From 2b1a95cd74aedf6f4c48f63decfce0fc60336760 Mon Sep 17 00:00:00 2001 From: Oren Amsalem Date: Tue, 25 Jun 2024 13:00:39 -0400 Subject: [PATCH] add figures --- figures/Fig1_FigS1.asv | 413 +++++++++++++++ figures/Fig1_FigS1.m | 1127 ++++++++++++++++++++++++++++++++++++++++ 2 files changed, 1540 insertions(+) create mode 100644 figures/Fig1_FigS1.asv create mode 100644 figures/Fig1_FigS1.m diff --git a/figures/Fig1_FigS1.asv b/figures/Fig1_FigS1.asv new file mode 100644 index 0000000..cc2945b --- /dev/null +++ b/figures/Fig1_FigS1.asv @@ -0,0 +1,413 @@ +% Load data + +Path='/Users/darshan/Dropbox/Work/JaneliaMac/mac1PreFormat-06-11-21/data/ALM/SiliconProbeData/FixedDelayTask'; +cd (Path) + + + +RFlag=1; + +fileListUnSorted = getAllFiles(Path); +fileListUnSorted(end)=[]; +fileListUnSorted(1)=[]; +fileListUnSorted(end)=[]; + +fileList=natsortfiles(fileListUnSorted); +numFiles=length(fileList); +TotalUnitsAllFiles=0; +uu=0; +PSTHD=[]; +for ff=1:length(fileList) +% for ff=1 + + ff + fileName = fileList{ff}; + % unitNum = 25; + preCueDur = 4.2; % in sec: plot how many seconds before go cue onset. + postCueDur = 1.4; % in sec: plot how many seconds after go cue onset. + + + + % laod file & extract info required for plotting + load(fileName) + TotalUnits=length(unit); + TotalUnitsAllFiles=TotalUnitsAllFiles+TotalUnits; + + % extract info + % for unitNum=3 + trialType = unit(1).Behavior.Trial_types_of_response_vector; % trial type based on outcome + NumCorrectTrials(ff)=sum(trialType==1)+sum(trialType==2) + NumIncorrectTrials(ff)=sum(trialType==3)+sum(trialType==4); + NumAllTrials(ff)=length(trialType); + + for unitNum=1:TotalUnits + uu=uu+1; + SpikeWidth=unit(unitNum).SpikeWidth; + Depth=unit(unitNum).Depth; + + trialType = unit(unitNum).Behavior.Trial_types_of_response_vector; % trial type based on outcome + + % 1: correct lick R trial, 2: correct lick L trial, 3: incorrect lick R trial, 4: incorrect lick L trial, + % 5: correct lick R trial with early lick, 6: correct lick L trial with early lick, + % 7: incorrect lick R trial with early lick, 8: incorrect lick L trial with early lick + % 9: lick R trial but no response, 10: lick L trial but no response, + % 11: others(unidentified) + + photoStimTrial = unit(unitNum).Behavior.stim_trial_vector; % photo stim trial type + % 0: no stim, 1: 0.05mW bilateral stim during early dealy, + % 2: 0.1mW bilateral stim during early dealy, + % 3: 0.2mW bilateral stim during early dealy, + % 4: 0.3mW bilateral stim during early dealy, + % don't analyze 0.05mW it was too weak to have any behavioral effect + + + % extract timing info + T.tAxisPSTH = -preCueDur-0.1:0.001:postCueDur+0.1; % T axis for PSTH, shift by 0.1 to remove smoothing artifact at the edge + T.sampleOnset = [unit(unitNum).Behavior.Sample_start]; % smaple epoch onset + T.delayOnset = [unit(unitNum).Behavior.Delay_start]; % delay epoch onset + T.cueOnset = [unit(unitNum).Behavior.Cue_start]; % go cue onset + + % calculate mean onset time of each epoch for plotting + % exclude early lick and non-response trial by "trialType<5" + T.meanSampleOnset = mean(T.sampleOnset(trialType==1)); + T.meanDelayOnset = mean(T.delayOnset(trialType==1)); + T.meanCueOnset = mean(T.cueOnset(trialType==1)); + + spikeTimes = unit(unitNum).SpikeTimes; % time bin of spike + trialIdxOfSpikes = unit(unitNum).Trial_idx_of_spike; % time bin of spike + + trialRange = unit(unitNum).Trial_info.Trial_range_to_analyze; % range of trials to analyze + trialTypeInRange = trialType(trialRange(1) : trialRange(2)); % trial type in range + photoStimTrialInRange = photoStimTrial(trialRange(1) : trialRange(2)); % stim trial type in range + + + selectedTrials=(photoStimTrialInRange==0).*(trialTypeInRange==RFlag); + FrD=[]; FrS=[];CV2S=[];CVS=[]; + ISID=[];ISIS=[]; + + % for tr = trialRange(1) : trialRange(2) + trVec=trialRange(1) : trialRange(2); + + trInd=0; + for tr = trVec(selectedTrials==1) + trInd=trInd+1; + + % extarct spikes of each trial + % SpikesTmp = spikeTimes(trialIdxOfSpikes == tr) - T.cueOnset(tr); % align to go cue + sampleInd=(spikeTimes(trialIdxOfSpikes == tr)T.sampleOnset(tr)); + delayInd=(spikeTimes(trialIdxOfSpikes == tr)T.delayOnset(tr)); + cueInd=(spikeTimes(trialIdxOfSpikes == tr)>T.cueOnset(tr)); + + sampleTot=T.delayOnset(tr)-T.sampleOnset(tr); + delayTot=T.cueOnset(tr)-T.delayOnset(tr); + cueTot=postCueDur; + +% SpikesTmpD = spikeTimes(trialIdxOfSpikes == tr) - T.delayOnset(tr); % align to go cue + + SpikesTmp = spikeTimes(trialIdxOfSpikes == tr) ; + SpikesD=SpikesTmp(delayInd==1); +% PSTHD{uu}=[PSTHD{uu} SpikesD tr*length(SpikesD)]; + SpikesS=SpikesTmp(sampleInd==1); + SpikesR=SpikesTmp(cueInd==1); + + if length(SpikesTmp)<2 + FrD(trInd)=0; + CVD(trInd)=0; + CV2D(trInd)=0; + + FrS(trInd)=0; + CVS(trInd)=0; + CV2S(trInd)=0; + + FrR(trInd)=0; + else + FrS(trInd)=length(SpikesS)./(sampleTot); + FrD(trInd)=length(SpikesD)./(delayTot); + FrR(trInd)=length(SpikesR)./(cueTot); + + % Calc CV + if sum(FrD>60) + unitNum + trInd + end + ISID=[ISID; diff(SpikesD)]; + + ISIS=[ISIS; diff(SpikesS)]; + + end + + end + Session(ff).FrDUnit(unitNum)=mean(FrD); + Session(ff).FrRUnit(unitNum)=mean(FrR); + Session(ff).CVDUnit(unitNum)=std(ISID)/mean(ISID); + Session(ff).CVDUnitTrials(unitNum)=length(ISID); + Session(ff).CVSUnitTrials(unitNum)=length(ISIS); + Session(ff).ISID{unitNum}=ISID; + Session(ff).ISIS{unitNum}=ISIS; + + Session(ff).CV2DUnit(unitNum)=2.*mean(abs(ISID(2:end)-ISID(1:end-1))./(ISID(2:end)+ISID(1:end-1))); + Session(ff).FrSUnit(unitNum)=mean(FrS); + Session(ff).CVSUnit(unitNum)=std(ISIS)/mean(ISIS); + Session(ff).CV2SUnit(unitNum)=2.*mean(abs(ISIS(2:end)-ISIS(1:end-1))./(ISIS(2:end)+ISIS(1:end-1))); + Session(ff).SpikeWidth(unitNum)=SpikeWidth; + Session(ff).Depth(unitNum)=Depth; + + + + end + + + + FS_vec=Session(ff).SpikeWidth<0.35; + Exc_vec=Session(ff).SpikeWidth>0.5; + +% Layer5=(Session(ff).Depth>400) .* (Session(ff).Depth<1100); + Layer5=(Session(ff).Depth>0) .* (Session(ff).Depth<1300); + Exc_vecLayer5=logical(Layer5.*Exc_vec); + figure(1000) + plot(Session(ff).FrDUnit(Exc_vecLayer5), Session(ff).Depth(Exc_vecLayer5),'ob') + plot(Session(ff).FrDUnit(FS_vec), Session(ff).Depth(FS_vec),'og') + hold on + box off + + figure(10) + plot(Session(ff).FrSUnit(Exc_vec),Session(ff).CVSUnit(Exc_vec),'or') + hold on + plot(Session(ff).FrDUnit(Exc_vec),Session(ff).CVDUnit(Exc_vec),'ob') + box off + ylim([0 3]) + xlim([0 70]) + axis square + + figure(110) + plot(Session(ff).FrSUnit(FS_vec),Session(ff).CVSUnit(FS_vec),'or') + hold on + plot(Session(ff).FrDUnit(FS_vec),Session(ff).CVDUnit(FS_vec),'og') + box off + ylim([0 3]) + xlim([0 70]) + axis square + + + figure(12) + plot(Session(ff).FrSUnit(Exc_vec),Session(ff).CV2SUnit(Exc_vec),'or') + hold on + plot(Session(ff).FrDUnit(Exc_vec),Session(ff).CV2DUnit(Exc_vec),'ob') + box off + ylim([0 3]) + xlim([0 70]) + axis square + + figure(112) + plot(Session(ff).FrSUnit(FS_vec),Session(ff).CV2SUnit(FS_vec),'or') + hold on + plot(Session(ff).FrDUnit(FS_vec),Session(ff).CV2DUnit(FS_vec),'og') + box off + ylim([0 3]) + xlim([0 70]) + axis square + + Session(ff).fileName=fileName; + +end + +%% +EtotFrR=[];EtotFrS=[];EtotFrD=[];EtotCVS=[];EtotCVD=[];EtotCV2S=[];EtotCV2D=[]; +ItotFrS=[];ItotFrD=[];ItotCVS=[];ItotCVD=[];ItotCV2S=[];ItotCV2D=[]; +EtotFrDL5=[];EtotCVDL5=[];DepthAll=[];EtotCVDTrials=[]; +Exc_vec_List=[]; +FS_vec_List=[]; +for ff=1:numFiles + FS_vec=Session(ff).SpikeWidth<0.35; + Exc_vec=Session(ff).SpikeWidth>0.5; + Layer5=(Session(ff).Depth>400) .* (Session(ff).Depth<800); + Exc_vecLayer5=logical(Layer5.*Exc_vec); + + DepthAll=[DepthAll Session(ff).Depth(Exc_vec)]; + + EtotFrDL5=[EtotFrDL5 Session(ff).FrDUnit(Exc_vecLayer5)]; + EtotCVDL5=[EtotCVDL5 Session(ff).CVDUnit(Exc_vecLayer5)]; +Exc_vec_List=[Exc_vec_List Exc_vec]; +FS_vec_List=[FS_vec_List FS_vec]; + + EtotFrS=[EtotFrS Session(ff).FrSUnit(Exc_vec)]; + EtotFrD=[EtotFrD Session(ff).FrDUnit(Exc_vec)]; + EtotFrR=[EtotFrR Session(ff).FrRUnit(Exc_vec)]; + EtotCVS=[EtotCVS Session(ff).CVSUnit(Exc_vec)]; + EtotCVD=[EtotCVD Session(ff).CVDUnit(Exc_vec)]; + + EtotCVDTrials=[EtotCVDTrials Session(ff).CVDUnitTrials(Exc_vec)]; + + EtotCV2S=[EtotCV2S Session(ff).CV2SUnit(Exc_vec)]; + EtotCV2D=[EtotCV2D Session(ff).CV2DUnit(Exc_vec)]; + + ItotFrS=[ItotFrS Session(ff).FrSUnit(FS_vec)]; + ItotFrD=[ItotFrD Session(ff).FrDUnit(FS_vec)]; + ItotCVS=[ItotCVS Session(ff).CVSUnit(FS_vec)]; + ItotCVD=[ItotCVD Session(ff).CVDUnit(FS_vec)]; + ItotCV2S=[ItotCV2S Session(ff).CV2SUnit(FS_vec)]; + ItotCV2D=[ItotCV2D Session(ff).CV2DUnit(FS_vec)]; +end +figure(100) +hist(EtotFrD,25) +box off +axis square +xlim([0 70]) + +CVD=EtotCVD; +CVD(isnan(EtotCVD))=[]; +CVD(CVD==0)=[]; +figure(200) +hist(CVD,25) +box off +xlim([0 3]) +axis square + + +figure(600) +% subplot 211 +plot(EtotFrD,EtotCVD,'o') +hold on +plot(ItotFrD,ItotCVD,'o') +box off +axis square +ylim([0 3]) +%% +figure(222) +plot(EtotCVS,EtotCVD,'o') +hold on +plot(ItotCVS,ItotCVD,'or') +plot(0:1:3,0:1:3,'-k') +box off +axis square +ylim([0 3]) +xlim([0 3]) +EtotCVD(isnan(EtotCVD))=[]; +EtotCVS(isnan(EtotCVS))=[]; +[HSD,PSD,CI,STATS] = ttest2(EtotCVS,EtotCVD); + +%% Figure 1C: Log normal (log10) E and I +% Number of data points +N = 10000; +% Specify bin locations for histogram and fit +BIN_WIDTH = 0.1; +BIN_MAX = 2; +BIN_RANGE = -2:BIN_WIDTH:BIN_MAX; +% x_values = BIN_RANGE; +% Make up some data. (You should use your real data in place of x.) +x = EtotFrD';%lognrnd(1,0.3,N,1); +% Fit the data +x(find(EtotFrD==0))=0.001; +% parmhat = lognfit(x); +pd=fitdist(log10(x),'Normal'); +% Plot comparison of the histogram of the data, and the fit +figure +hold on +% Empirical distribution +y_data=hist(log10(x),BIN_RANGE); +y_clear=hist((x),0:0.1:60); +bar(BIN_RANGE,y_data./sum(y_data)/0.1,'b','facecolor','k','facealpha',.5,'edgecolor','none') +y = pdf(pd,BIN_RANGE); +plot(BIN_RANGE,y,'b','LineWidth',4) +% semilogx(0:0.1:60,y_clear) +% hist(log10(x)./sum(log10(x))/0.1,BIN_RANGE) + +hold on +BIN_WIDTH = 0.2; +BIN_MAX = 3; +BIN_RANGE = -3:BIN_WIDTH:BIN_MAX; + + +x = ItotFrD';%lognrnd(1,0.3,N,1); +% Fit the data +x(find(ItotFrD==0))=0.001; +% parmhat = lognfit(x); +pd=fitdist(log10(x),'Normal'); +% Plot comparison of the histogram of the data, and the fit +% figure +hold on +% Empirical distribution +y_data=hist(log10(x),BIN_RANGE); +y_clear=hist((x),0:0.1:60); +bar(BIN_RANGE,y_data./sum(y_data)/BIN_WIDTH,'r','facecolor','k','facealpha',.5,'edgecolor','none') +% semilogx(0:0.1:60,y_clear) +% hist(log10(x)./sum(log10(x))/0.1,BIN_RANGE) + +hold on + +x_values = BIN_RANGE; +y = pdf(pd,x_values); +plot(x_values,y,'r','LineWidth',4) +%% Figure 1F-E-G + + + + +plot(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0),FrDALL(AuditoryFlag(goodCellsNoRepRegular)==0),'om') +hold on;plot(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1),FrDALL(AuditoryFlag(goodCellsNoRepRegular)==1),'xm') + +mV=mean(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1));SDV=std(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1)); +mVS=mean(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0));SDVS=std(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0)); +title(sprintf('Aud: mVD=%.1f,sdmVD=%.1f; Tac mVD=%.1f,sdmVD=%.1f',mV,SDV,mVS,SDVS)) + +figure + +plot(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0),DTSD(AuditoryFlag(goodCellsNoRepRegular)==0),'om') +hold on;plot(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1),DTSD(AuditoryFlag(goodCellsNoRepRegular)==1),'xm') + + +x=mCorrectedDelay'; +y=(DTSD)'; +[Rsq,yCalc]= MyLinearReg(x,y); +plot(x,yCalc,'m') +legend(sprintf('red R^2=%.2f ',Rsq)) + + +mV=mean(DTSD(AuditoryFlag(goodCellsNoRepRegular)==1));SDV=std(DTSD(AuditoryFlag(goodCellsNoRepRegular)==1)); +mVS=mean(DTSD(AuditoryFlag(goodCellsNoRepRegular)==0));SDVS=std(DTSD(AuditoryFlag(goodCellsNoRepRegular)==0)); +title(sprintf('Aud: mSD=%.1f,sdSD=%.1f; Tac mSD=%.1f,sdSD=%.1f',mV,SDV,mVS,SDVS)) +box off + +% +% figure +% histogram((mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1)),-70:4:-30,'facecolor','m','facealpha',.5,'edgecolor','none') +% hold on +% histogram((mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0)),-70:4:-30,'facecolor','k','facealpha',.5,'edgecolor','none') +% box off + +figure +histogram(mCorrectedDelay,-70:4:-30,'facecolor','m','facealpha',.5,'edgecolor','none') +hold on +box off +xlim([-70 -30]) + +% Plot with respect to threshold and threhsold distribution +difv_plot=mCorrectedDelay;tresh_plot=thD; +mean(thD) +std(thD) +difv_plot(thD==0)=[];tresh_plot(thD==0)=[]; +figure +histogram(tresh_plot,-40:0.5:-30,'facecolor','m','facealpha',.5,'edgecolor','none') + +figure +histogram(tresh_plot-difv_plot,6:2:30,'facecolor','m','facealpha',.5,'edgecolor','none') + + + + + + +%% Figure S1C: CV Vs Rates + +load('FrCVWholeDelay.mat') +figure(300) +plot(EtotFrD,EtotCVD,'ob') +hold on +plot(FrDALL,CVD,'xg') +plot(EtotFrS,EtotCVS,'or') +hold on +plot(FrSALL,CVS,'xc') +box off +legend('Delay,Probes','Delay,WholeCell','Sample,Probes','Sample,WholeCell') +xlim([1 60]) +ylim([0 3]) diff --git a/figures/Fig1_FigS1.m b/figures/Fig1_FigS1.m new file mode 100644 index 0000000..07e10c9 --- /dev/null +++ b/figures/Fig1_FigS1.m @@ -0,0 +1,1127 @@ +% Load data + +Path='.../ALM/SiliconProbeData/FixedDelayTask'; +cd (Path) + + + +RFlag=1; + +fileListUnSorted = getAllFiles(Path); +fileListUnSorted(end)=[]; +fileListUnSorted(1)=[]; +fileListUnSorted(end)=[]; + +fileList=natsortfiles(fileListUnSorted); +numFiles=length(fileList); +TotalUnitsAllFiles=0; +uu=0; +PSTHD=[]; +for ff=1:length(fileList) +% for ff=1 + + ff + fileName = fileList{ff}; + % unitNum = 25; + preCueDur = 4.2; % in sec: plot how many seconds before go cue onset. + postCueDur = 1.4; % in sec: plot how many seconds after go cue onset. + + + + % laod file & extract info required for plotting + load(fileName) + TotalUnits=length(unit); + TotalUnitsAllFiles=TotalUnitsAllFiles+TotalUnits; + + % extract info + % for unitNum=3 + trialType = unit(1).Behavior.Trial_types_of_response_vector; % trial type based on outcome + NumCorrectTrials(ff)=sum(trialType==1)+sum(trialType==2) + NumIncorrectTrials(ff)=sum(trialType==3)+sum(trialType==4); + NumAllTrials(ff)=length(trialType); + + for unitNum=1:TotalUnits + uu=uu+1; + SpikeWidth=unit(unitNum).SpikeWidth; + Depth=unit(unitNum).Depth; + + trialType = unit(unitNum).Behavior.Trial_types_of_response_vector; % trial type based on outcome + + % 1: correct lick R trial, 2: correct lick L trial, 3: incorrect lick R trial, 4: incorrect lick L trial, + % 5: correct lick R trial with early lick, 6: correct lick L trial with early lick, + % 7: incorrect lick R trial with early lick, 8: incorrect lick L trial with early lick + % 9: lick R trial but no response, 10: lick L trial but no response, + % 11: others(unidentified) + + photoStimTrial = unit(unitNum).Behavior.stim_trial_vector; % photo stim trial type + % 0: no stim, 1: 0.05mW bilateral stim during early dealy, + % 2: 0.1mW bilateral stim during early dealy, + % 3: 0.2mW bilateral stim during early dealy, + % 4: 0.3mW bilateral stim during early dealy, + % don't analyze 0.05mW it was too weak to have any behavioral effect + + + % extract timing info + T.tAxisPSTH = -preCueDur-0.1:0.001:postCueDur+0.1; % T axis for PSTH, shift by 0.1 to remove smoothing artifact at the edge + T.sampleOnset = [unit(unitNum).Behavior.Sample_start]; % smaple epoch onset + T.delayOnset = [unit(unitNum).Behavior.Delay_start]; % delay epoch onset + T.cueOnset = [unit(unitNum).Behavior.Cue_start]; % go cue onset + + % calculate mean onset time of each epoch for plotting + % exclude early lick and non-response trial by "trialType<5" + T.meanSampleOnset = mean(T.sampleOnset(trialType==1)); + T.meanDelayOnset = mean(T.delayOnset(trialType==1)); + T.meanCueOnset = mean(T.cueOnset(trialType==1)); + + spikeTimes = unit(unitNum).SpikeTimes; % time bin of spike + trialIdxOfSpikes = unit(unitNum).Trial_idx_of_spike; % time bin of spike + + trialRange = unit(unitNum).Trial_info.Trial_range_to_analyze; % range of trials to analyze + trialTypeInRange = trialType(trialRange(1) : trialRange(2)); % trial type in range + photoStimTrialInRange = photoStimTrial(trialRange(1) : trialRange(2)); % stim trial type in range + + + selectedTrials=(photoStimTrialInRange==0).*(trialTypeInRange==RFlag); + FrD=[]; FrS=[];CV2S=[];CVS=[]; + ISID=[];ISIS=[]; + + % for tr = trialRange(1) : trialRange(2) + trVec=trialRange(1) : trialRange(2); + + trInd=0; + for tr = trVec(selectedTrials==1) + trInd=trInd+1; + + % extarct spikes of each trial + % SpikesTmp = spikeTimes(trialIdxOfSpikes == tr) - T.cueOnset(tr); % align to go cue + sampleInd=(spikeTimes(trialIdxOfSpikes == tr)T.sampleOnset(tr)); + delayInd=(spikeTimes(trialIdxOfSpikes == tr)T.delayOnset(tr)); + cueInd=(spikeTimes(trialIdxOfSpikes == tr)>T.cueOnset(tr)); + + sampleTot=T.delayOnset(tr)-T.sampleOnset(tr); + delayTot=T.cueOnset(tr)-T.delayOnset(tr); + cueTot=postCueDur; + +% SpikesTmpD = spikeTimes(trialIdxOfSpikes == tr) - T.delayOnset(tr); % align to go cue + + SpikesTmp = spikeTimes(trialIdxOfSpikes == tr) ; + SpikesD=SpikesTmp(delayInd==1); +% PSTHD{uu}=[PSTHD{uu} SpikesD tr*length(SpikesD)]; + SpikesS=SpikesTmp(sampleInd==1); + SpikesR=SpikesTmp(cueInd==1); + + if length(SpikesTmp)<2 + FrD(trInd)=0; + CVD(trInd)=0; + CV2D(trInd)=0; + + FrS(trInd)=0; + CVS(trInd)=0; + CV2S(trInd)=0; + + FrR(trInd)=0; + else + FrS(trInd)=length(SpikesS)./(sampleTot); + FrD(trInd)=length(SpikesD)./(delayTot); + FrR(trInd)=length(SpikesR)./(cueTot); + + % Calc CV + if sum(FrD>60) + unitNum + trInd + end + ISID=[ISID; diff(SpikesD)]; + + ISIS=[ISIS; diff(SpikesS)]; + + end + + end + Session(ff).FrDUnit(unitNum)=mean(FrD); + Session(ff).FrRUnit(unitNum)=mean(FrR); + Session(ff).CVDUnit(unitNum)=std(ISID)/mean(ISID); + Session(ff).CVDUnitTrials(unitNum)=length(ISID); + Session(ff).CVSUnitTrials(unitNum)=length(ISIS); + Session(ff).ISID{unitNum}=ISID; + Session(ff).ISIS{unitNum}=ISIS; + + Session(ff).CV2DUnit(unitNum)=2.*mean(abs(ISID(2:end)-ISID(1:end-1))./(ISID(2:end)+ISID(1:end-1))); + Session(ff).FrSUnit(unitNum)=mean(FrS); + Session(ff).CVSUnit(unitNum)=std(ISIS)/mean(ISIS); + Session(ff).CV2SUnit(unitNum)=2.*mean(abs(ISIS(2:end)-ISIS(1:end-1))./(ISIS(2:end)+ISIS(1:end-1))); + Session(ff).SpikeWidth(unitNum)=SpikeWidth; + Session(ff).Depth(unitNum)=Depth; + + + + end + + + + FS_vec=Session(ff).SpikeWidth<0.35; + Exc_vec=Session(ff).SpikeWidth>0.5; + +% Layer5=(Session(ff).Depth>400) .* (Session(ff).Depth<1100); + Layer5=(Session(ff).Depth>0) .* (Session(ff).Depth<1300); + Exc_vecLayer5=logical(Layer5.*Exc_vec); + figure(1000) + plot(Session(ff).FrDUnit(Exc_vecLayer5), Session(ff).Depth(Exc_vecLayer5),'ob') + plot(Session(ff).FrDUnit(FS_vec), Session(ff).Depth(FS_vec),'og') + hold on + box off + + figure(10) + plot(Session(ff).FrSUnit(Exc_vec),Session(ff).CVSUnit(Exc_vec),'or') + hold on + plot(Session(ff).FrDUnit(Exc_vec),Session(ff).CVDUnit(Exc_vec),'ob') + box off + ylim([0 3]) + xlim([0 70]) + axis square + + figure(110) + plot(Session(ff).FrSUnit(FS_vec),Session(ff).CVSUnit(FS_vec),'or') + hold on + plot(Session(ff).FrDUnit(FS_vec),Session(ff).CVDUnit(FS_vec),'og') + box off + ylim([0 3]) + xlim([0 70]) + axis square + + + figure(12) + plot(Session(ff).FrSUnit(Exc_vec),Session(ff).CV2SUnit(Exc_vec),'or') + hold on + plot(Session(ff).FrDUnit(Exc_vec),Session(ff).CV2DUnit(Exc_vec),'ob') + box off + ylim([0 3]) + xlim([0 70]) + axis square + + figure(112) + plot(Session(ff).FrSUnit(FS_vec),Session(ff).CV2SUnit(FS_vec),'or') + hold on + plot(Session(ff).FrDUnit(FS_vec),Session(ff).CV2DUnit(FS_vec),'og') + box off + ylim([0 3]) + xlim([0 70]) + axis square + + Session(ff).fileName=fileName; + +end + +%% +EtotFrR=[];EtotFrS=[];EtotFrD=[];EtotCVS=[];EtotCVD=[];EtotCV2S=[];EtotCV2D=[]; +ItotFrS=[];ItotFrD=[];ItotCVS=[];ItotCVD=[];ItotCV2S=[];ItotCV2D=[]; +EtotFrDL5=[];EtotCVDL5=[];DepthAll=[];EtotCVDTrials=[]; +Exc_vec_List=[]; +FS_vec_List=[]; +for ff=1:numFiles + FS_vec=Session(ff).SpikeWidth<0.35; + Exc_vec=Session(ff).SpikeWidth>0.5; + Layer5=(Session(ff).Depth>400) .* (Session(ff).Depth<800); + Exc_vecLayer5=logical(Layer5.*Exc_vec); + + DepthAll=[DepthAll Session(ff).Depth(Exc_vec)]; + + EtotFrDL5=[EtotFrDL5 Session(ff).FrDUnit(Exc_vecLayer5)]; + EtotCVDL5=[EtotCVDL5 Session(ff).CVDUnit(Exc_vecLayer5)]; +Exc_vec_List=[Exc_vec_List Exc_vec]; +FS_vec_List=[FS_vec_List FS_vec]; + + EtotFrS=[EtotFrS Session(ff).FrSUnit(Exc_vec)]; + EtotFrD=[EtotFrD Session(ff).FrDUnit(Exc_vec)]; + EtotFrR=[EtotFrR Session(ff).FrRUnit(Exc_vec)]; + EtotCVS=[EtotCVS Session(ff).CVSUnit(Exc_vec)]; + EtotCVD=[EtotCVD Session(ff).CVDUnit(Exc_vec)]; + + EtotCVDTrials=[EtotCVDTrials Session(ff).CVDUnitTrials(Exc_vec)]; + + EtotCV2S=[EtotCV2S Session(ff).CV2SUnit(Exc_vec)]; + EtotCV2D=[EtotCV2D Session(ff).CV2DUnit(Exc_vec)]; + + ItotFrS=[ItotFrS Session(ff).FrSUnit(FS_vec)]; + ItotFrD=[ItotFrD Session(ff).FrDUnit(FS_vec)]; + ItotCVS=[ItotCVS Session(ff).CVSUnit(FS_vec)]; + ItotCVD=[ItotCVD Session(ff).CVDUnit(FS_vec)]; + ItotCV2S=[ItotCV2S Session(ff).CV2SUnit(FS_vec)]; + ItotCV2D=[ItotCV2D Session(ff).CV2DUnit(FS_vec)]; +end +figure(100) +hist(EtotFrD,25) +box off +axis square +xlim([0 70]) + +CVD=EtotCVD; +CVD(isnan(EtotCVD))=[]; +CVD(CVD==0)=[]; +figure(200) +hist(CVD,25) +box off +xlim([0 3]) +axis square + + +figure(600) +% subplot 211 +plot(EtotFrD,EtotCVD,'o') +hold on +plot(ItotFrD,ItotCVD,'o') +box off +axis square +ylim([0 3]) +%% +figure(222) +plot(EtotCVS,EtotCVD,'o') +hold on +plot(ItotCVS,ItotCVD,'or') +plot(0:1:3,0:1:3,'-k') +box off +axis square +ylim([0 3]) +xlim([0 3]) +EtotCVD(isnan(EtotCVD))=[]; +EtotCVS(isnan(EtotCVS))=[]; +[HSD,PSD,CI,STATS] = ttest2(EtotCVS,EtotCVD); + +%% Figure 1C: Log normal (log10) E and I +% Number of data points +N = 10000; +% Specify bin locations for histogram and fit +BIN_WIDTH = 0.1; +BIN_MAX = 2; +BIN_RANGE = -2:BIN_WIDTH:BIN_MAX; +% x_values = BIN_RANGE; +% Make up some data. (You should use your real data in place of x.) +x = EtotFrD';%lognrnd(1,0.3,N,1); +% Fit the data +x(find(EtotFrD==0))=0.001; +% parmhat = lognfit(x); +pd=fitdist(log10(x),'Normal'); +% Plot comparison of the histogram of the data, and the fit +figure +hold on +% Empirical distribution +y_data=hist(log10(x),BIN_RANGE); +y_clear=hist((x),0:0.1:60); +bar(BIN_RANGE,y_data./sum(y_data)/0.1,'b','facecolor','k','facealpha',.5,'edgecolor','none') +y = pdf(pd,BIN_RANGE); +plot(BIN_RANGE,y,'b','LineWidth',4) +% semilogx(0:0.1:60,y_clear) +% hist(log10(x)./sum(log10(x))/0.1,BIN_RANGE) + +hold on +BIN_WIDTH = 0.2; +BIN_MAX = 3; +BIN_RANGE = -3:BIN_WIDTH:BIN_MAX; + + +x = ItotFrD';%lognrnd(1,0.3,N,1); +% Fit the data +x(find(ItotFrD==0))=0.001; +% parmhat = lognfit(x); +pd=fitdist(log10(x),'Normal'); +% Plot comparison of the histogram of the data, and the fit +% figure +hold on +% Empirical distribution +y_data=hist(log10(x),BIN_RANGE); +y_clear=hist((x),0:0.1:60); +bar(BIN_RANGE,y_data./sum(y_data)/BIN_WIDTH,'r','facecolor','k','facealpha',.5,'edgecolor','none') +% semilogx(0:0.1:60,y_clear) +% hist(log10(x)./sum(log10(x))/0.1,BIN_RANGE) + +hold on + +x_values = BIN_RANGE; +y = pdf(pd,x_values); +plot(x_values,y,'r','LineWidth',4) +%% Figure 1F-E-G +%First load: +Path='...ALM/WholeCellData/Data'; + +cd (Path) +% % % % RFlag=1; +LRFlag=1; % 1=right, 2=left + +skewns = @(x) (sum((x-mean(x)).^3)./length(x)) ./ (var(x,1).^1.5); +kurtss = @(x) (sum((x-mean(x)).^4)./length(x)) ./ (var(x,1).^2); +ExKurtss = @(x) (sum((x-mean(x)).^4)./length(x)) ./ (var(x,1).^2)-3; + +fileListUnSorted = getAllFiles(Path); +fileListUnSorted{1} +% fileListUnSorted(1)=[]; +fileList=natsortfiles(fileListUnSorted); + +% % % % % % % % % % % % % fileList(1)=[]; +% % % % % % % % % % % % % fileList(17)=[]; +% % % % % % % % % % % % % fileList(23)=[]; +Vthparams= [-55 -45 100 5]; + + +RepCells=[7:8 12:13 29:30 33:34 38:39 47:48 50:51 52:53 54:55 56:57]; %10 cells are double +goodCellsNoRepRegular=[1:3 5:6 8 9:11 13 16:21 23:24 27 30 32 34 35:37 40:42 44 48:49 51 55 57 62 64:67 69:70 81:85 89]; +% selecGoodCelssHid=selecVecHideRep(goodCellsNoRepRegular); + +numFiles=size(fileList,1); +AuditoryFlag=zeros(numFiles,1); +AuditoryFlag(1:42)=1; % file 42= cell 133, afterwards it is tactile +RepCellsIndx=[7 12 29 33 38 47 50 52 54 56]; +CtxDepth=[360 454 398 579 458 538 566 552 684 731 679 725 684 818 235 280 517 582 611 367 289 262 566 629 498 553 513 627 814 435 502 617 558 641 575 293 620 571 353 454 509 357 442 518 557 389 593 481 595 394 391 489 489 456 478 452 560 579 604 615 584 527 377 521 705 500 465 512 477 561 591 427 502 435 760 509 470 617 530]; +CtxDepthRep=[360 454 398 579 458 538 566 566 552 684 731 679 679 725 684 818 235 280 517 582 611 367 289 262 566 629 498 553 513 513 627 814 435 435 502 617 558 641 641 575 293 620 571 353 454 509 357 357 442 518 518 557 557 389 389 593 593 481 595 394 391 489 489 456 478 452 560 579 604 615 584 527 377 521 705 500 465 512 477 561 591 427 502 435 760 509 470 617 530]; + +ind=0; +% +for ff=goodCellsNoRepRegular + tic; + + ind=ind+1; + ff + % [data, trial, general] = JustloadNWB_Inagaki(fileList{ff}); + load(fileList{ff}); + + % Plot + + % basic parameters for plotting + % sampleRate = 1/mean(diff(data.tAxis )); % sample rate (per s) it should be 20kHz + % sample rate + sampleRate = wholeCell.recording_data.sample_rate + + trialType = wholeCell.behavioral_data.trial_type_vector; % trial type + + ExcludeStimTrials=strncmpi(wholeCell.behavioral_data.original_trial_name,'r_s',3)+strncmpi(wholeCell.behavioral_data.original_trial_name,'l_s',3); + + PhotoStimTrials= wholeCell.behavioral_data.AOM_on_or_off ; + + ExcludeTrials = (ExcludeStimTrials+PhotoStimTrials+(trialType~=LRFlag))>0; + + % 1: correct lick R trial, 2: correct lick L trial, 3: incorrect lick R trial, 4: incorrect lick L trial, + % 5: correct lick R trial with early lick, 6: correct lick L trial with early lick, + % 7: incorrect lick R trial with early lick, 8: incorrect lick L trial with early lick + % 9: lick R trial but no response, 10: lick L trial but no response, + % 11: others(unidentified) + + % plotDuration = 5; % 5s + % preDelayDuration = 2; % duration to plot before Delay onset + preCueDur = 3; + postCueDur = 1.4; + % numPoint = plotDuration*sampleRate; % number of data points to plot + % Time.tAxis = (1:numPoint)/sampleRate - preDelayDuration; % time axis for plotting + + % extract timing info + T.tAxis = (-preCueDur*sampleRate:postCueDur*sampleRate)/sampleRate; % T axis for Vm + % T.tAxisPSTH = -preCueDur-0.1:0.001:postCueDur+0.1; % T axis for PSTH (add 100ms because of smoothing) + T.sampleOnset = [wholeCell.behavioral_data.behav_timing.sampling_start]; % smaple epoch onset + T.delayOnset = [wholeCell.behavioral_data.behav_timing.delay_start]; % delay epoch onset + T.cueOnset = [wholeCell.behavioral_data.behav_timing.cue_start]; % go cue onset + + + % calculate mean onset time of each epoch for plotting + % exclude early lick and non-response trial by "trialType<5" + T.meanSampleOnset = mean(T.sampleOnset(trialType<5)); + T.meanDelayOnset = mean(T.delayOnset(trialType<5)); + T.meanCueOnset = mean(T.cueOnset(trialType<5)); + + + numOfTrials = numel(wholeCell.behavioral_data.trial_type_vector); % total number of trials + + + Vm = nan(numOfTrials,numel(T.tAxis)); + Vm_wo_spike = nan(numOfTrials,numel(T.tAxis)); + spikePeaksBin = wholeCell.recording_data.spike_peak_bin; % time bin of spike + + + +if AuditoryFlag(ff) + EnResponse=find(T.tAxis==0.2); + EnDelay=find(T.tAxis==0); + StDelay=find(T.tAxis>-1.2,1); + StSample=find(T.tAxis>-1.2-1.15,1); + EnSample=StDelay; + durSample=1.15; + + LateDelay=find(T.tAxis>-0.1,1); +else + EnResponse=find(T.tAxis==0.2); + EnDelay=find(T.tAxis==0); + StDelay=find(T.tAxis>-1.2,1); + StSample=find(T.tAxis>-1.2-1.4,1); + EnSample=StDelay; + durSample=1.4; + + LateDelay=find(T.tAxis>-0.1,1); +end + + Time=T.tAxis; + Vtot=[]; SVtot=[]; DVtot=[];RVtot=[];VtotNoMeanRed=[];VtotNoMeanRedMY=[];VtotMY=[]; + SVtotMY=[]; DVtotMY=[];RVtotMY=[]; + SSK=[]; SKur=[]; Smu=[]; SSD=[];Skstat=[]; + DSK=[]; DKur=[]; Dmu=[]; DSD=[];Dkstat=[]; + RSK=[]; RKur=[]; Rmu=[]; RSD=[]; + + SSKMY=[]; SKurMY=[]; SmuMY=[]; SSDMY=[];SkstatMY=[]; + DSKMY=[]; DKurMY=[]; DmuMY=[]; DSDMY=[];DkstatMY=[]; + RSKMY=[]; RKurMY=[]; RmuMY=[]; RSDMY=[];RkstatMY=[]; + + SK=[]; Kur=[]; mu=[]; SD=[];kstat=[]; + files{ind}.Dmu=[];files{ind}.Smu=[];files{ind}.Rmu=[]; + files{ind}.DFr=[];files{ind}.SFr=[];files{ind}.RFr=[]; + files{ind}.RISI=[];files{ind}.DISI=[];files{ind}.SISI=[]; + ISItmp=[]; + for tr=1: numOfTrials + % calculate the first and last bin of trial + trialOnsetBin = wholeCell.behavioral_data.trial_onset_bin(tr); % bin of trial onset + cueOnset = T.cueOnset(tr); % go cue onset of each trial + + firstBin = trialOnsetBin + round((cueOnset-preCueDur)*sampleRate); + lastBin = trialOnsetBin + round((cueOnset+postCueDur)*sampleRate); + + + % extarct Vm between the first and last bin + Vm(tr,:) = wholeCell.recording_data.Vm(firstBin:lastBin); + Vm_wo_spike(tr,:) = wholeCell.recording_data.Vm_wo_spike(firstBin:lastBin); + end + + Vm(ExcludeTrials,:)=[]; + Vm_wo_spike(ExcludeTrials,:)=[]; + numOfTrialsNotExcluded=numOfTrials-sum(ExcludeTrials) + AllThreshVec=[];DThreshVec=[];SThreshVec=[];RThreshVec=[]; + + TotTreshS=[];TotTreshD=[];TotTreshR=[];TotTreshAll=[]; + + Trials(ind)=numOfTrialsNotExcluded; + for tr = 1 : numOfTrialsNotExcluded + +% RVmnoap=Vm_wo_spike(tr,EnDelay:EnResponse); Change +% to Late delay in order to understand the selectivity level + RVmnoap=Vm_wo_spike(tr,LateDelay:EnDelay); + DVmnoap=Vm_wo_spike(tr,StDelay:EnDelay); + SVmnoap=Vm_wo_spike(tr,StSample:EnSample); + ALLVm=Vm(tr,:); + +% % % % % % % winBefore=15; USED FOR THE NEURON VERSION. NO DIFFERENCE +% % % % % % % winAfter=15; + winBefore=0.5; + winAfter=10; + +% % % % % % % % % % % % % % RVm=Vm(tr,EnDelay:EnResponse); Change +% to Late delay in order to understand the selectivity level + RVm=Vm(tr,LateDelay:EnDelay); + +[vmtmp, Rspk ,RVthresh]=removeAPnewP_Ver2(double(RVm)',sampleRate,0.33, Vthparams, 10000, winBefore, winAfter); + files{ind}.RFr(tr)=sum(Rspk)/0.2; % Response Fr + RVmnoapMY=sgolayfilt(vmtmp, 3, 21)'; % remove AP + + RThreshVec=[RThreshVec RVthresh{1,1}]; + RThreshVec(RThreshVec<-45)=[];% Take care of the current injections + files{ind}.RThresholdsVec{tr}=RThreshVec; + + [files{ind}.RFrb(tr),RISI,files{ind}.RCV(tr),files{ind}.RCV2(tr)]=SpikeStatisticALM(sampleRate,(Rspk),1.2); + files{ind}.RISI=[files{ind}.RISI; RISI]; + files{ind}.Rspk{tr}=Rspk; + + + + DVm=Vm(tr,StDelay:EnDelay); + [vmtmp, Dspk ,DVthresh]=removeAPnewP_Ver2(double(DVm)',sampleRate,0.33, Vthparams, 10000, winBefore, winAfter); + files{ind}.DFr(tr)=sum(Dspk)/1.2; % delay Fr + DVmnoapMY=sgolayfilt(vmtmp, 3, 21)'; % remove AP + +% DThreshVec=[DThreshVec DVthresh{1,1}]; % THIS SEEMS LIKE A BUG 01/09/21; Take off + DThreshVec=DVthresh{1,1}; + + DThreshVec(DThreshVec<-45)=[];% Take care of the current injections + files{ind}.DThresholdsVec{tr}=DThreshVec; + + [files{ind}.DFrb(tr),DISI,files{ind}.DCV(tr),files{ind}.DCV2(tr)]=SpikeStatisticALM(sampleRate,(Dspk),1.2); + files{ind}.DISI=[files{ind}.DISI; DISI]; + files{ind}.Dspk{tr}=Dspk; + + SVm=Vm(tr,StSample:EnSample); + [vmtmp, Sspk,SVthresh ]=removeAPnewP_Ver2(double(SVm)',sampleRate,0.33, Vthparams, 10000, winBefore, winAfter); + files{ind}.SFr(tr)=sum(Sspk)/durSample; % sample Fr + SVmnoapMY=sgolayfilt(vmtmp, 3, 21)'; % remove AP + +% SThreshVec=[SThreshVec SVthresh{1,1}]; % THIS SEEMS LIKE A BUG 01/09/21; Take off +SThreshVec=[ SVthresh{1,1}]; % + SThreshVec(SThreshVec<-45)=[];% Take care of the current injections + files{ind}.SThresholdsVec{tr}=SThreshVec; + + [files{ind}.SFrb(tr),SISI,files{ind}.SCV(tr),files{ind}.SCV2(tr)]=SpikeStatisticALM(sampleRate,(Sspk),1.2); + files{ind}.SISI=[files{ind}.SISI; SISI]; + files{ind}.Sspk{tr}=Sspk; +% ISItmp=[ISItmp;ISI]; + + + files{ind}.Rmu(tr)=mean(RVmnoap); + files{ind}.Dmu(tr)=mean(DVmnoap); + files{ind}.Smu(tr)=mean(SVmnoap); + [vmtmp, spkMY, ALLthresh ]=removeAPnewP_Ver2(double(ALLVm)',sampleRate,0.33, Vthparams, 10000, winBefore, winAfter); + VmnoapMY=sgolayfilt(vmtmp, 3, 21); % remove AP + + [files{ind}.ALLFr(tr),ISI,files{ind}.ALLCV(tr),files{ind}.ALLCV2(tr)]=SpikeStatisticALM(sampleRate,(spkMY),5); + files{ind}.spkMY{tr}=spkMY; + +% ISItmp=[ISItmp;ISI]; + +% AllThreshVec=[AllThreshVec ALLthresh{1,1}]; % THIS SEEMS LIKE A BUG 01/09/21; Take off + AllThreshVec=[ ALLthresh{1,1}]; + AllThreshVec(AllThreshVec<-45)=[];% Take care of the current injections + files{ind}.AllThresholdsVec{tr}=AllThreshVec; + + TotTreshR=[TotTreshR RThreshVec]; + TotTreshS=[TotTreshS SThreshVec]; + TotTreshD=[TotTreshD DThreshVec]; + TotTreshAll=[TotTreshAll AllThreshVec]; + + + Vmnoap=Vm_wo_spike(tr,:); + + + SSK(tr)=skewns(SVmnoap) ; + SKur(tr)=ExKurtss(SVmnoap); + Smu(tr)=mean(SVmnoap); + SSD(tr)=std(SVmnoap); + + DSK(tr)=skewns(DVmnoap) ; + DKur(tr)=ExKurtss(DVmnoap); + Dmu(tr)=mean(DVmnoap); + DSD(tr)=std(DVmnoap); + + RSK(tr)=skewns(RVmnoap) ; + RKur(tr)=ExKurtss(RVmnoap); + Rmu(tr)=mean(RVmnoap); + RSD(tr)=std(RVmnoap); + + RmuMY(tr)=mean(RVmnoapMY); + DmuMY(tr)=mean(DVmnoapMY); + SmuMY(tr)=mean(SVmnoapMY); + + + + + SK(tr)=skewns(Vmnoap) ; + Kur(tr)=ExKurtss(Vmnoap); + mu(tr)=mean(Vmnoap); + SD(tr)=std(Vmnoap); + + + figure(100) + subplot(4,2,1) + plot(Time,ALLVm) + hold on + plot(Time,Vmnoap,'r') + + plot(Time,VmnoapMY,'g') + hold off + ylim([-90 15]) + + subplot(4,2,2) + hist(ALLVm,50) + xlim([-90 -25]) + + subplot(4,2,3) + plot(1:tr,SK(1:tr)) + hold on + plot(tr,SK(tr),'or') + ylabel('Skeness') + + hold off + + subplot(4,2,4) + plot(1:tr,Kur(1:tr)) + hold on + plot(tr,Kur(tr),'or') + ylabel('EKur') + hold off + + + subplot(4,2,5) + plot(1:tr,mu(1:tr)) + hold on + plot(tr,mu(tr),'or') + + ylabel('mean') + hold off + + + + subplot(4,2,6) + plot(1:tr ,SD(1:tr)) + hold on + plot(tr,SD(tr),'or') + hold off + ylabel('SD') + + + + RVtot=[RVtot RVmnoap-mean(RVmnoap)]; + SVtot=[SVtot SVmnoap-mean(SVmnoap)]; + DVtot=[DVtot DVmnoap-mean(DVmnoap)]; + Vtot=[Vtot Vmnoap-mean(Vmnoap)]; + + VtotNoMeanRed=[VtotNoMeanRed Vmnoap]; + VtotNoMeanRedMY=[VtotNoMeanRedMY VmnoapMY]; + VtotMY=[VtotMY VmnoapMY-mean(VmnoapMY)]; + SVtotMY=[SVtotMY SVmnoapMY-mean(SVmnoapMY)]; + DVtotMY=[DVtotMY DVmnoapMY-mean(DVmnoapMY)]; + RVtotMY=[RVtotMY RVmnoapMY-mean(RVmnoapMY)]; + + + % pause + end + files{ind}.ISI=ISItmp; + + % % % % % % T2=(0:length(DVtot)-1)./sampleRate; + % % % % % % tic; specoutD{ind}=spectralsingleVmNew(T2, DVtot',[0 200]);toc; + % % % % % % T2=(0:length(SVtot)-1)./sampleRate; + % % % % % % specoutS{ind}=spectralsingleVmNew(T2, SVtot',[0 200]); + + files{ind}.TotTreshR=TotTreshR; + files{ind}.TotTreshS=TotTreshS; + files{ind}.TotTreshD=TotTreshD; + files{ind}.TotTreshAll=TotTreshAll; + + + files{ind}.Vtot=Vtot; + files{ind}.VtotNoMeanRed=VtotNoMeanRed; + files{ind}.VtotNoMeanRedMY=VtotNoMeanRedMY; + files{ind}.SVtotMY=SVtotMY; + files{ind}.DVtotMY=DVtotMY; + files{ind}.RVtotMY=RVtotMY; + % files{ind}.SVtot=SVtot; + % files{ind}.DVtot=DVtot; + + files{ind}.VtotMY=VtotMY; + + files{ind}.Vm=Vm; + files{ind}.Dmu=Dmu; + files{ind}.DSD=DSD; + + + files{ind}.Rmu=Rmu; + files{ind}.RSD=RSD; + + TSK(ind)=skewns(Vtot) ; + TKur(ind)=ExKurtss(Vtot); + Tmu(ind)=mean(mu); + TSD(ind)=std(Vtot); + + [h,p,kstemp,c] = lillietest(Vmnoap); + Tkstat(ind)=kstemp; % to make the right comparison + + + + files{ind}.SVtot=SVtot; + STSK(ind)=skewns(SVtot) ; + STKur(ind)=ExKurtss(SVtot); + + + STmu(ind)=mean(Smu); + STSD(ind)=std(SVtot); + + [h,p,kstemp,c] = lillietest(SVmnoap); + + STkstat(ind)=kstemp; % to make the right comparison + + + files{ind}.DVtot=DVtot; + DTSK(ind)=skewns(DVtot) ; + DTKur(ind)=ExKurtss(DVtot); + + DTmu(ind)=mean(Dmu); + DTSD(ind)=std(DVtot); + + + files{ind}.RVtot=RVtot; + RTSK(ind)=skewns(RVtot) ; + RTKur(ind)=ExKurtss(RVtot); + RTmu(ind)=mean(Rmu); + RTSD(ind)=std(RVtot); + + DTSDMY(ind)=std(DVtotMY); + DTmuMY(ind)=mean(DmuMY); + STmuMY(ind)=mean(SmuMY); + STSDMY(ind)=std(SVtotMY); + RTmuMY(ind)=mean(RmuMY); + RTSDMY(ind)=std(RVtotMY); + + + [h,p,kstemp,c] = lillietest(DVmnoap); + + DTkstat(ind)=kstemp; % to make the right comparison + + + ParDSK(ind)=mean(DSK) ; + ParDKur(ind)=mean(DKur); + ParDSD(ind)=mean(DSD); + ParSSK(ind)=mean(SSK) ; + ParSKur(ind)=mean(SKur); + ParSSD(ind)=mean(SSD); + ParRSK(ind)=mean(RSK) ; + ParRKur(ind)=mean(RKur); + ParRSD(ind)=mean(RSD); + + nSecD(ind)=length(DVtot)/sampleRate; + nSecS(ind)=length(SVtot)/sampleRate; + nSecR(ind)=length(RVtot)/sampleRate; + + + toc; + + + + FrRALL(ind)=mean(files{ind}.RFr); + FrSALL(ind)=mean(files{ind}.SFr); + FrDALL(ind)=mean(files{ind}.DFr); + + RCVtmp=files{ind}.RCV; + RCVtmp(isnan(RCVtmp))=[]; + RCVplot(ind)=mean(RCVtmp); + + DCVtmp=files{ind}.DCV; + DCVtmp(isnan(DCVtmp))=[]; + DCVplot(ind)=mean(DCVtmp); + + SCVtmp=files{ind}.SCV; + SCVtmp(isnan(SCVtmp))=[]; + SCVplot(ind)=mean(SCVtmp); + + figure(1011) + hold all + plot(DTmu,DTSD,'ro') + title('SD Vs Vm') + + figure(1012) + hold all + plot(DTmu,FrDALL,'ro') + title('Fr Vs Vm') + + figure(1013) + hold all + plot(FrDALL,DTSD,'ro') + title('SD Vs Fr') + + + figure(1011) + hold all + % plot(STmu,STSD,'go') + plot(STmu,STSD,'bo') + axis tight + box off + ylim([0 5]) + + figure(1012) + hold all + plot(STmu,FrSALL,'bo') + title('Fr Vs Vm') + + figure(1013) + hold all + % plot(DTmu,DTSD,'bo') + plot(FrSALL,STSD,'bo') + title('SD Vs Fr') + + + figure(1011) + hold all + plot(DTmu(ind),DTSD(ind),'go') + + + figure(1012) + hold all + plot(DTmu(ind),FrDALL(ind),'go') + title('Fr Vs Vm') + + figure(1013) + hold all + plot(FrDALL(ind),DTSD(ind),'go') + title('SD Vs Fr') + + + figure(1011) + hold all + % plot(STmu,STSD,'go') + plot(STmu(ind),STSD(ind),'ko') + axis tight + box off + ylim([0 5]) + + figure(1012) + hold all + plot(STmu(ind),FrSALL(ind),'ko') + title('Fr Vs Vm') + + figure(1013) + hold all + % plot(DTmu,DTSD,'bo') + plot(FrSALL(ind),STSD(ind),'ko') + title('SD Vs Fr') + + + if isempty(files{ind}.TotTreshAll) + thS(ind)=0; + else + thS(ind)=mean(files{ind}.TotTreshAll); + end + + if isempty(files{ind}.TotTreshAll) + thD(ind)=0; + else + thD(ind)=mean(files{ind}.TotTreshAll); + end + + + + figure(2011) + hold all + plot(DTmuMY,DTSDMY,'ro') + title('SD Vs Vm') + + figure(2012) + hold all + plot(DTmuMY,FrDALL,'ro') + title('Fr Vs Vm') + + figure(2013) + hold all + plot(FrDALL,DTSDMY,'ro') + title('SD Vs Fr') + + figure(2014) + hold all + plot(FrDALL,DCVplot,'ro') + title('CV Vs Fr') + + + figure(2011) + hold all + % plot(STmu,STSD,'go') + plot(STmuMY,STSDMY,'bo') + axis tight + box off + ylim([0 5]) + + figure(2012) + hold all + plot(STmuMY,FrSALL,'bo') + title('Fr Vs Vm') + + figure(2013) + hold all + % plot(DTmu,DTSD,'bo') + plot(FrSALL,STSDMY,'bo') + title('SD Vs Fr') + + figure(2014) + hold all + plot(FrSALL,SCVplot,'bo') + title('CV Vs Fr') + + figure(2011) + hold all + plot(DTmuMY(ind),DTSDMY(ind),'go') + + + figure(2012) + hold all + plot(DTmuMY(ind),FrDALL(ind),'go') + title('Fr Vs Vm') + + figure(2013) + hold all + plot(FrDALL(ind),DTSDMY(ind),'go') + title('SD Vs Fr') + + figure(2014) + hold all + plot(FrDALL(ind),DCVplot(ind),'go') + title('CV Vs Fr') + + figure(2011) + hold all + % plot(STmu,STSD,'go') + plot(STmuMY(ind),STSDMY(ind),'ko') + axis tight + box off + ylim([0 5]) + + figure(2012) + hold all + plot(STmuMY(ind),FrSALL(ind),'ko') + title('Fr Vs Vm') + + figure(2013) + hold all + % plot(DTmu,DTSD,'bo') + plot(FrSALL(ind),STSDMY(ind),'ko') + title('SD Vs Fr') + + figure(2014) + hold all + plot(FrSALL(ind),SCVplot(ind),'ko') + title('CV Vs Fr') + + + +% pause +end + +%% +% Then plot: +if LRFlag==2 + indL=1000; +else + indL=0; +end +mCorrectedDelay=DTmu; + +if LRFlag==2 + meanDelayL=DTmu; + meanEndDelayL2=RTmu; %Response here is going to be END Delay +else + meanDelayR=DTmu; + meanEndDelayR2=RTmu; %Response here is going to be END Delay + +end +% mCorrectedDelay=DTmu; +% mCorrectedDelay=DTmu; + +% for ff=1:89 +for ff=1:47 + + FrSALL(ff)=mean(files{ff}.SFr); + FrDALL(ff)=mean(files{ff}.DFr); +end +figure(20+indL) +hold all +% plot(DTmu,DTSK,'bo') +plot(mCorrectedDelay,DTSK,'go') +hold on +x=mCorrectedDelay'; +y=(DTSK)'; +[Rsq,yCalc]= MyLinearReg(x,y); +plot(x,yCalc,'r') +legend(sprintf('red R^2=%.2f ',Rsq)) + +title('Skewness Vs Vm') + +figure(21+indL) +hold all +% plot(DTmu,DTkstat,'bo') +plot(mCorrectedDelay,DTkstat,'ro') +title('KS Vs Vm') + +figure(23+indL) +hold all +% plot(DTmu,DTSD,'bo') +plot(mCorrectedDelay,DTSD,'ro') +title('SD Vs Vm') + + +x=mCorrectedDelay'; +y=(DTSD)'; +[Rsq,yCalc]= MyLinearReg(x,y); +plot(x,yCalc,'r') +legend(sprintf('red R^2=%.2f ',Rsq)) + + + + +figure(112+indL) +hold all +% plot(DTmu,DTSD,'bo') +plot(mCorrectedDelay,FrDALL,'ro') +title('Fr Vs Vm') + +figure(113+indL) +hold all +% plot(DTmu,DTSD,'bo') +plot(FrDALL,DTSD,'ro') +title('SD Vs Fr') + + +figure(32+indL) +hold all +% plot(DTmu,DTSD,'bo') +plot(mCorrectedDelay,DTSD,'ro') +title('SD Vs Vm') + + +figure(33+indL) +hold all +% plot(DTmu,DTKur,'bo') +plot(mCorrectedDelay,DTKur,'ro') +title('Kurtosis Vs Vm') + +figure +plot(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0),FrDALL(AuditoryFlag(goodCellsNoRepRegular)==0),'om') +hold on;plot(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1),FrDALL(AuditoryFlag(goodCellsNoRepRegular)==1),'xm') + +mV=mean(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1));SDV=std(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1)); +mVS=mean(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0));SDVS=std(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0)); +title(sprintf('Aud: mVD=%.1f,sdmVD=%.1f; Tac mVD=%.1f,sdmVD=%.1f',mV,SDV,mVS,SDVS)) + +figure + +plot(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0),DTSD(AuditoryFlag(goodCellsNoRepRegular)==0),'om') +hold on;plot(mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1),DTSD(AuditoryFlag(goodCellsNoRepRegular)==1),'xm') + + +x=mCorrectedDelay'; +y=(DTSD)'; +[Rsq,yCalc]= MyLinearReg(x,y); +plot(x,yCalc,'m') +legend(sprintf('red R^2=%.2f ',Rsq)) + + +mV=mean(DTSD(AuditoryFlag(goodCellsNoRepRegular)==1));SDV=std(DTSD(AuditoryFlag(goodCellsNoRepRegular)==1)); +mVS=mean(DTSD(AuditoryFlag(goodCellsNoRepRegular)==0));SDVS=std(DTSD(AuditoryFlag(goodCellsNoRepRegular)==0)); +title(sprintf('Aud: mSD=%.1f,sdSD=%.1f; Tac mSD=%.1f,sdSD=%.1f',mV,SDV,mVS,SDVS)) +box off + +% +% figure +% histogram((mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==1)),-70:4:-30,'facecolor','m','facealpha',.5,'edgecolor','none') +% hold on +% histogram((mCorrectedDelay(AuditoryFlag(goodCellsNoRepRegular)==0)),-70:4:-30,'facecolor','k','facealpha',.5,'edgecolor','none') +% box off + +figure +histogram(mCorrectedDelay,-70:4:-30,'facecolor','m','facealpha',.5,'edgecolor','none') +hold on +box off +xlim([-70 -30]) + +% Plot with respect to threshold and threhsold distribution +difv_plot=mCorrectedDelay;tresh_plot=thD; +mean(thD) +std(thD) +difv_plot(thD==0)=[];tresh_plot(thD==0)=[]; +figure +histogram(tresh_plot,-40:0.5:-30,'facecolor','m','facealpha',.5,'edgecolor','none') + +figure +histogram(tresh_plot-difv_plot,6:2:30,'facecolor','m','facealpha',.5,'edgecolor','none') + + + + + + +%% Figure S1C: CV Vs Rates + +load('FrCVWholeDelay.mat') +figure(300) +plot(EtotFrD,EtotCVD,'ob') +hold on +plot(FrDALL,CVD,'xg') +plot(EtotFrS,EtotCVS,'or') +hold on +plot(FrSALL,CVS,'xc') +box off +legend('Delay,Probes','Delay,WholeCell','Sample,Probes','Sample,WholeCell') +xlim([1 60]) +ylim([0 3])