You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This year at WWDC 2022, Apple is making available an open-source reference PyTorch implementation of the Transformer architecture, giving developers worldwide a way to seamlessly deploy their state-of-the-art Transformer models on Apple devices.
This implementation is specifically optimized for the Apple Neural Engine (ANE), the energy-efficient and high-throughput engine for ML inference on Apple silicon. It will help developers minimize the impact of their ML inference workloads on app memory, app responsiveness, and device battery life. Increasing the adoption of on-device ML deployment will also benefit user privacy, since data for inference workloads remains on-device, not on the server.
The text was updated successfully, but these errors were encountered:
I'm wondering if there is a plan to deploy on ANE
https://machinelearning.apple.com/research/neural-engine-transformers
This year at WWDC 2022, Apple is making available an open-source reference PyTorch implementation of the Transformer architecture, giving developers worldwide a way to seamlessly deploy their state-of-the-art Transformer models on Apple devices.
This implementation is specifically optimized for the Apple Neural Engine (ANE), the energy-efficient and high-throughput engine for ML inference on Apple silicon. It will help developers minimize the impact of their ML inference workloads on app memory, app responsiveness, and device battery life. Increasing the adoption of on-device ML deployment will also benefit user privacy, since data for inference workloads remains on-device, not on the server.
The text was updated successfully, but these errors were encountered: