From 2c45480de3095533289b217bcdddca7841c9bffc Mon Sep 17 00:00:00 2001 From: eyihluyc Date: Sat, 7 Dec 2024 20:43:24 +0300 Subject: [PATCH] Add more tests --- Minimal/Examples.lean | 258 +++++++++++++++++++++++++++++++++++++----- 1 file changed, 227 insertions(+), 31 deletions(-) diff --git a/Minimal/Examples.lean b/Minimal/Examples.lean index d7eafe0..3fe89fc 100644 --- a/Minimal/Examples.lean +++ b/Minimal/Examples.lean @@ -9,14 +9,37 @@ open Reduce This file contains examples of minimal φ-calculus terms and their reductions. +Summary: +1. R_dot, locator substitution: + ⟦ x ↦ ρ⁰.y, y ↦ ⟦ ⟧ ⟧.x ⇝* ⟦ ⟧ +2. R_app, R_dot, cong_DOT: + ⟦ x ↦ ∅ ⟧(x ↦ ⟦ ⟧).x ⇝* ⟦ ⟧ +3. R_dot, locator substitution, cong_DOT: + ⟦ x ↦ ⟦ z ↦ ρ¹.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z ⇝* ⟦ ⟧ +4. R_phi: + ⟦ φ ↦ ⟦ x ↦ ⟦ ⟧ ⟧ ⟧.x ⇝* ⟦ ⟧ +5. cong_APP, R_app, locator increment + ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ρ⁰.y) ⟧ ⇝* ⟦ x ↦ ⟦ a ↦ ρ¹.y ⟧ ⟧ +6. Infinite reduction sequence presented after Definition 3.1 [KS22] + ⟦ x ↦ ρ⁰.y, y ↦ ρ⁰.x ⟧.x ⇝ ⟦ x ↦ ρ⁰.y, y ↦ ρ⁰.x ⟧.y + ⟦ x ↦ ρ⁰.y, y ↦ ρ⁰.x ⟧.y ⇝ ⟦ x ↦ ρ⁰.y, y ↦ ρ⁰.x ⟧.x +7. Examples/tests of different reductions of the same term presented after Definition 3.1 [KS22] + ⟦ x ↦ ⟦ y ↦ ∅ ⟧ ⟧.x(y ↦ ⟦ z ↦ w ⟧.z) +8. Locator decrement in substitution, cong_OBJ, R_dot + ⟦ b ↦ ⟦ c ↦ ρ¹ ⟧.c ⟧ ⇝* ⟦ b ↦ ρ⁰ ⟧ +9. R_dot, R_app, cong_OBJ, congAPPₗ + ⟦ a ↦ ⟦ b ↦ ∅ ⟧ ⟧.a (b ↦ ⟦ ⟧) ⇝* ⟦ b ↦ ⟦ ⟧ ⟧ +10. congAPPᵣ, R_dot + ⟦ ⟧ (a ↦ ⟦ b ↦ ⟦ ⟧ ⟧.b) ⇝* ⟦ ⟧ (a ↦ ⟦ ⟧) + ## References * [Nikolai Kudasov and Violetta Sim. 2023. Formalizing 𝜑-Calculus: A Purely Object-Oriented Calculus of Decorated Objects.][KS22] -/ --- TEST 1: ⟦ x ↦ ξ.y, y ↦ ⟦ ⟧ ⟧.x ⇝* ⟦ ⟧ +-- TEST 1: ⟦ x ↦ ρ⁰.y, y ↦ ⟦ ⟧ ⟧.x ⇝* ⟦ ⟧ --- bindings: x ↦ ξ.y, y ↦ ⟦ ⟧ +-- bindings: x ↦ ρ⁰.y, y ↦ ⟦ ⟧ def bindings1 : Bindings ["x", "y"] := Bindings.cons "x" @@ -25,19 +48,19 @@ def bindings1 : Bindings ["x", "y"] := (Bindings.cons "y" (by simp) - (attached (obj (Bindings.nil))) + (attached (obj Bindings.nil)) Bindings.nil) --- ⟦ x ↦ ξ.y, y ↦ ⟦ ⟧ ⟧.x +-- ⟦ x ↦ ρ⁰.y, y ↦ ⟦ ⟧ ⟧.x def example1 : Term := dot (obj bindings1) "x" --- ⟦ x ↦ ξ.y, y ↦ ⟦ ⟧ ⟧.y +-- ⟦ x ↦ ρ⁰.y, y ↦ ⟦ ⟧ ⟧.y def example1_a : Term := dot (obj bindings1) "y" -- ⟦ ⟧ def example1_res : Term := obj Bindings.nil --- ⟦ x ↦ ξ.y, y ↦ ⟦ ⟧ ⟧.x ⇝ ⟦ x ↦ ξ.y, y ↦ ⟦ ⟧ ⟧.y +-- ⟦ x ↦ ρ⁰.y, y ↦ ⟦ ⟧ ⟧.x ⇝ ⟦ x ↦ ρ⁰.y, y ↦ ⟦ ⟧ ⟧.y def test1_red1 : example1 ⇝ example1_a := by rw [example1, example1_a] have := (@dot_c @@ -50,7 +73,7 @@ def test1_red1 : example1 ⇝ example1_a := by (by simp [lookup])) simp at this; exact this --- ⟦ x ↦ ξ.y, y ↦ ⟦ ⟧ ⟧.y ⇝ ⟦ ⟧ +-- ⟦ x ↦ ρ⁰.y, y ↦ ⟦ ⟧ ⟧.y ⇝ ⟦ ⟧ def test1_red2 : example1_a ⇝ example1_res := by rw [example1_a, example1_res] exact (dot_c @@ -60,7 +83,7 @@ def test1_red2 : example1_a ⇝ example1_res := by rfl (by simp [lookup])) --- ⟦ x ↦ ξ.y, y ↦ ⟦ ⟧ ⟧.x ⇝* ⟦ ⟧ +-- ⟦ x ↦ ρ⁰.y, y ↦ ⟦ ⟧ ⟧.x ⇝* ⟦ ⟧ def test1 : example1 ⇝* example1_res := ReflTransGen.head test1_red1 @@ -127,7 +150,7 @@ def test2_red2 : example2_a ⇝ example2_res := by (Bindings.cons "x" (by simp) - (attached (obj (Bindings.nil))) + (attached (obj Bindings.nil)) Bindings.nil) (by simp) (by simp [lookup])) @@ -141,9 +164,9 @@ def test2 : example2 ⇝* example2_res := ReflTransGen.refl) ------------------------------------------ --- TEST 3: ⟦ x ↦ ⟦ z ↦ ρ.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z ⇝* ⟦ ⟧ +-- TEST 3: ⟦ x ↦ ⟦ z ↦ ρ¹.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z ⇝* ⟦ ⟧ --- ⟦ x ↦ ⟦ z ↦ ρ.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z +-- ⟦ x ↦ ⟦ z ↦ ρ¹.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z def example3 : Term := dot (dot @@ -159,7 +182,7 @@ def example3 : Term := "x") "z" --- ⟦ z ↦ ⟦ x ↦ ⟦ z ↦ ρ.y ⟧, y ↦ ⟦ ⟧ ⟧.y ⟧.z +-- ⟦ z ↦ ⟦ x ↦ ⟦ z ↦ ρ¹.y ⟧, y ↦ ⟦ ⟧ ⟧.y ⟧.z def example3_a : Term := dot (obj @@ -180,7 +203,7 @@ def example3_a : Term := Bindings.nil)) "z" --- ⟦ x ↦ ⟦ z ↦ ρ.y ⟧, y ↦ ⟦ ⟧ ⟧.y +-- ⟦ x ↦ ⟦ z ↦ ρ¹.y ⟧, y ↦ ⟦ ⟧ ⟧.y def example3_b : Term := dot (obj @@ -198,7 +221,7 @@ def example3_b : Term := -- ⟦ ⟧ def example3_res : Term := obj Bindings.nil --- ⟦ x ↦ ⟦ z ↦ ρ.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z ⇝ ⟦ z ↦ ⟦ x ↦ ⟦ z ↦ ρ.y ⟧, y ↦ ⟦ ⟧ ⟧.y ⟧.z +-- ⟦ x ↦ ⟦ z ↦ ρ¹.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z ⇝ ⟦ z ↦ ⟦ x ↦ ⟦ z ↦ ρ¹.y ⟧, y ↦ ⟦ ⟧ ⟧.y ⟧.z def test3_red1 : example3 ⇝ example3_a := congDOT (dot (obj @@ -326,7 +349,7 @@ def test3_red3 : example3_b ⇝ example3_res := by (by simp) (by simp [lookup])) --- ⟦ x ↦ ⟦ z ↦ ρ.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z ⇝* ⟦ ⟧ +-- ⟦ x ↦ ⟦ z ↦ ρ¹.y ⟧, y ↦ ⟦ ⟧ ⟧.x.z ⇝* ⟦ ⟧ def test3 : example3 ⇝* example3_res := ReflTransGen.head test3_red1 @@ -465,9 +488,9 @@ def test4 : example4 ⇝* example4_res := ReflTransGen.refl))) ------------------------------------------ --- TEST 5: ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ξ.y) ⟧ ⇝* ⟦ x ↦ ⟦ a ↦ ρ.y ⟧ ⟧ +-- TEST 5: ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ρ⁰.y) ⟧ ⇝* ⟦ x ↦ ⟦ a ↦ ρ¹.y ⟧ ⟧ --- ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ξ.y) ⟧ +-- ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ρ⁰.y) ⟧ def example5 : Term := (obj (Bindings.cons "x" (by simp) @@ -478,7 +501,7 @@ def example5 : Term := (dot (loc 0) "y"))) Bindings.nil)) --- ⟦ x ↦ ⟦ a ↦ ρ.y ⟧ ⟧ +-- ⟦ x ↦ ⟦ a ↦ ρ¹.y ⟧ ⟧ def example5_res : Term := (obj (Bindings.cons "x" (by simp) @@ -488,19 +511,11 @@ def example5_res : Term := Bindings.nil))) Bindings.nil)) --- ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ξ.y) ⟧ ⇝ ⟦ x ↦ ⟦ a ↦ ρ.y ⟧ ⟧ +-- ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ρ⁰.y) ⟧ ⇝ ⟦ x ↦ ⟦ a ↦ ρ¹.y ⟧ ⟧ def test5_red : example5 ⇝ example5_res := by simp [example5, example5_res] - exact (@congOBJ - (app - (obj (Bindings.cons "a" (by simp) void Bindings.nil)) - "a" - (dot (loc 0) "y")) - (obj (Bindings.cons "a" (by simp) - (attached (dot (loc 1) "y")) - Bindings.nil)) + exact (congOBJ "x" - ["x"] (Bindings.cons "x" (by simp) (attached (app @@ -509,18 +524,17 @@ def test5_red : example5 ⇝ example5_res := by (dot (loc 0) "y"))) Bindings.nil) (by - have := @app_c + have := app_c (obj (Bindings.cons "a" (by simp) void Bindings.nil)) (dot (loc 0) "y") "a" - ["a"] (Bindings.cons "a" (by simp) void Bindings.nil) (by simp) (by simp [lookup]) simp at this; exact this) (by apply IsAttached.zeroth_attached)) --- ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ξ.y) ⟧ ⇝* ⟦ x ↦ ⟦ a ↦ ρ.y ⟧ ⟧ +-- ⟦ x ↦ ⟦ a ↦ ∅ ⟧ (a ↦ ρ⁰.y) ⟧ ⇝* ⟦ x ↦ ⟦ a ↦ ρ¹.y ⟧ ⟧ def test5 : example5 ⇝* example5_res := ReflTransGen.head test5_red @@ -694,3 +708,185 @@ def test_graph_7 : example_graph_r2 ⇝ example_graph_last (by simp [lookup]) simp [insert_φ] at reduction exact reduction + +------------------------------------------ +-- TEST 8: ⟦ b ↦ ⟦ c ↦ ρ¹ ⟧.c ⟧ ⇝* ⟦ b ↦ ρ⁰ ⟧ + +-- ⟦ b ↦ ⟦ c ↦ ρ¹ ⟧.c ⟧ +def example8 : Term := + (obj + (Bindings.cons "b" (by simp) + (attached + (dot + (obj (Bindings.cons "c" (by simp) + (attached (loc 1)) + Bindings.nil)) + "c")) + Bindings.nil)) + +-- ⟦ b ↦ ρ⁰ ⟧ +def example8_res : Term := + (obj + (Bindings.cons "b" (by simp) + (attached (loc 0)) + Bindings.nil)) + +-- ⟦ b ↦ ⟦ c ↦ ρ¹ ⟧.c ⟧ ⇝ ⟦ b ↦ ρ⁰ ⟧ +def test8_red : example8 ⇝ example8_res := by + simp [example8, example8_res] + have := @congOBJ + (dot + (obj (Bindings.cons "c" (by simp) + (attached (loc 1)) + Bindings.nil)) + "c") + (loc 0) + "b" + ["b"] + (Bindings.cons "b" (by simp) + (attached + (dot + (obj (Bindings.cons "c" (by simp) + (attached (loc 1)) + Bindings.nil)) + "c")) + Bindings.nil) + (by + have := @dot_c + (obj (Bindings.cons "c" (by simp) + (attached (loc 1)) + Bindings.nil)) + (loc 1) + "c" + ["c"] + (Bindings.cons "c" (by simp) + (attached (loc 1)) + Bindings.nil) + (by simp) + (by simp [lookup]) + simp at this; exact this) + (by apply IsAttached.zeroth_attached) + simp [insert_φ] at this; exact this + +-- ⟦ b ↦ ⟦ c ↦ ρ¹ ⟧.c ⟧ ⇝* ⟦ b ↦ ρ⁰ ⟧ +def test8 : example8 ⇝* example8_res := + ReflTransGen.head + test8_red + ReflTransGen.refl + +------------------------------------------ +-- TEST 9: ⟦ a ↦ ⟦ b ↦ ∅ ⟧ ⟧.a (b ↦ ⟦ ⟧) ⇝* ⟦ b ↦ ⟦ ⟧ ⟧ + +-- ⟦ a ↦ ⟦ b ↦ ∅ ⟧ ⟧.a (b ↦ ⟦ ⟧) +def example9 : Term := + app + (dot + (obj + (Bindings.cons "a" (by simp) + (attached (obj + (Bindings.cons "b" (by simp) void Bindings.nil))) + Bindings.nil)) + "a") + "b" + (obj Bindings.nil) + +-- ⟦ b ↦ ∅ ⟧ (b ↦ ⟦ ⟧) +def example9_a : Term := + app + (obj (Bindings.cons "b" (by simp) void Bindings.nil)) + "b" + (obj Bindings.nil) + +-- ⟦ b ↦ ⟦ ⟧ ⟧ +def example9_res : Term := + (obj + (Bindings.cons "b" (by simp) + (attached (obj Bindings.nil)) + Bindings.nil)) + +-- ⟦ a ↦ ⟦ b ↦ ∅ ⟧ ⟧.a (b ↦ ⟦ ⟧) ⇝ ⟦ b ↦ ∅ ⟧ (b ↦ ⟦ ⟧) +def test9_red1 : example9 ⇝ example9_a := by + simp [example9, example9_a] + exact (congAPPₗ _ _ _ _ + (by + have := @dot_c + (obj + (Bindings.cons "a" (by simp) + (attached (obj + (Bindings.cons "b" (by simp) void Bindings.nil))) + Bindings.nil)) + (obj (Bindings.cons "b" (by simp) void Bindings.nil)) + "a" + ["a"] + (Bindings.cons "a" (by simp) + (attached (obj + (Bindings.cons "b" (by simp) void Bindings.nil))) + Bindings.nil) + (by simp) + (by simp [lookup]) + simp at this; exact this)) + +-- ⟦ b ↦ ∅ ⟧ (b ↦ ⟦ ⟧) ⇝ ⟦ b ↦ ⟦ ⟧ ⟧ +def test9_red2 : example9_a ⇝ example9_res := by + simp [example9_a, example9_res] + exact (by + have := app_c + (obj (Bindings.cons "b" (by simp) void Bindings.nil)) + (obj Bindings.nil) + "b" + (Bindings.cons "b" (by simp) void Bindings.nil) + (by simp) + (by simp [lookup]) + simp at this; exact this) + +-- ⟦ b ↦ ∅ ⟧ (b ↦ ⟦ ⟧) ⇝* ⟦ b ↦ ⟦ ⟧ ⟧ +def test9 : example9 ⇝* example9_res := + ReflTransGen.head test9_red1 + (ReflTransGen.head test9_red2 + ReflTransGen.refl) + +------------------------------------------ +-- TEST 10: ⟦ ⟧ (a ↦ ⟦ b ↦ ⟦ ⟧ ⟧.b) ⇝* ⟦ ⟧ (a ↦ ⟦ ⟧) + +-- ⟦ ⟧ (a ↦ ⟦ b ↦ ⟦ ⟧ ⟧.b) +def example10 : Term := + app + (obj Bindings.nil) + "a" + (dot + (obj (Bindings.cons "b" (by simp) + (attached (obj Bindings.nil)) + Bindings.nil)) + "b") + +-- ⟦ ⟧ (a ↦ ⟦ ⟧) +def example10_res : Term := + app + (obj Bindings.nil) + "a" + (obj Bindings.nil) + +-- ⟦ ⟧ (a ↦ ⟦ b ↦ ⟦ ⟧ ⟧.b) ⇝ ⟦ ⟧ (a ↦ ⟦ ⟧) +def test10_red : example10 ⇝ example10_res := by + simp [example10, example10_res] + exact (congAPPᵣ _ _ _ _ + (by + have := @dot_c + (obj + (Bindings.cons "b" (by simp) + (attached (obj Bindings.nil)) + Bindings.nil)) + (obj Bindings.nil) + "b" + ["b"] + (Bindings.cons "b" (by simp) + (attached (obj Bindings.nil)) + Bindings.nil) + (by simp) + (by simp [lookup]) + simp at this; exact this)) + +-- ⟦ ⟧ (a ↦ ⟦ b ↦ ⟦ ⟧ ⟧.b) ⇝* ⟦ ⟧ (a ↦ ⟦ ⟧) +def test10 : example10 ⇝* example10_res := + ReflTransGen.head test10_red + ReflTransGen.refl