-
Notifications
You must be signed in to change notification settings - Fork 189
/
tckks-interactive-mp-bootstrapping-Chebyshev.cpp
324 lines (266 loc) · 15.6 KB
/
tckks-interactive-mp-bootstrapping-Chebyshev.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//==================================================================================
// BSD 2-Clause License
//
// Copyright (c) 2014-2022, NJIT, Duality Technologies Inc. and other contributors
//
// All rights reserved.
//
// Author TPOC: [email protected]
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//==================================================================================
/*
Demo for Multi-Party Interactive Collective Bootstrapping in Threshold-CKKS (TCKKS).
3 parties want to evaluate a Chebyshev series on their secret input
This protocol is secure against (n-1) collusion among the participating parties, where n is
the number of participating parties.
*/
#define PROFILE
#include "openfhe.h"
using namespace std;
using namespace lbcrypto;
static void checkApproximateEquality(const std::vector<std::complex<double>>& a,
const std::vector<std::complex<double>>& b, int vectorSize, double epsilon) {
std::vector<std::complex<double>> allTrue(vectorSize);
std::vector<std::complex<double>> tmp(vectorSize);
for (int i = 0; i < vectorSize; i++) {
allTrue[i] = 1;
tmp[i] = abs(a[i] - b[i]) <= epsilon;
}
if (tmp != allTrue) {
cerr << __func__ << " - " << __FILE__ << ":" << __LINE__ << " IntMPBoot - Ctxt Chebyshev Failed: " << endl;
cerr << __func__ << " - " << __FILE__ << ":" << __LINE__ << " - is diff <= eps?: " << tmp << endl;
}
else {
std::cout << "SUCESSFUL Bootstrapping!\n";
}
}
void TCKKSCollectiveBoot(enum ScalingTechnique scaleTech);
int main(int argc, char* argv[]) {
std::cout << "Interactive (3P) Bootstrapping Ciphertext [Chebyshev] (TCKKS) started ...\n";
// Same test with different rescaling techniques in CKKS
TCKKSCollectiveBoot(ScalingTechnique::FIXEDMANUAL);
TCKKSCollectiveBoot(ScalingTechnique::FIXEDAUTO);
TCKKSCollectiveBoot(ScalingTechnique::FLEXIBLEAUTO);
TCKKSCollectiveBoot(ScalingTechnique::FLEXIBLEAUTOEXT);
std::cout << "Interactive (3P) Bootstrapping Ciphertext [Chebyshev] (TCKKS) terminated gracefully!\n";
return 0;
}
// Demonstrate interactive multi-party bootstrapping for 3 parties
// We follow Protocol 5 in https://eprint.iacr.org/2020/304, "Multiparty
// Homomorphic Encryption from Ring-Learning-With-Errors"
void TCKKSCollectiveBoot(enum ScalingTechnique scaleTech) {
if (scaleTech != ScalingTechnique::FIXEDMANUAL && scaleTech != ScalingTechnique::FIXEDAUTO &&
scaleTech != ScalingTechnique::FLEXIBLEAUTO && scaleTech != ScalingTechnique::FLEXIBLEAUTOEXT) {
std::string errMsg = "ERROR: Scaling technique is not supported!";
OPENFHE_THROW(errMsg);
}
CCParams<CryptoContextCKKSRNS> parameters;
// A. Specify main parameters
/* A1) Secret key distribution
* The secret key distribution for CKKS should either be SPARSE_TERNARY or UNIFORM_TERNARY.
* The SPARSE_TERNARY distribution was used in the original CKKS paper,
* but in this example, we use UNIFORM_TERNARY because this is included in the homomorphic
* encryption standard.
*/
SecretKeyDist secretKeyDist = UNIFORM_TERNARY;
parameters.SetSecretKeyDist(secretKeyDist);
/* A2) Desired security level based on FHE standards.
* In this example, we use the "NotSet" option, so the example can run more quickly with
* a smaller ring dimension. Note that this should be used only in
* non-production environments, or by experts who understand the security
* implications of their choices. In production-like environments, we recommend using
* HEStd_128_classic, HEStd_192_classic, or HEStd_256_classic for 128-bit, 192-bit,
* or 256-bit security, respectively. If you choose one of these as your security level,
* you do not need to set the ring dimension.
*/
parameters.SetSecurityLevel(HEStd_128_classic);
/* A3) Scaling parameters.
* By default, we set the modulus sizes and rescaling technique to the following values
* to obtain a good precision and performance tradeoff. We recommend keeping the parameters
* below unless you are an FHE expert.
*/
usint dcrtBits = 50;
usint firstMod = 60;
parameters.SetScalingModSize(dcrtBits);
parameters.SetScalingTechnique(scaleTech);
parameters.SetFirstModSize(firstMod);
/* A4) Multiplicative depth.
* The multiplicative depth detemins the computational capability of the instantiated scheme. It should be set
* according the following formula:
* multDepth >= desired_depth + interactive_bootstrapping_depth
* where,
* The desired_depth is the depth of the computation, as chosen by the user.
* The interactive_bootstrapping_depth is either 3 or 4, depending on the ciphertext compression mode: COMPACT vs SLACK (see below)
* Example 1, if you want to perform a computation of depth 24, you can set multDepth to 10, use 6 levels
* for computation and 4 for interactive bootstrapping. You will need to bootstrap 3 times.
*/
parameters.SetMultiplicativeDepth(10);
parameters.SetKeySwitchTechnique(KeySwitchTechnique::HYBRID);
uint32_t batchSize = 16;
parameters.SetBatchSize(batchSize);
/* Protocol-specific parameters (SLACK or COMPACT)
* SLACK (default) uses larger masks, which makes it more secure theoretically. However, it is also slightly less efficient.
* COMPACT uses smaller masks, which makes it more efficient. However, it is relatively less secure theoretically.
* Both options can be used for practical security.
* The following table summarizes the differences between SLACK and COMPACT:
* Parameter SLACK COMPACT
* Mask size Larger Smaller
* Security More secure Less secure
* Efficiency Less efficient More efficient
* Recommended use For applications where security is paramount For applications where efficiency is paramount
*/
auto compressionLevel = COMPRESSION_LEVEL::COMPACT;
parameters.SetInteractiveBootCompressionLevel(compressionLevel);
CryptoContext<DCRTPoly> cryptoContext = GenCryptoContext(parameters);
cryptoContext->Enable(PKE);
cryptoContext->Enable(KEYSWITCH);
cryptoContext->Enable(LEVELEDSHE);
cryptoContext->Enable(ADVANCEDSHE);
cryptoContext->Enable(MULTIPARTY);
usint ringDim = cryptoContext->GetRingDimension();
// This is the maximum number of slots that can be used for full packing.
usint maxNumSlots = ringDim / 2;
std::cout << "TCKKS scheme is using ring dimension " << ringDim << std::endl;
std::cout << "TCKKS scheme number of slots " << batchSize << std::endl;
std::cout << "TCKKS scheme max number of slots " << maxNumSlots << std::endl;
std::cout << "TCKKS example with Scaling Technique " << scaleTech << std::endl;
const usint numParties = 3;
std::cout << "\n===========================IntMPBoot protocol parameters===========================\n";
std::cout << "num of parties: " << numParties << "\n";
std::cout << "===============================================================\n";
double eps = 0.0001;
// Initialize Public Key Containers
KeyPair<DCRTPoly> kp1; // Party 1
KeyPair<DCRTPoly> kp2; // Party 2
KeyPair<DCRTPoly> kp3; // Lead party - who finalizes interactive bootstrapping
KeyPair<DCRTPoly> kpMultiparty;
////////////////////////////////////////////////////////////
// Perform Key Generation Operation
////////////////////////////////////////////////////////////
// Round 1 (party A)
kp1 = cryptoContext->KeyGen();
// Generate evalmult key part for A
auto evalMultKey = cryptoContext->KeySwitchGen(kp1.secretKey, kp1.secretKey);
// Generate evalsum key part for A
cryptoContext->EvalSumKeyGen(kp1.secretKey);
auto evalSumKeys = std::make_shared<std::map<usint, EvalKey<DCRTPoly>>>(
cryptoContext->GetEvalSumKeyMap(kp1.secretKey->GetKeyTag()));
// Round 2 (party B)
kp2 = cryptoContext->MultipartyKeyGen(kp1.publicKey);
auto evalMultKey2 = cryptoContext->MultiKeySwitchGen(kp2.secretKey, kp2.secretKey, evalMultKey);
auto evalMultAB = cryptoContext->MultiAddEvalKeys(evalMultKey, evalMultKey2, kp2.publicKey->GetKeyTag());
auto evalMultBAB = cryptoContext->MultiMultEvalKey(kp2.secretKey, evalMultAB, kp2.publicKey->GetKeyTag());
auto evalSumKeysB = cryptoContext->MultiEvalSumKeyGen(kp2.secretKey, evalSumKeys, kp2.publicKey->GetKeyTag());
auto evalSumKeysJoin = cryptoContext->MultiAddEvalSumKeys(evalSumKeys, evalSumKeysB, kp2.publicKey->GetKeyTag());
cryptoContext->InsertEvalSumKey(evalSumKeysJoin);
auto evalMultAAB = cryptoContext->MultiMultEvalKey(kp1.secretKey, evalMultAB, kp2.publicKey->GetKeyTag());
auto evalMultFinal = cryptoContext->MultiAddEvalMultKeys(evalMultAAB, evalMultBAB, evalMultAB->GetKeyTag());
cryptoContext->InsertEvalMultKey({evalMultFinal});
/////////////////////
// Round 3 (party C) - Lead Party (who encrypts and finalizes the bootstrapping protocol)
kp3 = cryptoContext->MultipartyKeyGen(kp2.publicKey);
auto evalMultKey3 = cryptoContext->MultiKeySwitchGen(kp3.secretKey, kp3.secretKey, evalMultKey);
auto evalMultABC = cryptoContext->MultiAddEvalKeys(evalMultAB, evalMultKey3, kp3.publicKey->GetKeyTag());
auto evalMultBABC = cryptoContext->MultiMultEvalKey(kp2.secretKey, evalMultABC, kp3.publicKey->GetKeyTag());
auto evalMultAABC = cryptoContext->MultiMultEvalKey(kp1.secretKey, evalMultABC, kp3.publicKey->GetKeyTag());
auto evalMultCABC = cryptoContext->MultiMultEvalKey(kp3.secretKey, evalMultABC, kp3.publicKey->GetKeyTag());
auto evalMultABABC = cryptoContext->MultiAddEvalMultKeys(evalMultBABC, evalMultAABC, evalMultBABC->GetKeyTag());
auto evalMultFinal2 = cryptoContext->MultiAddEvalMultKeys(evalMultABABC, evalMultCABC, evalMultCABC->GetKeyTag());
cryptoContext->InsertEvalMultKey({evalMultFinal2});
auto evalSumKeysC = cryptoContext->MultiEvalSumKeyGen(kp3.secretKey, evalSumKeys, kp3.publicKey->GetKeyTag());
auto evalSumKeysJoin2 =
cryptoContext->MultiAddEvalSumKeys(evalSumKeysJoin, evalSumKeysC, kp3.publicKey->GetKeyTag());
cryptoContext->InsertEvalSumKey(evalSumKeysJoin2);
if (!kp1.good()) {
std::cout << "Key generation failed!" << std::endl;
exit(1);
}
if (!kp2.good()) {
std::cout << "Key generation failed!" << std::endl;
exit(1);
}
if (!kp3.good()) {
std::cout << "Key generation failed!" << std::endl;
exit(1);
}
// END of Key Generation
std::vector<std::complex<double>> input({-4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0});
// Chebyshev coefficients
std::vector<double> coefficients({1.0, 0.558971, 0.0, -0.0943712, 0.0, 0.0215023, 0.0, -0.00505348, 0.0, 0.00119324,
0.0, -0.000281928, 0.0, 0.0000664347, 0.0, -0.0000148709});
// Input range
double a = -4;
double b = 4;
Plaintext pt1 = cryptoContext->MakeCKKSPackedPlaintext(input);
usint encodedLength = input.size();
auto ct1 = cryptoContext->Encrypt(kp3.publicKey, pt1);
ct1 = cryptoContext->EvalChebyshevSeries(ct1, coefficients, a, b);
// INTERACTIVE BOOTSTRAPPING STARTS
ct1 = cryptoContext->IntMPBootAdjustScale(ct1);
// Leading party (party B) generates a Common Random Poly (crp) at max coefficient modulus (QNumPrime).
// a is sampled at random uniformly from R_{Q}
auto crp = cryptoContext->IntMPBootRandomElementGen(kp3.publicKey);
// Each party generates its own shares: maskedDecryptionShare and reEncryptionShare
// (h_{0,i}, h_{1,i}) = (masked decryption share, re-encryption share)
// we use a vector inseat of std::pair for Python API compatibility
vector<Ciphertext<DCRTPoly>> sharesPair0; // for Party A
vector<Ciphertext<DCRTPoly>> sharesPair1; // for Party B
vector<Ciphertext<DCRTPoly>> sharesPair2; // for Party C
// extract c1 - element-wise
auto c1 = ct1->Clone();
c1->GetElements().erase(c1->GetElements().begin());
// masked decryption on the client: c1 = a*s1
sharesPair0 = cryptoContext->IntMPBootDecrypt(kp1.secretKey, c1, crp);
sharesPair1 = cryptoContext->IntMPBootDecrypt(kp2.secretKey, c1, crp);
sharesPair2 = cryptoContext->IntMPBootDecrypt(kp3.secretKey, c1, crp);
vector<vector<Ciphertext<DCRTPoly>>> sharesPairVec;
sharesPairVec.push_back(sharesPair0);
sharesPairVec.push_back(sharesPair1);
sharesPairVec.push_back(sharesPair2);
// Party B finalizes the protocol by aggregating the shares and reEncrypting the results
auto aggregatedSharesPair = cryptoContext->IntMPBootAdd(sharesPairVec);
auto ciphertextOutput = cryptoContext->IntMPBootEncrypt(kp3.publicKey, aggregatedSharesPair, crp, ct1);
// INTERACTIVE BOOTSTRAPPING ENDS
// distributed decryption
auto ciphertextPartial1 = cryptoContext->MultipartyDecryptMain({ciphertextOutput}, kp1.secretKey);
auto ciphertextPartial2 = cryptoContext->MultipartyDecryptMain({ciphertextOutput}, kp2.secretKey);
auto ciphertextPartial3 = cryptoContext->MultipartyDecryptLead({ciphertextOutput}, kp3.secretKey);
vector<Ciphertext<DCRTPoly>> partialCiphertextVec;
partialCiphertextVec.push_back(ciphertextPartial1[0]);
partialCiphertextVec.push_back(ciphertextPartial2[0]);
partialCiphertextVec.push_back(ciphertextPartial3[0]);
Plaintext plaintextMultiparty;
cryptoContext->MultipartyDecryptFusion(partialCiphertextVec, &plaintextMultiparty);
plaintextMultiparty->SetLength(encodedLength);
// Ground truth result
std::vector<std::complex<double>> result(
{0.0179885, 0.0474289, 0.119205, 0.268936, 0.5, 0.731064, 0.880795, 0.952571, 0.982011});
Plaintext plaintextResult = cryptoContext->MakeCKKSPackedPlaintext(result);
std::cout << "Ground Truth: \n\t" << plaintextResult->GetCKKSPackedValue() << std::endl;
std::cout << "Computed Res: \n\t" << plaintextMultiparty->GetCKKSPackedValue() << std::endl;
checkApproximateEquality(plaintextResult->GetCKKSPackedValue(), plaintextMultiparty->GetCKKSPackedValue(),
encodedLength, eps);
std::cout << "\n============================ INTERACTIVE DECRYPTION ENDED ============================\n";
std::cout << "\nTCKKSCollectiveBoot FHE example with rescaling technique: " << scaleTech << " Completed!"
<< std::endl;
}