-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlists.sls
159 lines (146 loc) · 5.98 KB
/
lists.sls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!r6rs
;; Copyright 2009 Derick Eddington. My MIT-style license is in the file named
;; LICENSE from the original collection this file is distributed with.
(library (xitomatl lists)
(export
make-list last-pair ;; from compat
sublist
map/left-right/preserving map/filter
remp-dups remove-dups remv-dups remq-dups
dup? unique?
intersperse group-by
alist->plist plist->alist)
(import
(rnrs)
(only (xitomatl define) define/? define/AV define/?/AV)
(only (xitomatl predicates) exact-non-negative-integer? exact-positive-integer?)
(xitomatl lists compat))
(define/?/AV sublist
(case-lambda/?
((l start)
(sublist l start #F))
((l (start exact-non-negative-integer?)
(end (lambda (x) (or (exact-non-negative-integer? x) (not x)))))
(unless (or (not end) (<= start end))
(AV "invalid range" start end))
(let loop ((x l) (i 0) (a '()))
(cond ((and end (= i end))
(reverse a))
((pair? x)
(loop (cdr x) (+ 1 i) (if (>= i start) (cons (car x) a) a)))
((null? x)
(cond ((> start i)
(AV "start index greater than list's length" start i))
(end
(AV "end index greater than list's length" end i))
(else
(reverse a))))
(else
(AV "not a proper list" l)))))))
; Deterministic, left-to-right map
; It preserves sharing as much as possible: that is, if given the pair
; (h . t), (and (eq? h (f h))
;; (eq? t (map/left-right/preserving f t)))
;; holds, then
; (eq? (map/left-right/preserving f l) l) holds as well.
(define/?/AV (map/left-right/preserving (f procedure?) l)
;; TODO: could this be made tail-recursive / constant space?
(let loop ((f f) (l l) (orig l))
(cond ((pair? l) (let ((h (car l)) (t (cdr l)))
(let* ((h1 (f h)) (t1 (loop f t orig)))
(if (and (eq? h1 h) (eq? t1 t))
l
(cons h1 t1)))))
((null? l) '())
(else (AV "not a proper list" orig)))))
(define/?/AV map/filter
;; map/filter is significantly more effecient than
;; the equivalent (filter values (map f l))
(case-lambda/?
(((f procedure?) l)
(let loop ((l l) (r '()) (orig l))
(cond ((pair? l) (let ((x (f (car l))))
(loop (cdr l) (if x (cons x r) r) orig)))
((null? l) (reverse r))
(else (AV "not a proper list" orig)))))
(((f procedure?) l . ls)
(let loop ((ls (cons l ls)) (r '()) (orig (cons l ls)))
(cond ((for-all pair? ls) (let ((x (apply f (map car ls))))
(loop (map cdr ls) (if x (cons x r) r) orig)))
((for-all null? ls) (reverse r))
(else (for-each (lambda (l o) (unless (or (pair? l) (null? l))
(AV "not a proper list" o)))
ls orig)
(for-each (lambda (l) (when (null? l)
(AV "length mismatch" orig)))
ls)))))))
(define (rem-dups rf l who)
(let loop ((l l) (r '()))
(cond ((pair? l) (let ((h (car l)) (t (cdr l)))
(loop (rf h t) (cons h r))))
((null? l) (reverse r))
(else (assertion-violation who "not a proper list" l)))))
(define (remp-dups proc l)
(rem-dups proc l 'remp-dups))
(define (remove-dups l)
(rem-dups remove l 'remove-dups))
(define (remv-dups l)
(rem-dups remv l 'remv-dups))
(define (remq-dups l)
(rem-dups remq l 'remq-dups))
(define/AV (dup? pred)
(lambda (ls)
(let loop ((l ls) (i 0))
(cond ((pair? l) (let ((h (car l)) (t (cdr l)))
(if (memp (lambda (x) (pred h x)) t)
i
(loop t (+ 1 i)))))
((null? l) #F)
(else (AV "not a proper list" ls))))))
(define (unique? pred)
(define f (dup? pred))
(lambda (l) (not (f l))))
(define/AV (intersperse l sep)
(let loop ((l l) (r '()) (sep sep) (orig l))
(cond ((pair? l) (loop (cdr l) (cons* sep (car l) r) sep orig))
((null? l) (if (null? r) '() (reverse (cdr r))))
(else (AV "not a proper list" orig)))))
(define/?/AV group-by
(case-lambda/?
((by)
(group-by by #F))
(((by exact-positive-integer?) remainders-ok?)
(lambda (l)
(let loop ((l l) (n 0) (g '()) (r '()))
(cond ((pair? l)
(if (= n by)
(loop (cdr l) 1 (list (car l)) (cons (reverse g) r))
(loop (cdr l) (+ 1 n) (cons (car l) g) r)))
((null? l)
(cond ((or (= n by) (and remainders-ok? (> n 0)))
(reverse (cons (reverse g) r)))
((= n 0) '())
(else (apply AV "remainder elements" (reverse g)))))
(else (AV "not a proper list"))))))))
(define/AV (alist->plist x)
(let loop ((al x) (pl '()))
(cond ((and (pair? al) (pair? (car al)))
(loop (cdr al) (cons* (cdar al) (caar al) pl)))
((null? al) (reverse pl))
(else (AV "not a proper alist" x)))))
(define/AV (plist->alist x)
(let loop ((pl x) (al '()))
(cond ((and (pair? pl) (pair? (cdr pl)))
(loop (cddr pl) (cons (cons (car pl) (cadr pl)) al)))
((null? pl) (reverse al))
(else (AV "not a proper plist" x)))))
#;(define/? (flatten (l list?))
;; not sure exactly what I want the semantics to be
(let loop ((l l))
(if (pair? l)
(let ((x (car l)) (r (cdr l)))
(if (list? x)
(append (loop x) (loop r))
(cons (loop x) (loop r))))
l)))
)