From 630aedc0c44a91b492b8ced88d9473e538720384 Mon Sep 17 00:00:00 2001 From: Varun Jain Date: Wed, 31 Jan 2024 01:07:02 +0530 Subject: [PATCH 1/2] Fix for Flaky test for issue 384 Signed-off-by: Varun Jain --- CHANGELOG.md | 1 + .../NeuralQueryEnricherProcessorIT.java | 84 ++-- .../processor/NormalizationProcessorIT.java | 314 +++++++------ .../processor/ScoreCombinationIT.java | 399 ++++++++-------- .../processor/ScoreNormalizationIT.java | 314 ++++++------- .../processor/SparseEncodingProcessIT.java | 32 +- .../processor/TextEmbeddingProcessorIT.java | 34 +- .../TextImageEmbeddingProcessorIT.java | 47 +- .../neuralsearch/query/HybridQueryIT.java | 429 +++++++++--------- .../neuralsearch/query/NeuralQueryIT.java | 380 ++++++++-------- .../query/NeuralSparseQueryIT.java | 197 ++++---- .../neuralsearch/BaseNeuralSearchIT.java | 53 --- 12 files changed, 1171 insertions(+), 1113 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index f58f2ba89..b74af27d3 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -21,6 +21,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), - Fixing multiple issues reported in #497 ([#524](https://github.com/opensearch-project/neural-search/pull/524)) - Fix Flaky test reported in #433 ([#533](https://github.com/opensearch-project/neural-search/pull/533)) - Enable support for default model id on HybridQueryBuilder ([#541](https://github.com/opensearch-project/neural-search/pull/541)) +- Fix Flaky test reported in #384 ([#559](https://github.com/opensearch-project/neural-search/pull/559)) ### Infrastructure - BWC tests for Neural Search ([#515](https://github.com/opensearch-project/neural-search/pull/515)) - Github action to run integ tests in secure opensearch cluster ([#535](https://github.com/opensearch-project/neural-search/pull/535)) diff --git a/src/test/java/org/opensearch/neuralsearch/processor/NeuralQueryEnricherProcessorIT.java b/src/test/java/org/opensearch/neuralsearch/processor/NeuralQueryEnricherProcessorIT.java index 803f46918..6d6ea37c8 100644 --- a/src/test/java/org/opensearch/neuralsearch/processor/NeuralQueryEnricherProcessorIT.java +++ b/src/test/java/org/opensearch/neuralsearch/processor/NeuralQueryEnricherProcessorIT.java @@ -11,7 +11,6 @@ import java.util.Collections; import java.util.Map; -import org.junit.After; import org.junit.Before; import org.opensearch.common.settings.Settings; import org.opensearch.neuralsearch.BaseNeuralSearchIT; @@ -34,68 +33,65 @@ public class NeuralQueryEnricherProcessorIT extends BaseNeuralSearchIT { public void setUp() throws Exception { super.setUp(); updateClusterSettings(); - prepareModel(); - } - - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - deleteSearchPipeline(search_pipeline); - findDeployedModels().forEach(this::deleteModel); - deleteIndex(index); } @SneakyThrows public void testNeuralQueryEnricherProcessor_whenNoModelIdPassed_thenSuccess() { - initializeIndexIfNotExist(); - String modelId = getDeployedModelId(); - createSearchRequestProcessor(modelId, search_pipeline); - createPipelineProcessor(modelId, ingest_pipeline, ProcessorType.TEXT_EMBEDDING); - updateIndexSettings(index, Settings.builder().put("index.search.default_pipeline", search_pipeline)); - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder(); - neuralQueryBuilder.fieldName(TEST_KNN_VECTOR_FIELD_NAME_1); - neuralQueryBuilder.queryText("Hello World"); - neuralQueryBuilder.k(1); - Map response = search(index, neuralQueryBuilder, 2); - - assertFalse(response.isEmpty()); - + String modelId = null; + try { + initializeIndexIfNotExist(index); + modelId = prepareModel(); + createSearchRequestProcessor(modelId, search_pipeline); + createPipelineProcessor(modelId, ingest_pipeline, ProcessorType.TEXT_EMBEDDING); + updateIndexSettings(index, Settings.builder().put("index.search.default_pipeline", search_pipeline)); + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder(); + neuralQueryBuilder.fieldName(TEST_KNN_VECTOR_FIELD_NAME_1); + neuralQueryBuilder.queryText("Hello World"); + neuralQueryBuilder.k(1); + Map response = search(index, neuralQueryBuilder, 2); + assertFalse(response.isEmpty()); + } finally { + wipeOfTestResources(index, ingest_pipeline, modelId, search_pipeline); + } } @SneakyThrows public void testNeuralQueryEnricherProcessor_whenHybridQueryBuilderAndNoModelIdPassed_thenSuccess() { - initializeIndexIfNotExist(); - String modelId = getDeployedModelId(); - createSearchRequestProcessor(modelId, search_pipeline); - createPipelineProcessor(modelId, ingest_pipeline, ProcessorType.TEXT_EMBEDDING); - updateIndexSettings(index, Settings.builder().put("index.search.default_pipeline", search_pipeline)); - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder(); - neuralQueryBuilder.fieldName(TEST_KNN_VECTOR_FIELD_NAME_1); - neuralQueryBuilder.queryText("Hello World"); - neuralQueryBuilder.k(1); - HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); - hybridQueryBuilder.add(neuralQueryBuilder); - Map response = search(index, hybridQueryBuilder, 2); - - assertFalse(response.isEmpty()); - + String modelId = null; + try { + initializeIndexIfNotExist(index); + modelId = prepareModel(); + createSearchRequestProcessor(modelId, search_pipeline); + createPipelineProcessor(modelId, ingest_pipeline, ProcessorType.TEXT_EMBEDDING); + updateIndexSettings(index, Settings.builder().put("index.search.default_pipeline", search_pipeline)); + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder(); + neuralQueryBuilder.fieldName(TEST_KNN_VECTOR_FIELD_NAME_1); + neuralQueryBuilder.queryText("Hello World"); + neuralQueryBuilder.k(1); + HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); + hybridQueryBuilder.add(neuralQueryBuilder); + Map response = search(index, hybridQueryBuilder, 2); + + assertFalse(response.isEmpty()); + } finally { + wipeOfTestResources(index, ingest_pipeline, modelId, search_pipeline); + } } @SneakyThrows - private void initializeIndexIfNotExist() { - if (index.equals(NeuralQueryEnricherProcessorIT.index) && !indexExists(index)) { + private void initializeIndexIfNotExist(String indexName) { + if (indexName.equals(NeuralQueryEnricherProcessorIT.index) && !indexExists(indexName)) { prepareKnnIndex( - index, + indexName, Collections.singletonList(new KNNFieldConfig(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DIMENSION, TEST_SPACE_TYPE)) ); addKnnDoc( - index, + indexName, "1", Collections.singletonList(TEST_KNN_VECTOR_FIELD_NAME_1), Collections.singletonList(Floats.asList(testVector).toArray()) ); - assertEquals(1, getDocCount(index)); + assertEquals(1, getDocCount(indexName)); } } } diff --git a/src/test/java/org/opensearch/neuralsearch/processor/NormalizationProcessorIT.java b/src/test/java/org/opensearch/neuralsearch/processor/NormalizationProcessorIT.java index ad5da2d1b..b1f0de9d3 100644 --- a/src/test/java/org/opensearch/neuralsearch/processor/NormalizationProcessorIT.java +++ b/src/test/java/org/opensearch/neuralsearch/processor/NormalizationProcessorIT.java @@ -19,7 +19,6 @@ import java.util.stream.IntStream; import org.apache.commons.lang3.Range; -import org.junit.After; import org.junit.Before; import org.opensearch.index.query.QueryBuilders; import org.opensearch.index.query.TermQueryBuilder; @@ -57,15 +56,7 @@ public class NormalizationProcessorIT extends BaseNeuralSearchIT { @Before public void setUp() throws Exception { super.setUp(); - prepareModel(); - } - - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - deleteSearchPipeline(SEARCH_PIPELINE); - findDeployedModels().forEach(this::deleteModel); + updateClusterSettings(); } /** @@ -88,33 +79,38 @@ public void tearDown() { */ @SneakyThrows public void testResultProcessor_whenOneShardAndQueryMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); - String modelId = getDeployedModelId(); - - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_DOC_TEXT1, - "", - modelId, - 5, - null, - null - ); - TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - - HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); - hybridQueryBuilder.add(neuralQueryBuilder); - hybridQueryBuilder.add(termQueryBuilder); - - Map searchResponseAsMap = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilder, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertQueryResults(searchResponseAsMap, 5, false); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_DOC_TEXT1, + "", + modelId, + 5, + null, + null + ); + TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); + + HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); + hybridQueryBuilder.add(neuralQueryBuilder); + hybridQueryBuilder.add(termQueryBuilder); + + Map searchResponseAsMap = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilder, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertQueryResults(searchResponseAsMap, 5, false); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, null, modelId, SEARCH_PIPELINE); + } } /** @@ -131,132 +127,154 @@ public void testResultProcessor_whenOneShardAndQueryMatches_thenSuccessful() { */ @SneakyThrows public void testResultProcessor_whenDefaultProcessorConfigAndQueryMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipelineWithDefaultResultsPostProcessor(SEARCH_PIPELINE); - String modelId = getDeployedModelId(); - - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_DOC_TEXT1, - "", - modelId, - 5, - null, - null - ); - TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - - HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); - hybridQueryBuilder.add(neuralQueryBuilder); - hybridQueryBuilder.add(termQueryBuilder); - - Map searchResponseAsMap = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilder, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertQueryResults(searchResponseAsMap, 5, false); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + modelId = prepareModel(); + createSearchPipelineWithDefaultResultsPostProcessor(SEARCH_PIPELINE); + + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_DOC_TEXT1, + "", + modelId, + 5, + null, + null + ); + TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); + + HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); + hybridQueryBuilder.add(neuralQueryBuilder); + hybridQueryBuilder.add(termQueryBuilder); + + Map searchResponseAsMap = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilder, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertQueryResults(searchResponseAsMap, 5, false); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, null, modelId, SEARCH_PIPELINE); + } } @SneakyThrows public void testResultProcessor_whenMultipleShardsAndQueryMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME); - createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); - String modelId = getDeployedModelId(); - int totalExpectedDocQty = 6; - - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_DOC_TEXT1, - "", - modelId, - 6, - null, - null - ); - TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - - HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); - hybridQueryBuilder.add(neuralQueryBuilder); - hybridQueryBuilder.add(termQueryBuilder); - - Map searchResponseAsMap = search( - TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, - hybridQueryBuilder, - null, - 6, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + int totalExpectedDocQty = 6; + + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_DOC_TEXT1, + "", + modelId, + 6, + null, + null + ); + TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - assertNotNull(searchResponseAsMap); - Map total = getTotalHits(searchResponseAsMap); - assertNotNull(total.get("value")); - assertEquals(totalExpectedDocQty, total.get("value")); - assertNotNull(total.get("relation")); - assertEquals(RELATION_EQUAL_TO, total.get("relation")); - assertTrue(getMaxScore(searchResponseAsMap).isPresent()); - assertTrue(Range.between(.5f, 1.0f).contains(getMaxScore(searchResponseAsMap).get())); - List> hitsNestedList = getNestedHits(searchResponseAsMap); - List ids = new ArrayList<>(); - List scores = new ArrayList<>(); - for (Map oneHit : hitsNestedList) { - ids.add((String) oneHit.get("_id")); - scores.add((Double) oneHit.get("_score")); - } - // verify scores order - assertTrue(IntStream.range(0, scores.size() - 1).noneMatch(idx -> scores.get(idx) < scores.get(idx + 1))); + HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); + hybridQueryBuilder.add(neuralQueryBuilder); + hybridQueryBuilder.add(termQueryBuilder); - // verify the scores are normalized. we need special assert logic because combined score may vary as neural search query - // based on random vectors and return results for every doc. In some cases that may affect 1.0 score from term query and make it - // lower. - float highestScore = scores.stream().max(Double::compare).get().floatValue(); - assertTrue(Range.between(.5f, 1.0f).contains(highestScore)); - float lowestScore = scores.stream().min(Double::compare).get().floatValue(); - assertTrue(Range.between(.0f, .5f).contains(lowestScore)); + Map searchResponseAsMap = search( + TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, + hybridQueryBuilder, + null, + 6, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); - // verify that all ids are unique - assertEquals(Set.copyOf(ids).size(), ids.size()); + assertNotNull(searchResponseAsMap); + Map total = getTotalHits(searchResponseAsMap); + assertNotNull(total.get("value")); + assertEquals(totalExpectedDocQty, total.get("value")); + assertNotNull(total.get("relation")); + assertEquals(RELATION_EQUAL_TO, total.get("relation")); + assertTrue(getMaxScore(searchResponseAsMap).isPresent()); + assertTrue(Range.between(.5f, 1.0f).contains(getMaxScore(searchResponseAsMap).get())); + List> hitsNestedList = getNestedHits(searchResponseAsMap); + List ids = new ArrayList<>(); + List scores = new ArrayList<>(); + for (Map oneHit : hitsNestedList) { + ids.add((String) oneHit.get("_id")); + scores.add((Double) oneHit.get("_score")); + } + // verify scores order + assertTrue(IntStream.range(0, scores.size() - 1).noneMatch(idx -> scores.get(idx) < scores.get(idx + 1))); + + // verify the scores are normalized. we need special assert logic because combined score may vary as neural search query + // based on random vectors and return results for every doc. In some cases that may affect 1.0 score from term query and make it + // lower. + float highestScore = scores.stream().max(Double::compare).get().floatValue(); + assertTrue(Range.between(.5f, 1.0f).contains(highestScore)); + float lowestScore = scores.stream().min(Double::compare).get().floatValue(); + assertTrue(Range.between(.0f, .5f).contains(lowestScore)); + + // verify that all ids are unique + assertEquals(Set.copyOf(ids).size(), ids.size()); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, null, modelId, SEARCH_PIPELINE); + } } @SneakyThrows public void testResultProcessor_whenMultipleShardsAndNoMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME); - createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); - - HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); - hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT6)); - hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT7)); - - Map searchResponseAsMap = search( - TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, - hybridQueryBuilder, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertQueryResults(searchResponseAsMap, 0, true); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + + HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); + hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT6)); + hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT7)); + + Map searchResponseAsMap = search( + TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, + hybridQueryBuilder, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertQueryResults(searchResponseAsMap, 0, true); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, null, modelId, SEARCH_PIPELINE); + } } @SneakyThrows public void testResultProcessor_whenMultipleShardsAndPartialMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME); - createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); - - HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); - hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4)); - hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT7)); - - Map searchResponseAsMap = search( - TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, - hybridQueryBuilder, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertQueryResults(searchResponseAsMap, 4, true, Range.between(0.33f, 1.0f)); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + + HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); + hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4)); + hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT7)); + + Map searchResponseAsMap = search( + TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, + hybridQueryBuilder, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertQueryResults(searchResponseAsMap, 4, true, Range.between(0.33f, 1.0f)); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, null, modelId, SEARCH_PIPELINE); + } } private void initializeIndexIfNotExist(String indexName) throws IOException { diff --git a/src/test/java/org/opensearch/neuralsearch/processor/ScoreCombinationIT.java b/src/test/java/org/opensearch/neuralsearch/processor/ScoreCombinationIT.java index 1277c0f09..412e41fad 100644 --- a/src/test/java/org/opensearch/neuralsearch/processor/ScoreCombinationIT.java +++ b/src/test/java/org/opensearch/neuralsearch/processor/ScoreCombinationIT.java @@ -17,7 +17,6 @@ import java.util.Collections; import java.util.Map; -import org.junit.After; import org.junit.Before; import org.opensearch.client.ResponseException; import org.opensearch.index.query.QueryBuilders; @@ -33,8 +32,8 @@ import lombok.SneakyThrows; public class ScoreCombinationIT extends BaseNeuralSearchIT { - private static final String TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME = "test-neural-multi-doc-one-shard-index"; - private static final String TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME = "test-neural-multi-doc-three-shards-index"; + private static final String TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME = "test-score-combination-neural-multi-doc-one-shard-index"; + private static final String TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME = "test-score-combination-neural-multi-doc-three-shards-index"; private static final String TEST_QUERY_TEXT3 = "hello"; private static final String TEST_QUERY_TEXT4 = "place"; private static final String TEST_QUERY_TEXT7 = "notexistingwordtwo"; @@ -58,15 +57,7 @@ public class ScoreCombinationIT extends BaseNeuralSearchIT { @Before public void setUp() throws Exception { super.setUp(); - prepareModel(); - } - - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - deleteSearchPipeline(SEARCH_PIPELINE); - findDeployedModels().forEach(this::deleteModel); + updateClusterSettings(); } /** @@ -94,94 +85,112 @@ public void tearDown() { */ @SneakyThrows public void testArithmeticWeightedMean_whenWeightsPassed_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME); - // check case when number of weights and sub-queries are same - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - DEFAULT_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.4f, 0.3f, 0.3f })) - ); - - HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); - hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4)); - hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT7)); - - Map searchResponseWithWeights1AsMap = search( - TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, - hybridQueryBuilder, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - - assertWeightedScores(searchResponseWithWeights1AsMap, 0.4, 0.3, 0.001); - - // delete existing pipeline and create a new one with another set of weights - deleteSearchPipeline(SEARCH_PIPELINE); - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - DEFAULT_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.233f, 0.666f, 0.1f })) - ); - - Map searchResponseWithWeights2AsMap = search( - TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, - hybridQueryBuilder, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - - assertWeightedScores(searchResponseWithWeights2AsMap, 0.6666, 0.2332, 0.001); - - // check case when number of weights is less than number of sub-queries - // delete existing pipeline and create a new one with another set of weights - deleteSearchPipeline(SEARCH_PIPELINE); - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - DEFAULT_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 1.0f })) - ); - - ResponseException exception1 = expectThrows( - ResponseException.class, - () -> search(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, hybridQueryBuilder, null, 5, Map.of("search_pipeline", SEARCH_PIPELINE)) - ); - org.hamcrest.MatcherAssert.assertThat( - exception1.getMessage(), - allOf( - containsString("number of weights"), - containsString("must match number of sub-queries"), - containsString("in hybrid query") - ) - ); - - // check case when number of weights is more than number of sub-queries - // delete existing pipeline and create a new one with another set of weights - deleteSearchPipeline(SEARCH_PIPELINE); - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - DEFAULT_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.3f, 0.25f, 0.25f, 0.2f })) - ); - - ResponseException exception2 = expectThrows( - ResponseException.class, - () -> search(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, hybridQueryBuilder, null, 5, Map.of("search_pipeline", SEARCH_PIPELINE)) - ); - org.hamcrest.MatcherAssert.assertThat( - exception2.getMessage(), - allOf( - containsString("number of weights"), - containsString("must match number of sub-queries"), - containsString("in hybrid query") - ) - ); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME); + modelId = prepareModel(); + // check case when number of weights and sub-queries are same + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + DEFAULT_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.4f, 0.3f, 0.3f })) + ); + + HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); + hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4)); + hybridQueryBuilder.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT7)); + + Map searchResponseWithWeights1AsMap = search( + TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, + hybridQueryBuilder, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + + assertWeightedScores(searchResponseWithWeights1AsMap, 0.4, 0.3, 0.001); + + // delete existing pipeline and create a new one with another set of weights + deleteSearchPipeline(SEARCH_PIPELINE); + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + DEFAULT_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.233f, 0.666f, 0.1f })) + ); + + Map searchResponseWithWeights2AsMap = search( + TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, + hybridQueryBuilder, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + + assertWeightedScores(searchResponseWithWeights2AsMap, 0.6666, 0.2332, 0.001); + + // check case when number of weights is less than number of sub-queries + // delete existing pipeline and create a new one with another set of weights + deleteSearchPipeline(SEARCH_PIPELINE); + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + DEFAULT_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 1.0f })) + ); + + ResponseException exception1 = expectThrows( + ResponseException.class, + () -> search( + TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, + hybridQueryBuilder, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ) + ); + org.hamcrest.MatcherAssert.assertThat( + exception1.getMessage(), + allOf( + containsString("number of weights"), + containsString("must match number of sub-queries"), + containsString("in hybrid query") + ) + ); + + // check case when number of weights is more than number of sub-queries + // delete existing pipeline and create a new one with another set of weights + deleteSearchPipeline(SEARCH_PIPELINE); + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + DEFAULT_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.3f, 0.25f, 0.25f, 0.2f })) + ); + + ResponseException exception2 = expectThrows( + ResponseException.class, + () -> search( + TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, + hybridQueryBuilder, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ) + ); + org.hamcrest.MatcherAssert.assertThat( + exception2.getMessage(), + allOf( + containsString("number of weights"), + containsString("must match number of sub-queries"), + containsString("in hybrid query") + ) + ); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_THREE_SHARDS_NAME, null, modelId, SEARCH_PIPELINE); + } } /** @@ -204,50 +213,57 @@ public void testArithmeticWeightedMean_whenWeightsPassed_thenSuccessful() { */ @SneakyThrows public void testHarmonicMeanCombination_whenOneShardAndQueryMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - HARMONIC_MEAN_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - String modelId = getDeployedModelId(); - - HybridQueryBuilder hybridQueryBuilderDefaultNorm = new HybridQueryBuilder(); - hybridQueryBuilderDefaultNorm.add(new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null)); - hybridQueryBuilderDefaultNorm.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapDefaultNorm = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderDefaultNorm, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - - assertHybridSearchResults(searchResponseAsMapDefaultNorm, 5, new float[] { 0.5f, 1.0f }); - - deleteSearchPipeline(SEARCH_PIPELINE); - - createSearchPipeline( - SEARCH_PIPELINE, - L2_NORMALIZATION_METHOD, - HARMONIC_MEAN_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - - HybridQueryBuilder hybridQueryBuilderL2Norm = new HybridQueryBuilder(); - hybridQueryBuilderL2Norm.add(new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null)); - hybridQueryBuilderL2Norm.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapL2Norm = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderL2Norm, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertHybridSearchResults(searchResponseAsMapL2Norm, 5, new float[] { 0.5f, 1.0f }); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + modelId = prepareModel(); + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + HARMONIC_MEAN_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderDefaultNorm = new HybridQueryBuilder(); + hybridQueryBuilderDefaultNorm.add( + new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) + ); + hybridQueryBuilderDefaultNorm.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapDefaultNorm = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderDefaultNorm, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + + assertHybridSearchResults(searchResponseAsMapDefaultNorm, 5, new float[] { 0.5f, 1.0f }); + + deleteSearchPipeline(SEARCH_PIPELINE); + + createSearchPipeline( + SEARCH_PIPELINE, + L2_NORMALIZATION_METHOD, + HARMONIC_MEAN_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderL2Norm = new HybridQueryBuilder(); + hybridQueryBuilderL2Norm.add(new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null)); + hybridQueryBuilderL2Norm.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapL2Norm = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderL2Norm, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertHybridSearchResults(searchResponseAsMapL2Norm, 5, new float[] { 0.5f, 1.0f }); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, null, modelId, SEARCH_PIPELINE); + } } /** @@ -270,50 +286,57 @@ public void testHarmonicMeanCombination_whenOneShardAndQueryMatches_thenSuccessf */ @SneakyThrows public void testGeometricMeanCombination_whenOneShardAndQueryMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - GEOMETRIC_MEAN_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - String modelId = getDeployedModelId(); - - HybridQueryBuilder hybridQueryBuilderDefaultNorm = new HybridQueryBuilder(); - hybridQueryBuilderDefaultNorm.add(new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null)); - hybridQueryBuilderDefaultNorm.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapDefaultNorm = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderDefaultNorm, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - - assertHybridSearchResults(searchResponseAsMapDefaultNorm, 5, new float[] { 0.5f, 1.0f }); - - deleteSearchPipeline(SEARCH_PIPELINE); - - createSearchPipeline( - SEARCH_PIPELINE, - L2_NORMALIZATION_METHOD, - GEOMETRIC_MEAN_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - - HybridQueryBuilder hybridQueryBuilderL2Norm = new HybridQueryBuilder(); - hybridQueryBuilderL2Norm.add(new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null)); - hybridQueryBuilderL2Norm.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapL2Norm = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderL2Norm, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertHybridSearchResults(searchResponseAsMapL2Norm, 5, new float[] { 0.5f, 1.0f }); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + modelId = prepareModel(); + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + GEOMETRIC_MEAN_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderDefaultNorm = new HybridQueryBuilder(); + hybridQueryBuilderDefaultNorm.add( + new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) + ); + hybridQueryBuilderDefaultNorm.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapDefaultNorm = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderDefaultNorm, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + + assertHybridSearchResults(searchResponseAsMapDefaultNorm, 5, new float[] { 0.5f, 1.0f }); + + deleteSearchPipeline(SEARCH_PIPELINE); + + createSearchPipeline( + SEARCH_PIPELINE, + L2_NORMALIZATION_METHOD, + GEOMETRIC_MEAN_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderL2Norm = new HybridQueryBuilder(); + hybridQueryBuilderL2Norm.add(new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null)); + hybridQueryBuilderL2Norm.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapL2Norm = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderL2Norm, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertHybridSearchResults(searchResponseAsMapL2Norm, 5, new float[] { 0.5f, 1.0f }); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, null, modelId, SEARCH_PIPELINE); + } } private void initializeIndexIfNotExist(String indexName) throws IOException { diff --git a/src/test/java/org/opensearch/neuralsearch/processor/ScoreNormalizationIT.java b/src/test/java/org/opensearch/neuralsearch/processor/ScoreNormalizationIT.java index 35eabb8a3..175ea08fe 100644 --- a/src/test/java/org/opensearch/neuralsearch/processor/ScoreNormalizationIT.java +++ b/src/test/java/org/opensearch/neuralsearch/processor/ScoreNormalizationIT.java @@ -14,7 +14,6 @@ import java.util.Collections; import java.util.Map; -import org.junit.After; import org.junit.Before; import org.opensearch.index.query.QueryBuilders; import org.opensearch.neuralsearch.BaseNeuralSearchIT; @@ -29,7 +28,7 @@ import lombok.SneakyThrows; public class ScoreNormalizationIT extends BaseNeuralSearchIT { - private static final String TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME = "test-neural-multi-doc-one-shard-index"; + private static final String TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME = "test-score-normalization-neural-multi-doc-one-shard-index"; private static final String TEST_QUERY_TEXT3 = "hello"; private static final String TEST_DOC_TEXT1 = "Hello world"; private static final String TEST_DOC_TEXT2 = "Hi to this place"; @@ -51,15 +50,6 @@ public class ScoreNormalizationIT extends BaseNeuralSearchIT { public void setUp() throws Exception { super.setUp(); updateClusterSettings(); - prepareModel(); - } - - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - deleteSearchPipeline(SEARCH_PIPELINE); - findDeployedModels().forEach(this::deleteModel); } @Override @@ -87,79 +77,84 @@ public boolean isUpdateClusterSettings() { */ @SneakyThrows public void testL2Norm_whenOneShardAndQueryMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipeline( - SEARCH_PIPELINE, - L2_NORMALIZATION_METHOD, - DEFAULT_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - String modelId = getDeployedModelId(); - - HybridQueryBuilder hybridQueryBuilderArithmeticMean = new HybridQueryBuilder(); - hybridQueryBuilderArithmeticMean.add( - new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) - ); - hybridQueryBuilderArithmeticMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapArithmeticMean = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderArithmeticMean, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertHybridSearchResults(searchResponseAsMapArithmeticMean, 5, new float[] { 0.6f, 1.0f }); - - deleteSearchPipeline(SEARCH_PIPELINE); - - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipeline( - SEARCH_PIPELINE, - L2_NORMALIZATION_METHOD, - HARMONIC_MEAN_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - - HybridQueryBuilder hybridQueryBuilderHarmonicMean = new HybridQueryBuilder(); - hybridQueryBuilderHarmonicMean.add( - new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) - ); - hybridQueryBuilderHarmonicMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapHarmonicMean = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderHarmonicMean, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertHybridSearchResults(searchResponseAsMapHarmonicMean, 5, new float[] { 0.5f, 1.0f }); - - deleteSearchPipeline(SEARCH_PIPELINE); - - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipeline( - SEARCH_PIPELINE, - L2_NORMALIZATION_METHOD, - GEOMETRIC_MEAN_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - - HybridQueryBuilder hybridQueryBuilderGeometricMean = new HybridQueryBuilder(); - hybridQueryBuilderGeometricMean.add( - new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) - ); - hybridQueryBuilderGeometricMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapGeometricMean = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderGeometricMean, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertHybridSearchResults(searchResponseAsMapGeometricMean, 5, new float[] { 0.5f, 1.0f }); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + modelId = prepareModel(); + createSearchPipeline( + SEARCH_PIPELINE, + L2_NORMALIZATION_METHOD, + DEFAULT_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderArithmeticMean = new HybridQueryBuilder(); + hybridQueryBuilderArithmeticMean.add( + new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) + ); + hybridQueryBuilderArithmeticMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapArithmeticMean = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderArithmeticMean, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertHybridSearchResults(searchResponseAsMapArithmeticMean, 5, new float[] { 0.6f, 1.0f }); + + deleteSearchPipeline(SEARCH_PIPELINE); + + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + createSearchPipeline( + SEARCH_PIPELINE, + L2_NORMALIZATION_METHOD, + HARMONIC_MEAN_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderHarmonicMean = new HybridQueryBuilder(); + hybridQueryBuilderHarmonicMean.add( + new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) + ); + hybridQueryBuilderHarmonicMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapHarmonicMean = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderHarmonicMean, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertHybridSearchResults(searchResponseAsMapHarmonicMean, 5, new float[] { 0.5f, 1.0f }); + + deleteSearchPipeline(SEARCH_PIPELINE); + + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + createSearchPipeline( + SEARCH_PIPELINE, + L2_NORMALIZATION_METHOD, + GEOMETRIC_MEAN_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderGeometricMean = new HybridQueryBuilder(); + hybridQueryBuilderGeometricMean.add( + new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) + ); + hybridQueryBuilderGeometricMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapGeometricMean = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderGeometricMean, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertHybridSearchResults(searchResponseAsMapGeometricMean, 5, new float[] { 0.5f, 1.0f }); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, null, modelId, SEARCH_PIPELINE); + } } /** @@ -182,79 +177,84 @@ public void testL2Norm_whenOneShardAndQueryMatches_thenSuccessful() { */ @SneakyThrows public void testMinMaxNorm_whenOneShardAndQueryMatches_thenSuccessful() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - DEFAULT_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - String modelId = getDeployedModelId(); - - HybridQueryBuilder hybridQueryBuilderArithmeticMean = new HybridQueryBuilder(); - hybridQueryBuilderArithmeticMean.add( - new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) - ); - hybridQueryBuilderArithmeticMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapArithmeticMean = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderArithmeticMean, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertHybridSearchResults(searchResponseAsMapArithmeticMean, 5, new float[] { 0.5f, 1.0f }); - - deleteSearchPipeline(SEARCH_PIPELINE); - - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - HARMONIC_MEAN_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - - HybridQueryBuilder hybridQueryBuilderHarmonicMean = new HybridQueryBuilder(); - hybridQueryBuilderHarmonicMean.add( - new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) - ); - hybridQueryBuilderHarmonicMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapHarmonicMean = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderHarmonicMean, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertHybridSearchResults(searchResponseAsMapHarmonicMean, 5, new float[] { 0.6f, 1.0f }); - - deleteSearchPipeline(SEARCH_PIPELINE); - - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); - createSearchPipeline( - SEARCH_PIPELINE, - DEFAULT_NORMALIZATION_METHOD, - GEOMETRIC_MEAN_COMBINATION_METHOD, - Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) - ); - - HybridQueryBuilder hybridQueryBuilderGeometricMean = new HybridQueryBuilder(); - hybridQueryBuilderGeometricMean.add( - new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) - ); - hybridQueryBuilderGeometricMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); - - Map searchResponseAsMapGeometricMean = search( - TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, - hybridQueryBuilderGeometricMean, - null, - 5, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - assertHybridSearchResults(searchResponseAsMapGeometricMean, 5, new float[] { 0.6f, 1.0f }); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + modelId = prepareModel(); + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + DEFAULT_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderArithmeticMean = new HybridQueryBuilder(); + hybridQueryBuilderArithmeticMean.add( + new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) + ); + hybridQueryBuilderArithmeticMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapArithmeticMean = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderArithmeticMean, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertHybridSearchResults(searchResponseAsMapArithmeticMean, 5, new float[] { 0.5f, 1.0f }); + + deleteSearchPipeline(SEARCH_PIPELINE); + + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + HARMONIC_MEAN_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderHarmonicMean = new HybridQueryBuilder(); + hybridQueryBuilderHarmonicMean.add( + new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) + ); + hybridQueryBuilderHarmonicMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapHarmonicMean = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderHarmonicMean, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertHybridSearchResults(searchResponseAsMapHarmonicMean, 5, new float[] { 0.6f, 1.0f }); + + deleteSearchPipeline(SEARCH_PIPELINE); + + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME); + createSearchPipeline( + SEARCH_PIPELINE, + DEFAULT_NORMALIZATION_METHOD, + GEOMETRIC_MEAN_COMBINATION_METHOD, + Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.533f, 0.466f })) + ); + + HybridQueryBuilder hybridQueryBuilderGeometricMean = new HybridQueryBuilder(); + hybridQueryBuilderGeometricMean.add( + new NeuralQueryBuilder(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DOC_TEXT1, "", modelId, 5, null, null) + ); + hybridQueryBuilderGeometricMean.add(QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3)); + + Map searchResponseAsMapGeometricMean = search( + TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, + hybridQueryBuilderGeometricMean, + null, + 5, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); + assertHybridSearchResults(searchResponseAsMapGeometricMean, 5, new float[] { 0.6f, 1.0f }); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_ONE_SHARD_NAME, null, modelId, SEARCH_PIPELINE); + } } private void initializeIndexIfNotExist(String indexName) throws IOException { diff --git a/src/test/java/org/opensearch/neuralsearch/processor/SparseEncodingProcessIT.java b/src/test/java/org/opensearch/neuralsearch/processor/SparseEncodingProcessIT.java index 67c4c6a5e..ffccbc27b 100644 --- a/src/test/java/org/opensearch/neuralsearch/processor/SparseEncodingProcessIT.java +++ b/src/test/java/org/opensearch/neuralsearch/processor/SparseEncodingProcessIT.java @@ -11,7 +11,7 @@ import org.apache.http.HttpHeaders; import org.apache.http.message.BasicHeader; import org.apache.http.util.EntityUtils; -import org.junit.After; +import org.junit.Before; import org.opensearch.client.Response; import org.opensearch.common.xcontent.XContentHelper; import org.opensearch.common.xcontent.XContentType; @@ -19,31 +19,29 @@ import com.google.common.collect.ImmutableList; -import lombok.SneakyThrows; - public class SparseEncodingProcessIT extends BaseNeuralSearchIT { private static final String INDEX_NAME = "sparse_encoding_index"; private static final String PIPELINE_NAME = "pipeline-sparse-encoding"; - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - /* this is required to minimize chance of model not being deployed due to open memory CB, - * this happens in case we leave model from previous test case. We use new model for every test, and old model - * can be undeployed and deleted to free resources after each test case execution. - */ - findDeployedModels().forEach(this::deleteModel); + @Before + public void setUp() throws Exception { + super.setUp(); + updateClusterSettings(); } public void testSparseEncodingProcessor() throws Exception { - String modelId = prepareSparseEncodingModel(); - createPipelineProcessor(modelId, PIPELINE_NAME, ProcessorType.SPARSE_ENCODING); - createSparseEncodingIndex(); - ingestDocument(); - assertEquals(1, getDocCount(INDEX_NAME)); + String modelId = null; + try { + modelId = prepareSparseEncodingModel(); + createPipelineProcessor(modelId, PIPELINE_NAME, ProcessorType.SPARSE_ENCODING); + createSparseEncodingIndex(); + ingestDocument(); + assertEquals(1, getDocCount(INDEX_NAME)); + } finally { + wipeOfTestResources(INDEX_NAME, PIPELINE_NAME, modelId, null); + } } private void createSparseEncodingIndex() throws Exception { diff --git a/src/test/java/org/opensearch/neuralsearch/processor/TextEmbeddingProcessorIT.java b/src/test/java/org/opensearch/neuralsearch/processor/TextEmbeddingProcessorIT.java index 4e7e4f0d4..63b652fae 100644 --- a/src/test/java/org/opensearch/neuralsearch/processor/TextEmbeddingProcessorIT.java +++ b/src/test/java/org/opensearch/neuralsearch/processor/TextEmbeddingProcessorIT.java @@ -11,7 +11,7 @@ import org.apache.http.HttpHeaders; import org.apache.http.message.BasicHeader; import org.apache.http.util.EntityUtils; -import org.junit.After; +import org.junit.Before; import org.opensearch.client.Response; import org.opensearch.common.xcontent.XContentHelper; import org.opensearch.common.xcontent.XContentType; @@ -19,32 +19,30 @@ import com.google.common.collect.ImmutableList; -import lombok.SneakyThrows; - public class TextEmbeddingProcessorIT extends BaseNeuralSearchIT { private static final String INDEX_NAME = "text_embedding_index"; private static final String PIPELINE_NAME = "pipeline-hybrid"; - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - /* this is required to minimize chance of model not being deployed due to open memory CB, - * this happens in case we leave model from previous test case. We use new model for every test, and old model - * can be undeployed and deleted to free resources after each test case execution. - */ - findDeployedModels().forEach(this::deleteModel); + @Before + public void setUp() throws Exception { + super.setUp(); + updateClusterSettings(); } public void testTextEmbeddingProcessor() throws Exception { - String modelId = uploadTextEmbeddingModel(); - loadModel(modelId); - createPipelineProcessor(modelId, PIPELINE_NAME, ProcessorType.TEXT_EMBEDDING); - createTextEmbeddingIndex(); - ingestDocument(); - assertEquals(1, getDocCount(INDEX_NAME)); + String modelId = null; + try { + modelId = uploadTextEmbeddingModel(); + loadModel(modelId); + createPipelineProcessor(modelId, PIPELINE_NAME, ProcessorType.TEXT_EMBEDDING); + createTextEmbeddingIndex(); + ingestDocument(); + assertEquals(1, getDocCount(INDEX_NAME)); + } finally { + wipeOfTestResources(INDEX_NAME, PIPELINE_NAME, modelId, null); + } } private String uploadTextEmbeddingModel() throws Exception { diff --git a/src/test/java/org/opensearch/neuralsearch/processor/TextImageEmbeddingProcessorIT.java b/src/test/java/org/opensearch/neuralsearch/processor/TextImageEmbeddingProcessorIT.java index 851188aa8..8c99236fe 100644 --- a/src/test/java/org/opensearch/neuralsearch/processor/TextImageEmbeddingProcessorIT.java +++ b/src/test/java/org/opensearch/neuralsearch/processor/TextImageEmbeddingProcessorIT.java @@ -11,7 +11,7 @@ import org.apache.http.HttpHeaders; import org.apache.http.message.BasicHeader; import org.apache.http.util.EntityUtils; -import org.junit.After; +import org.junit.Before; import org.opensearch.client.Response; import org.opensearch.common.xcontent.XContentHelper; import org.opensearch.common.xcontent.XContentType; @@ -19,8 +19,6 @@ import com.google.common.collect.ImmutableList; -import lombok.SneakyThrows; - /** * Testing text_and_image_embedding ingest processor. We can only test text in integ tests, none of pre-built models * supports both text and image. @@ -30,29 +28,38 @@ public class TextImageEmbeddingProcessorIT extends BaseNeuralSearchIT { private static final String INDEX_NAME = "text_image_embedding_index"; private static final String PIPELINE_NAME = "ingest-pipeline"; - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - findDeployedModels().forEach(this::deleteModel); + @Before + public void setUp() throws Exception { + super.setUp(); + updateClusterSettings(); } public void testEmbeddingProcessor_whenIngestingDocumentWithSourceMatchingTextMapping_thenSuccessful() throws Exception { - String modelId = uploadModel(); - loadModel(modelId); - createPipelineProcessor(modelId, PIPELINE_NAME, ProcessorType.TEXT_IMAGE_EMBEDDING); - createTextImageEmbeddingIndex(); - ingestDocumentWithTextMappedToEmbeddingField(); - assertEquals(1, getDocCount(INDEX_NAME)); + String modelId = null; + try { + modelId = uploadModel(); + loadModel(modelId); + createPipelineProcessor(modelId, PIPELINE_NAME, ProcessorType.TEXT_IMAGE_EMBEDDING); + createTextImageEmbeddingIndex(); + ingestDocumentWithTextMappedToEmbeddingField(); + assertEquals(1, getDocCount(INDEX_NAME)); + } finally { + wipeOfTestResources(INDEX_NAME, PIPELINE_NAME, modelId, null); + } } public void testEmbeddingProcessor_whenIngestingDocumentWithSourceWithoutMatchingInMapping_thenSuccessful() throws Exception { - String modelId = uploadModel(); - loadModel(modelId); - createPipelineProcessor(modelId, PIPELINE_NAME, ProcessorType.TEXT_IMAGE_EMBEDDING); - createTextImageEmbeddingIndex(); - ingestDocumentWithoutMappedFields(); - assertEquals(1, getDocCount(INDEX_NAME)); + String modelId = null; + try { + modelId = uploadModel(); + loadModel(modelId); + createPipelineProcessor(modelId, PIPELINE_NAME, ProcessorType.TEXT_IMAGE_EMBEDDING); + createTextImageEmbeddingIndex(); + ingestDocumentWithoutMappedFields(); + assertEquals(1, getDocCount(INDEX_NAME)); + } finally { + wipeOfTestResources(INDEX_NAME, PIPELINE_NAME, modelId, null); + } } private String uploadModel() throws Exception { diff --git a/src/test/java/org/opensearch/neuralsearch/query/HybridQueryIT.java b/src/test/java/org/opensearch/neuralsearch/query/HybridQueryIT.java index 07247d2a5..b748e2aee 100644 --- a/src/test/java/org/opensearch/neuralsearch/query/HybridQueryIT.java +++ b/src/test/java/org/opensearch/neuralsearch/query/HybridQueryIT.java @@ -23,7 +23,6 @@ import java.util.stream.IntStream; import org.apache.lucene.search.join.ScoreMode; -import org.junit.After; import org.junit.Before; import org.opensearch.client.ResponseException; import org.opensearch.index.query.BoolQueryBuilder; @@ -69,20 +68,6 @@ public class HybridQueryIT extends BaseNeuralSearchIT { public void setUp() throws Exception { super.setUp(); updateClusterSettings(); - prepareModel(); - createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); - } - - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - deleteSearchPipeline(SEARCH_PIPELINE); - /* this is required to minimize chance of model not being deployed due to open memory CB, - * this happens in case we leave model from previous test case. We use new model for every test, and old model - * can be undeployed and deleted to free resources after each test case execution. - */ - findDeployedModels().forEach(this::deleteModel); } @Override @@ -129,46 +114,52 @@ protected boolean preserveClusterUponCompletion() { */ @SneakyThrows public void testComplexQuery_whenMultipleSubqueries_thenSuccessful() { - initializeIndexIfNotExist(TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME); - - TermQueryBuilder termQueryBuilder1 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - TermQueryBuilder termQueryBuilder2 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4); - TermQueryBuilder termQueryBuilder3 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT5); - BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); - boolQueryBuilder.should(termQueryBuilder2).should(termQueryBuilder3); - - HybridQueryBuilder hybridQueryBuilderNeuralThenTerm = new HybridQueryBuilder(); - hybridQueryBuilderNeuralThenTerm.add(termQueryBuilder1); - hybridQueryBuilderNeuralThenTerm.add(boolQueryBuilder); - - Map searchResponseAsMap1 = search( - TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME, - hybridQueryBuilderNeuralThenTerm, - null, - 10, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - - assertEquals(3, getHitCount(searchResponseAsMap1)); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + TermQueryBuilder termQueryBuilder1 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); + TermQueryBuilder termQueryBuilder2 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4); + TermQueryBuilder termQueryBuilder3 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT5); + BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); + boolQueryBuilder.should(termQueryBuilder2).should(termQueryBuilder3); + + HybridQueryBuilder hybridQueryBuilderNeuralThenTerm = new HybridQueryBuilder(); + hybridQueryBuilderNeuralThenTerm.add(termQueryBuilder1); + hybridQueryBuilderNeuralThenTerm.add(boolQueryBuilder); + + Map searchResponseAsMap1 = search( + TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME, + hybridQueryBuilderNeuralThenTerm, + null, + 10, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); - List> hits1NestedList = getNestedHits(searchResponseAsMap1); - List ids = new ArrayList<>(); - List scores = new ArrayList<>(); - for (Map oneHit : hits1NestedList) { - ids.add((String) oneHit.get("_id")); - scores.add((Double) oneHit.get("_score")); + assertEquals(3, getHitCount(searchResponseAsMap1)); + + List> hits1NestedList = getNestedHits(searchResponseAsMap1); + List ids = new ArrayList<>(); + List scores = new ArrayList<>(); + for (Map oneHit : hits1NestedList) { + ids.add((String) oneHit.get("_id")); + scores.add((Double) oneHit.get("_score")); + } + + // verify that scores are in desc order + assertTrue(IntStream.range(0, scores.size() - 1).noneMatch(idx -> scores.get(idx) < scores.get(idx + 1))); + // verify that all ids are unique + assertEquals(Set.copyOf(ids).size(), ids.size()); + + Map total = getTotalHits(searchResponseAsMap1); + assertNotNull(total.get("value")); + assertEquals(3, total.get("value")); + assertNotNull(total.get("relation")); + assertEquals(RELATION_EQUAL_TO, total.get("relation")); + } finally { + wipeOfTestResources(TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME, null, modelId, SEARCH_PIPELINE); } - - // verify that scores are in desc order - assertTrue(IntStream.range(0, scores.size() - 1).noneMatch(idx -> scores.get(idx) < scores.get(idx + 1))); - // verify that all ids are unique - assertEquals(Set.copyOf(ids).size(), ids.size()); - - Map total = getTotalHits(searchResponseAsMap1); - assertNotNull(total.get("value")); - assertEquals(3, total.get("value")); - assertNotNull(total.get("relation")); - assertEquals(RELATION_EQUAL_TO, total.get("relation")); } /** @@ -199,183 +190,213 @@ public void testComplexQuery_whenMultipleSubqueries_thenSuccessful() { */ @SneakyThrows public void testComplexQuery_whenMultipleIdenticalSubQueries_thenSuccessful() { - initializeIndexIfNotExist(TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME); - - TermQueryBuilder termQueryBuilder1 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - TermQueryBuilder termQueryBuilder2 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4); - TermQueryBuilder termQueryBuilder3 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - - HybridQueryBuilder hybridQueryBuilderThreeTerms = new HybridQueryBuilder(); - hybridQueryBuilderThreeTerms.add(termQueryBuilder1); - hybridQueryBuilderThreeTerms.add(termQueryBuilder2); - hybridQueryBuilderThreeTerms.add(termQueryBuilder3); - - Map searchResponseAsMap1 = search( - TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME, - hybridQueryBuilderThreeTerms, - null, - 10, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - - assertEquals(2, getHitCount(searchResponseAsMap1)); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + TermQueryBuilder termQueryBuilder1 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); + TermQueryBuilder termQueryBuilder2 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4); + TermQueryBuilder termQueryBuilder3 = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); + + HybridQueryBuilder hybridQueryBuilderThreeTerms = new HybridQueryBuilder(); + hybridQueryBuilderThreeTerms.add(termQueryBuilder1); + hybridQueryBuilderThreeTerms.add(termQueryBuilder2); + hybridQueryBuilderThreeTerms.add(termQueryBuilder3); + + Map searchResponseAsMap1 = search( + TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME, + hybridQueryBuilderThreeTerms, + null, + 10, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); - List> hits1NestedList = getNestedHits(searchResponseAsMap1); - List ids = new ArrayList<>(); - List scores = new ArrayList<>(); - for (Map oneHit : hits1NestedList) { - ids.add((String) oneHit.get("_id")); - scores.add((Double) oneHit.get("_score")); + assertEquals(2, getHitCount(searchResponseAsMap1)); + + List> hits1NestedList = getNestedHits(searchResponseAsMap1); + List ids = new ArrayList<>(); + List scores = new ArrayList<>(); + for (Map oneHit : hits1NestedList) { + ids.add((String) oneHit.get("_id")); + scores.add((Double) oneHit.get("_score")); + } + + // verify that scores are in desc order + assertTrue(IntStream.range(0, scores.size() - 1).noneMatch(idx -> scores.get(idx) < scores.get(idx + 1))); + // verify that all ids are unique + assertEquals(Set.copyOf(ids).size(), ids.size()); + + Map total = getTotalHits(searchResponseAsMap1); + assertNotNull(total.get("value")); + assertEquals(2, total.get("value")); + assertNotNull(total.get("relation")); + assertEquals(RELATION_EQUAL_TO, total.get("relation")); + } finally { + wipeOfTestResources(TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME, null, modelId, SEARCH_PIPELINE); } - - // verify that scores are in desc order - assertTrue(IntStream.range(0, scores.size() - 1).noneMatch(idx -> scores.get(idx) < scores.get(idx + 1))); - // verify that all ids are unique - assertEquals(Set.copyOf(ids).size(), ids.size()); - - Map total = getTotalHits(searchResponseAsMap1); - assertNotNull(total.get("value")); - assertEquals(2, total.get("value")); - assertNotNull(total.get("relation")); - assertEquals(RELATION_EQUAL_TO, total.get("relation")); } @SneakyThrows public void testNoMatchResults_whenOnlyTermSubQueryWithoutMatch_thenEmptyResult() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_NAME); - - TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT); - TermQueryBuilder termQuery2Builder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT2); - HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder(); - hybridQueryBuilderOnlyTerm.add(termQueryBuilder); - hybridQueryBuilderOnlyTerm.add(termQuery2Builder); - - Map searchResponseAsMap = search( - TEST_MULTI_DOC_INDEX_NAME, - hybridQueryBuilderOnlyTerm, - null, - 10, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - - assertEquals(0, getHitCount(searchResponseAsMap)); - assertTrue(getMaxScore(searchResponseAsMap).isPresent()); - assertEquals(0.0f, getMaxScore(searchResponseAsMap).get(), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_NAME); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT); + TermQueryBuilder termQuery2Builder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT2); + HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder(); + hybridQueryBuilderOnlyTerm.add(termQueryBuilder); + hybridQueryBuilderOnlyTerm.add(termQuery2Builder); + + Map searchResponseAsMap = search( + TEST_MULTI_DOC_INDEX_NAME, + hybridQueryBuilderOnlyTerm, + null, + 10, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); - Map total = getTotalHits(searchResponseAsMap); - assertNotNull(total.get("value")); - assertEquals(0, total.get("value")); - assertNotNull(total.get("relation")); - assertEquals(RELATION_EQUAL_TO, total.get("relation")); + assertEquals(0, getHitCount(searchResponseAsMap)); + assertTrue(getMaxScore(searchResponseAsMap).isPresent()); + assertEquals(0.0f, getMaxScore(searchResponseAsMap).get(), DELTA_FOR_SCORE_ASSERTION); + + Map total = getTotalHits(searchResponseAsMap); + assertNotNull(total.get("value")); + assertEquals(0, total.get("value")); + assertNotNull(total.get("relation")); + assertEquals(RELATION_EQUAL_TO, total.get("relation")); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_NAME, null, modelId, SEARCH_PIPELINE); + } } @SneakyThrows public void testNestedQuery_whenHybridQueryIsWrappedIntoOtherQuery_thenFail() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD); - - MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - MatchQueryBuilder matchQuery2Builder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4); - HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder(); - hybridQueryBuilderOnlyTerm.add(matchQueryBuilder); - hybridQueryBuilderOnlyTerm.add(matchQuery2Builder); - MatchQueryBuilder matchQuery3Builder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery().should(hybridQueryBuilderOnlyTerm).should(matchQuery3Builder); - - ResponseException exceptionNoNestedTypes = expectThrows( - ResponseException.class, - () -> search(TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD, boolQueryBuilder, null, 10, Map.of("search_pipeline", SEARCH_PIPELINE)) - ); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); + MatchQueryBuilder matchQuery2Builder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4); + HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder(); + hybridQueryBuilderOnlyTerm.add(matchQueryBuilder); + hybridQueryBuilderOnlyTerm.add(matchQuery2Builder); + MatchQueryBuilder matchQuery3Builder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); + BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery().should(hybridQueryBuilderOnlyTerm).should(matchQuery3Builder); + + ResponseException exceptionNoNestedTypes = expectThrows( + ResponseException.class, + () -> search(TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD, boolQueryBuilder, null, 10, Map.of("search_pipeline", SEARCH_PIPELINE)) + ); - org.hamcrest.MatcherAssert.assertThat( - exceptionNoNestedTypes.getMessage(), - allOf( - containsString("hybrid query must be a top level query and cannot be wrapped into other queries"), - containsString("illegal_argument_exception") - ) - ); + org.hamcrest.MatcherAssert.assertThat( + exceptionNoNestedTypes.getMessage(), + allOf( + containsString("hybrid query must be a top level query and cannot be wrapped into other queries"), + containsString("illegal_argument_exception") + ) + ); - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD); + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD); - ResponseException exceptionQWithNestedTypes = expectThrows( - ResponseException.class, - () -> search( - TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD, - boolQueryBuilder, - null, - 10, - Map.of("search_pipeline", SEARCH_PIPELINE) - ) - ); + ResponseException exceptionQWithNestedTypes = expectThrows( + ResponseException.class, + () -> search( + TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD, + boolQueryBuilder, + null, + 10, + Map.of("search_pipeline", SEARCH_PIPELINE) + ) + ); - org.hamcrest.MatcherAssert.assertThat( - exceptionQWithNestedTypes.getMessage(), - allOf( - containsString("hybrid query must be a top level query and cannot be wrapped into other queries"), - containsString("illegal_argument_exception") - ) - ); + org.hamcrest.MatcherAssert.assertThat( + exceptionQWithNestedTypes.getMessage(), + allOf( + containsString("hybrid query must be a top level query and cannot be wrapped into other queries"), + containsString("illegal_argument_exception") + ) + ); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD, null, modelId, SEARCH_PIPELINE); + } } @SneakyThrows public void testIndexWithNestedFields_whenHybridQuery_thenSuccess() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD); - - TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); - TermQueryBuilder termQuery2Builder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT2); - HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder(); - hybridQueryBuilderOnlyTerm.add(termQueryBuilder); - hybridQueryBuilderOnlyTerm.add(termQuery2Builder); - - Map searchResponseAsMap = search( - TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD, - hybridQueryBuilderOnlyTerm, - null, - 10, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); - - assertEquals(1, getHitCount(searchResponseAsMap)); - assertTrue(getMaxScore(searchResponseAsMap).isPresent()); - assertEquals(0.5f, getMaxScore(searchResponseAsMap).get(), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3); + TermQueryBuilder termQuery2Builder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT2); + HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder(); + hybridQueryBuilderOnlyTerm.add(termQueryBuilder); + hybridQueryBuilderOnlyTerm.add(termQuery2Builder); + + Map searchResponseAsMap = search( + TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD, + hybridQueryBuilderOnlyTerm, + null, + 10, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); - Map total = getTotalHits(searchResponseAsMap); - assertNotNull(total.get("value")); - assertEquals(1, total.get("value")); - assertNotNull(total.get("relation")); - assertEquals(RELATION_EQUAL_TO, total.get("relation")); + assertEquals(1, getHitCount(searchResponseAsMap)); + assertTrue(getMaxScore(searchResponseAsMap).isPresent()); + assertEquals(0.5f, getMaxScore(searchResponseAsMap).get(), DELTA_FOR_SCORE_ASSERTION); + + Map total = getTotalHits(searchResponseAsMap); + assertNotNull(total.get("value")); + assertEquals(1, total.get("value")); + assertNotNull(total.get("relation")); + assertEquals(RELATION_EQUAL_TO, total.get("relation")); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD, null, modelId, SEARCH_PIPELINE); + } } @SneakyThrows public void testIndexWithNestedFields_whenHybridQueryIncludesNested_thenSuccess() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD); - - TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT); - NestedQueryBuilder nestedQueryBuilder = QueryBuilders.nestedQuery( - TEST_NESTED_TYPE_FIELD_NAME_1, - matchQuery(TEST_NESTED_TYPE_FIELD_NAME_1 + "." + NESTED_FIELD_1, NESTED_FIELD_1_VALUE), - ScoreMode.Total - ); - HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder(); - hybridQueryBuilderOnlyTerm.add(termQueryBuilder); - hybridQueryBuilderOnlyTerm.add(nestedQueryBuilder); - - Map searchResponseAsMap = search( - TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD, - hybridQueryBuilderOnlyTerm, - null, - 10, - Map.of("search_pipeline", SEARCH_PIPELINE) - ); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD); + modelId = prepareModel(); + createSearchPipelineWithResultsPostProcessor(SEARCH_PIPELINE); + TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT); + NestedQueryBuilder nestedQueryBuilder = QueryBuilders.nestedQuery( + TEST_NESTED_TYPE_FIELD_NAME_1, + matchQuery(TEST_NESTED_TYPE_FIELD_NAME_1 + "." + NESTED_FIELD_1, NESTED_FIELD_1_VALUE), + ScoreMode.Total + ); + HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder(); + hybridQueryBuilderOnlyTerm.add(termQueryBuilder); + hybridQueryBuilderOnlyTerm.add(nestedQueryBuilder); - assertEquals(1, getHitCount(searchResponseAsMap)); - assertTrue(getMaxScore(searchResponseAsMap).isPresent()); - assertEquals(0.5f, getMaxScore(searchResponseAsMap).get(), DELTA_FOR_SCORE_ASSERTION); + Map searchResponseAsMap = search( + TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD, + hybridQueryBuilderOnlyTerm, + null, + 10, + Map.of("search_pipeline", SEARCH_PIPELINE) + ); - Map total = getTotalHits(searchResponseAsMap); - assertNotNull(total.get("value")); - assertEquals(1, total.get("value")); - assertNotNull(total.get("relation")); - assertEquals(RELATION_EQUAL_TO, total.get("relation")); + assertEquals(1, getHitCount(searchResponseAsMap)); + assertTrue(getMaxScore(searchResponseAsMap).isPresent()); + assertEquals(0.5f, getMaxScore(searchResponseAsMap).get(), DELTA_FOR_SCORE_ASSERTION); + + Map total = getTotalHits(searchResponseAsMap); + assertNotNull(total.get("value")); + assertEquals(1, total.get("value")); + assertNotNull(total.get("relation")); + assertEquals(RELATION_EQUAL_TO, total.get("relation")); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_WITH_NESTED_TYPE_NAME_ONE_SHARD, null, modelId, SEARCH_PIPELINE); + } } @SneakyThrows diff --git a/src/test/java/org/opensearch/neuralsearch/query/NeuralQueryIT.java b/src/test/java/org/opensearch/neuralsearch/query/NeuralQueryIT.java index 47f5cbb06..6f1e5f27e 100644 --- a/src/test/java/org/opensearch/neuralsearch/query/NeuralQueryIT.java +++ b/src/test/java/org/opensearch/neuralsearch/query/NeuralQueryIT.java @@ -14,7 +14,6 @@ import java.util.List; import java.util.Map; -import org.junit.After; import org.junit.Before; import org.opensearch.index.query.BoolQueryBuilder; import org.opensearch.index.query.MatchAllQueryBuilder; @@ -43,18 +42,6 @@ public class NeuralQueryIT extends BaseNeuralSearchIT { public void setUp() throws Exception { super.setUp(); updateClusterSettings(); - prepareModel(); - } - - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - /* this is required to minimize chance of model not being deployed due to open memory CB, - * this happens in case we leave model from previous test case. We use new model for every test, and old model - * can be undeployed and deleted to free resources after each test case execution. - */ - findDeployedModels().forEach(this::deleteModel); } /** @@ -73,23 +60,28 @@ public void tearDown() { */ @SneakyThrows public void testBasicQuery() { - initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); - String modelId = getDeployedModelId(); - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_QUERY_TEXT, - "", - modelId, - 1, - null, - null - ); - Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, neuralQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); + modelId = prepareModel(); + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_QUERY_TEXT, + "", + modelId, + 1, + null, + null + ); + Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, neuralQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + } finally { + wipeOfTestResources(TEST_BASIC_INDEX_NAME, null, modelId, null); + } } /** @@ -109,26 +101,31 @@ public void testBasicQuery() { */ @SneakyThrows public void testBoostQuery() { - initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); - String modelId = getDeployedModelId(); - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_QUERY_TEXT, - "", - modelId, - 1, - null, - null - ); - - final float boost = 2.0f; - neuralQueryBuilder.boost(boost); - Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, neuralQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = 2 * computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); + modelId = prepareModel(); + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_QUERY_TEXT, + "", + modelId, + 1, + null, + null + ); + + final float boost = 2.0f; + neuralQueryBuilder.boost(boost); + Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, neuralQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = 2 * computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + } finally { + wipeOfTestResources(TEST_BASIC_INDEX_NAME, null, modelId, null); + } } /** @@ -153,25 +150,30 @@ public void testBoostQuery() { */ @SneakyThrows public void testRescoreQuery() { - initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); - String modelId = getDeployedModelId(); - MatchAllQueryBuilder matchAllQueryBuilder = new MatchAllQueryBuilder(); - NeuralQueryBuilder rescoreNeuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_QUERY_TEXT, - "", - modelId, - 1, - null, - null - ); - - Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, matchAllQueryBuilder, rescoreNeuralQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); + modelId = prepareModel(); + MatchAllQueryBuilder matchAllQueryBuilder = new MatchAllQueryBuilder(); + NeuralQueryBuilder rescoreNeuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_QUERY_TEXT, + "", + modelId, + 1, + null, + null + ); + + Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, matchAllQueryBuilder, rescoreNeuralQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + } finally { + wipeOfTestResources(TEST_BASIC_INDEX_NAME, null, modelId, null); + } } /** @@ -201,37 +203,42 @@ public void testRescoreQuery() { */ @SneakyThrows public void testBooleanQuery_withMultipleNeuralQueries() { - initializeIndexIfNotExist(TEST_MULTI_VECTOR_FIELD_INDEX_NAME); - String modelId = getDeployedModelId(); - BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); - - NeuralQueryBuilder neuralQueryBuilder1 = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_QUERY_TEXT, - "", - modelId, - 1, - null, - null - ); - NeuralQueryBuilder neuralQueryBuilder2 = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_2, - TEST_QUERY_TEXT, - "", - modelId, - 1, - null, - null - ); - - boolQueryBuilder.should(neuralQueryBuilder1).should(neuralQueryBuilder2); - - Map searchResponseAsMap = search(TEST_MULTI_VECTOR_FIELD_INDEX_NAME, boolQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = 2 * computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_VECTOR_FIELD_INDEX_NAME); + modelId = prepareModel(); + BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); + + NeuralQueryBuilder neuralQueryBuilder1 = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_QUERY_TEXT, + "", + modelId, + 1, + null, + null + ); + NeuralQueryBuilder neuralQueryBuilder2 = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_2, + TEST_QUERY_TEXT, + "", + modelId, + 1, + null, + null + ); + + boolQueryBuilder.should(neuralQueryBuilder1).should(neuralQueryBuilder2); + + Map searchResponseAsMap = search(TEST_MULTI_VECTOR_FIELD_INDEX_NAME, boolQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = 2 * computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + } finally { + wipeOfTestResources(TEST_MULTI_VECTOR_FIELD_INDEX_NAME, null, modelId, null); + } } /** @@ -259,30 +266,35 @@ public void testBooleanQuery_withMultipleNeuralQueries() { */ @SneakyThrows public void testBooleanQuery_withNeuralAndBM25Queries() { - initializeIndexIfNotExist(TEST_TEXT_AND_VECTOR_FIELD_INDEX_NAME); - String modelId = getDeployedModelId(); - BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); - - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_QUERY_TEXT, - "", - modelId, - 1, - null, - null - ); - - MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT); - - boolQueryBuilder.should(neuralQueryBuilder).should(matchQueryBuilder); - - Map searchResponseAsMap = search(TEST_TEXT_AND_VECTOR_FIELD_INDEX_NAME, boolQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float minExpectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); - assertTrue(minExpectedScore < objectToFloat(firstInnerHit.get("_score"))); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_TEXT_AND_VECTOR_FIELD_INDEX_NAME); + modelId = prepareModel(); + BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); + + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_QUERY_TEXT, + "", + modelId, + 1, + null, + null + ); + + MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT); + + boolQueryBuilder.should(neuralQueryBuilder).should(matchQueryBuilder); + + Map searchResponseAsMap = search(TEST_TEXT_AND_VECTOR_FIELD_INDEX_NAME, boolQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float minExpectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); + assertTrue(minExpectedScore < objectToFloat(firstInnerHit.get("_score"))); + } finally { + wipeOfTestResources(TEST_TEXT_AND_VECTOR_FIELD_INDEX_NAME, null, modelId, null); + } } /** @@ -305,25 +317,29 @@ public void testBooleanQuery_withNeuralAndBM25Queries() { */ @SneakyThrows public void testNestedQuery() { - initializeIndexIfNotExist(TEST_NESTED_INDEX_NAME); - String modelId = getDeployedModelId(); - - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_NESTED, - TEST_QUERY_TEXT, - "", - modelId, - 1, - null, - null - ); - - Map searchResponseAsMap = search(TEST_NESTED_INDEX_NAME, neuralQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_NESTED_INDEX_NAME); + modelId = prepareModel(); + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_NESTED, + TEST_QUERY_TEXT, + "", + modelId, + 1, + null, + null + ); + + Map searchResponseAsMap = search(TEST_NESTED_INDEX_NAME, neuralQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + } finally { + wipeOfTestResources(TEST_NESTED_INDEX_NAME, null, modelId, null); + } } /** @@ -349,23 +365,28 @@ public void testNestedQuery() { */ @SneakyThrows public void testFilterQuery() { - initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_NAME); - String modelId = getDeployedModelId(); - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_QUERY_TEXT, - "", - modelId, - 1, - null, - new MatchQueryBuilder("_id", "3") - ); - Map searchResponseAsMap = search(TEST_MULTI_DOC_INDEX_NAME, neuralQueryBuilder, 3); - assertEquals(1, getHitCount(searchResponseAsMap)); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - assertEquals("3", firstInnerHit.get("_id")); - float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_NAME); + modelId = prepareModel(); + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_QUERY_TEXT, + "", + modelId, + 1, + null, + new MatchQueryBuilder("_id", "3") + ); + Map searchResponseAsMap = search(TEST_MULTI_DOC_INDEX_NAME, neuralQueryBuilder, 3); + assertEquals(1, getHitCount(searchResponseAsMap)); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + assertEquals("3", firstInnerHit.get("_id")); + float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + } finally { + wipeOfTestResources(TEST_MULTI_DOC_INDEX_NAME, null, modelId, null); + } } /** @@ -385,23 +406,28 @@ public void testFilterQuery() { */ @SneakyThrows public void testMultimodalQuery() { - initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); - String modelId = getDeployedModelId(); - NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( - TEST_KNN_VECTOR_FIELD_NAME_1, - TEST_QUERY_TEXT, - TEST_IMAGE_TEXT, - modelId, - 1, - null, - null - ); - Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, neuralQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); + modelId = prepareModel(); + NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder( + TEST_KNN_VECTOR_FIELD_NAME_1, + TEST_QUERY_TEXT, + TEST_IMAGE_TEXT, + modelId, + 1, + null, + null + ); + Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, neuralQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = computeExpectedScore(modelId, testVector, TEST_SPACE_TYPE, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA_FOR_SCORE_ASSERTION); + } finally { + wipeOfTestResources(TEST_BASIC_INDEX_NAME, null, modelId, null); + } } @SneakyThrows diff --git a/src/test/java/org/opensearch/neuralsearch/query/NeuralSparseQueryIT.java b/src/test/java/org/opensearch/neuralsearch/query/NeuralSparseQueryIT.java index 59888e770..4f757b105 100644 --- a/src/test/java/org/opensearch/neuralsearch/query/NeuralSparseQueryIT.java +++ b/src/test/java/org/opensearch/neuralsearch/query/NeuralSparseQueryIT.java @@ -10,7 +10,6 @@ import java.util.List; import java.util.Map; -import org.junit.After; import org.junit.Before; import org.opensearch.client.ResponseException; import org.opensearch.index.query.BoolQueryBuilder; @@ -40,14 +39,6 @@ public class NeuralSparseQueryIT extends BaseNeuralSearchIT { public void setUp() throws Exception { super.setUp(); updateClusterSettings(); - prepareSparseEncodingModel(); - } - - @After - @SneakyThrows - public void tearDown() { - super.tearDown(); - findDeployedModels().forEach(this::deleteModel); } /** @@ -65,17 +56,22 @@ public void tearDown() { */ @SneakyThrows public void testBasicQueryUsingQueryText() { - initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); - String modelId = getDeployedModelId(); - NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) - .queryText(TEST_QUERY_TEXT) - .modelId(modelId); - Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, sparseEncodingQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); + modelId = prepareSparseEncodingModel(); + NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) + .queryText(TEST_QUERY_TEXT) + .modelId(modelId); + Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, sparseEncodingQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + } finally { + wipeOfTestResources(TEST_BASIC_INDEX_NAME, null, modelId, null); + } } /** @@ -125,18 +121,23 @@ public void testBasicQueryWithMaxTokenScore() { */ @SneakyThrows public void testBoostQuery() { - initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); - String modelId = getDeployedModelId(); - NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) - .queryText(TEST_QUERY_TEXT) - .modelId(modelId) - .boost(2.0f); - Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, sparseEncodingQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = 2 * computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); + modelId = prepareSparseEncodingModel(); + NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) + .queryText(TEST_QUERY_TEXT) + .modelId(modelId) + .boost(2.0f); + Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, sparseEncodingQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = 2 * computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + } finally { + wipeOfTestResources(TEST_BASIC_INDEX_NAME, null, modelId, null); + } } /** @@ -161,18 +162,23 @@ public void testBoostQuery() { */ @SneakyThrows public void testRescoreQuery() { - initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); - String modelId = getDeployedModelId(); - MatchAllQueryBuilder matchAllQueryBuilder = new MatchAllQueryBuilder(); - NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) - .queryText(TEST_QUERY_TEXT) - .modelId(modelId); - Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, matchAllQueryBuilder, sparseEncodingQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); + modelId = prepareSparseEncodingModel(); + MatchAllQueryBuilder matchAllQueryBuilder = new MatchAllQueryBuilder(); + NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) + .queryText(TEST_QUERY_TEXT) + .modelId(modelId); + Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, matchAllQueryBuilder, sparseEncodingQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + } finally { + wipeOfTestResources(TEST_BASIC_INDEX_NAME, null, modelId, null); + } } /** @@ -200,25 +206,30 @@ public void testRescoreQuery() { */ @SneakyThrows public void testBooleanQuery_withMultipleSparseEncodingQueries() { - initializeIndexIfNotExist(TEST_MULTI_NEURAL_SPARSE_FIELD_INDEX_NAME); - String modelId = getDeployedModelId(); - BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); - - NeuralSparseQueryBuilder sparseEncodingQueryBuilder1 = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) - .queryText(TEST_QUERY_TEXT) - .modelId(modelId); - NeuralSparseQueryBuilder sparseEncodingQueryBuilder2 = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_2) - .queryText(TEST_QUERY_TEXT) - .modelId(modelId); - - boolQueryBuilder.should(sparseEncodingQueryBuilder1).should(sparseEncodingQueryBuilder2); - - Map searchResponseAsMap = search(TEST_MULTI_NEURAL_SPARSE_FIELD_INDEX_NAME, boolQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = 2 * computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_MULTI_NEURAL_SPARSE_FIELD_INDEX_NAME); + modelId = prepareSparseEncodingModel(); + BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); + + NeuralSparseQueryBuilder sparseEncodingQueryBuilder1 = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) + .queryText(TEST_QUERY_TEXT) + .modelId(modelId); + NeuralSparseQueryBuilder sparseEncodingQueryBuilder2 = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_2) + .queryText(TEST_QUERY_TEXT) + .modelId(modelId); + + boolQueryBuilder.should(sparseEncodingQueryBuilder1).should(sparseEncodingQueryBuilder2); + + Map searchResponseAsMap = search(TEST_MULTI_NEURAL_SPARSE_FIELD_INDEX_NAME, boolQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = 2 * computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + } finally { + wipeOfTestResources(TEST_MULTI_NEURAL_SPARSE_FIELD_INDEX_NAME, null, modelId, null); + } } /** @@ -246,34 +257,46 @@ public void testBooleanQuery_withMultipleSparseEncodingQueries() { */ @SneakyThrows public void testBooleanQuery_withSparseEncodingAndBM25Queries() { - initializeIndexIfNotExist(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME); - String modelId = getDeployedModelId(); - BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); - - NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) - .queryText(TEST_QUERY_TEXT) - .modelId(modelId); - MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT); - boolQueryBuilder.should(sparseEncodingQueryBuilder).should(matchQueryBuilder); - - Map searchResponseAsMap = search(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME, boolQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float minExpectedScore = computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); - assertTrue(minExpectedScore < objectToFloat(firstInnerHit.get("_score"))); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME); + modelId = prepareSparseEncodingModel(); + BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder(); + + NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) + .queryText(TEST_QUERY_TEXT) + .modelId(modelId); + MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT); + boolQueryBuilder.should(sparseEncodingQueryBuilder).should(matchQueryBuilder); + + Map searchResponseAsMap = search(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME, boolQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float minExpectedScore = computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); + assertTrue(minExpectedScore < objectToFloat(firstInnerHit.get("_score"))); + } finally { + wipeOfTestResources(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME, null, modelId, null); + } } @SneakyThrows public void testBasicQueryUsingQueryText_whenQueryWrongFieldType_thenFail() { - initializeIndexIfNotExist(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME); - String modelId = getDeployedModelId(); - - NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_TEXT_FIELD_NAME_1) - .queryText(TEST_QUERY_TEXT) - .modelId(modelId); - - expectThrows(ResponseException.class, () -> search(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME, sparseEncodingQueryBuilder, 1)); + String modelId = null; + try { + initializeIndexIfNotExist(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME); + modelId = prepareSparseEncodingModel(); + NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_TEXT_FIELD_NAME_1) + .queryText(TEST_QUERY_TEXT) + .modelId(modelId); + + expectThrows( + ResponseException.class, + () -> search(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME, sparseEncodingQueryBuilder, 1) + ); + } finally { + wipeOfTestResources(TEST_TEXT_AND_NEURAL_SPARSE_FIELD_INDEX_NAME, null, modelId, null); + } } @SneakyThrows diff --git a/src/testFixtures/java/org/opensearch/neuralsearch/BaseNeuralSearchIT.java b/src/testFixtures/java/org/opensearch/neuralsearch/BaseNeuralSearchIT.java index d4cc1e790..977ebb666 100644 --- a/src/testFixtures/java/org/opensearch/neuralsearch/BaseNeuralSearchIT.java +++ b/src/testFixtures/java/org/opensearch/neuralsearch/BaseNeuralSearchIT.java @@ -14,7 +14,6 @@ import java.nio.file.Files; import java.nio.file.Path; import java.util.Collections; -import java.util.HashSet; import java.util.List; import java.util.Locale; import java.util.Map; @@ -872,58 +871,6 @@ protected void deleteSearchPipeline(final String pipelineId) { ); } - /** - * Find all modesl that are currently deployed in the cluster - * @return set of model ids - */ - @SneakyThrows - protected Set findDeployedModels() { - - StringBuilder stringBuilderForContentBody = new StringBuilder(); - stringBuilderForContentBody.append("{") - .append("\"query\": { \"match_all\": {} },") - .append(" \"_source\": {") - .append(" \"includes\": [\"model_id\"],") - .append(" \"excludes\": [\"content\", \"model_content\"]") - .append("}}"); - - Response response = makeRequest( - client(), - "POST", - "/_plugins/_ml/models/_search", - null, - toHttpEntity(stringBuilderForContentBody.toString()), - ImmutableList.of(new BasicHeader(HttpHeaders.USER_AGENT, DEFAULT_USER_AGENT)) - ); - - String responseBody = EntityUtils.toString(response.getEntity()); - - Map models = XContentHelper.convertToMap(XContentType.JSON.xContent(), responseBody, false); - Set modelIds = new HashSet<>(); - if (Objects.isNull(models) || models.isEmpty()) { - return modelIds; - } - - Map hits = (Map) models.get("hits"); - List> innerHitsMap = (List>) hits.get("hits"); - return innerHitsMap.stream() - .map(hit -> (Map) hit.get("_source")) - .filter(hitsMap -> Objects.nonNull(hitsMap) && hitsMap.containsKey("model_id")) - .map(hitsMap -> (String) hitsMap.get("model_id")) - .collect(Collectors.toSet()); - } - - /** - * Get the id for model currently deployed in the cluster. If there are no models deployed or it's more than 1 model - * fail on assertion - * @return id of deployed model - */ - protected String getDeployedModelId() { - Set modelIds = findDeployedModels(); - assertEquals(1, modelIds.size()); - return modelIds.iterator().next(); - } - @SneakyThrows private String getModelGroupId() { String modelGroupRegisterRequestBody = Files.readString( From 1698d9d18ca4cb15576be444bca238667c727033 Mon Sep 17 00:00:00 2001 From: Varun Jain Date: Tue, 30 Jan 2024 11:49:25 -0800 Subject: [PATCH 2/2] Fix for Flaky test for issue 384 Signed-off-by: Varun Jain --- .../query/NeuralSparseQueryIT.java | 32 +++++++++++-------- 1 file changed, 19 insertions(+), 13 deletions(-) diff --git a/src/test/java/org/opensearch/neuralsearch/query/NeuralSparseQueryIT.java b/src/test/java/org/opensearch/neuralsearch/query/NeuralSparseQueryIT.java index 4f757b105..2c6d562e8 100644 --- a/src/test/java/org/opensearch/neuralsearch/query/NeuralSparseQueryIT.java +++ b/src/test/java/org/opensearch/neuralsearch/query/NeuralSparseQueryIT.java @@ -90,19 +90,25 @@ public void testBasicQueryUsingQueryText() { */ @SneakyThrows public void testBasicQueryWithMaxTokenScore() { - float maxTokenScore = 0.00001f; - initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); - String modelId = getDeployedModelId(); - NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) - .queryText(TEST_QUERY_TEXT) - .modelId(modelId) - .maxTokenScore(maxTokenScore); - Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, sparseEncodingQueryBuilder, 1); - Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); - - assertEquals("1", firstInnerHit.get("_id")); - float expectedScore = computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); - assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + String modelId = null; + try { + float maxTokenScore = 0.00001f; + initializeIndexIfNotExist(TEST_BASIC_INDEX_NAME); + modelId = prepareSparseEncodingModel(); + NeuralSparseQueryBuilder sparseEncodingQueryBuilder = new NeuralSparseQueryBuilder().fieldName(TEST_NEURAL_SPARSE_FIELD_NAME_1) + .queryText(TEST_QUERY_TEXT) + .modelId(modelId) + .maxTokenScore(maxTokenScore); + Map searchResponseAsMap = search(TEST_BASIC_INDEX_NAME, sparseEncodingQueryBuilder, 1); + Map firstInnerHit = getFirstInnerHit(searchResponseAsMap); + + assertEquals("1", firstInnerHit.get("_id")); + float expectedScore = computeExpectedScore(modelId, testRankFeaturesDoc, TEST_QUERY_TEXT); + assertEquals(expectedScore, objectToFloat(firstInnerHit.get("_score")), DELTA); + } finally { + wipeOfTestResources(TEST_BASIC_INDEX_NAME, null, modelId, null); + } + } /**