diff --git a/_analyzers/token-filters/edge-ngram.md b/_analyzers/token-filters/edge-ngram.md new file mode 100644 index 0000000000..be3eaf6fab --- /dev/null +++ b/_analyzers/token-filters/edge-ngram.md @@ -0,0 +1,111 @@ +--- +layout: default +title: Edge n-gram +parent: Token filters +nav_order: 120 +--- +# Edge n-gram token filter +The `edge_ngram` token filter is very similar to the `ngram` token filter, where a particular string is split into substrings of different lengths. The `edge_ngram` token filter, however, generates n-grams (substrings) only from the beginning (edge) of a token. It's particularly useful in scenarios like autocomplete or prefix matching, where you want to match the beginning of words or phrases as the user types them. + +## Parameters + +The `edge_ngram` token filter can be configured with the following parameters. + +Parameter | Required/Optional | Data type | Description +:--- | :--- | :--- | :--- +`min_gram` | Optional | Integer | The minimum length of the n-grams that will be generated. Default is `1`. +`max_gram` | Optional | Integer | The maximum length of the n-grams that will be generated. Default is `1` for the `edge_ngram` filter and `2` for custom token filters. Avoid setting this parameter to a low value. If the value is set too low, only very short n-grams will be generated and the search term will not be found. For example, if `max_gram` is set to `3` and you index the word "banana", the longest generated token will be "ban". If the user searches for "banana", no matches will be returned. You can use the `truncate` token filter as a search analyzer to mitigate this risk. +`preserve_original` | Optional | Boolean | Includes the original token in the output. Default is `false` . + +## Example + +The following example request creates a new index named `edge_ngram_example` and configures an analyzer with the `edge_ngram` filter: + +```json +PUT /edge_ngram_example +{ + "settings": { + "analysis": { + "filter": { + "my_edge_ngram": { + "type": "edge_ngram", + "min_gram": 3, + "max_gram": 4 + } + }, + "analyzer": { + "my_analyzer": { + "type": "custom", + "tokenizer": "standard", + "filter": ["lowercase", "my_edge_ngram"] + } + } + } + } +} +``` +{% include copy-curl.html %} + +## Generated tokens + +Use the following request to examine the tokens generated using the analyzer: + +```json +POST /edge_ngram_example/_analyze +{ + "analyzer": "my_analyzer", + "text": "slow green turtle" +} +``` +{% include copy-curl.html %} + +The response contains the generated tokens: + +```json +{ + "tokens": [ + { + "token": "slo", + "start_offset": 0, + "end_offset": 4, + "type": "", + "position": 0 + }, + { + "token": "slow", + "start_offset": 0, + "end_offset": 4, + "type": "", + "position": 0 + }, + { + "token": "gre", + "start_offset": 5, + "end_offset": 10, + "type": "", + "position": 1 + }, + { + "token": "gree", + "start_offset": 5, + "end_offset": 10, + "type": "", + "position": 1 + }, + { + "token": "tur", + "start_offset": 11, + "end_offset": 17, + "type": "", + "position": 2 + }, + { + "token": "turt", + "start_offset": 11, + "end_offset": 17, + "type": "", + "position": 2 + } + ] +} +``` diff --git a/_analyzers/token-filters/index.md b/_analyzers/token-filters/index.md index d2f4ce0660..95a09f0807 100644 --- a/_analyzers/token-filters/index.md +++ b/_analyzers/token-filters/index.md @@ -25,8 +25,8 @@ Token filter | Underlying Lucene token filter| Description [`decimal_digit`]({{site.url}}{{site.baseurl}}/analyzers/token-filters/decimal-digit/) | [DecimalDigitFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/core/DecimalDigitFilter.html) | Converts all digits in the Unicode decimal number general category to basic Latin digits (0--9). [`delimited_payload`]({{site.url}}{{site.baseurl}}/analyzers/token-filters/delimited-payload/) | [DelimitedPayloadTokenFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/payloads/DelimitedPayloadTokenFilter.html) | Separates a token stream into tokens with corresponding payloads, based on a provided delimiter. A token consists of all characters preceding the delimiter, and a payload consists of all characters following the delimiter. For example, if the delimiter is `|`, then for the string `foo|bar`, `foo` is the token and `bar` is the payload. [`delimited_term_freq`]({{site.url}}{{site.baseurl}}/analyzers/token-filters/delimited-term-frequency/) | [DelimitedTermFrequencyTokenFilter](https://lucene.apache.org/core/9_7_0/analysis/common/org/apache/lucene/analysis/miscellaneous/DelimitedTermFrequencyTokenFilter.html) | Separates a token stream into tokens with corresponding term frequencies, based on a provided delimiter. A token consists of all characters before the delimiter, and a term frequency is the integer after the delimiter. For example, if the delimiter is `|`, then for the string `foo|5`, `foo` is the token and `5` is the term frequency. -[`dictionary_decompounder`]({{site.url}}{{site.baseurl}}/analyzers/token-filters/dictionary-decompounder/) | [DictionaryCompoundWordTokenFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/compound/DictionaryCompoundWordTokenFilter.html) | Splits compound words into their constituent parts based on a predefined dictionary. Useful for many Germanic languages. -`edge_ngram` | [EdgeNGramTokenFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/ngram/EdgeNGramTokenFilter.html) | Tokenizes the given token into edge n-grams (n-grams that start at the beginning of the token) of lengths between `min_gram` and `max_gram`. Optionally, keeps the original token. +[`dictionary_decompounder`]({{site.url}}{{site.baseurl}}/analyzers/token-filters/dictionary-decompounder/) | [DictionaryCompoundWordTokenFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/compound/DictionaryCompoundWordTokenFilter.html) | Decomposes compound words found in many Germanic languages. +[`edge_ngram`]({{site.url}}{{site.baseurl}}/analyzers/token-filters/edge-ngram/) | [EdgeNGramTokenFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/ngram/EdgeNGramTokenFilter.html) | Tokenizes the given token into edge n-grams (n-grams that start at the beginning of the token) of lengths between `min_gram` and `max_gram`. Optionally, keeps the original token. `elision` | [ElisionFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/util/ElisionFilter.html) | Removes the specified [elisions](https://en.wikipedia.org/wiki/Elision) from the beginning of tokens. For example, changes `l'avion` (the plane) to `avion` (plane). `fingerprint` | [FingerprintFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/miscellaneous/FingerprintFilter.html) | Sorts and deduplicates the token list and concatenates tokens into a single token. `flatten_graph` | [FlattenGraphFilter](https://lucene.apache.org/core/9_10_0/analysis/common/org/apache/lucene/analysis/core/FlattenGraphFilter.html) | Flattens a token graph produced by a graph token filter, such as `synonym_graph` or `word_delimiter_graph`, making the graph suitable for indexing.