forked from mpraski/clusters
-
Notifications
You must be signed in to change notification settings - Fork 1
/
dbscan.go
285 lines (219 loc) · 4.3 KB
/
dbscan.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
package clusters
import (
"sync"
)
type dbscanClusterer struct {
minpts, workers int
eps float64
distance DistanceFunc
// slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation.
mu sync.RWMutex
// groups for dateset
a []int
b []int
// variables used for concurrent computation of nearest neighbours
// dataset len
l int
// worker number
s int
// work number for per worker
f int
j chan *rangeJob
m *sync.Mutex
w *sync.WaitGroup
// current point near
r *[]int
// current point
p []float64
// visited points
v []bool
// dataset
d [][]float64
}
// Implementation of DBSCAN algorithm with concurrent nearest neighbour computation. The number of goroutines acting concurrently
// is controlled via workers argument. Passing 0 will result in this number being chosen arbitrarily.
func DBSCAN(minpts int, eps float64, workers int, distance DistanceFunc) (HardClusterer, error) {
if minpts < 1 {
return nil, errZeroMinpts
}
if workers < 0 {
return nil, errZeroWorkers
}
if eps <= 0 {
return nil, errZeroEpsilon
}
var d DistanceFunc
{
if distance != nil {
d = distance
} else {
d = EuclideanDistance
}
}
return &dbscanClusterer{
minpts: minpts,
workers: workers,
eps: eps,
distance: d,
}, nil
}
func (c *dbscanClusterer) IsOnline() bool {
return false
}
func (c *dbscanClusterer) WithOnline(o Online) HardClusterer {
return c
}
func (c *dbscanClusterer) Learn(data [][]float64) error {
if len(data) == 0 {
return errEmptySet
}
c.mu.Lock()
c.l = len(data)
c.s = c.numWorkers()
c.f = c.l / c.s
c.d = data
c.v = make([]bool, c.l)
c.a = make([]int, c.l)
c.b = make([]int, 0)
c.startNearestWorkers()
c.run()
c.endNearestWorkers()
c.v = nil
c.p = nil
c.r = nil
c.mu.Unlock()
return nil
}
func (c *dbscanClusterer) Sizes() []int {
c.mu.RLock()
defer c.mu.RUnlock()
return c.b
}
func (c *dbscanClusterer) Guesses() []int {
c.mu.RLock()
defer c.mu.RUnlock()
return c.a
}
func (c *dbscanClusterer) Predict(p []float64) int {
var (
l int
d float64
m float64 = c.distance(p, c.d[0])
)
for i := 1; i < len(c.d); i++ {
if d = c.distance(p, c.d[i]); d < m {
m = d
l = i
}
}
return c.a[l]
}
func (c *dbscanClusterer) Online(observations chan []float64, done chan struct{}) chan *HCEvent {
return nil
}
// private
func (c *dbscanClusterer) run() {
var (
n, m, l, k = 1, 0, 0, 0
ns, nss = make([]int, 0), make([]int, 0)
)
for i := 0; i < c.l; i++ {
if c.v[i] {
continue
}
c.v[i] = true
c.nearest(i, &l, &ns)
if l < c.minpts {
c.a[i] = -1
} else {
c.a[i] = n
c.b = append(c.b, 0)
c.b[m]++
for j := 0; j < l; j++ {
if !c.v[ns[j]] {
c.v[ns[j]] = true
c.nearest(ns[j], &k, &nss)
if k >= c.minpts {
l += k
ns = append(ns, nss...)
}
}
if c.a[ns[j]] == 0 {
c.a[ns[j]] = n
c.b[m]++
}
}
n++
m++
}
}
}
/* Divide work among c.s workers, where c.s is determined
* by the size of the data. This is based on an assumption that neighbour points of p
* are located in relatively small subsection of the input data, so the dataset can be scanned
* concurrently without blocking a big number of goroutines trying to write to r */
func (c *dbscanClusterer) nearest(p int, l *int, r *[]int) {
var b int
*r = (*r)[:0]
c.p = c.d[p]
c.r = r
for i := 0; i < c.l; i += c.f {
if c.l-i <= c.f {
b = c.l
} else {
b = i + c.f
}
c.w.Add(1)
c.j <- &rangeJob{
a: i,
b: b,
}
}
c.w.Wait()
*l = len(*r)
}
func (c *dbscanClusterer) startNearestWorkers() {
c.j = make(chan *rangeJob, c.l)
c.m = &sync.Mutex{}
c.w = &sync.WaitGroup{}
for i := 0; i < c.s; i++ {
go c.nearestWorker()
}
}
func (c *dbscanClusterer) endNearestWorkers() {
close(c.j)
c.j = nil
c.m = nil
c.w = nil
}
func (c *dbscanClusterer) nearestWorker() {
for j := range c.j {
for i := j.a; i < j.b; i++ {
if c.distance(c.p, c.d[i]) < c.eps {
c.m.Lock()
*c.r = append(*c.r, i)
c.m.Unlock()
}
}
c.w.Done()
}
}
func (c *dbscanClusterer) numWorkers() int {
var b int
if c.l < 1000 {
b = 1
} else if c.l < 10000 {
b = 10
} else if c.l < 100000 {
b = 100
} else {
b = 1000
}
if c.workers == 0 {
return b
}
if c.workers < b {
return c.workers
}
return b
}