-
Notifications
You must be signed in to change notification settings - Fork 78
/
run.py
273 lines (213 loc) · 10.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Packages
import numpy as np
import torch
import torch.optim as optim
from PIL import Image
from skimage.io import imsave
from torchvision.utils import save_image
from utils import compute_gt_gradient, make_canvas_mask, numpy2tensor, laplacian_filter_tensor, \
MeanShift, Vgg16, gram_matrix
import argparse
import pdb
import os
import imageio.v2 as iio
import torch.nn.functional as F
parser = argparse.ArgumentParser()
parser.add_argument('--source_file', type=str, default='data/1_source.png', help='path to the source image')
parser.add_argument('--mask_file', type=str, default='data/1_mask.png', help='path to the mask image')
parser.add_argument('--target_file', type=str, default='data/1_target.png', help='path to the target image')
parser.add_argument('--output_dir', type=str, default='results/1', help='path to output')
parser.add_argument('--ss', type=int, default=300, help='source image size')
parser.add_argument('--ts', type=int, default=512, help='target image size')
parser.add_argument('--x', type=int, default=200, help='vertical location (center)')
parser.add_argument('--y', type=int, default=235, help='vertical location (center)')
parser.add_argument('--gpu_id', type=int, default=0, help='GPU ID')
parser.add_argument('--num_steps', type=int, default=1000, help='Number of iterations in each pass')
parser.add_argument('--save_video', type=bool, default=False, help='save the intermediate reconstruction process')
opt = parser.parse_args()
os.makedirs(opt.output_dir, exist_ok = True)
###################################
########### First Pass ###########
###################################
# Inputs
source_file = opt.source_file
mask_file = opt.mask_file
target_file = opt.target_file
# Hyperparameter Inputs
gpu_id = opt.gpu_id
num_steps = opt.num_steps
ss = opt.ss; # source image size
ts = opt.ts # target image size
x_start = opt.x; y_start = opt.y # blending location
# Default weights for loss functions in the first pass
grad_weight = 1e4; style_weight = 1e4; content_weight = 1; tv_weight = 1e-6
# Load Images
source_img = np.array(Image.open(source_file).convert('RGB').resize((ss, ss)))
target_img = np.array(Image.open(target_file).convert('RGB').resize((ts, ts)))
mask_img = np.array(Image.open(mask_file).convert('L').resize((ss, ss)))
mask_img[mask_img>0] = 1
# Make Canvas Mask
canvas_mask = make_canvas_mask(x_start, y_start, target_img, mask_img)
canvas_mask = numpy2tensor(canvas_mask, gpu_id)
canvas_mask = canvas_mask.squeeze(0).repeat(3,1).view(3,ts,ts).unsqueeze(0)
# Compute Ground-Truth Gradients
gt_gradient = compute_gt_gradient(x_start, y_start, source_img, target_img, mask_img, gpu_id)
# Convert Numpy Images Into Tensors
source_img = torch.from_numpy(source_img).unsqueeze(0).transpose(1,3).transpose(2,3).float().to(gpu_id)
target_img = torch.from_numpy(target_img).unsqueeze(0).transpose(1,3).transpose(2,3).float().to(gpu_id)
input_img = torch.randn(target_img.shape).to(gpu_id)
mask_img = numpy2tensor(mask_img, gpu_id)
mask_img = mask_img.squeeze(0).repeat(3,1).view(3,ss,ss).unsqueeze(0)
# Define LBFGS optimizer
def get_input_optimizer(input_img):
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
optimizer = get_input_optimizer(input_img)
# Define Loss Functions
mse = torch.nn.MSELoss()
# Import VGG network for computing style and content loss
mean_shift = MeanShift(gpu_id)
vgg = Vgg16().to(gpu_id)
# Save reconstruction process in a video
if opt.save_video:
recon_process_video = iio.get_writer(os.path.join(opt.output_dir, 'recon_process.mp4'), format='FFMPEG', mode='I', fps=400)
run = [0]
while run[0] <= num_steps:
def closure():
# Composite Foreground and Background to Make Blended Image
blend_img = torch.zeros(target_img.shape).to(gpu_id)
blend_img = input_img*canvas_mask + target_img*(canvas_mask-1)*(-1)
# Compute Laplacian Gradient of Blended Image
pred_gradient = laplacian_filter_tensor(blend_img, gpu_id)
# Compute Gradient Loss
grad_loss = 0
for c in range(len(pred_gradient)):
grad_loss += mse(pred_gradient[c], gt_gradient[c])
grad_loss /= len(pred_gradient)
grad_loss *= grad_weight
# Compute Style Loss
target_features_style = vgg(mean_shift(target_img))
target_gram_style = [gram_matrix(y) for y in target_features_style]
blend_features_style = vgg(mean_shift(input_img))
blend_gram_style = [gram_matrix(y) for y in blend_features_style]
style_loss = 0
for layer in range(len(blend_gram_style)):
style_loss += mse(blend_gram_style[layer], target_gram_style[layer])
style_loss /= len(blend_gram_style)
style_loss *= style_weight
# Compute Content Loss
blend_obj = blend_img[:,:,int(x_start-source_img.shape[2]*0.5):int(x_start+source_img.shape[2]*0.5), int(y_start-source_img.shape[3]*0.5):int(y_start+source_img.shape[3]*0.5)]
source_object_features = vgg(mean_shift(source_img*mask_img))
blend_object_features = vgg(mean_shift(blend_obj*mask_img))
content_loss = content_weight * mse(blend_object_features.relu2_2, source_object_features.relu2_2)
content_loss *= content_weight
# Compute TV Reg Loss
tv_loss = torch.sum(torch.abs(blend_img[:, :, :, :-1] - blend_img[:, :, :, 1:])) + \
torch.sum(torch.abs(blend_img[:, :, :-1, :] - blend_img[:, :, 1:, :]))
tv_loss *= tv_weight
# Compute Total Loss and Update Image
loss = grad_loss + style_loss + content_loss + tv_loss
optimizer.zero_grad()
loss.backward()
# Write to output to a reconstruction video
if opt.save_video:
foreground = input_img*canvas_mask
foreground = (foreground - foreground.min()) / (foreground.max() - foreground.min())
background = target_img*(canvas_mask-1)*(-1)
background = background / 255.0
final_blend_img = + foreground + background
if run[0] < 200:
# more frames for early optimization by repeatedly appending the frames
for _ in range(10):
recon_process_video.append_data(final_blend_img[0].transpose(0,2).transpose(0,1).cpu().data.numpy())
else:
recon_process_video.append_data(final_blend_img[0].transpose(0,2).transpose(0,1).cpu().data.numpy())
# Print Loss
if run[0] % 1 == 0:
print("run {}:".format(run))
print('grad : {:4f}, style : {:4f}, content: {:4f}, tv: {:4f}'.format(\
grad_loss.item(), \
style_loss.item(), \
content_loss.item(), \
tv_loss.item()
))
print()
run[0] += 1
return loss
optimizer.step(closure)
# clamp the pixels range into 0 ~ 255
input_img.data.clamp_(0, 255)
# Make the Final Blended Image
blend_img = torch.zeros(target_img.shape).to(gpu_id)
blend_img = input_img*canvas_mask + target_img*(canvas_mask-1)*(-1)
blend_img_np = blend_img.transpose(1,3).transpose(1,2).cpu().data.numpy()[0]
# Save image from the first pass
first_pass_img_file = os.path.join(opt.output_dir, 'first_pass.png')
imsave(first_pass_img_file, blend_img_np.astype(np.uint8))
###################################
########### Second Pass ###########
###################################
# Default weights for loss functions in the second pass
style_weight = 1e7; content_weight = 1; tv_weight = 1e-6
ss = 512; ts = 512
num_steps = opt.num_steps
first_pass_img = np.array(Image.open(first_pass_img_file).convert('RGB').resize((ss, ss)))
target_img = np.array(Image.open(target_file).convert('RGB').resize((ts, ts)))
first_pass_img = torch.from_numpy(first_pass_img).unsqueeze(0).transpose(1,3).transpose(2,3).float().to(gpu_id)
target_img = torch.from_numpy(target_img).unsqueeze(0).transpose(1,3).transpose(2,3).float().to(gpu_id)
first_pass_img = first_pass_img.contiguous()
target_img = target_img.contiguous()
# Define LBFGS optimizer
def get_input_optimizer(first_pass_img):
optimizer = optim.LBFGS([first_pass_img.requires_grad_()])
return optimizer
optimizer = get_input_optimizer(first_pass_img)
print('Optimizing...')
run = [0]
while run[0] <= num_steps:
def closure():
# Compute Loss Loss
target_features_style = vgg(mean_shift(target_img))
target_gram_style = [gram_matrix(y) for y in target_features_style]
blend_features_style = vgg(mean_shift(first_pass_img))
blend_gram_style = [gram_matrix(y) for y in blend_features_style]
style_loss = 0
for layer in range(len(blend_gram_style)):
style_loss += mse(blend_gram_style[layer], target_gram_style[layer])
style_loss /= len(blend_gram_style)
style_loss *= style_weight
# Compute Content Loss
content_features = vgg(mean_shift(first_pass_img))
content_loss = content_weight * mse(blend_features_style.relu2_2, content_features.relu2_2)
# Compute Total Loss and Update Image
loss = style_loss + content_loss
optimizer.zero_grad()
loss.backward()
# Write to output to a reconstruction video
if opt.save_video:
foreground = first_pass_img*canvas_mask
foreground = (foreground - foreground.min()) / (foreground.max() - foreground.min())
background = target_img*(canvas_mask-1)*(-1)
background = background / 255.0
final_blend_img = + foreground + background
recon_process_video.append_data(final_blend_img[0].transpose(0,2).transpose(0,1).cpu().data.numpy())
# Print Loss
if run[0] % 1 == 0:
print("run {}:".format(run))
print(' style : {:4f}, content: {:4f}'.format(\
style_loss.item(), \
content_loss.item()
))
print()
run[0] += 1
return loss
optimizer.step(closure)
# clamp the pixels range into 0 ~ 255
first_pass_img.data.clamp_(0, 255)
# Make the Final Blended Image
input_img_np = first_pass_img.transpose(1,3).transpose(1,2).cpu().data.numpy()[0]
# Save image from the second pass
imsave(os.path.join(opt.output_dir, 'second_pass.png'), input_img_np.astype(np.uint8))
# Save recon process video
if opt.save_video:
recon_process_video.close()