-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathall_parser.py
117 lines (99 loc) · 6.13 KB
/
all_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import argparse
# the Root directory for all raw and processed data
root_dir = '/data/RaoHiC'
res_map = {'5kb': 5_000, '10kb': 10_000, '25kb': 25_000, '50kb': 50_000, '100kb': 100_000, '250kb': 250_000, '500kb': 500_000, '1mb': 1_000_000}
# 'train' and 'valid' can be changed for different train/valid set splitting
set_dict = {'human': list(range(1, 23)) + ['X'],
'mouse': list(range(1,20))) + ['X'],
'train': [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18],
'valid': [8, 9, 10, 11, 19, 20, 21, 22]}
help_opt = (('--help', '-h'), {
'action':'help',
'help':"Print this help message and exit"})
def mkdir(out_dir):
if not os.path.isdir(out_dir):
print(f'Making directory: {out_dir}')
os.makedirs(out_dir, exist_ok=True)
# chr12_10kb.npz, predict_chr13_40kb.npz
def chr_num_str(x):
start = x.find('chr')
part = x[start+3:]
end = part.find('_')
return part[:end]
def chr_digit(filename):
chrn = chr_num_str(os.path.basename(filename))
if chrn == 'X':
n = 23
else:
n = int(chrn)
return n
def data_read_parser():
parser = argparse.ArgumentParser(description='Read raw data from Rao\'s Hi-C.', add_help=False)
req_args = parser.add_argument_group('Required Arguments')
req_args.add_argument('-c', dest='cell_line', help='REQUIRED: Cell line for analysis[example:GM12878]',
required=True)
misc_args = parser.add_argument_group('Miscellaneous Arguments')
misc_args.add_argument('-hr', dest='high_res', help='High resolution specified[default:10kb]',
default='10kb', choices=res_map.keys())
misc_args.add_argument('-q', dest='map_quality', help='Mapping quality of raw data[default:MAPQGE30]',
default='MAPQGE30', choices=['MAPQGE30', 'MAPQG0'])
misc_args.add_argument('-n', dest='norm_file', help='The normalization file for raw data[default:KRnorm]',
default='KRnorm', choices=['KRnorm', 'SQRTVCnorm', 'VCnorm'])
parser.add_argument(*help_opt[0], **help_opt[1])
return parser
def data_down_parser():
parser = argparse.ArgumentParser(description='Downsample data from high resolution data', add_help=False)
req_args = parser.add_argument_group('Required Arguments')
req_args.add_argument('-c', dest='cell_line', help='REQUIRED: Cell line for analysis[example:GM12878]',
required=True)
req_args.add_argument('-hr', dest='high_res', help='REQUIRED: High resolution specified[example:10kb]',
default='10kb', choices=res_map.keys(), required=True)
req_args.add_argument('-lr', dest='low_res', help='REQUIRED: Low resolution specified[example:40kb]',
default='40kb', required=True)
req_args.add_argument('-r', dest='ratio', help='REQUIRED: The ratio of downsampling[example:16]',
default=16, type=int, required=True)
parser.add_argument(*help_opt[0], **help_opt[1])
return parser
def data_divider_parser():
parser = argparse.ArgumentParser(description='Divide data for train and predict', add_help=False)
req_args = parser.add_argument_group('Required Arguments')
req_args.add_argument('-c', dest='cell_line', help='REQUIRED: Cell line for analysis[example:GM12878]',
required=True)
req_args.add_argument('-hr', dest='high_res', help='REQUIRED: High resolution specified[example:10kb]',
default='10kb', choices=res_map.keys(), required=True)
req_args.add_argument('-lr', dest='low_res', help='REQUIRED: Low resolution specified[example:40kb]',
default='40kb', required=True)
req_args.add_argument('-lrc', dest='lr_cutoff', help='REQUIRED: cutoff for low resolution maps[example:100]', default=100, type=int, required=True)
req_args.add_argument('-s', dest='dataset', help='REQUIRED: Dataset for train/valid/predict(all)',
default='train', choices=['all', 'train', 'valid'], )
deephic_args = parser.add_argument_group('DeepHiC Arguments')
deephic_args.add_argument('-chunk', dest='chunk', help='REQUIRED: chunk size for dividing[example:40]',
default=40, type=int, required=True)
deephic_args.add_argument('-stride', dest='stride', help='REQUIRED: stride for dividing[example:40]',
default=40, type=int, required=True)
deephic_args.add_argument('-bound', dest='bound', help='REQUIRED: distance boundary interested[example:201]',
default=201, type=int, required=True)
deephic_args.add_argument('-scale', dest='scale', help='REQUIRED: Downpooling scale[example:1]',
type=int, required=True)
deephic_args.add_argument('-type', dest='pool_type', help='OPTIONAL: Downpooling type[default:max]',
default='max', choices=['max','avg'])
parser.add_argument(*help_opt[0], **help_opt[1])
return parser
def data_predict_parser():
parser = argparse.ArgumentParser(description='Predict data using DeepHiC model', add_help=False)
req_args = parser.add_argument_group('Required Arguments')
req_args.add_argument('-c', dest='cell_line', help='REQUIRED: Cell line for analysis[example:GM12878]',
required=True)
req_args.add_argument('-lr', dest='low_res', help='REQUIRED: Low resolution specified[example:40kb]',
default='40kb', required=True)
gan_args = parser.add_argument_group('GAN model Arguments')
gan_args.add_argument('-ckpt', dest='checkpoint', help='REQUIRED: Checkpoint file of DeepHiC model',
required=True)
gan_args.add_argument('-res', dest='resblock', help='IMPORTANT: The number of Resblock layers[default:5]',
default=5, type=int)
misc_args = parser.add_argument_group('Miscellaneous Arguments')
misc_args.add_argument('--cuda', dest='cuda', help='Whether or not using CUDA[default:1]',
default=1, type=int)
parser.add_argument(*help_opt[0], **help_opt[1])
return parser