-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulator.py
executable file
·1418 lines (1142 loc) · 59.7 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python3
from better_abc import ABC, abstract_attribute, abstractmethod
from datetime import timedelta
from portfolio_maker import PortfolioMaker
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pickle
import requests
import time
MY_API_KEY = '901a2a03f9d57935c22df22ae5a5377cb8de6f22'
class HistoricalSimulator(ABC):
'''
The parent of a Strategy class that does the heavy lifting in simulating
how a portfolio composed of a PortfolioMaker instance's assets would have
performed over a specified period of time. Run self.begin_time_loop() after
initializing an instance to run a simulation; each instance is good for one
simulation only.
Handles downloading asset data from Tiingo, rebalancing (whole portfolio
and satellite-only through its child), dividends, and plotting of
post-simulation results. The simulation includes both the main core/
satellite portfolio and a standard benchmark portfolio.
Arguments
---------
Portfolio : `portfolio_maker.PortfolioMaker`, required
A PortfolioMaker instance whose `assets` attribute contains your desired
assets, fractions, and categories. Its `check_assets()` method must pass
before you can run any simulations.
cash : float, optional
The amount of unspent money in your portfolio at the start of the
simulation. Note that this is separate from the value of any initial
shares held in Portfolio.assets. [default: $10,000]
start_date : `pandas.Timestamp` or `datetime.datetime`, optional
The first trading date in your simulation. If the market wasn't open on
your chosen date, the next market date will be chosen.
[default: pandas.Timestamp(2007, 5, 22)]
end_date : `pandas.Timestamp` or `datetime.datetime`, optional
The last trading date in your simulation. If the market wasn't open on
your chosen date, the last market date before it will be chosen.
[default: pandas.Timestamp(2015, 5, 22)]
sat_rb_freq : float, optional
The number of times per year to rebalance the satellite portion of your
portfolio. Allowed rebalance frequencies are 1, 2, 3, 4, 6, 8, and 12
times per year, as well as 365.25 (daily). [default: 6]
tot_rb_freq : float, optional
The number of times per year to rebalance the entire portfolio, core and
satellite. This value must be less than or equal to `sat_rb_freq`.
Allowed rebalance frequencies are 1, 2, 3, 4, 6, 8, and 12 times per
year. [default: 1]
target_rb_day : integer, optional
For rebalance frequencies of one month or more, the market day of the
month on which you'd like rebalances to take place. Uses list-style
indexing, so both positive and negative values are acceptable as long as
their absolute value is 13 or lower. [default: -2]
reinvest_dividends : boolean, optional
When True, any dividends paid out by an asset are used immediately to
purchase partial shares of that asset. When False, dividends are taken
in as cash and spent on the next rebalance date. [default: False]
verbose : boolean, optional
Whether or not to print the download's progress. [default: False]
'''
# earliest start dates: 1998-11-22, 2007-05-22, 2012-10-21
def __init__(self, Portfolio, cash=1e4,
start_date=pd.Timestamp(2007, 5, 22),
end_date=pd.Timestamp(2015, 5, 22),
sat_rb_freq=6, tot_rb_freq=1, target_rb_day=-2,
reinvest_dividends=False, verbose=False):
# make sure a PortfolioMaker object is present
if not isinstance(Portfolio, PortfolioMaker):
raise ValueError('The first argument of HistoricalSimulator() must '
'be a PortfolioMaker() instance.')
# ensure that target_rb_day is valid; save it if so
if abs(target_rb_day) > 13:
raise ValueError('The absolute value of `target_rb_date` must be '
'less than or equal to 13.')
elif type(target_rb_day) != int:
raise ValueError('`target_rb_date` must be an integer.')
else:
self._target_rb_day = target_rb_day
# how often a year should we rebalance the satellite portion?
# and, how often a year should we rebalance the whole portfolio?
if ( ((12 % sat_rb_freq != 0 or sat_rb_freq % 1 != 0)
and sat_rb_freq != 365.25)
or (12 % tot_rb_freq != 0 or tot_rb_freq % 1 != 0) ):
raise ValueError('Allowed rebalance frequencies are 1, 2, 3, 4, '
'6, 8, and 12 times a year. `sat_rb_freq` can '
'also be 365.25 for daily rebalances.')
if sat_rb_freq < tot_rb_freq:
raise ValueError('satellite rebalance frequency must be greater '
'than or equal to total rebalance frequency')
self.sat_rb_freq = sat_rb_freq
self.tot_rb_freq = tot_rb_freq
# estimate period needed to warm up strategy's statistic(s) (converting
# real days to approx. market days) and subtract result from start_date
mkt_to_real_days = 365.25 / 252.75 # denominator is avg mkt days in year
buffer_days = int(self.window * mkt_to_real_days) + 5
self.open_date = pd.Timestamp(start_date - timedelta(buffer_days))
# save dates over which analysis will take place
self.start_date = pd.Timestamp(start_date)
self.end_date = pd.Timestamp(end_date)
# track the current simulation date
self.today = self.open_date
# validate proposed asset dictionary, then add historical data to it
self.assets = self._validate_assets_dict(Portfolio, verbose)
# make arrays of all dates in set and all *active* dates
self.all_dates, self.active_dates = self._get_date_arrays()
# on which dates do rebalances occur, and are they satellite-only?
self.rb_info = self._calc_rebalance_info(verbose)
# save preference for handling dividend payouts
self.reinvest_dividends = reinvest_dividends
# track remaining money in main and benchmark portfolios
# (are properties, so an error is thrown if they go negative)
# (go Decimal here?)
self._cash = float(cash)
self._bench_cash = self.portfolio_value(self.start_date, at_close=False)
self._starting_value = self._bench_cash
# save the core and satellite fractions
self.sat_frac = np.round(Portfolio.sat_frac, 6)
self.core_frac = np.round(1 - self.sat_frac, 6)
# make DataFrames to track portfolios and cash over time
self._create_tracking_arrays()
# save convenience lists of core, satellite, and benchmark asset names
self.core_names = [key for key, info in self.assets.items()
if info['label'] == 'core']
in_mkt_nm = [key for key, info in self.assets.items()
if info['label'] == 'satellite' and info['in_mkt']]
out_mkt_nm = [key for key, info in self.assets.items()
if info['label'] == 'satellite' and not info['in_mkt']]
self.sat_names = in_mkt_nm + out_mkt_nm
# (for satellite assets, make sure the in-market asset comes first)
self.bench_names = [key for key, info in self.assets.items()
if info['label'] == 'benchmark']
# run the loop?
@property
def cash(self):
return self._cash
@cash.setter
def cash(self, value):
if value < 0:
raise ValueError('More cash was spent than remains '
'in main portfolio.')
self._cash = value
@property
def bench_cash(self):
return self._bench_cash
@bench_cash.setter
def bench_cash(self, value):
if value < 0:
raise ValueError('More cash was spent than remains '
'in benchmark portfolio.')
self._bench_cash = value
# define attribute and methods that must be present a child Strategy class
# **(make sure to use the listed arguments)**
@abstract_attribute
def window(self):
'''
An attribute representing the number of days of data needed before a
Strategy class can begin trading. For example, a Strategy based on a
200-day simple moving average of some asset's price needs `window=200`.
'''
pass
@abstractmethod
def on_new_day(self):
'''
Called in HistoricalSimulator.begin_time_loop().
Keeps daily track of whatever indicators are needed to carry out a
Strategy. See SMAStrategy() for an example, though this method can also
just be a simple `pass` statement (as in VolTargetStrategy()) if
there's nothing that must be tracked daily.
Returns
-------
Nothing.
'''
pass
@abstractmethod
def refresh_parent(self):
'''
Called in HistoricalSimulator.append_date().
Re-creates any needed class attributes after a new date is appended to
asset dataFrames. Should only be called *before* any simulation is run.
If supporting appended dates isn't a concern, this method can just be a
simple `pass` statement.
Returns
-------
Nothing.
'''
pass
@abstractmethod
def rebalance_satellite(self, day, verbose=False):
'''
Called in HistoricalSimulator.rebalance_portfolio() or
HistoricalSimulator.begin_time_loop().
A satellite-only version of self._get_static_rb_changes() that
re-weights the main portfolio's satellite assets according to an
individual Strategy's logic.
Arguments
---------
day : `pandas.Timestamp` or `datetime.datetime`, required
The simulation's current date. Used to find whether this rebalance
is satellite-only or for the total portfolio.
verbose : boolean, optional
Controls whether or not to print any debugging information you
choose to include in this method. [default: False]
Returns
-------
On total rebalances: A list of the satellite assets' share changes. If
there are no satellite assets, the list should be empty.
On satellite-only rebalances: Nothing, but the method should end with a
call to self.make_rb_trades().
** In either case, the in-market asset's changes should come first in
the list/array of share changes. **
'''
pass
# define HistoricalSimulator's own methods
def portfolio_value(self, date=None, main_portfolio=True, at_close=True):
'''
Return the value of all assets currently held in the portfolio on a
certain date, including cash.
Arguments
---------
date : `pandas.Timestamp` or `datetime.datetime`, optional
The date whose price data is used in the value calculation. Will
cause an error if the date is not between the class' open and close
dates or if it is not a market day. [default: self.today]
main_portfolio : boolean, optional
If True, the method returns the value of main strategy's core/
satellite portfolio. If False, the method returns the value of the
benchmark portfolio. [default: True]
at_close : boolean, optional
If True, asset prices use the given `date`'s closing price.
If False, assets are valuated using the current day's opening
price; use this option for rebalances. [default: True]
'''
if not isinstance(at_close, bool):
raise ValueError("'at_close' must be a bool.")
# ensure that the requested date is within the class instance's range
date = self.today if date is None else date
if not self.open_date <= date <= self.end_date:
raise ValueError("`date` must occur between `self.open_date` and "
"`self.end_date`")
# get remaining cash for the chosen portfolio
cash = self.cash if main_portfolio else self.bench_cash
# determine whether to use open or close prices for assets
col = 'adjClose' if at_close else 'adjOpen'
# collect labels for assets in the chosen portfolio
labels = {'core', 'satellite'} if main_portfolio else {'benchmark'}
# multiply shares held of each ticker by their current prices
holdings = np.sum([info['shares'] * info['df'].loc[date, col]
for info in self.assets.values()
if info['label'] in labels])
return cash + holdings
def call_tiingo(self, tick, open_date,
end_date=pd.Timestamp.today(), verbose=True):
'''
Called in self._build_assets_dict(), but can also be used independently.
Download an asset's historical price data from Tiingo, convert the
result to a pandas DataFrame, then return it.
Arguments
---------
tick : str, required
The ticker of the asset whose data will be downloaded.
open_date : `pandas.Timestamp` or `datetime.datetime`, required
The earliest date of historical data to be downloaded. (Note that
when this method is called upon initializing HistoricalSimulator,
this argument is self.open_date, not self.start_date.)
end_date : `pandas.Timestamp` or `datetime.datetime`, optional
The final date of historical data to be downloaded. (When this
method is called upon initializing HistoricalSimulator, this
argument is self.end_date.) [default: pandas.Timestamp.today()]
verbose : boolean, optional
Whether or not to print the download's progress. [default: True]
'''
open_date = open_date.strftime('%Y-%m-%d') # (e.g. '1998-07-13')
end_date = end_date.strftime('%Y-%m-%d')
if verbose:
print(f"{tick} from {open_date} to {end_date}...")
url = f"https://api.tiingo.com/tiingo/daily/{tick}/prices"
headers = {'Content-Type': 'application/json'}
params = {
'startDate': open_date,
'endDate': end_date,
'format': 'json',
'resampleFreq': 'daily',
'token': MY_API_KEY,
}
resp = requests.get(url, params=params, headers=headers)
assert resp.status_code == 200, f"HTTP status code {resp.status_code}"
# convert JSON to dataFrame with index column made of Timestamp objects
df = pd.DataFrame.from_dict(resp.json())
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date').tz_localize(None) # use timezone-naive dates
return df
def append_date(self, date, price_dict, verbose=False):
'''
A (somewhat hacky) way to add a new date's worth of price data to the
'df' attribute of each asset in `self.assets`. Must be run *before*
`self.begin_time_loop()`.
Useful for scenarios where you'd like to do a real life rebalance but
lack the current day's info since Tiingo only updates its data after
the market closes.
Arguments
---------
date : `pandas.Timestamp` or `datetime.datetime`, required
The new date to add to the simulation. Must be a weekday and must
not be timezone-aware.
price_dict : dict, required
A dictionary whose keys are the string ticker symbols of each asset
in the current object (must match the keys in `self.assets`) and
whose values are floats representing the assets' prices on `date`.
verbose : boolean, optional
Whether to print rebalance month information. [default: False]
'''
# ensure the proposed date is valid
date = pd.Timestamp(date)
if date <= self.all_dates[-1]:
raise ValueError('Proposed date must come after all dates in the '
'current `self.all_dates` array.')
elif date.isoweekday() >= 6:
raise ValueError('Proposed date must be a weekday.')
# ensure that a simulation hasn't already been run
if self.today != self.open_date:
raise IndexError('You may only run `append_date()`*before* running '
'a simulation.')
# ensure that all assets are present in price_dict
if set(price_dict.keys()) != set(self.assets.keys()):
raise ValueError('Differing assets in proposed dict and '
'`self.assets`. Please include all assets.')
elif len(price_dict.keys()) != len(self.assets.keys()):
raise ValueError('Differing number of assets in proposed dict and '
'`self.assets`. Ensure that their lengths match.')
# add new row to each asset's dataFrame of price data
for tk, val in self.assets.items():
# create new row at the original dataFrame's end
val['df'].loc[date] = val['df'].iloc[-1]
# insert new price data into the new row
val['df'].loc[date, 'adjOpen'] = price_dict[tk]
val['df'].loc[date, 'adjClose'] = price_dict[tk]
# change class' end date
self.end_date = date
# include new date in the date arrays and the rebalance dataFrame
self.all_dates, self.active_dates = self._get_date_arrays()
self.rb_info = self._calc_rebalance_info(verbose)
# re-create result tracking arrays
self._create_tracking_arrays()
# finally, re-create any needed parent class attributes
self.refresh_parent()
def _create_tracking_arrays(self):
'''
Called in self.__init__() or (if run) self.append_date().
Creates arrays that track the main portfolio's value over time, as well
as the values of its core/satellite components (if present), the
benchmark portfoliio (if present), and of the portfolio's unspent cash.
'''
# make DataFrames to track main and benchmark portfolio values over time
self.strategy_results = pd.DataFrame({
'date': self.active_dates,
'value': np.zeros(len(self.active_dates))})
self.bench_results = self.strategy_results.copy()
# make DataFrames to track portfolios that are 100% core and 100% sat
if self.sat_frac > 0:
self.satellite_results = self.strategy_results.copy()
if self.core_frac > 0:
self.core_results = self.strategy_results.copy()
# make DataFrame to track free cash in main portfolio over time
self.cash_over_time = self.strategy_results.copy()
def _verify_dates(self, tick_info):
'''
Check whether any assets will have missing data based on user's proposed
start and end times for the simulation. If so, throw an error.
Arguments
---------
tick_info : `pandas.core.frame.DataFrame`, required
A DataFrame with start/end date and asset type (stock, ETF, mutual
fund) information. Comes from the `tick_info` attribute of the
PortfolioMaker object used to create the current HistoricalSimulator
instance.
'''
# are all assets active by self.start_date?
for i, dt in enumerate(tick_info['startDate']):
dt = pd.Timestamp(dt)
tk = tick_info.iloc[i]['ticker']
if dt > self.open_date:
dt_str = dt.strftime('%Y-%m-%d')
od_str = self.open_date.strftime('%Y-%m-%d')
raise ValueError(f"{tk}'s start date of {dt_str} is later than "
"your open date (start date minus window) "
f"of {od_str}. Try a later start date, a "
"decreased window, or a different ticker.")
# are all assets still active by self.end_date?
for i, dt in enumerate(tick_info['endDate']):
dt = pd.Timestamp(dt)
tk = tick_info.iloc[i]['ticker']
if dt < self.end_date:
dt_str = dt.strftime('%Y-%m-%d')
ed_str = self.end_date.strftime('%Y-%m-%d')
raise ValueError(f"{tk}'s end date of {dt_str} is earlier "
f"than your chosen end date of {ed_str}. "
'Try an earlier end date or choose a '
'different ticker.')
def _validate_assets_dict(self, Portfolio, verbose):
'''
Called in __init__() of HistoricalSimulator.
Verifies that proposed assets exist over the range of self.open_date to
self.end_date. If so, retrieves their historical price data from Tiingo.
Then, adds 'df' and 'shares' keys to each assets[TICKER] dict; their
respective values are the returned DataFrame and the number of 'ticker'
shares currently held (0 to start).
Arguments
---------
Portfolio : `portfolio_maker.PortfolioMaker`, required
The PortfolioMaker object provided when initializing this
HistoricalSimulator instance.
verbose : boolean, required
Whether or not to print output from Portfolio.check_assets().
'''
# add a standard benchmark portfolio if one wasn't provided
if len([tk for tk, info in Portfolio.assets.items()
if info['label'] == 'benchmark']) == 0:
# ensure that the potential additions exist during the simulation
# period and are not already listed as core/satellite assets
# (a future structural change might allow multiply-labeled assets)
bench_stock = bench_bond = None
# the stock index will be an ETF/mutual fund tracking the S&P 500
if ( self.open_date >= pd.Timestamp(1993, 1, 29)
and 'SPY' not in Portfolio.assets.keys() ):
bench_stock = 'SPY'
elif ( self.open_date >= pd.Timestamp(1976, 8, 31)
and 'VFINX' not in Portfolio.assets.keys() ):
bench_stock = 'VFINX'
# the bond index will be an ETF/mutual fund tracking the
# Barclays US Aggregate Bonds Index
if ( self.open_date >= pd.Timestamp(2003, 12, 31)
and 'AGG' not in Portfolio.assets.keys() ):
bench_bond = 'AGG'
elif ( self.open_date >= pd.Timestamp(1986, 12, 31)
and 'VBMFX' not in Portfolio.assets.keys() ):
bench_bond = 'VBMFX'
# if valid stock & bond tickers were found, add the portfolio
# (following the popular 60% stock/40% bond allocation model)
if bench_stock is not None and bench_bond is not None:
Portfolio.add_ticker(bench_stock, .6, label='benchmark')
Portfolio.add_ticker(bench_bond, .4, label='benchmark')
# else, the benchmark portfolio remains empty
# run Portfolio's own validation function to be thorough
Portfolio.check_assets(verbose)
# verify that all assets are present over the user's entire date range
self._verify_dates(Portfolio.tick_info)
# if those tests pass, fetch historical data from online for each asset
assets = pickle.loads(pickle.dumps(Portfolio.assets, -1))
# (faster than copy.deepcopy for this use case)
for tick, info in assets.items():
# get daily open/close data from Tiingo
df = self.call_tiingo(tick, self.open_date, self.end_date, verbose)
# add the dataframe to the ticker's dictionary information
info['df'] = df
# ensure that each asset has the same number of dates
num_dates = np.unique([len(assets[nm]['df'].index) for nm in assets])
assert len(num_dates) == 1, 'some ticker DataFrames are missing dates'
return assets
def _get_date_arrays(self):
'''
Called in __init__() of HistoricalSimulator.
Traverses downloaded historical data and returns an array with all
available dates (self.all_dates) and another only containing dates used
in an eventual simulation (self.active_dates).
Also changes self.start_date to the next market day if the user's
original choice is absent from the data.
'''
# pick a ticker (shouldn't matter which; all should have same dates)
nm = list(self.assets.keys())[0]
df = self.assets[nm]['df']
# save one array with all dates and another from start_date onward
all_dates = df.index.copy()
active_dates = df.loc[self.start_date:].index.copy()
# change start/end dates to match data if either is absent from the data
real_start = active_dates[0]
real_end = active_dates[-1]
fmt_str = '%Y-%m-%d'
if (real_start.strftime(fmt_str) != self.start_date.strftime(fmt_str)):
self.start_date = real_start
if (real_end.strftime(fmt_str) != self.end_date.strftime(fmt_str)):
self.end_date = real_end
return all_dates, active_dates
def _modify_rb_vars(self, rb_dates, sat_only, day, is_sat_only_rb=False):
'''
Called in self._calc_rebalance_info().
`rb_dates` and `sat_only` can be two lists or a NoneType object and a
pandas Series, respectively. This method handles that ambiguity by first
trying to append `ind` to `obj` (i.e., the case where `rb_dates` and
`sat_only` grow one item at a time because self.sat_rb_freq == 365.25.).
If append() causes an AttributeError, the method pivots to flipping
`sat_only`'s value at date `day`, since it must be a Series instead.
(This is the case it is pre-filled with Trues and flips one to False.)
See self._calc_rebalance_info() for more on how self.rb_info is built.
Arguments
---------
rb_dates : list or None, required
sat_only : list or `pandas.Series`, required
Types depend on this class instance's satellite rebalance frequency.
day : `pandas.Timestamp` or `datetime.datetime`, required
The date to be appended to `rb_dates`/`sat_only` or flipped in
`sat_only`, depending on those arguments' types.
is_sat_only_rb: boolean, optional
The type of rebalance that will happen on date `day` in each asset's
historical DataFrame. If True, it's a satellite-only rebalance;
if False, it's for the total portfolio. [default: False]
'''
# need to check if day is None (final month scenario)
if day is not None:
try:
rb_dates.append(day)
sat_only.append(is_sat_only_rb)
except AttributeError:
sat_only.loc[day] = is_sat_only_rb
# (no change needed with rb_dates)
return rb_dates, sat_only
def _last_day_of_month(self, year, month):
'''
Called in self._calc_rebalance_info().
Reliably calculate the date of the specified month's final market day.
Arguments
---------
year : integer, required
The year for the date in question.
month : integer, required
The month for the date in question.
'''
next_month = pd.Timestamp(year, month, 28) + timedelta(days=4)
return next_month - timedelta(days=next_month.day)
def _get_mth_rb_range(self, yr, mth):
'''
Called in self._calc_rebalance_info().
Returns the first and last days of a range of valid, weekday-only
rebalance dates for a particular year/month. Based on user's preference
for days after the first of a month (or days before the last market day
of the month) to rebalance.
The size of the range depends on the buffer used; if the buffer is 0,
the first and last days will be the same. However, use of a buffer is
advised since the desired date might fall on a holiday in a given month.
Arguments
---------
yr : integer, required
The year to consider in calculating rebalance dates.
mth: integer, required (from 1 to 12)
The month to consider in calculating rebalance dates.
'''
# SHOULD buffer BE AN ARGUMENT?
# assign target rb date index, reference date, and iteration direction
# based on whether rb date is counted from the month's beginning or end
if self._target_rb_day < 0:
rb_day = -self._target_rb_day - 1
ref_day = self._last_day_of_month(yr, mth)
iter_day = -1
else:
rb_day = self._target_rb_day
ref_day = pd.Timestamp(yr, mth, 1)
iter_day = 1
# create object to hold beginning/end dates of range
date_range = [] # for short lists, min(list) is faster than array.min()
# set number for market days to capture in range beyond exact rb date
buffer = 2
# set initial loop date and counter days before/after ref_day
dt = ref_day
days_beyond_ref = 0
while True:
# only count weekdays as possible options
if dt.isoweekday() < 6:
if days_beyond_ref == rb_day:
date_range.append(dt)
elif days_beyond_ref == rb_day + buffer:
date_range.append(dt)
break
# iterate the loop's "days beyond rb_day" counter
days_beyond_ref += 1
# iterate the loop's date
dt += timedelta(days=iter_day)
return date_range
def _calc_rebalance_info(self, verbose):
'''
Called in __init__() of HistoricalSimulator.
Uses satellite and total portfolio rebalance frequencies to create
`self.rb_info`, a dataFrame of this instance's rebalance dates and their
types (satellite-only if True, total portfolio if False).
Arguments
---------
verbose : boolean, required
Whether or not to print rebalance month information.
'''
my_pr = lambda *args, **kwargs: (print(*args, **kwargs)
if verbose else None)
# calculate the months in which to perform each type of rebalance
all_months = np.arange(1, 13)
# get total rebalance months, shifting list to include start month
tot_mths = all_months[all_months % (12 / self.tot_rb_freq) == 0]
tot_mths = (tot_mths + self.start_date.month) % 12
tot_mths[tot_mths == 0] = 12 # or else december would be 0
# choose satellite rebalance strategy based on frequency
if self.sat_rb_freq <= 12: # if monthly or less freqent...
# get satellite rebalance months, perform the same shift
sat_mths = all_months[all_months % (12 / self.sat_rb_freq) == 0]
sat_mths = (sat_mths + self.start_date.month) % 12
sat_mths[sat_mths == 0] += 12 # or else december would be 0
# give total rebalances priority over satellite-only
sat_mths = sat_mths[~np.isin(sat_mths, tot_mths)]
my_pr('sat rb mths:', sat_mths, '\ntot rb mths:', tot_mths)
# create list of dates when rebalances occur...
# and another specifying which type -- satellite or total
rb_dates = []
sat_only = []
else: # if daily... (only. in future could do every 2, 3 days and so on)
# ...then every month has rebalance events
sat_mths = all_months
my_pr('sat rb mths:', sat_mths, '\ntot rb mths:', tot_mths)
# include every active_date as a possible rebalance date
# (total rebalance days will be flipped to True in sat_only later)
rb_dates = None
sat_only = pd.Series(index=self.active_dates,
data=np.ones(len(self.active_dates),
dtype=bool))
#go = time.time()
my_pr('all sim mths:')
yr = self.start_date.year
while yr <= self.end_date.year:
# make array with all eligible months
months = np.arange(1 if yr != self.start_date.year
else self.start_date.month,
13 if yr != self.end_date.year
else self.end_date.month + 1)
# end month may not reach a reblance date, but allow for it if so
my_pr(months, yr)
# limit months to those cleared for rebalance events
eligible = [mth for mth in months
if mth in tot_mths or mth in sat_mths]
# check every month in the current year...
for mth in eligible:
# automatically make start_date a total rebalance event
if (yr == self.start_date.year
and mth == self.start_date.month):
(rb_dates,
sat_only) = self._modify_rb_vars(rb_dates, sat_only,
self.start_date,
is_sat_only_rb=False)
# in subsequent months, find desired market day for rebalancing
else:
# get first and last possible rebalance days (using a range
# instead of a specific day for protection against holidays)
fnl = self._get_mth_rb_range(yr, mth)
# save dates that fall within that range
poss = self.active_dates[(min(fnl) <= self.active_dates)
& (self.active_dates <= max(fnl))]
# save last/first day in the range as this month's rb date
try:
day = poss[-1 if self._target_rb_day < 0 else 0]
# if there are no dates in that range, use None instead
# (i.e., active_dates' last month cuts off prior to rb date)
except IndexError:
day = None
# NOTE: depending on buffer size in _get_mth_rb_range(),
# rb's could be triggered if sim ends within buffer but
# before target date. not yet sure how to fix this...
# update class' rb objects with this month's info
kind = True if mth not in tot_mths else False
(rb_dates,
sat_only) = self._modify_rb_vars(rb_dates, sat_only, day,
is_sat_only_rb=kind)
yr += 1
#my_pr(f"{time.time() - go:.3f} s for rebalance info loop")
# make dataFrame of rebalance info with index of active dates
rb_info = pd.DataFrame({'sat_only': sat_only})
if type(rb_info.index) != pd.DatetimeIndex:
rb_info.set_index(pd.DatetimeIndex(rb_dates), inplace=True)
return rb_info
def _get_static_rb_changes(self, names, main_portfolio=True):
'''
Called in self.rebalance_portfolio().
Returns an array with the changes in shares for all non-satellite assets
in the portfolio in question. These (core or benchmark) assets are
"static" because their target allocations do not change over time.
Arguments
---------
names : list, required
A list of assets who share the same label; it should typically
either be self.core_names or self.bench_names.
main_portfolio : boolean, optional
If True, the method finds share changes for the main strategy's
core/satellite portfolio. If False, the method finds share changes
for the benchmark portfolio. [default: True]
'''
# get total value for portfolio in question
pf_val = self.portfolio_value(self.today, main_portfolio=main_portfolio,
at_close=False)
# get share changes for assets in `names`
deltas = []
for name in names:
ideal_frac = self.assets[name]['fraction']
ideal_shares = pf_val * ideal_frac
curr_price = self.assets[name]['df'].loc[self.today, 'adjOpen']
curr_shares = self.assets[name]['shares']
curr_held = curr_shares * curr_price
# delta_shares must be an integer, so a full asset liquidation is
# assumed any time it is within 1 of curr_shares (e.g., 87 & 87.74)
delta_shares = (ideal_shares - curr_held) // curr_price
delta_shares = (-curr_shares if curr_shares != 0
and curr_shares+delta_shares < 1 else delta_shares)
deltas.append(delta_shares)
return deltas
def make_rb_trades(self, names, deltas, main_portfolio=True, verbose=False):
'''
Called in self.rebalance_portfolio() or the child Strategy class'
rebalance_satellite().
Completes the transactions needed to rebalance a portfolio.
Arguments
---------
names : `numpy.ndarray`, required
The string tickers of the assets that will be rebalanced.
If called from rebalance_portfolio(), it should be:
-- np.array(self.core_names + self.sat_names)
If called from rebalance_satellite():
-- np.array(self.sat_names)
If called from rebalance_portfolio() and `main_portfolio` is False:
-- np.array(self.bench_names)
deltas : `numpy.ndarray`, required
The corresponding share changes for the assets in `names`.
main_portfolio : boolean, optional
If True, rebalances the main strategy's core/satellite portfolio.
If False, rebalances the benchmark portfolio. [default: True]
verbose : boolean, optional
If True, the method prints information on completed trades.
[default: False]
'''
my_pr = lambda *args, **kwargs: (print(*args, **kwargs)
if verbose else None)
# exit if list of names is empty (sometimes the case for benchmark)
if len(names) == 0:
return
# use deltas to find which assets require sells, buys, or nothing
to_sell = np.where(deltas < 0)[0]
to_buy = np.where(deltas > 0)[0] # no action needed when deltas == 0
# gather assets' current prices in an array that matches with deltas
prices = np.array([self.assets[nm]['df'].loc[self.today, 'adjOpen']
for nm in names])
# first, sell symbols that are currently overweighted in portfolio
for i, nm in enumerate(names[to_sell]):
share_change = deltas[to_sell[i]] # this is negative, so...
if main_portfolio:
self.cash -= prices[to_sell[i]] * share_change # ...increases $$
# only print transaction info for main portfolio
my_pr(f"sold {abs(share_change):.0f} shares of {nm} @$"
f"{prices[to_sell[i]]:.2f} | ${self.cash:.2f} in account")
else:
self.bench_cash -= prices[to_sell[i]] * share_change # ...$$ ^
self.assets[nm]['shares'] += share_change # ...decreases shares
# then, buy underweighted symbols
for i, nm in enumerate(names[to_buy]):
share_change = deltas[to_buy[i]]
if main_portfolio:
self.cash -= prices[to_buy[i]] * share_change
# only print transaction info for main portfolio
my_pr(f"bought {share_change:.0f} shares of {nm} @$"
f"{prices[to_buy[i]]:.2f} | ${self.cash:.2f} in account")
else:
self.bench_cash -= prices[to_buy[i]] * share_change
self.assets[nm]['shares'] += share_change
def rebalance_portfolio(self, day, verbose=False):
'''
Called in self.begin_time_loop().
General method that performs a total-portfolio rebalance by
re-weighting core assets in-method and gets needed changes for
satellite assets from child's rebalance_satellite(). Then, completes the
transactions needed to restore balance.
The hope is that this method can work with any strategy by outsourcing
the procedures that differ in the individual rebalance_satellite()
methods from various Strategy classes. This assumes that the
target weights for the core will not change over time and that total
rebalances should always try to bring the portfolio back to them.
If that changes, perhaps add a specialized rebalance_core() method?
Arguments
---------
day : `pandas.Timestamp` or `datetime.datetime`, required
The simulation's current date. Used to find whether this rebalance
is satellite-only or for the total portfolio.
verbose : boolean, optional
If True, the method prints information on completed transactions.
[default: False]
'''
my_pr = lambda *args, **kwargs: (print(*args, **kwargs)
if verbose else None)
my_pr(f"total rb; sat_only is {self.rb_info.loc[day, 'sat_only']}; "
f"${self.cash:.2f} in account")
# get share changes for core assets
deltas = self._get_static_rb_changes(self.core_names)
# get share changes for satellite assets from child's method
deltas.extend(self.rebalance_satellite(day, verbose=verbose))
deltas = np.array(deltas)
my_pr('deltas:', deltas)
# rebalance the main (core/satellite) strategy's portfolio
main_names = np.array(self.core_names + self.sat_names)
self.make_rb_trades(main_names, deltas, verbose=verbose)
# next, get share changes for benchmark assets
bench_deltas = self._get_static_rb_changes(self.bench_names,
main_portfolio=False)