-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
executable file
·94 lines (81 loc) · 3.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import argparse
import time
import random
import numpy as np
import torch
from parse_config import ConfigParser
from utils import compute_dims
import data_loader.data_loaders as module_data
import model.model as module_arch
import model.loss as module_loss
import trainer as Trainer
from test import test
def main(config):
logger = config.get_logger('train')
expert_dims = compute_dims(config)
seeds = [int(x) for x in config._args.seeds.split(',')]
for seed in seeds:
tic = time.time()
logger.info(f"Setting experiment random seed to {seed}")
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
data_loaders = config.init(
name='data_loader',
module=module_data,
expert_dims=expert_dims,
text_feat=config['experts']['text_feat'],
text_dim=config['experts']['text_dim'],
)
model = config.init(
name='arch',
module=module_arch,
expert_dims=expert_dims,
text_dim=config['experts']['text_dim'],
same_dim=config['experts']['ce_shared_dim'],
text_feat=config['experts']['text_feat'],
ref = config['trainer']['train_type'] in ['ref','refcomp','refjoint']
)
# logger.info(model)
loss = config.init(name='loss', module=module_loss)
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init('optimizer', torch.optim, trainable_params)
lr_scheduler = config.init('lr_scheduler', torch.optim.lr_scheduler, optimizer)
if config['trainer']['train_type'] in ['ref','refcomp','refjoint']:
trainer = Trainer.TrainerRef(
model,
loss,
optimizer,
config=config,
data_loaders=data_loaders,
lr_scheduler=lr_scheduler,
)
else:
trainer = Trainer.TrainerJoint(
model,
loss,
optimizer,
config=config,
data_loaders=data_loaders,
lr_scheduler=lr_scheduler,
)
trainer.train()
best_ckpt_path = config.save_dir / "trained_model.pth"
duration = time.strftime('%Hh%Mm%Ss', time.gmtime(time.time() - tic))
logger.info(f"Training took {duration}")
if __name__ == '__main__':
args = argparse.ArgumentParser()
args.add_argument('--config', default='configs/ce/train.json', type=str)
args.add_argument('--logdir', default='base', type=str)
args.add_argument('--device', default=None, type=str)
args.add_argument('--resume', default=None, type=str)
args.add_argument('--seeds', default="0", type=str)
args = ConfigParser(args, 'train')
print("Launching experiment with config:")
print(args)
main(args)