diff --git a/experimental/FTheoryTools/src/FTheoryTools.jl b/experimental/FTheoryTools/src/FTheoryTools.jl index f345d829f8c..a14867a89f7 100644 --- a/experimental/FTheoryTools/src/FTheoryTools.jl +++ b/experimental/FTheoryTools/src/FTheoryTools.jl @@ -30,6 +30,7 @@ include("G4Fluxes/constructors.jl") include("G4Fluxes/attributes.jl") include("G4Fluxes/properties.jl") include("G4Fluxes/special_attributes.jl") +include("G4Fluxes/special-intersection-theory.jl") include("Serialization/tate_models.jl") include("Serialization/weierstrass_models.jl") diff --git a/experimental/FTheoryTools/src/G4Fluxes/special-intersection-theory.jl b/experimental/FTheoryTools/src/G4Fluxes/special-intersection-theory.jl new file mode 100644 index 00000000000..daa97e4f6ce --- /dev/null +++ b/experimental/FTheoryTools/src/G4Fluxes/special-intersection-theory.jl @@ -0,0 +1,299 @@ +# --------------------------------------------------------------------------------------------------------- +# (1) Compute the intersection product of an algebraic cycle with a hypersurface. +# --------------------------------------------------------------------------------------------------------- + +function sophisticated_intersection_product(v::NormalToricVariety, indices::NTuple{4, Int64}, hypersurface_equation::MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}, inter_dict::Dict{NTuple{4, Int64}, ZZRingElem}, s_inter_dict::Dict{String, ZZRingElem}, data::NamedTuple) + + # (A) Have we computed this intersection number in the past? If so, just use that result... + if haskey(inter_dict, indices) + return inter_dict[indices] + end + + # (B) Get the indices of the variables that we try to intersect and, by virtue of the SR-ideal, intersect trivially + for sr_set in data.sr_ideal_pos + if is_subset(sr_set, indices) + inter_dict[indices] = ZZ(0) + return ZZ(0) + end + end + + # (C) Deal with self-intersection and should-never-happen case. + variable_pos = Set(indices) + if length(variable_pos) < 4 && length(variable_pos) >= 1 + return intersection_from_equivalent_cycle(v, indices, hypersurface_equation, inter_dict, s_inter_dict, data) + end + if length(variable_pos) == 0 + println("WEIRD! THIS SHOULD NEVER HAPPEN! INFORM THE AUTHORS!") + println("") + end + + + # (D) Deal with transverse intersection... + + # D.1 Work out the intersection locus in detail. + pt_reduced, gs_reduced, remaining_vars, reduced_scaling_relations = Oscar._reduce_hypersurface_equation(v, hypersurface_equation, indices, data) + + # D.2 If pt == 0, then we are not looking at a transverse intersection. So take an equivalent cycle and try again... + if is_zero(pt_reduced) + return intersection_from_equivalent_cycle(v, indices, hypersurface_equation, inter_dict, s_inter_dict, data) + end + + # D.3 If pt is constant and non-zero, then the intersection is trivial. + if is_constant(pt_reduced) && is_zero(pt_reduced) == false + inter_dict[indices] = ZZ(0) + return ZZ(0) + end + + # D.4 Helper function for the cases below + function has_one_and_rest_zero(vec) + return count(==(1), vec) == 1 && all(x -> x == 0 || x == 1, vec) + end + + # C.5 Cover a case that seems to appear frequently for our investigation: + # pt_reduced of the form a * x + b * y for non-zero number a,b and remaining variables x, y subject to a reduced SR generator x * y and scaling relation [1,1]. + # This will thus always give exactly one solution (x = 1, y = -a/b), and so the intersection number is one. + if length(gs_reduced) == 1 && length(remaining_vars) == 2 + mons_list = collect(monomials(pt_reduced)) + if length(mons_list) == 2 + if all(x -> x != 0, collect(coefficients(pt_reduced))) + exps_list = [collect(exponents(k))[1] for k in mons_list] + if has_one_and_rest_zero(exps_list[1]) && has_one_and_rest_zero(exps_list[2]) + if gs_reduced[1] == remaining_vars[1] * remaining_vars[2] + if reduced_scaling_relations == matrix(ZZ, [[1,1]]) + inter_dict[indices] = ZZ(1) + return ZZ(1) + end + end + end + end + end + end + + # C.6 Cover a case that seems to appear frequently for our investigation: + # pt_reduced of the form a * x for non-zero number a and remaining variables x, y subject to a reduced SR generator x * y and scaling relation [*, != 0]. + # This only gives the solution [0:1], so one intersection point. + if length(gs_reduced) == 1 && length(remaining_vars) == 2 + mons_list = collect(monomials(pt_reduced)) + if length(mons_list) == 1 && collect(coefficients(pt_reduced))[1] != 0 + list_of_exps = collect(exponents(mons_list[1]))[1] + number_of_zeros = count(==(0), list_of_exps) + if number_of_zeros == length(list_of_exps) - 1 + if gs_reduced[1] == remaining_vars[1] * remaining_vars[2] + if reduced_scaling_relations[1,1] != 0 && reduced_scaling_relations[1,2] != 0 + highest_power = list_of_exps[findfirst(x -> x > 0, list_of_exps)] + if highest_power == 1 + inter_dict[indices] = highest_power + return highest_power + end + end + end + end + end + end + + # C.7 Cover a case that seems to appear frequently for our investigation. It looks as follows: + # pt_reduced = -5700*w8*w10 + # remaining_vars = MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[w8, w10] + # gs_reduced = MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[w8*w10] + # reduced_scaling_relations = [1 1] + # This gives exactly two solutions, namely [0:1] and [1:0]. + if length(gs_reduced) == 1 && length(remaining_vars) == 2 + mons_list = collect(monomials(pt_reduced)) + if length(mons_list) == 1 && mons_list[1] == remaining_vars[1] * remaining_vars[2] + if gs_reduced[1] == remaining_vars[1] * remaining_vars[2] + if reduced_scaling_relations == matrix(ZZ, [[1,1]]) + inter_dict[indices] = 2 + return 2 + end + end + end + end + + # C.8 Check if this was covered in our special cases + if haskey(s_inter_dict, string([pt_reduced, gs_reduced, remaining_vars, reduced_scaling_relations])) + numb = s_inter_dict[string([pt_reduced, gs_reduced, remaining_vars, reduced_scaling_relations])] + inter_dict[indices] = numb + return numb + end + + # C.9 In all other cases, proceed via a rationally equivalent cycle + println("") + println("FOUND CASE THAT CANNOT YET BE DECIDED!") + println("$pt_reduced") + println("$remaining_vars") + println("$gs_reduced") + println("$indices") + println("$reduced_scaling_relations") + println("TRYING WITH EQUIVALENT CYCLE") + println("") + numb = intersection_from_equivalent_cycle(v, indices, hypersurface_equation, inter_dict, s_inter_dict, data) + s_inter_dict[string([pt_reduced, gs_reduced, remaining_vars, reduced_scaling_relations])] = numb + return numb + +end + + + +# --------------------------------------------------------------------------------------------------------- +# (2) Compute the intersection product from a rationally equivalent cycle. +# --------------------------------------------------------------------------------------------------------- + +function intersection_from_equivalent_cycle(v::NormalToricVariety, indices::NTuple{4, Int64}, hypersurface_equation::MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}, inter_dict::Dict{NTuple{4, Int64}, ZZRingElem}, s_inter_dict::Dict{String, ZZRingElem}, data::NamedTuple) + coeffs_list, tuple_list = Oscar._rationally_equivalent_cycle(v, indices, data) + intersect_numb = 0 + for k in 1:length(tuple_list) + if !is_zero(coeffs_list[k]) + intersect_numb += coeffs_list[k] * sophisticated_intersection_product(v, tuple_list[k], hypersurface_equation, inter_dict, s_inter_dict, data) + end + end + @req is_integer(intersect_numb) "Should have expected to find only integer intersection numbers, but found $intersect_numb for $indices" + inter_dict[indices] = ZZ(intersect_numb) + return ZZ(intersect_numb) +end + + + +# --------------------------------------------------------------------------------------------------------- +# (3) A function to reduce the hypersurface polynomial to {xi = 0} with i in indices +# --------------------------------------------------------------------------------------------------------- + +function _reduce_hypersurface_equation(v::NormalToricVariety, p_hyper::MPolyRingElem, indices::NTuple{4, Int64}, data::NamedTuple) + + # Set variables to zero in the hypersurface equation + vanishing_vars_pos = unique(indices) + new_p_hyper = divrem(p_hyper, data.gS[vanishing_vars_pos[1]])[2] + for m in 2:length(vanishing_vars_pos) + new_p_hyper = divrem(new_p_hyper, data.gS[vanishing_vars_pos[m]])[2] + end + + # Is the resulting polynomial constant? + if is_constant(new_p_hyper) + return [new_p_hyper, [], [], zero_matrix(ZZ, 0, 0)] + end + + # Identify the remaining variables + remaining_vars_pos = Set(1:length(data.gS)) + for my_exps in data.sr_ideal_pos + len_my_exps = length(my_exps) + inter_len = count(idx -> idx in vanishing_vars_pos, my_exps) + if len_my_exps == inter_len + 1 + delete!(remaining_vars_pos, my_exps[findfirst(idx -> !(idx in vanishing_vars_pos), my_exps)]) + end + end + set_to_one_list = sort([k for k in 1:length(data.gS) if k ∉ remaining_vars_pos]) + remaining_vars_pos = setdiff(collect(remaining_vars_pos), vanishing_vars_pos) + remaining_vars = [data.gS[k] for k in remaining_vars_pos] + + # Extract remaining Stanley-Reisner ideal relations + sr_reduced = Vector{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}() + for k in 1:length(data.sr_ideal_pos) + if isdisjoint(set_to_one_list, data.sr_ideal_pos[k]) + #for m in data.sr_ideal_pos[k] but not in vanishing_vars_pos + push!(sr_reduced, prod(data.gS[m] for m in data.sr_ideal_pos[k] if m ∉ vanishing_vars_pos)) + #push!(sr_reduced, prod(data.gS[m] for m in data.sr_ideal_pos[k])) + end + end + + # Identify the remaining scaling relations + prepared_scaling_relations = zero_matrix(ZZ, length(data.scalings[1]), length(set_to_one_list) + length(remaining_vars_pos)) + for k in 1:(length(set_to_one_list) + length(remaining_vars_pos)) + col = k <= length(set_to_one_list) ? data.scalings[set_to_one_list[k]] : data.scalings[remaining_vars_pos[k - length(set_to_one_list)]] + for l in 1:length(col) + prepared_scaling_relations[l, k] = col[l] + end + end + prepared_scaling_relations = hnf(prepared_scaling_relations) + reduced_scaling_relations = prepared_scaling_relations[length(set_to_one_list) + 1: nrows(prepared_scaling_relations), length(set_to_one_list) + 1 : ncols(prepared_scaling_relations)] + + # Identify the final form of the reduced hypersurface equation, by setting all variables to one that we can + images = [k in remaining_vars_pos ? data.gS[k] : one(data.S) for k in 1:length(data.gS)] + pt_reduced = evaluate(new_p_hyper, images) + + # Return the result + return [pt_reduced, sr_reduced, remaining_vars, reduced_scaling_relations] +end + + + +# --------------------------------------------------------------------------------------------------------- +# (4) A function to find a rationally equivalent algebraic cycle. +# --------------------------------------------------------------------------------------------------------- + +function _rationally_equivalent_cycle(v::NormalToricVariety, indices::NTuple{4, Int64}, data::NamedTuple) + + # Identify positions of the single and triple variable + power_variable = indices[rand(1:length(indices))] + for k in Set(indices) + if count(==(k), indices) > 1 + power_variable = k + break + end + end + other_variables = filter(!=(power_variable), indices) + pos_power_variable = findfirst(==(power_variable), indices) + + # Let us simplify the problem by extracting the entries in the columns of single_variables and double_variables of the linear relation matrix + simpler_matrix = data.linear_relations[[other_variables..., power_variable], :] + b = zero_matrix(QQ, length(other_variables) + 1, 1) + b[nrows(b), 1] = 1 + A = solve(simpler_matrix, b; side =:right) + + # Now form the relation in case... + employed_relation = -sum((data.linear_relations[:, k] .* A[k]) for k in 1:5) + employed_relation[power_variable] = 0 + + # Populate `coeffs` and `tuples` that form rationally equivalent algebraic cycle + coeffs = Vector{QQFieldElem}() + tuples = Vector{NTuple{4, Int64}}() + for k in 1:length(employed_relation) + if employed_relation[k] != 0 + + # Form the new tuple + new_tuple = (indices[1:pos_power_variable-1]..., k, indices[pos_power_variable+1:end]...) + new_tuple = Tuple(sort(collect(new_tuple))) + + pos = findfirst(==(new_tuple), tuples) + if pos !== nothing + coeffs[pos] += employed_relation[k] + else + push!(coeffs, employed_relation[k]) + push!(tuples, Tuple(new_tuple)) + end + + #= + # If there are no repeated entries, just add this tuple... + if length(new_tuple) == length(Set(new_tuple)) + + pos = findfirst(==(new_tuple), tuples) + if pos !== nothing + coeffs[pos] += employed_relation[k] + else + push!(coeffs, employed_relation[k]) + push!(tuples, Tuple(new_tuple)) + end + + # Otherwise, replace with a rationally equivalent cycle. + else + + new_coeffs, new_tuples = Oscar._rationally_equivalent_cycle(v, new_tuple, data) + for l in 1:length(new_coeffs) + + pos = findfirst(==(new_tuples[l]), tuples) + if pos !== nothing + coeffs[pos] += employed_relation[k] * new_coeffs[l] + else + push!(coeffs, employed_relation[k] * new_coeffs[l]) + push!(tuples, new_tuples[l]) + end + + end + + end + =# + + end + end + + return [coeffs, tuples] + +end diff --git a/experimental/FTheoryTools/src/G4Fluxes/special_attributes.jl b/experimental/FTheoryTools/src/G4Fluxes/special_attributes.jl index 49e20bc07bc..7a6656bfb13 100644 --- a/experimental/FTheoryTools/src/G4Fluxes/special_attributes.jl +++ b/experimental/FTheoryTools/src/G4Fluxes/special_attributes.jl @@ -262,3 +262,225 @@ function ambient_space_models_of_g4_fluxes(m::AbstractFTheoryModel; check::Bool return filtered_h22_basis end + + +# --------------------------------------------------------------------------------------------------------- +# (2) Internal helper function. +# (2) Internal helper function. +# --------------------------------------------------------------------------------------------------------- + +# The following is an internal function, that is being used to identify all well-quantized G4-fluxes. +# Let G4 in H^(2,2)(toric_ambient_space) a G4-flux ambient space candidate, i.e. the physically +# truly relevant quantity is the restriction of G4 to a hypersurface V(pt) in the toric_ambient_space. +# To tell if this candidate is well-quantized, we execute a necessary check, namely we verify that +# the integral of G4 * [pt] * [d1] * [d2] over X_Sigma is an integer for any two toric divisors d1, d2. +# While we wish to execute this test for any two toric divisors d1, d2 some pairs can be ignored. +# Say, because their intersection locus is trivial because of the SR-ideal, or because their intersection +# has empty intersection with the hypersurface. The following method identifies the remaining pairs of +# toric divisors d1, d2 that we must consider. + +function _ambient_space_divisors_to_be_considered(m::AbstractFTheoryModel)::Vector{Tuple{Int64, Int64}} + + if has_attribute(m, :_ambient_space_divisors_to_be_considered) + return get_attribute(m, :_ambient_space_divisors_to_be_considered) + end + + gS = gens(cox_ring(ambient_space(m))) + mnf = Oscar._minimal_nonfaces(ambient_space(m)) + ignored_sets = Set([Tuple(sort(Vector{Int}(Polymake.row(mnf, i)))) for i in 1:Polymake.nrows(mnf)]) + + list_of_elements = Vector{Tuple{Int64, Int64}}() + for k in 1:n_rays(ambient_space(m)) + for l in k:n_rays(ambient_space(m)) + + # V(x_k, x_l) = emptyset? + (k,l) in ignored_sets && continue + + # Simplify the hypersurface polynomial by setting relevant variables to zero. + # If all coefficients of this new polynomial add to sum, then we keep this generator. + new_p_hyper = divrem(hypersurface_equation(m), gS[k])[2] + if k != l + new_p_hyper = divrem(new_p_hyper, gS[l])[2] + end + if sum(coefficients(new_p_hyper)) == 0 + push!(list_of_elements, (k,l)) + continue + end + + # Determine remaining variables, after scaling "away" others. + remaining_vars_list = Set(1:length(gS)) + for my_exps in ignored_sets + len_my_exps = length(my_exps) + inter_len = count(idx -> idx in [k,l], my_exps) + if (len_my_exps == 2 && inter_len == 1) || (len_my_exps == 3 && inter_len == 2) + delete!(remaining_vars_list, my_exps[findfirst(idx -> !(idx in [k,l]), my_exps)]) + end + end + remaining_vars_list = collect(remaining_vars_list) + + # If one monomial of `new_p_hyper` has unset positions (a.k.a. new_p_hyper is not constant upon + # scaling the remaining variables), then keep this generator. + for exps in exponents(new_p_hyper) + if any(x -> x != 0, exps[remaining_vars_list]) + push!(list_of_elements, (k,l)) + break + end + end + + end + end + + # Remember this result as attribute and return the findings. + set_attribute!(m, :_ambient_space_divisors_to_be_considered, list_of_elements) + return list_of_elements + +end + + +@doc raw""" + well_quantized_ambient_space_models_of_g4_fluxes(m::AbstractFTheoryModel; check::Bool = true)::Vector{CohomologyClass} + +Given an F-theory model $m$ defined as hypersurface in a simplicial and +complete toric base, this method computes a basis of all well-quantized +ambient space $G_4$-fluxes. + +Note that it can be computationally very demanding to check if a toric variety +$X$ is complete (and simplicial). The optional argument `check` can be set +to `false` to skip these tests. + +# Examples +```jldoctest; setup = :(Oscar.LazyArtifacts.ensure_artifact_installed("QSMDB", Oscar.LazyArtifacts.find_artifacts_toml(Oscar.oscardir))) +julia> B3 = projective_space(NormalToricVariety, 3) +Normal toric variety + +julia> Kbar = anticanonical_divisor_class(B3) +Divisor class on a normal toric variety + +julia> t = literature_model(arxiv_id = "1109.3454", equation = "3.1", base_space = B3, defining_classes = Dict("w"=>Kbar)) +Construction over concrete base may lead to singularity enhancement. Consider computing singular_loci. However, this may take time! + +Global Tate model over a concrete base -- SU(5)xU(1) restricted Tate model based on arXiv paper 1109.3454 Eq. (3.1) + +julia> g4_amb_list = well_quantized_ambient_space_models_of_g4_fluxes(t) +2-element Vector{CohomologyClass}: + Cohomology class on a normal toric variety given by z^2 + Cohomology class on a normal toric variety given by y^2 + +julia> t_res = load("/datadisk/ToDo/1511.03209/FinalData/1511-03209-resolved.mrdi"); + +# Oscar.__ambient_space_divisors_to_be_considered(t_res) +# save("/home/i/list_of_divisor_pairs_to_be_considered.mrdi", list_of_divisor_pairs_to_be_considered) + +julia> list_of_divisor_pairs_to_be_considered = load("/datadisk/ToDo/1511.03209/FinalData/list_of_divisor_pairs_to_be_considered.mrdi"); +julia> set_attribute!(t_res, :_ambient_space_divisors_to_be_considered, list_of_divisor_pairs_to_be_considered); + +# ambient_space_flux_candidates_basis = ambient_space_models_of_g4_fluxes(t_res, check = false) +# save("/home/i/ambient_space_flux_candidates_basis.mrdi", ambient_space_flux_candidates_basis) + +julia> ambient_space_flux_candidates_basis = load("/datadisk/ToDo/1511.03209/FinalData/ambient_space_flux_candidates_basis.mrdi"); +julia> set_attribute!(t_res, :ambient_space_models_of_g4_fluxes, ambient_space_flux_candidates_basis); + +julia> m = t_res; + +julia> Oscar._reduce_hypersurface_equation(ambient_space(m), hypersurface_equation(m), my_tuple) + +julia> Oscar._rationally_equivalent_cycle(ambient_space(m), my_tuple) + +julia> intersection_dict = Dict{NTuple{4, Int64}, ZZRingElem}() + +julia> special_intersection_dict = Dict{String, ZZRingElem}() + +julia> Oscar.sophisticated_intersection_product(ambient_space(m), my_tuple, hypersurface_equation(m), intersection_dict, special_intersection_dict) + +julia> res = well_quantized_ambient_space_models_of_g4_fluxes(t_res, check = false) + +julia> intersection_dict = Dict{NTuple{4, Int64}, ZZRingElem}() + +julia> special_intersection_dict = Dict{String, ZZRingElem}() + +julia> sophisticated_intersection_product(ambient_space(m), (173, 175, 101, 102), hypersurface_equation(m), intersection_dict, special_intersection_dict) + +julia> my_tuple = (173, 175, 101, 102) + +julia> my_tuple = (175, 175, 101, 102) + +julia> my_tuple = (175, 175, 175, 102) + +julia> my_tuple = (175, 175, 175, 175) + +julia> Oscar._rationally_equivalent_cycle(ambient_space(m), my_tuple, data) + +julia> return Oscar._reduce_hypersurface_equation(ambient_space(m), hypersurface_equation(m), my_tuple, data) + +julia> sophisticated_intersection_product(ambient_space(m), my_tuple, hypersurface_equation(m), inter_dict, s_inter_dict, data) +``` +""" +function well_quantized_ambient_space_models_of_g4_fluxes(m::AbstractFTheoryModel; check::Bool = true) +#function well_quantized_ambient_space_models_of_g4_fluxes(m::AbstractFTheoryModel; check::Bool = true)::Vector{CohomologyClass} + + # (1) Entry checks + @req base_space(m) isa NormalToricVariety "Computation of well-quantized G4-fluxes only supported for toric base and ambient spaces" + @req dim(ambient_space(m)) == 5 "Computation of well-quantized G4-fluxes only supported for 5-dimensional toric ambient spaces" + if check + @req is_complete(ambient_space(m)) "Computation of well-quantized G4-fluxes only supported for complete toric ambient spaces" + @req is_simplicial(ambient_space(m)) "Computation of well-quantized G4-fluxes only supported for simplicial toric ambient space" + end + #if has_attribute(m, :well_quantized_ambient_space_models_of_g4_fluxes) + # return get_attribute(m, :well_quantized_ambient_space_models_of_g4_fluxes) + #end + + # (2) Compute data, that is frequently used by the sophisticated intersection product below + S = cox_ring(ambient_space(m)) + gS = gens(cox_ring(ambient_space(m))) + linear_relations = matrix(QQ, rays(ambient_space(m))) + scalings = [c.coeff for c in S.d] + mnf = Oscar._minimal_nonfaces(ambient_space(m)) + sr_ideal_pos = [Vector{Int}(Polymake.row(mnf, i)) for i in 1:Polymake.nrows(mnf)] + data = ( + S = S, + gS = gS, + linear_relations = linear_relations, + scalings = scalings, + sr_ideal_pos = sr_ideal_pos + ) + inter_dict = Dict{NTuple{4, Int64}, ZZRingElem}() + s_inter_dict = Dict{String, ZZRingElem}() + + my_tuple = (81, 101, 129, 130) + + return sophisticated_intersection_product(ambient_space(m), my_tuple, hypersurface_equation(m), inter_dict, s_inter_dict, data) + + # (2) Obtain critical information - this may take some time! + ambient_space_flux_candidates_basis = ambient_space_models_of_g4_fluxes(m, check = check) # 629 + ambient_space_flux_candidates_basis_indices = Vector{Tuple{Int64, Int64}}(undef, length(ambient_space_flux_candidates_basis)) + if arxiv_doi(m) == "10.48550/arXiv.1511.03209" + for k in 1:length(ambient_space_flux_candidates_basis) + idxs = findall(x -> x != 0, collect(exponents(polynomial(ambient_space_flux_candidates_basis[k]).f))[1]) + if length(idxs) == 1 + idxs = [idxs[1], idxs[1]] + end + ambient_space_flux_candidates_basis_indices[k] = Tuple(idxs) + end + end + list_of_divisor_pairs_to_be_considered = Oscar._ambient_space_divisors_to_be_considered(m) # 1794 + + # (3) Work out the relevant intersection products + constraint_matrix = Vector{Vector{Int64}}() + for i in 1:length(ambient_space_flux_candidates_basis) + condition = Vector{ZZRingElem}() + for j in 1:length(list_of_divisor_pairs_to_be_considered) + println("$i, $j") + if arxiv_doi(m) == "10.48550/arXiv.1511.03209" + my_tuple = (ambient_space_flux_candidates_basis_indices[i]..., list_of_divisor_pairs_to_be_considered[j]...) + push!(condition, sophisticated_intersection_product(ambient_space(m), my_tuple, hypersurface_equation(m), inter_dict, s_inter_dict, data)) + else + # CORRECT CODE TO BE ADDED! + push!(condition, 0) + end + end + push!(constraint_matrix, condition) + end + + return [matrix(ZZ, hcat(constraint_matrix...)), inter_dict, s_inter_dict] + +end diff --git a/experimental/FTheoryTools/src/exports.jl b/experimental/FTheoryTools/src/exports.jl index 6a3f2b2acd4..53ce0b2e962 100644 --- a/experimental/FTheoryTools/src/exports.jl +++ b/experimental/FTheoryTools/src/exports.jl @@ -217,5 +217,6 @@ export weighted_resolution_generating_sections export weighted_resolution_zero_sections export weighted_resolutions export weights +export well_quantized_ambient_space_models_of_g4_fluxes export zero_section export zero_section_class