From 2558a72fc8168650c3bd8efc608802b31ab6b028 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Miguel=20M=C3=A9ndez?= Date: Wed, 31 Jan 2024 14:38:15 +0100 Subject: [PATCH] [Bug] Fix links in SWIN transformer (#3546) Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers. ## Motivation Please describe the motivation of this PR and the goal you want to achieve through this PR. ## Modification Please briefly describe what modification is made in this PR. ## BC-breaking (Optional) Does the modification introduce changes that break the backward-compatibility of the downstream repos? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR. ## Use cases (Optional) If this PR introduces a new feature, it is better to list some use cases here, and update the documentation. ## Checklist 1. Pre-commit or other linting tools are used to fix the potential lint issues. 2. The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness. 3. If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMDet3D. 4. The documentation has been modified accordingly, like docstring or example tutorials. --- configs/swin/README.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/configs/swin/README.md b/configs/swin/README.md index 18fcbae8bc..64f0d5ff4b 100644 --- a/configs/swin/README.md +++ b/configs/swin/README.md @@ -55,14 +55,14 @@ In our default setting, pretrained models and their corresponding [original mode ### ADE20K -| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | -| ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| UPerNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | V100 | 44.41 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json) | -| UPerNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | V100 | 47.72 | 49.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json) | -| UPerNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | V100 | 47.99 | 49.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json) | -| UPerNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | V100 | 50.13 | 51.9 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json) | -| UPerNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | V100 | 48.35 | 49.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json) | -| UPerNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | V100 | 50.76 | 52.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json) | +| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download | +| ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| UPerNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | V100 | 44.41 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json) | +| UPerNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | V100 | 47.72 | 49.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json) | +| UPerNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | V100 | 47.99 | 49.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json) | +| UPerNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | V100 | 50.13 | 51.9 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json) | +| UPerNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | V100 | 48.35 | 49.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json) | +| UPerNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | V100 | 50.76 | 52.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json) | ## Citation