Skip to content

Latest commit

 

History

History
389 lines (278 loc) · 15.5 KB

smooth_quant.md

File metadata and controls

389 lines (278 loc) · 15.5 KB

Smooth Quant

  1. Introduction
  2. Quantization Fundamentals
  3. SmoothQuant and Our Enhancement
  4. Validated Models
  5. Usage

Introduction

Quantization is a common compression operation to reduce memory and accelerate inference by converting the floating point matrix to an integer matrix. For large language models (LLMs) with gigantic parameters, the systematic outliers make quantification of activations difficult. SmoothQuant, a training free post-training quantization (PTQ) solution, offline migrates this difficulty from activations to weights with a mathematically equivalent transformation.

Quantization Fundamentals

Quantization is a common compression operation to reduce memory and accelerate inference; therefore, the difficulty of LLM deployment can be alleviated. Quantization converts the floating point matrix to an integer matrix.

The equation of quantization is as follows:

$$ X_{int8} = round(X_{fp32}/S) + Z \tag{1} $$

where $X_{fp32}$ is the input matrix, $S$ is the scale factor, $Z$ is the integer zero point.

Per-tensor & Per-channel

There are several choices of sharing quantization parameters among tensor elements, also called quantization granularity. The coarsest level, per-tensor granularity, is that all elements in the tensor share the same quantization parameters. Finer granularity means sharing quantization parameters per row or per column for 2D matrices and per channel for 3D matrices. Similarly, the finest granularity is that each element has an individual set of quantization parameters.

However, due to the model accuracy and computational consumption, per-tensor or per-channel are usually adopted. In the following part, We will show that per-channel could bring lower quantization loss but has some limitations, that is why normally we use per-channel for weight quantization and per-tensor for activation/input quantization

Per-tensor example

Suppose the weight tensor is:

W = np.array(
    [
        [0.6839, 0.4741, 0.7451],
        [0.9301, 0.1742, 0.6835],
    ]
)

According to the formula (1), we need scale $S$ and zero point $Z$ to calculate the integer matrix.

$$ S = \frac{X_{max} - X{min}}{2^b -1} \tag{2} $$

$$ Z = -round(X_{min/}/S) \tag{3} $$

The per-tensor quantization function is:

def quantize(x, num_bits=8):
    q_min, q_max = 0, 2.0**num_bits - 1.0
    scale = (np.max(x) - np.min(x)) / (2**num_bits - 1)
    scale = np.clip(scale, 1e-5, None)
    zp = (0 - (np.min(x)) / scale).round()
    q_x = x / scale + zp
    q_x = np.clip(q_x, q_min, q_max).round()
    print(f"scale = {scale}, zp = {zp}")
    return q_x, scale, zp

Then we can get the quantized $W_{q}$

>>> W_q, scale, zp = quantize(W)
scale = 0.0029643137254901962, zp = -59.0
>>> W_q
array([[172., 101., 192.],
       [255.,   0., 172.]])

With the value of scale and zp, we can dequantize the tensor.

def dequantize(q_x, scale, zp):
    return scale * (q_x - zp)
>>> W_dq = dequantize(W_q, 0.001, -50)
>>> W_dq
array([[0.222, 0.151, 0.242],
       [0.305, 0.05 , 0.222]])
>>> loss = ((W_dq - W)**2).mean()
>>> loss
0.19833545500000002

>>> W_dq = dequantize(W_q, scale, zp)
>>> W_dq
array([[0.68475647, 0.4742902 , 0.74404275],
       [0.93079451, 0.17489451, 0.68475647]])
>>> loss = ((W_dq - W)**2).mean()
>>> loss
7.384850698449426e-07

The difference between $W$ and $W_{dq}$ shows that quantization affects precision and appropriate values of scale and zero point will reduce the loss of precision.

Per-channel example

Similarly, the example of per-channel quantization is as follows:

def quantize_per_channel(x, num_bits=8):
    q_min, q_max = 0, 2.0**num_bits - 1.0
    x_tmp = np.reshape(x, (x.shape[0], -1))
    scales = np.max(x_tmp, axis=-1, keepdims=True) / (2**num_bits - 1)
    zp = (0 - np.min(x_tmp, axis=-1, keepdims=True) / scales).round()
    q_x = x_tmp / scales + zp
    q_x = np.clip(q_x, q_min, q_max).round()
    print(f"scales = {scales}, \n zp = {zp}")
    return q_x, scales, zp


def dequantize_per_channel(q_x, scales, zp):
    print(q_x, scales, zp)
    print(scales * (q_x - zp))
    return scales * (q_x - zp)
>>>W_q, scales, zp = quantize_per_channel(W)
scales = [[0.00292196]
 [0.00364745]],
 zp = [[-162.]
 [ -48.]]
>>>W_q
array([[ 72.,   0.,  93.],
       [207.,   0., 139.]])

>>>W_dq = dequantize_per_channel(W_q, scales, zp)
>>>W_dq
[[0.68373882 0.47335765 0.7451    ]
 [0.9301     0.17507765 0.68207333]]

And the loss is

>>> loss = ((W_dq - W)**2).mean()
>>> loss.item()
5.637846469306487e-07

Through this example, we can see that per-channel quantization has finer granularity and has lower loss (loss 5.6378e-07 for per-channel quantization and 7.3849e-07 for per-tensor quantization).

Matmul quantization example

For a MatMul in most model, $Y=X \cdot W$, we can quantize both the weights and activations in order to reduce the storage and accelerate inference. Using per-tensor scale quantization to show the process.

def quantize_per_tensor_absmax(x, n_bits=8):
    scales = np.max(np.abs(x))
    q_max = 2 ** (n_bits - 1) - 1
    scales = np.clip(scales, 1e-5, None) / q_max
    q_x = x / scales
    q_x = np.clip(q_x, -q_max, q_max).round()
    return q_x, scales


def dequantize(q_x, scale):
    return scale * q_x

Randomly initialize the $W$ and $Y$, then calculate the result of $Y=X \cdot W$

>>>W = np.random.randn(2, 3).astype(np.float32)
>>>X = np.random.randn(3, 4).astype(np.float32)
>>>W
array([[-0.75903535, -1.7662522 ,  1.0559074 ],
       [ 0.47551736,  0.33230257,  0.63447773]], dtype=float32)
>>>X
array([[-0.9628984 ,  0.5076066 , -0.54988813,  1.2411681 ],
       [-1.6626304 ,  0.2284153 ,  0.4905207 , -0.11352996],
       [ 1.3270313 , -0.78117365, -0.3452512 ,  0.826362  ]],
      dtype=float32)
>>>Y = np.matmul(W, X)
>>>Y
array([[ 5.068721  , -1.6135774 , -0.81355196,  0.13099377],
       [-0.16839942, -0.17835854, -0.31753427,  1.076779  ]],
      dtype=float32)

Quantize weight and activation, matmul(quantize(X), quantize(Y))

>>>W_q, W_scale = quantize_per_tensor_absmax(W)
>>>X_q, X_scale = quantize_per_tensor_absmax(X)
>>>print(f'{W_q}\n{W_scale}')
>>>print(f'{X_q}\n{X_scale}')
[[ -55. -127.   76.]
 [  34.   24.   46.]]
0.013907497323404147
[[ -74.   39.  -42.   95.]
 [-127.   17.   37.   -9.]
 [ 101.  -60.  -26.   63.]]
0.013091578258304145

>>>Y_q = np.matmul(W_q, X_q)
>>>Y_q
array([[27875., -8864., -4365.,   706.],
       [ -918., -1026., -1736.,  5912.]], dtype=float32)
>>>Y_dq = dequantize(Y_q, W_scale * X_scale)
>>>Y_dq
array([[ 5.0752316 , -1.6138781 , -0.7947403 ,  0.12854218],
       [-0.16714126, -0.18680494, -0.3160754 ,  1.0764043 ]],
      dtype=float32)

Per-channel limitation

Though per-channel quantization could bring lower quantization error, we could not apply it for activations due to the difficulty of the dequantization. We would prove it in the following image and the zero point of quantization would be ignored for simplicity.

The image on the left presents a normal MatMul forward with 1x2 input $x$ and 2x2 weight $w$. The results $y$ could be easily obtained by simple mathematics. In the middle image, we apply per-tensor quantization for activations and per-channel quantization for weights; the results after quantization that are denoted by $y_1$ and $y_2$, could be easily dequantized to the float results $y_{fp1}$ and $y_{fp2}$ by per channel scale $1.0/s_1s_x$ and $1.0/s_2s_x$. However, after applying per-channel quantization for activation (right image), we could not dequantize the $y_1$ and $y_2$ to float results.

SmoothQuant and Our Enhancement

SmoothQuant

In the previous subsection, we have explained why per-channel quantization could not be applied for activation, even though it could lead to lower quantization loss. However, the quantization error loss of activation plays an important role in the accuracy loss of model quantization123.

To reduce the quantization loss of activations, lots of methods have been proposed. In the following, we briefly introduce SPIQ1, Outlier Suppression2 and Smoothquant3. All these three methods share a similar idea to migrate the difficulty from activation quantization to weight quantization but differ in how much difficulty to be transferred.

So the first question is how to migrate the difficulty from activation to weights? The solution is straightforward, that is to convert the network to an output equivalent network that is presented in the image below and apply quantization to this equivalent network. The intuition is that each channel of activation could be scaled to make it more quantization-friendly, similar to a fake per-channel activation quantization.

Please note that this conversion will make the quantization of weights more difficult, because the scales attached to weights shown above are per-input-channel, while quantization of weights is per-output-channel or per-tensor.

So the second question is how much difficulty to be migrated, that is how to choose the conversion per-channel scale $s_{x1}$ and $s_{x2}$ from the above image. Different works adopt different ways.

SPIQ just adopts the quantization scale of activations as the conversion per-channel scale.

Outlier suppression adopts the scale of the preceding layernorm as the conversion per-channel scale.

Smoothquant introduces a hyperparameter $\alpha$ as a smooth factor to calculate the conversion per-channel scale and balance the quantization difficulty of activation and weight.

$$ s_j = max(|X_j|)^\alpha/max(|W_j|)^{1-\alpha} \tag{4} $$

j is the index of the input channels.

For most of the models such as OPT and BLOOM, $\alpha = 0.5$ is a well-balanced value to split the difficulty of weight and activation quantization. A larger $\alpha$ value could be used on models with more significant activation outliers to migrate more quantization difficulty to weights.

Our enhancement:

Algorithm: Auto-tuning of $\alpha$.

SmoothQuant method aims to split the quantization difficulty of weight and activation by using a fixed-value $\alpha$ for an entire model. However, as the distributions of activation outliers vary not only across different models but also across different layers within a model, we hereby propose a method to obtain operator-wise optimal $\alpha$ values with the ability to tune automatically.

Our proposed method consists of 8 major steps:

  • Hook input minimum and maximum values of operators to be smoothed.
  • Find a list of operators on which smoothquant could be performed.
  • Generate a list of $\alpha$ values of a user-defined range.
  • Calculate smoothing factor using $\alpha$ value, adjust parameters accordingly and forward the adjusted model given an input sample.
  • Perform per-channel quantization_dequantization of weights and per-tensor quantization_dequantization of activations to predict output.
  • Calculate the loss with respect to FP32 output, iterate the previous two steps given each $\alpha$ value and save the loss per alpha.
  • Apply criterion on input operator and obtain the optimal alpha values of a single input sample.
  • Iterate the previous three steps over a number of input samples and save the optimal $\alpha$ values.

Multiple criteria (e.g min, max and mean) are supported to determine the $\alpha$ value. Both alpha range and criterion could be configured in AutoAlphaArgs.

In our experiments, an $\alpha$ range of [0.0, 1.0] with a step_size of 0.1 is found to be well-balanced one for the majority of models.

Engineering

fully automated: users only need to pass a model and dataloader.

from onnx_neural_compressor.algorithms import Smoother

smoother = Smoother(
    model,
    calibration_data_reader,
    providers=["CPUExecutionProvider"],
)
smoothed_model = smoother.transform(alpha=0.7)  # alpha could 'auto' to enable auto-tuning

support lots of fusing patterns: when applying the conversion per-channel scales, a mul layer needs to be inserted, which will introduce some overhead. The official code fuses this op to the previous layernorm, while we support more operator types like MatMul, Conv. Currently we only handle the operator whose scale could be fused, we are trying to support other operators, please stay tuned.

Usage

There are two ways to apply smooth quantization: 1) using a fixed alpha for the entire model or 2) determining the alpha through auto-tuning.

Using a fixed alpha

To set a fixed alpha for the entire model, users can follow this example:

from onnx_neural_compressor.quantization import config

qconfig = config.StaticQuantConfig(
    data_reader, extra_options={"SmoothQuant": True, "SmoothQuantAlpha": 0.5, "SmoothQuantFolding": True}
)

Supported parameters description:

"SmoothQuantAlpha": a float value. Default is 0.5.

"SmoothQuantFolding": whether to fold mul into the previous operator if possible, where mul is required to update the input distribution during smoothing.

Determining the alpha through auto-tuning

Users can search for the best alpha at two levels: 1) for the entire model, and 2) for each operator.

Auto-tune the alpha for the entire model

The tuning process looks for the optimal alpha value from a list of alpha values provided by the user.

Please note that, it may a considerable amount of time as the tuning process applies each alpha to the entire model and uses the evaluation result on the entire dataset as the metric to determine the best alpha. Here is an example:

from onnx_neural_compressor.quantization import tuning, config

qconfig = tuning.TuningConfig(config_set=[config.SmoothQuantConfig(alpha=np.arange(0.1, 0.5, 0.05).tolist())])
best_model = tuning.autotune(
    model_input=model,
    tune_config=qconfig,
    eval_fn=eval_fn,
    calibration_data_reader=data_reader,
)

Auto-tune the alpha for each operator

In this case, the tuning process searches the optimal alpha of each operator by evaluating the loss with respect to FP32 output on a few batches of data. Here is an example:

from onnx_neural_compressor.quantization import quantize, config

qconfig = config.StaticQuantConfig(
    data_reader,
    extra_options={
        "SmoothQuant": True,
        "SmoothQuantAlpha": "auto",
        "SmoothQuantCalibIter": 1,
        "AutoAlphaArgs": {
            "alpha_min": 0.3,  # min value of auto-tuning alpha search space
            "alpha_max": 0.7,  # max value of auto-tuning alpha search space
            "alpha_step": 0.05,  # step_size of auto-tuning alpha search space
            "attn_method": "min",
        },
    },
)
quantize(model, output_model_path, qconfig)

Reference

Footnotes

  1. Yvinec, Edouard, et al. "SPIQ: Data-Free Per-Channel Static Input Quantization." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2023. 2

  2. Wei, Xiuying, et al. "Outlier suppression: Pushing the limit of low-bit transformer language models." arXiv preprint arXiv:2209.13325 (2022). 2

  3. Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." arXiv preprint arXiv:2211.10438 (2022). 2