQEpFEviUVlw89CZ+W78Kr+zb4l5fZlJW0oiiiSRZ6Xlo4HidlKlsThKPVaHDagGE4LYp9UgzSK/CRBLCdDmll+4lB4oO+WC0aS9GEtALiWwkVrOp3RLou5ARoRPFwUubATr22AsBAa9vreizouqmSdkK2AauPOVHv7HgNZbuDxNba2tEvPC0tLX4DIaKYSEtL84e0gX/fXRF5R3UiioolxGX5/CQdkvTS9S0ukTO+RsAthg5ptbxViIiCkPenLVNpd9DqccErCyXVZiLvLvJZy8NV0np8XsnkO9GItP+tJ8HbHYS6hioPtqOZUb47VNiUk4QBgKEHb+cm6muibEkbxXEFyP/0fKylTWjeE23bdDode9AS9QNardb/t+yNoC1jJFhJS9RNLLrg10Dyrco3ZRGA3SPCqucHqVDcYW67jWY2XyJKLAXWNMnjj4/uQMF/HpYs86oElan6ngtpU2TPtbepRjHGQGof+ItTskP2om33wu41eG3vZji9bVGj3avepuedQ1vwTcU+/2OzTo9LhozHHyefB02Ur7n1Di9e3NaMg40dYaJFL+C8QgvOGtw2e/vRlgbc9v17KK0rl0wU2R6yG7Q6zB04Ek9OuxBGbexOZbfVV+COtUvwfU3HLPNWbSpma2bh07JKPFT6hWLiygZZa4x4hrRNTh+e+6FZdZ2hu1Ioon6guypptRpA/pLAegwiov4l1v2kGdISdRNzkLDVqBWQYdLApXKhZXutG9MGdL3ZdH8Wrt2BTsOQlojUBc4ODrRNiKVWTSvXk5W08pDWJ4oRjTHQzNzCiEJam8cFG1xht7N73YoxPLb1G4xKy8F1w6dENbaXtrdgQ6X0OWsdwL+2NqM4XY/ByTrcuvodfFa+W7Fv4Bie3bUaQ5Mz8cuxs6N6/lCu+u5NbK2vkCyz+5rxwfF38N7xyKojNHFsd7Bos3qLJYCVtEShaLvp1FErKBugMKQlIqJQmGYQdZMMk/pHtSHJWmgEAUaVO1yCTfhBHcKFtLnsR0tEQYxMzYl6nwHmZOg1PXdLorzaN1qpBhPOyBuuui5LP6hLx5YrrS2Pep/9DcFbM+w+MZnmhpqyiI61qupQ1M8fjMfnVQS07XyI/Pa1eL0H7axzYUtN8MA93cRTfqJg0o3d8/eRbtSotDsgIiIKjmdsRN0kSa/BuYVmyTKtAFw03ApAvSze6eXl9XBcIUJaAQLuHXd6D46GiPqS4SlZuGroxKj2uX/8md00GnUDram4Icrq1ED3jTsDlwwZj4kZ0sl4pmYWYkbKhUjSpnd1iH6decdyhHifq7G3vb7bPOGrewHgqK2hEyNQ5wnTSicSueZk3DhiagxGE71399iCrivJ0KMkQ9+DoyHqW3ItWkzP69ydbDPyjDCptBOZmW9EtkWraIESYh5CIiIitjsg6k43jE7C2YPNqLF7IQjA4GQd0k0dFVmTcgzYVNXxYZQhbXjyStpkvRHvnH4dAGBc+gDkyyYGIiIK9PppV+KecaejojX4reHtSlJzUJic0QOjknpp1uX45ZjZKI+yzcGIlCwMS8kCAHw/fyE21pShye1AjikJoicLf97YhHMzbkSduwIeMXhF66Mz8zExcwA21Zajxe30L//bjhWqbQiiEep9rtruhU/0RTwRWkxDWjHykHaQJRX/mvljyTKjVoepWQVI0vd8y6JddS5sq5X+zCblGHDuEDOSDBoUpeigZbsDoqAEQcAdE1Nw8XAPGpw+pBg0+M9uGzZXSy8YXTHSisIUnf9OufwkHXIsWtjcPhxo9CDfqkWrR4RPBAqS28735X96an3PiYiI2jGkJepGgiBgULIOg5LV/9SMsivvLoa0YblksyYOsabj3IEj4zQaIuprNIIGEzLyMSEjP95DCUoQBIzLyMO4jLxOH8Oo1eGU3EL/488PtQIAtIIO2YaCkPuOSs2ERafFrNwiyfL3D2/t9HgAwOsT4QmRhdbYfbB7IgtoAaDS3gKX1wNDDCYP80YR0uaak3HeoJIuP2esvLtXWkWbbtTgrkmpnCyMKAoaQUBhSkfF+ZRcoyKknZFnxACr8vXGqtdgXJYBAJCpOK70MStpiYgoFLY7IIoj+QcoVtKGJ293YND2XK9IIqK+qsYeeQjp8HTPe1G497gauxetEVbRAoAIEcciqIiOhFp1W5pOvYdxShyqZYPZVefC1hrpz2zBMAsDWqIu0ql8Su7M35Wi3QGb0lIv4HK58NZbb+G6665DSUkJMjMzodfrkZWVhcmTJ+O2227DV199BR9/YYl6HCtpieJIXkm79KAdSw/acfvEFMzM77nZxPsSl88jeWzQ8GWMiKid3ePDP35oxg/VLngCgkdvFJ+z7vquDreflIKZA0O/D/19x0os2rEaAGDWWDEp9VTcOGIKrhuVpHp7/aEmD3a3rsfu1nVw+Ryqx3wxxJxhKXoTPKIXrQHVtif976/Yf8l9ePNAKR7f+i2qHS0AAK8Y7Szqyo0LjCVo8FQpx2HoHe/Pnx5sxSs7WiTL0o0anDnYHGQPIoqUTuU1zNCJtiHyXNfXqW7eRLHz/vvv4//9v/+HQ4cOKdbV1taitrYWmzZtwvPPP4/i4mL89a9/xfnnn9/zA01whYWFOHz4MK6//nq88sor8R5Or7Ns2TKcfnrbXDTffvst5syZE98BxRDTDaI4koe07f5e2oSJ2QZY9Cx2l5NX0uo1/BkREbX75KAda487w28YxrM/NGFSrgHmgHIyeUseESJEnJjsy9eElfWfIPPAMIzJNGDaAGW16eMbD+GHlm9DPm+ooh29RoM8UzJ2N1b7lzW6HPjp6nfxXhdbMagZaByBbbYVEGWhSoo+/iHtcZtHEdACwIWsoiWKidhV0kofR3PBjCjWHn74YTz44IP+x2effTYuvPBCjB49Gmlpaairq8Pu3bvx0Ucf4csvv8SePXtw//33M6Ql6kEMaYniKNscPGD8vsLJahgVDq+0ktYYg16ERET9xaEmT/iNIuAVgQqbF0NTO96nrLrkkPuIENHkrcWe+gxFSOv1idjfcqxLY3pi6nx8fHSnJKQF0C0BrU4wIEmbhhz9YFS6D0vWDY3DZHJyR5u9imVpRg3O4nkDUUyMzTRIHmeYNOhM7YRew9Zm1Du8/PLL/oA2JycH//3vfzF79mzFdmeddRZ+/vOfY9u2bbjrrrtQXV2t2IaIug9L0IjiaGa+CYUp6iFjd/UE7OtaPdJJHKw6Q5AtiYgST4srdmVa8km+5g+cgiRtetj9KmzKoLisxYtWr73TYzkjbzguLzoJvxl/ZqePEY2x1lnQCFpMTD4LJo3Fv3x4chZuLj65R8YQikell8PPJiSzipYoRpINGlxWbIUAQK8BrhhphSBE//dl1Uv3aXHz/J56Xnl5OX7xi18AAKxWK7777jvVgDbQ2LFj8fnnn+NXv/pVTwyRiE5gSEsUR0kGDR6blY5ci/JPUe0DGAE2WUhrYUhLROQnDwAuL7bi0VnpeHRWOgYnKydafGxWOl47LxuvnputWCefTCtJm4y5GTfj3Iyf4Oz063Bl/o3KC2WiiOM2ZZXnvgY3nD5pSHtm3gg8M/X/cHb6df7/fpR7AzZccAc2XnAnGq9+BPZrH8Wxyx/El+feCovOgMlZg7Bm/sKQP4M0XYbkmE9P+j8sOf0XWHL6L3B53o2SdYH/nZtxHZac/gv8b859KLZMAQCk6DIxP/NnKL3wLmy76FfY9aN7MMiaFvL5e4L8luk8qxYTsnvPhGZE/cElI6x44ews/POsLMwe1Lkq9SRZ+a3NzX4H1POeeuoptLa2AgD+8Ic/oKSkJKL9NBoNrrnmGtV1K1euxLXXXovCwkKYTCakpaVh4sSJeOCBB0JW3y5btgyCIEAQBCxbtgyiKGLx4sWYNWsWMjMzkZKSgmnTpuH111+X7OdyufD8889j+vTpyMjIQHJyMmbOnIn//ve/QZ/r0KFD/udq7+v6zjvv4KyzzkJOTg7MZjNKSkpw3333oaGhIeTPYtu2bXjkkUdw7rnnYtCgQTAajUhKSsKIESNw/fXXY82aNSH3f+ihh/xjAYDGxkY8/PDDmDhxItLS0vxjnDNnDgRBwOHDbXfxvPrqq/792v8L7L+q9j2+//77OOecc5CTkwOr1YoJEyZg0aJFcLs7evqLoog333wTc+bMQU5ODiwWCyZNmoTnn38eYgQ5RGNjIx599FHMnDkT2dnZMBgMyMvLwwUXXIB333035DHax/vQQw8BANavX48rr7zS/3MdOHAgrr32WuzcuVOxb/v3296PFgBOP/10xc+oL/fx5X3CRHEmCALyrTpUtkrDR3kFE7UJnDAGACxafZxGQkTU+8gDgMIUHYamtr1OFqfrcUR2m3xRasdraKpBQKOr46Ra/j7U6vFBEASk6rIAACOS9dDXSINfESKOt3rhE0XJrOb7G91witKQdlhyJi4pKsTyw3WBB0C2IQODA+4yydNJX+dHpuSofu/ttDAiXT/A//j8IekYntZ2jO/L6iB61VtCZJs1uLAwC1WtXryxo9a/XCNoMCotN2gf+Xjw+KQffsy63jM2ov4kxdC1mqYkVtJSnImiiFdffRVAWxXtLbfc0qXj+Xw+3H777Xj22Wcly51OJzZv3ozNmzfjmWeewTvvvIOzzz475LHcbjcWLFiAjz76SLJ8/fr1uO6667Bhwwb87W9/Q319PS666CIsX75cst3q1auxevVq7Nu3D7/5zW/Cjv2mm27CSy+9JFm2e/duPPbYY3jttdfw9ddfqwbYgZNUBXK5XNi3bx/27duH1157Dffeey8effTRsOPYu3cvzjnnHNXJ27rqZz/7Gf7xj39Ilm3ZsgW33347li1bhv/+97/weDy45ppr8O6770q2Ky0txW233YZNmzbhhRdeCPocX3/9NS6//HLU1tZKlh8/fhwff/wxPv74Y8ybNw//+c9/kJSUFHK8zz33HO644w54PB3nZseOHcMbb7yB999/H59++ilOO+20SL/9foGVtES9gNrpmlcU4fSKaHX74EvAqtoWtxONLrvivwaX9EM+2x0QEXWQBwBJAQGDvDeinFa2vvVE4CuKbe9FTbJWCmadIAliAcAjutDqceJAow2NLjuaXG64vR7sqG2Bwyed6CrLZEWuRavoz76lRnrRUi7NaEaaIXhVmyBIg+MMU8fxQ7UDyDBpg25T7/Ci1e2Do4tXUNt/ll3pS+kTRTS7pPv3ovyYiAJYY1xJ6/D44PV1/XOBKIqKiz3UP23fvh01NTUAgFNPPRXJyaH7y4dz7733+gPaoqIiPP/881i3bh2+/fZb3HXXXdDr9WhsbMT8+fPxww8/hDzWb3/7W3z00Ue4+uqrsXTpUmzcuBFvvfUWRo4cCQD4+9//jq+++go33HADVq9ejdtuuw1ffPEFNm7ciMWLFyM/Px8A8OCDD2L79u0hn+u5557DSy+9hGnTpuGtt97Chg0b8Mknn+Cyyy4D0BYMnnvuuWhublbs6/F4YLVacdlll+H555/HsmXLsGnTJnz22Wd48sknMWTIEADAY489hpdffjnsz/DSSy9FeXk5Fi5ciC+//BIbNmzwf98vv/wytm7d6v/eFixYgK1bt0r+C/Yczz//PP7xj39g3rx5eP/997Fx40Z8+OGHOPnktjZN77//Pl5++WXcfffdePfdd3HVVVfh448/xsaNG/H222/7A+p//etf+Oyzz1SfY9WqVZg7dy5qa2uRm5uLRx55BB999BE2btyIjz76yF95/cknn+D6668P+XP4/PPPsXDhQowZMwYvvfQS1q9fj+XLl+Ouu+6CRqNBa2srrr32WrhcHeeFAwcOxNatWyVh+0svvaT4GV100UVh/x16K1bSEvVS7+1txXt7225LSdILuGlsMk7Jj/+M0t2t3NaIH33zCtbVHI1oe7Y7ICJqU+/wKsK/wCqucCGtvBjzr5uaADRBrwHUcgWzXoD8iCsa3wMAfPhB+PFmGi0QBAHjswz4+qjDv/z1nS347x4bLiu2Yv5Qi+q+RUkZKK0rV12nQUdIqxHaJtRqZwjxM2gPc03KrhC4Y1lHtW9hig6/mpyKbIvKhiFsrnLiuR+a0OgSIQAYl2XAXZNS0OTySY7/8CnpKE5Xv0tkY6UT/9zSJKl4BgBdmH9bIoqPJENsKmkrW734y4ZGHGn2wKQVcMVIK+YWqb8+hvPStmZ8frit6CHHrMHfTs9UXHCj/iMwKJ08eXKXjrV161Y8+eSTANp61q5YsQJpaWn+9XPmzME555yD888/Hy6XC7feeivWrl0b9Hhr167F008/jTvuuMO/bNKkSZgzZw6Ki4vR3NyMq666CjU1NXj//fclwdukSZMwZcoUTJw4EV6vFy+88AL+9re/BX2u9evXY968eViyZAl0uo4YbO7cuRg7diwefPBBHDlyBA8//DD+/Oc/S/Y96aSTUFZWJvle25177rn4xS9+gfnz5+PLL7/E73//e1x33XXQaoOfI2zbtg2ffvopzjnnHP8y+b+NXt92HpCWloaxY8cGPVagtWvX4s4778RTTz3lXzZp0iScffbZGD16NA4fPox7770XdXV1qj/32bNn+3/u//jHP3DeeedJju92u3HNNdfA7XbjvPPOw3vvvQeLxSI5xvz583Haaafh1ltvxfvvv48vv/wyaEX1mjVrMG/ePHzwwQcwGDo+05966qnIzMzEAw88gCNHjmDp0qW4+OKL/T+XsWPH+i88AG0XCyL9GfUFrKQl6gXCna61uEW8uK05Ia54/3Ld/yIOaAHAomO7AyIiAPhgX6tiWWA/RH2YTFFeSdsuWOGXWSdAGdNGLstkBQCMy1ZebHN6RbyxswU1dmV/WwAoSs4IelxtQCVtmlEjCR+MIX4GmSdC2nCTbx1q8uC9fbaQ28iJYtv7eHu4KqKtYvjrIw68vF1aYfy77+uDHuNfW5sVAS3ASlqi3krek7azkzu+s8eGI81ttwM7vCJe39miuLshEg6Pzx/QAkCV3Ydtte4Qe1BfF3hLek5O6HZB4fzjH/+Az9f2e/fiiy+qhpbnnXcefvKTnwAA1q1bh/Xr1wc93sknnywJCtsNGDDAH8pVV1fjsssuU62MHD9+PGbNmgUAWLFiRcixG41G/Otf/5IEtO3uv/9+f8i3ePFiSeUmAGRlZal+r+0MBgOeeOIJAMDhw4exefPmkGO54YYbJAFtrBQUFCgCZgCwWCz+qtba2tqIfu5qP8+3334bhw4dgslkwmuvvSYJaAPdcsstmDZtGgCE7A1rMpnw8ssvSwLadrfffrt/ebh/2/6GIS1RL1CQFL4ax+YW0ejs341qHR43Pi7bEdU+I1Kyumk0RER9y9FmZa/VwCquMwukLQLk1Zq5UVaG5ll1IcPScEaltn1YHJtpUI16RQAryh0qa4CJGQODHteqTfN/nWmSnuoOsAa/iay9D65GEML+LCpUJkcLpcklotqufA+vsHmwuVr6YTDY9ViXD6gPch6Qa43u346IeoZJdgXF3cmCiwqb9PXdK6q/5oeztUYZyH59xK6yJfUXgbfvW63WLh3rq6++AgCMGTPGfwu9msC+t+37qLniiiuCrpswYUJU2x04cCDoNgBwzjnn+FsIyGk0Gn+IWVdXh02bNoU8ltPpxJEjR7Bjxw5s27YN27Ztk0yUFa7Nw9VXXx1yfWf96Ec/8lfgygX+PC+//PKgx2jfrr6+XjGZ2v/+9z8AwOzZs5GdrZxwNlB7H9nvv/8+6DZnn3120AsHycnJGDFiBIDw/7b9DUNaol7g/CC3c8rZPP27knZl1UHFxGChXFAwGgsG959bG4iIOksURRxqkn5gn5FnlFSRZpq1uKzYCgFtk4RdOVL6Ye3ykVZJ/9ZQSjL0OL3AhCemzkeWMboPfQIE/HTkdEzJKgAAJBs0konCAjUHqRT7v5IZmJ49RLE8RZuFkZZp/sc5srB1XpEZQ1Sea2K2AdPzOloKXT86CZYQk3FF2xOyslU91I2mPWWw58y3arFgWNc+eBNR99DKXlI729Zabb9gdxqEohYS9/cikEQX2IPWZovuLpBATqcTe/fuBYCQAS0ATJw40R8Wbtu2Leh2xcXFQdcFVq5Gsp1aL9lAU6dODbm+vfITaGvrIGez2fDoo49iwoQJsFqtGDJkCMaMGYNx48Zh3LhxmDhxon/bwFvx1YwfPz7k+s6K5c8TUP5MN2zYAKCtl6wgCCH/+8tf/gKgbTKxYNQmaQuUkZGhOo7+jj1piXqBDJMWt41Pxj+2hH4Bau3iZAO93adluySPJ2cOwodn3qC6rVVnQLqxc724iIj6myq7D62yC3nXjFLOqHvJCCsuHm6BAECQ9SAcmqrHc2dkot7pw4Or61UrP/8wIx15SVr/jOezBwxD5ZW/Q0VrM3yiDz/7pq236sbmL1Dh2i/Z1yiYcXbGDRiaYsHfTsmTrBudocfhJmVVWLAJtrJMVnw/fyGqHS1wej247etaaAQNjIJF8n3JK2IzTFr8+dQMNDp90GoAUQQESCdYA4DJuUa8eHYWGk6EF2uPO/Hqjo62BNEGLcdt6hVv0VTVqT3lo7PSUZSiU/xbElHvoJX9bXZ2MmC1lmc1Kq/R4ag9vaOfF4EkuszMTP/XlZWVnT5OfX1HK55wbRP0ej0yMzNx/Phx1NXVBd0u2O3yQFt1azTbtbdhCCbcmHNzc/1fy8d86NAhnHHGGTh48GDIY7Sz20NXp6enp0d0nGjF8ucJAF6v9EJQVVVV1GMK9bMINY7AscjH0d8xpCXqJcL1wAPaWh70Z5+V75Y8nl8wCoOsafEZDBFRH3KwUXoXQrJeUNzq3y7UBDGCICDDpMUFQy14SdYrFQAyzRp/QNtxPA0GWlMBAAVWL2odPli1KSrPq4VFmwyrSj+40ZkGfHpIeSIfLjzINiVBFEVYtC7V9fJK2napxvAVw1qNgEyzVnV7T5RBy/EglbTRhL1qeW6GScuAlqgXU1TSdvJUXq1OozOVtGqvI44gF8Oofwi8zT3cbfyR6ovvO10Z87XXXouDBw9CEATceOONuOKKKzBq1ChkZ2fDYDBAEAT4fD7/ZGFimHOEUJOK9WbtYencuXNVe99SbDCkJeoljBGEtK39OKQ91FyHHQ3Sq7tzB4W+BYKIKJG1uHzw+ESkmbQ41Cit1CxK7Vp15fQ8k2pIG+6tqv2Co1GjvP1eONFlS68yQVlJhnoPtV31btTavcg0a9Hg9EErtFXX6jQC0k4Ep80h3huj7bMbjLzzgccHNDh90ABIiSDwrQzSw1beZzJwuUYQkG3umPhMLVwJMtcbEfUS8kraVrcInyjC5QXqnV4kGzQwagTUOKSvEQLaLjK1//2rVdJWBbn4I9fg9CFJL6DO4UOdU7kPK2n7tzFjxiArKws1NTVYsWIFmpqakJKivJAaTmD1Z7iKXI/H45+wrP2W9XgLN+bA9YFj3rVrF1auXAkA+M1vfoNHHnlEdf9QFcP9RWZmJo4dOwaXy+WfaI1ijyEtUS8RSSXttloXTh1kCrtdX7Ol7hgmLPmrZFmG0YIpmQVxGhERUe8liiJe3NaMr460Tao1Idug6FdamKIeekYq1ahBYYpO0edWHjjItU+oZdIob2HTCG1hpk4l05RX57arsfvws29qVddNzjFgwTArHvy+XnU9ELySNlo6WRpaYfPip1+19ZybnmfE7SelQBsiMQ1WSVvWor78zmVtH/bSjRr8ZloaBqfosLxMWWnMkJaod5Of3osArvykOqJ904wa3Dc1FTkWLWodylLabbVuHGh0Y2iq+uu9w+PDnzc0Yntt6PkeWEnbvwmCgP/P3n2HR1GubQC/Z3s2vUIKvTfpTUBAwIIUsSBgoYoHFDt61E/FemzHo6JSBEUUkY5iUBCpIr33XkMo6X3rfH+EbDI7syXJpt+/6+K6dqftu0uy2b3nmecdPXo0/vvf/yI7Oxtz5szB888/X+zj6PV6NGnSBKdOncKOHTvcbrtv3z5YLPk/d5UlzNu1a5fX64uO+ciRI47b7ibcKujX6iuVsVq5ffv2uHLlCnbv3g2z2QydTldhY6mMr4+vcOIwokpC58U3rW2JpnIYSfl794B81s87YppCreJbFBGRs0uZNkdACwAHbphx2OlLeIPg0p+HvzVGL1vm6U9VbEB+KGooZiUtUPyq1z3XzW4DWgBeT4TmiVKwXGB7oglHU9yHIK4mDvMk1WTH8tPZsIsiFhyXT/jCv5JElZsXNRgupZnsWHY6B1sS8lxus+yU64mgtieaPAa0QMn75FLV8dxzzzn6f77xxhs4fvy4hz3y2e12LFiwwHG/f//+APKDy507d7rcb86cObJ9KtratWuRmJiouM5ut+P7778HkF8x3KFDB8c6q7XwZLW7iddmzpzpo5HmMxjyC7NMpsrz/X/IkCEAgPT0dHz33XcVOpaC1weoXK+RL/CzHVElEROghqfPcRF+1fNX9nCqfNbHB+u3VdiSiIgSXFwiX1SdwNKHtP3r+sGvyHX+oXoVjFr3f6nuqOcHAAjWRMrWBarzLx90rkotML61fKKz0mgconHbf7c4QvXuA2R3lx3bRRGZ5pKHINdybIr7a1SQ/P8QUeXjrsLeG0m5NpeV+ABwxUU1PpA/4aE3utSWn5Cj6iU2NhZffvklgPygsXfv3ti0aZPbfY4ePYq77roLH3/8sWPZpEmTHJM5TZw4ERkZGbL91q5di7lz5wIAunTpgs6dO/vqaZSKyWTCE088oTgJ1QcffIBDhw4BAMaNGwe9vvB3okmTJo7b8+bNUzz2jBkz8Msvv/h0vNHR+ROsnjlzxsOW5Wf06NGoUyf/StcXX3wRmzdvdrv933//7fHnrKQKXh+gcr1GvsB2B0SVRKBOhfGtAzHncKbLbbKqaU/aK7nSP/DtwmIwrF7luDSGiKiyyfIi8Iv0K/1l/v5aFSa3DcJ3RzKhFoDxrQM9hp594gw4mmzBwaRQDKzdD+uu/Q2zaEKIJgptA/oAAHQuhnZLhA6DGxqx6mxOqccO5I/XV+IC1fDXCi4n8DS5uVy4tJN+5lpFJOfJv1Q+3yG4Wl/uR1QdlKaSFsjvRZ3r5j0kW2lGsZtYIEtFjR07FpcvX8Ybb7yB69evo0+fPrjjjjswdOhQtGjRAiEhIUhJScHJkycRHx+PP/74AzabTTLxWJs2bfDCCy/g448/xoEDB9ChQwe8/PLLaN++PbKzs7Fq1Sp88cUXsNls0Ol0mDVrVgU+Y6lOnTph1apV6NGjB5577jk0adIE169fx/fff4+ff/4ZABAXF4fXX39dsl/79u3RunVrHD58GLNmzUJqaioeffRRREdH4/Lly/jxxx+xdOlS9OjRA1u3bvXZeG+99VZs2LABu3btwgcffIC7774b/v75Vyn5+fkhNjbWZ4/lLb1ej8WLF6NPnz7IysrC7bffjhEjRuDee+9FgwYNYLfbkZiYiD179mDFihU4dOgQpk+fjt69e/t8LHXr1kVcXBwuX76MTz75BHFxcWjWrJljUrZatWohMNB3nwPLE0NaokpkQD0/9K9rQMF3vfMZVry2tfBSziyzHaIoVqsvZdkWE9LN0su4FvV5tFo9RyIiX8py86UcAAK1Agw+qrDsUluPzrV0Xr8nGzQqPN8x+Oa9u/Gfnd2w93oeVEJhMuuqklYQBDzSIgCPtAiAKIrIsYoYtzbJ67GqBGDB3ZE3b/v2b4hKENAiTIvd18yK692HtO7/vwDg0RYBGNjAD3YROJRkxge70h3rcqwiUp36UYbqVehYi9VvRJVdcSppBQBP3BKImQcLCzZEALlu3l+yLKLL7wau2r10rqXHrmuFVbbpJs/vUVQ9vP7662jVqhVeeOEFnD9/HmvXrsXatWtdbt+qVSt89NFHkmUffPABsrOz8fXXX+PMmTOYOHGibL/g4GAsXrwY7dq18/VTKLEnn3wSmzZtwrx58zBixAjZ+ujoaKxZswbBwcGS5YIg4IcffsDtt9+O1NRULF68GIsXL5Zs06ZNGyxZsgQxMTE+G++kSZMwY8YMpKSk4JVXXsErr7ziWNe7d29s3LjRZ49VHN26dcPGjRsxfPhwXLp0CQsWLJC0xHBWkknqvPXqq69i8uTJOHfuHIYOHSpZ991332HMmDFl9thlqXpeO01UhQmCAI0q/5/zRCo20f0XwaooMVdeORxtrJpnvYiIykOm2f0X6ggfVNEWVZqTZs3DdJKAFgC0Xnz6FAQB/loVGod4X09QNzC/vYGvA9oCLcNcT5Bh9hCieBKkyx+3RiUgwOkFyrXYkeIU0vqq1y4Rla3iVNIG6QTZRMJ2UUSu1fV7iE2Ey/XBeuX3Cef31TRT9fpuQe7dd999OHHiBBYsWIBHHnkEzZo1Q2hoKDQaDcLCwtChQwdMnjwZ69evx6FDh3DHHXdI9lepVPjqq6+wefNmPPzww6hbty70ej2CgoLQrl07vPrqqzh16pRsv8rgu+++w08//YQ+ffogPDwcer0eTZs2xUsvvYQjR46gZcuWivu1a9cO+/fvx7/+9S/Uq1cPWq0WYWFh6NKlCz755BPs3LlTcvm9L8TGxmLnzp0YP348GjduLOnBWtG6deuGU6dOYebMmbjnnnsQExMDnU4Hg8GAOnXq4I477sB7772H48eP47HHHiuzcUyaNAnLli3DHXfcgaioKGg01aMGtXo8ixLw9guHN2cpfv/9d8yePRu7du3CjRs3EBkZic6dO2PixIm4++67fTBaqqkCFHr/Xc+1o26gCla7iIuZVqgA+GlV8NPIQ92q4EpOuuR+oFaPQG3l+SNERFTZeAr9Ios5AVdZahoqn3XcXow8oHmoFqfTPPfgBYC4gLJ93i3DlWdQB4BjKRZY7SI0KgFZFjsuZ1phF/Orey+76RlZoGgw49xn1mwH9t+Q9pYMM1Se/2Micq1YIa1eJaugEsX8EzXuZFlEGBXenlydsKrr1LM83cOJP6p+dDodRo0ahVGjRpX4GL169UKvXr2KvV+fPn0getGLY8yYMV5VQk6bNg3Tpk3z+vFHjhyJkSNHer19gbp162LGjBlut3H3vIo7TgBo1KiRZBI2JfXr1/fq9fT1667X6/HEE0/giSee8LitM2/GAcCrauH77rsP9913X7HHUJnV2JDWF+x2OyZOnOhojF0gISEBCQkJWLlyJSZMmIBZs2Y5GmwTFYefRoBKkH6hnbo5Bf+6JRDLTmXjRq70Q9VzHYLQLbpqBZzT9kkvsYkxlt0lEURE1cGmy65n+gaAyEo0yWSjYHlycDHTu9AVAJqF6fDbuVyvto3zwWRp7tQL0sBfIyBboWrtWIoFz25MxuCGRnx7JMvtcQK0gixoLxqlKE3O5txmgZW0RFVDcdodBOtUcM5V7SJw0sOJqiyLHVGQn7hZdVZ5JvpQp/ePDJMddlEss6sQiIjIezU+pJ00aRImT57scn1Bc2Ylr732miOgbd++PV566SU0atQIZ86cwUcffYR9+/Zhzpw5iIyMxPvvv+/zsVP1l3+5pyCb1blor6qi5hzOrHIh7Yar0tkYa/ux1QERkSt5Vs8VT75ud1AaSr1xQ/Xej6+ZQiWuK3EBZfuxViUIaBHuui/tjVy7x4AWyP//ybJIQ5eir5NzJa0ShrREVUNx2oMH6VWyoNSbNmdKV1eYbSJMCkX8KkHeBkEEkGkWEaxnSEtEVNFqfEgbFRWF1q2LP4v8yZMn8cknnwDInylw8+bN8PPzAwB07twZQ4YMQe/evbF79258/PHHGDduHBo3buzTsVPN0DBYiwM3lL8QOnMOcys7pUsdArWcCIWIyJU0LyZ4UWoxUJEeaOKPpacKK7r61PH+ZGKwXoWmIRqPlWRqAWhSDs+7W22Dy5DWW83DtLCLhRXFgVpB0u/W4MX10eXxXImo9Pw0AiL8VEjK9fze3TBYixCnADU5z/N+VoUgN9XF34p+dfzgr9AYPM8mIlhheyIiKl88DV9Cn332GazW/A/X06dPdwS0BYxGI6ZPnw4AsFqt+N///lfuY6TqYXzr6ltZalcIaV+7pX8FjISIqGpQKqRtG6mDv0ZApJ8Ko5r7o1Fw5ToHP7ihH3rHGRDtr8bQRka0j3Q9AZeSibcEIdq/sPq2YbAG0f5q+GsE+GsERPurMemWIFm4URZ6xuoxtJERoaV4rAeb+GNS20A0DdWifpAGU9oHQVskmPU0b8KDTf3RMowhLVFVIAgCnm7nOv4M1AkI1qvQN86AO+v5oX6QxmMfW+dqe6Vi29Q8eRltmwgthjfzV5y80d3kh0REVH4q16f4KkIURfzyyy8AgObNm6Nbt26K23Xr1g3NmjXDiRMn8Msvv+DLL78s1QzJVDPVMqrxfIcgfLo3o6KH4nM2UZ42hOmNFTASIqKqweo065ZaAF7tElIxg/GSQaPC5LYl7zdeJ1CDz/qE+3BEJScIAkY1D8Co5gEAgPlHMxHvZc9cAOgerUeAToUAnQrv3BrqcrvYADUSFCYcu7OeHx5o4roVFxFVPs3CtHiiTSBmHZK2K3uhYzC61JZfQVYvSIOz6a6vHtA4haxKRQ/pTpW0tYwq/F/XwvccrQooOh8ZQ1oiosqBIW0JnDt3DleuXAEA9O7d2+22vXv3xokTJ5CQkIDz58+jQYMG5TFEqmaK08i/KjX+V/pQqa4iYyciqgjOk3xrijEpDflecV99b/+/XG3lPOEPEVUNWoXffVdvB41DtO5DWkFAfifZfIqVtE4hbYhTL3CdWoClyEk/s50hLVU/9evXV2yvR1SZ1fhPekuWLEHLli1hNBoRGBiIJk2aYPTo0diwYYPLfY4ePeq43bx5c7fHL7r+2LFjpR8w1UjFyS29mFOmwuVZLdiQeBq/XT4qW1dVAmYiovJyLceGXVdNuJptlfWkda6oovJV3L9ZOi//v1wdlxOGEVVNGoX5El39NjcOcV9H5fy+fyFDHug6V+I7t4PRqYo/QRkREZW9Gl9JWzRwBYDTp0/j9OnTmD9/Pu69917MmzcPwcHSPkKXL1923I6Li3N7/Dp16jhuX7p0qdjjK/pYShITE4t9TKp6ivMV0GoXofNi0pGKkmu1oEf8l9iXkqC4Xi3wCygRUYHNl3Px1YFMl+uVqrOo/BT3vKK3lbSuNgs1KCQ9RFTpFaeStkmI+57Tzu8jK8/kwKARMKxxfiuUK1lWrL0gbcMiC2mdvitY5N1ViIioAtTYkNZoNGLIkCHo168fmjdvjoCAANy4cQObNm3CzJkzkZycjJUrV2Lo0KH4888/odUW/rHMzCz8shQQEOD2cfz9C/uGZWVlFXucRUNeqrmKF9KW2TB84s8rJ10GtACgUTGkJSIqsOJ0jtv1ShPAUPkpbkbu7UlUlyFtOUyORkS+p/RerXLxi1775sSI2Vbl6lalwPfXMzkY2sgIlSBg0+U82fpgWUgrXc+etERElUONDWkTEhIQEhIiWz5gwABMmTIFd999N/bt24dNmzZhxowZePrppx3b5OUV/uHT6dzPUKzXFzaDz831fmIJoqKMWu+/BebZRJR8epaydzEr1eU6P7UWkQb3Jz6IiGqSK9nuy5sae6i4orJV3EpmT5cxF2gULO9JGawTEOPPSlqiqqhBkBZqobB/rFoA6gcpvx+oBAHto3T4+4pJti42QI1W4VpczJS+P+RYReRYRQRoBdmkYQDQIkz6t0LjdBmAjX07iYgqhRob0ioFtAVq1aqFpUuXonnz5rBYLJg+fbokpDUYDI7bZrPZ7eOYTIV/XP38/Io9Tk8tEhITE9GlS5diH5eqFudLlNzJdXHWvbJIMbuuCutRqz60Kn4BJSLy1rhWgRU9hBpN76EyNtyggk4tQK8W0C1aj64KM7krGdXcHxa7iJOpFog3j/NQswCo2d6CqEoK0qvwQsdg/Hom/3PwkEZGBLlpUj26Zf57+9l0q2OKsNpGNR5uEYBIPxUyzHZsdQpxs8x2BGhVsDoFrno10DJcWljk/FbCQloiosqhxoa0njRs2BADBgzA6tWrcfr0aVy5cgUxMTEAgMDAwi9EnloYZGdnO257ao2gxFPPW6oZnGdkdSe3kvc7SDG5rijvU7tROY6EiKhqG9XcH0G8/L1CuQtp3+wWIgtGvGXUqjCpbWW+LoaIiqtjLT061vLuRE2QXoUp7YNdrp/SLgg7r96ApcjH/kyziNr+8tZn9zQwyvZ3fuuyM6QlIqoU+MnejZYtWzpuJyQU9tAsGpx6mtiraCUs+8tSSRk03lfOVPpKWpPrSlqGtERE3nOenZvKn7tzqGEGfswmorIhCAICnBrdZt1MbJ1DWqUKfJVTuwOGtERElQMrad0QXEzZWzS8PX78uNtjFF3fokUL3wyMyI3KHtKmumh34KfWonMET2QQEXnL20moqOy4q6QNM7B9DxGVnUCdgNQiHQ+2XslDuEGNXdekbRCU3qacc9s1F3IQF6hG81AtBEGA2SZi/tEsJGZb0ShEi0g/NaKMKrSJ0MkCXiIi8h2GtG4cPXrUcbug1QEANGjQADExMbhy5Qo2bdrk9hibN28GAMTGxqJ+/fplMk6ioip7SOuq3UGPWvWhU/MtiYjIW576oVLZcxWUB+kEhuhEVKbyK2kLJ5fckmDClgT5ZGMahUpa55z1UqYN07alYXhTf9zX2IhH/7jhWHc42eK43a+uARPbsBULEVFZ4XVYLpw7dw5//vknAKBRo0aIjY11rBMEAUOHDgWQXym7fft2xWNs377dUUk7dOhQl5W5RL6UbancPWlTXbQ7YKsDIiIpu4fZthnSVjw/F+2IWEVLRGUt0M3EY0VpFTa7nGlV3HbthVysPud6/oiNl/Jg5ixjRERlpkaGtKtWrYLVqvyHCQCuXbuG+++/H2azGQAwefJk2TbPPvss1Or8D+BTpkxBbq70j1lubi6mTJkCANBoNHj22Wd9NHqqqZ7ycgKRlLzKHdJaRfn4DGoNRjRoV/6DISKqxPLcXBmhUQFNQrXlOBpSUj9IC4NCWH5LRMkmDCMi8pa3J+rqBMqvVMtzEbSmm+z45Uy24joAsImVvyCEiKgqq5HXFk+ZMgUWiwX3338/unfvjvr168PPzw9JSUnYuHEjZs2ahaSkJABAz5498eSTT8qO0bRpU0ydOhUffPABdu/ejR49euDll19Go0aNcObMGXz44YfYt28fAGDq1Klo0qRJuT5Hqn56xOpxJduI5afzK1Gbh2oRoBOw+5pZsl1yJQ9pnSvDNIIKv/Qbi0ZBERU0IiKiyilHIaSNC1Aj2l+Nu+obEaKvkefaKxWDRsBrXUPw29kcpJvsUAn54fmDTfwremhEVM3pvCzYbxUuP2mU31dW/jfGmxpZEytpiYjKTI0MaQHgypUrmD59OqZPn+5ym/vvvx9z5syBXq9XXP/ee+/h+vXr+Pbbb7Fv3z6MGDFCts348ePx7rvv+mzcVHOpBAEPNQvAQ80CJMvXXsjB3MNZjvspeTbnXSsV55B2Rb8xuCO2WQWNhoio8lIKaT++LYyTtlQyTUO1eL5jcEUPg4hqGG/6XveIUf4eq9Cm1sHuIYN1VYVLRESlVyNLML7//nu89dZbuOuuu9C0aVOEhYVBo9EgJCQEbdq0wRNPPIF//vkHS5cuRUhIiMvjqFQqzJ07F/Hx8Rg6dChiYmKg0+kQExODoUOHYvXq1ZgzZw5Uqhr5MlM5CXfqe5ecW8kraZ3O0avAsIGISEmO0yWlfhqBAS0REQEAdO6S1puauWiL4y7fzbK4D2HdteIhospHEAQIgoBp06ZV9FDICzWykrZ3797o3bu3z443cOBADBw40GfHIyqOcD/pSYBUkx1Wu6g4k2tFyrGasfjcAVzISpUsZ+BARCSXa7XLJm8xupikioiIah5vKmldh7TK7Q7gcmmh+HO5iPHXIKgULXfOpFlwJNmMxiFatFRox0DkKxs3bkTfvn1ly9VqNYKCghAcHIw6deqgY8eO6NmzJwYPHgydjj+TVHFqZEhLVJ1EKMwgfTjJjHZRypc3VZT713+PPxJOyJYzpCUikvtoVzqOplgky/wY0hIR0U3eVNIqTRoGuG934MnOqyYcTzHj8z7hMGqLH9QeTjLjvZ1pjrYKT7UNQq84Q8kHRFQCNpsNqampSE1Nxfnz57FlyxZ89tlniIyMxNNPP41///vf0GgYl1H543X4RFWcv1b+KeuY0xf7inY1J0MxoAUAvZp//IiIikrOtckCWgAIKMGXYSIiqp48TRwWblBB7SKNbR6mXGHrrQyziPhzOSXaN/5cjqTv7eaEvFKNhchbkyZNwqFDhxz/tm3bhtWrV+ODDz7AgAEDIAgCbty4gddffx09evTAjRs3KnrIVAPx0z5RFScoVKJaPXX8L2eXstMUl4fq/NAxPK58B0NEVMnluuj31y6Kl98REVE+T1ejPdYywOW64U39Sz0rxIZLJQtX9143S+4fTDK72JLIt6KiotC6dWvHv27duuHuu+/Gyy+/jLVr1+Lw4cNo3749AGDnzp0YNmwYzGb+fFL5YkhLVA3cFiu9RMhkq6CBuHA1N1O27F/NumPT3ZMRoK1cbRmIiCqa0vSPY1oGYGgjY7mPhYiIKid3Ge3T7YPQtbbrz9i1/TV4q3so7qznp7g+UOc5wk3Oq9yTFRMVV8uWLbF161ZHULt161Z89dVXFTwqqmkY0hJVA0FOH6TMlayS9lpeluR+p4g4zLj1frQJi66gERERVV6i01u4AODuBkb28CYiIgd3X+R7xBgUr7YrqlmYFuNaB6JfHXk/2H/dEoRF90Rh0T1R6BXru4KKHIs82NV7MQEaUXnx8/PDDz/84Pj9+eSTT2CxKLcSvHr1Kl577TV06tQJYWFh0Ov1qFOnDoYPH45169a5fZzU1FR89913eOSRR9CyZUsEBARAp9Ohdu3auPPOOzF79myvq3h/+ukn9OnTB6GhoQgICEDr1q3x5ptvIi0trVjPnSoHNoMkqgb0TpPJ5Lm4VLaiXM2RVtLW9gusoJEQEVV+olNKW5oJXoiIqHry1Xm7cD95c9uic14YNa7jYFEUPYbBRV3LkV/uF25g3RhVLq1atcKAAQOwdu1aXLlyBbt27cKtt94q2WbBggV44oknkJ2dLVl++fJlLFmyBEuWLMH48eMxc+ZMxQnI2rdvjwsXLsiWX7t2DWvXrsXatWsxc+ZMrF69GrVr11Ycp9VqxahRo7BkyRLJ8iNHjuDIkSP48ccfPYbFVPnwHZGoGnA+A73jqgl51oq9BCk5LxvvHVgH4/xX8Pq+PyTravsFVdCoiIgqP+d3bxbQEhGRM1+dwAvRyyOBohNVGhUmKS5wJNn7yYovZVrxxb4M2fIMM9smUOXTv39/x+0tW7ZI1i1evBiPPvoosrOz0bBhQ3z66af4448/sGfPHixbtgwDBw4EAMydOxcvvfSS4vFtNhu6du2Kd955B7/99ht27dqFrVu34scff8Rdd90FANi3bx9GjBjhcowvvviiI6Bt1qwZ5s6di127dmHdunV44okncP78eTz00EOleh2o/LGSlqga0Cl8Svt8XwZe7hxS/oNB/ln1u/78BruTLiuuZyUtEZFrSu0OiIiIivLV3waDRn6kopW0/m4qad/ZkYavbw9XrMYtKiXPhtf/SVWcGDPLIsIuimzpc5Mo2mE3JVf0MMqVSh8OQahc9YMdOnRw3D558qTjdlJSEiZOnAhRFDFu3DjMmjVLUinboUMH3HfffXjttdfw/vvv4/PPP8cTTzyBZs2aSY6/fv16NGnSRPa4t956Kx5++GF89913GDduHDZt2oS//voL/fr1k2x36NAhTJ8+3fGYmzZtQkBA4WSB/fr1w6233orRo0eX7oWgcseQlqga8Fc4w73vuhlmmwhdBfR5Op2R5DKgBYAog+vZZomIajrnr7Bsd0BERM5c9XKtZXQfmDqL9ZdvX7SS1tMkYgeTzOhbR3kCsgKHk8yKAW2Bc+lWNArRehhpzWA3JeP6z1EVPYxyFTXiOtSGyIoehkR4eLjjdmpqquP2jBkzkJ6ejtjYWHz99deKrQwA4K233sL333+PhIQEzJ8/H++9955kvVJAW9TYsWPxxRdfYP/+/Vi5cqUspJ05cybs9vwq9NmzZ0sC2gKPPfYYfv75Z/z+++/unyxVKpXrdAURlUjrCJ1smQjAbKuY3rSnM5Pcrjdq+CGMiMgV57kfBdbSEhGRk+ZhOsVCjcfbFO+KtXpBGjQKLgyautTWS4o8bonUweCm6CPL4vn7hruAFgDSTGx5QJVL0dAzM7NwfpVff/0VADBo0CDo9a4n1dNoNOjevTsAYNu2bW4fSxRFXL16FSdPnsThw4cd/2JjYwEABw4ckO1T0Gu2TZs26Nixo8tjjxs3zu1jU+XDSlqiaiDMoMbrXUPwzo40yfKKmj/sbGaK2/U6Fd96iIhckbU7YEZLREROgvUqvN09FH8n5OFIshk6tYD7mvijVbi8eMMdQRDwf11D8OfFXOhUAvrVlVbFhhnUeOfWUPx9JQ9ZFjv+upgnWZ/rxTwYnupGMtmXliqZosFsUFD+fCo2mw379+8HAMyaNQuzZs3y6lhXr15VXB4fH48ZM2Zg8+bNksdzlpQkLYAymUw4deoUAKBz585uH7tLly5ejZEqDyYlRNVEg2D5r7PNuRyrnJzNdN9HSa8u3mVYREQ1iejU8IDtDoiISElcoAYjmpe+jZhRq8LQRv4u19cN0mBUUP7jWO3ApsuFQW2eF1UhVg/fSTh5GFU2RYPRsLAwAEBKSgqsVmuxj5WTkyO5L4oiHn/8ccydO9er/XNzcyX3U1NTId48ox8V5b41Rq1atYoxUqoMGNISVRNKVyFVULcDVtISEZWC83dZ9qYiIqLKwug00ZinVgaAN5W0FfSlpRJS6cMRNeJ6RQ+jXKn04Z43Kmf79u1z3C6Y9MtmszmWTZgwAc8884xXx9LppNXt3377rSOgbdeuHZ599ll07doVsbGxMBqNUN8saHrsscfwww8/OAJZJQIvt6p2mJQQVRNqhTdoT2etS0MURcw7vQvrrpyCxW5DhsWEQ6mJ6BFVH5uvnXW7LytpiYjkbHYRq8/nYtWZbMlyfv4mIqLKwuAU0q6/lAd/rQo3cm0QAET4qWEXRSTn5VfHCgAO3jC7PeavZ3NwPdeGJ9sGVcikx5WJIKgq3SRaNdGff/7puN2zZ08AhRW1QP534datW5fo2N988w0AoHHjxvjnn3/g56c88V5KinLhU0hIiOP2tWvX3D6Wp/VU+TCkJaom1AqlVtdybIgJKJtf8+9O7cL4rYtly5ecP+hxX1bSEhHJLT6ZjZVncmTLWSVBRESVhZ9G/jdp1Vn5367i2p5owqRbRICTZVIFO3z4MP766y8AQJ06ddCpUycA+RWxrVq1wpEjR7B169YSH//IkSMAgCFDhrgMaEVRxN69exXXGQwGNGnSBKdOncKuXbvcPpan9VT58Ao6ompCpfAlPjHbprClb8RfPlbifYN1Bh+OhIioeth51aS43N2s2kREROWJf5OoOsvNzcVjjz3maDHw4osvQqMpLDAaMmQIAOD48eNYs2ZNiR6joK9tdna2y21++eUXJCYmulzfv39/AMChQ4ckrRmcffvttyUaI1UchrRE1ZitDHvwp5hKdsa8RXAU2oXF+Hg0RERVm10UcSNX+cRazxh9OY+GiIhImdoHs1l2iNIhUMuwlyqXo0ePomfPno7Qs3fv3pg0aZJkm2eeeQYBAfmT6I0dO9ZRFetKfHw8Dh6UXmnapEkTAMCqVasUWxqcOXMGTz75pNvjPvHEE44rrSZOnKgY+C5YsACrV692exyqfHjNMVE10qW2XlKJlWMtu5Q23Zzndv3rbfujbkAoTqRfx9LzBzG0bms0C47Eg/XbQqNiT1oioqLSTHZYnN6y+9U1oF2kHp1r6ZR3IiIiKme+KKQNN6gxtmcgdl41Sb6vKM2xQeQr169fx+HDhx33s7OzkZqaioMHD+Kvv/7Cn3/+6aig7datG5YuXQqtVis5Rq1atfD999/jgQceQGJiIjp16oQxY8bg7rvvRlxcHCwWCy5fvoydO3di6dKlOHv2LFatWoVbbrnFcYzHHnsMU6dOxZUrV9C9e3e8/PLLaN26NfLy8rB+/Xp89tlnMJlM6NChg8uWB23btsWTTz6JL7/8Ert370anTp3w8ssvo02bNkhPT8eSJUswe/ZsdOrUCbt37y6DV5PKCkNaomrE+Yx0tqXsJg5Lt7gOaQ1qDd7ucJfj/sedB5fZOIiIqoNrOdIqWq0KeLx1IPvREhFRpeKDQlqoVUCUUY1BDY2lPxiRl2bMmIEZM2a43SYyMhLPPvssXnrpJUmbg6Luu+8+/PLLLxgzZgxSUlIwc+ZMzJw5U3FblUoFf39/ybJnnnkGf/75J9auXYuTJ09i/PjxkvV+fn6YP38+4uPjXYa0APDpp5/iypUrWL58OY4fP46xY8dK1jdo0ACLFi1Co0aN3D5nqlwY0hJVI0attINJ2VbS5rpcF6jlpblERMVx3SmkjTKqGdASEVGl44tqV7a1pYqmUqkQGBiI4OBg1KtXDx07dkSvXr0waNAg6HSer2AaPHgwzp07h2+++QarV6/GkSNHkJKSAo1Gg9q1a6NVq1a4/fbb8cADD6BOnTqSfbVaLeLj4zFjxgzMnz8fR48ehSiKiI2NRf/+/fHMM8+gefPmiI+PdzsGrVaLZcuW4ccff8Ts2bNx8OBBWCwW1KtXD8OGDcOLL76I0NDQUr1OVP4qbUh75swZJCUloX79+qhVq1ZFD4eoSvB3qqTdkmDCXfUtaByidbFHyYiiiGQ3PWkDtZwYjIioOJxD2lpGtoUhIqLKxxcBq8YX5bhEXujTp4+jhYGvBQUF4YUXXsALL7xQ7H01Gg2mTJmCKVOmuNxm3rx5mDdvnsdjPfLII3jkkUdcri+r509lo9wnDrt+/Tq+/vprfP3110hPT5etP336NDp27IimTZvi1ltvRWxsLO6//36kpqaW91CJqhyjRv6B590daTDZfPvGfDlb/rtbFCtpiYiK51qO9MqHKIa0RERUCfkiX1X4ykJERKiAkHb58uV46qmn8PnnnyM4OFiyzmQy4e6778b+/fshiiJEUYTdbsfKlSsxdOjQ8h4qUZXjp/CJJ9cq4ny61aePs/3GBbfraxkCfPp4RETV3eVM6fs0Q1oiIqqM/LWljxD8deUeQxARVQnl/u64du1aCIKAYcOGydbNmzcPZ86cAQAMGTIEn3/+OQYPHgxRFLF161YsWrSovIdLVKW46l/o60ra63lZrscAARObdfPp4xERVWcWm4iLTiFt/aBK25GKiIhqsKahWtQJLN2JxC61eNUdEZGScv8GcOLECQBAt27yEOenn34CANx+++1YuXIlAGDKlCm44447sG7dOvz888946KGHym2sRNWFr0Paq7mZkvt9azfCv5p3R4opB90i66FdeKxPH4+IqDq7mGmF89t0A4a0RERUCenUAt7uHor9N8xIybNDowIEAGEGNUINKpxLt8Iuioj21+Bajg1zDku/N7zSORiRvFqEiEhRuX8DuHHjBgAgLi5Osjw3Nxfbt2+HIAiYOHGiZN24ceOwbt067N27t9zGSVSdmO1lG9K2DKmF4Q3a+fQxiIhqirNOLWmi/dUw+uByUiIiorJg1Kpwa4zyRMFFJyxec14+0XBcIE9CEhG5Uu7fANLS0vIfWCV96O3bt8NisUAQBPTv31+yrkGDBgDyJx0jouIz+7iSNjEnQ3K/tl+QT49PRFSTnEm3SO43DOYXWCIiqvpyrPLvIP5azhpGRORKuYe0AQH5EwpdvXpVsnzjxo0AgJYtWyI0NFSyTqvNPxun0fBLC1FJ7L1u9unxnCtpaxsDfXp8IiJXTDYR849mYtq2VPx5IRei6NuTUOXNbBOx4VKeZFmjYK2LrYmIiKqOXIWQ1qBmSEtE5Eq5h7TNmzcHAPzxxx+S5cuWLYMgCOjdu7dsn4JAt1atWmU/QKJqaOdVE/Ksdp8dzzmkjfZjSEtE5SP+bA7iz+XiWIoFcw5n4kSqxfNOldgvZ+SXgjZgJS0REVUDORZ5SOtqomMiIqqAkPaee+6BKIqYPXs2ZsyYgcOHD+PFF1/E0aNHAQD33XefbJ+CXrSxsZyMiMidQJ3rDz0XM20+e5xUszRUCNf7++zYRETuLDqZLbm/4rQ85KxKDifJr3RgSEtERNVBt2i95D7brRMRuVfu3wKeeuopfP3110hMTMRTTz0lWde9e3f07dtXts+qVasgCAI6d+5cXsMkqpJahunQMFgjm4QG8G1fWpvT5cUaFT9xEVHFOJLs23Yu5UkURVzMlL5fxwWo4afheyoREVV9LcO1aBGmxbEUC9QC8GQ7zmNBROROuYe0wcHBWLduHR599FFHhSwA9OrVCwsXLpRtf+DAAezatQuCIGDAgAHlOVSiKkenFvBW91CcSLXg3R1pknU+DWnt0tYJaoGBAhGVPatd/j6msKjKSM6zyyZVeaVLSMUMhoiIyMdUgoDXu4bgTLoVwXoVahnVFT0kIqJKrUKup2vRogV2796Nc+fO4erVq4iOjkb9+vVdbv/dd98BAG6//fZyGiFR1aVTC2gToUOMvxpXsgtbHJh9mGQ4V9Kq2VuKiMpBSp68t3ZVDmkvZEiraI0aAeEGnvQiIqLqQ60S0DSUE2ISEXmjQpueNWjQAA0aNHC7Tdu2bdG2bdtyGhFR9aFzmjnVV5W0oihChHNIy1CBiMre9Rx5b20RQI7FDmMVbHTn3OqgbpCGE6oQEREREdVQ5R7Svv322wCAyZMnIyIiwqt9UlNTMX36dADAG2+8UWZjI6pOnPOK8xlW3OaD4/50dp9smYqhAhGVgWMpZvxwNAsqAQjRq7DrmnL/2cPJFnSprVdcV5msOZ+D38/nIsucXxGc53TyrF4gJwwjIiIiIqqpyv3bwLRp0yAIAh544AGvQ9qUlBTHfgxpibzjXDcbfy4Xj7UMLNUxk/Ky8cjmn2TLWUlLRL5mF0VM35eBZIUWB86+PpCBLrUjy2FUJXcp04pvj2S53aYOQ1oiIiIiohqLyQpRNXU6zep5o2I6mHJFtkwlCIgyBPj8sYioZjufYfUqoAWAPKuIDJN321YU5/6zShqFMKQlIiIiIqqpqkRIa7FYAABaLRuOE5WGKJauL22mxSRb9lzL2xCi9yvVcYmInOVYvH+/EgEcuKHcCqGysHt4/+0WrUeDIIa0REREREQ1VZX4NrB//34AQGRk5b6Ukaiys9oBrbrk+2dapSFtkNaAT7oMLuWoiIjk3E12GKpXIcJPhVNFrhjYd8OEXnGG8hhaididnk60vxoT2+S3oAnSqRAboOakYURERERENViZh7Tz589XXP7LL79g9+7dbvc1mUw4c+YMvv32WwiCgM6dO5fFEIlqDItdhFZd8hAgy6mStk1o7dIOiYhIkclNSNsyXIsWYTqcSst0LDtwwwy7KFbaiQydn42/VkDLcF2FjIWIiIiIiCqfMg9px4wZI6sMEUUR//d//+f1MURRhEqlwjPPPOPr4RHVKNZStmx0bncQoK38s6kTUfkraK1SmsrQLDftDnRqAe2jpAFnlkXE6TQrmoZWrtZIoihCBOCcOVfOKJmIiIiIytKYMWPw/fffo169ejh//nxFD4cqmXLpSSuKouOf0jJ3/7RaLXr06IFff/0VvXv3Lo/hElVbj69Lwie709xeRuxK/KWjeGl3vGRZgIZVYEQktT0xD1M2JGPiuiT8dTG3RMfIMtsx53Cmy/U6lYAIPzXiAqT9W3446nqfsrTuYi6eWJeEqZuTcT7d4li+IzEPk9cnY+TqG/jmkHRslbXil4iIiKi62LhxIwRBcPx76KGHPO5TUGjINlRUEcq8kvbcuXOO26IoomHDhhAEAWvWrEGTJk1c7icIAgwGA8LDw6FWl6KJJhFJ7LpmxpaEPPSr6/1kXza7HWO2LJItD2QlLREVkWGy4+sDmY5WBXMPZ6JTLT2C9cU7J/zb2Ry363U327a0j9LjclbhtifTrBBFsVw/VKfm2fDt4UzYRCDNBHx/NAtvdg+FxSZi5sFM5FiVT4qp+LmfiIiIqFwtWbIE//d//4c2bdpU9FCIFJV5SFuvXj3F5TExMS7XEVHpPdUuCF/uz1Bc98f5nGKFtMmmbCSZsmXLGwVGlHh8RFT97LhqkvSStYnAqTQLOtUq3gmdS1lWt+ujjPmhb5MQ+ceYPJsIP035JaB/XsiVtDI4mpJfSXsj1+YyoAWACL9yuZiJiIiIiG4SRRFvvvkmli9fXmFjmDdvHubNm1dhj0+VW7l/Q7Db7bDZbGjZsmV5PzRRjdLZTShyLad4zWnzbPLApH5AKCY07VLscRFR9bU9MU+27HyG+8BVSZ6bcLNJiAY9YgwAgGZh8pYrllL23i6upDzlB0w3ux5IqF6FoY38y2pIREREROQkIiK/wGjFihXYt29fBY+GSFmZV9ISUcUwaAQsHBiJxSezseK09NJhu1i8nrRKIe2J+16GTs23ECLKl26y40iyRba8aI9Wb5mc+mbf08AP/er6Qa8WEG5QOdoZaBVONVtK0HO7NNJNymFshtPyCD8VXu0SApUA1DKq2ZOWiIiIqBw9/fTTeO+992AymfDGG29g1apVFT0kIpkKudYuJycHOTmu+81Nnz4dvXr1QosWLTBw4ED+8hCVkEoQUDdQHqQWN8PIs0lDFpUgQKtir2giKrTzqglKby0lqaR1DmkbBGsRG6BBhJ9a0m9Wq9DY1WIv35A2zUVI61xJG6ZXITZAg2h/DQNaIiIionJWp04dTJw4EQDw22+/YefOncU+ht1ux/r16/Hiiy+iR48eiIiIgFarRUhICNq1a4cXX3wRFy9edHuMgonJ6tevL1n+9ttvOyYsO3XqlMex3HnnnRAEAdHR0bDZbIrbrFy5Eg8++CDq1q0Lg8GAkJAQdOrUCW+99RZSU1O9ft5Ufso9pF21ahUCAwMRHR2NzEz5LMzjxo3Ds88+i3/++QcnTpzAmjVrcO+99+I///lPuY3x5ZdflswAuHHjRo/7/P777xg2bBji4uKg1+sRFxeHYcOG4ffffy/7ARO5EaST/5oXN8NwrqQ1qDWc7ZKIJP65Im91AAA3cu3ILmYPAueQ1qBWfr/RKHyKsZZzuwOlStq0PBsuZkg/LAcVc/I0IiIiIvKtV155BX5++XOzvP7668Xe/+2330a/fv3w3//+F//88w+Sk5NhtVqRnp6OAwcO4L///S9atGiBFStWFPvYo0aNctz+6aef3G577do1/PXXXwCAESNGQK2WFlClpqaiX79+GDZsGJYuXYpLly7BZDIhPT0de/bswbRp09C8eXNs37692OOkslXu3xjWrFkDURQxZMgQBAYGStb9/fffjgbKRqMR7du3h8FggCiKeOONN3D48OEyH9/+/fvx6aefer293W7HhAkTMHDgQKxcuRIJCQkwm81ISEjAypUrMXDgQDz++OOw28v5WyPRTYEKIS0A/HgsC6KXbQ+cK2kNam2px0VE1ce6i7mOCbOUjFubhCseJgMrYBdFWd9svYuQViUIcF5VnpW013NsSFUIaZ/4Kxl/XsyVLFM6YUZERERE5Sc6OhqTJk0CAKxduxZ///13sfa3Wq2Ijo7G5MmT8cMPP2Dr1q3Ys2cPVq5ciZdeegkBAQHIycnBqFGjcOzYsWIdu3HjxujatSsAzyHtokWLHNWzDz/8sGSdyWRC//79sX79eqjVajz66KNYuHAhtm/fji1btuC9995DeHg4rl+/joEDB+LChQvFGieVrXJvKLl9+3YIgoC+ffvK1s2ePRsAEBMTg23btiEuLg6XLl1Cz549cfnyZcyaNQvTp08vs7HZ7XZMnDgRVqsVUVFRuH79usd9XnvtNcydOxcA0L59e7z00kto1KgRzpw5g48++gj79u3DnDlzEBkZiffff7/Mxk7kSpBOOdxYdTYHt9cxICbA89uAUiUtERGQP0vugmNZHrdbfjoHT7UL8rjdUYW+tgaN68p9jUqArUjlrXMVbln67azr1k3OXLVFICIiIipgF0Vkmcu3dVNFC9AJ5doK6uWXX8asWbOQnZ2NN954A+vXr/d63wkTJuDNN9+EVistWurQoQOGDh2KKVOmoFu3bkhISMD777+PH374oVhje/jhh7Fjxw6cPHkSu3fvRqdOnRS3KwhxmzZtKtvm7bffxt69exESEoJ169ahY8eOkvU9e/bEww8/jO7duyMxMRGvvvoqFixYUKxxUtkp96SlIPhs1qyZbN0ff/wBQRAwZcoUxMXFAcjvGzJlyhS89NJL2LRpU5mO7YsvvsCuXbvQvHlzDBs2zGOLhZMnT+KTTz4BAHTq1AmbN292lM537twZQ4YMQe/evbF79258/PHHGDduHBo3blymz4HIWbCbS2yvZttKGNKykpaI8tlEIMfq+cvEtRzlXlnOLmXKK25rG133wA7Vq3C1yLFPpVrRPEzn1WOV1poLuZ43uinDzJCWiIiI3Msyi3h8XVJFD6NcfdM/AkH68gtpo6Ki8NRTT+HDDz/Ehg0bsGHDBsUiQiXOfWSdxcXFYerUqXj22Wfx66+/QhTFYrUJfOihh/Dcc8/BZrNhwYIFiiHtmTNnsGPHDgDyKtqsrCx89dVXAIB33nlHFtAWqFevHl5//XVMnjwZS5YswezZs+Hv7+/1OKnslPu1dzdu3AAAWauDI0eOICkp/81o6NChknUFP5hlWYZ98eJFR0+SmTNnQqfz/AXvs88+g9Wa/2Vy+vTpjoC2gNFodFT+Wq1W/O9///PxqIk8UwkCnm2vXL3m7WXB8nYHrKQlonxKPWBf7BissJ137zfOE24B7vu5toqQnjTaf8Pk1eOUNzY7ICIiIqocpk6d6sikStKbtkBGRgbOnTuHI0eO4PDhwzh8+DCMRqNkXXFERUVhwIABAPJbGii1zSzaCqFoH1sA2LRpE9LT0wEADzzwgNvHuu222wAAFosFe/bsKdY4qeyU+3eGgobGKSkpkuUFvUAiIyNlVbahoaEAgLw85UlJfOHJJ59EVlYWRo8ejd69e3vcXhRF/PLLLwCA5s2bo1u3borbdevWzfF8fvnlF697gBL5UvcYg+Jyb+fyca6k1asY0hJRPrvC37WGwRo87dTawNuQNsOpLcCd9fxcbJmvXaRecv94qgV5XlT2lpU3u4Vg7oAI+QpOtkhERERUKYSHh+PZZ58FAGzduhVr1qzxet8LFy5gypQpqF+/PoKDg9GwYUO0bt0abdq0QZs2bTBx4kTHtgWFiMVRUB2bmJio2IqhIKTt2rWr7Ert3bt3O25HR0dDEASX/1q3bu3Y9urVq8UeJ5WNcg9pY2NjAeRP0FVUfHw8BEFAr169ZPsUnAmIiFD40uMDixcvxm+//YawsDBH+wJPzp07hytXrgCAx1C3YH1CQgLOnz9fqrES+ZL3lbTsSUtEypTyULUAaJw+YXh7Usi5ktZdFS0AtA7XSiYPs9qBo8lm7x6sDATqVAhQmCSMlbRERERElcfzzz+PkJAQAMCbb77p1T6///47WrZsiS+//NKrK71zc71vjVXg3nvvdVTjOveK3bt3L44fPw5A3uoAgFfzKinJyfF+ngUqW+WetPTq1QunTp3Cl19+iUceeQQRERHYtWsX/vjjDwDAnXfeKdunYFa82rVr+3w8aWlpeOaZZwAAH374oddB8NGjRx23mzdv7nbbouuPHTuGBg0alGCkRL5XNKTNs4pIM9lQy6iW9c1huwMicsWucLJHrRKgUUnfR5Qqae2iiGs5NslkXzdypSFtsELgWZRRq0LTUC2OpRS+T+2/YUaHWno3e5Udl/WyLKQlIiIiDwJ0Ar7pXzbFaZVVgIuJrstaSEgInn/+ebzxxhvYsWMHfvvtNwwaNMjl9klJSRg1ahRycnIQEBCAF198EXfeeScaNWqE4OBgR8vM9evXo1+/fgBQoiupAwICMHToUCxcuBDLly/HjBkzYDDkXxlbUEWrVqvx0EMPyfa12Qrnadi7d69sgjNXCuaEoopX7knL5MmTMW/ePJw7dw4NGzZE06ZNcfToUVitVoSFhSn+oK1fvx6CIKBly5Y+H89LL72Eq1evokePHhg/frzX+12+fNlx29MPdJ06dRy3L126VKzxFX0cJYmJicU6HlFRBZVtu66a8Pm+dFjsQNMQDV7tGgK/ImVwnDiMiFxxVUmrdQppb+TakWW2O6pMc612vLM9DWfS5ROFFRXkxQf3tpE6SUh7MKniKmldFQwzoyUiIiJPVIJQrpNo1XTPPvssPv/8cyQnJ+PNN990G9IuXboUaWlpAIAVK1agf//+its5t/YsiYcffhgLFy5ERkYGfvvtNzzwwAOw2+34+eefAQADBgxAVFSUbL/w8HDH7cjISIavVVC5X33XoUMHfPzxxxAEAVlZWdi7dy/y8vKg1WrxzTffyCYUS09PR3x8PACgT58+Ph3Lli1bMGfOHGg0GsycObNYs+5lZmY6bgcEBLjdtugseVlZWcUaY506ddz+69KlS7GOR1SU+Wb12qKTWY7A9mSaFTsSpRPvOFfS6llJS0Q3KVXIqgRB1u4AALYk5EluewpoASDYQ7sDID+kLSox24aUPJuLrX3D1fFNLvrhGtT8wkVERERUmQQGBmLq1KkA8itPV6xY4XLbI0eOAADCwsJcBrSAtC9sSd15552Oq7wLqmc3bdqEhIQEAMqtDgCgffv2jttbt24t9Tio/FVIi7TnnnsO+/btw+uvv47HH38cb7zxBg4ePIhhw4bJtt24cSM6d+6M2267ze1ZjeIym82YOHEiRFHEc889J2ma7I2ik5gVlLW7otcXXnJZkp4kRL5wS4T85zTzZu/HS5nSsGHXNWlIa3WaVVKrYndFIsrn/P5hUAvQq4HYAPnJnBu5hdseT7HI1jtTC0BcoOeTQvWDNHDOQJ0nIPO1pFzl4zcIzh/v7XWkEzaObO7+hC4RERERlb+nnnrKUZX65ptvumxRYLXmFxfk5eXBblf+HJiTk4Mffvih1GPSaDQYPnw4AGD16tVIS0tzhLVGoxH33nuv4n79+/d39LP94osvOHF9FVRhSUubNm3w1ltvYdasWZg2bRqaNWumuN3QoUOxYcMGbNiwAbVq1fLZ47///vs4fvw46tat63WT6KIKeoIA+YGvOyZTYeDl5+d+lmpnly5dcvtv586dxRs41VhjW8kDgpQ8O2yKfSKl9523EHjhLhHddCZNGrY2CtFAEAQE61XQOn3KyCvSe/acUxWtAEAlFP4LN6jwxC2BCHA+iAKVIEDnlNKayraQVrGCeGqnYEcv3vub+KN1uBbhBhVGNPNH3UB12Q6IiIiIiIrN398fL7/8MgDg0KFDWL16teJ2TZo0AZAfxC5evFi23mazYcKECY4J5kuroFrWZDLhp59+wrJlywDkZ2SuruYOCQnBU089BQD4559/8Nxzz7kMlAHg2rVrmDNnjk/GS75RI69ZPn78OP7zn/8AAKZPny5pR+Ctom0ZPLUwyM7Odtz21BrBGXuIkK/EBGgwpmUA5h0t/HlNybMj16Z0qbL0vvMZOFUxWoMQUfV2yimkbRxS2LP67vpG/Hq2cLbYglYAORY7rmRLU9T3eoSiUUjJ+13r1QJyi7QaMCmEqL5kdfq8G6pXoVORycoi/NR4vVtomY6BiIiIiEpv0qRJ+OSTT5CYmIikpCTFbYYPH45XX30VJpMJY8eOxf79+zFgwAAEBwfjyJEjmD59Ovbs2YMePXr4pNXArbfeigYNGuDcuXN47bXXHP1wXbU6KPD2229j06ZN2LFjBz7//HNs3LgRjz/+ONq1awd/f3+kpqbiyJEjWLduHX7//Xe0adMGEyZMKPV4yTcqRUgriiLOnj3raLAcFhaGhg0bFqtHbHH873//g9lsRsOGDZGTk+NovlzU4cOHHbfXr1+Pq1evAgAGDx4Mf39/SXjqaXKvopOFFZ1EjKi8hRmkFWkpeTbkWuRBhnOlrN2plrasfjeJqGqxi6Ksr2zRkFavca5uzX8vOZ8h3UctAHW9aGvgjs6p4NascALKlyxOIbBSD14iIiIiqvz8/Pzw6quvYsqUKS63iYuLw4wZMzBhwgTk5eXhww8/xIcffijZ5qGHHsLjjz/utmdtcYwaNQrvvfeeI6CNiIjAnXfe6XYfvV6PP//8E2PGjMHy5ctx4MABR3WtkqCgIJ+MlXyjQkPaNWvW4Msvv8TGjRuRk5MjWWc0GtG3b1889dRTuOOOO3z6uAXtB86ePYuRI0d63P6dd95x3D537hz8/f3RsmVLx7Ljx4+73b/o+hYtWhR3uEQ+E2qQXm57I9eOTIv88gebU+WscysbRrRENVu6yY4LmVak5dkk1asA0Dik8KOFXtaCIH9b52C3bqAG2lJOrOXc7qAsQ1q7KOJkqrSCWON8CQIRERERVRmPP/44PvroI0mRnbOxY8eiWbNm+Pjjj7F161akpaUhIiICbdu2xdixYzF8+HBs3LjRZ2N6+OGH8d577znuDx8+HBqN5xgvMDAQy5Ytw99//43vv/8eW7ZswZUrV5Cbm4ugoCA0atQIXbp0wT333OPzvI1Kp0JCWrPZjDFjxmDRokUA5JdSA/ktAuLj4xEfH4+HHnoI8+bN8zhBV3lq0KABYmJicOXKFWzatMnttps3bwYAxMbGon79+uUwOiJlzpW0APDK36myZXuvm5GWZ0PIzVB37qkdkvXsSUtUc+26asKne9NlvauB/PeYsCIngwxOwWnezQ4H59KlAWfD4NJ/HHEVCPuaxSbi3R1pOC4Lacvk4YiIiIiohPr06eP15Fl6vR4XL170uN2tt96KFStWlPgx582bh3nz5nk1phYtWpRq8q+ePXuiZ8+eJd6fyl+FfKUYNWoUFi1aBFEUoVarcffdd2PatGmYOXMmZs6ciWnTpmHgwIHQaDQQRRGLFi3CI4884rPHnzdvHkRRdPuv6GRiGzZscCwvCFkFQcDQoUMB5FfKbt++XfGxtm/f7qikHTp0KC8TpwoVold5Ha9uTSyc8O5GXrabLYmoJvn1TLZiQAtIWx0AgN5prqyC4PSCU7uDBsEl70Vb+FjlE9IeS7HIAloA0PDvOxERERERlUK5V9LGx8dj+fLlEAQBffv2xbfffot69eopbnvx4kWMGzcO69evx7Jly7B69WoMHDiwnEfs2rPPPovZs2fDZrNhypQp2Lx5M/z8/Bzrc3NzHT1NNBoNnn322QoaKVE+jUqAt7FFWl5hGwSDWoM8W2Go4tyjlohqjjST6xli20VKr3iRBac3WyNkO/XCjjKW/pyxv1Z6jHQ34ywNV8dt4INqYCIiIiIiqrnKvZK2oKy7bdu2+OOPP1wGtABQt25d/P7772jXrh0A4LvvviuHEXqvadOmmDp1KgBg9+7d6NGjBxYtWoTdu3dj0aJF6NGjB3bv3g0AmDp1Kpo0aVKRwyUCAAxv6u/VdkX70lrs0lDi2Za9fDomIqo6nE/R+GsFRPqpMLCBH3rHGSTrXE0cZnYqxXXuJ1sS8okRyyakFRVOUnWtrcfDzQPK5PGIiIiIiKhmKPeyj+3bt0MQBLzwwgvQaj1f3qjVavHiiy/ikUcecdlSoCK99957uH79Or799lvs27cPI0aMkG0zfvx4vPvuuxUwOiK5pqHeXVZccKWwXbTDJkrDjgBt5ekPTUTlyzminNIuCO2j9IrbynvS3gxpnVoRaH0w6Vb5hbRS9YM0eL5jcJk8FhERERER1RzlXkl748YNAEDLli293qd58+YAgKSkpDIZU2moVCrMnTsX8fHxGDp0KGJiYqDT6RATE4OhQ4di9erVmDNnDlQqzihClUOg1rswxHYz33CuogUAraCWLSOimsF57gJ37yhKfWJFUYTF6W2lbCppbaU+pjfYiZaIiIiIiHyh3Ctp/f39kZaWhuTkZK/3SU3Nn33eaDSW1bBkpk2bhmnTpnm9/cCBAytVv1wiVwJ03p0w2JaYh4ea+cMimmXrdGqGtEQ1ldV51jA3KaVzSGsXgeu58hM/Xr4tuRVmkL4vJWR5DmnNNhHHUszIMBc+J50KaBWhQ4DWu0FxvjAiIiIiIvKFcg9pmzVrhh07dmDRokXo37+/V/ssWrTIsS8RlY63wUOWRcTzm5KxP3ehbJ1WxZCWqCay2ESkm6UhrbuM0qCRr316g/wkrS8qaUOdKmlFAEm5NkT4Kb9fWe0i3t6eilNpVtk6nQr4oFcYYgPkH5OuZZdPhS4REREREdUs5X4N/pAhQyCKIr777jvHJGLu/PDDD/j2228hCALuvffeMh8fUXWnV3t/ee6VnBTsTr4oP4aKs5gT1URbEvJky9RuSkmde9K6UhbtDgBgx1WTy+1Pp1kUA1oAMNuBxSezFdddzJTu41xYTEREREREVBLlHtJOmTIF0dHREEUR48ePx6BBg7B8+XIkJCTAYrHAarUiISEBy5cvx6BBgzBmzBjY7XbExMTgqaeeKu/hElU7giAgws+7X/08MUe2rElQBML05dd6hIgqj8PJ8vYn9YNcn7QxalWoE+i+8j7GX+11hb87fhr5MfKsrhPUTLP7dPXgDbO8tQOAcKfK3PMZykEvERERERFRcZR7SOvv74/ffvsNISEhEEURv//+Ox588EHUrVsXBoMBer0edevWxYMPPojff/8doigiNDQUv/32W7n2pCWqzp5uL5+JvHW4FmNaBkiW2UX5Zb2/9BsLgU0YiWocURRxNNkiWda1tt5jn+sXOsrfb4p6sZP79cXRPFQruZ/rJqS1Oc2A5pzx5lhFnEyVPl9A3pO3d5yhmKMkIiIiIiKSK/eQFgDat2+PQ4cO4f7774dKpYIoior/VCoVHnjgARw8eBBt27atiKESVUtRRnll2131jbi7gRH96xYGDs4hbYwxCC1CapX5+Iio8knMtiHVJJ30a0Qzf4/7RftrcH9j5ZOs4QaVYt/XkqrnVNWbY5VPUlbA5pTf1jaqZVXB+2/IK4edDxmg5UkrIiIiIiIqvQprLBkTE4MlS5YgMTERGzduxOHDh5GSkgIACAsLQ+vWrdGnTx9ER0dX1BCJqi2Fq4IdVWVF+0vaIQ1p2YuWqOY64lRFG6pXIdrfu0kEA11U22pUvg04jU4TlbmrpLU7ha0alYD2kTpJ+4J9180Y1Vy6nXMlra+fAxERERER1UwVnrhER0dj5MiRFT0MohpFqxAqFOQORQNckz1Xso1eXeFvGURUBkRRxKEkCy45TYp1LccGk01E3UANtiVKJw1rGa71uvVJkIuQ1getaCX8nKpacy3KIe3JVAtWnZP23FYJQLsoHVacKVx+MdOKlaezJe+Zl7KkJ6+UTnoREREREREVFxMXohpIKRgpuPS3oJJWFEXsyvxdso1O5V3VHBFVLUtOZWPZKflEge60Ctd5vW2g3lVI69sqVD8vKmk3XMrFzIOZsuUaAWgSooW/VkB2kXB34Ylst4+pYY9uIiIiIiLygTINaS9evOjzY9atW9fnxySqaVQKoUKgLn+Z7mYOm269IdvGqPE+lCGiquOvi3meN3LSMlzreaObgnTKQaZe7euQVhoGZyv0pF1/Sfm5alQC1CoBt0TosC3R5PVj6nz8HIiIiIiIqGYq05C2fv36Pp0FXhAEWK1WzxsSkUcdo3TYcz1/UpxQvQq3ROQHsC3DdcCpHJhEeVVd3+hG5TpGIip7dlFEmsn1BFtKWoZpUVthAkJX6gRoEKpXySYeaxXhfdDrjUCndgdZZnklbbrJJlsGAK1vvgcOqOfndUgroHhhNRERERERkStl3u5AFF1P2kFEFefJdkFYfiobuVYRQxoZHdW1rcJ1GNjAD98ct8j2eav9neU9TCIqYzkKfVvrBqpxMVMaZtYyqlHLqEK9IC0GNvAr1klYtUrA/3UNwa9nc5CaZ4NKENAsVIuhjYylHn9RQU5tFTLMdoiiKBmr8/PVqoD7m/hjSMP8sbQK1+G5DkHYesWEPIVK3AIGjQq3xRrQMJghLRERERERlV6ZhrSjR492uz4tLQ2//PILBEHAY489VpZDISIn/loVHm0ZqLiuV6wBM49JQ9rWIbWhZU9aomonyyIPIse2CsRb29MkywbU9cPgUoSqcYEaTG4bVOL9vRHo1HDbJgI5VhH+2sJe2zlOfWrfvjVUFrR2izagW7ShTMdKRERERERUVJmGtN99953b9UeOHMEvv/zi1bZEVH50KgFWUdpaxJ/9aImqpWynylK1AET4yU/IiKj8V8Y4V9ICQKbZDv+b4a3FXjhJYgGjhj1liYiIiIio4ilPt0xENZpGBVhFaSWtn4aX9BJVRzdypW0N/LUCArTy4FKh4LbS0asF6Jw+2VzPtWPthRz8dDwLPx3Pku3jPNkYERERERHVHIIgQBAETJs2raKHUvY9aYmo6tGqBJzJ3SdZZlAzpCWqbkRRxP/2ZkiWBWhV8FOoLrXaK38lLZBfTZuUW5gov7cjze32rKQlIiIiqp42btyIvn37Kq7z8/NDeHg42rZti/vuuw8PP/ww9Hp9OY+QSIrlI0Qko1UJUDm9PZhsyjOiE1HVdTlL/nsdqFMpTgoWE1A1zusGaL3/aKNXA1o1Q1oiIiKimiY3NxeXL19GfHw8xo8fj44dO+L8+fMVPSyq4RjSEpGMVg1oVNKziGY7Q1qi6uZyplW2rGOt/P7Td9X3cywL0gnoVrtqVBYUp3tBh6iq8ZyIiIiIqHQmTZqEQ4cOOf799ddf+PzzzxEXFwcgf86kIUOGwMbiJKpAVaMshojKlVYlQBSlf5zuq9u+gkZDRGVFqZJ2cEMjAODRFgGoZVQjzWTHgLp+1aLi1F8joH1UfggdF6jB3fWNFTwiIiIiIioPUVFRaN26tWTZ7bffjrFjx+KWW27B+fPncejQIaxYsQIPPPBABY2SajpW0hKRjFoA7JDOEqSCfLZ3IqraErKklbR31/eD6marA41KwMAGRoxqHoBIY/X4/W8UosWU9sGY0j4Ywxr7w8B+tEREREQ1WmBgIP7v//7PcX/dunUVOBqq6RjSEpGMIAgQnUJaCHy7IKpunEPa2CrSd7akIo18HyMiIiIiqTZt2jhuX7p0yeV2GzZswOjRo9GwYUMYjUYEBQWhTZs2mDp1Kq5cueLVY23duhUTJkxAs2bNEBQUBJ1Oh7i4OAwaNAhfffUV0tLSXO67atUqPPDAA4iLi4Ner0d4eDi6d++ODz74AFlZWYr7NGrUCIIgoEePHh7HlpCQALVaDUEQ8NJLLyluk56ejv/85z/o0aMHIiMjodPpEB0djcGDB2Pp0qUQRdeTDQuCAEEQMG3aNADA+vXr8eCDD6JOnTrQarWoX7++bJ+rV6/itddeQ6dOnRAWFga9Xo86depg+PDhXgfqP/30E/r06YPQ0FAEBASgdevWePPNN92+1hWlen8bI6JiScrLxtfHt+JCVhpybJmSdQeuW2G1i9CoWHlGVB3YRRGJ2dJ2B7EB1aNi1pVIv+r9/IiIiIio+HQ6neO2VquVrc/Ly8PYsWPx888/y9YdPnwYhw8fxowZM7Bw4UIMHjxY8TFyc3Mxfvx4LFy4ULYuISEBCQkJiI+Px40bNxwhZtHHHzVqFFasWCFZnpKSgu3bt2P79u2YPn064uPj0a5dO8k2o0aNwrvvvott27bh/PnzikFogYULF8Juzy/Wevjhh2Xr//rrLzz00ENITk6WLL969Sp+++03/Pbbbxg4cCAWLVqEgIAAl48DAK+99href/99t9ssWLAATzzxBLKzsyXLL1++jCVLlmDJkiUYP348Zs6cCY1GHm9arVaMGjUKS5YskSw/cuQIjhw5gh9//LHSVU6XaUj79ttvu11//fp1r7ct8MYbb5RqTETk2j1/zsHOJOUzh6fSbJh/NAvjWgeW86iIqCxcz7HB4lQwHxdY9c/dujuNxJCWiIiIiJwdO3bMcds5xBRFEQ888ADi4+MBAIMHD8bw4cPRsGFDqFQq7Ny5E//9739x8eJFPPDAA9i6dSs6deokOYbdbsfQoUPx559/AgCaNGmCyZMno1OnTjAajUhMTMQ///yDxYsXK45v9OjRjoC2bdu2eOGFF9CiRQukpKTg559/xrx583DlyhX069cPBw8eRGxsrGPfhx9+GO+++y5EUcRPP/2EV1991eXr8NNPPwEAWrVqhbZt20rWbd26FXfffTcsFgtq1aqFKVOmoG3btoiJicGVK1ewaNEi/Pjjj1i9ejVGjx6NZcuWuXyc5cuX49ChQ2jTpg2ee+45tG7dGrm5udi/f79jm8WLF+PRRx+FKIpo2LAhnnrqKbRs2RKRkZE4f/485s6di9WrV2Pu3LkICgrCp59+KnucF1980RHQNmvWDC+99BJuueUWpKenY8mSJfjmm2/w0EMPuRxnRRBEd7XIpaRSqSAIvq2640x7UpcvX0adOnUA5JflF8xMSFRciTkZiFnk+mRJ75CH0Cq4Ab66PaIcR0VEZeVgkhnv7Uhz3PfXCvj2jsiKG5CPvLM9FYeTLcrrbg1F01B5dQQRERGRN0rz/fvUqVOwWq3QaDRo0qSJ4jZ20Y5kU45PxlpVhOuNUJVRa72NGzeib9++AIA333xTVqEK5GdMnTt3xr59+wAAW7ZsQc+ePR3rv/nmG0ycOBFarRa//vor7rrrLtkxUlNT0atXLxw5cgQ9evTA33//LVn/xRdf4JlnngEADBs2DAsXLoRer5cdx263IzExURKyxsfHY9CgQQCAfv36YfXq1ZLK36JjBIDhw4dj0aJFkvUdO3bE3r170apVKxw+fFjxtTp+/DhatGgBAHj//ffxyiuvONZZLBY0bdoU58+fx1133YVly5bBaJRPwFt0HGvXrsWAAQMk64vmg/369UN8fLzi65CUlITGjRsjPT0d48aNw6xZsxQrZQuqcVUqFY4ePYpmzZo51h06dAjt2rWD3W5Hhw4dsGnTJll17/z58zF69GjHfVc/I+5483tdHGVeMuPLDNjXgS8RFUo2Zbtc56cKQLg2BmZbmZ3TIaJyZrNLf5/9qskkWl2j9YohbbS/Go1Dqn6lMBEREVVfyaYcRC2cVtHDKFfXR05DpMH9pfFl4caNGzh06BDeeOMNR0D7wAMPSAJaURTx4YcfAgCefvppxYAWAEJDQ/Hxxx9j4MCB2Lp1K06dOuUI7Ox2Oz7++GMAQFxcHObPn68YTAL5hY5FA1oA+OqrrwDkt2H47rvvZAEtADz++ONYvHgx1q1bh+XLlyMxMRHR0dGO9Q8//DD27t2LI0eO4MCBA7IqWSC/tQCQn7uNGjVKsu7nn3/G+fPnYTAYMH/+fMWAtmAcc+bMwc6dOzFv3jxZSFv0ec6ZM8fl6zBjxgykp6cjNjYWX3/9tWJACwBvvfUWvv/+eyQkJGD+/Pl47733HOtmzpzpaN0we/ZsxfYLjz32GH7++Wf8/vvvisevCGX6bWXDhg1leXgi8qE0c57kvl6lQa+ITriWrUM9Q0toBC3Kru6eiMqbU0YLdfXIaDGgrh9C9WqcSLXAfvNNK1ivQu84P6h4speIiIioRnrrrbfw1ltvKa4zGo3417/+hQ8++ECy/OjRozhz5gyA/ADXndtuu81xe9u2bY6Qdv/+/bh8+TKA/BDTU6/WoqxWKzZt2gQAuOOOOxxV3Eoef/xxrFu3DlarFRs3bsTIkSMd60aMGIGpU6fCbrfjp59+UgxpC3rl9ujRA/Xq1ZOs+/XXXwEAvXv3RmSk+yvvbrvtNuzcuRPbtm1zuU2PHj3c9sYteLxBgwa5DHIBQKPRoHv37li6dKns8Qp6zbZp0wYdO3Z0eYxx48bVnJC2d+/eZXl4IvKhdHOu5H6UXwC+6D4E07alOZY5hzpEVHU5F8ZXlwBTEAR0rq1H59quP9ARERERERVo164dnn76admkYbt373bc7t69u9fHu3r1quN2QZUuAPTq1atY4zp79ixycvLbX3Tt2tXttkXXO7c0iImJQd++ffHXX39h4cKF+OCDDyRXqu/YscMRRitNGFbwOqxZs8brK9yLvgbObrnlFpfrbDabozftrFmzMGvWrGI/nslkwqlTpwAAnTt3drtfly5dvDp+eSmbxh9EVOWkO1XSBmsNUDlNweM0xxARVWE2p9J4VfXIaImIiIiIZCZNmoRDhw7h0KFD2LdvH1atWoXRo0dDpVLhn3/+QZ8+fXDjxg3JPkUnuy+OgmAVyO+vWqBoCwJvpKSkOG5HRUW53bZ27dqK+xUoCF8vXbqEzZs3S9YVtDrQarV48MEHZfuW5HXIzc11uS40NNTlupSUFFit1mI/XtHXPDU11dF61dPrVqtWrWI/VlliczYiAgCkW5xCWp0BzifJcq0spSWqjLIsdqw8nYOtV/IQ6adGXIAaAxsYEReo/Gf+eIoZX+3PkCyrLu0OiIiIiKqqcL0R10dOq+hhlKtwvXJ/U1+LiopC69atHffbtWuHQYMGoW/fvhgzZgzOnz+PCRMm4JdffnFsU3Ti+lWrVrm9RN/5sXyttHM03X///Zg8eTLy8vLw008/Oa58t9lsWLx4MQDgrrvuQnh4uGzfgtfh7rvvxkcffVSqcQCAWq12ua7oaz5hwgTHhGueKPXqBare3FYMaYkIADDrxHbJ/RCdn2JlnV0Uq81l0UTVxed7M3AwyQwASMmz40SqBbuvmfB1vwhonH6Rr+fY8P7ONFicSuP5e01ERERUsVSCqkIm0arJRo8ejVWrVmHZsmX49ddfsX79etx+++0AIAksQ0JCJCGvtyIiIhy3ExMT0bx5c6/3DQsLc9y+du2a222LXu5fdL8CQUFBGDRoEJYuXYqlS5fiyy+/hFarxV9//eU4tlKrAyD/dbhy5QrMZnOJXoPiKDp2URRL9HghISGO255eN0/ryxvbHRARAKBhgPSNPMtqUpzt/VqOTbaMiCqO2SY6Atqi0s0iLmbKLxX6OyEPJoVfY6PC7zsRERERUXX3/vvvO6o7X331Vcfy9u3bO25v3bq1RMfu0KGD47ZzmwFPGjZsCKMxv9J4x44dbrfduXOn47arYLMghE1JSXFMllXQ6iAwMBBDhgxR3K/gddi9ezfMZvn3Dl/S6XRo1aoVgJK/5gaDwTFx265du9xu62l9eWNIS0QAALNdmtroVRrE+MsvQzA5zzZERBXK7OZ3Mk+hRcmxFOUPVr3jDD4bExERERFRVdG0aVMMHz4cQH4Y+ueffwLID1jj4uIAALNnz0ZeXp7LY7jStm1b1KlTBwAwZ84cZGVleb2vRqNxtCX4888/cfnyZZfbzpkzx7FPnz59FLcZOHCgox/sggULkJeXhxUrVgAAhg0bBj8/P8X9CsLb9PR0fPfdd16Pv6QKHu/48eNYs2ZNiY7Rv39/AHD0IHbl22+/LdHxywpDWiICAGRbpcHNoDotFfu3WDl7GFGlYrW7DmktTuusdhEnUi2SZU1DNHirewj61FH+UEZEREREVN29+uqrju+/7777LgBApVI5KmvPnj2Lxx57DCaTyeUxMjIy8OWXX0qWqVQqTJ06FQBw+fJlPPbYYy6rUe12O65cuSJZ9uSTTwIAzGYzxo8fD4vFItvv22+/xdq1awEA9913n8sJynQ6HR544AEA+T12f/rpJ2RmZgJw3eoAyG8JURA0v/jiix4rgv/++29s2rTJ7TbuPPPMMwgIyG/7MXbsWBw5csTt9vHx8Th48KBk2RNPPOH4/5w4cSKys7Nl+y1YsACrV68u8TjLAkNaIgKQ396gKH9NfuNtf600qHUOfYioYrmbz8+57+yZNKus1cHUziFoHqbcaJ+IiIiIqCZo3bq1o4Jz8+bN+PvvvwEA//rXvzBs2DAAwJIlS9CqVSt8/PHH2LRpE/bv34/Nmzdj9uzZGDVqFGJiYjBt2jTZsZ988kkMGDAAALBixQq0adMGn3/+ObZu3Yp9+/bh999/x5tvvonmzZtj9uzZkn3vuecePPjggwCAtWvXolu3bliwYAH27NmDdevWYcKECZgwYQKA/H6un376qdvnWRDG5ubm4oUXXgAA1KpVC/369XO5j16vx+LFi6HX65GVlYXbb78djzzyCJYuXYo9e/Zg165d+PXXX/Hmm2/illtuQa9evXDo0CG343CnVq1a+P777yEIAhITE9GpUydMmjQJv/76K/bu3YsdO3Zg2bJlePnll9GoUSMMGjQIFy9elByjbdu2joB79+7d6NSpE+bNm4c9e/Zg/fr1mDRpEh577DF06tSpxOMsC5w4jIgAANkW6dm8AG1+aKNVCQAKUyALW9ISVSruTpxYnFohHHVqdVA3UI0gHc/XEhERERG99tpr+OWXXwAA77zzDtasWQNBELBo0SI888wzmDlzJs6cOYOXXnrJ5TGioqJky1QqFVauXInRo0dj6dKlOHnyJJ599lmvxzV//nxYrVasWLECe/fuxSOPPCLbJiYmBvHx8YiNjXV7rNtuuw116tTBpUuXkJaWBgAYMWKEoyevK926dcPGjRsxfPhwXLp0CQsWLHD0s1USFBTk+Ym5cd999+GXX37BmDFjkJKSgpkzZ2LmzJmK26pUKvj7+8uWf/rpp7hy5QqWL1+O48ePY+zYsZL1DRo0wKJFi9CoUaNSjdWX+M2MiADI2x0UVNJqnd4lWElLVPFyrXbMO5KJh+Kv49mNKS63Mzv9vh5Nll4e1TKcFbRERERERADQuXNnR8Xr2rVrHZNKabVafP311zhw4ACmTJmCNm3aIDg4GGq1GsHBwWjXrh3Gjx+PpUuX4tixY4rHNhqNWLJkCdavX49HH30UDRo0gJ+fH3Q6HerUqYPBgwdj1qxZjurWogwGA5YvX45ff/0V9913H2JiYqDT6RAaGoquXbviP//5D06cOIF27dp5fI6CIGDkyJGSZe5aHRTVrVs3nDp1CjNnzsQ999zjGIfBYECdOnVwxx134L333sPx48fx2GOPeXVMdwYPHoxz587hk08+we23345atWpBq9XCz88PDRo0wKBBg/Dpp5/i/Pnz6Nu3r2x/rVaLZcuW4YcffkCvXr0QHBwMo9GIFi1a4NVXX8WePXvQsGHDUo/TlwRRFJm4VGGXL1929Aa5dOmSo6k1UXGF//QGUkw5jvsb756E3rUb4dmNyUjMLiyffb5DELpGc4Ihooo0+2AG/rrkeeKCCa0DMaBefq9Zm13E2LVJksn/+PtMRERE5L3SfP8+deoUrFYrNBqNY+Z5IqrafP17zUpaIoIoisi0SHvSBmj0AJQqactrVETkijcBLZBfcVsg3WyXBLQA0CRU69NxERERERERUckwpCUi5FjNsNilzWZDdPnVdRqVdOIwG4vviaqMDHPh76tSpxKDWpAvJCIiIiIionLHkJaIkGaWV+WF6o0AAI1ThmNlJS1RlZFmKvyFVTq/ohIY0hIREREREVUGDGmJCKnmHNmyYK1yJa2VE4cRVUr3NTZiVHPprKbpRUNahX1UzGiJiIiIiIgqBU1FD4CIKp5zJW2Q1gC1Kv8cjsbpVA4raYkqJz+NgCCd9Bc23Vz4C2tXKKVlRktERERERFQ5MKQlqiGWnz+E+zd8DwCo52fC+80SEKq1Yt6VJtiYHIDHYpPwSGwyjmf5YXZCS9htychL/xoPRCVCMA/CgYxOAABrkaAnJc+Gbw9n4nyGFQBg0AjoG+eHgQ38ILi4jPpIshmLT2QjJc+GxqFajG8ViABd9Szq33olD7+dzcHZ9PzXp22kDo+2CECdQL71Uskpha0A4KdRIVjvFNKaioa08n3Y7YCIiIiIiKhyYFJAVANkWvIcAS0AfNriEvpFZAIA2gYdxL27G+OLVpcAAF1CcqBRJyAvfQYsuRtRWwf8q8EpTD08A1m2IEkl7ZxDmdhz3Sx5rPnHstAgWIOW4TrZOKx2EZ/sTkeONT8tup5rgkEt4Ilbgnz9lCtcUq4N0/dlSC4xP3DDjHRTBj7sFVZh46Kqb0eiSXG5QSMgxCmkzTDbYRdFqASB7Q6IiIiIiIgqsepZvkZEEj+e2VvknugIaAHAX23Hn11PSrYfFX0WltwNjvtqwY7eEX8CkPakLagQdXbGxfKr2TZHQFvgVJrFq+dQ1VzIsCqGYuczrMixsGcEldxJF78z4QYVAp2q0u0ikHvzd06pAJcZLRERERERUeXAkJaoBsgo0nPWX12ygNBfkwUAsBUJeswuJhFzNbmYTWFxjqV6TkTmbn41s9ILQeSl5Fz573DLMC2ahWphUMtjV9PNnzel33xXbUmIiIiIiIiofLHdAVENoFEVno8J09pKdAxRzD9G0QDW1SRirpbbFEr5nCtrqwt3zyqPIS2VQnKe9He4V6wBk24JhFolQK+Wb19wUsD514+tDoiIiIiIiCoPVtIS1QBaVWFyE6pVbkXgiXjzwuiiAazLilmXFbbyZblW0eX2VZnoYnIngCEtlY5zJW33aD3UNxNXjUrewiDPEdJKf+6Y0RIREREREVUeDGmJagCNUPirXtKQ1u5USWsXRcX2BQDgqjhWqZIWKOyZWVOYSvZfQASrXUSaSRrShhsKf78FQYDeqeWB+WbhrfM5ElbSEhERERERVR41st1BRkYGVq9ejV27dmH37t1ISEjAjRs3kJubi5CQELRs2RIDBw7E+PHjER4e7vF4//zzD77++mts2bIF165dQ0hICNq2bYsxY8Zg5MiR5fCMiNyL1l5A2h37SnWMu2qtQpugffg5YTTGrW2DbDe9ZAuC3DyrHTMPZuLADTP0agH1gpTfcsb/mYTaRjVGNPdH92iD12M6n2HBrIOZuJxpRYBOhcENjehbx4D3d6ThZFphEuqnEWCzizBqVehf14AHmvhDEATsvmbCx7vTHdvd39iIB5v6l6hP58lUC745lImr2fmP665Y9o1tqehSW49JtwTCqOW5MvJeap5d1koj3E/a40CvESTV2m9tT4UK8hYczGiJiIiIiIgqjxoZ0u7cudNleHrjxg1s2rQJmzZtwscff4wff/wRd955p8tjTZs2De+88w7s9sIapWvXrmHt2rVYu3YtFixYgKVLl8Jg8D54IvIlUbTjdr+5PjlWrN9lTKj3JV468jXcFeIXtDWIP5eLbYkmAPm9Z1NvmF3uczXHhq/2Z6B9pB4GjXfx0ayDmTibnh+KpuTZ8f3RLCRkWSUBLVBYqWs22bH0VA5aR+jQMFiLz/amS7ZbdjoH7aL0aBqq9erxC4iiiC/3Z+Bajvf9fndeNSHWX40RzQOK9VhUszn3o9WpgACt9PdF7/Sr6apHNCcNIyIiIiIiqjxqbAlXnTp18Nhjj+Hzzz/H8uXLsW3bNmzduhWLFi3Cgw8+CLVajaSkJAwZMgQHDhxQPMasWbPw1ltvwW63o1GjRpg7dy527tyJlStXom/fvgCA+Ph4jBs3rjyfGpGEaE/z6fGCtekI0GS63aagkvZCRvGu67fYgSvZ3u0jiiLOpcu3XXcxz+O+FzOsuJRphUUhvDqTZvHq8YvKtYrFCmgLnC/m60Pk3I823E8tC1sjjQqzhykIM9TYjwBERERERESVTo2spO3bty8uXrzocv3w4cOxcuVKDBs2DGazGW+99RaWL18u2SYlJQUvv/wyAKBu3brYvn07IiIiHOsHDRqEYcOGYdWqVVi4cCEmTpyIPn36lMnzIXJHtGf4/JhqwX0gab3Ze9ZSggnBzF5OqpVrFWWXb3vLJgKJ2crPIdPsouzQjYwS7AMAuZxAjIopyamSNlwhaL2vsT9Op6XB5ObXVC0Aw5v6+3p4REREREREVEI1MqRVqz1XGd17771o1qwZTpw4gS1btsjWz5kzB+np+ZdKf/jhh5KAtuAxvv76a6xevRo2mw0ff/wxQ1qqEJ4qaf0jvwIAZN940utjegxpb2aW3gauRZm9LEjNKcVkYzY7HL1jnaWXKKSVjkWrAqZ1DwWQPzlTmEGNlDwbNl/Ow+/ncx3b1bQJ06j0lCppnbWO0OGbAZFIyLLC1XmSGH81+yETERERERFVIjUypPVWYGAgACAvT3759MqVKwEAQUFBuO+++xT3j4uLQ//+/bFmzRr89ddfyMzMdByTqLyI9nSX61TqaGh0zYt9TLXg/jL9gnYHJSkwNXkZ7GYp9SrwklUUXVbSppuKH5w6V98G6VRoHCLtaxuiVyElzy4JaXNK8RyoZnLuSRvhomWBXi2gYXDxeisTERERERFRxWEZjQsnTpzA/v37AQDNm0tDLLPZjJ07dwIAunfvDp1O5/I4vXv3BgCYTCbs3r27bAZLNZ7FbkOWxQSzTR6e2m1pLvcT1BEu17njKaS12POraC0lqKTNMNuRZy385+oYOZaSV6Fa7cr9bAHgRq40BBNFEXlWO+yi68dzbncQqFN+a/VzmhAtqxTPgbxjv/n/l2e1w1aC9huVicUmIiHLqd2BQiUtERERERERVT2spC0iJycHCQkJWLVqFT766CNYrfkhzrPPPivZ7uTJk7DZ8r8oOwe4zoquP3bsmGNCMW9dvnzZ7frExMRiHY+qF7toxzM7fsE3J3fAZLNCI6jwUIN2+LbncGiQjsyrw93uryphSBukSUci6rhcv/+GGY/+caNEx559KBOzDxVOTCYA6FhLhyntgmEoEnJmlyLgXHoqx+W68xlWTN2cjMltg5BtEfH1gQwk59nhrxHwSIsA3F7XT7L9rqsmzDwonUgtyMuQNtcqYtmpbNzfhL1BizqfYcEX+zKQnGvHkEbGEr8+ay/kYOHxbEdrDL0aGFjfiBHNA3w53DKXZxUxfX869lwzy/owK/WkJSIiIiKi8nX48GF88MEH2LRpE65duwaLJX9C6n379qFdu3YVO7hKbMyYMfj+++9Rr149nD9/vqKHU+FqfEg7b948jB071uX6f//73xg1apRkWdHgNC4uzu3x69QpDLIuXbpU7PEV3Z/I2earZ/Hlsa2O+1bRjgVn92JwnZYYGr7L4/4lraTtG/EnTmS1LtG+xSUC2H3NdMq6ugAAsFhJREFUjI2Xc3FXfaNjeXYZtgq4mGnD7EOZyLWKSM7Lf5xsq4jvjmSiW7Te0cvTLor45pB8YrYgnSBbBgBGjXz54pPZ6BGjR23/Gv927LDgWJajYnTxyWx0i9YjNqB4r0+W2Y55R7JQtBDbZANWnMlB9xgD6gVVndd70+Vc7L5mVlzHSloiIiIiImUbN250FMq9+eabmDZtWpk8zp49e9CrVy/k5uZ63pjIDZbguNCuXTvs3LkT//nPfyAI0mAlM7Owai4gwH1Flr9/YQVYVlaWbwdJNd7x9OuKy09m3IAp62eP+wuqYMdtXYD7qtuizHbXLT7KyrEUi+R+XglaKRTH2XSrrG+t2Q5czCxsk5BtEZFulo/DVaAYZlBDr5CpXcr0cra0GsAuijiYJP2/3npF3hfck4QsG1z9iJzPsCivqKROpSmPV68WUMvIkJaIiIiIqCK98soryM3NRVBQEL7++mvs3LkThw4dwqFDhzxefV1epk2bBkEQZPkWVS5Vp5SojNx7773o1KkTACA3NxdnzpzB4sWLsWLFCowcORKfffYZBg0aJNmn6ERi7vrRAoBer3fcLslZFU/Vt4mJiejSpUuxj0vVQ65CD1oAEGUXRSsThMKfX33A/TBnLfZyPxH96hpwLduGw8kWNA7R4HSa+z61pXXeqYestYLm3LqabUPzsPzbFoUep9H+avR3aolQQKfOb5kw97D0hE1pJkGrbpJy5a+FyVqCydzcvKYpeVXr9b6SJQ/xtSrg0RYB0Kn5IYuIiIiIqKJYLBZs2rQJADBx4kRMmjSpgkdEVVmND2lDQkIQEhLiuN+5c2eMGDECP/zwA0aPHo2hQ4di7ty5GDNmjGMbg8HguG02K1+CWsBkMjlu+/kpBzfueGqnQDVbnk25ws7NHFdSRUJalToCQTF/AmIuRHsmzNmrXFbjdo/W447wIIiiCJsIqIX8lgSf7El3+VB6tYD/3pafbj61IdntsL7sG46ELCv+s6vweFdzbMix2B2tBpwD0lbhWky6JchxX6sCrCKgEoAQvQrj1iYhVyHsm9U/AgFaARa7iLe3p+GsiwnFChStrjUrlGp+1CvMbXB2Rz0jtl4x4XiRymBOIFYoIUv++pfk1ckwuQ5iU6tQSCuKIq44VXQ/3iYQt8UaGNASEREREVWwpKQkRy7UtGnTCh4NVXVsd+DCo48+igcffBB2ux1PPfUUUlJSHOsCAwMdtz21MMjOznbc9tQagai4cq0uQlpvK2mhld4XVBBU/lBpakOlqetyv4JsSBAEaFT5l0z4a90HRpF+KkQa1Yj04vLsSKMarcJ1cM6gzmcUBnjOlbQB2sLjRxrVCDGoEeGnRphBDZUgoFmo9LkC+ZOSBenyn4OfRoXb63g+kSINaeXH03rxrhqql26UZa46oWFZU6oaTXMTuLqS4eY1TcmrOu0l0k122cmFWyJ0DGiJiIiIiCqBooV5Wq38OydRcTCkdWPo0KEA8oPWP/74w7G8aHVr0UnElBRtV8BJwMjXcl1U0uZaUr07gOD6j4igMrhcB8gDMKVJsYoK0Rfv7UarFhAXKC32P51mcbQGMDlVsWo8HL55mPy5GrUCVEV68rSJ8PxH9XKRSk+zUzWvVgWvevwE6pxCWrY7cFCqpL2RY8O1HBusCu0lihJFEUm5+dtey3EdxJZ3u4PUvMIxKf1z/v9PN9mRlGuDKIo4lyF9PbQqIMKPf7qJiIiIiEpj48aNjh6tGzduBAAsXrwY/fr1Q2RkJPz8/NCsWTO89NJLkqK9AgU9Xhs0aOBYNnbsWMcxBUFQnKgsLy8PX375Jfr164fatWtDp9MhKioK/fv3x9y5c2G1em4jaDKZMHv2bNxzzz2IjY2FXq+Hv78/WrVqhQkTJmDNmjUQb15eO2/ePAiCgLfeesuxf9ExFvw7f/687HFsNhu+//57DBo0CDExMdDr9QgPD0fPnj3x6aefetXS89ixYxgzZgzq1KkDg8GAOnXqYNSoUdi1y/NE5zVRjW934E5kZKTj9oULFxy3mzZtCrVaDZvNhuPHj7s9RtH1LVq08P0gqca6kJWCTw5vkixTQcTXrS9gRMw+r45RtCetfKW7kFbO6KGENNjLkLZogWD9IA0uFAmpFhzPxk/HsxHup5L1LtWo3IejLRRCWucR1fbXIMpPhesKfVELJGTZcPCGGbdE6mTtDrytbgxwqjpmu4NCf12STxJ2Ms2Kpzckw6AW8FS7IHSurZdtcy3Hhvd3pOGqm3C2QHmFtFkWOz7cmYaTHvo1CwBur2vAYy0C8d896TiY5LqNTrS/WnJigYiIiIiISsdut+PRRx/Fjz/+KFl+8uRJfPzxx1ixYgW2bNmC2rVrl+pxDhw4gKFDh0ryJQC4ceMG/vrrL/z111+YNWsWVq1ahVq1aikeY//+/bjvvvtw7tw5yXKz2YyjR4/i6NGjmDt3Ls6dO4f69euXeKwXL17EkCFDcODAAcnylJQUbN26FVu3bsWMGTMQHx/vss3D4sWL8dhjj0mqjS9fvoyFCxdiyZIlmDlzZonHV12xHMeNhIQEx+2irQp0Op1jsq5t27a57Utb0EBar9c7Jigj8oX/HdkiW9YlJBsjYrysogXcV9IK8iCsgCgqVNJ6aHfgbUhbtCK3QZD8PJII5cmlPLUZaBQsf64GherfNhHuJwMEgG+PZAKQ96TVegiKCwRo2e5Aic1DpWyeTcSPx5RbzPxyJturgBbIb5/gqSrXFzZdzvMY0AL5P9N/XczD4pNZbgNaAIj257lVIiIiIiJfev311/Hjjz/i3nvvxfLly7Fnzx6sXr0a99xzDwDg9OnTeO655yT7TJ48GYcOHcKaNWscy959910cOnTI8W/y5MmOdadPn0bv3r1x4cIFBAUF4ZVXXsGKFSuwe/durFmzBk8++SQ0Gg127dqFoUOHwmKRXzV77Ngx9OrVyxHQDhs2DIsWLcKuXbuwfft2zJ8/H4888gj8/f0d+9x77704dOiQZEKzomMs+BcbG+tYn5ycjJ49e+LAgQPQ6/V46qmnsGTJEuzatQsbNmzAK6+8AqPRiNOnT+Puu+9Gerp8bppdu3bh4Ycfhslkgl6vx7///W9s3rwZO3bswBdffIGIiAhMmjQJ+/fvL+b/VvXGb3tuLFmyxHG7TZs2knX33nsvtm3bhoyMDCxfvhwjRoyQ7X/58mWsW7cOANCvXz9JL1ui0jqWdk22rI7BfcDjzF3fWXfrAHkY5q8R3Fah1i8SuHaupcOua8pjndy2cPIv53YH7hg99DvQqgV0jNJhz/XCx20ZLg9ku0TrFas5iyqYlMq5IjNA511I6xwOO7duqKm8qSi+mmODXRRl1aSnUpVbfygRkd+2on5Q2faMSlTor+vOHhe/E0U1VeitTERERETVgyjaIdozKnoY5UpQBUEQKrZ+8J9//sG7776L1157TbL8rrvuwl133YW1a9di6dKl+OKLLxxXXEdFRSEqKkpS0BcbG4vWrVsrPsbo0aORnp6O9u3bY+3atYiIiJCsv+OOOzBo0CDcc8892LFjB+bNm4fHH39css0jjzyCrKwsqFQqLFiwQJZDde3aFY8++iiSk5NhNBoBACEhIQgJCUFUVJRjO1djLPD000/j0qVLqFevHjZs2CBp6QAAffr0wYMPPohevXrh7Nmz+Oijj/Dee+9Jtpk8eTKsViu0Wi3Wrl2L2267zbGuS5cuuO+++9CtWzdZpW5NVyND2nnz5mHEiBEwGFxfzv2///0Pq1evBgA0aNAAvXr1kqyfMGEC3n//faSnp+Pf//43BgwYgPDwcMd6m82GyZMnw2bL/5I+derUMngmVJMlmbI9b1TEzjQjuoTkOO7rg8ZBrYlxub1KHQa1tgVslmPylaI8TBIEAY+3CcKsQxmSSle1AHSL1qN7dOHv26jmAbiWk4HLWVbUCdRALeRPyNUzxoBbIguDU+cJtty5p4HnSb8eaxmATHMGTqVZ0TBYgweb+Mu2aRepx5CGRvx5MVc2YVOBvJuh6nWnys1aXkyKBsirftmSNl+u82xwLuRZRUnlttUuIsFFIKpVAbfFGXDghlnyc3kuvexD2hwvn0+B67nuQ92OUTr0q1u8NiREREREVHWI9gxkXr2/oodRrgJrL4OgDqnQMXTs2BGvvvqqbLkgCHj++eexdu1aWK1WbNu2DUOGDCn28bds2YJ//vkHAPD999/LAtoCd911Fx544AEsXrxYFtKuXbsWe/fuBZAfoioVChYomk0V1/nz57Fo0SIAwJdffikLaAu0b98eTz75JD766CPMmzdPEtLu2rULu3fvBgA88cQTkoC2QGxsLP773//ioYceKvFYq6MaGdJOmzYNL7zwAu6//3707NkTjRo1QkBAADIzM3Ho0CEsWLAAW7duBZDf2mD27NlQq6XhS1hYGD788EP861//woULF9C1a1e89tpraNOmDa5cuYLPPvsMGzZsAACMHDkSffr0Ke+nSdVcUp40pP2131j0C0uAJf1D2bZvnozBDdVd6NP8wZsTbKkhCJ4DRX3gCOSkvClbLiqEtABwS6QOX92e/wfHLoqw2gGVIO8XGxOgwce3hcFmF6F20yIgzOB9SOtNO4Xa/hq80yMMVrvotoftwy0CMKKZPwoKXK/n2PDC5sJm8TYxPxi8lluykNb5scvj0vuqIM+polgAMKNfOP71V7Jkea5VhLFIvpqQZYNzMfKs/hEwagSoBUCtEvDpnnQk5Rb2QjqXbkXfMp7LMcepMnh4U38Mbmh03P/6QAa2JRaOyd2PwcQ2gehX1/OJCCIiIiIiKp5Ro0a5nAC6Y8eOjttnz54t0fF//fVXAECzZs1kV2k7u+2227B48WLs2rULVqsVGk1+bPfbb785tnn22WdLNA5vxMfHw2azwWg04u677/Y41o8++ghXrlzBxYsXUbdu/tW4BVeUA/mTqbkybNgwhISEIC0tzSdjrw5qZEgL5Dc7/uabb/DNN9+43CYuLg7ffvst+vfvr7j+iSeewJUrV/DOO+/gzJkzGDdunGybgQMH4ttvv/XZuIkKOFfSRhoCoFGp4Oqi71CdH7Rqz/1WJQQXbxEuQtqiVIIAnYfM0l1ACwB+GgF6NWDy4qpxV39UlXiaZAzIH1vB8JV615ptIq5ll7SS1jmk9Wq3ai/PqXLZTyMohu/OFc4XM6R9XyP9VAhx2q9BsAY7rhYGomfTvW+PUFLZTuMM0qkkk8sV5yREx1que0QTEREREVHJNW/e3OW6sLAwx+3MzMwSHb+gqvTEiRNef2+1WCxISUlxtCnYty9/cvC6deuiXr16JRqHNwrGmpOT4wiIvXH16lVHSHvo0CEA+UWPbdu2dbmPVqtF+/btHQWOVEND2jVr1iA+Ph5bt27F6dOnce3aNSQnJ8PPzw9RUVFo164dBg0ahOHDhzv6eLjy1ltv4c4778RXX32FLVu24Nq1awgJCUHbtm0xduxYjBw5spyeFVUHdtGOY2nXEWsMRoheuWpOFEUcSk1EjlUaMkUY5JfuF2VQF//SbgHK+4guo2DfEgQBIXo1rnk5IVRZ0avlf0iPJFtwJl0aDkZ5XUkrvW9hJS0AeUhr0AhQCQL0akHSt/dAkhkhehXUqvwq2u1XpT2E6yr0Mm4YLF12IcMKm128ORGdDeEGNbQ3/5/NNhEXM60wqAXEBKihEgRkmPMnGwszKP8f28X8lgtqIb96PMMsIt3p7ILRKex3DpJdaRSs8XpbIiIiIiIqHne5j0pV+Dm8oJ1lcV2/fr1E++XkFLYrTEpKAgBER0eX6Fje8sVYU1Lyr0INCwuTXZXurFatWiV6vOqqRoa0zZo1Q7NmzfD888/75Hi33norbr31Vp8ci2qudHMu+v0xC3uSL0MtqLDgtlF4qGE7yTaiKOL+9d9jxcXDsv0j9P5K83nl7wfAoC7Br7vgItj1opLWV0INqkoZ0n6yRz6DJdsdlM6hJOnPleHm627USEPa+UezMP9olsvj1AuS/6w3CJb+LJvtwJEUC749nInEbBtiA9R4vWsIUk12vLsjDdk3WxU0CdGgbx0/fHckExY7cFd9P4xtJZ0EMs8q4t0dqTiVJg3tnRXtowt416IDANpHFbMCnoiIiIiqJEEVhMDayyp6GOVKUAV53qiKKwh327Ztix9//NHr/WJjY8tqSC4VjDUiIqJYFa5KvWuLc7Ur5auRIS1RZbT0/EHsSb4MALCJdkzbv1YW0u5KuqQY0KoFFYJ1BlhylcO+bJsKET4MaV31pC0L3kweFqQr2zd/54m+lAgAIv1KVkmbZ8sP4Gv6H7F/ivRnBQrbTPhpBKSalPZQVlchpA3SqRDhp5JMHvbF3nRk3gxjE7Js2JyQh/MZVkdACwCn0qw4lVZ4WdMf53MxtJFRUlG7+5rJY0Bb8DyK8rY6tn0UWx0QERER1QSCoKrwSbTI9wom8srKykLr1q1LdIyCycYSExN9Ni4lBWPNzMxEixYtPFbCKgkNDQUAJCcnw2azuT3GtWvXSjbQaorXTxJVEkvOH5TcP54uv8xAaRkAdAiPhSAIEMU82bo8m4AliWFoFxZT7DGpNXWheC5HLJ92BwDQOMRzm4YhDd23eigtQRDgr3UfoIqA43J5TyKcLpk32URcyqrYauHKIEgn/ZN04+bEbPWDi3eCwVVFc1yA9DiZThN7rTidg0Qv/h8SnLa5nOU5oFULQB2nNgwNgjz/bNcyqmWtGoiIiIiIqOpo3749gPyJx65evVqiY3To0AEAcPHiRVy4cKHY+3tbEFQwVpPJ5OhPW1wFk6OZzWYcOHDA5XZWqxX79+8v0WNUVwxpiSqJbKvn6tTEnAzZsq6RdTG3x/D8O3b5JeAvn2yOfzXvh3vqtCj2mASVP/xCX5GvKMdK2jvq+aF3nAGBLkLSaH817qhf9rPeP9nW/WU4Y1oGeH2sSKMakX7St98jSeX3mlZWRVsaAMDwpvnh+6MtAtAmwvueyv4uSp89TdSlUwHpZs+zuDln8cm5yvsIyG/ZEO2vxlPtgmTjCvJQSdswWIMp7YKgquEV1kREREREVdmQIUMA5F89+fnnn5foGIMHD3bc/t///lfs/Q0Gg+O2yeT6MsXBgwc7At3PPvus2I8DAP3793fc/v77711ut2LFCqSmppboMaorhrRElUSu1XN16hWnkHZ0407YPuhptAnLbx4u2rMl67V+t2Ne/y/xYedBUAkl+3XXGfvAP/IryTIR5Rco6tQCJrcNwpw7IrHonijZv8/6hCv2jPU1pT6nRXlT8VtUq3Bpn9HDyQxpnUPagvYRYQY1/q9rKD7sGerVcfw1yj8PoR5C2pgADdJNnkNaq9MmyXnK1bdxgWp8f1ckPusTjltjDIrbdIuWtzL4d+dgLLonCv/pGYYmocWf8I+IiIiIiCqPO+64A126dAEAfPzxx1i8eLHb7Q8dOoRVq1ZJlvXv3x8dO3YEAEyfPh0///yzy/2Tk5ORm5srWVZ0wrEzZ8643LdZs2Z48MEHAQA///wzPv30U7djPXfuHBYuXChZ1qVLF0fl74wZM/D333/L9ktMTMSLL77o9tg1EUNaokoi1+Y5pE3MlYa00X7S6k5RlIa0gsr76k53BMFp4iLRDFGsWZNdqTzkwLpiBsWtnULaY8kW2GvYa+rMZJU+/5KG784TdBUIM7jvpyQAsHnxX+A80ZurStoci+eDGcrhBAMREREREVWsn376CWFhYbDZbHjooYcwZMgQLFiwADt37sSePXvw+++/4/3330f37t1xyy23YNOmTbJj/PDDDwgICIDdbsfIkSNx//33Y8mSJdizZw927tyJn376CWPGjEG9evVkvV6LTnb/3HPPYfPmzTh16hROnz6N06dPw2otbOE2Y8YMNGzYEADwwgsvoHfv3pg7dy62b9+Offv2Yd26dfjvf/+LAQMGoHHjxli2TD7Z3ddffw2NRgOLxYIBAwbg1Vdfxd9//41du3bhyy+/RMeOHZGYmIi2bdv66iWuFtjojqiCJeZkYE/yZZzOSJKt+/XiEcn9Y2nSnrTRRuks86JTuwNB8FGvVueQFiJEexoEtXJloyjaYLOchkodBpU60jdjqGCeojRvJhcrqpXT5fvZVhHnM6yobVTjdJoVMQFqRHg5EVlVcjXbistFerpqVPlVyAFaFfKcElKDc0WsF3mmn0Zw2R4gzEN7gcRs7/oCn0i1wKgVEG5Q42KmFVdzlPdLzvNclasURLO7ARERERFR9dKoUSNs27YN999/Pw4fPoxVq1bJqmWLCgqSt9tr0aIFNm7ciGHDhuHSpUtYvnw5li9f7tXjN27cGMOHD8fixYuxdu1arF27VrL+3LlzqF+/PgAgLCwMW7duxfDhw7FlyxZs3rwZmzdvLtZYu3btivnz52PMmDHIy8vDf/7zH/znP/9xrNdoNPj666+xdetWt31raxqGtEQVaE3CCQxe9y0sduWQZ+hf37nd37mS1pK7XnJfUPkmpBXgHNICmVdHIaDWN1Br4iTLRdGG7KTnYTMfBgQ9jGFvQmvo6pNxVCRPuVlxK2nDDGpE+6slweCGS3nYddWE1JuX3I9rFYA76xuLO9RK64/zOfjuiLxvcqBWwBvdQmVVrCWppHU3wZundgepXrQ6AICVZ3Kw8kxOscbliiyIhldZNBERERERVTFNmzbF/v37sXjxYixbtgy7du3CjRs3YLPZEB4ejmbNmqFnz54YNmyYo12As44dO+LEiROYM2cOVq5cicOHDyMlJQUGgwENGjRA9+7d8dBDDzkC16J+/PFHdOrUCUuXLsWJEyeQmZkJu135O1Dt2rWxefNmxMfHY+HChdi2bRuuXr0Ki8WCkJAQNGnSBN27d8eQIUNw2223KR5j5MiRaNu2LT744AP89ddfSEpKQmRkJHr06IHnn38eXbt2xdatW0v8elZHDGmJKtBnRza7DGi9EW10P5kVBB9NqCWrpAUAMyzZf0AdPEGy1Jq3Iz+gBQDRhNy0z6CtvVBh/6rF0+RNOk/9EBS0DtchMbuwV9DaC9K+QT8cy0KfOn7l0nO3PKw6qxxsZlpELD+dLVvu/Ly9mUDLqHEdxHpqd+Br3lRXK/3fcqIwIiIiIqLS69Onj8s2fe7WOXO3Xf369YvVClCtVmPkyJEYOXKk1/s48/Pzw5QpUzBlypRi7afVajF16lRMnTrV633uuece3HPPPcUdokPLli0xf/58l+vnzZuHefPmlfj41Q170hJVoMTczBLva9Ro0S4sxnFf6Q+Dz3rSqoIhqGvLlttt8hYN5pw1kvui7bpsm6ooUCcgwk/5LTPKT4VAXfGDtWZh7ieFstiBgzeqz4RiaW4qVbclSmcY9dMICHVqTxBtVHvs4do01PW5xyCdgGj/8gtq723suZK9idOEcyrB8yR1REREREREVP3wmyBRBTLZrC7XNQoMd7ku2hiEN9oOQIC26Mzw8mOptc1KMzwHQRDgHzYNWTf+JVkuinkK21bP2egFQcALHYOx8HgWzqRZkW0VEW5QITZAjYebB0AoQfVjvUDPb8G7rpnQubbe43ZVgc27bgIAgA5ROqidqpO1agFTOwVj2alsJOfZoVcLSDfZ4K9VQUR+b9tRzV2fmBAEAc93CMYPxzJxLSd/MNdu9pOtZSwa3oqO9c70asDkovi9Q5QO0f5qnEy1oGGwFkMaem5V0SZCi0daBGBLQh70KmBoY38E6Xj+lIiIiIiIqKZhSEtUgZxD2l/7jcXguq1KdjBRHtIKgu+qBtW6JjAEPYG8jFlFHlPp8vXq+7bSMFiL17oqT5ZWEjEBaqgFyHqxFrX3mgk2uygLLKsauyjC+4uAgK4ugunWETq0jlBqv+GdukEar/4P/7mSh8/3ZUiWPd8hCLuumbAlwSTb/qVOwehYq/hhuiAIGNzQiMFeBLpERERERERUfbFch6gC5TmFtHp1aQJOpfI+3wamgkoaJIlirsJG1Tek9TWNSkBsgPsgPdMi4kSqpZxGVHasxaii1auBdlEVWz2sNAGZn0blsspVW8VDdCIiIiIiIqpYTFOIysHl7DRsvHpGFspmWKTtAgylCGnt9nT5Ql8Hpk4TkdnMRyGKVgiCBqI9B1bTAVicetICgChaqm0bhNKqE6jBxUz3k8f9djYHidn524QZVGgToYOmioWCtmI0028Xqa/wydL8FWb9MmgEBOuVQ1o385URERERERERecSQlqiMHUm9ilvjv5QFskpKWkkr2rOQdX2iwhrfTpIkOIW0AJCT8h6MoS8h6/q/YLcluBhgHsCQVlG9IA22XpFfPl/Unutm7LleOIFYp1o6TO0UUsYj863i9KPtGl3xPXiNGnlIrBLgspK2qoXmREREREREVLkwpCUqYwvO7vUqoAUAP3XJgkyraU9+EOpEEEreu1OJoJLPVm/N2wxTVgPXAS0A0Z4DQRXo07FUF3W9mDzM2e5rZiTl2hDh59sQvixZ7d5V0mpV+RNwVTQ/hZDWoBYQ7CKk5VxfREREREREVBr8WklUxhJzMjxvBCBcb0SLkFolegy7LVW2TKVtBEElr3wtDbW2KZTO7Zizlrvdz2675tNxVCfNQrWKgaAnKXnFKE2tBPIUZkcLVWgd0CvWAL9K0Dsg1KBGw+DCn/VofzViA9RoGqqFcyeEAK2AuBKE7UREREREREQF+K2SqIxlWKSXstfxD0GcMViyLNY/GK+0uR1aVQkrI0X55fL+YW+V7FhuCCo/+Ed8jOyk55xWqAE3hZJ26xVAf4vPx1MdGLUqvNolBL+cyUaGKT94DdSp0Lm2HmfSrLiQkT9p2LkMKyxFctlsSxULaa3SHxABwBvdQrD0VDZu5NggCAKahWpxXxOj8gEqwAsdg7H4ZDZsdhEPNvWHIAgI0Al4tUsI4s/lIMNkR6hBjXsbG9nugIiIiIiIiEqFIS1RGct0CmmfadkTL7Tu49PHEJ1CWo2hF1SaaJ8+RgG1ro3SUrf72G2JZTKW6qJpqFaxx2zfOoW3p25OlkwwlmX2fiKuyiDXqZLWTyMgJkCDp9sHu9ij4kX4qTG5bZBsectwHVqGV3xLBiIiIiIiIqo+Kv6aUqJqzjmkDdIafP4YopgruS8Ivn+MwmMLkL11CB5CWitD2tIKcLrGPquKV9KWpMUDERERERERUWUhir4tnmIlLVEZ237jguR+oLbkM9eLoghr3jaIYha0fn0AqGHN+wfmrMWS7QSh5I/hHRWAoiEhK2nLmr9TSJtmKnz97aKIPdfMuJxlVdw3yqhGl1p6aNUVF4w6h7T6ChwLEREREVF5U6vVsFqtsFqtsNlsUKurziTARCRns9lgs+Vf7eqr32eGtERlaG/SZdmy0lTS5mXMgjlrCQDAnL0Kam1TmLNXyjcsl5C2yMNB5a4lLStpfSBAKw01V57JwcjmAQCAhcez8evZHLf7d62tx/MdK661wIbLeZL7rKQlIiIioprEaDTCZMq/yjItLQ3h4eEVPCIiKo20tDTHbaPRN3OrMKQlKkOLzx+QLQvR+ZXoWKIoOgJaALCZj8JmPqq4raAq48mXBJV0ojAP7Q5EeypE0QxBYB/PkvLXykPNHIsdRq0KmxLyFPaQ2nnVhDyrHQZNxXS5Sc2rWu0ZiIiIiIh8KSQkBKmpqQCA69evw2azISgoCHq9/mZLOSKq7ERRhMlkQkZGBpKTkx3LQ0NDfXJ8hrREZeh6XpZsWYfw2JIdTJQfyxWNvmPJHsNLgioIoq0wGBTt2R73Ee0ZENQRZTmsaq1NhA6/nZP2Hk7Oyw9ps8yeA1ARQJ4NMFTQu77RqXI2y1K1Jj4jIiIiIioNg8GA4OBgpKenAwCSk5ORnJwMQRDY+oCoirDZbLI+tMHBwdDrfXM1M0NaojKUbpZWOD5Y/xYYNNoSHctuS/a8EQCtX29o9G1K9BjeUqnCYbNdd9wX7c5jEwCnBgiiPRNgSFti7aLkb/qpeXbEBoiwOeWdrcO10KoE7Lthliy3+7ipeXFYnR57aKMyrvYmIiIiIqpkoqOjodPpcOPGDccyURRhtSrPLUFElVtkZKRPW5cwpCUqQ84hbfeo+iU+lmhP9Wo7rV//Ej+GtwR1KGBxvV4XMBzm7N8AsbDCVrRnlvm4qru6gRpczCz8AJeSZ4PZJn8bf+KWIARoBYxdmyRZbq/A4lWLU7GvTsVLuoiIiIioZhEEAREREQgKCkJWVhays7NhNptht7M1GFFVoFKpoNPp4O/vj4CAAOh0vm3pyJCWqAxlWKQhbZC25CXw3lbSlnk/WgAqVZj7MQhaCKoAiDaGtL4UZlDhYpGXMSXPDqVOBzq1AJVCX6uKDGmtTg+u4RVdRERERFRD6XQ6hIWFISzM/fcqIqpZGNISlSHnStpgnaHExxJtKV5tJwhlH9IKak/l/BoIqkCItmuOJTmpH0FvfQg64wCo1JFlO8BqKtQgnfRr0clsZDqXqALQqQClQtUlJ7MlE5Dp1AI6RunRLKxkLTiKQxbScnIEIiIiIiIiIgeGtERlSF5JW/KQ1m73LqSFyr/Ej+EtQe1+5kJByA9pJcQsmDLmwpwdj8Ba30MQ+PZTXGFOIS0A/H979x0nR1n/AfzzzMz2vZbk0kMSUkjokYQWegkCQgwoYKFJExRB/SEKVhRFBBUiIhCahSJFqihICRBKCEQpSUgCSSC9Xd86M8/vj73bu9mZ3Z3d273du/u8Xy9e3M4888xz2Zvdme985/v8M2MyMSAVfHUKgb68IWZb9uTHEfzsoAZMbShvoFbPiCV77L8KERERERER0aDFy2SiMmpLxi2vexOkdZ9JGy56H24pSn2eQQSgKHWOq6SxGUbiw9IPahAY6s9fI8CjAKpIZdJqLj7hTQks2RLP37AXdFOiLaMug1dlJi0RERERERFRFwZpicooblhn6fSrxWePusmkVb17Q1Gdg6OlpHr3zrHWC823HzT/oVlbSGnP/qT8Zgz3wpcnuDlzhA9CCAiRKmXgRodDyYRSWtmUtNTOFQDG1jCTmoiIiIiIiKgLr5KJysSUJnSZmT1Y/GxJbjJpQ0OvKbr/QmQLBHvDX4QncARUzzionnGINv08Sw9G+QY3gA3xq7jm4Hpc+UqT4/pZI3y4eJ/a9OtL9qnFlIYoNrVbbxasatbxSVv3skSZ3473tycsryfUaqj18h4hERERERERURcGaYnKJGHYI18+pfhDLm+QVvjsdWD7kKKNR6Du65ZlQm2ENLbZG8tkH41q4JlQ68GXdgvh/g87bOs+t2vAkmnr1wRO2tU+kdyDH7Zbg7QZk3qV2nsZQdo9h3nLuj8iIiIiIiKi/oapTERlkjDtQVpvkUFaKROQsi1Po/I+sp6PlO7rmkoGaXtlcn3vJvnKrAebMMoXpI0kTaxusWby7jWsvJOUEREREREREfU3zKQlKrGkaWD+slfxrw32ybF8RZY7kIbz4+1WlQ3SQsYKaKznb0JZ7VqnQQAoNrSaGaT9cGf5gubLdibRM1FXU4BpQ5hJS0RERERERNQTg7REJXbV2//EDe8vdFxXbCatfdIwD4DMwFp5H1nPp5BMWshE/jaUVdCjYExYxfr24orJehVrkLZDl9gZMzDEX3zN5GwySx3s1uDJO/kZERERERER0WDDcgdEJfbM+hWOyzWhIKAV95i3NFstr4VSB0XbxbLMGzy+qL6LJZQh1v0HjrK3EX7HbWVBWbfkZIpDyQO3wc+wx95uRZmyade1WrOm9xjKLFoiIiIiIiKiTAzSEpVY1HB+lP/UCXvDpxaZvJ5Zb1Z44K+7GEBnsE344a05o7i+ixRouCLv/j2BIx23lUZz+QY2SBwxzo+eCbFjwip2qXH397WHw8Rd8TLVpW2JW/92R4VKn61LRERERERE1N+x3AFRiekZE4Z9ZugYXDr9EHxp1xm96NUaQBMAPP79EWq8GUZiJTT/TKja6F70X7jU/ufDSHyYdf++mrOgenZFZOdPLcvt5RuoUNOGePGLgxvw320JhDwCB4/yQ1XcZdLWehUM9SvYEesOoOplKmnckrB2XOvlvUEiIiIiIiKiTAzSEpWYnpH1et1+J+LYMVN72WtmBC0V6NK8u0Pz7t7LvouneadD807Pul4IAU/gUPhqv4Z4613p5e4mQqN8JtV7MMmh7IEbI0NqRpC29Jm0uinRkbT2W+djkJaIiIiIiIgoE6+WiUpMN60BVU3hYaYoDZbX0mSQttK0jKzbclQ7aE3Y03MZpCUiIiIiIiKyYyYtUYnNbtiB44dtwrutAfxx3XBowl1QSkoD0abrkIy+AADwBOfAV3Mm9OgixFr/ZG3sss9qIVTrJGNGciVaNhwNiCA8/v0hzQ4ACjTfXvCGT4MQrFtabplzjP1leTs8CnDs+AAU4a5sQj6tGfVoBZwnLSMiIiKi/kVKiWT0P9Bji6H59oUneAJEic4hiYgGKwZpiUrISK7F3XstAwCcNqoJEsJ1Jm287f50gBYAkpFnkYw8m6V1/zoBUpQhzitkBMnoS+mXevxNABp8NV/sk3ENZpmZtABw1wft8KkCR4wLlGQftnq0PqVkAWAiIiIiqhw9vgTRpusAAMnoCxBKGJ7A4RUeFRFR/9a/0vGIqly05Y+W19futgEexV1WaLztbtf7ESJU0LgqTaiNrtvG2+8v40ioS7b5u259t61k+2jPqEdbwyxaIiIiogEh1jzf8jrafEuFRkJENHAwSEtUQkZihW1Zvbc0WYk9eUPHl7zPclLUBmj+w1y1lWZLmUdDADA6XP4HKZIZhW69mTUWiIiIiKhfMo0NltfS3FGhkRARDRwM0hKVkJRx27KGEgZpVc9UhBrnwxs6sWR99pXgkKsQHHJNpYdBnT47ofQ3DzIlM+YNcyqxQEREREREREQM0hKVlIBuW1bKTFpfzVegeXcvWX99SQgPPIHZEOqIvG2lTPTBiAa3kEfB8EB5vwJ005pJ6+E3DhEREREREZEjXjITlZnqcuIwN4QSLllflZP/30MafFyqL4yv9ZS1fz0jk9bDTFoiIiIiIiIiR4M2SLtkyRJcc801mDNnDsaOHQufz4dwOIypU6fi3HPPxauvvlpQf8888wzmzZuX7mvs2LGYN28ennnmmTL9BlRt9Pj/HJe3bTkfHTt+DCP5qW2dqW9By4aj0bLhaFf76G8ThjkRyB+oi7V1Tx4mpYFY6z1o33ox2rdegljb3yClmWNrcmtiXe/r0iYNib8ub8fVi3bivhXtMEyJTR06bljSgr+uaLe01QbtNw4RERHRwJGMvuK4vG3LBWjbehEiTTdAmu2ObYiIKLvyzxxThQ477DC88or9iyWRSGDVqlVYtWoV7rnnHpx11lm444474PV6s/ZlmiYuvPBC3HnnnZblGzZswIYNG/DYY4/h/PPPx2233QalhBmVVF2k2YGO7Vc6rjP1NTD1NYjoG1EzYoFlXduWLxe0n4GRSZs/SJuMPA09eBw03x5IRp5BvO0v6XVG8kMo6nB4g8eWc5CDwoRa56+AlriJOp+7z6un1kTw5McRAMDqZh21XgWvbIhhbau99Adr0hIRERH1b6axDZGdP3Vep3+c+n9yNQAg2PB/fTUsIqIBYVBGDTdu3AgAGD16NC677DI8/PDDWLx4MV5//XX89re/xZgxYwAAf/7zn3HOOefk7Ovqq69OB2hnzJiB+++/H4sXL8b999+PGTNmAAAWLFiAH/7wh+X7hajiktEXASRztjH1NZBmNP1aSqPAvWgQSn3BY6s6wt29oWTkWQCAHn/Xts5IfFDSIQ1W2TJp17XZA6zZPPhhh+X10q1xxwAtANR5B+VXDhEREdGAYSSWu2qXjDxf5pEQEQ08gzKTdtq0afjlL3+JU089FaqqWtYdeOCBOPPMMzF79mysXLkS999/P77+9a/jsMMOs/WzcuVK3HDDDQCAmTNn4uWXX0YgkJokatasWTj55JNx+OGHY8mSJfjNb36Dr33ta5g8eXL5f0Hqc9LsyN8IgEQSAoHObdoK2oc39DkIpXSTkFWKUGpctUvGF8MvJUxju22dNCOlHtagNMSv4oixfry0PmZZnjRkli2sDFMis+X7O5xvVgQ0gaPG+YsZJhERERFVCffXMJwImIioUIMyrempp57CaaedZgvQdhk2bBhuvPHG9OuHH37Ysd3vf/976HoqY2z+/PnpAG2XYDCI+fPnAwB0Xcfvfve7UgyfqpBQXNaKld0ZhtJsdWziqzkHNSPuQ3j47Qg0XI1Aw9UINf4B/rpvlmKoFec2SCuNrTD1TyDNnfZ1kkHaUrlob/v7EXMZpN3QYc8GHxWyf66es3sYvz98CCbUlXeiMiIiIiIqr2zXMERE1HuDMkjrxpFHHpn++aOPPrKtl1Li8ccfB5DKzD3wwAMd+znwwAOx2267AQAef/xxSOku+EH9jNsJvWR3lqHTXWjFMwX+2jOhaCOgeibBGzwK3uBR0LzTIcTAqOfpNkgLAHpsMUxjh205M2lLRxECkzLKHiRcBmk/arZnzfpU+9/pAaN8qPc73xQjIiIiov4jc0IwoQzN0nJgXLsQEfUlBmmziMfj6Z+dMm7XrFmTrm17+OGH5+yra/2GDRuwdu3a0g2SqoYQ2SeX60miZ5DWfhdaDIJDUgj3Qdpk7GXAIWuWmbSllRlYjenugrQft9hrzzoFeNUBcoOBiIiIaLDLTDTR/DMd2w2IuTSIiPrYoKxJ68bChQvTP0+fPt22ftmyZemfp02blrOvnuuXL1+OiRMnuh7H+vXrc67ftGmT676qRdvmsyBlByB88AQOhb/2QgjR37PsXGZIy9xB2sFw36SQTFojscxxuZlchbbNX4UnOAe+mjMHTJZxpWQGae9b0Y69G71Y8F4bNrTrGBFUcc4eNZhUby1X8Oy6KDJtciiBoPDtISIiIuqXpJRIdDyCRPsTkDJqK0WmqMOctzObYOpbocffQbz975BmC4TSAF/Nl+ANHt0XQyci6ncYpHVgmiauu+669OvTTjvN1qZn8HTs2LE5+xs3blz6508//bSgsfTcdqAwzWZApibaSrQ/3PlY/5zKDqrX7IEpRz2DtNKh6H6/D1bnV0iQNhfT2IR4271QvbvB4z+gJH0OVt6MIG3CBL6zsPsEvCWh46alrbjpiCHpgPjKJucJwpxuVzBIS0RERNQ/GckPEWu5Net6IcIQ6ihIw5481LHjKpj6mvRraTYj2vQraL4ZUNQhZRkvEVF/NvDT9orwu9/9DosXLwYAnHLKKdhvv/1sbdraugNs4XA4Z3+hUHe90vb29hwtB4nOAG0XI/FhhQZSOlK6C9JK2V1GQ5ox23pf+AslG1O1UrRRuderowvqz0iu7s1wCMCwQP6vgi0RA9EeZRDWtdpLHTjxq8KxTi0RERERVb9812qKNgqBuosc1/UM0HaTMJL2OV+IiIiZtDYLFy7E97//fQDA8OHDceutzncNY7HuAJvXm7seqc/nS/8cjdofD84lX+btpk2bsP/++xfUZ7VxmkCr35H2gKtjM0stVdO2XvMfVKIBVS/NNwOqd08Yifd7LFUBGPCGToU3eAzat38HkC6PFYdgNxXmmF0CeHpN/n/vhCER7Kx4YLicBPHzk4PQmEpLRERE1C/JjAQbKy803yxAeKB694GR+J/LTjm/BBGREwZpe/jggw8wb9486LoOv9+Phx56CMOHD3ds6/f70z8nEomc/fachCwQCBQ0pnylFPojzXcA9Pib6dfOtVn7l54ZsjnbmT1PcqxBLs1/KIQY+IekEF6Ehv0WZvJjQHihaLtAmjsgZQKqlsqirR31SOdd++4MZUWbAGm2oGPHDy2PU7n9t6fsRoc1fGa4F+9szfNZ1uO+Qub8YDVegctn1FmWjQypGBYY+CU8iIiIiAYqaWZ/ErR21EMQSuq6ODTsRiQiTyHW/HsXfRaWuERENFgM/IiQS2vWrMGcOXPQ1NQEVVXxwAMP4LDDDsvavqamu65mvhIGHR3dgbl8pREGA09gdkaQtv9n0uqGu7vB1jvR1kza/j95mntCqFC9U7pfZ0w4IIQPmm9v+4ZqAzz+A5Ho+Ed6kXSZxUy5BbT82a7xHpFZMyNIu2udB3sOy/1UARERERH1M6ZzJq1QhkAo3de2QgionqmuupTMpCUicsSatAA2btyIY445Bhs3boQQAnfddRfmzp2bc5ueGa49JxFz0rNkwUCcCKxQQqm1vB4IQdqYnusxoB6ynOSk8JFwN4TwWxcwSFsSisj/95ewBGmtUVqWnSUiIiIaeKR0TkhSNPs8EkJ4XPbJTFoiIieDPpN2+/btOPbYY/Hxxx8DAObPn4+zzjor73a77757+ucVK1bkbNtz/fTp04sc6cAhlBrLa9PYgLbNX4W//lvw+Ku/vq6pb0Gk6RcwEisg1XG4etU0jBBLcdnE/NvG2x+Er+aM1AuZWZOW90xcET7LS5Y7KA03QdarFzXhl7MbEPII3LfCesOBZWeJiIiIBh6ZJcnEKUgLuAvSxlvvQrz1rvRrzX8Qgg3ft2TmEhENRoM6KtTS0oLjjjsOy5YtAwBcd911+MY3vuFq24kTJ2L06NQX08KFC3O2ffnllwEAY8aMwYQJE4of8ACRGaQFANPYhGjTryFtgcvqE2tdACOxDIAJYazD54e8goDqbtzSbIVp7Ox6VbYxDmQiI0gLBmlLwm0m7N0ftOGvy+0ZFW4ycYmIiIiof8k2cZiijrEtE6K40ld67HXE2x8talsiooFk0AZpI5EITjzxRLzzzjsAgKuvvhpXXnml6+2FEOmSCCtWrMAbb7zh2O6NN95IZ9LOnTsXgoEMKOoIOCVxS7O5X5Q+SEZfsrzevz4Cr+I+4Grq6wAAEsykLUrGyR8zaUvD7QRfq5p1rGnVbcuH+vn3S0RERDTQSNO5fqzqmWRbJtR6AMUFao3kmqK2IyIaSAblVXUikcC8efOwaNEiAMBll12GX/ziFwX3c/nll0NVU4GNSy+9FNGotbZONBrFpZdeCgDQNA2XX3557wY+QAglDF/t2VnWGn06luLYs2azHUhCbbQt657NNCOwywC+K/ZaV/aAIRXuqHF+jA27C9Q2xezHwPETg6UeEhERERFVmNMkvZrvAGj+WbblQvjgrz0XRYUZmHhBRDQ4a9J+6UtfwrPPPgsAOOqoo3Deeefh/fffz9re6/Vi6lT7TJVTp07FFVdcgeuuuw5LlizB7NmzceWVV2LSpEn46KOP8Otf/xpLly4FAFxxxRWYMmWKrY/Byl/zZXgDR6Bty5kZa6q73IGUzkHkoGpd7g2dDF/4dAh1BNq3XgBT774z3P3IUGb2LYO07mR8bEkGaUuh3q/ihsOGYEvEQLLzMEyaEj94tcnW1sj4073piCEYEXQX4CUiIiKifiQjSBtouBLe4JyszX01p8EbOgGtm+wTcdeM+AvatnwNQNK+GwZpiYgGZ5D20Ue769288MIL2HvvvXO2Hz9+PNauXeu47tprr8XWrVtx1113YenSpTjjjDNsbc4777yiMnUHOqHU2hdWeU1aaTrPbhrWMsftgaKNBAAIJZTRR7Trh4xtGKR1JSOTVkr7SR4VRwiBkaHCvxYa/AzQEhEREQ1EUlqfFlW0cXm3EUoYQhkKae7I2HY0hNoAaWx12BGDtEREg7LcQSkpioI777wTTz/9NObOnYvRo0fD6/Vi9OjRmDt3Lv75z39iwYIFUBT+U9s5BXaqPUjb6rg8nGPiMCGsj4FLcwdMo9l2V5qHoztCWIOI0tgO02iBlJyIrRICmoDP7axjRERERIOYlImyT5QszXaYRjOkTLhoG021NWOQUredU5tGiy14KoTf5Uicn3YTjteAgGls5fk8EQ16gzKTthwf/ieccAJOOOGEkvc7oAl7UNI0m6FgZAUG445pbHZcHsood9CzvqxQrEHaeNtfEW/7q60PwUxalzKCtLINbZtPSb8ONf4Bmnd6Xw9q0Krz8uYCERERUT6x1rsQb/s7hBJAoOEH8Pj3L2n/prENHTt+BDO5qnOJF76aL8Nfm1leDpBSR7TpeiSjLyIzSUYowxCovwSxtr/BTH5k29ZtkDbr027COQQhzR2pJBYRcNU/EdFAxKtrqiD7n1+i46kKjMO9ZPQVx+X2cgc9Aq7C7YRKDNK6Yps4zCrWsqCPBjI4NAZyf03U+fg1QkRERJSLoW9AvO1vAJKQZitizX8o+T7ibQ/1CNACQALxtntgGttsbfXYYiSjz8PpKUZpbkdk5zWOAVoAgMsgrVDCWdbkPpcnIhrMeHVNFeR0F7W6H3HJrC/bJZyRSSt6/G6qi7pNQKpGE+WXWe4gk5H4b98MZJA4f6+anOt3qRmUD2QQERERuabHllhem8aGrBMSF8s0Njgv1+3LTf3TovYhlFrneUUceEOfs7zW/IcCAAL1lxS1byKiwYBBWqoYIQQUbRfrwhKfrJSecw0pWyat0v2Yjjd0AlTfZ3L2qnr3gTd0Yq9HNzhwkqq+tM8wL4b4nb8qdqnRMHeS20xxIiIiosHK4RoiY0KuXstS69ap7IAsZpIuEYK/7lII4e5c3Bs6Cao3NUG3oo6Bv/ZcAJ3XPcETwVAEEZEdU6Coojz+QxBvv6/HkioP0mY5+anJCNKKHrWUhBJGeNhvIM0Ox5MkITxZM3TJQZ5MWiotIQRuPXoYDFOiI9md6a4oQNjDk2siIiKivBzOX6UZyVESoBhZrqMcg7SFBYgDDd+HJ3CU6wAtAChKLcKNv4M0o4DwQ3TO2SGEgkDDdxBo+E7nWBKQZiS1ketJyYiIBiZGO6iyROYkUM6zgFYPd7OxCoeC90IJsepsCQh+bFWEqgjU+vgXTERERFQo4VCHVcpISfeRvXyCwwReBWbSKtq4ggK0PQkl90RgQnghVG9RfRMRDTRMg6IKy/yyr/JMWrdBWoWPgJeNixNEKbPXNpYyDtNoydmGiIiIiKh07Nc4pQzSSilh6usd15lGk0P7WEH9Ky7r0BIRUe8wSEsVZbsjW+2ZtG5r5vJRnTLKn0nbvu1imGarbbke/wBtm7+Mts2nINr0KwZqiYiIiKjsnEqeJdofL0nfptGC9m1fhzS3O66PtcxHvO3vGQMqLEjrdrIwIiLqHQZpqcIysyKrO0gre1HugErERU1aM7kKyciztuWx1tshzWYAQDL6PIzk8lKPjoiIiIjISiZsi5LR/5QkYSAZ+TfM5OqcbWKtd0Ga3YHZnj/npwKC82cQEfUFBmmpooRSY3ltGjsrNBKXXD6WpGjjyzyQwUtRG11lKhvJjyyvpRmFkXjfskyPLSnp2IiIiIiIMkmnurAASpGgYhpbXLRKwjR3FLffHpN+ERFReTFISxWlaKMsr01jU1U/gm4aLXnb+MJnQFHr+mA0g5MQXgQbroRQh0MoQ+ENn+7YztQ3W14biWUOffnKMkYiIiIiojSHcgep5fYM25L1ncnsTjZx+3RgqnFhpRGIiKh4nCadKkpRrUFayBik2QyhNlRmQHlIM3+Q1lvjHDSk0vEEDoMncFj6daDuQiSjryCy86fpZaZhDdLqifds/RR0gkpEREREVIwsgVQpExDoXSmBzCxdb/iLCNR9HS0b5wKyvce+oj02KmSy5mqf2JmIaOBgJi1VlFCHIbMubWZwrZpIh8moMgnWbKoIRR1peS2NbZZJGvS4PUjbM6OAiIiIiKgcnCYOS60oRSattXSBgCf1fyWYMYYeQVomKhARVSVm0lJFCaFCUUfCNDakl5n6JsA7vSLjkVLC1NdDCA+EEoKR/BhSGljf0YpPYvXYG81572wIkTkZGvWFzNIZgEQy8jwUbQQADUbiv7Ztuk5WTX0jIDyperc5mMZ2GMm1ne+xgq4TXEUbD0Ud0uvfgYiIiIhKQ8oEjMQqSNkGaUag9HhSzzSaAJmEUGqg+fYGRAim/gkg4xDqMJj6us6WHqjeqRDC26uxmPp6x+XJ2KtQPbumXyva2Lzno5lsAWDRGaQVfvQsIhff8TgM0QohVJhmYfOAxDe9UFD7YnlHHAahMERBRIMXPwGp4hRtlCVIG2tdAG/wqIqMJdZyMxIdT9iWD+n8j6qXUMKACFse64o2/ybnNlJGEG25HYn2BwEo8Nd9A77w5x3bJjqeQbT5hmx7R6DhSniDxxY3eCIiIiIqGVPfjPZtl0Ga2121VzyTYGZMOttFKMMQbrwJijbScX0+sbb7oMffdF7X8kfbMn/dZfCFT3bdvx57xbqgM0grDWu2rIE3kWz9D2JL3kHwyMOz9ieTSQiPx7Js57+Pdj2e3hjxlbbUOT0R0SDFcgdUcfbH1N3MUFp6ptHsGKDNZVOM9zmqSaEnz6a+oTNACwAmYq13QErnx79irQty9CQRb/tbQfsmIiIiovJIRJ5xHaAFkDVACwDS3I5E5JmixiGljnjbfQVtE2/7S1H76iI6S8mZ7fYSckpNDbSRuc+Xzda2Xu2fiIiKxyAtVZxweKRHmlGHluUlzR0FtW9JKrh7/TDLMm/wxFIOiQpU6ONhRuJ96wIZA6S9Tq2UBqTZnLMv02gqaN9EREREVB6mUdjj/PnIYs/zZDT1XyGbmDuz17B15Ml4LVL9JJ33qwzN/nygsWMn9PUbrMt28hyXiKivMA2QKs4bPhnxtrsty6TZBKEE+nQchZ0MAetjAbwXOxhRbSeCcjlUz1T4as8r0+jIDaHU97oPKaMQyHjMytWkDjJ/EyIiIiLqA9UxMZbMmNTL/YaxdNmC/Ky/q+bbN9WFnoQ9gAso4RrHXoymduhrtkNGBfRPtkFprIOMJaB/tA2Kf3gBg+8N0Uf7ISKqTgzSUsUJUQPAC6A7EGYaTVC00X07kAKDtPs0fgb/nPaNMg2GiqGUIkhrRoCMud+kjPW6XyIiIiLqI9JwXKz5D7XXcC0r+zi8oVOR6Hgk51bSjEIozsFUh9bWl6LzYVnd+dpGCYYBWIPHgYbvwzvmWGBPhw2clhERUVmw3AFVnBACosdsq0Aqk7bPFRik7fMgMuUl1Ppe9yGdHkljkJaIiIioH3HOpBXCX1RvRT8v5RAsFi4yZB3PR7O3ztxD566zPQlmz+4VwlfA/oiIqFyYSUtVQVEaYPSYMMzsRZBWSgkzuQqm2QrNuyeE4u5kTKKwIK3KIG3VKUm5A7MZUuow4v+DabZ0Lmt3sWFHr/dNRERERClSxmEklkFRR0PRRmRtZyQ/gpH8FEASqmdXqJ5JyBqkVYJFjSUZeRrtLW0QMgwhR6Yn58pHohXIiH8mm1fmvQqPrX8cisxfYkBCB3zWIG1s/b+gyCGAKKDkA4O0RERVgUFaqgpCHYKeMdKii/MDiLfdg3jbXwEAimcywo03u7s7XGgmrcogbbUpRZA2suNqKNo4mPqnBW+bjC2Gx79/r8dARERENJhJM4r2bZfA1D8BhA+hoddC882wtYu33Y9Y6wLLMn/t+UhGX3TsV4jigrQAYHheTv1/ZxPiby91tY0IBhGYfaBlWWzNQ/BOmZRzu45V18HYuCl354oC//77QfFZyyK0LbkCsiMC797u6xQI4XXdloiIyoflDqgqCKU05Q6kNBBvfyj92kyuhh572+W28YL2xXIH1acUNWkBFBWgBYBEx+Ml2T8RERHRYJaI/icVoAUAGUes9S+O7WJtD9iXZQRtexI5MnLdUoc0QKl1WS9WOEyEZTrXy7Xso64ubxuloR5KjcM4OhNrZcx9ua7UHCFERFRpDNJSVcisDyVlthpKecgYkBFsNZIrXW1qGltd70ZRR0OofTXLKbkl1PwntOUkjZaK7p+IiIhoIEi0/d3y2kj8z9ZGShOQ2UpSOVzmigC8gWMg1FG9Hp/wuSwPoFiDtNI0Yba02pZlklkm/bKMwWOvbSsTCchoqp6t/ul6d2MEoHhyZ/YSEVHfYLkDqg4i409R2gvau+GcDeuuHpOp2x8punf9ULzeMgrnjNmCCUEDIwM10Dyj4K89H0LwHke1EUqt43LVu3vnLLkhCOGDlHFIM1VDVsoopLG5iJ2FHS4MCqj9RURERESOpMPkVvZGuZI6rOdkQh2JYMP3IZQAwsN+i7YtX8q6pVBHQNHGAACM+DuObdSa8RDJkXmHKEKZ1zgCitgF+ppWKMP8gAkYmyNQh/uhNHQnrSj+Rmj1gZx9KyH7vBv66nZodXukXydXt0Ab2QARDgJwDmgHGq6EcMr4JSKiPscgLVUF+yynxQVpHU/WpMsgrbHR8vqnK0fh92tHYuHxF+Owkby73B9kqz0cbpyfc7u2LefB1Ne62ofqmY7w8D8AABKR5xBtui69TiL/42tERERElIfMf05VSKmy8LAboWipoKqiDUd4+D1o33qOpY3mOwChYb+0LGvZcLRzf/v9BL7QSXn3q8c/QMf2b6VfCy2Mxs+/YG20OxBt+i0SkafTiwKTvoLAft/M2Xei41+INv8m/Vr17Ia6Y/+YtX3H9qugx9+0LVc9U/P9GkRE1EeYCkhVwnq/QJYwk9Zt4Cwzk3Zt1AevomL/YbsUNRbqR4S7GXoBQNHG9niVsZ2LCwoiIiIiysd+LSBt51kFlEfLmBhLKKG8bXIyIy4bWn8Pke2c07bczTllZiJKnkv7LL+fqwmWiYioTzCTlqpDRrkDPfYqYq1/BWBCKGEAgKKOgOqZCD3+X0jZXQhf0cZC881MlR9wuqPe2dbQNyDeeg8UdSQUz3hIM1UPypAmljVtwRTV+sj7mogP+zfuAr9mr/dEA437+1WKZ1z658wTbVNfg2T0FWj+AwqaJVeaUSRjr0OabdB8e0L1TIKUJvT424BMdvZnP6k39A3Q4+9AiBp4/AdAKLkfiyMiIiLqa3rbWiQ2PQepR3O2k5CQWmqOCBmy1/lvX/UjCH0EoO6AVFsBoQP2J/4dRT68GwLd5/QSBpAxlYHRugYdW262Lswy3UG8/e/Q/AdD7XFeKKUOPfYGpEzA498/dQ1jCyxnSwwo5sa/tL7MU7IgazCWQVoioqrBIC1VBeHwpxhvu9v19t7QPATqv+k44Vii4wl4Q6fYHmnqaYrD+dLaqBeXTJzoegzUf4ksJ8yafzb02CLLMjVXJi2AyM6fOj4ul42UJjq2XwEjubxziYLg0J9Dj72JRMcT6XGEhl5j2c5IrEb79m+lb0wkPNMQapzPWslERERUNZLNy7Hj6QMgk21523r3mA5tdPZJvczQmzA7OqCEHLJg82h76wpAWoOawWOPso5162J0LP9zzjZdpNmM9q0XItT4W2je6QCAyM5fQI+9AgCIa+MRbrzFXls3cx6ONOv5m3Qxz4G9Te5zwGxBWmbSEhFVD17NU3Uo5PEiB4nIM5DStGTY9hRr+UNB/cUMgRZdw2Ejdu3VuKgSrH9Lqme3/JvYaiIDgApv0F6HTFHH9NjO+e9Wj78JU9+af78AjOSKHgFaADARb/1LOkALAHpsEUxju2W7ROQpS+a4kVwBU1/jap9EREREfSG25gFXAVp4PDkDtF2KCdBK07QFaJ2Y7c4Ta2WXQDLyfGpbY1s6QAsApr4OicizDpMhuyt30DXBbU62eTfyTP7l+MSVYCYtEVEVYZCWqoLm2wu9+nOUMQB6uoRBJj2+pKDu/KrErjVDcTgnDOt3Ag3ftrz2112UdxvNt49tmSdwFDTfTEB0P0cn1OFQPN3Z1apnt6wntqa5w9V4jeRHDstW2PszrEFfPbHM1kaaLi6CiIiIiPqIGd2cvxEAJeCybkExY2hqdlyub+ieNFjqOvSNm2xtEqvs52k9STMV2DUSq2zrkpFnIaU12OpYCxeAqo2xvHY6F7Tv3PoEoX0iZivNaz/fVb17QWTN7iUior7GT2SqCqpnVwSH/AyJyL+hx14trhOpQ5r2+lXFeKV1Lzxx9LkIsB5tv+MJHANpRmEkPoDmP9AxAJvJV3MmABVG4n1ISGje3eELfwFCCSE07AYk2h8BoMFX82VLbVhFrUNo6PVIdPwDyehLlj6z3TDIZCY/dtVOGs09+o7CTDpkzXLiMiIiIqoiZtJ6PqSGJ0CtsT+pJgpPkM2+z54JsXFAbh0C7yiHsgUtgOkF4AHM7Rq8ww+3t4kDxmZACXqh1k6BiQ8yGqQydLPddDcybqoLEXYcs+rd09qrsRWmvhWKNtyxfWrPGWXe8mTEegIHI1B/BZLRlyGRgKqNha/mrJzbEBFR32KQlqqGJ3AwPIGDEW/7O2KttxW8vUTpgrTHjN0f/pqRJemL+pYQCnzhuQDmFrCNBn+t80mq5p0ObcgPs26r+faE5tsTbVvWWcoNuA3SGm6DtGZzj21WwT6jL+x1z4iIiIgqSGYEaYO7fR3hva60tUtE/oNo0696ta/w8HssE3mVQ6xlAeLt9/dYkj1IC8BSvgoAhFLr2E7RdgFEGJDdEWY98T68mnNN3NSurRMmu6kt6w19Ft7QZ/O2IyKiymC5A6o6Qm0obsMSZtIKUb5HrmhgyjzpdhOklVLCcMqIdWD2DNImsjwCx0xaIiIiqiJmwnpuLjzOQUppNPV6X0JkqfdaSrYJWlM3zc3kapebO2fSCqFA8+5hWWYkMrN2rWRGkLa3c3wQEVHlMZOWqo5Q6oraLt52H/T4u6UZAwvoU4Eyg7TJ6KuQZjs03z7QfPs6biONrYB0MTEEgET7Y/CFz4A0tmTNNDeSK+AJHOx6zHr8A+jxtwHoMPWtqbq3MoZAw3eherrrMRv6RujRlyFlJL1M0cbDEziiby6IiIiIqKTMeDOia+6DGdmYv3EvGK3W4KXitZ/nSzOKeNvfSrC3vjgnyZycy0Qy+hpMw17P1nFrpSbrOtW3J/T4m+nXiY7HoKgj4AkckS57IGUcych/UnMmmNYJk3n9QkTU/zFIS1VHUeqL2i7R8Y/SDYKZtFSgzCCtkXgXRuJdxNuA4JAfwxOw1zkzdHdZtAAgzR2INt8IPfZa1jbxtr9B8x0AzbdH1jZdkrHFiOy4Cl2P6fXUvvVChBtvheqdCtPYgfatF1sev0uPP/EBAvXfcv07EBERUeVJKbHzuTlIbn+rz/ftlEkb2fkTSFmCyU/75MaxNUibjC5EMrrQ/dZZyh0AgObdExm5sYi13oZ4+8OoGXEXIELo2H5FjgxbZtISEfV3LHdAVafocgelHIMIVHoI1M8oan3WdYnI847Ls5YtyCIZ+VfeMgrJ2Mvu+oouhFOAtkuk+bed7RY5BmhT43nB1b6IiIioehitqyoSoAUAxWs9zzeNls6nekqgDx73l2Ykf6McspU7AADVuxuccqikuQN6/L8wEstylkBgJi0RUf/HIC1VHaEMg+KZkqeVB4o6ptf7emF7DZa2ZARkRQiqb0/nDYiy0HwHwP4IXErPSb960uP/Lf1AMh59y0aaucssmMlVqf/r67P3IdsgZfZALxEREVUfM7a1IvtV/MPhGbqfdWFmXdUMmm8WVG/+83LVMw1KjizVknGRresNnQqhDHHePEcgVQgfvEHnSb1MsylvjdpcpRSIiKh/YLkDqjpCCISG/hKJ9kcgYcAXmgcjuRrJ2CJAJiBECJ7gHKie8Yi3P5wliKRBT7wLaWxx3McHbX78e/sQrDePgCpMbDeXY49agQm1E+ANndA3J3k0oGi+PRAc+kskowth6uthJN5Pr5OmPRNVmjEYieWWZZ7A0UjdO9OheqYAShCx5t8XNA6ZIzvWKumqlWnkq1WXBB+vIyIi6j9sk3lpQfjGnVzWfaqBkQjudjGElllSzH7eIpRaaL79oGhj4Qt/AVIaSHQ8AlNPnZNIMwI9/iZU7x5Q1OFQ1JHwhk8p6/i7qJ6pOdcr6hj4674Ob+gExFr+BD2embGcO8jrr/s6FM8ExFr+YF1htsPMM0FyrlIKRETUPzBIS1VJUYfAX3dB92ttBDyB2bZ2/tpzsvZhJNeifet5juu+8t9dEfLtgvfnOa8nKobHvz88/v07673+IL3cKUirJ94HoPdYoiBQfzmEEuzeTiZzBml9NedAmm1IdDzSY6npbrBSz9/EjKQviLI3inM2YSIion5EJq3BPjU8EQ2H31+h0djVjPib5XxIAPDXfq1yA7Jwfmqqizf8eQihQPVMQKD+W2jbcmZB2wslAF94HozEMiSj3WWlpNkBaezIsy2DtERE/R3LHdDAJTxZVxlSYLg/e00oot7IfNxMOk26lVHqQPXsZrkgAQAhPIDI/neqqMMAkfkx7i5IK2X+TFpD/zRvkFbmeUyRiIiIqostk9ZbV6GRDEQ9zstyXIvkk1m7Vsp2mHmDtCx3QETU3zGTlgYskePP25BAI4O0VCYiM7Aq42jZeDI0754I1H8TijYa8faHLU003wzHvhS1HqbuPHGXUIcC+ieWZaa+uXu3ZhSJjidh6OshhBeewOz0fozk6ry/R8e2S/K2MRIroQSG5W1HREREKVKPIfLhn5BsWVa+nSgGEG4FNPtNWRnfCe/03SBNE8a2HVA8DNK6JUTuTFhrpmzxTxoJEbK81mPvwMxSxi29DTNpiYj6PQZpaeDKcfdalwKN/lDW9US9IRSHvy3ZAT3+Jtq2vIlQ4x+QWRM2W5BWKPUAnCfvUtRhEBkPRBiJ/0FKHUJoiDT9GnrslfS6RMfjCA37LRRtDCBzTxzmPBifbYKPyM4foWbko1BUXuARERG50fL6RYh+9Oey7sM3az+o9c7fzaLGAwWpCXg9u4yDuSHg2K4vSJlwWJovEFrFejzhJEqYSWsaG1xswyAtEVF/x3IHNHCJ3Jm0o4I8kaHySD1ulv3jNbrzl7Zlqm8Px7a5ygkoaiMgMifgAIzECkgpocfeyFhjQo+9CT2j1IJbQoQAYQ9AG4n3iuqPiIhoMIp98lh5d+DxZA3QOlFqKxcUNY1N9oUi9+Ra1UwIX48XTtci7iZ4Td2kL4TKIC0R0QDAIC0NWAK5M2k/v8uefTgaGkyE8EDz2ye662Ia9jqvlpN6S2PnUgdAKhjs8R/g0P8WpGrTOjziKBOQxWTRAlA9E+EJHO7QZ7So/oiIiAYbaRqQyday7kOohQU5lZrRZRqJG/agpajiCUkVz5TsK0Uo48mo4oPNmn+m443xbDyBwyD6cXCbiIhSWO6ABq4cmbSmFNijYWQfDoYGm+CQHyDRsS9iLfPztvUEjsy6TgscikT7323LveEvAgBU71RABAEZSa+TxlYARpYeTVvJAts+fTOhx5fYlvtqzoTqnYZk5J/WFVLP2R8RERGlSN1+ozQw5WsQWgnnSlATAFZal7UPAWRnxqw3Cvi6zxsUfwUnnJIxy0uhDq/QQNxR1BFZ14Ub56eeckpzylB2N8Grog5DuHE+ktEXIM3uv5lExz9sbb2hefDXXeiqXyIiqm4M0tIAlv3Pe98hY/twHDQYCeGDL/x56PG3ocdey91WHVpw/z0vAjyBQ5GM/Dv92jS2ATJbkDZ3CQUACA37Ndq3XQYj8b51nMIPITxQvXta1kkwSEtEROSGTLbZltXOvAGKr6Fk+zCSn6J96znWfUy9L10jNd7+mOUmsjQr90RM5jmJUKq7xr0QKoSogZTW99FfeyFUz/jM1r3al+oZD9VzrmWZkVxtKzPlqzmzqrOPiYjIPZY7oAErNfuqc6DWp2V5tJyoAoqpIZaqe5tizdroDNJmzdQwAcdJOjL6F0GHhV31bzOOK2bSEhERuSJ1exkjoZV6Mlunc4DuR+GFsE4UVmwZpFKwBWmzlX+qIo7nbQ5zBKSuRTK5q0mbjczIPE6Np4RZ2EREVFGDNpN269atWLx4MRYvXoy33noLb731Fnbs2AEAOPvss3HPPfcU1N8zzzyD22+/HW+99Ra2bduGxsZGzJo1CxdeeCGOP/74MvwG5IrQHANIfrX6TwBpgJD2urCZhCj8McOe2ygZjwYa8fcQ2Xmt43bJ2JsQbmqkOcxI3HXhJDJKicgcdXOJiIiqXbLpPXQsnw8zurXs+5LJFusCxQuhljoL0h6kFaI7N0coGTdii8ikNZKfItHxKKTZCs1/ILzBYwvaXkqJROQpxJp/nzHO6j9HF0otYGzIWBbI0jqD7F2QFg7zALAWLRHRwDFog7QjRmSvJ1QI0zRx4YUX4s4777Qs37BhAzZs2IDHHnsM559/Pm677TYoChOX+1qHLhFyOG8JMpOW+oh0k7WqFBGk7ZHFITIyaaVsgx5/03k8xmZXORzCIUiLrgunjCBtvO0e+GvPdNErERFRdTGTHdjxryMg4zsrsn/hKX0WpKlvzliScQ1iy6SNoBBSGujY/n+Q5nYAQDL6EoTwwxM41HUfycjTtgBtamzVf47ulEkrHDJpnfU2kzZ3ySoiIurfGDUEsMsuu2DOnDlFbXv11VenA7QzZszA/fffj8WLF+P+++/HjBmp2T0XLFiAH/7whyUbL7m3M2l/zKhVVzDUX+rHyoicKVr+G0JKjpq0jmUHAChqQ4+fRxU+sCw0/+xUn1pmXbWeWSL2rw7Z28wQIiKiCkhseaViAVoAUHzDSt6naWzJXGJ5JRTrebB0yM7M2b/+aTpA20WPv11QH8mYfYLS1NgKLwHV14Rqf8/c1tJVPBN6te/MyWYVbWKv+iMiouoyaIO0P/7xj/Hkk09i8+bNWLduHW677baC+1i5ciVuuOEGAMDMmTOxaNEinHHGGZg1axbOOOMMvPrqq5g5cyYA4De/+Q1Wr15d0t+B8ntks/0k6qFNQ/GliTMqMBoajLzB43KuV9QxUL27Z13vCRxiq3OmeveGoo3u7kMbC9W7Z+8GmuoJvtDczv0eCfQIEHsCx6YnpdB8M+2bSpY8ICKi/kdvWVbR/Qcnn136TvM8xZNZkxYyBpljwlF7//ZSYgVneDoGhhV4A0cX1k8FeIPHoGeN39S53HTntuHT0j+r3j2heaf1ft89zgt94VN61R8REVWXQVvu4Gc/+1mv+/j9738PXU+dpMyfPx+BgPWEJxgMYv78+TjooIOg6zp+97vf4ZZbbun1fsm96z8ehdd2erFHTRQCwPDQNHx2yjnYZ+jYSg+NBgnNty/CjX9C+7avO64PNc631XjtSfVMRLjxT9DjiyFlDIraCI/f+jihEAKhodchGV0I09xh70QmOk/oMzJphA+abxYgE9AT70Hz7gnVO7Vzv+MQHv4n6LE3IJShqWBxJ2/oBMRabrb0ZepboHoLL9tARERUSXrLCstrz7AD4N/l5D7Ys4A2ZF/4xny25D1Ls9Xy2hM4wrpnp6d0ZBQQbksvODw9U0iQF/ZyUEIdidCQn6TPQ6qZ5tsb4cY/Qo+/A6GEoPkPSd/IzuSvvRCady9IGYEncFiv9616JiHceCv0+BKonl2h+fbtdZ9ERFQ9Bm2QtreklHj88ccBANOmTcOBBx7o2O7AAw/Ebrvthg8//BCPP/44/vCHP2SZ6ZPKIWGYeHZ7HZ7dnnoE6b9zv4Z9hozOsxVRaaneKdB8M6HHrY/2CWUoFDX/43GqZxxUz7icbYQSgDdU/IWe6p1iX6aNgRo+1b4v4YFQhlkedTSNzVAxuej9ExERVYLevNzy2j/hVIT3vKJCoykNMyNIm/kovm3iMADSjEAovQjSorAgLTIyb/01X+kXAdouqncyVG/+8x4hBDyBg0u7b88uUD27lLRPIiKqDoO23EFvrVmzBhs3bgQAHH744Tnbdq3fsGED1q5dW+6hUSdTmtClNXPQq3D2U6oMp8nBMmvC9SeKNtLy2l7/joiIqPrpLdYgrVbn/Nh6f5KZSWs7B8ksd4DCJw+zb28vgZC7fUZJhn4wYRgREVG5MZO2SMuWddevmjYtd22hnuuXL1+OiRPdF3hfv359zvWbNm1y3ddgkzRN2zIPg7RUIc4zAffjIK06AgbeT7+OtfwRyehLljaqNhG+2vNcZQsT9QdmohVt71yN5M53AE6WR9T/SRMybi0TVO4gbSLyApKRf0PKKFTPJPhrzysgg9UdI/5fy+vMcxAh1FQZJBlLL8sM0kqZRLz1XuiJ95BZLkma9nqyeuxV1+NLRhfC1NdkjIlBWiIiIgZpi9QzeDp2bO76puPGdT+m/Omnnxa0n57bUmESpv2OPjNpqVKcM2kdasL1E4o6wrbMSCyzvTbNnQgN/UVfDYuorFoXX4bo6nsqPQwiKhfFBzU8oWzd64kViDZdm35tJD6ANDsQHHJVyfYhpQEp2yzLnG8UByF7BmlNa5A23vZXxNvvL2jfyejr8AQOytnGSH6EyM5r7Cuy1HQlIiIaTFjuoEhtbd0nP+Fw7rvfoVB3tlx7O2dA7ysJw14bi0FaqhRFHW5bJpQhFRhJibi8mDLi7+dvRNRPJDa9WOkhEFEZafW7Q5TxXNGIv2tbpifsy3rD1DfalinqMNsyIfzWBRk1YvUivr/d/C56/D3H5YpSX/D+iIiIBhpm0hYpFuu+8+z15g5W+Hzdj+9Eo/bHg3LJl3m7adMm7L///gX1OVgkTIcgrco/eaoMzX8whPoXSGNb5xIPvKETKjqm3lC97h4HlUiWeSREfceMb8/fiIj6rdAe3y5r/1J22BeaMfuyXrE/SaZ697I3E5m5OhllwjKCtq6Y+evaStOesKJ6pkPxcPJRIiIiRqyK5Pd3331OJBI5WgLxePdJTiBgL9SfS75SCpQdyx1QNVHUBoQbb4MefweQCai+vaBqoys9rKIpakOWNRosF4iywNmeiaqUNOKQujXAUvOZa6H47VnyRNTPCAWeIZ+BZ+i+Zd2NUy1XidzXEYXvxP69K4TTJV/uIG3mTVZP8HhoGTdoo82/A9Bdn1vK/MkotkC1CCM07AYIW9CYiIho8GGQtkg1Nd31JfOVMOjo6D4ZyVcagUqH5Q6o2ihqHbzBIys9jBJx/voQIpBRC49BWhoYzIzJhQAgOPVCKH77Y8RERE4cg5gyDiklhBAl2kvmxLmeLO2sQVEpMzNprcFjzTcT3uAR1j0ZTYi33d2jDxdB2oxMWm/wGAjFn6U1ERHR4MJblkXqmeHacxIxJz1LFnAisL7jVO7AwyAtUWk4ZuUAUDKfFjDtF35E/ZA9SCsgvNkyyomIHMhs5QBKVxpIZt4cFdnOfTODwjLjpXVMQtiDvSLzO1+6KN2QkUkrlFCWhkRERIMPM2mLtPvuu6d/XrFiRc62PddPn+6ujiP1zpq2HTju2TssyzyKWsIsBaLBTWTNpPVlXuahfctZSF8MKkF4g8fDF/58zv6TsSWIt/0FkAZ8NafDEzi012MuljTbEW3+A4zEMgASijYK/rqLoXomVmxMuZhGC2It82EkVsJ20Q0AQoHq3ROBum/aL7A7SSOBtrevRHzDvyHNEj+K2w+oo2qhDAtBJnToa5uAuA5pWIMPwltf1gmGiGhgMY0WJKMvOa+UcdcTcmaTjL6KeNsDMNO177tkycnJCN7GWm5BvO3P0Hwz4K+7GDIjSAunIG3G5GN6/B20b/0GvOG5MBIrocffBqTeubsG+Gq+DGlmBGkFg7RERERdGKQt0sSJEzF69Ghs3LgRCxcuzNn25ZdfBgCMGTMGEyZM6IPR0Zkv348NkRbLMpY6ICqhbJm0mbNFAzCNTd0vDCDWMh+qZxI0n8NEJkjV7Ivs/Ek6Iyey8xrUjHwQijqk18MuRqzlDiSjz6Vfm8ZGRHZeg/Dwu6ryxk+s5Y9IRl/M2cbU10MoYQTqLnZc37F8PjqW/b4Mo6t+6vBGaOPHp16EvIBIIv7W27Z2im9oH4+MiPqzWMstWddJGYdATdb1+ZjGTkR2/gz2UgeAgLtMWmk2Q5rNSOifQij1QEatXKdMWgj7jT4juQLRJocEFmMjIjt+AkUbae1CYSk4IiKiLix3UCQhBObOnQsglSn7xhtvOLZ744030pm0c+fOrcoL+oHore2f2paNCBR/8ktEVqmLKvsFm6qNh5uvFiO5Mse6VRmPTJqpZRWiJz+0LTP1TyDN1gqMJj8jsdxlu+xPgSS3Ly7VcPodbcJ4y2u1vs6xnRoe77iciMhJrs/czNICBfed/BhOAVoAEGq943JFcV4OpMYqzYzSBQ43YRW10JrcOkw9o0ycQ6CXiIhosGKQthcuv/xyqGrq7vSll16KaNRaLD8ajeLSSy8FAGiahssvv7yvhzgomdJ0rEf7vT2P6PvBEA1QQvjgDc/LWBiCL/xFeEMn5+8gxwWpNJscFlbwkfssY5WmfSKpaiDd1ATM007q2eomDnCKArWu1r5czchEUzwI7fGdvhkTEQ0IEnqOdb2t3Z69b1/4NMfl3vCpyPZQpTRbYMukVew3rFTvHlC9zk/FuJVZMoGIiGgwG7TlDl599VWsXr06/Xr79u3pn1evXo177rnH0v6cc86x9TF16lRcccUVuO6667BkyRLMnj0bV155JSZNmoSPPvoIv/71r7F06VIAwBVXXIEpU6aU5Xchq7hhD9A+O+dCHDtmagVGQzRw+WsvhDc4B6a+CRAaVO80KEot/J5vwhs6Aaa+Jd023nYfjGR3hqeU2S8oTcMe/JQyXtrBFyJLkNY0dkD17NrHg8kv89/KV3s+VG08jMQyxNvv79Ew+7+pNKw3HQNTzod/3EklHWc1MrEOSTxmW15/+L3djyILBZ4hM6CGxvTt4Iiof5P289Pudb0M0mZsL5QGBOq/A9UzEYo2ynETj38Wakbel64dm+j4R3qdaWyxtVcU+w0sIVSEht0AI/EhOrZ/q6ihM0hLRETUbdAGaRcsWIB7773Xcd2iRYuwaNEiyzKnIC0AXHvttdi6dSvuuusuLF26FGeccYatzXnnnYdf/OIXvR4zuRM37MGf6fXDKzASooFNCAHVM9E2gVZq+SSonknpZcnofyxB2lxZP9LY6bCwcpm02bKfpEMwuSpkZMh6fPtB9U5NTRLTI0ibM5M2I0jrGTYT/l1cZEj3c9HmPwId9uXeUbOheib0+XiIaCDJ/r0H5AjgupIRpBVBeAIH591KUYdCCRwEKaNAjyCtNJszWwJZJvgSQoPm2wOKNgGmvrbAcQMQvsK3ISIiGqBY7qCXFEXBnXfeiaeffhpz587F6NGj4fV6MXr0aMydOxf//Oc/sWDBAigK/6n7Sty0nwT7VYfJDoioD2XcE8yVSWvag7SyCssdmFVY7iCVoZzxb9uZpWTLVsqsN9izH90apBXq4KgZqMffdFyeORs5EVHBcmXS9rrcQUbforDJcvNlswqlzsW8GsXNuyEYpCUiIkobtJm099xzj62kQW+ccMIJOOGEE0rWH+X35rZ1uOT1R7GyZbtlebtuf4TXl1lPkIj6Vsas0PH2+7sfvc+cNMThMfxYy58Qa10AyFTwUNF2gb/2fHgCs8syXADQ4+8i2jwf0iFoDJQmk1ZKE7HWBUhGngOEB77waVDU4Yi13gHT2Na5nxiQjEPfsBX6uo3pbbWJY6CNagRUFULL/hm3/bEZkPEERE0I/pl79Nh3G5rXHeG4jWefGqiRmUgs+xCyrQ1C6z9BWtPYiWjTb6AnPkBhgQ9py0Lu0rH9/wDhheabgWDDdyEUTkTZX0kzimjzjdBjS7JmySvq8M62LdbyIbLr5oUKCK/DciDceCsAINr8e5j6Rmj+/RCo/y6EEsw5rmR0EWKtd0EoIQTqv217QoH6Pynbsq5r3/ZNZObOCKUWvvBp8IU/DykTiDb/DnrsDcjOG4eqZyIC9f8H1TMe0hYALiw5JF+g1KkerUOjgvbZvR2DtERERF0GbZCW+r8zX74fq1q3528IwKfwT52okgRy3CiR0ezr0pKWjFZT/wSRpmtR6/9HWbJwpDQRafolZGeg1IlpuPv8yUWPvYFE+4Pp17GW+bY2QgHg88Kz61gYO7bAbG6BMqQBngnuaqKaiVZA14GEPWCZK7ir1tbCt8d0xN5Y3K8yaWOtd0GPLy5xrwlAJqDHXkGsbTQCdReWuH/qK/H2h5CMvpizjamvy9OLkfVzq33bxZbHvpPRl6BoY+GvPTdrb9KMIdL0y/RNgmjz7xFuvCnPGKg/MY2W3A0cbk5KI4pYy3xo/llIRp5HMvKsZb2RWIZo8287/1YyP98LDJi6yKR10Ulh++zaikFaIiKiND6DT/1S3NBdB2gBwKMwk5aokoRahrrQMg5T35i/XTFdm805A7SpNk293o+RXJ2/UQ9KOJz6f03YVXuZ1AE9lWEl4wlIs7BHapWaMCAE1NAuBW1XSUZyZXn7T3xY1v6pvIzkR2XfR2ZdzmTsjZztk9GFlixuI/F+OYZFFWTqa4rfNrk6640FI9nVb8Zne4FZrYqW+zs62+RjljbK0IL2meKFUN0EgImIiAYHBmmpX0o41J3NJX8dLSIqJ2/oOCjq6NJ3nKO2ba+6Ndvzt8mXGeVmPzkm73KkpD7LhOauznby448BKVMvdB36uk8K2x8A/8RToTXsVfB2lSKN5vL2X4LgPFWQQ8Zi2XdptuZejwrW3KY+Ic2Iw1J3l2FG8lOYepbP7q567TJj4rBcT684jURthDfkPDmkUOrhC38hbx++mi/ZyxcB8AQ/m32b2q8yk5aIiKgHPgNO/VLSIRvs6r2PxrXvPm9bfun0Q/piSESUg6I2IjziHpjJNWjfdpG9gQgjNOxX1kUiCMgEJHTE2x6EHnvVtpns9YzYzqS0B2kDDVci2vTr9GvTNvt1MTsqLEjradwfdXs+hITxBAzTeZIrAPCon4cqpiOwZxjYM2OXsgVSOgeYJZJIGHdZltUeNL/f3OiSUkKa1t8tUH8FFI/7TGABLxTProCMw9DXwUh8iFjLzd37MJxrFFP/kDkJoTd8GjyBQyHNDkR2fD/LVgoyMxWFOhzBIT9Cx7ZvwzZZn22n5fmcov4j84acok1EuPF3MPRPbW2jzTfB7PGURdLhu69bElJK2CYOKyIPJ1B/GXzhMzImxVSheiZC9KzBnIXm2wu1Ix+Goa9F1/GiqI1Q1Ea0RP6V0dqDmpH3QVGHFDxOIiKigYxBWuqXkqb9gufwkZMcg7Q1Ht6hJ6oGQqhQvZMhRI1tAhVFqYPm3T3rtrpnvGOQtmed2lKSpnV8QhkK1TM1o1EHpExCCHdZrY77KTBIq/jq4R1+IPSdL8DIUcrXN/QkqJ4JRYzHQGLjXRlLC8z2rSTZgcyAmebbF4o2svC+RACad5oty0vKtl6/71RBGZm0qrYLNO/uObPnhVILmXFTRoggNO/uEErYts6+T2bKDnrSmkkrhB9CqXH83lOUBsstATO5Kk/nOqSt3EFxZb4UbQQUjChqWwAQih+ad1redppvXwZoiYiIHDBIS/1GwtBhdD6225a0P644PtzguF3Yk//uPxH1IaEBMmORkrvGavZJS/TOzDiZZX1GPw6PVaZmxbYG9jKzMYVS4zgGabZAqMMy+tORmdWU7XFOabqZNK0HBZAynvfx6WIJoaYmkOkRPJbS6THd6uSU3exuwpvshGIPJEizGUJt7FW/pSZlHIC34lnPfRXAdjpuUxMXeYAc5QNsN0bSx2b2oJZQ6u2BWKF19pf/RpGUbaljPVud0Cx9pDIkzdRxSf2aaftOCWZv7FAyIBdptjvcCKjyina8yUVEROSIQVqqeu3JOL768n146tPlMGT2SW9GBWugCQV6RpsajZm0RFXF4eJMKDW5N8kSaOvY/n/FDUFpgL/uEhiJD5Do+CdyBXVS7cMQSi1SQaDugLAeexPe0IkAUsHZaNMNnRO8WINHijoGgSFXQ/PuZlmux14uaNwysBatG09w0bL4C3QhgpZAlnMtxeqUjGQ8TSF8EEphAY9Mqb9N6+PubZvPQHjEn6FqY3rVdykYiZWINP0Gpv4xhDIMgYb/g8c/q8/HYRrbEdn5cxiJ96GoYxAc8kOo3qn5N3SQ6PgXYq23Q4ggAg3fg+bb27I+1vY3xNsesGUnFiP9GHeOiZacPn8EOj/HXNa4bd30uYLGlYwtRrTpRkgZhS88D/7acwvanqqDoa9HZOfPLeULAOQMxArFX9A+2jY71Yut7iCtm/IJREREg1F1f4MTAbhz5WI8/skHOQO0AOBTNIwK1tqWh1nugKiqpIMbPZflzaStL+kYpNmEaNO1SHQ8hnwB2tT+wxBC7QzUdos2z0//nIy+gmT0OTjVpzSNDYi13JKxbHsxQ3ep+GxKkRk8kB29HEvfkFIi3vZny7LeZtECgBAKhGJ/UiPemlkWojIizTfC1D8GAEhzO6LNv+3MwOxb8bb7YSTeB5D6e49m/L27Jc02RFtuhjRbYBqbEG2+2bLe0Dek/u1LleGdzqTNfkqsqPUO23XlOZRn8sJo068hze2A7EC87a/Q4++WZT9UXrGWO+0BWjh8zlrWZQ/SOn0WOfdR5Zd4DNISERE5qvJvcCLgvaZNeduMDtbCo6jYo95eR2ty7TCHLYioUhRtlMOysTm3UbVx5RqOK13jswf9jM7HzAEj/t+cfRjJjyzBMyP5cSmH2IMKRR1a9NaZgWjT2JGlZXVxKgGhOJQqKIZTfd/yvX/umfoWWwBIGlsLnpCuFFI3PLp1BWwLlYy+bMlONfU1kD1u0prJNUX1m42ije78SYNQnI8bzbcfMm98KGqqznGg/nslHU+XzPIKiY6ny7IfKq9s9WRzfecpOTL0PcFjIETuJ08AQKhF1OEuI81nze73hb9YoZEQERFVNwZpqertjOfOlglqHvx21skQQuCaGcdhRKD75PXMSfvhoMbx5R4iERXAV3uuJTNW8UyCNzQ35zaKNgK+8JfKPLLsfKFTAQD+um9krDFhdAaNjOTK3J3ImCX7Txo7czY3IxHE3nwLRmuu+rMCnuAJ8IZPR+orXYO/9vzc9Q7z6A5adY5Dz3+jrBpI056Z7K+7uCR9+xweNS9XXeBC6Ann7Mq+riNcysxdp7rCPYO2mZP6FU+BN3RqumSFECL195JRP1rzHwxP8Fj4as5C12mzUIfDV/NlAIAncCg038wSjSk7PfFB2fdBpSWldHxiQvFMSZfJceINHgfVYUIx1TMd/pozOz/XsmeiCnUUfDWnFzXmcvHVnpWu7+0NnQrVs2uFR0RERFSdWJOWqt7OhPVi8yf7HouzJndfEI0J1sGnpv6UZzXugg2n/QifdjSj1uvHEF/xgQoiKg/NOw01I/8OaWwDhAqhDHM12ZG/7nz4ar6E1k0nO6731ZwNb/AY23IjuQ6RnT/M27/q+wxUbTwSHf+w9hv+MhRtOADA458JRR0N09iYXm8mP4L07GrLrAw0XIlo068ty0xjJ1QlBCBVcsGyrq0N8f+9h8DELyOw28UQNQ0QIwWklBCaAcVrLwmRmtAsdWPKX/MVAEqva7BmZjqbRv8I0mZm/AqlDppvz5L0rXmnI9T4R3RsuyS9TJptqfemghN16Vmyt6UZAXqRTV2oUgasnYKwUsYgEHBcr3r3hObbD/G2e23bhYffmbX2pVBqbWVWvMEj4QnMhuwKrIlgutSBv/Ys+MJfgDTbINTh6fddKEEEh14HIAnIeHp8iY6nEW9/wNJ/cMjPHINTUibQvvU8x3Gm2xibYJqtUBR7WSeqTlK2AbBOChcadjNU7+45PzeEUoNw4/zUZ1rXDQrhSz8h4Q0dB0/wyO6/UwvV8vdZLTTv7qgZ+QAAg/VoiYiIcmCQlqrezrh19vMptY3YtSb7xaeqKJhQU5pHXImoPIRQIbTCH8cUSig14YqM2tepDbYsUMBhNvesYwpD0XZxWGH9qlS9U2FGu4O0RvIjKMlJyKxN6fHPRlSELDVdpbkDQKp0g2lkBmnbIaMxKL6J8NYVnpknOoO/vaWoGUHa/pJJmxGwEGpjSftXbHWRjdR7K3LXUy4nI/4/x+V9nUlr6uvtC0VxN0kdM2UtmbTWgLCiDoOiOpc1UrSxEKKwU10hvBAOnyNAKiDrlKWeCoh5AeFN3zRRvdPs41GHZ/mMyl8XGwCM+LtQAoe4akuV5xREVb1TXQdQc5WtyfV3Wq2EUAGolR4GERFRVWOQlqpWTE9iS6wN22LtluVDfL3LEiOi/s65Uo/IWsHHXWUfaSQgk4ZtuZlog96+rscC64WzHnsXUrd+nQplJIzIdghRA9kjSJtsfwdmPLUPI/6Rdf/xVKBG8eSvN1hO9nIHayGlXnCwqycpE5AZQelshDoEQtgnl8sn87FiJUt90WJl1uoFACO5Boo6vIi+gulgnlvSjFgCmKbZlDXL2dQ3wOwRVBZKKO/kfOn9SAOAtLzfUhpZsvZSjOSKLOPY0j0GtdHVZEZOWbmmsRWKNhJSmraMdaHUAln/XioXEHKc7FD0bjzJ2JtQPVMglDoIJfvkUr0lpeyctMx5wtZUFnL5z8WyjUOoQzP+PmXnDTBAKENzBkFz/W5CHQJp7IRQG0qS7Wkk11r7V+qL+mwjIiKiwYNBWqpKf1rxGi5f/ATihn3WZJYwIBrcBBQ4V8DMFgByFxiJr30UHev/AP8B1izWjvd/g5a1l3bvZdhQ+Gfsk35tGmtgGtbJjJIb/ott70+Ab78ZUId0z8adiP0NiP3Ncf8ykQrSiooHae0Tu7VuPA7BodfC4z+w4P4SkecQbf69+8mshB/Bhh/AU2DGYObEStmyK4sm/AA86Pn4csf2y4vuzhM4GoGG77sKXMZa7kC8/e8AnINmmaJN12YsUeEJHodA/XdyBrD0+AeI7PwZpLkD3vBpCNRdhGT0dUSbry+8pIGMoG3Ll9MvhTIEwaG/gObdLfsmUkKPvWZb3rH926nMaDPW+Qh5t1Sw2ynwpVT0kW+nIK2U9nOaQiQj/0Qy8k8AHvhrvwZfzWm96s+JoW9AZPv3LSVd7BT4wqfBX3dByfffxdQ3o2PHD2Dqn9hXigCCDd+HJ3AITH1LZ7vUjTRFG4/QsF9DccikN/WNnW0dMr8t/fsQqL8c3uCcosYupYlo0/VIRp+zdlvqzyQiIiIacDhxGFWdqJ7E/731lGOAFgCGeBmkJRrUsmajZflKM9w9SixNEzIRt6/ICKLJtvwTF5mdk33JuEN/2fafDtJWtuZkaoZ7e9Ar1nJbwX1JaSDW8kf3AVoAkDFEW24paDIqKQ3bxGGlDogIIQrOfs0lGX0eRpaasj2Z+ubO2qbuArTODCQj/4QeX5yzVaz1znRGYqL97zCSHxcXoHUgzZ2It96ds40eez379sY2W4AWAISoyZKdWNnHqp0yr3uWbchoXWDvScRaF0CaHfmbFijedn+eAC0AmIi3P2DJlC75ONofdA7QAoCMItpya2e7h9MBWgAw9XWItfzJuc+2B/MHaAFAxhFr/mNnVnnhjMT7tgAtUPrsfiIiIhp4GKSlqvNJRxM6dOegSo3Hh3Gh+r4dEBFVFUUbW9ByM56ANPJfbMuOCGQ8kQ6WprfPCMrKeAJmJHfNT2Nnc+e27TnbWfeTaqvVTXe9TTkIoUCoDbblpv4JZJbHn7ORZntRAT5pbIU0trpubySW25aVY/Zw1TOxpP3piQ/ytjGNzaXbX+ytnOuNhLXGbcf2K0s6KVi+30WPvVFwn4pnomMt6WyfB31FKLVQ1B6lQ0QAatYsYg2i4LIZBkxjW7HDy8rUP3XfNm8wt3hGcl3O9dLYDCkNx6BrMvoapGmvW27oa2zLsvYv2xxrn7uRWeagi+qdUlR/RERENHgwSEtVZ1vMOTNkmC+EWw86FX6N9byIBjN/3SXWya2ED97QqVC9zsFNAQWJ5R/agq9dpJTQt22DvnETICUSy1ZAJhKQpgl9/UaYO3batkks/xBmzJ4VJw0DyTVrIdtTAVd9wwYY23fkzAqVhoHkx2uAuER476uh1e+e69fvEyJbFqIsMHOvkAzaDEbyQ9dt9bg9+Kj5Dyp639n46y6Coo0rWX+Z9VWd5cso9kD17gVFyx9A1hPvuRpXes+m/W+/V/JkJuqJdwvqzhs6CZpvBhRtLHw1Z3WWpACEOhyB+m8VPcxSEELAX38ZhDocQqlDoP5yCOHL2jZQ/+3OLHYnWU7Xe1k+wbHLArJz3U54Vtw4XNwckLEsk+QlkHTIyjaNwv6ei82k7cpG70n17gtv6JSi+iMiIqLBgzVpqepsjVozzyaEG/De5/8PQc0DxUXtPiIa2DTvbqgZ+dfuTCnhyTmplZQGjE2bEd20GVBVwDQx4kvNkEgAUgJCgxjhAfbouY0EoEOM9ACfydavtAchhRdilAockNk2kT1A1bmNmO2HUKrjazlb8MU0W6EW8Mi/dAjS1o56HE6Ponfs/BGM+NL0ayOxEp7AYa72k5kh6g2f3jmTeGmpnkmoGXGPY5aeG4nIc4i13JR+bepugrRWQqlFzYj7eizQ0o/7SzOGnkFdPfEBIjuu7N5f8mNIs931JGKZ/PWXwxs4JsfgNAAK0Pn3o8cXI7LzmvRqiexBL9PYYcviFMpQx4AXAAQaroI3eHT32GrPhq/mq6l9C39F69F28fhnwjPyfpdt94c28sGMzxQBofjTnzWtm0+1lEyQKEOQVlrPwYJDfgrNl6rT3b71Qmv2rEyiXKTZbHkdqP8/RJtvsLaRcUjT+amGZPRleINH9WgrIQ3r31Jo2A1QPVPRuukLAJw+84oL0poZkyR6gp9FsOGKovoiIiKiwaU6rgaJetgWs14gjAjUIOxxzj4hosHL9eziZo9AhmEAEFC8par7WtlJvspFZqmdKc389Xit/WQGaT1ZA4SaZ5o1SJtc5WofptEMI7nSuhf/rILGWahiZ7ZXvVMtr019A6QZLbA/JWt7ofgtrzXf3rBOdmZCTyyDx79/Afvr4oE3cKS7sYrONiKjhnyOzEQ9bi21ABGC5tsHyegLzrtwqEMrhNq9735ICOE4/u7lGoAex2ZZMmmt52BCGdL9nmdkApcrk1ZKE9JssSxzzGCXMcgsJQn02JvWY0u2IzMQq6ijIJQQFG2Upa5tt2Izaa0Zu4o6oqh+iIiIaPBhkJaqhm4aWN68Ff9rstY4G+4vLuOHqC8YHethRDdVehiUg96S8dh8GTIsB5wsQdqu2q8CChTP+KyPb3f3Yw3SCuHP0tBer9FIfAgpZd6MSD3+NiwlAYQfqnfP3OOqEFWbgNSj6121fSWSsVdzllAwklkmT3JBCC9U724wEu+nlyWjrzpPapWHJ3BwwRm4trIZMg49saKzXuuo9Htrmq1ItD9kaap597QFBTN7H2yEUGGtnFLaIK2Uhq0Oa8/3XAivZZ2ReA+6NtraHgoUbVxBNx5Mowmm0WMSMhlF5kR5itpo205PrMhx4yhV8qArm9Y07BnZQh2S6lsb4xykzQiCp2rgfgpFG237t7C0MzKDtJwwjIiIiNxhkJaqwqZIK4545lasbLVPgtHIIC1VqZbXvo7IysJnvKcKq5KSAtXN+THmWMsful+IEELDroPmzV5D15ZJq+QI0nqskypJ2QZpbIHQRuYcaWapA803wzHLshoIxd8ZEOp+rD/adF1Z96l597IGaSNPIxl5uuB+PLnKHGSTcUNEyjZ0bPtGalz+gxEc8lMkI//pfIzdGpTTfPvANHLdABt8QdpUVnQ3WeJM2kTH47ZllsB8xnGV6HgCiY4n7B0JP0JDfwHNNyPvPmNt9yHeemfedkJtSNUc7vGZEm26Nuc20aZrofn2hRBBtG89z9qfqEkHWi01znvo2PkzhBtvhRACpr4F7du+BWluh1CGIjTsRqge55srpmktdyAU+0SMRERERE5Y4JOqwp0rFzsGaAGg0R/q49EQ5ae3r2OAtp8qR63SgSZb0MJCdiDelqfeZgGZtEIdASGs5SOM5Oq8w9AT1sfkNV95Sx30lurZtZc9FBacVH29zyoWSi20okpIZD/W9NhrMBLLEGu9E5kBWgBQffsgdy7BIAzSZn52lbgmbMwhWJorkzYrGUOs9S/5m8kE4i7aQQQghDfn50c2sda7kYy9Zu+yM4sWAFTPeMdtzeSq9ASGsdY7Ic3tqXGbO5DoeMRxm1TtW2smbc99EREREeXCIC1VhQ9bt2Zdt9/QsX04EiJ3zMjG/I2oKmn11fkofDXxBD/rqp2pb8i53jbBVq4grRBQPBOs/fd8BDrrPqyzwGeWTag2qnffXm2f+W+Uj+bdq6jyBj15gscVlZ2seHZBrlNNI7HCcWIwoY6E6pkC1TMxR98TCh5Pf5f5PmbWPu2N1ORkTmVOugOzhWSEmnr+Mh2purP569qqnlQtZ6WIGxx69BWYyY/sfXq7M/c1/wHI9ndqJFdBShPJ6POW5cnoy847lBFklqFQlPpChkxERESDGJ/5pKqwJWqdqEITCuq9AXxl0mcwbzwDKtRPqP13wprBwtOwJ+pmL6j0MKqeL3wqTH0NktGXuhcKHyBN9CyFkBkgzZRZ7iBfJpyiDrNM1WMa2/MPNmPyIgGX2X4V4g19FkbyQ+jRRZAuAlTdBFTPrgjUXVbQ/oQSQqDh+4i13mUps+AoM0gnQvD494e/9tyC9tlFUWoRaPge4q33wjR3dmZ+dmfNOk0Op3qmwl/3DQihwhOcAz3xIfToy+l/K6HUwRc+Hao2pqgx9WeKOhxmj+xy08h+g7tgMgZLbWcAgYYfWmpCK5rTTXMBCK/DZ0MTpEzmDu47lmvwAul9CqjaRATqv5UaT923EG2+HkbyY9tYFXU4/HVfh6lvQazl5u5dyDYkIv+x7cVfe16PbYchUP9tRJtvtLUzk5861qvNnNise7m9Rm5vb5IQERHR4MEgLVWFLVHrSe2dh5yGsybPrNBoiNywXiAKTy1GfsX5oo2ovxFKAMEhPwLwI8tyI7ES7dsuTr+WZmvuyb0yJyFymLnesj5jgh3pMNmPZb00YHtUvkrr0XYRwotgwxVAwxV9tk+P/wB4/Af02f568gaPhTd4LAAgsvMXSEZfTK/LDNIKtRHh4bd2vxYeBBu+AzR8p28GW+UUdYTltannzzR3S8oO2zLN9xnr/h2CtJpvP4SG/RrSbEPrps9b+zR25KwpLS23ZFJqRz+RNbCresYh3Dg/a39dkpFnYSRXdO/HtN7s8deeD0UdZlnmDZ0Ab+gExFrvQbytuwSDqX8KPf5fx/2YZisUW3Zz5o0rFcjzuUdERETUheUOqCpszgjSjgjUZGlJRESVIpS6jCUG4BDc6WKbOCxfJq1iDZzkzaR1qMlZrZOGkf3vJ/OR+MwgJFkp6nDL61Jm0kozYlsmlKDltao5TZTVWSdXhG3Ht2k4zzXQvVOnTNre1wz3BA7LuV5kBGh7UrRdLK8N/VPo8f85tnUq95KZSSuUmuw3sYiIiIgyMJOWKs4wTWyNWcsdjPCHs7QmsjM61iPZ9C4gZf7GJaK3LMtYwoswGvicHttNRl9JzbzuwEhaHxMWSu4gbWYmrWlsQjL2Rtb20ozZFzJIW7XsQX4rBmlzUzTrv4+R+B/02NtQvbtZJvgCAGl2pGr+wmlyMQWqZzIUdQikTMJIrICRXJnRxmu74eGUSSvNZgCdNaXVYTD19el1ydjrUL1TYSbXQajDIZRAakydGfamvtk2LiF6nz/iCRyGWOvtWdcramPWdZmBaGlshu5QwgBIffZllj0w4u9bXrPUARERERWCQVqquP/ttE/AxExaciu69mE0Lzy9sx4eEZWV8APwoGftyWjzDe43d1GTtidpbEVkx9WFjBCo8pq0g1m+gFVmpihZCYcgdseO70EotQgNuwmqJ5UFaujr0bHtsnQA1bkzH4INP0Ks7R5Lndv06ows2tQy+2P7Zo+SJEJtBHoEaRPtDyLR/mCuXylD77NoAUDRRkH1THUIPKeIHEFaeyBaArLdsa2b308oPJ8lIiIi91jugCruLx+9bXktINDoD1VoNNTfdLx/fXUEaEuQ/UNU7YQQebMhc3eQL5M2+2PIrnchGKStVvn+doTGTNpcsgWxpdmKROSZ9Otkx79yB2gBQMYR2flDxwAtkL9+dJeuwDBgL1dSMFG63BEtR8mDzJtBliEoAYgS3iwQgk+GERERkXuMKlDFZZY6kJDQlNJkU9DAZ7SvrfQQAACeoZ/J34hoAFC904veVvNOy7leUUdAKENztsm5vTbOMduPqoOW529H8+7VRyPpn4TSAMWxLiwgjab0z6bZ5NimENmOc3/thZbX3vBp6Z81X+/eP9UztVfb9+QNHOV4U0jxTIEQvpzbar59SzYO1bt7yfoiIiKigY/lDqji1rTttLy+dPohFRoJ9TdSSphx69+PEhgFofRtJp02ZG/UHpB/xmmigSBQ/y1EmwEjuQqAuzrQQvjgCRwJzZ9nQh+hIjj0Z4i13A7TKGzmekUbg0Dd1wvahvqWoo1EoOEHiLc/DGm2ppcLpQa+0FyongmVG1w/IIRAcMiPEG35E4z4OxlrezxRkjkhlwh11qw1IXNO5uWBUIdB806Fv+4bji28obkwjW0wEivgCcyG5tuve+vgZ2Ho65Fo/7uL38ZrqWWtahMQqP+Wi+3cUbQRCDZcjXj7g+kJzFRtHPx138y7rb/264BMQE98iK5/VwENmn8/CKUGyeir9kkRM3S199WclrMdERERUU8M0lLFfdxuDbLNGVO6TAoa2GSyFZCGZdnQE1+HFh5foRERDXyKOgShoT8tW/+adzrCjb8rW/9UWd7gMfAGj6n0MPot1TMJ4WG/Qaz1bsTb/tpjjZHlZ8AX/jz8tV+DlDpaN55gW5/u27s7wo2/zbl/ofgRqHcOdAqhIlB3EZKR5yDzZPNq/pkIDf15zja95QkcDE/g4IK3U9Q6BIf8KOt6f+3XejMsIiIioqxY7oAqqiMZx5aoddbcXWuGVGg01N9kZtECgOLj3w8REQ101rJQsscNS5mZSduZkyGEBkUbk6NPUZqhCU9p+iEiIiIaZJhJSxW1tt2eaTEhzCBbtTCiW5HY/BKk3lHpoTgyOj6xLhAahMZJOoiIaIAT1iCtaWxCouNf6Z+ztVW08TD1jO/OdLvS5G4IeFwWQiEiIiKinhikpYr6uG2H5fXIQA2CGmfmrgZ6+zrseGp/mLGtlR6Ka4pvKIQoUSYQERFRlRIZD8OZydWINv8mS9vuIK3qGQ899kqWdqUaHM/jiIiIiIrBcgdUUesyMmknMou2asTWPtyvArQASx0QEdEgUUhJgR5tFS1XzXY1x7oCducqSFuafRERERENJAzSUkXFDGvdtDqvv0IjoUwykXvSj2rkHXlEpYdARERUdqp3j6Laar59ke1BukL6zL2/PfO20by7l2RfRERERAMJyx1QRSWldYZhj8LMimolfEOg1Uyu9DCcCQWeYfuj5jO/rPRIiIiIyk7zTkeg4ftIRp6FNCPOjZQgvMHjoHmndS9ShyA49Fok2h+BNFtTC4UKzbs3fDVfKsnY/HXnAULASCyDkVgFIAkAUD3TAKFB882AN3xqSfZFRERENJAwSEsVpZum5bVWokkrqPR8o49Dw+H3VXoYREREBMAbPBbe4LEFb+fxz4THP7MMI0oRwodA3cVl65+IiIhooGJEjCoqaTKTloiIiIiIiIiIBjdm0lJFZdak1RTeNwAAKSXinz4JvWV5xcaQ2PpaxfZNRERERERERDSYMEhLFfWb91+yvGYmbUrbO1eh473rKj0MIiIiIiIiIiLqA0xbpIoxpWlbZjgsG2yklIisuLXSw7ARCu/pEBERERERERGVA4O0VDFJ0x6Q3b1+RAVGUl3MyHrIZEulh2HjHXV0pYdARERERERERDQgMTWOKsYpa/b0ifv2/UCqjN6cUYdW8cE3uvDZm0tFqF74xnwWgUlnVWwMREREREREREQDGYO0VDFOQVpViAqMpLrozcssrz1D9sWQY56s0GiIiIiIiIiIiKjcWO6AKsYwpW2ZKvgnmWyxBmm1+t0rNBIiIiIiIiIiIuoLzKQtoXXr1uHmm2/G008/jU8//RQ+nw+TJk3Caaedhm984xsIBoOVHmLVaI5H8dsPFtqWR5f9Dq1or8CIqkdiw7OW11r99AqNhIiIiIiIiIiI+gKDtCXy5JNP4qtf/SpaW1vTyyKRCJYsWYIlS5ZgwYIFePrppzF58uQKjrJ6nPifO/Ha1rW25bH3f4MOEe37AVUxrY6ZtEREREREREREAxmfLS+BpUuX4vTTT0drayvC4TCuvfZavPbaa3j++edxwQUXAABWrlyJE088EW1tbRUebeV90t7kGKAFAB+Mvh1MP8ByB0REREREREREAxszaUvgsssuQzQahaZpePbZZ3HQQQel1x111FGYMmUKvve972HlypW48cYb8dOf/rRyg60CW6LOgeqD8QlqRKKPR1PdPMP2hxqeUOlhEBERERERERFRGTFI20uLFy/GK6+8AgA477zzLAHaLt/97ndx9913Y/ny5bjppptw9dVXw+Px9PVQq8bOhL2cwY/HBHHGhifSr5XgWPjGzOnLYVUdNTgOoemXQghR6aEQEREREREREVEZMUjbS4899lj653PPPdexjaIoOOuss/CDH/wAzc3NePHFFzFnzuANQO6MRyyv96gfgf8bEUf7xnh6mWfYTNTPvrOvh0ZERERERERERNTnWJO2l1599VUAQCgUwn777Ze13eGHH57+edGiRWUfVzXbEeuwvB7iCwKmtcyBULx9OSQiIiIiIiIiIqKKYSZtLy1fvhwAMHnyZGha9n/OadOm2bZxY/369TnXb9q0yXVf1eLSNx+zvK5pW45Y4iVrI2XwloMgIiIiIiIiIqLBhUHaXojFYti+fTsAYOzYsTnbNjQ0IBQKoaOjA59++qnrfYwbN65XY+wPaiKroUc/sCxjJi0REREREREREQ0WLHfQC21tbemfw+Fw3vahUAgA0N7eXrYx9QcqTMvr4eiwtRGe2r4aDhERERERERERUUUxk7YXYrFY+mevN3/mp8/nAwBEo1HX+8iXdbtp0ybsv//+rvurBiEk0YrUv4UXOk7ESmsDoSIw4dQKjIyIiIiIiIiIiKjvMUjbC36/P/1zIpHI0TIlHo8DAAKBgOt95Cuj0B99Y2QNYoaOgAIcV+PHvsGvpdcJxQff2OPhbTyggiMkIiIiIiIiIiLqOwzS9kJNTU36ZzclDDo6Uo/1uymNMJD98vhfVnoIREREREREREREVYM1aXvB7/dj6NChAID169fnbNvU1JQO0g6GycCIiIiIiIiIiIjIHQZpe2n33XcHAKxevRq6rmdtt2LFivTP06dPL/u4iIiIiIiIiIiIqH9gkLaXDjnkEACpUgZvv/121nYLFy5M/zx79uyyj4uIiIiIiIiIiIj6BwZpe+nzn/98+ue7777bsY1pmvjzn/8MAKivr8eRRx7ZF0MjIiIiIiIiIiKifoBB2l7af//9ceihhwIA7rzzTrz++uu2NjfeeCOWL18OALjsssvg8Xj6dIxERERERERERERUvbRKD2AguOmmmzB79mxEo1HMmTMHV111FY488khEo1E88MADuP322wEAU6dOxXe/+90Kj5aIiIiIiIiIiIiqCYO0JTBjxgw8+OCD+OpXv4rW1lZcddVVtjZTp07F008/jZqamgqMkIiIiIiIiIiIiKoVyx2UyEknnYR3330X3/72tzF16lQEg0HU19dj5syZ+PWvf42lS5di8uTJlR4mERERERERERERVRkhpZSVHgQVb/369Rg3bhwA4NNPP8XYsWMrPCIiIiIiIiKigYfX30RUTsykJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogrdIDoN7RdT3986ZNmyo4EiIiIiIiIqKBq+c1d89rcSKiUmCQtp/btm1b+uf999+/giMhIiIiIiIiGhy2bduGCRMmVHoYRDSAsNwBERERERERERERUQUJKaWs9CCoeLFYDO+99x4AoLGxEZpW/cnRmzZtSmf9Ll68GKNGjarwiKhQfA/7P76H/Rvfv/6P72H/x/ew/+N72L/x/ev/+uN7qOt6+mnWvfbaC36/v8IjIqKBpPojepST3+/HrFmzKj2Moo0aNQpjx46t9DCoF/ge9n98D/s3vn/9H9/D/o/vYf/H97B/4/vX//Wn95AlDoioXFjugIiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKkhIKWWlB0FEREREREREREQ0WDGTloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpqU+tW7cO3/3udzFt2jSEQiEMGTIEs2bNwm9+8xtEIpFKD29QWrJkCa655hrMmTMHY8eOhc/nQzgcxtSpU3Huuefi1VdfzdvHPffcAyGEq//uueee8v9Sg4zbf/sjjjgib1/PPPMM5s2bl/5bGDt2LObNm4dnnnmm/L/IIHXEEUe4fg+7/nvppZcsffAYLJ+tW7fiqaeewo9//GMcf/zxGDZsWPrf8pxzzim4v1IcY7qu409/+hMOPfRQNDY2IhAIYNKkSbjooovwwQcfFDymga4U72EkEsGjjz6Kiy++GLNmzUJDQwM8Hg+GDh2Kgw46CD/96U+xefPmvP0UcrxTt1K8h6X+nIxEIrj++usxa9YsDBkyBKFQCNOmTcN3v/tdrFu3rne/8ADU2/dw7dq1BX9XTpgwwbEvHoeFK8X1Qk/8LiQiykIS9ZEnnnhC1tbWSgCO/02dOlWuWrWq0sMcVA499NCs70fP/8466ywZj8ez9nP33Xe76geAvPvuu/vuFxwk3P7bH3744Vn7MAxDnnfeeTm3P//886VhGH33iw0Shx9+uOv3EIBUFEWuX7/e0gePwfLJ9W959tlnu+6nVMfYtm3b5KxZs7L24fP55B133NHL33pg6e17+L///U+Gw+G8x1Ztba184IEHcvZVyPFO3UpxHJbyc3LVqlVyypQpOf8Wnnzyyd7/4gNIb9/DNWvWFPRdCUDOmTPHsS8eh4Up1fWClPwuJCLKRwNRH1i6dClOP/10RKNRhMNh/OAHP8CRRx6JaDSKBx54AHfccQdWrlyJE088EUuWLEFNTU2lhzwobNy4EQAwevRofPGLX8Shhx6KXXbZBYZh4PXXX8eNN96IDRs24M9//jOSySTuu+++vH3++9//xujRo7OuHzt2bMnGT1YXX3wxLrnkkqzrQ6FQ1nVXX3017rzzTgDAjBkz8L3vfQ+TJk3CRx99hOuvvx5Lly7FggUL0NjYiF/+8pclH/tgdvfdd6OjoyNnm2XLluH0008HABx99NEYM2ZM1rY8Bstnl112wbRp0/Dss88WvG0pjjHDMDBv3jy89dZbAIBTTjkFF1xwAYYMGYI333wTv/jFL7B161ZcdNFFGDNmDI4//vjif9kBqpj3sLW1Fe3t7QCA2bNn43Of+xxmzpyJoUOHYtu2bXj00Udxxx13oLW1FV/5yldQW1ub999+5syZuPvuu3v1uwxWvTkOu/Tmc7KtrQ0nnngiVq1aBQC44IILcMYZZyAQCODFF1/Er371K7S2tuL000/HokWLsO+++xY9zoGqmPdwzJgxeO+99/K2+9WvfpU+Xz377LNztuVx6E4prxf4XUhElEelo8Q0OHTdgdU0Tb722mu29ddff336zudPfvKTvh/gIHXiiSfKBx98UOq67rh+27ZtcurUqen3ZuHChY7temanrFmzpowjJie9PXY+/PBDqWmaBCBnzpwpI5GIZX1HR4ecOXNm+hhmxnvf+973vpd+n//yl7/Y1vMYLJ8f//jH8sknn5SbN2+WUlqzudxm8JXqGLvzzjvT+77kkkts61etWpV+YmXy5MkymUwW9ssOUL19DxctWiRPO+00+cEHH2Rt89hjj0khhAQgJ02aJE3TdGzXlcGX68kGsivFcViqz8kf/ehH6X6uv/562/pFixalj3e+z91K8R7mo+u6HD16tAQga2pqbJ+1XXgcFqZU1wv8LiQiyo9BWiq7N998M/1FetFFFzm2MQxDTp8+XQKQ9fX1MpFI9PEoKZsnn3wy/f5deumljm0YIKqs3gZpL7744nQfr7/+umOb119/PecJMZWPYRhyzJgxEoAMh8Oyo6PD1obHYN8pJrBQqmOs63tyyJAhjn8HUkr5q1/9Kt3P3//+d1fjG2zKERySUspTTz013e/bb7/t2IbBodKoVJA2kUjIuro6CUBOnz496yPZF110UXpfixcvLmpfA105jsN//etf6T7PPffcrO14HJaem+sFfhcSEeXHicOo7B577LH0z+eee65jG0VRcNZZZwEAmpub8eKLL/bF0MiFI488Mv3zRx99VMGRUDlIKfH4448DAKZNm4YDDzzQsd2BBx6I3XbbDQDw+OOPQ0rZZ2Mc7J5//nls2LABAPCFL3wBwWCwwiOiQpTqGFu5ciWWL18OADjttNOy/h30nIDnH//4R2+HTwXg9+XA9+KLL6KlpQVA6lF6RXG+lOJxWBl//vOf0z/nK3VApZXv84/fhURE7jBIS2XXNdtnKBTCfvvtl7Xd4Ycfnv550aJFZR8XuROPx9M/q6pawZFQOaxZsyZda6znMeika/2GDRuwdu3acg+NOvW86Oy6mUX9R6mOsZ4zZ+fqZ+TIkZg6dSoAfpf2NX5fDnxuj8OZM2emg0c8DvtGW1tbOjFkwoQJOOywwyo7oEEm3+cfvwuJiNxhkJbKrutu5+TJk6Fp2eeqmzZtmm0bqryFCxemf54+fXre9ueeey5Gjx4Nr9eLYcOG4cADD8QPf/jDdCYglc9DDz2E3XffHcFgEDU1NZgyZQrOPvvsnJnpy5YtS//c8xh0wmO077W3t6czQMaPH48jjjgi7zY8BqtLqY6xYvr59NNP805KR6VTyPflihUrcMABB6C+vh5+vx9jx47F3Llz0xPvUHkV+znp9jjUNA2TJ08GwO/LvvLwww8jEokAAM4880wIIfJuw+OwdPJ9/vG7kIjIHQZpqaxisRi2b98OIP+M4g0NDenZ5z/99NOyj43yM00T1113Xfr1aaedlnebl156CZs2bUIymcSOHTvw5ptv4tprr8XkyZNx2223lXO4g96yZcuwfPlyRKNRtLe3Y/Xq1fjzn/+Mo446CvPmzUs/otnT+vXr0z/nO0bHjRuX/pnHaN945JFH0hcWX/3qV11ddPIYrC6lOsaK6UdKadmOyud///sfnn76aQDAXnvtlTdIu2XLFixevBgtLS2Ix+PYsGEDnnjiCZx99tnYd999Gdgrs2I/J7uOp1AohPr6+pz76DoOt23bZskypPIo5qkTHoel4eZ6gd+FRETuZE9rJCqBtra29M/hcDhv+1AohI6ODrS3t5dzWOTS7373OyxevBgAcMopp+QsV7HrrrvilFNOwUEHHZQ+Kfr444/xyCOP4OGHH0YsFsPXv/51CCFw4YUX9sn4B4tgMIiTTz4ZRx99NKZNm4ZwOIxt27Zh4cKF+NOf/oQdO3bgsccew9y5c/Hcc8/B4/Gkty3kGO26iQKAx2gfKeSik8dgdSrVMcZjtXrF43Gcf/75MAwDAHDttddmbasoCo4++miccMIJ2GeffTB06FC0tbXhnXfewW233Ybly5dj2bJlOPLII7F48WLssssuffVrDAq9/ZzsOg7dntN2aW9vh8/nK9FvQZk++eSTdCbnwQcfnM5izobHYWm5uV7gdyERkTsM0lJZxWKx9M9erzdv+64T2Gg0WrYxkTsLFy7E97//fQDA8OHDceutt2ZtO2/ePJx99tm2LL9Zs2bh9NNPx1NPPYVTTjkFyWQS3/72t3HyySdj5MiRZR3/YLJhwwbHjJ5jjz0Wl156KY4//ngsXboUCxcuxK233opvfetb6TaFHKM9LzB5jJbf+vXr8dJLLwFITaTRVVvNCY/B6lWqY4zHavX65je/iSVLlgBITVZ00kknZW376KOPOn5eH3roobjkkktwwQUX4N5778WWLVtw+eWX49FHHy3XsAedUnxOdh2HhZzTAjwOy+2vf/1reoIpN1m0PA5Lx+31Ar8LiYjcYbkDKiu/35/+OZFI5G3f9ThYIBAo25govw8++ADz5s2Druvw+/146KGHMHz48Kzt6+rqcj6G/bnPfQ4//vGPAQCRSAR33nlnycc8mOV65HLEiBF4+OGH09mz8+fPt6wv5Bjt+bgmj9Hy++tf/wrTNAHkn6Wax2D1KtUxxmO1Ov3qV7/CggULAKSCfbfcckvO9rk+rz0eDxYsWJCe2fwf//gHa0mXUCk+J7uOw0LOaQEeh+X2l7/8BUAqKHf66afnbc/jsDQKuV7gdyERkTsM0lJZ1dTUpH9285hJV+1FN4+RUXmsWbMGc+bMQVNTE1RVxQMPPFCSGXIvvPDC9MVRz8kFqPx23XVXHHvssQCA1atXp2fXBQo7RntOusBjtPwKvejMh8dgZZTqGOOxWn1uu+02XHXVVQBSE9T885//tDxeWwxN03DeeeelX/NY7Vv5Pie7jsNCzmkBHofltHjxYqxYsQIAcPLJJ+etFewGj8P8Cr1e4HchEZE7DNJSWfn9fgwdOhQA8hZsb2pqSn+Z9iwYT31n48aNOOaYY7Bx40YIIXDXXXdh7ty5Jel7+PDh6b8FZiT0vd133z39c89//56TLuQ7RntO3sBjtLyWLFmSnsH4c5/7HBoaGnrdJ4/ByijVMVZMP0KIvBOrUHHuv/9+XHLJJQCA8ePH47nnnsOwYcNK0ne2z2sqv3yfk13HU0dHB5qbm3P21XUcNjY2sh5tGRUzYZgbPA6zK+Z6gd+FRETuMEhLZdd1krN69Wroup61XdddcAB5Z0Wm0tu+fTuOPfZYfPzxxwBSj8WX8mQXgKuZ6ak8sv3b97wI6XkMOuEx2nd6XnTmK3VQCB6Dfa9Ux1gx/YwbN67XmZ1k98QTT+Css86CaZoYNWoUnn/++ZIGAHicVlauf3+3x6Gu6/joo48A8PuynJLJJB544AEAqQD7Zz/72ZL1zePQWbHXC/wuJCJyh0FaKrtDDjkEQCrr4O23387aruejRLNnzy77uKhbS0sLjjvuuHTm3nXXXYdvfOMbJd3Htm3bsH37dgDA6NGjS9o35df13gLWf/+JEyemX+d7nO/ll18GAIwZMwYTJkwo/SAJgPWis7GxEccff3xJ+uUxWBmlOsa6vkvz9bN582asXLkSAL9Ly+H555/HaaedBl3XMXToUDz33HOYNGlSSfeR7fOayi/f56Tb43DJkiXpp8N4HJbP008/jR07dgAAvvzlL0PTSjcnNo9Du95cL/C7kIjIHQZpqew+//nPp3++++67HduYppnOHKuvr8eRRx7ZF0MjpCbHOPHEE/HOO+8AAK6++mpceeWVJd/P7bffnp559/DDDy95/5TdmjVr8NxzzwEAJk2ahDFjxqTXCSHSj6itWLECb7zxhmMfb7zxRjojYe7cucwwKaNnnnkG27ZtA1Dai04eg5VRqmNs6tSp6Yyiv//974hEIo793HPPPemf582b19vhUw+vvfYa5s6di3g8jrq6Ovz73//GHnvsUdJ96LqOu+66K/26FDXhyb18n5NHHHEE6urqAAD33ntvum0mHod9o1xPnfA4tOvt9QK/C4mIXJJEfeDQQw+VAKSmafK1116zrb/++uslAAlA/uQnP+n7AQ5S8XhczpkzJ/1vf9lllxXcx5o1a+Q777yTs82TTz4pvV6vBCADgYBcv359kSOmTE888YRMJpNZ12/evFnOmDEj/R7feOONtjYffvihVFVVApAzZ86UkUjEsj4SiciZM2emj+GVK1eW/Pegbqeeemr6/Xr77bfztucx2LfWrFmTfn/OPvtsV9uU6hi788470/v+xje+YVu/evVqWVtbKwHIyZMn5/xsGMyKeQ+XLl0q6+vrJQAZCoXkq6++WvB+X3jhBdnU1JR1fSKRkGeffXZ6bCeddFLB+xgsCn0PS/k5+aMf/Si97+uvv962/rXXXpOapkkA8vDDD3fz6wxKxRyHPe3YsSP9fu21116ut+NxWLhSXC9Iye9CIiI3SvdMCFEON910E2bPno1oNIo5c+bgqquuwpFHHoloNIoHHngAt99+O4DU3dHvfve7FR7t4PGlL30Jzz77LADgqKOOwnnnnYf3338/a3uv14upU6dalq1duxZHHnkkDjroIJx00knYZ599MHz4cADAxx9/jIcffhgPP/xwOtvkhhtusGRyUu9ceumlSCaTOPXUU3HQQQdhwoQJCAQC2L59O1566SXcdttt6Uc3DznkEMfH0qZOnYorrrgC1113HZYsWYLZs2fjyiuvxKRJk/DRRx/h17/+NZYuXQoAuOKKKzBlypQ+/R0Hk6amJjz11FMAgD333BOf+cxn8m7DY7C8Xn31VaxevTr9uut4AlK11ntm6wDAOeecY+ujVMfY2WefjbvuuguLFi3CLbfcgs2bN+OCCy5AQ0MDFi9ejJ///OdobW2Foii4+eabS/rob3/W2/fwo48+wnHHHZeeKOoXv/gF6urqcn5fDh8+PH0cdrn33ntx8skn4+STT8YRRxyB3XbbDbW1tWhvb8fbb7+N22+/Pf0Y8fDhw3HTTTcV8dsOTL19D0v5OXnFFVfgwQcfxMqVK/G9730Pq1evxhlnnIFAIIAXX3wRv/zlL6HrOgKBAH7/+9/3/pcfIErxWdrTAw88gEQiAaCwLFoeh4UrxfUCwO9CIiJXKhwkpkHkiSeeSN/VdPpv6tSpctWqVZUe5qCS7b3I9t/48eNtfbz44ouutg0Gg/K2227r+19ygBs/fryrf/9TTz01Z+aIYRjya1/7Ws4+zjvvPGkYRt/9coPQrbfemjNDywmPwfLqmVHl5r9sSnWMbdu2Tc6aNStrHz6fT95xxx2l/mfo13r7Ht59990Ff186PRXkdhx77bWX/OCDD/rgX6b/6O17WOrPyVWrVskpU6Zk7ae2tlY++eST5fin6LdK9Vna5YADDpAApKqqctOmTSUfB4/DboV+/jldL3ThdyERUW68rUR95qSTTsK7776Lm266CU8//TTWr18Pr9eLyZMn44tf/CK++c1vIhgMVnqYVKD99tsPf/3rX/H6669jyZIl2LRpE7Zv3w5d19HQ0IA99tgDRx99NM4//3xbVhH13r333ouFCxfi9ddfx8cff4zt27ejtbUV4XAY48aNw8EHH4yzzz4bBx10UM5+FEXBnXfeiVNPPRW333473nrrLWzfvh3Dhg3DrFmzcNFFF5VsAivK7i9/+QsAQFVVfOUrX3G1DY/B/qFUx9iwYcPw2muv4Y477sB9992H5cuXo6OjA6NHj8bRRx+Nyy67rOR1Uqk0rrzySuy77754/fXXsWzZMmzbtg07d+6Ez+fDiBEjMHPmTHzhC1/AvHnzoKpqpYc7oJT6c3Ly5MlYunQpbrnlFjz00ENYvXo1EokExo0bhxNOOAGXXXYZxo8f3we/2eC0atUqvPnmmwCAY489FiNHjnS9LY/DyuJ3IRFRbkLKLBXviYiIiIiIiIiIiKjslEoPgIiIiIiIiIiIiGgwY5CWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiIiIiIiIiKiCGKQlIiIiIiIiIiIiqiAGaYmIiIiIiIiIiIgqiEFaIiIiIiIiIiIiogpikJaIiIiIiIiIiIioghikJSIiIiIiIiIiIqogBmmJiIiIiIiIiIiIKohBWiIiIiIiIiIiIqIKYpCWiIiIiIiIiIiIqIIYpCUiIiIiIiIiIiKqIAZpiYiIiIiIiIiIiCqIQVoiIiIiIiIiIiKiCmKQloiIiKhI99xzD4QQEEJg7dq1lR4OERERERH1UwzSEhER0aCzdu3adHC1N/8RERERERGVAoO0RERERERERERERBUkpJSy0oMgIiIi6kvJZBIffvhh1vV77bUXAGDmzJm4++67s7bbc889Sz42IiIiIiIafLRKD4CIiIior3k8HlcB1lAoxEAsERERERGVHcsdEBEREREREREREVUQg7RERERERbrnnnvSk4itXbvWtv6II46AEAJHHHEEAGD16tX4+te/jl133RWBQAATJkzAeeedh3Xr1lm2e//993Huuedi1113hd/vx7hx43DxxRdj69atrsb12GOP4Ytf/CJ22WUX+P1+1NfXY+bMmfjZz36Gpqam3v7aRERERERUYix3QERERNQH/vOf/+CUU05BW1tbetm6detw11134amnnsLChQsxbdo03H///TjnnHOQSCTS7davX48//elPeOaZZ/Daa69h9OjRjvtoamrCF77wBbzwwguW5fF4HG+//Tbefvtt/PGPf8Tjjz+OAw88sDy/KBERERERFYyZtERERERltnHjRpx22mmor6/H/Pnz8eabb+KVV17B5ZdfDiEEtm7divPPPx9vvfUWzjrrLEyaNAkLFizA4sWL8eKLL+LMM88EkArqfuc733HcRzwexzHHHIMXXngBqqrizDPPxP3334833ngDr7zyCq699loMHToUW7duxQknnGDL3iUiIiIiosphJi0RERFRma1atQpTpkzBokWL0NjYmF5+yCGHQNM03HDDDVi0aBFOPPFE7L///njuuecQDAbT7Y444gjEYjE89NBDeOSRR7Bt2zZLPwBwzTXX4J133kF9fT3+85//YL/99rOsP+SQQ/CVr3wFBx10EDZt2oSrrroKf/vb38r7ixMRERERkSvMpCUiIiLqAzfffLMtsAoAl1xySfrn7du3Y8GCBZYAbZeLL74YAKDrOl5//XXLuvb2dtxyyy0AgJ///Oe2AG2X8ePH40c/+hEA4KGHHkJHR0dxvwwREREREZUUg7REREREZVZfX4/jjjvOcd3EiRNRU1MDANh7770xffp0x3b77LNP+uePP/7Ysm7hwoVoaWkBAHzhC1/IOZbDDjsMAJBMJvH222+7+wWIiIiIiKisWO6AiIiIqMymTJkCIUTW9fX19Whra8PUqVNztunSc/IxAFiyZEn651GjRrke1+bNm123JSIiIiKi8mEmLREREVGZOZUv6ElRlLztutoAgGEYlnVbt24talyRSKSo7YiIiIiIqLSYSUtERETUz/UM2r7zzjvweDyuths7dmy5hkRERERERAVgkJaIiIionxs6dGj658bGRgZfiYiIiIj6GZY7ICIiIurnZsyYkf550aJFFRwJEREREREVg0FaIiIion7umGOOSdezvfnmmyGlrPCIiIiIiIioEAzSEhEREfVz9fX1+OY3vwkAeO211/Dtb38bpmlmbb9lyxYsWLCgr4ZHRERERER5sCYtERER0QBwzTXXYOHChXjzzTdx00034aWXXsIFF1yAfffdF6FQCE1NTfjggw/wn//8B8888wz22msvnH/++ZUeNhERERERgUFaIiIiogHB5/PhueeewznnnINHH30U//vf/9LZtU5qa2v7cHRERERERJQLg7REREREA0RNTQ0eeeQRvPrqq7j33nvxyiuvYOPGjYhGo6itrcWkSZOw//7748QTT8ScOXMqPVwiIiIiIuokJGeWICIiIiIiIiIiIqoYThxGREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEFMUhLREREREREREREVEEM0hIRERERERERERFVEIO0RERERERERERERBXEIC0RERERERERERFRBTFIS0RERERERERERFRBDNISERERERERERERVRCDtEREREREREREREQVxCAtERERERERERERUQUxSEtERERERERERERUQQzSEhEREREREREREVUQg7REREREREREREREFcQgLREREREREREREVEF/T8CDHwDuccc8gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = my_model.compartmentPlot(\n", + " # Create plot with number of naive, infected, recovered, dead hosts/vectors vs. time.\n", + " 'vector-borne_birth-death_example.png', \n", + " # File path, name, and extension to save plot under.\n", + " data\n", + " # Dataframe containing model history.\n", + " )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "opqua", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.17" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/img/circle-header.png b/img/circle-header.png index 4663541..73eb573 100644 Binary files a/img/circle-header.png and b/img/circle-header.png differ diff --git a/img/opqua_logo.png b/img/opqua_logo.png new file mode 100644 index 0000000..c1d0b1f Binary files /dev/null and b/img/opqua_logo.png differ diff --git a/opqua/internal/data.py b/opqua/internal/data.py index 4ad9089..1b1feb5 100644 --- a/opqua/internal/data.py +++ b/opqua/internal/data.py @@ -13,29 +13,30 @@ def saveToDf(history,save_to_file,n_cores=0,verbose=10, **kwargs): Creates a pandas Dataframe in long format with the given model history, with one host or vector per simulation time in each row, and columns: - Time - simulation time of entry - Population - ID of this host/vector's population - Organism - host/vector - ID - ID of host/vector - Pathogens - all genomes present in this host/vector separated by ; - Protection - all genomes present in this host/vector separated by ; - Alive - whether host/vector is alive at this time, True/False + + - Time - simulation time of entry + - Population - ID of this host/vector's population + - Organism - host/vector + - ID - ID of host/vector + - Pathogens - all genomes present in this host/vector separated by ';' + - Protection - all genomes present in this host/vector separated by ';' + - Alive - whether host/vector is alive at this time, True/False Writing straight to a file and then reading into a pandas dataframe was actually more efficient than concatenating directly into a pd dataframe. Arguments: - history -- dictionary containing model state history, with keys=times and - values=Model objects with model snapshot at that time point - save_to_file -- file path and name to save model data under (String) + history (dict): dictionary containing model state history, with `keys`=`times` and + `values`=`Model` objects with model snapshot at that time point. + save_to_file (String): file path and name to save model data under. Keyword arguments: - n_cores -- number of cores to parallelize file export across, if 0, all - cores available are used (default 0; int) - **kwargs -- additional arguents for joblib multiprocessing + n_cores (int): number of cores to parallelize file export across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. Returns: - pandas dataframe with model history as described above + pandas DataFrame with model history as described above. """ print('Saving file...') @@ -100,24 +101,24 @@ def populationsDf( for time as well as each population. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame) dataframe with model history as produced by `saveToDf` function. Keyword arguments: - compartment -- subset of hosts/vectors to count totals of, can be either - 'Naive','Infected','Recovered', or 'Dead' (default 'Infected'; String) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - num_top_populations -- how many populations to count separately and include - as columns, remainder will be counted under column "Other"; if <0, - includes all populations in model (default -1; int) - track_specific_populations -- contains IDs of specific populations to have - as a separate column if not part of the top num_top_populations - populations (list of Strings) - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) + compartment (String): subset of hosts/vectors to count totals of, can be either + 'Naive','Infected','Recovered', or 'Dead'. Defaults to 'Infected'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_populations (int): how many populations to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all populations in model. Defaults to -1. + track_specific_populations (list of Strings): contains IDs of specific populations to have + as a separate column if not part of the top num_top_populations + populations. Defaults to []. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". Returns: - pandas dataframe with model population dynamics as described above + pandas DataFrame with model population dynamics as described above. """ dat = cp.deepcopy( data ) @@ -204,18 +205,18 @@ def compartmentDf( compartment. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - populations -- IDs of populations to include in analysis; if empty, uses all - populations in model (default empty list; list of Strings) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) + populations (list of Strings): IDs of populations to include in analysis; if empty, uses all + populations in model. Defaults to []. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". Returns: - pandas dataframe with model compartment dynamics as described above + pandas DataFrame with model compartment dynamics as described above. """ if len(populations) > 0: @@ -298,38 +299,37 @@ def compositionDf( multiple infections in the same host/vector are counted separately. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - populations -- IDs of populations to include in analysis; if empty, uses all - populations in model (default empty list; list of Strings) - type_of_composition -- field of data to count totals of, can be either - 'Pathogens' or 'Protection' (default 'Pathogens'; String) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - num_top_sequences -- how many sequences to count separately and include - as columns, remainder will be counted under column "Other"; if <0, - includes all genomes in model (default -1; int) - track_specific_sequences -- contains specific sequences to have - as a separate column if not part of the top num_top_sequences - sequences (default empty list; list of Strings) - genomic_positions -- list in which each element is a list with loci - positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] extracts - positions 0, 1, 2, and 5 from each genome); if empty, takes full genomes - (default empty list; list of lists of int) - count_individuals_based_on_model -- Model object with populations and - fitness functions used to evaluate the most fit pathogen genome in each - host/vector in order to count only a single pathogen per host/vector, as - opposed to all pathogens within each host/vector; if None, counts all - pathogens (default None; None or Model) - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) - n_cores -- number of cores to parallelize processing across, if 0, all - cores available are used (default 0; int) - **kwargs -- additional arguents for joblib multiprocessing + populations (list of Strings): IDs of populations to include in analysis; if empty, uses all + populations in model. Defaults to []. + type_of_composition (String): field of data to count totals of, can be either + 'Pathogens' or 'Protection'. Defaults to 'Pathogens'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_sequences (int): how many sequences to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all genomes in model. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to have + as a separate column if not part of the top num_top_sequences + sequences. Defaults to []. + genomic_positions (list of lists of int): list in which each element is a list with loci + positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] extracts + positions 0, 1, 2, and 5 from each genome); if empty, takes full genomes. Defaults to []. + count_individuals_based_on_model (None or Model): Model object with populations and + fitness functions used to evaluate the most fit pathogen genome in each + host/vector in order to count only a single pathogen per host/vector, as + opposed to all pathogens within each host/vector; if None, counts all + pathogens. Defaults to None. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize processing across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. Returns: - pandas dataframe with model sequence composition dynamics as described above + pandas DataFrame with model sequence composition dynamics as described above. """ if len(populations) > 0: @@ -470,18 +470,18 @@ def extractSeq(ind): def getPathogens(data, save_to_file=""): """Create Dataframe with counts for all pathogen genomes in data. - Returns sorted pandas Dataframe with counts for occurrences of all pathogen + Returns sorted pandas DataFrame with counts for occurrences of all pathogen genomes in data passed. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". Returns: - pandas dataframe with Series as described above + pandas DataFrame with Series as described above. """ out = pd.Series( ';'.join( @@ -497,18 +497,18 @@ def getPathogens(data, save_to_file=""): def getProtections(data, save_to_file=""): """Create Dataframe with counts for all protection sequences in data. - Returns sorted pandas Dataframe with counts for occurrences of all + Returns sorted pandas DataFrame with counts for occurrences of all protection sequences in data passed. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". Returns: - pandas dataframe with Series as described above + pandas DataFrame with Series as described above. """ out = pd.Series( ';'.join( @@ -528,28 +528,27 @@ def pathogenDistanceDf( in data. DataFrame has indexes and columns named according to genomes or argument - seq_names, if passed. Distance is measured as percent Hamming distance from + `seq_names`, if passed. Distance is measured as percent Hamming distance from an optimal genome sequence. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - num_top_sequences -- how many sequences to include in matrix; if <0, - includes all genomes in data passed (default -1; int) - track_specific_sequences -- contains specific sequences to include in matrix - if not part of the top num_top_sequences sequences (default empty list; - list of Strings) - seq_names -- list with names to be used for sequence labels in matrix must - be of same length as number of sequences to be displayed; if empty, - uses sequences themselves (default empty list; list of Strings) - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) - n_cores -- number of cores to parallelize distance compute across, if 0, all - cores available are used (default 0; int) + num_top_sequences (int): how many sequences to include in matrix; if <0, + includes all genomes in data passed. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include in matrix + if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list of Strings): list with names to be used for sequence labels in matrix must + be of same length as number of sequences to be displayed; if empty, + uses sequences themselves. Defaults to []. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize distance compute across, if 0, all + cores available are used. Defaults to 0. Returns: - pandas dataframe with distance matrix as described above + pandas DataFrame with distance matrix as described above. """ sequences = getPathogens(data)['Pathogens'] @@ -597,30 +596,29 @@ def getPathogenDistanceHistoryDf( in data. DataFrame has indexes and columns named according to genomes or argument - seq_names, if passed. Distance is measured as percent Hamming distance from + `seq_names`, if passed. Distance is measured as percent Hamming distance from an optimal genome sequence. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function Keyword arguments: - samples -- how many timepoints to uniformly sample from the total - timecourse; if <0, takes all timepoints (default 1; int) - num_top_sequences -- how many sequences to include in matrix; if <0, - includes all genomes in data passed (default -1; int) - track_specific_sequences -- contains specific sequences to include in matrix - if not part of the top num_top_sequences sequences (default empty list; - list of Strings) - seq_names -- list with names to be used for sequence labels in matrix must - be of same length as number of sequences to be displayed; if empty, - uses sequences themselves (default empty list; list of Strings) - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) - n_cores -- number of cores to parallelize distance compute across, if 0, all - cores available are used (default 0; int) + samples (int): how many timepoints to uniformly sample from the total + timecourse; if <0, takes all timepoints. Defaults to 1. + num_top_sequences (int): how many sequences to include in matrix; if <0, + includes all genomes in data passed. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include in matrix + if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list of Strings): list with names to be used for sequence labels in matrix must + be of same length as number of sequences to be displayed; if empty, + uses sequences themselves. Defaults to []. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize distance compute across, if 0, all + cores available are used (default 0; int) Returns: - pandas dataframe with distance matrix as described above + pandas DataFrame with distance matrix as described above. """ if samples > 0: @@ -656,19 +654,19 @@ def getGenomeTimesDf( """Create DataFrame with times genomes first appeared during simulation. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - samples -- how many timepoints to uniformly sample from the total - timecourse; if <0, takes all timepoints (default 1; int) - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) - n_cores -- number of cores to parallelize across, if 0, all cores available - are used (default 0; int) - **kwargs -- additional arguents for joblib multiprocessing + samples (int): how many timepoints to uniformly sample from the total + timecourse; if <0, takes all timepoints. Defaults to 1. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize across, if 0, all cores available + are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. Returns: - pandas dataframe with genomes and times as described above + pandas DataFrame with genomes and times as described above. """ if samples > 0: diff --git a/opqua/internal/gillespie.py b/opqua/internal/gillespie.py index 8be57ed..ddd6ac3 100644 --- a/opqua/internal/gillespie.py +++ b/opqua/internal/gillespie.py @@ -15,11 +15,8 @@ class Gillespie(object): according to the possible events and simulating a timecourse using the Gillespie algorithm. - Methods: - getRates -- returns array containing rates for each event for a given system - state - doAction -- carries out an event, modifying system state - run -- simulates model for a specified length of time + Attributes: + model (Model object): the model this simulation belongs to. """ # Event ID constants: @@ -72,7 +69,7 @@ def __init__(self, model): """Create a new Gillespie simulation object. Arguments: - model -- the model this simulation belongs to (Model) + model (Model object): the model this simulation belongs to. """ super(Gillespie, self).__init__() # initialize as parent class object @@ -103,12 +100,11 @@ def getRates(self,population_ids): """Wrapper for calculating event rates as per current system state. Arguments: - population_ids -- list with ids for every population in the model - (list of Strings) + population_ids (list of Strings): list with IDs for every population in the model. Returns: - Matrix with rates as values for events (rows) and populations (columns). - Populations in order given in argument. + Matrix with rates as values for events (rows) and populations (columns). + Populations in order given in argument. """ rates = np.zeros( [ len(self.evt_IDs), len(population_ids) ] ) @@ -336,12 +332,12 @@ def doAction(self,act,pop,rand): """Change system state according to act argument passed Arguments: - act -- defines action to be taken, one of the event ID constants (int) - pop -- population action will happen in (Population) - rand -- random number used to define event (number 0-1) + act (int): defines action to be taken, one of the event ID constants. + pop (Population object): where the population action will happen in. + rand (number 0-1): random number used to define event. Returns: - whether or not the model has changed state (Boolean) + Boolean indicationg whether or not the model has changed state. """ changed = False @@ -507,21 +503,21 @@ def run(self,t0,tf,time_sampling=0,host_sampling=0,vector_sampling=0, Simulates a time series using the Gillespie algorithm. Arguments: - t0 -- initial time point to start simulation at (number) - tf -- initial time point to end simulation at (number) - time_sampling -- how many events to skip before saving a snapshot of the - system state (saves all by default), if <0, saves only final state - (int, default 0) - host_sampling -- how many hosts to skip before saving one in a snapshot - of the system state (saves all by default) (int, default 0) - vector_sampling -- how many vectors to skip before saving one in a - snapshot of the system state (saves all by default) (int, default 0) - print_every_n_events -- number of events a message is printed to console - (int>0, default 1000) + t0 (number): initial time point to start simulation at. + tf (number): initial time point to end simulation at. + + Keyword arguments: + time_sampling (int): how many events to skip before saving a snapshot of the + system state (saves all by default), if <0, saves only final state. Defaults to 0. + host_sampling (int): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. + print_every_n_events (int>0): number of events a message is printed to console. Defaults to 1000. Returns: - dictionary containing model state history, with keys=times and - values=Model objects with model snapshot at that time point + dictionary containing model state history, with `keys`=`times` and + `values`=`Model` objects with model snapshot at that time point. """ # Simulation variables diff --git a/opqua/internal/host.py b/opqua/internal/host.py index 915387d..77672ae 100644 --- a/opqua/internal/host.py +++ b/opqua/internal/host.py @@ -7,31 +7,23 @@ class Host(object): """Class defines main entities to be infected by pathogens in model. - Methods: - copyState -- returns a slimmed-down version of the current host state - acquirePathogen -- adds given genome to this host's pathogens - infectHost -- infects given host with a sample of this host's pathogens - infectVector -- infects given vector with a sample of this host's pathogens - recover -- removes all infections - die -- kills this host - birth -- add a new host to population based on this host - applyTreatment -- removes all infections with genotypes susceptible to given - treatment - mutate -- mutate a single, random locus in a random pathogen - recombine -- recombine two random pathogen genomes at random locus - getWeightedRandomGenome -- returns index of element chosen from weights and - given random number + Attributes: + population (Population object): the population this host belongs to. + id (String): unique identifier for this host within population. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). Defaults to + False. """ def __init__(self, population, id, slim=False): """Create a new Host. Arguments: - population -- the population this host belongs to (Population) - id -- unique identifier for this host within population (String) - slim -- whether to create a slimmed-down representation of the - population for data storage (only ID, host and vector lists) - (Boolean, default False) + population (Population object): the population this host belongs to. + id (String): unique identifier for this host within population. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). Defaults to + False. """ super(Host, self).__init__() self.id = id @@ -58,7 +50,7 @@ def copyState(self): """Returns a slimmed-down representation of the current host state. Returns: - Host object with current pathogens and protection_sequences. + Host object with current pathogens and protection_sequences. """ copy = Host(None, self.id, slim=True) @@ -73,7 +65,7 @@ def acquirePathogen(self, genome): Modifies event coefficient matrix accordingly. Arguments: - genome -- the genome to be added (String) + genome (String): the genome to be added. """ self.pathogens[genome] = self.population.fitnessHost(genome) old_sum_fitness = self.sum_fitness @@ -126,10 +118,10 @@ def infectHost(self, host): organism is included in the poplation's infected list if appropriate. Arguments: - vector -- the vector to be infected (Vector) + vector (Vector object): the vector to be infected. Returns: - whether or not the model has changed state (Boolean) + Boolean indicating whether or not the model has changed state. """ changed = False @@ -168,10 +160,10 @@ def infectVector(self, vector): organism is included in the poplation's infected list if appropriate. Arguments: - vector -- the vector to be infected (Vector) + vector (Vector object): the vector to be infected. Returns: - whether or not the model has changed state (Boolean) + Boolean indicating whether or not the model has changed state. """ changed = False @@ -259,8 +251,7 @@ def applyTreatment(self, resistance_seqs): population infected list and adds to healthy list if appropriate. Arguments: - resistance_seqs -- contains sequences required for treatment resistance - (list of Strings) + resistance_seqs (list of Strings): contains sequences required for treatment resistance. """ genomes_remaining = [] @@ -359,11 +350,11 @@ def getWeightedRandomGenome(self, rand, r): """Returns index of element chosen from weights and given random number. Arguments: - rand -- 0-1 random number (number) - r -- array with weights (numpy vector) + rand (number 0-1): random number. + r (numpy array): array with weights. Returns: - new 0-1 random number (number) + new 0-1 random number. """ r_tot = np.sum( r ) diff --git a/opqua/internal/intervention.py b/opqua/internal/intervention.py index d0df005..35d9867 100644 --- a/opqua/internal/intervention.py +++ b/opqua/internal/intervention.py @@ -4,19 +4,23 @@ class Intervention(object): """Class defines a new intervention to be done at a specified time. - Methods: - doIntervention -- executes intervention function with specified arguments + Attributes: + time (number): time at which intervention will take place. + method_name (String): intervention to be carried out, must correspond to the + name of a method of the Model object. + args (array-like): contains arguments for function in positinal order. + model (Model object): Model object this intervention is associated to. """ def __init__(self, time, method_name, args, model): """Create a new Intervention. Arguments: - time -- time at which intervention will take place (number) - method_name -- intervention to be carried out, must correspond to the - name of a method of the Model object (String) - args -- contains arguments for function in positinal order (array-like) - model -- Model object this intervention is associated to (Model) + time (number): time at which intervention will take place. + method_name (String): intervention to be carried out, must correspond to the + name of a method of the Model object. + args (array-like): contains arguments for function in positinal order. + model (Model object): Model object this intervention is associated to. """ super(Intervention, self).__init__() self.time = time diff --git a/opqua/internal/plot.py b/opqua/internal/plot.py index ad9fb12..cb6c51b 100644 --- a/opqua/internal/plot.py +++ b/opqua/internal/plot.py @@ -32,37 +32,34 @@ def populationsPlot( across populations in the model, with one line for each population. Arguments: - file_name -- file path, name, and extension to save plot under (String) - data -- dataframe with model history as produced by saveToDf function - (DataFrame) + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - compartment -- subset of hosts/vectors to count totals of, can be either - 'Naive','Infected','Recovered', or 'Dead' (default 'Infected'; String) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - num_top_populations -- how many populations to count separately and include - as columns, remainder will be counted under column "Other"; if <0, - includes all populations in model (default 7; int) - track_specific_populations -- contains IDs of specific populations to have - as a separate column if not part of the top num_top_populations - populations (default empty list; list of Strings) - save_data_to_file -- file path and name to save model plot data under, no - saving occurs if empty string (default ''; String) - x_label -- X axis title (default 'Time', String) - y_label -- Y axis title (default 'Hosts', String) - legend_title -- legend title (default 'Population', String) - legend_values -- labels for each trace, if empty list, uses population IDs - (default empty list, list of Strings) - figsize -- dimensions of figure (default (8,4), array-like of two ints) - dpi -- figure resolution (default 200, int) - palette -- color palette to use for traces (default CB_PALETTE, list of - color Strings) - stacked -- whether to draw a regular line plot instead of a stacked one - (default False, Boolean) + compartment (String): subset of hosts/vectors to count totals of, can be either + 'Naive','Infected','Recovered', or 'Dead'. (default 'Infected') + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_populations (int): how many populations to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all populations in model. Defaults to 7. + track_specific_populations (list of Strings): contains IDs of specific populations to have + as a separate column if not part of the top num_top_populations + populations. Defaults to []. + save_data_to_file (String): file path and name to save model plot data under, no + saving occurs if empty string. Defaults to "". + x_label(String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population IDs. + Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. Defaults to False. Returns: - axis object for plot with model population dynamics as described above + axis object for plot with model population dynamics as described above. """ pops = populationsDf( @@ -129,31 +126,29 @@ def compartmentPlot( with one line for each compartment. Arguments: - file_name -- file path, name, and extension to save plot under (String) - data -- dataframe with model history as produced by saveToDf function - (DataFrame) + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - populations -- IDs of populations to include in analysis; if empty, uses all - populations in model (default empty list; list of Strings) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - save_data_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) - x_label -- X axis title (default 'Time', String) - y_label -- Y axis title (default 'Hosts', String) - legend_title -- legend title (default 'Population', String) - legend_values -- labels for each trace, if empty list, uses population IDs - (default empty list, list of Strings) - figsize -- dimensions of figure (default (8,4), array-like of two ints) - dpi -- figure resolution (default 200, int) - palette -- color palette to use for traces (default CB_PALETTE, list of - color Strings) - stacked -- whether to draw a regular line plot instead of a stacked one - (default False, Boolean) + populations (list of Strings): IDs of populations to include in analysis; if empty, uses all + populations in model. Defaults to []. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + save_data_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population IDs. + Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. + Defaults to False. Returns: - axis object for plot with model compartment dynamics as described above + axis object for plot with model compartment dynamics as described above. """ comp = compartmentDf(data, populations=populations, hosts=hosts, @@ -223,54 +218,51 @@ def compositionPlot( multiple infections in the same host/vector are counted separately. Arguments: - file_name -- file path, name, and extension to save plot under (String) - data -- dataframe with model history as produced by saveToDf function + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - composition_dataframe -- output of compositionDf() if already computed - (Pandas DataFrame, None by default) - populations -- IDs of populations to include in analysis; if empty, uses all - populations in model (default empty list; list of Strings) - type_of_composition -- field of data to count totals of, can be either - 'Pathogens' or 'Protection' (default 'Pathogens'; String) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - num_top_sequences -- how many sequences to count separately and include - as columns, remainder will be counted under column "Other"; if <0, - includes all genomes in model (default 7; int) - track_specific_sequences -- contains specific sequences to have - as a separate column if not part of the top num_top_sequences - sequences (default empty list; list of Strings) - genomic_positions -- list in which each element is a list with loci - positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] extracts - positions 0, 1, 2, and 5 from each genome); if empty, takes full genomes - (default empty list; list of lists of int) - count_individuals_based_on_model -- Model object with populations and - fitness functions used to evaluate the most fit pathogen genome in each - host/vector in order to count only a single pathogen per host/vector, as - opposed to all pathogens within each host/vector; if None, counts all - pathogens (default None; None or Model) - save_data_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) - x_label -- X axis title (default 'Time', String) - y_label -- Y axis title (default 'Hosts', String) - legend_title -- legend title (default 'Population', String) - legend_values -- labels for each trace, if empty list, uses population IDs - (default empty list, list of Strings) - figsize -- dimensions of figure (default (8,4), array-like of two ints) - dpi -- figure resolution (default 200, int) - palette -- color palette to use for traces (default CB_PALETTE, list of - color Strings) - stacked -- whether to draw a regular line plot instead of a stacked one - (default False, Boolean). - remove_legend -- whether to print the sequences on the figure legend instead - of printing them on a separate csv file (default True; Boolean) - population_fraction -- whether to graph fractions of pathogen population - instead of pathogen counts (default False, Boolean) - **kwargs -- additional arguents for joblib multiprocessing + composition_dataframe (Pandas DataFrame): output of compositionDf() if already computed. + Defaults to None. + populations (list of Strings): IDs of populations to include in analysis; if empty, uses all + populations in model. Defaults to []. + type_of_composition (String): field of data to count totals of, can be either + 'Pathogens' or 'Protection'. Defaults to 'Pathogens'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_sequences (int): how many sequences to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all genomes in model. Defaults to 7. + track_specific_sequences (list of Strings): contains specific sequences to have + as a separate column if not part of the top num_top_sequences + sequences. Defaults to []. + genomic_positions (list of lists of int): list in which each element is a list with loci + positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] extracts + positions 0, 1, 2, and 5 from each genome); if empty, takes full genomes. Defaults to []. + count_individuals_based_on_model (None or Model): Model object with populations and + fitness functions used to evaluate the most fit pathogen genome in each + host/vector in order to count only a single pathogen per host/vector, as + opposed to all pathogens within each host/vector; if None, counts all + pathogens. Defaults to None. + save_data_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population IDs. + Defaults to []. + figsize (int): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. Defaults to False. + remove_legend (Boolean): whether to print the sequences on the figure legend instead + of printing them on a separate csv file. Defaults to True. + population_fraction (Boolean): whether to graph fractions of pathogen population + instead of pathogen counts. Defaults to False. + **kwargs: additional arguents for joblib multiprocessing. Returns: - axis object for plot with model sequence composition dynamics as described + axis object for plot with model sequence composition dynamics as described. """ if composition_dataframe is None: @@ -349,33 +341,30 @@ def clustermap( """Create a heatmap and dendrogram for pathogen genomes in data passed. Arguments: - file_name -- file path, name, and extension to save plot under (String) - data -- dataframe with model history as produced by saveToDf function + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - num_top_sequences -- how many sequences to include in matrix; if <0, - includes all genomes in data passed (default -1; int) - track_specific_sequences -- contains specific sequences to include in matrix - if not part of the top num_top_sequences sequences (default empty list; - list of Strings) - seq_names -- list with names to be used for sequence labels in matrix must - be of same length as number of sequences to be displayed; if empty, - uses sequences themselves (default empty list; list of Strings) - n_cores -- number of cores to parallelize distance compute across, if 0, all - cores available are used (default 0; int) - method -- clustering algorithm to use with seaborn clustermap (default - 'weighted'; String) - metric -- distance metric to use with seaborn clustermap (default - 'euclidean'; String) - save_data_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) - legend_title -- legend title (default 'Distance', String) - figsize -- dimensions of figure (default (8,4), array-like of two ints) - dpi -- figure resolution (default 200, int) - color_map -- color map to use for traces (default DEF_CMAP, cmap object) + num_top_sequences (int): how many sequences to include in matrix; if <0, + includes all genomes in data passed. Deafults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include in matrix + if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list of Strings): list with names to be used for sequence labels in matrix must + be of same length as number of sequences to be displayed; if empty, + uses sequences themselves. Defaults to []. + n_cores (int): number of cores to parallelize distance compute across, if 0, all + cores available are used. Defaults to 0. + method (String): clustering algorithm to use with seaborn clustermap. Defaults to 'weighted'. + metric (String): distance metric to use with seaborn clustermap. Defaults to 'euclidean'. + save_data_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + legend_title (String): legend title. Defaults to 'Distance'. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + color_map (cmap object): color map to use for traces. Defaults to `DEF_CMAP`. Returns: - figure object for plot with heatmap and dendrogram as described + figure object for plot with heatmap and dendrogram as described. """ dis = pathogenDistanceDf( diff --git a/opqua/internal/population.py b/opqua/internal/population.py index ae46e6a..d4717e3 100644 --- a/opqua/internal/population.py +++ b/opqua/internal/population.py @@ -11,89 +11,44 @@ class Population(object): """Class defines a population with hosts, vectors, and specific parameters. - Constants: - # These all denote positions in coefficients_hosts and coefficients_vectors - INFECTED -- position of "infected" Boolean values for each individual inside - coefficients array - CONTACT -- position of intra-population aggregated contact rate for each - individual inside coefficients array - RECEIVE_CONTACT -- position of intra-population aggregated receiving contact - rate for each individual inside coefficients array - LETHALITY -- position of aggregated death rate for each individual inside - coefficients array - NATALITY -- position of aggregated birth rate for each individual inside - coefficients array - RECOVERY -- position of aggregated recovery rate for each individual inside - coefficients array - MIGRATION -- position of aggregated inter-population migration rate for each - individual inside coefficients array - POPULATION_CONTACT -- position of inter-population aggregated contact rate - for each individual inside coefficients array - RECEIVE_POPULATION_CONTACT -- position of inter-population aggregated - receiving contact rate for each individual inside coefficients array - MUTATION -- position of aggregated mutation rate for each individual inside - coefficients array - RECOMBINATION -- position of aggregated recovery rate for each individual - inside coefficients array - NUM_COEFFICIENTS -- total number of types of coefficients (columns) in - coefficient arrays - CHROMOSOME_SEPARATOR -- character reserved to denote separate chromosomes in - genomes - - Methods: - copyState -- returns a slimmed-down version of the current population state - setSetup -- assigns a given set of parameters to this population - addHosts -- adds hosts to the population - addVectors -- adds vectors to the population - newHostGroup -- returns a list of random (healthy or any) hosts - newVectorGroup -- returns a list of random (healthy or any) vectors - removeHosts -- removes hosts from the population - removeVectors -- removes vectors from the population - addPathogensToHosts -- adds pathogens with specified genomes to hosts - addPathogensToVectors -- adds pathogens with specified genomes to vectors - treatHosts -- removes infections susceptible to given treatment from hosts - treatVectors -- removes infections susceptible to treatment from vectors - protectHosts -- adds protection sequence to hosts - protectVectors -- adds protection sequence to vectors - wipeProtectionHosts -- removes all protection sequences from hosts - wipeProtectionVectors -- removes all protection sequences from hosts - setHostMigrationNeighbor -- sets migration rate of hosts from this - population towards another - setVectorMigrationNeighbor -- sets migration rate of vectors from this - population towards another - migrate -- transfers hosts and/or vectors from this population to a neighbor - setHostHostPopulationContactNeighbor -- set host-host contact rate from this - population towards another one - setHostVectorPopulationContactNeighbor -- set host-vector contact rate from - this population towards another one - setVectorHostPopulationContactNeighbor -- set vector-host contact rate from - this population towards another one - populationContact -- contacts hosts and/or vectors from this population to - another - contactHostHost -- contact any two (weighted) random hosts in population - contactHostVector -- contact a (weighted) random host and vector in - population - contactVectorHost -- contact a (weighted) random vector and host in - population - recoverHost --removes all infections from given host - recoverVector -- removes all infections from given vector - killHost -- add host at this index to dead list, remove it from alive ones - killVector -- add vector at this index to dead list, remove it from alive - ones - dieHost -- remove host at this index from alive lists - dieVector -- remove vector at this index from alive lists - birthHost -- add host at this index to population, remove it from alive ones - birthVector -- add vector at this index to population, remove it from alive - ones - mutateHost -- mutates a single locus in a random pathogen in a host - mutateVector -- mutates a single locus in a random pathogen in a vector - recombineHost -- recombines two random pathogens in a host - recombineVector -- recombines two random pathogens in a host - updateHostCoefficients -- updates event coefficients in population's hosts - updateVectorCoefficients -- updates event coefficients in population's - vectors - getWeightedRandom -- returns index of element chosen using weights from - coefficient array and a given random number + **CONSTANTS:** These all denote positions in coefficients_hosts and coefficients_vectors + + - `INFECTED` -- position of "infected" Boolean values for each individual inside + coefficients array. + - `CONTACT` -- position of intra-population aggregated contact rate for each + individual inside coefficients array. + - `RECEIVE_CONTACT` -- position of intra-population aggregated receiving contact + rate for each individual inside coefficients array. + - `LETHALITY` -- position of aggregated death rate for each individual inside + coefficients array. + - `NATALITY` -- position of aggregated birth rate for each individual inside + coefficients array. + - `RECOVERY` -- position of aggregated recovery rate for each individual inside + coefficients array. + - `MIGRATION` -- position of aggregated inter-population migration rate for each + individual inside coefficients array. + - `POPULATION_CONTACT` -- position of inter-population aggregated contact rate + for each individual inside coefficients array. + - `RECEIVE_POPULATION_CONTACT` -- position of inter-population aggregated + receiving contact rate for each individual inside coefficients array. + - `MUTATION` -- position of aggregated mutation rate for each individual inside + coefficients array. + - `RECOMBINATION` -- position of aggregated recovery rate for each individual + inside coefficients array. + - `NUM_COEFFICIENTS` -- total number of types of coefficients (columns) in + coefficient arrays. + - `CHROMOSOME_SEPARATOR` -- character reserved to denote separate chromosomes in + genomes. + + Attributes: + model (Model object): parent model this population is a part of. + id (String): unique identifier for this population in the model. + setup (String): setup object with parameters for this population. + num_hosts (int): number of hosts to initialize population with. + num_vectors (int): number of hosts to initialize population with. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). + Defaults to False. """ INFECTED = 0 @@ -116,16 +71,16 @@ def __init__(self, model, id, setup, num_hosts, num_vectors, slim=False): """Create a new Population. Arguments: - model -- parent model this population is a part of (Model) - id -- unique identifier for this population in the model (String) - setup -- setup object with parameters for this population (Setup) - num_hosts -- number of hosts to initialize population with (int) - num_vectors -- number of hosts to initialize population with (int) + model (Model object): parent model this population is a part of. + id (String): unique identifier for this population in the model. + setup (String): setup object with parameters for this population. + num_hosts (int): number of hosts to initialize population with. + num_vectors (int): number of hosts to initialize population with. Keyword arguments: - slim -- whether to create a slimmed-down representation of the - population for data storage (only ID, host and vector lists) - (Boolean, default False) + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). + Defaults to False. """ super(Population, self).__init__() @@ -209,13 +164,13 @@ def copyState(self,host_sampling=0,vector_sampling=0): """Returns a slimmed-down version of the current population state. Arguments: - host_sampling -- how many hosts to skip before saving one in a snapshot - of the system state (saves all by default) (int, default 0) - vector_sampling -- how many vectors to skip before saving one in a - snapshot of the system state (saves all by default) (int, default 0) + host_sampling (int): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. Returns: - Population object with current host and vector lists. + Population object with current host and vector lists. """ copy = Population(self.model, self.id, None, 0, 0, slim=True) @@ -251,7 +206,7 @@ def setSetup(self, setup): """Assign parameters stored in Setup object to this population. Arguments: - setup -- the setup to be assigned (Setup) + setup (Setup object): the setup to be assigned. """ self.setup = setup @@ -323,10 +278,10 @@ def addHosts(self, num_hosts): """Add a number of healthy hosts to population, return list with them. Arguments: - num_hosts -- number of hosts to be added (int) + num_hosts (int): number of hosts to be added. Returns: - list containing new hosts + list containing new hosts. """ new_hosts = [ @@ -343,10 +298,10 @@ def addVectors(self, num_vectors): """Add a number of healthy vectors to population, return list with them. Arguments: - num_vectors -- number of vectors to be added (int) + num_vectors (int): number of vectors to be added. Returns: - list containing new vectors + list containing new vectors """ new_vectors = [ @@ -361,17 +316,15 @@ def addVectors(self, num_vectors): def newHostGroup(self, hosts=-1, type='any'): """Return a list of random hosts in population. - Arguments: - hosts -- number of hosts to be sampled randomly: if <0, samples from - whole population; if <1, takes that fraction of population; if >=1, - samples that integer number of hosts (default -1, number) - Keyword arguments: - type -- whether to sample healthy hosts only, infected hosts only, or - any hosts (default 'any'; String = {'healthy', 'infected', 'any'}) + hosts (number): number of hosts to be sampled randomly: if <0, samples from + whole population; if <1, takes that fraction of population; if >=1, + samples that integer number of hosts. Defaults to -1. + type (String = {'healthy', 'infected', 'any'}): whether to sample healthy hosts + only, infected hosts only, or any hosts. Defaults to 'any'. Returns: - list containing sampled hosts + list containing sampled hosts. """ possible_hosts = [] @@ -408,18 +361,15 @@ def newHostGroup(self, hosts=-1, type='any'): def newVectorGroup(self, vectors=-1, type='any'): """Return a list of random vectors in population. - Arguments: - vectors -- number of vectors to be sampled randomly: if <0, samples from - whole population; if <1, takes that fraction of population; if >=1, - samples that integer number of vectors (default -1, number) - Keyword arguments: - type -- whether to sample healthy vectors only, infected vectors - only, or any vectors (default 'any'; String = {'healthy', - 'infected', 'any'}) + vectors (number): number of vectors to be sampled randomly: if <0, samples from + whole population; if <1, takes that fraction of population; if >=1, + samples that integer number of vectors. Defaults to -1. + type (String = {'healthy', 'infected', 'any'}): whether to sample healthy vectors + only, infected vectors. Defaults to 'any'. Returns: - list containing sampled vectors + list containing sampled vectors. """ possible_vectors = [] @@ -460,9 +410,8 @@ def removeHosts(self, num_hosts_or_list): """Remove a number of specified or random hosts from population. Arguments: - num_hosts_or_list -- number of hosts to be sampled randomly for removal - or list of hosts to be removed, must be hosts in this population - (int or list of Hosts) + num_hosts_or_list (int or list of Host objects): number of hosts to be sampled randomly for removal + or list of hosts to be removed, must be hosts in this population. """ if isinstance(num_hosts_or_list, list): @@ -504,9 +453,9 @@ def removeVectors(self, num_vectors_or_list): """Remove a number of specified or random vectors from population. Arguments: - num_vectors_or_list -- number of vectors to be sampled randomly for - removal or list of vectors to be removed, must be vectors in this - population (int or list of Vectors) + num_vectors_or_list (int or list of Vector objects): number of vectors to be sampled randomly for + removal or list of vectors to be removed, must be vectors in this + population. """ if isinstance(num_vectors_or_list, list): @@ -544,13 +493,13 @@ def addPathogensToHosts(self, genomes_numbers, hosts=[]): """Add specified pathogens to random hosts, optionally from a list. Arguments: - genomes_numbers -- dictionary conatining pathogen genomes to add as keys - and number of hosts each one will be added to as values (dict with - keys=Strings, values=int) + genomes_numbers (dict with keys=Strings, values=int): dictionary conatining + pathogen genomes to add as keys and number of hosts each one will be + added to as values. Keyword arguments: - hosts -- list of specific hosts to sample from, if empty, samples from - whole population (default empty list; empty) + hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from + whole population. Defaults to []. """ if len(hosts) == 0: @@ -583,13 +532,13 @@ def addPathogensToVectors(self, genomes_numbers, vectors=[]): """Add specified pathogens to random vectors, optionally from a list. Arguments: - genomes_numbers -- dictionary conatining pathogen genomes to add as keys - and number of vectors each one will be added to as values (dict with - keys=Strings, values=int) + genomes_numbers (dict with keys=Strings, values=int): dictionary conatining + pathogen genomes to add as keys and number of vectors each one will be + added to as values. Keyword arguments: - vectors -- list of specific vectors to sample from, if empty, samples - from whole population (default empty list; empty) + vectors (list of Vector objects): list of specific vectors to sample from, if empty, samples + from whole population. Defaults to []. """ if len(vectors) == 0: @@ -626,14 +575,12 @@ def treatHosts(self, frac_hosts, resistance_seqs, hosts=[]): population infected list and adds to healthy list if appropriate. Arguments: - frac_hosts -- fraction of hosts considered to be randomly selected - (number between 0 and 1) - resistance_seqs -- contains sequences required for treatment resistance - (list of Strings) + frac_hosts (number 0-1): fraction of hosts considered to be randomly selected. + resistance_seqs (list of Strings): contains sequences required for treatment resistance. Keyword arguments: - hosts -- list of specific hosts to sample from, if empty, samples from - whole population (default empty list; empty) + hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from + whole population. Defaults to []. """ hosts_to_consider = self.hosts @@ -661,14 +608,12 @@ def treatVectors(self, frac_vectors, resistance_seqs, vectors=[]): population infected list and adds to healthy list if appropriate. Arguments: - frac_vectors -- fraction of vectors considered to be randomly selected - (number between 0 and 1) - resistance_seqs -- contains sequences required for treatment resistance - (list of Strings) + frac_vectors (number 0-1): fraction of vectors considered to be randomly selected. + resistance_seqs (list of Strings): contains sequences required for treatment resistance. Keyword arguments: - vectors -- list of specific vectors to sample from, if empty, samples - from whole population (default empty list; empty) + vectors (list of Vector objects): list of specific vectors to sample from, if empty, samples + from whole population. Defaults to []. """ vectors_to_consider = self.vectors @@ -695,13 +640,12 @@ def protectHosts(self, frac_hosts, protection_sequence, hosts=[]): specified. Does not cure them if they are already infected. Arguments: - frac_hosts -- fraction of hosts considered to be randomly selected - (number between 0 and 1) - protection_sequence -- sequence against which to protect (String) + frac_hosts (number 0-1): fraction of hosts considered to be randomly selected. + protection_sequence (String): sequence against which to protect. Keyword arguments: - hosts -- list of specific hosts to sample from, if empty, samples from - whole population (default empty list; empty) + hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from + whole population. Defaults to []. """ hosts_to_consider = self.hosts @@ -722,13 +666,12 @@ def protectVectors(self, frac_vectors, protection_sequence, vectors=[]): specified. Does not cure them if they are already infected. Arguments: - frac_vectors -- fraction of vectors considered to be randomly selected - (number between 0 and 1) - protection_sequence -- sequence against which to protect (String) + frac_vectors (number 0-1): fraction of vectors considered to be randomly selected. + protection_sequence (String): sequence against which to protect. Keyword arguments: - vectors -- list of specific vectors to sample from, if empty, samples - from whole population (default empty list; empty) + vectors (list of Vector objects): list of specific vectors to sample from, if empty, samples + from whole population. Defaults to []. """ vectors_to_consider = self.vectors @@ -746,8 +689,8 @@ def wipeProtectionHosts(self, hosts=[]): """Removes all protection sequences from hosts. Keyword arguments: - hosts -- list of specific hosts to sample from, if empty, samples from - whole population (default empty list; empty) + hosts (list of Host objects): list of specific hosts to sample from, if empty, samples from + whole population. Defaults to []. """ hosts_to_consider = self.hosts @@ -761,8 +704,8 @@ def wipeProtectionVectors(self, vectors=[]): """Removes all protection sequences from vectors. Keyword arguments: - vectors -- list of specific vectors to sample from, if empty, samples from - whole population (default empty list; empty) + vectors (list of Vector objects): list of specific vectors to sample from, if empty, samples from + whole population. Defaults to []. """ vectors_to_consider = self.vectors @@ -776,9 +719,8 @@ def setHostMigrationNeighbor(self, neighbor, rate): """Set host migration rate from this population towards another one. Arguments: - neighbor -- population towards which migration rate will be specified - (Population) - rate -- migration rate from this population to the neighbor (number) + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. """ if neighbor in self.neighbors_hosts: @@ -791,9 +733,8 @@ def setVectorMigrationNeighbor(self, neighbor, rate): """Set vector migration rate from this population towards another one. Arguments: - neighbor -- population towards which migration rate will be specified - (Population) - rate -- migration rate from this population to the neighbor (number) + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. """ if neighbor in self.neighbors_vectors: @@ -806,16 +747,15 @@ def migrate(self, target_pop, num_hosts, num_vectors, rand=None): """Transfer hosts and/or vectors from this population to another. Arguments: - target_pop -- population towards which migration will occur (Population) - num_hosts -- number of hosts to transfer (int) - num_vectors -- number of vectors to transfer (int) + target_pop (Population objects): population towards which migration will occur. + num_hosts (int): number of hosts to transfer. + num_vectors (int): number of vectors to transfer. Keyword arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individuals to migrate; if None, generates new random number to - choose (through numpy), otherwise, assumes event is happening - through Gillespie class call and migrates a single host or vector - (default None; 0-1 number) + rand (number 0-1): uniform random number from 0 to 1 to use when choosing + individuals to migrate; if None, generates new random number to + choose (through numpy), otherwise, assumes event is happening + through Gillespie class call and migrates a single host or vector. Defaults to None. """ if rand is None: @@ -859,9 +799,8 @@ def setHostHostPopulationContactNeighbor(self, neighbor, rate): """Set host-host contact rate from this population towards another one. Arguments: - neighbor -- population towards which migration rate will be specified - (Population) - rate -- migration rate from this population to the neighbor (number) + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. """ self.neighbors_contact_hosts_hosts[neighbor] = rate @@ -870,9 +809,8 @@ def setHostVectorPopulationContactNeighbor(self, neighbor, rate): """Set host-vector contact rate from this population to another one. Arguments: - neighbor -- population towards which migration rate will be specified - (Population) - rate -- migration rate from this population to the neighbor (number) + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. """ self.neighbors_contact_hosts_vectors[neighbor] = rate @@ -881,9 +819,8 @@ def setVectorHostPopulationContactNeighbor(self, neighbor, rate): """Set vector-host contact rate from this population to another one. Arguments: - neighbor -- population towards which migration rate will be specified - (Population) - rate -- migration rate from this population to the neighbor (number) + neighbor (Population object): population towards which migration rate will be specified. + rate (number): migration rate from this population to the neighbor. """ self.neighbors_contact_vectors_hosts[neighbor] = rate @@ -893,15 +830,15 @@ def populationContact( """Contacts hosts and/or vectors from this population to another. Arguments: - target_pop -- population towards which migration will occur (Population) - rand -- uniform random number from 0 to 1 to use when choosing - individuals to contact + target_pop (Population object): population towards which migration will occur. + rand (number): uniform random number from 0 to 1 to use when choosing + individuals to contact. Keyword arguments: - host_origin -- whether to draw from hosts in the origin population - (as opposed to vectors) (Boolean) - host_target -- whether to draw from hosts in the target population - (as opposed to vectors) (Boolean) + host_origin (Boolean): whether to draw from hosts in the origin population + (as opposed to vectors). Defaults to True. + host_target (Boolean): whether to draw from hosts in the target population + (as opposed to vectors). Defaults to True. """ if host_origin: @@ -945,11 +882,11 @@ def contactHostHost(self, rand): second. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individuals to contact + rand (number): uniform random number from 0 to 1 to use when choosing + individuals to contact. Returns: - whether or not the model has changed state (Boolean) + Boolean indicating whether or not the model has changed state. """ index_host,rand = self.getWeightedRandom( @@ -975,11 +912,11 @@ def contactHostVector(self, rand): second. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individuals to contact + rand (number): uniform random number from 0 to 1 to use when choosing + individuals to contact. Returns: - whether or not the model has changed state (Boolean) + Boolean indicating whether or not the model has changed state. """ index_host,rand = self.getWeightedRandom( @@ -1004,11 +941,11 @@ def contactVectorHost(self, rand): second. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individuals to contact + rand (number) uniform random number from 0 to 1 to use when choosing + individuals to contact. Returns: - whether or not the model has changed state (Boolean) + Boolean indicating whether or not the model has changed state. """ index_vector,rand = self.getWeightedRandom( @@ -1035,8 +972,8 @@ def recoverHost(self, rand): population infected list and add to healthy list. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual to recover + rand (number): uniform random number from 0 to 1 to use when choosing + individual to recover. """ index_host,rand = self.getWeightedRandom( @@ -1053,8 +990,8 @@ def recoverVector(self, rand): population infected list and add to healthy list. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual to recover + rand (number): uniform random number from 0 to 1 to use when choosing + individual to recover. """ index_vector,rand = self.getWeightedRandom( @@ -1067,8 +1004,8 @@ def killHost(self, rand): """Add host at this index to dead list, remove it from alive ones. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual to kill + rand (number): uniform random number from 0 to 1 to use when choosing + individual to kill. """ index_host,rand = self.getWeightedRandom( @@ -1083,8 +1020,8 @@ def killVector(self, rand): """Add host at this index to dead list, remove it from alive ones. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual to kill + rand (number): uniform random number from 0 to 1 to use when choosing + individual to kill. """ index_vector,rand = self.getWeightedRandom( @@ -1099,8 +1036,8 @@ def dieHost(self, rand): """Remove host at this index from alive lists. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual to kill + rand (number): uniform random number from 0 to 1 to use when choosing + individual to kill. """ index_host,rand = self.getWeightedRandom( @@ -1113,8 +1050,8 @@ def dieVector(self, rand): """Remove vector at this index from alive lists. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual to kill + rand (number): uniform random number from 0 to 1 to use when choosing + individual to kill. """ index_vector,rand = self.getWeightedRandom( @@ -1127,8 +1064,8 @@ def birthHost(self, rand): """Add host at this index to population, remove it from alive ones. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual to make parent + rand (number): uniform random number from 0 to 1 to use when choosing + individual to make parent. """ index_host,rand = self.getWeightedRandom( @@ -1141,8 +1078,8 @@ def birthVector(self, rand): """Add host at this index to population, remove it from alive ones. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual to make parent + rand (number): uniform random number from 0 to 1 to use when choosing + individual to make parent. """ index_vector,rand = self.getWeightedRandom( @@ -1157,8 +1094,8 @@ def mutateHost(self, rand): Creates a new genotype from a de novo mutation event in the host given. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual in which to choose a pathogen to mutate + rand (number): uniform random number from 0 to 1 to use when choosing + individual in which to choose a pathogen to mutate. """ index_host,rand = self.getWeightedRandom( @@ -1175,8 +1112,8 @@ def mutateVector(self, rand): given. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual in which to choose a pathogen to mutate + rand (number): uniform random number from 0 to 1 to use when choosing + individual in which to choose a pathogen to mutate. """ index_vector,rand = self.getWeightedRandom( @@ -1193,8 +1130,8 @@ def recombineHost(self, rand): given. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual in which to choose pathogens to recombine + rand (number): uniform random number from 0 to 1 to use when choosing + individual in which to choose pathogens to recombine. """ index_host,rand = self.getWeightedRandom( @@ -1211,8 +1148,8 @@ def recombineVector(self, rand): given. Arguments: - rand -- uniform random number from 0 to 1 to use when choosing - individual in which to choose pathogens to recombine + rand (number): uniform random number from 0 to 1 to use when choosing + individual in which to choose pathogens to recombine. """ index_vector,rand = self.getWeightedRandom( @@ -1270,11 +1207,11 @@ def getWeightedRandom(self, rand, r): index is decreased by 1. Arguments: - rand -- 0-1 random number (number) - r -- array with weights (numpy vector) + rand (number): 0-1 random number. + r (numpy array): array with weights. Returns: - new 0-1 random number (number) + new 0-1 random number. """ r_tot = np.sum( r ) diff --git a/opqua/internal/setup.py b/opqua/internal/setup.py index 8c3f220..427bd00 100644 --- a/opqua/internal/setup.py +++ b/opqua/internal/setup.py @@ -2,7 +2,125 @@ """Contains class Intervention.""" class Setup(object): - """Class defines a setup with population parameters.""" + """Class defines a setup with population parameters. + + Attributes: + id (String): key of the Setup inside model dictionary. + num_loci (int>0): length of each pathogen genome string. + possible_alleles (String or list of Strings with num_loci elements): set of possible + characters in all genome string, or at each position in genome string. + fitnessHost (callable, takes a String argument and returns a number >= 0): function + that evaluates relative fitness in head-to-head competition for different genomes + within the same host. + contactHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given host being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given host being chosen to be + the infected in a contact event, based on genome sequence of pathogen. + mortalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given host, based on genome sequence + of pathogen. + natalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given host, based on genome sequence + of pathogen. + recoveryHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given host based on genome sequence + of pathogen. + migrationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given host based on genome sequence + of pathogen. + populationContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given host based on + genome sequence of pathogen. + mutationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given host based on genome sequence + of pathogen. + recombinationHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given host based on genome + sequence of pathogen. + fitnessVector (callable, takes a String argument and returns a number >=0): function that + evaluates relative fitness in head-to-head competition for different genomes within + the same vector. + contactVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given vector being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given vector being chosen to be the + infected in a contact event, based on genome sequence of pathogen. + mortalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given vector, based on genome sequence + of pathogen. + natalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given vector, based on genome sequence + of pathogen. + recoveryVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given vector based on genome sequence + of pathogen. + migrationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given vector based on genome sequence + of pathogen. + populationContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given vector based on + genome sequence of pathogen. + mutationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given vector based on genome sequence + of pathogen. + recombinationVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given vector based on genome + sequence of pathogen. + contact_rate_host_vector (number >= 0): rate of host-vector contact events, not necessarily + transmission, assumes constant population density; evts/time. + transmission_efficiency_host_vector (float): fraction of host-vector contacts + that result in successful transmission. + transmission_efficiency_vector_host (float): fraction of vector-host contacts + that result in successful transmission. + contact_rate_host_host (number >= 0): rate of host-host contact events, not + necessarily transmission, assumes constant population density; evts/time. + transmission_efficiency_host_host (float): fraction of host-host contacts + that result in successful transmission. + mean_inoculum_host (int >= 0): mean number of pathogens that are transmitted from + a vector or host into a new host during a contact event. + mean_inoculum_vector (int >= 0) mean number of pathogens that are transmitted + from a host to a vector during a contact event. + recovery_rate_host (number >= 0): rate at which hosts clear all pathogens; + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + mortality_rate_host (number 0-1): rate at which infected hosts die from disease. + mortality_rate_vector (number 0-1): rate at which infected vectors die from + disease. + recombine_in_host (number >= 0): rate at which recombination occurs in host; + evts/time. + recombine_in_vector (number >= 0): rate at which recombination occurs in vector; + evts/time. + num_crossover_host (number >= 0): mean of a Poisson distribution modeling the number + of crossover events of host recombination events. + num_crossover_vector (number >= 0): mean of a Poisson distribution modeling the + number of crossover events of vector recombination events. + mutate_in_host (number >= 0): rate at which mutation occurs in host; evts/time. + mutate_in_vector (number >= 0): rate at which mutation occurs in vector; evts/time. + death_rate_host (number >= 0): natural host death rate; 1/time. + death_rate_vector (number >= 0): natural vector death rate; 1/time. + birth_rate_host (number >= 0): infected host birth rate; 1/time. + birth_rate_vector (number >= 0): infected vector birth rate; 1/time. + vertical_transmission_host (number 0-1): probability that a host is infected by its + parent at birth. + vertical_transmission_vector (number 0-1): probability that a vector is infected by + its parent at birth. + inherit_protection_host (number 0-1): probability that a host inherits all + protection sequences from its parent. + inherit_protection_vector (number 0-1): probability that a vector inherits all + protection sequences from its parent. + protection_upon_recovery_host (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to host protection sequences + after recovery. + protection_upon_recovery_vector (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to vector protection sequences + after recovery. + """ def __init__( self, @@ -34,136 +152,121 @@ def __init__( """Create a new Setup. Arguments: - id -- key of the Setup inside model dictionary (String) - num_loci -- length of each pathogen genome string (int > 0) - possible_alleles -- set of possible characters in all genome string, or - at each position in genome string (String or list of Strings with - num_loci elements) - fitnessHost -- function that evaluates relative fitness in head-to-head - competition for different genomes within the same host - (function object, takes a String argument and returns a number >= 0) - contactHost -- function that returns coefficient modifying probability - of a given host being chosen to be the infector in a contact event, - based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - receiveContactHost -- function that returns coefficient modifying - probability of a given host being chosen to be the infected in - a contact event, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - mortalityHost -- function that returns coefficient modifying death rate - for a given host, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - natalityHost -- function that returns coefficient modifying birth rate - for a given host, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - recoveryHost -- function that returns coefficient modifying recovery - rate for a given host based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - migrationHost -- function that returns coefficient modifying migration - rate for a given host based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - populationContactHost -- function that returns coefficient modifying - population contact rate for a given host based on genome sequence of - pathogen - (function object, takes a String argument and returns a number 0-1) - mutationHost -- function that returns coefficient modifying mutation - rate for a given host based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - recombinationHost -- function that returns coefficient modifying - recombination rate for a given host based on genome sequence of - pathogen - (function object, takes a String argument and returns a number 0-1) - fitnessVector -- function that evaluates relative fitness in head-to- - head competition for different genomes within the same vector - (function object, takes a String argument and returns a number >= 0) - contactVector -- function that returns coefficient modifying probability - of a given vector being chosen to be the infector in a contact - event, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - receiveContactVector -- function that returns coefficient modifying - probability of a given vector being chosen to be the infected in - a contact event, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - mortalityVector -- function that returns coefficient modifying death - rate for a given vector, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - natalityVector -- function that returns coefficient modifying birth rate - for a given vector, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - recoveryVector -- function that returns coefficient modifying recovery - rate for a given vector based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - migrationVector -- function that returns coefficient modifying migration - rate for a given vector based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - populationContactVector -- function that returns coefficient modifying - population contact rate for a given vector based on genome sequence - of pathogen - (function object, takes a String argument and returns a number 0-1) - mutationVector -- function that returns coefficient modifying mutation - rate for a given vector based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - recombinationVector -- function that returns coefficient modifying - recombination rate for a given vector based on genome sequence of - pathogen - (function object, takes a String argument and returns a number 0-1) - contact_rate_host_vector -- rate of host-vector contact events, not - necessarily transmission, assumes constant population density; - evts/time (number >= 0) - transmission_efficiency_host_vector -- fraction of host-vector contacts - that result in successful transmission - transmission_efficiency_vector_host -- fraction of vector-host contacts - that result in successful transmission - contact_rate_host_host -- rate of host-host contact events, not - necessarily transmission, assumes constant population density; - evts/time (number >= 0) - transmission_efficiency_host_host -- fraction of host-host contacts - that result in successful transmission - mean_inoculum_host -- mean number of pathogens that are transmitted from - a vector or host into a new host during a contact event (int >= 0) - mean_inoculum_vector -- mean number of pathogens that are transmitted - from a host to a vector during a contact event (int >= 0) - recovery_rate_host -- rate at which hosts clear all pathogens; - 1/time (number >= 0) - recovery_rate_vector -- rate at which vectors clear all pathogens - 1/time (number >= 0) - recovery_rate_vector -- rate at which vectors clear all pathogens - 1/time (number >= 0) - mortality_rate_host -- rate at which infected hosts die from disease - (number 0-1) - mortality_rate_vector -- rate at which infected vectors die from - disease (number 0-1) - recombine_in_host -- rate at which recombination occurs in host; - evts/time (number >= 0) - recombine_in_vector -- rate at which recombination occurs in vector; - evts/time (number >= 0) - num_crossover_host -- mean of a Poisson distribution modeling the number - of crossover events of host recombination events (number >= 0) - num_crossover_vector -- mean of a Poisson distribution modeling the - number of crossover events of vector recombination events - (number >= 0) - mutate_in_host -- rate at which mutation occurs in host; evts/time - (number >= 0) - mutate_in_vector -- rate at which mutation occurs in vector; evts/time - (number >= 0) - death_rate_host -- natural host death rate; 1/time (number >= 0) - death_rate_vector -- natural vector death rate; 1/time (number >= 0) - birth_rate_host -- infected host birth rate; 1/time (number >= 0) - birth_rate_vector -- infected vector birth rate; 1/time (number >= 0) - vertical_transmission_host -- probability that a host is infected by its - parent at birth (number 0-1) - vertical_transmission_vector -- probability that a vector is infected by - its parent at birth (number 0-1) - inherit_protection_host -- probability that a host inherits all - protection sequences from its parent (number 0-1) - inherit_protection_vector -- probability that a vector inherits all - protection sequences from its parent (number 0-1) - protection_upon_recovery_host -- defines indexes in genome string that - define substring to be added to host protection sequences after - recovery (None or array-like of length 2 with int 0-num_loci) - protection_upon_recovery_vector -- defines indexes in genome string that - define substring to be added to vector protection sequences after - recovery (None or array-like of length 2 with int 0-num_loci) + id (String): key of the Setup inside model dictionary. + num_loci (int>0): length of each pathogen genome string. + possible_alleles (String or list of Strings with num_loci elements): set of possible + characters in all genome string, or at each position in genome string. + fitnessHost (callable, takes a String argument and returns a number >= 0): function + that evaluates relative fitness in head-to-head competition for different genomes + within the same host. + contactHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given host being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given host being chosen to be + the infected in a contact event, based on genome sequence of pathogen. + mortalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given host, based on genome sequence + of pathogen. + natalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given host, based on genome sequence + of pathogen. + recoveryHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given host based on genome sequence + of pathogen. + migrationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given host based on genome sequence + of pathogen. + populationContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given host based on + genome sequence of pathogen. + mutationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given host based on genome sequence + of pathogen. + recombinationHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given host based on genome + sequence of pathogen. + fitnessVector (callable, takes a String argument and returns a number >=0): function that + evaluates relative fitness in head-to-head competition for different genomes within + the same vector. + contactVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given vector being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given vector being chosen to be the + infected in a contact event, based on genome sequence of pathogen. + mortalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given vector, based on genome sequence + of pathogen. + natalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given vector, based on genome sequence + of pathogen. + recoveryVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given vector based on genome sequence + of pathogen. + migrationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given vector based on genome sequence + of pathogen. + populationContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given vector based on + genome sequence of pathogen. + mutationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given vector based on genome sequence + of pathogen. + recombinationVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given vector based on genome + sequence of pathogen. + contact_rate_host_vector (number >= 0): rate of host-vector contact events, not necessarily + transmission, assumes constant population density; evts/time. + transmission_efficiency_host_vector (float): fraction of host-vector contacts + that result in successful transmission. + transmission_efficiency_vector_host (float): fraction of vector-host contacts + that result in successful transmission. + contact_rate_host_host (number >= 0): rate of host-host contact events, not + necessarily transmission, assumes constant population density; evts/time. + transmission_efficiency_host_host (float): fraction of host-host contacts + that result in successful transmission. + mean_inoculum_host (int >= 0): mean number of pathogens that are transmitted from + a vector or host into a new host during a contact event. + mean_inoculum_vector (int >= 0) mean number of pathogens that are transmitted + from a host to a vector during a contact event. + recovery_rate_host (number >= 0): rate at which hosts clear all pathogens; + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + mortality_rate_host (number 0-1): rate at which infected hosts die from disease. + mortality_rate_vector (number 0-1): rate at which infected vectors die from + disease. + recombine_in_host (number >= 0): rate at which recombination occurs in host; + evts/time. + recombine_in_vector (number >= 0): rate at which recombination occurs in vector; + evts/time. + num_crossover_host (number >= 0): mean of a Poisson distribution modeling the number + of crossover events of host recombination events. + num_crossover_vector (number >= 0): mean of a Poisson distribution modeling the + number of crossover events of vector recombination events. + mutate_in_host (number >= 0): rate at which mutation occurs in host; evts/time. + mutate_in_vector (number >= 0): rate at which mutation occurs in vector; evts/time. + death_rate_host (number >= 0): natural host death rate; 1/time. + death_rate_vector (number >= 0): natural vector death rate; 1/time. + birth_rate_host (number >= 0): infected host birth rate; 1/time. + birth_rate_vector (number >= 0): infected vector birth rate; 1/time. + vertical_transmission_host (number 0-1): probability that a host is infected by its + parent at birth. + vertical_transmission_vector (number 0-1): probability that a vector is infected by + its parent at birth. + inherit_protection_host (number 0-1): probability that a host inherits all + protection sequences from its parent. + inherit_protection_vector (number 0-1): probability that a vector inherits all + protection sequences from its parent. + protection_upon_recovery_host (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to host protection sequences + after recovery. + protection_upon_recovery_vector (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to vector protection sequences + after recovery. """ super(Setup, self).__init__() diff --git a/opqua/internal/vector.py b/opqua/internal/vector.py index d98ed72..058df2c 100644 --- a/opqua/internal/vector.py +++ b/opqua/internal/vector.py @@ -9,31 +9,21 @@ class Vector(object): These can infect hosts, the main entities in the model. - Methods: - copyState -- returns a slimmed-down version of the current vector state - acquirePathogen -- adds given genome to this vector's pathogens - infectHost -- infects given host with a sample of this vector's pathogens - infectVector -- infects given vector with a sample of this vector's pathogens - recover -- removes all infections - die -- kills this vector - birth -- add a new vector to population based on this vector - applyTreatment -- removes all infections with genotypes susceptible to given - treatment - mutate -- mutate a single, random locus in a random pathogen - recombine -- recombine two random pathogen genomes at random locus - getWeightedRandomGenome -- returns index of element chosen from weights and - given random number + Attributes: + population (Population object): the population this vector belongs to. + id (String): unique identifier for this vector within population. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). Defaults to False. """ def __init__(self, population, id, slim=False): """Create a new Vector. Arguments: - population -- the population this vector belongs to (Population) - id -- unique identifier for this vector within population (String) - slim -- whether to create a slimmed-down representation of the - population for data storage (only ID, host and vector lists) - (Boolean, default False) + population (Population object): the population this vector belongs to. + id (String): unique identifier for this vector within population. + slim (Boolean): whether to create a slimmed-down representation of the + population for data storage (only ID, host and vector lists). Defaults to False. """ super(Vector, self).__init__() self.id = id @@ -59,7 +49,7 @@ def copyState(self): """Returns a slimmed-down representation of the current vector state. Returns: - Vector object with current pathogens and protection_sequences. + Vector object with current pathogens and protection_sequences. """ copy = Vector(None, self.id, slim=True) @@ -74,10 +64,10 @@ def acquirePathogen(self, genome): Modifies event coefficient matrix accordingly. Arguments: - genome -- the genome to be added (String) + genome (String): the genome to be added. Returns: - whether or not the model has changed state (Boolean) + Boolean indicating whether or not the model has changed state. """ self.pathogens[genome] = self.population.fitnessVector(genome) @@ -130,10 +120,10 @@ def infectHost(self, host): organism is included in the poplation's infected list if appropriate. Arguments: - vector -- the vector to be infected (Vector) + vector (Vector object): the vector to be infected. Returns: - whether or not the model has changed state (Boolean) + Boolean indicating whether or not the model has changed state. """ changed = False @@ -172,10 +162,10 @@ def infectVector(self, vector): organism is included in the poplation's infected list if appropriate. Arguments: - vector -- the vector to be infected (Vector) + vector (Vector object): the vector to be infected. Returns: - whether or not the model has changed state (Boolean) + Boolean indicating whether or not the model has changed state. """ changed = False @@ -260,8 +250,7 @@ def applyTreatment(self, resistance_seqs): population infected list and adds to healthy list if appropriate. Arguments: - resistance_seqs -- contains sequences required for treatment resistance - (list of Strings) + resistance_seqs (list of Strings): contains sequences required for treatment resistance. """ genomes_remaining = [] @@ -360,11 +349,11 @@ def getWeightedRandomGenome(self, rand, r): """Returns index of element chosen from weights and given random number. Arguments: - rand -- 0-1 random number (number) - r -- array with weights (numpy vector) + rand (number): 0-1 random number. + r (numpy array): array with weights. Returns: - new 0-1 random number (number) + new 0-1 random number. """ r_tot = np.sum( r ) diff --git a/opqua/model.py b/opqua/model.py index 22ab230..4adaf3f 100644 --- a/opqua/model.py +++ b/opqua/model.py @@ -29,94 +29,20 @@ class Model(object): in simulation. Also contains groups of hosts/vectors for manipulations and stores model history as snapshots for each time point. - *** --- CONSTANTS: --- *** - ### Color scheme constants ### - CB_PALETTE -- a colorblind-friendly 8-color color scheme - DEF_CMAP -- a colormap object for Seaborn plots - - *** --- ATTRIBUTES: --- *** - populations -- dictionary with keys=population IDs, values=Population - objects - setups -- dictionary with keys=setup IDs, values=Setup objects - interventions -- contains model interventions in the order they will occur - groups -- dictionary with keys=group IDs, values=lists of hosts/vectors - history -- dictionary with keys=time values, values=Model objects that - are snapshots of Model at that timepoint - t_var -- variable that tracks time in simulations - - *** --- METHODS: --- *** - - --- Model Initialization and Simulation: --- - - setRandomSeed -- set random seed for numpy random number generator - newSetup -- creates a new Setup, save it in setups dict under given name - newIntervention -- creates a new intervention executed during simulation - run -- simulates model for a specified length of time - runReplicates -- simulate replicates of a model, save only end results - runParamSweep -- simulate parameter sweep with a model, save only end results - copyState -- returns a slimmed-down version of the current model state - - --- Data Output and Plotting: --- - - saveToDataFrame -- saves status of model to dataframe, writes to file - getPathogens -- creates Dataframe with counts for all pathogen genomes - getProtections -- creates Dataframe with counts for all protection sequences - populationsPlot -- plots aggregated totals per population across time - compartmentPlot -- plots number of naive,inf,rec,dead hosts/vectors vs time - compositionPlot -- plots counts for pathogen genomes or resistance vs. time - clustermap -- create a heatmap and dendrogram for pathogen genomes in data - pathogenDistanceHistory -- get pairwise distances for pathogen genomes - getGenomeTimes -- create DataFrame with times genomes first appeared during - simulation - getCompositionData -- create dataframe with counts for pathogen genomes or - resistance - - --- Model interventions: --- - - - Make and connect populations - - newPopulation -- create a new Population object with setup parameters - linkPopulationsHostMigration -- set host migration rate from one population - towards another - linkPopulationsVectorMigration -- set vector migration rate from one - population towards another - linkPopulationsHostHostContact -- set host-host inter-population contact - rate from one population towards another - linkPopulationsHostVectorMigration -- set host-vector inter-population - contact rate from one population towards another - linkPopulationsVectorHostMigration -- set vector-host inter-population - contact rate from one population towards another - createInterconnectedPopulations -- create new populations, link all of them - to each other by migration and/or inter-population contact - - - Manipulate hosts and vectors in population - - newHostGroup -- returns a list of random (healthy or any) hosts - newVectorGroup -- returns a list of random (healthy or any) vectors - addHosts -- adds hosts to the population - addVectors -- adds vectors to the population - removeHosts -- removes hosts from the population - removeVectors -- removes vectors from the population - addPathogensToHosts -- adds pathogens with specified genomes to hosts - addPathogensToVectors -- adds pathogens with specified genomes to vectors - treatHosts -- removes infections susceptible to given treatment from hosts - treatVectors -- removes infections susceptible to treatment from vectors - protectHosts -- adds protection sequence to hosts - protectVectors -- adds protection sequence to vectors - wipeProtectionHosts -- removes all protection sequences from hosts - wipeProtectionVectors -- removes all protection sequences from vectors - - - Modify population parameters - - setSetup -- assigns a given set of parameters to this population - - - Utility - - customModelFunction -- returns output of given function run on model - - --- Preset fitness functions: --- - * these are static methods - - peakLandscape -- evaluates genome numeric phenotype by decreasing with - distance from optimal sequence - valleyLandscape -- evaluates genome numeric phenotype by increasing with - distance from worst sequence + **CONSTANTS:** + + - `CB_PALETTE`: a colorblind-friendly 8-color color scheme. + - `DEF_CMAP`: a colormap object for Seaborn plots. + + Attributes: + populations: dictionary with keys=population IDs, values=Population + objects. + setups: dictionary with keys=setup IDs, values=Setup objects. + interventions: contains model interventions in the order they will occur. + groups: dictionary with keys=group IDs, values=lists of hosts/vectors. + history: dictionary with keys=time values, values=Model objects that + are snapshots of Model at that timepoint. + t_var: variable that tracks time in simulations. """ ### CONSTANTS ### @@ -181,7 +107,7 @@ def setRandomSeed(self, seed): """Set random seed for numpy random number generator. Arguments: - seed -- int for the random seed to be passed to numpy (int) + seed (int): int for the random seed to be passed to numpy. """ np.random.seed(seed) @@ -217,148 +143,241 @@ def newSetup( inherit_protection_host=None, inherit_protection_vector=None, protection_upon_recovery_host=None, protection_upon_recovery_vector=None): - """Create a new Setup, save it in setups dict under given name. + """Create a new `Setup`, save it in setups dict under given name. Two preset setups exist: "vector-borne" and "host-host". You may select one of the preset setups with the preset keyword argument and then modify individual parameters with additional keyword arguments, without having to specify all of them. + **"host-host":** + + - `num_loci` = 10 + - `possible_alleles` = 'ATCG' + - `fitnessHost` = (lambda g: 1) + - `contactHost` = (lambda g: 1) + - `receiveContactHost` = (lambda g: 1) + - `mortalityHost` = (lambda g: 1) + - `natalityHost` = (lambda g: 1) + - `recoveryHost` = (lambda g: 1) + - `migrationHost` = (lambda g: 1) + - `populationContactHost` = (lambda g: 1) + - `receivePopulationContactHost` = (lambda g: 1) + - `mutationHost` = (lambda g: 1) + - `recombinationHost` = (lambda g: 1) + - `fitnessVector` = (lambda g: 1) + - `contactVector` = (lambda g: 1) + - `receiveContactVector` = (lambda g: 1) + - `mortalityVector` = (lambda g: 1) + - `natalityVector` = (lambda g: 1) + - `recoveryVector` = (lambda g: 1) + - `migrationVector` = (lambda g: 1) + - `populationContactVector` = (lambda g: 1) + - `receivePopulationContactVector` = (lambda g: 1) + - `mutationVector` = (lambda g: 1) + - `recombinationVector` = (lambda g: 1) + - `contact_rate_host_vector` = 0 + - `transmission_efficiency_host_vector` = 0 + - `transmission_efficiency_vector_host` = 0 + - `contact_rate_host_host` = 2e-1 + - `transmission_efficiency_host_host` = 1 + - `mean_inoculum_host` = 1e1 + - `mean_inoculum_vector` = 0 + - `recovery_rate_host` = 1e-1 + - `recovery_rate_vector` = 0 + - `mortality_rate_host` = 0 + - `mortality_rate_vector` = 0 + - `recombine_in_host` = 1e-4 + - `recombine_in_vector` = 0 + - `num_crossover_host` = 1 + - `num_crossover_vector` = 0 + - `mutate_in_host` = 1e-6 + - `mutate_in_vector` = 0 + - `death_rate_host` = 0 + - `death_rate_vector` = 0 + - `birth_rate_host` = 0 + - `birth_rate_vector` = 0 + - `vertical_transmission_host` = 0 + - `vertical_transmission_vector` = 0 + - `inherit_protection_host` = 0 + - `inherit_protection_vector` = 0 + - `protection_upon_recovery_host` = None + - `protection_upon_recovery_vector` = None + + **"vector-borne":** + + - `num_loci` = 10 + - `possible_alleles` = 'ATCG' + - `fitnessHost` = (lambda g: 1) + - `contactHost` = (lambda g: 1) + - `receiveContactHost` = (lambda g: 1) + - `mortalityHost` = (lambda g: 1) + - `natalityHost` = (lambda g: 1) + - `recoveryHost` = (lambda g: 1) + - `migrationHost` = (lambda g: 1) + - `populationContactHost` = (lambda g: 1) + - `receivePopulationContactHost` = (lambda g: 1) + - `mutationHost` = (lambda g: 1) + - `recombinationHost` = (lambda g: 1) + - `fitnessVector` = (lambda g: 1) + - `contactVector` = (lambda g: 1) + - `receiveContactVector` = (lambda g: 1) + - `mortalityVector` = (lambda g: 1) + - `natalityVector` = (lambda g: 1) + - `recoveryVector` = (lambda g: 1) + - `migrationVector` = (lambda g: 1) + - `populationContactVector` = (lambda g: 1) + - `receivePopulationContactVector` = (lambda g: 1) + - `mutationVector` = (lambda g: 1) + - `recombinationVector` = (lambda g: 1) + - `contact_rate_host_vector` = 2e-1 + - `transmission_efficiency_host_vector` = 1 + - `transmission_efficiency_vector_host` = 1 + - `contact_rate_host_host` = 0 + - `transmission_efficiency_host_host` = 0 + - `mean_inoculum_host` = 1e2 + - `mean_inoculum_vector` = 1e0 + - `recovery_rate_host` = 1e-1 + - `recovery_rate_vector` = 1e-1 + - `mortality_rate_host` = 0 + - `mortality_rate_vector` = 0 + - `recombine_in_host` = 0 + - `recombine_in_vector` = 1e-4 + - `num_crossover_host` = 0 + - `num_crossover_vector` = 1 + - `mutate_in_host` = 1e-6 + - `mutate_in_vector` = 0 + - `death_rate_host` = 0 + - `death_rate_vector` = 0 + - `birth_rate_host` = 0 + - `birth_rate_vector` = 0 + - `vertical_transmission_host` = 0 + - `vertical_transmission_vector` = 0 + - `inherit_protection_host` = 0 + - `inherit_protection_vector` = 0 + - `protection_upon_recovery_host` = None + - `protection_upon_recovery_vector` = None + Arguments: - name -- name of setup to be used as a key in model setups dictionary + name (String): name of setup to be used as a key in model setups dictionary. Keyword arguments: - preset -- preset setup to be used: "vector-borne" or "host-host", if - None, must define all other keyword arguments (default None; None or - String) - num_loci -- length of each pathogen genome string (int > 0) - possible_alleles -- set of possible characters in all genome string, or - at each position in genome string (String or list of Strings with - num_loci elements) - fitnessHost -- function that evaluates relative fitness in head-to-head - competition for different genomes within the same host - (function object, takes a String argument and returns a number >= 0) - contactHost -- function that returns coefficient modifying probability - of a given host being chosen to be the infector in a contact event, - based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - receiveContactHost -- function that returns coefficient modifying - probability of a given host being chosen to be the infected in - a contact event, based on genome sequence of pathogen - mortalityHost -- function that returns coefficient modifying death rate - for a given host, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - natalityHost -- function that returns coefficient modifying birth rate - for a given host, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - recoveryHost -- function that returns coefficient modifying recovery - rate for a given host based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - migrationHost -- function that returns coefficient modifying migration - rate for a given host based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - populationContactHost -- function that returns coefficient modifying - population contact rate for a given host based on genome sequence of - pathogen - (function object, takes a String argument and returns a number 0-1) - mutationHost -- function that returns coefficient modifying mutation - rate for a given host based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - recombinationHost -- function that returns coefficient modifying - recombination rate for a given host based on genome sequence of - pathogen - (function object, takes a String argument and returns a number 0-1) - fitnessVector -- function that evaluates relative fitness in head-to- - head competition for different genomes within the same vector - (function object, takes a String argument and returns a number >= 0) - contactVector -- function that returns coefficient modifying probability - of a given vector being chosen to be the infector in a contact - event, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - receiveContactVector -- function that returns coefficient modifying - probability of a given vector being chosen to be the infected in - a contact event, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - mortalityVector -- function that returns coefficient modifying death - rate for a given vector, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - natalityVector -- function that returns coefficient modifying birth rate - for a given vector, based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - recoveryVector -- function that returns coefficient modifying recovery - rate for a given vector based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - migrationVector -- function that returns coefficient modifying migration - rate for a given vector based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - populationContactVector -- function that returns coefficient modifying - population contact rate for a given vector based on genome sequence - of pathogen - (function object, takes a String argument and returns a number 0-1) - mutationVector -- function that returns coefficient modifying mutation - rate for a given vector based on genome sequence of pathogen - (function object, takes a String argument and returns a number 0-1) - recombinationVector -- function that returns coefficient modifying - recombination rate for a given vector based on genome sequence of - pathogen - (function object, takes a String argument and returns a number 0-1) - contact_rate_host_vector -- rate of host-vector contact events, not - necessarily transmission, assumes constant population density; - evts/time (number >= 0) - transmission_efficiency_host_vector -- fraction of host-vector contacts - that result in successful transmission - transmission_efficiency_vector_host -- fraction of vector-host contacts - that result in successful transmission - contact_rate_host_host -- rate of host-host contact events, not - necessarily transmission, assumes constant population density; - evts/time (number >= 0) - transmission_efficiency_host_host -- fraction of host-host contacts - that result in successful transmission - mean_inoculum_host -- mean number of pathogens that are transmitted from - a vector or host into a new host during a contact event (int >= 0) - mean_inoculum_vector -- mean number of pathogens that are transmitted - from a host to a vector during a contact event (int >= 0) - recovery_rate_host -- rate at which hosts clear all pathogens; - 1/time (number >= 0) - recovery_rate_vector -- rate at which vectors clear all pathogens - 1/time (number >= 0) - recovery_rate_vector -- rate at which vectors clear all pathogens - 1/time (number >= 0) - mortality_rate_host -- rate at which infected hosts die from disease - (number 0-1) - mortality_rate_vector -- rate at which infected vectors die from - disease (number 0-1) - recombine_in_host -- rate at which recombination occurs in host; - evts/time (number >= 0) - recombine_in_vector -- rate at which recombination occurs in vector; - evts/time (number >= 0) - num_crossover_host -- mean of a Poisson distribution modeling the number - of crossover events of host recombination events (number >= 0) - num_crossover_vector -- mean of a Poisson distribution modeling the - number of crossover events of vector recombination events - (number >= 0) - mutate_in_host -- rate at which mutation occurs in host; evts/time - (number >= 0) - mutate_in_vector -- rate at which mutation occurs in vector; evts/time - (number >= 0) - death_rate_host -- natural host death rate; 1/time (number >= 0) - death_rate_vector -- natural vector death rate; 1/time (number >= 0) - birth_rate_host -- infected host birth rate; 1/time (number >= 0) - birth_rate_vector -- infected vector birth rate; 1/time (number >= 0) - vertical_transmission_host -- probability that a host is infected by its - parent at birth (number 0-1) - vertical_transmission_vector -- probability that a vector is infected by - its parent at birth (number 0-1) - inherit_protection_host -- probability that a host inherits all - protection sequences from its parent (number 0-1) - inherit_protection_vector -- probability that a vector inherits all - protection sequences from its parent (number 0-1) - protection_upon_recovery_host -- defines indexes in genome string that - define substring to be added to host protection sequences after - recovery (None or array-like of length 2 with int 0-num_loci) - protection_upon_recovery_vector -- defines indexes in genome string that - define substring to be added to vector protection sequences after - recovery (None or array-like of length 2 with int 0-num_loci) + preset (None or String): preset setup to be used: "vector-borne" or "host-host", if + None, must define all other keyword arguments. Defaults to None. + num_loci (int>0): length of each pathogen genome string. + possible_alleles (String or list of Strings with num_loci elements): set of possible + characters in all genome string, or at each position in genome string. + fitnessHost (callable, takes a String argument and returns a number >= 0): function + that evaluates relative fitness in head-to-head competition for different genomes + within the same host. + contactHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given host being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given host being chosen to be + the infected in a contact event, based on genome sequence of pathogen. + mortalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given host, based on genome sequence + of pathogen. + natalityHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given host, based on genome sequence + of pathogen. + recoveryHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given host based on genome sequence + of pathogen. + migrationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given host based on genome sequence + of pathogen. + populationContactHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given host based on + genome sequence of pathogen. + mutationHost (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given host based on genome sequence + of pathogen. + recombinationHost (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given host based on genome + sequence of pathogen. + fitnessVector (callable, takes a String argument and returns a number >=0): function that + evaluates relative fitness in head-to-head competition for different genomes within + the same vector. + contactVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying probability of a given vector being chosen to be the + infector in a contact event, based on genome sequence of pathogen. + receiveContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying probability of a given vector being chosen to be the + infected in a contact event, based on genome sequence of pathogen. + mortalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying death rate for a given vector, based on genome sequence + of pathogen. + natalityVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying birth rate for a given vector, based on genome sequence + of pathogen. + recoveryVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying recovery rate for a given vector based on genome sequence + of pathogen. + migrationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying migration rate for a given vector based on genome sequence + of pathogen. + populationContactVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying population contact rate for a given vector based on + genome sequence of pathogen. + mutationVector (callable, takes a String argument and returns a number 0-1): function that + returns coefficient modifying mutation rate for a given vector based on genome sequence + of pathogen. + recombinationVector (callable, takes a String argument and returns a number 0-1): function + that returns coefficient modifying recombination rate for a given vector based on genome + sequence of pathogen. + contact_rate_host_vector (number >= 0): rate of host-vector contact events, not necessarily + transmission, assumes constant population density; evts/time. + transmission_efficiency_host_vector (float): fraction of host-vector contacts + that result in successful transmission. + transmission_efficiency_vector_host (float): fraction of vector-host contacts + that result in successful transmission. + contact_rate_host_host (number >= 0): rate of host-host contact events, not + necessarily transmission, assumes constant population density; evts/time. + transmission_efficiency_host_host (float): fraction of host-host contacts + that result in successful transmission. + mean_inoculum_host (int >= 0): mean number of pathogens that are transmitted from + a vector or host into a new host during a contact event. + mean_inoculum_vector (int >= 0) mean number of pathogens that are transmitted + from a host to a vector during a contact event. + recovery_rate_host (number >= 0): rate at which hosts clear all pathogens; + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + recovery_rate_vector (number >= 0): rate at which vectors clear all pathogens + 1/time. + mortality_rate_host (number 0-1): rate at which infected hosts die from disease. + mortality_rate_vector (number 0-1): rate at which infected vectors die from + disease. + recombine_in_host (number >= 0): rate at which recombination occurs in host; + evts/time. + recombine_in_vector (number >= 0): rate at which recombination occurs in vector; + evts/time. + num_crossover_host (number >= 0): mean of a Poisson distribution modeling the number + of crossover events of host recombination events. + num_crossover_vector (number >= 0): mean of a Poisson distribution modeling the + number of crossover events of vector recombination events. + mutate_in_host (number >= 0): rate at which mutation occurs in host; evts/time. + mutate_in_vector (number >= 0): rate at which mutation occurs in vector; evts/time. + death_rate_host (number >= 0): natural host death rate; 1/time. + death_rate_vector (number >= 0): natural vector death rate; 1/time. + birth_rate_host (number >= 0): infected host birth rate; 1/time. + birth_rate_vector (number >= 0): infected vector birth rate; 1/time. + vertical_transmission_host (number 0-1): probability that a host is infected by its + parent at birth. + vertical_transmission_vector (number 0-1): probability that a vector is infected by + its parent at birth. + inherit_protection_host (number 0-1): probability that a host inherits all + protection sequences from its parent. + inherit_protection_vector (number 0-1): probability that a vector inherits all + protection sequences from its parent. + protection_upon_recovery_host (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to host protection sequences + after recovery. + protection_upon_recovery_vector (None or array-like of length 2 with int 0-num_loci): defines + indexes in genome string that define substring to be added to vector protection sequences + after recovery. """ if preset == "vector-borne": @@ -604,10 +623,10 @@ def newIntervention(self, time, method_name, args): """Create a new intervention to be carried out at a specific time. Arguments: - time -- time at which intervention will take place (number >= 0) - method_name -- intervention to be carried out, must correspond to the - name of a method of the Model object (String) - args -- contains arguments for function in positinal order (array-like) + time (number >= 0): time at which intervention will take place. + method_name (String): intervention to be carried out, must correspond to the + name of a method of the `Model` object. + args (array-like): contains arguments for function in positinal order. """ self.interventions.append( Intervention(time, method_name, args, self) ) @@ -615,16 +634,16 @@ def newIntervention(self, time, method_name, args): def addCustomConditionTracker(self, condition_id, trackerFunction): """Add a function to track occurrences of custom events in simulation. - Adds function trackerFunction to dictionary custom_condition_trackers - under key condition_id. Function trackerFunction will be executed at + Adds function `trackerFunction` to dictionary `custom_condition_trackers` + under key `condition_id`. Function `trackerFunction` will be executed at every event in the simulation. Every time True is returned, - the simulation time will be stored under the corresponding condition_id - key inside global_trackers['custom_condition'] + the simulation time will be stored under the corresponding `condition_id` + key inside `global_trackers['custom_condition']`. Arguments: - condition_id -- ID of this specific condition (String) - trackerFunction -- function that take a Model object as argument and - returns True or False; (Function) + condition_id (String): ID of this specific condition- + trackerFunction (callable): function that take a `Model` object as argument + and returns True or False. """ self.custom_condition_trackers['condition_id'] = trackerFunction @@ -635,23 +654,21 @@ def run(self,t0,tf,time_sampling=0,host_sampling=0,vector_sampling=0): Simulates a time series using the Gillespie algorithm. - Saves a dictionary containing model state history, with keys=times and - values=Model objects with model snapshot at that time point under this + Saves a dictionary containing model state history, with `keys=times` and + `values=Model` objects with model snapshot at that time point under this model's history attribute. Arguments: - t0 -- initial time point to start simulation at (number >= 0) - tf -- initial time point to end simulation at (number >= 0) + t0 (number >= 0): initial time point to start simulation at. + tf (number >= 0): initial time point to end simulation at. Keyword arguments: - time_sampling -- how many events to skip before saving a snapshot of the - system state (saves all by default), if <0, saves only final state - (int, default 0) - host_sampling -- how many hosts to skip before saving one in a snapshot - of the system state (saves all by default) (int >= 0, default 0) - vector_sampling -- how many vectors to skip before saving one in a - snapshot of the system state (saves all by default) - (int >= 0, default 0) + time_sampling (int): how many events to skip before saving a snapshot of the + system state (saves all by default), if <0, saves only final state. Defaults to 0. + host_sampling (int >= 0): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int >= 0): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. """ sim = Gillespie(self) @@ -666,27 +683,25 @@ def runReplicates( Simulates replicates of a time series using the Gillespie algorithm. - Saves a dictionary containing model end state state, with keys=times and - values=Model objects with model snapshot. The time is the final - timepoint. + Saves a dictionary containing model end state state, with `keys=times` and + `values=Model` objects with model snapshot. The time is the final timepoint. Arguments: - t0 -- initial time point to start simulation at (number >= 0) - tf -- initial time point to end simulation at (number >= 0) - replicates -- how many replicates to simulate (int >= 1) + t0 (number >= 0): initial time point to start simulation at. + tf (number >= 0): initial time point to end simulation at. + replicates (int >= 1): how many replicates to simulate. Keyword arguments: - host_sampling -- how many hosts to skip before saving one in a snapshot - of the system state (saves all by default) (int >= 0, default 0) - vector_sampling -- how many vectors to skip before saving one in a - snapshot of the system state (saves all by default) - (int >= 0, default 0) - n_cores -- number of cores to parallelize file export across, if 0, all - cores available are used (default 0; int >= 0) - **kwargs -- additional arguents for joblib multiprocessing + host_sampling (int >= 0): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int >= 0): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. + n_cores (int >= 0): number of cores to parallelize file export across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. Returns: - List of Model objects with the final snapshots + List of `Model` objects with the final snapshots. """ if not n_cores: @@ -722,55 +737,55 @@ def runParamSweep( Simulates variations of a time series using the Gillespie algorithm. - Saves a dictionary containing model end state state, with keys=times and - values=Model objects with model snapshot. The time is the final + Saves a dictionary containing model end state state, with `keys=times` and + `values=Model` objects with model snapshot. The time is the final timepoint. Arguments: - t0 -- initial time point to start simulation at (number >= 0) - tf -- initial time point to end simulation at (number >= 0) - setup_id -- ID of setup to be assigned (String) + t0 (number >= 0): initial time point to start simulation at. + tf (number >= 0): initial time point to end simulation at. + setup_id (String): ID of setup to be assigned. Keyword arguments: - param_sweep_dic -- dictionary with keys=parameter names (attributes of - Setup), values=list of values for parameter (list, class of elements - depends on parameter) - host_population_size_sweep -- dictionary with keys=population IDs - (Strings), values=list of values with host population sizes - (must be greater than original size set for each population, list of - numbers) - vector_population_size_sweep -- dictionary with keys=population IDs - (Strings), values=list of values with vector population sizes - (must be greater than original size set for each population, list of - numbers) - host_migration_sweep_dic -- dictionary with keys=population IDs of - origin and destination, separated by a colon ';' (Strings), - values=list of values (list of numbers) - vector_migration_sweep_dic -- dictionary with keys=population IDs of - origin and destination, separated by a colon ';' (Strings), - values=list of values (list of numbers) - host_host_population_contact_sweep_dic -- dictionary with - keys=population IDs of origin and destination, separated by a colon - ';' (Strings), values=list of values (list of numbers) - host_vector_population_contact_sweep_dic -- dictionary with - keys=population IDs of origin and destination, separated by a colon - ';' (Strings), values=list of values (list of numbers) - vector_host_population_contact_sweep_dic -- dictionary with - keys=population IDs of origin and destination, separated by a colon - ';' (Strings), values=list of values (list of numbers) - replicates -- how many replicates to simulate (int >= 1) - host_sampling -- how many hosts to skip before saving one in a snapshot - of the system state (saves all by default) (int >= 0, default 0) - vector_sampling -- how many vectors to skip before saving one in a - snapshot of the system state (saves all by default) - (int >= 0, default 0) - n_cores -- number of cores to parallelize file export across, if 0, all - cores available are used (default 0; int >= 0) - **kwargs -- additional arguents for joblib multiprocessing + param_sweep_dic -- dictionary with keys=parameter names (attributes of + Setup), values=list of values for parameter (list, class of elements + depends on parameter) + host_population_size_sweep -- dictionary with keys=population IDs + (Strings), values=list of values with host population sizes + (must be greater than original size set for each population, list of + numbers) + vector_population_size_sweep -- dictionary with keys=population IDs + (Strings), values=list of values with vector population sizes + (must be greater than original size set for each population, list of + numbers) + host_migration_sweep_dic -- dictionary with keys=population IDs of + origin and destination, separated by a colon ';' (Strings), + values=list of values (list of numbers) + vector_migration_sweep_dic -- dictionary with keys=population IDs of + origin and destination, separated by a colon ';' (Strings), + values=list of values (list of numbers) + host_host_population_contact_sweep_dic -- dictionary with + keys=population IDs of origin and destination, separated by a colon + ';' (Strings), values=list of values (list of numbers) + host_vector_population_contact_sweep_dic -- dictionary with + keys=population IDs of origin and destination, separated by a colon + ';' (Strings), values=list of values (list of numbers) + vector_host_population_contact_sweep_dic -- dictionary with + keys=population IDs of origin and destination, separated by a colon + ';' (Strings), values=list of values (list of numbers) + replicates -- how many replicates to simulate (int >= 1) + host_sampling -- how many hosts to skip before saving one in a snapshot + of the system state (saves all by default) (int >= 0, default 0) + vector_sampling -- how many vectors to skip before saving one in a + snapshot of the system state (saves all by default) + (int >= 0, default 0) + n_cores -- number of cores to parallelize file export across, if 0, all + cores available are used (default 0; int >= 0) + **kwargs -- additional arguents for joblib multiprocessing Returns: - DataFrame with parameter combinations, list of Model objects with the - final snapshots + DataFrame with parameter combinations, list of Model objects with the + final snapshots. """ if not n_cores: @@ -939,14 +954,13 @@ def copyState(self,host_sampling=0,vector_sampling=0): """Returns a slimmed-down representation of the current model state. Keyword arguments: - host_sampling -- how many hosts to skip before saving one in a snapshot - of the system state (saves all by default) (int >= 0, default 0) - vector_sampling -- how many vectors to skip before saving one in a - snapshot of the system state (saves all by default) - (int >= 0, default 0) + host_sampling (int >= 0): how many hosts to skip before saving one in a snapshot + of the system state (saves all by default). Defaults to 0. + vector_sampling (int >= 0): how many vectors to skip before saving one in a + snapshot of the system state (saves all by default). Defaults to 0. Returns: - Model object with current population host and vector lists. + Model object with current population host and vector lists. """ copy = Model() @@ -962,7 +976,7 @@ def deepCopy(self): """Returns a full copy of the current model with inner references. Returns: - copied Model object + Copied Model object. """ model = cp.deepcopy(self) @@ -985,24 +999,25 @@ def saveToDataFrame(self,save_to_file,n_cores=0,**kwargs): Creates a pandas Dataframe in long format with the given model history, with one host or vector per simulation time in each row, and columns: - Time - simulation time of entry - Population - ID of this host/vector's population - Organism - host/vector - ID - ID of host/vector - Pathogens - all genomes present in this host/vector separated by ; - Protection - all genomes present in this host/vector separated by ; - Alive - whether host/vector is alive at this time, True/False + + - Time - simulation time of entry + - Population - ID of this host/vector's population + - Organism - host/vector + - ID - ID of host/vector + - Pathogens - all genomes present in this host/vector separated by ';' + - Protection - all genomes present in this host/vector separated by ';' + - Alive - whether host/vector is alive at this time, True/False Arguments: - save_to_file -- file path and name to save model data under (String) + save_to_file (String): file path and name to save model data under. Keyword arguments: - n_cores -- number of cores to parallelize file export across, if 0, all - cores available are used (default 0; int >= 0) - **kwargs -- additional arguents for joblib multiprocessing + n_cores (int >= 0): number of cores to parallelize file export across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. Returns: - pandas dataframe with model history as described above + `pandas dataframe` with model history as described above. """ data = saveToDf( @@ -1018,14 +1033,14 @@ def getPathogens(self, dat, save_to_file=""): pathogen genomes in data passed. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". Returns: - pandas dataframe with Series as described above + `pandas dataframe` with Series as described above. """ return getPathogens(dat, save_to_file=save_to_file) @@ -1033,18 +1048,18 @@ def getPathogens(self, dat, save_to_file=""): def getProtections(self, dat, save_to_file=""): """Create Dataframe with counts for all protection sequences in data. - Returns sorted pandas Dataframe with counts for occurrences of all + Returns sorted `pandas Dataframe` with counts for occurrences of all protection sequences in data passed. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". Returns: - pandas dataframe with Series as described above + pandas DataFrame with Series as described above. """ return getProtections(dat, save_to_file=save_to_file) @@ -1064,38 +1079,34 @@ def populationsPlot( if it has protection sequences of any kind and is not infected. Arguments: - file_name -- file path, name, and extension to save plot under (String) - data -- dataframe with model history as produced by saveToDf function - (DataFrame) + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by saveToDf function. Keyword arguments: - compartment -- subset of hosts/vectors to count totals of, can be either - 'Naive','Infected','Recovered', or 'Dead' - (default 'Infected'; String) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - num_top_populations -- how many populations to count separately and - include as columns, remainder will be counted under column "Other"; - if <0, includes all populations in model (default 7; int) - track_specific_populations -- contains IDs of specific populations to - have as a separate column if not part of the top num_top_populations - populations (default empty list; list of Strings) - save_data_to_file -- file path and name to save model plot data under, - no saving occurs if empty string (default ''; String) - x_label -- X axis title (default 'Time', String) - y_label -- Y axis title (default 'Hosts', String) - legend_title -- legend title (default 'Population', String) - legend_values -- labels for each trace, if empty list, uses population - IDs (default empty list, list of Strings) - figsize -- dimensions of figure (default (8,4), array-like of two ints) - dpi -- figure resolution (default 200, int) - palette -- color palette to use for traces (default CB_PALETTE, list of - color Strings) - stacked -- whether to draw a regular line plot instead of a stacked one - (default False, Boolean) + compartment (String): subset of hosts/vectors to count totals of, can be either + 'Naive','Infected','Recovered', or 'Dead'. Defaults to 'Infected'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean) whether to count vectors. Defaults to False. + num_top_populations (int): how many populations to count separately and + include as columns, remainder will be counted under column "Other"; + if <0, includes all populations in model. Defaults to 7. + track_specific_populations (list of Strings): contains IDs of specific populations to + have as a separate column if not part of the top num_top_populations + populations. Defaults to []. + save_data_to_file (String): file path and name to save model plot data under, + no saving occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population + IDs. Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. Defaults to False. Returns: - axis object for plot with model population dynamics as described above + `axis object` for plot with model population dynamics as described above. """ return populationsPlot( @@ -1121,31 +1132,29 @@ def compartmentPlot( if it has protection sequences of any kind and is not infected. Arguments: - file_name -- file path, name, and extension to save plot under (String) - data -- dataframe with model history as produced by saveToDf function - (DataFrame) + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - populations -- IDs of populations to include in analysis; if empty, uses - all populations in model (default empty list; list of Strings) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - save_data_to_file -- file path and name to save model data under, no - saving occurs if empty string (default ''; String) - x_label -- X axis title (default 'Time', String) - y_label -- Y axis title (default 'Hosts', String) - legend_title -- legend title (default 'Population', String) - legend_values -- labels for each trace, if empty list, uses population - IDs (default empty list, list of Strings) - figsize -- dimensions of figure (default (8,4), array-like of two ints) - dpi -- figure resolution (default 200, int) - palette -- color palette to use for traces (default CB_PALETTE, list of - color Strings) - stacked -- whether to draw a regular line plot instead of a stacked one - (default False, Boolean) + populations (list of Strings): IDs of populations to include in analysis; if empty, uses + all populations in model. Defaults to []. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + save_data_to_file (String): file path and name to save model data under, no + saving occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population + IDs. Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int)): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked -- whether to draw a regular line plot instead of a stacked one + (default False, Boolean) Returns: - axis object for plot with model compartment dynamics as described above + axis object for plot with model compartment dynamics as described above """ return compartmentPlot( @@ -1176,54 +1185,50 @@ def compositionPlot( multiple infections in the same host/vector are counted separately. Arguments: - file_name -- file path, name, and extension to save plot under (String) - data -- dataframe with model history as produced by saveToDf function + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` function. Keyword arguments: - composition_dataframe -- output of compositionDf() if already computed - (Pandas DataFrame, None by default) - populations -- IDs of populations to include in analysis; if empty, uses - all populations in model (default empty list; list of Strings) - type_of_composition -- field of data to count totals of, can be either - 'Pathogens' or 'Protection' (default 'Pathogens'; String) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - num_top_sequences -- how many sequences to count separately and include - as columns, remainder will be counted under column "Other"; if <0, - includes all genomes in model (default 7; int) - track_specific_sequences -- contains specific sequences to have - as a separate column if not part of the top num_top_sequences - sequences (default empty list; list of Strings) - genomic_positions -- list in which each element is a list with loci - positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] - extracts positions 0, 1, 2, and 5 from each genome); if empty, takes - full genomes (default empty list; list of lists of int) - count_individuals_based_on_model -- Model object with populations and - fitness functions used to evaluate the most fit pathogen genome in - each host/vector in order to count only a single pathogen per - host/vector, as opposed to all pathogens within each host/vector; if - None, counts all pathogens (default None; None or Model) - save_data_to_file -- file path and name to save model data under, no - saving occurs if empty string (default ''; String) - x_label -- X axis title (default 'Time', String) - y_label -- Y axis title (default 'Hosts', String) - legend_title -- legend title (default 'Population', String) - legend_values -- labels for each trace, if empty list, uses population - IDs (default empty list, list of Strings) - figsize -- dimensions of figure (default (8,4), array-like of two ints) - dpi -- figure resolution (default 200, int) - palette -- color palette to use for traces (default CB_PALETTE, list of - color Strings) - stacked -- whether to draw a regular line plot instead of a stacked one - (default False, Boolean). - remove_legend -- whether to print the sequences on the figure legend - instead of printing them on a separate csv file - (default True; Boolean) - **kwargs -- additional arguents for joblib multiprocessing + composition_dataframe (pandas DataFrame): output of compositionDf() if already computed + Defaults to None. + populations (list of Strings): IDs of populations to include in analysis; if empty, uses + all populations in model. Defaults to []. + type_of_composition (String) field of data to count totals of, can be either + 'Pathogens' or 'Protection'. Defaults to 'Pathogens'. + hosts (Boolean) whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_sequences (int): how many sequences to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all genomes in model. Defaults to 7. + track_specific_sequences (list of Strings): contains specific sequences to have + as a separate column if not part of the top num_top_sequences + sequences. Defaults to []. + genomic_positions (list of lists of int): list in which each element is a list with loci + positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] + extracts positions 0, 1, 2, and 5 from each genome); if empty, takes + full genomes. Defaults to []. + count_individuals_based_on_model (None or Model): `Model` object with populations and + fitness functions used to evaluate the most fit pathogen genome in + each host/vector in order to count only a single pathogen per + host/vector, as opposed to all pathogens within each host/vector; if + None, counts all pathogens. Defaults to None. + save_data_to_file (String): file path and name to save model data under, no + saving occurs if empty string. Defaults to "". + x_label (String): X axis title. Defaults to 'Time'. + y_label (String): Y axis title. Defaults to 'Hosts'. + legend_title (String): legend title. Defaults to 'Population'. + legend_values (list of Strings): labels for each trace, if empty list, uses population + IDs. Defaults to []. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + palette (list of color Strings): color palette to use for traces. Defaults to `CB_PALETTE`. + stacked (Boolean): whether to draw a regular line plot instead of a stacked one. Defaults to False. + remove_legend (Boolean): whether to print the sequences on the figure legend + instead of printing them on a separate csv file. Defaults to True. + **kwargs: additional arguents for joblib multiprocessing. Returns: - axis object for plot with model sequence composition dynamics as - described + axis object for plot with model sequence composition dynamics as described. """ return compositionPlot( @@ -1251,34 +1256,31 @@ def clustermap( """Create a heatmap and dendrogram for pathogen genomes in data passed. Arguments: - file_name -- file path, name, and extension to save plot under (String) - data -- dataframe with model history as produced by saveToDf function + file_name (String): file path, name, and extension to save plot under. + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` + function. Keyword arguments: - num_top_sequences -- how many sequences to include in matrix; if <0, - includes all genomes in data passed (default -1; int) - track_specific_sequences -- contains specific sequences to include in - matrix if not part of the top num_top_sequences sequences (default - empty list; list of Strings) - seq_names -- list with names to be used for sequence labels in matrix - must be of same length as number of sequences to be displayed; if - empty, uses sequences themselves (default empty list; list of - Strings) - n_cores -- number of cores to parallelize distance compute across, if 0, - all cores available are used (default 0; int >= 0) - method -- clustering algorithm to use with seaborn clustermap (default - 'weighted'; String) - metric -- distance metric to use with seaborn clustermap (default - 'euclidean'; String) - save_data_to_file -- file path and name to save model data under, no - saving occurs if empty string (default ''; String) - legend_title -- legend title (default 'Distance', String) - figsize -- dimensions of figure (default (8,4), array-like of two ints) - dpi -- figure resolution (default 200, int) - color_map -- color map to use for traces (default DEF_CMAP, cmap object) + num_top_sequences (int): how many sequences to include in matrix; if <0, + includes all genomes in data passed. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include + in matrix if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list ofStrings): list with names to be used for sequence labels in matrix + must be of same length as number of sequences to be displayed; if empty, uses sequences + themselves. Defaults to []. + n_cores (int >= 0): number of cores to parallelize distance compute across, if 0, + all cores available are used. Defaults to 0. + method (String): clustering algorithm to use with seaborn clustermap. Defaults to 'weighted'. + metric (String): distance metric to use with seaborn clustermap. Defaults to 'euclidean'. + save_data_to_file (String): file path and name to save model data under, no + saving occurs if empty string. Defaults to "". + legend_title (String): legend title. Defaults to 'Distance'. + figsize (array-like of two ints): dimensions of figure. Defaults to (8,4). + dpi (int): figure resolution. Defaults to 200. + color_map (matplotlib cmap object): color map to use for traces. Defaults to `DEF_CMAP`. Returns: - figure object for plot with heatmap and dendrogram as described + figure object for plot with heatmap and dendrogram as described. """ return clustermap( @@ -1302,27 +1304,26 @@ def pathogenDistanceHistory( from an optimal genome sequence. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` + function. Keyword arguments: - samples -- how many timepoints to uniformly sample from the total - timecourse; if <0, takes all timepoints (default 1; int) - num_top_sequences -- how many sequences to include in matrix; if <0, - includes all genomes in data passed (default -1; int) - track_specific_sequences -- contains specific sequences to include in - matrix if not part of the top num_top_sequences sequences (default - empty list; list of Strings) - seq_names -- list with names to be used for sequence labels in matrix - must be of same length as number of sequences to be displayed; if - empty, uses sequences themselves - (default empty list; list of Strings) - n_cores -- number of cores to parallelize distance compute across, if 0, - all cores available are used (default 0; int >= 0) - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) + samples (int): how many timepoints to uniformly sample from the total + timecourse; if <0, takes all timepoints. Defaults to 1. + num_top_sequences (int) how many sequences to include in matrix; if <0, + includes all genomes in data passed. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to include in + matrix if not part of the top num_top_sequences sequences. Defaults to []. + seq_names (list of Strings): list with names to be used for sequence labels in matrix + must be of same length as number of sequences to be displayed; if + empty, uses sequences themselves. Defaults to []. + n_cores (int >= 0): number of cores to parallelize distance compute across, if 0, + all cores available are used. Defaults to 0. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". Returns: - pandas dataframe with distance matrix as described above + pandas DataFrame with distance matrix as described above. """ return getPathogenDistanceHistoryDf(data, samples=samples, num_top_sequences=num_top_sequences, @@ -1336,18 +1337,19 @@ def getGenomeTimes( """Create DataFrame with times genomes first appeared during simulation. Arguments: - data -- dataframe with model history as produced by saveToDf function + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` + function. Keyword arguments: - samples -- how many timepoints to uniformly sample from the total - timecourse; if <0, takes all timepoints (default 1; int) - save_to_file -- file path and name to save model data under, no saving - occurs if empty string (default ''; String) - n_cores -- number of cores to parallelize across, if 0, all cores - available are used (default 0; int) + samples (int): how many timepoints to uniformly sample from the total + timecourse; if <0, takes all timepoints. Defaults to 1. + save_to_file (String): file path and name to save model data under, no saving + occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize across, if 0, all cores + available are used. Defaults to 0. Returns: - pandas dataframe with genomes and times as described above + pandas DataFrame with genomes and times as described above. """ return getGenomeTimesDf(data, samples=samples, num_top_sequences=num_top_sequences, @@ -1373,39 +1375,39 @@ def getCompositionData( multiple infections in the same host/vector are counted separately. Keyword arguments: - data -- dataframe with model history as produced by saveToDf function; - if None, computes this dataframe and saves it under - 'raw_data_'+save_data_to_file (DataFrame, default None) - populations -- IDs of populations to include in analysis; if empty, uses - all populations in model (default empty list; list of Strings) - type_of_composition -- field of data to count totals of, can be either - 'Pathogens' or 'Protection' (default 'Pathogens'; String) - hosts -- whether to count hosts (default True, Boolean) - vectors -- whether to count vectors (default False, Boolean) - num_top_sequences -- how many sequences to count separately and include - as columns, remainder will be counted under column "Other"; if <0, - includes all genomes in model (default -1; int) - track_specific_sequences -- contains specific sequences to have - as a separate column if not part of the top num_top_sequences - sequences (default empty list; list of Strings) - genomic_positions -- list in which each element is a list with loci - positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] - extracts positions 0, 1, 2, and 5 from each genome); if empty, takes - full genomes(default empty list; list of lists of int) - count_individuals_based_on_model -- Model object with populations and - fitness functions used to evaluate the most fit pathogen genome in - each host/vector in order to count only a single pathogen per - host/vector, asopposed to all pathogens within each host/vector; if - None, counts all pathogens (default None; None or Model) - save_data_to_file -- file path and name to save model data under, no - saving occurs if empty string (default ''; String) - n_cores -- number of cores to parallelize processing across, if 0, all - cores available are used (default 0; int) - **kwargs -- additional arguents for joblib multiprocessing + data (pandas DataFrame): dataframe with model history as produced by `saveToDf` + function; if None, computes this dataframe and saves it under 'raw_data_'+'save_data_to_file'. + Defaults to None. + populations (list of Strings): IDs of populations to include in analysis; if empty, uses + all populations in model. Defaults to []. + type_of_composition (String): field of data to count totals of, can be either + 'Pathogens' or 'Protection'. Defaults to 'Pathogens'. + hosts (Boolean): whether to count hosts. Defaults to True. + vectors (Boolean): whether to count vectors. Defaults to False. + num_top_sequences (int): how many sequences to count separately and include + as columns, remainder will be counted under column "Other"; if <0, + includes all genomes in model. Defaults to -1. + track_specific_sequences (list of Strings): contains specific sequences to have + as a separate column if not part of the top num_top_sequences + sequences. Defaults to []. + genomic_positions (list of lists of int): list in which each element is a list with + loci positions to extract (e.g. genomic_positions=[ [0,3], [5,6] ] + extracts positions 0, 1, 2, and 5 from each genome); if empty, takes + full genomes. Defaults to []. + count_individuals_based_on_model (None or Model object): Model object with populations and + fitness functions used to evaluate the most fit pathogen genome in + each host/vector in order to count only a single pathogen per + host/vector, asopposed to all pathogens within each host/vector; if + None, counts all pathogens. Defaults to None. + save_data_to_file (String): file path and name to save model data under, no + saving occurs if empty string. Defaults to "". + n_cores (int): number of cores to parallelize processing across, if 0, all + cores available are used. Defaults to 0. + **kwargs: additional arguents for joblib multiprocessing. Returns: - pandas dataframe with model sequence composition dynamics as described - above + pandas DataFrame with model sequence composition dynamics as described + above. """ if data is None: @@ -1432,14 +1434,12 @@ def newPopulation(self, id, setup_name, num_hosts=0, num_vectors=0): If population ID is already in use, appends _2 to it Arguments: - id -- unique identifier for this population in the model (String) - setup_name -- setup object with parameters for this population (Setup) + id (String): unique identifier for this population in the model. + setup_name (Setup object): setup object with parameters for this population. Keyword arguments: - num_hosts -- number of hosts to initialize population with (default 100; - int >= 0) - num_vectors -- number of hosts to initialize population with (default - 100; int >= 0) + num_hosts (int >= 0): number of hosts to initialize population with. Defaults to 100. + num_vectors (int >= 0): number of vectors to initialize population with. Defaults to 100. """ if id in self.populations.keys(): @@ -1484,12 +1484,10 @@ def linkPopulationsHostMigration(self, pop1_id, pop2_id, rate): """Set host migration rate from one population towards another. Arguments: - pop1_id -- origin population for which migration rate will be specified - (String) - pop1_id -- destination population for which migration rate will be - specified (String) - rate -- migration rate from one population to the neighbor; evts/time - (number >= 0) + pop1_id (String): origin population for which migration rate will be specified. + pop1_id (String): destination population for which migration rate will be + specified. + rate (number >= 0): migration rate from one population to the neighbor; evts/time. """ self.populations[pop1_id].setHostMigrationNeighbor( @@ -1500,12 +1498,10 @@ def linkPopulationsVectorMigration(self, pop1_id, pop2_id, rate): """Set vector migration rate from one population towards another. Arguments: - pop1_id -- origin population for which migration rate will be specified - (String) - pop1_id -- destination population for which migration rate will be - specified (String) - rate -- migration rate from one population to the neighbor; evts/time - (number >= 0) + pop1_id (String): origin population for which migration rate will be specified. + pop1_id (String): destination population for which migration rate will be + specified. + rate (number >= 0): migration rate from one population to the neighbor; evts/time. """ self.populations[pop1_id].setVectorMigrationNeighbor( @@ -1516,12 +1512,12 @@ def linkPopulationsHostHostContact(self, pop1_id, pop2_id, rate): """Set host-host contact rate from one population towards another. Arguments: - pop1_id -- origin population for which inter-population contact rate - will be specified (String) - pop1_id -- destination population for which inter-population contact - rate will be specified (String) - rate -- inter-population contact rate from one population to the - neighbor; evts/time (number >= 0) + pop1_id (String): origin population for which inter-population contact rate + will be specified. + pop1_id (String): destination population for which inter-population contact + rate will be specified. + rate (number >= 0): inter-population contact rate from one population to the + neighbor; evts/time. """ self.populations[pop1_id].setHostHostPopulationContactNeighbor( @@ -1532,12 +1528,12 @@ def linkPopulationsHostVectorContact(self, pop1_id, pop2_id, rate): """Set host-vector contact rate from one population towards another. Arguments: - pop1_id -- origin population for which inter-population contact rate - will be specified (String) - pop1_id -- destination population for which inter-population contact - rate will be specified (String) - rate -- inter-population contact rate from one population to the - neighbor; evts/time (number >= 0) + pop1_id (String): origin population for which inter-population contact rate + will be specified. + pop1_id (String): destination population for which inter-population contact + rate will be specified. + rate (number >= 0): inter-population contact rate from one population to the + neighbor; evts/time. """ self.populations[pop1_id].setHostVectorPopulationContactNeighbor( @@ -1548,12 +1544,12 @@ def linkPopulationsVectorHostContact(self, pop1_id, pop2_id, rate): """Set vector-host contact rate from one population towards another. Arguments: - pop1_id -- origin population for which inter-population contact rate - will be specified (String) - pop1_id -- destination population for which inter-population contact - rate will be specified (String) - rate -- inter-population contact rate from one population to the - neighbor; evts/time (number >= 0) + pop1_id (String): origin population for which inter-population contact rate + will be specified. + pop1_id (String): destination population for which inter-population contact + rate will be specified. + rate (number >= 0): inter-population contact rate from one population to the + neighbor; evts/time. """ self.populations[pop1_id].setVectorHostPopulationContactNeighbor( @@ -1574,26 +1570,23 @@ def createInterconnectedPopulations( 'id_prefix_2', etc. Arguments: - num_populations -- number of populations to be created (int) - id_prefix -- prefix for IDs to be used for this population in the model, - (String) - setup_name -- setup object with parameters for all populations (Setup) + num_populations (int): number of populations to be created. + id_prefix (String): prefix for IDs to be used for this population in the model. + setup_name (Setup object): setup object with parameters for all populations. Keyword arguments: - host_migration_rate -- host migration rate between populations; - evts/time (default 0; number >= 0) - vector_migration_rate -- vector migration rate between populations; - evts/time (default 0; number >= 0) - host_host_contact_rate -- host-host inter-population contact rate - between populations; evts/time (default 0; number >= 0) - host_vector_contact_rate -- host-vector inter-population contact rate - between populations; evts/time (default 0; number >= 0) - vector_host_contact_rate -- vector-host inter-population contact rate - between populations; evts/time (default 0; number >= 0) - num_hosts -- number of hosts to initialize population with (default 100; - int) - num_vectors -- number of hosts to initialize population with (default - 100; int) + host_migration_rate (number >= 0): host migration rate between populations; + evts/time. Defaults to 0. + vector_migration_rate (number >= 0): vector migration rate between populations; + evts/time. Defaults to 0. + host_host_contact_rate (number >= 0): host-host inter-population contact rate + between populations; evts/time. Defaults to 0. + host_vector_contact_rate (number >= 0): host-vector inter-population contact rate + between populations; evts/time. Defaults to 0. + vector_host_contact_rate (number >= 0): vector-host inter-population contact rate + between populations; evts/time. Defaults to 0. + num_hosts (int): number of hosts to initialize population with. Defaults to 100. + num_vectors (int): number of hosts to initialize population with. Defaults to 100. """ new_pops = [ @@ -1645,18 +1638,18 @@ def newHostGroup(self, pop_id, group_id, hosts=-1, type='any'): """Return a list of random hosts in population. Arguments: - pop_id -- ID of population to be sampled from (String) - group_id -- ID to name group with (String) + pop_id (String): ID of population to be sampled from. + group_id (String): ID to name group with. Keyword arguments: - hosts -- number of hosts to be sampled randomly: if <0, samples from - whole population; if <1, takes that fraction of population; if >=1, - samples that integer number of hosts (default -1, number) - type -- whether to sample healthy hosts only, infected hosts only, or - any hosts (default 'any'; String = {'healthy', 'infected', 'any'}) + hosts (number): number of hosts to be sampled randomly: if <0, samples from + whole population; if <1, takes that fraction of population; if >=1, + samples that integer number of hosts. Defaults to -1. + type (String = {'healthy', 'infected', 'any'}): whether to sample healthy hosts only, + infected hosts only, or any hosts. Defaults to 'any'. Returns: - list containing sampled hosts + list containing sampled hosts. """ self.groups[group_id] = self.populations[pop_id].newHostGroup( @@ -1667,19 +1660,18 @@ def newVectorGroup(self, pop_id, group_id, vectors=-1, type='any'): """Return a list of random vectors in population. Arguments: - pop_id -- ID of population to be sampled from (String) - group_id -- ID to name group with (String) + pop_id (String): ID of population to be sampled from. + group_id (String): ID to name group with. Keyword arguments: - vectors -- number of vectors to be sampled randomly: if <0, samples from - whole population; if <1, takes that fraction of population; if >=1, - samples that integer number of vectors (default -1, number) - type -- whether to sample healthy vectors only, infected vectors - only, or any vectors (default 'any'; String = {'healthy', - 'infected', 'any'}) + vectors (number): number of vectors to be sampled randomly: if <0, samples from + whole population; if <1, takes that fraction of population; if >=1, + samples that integer number of vectors. Defaults to -1. + type (String = {'healthy', 'infected', 'any'}): whether to sample healthy vectors only, infected vectors + only, or any vectors. Defaults to 'any'. Returns: - list containing sampled vectors + list containing sampled vectors. """ self.groups[group_id] = self.populations[pop_id].newVectorGroup( @@ -1690,11 +1682,11 @@ def addHosts(self, pop_id, num_hosts): """Add a number of healthy hosts to population, return list with them. Arguments: - pop_id -- ID of population to be modified (String) - num_hosts -- number of hosts to be added (int) + pop_id (String): ID of population to be modified. + num_hosts (int): number of hosts to be added. Returns: - list containing new hosts + list containing new hosts. """ self.populations[pop_id].addHosts(num_hosts) @@ -1703,11 +1695,11 @@ def addVectors(self, pop_id, num_vectors): """Add a number of healthy vectors to population, return list with them. Arguments: - pop_id -- ID of population to be modified (String) - num_vectors -- number of vectors to be added (int) + pop_id (String): ID of population to be modified. + num_vectors (int): number of vectors to be added. Returns: - list containing new vectors + list containing new vectors. """ self.populations[pop_id].addVectors(num_vectors) @@ -1716,10 +1708,9 @@ def removeHosts(self, pop_id, num_hosts_or_list): """Remove a number of specified or random hosts from population. Arguments: - pop_id -- ID of population to be modified (String) - num_hosts_or_list -- number of hosts to be sampled randomly for removal - or list of hosts to be removed, must be hosts in this population - (int or list of Hosts) + pop_id (String): ID of population to be modified. + num_hosts_or_list (int or list of Hosts): number of hosts to be sampled randomly for removal + or list of hosts to be removed, must be hosts in this population. """ self.populations[pop_id].removeHosts(num_hosts_or_list) @@ -1728,10 +1719,10 @@ def removeVectors(self, pop_id, num_vectors_or_list): """Remove a number of specified or random vectors from population. Arguments: - pop_id -- ID of population to be modified (String) - num_vectors_or_list -- number of vectors to be sampled randomly for - removal or list of vectors to be removed, must be vectors in this - population (int or list of Vectors) + pop_id (String): ID of population to be modified. + num_vectors_or_list (int or list of Vectors): number of vectors to be sampled randomly for + removal or list of vectors to be removed, must be vectors in this + population. """ self.populations[pop_id].removeVectors(num_vectors_or_list) @@ -1740,14 +1731,13 @@ def addPathogensToHosts(self, pop_id, genomes_numbers, group_id=""): """Add specified pathogens to random hosts, optionally from a list. Arguments: - pop_id -- ID of population to be modified (String) - genomes_numbers -- dictionary containing pathogen genomes to add as keys - and number of hosts each one will be added to as values (dict with - keys=Strings, values=int) + pop_id (String): ID of population to be modified. + genomes_numbers (dict with keys=Strings, values=int) dictionary containing pathogen + genomes to add as keys and number of hosts each one will be added to as values. Keyword arguments: - group_id -- ID of specific hosts to sample from, if empty, samples - from whole population (default empty String; String) + group_id (String): ID of specific hosts to sample from, if empty, samples + from whole population. Defaults to "". """ if group_id == "": @@ -1761,14 +1751,13 @@ def addPathogensToVectors(self, pop_id, genomes_numbers, group_id=""): """Add specified pathogens to random vectors, optionally from a list. Arguments: - pop_id -- ID of population to be modified (String) - genomes_numbers -- dictionary containing pathogen genomes to add as keys - and number of vectors each one will be added to as values (dict with - keys=Strings, values=int) + pop_id (String): ID of population to be modified. + genomes_numbers (dict with keys=Strings, values=int): dictionary containing pathogen + genomes to add as keys and number of vectors each one will be added to as values. Keyword arguments: - group_id -- ID of specific vectors to sample from, if empty, samples - from whole population (default empty String; String) + group_id (String): ID of specific vectors to sample from, if empty, samples + from whole population. Defaults to "". """ if group_id == "": @@ -1787,15 +1776,13 @@ def treatHosts(self, pop_id, frac_hosts, resistance_seqs, group_id=""): population infected list and adds to healthy list if appropriate. Arguments: - pop_id -- ID of population to be modified (String) - frac_hosts -- fraction of hosts considered to be randomly selected - (number between 0 and 1) - resistance_seqs -- contains sequences required for treatment resistance - (list of Strings) + pop_id (String): ID of population to be modified. + frac_hosts (number between 0 and 1): fraction of hosts considered to be randomly selected. + resistance_seqs (list of Strings): contains sequences required for treatment resistance. Keyword arguments: - group_id -- ID of specific hosts to sample from, if empty, samples - from whole population (default empty String; String) + group_id (String): ID of specific hosts to sample from, if empty, samples + from whole population. Defaults to "". """ if group_id == "": @@ -1814,15 +1801,14 @@ def treatVectors(self, pop_id, frac_vectors, resistance_seqs, group_id=""): population infected list and adds to healthy list if appropriate. Arguments: - pop_id -- ID of population to be modified (String) - frac_vectors -- fraction of vectors considered to be randomly selected - (number between 0 and 1) - resistance_seqs -- contains sequences required for treatment resistance - (list of Strings) + pop_id (String): ID of population to be modified. + frac_vectors (number between 0 and 1): fraction of vectors considered to be + randomly selected. + resistance_seqs (list of Strings): contains sequences required for treatment resistance. Keyword arguments: - group_id -- ID of specific vectors to sample from, if empty, samples - from whole population (default empty String; String) + group_id (String): ID of specific vectors to sample from, if empty, samples + from whole population. Defaults to "". """ if group_id == "": @@ -1842,14 +1828,14 @@ def protectHosts( specified. Does not cure them if they are already infected. Arguments: - pop_id -- ID of population to be modified (String) - frac_hosts -- fraction of hosts considered to be randomly selected - (number between 0 and 1) - protection_sequence -- sequence against which to protect (String) + pop_id (String): ID of population to be modified. + frac_hosts (number between 0 and 1): fraction of hosts considered to be + randomly selected. + protection_sequence (String): sequence against which to protect. Keyword arguments: - group_id -- ID of specific hosts to sample from, if empty, samples - from whole population (default empty String; String) + group_id (String): ID of specific hosts to sample from, if empty, samples + from whole population. Defaults to "". """ if group_id == "": @@ -1869,14 +1855,13 @@ def protectVectors( specified. Does not cure them if they are already infected. Arguments: - pop_id -- ID of population to be modified (String) - frac_vectors -- fraction of vectors considered to be randomly selected - (number between 0 and 1) - protection_sequence -- sequence against which to protect (String) + pop_id (String): ID of population to be modified. + frac_vectors (number between 0 and 1): fraction of vectors considered to be randomly selected. + protection_sequence (String): sequence against which to protect. Keyword arguments: - group_id -- ID of specific vectors to sample from, if empty, samples - from whole population (default empty String; empty) + group_id (String): ID of specific vectors to sample from, if empty, samples + from whole population. Defaults to "". """ if group_id == "": @@ -1892,11 +1877,11 @@ def wipeProtectionHosts(self, pop_id, group_id=""): """Removes all protection sequences from hosts. Arguments: - pop_id -- ID of population to be modified (String) + pop_id (String): ID of population to be modified. Keyword arguments: - group_id -- ID of specific hosts to sample from, if empty, samples from - whole from whole population (default empty String; String) + group_id (String): ID of specific hosts to sample from, if empty, samples from + whole from whole population. Defaults to "". """ if group_id == "": @@ -1910,11 +1895,11 @@ def wipeProtectionVectors(self, pop_id, group_id=""): """Removes all protection sequences from vectors. Arguments: - pop_id -- ID of population to be modified (String) + pop_id (String): ID of population to be modified. Keyword arguments: - group_id -- ID of specific vectors to sample from, if empty, samples - from whole population (default empty String; String) + group_id (String): ID of specific vectors to sample from, if empty, samples + from whole population. Defaults to "". """ if group_id == "": @@ -1930,8 +1915,8 @@ def setSetup(self, pop_id, setup_id): """Assign parameters stored in Setup object to this population. Arguments: - pop_id -- ID of population to be modified (String) - setup_id -- ID of setup to be assigned (String) + pop_id (String): ID of population to be modified. + setup_id (String): ID of setup to be assigned. """ self.populations[pop_id].setSetup( self.setups[setup_id] ) @@ -1942,11 +1927,11 @@ def customModelFunction(self, function): """Returns output of given function, passing this model as a parameter. Arguments: - function -- function to be evaluated; must take a Model object as the - only parameter (function) + function (callable): function to be evaluated; must take a Model object as the + only parameter. Returns: - Output of function passed as parameter + output of function passed as parameter. """ return function(self) @@ -1962,14 +1947,14 @@ def peakLandscape(genome, peak_genome, min_value): measured as percent Hamming distance from an optimal genome sequence. Arguments: - genome -- the genome to be evaluated (String) - peak_genome -- the genome sequence to measure distance against, has - value of 1 (String) - min_value -- minimum value at maximum distance from optimal - genome (number 0-1) + genome (String): the genome to be evaluated. + peak_genome (String): the genome sequence to measure distance against, has + value of 1. + min_value (number 0-1): minimum value at maximum distance from optimal + genome. Return: - value of genome (number) + value of genome (number). """ distance = td.hamming(genome, peak_genome) / len(genome) @@ -1987,16 +1972,16 @@ def valleyLandscape(genome, valley_genome, min_value): sequence. Arguments: - genome -- the genome to be evaluated (String) - valley_genome -- the genome sequence to measure distance against, has - value of min_value (String) - min_value -- fitness value of worst possible genome (number 0-1) + genome (String): the genome to be evaluated. + valley_genome (String): the genome sequence to measure distance against, has + value of min_value. + min_value (number 0-1): fitness value of worst possible genome. Return: - value of genome (number) + value of genome (number). """ distance = td.hamming(genome, valley_genome) / len(genome) value = np.exp( np.log( min_value ) * ( 1 - distance ) ) - return value + return value \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index 5992f7d..403fddf 100644 --- a/requirements.txt +++ b/requirements.txt @@ -11,4 +11,4 @@ pytz==2021.3 scipy==1.7.1 seaborn==0.11.2 six==1.16.0 -textdistance==4.2.1 +textdistance==4.2.1 \ No newline at end of file