forked from harsha-simhadri/big-ann-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
114 lines (90 loc) · 3.56 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from __future__ import absolute_import
import psutil
class BaseANN(object):
def done(self):
"""
This is called after results have been processed.
Use it for cleaning up if necessary.
"""
pass
def track(self):
"""
return "T1" if submitting an entry for track 1
return "T2" if submitting an entry for track 2
return "T3" if submitting an entry for track 3
"""
raise NotImplementedError()
def fit(self, dataset):
"""
Build the index for the data points given in dataset name.
Assumes that after fitting index is loaded in memory.
"""
raise NotImplementedError()
def load_index(self, dataset):
"""
Load the index for dataset. Returns False if index
is not available, True otherwise.
Checking the index usually involves the dataset name
and the index build paramters passed during construction.
"""
raise NotImplementedError()
def index_files_to_store(self, dataset):
"""
Specify a triplet with the local directory path of index files,
the common prefix name of index component(s) and a list of
index components that need to be uploaded to (after build)
or downloaded from (for search) cloud storage.
For local directory path under docker environment, please use
a directory under
data/indices/track(T1 or T2)/algo.__str__()/DATASETS[dataset]().short_name()
"""
raise NotImplementedError()
def query(self, X, k):
"""Carry out a batch query for k-NN of query set X."""
raise NotImplementedError()
def range_query(self, X, radius):
"""
Carry out a batch query for range search with
radius.
"""
raise NotImplementedError()
def get_results(self):
"""
Helper method to convert query results of k-NN search.
If there are nq queries, returns a (nq, k) array of integers
representing the indices of the k-NN for each query.
"""
return self.res
def get_range_results(self):
"""
Helper method to convert query results of range search.
If there are nq queries, returns a triple lims, D, I.
lims is a (nq) array, such that
I[lims[q]:lims[q + 1]] in int
are the indices of the indices of the range results of query q, and
D[lims[q]:lims[q + 1]] in float
are the distances.
"""
return self.res
def get_additional(self):
"""
Retrieve additional results.
Return a dictionary with metrics
and corresponding measured values.
The following additional metrics are supported:
`mean_latency` in microseconds, if this applies to your algorithm.
Skip if your algorithm batches query processing.
`latency_999` is the 99.9pc latency in microseconds, if this applies
to your algorithm. Skip if your algorithm batches query processing.
`dist_comps` is the total number of points in the base set
to which a query was compared.
`mean_ssd_ios` is the average number of SSD I/Os per query for T2 algorithms.
"""
return {}
def __str__(self):
return self.name
def get_memory_usage(self):
"""Return the current memory usage of this algorithm instance
(in kilobytes), or None if this information is not available."""
# return in kB for backwards compatibility
return psutil.Process().memory_info().rss / 1024