forked from thearn/webcam-pulse-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsliceops.py
125 lines (99 loc) · 4.02 KB
/
sliceops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from openmdao.lib.datatypes.api import Float, Dict, Array, List, Int
from openmdao.main.api import Component, Assembly
import numpy as np
import cv2
"""
Image frame analysis components written to operate only on inputted regions
(slices of numpy arrays) which are inputted.
Typically these recieve, as input, the output of some object detection components
"""
class processRect(Component):
"""
Process inputted rectangles, using specification
[ [x pos, y pos, width, height], ... ]
into an inputted frame.
(Used as a prototype for most of the region-specific image analysis
components)
"""
def __init__(self, channels = [0,1,2], zerochannels = []):
super(processRect,self).__init__()
self.add("frame_in", Array(iotype="in"))
self.add("rects_in", Array(iotype="in"))
self.add("frame_out", Array(iotype="out"))
self.channels = channels
self.zerochannels = zerochannels
def execute(self):
temp = np.array(self.frame_in) # bugfix for strange cv2 error
if self.rects_in.size > 0:
for rect in self.rects_in:
if len(self.frame_in.shape) == 3:
for chan in self.channels:
temp[:,:,chan] = self.process(rect, temp[:,:,chan])
x,y,w,h = rect
for chan in self.zerochannels:
temp[y:y+h,x:x+w,chan]= 0*temp[y:y+h,x:x+w,chan]
else:
temp = self.process(rect, temp)
self.frame_out = temp
def process(self):
return
class drawRectangles(processRect):
"""
Draws rectangles outlines in a specific region within the inputted frame
"""
def process(self, rect, frame):
x,y,w,h = rect
cv2.rectangle(frame, (x, y), (x+w, y+h), (0,255,0), 3)
return frame
class VariableEqualizerBlock(processRect):
"""
Equalizes the contrast in a specific region within the inputted frame
Balance between fully equalized contrast and the un-altered frame can be
varied by setting the 'alpha' and 'beta' inputs.
"""
beta = Float(0., iotype="in")
alpha = Float(1., iotype="in")
def process(self, rect, frame):
x,y,w,h = rect
subimg = np.array(frame[y:y+h,x:x+w])
subimg = self.beta*subimg + self.alpha*cv2.equalizeHist(subimg)
frame[y:y+h,x:x+w] = subimg
return frame
class frameSlices(Component):
"""
Collect slices of inputted frame using rectangle specifications.
This component is typically used to grab regions of interest of an image for
GUI display.
"""
def __init__(self, channels = [0,1,2]):
super(frameSlices,self).__init__()
self.add("frame_in", Array(iotype="in"))
self.add("rects_in", Array(iotype="in"))
self.add("slices", List([ np.array([0,0]) ],iotype="out"))
self.add("combined", Array(iotype="out"))
self.add("zero_mean", Float(0., iotype="out"))
self.channels = channels
def combine(self,left, right):
"""Stack images horizontally.
"""
h = max(left.shape[0], right.shape[0])
w = left.shape[1] + right.shape[1]
hoff = left.shape[0]
shape = list(left.shape)
shape[0] = h
shape[1] = w
comb = np.zeros(tuple(shape),left.dtype)
# left will be on left, aligned top, with right on right
comb[:left.shape[0],:left.shape[1]] = left
comb[:right.shape[0],left.shape[1]:] = right
return comb
def execute(self):
comb = 150*np.ones((2,2))
if self.rects_in.size > 0:
self.slices = []
for x,y,w,h in self.rects_in:
output = self.frame_in[y:y+h,x:x+w]
self.slices.append(output)
comb = self.combine(output, comb)
self.combined = comb
self.zero_mean = self.slices[0].mean()