-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbulktools.py
232 lines (209 loc) · 8.47 KB
/
bulktools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import csv,codecs,time
from multiprocessing import Pool, cpu_count, freeze_support
from re import I
import click
from strategies.base import CEPDistrict,CEPSchool
from strategies.naive import CustomGroupsCEPStrategy,OneGroupCEPStrategy,OneToOneCEPStrategy
from cep_estimatory import add_strategies
import pandas
import sys
STRATEGIES = [
"Pairs",
"OneToOne",
"Exhaustive",
"OneGroup",
"Spread",
#"Binning",
"GreedyLP",
"NYCMODA?fresh_starts=50&iterations=1000&ngroups=%(ngroups)s",
]
@click.command()
@click.option("--csv-file",default=None,help="CSV File in MealsCount format")
@click.option("--state",default=None,help="State Abbrev (e.g. CA, NY)")
@click.option("--csv-encoding",default="utf-8",help="CSV Encoding (e.g. utf-8, latin1)")
@click.option("--debug",is_flag=True,help="Run a quick test run on districts of < 5 schools just to test")
@click.option("--max-groups",default=10,help="Paramter for max groups limiter on monte carlo")
@click.option("--output-file",default=None,help="output file (default is ./statewide-XX-output.csv)")
def run(csv_file,state,csv_encoding,debug,max_groups,output_file):
# Load
districts,schools,lastyear_groupings = load_from_file(csv_file,csv_encoding,state)
# Summary Import Stats
#print("Processed %i schools from %s into %i districts" % (len(schools),state,len(districts)))
#print("%i schools with ADP > 100%%" % len([s
# for s in schools if s.bfast_served > s.total_enrolled or s.lunch_served > s.total_enrolled
#]))
if debug:
#print("Trimming districts for debug run")
districts = {c:d for c,d in districts.items() if len(d.schools) <= 5}
# Optimize with max reimbursement
strategies = [s%{"ngroups":max_groups} for s in STRATEGIES]
t0 = time.time()
results = optimize(districts,strategies)
total_time = time.time() - t0
print("Optimized in %0.1fs" % total_time)
results = [r.get() for r in results]
# Optimize with max coverage
with Pool(cpu_count()-1) as pool:
results_coverage = optimize(districts,strategies,pool,goal="coverage")
# Run Naive Baselines
for d in districts.values():
d.strategies.append(OneGroupCEPStrategy())
d.strategies.append(OneToOneCEPStrategy())
lastyear = CustomGroupsCEPStrategy()
lastyear.set_groups([(x[1],x[2]) for x in lastyear_groupings if x[0] == d.code])
d.strategies.append(lastyear)
d.run_strategies()
#import code; code.interact(local=locals())
# Summary Results
# Total Change from baseline
district_results = {}
for r in results:
district_results[r["code"]] = {"reimb": r["reimb"],"best_reimb":r["best"]}
for r in results_coverage:
#district_results[r["code"]]["coverage"] = r["coverage"]
district_results[r["code"]]["best_coverage"] = r["best"]
for d in districts.values():
district_results[d.code]["onegroup_reimb"] = d.strategies[0].reimbursement
district_results[d.code]["onetoone_reimb"] = d.strategies[1].reimbursement
district_results[d.code]["lastyear_reimb"] = d.strategies[2].reimbursement
district_results[d.code]["onegroup_coverage"] = d.strategies[0].students_covered
district_results[d.code]["onetoone_coverage"] = d.strategies[1].students_covered
district_results[d.code]["lastyear_coverage"] = d.strategies[2].students_covered
def deltapercent(x,y,explain):
if y == 0 and x > 0: return "100%"
elif y == 0 and x == 0: return "0%"
diff = (((x-y)/y)*100.0)
return "%0.1f%% %s %s" % (diff,diff>0 and "increase" or "decrease",explain)
baseline_reimb = max(sum([d["onegroup_reimb"] for d in district_results.values()]),sum([d["onegroup_reimb"] for d in district_results.values()]))
#print("Naive Baseline:",baseline_reimb)
lastyear_reimb = sum([d["lastyear_reimb"] for d in district_results.values()])
#print("Last Year:",lastyear_reimb,deltapercent(lastyear_reimb,baseline_reimb,"over baseline"))
mc_reimb = sum([d["reimb"] for d in district_results.values()])
#print("MealsCount:",mc_reimb,deltapercent(mc_reimb,lastyear_reimb,"over last year"),deltapercent(mc_reimb,baseline_reimb,"over baseline"))
# Output Groupings
rows = output_rows(districts,results,results_coverage,lastyear_groupings)
fname = output_file or "statewide-%s-output.csv" % state
with open(fname,'w') as file:
write_to_excel(rows,file)
def write_to_excel(rows,output_file):
cols = rows[0]
data = [dict(zip(cols,row)) for row in rows[1:]]
df = pandas.DataFrame(data)
df.to_excel(output_file,index=False)
def output_rows(districts,results,results_coverage,lastyear_groupings):
rows = []
rows.append((
"district_code",
"district_name",
"school_code",
"school_name",
"total_enrolled",
"total_eligible",
"daily_breakfast_served",
"daily_lunch_served",
"free_bfast_rate",
"paid_bfast_rate",
"free_lunch_rate",
"paid_lunch_rate",
#"onegroup_reimbursement",
#"onetoone_reimbursement",
#"lastyear_reimbursement",
"mealscount_reimbursement",
#"mealscount_coverage",
#"mc_coverage_reimbursement",
#"mc_coverage_coverage",
#"lastyear_grouping",
"mealscount_grouping",
#"coverage_grouping",
))
for d in districts.values():
schools = [r for r in results if r["code"] == d.code]
if not schools: continue
school_results = schools[0]["schools"]
#cov_school_results = [r for r in results_coverage if r["code"] == d.code][0]["schools"]
for s in d.schools:
lastyear_group = [g[1] for g in lastyear_groupings if g[2] == s.code and g[0] == d.code]
if lastyear_group: lastyear_group = lastyear_group[0]
else: lastyear_group = ""
sr = [sr for sr in school_results if sr["school_code"] == s.code][0]
#csr = [sr for sr in cov_school_results if sr["school_code"] == s.code][0]
rows.append((
d.code,
d.name,
s.code,
s.name,
s.total_enrolled,
s.total_eligible,
s.bfast_served,
s.lunch_served,
sr["rates"]["free_bfast"],
sr["rates"]["paid_bfast"],
sr["rates"]["free_lunch"],
sr["rates"]["paid_lunch"],
#d.strategies[0].school_reimbursement(s),
#d.strategies[1].school_reimbursement(s),
#d.strategies[2].school_reimbursement(s),
sr["reimbursement"],
#sr["coverage"],
#csr["reimbursement"],
#csr["coverage"],
#lastyear_group,
sr["grouping"],
#csr["grouping"],
))
return rows
def load_from_file(filename,state):
districts = {}
schools = []
lastyear_groupings = []
try:
df = pandas.read_csv(filename,encoding='latin-1')
except:
df = pandas.read_excel(filename)
#import code; code.interact()
for row in df.to_dict('records'):
school = CEPSchool(row)
schools.append(school)
if "cep_grouping" in row and row["cep_grouping"]:
lastyear_groupings.append((row["district_code"],row["cep_grouping"],row["school_code"]))
if row["district_code"] not in districts:
districts[row["district_code"]] = CEPDistrict(row["district_name"],row["district_code"],state)
if school.total_enrolled > 0:
districts[row["district_code"]].add_school(school)
return districts,schools,lastyear_groupings
def optimize(districts,strategies,pool,goal="reimbursement",isp_threshold=None,progress_callback=None):
return [pool.apply_async(mp_processor, (d,goal,strategies,isp_threshold)) for d in districts.values()]
def mp_processor(district,goal,strategies,isp_threshold):
add_strategies(district,strategies)
if(isp_threshold):
for strategy in district.strategies:
strategy.isp_threshold = isp_threshold
district.run_strategies()
district.evaluate_strategies(evaluate_by=goal)
schools = []
gname = 1
for g in district.best_strategy.groups:
for s in g.schools:
reimb = g.school_reimbursement(s)
s.set_rates(district)
schools.append({
"school_code":s.code,
"rates":s.rates.as_dict(),
"district_code":district.code,
"reimbursement": reimb,
"coverage": g.cep_eligible and s.total_enrolled or 0,
"grouping": g.cep_eligible and "G%i" % gname or "Not CEP Eligible",
})
if g.cep_eligible:
gname += 1
return {
"code":district.code,
"reimb":district.best_strategy.reimbursement,
"best":district.best_strategy.name,
"groupings": [g.as_dict() for g in district.best_strategy.groups],
"schools": schools,
}
if __name__ == '__main__':
# https://docs.python.org/3.7/library/multiprocessing.html?highlight=process#multiprocessing.freeze_support
freeze_support()
run()