forked from KotoDevelopers/cpuminer-yescrypt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sha256.c
685 lines (581 loc) · 17.6 KB
/
sha256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*-
* Copyright 2005-2016 Colin Percival
* Copyright 2016-2018 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "insecure_memzero.h"
#include "sysendian.h"
#include "miner.h"
#include "sha256.h"
#ifdef __SHA__
#include "sha256_shani.h"
#endif
#ifdef __ICC
/* Miscompile with icc 14.0.0 (at least), so don't use restrict there */
#define restrict
#elif __STDC_VERSION__ >= 199901L
/* Have restrict */
#elif defined(__GNUC__)
#define restrict __restrict
#else
#define restrict
#endif
/*
* Encode a length len*2 vector of (uint32_t) into a length len*8 vector of
* (uint8_t) in big-endian form.
*/
static void
be32enc_vect(uint8_t * dst, const uint32_t * src, size_t len)
{
/* Encode vector, two words at a time. */
do {
be32enc(&dst[0], src[0]);
be32enc(&dst[4], src[1]);
src += 2;
dst += 8;
} while (--len);
}
/*
* Decode a big-endian length len*8 vector of (uint8_t) into a length
* len*2 vector of (uint32_t).
*/
static void
be32dec_vect(uint32_t * dst, const uint8_t * src, size_t len)
{
/* Decode vector, two words at a time. */
do {
dst[0] = be32dec(&src[0]);
dst[1] = be32dec(&src[4]);
src += 8;
dst += 2;
} while (--len);
}
/* SHA256 round constants. */
static const uint32_t Krnd[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
h += S1(e) + Ch(e, f, g) + k; \
d += h; \
h += S0(a) + Maj(a, b, c);
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i + ii] + Krnd[i + ii])
/* Message schedule computation */
#define MSCH(W, ii, i) \
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64],
uint32_t W[static restrict 64], uint32_t S[static restrict 8])
{
#ifdef __SHA__
SHA256_Transform_shani(state, block);
return;
#endif
int i;
/* 1. Prepare the first part of the message schedule W. */
be32dec_vect(W, block, 8);
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
for (i = 0; i < 64; i += 16) {
RNDr(S, W, 0, i);
RNDr(S, W, 1, i);
RNDr(S, W, 2, i);
RNDr(S, W, 3, i);
RNDr(S, W, 4, i);
RNDr(S, W, 5, i);
RNDr(S, W, 6, i);
RNDr(S, W, 7, i);
RNDr(S, W, 8, i);
RNDr(S, W, 9, i);
RNDr(S, W, 10, i);
RNDr(S, W, 11, i);
RNDr(S, W, 12, i);
RNDr(S, W, 13, i);
RNDr(S, W, 14, i);
RNDr(S, W, 15, i);
if (i == 48)
break;
MSCH(W, 0, i);
MSCH(W, 1, i);
MSCH(W, 2, i);
MSCH(W, 3, i);
MSCH(W, 4, i);
MSCH(W, 5, i);
MSCH(W, 6, i);
MSCH(W, 7, i);
MSCH(W, 8, i);
MSCH(W, 9, i);
MSCH(W, 10, i);
MSCH(W, 11, i);
MSCH(W, 12, i);
MSCH(W, 13, i);
MSCH(W, 14, i);
MSCH(W, 15, i);
}
/* 4. Mix local working variables into global state. */
state[0] += S[0];
state[1] += S[1];
state[2] += S[2];
state[3] += S[3];
state[4] += S[4];
state[5] += S[5];
state[6] += S[6];
state[7] += S[7];
}
static const uint8_t PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[static restrict 72])
{
size_t r;
/* Figure out how many bytes we have buffered. */
r = (ctx->count >> 3) & 0x3f;
/* Pad to 56 mod 64, transforming if we finish a block en route. */
if (r < 56) {
/* Pad to 56 mod 64. */
memcpy(&ctx->buf[r], PAD, 56 - r);
} else {
/* Finish the current block and mix. */
memcpy(&ctx->buf[r], PAD, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
/* The start of the final block is all zeroes. */
memset(&ctx->buf[0], 0, 56);
}
/* Add the terminating bit-count. */
be64enc(&ctx->buf[56], ctx->count);
/* Mix in the final block. */
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
}
/* Magic initialization constants. */
static const uint32_t initial_state[8] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
/**
* SHA256_Init(ctx):
* Initialize the SHA256 context ${ctx}.
*/
void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far. */
ctx->count = 0;
/* Initialize state. */
memcpy(ctx->state, initial_state, sizeof(initial_state));
}
/**
* SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
*/
static void
_SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
{
uint32_t r;
const uint8_t * src = in;
/* Return immediately if we have nothing to do. */
if (len == 0)
return;
/* Number of bytes left in the buffer from previous updates. */
r = (ctx->count >> 3) & 0x3f;
/* Update number of bits. */
ctx->count += (uint64_t)(len) << 3;
/* Handle the case where we don't need to perform any transforms. */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block. */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks. */
while (len >= 64) {
SHA256_Transform(ctx->state, src, &tmp32[0], &tmp32[64]);
src += 64;
len -= 64;
}
/* Copy left over data into buffer. */
memcpy(ctx->buf, src, len);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
_SHA256_Update(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* SHA256_Final(digest, ctx):
* Output the SHA256 hash of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
static void
_SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72])
{
/* Add padding. */
SHA256_Pad(ctx, tmp32);
/* Write the hash. */
be32enc_vect(digest, ctx->state, 4);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx)
{
uint32_t tmp32[72];
/* Call the real function. */
_SHA256_Final(digest, ctx, tmp32);
/* Clear the context state. */
insecure_memzero(ctx, sizeof(SHA256_CTX));
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void
SHA256_Buf(const void * in, size_t len, uint8_t digest[32])
{
SHA256_CTX ctx;
uint32_t tmp32[72];
SHA256_Init(&ctx);
_SHA256_Update(&ctx, in, len, tmp32);
_SHA256_Final(digest, &ctx, tmp32);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(SHA256_CTX));
insecure_memzero(tmp32, 288);
}
/**
* sha256d(digest, in ,len):
* Compute the SHA256(SHA256()) hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void
sha256d(unsigned char *digest, const unsigned char *in, int len)
{
uint8_t tmphash[32];
SHA256_Buf(in, len, tmphash);
SHA256_Buf(tmphash, 32, digest);
}
/**
* HMAC_SHA256_Init(ctx, K, Klen):
* Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
* ${K}.
*/
static void
_HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen,
uint32_t tmp32[static restrict 72], uint8_t pad[static restrict 64],
uint8_t khash[static restrict 32])
{
const uint8_t * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
_SHA256_Update(&ctx->ictx, K, Klen, tmp32);
_SHA256_Final(khash, &ctx->ictx, tmp32);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
_SHA256_Update(&ctx->ictx, pad, 64, tmp32);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
_SHA256_Update(&ctx->octx, pad, 64, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
uint32_t tmp32[72];
uint8_t pad[64];
uint8_t khash[32];
/* Call the real function. */
_HMAC_SHA256_Init(ctx, _K, Klen, tmp32, pad, khash);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
insecure_memzero(khash, 32);
insecure_memzero(pad, 64);
}
/**
* HMAC_SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
*/
static void
_HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
{
/* Feed data to the inner SHA256 operation. */
_SHA256_Update(&ctx->ictx, in, len, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
_HMAC_SHA256_Update(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* HMAC_SHA256_Final(digest, ctx):
* Output the HMAC-SHA256 of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
static void
_HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72], uint8_t ihash[static restrict 32])
{
/* Finish the inner SHA256 operation. */
_SHA256_Final(ihash, &ctx->ictx, tmp32);
/* Feed the inner hash to the outer SHA256 operation. */
_SHA256_Update(&ctx->octx, ihash, 32, tmp32);
/* Finish the outer SHA256 operation. */
_SHA256_Final(digest, &ctx->octx, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx)
{
uint32_t tmp32[72];
uint8_t ihash[32];
/* Call the real function. */
_HMAC_SHA256_Final(digest, ctx, tmp32, ihash);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
insecure_memzero(ihash, 32);
}
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
uint8_t digest[32])
{
HMAC_SHA256_CTX ctx;
uint32_t tmp32[72];
uint8_t tmp8[96];
_HMAC_SHA256_Init(&ctx, K, Klen, tmp32, &tmp8[0], &tmp8[64]);
_HMAC_SHA256_Update(&ctx, in, len, tmp32);
_HMAC_SHA256_Final(digest, &ctx, tmp32, &tmp8[0]);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, 288);
insecure_memzero(tmp8, 96);
}
/* Add padding and terminating bit-count, but don't invoke Transform yet. */
static int
SHA256_Pad_Almost(SHA256_CTX * ctx, uint8_t len[static restrict 8],
uint32_t tmp32[static restrict 72])
{
uint32_t r;
r = (ctx->count >> 3) & 0x3f;
if (r >= 56)
return -1;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be64enc(len, ctx->count);
/* Add 1--56 bytes so that the resulting length is 56 mod 64. */
_SHA256_Update(ctx, PAD, 56 - r, tmp32);
/* Add the terminating bit-count. */
ctx->buf[63] = len[7];
_SHA256_Update(ctx, len, 7, tmp32);
return 0;
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX Phctx, PShctx, hctx;
uint32_t tmp32[72];
union {
uint8_t tmp8[96];
uint32_t state[8];
} u;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Sanity-check. */
assert(dkLen <= 32 * (size_t)(UINT32_MAX));
if (c == 1 && (dkLen & 31) == 0 && (saltlen & 63) <= 51) {
uint32_t oldcount;
uint8_t * ivecp;
/* Compute HMAC state after processing P and S. */
_HMAC_SHA256_Init(&hctx, passwd, passwdlen,
tmp32, &u.tmp8[0], &u.tmp8[64]);
_HMAC_SHA256_Update(&hctx, salt, saltlen, tmp32);
/* Prepare ictx padding. */
oldcount = hctx.ictx.count & (0x3f << 3);
_HMAC_SHA256_Update(&hctx, "\0\0\0", 4, tmp32);
if ((hctx.ictx.count & (0x3f << 3)) < oldcount ||
SHA256_Pad_Almost(&hctx.ictx, u.tmp8, tmp32))
goto generic; /* Can't happen due to saltlen check */
ivecp = hctx.ictx.buf + (oldcount >> 3);
/* Prepare octx padding. */
hctx.octx.count += 32 << 3;
SHA256_Pad_Almost(&hctx.octx, u.tmp8, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivecp, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(u.state, hctx.ictx.state, sizeof(u.state));
SHA256_Transform(u.state, hctx.ictx.buf,
&tmp32[0], &tmp32[64]);
be32enc_vect(hctx.octx.buf, u.state, 4);
memcpy(u.state, hctx.octx.state, sizeof(u.state));
SHA256_Transform(u.state, hctx.octx.buf,
&tmp32[0], &tmp32[64]);
be32enc_vect(&buf[i * 32], u.state, 4);
}
goto cleanup;
}
generic:
/* Compute HMAC state after processing P. */
_HMAC_SHA256_Init(&Phctx, passwd, passwdlen,
tmp32, &u.tmp8[0], &u.tmp8[64]);
/* Compute HMAC state after processing P and S. */
memcpy(&PShctx, &Phctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&PShctx, salt, saltlen, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&hctx, ivec, 4, tmp32);
_HMAC_SHA256_Final(T, &hctx, tmp32, u.tmp8);
if (c > 1) {
/* T_i = U_1 ... */
memcpy(U, T, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
memcpy(&hctx, &Phctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&hctx, U, 32, tmp32);
_HMAC_SHA256_Final(U, &hctx, tmp32, u.tmp8);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean the stack. */
insecure_memzero(&Phctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(&PShctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(U, 32);
insecure_memzero(T, 32);
cleanup:
insecure_memzero(&hctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, 288);
insecure_memzero(&u, sizeof(u));
}
void sha256d(unsigned char *digest, const unsigned char *in, int len)
{
SHA256_CTX ctx;
uint32_t tmp32[72];
SHA256_Init(&ctx);
_SHA256_Update(&ctx, in, len, tmp32);
_SHA256_Final(digest, &ctx, tmp32);
SHA256_Init(&ctx);
_SHA256_Update(&ctx, digest, 32, tmp32);
_SHA256_Final(digest, &ctx, tmp32);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(SHA256_CTX));
insecure_memzero(tmp32, 288);
}