forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
80 lines (63 loc) · 2.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import lightning as L
import torch
from torchmetrics.functional.classification.accuracy import accuracy
from trainer import MyCustomTrainer
class MNISTModule(L.LightningModule):
def __init__(self) -> None:
super().__init__()
self.model = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=1,
out_channels=16,
kernel_size=5,
stride=1,
padding=2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2),
torch.nn.Conv2d(16, 32, 5, 1, 2),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2),
torch.nn.Flatten(),
# fully connected layer, output 10 classes
torch.nn.Linear(32 * 7 * 7, 10),
)
self.loss_fn = torch.nn.CrossEntropyLoss()
def forward(self, x: torch.Tensor):
return self.model(x)
def training_step(self, batch, batch_idx: int):
x, y = batch
logits = self(x)
loss = self.loss_fn(logits, y)
accuracy_train = accuracy(logits.argmax(-1), y, num_classes=10, task="multiclass", top_k=1)
return {"loss": loss, "accuracy": accuracy_train}
def configure_optimizers(self):
optim = torch.optim.Adam(self.parameters(), lr=1e-4)
return optim, {
"scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau(optim, mode="max", verbose=True),
"monitor": "val_accuracy",
"interval": "epoch",
"frequency": 1,
}
def validation_step(self, *args, **kwargs):
return self.training_step(*args, **kwargs)
def train(model):
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
train_set = MNIST(root="/tmp/data/MNIST", train=True, transform=ToTensor(), download=True)
val_set = MNIST(root="/tmp/data/MNIST", train=False, transform=ToTensor(), download=False)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=64, shuffle=True, pin_memory=torch.cuda.is_available(), num_workers=4
)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=64, shuffle=False, pin_memory=torch.cuda.is_available(), num_workers=4
)
# MPS backend currently does not support all operations used in this example.
# If you want to use MPS, set accelerator='auto' and also set PYTORCH_ENABLE_MPS_FALLBACK=1
accelerator = "cpu" if torch.backends.mps.is_available() else "auto"
trainer = MyCustomTrainer(
accelerator=accelerator, devices="auto", limit_train_batches=10, limit_val_batches=20, max_epochs=3
)
trainer.fit(model, train_loader, val_loader)
if __name__ == "__main__":
train(MNISTModule())