-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathexperiment.py
46 lines (33 loc) · 1.2 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from Data import ToyDataset
from periodic_activations import SineActivation, CosineActivation
import torch
from torch.utils.data import DataLoader
from Pipeline import AbstractPipelineClass
from torch import nn
from Model import Model
class ToyPipeline(AbstractPipelineClass):
def __init__(self, model):
self.model = model
def train(self):
loss_fn = nn.CrossEntropyLoss()
dataset = ToyDataset()
dataloader = DataLoader(dataset, batch_size=2048, shuffle=False)
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-3)
num_epochs = 100
for ep in range(num_epochs):
for x, y in dataloader:
optimizer.zero_grad()
y_pred = self.model(x.unsqueeze(1).float())
loss = loss_fn(y_pred, y)
loss.backward()
optimizer.step()
print("epoch: {}, loss:{}".format(ep, loss.item()))
def preprocess(self, x):
return x
def decorate_output(self, x):
return x
if __name__ == "__main__":
pipe = ToyPipeline(Model("sin", 42))
pipe.train()
#pipe = ToyPipeline(Model("cos", 12))
#pipe.train()