From 682c6268b1321b629426f5ebf2330b85c666d7af Mon Sep 17 00:00:00 2001 From: GitHub Action Date: Mon, 27 Nov 2023 03:51:00 +0000 Subject: [PATCH] Updated datasets 2023-11-27 UTC --- nasa_cmr_catalog.json | 377 ++---------------------------------------- nasa_cmr_catalog.tsv | 29 +--- 2 files changed, 14 insertions(+), 392 deletions(-) diff --git a/nasa_cmr_catalog.json b/nasa_cmr_catalog.json index 9422f8fe7..2ada2a059 100644 --- a/nasa_cmr_catalog.json +++ b/nasa_cmr_catalog.json @@ -1299,123 +1299,6 @@ "description": "The Aerial Photography Single Frame Records collection is a large and diverse group of imagery acquired by Federal organizations from 1937 to the present. Over 6.4 million frames of photographic images are available for download as medium and high resolution digital products. The high resolution data provide access to photogrammetric quality scans of aerial photographs with sufficient resolution to reveal landscape detail and to facilitate the interpretability of landscape features. Coverage is predominantly over the United States and includes portions of Central America and Puerto Rico. Individual photographs vary in scale, size, film type, quality, and coverage.", "license": "not-provided" }, - { - "id": "AQUARIUS_ANCILLARY_CELESTIALSKY_V1.v1", - "title": "Aquarius Celestial Sky Microwave Emission Map Ancillary Dataset V1.0", - "catalog": "POCLOUD", - "state_date": "2011-09-01", - "end_date": "2015-06-07", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2617176761-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2617176761-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_ANCILLARY_CELESTIALSKY_V1.v1", - "description": "This datasets contains three maps of L-band (wavelength = 21 cm) brightness temperature of the celestial sky (\"Galaxy\") used in the processing of the NASA Aquarius instrument data. The maps report Sky brightness temperatures in Kelvin gridded on the Earth Centered Inertial (ECI) reference frame epoch J2000. They are sampled over 721 Declinations between -90 degrees and +90 degrees and 1441 Right Ascensions between 0 degrees and 360 degrees, all evenly spaced at 0.25 degrees intervals. The brightness temperatures are assumed temporally invariant and polarization has been neglected. They include microwave continuum and atomic hydrogen line (HI) emissions. The maps differ only in how the strong radio source Cassiopeia A has been included into the whole sky background surveys: 1/ TB_no_Cas_A does not include Cassiopeia A and reports only the whole Sky surveys. 2/ TB_Cas_A_1cell spread Cas A total flux homogeneously over 1 map grid cell (i.e. 9.8572E-6 sr). 3/ TB_Cas_A_beam spreads Cas A over surrounding grid cells using a convolution by a Gaussian beam with HPBW of 35 arcmin (equivalent to the instrument used for the Sky surveys). Cassiopeia A is a supernova remnant (SNR) in the constellation Cassiopeia and the brightest extra-solar radio source in the sky at frequencies above 1.", - "license": "not-provided" - }, - { - "id": "AQUARIUS_L2_SSS_CAP_V5.v5.0", - "title": "Aquarius CAP Level 2 Sea Surface Salinity, Wind Speed & Direction Data V5.0", - "catalog": "POCLOUD", - "state_date": "2011-08-26", - "end_date": "2015-06-05", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205121315-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205121315-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_L2_SSS_CAP_V5.v5.0", - "description": "The version 5.0 Aquarius CAP Level 2 product contains the fourth release of the AQUARIUS/SAC-D orbital/swath data based on the Combined Active Passive (CAP) algorithm. CAP is a P.I. produced dataset developed and provided by JPL. This Level 2 dataset contains sea surface salinity (SSS), wind speed and wind direction data derived from 3 different radiometers and the onboard scatterometer. The CAP algorithm simultaneously retrieves the salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. Each L2 data file covers one 98 minute orbit. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath.", - "license": "not-provided" - }, - { - "id": "AQUARIUS_L2_SSS_V5.v5.0", - "title": "Aquarius Official Release Level 2 Sea Surface Salinity & Wind Speed Data V5.0", - "catalog": "POCLOUD", - "state_date": "2011-08-25", - "end_date": "2015-06-07", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2036882456-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2036882456-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_L2_SSS_V5.v5.0", - "description": "The version 5.0 Aquarius Level 2 product is the official third release of the orbital/swath data from AQUARIUS/SAC-D mission. The Aquarius Level 2 data set contains sea surface salinity (SSS) and wind speed data derived from 3 different radiometers and the onboard scatterometer. Included also in the Level 2 data are the horizontal and vertical brightness temperatures (TH and TV) for each radiometer, ancillary data, flags, converted telemetry and navigation data. Each data file covers one 98 minute orbit. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. Enhancements to the version 5.0 Level 2 data relative to v4.0 include: improvement of the salinity retrieval geophysical model for SST bias, estimates of SSS uncertainties (systematic and random components), and inclusion of a new spiciness variable.", - "license": "not-provided" - }, - { - "id": "AQUARIUS_L3_SSS_CAP_7DAY_V5.v5.0", - "title": "Aquarius CAP Level 3 Sea Surface Salinity Standard Mapped Image 7-Day Data V5.0", - "catalog": "POCLOUD", - "state_date": "2011-08-26", - "end_date": "2015-06-08", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2491756349-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2491756349-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_L3_SSS_CAP_7DAY_V5.v5.0", - "description": "Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the 7-Day running mean sea surface salinity (SSS) V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath.", - "license": "not-provided" - }, - { - "id": "AQUARIUS_L3_SSS_CAP_MONTHLY_V5.v5.0", - "title": "Aquarius CAP Level 3 Sea Surface Salinity Standard Mapped Image Monthly Data V5.0", - "catalog": "POCLOUD", - "state_date": "2011-09-01", - "end_date": "2015-06-01", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2491756350-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2491756350-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_L3_SSS_CAP_MONTHLY_V5.v5.0", - "description": "Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the monthly sea surface salinity (SSS) V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath.", - "license": "not-provided" - }, - { - "id": "AQUARIUS_L3_SSS_RAINCORRECTED_CAP_7DAY_V5.v5.0", - "title": "Aquarius CAP Level 3 Sea Surface Salinity Rain Corrected Standard Mapped Image 7-Day Data V5.0", - "catalog": "POCLOUD", - "state_date": "2011-08-26", - "end_date": "2015-06-08", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2491756351-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2491756351-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_L3_SSS_RAINCORRECTED_CAP_7DAY_V5.v5.0", - "description": "Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the 7-Day running mean sea surface salinity (SSS) rain corrected V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath.", - "license": "not-provided" - }, - { - "id": "AQUARIUS_L3_SSS_RAINCORRECTED_CAP_MONTHLY_V5.v5.0", - "title": "Aquarius CAP Level 3 Sea Surface Salinity Rain Corrected Standard Mapped Image Monthly Data V5.0", - "catalog": "POCLOUD", - "state_date": "2011-09-01", - "end_date": "2015-06-01", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2491756352-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2491756352-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_L3_SSS_RAINCORRECTED_CAP_MONTHLY_V5.v5.0", - "description": "Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the monthly sea surface salinity (SSS) rain corrected V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath.", - "license": "not-provided" - }, - { - "id": "AQUARIUS_L3_WIND_SPEED_CAP_7DAY_V5.v5.0", - "title": "Aquarius CAP Level 3 Wind Speed Standard Mapped Image 7-Day Data V5.0", - "catalog": "POCLOUD", - "state_date": "2011-08-26", - "end_date": "2015-06-08", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2491757161-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2491757161-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_L3_WIND_SPEED_CAP_7DAY_V5.v5.0", - "description": "Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the 7-Day running mean wind speed V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath.", - "license": "not-provided" - }, - { - "id": "AQUARIUS_L3_WIND_SPEED_CAP_MONTHLY_V5.v5.0", - "title": "Aquarius CAP Level 3 Wind Speed Standard Mapped Image Monthly Data V5.0", - "catalog": "POCLOUD", - "state_date": "2011-09-01", - "end_date": "2015-06-01", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2491757162-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2491757162-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/AQUARIUS_L3_WIND_SPEED_CAP_MONTHLY_V5.v5.0", - "description": "Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the monthly wind speed V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath.", - "license": "not-provided" - }, { "id": "ASAC_2201_HCL_0.5.v1", "title": "0.5 hour 1 M HCl extraction data for the Windmill Islands marine sediments", @@ -2287,45 +2170,6 @@ "description": "This dataset was produced as part of the [Crop Type Detection competition](https://zindi.africa/competitions/iclr-workshop-challenge-2-radiant-earth-computer-vision-for-crop-recognition) at the [Computer Vision for Agriculture (CV4A) Workshop](https://www.cv4gc.org/cv4a2020/) at the ICLR 2020 conference. The objective of the competition was to create a machine learning model to classify fields by crop type from images collected during the growing season by the Sentinel-2 satellites.

The ground reference data were collected by the PlantVillage team, and Radiant Earth Foundation curated the training dataset after inspecting and selecting more than 4,000 fields from the original ground reference data. The dataset has been split into training and test sets (3,286 in the train and 1,402 in the test).

The dataset is cataloged in four tiles. These tiles are smaller than the original Sentinel-2 tile that has been clipped and chipped to the geographical area that labels have been collected.

Each tile has a) 13 multi-band observations throughout the growing season. Each observation includes 12 bands from Sentinel-2 L2A product, and a cloud probability layer. The twelve bands are [B01, B02, B03, B04, B05, B06, B07, B08, B8A, B09, B11, B12]. The cloud probability layer is a product of the Sentinel-2 atmospheric correction algorithm (Sen2Cor) and provides an estimated cloud probability (0-100%) per pixel. All of the bands are mapped to a common 10 m spatial resolution grid.; b) A raster layer indicating the crop ID for the fields in the training set; and c) A raster layer indicating field IDs for the fields (both training and test sets). Fields with a crop ID of 0 are the test fields.", "license": "not-provided" }, - { - "id": "CWIC_REG.v1.0", - "title": "Radarsat-2 Scenes, Natural Resources Canada", - "catalog": "CCMEO", - "state_date": "2008-04-27", - "end_date": "", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2204659831-CCMEO.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2204659831-CCMEO.html", - "href": "https://cmr.earthdata.nasa.gov/stac/CCMEO/collections/CWIC_REG.v1.0", - "description": "The collection represents browse images and metadata for systematically georeferenced Radarsat-2 Synthetic Aperture Radar(SAR) satellite scenes. The browse scenes are not geometrically enhanced using ground control points, but are systematically corrected using sensor parameters. Full resolution precision geocoded scenes(corrected using ground control points) which correspond to the browse images can be ordered from MacDonald Dettwiler and Associates Ltd., Vancouver, Canada. Metadata discovery is achieved using the online catalog http://neodf.nrcan.gc.ca OR by using the CWIC OGC CSW service URL : http://cwic.csiss.gmu.edu/cwicv1/discovery. The imaging frequency is C Band SAR : 5405.0000 MHz. RADARSAT-2 is in a polar, sun-synchronous orbit with a period of approximately 101 minutes. The RADARSAT-2 orbit will be maintained at +\\/- 1 km in across track direction. This orbit maintenance is suitable for InSAR data collection. The geo-location accuracy of RADARSAT-2 products varies with product type. It is currently estimated at +\\/- 30 m for Standard beam products. The revisit period for RADARSAT-2 depends on the beam mode, incidence angle and geographic location of the area of interest. In general, revisit is more frequent at the poles than the equator and the wider swath modes have higher revisit than t he narrow swath modes.", - "license": "not-provided" - }, - { - "id": "CWIC_REG_RCM.v1.0", - "title": "RCM (Radarsat Constellation Mission ) Products, Natural Resources Canada", - "catalog": "CCMEO", - "state_date": "2019-06-12", - "end_date": "2026-06-12", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2204659595-CCMEO.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2204659595-CCMEO.html", - "href": "https://cmr.earthdata.nasa.gov/stac/CCMEO/collections/CWIC_REG_RCM.v1.0", - "description": "The collection represents products and metadata for georeferenced Radarsat Constellation Mission ( RCM ) satellite scenes. Metadata discovery and product ordering is achieved using the online catalog https://www.eodms-sgdot.nrcan-rncan.gc.ca/index-en.html OR by using the CWIC OpenSearch OSDD : http://cwic.csiss.gmu.edu/cwicv1/discovery. ", - "license": "not-provided" - }, - { - "id": "CWIC_REG_Radarsat-1.v1.0", - "title": "Radarsat-1 Scenes, Natural Resources Canada", - "catalog": "CCMEO", - "state_date": "1996-01-11", - "end_date": "2013-03-29", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2204658925-CCMEO.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2204658925-CCMEO.html", - "href": "https://cmr.earthdata.nasa.gov/stac/CCMEO/collections/CWIC_REG_Radarsat-1.v1.0", - "description": "The collection represents browse images and metadata for systematically georeferenced Radarsat-1 Synthetic Aperture Radar(SAR) satellite scenes. The browse scenes are not geometrically enhanced using ground control points, but are systematically corrected using sensor parameters. Full resolution precision geocoded scenes(corrected using ground control points) which correspond to the browse images can be ordered from MacDonald Dettwiler and Associates Ltd., Vancouver, Canada. Metadata discovery is achieved using the online catalog https://neodf.nrcan.gc.ca/neodf_cat3 OR by using the CWIC OGC CSW service URL : http://cwic.csiss.gmu.edu/cwicv1/discovery. Radarsat-1 operates at 5.3 GHz. (C-Band). It is in a sun-synchronous orbit. Image resolution is in the range 8-100 meters.", - "license": "not-provided" - }, { "id": "Catlin_Arctic_Survey.v0", "title": "2011 R/V Catlin cruise in the Arctic Ocean", @@ -2391,45 +2235,6 @@ "description": "The aerial photography inventoried by the Pilot Land Data System (PLDS) at NASA AMES Research Center has been transferred to the USGS EROS Data Center. The photos were obtained from cameras mounted on high and medium altitude aircraft based at the NASA Ames Research Center. Several cameras with varying focal lengths, lenses and film formats are used, but the Wild RC-10 camera with a focal length of 152 millimeters and a 9 by 9 inch film format is most common. The positive transparencies are typically used for ancillary ground checks in conjunctions with digital processing for the same sites. The aircraft flights, specifically requested by scientists performing approved research, often simultaneously collect data using other sensors on board (e.g. Thematic Mapper Simulators (TMS) and Thermal Infrared Multispectral Scanners). High altitude color infrared photography is used regularly by government agencies for such applications as crop yield forecasting, timber inventory and defoliation assessment, water resource management, land use surveys, water pollution monitoring, and natural disaster assessment. To order, specify the latitude and longitude of interest. You will then be given a list of photos available for that location. In some cases, \"flight books\" are available at EDC that describe the nature of the mission during which the photos were taken and other attribute information. The customer service personnel have access to these books for those photo sets for which the books exist.", "license": "not-provided" }, - { - "id": "ECO_L1B_ATT.v002", - "title": "ECOSTRESS Swath Attitude and Ephemeris Instantaneous L1B Global V002", - "catalog": "LPCLOUD", - "state_date": "2018-07-09", - "end_date": "", - "bbox": "-180, -54, 180, 54", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2076117996-LPCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2076117996-LPCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LPCLOUD/collections/ECO_L1B_ATT.v002", - "description": "The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Swath Attitude and Ephemeris Instantaneous Level 1B Global (ECO_L1B_ATT) Version 2 data product provides both corrected and uncorrected attitude quaternions and spacecraft ephemeris data obtained from the ISS. The data are provided in 1 second intervals, and each product file contains vectors from the duration of the orbit. The ECO_L1B_ATT Version 2 data product contains layers of attitude and ephemeris data generated by the ISS, which are used to start the geolocation process. These layers also include Earth-centered inertial (ECI) position and velocity, and associated time elements distributed in HDF5 format. Known Issues: *Cannot perform spatial query on ECO_L1B_ATT in NASA Earthdata Search: ECO_L1B_ATT does not contain spatial attributes, so granules cannot be searched by geographic location. Users should search for ECO_L1B_ATT data products by orbit number instead. *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods.", - "license": "not-provided" - }, - { - "id": "ECO_L1B_GEO.v002", - "title": "ECOSTRESS Swath Geolocation Instantaneous L1B Global 70 m V002", - "catalog": "LPCLOUD", - "state_date": "2018-07-09", - "end_date": "", - "bbox": "-180, -54, 180, 54", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2076087338-LPCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2076087338-LPCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LPCLOUD/collections/ECO_L1B_GEO.v002", - "description": "The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Swath Geolocation Instantaneous Level 1B Global (ECO_L1B_GEO) Version 2 data product provides the geolocation information for the radiance values retrieved in the ECO_L1B_RAD (https://doi.org/10.5067/ecostress/eco_l1b_rad.002) Version 2 data product. The geolocation product gives geo-tagging to each of the radiance pixels. The geolocation processing corrects the ISS-reported ephemeris and attitude data by image matching with a global ortho-base derived from Landsat data, and then assigns latitude and longitude values to each of the Level 1 radiance pixels. When image matching is successful, the data are geolocated to better than 50 meter (m) accuracy. The ECO_L1B_GEO data product is provided as swath data. The ECO_L1B_GEO data product contains data layers for latitude and longitude values, solar and view geometry information, surface height, and the fraction of pixel on land versus water distributed in HDF5 format. Known Issues: *Geolocation accuracy: In cases where scenes were not successfully matched with the ortho-base, the geolocation error is significantly larger; the worst-case geolocation error for uncorrected data is 7 kilometers (km). Within the metadata of the ECO_L1B_GEO file, if the field \"L1GEOMetadata/OrbitCorrectionPerformed\" is \"True\", the data was corrected, and geolocation accuracy should be better than 50 m. If this field is \"False\", then the data was processed without correcting the geolocation and will have up to 7 km geolocation error. *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: EECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. ", - "license": "not-provided" - }, - { - "id": "ECO_L1CG_RAD.v002", - "title": "ECOSTRESS Gridded Top of Atmosphere Calibrated Radiance Instantaneous L1C Global 70 m V002", - "catalog": "LPCLOUD", - "state_date": "2018-07-09", - "end_date": "", - "bbox": "-180, -54, 180, 54", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2595678497-LPCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2595678497-LPCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LPCLOUD/collections/ECO_L1CG_RAD.v002", - "description": "The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally between 52\u00b0 N and 52\u00b0 S latitudes. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Gridded Top of Atmosphere Calibrated Radiance Instantaneous Level 1C Global 70 m (ECO_L1CG_RAD) Version 2 data product provides at-sensor calibrated radiance values retrieved for five thermal infrared (TIR) bands operating between 8 and 12.5 \u00b5m. This product is a gridded version of the ECO_L1B_RAD (https://doi.org/10.5067/ECOSTRESS/ECO_L1B_RAD.002) Version 2 data product that has been resampled by nearest neighbor, projected to a globally snapped 0.0006\u00b0 grid, and repackaged as the ECO_L1CG_RAD data product. The ECO_L1CG_RAD Version 2 data product contains 12 layers distributed in an HDF5 format file containing radiance values for the five TIR bands, associated data quality indicators, and cloud and water masks. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4, and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Missing scan data/striping features: During testing, an instrument artifact was encountered in ECOSTRESS bands 1 and 5, resulting in missing values. A machine learning algorithm has been applied to interpolate missing values. For more information on the missing scan filling techniques and outcomes, see Section 3.3.2 of the ECO_L1B_RAD User Guide. *Scan overlap: An overlap between ECOSTRESS scans results in a clear line overlap and repeating data. Additional information is available in Section 3.2 of the ECO_L1B_RAD User Guide. *Scan flipping: Improvements to the visualization of the data to compensate for instrument orientation are discussed in Section 3.4 of the ECO_L1B_RAD User Guide. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods.", - "license": "not-provided" - }, { "id": "ECO_L2G_CLOUD.v002", "title": "ECOSTRESS Gridded Cloud Mask Instantaneous L2 Global 70 m V002", @@ -2443,32 +2248,6 @@ "description": "The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Gridded Cloud Mask Instantaneous L2 Global 70 m (ECO_L2G_CLOUD) Version 2 data product is derived using a single-channel Bayesian cloud threshold with a look-up-table (LUT) approach. The ECO_L2G_CLOUD product provides a cloud mask that can be used to determine cloud cover for accurate land surface temperature and evapotranspiration estimation. This data product is a gridded version of the ECO_L2_CLOUD Version 2 product that was resampled using nearest neighbor, projected to a globally snapped 0.0006\u00b0 grid, and repackaged as the ECO_L2G_CLOUD Version 2 data product. The ECO_L2G_CLOUD Version 2 data product contains two cloud mask layers: cloud confidence and final cloud mask. Information on how to interpret the cloud confidence and cloud mask layers is provided in Table 7 of the ECO_L2_CLOUD Version 2 User Guide. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4, and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. ", "license": "not-provided" }, - { - "id": "ECO_L2G_LSTE.v002", - "title": "ECOSTRESS Gridded Land Surface Temperature and Emissivity Instantaneous L2 Global 70 m V002", - "catalog": "LPCLOUD", - "state_date": "2018-07-09", - "end_date": "", - "bbox": "-180, -54, 180, 54", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2076113037-LPCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2076113037-LPCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LPCLOUD/collections/ECO_L2G_LSTE.v002", - "description": "The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Gridded Land Surface Temperature and Emissivity Instantaneous Level 2 Global 70 m (ECO_L2G_LSTE) Version 2 data product provides atmospherically corrected land surface temperature and emissivity (LST&E) values derived from five thermal infrared (TIR) bands. The ECO_L2G_LSTE data product was derived using a physics-based Temperature and Emissivity Separation (TES) algorithm. This data product is a gridded version of the ECO_L2_LSTE (https://doi.org/10.5067/ECOSTRESS/ECO_L2_LSTE.002) Version 2 data product that was resampled using nearest neighbor, projected to a globally snapped 0.0006\u00b0 grid, and repackaged as the ECO_L2G_LSTE data product. The ECO_L2G_LSTE product is provided as gridded data and has a spatial resolution of 70 meters (m). The ECO_L2G_LSTE Version 2 data product contains 8 layers distributed in an HDF5 format file including LST, LST error, wideband emissivity, height, view zenith angle, quality flags, and cloud and water masks. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4, and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. ", - "license": "not-provided" - }, - { - "id": "ECO_L2_CLOUD.v002", - "title": "ECOSTRESS Swath Cloud Mask Instantaneous L2 Global 70 m V002", - "catalog": "LPCLOUD", - "state_date": "2018-07-09", - "end_date": "", - "bbox": "-180, -54, 180, 54", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2076115306-LPCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2076115306-LPCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LPCLOUD/collections/ECO_L2_CLOUD.v002", - "description": "The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Swath Cloud Mask Instantaneous L2 Global 70 m (ECO_L2_CLOUD) Version 2 data product is derived using a single-channel Bayesian cloud threshold with a look-up-table (LUT) approach. The ECOSTRESS Level 2 cloud product provides a cloud mask that can be used to determine cloud cover for accurate land surface temperature and evapotranspiration estimation. The corresponding ECO_L1B_GEO (https://doi.org/10.5067/ECOSTRESS/ECO_L1B_GEO.002) data product is required to georeference the ECO_L2_CLOUD data product. The ECO_L2_CLOUD Version 2 data product contains two cloud mask layers: Brightness temperature LUT test and Final cloud mask. Information on how to interpret the bit fields in the cloud mask is provided in Table 7 of the User Guide. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4 and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. ", - "license": "not-provided" - }, { "id": "EN1_MDSI_MER_FRS_1P.v4", "title": "Full Resolution Full Swath Geolocated and Calibrated TOA Radiance", @@ -2625,136 +2404,6 @@ "description": "The Surface Soil Moisture L2 product is derived from the Advanced SCATterometer (ASCAT) data and given in swath geometry. This product provides an estimate of the water saturation of the 5 cm topsoil layer, in relative units between 0 and 100 [%]. The algorithm used to derive this parameter is based on a linear relationship of soil moisture and scatterometer backscatter and uses change detection techniques to eliminate the contributions of vegetation, land cover and surface topography, considered invariant from year to year. Seasonal vegetation effects are modelled by exploiting the multiple viewing capabilities of ASCAT. The processor has been developed by the Institute of Photogrammetry and Remote Sensing of the Vienna University of Technology. Note that some of the data are reprocessed. Please refer to the associated product validation reports or product release notes for further information.", "license": "not-provided" }, - { - "id": "FIFE_AF_DET_G_5.v1", - "title": "Aircraft Flux-Detrended: Univ. Col. (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-05-26", - "end_date": "1989-10-31", - "bbox": "-102, 37, -95, 40", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179003494-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179003494-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_AF_DET_G_5.v1", - "description": "Detrended boundary layer fluxes recorded on aircraft flights over the Konza", - "license": "not-provided" - }, - { - "id": "FIFE_AF_DET_K_4.v1", - "title": "Aircraft Flux-Detrended: U of Wy. (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-08-11", - "end_date": "1989-10-31", - "bbox": "-102, 37, -95, 40", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179003698-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179003698-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_AF_DET_K_4.v1", - "description": "Detrended boundary layer fluxes recorded on aircraft flights over the Konza", - "license": "not-provided" - }, - { - "id": "FIFE_AF_DET_M_3.v1", - "title": "Aircraft Flux-Detrended: NRCC (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-06-26", - "end_date": "1989-10-31", - "bbox": "-102, 37, -95, 40", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179003112-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179003112-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_AF_DET_M_3.v1", - "description": "Detrended boundary layer fluxes recorded on aircraft flights over the Konza", - "license": "not-provided" - }, - { - "id": "FIFE_AF_FLT_G_8.v1", - "title": "Aircraft Flux-Filtered: Univ. Col. (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-05-26", - "end_date": "1989-10-31", - "bbox": "-102, 37, -95, 40", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179003697-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179003697-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_AF_FLT_G_8.v1", - "description": "Filtered boundary layer fluxes recorded on aircraft flights over the Konza", - "license": "not-provided" - }, - { - "id": "FIFE_AF_FLT_K_7.v1", - "title": "Aircraft Flux-Filtered: U of Wy. (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-08-11", - "end_date": "1989-10-31", - "bbox": "-102, 37, -95, 40", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179003237-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179003237-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_AF_FLT_K_7.v1", - "description": "Filtered boundary layer fluxes recorded on aircraft flights over the Konza", - "license": "not-provided" - }, - { - "id": "FIFE_AF_FLT_M_6.v1", - "title": "Aircraft Flux-Filtered: NRCC (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-06-26", - "end_date": "1989-10-31", - "bbox": "-102, 37, -95, 40", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179002951-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179002951-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_AF_FLT_M_6.v1", - "description": "Filtered boundary layer fluxes recorded on aircraft flights over the Konza", - "license": "not-provided" - }, - { - "id": "FIFE_AF_RAW_K_10.v1", - "title": "Aircraft Flux-Raw: U of Wy. (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-08-11", - "end_date": "1989-10-31", - "bbox": "-102, 37, -95, 40", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179002883-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179002883-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_AF_RAW_K_10.v1", - "description": "Raw (unmodified) boundary layer fluxes recorded on aircraft flights over Konza", - "license": "not-provided" - }, - { - "id": "FIFE_AF_RAW_M_9.v1", - "title": "Aircraft Flux-Raw: NRCC (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-06-26", - "end_date": "1989-10-31", - "bbox": "-102, 37, -95, 40", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179003273-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179003273-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_AF_RAW_M_9.v1", - "description": "Raw (unmodified) boundary layer fluxes recorded on aircraft flights over Konza", - "license": "not-provided" - }, - { - "id": "FIFE_RAIN_30M_2.v1", - "title": "30 Minute Rainfall Data (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1987-05-29", - "end_date": "1987-10-26", - "bbox": "-96.6, 39.08, -96.55, 39.11", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179002914-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179002914-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_RAIN_30M_2.v1", - "description": "30 minute rainfall data for the Konza Prairie", - "license": "not-provided" - }, - { - "id": "FIFE_STRM_15M_1.v1", - "title": "15 Minute Stream Flow Data: USGS (FIFE)", - "catalog": "ORNL_DAAC", - "state_date": "1984-12-25", - "end_date": "1988-03-04", - "bbox": "-96.6, 39.1, -96.6, 39.1", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179003030-ORNL_DAAC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179003030-ORNL_DAAC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/ORNL_DAAC/collections/FIFE_STRM_15M_1.v1", - "description": "USGS 15 minute stream flow data for Kings Creek on the Konza Prairie", - "license": "not-provided" - }, { "id": "G5NR.v1", "title": "GEOS-5 Nature Run data", @@ -3054,6 +2703,19 @@ "description": "The data received from IMS1, HySI which operates in 64 spectral bands in VNIR bands(400-900nm) with 500 meter spatial resolution and swath of 128 kms.", "license": "not-provided" }, + { + "id": "ISERV.v1", + "title": "International Space Station SERVIR Environmental Research and Visualization System V1", + "catalog": "USGS_EROS", + "state_date": "2013-03-27", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/USGS_EROS/collections/ISERV.v1", + "description": "Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions.", + "license": "not-provided" + }, { "id": "KOPRI-KPDC-00000008.v1", "title": "1998 Seismic Data, Antarctica", @@ -4185,19 +3847,6 @@ "description": "The QuickBird Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe QuickBird-2 satellite using the Ball High Resolution Camera 60 across the global land surface from October 2001 to January 2015. This data product includes panchromatic imagery with a spatial resolution of 0.55m at nadir and a temporal resolution of 2.5 to 5.6 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", "license": "not-provided" }, - { - "id": "SEAGLIDER_GUAM_2019.vV1", - "title": "Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (Guam 2019-2020)", - "catalog": "POCLOUD", - "state_date": "2019-10-03", - "end_date": "2020-01-15", - "bbox": "143.63035, 13.39476, 144.613, 14.71229", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2151536874-POCLOUD.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2151536874-POCLOUD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/POCLOUD/collections/SEAGLIDER_GUAM_2019.vV1", - "description": "This dataset was produced by the Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (NASA grant NNX17AK07G) project, an investigation to develop tools and strategies to better measure the structure and variability of upper-ocean salinity in rain-dominated environments. From October 2019 to January 2020, three Seagliders were deployed near Guam (14\u00b0N 144\u00b0E). The Seaglider is an autonomous profiler measuring salinity and temperature in the upper ocean. The three gliders sampled in an adaptive formation to capture the patchiness of the rain and the corresponding oceanic response in real time. The location was chosen because of the likelihood of intense tropical rain events and the availability of a NEXRAD (S-band) rain radar at the Guam Airport. Spacing between gliders varies from 1 to 60 km. Data samples are gridded by profile and on regular depth bins from 0 to 1000 m. The time interval between profiles was about 3 hours, and they are typically about 1.5 km apart. These profiles are available at Level 2 (basic gridding) and Level 3 (despiked and interpolated). All Seaglider data files are in netCDF format with standards compliant metadata. The project was led by a team from the Applied Physics Laboratory at the University of Washington.", - "license": "not-provided" - }, { "id": "SRDB_V5_1827.v5", "title": "A Global Database of Soil Respiration Data, Version 5.0", diff --git a/nasa_cmr_catalog.tsv b/nasa_cmr_catalog.tsv index b4ddfad49..f689045c9 100644 --- a/nasa_cmr_catalog.tsv +++ b/nasa_cmr_catalog.tsv @@ -99,15 +99,6 @@ ALOSIPY ALOS PALSAR International Polar Year Antarctica ESA 2008-07-25 2010-03-3 ALOS_PRISM_L1B Alos PRISM L1B ESA 2006-07-09 2011-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2119689640-ESA.json This collection provides access to the ALOS-1 PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) L1B data acquired by ESA stations in the ADEN zone plus some data requested by European scientists over their areas of interest around the world. The ADEN zone (https://earth.esa.int/eogateway/documents/20142/37627/ALOS-ADEN-Zone.pdf) was the area belonging to the European Data node and covered both the European and African continents, a large part of Greenland and the Middle East. The full mission is covered, though with gaps outside of the ADEN zone: Time window: from 2006-07-09 to 2011-03-31 Orbits: from 2425 to 24189 Path (corresponds to JAXA track number): from 1 to 668 Row (corresponds to JAXA scene centre frame number): from 55 to 7185. Two different Level 1B product types (Panchromatic images in VIS-NIR bands, 2.5 m resolution at nadir) are offered, one for each available sensor mode: PSM_OB1_11 -> composed of up to three views; Nadir, Forward and Backward at 35 km swath PSM_OB2_11 -> composed of up to two views; Nadir view at 70 km width and Backward view at 35 km width. All ALOS PRISM EO-SIP products have, at least, the Nadir view which is used for the frame number identification. All views are packaged together; each view, in CEOS format, is stored in a directory named according to the view ID according to the JAXA naming convention. not-provided AM1EPHNE.v6.1NRT Files containing only extrapolated orbital metadata, to be read via SDP Toolkit, Binary Format LANCEMODIS 2016-01-24 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426293893-LANCEMODIS.json AM1EPHNE is the Terra Near Real Time (NRT) 2-hour spacecraft Extrapolated ephemeris data file in native format. The file name format is the following: AM1EPHNE.Ayyyyddd.hhmm.vvv.yyyydddhhmmss where from left to right: E = Extrapolated; N = Native format; A = AM1 (Terra); yyyy = data year, ddd = Julian data day, hh = data hour, mm = data minute; vvv = Version ID; yyyy = production year, ddd = Julian production day, hh = production hour, mm = production minute, and ss = production second. Data set information: http://modis.gsfc.nasa.gov/sci_team/ not-provided APSF Aerial Photo Single Frames USGS_LTA 1970-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1220567654-USGS_LTA.json The Aerial Photography Single Frame Records collection is a large and diverse group of imagery acquired by Federal organizations from 1937 to the present. Over 6.4 million frames of photographic images are available for download as medium and high resolution digital products. The high resolution data provide access to photogrammetric quality scans of aerial photographs with sufficient resolution to reveal landscape detail and to facilitate the interpretability of landscape features. Coverage is predominantly over the United States and includes portions of Central America and Puerto Rico. Individual photographs vary in scale, size, film type, quality, and coverage. not-provided -AQUARIUS_ANCILLARY_CELESTIALSKY_V1.v1 Aquarius Celestial Sky Microwave Emission Map Ancillary Dataset V1.0 POCLOUD 2011-09-01 2015-06-07 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2617176761-POCLOUD.json "This datasets contains three maps of L-band (wavelength = 21 cm) brightness temperature of the celestial sky (""Galaxy"") used in the processing of the NASA Aquarius instrument data. The maps report Sky brightness temperatures in Kelvin gridded on the Earth Centered Inertial (ECI) reference frame epoch J2000. They are sampled over 721 Declinations between -90 degrees and +90 degrees and 1441 Right Ascensions between 0 degrees and 360 degrees, all evenly spaced at 0.25 degrees intervals. The brightness temperatures are assumed temporally invariant and polarization has been neglected. They include microwave continuum and atomic hydrogen line (HI) emissions. The maps differ only in how the strong radio source Cassiopeia A has been included into the whole sky background surveys: 1/ TB_no_Cas_A does not include Cassiopeia A and reports only the whole Sky surveys. 2/ TB_Cas_A_1cell spread Cas A total flux homogeneously over 1 map grid cell (i.e. 9.8572E-6 sr). 3/ TB_Cas_A_beam spreads Cas A over surrounding grid cells using a convolution by a Gaussian beam with HPBW of 35 arcmin (equivalent to the instrument used for the Sky surveys). Cassiopeia A is a supernova remnant (SNR) in the constellation Cassiopeia and the brightest extra-solar radio source in the sky at frequencies above 1." not-provided -AQUARIUS_L2_SSS_CAP_V5.v5.0 Aquarius CAP Level 2 Sea Surface Salinity, Wind Speed & Direction Data V5.0 POCLOUD 2011-08-26 2015-06-05 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205121315-POCLOUD.json The version 5.0 Aquarius CAP Level 2 product contains the fourth release of the AQUARIUS/SAC-D orbital/swath data based on the Combined Active Passive (CAP) algorithm. CAP is a P.I. produced dataset developed and provided by JPL. This Level 2 dataset contains sea surface salinity (SSS), wind speed and wind direction data derived from 3 different radiometers and the onboard scatterometer. The CAP algorithm simultaneously retrieves the salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. Each L2 data file covers one 98 minute orbit. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. not-provided -AQUARIUS_L2_SSS_V5.v5.0 Aquarius Official Release Level 2 Sea Surface Salinity & Wind Speed Data V5.0 POCLOUD 2011-08-25 2015-06-07 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2036882456-POCLOUD.json The version 5.0 Aquarius Level 2 product is the official third release of the orbital/swath data from AQUARIUS/SAC-D mission. The Aquarius Level 2 data set contains sea surface salinity (SSS) and wind speed data derived from 3 different radiometers and the onboard scatterometer. Included also in the Level 2 data are the horizontal and vertical brightness temperatures (TH and TV) for each radiometer, ancillary data, flags, converted telemetry and navigation data. Each data file covers one 98 minute orbit. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. Enhancements to the version 5.0 Level 2 data relative to v4.0 include: improvement of the salinity retrieval geophysical model for SST bias, estimates of SSS uncertainties (systematic and random components), and inclusion of a new spiciness variable. not-provided -AQUARIUS_L3_SSS_CAP_7DAY_V5.v5.0 Aquarius CAP Level 3 Sea Surface Salinity Standard Mapped Image 7-Day Data V5.0 POCLOUD 2011-08-26 2015-06-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2491756349-POCLOUD.json Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the 7-Day running mean sea surface salinity (SSS) V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. not-provided -AQUARIUS_L3_SSS_CAP_MONTHLY_V5.v5.0 Aquarius CAP Level 3 Sea Surface Salinity Standard Mapped Image Monthly Data V5.0 POCLOUD 2011-09-01 2015-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2491756350-POCLOUD.json Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the monthly sea surface salinity (SSS) V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. not-provided -AQUARIUS_L3_SSS_RAINCORRECTED_CAP_7DAY_V5.v5.0 Aquarius CAP Level 3 Sea Surface Salinity Rain Corrected Standard Mapped Image 7-Day Data V5.0 POCLOUD 2011-08-26 2015-06-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2491756351-POCLOUD.json Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the 7-Day running mean sea surface salinity (SSS) rain corrected V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. not-provided -AQUARIUS_L3_SSS_RAINCORRECTED_CAP_MONTHLY_V5.v5.0 Aquarius CAP Level 3 Sea Surface Salinity Rain Corrected Standard Mapped Image Monthly Data V5.0 POCLOUD 2011-09-01 2015-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2491756352-POCLOUD.json Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the monthly sea surface salinity (SSS) rain corrected V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. not-provided -AQUARIUS_L3_WIND_SPEED_CAP_7DAY_V5.v5.0 Aquarius CAP Level 3 Wind Speed Standard Mapped Image 7-Day Data V5.0 POCLOUD 2011-08-26 2015-06-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2491757161-POCLOUD.json Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the 7-Day running mean wind speed V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. not-provided -AQUARIUS_L3_WIND_SPEED_CAP_MONTHLY_V5.v5.0 Aquarius CAP Level 3 Wind Speed Standard Mapped Image Monthly Data V5.0 POCLOUD 2011-09-01 2015-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2491757162-POCLOUD.json Version 5.0 Aquarius CAP Level 3 products are the fourth release of the AQUARIUS/SAC-D mapped salinity and wind speed data based on the Combined Active Passive (CAP) algorithm. CAP Level 3 standard mapped image products contain gridded 1 degree spatial resolution salinity and wind speed data averaged over 7 day and monthly time scales. This particular dataset is the monthly wind speed V5.0 Aquarius CAP product. CAP is a P.I. produced dataset developed and provided by JPL. The CAP algorithm utilizes data from both the onboard radiometer and scatterometer to simultaneously retrieve salinity, wind speed and direction by minimizing the sum of squared differences between model and observations. The main improvements in CAP V5.0 relative to the previous version include: updates to the Geophysical Model Functions to 4th order harmonics with the inclusion of sea surface temperature (SST) and stability at air-sea interface effects; use of the Canadian Meteorological Center (CMC) SST product as the new source ancillary sea surface temperature data in place of NOAA OI SST. The Aquarius instrument is onboard the AQUARIUS/SAC-D satellite, a collaborative effort between NASA and the Argentinian Space Agency Comision Nacional de Actividades Espaciales (CONAE). The instrument consists of three radiometers in push broom alignment at incidence angles of 29, 38, and 46 degrees incidence angles relative to the shadow side of the orbit. Footprints for the beams are: 76 km (along-track) x 94 km (cross-track), 84 km x 120 km and 96km x 156 km, yielding a total cross-track swath of 370 km. The radiometers measure brightness temperature at 1.413 GHz in their respective horizontal and vertical polarizations (TH and TV). A scatterometer operating at 1.26 GHz measures ocean backscatter in each footprint that is used for surface roughness corrections in the estimation of salinity. The scatterometer has an approximate 390km swath. not-provided ASAC_2201_HCL_0.5.v1 0.5 hour 1 M HCl extraction data for the Windmill Islands marine sediments AU_AADC 1997-10-01 1999-03-31 110, -66, 110, -66 https://cmr.earthdata.nasa.gov/search/concepts/C1214305813-AU_AADC.json These results are for the 0.5 hour extraction of HCl. See also the metadata records for the 4 hour extraction of HCl, and the time trial data for 1 M HCl extractions. A regional survey of potential contaminants in marine or estuarine sediments is often one of the first steps in a post-disturbance environmental impact assessment. Of the many different chemical extraction or digestion procedures that have been proposed to quantify metal contamination, partial acid extractions are probably the best overall compromise between selectivity, sensitivity, precision, cost and expediency. The extent to which measured metal concentrations relate to the anthropogenic fraction that is bioavailable is contentious, but is one of the desired outcomes of an assessment or prediction of biological impact. As part of a regional survey of metal contamination associated with Australia's past waste management activities in Antarctica, we wanted to identify an acid type and extraction protocol that would allow a reasonable definition of the anthropogenic bioavailable fraction for a large number of samples. From a kinetic study of the 1 M HCl extraction of two certified Certified Reference Materials (MESS-2 and PACS-2) and two Antarctic marine sediments, we concluded that a 4 hour extraction time allows the equilibrium dissolution of relatively labile metal contaminants, but does not favour the extraction of natural geogenic metals. In a regional survey of 88 marine samples from the Casey Station area of East Antarctica, the 4 h extraction procedure correlated best with biological data, and most clearly identified those sediments thought to be contaminated by runoff from abandoned waste disposal sites. Most importantly the 4 hour extraction provided better definition of the low to moderately contaminated locations by picking up small differences in anthropogenic metal concentrations. For the purposes of inter-regional comparison, we recommend a 4 hour 1 M HCl acid extraction as a standard method for assessing metal contamination in Antarctica. The fields in this dataset are Location Site Replicate Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Nickel Silver Tin Zinc not-provided ASAC_2357.v2 10 year trend of levels of organochlorine pollutants in Antarctic seabirds AU_AADC 2003-12-16 2004-01-18 77.59, -68.93, 77.99, -68.755 https://cmr.earthdata.nasa.gov/search/concepts/C1214305884-AU_AADC.json Metadata record for data from ASAC Project 2357 See the link below for public details on this project. ---- Public Summary from Project ---- Contaminants like PCBs and DDE have hardly been used Antarctica. Hence, this is an excellent place to monitor global background levels of these organochlorines. In this project concentrations in penguins and petrels will be compared to 10 years ago, which will show time trends of global background contamination levels. Data set description From several birds from Hop Island, Rauer Islands near Davis, samples were collected from preenoil (oil that birds excrete to preen their feathers. This preenoil was then analysed for organochlorine pollutants like polychlorinated biphenyls, (PCBs), hexachlorobenzene (HCB), DDE and dieldrin. The species under investigation were the Adelie penguin (Pygoscelis adeliae) and the Southern Fulmar (Fulmarus glacialoides). The samples were collected from adult breeding birds, and stored in -20 degrees C as soon as possible. The analysis was done with relatively standard but very optimised methods, using a gas-chromatograph and mass-selective detection. Data sheets: The data are available in excel-sheets, located at Alterra, The Netherlands (the affiliation of the PI Nico van den Brink.). Data are available on PCB153 (polychlorinated biphenyl congener numbered 153), hexachlorobenzene (HCB), DDE (a metabolite of the pesticide DDT), and dieldrin (an insecticide). The metadata are in 4 sheets (in meta data 2357.xls): 1. 'Concentrations fulmars' 2. 'Morphometric data fulmars' 3. 'Concentrations Adelies' 4. 'Morphometric data Adelies' The column headings are: 1. 'Concentrations fulmars' - Fulmar: bird number, corresponds with sheet 'morphometric data fulmars'. - PCB153: concentration of PCB-congener 153 (ng/g lipids) - HCB: concentration of hexachlorobenzene (ng/g lipids) - DDE: concentration of DDE (ng/g lipids) - Dieldrin: concentration of dieldrin (ng/g lipids) - Sample size weight of collected amount of preenoil 2. Morphometric data fulmars - Fulmar: bird number, corresponds with sheet 'Concentrations fulmars'. - Bill Length (mm): length of bill (tip to base) - Head Length (mm): length of head (tip of bill to back of head) - Tarsus (mm): length of tarsus - Wing Length (cm): length of right wing - Weight (kg): weight of bird (without bag) 3. 'Concentrations Adelies' Adelie: bird number, corresponds with sheet 'morphometric data Adelies'. - PCB153: concentration of PCB-congener 153 (ng/g lipids) - HCB: concentration of hexachlorobenzene (ng/g lipids) - DDE: concentration of DDE (ng/g lipids) - Dieldrin: concentration of dieldrin (ng/g lipids) - Sample size weight of collected amount of preenoil 4. 'Morphometric data Adelies' - Adelie: bird number, corresponds with sheet 'Concentrations Adelies'. - Bill (mm): length of bill (tip to base) - Head Length (mm): length of head (tip of bill to back of head) - Tarsus (mm): length of tarsus - Flipper Length (cm): length of right flipper (wing) - Weight (kg): weight of bird (without bag) In sheets on concentrations: less than d.l.: concentrations below detection limits. not-provided AST14DEM.v003 ASTER Digital Elevation Model V003 LPDAAC_ECS 2000-03-06 -180, -83, 180, 83 https://cmr.earthdata.nasa.gov/search/concepts/C1299783579-LPDAAC_ECS.json The ASTER Digital Elevation Model (AST14DEM) product is generated (https://lpdaac.usgs.gov/documents/996/ASTER_Earthdata_Search_Order_Instructions.pdf) using bands 3N (nadir-viewing) and 3B (backward-viewing) of an (ASTER Level 1A) (https://doi.org/10.5067/ASTER/AST_L1A.003) image acquired by the Visible and Near Infrared (VNIR) sensor. The VNIR subsystem includes two independent telescope assemblies that facilitate the generation of stereoscopic data. The band 3 stereo pair is acquired in the spectral range of 0.78 and 0.86 microns with a base-to-height ratio of 0.6 and an intersection angle of 27.7 degrees. There is a time lag of approximately one minute between the acquisition of the nadir and backward images. For a better understanding, refer to this (diagram) (https://lpdaac.usgs.gov/documents/301/ASTER_Along_Track_Imaging_Geometry.png) depicting the along-track imaging geometry of the ASTER VNIR nadir and backward-viewing sensors. The accuracy of the new LP DAAC produced DEMs will meet or exceed accuracy specifications set for the ASTER relative DEMs by the Algorithm Theoretical Basis Document (ATBD) (https://lpdaac.usgs.gov/documents/81/AST14_ATBD.pdf). Users likely will find that the DEMs produced by the new LP DAAC system have accuracies approaching those specified in the ATBD for absolute DEMs. Validation testing has shown that DEMs produced by the new system frequently are more accurate than 25 meters root mean square error (RMSE) in xyz dimensions. Improvements/Changes from Previous Versions As of January 2021, the LP DAAC has implemented version 3.0 of the Sensor Information Laboratory Corporation ASTER DEM/Ortho (SILCAST) software, which is used to generate the Level 2 on-demand ASTER Orthorectified and Digital Elevation Model (DEM) products (AST14). The updated software provides digital elevation extraction and orthorectification from ASTER L1B input data without needing to enter ground control points or depending on external global DEMs at 30-arc-second resolution (GTOPO30). It utilizes the ephemeris and attitude data derived from both the ASTER instrument and the Terra spacecraft platform. The outputs are geoid height-corrected and waterbodies are automatically detected in this version. Users will notice differences between AST14DEM, AST14DMO, and AST14OTH products ordered before January 2021 (generated with SILCAST V1) and those generated with the updated version of the production software (version 3.0). Differences may include slight elevation changes over different surface types, including waterbodies. Differences have also been observed over cloudy portions of ASTER scenes. Additional information on SILCAST version 3.0 can be found on the SILCAST website (http://www.silc.co.jp/en/products.html). Starting June 23, 2021, radiometric calibration coefficient Version 5 (RCC V5) will be applied to newly observed ASTER data and archived ASTER data products. Details regarding RCC V5 are described in the following journal article. Tsuchida, S., Yamamoto, H., Kouyama, T., Obata, K., Sakuma, F., Tachikawa, T., Kamei, A., Arai, K., Czapla-Myers, J.S., Biggar, S.F., and Thome, K.J., 2020, Radiometric Degradation Curves for the ASTER VNIR Processing Using Vicarious and Lunar Calibrations: Remote Sensing, v. 12, no. 3, at https://doi.org/10.3390/rs12030427. not-provided @@ -175,20 +166,12 @@ CLDMSK_L2_VIIRS_SNPP_NRT.v1 VIIRS/SNPP Cloud Mask L2 6-Min Swath 750m (NRT) ASIP COARE_cm_er2.mas.v1 MODIS Airborne Simulator (MAS) Measurements Taken Onboard the NASA ER-2 During the TOGA COARE Intensive Observing Period. LAADS 1993-01-03 1993-03-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1625703857-LAADS.json The MODIS Airborne Simulator (MAS) Measurements, taken onboard the NASA ER-2 during the TOGA COARE Intensive Observing Period, are available upon request from NASA LAADS. Browse products are available at https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/mas/. The ER-2 navigation data are available from the same site in sub directory nasa_er2/nav. Browse imagery of the data may be viewed from the MAS Homepage at: https://mas.arc.nasa.gov/data/deploy_html/toga_home.html. MAS Level 1B data are available on 8500 density 8mm tape from TOGA COARE User Services at the Goddard DAAC. Each tape contains all the flight lines for one MAS flight (one day). The number of flight lines varies, but is generally between 10 and 20. The volume of data varies, but is generally 1 to 3 gigabytes per flight. Detailed instructions for reading MAS tapes is contained in MAS_Usr_Guide.ps. To obtain the data on tape, contact the DAAC User Services Office. For help with NASA TOGA COARE data residing at the GSFC DAAC, contact Pat Hrubiak at hrubiak@daac.gsfc.nasa.gov. BACK GROUND: TOGA COARE was a multidisciplinary, international research effort that investigated the scientific phenomena associated with the interaction between the atmosphere and the ocean in the warm pool region of the western Pacific. The field experiment phase of the program took place from 1 November 1992 through 28 February 1993 and involved the deployment of oceanographic ships and buoys, several ship and land based Doppler radars, multiple low and high level aircraft equipped with Doppler radar and other airborne sensors, as well as a variety of surface based instruments for in situ observations. The NASA component of TOGA COARE, while contributing directly to over all COARE objectives, emphasized scientific objectives associated with the Tropical Rainfall Measuring Mission (TRMM) and NASA's cloud and radiation program. AIRCRAFT INFORMATION: The NASA ER-2 is a high altitude, single pilot aircraft based at Ames Research Center, Moffett Field, CA, and deployed globally in support of a variety of atmospheric research projects. It has a maximum altitude of 70,000 feet (21 km), a range of 3000 nautical miles, a maximum flight duration of 8 hours (nominal 6.5 hours) and a top speed of 410 knots true air speed. The aircraft accommodates about 2700 pounds (1200 kg) of payload. For the TOGA COARE campaign, the ER-2 payload consisted of a variety of radiometers, a lidar, a conductivity probe and a camera. FLIGHT INFORMATION: The following table relates MAS data files to ER-2 and DC-8 flight numbers and to the UTC dates for the 13 mission flights of the NASA/TOGA COARE campaign and 2 additional flights of the ER-2 on which MAS data was acquired. The objectives (Obj) column is included for the convenience of the user; the mission objective defaulted to radiation (Rad) unless convection (Con) was forecast in the target area. Date (UTC) ER-2 Flight DC-8 Flight MAS TapeID Obj-Jan 11-12 93-053 93-01-06 93-053 RadJan 17-18 93-054 93-01-07 93-054 Con Jan 18-19 93-055 93-01-08 93-055 Con Jan 25-26 93-056 93-01-09 93-056 RadJan 28-29 93-057 93-057 Jan 31-Feb 1 93-058 93-01-10 93-058 Rad Feb 2 93-059 93-059 Feb 4 93-060 93-01-11 93-060 Con Feb 6 93-01-12 Con Feb 7 93-061 93-061 Feb 8-9 93-062 93-01-13 93-062 Con Feb 10-11 93-063 93-01-14 93-063 Con Feb 17-18 93-01-15 93-064 Con Feb 19-20 93-064 93-064 Feb 20-21 93-065 93-01-16 93-065 Con Feb 22-23 93-066 93-01-17 Con Feb 23-24 93-067 93-01-18 Rad. INSTRUMENT INFORMATION: The MODIS Airborne Simulator is a visible/infrared imaging radiometer that was mounted, for this campaign, in the right aft wing pod of the ER-2 aircraft. Through cross track scanning to the aircraft direction of flight, the MAS instrument builds a continuous sequence image of the atmosphere surface features under the aircraft. Wavelength channels of the instrument are selected for specific cloud and surface remote sensing applications. Also the channels are those which will be incorporated in measurements by the space borne MODIS instrument. The MAS instrument acquires eleven simultaneous wavelengths with 100 meters or better resolution at the surface. Principles of Operation: The MAS Spectrometer acquires high spatial resolution imagery in the wavelength range 0.55 to 14.3 microns. A total of 50 spectral bands are available in this range, and currently the digitize is configured before each mission to record in any 12 of these bands during flight. For all pre-1994 MAS missions, the 12-channel digitize was configured with four 10-bit channels and seven 8-bit channels. The MAS spectrometer is mated to a scanner sub-assembly which collects image data with an IFOV of 2.5 mrad, giving a ground resolution of 50 meters from 20,000 meters altitude,and a cross track scan width of 85.92 degrees. A 50 channel digitizer which records all 50 spectral bands at 12 bit resolution became operational in January 1995. DATA ORGANIZATION Data Format: The archive tapes are created by writing each output data file (1 straight-line flight track) to tape in fixed-length blocks of 16384 bytes, in time ascending order. One end-of-file (EOF) mark is written at the end of the data blocks for each file, and an extra EOF is written at the end of the data on the tape. The last block of each file has good data at the start of the block and unused bytes (filled with null characters) at the end. Information on the length of the file is encoded in the header when the file is created. No file name,protection, or ownership information is written onto the archive tape. All information necessary to identify the file is stored in the file itself. Documentation: In addition to this document, please obtain Volume 3, MODIS Airborne Simulator Level 1B Data Users Guide, resident in this directory in postscript file MAS_Usr_Guide.ps. Browse Products: There are 2 GIF image files per flight line, named 93ddd??v.gif and 93ddd??i.gif, where 93 is the year, ddd the Julian day of the flight, ?? the flight line number, and v or i, indicating respectively visible (VIS) or Infrared (IR) imagery. Images from each flight, accompanied by a flight statistics summary file, reside in a sub directory named with the date of the flight (02feb93) under mas/images. not-provided CSU Synthetic Attribution Benchmark Dataset.v1 CSU Synthetic Attribution Benchmark Dataset MLHUB 2020-01-01 2023-01-01 -179.5, -89.5, 179.5, 89.5 https://cmr.earthdata.nasa.gov/search/concepts/C2781411899-MLHUB.json This is a synthetic dataset that can be used by users that are interested in benchmarking methods of explainable artificial intelligence (XAI) for geoscientific applications. The dataset is specifically inspired from a climate forecasting setting (seasonal timescales) where the task is to predict regional climate variability given global climate information lagged in time. The dataset consists of a synthetic input X (series of 2D arrays of random fields drawn from a multivariate normal distribution) and a synthetic output Y (scalar series) generated by using a nonlinear function F: R^d -> R.

The synthetic input aims to represent temporally independent realizations of anomalous global fields of sea surface temperature, the synthetic output series represents some type of regional climate variability that is of interest (temperature, precipitation totals, etc.) and the function F is a simplification of the climate system.

Since the nonlinear function F that is used to generate the output given the input is known, we also derive and provide the attribution of each output value to the corresponding input features. Using this synthetic dataset users can train any AI model to predict Y given X and then implement XAI methods to interpret it. Based on the “ground truth” of attribution of F the user can assess the faithfulness of any XAI method.

NOTE: the spatial configuration of the observations in the NetCDF database file conform to the planetocentric coordinate system (89.5N - 89.5S, 0.5E - 359.5E), where longitude is measured in the positive heading east from the prime meridian. not-provided CV4A Kenya Crop Type Competition.v1 CV4A Kenya Crop Type Competition MLHUB 2020-01-01 2023-01-01 34.0220685, 0.1670219, 34.38443, 0.7160466 https://cmr.earthdata.nasa.gov/search/concepts/C2781412688-MLHUB.json This dataset was produced as part of the [Crop Type Detection competition](https://zindi.africa/competitions/iclr-workshop-challenge-2-radiant-earth-computer-vision-for-crop-recognition) at the [Computer Vision for Agriculture (CV4A) Workshop](https://www.cv4gc.org/cv4a2020/) at the ICLR 2020 conference. The objective of the competition was to create a machine learning model to classify fields by crop type from images collected during the growing season by the Sentinel-2 satellites.

The ground reference data were collected by the PlantVillage team, and Radiant Earth Foundation curated the training dataset after inspecting and selecting more than 4,000 fields from the original ground reference data. The dataset has been split into training and test sets (3,286 in the train and 1,402 in the test).

The dataset is cataloged in four tiles. These tiles are smaller than the original Sentinel-2 tile that has been clipped and chipped to the geographical area that labels have been collected.

Each tile has a) 13 multi-band observations throughout the growing season. Each observation includes 12 bands from Sentinel-2 L2A product, and a cloud probability layer. The twelve bands are [B01, B02, B03, B04, B05, B06, B07, B08, B8A, B09, B11, B12]. The cloud probability layer is a product of the Sentinel-2 atmospheric correction algorithm (Sen2Cor) and provides an estimated cloud probability (0-100%) per pixel. All of the bands are mapped to a common 10 m spatial resolution grid.; b) A raster layer indicating the crop ID for the fields in the training set; and c) A raster layer indicating field IDs for the fields (both training and test sets). Fields with a crop ID of 0 are the test fields. not-provided -CWIC_REG.v1.0 Radarsat-2 Scenes, Natural Resources Canada CCMEO 2008-04-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2204659831-CCMEO.json The collection represents browse images and metadata for systematically georeferenced Radarsat-2 Synthetic Aperture Radar(SAR) satellite scenes. The browse scenes are not geometrically enhanced using ground control points, but are systematically corrected using sensor parameters. Full resolution precision geocoded scenes(corrected using ground control points) which correspond to the browse images can be ordered from MacDonald Dettwiler and Associates Ltd., Vancouver, Canada. Metadata discovery is achieved using the online catalog http://neodf.nrcan.gc.ca OR by using the CWIC OGC CSW service URL : http://cwic.csiss.gmu.edu/cwicv1/discovery. The imaging frequency is C Band SAR : 5405.0000 MHz. RADARSAT-2 is in a polar, sun-synchronous orbit with a period of approximately 101 minutes. The RADARSAT-2 orbit will be maintained at +\/- 1 km in across track direction. This orbit maintenance is suitable for InSAR data collection. The geo-location accuracy of RADARSAT-2 products varies with product type. It is currently estimated at +\/- 30 m for Standard beam products. The revisit period for RADARSAT-2 depends on the beam mode, incidence angle and geographic location of the area of interest. In general, revisit is more frequent at the poles than the equator and the wider swath modes have higher revisit than t he narrow swath modes. not-provided -CWIC_REG_RCM.v1.0 RCM (Radarsat Constellation Mission ) Products, Natural Resources Canada CCMEO 2019-06-12 2026-06-12 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2204659595-CCMEO.json The collection represents products and metadata for georeferenced Radarsat Constellation Mission ( RCM ) satellite scenes. Metadata discovery and product ordering is achieved using the online catalog https://www.eodms-sgdot.nrcan-rncan.gc.ca/index-en.html OR by using the CWIC OpenSearch OSDD : http://cwic.csiss.gmu.edu/cwicv1/discovery. not-provided -CWIC_REG_Radarsat-1.v1.0 Radarsat-1 Scenes, Natural Resources Canada CCMEO 1996-01-11 2013-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2204658925-CCMEO.json The collection represents browse images and metadata for systematically georeferenced Radarsat-1 Synthetic Aperture Radar(SAR) satellite scenes. The browse scenes are not geometrically enhanced using ground control points, but are systematically corrected using sensor parameters. Full resolution precision geocoded scenes(corrected using ground control points) which correspond to the browse images can be ordered from MacDonald Dettwiler and Associates Ltd., Vancouver, Canada. Metadata discovery is achieved using the online catalog https://neodf.nrcan.gc.ca/neodf_cat3 OR by using the CWIC OGC CSW service URL : http://cwic.csiss.gmu.edu/cwicv1/discovery. Radarsat-1 operates at 5.3 GHz. (C-Band). It is in a sun-synchronous orbit. Image resolution is in the range 8-100 meters. not-provided Catlin_Arctic_Survey.v0 2011 R/V Catlin cruise in the Arctic Ocean OB_DAAC 2011-03-17 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360181-OB_DAAC.json Measurements made in the Arctic Ocean by the RV Catlin in 2011. not-provided Chesapeake Land Cover.v1 Chesapeake Land Cover MLHUB 2020-01-01 2023-01-01 -80.8092703, 36.5643108, -74.2529408, 43.9973515 https://cmr.earthdata.nasa.gov/search/concepts/C2781412641-MLHUB.json This dataset contains high-resolution aerial imagery from the USDA NAIP program, high-resolution land cover labels from the Chesapeake Conservancy, low-resolution land cover labels from the USGS NLCD 2011 dataset, low-resolution multi-spectral imagery from Landsat 8, and high-resolution building footprint masks from Microsoft Bing, formatted to accelerate machine learning research into land cover mapping. The Chesapeake Conservancy spent over 10 months and $1.3 million creating a consistent six-class land cover dataset covering the Chesapeake Bay watershed. While the purpose of the mapping effort by the Chesapeake Conservancy was to create land cover data to be used in conservation efforts, the same data can be used to train machine learning models that can be applied over even wider areas. not-provided Cloud to Street - Microsoft flood dataset.v1 Cloud to Street - Microsoft flood dataset MLHUB 2020-01-01 2023-01-01 -96.631888, -25.250962, 141.118143, 48.745167 https://cmr.earthdata.nasa.gov/search/concepts/C2781412798-MLHUB.json The C2S-MS Floods Dataset is a dataset of global flood events with labeled Sentinel-1 & Sentinel-2 pairs. There are 900 sets (1800 total) of near-coincident Sentinel-1 and Sentinel-2 chips (512 x 512 pixels) from 18 global flood events. Each chip contains a water label for both Sentinel-1 and Sentinel-2, as well as a cloud/cloud shadow mask for Sentinel-2. The dataset was constructed by Cloud to Street in collaboration with and funded by the Microsoft Planetary Computer team. not-provided DLG100K 1:100,000-scale Digital Line Graphs (DLG) from the U.S. Geological Survey USGS_LTA 1987-06-19 -126, 24, -66, 49 https://cmr.earthdata.nasa.gov/search/concepts/C1220566434-USGS_LTA.json Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related sources. Intermediate-scale DLG data are derived from USGS 1:100,000-scale 30- by 60-minute quadrangle maps. If these maps are not available, Bureau of Land Management planimetric maps at a scale of 1: 100,000 are used. Intermediate-scale DLG's are sold in five categories: (1) Public Land Survey System; (2) boundaries (3) transportation; (4) hydrography; and (5) hypsography. All DLG data distributed by the USGS are DLG - Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, and have passed certain quality-control checks. not-provided EARTH_LAND_USGS_AMES_AIR_PHOTOS Aerial Photographs (from AMES Pilot Land Data System); USGS EDC, Sioux Falls USGS_LTA 1970-01-01 -180, 20, -60, 50 https://cmr.earthdata.nasa.gov/search/concepts/C1220566371-USGS_LTA.json "The aerial photography inventoried by the Pilot Land Data System (PLDS) at NASA AMES Research Center has been transferred to the USGS EROS Data Center. The photos were obtained from cameras mounted on high and medium altitude aircraft based at the NASA Ames Research Center. Several cameras with varying focal lengths, lenses and film formats are used, but the Wild RC-10 camera with a focal length of 152 millimeters and a 9 by 9 inch film format is most common. The positive transparencies are typically used for ancillary ground checks in conjunctions with digital processing for the same sites. The aircraft flights, specifically requested by scientists performing approved research, often simultaneously collect data using other sensors on board (e.g. Thematic Mapper Simulators (TMS) and Thermal Infrared Multispectral Scanners). High altitude color infrared photography is used regularly by government agencies for such applications as crop yield forecasting, timber inventory and defoliation assessment, water resource management, land use surveys, water pollution monitoring, and natural disaster assessment. To order, specify the latitude and longitude of interest. You will then be given a list of photos available for that location. In some cases, ""flight books"" are available at EDC that describe the nature of the mission during which the photos were taken and other attribute information. The customer service personnel have access to these books for those photo sets for which the books exist." not-provided -ECO_L1B_ATT.v002 ECOSTRESS Swath Attitude and Ephemeris Instantaneous L1B Global V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2076117996-LPCLOUD.json The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Swath Attitude and Ephemeris Instantaneous Level 1B Global (ECO_L1B_ATT) Version 2 data product provides both corrected and uncorrected attitude quaternions and spacecraft ephemeris data obtained from the ISS. The data are provided in 1 second intervals, and each product file contains vectors from the duration of the orbit. The ECO_L1B_ATT Version 2 data product contains layers of attitude and ephemeris data generated by the ISS, which are used to start the geolocation process. These layers also include Earth-centered inertial (ECI) position and velocity, and associated time elements distributed in HDF5 format. Known Issues: *Cannot perform spatial query on ECO_L1B_ATT in NASA Earthdata Search: ECO_L1B_ATT does not contain spatial attributes, so granules cannot be searched by geographic location. Users should search for ECO_L1B_ATT data products by orbit number instead. *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. not-provided -ECO_L1B_GEO.v002 ECOSTRESS Swath Geolocation Instantaneous L1B Global 70 m V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2076087338-LPCLOUD.json "The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Swath Geolocation Instantaneous Level 1B Global (ECO_L1B_GEO) Version 2 data product provides the geolocation information for the radiance values retrieved in the ECO_L1B_RAD (https://doi.org/10.5067/ecostress/eco_l1b_rad.002) Version 2 data product. The geolocation product gives geo-tagging to each of the radiance pixels. The geolocation processing corrects the ISS-reported ephemeris and attitude data by image matching with a global ortho-base derived from Landsat data, and then assigns latitude and longitude values to each of the Level 1 radiance pixels. When image matching is successful, the data are geolocated to better than 50 meter (m) accuracy. The ECO_L1B_GEO data product is provided as swath data. The ECO_L1B_GEO data product contains data layers for latitude and longitude values, solar and view geometry information, surface height, and the fraction of pixel on land versus water distributed in HDF5 format. Known Issues: *Geolocation accuracy: In cases where scenes were not successfully matched with the ortho-base, the geolocation error is significantly larger; the worst-case geolocation error for uncorrected data is 7 kilometers (km). Within the metadata of the ECO_L1B_GEO file, if the field ""L1GEOMetadata/OrbitCorrectionPerformed"" is ""True"", the data was corrected, and geolocation accuracy should be better than 50 m. If this field is ""False"", then the data was processed without correcting the geolocation and will have up to 7 km geolocation error. *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: EECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. " not-provided -ECO_L1CG_RAD.v002 ECOSTRESS Gridded Top of Atmosphere Calibrated Radiance Instantaneous L1C Global 70 m V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2595678497-LPCLOUD.json The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally between 52° N and 52° S latitudes. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Gridded Top of Atmosphere Calibrated Radiance Instantaneous Level 1C Global 70 m (ECO_L1CG_RAD) Version 2 data product provides at-sensor calibrated radiance values retrieved for five thermal infrared (TIR) bands operating between 8 and 12.5 µm. This product is a gridded version of the ECO_L1B_RAD (https://doi.org/10.5067/ECOSTRESS/ECO_L1B_RAD.002) Version 2 data product that has been resampled by nearest neighbor, projected to a globally snapped 0.0006° grid, and repackaged as the ECO_L1CG_RAD data product. The ECO_L1CG_RAD Version 2 data product contains 12 layers distributed in an HDF5 format file containing radiance values for the five TIR bands, associated data quality indicators, and cloud and water masks. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4, and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Missing scan data/striping features: During testing, an instrument artifact was encountered in ECOSTRESS bands 1 and 5, resulting in missing values. A machine learning algorithm has been applied to interpolate missing values. For more information on the missing scan filling techniques and outcomes, see Section 3.3.2 of the ECO_L1B_RAD User Guide. *Scan overlap: An overlap between ECOSTRESS scans results in a clear line overlap and repeating data. Additional information is available in Section 3.2 of the ECO_L1B_RAD User Guide. *Scan flipping: Improvements to the visualization of the data to compensate for instrument orientation are discussed in Section 3.4 of the ECO_L1B_RAD User Guide. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. not-provided ECO_L2G_CLOUD.v002 ECOSTRESS Gridded Cloud Mask Instantaneous L2 Global 70 m V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2076113561-LPCLOUD.json The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Gridded Cloud Mask Instantaneous L2 Global 70 m (ECO_L2G_CLOUD) Version 2 data product is derived using a single-channel Bayesian cloud threshold with a look-up-table (LUT) approach. The ECO_L2G_CLOUD product provides a cloud mask that can be used to determine cloud cover for accurate land surface temperature and evapotranspiration estimation. This data product is a gridded version of the ECO_L2_CLOUD Version 2 product that was resampled using nearest neighbor, projected to a globally snapped 0.0006° grid, and repackaged as the ECO_L2G_CLOUD Version 2 data product. The ECO_L2G_CLOUD Version 2 data product contains two cloud mask layers: cloud confidence and final cloud mask. Information on how to interpret the cloud confidence and cloud mask layers is provided in Table 7 of the ECO_L2_CLOUD Version 2 User Guide. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4, and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. not-provided -ECO_L2G_LSTE.v002 ECOSTRESS Gridded Land Surface Temperature and Emissivity Instantaneous L2 Global 70 m V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2076113037-LPCLOUD.json The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Gridded Land Surface Temperature and Emissivity Instantaneous Level 2 Global 70 m (ECO_L2G_LSTE) Version 2 data product provides atmospherically corrected land surface temperature and emissivity (LST&E) values derived from five thermal infrared (TIR) bands. The ECO_L2G_LSTE data product was derived using a physics-based Temperature and Emissivity Separation (TES) algorithm. This data product is a gridded version of the ECO_L2_LSTE (https://doi.org/10.5067/ECOSTRESS/ECO_L2_LSTE.002) Version 2 data product that was resampled using nearest neighbor, projected to a globally snapped 0.0006° grid, and repackaged as the ECO_L2G_LSTE data product. The ECO_L2G_LSTE product is provided as gridded data and has a spatial resolution of 70 meters (m). The ECO_L2G_LSTE Version 2 data product contains 8 layers distributed in an HDF5 format file including LST, LST error, wideband emissivity, height, view zenith angle, quality flags, and cloud and water masks. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4, and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. not-provided -ECO_L2_CLOUD.v002 ECOSTRESS Swath Cloud Mask Instantaneous L2 Global 70 m V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2076115306-LPCLOUD.json The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Swath Cloud Mask Instantaneous L2 Global 70 m (ECO_L2_CLOUD) Version 2 data product is derived using a single-channel Bayesian cloud threshold with a look-up-table (LUT) approach. The ECOSTRESS Level 2 cloud product provides a cloud mask that can be used to determine cloud cover for accurate land surface temperature and evapotranspiration estimation. The corresponding ECO_L1B_GEO (https://doi.org/10.5067/ECOSTRESS/ECO_L1B_GEO.002) data product is required to georeference the ECO_L2_CLOUD data product. The ECO_L2_CLOUD Version 2 data product contains two cloud mask layers: Brightness temperature LUT test and Final cloud mask. Information on how to interpret the bit fields in the cloud mask is provided in Table 7 of the User Guide. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4 and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. not-provided EN1_MDSI_MER_FRS_1P.v4 Full Resolution Full Swath Geolocated and Calibrated TOA Radiance LAADS 2002-05-17 2012-04-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2151211533-LAADS.json The Medium Resolution Imaging Spectrometer (MERIS) is one of 10 sensors deployed in March of 2002 on board the polar-orbiting Envisat-1 environmental research satellite by the European Space Agency (ESA). The MERIS instrument is a moderate-resolution wide field-of-view push-broom imaging spectroradiometer capable of sensing in the 390 nm to 1040 nm spectral range. Being a programmable instrument, it had the unique capability of selectively adjusting the width and location of its 15 bands through ground command. The instrument has a 68.5-degree field of view and a swath width of 1150 meters, providing a global coverage every 3 days at 300 m resolution. Communication with the Envisat-1 satellite was lost suddenly on the 8th of April, 2012, just weeks after celebrating its 10th year in orbit. All attempts to re-establish contact were unsuccessful, and the end of the mission was declared on May 9th, 2012. The 4th reprocessing cycle, in 2020, has produced both the full-resolution and reduced-resolution L1 and L2 MERIS products. EN1_MDSI_MER_FRS_1P is the short-name for the MERIS Level-1 full resolution, full swath, geolocated and calibrated top-of-atmosphere (TOA) radiance product. This product contains the TOA upwelling spectral radiance measurements. The in-band reference irradiances for the 15 MERIS bands are computed by averaging the in-band solar irradiance for each pixel. Each pixel’s in-band solar irradiance is computed by integrating the reference solar spectrum with the band-pass of each pixel. The Level-1 product contains 22 data files: 15 files contain radiances for each band (one band per file) along with associated error estimates, and 7 annotation data files. It also includes a Manifest file that provides metadata information describing the product. not-provided EN1_MDSI_MER_FRS_2P.v4 Full Resolution Full Swath Geophysical Product for Ocean, Land and Atmosphere LAADS 2003-01-01 2012-04-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2151219110-LAADS.json The Medium Resolution Imaging Spectrometer (MERIS) is one of 10 sensors deployed in March of 2002 on board the polar-orbiting Envisat-1 environmental research satellite by the European Space Agency (ESA). The MERIS instrument is a moderate-resolution wide field-of-view push-broom imaging spectroradiometer capable of sensing in the 390 nm to 1040 nm spectral range. Being a programmable instrument, it had the unique capability of selectively adjusting the width and location of its 15 bands through ground command. The instrument has a 68.5-degree field of view and a swath width of 1150 meters, providing a global coverage every 3 days at 300 m resolution. Communication with the Envisat-1 satellite was lost suddenly on the 8th of April, 2012, just weeks after celebrating its 10th year in orbit. All attempts to re-establish contact were unsuccessful, and the end of the mission was declared on May 9th, 2012. The 4th reprocessing cycle, in 2020, has produced both the full-resolution and reduced-resolution L1 and L2 MERIS products. EN1_MDSI_MER_FRS_2P is the short-name for the MERIS Level-2 full resolution, geophysical product for ocean, land, and atmosphere. This Level-2 product comes in a netCDF4 package that contains both instrument and science measurements, and a Manifest file that provides metadata information describing the product. Each Level-2 product contains 64 measurement files that break down thus: 13 files containing water-leaving reflectance, 13 files containing land surface reflectance and 13 files containing the TOA reflectance (for all bands except those dedicated to measuring atmospheric gas - M11 and M15), and several files containing additional measurements on ocean, land, and atmosphere parameters. not-provided EO:EUM:CM:METOP:ASCSZFR02.v2014-10-07 ASCAT L1 SZF Climate Data Record Release 2 - Metop EUMETSAT 2007-01-01 2014-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1588901388-EUMETSAT.json Reprocessed L1B data from the Advanced Scatterometer (ASCAT) on METOP-A, resampled at full resolution (SZF). Normalized radar cross section (NRCS) of the Earth surface together with measurement time, location (latitude and longitude) and geometrical information (incidence and azimuth angles). The prime objective of the Advanced SCATterometer (ASCAT) is to measure wind speed and direction over the oceans, and the main operational application is the assimilation of ocean winds in NWP models. Other operational applications, based on the use of measurements of the backscattering coefficient, are sea ice edge detection and monitoring, monitoring sea ice, snow cover, soil moisture and surface parameters. This product is also available at 12.5 and 25 km Swath Grids. This is a Fundamental Climate Data Record (FCDR). not-provided @@ -201,16 +184,6 @@ EO:EUM:DAT:METOP:ASCSZR1B.v2010-09-21 ASCAT GDS Level 1 Sigma0 resampled at 12.5 EO:EUM:DAT:METOP:OSI-104.v2011-09-28 ASCAT Coastal Winds at 12.5 km Swath Grid - Metop EUMETSAT 1970-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1588901378-EUMETSAT.json Equivalent neutral 10m winds over the global oceans, with specific sampling to provide as many observations as possible near the coasts. Better than using this archived NRT product, please use the reprocessed ASCAT winds data records (EO:EUM:DAT:METOP:OSI-150-A, EO:EUM:DAT:METOP:OSI-150-B). not-provided EO:EUM:DAT:METOP:SOMO12.v2010-06-21 ASCAT Soil Moisture at 12.5 km Swath Grid - Metop EUMETSAT 2007-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1588901376-EUMETSAT.json The Surface Soil Moisture L2 product is derived from the Advanced SCATterometer (ASCAT) data and given in swath geometry. This product provides an estimate of the water saturation of the 5 cm topsoil layer, in relative units between 0 and 100 [%]. The algorithm used to derive this parameter is based on a linear relationship of soil moisture and scatterometer backscatter and uses change detection techniques to eliminate the contributions of vegetation, land cover and surface topography, considered invariant from year to year. Seasonal vegetation effects are modelled by exploiting the multiple viewing capabilities of ASCAT. The processor has been developed by the Institute of Photogrammetry and Remote Sensing of the Vienna University of Technology. Note that some of the data are reprocessed. Please refer to the associated product validation reports or product release notes for further information. not-provided EO:EUM:DAT:METOP:SOMO25.v2010-06-21 ASCAT Soil Moisture at 25 km Swath Grid - Metop EUMETSAT 2007-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1588901374-EUMETSAT.json The Surface Soil Moisture L2 product is derived from the Advanced SCATterometer (ASCAT) data and given in swath geometry. This product provides an estimate of the water saturation of the 5 cm topsoil layer, in relative units between 0 and 100 [%]. The algorithm used to derive this parameter is based on a linear relationship of soil moisture and scatterometer backscatter and uses change detection techniques to eliminate the contributions of vegetation, land cover and surface topography, considered invariant from year to year. Seasonal vegetation effects are modelled by exploiting the multiple viewing capabilities of ASCAT. The processor has been developed by the Institute of Photogrammetry and Remote Sensing of the Vienna University of Technology. Note that some of the data are reprocessed. Please refer to the associated product validation reports or product release notes for further information. not-provided -FIFE_AF_DET_G_5.v1 Aircraft Flux-Detrended: Univ. Col. (FIFE) ORNL_DAAC 1987-05-26 1989-10-31 -102, 37, -95, 40 https://cmr.earthdata.nasa.gov/search/concepts/C179003494-ORNL_DAAC.json Detrended boundary layer fluxes recorded on aircraft flights over the Konza not-provided -FIFE_AF_DET_K_4.v1 Aircraft Flux-Detrended: U of Wy. (FIFE) ORNL_DAAC 1987-08-11 1989-10-31 -102, 37, -95, 40 https://cmr.earthdata.nasa.gov/search/concepts/C179003698-ORNL_DAAC.json Detrended boundary layer fluxes recorded on aircraft flights over the Konza not-provided -FIFE_AF_DET_M_3.v1 Aircraft Flux-Detrended: NRCC (FIFE) ORNL_DAAC 1987-06-26 1989-10-31 -102, 37, -95, 40 https://cmr.earthdata.nasa.gov/search/concepts/C179003112-ORNL_DAAC.json Detrended boundary layer fluxes recorded on aircraft flights over the Konza not-provided -FIFE_AF_FLT_G_8.v1 Aircraft Flux-Filtered: Univ. Col. (FIFE) ORNL_DAAC 1987-05-26 1989-10-31 -102, 37, -95, 40 https://cmr.earthdata.nasa.gov/search/concepts/C179003697-ORNL_DAAC.json Filtered boundary layer fluxes recorded on aircraft flights over the Konza not-provided -FIFE_AF_FLT_K_7.v1 Aircraft Flux-Filtered: U of Wy. (FIFE) ORNL_DAAC 1987-08-11 1989-10-31 -102, 37, -95, 40 https://cmr.earthdata.nasa.gov/search/concepts/C179003237-ORNL_DAAC.json Filtered boundary layer fluxes recorded on aircraft flights over the Konza not-provided -FIFE_AF_FLT_M_6.v1 Aircraft Flux-Filtered: NRCC (FIFE) ORNL_DAAC 1987-06-26 1989-10-31 -102, 37, -95, 40 https://cmr.earthdata.nasa.gov/search/concepts/C179002951-ORNL_DAAC.json Filtered boundary layer fluxes recorded on aircraft flights over the Konza not-provided -FIFE_AF_RAW_K_10.v1 Aircraft Flux-Raw: U of Wy. (FIFE) ORNL_DAAC 1987-08-11 1989-10-31 -102, 37, -95, 40 https://cmr.earthdata.nasa.gov/search/concepts/C179002883-ORNL_DAAC.json Raw (unmodified) boundary layer fluxes recorded on aircraft flights over Konza not-provided -FIFE_AF_RAW_M_9.v1 Aircraft Flux-Raw: NRCC (FIFE) ORNL_DAAC 1987-06-26 1989-10-31 -102, 37, -95, 40 https://cmr.earthdata.nasa.gov/search/concepts/C179003273-ORNL_DAAC.json Raw (unmodified) boundary layer fluxes recorded on aircraft flights over Konza not-provided -FIFE_RAIN_30M_2.v1 30 Minute Rainfall Data (FIFE) ORNL_DAAC 1987-05-29 1987-10-26 -96.6, 39.08, -96.55, 39.11 https://cmr.earthdata.nasa.gov/search/concepts/C179002914-ORNL_DAAC.json 30 minute rainfall data for the Konza Prairie not-provided -FIFE_STRM_15M_1.v1 15 Minute Stream Flow Data: USGS (FIFE) ORNL_DAAC 1984-12-25 1988-03-04 -96.6, 39.1, -96.6, 39.1 https://cmr.earthdata.nasa.gov/search/concepts/C179003030-ORNL_DAAC.json USGS 15 minute stream flow data for Kings Creek on the Konza Prairie not-provided G5NR.v1 GEOS-5 Nature Run data NCCS 2005-05-15 2007-06-16 -180, 90, 179.9375, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1634215803-NCCS.json This specific GEOS-5 model configuration used to perform a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2007 at 7-km (3.5-km in the future) horizontal resolution. Because this simulation is intended to serve as a reference Nature Run for Observing System Simulation Experiments (OSSEs, e.g., Errico et al., 2012) it will be referred to as the 7-km GEOS-5 Nature Run or 7-km G5NR. This simulation has been performed with the Ganymed version of GEOS- 5, more specifically with CVS Tag wmp-Ganymed-4_0_BETA8. In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, as well as surface emissions and uptake of aerosols and trace gases, including daily volcanic and biomass burning emissions, biogenic sources and sinks of CO2, and high-resolution inventories of anthropogenic sources.The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (~ 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625o grid that approximately matches the native cubed-sphere resolution, and another 0.5o reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model’s native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. not-provided GE01_MSI_L1B.v1 GeoEye-1 Level 1B Multispectral 4-Band Satellite Imagery CSDA 2009-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2471470251-CSDA.json The GeoEye-1 Level 1B Multispectral 4-Band L1B Satellite Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the GeoEye-1 satellite using the GeoEye-1 Imaging System across the global land surface from September 2008 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The imagery has a spatial resolution of 1.84m at nadir (1.65m before summer 2013) and has a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided GE01_Pan_L1B.v1 GeoEye-1 Level 1B Panchromatic Satellite Imagery CSDA 2009-09-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497510652-CSDA.json The GeoEye-1 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the GeoEye-1 satellite using the GeoEye-1 Imaging System across the global land surface from September 2008 to the present. This data product includes panchromatic imagery with a spatial resolution of 0.46m at nadir (0.41m before summer 2013) and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided @@ -234,6 +207,7 @@ GreenBay.v0 2010 Measurements made in Green Bay, Wisconsin OB_DAAC 2010-09-17 - IKONOS_MSI_L1B.v1 IKONOS Level 1B Multispectral 4-Band Satellite Imagery CSDA 1999-10-14 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497453433-CSDA.json The IKONOS Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 3.2m at nadir and the temporal resolution is approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided IKONOS_Pan_L1B.v1 IKONOS Level 1B Panchromatic Satellite Imagery CSDA 1999-10-24 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497468825-CSDA.json The IKONOS Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This data product includes panchromatic imagery with a spatial resolution of 0.82m at nadir and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided IMS1_HYSI_GEO.v1.0 IMS-1 HYSI TOA Radiance and Reflectance Product ISRO 2008-06-22 2012-09-10 -6.0364, -78.8236, 152.6286, 78.6815 https://cmr.earthdata.nasa.gov/search/concepts/C1214622602-ISRO.json The data received from IMS1, HySI which operates in 64 spectral bands in VNIR bands(400-900nm) with 500 meter spatial resolution and swath of 128 kms. not-provided +ISERV.v1 International Space Station SERVIR Environmental Research and Visualization System V1 USGS_EROS 2013-03-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.json Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions. not-provided KOPRI-KPDC-00000008.v1 1998 Seismic Data, Antarctica AMD_KOPRI 1998-12-07 1998-12-11 -66.266667, -64.616667, -64.416667, -62.995 https://cmr.earthdata.nasa.gov/search/concepts/C2244292774-AMD_KOPRI.json "Korean Antarctic survey carried out as part of step 2 project in year 2 of 'the Antarctic Undersea Geological Survey' was conducted in the Ⅱ region around the northwestern continent of the Antarctic Peninsula. This area is northwest of Anvers Island, including areas around the pericontinent from the continental shelf to the continental rise zone. The investigation period for this project took a total of 8 days for moving navigation, the survey of the side lines and drilling investigation. After seismic investigation, a surface drilling investigation was conducted in coring point was decided from the reference seismic section. 10 researcher from ‘Korea Ocean Research and Development Institute’ participated in the field survey. We took on lease Russian icebreaker ""Yuzhmorgeologiya""." not-provided KOPRI-KPDC-00000009.v1 1997 Seismic Data, Antarctica AMD_KOPRI 1997-12-23 1997-12-28 -64.699722, -63.525, -62.157778, -62.041389 https://cmr.earthdata.nasa.gov/search/concepts/C2244293126-AMD_KOPRI.json Korean Antarctic survey carried out as part of step 2 project in year 1 of ‘The Antarctic Undersea Geological Survey’ in 1997 was conducted in a continental shelf in the northwestern part of the Antarctic Peninsula. The research period took a total of 8 days, including 6 days for the seismic survey and 2 days for the drilling investigation. We took on lease Norway R/V 'Polar Duke' and 10 researchers from ‘Korea Ocean Research and Development Institute’ participated as field investigation personnel. The Teac single-channel recorder, EPC Recorder, Q/C MicroMax system etc. was used mainly by Sleeve gun used as a sound source, compressor for creating compressed air, DFS-V Recorder for multi-channel Seismic record, 12 –channel geophone of seismic streamers. Additional Gravity Core was used for sediment research through drilling. not-provided KOPRI-KPDC-00000011.v1 1996 Seismic Data, Antarctica AMD_KOPRI 1996-12-17 1996-12-26 -62.766667, -63.583333, -60.233333, -62.733333 https://cmr.earthdata.nasa.gov/search/concepts/C2244293499-AMD_KOPRI.json "Korean Antarctic survey carried out as in year 3 project of 'the Antarctic Undersea Geological Survey' was conducted in the basin region of western part of the Bransfeed Strait between the Antarctic Peninsula and the South Shetland Islands . During the field investigation, the seismic investigation and the drilling investigation was conducted at the same time. The investigation period took 9 days. 10 researchers from ‘Korea Ocean Research and Development Institute’ and 3 academic personnel participated in the cruise as field investigation personnel. We took on lease Russian R/V ""Yuzhmorgeologiya"" which is marine geology, geophysical survey vessel and Icebreaker." not-provided @@ -321,7 +295,6 @@ PM1EPHND_NRT.v6.1NRT MODIS/Aqua 24-hour Spacecraft ephemeris/orbit data files to PSScene3Band.v1 PlanetScope Satellite Imagery 3 Band Scene CSDA 2014-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2112982481-CSDA.json The Planet Scope 3 band collection contains satellite imagery obtained from Planet Labs, Inc by the Commercial Smallsat Data Acquisition (CSDA) Program. This satellite imagery is in the visible waveband range with data in the red, green, and blue wavelengths. These data are collected by Planets Dove, Super Dove, and Blue Super Dove instruments collected from across the global land surface from June 2014 to present. Data have a spatial resolution of 3.7 meters at nadir and provided in GeoTIFF format. Data access are restricted to US Government funded investigators approved by the CSDA Program. not-provided QB02_MSI_L1B.v1 QuickBird Level 1B Multispectral 4-Band Satellite Imagery CSDA 2001-10-18 2015-01-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497489665-CSDA.json The QuickBird Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe QuickBird-2 satellite using the Ball High Resolution Camera 60 across the global land surface from October 2001 to January 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 2.16m at nadir and the temporal resolution is 2.5 to 5.6 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided QB02_Pan_L1B.v1 QuickBird Level 1B Panchromatic Satellite Imagery CSDA 2001-10-18 2015-01-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497480059-CSDA.json The QuickBird Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe QuickBird-2 satellite using the Ball High Resolution Camera 60 across the global land surface from October 2001 to January 2015. This data product includes panchromatic imagery with a spatial resolution of 0.55m at nadir and a temporal resolution of 2.5 to 5.6 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided -SEAGLIDER_GUAM_2019.vV1 Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (Guam 2019-2020) POCLOUD 2019-10-03 2020-01-15 143.63035, 13.39476, 144.613, 14.71229 https://cmr.earthdata.nasa.gov/search/concepts/C2151536874-POCLOUD.json This dataset was produced by the Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (NASA grant NNX17AK07G) project, an investigation to develop tools and strategies to better measure the structure and variability of upper-ocean salinity in rain-dominated environments. From October 2019 to January 2020, three Seagliders were deployed near Guam (14°N 144°E). The Seaglider is an autonomous profiler measuring salinity and temperature in the upper ocean. The three gliders sampled in an adaptive formation to capture the patchiness of the rain and the corresponding oceanic response in real time. The location was chosen because of the likelihood of intense tropical rain events and the availability of a NEXRAD (S-band) rain radar at the Guam Airport. Spacing between gliders varies from 1 to 60 km. Data samples are gridded by profile and on regular depth bins from 0 to 1000 m. The time interval between profiles was about 3 hours, and they are typically about 1.5 km apart. These profiles are available at Level 2 (basic gridding) and Level 3 (despiked and interpolated). All Seaglider data files are in netCDF format with standards compliant metadata. The project was led by a team from the Applied Physics Laboratory at the University of Washington. not-provided SRDB_V5_1827.v5 A Global Database of Soil Respiration Data, Version 5.0 ORNL_CLOUD 1961-01-01 2017-12-31 -163.71, -78.02, 175.9, 81.8 https://cmr.earthdata.nasa.gov/search/concepts/C2216864433-ORNL_CLOUD.json The Soil Respiration Database (SRDB) is a near-universal compendium of published soil respiration (Rs) data. The database encompasses published studies that report at least one of the following data measured in the field (not laboratory): annual soil respiration, mean seasonal soil respiration, a seasonal or annual partitioning of soil respiration into its source fluxes, soil respiration temperature response (Q10), or soil respiration at 10 degrees C. The SRDB's orientation is to seasonal and annual fluxes, not shorter-term or chamber-specific measurements, and the database is dominated by temperate, well-drained forest measurement locations. Version 5 (V5) is the compilation of 2,266 published studies with measurements taken between 1961-2017. V5 features more soil respiration data published in Russian and Chinese scientific literature for better global spatio-temporal coverage and improved global climate-space representation. The database is also restructured to have better interoperability with other datasets related to carbon-cycle science. not-provided SeaWiFS_L2_GAC_OC.vR2022.0 OrbView-2 SeaWiFS Regional Global Area Coverage (GAC) Ocean Color (OC) Data, version R2022.0 OB_CLOUD 1997-09-04 2010-12-11 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2789774382-OB_CLOUD.json The SeaWiFS instrument was launched by Orbital Sciences Corporation on the OrbView-2 (a.k.a. SeaStar) satellite in August 1997, and collected data from September 1997 until the end of mission in December 2010. SeaWiFS had 8 spectral bands from 412 to 865 nm. It collected global data at 4 km resolution, and local data (limited onboard storage and direct broadcast) at 1 km. The mission and sensor were optimized for ocean color measurements, with a local noon (descending) equator crossing time orbit, fore-and-aft tilt capability, full dynamic range, and low polarization sensitivity. not-provided Survey_1988_89_Mawson_npcms.v1 1988/89 Summer season, surveying and mapping program, Mawson - North Prince Charles Mountains - Davis AU_AADC 1988-10-01 1989-02-28 62, -70, 79, -66 https://cmr.earthdata.nasa.gov/search/concepts/C1214313847-AU_AADC.json Field season report of these programs: 1988/89 Summer Season surveying and mapping North Prince Charles Mountains; ...mapping program Northern PCM's - Mawson Doppler Translocation Support; ....mapping program Voyage 6 stopover Davis. Includes maps and mapsheet layouts. See the report for full details on the program. Contents are: Introduction Preparation Voytage to Antarctica 1988/89 Summer Season Surveying and Mapping Program, Northern Prince Charles Mountains 1988/89 Summer Season Surveying and Mapping Program, Voyage 6 Stopover, Davis Performance of Equipment Station Marking Field Camping Climatic Conditions Conclusion Appendices not-provided