forked from PyPSA/pypsa-eur-sec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config_egon.yaml
615 lines (586 loc) · 21 KB
/
config_egon.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
version: 0.6.0
logging_level: DEBUG
retrieve_sector_databundle: true
results_dir: results/
summary_dir: results
costs_dir: ../technology-data/outputs/
run: 2022-07-26-egondata-integration # use this to keep track of runs with different settings
foresight: overnight # options are overnight, myopic, perfect (perfect is not yet implemented)
# if you use myopic or perfect foresight, set the investment years in "planning_horizons" below
scenario:
simpl: # only relevant for PyPSA-Eur
- ''
lv: # allowed transmission line volume expansion, can be any float >= 1.0 (today) or "opt"
- 2.0
clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred
- 37
opts: # only relevant for PyPSA-Eur
- ''
sector_opts: # this is where the main scenario settings are
- Co2L0-1H-T-H-B-I-dist1
# to really understand the options here, look in scripts/prepare_sector_network.py
# Co2Lx specifies the CO2 target in x% of the 1990 values; default will give default (5%);
# Co2L0p25 will give 25% CO2 emissions; Co2Lm0p05 will give 5% negative emissions
# xH is the temporal resolution; 3H is 3-hourly, i.e. one snapshot every 3 hours
# single letters are sectors: T for land transport, H for building heating,
# B for biomass supply, I for industry, shipping and aviation,
# A for agriculture, forestry and fishing
# solar+c0.5 reduces the capital cost of solar to 50\% of reference value
# solar+p3 multiplies the available installable potential by factor 3
# co2 stored+e2 multiplies the potential of CO2 sequestration by a factor 2
# dist{n} includes distribution grids with investment cost of n times cost in data/costs.csv
# for myopic/perfect foresight cb states the carbon budget in GtCO2 (cumulative
# emissions throughout the transition path in the timeframe determined by the
# planning_horizons), be:beta decay; ex:exponential decay
# cb40ex0 distributes a carbon budget of 40 GtCO2 following an exponential
# decay with initial growth rate 0
planning_horizons: # investment years for myopic and perfect; or costs year for overnight
- 2050
# for example, set to [2020, 2030, 2040, 2050] for myopic foresight
# CO2 budget as a fraction of 1990 emissions
# this is over-ridden if CO2Lx is set in sector_opts
# this is also over-ridden if cb is set in sector_opts
co2_budget:
2020: 0.7011648746
2025: 0.5241935484
2030: 0.2970430108
2035: 0.1500896057
2040: 0.0712365591
2045: 0.0322580645
2050: 0
# snapshots are originally set in PyPSA-Eur/config.yaml but used again by PyPSA-Eur-Sec
snapshots:
# arguments to pd.date_range
start: "2011-01-01"
end: "2012-01-01"
closed: left # end is not inclusive
atlite:
cutout: ../../cutouts/europe-2011-era5.nc
# this information is NOT used but needed as an argument for
# pypsa-eur/scripts/add_electricity.py/load_costs in make_summary.py
# add-on eGon: for batteries it is used!
electricity:
max_hours:
battery: 6
H2: 168
# regulate what components with which carriers are kept from PyPSA-Eur;
# some technologies are removed because they are implemented differently
# (e.g. battery or H2 storage) or have different year-dependent costs
# in PyPSA-Eur-Sec
pypsa_eur:
Bus:
- AC
Link:
- DC
Generator:
- onwind
- offwind-ac
- offwind-dc
- solar
- ror
StorageUnit:
- PHS
- hydro
Store: []
energy:
energy_totals_year: 2011
base_emissions_year: 1990
eurostat_report_year: 2016
emissions: CO2 # "CO2" or "All greenhouse gases - (CO2 equivalent)"
biomass:
year: 2050
scenario: ENS_Low
classes:
solid biomass:
- Agricultural waste
- Fuelwood residues
- Secondary Forestry residues - woodchips
- Sawdust
- Residues from landscape care
- Municipal waste
not included:
- Sugar from sugar beet
- Rape seed
- "Sunflower, soya seed "
- Bioethanol barley, wheat, grain maize, oats, other cereals and rye
- Miscanthus, switchgrass, RCG
- Willow
- Poplar
- FuelwoodRW
- C&P_RW
biogas:
- Manure solid, liquid
- Sludge
solar_thermal:
clearsky_model: simple # should be "simple" or "enhanced"?
orientation:
slope: 45.
azimuth: 180.
# only relevant for foresight = myopic or perfect
existing_capacities:
grouping_years: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019]
threshold_capacity: 10
conventional_carriers:
- lignite
- coal
- oil
- uranium
sector:
district_heating:
potential: 0.6 # maximum fraction of urban demand which can be supplied by district heating
# increase of today's district heating demand to potential maximum district heating share
# progress = 0 means today's district heating share, progress = 1 means maximum fraction of urban demand is supplied by district heating
progress: 0
# 2020: 0.0
# 2030: 0.3
# 2040: 0.6
# 2050: 1.0
district_heating_loss: 0.15
# overwrite the district heating shares with hotmaps scenario data and an assumption for Germany
# make sure to set progress = 0, otherwise the district_heating shares will be updated
egon_data_district_heating_shares: True
egon_data_heat_demand_timeseries_de: True # overwite Germany's heat demand time series with data from eGon-data
egon_data_electricity_demand_timeseries_de: True # overwite Germany's electricity demand time series with data from eGon-data
railway_transport: false # state if railway transport is considered
bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM
bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value
transport_heating_deadband_upper: 20.
transport_heating_deadband_lower: 15.
ICE_lower_degree_factor: 0.375 #in per cent increase in fuel consumption per degree above deadband
ICE_upper_degree_factor: 1.6
EV_lower_degree_factor: 0.98
EV_upper_degree_factor: 0.63
bev_dsm: true #turns on EV battery
bev_availability: 0.5 #How many cars do smart charging
bev_energy: 0.05 #average battery size in MWh
bev_charge_efficiency: 0.9 #BEV (dis-)charging efficiency
bev_plug_to_wheel_efficiency: 0.2 #kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S
bev_charge_rate: 0.011 #3-phase charger with 11 kW
bev_avail_max: 0.95
bev_avail_mean: 0.8
v2g: false #allows feed-in to grid from EV battery
#what is not EV or FCEV is oil-fuelled ICE
land_transport_fuel_cell_share: 0 # 1 means all FCEVs
# 2020: 0
# 2030: 0.05
# 2040: 0.1
# 2050: 0
land_transport_electric_share: 1 # 1 means all EVs
# 2020: 0
# 2030: 0.25
# 2040: 0.6
# 2050: 1
transport_fuel_cell_efficiency: 0.5
transport_internal_combustion_efficiency: 0.3
agriculture_machinery_electric_share: 0
agriculture_machinery_fuel_efficiency: 0.7 # fuel oil per use
agriculture_machinery_electric_efficiency: 0.3 # electricity per use
shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011
shipping_hydrogen_liquefaction: false # whether to consider liquefaction costs for shipping H2 demands
shipping_hydrogen_share: 1 # 1 means all hydrogen FC
# 2020: 0
# 2025: 0
# 2030: 0.05
# 2035: 0.15
# 2040: 0.3
# 2045: 0.6
# 2050: 1
time_dep_hp_cop: true #time dependent heat pump coefficient of performance
heat_pump_sink_T: 55. # Celsius, based on DTU / large area radiators; used in build_cop_profiles.py
# conservatively high to cover hot water and space heating in poorly-insulated buildings
reduce_space_heat_exogenously: false # reduces space heat demand by a given factor (applied before losses in DH)
# this can represent e.g. building renovation, building demolition, or if
# the factor is negative: increasing floor area, increased thermal comfort, population growth
reduce_space_heat_exogenously_factor: 0.29 # per unit reduction in space heat demand
# the default factors are determined by the LTS scenario from http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221
# 2020: 0.10 # this results in a space heat demand reduction of 10%
# 2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita
# 2030: 0.09
# 2035: 0.11
# 2040: 0.16
# 2045: 0.21
# 2050: 0.29
retrofitting : # co-optimises building renovation to reduce space heat demand
retro_endogen: false # co-optimise space heat savings
cost_factor: 1.0 # weight costs for building renovation
interest_rate: 0.04 # for investment in building components
annualise_cost: true # annualise the investment costs
tax_weighting: false # weight costs depending on taxes in countries
construction_index: true # weight costs depending on labour/material costs per country
tes: true
tes_tau: # 180 day time constant for centralised, 3 day for decentralised
decentral: 3
central: 180
boilers: true
oil_boilers: false
chp: true
micro_chp: false
solar_thermal: true
geo_thermal : true
solar_cf_correction: 0.788457 # = >>> 1/1.2683
marginal_cost_storage: 0. #1e-4
methanation: true
helmeth: false
dac: true
co2_vent: true
SMR: true
co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe
co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2
co2_network: false
cc_fraction: 0.9 # default fraction of CO2 captured with post-combustion capture
hydrogen_underground_storage: true
hydrogen_underground_storage_locations:
- onshore # more than 50 km from sea
# - nearshore # within 50 km of sea
# - offshore
use_fischer_tropsch_waste_heat: false
use_fuel_cell_waste_heat: false
electricity_distribution_grid: true
electricity_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
electricity_grid_connection: true # only applies to onshore wind and utility PV
H2_network: false
gas_network: true
H2_retrofit: true # if set to True existing gas pipes can be retrofitted to H2 pipes
# according to hydrogen backbone strategy (April, 2020) p.15
# https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf
# 60% of original natural gas capacity could be used in cost-optimal case as H2 capacity
H2_retrofit_capacity_per_CH4: 0.8 # ratio for H2 capacity per original CH4 capacity of retrofitted pipelines
gas_network_connectivity_upgrade: false # https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation.html#networkx.algorithms.connectivity.edge_augmentation.k_edge_augmentation
gas_distribution_grid: true
gas_distribution_grid_cost_factor: 1.0 #multiplies cost in data/costs.csv
biomass_transport: false # biomass transport between nodes
fossil_gas_generation: false # include fossil gas feedin
conventional_generation: # generator : carrier
OCGT: gas
industry:
St_primary_fraction: 0.3 # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6
# 2020: 0.6
# 2025: 0.55
# 2030: 0.5
# 2035: 0.45
# 2040: 0.4
# 2045: 0.35
# 2050: 0.3
DRI_fraction: 1 # fraction of the primary route converted to DRI + EAF
# 2020: 0
# 2025: 0
# 2030: 0.05
# 2035: 0.2
# 2040: 0.4
# 2045: 0.7
# 2050: 1
H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf
Al_primary_fraction: 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
# 2020: 0.4
# 2025: 0.375
# 2030: 0.35
# 2035: 0.325
# 2040: 0.3
# 2045: 0.25
# 2050: 0.2
MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route
HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling
HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling
HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX
MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756.
MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking
chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43
MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43
MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process
methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62
MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65
MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65
hotmaps_locate_missing: false
reference_year: 2015
# references:
# DECHEMA (2017): https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf
# Material Economics (2019): https://materialeconomics.com/latest-updates/industrial-transformation-2050
costs:
lifetime: 25 #default lifetime
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
discountrate: 0.07
# [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501
USD2013_to_EUR2013: 0.7532
# Marginal and capital costs can be overwritten
# capital_cost:
# onwind: 500
marginal_cost:
solar: 0.01
onwind: 0.015
offwind: 0.015
hydro: 0.
H2: 0.
battery: 0.
emission_prices: # only used with the option Ep (emission prices)
co2: 0.
lines:
length_factor: 1.25 #to estimate offwind connection costs
solving:
#tmpdir: "path/to/tmp"
options:
formulation: kirchhoff
clip_p_max_pu: 1.e-2
load_shedding: false
noisy_costs: true
skip_iterations: true
track_iterations: false
min_iterations: 4
max_iterations: 6
keep_shadowprices:
- Bus
- Line
- Link
- Transformer
- GlobalConstraint
- Generator
- Store
- StorageUnit
solver:
name: gurobi
threads: 4
method: 2 # barrier
crossover: 0
BarConvTol: 1.e-6
Seed: 123
AggFill: 0
PreDual: 0
GURO_PAR_BARDENSETHRESH: 200
#FeasibilityTol: 1.e-6
#name: cplex
#threads: 4
#lpmethod: 4 # barrier
#solutiontype: 2 # non basic solution, ie no crossover
#barrier_convergetol: 1.e-5
#feasopt_tolerance: 1.e-6
mem: 20000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2
plotting:
map:
boundaries: [-11, 30, 34, 71]
color_geomap:
ocean: white
land: whitesmoke
costs_max: 1000
costs_threshold: 1
energy_max: 20000
energy_min: -20000
energy_threshold: 50
vre_techs:
- onwind
- offwind-ac
- offwind-dc
- solar
- ror
renewable_storage_techs:
- PHS
- hydro
conv_techs:
- OCGT
- CCGT
- Nuclear
- Coal
storage_techs:
- hydro+PHS
- battery
- H2
load_carriers:
- AC load
AC_carriers:
- AC line
- AC transformer
link_carriers:
- DC line
- Converter AC-DC
heat_links:
- heat pump
- resistive heater
- CHP heat
- CHP electric
- gas boiler
- central heat pump
- central resistive heater
- central CHP heat
- central CHP electric
- central gas boiler
heat_generators:
- gas boiler
- central gas boiler
- solar thermal collector
- central solar thermal collector
tech_colors:
# wind
onwind: "#235ebc"
onshore wind: "#235ebc"
offwind: "#6895dd"
offshore wind: "#6895dd"
offwind-ac: "#6895dd"
offshore wind (AC): "#6895dd"
offwind-dc: "#74c6f2"
offshore wind (DC): "#74c6f2"
# water
hydro: '#298c81'
hydro reservoir: '#298c81'
ror: '#3dbfb0'
run of river: '#3dbfb0'
hydroelectricity: '#298c81'
PHS: '#51dbcc'
wave: '#a7d4cf'
# solar
solar: "#f9d002"
solar PV: "#f9d002"
solar thermal: '#ffbf2b'
solar rooftop: '#ffea80'
# gas
OCGT: '#e0986c'
OCGT marginal: '#e0986c'
OCGT-heat: '#e0986c'
gas boiler: '#db6a25'
gas boilers: '#db6a25'
gas boiler marginal: '#db6a25'
gas: '#e05b09'
fossil gas: '#e05b09'
natural gas: '#e05b09'
CCGT: '#a85522'
CCGT marginal: '#a85522'
gas for industry co2 to atmosphere: '#692e0a'
gas for industry co2 to stored: '#8a3400'
gas for industry: '#853403'
gas for industry CC: '#692e0a'
gas pipeline: '#ebbca0'
gas pipeline new: '#a87c62'
# oil
oil: '#c9c9c9'
oil boiler: '#adadad'
agriculture machinery oil: '#949494'
shipping oil: "#808080"
land transport oil: '#afafaf'
# nuclear
Nuclear: '#ff8c00'
Nuclear marginal: '#ff8c00'
nuclear: '#ff8c00'
uranium: '#ff8c00'
# coal
Coal: '#545454'
coal: '#545454'
Coal marginal: '#545454'
solid: '#545454'
Lignite: '#826837'
lignite: '#826837'
Lignite marginal: '#826837'
# biomass
biogas: '#e3d37d'
biomass: '#baa741'
solid biomass: '#baa741'
solid biomass transport: '#baa741'
solid biomass for industry: '#7a6d26'
solid biomass for industry CC: '#47411c'
solid biomass for industry co2 from atmosphere: '#736412'
solid biomass for industry co2 to stored: '#47411c'
# power transmission
lines: '#6c9459'
transmission lines: '#6c9459'
electricity distribution grid: '#97ad8c'
# electricity demand
Electric load: '#110d63'
electric demand: '#110d63'
electricity: '#110d63'
industry electricity: '#2d2a66'
industry new electricity: '#2d2a66'
agriculture electricity: '#494778'
# battery + EVs
battery: '#ace37f'
battery storage: '#ace37f'
home battery: '#80c944'
home battery storage: '#80c944'
BEV charger: '#baf238'
V2G: '#e5ffa8'
land transport EV: '#baf238'
Li ion: '#baf238'
# hot water storage
water tanks: '#e69487'
hot water storage: '#e69487'
hot water charging: '#e69487'
hot water discharging: '#e69487'
# heat demand
Heat load: '#cc1f1f'
heat: '#cc1f1f'
heat demand: '#cc1f1f'
rural heat: '#ff5c5c'
central heat: '#cc1f1f'
decentral heat: '#750606'
low-temperature heat for industry: '#8f2727'
process heat: '#ff0000'
agriculture heat: '#d9a5a5'
# heat supply
heat pumps: '#2fb537'
heat pump: '#2fb537'
air heat pump: '#36eb41'
ground heat pump: '#2fb537'
Ambient: '#98eb9d'
CHP: '#8a5751'
CHP CC: '#634643'
CHP heat: '#8a5751'
CHP electric: '#8a5751'
district heating: '#e8beac'
resistive heater: '#d8f9b8'
retrofitting: '#8487e8'
building retrofitting: '#8487e8'
geo thermal: '#8487e8'
# hydrogen
H2 for industry: "#f073da"
H2 for shipping: "#ebaee0"
H2: '#bf13a0'
hydrogen: '#bf13a0'
SMR: '#870c71'
SMR CC: '#4f1745'
H2 liquefaction: '#d647bd'
hydrogen storage: '#bf13a0'
H2 storage: '#bf13a0'
land transport fuel cell: '#6b3161'
H2 pipeline: '#f081dc'
H2 pipeline retrofitted: '#ba99b5'
H2 Fuel Cell: '#c251ae'
H2 Electrolysis: '#ff29d9'
# syngas
Sabatier: '#9850ad'
methanation: '#c44ce6'
methane: '#c44ce6'
helmeth: '#e899ff'
# synfuels
Fischer-Tropsch: '#25c49a'
liquid: '#25c49a'
kerosene for aviation: '#a1ffe6'
naphtha for industry: '#57ebc4'
# co2
CC: '#f29dae'
CCS: '#f29dae'
CO2 sequestration: '#f29dae'
DAC: '#ff5270'
co2 stored: '#f2385a'
co2: '#f29dae'
co2 vent: '#ffd4dc'
CO2 pipeline: '#f5627f'
# emissions
process emissions CC: '#000000'
process emissions: '#222222'
process emissions to stored: '#444444'
process emissions to atmosphere: '#888888'
oil emissions: '#aaaaaa'
shipping oil emissions: "#555555"
land transport oil emissions: '#777777'
agriculture machinery oil emissions: '#333333'
# other
shipping: '#03a2ff'
power-to-heat: '#2fb537'
power-to-gas: '#c44ce6'
power-to-H2: '#ff29d9'
power-to-liquid: '#25c49a'
gas-to-power/heat: '#ee8340'
waste: '#e3d37d'
other: '#000000'