-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathMedLSAM_WPL_Inference.py
255 lines (228 loc) · 12.6 KB
/
MedLSAM_WPL_Inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# %% load environment
import os
import sys
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
sys.path.append(os.path.abspath(__file__))
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import os
current_directory = os.path.dirname(os.path.abspath(__file__))
import matplotlib.pyplot as plt
import numpy as np
join = os.path.join
import argparse
import json
import random
import time
import traceback
import cv2
import torch
from tqdm import trange
from data_process.data_process_func import *
from MedLAM.Anatomy_detection import AnatomyDetection
from MedLAM.detection_functions import *
from MedSAM.auto_pre_CT import *
from MedSAM.segment_anything.build_sam import sam_model_registry
from MedSAM.segment_anything.utils.transforms import ResizeLongestSide
from util.evaluation_index import hd95
from util.parse_config import parse_config
# visualization functions
# source: https://github.com/facebookresearch/segment-anything/blob/main/notebooks/predictor_example.ipynb
# change color to avoid red and green
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([251/255, 252/255, 30/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='blue', facecolor=(0,0,0,0), lw=2))
def compute_dice(mask_gt, mask_pred):
"""Compute soerensen-dice coefficient.
Returns:
the dice coeffcient as float. If both masks are empty, the result is NaN
"""
volume_sum = mask_gt.sum() + mask_pred.sum()
if volume_sum == 0:
return np.NaN
volume_intersect = (mask_gt & mask_pred).sum()
return 2*volume_intersect / volume_sum, volume_intersect, volume_sum
def finetune_model_predict(img_np, box_np, sam_trans, sam_model_tune, device='cuda:0'):
H, W = img_np.shape[:2]
resize_img = sam_trans.apply_image(img_np)
resize_img_tensor = torch.as_tensor(resize_img.transpose(2, 0, 1)).to(device)
input_image = sam_model_tune.preprocess(resize_img_tensor[None,:,:,:]) # (1, 3, 1024, 1024)
with torch.no_grad():
image_embedding = sam_model_tune.image_encoder(input_image.to(device)) # (1, 256, 64, 64)
# convert box to 1024x1024 grid
box = sam_trans.apply_boxes(box_np, (H, W))
box_torch = torch.as_tensor(box, dtype=torch.float, device=device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = sam_model_tune.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
medsam_seg_prob, _ = sam_model_tune.mask_decoder(
image_embeddings=image_embedding.to(device), # (B, 256, 64, 64)
image_pe=sam_model_tune.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=False,
)
medsam_seg_prob = torch.sigmoid(medsam_seg_prob)
# reshape to original size
medsam_seg_prob = torch.nn.functional.interpolate(medsam_seg_prob, size=(H, W), mode='bilinear', align_corners=False)
# convert soft mask to hard mask
medsam_seg_prob = medsam_seg_prob.cpu().numpy().squeeze()
medsam_seg = (medsam_seg_prob > 0.5).astype(np.uint8)
return medsam_seg, medsam_seg_prob
#% run inference
# set up the parser
parser = argparse.ArgumentParser(description='run inference on testing set based on MedLSAM')
parser.add_argument('-c', '--config_file', type=str, help='path to the config file')
args = parser.parse_args()
config_file = parse_config(args.config_file)
#% load MedLSAM model. Apply Sub-Patch Localization (SPL)
ana_det = AnatomyDetection(args.config_file)
sam_model_tune = sam_model_registry[config_file['vit']['net_type']](checkpoint=config_file['weight']['vit_load_path']).to('cuda:0')
sam_trans = ResizeLongestSide(sam_model_tune.image_encoder.img_size)
nii_pathes = read_file_list(config_file['data']['query_image_ls'])
gt_pathes = read_file_list(config_file['data']['query_label_ls'])
os.makedirs(config_file['data']['seg_png_save_path'], exist_ok=True)
os.makedirs(config_file['data']['seg_save_path'], exist_ok=True)
os.makedirs(f'{current_directory}/result/json', exist_ok=True)
os.makedirs(f'{current_directory}/result/dsc', exist_ok=True)
os.makedirs(f'{current_directory}/result/hd95', exist_ok=True)
sam_dice_scores = {key:[] for key in config_file['data']['fg_class']}
sam_hd95_scores = {key:[] for key in config_file['data']['fg_class']}
print('\n #### start inference ####')
for id in trange(len(nii_pathes)):
nii_path = nii_pathes[id]
gt_path = gt_pathes[id]
time0 = time.time()
extreme_cor_dic, corner_cor_dic, ori_shape = ana_det.get_extreme_corner(nii_path)
time1 = time.time()
print('get extreme corner time: ', time1 - time0)
z_min_ls = [corner_cor_dic[key][0][0][0] for key in corner_cor_dic.keys()]
z_max_ls = [corner_cor_dic[key][-1][1][0] for key in corner_cor_dic.keys()]
z_min = min(z_min_ls) # minimum z of all organs
z_max = max(z_max_ls) # maximum z of all organs
time2 = time.time()
imgs, gts = preprocess_ct(gt_path, nii_path, label_id_ls=list(corner_cor_dic.keys()), image_size=1024, \
gt_slice_threshold=config_file['data']['gt_slice_threshold'], z_min=z_min, z_max=z_max, padding=0)
time3 = time.time()
gt_sitk = sitk.ReadImage(gt_path)
gt_data = sitk.GetArrayFromImage(gt_sitk).astype(np.int16)
print('preprocess time: ', time3 - time2)
# the order of SimpleITK is zyx, nibabel is xyz. ana_det use nibabel, so we need to reverse the order
ori_shape = ori_shape[::-1]
# then resize the corner coordinates to the corresponding coordinates in the resized image
for key in corner_cor_dic.keys():
try:
pred_key_array = np.zeros_like(gt_data, dtype=np.int16)
ngt_data = np.zeros_like(gt_data)
ngt_data[gt_data==key] = 1
sam_segs = {}
sam_bboxes = {}
sam_slice_dice_scores = {}
##### locate and segment each part of the organ #####
img_id_ls = []
# transfer the corner coordinates to the resized image
corner_cor_dic[key][0] = [[corner_cor_dic[key][0][0][0], np.around(corner_cor_dic[key][0][0][1]*1024/ori_shape[1]),
np.around(corner_cor_dic[key][0][0][2]*1024/ori_shape[2])],
[corner_cor_dic[key][0][1][0], np.around(corner_cor_dic[key][0][1][1]*1024/ori_shape[1]),
np.around(corner_cor_dic[key][0][1][2]*1024/ori_shape[2])]
]
padding = 10
x_min = corner_cor_dic[key][0][0][-1]-padding
x_max = corner_cor_dic[key][0][1][-1]+padding
y_min = corner_cor_dic[key][0][0][-2]-padding
y_max = corner_cor_dic[key][0][1][-2]+padding
z_min = corner_cor_dic[key][0][0][0]
z_max = corner_cor_dic[key][0][1][0]
if len(imgs.keys())>0:
for img_id in imgs.keys():
if img_id>=z_min and img_id<=z_max:
# get bounding box from mask
gt2D = gts[img_id]
ngt2D = np.zeros_like(gt2D)
ngt2D[gt2D==key] = 1
ori_img = imgs[img_id]
bbox = np.array([x_min, y_min, x_max, y_max])
seg_mask, seg_prob = finetune_model_predict(ori_img, bbox, sam_trans, sam_model_tune)
sam_segs[img_id] = seg_mask
sam_bboxes[img_id] = bbox
img_id_ls.append(img_id)
height, width = pred_key_array[img_id].shape
pred_key_array[img_id] = (cv2.resize(seg_prob, (width, height), interpolation=cv2.INTER_NEAREST)> 0.5).astype(np.uint8)
slice_dice, slice_intersect, slice_volume = compute_dice(seg_mask>0, ngt2D>0)
sam_slice_dice_scores[img_id] = slice_dice
if len(img_id_ls) > 0:
# visualize segmentation results
img_id = random.choice(img_id_ls)
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
axes[0].imshow(imgs[img_id])
show_box(sam_bboxes[img_id], axes[0])
show_mask(1*(gts[img_id]==key), axes[0])
axes[0].set_title('Ground Truth')
axes[0].axis('off')
axes[1].imshow(imgs[img_id])
show_box(sam_bboxes[img_id], axes[1])
show_mask(sam_segs[img_id], axes[1])
axes[1].set_title('DSC={:.3f}'.format(sam_slice_dice_scores[img_id]))
axes[1].axis('off')
fig.savefig(join(config_file['data']['seg_png_save_path'], '{0}_{1}_{2}_cl{3}.png'.format(os.path.basename(args.config_file).replace('test_','').replace('.txt',''), \
nii_path.split('/')[-1].split('.')[0], str(id), str(key))))
plt.close(fig)
# compute dice score for the whole volume
volume_dice = 2*np.sum(ngt_data*pred_key_array)/(np.sum(1*ngt_data+pred_key_array)+0.0001)
volume_hd95 = hd95(ngt_data, pred_key_array, voxelspacing=gt_sitk.GetSpacing()[::-1])
print('class:', key, 'volume dice score: ', volume_dice, 'volume hd95: ', volume_hd95)
sam_dice_scores[key].append(volume_dice)
sam_hd95_scores[key].append(volume_hd95)
# save nii
pred_sitk = sitk.GetImageFromArray(pred_key_array)
pred_sitk.SetSpacing(gt_sitk.GetSpacing())
pred_sitk.SetOrigin(gt_sitk.GetOrigin())
pred_sitk.SetDirection(gt_sitk.GetDirection())
sitk.WriteImage(pred_sitk, join(config_file['data']['seg_save_path'], '{0}_{1}_{2}_cl{3}.nii.gz'.format(os.path.basename(args.config_file).replace('test_','').replace('.txt',''), \
nii_path.split('/')[-1].split('.')[0], str(id), str(key))))
except Exception:
traceback.print_exc()
print('error in {0}, class {1}'.format(nii_path, key))
time4 = time.time()
print('segment time: ', time4 - time3)
print('total time: ', time4 - time1)
for key in config_file['data']['fg_class']:
print('DSC for class {}: {:.3f}'.format(key, np.mean(sam_dice_scores[key])), 'HD95 for class {}: {:.3f}'.format(key, np.mean(sam_hd95_scores[key])))
# save all the result as JSON
with open(join(f'{current_directory}/result/json', '{0:}').format(os.path.basename(args.config_file).replace('test_','dsc_')), 'w') as f:
json.dump(sam_dice_scores, f, cls=NumpyEncoder)
with open(join(f'{current_directory}/result/json', '{0:}').format(os.path.basename(args.config_file).replace('test_','hd95_')), 'w') as f:
json.dump(sam_hd95_scores, f, cls=NumpyEncoder)
#% save mean+-std dice scores as txt
with open(join(f'{current_directory}/result/dsc', '{0:}').format(os.path.basename(args.config_file).replace('test_','')), 'w') as f:
for key in config_file['data']['fg_class']:
# Check if sam_dice_scores[key] is a list or numpy array
if isinstance(sam_dice_scores[key], (list, np.ndarray)) and len(sam_dice_scores[key]) > 0:
mean_score = np.mean(sam_dice_scores[key])
std_score = np.std(sam_dice_scores[key])
f.write('DSC for class {}: {:.3f} +- {:.3f}\n'.format(key, mean_score, std_score))
else:
print("sam_dice_scores[{}] is not a list or numpy array or it is empty".format(key))
#% save mean+-std hd95 scores as txt
with open(join(f'{current_directory}/result/hd95', '{0:}').format(os.path.basename(args.config_file).replace('test_','')), 'w') as f:
for key in config_file['data']['fg_class']:
# Check if sam_hd95_scores[key] is a list or numpy array
if isinstance(sam_hd95_scores[key], (list, np.ndarray)) and len(sam_hd95_scores[key]) > 0:
mean_score = np.mean(sam_hd95_scores[key])
std_score = np.std(sam_hd95_scores[key])
f.write('HD95 for class {}: {:.3f} +- {:.3f}\n'.format(key, mean_score, std_score))
else:
print("sam_hd95_scores[{}] is not a list or numpy array or it is empty".format(key))