-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels5.py
306 lines (253 loc) · 9.29 KB
/
models5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
__author__ = 'Jiri Fajtl'
__email__ = '[email protected]'
__version__= '1.8'
__status__ = "Research"
__date__ = "2/1/2020"
__license__= "MIT License"
import torch
import torch.nn as nn
def normal_init(m, mean, std):
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
m.weight.data.normal_(mean, std)
if m.bias is not None:
m.bias.data.zero_()
def weight_init(model, mean=0, std=0.02):
for m in model._modules:
normal_init(model._modules[m], mean, std)
return
#===========================================================================================
class QuantizerFunc(torch.autograd.Function):
@staticmethod
def forward(self, input, npoints=4, dropout=0):
# self.save_for_backward(input)
# self.constant = npoints
if npoints < 0:
x = torch.sign(input)
x[x==0] = 1
return x
scale = 10**npoints
input = input * scale
input = torch.round(input)
input = input / scale
return input
@staticmethod
def backward(self, grad_output):
# input, = self.saved_tensors
grad_input = grad_output.clone()
# grad_input[input < 0] = 0
# grad_input[:] = 1
return grad_input, None
class Quantizer(nn.Module):
def __init__(self, npoints=3):
super().__init__()
self.npoints = npoints
self.quant = QuantizerFunc.apply
def forward(self,x):
x = self.quant(x, self.npoints)
return x
#===========================================================================================
class BinDropout(nn.Module):
def __init__(self, p: float = 0.5):
super().__init__()
if p < 0 or p > 1:
raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p))
self.p = p
self.mask = None
def forward(self, x):
if self.training:
if self.mask is None:
po = int(self.p * x.size(1))
self.mask = 1
self.bdist = torch.distributions.Bernoulli(self.p)
m = self.bdist.sample(x.size())*-2+1
x = x*m.cuda()
return x
return x
#===========================================================================================
class EncConvResBlock32(nn.Module):
def __init__(self, hps):
super().__init__()
self.hps=hps
channels = hps.channels
bias = False
c = 64
inc = c
self.ec0 = nn.Conv2d(channels, inc, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn0 = nn.BatchNorm2d(inc)
self.ec1 = nn.Conv2d(inc, c, kernel_size=4, stride=2, padding=1, bias=bias)
self.bn1 = nn.BatchNorm2d(c)
self.b11 = nn.Conv2d(c, c, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn11 = nn.BatchNorm2d(c)
self.b12 = nn.Conv2d(c, c, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn12 = nn.BatchNorm2d(c)
c = c*2
self.ec2 = nn.Conv2d(c//2, c, kernel_size=4, stride=2, padding=1, bias=bias)
self.bn2 = nn.BatchNorm2d(c)
self.b21 = nn.Conv2d(c, c, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn21 = nn.BatchNorm2d(c)
self.b22 = nn.Conv2d(c, c, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn22 = nn.BatchNorm2d(c)
c_out = c*2
if self.hps.img_size == 64:
self.ec3 = nn.Conv2d(c, c_out, kernel_size=4, stride=2, padding=1, bias=bias)
self.bn3 = nn.BatchNorm2d(c_out)
self.b31 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn31 = nn.BatchNorm2d(c_out)
self.b32 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn32 = nn.BatchNorm2d(c_out)
c = c_out
self.ec4 = nn.Conv2d(c, c_out, kernel_size=4, stride=2, padding=1, bias=False)
fmres = 4*4
in_size =self.ec4.out_channels*fmres
if hps.vae:
self.l1 = nn.Linear(in_size, self.hps.zsize)
self.l2 = nn.Linear(in_size, self.hps.zsize)
else:
self.l0l = nn.Linear(in_size, self.hps.zsize)
self.quant = QuantizerFunc.apply
self.act = nn.LeakyReLU(0.02)
self.drop = None
def forward(self, x):
x = self.ec0(x)
x = self.bn0(x)
x = self.act(x)
x = self.ec1(x)
x = self.bn1(x)
y = x
x = self.act(x)
x = self.b11(x)
x = self.bn11(x)
x = self.act(x)
x = self.b12(x)
x = self.bn12(x)
x = self.act(x+y)
x = self.ec2(x)
x = self.bn2(x)
y = x
x = self.act(x)
x = self.b21(x)
x = self.bn21(x)
x = self.act(x)
x = self.b22(x)
x = self.bn22(x)
x = self.act(x+y)
if self.hps.img_size == 64:
x = self.ec3(x)
x = self.bn3(x)
y = x
x = self.act(x)
x = self.b31(x)
x = self.bn31(x)
x = self.act(x)
x = self.b32(x)
x = self.bn32(x)
x = self.act(x+y)
x = self.ec4(x)
x = x.view(x.size(0), -1)
if not self.hps.vae:
# QAE output
xe = None
x = self.l0l(x)
x = torch.tanh(x)
xq = self.quant(x, self.hps.zround)
err_quant = torch.abs(x - xq)
x = xq
xe = x if xe is None else xe
diff = ((x+xe) == 0).sum(1)
return x, None, xe, diff, err_quant.sum()/(x.size(0) * x.size(1))
else:
# VAE output
mu = self.l1(x)
logvar = self.l2(x)
return mu, logvar, mu, None,None
#===========================================================================================
class GenConvResBlock32(nn.Module):
def __init__(self, hps):
super().__init__()
self.hps = hps
channels = hps.channels
bias = False
c = inch = 128
if self.hps.dataset == 'mnist':
inch = 1
self.in_channels = inch
if self.hps.img_size == 64:
c = inch = 256
self.dc1 = nn.ConvTranspose2d(inch, c, kernel_size=4, stride=2, padding=1, output_padding=0, bias=bias)
self.bn1 = nn.BatchNorm2d(c)
self.b11 = nn.ConvTranspose2d(c, c,kernel_size=3, stride=1, padding=1, bias=bias)
self.bn11 = nn.BatchNorm2d(c)
self.b12 = nn.ConvTranspose2d(c, c, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn12 = nn.BatchNorm2d(c)
inch = c
c = c//2
self.dc2 = nn.ConvTranspose2d(inch, c, kernel_size=4, stride=2, padding=1, output_padding=0, bias=bias)
self.bn2 = nn.BatchNorm2d(c)
self.b21 = nn.ConvTranspose2d(c, c,kernel_size=3, stride=1, padding=1, bias=bias)
self.bn21 = nn.BatchNorm2d(c)
self.b22 = nn.ConvTranspose2d(c, c, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn22 = nn.BatchNorm2d(c)
c = c//2
self.dc3 = nn.ConvTranspose2d(c*2, c, kernel_size=4, stride=2, padding=1, output_padding=0, bias=bias)
self.bn3 = nn.BatchNorm2d(c)
self.b31 = nn.ConvTranspose2d(c, c,kernel_size=3, stride=1, padding=1, bias=bias)
self.bn31 = nn.BatchNorm2d(c)
self.b32 = nn.ConvTranspose2d(c, c, kernel_size=3, stride=1, padding=1, bias=bias)
self.bn32 = nn.BatchNorm2d(c)
self.dc4 = nn.ConvTranspose2d(c, c, kernel_size=4, stride=2, padding=1, output_padding=0, bias=False)
self.bn4 = nn.BatchNorm2d(c)
self.dc5 = nn.ConvTranspose2d(c, channels, kernel_size=3, stride=1, padding=1, bias=False)
self.act = nn.LeakyReLU(0.02)
self.quant = QuantizerFunc.apply
if self.hps.img_size == 64:
self.in_channels = self.dc1.in_channels
else:
self.in_channels = self.dc2.in_channels
self.fmres = 4
out_size = self.in_channels*self.fmres*self.fmres
bias = True
self.l1l=nn.Linear(self.hps.zsize, out_size, bias=bias)
def forward(self, x, sw=None):
x = x.view(x.size(0), -1)
x = self.l1l(x)
x = x.view(x.size(0), self.in_channels,self.fmres,self.fmres)
if self.hps.img_size == 64:
x = self.dc1(x)
x = self.bn1(x)
y = x
x = self.act(x)
x = self.b11(x)
x = self.bn11(x)
x = self.act(x)
x = self.b12(x)
x = self.bn12(x)
x = self.act(x+y)
x = self.dc2(x)
x = self.bn2(x)
y = x
x = self.act(x)
x = self.b21(x)
x = self.bn21(x)
x = self.act(x)
x = self.b22(x)
x = self.bn22(x)
x = self.act(x+y)
x = self.dc3(x)
x = self.bn3(x)
y = x
x = self.act(x)
x = self.b31(x)
x = self.bn31(x)
x = self.act(x)
x = self.b32(x)
x = self.bn32(x)
x = self.act(x+y)
x = self.dc4(x)
x = self.bn4(x)
x = self.act(x)
x = self.dc5(x)
x = torch.sigmoid(x)
return x
#=================================================================================
if __name__ == "__main__":
print("NOT AN EXECUTABLE!")