-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_downsample.py
41 lines (34 loc) · 1.43 KB
/
data_downsample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import os, sys
import time
import argparse
import multiprocessing
import numpy as np
from utils.io import compactM, spreadM, downsampling
from all_parser import *
def downsample(in_file, low_res, ratio):
data = np.load(in_file)
hic = data['hic']
compact_idx = data['compact']
down_hic = downsampling(hic, ratio)
chr_name = os.path.basename(in_file).split('_')[0]
out_file = os.path.join(os.path.dirname(in_file), f'{chr_name}_{low_res}.npz')
np.savez_compressed(out_file, hic=down_hic, compact=compact_idx, ratio=ratio)
print('Saving file:', out_file)
if __name__ == '__main__':
args = data_down_parser().parse_args(sys.argv[1:])
cell_line = args.cell_line
high_res = args.high_res
low_res = args.low_res
ratio = args.ratio
pool_num = 23 if multiprocessing.cpu_count() > 23 else multiprocessing.cpu_count()
data_dir = os.path.join(root_dir, 'mat', cell_line)
in_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.find(high_res) >= 0]
print(f'Generating {low_res} files from {high_res} files by {ratio}x downsampling.')
start = time.time()
print(f'Start a multiprocess pool with process_num = {pool_num}')
pool = multiprocessing.Pool(pool_num)
for file in in_files:
pool.apply_async(downsample, (file, low_res, ratio))
pool.close()
pool.join()
print(f'All downsampling processes done. Running cost is {(time.time()-start)/60:.1f} min.')