forked from TencentARC/SmartEdit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
239 lines (192 loc) · 7.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from asyncio import AbstractEventLoop
import json
import logging
import logging.handlers
import os
import platform
import sys
from typing import AsyncGenerator, Generator
import warnings
import requests
import torch
from fastchat.constants import LOGDIR
handler = None
def build_logger(logger_name, logger_filename):
global handler
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Set the format of root handlers
if not logging.getLogger().handlers:
if sys.version_info[1] >= 9:
# This is for windows
logging.basicConfig(level=logging.INFO, encoding="utf-8")
else:
if platform.system() == "Windows":
warnings.warn(
"If you are running on Windows, "
"we recommend you use Python >= 3.9 for UTF-8 encoding."
)
logging.basicConfig(level=logging.INFO)
logging.getLogger().handlers[0].setFormatter(formatter)
# Redirect stdout and stderr to loggers
stdout_logger = logging.getLogger("stdout")
stdout_logger.setLevel(logging.INFO)
sl = StreamToLogger(stdout_logger, logging.INFO)
sys.stdout = sl
stderr_logger = logging.getLogger("stderr")
stderr_logger.setLevel(logging.ERROR)
sl = StreamToLogger(stderr_logger, logging.ERROR)
sys.stderr = sl
# Get logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
# Add a file handler for all loggers
if handler is None:
os.makedirs(LOGDIR, exist_ok=True)
filename = os.path.join(LOGDIR, logger_filename)
handler = logging.handlers.TimedRotatingFileHandler(
filename, when="D", utc=True, encoding="utf-8"
)
handler.setFormatter(formatter)
for name, item in logging.root.manager.loggerDict.items():
if isinstance(item, logging.Logger):
item.addHandler(handler)
return logger
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.terminal = sys.stdout
self.logger = logger
self.log_level = log_level
self.linebuf = ""
def __getattr__(self, attr):
return getattr(self.terminal, attr)
def write(self, buf):
temp_linebuf = self.linebuf + buf
self.linebuf = ""
for line in temp_linebuf.splitlines(True):
# From the io.TextIOWrapper docs:
# On output, if newline is None, any '\n' characters written
# are translated to the system default line separator.
# By default sys.stdout.write() expects '\n' newlines and then
# translates them so this is still cross platform.
if line[-1] == "\n":
encoded_message = line.encode("utf-8", "ignore").decode("utf-8")
self.logger.log(self.log_level, encoded_message.rstrip())
else:
self.linebuf += line
def flush(self):
if self.linebuf != "":
encoded_message = self.linebuf.encode("utf-8", "ignore").decode("utf-8")
self.logger.log(self.log_level, encoded_message.rstrip())
self.linebuf = ""
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def get_gpu_memory(max_gpus=None):
"""Get available memory for each GPU."""
gpu_memory = []
num_gpus = (
torch.cuda.device_count()
if max_gpus is None
else min(max_gpus, torch.cuda.device_count())
)
for gpu_id in range(num_gpus):
with torch.cuda.device(gpu_id):
device = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device)
total_memory = gpu_properties.total_memory / (1024**3)
allocated_memory = torch.cuda.memory_allocated() / (1024**3)
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def violates_moderation(text):
"""
Check whether the text violates OpenAI moderation API.
"""
url = "https://api.openai.com/v1/moderations"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"],
}
text = text.replace("\n", "")
data = "{" + '"input": ' + f'"{text}"' + "}"
data = data.encode("utf-8")
try:
ret = requests.post(url, headers=headers, data=data, timeout=5)
flagged = ret.json()["results"][0]["flagged"]
except requests.exceptions.RequestException as e:
flagged = False
except KeyError as e:
flagged = False
return flagged
# Flan-t5 trained with HF+FSDP saves corrupted weights for shared embeddings,
# Use this function to make sure it can be correctly loaded.
def clean_flant5_ckpt(ckpt_path):
index_file = os.path.join(ckpt_path, "pytorch_model.bin.index.json")
index_json = json.load(open(index_file, "r"))
weightmap = index_json["weight_map"]
share_weight_file = weightmap["shared.weight"]
share_weight = torch.load(os.path.join(ckpt_path, share_weight_file))[
"shared.weight"
]
for weight_name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]:
weight_file = weightmap[weight_name]
weight = torch.load(os.path.join(ckpt_path, weight_file))
weight[weight_name] = share_weight
torch.save(weight, os.path.join(ckpt_path, weight_file))
def pretty_print_semaphore(semaphore):
"""Print a semaphore in better format."""
if semaphore is None:
return "None"
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
"""A javascript function to get url parameters for the gradio web server."""
get_window_url_params_js = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log("url_params", url_params);
return url_params;
}
"""
def iter_over_async(
async_gen: AsyncGenerator, event_loop: AbstractEventLoop
) -> Generator:
"""
Convert async generator to sync generator
:param async_gen: the AsyncGenerator to convert
:param event_loop: the event loop to run on
:returns: Sync generator
"""
ait = async_gen.__aiter__()
async def get_next():
try:
obj = await ait.__anext__()
return False, obj
except StopAsyncIteration:
return True, None
while True:
done, obj = event_loop.run_until_complete(get_next())
if done:
break
yield obj
def detect_language(text: str) -> str:
"""Detect the langauge of a string."""
import polyglot # pip3 install polyglot pyicu pycld2
from polyglot.detect import Detector
from polyglot.detect.base import logger as polyglot_logger
import pycld2
polyglot_logger.setLevel("ERROR")
try:
lang_code = Detector(text).language.name
except (pycld2.error, polyglot.detect.base.UnknownLanguage):
lang_code = "unknown"
return lang_code