-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbooks.py
129 lines (112 loc) · 7.91 KB
/
books.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import atomica as at
import pandas as pd
import os
import numpy as np
if not os.path.exists('books'): os.makedirs('books')
'''
Function to generate a framework, databook and progbook.
'''
def generate_books(input_data_sheet, start_year, end_year):
'''
Generate framework, databook and progbook based on input data sheet.
Results on emission reductions are saved in an excel sheet.
:param input_data_sheet: file name of input data sheet.
:param start_year: Start year of simulations.
:param facility_code: Code of the facility.
:return:
'''
facility_code = pd.read_excel(input_data_sheet, sheet_name='facility', index_col='Code Name')
facility = {}
facility[facility_code.index[0]] = {'label': facility_code.loc[facility_code.index[0],'Display Name'], 'type': 'facilities'}
facility_code = facility_code.index[0]
interventions_list = pd.read_excel(input_data_sheet, sheet_name='interventions', index_col='Code Name')
interventions = {}
for intervention in interventions_list.index:
interventions[intervention] = interventions_list.loc[intervention,'Display Name']
## Step 1: read in base framework, and generate intervention-specific parameters
# read framework base from template
df_fw = pd.read_excel(pd.ExcelFile('templates/carbomica_framework_template.xlsx'), sheet_name=None)
emissions_list = pd.read_excel(input_data_sheet, sheet_name='emission sources', index_col='Code Name')
# define intervention-specific parameters and add to the Parameters sheet as a new row
for i, emission in enumerate(emissions_list.index):
emission_par = {'Code Name': emission+'_baseline',
'Display Name': emissions_list.loc[emission,'Display Name'] + ' - baseline',
'Targetable': 'n',
'Databook Page': 'emission_sources'} # define coverage of intervention as a new row in framework
emission_mult = {'Code Name': emission+'_mult',
'Display Name': emissions_list.loc[emission,'Display Name'] + ' - multiplier',
'Targetable': 'y',
'Default Value': 0,
'Minimum Value': 0,
'Maximum Value': 1,
'Databook Page': 'targeted_pars'}
emission_actual = {'Code Name': emission,
'Display Name': emissions_list.loc[emission,'Display Name'],
'Targetable': 'n',
'Population type': 'facilities',
'Function': emission_par['Code Name']+'*(1-'+emission_mult['Code Name']+')'} # define coverage of intervention as a new row in framework
df_fw['Parameters'] = pd.concat([df_fw['Parameters'], pd.DataFrame([emission_par])], ignore_index=True)
df_fw['Parameters'] = pd.concat([df_fw['Parameters'], pd.DataFrame([emission_mult])], ignore_index=True)
df_fw['Parameters'] = pd.concat([df_fw['Parameters'], pd.DataFrame([emission_actual])], ignore_index=True)
# update the function for total emissions:
if i == 0:
df_fw['Parameters'].loc[df_fw['Parameters']['Code Name']=='co2e_emissions','Function'] = emission_actual['Code Name']
else:
df_fw['Parameters'].loc[df_fw['Parameters']['Code Name']=='co2e_emissions','Function'] += '+'+emission_actual['Code Name']
with pd.ExcelWriter('books/carbomica_framework_{}.xlsx'.format(facility_code)) as writer:
for sheet_name, df in df_fw.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
## Step 2: generate and populate the databook (saved in "books/")
F = at.ProjectFramework('books/carbomica_framework_{}.xlsx'.format(facility_code)) # load framework
data_years = np.arange(start_year, end_year) # years for input data
D = at.ProjectData.new(framework=F, tvec=data_years, pops=facility, transfers=0)
db_data = pd.read_excel(input_data_sheet, sheet_name='emission data', index_col='facilities')
cols_to_drop = [col for col in db_data.columns if 'Unnamed' in col]
db_data.drop(columns=cols_to_drop,inplace=True)
D.tdve['facilities_number'].ts[facility_code] = at.TimeSeries(data_years, 1, units='Number')
D.tdve['facilities_number'].write_assumption = True
for parameter in db_data.columns:
D.tdve[parameter+'_baseline'].ts[facility_code] = at.TimeSeries(data_years, db_data.loc[facility_code,parameter])
D.tdve[parameter+'_baseline'].write_assumption = True
D.save('books/carbomica_databook_{}.xlsx'.format(facility_code))
## Step 3: generate empty progbooks in folder "templates/"
databook_name = 'books/carbomica_databook_{}.xlsx'.format(facility_code)
P = at.Project(framework=F,databook=databook_name, do_run=False)
progbook_path = 'books/carbomica_progbook_{}.xlsx'.format(facility_code)
data_years = np.arange(start_year, end_year) # years for program data (offset by 1 year compared to databook)
P.make_progbook(progbook_path,progs=interventions,data_start=data_years[0],data_end=data_years[-1])
target_pars_overall = pd.read_excel(input_data_sheet, sheet_name='emission targets', index_col='interventions')
cols_to_drop = [col for col in target_pars_overall.columns if 'Unnamed' in col]
target_pars_overall.drop(columns=cols_to_drop,inplace=True)
effects = pd.read_excel(input_data_sheet, sheet_name='effect sizes', index_col='facilities')
cols_to_drop = [col for col in effects.columns if 'Unnamed' in col]
effects.drop(columns=cols_to_drop,inplace=True)
# Populate the progbooks that were just created and save the files to "books/"
D = at.ProjectData.from_spreadsheet(databook_name,framework=F)
pb_costs_maintain = pd.read_excel(input_data_sheet, sheet_name='maintenance costs', index_col='facilities')
cols_to_drop = [col for col in pb_costs_maintain.columns if 'Unnamed' in col]
pb_costs_maintain.drop(columns=cols_to_drop,inplace=True)
pb_costs_implement = pd.read_excel(input_data_sheet, sheet_name='implementation costs', index_col='facilities')
cols_to_drop = [col for col in pb_costs_implement.columns if 'Unnamed' in col]
pb_costs_implement.drop(columns=cols_to_drop,inplace=True)
P = at.ProgramSet.from_spreadsheet(spreadsheet='books/carbomica_progbook_{}.xlsx'.format(facility_code), framework=F, data=D, _allow_missing_data=True)
for intervention in interventions:
# Write in 'Program targeting' sheet
P.programs[intervention].target_pops = [facility_code]
P.programs[intervention].target_comps = ['facilities_number']
# Write in 'Spending data' sheet
P.programs[intervention].unit_cost = at.TimeSeries(assumption=pb_costs_implement.loc[facility_code,intervention+'_cost']/len(data_years)+pb_costs_maintain.loc[facility_code,intervention+'_cost'], units='$/person/year')
P.programs[intervention].spend_data = at.TimeSeries(data_years,0, units='$/year')
P.programs[intervention].capacity_constraint = at.TimeSeries(units='people')
P.programs[intervention].coverage = at.TimeSeries(units='people')
# Write in 'Program effects' sheet
target_pars_overall_t = target_pars_overall.transpose()
for par in target_pars_overall_t.index:
target_interventions = target_pars_overall_t.columns[target_pars_overall_t.loc[par]=='y'].tolist()
progs = {}
for intervention in target_interventions:
effect = effects.loc[facility_code,intervention+'_effect']
progs[intervention] = effect
P.covouts[(par+'_mult', facility_code)] = at.programs.Covout(par=par+'_mult',pop=facility_code,cov_interaction='random',baseline=0,progs=progs)
P.programs[intervention].spend_data = at.TimeSeries(data_years,0, units='$/year') # make initial spending a small, negligible but non-zero number for optimisation initialisation
P.save('books/carbomica_progbook_{}.xlsx'.format(facility_code))