-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetect_face_parts.py
78 lines (65 loc) · 2.45 KB
/
detect_face_parts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from imutils import face_utils
import numpy as np
import argparse
import imutils
import dlib
import cv2
'''
CODE SOURCE: https://www.pyimagesearch.com/2017/04/10/detect-eyes-nose-lips-jaw-dlib-opencv-python/
'''
def extract_facial_regions(image):
'''
Takes some image file and then extracts it into subimages containing the follow facial regions:
mouth, right eyebrow, left eyebrow, right eye, left eye, nose jaw
'''
#a dict of the images
region_images = {}
# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
# load the input image, resize it, and convert it to grayscale
image = cv2.imread(image)
image = imutils.resize(image, width=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale image
rects = detector(gray, 1)
# loop over the face detections
for (i, rect) in enumerate(rects):
# determine the facial landmarks for the face region, then
# convert the landmark (x, y)-coordinates to a NumPy array
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
# loop over the face parts individually
for (name, (i, j)) in face_utils.FACIAL_LANDMARKS_IDXS.items():
# clone the original image so we can draw on it, then
# display the name of the face part on the image
clone = image.copy()
cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 255), 2)
# loop over the subset of facial landmarks, drawing the
# specific face part
for (x, y) in shape[i:j]:
cv2.circle(clone, (x, y), 1, (0, 0, 255), -1)
# extract the ROI of the face region as a separate image
(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))
roi = image[y:y + h, x:x + w]
roi = imutils.resize(roi, width=250, inter=cv2.INTER_CUBIC)
#append this image to the list of images
region_images[str(name)] = roi
# show the particular face part
# cv2.imshow("ROI", roi)
# cv2.imshow("Image", clone)
# cv2.waitKey(0)
# visualize all facial landmarks with a transparent overlay
output = face_utils.visualize_facial_landmarks(image, shape)
# cv2.imshow("Image", output)
# cv2.waitKey(0)
#return the list of regions
return region_images
#Testing if ran directly
if __name__ == "__main__":
image = 'training_fake/easy_100_1111.jpg'
regions = extract_facial_regions(image)
print(regions.keys())
print(regions)