diff --git a/stan/tests/test_stan_functions.py b/stan/tests/test_stan_functions.py index 2faded6..23e051c 100644 --- a/stan/tests/test_stan_functions.py +++ b/stan/tests/test_stan_functions.py @@ -73,7 +73,8 @@ def assert_stan_function_allclose( raise RuntimeError(f"failed to compile model for {stan_function} at {line_info}") from ex try: - fit = model.sample(arg_values, fixed_param=True, iter_sampling=1, iter_warmup=1, sig_figs=9, chains=1) + fit = model.sample(arg_values, fixed_param=True, iter_sampling=1, iter_warmup=1, sig_figs=9, + chains=1) success, = fit.stan_variable("success") if not success or np.isnan(success): console = pathlib.Path(fit.runset.stdout_files[0]).read_text() diff --git a/torch/gptools/torch/fft/fft1.py b/torch/gptools/torch/fft/fft1.py index 4fe22a2..6ff8966 100644 --- a/torch/gptools/torch/fft/fft1.py +++ b/torch/gptools/torch/fft/fft1.py @@ -1,4 +1,4 @@ -from gptools.util.fft import transform_rfft, transform_irfft, evaluate_rfft_log_abs_det_jacobian +from gptools.util.fft import transform_rfft, transform_irfft, evaluate_rfft_log_abs_det_jac from gptools.util.fft.fft1 import _get_rfft_scale import torch as th from torch.distributions import constraints @@ -44,7 +44,7 @@ def _inv_call(self, y: th.Tensor) -> th.Tensor: return transform_irfft(y, self.loc, rfft_scale=self.rfft_scale) def log_abs_det_jacobian(self, x: th.Tensor, y: th.Tensor) -> th.Tensor: - return evaluate_rfft_log_abs_det_jacobian(x.shape[-1], rfft_scale=self.rfft_scale) + return evaluate_rfft_log_abs_det_jac(x.shape[-1], rfft_scale=self.rfft_scale) class FourierGaussianProcess1D(th.distributions.TransformedDistribution): diff --git a/torch/gptools/torch/fft/fft2.py b/torch/gptools/torch/fft/fft2.py index 884d4ab..ee0e9d0 100644 --- a/torch/gptools/torch/fft/fft2.py +++ b/torch/gptools/torch/fft/fft2.py @@ -1,4 +1,4 @@ -from gptools.util.fft import transform_rfft2, transform_irfft2, evaluate_rfft2_log_abs_det_jacobian +from gptools.util.fft import transform_rfft2, transform_irfft2, evaluate_rfft2_log_abs_det_jac from gptools.util.fft.fft2 import _get_rfft2_scale import torch as th from .. import OptionalTensor @@ -45,7 +45,7 @@ def _inv_call(self, y: th.Tensor) -> th.Tensor: return transform_irfft2(y, self.loc, rfft2_scale=self.rfft2_scale) def log_abs_det_jacobian(self, x: th.Tensor, y: th.Tensor) -> th.Tensor: - return evaluate_rfft2_log_abs_det_jacobian(x.shape[-1], rfft2_scale=self.rfft2_scale) + return evaluate_rfft2_log_abs_det_jac(x.shape[-1], rfft2_scale=self.rfft2_scale) class FourierGaussianProcess2D(th.distributions.TransformedDistribution):