Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reproduction for 4DAG #164

Open
Charrrrrlie opened this issue Sep 9, 2024 · 2 comments
Open

Reproduction for 4DAG #164

Charrrrrlie opened this issue Sep 9, 2024 · 2 comments
Assignees
Labels

Comments

@Charrrrrlie
Copy link

Hello,
I am trying to evaluate 4DAG in its benchmark seq2.


I use the following command to execute in the provided docker.

python tools/mview_mperson_evaluation.py  --enable_log_file  --evaluation_config configs/fourdag/fourdag_config/eval_keypoints3d_seq2.py

Firstly, I got an error:

Traceback (most recent call last):
  File "tools/mview_mperson_evaluation.py", line 45, in <module>
    main(args)
  File "tools/mview_mperson_evaluation.py", line 24, in main
    evaluation = build_evaluation(evaluation_config)
  File "/data/yangyuchen/Projects/xrmocap/xrmocap/core/evaluation/builder.py", line 18, in build_evaluation
    return EVALUATION.build(cfg)
  File "/opt/miniconda/envs/openxrlab/lib/python3.8/site-packages/mmcv/utils/registry.py", line 237, in build
    return self.build_func(*args, **kwargs, registry=self)
  File "/opt/miniconda/envs/openxrlab/lib/python3.8/site-packages/mmcv/utils/registry.py", line 72, in build_from_cfg
    raise type(e)(f'{obj_cls.__name__}: {e}')
TypeError: BottomUpAssociationEvaluation: MviewMpersonDataVisualization: __init__() got an unexpected keyword argument 'resolution'

It seems to come from the out-of-date config in this line. Therefore I comment it out and the whole process can be executed.


However, there is a gap between the final performance and the reported one in the [readme].(https://github.com/openxrlab/xrmocap/blob/main/configs/fourdag/README.md#fourdag)

The log file is

2024-09-09 06:56:28,681 - __main__ - INFO - Left_Shoulder_To_Right_Shoulder is not selected!
2024-09-09 06:56:28,682 - __main__ - INFO - Left_Shoulder_To_Left_Hip_Extra is not selected!
2024-09-09 06:56:28,682 - __main__ - INFO - Right_Shoulder_To_Right_Hip_Extra is not selected!
2024-09-09 06:56:28,682 - __main__ - INFO - Right_Hip_Extra_To_Left_Hip_Extra is not selected!
2024-09-09 06:56:28,970 - __main__ - INFO - Detailed table for PCPMetric
+-----------------+---------+---------+---------+---------+---------+
|    Bone Group   | Actor 0 | Actor 1 | Actor 2 | Actor 3 | Average |
+-----------------+---------+---------+---------+---------+---------+
|  left_lower_leg |  81.65  |  89.76  |   nan   |   nan   |   nan   |
| right_lower_leg |  79.60  |  71.70  |   nan   |   nan   |   nan   |
|  left_upperarm  |  69.18  |  54.33  |   nan   |   nan   |   nan   |
|  right_upperarm |  79.01  |  68.96  |   nan   |   nan   |   nan   |
|   left_forearm  |  67.64  |  26.18  |   nan   |   nan   |   nan   |
|  right_forearm  |  66.29  |  18.35  |   nan   |   nan   |   nan   |
|    left_thigh   |  87.64  |  26.22  |   nan   |   nan   |   nan   |
|   right_thigh   |  79.09  |  38.57  |   nan   |   nan   |   nan   |
|      total      |  76.26  |  49.26  |   nan   |   nan   |   nan   |
+-----------------+---------+---------+---------+---------+---------+
2024-09-09 06:56:29,162 - __main__ - INFO - 
+------------------------------+--------+
|         Metric name          | Value  |
+------------------------------+--------+
|      mpjpe: mpjpe_mean       | 157.21 |
|       mpjpe: mpjpe_std       | 125.83 |
|   pa_mpjpe: pa_mpjpe_mean    | 125.24 |
|    pa_mpjpe: pa_mpjpe_std    | 82.37  |
|     pcp: pcp_total_mean      |  nan   |
|         pck: pck@100         | 46.22  |
|         pck: pck@200         | 86.62  |
| precision_recall: recall@500 | 97.04  |
+------------------------------+--------+
2024-09-09 06:56:29,162 - __main__ - WARNING - Overwriting ./output/fourdag/fourdag_fourdag_19_FourDAGOptimization/ and its files.
2024-09-09 06:56:29,173 - __main__ - INFO - Visualizing predict3d data for scene 0 view 0
2024-09-09 07:03:10,178 - __main__ - INFO - Visualizing predict3d data for scene 0 view 1
2024-09-09 07:09:50,608 - __main__ - INFO - Visualizing predict3d data for scene 0 view 2
2024-09-09 07:16:33,984 - __main__ - INFO - Visualizing predict3d data for scene 0 view 3
2024-09-09 07:23:23,581 - __main__ - INFO - Visualizing predict3d data for scene 0 view 4
2024-09-09 07:30:10,331 - __main__ - INFO - Visualizing predict3d data for scene 0 view 5
2024-09-09 07:36:58,682 - __main__ - INFO - Running "ffmpeg -y -f rawvideo -pix_fmt bgr24 -s 1104x736 -r 30.0 -loglevel error -threads 1 -i - -vcodec libx264 -r 30.0 -an ./output/fourdag/fourdag_fourdag_19_FourDAGOptimization/scene_0/predict3d_project_AIO.mp4"
2024-09-09 07:37:09,425 - __main__ - INFO - Visualizing perception 2D data for scene 0 view 0
2024-09-09 07:44:01,877 - __main__ - INFO - Visualizing perception 2D data for scene 0 view 1

Do you know what went wrong?

Thank you for your time and attention.

Copy link

github-actions bot commented Sep 9, 2024

Hi @Charrrrrlie, welcome to commit your first issue!
你好 @Charrrrrlie,非常欢迎首次提交你的问题!

@Charrrrrlie
Copy link
Author

Besides, I noticed the visualization videos have no joints drawn and the results in 'scene0_associate_keypoints2d.npy' seem in the wrong range (>1e03 while the input image is in (368, 368)).

>>> import numpy as np
>>> data=np.load('scene0_associate_keypoints2d.npy')
>>> data.shape
(2735, 2, 6, 19, 3)
>>> data[0][0][0]
array([[1.11271643e+03, 1.11282910e+03, 7.75416970e-01],
       [1.10170972e+03, 8.67035461e+02, 9.00384009e-01],
       [1.05169531e+03, 1.11828638e+03, 7.92052984e-01],
       [1.17399756e+03, 1.11821265e+03, 7.75319993e-01],
       [1.14057812e+03, 7.33562927e+02, 9.68859971e-01],
       [1.02350208e+03, 8.67381470e+02, 8.72323990e-01],
       [1.18556506e+03, 8.50663574e+02, 8.55180979e-01],
       [1.05166663e+03, 1.30793274e+03, 8.65860999e-01],
       [1.19631995e+03, 1.30230957e+03, 8.17400992e-01],
       [1.05715674e+03, 7.38793030e+02, 9.09249008e-01],
       [0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
       [9.51032104e+02, 9.95484741e+02, 8.78517985e-01],
       [1.27425330e+03, 9.61897583e+02, 9.32591021e-01],
       [1.05167896e+03, 1.48639636e+03, 8.70796025e-01],
       [1.13518225e+03, 1.44758105e+03, 9.48741019e-01],
       [9.67754028e+02, 1.10174255e+03, 8.54382992e-01],
       [1.26316687e+03, 1.05713013e+03, 8.08005989e-01],
       [1.16292114e+03, 1.52544275e+03, 8.27202976e-01],
       [1.05164001e+03, 1.54247791e+03, 8.22476983e-01]])

The results in 'scene0_pred_keypoints3d.npz' seem correct. (And that's why metrics like MPJPE are not very terrible?)

>>> import numpy as np
>>> data = np.load('scene0_pred_keypoints3d.npz')
>>> data.files
['convention', 'keypoints', 'mask']
>>> data['keypoints'].shape
(2735, 2, 19, 4)
>>> data['keypoints'][0,0]
array([[ 0.44035739,  0.81138122, -0.18822792,  1.        ],
       [ 0.44342533,  1.27131438, -0.13195667,  1.        ],
       [ 0.32768041,  0.80619949, -0.17555375,  1.        ],
       [ 0.54508728,  0.81602764, -0.20119405,  1.        ],
       [ 0.49280715,  1.48571718,  0.00272803,  1.        ],
       [ 0.29264435,  1.26126456, -0.11988235,  1.        ],
       [ 0.58975613,  1.28480649, -0.15804569,  1.        ],
       [ 0.34666932,  0.41698083, -0.11620992,  1.        ],
       [ 0.58429468,  0.4399837 , -0.11577299,  1.        ],
       [ 0.35547218,  1.46291053, -0.06224353,  1.        ],
       [ 0.50029427,  1.4707303 , -0.132844  ,  1.        ],
       [ 0.14133491,  1.03275061, -0.13060124,  1.        ],
       [ 0.75000304,  1.06469333, -0.20401694,  1.        ],
       [ 0.34222731,  0.02327326, -0.2378833 ,  1.        ],
       [ 0.5073328 ,  0.05773893, -0.29119289,  1.        ],
       [ 0.17784889,  0.84062225,  0.01113267,  1.        ],
       [ 0.68762159,  0.92540288, -0.08345005,  1.        ],
       [ 0.56086171, -0.02101712, -0.14138444,  1.        ],
       [ 0.34968144, -0.01838641, -0.05645154,  1.        ]])

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants