diff --git a/tools/benchmark.py b/tools/benchmark.py
deleted file mode 100644
index 5efebe98..00000000
--- a/tools/benchmark.py
+++ /dev/null
@@ -1,74 +0,0 @@
-import zipfile
-import os
-import shutil
-import json
-import markdown_calculate
-code_path = os.environ.get('GITHUB_WORKSPACE')
-#数据集存放路径
-pdf_dev_path = "/share/quyuan/mineru/data/"
-#magicpdf最终结果
-pdf_res_path = "/share/quyuan/mineru/data/mineru"
-file_types = ["academic_literature", "atlas", "courseware", "colorful_textbook", "historical_documents", "notes", "ordinary_books", "ordinary_exam_paper", "ordinary_textbook", "research_report", "special_exam_paper"]
-def test_cli():
- #magicpdf模型输出结果
- magicpdf_path = os.path.join(pdf_dev_path, "output")
- rm_cmd = "rm -rf %s" % (pdf_res_path)
- os.system(rm_cmd)
- os.makedirs(pdf_res_path)
- cmd = 'cd %s && export PYTHONPATH=. && find %s -type f -name "*.pdf" | xargs -I{} python magic_pdf/cli/magicpdf.py pdf-command --pdf {}' % (code_path, magicpdf_path)
- os.system(cmd)
- for root, dirs, files in os.walk(pdf_res_path):
- for magic_file in files:
- for file_type in file_types:
- target_dir = os.path.join(pdf_dev_path, "ci", file_type, "magicpdf")
- if magic_file.endswith(".md") and magic_file.startswith(file_type):
- source_file = os.path.join(root, magic_file)
- target_file = os.path.join(pdf_dev_path, "ci", file_type, "magicpdf", magic_file)
- if not os.path.exists(target_dir):
- os.makedirs(target_dir)
- shutil.copy(source_file, target_file)
-
-def calculate_score():
- data_path = os.path.join(pdf_dev_path, "ci")
- cmd = "cd %s && export PYTHONPATH=. && python tools/clean_photo.py --tool_name annotations --download_dir %s" % (code_path, data_path)
- os.system(cmd)
- cmd = "cd %s && export PYTHONPATH=. && python tools/clean_photo.py --tool_name magicpdf --download_dir %s" % (code_path, data_path)
- os.system(cmd)
- score = markdown_calculate.Scoring(os.path.join(data_path, "result.json"))
- score.calculate_similarity_total("magicpdf", file_types, data_path)
- res = score.summary_scores()
- return res
-
-
-def extrat_zip(zip_file_path, extract_to_path):
- if zipfile.is_zipfile(zip_file_path):
- with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
- zip_ref.extractall(extract_to_path)
- print(f'Files extracted to {extract_to_path}')
- else:
- print(f'{zip_file_path} is not a zip file')
-
-
-def ci_ben():
- fr = open(os.path.join(pdf_dev_path, "ci", "result.json"), "r")
- lines = fr.readlines()
- last_line = lines[-1].strip()
- last_score = json.loads(last_line)
- print ("last_score:", last_score)
- last_simscore = last_score["average_sim_score"]
- last_editdistance = last_score["average_edit_distance"]
- last_bleu = last_score["average_bleu_score"]
- extrat_zip(os.path.join(pdf_dev_path, 'output.zip'), os.path.join(pdf_dev_path))
- test_cli()
- now_score = calculate_score()
- print ("now_score:", now_score)
- now_simscore = now_score["average_sim_score"]
- now_editdistance = now_score["average_edit_distance"]
- now_bleu = now_score["average_bleu_score"]
- assert last_simscore <= now_simscore
- assert last_editdistance <= now_editdistance
- assert last_bleu <= now_bleu
-
-
-if __name__ == "__main__":
- ci_ben()
diff --git a/tools/clean_photo.py b/tools/clean_photo.py
deleted file mode 100644
index e8504595..00000000
--- a/tools/clean_photo.py
+++ /dev/null
@@ -1,112 +0,0 @@
-import pypandoc
-import re
-import htmltabletomd
-import os
-import argparse
-import zipfile
-
-parser = argparse.ArgumentParser(description="get tool type")
-parser.add_argument(
- "--tool_name",
- type=str,
- required=True,
- help="input tool name",
-)
-parser.add_argument(
- "--download_dir",
- type=str,
- required=True,
- help="input download dir",
-)
-args = parser.parse_args()
-
-def clean_markdown_images(content):
- pattern = re.compile(r'!\[[^\]]*\]\([^)]*\)', re.IGNORECASE)
- cleaned_content = pattern.sub('', content)
- return cleaned_content
-
-def clean_ocrmath_photo(content):
- pattern = re.compile(r'\\includegraphics\[.*?\]\{.*?\}', re.IGNORECASE)
- cleaned_content = pattern.sub('', content)
- return cleaned_content
-
-def convert_html_table_to_md(html_table):
- lines = html_table.strip().split('\n')
- md_table = ''
- if lines and '
' in lines[0]:
- in_thead = True
- for line in lines:
- if '' in line:
- cells = re.findall(r' | (.*?) | ', line)
- md_table += '| ' + ' | '.join(cells) + ' |\n'
- in_thead = False
- elif '' in line and not in_thead:
- cells = re.findall(r' | (.*?) | ', line)
- md_table += '| ' + ' | '.join(cells) + ' |\n'
- md_table = md_table.rstrip() + '\n'
- return md_table
-
-def convert_latext_to_md(content):
- tables = re.findall(r'\\begin\{tabular\}(.*?)\\end\{tabular\}', content, re.DOTALL)
- placeholders = []
- for table in tables:
- placeholder = f""
- replace_str = f"\\begin{{tabular}}{table}cl\\end{{tabular}}"
- content = content.replace(replace_str, placeholder)
- try:
- pypandoc.convert_text(replace_str, format="latex", to="md", outputfile="output.md", encoding="utf-8")
- except:
- markdown_string = replace_str
- else:
- markdown_string = open('output.md', 'r', encoding='utf-8').read()
- placeholders.append((placeholder, markdown_string))
- new_content = content
- for placeholder, md_table in placeholders:
- new_content = new_content.replace(placeholder, md_table)
- # 写入文件
- return new_content
-
-
-def convert_htmltale_to_md(content):
- tables = re.findall(r'', content, re.DOTALL)
- placeholders = []
- for table in tables:
- placeholder = f""
- content = content.replace(f"", placeholder)
- try:
- convert_table = htmltabletomd.convert_table(table)
- except:
- convert_table = table
- placeholders.append((placeholder,convert_table))
- new_content = content
- for placeholder, md_table in placeholders:
- new_content = new_content.replace(placeholder, md_table)
- # 写入文件
- return new_content
-
-def clean_data(prod_type, download_dir):
- file_type = ["academic_literature", "atlas", "courseware", "colorful_textbook", "historical_documents", "notes", "ordinary_books", "ordinary_exam_paper", "ordinary_textbook", "research_report", "special_exam_paper"]
- for filetype in file_type:
- tgt_dir = os.path.join(download_dir, filetype, prod_type, "cleaned")
- if not os.path.exists(tgt_dir):
- os.makedirs(tgt_dir)
- source_dir = os.path.join(download_dir, filetype, prod_type)
- filenames = os.listdir(source_dir)
- for filename in filenames:
- if filename.endswith('.md'):
- input_file = os.path.join(source_dir, filename)
- output_file = os.path.join(tgt_dir, "cleaned_" + filename)
- with open(input_file, 'r', encoding='utf-8') as fr:
- content = fr.read()
- new_content = convert_htmltale_to_md(content)
- new_content = clean_markdown_images(new_content)
- new_content = clean_ocrmath_photo(new_content)
- new_content = convert_latext_to_md(new_content)
- with open(output_file, 'w', encoding='utf-8') as fw:
- fw.write(new_content)
-
-
-if __name__ == '__main__':
- tool_type = args.tool_name
- download_dir = args.download_dir
- clean_data(tool_type, download_dir)
diff --git a/tools/markdown_calculate.py b/tools/markdown_calculate.py
deleted file mode 100644
index 08c1d337..00000000
--- a/tools/markdown_calculate.py
+++ /dev/null
@@ -1,99 +0,0 @@
-import os
-from Levenshtein import distance
-from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction, corpus_bleu
-from nltk.tokenize import word_tokenize
-import json
-import re
-import scoring
-import argparse
-import nltk
-nltk.download('punkt')
-# 初始化列表来存储编辑距离和BLEU分数
-class Scoring:
- def __init__(self, result_path):
- self.edit_distances = []
- self.bleu_scores = []
- self.sim_scores = []
- self.filenames = []
- self.score_dict = {}
- self.anntion_cnt = 0
- self.fw = open(result_path, "w+")
- def simple_bleu_score(self, candidate, reference):
- candidate_tokens = word_tokenize(candidate)
- reference_tokens = word_tokenize(reference)
- return sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=SmoothingFunction().method1)
-
-
- def preprocess_string(self, s):
- sub_enter = re.sub(r'\n+', '\n', s)
- return re.sub(r' ', ' ', sub_enter)
-
- def calculate_similarity(self, annotion, actual, tool_type):
- class_dict = {}
- edit_distances = []
- bleu_scores = []
- sim_scores = list()
- total_file = 0
- for filename in os.listdir(annotion):
- if filename.endswith('.md') and not filename.startswith('.'): # 忽略隐藏文件
- total_file = total_file + 1
- # 读取A目录中的文件
- with open(os.path.join(annotion, filename), 'r', encoding='utf-8') as file_a:
- content_a = file_a.read()
- self.anntion_cnt = self.anntion_cnt + 1
- filepath_b = os.path.join(actual, filename)
- if os.path.exists(filepath_b):
- with open(filepath_b, 'r', encoding='utf-8') as file_b:
- content_b = file_b.read()
- self.filenames.append(filename)
- # 计算编辑距离
- edit_dist = distance(self.preprocess_string(content_b),self.preprocess_string(content_a)) / max(len(content_a), len(content_b))
- self.edit_distances.append(edit_dist)
- edit_distances.append(edit_dist)
- #计算BLUE分数
- bleu_score = self.simple_bleu_score(content_b, content_a)
- bleu_scores.append(bleu_score)
- self.bleu_scores.append(bleu_score)
- #计算marker分数
- score = scoring.score_text(content_b, content_a)
- sim_scores.append(score)
- self.sim_scores.append(score)
- class_dict[filename] = {"edit_dist": edit_dist, "bleu_score": bleu_score, "sim_score": score}
- self.score_dict[filename] = {"edit_dist": edit_dist, "bleu_score": bleu_score, "sim_score": score}
- else:
- print(f"File {filename} not found in actual directory.")
- # 计算每类平均值
- class_average_edit_distance = sum(edit_distances) / len(edit_distances) if edit_distances else 0
- class_average_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0
- class_average_sim_score = sum(sim_scores) / len(sim_scores) if sim_scores else 0
- self.fw.write(json.dumps(class_dict, ensure_ascii=False) + "\n")
- ratio = len(class_dict)/total_file
- self.fw.write(f"{tool_type} extract ratio: {ratio}" + "\n")
- self.fw.write(f"{tool_type} Average Levenshtein Distance: {class_average_edit_distance}" + "\n")
- self.fw.write(f"{tool_type} Average BLEU Score: {class_average_bleu_score}" + "\n")
- self.fw.write(f"{tool_type} Average Sim Score: {class_average_sim_score}" + "\n")
-
- print (f"{tool_type} extract ratio: {ratio}")
- print (f"{tool_type} Average Levenshtein Distance: {class_average_edit_distance}")
- print (f"{tool_type} Average BLEU Score: {class_average_bleu_score}")
- print (f"{tool_type} Average Sim Score: {class_average_sim_score}")
- return self.score_dict
-
- def summary_scores(self):
- # 计算整体平均值
- over_all_dict = dict()
- average_edit_distance = sum(self.edit_distances) / len(self.edit_distances) if self.edit_distances else 0
- average_bleu_score = sum(self.bleu_scores) / len(self.bleu_scores) if self.bleu_scores else 0
- average_sim_score = sum(self.sim_scores) / len(self.sim_scores) if self.sim_scores else 0
- over_all_dict["average_edit_distance"] = average_edit_distance
- over_all_dict["average_bleu_score"] = average_bleu_score
- over_all_dict["average_sim_score"] = average_sim_score
- self.fw.write(json.dumps(over_all_dict, ensure_ascii=False) + "\n")
- return over_all_dict
-
- def calculate_similarity_total(self, tool_type, file_types, download_dir):
- for file_type in file_types:
- annotion = os.path.join(download_dir, file_type, "annotations", "cleaned")
- actual = os.path.join(download_dir, file_type, tool_type, "cleaned")
- self.calculate_similarity(annotion, actual, file_type)
-
diff --git a/tools/scoring.py b/tools/scoring.py
deleted file mode 100644
index 64c74923..00000000
--- a/tools/scoring.py
+++ /dev/null
@@ -1,48 +0,0 @@
-import math
-
-from rapidfuzz import fuzz
-import re
-import regex
-from statistics import mean
-
-CHUNK_MIN_CHARS = 25
-
-def chunk_text(text, chunk_len=500):
- chunks = [text[i:i+chunk_len] for i in range(0, len(text), chunk_len)]
- chunks = [c for c in chunks if c.strip() and len(c) > CHUNK_MIN_CHARS]
- return chunks
-
-
-def overlap_score(hypothesis_chunks, reference_chunks):
- if len(reference_chunks) > 0:
- length_modifier = len(hypothesis_chunks) / len(reference_chunks)
- else:
- length_modifier = 0
- search_distance = max(len(reference_chunks) // 5, 10)
- chunk_scores = []
- for i, hyp_chunk in enumerate(hypothesis_chunks):
- max_score = 0
- total_len = 0
- i_offset = int(i * length_modifier)
- chunk_range = range(max(0, i_offset-search_distance), min(len(reference_chunks), i_offset+search_distance))
- for j in chunk_range:
- ref_chunk = reference_chunks[j]
- score = fuzz.ratio(hyp_chunk, ref_chunk, score_cutoff=30) / 100
- if score > max_score:
- max_score = score
- total_len = len(ref_chunk)
- chunk_scores.append(max_score)
- return chunk_scores
-
-
-def score_text(hypothesis, reference):
- # Returns a 0-1 alignment score
- hypothesis_chunks = chunk_text(hypothesis)
- reference_chunks = chunk_text(reference)
- chunk_scores = overlap_score(hypothesis_chunks, reference_chunks)
- if len(chunk_scores) > 0:
- mean_score = mean(chunk_scores)
- return mean_score
- else:
- return 0
- #return mean(chunk_scores)
\ No newline at end of file